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Part 1

Classical Geometry






Chapter 1

Absolute (Neutral) Geometry

Preamble

Following Hilbert, in our treatment of neutral geometry (called also absolute geometry and composed of facts true in
both Euclidean and Lobachevskian geometries) we define points, lines, and planes as mathematical objects with the
property that these objects, as well as some objects formed from them, like angles and triangles, satisfy the axioms
listed in sections 1 through 4 of this chapter. We shall denote points, lines and planes by capital Latin A, B, C, ...,
small Latin a, b, c, ..., and small Greek «, (3,7, ... letters respectively, possibly with subscripts.

1.1 Incidence

Hilbert’s Axioms of Incidence

Denote by CP*, C* and C*! the classes of all points, lines and planes respectively. ' Axioms A 1.1.1 — A 1.1.8 define
two relations €7, C CP* x CF and €p; € CFt x CP'. If A€a or A€p;a 2, we say that A lies on, or incident with, a
(respectively «), or that a (respectively a) goes through A. As there is no risk of confusion, when speaking of these
two relations in the future, we will omit the clumsy subscripts L and PI.

We call a set of points (or, speaking more broadly, of any geometrical objects for which this relation is defined)
lying on one line a (plane ) 2, a collinear (coplanar) set. * Points of a collinear (coplanar) set are said to colline of
be collinear (coplane or be coplanar, respectively).

Denote P, = {A|A € a} and P, = {A|A € a} the set of all point of line a and plane «, respectively. We shall
also sometimes refer to the set P, (P,) as the ”contour of the line a” (respectively, ”contour of the plane o).

Axiom 1.1.1. Given distinct points A, B, there is at least one line a incident with both A and B.
Axiom 1.1.2. There is at most one such line.
We denote the line incident with the points A, B by aap.
Axiom 1.1.3. FEach line has at least two points incident with it. There are at least three points not on the same line.

Axiom 1.1.4. If A, B,C are three distinct points not on the same line, there is at least one plane incident with all
three. Fach plane has at least one point on it.

Axiom 1.1.5. If A, B, C are three distinct points not on the same line, there is at most one plane incident with all
three.

We denote the plane incident with the non-collinear points A, B, C' by aapc.
Axiom 1.1.6. If A, B are distinct points on a line | that lies on a plane «, then all points of | lie on «.

If all points of the line a lie in the plane «, one writes a C « and says "a lies on o”, "« goes through a.” In
general, if for a geometric object, viewed as a point set X', we have X C P, or X C P,, we say that the object X’
lies on line a or in (on) plane «, respectively.

1The reader will readily note that what we mean by points, lines, planes, and, consequently, the classes CF'*, CF and CP! changes
from section to section in this chapter. Thus, in the first section we denote by CFt, CL and CP! the classes of all points, lines and planes,
respectively satisfying axioms A 1.1.1 — A 1.1.8. But in the second section we already denote by C¥*, CL and CP! the classes of all points,
lines and planes, respectively satisfying those axioms plus A 1.2.1 — A 1.2.4, etc.

2As is customary in mathematics, if mathematical objects a € A and b € B are in the relation p, we write apb; that is, we let

apbg(a,b)EpCAxB.

3Obviously, to say that several points or other geometric object lie on one line a (plane o) equals to saying that there is a line a (plane
«) containing all of them
40bviously, this definition makes sense only for sets, containing at least two points or other appropriate geometric objects.
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Axiom 1.1.7. If a point lies on two distinct planes, at least one other point lies on both planes.
Axiom 1.1.8. There are at least four points not on the same plane.

Obviously, axioms A 1.1.3, A 1.1.4 imply there exists at least one line and at least one plane.

If Aca (A€ a)and A €b (A € ), the lines (planes) a («) and b (3) are said to intersect or meet in their
common point. We then write A € aNb ® Unless other definitions are explicitly given for a specific case, a point set
A is said to meet another point set B (line a or plane alpha in their common points A € ANB (A € ANa and AN«
respectively). ¢

If two (distinct) lines meet, they are said to form a cross.

If two or more point sets, lines or planes meet in a single point, they are said to concur, or be concurrent, in (at)
that point.

A non-empty set of points is usually referred to as a geometric figure. A set of points all lying in one plane (on
one line) is referred to as plane geometric figure (line figure).

Consequences of Incidence Axioms

Proposition 1.1.1.1. If A,C are distinct points and C is on aap then aac = aap.

Proof. A€ asc&C €anc& A€ asp&C € anp 5% auc = anp. O

Corollary 1.1.1.2. If A, C are distinct points and C' is on aap then B is on asc.

Corollary 1.1.1.3. If A, B, C are distinct points and C is on aap then aap = aac = apc-

Lemma 1.1.1.4. If {A;|i € U}, is a set of points on one line a then —a = aa,;for all i # j, i,j € U.
Proof. Aj€a& Aj€a=a=aaa;. O

Corollary 1.1.1.5. If {A;|i € U}, is a set of points on one line a then any of these points Ay, lies on all lines aa,a;,
i#j,i,jeU. O

Lemma 1.1.1.6. If the point E is not on the line aac, then all other points of the line aap except A are not on
aAC-

Proof. Suppose F' € app Naac and F' # A. Then by A 1.1.2 apgg = aac, whence E € as¢ - a contradiction. O

Lemma 1.1.1.7. If Ay, Aa, ..., An(,...), n >3, is a finite or (countably) infinite sequence of (distinct) points, and
any three consecutive points A;, Aiy1, Aive, 1=1,2,...,n—2(,...) of the sequence are collinear, then all points of
the sequence lie on one line.

Proof. By induction. The case n = 3 is trivial. If Ay, As,..., A,—1 are on one line a (induction!), then by C 1.1.1.5
Aica=uaa, ,a, ,,1=1,2,...,n. O

Lemma 1.1.1.8. If two points of a collinear set lie in plane « then the line, containing the set, lies in plane «.
Proof. Immediately follows from A 1.1.6. O
Theorem 1.1.1. Two distinct lines cannot meet in more than one point.

Proof. Let A# B and (A€ anb)& (B €anbd). Then by Al.1.2a=5. O

Lemma 1.1.2.1. For every line there is a point not on it.

Proof. By A1.1.3 3{A,B,C} such that =3b (A € b& B € b& C € b), whence 3P € {4, B,C} such that P ¢ a
(otherwise A€ a& B€a&C€a.) O

Lemma 1.1.2.2. If A and B are on line a and C is not on line a then A, B,C are not on one line.

Proof. If 3B (A€ b& B e b& C €b), then Acb& Beb& Acak Bea™5"a=b5C - a contradiction. O

Corollary 1.1.2.3. If C is not on line aap then A, B,C are not on one line, B is not on aac, and A is not on
apc. If A, B,C are not on one line, then C is not on line aap, B is not on aac, and A is not on apc.

Lemma 1.1.2.4. If A and B are distinct points, there is a point C such that A, B,C are not on one line.
Proof. By L1.1.2.1 3C ¢ aap. By C1.1.23C ¢ asp = -3 (A€b& Beb&Ce€b). O

Lemma 1.1.2.5. For every point A there are points B,C such that A, B,C are not on one line.

5Similar to the definition of a C «, this notation agrees with the set-theoretical interpretation of a line or plane as an array of points.
However, this interpretation is not made necessary by axioms. This observation also applies to the definitions that follow.
6These relations ”to meet” are obviously symmetric, which will be reflected in their verbal usage.
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Proof. By A1.1.3 3B # A. By C1.1.2.3 3C such that =3b (A € b& B € b& C €b). O
Lemma 1.1.2.6. For every plane « there is a point P not on it.

Proof. By A1.1.8 3{A, B,C, D} such that =38 (A € & B € & C € & D € 3), whence AP € {A, B,C, D} such
that P ¢ a. (otherwise (A € a& Be€a& Cca&k D c«). O

Lemma 1.1.2.7. If three non-collinear points A, B,C are on plane «, and D is not on it, then A, B,C, D are not
all on one plane.

Proof. 3 (A€ & B e & C e f&D € () then (—3b (A€ b&Beb&Ceb)&(Aca&kBeakCeca&kAce

B&Be &C € ) Aé}Sa:BBD—acontradiction. O

Corollary 1.1.2.8. If D is not on plane aapc, then A, B,C, D are not on one plane. O

Lemma 1.1.2.9. If A, B,C are not on one line, there is a point D such that A, B,C, D are not on one plane.

Proof. ~3b (A € b& B € b& C € b) 25" Jaspe. By L1.1.2.6 3D ¢ aapc, whence by C1.1.2.8-33 (A € B& B €
B&C eB&DeB). O

Lemma 1.1.2.10. For any two points A, B there are points C, D such that A, B,C, D are not on one plane.

Proof. By L1.1.2.4 3C such that -3b(A € b& B € b& C € b), whence by By L1.1.293D -3 (A€ & B e & C €
B& D e ). O

Lemma 1.1.2.11. For any point A there are points B,C, D such that A, B,C, D are not one plane.
Proof. By A1.1.3 3B # A. By L 1.1.2.10 3{C, D} such that =33 (A € & B € & C € & D € 3). O
Lemma 1.1.2.12. A point A not in plane o cannot lie on any line a in that plane.

Proof. A€ a&aCa= A€ a-a contradiction. O

Theorem 1.1.2. Through a line and a point not on it, one and only one plane can be drawn.

b) & (B € b) & (C € b)), whence
)& (B € @) = a C a. To show
a)&(C e a)& (A e )& (B €

Proof. Let C' ¢ a. By A1.1.3 3{A,B} ((A € a)& (B € a)). By L1.1.2.2 =3b ((A €
by All4 Ja (A€ )& (B e a)&(C e a)). Byll6 (Aca)&(Bea)& (A€ a
uniqueness note that (¢ C )& (C € a)&(a C B)&(C € B) = (A € a)& (B €
B&(CepP)=a=0.0

We shall denote the plane drawn through a line a and a point A by ag4.

Theorem 1.1.3. Through two lines with a common point, one and only one plane can be drawn.

Proof. Let A =anb. By A1.1.33B ((B € b)& (B # A)). By T1.1.1 B ¢ a, whence by T1.1.2 3a ((a C o) & (B € «)).

By A1.16 (A € )& (B € a)& (A € b)& (B € b) = b C «a. If there exists § such that a C 8&b C (3 then

bCB&Beb=BecBand (aCa&BecakaC&Bep) =’ a=4 0

Theorem 1.1.4. A plane and a line not on it cannot have more than one common point.
Proof. If A# B thenby Al16 Aca&Aca&kBeca&kBea=aCa O

Theorem 1.1.5. Two distinct planes either do not have common points or there is a line containing all their common
points.

Proof. Let anN B # 0. Then JA(A € a& A € f) L7 3p (B#£A&Bea&Bef)and by Al.1.6 aap Canpg. If

C’¢aAB&O€aﬂﬁthenaABCaﬂﬁ&C’¢aAB&O€ozﬂﬁT§>'2a:6—acontradiction. O

Lemma 1.1.6.1. A point A not in plane o cannot lie on any line a in that plane.
Proof. A€ a&aCa= A€ a-a contradiction. O

Corollary 1.1.6.2. If points A, B are in plane o, and a point C is not in that plane, then C is not on asp.

A1.1.6 L1.1.6.1
Proof. Aca&kBea = aspCa Cé¢a&kaspCa =" C¢&asp. O

Corollary 1.1.6.3. If points A, B are in plane o, and a point C is not in that plane, then A, B,C are not on one
line.

Proof. By C1.1.6.2 C ¢ aap, whence by 1.1.2.3 A, B,C are not on one line. O

Theorem 1.1.6. Fvery plane contains at least three non-collinear points.

5



Figure 1.1: Every plane contains at least three non-collinear points.

Proof. (See Fig. 1.1.) By A 1.14 3AA € a. By L 1.1.2.6 3B B ¢ «. By L1.1.2.1 3D D ¢ asp, whence by T1.1.2

3B (aap CB&DER). ang C=>AcPEBES. AdakAcf=a#fB AcakAcBkats L300 ¢

anp. Acp&Cep™ 5 auc cB. ByL11263EE ¢ 8. E¢ B&aap C B 28" E¢ aup "7 Iy aup C
Y&E €~y aap Cy=>A€ev&Be€ . B¢a&B€'y:>a7é'y.E¢5&E€'y:>ﬁ7é'y.A€aﬁfyAg>'7ElFFe

anNvy. F ¢ aac, since otherwise F € agc & asc C = F € 5, andAea&Fea&BgéaClég'g -3b(Aeb&Be
b& F eb),and ~3b (A €b&Beb&Feb)& AcB&BEB&F e & A& Ber& &F ey 2 3=y _a

contradiction. Finally, F' ¢ aac ALt 3y (Aeb&Ceb&Feb). O

Corollary 1.1.6.4. In any plane (at least) three distinct lines can be drawn.

Proof. Using T 1.1.6, take three non - collinear points A, B, C in plane o. Using A 1.1.1, draw lines aap, apc, aac-
By A 1.1.6 they all line in «. Finally, they are all distinct in view of non-collinearity of A, B, C'. O

Corollary 1.1.6.5. Given a line a lying in a plane «, there is a point A lying in « outside a.
Proof. See T 1.1.6. O

Corollary 1.1.6.6. In every plane « there is a line a and a point A lying in « outside a.
Proof. See T 1.1.6, A 1.1.1. O

We say that a line a is parallel to a line b, or that lines a and b are parallel (the relation being obviously symmetric),
and write a || b, if @ and b lie in one plane and do not meet.

A couple of parallel lines a, b will be referred to as an abstract strip (or simply a strip) ab.

A line a is said to be parallel to a plane « (the plane « is then said to be parallel to the line a) if they do not
meet.

A plane « is said to be parallel to a plane 8 (or, which is equivalent, we say that the planes «, 8 are parallel, the
relation being obviously symmetric) if a N 8 = 0.

Lemma 1.1.7.1. If lines aap, acp are parallel, no three of the points A, B, C, D are collinear, and, consequently,
none of them lies on the line formed by two other points in the set {A, B,C, D}.

Proof. In fact, collinearity of any three of the points A, B, C'; D would imply that the lines asp, acp meet. O
Lemma 1.1.7.2. For any two given parallel lines there is exactly one plane containing both of them.

Proof. Let a || b, where a C a, a C 3, b C o, b C 3. Using A 1.1.3, choose points A; € a, A3 C a, B € b. Since a || b,

the points A;, Ag, B are not collinear. Then A; € a& Ay € a& &B € a& A, € f& Ay € B&B € 3 225% o = 4.

O



We shall denote a plane containing lines a, b, whether parallel or having a common point, by agp.

Lemma 1.1.7.3. If lines a, b and b, ¢ are parallel and points A € a, B € b, C € ¢ are collinear, the lines a, b, ¢ all
lie in one plane.

Proof. That A, B, C are collinear means 3d (A € d& B € d& C € d). We have B € dNay. & C € dNape ALLS Ope.
Aca&ka|b=A¢b Finally, AcdC ap.& A€ a Cauw&bCau&dbCap&Ad¢ ngﬁzaab = ape. O

Two lines a, b that cannot both be contained in a common plane are called skew lines. Obviously, skew lines are
not parallel and do not meet (see T 1.1.3.)

Lemma 1.1.7.4. If four (distinct) points A, B, C, D are not coplanar, the lines aap, acp are skew lines.

Proof. Indeed, if the lines aap, acp were contained in a plane «, this would make the points A, B, C', D coplanar
contrary to hypothesis. O

Lemma 1.1.7.5. If a plane a not containing a point B contains both a line a and a point A lying outside a, the
lines a, app are skew lines.

Proof. If both a, ayp were contained in a single plane, this would be the plane «, which would in this case contain
B contrary to hypothesis. O

1.2 Betweenness and Order

Hilbert’s Axioms of Betweenness and Order

Axioms A 1.2.1 - A 1.2.4 define a ternary relation "to lie between” or "to divide” p C CT* x CP* x CF!. If points
A, B, C are in this relation, we say that the point B lies between the points A and C' and write this as [ABC].

Axiom 1.2.1. If B lies between A and C, then A, C are distinct, A, B,C' lie on one line, and B lies between C' and
A.

Axiom 1.2.2. For every two points A and C there is a point B such that C lies between A and B.

Axiom 1.2.3. If the point B lies between the points A and C, then the point C cannot lie between the points A and
B.

For any two distinct points A, B define the following point sets:

An (abstract) interval AB = {A, B};

An open interval (AB) = {X|[AX B]};

Half-open (half-closed) intervals [AB) = {A} U (AB) and (AB] = (AB) U {B};

For definiteness, in the future we shall usually refer to point sets of the form [AB) as the half-open intervals, and
to those of the form (AB] as the half-closed ones.

A closed interval, also called a line segment, [AB] = (AB) U AB.

Open, half-open (half - closed), and closed intervals thus defined will be collectively called interval - like sets.
Abstract intervals and interval - like sets are also said to join their ends A, B.

An interval AB is said to meet, or intersect, another interval C'D (generic point set A 7, line a, plane a) in a
point X if X € (AB)N(CD) (X € (AB)NA, X € (AB)Na, X € (AB) N «, respectively).

Given an abstract interval or any interval-like set X with the ends A, B, we define its interior IntX by IntX =
(AB), and its exterior ExtX by ExtX = Pa,, \ [AB] = {C|C € aap & C ¢ [AB]}. If some point C lies in the
interior (exterior) of X', we say that it lies inside (outside ) X. 8

Axiom 1.2.4 (Pasch). Let a be a line in a plane aapc, not containing any of the points A, B,C. Then if a meets
AB, it also meets either AC' or BC.

"That is, a set conforming to the general definition on p. 4.
8The topological meaning of these definitions will be elucidated later; see p. 18.
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A B C

Figure 1.2: Construction for the proofs of L 1.2.1.6 and C 1.2.1.7

Basic Properties of Betweenness Relation
The axiom A 1.2.3 can be augmented by the following statement.
Proposition 1.2.1.1. If B lies between A and C, then A, B, C are distinct points. °

Proof. [ABC] ":2® <[ABC). [ABC)& —|ACB]& B = C = [ABB| & ~[ABB] - a contradiction. O

Proposition 1.2.1.2. If a point B lies between points A and C, then the point A cannot lie between the points B
and C.19

Proof. [ABC] 22" [cBA] "22° —[0AB] L2 —[BAC). O
Lemma 1.2.1.3. If a point B lies between points A and C, then B is on line aac, C is on aap, A is on apc, and
the lines aap, aac, apc are equal.

