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Introduction

These notes are an expanded version of a set written for a course given to final-year
undergraduates at the University of Oxford.

A thorough understanding of the Oxford third-year b4 analysis course (an introduction
to Banach and Hilbert spaces) or its equivalent is a prerequisite for this material. We
use [24] as a compendium of results from that series of lectures. (Numbers in square
brackets refer to items in the bibliography.)

The author acknowledges his debt to all those from whom he has learnt functional
analysis, especially Professor D. A. Edwards, Dr G. R. Allen and Dr J. M. Lindsay. The
students attending the course were very helpful, especially Mr A. Evseev, Mr L. Taitz
and Ms P. Iley.

This document was typeset using LATEX2ε with Peter Wilson’s memoir class and the
AMS-LATEX andXY-pic packages. The index was produced with the aid of the MakeIndex
program.

Alexander C. R. Belton
Lady Margaret Hall
Oxford
20th August 2004

This edition contains a few additional exercises and the electronic version is equipped
with hyperlinks, thanks to the hyperref package of Sebastian Rahtz and Heiko Oberdiek.

ACRB
University College
Cork
30th September 2006

Convention
Throughout these notes we follow the Dirac-formalism convention that inner products

on complex vector spaces are conjugate linear in the first argument and linear in the
second, in contrast to many Oxford courses.
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One Normed Spaces

Throughout, the scalar field of a vector space will be denoted by F and will be either
the real numbers R or the complex numbers C.

Basic Definitions

Definition 1.1. A norm on a vector space X is a function

‖ · ‖ : X → R+ := [0,∞); x 7→ ‖x‖

that satisfies, for all x, y ∈ X and α ∈ F,

(i) ‖x‖ = 0 if and only if x = 0 (faithfulness),

(ii) ‖αx‖ = |α| ‖x‖ (homogeneity)

and (iii) ‖x+ y‖ 6 ‖x‖ + ‖y‖ (subadditivity).

A seminorm on X is a function p : X → R+ that satisfies (ii) and (iii) above.

Definition 1.2. A normed vector space is a vector space X with a norm ‖·‖; if necessary
we will denote the norm on the space X by ‖·‖X . We will sometimes use the term normed
space as an abbreviation.

Definition 1.3. A Banach space is a normed vector space (E, ‖ · ‖) that is complete,
i.e., every Cauchy sequence in E is convergent, where E is equipped with the metric
d(x, y) := ‖x− y‖.

Definition 1.4. Let (xn)n>1 be a sequence in the normed vector space X. The series∑∞
n=1 xn is convergent if there exists x ∈ X such that

(∑n
k=1 xk

)
n>1

is convergent to x,

and the series is said to have sum x. The series is absolutely convergent if
∑∞

n=1 ‖xn‖ is
convergent.

Theorem 1.5. (Banach’s Criterion) A normed vector space X is complete if and
only if every absolutely convergent series in X is convergent.

Proof
This is a b4 result: see [24, Theorem 1.2.9]. �
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Subspaces and Quotient Spaces

Definition 1.6. A subspace of a vector space X is a subset M ⊆ X that is closed under
vector addition and scalar multiplication: M + M ⊆ M and αM ⊆ M for all α ∈ F,
where

A +B := {a+ b : a ∈ A, b ∈ B} and αA := {αa : a ∈ A} ∀A,B ⊆ X, α ∈ F.

Example 1.7. Let (X, T) be a topological space and let (E, ‖ · ‖E) be a Banach space
over F. The set of continuous, E-valued functions on X forms an vector space, denoted
by C(X,E), where the algebraic operations are defined pointwise: if f , g ∈ C(X,E) and
α ∈ F then

(f + g)(x) := f(x) + g(x) and (αf)(x) := αf(x) ∀x ∈ X.

The subspace of bounded functions

Cb(X,E) :=
{
f ∈ C(X,E)

∣∣ ‖f‖∞ <∞
}
,

where

‖ · ‖∞ : Cb(X,E) → R+; f 7→ sup
{
‖f(x)‖E : x ∈ X

}
,

is a Banach space, with supremum norm ‖ · ‖∞ (see Theorem 1.36). If X is compact
then every continuous, E-valued function is bounded, hence C(X,E) = Cb(X,E) in this
case. If E = C (the most common case of interest) we use the abbreviations C(X) and
Cb(X).

Proposition 1.8. A subspace of a Banach space is closed if and only if it is complete.

Proof
See [24, Theorem 1.2.10]. �

Definition 1.9. Given a vector space X with a subspace M , the quotient space X/M
is the set

X/M :=
{
[x] := x+M

∣∣ x ∈ X
}
, where x+M := {x+m : m ∈M},

equipped with the vector-space operations

[x] + [y] := [x+ y] and α[x] := [αx] ∀x, y ∈ X, α ∈ F.

(It is a standard result of linear algebra that this defines a vector space; for a full
discussion see [7, Appendix A.4].) The dimension of X/M is the codimension of M (in
X).

Theorem 1.10. Let X be a normed vector space with a subspace M and let

∥∥[x]
∥∥

X/M
:= inf

{
‖x−m‖ : m ∈M

}
∀ [x] ∈ X/M.
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This defines a seminorm on X/M , which is a norm if and only if M is closed, called
the quotient seminorm (or quotient norm) on X/M . If E is a Banach space and M is a
closed subspace of E then

(
E/M, ‖ · ‖E/M

)
is a Banach space.

Proof
Clearly

∥∥[x]
∥∥

X/M
= 0 if and only if d(x,M) = 0, which holds if and only if x ∈ M̄ .

Hence
∥∥·

∥∥
X/M

is faithful if and only if M is closed.

If α ∈ F and x ∈ X then

∥∥α[x]
∥∥

X/M
=

∥∥[αx]
∥∥

X/M
= inf

{
‖αx−m‖ : m ∈ M

}

= inf
{
|α| ‖x− n‖ : n ∈M

}
= |α|

∥∥[x]
∥∥

X/M
,

using the fact that α−1M = M if α 6= 0 (because M is a subspace).
For subadditivity, let x, y ∈ X and note that

∥∥[x] + [y]
∥∥

X/M
=

∥∥[x+ y]
∥∥

X/M
6 ‖x+ y − (m+ n)‖ 6 ‖x−m‖ + ‖y − n‖

for all m, n ∈M . Taking the infimum over such m and n gives the result.
We prove the final claim in Proposition 2.15 as a consequence of the open-mapping

theorem; see also Exercise 1.2. �

Example 1.11. Let I be a subinterval of R and let p ∈ [1,∞). The vector space of
Lebesgue-measurable functions on I that are p-integrable is denoted by Lp(I):

Lp(I) :=
{
f : I → C

∣∣ f is measurable and ‖f‖p <∞
}
,

with vector-space operations defined pointwise and

‖f‖p :=
(∫

I

|f(x)|p dx
)1/p

.

(Note that

|f + g|p 6
(
|f | + |g|

)p
6

(
2 max{|f |, |g|}

)p
= 2p max{|f |p, |g|p} 6 2p

(
|f |p + |g|p

)
,

so Lp(I) is closed under addition; it is simple to verify that Lp(I) is a vector space.)
The map f 7→ ‖f‖p is a seminorm, but not a norm; the subadditivity of ‖ · ‖p is known
as Minkowski’s inequality (see [17, Theorem 28.19] for its proof).

If N := {f ∈ Lp(I) : ‖f‖p = 0} then Lp(I) := Lp(I)/N is a Banach space, with
norm [f ] 7→

∥∥[f ]
∥∥

p
:= ‖f‖p. (A function lies in N if and only if it is zero almost

everywhere.) As is usual practise in functional analysis, we shall frequently blur the
distinction between f and [f ]. (Discussion of Lp(R) may be found in [17, Chapter 28]
and [26, Chapter 7]; the generalisation from R to a subinterval I is trivial.)

Example 1.12. Let I be a subinterval of R and let L∞(I) denote the vector space of
Lebesgue-measurable functions on I that are essentially bounded :

L∞(I) :=
{
f : I → C

∣∣ f is measurable and ‖f‖∞ <∞},
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with vector-space operations as usual and

‖f‖∞ := inf{M : |f(x)| 6 M almost everywhere}.

(It is not difficult to show that ‖f‖∞ = sup{|f(x)| : x ∈ I \ N} for some null set N
which may, of course, depend on f .)

As in the previous example, f 7→ ‖f‖∞ is a seminorm, N = {f ∈ L∞(I) : ‖f‖∞ = 0}
consists of those functions that are zero almost everywhere and L∞(I) := L∞/N is a
Banach space with respect to the norm [f ] 7→

∥∥[f ]
∥∥
∞

:= ‖f‖∞.

Although it may seem that we have two different meanings for ‖f‖∞, the above and that
in Example 1.7, they coincide if f is continuous.

Example 1.13. Let Ω be an open subset of the complex plane C and let

Hb(Ω) := {f : Ω → C | f is bounded and holomorphic in Ω}.

Equipped with the supremum norm on Ω, Hb(Ω) is a Banach space. (Completeness is
most easily established via Morera’s theorem [16, Theorem 5.6].)

Completions

Recall that a map f : X → Y between metric spaces (X, dX) and (Y, dY ) is an isometry
if dY

(
f(x1), f(x2)

)
= dX(x1, x2) for all x1, x2 ∈ X, and an isometric isomorphism

between normed vector spaces is an invertible linear isometry (the inverse of which is
automatically linear and isometric).

Theorem 1.14. If X is a normed vector space then there exists a Banach space X̃ and a
linear isometry i : X → X̃ such that i(X) is dense in X̃. The pair

(
X̃, i

)
is a completion

of X, and is unique in the following sense: if (Y, i) and (Z, j) are completions of X then
there exists an isometric isomorphism k : Y → Z such that k ◦ i = j.

Proof
We defer this until we have developed more machinery; see Propositions 3.11 and

2.6. �

As we have uniqueness, we talk about the completion of a normed vector space.

The process of completing a given space may often be simplified by realising it as a dense
subspace of some known Banach space. The following examples demonstrate this.

Example 1.15. If (X, T) is a topological space and (E, ‖ · ‖) a Banach space then
Cb(X,E) contains two subspaces worthy of note:

(i) C0(X,E), the continuous, E-valued functions on X that vanish at infinity (i.e.,
those f ∈ C(X,E) such that, for all ε > 0, the set {x ∈ X : ‖f(x)‖ > ε} is
compact);
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(ii) C00(X,E), the continuous, E-valued functions on X with compact support (i.e.,
those f ∈ C(X,E) such that supp f := {x ∈ X : f(x) 6= 0} is compact).

The first is a closed subspace of Cb(X,E) (the proof of this is Exercise 2.1) and if X
is Hausdorff and locally compact (for all x ∈ X there exists U ∈ T such that x ∈ U
and Ū is compact) then C00(X,E) is dense in C0(X,E). Hence the latter space is the
completion of the former; for the proof of this claim see Proposition 2.18.

Example 1.16. It is immediate that C[0, 1] is a subspace of L1[0, 1] (because of the
inequality ‖f‖1 6 ‖f‖∞). Furthermore, since step functions can be approximated arbi-
trarily well by continuous functions (with respect to the ‖ · ‖1 norm), C[0, 1] is dense in
L1[0, 1]; more accurately, its image under the map f 7→ [f ] is. Hence the completion of
C[0, 1] (with respect to ‖ · ‖1) is L1[0, 1].

Direct Sums

Throughout this section
(
Ea : a ∈ A

)
denotes a family of Banach spaces with common

scalar field F.

Definition 1.17. Let
∑

a∈AEa denote the algebraic direct sum of the spaces Ea, i.e.,

∑
a∈AEa :=

{
x := (xa)a∈A

∣∣ xa = 0 for all but finitely many a ∈ A
}
⊆×a∈A

Ea.

This is a vector space, with the vector-space operations defined pointwise:

x+ y := (xa + ya)a∈A and αx := (αxa)a∈A ∀x, y ∈
∑

a∈A

Ea, α ∈ F.

Theorem 1.18. The set

∏
a∈AEa :=

{
x = (xa)a∈A : ‖x‖∞ <∞

}
⊆×a∈A

Ea,

equipped with vector-space operations defined pointwise and norm

‖ · ‖∞ : x 7→ sup
{
‖xa‖ : a ∈ A

}
,

is a Banach space, the direct product of the Banach spaces Ea.

Proof
The only thing that is not immediate is the proof of completeness; this follows the

pattern of the b4 proof that ℓ∞ is complete [24, Example 1.3.4] so we omit it. �

For other types of direct sum we need the following definition.

Definition 1.19. (Uncountable Sums) If A is an arbitrary set let

∑

a∈A

xa := sup
{∑

a∈A0

xa : A0 is a finite subset of A
}
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for any collection (xa)a∈A of non-negative real numbers. It is easy to show that this
agrees with the usual definition if A is countable. (We are looking at the net of finite
sums

(∑
a∈A0

xa

)
A0∈A

in R+, where A is the aggregate of all finite subsets of A, ordered

by inclusion; see Definition 1.39.)

Theorem 1.20. For p ∈ [1,∞) and x ∈ ∏
a∈AEa let

‖x‖p :=
(∑

a∈A

‖xa‖p
)1/p

.

Then ∑(p)
a∈AEa := {x ∈ ∏

a∈AEa : ‖x‖p <∞}

is a subspace of
∏

a∈AEa and
(∑(p)

a∈AEa, ‖ · ‖p

)
is a Banach space, the p-norm direct sum

of the Banach spaces Ea.

Proof

Let A0 be a finite subset of A; the inequality

∑

a∈A0

‖xa + ya‖p 6
∑

a∈A0

2p
(
‖xa‖p + ‖ya‖p

)
6 2p

(
‖x‖p

p + ‖y‖p
p

)
∀x, y ∈ ∑(p)

a∈AEa,

which may be proved as in Example 1.11, shows that
∑(p)

a∈AEa is a subspace of
∏

a∈AEa.

Subadditivity of ‖ · ‖p on
∑(p)

a∈AEa follows from Minkowski’s inequality on Cn, and
this can be obtained by applying the integral version of Minkowski’s inequality in Ex-
ample 1.11 to suitable step functions.

To see that we have completeness, let (x(n))n>1 be a Cauchy sequence in
∑(p)

a∈AEa.

Since ‖x(n)
a −x

(m)
a ‖ 6 ‖x(n) −x(m)‖p, we have that xa := limn→∞ x

(n)
a exists for all a ∈ A.

If A0 ⊆ A is finite then

∑

a∈A0

‖xa‖p = lim
n→∞

∑

a∈A0

‖x(n)
a ‖p 6 lim

n→∞
‖x(n)‖p

p;

this last limit exists because
(
‖x(n)‖

)
n>1

is Cauchy:
∣∣‖x(n)‖p−‖x(m)‖p

∣∣ 6 ‖x(n)−x(m)‖p.

This bound shows that x ∈ ∑(p)
a∈AEa; it remains to prove that x(n) → x. Note first that

if A0 ⊆ A is finite and m, n ∈ N then
∑

a∈A0
‖x(n)

a − x
(m)
a ‖p 6 ‖x(n) − x(m)‖p

p. Let ε > 0

and suppose that n0 ∈ N is such that ‖x(n) − x(m)‖p < ε for all m, n > n0. Then

∑

a∈A0

‖xa − x(m)
a ‖p = lim

n→∞

∑

a∈A0

‖x(n)
a − x(m)

a ‖p 6 εp ∀m > n0,

so ‖x− x(m)‖p 6 ε for all m > n0, and this gives the result. �

Proposition 1.21. For all p ∈ [1,∞) the algebraic direct sum
∑

a∈AEa is dense in the

p-norm direct sum
∑(p)

a∈AEa.
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Proof

This is a simple consequence of the fact that if x ∈ ∑(p)
a∈AEa then xa 6= 0 for only

countably many a ∈ A: see Exercise 1.7. �

Definition 1.22. The previous proposition motives the definition of
∑(∞)

a∈AEa as the
completion of

∑
a∈AEa with respect to ‖ · ‖∞; this space is the direct sum of the Banach

spaces Ea. Clearly
∑(∞)

a∈AEa ⊆ ∏
a∈AEa, but the inclusion may be strict.

Example 1.23. (Sequence Spaces) Let A = N := {1, 2, 3, . . .} and take Ea = F for
all a ∈ A. Then the algebraic direct sum

∑
a∈AEa = c00 :=

{
x = (xn)n∈N : ∃N ∈ N such that xN+1 = xN+2 = · · · = 0

}
,

the p-norm direct sum

∑(p)
a∈AEa =

{
ℓp if p ∈ [1,∞),

c0 if p = ∞,

and the direct product
∏

a∈AEa = ℓ∞.

In general, if A is any set and Ea = F for all a ∈ A then we define c00(A), c0(A) and
ℓp(A) in this manner.

Initial Topologies

Definition 1.24. Let X be a set and F be collection of functions on X, such that
f : X → Yf , where (Yf , Sf) is a topological space, for all f ∈ F . The initial topology
generated by F , denoted by TF , is the coarsest topology such that each function f ∈ F is
continuous. (Older books call TF the weak topology generated by F : the adjective ‘weak’
is tremendously overworked in functional analysis so we prefer the modern term.) It is
clear that TF is the intersection of all topologies on X that contain

⋃

f∈F

f−1(Sf) = {f−1(U) : f ∈ F, U ∈ Sf}.

In fact, every element of TF is the arbitrary union of sets of the form

n⋂

i=1

f−1
i (Ui) (n ∈ N, f1, . . . , fn ∈ F, U1 ∈ Sf1

, . . . , Un ∈ Sfn
); (1.1)

these sets are a basis for this topology. (To see this, note that every set of this form
lies in TF , and that the collection of arbitrary unions of these sets is a topology (cf.
Exercise 1.4).)

Proposition 1.25. Let F be a collection of functions as in Definition 1.24 and let
(Z, U) be a topological space. A function g : (Z, U) → (X, TF ) is continuous if and only
if f ◦ g : (Z, U) → (Yf , Sf ) is continuous for all f ∈ F .
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Proof
As the composition of continuous functions is continuous, one implication is imme-

diate. For the converse, suppose that f ◦ g is continuous for all f ∈ F and let U ∈ TF .
We may assume that U =

⋂n
i=1 f

−1
i (Ui) for f1, . . . , fn ∈ F and U1 ∈ Sf1

, . . . , Un ∈ Sfn
,

and then

g−1(U) =

n⋂

i=1

g−1
(
f−1

i (Ui)
)

=

n⋂

i=1

(fi ◦ g)−1(Ui) ∈ U,

as required. �

The above may remind the reader of a result concerning the product topology, which is
an initial topology (that generated by the coordinate projections). We shall see other
examples of initial topologies later.

Proposition 1.26. Let F be a collection of functions as in Definition 1.24, such that
(Yf , Sf) is Hausdorff for all f ∈ F . The initial topology TF is Hausdorff if F separates
points : for all x, y ∈ Y such that x 6= y there exists f ∈ F such that f(x) 6= f(y).

Proof
Let x, y ∈ X be distinct and suppose that f ∈ F is such that f(x) 6= f(y). Since Sf

is Hausdorff there exist disjoint sets U , V ∈ Sf such that f(x) ∈ U and f(y) ∈ V . Then
f−1(U), f−1(V ) ∈ TF are such that

x ∈ f−1(U), y ∈ f−1(V ) and f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = ∅.

Hence TF is Hausdorff, as claimed. �

Nets

In a metric space (X, d) it is readily proven that, given a set M ⊆ X, the element x ∈ M̄
if and only if there exists a sequence (xn)n>1 ⊆ M such that xn → x. Hence closed sets
(those such that M = M̄ ) may be characterised by means of sequences, and therefore
so can the topology generated by the metric d.

If X = R is equipped with the cocountable topology (which consists of the empty
set and the complement of each countable subset of R) then M = R \ {0} has closure
M̄ = R but there is no sequence (xn)n>1 ⊆ M such that xn → 0. This shows that the
result of the previous paragraph does not hold for general topological spaces (and that
the cocountable topology on R is non-metrizable).

However, arguments with sequences are often very natural and easy to follow, whereas
arguments involving open sets can sometimes appear rather opaque. Is it possible to
replace the notion of sequence with some generalisation which allows a version of the
result above? The answer is, of course, yes.

Definition 1.27. Let A be a set. A preorder 6 on A is a binary relation that satisfies,
for all a, b, c ∈ A,

(i) a 6 a (reflexivity)

and (ii) a 6 b and b 6 c imply that a 6 c (transitivity);
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we say that A is ordered by 6. For convenience we write b > a if and only if a 6 b. A
directed set (A, 6) is a set A and a preorder 6 on A with the following property: for all
a, b ∈ A there exists c ∈ A such that a 6 c and b 6 c; the element c is called an upper
bound or majorant for a and b. A net in a set X is a directed set (A, 6) and a function
x : A→ X; this is denoted by (xa)a∈A (the preorder being understood).

Example 1.28. If N is equipped with the usual order 6 then it is a directed set, and
the net (xn)n∈N is the same thing as the sequence (xn)n>1.

Example 1.29. Let f be a continuous function on the interval [0, 1], and let A be the
collection of (real-valued) step functions φ on [0, 1] that are bounded above by f : a
step function φ ∈ A if φ(x) 6 f(x) for all x ∈ [0, 1] (where 6 is the usual order on
R). Order A by saying that φ 6 ψ if and only if φ(x) 6 ψ(x) for all x ∈ [0, 1]; since
φ ∨ ψ : x 7→ max{φ(x), ψ(x)} is a step function if φ and ψ are, the pair (A, 6) forms a
directed set.

Definition 1.30. Let (X, T) be a topological space. A net (xa)a∈A in X is convergent
if there exists x ∈ X such that, for all U ∈ T with x ∈ X, there exists a0 ∈ A such that
xa ∈ U for all a > a0; the element x is the limit of this net, and we write xa → x or
lima∈A xa = x. (This latter notation is a slight abuse as, in general, limits need not be
unique.)

Proposition 1.31. A net in a Hausdorff topological space has at most one limit.

Proof

This may be proved in the same manner as the corresponding result for sequences
[22, Proposition 4.2.2]. �

Example 1.32. A net (xn)n∈N in a topological space (X, T) converges to x if and only
if the sequence (xn)n>1 converges to x; the proof of this is immediate. Hence nets are
generalisations of sequences.

Example 1.33. If (A, 6) is the directed set of Example 1.29 and
∫
φ denotes the integral

of the step function φ then (
∫
φ)φ∈A is a net in R that converges to

∫
f . (To see this,

note first that
∫
f = sup{

∫
φ : φ ∈ A}: see [17, §9.6].)

We now give some theorems that illustrate how nets can be used to answer topological
questions.

Theorem 1.34. Let (X, T) be a topological space and suppose that M ⊆ X. Then M
is closed if and only if lima∈A xa ∈M for all convergent nets (xa)a∈A ⊆ M .

Proof

Suppose M is closed and (xa)a∈A is a net in M , such that xa → x for some x ∈ X. If
x /∈ M then X \M is an open set containing x, so it contains some elements of (xa)a∈A,
contrary to hypothesis. Hence lima∈A xa ∈M .

Conversely, let x ∈ M̄ and let A = {U ∈ T : x ∈ U} denote the collection of open
sets containing x; this forms a directed set if ordered by reverse inclusion, i.e., A 6 B
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if and only if A ⊇ B. If A ∈ A then A ∩M 6= ∅, for otherwise X \ A is a closed set
containing M and so must contain x. Hence we may choose xA ∈ A ∩M for all A ∈ A,
and the net (xA)A∈A converges to x: note that if U ∈ T contains x then xA ∈ U for all
A > U . This gives the result. �

The following proposition shows why nets and initial topologies work so well together.

Proposition 1.35. Let (X, T) and (Y, S) be topological spaces. A function f : X → Y
is continuous if and only if f(xa) → f(x) for every net (xa)a∈A such that xa → x.

Proof
Let f be continuous, suppose that (xa)a∈A is convergent to x and let U ∈ S contain

f(x). Then V = f−1(U) ∈ T contains x, so there exists a0 ∈ A such that xa ∈ V for all
a > a0. Hence f(xa) ∈ U for all a > a0, as required.

Conversely, let U ∈ S and suppose for contradiction that V = f−1(U) is not open.
Then there exists x ∈ V \ V ◦, and no open set containing x is contained in V : for all
A ∈ A := {W ∈ T : x ∈ W} there exists xA ∈ A ∩ (X \ V ). If A is ordered by reverse
inclusion then (xA)A∈A is a net converging to x, so f(xA) → f(x). In particular there
exists A0 ∈ A such that f(xA0

) ∈ U , and xA0
∈ V , the desired contradiction. �

This proposition allows us to give a simple proof of the completeness of Cb(X,E).

Theorem 1.36. If X is a topological space and E is a Banach space then Cb(X,E) is
a Banach space with respect to the supremum norm ‖ · ‖∞.

Proof
We prove only completeness; everything else is trivial. Let (fn)n>1 be a Cauchy

sequence in Cb(X,E) and note that ‖fn(x) − fm(x)‖ 6 ‖fn − fm‖∞ for all x ∈ X, so

f : X → E; x 7→ lim
n→∞

fn(x)

is well defined. If ε > 0 then there exists n0 ∈ N such that ‖fn − fm‖∞ < ε if m, n > n0,
so

‖f(x) − fm(x)‖ = lim
n→∞

‖fn(x) − fm(x)‖ 6 ε ∀m > n0, x ∈ X

whence ‖f −fm‖∞ → 0 as m→ ∞ and also ‖f‖∞ 6 ‖f −fn0
‖∞+‖fn0

‖∞ 6 ε+‖fn0
‖∞,

i.e., f is bounded. Finally, if xa → x then choose a0 ∈ A such that ‖fn0
(xa)−fn0

(x)‖ < ε
for all a > a0 and note that

‖f(xa) − f(x)‖ 6 ‖f(xa) − fn0
(xa)‖ + ‖fn0

(xa) − fn0
(x)‖ + ‖fn0

(x) − f(x)‖ < 3ε

for all a > a0. This shows that f(xa) → f(x), so f is continuous. �

Proposition 1.37. Let F be a collection of functions as in Definition 1.24, and suppose
that (xa)a∈A is a net in X. Then xa → x in (X,TF ) if and only if f(xa) → f(x) in
(Yf , Sf) for all f ∈ F .

Proof
As TF makes each f ∈ F continuous, half of the proof follows from Proposition 1.35.

For the other half, suppose that (xa)a∈A ⊆ X and x ∈ X are such that f(xa) → f(x)
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for all f ∈ F . Let U ∈ TF be such that x ∈ U ; it is sufficient to consider U of the form
(1.1) in Definition 1.24. Note that x ∈ f−1

i (Ui) for i = 1, . . . , n, so fi(x) ∈ Ui and there
exists ai ∈ A such that fi(xa) ∈ Ui for all a > ai. If a0 ∈ A is such that ai 6 a0 for each
i then xa ∈ ⋂n

i=1 f
−1
i (Ui) = U for all a > a0, as required. �

Example 1.38. Let Ω ⊆ C be open and let

ιK : C(Ω) → C(K); f 7→ f |K

be the restriction map to K, where K ⊆ Ω. If

F = {ιK : K is a compact subset of Ω}

and each C(K) has the supremum norm then TF is the topology of locally uniform
convergence:

fn → f ⇐⇒ fn|K → f |K uniformly on K for all compact K ⊆ Ω.

Nets allow us to give a proper treatment of summability, which coincides with the ad
hoc method used in Definition 1.19.

Definition 1.39. Let X be a normed vector space. A family (xa)a∈A ⊆ X is summable
if the net of partial sums

(∑
a∈A0

xa

)
A0∈A

is convergent, where A is the collection of

finite subsets of A, ordered by inclusion. If (xa)a∈A is summable then
∑

a∈A xa denotes
the limit of the net of partial sums.

Example 1.40. If (xa)a∈A is a family of non-negative real numbers then this definition
agrees with Definition 1.19 (Exercise 1.6). If (zn)n∈N is a family of complex numbers
then it is summable if and only if

∑∞
n=1 zn is absolutely convergent (see Exercises 1.7

and 1.8). Note also that if (xa)a∈A is a family of vectors in a Banach space then

∑

a∈A

‖xa‖ <∞ =⇒
∑

a∈A

xa is convergent,

i.e., absolute summability implies summability (Exercise 1.7).

Nets were introduced by Moore and Smith in [13] – the theory is also called Moore-Smith
convergence, especially in older references – and they were applied to general topological
spaces by Garrett Birkhoff [2]. As to the choice of nomenclature, the reader may care
to reflect upon the following, taken from [12, Third footnote on p.3]:

[J. L.] Kelley writes me that [“net”] was suggested by Norman Steenrod
in a conversation between Kelley, Steenrod and Paul Halmos. Kelley’s own
inclination was to the name “way”; the analogue of a subsequence would then
be a “subway”!

An aged but excellent introduction to nets is [9, Chapter 2]; McShane’s article [12] is a
very pleasant introductory exposition. Pedersen [14] refers to the viewpoints of topology
in terms of nets and of open sets as dynamic and static, respectively.
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Exercises 1

Exercise 1.1. Let X be a normed vector space and let M be a closed subspace of X.
Prove that

π{y ∈ X : ‖y − x‖ < ε} =
{
[y] ∈ X/M :

∥∥[y] − [x]
∥∥ < ε

}
∀x ∈ X, ε > 0,

where π : X → X/M ; x 7→ [x] is the natural map from X onto X/M (the quotient map).
Deduce that the quotient norm yields the quotient topology on X/M given by

Q := {U ⊆ X/M : π−1(U) ∈ T},

where T denotes the norm topology on X, and that the quotient map is open (i.e., sends
open sets to open sets). Prove also that the quotient map is linear and continuous.

Exercise 1.2. Prove directly that if E is a Banach space and M is a closed subspace of
E then the quotient space

(
E/M, ‖ · ‖E/M

)
is complete. [Use Banach’s criterion.]

Exercise 1.3. Let M and N be subspaces of the normed space X. Prove that if M is
finite dimensional and N is closed then M +N is closed. [Recall that finite-dimensional
subspaces of normed spaces are closed [24, Corollary 1.2.18] and use the quotient map.]

Exercise 1.4. Prove that if {Ai
j : i ∈ I, j ∈ J} and {Bk

l : k ∈ K, l ∈ L} are families of
sets, where the index sets I, J , K and L are arbitrary, then

(⋃

i∈I

⋂

j∈J

Ai
j

)
∩

( ⋃

k∈K

⋂

l∈L

Bk
l

)
=

⋃

(i,k)∈I×K

⋂

(j,l)∈J×L

Ai
j ∩ Bk

l .

What does this have to do with initial topologies?

Exercise 1.5. Prove that if TF is the initial topology on X generated by a collection
of functions F and Y ⊆ X then TF |Y , the relative initial topology on Y , is the initial
topology generated by F |Y = {f |Y : f ∈ F}, the restrictions of the functions in F to Y .

Exercise 1.6. Let (xa)a∈A be a family of non-negative real numbers and let A denote
the collection of finite subsets of A. Prove that (xa)a∈A is summable (with sum α) if and
only if β = sup

{∑
a∈A0

xa : A0 ∈ A
}
<∞ and in this case α = β.

Exercise 1.7. Let E be a Banach space and let (xa)a∈A a family of vectors in E. Prove
that if

∑
a∈A ‖xa‖ is convergent then S := {a ∈ A : xa 6= 0} is countable. [Consider the

sets Sn := {a ∈ A : ‖xa‖ > 1/n} for n ∈ N.] Deduce that (xa)a∈A is summable with sum

∑
a∈A xa =

{ ∑
a∈S xa if S is finite,

∑∞
j=1 xaj

if S is infinite,

where (if S is infinite) j 7→ aj is a bijection between N and S.

Exercise 1.8. Prove that a family of complex numbers (za)a∈A is summable if and only
if

(
|za|

)
a∈A

is summable. [Consider real and imaginary parts to reduce to the real case
and then consider positive and negative parts.]
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Exercise 1.9. Find a Hilbert space H and a countable family of vectors (xn)n∈N in H
that is summable but not absolutely summable (i.e.,

(
‖xn‖

)
n∈N

is not summable).

Exercise 1.10. Prove the converse to Proposition 1.31, that in a space with a non-
Hausdorff topology there exists a net that converges to two distinct points. [Take two
points that cannot be separated by open sets and define a net that converges to both of
them.]

Exercise 1.11. A sequence in a normed vector space that is convergent is necessarily
bounded. Is the same true for nets?





Two Linear Operators

Preliminaries

Let X be a normed vector space; for all r ∈ R+ let Xr denote the closed ball in X with
radius r and centre the origin:

Xr :=
{
x ∈ X : ‖x‖ 6 r

}
.

Definition 2.1. A bounded (linear) operator from X to Y is a linear transformation
T : X → Y such that the operator norm ‖T‖ is finite, where

‖T‖ := inf{M ∈ R+ : ‖Tx‖ 6 M‖x‖ for all x ∈ X}
= sup{‖Tx‖ : x ∈ X1}
= sup

{
‖Tx‖ : x ∈ X, ‖x‖ = 1

}
.

Proposition 2.2. Let T : X → Y be a linear transformation. The following statements
are equivalent:

(i) T is a bounded linear operator;

(ii) T is uniformly continuous;

(iii) T is continuous;

(iv) T is continuous at 0;

(v) T (X1) is bounded: T (X1) ⊆ Yr for some r ∈ R+.

Proof
The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) are immediate. �

We denote the collection of bounded linear operators from X to Y by B(X, Y ) (or B(X)
if X = Y ). Note that B(X, Y ) is a normed vector space, where

(T + S)x := Tx+ Sx and (αT )x := αTx ∀S, T ∈ B(X, Y ), x ∈ X, α ∈ F

and the norm on B(X, Y ) is the operator norm.

Theorem 2.3. If T : X → Y be a linear transformation then

(i) the kernel kerT := {x ∈ X : Tx = 0} is a subspace of X;

17
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(ii) the image imT := {Tx : x ∈ X} is a subspace of Y ;

(iii) X/ kerT ∼= imT via the linear transformation

T̃ : X/ kerT → imT ; [x] 7→ Tx.

If X and Y are normed spaces and T ∈ B(X, Y ) then ker T is closed, X/ kerT is a
normed space and T̃ is continuous, with

∥∥T̃
∥∥ = ‖T‖.

Proof
The algebraic facts are immediately verified, as is the fact that ker T = T−1{0} is

closed if T is continuous. If

π : X → X/ kerT ; x 7→ [x]

is the quotient map, the inequality ‖π(x)‖ =
∥∥[x]

∥∥ 6 ‖x‖ implies that ‖π‖ 6 1 and so

‖T‖ 6
∥∥T̃

∥∥ ‖π‖ 6
∥∥T̃

∥∥ (because T̃ ◦ π = T ). Conversely, let x ∈ X, ε > 0 and choose
y ∈ ker T such that ‖x− y‖ <

∥∥[x]
∥∥ + ε. Then

∥∥T̃ [x]
∥∥ = ‖Tx‖ = ‖T (x− y)‖ 6 ‖T‖ ‖x− y‖ 6 ‖T‖

(∥∥[x]
∥∥ + ε

)
,

and since this holds for all ε > 0 and x ∈ X we have the result. �

Completeness of B(X, Y )

Proposition 2.4. If X 6= {0} then the normed vector space B(X, Y ) is a Banach space
if and only if Y is a Banach space.

