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ABSTRACT

In these lectures we introduce the linear operators of fractional integration and frac-

tional differentiation in the framework of the Riemann-Liouville fractional calculus.

Particular attention is devoted to the technique of Laplace transforms for treating

these operators in a way accessible to applied scientists, avoiding unproductive gen-

eralities and excessive mathematical rigor. By applying this technique we shall derive

the analytical solutions of the most simple linear integral and differential equations of

fractional order. We shall show the fundamental role of the Mittag-Leffler function,

whose properties are reported in an ad hoc Appendix. The topics discussed here

will be: (a) essentials of Riemann-Liouville fractional calculus with basic formulas

of Laplace transforms, (b) Abel type integral equations of first and second kind, (c)

relaxation and oscillation type differential equations of fractional order.
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1. INTRODUCTION TO FRACTIONAL CALCULUS

1.1 Historical Foreword

Fractional calculus is the field of mathematical analysis which deals with the

investigation and applications of integrals and derivatives of arbitrary order. The

term fractional is a misnomer, but it is retained following the prevailing use.

The fractional calculus may be considered an old and yet novel topic. It is an

old topic since, starting from some speculations of G.W. Leibniz (1695, 1697) and

L. Euler (1730), it has been developed up to nowadays. A list of mathematicians,

who have provided important contributions up to the middle of our century, includes

P.S. Laplace (1812), J.B.J. Fourier (1822), N.H. Abel (1823-1826), J. Liouville (1832-

1873), B. Riemann (1847), H. Holmgren (1865-67), A.K. Grünwald (1867-1872), A.V.

Letnikov (1868-1872), H. Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J.

Hadamard (1892), O. Heaviside (1892-1912), S. Pincherle (1902), G.H. Hardy and

J.E. Littlewood (1917-1928), H. Weyl (1917), P. Lévy (1923), A. Marchaud (1927),

H.T. Davis (1924-1936), A. Zygmund (1935-1945), E.R. Love (1938-1996), A. Erdélyi

(1939-1965), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949).

However, it may be considered a novel topic as well, since only from a little more

than twenty years it has been object of specialized conferences and treatises. For the

first conference the merit is ascribed to B. Ross who organized the First Conference

on Fractional Calculus and its Applications at the University of New Haven in June

1974, and edited the proceedings, see [1]. For the first monograph the merit is

ascribed to K.B. Oldham and J. Spanier, see [2], who, after a joint collaboration

started in 1968, published a book devoted to fractional calculus in 1974. Nowadays,

the list of texts and proceedings devoted solely or partly to fractional calculus and its

applications includes about a dozen of titles [1-14], among which the encyclopaedic

treatise by Samko, Kilbas & Marichev [5] is the most prominent. Furthermore, we

recall the attention to the treatises by Davis [15], Erdélyi [16], Gel’fand & Shilov

[17], Djrbashian [18, 22], Caputo [19], Babenko [20], Gorenflo & Vessella [21], which

contain a detailed analysis of some mathematical aspects and/or physical applications

of fractional calculus, although without explicit mention in their titles.

In recent years considerable interest in fractional calculus has been stimulated

by the applications that this calculus finds in numerical analysis and different areas

of physics and engineering, possibly including fractal phenomena. In this respect

A. Carpinteri and F. Mainardi have edited the present book of lecture notes and

entitled it as Fractals and Fractional Calculus in Continuum Mechanics. For the

topic of fractional calculus, in addition to this joint article of introduction, we have

contributed also with two single articles, one by Gorenflo [23], devoted to numerical

methods, and one by Mainardi [24], concerning applications in mechanics.
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1.2 The Fractional Integral

According to the Riemann-Liouville approach to fractional calculus the notion of

fractional integral of order α (α > 0) is a natural consequence of the well known

formula (usually attributed to Cauchy), that reduces the calculation of the n−fold

primitive of a function f(t) to a single integral of convolution type. In our notation

the Cauchy formula reads

Jnf(t) := fn(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1 f(τ) dτ , t > 0 , n ∈ IN , (1.1)

where IN is the set of positive integers. From this definition we note that fn(t)

vanishes at t = 0 with its derivatives of order 1, 2, . . . , n − 1 . For convention we

require that f(t) and henceforth fn(t) be a causal function, i.e. identically vanishing

for t < 0 .

In a natural way one is led to extend the above formula from positive integer

values of the index to any positive real values by using the Gamma function. Indeed,

noting that (n − 1)! = Γ(n) , and introducing the arbitrary positive real number α ,

one defines the Fractional Integral of order α > 0 :

Jα f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1 f(τ) dτ , t > 0 α ∈ IR+ , (1.2)

where IR+ is the set of positive real numbers. For complementation we define J0 := I

(Identity operator), i.e. we mean J0 f(t) = f(t) . Furthermore, by Jαf(0+) we mean

the limit (if it exists) of Jαf(t) for t→ 0+ ; this limit may be infinite.

Remark 1 :

Here, and in all our following treatment, the integrals are intended in the generalized

Riemann sense, so that any function is required to be locally absolutely integrable

in IR+. However, we will not bother to give descriptions of sets of admissible func-

tions and will not hesitate, when necessary, to use formal expressions with generalized

functions (distributions), which, as far as possible, will be re-interpreted in the frame-

work of classical functions. The reader interested in the strict mathematical rigor is

referred to [5], where the fractional calculus is treated in the framework of Lebesgue

spaces of summable functions and Sobolev spaces of generalized functions.

Remark 2 :

In order to remain in accordance with the standard notation I for the Identity oper-

ator we use the character J for the integral operator and its power Jα. If one likes

to denote by Iα the integral operators, he would adopt a different notation for the

Identity, e.g. II , to avoid a possible confusion.
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We note the semigroup property

JαJβ = Jα+β , α , β ≥ 0 , (1.3)

which implies the commutative property JβJα = JαJβ , and the effect of our opera-

tors Jα on the power functions

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tγ+α , α > 0 , γ > −1 , t > 0 . (1.4)

The properties (1.3-4) are of course a natural generalization of those known when

the order is a positive integer. The proofs, see e.g. [2], [5] or [10], are based on the

properties of the two Eulerian integrals, i.e. the Gamma and Beta functions,

Γ(z) :=

∫ ∞

0

e−u uz−1 du , Γ(z + 1) = z Γ(z) , Re {z} > 0 , (1.5)

B(p, q) :=

∫ 1

0

(1 − u)p−1 uq−1 du =
Γ(p) Γ(q)

Γ(p+ q)
= B(q, p) , Re {p , q} > 0 . (1.6)

It may be convenient to introduce the following causal function

Φα(t) :=
tα−1
+

Γ(α)
, α > 0 , (1.7)

where the suffix + is just denoting that the function is vanishing for t < 0 . Being

α > 0 , this function turns out to be locally absolutely integrable in IR+ . Let us now

recall the notion of Laplace convolution, i.e. the convolution integral with two causal

functions, which reads in a standard notation f(t) ∗ g(t) :=
∫ t

0
f(t − τ) g(τ) dτ =

g(t) ∗ f(t) .

Then we note from (1.2) and (1.7) that the fractional integral of order α > 0 can

be considered as the Laplace convolution between Φα(t) and f(t) , i.e.

Jα f(t) = Φα(t) ∗ f(t) , α > 0 . (1.8)

Furthermore, based on the Eulerian integrals, one proves the composition rule

Φα(t) ∗ Φβ(t) = Φα+β(t) , α , β > 0 , (1.9)

which can be used to re-obtain (1.3) and (1.4).

Introducing the Laplace transform by the notation L {f(t)} :=
∫∞

0
e−st f(t) dt =

f̃(s) , s ∈ C , and using the sign ÷ to denote a Laplace transform pair, i.e. f(t)÷f̃(s) ,

we note the following rule for the Laplace transform of the fractional integral,

Jα f(t) ÷ f̃(s)

sα
, α > 0 , (1.10)

which is the straightforward generalization of the case with an n-fold repeated integral

(α = n). For the proof it is sufficient to recall the convolution theorem for Laplace

transforms and note the pair Φα(t) ÷ 1/sα , with α > 0 , see e.g. Doetsch [25].
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1.3 The Fractional Derivative

After the notion of fractional integral, that of fractional derivative of order α

(α > 0) becomes a natural requirement and one is attempted to substitute α with

−α in the above formulas. However, this generalization needs some care in order to

guarantee the convergence of the integrals and preserve the well known properties of

the ordinary derivative of integer order.

Denoting by Dn with n ∈ IN , the operator of the derivative of order n , we first

note that

Dn Jn = I , JnDn 6= I , n ∈ IN , (1.11)

i.e. Dn is left-inverse (and not right-inverse) to the corresponding integral operator

Jn . In fact we easily recognize from (1.1) that

JnDn f(t) = f(t) −
n−1∑

k=0

f (k)(0+)
tk

k!
, t > 0 . (1.12)

As a consequence we expect that Dα is defined as left-inverse to Jα. For this

purpose, introducing the positive integer m such that m − 1 < α ≤ m, one defines

the Fractional Derivative of order α > 0 : Dα f(t) := Dm Jm−α f(t) , namely

Dα f(t) :=





dm

dtm

[
1

Γ(m− α)

∫ t

0

f(τ)

(t− τ)α+1−m
dτ

]
, m− 1 < α < m ,

dm

dtm
f(t) , α = m.

(1.13)

Defining for complementation D0 = J0 = I , then we easily recognize that

Dα Jα = I , α ≥ 0 , (1.14)

and

Dα tγ =
Γ(γ + 1)

Γ(γ + 1 − α)
tγ−α , α > 0 , γ > −1 , t > 0 . (1.15)

Of course, the properties (1.14-15) are a natural generalization of those known when

the order is a positive integer. Since in (1.15) the argument of the Gamma function

in the denominator can be negative, we need to consider the analytical continuation

of Γ(z) in (1.5) to the left half-plane, see e.g. Henrici [26].

Note the remarkable fact that the fractional derivative Dα f is not zero for the

constant function f(t) ≡ 1 if α 6∈ IN . In fact, (1.15) with γ = 0 teaches us that

Dα1 =
t−α

Γ(1 − α)
, α ≥ 0 , t > 0 . (1.16)

This, of course, is ≡ 0 for α ∈ IN, due to the poles of the gamma function in the

points 0,−1,−2, . . ..
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We now observe that an alternative definition of fractional derivative, orig-

inally introduced by Caputo [19], [27] in the late sixties and adopted by Ca-

puto and Mainardi [28] in the framework of the theory of Linear Viscoelasticity

(see a review in [24]), is the so-called Caputo Fractional Derivative of order α > 0 :

Dα
∗ f(t) := Jm−αDm f(t) with m− 1 < α ≤ m, namely

Dα
∗ f(t) :=





1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ , m− 1 < α < m ,

dm

dtm
f(t) , α = m.

(1.17)

This definition is of course more restrictive than (1.13), in that requires the absolute

integrability of the derivative of order m. Whenever we use the operator Dα
∗ we

(tacitly) assume that this condition is met. We easily recognize that in general

Dα f(t) := Dm Jm−α f(t) 6= Jm−αDm f(t) := Dα
∗ f(t) , (1.18)

unless the function f(t) along with its first m− 1 derivatives vanishes at t = 0+. In

fact, assuming that the passage of the m-derivative under the integral is legitimate,

one recognizes that, for m− 1 < α < m and t > 0 ,

Dα f(t) = Dα
∗ f(t) +

m−1∑

k=0

tk−α

Γ(k − α+ 1)
f (k)(0+) , (1.19)

and therefore, recalling the fractional derivative of the power functions (1.15),

Dα

(
f(t) −

m−1∑

k=0

tk

k!
f (k)(0+)

)
= Dα

∗ f(t) . (1.20)

The alternative definition (1.17) for the fractional derivative thus incorporates the

initial values of the function and of its integer derivatives of lower order. The sub-

traction of the Taylor polynomial of degree m−1 at t = 0+ from f(t) means a sort of

regularization of the fractional derivative. In particular, according to this definition,

the relevant property for which the fractional derivative of a constant is still zero, i.e.

Dα
∗ 1 ≡ 0 , α > 0 . (1.21)

can be easily recognized.

We now explore the most relevant differences between the two fractional deriva-

tives (1.13) and (1.17). We agree to denote (1.17) as the Caputo fractional derivative

to distinguish it from the standard Riemann-Liouville fractional derivative (1.13).

We observe, again by looking at (1.15), that

Dαtα−1 ≡ 0 , α > 0 , t > 0 . (1.22)
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From (1.22) and (1.21) we thus recognize the following statements about functions

which for t > 0 admit the same fractional derivative of order α , with m−1 < α ≤ m,

m ∈ IN ,

Dα f(t) = Dα g(t) ⇐⇒ f(t) = g(t) +

m∑

j=1

cj t
α−j , (1.23)

Dα
∗ f(t) = Dα

∗ g(t) ⇐⇒ f(t) = g(t) +
m∑

j=1

cj t
m−j . (1.24)

In these formulas the coefficients cj are arbitrary constants.

