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1.8 Sequences of Functions

PROBLEMS
1. For each of the following sequences, determine if the sequence converges or diverges. If
the sequence converges, determine the limit

PAE (n+1)? sin(n)
o, a, = b g = ¢ an—
3nt2 5n? +2n+1 n+1
2n—+1)2+e™ nr
d. a, = cos(n) e. ap,= (n+1)7+e f. a,= m
3n? + 5n + 10 n+1
cos(n) e , nsin(nm)
gy, = 2T h ap = L a, = 2T
& n?+1 ¢ n! b n+1
2. Determine the order (“big Oh”) of the following sequences
n® 4+ 2n? + 1000 cos(nm)
a. a, = b. a, =
n? + 600n® +n n?+1
n n ) 1
€= | Ty J sin((n + 5)7?)

10n3e™™ 4 n?
(2n +1)2

3. Consider the infinite series

d. a, = cos(n’m)

i (n+ 1)%2n
= (2n)!

a. Compute, explicitely, the partial sums S5 and Sg

b. Write the equivalent series obtained by replacing n by k — 2, i.e. by shifting the index.

4. Determine whether each of the following infinite series diverges or converges:

> > n? —|— 1 >, n?cos(n)
a. nzz‘ae b. Z C. nz::O 7@3 1)
nz:% —— e. nz:% ] cos(n) f. nz:% ()

5. Determine an (approximate) upper bound to the error when each of the following infinite
series is approximated by a twenty-term partial sum (520)

s 2n+1 > 1 2n+
a'nz:%?)n‘l—l—n—l—l b-;g Z

6. Consider the series: .
> a"
n=0

a. plot the partial sums S1(z), Ss5(x), Sio(z), and Syo(x) for —2 < x < 2.

b. What can you conclude about the convergence of the partial sums in this interval?



c. What, if anything, different can you conclude about the convergence of these partial

sums in the interval —3 <xz< 7



202V e 2 <
a, = —— = — | = since —
3n+2 9\3 3

(n+1)2 n?+2n+1 1+%+#_>1+0+0 1
an: = = = —
Bn2+2n+1  5ni+2n+1  5+2+L "540+0 5

sinn
n+1

a, = Note |sinn| <1

1
Thus |a,| < —— — 0.
n+1
Thus a,, — 0.

a, = cosn does not approach a limit
Thus the sequence diverges.
2n+1)*+e™ 2n* 2

n = — - =z sl =0
“ 32 +5n+10  3n2 3 omeec

B n (mr) _ (mr)
an—n+1cos 5 Ccos 5

Since cos (71;) = 0,41, depending on n the sequence diverges.

cos (n)
n?+1

n:

Thus |a,| <

n2+1—>0andan—>0.

en

Tl nn—-1)---2-1
Note n! =n(n—1)---2-1> 3---3 2.1 =3"2.2

n terms n—2 terms

n n 2 n—2
Thusan:;!gzgn_Q:Z(§> — 0 since e < 3.




nsin(nm)

a, =
n+1

= 0 since sin(nm) =0

Thus a,, — 0.

2. a
n3 + 2n? + 1000
a, = :
n” + 600n5 +n
on? 1 )
For n “large” a, behaves like — = —. Thus a, = O (nj)
n n
Note that for n > 10 the numeratcg)r is < n?+2n +n? = 4n3 and the
4 1
denominator > n’. Thus for n > 10 we have a,, < % = 4—4.
n n
2. b.
o - cos(nm)
n?+1
. 1 1 1
Since |cos(nm)| = 1, we have |a,| = OS] < pox Thus a, = O <n2> .
2. ¢
n n )
awzﬁ_l—#+JwﬂmHﬂm
Note sin((n + 1/2)7) = sin(nm) cos(m/2) + cos(nm) sin(mw/2) = cos(nm)
=0 =1
3 o 3 _ 2
The first factor in brackets is n4n— (0 —n) = n )
nt—1 nt—1
S0 a4, = - cos(nm) = O (=) since |cos(nm)] = 1
oan—n4_1cosmr = 3 since | cos(nm)| = 1.
2. d. 5 )
10n°e™™"
a, = ucos(n%)

(2n + 1)2

Note cos(n?m) = +1 depending on n even or odd. Also z°¢™* — 0 by
L’Hospital rule, so the first term in numerator is negligible compared to the second term

there.
n? 1
= —. Therefore a,, = O(1).

So |an| — 2~ 1



i (n+1)%2" _ 42,94 168 25-16  36-32
—  (2n)! 2! 41 6! 8! 10!
3 n+1)22" 4-2 9.4 16-8
E;‘O =145+t = 6678
6 (n+1)%2" 4-2 9-4 16-8 25-16 36-32 49-64
S =Y ~— " =1 = 6.688
6= 2 i Tor T T e T T or T

b. Let k=n+2 (orn=Fk—2)

X (n+1)2" X (k—-1)%2M2 1 & (k- 1)%2%
2 2n) k;,zo 2k —4)! Zkz::z (2k —4)!

n=0

oo o0
-n __ —1\" . . . 1
4.  a. E e " = E e converges as a geometric series with r = e < 1.

Th 53 e ! ¢
e sum is e " = =
= 1—et e—1
oo
b. Z . Note that for large n a, is of the order of 1/n.
n—O
[e.@]
Now use the comparison test, comparing our series to Z —.
n
n=0
Since the latter diverges, our series diverges.
< n2cosn
c. Z . Note that for large n, |a,| behaves like 5
n—O
o
Now use the comparison test, comparing our series to Z —-
n
n=0

Since the latter converges (p test with p = 4), our series converges.

o

Y

n=0n+

. Note that for large n, a, behaves like 1 # 0.

Since lim,,_,,, a, # 0 the series diverges.



4. e Y, % cos(nm). See problem 1.h.

n=0 """

Let us estimate n!, by takeing n!=1-2-3---n>1-2- 3-.-3 . Therefore
~——
n—2times
" 2 se\n—2 @2
a — < _ _ — 77,7172
[ n! = 2 (3) 2
e ] 62 62 00
where |r| = 3 < 1. Thus Z —r"? = 52 Z r" converges as a geometric series.
n=0 ™ o

Thus our series coverges by comparison test.

O 1
f. . Note that a,, > 0. Taki =
RZ::Q nln(n) ote that dn = aking f(z) zIn(z)

/OO do = /Oo @, where we used u = In(z).
2 xln(x) In(2) U
Thus the anti derivative is In(In(z)) which tend to infinity at the upper limit.

Therefore the series diverges.

we can use the integral test.

— 2n+1 2n + 1
5. a. - gy=—
a7§3n4+n+1’a 3nt+n+1
2n 1 1
For large n, |a,| < 3 < et Thus a, = O (n3>
> 2n + 1
20 20 722:1 Ll
= 2n+1 > 1 1
Eo| < - < <
| 20"2% 3nt+n+1 _n§1n3_2-202

— for N =20, p=3. Thus

Note the above is W

1

1 1 1
b. Zn:n:()(n)
S0 i 1 d 1
o dx
= 7< —_— =
Enl= 2 /NZL‘5 AN*

5=
n=N-+1 n

1 —6
=156 10

Eyl <
Bl < 755



L= ~ =5
— nt ¢ n? nz 0
> 4 4
[Enl~ > <+
o TN
4
E — =2
Bl < 55
6. Consider .
Zx":1+x+x2+x3+---
n=0
N 1—$N+1
Sy =Y a"=1+a+2>+2°+--+2¥ = "1 4 z#1
n=0 N+1, r=1
a. Si=1+=x
2 3 4 5 1—2f
Ss=14+z+z"+2°+2" +2° = 1
—x
1— 11
S=1+a+a’+a+ 42l = = .
—x
1—.1‘21
So=1l4+z+a’+2>+.. +2%° = :
—x

In Table 1 we list the sum for various values of —1 < x < 1. The graphs of f(z) = i along
with the partial sums S7, S5, Sig, So9 is given in Figure 1.

N @ b O

/
=7 1 =

sa

sS5
si10
sS20

Figure 1: Plot of f(z) = % along with the partial sums S, S5, S10, S20
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1.79
1.92
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b. The series only converges for —1 < x < 1.

The series diverges for —2 < x < —l or for 1 <z < 2.
1

: : : : 1
c. Series converges uniformly to a continuous function for —3 <z < 7

10



2 Fourier Series

2.1 Introduction

11



2.2 Derivation of the Fourier Series Coefficients
PROBLEMS

1. Derive the formula for the Fourier sine coefficients, b,

1 /L
b, = Z/_Lf(x)sin (mlr/x) dx |

using a method similar to that used to derive

ap = Zl;/LLf(x) oS (T) dx

2. For each of the following functions, find the Fourier coefficients, the Fourier series, and
sketch the partial sums Sa(z), S5(z), and Syo(z):

, —l<x<0
a'f(@:{l, 0<z<l

flx+2) = f(x)

3+ , -3<x<0

O A flo+6) = £(z)
0 , —2<x<0
c. f(z)= zr , 0<z<l1
2—x , 1<zx<?2

flz+4) = f(x)
d. f(z) =1—=cos(mx), —-1<zx<1

3. a. Show that the alternative Fourier Series representation

f(z) =ao+ i {an cos (T) + by, sin (ngx)}

n=1

leads to the formulas

1

ap —i/_Lf@)diU )
1 L

ay, =7 _Lf(x)cos (mlix> de , n>0
1 L

by, —L/_Lf(x)sin(mm)dx, n>0



where the formula for ag is no longer the n = 0 special case of the formula for a,,.

b. Show that the alternative Fourier Series representation
> 2nmt 2nmt
f(t) = % —i—rlz::l{ancos( ZZ > +bnsin< 7;: )}
(note the independent variable here is t), where L has been replaced by Tj/2, leads to

2 To/2 2
an / f(x) cos ( n7rt> dt , n>0

T Ty o To
2 [To/2 2nt
b, :7/ ( )dt, >0
Ty /s f(z)sin T n

Note that here the formula for aq is again the n = 0 special case of the formula for a,,.

4. In each of the following, find each point in —L < xz < L where f(z) has a discontinuity.
Find the left and right-hand limits of f(x) and f’(x) at each point of discontinuity and at
the end points of the interval. Without computing the Fourier coefficients, indicate to what
values the series should converge at these points.

22 1<2<3
a. flz)=¢ 0 , —-2<z<1
20, —3<ar< -2

B 3 , m/2<z<m
b'f(x)_{zx—z , —r<az<m/2

z? , 2<x<0

c. f(z)= 0 , 0<z<1
dz—1) , 1<zx<2

13



nmwx nmwxr

613+ 5: o () +en ()

k
Let k denote a fixed integer. Multiply both sides by sin (7) and integrate

L kmx L nmwx kmx
L 1 azixi ; oS .
JZ1 f(z)sin (kL ) dr = ao/Lsm (L) dr 43202 § an /_L cos (L) sin (L ) dx

=0 —o for all n,k

L
+ b, /_L sin (TT) sin (T) dx

=0 for all nk, =L for n=k

/L f(x)sin (T) dx = Lby

—L

by = 2/_LLf(l‘)SiIl (T) dx

Replacing k by n on both sides
1 (L
b, = —/ f(zx)sin (nzaz) dx

or

flz) = % + i {ay, cos (nmx) + by, sin (nmx) }

n=1

a, = 1/11 f(z) cos(nmz)dx

b, = 1/_1]”(1:) sin(nmrz)dx

1
Qo 1
0 2 2

ap = /_llf(x)d:v = /Oldx:x
a, = /1 f(z) cos(nmz)dx = /01 cos(nmz)dr = = sin(nmx) 1 =0

-1 nm 0

14



12

0.8
0.6
0.4
0.2

-0.2
1

12

1 AN
0.8
0.6
0.4
0.2

oy Y}
-0.2

-1 -0.5 0 0.5

Figure 2: Graph of f(z) and the N* partial sums for N =

1 1 1 1] _
b, = / f(z) sin(nmz)dz :/ sin(nrx)dxr = —— cos(nmx)| = 1= cos(nm)
—1 0 nm 0 nm
Thus L g
f(z) = 3 + 1 —cno;(mr) sin(nmx)
or
flz) = E + 2 sin(rx) + == sin(37z) + 2) sin(bmz) +
T T T g SRS T g SRR
3+, 3<x<0
2 b'f(m){?,—x , 0<a<3

flz+6) = f(z)

1

1.2

0.8
0.6
0.4
0.2

-0.2

12

0.5 1

1
0.8
0.6
0.4
0.2
0 VA

-0.2

-0.5

0

0.5 1

2,5, 10,20

L=3

f(x 250 Z::{ancos< 3 >~|—b Sm(n;rx)}

/ ) cos( mrx)dx
b, = 3/ x) sin mm)da:

ao—;/gf(x)dx—?)[/_@—l—a:dw%—/ 3—x)dx

where

o
3
|

15



nmwx

a, = ; [/O (3+x) cos(ng)dx + /03(3 — ) COS(T)dl’

(1 — cos(nm))

3 n2m?

mr] (1 — cos(—nm) — cos(nm) + 1) =

-4 -2 0 2 4 -4 -2 0 2 4
-2 0 2

3 3
25 25
2 2
15 15
1 1
05 0.5
94 -2 0 2 4 94 4

Figure 3: Graph of f(z) and the N** partial sums for N = 2,5, 10, 20

b, = E [/0 (34 x) sin(%)dx + /03(3 — ) sin(?)dm

16



1
b, = 3 —i(3+x) cos(ngﬂ)

nim

-3

nm nm
Thus 5 = g
flz) = 5+ n;l 5 (1 — cos(nm)) cos (m;x)
(@) 3 n 12 cos <7T33) n 12 cos <37rx) n 12 cos (57Tx
) = -+ — — |+ =
2 72 3 972 3 2572 3
0 , 2<xz<0
c. flx)= r , 0<z<l1
9z , 1<z<?
flx+4) = f(x)
L=2
f(z) = 204 > {an cos (mrx) + by, sin (mrx)}
2 &= 2 2
where | 2
a, = f/ f(z) cos(w)dx
2 J-2 2

b, = ;/_2 f(zx) sin(n—;m)d:c

ag = ;/:f(:v)dx:;[/ledx+/l2(2—x)dx]

122 (2-2)?212] 1 [1 1} 1
2121 2 1 212 2 2
ao 1
= — ==
2 4

171 2
o =+ [/ xcos(@)dx +/ (2 —2) cos(m)dx}
2 LJo 2 1 2

17



2 sin(ﬂ) _ (2)2

nmw 2

Note that the terms with sin(%F) cancel out.

a, = (ni)Q [2 COS(%) — cos(nm) — 1]

and 171 2
b, = © U xsin(@)der/ (2 —2) sin(m)dx}
2 Lo 2 1 2
1 2 nrx 2\? . nmx \|!
by = = || —— )t ) sin(—-
"2 l( mrmcos( 2 )+(n7r> sy )> 0
2 nmwT 2\? . nmx. )\ ?
(a3t (2) 3 ]
1 9 i 2\ 2 n 2 n 2\2 nm
= g e )+ () s+ o)+ () s ()]
2\2 nm
by = (— | sin(—
(mr) sin(—)
Thus

18



12 1.2

1 1
0.8 08
0.6 06
0.4 0.4
0.2 0.2
Op——>~— 0
02, -1 0 1 2 02 -1 0 1 2
12 12
1 1
0.8 08
0.6 06
0.4 0.4
0.2 0.2
o} 0
02 -1 0 1 2 02 -1 0 1 2

Figure 4: Graph of f(z) and the N*" partial sums for N = 2,5, 10, 20

d. f(z) =1—=cos(mx), —-1<zx<1

L=1
SO

flz) = % + i {a, cos(nmx) + by, sin(nmz)}

n=1

But f(z) is already in that form, i.e.
apg =2, a1 =-1, a, =0, forn>2

b, = 0 for all n

If you don’t see this, it will emerge by “brute force” (recalling the orthogonality integrals.)

