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1.8 Sequences of Functions

PROBLEMS
1. For each of the following sequences, determine if the sequence converges or diverges. If
the sequence converges, determine the limit

a. an =
2n+1

3n+2
b. an =

(n+ 1)2

5n2 + 2n+ 1
c. an =

sin(n)

n+ 1

d. an = cos(n) e. an =
2(n+ 1)2 + e−n

3n2 + 5n+ 10
f. an =

n cos(nπ
2
)

n+ 1

g. an =
cos(nπ)

n2 + 1
h. an =

en

n!
i. an =

n sin(nπ)

n+ 1

2. Determine the order (“big Oh”) of the following sequences

a. an =
n3 + 2n2 + 1000

n7 + 600n6 + n
b. an =

cos(nπ)

n2 + 1

c. an =
[

n

n2 − 1
− n

n2 + 1

]
sin((n+

1

2
)π)

d. an =
10n3e−n + n2

(2n+ 1)2
cos(n2π)

3. Consider the infinite series
∞∑
n=0

(n+ 1)22n

(2n)!

a. Compute, explicitely, the partial sums S3 and S6

b. Write the equivalent series obtained by replacing n by k−2, i.e. by shifting the index.

4. Determine whether each of the following infinite series diverges or converges:

a.
∞∑
n=0

e−n b.
∞∑
n=0

n2 + 1

(n+ 1)3
c.

∞∑
n=0

n2 cos(nπ)

(n3 + 1)2

d.
∞∑
n=0

n

n+ 3
e.

∞∑
n=0

en

n!
cos(nπ) f.

∞∑
n=2

1

n ln(n)

5. Determine an (approximate) upper bound to the error when each of the following infinite
series is approximated by a twenty-term partial sum (S20).

a.
∞∑
n=0

2n+ 1

3n4 + n+ 1
b.

∞∑
n=1

1

n5
c.

∞∑
n=1

(2n+ 1)2

n4

6. Consider the series: ∞∑
n=0

xn

a. plot the partial sums S1(x), S5(x), S10(x), and S20(x) for −2 < x < 2.

b. What can you conclude about the convergence of the partial sums in this interval?

2



c. What, if anything, different can you conclude about the convergence of these partial

sums in the interval −1

2
< x <

1

2
.
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1. a.

an =
2n+1

3n+2
=

2

9

(
2

3

)n

→ 0 since
2

3
< 1

1. b.

an =
(n+ 1)2

5n2 + 2n+ 1
=

n2 + 2n+ 1

5n2 + 2n+ 1
=

1 + 2
n
+ 1

n2

5 + 2
n
+ 1

n2

→ 1 + 0 + 0

5 + 0 + 0
=

1

5

1. c.

an =
sinn

n+ 1
Note | sinn| ≤ 1

Thus |an| ≤
1

n+ 1
→ 0.

Thus an → 0.

1. d.
an = cosn does not approach a limit

Thus the sequence diverges.

1. e.

an =
2(n+ 1)2 + e−n

3n2 + 5n+ 10
→ 2n2

3n2
=

2

3
since e−n → 0

1. f.

an =
n

n+ 1
cos

(
nπ

2

)
→ cos

(
nπ

2

)
Since cos

(
nπ

2

)
= 0,±1, depending on n the sequence diverges.

1. g.

an =
cos (nπ)

n2 + 1

Thus |an| ≤
1

n2 + 1
→ 0 and an → 0.

1. h.

an =
en

n!
=

en

n(n− 1) · · · 2 · 1
Note n! = n(n− 1) · · · 2 · 1︸ ︷︷ ︸

n terms

≥ 3 · · · 3︸ ︷︷ ︸
n−2 terms

·2 · 1 = 3n−2 · 2

Thus an =
en

n!
≤ en

2 · 3n−2
=

e2

2

(
e

3

)n−2

→ 0 since e < 3.
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1. i.

an =
n sin(nπ)

n+ 1
= 0 since sin(nπ) = 0

Thus an → 0.

2. a.

an =
n3 + 2n2 + 1000

n7 + 600n6 + n

For n “large” an behaves like
n3

n7
=

1

n4
. Thus an = O

(
1
n4

)
.

Note that for n ≥ 10 the numerator is ≤ n3 + 2n3 + n3 = 4n3 and the

denominator ≥ n7. Thus for n ≥ 10 we have an ≤ 4n3

n7
= 4

1

n4
.

2. b.

an =
cos(nπ)

n2 + 1

Since | cos(nπ)| = 1, we have |an| =
1

n2 + 1
≤ 1

n2
. Thus an = O

(
1

n2

)
.

2. c.

an =
[

n

n2 − 1
− n

n2 + 1

]
sin((n+ 1/2)π)

Note sin((n+ 1/2)π) = sin(nπ)︸ ︷︷ ︸
=0

cos(π/2) + cos(nπ) sin(π/2)︸ ︷︷ ︸
=1

= cos(nπ)

The first factor in brackets is
n3 + n− (n3 − n)

n4 − 1
=

2n

n4 − 1
.

So an =
2n

n4 − 1
cos(nπ) = O

(
1

n3

)
since | cos(nπ)| = 1.

2. d.

an =
10n3e−n + n2

(2n+ 1)2
cos(n2π)

Note cos(n2π) = ±1 depending on n even or odd. Also x3e−x → 0 by
L’Hospital rule, so the first term in numerator is negligible compared to the second term
there.

So |an| →
n2

(2n)2
=

1

4
. Therefore an = O(1).
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3.
∞∑
n=0

(n+ 1)22n

(2n)!
= 1 +

4 · 2
2!

+
9 · 4
4!

+
16 · 8
6!

+
25 · 16
8!

+
36 · 32
10!

+ . . .

a. S3 =
3∑

n=0

(n+ 1)22n

(2n)!
= 1 +

4 · 2
2!

+
9 · 4
4!

+
16 · 8
6!

= 6.678

S6 =
6∑

n=0

(n+ 1)22n

(2n)!
= 1 +

4 · 2
2!

+
9 · 4
4!

+
16 · 8
6!

+
25 · 16
8!

+
36 · 32
10!

+
49 · 64
12!

= 6.688

b. Let k = n+ 2 (or n = k − 2)

∞∑
n=0

(n+ 1)22n

(2n)!
=

∞∑
k−2=0

(k − 1)22k−2

(2k − 4)!
=

1

4

∞∑
k=2

(k − 1)22k

(2k − 4)!

4. a.
∞∑
n=0

e−n =
∞∑
n=0

(
e−1

)n
converges as a geometric series with r = e−1 < 1.

The sum is
∞∑
n=0

e−n =
1

1− e−1
=

e

e− 1

b.
∞∑
n=0

n2 + 1

(n+ 1)3
. Note that for large n an is of the order of 1/n.

Now use the comparison test, comparing our series to
∞∑
n=0

1

n
.

Since the latter diverges, our series diverges.

c.
∞∑
n=0

n2 cosn

(n3 + 1)2
. Note that for large n, |an| behaves like n2

n6 .

Now use the comparison test, comparing our series to
∞∑
n=0

1

n4
.

Since the latter converges (p test with p = 4), our series converges.

d.
∞∑
n=0

n

n+ 3
. Note that for large n, an behaves like 1 ̸= 0.

Since limn→∞ an ̸= 0 the series diverges.
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4. e.
∞∑
n=0

en

n!
cos(nπ). See problem 1.h.

Let us estimate n!, by takeing n! = 1 · 2 · 3 · · ·n > 1 · 2 · 3 · · · 3︸ ︷︷ ︸
n−2times

. Therefore

|an| =
en

n!
≤ e2

2

(
e

3

)n−2

=
e2

2
rn−2

where |r| = e

3
< 1. Thus

∞∑
n=0

e2

2
rn−2 =

e2

2r2

∞∑
n=0

rn converges as a geometric series.

Thus our series coverges by comparison test.

f.
∞∑
n=2

1

n ln(n)
. Note that an > 0. Taking f(x) =

1

x ln(x)
we can use the integral test.∫ ∞

2

dx

x ln(x)
=
∫ ∞

ln(2)

du

u
, where we used u = ln(x).

Thus the anti derivative is ln(ln(x)) which tend to infinity at the upper limit.
Therefore the series diverges.

5. a.
∞∑
n=0

2n+ 1

3n4 + n+ 1
, an =

2n+ 1

3n4 + n+ 1

For large n, |an| ≤
2n

3n4
≤ 1

n3
. Thus an = O

(
1

n3

)
.

E20 = S − S20 =
∞∑

n=21

2n+ 1

3n4 + n+ 1

|E20| ≤
∞∑

n=21

∣∣∣∣ 2n+ 1

3n4 + n+ 1

∣∣∣∣ ≤ ∞∑
n=21

1

n3
≤ 1

2 · 202

Note the above is
1

(p− 1)Np−1
for N = 20, p = 3. Thus

|E20| ≤
1

800
= .00125

b.
∞∑
n=1

1

n5
, an =

1

n5
= O

(
1

n5

)
.

So

|EN | =
∞∑

n=N+1

1

n5
≤
∫ ∞

N

dx

x5
=

1

4N4

|E20| ≤
1

4 · 204
= 1.56 · 10−6
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c.
∞∑
n=1

(2n+ 1)2

n4
, an =

(2n+ 1)2

n4
∼ 4

n2
. So

|EN | ∼
∞∑

n=N+1

4

n2
≤ 4

N

|E20| ≤
4

20
= .2

6. Consider ∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

SN =
N∑

n=0

xn = 1 + x+ x2 + x3 + · · ·+ xN =


1− xN+1

1− x
, x ̸= 1

N + 1, x = 1

a. S1 = 1 + x

S5 = 1 + x+ x2 + x3 + x4 + x5 =
1− x6

1− x

S10 = 1 + x+ x2 + x3 + · · ·+ x10 =
1− x11

1− x

S20 = 1 + x+ x2 + x3 + · · ·+ x20 =
1− x21

1− x

In Table 1 we list the sum for various values of −1 < x < 1. The graphs of f(x) = 1
1−x

along
with the partial sums S1, S5, S10, S20 is given in Figure 1.

0-1-2

y

5

4

3

2

1

0

-1

-2

x

21

S                       

S1                      

S5                      

S10                     

S20                     

Figure 1: Plot of f(x) = 1
1−x

along with the partial sums S1, S5, S10, S20
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x S S1 S5 S10 S20

-1.00 0.50 0.00 0.00 1.00 1.00
-0.96 0.51 0.04 0.11 0.84 0.73
-0.92 0.52 0.08 0.21 0.73 0.61
-0.88 0.53 0.12 0.28 0.66 0.57
-0.84 0.54 0.16 0.35 0.62 0.56
-0.80 0.56 0.20 0.41 0.60 0.56
-0.76 0.57 0.24 0.46 0.60 0.57
-0.72 0.58 0.28 0.50 0.60 0.58
-0.68 0.60 0.32 0.54 0.60 0.60
-0.64 0.61 0.36 0.57 0.61 0.61
-0.60 0.63 0.40 0.60 0.63 0.63
-0.56 0.64 0.44 0.62 0.64 0.64
-0.52 0.66 0.48 0.64 0.66 0.66
-0.48 0.68 0.52 0.67 0.68 0.68
-0.44 0.69 0.56 0.69 0.69 0.69
-0.40 0.71 0.60 0.71 0.71 0.71
-0.36 0.74 0.64 0.73 0.74 0.74
-0.32 0.76 0.68 0.76 0.76 0.76
-0.28 0.78 0.72 0.78 0.78 0.78
-0.24 0.81 0.76 0.81 0.81 0.81
-0.20 0.83 0.80 0.83 0.83 0.83
-0.16 0.86 0.84 0.86 0.86 0.86
-0.12 0.89 0.88 0.89 0.89 0.89
-0.08 0.93 0.92 0.93 0.93 0.93
-0.04 0.96 0.96 0.96 0.96 0.96
0.00 1.00 1.00 1.00 1.00 1.00
0.04 1.04 1.04 1.04 1.04 1.04
0.08 1.09 1.08 1.09 1.09 1.09
0.12 1.14 1.12 1.14 1.14 1.14
0.16 1.19 1.16 1.19 1.19 1.19
0.20 1.25 1.20 1.25 1.25 1.25
0.24 1.32 1.24 1.32 1.32 1.32
0.28 1.39 1.28 1.39 1.39 1.39
0.32 1.47 1.32 1.47 1.47 1.47
0.36 1.56 1.36 1.56 1.56 1.56
0.40 1.67 1.40 1.66 1.67 1.67
0.44 1.79 1.44 1.77 1.79 1.79
0.48 1.92 1.48 1.90 1.92 1.92
0.52 2.08 1.52 2.04 2.08 2.08
0.56 2.27 1.56 2.20 2.27 2.27
0.60 2.50 1.60 2.38 2.49 2.50
0.64 2.78 1.64 2.59 2.76 2.78
0.68 3.13 1.68 2.82 3.08 3.12
0.72 3.57 1.72 3.07 3.48 3.57
0.76 4.17 1.76 3.36 3.96 4.15
0.80 5.00 1.80 3.69 4.57 4.95
0.84 6.25 1.84 4.05 5.33 6.09
0.88 8.33 1.88 4.46 6.29 7.76
0.92 12.50 1.92 4.92 7.50 10.33
0.96 25.00 1.96 5.43 9.04 14.39
1.00 ∞ 2.00 6.00 11.00 21.00

Table 1: The sum and partial sums for various values of −1 < x < 1.
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b. The series only converges for −1 < x < 1.
The series diverges for −2 < x ≤ −1 or for 1 ≤ x < 2.

c. Series converges uniformly to a continuous function for −1

2
< x <

1

2
.

10



2 Fourier Series

2.1 Introduction
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2.2 Derivation of the Fourier Series Coefficients

PROBLEMS

1. Derive the formula for the Fourier sine coefficients, bn

bn =
1

L

∫ L

−L
f(x) sin

(
nπx

L

)
dx ,

using a method similar to that used to derive

an =
1

L

∫ L

−L
f(x) cos

(
nπx

L

)
dx .

2. For each of the following functions, find the Fourier coefficients, the Fourier series, and
sketch the partial sums S2(x), S5(x), and S10(x):

a. f(x) =

{
0 , −1 < x < 0
1 , 0 ≤ x < 1

f(x+ 2) = f(x)

b. f(x) =

{
3 + x , −3 < x < 0
3− x , 0 ≤ x < 3

f(x+ 6) = f(x)

c. f(x) =


0 , −2 < x < 0
x , 0 ≤ x < 1

2− x , 1 ≤ x < 2

f(x+ 4) = f(x)

d. f(x) = 1− cos(πx), −1 ≤ x ≤ 1

3. a. Show that the alternative Fourier Series representation

f(x) = a0 +
∞∑
n=1

{
an cos

(
nπx

L

)
+ bn sin

(
nπx

L

)}

leads to the formulas

a0 =
1

2L

∫ L

−L
f(x)dx ,

an =
1

L

∫ L

−L
f(x) cos

(
nπx

L

)
dx , n > 0

bn =
1

L

∫ L

−L
f(x) sin

(
nπx

L

)
dx , n > 0

12



where the formula for a0 is no longer the n = 0 special case of the formula for an.

b. Show that the alternative Fourier Series representation

f(t) =
a0
2

+
∞∑
n=1

{
an cos

(
2nπt

T0

)
+ bn sin

(
2nπt

T0

)}

(note the independent variable here is t), where L has been replaced by T0/2, leads to

an =
2

T0

∫ T0/2

−T0/2
f(x) cos

(
2nπt

T0

)
dt , n ≥ 0

bn =
2

T0

∫ T0/2

−T0/2
f(x) sin

(
2nπt

T0

)
dt , n > 0 .

Note that here the formula for a0 is again the n = 0 special case of the formula for an.

4. In each of the following, find each point in −L < x < L where f(x) has a discontinuity.
Find the left and right-hand limits of f(x) and f ′(x) at each point of discontinuity and at
the end points of the interval. Without computing the Fourier coefficients, indicate to what
values the series should converge at these points.

a. f(x) =


x2 , 1 ≤ x ≤ 3
0 , −2 ≤ x < 1
2x , −3 ≤ x < −2

b. f(x) =

{
3 , π/2 ≤ x ≤ π

2x− 2 , −π ≤ x < π/2

c. f(x) =


x2 , −2 ≤ x < 0
0 , 0 ≤ x < 1

4(x− 1) , 1 ≤ x ≤ 2

13



1.

f(x) =
a0
2

+
∞∑
n=1

{
an cos

(
nπx

L

)
+ bn sin

(
nπx

L

)}

Let k denote a fixed integer. Multiply both sides by sin

(
kπx

L

)
and integrate

∫ L
−L f(x) sin

(
kπx
L

)
dx = a0

∫ L

−L
sin

(
kπx

L

)
dx︸ ︷︷ ︸

=0

+
∑∞

n=1


an

∫ L

−L
cos

(
nπx

L

)
sin

(
kπx

L

)
dx︸ ︷︷ ︸

=0 for all n,k

+ bn

∫ L

−L
sin

(
nπx

L

)
sin

(
kπx

L

)
dx︸ ︷︷ ︸

=0 for all n ̸=k, =L for n=k


or ∫ L

−L
f(x) sin

(
kπx

L

)
dx = Lbk

bk =
1

L

∫ L

−L
f(x) sin

(
kπx

L

)
dx

Replacing k by n on both sides

bn =
1

L

∫ L

−L
f(x) sin

(
nπx

L

)
dx

2. a.f(x) =

{
0 , −1 < x < 0
1 , 0 ≤ x < 1

f(x+ 2) = f(x)
L = 1

f(x) =
a0
2

+
∞∑
n=1

{an cos (nπx) + bn sin (nπx)}

an =
1

1

∫ 1

−1
f(x) cos(nπx)dx

bn =
1

1

∫ 1

−1
f(x) sin(nπx)dx

a0 =
∫ 1

−1
f(x)dx =

∫ 1

0
dx = x

∣∣∣∣1
0
= 1 ⇒ a0

2
=

1

2

an =
∫ 1

−1
f(x) cos(nπx)dx =

∫ 1

0
cos(nπx)dx =

1

nπ
sin(nπx)

∣∣∣∣1
0
= 0
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Figure 2: Graph of f(x) and the N th partial sums for N = 2, 5, 10, 20

bn =
∫ 1

−1
f(x) sin(nπx)dx =

∫ 1

0
sin(nπx)dx = − 1

nπ
cos(nπx)

∣∣∣∣1
0
=

1− cos(nπ)

nπ

Thus

f(x) =
1

2
+

∞∑
n=1

1− cos(nπ)

nπ
sin(nπx)

or

f(x) =
1

2
+

2)

π
sin(πx) +

2)

3π
sin(3πx) +

2)

5π
sin(5πx) + · · ·

2. b. f(x) =

{
3 + x , −3 < x < 0
3− x , 0 ≤ x < 3

f(x+ 6) = f(x)

L = 3

f(x) =
a0
2

+
∞∑
n=1

{
an cos

(
nπx

3

)
+ bn sin

(
nπx

3

)}
where

an =
1

3

∫ 3

−3
f(x) cos(

nπx

3
)dx

bn =
1

3

∫ 3

−3
f(x) sin(

nπx

3
)dx

a0 =
1

3

∫ 3

−3
f(x)dx =

1

3

[∫ 0

−3
(3 + x)dx+

∫ 3

0
(3− x)dx

]
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a0 =
1

3

[
(3 + x)2

2

∣∣∣∣0
−3

− (3− x)2

2

∣∣∣∣3
0

]
=

1

3

[
9

2
−
(
−9

2

)]
= 3

⇒ a0
2

=
3

2
.

an =
1

3

[∫ 0

−3
(3 + x) cos(

nπx

3
)dx+

∫ 3

0
(3− x) cos(

nπx

3
)dx

]

an =
1

3

 3

nπ
(3 + x) sin(

nπx

3
)︸ ︷︷ ︸

=0

∣∣∣∣0
−3

+
(

3

nπ

)2

cos(
nπx

3
)
∣∣∣∣0
−3

3

nπ
(3− x) sin(

nπx

3
)︸ ︷︷ ︸

=0

∣∣∣∣3
0
−
(

3

nπ

)2

cos(
nπx

3
)
∣∣∣∣3
0


an =

1

3

[
3

nπ

]2
(1− cos(−nπ)− cos(nπ) + 1) =

6

n2π2
(1− cos(nπ))