Incidentally, we note that (1.22) provides an instructive example to show how Dα

is not right-inverse to Jα , since

JαDαtα−1 ≡ 0, but DαJαtα−1 = tα−1 , α > 0 , t > 0, . (1.25)

For the two definitions we also note a difference with respect to the formal limit

as α→ (m− 1)
+
. From (1.13) and (1.17) we obtain respectively,

α→ (m− 1)+ =⇒ Dα f(t) → Dm J f(t) = Dm−1 f(t) ; (1.26)

α→ (m− 1)
+

=⇒ Dα
∗ f(t) → J Dm f(t) = Dm−1 f(t) − f (m−1)(0+) . (1.27)

We now consider the Laplace transform of the two fractional derivatives. For the

standard fractional derivative Dα the Laplace transform, assumed to exist, requires

the knowledge of the (bounded) initial values of the fractional integral Jm−α and of

its integer derivatives of order k = 1, 2, m − 1 , as we learn from [2], [5], [10]. The

corresponding rule reads, in our notation,

Dα f(t) ÷ sα f̃(s) −
m−1∑

k=0

Dk J (m−α) f(0+) sm−1−k , m− 1 < α ≤ m. (1.28)

The Caputo fractional derivative appears more suitable to be treated by the

Laplace transform technique in that it requires the knowledge of the (bounded) ini-

tial values of the function and of its integer derivatives of order k = 1, 2, m − 1 , in

analogy with the case when α = m. In fact, by using (1.10) and noting that

JαDα
∗ f(t) = Jα Jm−α Dm f(t) = JmDm f(t) = f(t) −

m−1∑

k=0

f (k)(0+)
tk

k!
. (1.29)

we easily prove the following rule for the Laplace transform,

Dα
∗ f(t) ÷ sα f̃(s) −

m−1∑

k=0

f (k)(0+) sα−1−k , m− 1 < α ≤ m, (1.30)

Indeed, the result (1.30), first stated by Caputo [19] by using the Fubini-Tonelli

theorem, appears as the most ”natural” generalization of the corresponding result

well known for α = m.
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We now show how both the definitions (1.13) and (1.17) for the fractional deriva-

tive of f(t) can be derived, at least formally, by the convolution of Φ−α(t) with f(t) ,

in a sort of analogy with (1.8) for the fractional integral. For this purpose we need

to recall from the treatise on generalized functions by Gel’fand and Shilov [16] that

(with proper interpretation of the quotient as a limit if t = 0)

Φ−n(t) :=
t−n−1
+

Γ(−n)
= δ(n)(t) , n = 0 , 1 , . . . (1.31)

where δ(n)(t) denotes the generalized derivative of order n of the Dirac delta distribu-

tion. Here, we assume that the reader has some minimal knowledge concerning these

distributions, sufficient for handling classical problems in physics and engineering.

The equation (1.31) provides an interesting (not so well known) representation

of δ(n)(t) , which is useful in our following treatment of fractional derivatives. In

fact, we note that the derivative of order n of a causal function f(t) can be obtained

formally by the (generalized) convolution between Φ−n and f ,

dn

dtn
f(t) = f (n)(t) = Φ−n(t) ∗ f(t) =

∫ t+

0−

f(τ) δ(n)(t− τ) dτ , t > 0 , (1.32)

based on the well known properties
∫ t+

0−

f(τ) δ(n)(τ − t) dτ = (−1)n f (n)(t) , δ(n)(t− τ) = (−1)n δ(n)(τ − t) . (1.33)

According to a usual convention, in (1.32-33) the limits of integration are extended

to take into account for the possibility of impulse functions centred at the extremes.

Then, a formal definition of the fractional derivative of order α could be

Φ−α(t) ∗ f(t) =
1

Γ(−α)

∫ t+

0−

f(τ)

(t− τ)1+α
dτ , α ∈ IR+ .

The formal character is evident in that the kernel Φ−α(t) turns out to be not locally

absolutely integrable and consequently the integral is in general divergent. In order

to obtain a definition that is still valid for classical functions, we need to regularize the

divergent integral in some way. For this purpose let us consider the integer m ∈ IN

such that m− 1 < α < m and write −α = −m+ (m−α) or −α = (m−α)−m. We

then obtain

[Φ−m(t) ∗ Φm−α(t)] ∗ f(t) = Φ−m(t) ∗ [Φm−α(t) ∗ f(t)] = Dm Jm−α f(t) , (1.34)

or

[Φm−α(t) ∗ Φ−m(t)] ∗ f(t) = Φm−α(t) ∗ [Φ−m(t) ∗ f(t)] = Jm−αDm f(t) . (1.35)

As a consequence we derive two alternative definitions for the fractional derivative,

corresponding to (1.13) and (1.17), respectively. The singular behaviour of Φ−m(t)

is reflected in the non-commutativity of convolution in these formulas.
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1.4 Other Definitions and Notations

Up to now we have considered the approach to fractional calculus usually re-

ferred to Riemann and Liouville. However, while Riemann (1847) had generalized

the integral Cauchy formula with starting point t = 0 as reported in (1.1), originally

Liouville (1832) had chosen t = −∞ . In this case we define

Jα
−∞ f(t) :=

1

Γ(α)

∫ t

−∞

(t− τ)α−1 f(τ) dτ , α ∈ IR+ , (1.36)

and consequently, for m− 1 < α ≤ m, m ∈ IN , Dα
−∞ f(t) := Dm Jm−a

−∞ f(t) , namely

Dα
−∞ f(t) :=





dm

dtm

[
1

Γ(m− α)

∫ t

−∞

f(τ) dτ

(t− τ)α+1−m

]
, m− 1 < α < m ,

dm

dtm
f(t) , α = m.

(1.37)

In this case, assuming f(t) to vanish as t→ −∞ along with its first m−1 derivatives,

we have the identity

Dm Jm−α
−∞ f(t) = Jm−α

−∞ Dm f(t) , (1.38)

in contrast with (1.18).

While for the fractional integral (1.2) a sufficient condition that the integral con-

verge is that

f (t) = O
(
tǫ−1

)
, ǫ > 0 , t→ 0+ , (1.39)

a sufficient condition that (1.36) converge is that

f (t) = O
(
|t|−α−ǫ

)
, ǫ > 0 , t→ −∞ . (1.40)

Integrable functions satisfying the properties (1.39) and (1.40) are sometimes referred

to as functions of Riemann class and Liouville class, respectively [10]. For example

power functions tγ with γ > −1 and t > 0 (and hence also constants) are of Riemann

class, while |t|−δ with δ > α > 0 and t < 0 and exp (ct) with c > 0 are of Liouville

class. For the above functions we obtain (as real versions of the formulas given in

[10])

Jα
−∞ |t|−δ =

Γ(δ − α)

Γ(δ)
|t|−δ+α , Dα

−∞ |t|−δ =
Γ(δ + α)

Γ(δ)
|t|−δ−α , (1.41)

and

Jα
−∞ e ct = c−α e ct , Dα

−∞ e ct = cα e ct . (1.42)



232 Fractional Calculus: Integral and Differential Equations of Fractional Order

Causal functions can be considered in the above integrals with the due care. In

fact, in view of the possible jump discontinuities of the integrands at t = 0 , in this

case it is worthwhile to write
∫ t

−∞

(. . .) dτ =

∫ t

0−

(. . .) dτ .

As an example we consider for 0 < α < 1 the chain of identities

1

Γ(1 − α)

∫ t

0−

f ′(τ)

(t− τ)α
dτ =

t−α

Γ(1 − α)
f(0+) +

1

Γ(1 − α)

∫ t

0

f ′(τ)

(t− τ)α
dτ

=
t−α

Γ(1 − α)
f(0+) +Dα

∗ f(t) = Dα f(t) ,

(1.43)

where we have used (1.19) with m = 1 .

In recent years it has become customary to use in place of (1.36) the Weyl frac-

tional integral

Wα
∞ f(t) :=

1

Γ(α)

∫ ∞

t

(τ − t)α−1 f(τ) dτ , α ∈ IR+ , (1.44)

based on a definition of Weyl (1917). For t > 0 it is a sort of complementary integral

with respect to the usual Riemann-Liouville integral (1.2). The relation between

(1.36) and (1.44) can be readily obtained by noting that, see e.g. [10],

Jα
−∞ f(t) =

1

Γ(α)

∫ t

−∞

(t− τ)α−1 f(τ) dτ = − 1

Γ(α)

∫ −t

∞

(t+ τ ′)α−1 f(−τ ′) dτ ′

=
1

Γ(α)

∫ ∞

t′
(τ ′ − t′)α−1 f(−τ ′) dτ ′ = Wα

∞ g(t′) ,

(1.45)

with g(t′) = f(−t′) , t′ = −t . In the above passages we have carried out the changes

of variable τ → τ ′ = −τ and t→ t′ = −t .
For convenience of the reader, let us recall that exhaustive tables of Riemann-

Liouville and Weyl fractional integrals are available in the second volume of the

Bateman Project collection of Integral Transforms [16], in the chapter XIII devoted

to fractional integrals.

Last but not the least, let us consider the question of notation. The present

authors oppose to the use of the notation D−α for denoting the fractional integral,

since it is misleading, even if it is used in distinguished treatises as [2], [10], [15]. It

is well known that derivation and integration operators are not inverse to each other,

even if their order is integer, and therefore such unification of symbols, present only in

the framework of the fractional calculus, appears not justified. Furthermore, we have

to keep in mind that for fractional order the derivative is yet an integral operator, so

that, perhaps, it would be less disturbing to denote our Dα as J−α, than our Jα as

D−α .



R. Gorenflo and F. Mainardi 233

1.5 The Law of Exponents

In the ordinary calculus the properties of the operators of integration and differ-

entiation with respect to the laws of commutation and additivity of their (integer)

exponents are well known. Using our notation, the (trivial) laws

Jm Jn = Jn Jm = Jm+n , DmDn = Dn Dm = Dm+n , (1.46)

where m,n = 0, 1, 2, . . . , can be referred to as the Law of Exponents for the operators

of integration and differentiation of integer order, respectively. Of course, for any

positive integer order, the operators Dm and Jn do not commute, see (1.11-12).

In the fractional calculus the Law of Exponents is known to be generally true for

the operators of fractional integration thanks to their semigroup property (1.3). In

general, both the operators of fractional differentiation, Dα and Dα
∗ , do not satisfy

either the semigroup property, or the (weaker) commutative property. To show how

the Law of Exponents does not necessarily hold for the standard fractional derivative,

we provide two simple examples (with power functions) for which

{
(a) DαDβ f(t) = DβDα f(t) 6= Dα+β f(t) ,

(b) DαDβ g(t) 6= DβDα g(t) = Dα+β g(t) .
(1.47)

In the example (a) let us take f(t) = t−1/2 and α = β = 1/2 . Then, using (1.15),

we get D1/2 f(t) ≡ 0 , D1/2D1/2 f(t) ≡ 0 , but D1/2+1/2 f(t) = Df(t) = −t−3/2/2 .

In the example (b) let us take g(t) = t1/2 and α = 1/2 , β = 3/2 . Then, again

using (1.15), we get D1/2 g(t) =
√
π/2 , D3/2 g(t) ≡ 0 , but D1/2D3/2 g(t) ≡ 0 ,

D3/2D1/2 g(t) = −t3/2/4 and D1/2+3/2 g(t) = D2 g(t) = −t3/2/4 .

Although modern mathematicians would seek the conditions to justify the Law of

Exponents when the order of differentiation and integration are composed together,

we resist the temptation to dive into the delicate details of the matter, but rather

refer the interested reader to §IV.6 (”The Law of Exponents”) in the book by Miller

and Ross [10]. Let us, however, extract (in our notation, writing Jα in place of D−α

for α > 0) three important cases, contained in their Theorem 3: If f(t) = tλ η(t) or

f(t) = tλ ln t η(t) , where λ > −1 and η(t) =
∑∞

n=0 an t
n having a positive radius R

of convergence, then for 0 ≤ t < R , the following three formulas are valid:





µ ≥ 0 and 0 ≤ ν ≤ µ =⇒ DνJµ f(t) = Jµ−ν f(t) ,

µ ≥ 0 and ν > µ =⇒ DνJµ f(t) = Dµ−ν f(t) ,

0 ≤ µ < λ+ 1 and ν ≥ 0 =⇒ DνDµ f(t) = Dµ+ν f(t) .

(1.48)

At least in the case of f(t) without the factor ln t , the proof of these formulas is

straightforward. Use the definitions (1.2) and (1.13) of fractional integration and
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differentiation, the semigroup property (1.3) of fractional integration, and apply the

formulas (1.4) and (1.15) termwise to the infinite series you meet in the course of

calculations. Of course, the condition that the function η(t) be analytic can be

considerably relaxed; it only need be ”sufficiently” smooth.”

The lack of commutativity and the non-validity of the law of exponents has led

to the notion of sequential fractional differentiation in which the order in which

fractional differentiation operators Dα1 , Dα2 , . . . , Dαk are concatenated is crucial.

For this and the related field of fractional differential equations we refer again to

Miller and Ross [10]. Furthermore, Podlubny [29] has also given formulas for the

Laplace transforms of sequential fractional derivatives.

In order to give an impression on the strange effects to be expected in use of

sequential fractional derivatives we consider for a function f(t) continuous for t ≥ 0

and for positive numbers α and β with α+β = 1 the three problems (a), (b), (c) with

the respective general solutions u , v , w in the set of locally integrable functions,





(a) DαDβ u(t) = f(t) ⇒ u(t) = J f(t) + a1 + a2 t
β−1 ,

(b) DβDα v(t) = f(t) ⇒ v(t) = J f(t) + b1 + b2 t
α−1 ,

(c) Du(t) = f(t) ⇒ w(t) = J f(t) + c ,

(1.49)

where a1 , a2 , b1 , b2 , c are arbitrary constants. Whereas the result for (c) is obvious,

in order to obtain the final results for (a) [or (b)] we need to apply first the operator

Jα [or Jβ] and then the operator Jβ [or Jα]. The additional terms must be taken

into account because Dγ tγ−1 ≡ 0 , J1−γ tγ−1 = Γ(γ) , γ = α, β . We observe that,

whereas the general solution of (c) contains one arbitrary constant, that of (a) and

likewise of (b) contains two arbitrary constants, even though α+β = 1 . In case α 6= β

the singular behaviour of u(t) at t = 0+ is distinct from that of v(t) .

From above we can conclude in rough words: sufficiently fine sequentialization

increases the number of free constants in the general solution of a fractional differ-

ential equation, hence the number of conditions that must be imposed to make the

solution unique. For an example see Bagley’s treatment of a composite fractional os-

cillation equation [30]; there the highest order of derivative is 2, but four conditions

are required to achieve uniqueness.