Proof. [ABC]™2'A£B£C&Ja(Aca&Bea&Cea). ByC1l115B € asc&C € aup& A€ ape. Since

A 75 B 75 C, by C1l.1.13 asap = auc =apc. O

Lemma 1.2.1.4. If a point B lies between points A and C, then the point C lies outside AB (i.e., C lies in the set
ExtAB), and the point A lies outside BC' (i.e., A € ExtBC).

Proof. Follows immediately from A 1.2.1, A 1.2.3, L 1.2.1.3. O

Lemma 1.2.1.5. A line a, not containing at least one of the ends of the interval AB, cannot meet the line aap in
more than one point.

Proof. f C € aNaap and D € aNaap, where D # C, then by A 1.1.2 a=aap = A€a& B€a. O

Lemma 1.2.1.6. Let A, B,C be three points on one line a; the point A lies on this line outside the interval BC,
and the point D is not on a. If a line b, drawn through the point A, meets one of the intervals BD,CD, it also meets
the other.

Proof. (See Fig. 1.2.) Let A € b and suppose that 3E ([BED] & E € b). Then [BED] "M% B e app & D € app.

A€ea=apc Capcp& FE € app C apcp& A€ b& FE € bAéﬁﬁb C apep. E ¢ a, since otherwise B € a& F €

a = a = apg > D - a contradiction. B ¢ b& C ¢ b, because (B € bV C € b)&Ac€b=a=0b>E. D ¢b,

otherwise D € b& E € b= B € b=app. By A 1.2.4 3F (F € b& [CF D)), because if 3H (H € b& [BHC]) then

a#b& Hea=aBC&Heb&Aca&k Ach QLN g A, whence [BAC]- a contradiction. Replacing E with F

and B with C, we find that 3F (F € b& [CFD]) = 3E ([BED]& E € b). O

Corollary 1.2.1.7. Let a point B lie between points A and C, and D be a point not on asc. If a line b, drawn
through the point A, meets one of the intervals BD,CD, it also meets the other. Furthermore, if b meets BD in E
and CD in F, the point E lies between the points A, F.

Proof. (See Fig. 1.2.) Since by A 1.2.1, A 1.23 [ABC]| = A# B # C&3Ja (A€ a& B € a&C € a)&~[BAC],
the first statement follows from L 1.2.1.6. To prove the rest note that D ¢ aac CLL23 4 ¢ acp, [DFC|& A ¢
acp& D € app& B € (IDB&[CBA] ab:oxgc JE" E' € apg N (AF), and B € apg Nasr& E € app Naar & B ¢

L1.2.1.5
arap=b ="FE =FE. 110

9For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.1.
10For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.2.
11We have shown that B ¢ b in L 1.2.1.6
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Figure 1.3: For any two distinct points A and C' there is a point D between them.

Corollary 1.2.1.8. Let A,C be two distinct points and a point E is not on line aac. Then any point F such that
[AEF] or [AFE] or [EAF), is also not on asc.

Proof. Observe that [AEF|V [AFE]V [EAF] AL Y #F&F € aap and then use L 1.1.1.6. O

Lemma 1.2.1.9. If half-open/half-closed intervals [AB), (BC] have common points, the points A, B, C colline. 2

Proof. [AB) N (BC]# 0= 3D D € [AB) N (BC] M43 D e aap Nape 25 aap = apc, whence the result. O

Corollary 1.2.1.10. If lines a, b and b, ¢ are parallel and a point B € b lies between points A € a, C € ¢, the lines
a, b, c all lie in one plane.

Proof. Follows immediately from L 1.2.1.3, L 1.1.7.3. O
Corollary 1.2.1.11. Any plane containing two points contains all points lying between them.

Proof. Follows immediately from A 1.1.6, L 1.2.1.3. O

Corollary 1.2.1.12. Suppose points A, B, C are not collinear and a line a has common points with (at least) two
of the open intervals (AB), (BC), (AC). Then these common points are distinct and the line a does not contain any
of the points A, B, C.

Proof. Let, for definiteness, F' € aN (AB), D € a N (AC). Obviously, F' # D, for otherwise we would have (see
L1213, A112) F =D € aapNaac = aap = aac - a contradiction. Also, we have A ¢ a, B ¢ a, C ¢ a,
because otherwise 1> (A€caVvBeaVvVCca)& Feca&Deca&Fecasp&DE€asc=a=aapVa=as = FE€
aapNaacVF €aapNaac = aap = asc - again a contradiction. O

Corollary 1.2.1.13. If a point A lies in a plane o and a point B lies outside o, then any other point C # A of the
line aap lies outside the plane a. ™

Proof. B¢ a = aap ¢ . Hence by T 1.1.2 asp and « concur at A (that is, A is the only common point of the line
aap and the plane «). O

Theorem 1.2.1. For any two distinct points A and C there is a point D between them.

Proof. (See Fig. 1.3.) By L 1.1.2.1 3E E ¢ aac. By A 1.2.2 IF [AEF]. From C 1.2.1.8 F ¢ aac, and therefore

C ¢ axp by L 1.1.1.6. Since F £ C, by A 1.2.2 3G [FCG]. C ¢ aap & [FCG] “22° G ¢ aup 222G £ E& A ¢

arg. [AEF] 22" [FEA]& A # F. Denote b = agp. As [FCG), A ¢ apg, G € b, and E € b& [FEA], by C 1.2.1.7

1D (D € b& [ACD]). O

12This lemma will also be used in the following form:

If points A, B, C do not colline, the half-open/half-closed intervals [AB), (BC] do not meet, i.e. have no common points.

13 Again, we use (see L 1.2.1.3, A 1.1.2).

141n particular, this is true if any one of the points A, B, C lies between the two others (see L 1.2.1.3). Note also that we can formulate
a pseudo generalization of this corollary as follows: Given a line a, if a point A € a lies in a plane «, and a point B € a lies outside «,
then any other point C' # A of the line a lies outside the plane a.
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Figure 1.4: Among any three collinear points A, B, C one always lies between the others.
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Figure 1.5: If B is on (AC), and C' is on (BD), then both B and C lie on (AD).

Theorem 1.2.2. Among any three collinear points A, B,C one always lies between the others. '

Proof. (See Fig. 1.4.) Suppose A € a, B € a, C € a, and 7[BAC|, -[ACB|. By L 1.1.2.1 3D D ¢ a. By A 1.2.2

3G [BDG]. From L 1.2.1.8 F ¢ apc = a = aac, and therefore C ¢ apg, A ¢ acg by C 1.1.2.3. (B # G by A 1.2.1).

D€ asxp& A€ asp& D € acp&C € acp & [BDG] 227 IE (E € aap & [CEG))&3F (F € acp & [AFG)).

[CEGI&A ¢ acc&C € acp& F € acp & [AFG] “227 31 (I € acp&[AIE]). E € asp& A # B L1372

D € apg. D ¢ aACc = aCLl:g'sA §é acp. A §§ aCD&:D S CLAE&[AIE]&D S CLCD&I € acp Ll'i;ﬁ]:D,

whence [ADE] “22” [EDA]. [CEG]& A ¢ acc &G € agp & D € agp & [ADE] “225" 37 (J € agp & [AIC)).

Beagp&J€agp&[AJCI& B € age =a& C ¢ agp = app LL2L5 5 B, whence [ABC]. O

Lemma 1.2.3.1. If a point B lies on an open interval (AC), and the point C lies on an open interval (BD), then
both B and C lie on the open interval (AD), that is, [ABC] & [BCD] = [ABD] & [ACD].

Proof. (See Fig. 1.5) D # A, because [ABC] ALR3 -[BCA]. By A121,L111.73a (A€a&Bea&Ceca&De

a). By L1.1.21 3E E ¢ a. By A 1.2.2 3F [ECF)]. From C 1.2.1.8 F' ¢ aac, and therefore A ¢ acp by C 1.1.2.3.

[ABO]&IF §é CLAc&A S CLAE&[OEF]&A §§ ACF&F S aBF&B € aprpdG (G S CLBF&[AGE])&HI (I S
arp& [BIF)). E ¢ axp 222 B ¢ app. B¢ arp& [BIF|&I € aup& G € asp& G € app "22° I = G. From
F ¢ agp by C1.1.2.3 D ¢ apr and by C 1.2.1.8 G ¢ app, whence G # D. [BCD]& F ¢ app & D € agp &G €

acp & [BGF|&D ¢ apr&F € acp&C € acp “227 3H (H € agp & [CHF)&3J (J € acp&|[GJID]).
G ¢ acp = app 257 O € agp. C ¢ agp&J € agp& H € agp&J € acp & |[CHF] "24° 1 = H.
E¢arc=aip 22D ¢ arp& A¢ ape. [AGE|& D ¢ anp & E € apc & H € ape & [GHD] “2227 3K (K €
apc & [AKD)). A¢ apc& K € apc & C € apc & C € aap & [AK D] ML o o Using the result just proven,

we also obtain [ABC] & [BCD] “23” [DCB] & [CBA] 2%° [DBA] “£2% [ABD). O

15The theorem is, obviously, also true in the case when one of the points lies on the line formed by the two others, i.e. when, say,
B € aac, because this is equivalent to collinearity.
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Figure 1.6: If B lies on (AC), and C lies on (AD), then B also lies on (AD), and C lies on (BD). The converse is
also true.

Lemma 1.2.3.2. If a point B lies on an open interval (AC), and the point C lies on an open interval (AD), then
B also lies on the open interval (AD), and C lies on the open interval (BD). The converse is also true. That is,
[ABC] & [ACD] < [BCD] & [ABD).'¢

Proof. (See Fig. 1.6.) By A 1.2.1, L 1.1.1.73a (A € a& B € a&C € a& D € a). By L 1.1.2.1 3G G ¢ a. By
A 1.2.2 3F [BGF]. From C 1.2.1.8 F ¢ aap = aac = apc = app, and therefore by C 1.1.2.3 A ¢ app, A ¢ arc,

D¢ apc, D ¢ agp. —3IM (M € apc & [AMCY)), because [BGF|& A ¢ apr & F € apc & M € apc & [AMG) T2257
AL (L € apc & [ALB]) and therefore A ¢ apc & L € apc & C € apc & [ALB]& C € aap ML24% 1 = C, whence
[ACB] ALZ3S —[ABC]- a contradiction. B € aap C aagp &G € aacp & F € apa & C € aap C aagp ALLSG apc C
angp. C € apc&[ACD] & ~IM (M € apc & [AMG]) 22" 3H (H € apc & [GHD)). [BGF|&D ¢ app & F €
acp& C € acp & [GHD) “22 731 (I € acp & [BID)). D ¢ acr &I € acp & C € acr & [BID] & C € app 2227
I = C, whence [BCD]. [ABC|& [BCD] b2l [ABD]. To prove the converse, note that [ABD]& [BCD)] AL

[DCB) & [DBA] 22%° [DCA] & [CBA] “£2' [ACD] & [ABC). O

If [CD] C (AB), we say that the interval C'D lies inside the interval AB.

Theorem 1.2.3. Suppose each of the points C, D lie between points A and B. If a point M lies between C' and D,
it also lies between A and B. In other words, if points C, D lie between points A and B, the open interval (CD) lies
inside the open interval (AB).

Proof. (See Fig. 1.8) By A1.2.1,L1.1.1.73a (A€ a& B € a& C € a& D € a), and all points A, B, C, D are distinct,

whence by T 1.2.2 [ACD] Vv [ADC] Vv [CAD]. But ~[CAD], because otherwise [CAD] & [ADB] hL2gd [CAB] ALRS

~[ACB] - a contradiction. Finally, [ACD] & [CM D] “222? [AM D] and [AM D] & [ADB] “222? [AM B]. O

Lemma 1.2.3.3. If points A, B, D do not colline, a point F lies between A, B and the point C lies between B, D,
there is a point E, which lies between C, A as well as between D, F'.

Proof. (See Fig. 1.7.) [AFB] 23" A £ F # B. F # B .2’ 30 [FBH). [AFH)& [FBH] “22" [AFH) & [ABH).
Denote for the duration of this proof a« = app = aap = aar = apg = ... (see L 1.2.1.3). By C 1.1.2.3

that A, B, D do not colline implies D ¢ a. We have [FBH|& D ¢ a&[BCD] “237 3R [FRD)& [HCR).

[AFH|& D ¢ a& [FRD] 287 3L [ALD] & [HRL)]. [HCR] & [HRL] "222? [HCL] "“23® H € acp. Observe that

Bea&[BCD|&D ¢ a “227 C ¢ a, and therefore C ¢ aay, 17 because otherwise C' € aar & L # C “25% 4 ¢

arc and A € arc & H € arc ALL2 arc = aag = a = C € a - a contradiction. C ¢ auy, & [ALD] & [LRC)] CL2l7

3E [AEC|&[DRE). D ¢ a = aap =% A ¢ app. A ¢ app & [BCD]& [CEA] “22" 3X ([BX A & [DEX)).

[DRE) & [DEX] “22¥? [DRX]. [FRD] & [DRX) & [BX A "23° F c apr& X € apr& X € a. D ¢ a = apr # a.

Finally, FEaﬂaDR&XEaﬂaDR&a;éaDRAéfX:F. O

Proposition 1.2.3.4. If two (distinct) points E, F lie on an open interval (AB) (i.e., between points A, B), then
either E lies between A and F or F' lies between A and E.

16Note that in different words this lemma implies that if a point C' lies on an open interval (AD), the open intervals (AC), (CD) are
both subsets of (AD).
17 41, definitely exists, because [ALD] = A # L.
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Figure 1.7: If A, B, D do not colline, F lies between A, B, and C' lies between B, D, there is a point E with [CFE A
and [DEF).

A C M D B

Figure 1.8: If C, D lie between A and B, (CD) lies inside (AB).
18

Proof. By A 1.2.1 [AEB|&[AFB] = A # E& A # F, and the points A, B, E, F are collinear (by L 1.2.1.3

E € aap, F € agp). Also, by hypothesis, E # F. Therefore, by T 1.2.2 [EAF|V [AEF|V [AFE]. But [EAF|& E €

(AB)& F € (AB) 23 4 e (AB), which is absurd as it contradicts A 1.2.1. We are left with [AEF|V [AFE], q.e.d.

O

Lemma 1.2.3.5. If both ends of an interval CD lie on a closed interval [AB], the open interval (CD) is included
in the open interval (AB).

Proof. Follows immediately from L 1.2.3.2, T' 1.3.3. O

Theorem 1.2.4. If a point C lies between points A and B, then none of the points of the open interval (AC) lie on
the open interval (CB).

Proof. (See Fig. 1.9) [AMC] & [ACB] “222? (McB) "£2* ~[cMB]. O

Theorem 1.2.5. If a point C lies between points A and B, then any point of the open interval (AB), distinct from
C, lies either on the open interval (AC) or on the open interval (CB). 1°

Proof. By A 1.2.1, L 1.1.1.7 Ja (A € a& B € a&C € a& M € a), whence by T 1.2.2 [CBM]V [CMB]V

[MCB]. But -[CBM], because otherwise [ACB] & [C BM] bL2gd [ABM] ALR3 —[AMB] - a contradiction. Fi-

nally, [AMB] & [MCB] “:22? [AMC]. O

A M C B

Figure 1.9: If C lies between A and B, then (AC) has no common points with (CB). Any point of (AB) lies either
on (AC) or (CB).
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Figure 1.10: If C lies between A and B, any point M of AB, M # C, lies either on (AC) or on CB.

1)

2)

a

Figure 1.11: If O divides A and C, A and D, it does not divide C' and D.

Proposition 1.2.5.1. If a point O divides points A and C, as well as A and D, then it does not divide C' and D.

Proof. (See Fig. 1.10) By L 1.1.1.7, A 1.2.1 [AOC| & [AOD] = A # C& A# D& Ja (A€ a& C € a& D € a). If also

C #D? from T 1.2.2 [CAD]V[ACD]V][ADC]. But =[CAD], because [CAD] & [AOD] “:22 [C A0] "L2° ~[40C.

Hence by T 1.2.4 ([ACD] v [ADC]) & [AOC] & [AOD] = ~[COD]. O

Proposition 1.2.5.2. If two points or both ends of an interval-like set lie on line a, this set lies on line a.

Proposition 1.2.5.3. If two points or both ends of an interval-like set with the ends A, B lie in plane «, then the
line aap, and, in particular, the set itself, lies in plane a.

Theorem 1.2.6. Let either
- A, B, C be three collinear points, at least one of them not on line a,
or
- A, B, C be three non-collinear point, and a is an arbitrary line.

Then the line a cannot meet all of the open intervals (AB), (BC), and (AC).

Proof. (See Fig. 1.2) Suppose 3L (L € a & [ALB]) & 3IM (M € a& [BMC])& 3N (N € a& [ANC)). If A ¢ a, then
also B ¢ a& C ¢ a, because otherwise by A 1.1.2, L. 1.2.1.3 (B€aVC € a) & [ALB] & [ANC]) = (a = aap)V (a =
aAc) = A€ca.

1) Let 39 (A € g& B € g& C € g). Then by T 1.2.2 [ACB] V [ABC] V [CAB]. Suppose that [ACB].?'. Then

A¢a&kAecg=a+#yg, [ALBJ&[BMC|&[ANC] M2 T € aup = g& M € ape = g& N € asc = g, and

therefore L € aNg& M € anNg& N €ang&a#g QLN v g N, whence [ALC] & [CLB], which contradicts
[ACB] by T 1.1.1.

2) Now suppose =g (A € g& B € g&C € g), and therefore ayp # apc # aac. L # M, because
L1.2.1.3 L1.2.1.3

[ALB)& [BLC] "=" L € aap&L € apc = aap = apc, L # N, because [ALB]& [ALC] =" L €
aap& L € apc = aap = aac, and M # N, because [BLC| & [ALC] LL2L3 1o apc& L € aac = apc = aac.

