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1.1 Text

The main text for the first part of this course would be

• T. W. Körner,Fourier Analysis

The following textbooks are also “fun”

• H. Dym and H. P. Mckean,Fourier Series and Integrals.

• A. Terras,Harmonic Analysis on Symmetric Spaces and Applications, Vols. I, II.

The following text follows a more terse exposition

• Y. Katznelson,An Introduction to Harmonic Analysis.

1.2 Introduction and Motivation

Consider a vector spaceV (which can be of finite dimension). From linear algebra we know that at least in
the finite-dimension caseV has a basis. Moreover, there are more than one basis and in general different
bases are the same. However, in some cases when the vector space has some additional structure, some
basis might be preferable over others. To give a more concrete example consider the vector spaceV =
{f : X → R or C} whereX is some universe. IfX = {1, · · · , n} then one can see thatV is indeed the
spaceRn or Cn respectively in which case we have no reason to prefer any particular basis. However, ifX
is an abelian group1 there may be a reason to prefer a basisB over others. As an example, let us consider
X = Z/nZ, V = {(y0, · · · , yn)|yi ∈ R} = Rn. We now give some scenarios (mostly inspired by the
engineering applications of Fourier Transforms) where we want some properties forB aka our “wish list”:

1An abelian group is given by〈S, +〉whereS is the set of elements which is closed under the commutative operation+. Further
there exists an identity element0 and every element inS has an inverse.
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1. Think of the elements ofZ/nZ as time units and let the vectory = (y1, · · · , yn) denote some mea-
surements taken at the different time units. Now consider another vectorz = {z1, · · · , zn} such that
for all i, zi = yi+1 mod (n). Note that the vectorsy andz are different though from the measurement
point of view they are not much different– they correspond to the same physical situation when our
clock was shifted by one unit of time. Thus, with this application in mind, we might want to look for
a basis forV such that the representation ofz is “closely related” to that ofy.

2. In a setting more general than the previous one, if forf : X → R, a given member ofV anda ∈ X,
g : X → R be such thatg(x) = f(x + a) then we would like to have representations off andg
being “close” inB for anyf anda. Note that in the previous examplex corresponds to the indexi
anda = 1.

3. In situations where derivatives (or discrete analogues thereof are well-defined), we would likef ′ to
have a representation similar to that off .

4. In real life, signals are never nice and smooth but suffer from noise. One way to reduce the noise is
to “average-out” the signal. As a concrete example let the signal samples be given byf0, · · · , fn−1

then the smoothened out signal could be given by the samplesgi = 1
4fi−1 + 1

2fi + 1
4fi+1. Define

g−1 = 1
4 , g0 = 1

2 , g1 = 1
4 . We now look at an new operator:convolutionwhich is defined as follows.

Let g bef convolved whereh = f ∗ g andh(x) =
∑

y f(y)g(x− y). So another natural property of
B is that the representation off ∗ g should be related to that off andg.

Before we go ahead, here are some frequently used instantiations ofX:

• X = Z/nZ. This is the Discrete Fourier Transform (DFT).

• X = T = {Real Numbers mod1, addition mod1} ∼= {eiθ,multiplication}. The isomorphism exists
because multiplication of elements in the second group is the same as addition mod2π of the angles
θ.

This is the most classical case of the theory, covered by the bookTrigonometric Polynomialsby
Zygmund.

• X = (R,+). This is the Real Fourier Transform. In this case, in order to get meaningful analysis,
one has to restrict the family of functionsf : X → R under consideration e.g. ones with converging
integrals or those with compact support. The more general framework is that of Locally compact
Abelian groups.

• X = {0, 1}n where the operations are done mod2. Note that{f : X → {0, 1}} are simply the
boolean functions.

1.3 A good basis

As before letX be an abelian group and define the vector spaceV = {f : X → R}.

Definition 1.1. Thecharactersof X is the set{χ : X → C|χ is a homomorphism}.
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By homomorphism we mean that the following relationship holds:χ(x + y) = χ(x) · χ(y) for any
x, y ∈ X. As a concrete example,X = Z/nZ hasn distinct characters and thejth character is given by
χj(x) = ωjx for anyx ∈ X whereω = e2πi/n.

We now state a general theorem without proof (we will soon prove a special case):

Theorem 1.1. Distinct characters (considered as functions fromX → C) are orthogonal2.

We now have the following fact:

Fact 1.1. If X is a finite abelian group ofn elements, thenX hasn distinct characters which form an
orthogonal basis forV = {f : X → R}.

Consider the special case ofX = Z/nZ. We will show that the characters are orthogonal. Recall that
in this case,χj(x) = ωjx. By definition,〈χj , χk〉 =

∑n−1
x=0 ωjxω−kx =

∑n−1
x=0 ω(j−k)x. If j = k then each

term is one and the inner product evaluates ton. If j 6= k, then summing up the geometric series, we have

〈χj , χk〉 = (ωj−k)n−1
ωj−k = 0. The last equality follows from the fact thatωn = 1.

We will take a quick detour and mention some applications where Fourier Analysis has had some mea-
sure of success:

• Coding Theory. A codeC is a subset of{0, 1}n where we want each element to be as far as possible
from each other (where far is measured in terms of the hamming distance). We would likeC to be
as large as possible while keeping the distance as large as possible. Note that these are two opposing
goals.

• Influence of variables on boolean functions. Say you have an array of sensors and there is some
function which computes an answer. If a few of the sensors fail then answers should not change: in
other words we need to find functions that are not too influenced by their variables.

• Numerical Integration/ Discrepancy. Say you want to integrate over some domainΩ. Of course
one cannot find the exact integral if one does not have have an analytical expression of the function.
So one would sample measurements at some discrete points and try and approximate the integral.
Suppose that we further know that certain subdomains ofΩ are significant for the computation. The
main question is how to spreadn points inΩ such that every “significant” region is sampled with the
“correct” number of points.

1.4 A Rush Course in Classical Fourier Analysis

Let X = T =
({

eiθ | 0 ≤ θ < 2π
}

, multiplication
)
. Let f : T → C, which can alternatively be thought of

as a periodic functionf : R → C. What do characters ofX look like?

There are infinitely many characters and each is a periodic function fromR to C. In fact, every character
of X is a functionχ : X → T, i.e. χ : T → T. Being a homomorphism, it must also satisfyχ(x.y) =

2There is natural notion of inner-product among functionsf, g : X → R. 〈f, g〉 =
P

x∈X f(x)g(x) in the discrete case and
〈f, g〉 =

R
f(x)g(x) dx in the continuous case. If the functions maps intoC, theng(x) is replaced by its conjugateg(x) in the

expressions. Finallyf andg areorthogonalif 〈f, g〉 = 0
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χ(x).χ(y). This implies that the only continuous characters ofX areχk(x) = xk, k ∈ Z. Note that if
k 6∈ Z, thenxk can have multiple values, discontinuities, etc. It is an easy check to see that〈χk, χl〉 = δkl:

〈χk, χl〉 =
1
2π

∫
T

χk(x) χl(x) dx

=
1
2π

∫
T

xkx−l dx

=
1
2π

∫
T

xk−ldx

=
1
2π

∫ 2π

0
eiθ(k−l) dθ

=
{

1 if k = l
0 if k 6= l

= δkl

How do we express a givenf : T → C in the basis of the characters ofX? Recall that ifV is a finite
dimentional vector space over a fieldF with an inner product andu1, . . . , un is an orthonormal basis forV ,
then everyf ∈ V can be expressed as

f =
n∑

j=1

ajuj , aj ∈ F, aj = 〈f, uj〉 (1.1)

We would like to obtain a similar representation off in the basis of the charactersχk, k ∈ Z.

Definition 1.2 (Fourier Coefficients). For r ∈ Z, therth Fourier coefficient off is

f̂(r) =
1
2π

∫
T

f(t) e−irt dt

The analogue of Equation 1.1 now becomes

Sn(f, t) =
n∑

r=−n

f̂(r) eirt, does lim
n→∞

Sn(f, t) = f(t)? (1.2)

Here f̂(r) replacesaj andχr(eit) replacesuj in Equation 1.1. In a dream world, we would like to ask

whether
∑∞

r=−∞ f̂(r) eirt ?= f(t) holds. We are, however, being more careful and asking the question by
making this sum go from−n to n and considering the limit asn →∞.

1.4.1 Notions of Convergence

Before attempting to answer the question of representation off in terms of its Fourier coefficients, we must
formalize what it means for two functions defined over a domainA to be “close”. Three commonly studied
notions of distance between functions (and hence of convergence of functions) are as follows.

L∞ Distance: ||f − g||∞ = supx∈A |f(x) − g(x)|. Recall that convergence in the sense ofL∞ is called
uniform convergence.
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L1 Distance: ||f − g||1 =
∫
A |f(x)− g(x)| dx

L2 Distance: ||f − g||2 =
√∫

A |f(x)− g(x)|2 dx

In Fourier Analysis, all three measures of proximity are used at different times and in different contexts.

1.4.2 Fourier Expansion and Fejer’s Theorem

The first correct proof (under appropriate assumptions) of the validity of Equation 1.2 was given by Dirichlet:

Theorem 1.2 (Dirichlet). Let f : T → C be a continuous function whose first derivative is continuous
with the possible exception of finitely many points. Then Equation 1.2 holds for everyt ∈ T at whichf is
continuous.

Even before Dirichlet proved this theorem, DuBois Reymond gave an example of a continuousf for
which lim supn→∞ Sn(f, 0) = ∞. This ruled out the possibility that continuity is sufficient for Equation
1.2 to hold. The difficulty in answering the question affirmatively came in proving convergence ofSn(f, t) as
n →∞. Fejer answered a more relaxed version of the problem, namely, when canf bereconstructedfrom
f̂(r) in possibly other ways? He showed that iff satisfies certain conditions even weaker than continuity,
then it can be reconstructed from̂f(r) by taking averages.

Definition 1.3 (Cesaro Means).Let a1, a2, . . . be a sequence of real numbers. Theirkth Cesaro meanis
bk = (1/k)

∑k
j=1 aj .

Proposition 1.3. Let a1, a2, . . . be a sequence of real numbers that converges toa. Then the sequence
b1, b2, . . . of its Cesaro means converges toa as well. Moreover, the sequence{bi} can converge even when
the sequence{ai} does not (e.g.a2j = 1, a2j+1 = 0).

Let us apply the idea of Cesaro means toSn. Define

σn(f, t) =
1

n + 1

n∑
k=0

Sk(f, t)

=
1

n + 1

n∑
k=0

k∑
r=−k

f̂(r) eirt

=
n∑

r=−n

n + 1− |r|
n + 1

f̂(r) eirt

Theorem 1.4 (Fejer). Let f : T → C be Riemann integrable. Iff is continuous att ∈ T, then
limn→∞ σn(f, t) = f(t). Further, iff is continuous then the above holds uniformly.

Proof. Note thatlimn→∞ σn(f, t) = f(t) means that∀ε > 0,∃n0 : n > n0 ⇒ |σn(f, t) − f(t)| < ε. The
convergence is uniform if the samen0 works for allt simultaneously. The proof of the Theorem uses Fejer’s
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kernelsKn that behave as continuous approximations to the Dirac delta function.

σn(f, t) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r) eirt

=
n∑

r=−n

n + 1− |r|
n + 1

(
1
2π

∫
T

f(x) e−irx dx

)
eirt

=
1
2π

∫
T

f(x)
n∑

r=−n

n + 1− |r|
n + 1

eir(t−x) dx

=
1
2π

∫
T

f(x)Kn(t− x) dx for Kn(z) def=
n∑

r=−n

n + 1− |r|
n + 1

eirz

=
1
2π

∫
T

f(t− y)Kn(y) dy for y = t− x

which is the convolution off with kernelKn. Note that ifKn were the Dirac delta function, then
∫

T f(t−
y)Kn(y) dy would evaluate exactly tof(t). Fejer’s kernelsKn approximate this behavior.

Proposition 1.5. Kn satisfies the following:

Kn(s) =

 1
n+1

(
sin n+1

2
s

sin n
2

)2

if s 6= 0

n + 1 if s = 0

The kernelsKn have three useful properties.

1. ∀u : Kn(u) ≥ 0

2. ∀δ > 0 : Kn(s) → 0 uniformly outside the interval[−δ, δ], i.e. ∀ε > 0,∃n0 : s /∈ [−δ, δ] ⇒
|Kn(s)| < ε

3. (1/2π)
∫

T Kn(s) ds = 1

Given anyε > 0, we seek a large enoughn0 such that for alln > n0, |
∫

T f(t−y)Kn(y) dy−f(t)| < ε.
Divide this integral into two intervals:∫

T
f(t− y)Kn(y) dy =

∫ δ

−δ
f(t− y)Kn(y) dy +

∫
T\[−δ,δ]

f(t− y)Kn(y) dy

The first integral on the RHS converges to2πf(t) becausef(t−y) is almost constant and equalsf(t) in the
rangey ∈ [−δ, δ] and

∫
T\[−δ,δ] Kn(s) ds converges to2π because of property 3 ofKn. The second integral

converges to0 becausef is bounded and because of property 2 ofKn. Hence the LHS converges to2πf(t),
finishing the proof.

Corollary 1.6. If f, g : T → C are continuous functions and∀r ∈ Z : f̂(r) = ĝ(r), thenf = g.

Proof. Let h
def= f −g. h is also continuous.∀r : ĥ(r) = f̂(r)− ĝ(r) = 0. By Fejer’s Theorem,h ≡ 0.

6



1.4.3 Connection with Weierstrass’ Theorem

Because of the uniform convergence part of Fejer’s Theorem, we have proved that for allf : T → C
continuous and allε > 0, there exists a trigonometric polynomialP such that for allt ∈ T, |f(t)− P (t)| <
ε. This impliesWeierstrass’ Theoremwhich states that “underl∞[a, b] norm, polynomials are dense in
C[a, b],” i.e., for all f : [a, b] → R continuous and allε > 0, there exists a polynomialP such that for all
x ∈ [a, b], |f(x)− P (x)| < ε.

Informally, Weierstrass’ Theorem says that given any continuous function over a finite inverval and an
arbitrarily small envelope around it, we can find a polynomial that fits inside that envelope in that interval.
To see why this is implied by Fejer’s Theorem, simply convert the given functionf : [a, b] → C into a
symmetric functiong over an interval of size2(b − a), identify the end points of the new interval so that it
is isomorphic toT, and use Fejer’s Theorem to conclude thatσn(g, .) is a trigonometric polynomial close
to g (and hencef ). To see why Weierstrass’ Theorem implies Fejer’s Theorem, recall thatcos rt can be
expressed as a degreer polynomial incos t. Use this to express the promised trigonometric polynomial
P (t) as a linear combination ofcos rt andsin rt with −n ≤ r ≤ n.

Remark.Weierstrass’ Theorem can alternatively be proved using Bernstein’s polynomials even though nor-
mal interpolation polynomials do not work well for this purpose. Considerf : [0, 1] → R. The nth

Bernstein polynomial isBn(f, x) def=
∑n

k=0 f( k
n)
(
n
k

)
xk(1 − x)n−k. The key idea is that this involves the

fact that the Binomial distributionP (k) =
(
n
k

)
xk(1−x)n−k is highly concentrated aroundk = xn and thus

approximates the behavior of the Dirac delta function.
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Lecture 2

Introduction to Some Convergence theorems

Friday 14, 2005
Lecturer: Nati Linial

Notes: Mukund Narasimhan and Chris Ré

2.1 Recap

Recall that forf : T → C, we had defined

f̂(r) =
1
2π

∫
T

f(t)e−irt dt

and we were trying toreconstructf from f̂ . The classical theory tries to determine if/when the following is
true (for an appropriate definition of equality).

f(t) ??=
∑
r∈Z

f̂(r)eirt

In the last lecture, we proved Fejér’s theoremf ∗ kn → f where the∗ denotes convolution andkn (Fej́er
kernels) are trignometric polynomials that satisfy

1. kn ≥ 0

2.
∫

T kn = 1

3. kn(s) → 0 uniformly asn →∞ outside[−δ, δ] for anyδ > 0.

