Lecture 1
Introduction to Fourier Analysis

Jan 7, 2005
Lecturer: Nati Linial
Notes: Atri Rudra & Ashish Sabharwal

1.1 Text

The main text for the first part of this course would be
e T. W. Korner,Fourier Analysis
The following textbooks are also “fun”

e H. Dym and H. P. Mckearkourier Series and Integrals

e A. Terras,Harmonic Analysis on Symmetric Spaces and Applications, Vols. I, Il
The following text follows a more terse exposition

e Y. KatznelsonAn Introduction to Harmonic Analysis

1.2 Introduction and Motivation

Consider a vector spadé (which can be of finite dimension). From linear algebra we know that at least in

the finite-dimension casgé has a basis. Moreover, there are more than one basis and in general different
bases are the same. However, in some cases when the vector space has some additional structure, some
basis might be preferable over others. To give a more concrete example consider the vectdf space

{f:X — RorC} whereX is some universe. I = {1,---,n} then one can see that is indeed the

spaceR™ or C™ respectively in which case we have no reason to prefer any particular basis. Howéver, if

is an abelian groﬂ)there may be a reason to prefer a bdsisver others. As an example, let us consider

X =7Z/nZ,V = {(y0, - ,yn)|lyi € R} = R™. We now give some scenarios (mostly inspired by the
engineering applications of Fourier Transforms) where we want some properti@éskar our “wish list”:

*An abelian group is given b{S, +) wheres is the set of elements which is closed under the commutative operatibarther
there exists an identity elememtind every element if has an inverse.



1. Think of the elements of /nZ as time units and let the vectgr= (y1,--- , y,) denote some mea-
surements taken at the different time units. Now consider another veetofz, - - - , 2, } such that
forall i, 2; = ¥;11 moa (n)- NOte that the vectorg andz are different though from the measurement
point of view they are not much different— they correspond to the same physical situation when our
clock was shifted by one unit of time. Thus, with this application in mind, we might want to look for
a basis foV such that the representationofs “closely related” to that ofj.

2. In a setting more general than the previous one, iffforX — R, a given member of anda € X,
g : X — R be such thay(x) = f(z + a) then we would like to have representationsfoénd g
being “close” in5 for any f anda. Note that in the previous examplecorresponds to the index
anda = 1.

3. In situations where derivatives (or discrete analogues thereof are well-defined), we woultittke
have a representation similar to thatfof

4. In real life, signals are never nice and smooth but suffer from noise. One way to reduce the noise is
to “average-out” the signal. As a concrete example let the signal samples be giygn by, f,.—1
then the smoothened out signal could be given by the samples: f;_1 + 3 fi + % fi11. Define
g-1=1%,90 = 3,91 = +. We now look at an new operataronvolutionwhich is defined as follows.
Letg be f convolved wheré = f « g andh(z) = 3, f(y)g(z — y). So another natural property of
B is that the representation ¢fx g should be related to that gfandg.

Before we go ahead, here are some frequently used instantiatiofis of

X =Z/nZ. This is the Discrete Fourier Transform (DFT).

X =T = {Real Numbers mod, addition mod1} = {¢* multiplication}. The isomorphism exists
because multiplication of elements in the second group is the same as additiérrobthe angles
6.

This is the most classical case of the theory, covered by the bdgknometric Polynomialdy
Zygmund.

e X = (R,+). This is the Real Fourier Transform. In this case, in order to get meaningful analysis,
one has to restrict the family of functiorfs: X — R under consideration e.g. ones with converging
integrals or those with compact support. The more general framework is that of Locally compact
Abelian groups.

e X = {0,1}" where the operations are done m2d Note that{f : X — {0,1}} are simply the
boolean functions.

1.3 A good basis

As before letX be an abelian group and define the vector spaee {f : X — R}.

Definition 1.1. Thecharactersof X is the sef{y : X — C|x is a homomorphist



By homomorphism we mean that the following relationship holdét + y) = x(z) - x(y) for any
x,y € X. As a concrete exampl&X' = Z/nZ hasn distinct characters and thigh character is given by
x;(x) = w’® for anyz € X wherew = 7/,

We now state a general theorem without proof (we will soon prove a special case):

Theorem 1.1. Distinct characters (considered as functions frém— C) are orthogond,

We now have the following fact:

Fact 1.1. If X is a finite abelian group of elements, thenX hasn distinct characters which form an
orthogonal basis foV = {f : X — R}.

Consider the special case &f = Z/nZ. We will show that the characters are orthogonal. Recall that
in this casey;(x) = w/®. By definition, (x;, xx) = Y.'_g w/?w = Y"1 wU=R_If j = k then each
term is one and the inner product evaluatesa.tdf j; # k, then summing up the geometric series, we have

(wj’k)"—l

(Xj> Xk) = (= = 0. The last equality follows from the fact that' = 1.

We will take a quick detour and mention some applications where Fourier Analysis has had some mea-
sure of success:

e Coding Theory. A codeC is a subset 0f0, 1}" where we want each element to be as far as possible
from each other (where far is measured in terms of the hamming distance). We wouldttikee
as large as possible while keeping the distance as large as possible. Note that these are two opposing
goals.

¢ Influence of variables on boolean functions. Say you have an array of sensors and there is some
function which computes an answer. If a few of the sensors fail then answers should not change: in
other words we need to find functions that are not too influenced by their variables.

e Numerical Integration/ Discrepancy. Say you want to integrate over some dom@inOf course
one cannot find the exact integral if one does not have have an analytical expression of the function.
So one would sample measurements at some discrete points and try and approximate the integral.
Suppose that we further know that certain subdomairni@ afe significant for the computation. The
main question is how to spreadpoints in) such that every “significant” region is sampled with the
“correct” number of points.

1.4 A Rush Course in Classical Fourier Analysis

LetX =T = ({e” | 0 < 6 < 2r} ,multiplication). Let f : T — C, which can alternatively be thought of
as a periodic functiorf : R — C. What do characters of look like?

There are infinitely many characters and each is a periodic function®tnC. In fact, every character
of X is a functiony : X — T, i.e. x : T — T. Being a homomorphism, it must also satisfir.y) =

2There is natural notion of inner-product among functigng : X — R. (f,g) = > wex f(@)g(z) in the discrete case and
(f,g) = [ f(z)g(z) dz in the continuous case. If the functions maps iGiatheng(z) is replaced by its conjuga®x) in the
expressions. Finally andg areorthogonalif (f,g) =0



x(x).x(y). This implies that the only continuous charactersXofire y,(z) = z*,k € Z. Note that if
k ¢ 7, thenz* can have multiple values, discontinuities, etc. It is an easy check to segthai) = ox;:

1

xXrx) = or TXk(x)Xl(fU)de

1
= /xkx_l dx
2 T

- = i0(k—1)

5 | d6
(1 if J =
= 10 if ks £ 1
= O

How do we express a giveh: T — C in the basis of the characters &f? Recall that ifi” is a finite
dimentional vector space over a fidldvith an inner product andy, . . . , u,, is an orthonormal basis far,
then everyf € V can be expressed as

n
f = Z ajuj, a; € IF, a;j = <f, Uj> (1.1)
j=1
We would like to obtain a similar representationfoin the basis of the characteys, k € Z.

Definition 1.2 (Fourier Coefficients). Forr € Z, thert" Fourier coefficient off is
fr) = 5= [ f0 e ar
The analogue of Equatign 1.1 now becomes
S(f,t) = Zn: f(r)em, does lim S,(f,t) = f(t)? (1.2)
Heref(r) replacesa; and ;. (e') replacesu; in Equatio. In a dream world, we would like to ask

whetherS" % f(r) et z f(t) holds. We are, however, being more careful and asking the question by

r=—00

making this sum go from-n to n and considering the limit as — oc.

1.4.1 Notions of Convergence

Before attempting to answer the question of representatignmferms of its Fourier coefficients, we must
formalize what it means for two functions defined over a donhio be “close”. Three commonly studied
notions of distance between functions (and hence of convergence of functions) are as follows.

L Distance: ||f — g||c = sup,c4 |f(z) — g(z)|. Recall that convergence in the sensd.gf is called
uniform convergence



Ly Distance: [|f — gl[1 = [, |f(z) — g(x)| dz

Ly Distance: |[f = gll2 = /[ |f(x) — g(x)2 dz

In Fourier Analysis, all three measures of proximity are used at different times and in different contexts.

1.4.2 Fourier Expansion and Fejer’'s Theorem

The first correct proof (under appropriate assumptions) of the validity of Equiation 1.2 was given by Dirichlet:

Theorem 1.2 (Dirichlet). Let f : T — C be a continuous function whose first derivative is continuous
with the possible exception of finitely many points. Then Equptidn 1.2 holds fortegetyat which f is
continuous.

Even before Dirichlet proved this theorem, DuBois Reymond gave an example of a contififmus
which lim sup,,_, .. S»(f,0) = oco. This ruled out the possibility that continuity is sufficient for Equation
to hold. The difficulty in answering the question affirmatively came in proving convergesgé oft) as
n — oo. Fejer answered a more relaxed version of the problem, namely, whehhmreconstructedrom

f(r) in possibly other ways? He showed thafifatisfies certain conditions even weaker than continuity,
then it can be reconstructed frofitr) by taking averages.

Definition 1.3 (Cesaro Means).Let a1, as, ... be a sequence of real numbers. Théft Cesaro meairis
k
b, = (1/k) Zj:l a;.

Proposition 1.3. Let a1, as, ... be a sequence of real numbers that converges. tahen the sequence
b1, be, ... Of its Cesaro means convergesitas well. Moreover, the sequeng® } can converge even when
the sequencéa; } does not (e.gaz; = 1, azj41 = 0).

Let us apply the idea of Cesaro meansto Define

n

Un(fvt) = n_1|_1 Zsk(f’t)
k=0

n k
= > e

k=0r=—k

n
o 7’L+1—|7"|A irt
= > o7 Joe

r=—n
Theorem 1.4 (Fejer). Let f : T — C be Riemann integrable. If is continuous at € T, then
lim,, oo o (f,t) = f(t). Further, if f is continuous then the above holds uniformly.

Proof. Note thatlim,,_.., 0, (f,t) = f(t) means thate > 0,3ng : n > ng = |on(f,t) — f(t)| < e. The
convergence is uniform if the samg works for allt simultaneously. The proof of the Theorem uses Fejer’s



kernelsk,, that behave as continuous approximations to the Dirac delta function.

n

ouhit) = 3 L gy e

r=—m"n
n

_ n+1 |T —'l"'w
- Z n+1 (27r /f da:)

_ /f n+ 1- | | ezr(tfm) dr
r=— n+1

def " n+1 7|
e — .
= /f t—LE dx fOI‘K() TZ ni_'_lezrz

=—n

= /ft— y)dy fory=t—=x

which is the convolution of with kernel K,,. Note that if K, were the Dirac delta function, thqﬁf flt—
y) K, (y) dy would evaluate exactly té(t). Fejer's kernelds,, approximate this behavior.

Proposition 1.5. K, satisfies the following:

1 sin "‘2"1 2 if 0
K,(s)=( ntl | sing s #

n+1 ifs=0

The kernelsk,, have three useful properties.

1. Vu: Ky(u) >0

2. Y6 > 0 : K,(s) — 0 uniformly outside the interval—¢,d], i.e. Ve > 0,3ng : s ¢ [—0,0] =
| K, (s)] <€

3. (1/27) [p Kn(s)ds =1

Given anye > 0, we seek a large enough such that for alh > no, | [ f(t—y)Kn(y) dy— f(t)| < e.
Divide this integral into two intervals:

)
/ F(t =) Kn(y) dy = / F(t =) Kon(y) dy + / F(t — ) Kn(y) dy
T -5 T\[—4,0]

The first integral on the RHS converge=tof (t) becauseg (t — y) is almost constant and equdl§) in the
rangey € [—4, J] andfw_(s o] K, (s) ds converges t@r because of properg 3 df,. The second integral

converges t0 because’ is bounded and because of propéity Z6f. Hence the LHS converges2a f(t),
finishing the proof. O

Corollary 1.6. If f,g: T — C are continuous functions and- € Z : f(r) = j(r), thenf = g.

Proof. Leth & f—g. his also continuousvr : h(r) = f(r)—§(r) = 0. By Fejer's Theorem, = 0. [



1.4.3 Connection with Weierstrass’ Theorem

Because of the uniform convergence part of Fejer's Theorem, we have proved that for dll — C
continuous and all > 0, there exists a trigonometric polynomi&lsuch that for alt € T, |f(t) — P(t)| <

e. This impliesWeierstrass’ Theoremwhich states that “unddr.[a, b] norm, polynomials are dense in
Cla,b],” i.e., forall f : [a,b] — R continuous and akk > 0, there exists a polynomidP such that for all
x € [a,b], |f(z) — P(z)| <e.

Informally, Weierstrass’ Theorem says that given any continuous function over a finite inverval and an
arbitrarily small envelope around it, we can find a polynomial that fits inside that envelope in that interval.
To see why this is implied by Fejer's Theorem, simply convert the given fungtiorja,b] — C into a
symmetric functiory over an interval of siz€(b — a), identify the end points of the new interval so that it
is isomorphic toT, and use Fejer’s Theorem to conclude thatg, .) is a trigonometric polynomial close
to ¢ (and hencef). To see why Weierstrass’ Theorem implies Fejer’s Theorem, recalkthat can be
expressed as a degregolynomial incost. Use this to express the promised trigopnometric polynomial
P(t) as a linear combination @bs rt andsin rt with —n < r < n.

Remark.Weierstrass’ Theorem can alternatively be proved using Bernstein’s polynomials even though nor-
mal interpolation polynomials do not work well for this purpose. Consifler [0,1] — R. Thent?
Bernstein polynomial is3,,(f, z) % S F(EY()a*(1 — z)" k. The key idea is that this involves the

fact that the Binomial distributiof*(k) = (})z*(1 — z)" " is highly concentrated arourid= zn and thus
approximates the behavior of the Dirac delta function.