LEM#AN&Lea&Meak N ea =%* [LMN]V[LNM]V [MLN]. Suppose [LMN].2> Then [ANC|& ap #

19Thus, based on this theorem and some of the preceding results (namely, T 1.2.1, L 1.2.3.2, T 1.2.4), we can write [ABC] = (AC) =
(AB)U{B} U (BC), (AB) C (AC), (BC) C (AC), (AB) N (BC) = 0.

20for C = D see A 1.2.1

21Gince A, B, C, and therefore L, M, N, enter the conditions of the theorem symmetrically, we can do this without any loss of generality
and not consider the other two cases

22Gee previous footnote
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A

n-1 n

A A, A Ay Ay Ac Ap A

Figure 1.12: Every point, except the first and the last, lies between the two points with adjacent (in N) numbers

aac = N ¢ aap, [ALB]&N ¢ aup&B € apc&C € apc&[LMN] 2227 3D (D € apc & [ADN]) and

A¢apc&C € apc& D € &apc&C € aay &[ADN] "% ¢ = D, whence [ACN] 22 —[ANC] -a con-

tradiction. O

Denote N, = {1,2,...n}

Betweenness Properties for n Collinear Points

Lemma 1.2.7.1. Suppose A1, Aa, ..., An(,...), where n € N,,(n € N) is a finite (infinite) sequence of points with
the property that a point lies between two other points if its number has an intermediate value between the numbers
of these points. Then if a point of the sequence lies between two other points of the same sequence, its number has
an intermediate value between the numbers of these two points. That is, (Vi,j, k € N, (respectively, N) ((i < j <
k)V (k< j<i)=[AA;A]) = (Vi,j, k € N, (respectively, N) ([A;A;Ax] = (i <j<k)V(k<j<i)).

Proof. Suppose [A;AjAg]. Theni < j < kork <j<i, because (j <i<k)V(k<i<j)V(i<k<jV(<k<
i) = [Aj A AR V [A; AR Ay 23 1[4, 4 A4] - a contradiction. O

Let an infinite (finite) sequence of points A;, where i € N (i € N,,, n > 4), be numbered in such a way that, except
for the first and (in the finite case) the last, every point lies between the two points with adjacent (in N) numbers.
(See Fig. 1.12.) Then:

Lemma 1.2.7.2. — All these points are on one line, and all lines aa,a; (wherei,j € Ny, i # j) are equal.
Proof. Follows from A 1.2.1, L 1.1.1.7. O

Lemma 1.2.7.3. — A point lies between two other points iff its number has an intermediate value between the numbers
of these two points;

PT’OOf. By induction. [AlAgAg] & [A2A3A4] — A1A2A4] & [A1A3A4] (n = 4) [AiAn_QAn_l] & [An_QAn_lAn]

L1.2.3.1 L1.2.3.2

L1.2.3.1
— [AiAn—lAn]u [AiAjAn_l]&[AjAn_lAn] — [AZAJAn] O

Lemma 1.2.7.4. — An arbitrary point cannot lie on more than one of the open intervals formed by pairs of points
with adjacent numbers;

PT’OOf. Suppose [A»L'BAfL'Jrl], [AjBAj+1], 1< j By L 1.2.7.3 [AiAi+1Aj+1], whence AzBAfLJrl] & [AiAi+1Aj+1] T£>4

ﬁ[AH_lBAj_H] = j #i+1. Butif j > i4+1 we have [Ai+1AjAj+1] & [AjBAj+1] L%QQ [Ai—i-lBAj—i-l] — a contradiction.

O

Lemma 1.2.7.5. — In the case of a finite sequence, a point which lies between the end (the first and the last) points
of the sequence, and does not coincide with the other points of the sequence, lies on at least one of the open intervals,
formed by pairs of points of the sequence with adjacent numbers.

Proof. By induction. For n =3 see T 1.2.5. [A;BA, & B ¢ {As, ..., An_1} =2° (JAyBAn_1]V [An_1BA]) & B ¢

{Ag, Ceey An_g} = (32 1€N,_ & [AiBAH_l) V [An_lBAn] =diieN, 1 & [AzBAH-l] O

Lemma 1.2.7.6. — All of the open intervals (A;A;11), where i =1,2,...,n—1, lie in the open interval (A14A,,), i.e.
Vi € {1, 2,...,n— 1} (AiAi-i-l) C (AlAn)
Proof. By induction on n. For n =4 ([A1 M As] V [AaM A3)) & [A142A3) hL2g2 [A1 M As).

If M € (AjAit1), i € {1,2,...,n — 2}, then by induction hypothesis M € (A1 A,—1), by L 1.2.7.3 [A1 A,,—14,],

therefore [A1MAy—1] & [A1An14,] "2 [AMA); if M € (Au14n) then [A1An1A,) &[An1 MA,] "2

[A1MA,]. O

Lemma 1.2.7.7. — The half-open interval [A1A,) is the disjoint union of the half-open intervals [A;A;y1), where
1=1,2,...,n—1:

n—1
[A14n) = U [Aidis1).
i=1
Also,
The half-closed interval (A1 Ay] is a disjoint union of the half-closed intervals (A; Aiy1], wherei=1,2,...,n—1:
n—1
(ArAn] = U (Aidisa].
i=1
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Figure 1.13: Any open interval contains infinitely many points.

Proof. Use L 1.2.7.5, L 1.2.7.3, L 1.2.7.6. O

This lemma gives justification for the following definition:

If a finite sequence of points A;, where i € N,,, n > 4, has the property that every point of the sequence, except
for the first and the last, lies between the two points with adjacent (in N) numbers, we say that the interval A; A,
is divided into n — 1 intervals A; Ag, A3As, ..., Ay_1A, (by the points As, As, ... A,_1).

If a finite (infinite) sequence of points A;, i € N, n > 3 (n € N) on one line has the property that a point lies
between two other points iff its number has an intermediate value between the numbers of these two points, we say
that the points Aq, Aa,..., An(,...) are in order [A; A5 ... A, (...)]. Note that for n = 3 three points A1, As, A3 are
in order [A; Ay As] iff Ay divides A; and As, so our notation [A; A2 As] is consistent.

Theorem 1.2.7. Any finite sequence of distinct points A;, i € Ny, n > 4 on one line can be renumbered in such a
way that a point lies between two other points iff its number has an intermediate value between the numbers of these
two points. In other words, any finite sequence of points A;, i € N, n >4 on a line can be put in order [A1As ... Ay).

By a renumbering of a finite sequence of points A;, i € Ny, n > 4 we mean a bijective mapping (permutation)
o : N, = N, which induces a bijective transformation og : {A1, Aa, ..., An} — {A1, Ao, ..., Ay} of the set of points
of the sequence by A; — Ay, i € Ny.

The theorem then asserts that for any finite (infinite) sequence of points A;, i € N, n > 4 on one line there is
a bijective mapping (permutation) of renumbering o : N, — N, such that Vi,jk €N, (i<j<k)V(k<j<i)&
[ Ao Aoy Ao ] **

Proof. Let [AjAnAn], l£Em #£n, 1 €Ny, meNy, neNy (see T 1.2.2). If pe Ny&p #1&p # m&p # n, then by
T 122, T1.25 [ApAA,]V [AIA ARV [An ApAL V [AIApAL V [ATAR A

Define the values of the function o by

for [A,A1A,] let o(1) =p, 0(2) =1, 0(3) =m, o(4) =n;

for [AjA A ] let o(1) =1, 0(2) = p, 0(3) =m, 0(4) = n;

for [AnApArn] let 0(1) =1, 0(2) =m, 0(3) =p, 0(4) = n;

for [A1A, A, let o(1) =1, 0(2) =m, 0(3) =n, o(4) =p.

Now suppose that 37 7: N,y — N, 1 such that Vi,j,k € N,y 1 (i <j <k)V(k<j<i) e [A0)ArG)Arm]
By T 1.2.2, L 1.2.7.5 [AnAT(l)AT(n—l)] V [AT(l)AT(’ﬂ—l)AT(n)] V3iieN, o2& [A‘r(i)AnA‘r(n-i-l)]-

The values of o are now given

for [A, Ay(1)As(n—1)] by 0(1) =n and o(i 4+ 1) = 7(i), where i € N, _y;

for [A, i) Ag(n—1)Ac(m)] by 0(i) = 7(i), where i € N,,_1, and o(n) = n;

for [A, ) AnAsiy1)] by o(j) = 7(j), where j € {1,2,...,i}, 0(i + 1) = n, and o(j + 1) = 7(j), where j €
{i+1,i4+2,...,n—1}. See L 1.2.7.3. O

Every Open Interval Contains Infinitely Many Points

Lemma 1.2.8.1. For any finite set of points { A1, Aa, ..., Ap} of an open interval (AB) there is a point C' on (AB)
not in that set.

Proof. (See Fig. 1.13.) Using T 1.2.7, put the points of the set {A, A1, Aa,..., A,, B} in order [A, A1, As, ..., Ay, B].
By T 1.2.2 3C [A1CA;]. By T 1.2.3 [ACB] and C # Ay, As, ..., Ay, because by A 1.2.3 [A;C As] = —[4143C] and
by Al21C }é Al,AQ. O

Theorem 1.2.8. Every open interval contains an infinite number of points.

Corollary 1.2.8.2. Any interval-like set contains infinitely many points.

Further Properties of Open Intervals

Lemma 1.2.9.1. Let A;, where i € N,,, n > 4, be a finite sequence of points with the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Then if
i<ji<l,i<k<l ijkl€eN, (i,jk,1€N) the open interval (A;Ay) is included in the open interval (A;4;). **
Furthermore, if i < j <k <1 and B € (AjAy) then [A;A;B]. %

23The present theorem can thus be viewed as a direct generalization of T 1.2.2.

24In particular, given a finite (countable infinite) sequence of points A;, i € Ny, (n € N) in order [A142... Ap(...)], if i < j < I,
it <k<lI i54k1l€Ny (i,5,k | €N), the open interval (A;Ay) is included in the open interval (A;A;).

25 Also, [BAR A;], but this gives nothing new because of symmetry.
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Proof. Assume j < k. 26 Theni = j&k=1= (AA) = (A;A);i = j&k <1 = [AAA)] "227 (4, A)) € (Aid);
i< j&k=1= [A4A;AL) 227 (A AL) C(AiA). i< &k < 1= [A;A; A & [A;ArA 227 (4;A4L) C (AiA).
The second part follows from [A;A;Ax] & [A;BA] "= bl2g2 [A,A;B]. O

Let an interval AgA, be divided into intervals AgAi, A1 As, ... Ap_1An.2" Then

Lemma 1.2.9.2. - If By € (A;_14k), B2 € (Ai—14;), k < then [AgB1Bs|. Furthermore, if Bs € (Ap—1Ax) and
[AklelBQ], then [AoBlBQ].

Proof. By L 1.2.7.3 [AgArAp]. Using L 1.2.9.1, (since 0 < k — 1, k <1 —1 < n) we obtain [AgB1A], [AxB2A4y].
Hence [B1 A An] & [AxBaAn] Li2g.2 [B1 A Bs], [AgB1Ag] & [B1 Ak B3] LL2g1 [AoB1Bs]. To show the second part,
observe that for 0 < k — 1 we have by the preceding lemma (the second part of L 1.2.9.1) [AgAk_1Bz2], whence
[AgAk—1Bs) & [Ay_1B1Bo] "222 (4B By). O

Corollary 1.2.9.3. - ]f B, € [AkflAk), B € [AlflAl), k< l, then [ABlBQ].
Proof. Follows from the preceding lemma (L 1.2.9.2) and L 1.2.9.1. O

Lemma 1.2.9.4. — If [AgB1Bs] and By € (ApA,,), then either By € [Ax_14Ak), B2 € [Aj—14;), where 0 < k <1 <n,
or By € [Ap—14y), Bs € [Ap_1A%), in which case either By = Ap_1 and By € (Ap_1Ag), or [Ax—1DB1Bs], where
Bl,Bg S (Ak—lAk)~

Proof. [AoB1By) & [AoBaAy) 2227 (A9 By Ay). By L 1.2.7.7 we have By € [Ay_14y), By € [Ai_1A}), where k,1 € N,,.

Show k < [. In fact, otherwise By € [Ar_14k), B2 € [Ai—14;), k > | would imply [AgB2B1] by the preceding corollary,

which, according to A 1.2.3, contradicts [AgBy Bz]. Suppose k = [. Note that [AgBj Bs] ALZL By # By # Ap. The

assumption By = Ai_; would (by L 1.2.9.1; we have in this case 0 < k — 1, because By # A) imply [AgB2Bi] - a
contradiction. Finally, if Bl,BQ S (AkflAk) then by P 1.2.3.4 either [AklelBQ] or [AkleQBl]. But [AkleQBl]
would give [AgB2Bj] by (the second part of) L 1.2.9.2. Thus, we have [Ax_1 By Bz]. There remains also the possibility
that By = Ax_1 and By € [Ak—lAk)~ O

Lemma 1.2.9.5. - If0<j<k<l—1<n and B € (A_14;) then [A;A;B]. *8

L1232
[

PTOOf. By L1277 [AjAkAl]. By L 1.29.1 [AkBAl]. Therefore, [AjAkAl] & [AkBAl] A AkB]

Lemma 1.2.9.6. - IfD S (AjflAj), B e (A171A1>, 0 <3< k<l-1< n, then [DAkB]

Proof. Since j < k = j — 1 < k, we have from the preceding lemma (L 1.2.9.5) [A;_1A;B] and from L 1.2.9.1
[A;_1 DA]. Hence by L 1.2.3.2 [DA,B]. O

Lemma 1.2.9.7. - If By € (A;A4;), By € (A1), 0 <i<j<
(B1A)) C (Ai4)), (AjAr) # (B1Ar) # (B1B2) # (B14;) # (A;A
(A A1), (AjAx) # (AjB2) # (B1B2) # (AiB2) # (AiA).

k <l <n then (AJAk) C (BlAk) C (BlBQ) C
) nd (A]Ak) C (AJBQ) C (BlBg) C (AlBQ) C

Proof. ?° Using the lemmas L 1.2.3.1, L. 1.2.3.2 and the results following them (summarized in the footnote accom-
panying T 1.2.5), we can write [A; B A;] & [A;A;Ax] 2227 [B1A; A = (A;4x) C (B1Ay) & (A;Ay) # (B1Ay).
Also, [A;ArA] & [ArBaA)] = [A;ArBs] = (A;Ar) C (A;Ba) & (A;AL) # (A;Bs). [BiA;Ar] & [4; AkBQ] bLzgd
[BlA BQ] & [BlAkBQ] = (AJBQ) C (BlBQ)& (AJBQ) 7§ (BlBQ)&(BlAk) C (BlBQ)&(BlAk) (BlBQ)
[BlAk;BQ] [Ak;BQAl] = [BlBgAl] = (BlBQ) C (BlAl) = (BlBQ) 75 (BlAl) [AiBlAj] & [BlAjBQ] [A BlBQ] =
(BlBQ) (A Bg) (BlBQ) 75 (AZBQ) [AiBlBQ] & [BlBQA[] = [AlBlAl] & [AiBQAl] = (BlA[) C (AZA[) & (BlAl) 75
(Ai A1) & (A;Bz) C (A A1) & (AiB2) # (AiA;). O

Lemma 1.2.9.8. — Suppose By € [AgAk+1), Ba € [AjA141), where 0 < k+1 <l <mn. Then (Ax+14;) C (B1B2) C
(AcAi11), (Arp14r) # (B1B2) # (ApAisa).

26Due to symmetry, we can do so without loss of generality.

27Recall that by L 1.2.7.3 this means that the points Ag, A1, Ao, ..., Ay, are in order [ApA1As ... An).

28Similarly, it can be shown that if 0 <! < j < k < n and B € (4;_14,) then [BA;A]. Because of symmetry this essentially adds
nothing new to the original statement.

29An easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set
{Ao, A1,...,An, B1, B2} are in order [(Ag...)A;B1Aj ... A B2Ai(... An).
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PTOOf 30 Suppose Bl = Ak, BQ = A[ Then [AkAk-',-lAl] = (Ak-i-lAl) C (AkAl) = (BlBg)&(A;H_lA[) 75
(B1B2). Also, in view of k < k+ 1 <l < I+ 1, taking into account L 1.2.9.1, we have (Ax414;) C (B1B2) C
(AkAH-l) (A]H-lA[) 75 (BlBg) 75 (AkAH-l) Suppose now Bl Ak, Bg S (AlAH-l) Then [AkAlAH-I] & [AlBQAH_l]
[AkAlBQ] [AkBQAl+1] = [BlBQAl+1 = (BlBQ) C (AkAl+1)&(BlBQ) # (AkAlJrl). [AkAk+1Al]&[Ak+1AlB2] =
[ApApt1B2] = (Ary1B2) C (ApB) = (B1B2) & (Ap41B2) # (B1B2). (Apt1 i) C (Apg1B2) & (App1Ar) #
(AkJrlBQ) (Ak+1B2) C (BlBQ>&(Ak+1BQ) # (BlBQ) = (AkJrlAl) C (BlBQ)&(AkJrlAl) 75 (BlBQ). Now con-
sider the case By € (AkAk-i-l)a Bs = A;. We have [AkBlAk+1]&[AkAk+1Al] = [A1A1H_1Al] = (Ak-i-lAl) C
(B1B2) & (Ar+1A1) # (B1B2). [ArAr1 A & [ApB1Agy1] = [BiAk1 Al = (Arp1An) C (BiB2) & (Akp1 i) #
(BlBQ) [BlAk+1Al]&[Ak+1AlAl+l] = [B1A1A1+1] = (BlBQ) = (BlAl) C (BlAlJrl)&(BlBQ) 75 (BlAlJrl).
[AxBAp1| & [AkAp1Aip1] = [AkBiAi] = (Bidi) C (Adip) & (Bidiy)  # (AkAi).