Proof
The fact that the completeness of Y entails the completeness of B(X, Y ) is a result

from b4 [24, Exercise 1.5.17(ii)]; a leisurely proof may be found in [10, Theorem 2.10-
2] and a more concise version in [14, Theorem 2.1.4]. We prove the converse as an
application of the Hahn-Banach theorem: see Proposition 3.12. �

Extension of Linear Operators

Often it is easiest to define a linear operator on some dense subspace of a Banach space,
and extend it to the whole space “by continuity”: the following theorem explains the
meaning of this.

Theorem 2.5. (BLT) Let X0 be a dense subspace of a normed vector space X and
let T0 ∈ B(X0, Y ), where Y is a Banach space. There exists a unique T ∈ B(X, Y ) such
that T |X0

= T0, and such satisfies ‖T‖ = ‖T0‖.
Proof

Existence is a b4 result [24, Exercise 1.5.17(iii)]; for a proof see [10, Theorem 2.7-11] or
[14, Theorem 2.1.11]. For uniqueness, note that if S|X0

= T0 = T |X0
for S, T ∈ B(X, Y )

then (S − T )|X0
= 0 and so S − T = 0 by continuity: if x ∈ X let (xn)n>1 ⊆ X0 be such

that xn → x and note that (S − T )x = limn→∞(S − T )xn = 0. �
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Uniqueness of Completions

We are now in the position to prove that the completion of a normed space is unique.

Proposition 2.6. Let (Y, i) and (Z, j) be completions of the normed space X. There
exists an isometric isomorphism k : Y → Z such that the following diagram commutes.

X
i

j

Y

k

Z

Proof
Note that

k0 : i(X) → Z; i(x) 7→ j(x)

is a well-defined linear isometry from a dense subspace of Y onto a dense subspace of
Z, viz j(X). Hence, by Theorem 2.5, k0 extends to k ∈ B(Y, Z) and k is an isometry:
if y ∈ Y then there exists (xn)n>1 ⊆ X such that i(xn) → y, but k and x 7→ ‖x‖ are
continuous, so

‖k(y)‖ = lim
n→∞

∥∥k
(
i(xn)

)∥∥ = lim
n→∞

∥∥k0

(
i(xn)

)∥∥ = lim
n→∞

‖i(xn)‖ = ‖y‖.

Furthermore, k(Y ) is closed in Z: to see this, let
(
k(yn)

)
n>1

be a convergent sequence

(with yn ∈ Y ) and note that it is Cauchy, so (yn)n>1 is Cauchy (k being an isometry) and
hence convergent, to y ∈ Y ; the continuity of k gives k(yn) → k(y) ∈ k(Y ), as required.
As k(Y ) contains j(X), it contains its closure, Z, and therefore k is surjective. �

The Baire Category Theorem

Definition 2.7. A subset of a metric space is said to be meagre or of the first category
if it is a countable union of closed sets with empty interior; a set is non-meagre or of the
second category otherwise. (Recall that a set is nowhere dense if its closure has empty
interior.)

We introduce some notation (which we learned from Dr J. M. Lindsay) that will be used
in the proof of the next theorem. If (X, d) is a metric space then let

BX
r (x) := {y ∈ X : d(x, y) < r} (the open ball of radius r and centre x)

and

BX
r [x] := {y ∈ X : d(x, y) 6 r} (the closed ball of radius r and centre x)

for all x ∈ X and r ∈ (0,∞); if the space is clear from the context then we abbreviate
these to Bε(x) and Bε[x] respectively. If X is a normed space then

BX
r (x) = x+ rBX

1 (0) and BX
r [x] = x+Xr = x+ rX1;
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furthermore, BX
r (x) = BX

r [x].

Recall that G is said to be dense in the topological space (X,T) if and only if Ḡ = X.
This is equivalent to the condition that G ∩ U 6= ∅ for all U ∈ T \ {∅} (because Ḡ = X
if and only if (X \G)◦ = X \ Ḡ = ∅). If T is given by a metric d then this condition is
equivalent to requiring that G ∩Bε(x) 6= ∅ for all x ∈ X and ε > 0.

Theorem 2.8. (Baire) If (Gn)n>1 is a sequence of open, dense subsets of the complete
metric space (X, d) then the intersection

⋂
n>1Gn is dense in X.

Proof
Let x0 ∈ X and r0 > 0; it suffices to prove that Br0

(x0) ∩
⋂

n>1Gn 6= ∅. To do this
we construct sequences (rn)n>1 ⊆ (0,∞) and (xn)n>1 ⊆ X such that

r0 > r1 > r2 > · · · → 0 (2.1)

as n→ ∞ and

Brn
[xn] ⊆ Brn−1

(xn−1) ∩Gn ∀n > 1. (2.2)

Given (2.2), if n > m > 1 then Brn
[xn] ⊆ Brn−1

(xn−1) ⊆ Brn−1
[xn−1] ⊆ · · · ⊆ Brm

(xm);
in particular,

d(xn, xm) < max{rn, rm} ∀m,n > 1,

which, if (2.1) holds, shows that (xn)n>1 is Cauchy, and so convergent. As xn ∈ Brm
[xm]

for all n > m > 1,

lim
n→∞

xn ∈
⋂

n>1

Brn
[xn] ⊆ Br0

(x0) ∩
⋂

n>1

Gn

and we are done. (This last step shows why we must consider both closed and open
balls.)

To see why we may find sequences satisfying (2.1) and (2.2), consider first the case
n = 1. Note that Br0

(x0) ∩ G1 is open (being the intersection of two open sets) and
non-empty (as G1 is dense in X). Hence there exists x1 ∈ X and s ∈ (0, r0) such that
Bs(x1) ⊆ Br0

(x0) ∩ G1; taking r1 ∈
(
0,min{s, 1}

)
shows that (2.2) holds in the case

n = 1. This argument may be repeated for all n (each time ensuring that rn < 1/n)
which completes the proof. �

An alternative formulation of Baire’s category theorem as follows, which states that a
complete metric space is non-meagre.

Theorem 2.9. Let (Fn)n>1 be a sequence of closed subsets of the complete metric
space (X, d). If X =

⋃
n>1 Fn then there exists n0 ∈ N such that Fn0

has non-empty
interior.

Proof
Suppose for contradiction that F ◦

n = ∅ for all n > 1, and let Gn = X \ Fn. Then

Ḡn = X \ Fn = X \ F ◦
n = X

and so Gn is an open, dense subset of X, whence
⋂

n>1Gn is dense, by Theorem 2.8, but⋂
n>1Gn =

⋂
n>1X \ Fn = X \ ⋃

n>1 Fn = ∅. �
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The Open-Mapping Theorem

Recall that a function between topological spaces is open if the image of every open set
is open.

Proposition 2.10. Let X and Y be normed spaces; a linear transformation T : X → Y
is open if and only if T (X1) contains Yε for some ε > 0.

Proof
If T is open then T

(
BX

1 (0)
)

is an open subset of Y that contains T0 = 0, and so
contains BY

2ε(0) for some ε > 0. Hence Yε ⊆ BY
2ε(0) ⊆ T

(
BX

1 (0)
)
⊆ T (X1).

Conversely, suppose there exists ε > 0 such that Yε ⊆ T (X1). Let U be an open
subset of X; if u ∈ U then BX

2δ(u) ⊆ U for some δ > 0. Hence

T (U) ⊇ T
(
u+ δBX

2 (0)
)
⊇ Tu+ δT (X1) ⊇ Tu+ δYε ⊇ BY

δε(Tu),

which shows that T (U) is open, as required. �

The Open-Mapping Lemma

Definition 2.11. Let (X, d) be a metric space and suppose that A, B ⊆ X; we say that
A is k-dense in B if for all b ∈ B there exists a ∈ A such that d(b, a) 6 k. Equivalently,
B ⊆ ⋃

a∈A Bk[a]. (If A is dense in B then A is k-dense in B for all k > 0; if A is dense
in B and B is k-dense in C then A is k′-dense in C for any k′ > k.)

Lemma 2.12. (Open-Mapping Lemma) Let E be a Banach space, Y a normed
space and T ∈ B(E, Y ). If there exist r > 0 and k ∈ (0, 1) such that T (Er) is k-dense
in Y1 then

(i) for all y ∈ Y there exists x ∈ E such that ‖x‖ 6
r

1 − k
‖y‖ and Tx = y, so T is

surjective,

(ii) T is an open mapping

and (iii) Y is complete.

Proof
To prove (i) let y ∈ Y ; without loss of generality we may take y ∈ Y1 (the case y = 0

is trivial and otherwise we may replace y by y/‖y‖ ) so there exists x0 ∈ Er such that

‖y − Tx0‖ 6 k.

As k−1(y − Tx0) ∈ Y1 there exists x1 ∈ Er such that

‖k−1(y − Tx0) − Tx1‖ 6 k ⇐⇒ ‖y − T (x0 + kx1)‖ 6 k2.

Continuing in this way we see that there exists a sequence (xl)l>0 ⊆ Er such that

∥∥y − T
n∑

l=0

klxl

∥∥ 6 kn+1 ∀n > 0. (2.3)
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Let x :=
∑∞

l=0 k
lxl; note that this series is absolutely convergent, so convergent, and

(2.3) shows that Tx = y. The inequality ‖x‖ 6 r/(1 − k) follows from the definition of
x and the fact that the series

∑∞
l=0 k

l has sum 1/(1 − k).
For (ii), note that (i) implies that T (X1) ⊇ Y(1−k)/r: if y ∈ Y satisfies ‖y‖ 6 (1−k)/r

then there exists x ∈ X such that Tx = y and ‖x‖ 6 r‖y‖/(1 − k) 6 1. Hence T is
open, by Proposition 2.10.

Finally, let Ỹ denote the completion of Y and regard Y as a dense subspace of Ỹ ,
so that T is a bounded operator from E into Ỹ . The hypotheses of the theorem hold
with Y replaced by Ỹ , i.e., T (Er) is k′-dense in Ỹ1 (where k′ ∈ (k, 1), say k′ = (k+1)/2:
to prove this, use the density of Y1 in Ỹ1 ) and so by (i) we must have that T (E) = Ỹ .
Since T (E) ⊆ Y this gives the equality Y = Ỹ , showing that Y is complete. �

Theorem 2.13. (Open-Mapping Theorem) If T ∈ B(E,F ) is surjective, where E
and F are Banach spaces, then T is an open map.

Proof
Since T is surjective, F =

⋃
n>1 T (En) and so, by Theorem 2.9, there exists n0 ∈ N

such that the closure of T (En0
) has non-empty interior: let y0 ∈ F and ε > 0 be such

that BF
ε (y0) ⊆ T (En0

). If y ∈ F1 then

y =
1

2ε

(
(y0+εy)−(y0−εy)

)
∈ 1

2ε

(
BF

ε [y0]−BF
ε [y0]

)
⊆ 1

2ε

(
T (En0

)−T (En0
)
)
⊆ T (En0/ε),

where A − B := {a − b : a ∈ A, b ∈ B} for all A, B ⊆ E. (For the last inclusion, let
(xn)n>1, (yn)n>1 ⊆ En0

be such that (Txn)n>1 and (Tyn)n>1 are convergent, and note
that

1

2ε

(
lim

n→∞
Txn − lim

n→∞
Tyn

)
= lim

n→∞
T

( 1

2ε
(xn − yn)

)
∈ T (En0/ε)

since
∥∥(xn − yn)/(2ε)‖ 6 (n0 + n0)/(2ε) = n0/ε.) This shows that T (En0/ε) is dense in

F1, and the result follows by Lemma 2.12. �

Corollary 2.14. If T ∈ B(E,F ) is a bijection between Banach spaces E and F then
the inverse T−1 ∈ B(F,E).

Proof
This is immediate. �

Exercises 2

Exercise 2.1. Let X be a topological space and E a Banach space; recall that Cb(X,E),
the space of E-valued, bounded, continuous functions on X, is complete with respect to
the norm

f 7→ ‖f‖∞ := sup{‖f(x)‖E : x ∈ X}.
Prove that C0(X,E), the continuous, E-valued functions on X that vanish at infinity
(i.e., those f ∈ C(X,E) such that {x ∈ X : ‖f(x)‖E > ε} is compact for all ε > 0) is a
closed subspace of Cb(X,E).
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Exercise 2.2. Let (X, T) be a Hausdorff, locally compact space and let ∞ denote a
point not in X. Show that

Ṫ := T ∪ {U ⊆ Ẋ : ∞ ∈ U, X \ U is compact}

is a Hausdorff, compact topology on Ẋ := X ∪ {∞}. [(Ẋ, Ṫ) is the one-point compacti-
fication of (X, T).] Prove that there is a natural correspondence between C0(X,E) and
{f ∈ C(Ẋ, E) : f(∞) = 0}.
Exercise 2.3. Let X be a separable normed space. Prove that X1 is separable (in the
norm topology). Prove that any separable Banach space E is isometrically isomorphic
to a quotient space of ℓ1. [Consider the map x 7→ ∑∞

n=1 xnen for suitable (en)n>1 ⊆ E1.]

Exercise 2.4. Prove that no infinite-dimensional Banach space E has a countable Hamel
basis (where a Hamel basis is a linearly independent set S such that every vector in E
is a finite linear combination of elements of S).

Exercise 2.5. Let T : X → Y be a linear transformation from the normed space X
onto the finite-dimensional normed space Y . Prove that T is continuous if and only if
ker T is closed and that if T is continuous then T is open. [Recall that all norms on a
finite-dimensional space are equivalent.]

Exercise 2.6. Let X = C([0, 1],R) denote the Banach space of continuous, real-valued
functions on the unit interval and for all k ∈ N let

Dk := {f ∈ X : there exists t ∈ [0, 1] such that |f(s)−f(t)| 6 k|s−t| for all s ∈ [0, 1]}.

Prove that Dk is closed. [You may find the Bolzano-Weierstrass theorem useful.] Prove
further that Dk is nowhere dense. [Consider suitable piecewise-linear functions.] Deduce
that there exist continuous functions on [0, 1] that are differentiable at no point in (0, 1).

Exercise 2.7. Let H be an infinite-dimensional, separable Hilbert space. Prove that
B(H)1 is not separable in the norm topology. [Take an orthonormal basis {e1, e2, . . .} of
H , define suitable projection operators on its linear span and extend these by continuity.
Recall the b4 proof that ℓ∞ is closed; you may assume that 2N, the set of all subsets of
N, is uncountable.]

Completeness of Quotient Spaces

The open-mapping theorem provides a quick proof of the following proposition.

Proposition 2.15. Let M be a closed subspace of the Banach space E. The quotient
space

(
E/M, ‖ · ‖E/M

)
is complete, i.e., a Banach space.

Proof

If [x] ∈ (E/M)1 then, by definition of the quotient norm, there exists m ∈ M such
that x −m ∈ E2 (any number greater than 1 will do) and so (E/M)1 ⊆ π(E2), where
π : x 7→ [x] is the quotient map. Since π is a bounded linear operator, the result follows
by Lemma 2.12. �
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Urysohn’s Lemma

To prove certain facts about C(X), the continuous functions on a compact, Hausdorff
space (which is the most important of all commutative Banach algebras) we need a result
from analytic topology.

Definition 2.16. A topological space X is normal if every pair of disjoint, closed sets
can be separated by open sets: if C, D ⊆ X are closed and disjoint there there exist
disjoint, open sets U , V ⊆ X such that C ⊆ U and D ⊆ V . Equivalently, X is normal
if for every open set W and closed set C such that C ⊆ W ⊆ X there exists an open set
U such that C ⊆ U ⊆ Ū ⊆ W . [To see the equivalence, let D = X \W .]

Some authors require the additional condition that all singleton sets to be closed for
a topology to be normal; we follow [3], [9] and [22], but the definition in [21] includes this
and [14] insists on the seemingly stronger requirement that normal spaces be Hausdorff;
in fact, in a normal space the conditions that singletons are closed and the Hausdorff
property are equivalent.

It is an easy exercise [22, Exercise 5.10.17] to prove that a compact, Hausdorff space
is normal (for a proof see [3, Lemma 6.1], [14, Theorem 1.6.6] or [21, Theorem 27.A]).
The following lemma yields the fact that compact, Hausdorff spaces (indeed, Hausdorff
spaces that are normal) have sufficient continuous functions to separate points.

Lemma 2.17. (Urysohn) Let X be a normal space and let C, D ⊆ X be disjoint and
closed. There exists a continuous function f : X → [0, 1] such that f |C = 0 and f |D = 1.

Proof
Let U1 = X \D; by normality there exists an open set U1/2 such that C ⊆ U1/2 and

Ū1/2 ⊆ U1, and then open sets U1/4 and U3/4 such that

C ⊆ U1/4 ⊆ Ū1/4 ⊆ U1/2 and Ū1/2 ⊆ U3/4 ⊆ Ū3/4 ⊆ U1.

Continuing in this manner we find a family of open sets {Um2−n : 1 6 m 6 2n, n > 1}
such that C ⊆ Ur ⊆ Ūr ⊆ Us if r < s. (Throughout this proof the letters r, s and t
refer to dyadic rationals in (0, 1], i.e., numbers of the form m2−n, where n, m ∈ N and
1 6 m 6 2n; these are dense in [0, 1].) We set

f : X → [0, 1]; x 7→
{

1 if x ∈ D,

inf{r : x ∈ Ur} if x /∈ D.

It is immediate that f |D = 1, and f |C = 0 since C ⊆ Ur for all r; it remains to prove
that f is continuous.

If a ∈ (0, 1] then f(x) < a if and only if inf{r : x ∈ Ur} < a, which holds exactly
when x ∈ Ur for some r < a, and hence f−1[0, a) =

⋃
r<a Ur is open. If b ∈ [0, 1) then

inf{r : x ∈ Ur} 6 b if and only if for all r > b there exists s < r such that x ∈ Us, which
gives that

f−1[0, b] =
⋂

r>b

⋃

s<r

Us ⊆
⋂

t>b

Ūt.
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This inclusion is actually an equality; let x ∈ Ūt for all t > b and suppose that r > b.
There exist s, t such that r > s > t > b and so x ∈ Ūt ⊆ Us, whence x ∈ ⋂

r>b

⋃
s<r Us,

as claimed. This shows that f−1[0, b] is closed, and so f−1(b, 1] is open, for all b ∈ [0, 1).
As {(0, a], (b, 1] : a ∈ (0, 1], b ∈ [0, 1)} is a subbase for the usual topology on [0, 1] we
have the result. �

Proposition 2.18. Let X be a locally compact, Hausdorff space and let E be a Banach
space. The space C00(X,E) of compactly supported, continuous, E-valued functions on
X is dense in C0(X,E), the space of continuous, E-valued functions on X that vanish
at infinity.

Proof
Let ε > 0 and f ∈ C0(X,E); by definition, K = {x ∈ X : ‖f(x)‖ > ε} is compact.

For all x ∈ K let Ux be an open set containing x and with compact closure; these
exist by local compactness. As K is compact, K ⊆ ⋃n

i=1 Uxi
for x1, . . . , xn ∈ K, and

L =
⋃n

i=1 Ūxi
is a compact set such that K ⊆ L◦.

By Urysohn’s lemma there exists a continuous function g : L → [0, 1] such that
g|K = 1 and g|L\L◦ = 0; extend g to X by defining

h : X → [0, 1]; x 7→
{
g(x) if x ∈ L,

0 if x ∈ X \ L.

Then h has compact support and is continuous: if C ⊆ [0, 1] is closed then g−1(C) is
closed in L, so in X, and h−1(C) equals g−1(C) (if 0 /∈ C) or g−1(C)∪(X \L◦) (if 0 ∈ C).
Hence fh ∈ C00(X,E), and ‖fh−f‖∞ < ε, as required: if x ∈ K then f(x)h(x) = f(x),
and if x ∈ X \K then ‖f(x)‖ < ε, so ‖f(x)h(x) − f(x)‖ = (1 − h(x))‖f(x)‖ < ε. �

The following theorem can be deduced from Urysohn’s lemma directly, or with an ap-
plication of the open-mapping lemma. It is a theorem of Hahn-Banach type, but applies
to continuous functions on normal spaces.

Theorem 2.19. (Tietze) Let X be a normal space and let Y be a closed subset of X.
If f is a continuous, bounded, real-valued function on Y then there exists a continuous,
bounded, real-valued function F on X such that F |Y = f and ‖F‖∞ = ‖f‖∞.

Proof
Let

T : Cb(X,R) → Cb(Y,R); f 7→ f |Y
be the restriction map and note that T is continuous. Let f ∈ Cb(Y,R) be such that
‖f‖∞ 6 1, and let C = f−1[−1,−1/3] and D = f−1[1/3, 1]. These are closed subsets of
Y , so of X, and by Urysohn’s lemma there exists g ∈ Cb(X,R) such that ‖g‖∞ 6 1/3,
g|C = −1/3 and g|D = 1/3. Hence ‖Tg − f‖∞ 6 2/3, and so T satisfies the conditions
of the open-mapping lemma: T (Cb(X,R)1/3) is 2/3-dense in Cb(Y,R)1. In particular, T
is surjective, so there exists F ∈ Cb(X,R) such that T (F ) = f and

‖f‖∞ 6 ‖F‖∞ 6
1/3

1 − 2/3
‖f‖∞ = ‖f‖∞,
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as required. �

It is an exercise to extend the above to unbounded real-valued functions, and to complex-
valued functions; see Exercise 3.3.

The Closed-Graph Theorem

Recall that if (X, T) and (Y, S) are topological spaces then the product topology onX×Y
has basis

{U × V : U ∈ T, V ∈ S}.

If X and Y are normed spaces then this topology is given by the product norm,

‖ · ‖X×Y : X × Y → R+; (x, y) 7→ ‖x‖X + ‖y‖Y .

Theorem 2.20. (Closed-Graph Theorem) Let E, F be Banach spaces. A linear
transformation T : E → F is bounded if and only if the graph of T ,

G(T ) := {(x, Tx) : x ∈ E} ⊆ E × F,

is closed (with respect to the product topology on E × F ).

Proof

It is a standard (and simple) result from point-set topology that any continuous
function with values in a Hausdorff space has closed graph; this is often set as an exercise
[21, Exercise 26.6], [22, Exercise 4.3.3] and a proof may be found in [19, Proposition 2.14].

Now suppose that G(T ) is closed and note that G(T ) is a subspace of E × F , so a
Banach space with respect to the product norm. Let

π1 : G(T ) → E; (x, Tx) 7→ x;

this linear transformation is norm-decreasing (so continuous) and bijective, so by the
open-mapping theorem π−1

1 is bounded. Furthermore

π2 : G(T ) → F ; (x, Tx) 7→ Tx

is continuous, hence T = π2 ◦ π−1
1 is bounded, as required. �

The closed-graph theorem is often used in the following manner. A priori, to show that a
linear transformation between Banach spaces is continuous we must show that if xn → x
then Txn → Tx, for any sequence (xn)n>1. The closed-graph theorem means that we
need only show that the graph of T contains its limit points, i.e., if (xn)n>1 is such that
xn → x and Txn → y then Tx = y. In this case we have control over (xn)n>1 and also
over (Txn)n>1, which is a considerable improvement. An application of this idea occurs
in the solution to Exercise 4.8.
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The Principle of Uniform Boundedness

We employ the closed-graph theorem to give a proof of the principle of uniform bound-
edness, also known as the Banach-Steinhaus theorem.

Theorem 2.21. (Banach-Steinhaus) Let E be a Banach space, Y a normed space
and suppose that {Ta : a ∈ A} ⊆ B(E, Y ). If {Tax : a ∈ A} ⊆ Y is bounded, for all
x ∈ E, then {‖Ta‖ : a ∈ A} is bounded.

Proof
Note first that we may replace Y by its completion, so without loss of generality we

assume that Y is a Banach space. Let Ya := Y for all a ∈ A and let Z :=
∏

a∈AYa be
their direct product. Define

T : E → Z; x 7→ (Tax)a∈A

and note that the pointwise boundedness of the Ta ensures that T is well defined. For
all b ∈ A let

πb : Z → Yb; (ya)a∈A 7→ yb

and observe that this map is linear and norm-decreasing. Let (xn, Txn)n>1 ⊆ G(T ) be
convergent, say xn → x and Txn → y. For all a ∈ A we have that

πay = lim
n→∞

πaTxn = lim
n→∞

Taxn = Tax = πaTx,

by the continuity of πa and Ta, which shows that y = Tx. Hence T has closed graph, so
is bounded, and

‖Tax‖ = ‖πaTx‖ 6 ‖Tx‖ 6 ‖T‖ ‖x‖ ∀x ∈ E,

which shows that ‖Ta‖ 6 ‖T‖ for all a ∈ A. �

The Strong Operator Topology

Let H be a Hilbert space with orthonormal basis {e1, e2, . . .} and define orthogonal
projections Pn ∈ B(H) by setting

Pn : H → H ; x 7→
n∑

k=1

〈ek, x〉ek.

It is easy to see that Pnx→ x as n→ ∞ for all x ∈ H , by the Parseval equality, but as
‖Pm − Pn‖ > 1 for all m 6= m it cannot be the case that ‖Pn − I‖ → 0 as n→ ∞. This
example highlights the utility of a weaker sense of convergence for operators.

Definition 2.22. Let X and Y be normed spaces; the initial topology on B(X, Y )
generated by the family of maps {T 7→ Tx : x ∈ X} (where Y is equipped with its norm
topology) is called the strong operator topology .
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Since

‖Tx‖ 6 ‖T‖ ‖x‖ ∀x ∈ X, T ∈ B(X, Y ),

we see that norm convergence implies strong operator convergence: a net (Ta)a∈A in
B(X, Y ) is convergent to T in the norm topology if and only if for all ε > 0 there
exists a0 ∈ A such that ‖Ta − T‖ < ε for all a > a0, and similarly for strong operator
convergence. Hence sets that are strong operator closed are also norm closed, and so the
strong operator topology is coarser that the norm topology on B(X, Y ).

Exercises 3

Exercise 3.1. Let H be a separable Hilbert space with orthonormal basis {e1, e2, . . .}.
For n > 1 let Pn denote the orthogonal projection onto Fe1 + · · · + Fen; prove that
PnTPnx→ Tx as n→ ∞ for all T ∈ B(H) and x ∈ H . Deduce that B(H) is separable
in the strong operator topology.

Exercise 3.2. Prove that if E is a Banach space with respect to two different norms then
they are either equivalent or non-comparable (i.e., neither is coarser than the other).

Exercise 3.3. Prove the following extension of Tietze’s theorem to complex-valued
functions: if X is a normal space, Y a closed subset of X and f ∈ Cb(Y ) then there
exists F ∈ Cb(X) such that F |Y = f and ‖F‖∞ = ‖f‖∞. Prove also that Tietze’s
theorem applies to unbounded, real-valued functions: if X and Y are as above and
f : Y → R is continuous then there exists F : X → R such that F |Y = f .

Exercise 3.4. Let E be a Banach space, Y a normed vector space and suppose that
(Tn)n>1 ⊆ B(E, Y ) is such that limn→∞ Tnx exists for all x ∈ E. Prove that there exists
T ∈ B(E, Y ) such that Tn → T in the strong operator topology. What can be said
about the norm of T ?

Exercise 3.5. Let x = (xn)n>1 be a sequence of complex numbers such that the series∑∞
n=1 xnyn is convergent for all y ∈ c0. Prove that x ∈ ℓ1. [Consider the mappings

fn : y 7→ ∑n
j=1 xjyj.]

Exercise 3.6. Let E be a Banach space with closed subspaces F and G such that
E = F ⊕G (i.e., every element of E can be expressed uniquely as the sum of an element
of F and an element of G). Define PF and PG by setting

PF : E → E; f + g 7→ f and PG : E → E; f + g 7→ g ∀ f ∈ F, g ∈ G.

Prove that PF and PG are bounded linear operators such that P 2
F = PF , P 2

G = PG and
PFPG = PGPF = 0.

Exercise 3.7. Find a Banach space E with closed subspaces F and G such that E =
F ⊕G and

P : E → E; f + g 7→ f ∀ f ∈ F, g ∈ G

has norm strictly greater than one. [Let E = R3 with the norm ‖(x1, x2, x3)‖ =
max{|x1|, |x2|, |x3|}.]
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Exercise 3.8. Let E be a Banach space with closed subspaces F and G such that
F ∩G = {0}. Prove that F ⊕G is closed if and only if there exists C > 0 such that

‖f‖ 6 C‖f + g‖ ∀ f ∈ F, g ∈ G.

Deduce that F ⊕G is closed if and only if

c := inf{‖f − g‖ : f ∈ F, g ∈ G, ‖f‖ = ‖g‖ = 1} > 0.





Three Dual Spaces

Initial Definitions

Definition 3.1. Let X be a vector space over the field F. A linear functional on X is a
linear map φ : X → F. The set of all linear functionals on X is a vector space denoted by
X ′, the algebraic dual space of X, where the vector-space structure is defined pointwise:

(φ+ ψ)(x) := φ(x) + ψ(x) and (αφ)(x) := αφ(x) ∀φ, ψ ∈ X ′, α ∈ F.

If X is a normed space then X ′ contains X∗ := B(X,F), the topological dual space of
X. An element of X∗ is said to be a bounded linear functional on X.

Our notation for the algebraic and topological dual spaces is the opposite of that adopted
in [10].

If X is infinite dimensional then the inclusion of X∗ in X ′ is proper; if X is finite
dimensional then the spaces coincide. Being interested primarily in analysis, henceforth
the term dual space will refer to the topological dual.

Example 3.2. Recall that

(c0)
∗ ∼= ℓ1 and (ℓp)∗ ∼= ℓq

if p ∈ [1,∞) and 1/p+1/q = 1, where ∼= denotes isometric isomorphism. More generally,
if I is a subinterval of R (or a σ-finite measure space)

Lp(I)∗ ∼= Lq(I)

for the same pairs p and q; the isomorphism is analogous to the ℓp case: g ∈ Lq(I) yields
an element of Lp(I)∗ via f 7→

∫
I
g(t)f(t) dt. Proof that every element of Lp(I)∗ arises

this way requires the Radon-Nikodým theorem [18, Theorem 6.16].

Example 3.3. The Riesz-Fréchet theorem implies that H∗ ∼= H for any Hilbert space
H .

The Weak Topology

Definition 3.4. Any normed space X gains a natural topology from its dual space, its
weak topology . This is the initial topology generated by X∗, i.e., the coarsest topology

31
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to make each map φ ∈ X∗ continuous. The weak topology on X is denoted by σ(X,X∗).
(The letter σ is used here because the German word for weak is schwach.)

It is by no means clear that an infinite-dimensional space has any continuous functionals,
but the Hahn-Banach theorem guarantees a plentiful supply (enough to ensure that
the weak topology is Hausdorff). In order to prove the Hahn-Banach theorem in full
generality, we need a version of the Axiom of Choice.

Zorn’s Lemma

Definition 3.5. A partial order on a set A is a preorder 6 (see Definition 1.27) that is
antisymmetric: for all a, b ∈ A,

a 6 b and b 6 a imply that a = b.

Let A be a set with a partial order 6. A chain C in A is a subset of A such that, for all
a, b ∈ C, either a 6 b or b 6 a. An upper bound or majorant for B ⊆ A is an element
a ∈ A such that b 6 a for all b ∈ B. An element a ∈ A is maximal if a 6 b implies that
a = b for all b ∈ X.

Lemma 3.6. (Zorn) Let A be a non-empty set with a partial order 6. If every chain
in A has an upper bound then A has a maximal element.

Proof
We take the lemma as axiomatic; it is equivalent to the Axiom of Choice. (For a

proof of this, see [14, Theorem 1.1.6].) �

The Hahn-Banach Theorem

Definition 3.7. Let X be a real vector space. A sublinear functional on X is a function
p : X → R such that, for all x, y ∈ X and α ∈ R+,

(i) p(αx) = αp(x) (positive homogeneity)

and (ii) p(x+ y) 6 p(x) + p(y) (subadditivity).

Theorem 3.8. (Hahn-Banach) Let p be a sublinear functional on the real vector
space X and suppose that M is a subspace of X. If f ∈ M ′ is a linear functional that
satisfies f(m) 6 p(m) for all m ∈ M (p is a majorant for f) then there exists a linear
functional F ∈ X ′ such that F |M = f and F (x) 6 p(x) for all x ∈ X.

Proof
The proof of the Hahn-Banach theorem falls naturally into two parts. The first

involves showing that f has a “one-dimensional extension”, i.e., f extends to N , where
N has codimension one in M : this should be familiar from the b4 course. The second
part is an application of Zorn’s lemma (which is necessary only if X is non-separable;
otherwise simple induction will suffice). Throughout we assume (as we may) that M is
a proper subspace of X.



3.4. The Hahn-Banach Theorem 33

Choose a vector x0 ∈ X \M , let N := M + Rx0 and for all γ ∈ R define

fγ : N → R; m+ αx0 7→ f(m) + αγ.

This is a sound definition because N is the direct sum of M and Rx0, and furthermore
fγ |M = f . It remains to show that we may find γ ∈ R such that fγ(x) 6 p(x) for all
x ∈ N , i.e.,

f(m) + αγ 6 p(m+ αx0) ∀m ∈M, α ∈ R.

By positive homogeneity of p and linearity of f , the above inequality will be satisfied if

f(m) + γ 6 p(m+ x0) ∀m ∈M and f(m) − γ 6 p(m− x0) ∀m ∈M.

Hence we wish to find γ ∈ R such that

f(m) − p(m− x0) 6 γ 6 −f(n) + p(n+ x0) ∀m,n ∈M

but, by the subadditivity of p and linearity of f ,

−f(n) + p(n+ x0) − f(m) + p(m− x0) > −f(n+m) + p(n +m) > 0,

so such γ exists.
Let

S =
{
(g,N) : N is a subspace of X, M ⊆ N, g ∈ N ′, g|M = f, g(x) 6 p(x) ∀x ∈ N

}

denote all suitable extensions of f ; the previous part shows that this set is non-empty.
Define 6 on S by saying that

(g,N) 6 (h, P ) ⇐⇒ N ⊆ P and h|N = g

and note that this is a partial order. Let {(ga, Na) : a ∈ A} be a chain in (S, 6), let
N :=

⋃
a∈ANa and define

g : N → R; x 7→ ga(x) if x ∈ Na.

