Introduction to fractional calculus

(Based on lectures by R. Gorenflo, F. Mainardi and .
Podlubny)

R. Vilela Mendes

July 2008

0 July 2008 1/ 44
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- Caputo fractional derivative
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Fractional Calculus was born in 1695

What if the -

order will be S
n="%7

It will lead to a
paradox, from which
one day useful
consequences will be

drawn.

G.F.A. de L'Hopital " G.W. Leibniz
(1661-1704) (1646-1716)



G. W. Leibniz (1695-1697)

In the letters to J. Wallis and J. Bernulli (in 1697) Leibniz
mentioned the possible approach to fractional-order differ-
entiation in that sense, that for non-integer values of n the
definition could be the following:
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L. Euler (1730)
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Euler suggested to use this relationship also for negative or

non-integer (rational) values of n. Taking m = 1 and n = %,
Euler obtained:
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S. F. Lacroix adopted Euler’s derivation for his success-
ful textbook ( Traité du Calcul Différentiel et du Calcul
Intégral, Courcier, Paris, t. 3, 1819; pp. 409-410).
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J. B. J. Fourier (1820-1822)

The first step to generalization of the notion of differentia-
tion for arbitrary functions was done by J. B. J. Fourier
(Théorie Analytique de la Chaleur, Didot, Paris, 1822;
pp. 499-508).

After introducing his famous formula

1 oo (0. @]
flz) = o / f(z)dz/cos (pxr — pz)dp,
Fourier made a remark that
dif@) 1 [, [ o
e 27T/f(z)dz/ cos (px — pz + ng)dp,

and this relationship could serve as a definition of the n-th
order derivative for non-integer n.



Riemann-Liouville definition

1 (d)"t f(0)dr
T(n—o)\ dt a(t—r)“‘””

(n—1<0<n)

aDtaf(t) =

G.F.B. Riemann J. Liouville
(1826-1866)  (1809-1882)



Fractional integral according to Riemann-Liouville

@ According to Riemann-Liouville the notion of fractional integral of
order & (« > 0) for a function f(t), is a natural consequence of the
well known formula (Cauchy-Dirichlet ?), that reduces the calculation
of the n—fold primitive of a function f(t) to a single integral of
convolution type

1 t
() = /(t — )L f(T) dt, neN (1)

(n — ].)! a
vanishes at t = a with its derivatives of order 1,2, ..., n — 1. Require
f(t) and JJ f(t) to be causal functions, that is, vanishing for t < 0.
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order & (« > 0) for a function f(t), is a natural consequence of the
well known formula (Cauchy-Dirichlet ?), that reduces the calculation
of the n—fold primitive of a function f(t) to a single integral of
convolution type

1 t
() = /(t — )L f(T) dt, neN (1)

(n — ].)! a
vanishes at t = a with its derivatives of order 1,2, ..., n — 1. Require
f(t) and JJ f(t) to be causal functions, that is, vanishing for t < 0.

@ Extend to any positive real value by using the Gamma function,
(n—1)!=T(n)
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Fractional integral according to Riemann-Liouville

@ According to Riemann-Liouville the notion of fractional integral of
order & (« > 0) for a function f(t), is a natural consequence of the
well known formula (Cauchy-Dirichlet ?), that reduces the calculation
of the n—fold primitive of a function f(t) to a single integral of
convolution type
t
() = — [e=r i ar, neN (1)
(n—1)! J;
vanishes at t = a with its derivatives of order 1,2, ..., n — 1. Require
f(t) and JJ f(t) to be causal functions, that is, vanishing for t < 0.
Extend to any positive real value by using the Gamma function,
(n—1)!=T(n)
Fractional Integral of ordera>0 (right-sided)

S F(t) = r(lzx) /:(t— )L F(7) dr, RER ()

Define J2, =1, J2, f(t) = f(t)
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Fractional integral according to Riemann-Liouville

o Alternatively (left-sided integral)
1 b
Bof(t) = s [ (-0 (D) dr xR
()= i [ (-0 ()

(a=0,b = +c0) Riemann (a = —00, b = +00) Liouville
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Fractional integral according to Riemann-Liouville

o Alternatively (left-sided integral)

JEf(t) = I"(lzx) /tb(r— £ £ (1) d, € €R
(a=0,b = +c0) Riemann (a = —00, b = +00) Liouville
o Let
JU =y,
Semigroup properties JYJB = Joth a,p>0