=

(BiB2) C  (BiAi) & (B1B2) #  (BiAi) & (Bidiy1) € (ApAi) & (Bidin)  # (AkAia) =
(B1B2) C (ArA;4+1)& (B1B2) # (ArA;41). Finally, in the case when By € (ApAgy1), B2 € (AjA;41) the result
follows immediately from the preceding lemma (L 1.2.9.7). O

Lemma 1.2.9.9. If open intervals (AD), (BC) meet in a point E and there are three points in the set {A, B,C, D}
known not to colline, the open intervals (AD), (BC) concur in E.

Proof. If also F € (AD)N (BC), F # E, then by L 1.2.1.3, A 1.1.2 aap = apc, contrary to hypothesis. O

Lemma 1.2.9.10. Let (B1D1),(B2D2),...,(BnDy) be a finite sequence of open intervals containing a point C' and
such that each of these open intervals (B;jD;) except the first has at least one of its ends not on any of the lines
ap,p;, 1 <i < j formed by the ends of the preceding (in the sequence) open intervals. 3* Then all intervals (B;D;),
i €N, concurin C.

Proof. By L 1.2.9.9, we have for 1
(B;D;) N (B;D;), whence the result.

<i<j<mn Ce€(BD)N (Bij)&Bj ¢ ap,p, V D; ¢ ap,p, = C =
O

Lemma 1.2.9.11. Let (B1D1),(B2Dz2),...,(BnDy) be a finite sequence of open intervals containing a point C' and
such that the line ap, p,, defined by the ends of a (fized) given open interval of the sequence contains at least one of
the ends of every other open interval in the sequence. Then all points C, B;, D;, i € N,, colline.

Proof. By L 1.2.1.3, A 1.1.2, we have Vi C N, \ 10 (C € (BlDZ) N (BzoDm))&(Bz € aB;, D;, vV D; e aBiODiO) =
aB;D; = B, Dy, whence all points B;, D;, i € N,,, are collinear. C' also lies on the same line by L. 1.2.1.3. O

Lemma 1.2.9.12. Let (B1D1),(B2Ds3),...,(BrDy) be a finite sequence of open intervals containing a point C and
such that the line ap, p, defined by the ends of a (fived) given interval of the sequence contains at least one of the
ends of every other interval in the sequence. Then there is an open interval containing the point C' and included in
all open intervals (B;, D;), i € Ny, of the sequence.

Proof. By (the preceding lemma) L 1.2.9.11 all points C, B;, D;, i € N, colline. Let Ay, As, ..., A, be the sequence
of these points put in order [A; Az ... A,], where C = A; for some i € N,,. (See T 1.2.7.) 32 Then [A;_1A;A;11]
and by L 1.2.9.1 for all open intervals (A;A4;), 1 < k < | < n, corresponding to the open intervals of the original
sequence, we have (4;_14;11) C (Ax4;). O

Lemma 1.2.9.13. If a finite number of open intervals concur in a point, no end of any of these open intervals can
lie on the line formed by the ends of another interval.
In particular, if open intervals (AD), (BC) concur in a point E, no three of the points A, B, C, D colline.

Proof. Otherwise, by (the preceding lemma) L 1.2.9.12 two intervals would have in common a whole interval, which,
by T 1.2.8, contains an infinite number of points. O

Corollary 1.2.9.14. Let (B1D;),(B2D2),...,(BnDy) be a finite sequence of open intervals containing a point C
and such that each of these open intervals (B;D;) except the first has at least one of its ends not on any of the lines
ap,p,;, 1 < i< j formed by the ends of the preceding (in the sequence) open intervals. Then no end of any of these
open intervals can lie on the line formed by the ends of another interval.

In particular, if open intervals (AD), (BC) meet in a point E and there are three points in the set {A, B,C, D}
known mot to colline, no three of the points A, B, C, D colline.

Proof. Just combine L 1.2.9.9, L. 1.2.9.13. O

30 Again, we use in this proof the lemmas L 1.2.3.1, L 1.2.3.2, and the results following them (summarized in the footnote accompanying
T 1.2.5) without referring to these results explicitly.

31To put it shortly, V5 € {2,3,...,n} Bj ¢ap,p,VD; ¢ap,p;, 1 <i<j.

32Naturally, we count only distinct points. Also, it is obvious that 1 < i < n, because there is at least one interval containing C' = A;.
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o) A 0,

Figure 1.14: The point A lies on the ray O4.

Open Sets and Fundamental Topological Properties

Given a line a, consider a set A C P, of points all lying on a. A point O is called an interior point of A if there is
an open interval (AB) containing this point and completely included in .A. That is, O is an interior point of a linear
point set A iff 3(AB) such that O € (AB) C A.

Given a plane «, consider a set A C P, of points all lying on a. A point O is called an interior point of A if
on any line a lying in « and passing through O there is an open interval (A(“)B(“)) containing the point O and
completely included in A.

Finally, consider a set A of points not constrained to lie on any particular plane. A point O is called an interior
point of A if on any line a passing through O there is an open interval (A(*) B(®)) containing the point O and
completely included in A.

The set of all interior points of a (linear, planar, or spatial) set A is called the interior of that set, denoted IntA.
A (linear, planar, or spatial) set A is referred to as open if it coincides with its interior, i.e. if IntA = A.

Obviously, the empty set and the set P, of all points of a given line a are open linear sets.

The empty set and the set P, of all points of a given plane « are open plane sets.

Finally, the empty set and the set of all points (of space) given are open (spatial) sets.

The following trivial lemma gives us the first non-trivial example of a linear open set.

Lemma 1.2.9.15. Any open interval (AB) is an open (linear) set.
Proof. O

Now we can establish that our open sets are indeed open in the standard topological sense.

Lemma 1.2.9.16. A union of any number of (linear, planar, spatial) open sets is an open set.

Proof. (Linear case.) 3% Suppose P € |J A;, where the sets A; C P, are open for all i € Y. Here U is a set of
=
indices. By definition of union Jig € U such that P € A;,. By our definition of open set there are points A, B such
that P € (AB) C A;,. Hence (using again the definition of union) P € (AB) C |J \A;, which completes the proof. O
=

Lemma 1.2.9.17. An intersection of any finite number of (linear, planar, spatial) open sets is an open set.

n
Proof. Suppose P € () B;, where the sets B; C P, are open for all i = 1,2,...,n. By definition of intersection
i=1

Vi € N,, we have P E_B'i. Hence (from our definition of open set) Vi € N,, there are points B;, D; € B; such that
P € (B;D;) C B;. Then by L 1.2.9.12 there is an open interval (BD) containing the point P and included in all open

intervals (B;, D;), @ € N,,. Hence (using again the definition of intersection) P € (BD) C () B;. O

i=1
Theorem 1.2.9. Given a line a, all open sets on that line form a topology on P,. Given a plane «, all open sets in
that plane form a topology on P,. Finally, all (spatial) open sets form a topology on the set of all points (of space).
Proof. Follows immediately from the two preceding lemmas (L 1.2.9.16, L 1.2.9.17). O

Theorem 1.2.10. Proof. O

Let O, A be two distinct points. Define the ray O 4, emanating from its initial point (which we shall call also the
origin) O, as the set of points O4 = {B|B € apa & B # O & -[AOB]}. We shall denote the line apa, containing
the ray h = Oy4, by h.

The initial point O of a ray h will also sometimes be denoted O = dh.

Basic Properties of Rays
Lemma 1.2.11.1. Any point A lies on the ray O4. (See Fig. 1.14)

Proof. Follows immediately from A 1.2.1. O

Note that L 1.2.11.1 shows that there are no empty rays.

33We present here a proof for the case of linear open sets. For planar and spatial open sets the result is obtained by obvious modification
of the arguments given for the linear case. Thus, in the planar case we apply these arguments on every line drawn through a given point
and constrained to lie in the appropriate plane. Similarly, in the spatial case our argumentation concerns all lines in space that go through
a chosen point.
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0 B A 0,=0,

Figure 1.15: If B lies on O4, A lies on Op.

B 0] A 0,
Figure 1.16: B lies on the opposite side of O from A iff O divides A and B.

Lemma 1.2.11.2. If a point B lies on a ray O 4, the point A lies on the ray Op, that is, B€ O4 = A € Op.
Proof. (See Fig. 1.15) From A 1.2.1, C 1.1.1.2 B# O& B € ap4 & [AOB] = A € app & 7[BOA]. O

Lemma 1.2.11.3. If a point B lies on a ray O4, then the ray O 4 is equal to the ray Op.

Proof. Let C € Oa. If C = A, then by L 1.2.11.2 C € Op. C # O # A& -[A0C] "=2? [0AC] Vv [OCA]. Hence

—[BOC], because from L 1.2.3.1, L 1.2.3.2 [BOC]& ([OAC] Vv [OCA]) = [BOA]. O

Lemma 1.2.11.4. If rays O4 and Op have common points, they are equal.

Proof. O4NOp #0=3CCe0,&Ce0p " 2?0, =00 =0p. O
If BeEOs (B€apa&k B ¢ 04& B # O), we say that the point B lies on line ap4 on the same side (on the
opposite side) of the given point O as (from) the point A.

Lemma 1.2.11.5. The relation “to lie on the given line a the same side of the given point O € a as” is an equivalence
relation on P, \ O. That is, it possesses the properties of:

1) Reflexivity: A geometric object A always lies in the set the same side of the point O as itself;

2) Symmetry: If a point B lies on the same side of the point O as A, then the point A lies on the same side of
O as B.

3) Transitivity: If a point B lies on the same side of the point O as the point A, and a point C' lies on the same
side of O as B, then C lies on the same side of O as A.
Proof. 1) and 2) follow from L 1.2.11.1, L, 1.2.11.2. Show 3): B€ 04 & C € Op ""22% 04 = 05 = Oc = C € O,.
O

Lemma 1.2.11.6. A point B lies on the opposite side of O from A iff O divides A and B.

Proof. (See Fig. 1.16) By definition of the ray O4, B € apa & B ¢ O4 & B # O = [AOB].
Conversely, from L 1.2.1.3, A 1.2.1 [AOB] = B € apa & B#0& B ¢ O4. O

Lemma 1.2.11.7. The relation ”to lie on the opposite side of the given point from” is symmetric.

Proof. Follows from L 1.2.11.6 and [AOB] ALZL [BOA]. O

If a point B lies on the same side (on the opposite side) of the point O as (from) a point A, in view of symmetry
of the relation we say that the points A and B lie on the same side (on opposite sides) of O.

Lemma 1.2.11.8. If points A and B lie on one ray Oc¢, they lie on line apoc on the same side of the point O. If,
in addition, A # B, then either A lies between O and B or B lies between O and A.

Proof. (See Fig. 1.17) A€ Oc “'22'° 0,4 = Oc. B€ 04 = B € apa& B # O & ~[BOA]. When also B # A, from

T 1.2.2 [0AB] V [OBA]. O

Lemma 1.2.11.9. If a point C lies on the same side of the point O as a point A, and a point D lies on the opposite
side of O from A, then the points C' and D lie on the opposite sides of O. 3

34Making use of L 1.2.11.6, this statement can be reformulated as follows:
If a point C' lies on the ray O 4, and the point O divides the points A and D, then O divides C and D.

0 A C B 0,

Figure 1.17: If A and B lie on O¢, they lie on apc on the same side of O.
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D o) A C 0,

Figure 1.18: If C lies on O4, and O divides A and D, then O divides C' and D.

D C O A 0O,

Figure 1.19: If C' and D lie on the opposite side of O from A, then C' and D lie on the same side of O.

Proof. (See Fig. 1.18) C € O4 = —[AOC] & C # O. If also C # A 35, from T 1.2.2 [ACO] or [CAO], whence by
L 1.2.3.1,L 1.2.3.2 ([ACO] v [CAO]) & [AOD] = [COD]. O

Lemma 1.2.11.10. If points C and D lie on the opposite side of the point O from a point A3 then C' and D lie
on the same side of O.

Proof. (See Fig. 1.19) By A 1.2.1, L 1.1.1.7, and P 1.2.5.1 [AOC| & [AOD] = D € apc & O # C & -[COD] = D €
Oc¢. O

Lemma 1.2.11.11. Suppose a point C' lies on a ray O4, a point D lies on a ray Op, and O lies between A and B.
Then O also lies between C' and D.

Proof. (See Fig. 1.21) Observe that D € Op “'22"* 05 = Op and use L 1.2.11.9. O

Lemma 1.2.11.12. The point O divides the points A and B iff the rays O4 and Op are disjoint, O, NOp =0, and
their union, together with the point O, gives the set of points of the line aap, Pa,, = OaUOp U{O}. That is,
[OAB] < (Pu,, =04UO0OpU{0}) & (0aN0Og =0).

Proof. Suppose [AOB]. If C € P,,, and C ¢ Op, C # O then [COB] by the definition of the ray Op.

[COB|&[AOB|& O # C = S[COA]l. = C € 04. 04NO0p =0, because otherwise C € 04 & C € Op B

B €04 = —[AOB].
Cl1.1.1.2

Now suppose (Py,; = O4 U O UO) and (O4 NOp = ). Then O € aap& A # O =" B € aopa,
BEOB&OAQOB:Q]éB%OA,andB;ﬁO&BGaoA&B¢OA:>[AOB]. ]

Lemma 1.2.11.13. A ray O4 contains the open interval (OA).

Proof. If B € (OA) then from A 1.2.1 B # O, from L 1.2.1.3 B € apa, and from A 1.2.3 -[BOA|. We thus have
BeOy. O

Lemma 1.2.11.14. For any finite set of points { A1, Aa, ..., An} of a ray Oy there is a point C on Oy not in that
set.

Proof. Immediately follows from T 1.2.8 and L 1.2.11.13. O

Lemma 1.2.11.15. If a point B lies between points O and A then the rays Op and O are equal.

Proof. [0BA] "' 22 Be 04 27 05 = 04. D

Lemma 1.2.11.16. If a point A lies between points O and B, the point B lies on the ray O4.

Proof. By L1.2.1.3, A 1.2.1, A 123 [OAB] = B € apa& B # O& —[BOA| = B € O4.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.11.15). O

Lemma 1.2.11.17. If rays O4 and O'p are equal, their initial points coincide.

Proof. Suppose O’ # O (See Fig. 1.20.) We have also O’ 20& O0'p =04 = O' ¢ O4. Therefore, O’ € aps & O #

0&0' ¢ 04 = O € 04. O € 09&B € O4 = [0'OB]. B € 0'5&[0'0B] "2 0 € 0’5 = 04 - a

contradiction. O

35Otherwise there is nothing else to prove
360ne could as well have said: If O lies between A and C, as well as between A and D ...
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o, O O A B 0,=0,
Figure 1.20: If O4 and O’ are equal, their origins coincide.

Lemma 1.2.11.18. If an interval AgA,, is divided into n intervals AgAy, A1 As ..., An_1A, (by the points A1, Aa, ... Ap_1),
37 the points Ay, As, ... A,_1, Ay all lie 38 on the same side of the point Ay, and the rays Aga,, Aoay, -5 Aoa, are
equal. 3°

Proof. Follows from L 1.2.7.3, L. 1.2.11.15. O

Lemma 1.2.11.19. Every ray contains an infinite number of points.
Proof. Follows immediately from T 1.2.8, L. 1.2.11.13. O

This lemma implies, in particular, that
Lemma 1.2.11.20. There is exactly one line containing a given ray.
Proof. O

The line, containing a given ray O4 is, of course, the line apa.

Theorem 1.2.11. A point O on a line a separates the rest of the points of this line into two non-empty classes
(rays) in such a way that...

Linear Ordering on Rays

Let A, B be two points on a ray Op. Let, by definition, (4 < B)o,, PN [OAB]. If (A < B),*® we say that the point

A precedes the point B on the ray Op, or that the point B succeeds the point A on the ray Op.
Obviously, A < B implies A # B. Conversely, A # B implies =(A4 < B).

Lemma 1.2.12.1. If a point A precedes a point B on the ray Op, and B precedes a point C on the same ray, then
A precedes C on Op:
A<B&B<C= A<C, where A,B,C € Op.

Proof. (See Fig. 1.22) [0AB] & [0BC] "22£? [0AC). O
Lemma 1.2.12.2. If A, B are two distinct points on the ray Op then either A precedes B or B precedes A; if A
precedes B then B does not precede A.

Proof. A€ Op&B e Op "'23* Be 0,4 = —[AOB]. If A # B, then by T 1.2.2 [0AB] vV [OBA], that is, A < Bor

B<A. A< B=[0AB] 22" ~[0BA] = ~(B < A). O
Lemma 1.2.12.3. If a point B lies on a ray Op between points A and C,*! then either A precedes B and B precedes
C, or C precedes B and B precedes A; conversely, if A precedes B and B precedes C, or C precedes B and B precedes
A, then B lies between A and C. That is,

[ABC) < (A<B&B<C)V(C<B&B<A).

Proof. From the preceding lemma (L 1.2.12.2) we know that either A < C or C < A, i.e. [OAC] or [OCA]. Suppose

[OAC). %2 Then [0AC) & [ABC] "222? [0AB]& [0BC] = A < B& B < C. Conversely, A < B&B < C =

[0AB] & [0BC) “:22? [ABC). O

For points A, B on a ray Op we let by definition A < B JLUN (A< B)V(A=B).

Theorem 1.2.12. Ewvery ray s a chain with respect to the relation <.
Proof. A< A (A<XB&[B <A "2¥?> 4 =B, (A<B)&[B <A "2 4 20C, A+ B" 222 (4 <
B)v(B<A). O

37In other words, a finite sequence of points A;, where i +1 € N,,_1, n > 4, has the property that every point of the sequence, except
for the first and the last, lies between the two points with adjacent (in N) numbers.

38Say, on apyA,- Observe also that L. 1.2.7.2 implies that, given the conditions of this lemma, all lines ap;A;, where i+ 1,5 +1 € Ny,
i # j, are equal, so we can put any of these A A, in place of aa,4,

39By the same token, we can assert also that the points Ag, Aj ... A,_1 lie on the same side of the point A, but due to symmetry,
this adds essentially nothing new to the statement of the lemma.