19



3. a. Show that the alternative Fourier Series representation

f(z) =ap+ Z {an cos <n}rj ) + by, sin (nzx)} (2.2.1)

n=1

1 /L p
g :i/_Lf($)$
p L/ cos(mm>dx , n>0

b, L/ &n(mrx)dx , n>0

where the formula for ag is no longer the n = 0 special case of the formula for a,,.

leads to the formulas

Since the only change is in the first term before the summation, we will show how a is
computed. Integrate both sides of (2.2.1)

L L o0 L
[Lf(x)dx = /Laodx+nz:1 anLLcos (nL )dw—i—b / sin (mgx) dx

=0 =0

SO ;
/ f(z)dz = 2Lay
L

and therefore

ag = 21L/_LLf(:L')dx

b. Show that the alternative Fourier Series representation
> 2nmt 2nmt
_a20+n§::l{ancos< T}: >+bnsin< 7;: )} (2.2.2)
(note the independent variable here is t), where L has been replaced by Tj/2, leads to

2 [To/2 2nmt
ap, :—/0 f(x)cos(;ﬂ>dt, n>0

Ty J-10/2 0
2 (To/2 2nmt

by = — / i ( )dt , 0.
T s f(z)sin T n >

Note that (2.2.2) is identical to the Fourier series in the text, except that x is replaced here
by t and L is here Ty/2.

20



Thus

To/2 nmt
— dt = dt
an L/ ) cos( ) To/2 TO/2 S(To/ )
2 rTo/2 2nmt
— t dt
- | o D e0s(75)
and . T/2 .
TL’YT 0 nim
b, = / | dw — | dt
L Jsin(=p=)de = T0/2 gy D SE)
2 To/2 2nmt
_ 2 N si dt
T | o D)

4. In each of the following, find each point in —L < x < L where f(x) has a discontinuity.
Find the left and right-hand limits of f(z) and f’(x) at each point of discontinuity and at
the end points of the interval. Without computing the Fourier coefficients, indicate to what

values the series should converge at these points.

1< <3
—2<z<l1
—3<zr< -2
8
6
4
2
IIIII?IIIIIIIIG:IIIIIIIIIIIIIII
-3 -2 -1 4 1 2 3
_2: X
/ E
-63

Figure 5: Graph of f(x) for problem 4a
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Clearly f(z) is discontinuous at x = —2 and = = 1, and the periodic extension will also
be discontinuos at z = +3.

Since f(—2_) = —4 and f(—2,) = 0, the series converges to (—4+40)/2 = -2 at = = —2.

Since f(1-) =0 and f(14) =1, the series converges to 3 at z = 1.

Since f(3_) =9 and f(34) = —6, the series converges to 3 at z = +3.

B 3 , w/2<z<m
b'f($)_{2x—2 , —T<z<T7/2

N

S 1111l

X

- - - 1/2 3
IIIIIIIIIIIIIII\:hJIIIIIIIIIIIIIIL

3 2 1

Figure 6: Graph of f(x) for problem 4b

Clearly f(z) is discontinuous at x = 7/2 and the periodic extension is also discontinuous
at ¢ = =£m.

1
Since f <72T ) =nm—2and f <72T ) = 3, the series converges to T 5 at © = /2.
- +
—2 1
Since f(m_) =3 and f(7;) = —27 — 2, the series converges to 7;+ at x = %

22



x> , —2<z<0
c. f(z)= 0 , 0<z<l1
dx—1) , 1<x<2

Figure 7: Graph of f(z) for problem 4c

Clearly f(z) is continuous and so is its periodic extension. So the series converges to
f(z) everywhere.

23



2.3 0Odd and Even Functions

PROBLEMS
1. Find the Fourier series for the following functions
-1, =2<zx<0
& f(x)_{ 1, O<z<?2

flx+4) = f(x)
f(z) is clearly odd, and L = 2. Thus

f(z) = i by, sin (717;3)

n=1
where 5 5 ) 5
. (nTx nmx
b, = = [ 1-sin <> dx = —— cos () = — [1 — cos(nm)]
2 Jo 2 nmw 2 Jlo nm
or
> 2
. [/nTT
f(z) = > —[1— cos(nm)]sin ()
- nw 2
n=1
1.5 15
1 1
05 0.5
0 0
-05 -0.5
-1 -1
-15 -15
-2 -1 0 1 2 -2 -1 0 1 2
1.5 15
2 N L (\ A
05 0.5
0 0
-05 -0.5
- Y i v
-15 -15
-2 -1 0 1 2 -2 -1 o] 1 2

Figure 8: Graph of f(x) for problem la of 2.3
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b f(z) =z, flz+2)= f(x)
f(z) is clearly even, L = 1. Thus

flz) = % + i ay, cos (nmx)

n=1
where (note that |z| =z for z > 0)
2 1 T . 1 1
a, = 7/ x - cos (nmx)dr = 2 [ sin (nmx) + cos(mrx)] for n #0
1 Jo nm n?m? 0
2
W= 5 [cos(nm) — 1] forn #0
and
1 1
ap = 2| zdx = 22| =1
0 0
ao 1
= — ==
2 2
or
f@) = 2+ 55 2 feos(nm) — 1] cos (nra)
x) = = cos(nm) — 1] cos (nmz
2 g nPr?
1 1
0.8 0.8
0.6 0.6
04 04
0.2 0.2
9l -0.5 0 0.5 1 (—)1 -0.5 0 0.5 1
1 1
0.8 0.8
0.6 0.6
04 04
0.2 0.2
91 -0.5 0 0.5 1 91 -0.5 0 0.5 1

Figure 9: Graph of f(z) for problem 1b of 2.3

25



. f(z) = |sin(x)
Pick L = /2. Since f(x) is even

flz) = 24 i ay, cos (nmx)

2 n=1
where
~ 2 onayde = 2 [ 2nz) d
a, = 7r/2/o | sin(z)| cos (2nz) dx = ;/0 sin(x) cos (2nz) dx
or ) p
o =t _cos(l—2n)z  cos(l+2n)x for n £ 0
T 2(1 —2n) 2(14+2n) |lo
" — 4] cos(l—2n)m/2  cos(l +2n)m/2 1 N 1 for n # 0
7T 2(1 —2n) 2(1+2n) 2(1—=2n) 2(1+2n)

Note that cos(1 — 2n)7/2 = cos(w/2) cos(nm) + sin(mw/2) sin(nn), also cos(1 + 2n)7/2 = 0.
———— —_——

=0 -0
Thus A ) X ,
¢ 2m 1—2n+1+2n (1 — 4n?) or n #
1 14
0.8 1.2
1
0.6 08
0.4 0.6
0.4
0.2
0.2
0 0
2 -1 0 1 2 by 1 0 1 )
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
=2 -1 0 1 2 -2 -1 0 1 >
Figure 10: Graph of f(x) for problem 1lc of 2.3
and
4 (/2 4 /2 4
ap = */ sinxdr = ——cosx = -
/0 ™ 0 T
Qo 2
= - ==
2 s
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or

1 s 4
== T cos(2
f(x) 5 +nz::17r(1—4nz) cos(2nx)
—2—x , 2<z<-1
d. f(x) = x , —1<zx< 1
22—z , 1<x< 2

flx+4) = f(x)

Since f(z) is odd,

n=1
where
9 2
b, = 5/0 f(x)sin <n27ra7>
1 2
= /xsm <mx>+ (2 — z)sin (mx>
0 2 1 2
{ 2 (m) (2)2,<n7r>}1
= ——xcos|—x |+ |— | sin|—x
nmw nmw 2 0
2 2 2 2
+ {—(2—1’) cos (mx> — <> sin (7]-1’>}
nm nm 1
2 (mr) n ( 2 )2 (mr n 2 (mr
= ——cos|— — ) sin | — —cos [ —
nmw 2 nmw 2 T 2
2
= 2(37) sin (%)
Thus 9
s 2 nmw nmw
_ o (2 ain (™ g (7™
f(x) ; (mr) sm( )sm( x
or
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05 05
0 0
-05 -05
= -1 0 1 2 = -1 0 1 2
1 1
05 05
0 0
-05 -05
= -1 0 1 2 = -1 0 1 2

Figure 11: Graph of f(z) for problem 1d of 2.3
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2.4 Convergence Properties of Fourier Series

PROBLEMS

1. For each of the following Fourier series, determine whether the series will converge uni-
formly, converge only in mean square, or diverge:

1 1
w5+ S ()

33
n_1n°m

> 1
b. 1+ Z—W cos(nm) cos (n;r:n)

n=1

c. —2 +7§ {"C"Mﬂcos(m) _ ! Sin(nx)}

n?+1 n2m?

oo n ‘
d. nz::lm Sln(mrx)

2. For each convergent Fourier series in problem 1 above, determine the highest derivative
of the periodic extension of f(x) that should be continuous.

3. Consider the Fourier series for
f(z) = |z|, -1<z<1

(found earlier). Differentiate this series once term by term, and compare your answer to the
actual series of f'(z).

29



1 1
La.a, =0, by = 5 = O(3>, =>p=3>1
n3m n
The series converges uniformly.
1 1
L.b. a, = —cos(nm) = O<>, =p=10,=0
nm n

The series converges in the mean but not uniformly.

n cos(n) (1) 1 < 1 )
le a, =B 5(2) = p=10, = — _of(L
¢« n?+1 n p n2m2 n?

The series converges in the mean but not uniformly (because the dominant term is O ( %))
n
1.d. a,=0, b, = — = 0(1
a —— (1)

The series does not converge.
1 1
2.8.a, =0, b, = 5= = O(3>, =>p=3>1
n3m n
Since p = 3, both f(z) and f’(z) should be continuous but not f”(z)

1 1
2.b. a, =—-cos(nm) = O <
nm n

f(x) should not be continuous.

),:>pzlbn:0

2. an:mos@ﬂ:o(l

1 1
n?+1 n)’ =P n2m?2 O(nZ)
f(x) should not be continuous.

n

2.d. a,=0, b, = — =0(1
an =0 n+1 o)

The series does not converge and so we can’t talk about the limit function.

3. The Fourier series

cos(nrz), —1 <z <1

flz) = |z| = =+ i_o:l 2(cos(nm) — 1)

n2m?
Differentiate this series once term by term,

2(1 — cos(nm))

cos(nm) — 1)

sin(nmx)

(—nmsin(nrz)), = i

2.2
nem n=1

f(x) = 2”

which is exactly the Fourier series of the function

Note that g(z) is the derivative of |z| and also that it is odd and so we expect a Fourier sine
series.
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2.5 Interpretation of the Fourier Coefficients

PROBLEMS

1. Plot the amplitude and phase as a function of frequency for each of the Fourier series
found for the problems in the first section of this chapter.

2. Prove Parseval’s Theorem

I 2 o a1 s _ a5 & a0}
ELL[f(x)] do= AF+30 A= +3 e

(Hint: first show
L g B S a8
o [ U@ =+ 3 g

then use the definition of the A,,.)
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f(z) = L + 3 1_Ls(mr)sm(mr;z:)

n=1 nm

f(z) = Ag+ i A, cos (nmx — ¢y,)

n=1

A, =+/a2 + b2, ¢, = tan"! <bn>
an

Note that ¢, = 0 by definition if A,, = 0. Now

where

1-— 1
ap = 07 bn = COS(nTr)a = An ) AO =5
nmw nmw 2

b [0 m=024..
" w/2, n=1,3,5,...

|1 —cos(nm)|

w2
.64

21

A3

Figure 12: Graph of spectrum for problem 1la of 2.5
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1.b.
6

n2m?

flx) = ; + ni::l (1 — cos(nm)) cos (m;x)

f(z) = Ao+ i A, cos (nmx — ¢p,)

n=1
where b
An = 2 b2 n =t =
VAR o=t (%)
Now 3
Qo
Y =3 = (1= cos(um)), by = 0,
12
3 —5 n=135...
:>AO - 57 An = e
0’ n:274’67..-
¢n =0
A P

w2

15

1.22

14
.05 ” I

Figure 13: Graph of spectrum for problem 1b of 2.5
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o i+ i {<2)2 2 cos( ™) —;os(mr) -1 s <n72mc) N <2>25in(n27T)SiI1 (ngm)}

= | \nm nm
Now
ag _ }7 Y (2>2 2 cos("y") — cos(n) —1’ b — <2>2Sin(m)’
2 4 nmw 2 nmw

1 2 \2 \/(2008(”2“) —cos(nm) —1)2 , nm
= AO = Z’ An = (m) 4 —|—S111 (7)

2sin(%)

-l
fn = tan (2 cos("y") — cos(nm) — 1)

T T
¢1:§7 Qo = £, ¢3=—§7 ¢4 =0

For n > 5 these values repeat.