Commutative property JPy = Ju B
Effect on power functions
— T+l 9+
J“t“Y_mt“Y“, a>0,y>-1,t>0
(Natural generalization of the positive integer properties).
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Fractional integral according to Riemann-Liouville

o Alternatively (left-sided integral)

JEf(t) = I"(lzx) /tb(r— £ £ (1) d, € €R
(a=0,b = +c0) Riemann (a = —00, b = +00) Liouville
o Let
JU =y,
Semigroup properties JYJB = Joth a,p>0

Commutative property JPy = Ju B
Effect on power functions
— T+l 9+
J“t“Y_mt“Y“, a>0,y>-1,t>0
(Natural generalization of the positive integer properties).

@ Introduce the following causal function (vanishing for t < 0)
a—1
ty

D, (t) := (@)’

a>0
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Fractional integral according to Riemann-Liouville

D (t) x Dp(t) = Dypyp(t), a,p>0
JUF(t) = Du(t) * F(t), a>0
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Fractional integral according to Riemann-Liouville

B(t) * Bp(t) = Duyp(t), €, p>0
JF(E) = Du(t) * F(£), >0

o Laplace transform

LIF(E)Y = /Oooe_“f(t) dt=F(s), seC
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Fractional integral according to Riemann-Liouville

By(t) * Dp(t) = Dyop(t), @ p>0
JUF(t) = @y (t) * f(t), a>0
o Laplace transform
L{f(t)} ::/ et f(t)dt = F(s), seC
0
o Defining the Laplace transform pairs by f(t) <+ f(s)

f(s)

S(X

a>0

JUF(t) +

July 2008

5/
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Fractional derivative according to Riemann-Liouville

@ Denote by D" with n € IN, the derivative of order n. Note that
D"J" =1, J"D" £ 1 ne N

D" is a left-inverse (not a right-inverse) to J". In fact

JID"f(t) = f(t) — nz FK)(0™)

k=0

tk

PR t>0
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Fractional derivative according to Riemann-Liouville

@ Denote by D" with n € IN, the derivative of order n. Note that
D"Jt =1, J"D" £ 1, ne N
D" is a left-inverse (not a right-inverse) to J". In fact

oo n—1 tk
J'D f(t):f(t)—k;) FR)(0t) — ar >0

@ Then, define D* as a left-inverse to J*. With a positive integer m ,
m—1<a < m, define:

Fractional Derivative of order « : D* f(t) := D™ J™*f(t)
D" f(t) := i [r Mfo geRdT. mol<a<m
af (t) x=m
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Fractional derivative according to Riemann-Liouville

@ Define D% = JO =|.
Then D* J* = [, a>0

D% tY — r(’)/ + 1) £

a>0,y>—-1,t>0
T(y+1—a) l
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Fractional derivative according to Riemann-Liouville

@ Define D% = JO =|.
Then D* J* = [, a>0

Fr+1) 4

DYtV = —————
I'(y+1—a)

x>0,y>-1,t>0

@ The fractional derivative D* f is not zero for the constant function
f(t)=1ifa ¢ N

t—(x
Dlxlzm, (XZO,t>O

Is =0 for « € IN, due to the poles of the gamma function
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Caputo fractional derivative

e DYf(t):=Jm—*pDm f( )with m—1<a < m, namely

periey o | T g 1<
dtmf(t) X=m
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Caputo fractional derivative

o DYf(t):=Jm D™ f( )with m—1<a < m, namely

periey o | T g 1<
dtmf(t) X=m

@ A definition more restrictive than the one before. It requires the
absolute integrability of the derivative of order m. In general

D f(t) := D™ J" £(£) £ J"% D™ £(t) := D¥ £(¢)

unless the function f(t) along with its first m — 1 derivatives vanishes
att =07, Infact,form—1<1x<m and t > 0,
k—u

D" f(t) = )+ Z Th—atD)

and therefore, recalllng the fractlonal derivative of the power functions

( (t) — Z k)(0+)) = D f(t), D1=0,a>0
O
0 July 2008 8 /44
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Riemann versus Caputo

°
Dt '=0, a>0,t>0
D" is not a right-inverse to J*
JD*t*t=0, but DUt l=¢"1,  a>0,t>0
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Riemann versus Caputo