40Tn most instances in what follows we will assume the ray Op (or some other ray) fixed and omit the mention of it in our notation.

41n fact, once we require that A,C € Op and [ABC], this ensures that B € Op. (To establish this, we can combine [OBC] shown
below with, say, L 1.2.11.3, L. 1.2.11.13. ) This observation will be referred to in the footnote accompanying proof of T 1.2.14.

42Since [ABC] and [C BA] are equivalent in view of A 1.2.1, we do not need to consider the case [OCA] separately.
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0o, D B 0 A C 0,

Figure 1.21: If C lies on the ray O4, D on Opg, and O between A and B, then O lies between C' and D.

0 A B C 0,

Figure 1.22: If A precedes B on Op, and B precedes C' on the same ray, then A precedes C on Op.

Ordering on Lines

Let O € a, P € a, [POQ)]. Define the direct (inverse) ordering on the line a, that is, a relation of ordering on the set
P, of all points of the line a, as follows:

Call Op the first ray, and O the second ray. 43 A point A precedes a point B on the line a in the direct (inverse)
order iff: (See Fig. 1.23)

- Both A and B lie on the first (second) ray and B precedes A on it; or

- A lies on the first (second) ray, and B lies on the second (first) ray or coincides with O; or

- A =0 and B lies on the second (first) ray; or

- Both A and B lie on the second (first) ray, and A precedes B on it.

Thus, a formal definition of the direct ordering on the line a can be written down as follows:

(A<1B), PN (A€ Op&B € Op&B < A)V((AcOp&kB=0)V(AcOp&kBecOqg)V(A=0&B ¢
Og)V(A€Og&BeOg&A=<B),

and for the inverse ordering: (A<2B), <= (A€ Og& B€ Og& B < A)V (A€ 0g&B=0)V (A€ 0q&B €
Op)V(A=0&B€eOp)V(AcOp&BeOp&k A=< B).

The term ”inverse order” is justified by the following trivial

Lemma 1.2.13.1. A precedes B in the inverse order iff B precedes A in the direct order.
Proof. O

Obviously, for any order on any line A < B implies A # B. Conversely, A = B implies =(A < B).

For our notions of order (both direct and inverse) on the line to be well defined, they have to be independent, at
least to some extent, on the choice of the initial point O, as well as on the choice of the ray-defining points P and Q.

Toward this end, let O’ € a, P’ € a, [P'O’'Q’], and define a new direct (inverse) ordering with displaced origin
(ODO) on the line a, as follows:

Call O’ the displaced origin, O’'p: and O’ the first and the second displaced rays, respectively. A point A
precedes a point B on the line a in the direct (inverse) ODO iff:

- Both A and B lie on the first (second) displaced ray, and B precedes A on it; or

- A lies on the first (second) displaced ray, and B lies on the second (first) displaced ray or coincides with O’; or

- A= 0’ and B lies on the second (first) displaced ray; or

- Both A and B lie on the second (first) displaced ray, and A precedes B on it.

43Observe that if A € Op and B € Og then [AOB (see L 1.2.11.11). This fact will be used extensively throughout this section.

0, A B 0] Oq
5 A 0B 0,
0, A 0 B

0, O=A B 0,

Figure 1.23: To the definition of order on a line.
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B — ]
0, P’ o’ 0

Figure 1.24: If O’ lies on Op between O and P’, then O'p: C Op.

«« e & & & P
0O, P o’ B 0) Q 0O’

Figure 1.25: If O’ lies on Op, O lies on O’ ¢, and B lies on both Op and O’¢, then B also divides O and O".

Thus, a formal definition of the direct ODO on the line a can be written down as follows:

(A<'B)y L5 (A€ O'p & BEO'p & B<A)V(A€O p & B=0)V(A€ O p&Be0y)V(A=0&Be¢
OIQ/) V (A € OIQ/ & B € O/Q/ &A= B),

and for the inverse ordering: (A<4B), <= (A€ O &B € O'g&B < A)V(Aec Og&B=0")V(4AcEc
OIQ/&B eO0p)VA=0&BecOp)V(AcOp&BecOp&A<B).

def

Lemma 1.2.13.2. If the displaced ray origin O lies on the ray Op and between O and P’, then the ray Op contains
the ray O’ pr, O'pr C Op.
In particular, ** if a point O' lies between points O, P, the ray Op contains the ray O'p.

Proof. (See Fig. 1.24) O’ € Op = O’ € app, [O0'P] ML2L3 g ¢ aorpr, and therefore O € app & O € agp & O’ €
aop& O € aprp ALL2 apop = ao'pr. A€ O'pr = A € Op, because otherwise A € app& A £ O&A ¢ Op&O €
Op "'221400'] and [A00'| & [00'P') 228" [AO'P'| = A ¢ O'pr. O

Lemma 1.2.13.3. Let the displaced origin O’ be chosen in such a way that O’ lies on the ray Op, and the point O
lies on the ray O’ g/ If a point B lies on both rays Op and O'gr, then it divides O and O'.

Proof. (See Fig. 1.25) 0’ € Op& B € Op& 0 € O' & B € 0y W'23°

= [OBO']. O

-[0'OB] & -[00’ B], whence by T 1.2.2

Lemma 1.2.13.4. An ordering with the displaced origin O’ on a line a coincides with either direct or inverse ordering
on that line (depending on the choice of the displaced rays). In other words, either for all points A, B on a A precedes
B in the ODO iff A precedes B in the direct order; or for all points A, B on a A precedes B in the ODO iff A precedes
B in the inverse order.

Proof. Let O' € Op, 0 € 0y, (A<'1B),. Then [P'0'Q'| & O € O’y “'Z37 [00' P and O’ € Op & [00' P') H'222

O'pr C Op.

PSuppo];e AeOp,BeOp. AcOp&BeOp&Op CcOp=>A€cO0Op&kBecOp. AcOp&Bc
O'p &(A<1B)s = (B<A)y,, = [0O'BAl. B € O'p &0 € 0'q "= [00'B], [00'B]&[0'BA] "=
(B=A4)p, = (A=<1B)a.

Suppose A€ O'p&B=0".AcO0p&B=0&0c0y OBA| = (A<1B),.

Suppose A € O'pr, B€ O'¢gr. A€ Op&(B=0VDB e Oq)= (A<1B),. If B € Op then O’ € Op& O €
O'g&BeOp&Be0 g "'22% [0'BO] and [AO'B] & [0'BO) "2 [ABO] = (A=<1B),. *°

Suppose A, B € 0. (A< 1B)e = (A< B)O,Q/ = [O'AB]. If A € Op and B € Op then by L 1.2.13.3 [0’ BO]
and [0'BO) & [0’ AB] ":22? [ABO] = (A=<1B),. (A€ Op&B=0)V (A€ Op&B € 0u)V(A=0&B € 0g) =
(A<1B),. Now let A € Og, B € Og. Then —[AOBJ; =[OBA], because [OBA] & [BAO'] “:23! [0/BO] 57
~[BOO') = O’ € Op and B € Og & O’ € Op = O’ € Og. Finally, -[AOB] & -~[0BA] "=3? [0AB] = (A<B),. O

L121111[

Lemma 1.2.13.5. Let A, B be two distinct points on a line a, on which some direct or inverse order is defined.
Then either A precedes B in that order, or B precedes A, and if A precedes B, B does not precede A, and vice versa.

Proof. O

For points A, B on a line where some direct or inverse order is defined, we let A<;B PN (A<;B) Vv (A = B),

where ¢ = 1 for the direct order and 7 = 2 for the inverse order.

L12119

44We obtain this result letting P’ = P. Since [00O’P] O’ € Op, the condition O’ € Op becomes redundant for this particular

case

45We take into account that A € O'p/ & B € O' ¢y Lrzita

[AO'B].
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Lemma 1.2.13.6. If a point A precedes a point B on a line a, and B precedes a point C on the same line, then A

precedes C' on a:
A<B&B<C= A<C, where A,B,C € a.

Proof. Follows from the definition of the precedence relation < and L 1.2.12.1. 46 O
Theorem 1.2.14. FEwvery line with a direct or inverse order is a chain with respect to the relation =;.
Proof. See the preceding two lemmas (L 1.2.13.5, L, 1.2.13.6.) O

Theorem 1.2.14. If a point B lies between points A and C, then in any ordering, defined on the line containing
these points, either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if in some order,
defined on the line, containing points A, B,C, A precedes B and B precedes C, or C precedes B and B precedes A,
then B lies between A and C. That is,

[ABC| < (A<B&B<C)V(C<B&B=<A).

Proof. Suppose [ABC]. 47

For A,B,C € Op and A,B,C € Og see L 1.2.12.3.

If A,B € Op, C =0 then [ABO] = (B < A)o, = (A < B),; also B < C in this case from definition of order
on line.

If A,B € Op, C € O then [ABC) & [BOC] "222? [ABO] = (A < B), and B€ Op & C € Og = (B < C),.

For A€ Op, B=0, C € Og see definition of order on line.

For A € Op, B,C € Og we have [AOB] & [ABC] "223? [0BC] = B < C.

If A= 0O and B,C € Oq, we have [OBC] = B < C.
Conversely, suppose A < B and B < C in the given direct order on a.
For A,B,C € Op and A, B,C € Og see L 1.2.12.3.

If A,B€Op,C =0 then (A< B), = (B < A)o, = [ABO].

If A, B € Op, C € Og then [ABO] & [BOC] “:22" [ABC].

For A€ Op, B= 0, C € Og we immediately have [ABC] from L 1.2.11.11.

For A € Op, B,C € Og we have [AOB] & [0BC] ":22"' [ABC].

If A=0 and B,C € Og, we have B < C' = [OBC].
O

48

Corollary 1.2.14.1. Suppose that a finite sequence of points A;, where i € N,,, n > 4, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers,
i.e. that the interval A1 A, is divided into n — 1 intervals A1 Ag, AsAs, ..., An_1A, (by the points Ay, Az, ... Ap_1).
Then in any order (direct or inverse), defined on the line containing these points, we have either A1 < As <
o= Ay 1 =R Ay or Ay < Ao < ... < Ay < Ay, Conversely, if either Ay < Ay < ... < A1 < A, or
Ap < Ap—1 < ... < Ay < Ay, then the points Ay, Aa, ..., Ay, are in order [A1As ... Ay).

Proof. Follows from the two preceding theorems (T 1.2.14, T 1.2.14). O

The following simple corollary may come in handy, for example, in discussing properties of vectors on a line.

Corollary 1.2.14.2. If points A, B both precede a point C' (in some order, direct or inverse, defined on a line a),
they lie on the same side of C.

Proof. We know that A < C& B < C = A # C& B # C. Also, we have =[ACB], for [ACB] would imply that
either A < C < B or B < C < A, which contradicts either B < C or A < C by L 1.2.13.5. Thus, from the definition
of C'4 we see that B € C4, as required. O

By definition, an ordered abstract 4° interval is an ordered pair of points. A pair (A4, B) will be denoted by TB,
where the first point of the pair A is called the beginning, or initial point, of AB , and the second point of the pair B
is called the end, or final point, of the ordered interval AB. A pair (4, A) (i.e. (A4, B) with A = B) will be referred
to as a zero ordered abstract interval. A non-zero ordered abstract interval (4, B), i.e. (4, B), A # B, will also be
referred to as a proper ordered abstract interval, although in most cases we shall leave out the words ”non-zero” and
”proper” whenever this usage is perceived not likely to cause confusion.

46The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote Op, Oq
respectively, the first and the second ray for the given direct order on a. If a point A € {O} UOg precedes a point B € a, then B € Oqg.
If a point A precedes a point B € Op U {O}, then A € Op.

47 Again, we denote Op, Ogq respectively, the first and the second ray for the given order on a. The following trivial observations help
limit the number of cases we have to consider: If A € Op and C € Op U {O} then [ABC] implies B € Op. Similarly, if A € {O} U Oqg
and C € Og then [ABC] implies B € Og. In fact, in the case A € Op, C = O this can be seen immediately using, say, L 1.2.11.3. For
A,C € Op we conclude that B € Op once [ABC] immediately from L 1.2.16.4, which, of course, does not use the present lemma or any
results following from it. Alternatively, this can be shown using proof of L 1.2.12.3 - see footnote accompanying that lemma.

48Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.13.6): If a point A € {O}U Oq
precedes a point B € a, then B € Og. If a point A precedes a point B € Op U {O}, then A € Op.

49 Again, for brevity we shall usually leave out the word ”abstract” whenever there is no danger of confusion.
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A, O A 0O,
Figure 1.26: (OA) is the intersection of rays O4 and Ao, i.e. (OA) = 04N Ao.

O, B 0 A 0,

Figure 1.27: O% is complementary to O4

The concept of a non-zero ordered abstract interval is intimately related to the concept of line order. For the
remainder of this subsection we shall usually assumed that one of the two possible orders (precedence relations) on

—
a is chosen and fixed on some given (in advance) line a. A non-zero ordered (abstract) interval AB lying on a (i.e.
such that A € a, B € a) is said to have positive direction (with respect to the given order on a) iff A precedes B on

a. Similarly, a non-zero ordered interval AB lying on «a is said to have negative direction (with respect to the given
order on a) iff B precedes A on a.

A non-zero (abstract) ordered interval AB is said to have the same direction as a non-zero ordered interval C'D
(lying on the same line a) iff either both AB and CD have positive direction on a or both AB and CD have negative
direction on a. If either AB has positive direction on a and CD negative direction, or AB has negative direction on
a and C’—D> positive direction, we say that the ordered intervals A—B), C’—D> have opposite directions (on a).

Obviously, the relation ”to have the same direction as”, defined on the class of all non-zero ordered intervals lying
on a given line a, is an equivalence.

Consider a collinear set of points A, i.e. a set A C P, of points lying on some line a. We further assume that
one of the two possible orders (precedence relations) on a is chosen. A transformation f : A — A is called sense-
preserving if for any points A, B € A the precedence A < B implies f(A) < f(B). A transformation f: A — A
is called sense-reversing if for any points A, B € A the precedence A < B implies f(B) < f(A4). In other words,
the sense-preserving transformations transform non-zero (abstract) ordered intervals into ordered intervals with the
same direction, and the sense-reversing transformations transform non-zero (abstract) ordered intervals into ordered
intervals with the opposite direction.

Obviously, as we have noted above in different terms, the composition of any two sense-preserving transformations
of a line set A is a sense-preserving transformation, as is the composition of any two sense-reversing transforma-
tions. On the other hand, for line sets the composition of a sense-preserving transformation and a sense-reversing
transformation, taken in any order, is a sense-reversing transformation.

Complementary Rays
Lemma 1.2.15.1. An interval (OA) is the intersection of the rays O4 and Ao, i.e. (OA)=04N Ao.

Proof. (See Fig. 1.26) B € (OA) = [OBA], whence by L 1.2.1.3, A 1.2.1, A 1.2.3 B € apa = axo, B # O, B # A,
—[BOA], and —-[BAO], which means B € O4 and B € Aop.

Suppose now B € O4 N Ap. Hence B € apa, B # O, -[BOA] and B € as0, B # A, -[BAO]. Since O, A, B are
collinear and distinct, by T 1.2.2 [BOA] V [BAO] V [OBA]. But since =[BOA|, =[BAO], we find that [OBA]. O

Given a ray Oy, define the ray 0%, complementary to the ray O4, as O = Py, \ ({0} UO4). In other words,
the ray O%, complementary to the ray O4, is the set of all points lying on the line apa on the opposite side of the
point O from the point A. (See Fig. 1.27) An equivalent definition is provided by

Lemma 1.2.15.2. 0% = {B|[BOA]|}. We can also write O4 = Op for any D such that [DOA].
Proof. See L 1.2.11.6, L. 1.2.11.3. O

Lemma 1.2.15.3. The ray (0%)¢, complementary to the ray O%, complementary to the given ray Oa, coincides
with the ray Oa: (04)° = Oa.

Proof. Pags \ ({0} U (Pags \ ({0} U0O4)) = 0a O

Lemma 1.2.15.4. Given a point C on a ray Oa, the ray O, is a disjoint union of the half - open interval (OC]
and the ray C§, complementary to the ray Co :
04 = (0ClUC§.

Proof. By L'1.2.11.3 Oc = O4. Suppose M € OcUC§. By A1.2.3,L1.21.3,A1.2.1 [OMC]VM =CV[OCM] =
ﬁ[MOC]&M#O&ME apoc = M € Oy = O¢.
T1.2.2

Conversely, if M € O4 = Oc and M # Cthen M € apc & M # C& M # O & -[MOC] =" [OMC|V[OCM] =
Me(OC)VMeC§. O
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Al AZ A3 An-2 A An (A 1 )An

n-1

Figure 1.28: Aj4, is a disjoint union of (4;A4;41],4=1,2,...,n — 1, with Al A, -

Lemma 1.2.15.5. Given on a line apa a point B, distinct from O, the point B lies either on O or on OY.

Theorem 1.2.15. Let a finite sequence of points Ay, As, ..., A, n € N, be numbered in such a way that, except for
the first and (in the finite case) the last, every point lies between the two points with adjacent (in N) numbers. (See
Fig. 1.12) Then the ray Aya, is a disjoint union of half-closed intervals (A;A;+1], i = 1,2,...,n — 1, with the ray
A5, 4., complementary to the ray Aya,, where k € {1,2,...,n— 1}, i.e.

n—1
Ara, = U (AiAia] UA7

=1

Proof. (See Fig. 1.28) Observe that [4;1 AxA,] L1.215.5 Ana, = Ana,, thenuse L 1.2.7.7, L 1.2.154. O

Point Sets on Rays

Given a point O on a line a, a nonempty point set B C P, is said to lie on line a on the same side (on the opposite
side) of the point O as (from) a nonempty set A C P, iff for all A € A and all B € B the point B lies on the same
side (on the opposite side) of the point O as (from) the point A € A. If the set A (the set B) consists of a single
element, we say that the set B (the point B) lies on line a on the same side of the point O as the point A (the set

A).

Lemma 1.2.16.1. If a set B C P, lies on line a on the same side of the point O as a set A C P,, then the set A
lies on line a on the same side of the point O as the set B.