A
n

w2
41

.20

.04

Figure 14: Graph of spectrum for problem 1c of 2.5
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1.d.
f(z) =1— cos(mx)

ag =1, a; = —1, all others are zero
Ag=1, A1=1 A, =0,n>2
¢1=m
A,
1 i *

Figure 15: Graph of spectrum for problem 1d of 2.5
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flx) = ao 2 (an Ccos (Tz) + by, sin <Tgx>)
2[//_LL [f(x)]de _ 21[,/_1—;; [C;O + i (an cos (Tz) + b, sin (TQJ))] dx
- ]S o (272 s ()
+ i i (an Ccos (Lx> + b, sin ( )) (am Ccos (Tm) + by, sin (Tw))] dx

n=1m=1
nm
2L/ —x—l——aoz an/ cos(Lx)dx—l—b/ sm(L )dx

=0

So

=0
1 i i ana /L COS (ma:) coS (m ) dzx +a,b,, / cos (mx) sin (Wx) dx
o e Bl IR L L " L L
=0, m#n =0, for all mn

mm n nw . /mm
+a,,b;, / cos< 7 )sm (LJ;) dx +b,b,, / sm( 7 )sm (J;) dx

L

=0, for all mn =0, m#n

2 1 = L L
EZL 1 2L nzzjl a’ /_L cos® (n;jx) dx +b? /_L sin? (Tx) dx

=L

=L

i (a2 +82)

o

=2y lLi(LaiJrng):

n=1

Mo@w
l\D\ —

1 o
=A%+§ZA2
n=1
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2.6 The Complex Form of the Fourier Series
PROBLEMS

1. Find the complex Fourier series for each of the following functions:
a. f(x)=x,-3<x<3 ,  f(x+6)=f(z)

R F
flz+2) = f(x)

2. Plot the complex amplitude spectrum for each of the series found in problem 1 above.

3. Show that if we use Ty for the period of a signal, rather than 2L, the formula for the
complex Fourier series coefficients reduces to

1 To/2 2%
_ - znwz/TOd
“= T /—To/z J(x)e ’

4. Using the complex form of the Fourier series, prove the following form of Parseval’s

theorem
o [ @ = 3 jef

n=—oo

(Hint: Show
|f<1’)|2 — f(l')f(l‘)* — [ _Z CneinWI/L] [ _z: C;e—imﬁx/L]
i i [cnc* eln= m)”/L} 7

NnN=—0o0 M=—00

then integrate.)
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f(flf): Z cnei(’mrx/L)

where L = 3 and
1 /L . 1 /3 .
Cp = 57, f(x)e—z(mm‘/L)dx _ 6 [3 xe—z(nﬂm/3)
1 3 : 2 3
Cp = = |\_A:L,6—z(n7ra:/3) . <3> e—z(nﬂx/3)‘|
6 NI T _3

1 9 —inmT 3 2 —inm 9 nm 3 2 nm
Chn = = |——e€ —<,>e - —e —i—(,)e , n#0
6 nT nm mnm nT

Note that € = cosx +isinz = " = cos(nr) + isin(nm) = cos(n). Also

So

17 18 31 ;
o3[ on] - e, w1
6L inm nm ¢
Thus o 3
fla)y = 2 cos(nm)e ne/3)
n——oo VT
3i 3
lcn| = |—cos(nm)| = |—|, n#0
nm nm
’CO‘ =0

To compute the argument of ¢,, we note that

37

cp=——, forn=41,35,...
nm
and 2
e =2 forn=+246,...
nmw

Notice that since n changes sign, we have

-5, n=135,...
arg(cn) =
5 n=-—1,-3,-95,...
and
o n=2,4,6,...
arg(c,) =

—T p=-2-4,-6,...
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1.b. .
f([lf): Z cnei(’mrx/L)

where L =1 and - -
Cn = §L1 f(x)e—z(nﬂ'x)dl. — 2/0 e—i(mrx)
1 - 1 1 ,
— _ —i(nmx) — —inT _ 0
n 2inm 0 2nT [6 ] » T 7é
Note that e = cos(nn) % isin(nr) = cos(nm). Also
=0
1,1 1
== dr = =
Co 2/0 Xz 5
So
Cp = ﬁ (cos(nm) — 1)
Thus . .
flz) = 5t n__%;n?éo Ey (cos(nm) — 1) ')
v [ &), nodd
lea] = |- (cos(nm) — 1) | = { il modd
1
|co| = 2

Argument of ¢, is F5 where n = £1,3,5,... and is 0 for n = £2,4,6, . ..
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2.b.

arg(c,)

w2

.95

.48 n

.32
.24

Figure 16: Graph of spectrum for problem la of 2.6

arg(c,)
w2

n

.50

.32

A1

Figure 17: Graph of spectrum for problem 1b of 2.6
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3.
If f(x Z '™/ L) then

n=—oo

1 rL »
C, = ﬁ/_L f(x)efl(nﬂx/L)dx

T
Now let Ty = 2L, = L = ?0 Thus

oa— 1/TO/2 f l’)e_imm/(To/Q)dl‘
To J-10/2

1 [To/2 .
Cp = 7/ 0 f(x)e—anﬂ'x/Todx

To J-10/2
4.
/ | d 1 /L f( )f d / Z Z zn m)ﬂ'l‘/Ld
r = — xr = Cp C e X
2L oL )1 oL Jop A 2
1 = L
n;w m;m CnC / i(n—m 7r:L"/Ld ﬁ n:Z_oo CTLC:L /_L dx
——
=0 for n#m =2L
Thus -
2
2L/ o)l dm_n;mm
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2.7 Fourier Series and Ordinary Differential Equations

PROBLEM

1. Use Fourier series to construct a non-homogeneous solution to the ordinary differential
equations:
y'+2y +y = f(z),

where:
T 0<zr<l1

@) =99,  1<s<o
flz+2) = f(x)
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1. A plot of the periodic extension of f(z) shows that f(z) = |z, -1 < z < 1.

Therefore B
1 & 2(cos(nm) — 1)

flz) = 5t nz::l 32 cos(nmzx)
So, if
1 > 1
v+ 2y +y = 3 z:: COSTLZQ ) cos(nmz)
then y(x) )+ Z Yn(x) where
W2t =2 Sy = o
D! T2
2 -1
Yn 42y, 4y = (COS(Z”? ) cos(nmz)
n?m
Thus

Yn(T) = an cos(nmx) + B, sin(nmz)
and substitution yields (after comparing like terms)

2(cos(nm) — 1)

(—n27r2 + 1) o, +2nwfB, =

—2nmay, + (—n27r2 + 1) B, =0

Solving the system of two equations for the two unknowns, we have

_ 2(cos(nm) — 1) (1 — n?m?) _0 (1)
" n2m? (1 —n272)? + 422 \n?
2(cos(nm) — 1) 2nm 1

B = 272 222 22:O<5)
nAm (1 —n?n2)" +4n’n n

So

o1& 2(cos(nm) — 1)
AT

{(1 ) 4 4n27r2] {(1 — n2772) cos(nmx) + 2nw sin(mrx)}

Plot of 10 terms of the series is given in Figure 18.
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y(x)

Figure 18: Graph of Sy for problem 1 of 2.7
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2.8 Fourier Series and Digital Data Transmission
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3 The One-Dimensional Wave Equation

3.1 Introduction
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3.2 The One-Dimensional Wave Equation
PROBLEMS

1. Show that if a uniform, thin, tightly stretched elastic string is acted upon by no forces
other than internal tension and an external air resistance proportional to the vertical velocity,
then Newton’s second law leads to a partial differential equation of the form:

Fu, ou_riu
oz " "ot poa?

where k4 is some positive constant of proportionality.

2. Show that if a uniform, thin, tightly stretched elastic string is acted upon by no forces
other than internal tension and an external spring-like restoring force proportional to the
vertical displacement, then Newton’s second law leads to a partial differential equation of
the form:

®u  Tdu

o2 pox?

where r; is some positive constant of proportionality.

— KU
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1. If we add air resistance proportional to the vertical velocity then the net vertical force
acting on the small segment of the string becomes

ou ou 1 ou
T {ax(x + Az, t) — ax(x,t)} + pg(z + iAx,t)A:v — Kan
Therefore 52 a2 )
U U U

2. If instead of air resistance we have external spring-like restoring force then the first

equation in problem 1 will have —KuAxz instead of K YAz and thus the final equation

ot
becomes o o
U U
p@(xﬂg = T@(I,t) + pg(l‘,t) - KSU(CL’,t)
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3.3 Boundary Conditions
PROBLEMS

1. Having physically correct algebraic signs in boundary conditions can be critical. Show,
both mathematically and physically, that the following boundary conditions:

a. u(L,t) —uy(L,t) =0

b. w(0,t) + u,(0,¢) =0

are not physically realistic.

2. Show that if a uniform, thin, tightly stretched elastic string is attached at its right-
hand boundary to a slip-ring on a pole that is not frictionless, but in which the friction
is proportional to the vertical velocity along the pole, then the boundary condition at that
point becomes

where kg is some positive constant of proportionality.
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1. a.-b. The balance of forces, as discussed in the notes, leads to

Ksu(L,t) + T?Z(L, t)=0
rsu(0,t) — TgZ(O, t)=0

Physically, the spring constant s and the string tension 7 cannot be negative.

2. The vertical force acting on a weightless slip ring due to string tension is, as discussed

ou
in the notes, —Ta—(x, t). The vertical force acting on the ring due to pole friction is opposite
x

0
to the direction of its motion: —fid&—::(a:,t). The sum of forces acting on the ring must be
zero, therefore
ou ou
—T7—(x,t) — Kg—(x,t) =0
T@x( )~ #a 875( )
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3.4 Initial Conditions

o1



3.5 Introduction to the Solution of the Wave Equation
PROBLEMS

1. Briefly describe, in a few sentences, a physical model for each of the following boundary
value problems:

a.
Uy = DUy
u(0,t) = u,(3,t) =0
2 O0<z<1
“(5‘;’0)_{ 0 ,1<z<3
u(z,0) =0
b.
Ut = Ugy
uw(0,t) =u(l,t) =0
u(z,0) =0
u(x,0) =1
c.
Uy = 9uxac
uz(0,t) = u,(2,t) =0
u(z,0) =z
u(z,0) =0
d.
Ut = Ugy
u(0,t) =
u(3,t) + 2u,(3,t) =0
2 O0<zxz<1
u(x,())—{ 0 ,1<z<3
u(z,0) = 10
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l.a. A vibrating string of length L. = 3 and ¢ = 2. The initial displacement is linear
from 0 to 1 and at rest from 1 to 3. The initial velocity is zero. The left end is fixed and the
right end is free.

1.b. A vibrating string of length L = 1 and ¢ = 1. The initial displacement is zero and
the initial velocity is 1. Both ends are fixed.

1.c. A vibrating string of length L = 2 and ¢ = 3. The initial displacement is linear and
the initial velocity is zero. Both ends are free.

1.d. A vibrating string of length . = 3 and ¢ = 1. The initial displacement is as in
problem la and the initial velocity is 10. The left end is fixed and the right end is attached
to a spring.
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3.6 The Fixed End Condition String
PROBLEMS

1. Solve:
Ut = Uy

u(0,t) = u(3,t) =0
2z 0<z<1/2
w(z,0)=¢ 2—2z ,1/2<zx<1
0 ,1<z<3
u(x,0) =0

Sketch the ten-term partial sum of your computed solution at

t=0,1,2,4 .
2. Solve:
Utt = Ugy
u(0,t) = u(m, t) =
0 , O<z<m/4
(e —m)/m, 7/d<x<m/2
u(@,0) = { (Br —4dx)/m , w/2<x<3m/4
0 , Sm/d<z<m
u(x,0) =0
3. Solve:
Ut = Ugy
u(0,t) = u(m,t) =0
u(z,0) =z(r—2z),0<z<m
u(z,0) =0
4. Solve:
Ut = Ugy
u(0,t) =u(3,t) =0
u(z,0) =0
u(z,0) =z
5. Solve:

Ut = gy

u(0,t) = u(m,t) =0
u(z,0) = sin(z)
w(z,0) =1

o4



6. Solve:
utt:4uxa:
u(0,t) = u(b,t) =0
B x , 0<z<5/2
ut(x,O)—{5_x , 5/2<xz<b

u(z,0) =0

7. The dissipation of heat in a “very large” solid slab of thickness L whose faces are held at
a fixed reference temperature of 0° is described by the partial differential equation:

Uy = kux:(;
u(0,t) = u(L,t) =0
u(z,0) = f(z)

where u(z,t) denotes the temperature at location x and time t.

a. Why is only one initial condition required in this problem?

b. Show that the method of Separation of Variables also “works” in this problem, and
leads formally to the general solution:

u(z,t) =>" bye T/t gin (m;x) ,
n=1

where:

b, = i/oLf(x)sin (nzx) dx .
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2z 0<z<1/2
w(z,0)=¢ 2—-2z ,1/2<zx<1

0 A <z<3
ui(z,0) =0

Separation of variables leads to

Tt)+XT(t)=0 X"x)+AX(z) = 0
X(0) =0
X3) =0

9  n°m nm

Eigenvalues are A\, = ¢, =

u(z,t) = i {An Ccos <Tgrt) + B, sin <n;t> } sin <7?1’>

n=1

and eigenfunctions are X, (z) = sin 3.7:) . The general

solution is

Initial conditions

u(z,0) = ,iAn sin <7?x> = f(x) = A, = ?))/03 f(z)sin (?x) dx

u(x,0) = Z (n37r> B,, sin (Tgrx) =0=28,=0

n=1

Computing A,,, we have

2 ( r1/2 1
n=3 {/0 2 sin (?x) dx + 1/2(2 — 2z) sin (?x) d:c}

=3[ (o () 2 () s (5] |
e (e (5) 22 (5

N

0

1
)

G () 2 () s () -2 o ()
() eos () 2 (2) s ()




Thus

u(z,t) = i (711:)2 {2 sin (ng) —sin <n37r) } cos (n;t) sin (n;x)

n=1

The plot of u(z,t) for various values of ¢ is given in Figure 19

[N

1
05 =0 05 =1
0 0
05 -05
= 0 1 2 3 = 0 1 2 3
1 1
05 t=2 0.5 t=4
0 0
05 -05
= 0 1 2 3 = 0 1 2 3

Figure 19: Graph of u(z,t) for problem 1 of 3.6 for t = 1,2,3,4

2.
Ut = Uy
u(0,t) = u(m,t) =0
0 , O0<z<m/4
(dr —m)/m, w/d<zx<m/2
W 0) =N (3x_an)/r . w/2<w < 3r/4
0 , 3rfd<z<m
u(z,0) =0

Separation of variables yields:

u(z,t) = i {4, cos (nt) + By, sin (nt) } sin (nz)

n=1
Initial conditions
oo 2 s
u(z,0) = > Apsin(nz) = f(z) = A, = —/ f(z)sin (nx) dz
= 7 Jo

u(z,0) = > nB,sin(nz) =0 = B, =0

n=1
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Thus

2 [ (/24 T 37/4 4 3p
A, = / AT / 430
w{ /4 7T(g’j 4)sm(nx)dx+ s 7T( 1 x) sin (nx) dw}

An

8 r—=z 1 w/2
RN L cos (nx) + — sin (nx)
g n

n
3r/4
w/2 }
; 7 nr L . /nm I . (nm
p g () ()
T nm 1. (3nm nm
T 08 (2) B i (4) LT <2>}
L2 (™ L. (nm . /3nm
=it (3) -~ () o (7))

( t) {2 . <n7r> 1 . <n7r> 1 . (3n7r>} ( t) . ( )
ulx,t) = —<{—sin|— ) ——sin{— | — —sin| —— ) p cos (nt)sin (nx
’ = w2 \n? 2 n? 4 2 4

n

sr .
_ 1
+ [ —— cos (nx) 5 sin (nx)]

w/4
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Ut = Ugy
u(0,t) = u(m,t) =0
u(z,0) =z(r—2z),0<z <7

u(z,0) =0
Separation of variables yields:
u(z,t) = i {4, cos (nt) + By, sin (nt) } sin (nz)
n=1
Initial conditions
u(z,0) = nf:l Apsin(nz) = (rz —2°) = A, = 72r /Oﬂ(mc — %) sin (nx) dz

u(z,0) = > nB,sin(nz) =0 = B, =0

n=1

Thus 5 e
A, = —/ (rz — 2°) sin (nx) do
7 Jo

™

2 r — 12 T™—2T | 2
A, == {— —— cos (nx) + 5 sin (nx) — 3 Cos (nx)}

0

= i{()—i—()— ig(cos(mr) - 1)}
:7:;3(1—008(71@)

4 21— cos(nm)

u(z,t) = — Z

cos (nt) sin (nx)
T n=1

n3
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Utt = Uy

u(0,t) =u(3,t) =0

u(z,0) =0

u(z,0) =z

Separation of variables leads to
T(t)+AT(t) =0 X"(x)+AX(z) = 0

X(0) =0
X@3) =0

3

s nmw . /nm . /nm
Z {An cos <3t> + B, sin <3t> } sin <3x>

n=1

nm\ 2 : _ . (nT
Eigenvalues are A, ( ) and eigenfunctions are X, (x) = sin (Sw) The general

solution is

Initial conditions

u(z,0) = ZAnsin(n;x> =0=A4,=0

n=1
> /n7T nm 3 2 /3 nm
u(z,0) ;(3) n Sin 3 % x 3 ), wsin(5w)dz
Computing B,,, we have
2 9 18
B, = - {_mr cos ( W)} i cos(n)