°
Dt '=0, a>0,t>0
D" is not a right-inverse to J*
JD*t*t=0, but DUt l=¢"1,  a>0,t>0

@ Functions which for t > 0 have the same fractional derivative of
order o, with m—1 < a < m. (the ¢;'s are arbitrary constants)

D" f(t) = D*g(t) <= f(t) +Ecj “

D: f(t) = D g(t) < f(t) =g(t) + Z Gt
j=1
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Riemann versus Caputo

°
Dt '=0, a>0,t>0
D" is not a right-inverse to J*
JD*t*t=0, but DUt l=¢"1,  a>0,t>0

@ Functions which for t > 0 have the same fractional derivative of
order o, with m—1 < a < m. (the ¢;'s are arbitrary constants)

D" f(t) = D*g(t) <= f(t) +Ecj “

DY f(t) = D*g(t) <= f(t) = g(t)+ Z G t™
j=1
e Formal limit as @ — (m—1)"
x— (m—1)" = D*f(t) — D™ Jf(t) = D™ f(t)

o — (m—1)" = D*f(t) — JD™ £(t) = D" f(¢) — F(mD (o)
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Riemann versus Caputo

@ The Laplace transform
D f(t)+s*f(s ZD" M) f(0F)s™ K m—l<a<m

Requires the knowledge of the (bounded) initial values of the
fractional integral J™~% and of its integer derivatives of order
k=12 m—-1
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Riemann versus Caputo

@ The Laplace transform
D f(t)+s*f(s ZD" M) f(0F)s™ K m—l<a<m

Requires the knowledge of the (bounded) initial values of the
fractional integral J™~% and of its integer derivatives of order
k=12 m—-1

@ For the Caputo fractional derivative

m—1
DS f(t) +s"f(s)— Zf(k)(Oﬂs“*l*k, m—1<a<m
k=0

Requires the knowledge of the (bounded) initial values of the function
and of its integer derivatives of order k = 1,2, m — 1in analogy with
the case when &« = m
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Riesz - Feller fractional derivative

@ For functions with Fourier transform
Flpe}h = 9= [ () dx
FHow} = o= [T e
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Riesz - Feller fractional derivative

@ For functions with Fourier transform
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Riesz - Feller fractional derivative

@ For functions with Fourier transform
Flpe}h = 9= [ () dx
FHow} = o= [T e

@ Symbol of an operator

() ¢ =g [ -2t @) de
G0t = [ @0t dz, xeR
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Riesz - Feller fractional derivative

@ Liouville derivatives (m—1 < a < m)

. [ (D" F(x),  modd
©E T (DMIZEY) (%), m even
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Riesz - Feller fractional derivative

@ Liouville derivatives (m—1 < a < m)

. [ (D" F(x),  modd
©E T (DMIZEY) (%), m even

@ Operator symbols

/\ . .
g‘oi = |k‘7“ ei:(slgnk)um/Z _ (:Fl'k)_“
g/:,i — |k|+04 e:Fi(signk)um/2 _ (:Fl.k)+a
A A 2cos (am/2)
® S
S+ L. = i
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Riesz - Feller fractional derivative

@ Liouville derivatives (m—1 < a < m)

. [ (D" F(x),  modd
©E T (DMIZEY) (%), m even

@ Operator symbols

/\ . .
g‘oi = |k‘7“ ei:(slgnk)um/Z _ (:Fl'k)_“
g/:,i — |k|+04 e:Fi(signk)um/2 _ (:Fl.k)+a
A A 2cos (am/2)
® S
S+ L. = i

@ Define a symmetrized version
C Jer I 1

Q . o a—1
o (x) = 2cos (art/2) 2T (a)cos (amr/2) /_oo =" Fe) d¢

(wth exclusion of odd integers). The operator symbol

A
is % = |k "
0 July 2008 12 / 44




Riesz-Feller fractional derivative

o [§f (x) is called the Riesz potential.
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Riesz-Feller fractional derivative

o [§f (x) is called the Riesz potential.
@ Define the Riesz fractional derivative by analytical continuation

FADEFY (K) o= F {~I5F} (k) = — [KI* F (K)

generalized by Feller
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Riesz-Feller fractional derivative

o [§f (x) is called the Riesz potential.
@ Define the Riesz fractional derivative by analytical continuation