Proof. See L 1.2.11.5. O

Lemma 1.2.16.2. If a set B C P, lies on line a on the same side of the point O as a set A C P,, and a set C C P,
lies on line a on the same side of the point O as the set B, then the set C lies on line a on the same side of the point

O as the set A.
Proof. See L 1.2.11.5. O

Lemma 1.2.16.3. If a set B C P, lies on line a on the opposite side of the point O from a set A C P,, then the set
A lies on line a on the opposite side of the point O from the set B.

Proof. See L 1.2.11.6. O

In view of symmetry of the relations, established by the lemmas above, if a set B C P, lies on line a on the same
side (on the opposite side) of the point O as a set (from a set) A C P,, we say that the sets A and B lie on line a
on one side (on opposite sides) of the point O.

Lemma 1.2.16.4. If two distinct points A, B lie on a ray O¢, the open interval (AB) also lies on the ray Oc.
Proof. By L 1.2.11.8 [OAB] V [OBA], whence by T 1.2.15 (AB) C O4 = O¢. O

Given an interval AB on a line apc such that the open interval (AB) does not contain O, we have (L 1.2.16.5 -
L 1.2.16.7):

Lemma 1.2.16.5. If one of the ends of (AB) is on the ray Oc, the other end is either on O¢ or coincides with O.

Proof. Let, say, B € Oc. By L 1.2.11.3 Op = O¢. Assuming the contrary to the statement of the lemma, we have
A€ 0% = [AOB] = O € (AB), which contradicts the hypothesis. O

Lemma 1.2.16.6. If (AB) has common points with the ray Oc, either both ends of (AB) lie on O¢, or one of them
coincides with O.

Proof. By hypothesis IM M € (AB)NO¢. M € O¢ L12.113 Opn = O¢. Assume the contrary to the statement of

the lemma and let, say, A € O5;. Then [AOM] & [AM B| bl2g2 [AOB] = O € (AB) - a contradiction. O

Lemma 1.2.16.7. If (AB) has common points with the ray Oc, the interval (AB) lies on O¢, (AB) C O¢.
Proof. Use L 1.2.16.6 and L 1.2.15.4 or L 1.2.16.4. O
Lemma 1.2.16.8. If A and B lie on one ray Oc, the complementary rays Af and Bg lie on line apc on one side

of the point O.
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Lemma 1.2.16.9. If an open interval (CD) is included in an open interval (AB), neither of the ends of (AB) lies
on (CD).

Proof. A ¢ (CD), B ¢ (CD), for otherwise (A € (CD)V B € (CD))& (CD) C (AB) = A € (AB)V B € (AB),
which is absurd as it contradicts A 1.2.1. O

Lemma 1.2.16.10. If an open interval (CD) is included in an open interval (AB), the closed interval [CD] is
included in the closed interval [AB]. 5°

L1.2.15.1
=

Proof. By T 1.2.1 3E [CED]. E € (CD)& (CD) C (AB) E € (CD)N(AgNBy). A¢ (CD)&B ¢
L1.2.16.6

(CDY&E € ApN(CD)&E € BAaN(CD) "= C € ApU{A}&C € B4 U{B}&D € ApU{A}&D €
BaU{B}= C e (ApNBa)U{A}U{B}& D € (Ag N Ba) U{A} U{B} "'Z2" C € [AB]& D € [AB]. O
Corollary 1.2.16.11. For intervals AB, CD both inclusions (AB) C (CD), (CD) C (AB) (i.e., the equality
(AB) = (CD)) holds iff the (abstract) intervals AB, CD are identical.
Proof. #1. (CD) c (AB) *"228'% (CD] c [AB] = C € [AB] & D € [AB)]. On the other hand, (AB) C (CD) *'22°°
O ¢ (AB)& D ¢ (AB).

#2. (AB) C (CD)& (CD) c (AB) "'288'° [AB] c [CD]&[CD] C [AB]. (AB) = (CD)&[AB] = [CD] =
{A,B} = [AB]\ (AB) = [CD]\ (CD) ={C,D}. O

Lemma 1.2.16.12. Both ends of an interval CD lie on a closed interval [AB] iff the open interval (CD) is included
in the open interval (AB).

Proof. Follows immediately from L 1.2.3.5, L 1.2.16.10. O

We can put some of the results above (as well as some of the results we encounter in their particular cases below)
into a broader context as follows.
A point set A is called convex if A € A& B € A implies (AB) C A for all points A, BA.

Theorem 1.2.16. Consider a ray Oa, a point B € O4, and a convex set A of points of the line apa. If B € A but
O¢Athen AC Oy. 5t

Proof. Suppose that there exists C € O4 N.A. Then O € A in view of convexity, contrary to hypothesis. Since
ACP,and O5NA=10, 0 ¢ A, we conclude that A C O4. O

Basic Properties of Half-Planes

We say that a point B lies in a plane a on the same side (on the opposite (other) side) of a line a as the point A
(from the point A) iff:

- Both A and B lie in plane «;

- a lies in plane a and does not contain A, B;

- a meets (does not meet) the interval AB;

and write this as (ABa),((AaB)a).

Thus, we let, by definition

(ABa)o <5 A¢ a& B¢ a& -3C (C € a& [ACB])& A € a& B € a; and

(AaB)o €5 A¢ a& B¢ a& 3C (C € a& [ACB) & A€ a& B € a.

Lemma 1.2.17.1. The relation "to lie in plane a on the same side of a line a as”, i.e. the relation p C Py \ Pa X
def

Po \ P, defined by (A, B) € p < ABa, is an equivalence on Py \ P
Proof. By A 1.2.1 AAa and ABa = BAa. To prove ABa & BCa = ACa assume the contrary, i.e. that ABa, BCa
and AaC. Obviously, AaC implies that 3D D € a & [ADC]. Consider two cases:

T1.2.5

If 3 (A € b&B € b&C € b), by T 1.2.2 [ABC] vV [BAC] V [ACB]. But [ABC]& [ADC|& D # B =%

[ADB] Vv [BDC), [BAC] & [ADC] “22¥? [BDC), [ACB] & [ADC] “:22 [ADB], which contradicts ABa & BCa.

If -3b (A € b& B € b&C € b) (see Fig. 1.29), then A ¢ a& B ¢ a&C ¢ a&a C o = aspc&3ID (D €

a& [ADC)) "E2" 3E (E € a& [AEB]) v 3F (F € a& [BFC]), which contradicts ABa & BCa.

O

A half-plane (a4)q is, by definition, the set of points lying in plane & on the same side of the line a as the point
B, i.e. as = {B|ABa}.”? The line a is called the edge of the half-plane a4. The edge a of a half-plane x will also
sometimes be denoted by Ox.

501n particular, if an open interval (CD) is included in the open interval (AB), the points C, D both lie on the segment [AB].

51 Alternatively, this theorem can be formulated as follows: Consider a ray O 4, a point B € O 4, and a convex set A. (This time we do
not assume that the set A lies on ap 4 or on any other line or even plane.) If B € A but O ¢ A then ANapa CO4.

52We shall usually assume the plane (denoted here ) to be fixed and omit the mention of it from our notation
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Figure 1.29: If A, B and B, C lie on one side of a, so do A4, C.

Lemma 1.2.17.2. The relation “to lie in plane o on the opposite side of the line a from” is symmetric.
Proof. Follows from A 1.2.1. O

In view of symmetry of the corresponding relations, if a point B lies in plane a on the same side of a line a as
(on the opposite side of a line a from) a point A, we can also say that the points A and B lie in plane « on one side
(on opposite (different) sides) of the line a.

Lemma 1.2.17.3. A point A lies in the half-plane a 4.
Lemma 1.2.17.4. If a point B lies in a half-plane ay, then the point A lies in the half-plane ap.

Lemma 1.2.17.5. Suppose a point B lies in a half-plane a4, and a point C in the half-plane ag. Then the point C
lies in the half-plane a 4.

Lemma 1.2.17.6. If a point B lies on a half-plane a4 then ag = aa.

Proof. To show ap C aa note that C € ap& B € ayx CLZLTS o € ay. Since B € agy CLZiTA 4 € ap, we have

C1.2.17.5
Cecas&kAcap = "(Ccap and thus ay Cag. O

Lemma 1.2.17.7. If half-planes aa and ap have common points, they are equal.

L1.2.17.6
— a

Proof. aaNagp #0=3CCecan&C cap A=ac =apg. O

Lemma 1.2.17.8. Let A, B be two points in plane o not lying on the line a C a. Then the points A and B lie either
on one side or on opposite sides of the line a.

Proof. Follows immediately from the definitions of "to lie on one side” and ”to lie on opposite side”. O

Lemma 1.2.17.9. If points A and B lie on opposite sides of a line a, and B and C lie on opposite sides of the line
a, then A and C lie on the same side of a.

Proof. (See Fig. 1.30.) AaB& BaC = 3D (D € a& [ADB)) & 3E (E € a& [BEC]) 22° -3F (F € a & [AFC)) =
ACa. ®® O

Lemma 1.2.17.10. If a point A lies in plane « on the same side of the line a as a point C and on the opposite side
of a from a point B, the points B and C' lie on opposite sides of the line a.

Proof. Points B, C cannot lie on the same side of a, because otherwise ACa & BCa = ABa - a contradiction. Then
BaC by L 1.2.17.8. O

Lemma 1.2.17.11. Let points A and B lie in plane o on opposite sides of the line a, and points C and D - on the
half planes aa and ap, respectively. Then the points C and D lie on opposite sides of a.

Proof. ACa & AaB & BDa M2 cap. o

Theorem 1.2.17. Proof. O

53Observe that since A ¢ a, the conditions of the theorem T 1.2.6 are met whether the points A, B, C' are collinear or not.
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B

Figure 1.30: If A and B, as well as B and C, lie on opposite sides of a, A and C' lie on the same side of a.

Point Sets on Half-Planes

Given a line a on a plane «, a nonempty point set B C P, is said to lie in plane «a on the same side (on the opposite
side) of the line a as (from) a nonempty set A C P,, written (ABa), or simply ABa ((AaB), or simply Aab) iff for
all A € A and all B € B the point B lies on the same side (on the opposite side) of the line a as (from) the point
A € A. If the set A (the set B) consists of a single element (i.e., only one point), we say that the set B (the point B)
lies in plane a on the same side of the line a as the point A (the set A).

If all elements of a point set A lie in some plane a on one side of a line a, it is legal to write a4 to denote the
side of a that contains all points of A.

Lemma 1.2.18.1. If a set B C P, lies in plane « on the same side of the line a as a set A C P,, then the set A
lies in plane o on the same side of the line a as the set B.

Proof. See L 1.2.17.1. O

Lemma 1.2.18.2. If a set B C P, lies in plane o on the same side of the line a as a set A C P,, and a set C C P,
lies in plane a on the same side of the line a as the set B, then the set C lies in plane « on the same side of the line
a as the set A.

Proof. See L 1.2.17.1. O

Lemma 1.2.18.3. If a set B C P, lies in plane « on the opposite side of the line a from a set A C P,, then the set
A lies in plane « on the opposite side of the line a from the set B.

Proof. See L 1.2.17.2. O

The lemmas L 1.2.17.9 — L 1.2.17.11 can be generalized in the following way:

Lemma 1.2.18.4. If point sets A and B lie on opposite sides of a line a, and the sets B and C lie on opposite sides
of the line a, then A and C lie on the same side of a.

Lemma 1.2.18.5. If a point set A lies in plane o on the same side of the line a as a point set C and on the opposite
side of a from the point set B, the point sets B and C lie on opposite sides of the line a.

Proof. O

Lemma 1.2.18.6. Let point sets A and B lie in plane o on opposite sides of the line a, and point sets C and D -
on the same side of a as A and B, respectively. Then C and D lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set B C P, lies in plane o on the
same side (on the opposite side) of the line a as a set (from a set) A C P,, we say that the sets A and B lie in plane
« on one side (on opposite sides) of the line a.

Theorem 1.2.18. Proof. O

29



e
(o

a) ' b) N\

Dy

Figure 1.31: A line b parallel to a and having common points with a4, lies in a 4.
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Figure 1.32: Given a ray Op with a point C' on aq4, not meeting a line a, if O lies in a4, so does Op.

Complementary Half-Planes

Given a half-plane a4 in plane «, we define the half-plane ¢, complementary to the half-plane a4, as Po \ (PaUaa).
An alternative definition of complementary half-plane is provided by the following

Lemma 1.2.19.1. Given a half-plane aa, the complementary half-plane a5 is the set of points B such that the open
interval (AB) meets the line a: a$ = {30 O € a& [OAB]}. Thus, a point C lying in « outside a lies either on aa
or on a$.

Proof. B € Pa\ (PaUays) "EX® 4B < 30 O € a& [AOB]. O

Lemma 1.2.19.2. The half-plane (a$)¢, complementary to the half-plane a$, complementary to the half-plane aa,
coincides with the half-plane a itself.

Proof. In fact, we have aq = P \ (Po U (Pa \ (PaUaa))) = (a%)°. O

Lemma 1.2.19.3. A line b that is parallel to a line a and has common points with a half-plane a4, lies (completely)
M agy.

Proof. (See Fig. 1.31,a).) B€as = B € aga. aCa&kaCaa& Bea&BEag ALL2 o — aqa. By hypothesis,

bNa = (. To prove that b N a4 = 0 suppose that 3D D € bN a4 (see Fig. 1.31, b).). Then ABa & AaD L1217.10

3C C € a & [BCD] M249 30 ¢ € anapp = b - a contradiction. Thus, we have shown that b C Po\(PaUa%) = aa.

O

Given a ray Op, having a point C' on plane a,4 and not meeting a line a

Lemma 1.2.19.4. — If the origin O lies in half-plane a4 °*, so does the whole ray Op.

Proof. (See Fig. 1.32.) O € aga Naop & C € aga N Op ALLS aoB C agqa. By hypothesis, Og Na = (. To prove

OpNa =0, suppose IF F € OgNa. Then O € ap & F € a4 = IE E € a& [OEF) "' 28" 3E EcanOp - a

contradiction. Thus, Op C Py \ (PoUaG) = aa. O

54Perhaps, it would be more natural to assume that the ray Op lies in plane ag4, but we choose here to formulate weaker, albeit
clumsier, conditions.
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a) O b) 0,

Figure 1.33: Given a ray Op, not meeting a line a, and containing a point C' € a4 4, if Op and a4 share a point D,
distinct from C, then: a) O lies in a4 or on a; b) Op lies in ay4.

a,

E a
F
B

Figure 1.34: Given an open interval (DB), not meeting a line a and having a point C' on plane o4, if one of the
ends of (DB) lies in a4, (DB) lies in a4 and its other end lies either on a4 or on a.

Lemma 1.2.19.5. - If the ray Op and the half-plane a4 have a common point D, distinct from C 5°, then:
a) The initial point O of Op lies either in half-plane aa or on (its edge) line a;
b) The whole ray Op lies in half-plane a 4.

Proof. a) (See Fig. 1.33, a).) D € asa NOp&C € a4 NOp LLlls8 Op C aga. To prove O ¢ a5 suppose

O €a. Then D € aa& O € a43E E € a&[OED)] M2ZUY 3R B € anOp - a contradiction. We see that
O €ePy\asy =asUP,.
b) (See Fig. 1.33, b).)By hypothesis, aNOp = 0. If 3F F € OgNa%, we would have D € as & F € 0§, = JE E €

a& [DEF] M24 30 B e anOp - a contradiction. Therefore, Op C Pq \ (PaUa%) =aa. O

Given an open interval (DB) having a point C on plane a,4 and not meeting a line a

Lemma 1.2.19.6. - If one of the ends of (DB) lies in half-plane aa, the open interval (DB) completely lies in
half-plane a4 and its other end lies either on aa or on line a.

Proof. (See Fig. 1.34.) D € aaa&C € aqza N (DB) PL29:3 app C Qga = (DB) C aga. If B € a5 then

Deas&Beay=3FEFE €a&[DEB] - a contradiction. By hypothesis, (DB) Na = . To prove (DB)Na§ =0,

suppose F € (DB)NaS. Then D € ax& F € o43E E € a&[DEF). But [DEF]& |[DFB] "2%? [DEB] -
contradiction. O

Lemma 1.2.19.7. - If the open interval (DB) and the half-plane aa have at least one common point G, distinct
from C, then the open interval (DB) lies completely in as, and either both its ends lie in aa, or one of them lies in
a, and the other on line a.

cannot lie on a, because otherwise by A 1.1.2, L1213 D €a& B€a= (BD)Ca= (BD)Naa=0. Let D ¢ a.

To prove D ¢ af, suppose D € a. Then D € a4 & (BD)Na=0&C € agan (BD) "'22° (DB) c 04 = G € a, -
L

a contradiction. Therefore, D € a4. Finally, D € a4 & (DB)Na=0&C € aga N (DB) 12190 (BD) Cau. O

Proof. By L 1.1.1.8 G € cvqa N (DB)&C € aga N (DB)app ' 23°C aga = (DB) C aqa. Both ends of (DB)
(
1

Lemma 1.2.19.8. A ray Op having its initial point O on a line a and one of its points C' on a half-plane a4, lies
completely in aa, and its complementary ray O% lies completely in the complementary half-plane a$.

In particular, given a line a and points O € a and A ¢ a, we always have O C aa, O C a§. We can thus write

a$ = aos, -

55 -
29gee previous footnote
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Cc

aA
(O}

Figure 1.35: A ray Op with its initial point O on a and one of its points C on a4, lies in a4, and O% lies in a$.