If X is a finite abelian group, then the space of all functionsf : X → C forms an algebra with the operations
(+, ∗) where+ is the usual pointwise sum and∗ is convolution. If instead of a finite abelian group, we take
X to beT then there is no unit in this algebra (i.e., no elementh with the property thath ∗ f = f for all f ).
However thekn behave asapproximate unitsand play an important role in this theory. If we let

Sn(f, t) =
n∑

r=−n

f̂(r)eirt

ThenSn(f, t) = f ∗Dn, whereDn is the Dirichlet kernel that is given by

Dn(x) =
sin
(
n + 1

2

)
s

sin s
2

The Dirichlet kernel does not have all the nice properties of the the Fejér kernel. In particular,
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1. Dn changes sign.

2. Dn does not converge uniformly to 0 outside arbitrarily small[−δ, δ] intervals.

Remark.The choice of an appropriate kernel can simplify applications and proofs tremendously.

2.2 The Classical Theory

Let G be a locally compact abelian group.

Definition 2.1. A character onG is ahomomorphismχ : G → T. Namely a mapping satisfyinχ(g1+g2) =
χ(g1)χ(g2) for all g1, g2 ∈ G.

If χ1, χ2 are any two characters ofG, then it is easily verified thatχ1χ2 is also a character ofG, and so
the set of characters ofG forms a commutative group under multiplication. An important role is played by
Ĝ, the group of all continuous characters. For example,T̂ = Z andR̂ = R.

For any functionf : G → C, associate with it a function̂f : Ĝ → C wheref̂(χ) = 〈f, χ〉. For
example, ifG = T thenχr(t) = eirt for r ∈ Z. Then we havêf(χr) = f̂(r). We call f̂ : Ĝ → C the
Fourier transform off . Now Ĝ is also a locally compact abelian group and we can play the same game

backwards to construct̂̂f . Pontryagin’s theorem asserts thatˆ̂
G = G and so we can ask the question: Does

ˆ̂
f = f ? While in theory Fej́er answered the question of whenf̂ uniquely determinesf , this question is still
left unanswered.

For the general theory, we will also require a normalized nonnegative measureµ onG that is translation
invariant:µ(S) = µ(a + S) = µ ({a + s |s ∈ S }) for everyS ⊆ G anda ∈ G. There exists a unique such
measure which is called the Haar measure.

2.3 Lp spaces

Definition 2.2. If (X, Ω, µ) is a measure space, thenLp(X, Ω, µ) is the space of all measureable functions
f : X → R such that

‖f‖p =
[∫

X
|f |p · dµ

] 1
p

< ∞

For example, ifX = N, Ω is the set of all finite subsets ofX, andµ is the counting measure, then

‖(x1, x2, . . . , xn, . . . )‖p = (
∑
|xi|p)

1
p . Forp = ∞, we define

‖x‖∞ = sup
i∈N

|xi|

Symmetrizationis a technique that we will find useful. Loosely, the idea is that we are averaging over
all the group elements.

Given a functionf : G → C, we symmetrize it by definingg : G → C as follows.

g(x) =
∫

G
f(x + a) dµ(a)
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We will use this concept in the proof of the following result.

Proposition 2.1. If G is a locally compact abelian group, with a normalized Haar measureµ, and if
χ1, χ2 ∈ Ĝ are two distinct characters then〈χ1, χ2〉 = 0. i.e.,

I =
∫

X
χ1(x)χ2(x) dµ(x) = δχ1,χ2 =

{
0 χ1 6= χ2

1 χ1 = χ2

Proof. For any fixeda ∈ G, I =
∫
X χ1(x)χ2(x) dµ(x) =

∫
X χ1(x + a)χ2(x + a) dµ(x). Therefore,

I =
∫

X
χ1(x + a)χ2(x + a) dµ(x)

=
∫

X
χ1(x)χ1(a)χ2(x)χ2(a) dµ(x)

= χ1(a)χ2(a)
∫

X
χ1(x)χ2(x) dµ(x)

= χ1(a)χ2(a)I

This can only be true if eitherI = 0 or χ1(a) = χ2(a). If χ1 6= χ2, then there is at least onea such that
χ1(a) 6= χ2(a). It follows that eitherχ1 = χ2 or I = 0.

By letting χ2 be the character that is identically 1, we conclude thatχ ∈ Ĝ with χ 6= 1 for any∫
G χ(x) dµ(x) = 0.

2.4 Approximation Theory

Weierstrass’s theorem states that the polynomials are dense inL∞[a, b] ∩ C[a, b]1 Fej́er’s theorem is about
approximating functions using trignometric polynomials.

Proposition 2.2. cos nx can be expressed as a degreen polynomial incos x.

Proof. Use the identitycos(u + v) + cos(u− v) = 2 cos u cos v and induction on n.

The polynomialTn(x) whereTn(cos x) = cos(nx) is callednth Chebyshev’s polynomial. It can be
seen thatT0(s) = 1, T1(s) = s, T2(s) = 2s2 − 1 and in generalTn(s) = 2n−1sn plus some lower order
terms.

Theorem 2.3 (Chebyshev).The normalized degreen polynomialp(x) = xn + . . . that approximates the
functionf(x) = 0 (on [−1, 1]) as well as possible in theL∞[−1, 1] norm sense is given by1

2n−1 Tn(x). i.e.,

min
p a normalized polynomial

max
−1≤x≤1

|p(x)| = 1
2n−1

This theorem can be proved using linear programming.

1 This notation is intended to imply that the norm on this space is the sup-norm (clearlyC[a, b] ⊆ L∞[a, b])
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2.4.1 Moment Problems

Suppose thatX is a random variable. The simplest information aboutX are its moments. These are
expressions of the formµr =

∫
f(x)xr dx, wheref is the probability distribution function of X. Amoment

problemasks: Suppose I know all (or some of) the moments{µr}r∈N. Do I know the distribution ofX?

Theorem 2.4 (Hausdorff Moment Theorem). If f, g : [a, b] → C are two continuous functions and if for
all r = 0, 1, 2, . . . , we have ∫ b

a
f(x)xr dx =

∫ b

a
g(x)xr dx

thenf = g. Equivalently, ifh : [a, b] → C is a continuous function with
∫ b
a h(x)xr dx = 0 for all r ∈ N,

thenh ≡ 0.

Proof. By Weierstrass’s theorem, we know that for allε > 0, there is a polynomialP such that
∥∥h− P

∥∥
∞ <

ε. If
∫ b
a h(x)xr dx = 0 for all r ∈ N, then it follows that

∫ b
a h(x)Q(x) dx = 0 for every polynomialQ(x),

and so in particular,
∫ b
a h(x)P (x) dx. Therefore,

0 =
∫ b

a
h(x)P (x) dx =

∫ b

a
h(x)h(x) dx +

∫ b

a
h(x)

(
P (x)− h(x)

)
dx

Therefore,

〈h, h〉 = −
∫ b

a
h(x)

(
P (x)− h(x)

)
dx

Since h is continuous, it is bounded on[a, b] by some constantc and so on [a, b] we have∣∣∣h(x)
(
P (x)− h(x)

)∣∣∣ ≤ c · ε · |b− a|. Therefore, for anyδ > 0 we can pickε > 0 so that so that

‖h‖2
2 ≤ δ. Henceh ≡ 0.

2.4.2 A little Ergodic Theory

Theorem 2.5. Letf : T → C be continuous andγ be irrational. Then

lim
n→∞

1
n

n∑
r=1

f
(
e2πir

)
=
∫

T
f(t) dt

Proof. We show that this result holds whenf(t) = eist. Using Fej́er’s theorem, it will follow that the result
holds for any continuous function. Now, clearly12π

∫
T eist dt = 0. Therefore,∣∣∣∣∣ 1n

n∑
r=1

e2πirsγ − 1
2π

∫
T

eist dt

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
r=1

e2πirsγ

∣∣∣∣∣
=
∣∣∣∣ 1ne2πisγ

∣∣∣∣ ∣∣∣∣1− e2πinsγ

1− e2πisγ

∣∣∣∣
≤ 2

n · (1− e2πisγ)

Sinceγ is irrational,1 − e2πisγ is bounded away from 0. Therefore, this quantity goes to zero, and hence
the result follows.
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Figure 2.1: Probability of Property v. p

This result has applications in the evaluations of integrals, volume of convex bodies. Is is also used in
the proof of the following result.

Theorem 2.6 (Weyl). Letγ be an irrational number. Forx ∈ R, we denote by〈x〉 = x− [x] the fractional
part ofx. For any0 < a < b < 1, we have

lim
n→∞

|{1 ≤ r ≤ n : a ≤ 〈rγ〉 < b}|
n

= b− a

Proof. We would like to use Theorem 2.5 with the functionf = 1[a,b]. However, this function is not
continuous. To get around this, we define functionsf+ ≥ 1[a,b] ≥ f− as shown in the following diagram.

f+ and f− are continuous functions approximatingf . We let let them approachf and pass to the
limit.

This is related to a more general ergodic theorem by Birkhoff.

Theorem 2.7 (Birkhoff, 1931). Let (Ω,F , p) be a probability measure andT : Ω → Ω be a measure
preserving transformation. LetX ∈ L1(Ω,F , p) be a random variable. Then

1
n

n∑
k=1

X ◦ T k → E [X; I]

WhereI is theσ-field ofT -invariant sets.

2.5 Some Convergence Theorems

We seek conditions under whichSn(f, t) → f(t) (preferably uniformly). Some history:

• DuBois Raymond gave an example of a continuous function such thatlim supSn(f, 0) = ∞.

• Kolmogorov [1] found a Lebesgue measureable functionf : T → R such that for allt,
lim supSn(f, t) = ∞.
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• Carleson [2] showed that iff : T → C is a continuous function (even Riemann integrable), then
Sn(f, t) → f(t) almost everywhere.

• Kahane and Katznelson [3] showed that for everyE ⊆ T with µ(E) = 0, there exists a continuous
functionf : T → C such thatSn(f, t) 6→ f(t) if and only if t ∈ E.

Definition 2.3. `p = Lp(N, Finite sets, counting measure). = {x|(x0, . . . )|p < ∞}.

Theorem 2.8. Let f : T → C be continuous and suppose that
∑

r∈Z |f̂(r)| < ∞ (so f̂ ∈ `1). Then
Sn(f, t) → f uniformly onT.

Proof. See lecture 3, theorem 3.1.

2.6 TheL2 theory

The fact thate(t) = eist is an orthonormal family of functions allows to develop a very satisfactory theory.
Given a functionf , the best coefficientsλ1, λ2, . . . , λn so that‖f −

∑n
i=1 λjej‖2 is minimized is given by

λj = 〈f, ej〉. This answer applies just as well in any inner product normed space (Hilbert space) whenever
{ej} forms an orthonormal system.

Theorem 2.9 (Bessel’s Inequality).For everyλ1, λ2, . . . , λn,

∥∥∥∥∥f −
n∑

i=1

λiei

∥∥∥∥∥
2

≥ ‖f‖2 −
n∑

i=1

〈f, ei〉2

with equality whenλi = 〈f, ei〉

Proof. We offer a proof here for the real case, in the next lecture the complex case will be done as well.∥∥∥∥∥f −
n∑

i=1

λiei

∥∥∥∥∥
2

=

∥∥∥∥∥(f −
n∑

i=1

〈f, ei〉ei) + (
n∑

i=1

〈f, ei〉ei −
n∑

i=1

λiei)

∥∥∥∥∥
2

=

∥∥∥∥∥(f −
n∑

i=1

〈f, ei〉ei)

∥∥∥∥∥
2

+

∥∥∥∥∥(
n∑

i=1

〈f, ei〉ei −
n∑

i=1

λiei)

∥∥∥∥∥
2

+ cross terms

cross terms= 2〈f −
n∑

i=1

〈f, ei〉ei,

n∑
i=1

〈f, ei〉ei −
n∑

i=1

λiei〉

Observe that the terms in the cross terms are orthogonal to one another since∀i〈f − 〈f, ei〉ei, ei〉 = 0. We
write

2
∑

〈f, ei〉〈f −
n∑

j=1

〈f, ej〉ej , ei〉 −
n∑
i

λi〈f −
n∑

j=1

〈f, ej〉ei, ei〉

Observe that each innter product term is 0. Since ifi = j, then we apply∀i〈f − 〈f, ei〉ei, ei〉 = 0. If
i 6= j, then they are orthogonal basis vectors.
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We want to make this as small as possible and have only control over theλis. Since this term is squared
and therefore non-negative, the sum is minimized when we set∀i λi = 〈f, ei〉. With this choice,∥∥∥∥∥f −

n∑
i=1

λiei

∥∥∥∥∥
2

= 〈f −
n∑

i=1

λiei, f −
n∑

i=1

λiei〉

= 〈f, f〉 − 2
n∑

i=1

λi〈f, ei〉+
n∑

i=1

λ2
i

= ‖f‖2 −
n∑

i=1

〈f, ei〉2

where the last inequality is obtained by settingλi = 〈f, ei〉.
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Lecture 3

Harmonic Analysis on the Cube and Parseval’s
Identity

Jan 28, 2005
Lecturer: Nati Linial

Notes: Pete Couperus and Neva Cherniavsky

3.1 Where we can use this

During the past weeks, we developed the general machinery which we will apply to problems in discrete
math and computer science in the following weeks. In the general setting, we can ask how much information
can we determine about a functionf given its Fourier coefficientŝf . Or, givenf what can we say about
f̂? There is some distinction between properties which will hold in the general setting, and those that make
sense for the specific spaces we have dealt with. So far, we have looked at

1. T (the unit circle/Fourier Series).

2. Z/nZ (Discrete Fourier Transform).

3. R (Real Fourier Transform).

4. {0, 1}n = GF(2)n = (Z/2Z)n (then-cube).

For then-cube (or for any space we wish to do Harmonic Analysis on), we need to determine the characters.
We can view elements of{0, 1}n as subsets of[n] = {1, ..., n}, and then to each subsetS ⊆ [n], let
χS(T ) = (−1)|S∩T |. Then:

〈χS1 , χS2〉 =
1
2n

∑
T⊆[n]

(−1)|S1∩T |+|S2∩T |

To see that theχS form an orthonormal basis, suppose thatx ∈ S1 − S2. Then, the function

φ(A) =

{
A− {x} x ∈ A

A ∪ {x} x 6∈ A

gives a bijection between{A : |S1 ∩A| ≡ |S2 ∩A| (mod 2)} and{A : |S1 ∩A| 6≡ |S2 ∩A| (mod 2)}.
So,〈χS1 , χS2〉 = 0 for S1 6= S2. If S1 = S2, then|T ∩ S1|+ |T ∩ S2| is always even, so〈χS , χS〉 = 1.
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Hence, theχS form an orthonormal basis for functions from{0, 1}n → R. (This is, of course, true in
general, but it’s useful to see this explicitly for this special case). Then for anyf : {0, 1}n → R, we can
write f =

∑
S⊆[n] f̂(S)χS , where

f̂(S) = 〈f, χS〉 =
1
2n

∑
T⊆[n]

f(T ) · (−1)|S∩T |.

There is an equivalent and often useful way of viewing this. We can also view then-cube as{−1, 1}n with
coordinate-wise multiplication. In this case, any functionf : {−1, 1}n → R can be uniquely expressed as
a multilinear polynomial:

f =
∑

S⊂{0,1}n

aS

∏
i∈S

xi

where
∏

i∈S xi corresponds toχS .

There is an advantage to the fact that we now deal with a finitegroup. Note thatf =
∑

S⊆[n] f̂(S)χS

is always the case for functions over then-cube, unlike working overT. Working overT, we made some
assumptions onf to be able have a similar formula to recoverf from its fourier coefficients.

Now we can ask, what can be said aboutf̂ whenf is boolean (when the range off is {0, 1})? More
specifically, how do the properties off get reflected inf̂? In general, this is too hard a question to tackle.
But what sorts of relationships between properties are we looking for? In the case ofT, the smoothness of
f roughly corresponds to its fourier coefficientsf̂(r) decaying rapidly asr →∞. E.g.

f : T → C ↔ {f(r)|r ∈ Z}
smooth ↔ f̂(r) decays rapidly

An instance of this relationship can be seen from the following theorems.

Theorem 3.1. Letf : T → C be continuous, and suppose that
∑∞

r=−∞ |f̂(r)| converges. ThenSn(f) → f
uniformly.

We can derive this theorem from another.

Theorem 3.2. Suppose that the sequence
∑n

r=−n |ar| converges (asn →∞). Thengn(t) =
∑n

r=−n are
irt

converges uniformly asn →∞ onT to g : T → C, whereg is continuous and̂g(r) = ar for all r.

This (roughly) says that if we have a sequence that is decreasing rapidly enough (its series converges
absolutely), then we can choose these to be the Fourier coefficients for some continuous function.