FADEFY (K) o= F {~I5F} (k) = — [KI* F (K)

generalized by Feller
e Dy =Riesz-Feller fractional derivative of order a and skewness 6

F{DRF} (k) ==~y (k) F (K)

with
90 (k) = |k|* /(snk)om/2 g < o < 2,16] < min{a,2 —a}
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Riesz-Feller fractional derivative

o [§f (x) is called the Riesz potential.
@ Define the Riesz fractional derivative by analytical continuation

FADEFY (K) o= F {~I5F} (k) = — [KI* F (K)

generalized by Feller
e Dy =Riesz-Feller fractional derivative of order a and skewness 6

A
FADGF} (k) := = (k) f (k)
with
90 (k) = |k|* /(snk)om/2 g < o < 2,16] < min{a,2 —a}
o The symbol —? (k) is the logarithm of the characteristic function of

a Lévy stable probability distribution with index of stability « and

asymmetry parameter 0
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Grunwald-Letnikov definition

A

P =1imh Y (—1)f[j.‘jf(r—jh) _

h
0

[x] — integer part of x

AV. Letnikov |

A K. Grunwald



Griinwal - Letnikov

e From

— i $X) =@ (x—h)
D¢ (x) = lim -

0 = fim e 1} ) otk
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Griinwal - Letnikov

e From

_ () —¢(x—h)
D¢ (x) lim \

D" = |imlz::(—1)"< j )cp(x—kh)

@ the Griinwal-Letnikov fractional derivatives are

[(x=a)/h]
bt = Jme ¥ V(4 ot

h—0 h* [~
: L o () ot
GLDf = lim — —1 ( >¢ x + kh
b h—0 h* = k

[¢] denotes the integer part
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Integral equations

e Abel’s equation (1st kind)

F(lzx) /ot(t_U(:))la dt = f(1), 0<a<l1
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Integral equations

e Abel’s equation (1st kind)

! /t u(r)i dt = f(t), O<a<l

I'(a) Jo (t—1)t—*

@ The mechanical problem of the tautochrone, that is, determining a
curve in the vertical plane, such that the time required for a particle
to slide down the curve to its lowest point is independent of its initial
placement on the curve.
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Integral equations

e Abel’s equation (1st kind)

! /t U(T)f dt = f(t), O<a<l

I'(a) Jo (t—1)t—*

@ The mechanical problem of the tautochrone, that is, determining a
curve in the vertical plane, such that the time required for a particle
to slide down the curve to its lowest point is independent of its initial
placement on the curve.

@ Found many applications in diverse fields:

- Evaluation of spectroscopic measurements of cylindrical gas
discharges

- Study of the solar or a planetary atmosphere

- Star densities in a globular cluster

- Inversion of travel times of seismic waves for determination of
terrestrial sub-surface structure

- Inverse boundary value problems in partial differential equations
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Abel's equation

@ - Heating (or cooling) of a semi-infinite rod by influx (or efflux) of
heat across the boundary into (or from) its interior

Uy — Uy = 0, u=u(x,t)

in the semi-infinite intervals 0 < x < o0 and 0 < t < co. Assume
initial temperature, u(x,0) = 0 for 0 < x < oo and given influx
across the boundary x =0 from x < 0to x >0,

—ux(0,t) = p(t)
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Abel's equation

@ - Heating (or cooling) of a semi-infinite rod by influx (or efflux) of
heat across the boundary into (or from) its interior

Uy — Uy = 0, u=u(x,t)

in the semi-infinite intervals 0 < x < o0 and 0 < t < co. Assume
initial temperature, u(x,0) = 0 for 0 < x < oo and given influx
across the boundary x =0 from x < 0to x >0,

—ux(0,t) = p(t)

@ Then,

_ 1t p(7)
U(X't)_ﬁ/o me

—x2/[4(t=7)]
drt, x>0,t>0
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Abel’s equation (1st kind)

r (10c) /ot(t j(:))l—a dt = f(t), O<a<l
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Abel’s equation (1st kind)

L u(@ _
r(oc)/o(t_T)l—adT_f(t)v 0<a<l1

o ls
JYu(t) = f(t)

and consequently is solved by
u(t) = D*f(t)

using D* J* = [|. Let us now solve using the Laplace transform

us(f) = ;(s) — u(s) = s"‘?(s)
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Abel’s equation (1st kind)