In the present lectures we shall avoid the above troubles since we shall consider

only differential equations containing single fractional derivatives. Furthermore we

shall adopt the Caputo fractional derivative in order to meet the usual physical re-

quirements for which the initial conditions are expressed in terms of a given number

of bounded values assumed by the field variable and its derivatives of integer order,

see (1.24) and (1.30).
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2. FRACTIONAL INTEGRAL EQUATIONS

In this section we shall consider the most simple integral equations of fractional

order, namely the Abel integral equations of the first and the second kind. The former

investigations on such equations are due to Abel (1823-26), after whom they are

named, for the first kind, and to Hille and Tamarkin (1930) for the second kind. The

interested reader is referred to [5], [21] and [31-33] for historical notes and detailed

analysis with applications. Here we limit ourselves to put some emphasis on the

method of the Laplace transforms, that makes easier and more comprehensible the

treatment of such fractional integral equations, and provide some applications.

2.1 Abel integral equation of the first kind

Let us consider the Abel integral equation of the first kind

1

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α
dτ = f(t) , 0 < α < 1 , (2.1)

where f(t) is a given function. We easily recognize that this equation can be expressed

in terms of a fractional integral, i.e.

Jα u(t) = f(t) , (2.2)

and consequently solved in terms of a fractional derivative, according to

u(t) = Dα f(t) . (2.3)

To this end we need to recall the definition (1.2) and the property (1.14) Dα Jα = I.

Let us now solve (2.1) using the Laplace transform. Noting from (1.7-8) and

(1.10) that Jα u(t) = Φα(t) ∗ u(t) ÷ ũ(s)/sα , we then obtain

ũ(s)

sα
= f̃(s) =⇒ ũ(s) = sα f̃(s) . (2.4)

Now we can choose two different ways to get the inverse Laplace transform from

(2.4), according to the standard rules. Writing (2.4) as

ũ(s) = s

[
f̃(s)

s1−α

]
, (2.4a)

we obtain

u(t) =
1

Γ(1 − α)

d

dt

∫ t

0

f(τ)

(t− τ)α
dτ . (2.5a)

On the other hand, writing (2.4) as

ũ(s) =
1

s1−α
[s f̃(s) − f(0+)] +

f(0+)

s1−α
, (2.4b)

we obtain

u(t) =
1

Γ(1 − α)

∫ t

0

f ′(τ)

(t− τ)α
dτ + f(0+)

t−α

Γ(1 − a)
. (2.5b)
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Thus, the solutions (2.5a) and (2.5b) are expressed in terms of the fractional deriva-

tives Dα and Dα
∗ , respectively, according to (1.13), (1.17) and (1.19) with m = 1 .

The way b) requires that f(t) be differentiable with L-transformable derivative;

consequently 0 ≤ |f(0+)| < ∞ . Then it turns out from (2.5b) that u(0+) can be

infinite if f(0+) 6= 0 , being u(t) = O(t−α) , as t → 0+ . The way a) requires weaker

conditions in that the integral at the R.H.S. of (2.5a) must vanish as t→ 0+; conse-

quently f(0+) could be infinite but with f(t) = O(t−ν) , 0 < ν < 1 − α as t → 0+ .

To this end keep in mind that Φ1−α ∗ Φ1−ν = Φ2−α−ν . Then it turns out from (2.5a)

that u(0+) can be infinite if f(0+) is infinite, being u(t) = O(t−(α+ν)) , as t→ 0+ .

Finally, let us remark that we can analogously treat the case of equation (2.1)

with 0 < α < 1 replaced by α > 0 . If m − 1 < α ≤ m with m ∈ IN , then again we

have (2.2), now with Dα f(t) given by the formula (1.13) which can also be obtained

by the Laplace transform method.

2.2 Abel integral equation of the second kind

Let us now consider the Abel equation of the second kind

u(t) +
λ

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α
dτ = f(t) , α > 0 , λ ∈ C . (2.6)

In terms of the fractional integral operator such equation reads

(1 + λJα) u(t) = f(t) , (2.7)

and consequently can be formally solved as follows:

u(t) = (1 + λJα)
−1

f(t) =

(
1 +

∞∑

n=1

(−λ)n Jαn

)
f(t) . (2.8)

Noting by (1.7-8) that

Jαn f(t) = Φαn(t) ∗ f(t) =
tαn−1
+

Γ(αn)
∗ f(t)

the formal solution reads

u(t) = f(t) +

(
∞∑

n=1

(−λ)n tαn−1
+

Γ(αn)

)
∗ f(t) . (2.9)

Recalling from the Appendix the definition of the function,

eα(t;λ) := Eα(−λ tα) =
∞∑

n=0

(−λ tα)
n

Γ(αn+ 1)
, t > 0 , α > 0 , λ ∈ C , (2.10)

where Eα denotes the Mittag-Leffler function of order α , we note that
∞∑

n=1

(−λ)n tαn−1
+

Γ(αn)
=

d

dt
Eα(−λtα) = e′α(t;λ) , t > 0 . (2.11)
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Finally, the solution reads

u(t) = f(t) + e′α(t;λ) ∗ f(t) . (2.12)

Of course the above formal proof can be made rigorous. Simply observe that

because of the rapid growth of the gamma function the infinite series in (2.9) and

(2.11) are uniformly convergent in every bounded interval of the variable t so that

term-wise integrations and differentiations are allowed. However, we prefer to use

the alternative technique of Laplace transforms, which will allow us to obtain the

solution in different forms, including the result (2.12).

Applying the Laplace transform to (2.6) we obtain
[
1 +

λ

sα

]
ũ(s) = f̃(s) =⇒ ũ(s) =

sα

sα + λ
f̃(s) . (2.13)

Now, let us proceed to obtain the inverse Laplace transform of (2.13) using the

following Laplace transform pair (see Appendix)

eα(t;λ) := Eα(−λ tα) ÷ sα−1

sα + λ
. (2.14)

As for the Abel equation of the first kind, we can choose two different ways to get

the inverse Laplace transforms from (2.13), according to the standard rules. Writing

(2.13) as

ũ(s) = s

[
sα−1

sα + λ
f̃(s)

]
, (2.13a)

we obtain

u(t) =
d

dt

∫ t

0

f(t− τ) eα(τ ;λ) dτ . (2.15a)

If we write (2.13) as

ũ(s) =
sα−1

sα + λ
[s f̃(s) − f(0+)] + f(0+)

sα−1

sα + λ
, (2.13b)

we obtain

u(t) =

∫ t

0

f ′(t− τ) eα(τ ;λ) dτ + f(0+) eα(t;λ) . (2.15b)

We also note that, eα(t;λ) being a function differentiable with respect to t with

eα(0+;λ) = Eα(0+) = 1 , there exists another possibility to re-write (2.13), namely

ũ(s) =

[
s
sα−1

sα + λ
− 1

]
f̃(s) + f̃(s) . (2.13c)

Then we obtain

u(t) =

∫ t

0

f(t− τ) e′α(τ ;λ) dτ + f(t) , (2.15c)

in agreement with (2.12). We see that the way b) is more restrictive than the ways a)

and c) since it requires that f(t) be differentiable with L-transformable derivative.
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2.3 Some applications of Abel integral equations

It is well known that Niels Henrik Abel was led to his famous equation by the

mechanical problem of the tautochrone, that is by the problem of determining the

shape of a curve in the vertical plane such that the time required for a particle to

slide down the curve to its lowest point is equal to a given function of its initial height

(which is considered as a variable in an interval [0, H]). After appropriate changes

of variables he obtained his famous integral equation of first kind with α = 1/2 . He

did, however, solve the general case 0 < α < 1 . See Tamarkin’s translation 1) of and

comments to Abel’s short paper 2) . As a special case Abel discussed the problem of

the isochrone, in which it is required that the time of sliding down is independent of

the initial height. Already in his earlier publication 3) he recognized the solution as

derivative of non-integer order.

We point out that integral equations of Abel type, including the simplest (2.1) and

(2.6), have found so many applications in diverse fields that it is almost impossible

to provide an exhaustive list of them.

Abel integral equations occur in many situations where physical measurements

are to be evaluated. In many of these the independent variable is the radius of a

circle or a sphere and only after a change of variables the integral operator has the

form Jα , usually with α = 1/2 , and the equation is of first kind. Applications are,

e.g. , in evaluation of spectroscopic measurements of cylindrical gas discharges, the

study of the solar or a planetary atmosphere, the investigation of star densities in

a globular cluster, the inversion of travel times of seismic waves for determination

of terrestrial sub-surface structure, spherical stereology. Descriptions and analysis of

several problems of this kind can be found in the books by Gorenflo and Vessella [21]

and by Craig and Brown [31], see also [32]. Equations of first and of second kind,

depending on the arrangement of the measurements, arise in spherical stereology.

See [33] where an analysis of the basic problems and many references to previous

literature are given.

1) Abel, N. H.: Solution of a mechanical problem. Translated from the German. In: D. E. Smith,
editor: A Source Book in Mathematics, pp. 656-662. Dover Publications, New York, 1959.

2) Abel, N. H.: Aufloesung einer mechanischen Aufgabe. Journal für die reine und angewandte
Mathematik (Crelle), Vol. I (1826), pp. 153-157.

3) Abel, N. H.: Solution de quelques problèmes à l’aide d’intégrales définies. Translated from the
Norwegian original, published in Magazin for Naturvidenskaberne. Aargang 1, Bind 2, Christiana
1823. French Translation in Oeuvres Complètes, Vol I, pp. 11-18. Nouvelle èdition par L. Sylow
et S. Lie, 1881.
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Another field in which Abel integral equations or integral equations with more

general weakly singular kernels are important is that of inverse boundary value prob-

lems in partial differential equations, in particular parabolic ones in which naturally

the independent variable has the meaning of time. We are going to describe in detail

the occurrence of Abel integral equations of first and of second kind in the problem

of heating (or cooling) of a semi-infinite rod by influx (or efflux) of heat across the

boundary into (or from) its interior. Consider the equation of heat flow

ut − uxx = 0 , u = u(x, t) , (2.16)

in the semi-infinite intervals 0 < x < ∞ and 0 < t < ∞ of space and time, re-

spectively. In this dimensionless equation u = u(x, t) means temperature. Assume

vanishing initial temperature, i.e. u(x, 0) = 0 for 0 < x <∞ and given influx across

the boundary x = 0 from x < 0 to x > 0 ,

−ux(0, t) = p(t) . (2.17)

Then, under appropriate regularity conditions, u(x, t) is given by the formula, see

e.g. [34],

u(x, t) =
1√
π

∫ t

0

p(τ)√
t− τ

e−x
2/[4(t− τ)] dτ , x > 0 , t > 0 . (2.18)

We turn our special interest to the interior boundary temperature φ(t) := u(0+, t) ,

t > 0 , which by (2.18) is represented as

1√
π

∫ t

0

p(τ)√
t− τ

dτ = J1/2 p(t) = φ(t) , t > 0 . (2.19)

We recognize (2.19) as an Abel integral equation of first kind for determination of an

unknown influx p(t) if the interior boundary temperature φ(t) is given by measure-

ments, or intended to be achieved by controlling the influx. Its solution is given by

formula (1.13) with m = 1 , α = 1/2 , as

p(t) = D1/2 φ(t) =
1√
π

d

dt

∫ t

0

φ(τ)√
t− τ

dτ . (2.20)

It may be illuminating to consider the following special cases,




(i) φ(t) = t =⇒ p(t) =
1

2

√
π t ,

(ii) φ(t) = 1 =⇒ p(t) =
1√
π t

,
(2.21)

where we have used formula (1.15). So, for linear increase of interior boundary

temperature the required influx is continuous and increasing from 0 towards ∞ (with

unbounded derivative at t = 0+), whereas for instantaneous jump-like increase from

0 to 1 the required influx decreases from ∞ at t = 0+ to 0 as t→ ∞ .
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We now modify our problem to obtain an Abel integral equation of second kind.

Assume that the rod x > 0 is bordered at x = 0 by a bath of liquid in x < 0 with

controlled exterior boundary temperature u(0−, t) := ψ(t) .

Assuming Newton’s radiation law we have an influx of heat from 0− to 0+ pro-

portional to the difference of exterior and interior temperature,

p(t) = λ [ψ(t) − φ(t)] , λ > 0 . (2.22)

Inserting (2.22) into (2.19) we obtain

φ(t) =
λ√
π

∫ t

0

ψ(τ) − φ(τ)√
t− τ

dτ ,

namely, in operator notation,
(
1 + λJ1/2

)
φ(t) = λJ1/2 ψ(t) . (2.23)

If we now assume the exterior boundary temperature ψ(t) as given and the evolution

in time of the interior boundary temperature φ(t) as unknown, then (2.23) is an Abel

integral equation of second kind for determination of φ(t) .

With α = 1/2 the equation (2.23) is of the form (2.7), and by (2.8) its solution is

φ(t) = λ
(
1 + λJ1/2

)−1

J1/2 ψ(t) = −
∞∑

m=0

(−λ)m+1 J (m+1)/2 ψ(t) . (2.24)

Let us investigate the very special case of constant exterior boundary temperature

ψ(t) = 1 . (2.25)

Then, by (1.4) with γ = 0 ,

J (m+1)/2 ψ(t) =
t(m+1)/2

Γ [(m+ 1)/2 + 1]
,

hence

φ(t) = −
∞∑

m=0

(−λ)m+1 t(m+1)/2

Γ [(m+ 1)/2 + 1]
= 1 −

∞∑

n=0

(−λ)n tn/2

Γ (n/2 + 1)
,

so that

φ(t) = 1 − E1/2

(
−λt1/2

)
= 1 − e1/2(t;λ) . (2.26)

Observe that φ(t) is creep function, increasing strictly monotonically from 0 towards

1 as t runs from 0 to ∞ .

For more or less distinct treatments of this problem of ”Newtonian heating” the

reader may consult [21], and [35-37]. In [37] a formulation in terms of fractional dif-

ferential equations is derived and, furthermore, the analogous problem of ”Newtonian

cooling” is discussed.



R. Gorenflo and F. Mainardi 241

3. FRACTIONAL DIFFERENTIAL EQUATIONS: 1-st PART

We now analyse the most simple differential equations of fractional order. For this

purpose, following our recent works [37-42], we choose the examples which, by means

of fractional derivatives, generalize the well-known ordinary differential equations

related to relaxation and oscillation phenomena. In this section we treat the simplest

types, which we refer to as the simple fractional relaxation and oscillation equations.