It is a simple exercise to see that (g,N) ∈ S and (ga, Na) 6 (g,N) for all a ∈ A. By
Zorn’s lemma we conclude that there exists (h, P ) ∈ S that is maximal for 6; if we can
show that P = X then we are done. Suppose otherwise; then P is a proper subspace
of X and there exists a proper extension of h, by the first part of this proof. This
contradicts the maximality of (h, P ). �

Theorem 3.9. (Bohnenblust-Sobczyk) Let p be a seminorm on the vector space
X and suppose that M is a subspace of X. If φ ∈ M ′ is a linear functional such that
|φ(m)| 6 p(m) for all m ∈M (φ is dominated by p) then there exists a linear functional
Φ ∈ X ′ that extends φ (i.e., Φ|M = φ) and is dominated by p (i.e., |Φ(x)| 6 p(x) for all
x ∈ X).
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Proof
Suppose first that X is a real vector space. Note that a seminorm is a sublinear

functional, so we may apply the Hahn-Banach theorem to obtain Φ ∈ X ′ such that
Φ|M = φ and Φ(x) 6 p(x) for all x ∈ X, but also

−Φ(x) 6 p(−x) = p(x) ∀x ∈ X

by the homogeneity of the seminorm p. Hence |Φ(x)| 6 p(x) for all x ∈ X, as required.
Now suppose that X is a complex vector space. We may regard it as a real vector

space and apply the first part of this proof to obtain a real-linear functional F on X
that extends Reφ and is dominated by p. Define Φ by

Φ: X → C; x 7→ F (x) − iF (ix).

It is clear that Φ is additive, and if a, b ∈ R then

Φ((a + ib)x) = F ((a+ ib)x) − iF (i(a+ ib)x)

= F (ax) + F (ibx) − iF (iax) − iF (−bx)
= (a+ ib)F (x) − i(a+ ib)F (ix) = (a + ib)Φ(x) ∀x ∈ X,

so Φ ∈ X ′. Note also that

Φ(m) = F (m) − iF (im) = Reφ(m) − iRe iφ(m)

= Reφ(m) + i Imφ(m) = φ(m) ∀m ∈M,

so Φ|M = φ. Finally, let x ∈ X and choose α ∈ T := {z ∈ C : |z| = 1} such that
αΦ(x) ∈ R+. Then

|Φ(x)| = |αΦ(x)| = ReαΦ(x) = Re Φ(αx) = F (αx) 6 p(αx) = p(x)

and so Φ is dominated by p, as required. �

The Dual Space Separates Points

Theorem 3.10. Let X be a normed space. For all x ∈ X \{0} there exists φ ∈ X∗ such
that φ(x) = ‖x‖ and ‖φ‖ = 1.

Proof
Let M = Fx := {αx : α ∈ F} and define f : M → F; αx 7→ α‖x‖. Note that

|f(αx)| = |α| ‖x‖ = ‖αx‖ and so f is dominated on M by ‖ · ‖. By Theorem 3.9 there
exists a linear functional φ : X → F such that φ|M = f (in particular, φ(x) = ‖x‖ ) and
|φ(y)| 6 ‖y‖ for all y ∈ X (so that ‖φ‖ 6 1). Combining these observations gives the
result. �

This proves that the weak topology on X is Hausdorff: if x, y ∈ X are such that x 6= y
then there exists φ ∈ X∗ such that φ(x − y) = ‖x − y‖ 6= 0; the claim follows by
Proposition 1.26.
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Existence of Completions

Recall that X∗∗ = (X∗)∗ is the bidual or second dual of the normed space X. For all
x ∈ X define a linear functional x̂ on X∗ by setting x̂(φ) = φ(x) and note that

|x̂(φ)| = |φ(x)| 6 ‖φ‖ ‖x‖

so that x̂ ∈ X∗∗ with ‖x̂‖ 6 ‖x‖. Theorem 3.10 shows that the map

Γ: X → X∗∗; x 7→ x̂

is an isometry, called the canonical embedding of X into its bidual. If the canonical
embedding is surjective then X is said to be reflexive.

Proposition 3.11. If X is a normed vector space then it has a completion: there exists
a Banach space X̃ and a linear isometry i : X → X̃ such that i(X) is dense in X̃.

Proof

Let X̃ := Γ(X) be the closure in the bidual X∗∗ of the image of X under the
canonical embedding. As X∗∗ is complete (being the dual of a normed space) and closed
subspaces of Banach spaces are complete (Proposition 1.8),

(
X̃, ‖ · ‖X∗∗|X̃

)
is a Banach

space containing X as a dense subspace. Let i : X → X̃; x 7→ x̂; it is immediate from
the previous remarks that i is a linear isometry, as required. �

There is another, more pedestrian way of finding the completion of a normed space (or
any metric space) which mimics the way that the real numbers may be constructed as a
collection of equivalence classes of sequences of rational numbers: see [3, pp. 34–35] or
[22, Theorem 11.2.2]; it is not difficult to check that the completion inherits the structure
of a normed space [3, Theorem 2.7].

Y is Complete if B(X, Y ) is Complete

Proposition 3.12. If X and Y are normed vector spaces with X 6= {0} and B(X, Y )
complete then Y is complete.

Proof

Let (yn)n>1 ⊆ Y be a Cauchy sequence and let x0 ∈ X be a unit vector. By
Theorem 3.10 there exists a linear functional φ ∈ X∗ such that ‖φ‖ = 1 = φ(x0). For
n > 1 define Tn ∈ B(X, Y ) by setting Tnx = φ(x)yn and note that Tnx0 = yn. Then

‖(Tn − Tm)x‖ = |φ(x)| ‖yn − ym‖ 6 ‖yn − ym‖ ‖x‖ ∀x ∈ X

and so ‖Tn − Tm‖ 6 ‖yn − ym‖, which shows that (Tn)n>1 is a Cauchy sequence in
B(X, Y ). Let T be the limit of this sequence and conclude by noting that

lim
n→∞

yn = lim
n→∞

Tnx0 = Tx0.
�
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Vector-valued Holomorphic Functions

Definition 3.13. Let X be a complex normed space and let U be an open subset of
C. A function f : U → X is weakly holomorphic if φ ◦ f : U → C is holomorphic for all
φ ∈ X∗, and is strongly holomorphic if

lim
h→0

f(z + h) − f(z)

h
exists ∀ z ∈ U,

where this limit is taken with respect to the norm topology on X. Note that every
strongly holomorphic function is weakly holomorphic.

Theorem 3.14. (Liouville) Let f : C → X be a weakly holomorphic function into the
complex normed space X. If f is bounded, i.e., there exists r ∈ R+ such that ‖f(z)‖ 6 r
for all z ∈ C (equivalently, f(C) ⊆ Xr) then f is constant.

Proof
For all φ ∈ X∗ we have that φ ◦ f : C → C is bounded and holomorphic everywhere,

and so constant, by the classical Liouville’s theorem [16, § 5.2]. Hence

φ(f(z)) = φ(f(0)) ∀z ∈ C, φ ∈ X∗.

As X∗ separates points in X we must have that f(z) = f(0) for all z ∈ C, i.e., f is
constant. �

The proof holds if the holomorphic function f is only required to be weakly bounded,
i.e., for all φ ∈ X∗ there exists rφ ∈ R+ with |φ(f(z))| 6 rφ for all z ∈ C. This is not a
generalisation, however, as a subset of a normed space is weakly bounded if and only if
it is norm bounded (Exercise 4.6).

The Weak Operator Topology

Definition 3.15. Let X, Y be normed spaces; the intial topology on B(X, Y ) generated
by the collection of maps {T 7→ φ(Tx) : x ∈ X, φ ∈ Y ∗} (where F is equipped with its
usual topology) is called the weak operator topology .

In the same manner as we compared strong operator and norm convergence, the fact
that

|φ(Tx)| 6 ‖φ‖ ‖Tx‖ ∀x ∈ X, φ ∈ Y ∗, T ∈ B(X, Y )

shows that strong operator convergence implies weak operator convergence; thus sets
that are weak operator closed are also strong operator closed, and so the weak operator
topology is coarser than the strong operator topology.

Adjoint Operators

Theorem 3.16. Let X, Y be normed vector spaces and let T ∈ B(X, Y ). There exists
T ∗ ∈ B(Y ∗, X∗) such that

φ(Tx) = (T ∗φ)(x) ∀x ∈ X, φ ∈ Y ∗.
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Furthermore ‖T ∗‖ = ‖T‖.
Proof

This is a b4 result [24, Theorem 2.2.13]. �

Definition 3.17. If M is a subspace of the normed space X and N is a subspace of X∗

then
M⊥ := {φ ∈ X∗ : φ(x) = 0 for all x ∈ M}

is the annihilator of M and

⊥N := {x ∈ X : φ(x) = 0 for all φ ∈ N}

is the pre-annihilator of N .

Theorem 3.18. Let X and Y be normed spaces and let T ∈ B(X, Y ). Then

ker T = ⊥(imT ∗) and kerT ∗ = (imT )⊥.

Proof
Note that, since Y ∗ separates points in Y ,

ker T = {x ∈ X : Tx = 0} = {x ∈ X : φ(Tx) = 0 for all φ ∈ Y ∗}
= {x ∈ X : (T ∗φ)(x) = 0 for all φ ∈ Y ∗} = ⊥(imT ∗).

The other identity can be established in the same manner. �

The Weak* Topology

Definition 3.19. Let X be a normed vector space. The weak* topology on X∗ is the
initial topology generated by the maps

x̂ : X∗ → F; φ 7→ φ(x) (x ∈ X),

i.e., the coarsest topology to make these maps continuous. The weak* topology on X∗

is denoted by σ(X∗, X).

Note that the weak* topology is Hausdorff, by Proposition 1.26: if φ, ψ ∈ X∗ are distinct
then there exists x ∈ X such that φ(x) 6= ψ(x), and so the map x̂ separates these points.
Note also that φ 7→ φ(x) ∈ X∗∗ for all x ∈ X, so the weak* topology σ(X∗, X) is even
coarser than the weak topology σ(X∗, X∗∗): there are fewer functions required to be
continuous.

Exercises 4

Exercise 4.1. A closed subspace M of the normed spaceX is complemented in X if there
exists a closed subspace N such that M ⊕N = X, i.e., M +N = X and M ∩N = {0}.
Prove that M is complemented in X if M is finite dimensional. [Start by considering a
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basis of M∗.] Prove also that M is complemented in X if M has finite codimension, i.e.,
dimX/M <∞.

Exercise 4.2. Let M be a finite-dimensional subspace of the normed space X and let N
be a closed subspace of X such that X = M ⊕N . Prove that if φ0 is a linear functional
on M then

φ : M ⊕N → F; m+ n 7→ φ0(m) ∀m ∈M, n ∈ N

is an element of the dual space X∗.

Exercise 4.3. Prove that a normed vector space X is separable if its dual X∗ is. [You
may assume that if M is a non-empty subspace of X and x0 ∈ X \ M̄ then there exists
φ ∈ X∗ such that φ|M = 0 and φ(x0) = 1.] Find a separable Banach space E such that
E∗ is not separable. [Proof of (non-)separability is not required.] Prove that a reflexive
Banach space E is separable if and only if E∗ is.

Exercise 4.4. Prove that a Banach space E is reflexive if and only its dual E∗ is
reflexive.

Exercise 4.5. Prove that any infinite-dimensional normed space has a discontinuous
linear functional defined on it.

Exercise 4.6. Let A be a subset of the normed vector space X. Prove that A is norm
bounded (there exists r ∈ R+ such that ‖a‖ 6 r for all a ∈ A) if and only if it is weakly
bounded (for all φ ∈ X∗ there exists rφ ∈ R+ such that |φ(a)| 6 rφ for all a ∈ A). [Use
the principle of uniform boundedness and the canonical embedding Γ: x 7→ x̂.] Deduce
that a weakly holomorphic function is (strongly) continuous. [Cauchy’s integral formula
may be useful.]

Exercise 4.7. Let H be a Hilbert space. Prove that the adjoint T 7→ T ∗ is continuous
with respect to the weak operator topology on B(H), but not necessarily with respect
to the strong operator topology. [For the latter claim, consider the operators Tn ∈ B(ℓ2)
such that Tnx = 〈e1, x〉en for all x ∈ ℓ2, where {ek : k > 1} is the standard orthonormal
basis of ℓ2.]

Exercise 4.8. Let E and F be Banach spaces. Show that if T : E → F and S : F ∗ → E∗

are linear transformations that satisfy

φ(Tx) = (Sφ)(x) ∀x ∈ E, φ ∈ F ∗

then S and T are bounded, with S = T ∗. [Use the closed-graph theorem.]

Exercise 4.9. Let E and F be Banach spaces and suppose that T ∈ B(E,F ) has closed
range, i.e., imT is closed in F . Prove that imT ∗ = (ker T )⊥ (where

M⊥ := {φ ∈ E∗ : φ(x) = 0 for all x ∈M}

is the annihilator of the subspace M ⊆ E).

Exercise 4.10. Let E = c0, so that E∗ = ℓ1 and E∗∗ = ℓ∞. Prove that x 7→ ∑∞
n=1 xn is

weakly continuous on ℓ1 but is not weak* continuous.
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Exercise 4.11. Prove that a compact metric space is separable. Prove that if X is a
separable normed space then X∗

1 , the closed unit ball of the dual space X∗, is metrizable
when equipped with the weak* topology. [Let (xn)n>1 ⊆ X1 be dense in X1 and consider
d(φ, ψ) :=

∑∞
n=1 2−n|φ(xn)−ψ(xn)|.] Deduce that X∗ is separable in the weak* topology.

Exercise 4.12. Let X and Y be normed spaces and for all x ∈ X and y ∈ Y let

x⊗ y : B(X, Y ∗) → F; T 7→ (Tx)(y).

Prove that x⊗ y ∈ B(X, Y ∗)∗, with ‖x⊗ y‖ = ‖x‖ ‖y‖, and that the mapping

X × Y → B(X, Y ∗); (x, y) 7→ x⊗ y

is bilinear. If Z is the closed linear span of {x⊗ y : x ∈ X, y ∈ Y } in B(X, Y ∗)∗, prove
that

j : B(X, Y ∗) → Z∗; j(T )z = z(T )

is an isometric isomorphism. [For surjectivity, let φ ∈ Z∗ and consider φx : y 7→ φ(x⊗y).]

Tychonov’s Theorem

Definition 3.20. Let
(
(Xa, Ta) : a ∈ A

)
be a collection of topological spaces. Their

topological product is (X, T), where

X =×a∈A
Xa := {(xa)a∈A : xa ∈ Xa ∀ a ∈ A}

is the Cartesian product of the sets Xa and T =
∏

a∈ATa is the product topology , i.e., the
initial topology generated by the projection maps

πb : X → Xb; (xa)a∈A 7→ xb (b ∈ A).

The fundamental fact about the product topology is that is preserves compactness; this
is Tychonov’s theorem. The proof of Tychonov’s theorem is not particularly simple; to
avoid clutter, we remind ourselves of some minor points from basic topology.

Let (X, T) be a topological space.

(i) The space (X, T) is compact if and only if every collection of closed subsets of
X with the finite-intersection property has non-empty intersection; a collection F

of subsets of X has the finite-intersection property if F1 ∩ . . . ∩ Fn 6= ∅ for all
F1, . . . , Fn ∈ F. [For a proof of this, see [21, Theorem 21.D] or [3, p.116].]

(ii) If A ⊆ X then x ∈ Ā if and only if every open set containing x meets A. [Otherwise
x ∈ (X \ A)◦ = X \ Ā.]

(iii) If X is the product of {(Xa, Ta) : a ∈ A} then every set in T is the union of sets of
the form

n⋂

i=1

π−1
ai

(Ui) (n ∈ N, a1, . . . , an ∈ A, U1 ∈ Ta1
, . . . , Un ∈ Tan

);

these sets form a base for T.
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Theorem 3.21. (Tychonov) Let {(Xa, Ta) : a ∈ A} be a collection of compact topo-
logical spaces. The product space (X, T) is compact.

Proof

Let F be a family of closed subsets of X with the finite-intersection property. By
Zorn’s lemma we may find a maximal family H of (not necessarily closed) subsets of X
such that H contains F and has the finite-intersection property. Note that H is closed
under finite intersections: if A1, . . . , An ∈ H then A = A1 ∩ . . . ∩ An ∈ H, as otherwise
H ∪ {A} strictly contains H, contains F and has the finite-intersection property, which
contradicts the maximality of H. Furthermore, if A ⊆ X is such that A ∩H 6= ∅ for all
H ∈ H then A ∈ H; otherwise considering H ∪ {A} leads to the same contradiction.

Let a ∈ A and note that {πa(H) : H ∈ H} has the finite-intersection property
(because f(

⋂
b∈B Sb) ⊆ ⋂

b∈B f(Sb) for any function f and collection of sets {Sb}), so

there exists xa ∈ ⋂
H∈H

πa(H) by the compactness of Xa. We complete the proof by

showing that x := (xa)a∈A ∈ ⋂
H∈H

H , which suffices to show that
⋂

F∈F
F 6= ∅.

Any open set containing x contains a set of the form U =
⋂

a∈A0
π−1

a (Ua), where
Ua ∈ Ta contains xa and A0 is a finite subset of A. If a ∈ A0 then xa ∈ Ua ∩ πa(H), so
π−1

a (Ua)∩H 6= ∅, for all H ∈ H. Hence π−1
a (Ua) ∈ H for all a ∈ A0, and so U ∈ H, as H

is closed under finite intersections. As H has the finite-intersection property, U
⋂
H 6= ∅

for all H ∈ H, and therefore x ∈ ⋂
H∈H

H̄ , as required. �

The Banach-Alaoglu Theorem

Theorem 3.22. (Banach-Alaoglu) If X is a normed space then X∗
1 , the closed unit

ball of X∗, is compact in the weak* topology.

Proof

By Tychonov’s theorem, the space K =×x∈X
F‖x‖ is compact when equipped with

the product topology. The map

F : X∗
1 → K; φ 7→

(
φ(x)

)
x∈X

is well defined (since |φ(x)| 6 ‖φ‖ ‖x‖ 6 ‖x‖ ) and injective, so F−1 is well defined on
F (X∗

1 ). This map is weak* continuous, by Proposition 1.25, since x̂|X∗

1

◦F−1 = πx|F (X∗

1
)

for all x ∈ X, and X∗
1 = F−1(F (X∗

1 )) is weak* compact if F (X∗
1 ) is closed in K. To

prove this, by Theorem 1.34 it suffices to take a net (φa)a∈A in X∗
1 such that

(
F (φa)

)
a∈A

has limit f = (fx)x∈X ∈ K and show that φ : x 7→ fx ∈ X∗
1 . Note that F (φa) → f if and

only if φa(x) → fx, by Proposition 1.37, and so

fx + αfy = lim
a∈A

φa(x) + α lim
a∈A

φa(y) = lim
a∈A

φa(x+ αy) = fx+αy ∀x, y ∈ X, α ∈ F.

Hence φ : x 7→ fx ∈ X ′, and fx ∈ F‖x‖ for all x ∈ X implies that |φ(x)| = |fx| 6 ‖x‖, so
‖φ‖ 6 1, as required. (The linearity result used here follows from continuity of addition
and multiplication in F.) �
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Characterisation of Normed Vector Spaces

The following theorem reduces the study of normed vector spaces to the study of sub-
spaces of a particular type of Banach space, the collection of continuous functions on
a compact, Hausdorff space. In particular, all Banach spaces are isomorphic to closed
subspaces of C(K) for some compact, Hausdorff space K.

Theorem 3.23. Let (X, ‖ · ‖) be a normed space. There exists a compact, Hausdorff
space K and a linear isometry i : X → C(K) such that X is isometrically isomorphic to
i(X), a subspace of C(K), which is closed if and only if X is complete.

Proof

LetK = X∗
1 be the closed unit ball ofX∗, equipped with the (restriction of the) weak*

topology. (This is Hausdorff, being a subspace of the Hausdorff space
(
X∗, σ(X∗, X)

)
.)

Define i : X → C(K) by setting i(x) = x̂|K , i.e.,

i(x) : K → F; φ 7→ φ(x);

this map is continuous by the definition of the weak* topology, and i is clearly linear.
Furthermore,

‖i(x)‖∞ = sup{|i(x)(φ)| : φ ∈ K} = sup{|φ(x)| : φ ∈ K} = ‖x‖,

by Theorem 3.10. Hence i is an isometry, so i(X) is closed if and only if X is complete:
a subspace of a Banach space is closed if and only if it is complete (Proposition 1.8) and
isometries preserve Cauchy sequences. �

The previous theorem is the starting point which motivates the theory of operator spaces:
every Banach space is isometrically isomorphic to a closed subspace of some C(K),
which is the paradigm example of a commutative C∗ algebra. An operator space is a
closed subspace of some B(H), where H is a Hilbert space; B(H) is the natural non-
commutative generalisation of C(K). This is a very active area of current research (see
[5] or [15]).

Topological Vector Spaces

Definition 3.24. Let X be a vector space. A set of linear functionals A ⊆ X ′ is
separating if for all x ∈ X \ {0} there exists φ ∈ A such that φ(x) 6= 0. If M ⊆ X ′ is a
separating subspace then σ(X,M) := TM is the initial topology on X generated by M ;
this topology is Hausdorff by Proposition 1.26.

The weak and weak* topologies are defined in this fashion.

Proposition 3.25. Let X be a vector space with separating subspace M ⊆ X ′. A linear
functional φ ∈ X ′ is σ(X,M)-continuous if and only if φ ∈M .
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Proof
See Exercise 5.1. �

Proposition 3.26. Let X be a vector space over F and let M ⊆ X ′ be a separating
subspace. The functions

F ×X → X; (α, x) 7→ αx and X ×X → X; (x, y) 7→ x+ y

are continuous (where X is equipped with the topology σ(X,M) and F has its usual
topology).

Proof
The function (α, x) 7→ αx is continuous if (α, x) 7→ φ(αx) is continuous for all φ ∈M ,

by Proposition 1.25, and this function is continuous if φ(αaxa) → φ(αx) for any net
(αa, xa)a∈A ⊆ F×X such that (αa, xa) → (α, x), by Proposition 1.35. If (αa, xa) → (α, x)
in F ×X then (by the definition of the product topology and Proposition 1.37) αa → α
and xa → x, i.e., φ(xa) → φ(x) for all φ ∈ M . Continuity of multiplication in F yields

φ(αaxa) = αaφ(xa) → αφ(x) = φ(αx) ∀φ ∈M,

as required. The proof for the other function is similar (and depends upon the continuity
of addition in F). �

Definition 3.27. A topological vector space is a vector space X equipped with a Haus-
dorff topology such that the maps

X ×X → X; (x, y) 7→ x+ y

and
F ×X → X; (α, x) 7→ αx

are continuous.

Any normed space, or vector space equipped with the topology given by a separating
subspace of linear functionals, is a topological vector space.

Lemma 3.28. Let X be a topological vector space. A linear functional φ ∈ X ′ is
continuous if and only if |φ|−1[0, 1) contains an open set containing 0.

Proof
One implication is immediate from the definitions. For the converse, suppose that

U ⊆ X is an open set containing 0 and such that |φ(u)| < 1 for all u ∈ U . Let A ⊆ F
be open and let x ∈ φ−1(A); there exists εx > 0 such that Bx := BF

εx

(
φ(x)

)
⊆ A. As

|φ(y) − φ(x)| = |φ(y − x)| < εx ∀ y ∈ x+ εxU,

we see that
φ−1(A) ⊇ φ−1(Bx) ⊇ x+ εxU

and so φ−1(A) =
⋃

x∈φ−1(A)(x+εxU) is open, as required. (The fact that x+εxU is open

follows as the maps y 7→ y + x and y 7→ εxy are homeomorphisms of X to itself.) �
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Separation

Definition 3.29. A subset C of a vector space is convex if tC + (1 − t)C ⊆ C for all
t ∈ (0, 1), i.e., tx + (1 − t)y ∈ C for all x, y ∈ C and t ∈ (0, 1). [Geometrically, this
condition states that every line segment with endpoints in C lies in C. It is immediate
that linear transformations preserve convexity.]

Lemma 3.30. Let X be a real topological vector space. If C is a convex, open set in
X that contains the origin then the map

µC : X → R+; x 7→ inf{t ∈ R+ : x ∈ tC}
(called the gauge or Minkowski functional of C) is a sublinear functional on X such that
C = µ−1

C [0, 1) = {x ∈ X : µC(x) < 1}.
Proof

If x ∈ X then mx : R → X; t 7→ tx is continuous, so m−1
x (C) is open and contains 0.

Hence there exists δ > 0 such that tx ∈ C if |t| < δ, i.e., x ∈ sC if |s| > δ−1. This shows
that µC is well defined.

Let x, y ∈ X and suppose that ε > 0; we may find s, t > 0 such that s < µC(x) + ε,
t < µC(y) + ε and x ∈ sC, y ∈ tC. Then

x+ y ∈ sC + tC = (s+ t)
( s

s+ t
C +

t

s+ t
C

)
⊆ (s + t)C,

by the convexity of C, and µC(x + y) 6 s + t < µC(x) + µC(y) + 2ε. Since ε > 0 is
arbitrary we have the subadditivity of µC .

Positive homogeneity is immediate: if s > 0 then x ∈ tC if and only if sx ∈ stC,
hence µC(sx) = sµC(x) for all x ∈ X and s ∈ R+.

Finally, if x ∈ C then (1 + ε)x ∈ C for some ε > 0 (because m−1
x (C) is open and

contains 1) and so x ∈ (1 + ε)−1C, which yields µC(x) < 1. Conversely, if µC(x) < 1
then x ∈ tC for some t < 1, whence t−1x ∈ C and so x = (1− t)0 + t(t−1x) ∈ C because
0 ∈ C and C is convex. �

Definition 3.31. A topological vector space is locally convex if every open set containing
the origin contains a convex open set containing the origin. A normed space, or a topo-
logical vector space with topology given by a separating subspace of linear functionals,
is locally convex (Exercise 5.8).

Theorem 3.32. Let X be a topological vector space and let A, B be non-empty, disjoint,
convex subsets of X.

(i) If A is open then there exists a continuous linear functional φ ∈ X ′ and s ∈ R such
that

Reφ(x) < s 6 Reφ(y) ∀x ∈ A, y ∈ B.

(ii) If X is locally convex, x0 ∈ X \ B and B is closed then there exists a continuous
linear functional φ ∈ X ′ such that

Reφ(x0) < inf{Reφ(y) : y ∈ B}.
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Proof

First, note that we may assume that the scalar field F = R, working as in the last part
of the proof of Theorem 3.9: if φ is a continuous, real-linear functional on X satisfying
(i) or (ii) then Φ: x 7→ φ(x) − iφ(ix) is an continuous element of X ′ with the same
property (since ReΦ = φ).

For (i), let a0 ∈ A, b0 ∈ B and consider C = A−B + (b0 − a0); it contains 0, is open
(being the union of translates of the open set A) and is convex (this is immediate upon
checking the definition). Hence the gauge µC is sublinear on X.

Since A and B are disjoint, x0 := b0−a0 /∈ C, and therefore µC(x0) > 1. Let N = Rx0

and define φ0 on N by setting φ0(tx0) = t for all t ∈ R. Then φ0 6 µC on N , and so, by
Theorem 3.8, there exists a (real-linear) functional φ such that φ(x0) = φ0(x0) = 1 and
φ 6 µC . If x ∈ C then φ(x) 6 µC(x) < 1 and if x ∈ −C then φ(x) = −φ(−x) > −1.
Hence |φ(x)| < 1 on C ∩ (−C); since C ∩ (−C) is an open set containing the origin, φ
is continuous (by Lemma 3.28).

If a ∈ A, b ∈ B then a− b+ x0 ∈ C and so

φ(a) − φ(b) + 1 = φ(a− b+ x0) 6 µC(a− b+ x0) < 1,

hence φ(a) < φ(b). Then φ(A) and φ(B) are disjoint, convex subsets of R and φ(A) is
open (see Exercise 5.3), so taking s = supφ(A) gives the result.

For (ii), note that (X \ B) − x0 is open and contains 0, so by local convexity there
exists a convex, open set U such that 0 ∈ U ⊆ (X \B)−x0. Then A := x0 +U is convex,
open and contained in X \B; the result follows by (i). �

Corollary 3.33. If X is a locally convex topological vector space and x ∈ X \ {0} then
there exists a continuous linear functional φ ∈ X ′ such that φ(x) 6= 0. In other words,
the topological dual of X separates points.

Proof

Let B = {0}, x0 = x and apply Theorem 3.32(ii). �

Example 3.34. Let 0 < p < 1,

Lp[0, 1] :=
{
f : [0, 1] → C

∣∣ f is measurable and d(f, 0) <∞
}
,

where

d(f, g) :=

∫ 1

0

|f(t) − g(t)|p dt,

and let Lp[0, 1] = Lp[0, 1]/N, where N := {f ∈ Lp[0, 1] : d(f, 0) = 0} is the subspace of
functions zero almost everywhere. The map ([f ], [g]) 7→ d(f, g) is a metric on Lp[0, 1]
which makes it a topological vector space (with algebraic operations defined pointwise).
However, this topology is not locally convex and the only continuous linear functional
on Lp[0, 1] is the zero functional (Exercise 5.6),
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A consequence of Proposition 3.25 is the fact that the collections of norm-continuous
and weakly continuous linear functionals on a normed space coincide; combined with
the separation theorem this yields the following.

Corollary 3.35. A convex subset of a normed space is norm closed if and only if it is
weakly closed.

Proof
Since the weak topology is coarser than the norm topology, we need only consider a

non-empty, norm-closed, convex subset C of the normed space X. If x 6∈ C then there
exists ε > 0 such that Bε(x) ∩ C = ∅; applying Theorem 3.32(i) with A = Bε(x) and
B = C yields φ ∈ X∗ and s ∈ R such that

{y ∈ X : Reφ(y) < s} ∩ C = ∅.
As (Reφ)−1(−∞, s) is weakly open and contains x, it follows that C is weakly closed
and we have the result. �

In fact, the previous proposition holds for all locally convex topological vector spaces:
the proper generalisation of the weak topology is the initial topology generated by all
the continuous linear functionals (Exercise 5.9).

The Krein-Milman Theorem

Definition 3.36. Let X be a vector space. A face of a convex set C is a non-empty,
convex subset F ⊆ C such that if t ∈ (0, 1) and x, y ∈ C satisfy tx+ (1 − t)y ∈ F then
x and y ∈ F . An extreme point of a convex set C is a one-point face, i.e., an element of
C that cannot be expressed as a non-trivial convex combination of elements of C. [We
blur the distinction between an extreme point and the singleton set containing it.] The
extremal boundary of C is the set of its extreme points, denoted by ∂eC

In geometrical terms, a face F is a subset of the convex set C such that if f ∈ F and ℓ is
a line through f then ℓ∩C ⊆ F . An extreme point is a point of C that is not contained
in the interior of any line segment in C.

[Some pictures would go well here.]

Definition 3.37. If X is a vector space and A ⊆ X then

cnvA :=
{ n∑

i=1

αixi : n ∈ N, α1, . . . , αn ∈ R+,

n∑

i=1

αi = 1, x1, . . . , xn ∈ A
}

is the convex hull of A. If X is a topological vector space then the closed convex hull of
A, denoted by cnvA, is the closure of cnvA.

Proposition 3.38. If X is a vector space and A ⊆ X then cnvA is the smallest convex
set containing A. If X is a topological vector space then cnvA is the smallest closed,
convex set containing A.
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Proof
The convexity of cnvA is readily verified. Let B be any convex set containing A; we

claim that cnvA ⊆ B, i.e., for all n ∈ N,

n∑

i=1

αixi ∈ B if x1, . . . , xn ∈ A and α1, . . . , αn ∈ R+ with

n∑

i=1

αi = 1. (3.1)

To see this, we proceed by induction: the cases n = 1 and 2 are immediate, so suppose
that n > 2 and that (3.1) holds for sums containing n − 1 terms. Without loss of
generality αn 6= 1 and

n∑

i=1

αixi = (1 − αn)
(n−1∑

i=1

αi

1 − αn
xi

)
+ αnxn ∈ B

by the inductive hypothesis and convexity. This proves the first statement.
If B is a closed, convex set containing A then cnvA ⊆ B (since B is convex) and

hence cnvA ⊆ B̄ = B (taking closures). It remains to prove that cnvA is convex; let
x, y ∈ cnvA and choose a net (xp, yp)p∈P ⊆ cnvA × cnvA such that (xp, yp) → (x, y)
(recall that the closure of a product is the product of the closures). By continuity of
scalar multiplication and vector addition,

tx+ (1 − t)y = t lim
p∈P

xp + (1 − t) lim
p∈P

yp = lim
p∈P

txp + (1 − t)yp ∈ cnvA :=cnvA

for all t ∈ (0, 1), as required. �

Lemma 3.39. Let X be a topological vector space and let C be a non-empty, compact,
convex subset of X. If φ ∈ X ′ is continuous then

F :=
{
x ∈ C : Reφ(x) = min{Reφ(y) : y ∈ C}

}

is a closed face of C.

Proof
The set F is non-empty (since C is compact and x 7→ Reφ(x) is continuous), closed

(since it is the pre-image of a point under the continuous function Reφ) and convex (since
Reφ is real-linear). Furthermore, if t ∈ (0, 1) and x, y ∈ C are such that tx+(1−t)y ∈ F
then

min
C

Reφ = Reφ(tx+ (1 − t)y) = tReφ(x) + (1 − t) Reφ(y) > min
C

Reφ. (3.2)

(The notation min
C

means that the minimum is taken over the set C.) If x is not in F

then Reφ(x) > minC Reφ, which gives a strict inequality in (3.2), a contradiction, and
similarly for y. Hence x, y ∈ F , as required. �

Theorem 3.40. (Krein-Milman) Let X be a locally convex topological vector space
and let C be a non-empty, compact, convex subset of X. Then C = cnv ∂eC, i.e., C is
the closed convex hull of its extreme points. (In particular, ∂eC is non-empty.)
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Proof
Let F denote the collection of closed faces of C; it is an exercise to verify that

(F, ⊇) is a non-empty, partially ordered set, such that every chain in F has an upper
bound. Applying Zorn’s lemma we obtain a maximal element of F, i.e., a closed face
F0 such that if F1 ∈ F satisfies F0 ⊇ F1 then F1 = F0. We claim that F0 ∈ ∂eC; to
see this, suppose otherwise, so that there exist distinct x, y ∈ F0. By Corollary 3.33
there exists a continuous φ ∈ X ′ such that φ(x) 6= φ(y), and without loss of generality
Reφ(x) < Reφ(y) (else we replace φ by one of −φ, iφ or −iφ). Let

F1 =
{
z ∈ F0 : Reφ(z) = min{Reφ(w) : w ∈ F0}

}
;

this is a proper subset of F0 (since y /∈ F1) and a closed face of F0, by Lemma 3.39, and
so a closed face of C: a face of a face of C is itself a face of C. This contradicts the
minimality of F0 and so ∂eC 6= ∅.