Proof. (See Fig. 1.35.) O € a C aga & C € as C aga ALLSG aoc C aga. OgpNa =0, because if IE E € Og & E € a,

we would have O € apgNa& O € appNa ALL2 app = C € a - a contradiction. Og C app = apc C aaa & C €

OpNas&OpnNa=10 L12.19.5 Op C aa. By A 1.2.1 3F [BOF]. Since F' € O% Na$, by preceding argumentation

we conclude that O C a§. O

Lemma 1.2.19.9. If one end of an open interval (DB) lies in half - plane aa, and the other end lies either in a
or on line a, the open interval (DB) lies completely in aa.
Proof. D € as& B € aa PL293 (DB) C aga. Let B € ay. If D € as we note that by L 1.2.11.13 (DB) C Dp and

use L 1.2.19.8 . Let now D € as. Then (DB)Na =0, because B € ax & E € (DB)Na = D € a5 - a contradiction.
L1.2.19.5

Finally, B€ as & (DB) C aqa & (DB)Na=0 =" (DB) Cax. O
Lemma 1.2.19.10. Ewvery half-plane contains an infinite number of points. Furthermore, every half-plane contains
an infinite number of rays.

Proof. O
Lemma 1.2.19.11. There is exactly one plane containing a given half-plane.

Proof. O

The plane, containing a given half-plane a 4 is, of course, the plane ag4.
For convenience, (especially when talking about dihedral angles - see p. 87), we shall often denote the plane
containing a half-plane x by ¥.%6.

Lemma 1.2.19.12. Equal half-planes have equal edges.

Proof. Suppose as = bg and X € a. Then also a4 = app, °7 and we have X € app& X ¢ bp = X € bV X € b%.

Suppose X € b%. Then, taking a point P € bg, we would have P € bp & X € b = IM [PMX]& M € b. On the

other hand, X € a& P € bg = as & [PMX] L2199 hp o bp, which contradicts M € b. This contradiction shows

that, in fact, X ¢ b%, and thus X € b. Since we have shown that any point of the line a also lies on the line b, these
lines are equal, q.e.d. O

Lemma 1.2.19.13. 1. If a plane o and the edge a of a half-plane x concur at a point O, the plane o and the
half-plane x have a common ray h with the origin O, and this ray contains all common points of o and x.

If a plane « and a half-plane x have a common ray h (and then, of course, they have no other common points),
we shall refer to the ray h as the section of the half-plane x by the plane a.

58

2. Conversely, if a ray h is the section of a half-plane x by a plane «, then the plane « and the edge a of the
half-plane x concur at a single point - the origin O of the ray h.

56Cf. the corresponding notation for rays on p. 18

57See the preceding lemma, L 1.2.19.11. ~

58Observe that, obviously, if h is the section of x by «, then the line h lies in plane ¥ (see A 1.1.6). Furthermore, we have then
h=xNa.
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Proof. 1. Since the planes «, ¥ have a common point O, they have another common point A. Without loss of
generality we can assume A € y. % Then by L 1.2.19.8 we have O4 C x Na, 04 C Xx° N «, which implies that
Oa=xNa.

2. Wehaveh:xﬂa:thLlélgb(’?heXUB)(. But O =0h ¢ h&h C x = O ¢ x. Hence, O € a = Ox.
Since, using L 1.2.19.8, we have h® C x¢, together with x°Na = (), this gives h° Na = (). Hence, we have O = a N a.
O

Corollary 1.2.19.14. If a ray h is the section of a half-plane x by a plane «, then the complementary ray h¢ is the
section of the complementary half-plane x¢ by «.

Proof. O

Lemma 1.2.19.15. Given three distinct points A, O, B on one line b, such that the point O lies on a line a, if A,
B lie on one side (on opposite sides) of a, they also lie (on b) on one side (on opposite sides) of the point O.

Proof. Follows from L 1.2.19.8. 61 O

Given a strip ab (i.e. a pair of parallel lines a, b), we define its interior, written Int ab, as the set of points lying
on the same side of the line a as the line b and on the same side of the line b as the line a. 52 Equivalently, we could
take some points A on a and B on b and define Int ab as the intersection ag Nb4.

Lemma 1.2.19.16. If A€ a, B€b, and a || b then (AB) C Int ab. Furthermore, (AB) = P,,, N Int ab.
Proof. Obviously, (AB) C Pg,, NInt ab (see L 1.2.1.3, L 1.2.19.9. On the other hand, C' € asp L22o=Ave =
BV [ABC]V [ABC] Vv [CAB]. From the definition of the interior of the strip ab it is evident that C' € Int ab

contradicts all of these options except [ABC|, which means that P, ,, N Int ab C (AB) .
O

Given a line a with one of the two possible orders (direct or inverse) defined on it, we shall say that the choice of
the order defines one of the two possible directions on a. We shall sometimes refer to a line a with direction on it as
an oriented or directed line. Thus, an oriented line is the pair consisting of a line and an order defined on it.

Two parallel oriented lines a, b are said to have the same sense (or, loosely speaking, the same direction) iff the
following requirements hold for arbitrary points A,O,B € aand A’,O’, B’ € b: If A < O on a and A’ < O’ on b then
points A, A’ lie on the same side of the line apo:; if O < B on a and O’ < B’ on b then points B, B’ lie on the same
side of the line apor.

To formulate a simple criteria for deciding whether two given parallel lines have the same sense, we are going to
need the following simple lemmas.

Lemma 1.2.19.17. Given two parallel lines a, b and points A,C € a, B,D € b, all points common to the open
interval (AB) and the line acp (if there are any) lie on the open interval (CD).

Proof. Suppose X € (AB) Nacp. By the preceding lemma we have X € Int ab. Since the points C, X, D are
obviously distinct, from T 1.2.2 we see that either [XCD], or [CX D], or [CDX]. But [XCD] would imply that the
points X and D € b lie on opposite sides of the line a, which contradicts X € Intab. Similarly, we conclude that
=[CDX]. 5 Hence [CX D], as required. O

Lemma 1.2.19.18. Given two parallel lines a, b and points A,C € a, B, D € b, if points A, B lie on the same side
of the line acp, then the points C', D lie on the same side of the line aap.

Proof. Suppose the contrary, i.e. that the points C, D do not lie on the same side of the line a4p. Since, evidently,
C ¢ aap, D ¢ aap,5* this implies that C, D lie on opposite sides of a4p. Hence 3X(X € (CD) Naap). From the
preceding lemma (L 1.2.19.17) we then have X € (CD) N (AB), which means that A, B lie on opposite sides of acp
- a contradiction. This contradiction shows that in reality the points C, D do lie on the same side of the line a4p. O

Lemma 1.2.19.19. Suppose that for oriented lines a, b and points A,O € a, A’,0’ € b wave: a || b; A < O on a,
A’ <O on b, and the points A, A’ lic on the same side of the line apor. Then the oriented lines a, b have the same
direction.

591n fact, since @ and a concur at O, the point A # O cannot lie on a. Hence A € Y& A ¢ a LLZAT8 4 ¢ x VA € x°. In the second

case (when A € x¢) we can use A 1.2.2 to choose a point B such that [AOB]. Then, obviously, B € x, so we just need to rename A < B.
60Observe that, using T 1.1.5, we can write apa = XNa. In view of Py = xUP, Ux®, O4 C xNa, 0§ C x°Na, this gives O4 = xNa.
611n fact, since B € apa = b, we have either B € O4 or B € 0¢. L 1.2.19.8 then implies that in the first case B € a4, while in the

second B € a%. Hence the result. Indeed, suppose BAa, i.e. B € as. Then B € Oy, for B € O would imply a%. Similarly, BaA

implies B € OF.
62Evidently, since the lines a, b are parallel, all points of b lie on the same side of a, and all points of a lie on the same side of b.
63This is immediately apparent from symmetry upon the substitution A < B, C' < D, a < b, which does not alter the conditions of
the theorem.
64Note that the lines a, asp are distinct (B ¢ a) and thus have only one common point, namely, A. Consequently, the inclusion

C €anNapp would imply C = A. But this contradicts the assumption that A, B lie on the same side of acp, which presupposes that

the point A lies outside acp.
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Proof. % Consider arbitrary points C, D € a, C’, D' € b with the conditions that C' < D on @ and C’ < D’ on b. We
need to show that the points D, D’ lie on the same side of the line accr.

Suppose first that C' < O, C’ < O’. Since also A < O, A’ < O, and A, A’ lie on the same side of apo: (by
hypothesis), % we see that CC’apor. Hence OO'acc: from the preceding lemma (L 1.2.19.18). Since also C' < D,
C’ < D', using again the observation just made, we have DD’acc:.

Suppose now C’ = O'. Without loss of generality we can assume that [ACO]. 57 AA’apor = OO'asa/. Since
0O0'asa and C, O lie on the same side of A, we see that C, C' = O’ lie on the same side of a4 4/, whence (again
using the preceding lemma (L 1.2.19.18)) AA’accr. As, evidently, [ACD] and [A’C'D’], we find that DD’accr, as

required.

Finally, suppose O’ < C’. Again, without loss of generality we can assume that [ACO]. Since A’ < O’ < C’ Tl

[A'O'C"], 8 we see that C, C” lie on the same side of a4/, and, consequently, AA’accs (L 1.2.19.18). Finally, from
A<C <D, A <C" < D' using the observation made above we see that DD’acc, as required. O

Lemma 1.2.19.20. Suppose that a line b is parallel to lines a, ¢ and has a point B € b inside the strip ac. Then
the line b lies completely inside ac.

Proof. O

Corollary 1.2.19.21. Suppose that a line b is parallel to lines a, ¢ and has a point B € b lying on an open interval
(AC), where A € a, C € c. Then the line b lies completely inside ac.

Proof. See L 1.2.19.16, L 1.2.19.20. O

Lemma 1.2.19.22. If a line b lies completely in a half-plane a4, then the lines a, b are parallel.
Lemma 1.2.19.23. If lines a, b lie on the same side of a line c, they are both parallel to the line c.

Lemma 1.2.19.24. If lines a, b lie on the opposite sides of a line c, they are parallel to each other and are both
parallel to the line c.

Lemma 1.2.19.25. If lines a, b lie on opposite sides of a line c, then the lines b, c lie on the same side of the line
69
a.

Proof. Since a, b lie on opposite sides of ¢, taking points A € a, B € b, we can find a point C € ¢ such that [ACB].
The rest is obvious (see, for example, L 1.2.19.9). O

Lemma 1.2.19.26. Consider lines a, b, ¢ such that ¢ || a and c || b. If the line ¢ meets at least one open interval
(AoBy), where Ay € a, By € b, then it meets any open interval (AB) such that A € a, B € b.

Proof. Denote Cy = (AgByp) N c. Taking arbitrary points A € a, B € b we are going to show that 3C € ¢ such that
C € (AB) Ne. Since [AgCoBo] and ¢ || a, ¢ || b, the lines a, b, ¢ coplane in view of C 1.2.1.10. Therefore, the line ¢
lies in the plane a4, 5,4 determined by the points Ag, By, A, as well as in the plane ap, a5 determined by the points
By, A, B. Furthermore, ¢ || a, ¢ || b implies that Ag ¢ ¢, By ¢ ¢, A ¢ ¢, B ¢ c. Thus, the conditions of A 1.2.4 are
met, and applying it twice, we first find that 3C”" € (BAy) N¢) and then that 3C' € (AB) N ¢, as required.

O

As before, we can generalize some of our previous considerations using the concept of a convex set.

Lemma 1.2.19.27. Consider a half-plane a4, a point B € aa, and a convex set A of points of the plane cga. If
Be Abut ANP, =0 then ACay. ™

Proof. Suppose that there exists C' € a§ N.A. Then 3D (D € ANP,) in view of convexity, contrary to hypothesis.
Since A C P, and a4 NA =0, P, N A =0, we conclude that A C as. O

65In this, as well as many other proofs, we leave it to the reader to supply references to some well-known facts such as L 1.2.11.13,
T 1.2.14, etc.

66We make use of the following fact, which will be used (for different points and lines) again and again in this proof: C' < O, ¢’ < O,
A =<0, A <O and A, A’ lie on the same side of apps, then C, C’ lie on the same side of agps. This, in turn, stems from the fact
that once the points A, A’ lie on the same side of apo/, the complete rays O, O’ 4/ (of course, including the points C, C’, respectively)
lie on the same side of app.

67We take into account that every point of the ray O4 lies on the same side of ap -

68We take into account that the points O, C lie on the line a on the same side of A and the points O’, C’ lie on the line b on the same
side of A’.

69 And, of course, the lines a, ¢ lie on opposite sides of the line b.

70 Alternatively, this theorem can be formulated as follows: Consider a half-plane a4, a point B € a4, and a convex set A. (This time
we do not assume that the set A lies completely on a,4 or on any other plane.) If B € A but ANP, =0 then ANagza Caa.
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Theorem 1.2.19. Given a line a, let A be either

- A set {B1}, consisting of one single point By lying on a half - plane aa; or

- A line by, parallel to a and having a point By on ayu; or

- A ray (O1)p, having a point C1 on aga and not meeting the line a, such that the initial point O or one of its
points Dy distinct from Cy lies on aa; or

an open interval (D1B1) having a point C1 on plane aga, and not meeting a line a, such that one of its ends lies
n aa, or one of its points, Gy # C1, lies in aa; or

A ray (01)p, with its initial point O1 on a and one of its points, Cy, in as; or

An interval - like set with both its ends D1, By in ap, or with one end in aa and the other on a;

and let B be either

— A line ba, parallel to a and having a point Bs on aa; or

— A ray (O2)B, having a point Cy on aga and not meeting the line a, such that the initial point O or one of its
points Do distinct from Cy lies on aa; or

— An open interval (D3 Bs) having a point Cy on plane aqa, and not meeting a line a, such that one of its ends
lies in aa, or one of its points, Go # Cs, lies in aa; or

— A ray (O2)p, with its initial point Oz on a and one of its points, Ca, in ax; or

— An interval - like set with both its ends Do, By in a, or with one end in as and the other on a.

Then the sets A and B lie in plane ag,a on one side of the line a.

Proof. O

Theorem 1.2.20. Given a line a, let A be either

— A set {B1}, consisting of one single point By lying on a half - plane a4; or

— A line by, parallel to a and having a point By on aa; or

— A ray (O1)B, having a point C1 on aga and not meeting the line a, such that the initial point O or one of its
points Dy distinct from Cy lies on a4; or

— An open interval (D1B1) having a point Cy on plane aga, and not meeting a line a, such that one of its ends
lies in aa, or one of its points, Gy # C1, lies in aa; or

— A ray (O1)p, with its initial point Oy on a and one of its points, C1, in ax; or

— An interval - like set with both its ends D1, By in aa, or with one end in aa and the other on a;

and let B be either

— A line b, parallel to a and having a point By on a$; or

— A ray (O2)B, having a point Cy on aga and not meeting the line a, such that the initial point O or one of its
points Do distinct from Cy lies on a$; or

— An open interval (DaBs) having a point Cy on plane cga, and not meeting a line a, such that one of its ends
lies in a, or one of its points, G # C3, lies in a%; or

- A ray (O2), with its initial point Oz on a and one of its points, Ca, in a5 ; or

— An interval - like set with both its ends Dy, By in a, or with one end in a$ and the other on a.

Then the sets A and B lie in plane aga on opposite sides of the line a.

Proof. O

A non-ordered couple of distinct non-complementary rays h = O4 and k = Op, k # h°, with common initial
point O is called an angle Z(h, k)o, written also as ZAOB. The point O is called the vertex,” or origin, of the angle,
and the rays h, k (or O4, Op, depending on the notation chosen) its sides. Our definition implies Z(h, k) = Z(k, h)
and ZAOB = ZBOA.

Basic Properties of Angles

Lemma 1.2.21.1. If points C, D lie respectively on the sides h = Oa and k = Op of the angle Z(h, k) then
ZCOD = Z(h, k).

Proof. (See Fig. 1.36.) Immediately follows from L 1.2.11.3. O

Lemma 1.2.21.2. Given an angle ZAOB, we have B ¢ apa, A ¢ aop, and the points A, O, B are not collinear.
72

Proof. Otherwise, we would have B € apa & B # O L2155 p o O4V B € 0% 112113 Op = 04V Op = 09,
contrary to hypothesis that O4, Op form an angle. We conclude that B ¢ apa, whence by C 1.1.2.3 =3b (A4 €
b& O € b& Beb) and A ¢ app. O

"1In practice the letter used to denote the vertex of an angle is usually omitted from its ray-pair notation, so we can write simply
Z(h, k)
72Thus, the angle ZAOB exists if and only if the points A, O, B do not colline. A 1.1.3 shows that there exists at least one angle.
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Figure 1.37: If C lies inside ZAOB, O¢ lies inside ZAOB: O¢ C IntZAOB.

The set of points, or contour, of the angle Z(h, k)o, is, by definition, the set P, 1) = hU{O} U k. We say that
a point lies on an angle if it lies on one of its sides or coincides with its vertex. In other words, C lies on Z(h, k) if it
belongs to the set of its points (its contour): C' € P (s 1)-

Lemma 1.2.21.3. For any angle Z(h,k), h = O4, k = Op, there is one and only one plane, containing the angle
Z(h, k), i.e. which contains the set P (k). 1t is called the plane of the angle Z(h, k) and denoted aysinky- Thus, we
have Ps(h k) C Qz(hk) = XAOB-

Proof. ByL1.2.21.2-3b (A€ b& O € b& B € b). Hence by A 1.1.4 Jaaop (A € aaop) & O € aaop & B € as0p.™

(A€ asop)& O € aaop& B € ason ALLG apa C agop&aop C aaor. We thus have P,a0 C aaop. Since
any other plane, containing the angle ZAOB (i.e., containing P, a05), would contain the three non-collinear points
A, O, B, by 1.1.5 there can be only one such plane. O

We say that a point X lies inside an angle Z(h, k) if it lies 7 on the same side of the line A as any of the points
of the ray k, and on the same side of the line k as any of the points of the ray h. 7

The set of all points lying inside an angle Z(h, k) will be referred to as its interior Int/(h,k) = {X|Xkh& Xhk}.
We can also write IntZAOB = (apa)p N (aoB)a-

If a point X lies in plane of an angle Z(h, k) neither inside nor on the angle, we shall say that X lies outside the
angle Z(h, k).

The set of all points lying outside a given angle Z(h, k) will be referred to as the exterior of the angle Z(h, k),
written Ext/(h, k). We thus have, by definition, ExtZ(h,k) = Pa_, .y \ (Pz(hr) UIntL(h, k).