In the next section we shall consider the types, somewhat more cumbersome, which

we refer to as the composite fractional relaxation and oscillation equations.

3.1 The simple fractional relaxation and oscillation equations

The classical phenomena of relaxation and oscillations in their simplest form are

known to be governed by linear ordinary differential equations, of order one and two

respectively, that hereafter we recall with the corresponding solutions. Let us denote

by u = u(t) the field variable and by q(t) a given continuous function, with t ≥ 0 .

The relaxation differential equation reads

u′(t) = −u(t) + q(t) , (3.1)

whose solution, under the initial condition u(0+) = c0 , is

u(t) = c0 e−t +

∫ t

0

q(t− τ) e−τ dτ . (3.2)

The oscillation differential equation reads

u′′(t) = −u(t) + q(t) , (3.3)

whose solution, under the initial conditions u(0+) = c0 and u′(0+) = c1 , is

u(t) = c0 cos t+ c1 sin t+

∫ t

0

q(t− τ) sin τ dτ . (3.4)

From the point of view of the fractional calculus a natural generalization of equa-

tions (3.1) and (3.3) is obtained by replacing the ordinary derivative with a fractional

one of order α . In order to preserve the type of initial conditions required in the clas-

sical phenomena, we agree to replace the first and second derivative in (3.1) and (3.3)

with a Caputo fractional derivative of order α with 0 < α < 1 and 1 < α < 2 , re-

spectively. We agree to refer to the corresponding equations as the simple fractional

relaxation equation and the simple fractional oscillation equation.
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Generally speaking, we consider the following differential equation of fractional

order α > 0 ,

Dα
∗ u(t) = Dα

(
u(t) −

m−1∑

k=0

tk

k!
u(k)(0+)

)
= −u(t) + q(t) , t > 0 . (3.5)

Here m is a positive integer uniquely defined by m− 1 < α ≤ m, which provides the

number of the prescribed initial values u(k)(0+) = ck , k = 0, 1, 2, . . . , m−1 . Implicit

in the form of (3.5) is our desire to obtain solutions u(t) for which the u(k)(t) are

continuous for t ≥ 0, k = 0, 1, . . . , m − 1. In particular, the cases of fractional

relaxation and fractional oscillation are obtained for m = 1 and m = 2 , respectively

We note that when α is the integer m the equation (3.5) reduces to an ordinary

differential equation whose solution can be expressed in terms of m linearly inde-

pendent solutions of the homogeneous equation and of one particular solution of the

inhomogeneous equation. We summarize the well-known result as follows

u(t) =

m−1∑

k=0

ckuk(t) +

∫ t

0

q(t− τ) uδ(τ) dτ . (3.6)

uk(t) = Jk u0(t) , u
(h)
k (0+) = δk h , h, k = 0, 1, . . . , m− 1 , (3.7)

uδ(t) = −u′0(t) . (3.8)

Thus, the m functions uk(t) represent the fundamental solutions of the differential

equation of order m, namely those linearly independent solutions of the homoge-

neous equation which satisfy the initial conditions in (3.7). The function uδ(t) ,

with which the free term q(t) appears convoluted, represents the so called impulse-

response solution, namely the particular solution of the inhomogeneous equation with

all ck ≡ 0 , k = 0, 1, . . . , m − 1 , and with q(t) = δ(t) . In the cases of ordinary re-

laxation and oscillation we recognize that u0(t) = e−t = uδ(t) and u0(t) = cos t ,

u1(t) = J u0(t) = sin t = cos (t− π/2) = uδ(t) , respectively.

Remark 1 : The more general equation

Dα

(
u(t) −

m−1∑

k=0

tk

k!
u(k)(0+)

)
= −ρα u(t) + q(t) , ρ > 0 , t > 0 , (3.5′)

can be reduced to (3.5) by a change of scale t→ t/ρ . We prefer, for ease of notation,

to discuss the ”dimensionless” form (3.5).

Let us now solve (3.5) by the method of Laplace transforms. For this purpose

we can use directly the Caputo formula (1.30) or, alternatively, reduce (3.5) with

the prescribed initial conditions as an equivalent (fractional) integral equation and

then treat the integral equation by the Laplace transform method. Here we prefer

to follow the second way. Then, applying the operator Jα to both sides of (3.5) we

obtain
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u(t) =
m−1∑

k=0

ck
tk

k!
− Jα u(t) + Jα q(t) . (3.9)

The application of the Laplace transform yields

ũ(s) =
m−1∑

k=0

ck
sk+1

− 1

sα
ũ(s) +

1

sα
q̃(s) ,

hence

ũ(s) =
m−1∑

k=0

ck
sα−k−1

sα + 1
+

1

sα + 1
q̃(s) . (3.10)

Introducing the Mittag-Leffler type functions

eα(t) ≡ eα(t; 1) := Eα(−tα) ÷ sα−1

sα + 1
, (3.11)

uk(t) := Jkeα(t) ÷ sα−k−1

sα + 1
, k = 0, 1, . . . , m− 1 , (3.12)

we find, from inversion of the Laplace transforms in (3.10),

u(t) =

m−1∑

k=0

ck uk(t) −
∫ t

0

q(t− τ) u′0(τ) dτ . (3.13)

For finding the last term in the R.H.S. of (3.13), we have used the well-known rule

for the Laplace transform of the derivative noting that u0(0
+) = eα(0+) = 1 , and

1

sα + 1
= −

(
s
sα−1

sα + 1
− 1

)
÷ −u′0(t) = −e′α(t) . (3.14)

The formula (3.13) encompasses the solutions (3.2) and (3.4) found for α = 1 , 2 ,

respectively.

When α is not integer, namely for m−1 < α < m , we note that m−1 represents

the integer part of α (usually denoted by [α]) and m the number of initial conditions

necessary and sufficient to ensure the uniqueness of the solution u(t). Thus the m

functions uk(t) = Jkeα(t) with k = 0, 1, . . . , m−1 represent those particular solutions

of the homogeneous equation which satisfy the initial conditions

u
(h)
k (0+) = δk h , h, k = 0, 1, . . . , m− 1 , (3.15)

and therefore they represent the fundamental solutions of the fractional equation

(3.5), in analogy with the case α = m. Furthermore, the function uδ(t) = −e′α(t)

represents the impulse-response solution. Hereafter, we are going to compute and

exhibit the fundamental solutions and the impulse-response solution for the cases (a)

0 < α < 1 and (b) 1 < α < 2 , pointing out the comparison with the corresponding

solutions obtained when α = 1 and α = 2 .
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Remark 2 : The reader is invited to verify that the solution (3.13) has continuous

derivatives u(k)(t) for k = 0, 1, 2, . . . , m − 1 , which fulfill the m initial conditions

u(k)(0+) = ck . In fact, looking back at (3.9), one must recognize the smoothing

power of the operator Jα . However, the so called impulse-response solution of our

equation (3.5), uδ(t) , is expected to be not so regular like the ordinary solution (3.13).

In fact, from (3.10) and (3.13-14), one obtains

uδ(t) = −u′0(t) ÷
1

sα + 1
, (3.16)

and therefore, using the limiting theorem for Laplace transforms, one can recognize

that, being m− 1 < α < m ,

u
(h)
δ (0+) = 0 , h = 0, 1, . . . , m− 2 ; u

(m−1)
δ (0+) = ∞ . (3.17)

We now prefer to derive the relevant properties of the basic functions eα(t) directly

from their representation as a Laplace inverse integral

eα(t) =
1

2πi

∫

Br

e st
sα−1

sα + 1
ds , (3.18)

in detail for 0 < α ≤ 2 , without detouring on the general theory of Mittag-Leffler

functions in the complex plane. In (3.18) Br denotes the Bromwich path, i.e. a line

Re {s} = σ with a value σ ≥ 1 , and Im {s} running from −∞ to +∞ .

For transparency reasons, we separately discuss the cases

(a) 0 < α < 1 and (b) 1 < α < 2 ,

recalling that in the limiting cases α = 1 , 2 , we know eα(t) as elementary function,

namely e1(t) = e−t and e2(t) = cos t . For α not integer the power function sα is

uniquely defined as sα = |s|α ei arg s , with −π < arg s < π , that is in the complex

s-plane cut along the negative real axis.

The essential step consists in decomposing eα(t) into two parts according to

eα(t) = fα(t) + gα(t) , as indicated below. In case (a) the function fα(t) , in case

(b) the function −fα(t) is completely monotone; in both cases fα(t) tends to zero

as t tends to infinity, from above in case (a), from below in case (b). The other

part, gα(t) , is identically vanishing in case (a), but of oscillatory character with

exponentially decreasing amplitude in case (b).

In order to obtain the desired decomposition of eα we bend the Bromwich path

of integration Br into the equivalent Hankel path Ha(1+), a loop which starts from

−∞ along the lower side of the negative real axis, encircles the circular disc |s| = 1

in the positive sense and ends at −∞ along the upper side of the negative real axis.
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One obtains

eα(t) = fα(t) + gα(t) , t ≥ 0 , (3.19)

with

fα(t) :=
1

2πi

∫

Ha(ǫ)

e st
sα−1

sα + 1
ds , (3.20)

where now the Hankel path Ha(ǫ) denotes a loop constituted by a small circle |s| = ǫ

with ǫ→ 0 and by the two borders of the cut negative real axis, and

gα(t) :=
∑

h

es
′

h t Res

[
sα−1

sα + 1

]

s′

h

=
1

α

∑

h

es
′

h t , (3.21)

where s′h are the relevant poles of sα−1/(sα + 1). In fact the poles turn out to be

sh = exp [i(2h+ 1)π/α] with unitary modulus; they are all simple but relevant are

only those situated in the main Riemann sheet, i.e. the poles s′h with argument such

that −π < arg s′h < π .

If 0 < α < 1 , there are no such poles, since for all integers h we have | arg sh| =

|2h+ 1| π/α > π ; as a consequence,

gα(t) ≡ 0 , hence eα(t) = fα(t) , if 0 < α < 1 . (3.22)

If 1 < α < 2 , then there exist precisely two relevant poles, namely s′0 = exp(iπ/α)

and s′−1 = exp(−iπ/α) = s0
′ , which are located in the left half plane. Then one

obtains

gα(t) =
2

α
et cos (π/α) cos

[
t sin

(π
α

)]
, if 1 < α < 2 . (3.23)

We note that this function exhibits oscillations with circular frequency ω(α) =

sin (π/α) and with an exponentially decaying amplitude with rate λ(α) = | cos (π/α)| .
Remark 3 : One easily recognizes that (3.23) is valid also for 2 ≤ α < 3 . In the

classical case α = 2 the two poles are purely imaginary (coinciding with ±i) so that

we recover the sinusoidal behaviour with unitary frequency. In the case 2 < α < 3 ,

however, the two poles are located in the right half plane, so providing amplified

oscillations. This instability, which is common to the case α = 3 , is the reason why

we limit ourselves to consider α in the range 0 < α ≤ 2 .

It is now an exercise in complex analysis to show that the contribution from the

Hankel path Ha(ǫ) as ǫ→ 0 is provided by

fα(t) :=

∫ ∞

0

e−rt Kα(r) dr , (3.24)

with

Kα(r) = − 1

π
Im

{
sα−1

sα + 1

∣∣∣∣
s=r eiπ

}
=

1

π

rα−1 sin (απ)

r2α + 2 rα cos (απ) + 1
. (3.25)
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This function Kα(r) vanishes identically if α is an integer, it is positive for all r

if 0 < α < 1 , negative for all r if 1 < α < 2 . In fact in (3.25) the denominator is,

for α not integer, always positive being > (rα − 1)2 ≥ 0 . Hence fα(t) has the afore-

mentioned monotonicity properties, decreasing towards zero in case (a), increasing

towards zero in case (b). We also note that, in order to satisfy the initial condition

eα(0+) = 1 , we find
∫∞

0
Kα(r) dr = 1 if 0 < α < 1 ,

∫∞

0
Kα(r) dr = 1 − 2/α if

1 < α < 2 . In Fig. 1 we show the plots of the spectral functions Kα(r) for some

values of α in the intervals (a) 0 < α < 1 , (b) 1 < α < 2 .

0 0.5 1 1.5 2

0.5

1

 Kα(r)

 α=0.25

 α=0.50

 α=0.75

 α=0.90

 r

Fig. 1a – Plots of the basic spectral function Kα(r) for 0 < α < 1

0 0.5 1 1.5 2

0.5

 −Kα(r)
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 α=1.75

 α=1.90
 r

Fig. 1b – Plots of the basic spectral function −Kα(r) for 1 < α < 2
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In addition to the basic fundamental solutions, u0(t) = eα(t) we need to compute

the impulse-response solutions uδ(t) = −D1 eα(t) for cases (a) and (b) and, only in

case (b), the second fundamental solution u1(t) = J1 eα(t) . For this purpose we note

that in general it turns out that

Jk fα(t) =

∫ ∞

0

e−rt Kα,k(r) dr , (3.26)

with

Kα,k(r) := (−1)k r−k Kα(r) =
(−1)k

π

rα−1−k sin (απ)

r2α + 2 rα cos (απ) + 1
, (3.27)

where Kα(r) = Kα,0(r) , and

Jkgα(t) =
2

α
et cos (π/α) cos

[
t sin

(π
α

)
− k

π

α

]
. (3.27)

This can be done in direct analogy to the computation of the functions eα(t), the

Laplace transform of Jkeα(t) being given by (3.12). For the impulse-response solution

we note that the effect of the differential operatorD1 is the same as that of the virtual

operator J−1 .