L u(@ _
r(oc)/o(t_T)l—adT_f(t)v 0<a<l1

o ls

JYu(t) = f(t)
and consequently is solved by
u(t) = D*f(t)
using D* J* = [|. Let us now solve using the Laplace transform

~

us(f) = ;(s) — u(s) = s*f(s)

@ The solution is obtained by the inverse Laplace transform: Two
possibilities :
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Abel’s equation (1st kind)

° 1)

1 tf(7)
Oty at e
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Abel’s equation (1st kind)

1)
o) =5 (;@3)
1 d [t f(7)
Oty at e

e ?2) N

u(s) = 51%« [sf(s) — £(0F)] + fs(loa)

1 t f'(1) t*
ult) =Fa—a /o R T

Solutions expressed in terms of the fractional derivatives D* and DY ,
respectively
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Abel’s equation (2nd kind)

u(t)+1,():x) /Ot(tf(:))l_a dt = f(t), a>0,AeC
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Abel’s equation (2nd kind)

At (@) B
U(t)+r(0¢)/O(t_T)l—adT_f(t): x>0,AeC
@ In terms of the fractional integral operator
(T4+A I u(t) = f(t)

solved as

u(t) = (14 A7 <1+ Y (- Jm> F(t)
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Abel’s equation (2nd kind)

At (@) B
u(t)+F(oc)/O(t_T)l—adT—f(t), a>0,AeC
@ In terms of the fractional integral operator

(1 + )\J‘X) u(t) = f(t)

solved as
u(t) = (1+AJ97" - <1+ Y (- Jm> F(t)
@ Noting that
S E(t) = Dup(t) x F(t) = Il:%;;) x F(t)
sl ) tzxn—l
u(t) = f(t)+ (IE(—A) r@m) x f(t)
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Abel’s equation (2nd kind)

@ Relation to the Mittag-Leffler functions

A o (_)‘th)n
ex(t;A) == Ey( M)_,;)F(anJrl)' t>0,a>0,AeC
i(—/\)” 6 _dy (—AtY) = el(t; ) t>0
= T(an)  dt - alb A
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Abel’s equation (2nd kind)

@ Relation to the Mittag-Leffler functions

ex(t; M) _Ea(—}\t“):’iw, t>0,a>0,AeC
i(—/\)" g = iEa(—At“) =e(t;A), t>0
fot T(an)  dt “
o Finally,
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Fractional differential equations

o Relaxation and oscillation equations. Integer order

u'(t) = —u(t) +q(t)

the solution, under the initial condition u(0") = ¢y, is

t
u(t) = coe_t+/q(t—r)e_TdT
0
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Fractional differential equations

o Relaxation and oscillation equations. Integer order
u'(t) = —u(t) + q(t)
the solution, under the initial condition u(0") = ¢y, is
t
u(t) = e '+ / q(t—T1)e "dt
0
@ For the oscillation differential equation

u"(t) = —u(t) +q(t)

the solution, under the initial conditions u(0") = ¢y and
J(O0T)=c,is

t
u(t) =cycost+c sint—l—/q(t—’c) sinTdt
0
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Relaxation and oscillation equations

Fractional version

Df u(t) = ”‘(u(t Z ulk( 0+>:—u(t)+q(t), t>0
m—1<a < m, initial values u(k )(0+) =c, k=0,..., m — 1 .When a
is the integer m

m—1 t
_ I(Z()ckuk(t)+/0q(t—T) us(T) dT

ue(t) = P up(t), il (OF) =Sk b k=0, m—1, us(t) = — uj(t)
The uk(t)'s are the fundamental solutions, linearly independent solutions
of the homogeneous equation satisfying the initial conditions. The
function us(t), which is convoluted with g(t), is the impulse-response
solution of the inhomogeneous equation with ¢, =0, k=0,..., m—1,
q(t) = é(t) .For ordinary relaxation and oscillation, ug(t) = et = u;(t)
and uyg(t) =cos t, wi(t) = Jup(t) =sin t =cos(t —mw/2) = us(t).
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Relaxation and oscillation equations

@ Solution of the fractional equation by Laplace transform
Applying the operator J* to the fractional equation

m—1 .k

u(t) =Y %—J"‘u(t) 4 Jg(t)
k=0 "