Lecture 2
Introduction to Some Convergence theorems

Friday 14, 2005
Lecturer: Nati Linial
Notes: Mukund Narasimhan and Chrigé R

2.1 Recap

Recall that forf : T — C, we had defined
R _ 1 —irt
fr) = 5= [ s

and we were trying toeconstructf from f The classical theory tries to determine if/when the following is
true (for an appropriate definition of equality).

2 £ ir
F@&) =" f(r)e
reZ
In the last lecture, we proved FEgjs theoremf  k,, — f where thex denotes convolution ankl, (Fejer
kernels) are trignometric polynomials that satisfy
1.k, >0
2. [pkn=1
3. kn(s) — 0 uniformly asn — oo outside[—d, d] for anyd > 0.
If X is afinite abelian group, then the space of all functipnsX — C forms an algebra with the operations
(+, *) where+ is the usual pointwise sum ards convolution. If instead of a finite abelian group, we take

X to beT then there is no unit in this algebra (i.e., no elententith the property that « f = f for all f).
However thek,, behave agpproximate unitand play an important role in this theory. If we let

Su(f,t) =) f(r)e™

ThenS,(f,t) = f x D,, whereD,, is the Dirichlet kernel that is given by

sin (n+ %) s

Dn(z) = sin 5
2

The Dirichlet kernel does not have all the nice properties of the ther kejnel. In particular,

8



1. D,, changes sign.
2. D,, does not converge uniformly to O outside arbitrarily snial, 4] intervals.

Remark.The choice of an appropriate kernel can simplify applications and proofs tremendously.

2.2 The Classical Theory

Let G be a locally compact abelian group.

Definition 2.1. A character orz is ahomomorphisny : G — T. Namely a mapping satisfyig(g: +g2) =
x(91)x(g2) forall g1, g2 € G.

If x1,x2 are any two characters 6f, then it is easily verified that; x- is also a character @, and so
the set of characters ¢f forms a commutative group under multiplication. An important role is played by
G, the group of all continuous characters. For exaniple; Z andR = R.

For any functionf : G — C, associate with it a functlonA: G — C wheref(x) = {f,x>- For
example, ifG = T theny,(t) = e for r € Z. Then we havef(y,) = f(r). Wecallf : G — C the
Fourier transform off. Now G is also a locally compact abelian group and we can play the same game

backwards to construgt. Pontryagin’s theorem asserts tifat= G and so we can ask the question: Does

f = £ ? While in theory Feir answered the question of whéminiquely determineg, this question is still
left unanswered.

For the general theory, we will also require a normalized nonnegative megasur@ that is translation
invariant: (S) = u(la+5) = pn({a+s|s € S}) foreveryS C G anda € G. There exists a unique such
measure which is called the Haar measure.

2.3 L, spaces

Definition 2.2. If (X, 2, i) is a measure space, thép(X, 2, 1) is the space of all measureable functions

f : X — Rsuch that
1
P
141l = [/ |f|p.du} < oo
X

For example, ifX = N, Q is the set of all finite subsets of, andy is the counting measure, then
[(z1, 22,y 2y, = (0 m‘p) Forp = oo, we define

2]l oo = sup ||
€N
Symmetrizatioris a technique that we will find useful. Loosely, the idea is that we are averaging over

all the group elements.
Given a functionf : G — C, we symmetrize it by defining : G — C as follows.

— / f(z + a) du(a)
G

9



We will use this concept in the proof of the following result.

Proposition 2.1. If G is a locally compact abelian group, with a normalized Haar measureand if
X1, x2 € G are two distinct characters thefx i, x2) = 0. i.e.,

{0 X1 7 X2

. / 21 (@) X2 (@) da(x) = Syr s =
X 1 x1=x2

Proof. For any fixeds € G, I = [y x1(2)x2(z) du(z) = [ x1(x + a)x2(z + a) du(z). Therefore,

I /X i (@ + a)xa(@ + a) du(z)
- /X X1 (2)x1 ()2 (@) x2(a) dyu(z)
— x1(a)xa(a) /X 1 (2)x2 (&) du(z)

= x1(a)xa(a)l

This can only be true if eithef = 0 or x1(a) = x2(a). If x1 # x2, then there is at least onesuch that
x1(a) # x2(a). It follows that eithery; = x2 or I = 0. O

By letting y» be the character that is identically 1, we conclude that G with y # 1 for any
Jox(@) dp(x) = 0.

2.4 Approximation Theory

Weierstrass’s theorem states that the polynomials are dersg|in b] N Ca, b]E] Fejér's theorem is about
approximating functions using trignometric polynomials.

Proposition 2.2. cos nx can be expressed as a degrepolynomial incos x.
Proof. Use the identityos(u + v) + cos(u — v) = 2 cos u cos v and induction on n. O

The polynomialT;, () whereT},(cosz) = cos(nz) is calledn!” Chebyshev’s polynomial. It can be
seen thafly(s) = 1, Ti(s) = s, Ta(s) = 2s> — 1 and in general},(s) = 2"~ 's" plus some lower order
terms.

Theorem 2.3 (Chebyshev).The normalized degree polynomialp(z) = 2™ + ... that approximates the
functionf(z) = 0 (on[—1, 1]) as well as possible in the,,[—1, 1] norm sense is given %Tn(m). ie.,

min max |p(x)| =
p anormalized polynomial—lga:§1| ( )’ 2n—1

This theorem can be proved using linear programming.

! This notation is intended to imply that the norm on this space is the sup-norm (a&arly] C Loo[a, b])
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2.4.1 Moment Problems

Suppose thafX is a random variable. The simplest information abdutare its moments. These are
expressions of the form, = [ f(z)2" dz, wheref is the probability distribution function of X. Anoment
problemasks: Suppose | know all (or some of) the momepnts}, .. Do | know the distribution ofX'?

Theorem 2.4 (Hausdorff Moment Theorem). If f, ¢ : [a,b] — C are two continuous functions and if for

allr=0,1,2,...,we have
b b
/ flx)z" dx = / g(z)x" dz

then f = g. Equivalently, ifh : [a,b] — C is a continuous function Wit!ﬁ7 h(z)z" dx = 0 forall r € N,
thenh = 0.

Proof. By Weierstrass's theorem, we know that foratt 0, there is a polynomiaP such that|h — P||__ <
e. If f; h(z)z" dz = 0 for all » € N, then it follows thatf;’ h(z)Q(z) dz = 0 for every polynomiall(x),
and so in particularff h(x)P(x)dz. Therefore,

0= /abh(x)P(:z:) do = /abh(:c)h(x)dx+/:h(x) (P) ~ (@) da
Therefore, ,
(h, 7y = — / h(z) (P(m) —M) dz

Since h is continuous, it is bounded ofu,b] by some constant and so onla,b] we have
‘h(ac) (P(x) - h(x))‘ < ¢-€-|b—al. Therefore, for anyy > 0 we can picke > 0 so that so that

|h]|3 < 6. Henceh = 0. O
2.4.2 Alittle Ergodic Theory

Theorem 2.5. Let f : T — C be continuous ang be irrational. Then
: 1 . 2mir
dm >0 = [

Proof. We show that this result holds whgift) = ¢%t. Using Fegr’s theorem, it will follow that the result
holds for any continuous function. Now, cleagy [, e’ dt = 0. Therefore,

n
l § :627Tir3'y o i / 6ist dt
n 27 Jr

r=1

n
1 .
- § :6271'17'37
n

r=1

1— eQm'ns'y

1 .
— *627”57
n

1 — e2misy
2
- n- (1 _ 627ri3'y)

Sincey is irrational,1 — ¢2™**7 is bounded away from 0. Therefore, this quantity goes to zero, and hence
the result follows. O
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Figure 2.1: Probability of Property v. p

This result has applications in the evaluations of integrals, volume of convex bodies. Is is also used in

the proof of the following result.

Theorem 2.6 (Weyl). Let be an irrational number. For: € R, we denote byz) = = — [z] the fractional
part of . For any0 < a < b < 1, we have

lim \{1§r§n:a§<r’y><b}\:

n— oo n

b —

Proof. We would like to use Theore@.S with the functign= 1, ;. However, this function is not
continuous. To get around this, we define functigrs> lia,5) = f~ as shown in the following diagram.

f* and f~ are continuous functions approximatirfg We let let them approacli and pass to the
limit. O

This is related to a more general ergodic theorem by Birkhoff.

Theorem 2.7 (Birkhoff, 1931). Let (Q2, 7, p) be a probability measure and : Q@ — ) be a measure
preserving transformation. Let € L1(Q), F, p) be a random variable. Then

1 n
=Y XoTF - E[X;T]
n

k=1

WhereZ is theo-field of T-invariant sets.

2.5 Some Convergence Theorems

We seek conditions under which, (f,t) — f(t) (preferably uniformly). Some history:

¢ DuBois Raymond gave an example of a continuous function suchithatip S,,(f,0) = oco.

e Kolmogorov [1] found a Lebesgue measureable functjopn: T — R such that for allt,
limsup Sy, (f,t) = oo.
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e Carleson([2] showed that if : T — C is a continuous function (even Riemann integrable), then
Sn(f,t) — f(t) almost everywhere.

e Kahane and Katznelson![3] showed that for evBrC T with x(E) = 0, there exists a continuous
functionf : T — C such thatS,,(f,t) /4 f(¢t)ifandonlyift € E.

Definition 2.3. ¢, = L, (N, Finite sets counting measupe = {x|(xo, ... )P < oo}.

Theorem 2.8.Let f : T — C be continuous and suppose thg}, ., |f(r)] < oo (sof € ¢1). Then
Sn(f,t) — f uniformly onT.

Proof. See lecture 3, theorem 3.1. ]

2.6 ThelL, theory

The fact thak(t) = ¢! is an orthonormal family of functions allows to develop a very satisfactory theory.
Given a functionf, the best coefficients;, A, ..., A, so that]| f — >~ ; Aje;l|, is minimized is given by

Aj = (f,e;). This answer applies just as well in any inner product normed space (Hilbert space) whenever
{e;} forms an orthonormal system.

Theorem 2.9 (Bessel’s Inequality).For everyAi, Ao, ..., Ay,

> |17 =D (e’

i=1

n 2
Hf > e
i—1

with equality when\; = (f, e;)

Proof. We offer a proof here for the real case, in the next lecture the complex case will be done as well.
n 2
Hf_z)\zez = f nyez ez vaez €i Z)\ez
=1 ) i=1
= (f_z<f>€z>€l) vaez €i Z)\ez
=1 =1

2

+ crossterms

cross terms= 2(f — i (f,e) e“i (f,eie; Z/\ ei)

i=1 =1
Observe that the terms in the cross terms are orthogonal to one anotherigihee(f, e;)e;, e;) = 0. We

write N . .
2 (fre)(f =D (frepe,e) = D Nlf =Y (frej)eie)
=1 i j=1

Observe that each innter product term is 0. Sinde=f 7, then we applyi(f — (f, ei)ei, e;) = 0. If
i # j, then they are orthogonal basis vectors.
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We want to make this as small as possible and have only control ov&rgh8ince this term is squared
and therefore non-negative, the sum is minimized when weiskt= (f, e;). With this choice,

n 2 n n
'lf—z)\iei = (=) e f =) hie)
i=1 i=1 i=1

n

= <f7f>—2z>\i<f7€i>+z)\?

i=1

n

=IfI? =D (f.e)?

i=1

where the last inequality is obtained by settkig= (f, e;). O

References

[1] A. N. Kolmogorov,Une srie de Fourier-Lebesgue divergente partoGRAS Paris, 183, pp. 1327-
1328, 1926.

[2] L. CarlesonConvergence and growth of partial sums of Fourier serfega Math. 116, pp. 135-157,
1964.

[3] J-P Kahane and Y. Katznelso8ur les ensembles de divergence dages trignonétriques Studia
Mathematica, 26 pp. 305-306, 1966

14



Lecture 3

Harmonic Analysis on the Cube and Parseval’s
|dentity

Jan 28, 2005
Lecturer: Nati Linial
Notes: Pete Couperus and Neva Cherniavsky

3.1 Where we can use this

During the past weeks, we developed the general machinery which we will apply to problems in discrete
math and computer science in the following weeks. In the general setting, we can ask how much information
can we determine about a functigngiven its Fourier coefficientg. Or, givenf what can we say about

f? There is some distinction between properties which will hold in the general setting, and those that make
sense for the specific spaces we have dealt with. So far, we have looked at

1. T (the unit circle/Fourier Series).
2. Z/nZ (Discrete Fourier Transform).
3. R (Real Fourier Transform).
4. {0,1}" = GF(2)" = (Z/2Z)" (then-cube).
For then-cube (or for any space we wish to do Harmonic Analysis on), we need to determine the characters.

We can view elements of0,1}" as subsets ofn] = {1,...,n}, and then to each subsét C [n], let
xs(T) = (1)1, Then:

1
(XS1)XSs) = o Z (= 1)SinTI+820T|
TCn)

To see that theg s form an orthonormal basis, suppose that S; — S.. Then, the function

_JA—{z} ze€A
¢(A)_{Au{x} zd A

gives a bijection betweefiA : |S1 N A| = |So N A| (mod 2)} and{A :|S;1NA|# [S2 N A| (mod 2)}.
S0,(xs,,Xs,) = 0for Sy # Sa. If S; = Sy, then|T'N S1| + |T' N Se| is always even, sys, xs) = 1.
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Hence, theys form an orthonormal basis for functions froffi, 1} — R. (This is, of course, true in
general, but it's useful to see this explicitly for this special case). Then forfany0,1}" — R, we can

write f = g £(S)xs, where

.]E( ) vaS Z f |SﬂT|

TC[n]

There is an equivalent and often useful way of viewing this. We can also viewthwbe as{—1,1}" with
coordinate-wise multiplication. In this case, any functjpn{—1,1}" — R can be uniquely expressed as

a multilinear polynomial:
f= 2 as]]a
sc{o,1}® €S

where] [, g z; corresponds tqs.