In conclusion we can resume the solutions for the fractional relaxation and oscil-

lation equations as follows:

(a) 0 < α < 1 ,

u(t) = c0 u0(t) +

∫ t

0

q(t− τ) uδ(τ) dτ , (3.28a)

where 



u0(t) =

∫ ∞

0

e−rt Kα,0(r) dr ,

uδ(t) = −
∫ ∞

0

e−rt Kα,−1(r) dr ,

(3.29a)

with u0(0
+) = 1 , uδ(0

+) = ∞ ;

(b) 1 < α < 2 ,

u(t) = c0 u0(t) + c1 u1(t) +

∫ t

0

q(t− τ) uδ(τ) dτ , (3.28b)

where



u0(t) =

∫ ∞

0

e−rt Kα,0(r) dr+
2

α
et cos (π/α) cos

[
t sin

(π
α

)]
,

u1(t) =

∫ ∞

0

e−rt Kα,1(r) dr+
2

α
et cos (π/α) cos

[
t sin

(π
α

)
− π

α

]
,

uδ(t) = −
∫ ∞

0

e−rt Kα,−1(r) dr−
2

α
et cos (π/α) cos

[
t sin

(π
α

)
+
π

α

]
,

(3.29b)

with u0(0
+) = 1 , u′0(0

+) = 0 , u1(0
+) = 0 , u′1(0

+) = 1 , uδ(0
+) = 0 , u′δ(0

+) = +∞ .
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Fig. 2a – Plots of the basic fundamental solution u0(t) = eα(t) for 0 < α ≤ 1
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Fig. 2b – Plots of the basic fundamental solution u0(t) = eα(t) for 1 < α ≤ 2 :



R. Gorenflo and F. Mainardi 249

In Fig. 2 we quote the plots of the basic fundamental solution for the following

cases : (a) α = 0.25 , 0.50 , 0.75 , 1 , and (b) α = 1.25 , 1.50 , 1.75 , 2 , obtained

from the first formula in (3.29a) and (3.29b), respectively. We have verified that

our present results confirm those obtained by Blank [43] by a numerical treatment

and those obtained by Mainardi [39] by an analytical treatment, valid when α is a

rational number, see §A2 of the Appendix. Of particular interest is the case α = 1/2

where we recover a well-known formula of the Laplace transform theory, see (A.34),

e1/2(t) := E1/2(−
√
t) = e t erfc(

√
t) ÷ 1

s1/2 (s1/2 + 1)
, (3.30)

where erfc denotes the complementary error function.

We now desire to point out that in both the cases (a) and (b) (in which α is just not

integer) i.e. for fractional relaxation and fractional oscillation, all the fundamental

and impulse-response solutions exhibit an algebraic decay as t → ∞ , as discussed

below. Let us start with the asymptotic behaviour of u0(t) . To this purpose we first

derive an asymptotic series for the function fα(t), valid for t→ ∞ . Using the identity

1

sα + 1
= 1 − sα + s2α − s3α + . . .+ (−1)N−1 s(N−1)α + (−1)N sNα

sα + 1
,

in formula (3.20) and the Hankel representation of the reciprocal Gamma function,

we (formally) obtain the asymptotic expansion (for α non integer)

fα(t) =
N∑

n=1

(−1)n−1 t−nα

Γ(1 − nα)
+O

(
t−(N+1)α

)
, as t→ ∞ . (3.31)

The validity of this asymptotic expansion can be established rigorously using the

(generalized) Watson lemma, see [44]. We also can start from the spectral represen-

tation (3.24-25) and expand the spectral function for small r . Then the (ordinary)

Watson lemma yields (3.31). We note that this asymptotic expansion coincides with

that for u0(t) = eα(t), having assumed 0 < α < 2 (α 6= 1). In fact the contribution of

gα(t) is identically zero if 0 < α < 1 and exponentially small as t→ ∞ if 1 < α < 2 .

The asymptotic expansions of the solutions u1(t) and uδ(t) are obtained from

(3.31) integrating or differentiating term by term with respect to t . In particular,

taking the leading term in (3.31), we obtain the asymptotic representations

u0(t) ∼
t−α

Γ(1 − α)
, u1(t) ∼

t1−α

Γ(2 − α)
, uδ(t) ∼ − t−α−1

Γ(−α)
, as t→ ∞ , (3.32)

that point out the algebraic decay of the fundamental and impulse-response solutions.

In Fig. 3 we show some plots of the basic fundamental solution u0(t) = eα(t)

for α = 1.25 , 1.50 , 1.75 . Here the algebraic decay of the fractional oscillation can

be recognized and compared with the two contributions provided by fα (monotonic

behaviour ) and gα(t) (exponentially damped oscillation).
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Fig. 3a – Decay of the basic fundamental solution u0(t) = eα(t) for α = 1.25
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3.2 The zeros of the solutions of the fractional oscillation equation

Now we find it interesting to carry out some investigations about the zeros of the

basic fundamental solution u0(t) = eα(t) in the case (b) of fractional oscillations.

For the second fundamental solution and the impulse-response solution the analysis

of the zeros can be easily carried out analogously.

Recalling the first equation in (3.29b), the required zeros of eα(t) are the solutions

of the equation

eα(t) = fα(t) +
2

α
e t cos (π/α) cos

[
t sin

(π
α

)]
= 0 . (3.33)

We first note that the function eα(t) exhibits an odd number of zeros, in that

eα(0) = 1 , and, for sufficiently large t, eα(t) turns out to be permanently negative,

as shown in (3.32) by the sign of Γ(1−α) . The smallest zero lies in the first positivity

interval of cos [t sin (π/α)] , hence in the interval 0 < t < π/[2 sin (π/α)] ; all other

zeros can only lie in the succeeding positivity intervals of cos [t sin (π/α)] , in each of

these two zeros are present as long as

2

α
e t cos (π/α) ≥ |fα(t)| . (3.34)

When t is sufficiently large the zeros are expected to be found approximately from

the equation
2

α
e t cos (π/α) ≈ t−α

|Γ(1 − α)| , (3.35)

obtained from (3.33) by ignoring the oscillation factor of gα(t) [see (3.23)] and taking

the first term in the asymptotic expansion of fα(t) [see (3.31-32)]. As we have shown

in [40], such approximate equation turns out to be useful when α→ 1+ and α→ 2− .

For α → 1+ , only one zero is present, which is expected to be very far from the

origin in view of the large period of the function cos [t sin (π/α)] . In fact, since there

is no zero for α = 1, and by increasing α more and more zeros arise, we are sure that

only one zero exists for α sufficiently close to 1. Putting α = 1 + ǫ the asymptotic

position T∗ of this zero can be found from the relation (3.35) in the limit ǫ → 0+ .

Assuming in this limit the first-order approximation, we get

T∗ ∼ log

(
2

ǫ

)
, (3.36)

which shows that T∗ tends to infinity slower than 1/ǫ , as ǫ→ 0 . For details see [40].
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For α→ 2−, there is an increasing number of zeros up to infinity since e2(t) = cos t

has infinitely many zeros [in t∗n = (n+ 1/2)π , n = 0, 1, . . .]. Putting now α = 2 − δ

the asymptotic position T∗ for the largest zero can be found again from (3.35) in the

limit δ → 0+ . Assuming in this limit the first-order approximation, we get

T∗ ∼ 12

π δ
log

(
1

δ

)
. (3.37)

For details see [40]. Now, for δ → 0+ the length of the positivity intervals of gα(t)

tends to π and, as long as t ≤ T∗ , there are two zeros in each positivity interval.

Hence, in the limit δ → 0+ , there is in average one zero per interval of length π , so

we expect that N∗ ∼ T∗/π .

Remark 4 : For the above considerations we got inspiration from an interesting paper

by Wiman [45] who at the beginning of our century, after having treated the Mittag-

Leffler function in the complex plane, considered the position of the zeros of the

function on the negative real axis (without providing any detail). Our expressions

of T∗ are in disagreement with those by Wiman for numerical factors; however, the

results of our numerical studies carried out in [40] confirm and illustrate the validity

of our analysis.

Here, we find it interesting to analyse the phenomenon of the transition of the

(odd) number of zeros as 1.4 ≤ α ≤ 1.8 . For this purpose, in Table I we report the

intervals of amplitude ∆α = 0.01 where these transitions occur, and the location

T∗ (evaluated within a relative error of 0.1% ) of the largest zeros found at the two

extreme values of the above intervals. We recognize that the transition from 1 to 3

zeros occurs as 1.40 ≤ α ≤ 1.41, that one from 3 to 5 zeros occurs as 1.56 ≤ α ≤ 1.57,

and so on. The last transition in the considered range of α is from 15 to 17 zeros,

and it just occurs as 1.79 ≤ α ≤ 1.80 .

N∗ α T∗

1 ÷ 3 1.40 ÷ 1.41 1.730 ÷ 5.726

3 ÷ 5 1.56 ÷ 1.57 8.366 ÷ 13.48

5 ÷ 7 1.64 ÷ 1.65 14.61 ÷ 20.00

7 ÷ 9 1.69 ÷ 1.70 20.80 ÷ 26.33

9 ÷ 11 1.72 ÷ 1.73 27.03 ÷ 32.83

11 ÷ 13 1.75 ÷ 1.76 33.11 ÷ 38.81

13 ÷ 15 1.78 ÷ 1.79 39.49 ÷ 45.51

15 ÷ 17 1.79 ÷ 1.80 45.51 ÷ 51.46

Table I
N∗ = number of zeros, α = fractional order, T∗ location of the largest zero.
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4. FRACTIONAL DIFFERENTIAL EQUATIONS: 2-nd PART

In this section we shall consider the following fractional differential equations for

t ≥ 0 , equipped with the necessary initial conditions,

du

dt
+ a

dαu

dtα
+ u(t) = q(t) , u(0+) = c0 , 0 < α < 1 , (4.1)

d2v

dt2
+ a

dαv

dtα
+ v(t) = q(t) , v(0+) = c0 , v′(0+) = c1 , 0 < α < 2 , (4.2)

where a is a positive constant. The unknown functions u(t) and v(t) (the field vari-

ables) are required to be sufficiently well behaved to be treated with their derivatives

u′(t) and v′(t) , v′′(t) by the technique of Laplace transform. The given function q(t)

is supposed to be continuous. In the above equations the fractional derivative of

order α is assumed to be provided by the operator Dα
∗ , the Caputo derivative, see

(1.17), in agreement with our choice followed in the previous section. Note that in

(4.2) we must distinguish the cases (a) 0 < α < 1 , (b) 1 < α < 2 and α = 1 .

The equations (4.1) and(4.2) will be referred to as the composite fractional relax-

ation equation and the composite fractional oscillation equation, respectively, to be

distinguished from the corresponding simple fractional equations treated in §3.

The fractional differential equation in (4.1) with α = 1/2 corresponds to the

Basset problem, a classical problem in fluid dynamics concerning the unsteady motion

of a particle accelerating in a viscous fluid under the action of the gravity, see [24].

The fractional differential equation in (4.2) with 0 < α < 2 models an oscillation

process with fractional damping term. It was formerly treated by Caputo [19], who

provided a preliminary analysis by the Laplace transform. The special cases α = 1/2

and α = 3/2 , but with the standard definition Dα for the fractional derivative, have

been discussed by Bagley [30]. Recently, Beyer and Kempfle [46] discussed (4.2) for

−∞ < t < +∞ to investigate the uniqueness and causality of the solutions. As they

let t running in all of IR , they used Fourier transforms and characterized the fractional

derivative Dα by its properties in frequency space, thereby requiring that for non-

integer α the principal branch of (iω)α should be taken. Under the global condition

that the solution is square summable, they showed that the system described by (4.2)

is causal iff a > 0 .

Also here we shall apply the method of Laplace transform to solve the frac-

tional differential equations and get some insight into their fundamental and impulse-

response solutions. However, in contrast with the previous section, we now find it

more convenient to apply directly the formula (1.30) for the Laplace transform of frac-

tional and integer derivatives, than reduce the equations with the prescribed initial

conditions as equivalent (fractional) integral equations to be treated by the Laplace

transform.
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4.1 The composite fractional relaxation equation

Let us apply the Laplace transform to the fractional relaxation equation (4.1).

Using the rule (1.30) we are led to the transformed algebraic equation

ũ(s) = c0
1 + a sα−1

w1(s)
+

q̃(s)

w1(s)
, 0 < α < 1 , (4.3)

where

w1(s) := s+ a sα + 1 , (4.4)

and a > 0 . Putting

u0(t) ÷ ũ0(s) :=
1 + a sα−1

w1(s)
, uδ(t) ÷ ũδ(s) :=

1

w1(s)
, (4.5)

and recognizing that

u0(0
+) = lim

s→∞
s ũ0(s) = 1 , ũδ(s) = − [s ũ0(s) − 1] , (4.6)

we can conclude that

u(t) = c0 u0(t) +

∫ t

0

q(t− τ) uδ(τ) dτ , uδ(t) = −u′0(t) . (4.7)

We thus recognize that u0(t) and uδ(t) are the fundamental solution and impulse-

response solution for the equation (4.1), respectively.

Let us first consider the problem to get u0(t) as the inverse Laplace transform

of ũ0(s) . We easily see that the function w1(s) has no zero in the main sheet of the

Riemann surface including its boundaries on the cut (simply show that Im {w1(s)}
does not vanish if s is not a real positive number), so that the inversion of the Laplace

transform ũ0(s) can be carried out by deforming the original Bromwich path into the

Hankel path Ha(ǫ) introduced in the previous section, i.e. into the loop constituted

by a small circle |s| = ǫ with ǫ → 0 and by the two borders of the cut negative real

axis. As a consequence we write

u0(t) =
1

2πi

∫

Ha(ǫ)

e st
1 + asα−1

s+ a sα + 1
ds . (4.8)

It is now an exercise in complex analysis to show that the contribution from the

Hankel path Ha(ǫ) as ǫ→ 0 is provided by

u0(t) =

∫ ∞

0

e−rt H(1)
α,0(r; a) dr , (4.9)
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with

H
(1)
α,0(r; a) = − 1

π
Im

{
1 + asα−1

w1(s)

∣∣∣∣
s=r eiπ

}

=
1

π

a rα−1 sin (απ)

(1 − r)2 + a2 r2α + 2 (1 − r) a rα cos (απ)
.