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

−4 −2 0 2 4
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0

0.5

1

1.5

2
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3

−4 −2 0 2 4
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0.5

1

1.5

2

2.5

3

Figure 3: Graph of f(x) and the N th partial sums for N = 2, 5, 10, 20

bn =
1

3

[∫ 0

−3
(3 + x) sin(

nπx

3
)dx+

∫ 3

0
(3− x) sin(

nπx

3
)dx

]

16



bn =
1

3

− 3

nπ
(3 + x) cos(

nπx

3
)
∣∣∣∣0
−3

+
(

3

nπ

)2

sin(
nπx

3
)︸ ︷︷ ︸

=0

∣∣∣∣0
−3

− 3

nπ
(3− x) cos(

nπx

3
)
∣∣∣∣3
0
−
(

3

nπ

)2

cos(
nπx

3
)︸ ︷︷ ︸

=0

∣∣∣∣3
0


bn =

1

3

[
− 3

nπ
· 3 · cos(0)−

(
− 3

nπ
· 3 · cos(0)

)]
= 0

Thus

f(x) =
3

2
+

∞∑
n=1

6

n2π2
(1− cos(nπ)) cos

(
nπx

3

)

f(x) =
3

2
+

12

π2
cos

(
πx

3

)
+

12

9π2
cos

(
3πx

3

)
+

12

25π2
cos

(
5πx

3

)
+ · · ·

c. f(x) =


0 , −2 < x < 0
x , 0 ≤ x < 1

2− x , 1 ≤ x < 2

f(x+ 4) = f(x)

L = 2

f(x) =
a0
2

+
∞∑
n=1

{
an cos

(
nπx

2

)
+ bn sin

(
nπx

2

)}
where

an =
1

2

∫ 2

−2
f(x) cos(

nπx

2
)dx

bn =
1

2

∫ 2

−2
f(x) sin(

nπx

2
)dx

a0 =
1

2

∫ 2

−2
f(x)dx =

1

2

[∫ 1

0
xdx+

∫ 2

1
(2− x)dx

]

a0 =
1

2

[
x2

2

∣∣∣∣1
0
− (2− x)2

2

∣∣∣∣2
1

]
=

1

2

[
1

2
+

1

2

]
=

1

2

⇒ a0
2

=
1

4

an =
1

2

[∫ 1

0
x cos(

nπx

2
)dx+

∫ 2

1
(2− x) cos(

nπx

2
)dx

]
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an =
1

2

[(
2

nπ
x sin(

nπx

2
) +

(
2

nπ

)2

cos(
nπx

2
)

) ∣∣∣∣1
0

+

(
2

nπ
(2− x) sin(

nπx

2
)−

(
2

nπ

)2

cos(
nπx

2
)

) ∣∣∣∣2
1

]

an =
1

2

[
2

nπ
sin(

nπ

2
) +

(
2

nπ

)2 (
cos(

nπ

2
)− 1

)

− 2

nπ
sin(

nπ

2
)−

(
2

nπ

)2 (
cos(nπ)− cos(

nπ

2

)]
Note that the terms with sin(nπ

2
) cancel out.

an =
2

(nπ)2

[
2 cos(

nπ

2
)− cos(nπ)− 1

]

and

bn =
1

2

[∫ 1

0
x sin(

nπx

2
)dx+

∫ 2

1
(2− x) sin(

nπx

2
)dx

]

bn =
1

2

[(
− 2

nπ
x cos(

nπx

2
) +

(
2

nπ

)2

sin(
nπx

2
)

) ∣∣∣∣1
0(

− 2

nπ
(2− x) cos(

nπx

2
)−

(
2

nπ

)2

sin(
nπx

2
)

) ∣∣∣∣2
1

]

bn =
1

2

[
− 2

nπ
cos(

nπ

2
) +

(
2

nπ

)2

sin(
nπ

2
) +

2

nπ
cos(

nπ

2
) +

(
2

nπ

)2

sin
(
nπ

2

)]

bn =
(

2

nπ

)2

sin(
nπ

2
)

Thus

f(x) =
1

4
+

∞∑
n=1

{(
2

nπ

)2 2 cos(nπ
2
)− cos(nπ)− 1

2
cos

(
nπx

2

)
+
(

2

nπ

)2

sin(
nπ

2
) sin

(
nπx

2

)}

f(x) =
1

4
+
(
2

π

)2

sin
(
πx

2

)
︸ ︷︷ ︸

n=1

− 2
(

2

2π

)2

cos
(
2πx

2

)
︸ ︷︷ ︸

n=2

−
(

2

3π

)2

sin
(
3πx

2

)
︸ ︷︷ ︸

n=3

− 2
(

2

6π

)2

cos
(
6πx

2

)
︸ ︷︷ ︸

n=6

+ · · ·
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Figure 4: Graph of f(x) and the N th partial sums for N = 2, 5, 10, 20

d. f(x) = 1− cos(πx), −1 ≤ x ≤ 1

L = 1

so

f(x) =
a0
2

+
∞∑
n=1

{an cos(nπx) + bn sin(nπx)}

But f(x) is already in that form, i.e.

a0 = 2, a1 = −1, an = 0, for n ≥ 2

bn = 0 for all n

If you don’t see this, it will emerge by “brute force” (recalling the orthogonality integrals.)
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3. a. Show that the alternative Fourier Series representation

f(x) = a0 +
∞∑
n=1

{
an cos

(
nπx

L

)
+ bn sin

(
nπx

L

)}
(2.2.1)

leads to the formulas

a0 =
1

2L

∫ L

−L
f(x)dx ,

an =
1

L

∫ L

−L
f(x) cos

(
nπx

L

)
dx , n > 0

bn =
1

L

∫ L

−L
f(x) sin

(
nπx

L

)
dx , n > 0

where the formula for a0 is no longer the n = 0 special case of the formula for an.

Since the only change is in the first term before the summation, we will show how a0 is
computed. Integrate both sides of (2.2.1)

∫ L

−L
f(x)dx =

∫ L

−L
a0dx+

∞∑
n=1

an
∫ L

−L
cos

(
nπx

L

)
dx︸ ︷︷ ︸

=0

+bn

∫ L

−L
sin

(
nπx

L

)
dx︸ ︷︷ ︸

=0


so ∫ L

−L
f(x)dx = 2La0

and therefore

a0 =
1

2L

∫ L

−L
f(x)dx

b. Show that the alternative Fourier Series representation

f(t) =
a0
2

+
∞∑
n=1

{
an cos

(
2nπt

T0

)
+ bn sin

(
2nπt

T0

)}
(2.2.2)

(note the independent variable here is t), where L has been replaced by T0/2, leads to

an =
2

T0

∫ T0/2

−T0/2
f(x) cos

(
2nπt

T0

)
dt , n ≥ 0

bn =
2

T0

∫ T0/2

−T0/2
f(x) sin

(
2nπt

T0

)
dt , n > 0 .

Note that (2.2.2) is identical to the Fourier series in the text, except that x is replaced here
by t and L is here T0/2.
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Thus

an =
1

L

∫ L

−L
f(t) cos(

nπt

L
)dt =

1

T0/2

∫ T0/2

−T0/2
f(t) cos(

nπt

T0/2
)dt

=
2

T0

∫ T0/2

−T0/2
f(t) cos(

2nπt

T0

)dt

and

bn =
1

L

∫ L

−L
f(t) sin(

nπt

L
)dx =

1

T0/2

∫ T0/2

−T0/2
f(t) sin(

nπt

T0/2
)dt

=
2

T0

∫ T0/2

−T0/2
f(t) sin(

2nπt

T0

)dt

4. In each of the following, find each point in −L < x < L where f(x) has a discontinuity.
Find the left and right-hand limits of f(x) and f ′(x) at each point of discontinuity and at
the end points of the interval. Without computing the Fourier coefficients, indicate to what
values the series should converge at these points.

a. f(x) =


x2 , 1 ≤ x ≤ 3
0 , −2 ≤ x < 1
2x , −3 ≤ x < −2

8

6

0
2

4

-2

-4

x

0-2

2

-6

31-1-3

Figure 5: Graph of f(x) for problem 4a
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Clearly f(x) is discontinuous at x = −2 and x = 1, and the periodic extension will also
be discontinuos at x = ±3.

Since f(−2−) = −4 and f(−2+) = 0, the series converges to (−4+0)/2 = −2 at x = −2.
Since f(1−) = 0 and f(1+) = 1, the series converges to 1

2
at x = 1.

Since f(3−) = 9 and f(3+) = −6, the series converges to 3
2
at x = ±3.

b. f(x) =

{
3 , π/2 ≤ x ≤ π

2x− 2 , −π ≤ x < π/2

x

2

2
0

31

-8

-6

0-2

-2

-4

-1-3

Figure 6: Graph of f(x) for problem 4b

Clearly f(x) is discontinuous at x = π/2 and the periodic extension is also discontinuous
at x = ±π.

Since f
(
π

2−

)
= π − 2 and f

(
π

2+

)
= 3, the series converges to

π + 1

2
at x = π/2.

Since f(π−) = 3 and f(π+) = −2π − 2, the series converges to
−2π + 1

2
at x = ±π.
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c. f(x) =


x2 , −2 ≤ x < 0
0 , 0 ≤ x < 1

4(x− 1) , 1 ≤ x ≤ 2

4

x

1

3

2

2

1
0

0-1-2

Figure 7: Graph of f(x) for problem 4c

Clearly f(x) is continuous and so is its periodic extension. So the series converges to
f(x) everywhere.
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2.3 Odd and Even Functions

PROBLEMS
1. Find the Fourier series for the following functions

a. f(x) =

{
−1 , −2 ≤ x ≤ 0
1 , 0 < x < 2

f(x+ 4) = f(x)
f(x) is clearly odd, and L = 2. Thus

f(x) =
∞∑
n=1

bn sin
(
nπx

2

)

where

bn =
2

2

∫ 2

0
1 · sin

(
nπx

2

)
dx = − 2

nπ
cos

(
nπx

2

) ∣∣∣∣2
0
=

2

nπ
[1− cos(nπ)]

or

f(x) =
∞∑
n=1

2

nπ
[1− cos(nπ)] sin

(
nπx

2

)

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 8: Graph of f(x) for problem 1a of 2.3
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b. f(x) = |x| , f(x+ 2) = f(x)
f(x) is clearly even, L = 1. Thus

f(x) =
a0
2

+
∞∑
n=1

an cos (nπx)

where (note that |x| = x for x ≥ 0)

an =
2

1

∫ 1

0
x · cos (nπx) dx = 2

[
x

nπ
sin (nπx) +

1

n2π2
cos(nπx)

] ∣∣∣∣1
0

for n ̸= 0

an =
2

n2π2
[cos(nπ)− 1] for n ̸= 0

and

a0 = 2
∫ 1

0
xdx = x2

∣∣∣∣1
0
= 1

⇒ a0
2

=
1

2
or

f(x) =
1

2
+

∞∑
n=1

2

n2π2
[cos(nπ)− 1] cos (nπx)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 9: Graph of f(x) for problem 1b of 2.3
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c. f(x) = | sin(x)|
Pick L = π/2. Since f(x) is even

f(x) =
a0
2

+
∞∑
n=1

an cos (nπx)

where

an =
2

π/2

∫ π/2

0
| sin(x)| cos (2nx) dx =

4

π

∫ π/2

0
sin(x) cos (2nx) dx

or

an =
4

π

[
−cos(1− 2n)x

2(1− 2n)
− cos(1 + 2n)x

2(1 + 2n)

] ∣∣∣∣π/2
0

for n ̸= 0

an =
4

π

[
−cos(1− 2n)π/2

2(1− 2n)
− cos(1 + 2n)π/2

2(1 + 2n)
+

1

2(1− 2n)
+

1

2(1 + 2n)

]
for n ̸= 0

Note that cos(1− 2n)π/2 = cos(π/2)︸ ︷︷ ︸
=0

cos(nπ) + sin(π/2) sin(nπ)︸ ︷︷ ︸
=0

, also cos(1 + 2n)π/2 = 0.

Thus

an =
4

2π

[
1

1− 2n
+

1

1 + 2n

]
=

4

π(1− 4n2)
for n ̸= 0

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Figure 10: Graph of f(x) for problem 1c of 2.3

and

a0 =
4

π

∫ π/2

0
sinxdx = − 4

π
cos x

∣∣∣∣π/2
0

=
4

π

⇒ a0
2

=
2

π
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or

f(x) =
1

2
+

∞∑
n=1

4

π(1− 4n2)
cos(2nx)

d. f(x) =


−2− x , −2 ≤ x ≤ −1

x , −1 ≤ x ≤ 1
2− x , 1 ≤ x ≤ 2

f(x+ 4) = f(x)

L = 2.

Since f(x) is odd,

f(x) =
∞∑
n=1

bn sin
(
nπ

2
x
)

where

bn =
2

2

∫ 2

0
f(x) sin

(
nπ

2
x
)

=
∫ 1

0
x sin

(
nπ

2
x
)
+
∫ 2

1
(2− x) sin

(
nπ

2
x
)

=

{
− 2

nπ
x cos

(
nπ

2
x
)
+
(

2

nπ

)2

sin
(
nπ

2
x
)} ∣∣∣∣1

0

+

{
− 2

nπ
(2− x) cos

(
nπ

2
x
)
−
(

2

nπ

)2

sin
(
nπ

2
x
)} ∣∣∣∣2

1

= − 2

nπ
cos

(
nπ

2

)
+
(

2

nπ

)2

sin
(
nπ

2

)
+

2

nπ
cos

(
nπ

2

)
+
(

2

nπ

)2

sin
(
nπ

2

)

= 2
(

2
nπ

)2
sin

(
nπ
2

)
Thus

f(x) =
∞∑
n=1

2
(

2

nπ

)2

sin
(
nπ

2

)
sin

(
nπ

2
x
)

or

f(x) =
8

π2
sin

(
π

2
x
)
− 8

9π2
sin

(
3π

2
x
)
+

8

25π2
sin

(
5π

2
x
)
± · · ·
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Figure 11: Graph of f(x) for problem 1d of 2.3
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2.4 Convergence Properties of Fourier Series

PROBLEMS

1. For each of the following Fourier series, determine whether the series will converge uni-
formly, converge only in mean square, or diverge:

a.
1

3
+

∞∑
n=1

1

n3π3
sin

(
nπx

3

)

b. 1 +
∞∑
n=1

1

nπ
cos(nπ) cos

(
nπx

2

)

c. −2 +
∞∑
n=1

{
n cos(nπ)

n2 + 1
cos(nx)− 1

n2π2
sin(nx)

}

d.
∞∑
n=1

n

(n+ 1)π
sin(nπx)

2. For each convergent Fourier series in problem 1 above, determine the highest derivative
of the periodic extension of f(x) that should be continuous.

3. Consider the Fourier series for

f(x) = |x|, −1 ≤ x ≤ 1

(found earlier). Differentiate this series once term by term, and compare your answer to the
actual series of f ′(x).
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1. a. an = 0, bn =
1

n3π2
= O

(
1

n3

)
, ⇒ p = 3 > 1

The series converges uniformly.

1. b. an =
1

nπ
cos(nπ) = O

(
1

n

)
, ⇒ p = 1 bn = 0

The series converges in the mean but not uniformly.

1. c. an =
n cos(nπ)

n2 + 1
= O

(
1

n

)
, ⇒ p = 1 bn = − 1

n2π2
= O

(
1

n2

)
The series converges in the mean but not uniformly (because the dominant term is O

(
1
n

)
).

1. d. an = 0, bn = − n

n+ 1
= O (1)

The series does not converge.

2. a. an = 0, bn =
1

n3π2
= O

(
1

n3

)
, ⇒ p = 3 > 1

Since p = 3, both f(x) and f ′(x) should be continuous but not f ′′(x)

2. b. an =
1

nπ
cos(nπ) = O

(
1

n

)
, ⇒ p = 1 bn = 0

f(x) should not be continuous.

2. c. an =
n cos(nπ)

n2 + 1
= O

(
1

n

)
, ⇒ p = 1 bn = − 1

n2π2
= O

(
1

n2

)
f(x) should not be continuous.

2. d. an = 0, bn = − n

n+ 1
= O (1)

The series does not converge and so we can’t talk about the limit function.

3. The Fourier series

f(x) = |x| = 1

2
+

∞∑
n=1

2(cos(nπ)− 1)

n2π2
cos(nπx), −1 ≤ x ≤ 1

Differentiate this series once term by term,

f ′(x) =
∞∑
n=1

2(cos(nπ)− 1)

n2π2
(−nπ sin(nπx)), =

∞∑
n=1

2(1− cos(nπ))

nπ
sin(nπx)

which is exactly the Fourier series of the function

g(x) =

{
1, 0 ≤ x ≤ 1
−1, −1 ≤ x < 0

Note that g(x) is the derivative of |x| and also that it is odd and so we expect a Fourier sine
series.
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2.5 Interpretation of the Fourier Coefficients

PROBLEMS

1. Plot the amplitude and phase as a function of frequency for each of the Fourier series
found for the problems in the first section of this chapter.

2. Prove Parseval’s Theorem

1

2L

∫ L

−L
[f(x)]2 dx = A2

0 +
∞∑
n=1

1

2
A2

n ≡ a20
4

+
∞∑
n=1

{a2n + b2n}
2

(Hint: first show
1

2L

∫ L

−L
[f(x)]2 dx =

a20
4

+
∞∑
n=1

{a2n + b2n}
2

then use the definition of the An.)
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1. a.

f(x) =
1

2
+

∞∑
n=1

1− cos(nπ)

nπ
sin(nπx)

f(x) = A0 +
∞∑
n=1

An cos (nπx− ϕn)

where

An =
√
a2n + b2n, ϕn = tan−1

(
bn
an

)
Note that ϕn = 0 by definition if An = 0. Now

an = 0, bn =
1− cos(nπ)

nπ
, ⇒ An =

|1− cos(nπ)|
nπ

, A0 =
1

2

ϕn =

{
0, n = 0, 2, 4, . . .
π/2, n = 1, 3, 5, . . .

n

A
n

.5

.64

.21

.13

n

φ
n

π/2

Figure 12: Graph of spectrum for problem 1a of 2.5
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1. b.

f(x) =
3

2
+

∞∑
n=1

6

n2π2
(1− cos(nπ)) cos

(
nπx

3

)

f(x) = A0 +
∞∑
n=1

An cos (nπx− ϕn)

where

An =
√
a2n + b2n, ϕn = tan−1

(
bn
an

)
Now

a0
2

=
3

2
, an =

6

n2π2
(1− cos(nπ)), bn = 0,

⇒ A0 =
3

2
, An =


12

n2π2
, n = 1, 3, 5, . . .

0, n = 2, 4, 6, . . .