There is an advantage to the fact that we now deal with a findep. Note thaff = ZSC (S)XS
is always the case for functions over theeube, unlike working ovef. Working overT, we made some
assumptions orf to be able have a similar formula to recoyefrom its fourier coefficients.

Now we can ask, what can be said abguwhen f is boolean (when the range gfis {0,1})? More
specifically, how do the properties gfget reflected irf? In general, this is too hard a question to tackle.
But what sorts of relationships between properties are we looking for? In the c@s¢haf smoothness of
f roughly corresponds to its fourier coefficierft@ﬂ) decaying rapidly as — oc. E.g.

f:T—=C <« {f(r)|rez}
smooth « f(r) decays rapidly

An instance of this relationship can be seen from the following theorems.

Theorem 3.1.Let f : T — C be continuous, and suppose thaf” f(r)| converges. Thef,,(f) — f
uniformly.

We can derive this theorem from another.

n

Theorem 3.2. Suppose that the sequeried’__, |a,| converges (ag — cc). Theng,(t) = Y ae’rt

r=—n

converges uniformly as — oo onT to g : T — C, whereg is continuous ang(r) = a, for all r.

This (roughly) says that if we have a sequence that is decreasing rapidly enough (its series converges
absolutely), then we can choose these to be the Fourier coefficients for some continuous function.

To see that Theore@.z implies Theor 3.1f('rf) = g(r) = a, for all r, and bothf andg are

continuous, therf = g. This is based on Fejer's Theorem (or Weierstrauss).
So to prove Theorein 3.1, all that remains is to prove Theprem 3.2.
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Proof. The underlying idea for the proof of Theor3.2 is th4tl) with the co-norm is acomplete
metric space meaning that all Cauchy sequences converge. Recall, a sequgnig Cauchy if fore > 0,
there is someV so forn,m > N, we haved(a,,a,) < € (Whered is whatever metric we are using).
So, to prove the theorem, we only need to check ffat = {>-", a,e"'} is a Cauchy sequence with
the co-norm. Sinces,, := Y |a,| converges, foe > 0, there is someV so that|s,, — s,| < € for

r=—n

n,m > N (basically, the tail end is small), hence

Z are™|| < Z lar|| < e.

m>|r|>n m>|r|>n

So, the{g, } forms a Cauchy sequence.
Hence,

n
> are™ — g uniformly, so

r=—n

e 3" qe7 — ety (t) uniformly. (3.1)

r=-n
n

/e—zkt Z are_lrtdtﬂ/e_lktg(t).

T . T

O]

Recall, du Bois Raymond gives an examplefaf T — C such thatim|S,,(f,0)| = +oo. However, if
the first derivative is somewhat controlled, we can say more.

Theorem 3.3. Let f : T — C be continuous and suppose thdtis defined for all but a finite subset @f
ThenS,,(f) — f uniformly.

f smooth— f decays rapidly= “S,, f — f™.

Recall from basic analysis, jf, are continuously differentiable andff, — f uniformly andf] — ¢
uniformly then f’ = g andg is continuous. This will allow us to show that the Fourier Serieg’ois
attained by termwise derivatives of the Fourier Serieg.of

Theorem 3.4.Let f : T — C be continuous and suppose th@;fi_ooﬂf(rﬂ converges. Therf is
continuously differentiable an¥"__ z’rf(r)e”’t — f" uniformly.

Proof. We would like to show that we can apply this whén= S, f. Butif > 2 7| f(r)| converges,
then> > __|f(r)| converges (since the each term is smaller). So we have

r=—00

[f(r)l < Irf(r)l =) |f(r)| converges
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So by Theorelfn = S,f — f uniformly. By the same theorenf;, = > Wf( et — gis
continuous. By the statement above due to basic analysis, we know that this impligsshtantinuously
differentiable. O

A similar argument will provide a stronger connection between the ide:f(h;lare rapidly decreasing
implies thatf is “smoother”.

Proposition 3.5. Let f : T — C satisfy f(1 is continuously differentiable except possibly finitely many
points X, and| (™ (x)| < M for z ¢ X. Thenvr # 0|f(r)| < Mr—"

Proof. (Integration by parts).

—irt

f(r) = 2i / f(t)e tdt. Letu = f(t),dv = e~ "'dt. Thendu = f'(t)dt,v =
TJT

1 .
- t —ZTtdt:
5 | foe
1 —zrt —zrt
277[ —ir " /f —ir ]

—ir

1 e—irt (32)
— [0 — | fl(t)— dt} = ... = (first termis O since is periodic)
27 T —ir
1 :
(n) —irt
Sr(—ir) /Tf (t)e *""dt.
So (i)
A —r) | [T » 1
< (n) —irt _ L
fol < |55 [ i we = o)
O
Corollary 3.6. If f: T — Cisin C? (twice continuously differentiable), thes, f — f uniformly.
Proof.
. 1 .
f(r)=0 <r2> = Z f(r)‘ converges.
So,S,f — f uniformly. O

3.2 Rate of Convergence

Until now, we haven't really addressed the rate of convergence, meaningSyli¢hdoes converge td,
how fast does it converge i Examingy(z) = 7r — |z| for x € [—7, 7], and extend; periodically toh(z).
Direction calculation give$S,,(h,0) — w| > n+2 By using L» theory, it can be further shown that every
trigonometric polynomiaP of degreen has the property P — hl|o > Q(n—3/2). Kolmogorov showed the
following.
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Theorem 3.7. (Kolmogorov) For allA > 0, there is a trigonometric polynomigl such that:

1. f>0.

2. 5 o f(dt <1

3. Foreveryx € T, sup,, |S.(f,z)| > A.

Hence, there is a Lebesgue integrable funcii@uch that for alt: € T, lim|S,,(f, z)| = +o0.

3.2.1 Convergence Results

In 1964, Carleson proved the following.

Theorem 3.8. (Carleson) Iff is continuous (or only Riemann integrable), th€nf — f almost every-
where.

Later, Kahane and Katznelson proved that this result is tight.

Theorem 3.9. For all E C T with u(E) = 0, there is a continuoug such thatS,, f — f exactly onl — E.

Notice that these results make somewhat weak assumptioris @e will now work on seeing how
things improve in the situation wheyeis an L5 function.

3.3 L, theory for Fourier Series

Recall part of original question was “how afeand f related”? Our immediate goal will be to show that in
the L, case, their norms are identical, which is the Parseval identity. Régall, = / [ | f(¢)|?dt. Then

the Parseval identity staté§|o = ||f|.. For the Discrete Fourier Transform, this essentially means that
the transform matrix is an orthonormal matrix.

We will procede by focusing on Hilbert Spaces. A Hilbert Spates a normed C-linear) space with
an inner product., -) satisfying the following axioms.

1. (ax + by, z) = a(z, z) + b(y, 2).
2. (z,y) = (y, ).
3. {(x,

(z,x) = ||z|* > 0 with equality <= z = 0.
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There are a number of facts that we know about familiar Hilbert spacesKIitk¢hat hold for general
Hilbert spaces as well.

Theorem 3.10.If H is a Hilbert space, then the Cauchy-Schwarz Inequality holds, namgly & H, then
111 Mgl = (f 9)-

Proof. We will show the proof for real Hilbert spaces.

0<(f = Ag, f = Ag) = IFII* = 2X{f. 9) + X*]lg]|*. (3.3)
Viewing this as a degre® polynomial in A, it is non-negative, so has at most one real root. Hence, the
discriminant(~2(f, 9))? — 4[| f|*[lg|* < 0. Hence,(f, g)* < || fI*llg]l*. 0

One may ask, if we have an elemefite H, how can we best approximagewith respect to some
basis? Specifically, let_,, ..., e, €1, ..., e, be an orthonormal system i (meaning,(e;,e;) = d; ;).
Given f € H, the question is to find; € C such that|f — >, \je;|| is minimized.

Theorem 3.11.LetH, {e;}, f be as above. Sgt=>""_  Aje;, andgo = >_7__, (f,ej)e;. Then

13 = D (foe) ILf = gllz = 1f = gollz = J I3 = > (fe5)? (3.4)
j=-n j==n
with equality iffA\; = (f, e;) for all j.
Proof.
Hf 9”2—<f g, f — g f Z)\ ejaf Z)\ ej
I1£13 = ( ZA' fre) +Xj(fiej)) +ZM ?=
2> (3.5)
(f. 1) +Z\A (frenl? = I f,ej =
J
) =D [frep P = 11f = ol®
J
Note that equality in the last step occurs exactly whee= (f, e;) for all 5. O

Corollary 3.12. (Approximation and Bessel's Inequality).

1. S, f is the closest (in thé., sense) degree trigonometric polynomial approximation tf.

2. (Bessel's Inequality). If € Lo(T), then

12 = /\f Oar> 3 1)

r=——"n

and||f[2 > o0 IF ()2
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This shows one side of the Parseval Identity, nanfighf? > || f]|2.
Recall by Theoren.l iff continuous andf € I, (meaning) . |f( )| converges), therb,,f — f
uniformly. We will show thatf having continuous first derivative in fact implies thfais in /; .

Corollary 3.13. If f € C!, thenS,,f — f uniformly.

Proof.
SO = 1fO+ > Irf(r)
r=—n 1<|r|<n
(by Cauchy-Schwartz) < [f(0)| + , /2 Z PG
1<r<n 1<|r|<n
(by identit ii—f < |f(0)] + 7T2-1/Lf’(t)!2dt
y y - n2 - 3 27 Jr
which is bounded since the first derivative is bounded (continuolg) .on O

3.3.1 Parseval’s Identity

We are now ready to complete the proof of the Parseval Identity.

Theorem 3.14.If f : T — C s continuous, thefif — S,, f|| — 0.

Proof. By Weierstrass (or Fejer) approximation, for any- 0, there is some trigonometric polynomigl
such thal| f — P|loc < €. So,

If = Snfllz < If = Pllz + 12 P = Sufllz < I1f = Plloo + [1Sn (P = f)ll2
We use the fact thai,, P = f for every trigonometric polynomial of degreen. Then Bessel’s inequality
tells us||Sn(P — f)ll2 < [|P = fll2. Since||P — flla < [P — flloo < €, we seethaf f — S, fll2 < 2e. This
completes the proof. O
Hence, it is easy to segf||> = || f||2, and we have the Parseval Identity.

Corollary 3.15. (Parseval) Iff : T — C is continuous, theg [1| f(t)[2dt = || |3 = 3200 _ | f(r)[%.

Proof. Since||f—S,.f[3 = | fII3->2"_,.|f(r)|> goes ta) asn — oo, we conclude thal"__ |f(r)]> —
1f113 asn — oc. O

In other wordsf — f is an isometry inLs.
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3.4 Geometric Proof of the Isoperimetric Inequality

We will complete this next time. Here, we will present Steiner’s idea to resolve the following question.
What is the largest area of a planar region with fixed circumferdricé/e will present Steiner’s idea here.
Suppose thaf’ is a curve such that the area enclosed is optimal.
C encloses a convex region.

If not, then there are pointd, B such that the line segment joinitgyand B lies outside the region. By

Figure 3.1: Joiningd and B yields more area.

replacing the arc from! to B with the line segment fromdl to B, we increase the area, and decrease the
circumference. See Figure B.1.
C encloses a centrally symmetric region.

If not, pick pointsA, B such that the arc length from to B is the same for both directions travelled.

L

L?
Figure 3.2: Reflecting larger area yields more area.

Suppose that the region enclosedAi U L has area at least that of the region enclosedlByU L'. We
can then replace the latter by a mirror copy of the first. This can only increase the total area and yields a
region that is centrally symmetric with respect to the middle of the segfreiit]. C is a circle.

Recall the following fact from Euclidean geometry: A circle is the locus of all painssich thatx A is
perpendicular tac B where AB is some segment (which is the diameter of the circle). Therefore, if this is
not so, then there is some parallelogran, c, d, with ac passing the the center, inscribedin(sinceC is
centrally symmetric), and with the angletanot equal tof. Now, “move” sidess, b andc, d to sidesa’, b’
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Figure 3.3: Changing Parallelogram to Rectangle Yields more area.

andc’,d’ such that’, v/, ¢, d’ forms arectangle. See Figlire|3.3. We obtain a new alifgeich that the area
outside of rectangl® = [d’, V', ¢, d'] is the same as the area outside of the parallelogfam [a, b, ¢, d].
Since the side lengths @& and P are the same, the area enclosedfbgnust exceed the area enclosed by
P, so the area enclosed 6 must exceed the area encloseddiyHence,C' was not optimal. Hence, our
parallelogramP must have angles equal o

Although these ideas are pretty and useful, this is still not a proof of the isoperimetric inequality. We do
not know that an optimal’ exists, only that if it does, it must be a circle.
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Lecture 4
Applications of Harmonic Analysis

February 4, 2005
Lecturer: Nati Linial
Notes: Matthew Cary

4.1 Useful Facts

Most of our applications of harmonic analysis to computer science will involve only Parseval’s identity.

Theorem 4.1 (Parseval’s Identity).

I£ll2 = 11 £1l2
Corollary 4.2. )
(fr9)=(f.9)

Proof. Note that(f + g,f + g) = |If +gll2 = [f+gl2 = |f + dll. Now as(f +g,f + g) =
1£13 + 1lg1I3 + 2(f, ), and similarly|| f + g[|3 = [|/]13 + 4ll3 + 2(f, ), applying Parseval t||> and
llglle and equating finishes the proof. O

The other basic identity is the following.

Lemma 4.3.

—

frg=1f-g

Proof. We will show this for the unit circl€l, but one should note that it is true more generally. Recall that
by definitionh = f x ¢ means that

h(t) = o /T £(5)g(t — s)ds.