To see that Theorem 3.2 implies Theorem 3.1, iff̂(r) = ĝ(r) = ar for all r, and bothf andg are
continuous, thenf = g. This is based on Fejer’s Theorem (or Weierstrauss).

So to prove Theorem 3.1, all that remains is to prove Theorem 3.2.
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Proof. The underlying idea for the proof of Theorem 3.2 is thatC(T) with the∞-norm is acomplete
metric space, meaning that all Cauchy sequences converge. Recall, a sequence(an) is Cauchy if forε > 0,
there is someN so for n, m ≥ N , we haved(an, am) < ε (whered is whatever metric we are using).
So, to prove the theorem, we only need to check that{fn} = {

∑n
−n are

irt} is a Cauchy sequence with
the∞-norm. Sincesn :=

∑n
r=−n |ar| converges, forε > 0, there is someN so that|sm − sn| < ε for

n, m ≥ N (basically, the tail end is small), hence∣∣∣∣∣∣
∣∣∣∣∣∣
∑

m≥|r|>n

are
irt

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

m≥|r|>n

|ar|

∣∣∣∣∣∣ < ε.

So, the{gn} forms a Cauchy sequence.

Hence,

n∑
r=−n

are
−irt → g uniformly, so

e−ikt
n∑

r=−n

are
−irt → e−iktg(t) uniformly.

∫
T

e−ikt
n∑

r=−n

are
−irtdt →

∫
T

e−iktg(t).

(3.1)

Recall, du Bois Raymond gives an example off : T → C such thatlim|Sn(f, 0)| = +∞. However, if
the first derivative is somewhat controlled, we can say more.

Theorem 3.3. Let f : T → C be continuous and suppose thatf ′ is defined for all but a finite subset ofT.
ThenSn(f) → f uniformly.

f smooth↔ f̂ decays rapidly⇒ “Snf → f ”.

Recall from basic analysis, iffn are continuously differentiable and iffn → f uniformly andf ′n → g
uniformly thenf ′ = g andg is continuous. This will allow us to show that the Fourier Series off ′ is
attained by termwise derivatives of the Fourier Series off .

Theorem 3.4. Let f : T → C be continuous and suppose that
∑∞

r=−∞ r|f̂(r)| converges. Thenf is

continuously differentiable and
∑n

r=−n irf̂(r)eirt → f ′ uniformly.

Proof. We would like to show that we can apply this whenfn = Snf . But if
∑∞

r=−∞ r|f̂(r)| converges,

then
∑∞

r=−∞|f̂(r)| converges (since the each term is smaller). So we have

|f̂(r)| ≤ |rf̂(r)| ⇒
n∑
−n

|f̂(r)| converges
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So by Theorem 3.1,fn = Snf → f uniformly. By the same theorem,f ′n =
∑n

r=−n irf̂(r)eirt → g is
continuous. By the statement above due to basic analysis, we know that this implies thatf is continuously
differentiable.

A similar argument will provide a stronger connection between the idea thatf̂(r) are rapidly decreasing
implies thatf is “smoother”.

Proposition 3.5. Let f : T → C satisfyf (n−1) is continuously differentiable except possibly finitely many
pointsX, and|f (n)(x)| ≤ M for x 6∈ X. Then∀r 6= 0|f̂(r)| ≤ Mr−n.

Proof. (Integration by parts).

f̂(r) =
1
2π

∫
T

f(t)e−irtdt. Let u = f(t), dv = e−irtdt. Thendu = f ′(t)dt, v =
e−irt

−ir
.

f̂(r) =
1
2π

∫
T

f(t)e−irtdt =

1
2π

[
f(t)

e−irt

−ir
|π−π −

∫
T

f ′(t)
e−irt

−ir
dt

]
=

1
2π

[
0−

∫
T

f ′(t)
e−irt

−ir
dt

]
= · · · = (first term is 0 sincef is periodic)

1
2π(−ir)n

∫
T

f (n)(t)e−irtdt.

(3.2)

So ∣∣∣f̂(r)
∣∣∣ ≤ ∣∣∣∣(−ir)−n

2π

∣∣∣∣ ∫ π

−π
|f (n)(t)e−irt|dt = O(

1
rn

)

Corollary 3.6. If f : T → C is in C2 (twice continuously differentiable), thenSnf → f uniformly.

Proof.

f̂(r) = O

(
1
r2

)
⇒

∞∑
r=−∞

∣∣∣f̂(r)
∣∣∣ converges.

So,Snf → f uniformly.

3.2 Rate of Convergence

Until now, we haven’t really addressed the rate of convergence, meaning whenSn(f) does converge tof ,
how fast does it converge tof? Examineg(x) = π− |x| for x ∈ [−π, π], and extendg periodically toh(x).
Direction calculation gives|Sn(h, 0) − π| > 1

n+2 . By usingL2 theory, it can be further shown that every

trigonometric polynomialP of degreen has the property‖P − h‖∞ > Ω(n−3/2). Kolmogorov showed the
following.
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Theorem 3.7. (Kolmogorov) For allA > 0, there is a trigonometric polynomialf such that:

1. f ≥ 0.

2. 1
2π

∫
T f(t)dt ≤ 1

3. For everyx ∈ T, supn |Sn(f, x)| ≥ A.

Hence, there is a Lebesgue integrable functionf such that for allx ∈ T, lim|Sn(f, x)| = +∞.

3.2.1 Convergence Results

In 1964, Carleson proved the following.

Theorem 3.8. (Carleson) Iff is continuous (or only Riemann integrable), thenSnf → f almost every-
where.

Later, Kahane and Katznelson proved that this result is tight.

Theorem 3.9. For all E ⊆ T with µ(E) = 0, there is a continuousf such thatSnf → f exactly onT−E.

Notice that these results make somewhat weak assumptions onf . We will now work on seeing how
things improve in the situation wheref is anL2 function.

3.3 L2 theory for Fourier Series

Recall part of original question was “how aref andf̂ related”? Our immediate goal will be to show that in

theL2 case, their norms are identical, which is the Parseval identity. Recall,‖f‖2 =
√∫

T |f(t)|2dt. Then

the Parseval identity states‖f‖2 = ‖f̂‖2. For the Discrete Fourier Transform, this essentially means that
the transform matrix is an orthonormal matrix.

We will procede by focusing on Hilbert Spaces. A Hilbert SpaceH is a normed (C-linear) space with
an inner product〈·, ·〉 satisfying the following axioms.

1. 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉.

2. 〈x, y〉 = 〈y, x〉.

3. 〈x, x〉 = ‖x‖2 ≥ 0 with equality ⇐⇒ x = 0.
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There are a number of facts that we know about familiar Hilbert spaces (likeRn) that hold for general
Hilbert spaces as well.

Theorem 3.10. If H is a Hilbert space, then the Cauchy-Schwarz Inequality holds, namely iff, g ∈ H, then
‖f‖ · ‖g‖ ≥ 〈f, g〉.

Proof. We will show the proof for real Hilbert spaces.

0 ≤ 〈f − λg, f − λg〉 = ‖f‖2 − 2λ〈f, g〉+ λ2‖g‖2. (3.3)

Viewing this as a degree2 polynomial inλ, it is non-negative, so has at most one real root. Hence, the
discriminant(−2〈f, g〉)2 − 4‖f‖2‖g‖2 ≤ 0. Hence,〈f, g〉2 ≤ ‖f‖2‖g‖2.

One may ask, if we have an elementf ∈ H, how can we best approximatef with respect to some
basis? Specifically, lete−n, ..., e0, e1, ..., en be an orthonormal system inH (meaning,〈ei, ej〉 = δi,j).
Givenf ∈ H, the question is to findλi ∈ C such that‖f −

∑
i λiei‖ is minimized.

Theorem 3.11.LetH, {ei}, f be as above. Setg =
∑n

j=−n λjej , andg0 =
∑n

j=−n〈f, ej〉ej . Then

‖f‖2
2 ≥

n∑
j=−n

〈f, ej〉2, ‖f − g‖2 ≥ ‖f − g0‖2 =

√√√√‖f‖2
2 −

n∑
j=−n

〈f, ej〉2 (3.4)

with equality iffλj = 〈f, ej〉 for all j.

Proof.

‖f − g‖2
2 = 〈f − g, f − g〉 = 〈f −

∑
j

λjej , f −
∑

j

λjej〉 =

‖f‖2
2 − (

∑
j

λj〈f, ej〉+ λj〈f, ej〉) +
∑

j

|λj |2 =

〈f, f〉+
∑

j

|λj − 〈f, ej〉|2 −
∑

j

|〈f, ej〉|2 ≥

〈f, f〉 −
∑

j

|〈f, ej〉|2 = ‖f − g0‖2.

(3.5)

Note that equality in the last step occurs exactly whenλj = 〈f, ej〉 for all j.

Corollary 3.12. (Approximation and Bessel’s Inequality).

1. Snf is the closest (in theL2 sense) degreen trigonometric polynomial approximation tof .

2. (Bessel’s Inequality). Iff ∈ L2(T), then

‖f‖2 =
1
2π

∫
T
|f(t)|2dt ≥

n∑
r=−n

|f̂(r)|2,

and‖f‖2 ≥
∑∞

r=−∞|f̂(r)|2.
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This shows one side of the Parseval Identity, namely‖f‖2 ≥ ‖f̂‖2.
Recall by Theorem 3.1, iff continuous andf̂ ∈ l1 (meaning

∑
r|f̂(r)| converges), thenSnf → f

uniformly. We will show thatf having continuous first derivative in fact implies thatf̂ is in l1.

Corollary 3.13. If f ∈ C1, thenSnf → f uniformly.

Proof.

n∑
r=−n

|f̂(r)| = |f̂(0)|+
∑

1≤|r|≤n

|rf̂(r)| · 1
|r|

(by Cauchy-Schwartz) ≤ |f̂(0)|+
√

2
∑

1≤r≤n

1
r2
·
√ ∑

1≤|r|≤n

|f̂ ′(r)|2

(by identity
∞∑
1

1
n2

=
π2

6
) ≤ |f̂(0)|+

√
π2

3
· 1
2π

∫
T
|f ′(t)|2dt

which is bounded since the first derivative is bounded (continuous onT).

3.3.1 Parseval’s Identity

We are now ready to complete the proof of the Parseval Identity.

Theorem 3.14. If f : T → C is continuous, then‖f − Snf‖ → 0.

Proof. By Weierstrass (or Fejer) approximation, for anyε > 0, there is some trigonometric polynomialP
such that‖f − P‖∞ < ε. So,

‖f − Snf‖2 ≤ ‖f − P‖2 + ‖SnP − Snf‖2 ≤ ‖f − P‖∞ + ‖Sn(P − f)‖2

We use the fact thatSnP = f for every trigonometric polynomial of degree≤ n. Then Bessel’s inequality
tells us‖Sn(P − f)‖2 ≤ ‖P − f‖2. Since‖P − f‖2 ≤ ‖P − f‖∞ < ε, we see that‖f −Snf‖2 < 2ε. This
completes the proof.

Hence, it is easy to see‖f‖2 = ‖f̂‖2, and we have the Parseval Identity.

Corollary 3.15. (Parseval) Iff : T → C is continuous, then1
2π

∫
T|f(t)|2dt = ‖f‖2

2 =
∑∞

r=−∞|f̂(r)|2.

Proof. Since‖f−Snf‖2
2 = ‖f‖2

2−
∑n

r=−n|f̂(r)|2 goes to0 asn →∞, we conclude that
∑n

r=−n|f̂(r)|2 →
‖f‖2

2 asn →∞.

In other words,f → f̂ is an isometry inL2.
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3.4 Geometric Proof of the Isoperimetric Inequality

We will complete this next time. Here, we will present Steiner’s idea to resolve the following question.
What is the largest area of a planar region with fixed circumferenceL? We will present Steiner’s idea here.
Suppose thatC is a curve such that the area enclosed is optimal.
C encloses a convex region.
If not, then there are pointsA,B such that the line segment joiningA andB lies outside the region. By

A

B

Figure 3.1: JoiningA andB yields more area.

replacing the arc fromA to B with the line segment fromA to B, we increase the area, and decrease the
circumference. See Figure 3.1.
C encloses a centrally symmetric region.

If not, pick pointsA,B such that the arc length fromA to B is the same for both directions travelled.

A

B

O

L

L’

Figure 3.2: Reflecting larger area yields more area.

Suppose that the region enclosed byAB ∪ L has area at least that of the region enclosed byAB ∪ L′. We
can then replace the latter by a mirror copy of the first. This can only increase the total area and yields a
region that is centrally symmetric with respect to the middle of the segment[A,B]. C is a circle.
Recall the following fact from Euclidean geometry: A circle is the locus of all pointsx such thatxA is

perpendicular toxB whereAB is some segment (which is the diameter of the circle). Therefore, if this is
not so, then there is some parallelograma, b, c, d, with ac passing the the center, inscribed inC (sinceC is
centrally symmetric), and with the angle atb not equal toπ

2 . Now, “move” sidesa, b andc, d to sidesa′, b′
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a

b c

d

b’

a’

c’

d’

RP

Figure 3.3: Changing Parallelogram to Rectangle Yields more area.

andc′, d′ such thata′, b′, c′, d′ forms a rectangle. See Figure 3.3. We obtain a new curveC ′ such that the area
outside of rectangleR = [a′, b′, c′, d′] is the same as the area outside of the parallelogramP = [a, b, c, d].
Since the side lengths ofR andP are the same, the area enclosed byR must exceed the area enclosed by
P , so the area enclosed byC ′ must exceed the area enclosed byC. Hence,C was not optimal. Hence, our
parallelogramP must have angles equal toπ2 .

Although these ideas are pretty and useful, this is still not a proof of the isoperimetric inequality. We do
not know that an optimalC exists, only that if it does, it must be a circle.
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Lecture 4

Applications of Harmonic Analysis

February 4, 2005
Lecturer: Nati Linial

Notes: Matthew Cary

4.1 Useful Facts

Most of our applications of harmonic analysis to computer science will involve only Parseval’s identity.

Theorem 4.1 (Parseval’s Identity).
‖f‖2 = ‖f̂‖2

Corollary 4.2.
〈f, g〉 = 〈f̂ , ĝ〉.

Proof. Note that〈f + g, f + g〉 = ‖f + g‖2 = ‖f̂ + g‖2 = ‖f̂ + ĝ‖2. Now as〈f + g, f + g〉 =
‖f‖2

2 + ‖g‖2
2 + 2〈f, g〉, and similarly‖f̂ + ĝ‖2

2 = ‖f̂‖2
2 + ‖ĝ‖2

2 + 2〈f̂ , ĝ〉, applying Parseval to‖f‖2 and
‖g‖2 and equating finishes the proof.

The other basic identity is the following.

Lemma 4.3.
f̂ ∗ g = f̂ · ĝ

Proof. We will show this for the unit circleT, but one should note that it is true more generally. Recall that
by definitionh = f ∗ g means that

h(t) =
1
2π

∫
T

f(s)g(t− s)ds.

Now to calculatêf ∗ g we manipulatêh.

ĥ(r) =
1
2π

∫
T

h(x)e−irxdx

=
1

4π2

∫∫
T2

f(s)g(x− s)e−irxds dx

=
1

4π2

∫∫
T2

f(s)g(x− s)e−irse−ir(x−s)dx ds
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usinge−irx = e−irse−ri(x−s) and interchanging the order of integration. Then by takingu = x− s we have

=
1

4π2

∫∫
T2

f(s)g(u)e−irse−irudu ds

=
1

4π2

∫
T

f(s)e−irsds

∫
T

g(u)e−irudu

=
(

1
2π

∫
T

f(s)e−irsds

)(
1
2π

∫
T

g(u)ds

)
= f̂ · ĝ.

4.2 Hurwitz’s Proof of the Isoperimetric Inequality

Recall from last lecture that the isoperimetric problem is to show that a circle encloses the largest area for
all curves of a fixed length. Formally, ifL is the length of a curve andA the area enclosed, then we want
to show thatL2 − 4πA ≥ 0 with equality if and only if the curve is a circle. We will prove the following
stronger theorem.

Theorem 4.4.Let(x, y) : T → R2 be an anticlockwise arc length parametrization of a non self-intersecting
curveΓ of lengthL enclosing an areaA. If x, y ∈ C1, then

L2 − 4πA = 2π2
(∑

n6=0

|nx̂(n)− iŷ(n)|2 + |nŷ(n) + ix̂(n)|2 + (n2 − 1)
(
|x̂(n)|2 + |ŷ(n)|2

))
.