It is immediate that C ⊇ cnv ∂eC, so to complete the proof suppose for contradiction
that x ∈ C \ cnv ∂eC. By Theorem 3.32(ii) (applied to x and cnv ∂eC) we may find a
continuous ψ ∈ X ′ such that Reψ(x) < min{Reψ(y) : y ∈ cnv ∂eC}. Let

F =
{
z ∈ C : Reψ(z) = min{Reψ(w) : w ∈ C}

}
;

this is a closed face of C, by Lemma 3.39, and applying the first part of this proof, with
F in place of C, yields z ∈ ∂eF ⊆ ∂eC. Hence

min
C

Reψ = Reψ(z) > Reψ(x) > min
C

Reψ,

the desired contradiction. �

Exercises 5

Exercise 5.1. Prove that if X is a vector space with separating subspace M ⊆ X ′ and
φ ∈ X ′ is a linear functional that is σ(X,M)-continuous then there exist φ1, . . . , φn ∈M
such that

|φ(x)| 6 max
16i6n

|φi(x)| ∀x ∈ X.

Deduce that
⋂n

i=1 ker φi ⊆ kerφ and that there exists f ∈ (Fn)∗ such that

f
(
φ1(x), . . . , φn(x)

)
= φ(x) ∀x ∈ X.

Conclude that φ ∈M .

Exercise 5.2. Let X be an infinite-dimensional normed space and let V ⊆ X be a
weakly open set containing the origin. Show that V contains a closed subspace of finite
codimension in X. Deduce that the weak topology on X is strictly coarser than the
norm topology.

Exercise 5.3. Let X be a topological vector space. Prove that every φ ∈ X ′ \ {0} is
open. [Note that mx : α 7→ αx is continuous for all x ∈ X and that there exists x0 ∈ X
such that φ(x0) = 1.]
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Exercise 5.4. Suppose that X is a vector space equipped with a topology that makes
vector addition and scalar multiplication, i.e., the maps

X ×X → X; (x, y) 7→ x+ y and F ×X → X; (α, x) 7→ αx,

continuous. Show that if this topology is such that singleton sets are closed (i.e., {x} is
closed for all x ∈ X) then the topology is Hausdorff (so X is a topological vector space).

Exercise 5.5. Let X be a topological vector space. Prove that every open set containing
the origin contains a non-empty open set which is balanced : a set B is balanced if λb ∈ B
for all b ∈ B and λ ∈ F1. [Balanced sets are in some ways analogous to open balls about
the origin in normed spaces.] Deduce that if C ⊆ X is compact and does not contain
the origin then there exist disjoint open sets A, B ⊆ X such that C ⊆ A and B is a
balanced set containing 0. Show that a balanced set is connected and give an example
to show that a balanced set need not be convex.

Exercise 5.6. Let p ∈ (0, 1),

Lp[0, 1] :=
{
f : [0, 1] → C

∣∣ f is measurable and ∆(f) <∞
}
,

where ∆(f) :=
∫ 1

0
|f(x)|p dx, and let Lp[0, 1] := Lp[0, 1]/N, where

N :=
{
f : [0, 1] → C

∣∣ f is measurable and zero almost everywhere
}
.

Prove that d([f ], [g]) := ∆(f − g) is a metric on Lp[0, 1] and that Lp[0, 1] is a topological
vector space (when equipped with this topology). Prove further that Lp[0, 1] has no
convex, open sets other than ∅ and Lp[0, 1]. Deduce that the only continuous linear
functional on Lp[0, 1] is the zero functional.

Exercise 5.7. Let X be a topological vector space over F and let M be a finite-
dimensional subspace of X. Prove that M is linearly homeomorphic to Fn, where n
is the dimension of M . Prove also that M is closed in X.

Exercise 5.8. Prove that a topological vector space with topology given by a separating
family of linear functionals is locally convex.

Exercise 5.9. Suppose that X is a locally convex topological vector space and M is
the collection of continuous linear functionals on X. Prove that a convex subset of X is
closed (with respect to the original topology) if and only if it is closed with respect to
σ(X,M), the initial topology generated by M . Need this hold if X is not locally convex?

Exercise 5.10. Let X be a locally convex topological vector space. Show that if N
is a non-empty subspace of X and x0 ∈ X \ N̄ then there exists a continuous linear
functional φ ∈ X ′ such that φ|N = 0 and φ(x0) = 1. [Use the separation theorem.]

Exercise 5.11. Let X be a topological vector space and suppose V is an open set
containing 0. Prove there exists an open set U containing 0 such that U + U ⊆ V .
Deduce or prove otherwise that if A ⊆ B ⊆ X, where A is compact and B is open, then
there exists an open set U ⊆ X such that 0 ∈ U and A+ U ⊆ B.
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Exercise 5.12. Suppose that X is a topological vector space such that the continuous
elements of X ′ separate points. Prove that given disjoint, non-empty, compact, convex
A, B ⊆ X there exists a continuous φ ∈ X ′ such that

sup
x∈A

Reφ(x) < inf
x∈B

Reφ(x).

[Consider X equipped with the topology σ(X,M), where M is the collection of contin-
uous linear functionals on X.] Deduce that Theorem 3.40 is true for topological spaces
with continuous dual spaces that separate points.

Exercise 5.13. Let X be a topological vector space and suppose that C is a non-empty,
compact, convex subset of X. Prove that (F, ⊇), the collection of closed faces of C
ordered by reverse inclusion, is a non-empty, partially ordered set such that every chain
in F has an upper bound.

Exercise 5.14. Prove that the closed unit ball of c0 has no extreme points.

Exercise 5.15. Let H be a Hilbert space. Prove that every unit vector in H is an
extreme point of the closed unit ball H1. [Note that 1 is an extreme point of F1.]
Deduce that every isometry in B(H) is an extreme point of the closed unit ball B(H)1.

Exercise 5.16. Let C be a convex subset of a topological vector space X. Prove that if
x ∈ C and y ∈ C◦, the interior of C, then tx+ (1− t)y ∈ C◦ for all t ∈ [0, 1). Prove also
that the interior C◦ and the extremal boundary ∂eC are disjoint (as long as X 6= {0}).
Exercise 5.17. Let C ⊆ Rn be compact and convex. Prove that every element of C can
be written as a convex combination of at most (n+1) elements of ∂eC. [Use induction.]
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Four Normed Algebras

We start with some purely algebraic definitions. All the algebras that we consider will
have scalar field R or C.

Definition 4.1. An algebra (more correctly, an associative algebra) is a vector space A
equipped with a bilinear map (called multiplication)

· : A×A→ A; (a, b) 7→ ab

that is associative:
(ab)c = a(bc) ∀ a, b, c ∈ A.

An algebra is commutative if its multiplication is, i.e., ab = ba for all a, b ∈ A. An
algebra is unital if there exists 1 ∈ A such that 1a = a1 = a for all a ∈ A; such an
element is unique if it exists. A subalgebra of the algebra A is a subspace B that is closed
under multiplication: ab ∈ A for all a, b ∈ B (more briefly, B2 ⊆ B).

Example 4.2. A field is a unital algebra over itself. (If the underlying scalar field F
of an algebra needs to be mentioned explicitly we refer to an algebra over F.) More
generally, the collection of n× n matrices over a field F forms a unital algebra, denoted
by Mn(F), when equipped with the usual multiplication:

(
ai

j

)n

i,j=1

(
b j
k

)n

j,k=1
=

(∑n
j=1a

i
jb

j
k

)n

i,k=1
.

The examples above are finite-dimensional (the dimension of an algebra is its dimension
as a vector space) and every finite-dimensional algebra A over F is isomorphic to a
subalgebra of Mn(F) (with n = dimA if A is unital, or n = 1 + dimA otherwise), where
homomorphism and isomorphism are defined in the usual manner: see Definition 4.7

Example 4.3.
If X is a topological space then the set of complex-valued, continuous functions on X

is an algebra over C, denoted by C(X), with the algebraic operations defined pointwise:
if f , g ∈ C(X) and α ∈ C then

(f + αg)(x) := f(x) + αg(x) and (fg)(x) := f(x)g(x) ∀x ∈ X.

This algebra has three important subalgebras:

53
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(i) C00(X), the continuous functions on X with compact support;

(ii) C0(X), the continuous functions on X that vanish at infinity;

(iii) Cb(X), the bounded, continuous functions on X.

We have

C00(X) ⊆ C0(X) ⊆ Cb(X) ⊆ C(X),

with equality if and only if X is compact. Note that Cb(X) and C(X) are unital, but
C00(X) and C0(X) are unital only if X is compact.

Definition 4.4. A normed algebra is a normed space that is also an associative algebra,
such that the norm is submultiplicative: ‖ab‖ 6 ‖a‖ ‖b‖ for all a, b ∈ A. A Banach
algebra is a complete normed algebra, i.e., a normed algebra that is also a Banach space
(with respect to its norm). A normed algebra is unital if it is a unital algebra and
‖1‖ = 1.

Note that the submultiplicativity of the norm means that multiplication in normed
algebras is jointly continuous: if an → a and bn → b then (an)n>1 is bounded and

‖anbn − ab‖ = ‖an(bn − b) + (an − a)b‖ 6 ‖an‖ ‖bn − b‖ + ‖an − a‖ ‖b‖
6 sup

{
‖an‖

}
‖bn − b‖ + ‖b‖ ‖an − a‖ → 0

as n→ ∞.

Example 4.5. If X is a Banach space then
(
B(X), ‖ · ‖

)
is a unital Banach algebra,

where ‖ · ‖ is the operator norm; this example generalises Example 4.2, as if X is finite-
dimensional then B(X) is isomorphic to Mn(F) (where n = dimX).

Example 4.6. Let X be a locally compact, Hausdorff space. When equipped with the
supremum norm

‖ · ‖∞ : f 7→ ‖f‖∞ := sup{|f(x)| : x ∈ X},

Cb(X) is a unital Banach algebra, C0(X) is a closed subalgebra of Cb(X) (so a Banach
algebra in its own right) and C00(X) is a dense subalgebra of C0(X). [This follows from
Proposition 2.18.]

Quotient Algebras

Definition 4.7. Let A and B be algebras over the field F. An algebra homomorphism
is an F-linear map φ : A → B such that φ(ab) = φ(a)φ(b) for all a, b ∈ A. An algebra
isomorphism is a bijective algebra homomorphism (which implies that φ−1 is an algebra
homomorphism from B to A). The kernel of an algebra homomorphism φ : A → B is
ker φ := {a ∈ A : φ(a) = 0} and the image is imφ := {φ(a) : a ∈ A}.
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The obvious fundamental theorem about homomorphisms is true; in order to state it we
need to define the concept of a quotient algebra.

Definition 4.8. Let A be an algebra. An ideal of the algebra A is a subspace I such
that ab, ba ∈ I for all a ∈ A and b ∈ I (i.e., AI, IA ⊆ I). If I is an ideal of A then the
quotient space A/I is an algebra, called the quotient algebra of A by I, when equipped
with the multiplication

(a+ I)(b+ I) = ab+ I ∀ a, b ∈ A,

and A/I is unital if A is unital.

Theorem 4.9. Let A be an algebra and φ : A → B an algebra homomorphism. Then
ker φ is an ideal of A, imφ is a subalgebra of B and A/ kerφ ∼= imφ, via

φ̃ : A→ imφ; [a] := a+ ker φ 7→ φ(a).

Proof
This is trivial. �

Proposition 4.10. If A is a normed algebra and I is a closed, proper ideal then A/I is
a normed algebra when equipped with the quotient norm, unital if A is unital; if A is a
Banach algebra then so is A/I.

Proof
To see that the quotient norm is submultiplicative, note that if a, b ∈ A then

∥∥[a]
∥∥

A/I

∥∥[b]
∥∥

A/I

= inf
{
‖a− x‖ : x ∈ I

}
inf

{
‖b− y‖ : y ∈ I

}

> inf
{
‖ab− ay − xb+ xy‖ : x, y ∈ I

}
> inf

{
‖ab− x‖ : x ∈ I

}
=

∥∥[ab]
∥∥

A/I
.

In particular, if A is unital then

‖[1]‖A/I = ‖[1]2‖A/I 6 ‖[1]‖2
A/I

so ‖[1]‖A/I > 1 (since I is proper, 1 /∈ I and so [1] 6= [0], whence ‖[1]‖ > 0). We have
also that ‖[1]‖A/I 6 ‖1‖A = 1 and therefore ‖[1]‖A/I = 1. Everything else follows from
Theorem 1.10. �

Unitization

In many cases an algebra has a unit; there are some situation, however, when none exists
but it would be useful to act as though one did.

Definition 4.11. If A is an algebra over the field F then Au is the unitization of A,
defined by setting Au = A⊕ F and

(a, α)(b, β) = (ab+ αb+ βa, αβ) ∀ a, b ∈ A, α, β ∈ F.
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The algebra A is an ideal of Au. The unitization Au is commutative if and only if A is
commutative.

If A is a normed algebra over R or C then Au is a normed algebra, where

‖ · ‖Au : Au → R+; (a, α) 7→ ‖a‖A + |α|.

The unitization Au is complete if and only if A is complete, and A is a closed ideal of
Au.

Example 4.12. Let L1(R) denote the space of (equivalence classes of) complex-valued,
Lebesgue-integrable functions on the real line, with norm

‖ · ‖1 : L1(R) → R+; f 7→
∫

R

|f |.

This is a commutative Banach algebra when equipped with the convolution product:

f ⋆ g : R → R; t 7→
∫

R

f(t− s)g(s) ds.

(By the theorems of Fubini and Tonelli, if f and g are integrable then this integral exists
almost everywhere and defines an element of L1(R).) This algebra lacks a unit; it is easy
to see that L1(R)

u
is isomorphic to the algebra given by adjoining the Dirac measure δ0:

by definition

(f ⋆ δ0)(t) = “

∫

R

f(t− s)δ0(s) ds ” = f(t) ∀ t ∈ R

and δ0 ⋆ δ0 = δ0.

Approximate Identities

Definition 4.13. Let A be a Banach algebra. An approximate identity for A is a net
(eλ)λ∈Λ ⊆ A1 such that

lim
λ
eλa = a = a lim

λ
eλ ∀ a ∈ A.

Example 4.14. The sequence (en)n>1 is an approximate identity for L1(R), where

en(x) =
n√
2π

e−
1

2
n2x2

= ne1(nx) ∀x ∈ R.

For a proof of this, see [17, Section 33.13 and Theorem 33.14] (but note that kλ(x) should

equal
√

λ
2π
e−

1

2
λx2

). Another possibility is (hn)n>1, where

hn(x) =
1

π

n

1 + n2x2
= nh1(nx) ∀x ∈ R :

see [18, Section 9.7 and Theorem 9.10].
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Example 4.15. Let A = L1[−π, π], which we can identify with the closed subalgebra
of L1(R) consisting of 2π-periodic functions. This has approximate identity (Pr)r∈[0,1),
where [0, 1) is directed in the usual manner and

Pr(t) =
1

2π

∞∑

n=−∞

r|n|eint =
1

2π

1 − r2

1 − 2r cos t+ r2
=

1

2π
Re

1 + reit

1 − reit
.

[The function P is the Poisson kernel ; it occurs in the theory of harmonic functions on
the unit disc.] To prove that this is an approximate identity, note that if f : t 7→ eikt

(where k ∈ Z) then

(Pr ⋆ f)(t) =

∫ π

−π

1

2π

∞∑

n=−∞

r|n|ein(t−s)eiks ds =
∞∑

n=−∞

r|n|eint

2π

∫ π

−π

ei(k−n)s ds = r|k|f(t),

so ‖(Pr ⋆ f) − f‖1 = (1 − r|k|)‖f‖1 → 0 as r → 1−. The linear span of {eikt : k ∈ Z}
(the trigonometric polynomials) is dense in L1[−π, π] (an easy consequence of Fejér’s
theorem [16, Theorem 30.4]) so a simple ε/2 argument gives this result for general f .
In fact, Fejér’s theorem implies that if f is continuous and ε > 0 then there exists a
trigonometric polynomial p : t 7→ ∑N

n=−N ane
int such that ‖f − p‖∞ < ε/2, so that

|(Pr⋆f)(t)−f(t)| 6 |(Pr⋆f)(t)−p(t)|+|p(t)−f(t)| 6

( N∑

n=−N

1−r|n|
)
‖f‖∞+‖p−f‖∞ < ε

if r is near enough to 1. Hence Pr ⋆ f → f uniformly in this case. [Compare this proof
to that given in [16, Section 10.36(2)].]

Completion

We have the notion of completion as for a normed space; an isometric isomorphism is
now required to be multiplicative, of course.

Theorem 4.16. If A is a normed algebra then there exists a Banach algebra Ā and
an isometric homomorphism i : A → Ā such that i(A) is a dense subalgebra of Ā, with
Ā unital if A is; (Ā, i) is called a completion of A. Furthermore, if (B, j) and (C, k)
are completions of A then there exists an isometric isomorphism l : B → C such that
l ◦ j = k.

Proof
Let (Ā, i) be the completion of A considered as a normed space (see Theorem 1.14).

Define a product on Ā by setting

ab := lim
n→∞

i(anbn) ∀ a, b ∈ Ā

if (an)n>1, (bn)∞n=1 ⊆ A are such that i(an) → a and i(bn) → b as n → ∞; this limit
exists (as (i(anbn))∞n=1 is Cauchy), is independent of the choice of sequences (an)∞n=1 and
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(bn)∞n=1 and the new product agrees with the old on i(A), i.e., i(a)i(b) = i(ab) for all
a, b ∈ A. (To see the first claim, note that

‖i(anbn) − i(ambm)‖ = ‖i(anbn − ambm)‖
= ‖anbn − ambm‖
6 ‖an‖ ‖bn − bm‖ + ‖an − am‖ ‖bm‖
= ‖i(an)‖ ‖i(bn) − i(bm)‖ + ‖i(an) − i(am)‖ ‖i(bm)‖

→ 0

as m,n→ ∞; proof of uniqueness is similar.) It is easy to verify that this product makes
Ā an associative algebra (which is unital if A is) and the norm on Ā is submultiplicative
because

‖i(an)i(bn)‖ = ‖i(anbn)‖ = ‖anbn‖ 6 ‖an‖ ‖bn‖ = ‖i(an)‖ ‖i(bn)‖.

Hence Ā is a Banach algebra with dense subalgebra i(A).
If (B, j) and (C, k) are completions of A then there exists an isometric linear bijection

l : B → C such that l ◦ j = k, by Proposition 2.6. Furthermore, if a, b ∈ A then

l
(
j(a)j(b)

)
= l

(
j(ab)

)
= k(ab) = k(a)k(b) = l

(
j(a)

)
l
(
j(b)

)
,

which shows that l is multiplicative on j(A). Since j(A) is dense in B and multiplication
is jointly continuous, l is multiplicative on B and so is an isometric isomorphism. �



Five Invertibility

From now on, A denotes a unital Banach algebra over C.

Definition 5.1. An element a ∈ A is invertible if there exists b ∈ A such that ab =
ba = 1. [If such an inverse exists, it is unique.] The collection of invertible elements
in A is denoted G(A); this is a group. [This last claim is obvious once we recall that
(ab−1)−1 = ba−1 if a and b are invertible.]

Proposition 5.2. Let a ∈ A be such that ‖a‖ < 1. Then 1 − a ∈ G(A) and

(1 − a)−1 =

∞∑

n=0

an, (5.1)

where this series converges in the norm topology. Hence G(A) is an open subset of A;
furthermore a 7→ a−1 is a homeomorphism of G(A).

Proof
Since ‖a‖ < 1, the Neumann series (5.1) is absolutely convergent, so convergent.

Furthermore,

lim
n→∞

( n∑

j=0

aj
)
(1 − a) = (1 − a) lim

n→∞

n∑

j=0

aj = lim
n→∞

1 − an+1 = 1,

so the sum of this series is an inverse for (1 − a), as claimed.
If a ∈ G(A) let b ∈ A and note that

b = a− (a− b) = a
(
1 − a−1(a− b)

)
∈ G(A)

if ‖a−1(a− b)‖ < 1, e.g., if b ∈ BA
‖a−1‖−1(a); this shows that G(A) is open.

Finally, if h ∈ A is such that ‖h‖ < 1
2
‖a−1‖−1 then ‖a−1h‖ < 1

2
, which implies that

a + h = a(1 + a−1h) ∈ G(A) and

(a + h)−1 − a−1 = a−1
(
(1 + a−1h)−1 − 1

)
= a−1

∞∑

n=1

(−a−1h)n

has norm at most
‖a−1‖ ‖a−1h‖/(1 − ‖a−1h‖) 6 2‖a−1‖2‖h‖

(using the fact that ‖∑∞
n=1 x

n‖ 6 ‖x‖/(1−‖x‖) if ‖x‖ < 1). Hence (a+ h)−1 → a−1 as
h→ 0, as required. �
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The Spectrum and Resolvent

Definition 5.3. For all a ∈ A the spectrum of a is

σ(a) := {λ ∈ C : λ1 − a /∈ G(A)}.

The resolvent set of a is ρ(a) := C \ σ(a), the complement of the spectrum of a. The
resolvent of a is the function defined on ρ(a) by λ 7→ rλ(a) := (λ1 − a)−1.

Theorem 5.4. The resolvent satisfies the resolvent equation,

rλ(a) − rµ(a) = −(λ− µ)rλ(a)rµ(a) ∀λ, µ ∈ ρ(a),

and is strongly holomorphic on ρ(a), which is an open set. The spectrum is a compact,
non-empty subset of C‖a‖.

Proof

For the first claim, note that if λ, µ ∈ ρ(a) then

(λ1 − a)−1 − (µ1 − a)−1 = (λ1 − a)−1(1 − (λ1 − a)(µ1 − a)−1)

= (λ1 − a)−1
(
(µ1 − a) − (λ1 − a)

)
(µ1 − a)−1

= −(λ− µ)(λ1 − a)−1(µ1 − a)−1.

From this equation and Proposition 5.2 it follows that

rλ(a) − rµ(a)

λ− µ
= −rλ(a)rµ(a) → −rµ(a)2

as λ → µ: the resolvent is strongly holomorphic on ρ(a) (recall Definition 3.13). To
see that this set is open, let f : C → A; λ 7→ λ1 − a and note that f is continuous, so
f−1(G(A)) = ρ(a) is open.

If a ∈ A and |λ| > ‖a‖ then ‖λ−1a‖ < 1, so by Proposition 5.2 we have that
λ1 − a = λ(1 − λ−1a) is invertible. Hence σ(a) ⊆ {λ ∈ C : |λ| 6 ‖a‖}. By the
Heine-Borel theorem and the fact that σ(a) = C \ ρ(a) is closed, σ(a) is compact.

Suppose for contradiction that σ(a) is empty, so that the resolvent is a strongly
holomorphic function defined on the whole of C. If |λ| > ‖a‖ then

rλ(a) = λ−1(1 − λ−1a)−1 =
∞∑

n=0

λ−(n+1)an (5.2)

and so

‖rλ(a)‖ 6 |λ|−1/
(
1 − ‖λ−1a‖

)
=

(
|λ| − ‖a‖

)−1
;

this shows that rλ(a) → 0 as λ→ ∞. In particular the resolvent is bounded, so constant
(by Theorem 3.14) and therefore equal to 0; this is the desired contradiction. �
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The Gelfand-Mazur Theorem

It is rather surprising that a theorem with as short a proof as the following has such
important consequences. Note that commutativity forms no part of the hypotheses but
is part of the conclusion.

Theorem 5.5. (Gelfand-Mazur) If A is a unital Banach algebra over C in which
every non-zero element is invertible then A is isometrically isomorphic to C.

Proof
Let a ∈ A; since σ(a) is non-empty and

λ ∈ σ(a) ⇔ λ1 − a /∈ G(A) ⇔ λ1 − a = 0 ⇔ a = λ1,

we see that for all a ∈ A there exists λa ∈ C such that a = λa1. The map a 7→ λa is the
desired isomorphism; note that ‖a‖ = ‖λa1‖ = |λa|. �

The Spectral-Radius Formula

Definition 5.6. The spectral radius of a ∈ A is the radius of the smallest disc about
the origin that contains the spectrum of a:

ν(a) := inf{r > 0 : σ(a) ⊆ Cr} = sup{|λ| : λ ∈ σ(a)}.

We recall the spectral mapping theorem for polynomials; it is stated in b4 for bounded
operators on a Banach space but its proof holds in any Banach algebra

Theorem 5.7. Let a ∈ A and suppose that p(z) ∈ C[z] is a complex polynomial. Then
σ
(
p(a)

)
= p

(
σ(a)

)
, i.e.,

σ
(
p(a)

)
:= {λ ∈ C : λ1 − p(a) /∈ G(A)} = {p(λ) : λ1 − a /∈ G(A)}.

Proof
This follows the same pattern as the proof which may be found in Dr Vincent-Smith’s

b4 notes ([25, Theorem 5.2.11]). �

The following theorem gives the Beurling-Gelfand spectral-radius formula. (According
to [11, p.525], Beurling led Sweden’s effort to crack the Enigma code during the second
world war.)

Theorem 5.8. If a ∈ A then the sequence
(
‖an‖1/n

)
n>1

is convergent and

ν(a) = inf
n>1

‖an‖1/n = lim
n→∞

‖an‖1/n.

Proof
Firstly, the spectral mapping theorem for polynomials implies that

ν(a)n = ν(an) 6 ‖an‖ ∀n > 1. (5.3)
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Next, f : λ 7→ (λ1−a)−1 is continuous on ρ(a), soMr := sup
{
‖(λ1−a)−1‖ : |λ| = r

}
<∞

for all r > ν(a). Let φ ∈ A∗ and note that f is strongly holomorphic, so φ ◦ f is
holomorphic, on S = {λ ∈ C : |λ| > ν(a)}, with

(φ ◦ f)(λ) =
∞∑

n=0

φ(an)λ−(n+1)
(
|λ| > ‖a‖

)

by (5.2), so for all λ ∈ S, by the uniqueness of Laurent series. Furthermore, by the
integral formula for Laurent coefficients,

|φ(an)| =

∣∣∣∣
1

2πi
	

∫

{λ:|λ|=r}

(φ ◦ f)(λ)λn dλ

∣∣∣∣ 6 rn+1‖φ‖Mr

and so ‖an‖ 6 rn+1Mr (by Theorem 3.10) for all r > ν(a). This and (5.3) yield

ν(a) 6 ‖an‖1/n 6 ν(rMr)
1/n → r

as n → ∞; the result follows. (If α 6 an for all n and an → α then α = inf an; that
‖an‖1/n → ν(a) is immediate.) �

The following theorem allows us to restrict our attention to commutative algebras when
considered certain questions about the spectrum. Zorn’s lemma allows us to prove that
any commutative set in A is contained in a maximal commutative subalgebra.

Theorem 5.9. Let B be a maximal commutative subalgebra of A. If a ∈ B then

σB(a) := {λ ∈ C : λ1 − a /∈ G(B)} = σA(a)
(
= {λ ∈ C : λ1 − a /∈ G(A)}

)
.

Proof
Clearly G(B) ⊆ G(A), so we need to prove that if λ1− a is invertible in A then it is

invertible in B. Suppose that λ1−a ∈ G(A), let b = (λ1−a)−1 and let c ∈ B; note that

bc = bc(λ1 − a)b = b(λ1 − a)cb = cb

and so b ∈ B (else B is not maximal) as required. �

Example 5.10. If S is a subset of the unital Banach algebra A then

Sc := {a ∈ A : sa = as for all s ∈ S}

is the commutant (or centraliser) of S. It is readily verified that Sc is a unital, closed
subalgebra of A, that if S ⊆ T ⊆ A then T c ⊆ Sc and that S is commutative if and only if
S ⊆ Sc. Furthermore, if S is commutative then the double commutant (or bicommutant)
Scc = (Sc)c is a commutative subalgebra of A containing S. It is an exercise to prove
that a commutative subalgebra B is maximal if and only if B = Bc, and that the
proof of Theorem 5.9 goes through with the weaker hypothesis that B is a commutative
subalgebra of A containing {a}cc.
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Exercises 6

Exercise 6.1. Prove that the vector space L1(R) is a commutative Banach algebra
when equipped with the convolution product and the norm ‖f‖1 :=

∫
|f |. [To show

associativity, use the convolution theorem and the inversion theorem for the Fourier
transform.] Prove further that this algebra is not unital. [You may assume that the
functions fn : x 7→ (n/

√
2π) exp(−1

2
n2x2) are such that ‖fn ⋆ g − g‖1 → 0 as n→ ∞ for

all g ∈ L1(R).]

Exercise 6.2. Let X be a Hausdorff, locally compact space. Prove that C0(X)u, the
unitization of the algebra of continuous functions on X that vanish at infinity, is topo-
logically isomorphic to C(Ẋ), the algebra of continuous functions on Ẋ, the one-point
compactification of X.

Exercise 6.3. Let A = C[z] denote the unital algebra of complex polynomials and let
‖p‖ := sup{|p(α)| : |α| 6 1} for all p ∈ A. Show that (A, ‖ · ‖) is a unital, normed
algebra which is not complete. [For the latter statement, consider invertibility and the
polynomials pn(z) = 1 + z/n.]

Exercise 6.4. Let A be a (non-unital) Banach algebra such that every element is nil-
potent (i.e., for all a ∈ A there exists n ∈ N such that an = 0). Prove that A is
uniformly nilpotent: there exists N ∈ N such that aN = 0 for all a ∈ A. [Consider the
decomposition A =

⋃
n∈N

{a ∈ A : an = 0}.]
Exercise 6.5. Let A be a unital Banach algebra over C and let ea :=

∑∞
n=0 a

n/n! for all
a ∈ A. Prove that ea+b = eaeb if a and b commute. Deduce that ea is invertible. Prove
further that f : λ 7→ eλa is holomorphic everywhere, with f ′(λ) = af(λ) = f(λ)a, for all
a ∈ A.

Exercise 6.6. Let A be a unital Banach algebra over C and let a, b ∈ A. Use the
identity (ab)n = a(ba)n−1b to prove that ab and ba have the same spectral radius.

Exercise 6.7. Let A be a unital Banach algebra over C. Suppose that there exists
K > 0 such that ‖a‖ 6 Kν(a) for all a ∈ A, where ν(a) denotes the spectral radius of a.
Prove that A is commutative. [Let a, b ∈ A and consider the function g : λ 7→ eλabe−λa.]

Exercise 6.8. Let A be a Banach algebra and suppose that (xp)p∈P , (yq)q∈Q ⊆ A are
absolutely summable. Prove that

∑

p∈P

∑

q∈Q

xpyq =
∑

(p,q)∈P×Q

xpyq =
∑

q∈Q

∑

p∈P

xpyq.





Six Characters and Maximal Ideals

Proposition 6.1. Let A be a unital algebra. If φ : A → C is a non-zero algebra homo-
morphism then φ(1) = 1 and φ(a) 6= 0 for all a ∈ G(A). Furthermore, if A is a Banach
algebra then φ ∈ A∗ with ‖φ‖ = 1.

Proof

Note that φ(a) = φ(1a) = φ(1)φ(a) for all a ∈ A; it cannot be the case that φ(a) = 0
for all a ∈ A (as φ 6= 0) and so φ(1) = 1. Thus 1 = φ(1) = φ(aa−1) = φ(a)φ(a−1) for all
a ∈ G(A), whence φ(a) 6= 0 if a is invertible.

To see the statement about the norm of φ, note that φ(1) = 1 (so ‖φ‖ > 1) and
suppose for contradiction that there exists a ∈ A such that ‖a‖ 6 1 and |φ(a)| > 1. Let
b = φ(a)−1a, so that ‖b‖ < 1 and 1 − b ∈ G(A), but φ(1 − b) = 1 − φ(a)−1φ(a) = 0, the
desired contradiction. �

From now on, A is a commutative unital Banach algebra over C, unless otherwise
specified.

Definition 6.2. A character of A is a non-zero algebra homomorphism from A to C.
The collection of all characters of A is denoted by Φ(A). A maximal ideal of A is an
ideal I that is proper (I 6= A) and maximal with respect to inclusion: if J is an ideal
such that J ⊇ I then either J = A or J = I.

Proposition 6.3. Every proper ideal of A contains no invertible element of A and is
contained in a maximal ideal. A maximal ideal of A is closed.

Proof

If I is an ideal of A such that I ∩ G(A) 6= ∅ then 1 = a−1a ∈ I for some a ∈ G(A)
and so I = A, i.e., I is not proper.

To see the next claim, let I be a proper ideal of A, let F denote the collection of
proper ideals of A that contain I, preordered by inclusion, and apply Zorn’s lemma (note
that no proper ideal contains an invertible element of A, so neither does the union of a
chain of such).

Finally, let I be a maximal ideal; since the closure of an ideal is an ideal (an easy
exercise), either Ī = A or Ī = I; if the former then Ī ∩ G(A) 6= ∅, but I ⊆ A \ G(A)
implies that Ī ⊆ A \G(A) since G(A) is open. Hence I = Ī, as claimed. �
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Before we can prove the fundamental connexion between characters and maximal ideals,
we need a fact from algebra.

Lemma 6.4. Let A be a unital commutative algebra (or even a commutative ring with
identity) and suppose that I is an ideal of A. Then A/I is a field if and only if I is
maximal.

Proof
Suppose that I is maximal and let a ∈ A \ I. Then aA + I is an ideal in A that

properly contains I, so aA + I = A. Hence there exists b ∈ A and c ∈ I such that
ab+ c = 1, whence [a][b] = [1] (where [a] = a + I et cetera) and A/I is a field.

If I is not maximal then there exists a ∈ A \ I such that aA+ I 6= A, so 1 /∈ aA+ I
and there exists no b ∈ A such that [a][b] = [1]. Hence [a] is not invertible and A/I is
not a field. �

Theorem 6.5. The map φ 7→ ker φ is a bijection between Φ(A) and the set of all
maximal ideals of A.

Proof
Since A/ ker φ ∼= imφ = C, A/ kerφ is a field for all φ ∈ Φ(A) and hence ker φ is

maximal, by Lemma 6.4.
Suppose that φ, ψ ∈ Φ(A) are such that ker φ = kerψ. For all a ∈ A we have that

φ(a − φ(a)1) = 0, so a − φ(a)1 ∈ ker φ = kerψ and 0 = ψ(a − φ(a)1) = ψ(a) − φ(a).
Hence φ = ψ and φ 7→ ker φ is injective.

Finally, if I is a maximal ideal of A then A/I is a field (by Lemma 6.4) and a Banach
algebra (with respect to its quotient norm), so A/I ∼= C, by the Gelfand-Mazur theorem;
let i : A/I → C denote this isomorphism. Then φ = i ◦π is the desired character, where
π : A→ A/I is the quotient map. �

Characters and the Spectrum

Recall that A is a commutative, unital Banach algebra over C, unless otherwise stated.