Now to calculatef g we manipulatéh.

h(r) = 1/Th(x)e_imd:p

27
1 —ire
=52 //T2 f(s)g(x —s)e” " dsdx
1 , ,
- = o —irs ,—ir(x—s)
o //11‘2 f(s)g(z —s)e”""%e dx ds
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usinge"* = ¢~irse~7i(*=5) gnd interchanging the order of integration. Then by taking = — s we have

= 4i7r2 //T2 f(s)g(u)e e~ du ds
_ 4%2 / F(s)e 5 ds /T g(u)e " du
e fr070) 3 )
f-3

4.2 Hurwitz’'s Proof of the Isoperimetric Inequality

Recall from last lecture that the isoperimetric problem is to show that a circle encloses the largest area for
all curves of a fixed length. Formally, i is the length of a curve and the area enclosed, then we want

to show thatL.? — 47 A > 0 with equality if and only if the curve is a circle. We will prove the following
stronger theorem.

Theorem 4.4.Let(x,y) : T — R? be an anticlockwise arc length parametrization of a non self-intersecting
curvel of lengthL enclosing an area. If 2,y € C*, then

—drA = 2723 Ini(n) — ig(n)? + Ing(n) + ia () + (2 = 1) (| ()2 + |§(n) ?) )
n#0
In particular, L? > 47 A with equality if and only if" is a circle.
We will not define “arc length parameterization” formally, only remark that intuitively it means that
if one views the parameterization as describing the motion of a particle in the plane, then an arc length

parameterization is one so that the speed of the particle is constant. In our context, where we view time as
the unit circleT of circumferenc@r, we have thati)? 4 (37)? is a constant so that the total distance covered

is (£)°.

Proof. First we use our identity about the parameterization to relate the length to the transform of the
parameterization.

<2L7T>2 - ;ﬂ/T ((@)* + (9(5)°) ds

= Hi’H% + 19113 by Parseval's
= Z lin&(n)|* + |ing(n)|? by Fourier differentiation identities
—Z —n?(j&(n)* + [§(n)[?) 4.1)
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Figure 4.1: Computing the area enclosed by a curve

Now we compute the area. As the curve is anticlockwise,

dx
A=— —d
[ vsas

where the negative sign comes from the fact that the curve is anticlockwise. See[Figure 4.1. This area
integral looks like an inner product, so we write

A :

27 = _<y7x> = _<Q7ZC>

T

By symmetry, considering the area integral from the other direction, we also have that
A L2
% - <[E, y>7

note there is no negative sign in this expression. Hence by adding we have that
A ~A < A <
? - <I,y> - <y,x>
= in(&(n)"5(n) — #(n)j(n)"), (4.2)

using the Fourier differentiation identities and using the notadiofor the complex conjugate af. Now
subtract[(4.]1) and (4.2) to prove the theorem.

To see why the right hand side is zero if and only'ifs a circle, consider when the right hand side
vanishes. As it is a sum of many squargsndy must vanish for alh £ 0 or =1. Looking carefully at
what those terms mean shows that they vanish if and onlysfa circle. O

4.3 Harmonic Analysis on the Cube for Coding Theory

The theory of error correcting codes is broad and has numerous practical applications. We will look at the
asymptotic theory of block coding, which like many problems in coding theory is well-known, has a long
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history and is still not well understood. The Boolean or Hamming dwhé}™ is the set of all-bit strings
over{0, 1}. The usual distance of0, 1}" is theHamming distancé (x, y), defined over:,y € {0,1}"
by the number of positions wheseandy are not equaldy (z,y) = |{i : x; # y;}|. A codeC is a subset of
{0, 1}"™. Theminimum distancef C is the minimum distance between any two elements: of

dist(C) = min{dg(z,y) : x,y € C}.
The asymptotic question is to estimate the size of the largest code for any given minimum distance,
A(d,n) = max{|C|,C C {0,1}",dist(C) > d},

asn — oo. The problem is easier if we restrict the parameter space by fikingoe a constant fraction of
the bit-lengthn, that is, considerd (én,n). Simple constructions show fay2 > § > 0 that A(dn,n) is
exponential inn, so the interesting quantity will be the bit-rate of the code. Accordingly, we definatbe
of a code a% log |C|, and then define the asymptotic rate limit as

R(6) = limsup {1 log|C|: C C {0,1}",dist(C) > 5n} )
n—oo n

It is a sign of our poor knowledge of the area that we do not even know if in the above we can replace the
lim sup by lim, i.e., if the limit exists. If|C| = 2*, we may think of the code as mappikgpit strings into

n-bit strings which are then communicated over a channel. The rate is then the/ratiand measures the
efficiency with which we utilize the channel.

A code islinear if C is a linear subspace ¢f), 1}", viewed as a vector space ov@iF'(2). In a linear
code, if the minimum distance is realized by two codewordendy, thenz — y is a codeword whose
(Hamming) length equals the minimum distance. Hence for linear codes we have that

dist(C) = min{|w| : w € C\ {0}}.

Here we use - | to indicate theHamming weighof a codeword, the number of nonzero positions. Note that
this is equal to several other, common normsGFi(2).

A useful entity is theorthogonal codeo a given code. I a linear code, we define
Ct={y:vVzecC, (z,y) =0},

where we compute the inner prodyet:) over GF(2), thatis,(z,y) = > ; z;y; (mod 2).

4.3.1 Distance Distributions and the MacWilliams Identities

Ouir first concrete study of codes will be into ttlistance distributionwhich are the probabilities
Pr[|z — y| = k : =,y chosen randomly frorq]

for 0 < k < n. If C is linear, our discussion above shows that the question of distance distribution is
identical to the weight distribution of a code, the probabilities that a randomly selected codeword has a
specified weight.

The MacWilliams Identities are important identities about this distribution that are easily derived using
Parseval’s Identity. Lef = 1., the indicator function for the code. We first need the following lemma.
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Lemma 4.5.

Proof.
fl) = 5 3 F)xw)

= 5 Y F) (=)
1

S _1){uw0)
= (1)
veC

If w € CL, then(u,v) = 0 forall v € C, so thatf(u) = |C|/2". Suppose otherwise, so that
Se(=1)®¥) = |Co| — |C1|, whereCy are the codewords & that are perpendicular tg, andC; = C \ C;.
Asu ¢ C*, Cy is nonempty. Pick an arbitrary in C;. Then, anyy € C; \ {w} corresponds to a unique
x € Cy, Nnamelyw + y. Similarly, anyx € Cy \ {0} corresponds ta + = € C; \ w. Asw € C; corresponds
to 0 € Co, we have thalCy| = |C1|. Henced . (—1){+¥) = 0, so that

;o [ ifuect
Jlu) = { 0  otherwise
which proves the lemma. O

We now define theveight enumeratoof a code to be

Pe(w,y) =Y al*ly"=lvl
weCl

The MacWilliams Identity connects the weight enumeratorg ahdC+ for linear codes.

Theorem 4.6 (The MacWilliams Identity).
Pe(z,y) = |C|Per(y — 2,y + )

Proof. Harmonic analysis provides a nice proof of the identity by viewing it as an inner product. Define
f =1c andg(w) = z*ly"~I*l. Then, using Parseval’s,

Pe(w,y) = 2"(f, g) = 2"(f. 9)-

f has already been computed in Le 4.5, so we turn our attention to
1
p —_ — <u71}>
() = 57 > 0@)(-1)

1 v, NnN—|v u,v
:%Zwl lyn=lvl(—1)(w)
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Let w havek ones andh — k zeros. For a given, let s be the number of ones ofthat coincide with those
of u, and lett be the number ones ofcoinciding with the zeros of. Then we rewrite the sum as

_ 1 k n—k s+t, n—s—t s
=52 () (e
s,t,k

[Ag)

206G 206
() ()

1 .
= oy —2) (y+a2)""
1

= gy = o)y + )"

Now, as(f, g) = <f‘, g) = 27" Pc(z,y), we plug in our expressions fgrandg to get

2" Pelay) = S0 3 oy~ )y + )
weCt
C
= L,,JPCL(y_x>y+x)v
which implies

Pe = |C|Per(y —z,y + ).

4.3.2 Upper and Lower Bounds on the Rate of Codes

We now turn our attention to upper and lower bounds for codes. We remind any complexity theorists reading
these notes that the senses of “upper bound” and “lower bound” are reversed from their usage in complexity
theory. Namely, a lower bound dR(¢) shows that good codes exist, and an upper bound shows that superb
codes don't.

In the remainder of this lecture we show several simple upper and lower bounds, an then set the stage
for the essentially strongest known upper bound on the rate of codes, the MacEleiece, Rumsey, Rodemich
and Welsh (MRRW) upper bound. This is also referred to as the JPL bound, after the lab the authors worked
in, or the linear programming (LP) bound, after its proof method.

Our first bound is a lower bound. Recall the binary entropy function
H(z) = —zlogz — (1 — z)log(1 — z).
Theorem 4.7 (Gilbert-Varshamov Bound).
R(8) > 1 - H(5),

and there exists a linear code satisfying the bound.
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Proof. We will sequentially pick codewords where each new point avoidsrapheres around previously
selected points. The resulting co@evill satisfy

n 2n

> - .
IC| = vol(sphere of radiugn) — y-0r (")

Now, note thatog (%) /n — H(a) asn — oo, so thae"/ 32" () ~ 2n(1=H(9), and take logs to prove
the first part of the theorem.

We now show that there’s a linear code satisfying this rate bound. This proof is different than the one
given in class, as | couldn’t get that to work out. The presentation is taken from Trevison’s survey of coding
theory for computational complexity. We can describe a lifnedimensional cod€4 by ak x n 0-1
matrix A by C4 = {Az : x € {0,1}*}. We'll show that ifk/n < 1 — H(S), with positive probability
dist(C4) > on. As the code is linear, it suffices to show that the weight of all nonzero codewords is at least
én. As for a givenz € {0, 1}*, Az is uniformly distributed ovef0, 1}", we have

on—1
_o9-n n —nonH(6)+o(n)
<
Pr[|Az| < on] =2 ZEO <z> <272 ,

using our approximation to the binomial sum. Now we take a union bound o2 alioices forz to get
Pr[3z # 0: Az < d] < 2F .27 . gnH(0)Fo(n) — ghtn(H(@)=1)+o(1) 9
by our choice ofc < n(1 — H(9)). O
We now turn to upper bounds d®(o).
Theorem 4.8 (Sphere-Packing Bound).
R(6) <1—H(6/2)

Proof. The theorem follows from noting that balls of raditis/2 around codewords must be disjoint, and
applying the approximations used above for the volume of spheres in the cube. O

We note in Figuré 4]2 that the sphere-packing bound is far from the GV bound. In particular, that GV
bound reaches zero &t= 1/2, while the sphere-packing bound is positive unti: 1. However, we have
the following simple claim.

Claim4.1. R(6) =0foré > 1/2.

Proof. We will show the stronger statement that|d is substantial then not only is it impossible for
di(z,y) > onforall z,y € C, but even the average of all y € C will be at mostn/2. This average

distance is )
W Z d(z,y),
2 ) CxC
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- phere-Packing Bound
L

GV bound . NG

g Elias Bound .

0.5 1
0

Figure 4.2: The GV bound contrasted with the Sphere-Packing Bound

and we will expand the distane®z, y) = |{i : z; # y;}|. Reversing the order of summation,

. 1
Average distance- @ Z > Loy,
2 LY

1
= gy 2ol =2

2 %

wherez; is the number of zeros in th& position of all the codewords @f.

So unlesg is very small, the average distance is essentialBy. O

Our next upper bound improves on the sphere packing bounds, at least actitévjng 0 for § > 1/2.
It still leaves a substantial gap with the GV bound.

Theorem 4.9 (Elias Bound).

RO)<1—H (1_‘/21_*25>

Proof. The proof begins by considering the calculation of average distance from the previous theorem. It
follows from Jensen'’s inequality that if the average weight of the vectafsi$mn, then the maximum of
> zi(|C|] — z) is obtained if for alli, z; = (1 — a)C for somea. We sketch the argument for those not
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familiar with Jensen’s inequality. The inequality states thdtig convex, then forq, . . . , z,, % S f(zi) <
f(O_ x;/n), with equality if and only ifx; = --- = =z,. For our case, the functiofi(z) = z(|C| — z) is
easily verified convex and so its maximum over a set; & achieved when the are all equal. This makes
the average distance ¢that mosa(1 — a)n.

With this calculation in mind, chose a spherical sh#lin {0, 1}" centered at some, with radiusr

such that
S|

27.
Such a shell exists as the right hand side of the inequality is the expected intersection size if the sphere is
chosen randomly. Set= pn so that|S| ~ 2"#(), which means

o
2n(1fH(p))

[sncl=|cl-

isnel >

Now apply the argument above an + C N S. It follows from our discussion that we actually have a
p fraction of ones in each row, so & > 2p(1 — p), the|S N C| is subexponential, but this is equal to

\0\2’"(1’H(”>), implying

1

Elog|C! <1— H(p).
Let us rewrite our condition > 2p(1 — p) as follows:

1—2p2\/1—25:>p:1_7 ”21_25.

This is the critical value op—whenp is below this the code is insubstantially small. O

Figureg 4.2 shows how the Elias bound improves the sphere-packing bound to something reasonable. The
gap between it and the GV bound is still large, however.

4.4 Aside: Erdods-Ko-Rado Theorem

The proof of the Elias bound that we just saw is based on the following clever idea: we investigate and
unknown object (the cod@) by itersecting it with random elements of a cleverly chosen set (the sphere).
This method of “a randomly chosen fish-net” is also the basis for the following beautiful proof, due to
Katona, of the Erds-Ko-Rado theorem.

Definition 4.1. An intersecting familys a familyF of k-setsinl . . . n (compactly,F C ([Z})), with 2k < n,
such that foranyl, B € 7, AN B # .

Informally, an intersecting family is a collection of sets which are pairwise intersecting. One way to
construct such a set is to pick a common point of intersection, and then choose all pgssiblg-sets to
fill out the sets. The Erdis-Ko-Rado Theorem says that this easy construction is the best possible.

Theorem 4.10 (Erdds-Ko-Rado). If F C ([z}) is an intersecting family witBk < n, then
n—1
< .
< (i)
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Proof (Katona). Given an intersecting familyF, arrangel . .. n in a random permutation along a circle,
and count the number of setise F such thatd appears as an arc in This will be our random fish-net.