Laplace transforming yields

~ m=l o 1~ 1~
u(s) = 1;) pras 57”(5) + Squ(S)

hence

m—1 Szx—k—l -

im0 s +1
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Relaxation and oscillation equations

@ Solution of the fractional equation by Laplace transform
Applying the operator J* to the fractional equation

m—1 tk
u(t) =Y 5 —Ju(t) +J%q(t)
= k!
Laplace transforming yields
m—1
~ 1 1~ 1~
u(s) = kZ::O pras 57”(5) + Squ(S)
hence
- m—1 Szx—k—l -
i) = 1 Sy +4(6)
@ Introducing the Mittag-Leffler type functions
a—1
en(t) = e(t;1) := Ey(—t%) + o
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Relaxation and oscillation equations

° Sucfkfl
ug(t) :== Jkea(t) = ra k=0,1,..., m-—1
we find
m—1 t
u(t) = uk(t)—/oq(t—r) ub(7) dt
k=0
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Relaxation and oscillation equations

o
Szxfkfl

u(t) == JKey(t) + o

. k=01,.... m—1

we find

m—1 t
u(t) Eywn—équ—ﬂ%@jw

@ When « is not integer, m — 1 represents the integer part of a ([a])
and m the number of initial conditions necessary and sufficient to
ensure the uniqueness of the solution u(t). The m functions

ug(t) = Jkea(t) with k =0,1,..., m— 1 represent those particular
solutions of the homogeneous equation which satisfy the initial
conditions

uM(0%) = 6ip bk =01,....,m—1

and therefore they represent the fundamental solutions of the
fractional equation Furthermore, the function us(t) = —el(t)
represents the impulse-response solution.
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Fractional diffusion equation

o Fractional diffusion equation, obtained from the standard diffusion
equation by replacing the second-order space derivative with a
Riesz-Feller derivative of order a € (0, 2] and skewness 6 and the
first-order time derivative with a Caputo derivative of order § € (0, 2]

<Dy u(x, t) = thu(x,t), xeR,teR"

0<a<2,|0 <min{a,2—a}, 0<B<2
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<Dy u(x, t) = thu(x,t), xeR,teR"
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@ Space-fractional diffusion {0 <a <2, =1}
Time-fractional diffusion {a =2,0 < B <2}
Neutral-fractional diffusion {0 < o = B < 2}
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Fractional diffusion equation

o Fractional diffusion equation, obtained from the standard diffusion
equation by replacing the second-order space derivative with a
Riesz-Feller derivative of order a € (0, 2] and skewness 6 and the
first-order time derivative with a Caputo derivative of order § € (0, 2]

<Dy u(x, t) = thu(x,t), xeR,teR"

0<a<2,|0 <min{a,2—a}, 0<B<2

@ Space-fractional diffusion {0 <a <2, =1}
Time-fractional diffusion {a =2,0 < B <2}
Neutral-fractional diffusion {0 < o = B < 2}

@ Riesz-Feller space-fractional derivative

F {xDf f(x)ix} = —y(x) F(x)

0(i) = |k|* e/ (signk)07/2. 0<a<2,|0 <min{a,2—a}
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Fractional diffusion equation

o Caputo time-fractional derivative

D”‘f(t):: (m—a) fo = Hl,,, dr, m—1l1<a<m
dtmf(t) x=m
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Fractional diffusion equation

o Caputo time-fractional derivative

D”‘f(t):: (m—a) fo = Hl,,, dr, m—1l1<a<m
dtmf(t) x=m

@ Cauchy problem

u(x,0) = ¢(x), x €R,u(to0,t)=0,t>0

+oo
Wplxt) = [ Gl(E.t) g(x—8) de
Goglax, bt) = b 7Glg(ax/b7, 1), v =p/a
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Fractional diffusion equation

o Caputo time-fractional derivative

D”‘f(t):: (m—a) fo = Hl,,, dr, m—1l1<a<m
dtmf(t) x=m

@ Cauchy problem

u(x,0) = ¢(x), x €R,u(to0,t)=0,t>0

+oo
Wplxt) = [ Gl(E.t) g(x—8) de
Goglax, bt) = b 7Glg(ax/b7, 1), v =p/a

o Similarity variable x/t7

Gap(x, t) = t7TK5(x/t7),  v=p/a
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Fractional diffusion equation

@ Solution by Fourier transform for the space variable and the Laplace
transform for the time variable