ϕn = 0

n

A
n

1.5

1.22

.14

.05
n

φ
n

π/2

Figure 13: Graph of spectrum for problem 1b of 2.5

33



1. c.

f(x) =
1

4
+

∞∑
n=1

{(
2

nπ

)2 2 cos(nπ
2
)− cos(nπ)− 1

2
cos

(
nπx

2

)
+
(

2

nπ

)2

sin(
nπ

2
) sin

(
nπx

2

)}

Now
a0
2

=
1

4
, an =

(
2

nπ

)2 2 cos(nπ
2
)− cos(nπ)− 1

2
, bn =

(
2

nπ

)2

sin(
nπ

2
),

⇒ A0 =
1

4
, An =

(
2

nπ

)2
√
(2 cos(nπ

2
)− cos(nπ)− 1)2

4
+ sin2(

nπ

2
)

ϕn = tan−1

(
2 sin(nπ

2
)

2 cos(nπ
2
)− cos(nπ)− 1

)

ϕ1 =
π

2
, ϕ2 = ±π, ϕ3 = −π

2
, ϕ4 = 0

For n ≥ 5 these values repeat.

n

A
n

.5

.41

.20

.04
.02

n

φ
nπ

π/2

−π/2

Figure 14: Graph of spectrum for problem 1c of 2.5
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1. d.
f(x) = 1− cos(πx)

a0 = 1, a1 = −1, all others are zero

A0 = 1, A1 = 1, An = 0, n ≥ 2

ϕ1 = π

n

A
n

1

n

φ
n

π

Figure 15: Graph of spectrum for problem 1d of 2.5
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2.

f(x) =
a0
2

+
∞∑
n=1

(
an cos

(
nπ

L
x
)
+ bn sin

(
nπ

L
x
))

So
1

2L

∫ L

−L
[f(x)]2 dx =

1

2L

∫ L

−L

[
a0
2

+
∞∑
n=1

(
an cos

(
nπ

L
x
)
+ bn sin

(
nπ

L
x
))]2

dx

=
1

2L

∫ L

−L

[
a20
4

+ 2
a0
2

∞∑
n=1

(
an cos

(
nπ

L
x
)
+ bn sin

(
nπ

L
x
))

+
∞∑
n=1

∞∑
m=1

(
an cos

(
nπ

L
x
)
+ bn sin

(
nπ

L
x
))(

am cos
(
mπ

L
x
)
+ bm sin

(
mπ

L
x
))]

dx

=
1

2L

∫ L

−L

a20
4
dx+

1

2L
a0

∞∑
n=1

an
∫ L

−L
cos

(
nπ

L
x
)
dx︸ ︷︷ ︸

=0

+bn

∫ L

−L
sin

(
nπ

L
x
)
dx︸ ︷︷ ︸

=0



+
1

2L

∞∑
n=1

∞∑
m=1

anam
∫ L

−L
cos

(
nπ

L
x
)
cos

(
mπ

L
x
)
dx︸ ︷︷ ︸

=0, m ̸=n

+anbm

∫ L

−L
cos

(
nπ

L
x
)
sin

(
mπ

L
x
)
dx︸ ︷︷ ︸

=0, for all m,n

+ambn

∫ L

−L
cos

(
mπ

L
x
)
sin

(
nπ

L
x
)
dx︸ ︷︷ ︸

=0, for all m,n

+bnbm

∫ L

−L
sin

(
nπ

L
x
)
sin

(
mπ

L
x
)
dx︸ ︷︷ ︸

=0, m ̸=n



=
1

2L
2L

a20
4

+
1

2L

∞∑
n=1

a2n
∫ L

−L
cos2

(
nπ

L
x
)
dx︸ ︷︷ ︸

=L

+b2n

∫ L

−L
sin2

(
nπ

L
x
)
dx︸ ︷︷ ︸

=L


=

a20
4

+
1

2L

∞∑
n=1

(
La2n + Lb2n

)
=

a20
4

+
1

2

∞∑
n=1

(
a2n + b2n

)

= A2
0 +

1

2

∞∑
n=1

A2
n
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2.6 The Complex Form of the Fourier Series

PROBLEMS

1. Find the complex Fourier series for each of the following functions:

a. f(x) = x,−3 ≤ x ≤ 3 , f(x+ 6) = f(x)

b. f(x) =

{
0 , −1 < x < 0
1 , 0 < x < 1

f(x+ 2) = f(x)

2. Plot the complex amplitude spectrum for each of the series found in problem 1 above.

3. Show that if we use T0 for the period of a signal, rather than 2L, the formula for the
complex Fourier series coefficients reduces to

cn =
1

T0

∫ T0/2

−T0/2
f(x)e−2inπx/T0dx

4. Using the complex form of the Fourier series, prove the following form of Parseval’s
theorem

1

2L

∫ L

−L
|f(x)|2 dx =

∞∑
n=−∞

|cn|2

(Hint: Show

|f(x)|2 = f(x)f(x)∗ =

[ ∞∑
n=−∞

cne
inπx/L

] [ ∞∑
m=−∞

c∗me
−imπx/L

]

=
∞∑

n=−∞

∞∑
m=−∞

[
cnc

∗
me

i(n−m)πx/L
]

,

then integrate.)
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1. a.

f(x) =
∞∑

n=−∞
cne

i(nπx/L)

where L = 3 and

cn =
1

2L

∫ L

−L
f(x)e−i(nπx/L)dx =

1

6

∫ 3

−3
xe−i(nπx/3)

cn =
1

6

[
− 3

inπ
xe−i(nπx/3) −

(
3

inπ

)2

e−i(nπx/3)

] ∣∣∣∣3
−3

cn =
1

6

[
− 9

inπ
e−inπ −

(
3

inπ

)2

e−inπ − 9

inπ
einπ +

(
3

inπ

)2

einπ
]
, n ̸= 0

Note that eix = cos x+ i sinx ⇒ e±inπ = cos(nπ)± i sin(nπ)︸ ︷︷ ︸
=0

= cos(nπ). Also

c0 =
1

6

∫ 3

−3
xdx = 0

So

cn =
1

6

[
− 18

inπ
cos(nπ)

]
=

3i

nπ
cos(nπ), note − 1

i
= i

Thus

f(x) =
∞∑

n=−∞

3i

nπ
cos(nπ)ei(nπx/3)

|cn| = | 3i
nπ

cos(nπ)| = | 3
nπ

|, n ̸= 0

|c0| = 0

To compute the argument of cn, we note that

cn = − 3i

nπ
, for n = ±1, 3, 5, . . .

and

cn =
3i

nπ
, for n = ±2, 4, 6, . . .

Notice that since n changes sign, we have

arg(cn) =


−π

2
, n = 1, 3, 5, . . .

π
2
, n = −1,−3,−5, . . .

and

arg(cn) =


π
2
, n = 2, 4, 6, . . .

−π
2
, n = −2,−4,−6, . . .
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1. b.

f(x) =
∞∑

n=−∞
cne

i(nπx/L)

where L = 1 and

cn =
1

2

∫ 1

−1
f(x)e−i(nπx)dx =

1

2

∫ 1

0
e−i(nπx)

cn = − 1

2inπ
e−i(nπx)

∣∣∣∣1
0
= − 1

2inπ

[
e−inπ − 1

]
, n ̸= 0

Note that e±inπ = cos(nπ)± i sin(nπ)︸ ︷︷ ︸
=0

= cos(nπ). Also

c0 =
1

2

∫ 1

0
dx =

1

2

So

cn =
i

2nπ
(cos(nπ)− 1)

Thus

f(x) =
1

2
+

∞∑
n=−∞,n̸=0

i

2nπ
(cos(nπ)− 1) ei(nπx)

|cn| = | i

2nπ
(cos(nπ)− 1) | =

{
| 1
nπ
|, n odd

0, n even

|c0| =
1

2

Argument of cn is ∓π
2
where n = ±1, 3, 5, . . . and is 0 for n = ±2, 4, 6, . . .
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2. a.

n

|c
n
|

.95

.48

.32

.24

n

arg(c
n
)

π/2

−π/2

Figure 16: Graph of spectrum for problem 1a of 2.6

2. b.

n

|c
n
|

.50

.32

.11

n

arg(c
n
)

π/2

−π/2

Figure 17: Graph of spectrum for problem 1b of 2.6
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3.

If f(x) =
∞∑

n=−∞
cne

i(nπx/L) then

cn =
1

2L

∫ L

−L
f(x)e−i(nπx/L)dx

Now let T0 = 2L, ⇒ L =
T0

2
. Thus

cn =
1

T0

∫ T0/2

−T0/2
f(x)e−inπx/(T0/2)dx

cn =
1

T0

∫ T0/2

−T0/2
f(x)e−2inπx/T0dx

4.

1

2L

∫ L

−L
|f(x)|2 dx =

1

2L

∫ L

−L
f(x)f(x)∗dx =

1

2L

∫ L

−L

∞∑
n=−∞

∞∑
m=−∞

cnc
∗
me

i(n−m)πx/Ldx

=
1

2L

∞∑
n=−∞

∞∑
m=−∞

cnc
∗
m

∫ L

−L
ei(n−m)πx/Ldx︸ ︷︷ ︸
=0 for n̸=m

=
1

2L

∞∑
n=−∞

cnc
∗
n

∫ L

−L
dx︸ ︷︷ ︸

=2L

Thus
1

2L

∫ L

−L
|f(x)|2 dx =

∞∑
n=−∞

|cn|2
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2.7 Fourier Series and Ordinary Differential Equations

PROBLEM

1. Use Fourier series to construct a non-homogeneous solution to the ordinary differential
equations:

y′′ + 2y′ + y = f(x),

where:

f(x) =

{
x , 0 ≤ x < 1

2− x , 1 ≤ x ≤ 2
f(x+ 2) = f(x)
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1. A plot of the periodic extension of f(x) shows that f(x) = |x|, −1 ≤ x ≤ 1.
Therefore

f(x) =
1

2
+

∞∑
n=1

2(cos(nπ)− 1)

n2π2
cos(nπx)

So, if

y′′ + 2y′ + y =
1

2
+

∞∑
n=1

2(cos(nπ)− 1)

n2π2
cos(nπx)

then y(x) = y0(x) +
∞∑
n=1

yn(x) where

y′′0 + 2y′0 + y0 =
1

2
⇒ y0 =

1

2

y′′n + 2y′n + yn =
2(cos(nπ)− 1)

n2π2
cos(nπx)

Thus
yn(x) = αn cos(nπx) + βn sin(nπx)

and substitution yields (after comparing like terms)

(
−n2π2 + 1

)
αn + 2nπβn =

2(cos(nπ)− 1)

n2π2

−2nπαn +
(
−n2π2 + 1

)
βn = 0

Solving the system of two equations for the two unknowns, we have

αn =
2(cos(nπ)− 1)

n2π2

(1− n2π2)

(1− n2π2)2 + 4n2π2
= O

(
1

n4

)

βn =
2(cos(nπ)− 1)

n2π2

2nπ

(1− n2π2)2 + 4n2π2
= O

(
1

n5

)
So

y(x) =
1

2
+

∞∑
n=1

2(cos(nπ)− 1)

n2π2
[
(1− n2π2)2 + 4n2π2

] {(1− n2π2
)
cos(nπx) + 2nπ sin(nπx)

}

Plot of 10 terms of the series is given in Figure 18.
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y(x)

x

.5

−1 1

Figure 18: Graph of S10 for problem 1 of 2.7
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2.8 Fourier Series and Digital Data Transmission
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3 The One-Dimensional Wave Equation

3.1 Introduction

46



3.2 The One-Dimensional Wave Equation

PROBLEMS

1. Show that if a uniform, thin, tightly stretched elastic string is acted upon by no forces
other than internal tension and an external air resistance proportional to the vertical velocity,
then Newton’s second law leads to a partial differential equation of the form:

∂2u

∂t2
+ κd

∂u

∂t
=

τ

ρ

∂2u

∂x2
,

where κd is some positive constant of proportionality.

2. Show that if a uniform, thin, tightly stretched elastic string is acted upon by no forces
other than internal tension and an external spring-like restoring force proportional to the
vertical displacement, then Newton’s second law leads to a partial differential equation of
the form:

∂2u

∂t2
=

τ

ρ

∂2u

∂x2
− κsu ,

where κs is some positive constant of proportionality.
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1. If we add air resistance proportional to the vertical velocity then the net vertical force
acting on the small segment of the string becomes

τ

{
∂u

∂x
(x+∆x, t)− ∂u

∂x
(x, t)

}
+ ρg(x+

1

2
∆x, t)∆x−K

∂u

∂t
∆x

Therefore

ρ
∂2u

∂t2
(x, t) = τ

∂2u

∂x2
(x, t) + ρg(x, t)−Kd

∂u

∂t

2. If instead of air resistance we have external spring-like restoring force then the first

equation in problem 1 will have −Ku∆x instead of K
∂u

∂t
∆x and thus the final equation

becomes

ρ
∂2u

∂t2
(x, t) = τ

∂2u

∂x2
(x, t) + ρg(x, t)−Ksu(x, t)
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3.3 Boundary Conditions

PROBLEMS

1. Having physically correct algebraic signs in boundary conditions can be critical. Show,
both mathematically and physically, that the following boundary conditions:
a. u(L, t)− ux(L, t) = 0
b. u(0, t) + ux(0, t) = 0

are not physically realistic.

2. Show that if a uniform, thin, tightly stretched elastic string is attached at its right-
hand boundary to a slip-ring on a pole that is not frictionless, but in which the friction
is proportional to the vertical velocity along the pole, then the boundary condition at that
point becomes

τ
∂u

∂x
+ κd

∂u

∂t
= 0 ,

where κd is some positive constant of proportionality.
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1. a.-b. The balance of forces, as discussed in the notes, leads to

κsu(L, t) + τ
∂u

∂x
(L, t) = 0

κsu(0, t)− τ
∂u

∂x
(0, t) = 0

Physically, the spring constant κs and the string tension τ cannot be negative.

2. The vertical force acting on a weightless slip ring due to string tension is, as discussed

in the notes, −τ
∂u

∂x
(x, t). The vertical force acting on the ring due to pole friction is opposite

to the direction of its motion: −κd
∂u

∂t
(x, t). The sum of forces acting on the ring must be

zero, therefore

−τ
∂u

∂x
(x, t)− κd

∂u

∂t
(x, t) = 0

50



3.4 Initial Conditions
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3.5 Introduction to the Solution of the Wave Equation

PROBLEMS

1. Briefly describe, in a few sentences, a physical model for each of the following boundary
value problems:

a.
utt = 4uxx

u(0, t) = ux(3, t) = 0

u(x, 0) =

{
2x , 0 < x < 1
0 , 1 ≤ x < 3

ut(x, 0) = 0

b.
utt = uxx

u(0, t) = u(1, t) = 0
u(x, 0) = 0
ut(x, 0) = 1

c.
utt = 9uxx

ux(0, t) = ux(2, t) = 0
u(x, 0) = x
ut(x, 0) = 0

d.
utt = uxx

u(0, t) = 0
u(3, t) + 2ux(3, t) = 0

u(x, 0) =

{
2x , 0 < x < 1
0 , 1 ≤ x < 3

ut(x, 0) = 10
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1. a. A vibrating string of length L = 3 and c = 2. The initial displacement is linear
from 0 to 1 and at rest from 1 to 3. The initial velocity is zero. The left end is fixed and the
right end is free.

1. b. A vibrating string of length L = 1 and c = 1. The initial displacement is zero and
the initial velocity is 1. Both ends are fixed.

1. c. A vibrating string of length L = 2 and c = 3. The initial displacement is linear and
the initial velocity is zero. Both ends are free.

1. d. A vibrating string of length L = 3 and c = 1. The initial displacement is as in
problem 1a and the initial velocity is 10. The left end is fixed and the right end is attached
to a spring.
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3.6 The Fixed End Condition String

PROBLEMS

1. Solve:
utt = uxx

u(0, t) = u(3, t) = 0

u(x, 0) =


2x , 0 < x < 1/2

2− 2x , 1/2 ≤ x < 1
0 , 1 ≤ x < 3

ut(x, 0) = 0

Sketch the ten-term partial sum of your computed solution at

t = 0, 1, 2, 4 .

2. Solve:
utt = uxx

u(0, t) = u(π, t) = 0

u(x, 0) =


0 , 0 < x < π/4

(4x− π)/π , π/4 ≤ x ≤ π/2
(3π − 4x)/π , π/2 ≤ x ≤ 3π/4

0 , 3π/4 < x < π
ut(x, 0) = 0

3. Solve:
utt = uxx

u(0, t) = u(π, t) = 0
u(x, 0) = x(π − x), 0 < x < π
ut(x, 0) = 0

4. Solve:
utt = uxx

u(0, t) = u(3, t) = 0
u(x, 0) = 0
ut(x, 0) = x

5. Solve:
utt = 9uxx

u(0, t) = u(π, t) = 0
u(x, 0) = sin(x)
ut(x, 0) = 1
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6. Solve:
utt = 4uxx

u(0, t) = u(5, t) = 0

ut(x, 0) =

{
x , 0 < x < 5/2

5− x , 5/2 ≤ x < 5
u(x, 0) = 0

7. The dissipation of heat in a “very large” solid slab of thickness L whose faces are held at
a fixed reference temperature of 0o is described by the partial differential equation:

ut = kuxx

u(0, t) = u(L, t) = 0
u(x, 0) = f(x)

where u(x, t) denotes the temperature at location x and time t.
a. Why is only one initial condition required in this problem?
b. Show that the method of Separation of Variables also “works” in this problem, and

leads formally to the general solution:

u(x, t) =
∞∑
n=1

bne
−k(nπ/L)2t sin

(
nπx

L

)
,

where:

bn =
2

L

∫ L

0
f(x) sin

(
nπx

L

)
dx .
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1.
utt = uxx

u(0, t) = u(3, t) = 0

u(x, 0) =


2x , 0 < x < 1/2

2− 2x , 1/2 ≤ x < 1
0 , 1 ≤ x < 3

ut(x, 0) = 0

Separation of variables leads to

T̈ (t) + λT (t) = 0 X ′′(x) + λX(x) = 0
X(0) = 0
X(3) = 0

Eigenvalues are λn = ξ2n =
n2π2

9
and eigenfunctions are Xn(x) = sin

(
nπ

3
x
)
. The general

solution is

u(x, t) =
∞∑
n=1

{
An cos

(
nπ

3
t
)
+Bn sin

(
nπ

3
t
)}

sin
(
nπ

3
x
)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin
(
nπ

3
x
)

= f(x) ⇒ An =
2

3

∫ 3

0
f(x) sin

(
nπ

3
x
)
dx

ut(x, 0) =
∞∑
n=1

(
nπ

3

)
Bn sin

(
nπ

3
x
)

= 0 ⇒ Bn = 0

Computing An, we have

An =
2

3

{∫ 1/2

0
2x sin

(
nπ

3
x
)
dx+

∫ 1

1/2
(2− 2x) sin

(
nπ

3
x
)
dx

}

An =
2

3

{[
−2x

(
3

nπ

)
cos

(
nπ

3
x
)
+ 2

(
3

nπ

)2

sin
(
nπ

3
x
)] ∣∣∣∣1/2

0

+

[
−(2− 2x)

(
3

nπ

)
cos

(
nπ

3
x
)
− 2

(
3

nπ

)2

sin
(
nπ

3
x
)] ∣∣∣∣1

1/2

}

=
2

3

{
−
(

3

nπ

)
cos

(
nπ

6

)
+ 2

(
3

nπ

)2

sin
(
nπ

6

)
− 2

(
3

nπ

)2

sin
(
nπ

3

)
+
(

3

nπ

)
cos

(
nπ

6

)
+ 2

(
3

nπ

)2

sin
(
nπ

6

)}

=
2

3
· 2 ·

(
3

nπ

)2 {
2 sin

(
nπ

6

)
− sin

(
nπ

3

)}
=

12

(nπ)2

{
2 sin

(
nπ

6

)
− sin

(
nπ

3

)}
⇒ O

(
1

n2

)
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Thus

u(x, t) =
∞∑
n=1

12

(nπ)2

{
2 sin

(
nπ

6

)
− sin

(
nπ

3

)}
cos

(
nπ

3
t
)
sin

(
nπ

3
x
)

The plot of u(x, t) for various values of t is given in Figure 19

−1 0 1 2 3
−1

−0.5
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0.5

1
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Figure 19: Graph of u(x, t) for problem 1 of 3.6 for t = 1, 2, 3, 4

2.
utt = uxx

u(0, t) = u(π, t) = 0

u(x, 0) =


0 , 0 < x < π/4

(4x− π)/π , π/4 ≤ x ≤ π/2
(3π − 4x)/π , π/2 ≤ x ≤ 3π/4

0 , 3π/4 < x < π
ut(x, 0) = 0

Separation of variables yields:

u(x, t) =
∞∑
n=1

{An cos (nt) + Bn sin (nt)} sin (nx)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin (nx) = f(x) ⇒ An =
2