There argn — 1)! cyclic permutations—that isy! permutations, divided by as rotations of the circle
are identical. There ark! ways for a giverk-set to be arranged, arjd — k)! ways of the other elements
not interfering with that arc, so that the set appears consecutively on the circle. Hence the probability that a

givenk-set appears as an arc is
Elln—Fk)! n

(n—1! (1)’

which by linearity of expectation implies

# arcs belongin n|F]|
E = .
to F ()

Now, as2k < n, at mostt member of an intersecting family can appear as arcs on the circle, otherwise two
of the arcs wouldn’t intersect. Hence

nlF| _

(b)

A<= (12))

k

implying
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Lecture 5
Isoperimetric Problems

Feb 11, 2005
Lecturer: Nati Linial
Notes: Yuhan Cai & loannis Giotis

Codes: densest sphere packind@n1}".

A(n, d) = maz{|el, o € {0,1}", dist(¢) > d}

R(8) = limsup{ £ logy ()| € {0, 1}", dist(p) > 6, }
‘Majority is the stablest’ -

ian—1L —||z||?/2

e Borell: isoperimetric problem is solved by a half-space

Isoperimetric Questions on the cube (Harper): Vertex and Edge isoperimetric questions.
The edge problem is defined as follows: Given that {0,1}",|S| = R, how smalle(S, S) be?
Answer:VS C {0,1}",e(S) < 1/2|S]1logy |S],|S| = 2%, S = {(*...%0...0} with k *s.

Proof (induction on dim):

e(S) < e(So) + e(S1) + 15, |S] = =, S| > azx,a < 1/2.

1/2xlogy x > 1/2(ax)logy ax) + 1/2(1 — a)xlog[(1 — a)x] + ax

0>aloga+ (1 —a)log(l —a)+2a

H(a) > 2cata=0,1/2.

The vertex isoperimetric problem is definedragnf{y | y ¢ S,3x € S} such thatey € E({0,1)"),
S C {0,1}", |S| < k. The answer is an optimal S-ball. Specificallykif= S| = >%_; ("), then

. =0 {j
151 = ()

We will use the Kraskal-Katona theorem. fIfC < [E] ) then theshadow of fis

a(f)z{ye<[ﬂ] > Iﬂxef,:rzy}

We wish to minimizgo(f)].
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To do this, takef as an initial segment in the reverse lexicographic order. The lexicographic order is

defined as
A < B, if min(A\B) < min(B\A)

while the reverse lexicographic order is

A <pgr B, if max(A\B) <RL HlaX(B\A)

For example:

Lex : (1,2)(1,3)(1,4),...
RLex : (1,2)(1,3)(2,3),...

Margulis and Talagrand gave the following definition fC (0, 1)™
hz)={y¢ S|ayec E},x €S

We now have the 2 problems

o Vertex Isoperimetriciingi—j >, cg(h(z)) ="

e Edge Isoperimetricyin gj—; Y cg(h(x)) ="

We have|S| > 271 = 3\ /h(z) > Q(2"), forp = 1/2.

Kleitman: S| = ¥¢_o(%), S € {0,1}",t < n/2 = diam(S) > 2t. Can you show thaf necessarily

_ J
contains a large code?

Question: (answered by Friedgut) suppose tRat~ 2”1 andy(S, S¢) ~ 27~1, then isS roughly a

dictatorship?

Answer: yes. subcube; = 0 < f(z1,...,z,) = x1. R()) =
{0,1}™, dist(p) > on}.

5.1 Delsarte’s LP

Havingg = 1¢, f = 2"g x g/|C|, Delsarte’s LP is
A(n,d) < marX,cqo1yn f(2)
=0
f(0)=1
=0
fli,..da-1=0

Some useful equations

9+9(0) = = 3 aw)oy) = |

1
g*g(S):Q—nﬁ{x,yGC|x@y:S}
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We start with an observation. Without loss of generalftis symmetric or in other wordg(z) depends
only on|z| = a,. We look forag = 1,a1 = ... = g1 =0, ag,...,an > 0.

We've expressed > 0, £(0) = 1 and we are trying to maximizg. (;‘) ;.

Lj = {$€{0’1}n’|x‘ :]}
fo= Zalej
=0

f o= Z O‘jiLj
J
Note thatZ; is symmetric. It also follows thaitLj is symmetric. We need to knowj if ly| =t.

HT) = 3 o(8)(-1)sT
(1) = 3 (-l

=
o = D))

: J =t

This is theKrawtchoukpolynomial presented in the next section.

5.2 Orthogonal Polynomials onR
Interesting books for this section are “Interpolation and Approximation” by Davis and “Orthogonal polyno-
mials” by Szeg.

The weights of orthogonal polynomials @&are defined by
w:R— R, /Rw(x)<oo
The inner productorf : R — R is
)= [ f@glaoto) da
and with weightav, wo, . . ., and pointsey, xo, . . .
(f,9) = Zwif($i>g($z‘)

Let’s now talk about orthogonality. Start from the functidns;, 2, . . . and carry out a Gram-Schmidt
orthogonalization process. You'll end up with a sequence of polynorfidls), P;(x), . . . s.t. P, has degree
) and<B~, Pj> = (51]
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One case of orthogonal polynomials are Krawtchoukpolynomials, on discrete pointg = 0,21 =
L,...,z, = nwithw; = (?)/2”. The j-th Krawtchouk polynomiak;(z) is a degreg polynomial inz.
Itis also the value of ;,(T') whenevel{T| = z.

(n) _ " il n—=x
KW (z) = E (—1) <Z>< . )
Let's see why are they orthogonal or in other words
1 n n
— E K,(i)K,(i =
on g p(1) Ky (1) (z> Opq (p)

Starting from

and using Parseval’s identity we get
PN 1 1 . AL
(lp011) = 5 & KISV = 5 3 K60 ()

The firstK;’s are
Ko(z) =1, K1(z) =n — 2z, Ky(z) = <x> —(n—1z)+ (” - x) _(n—22)’—n

We also have the following identity
Kj(n - ) = (-1VK;(z)
Lemma 5.1. Every system of orthogonal polynomials satisfies a 3-term recurrence
aPj = a;jPjp1 + BiPj + P
Proof.

1 .
1, %17,(S) = Q—nZle(S@z) =

1 . .
= 27((] + 1)1Lj+1 + (n —J+ 1)1Lj71) =

1 . .
= 27((] + 1)1Lj+1 + (n —J+ 1)1[/]'71)
For the Krawtchouk polynomials

KKi=G+1)Kji+n—-j+1)K;—
(n—20)K; =G+ 1)Kjm+(n—j+1)K;
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Theorem 5.2. For every family of orthogonal polynomials there is
1. a 3-term recurrence relation
x- Py = ajPjy1+ 0P + 7P
2. P; hasj real roots all inconv[supp w].

Proof. Observe that), P, .. ., P, form a basis for the space of all polynomials of degreg which means
that(P, Q) = 0, Y@ polynomials of degreg

j+1
x-Py=> AP (5.1)
=0
We now claim that\g = A\; = --- = ;2 = 0. Let's take in[(5.]L) an inner product with,/ < j — 1.
J+1
(@Pj, ) = Y N(P,Pj)=N|B|?
=0

(P, xP) = M| P

which is O for P, of degree< j — 1. O

AT
Va4

If u;’s are the zeros aP; of odd multiplicity then

0= (P, [[(=—w)) =P [[(x—uy) >0
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Lecture 6
MRRW Bound and Isoperimetric Problems

Feb 18, 2005
Lecturer: Nati Linial
Notes: Ethan Phelps-Goodman and Ashish Sabharwal

6.1 Preliminaries

First we recall the main ideas from the last lecture. Let

g*xg
92107 f: |C|'

Then we can bound the code si#én, d) using Delsarte’s linear program:
A(n,d) < mj@xme{z&:l}n f(x)
subject to
f>0 f(0)=1
F>0 Ji,a-1=0

-----

By averaging over a solutiofi, we can get an equivalent solution that is symmetric about permutations
of the input bits. That is, we can assume w.l.0.g. tha@lhat depends only on the hamming weight of the
input. f is then determined by + 1 coordinate weightsl; by

A=Y f(x)
x| |z[=j
Or equivalently,
not
j=0 \J
Central to our proof will be the Krawtchouk polynomials, which are related to our linear program by
- - x\ (n—z
1, = K, () = -1 . .
b= Kole) = 31 (29
]_
A e

=

)
|

39



6.2 Primal and Dual Programs

Making the substitutions above we can now write Delsarte’s program in terms of Krawtchouk polynomials
and symmeterized.

Aln,d) < max Z;Ai

subject to
Ap=1
Ay, .., A1 =0

vk € {0,...,n} zn:?ij,»(k;) > 0.
i=0 \t

This can be further simplified with the following identity for Krawtchouk polynomials.

Fact6.1.

Proof.

Lo iRy (e k ~ il(n — i)kl (n — k)!
i) = (J’)(i—j) ;( D nljl(k — )G — ) (n —k —i+j)!

“m = 0)65)

J

O]

Using this in the last constraint, and removing Ilh/e{Z) term, which pulls out of the sum and doesn't
affect the sign, we get the constraints

VE€{0,...,n} > AK(i) > 0.
=0

Our approach will be to use LP duality to give a bound on the maximum of this program. Recall that
duality tells us that the maximum value of the primal is at most the minimum value of the dual. Strong
duality states that the optima are exactly equal, but we will not use this.

Start by multiplying each of th&""" ; A, K (i) > 0 constraints by3;,, and summing all of the con-
straints. This gives
D B AR =Y A Buki(i) > 0
k=1 =0 i=0 k=1
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Let v(z) = > 7, BeKy(i). If we add the constraint thatz,v(z) < —1, then using4, =
1,Aq,...,A3-1 =0, we get

Y Ar(i) =(2) + ) Ain(i) 20
1=0 i=d
¥(0) = = > Any(i)
i=d

> A;

@.
I M:
2 l

v0)+1>S"4; > A(n,d)

-

Il
—_

)

What we have done here is just an explicit construction of the dual. The reader can check that this dual
can be arrived at by any standard method for computing the dual.

Let 3(z) =1+ Y ,_, BxKx(z). Then our final program is given by
A(n, d) < min 4(0)
Bk

subject to:

6.3 The Upper Bound
To show an upper bound ofi(n, d) we need to demonstrate a feasible soluticand bound3(0). First we
need two additional facts about Krawtchouk polynomials.

Fact 6.2 (Christoffel-Darboux). Let P;, P, ... be a family of orthonormal polynomials, and tgtbe the
leading coefficient of?;,. Then

Py(2)Pry1(y) — Per1(2)Pe(y)  apya é () P
- = iZ;PZ( )Pi(y)

For the case of Krawtchouk polynomials, the leading termkpfx) is ;—2, Also, to normalize we need
to divide K, by |/ (""). Putting these together, we get

K1 (2) K (y) — Kp(2) K (y) _ 2 (n) —~ Ki(2)Ki(y)
r)—=
=0 ?

Yy—x r+1
The second fact we need is that the product of two Krawtchouk polynomials can be expressed as a
non-negative combination of Krawtchouk polynomials.

41



Fact 6.3. For anyp, g, there existy, . .., a4+, > 0 such that

p+q
Ky -Ky=> ojK;
=0

This can be seen easily from the harmonic analysis perspective/Sinc&, = TLP -TLq = 1Lp/*\1Lq,
and the convolution is a positive combination.

We can now present the feasible solution for the dual. Let

(K@) K (2) = K (@) o)

ale) = a—x

Then setf(x) = o) "\whereay is chosen to make the constant term equal 1. Now we need to set

ag

values fora and¢. Denote bya:ﬁl) the leftmost root of,.. We know from last lecture that the roots of the
Krawtchouk polynomials are real, lie i, n], and interleave with one another. Therefore we can pitk a
such tha < a:ﬂzl < a:gl) < d. Inthe region(xgl,xgl)), K41 is negative andy; is positive, so we can
pick ana such thati;(a) = —K;41(a).

Now we need to show that(x) satisfies the two constraints from the dual. First, note that at 2lld,
a(z) < 0. Then we just need to show thatz) is non-negative combination of Krawtchouk polynomials.
Using the above settings, and Christoffel-Darboux, we can fagtoy as

a(z) = (Ki(a) K1 () — Kiy1(a)Ky(z)) |:Kt(a)Kt+1(12 - ftﬂ(a)Kt(z)]

Ki(a)Kiga(z) — Kt+1(a)Kt(fU)}

= Kt(a)(Kt—i—l(x) + Kt(x)) |:

1=0 7

Since all terms are positive, this can be expanded as a positive combination of Krawtchouk polynomials.

Now that we have a feasible solution to the dual, we just need to find the vali(@ pfWe can use the
fact that fort ~ 7n, the leftmost root is atgl) = (140(1))(3 — \/7(1 — 7))n. Given this we can conclude

thatR(6) < H(3 — 1/d(1 — 6)). Both the lecture and van Liritl[1] seem to imply that this step is obvious,
but your scribe has been unable to see any connection.

6.4 More on Isoperimetric Problems on the Cube

We now turn our attention to isoperimetric problems. In a previous lecture, we studied isoperimetric ques-
tions on then-dimensional cube, namely the vertex isoperimetric problem and the edge isoperimetric prob-
lem. Why is the study of such problems important? The reason is that Computer Science deals with Boolean
functions which are simply partitions of tmedimensional cube into two parts. Understanding the geometry

of the cube is therefore critical to understand Boolean functions. Here is one more isoperimetric problem
that is open.
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Open Problem 6.1 (Chung-Riredi-Grahan-Seymour, 1988 J.C.T.A.).What is the largesf = d(n) such
that for allS C {0,1}",|S| > 2"~1, there existx € S with dg(z) > d?

Hereds(z) denotes the number of neighbors:oih S. Note that for|S| < 2”1, S can be an indepen-
dent set, i.e.yz € S.ds(z) = 0. Further, for|S| > 2"~!, S may not be independent. In general, all we
know is thatd(n) is bothO(y/n) and2(log n). This leaves a huge gap open.