(4.10)

For a > 0 and 0 < α < 1 the function H
(1)
α,0(r; a) is positive for all r > 0 since it

has the sign of the numerator; in fact in (4.10) the denominator is strictly positive

being equal to |w1(s)|2 as s = r e±iπ . Hence, the fundamental solution u0(t) has the

peculiar property to be completely monotone, and H
(1)
α,0(r; a) is its spectral function.

Now the determination of uδ(t) = −u′0(t) is straightforward. We see that also the

impulse-response solution uδ(t) is completely monotone since it can be represented

by

uδ(t) =

∫ ∞

0

e−rt H(1)
α,−1(r; a) dr , (4.11)

with spectral function

H
(1)
α,−1(r; a) = rH

(1)
α,0(r; a) =

1

π

a rα sin (απ)

(1 − r)2 + a2 r2α + 2 (1 − r) a rα cos (απ)
. (4.12)

We recognize that both the solutions u0(t) and uδ(t) turn out to be strictly

decreasing from 1 towards 0 as t runs from 0 to ∞ . Their behaviour as t → 0+ and

t→ ∞ can be inspected by means of a proper asymptotic analysis.

The behaviour of the solutions as t→ 0+ can be determined from the behaviour

of their Laplace transforms as Re {s} → +∞ as well known from the theory of the

Laplace transform, see e.g. [25]. We obtain as Re {s} → +∞ ,

ũ0(s) = s−1 − s−2 +O
(
s−3+α

)
, ũδ(s) = s−1 − a s−(2−α) +O

(
s−2
)
, (4.13)

so that

u0(t) = 1 − t+O
(
t2−α

)
, uδ(t) = 1 − a

t1−α

Γ(2 − α)
+O (t) , as t→ 0+ . (4.14)

The spectral representations (4.9) and (4.11) are suitable to obtain the asymptotic

behaviour of u0(t) and uδ(t) as t → +∞ , by using the Watson lemma. In fact,

expanding the spectral functions for small r and taking the dominant term in the

corresponding asymptotic series, we obtain

u0(t) ∼ a
t−α

Γ(1 − α)
, uδ(t) ∼ −a t

−α−1

Γ(−α)
, as t→ ∞ . (4.15)

We note that the limiting case α = 1 can be easily treated extending the validity

of eqs (4.3-7) to α = 1 , as it is legitimate. In this case we obtain

u0(t) = e−t/(1 + a) , uδ(t) =
1

1 + a
e−t/(1 + a) , α = 1 . (4.16)

Of course, in the case a ≡ 0 we recover the standard solutions u0(t) = uδ(t) = e−t .
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We conclude this sub-section with some considerations on the solutions when the

order α is just a rational number. If we take α = p/q , where p, q ∈ IN are assumed

(for convenience) to be relatively prime, a factorization in (4.4) is possible by using

the procedure indicated by Miller and Ross [10]. In these cases the solutions can be

expressed in terms of a linear combination of q Mittag-Leffler functions of fractional

order 1/q, which, on their turn can be expressed in terms of incomplete gamma

functions, see (A.14) of the Appendix.

Here we shall illustrate the factorization in the simplest case α = 1/2 and provide

the solutions u0(t) and uδ(t) in terms of the functions eα(t;λ) (with α = 1/2),

introduced in the previous section. In this case, in view of the application to the

Basset problem, see [24], the equation (4.1) deserves a particular attention. For

α = 1/2 we can write

w1(s) = s+a s1/2+1 = (s1/2−λ+) (s1/2−λ−) , λ± = −a/2±(a2/4−1)1/2 . (4.17)

Here λ± denote the two roots (real or conjugate complex) of the second degree

polynomial with positive coefficients z2 + az + 1 , which, in particular, satisfy the

following binary relations

λ+ · λ− = 1 , λ+ + λ− = −a , λ+ − λ− = 2(a2/4 − 1)1/2 = (a2 − 4)1/2 . (4.18)

We recognize that we must treat separately the following two cases

i) 0 < a < 2 , or a > 2 , and ii) a = 2 ,

which correspond to two distinct roots (λ+ 6= λ−), or two coincident roots (λ+ ≡
λ− = −1), respectively. For this purpose, using the notation introduced in [24], we

write

M̃(s) :=
1 + a s−1/2

s+ a s1/2 + 1
=





i)
A−

s1/2 (s1/2 − λ+)
+

A+

s1/2(s1/2 − λ−)
,

ii)
1

(s1/2 + 1)2
+

2

s1/2(s1/2 + 1)2
,

(4.19)

and

Ñ(s) :=
1

s+ a s1/2 + 1
=





i)
A+

s1/2 (s1/2 − λ+)
+

A−

s1/2(s1/2 − λ−)
,

ii)
1

(s1/2 + 1)2
,

(4.20)

where

A± = ± λ±
λ+ − λ−

. (4.21)

Using (4.18) we note that

A+ +A− = 1 , A+ λ− + A− λ+ = 0 , A+ λ+ +A− λ− = − a . (4.22)
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Recalling the Laplace transform pairs (A.34), (A.36) and (A.37) in Appendix, we

obtain

u0(t) = M(t) :=

{
i) A−E1/2 (λ+

√
t) +A+E1/2 (λ−

√
t) ,

ii) (1 − 2t)E1/2 (−
√
t) + 2

√
t/π ,

(4.23)

and

uδ(t) = N(t) :=

{
i) A+E1/2(λ+

√
t) + A−E1/2(λ−

√
t) ,

ii) (1 + 2t)E1/2(−
√
t) − 2

√
t/π .

(4.24)

We thus recognize in (4.23-24) the presence of the functions e1/2(t;−λ±) =

E1/2(λ±
√
t) and e1/2(t) = e1/2(t; 1) = E1/2(−

√
t) .

In particular, the solution of the Basset problem can be easily obtained from (4.7)

with q(t) = q0 by using (4.23-24) and noting that
∫ t

0
N(τ) dτ = 1 −M(t) . Denoting

this solution by uB(t) we get

uB(t) = q0 − (q0 − c0)M(t) . (4.25)

When a ≡ 0, i.e. in the absence of term containing the fractional derivative (due to

the Basset force), we recover the classical Stokes solution, that we denote by uS(t) ,

uS(t) = q0 − (q0 − c0) e−t .

In the particular case q0 = c0 , we get the steady-state solution uB(t) = uS(t) ≡ q0 .

For vanishing initial condition c0 = 0 , we have the creep-like solutions

uB(t) = q0 [1 −M(t)] , uS(t) = q0

[
1 − e−t

]
,

that we compare in the normalized plots of Fig. 5 of [24]. In this case it is instructive

to compare the behaviours of the two solutions as t→ 0+ and t→ ∞ . Recalling the

general asymptotic expressions of u0(t) = M(t) in (4.14) and (4.15) with α = 1/2 ,

we recognize that

uB(t) = q0

[
t+O

(
t3/2

)]
, uS(t) = q0

[
t+O

(
t2
)]
, as t→ 0+ ,

and

uB(t) ∼ q0

[
1 − a/

√
π t
]
, uS(t) ∼ q0 [1 − EST ] , as t→ ∞ ,

where EST denotes exponentially small terms. In particular we note that the nor-

malized plot of uB(t)/q0 remains under that of uS(t)/q0 as t runs from 0 to ∞ .

The reader is invited to convince himself of the following fact. In the general case

0 < α < 1 the solution u(t) has the particular property of being equal to 1 for all

t ≥ 0 if q(t) has this property and u(0+) = 1 , whereas q(t) = 1 for all t ≥ 0 and

u(0+) = 0 implies that u(t) is a creep function tending to 1 as t→ ∞ .
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4.2 The composite fractional oscillation equation

Let us now apply the Laplace transform to the fractional oscillation equation

(4.2). Using the rule (1.30) we are led to the transformed algebraic equations

(a) ṽ(s) = c0
s+ a sα−1

w2(s)
+ c1

1

w2(s)
+

q̃(s)

w2(s)
, 0 < α < 1 , (4.26a)

or

(b) ṽ(s) = c0
s+ a sα−1

w2(s)
+ c1

1 + a sα−2

w2(s)
+

q̃(s)

w2(s)
, 1 < α < 2 , (4.26b)

where

w2(s) := s2 + a sα + 1 , (4.27)

and a > 0 . Putting

ṽ0(s) :=
s+ a sα−1

w2(s)
, 0 < α < 2 , (4.28)

we recognize that

v0(0
+) = lim

s→∞
s ṽ0(s) = 1 ,

1

w2(s)
= − [s ṽ0(s) − 1] ÷ −v′0(t) , (4.29)

and
1 + a sα−2

w2(s)
=
ṽ0(s)

s
÷
∫ t

0

v0(τ) dτ . (4.30)

Thus we can conclude that

(a) v(t) = c0 v0(t) − c1 v
′

0(t) −
∫ t

0

q(t− τ) v′0(τ) dτ , 0 < α < 1 , (4.31a)

or

(b) v(t) = c0 v0(t) + c1

∫ t

0

v0(τ) dτ −
∫ t

0

q(t− τ) v′0(τ) dτ , 1 < α < 2 . (4.31b)

In both of the above equations the term −v′0(t) represents the impulse-response

solution vδ(t) for the composite fractional oscillation equation (4.2), namely the

particular solution of the inhomogeneous equation with c0 = c1 = 0 and with q(t) =

δ(t) . For the fundamental solutions of (4.2) we recognize from eqs (4.31) that we have

two distinct couples of solutions according to the case (a) and (b) which read

(a) {v0(t) , v1 a(t) = −v′0(t)} , (b) {v0(t) , v1 b(t) =

∫ t

0

v0(τ) dτ} . (4.32)
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We first consider the particular case α = 1 for which the fundamental and impulse

response solutions are known in terms of elementary functions. This limiting case

can also be treated by extending the validity of eqs (4.26a) and (4.31a) to α = 1 , as

it is legitimate. From

ṽ0(s) =
s+ a

s2 + a s+ 1
=

s+ a/2

(s+ a/2)2 + (1 − a2/4)
− a/2

(s+ a/2)2 + (1 − a2/4)
, (4.33)

we obtain the basic fundamental solution

v0(t) =





e−at/2
[
cos(ωt) +

a

2ω
sin(ωt)

]
if 0 < a < 2 ,

e−t (1 − t) if a = 2 ,

e−at/2
[
cosh(χt) +

a

2χ
sinh(χt)

]
if a > 2 ,

(4.34)

where

ω =
√

1 − a2/4 , χ =
√
a2/4 − 1 . (4.35)

By a differentiation of (4.34) we easily obtain the second fundamental solution v1 a(t)

and the impulse-response solution vδ(t) since v1 a(t) = vδ(t) = −v′0(t) . We point out

that all the solutions exhibit an exponential decay as t→ ∞ .

Let us now consider the problem to get v0(t) as the inverse Laplace transform of

ṽ0(s) , as given by (4.26-27),

v0(t) =
1

2πi

∫

Br

e st
s+ a sα−1

w2(s)
ds , (4.36)

where Br denotes the usual Bromwich path. Using a result by Beyer and Kempfle

[46] we know that the function w2(s) (for a > 0 and 0 < α < 2 , α 6= 1 ) has exactly

two simple, conjugate complex zeros on the principal branch in the open left half-

plane, cut along the negative real axis, say s+ = ρ e+iγ and s− = ρ e−iγ with ρ > 0

and π/2 < γ < π . This enables us to repeat the considerations carried out for the

simple fractional oscillation equation to decompose the basic fundamental solution

v0(t) into two parts according to v0(t) = fα(t; a) + gα(t; a) . In fact, the evaluation

of the Bromwich integral (4.36) can be achieved by adding the contribution fα(t; a)

from the Hankel path Ha(ǫ) as ǫ→ 0 , to the residual contribution gα(t; a) from the

two poles s± .

As an exercise in complex analysis we obtain

fα(t; a) =

∫ ∞

0

e−rt H(2)
α,0(r; a) dr , (4.37)
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with spectral function

H
(2)
α,0(r; a) = − 1

π
Im

{
s+ asα−1

w2(s)

∣∣∣∣
s=r eiπ

}

=
1

π

a rα−1 sin (απ)

(r2 + 1)2 + a2 r2α + 2 (r2 + 1) a rα cos (απ)
.

(4.38)

Since in (4.38) the denominator is strictly positive being equal to |w2(s)|2 as s =

r e±iπ , the spectral function H
(2)
α,0(r; a) turns out to be positive for all r > 0 for

0 < α < 1 and negative for all r > 0 for 1 < α < 2 . Hence, in case (a) the function

fα(t) , in case (b) the function −fα(t) is completely monotone; in both cases fα(t)

tends to zero as t→ ∞ , from above in case (a), from below in case (b), according to

the asymptotic behaviour

fα(t; a) ∼ a
t−α

Γ(1 − α)
, as t→ ∞ , 0 < α < 1 , 1 < α < 2 , (4.39)

as derived by applying the Watson lemma in (4.37) and considering (4.38).

The other part, gα(t; a) , is obtained as

gα(t; a) = es+ t Res

[
s+ a sα−1

w2(s)

]

s+

+ conjugate complex

= 2 Re

{
s+ + a sα−1

+

2 s+ + aα sα−1
+

es+ t

}
.

(4.40)

Thus this term exhibits an oscillatory character with exponentially decreasing am-

plitude like exp (−ρ t | cos γ|) .
Then we recognize that the basic fundamental solution v0(t) exhibits a finite

number of zeros and that, for sufficiently large t , it turns out to be permanently

positive if 0 < α < 1 and permanently negative if 1 < α < 2 with an algebraic decay

provided by (4.39).

For the second fundamental solutions v1 a(t) , v1 b(t) and for the impulse-response

solution vδ(t) , the corresponding analysis is straightforward in view of their connec-

tion with v0(t), pointed out in (4.31-32). The algebraic decay of all the solutions as

t→ ∞ , for 0 < α < 1 and 1 < α < 2 , is henceforth resumed in the relations

v0(t) ∼ a
t−α

Γ(1 − α)
, v1 a(t) = vδ(t) ∼ −a t

−α−1

Γ(−α)
, v1 b(t) ∼ a

t1−α

Γ(2 − α)
. (4.41)

In conclusion, except in the particular case α = 1 , all the present solutions of

the composite fractional oscillation equation exhibit similar characteristics with the

corresponding solutions of the simple fractional oscillation equation, namely a finite

number of damped oscillations followed by a monotonic algebraic decay as t→ ∞ .
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5. CONCLUSIONS

Starting from the classical Riemann-Liouville definitions of the fractional integra-

tion operator and its left-inverse, the fractional differentiation operator, and using the

powerful tool of the Laplace transform method, we have described the basic analytical

theory of fractional integral and differential equations. For a numerical treatment we

refer to Gorenflo [23] and to the references there quoted.