Thus
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Ut = gy
u(0,t) = u(m,t) =0
u(z,0) = sin(z)

u(z,0) =1
Separation yields
u(z,t) = > {A,cos(3nt) + B, sin (3nt)} sin (nz)
n=1

Initial conditions

u(z,0) = > Apsin(nz) = sinz = A; =1, A, =0,n>1

n=1

> 1 2 =
u(z,0) = > 3nB,sin(nz) =1 = B, = %%/0 1 -sin (nx) dz

n=1

Computing B,,, we have
2(1 — cos(nm))

3n?m

B, =

Thus .
u(z,t) = cos(3t) sin(x) + o+ Z M
0

n=1

5 sin (3nt) sin (nx)
n
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Ut = 4“19:

u(0,t) = u(b,t) =0

B x , 0<z<5/2
ut(x,O)—{5_x , 5/2<xz<b
u(z,0) =0

Separation yields
> 2nm . (2nm . (nT
u(z,t) = > {An cos (5t> + By, sin (5t) } sin (537)
n=1

Initial conditions -

u(z,0) = > A,sin <n57rx> =0=A4,=0
n=1

& (2nm . (nm \ | 0<z<b5/2
u(x,0) = Z(5> anm<5x> = { b—x, 5/2<z<5

n=1

5 2 5/2 5
Bn:Zmr.S{/o T sin (n;w) dr + 5/2(5—a:)sin (n;iU> df}

Computing B,,, we have

So

Thus

u(z,t) = i (57?)3 sin <n27r) sin (Tt) sin (?m)

n=1
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Up = Ky,
u(0,t) = u(L,t) =0
u(z,0) = f(z)
Separation of variables, as in the wave equation case, yields:
OIS ()N
ET(t)  X(z)
and
u(0,t) = X(0)T'(t) =0, = X(0) =0
u(L,t) = X(L)T(t) =0, = X(L)=0
Thus )
T(t)+ kXT(t) =0 X"x)+AX(z) =
X(0) =
X(L) =
The problem for X (z) was already solved and the eigenvalues are: A, =
and the eigenfunctions are: X, (z) = sin (Tx) , n=1,2,... So now
. 2
T(t) + k (”;) T(#) =0 = T(t) = ehnm/DP

So the linearly independent solutions for u(z,t) are
up(z,t) = e H /L)t giyy (Tx) ,n=12...

So to form the general solution, take the linear combination

u(z,t) = > bye /L)%t gin (T:ﬁ)
n=1

The initial condition is now

u(z,0) = gbnsin (Tx) = f(x)

b, = i/oL f(z)sin (Tx) dx

and so
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3.7 The Free End Conditions Problem
PROBLEMS

1. Solve:
Ugt = 2DUgy

uz(0,t) = u,(1,¢t) =0

0 , O0<z<1/4
u(z,0)=¢ z—1/4 |1/4<x<3/4
1/2 , 3dA<x <1
u(x,0) =0
Interpret the solution physically.

2. Solve:
Ut = Ugy
uz(0,t) = u.(2,¢) =0

2z , O0<z<1/2
wz,0) =4 2—2z , 1/2<z<3/2

2 —4 | 32<x<2
u(x,0) =1

Interpret the solution physically.
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Ut = 20Ugy
uz(0,1) = u,(1,£) =0

0 , O0<z<1/4
u(z,0)=q z—1/4 ,1/4<ax<3/4

12, 3/d<z<l
ui(z,0) =0

Separation of variables leads to

T(t)+25AT(t) = O X"x)+AX(z) = 0
TGO) =0 X'(0) = 0
X'(1) =0
Eigenvalues are \, = (n7)” and eigenfunctions are X,(z) = cos (nmz), n = 0,1,2,... The

solution of the equation for T'(¢) is
To(t) =1, T, (t) = cos(bnwt), n >0

The general solution is

u(z,t) = ;Ao + Y A, cos (5nwt) cos (nrx)

n=1

Initial conditions

1 % 0 , O0<z<1/4
u(x,0) = §A0+2Ancos(n7rx) =< x—1/4 ,1/4<z<3/4
n=1 12, 3/4<z<l1

Computing Aj, we have
1 1
Ay = 2/ u(z,0)dr = -
0 2

and

4 2/01 2(cos (377”) — cos (%’T))

u(zx,0) cos (nmz) dr = 3

Thus

cos (bnrt) cos (nmx)
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Utt = Ugy
uz(0,t) = u,(2,¢) =0
2 , 0<z<1/2
u(z,0)=¢ 2—2z , 1/2<2<3/2
2 —4 | 3/2<x<2
u(z,0) =1

Separation of variables leads to

T(t) 4+ AT(t) = 0 X"(x)+AX(x) = 0
X'(0) =0
X'(2) =0
: nm\? n
Eigenvalues are A\, = <2) and eigenfunctions are X, (z) = (2 ) ,n=20,1,2,...
The solution of the equation for T'(t) is
To(t) = Ao + By, T.(t) = Acos( >+B s1n<712),n>0

The general solution is

u(% t) AO + Bot Z {An cos <n27rt> + B,, sin <n27rt> } cos (TL27T$>

Initial conditions

1 2z , 0<z<1/2
u(z,0) = on—l—ZA cos (23:> =49 2-2r , 1/2<x<3/2
n=1 20 —4 | 32<x<2

1
u(z,0) = §BO+ Z 5 B cos (n;x) =1

n=1

Computing Ay, By, we have
Ay = 0, By =2

and
—8 + 16 cos (%) 16 cos ( ) + 8cos (nm)
n n2m2
and R
nw
b 23 (i)
b YA CoS 5 x| dx 0
Thus

o —8+16 ) — 16 + 8
u(z,t) =1+ Z o ( ! ) n27:208( ) cos (nm) cos (mt> coS (mx)
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3.8 The Mixed End Conditions Problem
PROBLEMS

1. Solve:

2. Solve:

1 0<z<1/2
2—-2zx |1)2<z<1
0

3. Solve:
Uyt = Ygy
u.(0,t) = u(2,t) =0
u(z,0) =0
u(2,0) = (2—12),0 <z <2

4. Show that the “normal” Fourier series reduces to

f(l’) By (W)

n=1
= bysin (32) + by sin (32) + bysin (Z2) + - --
provided:
a. f(z) is odd,
b. f(z) is periodic of period 4L, and
c. fle+L)=f(L—x), 0<z<L
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Utt = Ugy
u(0,t) =0
uz(2,t) =0
r , O0<zx<1
u(x’o)_{ 1, I1<z<?2
ut(z,0) =0
Separation of variables leads to
T(t)+\T(t) = 0 X"(x)+MX(z) = 0
70) = 0 X(0) = 0
X'(2) =0
. 1\ 77? : .
Eigenvalues are A\, = Kn — 2) 2} and eigenfunctions are
Xofe) =i (1= ) o] n=1.2
n(z)=sin|{n—7)oz|, n=12...
The solution of the equation for T'(¢) is
I\
T, (t) = cos Kn — 2) t} ,n=1,2,
The general solution is
> 1 1
u(z,t) = > A, cos [(n - 2) t} sin [(n - 2) gm}

Initial conditions
R . I\ m r , 0<zx<1
u(:r;,O)—nz:lAnsmKn—z)Qx} = { 1 lczz2
Computing A,,, we have
2 1 1 2 /2 1
A, = 7/ xsin[(n—) Wx} dx—i-f/ Sin{(n—) Wac} dx
2 .Jo 2/ 2 2.1 2/) 2

16 sin | 22-Lr]

An = (2n — 1)%7?

ORI ot e N [ . O (O

Thus

T
—T
2

68




Uty = gy
ux(O t)—O
0<x<1/2
J1/2<x <1
u(x,0) :0

Separation of variables leads to

T(t) +4XT(t) = 0 X"(x)+AX(z) = 0
TO) = 0 X'0) = 0
X(1) = 0

1 2
Eigenvalues are A\, = Kn — 2) 71} and eigenfunctions are

,n=12,...

X, (z) = cos Kn - ;) T

The general solution is
e 1
=Y {A,cos[(2n — 1) wt] + B, sin|[(2n — 1) wt]} cos [(n - 2) Wx]

Initial conditions

B 1 0<az<1/2
1 2-22 ,1)2<zx<1

= nf:lAncosKn—;) T
uy(x,0) = i <n—;> WBnCOS[<n—;> 7TZL‘] =0 =DB,=0

n=1

By Sturm-Liouville (p(z) = w(x) = 1,¢(x) = 0), we have

b= B - 1)

A, = 2{/01/2008 Kn— ;) T
A, = 2{(27131)#8111[(71—;) WIE] .
+ {(2 — 295)7(2” E n sin [(n — ;) 7T:E:| -2 (M) cos Kn — ;) ﬂx}}

a4 ) e [(0-3)3

69

dx

1 1
dr + | (2 —2x)cos Kn - ) T
1/2 2

)

1/2

1

1/2}




Thus

2 1

u(z,t) = 7?212 ((Zn — 1)%) cos Kn - ;) ﬂ cos [(2n — 1) 7t] cos Kn - 2) X
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Ut = Mgy

u(0,t) =u(2,t) =0

u(z,0) =0

u(z,0) =(2—2),0<x <2

Separation of variables leads to

T(t)+9\T(t) = 0 X"(z)+ XX (z) = 0
X'0) = 0
X(2) =0

2
Eigenvalues are \, = Kn — 2) 721 and eigenfunctions are

1
Xn(x):cosKn—) Wx], n=12 ...
2) 2

The general solution is

e = S (- 3) 5 s o (0 3) S ()

n=1

Initial conditions

© 1
u(z,0) = ZAncos[<n—2> ;TZU} =0 =4, =0
n=1

u(z,0) = 2 {3 (n - ;) an cos [(n - ;) ;x}} = (2—12)

Thus

Thus
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4. Given an odd function f(x) with a period of 4L, we know that the Fourier series
should have only sine functions, i.e.

nmTx
b,
Z Sm( 5L )

Now we would like to use the fact that f(x + L) = f(L —x), 0 < z < L, i.e. symmetry
about x = L. This requires that the sine functions satisty the same thing.

sin (QL(ZL' + L)) = sin (;Z(L - 3:))

o) () v () e (o) = o () o ()~ (5) (3
sin o, COS B S1n 9 COS oL = Sl 9 COS oL S1n 2LI’ COS B
=0 =0

This can only happen if

cos (?) = —cos (n;) , = n must be odd

Therefore n = 2m — 1 and the series is then

Zb% i ((Qn ;Ll) )
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3.9 Generalizations on the Method of Separation of Variables
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3.10 Sturm-Liouville Theory
PROBLEMS

1. For each of the following problems, determine if the given equation is in Sturm-Liouville
form, and, if so, identify the values of the appropriate function p(z), ¢(x), w(z), and the
values of a; and f;:

a. (z+ 1Dy + Mae+1)y—y=0
y(1) =0
y(2) =0
b (2?2 = Du/) 4+ 3 =0
u(0) =0
u(1/2) =0
c Yy + Ay =
y(0) =0
y(3) + 24/(3) = 0
d y'+ay + Ay =
y(0) =
y(1) =

2. Following similar steps to those used in class, show that the eigenfunctions of the singular
Sturm-Liouville problem:

p(z)y] + w(x)y+qx)y=0 , a<z<b
y(a),y'(a) finite 7
ay(b) + By’ (b) =0

where p'(z), w(z), and ¢(z) are continuous, and

p(x) >0, a<z<b ,
p(a) =0

w(x)>0 , a<x<b
q(z) >0 a<z<b

corresponding to different eigenvalues are orthogonal with respect to the weighting func-
tion w(z).
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1. In all of these, the key is to identify values (if any) such that the given differential
equation is a special case of the one in the notes.

a.
(z+1)y)+Az+1)y—y = 0
y(1) =0
v(2) =0

This is in Sturm-Liouville form, since p(x) = x+1, w(z) = x+1, ¢(x) = —1 and the interval

is a =1, b = 2. The coefficients in the boundary conditions are: a; = ay =1, 1 = 3 = 0.

b.
(22— 1)) +3xu = 0
u(0) =0
u(1/2) =0
This is almost in Sturm-Liouville form, since p(z) = (2% — 1), w(z) = 3, ¢(x) = 0 but

p(z) < 0 for the interval from a = 0 to b = 1/2. This violates the condition on p(z). If we
multiply the equation by —1 and incorporating the sign with A (i.e., let ¢ = —\) then it is
S-L. The coefficients in the boundary conditions are: a; = ag =1, f1 = 5 = 0.

c.
Yy’ + vy =0

y(0) = 0
y(3) +2y'(3) = 0

This is in Sturm-Liouville form, since p(z) = 1, w(z) = z, ¢(x) = 0. The interval is from a =
0 to b = 3. The coefficients in the boundary conditions are: oy =1, ap =1, 1 =0, [y = 2.

d.
y'+ay'+iy = 0
y(0) =0
y(1) =0

This is not in Sturm-Liouville form, since the equation has a separate y’ term which does
not occur in the S-L form.

5



2. Suppose y;(z) and yo(x) are solutions of

p(x)y] +Iw(z)y+qx)y=0 , a<x<b
y(a),y'(a) finite ’
azy(b) + Bay'(b) = 0

where p/'(z), w(x), and ¢(x) are continuous, and

p(z) >0, a<z<b
p(a) =0

w(x)>0 , a<x<b
g(x) >0 |, a<z<b

corresponding to different eigenvalues, i.e.
[p(2)h) + Mw(z)yr + q(2)yr = 0

[p(2)ys] + Aow(x)y2 + q(x)y2 = 0
Multiply the first equation by y;(x) and the second equation by ;(z) and subtract. Then

yilpyr]” — wilpys] + (AL = A)wyrye = 0

or
d
e [yap(2)yy — yip(x)ya] + (A1 — Ao)wyrye = 0
Integrate
b b
[yop(@)y; — ip(x)ye] | + (A1 = A2) / wyyodr = 0
or

) WA (6) ~ 15011 1)) ~ pla) b (@)sala) — vh(a)un @) + O = ) [ wipgade =0

=0
Thus ,

p(O) W (D)a(b) = Bl (D)] + (A1 = Xa) [ wryade = 0
But now if both y;(x) and yo(z) satisfy the B.C. at x = b

aya(b) + Bays(b) =0

ay1(b) + Bayy (b) =0
and asy and S5 not both zero implies that the homogeneous system can have a solution only if
the determinant is zero, i.e. y1(b)y2(b)—v5(b)y1(b) = 0. Thus p(b) [y;(b)y2(b) — y5(b)y1(b)] =0
and so

b
()\1 — )\2)/ wylygdyc =0
Since A\; # Ay we must have
b
/ wyryodr =0
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3.11 The Frequency Domain Interpretation of the Wave Equation
PROBLEM

1. Find the three lowest natural frequencies, and sketch the associated modes, for the
equation:

Usp = Uy

u(0,t) = u,(L,t) =0

Plot, in the frequency domain, the natural frequencies of this “string.”

7



1. Separation of variables yields

T(t)+A*T(t) = 0 X"z)+AX(z) = 0
X(0) = 0
X'(L) = 0

For A > 0 the solution is X (z) = C)cos(v/Ax) 4+ Cysin(v/Az). Using the left boundary
condition, X (0) = 0 implies C; = 0. The other boundary condition implies

Covhcos(VAL) = 0, = cos(VAL) =0

Ap = (W) . n=0,1,2,...