Corollary 6.6. Let a ∈ A. Then

(i) a ∈ G(A) if and only if φ(a) 6= 0 for all φ ∈ Φ(A);

(ii) σ(a) = {φ(a) : φ ∈ Φ(A)};
(iii) ν(a) = sup{|φ(a)| : φ ∈ Φ(A)}.

Proof
For (i), note that

a ∈ G(A) ⇔ A = Aa

⇔ Aa is not contained in a maximal ideal of A

⇔ Aa 6⊆ kerφ ∀φ ∈ Φ(A)

⇔ φ(a) 6= 0 ∀φ ∈ Φ(A).
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The other two claims are immediate. �

Corollary 6.7. If A is a (not necessarily commutative) unital Banach algebra and
a, b ∈ A commute, i.e., ab = ba, then

ν(a+ b) 6 ν(a) + ν(b) and ν(ab) 6 ν(a)ν(b).

Proof
Let B be a maximal commutative subalgebra containing a and b. By Theorem 5.9,

σB(a + b) = σA(a+ b) et cetera, and so

ν(a + b) = sup{|φ(a+ b)| : φ ∈ Φ(B)}
6 sup{|φ(a)| : φ ∈ Φ(B)} + sup{|φ(b)| : φ ∈ Φ(B)} = ν(a) + ν(b).

The other claim is proved in the same manner. �

Recall that an element a of a ring is said to be nilpotent if an = 0 for some n ∈ N. If
a ∈ A is nilpotent then σ(a) = 0, by the spectral mapping theorem. More generally, we
have the following definition.

Definition 6.8. An element a ∈ A is quasinilpotent if ν(a) = 0. The set of all quasi-
nilpotent elements in A is the Jacobson radical of A, denoted by J(A). An algebra is
semisimple if J(A) = {0}.

Proposition 6.9. The Jacobson radical of A is an ideal; in fact,

J(A) =
⋂

φ∈Φ(A)

ker φ,

the intersection of all maximal ideals in A.

Proof
Since

ν(a) = sup{|φ(a)| : φ ∈ Φ(A)},
we have that ν(a) = 0 if and only if a ∈ kerφ for all φ ∈ Φ(A). �

The Gelfand Topology

Lemma 6.10. The character space Φ(A) is a compact, Hausdorff space when equipped
with the Gelfand topology , i.e., the restriction of σ(A∗, A), the weak* topology on A∗,
to Φ(A). Equivalently, it is the coarsest topology to make the maps â|Φ(A) : φ 7→ φ(a)
continuous (for all a ∈ A).

Proof
Recall that A∗

1 is a compact, Hausdorff space, by Theorem 3.22, and

Φ(A) = {φ ∈ A∗
1 : φ(1) = 1, φ(ab) = φ(a)φ(b) ∀ a, b ∈ A}

= A∗
1 ∩ 1̂−1(1) ∩

⋂

a,b∈A

(
âb− âb̂

)−1

(0)
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is a closed subset of A∗
1 (since â : A∗ → C; φ 7→ φ(a) is continuous for all a ∈ A). [Note

that the condition φ(1) = 1 is necessary to rule out the zero homomorphism.] This gives
the result. �

The Representation Theorem

From now on it is more convenient to let

â : Φ(A) → C; φ 7→ φ(a).

That is, â is the restriction to Φ(A) of the map φ 7→ φ(a) on A∗.

Theorem 6.11. If A is a commutative unital Banach algebra then the Gelfand transform

·̂ : A→ C
(
Φ(A)

)
; a 7→ â

is a norm-decreasing homomorphism. Its kernel is J(A) and its image Â is a subalgebra
of C

(
Φ(A)

)
that separates the points of Φ(A).

Proof
The Gelfand transform is a homomorphism because characters are; for example,

âb(φ) = φ(ab) = φ(a)φ(b) =
(
âb̂

)
(φ) ∀φ ∈ Φ(A), a, b ∈ A.

Furthermore,

‖â‖∞ = sup{|φ(a)| : φ ∈ Φ(A)} = ν(a) 6 ‖a‖ ∀ a ∈ A,

so a 7→ â is norm-decreasing; this calculation also shows that the kernel is as claimed.
Finally, if φ, ψ ∈ Φ(A) are such that â(φ) = â(ψ) for all a ∈ A then φ = ψ (by definition),
so Â separates the points of Φ(A). �

Gelfand theory reaches its peak when the algebra is equipped with an involution, i.e., a
conjugate-linear map a 7→ a∗ such that

(ab)∗ = b∗a∗ and (a∗)∗ = a ∀ a, b ∈ A.

If the involution satisfies ‖a∗a‖ = ‖a‖2 for all a ∈ A then we have a C∗ algebra: for the
theory of such, see [8, Chapter 4 et seq.] or [19, Chapter 11 et seq.].

Examples

Example 6.12. If X is a compact, Hausdorff space and A = C(X) is the algebra of
continuous functions on X then Φ(A) = {ǫx : x ∈ X}, where

ǫx : C(X) → C; φ 7→ φ(x)
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is the evaluation homomorphism at x.

Example 6.13. If D = BC

1 (0) = {z ∈ C : |z| < 1} and

A(D) = {f ∈ C(D̄) : f |D is holomorphic}

is the disc algebra then A(D) is a Banach algebra (when equipped with the supremum
norm: recall that uniform limits of holomorphic functions are holomorphic). In this
case the character space of A(D) is again just the set of evaluation homomorphisms,
{ǫz : z ∈ D̄}.

Example 6.14. Suppose that n ∈ N and let Z/nZ denote the quotient group of integers
with addition modulo n. The finite-dimensional Banach space

ℓ1(Z/nZ) =
{
(xj)j∈Z : xj = xn+j ∀ j ∈ Z

}
=

{
(x[j])[j]∈Z/nZ

}

becomes a commutative, unital Banach algebra when equipped with the convolution
product

(x ⋆ y)[j] =
∑

[k]∈Z/nZ

x[k]y[j−k] ∀x, y ∈ ℓ1(Z/nZ).

Let

δ := [j] 7→
{

1 [j] = [1],

0 [j] 6= [1]

and note that
x =

∑

[j]∈Z/nZ

x[j]δ
j ∀x ∈ ℓ1(Z/nZ).

In particular, any φ ∈ Φ
(
ℓ1(Z/nZ)

)
is determined by λ = φ(δ) and λ is an nth root of

unity as λn = φ(δn) = φ(1) = 1. Conversely, each λ ∈ {ωj : j = 0, 1, . . . , n− 1}, where
ω = exp(2πi/n), corresponds to a character, via

x 7→
∑

[j]∈Z/nZ

x[j]λ
j.

Hence the Gelfand theory of ℓ1(Z/nZ) corresponds to the theory of the discrete Fourier
transform.

Before investigating the Gelfand theory of L1(R) we need a couple of preliminary results.
(The fact that L1(R)∗ = L∞(R) gives a simple proof of the following; as this has not
been established the lemma is proved directly.)

Lemma 6.15. If f ∈ L1(R2) and φ ∈ L1(R)∗ then

φ
(
r 7→

∫

R

f(r, s) ds
)

=

∫

R

φ
(
r 7→ f(r, s)

)
ds.

Proof
Note first that Fubini’s theorem gives that f(·, s) : r 7→ f(r, s) ∈ L1(R) for almost

every s ∈ R and that
∫

R
f(·, s) ds : r 7→

∫
R
f(r, s) ds ∈ L1(R), so the quantities above are



70 Characters and Maximal Ideals

well defined; measurability of s 7→ φ
(
f(·, s)

)
will follow from the below. If f = χA×B

(where A, B ⊆ R are bounded intervals) then s 7→ φ
(
f(·, s)

)
= φ(χA)χB and

φ
(∫

R

f(·, s) ds
)

= φ(χA

∫

R

χB(s) ds) =

∫

R

φ(χA)χB(s) ds =

∫

R

φ
(
f(·, s)

)
ds,

as claimed; linearity gives the result for all f ∈ Lstep(R2). For general f ∈ L1(R2) take
(fn)n>1 ⊆ Lstep(R2) such that fn → f in L1(R2). Note that

∫
R
fn(·, s) ds→

∫
R
f(·, s) ds

in L1(R) as
∫

R

∣∣
∫

R

fn(r, s) ds−
∫

R

f(r, s) ds
∣∣dr 6

∫

R

∫

R

|fn(r, s) − f(r, s)| ds dr = ‖fn − f‖1,

so

φ
(∫

R

f(·, s) ds
)

= lim
n→∞

φ
(∫

R

fn(·, s) ds
)

= lim
n→∞

∫

R

φ
(
fn(·, s)

)
ds =

∫

R

φ
(
f(·, s)

)
ds.

The last equality holds as
∣∣∣
∫

R

φ
(
fn(·, s)

)
ds−

∫

R

φ
(
f(·, s)

)
ds

∣∣∣ 6

∫

R

‖φ‖ ‖(fn − f)(·, s)‖1 ds = ‖φ‖ ‖fn − f‖1.

(This calculation also shows that s 7→ φ
(
fn(·, s)

)
→ s 7→ φ

(
f(·, s)

)
in L1(R), so has

there is a subsequence such that φ
(
fnk

(·, s)
)
→ φ

(
f(·, s)

)
for almost every s ∈ R. In

particular, s 7→ φ
(
f(·, s)

)
is the almost-everywhere limit of a sequence of measurable

functions, so is measurable.) �

Lemma 6.16. If χ : R → C is a continuous, bounded function such that χ(0) = 1 and
χ(s + t) = χ(s)χ(t) for all s, t ∈ R then there exists α ∈ R such that χ(t) = eiαt for all
t ∈ R.

Proof
Since χ(0) = 1 and χ is continuous, there exists r > 0 such that c =

∫ r

0
χ(x) dx 6= 0.

Hence

cχ(t) =

∫ r

0

χ(x+ t) dx =

∫ t+r

t

χ(y) dy (t ∈ R)

and χ is differentiable; differentiating the equation χ(s+ t) = χ(s)χ(t) with respect to s
at 0 yields χ′(t) = χ′(0)χ(t) and so χ(t) = exp(dt), where d = χ′(0). Since χ is bounded
we must have that d is purely imaginary, as claimed. �

Example 6.17. Recall that L1(R) is a non-unital Banach algebra when equipped with
the convolution product; let A = L1(R)u denote its unitization. If φ ∈ Φ(A) then either
ker φ = L1(R) (i.e., φ(α1 + f) = α for all α ∈ C and f ∈ L1(R) ) or there exists
f ∈ L1(R) such that φ(f) = 1. Suppose that the latter holds; as C00(R) is dense in
L1(R) we may assume that f is continuous and has compact support. (If g ∈ C00(R) is
such that ‖f − g‖1 6 1/2 then |φ(g)| > |φ(f)| − |φ(f − g)| > 1 − ‖φ‖ ‖f − g‖1 > 1/2;
now replace f by g/φ(g).) If g ∈ L1(R) then Lemma 6.15 gives that

φ(g) = φ(f)φ(g) = φ(f ⋆ g) = φ
(
s 7→

∫

R

ft(s)g(t) dt
)

=

∫

R

φ(ft)g(t) dt,
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where ft(s) = f(s− t) for all s, t ∈ R. Define

χ : R → C; t 7→ φ(ft)

and note that, since ‖ft‖1 = ‖f‖1 for all t ∈ R, |χ(t)| 6 ‖φ‖ ‖ft‖1 = ‖f‖1, i.e., χ is
bounded. Furthermore, χ(0) = φ(f0) = φ(f) = 1 and

|χ(t+ h) − χ(t)| = |φ(ft+h − ft)| 6 ‖ft+h − ft‖1 = ‖fh − f‖1 → 0

as h→ 0; this follows from the continuous form of the dominated-convergence theorem.
Note also that, if g, h ∈ L1(R),

(
gs+t ⋆ h

)
(r) =

∫

R

g
(
r − p− (s+ t)

)
h(p) dp =

∫

R

g(r − q − s)h(q − t) dq = (gs ⋆ ht)(r)

and so

χ(s+ t) = φ(fs+t) = φ(fs+t)φ(f) = φ(fs+t ⋆ f) = φ(fs ⋆ ft) = φ(fs)φ(ft) = χ(s)χ(t)

for all s, t ∈ R. By Lemma 6.16 we must have that χ(t) = e−ist for all t ∈ R, where
s ∈ R is such that e−is = χ(1). To see that s ∈ R is independent of the choice of f , let
g ∈ L1(R) be such that φ(g) = 1 and note that

χ(t) = φ(ft)φ(g) = φ(ft ⋆ g) = φ(f ⋆ gt) = φ(f)φ(gt) = φ(gt) ∀ t ∈ R.

Hence

φ(g) =

∫

R

g(t)e−ist dt ∀ g ∈ L1(R)

and the Gelfand transform corresponds the classical Fourier transform for L1(R); the
fact that α1 + f 7→ α +

∫
R
f(t)e−ist dt is a character for all s ∈ R is an immediate

consequence of Fubini’s theorem.

Example 6.18. If L1(R+) is equipped with the convolution product

(f ⋆ g)(t) =

∫ t

0

f(t− s)g(s) ds ∀ f, g ∈ L1(R+)

then it becomes a Banach algebra. The Gelfand theory here corresponds to the Laplace
transform.

Example 6.19. Let T = ∂D = {z ∈ C : |z| = 1} and A = {f ∈ C(D̄) : f |T ∈ A(D)|T}:
A consists of those continuous functions on the closed unit disc D̄ that agree on the unit
circle T with a continuous function on D̄ that is holomorphic in D. The character space
of A is homeomorphic to the sphere S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
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Exercises 7

Exercise 7.1. Let A = C(X), where X is a compact, Hausdorff space. Prove that the
map ǫ : X → Φ(A); x 7→ ǫx is a homeomorphism, where ǫx(f) = f(x) for all x ∈ X and
f ∈ C(X).

Exercise 7.2. Prove that if A is a unital Banach algebra generated by a single element
(i.e., there exists a ∈ A such that {p(a) : p(z) ∈ C[z]} is dense in A) then Φ(A) is
homeomorphic to σ(a). [Consider φ 7→ φ(a).] Deduce that Φ(A) is homeomorphic to
D̄ := {z ∈ C : |z| 6 1} if A = A(D) is the disc algebra.

Exercise 7.3. Let A be a unital Banach algebra that is generated by one element,
a, and let λ 6∈ σ(a). Show there exists a sequence of polynomials (pn)n>1 such that
pn(z) → (λ− z)−1 uniformly for all z ∈ σ(a). [Hint: (λ1 − a)−1 ∈ A.] Deduce that the
complement of σ(a) is connected. [Prove that if C is a bounded, maximally connected
component of C \ σ(a) then C is open and then employ the maximum-modulus theorem
[16, Theorem 5.20].]

Exercise 7.4. Let A be a commutative, unital Banach algebra. Prove that the Gelfand
transform on A is isometric if and only if ‖a2‖ = ‖a‖2 for all a ∈ A.

Exercise 7.5. Let A be a Banach algebra and B a semisimple, commutative, unital
Banach algebra. Prove that if φ : A→ B is a homomorphism then φ is continuous. [Use
the closed-graph theorem.]

Exercise 7.6. Let A = C1[0, 1], equipped with the norm ‖f‖ := ‖f‖∞ + ‖f ′‖∞. Prove
that A is a semisimple, commutative, unital Banach algebra and find its character space.
Prove that I = {f ∈ A : f(0) = f ′(0) = 0} is a closed ideal in A such that A/I is a
two-dimensional algebra with one-dimensional radical. What do you notice about A and
A/I?

Exercise 7.7. Prove that the Banach space ℓ1(Z) is a commutative, unital Banach
algebra when equipped with the multiplication

a ⋆ b : Z → C; n 7→
∑

m∈Z

ambn−m

(
a, b ∈ ℓ1(Z)

)
.

[You may assume that
∑

m∈Z

∑
n∈Z

ambn =
∑

n∈Z

∑
m∈Z

ambn for all a, b ∈ ℓ1(Z).]

Exercise 7.8. Let δ ∈ ℓ1(Z) be such that δ1 = 1 and δn = 0 if n 6= 1. Prove that a =∑
n∈Z

anδ
n for all a ∈ ℓ1(Z). Deduce that the character space of ℓ1(Z) is homeomorphic

to T := {z ∈ C : |z| = 1} and (with this identification) the Gelfand transform on ℓ1(Z)
is the map

Γ: ℓ1(Z) → C(T); Γ(a)(λ) =
∑

n∈Z

anλ
n ∀λ ∈ T, a ∈ ℓ1(Z).

Exercise 7.9. Let f : T → C be continuous and such that
∑

n∈Z
|f̂(n)| <∞, where

f̂(n) :=
1

2π

∫ π

−π

f(eit)e−int dt (n ∈ Z).
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Prove that if f(z) 6= 0 for all z ∈ T then g = 1/f : T → C; z 7→ 1/f(z) satisfies∑
n∈Z

|ĝ(n)| <∞. [This result is known as Wiener’s lemma.]

Exercise 7.10. Let T = ∂D = {z ∈ C : |z| = 1} and A = {f ∈ C(D̄) : f |T ∈ A(D)|T}:
A consists of those continuous functions on the closed unit disc D̄ that agree on the unit
circle T with a continuous function on D̄ that is holomorphic in D.

[A corollary of the maximum-modulus theorem [16, Theorem 5.20] will be useful: if
f ∈ A(D) then ‖f‖∞ := sup{|f(z)| : |z| 6 1} = sup{|f(z)| : |z| = 1} =: ‖f |T‖∞.]

(i) Show that A is a Banach algebra when equipped with the supremum norm.

(ii) Prove that I = {f ∈ A : f |T = 0} is a closed ideal in A and that A = A(D) ⊕ I.
[Consider a suitable map j : A→ A(D).]

(iii) Prove that
i : I → C0(D); f 7→ f |D

is an isometric isomorphism. Deduce that Iu is topologically isomorphic to C(Ḋ),
where Ḋ is the one-point compactification of D.

(iv) Prove that if φ ∈ Φ(A) is such that ker φ ⊇ I then φ = φ̃ ◦ j, where φ̃ ∈ Φ(A(D)).
Deduce that φ = εz ◦ j for some z ∈ D̄ (where εz : A(D) → C; f 7→ f(z) ).

(v) Let D̄1 and D̄2 be two copies of the unit disc and let S2 = D̄1∪D̄2

/
∼ be the sphere

obtained by identifying each point on T1 = ∂D1 with the corresponding point on
T2 = ∂D2. Define

T : S2 → Φ(A); z 7→
{
εz ◦ j (z ∈ D̄1),

εz (z ∈ D̄2)

and prove that this is a well-defined, continuous injection.

(vi) Prove that Φ(A) is homeomorphic to the sphere S2.





A Tychonov via Nets

Compactness in metric spaces can be characterised by the behaviour of sequences (viz
every sequence having a convergent subsequence: the Bolzano-Weierstrass property).
Furthermore, a proof of Tychonov’s theorem for countable products of metric spaces can
be given using sequences, together with construction of a diagonal subsequence (of a
sequence of sequences!).

The astute reader may suspect that compactness in general topological spaces is
equivalent to a property involving nets and that a proof of Tychonov’s theorem can be
given using subnets, whatever they may be. This suspicion is well founded; first we need
to define a subnet.

Definition A.1. Let (A, 6) be a directed set and (xa)a∈A a net. A subnet of (xa)a∈A is
a net (yb)b∈B (where (B, ≪) is a directed set) and a map j : B → A such that

(i) yb = xj(b) for all b ∈ B;

(ii) for all a0 ∈ A there exists b0 ∈ B such that if b≫ b0 then j(b) > a0.

Definition A.2. A net (xa)a∈A is eventually in a set S if there exists a0 ∈ A such that
xa ∈ S for all a > a0. (A net in a topological space converges to a point if it is eventually
in every open set containing that point.) A net (xa)a∈A is frequently in S if for all a0 ∈ A
there exists a ∈ A such that a > a0 and xa ∈ A. (Note that a net is not frequently in a
set if it is eventually in its complement et cetera.) If X is a topological space then x ∈ X
is an accumulation point for a net if that net is frequently in every open set containing
x.

Lemma A.3. Let (xa)a∈A be a net in X and let F be a non-empty family of subsets of
X that forms a directed set under reverse inclusion, such that (xa)a∈A is frequently in S
for all S ∈ F. There is a subnet of (xa)a∈A that is eventually in every S ∈ F.

Proof

Let

B = {(c, S) ∈ A× F : xc ∈ S},
ordered by setting

(c, S) ≪ (d, T ) ⇐⇒ c 6 d and S ⊇ T.

75
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If (c, S), (d, T ) ∈ B then there exist f ∈ A and W ∈ F such that c, d 6 f and
S, T ⊇ W . Since (xa)a∈A is frequently in W , there exists g > f such that xg ∈ W , and
so (c, S), (d, T ) ≪ (g,W ) ∈ B. This shows that (B, ≪) is a directed set; we claim that
defining

y(c,S) = xc ∀ (c, S) ∈ B and j : B → A; (c, S) 7→ c

makes (yb)b∈B a subnet of (xa)a∈A that is eventually in S for all S ∈ F.

Let S ∈ F and a0 ∈ A; there exists c ∈ A such that c > a0 and xc ∈ S, so if
b0 := (c, S) then b = (d, T ) ≫ b0 implies that j(b) > a0 (we have a subnet) and that
yb = xd ∈ T ⊆ S (so (yb)b∈B is eventually in S). This gives the result. �

Proposition A.4. Let (xa)a∈A be a net in the topological space X. The point x ∈ X is
an accumulation point of (xa)a∈A if and only if there is a subnet of (xa)a∈A that converges
to x.

Proof

Let (yb)b∈B be a subnet of (xa)a∈A that converges to x, let U be an open set containing
x and let a0 ∈ A. There exists b0 ∈ B such that j(b) > a0 for all b ≫ b0 (from the
definition of a subnet) and there exists b1 ∈ B such that yb ∈ U for all b≫ b1 (as (yb)b∈B

converges to x). If b≫ b0 and b≫ b1 then xj(b) = yb ∈ U and j(b) > a0, as required.

Conversely, let x be an accumulation point of (xa)a∈A and let F = {U ∈ T : x ∈ U}.
Then (xa)a∈A has a subnet that is eventually in every element of F, i.e., converges to x,
by Lemma A.3. �

From here we can prove the Bolzano-Weierstrass theorem in its full generality.

Theorem A.5. A topological space X is compact if and only if every net in X has a
convergent subnet.

Proof

Suppose that every net in X has a convergent subnet, and so an accumulation point,
by Proposition A.4. Suppose further that X has an open cover F with no finite subcover,
and let A denote the collection of finite subsets of F. Ordered by inclusion, A is a
directed set; we define a net (xa)a∈A by choosing xa /∈

⋃
U∈a U for all a ∈ A. Let x be an

accumulation point of (xa)a∈A; since F is a cover, there exists U0 ∈ F such that x ∈ U0.
The net (xa)a∈A is frequently in U0 (as this set contains an accumulation point) and so
there exists a ∈ A such that a ⊇ {U0} and xa ∈ U0. Since xa /∈

⋃
U∈a U ⊇ U0, this is a

contradiction.

Conversely, suppose that X is compact and let (xa)a∈A be a net with no accumulation
points: for all x ∈ X there exists an open set Ux containing x and ax ∈ A such that
xb /∈ Ux for all b > ax. The sets {Ux : x ∈ X} form an open cover of X, so there is a
finite subcover {Ux1

, . . . , Uxn
}, but if a ∈ A is such that a > axi

for i = 1, . . . , n then
xa /∈

⋃n
i=1 Uxi

= X. This contradiction gives the result. �

Definition A.6. A net in X is universal if, for every S ⊆ X, the net is eventually in S
or eventually in X \ S.
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A universal net can be thought of as being ‘maximally refined’; the first part of the next
proposition makes this idea rigorous.

Proposition A.7. A universal net converges to its accumulation points. The image of
a universal net by any function is universal.

Proof
If x is an accumulation point of the universal net (xa)a∈A then let U be an open

set containing x. Since (xa)a∈A is frequently in U , it is eventually in U (since it cannot
eventually be in its complement). Hence (xa)a∈A converges to x.

If (xa)a∈A is a universal net in X and f : X → Y then let S ⊆ Y . The net (xa)a∈A is
eventually in either f−1(S) or X \ f−1(S) = f−1(Y \ S), hence

(
f(xa)

)
a∈A

is eventually

in either S or Y \ S, as required. (Note that f(f−1(B)) = B ∩ f(X) for any B ⊆ Y .) �

The next lemma is the most technically involved; the proof involves construction of what
a Bourbakiste would call a filter (indeed, an ultrafilter).

Lemma A.8. Every net has a universal subnet.

Proof
Let (xa)a∈A be a net in X and let

C :=
{
U = {U ⊆ X} : U ∈ U ⇒ (xa) is frequently in U ; U, V ∈ U ⇒ U ∩ V ∈ U

}
,

ordered by inclusion. By Zorn’s lemma, C has a maximal element, U0, and Lemma A.3
implies that (xa)a∈A has a subnet (yb)b∈B which is eventually in every U ∈ U0.

If S ⊆ X is such that (yb)b∈B is not eventually in X \S then (yb)b∈B is frequently in S
and so (xa)a∈A is frequently in U ∩S for all U ∈ U0: by the construction in Lemma A.3,
(yb)b∈B = (y(a,U))(a,U)∈B and given (a, U) ∈ B there exists (b, V ) ∈ B such that b > a,
V ⊆ U and xb = y(b,V ) ∈ S, so as xb ∈ V (by construction) xb ∈ V ∩ S ⊆ U ∩ S. Hence,
by maximality, S ∈ U0 (as U0 ∪ {S, S ∩U : U ∈ U0} ∈ C) and so (yb)b∈B is eventually in
S. This shows that (yb)b∈B is universal, as required. �

Corollary A.9. A space is compact if and only if every universal net is convergent.

Proof
By the Bolzano-Weierstrass theorem (Theorem A.5), if the space is compact then

every universal net has a convergent subnet and so an accumulation point (by Proposi-
tion A.4). Since universal nets converge to their accumulation points (Proposition A.7),
the universal net is convergent.

Conversely, if every universal net is convergent then, as every net has a universal
subnet (Lemma A.8), every net has a convergent subnet. Theorem A.5 gives the result. �

We can now present a proof of Tychonov’s theorem that has a beautiful simplicity (the
dust having been swept under the rug that is Corollary A.9).

Alternative Proof of Tychonov’s Theorem
Let (X, T) be the product of the compact spaces {(Xb, Tb) : b ∈ B} and suppose

that (xa)a∈A is a universal net in X. Since the image of a universal net is universal
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(Proposition A.7), (πb(xa))a∈A is universal in Xb, so convergent (by Corollary A.9), for
all b ∈ B. Hence xa → x, where xb := lima∈A πb(xa) (by a property of initial topologies),
and X is compact, by Corollary A.9 again. �

Exercises A

Exercise A.1. Let X = ℓ∞ and for all n ∈ N define δn ∈ X∗ by setting δn
(
(xk)k>1

)
=

xn. Prove that (δn)n>1 has no weak*-convergent subsequence but that (δn)n>1 has a
weak*-convergent subnet.
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Solutions to Exercises 1

Exercise 1.1. Let X be a normed vector space and let M be a closed subspace of X.
Prove that

π{y ∈ X : ‖y − x‖ < ε} =
{
[y] ∈ X/M :

∥∥[y] − [x]
∥∥ < ε

}
∀x ∈ X, ε > 0,

where π : X → X/M ; x 7→ [x] is the natural map from X onto X/M (the quotient map).

Let
BX

ε (x) := {y ∈ X : ‖x− y‖ < ε}
denote the open ball in X with centre x and radius ε. If y ∈ BX

ε (x) then
∥∥[y] − [x]

∥∥ =
∥∥[y − x]

∥∥ 6 ‖y − x‖ < ε

and π(y) ∈ B
X/M
ε

(
[x]

)
. If y ∈ X is such that

∥∥[y] − [x]
∥∥ < ε then there exists m ∈M

such that ‖y − x−m‖ < ε, whence [y] = π(y −m) ∈ π
(
BX

ε (x)
)
.

Deduce that the quotient norm yields the quotient topology on X/M given by

Q := {U ⊆ X/M : π−1(U) ∈ T},

where T denotes the norm topology on X, and that the quotient map is open (i.e., sends
open sets to open sets).

Let T‖·‖ denote the topology on X/M given by the quotient norm. If U ∈ Q then
π−1(U) ∈ T and so π−1(U) =

⋃
x∈U B

X
εx

(x), whence

U = π
(
π−1(U)

)
=

⋃

x∈U

π
(
BX

εx
(x)

)
=

⋃

x∈U

BX/M
εx

(
[x]

)
∈ T‖·‖.

(The first equality holds because π is surjective.) Conversely, since π−1
(
π(A)

)
= A+M

for all A ⊆ X,

π−1
(
BX/M

ε

(
[x]

))
= π−1

(
π
(
BX

ε (x)
))

= BX
ε (x) +M =

⋃

m∈M

BX
ε (x+m) ∈ T.

Hence B
X/M
ε

(
[x]

)
∈ Q and we have the first result. The quotient map is open by the

first part of this exercise.

79
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Prove also that the quotient map is linear and continuous.

Linearity is immediate and continuity follows from the fact that
∥∥[x]

∥∥ 6 ‖x‖ for all
x ∈ X.

Exercise 1.2. Prove directly that if E is a Banach space and M is a closed subspace of
E then the quotient space

(
E/M, ‖ · ‖E/M

)
is complete.

Let
(
[xn]

)
n>1

be a sequence in E/M with
∑∞

n=1

∥∥[xn]
∥∥ convergent. For all n > 1 there

exists mn ∈ M such that ‖xn−mn‖ 6
∥∥[xn]

∥∥+2−n, by definition of the quotient norm,
and by comparison

∑∞
n=1 ‖xn−mn‖ is convergent. Hence

∑∞
n=1 xn −mn converges, by

the completeness of E, and, as the quotient map π : E → E/M ; x 7→ [x] is continuous,
so does π(

∑∞
n=1 xn −mn) =

∑∞
n=1[xn].

Exercise 1.3. Let M and N be subspaces of the normed space X. Prove that if M is
finite dimensional and N is closed then M +N is closed.

Note that M + N = π−1
(
π(M)

)
if π : X → X/N is the quotient map, and that if

{x1, . . . , xn} is a basis for M then {π(x1), . . . , π(xn)} is a spanning set for π(M), so
π(M) is finite-dimensional and therefore closed. Hence M + N is the preimage of a
closed set under a continuous map, so is itself closed.

Exercise 1.4. Prove that if {Ai
j : i ∈ I, j ∈ J} and {Bk

l : k ∈ K, l ∈ L} are families of
sets, where the index sets I, J , K and L are arbitrary, then

(⋃

i∈I

⋂

j∈J

Ai
j

)
∩

( ⋃

k∈K

⋂

l∈L

Bk
l

)
=

⋃

(i,k)∈I×K

⋂

(j,l)∈J×L

Ai
j ∩ Bk

l .

We have that

x ∈
(⋃

i∈I

⋂

j∈J

Ai
j

)
∩

( ⋃

k∈K

⋂

l∈L

Bk
l

)

⇐⇒ ∃ i0 ∈ I, k0 ∈ K such that x ∈ Ai0
j and x ∈ Bk0

l ∀ j ∈ J, l ∈ L

⇐⇒ ∃ (i0, k0) ∈ I ×K such that x ∈ Ai0
J ∩ Bk0

l ∀ (j, l) ∈ J × L

⇐⇒ x ∈
⋃

(i,k)∈I×K

⋂

(j,l)∈J×L

Ai
j ∩ Bk

l ,

as claimed.

What does this have to do with initial topologies?

A consequence of this is that the collection of arbitrary unions of finite intersections of
elements of a subbase is itself closed under finite intersections, and so initial topologies
are as claimed in Definition 1.24.

Exercise 1.5. Prove that if TF is the initial topology on X generated by a collection
of functions F and Y ⊆ X then TF |Y , the relative initial topology on Y , is the initial
topology generated by F |Y = {f |Y : f ∈ F}, the restrictions of the functions in F to Y .
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Since f |−1
Y (U) = f−1(U) ∩ Y , this is immediate.

Exercise 1.6. Let (xa)a∈A be a family of non-negative real numbers and let A denote
the collection of finite subsets of A. Prove that (xa)a∈A is summable (with sum α) if and
only if β = sup

{∑
a∈A0

xa : A0 ∈ A
}
<∞ and in this case α = β.

If
∑

a∈A0
xa → α then let ε > 0 and choose A1 ∈ A such that

∣∣∑
a∈A0

xa − α
∣∣ < ε for

all A0 ∈ A with A0 ⊇ A1. If A2 ∈ A then
∑

a∈A2

xa 6
∑

a∈A1∪A2

xa 6
∣∣

∑

a∈A1∪A2

xa − α
∣∣ + |α| < |α| + ε,

so sup
{ ∑

a∈A0
xa : A0 ∈ A

}
<∞.

Conversely, if β = sup
{ ∑

a∈A0
xa : A0 ∈ A

}
<∞ then let ε > 0 and choose A1 ∈ A

such that
∑

a∈A1
xa > β − ε. Then

β + ε >
∑

a∈A0

xa >
∑

a∈A1

xa > β − ε

for all A0 ∈ A such that A0 ⊇ A1; hence
∑

a∈A0
xa → β. Since R is Hausdorff we must

have α = β.

Exercise 1.7. Let E be a Banach space and let (xa)a∈A a family of vectors in E. Prove
that if

∑
a∈A ‖xa‖ is convergent then S := {a ∈ A : xa 6= 0} is countable.

Let Sn := {a ∈ A : ‖xa‖ > 1/n} for n ∈ N; applying the previous exercise to∑
a∈A ‖xa‖ we see that β = sup

{∑
a∈A0

‖xa‖ : A0 ∈ A
}
<∞. If Sn is infinite for some

n ∈ N then let a1, . . . , am be distinct elements of Sn, where m > nβ, and note that∑m
j=1 ‖xaj

‖ > m/n > β, a contradiction. Hence S =
⋃∞

n=1 Sn is a countable union of
finite sets, so countable.

Deduce that (xa)a∈A is summable with sum

∑
a∈A xa =

{ ∑
a∈S xa if S is finite,

∑∞
j=1 xaj

if S is infinite,

where (if S is infinite) j 7→ aj is a bijection between N and S.