For the fractional integral equations we have considered the basic examples pro-

vided by the linear Abel equations of first and second kind. For both the kinds we

have given the solution in different forms and discussed an interesting application to

inverse heat conduction problems.

Then we have analyzed in detail the scale of fractional ordinary differential equa-

tions (FODE), see (3.5), Dα
∗ u(t) + u(t) = q(t), t > 0 , 0 < α ≤ 2 , with a modified

fractional differentiation Dα
∗ , the Caputo fractional derivative, that takes account of

given initial values u(0+) if 0 < α < 1 , the case of fractional relaxation, u(0+) and

u′(0+) if 1 < α < 2 , the case of fractional oscillation.

We have investigated in depth the properties of the fundamental and the impulse-

response solutions. All these solutions can be explicitly written down in terms of

Mittag-Leffler functions. They tend to zero like powers t−β (with appropriate choices

of β), monotonically if 0 < α < 1 , but exhibiting finitely many oscillations around

zero if 1 < α < 2 (the more of these the nearer α is to the limiting value 2).

If 1 < α < 2 these equations are able to model processes intermediate between

exponential decay (α = 1) and pure sinusoidal oscillation (α = 2). We have found

these qualitative properties essentially by bending the Bromwich integration path of

the Laplace inversion formula into the Hankel path, thus for each of these functions

obtaining an integral representation as the Laplace transform of a function that

nowhere changes its sign, augmented if 1 < α < 2 by an oscillatory contribution

resulting from a pair of conjugate complex poles lying in the left half-plane.

By quite analogous methods we have studied the composite equations, see (4.1-2),

(D + aDα
∗ + 1) u(t) = q(t) , 0 < α < 1 , and (D2 + aDα

∗ + 1) v(t) = q(t) , 0 < α < 2 ,

with a > 0 , which model processes of relaxation and of oscillation, respectively. We

have obtained similar properties of the fundamental and impulse-response solutions

with respect to monotonicity and oscillatory behaviour.

Let us stress the fact that our adoption of the Caputo fractional derivative Dα
∗

with m − 1 < α ≤ m, m ∈ IN , and the consequent prescription of the initial values

in analogy with the ordinary differential equations of integer order m, stands in

contrast to the majority of the treatments of fractional differential equations, where

the standard fractional derivative Dα is used, see e.g. [5], [10]. As pointed in §1.3 the

adoption of Dα requires the prescription of certain fractional integrals as t→ 0+ .
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In our opinion, the different prescription of the the initial data points out the

major difference between the two definitions for the fractional derivative. The analogy

with the cases of integer order would induce one to adopt the Caputo derivative in

the treatment of differential equations of fractional order for physical applications. In

fact, in physical problems, the initial conditions are usually expressed in terms of a

given number of bounded values assumed by the field variable and its derivatives of

integer order, no matter if the governing evolution equation may be a generic integro-

differential equation and therefore, in particular, a fractional differential equation.

The liveliness of the field of fractional integral and differential equations, both in

applications and in pure theory, is underlined by several papers and some books that

have appeared recently. We would like to conclude the present lectures with brief

hints to recent investigations, which have not been quoted explicitly up to now since

not strictly related to our results, but have attracted our attention. Naturally, this

listing is far from exhaustive. The interested reader can find more on problems and

aspects in several papers recently published or in press in some conference volumes

and specialized magazines.

We first like to quote the most recent book by Rubin [14], who starting from

one-dimensional fractional calculus develops the theory of multidimensional weakly

singular integral equations of first kind, making heavy use of the Marchaud approach.

We thus recognize that all existing books on fractional calculus vary widely from each

other in their character concerning problems treated and methods applied. We quote

also the Ph.D. thesis by Michalski [47], who treats linear and nonlinear problems of

fractional calculus (in one and in several dimensions) in a very elegant way.

The importance of using fractional methods in physics for describing slow decay

processes and processes intermediate between relaxation and oscillation was stressed

by Nigmatullin [48] in 1984. Nonnenmacher and associates published a series of

papers (of which we quote [49-50]) discussing various physical aspects of fractional

relaxation. Fractional relaxation is overall a peculiarity of a class of viscoelastic bodies

which are extensively treated by Mainardi [24], to which we refer for details and addi-

tional bibliography. The fractional calculus finds important applications in different

areas of applied science including electrochemistry, see e.g. [51-54], electromagnetism,

see e.g. [55-56], radiation physics, see e.g. [57-59], and control theory, see e.g. [60-64].

Yet another field of applications of fractional calculus is that of fractional partial

differential equations (FPDE), including certain equations of fractional diffusion,

introduced to explain the phenomena of anomalous diffusion in complex or fractal

systems. We refer again to Mainardi [24] for a mathematical treatment of a rele-

vant FPDE, referred to as the time fractional diffusion-wave equation, with some

applications and related references.
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APPENDIX: THE MITTAG-LEFFLER TYPE FUNCTIONS

In this Appendix we shall consider the Mittag-Leffler function and some of the

related functions which are relevant for their connection with fractional calculus. It

is our purpose to provide a review of the main properties of these functions including

their Laplace transforms.

A.1 The Mittag-Leffler functions Eα(z) , Eα,β(z)

The Mittag-Leffler function Eα(z) with α > 0 is so named from the great Swedish

mathematician who introduced it at the beginning of this century in a sequence of

five notes, see [65-69]. The function is defined by the following series representation,

valid in the whole complex plane,

Eα(z) :=

∞∑

n=0

zn

Γ(αn+ 1)
, α > 0 , z ∈ C . (A.1)

It turns out that Eα(z) is an entire function of order ρ = 1/α and type 1 . This

property is still valid but with ρ = 1/Re{α} , if α ∈ C with positive real part, as

formerly noted by Mittag-Leffler himself in [68].

In the limit for α→ 0+ the analyticity in the whole complex plane is lost since

E0(z) :=

∞∑

n=0

zn =
1

1 − z
, |z| < 1 . (A.2)

The Mittag-Leffler function provides a simple generalization of the exponential

function because of the substitution of n! = Γ(n + 1) with (αn)! = Γ(αn + 1) .

Particular cases of (A.1), from which elementary functions are recovered, are

E2

(
+z2

)
= cosh z , E2

(
−z2

)
= cos z , z ∈ C , (A.3)

and

E1/2(±z1/2) = ez
[
1 + erf (±z1/2)

]
= ez erfc (∓z1/2) , z ∈ C , (A.4)

where erf (erfc) denotes the (complementary) error function defined as

erf (z) :=
2√
π

∫ z

0

e−u
2
du , erfc (z) := 1 − erf (z) , z ∈ C .

In (A.4) for z1/2 we mean the principal value of the square root of z in the complex

plane cut along the the negative real axis. With this choice ±z1/2 turns out to be

positive/negative for z ∈ IR+.

Since the identities in (A.3) are trivial, we present the proof only for (A.4). Avoid-

ing the inessential polidromy with the substitution ±z1/2 → z , we write

E1/2(z) =

∞∑

m=0

z2m

Γ(m+ 1)
+

∞∑

m=0

z2m+1

Γ(m+ 3/2)
= u(z) + v(z) . (A.5)
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Whereas the even part is easily recognized to be u(z) = exp(z2) , only after some

manipulations the odd part can be proved to be v(z) = exp(z2) erf(z) . To this end

we need to recall the following series representation for the error function, see e.g.

the handbook of the Bateman Project [70] or that by Abramowitz and Stegun [71],

erf(z) =
2√
π

e−z
2

∞∑

m=0

2m

(2m+ 1)!!
z2m+ 1 , z ∈ C

and note that (2m + 1)!! := 1 · 3 · 5 . . . · (2m + 1) = 2m+1 Γ(m + 3/2)/
√
π . An

alternative proof is obtained by recognizing, after a term-wise differentiation of the

series representation in (A.5), that v(z) satisfies the differential equation in C ,

v′(z) = 2

[
1√
π

+ z v(z)

]
, v(0) = 0 ,

whose solution can immediately be checked to be

v(z) =
2√
π

ez
2
∫ z

0

e−u
2
du = ez

2
erf(z) .

A straightforward generalization of the Mittag-Leffler function, originally due to

Agarwal in 1953 based on a note by Humbert, see [72-74], is obtained by replacing the

additive constant 1 in the argument of the Gamma function in (A.1) by an arbitrary

complex parameter β . Later, when we shall deal with Laplace transform pairs, the

parameter β is required to be positive as α . For the new function we agree to use

the following notation

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn+ β)
, α > 0 , β ∈ C , z ∈ C . (A.6)

Particular simple cases are

E1,2(z) =
ez − 1

z
, E2,2(z) =

sinh (z1/2)

z1/2
. (A.7)

We note that Eα,β(z) is still an entire function of order ρ = 1/α and type 1 .

In these lectures we have preferred to use only the original Mittag-Leffler function

(A.1) since our problems depend on only a single parameter α, the order of fractional

integration of differentiation. However, for completeness, we list hereafter the general

functional relations for the generalized Mittag-Leffler function (A.6), which involve

both the two parameters α , β , see [18] and [70],

Eα,β(z) =
1

Γ(β)
+ z Eα,β+α(z) , (A.8)

Eα,β(z) = βEα,β+1(z) + αz
d

dz
Eα,β+1(z) , (A.9)

(
d

dz

)p [
zβ−1Eα,β(zα)

]
= zβ−p−1Eα,β−p(z

α) , p ∈ IN . (A.10)



R. Gorenflo and F. Mainardi 265

A2. The Mittag-Leffler functions of rational order

Let us now consider the Mittag-Leffler functions of rational order α = p/q with

p , q ∈ IN relatively prime. The relevant functional relations, that we quote from

[18], [70], turn out to be (
d

dz

)p

Ep (zp) = Ep (zp) , (A.11)

dp

dzp
Ep/q

(
zp/q

)
= Ep/q

(
zp/q

)
+

q−1∑

k=1

z−k p/q

Γ(1 − k p/q)
, q = 2, 3, . . . , (A.12)

Ep/q (z) =
1

p

p−1∑

h=0

E1/q

(
z1/pei2πh/p

)
, (A.13)

and

E1/q

(
z1/q

)
= ez

[
1 +

q−1∑

k=1

γ(1 − k/q, z)

Γ(1 − k/q)

]
, q = 2, 3, . . . , (A.14)

where γ(a, z) :=
∫ z

0
e−u u a−1 du denotes the incomplete gamma function. Let us now

sketch the proof for the above functional relations.

One easily recognizes that the relations (A.11) and (A.12) are immediate conse-

quences of the definition (A.1).

In order to prove the relation (A.13) we need to recall the identity

p−1∑

h=0

e i2πhk/p =

{
p if k ≡ 0 (mod p) ,

0 if k 6≡ 0 (mod p) .
(A.15)

In fact, using this identity and the definition (A.1), we have

p−1∑

h=0

Eα(z ei2πh/p) = pEαp(z
p) , p ∈ IN . (A.16)

Substituting in the above relation α/p instead of α and z1/p instead of z , we obtain

Eα(z) =
1

p

p−1∑

h=0

Eα/p

(
z1/pei2πh/p

)
, p ∈ IN . (A.17)

Setting above α = p/q , we finally obtain (A.13).

To prove the relation (A.14) we consider (A.12) for p = 1 . Multiplying both sides

by e−z , we obtain

d

dz

[
e−z E1/q

(
z1/q

)]
= e−z

q−1∑

k=1

z−k/q

Γ(1 − k/q)
. (A.18)

Then, upon integration of this and recalling the definition of the incomplete gamma

function, we arrive at (A.14).
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The relation (A.14) shows how the Mittag-Leffler functions of rational order can

be expressed in terms of exponentials and incomplete gamma functions. In particular,

taking in (A.14) q = 2 , we now can verify again the relation (A.4). In fact, from

(A.14) we obtain

E1/2(z
1/2) = ez

[
1 +

1√
π
γ(1/2 , z)

]
, (A.19)

which is equivalent to (A.4) if we use the relation erf (z) = γ(1/2, z2)/
√
π , see e.g.

[70-71].

A3. The Mittag-Leffler integral representation and asymptotic expansions

Many of the most important properties of Eα(z) follow from Mittag-Leffler’s

integral representation

Eα(z) =
1

2πi

∫

Ha

ζα−1 e ζ

ζα − z
dζ , α > 0 , z ∈ C , (A.20)

where the path of integrationHa (the Hankel path) is a loop which starts and ends at

−∞ and encircles the circular disk |ζ| ≤ |z|1/α in the positive sense: −π ≤ arg ζ ≤ π

onHa . To prove (A.20), expand the integrand in powers of ζ, integrate term-by-term,

and use Hankel’s integral for the reciprocal of the Gamma function.

The integrand in (A.20) has a branch-point at ζ = 0. The complex ζ-plane is

cut along the negative real axis, and in the cut plane the integrand is single-valued:

the principal branch of ζα is taken in the cut plane. The integrand has poles at the

points ζm = z1/α e2π i m/α , m integer, but only those of the poles lie in the cut plane

for which −απ < arg z + 2πm < απ . Thus, the number of the poles inside Ha is

either [α] or [α+ 1], according to the value of arg z.

The integral representation of the generalized Mittag-Leffler function turns out

to be

Eα,β(z) =
1

2πi

∫

Ha

ζα−β e ζ

ζα − z
dζ , α , β > 0 , z ∈ C . (A.21)

The most interesting properties of the Mittag-Leffler function are associated with

its asymptotic developments as z → ∞ in various sectors of the complex plane. These

properties can be summarized as follows.