Therefore

and the eigenfunctions

n+i)r
X,(z) = sin (<L2>m), n=0,1,2,...

Notice that n starts at zero.

Thus )
T, + \,*T, =
n+3i)r n+3i)r
T, (t) = a,, cos <(L2>ct) + B, sin <(L2)ct)
or
(n + %) T
T,(t) = A, cos | ~———ct — ¢,
L
where

Ap = V an + B2
Ve

Thus the frequencies are

n = ) 20,1,2,...
/ 21 "
Thus
ore_ ¢
"7 oLoxr 4L
3T ¢ 3¢
fl—ﬁ%—ﬁ—?’fo
5T ¢ 5%
f2—ﬁ%—ﬁ—5fo

The modes are
T
XO(.CE) = sin (M$>
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Figure 20: The first three modes for problem 1 of 3.11
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Figure 21: The first three frequencies for problem 1 of 3.11
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3.12 The D’Alembert Solution of the Wave Equation
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3.13 The Effect of Boundary Conditions

PROBLEM
1. Sketch the D’Alembert solutions at ¢ = 0,1,2.5 and 4 to:

a. Ut = Ugy
(0,t) =u(3,t) =0
22 , 0<a<1)/2
B 1, 1/2<x<3/2
@0=3 42 | 3/2<r<2
0 , 2<x<3
(2,0) =0
b. Ut = Uge
u(0,t) = ug(3,t) =0
2z , O0<z<1/2
B 1, 1/2<z<3/2
W@ 0) =9 4 g, L 3/2<z<?
0 , 2<x<3
ut(z,0) =0
C. utt:4ul-x
uz(0,t) = u(l,t) =0
_ 1 , 0<az<1)/2
“($’0>_{2—2x L 12<z<1
ut(z,0) =0
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1.a. The initial displacement is given by:

2z , O0<z<1)/2
B 1, 1/2<x<3/2
W 0)=90 g9 3/2<cp<2
0 , 2<x<3

The solution is
u(x,t) =Flex+t)+ F(x —1t)

where F'(z) is odd and periodic with period 2L = 6. The solution at various time is given
in the following 4 figures:

B 1

0.5

Figure 22: Graph of u(z,0) for problem la of 13.3

1. b. The initial displacement is given by

2 , 0<z<1/2
B 1, 1/2<z<3)/2
w0l =9y 9 3/2<p<2
0 , 2<z<3

Since the initial velocity is zero, the solution is:
u(z,t) =F(x+1t)+ F(x—1t)

where the function F'(x) is odd around 0 and even around L of period 4L = 12. The solution
at various time is given in the following 4 figures:
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Figure 23: Graph of u(z, 1) for problem 1la of 13.3

1. c¢. The initial displacement is given by

1 L o0<az<1)2
ML@‘{Q—M L 12<a<1

Since the initial velocity is zero, the solution is:
u(z,t) = F(x+2t)+ F(x —2t), c=2

where the function F(z) is even around x = 0 and odd around x = 1 of period 4L = 4. The
solution at various time is given in the following 4 figures:
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Figure 24: Graph of u(z,2.5) for problem la of 13.3
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Figure 25: Graph of u(z,4) for problem la of 13.3
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Figure 26: Graph of u(z,0) for problem 1b of 13.3
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Figure 27: Graph of u(z, 1) for problem 1b of 13.3
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Figure 28: Graph of u(z,2.5) for problem 1b of 13.3

0.5

D

L

'
[N

Figure 29: Graph of u(z,4) for problem 1b of 13.3
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Figure 30: Graph of u(z,0) for problem lc of 13.3
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Figure 31: Graph of u(z, 1) for problem 1lc of 13.3
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Figure 32: Graph of u(z,2.5) for problem lc of 13.3
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Figure 33: Graph of u(z,4) for problem 1c of 13.3
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4 The Two-Dimensional Wave Equation

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction

The Rigid Edge Problem

Frequency Domain Analysis

Time Domain Analysis

The Wave Equation in Circular Regions
Symmetric Vibrations of the Circular Drum

Frequency Domain Analysis of the Circular Drum

89



4.8 Time Domain Analysis of the Circular Membrane
PROBLEMS

1. It can be shown that the small free vertical vibrations of a uniform beam (e.g. a bridge
girder) are governed by the fourth order partial differential equation:

Pu 0%

— +c=—=0

ot? oxt
where ¢? is a constant involving the elasticity, moment of inertia, density and cross sectional
area of the beam. If the beam if freely supported at both ends, e.g. sitting on a piling, the
boundary conditions for this problem become:

0 L ¥

u(0,t) =u(L,t) =0
umx(oat) = uxw(L7t) =0

Show that separation of variables “works” in this problem, and, in case the beam is initially
at rest, i.e.
ur(z,0) =0

produces a general solution of the form:

i 4 n?m3ct\ . (mr:v )
,, COS sin [ ——
— L? L

2. Solve the two-dimensional rectangular wave equation:

Uy = Ugy + Uqgyyy
uw(0,y,t) = u(l,y,t) =0
u(z,0,t) = u(x,1,t) =0

u(z,y,0) = .0lzy(l —z)(1 —y)
u(z,y,0) =0

3. Solve the two-dimensional rectangular wave equation:

Ut = 16 (ux:c + uyy)
U(O,y’ t) = u(37y7t) =0
U(I’ O’t) = U(J}7 27 t) =0
u(r,y,0) = y(2 —y)sin (%Tx)
Ut(&l, Y, 0) =0
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4. Find the eigenvalues and the form of the eigenfunctions for:

U = 9 (U + Uyy)
u(0,y,t) =u(4,y,t) =0
uy(z,0,t) = u(x,1,t) =0

Calculate the actual values of the four lowest natural frequencies.

5. One of the “quirks” of the two-dimensional wave equation in rectangular coordinates is
that, unlike the one-dimensional problem, two different values of n and m may yield the
same natural frequency, and therefore this single natural frequency may have two (or more)
independent modes (“shapes”) associated with it. For example, if L = 2 and W = 1, the
eigenvalues and eigenfunctions are,

Anm = {(3)2 + mﬂ 2
and
Upm = sin(mmy) sin (%)

Show that the following eigenvalues are in fact equal:

A=Az 3 Ae1=Aaz; A2 =Mz A=Ay

6. Show that in the square membrane, certain natural frequencies may have four independent
modes (“shapes”) associated with them.
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Pu 0%
g % _ )
ot? e Ox*

Since the PDE and BC are linear and homogeneous, assume
u(z,t) = F(z)G(t)

Substitution of this into the PDE and BC should lead to

G(t) — kPG(t) =0 F"(z)+kF(z) = 0
G(0) =0 F(0O)=F(L) = 0
F"0)=F"(L) = 0

where k is some constant. The condition F”(0) = 0 arises from
Uae = (F(2)G(1)),, = F'(2)G(1)

Thus .. (0,t) = F"(0)G(t) = 0, = F”(0) = 0. Similarly for the other conditions.
There is no a-priori reason to assume a particular value for k, so consider all three cases. If
k > 0, we write k = 4n* (just to avoid radicals) then try F(z) = € to get

rt 4+ 4nt =0

The roots are

The solutions are
en(1+z)w, en(l—z)w7 617(—I+Z)ff:7 en(—1=i)z

Converting to the equivalent real valued form gives
F(z) = C} coshnz sinnz + Cy cosh nx cos nz + Cs sinh nx sinnx + Cy sinh nz cos nx
Direct calculations yield
F"(z) = 2n* {C) sinh nz cosnz — Cy sinh nx sin nx + Cy cosh na cos nr — Cy cosh na sinnz}
Applying the BC at x = 0 leads to
F0)=Cy=0

F"(0) = C3 =0

Thus at x = L
F(L) = CycoshnLsinnL + CysinhnL cosnL =0

F"(L) = 2n* {Cy sinhnL cosnL — CycoshnLsinnL} =0

The determinant of the coefficients is equal

2n? {— cosh? nLsin? nL — sinh? nL cos? nL} #0
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Thus by Cramer’s rule, the only solution is C; = Cy = 0 which is the trivial solution.
Now try k = 0. Thus F”” =0 and F(z) = C; + Cyx + Cs2? + Cya®
F0)=C,=0
F'(0)=C3=0
F(L)=CyL+CyL*> =0
F”(L) =6C,L = 0, = Cy=0

Substituting in the previous equation F(L) = CyL + C4L? = 0 we have Cy = 0 and again
this is the trivial solution.

So k < 0, so we take k = —3* and we find that the roots are now
r= 408, £06i
Using real valued solutions
F(z) = Cysinh Sz + Cy cosh fx + Cysin Sz + Cy cos fx

F’"(z) = B*{C} sinh Bz + Cy cosh B — Cssin B — Cy cos B}

So, the BC at = 0 become
F0)=Cy+Cy=0

F'(0)=B°{Cy — C4} =0
and we have Cy = Cy = 0. The BC at x = L imply
F(L) = Cysinh L + Cssin BL =0
F"(L) = B*{C, sinh BL — C3sin BL} = 0
Adding the equations (after dividing the second by 32 gives

CisinhpL=0,=C; =0

Therefore
Cs3sin L =0, = sinBL =0
Therefore -
571 =
and

L
F,(x) = sin (Tx)

Now recall that k = — 4, so
.. .. 4
G() — kG = 0, = C(t) + (m) G =0
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Thus

So the solution becomes

and
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Ut = Ugy + Uyy
u(0,y,t) =u(l,y,t) =0
u(z,0,t) =u(z,1,t) =0
u(z,y,0) = .0lzy(1 —z)(1 —y)
u(z,y,0) =0

Let u(x,y,t) = X(x)Y (y)T'(t), then

Tt)+AT(t) = 0 X'+puX =0 Y 4+ A=p)Y = 0
X(0) = 0 Y(0) = 0
X(1) = 0 Y(1) = 0

The solution for X and Y are
Xn(x) = sin(nrzx), Y,(y) = sin(mny), n=1,2,..., m=1,2,...

So
I y? Z Z { mn COS /\mnt) + an Sin( Amnt)} Sin(mrx) Sin(mwy)

n=1 m=1

where \/ A = Vm?2 4+ n2x, so

u(z,y,0 Z Z mn Sin(nmz) sin(mry) = 0lzy(l — z)(1 — y)
(x,y,0 Z Amin B sin(nmx) sin(mny) = 0, = By =0
n=1 m=1
Thus 4 s
Apn = ﬁ/ / (.01lzy(1 — z)(1 — y) sin(nrx) sin(mry)dydz
-1Jo Jo
1 1
A = .04/ z(1 — z) sin(nmz)dz / y(1 — y) sin(mmy)dy
0 0
But
1 1- 1-2 2 1
/0 (1 — x) sin(nrx)dr = [_x(mrzv) cos(nmx) + (mr)f sin(nmzx) — () cos(mrx)] .
which is 21— €01
(n7)?
Similarly
1 . 1 — cos(mm)
1 dy = 29— ")
/O y(1 — y) sin(mmy)dy (m)?
Therefore

1 — cos(mm) 1 — cos(nm)
(mm)? (nm)?

Ay = .16
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and

u(z,y,t) = .16 2 il ! _(:;()le) ! _(:;S)(;m) cos(\/ Amnt) sin(nmwz) sin(mmy)

where

Amn = VM2 +n?m
\/7
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Ut = ].6 (U$$ + uyy)
u(0,y,t) =u(3,y,t) =0
u(z,0,t) = u(x,2,t) =0
u(xa Y, 0) - y(2 - y) sin (27%)
Ut(l’, Y, O) =0

Let u(z,y,t) = X(z)Y (y)T(t), then

T(t)+16MT(t) = 0 X'4+uX =0 Y'+A=p)Y = 0
X(0) = 0 Y(0) = 0
X(3) = 0 Y(2) = 0
The solution for X and Y are
Xn(z) = sin(n;x), Yo (y) = sin(m;y>, n=12....m=12,...
with ) ) ) )
nm mm nm mm
n=(%), A=wn=(75), Amn 9 5
s (3) (A=w) (2) - (3) (2)
Let v, = \/Amn, then
\/ n\ 2 m\ 2
i = (5) +(3) 7
So
u(z,y,t) Z Z { A co8(4Vmnt) + By sin(4v,,t) } sin (?w) sin (?y)
n=1 m=1
SO o a )
u(z,y,0) = > Apn sin ( :1:) sin (my) =y(2 — y)sin (Wx)
n=1 m=1 3 2 3
u(z,y,0) = Z Z Amn B, SIN (7?1) sin (Ty) =0, = B, =0
n=1 m=1
Thus

o (52 () (2o
A, = sin sin [ —x ) sin [ — x
33ty Jo V2 3 3 g ) drdy

4 3 2 2
A = 6/0 /0 y(2 — y)sin (n;ry) dy ¢ sin (;gy) sin (?m) dx

2 (2)3 (1 — cos(mm))

mm
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2 \? 3 2
Apn = 5 () (1 — cos(mm)) / sin (Wx> sin (mx) dx
6 \mm 0 3 3
3 .
=5 n = 2, otherwise =0
Thus
2 3
Apo = 2 <> (1 —cos(mm)), Amn = 0, n #2
mm
So i, 5 \3 )
u(z,y,t) = mZ:1 2 (m7r> (1 — cos(mm)) cos(4vy, ot ) sin (;x> sin (Tr;ry)
where
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Uyt = 9 (ngc + uyy)
u(0,y,t) =u(4,y,t) =0
Uy (2,0,t) = u(z,1,t) =0
Let u(z,y,t) = X(z)Y (y)T(t), then

T(t)+9AT(t) = 0 X"4+puX = 0 Y4+ A—pY = 0
X(0) =0 Y'(0) = 0
X(4) = 0 Y(1) = 0

The solution for X and Y are

2 1
Xn(x) = sin(Tx), You(ly) = cos(Wy), n=12,....,m=0,1,2,...

with

o= () e = (B - () (B )

= G B

Ton = Apn €08(3Vmnt) + By Sin(30mnt)

Let v, = \/Apmn, then

So

Thus the frequencies are given by

3 _ 3\/ n\ 2 2m + 1\?
Joun = o2V = 5 (4> +( > )
m = 0 1 2
n=1 0.839 2281 3.769
n=2 1.061 2372 5.303
n=3 1352 2516
n=4 1.677

The four lowest frequencies are: 0.839, 1.061, 1.352, 1.677. Notice that in this case they all
come from m = 0.
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5. If L =2 and W = 1, the eigenvalues are,

o5+ () = (5 e = 5o

The eigenfunctions are

nmwxr

sin(mmy) sin <2>

Thus two different eigenfunctions correspond to the same eigenvalue if n3 + (2m;)* = nj +
(2ms)?. For example, m = 1, n = 4 and m = 2, n = 2 give the same eigenvalue g\/ﬁ Also,
by trial and error, we find: m =1, n = 6 and m = 3, n = 2 give the same eigenvalue gm,
m =2, n=06and m = 3, n = 4 give the same eigenvalue g\/@, and m = 2, n =7 and
m =4, n =1 give the same eigenvalue g\/%

2 2
6. For a square membrane L = W and the eigenvalues are \/ A\, = \/ (Z) + (ZL) T =

L
—+v/n? +m2. The eigenfunctions are sin <mL7Ty> sin (T) . Thus different eigenfunctions
™

have the same eigenvalues only when different m, n have the same m? + n%. The following
4 eigenfunctions have the same eigenvalue:

m=1,n=8 m=4n=T m=8n=1m=7n=4, =m?>+n?=65

m=2n=9 m=6,n="7m=9,n=2 m=7,n=6 =m’>+n?=285
m=2,n=11; m=5n=10; m=11,n=2, m=10,n=5; = m?+n? =125

m=3,n=1Lm=Tn=9 m=11,n=3 m=9,n="T7 = m’+n* =130
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PROBLEMS

1. Show that separation of variables (u(r,0,t) = R(r)©(0)T(t)), applied to the wave equation
in a circular region of radius A,

Fu_ o [10] 0ul 10
o~ \ror o] T 200
u(A,0,t) =0

u(0,0,t) , ?;(O,Q,t) finite

u(r,0,t) = u(r,0 + 27, t)

leads to
T+ \*T =0 r[rR) + (M? - u)R=0 " +u® =0
R(0), R'(0) finite 0(0) = O(0 + 2m)
R(A) =0

2. Explain the mathematical and physical significance of the condition

u(r,0,t) = u(r, 0 + 2, t).