π

∫ π

0
f(x) sin (nx) dx

ut(x, 0) =
∞∑
n=1

nBn sin (nx) = 0 ⇒ Bn = 0
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Thus

An =
2

π

{∫ π/2

π/4

4

π
(x− π

4
) sin (nx) dx+

∫ 3π/4

π/2

4

π
(
3π

4
− x) sin (nx) dx

}

An =
8

π

{[
−
x− π

4

n
cos (nx) +

1

n2
sin (nx)

] ∣∣∣∣π/2
π/4

+

[
−

3π
4
− x

n
cos (nx)− 1

n2
sin (nx)

] ∣∣∣∣3π/4
π/2

}

=
8

π2

{
− π

4n
cos

(
nπ

2

)
+

1

n2
sin

(
nπ

2

)
− 1

n2
sin

(
nπ

4

)
+

π

4n
cos

(
nπ

2

)
− 1

n2
sin

(
3nπ

4

)
+

1

n2
sin

(
nπ

2

)}

=
8

π2

{
2

n2
sin

(
nπ

2

)
− 1

n2
sin

(
nπ

4

)
− 1

n2
sin

(
3nπ

4

)}

u(x, t) =
∞∑
n=1

8

π2

{
2

n2
sin

(
nπ

2

)
− 1

n2
sin

(
nπ

4

)
− 1

n2
sin

(
3nπ

4

)}
cos (nt) sin (nx)
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3.
utt = uxx

u(0, t) = u(π, t) = 0
u(x, 0) = x(π − x), 0 < x < π
ut(x, 0) = 0

Separation of variables yields:

u(x, t) =
∞∑
n=1

{An cos (nt) + Bn sin (nt)} sin (nx)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin (nx) = (πx− x2) ⇒ An =
2

π

∫ π

0
(πx− x2) sin (nx) dx

ut(x, 0) =
∞∑
n=1

nBn sin (nx) = 0 ⇒ Bn = 0

Thus

An =
2

π

∫ π

0
(πx− x2) sin (nx) dx

An =
2

π

{
−πx− x2

n
cos (nx) +

π − 2x

n2
sin (nx)− 2

n3
cos (nx)

} ∣∣∣∣π
0

=
2

π

{
0 + 0− 2

n3
(cos (nπ)− 1)

}

=
4

πn3
(1− cos (nπ))

u(x, t) =
4

π

∞∑
n=1

1− cos (nπ)

n3
cos (nt) sin (nx)
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4.
utt = uxx

u(0, t) = u(3, t) = 0
u(x, 0) = 0
ut(x, 0) = x

Separation of variables leads to

T̈ (t) + λT (t) = 0 X ′′(x) + λX(x) = 0
X(0) = 0
X(3) = 0

Eigenvalues are λn =
(
nπ

3

)2

and eigenfunctions are Xn(x) = sin
(
nπ

3
x
)
. The general

solution is

u(x, t) =
∞∑
n=1

{
An cos

(
nπ

3
t
)
+Bn sin

(
nπ

3
t
)}

sin
(
nπ

3
x
)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin
(
nπ

3
x
)

= 0 ⇒ An = 0

ut(x, 0) =
∞∑
n=1

(
nπ

3

)
Bn sin

(
nπ

3
x
)

= x ⇒ Bn =
3

nπ
· 2
3

∫ 3

0
x sin

(
nπ

3
x
)
dx

Computing Bn, we have

Bn =
2

nπ

{
− 9

nπ
cos (nπ)

}
= − 18

n2π2
cos(nπ)

Thus

u(x, t) = −
∞∑
n=1

18 cos(nπ)

(nπ)2
sin

(
nπ

3
t
)
sin

(
nπ

3
x
)
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5.
utt = 9uxx

u(0, t) = u(π, t) = 0
u(x, 0) = sin(x)
ut(x, 0) = 1

Separation yields

u(x, t) =
∞∑
n=1

{An cos (3nt) + Bn sin (3nt)} sin (nx)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin (nx) = sin x ⇒ A1 = 1, An = 0, n > 1

ut(x, 0) =
∞∑
n=1

3nBn sin (nx) = 1 ⇒ Bn =
1

3n
· 2
π

∫ π

0
1 · sin (nx) dx

Computing Bn, we have

Bn =
2(1− cos(nπ))

3n2π

Thus

u(x, t) = cos(3t) sin(x) +
2

3π

∞∑
n=1

1− cos(nπ)

n2
sin (3nt) sin (nx)
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6.
utt = 4uxx

u(0, t) = u(5, t) = 0

ut(x, 0) =

{
x , 0 < x < 5/2

5− x , 5/2 ≤ x < 5
u(x, 0) = 0

Separation yields

u(x, t) =
∞∑
n=1

{
An cos

(
2nπ

5
t
)
+Bn sin

(
2nπ

5
t
)}

sin
(
nπ

5
x
)

Initial conditions

u(x, 0) =
∞∑
n=1

An sin
(
nπ

5
x
)

= 0 ⇒ An = 0

ut(x, 0) =
∞∑
n=1

(
2nπ

5

)
Bn sin

(
nπ

5
x
)

=

{
x, 0 < x < 5/2
5− x, 5/2 < x < 5

So

Bn =
5

2nπ
· 2
5

{∫ 5/2

0
x sin

(
nπ

5
x
)
dx+

∫ 5

5/2
(5− x) sin

(
nπ

5
x
)
dx

}
Computing Bn, we have

Bn =
1

nπ

{
2 ·
(

5

nπ

)2

sin
(
nπ

2

)}
Thus

u(x, t) =
∞∑
n=1

50

(nπ)3
sin

(
nπ

2

)
sin

(
2nπ

5
t
)
sin

(
nπ

5
x
)
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7.
ut = kuxx

u(0, t) = u(L, t) = 0
u(x, 0) = f(x)

Separation of variables, as in the wave equation case, yields:

Ṫ (t)

kT (t)
=

Ẍ(x)

X(x)
= −λ

and
u(0, t) = X(0)T (t) = 0, ⇒ X(0) = 0

u(L, t) = X(L)T (t) = 0, ⇒ X(L) = 0

Thus
Ṫ (t) + kλT (t) = 0 X ′′(x) + λX(x) = 0

X(0) = 0
X(L) = 0

The problem for X(x) was already solved and the eigenvalues are: λn =
(
nπ

L

)2

, n = 1, 2, . . .

and the eigenfunctions are: Xn(x) = sin
(
nπ

L
x
)
, n = 1, 2, . . . So now

Ṫ (t) + k
(
nπ

L

)2

T (t) = 0 ⇒ T (t) = e−k(nπ/L)2t

So the linearly independent solutions for u(x, t) are

un(x, t) = e−k(nπ/L)2t sin
(
nπ

L
x
)
, n = 1, 2, . . .

So to form the general solution, take the linear combination

u(x, t) =
∞∑
n=1

bne
−k(nπ/L)2t sin

(
nπ

L
x
)

The initial condition is now

u(x, 0) =
∞∑
n=1

bn sin
(
nπ

L
x
)

= f(x)

and so

bn =
2

L

∫ L

0
f(x) sin

(
nπ

L
x
)
dx
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3.7 The Free End Conditions Problem

PROBLEMS

1. Solve:
utt = 25uxx

ux(0, t) = ux(1, t) = 0

u(x, 0) =


0 , 0 < x < 1/4

x− 1/4 , 1/4 < x < 3/4
1/2 , 3/4 < x < 1

ut(x, 0) = 0

Interpret the solution physically.

2. Solve:
utt = uxx

ux(0, t) = ux(2, t) = 0

u(x, 0) =


2x , 0 < x < 1/2

2− 2x , 1/2 ≤ x ≤ 3/2
2x− 4 , 3/2 < x < 2

ut(x, 0) = 1

Interpret the solution physically.
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1.
utt = 25uxx

ux(0, t) = ux(1, t) = 0

u(x, 0) =


0 , 0 < x < 1/4

x− 1/4 , 1/4 < x < 3/4
1/2 , 3/4 < x < 1

ut(x, 0) = 0

Separation of variables leads to

T̈ (t) + 25λT (t) = 0 X ′′(x) + λX(x) = 0

Ṫ (0) = 0 X ′(0) = 0
X ′(1) = 0

Eigenvalues are λn = (nπ)2 and eigenfunctions are Xn(x) = cos (nπx) , n = 0, 1, 2, . . . The
solution of the equation for T (t) is

T0(t) = 1, Tn(t) = cos(5nπt), n > 0

The general solution is

u(x, t) =
1

2
A0 +

∞∑
n=1

An cos (5nπt) cos (nπx)

Initial conditions

u(x, 0) =
1

2
A0 +

∞∑
n=1

An cos (nπx) =


0 , 0 < x < 1/4

x− 1/4 , 1/4 < x < 3/4
1/2 , 3/4 < x < 1

Computing A0, we have

A0 = 2
∫ 1

0
u(x, 0)dx =

1

2

and

An = 2
∫ 1

0
u(x, 0) cos (nπx) dx =

2(cos
(
3nπ
4

)
− cos

(
nπ
4

)
)

n2π2

Thus

u(x, t) =
1

4
+

∞∑
n=1

2(cos
(
3nπ
4

)
− cos

(
nπ
4

)
)

n2π2
cos (5nπt) cos (nπx)
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2.
utt = uxx

ux(0, t) = ux(2, t) = 0

u(x, 0) =


2x , 0 < x < 1/2

2− 2x , 1/2 ≤ x ≤ 3/2
2x− 4 , 3/2 < x < 2

ut(x, 0) = 1

Separation of variables leads to

T̈ (t) + λT (t) = 0 X ′′(x) + λX(x) = 0
X ′(0) = 0
X ′(2) = 0

Eigenvalues are λn =
(
nπ

2

)2

and eigenfunctions are Xn(x) = cos
(
nπ

2
x
)
, n = 0, 1, 2, . . .

The solution of the equation for T (t) is

T0(t) = A0 +B0t, Tn(t) = An cos
(
nπ

2
t
)
+Bn sin

(
nπ

2
t
)
, n > 0

The general solution is

u(x, t) =
1

2
(A0 +B0t) +

∞∑
n=1

{
An cos

(
nπ

2
t
)
+Bn sin

(
nπ

2
t
)}

cos
(
nπ

2
x
)

Initial conditions

u(x, 0) =
1

2
A0 +

∞∑
n=1

An cos
(
nπ

2
x
)

=


2x , 0 < x < 1/2

2− 2x , 1/2 ≤ x ≤ 3/2
2x− 4 , 3/2 < x < 2

ut(x, 0) =
1

2
B0 +

∞∑
n=1

nπ

2
Bn cos

(
nπ

2
x
)

= 1

Computing A0, B0, we have
A0 = 0, B0 = 2

and

An =
−8 + 16 cos

(
nπ
4

)
− 16 cos

(
3nπ
4

)
+ 8 cos (nπ)

n2π2

and

Bn =
2

nπ
· 2
2

∫ 2

0
cos

(
nπ

2
x
)
dx = 0

Thus

u(x, t) = t+
∞∑
n=1

−8 + 16 cos
(
nπ
4

)
− 16 cos

(
3nπ
4

)
+ 8 cos (nπ)

n2π2
cos

(
nπ

2
t
)
cos

(
nπ

2
x
)
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3.8 The Mixed End Conditions Problem

PROBLEMS

1. Solve:
utt = uxx

u(0, t) = 0
ux(2, t) = 0

u(x, 0) =

{
x , 0 < x ≤ 1
1 , 1 < x < 2

ut(x, 0) = 0

2. Solve:
utt = 4uxx

ux(0, t) = 0
u(1, t) = 0

u(x, 0) =

{
1 , 0 < x ≤ 1/2

2− 2x , 1/2 < x < 1
ut(x, 0) = 0

3. Solve:
utt = 9uxx

ux(0, t) = u(2, t) = 0
u(x, 0) = 0
ut(x, 0) = (2− x), 0 < x < 2

4. Show that the “normal” Fourier series reduces to

f(x) =
∞∑
n=1

b2n−1 sin
(
(2n−1)πx

2L

)
= b1 sin

(
πx
2L

)
+ b3 sin

(
3πx
2L

)
+ b5 sin

(
5πx
2L

)
+ · · ·

provided:

a. f(x) is odd,

b. f(x) is periodic of period 4L, and

c. f(x+ L) = f(L− x) , 0 < x < L
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1.
utt = uxx

u(0, t) = 0
ux(2, t) = 0

u(x, 0) =

{
x , 0 < x ≤ 1
1 , 1 < x < 2

ut(x, 0) = 0

Separation of variables leads to

T̈ (t) + λT (t) = 0 X ′′(x) + λX(x) = 0

Ṫ (0) = 0 X(0) = 0
X ′(2) = 0

Eigenvalues are λn =
[(

n− 1

2

)
π

2

]2
and eigenfunctions are

Xn(x) = sin
[(

n− 1

2

)
π

2
x
]
, n = 1, 2, . . .

The solution of the equation for T (t) is

Tn(t) = cos
[(

n− 1

2

)
π

2
t
]
, n = 1, 2, . . .

The general solution is

u(x, t) =
∞∑
n=1

An cos
[(

n− 1

2

)
π

2
t
]
sin

[(
n− 1

2

)
π

2
x
]

Initial conditions

u(x, 0) =
∞∑
n=1

An sin
[(

n− 1

2

)
π

2
x
]
=

{
x , 0 < x ≤ 1
1 , 1 < x < 2

Computing An, we have

An =
2

2

∫ 1

0
x sin

[(
n− 1

2

)
π

2
x
]
dx+

2

2

∫ 2

1
sin

[(
n− 1

2

)
π

2
x
]
dx

An =
16 sin

[
2n−1

4
π
]

(2n− 1)2π2

Thus

u(x, t) =
∞∑
n=1

16 sin
[
2n−1

4
π
]

(2n− 1)2π2

 cos
[(

n− 1

2

)
π

2
t
]
sin

[(
n− 1

2

)
π

2
x
]
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2.
utt = 4uxx

ux(0, t) = 0
u(1, t) = 0

u(x, 0) =

{
1 , 0 < x ≤ 1/2

2− 2x , 1/2 < x < 1
ut(x, 0) = 0

Separation of variables leads to

T̈ (t) + 4λT (t) = 0 X ′′(x) + λX(x) = 0

Ṫ (0) = 0 X ′(0) = 0
X(1) = 0

Eigenvalues are λn =
[(

n− 1

2

)
π
]2

and eigenfunctions are

Xn(x) = cos
[(

n− 1

2

)
πx
]
, n = 1, 2, . . .

The general solution is

u(x, t) =
∞∑
n=1

{An cos [(2n− 1) πt] +Bn sin [(2n− 1) πt]} cos
[(

n− 1

2

)
πx
]

Initial conditions

u(x, 0) =
∞∑
n=1

An cos
[(

n− 1

2

)
πx
]
=

{
1 , 0 < x ≤ 1/2

2− 2x , 1/2 < x < 1

ut(x, 0) =
∞∑
n=1

(
n− 1

2

)
πBn cos

[(
n− 1

2

)
πx
]
= 0 ⇒ Bn = 0

By Sturm-Liouville (p(x) = w(x) = 1, q(x) = 0), we have

An =

∫ 1
0 f(x)Xn(x)dx∫ 1

0 X2
n(x)dx

= 2
∫ 1

0
f(x) cos

[(
n− 1

2

)
πx
]
dx

An = 2

{∫ 1/2

0
cos

[(
n− 1

2

)
πx
]
dx+

∫ 1

1/2
(2− 2x) cos

[(
n− 1

2

)
πx
]
dx

}

An = 2

{
2

(2n− 1)π
sin

[(
n− 1

2

)
πx
] ∣∣∣∣1/2

0

+

(2− 2x)
2

(2n− 1)π
sin

[(
n− 1

2

)
πx
]
− 2

(
2

(2n− 1)π

)2

cos
[(

n− 1

2

)
πx
]

∣∣∣∣1
1/2


An = 4

(
2

(2n− 1)π

)2

cos
[(

n− 1

2

)
π

2

]
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Thus

u(x, t) =
∞∑
n=1

2

(
2

(2n− 1)π

)2

cos
[(

n− 1

2

)
π

2

]
cos [(2n− 1) πt] cos

[(
n− 1

2

)
πx
]
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3.
utt = 9uxx

ux(0, t) = u(2, t) = 0
u(x, 0) = 0
ut(x, 0) = (2− x), 0 < x < 2

Separation of variables leads to

T̈ (t) + 9λT (t) = 0 X ′′(x) + λX(x) = 0
X ′(0) = 0
X(2) = 0

Eigenvalues are λn =
[(

n− 1

2

)
π

2

]2
and eigenfunctions are

Xn(x) = cos
[(

n− 1

2

)
π

2
x
]
, n = 1, 2, . . .

The general solution is

u(x, t) =
∞∑
n=1

{
An cos

[
3
(
n− 1

2

)
π

2
t
]
+Bn sin

[
3
(
n− 1

2

)
π

2
t
]}

cos
[(

n− 1

2

)
π

2
x
]

Initial conditions

u(x, 0) =
∞∑
n=1

An cos
[(

n− 1

2

)
π

2
x
]
= 0 ⇒ An = 0

ut(x, 0) =
∞∑
n=1

{
3
(
n− 1

2

)
π

2
Bn cos

[(
n− 1

2

)
π

2
x
]}

= (2− x)

Thus

Bn =

[
4

3 (2n− 1) π

]
· 2
2

∫ 2

0
(2− x) cos

[(
n− 1

2

)
π

2
x
]
dx

Bn =
4

3 (2n− 1)π

 4

(2n− 1) π
(2− x) sin

[
(2n− 1) π

4
x

]
−
(

4

(2n− 1)π

)2

cos

[
(2n− 1) π

4
x

]
∣∣∣∣2
0

Bn =
1

3

(
4

(2n− 1) π

)3

Thus

u(x, t) =
∞∑
n=1

1

3

(
4

(2n− 1)π

)3

sin
[
3
(
n− 1

2

)
π

2
t
]
cos

[(
n− 1

2

)
π

2
x
]
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4. Given an odd function f(x) with a period of 4L, we know that the Fourier series
should have only sine functions, i.e.

f(x) =
∞∑
n=1

bn sin
(
nπx

2L

)

Now we would like to use the fact that f(x + L) = f(L − x), 0 < x < L, i.e. symmetry
about x = L. This requires that the sine functions satisty the same thing.

sin
(
nπ

2L
(x+ L)

)
= sin

(
nπ

2L
(L− x)

)

sin
(
nπ

2L
x
)
cos

(
nπ

2

)
+ sin

(
nπ

2

)
︸ ︷︷ ︸

=0

cos
(
nπ

2L
x
)

= sin
(
nπ

2

)
︸ ︷︷ ︸

=0

cos
(
nπ

2L
x
)
− sin

(
nπ

2L
x
)
cos

(
nπ

2

)

This can only happen if

cos
(
nπ

2

)
= − cos

(
nπ

2

)
, ⇒ n must be odd

Therefore n = 2m− 1 and the series is then

f(x) =
∞∑
n=1

b2n−1 sin

(
(2n− 1)πx

2L

)
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3.9 Generalizations on the Method of Separation of Variables
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3.10 Sturm-Liouville Theory

PROBLEMS
1. For each of the following problems, determine if the given equation is in Sturm-Liouville
form, and, if so, identify the values of the appropriate function p(x), q(x), w(x), and the
values of αi and βi:

a. [(x+ 1)y′]′ + λ(x+ 1)y − y = 0

y(1) = 0

y(2) = 0

b. [(x2 − 1)u′]′ + 3λu = 0

u(0) = 0

u(1/2) = 0

c. y′′ + λxy = 0

y(0) = 0

y(3) + 2y′(3) = 0

d. y′′ + xy′ + λy = 0

y(0) = 0

y(1) = 0

2. Following similar steps to those used in class, show that the eigenfunctions of the singular
Sturm-Liouville problem:

[p(x)y′]′ +λw(x)y + q(x)y = 0 , a < x < b
y(a), y′(a) finite
α2y(b) + β2y

′(b) = 0
,

where p′(x), w(x), and q(x) are continuous, and

p(x) > 0 , a < x ≤ b ,
p(a) = 0
w(x) > 0 , a < x < b
q(x) ≥ 0 , a ≤ x ≤ b

corresponding to different eigenvalues are orthogonal with respect to the weighting func-
tion w(x).
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1. In all of these, the key is to identify values (if any) such that the given differential
equation is a special case of the one in the notes.

a.
((x+ 1)y′)′ + λ(x+ 1)y − y = 0
y(1) = 0
y(2) = 0

This is in Sturm-Liouville form, since p(x) = x+1, w(x) = x+1, q(x) = −1 and the interval
is a = 1, b = 2. The coefficients in the boundary conditions are: α1 = α2 = 1, β1 = β2 = 0.

b.
[(x2 − 1)u′]

′
+ 3λu = 0

u(0) = 0
u(1/2) = 0

This is almost in Sturm-Liouville form, since p(x) = (x2 − 1), w(x) = 3, q(x) = 0 but
p(x) < 0 for the interval from a = 0 to b = 1/2. This violates the condition on p(x). If we
multiply the equation by −1 and incorporating the sign with λ (i.e., let σ = −λ) then it is
S-L. The coefficients in the boundary conditions are: α1 = α2 = 1, β1 = β2 = 0.

c.
y′′ + λxy = 0
y(0) = 0
y(3) + 2y′(3) = 0

This is in Sturm-Liouville form, since p(x) = 1, w(x) = x, q(x) = 0. The interval is from a =
0 to b = 3. The coefficients in the boundary conditions are: α1 = 1, α2 = 1, β1 = 0, β2 = 2.

d.
y′′ + xy′ + λy = 0
y(0) = 0
y(1) = 0

This is not in Sturm-Liouville form, since the equation has a separate y′ term which does
not occur in the S-L form.
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2. Suppose y1(x) and y2(x) are solutions of

[p(x)y′]′ +λw(x)y + q(x)y = 0 , a < x < b
y(a), y′(a) finite
α2y(b) + β2y

′(b) = 0
,

where p′(x), w(x), and q(x) are continuous, and

p(x) > 0 , a < x ≤ b ,
p(a) = 0
w(x) > 0 , a < x < b
q(x) ≥ 0 , a ≤ x ≤ b

corresponding to different eigenvalues, i.e.