In particular, L2 ≥ 4πA with equality if and only ifΓ is a circle.

We will not define “arc length parameterization” formally, only remark that intuitively it means that
if one views the parameterization as describing the motion of a particle in the plane, then an arc length
parameterization is one so that the speed of the particle is constant. In our context, where we view time as
the unit circleT of circumference2π, we have that(ẋ)2+(ẏ)2 is a constant so that the total distance covered

is
(

L
2π

)2
.

Proof. First we use our identity about the parameterization to relate the length to the transform of the
parameterization.(

L

2π

)2

=
1
2π

∫
T

((
ẋ(s)

)2 +
(
ẏ(s)

)2)
ds

= ‖ˆ̇x‖2
2 + ‖ˆ̇y‖2

2 by Parseval’s

=
∞∑
−∞

|inx̂(n)|2 + |inŷ(n)|2 by Fourier differentiation identities

=
∞∑
−∞

−n2
(
|x̂(n)|2 + |ŷ(n)|2

)
(4.1)
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dx/ds

y

Figure 4.1: Computing the area enclosed by a curve

Now we compute the area. As the curve is anticlockwise,

A = −
∫

y
dx

ds
ds,

where the negative sign comes from the fact that the curve is anticlockwise. See Figure 4.1. This area
integral looks like an inner product, so we write

A

2π
= −〈y, ẋ〉 = −〈ŷ, ˆ̇x〉.

By symmetry, considering the area integral from the other direction, we also have that

A

2π
= 〈x̂, ˆ̇y〉,

note there is no negative sign in this expression. Hence by adding we have that

A

π
= 〈x̂, ˆ̇y〉 − 〈ŷ, ˆ̇x〉

=
∞∑
−∞

in
(
x̂(n)∗ŷ(n)− x̂(n)ŷ(n)∗

)
, (4.2)

using the Fourier differentiation identities and using the notationa∗ for the complex conjugate ofa. Now
subtract (4.1) and (4.2) to prove the theorem.

To see why the right hand side is zero if and only ifΓ is a circle, consider when the right hand side
vanishes. As it is a sum of many squares,x̂ and ŷ must vanish for alln 6= 0 or ±1. Looking carefully at
what those terms mean shows that they vanish if and only ifΓ is a circle.

4.3 Harmonic Analysis on the Cube for Coding Theory

The theory of error correcting codes is broad and has numerous practical applications. We will look at the
asymptotic theory of block coding, which like many problems in coding theory is well-known, has a long
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history and is still not well understood. The Boolean or Hamming cube{0, 1}n is the set of alln-bit strings
over{0, 1}. The usual distance on{0, 1}n is theHamming distancedH(x, y), defined overx, y ∈ {0, 1}n

by the number of positions wherex andy are not equal:dH(x, y) = |{i : xi 6= yi}|. A codeC is a subset of
{0, 1}n. Theminimum distanceof C is the minimum distance between any two elements ofC:

dist(C) = min{dH(x, y) : x, y ∈ C}.

The asymptotic question is to estimate the size of the largest code for any given minimum distance,

A(d, n) = max{|C|, C ⊂ {0, 1}n,dist(C) ≥ d},

asn → ∞. The problem is easier if we restrict the parameter space by fixingd to be a constant fraction of
the bit-lengthn, that is, considerA(δn, n). Simple constructions show for1/2 > δ > 0 thatA(δn, n) is
exponential inn, so the interesting quantity will be the bit-rate of the code. Accordingly, we define therate
of a code as1n log |C|, and then define the asymptotic rate limit as

R(δ) = lim sup
n→∞

{
1
n

log |C| : C ⊂ {0, 1}n,dist(C) ≥ δn

}
.

It is a sign of our poor knowledge of the area that we do not even know if in the above we can replace the
lim sup by lim, i.e., if the limit exists. If|C| = 2k, we may think of the code as mappingk-bit strings into
n-bit strings which are then communicated over a channel. The rate is then the ratiok/n, and measures the
efficiency with which we utilize the channel.

A code islinear if C is a linear subspace of{0, 1}n, viewed as a vector space overGF(2). In a linear
code, if the minimum distance is realized by two codewordsx andy, thenx − y is a codeword whose
(Hamming) length equals the minimum distance. Hence for linear codes we have that

dist(C) = min
{
|w| : w ∈ C \ {0}

}
.

Here we use| · | to indicate theHamming weightof a codeword, the number of nonzero positions. Note that
this is equal to several other, common norms onGF(2).

A useful entity is theorthogonal codeto a given code. IfC a linear code, we define

C⊥ = {y : ∀x ∈ C, 〈x, y〉 = 0},

where we compute the inner product〈·, ·〉 overGF(2), that is,〈x, y〉 =
∑n

i=1 xiyi (mod 2).

4.3.1 Distance Distributions and the MacWilliams Identities

Our first concrete study of codes will be into thedistance distribution, which are the probabilities

Pr[|x− y| = k : x, y chosen randomly fromC]

for 0 ≤ k ≤ n. If C is linear, our discussion above shows that the question of distance distribution is
identical to the weight distribution of a code, the probabilities that a randomly selected codeword has a
specified weight.

The MacWilliams Identities are important identities about this distribution that are easily derived using
Parseval’s Identity. Letf = 1C , the indicator function for the code. We first need the following lemma.
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Lemma 4.5.

f̂ =
|C|
2n

1C⊥

Proof.

f̂(u) =
1
2n

∑
v

f(v)χv(u)

=
1
2n

∑
v

f(v)(−1)〈u,v〉

=
1
2n

∑
v∈C

(−1)〈u,v〉

If u ∈ C⊥, then 〈u, v〉 = 0 for all v ∈ C, so thatf̂(u) = |C|/2n. Suppose otherwise, so that∑
C(−1)〈u,v〉 = |C0| − |C1|, whereC0 are the codewords ofC that are perpendicular tou, andC1 = C \ C1.

As u 6∈ C⊥, C1 is nonempty. Pick an arbitraryw in C1. Then, anyy ∈ C1 \ {w} corresponds to a unique
x ∈ C0, namelyw + y. Similarly, anyx ∈ C0 \ {0} corresponds tow + x ∈ C1 \w. As w ∈ C1 corresponds
to 0 ∈ C0, we have that|C0| = |C1|. Hence

∑
C(−1)〈e1,v〉 = 0, so that

f̂(u) =
{
|C|/2n if u ∈ C⊥

0 otherwise

which proves the lemma.

We now define theweight enumeratorof a code to be

PC(x, y) =
∑
w∈C

x|w|yn−|w|.

The MacWilliams Identity connects the weight enumerators ofC andC⊥ for linear codes.

Theorem 4.6 (The MacWilliams Identity).

PC(x, y) = |C|PC⊥(y − x, y + x)

Proof. Harmonic analysis provides a nice proof of the identity by viewing it as an inner product. Define
f = 1C andg(w) = x|w|yn−|w|. Then, using Parseval’s,

PC(x, y) = 2n〈f, g〉 = 2n〈f̂ , ĝ〉.

f̂ has already been computed in Lemma 4.5, so we turn our attention toĝ.

ĝ(u) =
1
2n

∑
v

g(v)(−1)〈u,v〉

=
1
2n

∑
v

x|v|yn−|v|(−1)〈u,v〉
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Let u havek ones andn− k zeros. For a givenv, let s be the number of ones ofv that coincide with those
of u, and lett be the number ones ofv coinciding with the zeros ofu. Then we rewrite the sum as

=
1
2n

∑
s,t,k

(
k

s

)(
n− k

t

)
xs+tyn−s−t(−1)s

=
yn

2n

∑
s

(
k

s

)(
−x

y

)s∑
t

(
n− k

t

)(
x

y

)t

=
yn

2n

(
1− x

y

)k (
1 +

x

y

)n−k

=
1
2n

(y − x)k(y + x)n−k

=
1
2n

(y − x)|u|(y + x)n−|u|

Now, as〈f, g〉 = 〈f̂ , ĝ〉 = 2−nPC(x, y), we plug in our expressions for̂f andĝ to get

2−nPC(x, y) =
|C|
2n

∑
w∈C⊥

1
2n

(y − x)|w|(y + x)n−|w|

=
|C|
2n

PC⊥(y − x, y + x),

which implies
PC = |C|PC⊥(y − x, y + x).

4.3.2 Upper and Lower Bounds on the Rate of Codes

We now turn our attention to upper and lower bounds for codes. We remind any complexity theorists reading
these notes that the senses of “upper bound” and “lower bound” are reversed from their usage in complexity
theory. Namely, a lower bound onR(δ) shows that good codes exist, and an upper bound shows that superb
codes don’t.

In the remainder of this lecture we show several simple upper and lower bounds, an then set the stage
for the essentially strongest known upper bound on the rate of codes, the MacEleiece, Rumsey, Rodemich
and Welsh (MRRW) upper bound. This is also referred to as the JPL bound, after the lab the authors worked
in, or the linear programming (LP) bound, after its proof method.

Our first bound is a lower bound. Recall the binary entropy function

H(x) = −x log x− (1− x) log(1− x).

Theorem 4.7 (Gilbert-Varshamov Bound).

R(δ) ≥ 1−H(δ),

and there exists a linear code satisfying the bound.

29



Proof. We will sequentially pick codewords where each new point avoids allδn-spheres around previously
selected points. The resulting codeC will satisfy

|C| ≥ 2n

vol(sphere of radiusδn)
=

2n∑δn
j=0

(
n
j

) .
Now, note thatlog

(
n

αn

)
/n → H(α) asn → ∞, so that2n/

∑δn (n
j

)
∼ 2n(1−H(δ)), and take logs to prove

the first part of the theorem.

We now show that there’s a linear code satisfying this rate bound. This proof is different than the one
given in class, as I couldn’t get that to work out. The presentation is taken from Trevison’s survey of coding
theory for computational complexity. We can describe a lineark-dimensional codeCA by a k × n 0-1
matrix A by CA = {Ax : x ∈ {0, 1}k}. We’ll show that ifk/n ≤ 1 − H(δ), with positive probability
dist(CA) ≥ δn. As the code is linear, it suffices to show that the weight of all nonzero codewords is at least
δn. As for a givenx ∈ {0, 1}k, Ax is uniformly distributed over{0, 1}n, we have

Pr[|Ax| < δn] = 2−n
δn−1∑
i=0

(
n

i

)
≤ 2−n2nH(δ)+o(n),

using our approximation to the binomial sum. Now we take a union bound over all2k choices forx to get

Pr[∃x 6= 0 : Ax < d] ≤ 2k · 2−n · 2nH(δ)+o(n) = 2k+n(H(δ)−1)+o(1) < 1

by our choice ofk ≤ n(1−H(δ)).

We now turn to upper bounds onR(δ).

Theorem 4.8 (Sphere-Packing Bound).

R(δ) ≤ 1−H(δ/2)

Proof. The theorem follows from noting that balls of radiusδn/2 around codewords must be disjoint, and
applying the approximations used above for the volume of spheres in the cube.

We note in Figure 4.2 that the sphere-packing bound is far from the GV bound. In particular, that GV
bound reaches zero atδ = 1/2, while the sphere-packing bound is positive untilδ = 1. However, we have
the following simple claim.

Claim 4.1. R(δ) = 0 for δ > 1/2.

Proof. We will show the stronger statement that if|C| is substantial then not only is it impossible for
dH(x, y) > δn for all x, y ∈ C, but even the average of allx, y ∈ C will be at mostn/2. This average
distance is

1(|C|
2

) ∑
C×C

d(x, y),
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0.5 1

R(δ)

δ

GV bound

Sphere-Packing Bound

Elias Bound

Figure 4.2: The GV bound contrasted with the Sphere-Packing Bound

and we will expand the distanced(x, y) = |{i : xi 6= yi}|. Reversing the order of summation,

Average distance=
1(|C|
2

)∑
i

∑
x,y

1xi 6=yi

=
1(|C|
2

)∑
i

zi(|C| − zi),

wherezi is the number of zeros in theith position of all the codewords ofC.

≤ 1(|C|
2

)∑ |C|2

4

≤ 1
2
n · |C|

|C| − 1
.

So unlessC is very small, the average distance is essentiallyn/2.

Our next upper bound improves on the sphere packing bounds, at least achievingR(δ) = 0 for δ > 1/2.
It still leaves a substantial gap with the GV bound.

Theorem 4.9 (Elias Bound).

R(δ) ≤ 1−H

(
1−

√
1− 2δ

2

)
Proof. The proof begins by considering the calculation of average distance from the previous theorem. It
follows from Jensen’s inequality that if the average weight of the vectors inC is αn, then the maximum of∑

zi(|C| − zi) is obtained if for alli, zi = (1 − α)C for someα. We sketch the argument for those not
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familiar with Jensen’s inequality. The inequality states that iff is convex, then forx1, . . . , xn, 1
n

∑
f(xi) ≤

f(
∑

xi/n), with equality if and only ifx1 = · · · = xn. For our case, the functionf(x) = x(|C| − x) is
easily verified convex and so its maximum over a set ofzi is achieved when thezi are all equal. This makes
the average distance inC at most2α(1− α)n.

With this calculation in mind, chose a spherical shellS in {0, 1}n centered at somex0 with radiusr
such that

|S ∩ C| ≥ |C| · |S|
2n

.

Such a shell exists as the right hand side of the inequality is the expected intersection size if the sphere is
chosen randomly. Setr = pn so that|S| ≈ 2nH(p), which means

|S ∩ C| ≥ |C|

2n
(
1−H(p)

) .
Now apply the argument above onx0 + C ∩ S. It follows from our discussion that we actually have a
p fraction of ones in each row, so ifδ > 2p(1 − p), the |S ∩ C| is subexponential, but this is equal to

|C|2−n
(
1−H(p)

)
, implying

1
n

log |C| < 1−H(p).

Let us rewrite our conditionδ > 2p(1− p) as follows:

1− 2p ≥
√

1− 2δ ⇒ p =
1−

√
1− 2δ

2
.

This is the critical value ofp—whenp is below this the code is insubstantially small.

Figure 4.2 shows how the Elias bound improves the sphere-packing bound to something reasonable. The
gap between it and the GV bound is still large, however.

4.4 Aside: Erdoös-Ko-Rado Theorem

The proof of the Elias bound that we just saw is based on the following clever idea: we investigate and
unknown object (the codeC) by itersecting it with random elements of a cleverly chosen set (the sphere).
This method of “a randomly chosen fish-net” is also the basis for the following beautiful proof, due to
Katona, of the Erd̈os-Ko-Rado theorem.

Definition 4.1. An intersecting familyis a familyF of k-sets in1 . . . n (compactly,F ⊆
([n]

k

)
), with 2k ≤ n,

such that for anyA,B ∈ F , A ∩B 6= ∅.

Informally, an intersecting family is a collection of sets which are pairwise intersecting. One way to
construct such a set is to pick a common point of intersection, and then choose all possible(k − 1)-sets to
fill out the sets. The Erdöos-Ko-Rado Theorem says that this easy construction is the best possible.

Theorem 4.10 (Erd̈os-Ko-Rado). If F ⊆
([n]

k

)
is an intersecting family with2k ≤ n, then

F ≤
(

n− 1
k − 1

)
.
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Proof (Katona).Given an intersecting familyF , arrange1 . . . n in a random permutationπ along a circle,
and count the number of setsA ∈ F such thatA appears as an arc inπ. This will be our random fish-net.

There are(n− 1)! cyclic permutations—that is,n! permutations, divided byn as rotations of the circle
are identical. There arek! ways for a givenk-set to be arranged, and(n − k)! ways of the other elements
not interfering with that arc, so that the set appears consecutively on the circle. Hence the probability that a
givenk-set appears as an arc is

k!(n− k)!
(n− 1)!

=
n(
n
k

) ,
which by linearity of expectation implies

E

[
# arcs belonging

toF

]
=

n|F|(
n
k

) .

Now, as2k ≤ n, at mostk member of an intersecting family can appear as arcs on the circle, otherwise two
of the arcs wouldn’t intersect. Hence

n|F|(
n
k

) ≤ k

implying

|F| ≤ k

n

(
n

k

)
=
(

n− 1
k − 1

)
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Lecture 5

Isoperimetric Problems

Feb 11, 2005
Lecturer: Nati Linial

Notes: Yuhan Cai & Ioannis Giotis

Codes: densest sphere packing in{0, 1}n.