3. Find the three lowest natural frequencies of

60 [ o
i ror Tar
u(4,t) =0
u(0,1) , Z:f(o,t) finite
u(r,0) = f(r)
u(r,0) =0

4. Solve the following problems. (Non-zero coefficients may be left in terms of definite
integrals of known functions.)

a.
10 [0
et Cror Tafr
u(2,t) =
ou .
u(0,t) , E(O,t) finite

u(r,0) = sin(7r)
u(r,0) =0
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ror | Or

u(1,t) =0
ou :
u(0,t) , E(O,t) finite
u(r,0) =1 —r?
u(r,0) =0
c.
_ 2Ll 0 0u
= |Tor

u(2,t) =

(0,1) @(0 t) finit
u Y Y ar Y e
u(r,0) =0
u(r,0) =1

5. Solve the following problem. (Non-zero coefficients may be left in terms of definite
integrals of known functions.) Physically interpret the boundary conditions, and relate this

to the properties of the solution:

. 213[‘9“]
tt — C T

ror | Or
ur(L,t) =0
u(0,1) , @(O,t) finite
r
u(r,0) = f(r)
ut(T7 0) = 0
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Fu_ o [10] 0ul 10
o~ \ror o] T 200
u(A,0,t) =0

u(0,0,1) , ?;(O,Q,t) finite

u(r,0,t) = u(r,0 + 27, t)
Let u(r,0,t) = R(r)©(0)T(t), thus

) 1 1
ROT =& |“OT(rR) + 5RT6"

Divide by ¢*?ROT,

T 1 10
T - Rl / [ — —A
2T TR(T )+ r? ©
——
function of + only function of e
Thus )
T+ X*T =0
and 1 16"
T R/ / - —A
rR(T )+ 2 ©
or, multiply by r? and separate the variables:
@//
%(TR')' + A7 = Y = p

| S —— ——
function of » only  function of ¢ only

Thus
O +u® =0, r(rRY +(\* - )R =0

The condition u(A,6,t) = 0 implies R(A) = 0 and u(0,6,t) finite, implies R(0) finite,
similarly gu((), 0,t) finite implies R'(0) is finite. The periodicity u(r,0,t) = u(r,0 + 27, 1t)
r

implies

©(0) = 6(27)
Thus -
T+ M\*T =0 r(rR) + (M? — p)R = "+ =0
R(0), R'(0) finite O(0) = ©(2n)
R(A)=0

103



2. Mathematically, the PDE is defined only for 0 < # < 27 (due to polar coordinates
system.

Physically, (r, #) and (r, 8 4+ 27) are the same point and must have the same displacement.
Thus u(r,0,t) = u(r,0 + 2m,t) .
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ror | Or
u(4,t) =0
ou :

u(0,1) , 5(0, t) finite
u(r,0) = f(r)

u(r,0) =0

Separation yields
T +6A>*T =0 r(rRY +(M? = )R =0

R(0), R'(0) ﬁmte
R(4) =

Let A = &2 then r(rR') + (£2r* — u)R = 0 is Bessel’s equation of order zero. The general
solution is

R(T) = Cljo(fr) + CQ%(&T)
The BC R(0) finite implies Co = 0. The BC R(4) = 0 implies
CiJo(4€) =0

Thus
Jo(48) =0, =4, =, n=1,2,...

where Jy(a,) = 0.

Thus
46, = 24048 & o= .6012
4¢ = 5.5201 & = .1.3800
4¢3 = 8.6537 & = 21634
46, = 11.7915 &4 = 29479

Now T + 6T = 0 implies T + 662¢*T = 0 and the solution
To(t) = A, cos(V6E,t) + B, sin(vV6E,t)

Thus
" 2
6(.6012
j = Yoloo12) oo,
27
fo =.5380
f3 = .8434
fi=1.1492
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ror | or
u(2,t) =0
ou )
u(0,t) , E(O,t) finite

u(r,0) = sin(7r)

u(r,0) =0
Separation yields
T+ =0 (rRY + \rR =0
R(0), R'(0) finite
R(2)=0

Let = &r then (rR') + ArR = 0 becomes

d’R dR
2 2
T = —|—a7—d$ +2°R=0

which is Bessel’s equation of order zero. The general solution is
R(r) = C1Jo(&r) + CaYo(Er)
The BC R(0) finite implies Cy = 0. The BC R(2) = 0 implies
C1Jo(26) =0

Thus
Jo(26) =0, =2, =a,, n=1,2,...

where Jy(a,) = 0.
~2.4048

2 )

55201

& —

2

and
T,(t) = Ay cos(ént) + By sin(&,t)

The general solution is then

u(r,t) = i {A,, cos(&nt) + By sin(Ent)} Jo(Ear)

n=1

Use the initial conditions

u(r,0) = ilAnJo(gnr) = sin(7r)
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u(r,0) = Z EnBnJo(&nr) =0, = B, =0
n=1

_ Jo rsin(ar) Jo(&ur)dr
" o) Pdr

So the solution is

u(r,t) = 214” cos(&,t)Jo(&nr)

with A,, given above.

4. b.

40 [0

e = ror "or
u(l,t) =0

ou
t —(0,¢ i

u(0,1) , o (0,t) finite
u(r,0) =1 —r?
u(r,0) =0

Proceeding as in the previous case, the general solution is

u(r,t) = i {A,, cos(2&,t) + By sin(28,t) } Jo(Enr)

n=1

where Jy(&,) = 0 as before. Use the initial conditions

u(r,0) = i AnJo(&ur) =1 — 12
n=1

u(r,0) = Z &nBndo(&nr) =0, = B, =0
n=1

A fol r (1 —1r?) Jo(&ur)dr
i o) dr

So the solution is

u(r, Zf) = i A, COS(ant) Jo (5nr)
n=1

with A,, given above.
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v 215[5“]
tt —CT r

or r
u(2,t) =0
u(0,t) , g:f(o,t) finite
u(r,0) =0
u(r,0) =

Proceeding as in the previous case, 4a, the general solution is

u(r,t) = i {A,, cos(&,ct) + By sin(E,ct) } Jo(Enr)

n=1

where Jy(2£,) = 0 as before. Use the initial conditions

u(r,0) = > A, Jo(&r) =0, = A, =0
n=1

u(r,0) = i EncBnJo(&nr) =1
n=1

1 JZrJdo(&ar)dr
& f5 7 [Jo(&ar)) dr

n

So the solution is

u(r,t) = iBn sin(&,ct) Jo(nr)
n=1

with B,, given above.
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Uy = CQEQ r@
T or | or
ur(L,t) =0
ou _
u(0,1) , 5(0, t) finite
u(r,0) = f(r)
ut(ra 0) = 0
Separation of variables yields
T+ X*T =0 (rR"Y + ArR =0
R(0), R'(0) finite
R(L)=0

The case A = 0 gives a solution Ry(r) = 1, for A > 0 the solution is
R(r) = CyJo(&r) + CoYo(ér)

The condition R(0), R'(0) finite implies Cy = 0 and the condition R'(L) = 0 gives

Jo(EL) =0
which is the same as
—J1(EL) =0
S0 3.8317 7.0156
51 p— L y 52 = L P

The solution is then

u(r,t) = (Ao + Bot) + i {A,, cos(&nct) + By sin(&net) } Jo(Enr)

n=1

Note that the eigenfunctions are still Bessel functions of order zero, due to the ODE. Only
the eigenvalues are different. The initial conditions

u(r,0) = Ao+ i Ando(€ar) = f(1)

n=1

u(r,t) = Bo+ Y &ncBpdo(&r) =0, = B, =0

and
oI Endr e
n — 7 2 ) 0 — I
Jo r[Jo(&ur)]” dr Jo rdr
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5.10 Further Extensions of the Fourier Transform
PROBLEMS

1. Compute, from the definition, and using the properties of even and odd functions
where appropriate, the Fourier transform of each of the following functions. In each case,

plot h(t) and the Amplitude spectrum and phase angle graphs.

a. h(t)=e | —co<t<oo, a>0.
(Plot for @ =1 and a = .05)

0<t<1

)

1
0 , otherwise

temt | 0<t<oo
0 , otherwise

0 , otherwise

11—t , -1<t<l1
0 , otherwise

{
{

d.m@:{(l—ﬁ), “l<t<l
{

f. h(t) = Ae M cos(2nt) , —co<t<oo, a>0.
(Plot for @« = 1 and a = .05)

(I1+t) , —-1<t<O0
1 L, 0<t<1
g hit) = 2-t , 1<t<?2
0 , otherwise
h. h(t) = Ate ™™ | —oco<t<oo, a>0
. t , —1<t<l1
i () = { 0 , otherwise

2. Find, directly from the definition, the inverse of the following Fourier transforms, and
plot h(t) and the amplitude and phase graphs:

_[a=-.22, —1<f<l
a H(f) = { 0 , otherwise
b. H(f) = |fle !, —co<f<oo.
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La h(t)=e  —oco<t<oo, a>0. Notethat h(t) is even (see Figure 34).

Figure 34: Graph of h(t) for problem la of first set of Chapter 5 for « = 1

Thus 00 0
H(f) = [ h(t)e 2mltg = 2 /0 e~ cos(2m ft)dt
o —at | —acos(2mft) 4 27 f sin(27 ft) | |
H(f)=2e { a? + (21 f)2 } 0
200
= ey
For o =1, H(f) = 1+(227Tf)27 real and positive, O(f) = 0. The plot of H(f) is

given in Figure 35 on the left. If we decrease o to 0.05, then the plot of H(f) is now on the
right of the same figure. Note the vertical scale, does this suggest something?

403
301

20

10

-1 -0.5 0 0.5 1
£ f

Figure 35: Graph of H(f) for problem la of first set of Chapter 5. The left plot for a« = 1
and the right for a = 0.05
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1, 0<t<l1

L. b h(t):{ 0 , otherwise
Thus

Note that h(t) is neither even nor odd, see Figure 36.

0.8
0.6
0.44

0.24

vvvvvvvvvvvvvvvvvvvv

Figure 36: Graph of h(t) for problem 1b of first set of Chapter 5

oo . 1 .
H(f) = /_ Wt e /0 1. e 2miftgy
—2mjft 1 1 — 6—27rjf

o 2mjf

H(f) = =5

Or, in terms of real and imaginary parts

_1- cos(=27f) +jsin(2rf) _ sin(2rf) .1—cos(2rf)

H(f)

2 f 2 f I oy

Note that H(f) = O <1>

“““““““““““

Figure 37: Graph of R(H(f)) (on the left) and S(H(f)) (on the right) for problem 1b of
first set of Chapter 5
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Figure 38: Graph of |H(f)| (on the left) and ©(f) (on the right) for problem 1b of first set
of Chapter 5
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te’t , 0<t<oo
L e h(t) _{ 0 , otherwise
Note that h(t) is neither even nor odd, see Figure 36. Thus

0.357
0.3]
0.25]

029

vvvvvvvvvv

Figure 39: Graph of h(t) for problem 1c of first set of Chapter 5

e}

Hf) = [

—00

h(t)e ?™ /i dt = / te~te 2l gt
0

o

H(f) = {—

te_(1+27r.7f)t e_(1+27r]f)t
1+2mjf (1+27rjf)2}

1
= T

Or, in terms of real and imaginary parts

1 —4r2f? , Adm f

) = G5 am e~ a5 ane oy

Thus

RUI) = o e

and

At f

S(H(f)) = Tty

and
1442 f?

Note that |H(f)| = O <fl2>
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-
N

Figure 40: Graph of R(H(f)) (on the left) and S(H(f)) (on the right) for problem lc of
first set of Chapter 5

Figure 41: Graph of |H(f)| (on the left) and ©(f) (on the right) for problem 1c of first set
of Chapter 5
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a4 h(t):{ (10—752) , —l<t<l1

, otherwise

Figure 42: Graph of h(t) for problem 1d of first set of Chapter 5

H(f) = /O:o h(t)e ™0t qt = 2 /01(1 — t?) cos(27 ft)dt, since h(t) is even

1

H(f) =2 { (1 — %) sin(27 f1) B 2t cos(2 ft) QSin(ZWft)}

o Gefr )
_4cos(2rf) N 4sin(27rf)}
(27 f)? (2mf)?

0

H(f) = {

Or
1

H(f) = 337

Note that H(f) is real and even!! Thus

{sin(2r f) — 27 f cos(2m f)}

[H) = gy {lsin(2e) = 20 cos2n )]

Note that |[H(f)| = O (P)
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2.5

15

0.5

vvvvv

Figure 43: Graph of |H(f)| (on the left) and ©(f) (on the right) for problem 1d of first set
of Chapter 5
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Note that H(f) = O <1>

1-¢* , -1<t<l1
, otherwise

Figure 44: Graph of h(t) for problem le of first set of Chapter 5

() = [" hwe it = [ (1 ope iy

—00 —

e [BE ey
1) = {557~ e+ s )
H(f) = 4(%‘(7;; f’;le%jf + (2;?]0)3 sin(27 f)
() = B2 costan gy + ginten )] - 5 L sinGen
() 2feos(2e)) +2§i7}2) P sinnf) | sinen)) z:fgfcos(%rf)

f
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Figure 45: Graph of R(H(f)) (on the left) and S(H(f)) (on the right) for problem le of
first set of Chapter 5

vvvvvvvvvvvvvvvvvvvv

Figure 46: Graph of |H(f)| (on the left) and O(f) (on the right) for problem le of first set
of Chapter 5
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f. h(t) = Ae M cos(2nt) , —co<t<oo, a>0.

Figure 47: Graph of h(t) for problem 1f of first set of Chapter 5, using A =2, a =1
Note that h(t) is even.
H(f) = / h(t)e ?™tdt = QA/ e~ cos(2mt) cos(2m ft)dt
—00 0

o

2o+ (2 f — 2m)?] 0

H(f) = 2Ae—at{<2ﬂf — 2m) sin((27f — 2n)t) —OéCOS((27rf—27r)t)}

oo

L ogeot { (2 f 4 2m) sin((2nw f + 2m)t) — awcos((2m f + 27)t) }

2a? 4+ 2 f + 27)?]
aA aA
H(f) = -
(/) a2+ 2n(f—1))2 o2+ 2n(f+1))?
Note that H(f) is real and positive. Note the change of scale as we change the value of «
from a =1 in Figure 48 to a value of o = 0.05 in Figure 49.