[p(x)y′1]
′ + λ1w(x)y1 + q(x)y1 = 0

[p(x)y′2]
′ + λ2w(x)y2 + q(x)y2 = 0

Multiply the first equation by y1(x) and the second equation by y1(x) and subtract. Then

y1[py
′
1]

′ − y1[py
′
2]

′ + (λ1 − λ2)wy1y2 = 0

or
d

dx
[y2p(x)y

′
1 − y1p(x)y2] + (λ1 − λ2)wy1y2 = 0

Integrate

[y2p(x)y
′
1 − y1p(x)y2]

∣∣∣∣b
a
+ (λ1 − λ2)

∫ b

a
wy1y2dx = 0

or

p(b) [y′1(b)y2(b)− y′2(b)y1(b)]− p(a)︸ ︷︷ ︸
=0

[y′1(a)y2(a)− y′2(a)y1(a)] + (λ1 − λ2)
∫ b

a
wy1y2dx = 0

Thus

p(b) [y′1(b)y2(b)− y′2(b)y1(b)] + (λ1 − λ2)
∫ b

a
wy1y2dx = 0

But now if both y1(x) and y2(x) satisfy the B.C. at x = b

α2y2(b) + β2y
′
2(b) = 0

α2y1(b) + β2y
′
1(b) = 0

and α2 and β2 not both zero implies that the homogeneous system can have a solution only if
the determinant is zero, i.e. y′1(b)y2(b)−y′2(b)y1(b) = 0. Thus p(b) [y′1(b)y2(b)− y′2(b)y1(b)] = 0
and so

(λ1 − λ2)
∫ b

a
wy1y2dx = 0

Since λ1 ̸= λ2 we must have ∫ b

a
wy1y2dx = 0
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3.11 The Frequency Domain Interpretation of the Wave Equation

PROBLEM
1. Find the three lowest natural frequencies, and sketch the associated modes, for the
equation:

utt = c2uxx

u(0, t) = ux(L, t) = 0

Plot, in the frequency domain, the natural frequencies of this “string.”
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1. Separation of variables yields

T̈ (t) + λc2T (t) = 0 X ′′(x) + λX(x) = 0
X(0) = 0
X ′(L) = 0

For λ > 0 the solution is X(x) = C1 cos(
√
λx) + C2 sin(

√
λx). Using the left boundary

condition, X(0) = 0 implies C1 = 0. The other boundary condition implies

C2

√
λ cos(

√
λL) = 0, ⇒ cos(

√
λL) = 0

Therefore

λn =


(
n+ 1

2

)
π

L

2

, n = 0, 1, 2, . . .

and the eigenfunctions

Xn(x) = sin


(
n+ 1

2

)
π

L
x

 , n = 0, 1, 2, . . .

Notice that n starts at zero.
Thus

T̈n + λnc
2Tn =

Tn(t) = αn cos


(
n+ 1

2

)
π

L
ct

+ βn sin


(
n+ 1

2

)
π

L
ct


or

Tn(t) = An cos


(
n+ 1

2

)
π

L
ct− ϕn


where

An =
√
α2
n + β2

n

Thus the frequencies are

fn =

√
λnc

2π
, n = 0, 1, 2, . . .

Thus
f0 =

π

2L

c

2π
=

c

4L

f1 =
3π

2L

c

2π
=

3c

4L
= 3f0

f2 =
5π

2L

c

2π
=

5c

4L
= 5f0

The modes are

X0(x) = sin
(
π

2L
x
)
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X1(x) = sin
(
3π

2L
x
)

X2(x) = sin
(
5π

2L
x
)

The modes are given in Figure 20 and the frequencies in Figure 21
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Figure 20: The first three modes for problem 1 of 3.11
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Figure 21: The first three frequencies for problem 1 of 3.11
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3.12 The D’Alembert Solution of the Wave Equation
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3.13 The Effect of Boundary Conditions

PROBLEM
1. Sketch the D’Alembert solutions at t = 0, 1, 2.5 and 4 to:

a. utt = uxx

u(0, t) = u(3, t) = 0

u(x, 0) =


2x , 0 < x < 1/2
1 , 1/2 < x < 3/2

4− 2x , 3/2 < x < 2
0 , 2 < x < 3

ut(x, 0) = 0

b. utt = uxx

u(0, t) = ux(3, t) = 0

u(x, 0) =


2x , 0 < x < 1/2
1 , 1/2 < x < 3/2

4− 2x , 3/2 < x < 2
0 , 2 < x < 3

ut(x, 0) = 0

c. utt = 4uxx

ux(0, t) = u(1, t) = 0

u(x, 0) =

{
1 , 0 < x < 1/2

2− 2x , 1/2 < x < 1

ut(x, 0) = 0

81



1. a. The initial displacement is given by:

u(x, 0) =


2x , 0 < x < 1/2
1 , 1/2 < x < 3/2

4− 2x , 3/2 < x < 2
0 , 2 < x < 3

The solution is
u(x, t) = F (x+ t) + F (x− t)

where F (x) is odd and periodic with period 2L = 6. The solution at various time is given
in the following 4 figures:

L

1

0.5

-0.5

-1

x

0
0

Figure 22: Graph of u(x, 0) for problem 1a of 13.3

1. b. The initial displacement is given by

u(x, 0) =


2x , 0 < x < 1/2
1 , 1/2 < x < 3/2

4− 2x , 3/2 < x < 2
0 , 2 < x < 3

Since the initial velocity is zero, the solution is:

u(x, t) = F (x+ t) + F (x− t)

where the function F (x) is odd around 0 and even around L of period 4L = 12. The solution
at various time is given in the following 4 figures:
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x

Figure 23: Graph of u(x, 1) for problem 1a of 13.3

1. c. The initial displacement is given by

u(x, 0) =

{
1 , 0 < x < 1/2

2− 2x , 1/2 < x < 1

Since the initial velocity is zero, the solution is:

u(x, t) = F (x+ 2t) + F (x− 2t), c = 2

where the function F (x) is even around x = 0 and odd around x = 1 of period 4L = 4. The
solution at various time is given in the following 4 figures:
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Figure 24: Graph of u(x, 2.5) for problem 1a of 13.3
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Figure 25: Graph of u(x, 4) for problem 1a of 13.3
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Figure 26: Graph of u(x, 0) for problem 1b of 13.3

L

0.4

0.2

0

-0.4

0

-0.2

x

Figure 27: Graph of u(x, 1) for problem 1b of 13.3
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Figure 28: Graph of u(x, 2.5) for problem 1b of 13.3
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Figure 29: Graph of u(x, 4) for problem 1b of 13.3
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Figure 30: Graph of u(x, 0) for problem 1c of 13.3
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Figure 31: Graph of u(x, 1) for problem 1c of 13.3
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Figure 32: Graph of u(x, 2.5) for problem 1c of 13.3
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Figure 33: Graph of u(x, 4) for problem 1c of 13.3
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4 The Two-Dimensional Wave Equation

4.1 Introduction

4.2 The Rigid Edge Problem

4.3 Frequency Domain Analysis

4.4 Time Domain Analysis

4.5 The Wave Equation in Circular Regions

4.6 Symmetric Vibrations of the Circular Drum

4.7 Frequency Domain Analysis of the Circular Drum
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4.8 Time Domain Analysis of the Circular Membrane

PROBLEMS

1. It can be shown that the small free vertical vibrations of a uniform beam (e.g. a bridge
girder) are governed by the fourth order partial differential equation:

∂2u

∂t2
+ c2

∂4u

∂x4
= 0

where c2 is a constant involving the elasticity, moment of inertia, density and cross sectional
area of the beam. If the beam if freely supported at both ends, e.g. sitting on a piling, the
boundary conditions for this problem become:

u(0, t) = u(L, t) = 0
uxx(0, t) = uxx(L, t) = 0

Show that separation of variables “works” in this problem, and, in case the beam is initially
at rest, i.e.

ut(x, 0) = 0

produces a general solution of the form:

∞∑
n=1

An cos

(
n2π2ct

L2

)
sin

(
nπx

L

)

2. Solve the two-dimensional rectangular wave equation:

utt = uxx + uyy

u(0, y, t) = u(1, y, t) = 0
u(x, 0, t) = u(x, 1, t) = 0
u(x, y, 0) = .01xy(1− x)(1− y)
ut(x, y, 0) = 0

3. Solve the two-dimensional rectangular wave equation:

utt = 16 (uxx + uyy)
u(0, y, t) = u(3, y, t) = 0
u(x, 0, t) = u(x, 2, t) = 0

u(x, y, 0) = y(2− y) sin
(
2πx
3

)
ut(x, y, 0) = 0
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4. Find the eigenvalues and the form of the eigenfunctions for:

utt = 9 (uxx + uyy)
u(0, y, t) = u(4, y, t) = 0
uy(x, 0, t) = u(x, 1, t) = 0

Calculate the actual values of the four lowest natural frequencies.

5. One of the “quirks” of the two-dimensional wave equation in rectangular coordinates is
that, unlike the one-dimensional problem, two different values of n and m may yield the
same natural frequency, and therefore this single natural frequency may have two (or more)
independent modes (“shapes”) associated with it. For example, if L = 2 and W = 1, the
eigenvalues and eigenfunctions are,

λnm =
[(

n
2

)2
+m2

]
π2

and

unm = sin(mπy) sin
(
nπx
2

)
.

Show that the following eigenvalues are in fact equal:

λ41 = λ22 ; λ61 = λ23 ; λ62 = λ43 ; λ72 = λ14

6. Show that in the square membrane, certain natural frequencies may have four independent
modes (“shapes”) associated with them.
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1.
∂2u

∂t2
+ c2

∂4u

∂x4
= 0

Since the PDE and BC are linear and homogeneous, assume

u(x, t) = F (x)G(t)

Substitution of this into the PDE and BC should lead to

G̈(t)− kc2G(t) = 0 F ′′′′(x) + kF (x) = 0

Ġ(0) = 0 F (0) = F (L) = 0
F ′′(0) = F ′′(L) = 0

where k is some constant. The condition F ′′(0) = 0 arises from

uxx = (F (x)G(t))xx = F ′′(x)G(t)

Thus uxx(0, t) = F ′′(0)G(t) = 0, ⇒ F ′′(0) = 0. Similarly for the other conditions.
There is no a-priori reason to assume a particular value for k, so consider all three cases. If
k > 0, we write k = 4η4 (just to avoid radicals) then try F (x) = erx to get

r4 + 4η4 = 0

The roots are
r = η(1 + i), η(1− i), η(−1 + i), η(−1− i)

The solutions are
eη(1+i)x, eη(1−i)x, eη(−1+i)x, eη(−1−i)x

Converting to the equivalent real valued form gives

F (x) = C1 cosh ηx sin ηx+ C2 cosh ηx cos ηx+ C3 sinh ηx sin ηx+ C4 sinh ηx cos ηx

Direct calculations yield

F ′′(x) = 2η2 {C1 sinh ηx cos ηx− C2 sinh ηx sin ηx+ C3 cosh ηx cos ηx− C4 cosh ηx sin ηx}

Applying the BC at x = 0 leads to

F (0) = C2 = 0

F ′′(0) = C3 = 0

Thus at x = L
F (L) = C1 cosh ηL sin ηL+ C4 sinh ηL cos ηL = 0

F ′′(L) = 2η2 {C1 sinh ηL cos ηL− C4 cosh ηL sin ηL} = 0

The determinant of the coefficients is equal

2η2
{
− cosh2 ηL sin2 ηL− sinh2 ηL cos2 ηL

}
̸= 0
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Thus by Cramer’s rule, the only solution is C1 = C4 = 0 which is the trivial solution.

Now try k = 0. Thus F ′′′′ = 0 and F (x) = C1 + C2x+ C3x
2 + C4x

3

F (0) = C1 = 0

F ′′(0) = C3 = 0

F (L) = C2L+ C4L
3 = 0

F ′′(L) = 6C4L = 0, ⇒ C4 = 0

Substituting in the previous equation F (L) = C2L + C4L
3 = 0 we have C2 = 0 and again

this is the trivial solution.

So k < 0, so we take k = −β4 and we find that the roots are now

r = ±β, ±βi

Using real valued solutions

F (x) = C1 sinh βx+ C2 cosh βx+ C3 sin βx+ C4 cos βx

F ′′(x) = β2 {C1 sinh βx+ C2 cosh βx− C3 sin βx− C4 cos βx}

So, the BC at x = 0 become
F (0) = C2 + C4 = 0

F ′′(0) = β2 {C2 − C4} = 0

and we have C2 = C4 = 0. The BC at x = L imply

F (L) = C1 sinh βL+ C3 sin βL = 0

F ′′(L) = β2 {C1 sinh βL− C3 sin βL} = 0

Adding the equations (after dividing the second by β2 gives

C1 sinh βL = 0, ⇒ C1 = 0

Therefore
C3 sin βL = 0, ⇒ sin βL = 0

Therefore
βn =

nπ

L

and

Fn(x) = sin
(
nπ

L
x
)

Now recall that k = −β4, so

G̈(t)− kc2G = 0, ⇒ G̈(t) +
(
nπ

L

)4

c2G = 0
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Thus

G(t) = c1 cos

(
n2π2

L2
ct

)
+ c2 sin

(
n2π2

L2
ct

)

Ġ(0) = 0, ⇒
(
n2π2

L2
c

)
c2 = 0, ⇒ c2 = 0

Gn(t) = cos

(
n2π2

L2
ct

)
So the solution becomes

un(x, t) = cos

(
n2π2

L2
ct

)
sin

(
nπ

L
x
)

and

u(x, t) =
∞∑
n=1

An cos

(
n2π2

L2
ct

)
sin

(
nπ

L
x
)
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2.
utt = uxx + uyy

u(0, y, t) = u(1, y, t) = 0
u(x, 0, t) = u(x, 1, t) = 0
u(x, y, 0) = .01xy(1− x)(1− y)
ut(x, y, 0) = 0

Let u(x, y, t) = X(x)Y (y)T (t), then

T̈ (t) + λT (t) = 0 X ′′ + µX = 0 Y ′′ + (λ− µ)Y = 0
X(0) = 0 Y (0) = 0
X(1) = 0 Y (1) = 0

The solution for X and Y are

Xn(x) = sin(nπx), Yn(y) = sin(mπy), n = 1, 2, . . . , m = 1, 2, . . .

So

u(x, y, t) =
∞∑
n=1

∞∑
m=1

{
Amn cos(

√
λmnt) +Bmn sin(

√
λmnt)

}
sin(nπx) sin(mπy)

where
√
λmn =

√
m2 + n2π, so

u(x, y, 0) =
∞∑
n=1

∞∑
m=1

Amn sin(nπx) sin(mπy) = .01xy(1− x)(1− y)

ut(x, y, 0) =
∞∑
n=1

∞∑
m=1

√
λmnBmn sin(nπx) sin(mπy) = 0, ⇒ Bmn = 0

Thus

Amn =
4

1 · 1

∫ 1

0

∫ 1

0
(.01xy(1− x)(1− y) sin(nπx) sin(mπy)dydx

Amn = .04
∫ 1

0
x(1− x) sin(nπx)dx

∫ 1

0
y(1− y) sin(mπy)dy

But∫ 1

0
x(1− x) sin(nπx)dx =

[
−x(1− x)

nπ
cos(nπx) +

1− 2x

(nπ)2
sin(nπx)− 2

(nπ)3
cos(nπx)

] ∣∣∣∣1
0

which is 2
1− cos(nπ)

(nπ)3
.