A(n, d) = max{|ϕ|, ϕ ⊆ {0, 1}n, dist(ϕ) ≥ d}
R(δ) = limsup{ 1

n log2(ϕ)|ϕ ⊆ {0, 1}n, dist(ϕ) ≥ δn}
’Majority is the stablest’ -

• Gaussian: 1
(2π)(n/2)

e−‖x‖
2/2

• Borell: isoperimetric problem is solved by a half-space

Isoperimetric Questions on the cube (Harper): Vertex and Edge isoperimetric questions.

The edge problem is defined as follows: Given thatS ⊆ {0, 1}n, |S| = R, how smalle(S, S̄) be?

Answer:∀S ⊆ {0, 1}n, e(S) ≤ 1/2|S| log2 |S|, |S| = 2k, S = {(∗ . . . ∗ 0 . . . 0} with k *s.

Proof (induction on dim):

e(S) ≤ e(S0) + e(S1) + |S0|, |S| = x, |S0| ≥ αx, α < 1/2.

1/2x log2 x ≥ 1/2(αx) log2 αx) + 1/2(1− α)x log[(1− α)x] + αx

0 ≥ α log α + (1− α) log(1− α) + 2α

H(α) ≥ 2α atα = 0, 1/2.

The vertex isoperimetric problem is defined asmin]{y | y /∈ S,∃x ∈ S} such thatxy ∈ E(〈0, 1〉n),
S ⊆ {0, 1}n, |S| ≤ k. The answer is an optimal S-ball. Specifically, ifk = |S| =

∑t
j=0

(
n
j

)
, then

|S| ≥
(

n
t+1

)
.

We will use the Kraskal-Katona theorem. Iff ⊆
(

[n]
k

)
, then theshadow of fis

σ(f) =
{

y ∈
(

[n]
k

)
| ∃x ∈ f, x ⊇ y

}

We wish to minimize|σ(f)|.
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To do this, takef as an initial segment in the reverse lexicographic order. The lexicographic order is
defined as

A < B, if min(A\B) < min(B\A)

while the reverse lexicographic order is

A <RL B, if max(A\B) <RL max(B\A)

For example:

Lex : 〈1, 2〉〈1, 3〉〈1, 4〉, . . .
RLex : 〈1, 2〉〈1, 3〉〈2, 3〉, . . .

Margulis and Talagrand gave the following definition forS ⊆ 〈0, 1〉n

h(x) = {y /∈ S | xy ∈ E} , x ∈ S

We now have the 2 problems

• Vertex Isoperimetric,min|S|=k

∑
x∈S(h(x))0→ρ=0

• Edge Isoperimetric,min|S|=k

∑
x∈S(h(x))→ρ=1

We have|S| ≥ 2n−1 ⇒ Σ
√

h(x) ≥ Ω(2n), for p = 1/2.

Kleitman: |S| = Σt
j=0

(
n
j

)
, S ⊆ {0, 1}n, t < n/2 ⇒ diam(S) ≥ 2t. Can you show thatS necessarily

contains a large code?

Question: (answered by Friedgut) suppose that|S| ' 2n−1 andϕ(S, SC) ∼ 2n−1, then isS roughly a
dictatorship?

Answer: yes. subcubex1 = 0 ⇔ f(x1, . . . , xn) = x1. R(δ) = limsupn→∞{ 1
n log(ϕ)|ϕ ⊆

{0, 1}n, dist(ϕ) ≥ δn}.

5.1 Delsarte’s LP

Havingg = 1C , f = 2ng ∗ g/|C|, Delsarte’s LP is

A(n, d) ≤ maxΣx∈{0,1}nf(x)
f ≥ 0

f(0) = 1
f̂ ≥ 0

f |1,...,d−1 = 0

Some useful equations

g ∗ g(0) =
1
2n

∑
g(y)g(y) =

|C|
2n

g ∗ g(S) =
1
2n

]{x, y ∈ C | x⊕ y = S}
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We start with an observation. Without loss of generality,f is symmetric or in other wordsf(x) depends
only on|x| = α|x|. We look forα0 = 1, α1 = . . . = αd−1 = 0, αd, . . . , αn ≥ 0.

We’ve expressedf ≥ 0, f(0̂) = 1 and we are trying to maximize
∑(

n
j

)
αj .

Lj = {x ∈ {0, 1}n, |x| = j}

f =
n∑

j=0

αj1Lj

f̂ =
∑

j

αj 1̂Lj

Note thatLj is symmetric. It also follows that̂1Lj is symmetric. We need to knoŵ1Lj if |y| = t.

φ̂(T ) =
∑

φ(S)(−1)|S∩T |

1̂Lj (T ) =
∑
|S|=j

(−1)|S∩T |

K
(n)
j (x) =

∑
i

(−1)i

(
t

i

)(
n− t

j − i

)

This is theKrawtchoukpolynomial presented in the next section.

5.2 Orthogonal Polynomials onR

Interesting books for this section are “Interpolation and Approximation” by Davis and “Orthogonal polyno-
mials” by Szeg̈o.

The weights of orthogonal polynomials onR are defined by

w : R → R+ ,

∫
R

w(x) < ∞

The inner product onf : R → R is

〈f, g〉 =
∫

R
f(x)g(x)w(x) dx

and with weightsw1, w2, . . ., and pointsx1, x2, . . .

〈f, g〉 =
∑

wif(xi)g(xi)

Let’s now talk about orthogonality. Start from the functions1, x, x2, . . . and carry out a Gram-Schmidt
orthogonalization process. You’ll end up with a sequence of polynomialsP0(x), P1(x), . . . s.t.Pi has degree
i and〈Pi, Pj〉 = δij .
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One case of orthogonal polynomials are theKrawtchoukpolynomials, on discrete pointsx0 = 0, x1 =
1, . . . , xn = n with wj =

(
n
j

)
/2n. Thej-th Krawtchouk polynomialKj(x) is a degreej polynomial inx.

It is also the value of̂1Lj (T ) whenever|T | = x.

K
(n)
j (x) =

n∑
i=0

(−1)i

(
x

i

)(
n− x

j − i

)

Let’s see why are they orthogonal or in other words

1
2n

∑
i=0

Kp(i)Kq(i)
(

n

i

)
= δpq

(
n

p

)

Starting from

〈1p, 1q〉 =
1
2n

(
n

p

)
δpq

and using Parseval’s identity we get

〈1̂Lp , 1̂Lq〉 =
1
2n

∑
Kp(|S|)Kq(|S|) =

1
2n

∑
i=0

Kp(i)Kq(i)
(

n

i

)

The firstKj ’s are

K0(x) = 1,K1(x) = n− 2x,K2(x) =
(

x

2

)
− (n− x) +

(
n− x

2

)
=

(n− 2x)2 − n

2

We also have the following identity

Kj(n− x) = (−1)jKj(x)

Lemma 5.1. Every system of orthogonal polynomials satisfies a 3-term recurrence

xPj = αjPj+1 + βjPj + γjPj−1

Proof.

1Li ∗ 1Lj (S) =
1
2n

∑
i

1Lj (S ⊕ i) =

=
1
2n

((j + 1)1Lj+1 + (n− j + 1)1Lj−1) =

=
1
2n

((j + 1)1Lj+1 + (n− j + 1)1Lj−1)

For the Krawtchouk polynomials

KiKj = (j + 1)Kj+1 + (n− j + 1)Kj−1

(n− 2x)Kj = (j + 1)Kj+1 + (n− j + 1)Kj−1
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Theorem 5.2. For every family of orthogonal polynomials there is

1. a 3-term recurrence relation

x · Pj = αjPj+1 + βjPj + γjPj−1

2. Pj hasj real roots all inconv[supp w].

Proof. Observe thatP0, P1, . . . , Pt form a basis for the space of all polynomials of degree≤ t, which means
that〈P,Q〉 = 0, ∀Q polynomials of degreej

x · Pj =
j+1∑
i=0

λiPi (5.1)

We now claim thatλ0 = λ1 = · · · = λj−2 = 0. Let’s take in (5.1) an inner product withPl,l < j − 1.

〈xPj , Pl〉 =
j+1∑
i=0

λi〈Pi, Pj〉 = λl‖Pl‖2

〈Pj , xPl〉 = λl‖Pl‖2

which is 0 forPl of degree≤ j − 1.

If ui’s are the zeros ofPj of odd multiplicity then

0 = 〈Pj ,
∏

(x− ui)〉 = Pj

∏
(x− uj) > 0
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Lecture 6

MRRW Bound and Isoperimetric Problems

Feb 18, 2005
Lecturer: Nati Linial

Notes: Ethan Phelps-Goodman and Ashish Sabharwal

6.1 Preliminaries

First we recall the main ideas from the last lecture. Let

g = 1C , f =
g ∗ g

|C|
.

Then we can bound the code sizeA(n, d) using Delsarte’s linear program:

A(n, d) ≤ max
f

∑
x∈{0,1}n

f(x)

subject to

f ≥ 0 f(0) = 1

f̂ ≥ 0 f|1,...,d−1 = 0

By averaging over a solutionf , we can get an equivalent solution that is symmetric about permutations
of the input bits. That is, we can assume w.l.o.g. thatf that depends only on the hamming weight of the
input. f is then determined byn + 1 coordinate weightsAj by

Aj =
∑

x | |x|=j

f(x)

Or equivalently,

f =
n∑

j=0

Aj(
n
j

)1Lj

Central to our proof will be the Krawtchouk polynomials, which are related to our linear program by

1̂Lr = Kr(x) =
r∑

j=0

(−1)j

(
x

j

)(
n− x

r − j

)

f̂ =
n∑

j=0

Aj(
n
j

)Kj
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6.2 Primal and Dual Programs

Making the substitutions above we can now write Delsarte’s program in terms of Krawtchouk polynomials
and symmeterizedf .

A(n, d) ≤ max
A0,...,An

n∑
i=0

Ai

subject to

A0 = 1
A1, . . . , Ad−1 = 0

∀k ∈ {0, . . . , n}
n∑

i=0

Ai(
n
i

)Ki(k) ≥ 0.

This can be further simplified with the following identity for Krawtchouk polynomials.

Fact 6.1.
Ki(k)(

n
i

) =
Kk(i)(

n
k

)
Proof.

1(
n
i

) i∑
j=0

(−1)j

(
k

j

)(
n− k

i− j

)
=

i∑
j

(−1)j i!(n− i)!k!(n− k)!
n!j!(k − j)!(i− j)!(n− k − i + j)!

=
1(
n
k

) i???∑
j

(−1)j

(
i

j

)(
n− i

k − j

)

Using this in the last constraint, and removing the1/
(
n
k

)
term, which pulls out of the sum and doesn’t

affect the sign, we get the constraints

∀k ∈ {0, . . . , n}
n∑

i=0

AiKk(i) ≥ 0.

Our approach will be to use LP duality to give a bound on the maximum of this program. Recall that
duality tells us that the maximum value of the primal is at most the minimum value of the dual. Strong
duality states that the optima are exactly equal, but we will not use this.

Start by multiplying each of the
∑n

i=0 AiKk(i) ≥ 0 constraints byβk, and summing all of the con-
straints. This gives

n∑
k=1

βk

n∑
i=0

AiKk(i) =
n∑

i=0

Ai

n∑
k=1

βkKk(i) ≥ 0
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Let γ(x) =
∑n

k=1 βkKk(i). If we add the constraint that∀x, γ(x) ≤ −1, then usingA0 =
1, A1, . . . , Ad−1 = 0, we get

n∑
i=0

Aiγ(i) = γ(x) +
n∑

i=d

Aiγ(i) ≥ 0

γ(0) ≥ −
n∑

i=d

Aiγ(i)

≥
n∑

i=d

Ai

γ(0) + 1 ≥
n∑

i=1

Ai ≥ A(n, d)

What we have done here is just an explicit construction of the dual. The reader can check that this dual
can be arrived at by any standard method for computing the dual.

Let β(x) = 1 +
∑n

k=1 βkKk(x). Then our final program is given by

A(n, d) ≤ min
βk

β(0)

subject to:

∀k = 1, . . . , n, βk ≥ 0
∀j = d, . . . , n, β(j) ≤ 0

6.3 The Upper Bound

To show an upper bound onA(n, d) we need to demonstrate a feasible solutionβ and boundβ(0). First we
need two additional facts about Krawtchouk polynomials.

Fact 6.2 (Christoffel-Darboux). Let P1, P2, . . . be a family of orthonormal polynomials, and letai be the
leading coefficient ofPi. Then

Pk(x)Pk+1(y)− Pk+1(x)Pk(y)
y − x

=
ak+1

ak

k∑
i=0

Pi(x)Pi(y)

For the case of Krawtchouk polynomials, the leading term ofKr(x) is −2r

r! . Also, to normalize we need

to divideKr by
√(

n
r

)
. Putting these together, we get

Kr+1(x)Kr(y)−Kr(x)Kr+1(y)
y − x

=
2

r + 1

(
n

r

) r∑
i=0

Ki(x)Ki(y)(
n
i

) .

The second fact we need is that the product of two Krawtchouk polynomials can be expressed as a
non-negative combination of Krawtchouk polynomials.
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Fact 6.3. For anyp, q, there existα0, . . . , αp+q ≥ 0 such that

Kp ·Kq =
p+q∑
j=0

αjKj

This can be seen easily from the harmonic analysis perspective sinceKp ·Kq = 1̂Lp · 1̂Lq = ̂1Lp ∗ 1Lq ,
and the convolution is a positive combination.

We can now present the feasible solution for the dual. Let

α(x) =

(
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

)2
a− x

.

Then setβ(x) = α(x)
α0

, whereα0 is chosen to make the constant term equal 1. Now we need to set

values fora andt. Denote byx(l)
r the leftmost root ofKr. We know from last lecture that the roots of the

Krawtchouk polynomials are real, lie in[0, n], and interleave with one another. Therefore we can pick at

such that0 < x
(l)
t+1 < x

(l)
t < d. In the region(x(l)

t+1, x
(l)
t ), Kt+1 is negative andKt is positive, so we can

pick ana such thatKt(a) = −Kt+1(a).

Now we need to show thatα(x) satisfies the two constraints from the dual. First, note that at allx > d,
α(x) < 0. Then we just need to show thatα(x) is non-negative combination of Krawtchouk polynomials.
Using the above settings, and Christoffel-Darboux, we can factorα(x) as

α(x) =
(
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

) [Kt(a)Kt+1(x)−Kt+1(a)Kt(x)
a− x

]
= Kt(a)(Kt+1(x) + Kt(x))

[
Kt(a)Kt+1(x)−Kt+1(a)Kt(x)

a− x

]
= Kt(a)(Kt+1(x) + Kt(x))

[
2

r + 1

(
n

r

) r∑
i=0

Ki(x)Ki(y)(
n
i

) ]

Since all terms are positive, this can be expanded as a positive combination of Krawtchouk polynomials.

Now that we have a feasible solution to the dual, we just need to find the value ofβ(0). We can use the

fact that fort ≈ τn, the leftmost root is atx(l)
t = (1+ o(1))(1

2 −
√

τ(1− τ))n. Given this we can conclude
thatR(δ) ≤ H(1

2 −
√

δ(1− δ)). Both the lecture and van Lint [1] seem to imply that this step is obvious,
but your scribe has been unable to see any connection.

6.4 More on Isoperimetric Problems on the Cube

We now turn our attention to isoperimetric problems. In a previous lecture, we studied isoperimetric ques-
tions on then-dimensional cube, namely the vertex isoperimetric problem and the edge isoperimetric prob-
lem. Why is the study of such problems important? The reason is that Computer Science deals with Boolean
functions which are simply partitions of then-dimensional cube into two parts. Understanding the geometry
of the cube is therefore critical to understand Boolean functions. Here is one more isoperimetric problem
that is open.
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Open Problem 6.1 (Chung-F̈uredi-Grahan-Seymour, 1988 J.C.T.A.).What is the largestd = d(n) such
that for allS ⊆ {0, 1}n , |S| > 2n−1, there existsx ∈ S with dS(x) ≥ d?

HeredS(x) denotes the number of neighbors ofx in S. Note that for|S| ≤ 2n−1, S can be an indepen-
dent set, i.e.,∀x ∈ S.dS(x) = 0. Further, for|S| > 2n−1, S may not be independent. In general, all we
know is thatd(n) is bothO(

√
n) andΩ(log n). This leaves a huge gap open.