Consider any Boolean functigh: {0,1}" — {0, 1} represented as(a 1-labeling of then-dimensional
cube seen as a layered lattice. This lattice has four types of edges as depicted i@igure%.:l.]l_@t(o).
The two edges frond to 1 and from1 to 0 belong to the cu®(.S, S¢) and thus contribute to the cut size
e(S,S°).

€T; = 1
\ /
o 7 --:Edgesin thel (S, 5°) cut
L —| I
=0 0 1 1

Figure 6.1: The cut defined in terms of the four types of edges in the lattice

If |S| = 2771, thene(S, S¢) > 2"~L. This is sharp forS = {x | z; = 0}. In the edge isoperimetry
problem, given S|, we want to minimize the cut siz€ S, S¢). What about trying tanaximizethe cut size
instead? The maximum cut size can really be anything. Indeed, Wirethe parity functione(.S, S¢) =
n2n1,

6.4.1 Maximizing Edge Cut Size for Monotone Functions

Consider the setting of the previous section. How can we maximize the edge cuifvidhisronotonei.e.,
x =y = f(z) > f(y), wherex > y meansvi.x; > y;? In the following, we use Parseval’s identity to
answer this question.

Theorem 6.1. Let.S C {0,1}" correspond to a monotone Boolean functipn {0,1}" — {0,1}. f =
majority maximizes the edge cut siz&5, S¢).

Proof. It is clear from the lattice corresponding fo= majority (see Figurg 6]2) that the size of the cut
corresponding to it iﬂn?zj) = O(y/n 2"). We will use Parseval’s identity to prove that this is the optimal.

Let f be any monotone Boolean function 'mdimgnsions. Regall that for characte;@gZ) =
(—=1)I#71 the functionf can be represented fis= 3" f(T)xr wheref(T) = (f, xr). Whatisf({i})?
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Figure 6.2: The lattice corresponding to the majority function

X (Z2) = (D)2 whichis+1if i ¢ Z and—1if i € Z. Therefore

Ay = (foxgy)

= 5 @ (2)
Z

= = (Zf<z>zf<z>)
Z%i Z3i

1 . . .
= o0 (number of cut edges in thedirection)

For ease of computation, convert everything from{bel } basis to thg —1, +1} basis. This quantity
is then(2/2™) times the number of cut edges in thelirection. Using Parseval’s identity and Cauchy-

Sehwartz inequality) = 113 = S5 (7(5))" > =, (F((1)" = a/n) (S 7(4i) " Hencey/ >
S F{i}) = (2/2") e(S, 5¢), which finishes the proof. O

We give an alternativeombinatorialproof of the fact thae(S, 5¢) = 27~13. f({i}) based on the
following claim.

Claim 6.1. Let f be a monotone Boolean function. If the expectationfds given and fixed, then to
maximizee(f~1(0), f~1(1)), itis best to takef symmetric.

Proof of claim. Consider} . ;,)_o(n — 2|z|). This is the sum of the first Krawtchouk polynomials and
is equal to the cut size(f~1(0), f~1(1)) becausgn — |z|) edges in the lattice corresponding fahat
go upwards frome contributing+1 each while|z| edges go downward from contributing—1 each (see
Figure. Maximizing this quantity means minimiziriggc:f(%):O |z| which happens exactly whefis
“pushed down” as much as possible.

Formally, let us change the basis froif, 1} to {—1,+1} and reinterpret the summation. It is equal
0>, py=1(m = 2|z]) = X4 py=—1(n — 2[z|) = 2"(f, K1). Observe however th@x(f@ —2)z|) =
(K1, Ko) = 0. Thereforey_ ;. (n — 2[z|) = 2"=1(f, K1), which is the same a%_, f({i}) by the
properties of Krawtchouk polynomials. O
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__-- (n—|z|) edges contributing-1 each

T |z| edges contributing-1 each

Figure 6.3: Contribution of to the cut

6.4.2 The Brunn-Minkowski Inequality

Let v be a volume measure on subsetRaof

Theorem 6.2 (Brunn-Minkowski [2]). For A, B measurable subsets Rf*,
((A+B)Y" = (oAD" + (u(B)"
Moreover, equality holds if and only £ and B are homothetic, i.eB = A\A + C for A € R.

Here A + B is the Minkowski sum defined d& + b | a € A,b € B}, wherea+ b is the standard vector
sum overR™. For A € R, AA is similarly defined agXa | a € A}. We will not be using the second part of
the theorem.

Let us try to understand what this inequality says. Take a convex RoutyR™ and slide a hyperplane
At € R, through it (see Figure 6.4). What can we say about the fungtioh= 11,,—1(A4; N K) which
is the volume of the intersection of the body with the hyperplane? Brunn-Minkowski inequality says that
(f(t)Y =1 is convex.

Figure 6.4: Sliding a hyperplanég, through a convex bodi

Theorem 6.3. Brunn-Minkowski inequality implies the classigaldimensional isoperimetric inequality.
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Proof. We want to show that if{ C R™ andB is the unit ball inR"”, then

oK)\ " _ (ST
v(B)) T \S8(B)
whereS denotes the surface area. Far-dimensional plane, the LHS equa}éﬂ while the RHS equals

L/(2). To prove LHS> RHS, we need.? > 47 A, which we know to be true. Let's try to generalize this
to higher dimensions.

The surface area dt is, by definition,

By Brunn-Minkowski inequality,

S = :
o, KD T (0(B)" +0()
e—0

The last termm v(B)/S(B) is, however, always 1 in any number of dimensions. We have therefore proved
the isoperimetric inequality. O
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Lecture 7

The Brunn-Minkowski Theorem and Influences of
Boolean Variables

Friday 25, 2005
Lecturer: Nati Linial
Notes: Mukund Narasimhan

Theorem 7.1 (Brunn-Minkowski). If A, B C R" satisfy some mild assumptions (in particular, convexity
suffices), then

3=

> [vol (A)] " + [vol (B)]

3=

[vol (A + B)]
whereA+ B ={a+b:a € Aandb € B}.

Proof. First, suppose thatl and B are axis aligned boxes, say = H"}Zl I; and B = [[;", J;, where
eachl; andJ; is an interval with|[;| = z; and|J;| = y;. We may assume WLOG thdf = [0, z;] and
Ji = 10,y;] and henced + B = [];"_,[0, z; + y;]. For this case, the BM inequality asserts that

n

n n
H(fvz‘ Fyp)n > Hx; : Hy;

i=1 =1 i=1

. )] i)

Now, since the arithmetic meanoehumbers is bounded above by their harmonic mean, We(lﬁ\ce)% <
) 1 P . ) .
% and(JJ(1 —ay))» < 2(-a) Takinga; = —*i— and hencd — «; = y—y we see that the above

n T +Y; z;+

inequality always holds. Hence the BM inequalitf/ holds whenevand B are axis aligned boxes.

3=

Now, suppose thatl and B are the disjoint union of axis aligned boxes. Supposethat | J . 4 Aa
andB = (Jzcs Bs. We proceed by induction od| + [B|. We may assume WLOG thatl| > 1. Since
the boxes are disjoint, there is a hyperplane separating two boxés We may assume WLOG that this
hyperplane is;; = 0.
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A At A~

Let At = {z € A:2>0}andA™ = {z € A : 21 <0} as shown in the figure above. It is clear that
both AT and A~ are the disjoint union of axis aligned boxes. In fact, we maydét= J,. 4+ A and

A™ =Uqpea- Aa where| AT | < | A and|A~| < |A|. Suppose th% = «. Pick a) so that

vol{z € B :z1 > \})
vol (B)

=«

vol({ z€B:x1>\})

Vol(B) IS continu-

We can always do this by the mean value theorem because the fufichpa-
ous, andf(A\) — 0 asA — oo and andf(\) — 1 asA — —oc.

LetBT = {zx € B :2; > A}andB~ = {z € B : z; < \}. By induction, we may apply BM to both
(A*,BT)and(A~, B™), obtaining

[vol (A* + BT)]" > [vol (A%)] " + [vol (B*)]
[vol (A= + B7)]™ > [vol (47)] " + [vol (B7)]"
Now,
[vol (AJF)]% + [vol (BJF)}% —an [[vol (A)]% + [vol (B)]ﬂ
[Vol (A_)]% + [VO] (B_)ﬁ =(1- a)% [[vol (A)]% + [vol (B)]%}
Hence

3=

[vol (AT + B+)]% + [VOI (A~ + Bf)} > [[Vol (A)]% + [vol (B)]ﬂ

The general case follows by a limiting argument (without the analysis for the case where equality hiolds).

Suppose thaf : S! — R is a mapping having a Lipshitz constant 1. Hence

1 (@) = fF) < llz =yl
Let . be the median of, so .
p=prob[{z € 8" : f(z) <pj] =3
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We assume that the probability distribution always admits syclied least approximately). The following
inequality holds for every > 0 as a simple consequence of the isoperimetric inequality on the sphere.

{xeS™:|f—pu| > e} < 2e72

For A C S™ and fore > 0, let
A ={z e S" : distz, A < €}

Question 7.1.Find a setd C S™ with A = a for which A, is the smallest.

The probability used here is the (normalized) Haar measure. The answer is always a spherical cap, and
in particular ifa = % then the besH is the hemisphere (and s = {z € S™ : 1 < €}). We will show
thatforA C S with A = 1, A, > 1 — 2¢=<"/4, If Ais the hemisphere, thek, = 1 — ©(e~<""/?), and
so the hemisphere is the best possible set.

But first, a small variation on BM :

<m1(4;B>:>v%d@@.muB)

This follows from BM because

1

1 1
A+ B\n A\~ B\~
> — —
Vol< 5 > _vol<2) +v01<2>

= % [vol (A)% + vol (B)ﬂ

>4/ vol (A)% + vol (B)%

ForAC S* letA={Xa:ae€ A,1>X>0} ThenA = u,,1(A). LetB =S"\ A..

Lemma7.2.If # € Aandj € B, then

<1-—
2

T+7Y €2
- 8

It follows that# is contained in a ball of radius at mast- % Hence

(-5)" =m(*)
> \Jvol (4) -val (5)
vol (B)

>
- 2

Therefore2e=<"/4 > vol (B)
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7.1 Boolean Influences

Let f : {0,1}" — {0, 1} be a boolean function. For a stC [n], the influence o5 on f, I;(S) is defined
as follows. When we picl{xi}igs uniformly at random, three things can happen.

1. f = Oregardless ofz;},. 4 (Suppose that this happens with probabitig).

2. f =1regardless ofz;}. o (suppose that this happens with probabidity.

€S

3. With probabilityInf; (S) := 1 — qo — ¢1, f is still undetermined.
Some examples:

¢ (Dictatorship) f(z1,zo,...,x,) = x;1. In this case
1 ifies

Infgictatorship (S) = .
Blditatorship (5) {o ifi ¢ S

e (Majority) Forn = 2k + 1, f(x1,29,...,x,) is 1 if and only if a majority of ther; are 1. For
example, ifS = {1},

Inf majority ({1}) = prob (1 is the tie breakey

2k
@) (L
922k \/E
For fairly small setsS,
5]
Infmajority (S) =0 <\/ﬁ
o (Parity) f(z1,z2,...,z,) = 1if and only if an even number of the's are 1. In this case

Infparity ({:}) =1
foreveryl <i < n.

Question 7.2. What is the smallest = §(n) such that there exists a functign: {0,1}" — {0, 1} which
is balanced (i.e £ f = 1) for whichInf; ({z;}) < ¢ for all ; ?

Consider the following example, callédbes. The set of inputgxy, xo, ..., x,} is partitioned into tribes
of sizeb each. Heref (z1,x2,...,x,) = 1if and only if there is a tribe that unanimously 1.
%
A A A A
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Since we wantZ f = 3, we must haverob(f = 0) = (1 — 2—11,)% = 5. Therefore,2In (1 — ;) =
—In2. We use the Taylor series expansion fafl — ¢) = —¢ — €2/2 — --- = —e — O(€?) to get
% (55 +0(45)) = —In2. Thisyieldsn = b-2°In2 (1 + O(1)). Henceb = logy n — logy Inn + O(1).

Hence,

Infiripes (-T)

I
N

—

|
| =
s N——
|
/N
N =
"
T
—

In this example, each individual variable has influefc@ogn/n). It was later shown that this is lowest
possible influence.

Proposition 7.3. If £f = 5, then}__ Inf; (z) > 1.

This is a special case of the edge isoperimetric inequality for the cube, and the inequality is fight if
dictatorship.

The variabler is influential in the cases indicated by the solid lines, and hence

_ # of mixed edges

Inf; () o1

LetS = f~1(0). Then}_ Inf (z) = 27%16(8, S°).
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One can us¢ to compute influences. For examplefifs monotone (sa < y = f(x) < f(y)), then

) 1SN
8= (1;”
T
Therefore,
FiD) = 5 S 4T) — 57 34T
igT icT
= e UM - FTU )
igT
= ;—3 - # mixed edges in the direction of
= —%Inff (x;)

Hencelnf; (z;) = —2f({i}). What can be done to exprelssg ¢ (x) for a generalf? Define

Then

Inf; (z;) = ’suppor]f(i)

=3 (FOw)’
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The last term will be evaluated using Parseval. For this, we need to compute the Fourier expreg&ion of
(expressed in terms gf).

)lsnT]
=5 Zf !

—Qin [f(T)* £ @ {ip)] (-1

o Z ([f@ = | 0T+ [1@ U i) = £(D)] (~)ISnTEDT)
ig¢T
72[ F(TUli }} <(_1)|srm _ (_1)|sm<Tu{i}>\)
i¢T
o if i ¢ S
B {2 f(S) ifies

Using Parseval 0!7?(@'\) along with the fact thaf(i\) takes on only value§0, +1}, we conclude that

Infs (z;) =4 |hatf(S)[

ics
Next time, we will show that if£ f = 3, then there existsasuch thad ", ¢ ( f ( A(S)>2 > Q(lnn/n).
Lemma 7.4. For everyf : {0,1}" — {0, 1}, there is a monotong : {0,1}" — {0, 1} such that

e Eg=Ef.

e Foreverys C [n], Inf, (S) < Inf (5).