For the case 0 < α < 2 we have

Eα(z) ∼ 1

α
exp(z1/α) −

∞∑

k=1

z−k

Γ(1 − αk)
, |z| → ∞ , | arg z| < απ/2 , (A.22)

Eα(z) ∼ −
∞∑

k=1

z−k

Γ(1 − αk)
, |z| → ∞ , απ/2 < arg z < 2π − απ/2 . (A.23)
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For the case α ≥ 2 we have

Eα(z) ∼ 1

α

∑

m

exp
(
z1/αe2π i m/α

)
−

∞∑

k=1

z−k

Γ(1 − αk)
, |z| → ∞ , (A.24)

where m takes all integer values such that −απ/2 < arg z+2πm < απ/2 , and arg z

can assume any value between −π and +π inclusive.

From the asymptotic properties (A.22-24) and the definition of the order of an

entire function, we infer that the Mittag-Leffler function is an entire function of order

1/α for α > 0; in a certain sense each Eα(z) is the simplest entire function of its

order, see Phragmén [75]. The Mittag-Leffler function also furnishes examples and

counter-examples for the growth and other properties of entire functions of finite

order, see Buhl [76].

A4. The Laplace transform pairs related to the Mittag-Leffler functions

The Mittag-Leffler functions are connected to the Laplace integral through the

equation
∫ ∞

0

e−uEα (uα z) du =
1

1 − z
=

∫ ∞

0

e−u uβ−1Eα,β (uα z) du , α , β > 0 . (A.25)

The integral at the L.H.S. was evaluated by Mittag-Leffler who showed that the region

of its convergence contains the unit circle and is bounded by the line Re z1/α = 1.

The above integral is fundamental in the evaluation of the Laplace transform of

Eα (−λ tα) and Eα,β (−λ tα) with α , β > 0 and λ ∈ C . Since these functions turn

out to play a key role in problems of fractional calculus, we shall introduce a special

notation for them.

Putting in (A.25) u = st and uα z = −λ tα with t ≥ 0 and λ ∈ C , and using the

sign ÷ for the juxtaposition of a function depending on t with its Laplace transform

depending on s, we get the following Laplace transform pairs

eα(t;λ) := Eα (−λ tα) ÷ sα−1

sα + λ
, Re s > |λ|1/α , (A.26)

and

eα,β(t;λ) := tβ−1Eα,β (−λ tα) ÷ sα−β

sα + λ
, Re s > |λ|1/α . (A.27)

We note that the results (A.26-27), but with a different notation, were used by

Humbert and Agarwal [72-74] to obtain a number of functional relations satisfied by

Eα(z) and Eα,β(z) . Of course the results (A.26-27) can also be obtained formally

by Laplace transforming term by term the series (A.1) and (A.6) with z = −λ tα ,
respectively, and summing the resulting series.
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We find worthwhile to list the following relations for the functions eα,β easily

obtained from (A.8-9) :

eα,β(t;λ) =
tβ−1

Γ(α)
− λ eα,β+α(t;λ) , (A.28)

and
d

dt
eα,β+1(t;λ) = eα,β(t;λ) . (A.29)

A remarkable property satisfied by the functions eα(t;λ) , eα,β(t;λ) when λ is

positive and 0 < α ≤ 1 , 0 < α ≤ β ≤ 1 , respectively, is to be completely monotone

for t > 0 .

We recall that a function f(t) is told to be completely monotone for t > 0 if

(−1)n f (n)(t) ≥ 0 for all n = 0, 1, 2, . . . and for all t > 0 , and that a sufficient

condition for this is the existence of a nonnegative locally integrable function K(r) ,

r > 0 , referred to as the spectral function, with which f(t) =
∫∞

0
e−rtK(r) dr . For

more details see e.g. the book by Berg & Forst [77].

Excluding the trivial case α = β = 1 for which e1(t;λ) = e1,1(t;λ) = e−λ t , we

can prove the existence of the corresponding spectral functions using the complex

Bromwich formula to invert the Laplace transform in (A.26-27) and bending the

Bromwich path into the Hankel path, as we have already shown in the special case

eα(t) := eα(t; 1) in §3. As an exercise in complex analysis (we kindly invite the reader

to carry it out) we obtain the integral representations [A.30-33],

eα(t;λ) :=

∫ ∞

0

e−rt Kα(r;λ) dr , 0 < α < 1 , λ > 0 , (A.30)

with spectral function

Kα(r;λ) =
1

π

λ rα−1 sin (απ)

r2α + 2λ rα cos (απ) + λ2
≥ 0 , (A.31)

and

eα,β(t;λ) :=

∫ ∞

0

e−rt Kα,β(r;λ) dr , 0 < α ≤ β < 1 , λ > 0 , (A.32)

with spectral function

Kα,β(r;λ) =
1

π

λ sin [(β − α)π] + rα sin (βπ)

r2α + 2λ rα cos (απ) + λ2
rα− β ≥ 0 . (A.33)
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Historically, the complete monotonicity of the Mittag-Leffler function in the neg-

ative real axis, i.e. of Eα(−x) , for x ∈ IR+, when 0 < α < 1 , was first conjectured

by Feller using probabilistic methods and rigorously proved by Pollard in 1948 [78].

Only recently, Schneider [79] has proved a theorem for the complete monotonicity

of the generalized Mittag-Leffler function in the negative real axis. He proved that

Eα,β(−x) , for x ∈ IR+, is completely monotone iff 0 < α ≤ 1 and β ≥ α . Our

conditions for eα,β(t, λ) to be completely monotone appear more restrictive than

those by Schneider for Eα,β(−x) ; however, we must note that in our case (A.27) the

factor tβ−1 precedes the generalized Mittag-Leffler function.

We note that, up to our knowledge, in the handbooks containing tables for the

Laplace transforms, the Mittag-Leffler function is ignored so that the transform pairs

(A.26-27) do not appear if not in the special cases α = 1/2 and β = 1 , 1/2 , written

however in terms of the error and complementary error functions, see e.g. [71]. In

fact, in these cases we can use (A.4) and (A.28) and recover from (A.26-27) the two

Laplace transform pairs

1

s1/2 (s1/2 ± λ)
÷ e1/2 (t;±λ) = eλ

2 t erfc (±λ
√
t) , λ ∈ C , (A.34)

1

s1/2 ± λ
÷ e1/2,1/2 (t;±λ) =

1√
π t

∓ λ e1/2 (t;±λ) , λ ∈ C . (A.35)

We also obtain the related pairs

1

s1/2 (s1/2 ± λ)2
÷ 2

√
t

π
∓ 2λ t e1/2(t;±λ) , λ ∈ C , (A.36)

1

(s1/2 ± λ)2
÷ ∓2λ

√
t

π
+ (1 + 2λ2 t) e1/2(t;±λ) , λ ∈ C , (A.37)

In the pair (A.36) we have used the properties

1

s1/2 (s1/2 ± λ)2
= −2

d

ds

(
1

s1/2 ± λ

)
,

dn

dsn
f̃(s) ÷ (−t)n f(t) .

The pair (A.37) is easily obtained by noting that

1

(s1/2 ± λ)2
=

1

s1/2 (s1/2 ± λ)
∓ λ

s1/2 (s1/2 ± λ)2
.
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A.5 Additional references for the Mittag-Leffler type functions

We note that the Mittag-Leffler type functions are unknown to the majority of sci-

entists, because they are ignored in the common books on special functions. Thanks

to our suggestion the new 2000 Mathematics Subject Classification has included these

functions, see the item 33E12: Mittag-Leffler functions and generalizations.

A description of the most important properties of these functions with relevant

references can be found in the third volume of the Bateman Project [70], in the chap-

ter XV III devoted to miscellaneous functions. The specialized treatises where great

attention is devoted to the Mittag-Leffler type functions are those by Dzherbashyan

[18], [22]. For the interested readers we also recommend the classical treatise on com-

plex functions by Sansone & Gerretsen [80], where a sufficiently detailed treatment of

the original Mittag-Leffler function is given. Since the times of Mittag-Leffler several

scientists have recognized the importance of the Mittag-Leffler type functions, pro-

viding interesting results and applications, which unfortunately are not much known.

As pioneering works of mathematical nature in the field of fractional integral and

differential equations, we like to quote those by Hille & Tamarkin and by Barret. In

1930 Hille & Tamarkin [81] have provided the solution of the Abel integral equation

of the second kind in terms of a Mittag-Leffler function, whereas in 1956 Barret [82]

has expressed the general solution of the linear fractional differential equation with

constant coefficients in terms of Mittag-Leffler functions.

As former applications in physics we like to quote the contributions by K.S. Cole

(1933), quoted by H.T. Davis [15, p. 287] in connection with nerve conduction, and

by F.M. de Oliveira Castro (1939) [83] and B. Gross (1947) [84] in connection with

dielectrical and mechanical relaxation, respectively. Subsequently, in 1971, Caputo

& Mainardi [28] have proved that the Mittag-Leffler function is present whenever

derivatives of fractional order are introduced in the constitutive equations of a linear

viscoelastic body. Since then, several other authors have pointed out the relevance

of the Mittag-Leffler function for fractional viscoelastic models, see Mainardi [24].

In recent times the attention of mathematicians towards the Mittag-Leffler type

functions has increased from both the analytical and numerical point of view, overall

because of their relation with the fractional calculus. In addition to the books and

papers already quoted in the text, here we would like to draw the reader’s attention

to the most recent papers on the Mittag-Leffler type functions, e.g. Al Saqabi &

Tuan [85], Kilbas & Saigo [86], Gorenflo, Luchko & Rogozin [87] and Mainardi &

Gorenflo [88]. Since the fractional calculus has actually recalled a wide interest for

its applications in different areas of physics and engineering, we expect that soon the

Mittag-Leffler function will exit from its isolated life as Cinderella (using the term

coined by F.G. Tricomi in the 1950s for the incomplete Gamma function).
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49. Nonnenmacher, T.F. and W.G. Glöckle: A fractional model for mechanical stress

relaxation, Phil. Mag. Lett., 64 (1991), 89-93.

50. Nonnenmacher, T.F. and R. Metzler: On the Riemann-Liouville fractional calcu-

lus and some recent applications, Fractals, 3 (1995), 557-566.

51. Oldham, K.B. and C.G. Zoski: Analogue instrumentation for processing poloro-

graphic data, J. Electroanalytical Chemistry, 157 (1983), 27-51.

52. Macdonald, J.R. and L.D. Potter Jr.: A flexible procedure for analyzing

impedance spectroscopy results; descriptions and illustrations, Solid State Ion-

ics, 23 (1987), 61-79.

53. Mulder, W.H. and J.H. Sluyters: An explanation of depressed semi-circular arcs

in impedance plots for irreversible electrode reactions, Electrochemica Acta, 33

(1988), 303-310.

54. Keddam, M. and H. Takenouti: Impedance of fractional interfaces; new data on

the Von Koch model, Electrochemica Acta, 33 (1988), 3445-448.

55. Engheta, N.: On the role of non-integral (fractional) calculus in electrodynamics,

Digest of the 1992 IEEE AP-S/URSI International Symposium, Chicago, July

17-20, 1992, Vol. URSI Digest, 163-175.

56. Engheta, N.: Fractional differintegrals and electrostatic fields and potentials near

sharp conducting edges, Lectures presented at the International Summer School:

Fractals and Hyperbolic Geometries, Fractional and Fractal Derivatives in Engi-

neering, Applied Physics and Economics (Eds. LeMéhauté and A. Oustaloup),
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Automatique, Éditions Hermès (1995).

63. Matignon, D.: Stability results for fractional differential equations with applica-

tions to control processing, Proceedings Computational Engineering in Systems

and Application multiconference, IMACS, IEEE-SMC, Lille, France, July 1966,

pp. 963-968.

64. Fliess, M. and R. Hotzel: Sur les systèmes linéaires à dérivation non entière, C.
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ques, Acad. Sci. Paris, Fasc. VII, Gauthier-Villars, Paris 1925, Ch. 3.

77. Berg, C. and G. Forst: Potential Theory on Locally Compact Abelian Groups,

Springer Verlag, Berlin 1975, §9., pp. 61-72.

78. Pollard, H.: The completely monotonic character of the Mittag-Leffler function

Eα(−x) , Bull. Amer. Math. Soc., 54 (1948), 1115-1116.

79. Schneider, W.R.: Complete monotone generalized Mittag-Leffler functions, Expo-

sitiones Mathematicae, 14 (1996), 3-16.

80. Sansone, G. and J. Gerretsen: Lectures on the Theory of Functions of a Complex

Variable, Vol. I. Holomorphic Functions, Nordhoff, Groningen 1960, pp. 345-349.

81. Hille E. and J. D. Tamarkin: On the theory of linear integral equations, Ann.

Math., 31 (1930), 479-528.

82. Barret, J. H.: Differential equations of non-integer order, Canad. J. Math., 6

(1954), 529-541.

83. de Oliveira Castro, F. M.: Zur Theorie der dielektrischen Nachwirkung, Zeits. f.

Physik, 114 (1939), 116–126.

84. Gross, B: On creep and relaxation, J. Appl. Phys., 18 (1947), 212–221.

85. Al Saqabi, B. N. and Vu Kim Tuan: Solution of a fractional differintegral equation,

Integral Transforms and Special Functions, 4 (1996), 321-326.

86. Kilbas, A. A. and M. Saigo: On Mittag-Leffler type functions, fractional calcu-

lus operators and solution of integral equations, Integral Transforms and Special

Functions, 4 (1996), 355-370.

87. Gorenflo, R., Luchko, Yu. and S. Rogozin: Mittag-Leffler type functions : notes

on growth properties and distribution of zeros, Pre-print A-04/97, Fachbereich

Mathematik und Informatik, Freie Universität, Berlin 1997, available via Internet:

<http://www.math.fu-berlin.de/publ/index.html>

88. Mainardi F. and R. Gorenflo: On Mittag-Leffler-type functions in fractional evo-

lution processes, J. Comput. and Appl. Mathematics, 118 No 1-2 (2000), 283-299.