Consider any Boolean functionf : {0, 1}n → {0, 1} represented as a0, 1-labeling of then-dimensional
cube seen as a layered lattice. This lattice has four types of edges as depicted in Figure 6.1. LetS = f−1(0).
The two edges from0 to 1 and from1 to 0 belong to the cutE(S, Sc) and thus contribute to the cut size
e(S, Sc).

f = 0 0 1 1

f = 0 1 0 1

xi = 0

xi = 1

Edges in theE(S, Sc) cut

Figure 6.1: The cut defined in terms of the four types of edges in the lattice

If |S| = 2n−1, thene(S, Sc) ≥ 2n−1. This is sharp forS = {x | x1 = 0}. In the edge isoperimetry
problem, given|S|, we want to minimize the cut sizee(S, Sc). What about trying tomaximizethe cut size
instead? The maximum cut size can really be anything. Indeed, whenf is the parity function,e(S, Sc) =
n2n−1.

6.4.1 Maximizing Edge Cut Size for Monotone Functions

Consider the setting of the previous section. How can we maximize the edge cut whenf is monotone, i.e.,
x � y ⇒ f(x) ≥ f(y), wherex � y means∀i.xi ≥ yi? In the following, we use Parseval’s identity to
answer this question.

Theorem 6.1. Let S ⊆ {0, 1}n correspond to a monotone Boolean functionf : {0, 1}n → {0, 1}. f =
majoritymaximizes the edge cut sizee(S, Sc).

Proof. It is clear from the lattice corresponding tof = majority (see Figure 6.2) that the size of the cut
corresponding to it is

(
n

bn/2c
)

= Θ(
√

n 2n). We will use Parseval’s identity to prove that this is the optimal.

Let f be any monotone Boolean function inn dimensions. Recall that for charactersχT (Z) =
(−1)|Z∩T |, the functionf can be represented asf =

∑
T f̂(T )χT wheref̂(T ) = 〈f, χT 〉. What isf̂({i})?
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f = 1

f = 0 (
n

bn/2c
)

points

Figure 6.2: The lattice corresponding to the majority function

χ{i}(Z) = (−1)|Z∩{i}| which is+1 if i 6∈ Z and−1 if i ∈ Z. Therefore

f̂({i}) = 〈f, χ{i}〉

=
1
2n

∑
Z

f(Z)χ{i}(Z)

=
1
2n

∑
Z 63i

f(Z)−
∑
Z3i

f(Z)


= − 1

2n
· (number of cut edges in thei-direction)

For ease of computation, convert everything from the{0, 1} basis to the{−1,+1} basis. This quantity
is then(2/2n) times the number of cut edges in thei-direction. Using Parseval’s identity and Cauchy-

Schwartz inequality,1 = ||f ||22 =
∑

S

(
f̂(S)

)2
≥
∑

i

(
f̂({i})

)2
≥ (1/n)

(∑
i f̂({i})

)2
. Hence

√
n ≥∑

i f̂({i}) = (2/2n) e(S, Sc), which finishes the proof.

We give an alternativecombinatorialproof of the fact thate(S, Sc) = 2n−1
∑

i f̂({i}) based on the
following claim.

Claim 6.1. Let f be a monotone Boolean function. If the expectation off is given and fixed, then to
maximizee(f−1(0), f−1(1)), it is best to takef symmetric.

Proof of claim. Consider
∑

x:f(x)=0(n − 2|x|). This is the sum of the first Krawtchouk polynomials and

is equal to the cut sizee(f−1(0), f−1(1)) because(n − |x|) edges in the lattice corresponding tof that
go upwards fromx contributing+1 each while|x| edges go downward fromx contributing−1 each (see
Figure 6.3. Maximizing this quantity means minimizing

∑
x:f(x)=0 |x| which happens exactly whenf is

“pushed down” as much as possible.

Formally, let us change the basis from{0, 1} to {−1,+1} and reinterpret the summation. It is equal
to
∑

x:f(x)=1(n − 2|x|) −
∑

x:f(x)=−1(n − 2|x|) = 2n〈f,K1〉. Observe however that
∑

x(n − 2|x|) =

〈K1,K0〉 = 0. Therefore
∑

x:f(x)=1(n − 2|x|) = 2n−1〈f,K1〉, which is the same as
∑

i f̂({i}) by the
properties of Krawtchouk polynomials.
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f = 1

f = 0
|x| edges contributing−1 each

(n− |x|) edges contributing+1 each

x

Figure 6.3: Contribution off to the cut

6.4.2 The Brunn-Minkowski Inequality

Let v be a volume measure on subsets ofRn.

Theorem 6.2 (Brunn-Minkowski [2]). For A,B measurable subsets ofRn,

(v(A + B))1/n ≥ (v(A))1/n + (v(B))1/n .

Moreover, equality holds if and only ifA andB are homothetic, i.e.B = λA + C for λ ∈ R.

HereA+B is the Minkowski sum defined as{a + b | a ∈ A, b ∈ B}, wherea+b is the standard vector
sum overRn. Forλ ∈ R, λA is similarly defined as{λa | a ∈ A}. We will not be using the second part of
the theorem.

Let us try to understand what this inequality says. Take a convex bodyK in Rn and slide a hyperplane
At, t ∈ R, through it (see Figure 6.4). What can we say about the functionf(t) = µn−1(At ∩ K) which
is the volume of the intersection of the body with the hyperplane? Brunn-Minkowski inequality says that
(f(t))1/(n−1) is convex.

At

K

t

Figure 6.4: Sliding a hyperplaneAk through a convex bodyK

Theorem 6.3. Brunn-Minkowski inequality implies the classicaln-dimensional isoperimetric inequality.
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Proof. We want to show that ifK ⊆ Rn andB is the unit ball inRn, then(
v(K)
v(B)

) 1
n

≤
(

S(K)
S(B)

) 1
n−1

whereS denotes the surface area. For a2-dimensional plane, the LHS equals
√

A/π while the RHS equals
L/(2π). To prove LHS≥ RHS, we needL2 ≥ 4πA, which we know to be true. Let’s try to generalize this
to higher dimensions.

The surface area ofK is, by definition,

S(K) = lim
ε→0

v(K + εB)− v(K)
ε

.

By Brunn-Minkowski inequality,

S(K) ≥ lim
ε→0

(
(v(K))

1
n + ε (v(B))

1
n

)n
− v(K)

ε

= lim
ε→0

nε (v(K))
n−1

n (v(B))
1
n + O(ε2)

ε

= n (v(K))
n−1

n (v(B))
1
n

= S(B)
(

v(K)
v(B)

)n−1
n n v(B)

S(B)

The last termn v(B)/S(B) is, however, always 1 in any number of dimensions. We have therefore proved
the isoperimetric inequality.
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Lecture 7

The Brunn-Minkowski Theorem and Influences of
Boolean Variables

Friday 25, 2005
Lecturer: Nati Linial

Notes: Mukund Narasimhan

Theorem 7.1 (Brunn-Minkowski). If A,B ⊆ Rn satisfy some mild assumptions (in particular, convexity
suffices), then

[vol (A + B)]
1
n ≥ [vol (A)]

1
n + [vol (B)]

1
n

whereA + B = {a + b : a ∈ A andb ∈ B}.

Proof. First, suppose thatA andB are axis aligned boxes, sayA =
∏n

j=1 Ij andB =
∏n

i=1 Ji, where
eachIj andJi is an interval with|Ij | = xj and|Ji| = yi. We may assume WLOG thatIj = [0, xj ] and
Ji = [0, yi] and henceA + B =

∏n
i=1[0, xi + yi]. For this case, the BM inequality asserts that

n∏
i=1

(xi + yi)
1
n ≥

n∏
i=1

x
1
n
i ·

n∏
i=1

y
1
n
i

⇔ 1 ≥
[∏(

xi

xi + yi

)] 1
n

·
[∏(

yi

xi + yi

)] 1
n

Now, since the arithmetic mean ofn numbers is bounded above by their harmonic mean, we have(
∏

αi)
1
n ≤P

αi

n and(
∏

(1− αi))
1
n ≤

P
(1−αi)

n . Takingαi = xi
xi+yi

and hence1 − αi = yi

xi+yi
, we see that the above

inequality always holds. Hence the BM inequality holds wheneverA andB are axis aligned boxes.

Now, suppose thatA andB are the disjoint union of axis aligned boxes. Suppose thatA =
⋃

α∈A Aα

andB =
⋃

β∈B Bβ. We proceed by induction on|A| + |B|. We may assume WLOG that|A| > 1. Since
the boxes are disjoint, there is a hyperplane separating two boxes inA. We may assume WLOG that this
hyperplane isx1 = 0.
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A A+ A−

Let A+ = {x ∈ A : x1 ≥ 0} andA− = {x ∈ A : x1 ≤ 0} as shown in the figure above. It is clear that
bothA+ andA− are the disjoint union of axis aligned boxes. In fact, we may letA+ =

⋃
α∈A+ Aα and

A− =
⋃

α∈A− Aα where|A+| < |A| and|A−| < |A|. Suppose that
vol(A+)
vol(A) = α. Pick aλ so that

vol ({x ∈ B : x1 ≥ λ})
vol (B)

= α

We can always do this by the mean value theorem because the functionf(λ) = vol({x∈B :x1≥λ})
vol(B) is continu-

ous, andf(λ) → 0 asλ →∞ and andf(λ) → 1 asλ → −∞.

Let B+ = {x ∈ B : x1 ≥ λ} andB− = {x ∈ B : x1 ≤ λ}. By induction, we may apply BM to both
(A+, B+) and(A−, B−), obtaining[

vol
(
A+ + B+

)] 1
n ≥

[
vol
(
A+
)] 1

n +
[
vol
(
B+
)] 1

n[
vol
(
A− + B−)] 1

n ≥
[
vol
(
A−)] 1

n +
[
vol
(
B−)] 1

n

Now, [
vol
(
A+
)] 1

n +
[
vol
(
B+
)] 1

n = α
1
n

[
[vol (A)]

1
n + [vol (B)]

1
n

]
[
vol
(
A−)] 1

n +
[
vol
(
B−)] 1

n = (1− α)
1
n

[
[vol (A)]

1
n + [vol (B)]

1
n

]

Hence [
vol
(
A+ + B+

)] 1
n +

[
vol
(
A− + B−)] 1

n ≥
[
[vol (A)]

1
n + [vol (B)]

1
n

]

The general case follows by a limiting argument (without the analysis for the case where equality holds).

Suppose thatf : S1 → R is a mapping having a Lipshitz constant 1. Hence

‖f(x)− f(y)‖ ≤ ‖x− y‖2

Let µ be the median off , so

µ = prob [{x ∈ Sn : f(x) < µ}] =
1
2
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We assume that the probability distribution always admits such aµ (at least approximately). The following
inequality holds for everyε > 0 as a simple consequence of the isoperimetric inequality on the sphere.

{x ∈ Sn : |f − µ| > ε} < 2e−εn/2

ForA ⊆ Sn and forε > 0, let
Aε = {x ∈ Sn : dist x,A < ε}

Question 7.1.Find a setA ⊆ Sn with A = a for whichAε is the smallest.

The probability used here is the (normalized) Haar measure. The answer is always a spherical cap, and
in particular ifa = 1

2 , then the bestA is the hemisphere (and soAε = {x ∈ Sn : x1 < ε}). We will show

that forA ⊆ Sn with A = 1
2 , Aε ≥ 1 − 2e−ε2n/4. If A is the hemisphere, thenAε = 1 − Θ(e−ε2n/2), and

so the hemisphere is the best possible set.

But first, a small variation on BM :

vol
(

A + B

2

)
≥
√

vol (A) · vol (B)

This follows from BM because

vol
(

A + B

2

) 1
n

≥ vol
(

A

2

) 1
n

+ vol
(

B

2

) 1
n

=
1
2

[
vol (A)

1
n + vol (B)

1
n

]
≥
√

vol (A)
1
n + vol (B)

1
n

ForA ⊆ Sn, let Ã = {λa : a ∈ A, 1 ≥ λ ≥ 0}. ThenA = µn+1(Ã). Let B = Sn \Aε.

Lemma 7.2. If x̃ ∈ Ã and ỹ ∈ B̃, then ∣∣∣∣ x̃ + ỹ

2

∣∣∣∣ ≤ 1− ε2

8

It follows that Ã+B̃
2 is contained in a ball of radius at most1− ε2

8 . Hence(
1− ε2

8

)n+1

≥ vol

(
Ã + B̃

2

)

≥
√

vol
(
Ã
)
· vol

(
B̃
)

≥

√√√√vol
(
B̃
)

2

Therefore,2e−ε2n/4 ≥ vol
(
B̃
)

.
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7.1 Boolean Influences

Let f : {0, 1}n → {0, 1} be a boolean function. For a setS ⊆ [n], the influence ofS onf , If (S) is defined
as follows. When we pick{xi}i6∈S uniformly at random, three things can happen.

1. f = 0 regardless of{xi}i∈S (suppose that this happens with probabilityq0).

2. f = 1 regardless of{xi}i∈S (suppose that this happens with probabilityq1).

3. With probabilityInff (S) := 1− q0 − q1, f is still undetermined.

Some examples:

• (Dictatorship) f(x1, x2, . . . , xn) = x1. In this case

Infdictatorship (S) =

{
1 if i ∈ S

0 if i 6∈ S

• (Majority) For n = 2k + 1, f(x1, x2, . . . , xn) is 1 if and only if a majority of thexi are 1. For
example, ifS = {1},

Infmajority ({1}) = prob (x1 is the tie breaker)

=

(
2k
k

)
22k

= Θ
(

1√
k

)
For fairly small setsS,

Infmajority (S) = Θ
(
|S|√

n

)
• (Parity) f(x1, x2, . . . , xn) = 1 if and only if an even number of thexi’s are 1. In this case

Infparity ({xi}) = 1

for every1 ≤ i ≤ n.

Question 7.2.What is the smallestδ = δ(n) such that there exists a functionf : {0, 1}n → {0, 1} which
is balanced (i.e.,Ef = 1

2 ) for which Inff ({xi}) < δ for all xi ?

Consider the following example, calledtribes. The set of inputs{x1, x2, . . . , xn} is partitioned into tribes
of sizeb each. Here,f(x1, x2, . . . , xn) = 1 if and only if there is a tribe that unanimously 1.

∧ ∧ ∧ ∧

∨
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Since we wantEf = 1
2 , we must haveprob(f = 0) =

(
1− 1

2b

)n
b = 1

2 . Therefore,nb ln
(
1− 1

2b

)
=

− ln 2. We use the Taylor series expansion forln(1 − ε) = −ε − ε2/2 − · · · = −ε − O(ε2) to get
n
b

(
1
2b + O

(
1
4b

))
= − ln 2. This yieldsn = b · 2b ln 2 (1 + O(1)). Henceb = log2 n− log2 lnn + Θ(1).

Hence,

Inftribes (x) =
(

1− 1
2b

)n/b
− 1

·
(

1
2

)b−1

=

(
1− 1

2b

)n
b

1− 1
2b

· 1
2b−1

=
1

1− 1
2b

· 1
2b

=
1

2b−1
= Θ

(
log b

n

)
In this example, each individual variable has influenceΘ(log n/n). It was later shown that this is lowest
possible influence.

Proposition 7.3. If Ef = 1
2 , then

∑
x Inff (x) ≥ 1.