Proof. We use a shifting argument.

8
I
o
I
N
“

ClearlyEf = Ef. We will show that for allS, Inff (S) < Infy (S). We may keep repeating the shifting
step until we obtain a monotone functign It is clear that the process will terminate by considering the
progress measute, f(x) [« which is strictly increasing. Therefore, we only need show thé (() 5) <
Inf¢ (S).

O]
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Lecture 8

More on the influence of variables on boolean
functions

March 4, 2005
Lecturer: Nati Linial
Notes: Neva Cherniavsky & Atri Rudra

In this lecture we will look at the following natural question— do there exist balanced boolean functions
f onn variables such that for every variablethe influence ofc on f is “small” and how small can this
bound be made? (“Balanced” means tRa{ f = 0) = Pr(f = 1) = 3 butEf = « for somea bounded
away from0 and1 is just as interesting.) In the last lecture we showed that for the “tribes” function (which
was defined by Ben-Or and Linial inl[1]), every variable has ianue@Q@%). Today, we will prove the
result of Kahn, Kalai and Linial [2] which shows that this quantity is indeed the best one can hope for. In
the process we will look into the Bonami Beckner Inequality and will also look at threshold phenomena in
random graphs.

8.1 The Kahn Kalai Linial Result

Recall the definition of influence. Left : {0,1}" — {0,1} be a boolean function and It C [n]. The
influence of the set of variables on the functionf, denoted byln f(S), is the probability thaf is still
undetermined when all variables|im| — S have been assigned values at random.

We also talk about influences in the case when the function is defined on a solid gubjé-1]" —
{0,1}. This formulation has connections to game theory— variables are controlled by the players. Note that
in this case we can talk about things like “influence of a subset of variables towards 0”.

The situation for the case whefi| = 1 is relatively better understood. As we saw in the last class, the
situation for calculatingn f(x) looks like Figur. In particular, calculating the influence is same as
counting the number of non-solid edges in Fiduré 8.1.

The situation is much less understood for the more general case, for examplgsivhe. In a nutshell,
we are interested in situations other than those in Figufe 8.2. This scenario is not well understood and is
still a mysterious object. Unlike the case of a single variable, the number of zeroes and ones in a “mixed”
2-dimensional subcube can vary and the whole situation is consequently more complex. As an interesting
special case consider the “tribes” example and the case Whg@n entire tribe. It is easy to see that the
influence ofS towardsl is exactlyl (as any tribe can force the result to Dewhile it is not hard to see that
the influence of5 towards0 is onIyO(lo%). As another example consider the case wh@onsists of one
element from each tribe (one can consider each elemesiasfa “spy” in a tribe). Here the influence 6f
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Figure 8.1: Influence of a variable

towards0 is exactlyl (as each spy can force its tribe to®e Further, its influence towardscan be shown
to be Y2=1 1 o(1).

Let us now turn back to the motivating question for this lecture—

Question 8.1.Find boolean functiong with Ef = 1 for which Inf;(x) is small for each variable.

For any variabler; defines; = Inf¢(x;) andletd = (41, - - , 3,). Thus, the quantity we are interested
inis ||B||. Note that the edge isoperimetric inequality on the cube impliesXfiat, 5, > 1 which by
an averaging argument givéi$||.. > 1. Also note that for the “tribes” examplg3||c = @(IO;‘L”). The

following result due to Kahn, Kalai and Linial shows that this is the best possible—

Theorem8.1.Forany f : {—1,1} — {—1,1} withEf = 0, there exists a variable such that/n f(x) >
Q(logn)_

n

Before we start to prove the theorem, let us collect some facts that we know or follow trivially from what
we have covered in previous lectures.

> (f(9)*=1 8.1)
SCln]
f) =0 (8.2)
Bi=4-> (f(9))? (8.3)
S>i
> Bi=4-) ISI(£(9)” (8.4)
i=1 SCin]

Equation [(8.]L) follows from Parseval’s identity and the fact thaakes values i{—1,1}. Equation
) follows from the fact thak, = 1 which impliesf(0) = (f,xy) = 2"Ef = 0. Equation|(8.B)was
proved in the last lecture. Equatign (8.4) follows from summing Equafion (8.3) for all
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Figure 8.2: Influence of a general subset of variables

We will first show that if “most” of thezégn](f(S))2 comes from ’large’ set$§' then the conclusion
of Theore holds. In fact, in this case even #@verageinfluence isQ(loin). To be more precise
let T = &% and H = Y 41(f(S))?. Further assume thai > {;. Then by ),Z?Zlﬁi >
4.3 s> 11(f(5))? > AHT > "%,

It follows that it suffices to prove the theorem under the complementary assumpticﬁthatlio. In

view of |E this is the same as showi@m<T(J‘A‘(S))2 > 0.9. In the proof we will need to estimate the
following quantity—

Y@= Wr(S)((5))?
S

|S|<T

for ¢ = £ (recall from the last lecture thagt? (z) = f(2) — f(z @ e;)). HereWy(-) is the step function
which takes valué for any setS C [n] such thatS| < T and0 otherwise. We use two ideas to solve the
problem in hand—
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e Try and approximatéV (-) by functions which are sufficiently close to the step functi@i(-) and
are easy to analyze.

e Asthe bound|3||; > 1is tight (which is insufficient for our purposes) and since it is difficult to work
directly with ||3||~, we could perhaps estiméfg||, for someco > p > 1. In the proof we will use
p = 3 but this is quite arbitrary.

We focus on the second alternative and use the Bonami Beckner inequality which we consider in the
next section.

8.2 Bonami Beckner Inequality

Let 7. be a linear operator which maps real functions{efl, 1}" to real functions on{—1,1}". By
linear, we mean that the following holds for functiofissndg and scalars andb: Tc(a - f +b-g) =
a-Te(f) +b-Te(g).

AsT.(-) is a linear operator, one can fully determine it by just specifying it at the basis of the functions
{xs}. We define the operator as follows

T.(xs) = e®lxs

By linearity, T.(f) = > gcp 1f(S)xs(-). Note thatTi(f) = f. In other words,T; is the identity
operator.

We will now state the main result of this section—

Theorem 8.2. Let0 < € < 1 and considefl; as an operator fronL, to L, wherep = 1 + €2. Then its
operator norm st [1

Let us first explain the terms used in the statement abovel'L€tX, || - ||x) — (Y,]|| - ||y') be alinear
operator— hereX andY” are normed spaces afid || x and|| - ||y are their respective norms. The operator

norm of 7T’ is defined as
| T||y

2] x

This quantity measures how much the “length” (norm) of an elementX can grow by an application of
the operatofl’. We now turn to the proof.

I Tlop = supzex

What is the size off? How expanding is the operator? These are very narrow passages; we have no
wiggle room. We can only use Parseval'sfin, so the norm on the right hand side needs td.heOn the
left hand side, our norm i%,, which is usually very difficult to calculate. But because our functions (the
@)y only take on the value§—1,0, 1}, we can calculate the necessdrynorms.

That the operator norm df, is at Iegst 1is obvious. Let be identically 1 everywhere. Th@ﬁT) =
S ST = 0 for T # ¢ and f(0) = 1. So||T.f|]2 = 1 = ||f||,- What the Bonami-Beckner
inequality says is that for everfy: {—1,1}" — R, [|T.f||2 < || f]],-

We'll do a part of the proof only. The proof is via induction anthe dimension of the cube. The base
case is the main part of the proof; the method for inducting is standard in analysis and we’ll skip it.

! This is called anypercontractive inequality
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Again, the surprising thing here is that 2 and still||T||,, < 1.

Forn = 1, every functionf has the formf = a + bx and thenl.f = a + ebx. (There are only two
charactersyy andxy,;). Thenatr = —1, f = a—-bandT.f =a—eb. Atz =1, f =a+band
T.f =a+eb. SO

1
B la +bP + |a —bP]»
Il = [
a+eb)?+ (a—eb)?
[T (CETU RS

= +Va?+ e2b?

We want to prove|T. f||2 < || f||, i.€., we want to prove

1
P _ P
[|a—|—b| —;—|a bl ]” > /a2 + b2, (8.5)

Supposeéa| > |b|. Letb = ta and divide byjal:

<m+mp+m—hw>é
2

Ca+mP+M—uM>;
2

1+t + 1 -t »
= al ;

Va2 4 e? = a? + €2(at)?
= |a|V1+ €2t?

So we will prove
L+ ¢P +[1—tfP
2
and [8.5) will follow. Note that ifja| < |b|, we'd substitutex = bt and divide by|b|, and would want to
prove

ya
2

> (1+ €t%)2 whenlt| < 1 (8.6)

p _qp
It + 1] —;—|t 1] >

(2 + %)% when|t| < 1 (8.7)

But since
(1+ €%t?) > € + 2,

once we prove equatiop (8.6), (B.7) will follow immediately.

Proof of [8.6) is via the Taylor expansion. For the left hand side, terms in odd places will cancel out,
and terms in even places will double. Rega# 1 + €2 and|t| < 1. The left hand side becomes

OO2' p
]Z:;“<2j>
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and the right hand side becomes

o

g ( p/2 ) .

=0 J

Let's examine the first two terms of each side. On both sides, the first term is 1. On the left hand side, the
second term ig?(p(p — 1))/2 and on the right hand side the second terrtidp/2; sincee? = p — 1, this

means the second terms are also equal on both sides. Therefore it is sufficient to compare the terms from
j>2.

What we discover is that on the left hand side, all terms are positive, whereas on the right hand side,
thej = 2k andj = 2k + 1 terms have a negative sum for &lI> 1. First we show the left hand side is
positive. The(2j)th coefficient equalg(p — 1)(p — 2) ... (p — 2j + 1) divided by some positive constant.

Note thatp(p — 1) is positive and all the term® — 2) ... (p — 25 + 1) are negative. But since there are an
even number of these negative terms, the product as a whole is positive. Therefore, on the left hand side, all
terms are positive.

Now consider the right hand side. We will show that the 2k andj = 2k + 1 terms have a negative
sum for allk > 1. Consider the sum

akak [ D/2 Ak+2,4k+2 p/2
et <2k>+€ t k1 )

We can divide out**+** without affecting the sign. Since the second term is the positive onel¢jaadl,
we can replace’ by 1 without loss of generality. So now we have

<p2/k2>+62<2lf/fl> - (%/k2>+(p_1><2/f/f1>

p/?(p/?—1)---(19/2—21<7+1)+ ) p/2(p/2 —1)...(p/2 — 2k)

- 2% (p—1) (2k +1)!
- [(2k+1>§(§_1)...(§_2k+1)+( )g(g )...(g_zk)}/(zkﬂ)!
- [g(g_n...(g_%ﬂ)} [2k+1+(p >(§ )}/(2k+1)1

Notice that the first term in brackets is negative and the second term in brackets is positive. Thus the
sum of thekth even and odd term is negative for &lland we've proved equatioh (8.6). Equatipn [8.6)

implies equation[(8]7); equatiors (B.6) ahd |8.7) together imply equétion (8.5); and equation (8.5) implies
| f]lp > ||Te f||2 for p = 1 + €2. Thus we've proved the base case for the Bonami-Beckner inequality.

8.3 Back to Kahn Kalai Linial

In general it is not obvious how to utilize this inequality, since it's hard to compute-therm. But we're
looking at an easy case. Specificallygif {0,1}" — {—1,0, 1}, the inequality says that

Prig #0) =t = t755 > 3 61%(5(5))? (8.8)
S
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To see this, lef = 2. We know||g||, > ||T.g]]2-

1
1 P 1 1
gllp = <2nZ\g(3})p> (271 1) _tp — t1+e2
g(z)#0

So the Bonami-Beckner inequality tells us

= \/Z 2I51(3(5) 2

S

=

and squaring both sides and substitudngjves us equatiot (8.8).

We applied this inequality fog = f(*). Thent = 3;, the influence of théth variable, which is exactly
what we're looking for. Recall that

Fs) =4

P 0 i¢ S
{f(S) 1e s

We want to prove thathax 3; > Q(logn/n). By substituting the new values info (B.8), we get
_2 ~
BT =N T aI(f(9))?
53i

The 61! terms are theVs’s that we want to behave sufficiently close to the step function. Recall, we
also know thatZOS‘SKT(f(S))2 > 0.9 whereT' = logn/10. Since we assumg to be balanced (i.e.

Pr(f = 1) = 1/2), we can ignore the 0 term becauﬁ(eS) = 0 whenS = (, but we cannot ignore it for
imbalanced functions. Still, it won’t matter, and we’ll come back to this point later.

So we knOWZO<\S\<T(f(S))2 > 0.9. Letd = 1/2 (the choice is arbitrary).
> Zﬂ
> Y Z SI(f(S)

ol
ol

n - max [3;

i S3i
B s
- g@ SIF()
N
> D) sty
=)
T
> (;) ST (f(9))?
|S|<T

> (n10)(0.9)

Thereforep - max ﬂf/g > 0.9/n'/1° and so

c \3/4 _ logn
max [3; > (m> — Q(n 8310y 55 —
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There is some progress in understanding what the vector of influences is in general, but we have a long
way to go.

We return to an issue we had left open. What happens when we deal with functions that are imbalanced?
What if f : {0,1}" — {0,1},Ef = p (not necessarilp = 1/2). Now we cannot ignoref(() in the
previous argument.

Indeed,f(0) = p. S2(F(S))? = p. We'd have to subtradtf ()))2 = p? off of p in general. But this is
fine as long a® < p < 1. We mention this because this technique is used often.

8.4 Sharp thresholds in graphs

Theorem 8.3. Every monotone graph property has a sharp threshold.