If S is finite then
∑

a∈A0
xa − ∑

a∈S xa = 0 for all A0 ∈ A such that A0 ⊇ S, hence∑
a∈A0

xa → ∑
a∈S xa. If S is countably infinite, j 7→ aj is as above and m, n ∈ N are

such that m > n then

∥∥
m∑

j=1

xaj
−

n∑

j=1

xaj

∥∥ 6

m∑

j=n+1

‖xaj
‖ 6 β −

n∑

j=1

‖xaj
‖. (⋆)

Let ε > 0 and choose A0 ∈ A such that
∑

a∈A0
‖xa‖ > β−ε; if n0 := max{j : aj ∈ A0}

then
∑n

j=1 ‖xaj
‖ >

∑
a∈A0

‖xa‖ > β − ε for all n > n0, so from (⋆) we have that

∥∥
m∑

j=1

xaj
−

n∑

j=1

xaj

∥∥ < β − (β − ε) = ε ∀m,n > n0.
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Thus
(∑n

j=1 xaj

)
n>1

is Cauchy, so convergent to x ∈ E, say. If n > n0 is such that∥∥∑n
j=1 xaj

− x
∥∥ < ε then, for all A0 ∈ A such that A0 ⊇ {a1, . . . , an},

∥∥
∑

a∈A0

xa − x
∥∥ 6

∥∥
∑

a∈A0\{a1,...,an}

xa

∥∥ +
∥∥

n∑

j=1

xaj
− x

∥∥

<
∑

a∈A0

‖xa‖ −
n∑

j=1

‖xa‖ + ε

< β − (β − ε) + ε = 2ε.

Hence
∑

a∈A0
xa → x, as claimed.

Exercise 1.8. Prove that a family of complex numbers (za)a∈A is summable if and only
if

(
|za|

)
a∈A

is summable.

Note first that, since

max
{
|Re z|, | Im z|

}
6 |z| 6 |Re z| + | Im z| ∀ z ∈ C,

(
|za|

)
a∈A

is summable if and only if
(
|Re za|

)
a∈A

and
(
| Im za

∣∣)a∈A are summable, by Ex-

ercise 1.6. Note also that (za)a∈A is summable if and only if
(
Re za

)
a∈A

and
(
Im za

)
a∈A

are summable, because if A0 is a finite subset of A then

max
{∣∣

∑

a∈A0

Re za − Re z
∣∣,

∣∣
∑

a∈A0

Im za − Im z
∣∣
}

6
∣∣
∑

a∈A0

za − z
∣∣ 6

∣∣
∑

a∈A0

Re za − Re z
∣∣ +

∣∣
∑

a∈A0

Im za − Im z
∣∣.

Hence it suffices to prove the real case of this proposition.
Given (xa)a∈A ⊆ R let x+

a = max{xa, 0} and x−a = −min{xa, 0} for all a ∈ A; note
that ∑

a∈A0

|xa| =
∑

a∈A0

x+
a +

∑

a∈A0

x−a ∀A0 ∈ A,

so
(
|xa|

)
a∈A

is summable if and only if (x+
a )a∈A and (x−a )a∈A are summable. Since

(ya)a∈A is summable if and only if (−ya)a∈A is, and xa = x+
a − x−a , it suffices to prove

that the summability of (xa)a∈A implies that of (x+
a )a∈A.

For this we suppose otherwise; let
∑

a∈A xa = x, take ε > 0 and choose A1 ∈ A such
that

∣∣∑
a∈A0

xa − x
∣∣ < ε for all A0 ∈ A that contain A1. Set A2 = {a ∈ A1 : x−a > 0}

and let A3 ∈ A be such that
∑

a∈A3

x+
a >

∑

a∈A2

x−a + |x| + ε;

this exists as
∑

a∈A x
+
a is not convergent. If A0 = {a ∈ A3 : x+

a > 0} ∪A1 then
∑

a∈A3

x+
a 6

∑

a∈A0

x+
a 6

∣∣
∑

a∈A0

x+
a − x−a − x

∣∣ +
∣∣
∑

a∈A0

x−a + x
∣∣ < ε+

∑

a∈A2

x−a + |x|,

the desired contradiction.
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Exercise 1.9. Find a Hilbert space H and a countable family of vectors (xn)n∈N in H
that is summable but not absolutely summable (i.e.,

(
‖xn‖

)
n∈N

is not summable).

Let H = ℓ2(N) and let xn = en/n for all n ∈ N, where en is the standard basis vector,
with 1 in nth position and 0 elsewhere. As the harmonic series is divergent,

sup
{ ∑

n∈N0

‖xn‖ : N0 is a finite subset of N
}

> sup
{ k∑

n=1

1

n
: k ∈ N

}
= ∞,

and Exercise 1.6 gives that
(
‖xn‖

)
n∈N

is not summable. However, (xn)n∈N has sum

x := (1, 1/2, 1/3, . . .): for ε > 0 take k ∈ N such that
∑∞

n=k+1 1/n2 < ε2 and note that
‖∑

n∈N0
xn − x‖ < ε for every finite subset N0 ⊆ N that contains {1, . . . , k}.

Exercise 1.10. Prove the converse to Proposition 1.31, that in a space with a non-
Hausdorff topology there exists a net that converges to two distinct points.

Suppose that T is not a Hausdorff topology on the set X: there exist distinct points
x, y ∈ X such that every pair of open sets (U, V ) with x ∈ U and y ∈ V satisfies
U ∩V 6= ∅. Let A ⊆ T×T denote the aggregate of such pairs, with preorder 6 defined
by setting

(A,B) 6 (C,D) ⇐⇒ A ⊇ C and B ⊇ D.

This is a directed set: if (A,B), (C,D) ∈ A then (A ∩ C,B ∩D) ∈ T × T is an upper
bound for (A,B) and (C,D), and since x ∈ A∩C and y ∈ B∩D, (A∩C,B∩D) ∈ A.
For all (A,B) ∈ A let x(A,B) ∈ A ∩ B; we claim that the net (x(A,B))(A,B)∈A converges
to x and to y. If U ∈ T is such that x ∈ U then x(A,B) ∈ U for all (A,B) ∈ A such that
A ⊆ U , hence x(A,B) ∈ U for all (A,B) > (U,X) and x(A,B) → x. This same argument
works for y and so we have the result.

Exercise 1.11. A sequence in a normed vector space that is convergent is necessarily
bounded. Is the same true for nets?

For a simple counterexample, consider Z directed by its usual order and define a net
(xn)n∈Z by setting xn = n if n 6 0 and xn = 1/n if n > 0.

Solutions to Exercises 2

Exercise 2.1. Let X be a topological space and E a Banach space; recall that Cb(X,E),
the space of E-valued, bounded, continuous functions on X, is complete with respect to
the norm

f 7→ ‖f‖∞ := sup{‖f(x)‖E : x ∈ X}.
Prove that C0(X,E), the continuous, E-valued functions on X that vanish at infinity
(i.e., those f ∈ C(X,E) such that {x ∈ X : ‖f(x)‖E > ε} is compact for all ε > 0) is a
closed subspace of Cb(X,E).
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Note that any function f ∈ C0(X,E) is bounded, as f is continuous on the compact
set {x ∈ X : ‖f(x)‖E > 1} and so bounded there. Let (fn)n>1 ⊆ C0(X,E) converge
to f ; if ε > 0 and n ∈ N are such that ‖fn − f‖∞ < ε/2 then

‖fn(x)‖ > ‖f(x)‖ − ‖fn(x) − f(x)‖ > ‖f(x)‖ − 1
2
ε,

so {x ∈ X : ‖f(x)‖ > ε} is a closed subset of the compact set {x ∈ X : ‖fn(x)‖ > ε/2}
and therefore is itself compact. Hence C0(X,E) is closed.

If f , g ∈ C0(X,E) then K = {x ∈ X : ‖f(x)‖ > ε/2} and L = {x ∈ X : ‖g(x)‖ >

ε/2} are compact, and if x 6∈ K ∪ L then

‖f(x) + g(x)‖ 6 ‖f(x)‖ + ‖g(x)‖ < 1
2
ε+ 1

2
ε = ε,

whence {x ∈ X : ‖(f + g)(x)‖ > ε} ⊆ K ∪ L is compact. If α ∈ F then either α = 0,
in which case αf = 0 ∈ C0(X,E) trivially, or {x ∈ X : ‖αf‖ > ε} = {x ∈ X : ‖f‖ >

ε/|α|} is compact for all ε > 0. This shows that C0(X,E) is a subspace of Cb(X,E).

Exercise 2.2. Let (X, T) be a Hausdorff, locally compact space and let ∞ denote a
point not in X. Show that

Ṫ := T ∪ {U ⊆ Ẋ : ∞ ∈ U, X \ U is compact}

is a Hausdorff, compact topology on Ẋ := X ∪ {∞}.

It is routine to verify that Ṫ is a topology; recall that compact sets are closed under
finite unions and arbitrary intersections, and that compact sets are closed in Hausdorff
spaces. If C ⊆ Ṫ is an open cover of Ẋ then there exists U ∈ C such that ∞ ∈ U ,
and since X \ U is compact and has open cover C \ {U}, this has a finite subcover
C0. Hence C0 ∪ {U} is a finite subcover of the cover C, showing that Ṫ is compact.
Finally, since T is Hausdorff it suffices to take x ∈ X and prove that there exist open
sets separating ∞ and x. As T is locally compact there exists U ∈ T such that x ∈ U
and Ū is compact, whence U and {∞} ∪ (X \ Ū) are elements of Ṫ as required.

Prove that there is a natural correspondence between C0(X,E) and {f ∈ C(Ẋ, E) :
f(∞) = 0}.

For f ∈ C0(X,E) let

ḟ : Ẋ → E; x 7→
{
f(x) if x ∈ X,

0 if x = ∞.

Let U ⊆ E be open; if 0 6∈ U then ḟ−1(U) = f−1(U) ∈ T ⊆ Ṫ, and if 0 ∈ U then
without lost of generality U = BE

ε (0) (as we may write U as the union of a set of this
form and the open set U \ {0} = (X \ {0}) ∩ U). Since

ḟ−1
(
BE

ε (0)
)

= {∞}∪{x ∈ X : ‖f(x)‖ < ε} = {∞}∪
(
X \{x ∈ X : ‖f(x)‖ > ε}

)
∈ Ṫ,

we see that ḟ is continuous.
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Conversely, let ḟ ∈ C(Ẋ, E) be such that ḟ(∞) = 0, and let f = ḟ |X . Since the
relative topology ṪX equals T, f is continuous, and if ε > 0 then

{x ∈ X : ‖f(x)‖ < ε} = {x ∈ Ẋ : ‖ḟ(x)‖ < ε} ∩X = ḟ−1
(
BE

ε (0)
)
∩X = X \K

for some compact set K ⊆ X, as required.

Exercise 2.3. Let X be a separable normed space. Prove that X1 is separable (in the
norm topology).

Let S be a countable, dense set in X and note that {qs : q ∈ Q, s ∈ S} is countable
(being the image of the countable set Q × S under the mapping (q, s) 7→ qs). Hence
we may assume, without loss of generality, that S is closed under multiplication by
rationals.

Let x ∈ X1 and choose (yn)n>1 ⊆ S such that ‖x− yn‖ 6 1/n for all n > 1. Then
zn := nyn/(n+ 1) ∈ S for all n > 1, zn → x by the algebra of limits and

‖zn‖ 6
∥∥ n

n+ 1
(yn − x)

∥∥ +
∥∥ n

n+ 1
x
∥∥ 6

1

n + 1
+

n

n + 1
‖x‖ 6 1,

as required.

Prove that any separable Banach space E is isometrically isomorphic to a quotient space
of ℓ1.

Let (en)n>1 ⊆ E1 be dense; such exists by the first part of the question. Define

T : ℓ1 → E; x 7→ Tx :=

∞∑

n=1

xnen

and note that T ∈ B(ℓ1, E); linearity is obvious, as is the absolute convergence of Tx
(and the fact that ‖T‖ 6 1) because

∞∑

n=1

‖xnen‖ 6

∞∑

n=1

|xn| = ‖x‖1.

Since T
(
(ℓ1)1

)
⊇ {en : n > 1}, which is dense in E1, the open-mapping lemma gives

that T is surjective. Furthermore, this set is k-dense in E1 for all k ∈ (0, 1), so if
y ∈ E there exists xk ∈ ℓ1 such that y = Txk and ‖xk‖ 6 ‖Txk‖/(1− k). The identity
Txk = Txk′ for all k, k′ ∈ (0, 1) gives that

∥∥[xk]
∥∥ 6 ‖xk‖ 6

‖Txk‖
1 − k

=

∥∥T̃ [xk]
∥∥

1 − k
∀ k ∈ (0, 1),

where [x] = x+ ker T and T̃ : ℓ1/ kerT → imT = E is a bijection such that Tx = T̃ [x]
for all x ∈ ℓ1. This shows that

∥∥[y]
∥∥ 6

∥∥T̃ [y]
∥∥ for all y ∈ ℓ1, and the opposite inequality

follows from the fact
∥∥T̃

∥∥ = ‖T‖ 6 1. Hence ℓ1/ kerT is isometrically isomorphic to
imT = E, as required.
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Exercise 2.4. Prove that no infinite-dimensional Banach space E has a countable Hamel
basis (where a Hamel basis is a linearly independent set S such that every vector in E
is a finite linear combination of elements of S).

Suppose for contradiction that S = {e1, e2, . . .} is a countable Hamel basis for the
Banach space E, let Fn = Fe1 + · · ·Fen and note that E =

⋃∞
n=1 Fn. Each Fn is closed

(being finite-dimensional) and has empty interior: if U ⊆ Fn is open and non-empty
then it contains BE

ε (u) for some u ∈ U and ε > 0, but then u + 1
2
ε‖en+1‖−1en+1 ∈

U ⊆ Fn, whence en+1 ∈ Fn, contradicting linear independence. This shows that E is a
countable union of nowhere dense sets, a contradiction to the Baire category theorem.

Exercise 2.5. Let T : X → Y be a linear transformation from the normed space X onto
the finite-dimensional normed space Y . Prove that T is continuous if and only if kerT
is closed and that if T is continuous then T is open.

It is immediate that if T is continuous then ker T = T−1{0} is closed. If ker T is closed
then X/ kerT is a normed space (with respect to the quotient norm) and the quotient
map π : X → X/ kerT is open and continuous. Furthermore, T̃ : X/ kerT → imT = Y
is a linear bijection between finite-dimensional normed spaces, so is a homeomorphism.
(Recall than a linear transformation between normed space is continuous if its domain
is finite dimensional: if S : Y → Z is a linear transformation and dimY < ∞ then
the norm y 7→ ‖y‖Y + ‖Sy‖Z is equivalent to ‖ · ‖Y , so there exists M > 0 such that
‖Sy‖Z 6 ‖y‖Y + ‖Sy‖Z 6 M‖y‖Y for all y ∈ Y .) As T = T̃ ◦ π and both these maps
are open and continuous, so is T .

Exercise 2.6. Let X = C([0, 1],R) denote the Banach space of continuous, real-valued
functions on the unit interval and for all k ∈ N let

Dk := {f ∈ X : there exists t ∈ [0, 1] such that |f(s)−f(t)| 6 k|s−t| for all s ∈ [0, 1]}.

Prove that Dk is closed.

Let (fn)n>1 ⊆ Dk be convergent, with limit f , and for each fn let tn be as in the
definition of Dk. Then (tn)n>1 is a bounded sequence, so (by the Bolzano-Weierstrass
theorem, passing to a subsequence if necessary) we may assume that tn → t ∈ [0, 1].
Let ε > 0 and n0 ∈ N be such that |f(tn) − f(t)| < ε for all n > n0; for such n,

|f(s) − f(t)| 6 |f(s) − fn(s)| + |fn(s) − fn(tn)| + |fn(tn) − f(tn)| + |f(tn) − f(t)|
< 2‖f − fn‖∞ + k|s− tn| + ε

→ k|s− t| + ε

as n→ ∞, and since this holds for all ε > 0 we see that f ∈ Dk.

Prove further that Dk is nowhere dense.

Let f ∈ X and let ε > 0; since f is uniformly continuous on [0, 1] we may find δ > 0
such that |s−t| < δ implies that |f(s)−f(t)| < ε/2. Choose 0 = t0 < t1 < · · · < tn = 1
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such that ti − ti−1 < δ for i = 1, 2, . . . , n and let

g : [0, 1] → R; t 7→ ti − t

ti − ti−1

f(ti−1) +
t− ti−1

ti − ti−1

f(ti) (if t ∈ [ti−1, ti], i = 1, 2, . . . , n).

The function g is piecewise-linear (so continuous) and if t ∈ [ti−1, ti] then

|f(t) − g(t)| 6
ti − t

ti − ti−1
|f(t) − f(ti−1)| +

t− ti−1

ti − ti−1
|f(t) − f(ti)| <

ε

2
,

so ‖f − g‖∞ < ε/2; furthermore,

M := inf{m ∈ R+ : |g(s) − g(t)| 6 m|s− t| for all s, t ∈ [0, 1]}
= sup{|g(s)− g(t)|/|s− t| : s, t ∈ [0, 1], s 6= t}
< ∞,

as if 0 6 s < t 6 1 then either s, t ∈ [ti−1, ti], so
(
g(t) − g(s)

)
/(t− s) = g′

(
(t+ s)/2

)
,

or s ∈ [ti−1, ti] and t ∈ [tj−1, tj ] for j > i, so
∣∣∣∣
g(t) − g(s)

t− s

∣∣∣∣ 6

∣∣∣∣
g(t) − g(tj−1)

t− tj−1

∣∣∣∣ +

∣∣∣∣
g(tj−1) − g(tj−2)

tj−1 − tj−2

∣∣∣∣ + · · · +
∣∣∣∣
g(ti) − g(s)

ti − s

∣∣∣∣

(since t− s > t− tj−1, t− s > ti − s and t− s > tk − tk−1 if k lies between j and i).
Next, define the saw-tooth function (draw a picture)

h : R → R; t 7→ ε|1
2
− (t− n)| (t ∈ [n, n + 1], n ∈ Z)

and let gm : [0, 1] → R; x 7→ g(x) + h(mx) for m ∈ N. Since ‖h‖∞ 6 ε/2 we have that
‖f − gm‖∞ < ε, so if m > (M + k)/ε, t ∈ [0, 1] and s is sufficiently near to t then

∣∣∣∣
gm(s) − gm(t)

t− s

∣∣∣∣ > m

∣∣∣∣
h(ms) − h(mt)

ms−mt

∣∣∣∣ −
∣∣∣∣
g(s) − g(t)

s− t

∣∣∣∣

>
M + k

ε
ε−M = k,

which shows that f lies in the closure of X \Dk. Thus Dk has empty interior and is
nowhere dense.

Deduce that there exist continuous functions on [0, 1] that are differentiable at no point
in (0, 1).

If f ∈ X is differentiable at t ∈ (0, 1) then

g : [0, 1] → R; s 7→






f(s) − f(t)

s− t
s 6= t,

f ′(t) s = t

is continuous on [0, 1], so bounded. Hence |f(s)− f(t)| 6 ‖g‖∞|t− s| for all s ∈ [0, 1],
and f ∈ Dk for all k > ‖g‖∞. Since X 6= ⋃∞

k=1Dk (by the Baire category theorem)
the result follows.
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Exercise 2.7. Let H be an infinite-dimensional, separable Hilbert space. Prove that
B(H)1 is not separable in the norm topology.

Let {e1, e2, . . .} be an orthornormal basis for H , let H0 = lin{e1, e2, . . .} denote the
linear span of this basis and for each subset A ⊆ N define

P0(A) : H0 → H0;
∑

n∈N

αnen 7→
∑

n∈A

αnen.

(In H0 only finitely many coefficients in
∑

n∈N
αnen are non-zero, so this map is well

defined.) It is immediate that ‖P0(A)‖ 6 1, so we may extend P0(A) to P (A) ∈
B(H) such that P (A) = P0(A)|H0

and ‖P (A)‖ 6 1. If A, B ⊆ N are distinct then
‖P (A) − P (B)‖ > 1: let n ∈ (A \ B) ∪ (B \ A) and consider

∥∥(
P (A) − P (B)

)
en

∥∥.
Suppose that S ⊆ B(H)1 is dense and let SA ∈ S be such that ‖SA −P (A)‖ < 1/2 for
all A ⊆ N; if A, B ⊆ N are distinct then

1 6 ‖P (A) − P (B)‖ 6 ‖P (A) − SA‖ + ‖SA − SB‖ + ‖SB − P (B)‖ < 1 + ‖SA − SB‖,

hence A 7→ SA is injective and thus S is uncountable.

Solutions to Exercises 3

Exercise 3.1. Let H be a separable Hilbert space with orthonormal basis {e1, e2, . . .}.
For n > 1 let Pn denote the orthogonal projection onto Fe1 + · · · + Fen; prove that
PnTPnx→ Tx as n→ ∞ for all T ∈ B(H) and x ∈ H .

Note that

‖PnTPnx− Tx‖ 6 ‖PnT‖ ‖(Pn − I)x‖ + ‖(Pn − I)Tx‖
6 ‖T‖ ‖(Pn − I)x‖ + ‖(Pn − I)Tx‖,

so it suffices to prove that Pny → y for all y ∈ H . To see this, note that Parseval’s
equality gives that

‖(Pn − I)y‖2 = 〈(Pn − I)y, (Pn − I)y〉 = ‖y‖2 −
n∑

k=1

|〈ek, y〉|2 → 0

as n→ ∞.

Deduce that B(H) is separable in the strong operator topology.

Note that
⋃

n>1 PnB(H)Pn is strong operator dense in B(H) and that a countable union
of countable sets is countable, so it suffices to prove that, for all n > 1, PnB(H)Pn con-
tains a countable, strong-operator-dense set. Next, note that PnB(H)Pn is isomorphic
to Fn2

and all norm topologies on finite-dimensional spaces coincide, so PnB(H)Pn is
norm separable. As the norm topology is finer than the strong operator topology the
result follows.
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Exercise 3.2. Prove that if E is a Banach space with respect to two different norms then
they are either equivalent or non-comparable (i.e., neither is coarser than the other).

If the norms ‖·‖ and ‖·‖′ are comparable then, without loss of generality, the topology
T‖·‖ generated by the first is finer than T‖·‖′ , the topology generated by the second. In
particular, the identity map is continuous from (E,T‖·‖) to (E,T‖·‖′) (as T‖·‖′ ⊆ T‖·‖).
Since every continuous, linear bijection between Banach spaces has continuous inverse,
we have the result.

Exercise 3.3. Prove the following extension of Tietze’s theorem to complex-valued
functions: if X is a normal space, Y a closed subset of X and f ∈ Cb(Y ) then there
exists F ∈ Cb(X) such that F |Y = f and ‖F‖∞ = ‖f‖∞.

Apply Tietze’s theorem to obtain g, h ∈ Cb(X,R) such that g|Y = Re f and h|Y =
Im f . Let k = g + ih, so that k|Y = f and let

l : C → C; z 7→
{
z if |z| 6 ‖f‖∞,
z‖f‖∞/|z| if |z| > ‖f‖∞.

Then F = l ◦ k is as required: if y ∈ Y then F (y) = l(k(y)) = l(f(y)) = f(y) and
‖F‖∞ = ‖l‖∞ 6 ‖f‖∞.

Prove also that Tietze’s theorem applies to unbounded, real-valued functions: if X and
Y are as above and f : Y → R is continuous then there exists F : X → R such that
F |Y = f .

Let g = arctan ◦ f , so that g takes values in (−π/2, π/2); by Tietze’s theorem there
exists G ∈ Cb(X) such that ‖G‖∞ 6 π/2 and G|Y = g. The set C = G−1{±π/2}
is closed and, by Urysohn’s lemma, there exists H ∈ Cb(X) such that ‖H‖∞ 6 1,
H|C = 0 and H|Y = 1. The function F = tan ◦GH is as required: |GH| < π/2 and

F (y) = tan(G(y)H(y)) = tan(arctan f(y)) = f(y) ∀ y ∈ Y.

Exercise 3.4. Let E be a Banach space, Y a normed vector space and suppose that
(Tn)n>1 ⊆ B(E, Y ) is such that limn→∞ Tnx exists for all x ∈ E. Prove that there exists
T ∈ B(E, Y ) such that Tn → T in the strong operator topology.

It is immediate that
T : E → Y ; x 7→ lim

n→∞
Tnx

is a linear operator, by the continuity of vector addition and scalar multiplication in
a normed space. As convergent sequences in normed spaces are bounded, {‖Tnx‖ :
n > 1} is bounded for all x ∈ E, and, as E is complete, the principle of uniform
boundedness implies that M := sup{‖Tn‖ : n > 1} is finite. Hence ‖T‖ 6 M , because

‖Tx‖ = lim
n→∞

‖Tnx‖ 6 M‖x‖ ∀x ∈ E.

What can be said about the norm of T ?
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The working above shows that
(
‖Tn‖

)
n>1

is a bounded sequence, so there exists a

subsequence
(
‖Tnk

‖
)

k>1
such that ‖Tnk

‖ → limn→∞ ‖Tn‖ := supn>1 infm>n ‖Tm‖. Since
a subsequence of a convergent sequence converges to the same limit,

‖Tx‖ = lim
k→∞

‖Tnk
x‖ 6 lim

k→∞
‖Tnk

‖ ‖x‖ → lim
n→∞

‖Tn‖ ‖x‖ ∀x ∈ E.

Hence ‖T‖ 6 limn→∞ ‖Tn‖.

Exercise 3.5. Let x = (xn)n>1 be a sequence of complex numbers such that the series∑∞
n=1 xnyn is convergent for all y ∈ c0. Prove that x ∈ ℓ1.

For n > 1 define the linear operator

fn : c0 → C; y 7→
n∑

j=1

xjyj.

Since |fn(y)| 6
∑n

j=1 |xj | |yj| 6 ‖y‖∞
∑n

j=1 |xj | it follows that fn is bounded, with
‖fn‖ 6

∑n
j=1 |xj |. This is actually an equality: let yj ∈ T := {α ∈ C : |α| = 1}

be such that yjxj = |xj| and note that z = (y1, . . . , yn, 0, 0, . . .) ∈ (c0)1 is such that
|fn(z)| =

∑n
j=1 |xj |. For all y ∈ c0 the sequence (fn(y))n>1 is convergent, so

sup{|fn(y)| : n > 1} <∞

and, since c0 is a Banach space, the principle of uniform boundedness implies that

‖x‖1 =
∞∑

n=1

|xn| = sup{‖fn‖ : n > 1} <∞.

Exercise 3.6. Let E be a Banach space with closed subspaces F and G such that
E = F ⊕G (i.e., every element of E can be expressed uniquely as the sum of an element
of F and an element of G). Define PF and PG by setting

PF : E → E; f + g 7→ f and PG : E → E; f + g 7→ g ∀ f ∈ F, g ∈ G.

Prove that PF and PG are bounded linear operators such that P 2
F = PF , P 2

G = PG and
PFPG = PGPF = 0.

The algebraic facts are easily verified; we prove only that PF is bounded, by applying
the closed-graph theorem. Let (xn)n>1 ⊆ E be such that xn → x and PFxn → y; since
PFxn ∈ F for all n and F is closed, y ∈ F , and similarly x−y = limn→∞ xn−PFxn ∈ G.
Thus x = y + (x− y) ∈ F +G and by uniqueness PFx = y, as required.

Exercise 3.7. Find a Banach space E with closed subspaces F and G such that E =
F ⊕G and

P : E → E; f + g 7→ f ∀ f ∈ F, g ∈ G

has norm strictly greater than one.
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Let E = R3 equipped with the norm ‖x‖ = max{|x1|, |x2|, |x3|} (writing vectors in
bold and denoting their coordinates in the obvious manner) and let

f : R3 → R; (x1, x2, x3) 7→ 2x1 + 2x2 − 3x3,

F := ker f and G := Ru, where u := (1, 1, 1); since x = (x − f(x)u) + f(x)u for all
x ∈ R3 and f(u) = 1, E, F and G are as required. Suppose for contradiction that
‖P‖ = 1 and let v := Pu; note that ‖v‖ = ‖Pu‖ 6 ‖P‖ ‖u‖ = 1, so |vi| 6 1 for
i = 1, 2, 3.

If x := (1,−1, 1) and y := x + t(u − Pu), where t ∈ R is chosen so that y ∈ F ,
whence y = Px, then

y ∈ F ⇐⇒ x + tu ∈ F ⇐⇒ t = 3,

by direct calculation, so y = (4, 2, 4) − 3Pu = (4 − 3v1, 2 − 3v2, 4 − 3v3). Now,
‖y‖ = ‖Px‖ 6 1, so |4− 3v1| 6 1 and v1 ∈ [1, 5/2]; since |v1| 6 1, v1 = 1 = v3 and, as
y ∈ F , v2 = 1/2. Thus v = Pu = (1, 1/2, 1).

Now let z := (−1, 1, 1) and w := z+s(u−Pu), where s ∈ R is chosen so that w ∈ F
and so w = Pz. As w = (−1, 1 + s/2, 1), it follows that s = 3 and w = (−1, 5/2, 1),
contradicting the fact that ‖w‖ = ‖Pz‖ 6 1.

[This example is due to Goodner [6].]

Exercise 3.8. Let E be a Banach space with closed subspaces F and G such that
F ∩G = {0}. Prove that F ⊕G is closed if and only if there exists C > 0 such that

‖f‖ 6 C‖f + g‖ ∀ f ∈ F, g ∈ G.

If F ⊕ G is closed then the projection map PF : F ⊕ G → F ; f + g 7→ f is bounded
(by Exercise 3.6). Hence

‖f‖ = ‖PF (f + g)‖ 6 ‖PF‖ ‖f + g‖ ∀ f ∈ F, g ∈ G,

as required.
Conversely, suppose that such C > 0 exists and let (xn)n>1 ⊆ F ⊕ G be such that

xn → x for some x ∈ E. Let xn = fn + gn for all n > 1, where fn ∈ F and gn ∈ G,
and note that

‖fn − fm‖ 6 C‖(fn − fm) + (gn − gm)‖ = C‖xn − xm‖,

so (fn)n>1 is Cauchy and hence convergent, say fn → f ∈ F . Furthermore, since G is
closed,

lim
n→∞

gn = lim
n→∞

xn − fn = x− f ∈ G

and x = f + (x− f) ∈ F ⊕G, as required.

Deduce that F ⊕G is closed if and only if

c := inf{‖f − g‖ : f ∈ F, g ∈ G, ‖f‖ = ‖g‖ = 1} > 0.
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If F ⊕ G is closed then, by the previous part, there exists C > 0 such that ‖f‖ 6

C‖f+g‖ for all f ∈ F and g ∈ G. Hence (replacing g by −g) ‖f−g‖ > C−1‖f‖ = C−1

if f ∈ F , g ∈ G and ‖f‖ = ‖g‖ = 1, whence c > C−1 > 0.
Conversely, if F ⊕G is not closed then there exists no such C, so for all n > 1 there

exist fn ∈ F and gn ∈ G such that ‖fn‖ > n‖fn + gn‖; replacing fn by fn/‖fn‖ and gn

by gn/‖fn‖ we may assume that ‖fn‖ = 1 and ‖fn + gn‖ < 1/n. Since

∣∣1 − ‖gn‖
∣∣ =

∣∣‖fn‖ − ‖ − gn‖
∣∣ 6 ‖fn + gn‖ < 1/n

we see that

∥∥fn + ‖gn‖−1gn

∥∥ 6 ‖fn + gn‖ +
∥∥−gn + ‖gn‖−1gn

∥∥ < 1

n
+

∣∣−1 + ‖gn‖−1
∣∣ ‖gn‖ <

2

n
;

thus c < 2/n for all n > 1 and so c = 0, as claimed.

Solutions to Exercises 4

Exercise 4.1. A closed subspace M of the normed spaceX is complemented in X if there
exists a closed subspace N such that M ⊕N = X, i.e., M +N = X and M ∩N = {0}.
Prove that M is complemented in X if M is finite dimensional.

Let {x1, . . . , xn} be a basis for M , let {φ1, . . . , φn} ⊆ M∗ be the dual basis, use the
Hahn-Banach theorem to extend φi to φ̃i ∈ X∗ and then let N =

⋂n
i=1 ker φ̃i. The fact

that N is closed is immediate and if x ∈ M ∩ N then φi(x) = 0 for all i, so x = 0.
Finally, note that x− ∑n

i=1 φ̃i(x)xi ∈ N for all x ∈ X.

Prove also that M is complemented in X if M has finite codimension, i.e., dimX/M <
∞.

Let X/M have basis
{
[x1], . . . , [xn]

}
and suppose that N is the vector space spanned

by {x1, . . . , xn}. Then N is closed (being finite-dimensional), X = π−1(X/M) =
π−1

(
π(N)

)
= M + N (where π : X → X/M is the quotient map) and if

∑n
i=1 αixi ∈

M ∩ N then [0] =
∑n

i=1 αi[xi], whence α1 = · · · = αn = 0 by linear independence of{
[x1], . . . , [xn]

}
.

Exercise 4.2. Let M be a finite-dimensional subspace of the normed space X and let N
be a closed subspace of X such that X = M ⊕N . Prove that if φ0 is a linear functional
on M then

φ : M ⊕N → F; m+ n 7→ φ0(m) ∀m ∈M, n ∈ N

is an element of the dual space X∗.

Note that ker φ = N + kerφ0 is closed, as N is closed and ker φ0 is finite-dimensional.
The result follows from the fact that surjective linear transformations with finite-
dimensional range and closed kernel are continuous (Exercise 2.5).

Exercise 4.3. Prove that a normed vector space X is separable if its dual X∗ is.
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Let (φn)n>1 be dense in X∗, let (xn)n>1 ⊆ X1 be such that |φn(xn)| > ‖φn‖/2 for all
n > 1 and let M = Q − lin{xn} (or (Q + iQ) − lin{xn} if F = C). If M̄ 6= X then let
x0 ∈ X \ M̄ ; by a corollary to the separation theorem there exists φ ∈ X∗ such that
φ|M = 0 and φ(x0) = 1. Let (φnk

)k>1 converge to φ and note that

1
2
‖φnk

‖ 6 |φnk
(xnk

)| 6 |φnk
(xnk

)−φ(xnk
)|+|φ(xnk

)| 6 ‖φnk
−φ‖ ‖xnk

‖ 6 ‖φnk
−φ‖ → 0

as k → ∞, implying that φ = 0. This contradiction gives the result.

Find a separable Banach space E such that E∗ is not separable.

Note that the separable Banach space ℓ1 has non-separable dual space ℓ∞.

Prove that a reflexive Banach space E is separable if and only if E∗ is.

The first part gives one implication and the other follows immediately by applying the
first part with E∗ in place of E; note that E and E∗∗ are isometrically isomorphic.

Exercise 4.4. Prove that a Banach space E is reflexive if and only its dual E∗ is
reflexive.

If E is reflexive then the canonical embedding Γ: E → E∗∗ is an isometric isomorphism:
for all Z ∈ E∗∗∗ we wish to find φ ∈ E∗ such that

Z(Ψ) = Ψ(φ) ∀Ψ ∈ E∗∗.