Similarly ∫ 1

0
y(1− y) sin(mπy)dy = 2

1− cos(mπ)

(mπ)3

Therefore

Amn = .16
1− cos(mπ)

(mπ)3
1− cos(nπ)

(nπ)3
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and

u(x, y, t) = .16
∞∑
n=1

∞∑
m=1

1− cos(mπ)

(mπ)3
1− cos(nπ)

(nπ)3
cos(

√
λmnt) sin(nπx) sin(mπy)

where √
λmn =

√
m2 + n2π
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3.
utt = 16 (uxx + uyy)
u(0, y, t) = u(3, y, t) = 0
u(x, 0, t) = u(x, 2, t) = 0

u(x, y, 0) = y(2− y) sin
(
2πx
3

)
ut(x, y, 0) = 0

Let u(x, y, t) = X(x)Y (y)T (t), then

T̈ (t) + 16λT (t) = 0 X ′′ + µX = 0 Y ′′ + (λ− µ)Y = 0
X(0) = 0 Y (0) = 0
X(3) = 0 Y (2) = 0

The solution for X and Y are

Xn(x) = sin
(
nπ

3
x
)
, Ym(y) = sin

(
mπ

2
y
)
, n = 1, 2, . . . , m = 1, 2, . . .

with

µn =
(
nπ

3

)2

, (λ− µ)m =
(
mπ

2

)2

, ⇒ λmn =
(
nπ

3

)2

+
(
mπ

2

)2

Let νmn =
√
λmn, then

νmn =

√(
n

3

)2

+
(
m

2

)2

π

So

u(x, y, t) =
∞∑
n=1

∞∑
m=1

{Amn cos(4νmnt) +Bmn sin(4νmnt)} sin
(
nπ

3
x
)
sin

(
mπ

2
y
)

so

u(x, y, 0) =
∞∑
n=1

∞∑
m=1

Amn sin
(
nπ

3
x
)
sin

(
mπ

2
y
)
= y(2− y) sin

(
2π

3
x
)

ut(x, y, 0) =
∞∑
n=1

∞∑
m=1

λmnBmn sin
(
nπ

3
x
)
sin

(
mπ

2
y
)
= 0, ⇒ Bmn = 0

Thus

Amn =
4

3 · 2

∫ 3

0

∫ 2

0
y(2− y) sin

(
2π

3
x
)
sin

(
nπ

3
x
)
sin

(
mπ

2
y
)
dxdy

Amn =
4

6

∫ 3

0



∫ 2

0
y(2− y) sin

(
mπ

2
y
)
dy︸ ︷︷ ︸

2
(

2

mπ

)3

(1− cos(mπ))


sin

(
2π

3
x
)
sin

(
nπ

3
x
)
dx
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Amn =
8

6

(
2

mπ

)3

(1− cos(mπ))
∫ 3

0
sin

(
2π

3
x
)
sin

(
nπ

3
x
)
dx︸ ︷︷ ︸

=
3

2
, n = 2, otherwise = 0

Thus

Am 2 = 2
(

2

mπ

)3

(1− cos(mπ)), Amn = 0, n ̸= 2

So

u(x, y, t) =
∞∑

m=1

2
(

2

mπ

)3

(1− cos(mπ)) cos(4νm 2t) sin
(
2π

3
x
)
sin

(
mπ

2
y
)

where

νm 2 =

√(
2

3

)2

+
(
m

2

)2

π
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4.
utt = 9 (uxx + uyy)
u(0, y, t) = u(4, y, t) = 0
uy(x, 0, t) = u(x, 1, t) = 0

Let u(x, y, t) = X(x)Y (y)T (t), then

T̈ (t) + 9λT (t) = 0 X ′′ + µX = 0 Y ′′ + (λ− µ)Y = 0
X(0) = 0 Y ′(0) = 0
X(4) = 0 Y (1) = 0

The solution for X and Y are

Xn(x) = sin
(
nπ

4
x
)
, Yn(y) = cos

(
(2m+ 1)π

2
y

)
, n = 1, 2, . . . , m = 0, 1, 2, . . .

with

µn =
(
nπ

4

)2

, (λ− µ)m =

(
(2m+ 1)π

2

)2

, ⇒ λmn =
(
nπ

4

)2

+

(
(2m+ 1)π

2

)2

Let νmn =
√
λmn, then

νmn =

√(
n

4

)2

+
(
2m+ 1

2

)2

π

So
Tmn = Amn cos(3νmnt) +Bmn sin(3νmnt)

Thus the frequencies are given by

fmn =
3

2π
νmn =

3

2

√(
n

4

)2

+
(
2m+ 1

2

)2

m = 0 1 2
n = 1 0.839 2.281 3.769
n = 2 1.061 2.372 5.303
n = 3 1.352 2.516
n = 4 1.677

The four lowest frequencies are: 0.839, 1.061, 1.352, 1.677. Notice that in this case they all
come from m = 0.
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5. If L = 2 and W = 1, the eigenvalues are,

√
λnm =

√(
n

L

)2

+
(
m

W

)2

π =

√(
n

2

)2

+m2 π =
π

2

√
n2 + (2m)2

The eigenfunctions are

sin(mπy) sin
(
nπx

2

)
Thus two different eigenfunctions correspond to the same eigenvalue if n2

1 + (2m1)
2 = n2

2 +
(2m2)

2. For example, m = 1, n = 4 and m = 2, n = 2 give the same eigenvalue π
2

√
20. Also,

by trial and error, we find: m = 1, n = 6 and m = 3, n = 2 give the same eigenvalue π
2

√
40,

m = 2, n = 6 and m = 3, n = 4 give the same eigenvalue π
2

√
52, and m = 2, n = 7 and

m = 4, n = 1 give the same eigenvalue π
2

√
65.

6. For a square membrane L = W and the eigenvalues are
√
λmn =

√(
n

L

)2

+
(
m

L

)2

π =

L

π

√
n2 +m2. The eigenfunctions are sin

(
mπy

L

)
sin

(
nπx

L

)
. Thus different eigenfunctions

have the same eigenvalues only when different m, n have the same m2 + n2. The following
4 eigenfunctions have the same eigenvalue:

m = 1, n = 8; m = 4, n = 7; m = 8, n = 1; m = 7, n = 4; ⇒ m2 + n2 = 65

m = 2, n = 9; m = 6, n = 7; m = 9, n = 2; m = 7, n = 6; ⇒ m2 + n2 = 85

m = 2, n = 11; m = 5, n = 10; m = 11, n = 2; m = 10, n = 5; ⇒ m2 + n2 = 125

m = 3, n = 11; m = 7, n = 9; m = 11, n = 3; m = 9, n = 7; ⇒ m2 + n2 = 130
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PROBLEMS

1. Show that separation of variables (u(r, θ, t) = R(r)Θ(θ)T (t)), applied to the wave equation
in a circular region of radius A,

∂2u

∂t2
= c2

{
1

r

∂

∂r

[
r
∂u

∂r

]
+

1

r2
∂2u

∂θ2

}

u(A, θ, t) = 0

u(0, θ, t) ,
∂u

∂r
(0, θ, t) finite

u(r, θ, t) = u(r, θ + 2π, t)

leads to

T ′′ + λc2T = 0 r [rR′]′ + (λr2 − µ)R = 0 Θ′′ + µΘ = 0
R(0) , R′(0) finite Θ(θ) = Θ(θ + 2π)
R(A) = 0

2. Explain the mathematical and physical significance of the condition

u(r, θ, t) = u(r, θ + 2π, t).

3. Find the three lowest natural frequencies of

utt =
6

r

∂

∂r

[
r
∂u

∂r

]

u(4, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = f(r)
ut(r, 0) = 0

4. Solve the following problems. (Non-zero coefficients may be left in terms of definite
integrals of known functions.)

a.

utt =
1

r

∂

∂r

[
r
∂u

∂r

]

u(2, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = sin(πr)
ut(r, 0) = 0
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b.

utt =
4

r

∂

∂r

[
r
∂u

∂r

]

u(1, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = 1− r2

ut(r, 0) = 0

c.

utt = c2
1

r

∂

∂r

[
r
∂u

∂r

]

u(2, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = 0
ut(r, 0) = 1

5. Solve the following problem. (Non-zero coefficients may be left in terms of definite
integrals of known functions.) Physically interpret the boundary conditions, and relate this
to the properties of the solution:

utt = c2
1

r

∂

∂r

[
r
∂u

∂r

]

ur(L, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = f(r)
ut(r, 0) = 0
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1.
∂2u

∂t2
= c2

{
1

r

∂

∂r

[
r
∂u

∂r

]
+

1

r2
∂2u

∂θ2

}

u(A, θ, t) = 0

u(0, θ, t) ,
∂u

∂r
(0, θ, t) finite

u(r, θ, t) = u(r, θ + 2π, t)

Let u(r, θ, t) = R(r)Θ(θ)T (t), thus

RΘT̈ = c2
[
1

r
ΘT (rR′)′ +

1

r2
RTΘ′′

]

Divide by c2RΘT ,
T̈

c2T︸ ︷︷ ︸
function of t only

=
1

rR
(rR′)′ +

1

r2
Θ′′

Θ︸ ︷︷ ︸
function of r,θ

= −λ

Thus
T̈ + λc2T = 0

and
1

rR
(rR′)′ +

1

r2
Θ′′

Θ
= −λ

or, multiply by r2 and separate the variables:

r

R
(rR′)′ + λr2︸ ︷︷ ︸

function of r only

= −Θ′′

Θ︸ ︷︷ ︸
function of θ only

= µ

Thus
Θ′′ + µΘ = 0, r(rR′)′ + (λr2 − µ)R = 0

The condition u(A, θ, t) = 0 implies R(A) = 0 and u(0, θ, t) finite, implies R(0) finite,

similarly
∂u

∂r
(0, θ, t) finite implies R′(0) is finite. The periodicity u(r, θ, t) = u(r, θ + 2π, t)

implies
Θ(0) = Θ(2π)

Thus
T̈ + λc2T = 0 r(rR′)′ + (λr2 − µ)R = 0 Θ′′ + µΘ = 0

R(0), R′(0) finite Θ(0) = Θ(2π)
R(A) = 0
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2. Mathematically, the PDE is defined only for 0 ≤ θ ≤ 2π (due to polar coordinates
system.
Physically, (r, θ) and (r, θ + 2π) are the same point and must have the same displacement.
Thus u(r, θ, t) = u(r, θ + 2π, t) .
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3.

utt =
6

r

∂

∂r

[
r
∂u

∂r

]

u(4, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = f(r)
ut(r, 0) = 0

Separation yields

T̈ + 6λc2T = 0 r(rR′)′ + (λr2 − µ)R = 0
R(0), R′(0) finite

R(4) = 0

Let λ = ξ2 then r(rR′)′ + (ξ2r2 − µ)R = 0 is Bessel’s equation of order zero. The general
solution is

R(r) = C1J0(ξr) + C2Y0(ξr)

The BC R(0) finite implies C2 = 0. The BC R(4) = 0 implies

C1J0(4ξ) = 0

Thus
J0(4ξ) = 0, ⇒ 4ξn = αn, n = 1, 2, . . .

where J0(αn) = 0.
Thus

4ξ1 = 2.4048 ξ1 = .6012
4ξ2 = 5.5201 ξ2 = .1.3800
4ξ3 = 8.6537 ξ3 = 2.1634
4ξ4 = 11.7915 ξ4 = 2.9479

Now T̈ + 6λc2T = 0 implies T̈ + 6ξ2nc
2T = 0 and the solution

Tn(t) = An cos(
√
6ξnt) +Bn sin(

√
6ξnt)

Thus

fn =

√
6ξn
2π

f1 =

√
6(.6012)

2π
= .2344

f2 = .5380

f3 = .8434

f4 = 1.1492
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4. a.

utt =
1

r

∂

∂r

[
r
∂u

∂r

]

u(2, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = sin(πr)
ut(r, 0) = 0

Separation yields

T̈ + λT = 0 (rR′)′ + λrR = 0
R(0), R′(0) finite

R(2) = 0

Let x = ξr then (rR′)′ + λrR = 0 becomes

x2d
2R

dx2
+ x

dR

dx
+ x2R = 0

which is Bessel’s equation of order zero. The general solution is

R(r) = C1J0(ξr) + C2Y0(ξr)

The BC R(0) finite implies C2 = 0. The BC R(2) = 0 implies

C1J0(2ξ) = 0

Thus
J0(2ξ) = 0, ⇒ 2ξn = αn, n = 1, 2, . . .

where J0(αn) = 0.

ξ1 =
2.4048

2
, ξ2 =

5.5201

2
, . . .

and
Tn(t) = An cos(ξnt) +Bn sin(ξnt)

The general solution is then

u(r, t) =
∞∑
n=1

{An cos(ξnt) +Bn sin(ξnt)} J0(ξnr)

Use the initial conditions

u(r, 0) =
∞∑
n=1

AnJ0(ξnr) = sin(πr)
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ut(r, 0) =
∞∑
n=1

ξnBnJ0(ξnr) = 0, ⇒ Bn = 0

An =

∫ 2
0 r sin(πr)J0(ξnr)dr∫ 2

0 r [J0(ξnr)]
2 dr

So the solution is

u(r, t) =
∞∑
n=1

An cos(ξnt)J0(ξnr)

with An given above.

4. b.

utt =
4

r

∂

∂r

[
r
∂u

∂r

]

u(1, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = 1− r2

ut(r, 0) = 0

Proceeding as in the previous case, the general solution is

u(r, t) =
∞∑
n=1

{An cos(2ξnt) +Bn sin(2ξnt)} J0(ξnr)

where J0(ξn) = 0 as before. Use the initial conditions

u(r, 0) =
∞∑
n=1

AnJ0(ξnr) = 1− r2

ut(r, 0) =
∞∑
n=1

ξnBnJ0(ξnr) = 0, ⇒ Bn = 0

An =

∫ 1
0 r (1− r2) J0(ξnr)dr∫ 1

0 r [J0(ξnr)]
2 dr

So the solution is

u(r, t) =
∞∑
n=1

An cos(2ξnt)J0(ξnr)

with An given above.
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4. c.

utt = c2
1

r

∂

∂r

[
r
∂u

∂r

]

u(2, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = 0
ut(r, 0) = 1

Proceeding as in the previous case, 4a, the general solution is

u(r, t) =
∞∑
n=1

{An cos(ξnct) +Bn sin(ξnct)} J0(ξnr)

where J0(2ξn) = 0 as before. Use the initial conditions

u(r, 0) =
∞∑
n=1

AnJ0(ξnr) = 0, ⇒ An = 0

ut(r, 0) =
∞∑
n=1

ξncBnJ0(ξnr) = 1

Bn =
1

ξnc

∫ 2
0 rJ0(ξnr)dr∫ 2

0 r [J0(ξnr)]
2 dr

So the solution is

u(r, t) =
∞∑
n=1

Bn sin(ξnct)J0(ξnr)

with Bn given above.
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5.

utt = c2
1

r

∂

∂r

[
r
∂u

∂r

]

ur(L, t) = 0

u(0, t) ,
∂u

∂r
(0, t) finite

u(r, 0) = f(r)
ut(r, 0) = 0

Separation of variables yields

T̈ + λc2T = 0 (rR′)′ + λrR = 0
R(0), R′(0) finite

R′(L) = 0

The case λ = 0 gives a solution R0(r) = 1, for λ > 0 the solution is

R(r) = C1J0(ξr) + C2Y0(ξr)

The condition R(0), R′(0) finite implies C2 = 0 and the condition R′(L) = 0 gives

J ′
0(ξL) = 0

which is the same as
−J1(ξL) = 0

So

ξ1 =
3.8317

L
, ξ2 =

7.0156

L
, . . .

The solution is then

u(r, t) = (A0 +B0t) +
∞∑
n=1

{An cos(ξnct) +Bn sin(ξnct)} J0(ξnr)

Note that the eigenfunctions are still Bessel functions of order zero, due to the ODE. Only
the eigenvalues are different. The initial conditions

u(r, 0) = A0 +
∞∑
n=1

AnJ0(ξnr) = f(r)

ut(r, t) = B0 +
∞∑
n=1

ξncBnJ0(ξnr) = 0, ⇒ Bn = 0

and

An =

∫ L
0 rf(r)J0(ξnr)dr∫ L
0 r [J0(ξnr)]

2 dr
, A0 =

∫ L
0 rf(r)dr∫ L

0 rdr

109



5 Introduction to the Fourier Transform

5.1 Periodic and Aperiodic Functions

5.2 Representation of Aperiodic Functions

5.3 The Fourier Transform and Inverse Transform

5.4 Examples of Fourier Transforms and Their Graphical Repre-
sentation

5.5 Special Computational Cases of the Fourier Transform

5.6 Relations Between the Transform and Inverse Transform

5.7 General Properties of the Fourier Transform - Linearity, Shift-
ing and Scaling

5.8 The Fourier Transform of Derivatives and Integrals

5.9 The Fourier Transform of the Impulse Function and Its Im-
plications
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5.10 Further Extensions of the Fourier Transform

PROBLEMS

1. Compute, from the definition, and using the properties of even and odd functions
where appropriate, the Fourier transform of each of the following functions. In each case,
plot h(t) and the Amplitude spectrum and phase angle graphs.

a. h(t) = e−α|t| , −∞ < t < ∞ , α > 0.

(Plot for α = 1 and α = .05)

b. h(t) =
{

1 , 0 ≤ t ≤ 1
0 , otherwise

c. h(t) =
{

te−t , 0 < t < ∞
0 , otherwise

d. h(t) =
{

(1− t2) , −1 < t < 1
0 , otherwise

e. h(t) =
{

(1− t)2 , −1 < t < 1
0 , otherwise

f. h(t) = Ae−α|t| cos(2πt) , −∞ < t < ∞ , α > 0 .

(Plot for α = 1 and α = .05)

g. h(t) =


(1 + t) , −1 < t < 0
1 , 0 ≤ t ≤ 1

(2− t) , 1 < t < 2
0 , otherwise

h. h(t) = Ate−α|t| , −∞ < t < ∞ , α > 0

i. h(t) =
{

t , −1 < t < 1
0 , otherwise

2. Find, directly from the definition, the inverse of the following Fourier transforms, and
plot h(t) and the amplitude and phase graphs:

a. H(f) =
{

(1− f 2)2 , −1 < f < 1
0 , otherwise

b. H(f) = |f | e−2|f | , −∞ < f < ∞ .
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1. a. h(t) = e−α|t| , −∞ < t < ∞ , α > 0. Note that h(t) is even (see Figure 34).

0-2 2-4

1

t

0.8

0.6

4

0.4

0.2

0

Figure 34: Graph of h(t) for problem 1a of first set of Chapter 5 for α = 1

Thus
H(f) =

∫ ∞

−∞
h(t)e−2πjftdt = 2

∫ ∞

0
e−αt cos(2πft)dt

H(f) = 2e−αt

{
−α cos(2πft) + 2πf sin(2πft)

α2 + (2πf)2

} ∣∣∣∣∞
0

H(f) =
2α

α2 + (2πf)2

For α = 1, H(f) =
2

1 + (2πf)2
, real and positive, Θ(f) = 0. The plot of H(f) is

given in Figure 35 on the left. If we decrease α to 0.05, then the plot of H(f) is now on the
right of the same figure. Note the vertical scale, does this suggest something?

f

1

0.5 1

1.5

2

0.5

-0.5 0-1

40

f

30

20

1

10

0
0.50-0.5-1

Figure 35: Graph of H(f) for problem 1a of first set of Chapter 5. The left plot for α = 1
and the right for α = 0.05
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1. b. h(t) =
{

1 , 0 ≤ t ≤ 1
0 , otherwise

Note that h(t) is neither even nor odd, see Figure 36.