—gba( )69 = sﬁG‘f’ﬁ—sﬁ_1

- s
“P TSP+ g (x)
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Fractional diffusion equation

@ Solution by Fourier transform for the space variable and the Laplace
transform for the time variable

== .
A )Ge = PGl —sF
=
" Py
@ Inverse Laplace transform
n

Clp k) =B [0 ] B2 = L

Gly(x. t) = 21/“0 e " E, [_wgm tﬁ] dk
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Fractional diffusion equation

Particular cases
{a =2, B =1} (Standard diffusion)

1
2/

691 (x, 1) = t72 1 exp[—x?/ (at)]

10°%F

10°
-5
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Fractional diffusion equation

{0 < <2, p=1} (Space fractional diffusion)
The Mittag-Leffler function reduces to the exponential function and we
obtain a characteristic function of the class {L9(x)} of Lévy strictly stable
densities N .

L0(x) = e ¥a(®) GO (x,t) = O
The Green function of the space-fractional diffusion equation can be
interpreted as a Lévy strictly stable pdf, evolving in time

Go?,l(X: t) =t L9 (x/ "), —0 < x< +oo,t>0

Particular cases:
a=1/2,0=—-1/2, Lévy-Smirnov
—3/2
—s72 L, —1/2 _ X —1/(4
e’ HL1/2()—ﬁe S x>0
a=1,0=0, Cauchy

G A
e < X) = , o0 < X < 00
1( ) T X2 +1 +
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Fractional diffusion equation

10'3 L L L L L L L L L 10 L L L L L L L L
5




Fractional diffusion equation

10° ——r— — 10° ——r— 7
a=1 17
1
20.99
101 ]
10°¢ 1
10’3 L L L L L L L L L 10’3 L
5 4 3 =2 4 0 1 2 3 4 5 5 4 3 =2 4 5
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Fractional diffusion equation

10 e e 10 e ——
B a=1.50 B a=150




Fractional diffusion equation

{a =2, 0 < B < 2} (Time-fractional diffusion)

@(K,t):Eﬁ<—K2t5), keER,t>0
or with the equivalent Laplace transform
1
G 4(x,5) = 5sﬁ/Hef\xlsﬁ” . —c0 < x< 400, R(s) >0

with solution
1
Ggﬁ(x, t)zirﬁﬂ Mg» (]x|/tﬁ/2>, —0 < x < 400, t>0
Mg,2 is a function of Wright type of order /2 defined for any order
€(0,1) by
n 1

i —2)’ = % i z_l vn) sin(7tvn)

= n! vn—i—(l—v =
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Fractional diffusion equation

10° — ;

i
iy

10'3 L L L L L L L L L 10 L L L L L L L L L
5




Fractional diffusion equation

10 T T T T 10 T T T T
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Fractional diffusion equation

10° ——r— — 10° ——r— —
T gz G a=2
Ib=1.50 B b=1.75
: q=0‘ g=0
101 ] 101
10°F {4 10%
10’3 L L 10’3 L L L L L L L L L
5 4 4 5 5 4 3 2 4 0 1 2 3 4 5




Fractional diffusion equation

Space-time fractional diffusion equation. Some examples

a=1.50
b=1.50
G=-0.49
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Fractional diffusion equation

10° ——r— — 10° ——r— —

Lo “a=1:50 e a=1.50

=125 b=1.25

4=-0.50

10’3 L L L L L L L L L L L
5 4 3 2 4 0 1 2 3 4 5 3 4 5




A fractional nonlinear equation. Stochastic solution

A fractional version of the KPP equation, studied by McKean

’tD,‘fu (t,x) = %XDgu (t,x) + v (t,x) — u(t, X)‘

+DY is a Caputo derivative of order «

{ 1 tf [(r)dt m—1<a<m

(m ﬁ) ( )a+1 m

thf(t):
dtmf() x=m

XDg is a Riesz-Feller derivative defined through its Fourier symbol
F{DEF ()} (k) = =4 (k) F{F ()} (k)

with lp%( ) ’k’ﬁ i(signk)ém/2
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A fractional nonlinear equation. Stochastic solution