Consider φ = Z ◦ Γ; it is immediate that φ ∈ E∗, and if Ψ ∈ E∗∗ then Ψ = Γ(x) for
some x ∈ E, so

Ψ(Z ◦ Γ) = Γ(x)(Z ◦ Γ) = Z(Γ(x)) = Z(Ψ),

as required.
Conversely, suppose that E∗ is reflexive but E is not, so that Γ(E) is a proper

subspace of E∗∗ (which is closed because E is complete). Exercise 4.2 and Theorem 3.9
give Z ∈ E∗∗∗ such that Z|Γ(E) = 0 but Z 6= 0; as E∗ is reflexive, Z = Γ∗(φ) for some
φ ∈ E∗ (where Γ∗ : E∗ → E∗∗∗ is the canonical embedding) but then

0 = Z(Γ(x)) = Γ∗(φ)(Γ(x)) = Γ(x)(φ) = φ(x) ∀x ∈ E,

contradicting the fact that Z = Γ∗(φ) 6= 0.

Exercise 4.5. Prove that any infinite-dimensional normed space has a discontinuous
linear functional defined on it.

First use Zorn’s lemma to prove that the space X has a Hamel basis {ea : a ∈ A}
with ‖ea‖ = 1 for all a ∈ A. Define φ by choosing an infinite set of distinct elements
{an : n ∈ N} and setting

φ
(∑

a∈A

λaea

)
=

∞∑

n=1

nλan
∀x =

∑

a∈A

λaea ∈ X;

it is easy to verify that φ is a well-defined linear functional on X and since φ(ean
) =

n→ ∞ as n→ ∞, φ is not bounded.
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Exercise 4.6. Let A be a subset of the normed vector space X. Prove that A is norm
bounded (there exists r ∈ R+ such that ‖a‖ 6 r for all a ∈ A) if and only if it is weakly
bounded (for all φ ∈ X∗ there exists rφ ∈ R+ such that |φ(a)| 6 rφ for all a ∈ A).

If A is norm bounded then there exists r ∈ R+ such that ‖a‖ 6 r for all a ∈ A.
If φ ∈ X∗ then |φ(a)| 6 ‖φ‖ ‖a‖ 6 ‖φ‖r for all a ∈ A, showing that A is weakly
bounded. Conversely, if A is weakly bounded then {φ(a) : a ∈ A} = {â(φ) : a ∈ A} is
bounded for all φ ∈ X∗, and the principle of uniform boundedness yields boundedness
of {‖â‖ : a ∈ A}. Since ‖â‖ = ‖a‖ we see that A is norm bounded.

Deduce that a weakly holomorphic function is (strongly) continuous.

Suppose that f : U → X be weakly holomorphic, where U is an open subset of C and
X is a complex normed space. Let a ∈ U and choose ε > 0 such that BC

2ε(a) ⊆ U ; if
φ ∈ X∗ then, by Cauchy’s integral formula,
∣∣∣
(φ ◦ f)(z) − (φ ◦ f)(a)

z − a

∣∣∣ =
∣∣∣

1

2πi
	

∫

γ

(φ ◦ f)(w)

(w − z)(w − a)
dw

∣∣∣ 6
Mφ

ε/2
∀ z ∈ BC

ε/2(a) \ {a},

where γ : [0, 2π] → C; t 7→ a + εeit and Mφ = sup
{
|(φ ◦ f)(w)| : |w − a| = ε

}
. Hence

{f(z) − f(a)

z − a
: 0 < |z − a| < ε/2

}

is weakly bounded, so norm bounded: there exists r ∈ R+ such that

‖f(z) − f(a)‖ 6 r|z − a| ∀ z ∈ BC

ε/2(a),

whence f(z) → f(a) in X as z → a.
[This is the first step in proving Dunford’s theorem, that weakly holomorphic functions
are strongly holomorphic [19, Theorem 3.31].]

Exercise 4.7. Let H be a Hilbert space. Prove that the adjoint T 7→ T ∗ is continuous
with respect to the weak operator topology on B(H), but not necessarily with respect
to the strong operator topology.

Note that Ta → T in the weak operator topology on B(H) if and only if 〈x, Tay〉 →
〈x, Ty〉 for all x, y ∈ H . Since 〈x, Sy〉 = 〈S∗x, y〉 = 〈y, S∗x〉 and z 7→ z̄ is continuous
on C we have the first claim. For the second, let {en : n ∈ N} denote the standard
orthonormal basis of ℓ2 and let Tn = |en〉〈e1| for all n > 1, i.e.,

Tn : ℓ2 → ℓ2; x 7→ 〈e1, x〉en.

It is readily verified that Tn ∈ B(H) (with ‖Tn‖ 6 1) and ‖Tne1‖ = 1. Furthermore,
T ∗

n = |e1〉〈en| and ‖T ∗
nx‖ = |〈en, x〉| → 0 as n→ ∞ (by Parseval’s equality) so T ∗

n → 0
in the strong operator topology. This gives the result.

Exercise 4.8. Let E and F be Banach spaces. Show that if T : E → F and S : F ∗ → E∗

are linear transformations that satisfy

φ(Tx) = (Sφ)(x) ∀x ∈ E, φ ∈ F ∗ (⋆)

then S and T are bounded, with S = T ∗.
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Let (x, y) be a limit point of G(T ), the graph of T , and suppose that (xn)n>1 ⊆ E is
such that xn → x and Txn → y. For all φ ∈ F ∗ we have that Sφ ∈ E∗ and so

φ(y) = lim
n→∞

φ(Txn) = lim
n→∞

(Sφ)(xn) = (Sφ)(x) = φ(Tx),

hence Tx = y (since F ∗ separates points in F ); by the closed-graph theorem T ∈
B(E,F ). Furthermore, T ∗ ∈ B(F ∗, E∗) is such that S = T ∗, by (⋆), as E certainly
separates points in E∗.
[This is the Hellinger-Toeplitz theorem.]

Exercise 4.9. Let E and F be Banach spaces and suppose that T ∈ B(E,F ) has closed
range, i.e., imT is closed in F . Prove that imT ∗ = (ker T )⊥ (where

M⊥ := {φ ∈ E∗ : φ(x) = 0 for all x ∈M}

is the annihilator of the subspace M ⊆ E).

If φ ∈ F ∗ then

(T ∗φ)(x) = φ(Tx) = φ(0) = 0 ∀x ∈ kerT,

so that imT ∗ ⊆ (ker T )⊥. Conversely, suppose that ψ ∈ (kerT )⊥, i.e., ψ ∈ E∗ satisfies
ψ(x) = 0 for all x ∈ ker T , and define

θ0 : E/ kerT → F; [x] 7→ ψ(x).

This is a good definition (because ker T ⊆ kerψ) and

|θ0[x]| = |ψ(x)| = |ψ(x+m)| 6 ‖ψ‖ ‖x+m‖ ∀m ∈ kerT,

so |θ0[x]| 6 ‖ψ‖ ‖[x]‖ for all x ∈ E and θ0 is continuous. Since imT is closed, the
bounded linear operator T̃ : E/ kerT → imT has continuous inverse (by the open-
mapping theorem); extending θ0 ◦ T̃−1 to θ ∈ F ∗ by the Hahn-Banach theorem we see
that

(T ∗θ)(x) = θ(Tx) = θ0[x] = ψ(x) ∀x ∈ E

so ψ ∈ imT ∗ and the result follows.

Exercise 4.10. Let E = c0, so that E∗ = ℓ1 and E∗∗ = ℓ∞. Prove that x 7→ ∑∞
n=1 xn is

weakly continuous on ℓ1 but is not weak* continuous.

The weak topology on ℓ1 is such that ŷ : x 7→ ∑∞
n=1 ynxn is continuous for all y ∈ ℓ∞,

so if 1 := (1, 1, . . .) then 1̂ : x 7→ ∑∞
n=1 xn is weakly continuous. If

(
x(n)

)
n>1

⊆ ℓ1 is

defined by setting x
(n)
n = 1 and x

(n)
k = 0 if k 6= n then 1̂

(
x(n)

)
= 1 for all n > 1 but

ŷ
(
x(n)

)
= yn → 0 as n→ ∞ for all y ∈ c0, i.e., x(n) → 0 in the weak* topology. Hence

1̂ is not weak* continuous.

Exercise 4.11. Prove that a compact metric space is separable.



96 Solutions to Exercises

Let (X, d) be a compact metric space. For n ∈ N the set {B1/n(x) : x ∈ X} is an

open cover of X, so there exist x
(n)
1 , . . . , x

(n)
mn such that X =

⋃mn

k=1B1/n

(
x

(n)
k

)
. We claim

that S =
⋃

n∈N

{
x

(n)
1 , . . . , x

(n)
mn

}
is countable (being a countable union of finite sets) and

dense in X. For the latter claim, let ε > 0 and x ∈ X; there exists n ∈ N such that
ε > 1/n and some k ∈ {1, . . . , mn} such that x ∈ B1/n

(
x

(n)
k

)
, whence d

(
x, x

(n)
k

)
< ε

and S ∩ Bε(x) 6= ∅. The result follows.

Prove that if X is a separable normed space then X∗
1 , the closed unit ball of the dual

space X∗, is metrizable when equipped with the weak* topology.

Let (xn)n>1 ⊆ X1 be dense in X1 and define

d : X∗
1 ×X∗

1 → R+; (φ, ψ) 7→
∞∑

n=1

2−n|φ(xn) − ψ(xn)|. (†)

Note that the series is convergent (by comparison with
∑∞

n=1 2−n‖φ− ψ‖) so d is well
defined. Symmetry and the triangle inequality are immediate and if d(φ, ψ) = 0 then
(φ−ψ)(xn) = 0 for all n > 1, whence φ = ψ. Hence d is a metric on X∗

1 ; it remains to
prove that Td = σ(X∗, X)|X∗

1
. Note first that (φ, ψ) 7→ |φ(xn) − ψ(xn)| = |x̂n(φ− ψ)|

is a continuous function on X∗
1 × X∗

1 (where each factor is equipped with the weak*
topology) and the series (†) is uniformly convergent on this set, so continuous. In
particular, the balls

{ψ ∈ X∗
1 : d(ψ, φ) < ε} (φ ∈ X∗

1 , ε > 0)

are σ(X∗, X)|X∗

1
-open, so Td ⊆ σ(X∗, X)|X∗

1
. As Td is Hausdorff and σ(X∗, X)|X∗

1

is compact, these topologies are equal. (Recall that a continuous bijection from a
compact space to a Hausdorff space is a homeomorphism.)

Deduce that X∗ is separable in the weak* topology.

This follows because X∗
n is separable for all n ∈ N (being the image of the weak*-

separable space X∗
1 under the homeomorphism x 7→ nx) and X∗ =

⋃
n∈N

X∗
n.

Exercise 4.12. Let X and Y be normed spaces and for all x ∈ X and y ∈ Y let

x⊗ y : B(X, Y ∗) → F; T 7→ (Tx)(y).

Prove that x⊗ y ∈ B(X, Y ∗)∗, with ‖x⊗ y‖ = ‖x‖ ‖y‖, and that the mapping

X × Y → B(X, Y ∗); (x, y) 7→ x⊗ y

is bilinear.

It is straightforward to see that x ⊗ y ∈ B(X, Y ∗) with ‖x ⊗ y‖ 6 ‖x‖ ‖y‖; for the
reverse inequality, suppose that x and y are non-zero and let φ ∈ X∗ and ψ ∈ Y ∗ be
such that ‖φ‖ = ‖ψ‖ = 1, φ(x) = ‖x‖ and ψ(y) = ‖y‖. (These exist by Theorem 3.10).
If T := z 7→ φ(z)ψ then T ∈ B(X, Y ∗), with ‖T‖ 6 ‖φ‖ ‖ψ‖ = 1, and (x ⊗ y)(T ) =
φ(x)ψ(y) = ‖x‖ ‖y‖, whence ‖x⊗ y‖ > ‖x‖ ‖y‖, as required. Verification of bilinearity
is routine.
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If Z is the closed linear span of {x⊗ y : x ∈ X, y ∈ Y } in B(X, Y ∗)∗, prove that

j : B(X, Y ∗) → Z∗; j(T )z = z(T )

is an isometric isomorphism.

Clearly, j is a linear map and ‖j(T )‖ 6 ‖T‖ for all T ∈ B(X, Y ∗). For the reverse
inequality, let ε > 0 and choose x ∈ X such that ‖x‖ = 1 and ‖Tx‖ > ‖T‖ − ε/2,
then choose y ∈ Y such that ‖y‖ = 1 and ‖(Tx)(y)‖ > ‖Tx‖ − ε/2. It follows that
‖x ⊗ y‖ = 1 and ‖(x⊗ y)T‖ = ‖(Tx)(y)‖ > ‖T‖ − ε, whence ‖j(T )‖ > ‖T‖. Finally,
let φ ∈ Z∗ and let φx : Y → F; y 7→ φ(x⊗y). Since |φ(x⊗y)| 6 ‖φ‖ ‖x‖ ‖y‖, φx ∈ Y ∗,
and if T := x 7→ φx then ‖T‖ 6 ‖φ‖, so T ∈ B(X, Y ∗) and j(T ) = φ; hence j is
surjective.

[This idea, which allows one to put a weak* topology on B(X, Y ∗), was used by Arveson
in [1] and dates back to Schatten [20, Theorem 3.2].]

Solutions to Exercises 5

Exercise 5.1. Prove that if X is a vector space with separating subspace M ⊆ X ′ and
φ ∈ X ′ is a linear functional that is σ(X,M)-continuous then there exist φ1, . . . , φn ∈M
such that

|φ(x)| 6 max
16i6n

|φi(x)| ∀x ∈ X.

By the definition of σ(X,M),

|φ|−1[0, 1) ⊇
n⋂

i=1

|φi|−1[0, εi),

where φ1, . . . , φn ∈ M and ε1, . . . , εn > 0. Replacing φi by φi/εi if necessary, with-
out loss of generality ε1 = · · · = εn = 1. If x ∈ X is such that α := |φ(x)| >
max16i6n |φi(x)| then |φ(α−1x)| = 1 but

max
16i6n

|φi(α
−1x)| = max

16i6n
|φi(x)|/|φ(x)| < 1,

a contradiction.

Deduce that
⋂n

i=1 ker φi ⊆ kerφ and that there exists f ∈ (Fn)∗ such that

f
(
φ1(x), . . . , φn(x)

)
= φ(x) ∀x ∈ X.

The first deduction is immediate; for the next, define Φ: X → Fn by setting

Φ(x) :=
(
φ1(x), . . . , φn(x)

)
∀x ∈ X

and note that ker Φ =
⋂n

i=1 ker φi ⊆ ker φ, so that if Φ(x) = Φ(y) then φ(x) = φ(y).
Hence

f0 : Φ(X) → F;
(
φ1(x), . . . , φn(x)

)
7→ φ(x)

is well defined, and we extend f0 to f ∈ (Fn)∗ by setting f |Φ(X) = f0 and f |Φ(X)⊥ = 0.
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Conclude that φ ∈M .

Let f(0, . . . , 1, . . . , 0) = αi (where the 1 is in the ith place) so that

φ(x) = f
(
φ1(x), . . . , φn(x)

)
=

n∑

i=1

φi(x)αi =

( n∑

i=1

αiφi

)
(x) ∀x ∈ X,

i.e., φ =
∑n

i=1 αiφi ∈ M .

Exercise 5.2. Let X be an infinite-dimensional normed space and let V ⊆ X be a
weakly open set containing the origin. Show that V contains a closed subspace of finite
codimension in X.

Since V is a weakly open set containing 0 there exist φ1, . . . , φn ∈ X∗ such that V
contains

⋂n
j=1 |φj|−1[0, 1). The linear transformation

Φ: X → Fn; x 7→
(
φ1(x), . . . , φn(x)

)

has kernel ker Φ =
⋂n

i=1 ker φi ⊆ V , which is closed because ker φi is closed for i =
1, . . . , n. Since X/ ker Φ ∼= im Φ ⊆ Fn, ker Φ has finite codimension, as desired.

Deduce that the weak topology on X is strictly coarser than the norm topology.

Note that the open unit ball BX
1 (0) is open with respect to the norm topology onX, but

it contains no subspace of X other than {0}, which does not have finite codimension.
Hence σ(X,X∗) has fewer open sets than the norm topology.

(To see that these topologies are comparable, note that x 7→ φ(x) is norm continuous
for all φ ∈ X∗, so φ−1(U) is open (with respect to the norm topology) for all open
U ⊆ F.)

Exercise 5.3. Let X be a topological vector space. Prove that every φ ∈ X ′ \ {0} is
open.

Let x0 ∈ X be such that φ(x0) = 1 and let A ⊆ X be open. If x ∈ A then A − x is
an open set containing 0 (by the continuity of vector addition) and so m−1

x0
(A − x) is

an open set containing 0, where mx0
: F → X; α 7→ αx0 (by the continuity of scalar

multiplication). Hence there exists δ > 0 such that αx0 ∈ A − x if |α| < δ, and so
α+ φ(x) = φ(αx0 + x) ∈ φ(A) for such α. This shows that φ(A) is open and gives the
result.

Exercise 5.4. Suppose that X is a vector space equipped with a topology that makes
vector addition and scalar multiplication, i.e., the maps

X ×X → X; (x, y) 7→ x+ y and F ×X → X; (α, x) 7→ αx,

continuous. Show that if this topology is such that singleton sets are closed (i.e., {x} is
closed for all x ∈ X) then the topology is Hausdorff (so X is a topological vector space).
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Note that, for fixed y ∈ X, the map x 7→ x+y is a homeomorphism of X with itself, so
it suffices take x ∈ X \{0} and find an open set U such that 0 ∈ U and U∩(x+U) = ∅.
Note that the map

X ×X → X; (y, z) 7→ y − z

is continuous and so {(y, z) ∈ X×X : y−z 6= x} is an open subset of X×X containing
(0, 0). Hence there exist open sets V , W ⊆ X such that 0 ∈ V ∩W and x 6∈ V −W ;
taking U = V ∩W gives the result.

Exercise 5.5. Let X be a topological vector space. Prove that every open set containing
the origin contains a non-empty open set which is balanced : a set B is balanced if λb ∈ B
for all b ∈ B and λ ∈ F1.

Let U ⊆ X be an open set containing 0. As m : F × X → X; (λ, x) 7→ λx is
continuous, m−1(U) is an open set in F×X which contains (0, 0); by the definition of
the product topology, there exist ε > 0 and an open set V ⊆ X such that 0 ∈ V and
BF

ε (0) × V ⊆ m−1(U). It is easily verified that m(BF

ε (0) × V ) = {λv : |λ| < ε, v ∈ V }
is balanced, contained in U and open, since it is the union of λV over all λ ∈ F such
that 0 < |λ| < ε and the map v 7→ λv is a homeomorphism for all λ 6= 0.

Deduce that if C ⊆ X is compact and does not contain the origin then there exist disjoint
open sets A, B ⊆ X such that C ⊆ A and B is a balanced set containing 0.

As X is Hausdorff, for all x ∈ C there exist disjoint open sets Ax, Bx ⊆ X such that
x ∈ Ax and 0 ∈ Bx; by the first part of this exercise, Bx may be taken to be balanced.
Since C is compact, there exist x1, . . . , xn ∈ C such that A := Ax1

∪ · · · ∪ Axn
⊆ X,

and if B := Bx1
∩ · · · ∩Bxn

then A and B are as required.

Show that a balanced set is connected and give an example to show that a balanced set
need not be convex.

For any point x in a balanced set B, the path t 7→ (1 − t)x connects x to the origin;
thus B is path connected, so connected. The cross-shaped set {(x, 0), (0, y) : x, y ∈
[−1, 1]} ⊆ R2 is balanced but not convex.

Exercise 5.6. Let p ∈ (0, 1),

Lp[0, 1] :=
{
f : [0, 1] → C

∣∣ f is measurable and ∆(f) <∞
}
,

where ∆(f) :=
∫ 1

0
|f(x)|p dx, and let Lp[0, 1] := Lp[0, 1]/N, where

N :=
{
f : [0, 1] → C

∣∣ f is measurable and zero almost everywhere
}
.

Prove that d([f ], [g]) := ∆(f − g) is a metric on Lp[0, 1] and that Lp[0, 1] is a topological
vector space (when equipped with this topology).

The mean-value theorem may be used to establish the inequality (1 + z)p − zp 6 1
for all z > 0, from which it follows that (x + y)p 6 xp + yp for all x, y > 0. This is
enough to see that Lp[0, 1] is closed under sums and so is a vector space; it also gives
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the triangle inequality for d. The other two requirements of a metric are obviously
satisfied and the inequalities

d([f + g], [fa + ga]) 6 d([f ], [fa]) + d([g], [ga])

and

d(λf, λafa) 6 |λ− λa|p
∫ 1

0

|f(t)|p dt+ |λa|p d([f ], [fa])

show that vector addition and scalar multiplication are suitably continuous.

Prove further that Lp[0, 1] has no convex, open sets other than ∅ and Lp[0, 1].

Let V 6= ∅ be convex and open; without loss of generality 0 ∈ V and so there exists
ε > 0 such that {f ∈ Lp[0, 1] : d(f, 0) < ε} ⊆ V . Let f ∈ Lp[0, 1] and choose
n ∈ N such that np−1d(f, 0) < ε. By the intermediate-value theorem, there exist
0 = x0 < x1 < · · · < xn = 1 such that

∫ xi

xi−1

|f(t)|p dt = d(f, 0)/n (i = 1, . . . , n);

let gi,n := nf on [xi−1, xi) and 0 elsewhere, so that f = (g1,n + · · · + gn,n)/n and

d(gi,n, 0) = np

∫ xi

xi−1

|f(t)|p dt = np−1d(f, 0) < ε

for all i. It follows immediately that f ∈ V and V = Lp[0, 1].

Deduce that the only continuous linear functional on Lp[0, 1] is the zero functional.

If φ ∈ Lp[0, 1]′ is continuous then φ−1
(
BC

ε (0)
)

is convex, open and non-empty, for all
ε > 0. Hence φ(Lp[0, 1]) ⊆ BC

ε (0) for all ε > 0 and so φ = 0.

[This argument is (essentially) due to Tychonov [23], who worked with the sequence
space {(xn)n∈N :

∑∞
n=1 |xn|1/2 <∞}.]

Exercise 5.7. Let X be a topological vector space over F and let M be a finite-
dimensional subspace of X. Prove that M is linearly homeomorphic to Fn, where n
is the dimension of M .

Let {e1, . . . , en} be a basis for M and let

T : Fn →M ; (λ1, . . . , λn) 7→ λ1e1 + · · ·+ λnen.

It is immediate that T is a linear bijection which is continuous, because scalar multi-
plication and vector addition are; it remains to show that T is open. Let

S := {(λ1, . . . , λn) : |λ1|2 + · · ·+ |λn|2 = 1}

be the unit sphere in Fn; this is compact and therefore so is its image, T (S). By
Exercise 5.5, there exist disjoint open sets U , V ⊆ M such that 0 ∈ U , which is
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balanced, and T (S) ⊆ V . It follows that U ⊆ T (BF

1 (0)): otherwise, there exists
u ∈ U such that u = T (λ1, . . . , λn) with α := |λ1|2 + · · · + |λn|2 > 1, but then
α−1/2(λ1, . . . , λn) ∈ S and α−1/2u ∈ T (S) ∩ U , a contradiction. Hence if W ⊆ Fn is
open and w ∈W then there exists ε > 0 such that BF

ε (0) ⊆W − w, so

Tw + εU ⊆ Tw + εT (BF

1 (0)) ⊆ T (w +BF

ε (0)) ⊆ T (W );

since Tw + εU is open and contains Tw, the set T (W ) is open and the result follows.

Prove also that M is closed in X.

Let T be the map above, now considered to have codomain X; clearly T is (still)
continuous and the same working as above yields an open set U ⊆ X such that 0 ∈ U
and U ∩M ⊆ T (BF

1 (0)). Let x be in the closure of M and note that tx→ 0 as t→ 0+,
by the continuity of scalar multiplication, so there exists r > 0 such that x ∈ rU .
Hence

x ∈ rU ∩M ⊆ rU ∩M ⊆ rT (BF
1 (0)) ⊆ T ((Fn)r) = T ((Fn)r) ⊆M,

since (Fn)r is compact and T is continuous. (The first inclusion holds as rU is open.)

Exercise 5.8. Prove that a topological vector space with topology given by a separating
family of linear functionals is locally convex.

Let X be such a topological vector space, with separating family M . If U is an open
subset of X containing the origin, there exist φ1, . . . , φn ∈ M and ε1, . . . , εn > 0 such
that

n⋂

i=1

φ−1
i

(
(BF

εi
(0)

)
⊆ U,

so it suffices to prove that φ−1(BF

ε (0)) is convex for any φ ∈ M and ε > 0. To see this,
let t ∈ (0, 1) and suppose u and v ∈ X are such that |φ(u)| < ε and |φ(v)| < ε. Then
|φ(tu+ (1 − t)v)| 6 t|φ(u)| + (1 − t)|φ(v)| < ε, as required.

Exercise 5.9. Suppose that X is a locally convex topological vector space and M is
the collection of continuous linear functionals on X. Prove that a convex subset of X is
closed (with respect to the original topology) if and only if it is closed with respect to
σ(X,M), the initial topology generated by M .

As σ(X,M) is the coarsest topology to make every element of M continuous, by
definition, σ(X,M) is coarser than TX , the original topology on X; in particular,
every σ(X,M)-closed set is TX -closed. Conversely, if B ⊆ X is convex and TX-
closed then let x0 ∈ X \ B; by Theorem 3.32(ii), there exists φ ∈ M such that
Reφ(x0) < infy∈B Reφ(y). Thus B is σ(X,M)-closed, as required.

Need this hold if X is not locally convex?

No: if X = Lp[0, 1] for some p ∈ (0, 1) then, by Exercise 5.6, F = {0} and TF = {0, X},
the trivial topology. However, the one-dimensional subspace of X consisting of the
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constant functions is closed, convex, non-empty and not the whole of X. (For the first
of these claims, either use Exercise 5.7 or prove it directly: if the sequence of constant
functions (λn1)n>1 converges to f ∈ X then it is Cauchy, but d(λn1, λm1) = |λn −λn|p
and so λn → λ for some λ ∈ C. Furthermore, d(f, λ1) 6 d(f, λn1) + d(λn1, λ) → 0, so
f = λ1, as required.)

Exercise 5.10. Let X be a locally convex topological vector space. Show that if N
is a non-empty subspace of X and x0 ∈ X \ N̄ then there exists a continuous linear
functional φ ∈ X ′ such that φ|N = 0 and φ(x0) = 1.

Let B = N̄ ; by the separation theorem (Theorem 3.32) there exists a continuous
φ0 ∈ X ′ such that

Reφ0(x0) < inf{Reφ0(y) : y ∈ B}.
In particular, φ0

(
{x0}

)
∩φ0(B) = ∅, and as φ0(B) is a subspace of φ0(X) = F we must

have that φ0(B) = {0}. Hence φ0(x0) 6= 0 and φ : x 7→ φ0(x)/φ0(x0) is as required.

Exercise 5.11. Let X be a topological vector space and suppose V is an open set
containing 0. Prove there exists an open set U containing 0 such that U + U ⊆ V .

Since a : X ×X → X; (x, y) 7→ x+ y is continuous and 0 + 0 = 0 ∈ V , the pre-image
a−1(V ) is an open set containing (0, 0); hence there exist open sets W1, W2 ⊆ X such
that 0 ∈W1 ∩W2 and W1 +W2 ⊆ V . Letting U := W1 ∩W2 establishes the claim.

Deduce or prove otherwise that if A ⊆ B ⊆ X, where A is compact and B is open, then
there exists an open set U ⊆ X such that 0 ∈ U and A+ U ⊆ B.

If x ∈ A then B − x is an open set containing 0 so, by the first part, there exists an
open set Ux which contains 0 and satisfies Ux + Ux ⊆ B − x. As x+ Ux is open for all
x ∈ A, compactness yields x1, . . . , xn ∈ A such that A ⊆ (x1 +Ux1

)∪ · · · ∪ (xn +Uxn
);

if U := Ux1
∩ · · · ∩ Uxn

then U is an open set containing 0 and

A+ U ⊆
n⋃

i=1

(xi + Uxi
+ U) ⊆

n⋃

i=1

(xi + Uxi
+ Uxi

) ⊆ B,

as required.

The Appendix provides the means for an alternative proof. Suppose, for contradiction,
that if U ⊆ X is open and contains 0 then there exist xU ∈ A and yU ∈ U such that
xU + yU 6∈ B. Ordering such U by reverse inclusion, (yU) converges to 0 and (xU) is
contained in the compact set A, so has a convergent subnet, by Theorem A.5. Hence
(xU + yU) has a convergent subnet, with limit z in A, but xU + yU ∈ X \B for all U ,
which is closed, so z ∈ X \B ⊆ X \ A. This contradiction gives the result.

Exercise 5.12. Suppose that X is a topological vector space such that the continuous
elements of X ′ separate points. Prove that given disjoint, non-empty, compact, convex
A, B ⊆ X there exists a continuous φ ∈ X ′ such that

sup
x∈A

Reφ(x) < inf
x∈B

Reφ(x).
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Since σ(X,M) is coarser than the original topology on X, the sets A and B are
σ(X,M)-compact; furthermore, σ(X,M) is Hausdorff, because M separates points,
(Proposition 1.26) and both vector addition and scalar multiplication are σ(X,M)-
continuous, by Propositions 1.25, 1.35 and 1.37 together with the continuity of addition
and multiplication in F. Hence X is a topological vector space when equipped with
σ(X,M); we work with this topology from now on, which has the benefit of being
locally convex, by Exercise 5.8, and also gives rise to the same collection of continuous
linear functionals, M , by Exercise 5.1. Applying Exercise 5.11 to A and X \ B yields
an open set U containing 0 such that A + U ⊆ X \ B, whence A + U and B are
disjoint. Moreover, the set U may be taken to be convex, so A + U is convex and
Theorem 3.32(i) yields φ ∈ M and s ∈ R such that Reφ(x) < s 6 infy∈B Reφ(y) for
all x ∈ A+ U ; the result follows.

Deduce that Theorem 3.40 is true for topological spaces with continuous dual spaces
that separate points.

The proof given in Section 3.12 applies with the following changes: Corollary 3.33 is
not required, since the continuous dual space is assumed to separate points, and the
result just established is a generalisation of Theorem 3.32(ii).

Exercise 5.13. Let X be a topological vector space and suppose that C is a non-empty,
compact, convex subset of X. Prove that (F, ⊇), the collection of closed faces of C
ordered by reverse inclusion, is a non-empty, partially ordered set such that every chain
in F has an upper bound.

Since C is trivially a face of itself, F is non-empty, and reverse inclusion is easily seen
to be reflexive, transitive and antisymmetric, i.e., a partial order. If C is a chain in
F then consider F , the intersection of all the elements of C; it is immediate that this
is an upper bound for C if it is a face. The set F is closed and also non-empty: C is
compact, so every collection of closed subsets of C with the finite-intersection property
has non-empty intersection and C has this property because it is a chain. If x, y ∈ C
and t ∈ (0, 1) are such that tx + (1 − t)y ∈ F then tx+ (1 − t)y lies in every element
of C, so x and y lie in every element of C, as these elements are faces. Hence x and y
are in F and F is a face.

Exercise 5.14. Prove that the closed unit ball of c0 has no extreme points.

Let x ∈
(
c0

)
1

and note that there exists n0 ∈ N such that |xn0
| < 1

2
. Define y and

z ∈ c0 by setting yn = zn = xn for all n 6= n0, yn0
= xn0

− 1
2

and zn0
= xn0

+ 1
2
. It is

immediate that y, z ∈
(
c0

)
1

and x = 1
2
(y+ z), showing that x is not an extreme point

of
(
c0

)
1
.

Exercise 5.15. Let H be a Hilbert space. Prove that every unit vector in H is an
extreme point of the closed unit ball H1.

Suppose that x is a unit vector in H and let y, z ∈ H1 and t ∈ (0, 1) be such that
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x = ty + (1 − t)z. Then

1 = ‖x‖2 = t〈y, x〉 + (1 − t)〈z, x〉,

which implies that t = 1
2

and 〈y, x〉 = 〈z, x〉 = 1 (because 1 is an extreme point in F1).
As 1 = |〈y, x〉| 6 ‖y‖ ‖x‖ 6 1 we have equality in the Cauchy-Schwarz inequality and
so x and y are linearly dependent; since 〈y, x〉 = 1 we must have y = x. Hence x is an
extreme point of H1.

Deduce that every isometry in B(H) is an extreme point of the closed unit ball B(H)1.

Let V ∈ B(H) be a isometry; it is immediate that ‖V ‖ = 1 and so V ∈ B(H)1. Let
S, T ∈ B(H)1 and t ∈ (0, 1) be such that V = tS + (1 − t)T and let x ∈ H be a unit
vector. Then ‖V x‖ = ‖x‖ = 1, so V x is a unit vector, and ‖Sx‖, ‖Tx‖ 6 1, so the
identity V x = tSx+ (1 − t)Tx implies that Sx = Tx = V x, by the first part. As this
holds for all unit vectors in H we have that S = T = V , so V is an extreme point of
B(H)1, as claimed.

Exercise 5.16. Let C be a convex subset of a topological vector space X. Prove that
if x ∈ C and y ∈ C◦, the interior of C, then tx+ (1 − t)y ∈ C◦ for all t ∈ [0, 1).

Since y ∈ C◦, there exists an open set U such that y ∈ U ⊆ C; if t ∈ [0, 1) then
tx + (1 − t)U is open (since z 7→ z + tx and z 7→ (1 − t)z are homeomorphisms) and
contained in C (since C is convex).

[It follows that C is the sequential closure of C◦, if this set is non-empty: for every
x ∈ C there exists a sequence (xn)n>1 ⊆ C◦ such that xn → x.]

Prove also that the interior C◦ and the extremal boundary ∂eC are disjoint (as long as
X 6= {0}).

Suppose for contradiction that x ∈ C◦∩∂eC and let U be an open set with x ∈ U ⊆ C.
Let u ∈ X be a non-zero vector and note that function f : R → X; λ 7→ x + λu is
continuous, so f−1(U) is an open set containing 0. Hence there exists δ > 0 such that
x± δu ∈ U , but then, since x ∈ ∂eC,

x = 1
2
(x+ δu) + 1

2
(x− δu) =⇒ x+ δu = x− δu =⇒ u = 0;

this contradiction give the result.

Exercise 5.17. Let C ⊆ Rn be compact and convex. Prove that every element of C
can be written as a convex combination of at most (n+ 1) elements of ∂eC.