0

Figure 48: Graph of H(f) for problem le of first set of Chapter 5, using A =2, a =1
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409
301
20

101

Figure 49: Graph of H(f) for problem le of first set of Chapter 5, using A =2, a = .05
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(1+t) , —-1<t<0

1 C0<t<1 o
g. h(t) 2-1) . l<t<2 Since h(t) is neither even nor odd
0 , otherwise

Figure 50: Graph of h(t) for problem 1g of first set of Chapter 5

e . 0 . 1 . 2 .
H(f) = /_ N h(t)e ™ ftqt = /_ 1(1+t)e*2’w%dt+ /0 e 2t qt 4 /1 (2 —t)e 2™t qt

—2mjft —omjft
g {_ - +22;f - (ijf;} 01

e 2mift) 11 (2 _ t)e—%jft e—2mift 2
" {_ 2 f } 0 {_ mif (27rjf>2} :

1 1 e2mif  e=mif 1 emmif —dmif  g=2mif
T o @ @mfr 2mif 2w 2mif C@nif @il

1 4 e2mif 4 o—Amif _ o=2mif
- (27 )
=1 +4cos(2nf)+ jsin(2nf) + cos(4n f) — jsin(4r f) — cos(27 f) + jsin(27 f)
B — (2 f)?
Or
H(f) = [1 — cos(4m f)] + J( ;r}()zlﬂf) 2sin(27 f)]

Note that H(f) = O (;) . So

V[l = cos(4r f)]? + [sin(4r f) — 2sin(2r )]
(27 f)?

[H(N| =



and
sin(drf)  —2sin(27f)

(2rf) cos(2f) cos(2mf) — 1
. 2sin(2n f) cos(2n f . -
O(f) = arctan 1= cos(4r /) = arctan{ Sn@nf) }
—_———
2sin? (27 f)
" ()
sin(7
o(f) = arctan{—cos<ﬂf)}

In the following figures we plot the real and imaginary parts of H(f), the absolute value of
H(f) and O(f).

Figure 51: Graph of R(H(f)) (on the left) and S(H(f)) (on the right) for problem 1g of
first set of Chapter 5

vvvvvvvvvvv

Figure 52: Graph of |[H(f)| (on the left) and ©(f) (on the right) for problem 1g of first set
of Chapter 5
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h. h(t) = Ate™ | —co<t<oo, a>0
Note that h(t) is odd, see Figure 53. Thus

Figure 53: Graph of h(t) with A =« =1 for problem 1h of first set of Chapter 5

H(f) = [ O:O h(t)e 5t — —2jA /0 bt sin(2r ft)dt

[e.o]

_ [ tem [—asin(2n ft) — 27 f cos(2m ft)]
HUf) = _29’4{ o + (2 f)?

0

[e.9]

e (a? = (2nf)?)sin(2m ft) 4 2a(27 f) cos(2m f1)] }
[a2 + (27 /)2
Y 2a(27 f) _ 8rAaf 1
n) = [ 2| - v = O (7)
Note that H(f) is purely imaginary. The |H(f)| is given by

_ 8rAa|f|
O g
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Figure 54: Graph of S(H(f)) with A = a =1 for problem 1h of first set of Chapter 5

vvvvvvvvvvvvvvvvvvvvv

Figure 55: Graph of |H(f)| (on the left) and ©(f) (on the right) with A = o = 1 for problem
1h of first set of Chapter 5
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. t , —1l<t<l1
i h(t) = { 0 , otherwise
Note that h(t) is odd, see Figure 56. Thus

Figure 56: Graph of h(t) for problem 1i of first set of Chapter 5

() = [ hweira = 2 "t sin(2n fA)dt

) = —u{ R -
= [ sin(2nf)  cos(2nf)
- _2‘7{ @rf)?  onf }
_ sin(2nf) — 2n fcos(2mf) 1
- (2 )2 - O(f)

Note that H(f) is purely imaginary. The |H(f)| is given by

-0.8

Figure 57: Graph of S(H(f)) for problem 1i of first set of Chapter 5

Hf)| = ]sin(27rf)2—(7r2}r)]; cos(2m f)]
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157

057

057

15

Figure 58: Graph of |[H(f)| (on the left) and O(f) (on the right) for problem 1i of first set
of Chapter 5
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A=, 1< f< : .
2.a. H(f) = { 0 | otherwise H(f) is even, see Figure 59. Thus

L B S A B S S S S s S
-2 -1 0 1 2

Figure 59: Graph of H(f) for problem 2a of first set of Chapter 5

ht) = /o:o H(f)e%jftdf _ /11(1 B f2)2627rjftdf

h(t) = 2/01(1 — 2% + f*) cos(2m ft)df, Since H(f) is even

=27+ —4f +4f° 44 12f2
= 2 {27rt sin(27 ft) + “(omiE cos(2m ft) — Gty sin(2m ft)
2 f 2% f=1
- @) cos(2m ft) + Gty sm(277ft)} -
8 ) 24 24
= 2 [— 2nt)? sin(27t) — @) cos(2mt) + Gt SlH(Q?Tt)]
= (212)5 {[—(27rt)3 + 3} sin(27t) — 3(27t) COS(27rt)}

Note that |H(f)| = H(f).
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Figure 60: Graph of |H(f)| (on the left) and h(t) (on the right) for problem 2a of first set
of Chapter 5
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2. b. H(f) = |fle ¥, —co<f<oo.
H(f) is real and even, see Figure 62. Thus

Figure 61: Graph of H(f) for problem 2b of first set of Chapter 5

h(t) = [ O:o H(f)eXmltaf = 2 /0 T H(S) cos(2n fo)df

h(t) = 2/000 fe=F cos(2n ft)df

= 2L[fcos(wf)], where w = 27t, s = 2
52 — w?

= 2m, Using Laplace Transform tables
4 — (27t)?

4+ (27?15)2)2

Figure 62: Graph of h(t) for problem 2b of first set of Chapter 5
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PROBLEMS
1. Compute the Fourier transform of each of the following functions, using tables, shifting
and scaling, etc. when appropriate. In each case, plot h(t) and the Amplitude spectrum and
phase angle graphs.
2, —1<t<bh
{ 0 , otherwise

t , 0<t<2
b.h(t):{4—t , 2<t<4
0 , otherwise

c. h(t) = sin <;>

d. h(t) = {(2) : ;Eeivjiszo
e. h(t) = ﬁliﬁ

£ h(t) = ﬁig’ﬂ

g h(t) = {ez) : 2t§eiv:is2e

2. Find, using tables, shifting and/or scaling, etc., the inverse of each of the following Fourier
transforms, and plot A(t) and the amplitude and phase graphs:

1

b. H(f) =e ¥ fe 2l | —0o< f< o0
(2, 3<f<3
< H(f)_{() ., otherwise
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2, —1<t<5
L. a. h(t)= {0 , otherwise

The function A(t) is given in Figure 63. The closest function for which we have a Fourier
transform is the function

o 1 . —T0/2<t<T0/2
g(t) = {0 ., otherwise

given in Figure 64.

1.5

0.5

vvvvvvvvvvvvvvvvvvvvv

Figure 63: Graph of h(t) for problem la of second set of Chapter 5

0.8

0.6

vvvvvvvvvvvvvvvvvvvvv

Figure 64: Graph of g(t) for problem 1la of second set of Chapter 5

We need to write h(t) as a shifted and scaled version of g(t), specifically
h(t) =2g(t — 2), when T = 6

So
H(f) = F[29(t —2)] = 2F [g(t — 2)] , by linearity
H(f)=2{eIG(f)}, by shifting
() =20
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The real and imaginary parts of H(f) are given in Figure 65, the |H(f)| and O(f) are given

in Figure 66.

123

10;

Figure 65: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem la of

second set of Chapter 5

123

10

-10 -5 0 5 10

T
-0.4

T
0.2

T
0.2

T
0.4

Figure 66: Graph of |H(f)| (on the left) and O(f) (on the right) for problem la of second

set of Chapter 5
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t o, 0<t<2
1.b.h(t):{4—t , 2<t<4
0 , otherwise

The function A(t) is given in Figure 67. The closest function for which we have a Fourier
transform is the function

1+t/Ty , —To<t<0
gty =4 1-t/Ty , 0<t<Ty
0 , otherwise
given in Figure 68.

Figure 67: Graph of h(t) for problem 1b of second set of Chapter 5

Figure 68: Graph of g(t) for problem 1b of second set of Chapter 5
We need to write h(t) as a shifted and scaled version of g(t), i.e.

h(t) = 2g(t — 2), for Th = 2
So
H(f)=F[29(t —2)] =2F[g(t — 2)], by linearity
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H(f)=2 {672”’(2”6’(]”)} , by shifting

H(f) = 2e—mif L <Sin(27ff)>2

2 7w f
e Sm<2”f>>2
H(p) = et (1

The real and imaginary parts of H(f) are given in Figure 69, the |H(f)| and O(f) are given
in Figure 70.

Figure 69: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1b of
second set of Chapter 5

vvvvvvvvvv

Figure 70: Graph of |H(f)| (on the left) and ©(f) (on the right) for problem 1b of second
set of Chapter 5
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L. c. h(t) =sin (;)

The function h(t) is given in Figure 71. The closest function for which we have a Fourier
transform is the function ¢(t) = Asin(27 fot) given in Figure 72.

Figure 71:

Figure 72: Graph of g(t) for problem 1lc of second set of Chapter 5

In this case

1 1
h(t) = g(t), for A=1, and 27rf0:§ :>f0:677r

So

() =Flow) = iy {5 (1+5-)-s(r- =)}

Note that H(f) is purely imaginary, so we plot Im(H(f)) and |H(f)| in Figure 73. The
graph of O(f) is given in Figure 74.
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Im(H()

Figure 73: Graph of Im(H(f)) (on the left) and |H(f)| (on the right) for problem lc of
second set of Chapter 5

-6 T

Figure 74: Graph of ©(f) for problem 1c of second set of Chapter 5
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2, 3<t<oo
1. d. h(t)_{() , otherwise

The function A(t) is given in Figure 75. The closest function for which we have a Fourier
transform is the function g(t) = sgn(t) given in Figure 76.

0.59

vvvvvvvvvvvvvvvvvvvvvvvvv

Figure 75: Graph of h(t) for problem 1d of second set of Chapter 5

0.59

vvvvvvvvvvvvvvvvvvvvvvvvv

-0.54

Figure 76: Graph of g(¢t — 3) for problem 1d of second set of Chapter 5

In this case h(t) =1+ g(t — 3), so

H(f) = Fl1+g(t—=3)] = F[1] + Flg(t - 3)], by linearity
H() = 8()+ e 2HOIG) = o(7) = Lo
or o
H) = 60) -3

The real and imaginary parts of H(f) are given in Figure 77, the |H(f)| and O(f) are given
in Figure 78.
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Figure 77: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1d of
second set of Chapter 5

vvvvvvvvvvvvvvvvvvvv

Figure 78: Graph of |H(f)| (on the left) and O(f) (on the right) for problem 1d of second
set of Chapter 5
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1
442
The closest transform pair to h(t), given in Figure 79, is

L. e. h(t)

2x
a? + 42 f?

G(f) =

Figure 79:

Figure 80: Graph of g(t) for problem le of second set of Chapter 5

Thus we have to use the fact that if X (f) is the Fourier transform of x(¢) then z(—f) is

the Fourier transform of X (¢). So for g(t) = (see Figure 80) we have

«Q

a2 4 4722
G(f) — e~ =fl — gmalfl

But

2(4m) s

T
h(t) = -c——5——— =
®) 2 (4m)? + 4m2t? 2

Thus



So -
H(f) = 56_47#'

Note that the transform is a real function, so we have plotted H(f) which is the same as
Re(H(f)) and |H(f)| in Figure 81.

05 1
f

Figure 81: Graph of Re(H(f)) for problem le of second set of Chapter 5
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.2
3t
1. £ h(t) = 8”16;2)
The closest transform pair to h(t), given in Figure 82, is
.2
sin(m fot
g(t) = n Anfut) ¥ )
foﬂ' t

whose transform is given in Figure 68 and can be described as

65 = (1) (1 ug11)

Figure 82: Graph of h(t) for problem 1f of second set of Chapter 5

But now 2(3) 2( i) 5
_osin®(3¢) zsin 7 fot . 3
ht) = 6t2 2 wA2fy with fo = T
S0 ( |f|> 3
™ 7| f]| A G <z
H(f)=2(1- 1 — us/y — ) 2 3 ) ™
() 2 ( 3 ) ( 3/ (|f|)> { 0, otherwise

Note that H(f) is real, so the plot of Re(H(f)) and |H(f)| are identical and given in Figure
83.

143



Figure 83: Graph of Re(H(f)) for problem 1f of second set of Chapter 5
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e 0<t<2
1. g. = ’
g h(t) { 0 , otherwise
The plot of h(t) is given in Figure 84.

0.8
0.6
0.44

0.24

Figure 84: Graph of h(t) for problem 1g of second set of Chapter 5

It is just as easy to get the transform directly.
0 . 2 .
H(f) = / h(t)e 2milt gt — / e~te2milt gy
—00 0
6—(1+27rjf)t

C1+27f

2 1 — e—204275)

o l+2mjf

H(f) =

The plots of Re(H(f)) and Im(H(f)) are given in Figure 85. The plots of |H(f)| and

O©(H(f)) are given in Figure 86.

Figure 85: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1g of

second set of Chapter 5

Another way to solve the problem is to view h(t) as the product of hy(t) and hy(t) shown

in Figure 87. The functions are
hi(t) = e*, t>0
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Figure 86: Graph of |H(f)| (on the left) and O(f) (on the right) for problem 1g of second
set of Chapter 5

and
1, O0<t<?2

ha(t) = { 0, otherwise

The transforms of these functions are

Hy(f) = H;ij, Hy(f) = €2vrjfsm7(r2;f>
So .
H(f) = Flh(t)ho(t)] = Hy(f) % Ho(f) = /_OOHIW)Hz(f—wdu

_ > 1 —27j(f—u) SiIl(27T(f B U))
H(7) = /—oo 1+ 27Tjue w(f —u) du

Now you see that the previous method is easier!!!

0.8 0.8

0.6 0.6

0.2 0.24

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Figure 87: Graph of hy(t) (on the left) and ho(t) (on the right) for problem 1g of second set
of Chapter 5
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—_

2. a H(f):1+f2 , —o0o< f<oo

The graph of H(f) is given in Figure 88. The closest pair is
2c

= — ot

G(f) =

With a = 27 we have
H(f) = 7G(f)
See Figure 89 for the graphs of G(f) and ¢(t) and Figure 90 for h(t).

Figure 88:

Figure 89: Graph of G(f) (on the left) and g(¢) (on the right) for problem 2a of second set
of Chapter 5

Thus
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Figure 90: Graph of h(t) for problem 2a of second set of Chapter 5
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2. b. H(f) =e ¥ | —0o< f<oo

H(f) = e 3mfe 2l = 72mifG2) =20 = Flg(t — 3/2)]

where
G(f) = e Ml even function of f
SO A
g(t) = el using tables with a=2
Therefore

1
1+ m2(t — 3/2)?

h(t) = glt—3/2) =

Figure 91: Graph of G(f) (on the left) and A(t) (on the right) for problem 2b of second set
of Chapter 5
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(2, 3<f<3
2. o H(f)= {O ., otherwise
Note that H(f), given in Figure 92, is real and even and we can find h(t) directly or from
the tables.