Thus

1

0.8

0.6

0.4

0.2

0
210-1-2

Figure 36: Graph of h(t) for problem 1b of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

∫ 1

0
1 · e−2πjftdt

H(f) = −e−2πjft

2πjf

∣∣∣∣1
0
=

1− e−2πjf

2πjf

Or, in terms of real and imaginary parts

H(f) =
1− cos(−2πf) + j sin(2πf)

2πjf
=

sin(2πf)

2πf
− j

1− cos(2πf)

2πf

Note that H(f) = O

(
1

f

)

f
-0.2

210

1

0.8

-1

0.6

-2
0

0.2

0.4

f

2

0.4

10
0

-0.6

0.2

-1

-0.4

-2

0.6

-0.2

Figure 37: Graph of ℜ(H(f)) (on the left) and ℑ(H(f)) (on the right) for problem 1b of
first set of Chapter 5
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1

0.8

0.6

0.4

0.2

0

f

210-1-2

3

3

1

-1

-2
0

10

2

-2

-3

-1 2-3

Figure 38: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1b of first set
of Chapter 5
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1. c. h(t) =

{
te−t , 0 < t < ∞
0 , otherwise

Note that h(t) is neither even nor odd, see Figure 36. Thus

0.05

0
420-2

0.15

-4

0.35

0.3

0.25

0.2

0.1

Figure 39: Graph of h(t) for problem 1c of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

∫ ∞

0
te−te−2πjftdt

H(f) =

{
−te−(1+2πjf)t

1 + 2πjf
− e−(1+2πjf)t

(1 + 2πjf)2

} ∣∣∣∣∞
0

H(f) =
1

(1 + 2πjf)2

Or, in terms of real and imaginary parts

H(f) =
1− 4π2f 2

(1 + 4π2f 2)2
− j

4πf

(1 + 4π2f 2)2

Thus

ℜ(H(f)) =
1− 4π2f 2

(1 + 4π2f 2)2

and

ℑ(H(f)) = − 4πf

(1 + 4π2f 2)2

and

|H(f)| = 1

1 + 4π2f 2

Note that |H(f)| = O

(
1

f 2

)
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0.4

0.2

0

f

1

0.8

210

0.6

-1-2

0.2

0

-0.4

f

-0.6

210-1-2

0.6

0.4

-0.2

Figure 40: Graph of ℜ(H(f)) (on the left) and ℑ(H(f)) (on the right) for problem 1c of
first set of Chapter 5

1

0.8

0.6

0.4

0.2

0

f

210-1-2

3

f

2

1

3
0

-1

2

-2

-3

10-1-2-3

Figure 41: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1c of first set
of Chapter 5
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d. h(t) =
{

(1− t2) , −1 < t < 1
0 , otherwise

1

0.8

0.6

0.4

0.2

0
420-2-4

Figure 42: Graph of h(t) for problem 1d of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt = 2

∫ 1

0
(1− t2) cos(2πft)dt, since h(t) is even

H(f) = 2

{
(1− t2) sin(2πft)

2πf
− 2t cos(2πft)

(2πf)2
+

2 sin(2πft)

(2πf)3

} ∣∣∣∣1
0

H(f) =

{
−4 cos(2πf)

(2πf)2
+

4 sin(2πf)

(2πf)3

}
Or

H(f) =
1

2π3f 3
{sin(2πf)− 2πf cos(2πf)}

Note that H(f) is real and even!! Thus

|H(f)| = 1

2π3|f |3
{| sin(2πf)− 2πf cos(2πf)|}

Note that |H(f)| = O

(
1

f 2

)
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Figure 43: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1d of first set
of Chapter 5
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e. h(t) =
{

(1− t)2 , −1 < t < 1
0 , otherwise

4

4

2

1

3

0
20-2-4

Figure 44: Graph of h(t) for problem 1e of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

∫ 1

−1
(1− t)2e−2πjftdt

H(f) =

{
−(1− t)2e−2πjft

2πjf
+

2(1− t)e−2πjft

(2πjf)2
− 2e−2πjft

(2πjf)3

} ∣∣∣∣1
−1

H(f) =

{
4e2πjf

2πjf
− 4e2πjf

(2πjf)2
+

2

(2πf)3

[
e2πjf − e−2πjf

]}
Or

H(f) =
4(2πjf − 1)e2πjf

(2πjf)2
+

4j

(2πjf)3
sin(2πf)

H(f) =
(1− 2πjf)

(πf)2
[cos(2πf) + j sin(2πf)]− 1

2(πf)3
sin(2πf)

H(f) =
2πf cos(2πf) + (4π2f 2 − 1) sin(2πf)

2(πf)3
+ j

sin(2πf)− 2πf cos(2πf)

(πf)2

Note that H(f) = O

(
1

f

)
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Figure 45: Graph of ℜ(H(f)) (on the left) and ℑ(H(f)) (on the right) for problem 1e of
first set of Chapter 5
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Figure 46: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1e of first set
of Chapter 5
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f. h(t) = Ae−α|t| cos(2πt) , −∞ < t < ∞ , α > 0 .

t

210

2

-2

-2

-1

3-1
0

1

-3

Figure 47: Graph of h(t) for problem 1f of first set of Chapter 5, using A = 2, α = 1

Note that h(t) is even.

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt = 2A

∫ ∞

0
e−αt cos(2πt) cos(2πft)dt

H(f) = 2Ae−αt

{
(2πf − 2π) sin((2πf − 2π)t)− α cos((2πf − 2π)t)

2 [α2 + (2πf − 2π)2]

} ∣∣∣∣∞
0

+ 2Ae−αt

{
(2πf + 2π) sin((2πf + 2π)t)− α cos((2πf + 2π)t)

2 [α2 + (2πf + 2π)2]

} ∣∣∣∣∞
0

H(f) =
αA

α2 + (2π(f − 1))2
+

αA

α2 + (2π(f + 1))2

Note that H(f) is real and positive. Note the change of scale as we change the value of α
from α = 1 in Figure 48 to a value of α = 0.05 in Figure 49.

f

0 21

2

0.5

-2-3

1.5

0
3-1

1

Figure 48: Graph of H(f) for problem 1e of first set of Chapter 5, using A = 2, α = 1
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Figure 49: Graph of H(f) for problem 1e of first set of Chapter 5, using A = 2, α = .05
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g. h(t) =


(1 + t) , −1 < t < 0
1 , 0 ≤ t ≤ 1

(2− t) , 1 < t < 2
0 , otherwise

Since h(t) is neither even nor odd

1

0.8

0.6

0.4

0.2

0
420-2-4

Figure 50: Graph of h(t) for problem 1g of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

∫ 0

−1
(1 + t)e−2πjftdt+

∫ 1

0
e−2πjftdt+

∫ 2

1
(2− t)e−2πjftdt

H(f) =

{
−(1 + t)e−2πjft

2πjf
− e−2πjft

(2πjf)2

} ∣∣∣∣0
−1

+

{
−e−2πjft

2πjf

} ∣∣∣∣1
0
+

{
−(2− t)e−2πjft

2πjf
+

e−2πjft

(2πjf)2

} ∣∣∣∣2
1

= − 1

2πjf
− 1

(2πjf)2
+

e2πjf

(2πjf)2
− e−2πjf

2πjf
+

1

2πjf
+

e−2πjf

2πjf
+

e−4πjf

(2πjf)2
− e−2πjf

(2πjf)2

=
−1 + e2πjf + e−4πjf − e−2πjf

(2πjf)2

=
−1 + cos(2πf) + j sin(2πf) + cos(4πf)− j sin(4πf)− cos(2πf) + j sin(2πf)

−(2πf)2

Or

H(f) =
[1− cos(4πf)] + j [sin(4πf)− 2 sin(2πf)]

(2πf)2

Note that H(f) = O

(
1

f 2

)
. So

|H(f)| =

√
[1− cos(4πf)]2 + [sin(4πf)− 2 sin(2πf)]2

(2πf)2
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and

Θ(f) = arctan


sin(4πf)︸ ︷︷ ︸

2 sin(2πf) cos(2πf)

−2 sin(2πf)

1− cos(4πf)︸ ︷︷ ︸
2 sin2(2πf)


= arctan

{
cos(2πf)− 1

sin(2πf)

}

Or

Θ(f) = arctan

{
− sin(πf)

cos(πf)

}
In the following figures we plot the real and imaginary parts of H(f), the absolute value of
H(f) and Θ(f).
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Figure 51: Graph of ℜ(H(f)) (on the left) and ℑ(H(f)) (on the right) for problem 1g of
first set of Chapter 5
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Figure 52: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1g of first set
of Chapter 5
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h. h(t) = Ate−α|t| , −∞ < t < ∞ , α > 0
Note that h(t) is odd, see Figure 53. Thus

0

-0.1

-0.2

t

1050-5-10

0.3

0.2

0.1

-0.3

Figure 53: Graph of h(t) with A = α = 1 for problem 1h of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt = −2jA

∫ ∞

0
te−t sin(2πft)dt

H(f) = −2jA

{
te−αt [−α sin(2πft)− 2πf cos(2πft)]

α2 + (2πf)2

∣∣∣∣∞
0

− e−αt [(α2 − (2πf)2) sin(2πft) + 2α(2πf) cos(2πft)]

[α2 + (2πf)2]2

} ∣∣∣∣∞
0

H(f) = −2jA

[
2α(2πf)

[α2 + (2πf)2]2

]
= − 8πAαf

[α2 + (2πf)2]2
j = O

(
1

f 3

)
Note that H(f) is purely imaginary. The |H(f)| is given by

|H(f)| = 8πAα|f |
[α2 + (2πf)2]2
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Figure 54: Graph of ℑ(H(f)) with A = α = 1 for problem 1h of first set of Chapter 5
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Figure 55: Graph of |H(f)| (on the left) and Θ(f) (on the right) with A = α = 1 for problem
1h of first set of Chapter 5
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i. h(t) =
{

t , −1 < t < 1
0 , otherwise

Note that h(t) is odd, see Figure 56. Thus

1

2
0

-0.5

0.5

-1

10-1-2

Figure 56: Graph of h(t) for problem 1i of first set of Chapter 5

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt = −2j

∫ 1

0
t sin(2πft)dt

H(f) = −2j

{
t sin(2πft)

(2πf)2
− t cos(2πft)

2πf

} ∣∣∣∣1
0

= −2j

{
sin(2πf)

(2πf)2
− cos(2πf)

2πf

}

= −2j
sin(2πf)− 2πf cos(2πf)

(2πf)2
= O

(
1

f

)
Note that H(f) is purely imaginary. The |H(f)| is given by

0.8

0.4

0

-0.4

2

-0.8

10-1-2

Figure 57: Graph of ℑ(H(f)) for problem 1i of first set of Chapter 5

|H(f)| = | sin(2πf)− 2πf cos(2πf)|
2(πf)2
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Figure 58: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1i of first set
of Chapter 5
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2. a. H(f) =
{

(1− f 2)2 , −1 < f < 1
0 , otherwise

H(f) is even, see Figure 59. Thus

1

0.8

0.6

0.4

0.2

0
210-1-2

Figure 59: Graph of H(f) for problem 2a of first set of Chapter 5

h(t) =
∫ ∞

−∞
H(f)e2πjftdf =

∫ 1

−1
(1− f 2)2e2πjftdf

h(t) = 2
∫ 1

0
(1− 2f 2 + f 4) cos(2πft)df, Since H(f) is even

= 2

{
1− 2f 2 + f 4

2πt
sin(2πft) +

−4f + 4f 3

(2πt)2
cos(2πft)− −4 + 12f 2

(2πt)3
sin(2πft)

− − 24f

(2πf)4
cos(2πft) +

24

(2πt)5
sin(2πft)

} ∣∣∣∣f=1

f=0

= 2

[
− 8

(2πt)3
sin(2πt)− 24

(2πt)4
cos(2πt) +

24

(2πt)5
sin(2πt)

]

=
16

(2πt)5

{[
−(2πt)3 + 3

]
sin(2πt)− 3(2πt) cos(2πt)

}
Note that |H(f)| = H(f).
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Figure 60: Graph of |H(f)| (on the left) and h(t) (on the right) for problem 2a of first set
of Chapter 5
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2. b. H(f) = |f | e−2|f | , −∞ < f < ∞ .
H(f) is real and even, see Figure 62. Thus

0.16

0.12

0.08

0.04

f

0
420-2-4

Figure 61: Graph of H(f) for problem 2b of first set of Chapter 5

h(t) =
∫ ∞

−∞
H(f)e2πjftdf = 2

∫ ∞

0
H(f) cos(2πft)df

h(t) = 2
∫ ∞

0
fe−2f cos(2πft)df

= 2L [f cos(ωf)] , where ω = 2πt, s = 2

= 2
s2 − ω2

(s2 + ω2)2
, Using Laplace Transform tables

= 2
4− (2πt)2

(4 + (2πt)2)2

0.2

0.1

0

t

0.5

0.4

210

0.3

-1-2

Figure 62: Graph of h(t) for problem 2b of first set of Chapter 5
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PROBLEMS
1. Compute the Fourier transform of each of the following functions, using tables, shifting
and scaling, etc. when appropriate. In each case, plot h(t) and the Amplitude spectrum and
phase angle graphs.

a. h(t) =
{
2 , −1 < t < 5
0 , otherwise

b. h(t) =


t , 0 ≤ t ≤ 2

4− t , 2 < t ≤ 4
0 , otherwise

c. h(t) = sin
(
t

3

)

d. h(t) =
{
2 , 3 < t < ∞
0 , otherwise

e. h(t) =
1

4 + t2

f. h(t) =
sin2(3t)

6t2

g. h(t) =
{
e−t , 0 < t < 2
0 , otherwise

2. Find, using tables, shifting and/or scaling, etc., the inverse of each of the following Fourier
transforms, and plot h(t) and the amplitude and phase graphs:

a. H(f) =
1

1 + f 2
, −∞ < f < ∞

b. H(f) = e−3jπfe−2|f | , −∞ < f < ∞

c. H(f) =
{
2 , −3 < f < 3
0 , otherwise
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1. a. h(t) =
{
2 , −1 < t < 5
0 , otherwise

The function h(t) is given in Figure 63. The closest function for which we have a Fourier
transform is the function

g(t) =
{
1 , −T0/2 < t < T0/2
0 , otherwise

given in Figure 64.

2

6

1

0.5

1.5

0
420-2

Figure 63: Graph of h(t) for problem 1a of second set of Chapter 5

1

0.8

0.6

0.4

0.2

0
420-2-4

Figure 64: Graph of g(t) for problem 1a of second set of Chapter 5

We need to write h(t) as a shifted and scaled version of g(t), specifically

h(t) = 2g(t− 2), when T0 = 6

So
H(f) = F [2g(t− 2)] = 2F [g(t− 2)] , by linearity

H(f) = 2
{
e−2πj(2)fG(f)

}
, by shifting

H(f) = 2e−4πjf sin(6πf)

πf
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The real and imaginary parts of H(f) are given in Figure 65, the |H(f)| and Θ(f) are given
in Figure 66.

2

0

6

f

5-5

10

8

10

4

0-10

12

-5

6

4

0

-2

f

5 10-10

2

-6

-4

0

Figure 65: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1a of
second set of Chapter 5
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Figure 66: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1a of second
set of Chapter 5
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1. b. h(t) =


t , 0 ≤ t ≤ 2

4− t , 2 < t ≤ 4
0 , otherwise

The function h(t) is given in Figure 67. The closest function for which we have a Fourier
transform is the function

g(t) =


1 + t/T0 , −T0 < t ≤ 0
1− t/T0 , 0 ≤ t < T0

0 , otherwise

given in Figure 68.

543210

2

1

1.5

-1
0

0.5

Figure 67: Graph of h(t) for problem 1b of second set of Chapter 5

3210-1-2

2

1

1.5

-3
0

0.5

Figure 68: Graph of g(t) for problem 1b of second set of Chapter 5

We need to write h(t) as a shifted and scaled version of g(t), i.e.

h(t) = 2g(t− 2), for T0 = 2

So
H(f) = F [2g(t− 2)] = 2F [g(t− 2)] , by linearity
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H(f) = 2
{
e−2πj(2)fG(f)

}
, by shifting

H(f) = 2e−4πjf 1

2

(
sin(2πf)

πf

)2

or

H(f) = e−4πjf

(
sin(2πf)

πf

)2

The real and imaginary parts of H(f) are given in Figure 69, the |H(f)| and Θ(f) are given
in Figure 70.
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Figure 69: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1b of
second set of Chapter 5
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Figure 70: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1b of second
set of Chapter 5
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1. c. h(t) = sin
(
t

3

)
The function h(t) is given in Figure 71. The closest function for which we have a Fourier

transform is the function g(t) = A sin(2πf0t) given in Figure 72.

20

1

0.5

10
0

-0.5

0

-1

-10-20

Figure 71: Graph of h(t) for problem 1c of second set of Chapter 5

1

0.5

1
0

-0.5

0.5

-1

0-0.5-1

Figure 72: Graph of g(t) for problem 1c of second set of Chapter 5

In this case

h(t) = g(t), for A = 1, and 2πf0 =
1

3
⇒ f0 =

1

6π

So

H(f) = F [g(t)] = j
1

2

{
δ
(
f +

1

6π

)
− δ

(
f − 1

6π

)}
Note that H(f) is purely imaginary, so we plot Im(H(f)) and |H(f)| in Figure 73. The
graph of Θ(f) is given in Figure 74.
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Im(H(f))

.5

−1/6 π

1/6 π

f

|H(f)|

.5

−1/6 π 1/6 π

Figure 73: Graph of Im(H(f)) (on the left) and |H(f)| (on the right) for problem 1c of
second set of Chapter 5
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Figure 74: Graph of Θ(f) for problem 1c of second set of Chapter 5
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1. d. h(t) =
{
2 , 3 < t < ∞
0 , otherwise

The function h(t) is given in Figure 75. The closest function for which we have a Fourier
transform is the function g(t) = sgn(t) given in Figure 76.

543210

2

1

1.5

-1
0

0.5

Figure 75: Graph of h(t) for problem 1d of second set of Chapter 5
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Figure 76: Graph of g(t− 3) for problem 1d of second set of Chapter 5

In this case h(t) = 1 + g(t− 3), so

H(f) = F [1 + g(t− 3)] = F [1] + F [g(t− 3)], by linearity

H(f) = δ(f) + e−2πj(3)fG(f) = δ(f)− j

πf
e−6πjf

or

H(f) = δ(f)− j
e−6πjf

πf

The real and imaginary parts of H(f) are given in Figure 77, the |H(f)| and Θ(f) are given
in Figure 78.
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Figure 77: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1d of
second set of Chapter 5
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Figure 78: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1d of second
set of Chapter 5
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1. e. h(t) =
1

4 + t2

The closest transform pair to h(t), given in Figure 79, is

G(f) =
2α

α2 + 4π2f 2

0.25

0.2

0.15

0.1

0.05

t

1050-5-10

Figure 79: Graph of h(t) for problem 1e of second set of Chapter 5
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Figure 80: Graph of g(t) for problem 1e of second set of Chapter 5

Thus we have to use the fact that if X(f) is the Fourier transform of x(t) then x(−f) is

the Fourier transform of X(t). So for g(t) =
2α

α2 + 4π2t2
(see Figure 80) we have

G(f) = e−α|−f | = e−α|f |.

But

h(t) =
π

2

2(4π)

(4π)2 + 4π2t2
=

π

2
g(t), with α = 4π

Thus

H(f) = F
[
π

2
g(t)

]
=

π

2
G(f)
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So
H(f) =

π

2
e−4π|f |

Note that the transform is a real function, so we have plotted H(f) which is the same as
Re(H(f)) and |H(f)| in Figure 81.

f
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0.5 1

0.8

1.2

0
-0.5 0-1

Figure 81: Graph of Re(H(f)) for problem 1e of second set of Chapter 5
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1. f. h(t) =
sin2(3t)

6t2
The closest transform pair to h(t), given in Figure 82, is

g(t) =
sin2(πf0t)

f0π2t2

whose transform is given in Figure 68 and can be described as

G(f) =

(
1− |f |

f0

)
(1− uf0(|f |))

1.4

1.2

0.4

1

0.6

0.2

t

20-2

0.8

0
31-1-3

Figure 82: Graph of h(t) for problem 1f of second set of Chapter 5

But now

h(t) =
sin2(3t)

6t2
=

π

2

sin2(πf0t)

π2t2f0
, with f0 =

3

π

So

H(f) =
π

2

(
1− π|f |

3

)(
1− u3/π(|f |)

)
=

{
π
2

(
1− π|f |

3

)
, |f | < 3

π

0, otherwise

Note that H(f) is real, so the plot of Re(H(f)) and |H(f)| are identical and given in Figure
83.
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Figure 83: Graph of Re(H(f)) for problem 1f of second set of Chapter 5
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1. g. h(t) =
{
e−t , 0 < t < 2
0 , otherwise

The plot of h(t) is given in Figure 84.

0-1

0.2

0.6

0
-2 321

1

0.8

0.4

-3

Figure 84: Graph of h(t) for problem 1g of second set of Chapter 5

It is just as easy to get the transform directly.

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

∫ 2

0
e−te−2πjftdt

H(f) = −e−(1+2πjf)t

1 + 2πjf

∣∣∣∣2
0
=

1− e−2(1+2πjf)

1 + 2πjf

The plots of Re(H(f)) and Im(H(f)) are given in Figure 85. The plots of |H(f)| and
Θ(H(f)) are given in Figure 86.

0.8

0.6

0.4

0.2

2
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0.15

10

0.05

-1
0

-0.05

-2

0.1

-0.15

-0.1

Figure 85: Graph of Re(H(f)) (on the left) and Im(H(f)) (on the right) for problem 1g of
second set of Chapter 5

Another way to solve the problem is to view h(t) as the product of h1(t) and h2(t) shown
in Figure 87. The functions are

h1(t) = e−t, t > 0
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Figure 86: Graph of |H(f)| (on the left) and Θ(f) (on the right) for problem 1g of second
set of Chapter 5

and

h2(t) =

{
1, 0 < t < 2
0, otherwise

The transforms of these functions are

H1(f) =
1

1 + 2πjf
, H2(f) = e−2πjf sin(2πf)

πf

So
H(f) = F [h1(t)h2(t)] = H1(f) ∗H2(f) =

∫ ∞

−∞
H1(u)H2(f − u)du

or

H(f) =
∫ ∞

−∞

1

1 + 2πju
e−2πj(f−u) sin(2π(f − u))

π(f − u)
du

Now you see that the previous method is easier!!!