This is a special case of the edge isoperimetric inequality for the cube, and the inequality is tight iff is
dictatorship.

x = 0

x = 1 f=0

f=0

f=1

f=1

f=1

f=0

f=0

f=1

The variablex is influential in the cases indicated by the solid lines, and hence

Inff (x) =
# of mixed edges

2n−1

Let S = f−1(0). Then
∑

Inff (x) = 1
2n−1 e(S, Sc).
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One can usêf to compute influences. For example, iff is monotone (sox ≺ y ⇒ f(x) ≤ f(y)), then

f̂(S) =
∑
T

(−1)|S∩T |

2n

Therefore,

f̂({i}) =
1
2n

∑
i6∈T

f(T )− 1
2n

∑
i∈T

f(T )

=
1
2n

∑
i6∈T

(f(T )− f(T ∪ {i}))

=
−1
2n

·# mixed edges in the direction ofi

= −1
2
Inff (xi)

HenceInff (xi) = −2f̂({i}). What can be done to expressInff (x) for a generalf? Define

f (i)(z) = f(z)− f(z ⊕ ei)

x = 0

x = 1 f=0

f=0

f=1

f=1

f=1

f=0

f=0

f=1

f(i)
=0

f(i)
=0

f(i)
=0

f(i)
=0

f(i)
=1

f(i)
=−1

f(i)
=−1

f(i)
=1

Then

Inff (xi) =
∣∣∣supportf (i)

∣∣∣ =∑
w

(
f (i)(w)

)2
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The last term will be evaluated using Parseval. For this, we need to compute the Fourier expression off (i)

(expressed in terms of̂f ).

f̂ (i)(S) =
1
2n

∑
T

f (i)(T )(−1)|S∩T |

=
1
2n

∑
T

[
f(T )− f(T ⊕ {i})

]
(−1)|S∩T |

=
1
2n

∑
i6∈T

([
f(T )− f(T ∪ {i}

]
(−1)|S∩T | +

[
f(T ∪ {i})− f(T )

]
(−1)|S∩(T∪{i})|

)
=

1
2n

∑
i6∈T

[
f(T )− f(T ∪ {i}

] (
(−1)|S∩T | − (−1)|S∩(T∪{i})|

)

=

{
0 if i 6∈ S

2f̂(S) if i ∈ S

Using Parseval on̂f (i) along with the fact that̂f (i) takes on only values{0,±1}, we conclude that

Inff (xi) = 4
∑
i∈S

|hatf(S)|2

Next time, we will show that ifEf = 1
2 , then there exists ai such that

∑
i∈S

(
f̂(S)

)2
> Ω(lnn/n).

Lemma 7.4. For everyf : {0, 1}n → {0, 1}, there is a monotoneg : {0, 1}n → {0, 1} such that

• Eg = Ef .

• For everys ⊆ [n], Infg (S) ≤ Inff (S).

Proof. We use a shifting argument.

x = 0

x = 1 f=0

f=0

f=1

f=1

f=1

f=0

f=0

f=1

f̃=0

f̃=0

f̃=1

f̃=1

f̃=1

f̃=0

f̃=1

f̃=0

ClearlyEf̃ = Ef . We will show that for allS, Inf f̃ (S) ≤ Inff (S). We may keep repeating the shifting
step until we obtain a monotone functiong. It is clear that the process will terminate by considering the
progress measure

∑
f(x) |x| which is strictly increasing. Therefore, we only need show thatInf f̃ (()S) ≤

Inff (S).
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Lecture 8

More on the influence of variables on boolean
functions

March 4, 2005
Lecturer: Nati Linial

Notes: Neva Cherniavsky & Atri Rudra

In this lecture we will look at the following natural question– do there exist balanced boolean functions
f on n variables such that for every variablex the influence ofx on f is “small” and how small can this
bound be made? (“Balanced” means thatPr(f = 0) = Pr(f = 1) = 1

2 but Ef = α for someα bounded
away from0 and1 is just as interesting.) In the last lecture we showed that for the “tribes” function (which
was defined by Ben-Or and Linial in [1]), every variable has influenceΘ( log n

n ). Today, we will prove the
result of Kahn, Kalai and Linial [2] which shows that this quantity is indeed the best one can hope for. In
the process we will look into the Bonami Beckner Inequality and will also look at threshold phenomena in
random graphs.

8.1 The Kahn Kalai Linial Result

Recall the definition of influence. Letf : {0, 1}n → {0, 1} be a boolean function and letS ⊂ [n]. The
influence of the set of variablesS on the functionf , denoted byInff (S), is the probability thatf is still
undetermined when all variables in[n]− S have been assigned values at random.

We also talk about influences in the case when the function is defined on a solid cube–f : [0, 1]n →
{0, 1}. This formulation has connections to game theory– variables are controlled by the players. Note that
in this case we can talk about things like “influence of a subset of variables towards 0”.

The situation for the case when|S| = 1 is relatively better understood. As we saw in the last class, the
situation for calculatingInff (x) looks like Figure 8.1. In particular, calculating the influence is same as
counting the number of non-solid edges in Figure 8.1.

The situation is much less understood for the more general case, for example when|S| = 2. In a nutshell,
we are interested in situations other than those in Figure 8.2. This scenario is not well understood and is
still a mysterious object. Unlike the case of a single variable, the number of zeroes and ones in a “mixed”
2-dimensional subcube can vary and the whole situation is consequently more complex. As an interesting
special case consider the “tribes” example and the case whenS is an entire tribe. It is easy to see that the
influence ofS towards1 is exactly1 (as any tribe can force the result to be1) while it is not hard to see that
the influence ofS towards0 is onlyO( log n

n ). As another example consider the case whenS consists of one
element from each tribe (one can consider each element ofS as a “spy” in a tribe). Here the influence ofS
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1

0
1

0
1

1
0

x=
0

x=
1

Figure 8.1: Influence of a variable

towards0 is exactly1 (as each spy can force its tribe to be0). Further, its influence towards1 can be shown
to be

√
2−1
4 + o(1).

Let us now turn back to the motivating question for this lecture–

Question 8.1.Find boolean functionsf with Ef = 1
2 for which Inff (x) is small for each variablex.

For any variablexi defineβi = Inff (xi) and letβ = 〈β1, · · · , βn〉. Thus, the quantity we are interested
in is ||β||∞. Note that the edge isoperimetric inequality on the cube implies that

∑n
i=1 βi ≥ 1 which by

an averaging argument gives||β||∞ ≥ 1
n . Also note that for the “tribes” example,||β||∞ = Θ( log n

n ). The
following result due to Kahn, Kalai and Linial shows that this is the best possible–

Theorem 8.1. For anyf : {−1, 1} → {−1, 1} with Ef = 0, there exists a variablex such thatInff (x) ≥
Ω( log n

n ).

Before we start to prove the theorem, let us collect some facts that we know or follow trivially from what
we have covered in previous lectures.

∑
S⊆[n]

(f̂(S))2 = 1 (8.1)

f̂(∅) = 0 (8.2)

βi = 4 ·
∑
S3i

(f̂(S))2 (8.3)

n∑
i=1

βi = 4 ·
∑

S⊆[n]

|S|(f̂(S))2 (8.4)

Equation (8.1) follows from Parseval’s identity and the fact thatf takes values in{−1, 1}. Equation
(8.2) follows from the fact thatχ∅ = 1 which impliesf̂(∅) = 〈f, χ∅〉 = 2nEf = 0. Equation (8.3)was
proved in the last lecture. Equation (8.4) follows from summing Equation (8.3) for alli.
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Figure 8.2: Influence of a general subset of variables

We will first show that if “most” of the
∑

S⊆[n](f̂(S))2 comes from ’large’ setsS then the conclusion

of Theorem 8.1 holds. In fact, in this case even theaverageinfluence isΩ( log n
n ). To be more precise

let T = log n
10 and H =

∑
|S|≥T (f̂(S))2. Further assume thatH ≥ 1

10 . Then by (8.4),
∑n

i=1 βi ≥
4 ·
∑

|S|≥T |S|(f̂(S))2 ≥ 4HT ≥ log n
25 .

It follows that it suffices to prove the theorem under the complementary assumption thatH < 1
10 . In

view of (8.1) this is the same as showing
∑

|S|<T (f̂(S))2 > 0.9. In the proof we will need to estimate the
following quantity– ∑

|S|<T

(φ̂(S))2 ≡
∑
S

WT (S)(φ̂(S))2

for φ = f (i) (recall from the last lecture thatf (i)(z) = f(z)− f(z ⊕ ei)). HereWT (·) is the step function
which takes value1 for any setS ⊆ [n] such that|S| ≤ T and0 otherwise. We use two ideas to solve the
problem in hand–
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• Try and approximateW (·) by functions which are sufficiently close to the step functionWT (·) and
are easy to analyze.

• As the bound||β||1 ≥ 1 is tight (which is insufficient for our purposes) and since it is difficult to work
directly with ||β||∞, we could perhaps estimate||β||p for some∞ > p > 1. In the proof we will use
p = 4

3 but this is quite arbitrary.

We focus on the second alternative and use the Bonami Beckner inequality which we consider in the
next section.

8.2 Bonami Beckner Inequality

Let Tε be a linear operator which maps real functions on{−1, 1}n to real functions on{−1, 1}n. By
linear, we mean that the following holds for functionsf andg and scalarsa andb: Tε(a · f + b · g) =
a · Tε(f) + b · Tε(g).

As Tε(·) is a linear operator, one can fully determine it by just specifying it at the basis of the functions
{χS}. We define the operator as follows

Tε(χS) = ε|S|χS

By linearity, Tε(f) =
∑

S⊆[n] ε
|S|f̂(S)χS(·). Note thatT1(f) = f . In other words,T1 is the identity

operator.

We will now state the main result of this section–

Theorem 8.2. Let 0 < ε < 1 and considerTε as an operator fromLp to L2 wherep = 1 + ε2. Then its
operator norm is1.1

Let us first explain the terms used in the statement above. LetT : (X, || · ||X) → (Y, || · ||Y ) be a linear
operator– hereX andY are normed spaces and|| · ||X and|| · ||Y are their respective norms. The operator
norm ofT is defined as

||T ||op = supx∈X
||Tx||Y
||x||X

This quantity measures how much the “length” (norm) of an elementx ∈ X can grow by an application of
the operatorT . We now turn to the proof.

What is the size off? How expanding is the operator? These are very narrow passages; we have no
wiggle room. We can only use Parseval’s inL2, so the norm on the right hand side needs to beL2. On the
left hand side, our norm isLp, which is usually very difficult to calculate. But because our functions (the
f (i)) only take on the values{−1, 0, 1}, we can calculate the necessaryLp norms.

That the operator norm ofTε is at least 1 is obvious. Letf be identically 1 everywhere. Then̂f(T ) =∑
f(S)(−1)|S∩T | = 0 for T 6= ∅ and f̂(∅) = 1. So ||Tεf ||2 = 1 = ||f ||p. What the Bonami-Beckner

inequality says is that for everyf : {−1, 1}n → R, ||Tεf ||2 ≤ ||f ||p.

We’ll do a part of the proof only. The proof is via induction onn, the dimension of the cube. The base
case is the main part of the proof; the method for inducting is standard in analysis and we’ll skip it.

1 This is called ahypercontractive inequality.
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Again, the surprising thing here is thatp < 2 and still||T ||op ≤ 1.

For n = 1, every functionf has the formf = a + bx and thenTεf = a + εbx. (There are only two
characters,χ∅ andχ{x}). Then atx = −1, f = a − b andTεf = a − εb. At x = 1, f = a + b and
Tεf = a + εb. So

||f ||p =
[
|a + b|p + |a− b|p

2

] 1
p

||Tεf ||2 =

√
(a + εb)2 + (a− εb)2

2
=

√
a2 + ε2b2

We want to prove||Tεf ||2 ≤ ||f ||p, i.e., we want to prove[
|a + b|p + |a− b|p

2

] 1
p

≥
√

a2 + ε2b2. (8.5)

Suppose|a| ≥ |b|. Let b = ta and divide by|a|:(
|a + b|p + |a− b|p

2

) 1
p

=
(
|a + ta|p + |a− ta|p

2

) 1
p

= |a|
(
|1 + t|p + |1− t|p

2

) 1
p

√
a2 + ε2b2 =

√
a2 + ε2(at)2

= |a|
√

1 + ε2t2

So we will prove
|1 + t|p + |1− t|p

2
≥ (1 + ε2t2)

p
2 when|t| ≤ 1 (8.6)

and (8.5) will follow. Note that if|a| < |b|, we’d substitutea = bt and divide by|b|, and would want to
prove

|t + 1|p + |t− 1|p

2
≥ (ε2 + t2)

p
2 when|t| ≤ 1 (8.7)

But since
(1 + ε2t2) ≥ ε2 + t2,

once we prove equation (8.6), (8.7) will follow immediately.

Proof of (8.6) is via the Taylor expansion. For the left hand side, terms in odd places will cancel out,
and terms in even places will double. Recallp = 1 + ε2 and|t| ≤ 1. The left hand side becomes

∞∑
j=0

t2j

(
p
2j

)
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and the right hand side becomes
∞∑

j=0

ε2jt2j

(
p/2
j

)
.

Let’s examine the first two terms of each side. On both sides, the first term is 1. On the left hand side, the
second term ist2(p(p− 1))/2 and on the right hand side the second term isε2t2p/2; sinceε2 = p− 1, this
means the second terms are also equal on both sides. Therefore it is sufficient to compare the terms from
j ≥ 2.

What we discover is that on the left hand side, all terms are positive, whereas on the right hand side,
the j = 2k andj = 2k + 1 terms have a negative sum for allk ≥ 1. First we show the left hand side is
positive. The(2j)th coefficient equalsp(p− 1)(p− 2) . . . (p− 2j + 1) divided by some positive constant.
Note thatp(p− 1) is positive and all the terms(p− 2) . . . (p− 2j + 1) are negative. But since there are an
even number of these negative terms, the product as a whole is positive. Therefore, on the left hand side, all
terms are positive.

Now consider the right hand side. We will show that thej = 2k andj = 2k + 1 terms have a negative
sum for allk ≥ 1. Consider the sum

ε4kt4k

(
p/2
2k

)
+ ε4k+2t4k+2

(
p/2

2k + 1

)
.

We can divide outε4kt4k without affecting the sign. Since the second term is the positive one, and|t| ≤ 1,
we can replacet2 by 1 without loss of generality. So now we have(

p/2
2k

)
+ ε2

(
p/2

2k + 1

)
=

(
p/2
2k

)
+ (p− 1)

(
p/2

2k + 1

)
=

p/2(p/2− 1) . . . (p/2− 2k + 1)
2k!

+ (p− 1)
p/2(p/2− 1) . . . (p/2− 2k)

(2k + 1)!

=
[
(2k + 1)

p

2
(
p

2
− 1) . . . (

p

2
− 2k + 1) + (p− 1)

p

2
(
p

2
− 1) . . . (

p

2
− 2k)

]
/(2k + 1)!

=
[p
2
(
p

2
− 1) . . . (

p

2
− 2k + 1)

] [
2k + 1 + (p− 1)(

p

2
− 2k)

]
/(2k + 1)!

Notice that the first term in brackets is negative and the second term in brackets is positive. Thus the
sum of thekth even and odd term is negative for allk, and we’ve proved equation (8.6). Equation (8.6)
implies equation (8.7); equations (8.6) and (8.7) together imply equation (8.5); and equation (8.5) implies
||f ||p ≥ ||Tεf ||2 for p = 1 + ε2. Thus we’ve proved the base case for the Bonami-Beckner inequality.

8.3 Back to Kahn Kalai Linial

In general it is not obvious how to utilize this inequality, since it’s hard to compute thep-norm. But we’re
looking at an easy case. Specifically, ifg : {0, 1}n → {−1, 0, 1}, the inequality says that

Pr(g 6= 0) = t ⇒ t
2

1+δ ≥
∑
S

δ|S|(ĝ(S))2 (8.8)
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To see this, letδ = ε2. We know||g||p ≥ ||Tεg||2.

||g||p =
(

1
2n

∑
|g(x)|p

) 1
p

=

 1
2n

∑
g(x) 6=0

1

 1
p

= t
1
p = t

1
1+ε2

So the Bonami-Beckner inequality tells us

t
1

1+ε2 ≥
√∑

S

ε2|S|(ĝ(S))2

and squaring both sides and substitutingδ gives us equation (8.8).

We applied this inequality forg = f (i). Thent = βi, the influence of theith variable, which is exactly
what we’re looking for. Recall that

f̂ (i)(S) =
{

0 i /∈ S

f̂(S) i ∈ S

We want to prove thatmax βi ≥ Ω(log n/n). By substituting the new values into (8.8), we get

β
2

1+δ

i ≥
∑
S3i

δ|S|(f̂(S))2

The δ|S| terms are theWS ’s that we want to behave sufficiently close to the step function. Recall, we
also know that

∑
0≤|S|<T (f̂(S))2 > 0.9 whereT = log n/10. Since we assumef to be balanced (i.e.

Pr(f = 1) = 1/2), we can ignore the 0 term becausef̂(S) = 0 whenS = ∅, but we cannot ignore it for
imbalanced functions. Still, it won’t matter, and we’ll come back to this point later.