A fractional version of the KPP equation, studied by McKean

’tD,‘fu (t,x) = %XDgu (t,x) + v (t,x) — u(t, X)‘

¢D% is a Caputo derivative of order a

{ 1 tf [(r)dt m—1<a<m

(m ﬁ) ( )a+l m

thf(t):
dtmf() x=m

XDg is a Riesz-Feller derivative defined through its Fourier symbol
F{DEF ()} (k) = =4 (k) F{F ()} (k)

with 1’0%( ) ’k’ﬁ i(signk)ém/2

@ Physically it describes a nonlinear diffusion with growing mass and in
our fractional generalization it would represent the same phenomenon
taking into account memory effects in time and long range
correlations in space.
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A fractional nonlinear equation

The first step towards a probabilistic formulation is the rewriting as an
integral equation.Take the Fourier transform (F) in space and the Laplace
transform (L) in time

s (5. k) = s* "1 (0F k) — %lpg (k) u (s k) —u(s k) + /Ow dte ™t F (1)

where
o0

u(t k) = F (u(t,x)) :/ e u (t, x)

—00

~

u(s,x)=L(u(tx)) = / e *tu(t, x)
0
This equation holds for 0 < & < 1 or for 0 < a < 2 with %u (0, x) =0.

Solving for u (s, k) one obtains an integral equation

a—1 —st

< B s ~ n oo e
u(s k) = 750‘_1_%1/]% (k)u(O ,k) —l—/o dtis“—i—%l/}% )
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A fractional nonlinear equation

Taking the inverse Fourier and Laplace transforms

u(t, x)
_ /oo byl (sz,l (— (El + %’P% (k)> tzx)) oy
_oo w1 (—1%)

+ /Ot ddt— 1" Eua (= (£ = 1))

/Zdyfl( <<1+2%()><t )))(Xy)UQ(T'y)

Eva (= (t=1)%)

Eyp is the generalized Mittag-Leffler function £y, (z) = Y720 r D‘HP)
Evr(— +/ AT (t— 1) By (= (t—1)%) =1
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A fractional nonlinear equation

We define the following propagation kernel

_ 1.0 «
Gho (t,) = F~! (E“'p ( ;(_:1: (Q_ff)(k)) t >) (%)

u(t, x)
= BT [ gyl (tx vl (o*
+ [ ot = s (2 (=)

/ dyIGa,rx —TXZY |uE](T,y)

Een (—t%) and (t —7)* " Eye (= (t — 7)%) = survival probability up to
time t and the probability density for the branching at time T (branching
process By)
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A fractional nonlinear equation

The propagation kernels satisfy the conditions to be the Green's functions
of stochastic processes in IR:

u(t, x) =By (u(07, x +5)u(07, x+85) - u(07, x +¢,))

Denote the processes associated to G£1 (t,x) and Gl (t,x), respectively
by IT° | and IT%

Theorem: The nonlinear fractional partial differential equation, with

0 < a <1, has a stochastic solution, the coordinates x + ¢; in the
arguments of the initial condition obtained from the exit values of a
propagation and branching process, the branching being ruled by the
process B, and the propagation by Hf 1 for the first particle and by HE,“
for all the remaining ones. ’

A sufficient condition for the existence of the solution is

|u(0+,x)‘ <1
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A fractional nonlinear equation
Ty
(o, o) XL

—® x+&3
—® xt+ &4
_ 1, (e, 1)

X @ x+E5

He.e)l__g x+e6
Ti(a,1)
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Geometric interpretation
of fractional integration:
shadows on the walls

I f /f Peldr, £ 0,
ol f( /f ) dgi(T
gt(T) — F(Ck—l— 1){ o ( o 7_) }

For t; = kt, m = k7 (k > 0) we have:

9 (11) = gre(kT) = E%gi(7).



10 10
9,(0) LT

“Live fence” and its shadows: oI} f(t) a oI2 f(1),
for a = 0.75, f(t) = ¢+ 0.5sin(t), 0 < t < 10.



“Live fence”: basis shape is changing
for oI f(t), a = 0.75, 0 < ¢t < 10.



10

F(t)
[6)]
T

0 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
G ()

Snapshots of the changing “shadow” of changing “fence” for
ol f(t), a=0.75, f(t) =t + 0.5sin(t), with the time
interval At = 0.5 between the snapshops.



Right-sided R-L integral

JEF(t) = —— / () —tptdr, t<b,

10 10

JF(t), a=0.750<¢<10



Riesz potential

R (1), a=0.75,0 <t <10
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