This theorem is also the title of the paper, by Friedgut and Kalai. The background is that in the late 1950s,
Erdds and Renyi defined random graphs, which became an important ingredient for many investigations in
modern discrete mathematics and theoretical computer science. A randomcgrap} is a graph om
vertices in which the probability thdtr, y) is an edge inG is p. That is, for each pair of vertices, flip a
p-weighted coin, and put an edge in the graph if the coin comes up heads. We do this independently for each
pair of vertices. So

Pr(G) = pD(1 - p)(3) (@

Already Erdds and Renyi had noticed that some properties of graphs have special behavior. For example,
take the property that is connected. WritéPr(G is connecteflas f(p). Whenp is small, the graph is
unlikely to be connected; whenis big, it is almost certain to be connected. The shapg(pf = Pr(G is
connectedlis shown in Figurée 8|3.

-lg

Figure 8.3: Sharp threshold
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The transition from disconnected to connected is very rapid. This is related to a class of physical phe-
nomena called phase transition; there is some physical system that is dependent on a single parameter, such
as temperature or pressure, and the system goes from one phase to the other very sharply (for instance, the
system goes from not magnetized to magnetized).

There are other graph properties that also exhibit this behavior (e.g Hamiltonian cycle, planarity, etc).
But there was no satisfactory general theorem until Freidgut-Kalai.

To have a precise form of the theorem, we define the terms:

Definition 8.1. A graph propertyis a class of labeled graphs that is closed under permutations of the vertex
labels.

Intuitively, a graph property holds or does not hold regardless of the labeling of the vertices, such as
connectedness, “the graph contains a triangle”, the graph is 17-colorable, etc.

Definition 8.2. A graph property is callechonotondf it continues to hold after adding more edges to the
graph.

Again, connectedness is monotone; non-planarity is also. An example of a graph property which is

non-monotone is “the number of edges in the graph is even”.
Let A be a monotone graph property.

pp(A) = Pr(A|G €r G(n,p))

whereG is sampled randomly. Clearly,(A) is an increasing function gf. The theorem says thab,
wherey,, (A) = ¢, andp;, wherey,, (A) = 1 — € are very close. Namely,

pl—poéo(log(l/é)>

logn

In the connectivity example, this is not very interesting. The transition from almost surely disconnected
to almost surely connected takes place aroprd log n/n, and1/logn is much bigger. In other words,
the gap is much bigger than the critical value where the threshold occurs.

Later, Bourgain and Kalai showed that for all monotone graph properties, the same bound holds with
p1—po <O (ﬁ) for everyy > 0 andn large enough. This theorem is nearly tight, since there exist
examples of monotone graph properties where the width of the @[éﬁgg—n) For instance, G contains
ak-clique” for specifick = ©(log n) where the criticap = 1/2.

So what can we do about the problem in the connectivity example, where the threshold comes at a point
much smaller than the gap? We can ask a tougher question: is it true that the transitiq,freme to
ip, = 1 — e occurs betweefll + o(1))q, whereg is the critical probability (i.ey,(A) = 1/2)?

If the answer were yes, we'd have a more satisfactory gap in relation to our critical value in the con-
nectivity case. However, the answer is negative for certain graph properties: this is asking too much. For
example, suppose the property is thatontains a triangle. Here the critigal= ¢/n. The expected number

of triangles inG is
3
n 3 C 1 2
=—(1--)1-=
(3)p (-1
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f(p)

Figure 8.4:G contains a triangle

The picture looks like Figure 8.4. At the smaller scale, the threshold isn’'t as sharp. As we ivary
p = ¢/n, the probability thatG contains no triangle changes from one constant to another constant, both
bounded away from zero and from one. The reason behind this picture is the number of triangles is a random
variable with a Poisson distribution. Therefore, the probability there is no triangte(iX = 0) = e,
wherey is the expectation ok .

One of Freidgut's major contributions was to characterize which graph properties have a sharp threshold
and which don’tin this stronger sense. It's a little complicated to even state his result precisely, but the spirit
of the theorem is this: properties like “G contains a triangle” are considered “local”. Friedgut’s theorem

says that “a graph property has a sharp threshold (in the strong sense)” is roughly equivalent to the property
being “non-local”.
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Lecture 9
Threshold Phenomena

March 7, 2005
Lecturer: Nati Linial
Notes: Chris R

9.1 Asides

There is a good survey of this area by Gil Kalai, Muli Safra calladeshold Phenomena and Influertes
out very soon.

9.1.1 Percolation

Though our main technical result concerns random graphs in the G(n,p) model, let us mention other contexts
in which threshold phenomena occur. One classical examerolation an area started in physics. A
typical question here is this: given a planar grid &nd p < 1. Create a graph by keeping each edge of the
planar grid with probability p and removing each edge with probability 1-p. The inclusion of edges is done
independently. Our question is then: In the resulting graph is the origin in an infinite connected component?

It turns out that there is a critical probability,, such that

p < p. | with probability 1, the origin is not in an infinite component
p > p. | with probability > 0, the origin is in an infinite component

You can imagine considering other similiar questions on higher dimensional grids. For the planar grids
it turns out thap, = 1.

This problem comes up in mining in the following idealized model. Somewhere underground is a deposit
of oil. It is surrounded by rocks whose structure is that of a random sponge’, a solid with randomly placed
cavities. The question is how far the ail is likely to flow away from its original location. Percolation in a

3-dimensional setting is a good abstraction of the above physical situation.

Now imagine graphing the probability of the property holding versusptiialue from above. As an
example see figufe 9.1. The interesting questions are how does it behave around or slightly to thefight of
For example is this a smooth function? Is it differentiable? How large is its derivative? Figlre 9.1 illustrates
some curves that could happen. In this example, the property could be discontinpgos &tcontinuous
but not smooth ap..
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Probability P Holds

~.
.

.. P Criticcal

Probabilty p

Figure 9.1: Probability of Property vs. p

9.2 Monotone Graph Properties

The main theorem we want to prove is:

Theorem 9.1 (Friedgut and Kalai). Every monotone graph property has a sharp threshold

To make this precise, we need some definitions. Let P be a graph property, that is a property invariant
under vertex relabeling. A property Prsonotonaf P(Gy) implies thatP(G) for all G such thaty is
a subgraph of7. A property has a sharp threshold,Rf-[A|G(n,p1)] = €, Pr[A|G(n,p2)] = 1 — e and
p2 —p1 = o(1)

Theorem 9.2 (Erdds and Renyi). The threshold for graph connectivity isat= 1"%

p < (1—¢)™®" | G almost surely disconnected
len TG almost surely connected

n

=
\

_
4

There is a 'counter-point’ model to our deleting model, where we throw in edges. There are some
surprising facts in this model. For example, when you throw in the edge that reaches the last isolated vertex,
with almost certainty, you also connect the graph - at the exact same stage. At the same instant, you also
make the graph hamiltonian.

It may be illustrative to see the form of these arguments.
Proof. sketchLetp < (1— e)lo%. Let X be a random variable representing the number of isolated vertices.
ThenE[X] — oo sinceE[x] = n(1 — p)"~ 1. We also need a second moment argument like Chebyshev to
deduceX > 0 almost surely. In particular, whek > 0, the graph is disconnected. O

Proof. Let Y, be a random variable that counts the number of SetsV' with | S| = & that have no edges
between S and its complement. ThenB{#&] = () (1—p)*("=%). It can be checked thatgif > (1+e)k’%,
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thenzkgg E[Yx] = o(1). It follows that with probabilityl — o(1) no such sets exist. Clearly, when no
such sets exist, the graph is connected. O

9.2.1 Relationto KKL

Why should we expect KKL to work like these examples?
If f:{0,1}" — {0,1} with E[f] = Y] By KKL, 3z € [n] Inff(z) > (™). Let N = () then
eachz € {0,1}" is a description of an vertex graph and the variables correspond to edges.

We can now view graph property as an N-variable boolean function. Notice also by symmetry if one
edge (variable) is influential, then all edges (variables) are influential. As we will see later large influence
entails a sharp threshold.

To generalize, we need to understand the role af G(n,p). We have to work with{0,1}" not
under the uniform distribution but under the following product distributin{U] = plV!(1 — p)N-IUI =

pPE (1 - p)(g)_E(G). We are denoting the Hamming weight of U|&5. andE(G) is the edge set of the
graphdG.

9.3 BK’L

9.3.1 Arrelation between influence and the derivative ofi,(A)

The new B and K in our theory are Bourgain and Katznelsonpfy4) we denote the probability that the
property A holds under thg, 1 — p product measure.

Lemma 9.3 (Margulis & Russo). Let A C {0, 1}" be a monotone subset and Jet(A) be the p-measure
of A. Forx € Aleth(z) = |{y ¢ A|z,y € E(cube)}| (number of neigbors of x outside of A).

LetW,(A) = > h(z)upy(z), the weighted sum of thess.

Additionally let®,(A) be the sum of influences of individual variables. Then

B,(A4) = ‘P”;A) — ()

The subscripts on the equality are only for convenience in the proof.

Definition 9.1. We will sayz > y, if x and y differ in exactly one coordinate, say ti&, andz; = 1 and
Y; = 0.

Influences, more generally In general, if X is a probability space and jf : X — {0,1} (i.e. f

can be viewed as an indicator function for a subseX@. For1l < k < n, we can saylnfs(k) =
Prxn~-1[ Obtain a non-constant fibérHere we are randomly choosimg— 1 coordinates from X with the

k" coordinate missing, and checking if the resulting fiber is constant for f. Namely, if the value of f is fixed
regardless of the choice of for tit&" variable.

choosingE|[f] = % is not critical. Anything bounded away from 0,1 will do
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Is f constant on
this fiber?

Figure 9.2: Cube with a Fiber

Proof. We prove equality 1.9,(A) is the sum of all influences. The influence of #¥ variable is the
weighted sum of all such edges such that y wherex € A,y ¢ A andx; = 1,y; = 0. The probability of
the relevent event is this: We have selected all coordinates excejt thed the outcome should coincide
with x. There argz| — 1 coordinates which are 1 among those and |z| coordinates for which are 0. So

we can rewrite the formula as follows

o,(4) = Y pha - prh

r€AYEA -y

1 —|x
=L e — el

z€AYEA -y

_ ,Zp D1 —p)"F {yly ¢ A,z -y}

a:EA
1 ZPM n=al ()

:EEA
1
- Z fip( ~U,(A)
:EEA p

Proof. Equality 2.

A) = Z ‘x|p|x|—1(1 _p)n—|x| _ Z(n _ |x’)p‘$|(1 —p)n_m_l

€A €A

p _
Z|x|p\$| n—lz| _ Z —|z|)p le (1—p)" ||
€A xEA

For a fixed vertex of the cube, x, and e an edge incident with x define

1 e goes down from x
Wy.e =

—1%1) e goes up from x
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12

12

12 12

Figure 9.3: Partitioning the cube to derive KKL froRv<3 L

Figure 9.4: f on n=2 case

So we can rewrite (summing over x and e’s incident).

P = Y (@

rEA e~

This is because there arg edges going down from x anjd — x| edges going up from it. Notice that if
x > yare bothin Aand = (z,y), thenw, cp,(x) + wy ep1p(y) = 0. It follows that we can restrict to the
sum to the edges iB(A, A°). In other words,

p;;upm)— Y wem@= S ) =3 h@)(r) = Uy(A)

€A y¢Ae=(z,y) z€AyEAe=(z,y) z€A

O

Returning to the proof that every monotone graph property has a sharp threshaldbéet monotone
graph property and let us operatre in the probability sgage p). We will show here that the value where
the property holds with less tharis very close to where the property holds W%thA symmetric argument
for 1 — e will give us the full desired result.
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9.3.2 Words about BKKKL

Theorem 9.4 (BKKKL). Letf :[0,1]" — {0,1} with E[f] = ¢, lett’ = min(¢,1 — ¢). Then there exists
n >k > 1such thatfnf;(k) > Q' 1°5™)

Set version of KKL vf : {0,1}" — {0,1} E[f] ~ 3 and for everyw(n) — occasn — oo,
IS C [n]. |S| < = ) yith Inf;(S) =1—o(1). This result follows from repeated application of KKL.

log n

Remark.lt is interesting to note that the analgous statemenf fof0, 1] — [0, 1] does not hold.
Consider the following f, represented in figyre]9.4. L&tr1,...,2,) = 0iff 3 0 < 2; <

< wherec = log,(2). In other words,f~*(1) = [];'[<,1]. Let|S| = a. In this exampleInf(S) -
Prl[f still undetermined when all variables outside of S are set at rahdofthe function is still undeter-
mined iff all others outside the set are 1. This happens with probability ¢ )"(1=®) ~ e=<(1=®) 'which is

bounded away from 1.

This is a 'close-cousin’ of the tribes example. Recall in the tribes example we broke the variables into
'tribes’ of size~ logn — loglogn. Each tribe contributed if all variables take on the value 1, that is there
is one assignment out of tigegn—loglogn — T3 Such that the tribe had value 1. In our setting, we can
identify tribes with single variables. The 0 region of the continuous case corresponds to the assigment where
all variables in the discrete case are set to 1, since this determines the function.

Proof. By BK3L there exist influential variables. By symmetry all variables are influential. Sum of all
individual influences are at least as largebg$A) > Q(e log N) = Q(e logn)

O, (A) > Q(pp(A) logn)
By Margulis-Russo Lemma we kno®),(A) = i 1,(A).

To(4) = Qsy(4) log)

((A))/1(4) = 1o )

d

dfp(log(up(A)) > Q(logn)

letp1, p2 be defined byPrq,, ) [A] = € and Prgy, ) [A] = %. From above we know thal(log y,(A4)) >
0

Q(logn) sop; — p2 < O(logn)

Remark.We will not give a proof here, but note that Freidgut showed using standard measure theory how
to derive BK3L from KKL. Namely, how we can reach the same conclusion for AnyX™ — {0,1},
whereX is any probability space. To derive KKL froBK3L, is easy: Givery : {0,1}" — {0,1} define

F :[0,1]™ — {0, 1} by breaking the cube t&"* subcubes and letting F be constant on each subcube that is
equal to f at the correpsoning vertex of the cube. For a simple illustration of the:cask see figur¢ 9]3.
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