So we know
∑

0<|S|<T (f̂(S))2 > 0.9. Let δ = 1/2 (the choice is arbitrary).

n ·max β
4
3
i ≥

∑
i

β
4
3
i

≥
∑

i

∑
S3i

(
1
2
)|S|(f̂(S))2

=
∑
S

(
1
2

)|S|
|S|(f̂(S))2

≥
∑
|S|<T

(
1
2

)|S|
|S|(f̂(S))2

≥
(

1
2

)T ∑
|S|<T

(f̂(S))2

≥ (n−
1
10 )(0.9)

Therefore,n ·max β
4/3
i ≥ 0.9/n1/10 and so

max βi ≥
( c

n11/10

)3/4
= Ω(n−33/40) >>

log n

n
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There is some progress in understanding what the vector of influences is in general, but we have a long
way to go.

We return to an issue we had left open. What happens when we deal with functions that are imbalanced?
What if f : {0, 1}n → {0, 1}, Ef = p (not necessarilyp = 1/2). Now we cannot ignorêf(∅) in the
previous argument.

Indeed,f(∅) = p.
∑

(f̂(S))2 = p. We’d have to subtract(f̂(∅))2 = p2 off of p in general. But this is
fine as long as0 < p < 1. We mention this because this technique is used often.

8.4 Sharp thresholds in graphs

Theorem 8.3. Every monotone graph property has a sharp threshold.

This theorem is also the title of the paper, by Friedgut and Kalai. The background is that in the late 1950s,
Erdős and Renyi defined random graphs, which became an important ingredient for many investigations in
modern discrete mathematics and theoretical computer science. A random graphG(n, p) is a graph onn
vertices in which the probability that(x, y) is an edge inG is p. That is, for each pair of vertices, flip a
p-weighted coin, and put an edge in the graph if the coin comes up heads. We do this independently for each
pair of vertices. So

Pr(G) = pe(G)(1− p)(
n
2)−e(G)

Already Erd̋os and Renyi had noticed that some properties of graphs have special behavior. For example,
take the property thatG is connected. WritePr(G is connected) asf(p). Whenp is small, the graph is
unlikely to be connected; whenp is big, it is almost certain to be connected. The shape off(p) = Pr(G is
connected) is shown in Figure 8.3.

log n

n

p

f(p)

Figure 8.3: Sharp threshold
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The transition from disconnected to connected is very rapid. This is related to a class of physical phe-
nomena called phase transition; there is some physical system that is dependent on a single parameter, such
as temperature or pressure, and the system goes from one phase to the other very sharply (for instance, the
system goes from not magnetized to magnetized).

There are other graph properties that also exhibit this behavior (e.g Hamiltonian cycle, planarity, etc).
But there was no satisfactory general theorem until Freidgut-Kalai.

To have a precise form of the theorem, we define the terms:

Definition 8.1. A graph propertyis a class of labeled graphs that is closed under permutations of the vertex
labels.

Intuitively, a graph property holds or does not hold regardless of the labeling of the vertices, such as
connectedness, “the graph contains a triangle”, the graph is 17-colorable, etc.

Definition 8.2. A graph property is calledmonotoneif it continues to hold after adding more edges to the
graph.

Again, connectedness is monotone; non-planarity is also. An example of a graph property which is
non-monotone is “the number of edges in the graph is even”.

Let A be a monotone graph property.

µp(A) = Pr(A|G ∈R G(n, p))

whereG is sampled randomly. Clearlyµp(A) is an increasing function ofp. The theorem says thatp0,
whereµp0(A) = ε, andp1, whereµp1(A) = 1− ε are very close. Namely,

p1 − p0 ≤ O

(
log(1/ε)

log n

)
In the connectivity example, this is not very interesting. The transition from almost surely disconnected

to almost surely connected takes place aroundp = log n/n, and1/ log n is much bigger. In other words,
the gap is much bigger than the critical value where the threshold occurs.

Later, Bourgain and Kalai showed that for all monotone graph properties, the same bound holds with

p1 − p0 ≤ O
(

1
log2−γ n

)
, for everyγ > 0 andn large enough. This theorem is nearly tight, since there exist

examples of monotone graph properties where the width of the gap isΘ
(

1
log2 n

)
. For instance, “G contains

ak-clique” for specifick = Θ(log n) where the criticalp = 1/2.

So what can we do about the problem in the connectivity example, where the threshold comes at a point
much smaller than the gap? We can ask a tougher question: is it true that the transition fromµp0 = ε to
µp1 = 1− ε occurs between(1± o(1))q, whereq is the critical probability (i.e.µq(A) = 1/2)?

If the answer were yes, we’d have a more satisfactory gap in relation to our critical value in the con-
nectivity case. However, the answer is negative for certain graph properties: this is asking too much. For
example, suppose the property is thatG contains a triangle. Here the criticalp = c/n. The expected number
of triangles inG is (

n
3

)
p3 =

c3

6
(1− 1

n
)(1− 2

n
)
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f(p)

c/n c/n

Figure 8.4:G contains a triangle

The picture looks like Figure 8.4. At the smaller scale, the threshold isn’t as sharp. As we varyc in
p = c/n, the probability thatG contains no triangle changes from one constant to another constant, both
bounded away from zero and from one. The reason behind this picture is the number of triangles is a random
variable with a Poisson distribution. Therefore, the probability there is no triangle isPr(X = 0) = e−µ,
whereµ is the expectation ofX.

One of Freidgut’s major contributions was to characterize which graph properties have a sharp threshold
and which don’t in this stronger sense. It’s a little complicated to even state his result precisely, but the spirit
of the theorem is this: properties like “G contains a triangle” are considered “local”. Friedgut’s theorem
says that “a graph property has a sharp threshold (in the strong sense)” is roughly equivalent to the property
being “non-local”.
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Lecture 9

Threshold Phenomena

March 7, 2005
Lecturer: Nati Linial

Notes: Chris Ŕe

9.1 Asides

There is a good survey of this area by Gil Kalai, Muli Safra calledThreshold Phenomena and Influencedue
out very soon.

9.1.1 Percolation

Though our main technical result concerns random graphs in the G(n,p) model, let us mention other contexts
in which threshold phenomena occur. One classical example isPercolation, an area started in physics. A
typical question here is this: given a planar grid and0 < p < 1. Create a graph by keeping each edge of the
planar grid with probability p and removing each edge with probability 1-p. The inclusion of edges is done
independently. Our question is then: In the resulting graph is the origin in an infinite connected component?

It turns out that there is a critical probability,pc, such that

p < pc with probability 1, the origin is not in an infinite component
p > pc with probability> 0, the origin is in an infinite component

You can imagine considering other similiar questions on higher dimensional grids. For the planar grids
it turns out thatpc = 1

2 .

This problem comes up in mining in the following idealized model. Somewhere underground is a deposit
of oil. It is surrounded by rocks whose structure is that of a ’random sponge’, a solid with randomly placed
cavities. The question is how far the oil is likely to flow away from its original location. Percolation in a
3-dimensional setting is a good abstraction of the above physical situation.

Now imagine graphing the probability of the property holding versus thep value from above. As an
example see figure 9.1. The interesting questions are how does it behave around or slightly to the right ofpc.
For example is this a smooth function? Is it differentiable? How large is its derivative? Figure 9.1 illustrates
some curves that could happen. In this example, the property could be discontinuous atpc or is continuous
but not smooth atpc.
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Figure 9.1: Probability of Property vs. p

9.2 Monotone Graph Properties

The main theorem we want to prove is:

Theorem 9.1 (Friedgut and Kalai). Every monotone graph property has a sharp threshold

To make this precise, we need some definitions. Let P be a graph property, that is a property invariant
under vertex relabeling. A property P ismonotoneif P (G0) implies thatP (G) for all G such thatG0 is
a subgraph ofG. A property has a sharp threshold, ifPr[A|G(n, p1)] = ε, Pr[A|G(n, p2)] = 1 − ε and
p2 − p1 = o(1)

Theorem 9.2 (Erdös and Renyi). The threshold for graph connectivity is atp = log n
n

p < (1− ε) log n
n G almost surely disconnected

p > (1 + ε) log n
n G almost surely connected

There is a ’counter-point’ model to our deleting model, where we throw in edges. There are some
surprising facts in this model. For example, when you throw in the edge that reaches the last isolated vertex,
with almost certainty, you also connect the graph - at the exact same stage. At the same instant, you also
make the graph hamiltonian.

It may be illustrative to see the form of these arguments.

Proof. sketchLet p < (1− ε) log n
n . Let X be a random variable representing the number of isolated vertices.

ThenE[X] → ∞ sinceE[x] = n(1− p)n−1. We also need a second moment argument like Chebyshev to
deduceX > 0 almost surely. In particular, whenX > 0, the graph is disconnected.

Proof. Let Yk be a random variable that counts the number of setsS ⊂ V with |S| = k that have no edges
between S and its complement. Then theE[Yk] =

(
n
k

)
(1−p)k(n−k). It can be checked that ifp > (1+ε) log n

n ,
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then
∑

k≤n
2

E[Yk] = o(1). It follows that with probability1 − o(1) no such sets exist. Clearly, when no
such sets exist, the graph is connected.

9.2.1 Relation to KKL

Why should we expect KKL to work like these examples?

If f : {0, 1}n → {0, 1} with E[f ] = 1
2

1. By KKL, ∃x ∈ [n] Inff (x) > Ω( log n
n ). Let N =

(
[n]
2

)
then

eachz ∈ {0, 1}N is a description of ann vertex graph and the variables correspond to edges.

We can now view graph property as an N-variable boolean function. Notice also by symmetry if one
edge (variable) is influential, then all edges (variables) are influential. As we will see later large influence
entails a sharp threshold.

To generalize, we need to understand the role ofp in G(n, p). We have to work with{0, 1}N not
under the uniform distribution but under the following product distribution:Pr[U ] = p|U |(1 − p)N−|U | =
pE(G)(1− p)(

n
2)−E(G). We are denoting the Hamming weight of U as|U |. andE(G) is the edge set of the

graphG.

9.3 BK3L

9.3.1 A relation between influence and the derivative ofµp(A)

The new B and K in our theory are Bourgain and Katznelson. Byµp(A) we denote the probability that the
property A holds under thep, 1− p product measure.

Lemma 9.3 (Margulis & Russo). Let A ⊆ {0, 1}n be a monotone subset and letµp(A) be the p-measure
of A. Forx ∈ A let h(x) = |{y /∈ A|x, y ∈ E(cube)}| (number of neigbors of x outside of A).

LetΨp(A) =
∑

h(x)µp(x), the weighted sum of thesehs.

Additionally letΦp(A) be the sum of influences of individual variables. Then

Φp(A) =1
Ψp(A)

p
=2

d

dp
µp(A)

The subscripts on the equality are only for convenience in the proof.

Definition 9.1. We will sayx � y, if x and y differ in exactly one coordinate, say theith, andxi = 1 and
yi = 0.

Influences, more generally In general, if X is a probability space and iff : Xn → {0, 1} (i.e. f
can be viewed as an indicator function for a subset ofXn). For 1 ≤ k ≤ n, we can sayInff (k) =
PrXn−1 [ Obtain a non-constant fiber]. Here we are randomly choosingn − 1 coordinates from X with the
kth coordinate missing, and checking if the resulting fiber is constant for f. Namely, if the value of f is fixed
regardless of the choice of for thekth variable.

1choosingE[f ] = 1
2

is not critical. Anything bounded away from 0,1 will do
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Figure 9.2: Cube with a Fiber

Proof. We prove equality 1.Φp(A) is the sum of all influences. The influence of theith variable is the
weighted sum of all such edges such thatx � y wherex ∈ A, y /∈ A andxi = 1, yi = 0. The probability of
the relevent event is this: We have selected all coordinates except theith and the outcome should coincide
with x. There are|x| − 1 coordinates which are 1 among those andn− |x| coordinates for which are 0. So
we can rewrite the formula as follows

Φp(A) =
∑

x∈A,y/∈A,x�y

p(|x|−1)(1− p)n−|x|

=
1
p

∑
x∈A,y/∈A,x�y

p(|x|)(1− p)n−|x|

=
1
p

∑
x∈A

p(|x|)(1− p)n−|x| |{y|y /∈ A, x � y}|

=
1
p

∑
x∈A

p(|x|)(1− p)n−|x| h(x)

=
1
p

∑
x∈A

µp(x)h(x) =
1
p
Ψp(A)

Proof. Equality 2.

d

dp
µp(A) =

∑
x∈A

|x|p|x|−1(1− p)n−|x| −
∑
x∈A

(n− |x|)p|x|(1− p)n−|x|−1

p
d

dp
µp(A) =

∑
x∈A

|x|p|x|(1− p)n−|x| − p

1− p

∑
x∈A

(n− |x|)p|x|(1− p)n−|x|

For a fixed vertex of the cube, x, and e an edge incident with x define

wx,e =

{
1 e goes down from x

− p
1−p e goes up from x
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Figure 9.3: Partitioning the cube to derive KKL fromBK3L

Figure 9.4: f on n=2 case

So we can rewrite (summing over x and e’s incident).

p
d

dp
µp(A) =

∑
x∈A,e∼x

wx,eµp(x)

This is because there are|x| edges going down from x and|n− x| edges going up from it. Notice that if
x � y are both in A ande = (x, y), thenwx,eµp(x) + wy,eµp(y) = 0. It follows that we can restrict to the
sum to the edges inE(A,Ac). In other words,

p
d

dp
µp(A) =

∑
x∈A,y/∈A,e=(x,y)

wx,e µp(x) =
∑

x∈A,y/∈A,e=(x,y)

µp(x) =
∑
x∈A

h(x)µp(x) = Ψp(A)

Returning to the proof that every monotone graph property has a sharp threshold. LetA be a monotone
graph property and let us operatre in the probability spaceG(n, p). We will show here that thep value where
the property holds with less thanε is very close to where the property holds with1

2 . A symmetric argument
for 1− ε will give us the full desired result.
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9.3.2 Words about BKKKL

Theorem 9.4 (BKKKL). Let f : [0, 1]n → {0, 1} with E[f ] = t, let t′ = min(t, 1 − t). Then there exists
n ≥ k ≥ 1 such thatInff (k) ≥ Ω(t′ log n

n )

Set version of KKL ∀f : {0, 1}n → {0, 1} E[f ] ∼ 1
2 and for everyω(n) → ∞ asn → ∞,

∃S ⊆ [n]. |S| ≤ n(ω(n))
log n with Inff (S) = 1− o(1). This result follows from repeated application of KKL.

Remark.It is interesting to note that the analgous statement forf : [0, 1]n → [0, 1] does not hold.

Consider the following f, represented in figure 9.4. Letf(x1, . . . , xn) = 0 iff ∃i 0 ≤ xi ≤
c
n wherec = loge(2). In other words,f−1(1) =

∏n
i [ c

n , 1]. Let |S| = α. In this example,Inf(S) =
Pr[f still undetermined when all variables outside of S are set at random]. The function is still undeter-
mined iff all others outside the set are 1. This happens with probability(1− c

n)n(1−α) ≈ e−c(1−α), which is
bounded away from 1.

This is a ’close-cousin’ of the tribes example. Recall in the tribes example we broke the variables into
’tribes’ of size∼ log n − log log n. Each tribe contributed if all variables take on the value 1, that is there
is one assignment out of the2log n−log log n = n

log n such that the tribe had value 1. In our setting, we can
identify tribes with single variables. The 0 region of the continuous case corresponds to the assigment where
all variables in the discrete case are set to 1, since this determines the function.

Proof. By BK3L there exist influential variables. By symmetry all variables are influential. Sum of all
individual influences are at least as large asΦp(A) ≥ Ω(ε log N) = Ω(ε log n)

Φp(A) ≥ Ω(µp(A) log n)

By Margulis-Russo Lemma we knowΦp(A) = d
dp µp(A).

d

dp
µp(A) ≥ Ω(µp(A) log n)

(
d

dp
µp(A))/µp(A) ≥ Ω(log n)

d

dp
(log(µp(A)) ≥ Ω(log n)

let p1, p2 be defined byPrG(n,p1)[A] = ε andPrG(n,p2)[A] = 1
2 . From above we know thatd(log µp(A)) >

Ω(log n) sop1 − p2 < O( log 1
ε

log n ).

Remark.We will not give a proof here, but note that Freidgut showed using standard measure theory how
to deriveBK3L from KKL. Namely, how we can reach the same conclusion for anyf : Xn → {0, 1},
whereX is any probability space. To derive KKL fromBK3L, is easy: Givenf : {0, 1}n → {0, 1} define
F : [0, 1]n → {0, 1} by breaking the cube to2n subcubes and letting F be constant on each subcube that is
equal to f at the correpsoning vertex of the cube. For a simple illustration of the casen = 2, see figure 9.3.
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