1

0.8

0.6

0.4

0.2

0
420-2

1

0.8

0.6

0.4

0.2

0
420-2

Figure 87: Graph of h1(t) (on the left) and h2(t) (on the right) for problem 1g of second set
of Chapter 5
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2. a. H(f) =
1

1 + f 2
, −∞ < f < ∞

The graph of H(f) is given in Figure 88. The closest pair is

G(f) =
2α

α2 + 4π2f 2
, g(t) = e−α|t|.

With α = 2π we have
H(f) = πG(f)

See Figure 89 for the graphs of G(f) and g(t) and Figure 90 for h(t).

0.2

0 2

0.8

-2

0.6

4-4

0.4

f

1

Figure 88: Graph of H(f) for problem 2a of second set of Chapter 5
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0.2

0

t

210-1-2

Figure 89: Graph of G(f) (on the left) and g(t) (on the right) for problem 2a of second set
of Chapter 5

Thus
h(t) = F−1[H(f)] = πF−1[G(f)] = πe−2π|t|
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Figure 90: Graph of h(t) for problem 2a of second set of Chapter 5
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2. b. H(f) = e−3jπfe−2|f | , −∞ < f < ∞

H(f) = e−3πjfe−2|f | = e−2πjf ·(3/2)e−2|f | = F [g(t− 3/2)]

where
G(f) = e−2|f |, even function of f

so

g(t) =
4

4 + 4π2t2
, using tables with a=2

Therefore

h(t) = g(t− 3/2) =
1

1 + π2(t− 3/2)2

1

0.8

0.6

0.4

0.2

0

f

210-1-2

0

0.2

0.4

0.6

0.8

1

–4 –2 2 4

t

Figure 91: Graph of G(f) (on the left) and h(t) (on the right) for problem 2b of second set
of Chapter 5
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2. c. H(f) =
{
2 , −3 < f < 3
0 , otherwise

Note that H(f), given in Figure 92, is real and even and we can find h(t) directly or from
the tables.

0

2

1.5

2

1

0.5

-4
0

-2 4

Figure 92: Graph of H(f) for problem 2c of second set of Chapter 5

h(t) =
∫ ∞

−∞
H(f)e2πjftdf =

∫ 3

−3
2e2πjftdf = 2

∫ 3

0
2 cos(2πft)df

So

h(t) = 4
sin(2πft)

2πf

∣∣∣∣f=3

f=0
= 2

sin(6πt)

πt

The other way is to note that H(f) = 12G(f) where G(f) =

{
1/(2f0), −f0 < f < f0
0, otherwise

is given in Figure 93 with f0 = 3. Thus

h(t) = F−1[H(f)] = F−1[12G(f)] = 12g(t)

So

h(t) = 12
sin(2π(3)t)

2π(3)t
= 2

sin(6πt)

πt

as before.
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Figure 93: Graph of G(f) (on the left) and h(t) (on the right) for problem 2c of second set
of Chapter 5
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6 Applications of the Fourier Transform

6.1 Introduction
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6.2 Convolution and Fourier Transforms

PROBLEMS
1. Compute, using the definition, the convolution ( h(t)∗g(t) ) in the following cases. Then,
in each case, compute the Fourier transform of the convolution and verify the result agrees
with the convolution theorem:

a. h(t) =
{
2 , 0 < t < 2
0 , otherwise

g(t) =
{
e−t , 0 < t
0 , otherwise

b. h(t) = g(t) =
{
2 , −2 < t < 2
0 , otherwise

c. h(t) = e−|t| , −∞ < t < ∞
g(t) = cos(2πt) , −∞ < t < ∞
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1. a. h(t) =
{
2 , 0 < t < 2
0 , otherwise

g(t) =
{
e−t , 0 < t
0 , otherwise

The graphs of h(t) and g(t) are given in Figure 94 and the graph of h(t− u) is given in
Figure 95.

-1-2

1

2

0.5

0
43210

1.5

432

1

0.8

1

0.6

0.4

0

0.2

0
-1-2

Figure 94: Graph of h(t) (on the left) and g(t) (on the right) for problem 1a of Chapter 6.2

u
t−2 t

h(t−u)

Figure 95: Graph of h(t− u) for problem 1a of Chapter 6.2

Three possible cases are described below. Case I (Figure 96) when t < 0 and there is no
overlap, Case II (Figure 97) when 0 < t < 2 and there is an overlap for 0 < u < t, Case III
(Figure 98) when 2 < t and there is an overlap for t− 2 < u < t. The convolution

g ∗ h =
∫ ∞

−∞
g(u)h(t− u)du =


0 case I∫ t

0
2e−udu = 2

(
1− e−t

)
case II∫ t

t−2
2e−udu = 2

(
e−(t−2) − e−t

)
case III

This convolution is plotted in Figure 99.
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u

t

t < 0

Figure 96: Graph of g and h for problem 1a of Chapter 6.2 when t < 0

u
t

0 < t < 2

Figure 97: Graph of g and h for problem 1a of Chapter 6.2 when 0 < t < 2

u
t

2 < t 

Figure 98: Graph of g and h for problem 1a of Chapter 6.2 when 2 < t
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Figure 99: Graph of the convolution for problem 1a of Chapter 6.2
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By definition

F [g ∗ h] =
∫ ∞

−∞
g ∗ he−2πjftdt

F [g ∗ h] = 2
∫ 2

0

(
1− e−t

)
e−2πjftdt+ 2

∫ ∞

2

(
e−(t−2) − e−t

)
e−2πjftdt

F [g ∗ h] = 2

{
−e−2πjft

2πjf

∣∣∣∣2
0
+

e−(1+2πjf)t

1 + 2πjf

∣∣∣∣2
0
− 2e2

e−(1+2πjf)t

1 + 2πjf

∣∣∣∣∞
2
+ 2

e−(1+2πjf)t

1 + 2πjf

∣∣∣∣∞
2

}

F [g ∗ h] = 2

{
1

2πjf
− e−4πjf

2πjf
+

e−2(1+2πjf)

1 + 2πjf
− 1

1 + 2πjf
+ e2

e−2(1+2πjf)

1 + 2πjf
− e−2(1+2πjf)

1 + 2πjf

}

F [g ∗ h] = 2

{
1

2πjf
− e−4πjf

2πjf
− 1

1 + 2πjf
+

e−4πjf)

1 + 2πjf

}

F [g ∗ h] = 2
(
1− e−4πjf

){ 1

2πjf
− 1

1 + 2πjf

}

F [g ∗ h] = 2
1− e−4πjf

2πjf(1 + 2πjf)

By convolution theorem

H(f) =
∫ 2

0
2e−2πjftdt = 2

1− e−4πjf

2πjf

G(f) =
1

1 + 2πjf

therefore

F [g ∗ h] = G(f)H(f) = 2
1− e−4πjf

2πjf(1 + 2πjf)
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1. b. h(t) = g(t) =
{
2 , −2 < t < 2
0 , otherwise

The graphs of h(t) and g(t) are the same and given in Figure 100 and the graph of h(t−u)
is given in Figure 101.

2

4

1

0.5

1.5

0
20-2-4

Figure 100: Graph of h(t) for problem 1b of Chapter 6.2

u
t−2 t+2

Figure 101: Graph of h(t− u) for problem 1b of Chapter 6.2

Four possible cases are described below. Case I (Figure 102) when t < −4 and there is no
overlap, Case II (Figure 103) when −4 ≤ t ≤ 0 and there is an overlap for −2 < u < t + 2,
Case III (Figure 104) when 0 < t < 4 and there is an overlap for t − 2 < u < 2, case IV
(Figure 105) when 4 < t and there is no overlap again. The convolution

g ∗ h =
∫ ∞

−∞
g(u)h(t− u)du =



0 case I∫ t+2

−2
4du = 4(t+ 4) case II∫ 2

t−2
4du = 4(2− (t− 2)) = 4(4− t)) case III

0 case IV

This convolution is plotted in Figure 106.
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u
−2 2t+2

  t < −4

Figure 102: Graph of h and h for problem 1b of Chapter 6.2 when t < −4

u
−2 2t+2

−4 < t < 0

Figure 103: Graph of h and h for problem 1b of Chapter 6.2 when −4 ≤ t ≤ 0

u
−2 2 t+2

0 < t < 4

Figure 104: Graph of g and h for problem 1b of Chapter 6.2 when 0 < t < 4

u
−2 2 t+2

4 < t 

Figure 105: Graph of g and h for problem 1b of Chapter 6.2 when 4 < t
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By definition

F [g ∗ h] =
∫ ∞

−∞
g ∗ he−2πjftdt

F [g ∗ h] =
∫ 0

−4
4(4 + t)e−2πjftdt+

∫ 4

0
4(4− t)e−2πjftdt

F [g ∗ h] = 4
sin2(4πf)

(πf)2

By convolution theorem

H(f) = G(f) = 2
sin(4πf)

πf

therefore

F [g ∗ h] = G(f)H(f) = 4
sin2(4πf)

(πf)2

6420-2-4

16

8

12

-6
0

4

Figure 106: Graph of the convolution for problem 1b of Chapter 6.2
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1. c. h(t) = e−|t| , −∞ < t < ∞
g(t) = cos(2πt) , −∞ < t < ∞
The graphs of h(t) and g(t) are given in Figure 107 and the graph of h(t− u) is given in

Figure 108.
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Figure 107: Graph of h(t) (on the left) and g(t) (on the right) for problem 1c of Chapter 6.2

u
t

Figure 108: Graph of h(t− u) for problem 1c of Chapter 6.2

By definition

g ∗ h =
∫ ∞

−∞
g(u)h(t− u)du

or the equivalent form which is easier to integrate

g ∗ h =
∫ ∞

−∞
h(u)g(t− u)du

g ∗ h =
∫ ∞

−∞
e−|u| cos(2π(t− u))du

g ∗ h =
∫ ∞

−∞
e−|u| [cos(2πt) cos(2πu) + sin(2πt) sin(2πu)] du

g∗h = cos(2πt)
∫ ∞

−∞
e−|u| cos(2πu)du+sin(2πt)

∫ ∞

−∞
e−|u| sin(2πu)du︸ ︷︷ ︸

odd function on a symmetric interval, integral =0
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u

Figure 109: Graph of g(u)h(t− u) for problem 1c of Chapter 6.2

g ∗ h = 2 cos(2πt)
∫ ∞

0
e−|u| cos(2πu)du

g ∗ h =
2

1 + 4π2
cos(2πt)

The graph of the convolution is given in Figure 110.

0.04

-0.04

0

-0.02

0.02

1-1 20-2

Figure 110: Graph of the convolution for problem 1c of Chapter 6.2

By definition

F [g ∗ h] =
∫ ∞

−∞
g ∗ he−2πjftdt

F [g ∗ h] = F
[

2

1 + 4π2
cos(2πt)

]
F [g ∗ h] = 1

1 + 4π2
[δ(f − 1) + δ(f + 1)]

By convolution theorem

H(f) = 2
1

1 + 4π2f 2

G(f) =
1

2
[δ(f − 1) + δ(f + 1)]

therefore

F [g ∗ h] = G(f)H(f) =
1

1 + 4π2
[δ(f − 1) + δ(f + 1)]
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Note that this last step uses the fact that ϕ(x)δ(x− x0) ≡ ϕ(x0)δ(x− x0).
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6.3 Linear, Shift-Invariant Systems

6.4 Determining a System’s Impulse Response and Transfer Func-
tion

6.5 Applications of Convolution - Signal Processing and Filters

6.6 Applications of Convolution - Amplitude Modulation and Fre-
quency Division Multiplexing

6.7 The D’Alembert Solution Revisited

6.8 Dispersive Waves

6.9 Correlation
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6.10 Summary

PROBLEMS

1. Consider the linear, shift-invariant system represented by the following circuit

L
dI

dt
+RI = E(t)

Vout = RI

a. Directly determine, e.g. using the Laplace transform, the impulse response of this
system. Sketch this response.

b. (1) Find the Transfer function of this system by computing the Fourier transform of
the impulse response determined in part a. above.

b. (2) Show that the alternative method of finding the Transfer function, i.e. as the
response of a system to the forcing function e2πjf0t , produces the same result as in part (1),

c. Sketch the amplitude and phase spectra of the Transfer function computed in part b.

2. Repeat problem 1 for the same circuit, except with the output taken as the voltage across
the inductor, i.e.

L
dI

dt
+RI = E(t)

Vout = LdI
dt
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1. a.

L
dI

dt
+RI = E(t)

Vout = RI

Laplace transform: Let us denote L[I(t)] = Ĩ(s), then

sLĨ(s) +RĨ(s) = 1

Ṽout(s) = RĨ(s)

Thus

Ĩ(s) =
1

sL+R
⇒ Ṽout(s) =

R

sL+R
=

R

L

1

s+ (R/L)

So

Vout(t) =

{
R
L
e−Rt/L, t > 0

0, t < 0

This Vout is plotted in Figure 111.

t

R/L

L/R

Figure 111: Graph of h(t) for problem 1a of Chapter 6.10
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1. b. (1)
Transfer function

H(f) =
∫ ∞

−∞
h(t)e−2πjftdt =

R

L

∫ ∞

0
e−Rt/Le−2πjftdt =

R

L

1

R/L+ 2πjf

H(f) =
R

R + 2πjfL

1. b. (2) We can find the transfer function by computing the response to e2πjf0t:

L
dI

dt
+RI = e2πjf0t

Using undetermined coefficients, we substitute I(t) = A(f0)e
2πjf0t in the equation and we

have
(2πjf0LA+RA)e2πjf0t = e2πjf0t

or

A(f0) =
1

R + 2πjf0L

Therefore

I(t) =
1

R + 2πjf0L
e2πjf0t

and

Vout = RI =
R

R + 2πjf0L
e2πjf0t = H(f0)e

2πjf0t

Therefore

H(f0) =
R

R + 2πjf0L
or

H(f) =
R

R + 2πjfL

1. c.
We rewrite H(f) as

H(f) =
R2

R2 + (2πfL)2
− j

2πfRL

R2 + (2πfL)2

Therefore

|H(f)| = R√
R2 + (2πfL)2

The plots of |H(f)| and Θ(f) are given in Figures 112 and 113.
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Figure 112: Graph of |H(f)| for problem 1c of Chapter 6.10
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Figure 113: Graph of Θ(f) for problem 1c of Chapter 6.10
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2. a.

L
dI

dt
+RI = E(t)

Vout = LdI
dt

Impulse response:

L
dI

dt
+RI = δ(t)

Vout = LdI
dt

Laplace transform
sLĨ(s) +RĨ(s) = 1

Ṽout(s) = sLĨ(s)

or

Ĩ(s) =
1

sL+R
⇒ Ṽout(s) =

sL

sL+R

Now we can rewrite

Ṽout(s) = 1− R

sL+R
= 1− R

L

1

s+ (L/R)

so

Vout(t) = δ(t)− R

L
e−Rt/L

This function is given in Figure 114.

t

−R/L

L/R

h(t)

Figure 114: Graph of Vout(t) for problem 2a of Chapter 6.10
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2. b. (1)

H(f) = F [h(t)] = F
[
δ(t)− R

L
e−Rt/L

]

H(f) = 1− R

R + 2πjfL
=

2πjfL

R + 2πjfL

2. b. (2)

L
dI

dt
+RI = e2πjf0t

As before

I(t) =
1

R + 2πjf0L
e2πjf0t

Vout = L
dI

dt
=

2πjf0L

R + 2πjf0L︸ ︷︷ ︸
H(f0)

e2πjf0t

So

H(f) =
2πjfL

R + 2πjfL

same as before.

2. c.
We rewrite H(f) as

H(f) =
(2πfL)2

R2 + (2πfL)2
+ j

2πfLR

R2 + (2πfL)2

Therefore

|H(f)| = 2πL|f |√
R2 + (2πfL)2

and

tanΘ(f) =
R

2πfL

The |H(f)| and Θ(f) are given in Figures 115 and 116, respectively.
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Figure 115: Graph of |H(f)| for problem 2c of Chapter 6.10
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Figure 116: Graph of Θ(f) for problem 2c of Chapter 6.10
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7 Appendix A - Bessel’s Equation

7.1 Bessel’s Equation

7.2 Properties of Bessel Functions

PROBLEMS

1. Using the recurrence formulas, and a table of values for J0(x) and J1(x), find

a. J ′
1(x) in terms of J0(x) and J1(x)

b. J2(2.0)

c. J ′
3(1.0)

2. Write, in terms of Jn(x) and Yn(x), the general solution to

a. x2y′′ + xy′ + 4x2y = 0

b. x2y′′ + xy′ + (9x2 − 4)y = 0

c. 4x2y′′ + 4xy′ + (x2 − 1)y = 0
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1. a. Using the recurrence relation NJN(x) + xJ ′
N(x) = xJN−1(x) with N = 1, we have

J1(x) + xJ ′
1(x) = xJ0(x)

Therefore

J ′
1(x) =

xJ0(x)− J1(x)

x

1. b. Using the recurrence relation JN+1 =
2N

x
JN(x)− JN−1(x) with N = 1, we have

J2 =
2

x
J1(x)− J0(x)

From CRC tables (or Maple, Matlab), J0(2.0) = .2239, J1(2.0) = .5767 therefore

J2(2.0) =
2

2
.0(.5767)− .2239 = .3528

1. c. Using the recurrence relation NJN(x) + xJ ′
N(x) = xJN−1(x) with N = 3 we have

3J3(x) + xJ ′
3(x) = xJ2(x)

But

JN+1 =
2N

x
JN(x)− JN−1(x)

with N = 2 yields

J3(x) =
4

x
J2(x)− J1(x)

Combining these two, we get

3
(
4

x
J2(x)− J1(x)

)
+ xJ ′

3(x) = xJ2(x)

So

J ′
3(x) =

1

x

[(
x− 12

x

)
J2(x) + 3J1(x)

]

J ′
3(x) =

1

x

[(
x− 12

x

)(
2

x
J1(x)− J0(x)

)
+ 3J1(x)

]
Thus

J ′
3(1.0) = [−11 (2J1(1.0)− J0(1.0)) + 3J1(1.0)]

J ′
3(1.0) = −19J1(1.0) + 11J0(1.0) = −19(.4401) + 11(.7652) = .0553
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2. a. The general solution of x2y′′ + xy′ + (ξ2x2 − n2) y = 0 is

C1Jn(ξx) + C2Yn(ξx)

In our case n = 0 and ξ = 2, therefore the solution is

C1J0(2x) + C2Y0(2x)

2. b. The equation x2y′′ + xy′ + (9x2 − 4)y = 0 matches the general case with n = 2
and ξ = 3, therefore the solution is

C1J2(3x) + C2Y2(3x)

2. c. The equation 4x2y′′ + 4xy′ + (x2 − 1)y = 0 matches the general case with n =
1

2

and ξ =
1

2
, therefore the solution is

C1J1/2

(
1

2
x
)
+ C2Y1/2

(
1

2
x
)
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7.3 Variants of Bessel’s Equation

PROBLEMS
Use Bessel Functions (the big ugly equation) to find the general solution to each ODE

below.

1.
x2y′′ + 3 xy′ +

(
−3 + 4x4

)
y = 0

2.
x2y′′ +

(
x+ 2 x2

)
y′ +

(
−4 + 9 x−2 + x+ x2

)
y = 0

3.
x2y′′ − 5xy′ +

(
9 + 4 x2

)
y = 0

4.
x2y′′ +

(
x− 2 x3

)
y′ +

(
−1/4 + x−2 − 2 x2 + x4

)
y = 0
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Answers

1.
y(x) = AJ1(x

2)/x+B Y1(x
2)/x

2.
y(x) = e−x (AJ2(3/x) +B Y2(3/x))

3.
y(x) = x3 (AJ0(2x) +B Y0(2x))

4.
y(x) = ex

2/2
(
AJ1/2(1/x) + B Y1/2(1/x)

)

175