1.5

0.5

Figure 92: Graph of H(f) for problem 2c of second set of Chapter 5

h(t) = /_ O:O H(f)e2mltqf = /_ 33 2e2mftgf — 9 /0 "9 cos(2r f1)df

So
. f:3 .
h(t) = 4sm(27rft)’ _ 281n(67rt)
2rf  lp=o mt
The other way is to note that H(f) = 12G(f) where G(f) = { é/(Qfo), _otfi)lejwjzs: Jo

is given in Figure 93 with fy = 3. Thus
h(t) = FUH()] = FH2G(f)] = 129(1)
So

sin(2w(3)t) 5 sin(67t)

hlt) = 12 2 (3)t wt

as before.
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3 123
0.16-
10
0.12- 8h
6
0.08- 4
] i
0.04 n: ﬂ
< Y| L] Try—-
] -4 -2 V"f V 2 4
R 5 t
vvvvvvvvvvvv L5 S s e e B A ) d
4 2 0 2 4

Figure 93: Graph of G(f) (on the left) and h(t) (on the right) for problem 2c¢ of second set
of Chapter 5
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6 Applications of the Fourier Transform

6.1 Introduction
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6.2 Convolution and Fourier Transforms

PROBLEMS

1. Compute, using the definition, the convolution ( A(t)*g(t) ) in the following cases. Then,
in each case, compute the Fourier transform of the convolution and verify the result agrees
with the convolution theorem:

2, 0<t<?2

a. h(t) = {O , otherwise
et , 0<t
g(t) = {0 ., otherwise
2, —2<t<?2

b. h(t) = g(t) = {0 , otherwise
c. h(t)=e | —oco<t<oo
g(t) = cos(2mt) , —oo <t <00
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2, O<t<?2
L. a. h(t)= {0 , otherwise
eft s 0 < t

g(t) = {0 , otherwise

The graphs of h(t) and ¢(t) are given in Figure 94 and the graph of h(t — u) is given in
Figure 95.

4 0.8
1.59 ]

0.6

Figure 94: Graph of h(t) (on the left) and g(¢) (on the right) for problem la of Chapter 6.2

Figure 95: Graph of h(t — ) for problem la of Chapter 6.2

Three possible cases are described below. Case I (Figure 96) when ¢ < 0 and there is no
overlap, Case II (Figure 97) when 0 < ¢ < 2 and there is an overlap for 0 < u < t, Case III
(Figure 98) when 2 < t and there is an overlap for t — 2 < u < ¢. The convolution

0 case |

t
[e%¢) —u _ -t
g*h:/ g(u)h(t — w)du = /ot2€ du-2(1—e ) case II
/ 2¢ du =2 (e_(t_Q) — e_t) case 111
t—2

This convolution is plotted in Figure 99.
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Figure 96: Graph of g and h for problem la of Chapter 6.2 when ¢t < 0

<<<<<

Figure 97: Graph of g and h for problem la of Chapter 6.2 when 0 < t < 2

Nk

Figure 98: Graph of g and h for problem la of Chapter 6.2 when 2 < ¢

1.6+
1.24
0.8

0.4+

vvvvvv

Figure 99: Graph of the convolution for problem la of Chapter 6.2
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By definition
Flg*h] = / g * he It qt

Flg*h] = 2/ _t Q”thdt—i-Q/ (=2 _¢ t) e 2miftqy
—2mjft 2 —(1+2mj f)t —(1427j f)t jo0 — (14275 f)t 100
Flgxh] = 29— +° Y S K —
215 f lo 1+ 275f l2 14275 f |2
1 —4njf —2(1+27j f) 1 —2(1427j f) —2(1427j f)
Flgxhl =24 oo -+ T et
2y f  2myf 14275 f 14275 f 14275 f 14275 f
1 e—4mif 1 e—4mif)
Flg=h] =2 — — — — — + .
25 f  2myf 14 2m5f 14 2njf

fw*m::20—64m0{ L .}

2rjf 142wy f
5 1—e 4/
25 f(1 4 2mj f)

Flg=h| =

By convolution theorem

H ? ge-mittgy — gl
= 2e " t =2
() /0 ¢ 2ni f
1
G(f) = —
(f) 14275 f
therefore )
1 — e~4mif

- 227rjf(1 +2mjf)
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2, —2<t<?2
L. b. h(t) = g(t) = {0 otherwise

The graphs of h(t) and g(t) are the same and given in Figure 100 and the graph of h(t —u)
is given in Figure 101.

1.5

0.5

vvvvvvvvvv

Figure 100: Graph of h(t) for problem 1b of Chapter 6.2

Figure 101: Graph of h(t — u) for problem 1b of Chapter 6.2

Four possible cases are described below. Case I (Figure 102) when ¢ < —4 and there is no
overlap, Case II (Figure 103) when —4 <t < 0 and there is an overlap for =2 < u <t + 2,
Case III (Figure 104) when 0 < ¢ < 4 and there is an overlap for t — 2 < u < 2, case IV
(Figure 105) when 4 < t and there is no overlap again. The convolution

0 case I
t42
o / ddu = 4(t + 4) case 11
gxh = / g(u)h(t —u)du = 7
> ddu=4(2—(t—2)) =4(4—1t)) caselll
t—2
0 case IV

This convolution is plotted in Figure 106.
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Figure 102: Graph of h and h for problem 1b of Chapter 6.2 when ¢t < —4

<<<<<<

Figure 103: Graph of A and h for problem 1b of Chapter 6.2 when —4 <t <0

<<<<<

Figure 104: Graph of g and h for problem 1b of Chapter 6.2 when 0 <t < 4

Figure 105: Graph of g and h for problem 1b of Chapter 6.2 when 4 < ¢
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By definition
Flgxh] = / g * he It qt

0

. 4 ,
Flgshl = [ A+t dt+ [ 4(4—e ™ at
sin? (47 f
Flg+h] = 4<7T(f>2>
By convolution theorem
sin(4m f
() = G(p) = 27D
therefore (4
sin“ (47

Flg=hl = G(HH(f) = 4W

Figure 106: Graph of the convolution for problem 1b of Chapter 6.2
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Le hit)=el | —co<t<oo

g(t) =cos(2mt) , —oo<t< o0
The graphs of h(t) and g(t) are given in Figure 107 and the graph of h(t — u) is given in
Figure 108.

Figure 107: Graph of h(t) (on the left) and ¢(t) (on the right) for problem 1c of Chapter 6.2

Figure 108: Graph of h(t — u) for problem 1c of Chapter 6.2

By definition
gxh = / g(u)h(t —u)du

—00

or the equivalent form which is easier to integrate

gxh = /Oo h(u)g(t — u)du

gxh = /Oo e 1 cos(2m(t — u))du
gxh = /Oo e~ [cos(2nt) cos(2mu) + sin(27t) sin(27w)] du

gxh = cos(27t) /oo e~ cos(2mu)du+sin(2nt) /OO e~ 1" sin(2mu)du

—00

odd function on a symmetric interval, integral =o
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Figure 109: Graph of g(u)h(t — u) for problem 1lc of Chapter 6.2

g*xh = 2cos(2nt) /oo eIl cos(2mu)du
0

gxh = cos(2mt)

14 472
The graph of the convolution is given in Figure 110.

Figure 110: Graph of the convolution for problem 1c of Chapter 6.2

By definition
Flg*h] = / g * he ™It gt

2
Flg*h| = F {1—1-47T2 cos(27t)
Flgsh] = -5 6(f = 1)+ 8(F + 1)
By convolution theorem
1
H(f) =

G(f) = 5 (7~ 1) +5(7 + 1)

therefore )

Flghl = GUOH() = 1= 100/ = 1) +3(/ + 1)
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Note that this last step uses the fact that ¢(z)d(x — zo) = ¢(x0)d(x — z9).
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6.3 Linear, Shift-Invariant Systems

6.4 Determining a System’s Impulse Response and Transfer Func-
tion

6.5 Applications of Convolution - Signal Processing and Filters

6.6 Applications of Convolution - Amplitude Modulation and Fre-
quency Division Multiplexing

6.7 The D’Alembert Solution Revisited
6.8 Dispersive Waves

6.9 Correlation
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6.10 Summary
PROBLEMS

1. Consider the linear, shift-invariant system represented by the following circuit

119
1

dI
L +RI =E()

dt
Vour = RI

a. Directly determine, e.g. using the Laplace transform, the impulse response of this
system. Sketch this response.

b. (1) Find the Transfer function of this system by computing the Fourier transform of
the impulse response determined in part a. above.

b. (2) Show that the alternative method of finding the Transfer function, i.e. as the
response of a system to the forcing function e?™/o! | produces the same result as in part (1),

c. Sketch the amplitude and phase spectra of the Transfer function computed in part b.

2. Repeat problem 1 for the same circuit, except with the output taken as the voltage across
the inductor, i.e.
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1194
L

Li =
prs RI (1)
Vou = RI
Laplace transform: Let us denote L[I(t)] = I(s), then
sLI(s)+ RI(s) =1
Vour(s) = RI(s)
Thus 1 R R )
(5) = Vals) = B 1
()= ixr = V) = IR T Tt (R/D)
S0 R,—Rt/L
f@i s t>0
Voult) = { 0, t<0

This V,,; is plotted in Figure 111.

Figure 111: Graph of h(t) for problem la of Chapter 6.10

165



1. b. (1)

Transfer function

oo . R oo 4 R 1
H :/ —27j ft _ 7/ —Rt/L —27jft _
() = [ e dt = e et = R o
R
H(f) = —
(7) R+2njfL

1. b. (2) We can find the transfer function by computing the response to e*™/0':

dI ;
L— + RI = >/
it "
Using undetermined coefficients, we substitute I(t) = A(fy)e*™/! in the equation and we

have | |
(21 foL A + RA)e2mifot — (2mifot

or

1
A -
(o) = 77 217 oL
Therefore i
] t - - 27j fot
and
R . .
— ] = — 2mjfot _ H 27j fot
‘/out R R i 27I'jf0L€ (fQ)G
Therefore R
H - -
(o) = 77 277 foL
or -
H(f) =
(£) R+2njfL
1. c.
We rewrite H(f) as
R? 2rfRL
H = o
=T @rfLy? 'Rt @2nfL)
Therefore

B R

The plots of |H(f)| and ©(f) are given in Figures 112 and 113.
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Figure 112: Graph of |H(f)| for problem lc of Chapter 6.10

Figure 113: Graph of O(f) for problem 1lc of Chapter 6.10
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Impulse response:

R s

dt
dl
Vour = LY

Laplace transform ) 3
sLI(s)+ RI(s) =1

Vout(s) = sLI(s)

or
. 1 ~ sL
I = = ‘/ou =
)= I7 R ) = IR
Now we can rewrite R R .
‘Z)u 1-— = -
() sL+ R Ls+ (L/R)

SO R
%ut(t) = (S(t) — EeiRt/L

This function is given in Figure 114.

LR
) /

Figure 114: Graph of V,,(t) for problem 2a of Chapter 6.10
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H(f) = F[h(t)] = F |o(t) — feRt/L
R 2mjfL

-1 —
R+2mjfL R+2mjfL

2. b. (2)

dI .
L— + RI = ¢*™/t
dt + e

As before |

T R+27mjfoL

Vour = Lﬂ = 727ij0[/ e?rifot

o dt R+27ij0L
—_———

H(fo)

27j fot

1(t)

So omifL
_ J
A(f) = R+ 2njfL

same as before.

2. c.
We rewrite H(f) as

__(emfL? . 2nfLR
H(f) = R+ (2nfL? 'Ry (2nfL)

Therefore
2L f|

VR2+ (2rfL)?

R

- onfL

The |H(f)| and O(f) are given in Figures 115 and 116, respectively.

[H()| =

and

tan ©(f)
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Figure 115: Graph of |H(f)| for problem 2c of Chapter 6.10

Figure 116: Graph of O(f) for problem 2c¢ of Chapter 6.10
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7 Appendix A - Bessel’s Equation

7.1 Bessel’s Equation

7.2 Properties of Bessel Functions
PROBLEMS

1. Using the recurrence formulas, and a table of values for Jy(x) and J;(z), find
a. Jj(z) in terms of Jy(z) and Ji(x)
b. J5(2.0)
c. J4(1.0)
2. Write, in terms of J,(z) and Y,,(x), the general solution to
a. 22y + a2y’ +42%y =0
b. 2%y + 2y + (922 —4)y =0
c. 4xy" +dxy + (2> — 1)y =0
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1. a. Using the recurrence relation NJy(z) + xJy(z) = xJy_1(z) with N = 1, we have

Ji(x) + xJi(z) = xJy(x)

Therefore () — Ti(2)
TJolX) — J1\T
Ry = 0
. : 2N )
1. b. Using the recurrence relation Jy13 = —Jy(x) — Jy_1(x) with N = 1, we have
T

2
J2 = ;Jl(a:) — Jo(.’ll')
From CRC tables (or Maple, Matlab), Jy(2.0) = .2239, J;(2.0) = .5767 therefore

2
J(2.0) = 3.0(.5767) — 2239 = 3528

1. c. Using the recurrence relation NJy(z) + 2Jy(x) = 2Jy_1(x) with N = 3 we have
3J3(z) + xJi(z) = xJa(x)

But oN
Iy = TJN(x) — Jn-a(z)

with N = 2 yields
4
J3(x) = ;Jg(a:) — Ji(x)

Combining these two, we get

3 (iJg(x) — (@) + 2 h(x) = ()

So
Ti(z) = i Kx _ f) To(z) + 3J1(x)}
Ti(z) = ; (- f) (iJl(x) — Jo(a)) +3(2)]
Thus

J4(1.0) = [—11 (2,(1.0) — Jo(1.0)) + 3J;(1.0)]
J5(1.0) = —19.J,(1.0) + 11Jo(1.0) = —19(.4401) + 11(.7652) = .0553
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2. a. The general solution of z%y” + zy’ + (£%2* —n?)y =0 is
CiJn(€x) + CoY,, (Ex)
In our case n = 0 and £ = 2, therefore the solution is

ClJ()(QSlJ) + CQYE)(QLE)

2. b. The equation 2%y” + zy' + (922 — 4)y = 0 matches the general case with n = 2
and & = 3, therefore the solution is

1
2. c¢. The equation 4x2y” + 4xy’ + (22 — 1)y = 0 matches the general case with n = 5

1
and £ = 3 therefore the solution is

1 1
Cljl/g <2ZE> + 02Y1/2 (2%’)
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7.3 Variants of Bessel’s Equation

PROBLEMS
Use Bessel Functions (the big ugly equation) to find the general solution to each ODE
below.

1.
2%y + 3xy + (—3+4x4)y =0
2.
2y + (x+2x2) v+ (—4+9x_2+x+x2)y: 0
3.
o2y —5ay + (9+4x2)y =0
4.

22y + (:c—2m3) y + (—1/4+x_2 —2x2+x4>y: 0
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Answers
y(z) = AJi(2°) )z + BY1(2?)/x
y(x) = e (A Jy(3/x) + BYs(3/x))
y(z) = 2% (A Jo(22) + BY,(2z))

y(x) =" (AJ1(1/3) + BYipo(1/2))
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