If n = 1 then C is connected, so is a compact interval and the claim is clear. Now
suppose the result holds for some n and let C ⊆ Rn+1 be compact and convex. If every
set of n+1 points in C is linearly dependent then linC is at most n-dimensional (since
C is a spanning set which contains no more than n linearly independent points) so
C ⊆ linC and the result follows by the inductive hypothesis. Otherwise, there exists
a linearly independent subset of C containing n+ 1 points; the convex hull of this set,
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being homeomorphic to the standard n + 1-simplex

{(λ1, . . . , λn+1) ∈ Rn+1 : λ1, . . . , λn+1 > 0,
n+1∑

i=1

λi = 1},

has non-empty interior, and therefore so does C. Suppose now that x ∈ C \ C◦;
Theorem 3.32(i) gives a continuous linear functional f such that f(c) < f(x) for all
c ∈ C◦ and so f(c) 6 f(x) for all c ∈ C, by Exercise 5.16. If

D := {c ∈ C : f(c) = f(x)} = (x+ ker f) ∩ C
then D is a face of C which lies in an n-dimensional hyperplane, so the result follows by
the inductive hypothesis; recall that ∂eD ⊆ ∂eC. Finally, if x ∈ C◦ then let y ∈ ∂eC
and consider the line L through x and y; this is a closed set and so C ∩ L is compact
and convex, so is an interval. As y is an extreme point of C, it must be one end-point of
this interval; let z be the other and note that z ∈ C\C◦, since C◦∩L ⊆ (C∩L)◦ (where
the second interior is taken with respect to the relative topology on C ∩ L). Hence x
is an interior point of the interval, so there exists t ∈ (0, 1) such that x = ty+(1− t)z;
furthermore, by the previous working, z is a convex combination of at most n points
in ∂eC and the result follows.

[This result is due to Carathéodory [4].]

Solutions to Exercises 6

Exercise 6.1. Prove that the vector space L1(R) is a commutative Banach algebra when
equipped with the convolution product and the norm ‖f‖1 :=

∫
|f |.

We take it for granted that L1(R) is a normed space and that (f, g) 7→ f ⋆ g is a
well-defined, bilinear map. It remains to prove that this multiplication is commutative
and associative and that L1(R) is complete.

For commutativity and associativity note that the Fourier transform f 7→ f̂ is
injective on L1(R), that

f̂ ⋆ g = f̂ ĝ = ĝf̂ = ĝ ⋆ f

and that

̂f ⋆ (g ⋆ h) = f̂ ĝ ⋆ h = f̂
(
ĝĥ

)
=

(
f̂ ĝ

)
ĥ = f̂ ⋆ gĥ = ̂(f ⋆ g) ⋆ h

by the convolution theorem. (This theorem, which asserts the existence of f ⋆ g, is an
easy application of the theorems of Fubini and Tonelli; see [17, §§ 26.15–26.16]).

For the proof of completeness we use Banach’s criterion. If (fk)k>1 ⊆ L1(R)
is such that

∑∞
k=1

∫
|fk| < ∞ then the monotone-convergence theorem applied to

(
∑n

k=1 |fk|)n>1 yields the convergence almost everywhere of
∑∞

k=1 |fk(x)| to an inte-
grable function and the fact that

∑∞
k=1

∫
|fk| =

∫ ∑∞
k=1 |fk|. Hence f(x) =

∑∞
k=1 fk(x)

is (absolutely) convergent almost everywhere, and applying the dominated-convergence
theorem to (

∑n
k=1 fk)n>1 (with dominating function

∑∞
k=1 |fk| ) gives that f ∈ L1(R),

as required.
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Prove further that this algebra is not unital.

For n > 1 let

fn : R → R; x 7→ n√
2π

e−
1
2

n2x2

and note that
∫
fn = 1. The continuous version of the dominated-convergence theorem

gives that ‖gt−g‖1 → 0 as t→ 0 for all g ∈ C00(R), where gt : s 7→ g(s− t). As C00(R)
is dense in L1(R) it follows that ‖gt − g‖1 → 0 as t → 0 for all g ∈ L1(R); note that
t 7→ gt maps L1(R) to itself, that ‖gt − ht‖1 = ‖g − h‖1 and that

‖gt − g‖1 6 ‖gt − ht‖1 + ‖ht − h‖1 + ‖h− g‖1 = 2‖h− g‖1 + ‖ht − h‖1.

If g ∈ L1(R) then

‖g ⋆ fn − g‖1 =

∫

R

∣∣
∫

R

g(t− s)fn(s) − g(t)fn(s) ds
∣∣dt

6

∫

R

∫

R

|gs − g|(t) dt nf1(ns) ds =

∫

R

‖gr/n − g‖1f1(r) dr → 0

as n→ ∞, by the dominated-convergence theorem: the map t 7→ ‖gt − g‖1 is bounded
and f1 ∈ L1(R).

Suppose that there exists 1 ∈ L1(R) such that 1 ⋆ f = f for all f ∈ L1(R).
Then 1 ⋆ fn → 1 as n→ ∞ (in L1(R) ) but (1 ⋆ fn)(x) = fn(x) → 0 as n→ ∞ almost
everywhere, which implies that 1(x) = 0 almost everywhere. This is clearly impossible.

Exercise 6.2. Let X be a Hausdorff, locally compact space. Prove that C0(X)u, the
unitization of the algebra of continuous functions on X that vanish at infinity, is topo-
logically isomorphic to C(Ẋ), the algebra of continuous functions on Ẋ, the one-point
compactification of X.

Recall from the solution of Exercise 2.2 that the map f 7→ f |X is a bijection between
I := {f ∈ C(Ẋ) : f(∞) = 0} and C0(X). Since f − f(∞)1 ∈ I for all f ∈ C(Ẋ) the
map

C(Ẋ) → C0(X)u; f 7→ (f − f(∞)1)|X + f(∞)1

is a bijection, and it is readily verified that it is an algebra homomorphism. Finally,

‖(f − f(∞)1)|X‖∞ + |f(∞)| 6 ‖f |X‖∞ + 2|f(∞)| 6 3‖f‖∞
so this map is a continuous bijection between Banach spaces, hence a homeomorphism
(by Theorem 2.14).

Exercise 6.3. Let A = C[z] denote the unital algebra of complex polynomials and let
‖p‖ := sup{|p(α)| : |α| 6 1} for all p ∈ A. Show that (A, ‖ · ‖) is a unital, normed
algebra which is not complete.

Proving that ‖ · ‖ is a submultiplicative norm on A is trivial.
Consideration of degree shows that G(A) = (C \ {0})1, so pn ∈ A \ G(A) for all

n > 1, where pn(z) := 1 + z/n. If A is complete then G(A) is open, but ‖pn − 1‖ → 0
as n→ ∞ and 1 ∈ G(A), so A \G(A) is not closed. This gives the result.
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Exercise 6.4. Let A be a (non-unital) Banach algebra such that every element is nil-
potent (i.e., for all a ∈ A there exists n ∈ N such that an = 0). Prove that A is uniformly
nilpotent: there exists N ∈ N such that aN = 0 for all a ∈ A.

Let En = {a ∈ A : an = 0} for all n ∈ N; these sets are closed and A =
⋃

n∈N
En so,

by the Baire category theorem, E◦
N 6= ∅ for some N ∈ N. Hence there exists a0 ∈ A

and ε > 0 such that ‖a− a0‖ < ε implies that aN = 0. Let b ∈ A \ {0} and note that

p(t) := (a0 + tb)N = aN
0 + · · ·+ tNbN = 0 ∀ t ∈

(
−ε/‖b‖, ε/‖b‖

)

because ‖(a0 + tb) − a0‖ = |t|‖b‖ < ε. Hence 0 = p(N)(0) = N ! bN , where p(N) is the
Nth derivative of p, and so bN = 0, as required.

Exercise 6.5. Let A be a unital Banach algebra over C and let ea :=
∑∞

n=0 a
n/n! for

all a ∈ A. Prove that ea+b = eaeb if a and b commute.

Note first that ea converges absolutely, so converges. As

(a+ b)n =

n∑

k=0

(
n

k

)
akbn−k =

1

n!

n∑

k=0

ak

k!

bn−k

(n− k)!

if a, b ∈ A commute, it suffices to prove that if a =
∑∞

n=0 an and b =
∑∞

n=0 bn are
absolutely convergent in A then ab =

∑∞
n=0 cn, where cn =

∑n
k=0 akbn−k.

To see this, note that

n∑

k=0

k∑

l=0

albk−l = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + · · · + anb0)

= a0

n∑

l=0

bl + a1

n−1∑

l=0

bl + · · · + anb0 =
( n∑

k=0

ak

)
b+

n∑

k=0

ak

(n−k∑

l=0

bl − b
)

so it suffices to prove that rn =
∑n

k=0 akdn−k =
∑n

k=0 an−kdk → 0 as n → ∞, where

dk =
∑k

l=0 bl − b. Let ε > 0 and choose N such that ‖dn‖ < ε for all n > N ; if n > N
then

∥∥∥
n∑

k=0

an−kdk

∥∥∥ 6

∥∥∥
N∑

k=0

an−kdk

∥∥∥ +

n∑

k=N+1

‖an−k‖ ‖dk‖

6

∥∥∥
N∑

k=0

an−kdk

∥∥∥ + ε
∞∑

k=1

‖ak‖ → ε
∞∑

k=1

‖ak‖

as n→ ∞. As ε > 0 is arbitrary we have the result.

Deduce that ea is invertible.

Since e0 = 1 we have that eae−a = 1 = e−aea, i.e., (ea)−1 = e−a, for all a ∈ A.

Prove further that f : λ 7→ eλa is holomorphic everywhere, with f ′(λ) = af(λ) = f(λ)a,
for all a ∈ A.
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Let a ∈ A, λ ∈ C and h ∈ C \ {0}. Then

e(λ+h)a − eλa

h
− aeλa =

eha − 1 − ha

h
eλa → 0

as h→ 0, because
∥∥∥∥
eha − 1 − ha

h

∥∥∥∥ 6

∞∑

n=2

|h|n−1‖a‖n

n!
=
e|h| ‖a‖ − 1

|h| − ‖a‖

and
d

dz
ez‖a‖

∣∣∣∣
z=0

= ‖a‖.

Exercise 6.6. Let A be a unital Banach algebra over C and let a, b ∈ A. Use the
identity (ab)n = a(ba)n−1b to prove that ab and ba have the same spectral radius.

Note that

‖(ab)n‖1/n
6 ‖a‖1/n‖(ba)n−1‖1/n‖b‖1/n

= ‖a‖1/n
(
‖(ba)n−1‖1/(n−1)

)(n−1)/n‖b‖1/n → ν(ba)

and so ν(ab) 6 ν(ba). Exchanging the rôles of a and b gives the result.

Exercise 6.7. Let A be a unital Banach algebra over C. Suppose that there exists
K > 0 such that ‖a‖ 6 Kν(a) for all a ∈ A, where ν(a) denotes the spectral radius of
a. Prove that A is commutative.

The function g : C → A; λ 7→ eλabe−λa is holomorphic everywhere and bounded,
because

‖g(λ)‖ 6 Kν(eλabe−λa) = Kν(beλae−λa) = Kν(b).

Hence g is constant, so 0 = g′(0) = ag(0) − g(0)a = ab− ba, as required.

Exercise 6.8. Let A be a Banach algebra and suppose that (xp)p∈P , (yq)q∈Q ⊆ A are
absolutely summable. Prove that

∑

p∈P

∑

q∈Q

xpyq =
∑

(p,q)∈P×Q

xpyq =
∑

q∈Q

∑

p∈P

xpyq.

We prove only the first equality; the second follows by symmetry. Let ε > 0 and note
that (xpyq)(p,q)∈P×Q is absolutely summable (as ‖xpyq‖ 6 ‖xp‖ ‖yq‖) so there exist
finite sets R0 ⊆ P , S0 ⊆ Q and T0 ⊆ P ×Q such that

∥∥
∑

p∈R

xp −
∑

p∈P

xp

∥∥ < ε

1 + ‖y‖1

for all finite R ⊆ P such that R ⊇ R0

(where ‖y‖1 =
∑

q∈Q ‖yq‖ )

∥∥
∑

q∈S

yq −
∑

q∈Q

yq

∥∥ < ε

1 + ‖x‖1
for all finite S ⊆ Q such that S ⊇ S0,
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(where ‖x‖1 =
∑

p∈P ‖xp‖ ) and

∥∥
∑

(p,q)∈T

xpyq −
∑

(p,q)∈P×Q

xpyq

∥∥ < ε for all finite T ⊆ P ×Q such that T ⊇ T0.

If R ⊆ P and S ⊆ Q are finite sets such that T = R× S ⊇ T0 ∪ (R0 × S0) then
∥∥

∑

(p,q)∈P×Q

xpyq −
∑

p∈P

xp

∑

q∈Q

yq

∥∥

6
∥∥

∑

(p,q)∈P×Q

xpyq −
∑

(p,q)∈T

xpyq

∥∥

+
∑

p∈R

‖xp‖
∥∥
∑

q∈S

yq −
∑

q∈Q

yq

∥∥ +
∥∥
∑

p∈R

xp −
∑

p∈P

xp

∥∥ ‖y‖1

< ε+ ε+ ε.

As ε > 0 is arbitrary, we have the result.

Solutions to Exercises 7

Exercise 7.1. Let A = C(X), where X is a compact, Hausdorff space. Prove that the
map ǫ : X → Φ(A); x 7→ ǫx is a homeomorphism, where ǫx(f) = f(x) for all x ∈ X and
f ∈ C(X).

Note that ǫ is continuous if and only if f̂ ◦ ǫ : x 7→ ǫx(f) = f(x) is continuous for all
f ∈ A, by definition of the Gelfand topology. Furthermore, if x, y ∈ X are distinct
then there exists f ∈ A such that f(x) 6= f(y), i.e., ǫx(f) 6= ǫy(f), by Urysohn’s lemma.
As X is compact and Φ(A) is Hausdorff, ǫ is a homeomorphism between X and ǫ(X);
it remains to prove that ǫ is surjective.

If φ ∈ Φ(A) \ ǫ(X) then for all x ∈ X there exists f ∈ A such that f ∈ ker φ but
f 6∈ ker ǫx (i.e., f(x) 6= 0). By compactness there exist f1, . . . , fn ∈ ker φ such that⋃n

i=1{x ∈ X : fi(x) 6= 0} = X, but then f :=
∑n

i=1 f̄ifi ∈ ker φ and f(x) > 0 for all
x ∈ X, whence ker φ = A, a contradiction.

Exercise 7.2. Prove that if A is a unital Banach algebra generated by a single element
(i.e., there exists a ∈ A such that {p(a) : p(z) ∈ C[z]} is dense in A) then Φ(A) is
homeomorphic to σ(a).

Note that â : Φ(A) → σ(a) is a continuous function from a compact space onto a
Hausdorff space. If φ, ψ ∈ Φ(A) are such that â(φ) = â(ψ) then φ(p(a)) = ψ(p(a)) for
any complex polynomial p (as φ(1) = 1 and φ(an) = φ(a)n for all n ∈ N so φ(p(a)) =
p(φ(a)) = p(â(φ)) ). Hence φ = ψ, by continuity and the density of {p(a) : p(z) ∈ C[z]}
in A, so â is a homeomorphism.

Deduce that Φ(A) is homeomorphic to D̄ := {z ∈ C : |z| 6 1} if A = A(D) is the disc
algebra.
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If f ∈ A(D) then f is uniformly continuous, so if ε > 0 there exists r ∈ (0, 1) such
that |f(z) − f(rz)| < ε/2 for all z ∈ D̄ (because |z − rz| 6 1 − r). Since z 7→ f(rz)
is holomorphic on {z ∈ C : |z| < r−1}, its Taylor series is uniformly convergent on D̄,
so there exists a polynomial p such that |p(z) − f(rz)| < ε/2 for all z ∈ D̄. Hence
‖f − p‖∞ < ε and polynomials in id : D̄ → C; z 7→ z are dense in A.

Exercise 7.3. Let A be a unital Banach algebra that is generated by one element,
a, and let λ 6∈ σ(a). Show there exists a sequence of polynomials (pn)n>1 such that
pn(z) → (λ− z)−1 uniformly for all z ∈ σ(a).

Since λ 6∈ σ(a), the inverse (λ1− a)−1 is an element of A, so there exists a sequence of
polynomials (pn)n>1 such that pn(a) → (λ1 − a)−1. If z ∈ σ(a) then, by Exercise 7.2,
there exists φ ∈ Φ(A) such that φ(a) = z; since φ is a unital algebra homomorphism,
it follows that

|pn(z) − (λ− z)−1| = |φ(pn(a) − (λ1 − a)−1)| 6 ‖pn(a) − (λ1 − a)−1‖

and therefore pn(z) → (λ− z)−1 uniformly on σ(a) as n→ ∞.

Deduce that the complement of σ(a) is connected.

Suppose for contradiction that C \ σ(a) has a maximally connected component, C,
which is bounded (and non-empty); fix λ ∈ C and choose (pn)n>1 as above. Note
first that ∂C := C \ C◦, the (topological) boundary of C, is contained in σ(a): if
x ∈ C ∩ (C \ σ(a)) then there exist a sequence (xn)n>1 ⊆ C such that xn → x and
ε > 0 such that BC

ε (x)∩σ(a) = ∅, as σ(a) is closed. Hence BC

ε (x)∩C 6= ∅ and therefore
BC

ε (x) ⊆ C, as C is maximally connected, so x ∈ C◦. It follows that C is a bounded
region in C (i.e., an open, connected set): if x ∈ C then x 6∈ σ(a), so x 6∈ ∂C and thus
x ∈ C◦.

By the maximum-modulus theorem [16, Theorem 5.20],

sup{|pn(z) − pm(z)| : z ∈ C} = sup{|pn(z) − pm(z)| : z ∈ ∂C}
6 sup{|pn(z) − pm(z)| : z ∈ σ(a)} → 0

as m, n → ∞, so (pn)n>1 is uniformly convergent on C and its limit, f , is continuous
there and holomorphic in C. Then g : z 7→ (λ − z)f(z) − 1 is holomorphic in C and
g(z) = 0 for all z ∈ ∂C, so g ≡ 0, by the identity theorem, contradicting the fact that
g(λ) = −1.

Exercise 7.4. Let A be a commutative, unital Banach algebra. Prove that the Gelfand
transform on A is isometric if and only if ‖a2‖ = ‖a‖2 for all a ∈ A.

If ‖a2‖ = ‖a‖2 then ‖a2n‖ = ‖a‖2n

for all n ∈ N, and so

‖â‖∞ = ν(a) = lim
n→∞

‖an‖1/n = lim
n→∞

‖a2n‖1/2n

= ‖a‖.
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Conversely, if ν(a) = ‖â‖∞ = ‖a‖ then there exists λ ∈ σ(a) such that |λ| = ‖a‖.
Hence λ2 ∈ σ(a2) (by the spectral-mapping theorem for polynomials) and so

‖a2‖ 6 ‖a‖2 = |λ|2 = |λ2| 6 ν(a2) 6 ‖a2‖.

Exercise 7.5. Let A be a Banach algebra and B a semisimple, commutative, unital
Banach algebra. Prove that if φ : A→ B is a homomorphism then φ is continuous.

By the closed-graph theorem, it suffices to take a sequence (an)n>1 ⊆ A such that
an → a and φ(an) → b and prove that b = φ(a). Let ψ ∈ Φ(B) and note that ψ
and ψ ◦φ are continuous, by Proposition 6.1; note that φ extends to Au by setting
φ(α1 + a) = α + φ(a) so we may assume without loss of generality that A is unital.
Hence

ψ(b) = lim
n→∞

ψ(φ(an)) = ψ(φ(a))

for all ψ ∈ Φ(B), and therefore b− φ(a) ∈ J(B), which gives the result.

Exercise 7.6. Let A = C1[0, 1], equipped with the norm ‖f‖ := ‖f‖∞ + ‖f ′‖∞. Prove
that A is a semisimple, commutative, unital Banach algebra and find its character space.

To prove completeness, let (fn)n>1 ⊆ A be Cauchy, which implies that (fn)n>1 and
(f ′

n)n>1 are Cauchy, so convergent, sequences in C[0, 1]. Let f = limn→∞ fn, g =
limn→∞ f ′

n and note that
∫ t

0

g =

∫ t

0

lim
n→∞

f ′
n = lim

n→∞

∫ t

0

f ′
n = lim

n→∞
fn(t) − fn(0) = f(t) − f(0),

so f ′(t) = g(t) for all t ∈ [0, 1] and

‖f − fn‖ = ‖f − fn‖∞ + ‖f ′ − f ′
n‖∞ = ‖f − fn‖∞ + ‖g − f ′

n‖∞ → 0,

as required.
To see that A is semisimple, note that Φ(A) = {εx : x ∈ X} (which may be proved

as for C(X)), so J(A) =
⋂

x∈X{f ∈ A : f(x) = 0} = {0}.
Prove that I = {f ∈ A : f(0) = f ′(0) = 0} is a closed ideal in A such that A/I is a
two-dimensional algebra with one-dimensional radical.

Note that

j : C1[0, 1] →M2(C); f 7→
(
f(0) f ′(0)

0 f(0)

)

is a continuous algebra homomorphism with kernel I and 2-dimensional image. Every
linear functional on this image must have the form

φ :

(
a b
0 a

)
7→ λa+ µb ∀ a, b ∈ C,

where λ, µ ∈ C. If φ(1) = 1 then λ = 1, and multiplicativity forces µ = 0, so A/I has
one maximal ideal (viz. id + I).
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What do you notice about A and A/I?

This example shows that a quotient of a semisimple algebra need not be semisimple.

Exercise 7.7. Prove that the Banach space ℓ1(Z) is a commutative, unital Banach
algebra when equipped with the multiplication

a ⋆ b : Z → C; n 7→
∑

m∈Z

ambn−m

(
a, b ∈ ℓ1(Z)

)
.

Note that
∑

n∈Z
|bn| < ∞ implies that (bn)n∈Z is bounded, and so if a, b ∈ ℓ1(Z) then∑

m∈Z
ambn−m is (absolutely) summable for all n ∈ Z. Furthermore,

‖a‖1‖b‖1 =
∑

m∈Z

|am|
∑

n∈Z

|bn| =
∑

m∈Z

∑

n∈Z

|am| |bn|

=
∑

m∈Z

∑

p∈Z

|am| |bp−m| >
∑

p∈Z

|(a ⋆ b)p| = ‖a ⋆ b‖1

which shows that a ⋆ b ∈ ℓ1(Z) and ‖ · ‖1 is submultiplicative on ℓ1(Z). (To see that
the reversal of order is valid, note that

∑
r∈R

∑
s∈S xrys =

∑
(r,s)∈R×S xrys for any

absolutely summable (xr)r∈R, (ys)s∈S in a Banach algebra.) Furthermore,

(a ⋆ b)n =
∑

m∈Z

ambn−m =
∑

p∈Z

bpan−p = (b ⋆ a)n

so ⋆ is commutative; bilinearity is readily verified, and if a, b, c ∈ ℓ1(Z) and p ∈ Z then

(
(a ⋆ b) ⋆ c

)
p

=
∑

n∈Z

(∑

m∈Z

ambn−m

)
cp−n =

∑

m∈Z

am

∑

n∈Z

bn−mcp−n

=
∑

m∈Z

am

∑

r∈Z

brcp−m−r =
∑

m∈Z

am(b ⋆ c)p−m =
(
a ⋆ (b ⋆ c)

)
p
.

If 1 ∈ ℓ1(Z) is defined by setting 10 = 1 and 1n = 0 for all n ∈ Z \ {0} then 1 ∈ ℓ1(Z),
‖1‖1 = 1 and

(1 ⋆ a)n =
∑

m∈Z

1man−m = an ∀n ∈ Z, a ∈ ℓ1(Z).

Exercise 7.8. Let δ ∈ ℓ1(Z) be such that δ1 = 1 and δn = 0 if n 6= 1. Prove that
a =

∑
n∈Z

anδ
n for all a ∈ ℓ1(Z).

If ε > 0 choose a finite set A0 ⊆ Z such that
∑

n∈A0
|an| > ‖a‖1 − ε and note that

‖a−
∑

n∈A

anδ
n‖1 = sup

{ ∑

n∈B\A

|an| : B is a finite subset of Z
}

= ‖a‖1 −
∑

n∈A

|an| < ε

for any finite set A ⊆ Z such that A ⊇ A0.
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Deduce that the character space of ℓ1(Z) is homeomorphic to T := {z ∈ C : |z| = 1}
and (with this identification) the Gelfand transform on ℓ1(Z) is the map

Γ: ℓ1(Z) → C(T); Γ(a)(λ) =
∑

n∈Z

anλ
n ∀λ ∈ T, a ∈ ℓ1(Z).

Let φ ∈ Φ(ℓ1(Z)) and note that φ(δn) = φ(δ)n for all n ∈ Z, so

φ(a) =
∑

n∈Z

anφ(δn) =
∑

n∈Z

anλ
n ∀ a ∈ ℓ1(Z),

where λ = φ(δ); as φ is continuous, if xs → x then φ(xs) → φ(x). Furthermore, λ ∈ T
because

|φ(δ)| 6 ‖φ‖ ‖δ‖1 = 1 and |φ(δ)−1| = |φ(δ−1)| 6 ‖φ‖ ‖δ−1‖1 = 1.

Conversely, if λ ∈ T then φ : a 7→ ∑
n∈Z

anλ
n defines a character. To see this, note that

this series is absolutely summable, φ is linear and bounded (because |φ(a)| 6 ‖a‖1)
and

φ(δm ⋆ δn) = φ(δm+n) = λm+n = λmλn = φ(δm)φ(δn) ∀m,n ∈ Z;

it follows by continuity that φ(a)φ(b) = φ(a ⋆ b) for all a, b ∈ ℓ1(Z). Hence

δ̂ : Φ(ℓ1(Z)) → T; φ 7→ φ(δ)

is a continuous bijection from a compact space to a Hausdorff space, so a homeomor-
phism.

Finally, note that f ∈ C
(
Φ(ℓ1(Z))

)
corresponds to f ◦ δ̂−1 ∈ C(T) and so the

Gelfand map becomes

Γ: ℓ1(Z) → C(T); a 7→ â ◦ δ̂−1,

i.e.,

Γ(a)(λ) =
(
â ◦ δ̂−1

)
(λ) = â

(
δ̂−1(λ)

)
= δ̂−1(λ)(a) =

∑

n∈Z

anλ
n.

Exercise 7.9. Let f : T → C be continuous and such that
∑

n∈Z
|f̂(n)| <∞, where

f̂(n) :=
1

2π

∫ π

−π

f(eit)e−int dt (n ∈ Z).

Prove that if f(z) 6= 0 for all z ∈ T then g = 1/f : T → C; z 7→ 1/f(z) satisfies∑
n∈Z

|ĝ(n)| <∞.

Exercise 7.8 implies that A = Γ
(
ℓ1(Z)

)
consists of those g ∈ C(T) such that

g(z) =
∑

n∈Z

anz
n (z ∈ T) and

∑

n∈Z

|an| <∞.
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Since
∑

n∈Z
anz

n is uniformly convergent on T for such g we see that

ĝ(m) =
∑

n∈Z

an

2π

∫ π

−π

einte−imt dt = am (m ∈ Z)

and so A consists of those g ∈ C(T) such that
∑

n∈Z
|ĝ(n)| <∞. In particular, f ∈ A

and the condition f(z) 6= 0 for all z ∈ T is equivalent to the fact that φ(f) 6= 0 for all
φ ∈ Φ(A), i.e., 0 6∈ σ(f). Hence 1/f ∈ A, as required.

Exercise 7.10. Let T = ∂D = {z ∈ C : |z| = 1} and A = {f ∈ C(D̄) : f |T ∈ A(D)|T}:
A consists of those continuous functions on the closed unit disc D̄ that agree on the unit
circle T with a continuous function on D̄ that is holomorphic in D.

[A corollary of the maximum-modulus theorem [16, Theorem 5.20] will be useful: if
f ∈ A(D) then ‖f‖∞ := sup{|f(z)| : |z| 6 1} = sup{|f(z)| : |z| = 1} =: ‖f |T‖∞.]

(i) Show that A is a Banach algebra when equipped with the supremum norm.

Let (fn)n>1 ⊆ A be such that fn → f ∈ C(D̄). For n > 1 let gn ∈ A(D) be such
that fn|T = gn|T and note that

‖gn − gm‖∞ = ‖(gn − gm)|T‖∞ = ‖(fn − fm)|T‖∞ 6 ‖fn − fm‖∞ → 0

as m, n→ ∞, so (gn)n>1 converges to g ∈ A(D). Since

g|T = lim
n→∞

gn|T = lim
n→∞

fn|T = f |T,

we see that f ∈ A, as required.

(ii) Prove that I = {f ∈ A : f |T = 0} is a closed ideal in A and that A = A(D) ⊕ I.

Suppose that f ∈ A; if g, h ∈ A(D) are such that f |T = g|T = h|T then ‖g−h‖∞ =
‖(g − h)|T‖∞ = 0 and so g = h. Thus to every f ∈ A there exists a unique
j(f) ∈ A(D) such that f |T = j(f)|T; the map

j : A→ A(D); f 7→ j(f)

is a norm-decreasing algebra homomorphism (as ‖j(f)‖∞ = ‖f |T‖∞ 6 ‖f‖∞). In
particular, I = {f ∈ A : f |T = 0} = ker j is a closed ideal. Furthermore, if f ∈ A
then f − j(f) ∈ I so f ∈ I +A(D) and if f ∈ A(D)∩ I then ‖f‖∞ = ‖f |T‖∞ = 0;
thus A = A(D) ⊕ I.

(iii) Prove that

i : I → C0(D); f 7→ f |D
is an isometric isomorphism. Deduce that Iu is topologically isomorphic to C(Ḋ),
where Ḋ is the one-point compactification of D.
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If f ∈ I and ε > 0 then

{z ∈ D : |f(z)| > ε} = {z ∈ D̄ : |f(z)| > ε}
is a closed subset of D̄ and is therefore compact; hence f |D ∈ C0(D). Since
‖f |D‖∞ = ‖f‖∞ the map i is isometric; it remains to prove that i is surjective.
Let f ∈ C0(D) and define g : D̄ → C by setting g|D = f and g|T = 0. Let U ⊆ C
be open; if 0 6∈ U then g−1(U) = f−1(U) is an open subset of D, and therefore of
D̄, so suppose that 0 ∈ U . Then g−1(U) = f−1(U) ∪ T and, since 0 ∈ U , there
exists ε > 0 such that BC

ε (0) ⊆ U . Thus f−1(U) ⊇ f−1
(
BC

ε (0)
)

and f−1
(
BC

ε (0)
)

has compact complement, hence

D \ f−1(U) ⊆ D \ f−1
(
BC

ε (0)
)
⊆ BC

r [0]

for some r ∈ (0, 1). From this we see that f−1(U) ⊇ D \ BC

r [0] and therefore
g−1(U) = f−1(U) ∪

(
D̄ \ BC

r [0]
)

is open. This shows that g is continuous, as
required.

The deduction follows immediately from Exercise 6.2.

(iv) Prove that if φ ∈ Φ(A) is such that ker φ ⊇ I then φ = φ̃ ◦ j, where φ̃ ∈ Φ(A(D)).
Deduce that φ = εz ◦ j for some z ∈ D̄ (where εz : A(D) → C; f 7→ f(z) ).

Note that if f , g ∈ A are such that j(f) = j(g) then f − g ∈ I so φ(f) = φ(g).
Hence

φ̃ : A(D) → C; j(f) 7→ φ(f)

is well defined. It is immediate that φ̃ is an algebra homomorphism such that
φ = φ̃ ◦ j, and since φ is non-zero, so is φ̃. The deduction is immediate, as
Φ(A(D)) = {εz : z ∈ D̄} by the solution to Exercise 7.2.

(v) Let D̄1 and D̄2 be two copies of the unit disc and let S2 = D̄1∪D̄2

/
∼ be the sphere

obtained by identifying each point on T1 = ∂D1 with the corresponding point on
T2 = ∂D2. Define

T : S2 → Φ(A); z 7→
{
εz ◦ j (z ∈ D̄1),

εz (z ∈ D̄2)

and prove that this is a well-defined, continuous injection.

If z ∈ T1 ∪ T2 then εz(j(f)) = j(f)(z) = f(z) = εz(f) for all f ∈ A, so this is
a good definition. As Φ(A) has the weak* topology, T is continuous if f̂ ◦ T is
continuous for all f ∈ A, and since

(
f̂ ◦T

)
(z) =

{
j(f)(z) (z ∈ D̄1),

f(z) (z ∈ D̄2),

this follows because f |T = j(f)|T. Since the identity function lies in A(D), εz 6= εw

and εz ◦ j 6= εw ◦ j for all distinct z, w ∈ D̄. Finally, to see that εz 6= εw ◦ j for all
z, w ∈ D, note that there exists f ∈ I such that f(z) = 1 (by Urysohn’s lemma)
and so εz(f) = 1 6= 0 = (εw ◦ j)(f). Hence T is an injection.
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(vi) Prove that Φ(A) is homeomorphic to the sphere S2.

If φ ∈ Φ(A) is such that ker φ ⊇ I then φ = εz ◦ j for some z ∈ D̄. Otherwise
φ|I 6= 0; note that

φ̇ : Iu → C; f + α1 7→ φ(f) + α

is a character of Iu ∼= C(Ḋ) and so has the form εz for some z ∈ Ḋ. Since
φ|I = φ̇|I is non-zero, z 6= ∞ and φ|I = εz for some z ∈ D. Choose f ∈ I such
that f(z) = 1 (such exists by Urysohn’s lemma) and note that f(g − φ(g)1) ∈ I
for all g ∈ A, so

g(z) − φ(g) = εz

(
f(g − φ(g)1)

)
= φ

(
f(g − φ(g)1)

)
= φ(f)φ(g − φ(g)1) = 0,

i.e., φ(g) = εz(g). Hence T is surjective and we have the result (since Φ(A) and
S2 are both compact, Hausdorff spaces).

Solutions to Exercises A

Exercise A.1. Let X = ℓ∞ and for all n ∈ N define δn ∈ X∗ by setting δn
(
(xk)k>1

)
=

xn. Prove that (δn)n>1 has no weak*-convergent subsequence but that (δn)n>1 has a
weak*-convergent subnet.

Suppose for contradiction that (δn) has a weak*-convergent subsequence, say (δnk
)k>1.

Define x ∈ ℓ∞ by setting

xl =






−1 l = n2k−1,
1 l = n2k,
0 otherwise.

Then
(
δnk

(xl)l>1

)
k>1

= (−1, 1,−1, 1, . . .) is not convergent, the desired contradiction.

For the second claim, note that (δn)n>1 ⊆ X∗
1 , which is weak* compact by the

Banach-Alaoglu theorem (Theorem 3.22). Hence the existence of a convergent subnet
follows from the (generalised) Bolzano-Weierstrass theorem, Theorem A.5.
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