Lemma 1.2.21.4. If a point C lies inside an angle LZAOB, the ray Oc¢ lies completely inside LZAOB: O¢ C
Int/ZAOB.

From L 1.2.11.8 it follows that this lemma can also be formulated as:

If one of the points of a ray Oc¢ lies inside an angle ZAOB, the whole ray O¢ lies inside the angle ZAOB.

Proof. (See Fig. 1.37.) Immediately follows from T 1.2.19. Indeed, by hypothesis, C' € IntZAOB = (apa)pN(aoB)a-
Since also O € hNk, by T 1.2.19 O¢ C IntZAOB = (apa)p N (aop)a. O

Lemma 1.2.21.5. If a point C lies outside an angle ZAOB, the ray O¢ lies completely outside ZAOB: O¢ C
Exzt/AOB. 70

73Qur use of the notation ao4op is in agreement with the definition on p. 3.

" obviously, in plane of the angle

75The theorem T 1.2.19 makes this notion well defined in its ”any of the points” part.

76In full analogy with the case of L. 1.2.21.4, from L 1.2.11.3 it follows that this lemma can be reformulated as: If one of the points of
a ray O¢ lies outside an angle ZAOB, the whole ray O¢ lies outside the angle ZAOB.
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Figure 1.38: If C lies outside ZAOB, O¢ lies outside LZAOB: O¢ C ExtZAOB.
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Figure 1.39: Suppose that C € Op, D € IntZAOB, and Cp NO4 = (. Then Cp C IntLAOB.

Proof. (See Fig. 1.39.) O € apop&C e IntLAOB C apaoB AQG aoc C aaop = Oc C aaor. OcNPra0s =0,

because C' # O and OcNO4 # OVOcNOp # L1214 Oc =04V0Oc =0 = C €04VC € Op - a contradiction.

OcNIntZAOB = (), because if D € OcNIntZLAOB, we would have Op = O¢ from L 1.2.11.3 and Op C IntZAOB,
whence C € IntZAOB - a contradiction. Finally, Oc C aa0& Oc NP0 = 0& Oc N IntZAOB = () = O¢ C
FExzt/AOB. O

Lemma 1.2.21.6. Given an angle ZAOB, if a point C lies either inside ZAOB or on its side Oa, and a point
D either inside ZAOB or on its other side Op, the open interval (CD) lies completely inside ZAOB, that is,
(CD) C IntLAOB.

Proof. C € IntZAOBUO4 & D € IntZAOBUOp = C € ((aoa)pN(aop)a)U04 & D € ((apa)pN(aop)a)U0p =
Ce ((GOA)BUOA)Q((GOB)A UOA)&D S ((GOA)BUOB)Q((GOB)AUOB). Since, by L 1.2.19.8, Os C (GOB)A and
Op C (apa)B, we have (app)aUO4 = (aoB)a, (a0a)pUOB = (apa) B, and, consequently, C € (apa)pUO4 & C €

(CLOB)A&D € (apa)B& D € (app)aUOp ngg'g (CD) C (aOA)B & (CD) C (app)a = O¢ C IntZAOB. O
The lemma L 1.2.21.6 implies that the interior of an angle is a convex point set.

Lemma 1.2.21.7. Suppose that a point C lies on the side Op of an angle ZAOB, a point D lies inside the angle
LAOB, and the ray Cp does not meet the ray Oa. Then the ray Cp lies completely inside the angle ZAOB.

Proof. (See Fig. 1.39.) By definition of interior, D € IntZAOB = DOaaop & DOpapa. Then by hypothesis and

T 1.2.19 we have O4Cpaop & OCpapa. 77 Hence the result follows from the definition of interior. O

Lemma 1.2.21.8. Suppose that a point E of a ray Cp lies inside an angle ZAOB, and the ray Cp has no common
points with the contour P,aop of the angle ZAOB, i.e. we have Cp N0O4 =0, CpoNOp =0, O ¢ Cp. Then the
ray Cp lies completely inside the angle ZAOB.

Proof. Follows from the definition of interior and T 1.2.19. ™® O

7By hypothesis, Cp N O 4 = 0. Note also that the ray C'p cannot meet the ray 04, for they lie on opposite sides of the line app.
"8See proof of the preceding lemma. Note that L 1.2.21.4, L 1.2.21.7 can be viewed as particular cases of the present lemma.
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Figure 1.40: Illustration for proof of L 1.2.21.9.

Lemma 1.2.21.9. Given an angle Z(h,k) and points A € h, B € k on its sides, any point C lying on the line aap
inside Z(h, k) will lie between A, B.

Proof. Since the points A, B, C colline (by hypothesis) and are obviously distinct (P, k) N IntZ(h, k) = (), from
T 1.2.2 we see that either [CAB], or [ABC], or [ACB]. Note that [CAB] (see Fig. 1.40, a)) would imply that the
points C, B lie on opposite sides of the line k, which, in view of the definition of interior of the angle Z(h, k) would
contradict the fact that the point C' lies inside Z(h, k) (by hypothesis). The case [ABC] is similarly brought to
contradiction. ™ Thus, we see that [ABC], as required (see Fig. 1.40, b)). O

Lemma 1.2.21.10. Given an angle Z(h,k)o and a point C inside it, for any points D on h and F on k, the ray
Oc¢ meets the open interval (DF).

Proof. (See Fig. 1.41.) By A 1.2.2 3G [DOG]. By L 1.2.1.3 agp = aop = h. Since F € k, using definition
of Z(h,k) we conclude that ' ¢ h. By C 1.1.2.3 =3b (D € b& G € b& F € b). Therefore Japgr by A 1.1.4.

D e h& G S L& F S k&h C aé(hﬁk)&]; C Qy(hk) = D e aé(hﬁk)&G € aé(hﬁk)&aé(hﬂk) Aé}ﬁ QADGF = O/(hk)-

O € Oéé(h)k)&c € Intl(h,k) C Qy(hk) Agf) aoc C Qy(hk)- We also have D §§ aoc, G §é aac, F §§ aoc,
because otherwise by A 1.1.2 apc = hVaoc = k = C € hV C € k, whence, taking note that P; = h U {O} U h°
and P, = hU {0} Uh°, we get C € Pa,, ,, U Extl(hk) = C ¢ IntZ(h,k) - a contradiction. Since C' €

IntZ(h k) WPHEEE Y 00 C Int /(b k) & 0% € IntZ(he,k¢), F € k&G € he "'22Y5 (GF) ¢ IntZ(h, k°), we
have IntZ(h, k) O IntZ(h®,k) = O & IntZ(he,k°) N IntZ(h®, k) = 0& O ¢ IntZ(h,k) = (GF) N Oc = & (GF) N
Oc = 0& 0O ¢ (GF). Taking into account P, = Oc U {0} U O¢, we conclude that (GF) Naoc = 0. aoc C

aper&D ¢ aoc &G ¢ aoc & F ¢ aoc & [DOG & (GF) Naoc = 0 23 3E F € apc & [DEF]. [DEF)&D €

h&F ek "23° B e IntZ(h,k). Since O ¢ IntZ(h,k) = E # O, 0% C Z(h, k) = 0% N IntZ(h,k) = 0, we

conclude that F € O¢. O

An angle is said to be adjacent to another angle (assumed to lie in the same plane) if it shares a side and vertex
with that angle, and the remaining sides of the two angles lie on opposite sides of the line containing their common
side. This relation being obviously symmetric, we can also say the two angles are adjacent to each other. We shall
denote any angle, adjacent to a given angle Z(h, k), by adjZ(h, k). Thus, we have, by definition, Z(k,m) = adjZ(h, k)
80 and /(I,h) = adjZ(h, k) if hkm and lhk, respectively. (See Fig. 1.43.)

Corollary 1.2.21.11. If a point B lies inside an angle ZAOC, the angles ZAOB, /BOC are adjacent. 8

" The contradiction for [ABC] is immediately apparent if we make the simultaneous substitutions A < B, h <> k. Thus, due to
symmetry inherent in the properties of the betweenness relations both for intervals and angles, we do not really need to consider this
case separately.

800f course, by writing Z(k,m) = adj Z(h, k) we do not imply that Z(k,m) is the only angle adjacent to Z(h,k). It can be easily seen
that in reality there are infinitely many such angles. The situation here is analogous to the usage of the symbols o and O in calculus
(used particularly in the theory of asymptotic expansions).

811n particular, if a ray k, equioriginal with rays h, [, lies inside the angle Z(h,[), then the angles Z(h, k), Z(k,l) are adjacent and thus
the rays h, [ lie on opposite sides of the ray k.
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Figure 1.42: If a point B lies inside an angle ZAOC, the angles ZAOB, Z/BOC' are adjacent.

Proof. B € IntZAOC M22103p p ¢ Op & [ADC]. Since D € app N (AC), A ¢ aop, we see that the points A,

C, and thus the rays O4, O¢ (see T 1.2.20) lie on opposite sides of the line app. Together with the fact that the
angles ZAOB, ZBOC share the side Op this means that ZAOB, Z/BOC' are adjacent. O

From the definition of adjacency of angles and the definitions of the exterior and interior of an angle immediately
follows

Lemma 1.2.21.12. In an angle Z(k,m), adjacent to an angle Z(h,k), the side m lies outside Z(h, k).
which, together with C 1.2.21.11, implies the following corollary

Corollary 1.2.21.13. If a point B lies inside an angle ZAOC, neither the ray Oc has any points inside or on the
angle ZAOB, nor the ray Oa has any points inside or on ZBOC.

Lemma 1.2.21.14. If angles Z(h, k), Z(k,m) share the side k, and points A € h, B € m lie on opposite sides of
the line k, the angles Z(h, k), Z(k,m) are adjacent to each other.

Proof. Immediately follows from L 1.2.11.15. O

An angle Z(k,1) is said to be adjacent supplementary to an angle Z(h, k), written Z(k,1) = adjsp Z(h, k), iff the
ray [ is complementary to the ray h. That is, Z(k,l) = adjsp Z(h, k) Qb g = pe Since, by L 1.2.15.3, the ray
(h©)¢, complementary to the ray h¢, complementary to the given ray h, coincides with the ray h: (h¢)¢ = h, if Z(k,1)
is adjacent supplementary to Z(h, k), the angle Z(h, k) is, in its turn, adjacent supplementary to the angle Z(k,1).
Note also that, in a frequently encountered situation, given an angle ZAOC such that the point O lies between the
point A and some other point B, the angle ZBOC is adjacent supplementary to the angle AOC. 82

Lemma 1.2.21.15. Given an angle Z(h, k), any point lying in plane of this angle on the same side of the line h as
the ray k, lies either inside the angle Z(h, k), or inside the angle Z(k,h®), or on the ray k (See Fig. 1.44.) That is,

82For illustration on a particular case of this situation, see Fig. 1.113, a).
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Figure 1.43: Angles Z(I,h) and Z(k,m) are adjacent to the angle Z(h, k). Note that h, m lie on opposite sides of k
and [, k lie on opposite sides of h.

he O h

Figure 1.44: Any point lying in plane of Z(h, k) on one side of h with k, lies either inside Z(h, k), or inside Z(k, h°),
or on k.

hy = IntZ(h, k) Uk U IntZ(k,h¢). Furthermore, any point lying in the plane a k) (of the angle Z(h,k)) not on
either of the lines h, k lies inside one and only one of the angles Z(h,k), Z(h¢, k), Z(h, k), Z(h¢, k).
Proof. }_Lk = }_Lk n Paé(h,,k) = }_Lk n (Igh UPr U Ig}i) 12198 }_Lk n (Igh U Pr U Ighc) = (}_Lk N Eh) @] (Bk N Pfc) U (iLk n Ighc) =
Int/(h,k) Uk N Int/(k, h¢). Similarly, hyeIntZ(h, k) U k¢ N Int/(k¢, h¢), whence the second part. O

Given an angle Z(h, k), the angle Z(h¢ k¢), formed by the rays h¢, k¢, complementary to h, k, respectively,
is called (the angle) vertical, or opposite, to Z(h,k). We write vert Z(h,k) = Z(h¢, k°). Obviously, the angle
vert (vert Z(h, k)), opposite to the opposite Z(h¢, k) of a given angle Z(h, k) , coincides with the angle Z(h, k).

Lemma 1.2.21.16. If a point C lies inside an angle Z(h, k), the ray OZ, complementary to the ray Oc, lies inside
the vertical angle Z(h€, k).

Proof. (See Fig. 1.45.) C € IntZ(h,k) = C € hynky, "'227° 02, € henks = 0% C hge Nkpe = 0% C IntZ(he, k°).

O

Lemma 1.2.21.17. Given an angle Z(h, k), all points lying either inside or on the sides h®, k¢ of the angle opposite
to it, lie outside Z(h, k). 83

Proof. O

Lemma 1.2.21.18. For any angle ZAOB there is a point C 3% such that the ray Op lies inside the angle ZAOC .25

830bviously, this means that none of the interior points of Z(h¢,k¢) can lie inside Z(h, k).
84and, consequently, a ray O¢
85This lemma is an analogue of A 1.2.2.
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Figure 1.46: For any angle ZAOB there is a point C such that Op lies inside ZAOC. For any angle ZAOC there is
a point B such that Op lies inside ZAOC.

Proof. (See Fig. 1.46.) By A 1.2.2 3C [ABC|. C ¢ aoa, because otherwise [ABC] ALZ 4 #C L2 0 =

aoA LL2LS B oo apa, contrary to L 1.2.21.2. 86 Therefore, 3 ZAOC. Since [ABC], by L 1.2.21.2, L 1.2.21.6,

L 12214 0p C IntZAOC. O

Lemma 1.2.21.19. For any angle ZAOC there is a point B such that the ray Op lies inside the angle ZAOC. 87
Proof. (See Fig. 1.46.) By T 1.2.2 3B [ABC]. By L 1.2.21.6, L 1.2.21.4 O C IntZAOC. O
Lemma 1.2.21.20. Given an angle Z(h, k), all points inside any angle Z(k,m) adjacent to it, lie outside /(h,k).58

Proof. (See Fig. 1.47.) By definition of the interior, A € Int/(k,m) = Amk. By the definition of adjacency

Z(k,m) = adj(h, k) = hkm. Amk & hkm “'22*° Akh = A € Eat/(h, k). O

Lemma 1.2.21.21. 1. If points B, C lie on one side of a line apa, and Op # O¢, either the ray Op lies inside the
angle ZAOC, or the ray O¢ lies inside the angle ZAOB. 2. Furthermore, if a point E lies inside the angle Z/BOC,
it lies on the same side of apa as B and C. That is, IntZBOC C (apa)p = (aoa)c-

Proof. 1. Denote Op = 0%. (See Fig. 1.48.) BCapa TL219 52 0capa. OpOcaoa & Op £ Oc L12.2015 ()

IntZ/AOB V O¢ C IntZBOD. % Suppose O¢ C IntZBOD. °° Then by L 1.2.21.12 O C ExztZCOD. But

since OpOcaoa & Op # Oc "' 22" 0 ¢ IntZAOC v Op C IntZCOD, we conclude that O C IntZAOC. 2.

E € Int/BOC "'2%'° 3F F € Og N (BC). Hence by L 1.2.19.6, L 1.2.19.8 we have Og C (aoa)s = (ao4)c,

q.ed. O

86 According to L 1.2.21.2, B € ap 4 contradicts the fact that the rays O 4, Op form an angle.

87This lemma, is analogous to T 1.2.2. In the future the reader will encounter many such analogies.

88 Obviously, this means that given an angle Z(h, k), none of the interior points of an angle Z(k, m) adjacent to it, lies inside Z(h, k).
89The lemma L 1.2.21.15 is applied here to every point of the ray O¢.

90TIf O C IntZAOB we have nothing more to prove.
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Figure 1.47: Given an angle Z(h, k), all points inside any angle Z(k, m) adjacent to it, lie outside Z(h, k).
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Figure 1.48: If points B, C lie on one side of apa, and Op # O¢, either Opg lies inside ZAOC, or O¢ lies inside
ZAOB.

Lemma 1.2.21.22. If a ray | with the same nitial point as rays h, k lies inside the angle Z(h, k) formed by them,
then the ray k lies inside the angle Z(h€,1).

Proof. Using L 1.2.21.20, L 1.2.21.15 we have | C IntZ(h,k) = k C Ext/(h,1) &lkh& 1 # k = k C IntZ(h¢,1). O

Lemma 1.2.21.23. If open intervals (AF), (EB) meet in a point G and there are three points in the set {A, F, E, B}
known not to colline, the ray Ep lies inside the angle Z/AEF. 91

Proof. C 1.2.9.14 ensures that A, E, F do not colline, so by L 1.2.21.2 ZAEF exists. [EGB] “" 25"

L 1.2.21.6,L 1.2.21.4 we have G € Ep & [AGF|& A€ EA& F € Ep = Ep C Int/AEF. O

G € Ep. By

Corollary 1.2.21.24. If open intervals (AF), (EB) meet in a point G and there are three points in the set
{A,F,E,F} known not to colline, the points E, F lie on the same side of the line aap. %

Proof. Observe that by definition of the interior of /ZEAB, we have Ap C Int/EAB = EFasp. O

Corollary 1.2.21.25. If open intervals (AF), (EB) concur in a point G, the ray Ep lies inside the angle ZAEF .
93

Proof. Immediately follows from L 1.2.9.13, L. 1.2.21.23. O

Corollary 1.2.21.26. If open intervals (AF), (EB) concur in a point G, the points E, F lie on the same side of
the line aag. **

Proof. Immediately follows from L 1.2.9.13, C 1.2.21.24. O

91 And, by the same token (due to symmetry), the ray Bg lies inside the angle ZABF, the ray Ap lies inside lies inside the angle
ZEAB, and the ray F'4 lies inside the angle ZEF B.

92 Again, due to symmetry, we can immediately conclude that the points A, B also lie on the same side of the line ag, etc.

93 And, of course, the ray By lies inside the angle ZABF, the ray A lies inside lies inside the angle ZEAB, and the ray F4 lies inside
the angle ZEF B.

94 Again, A, B also lie on the same side of the line ag, etc.
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Figure 1.49: If C lies inside ZAOD, and B inside an angle ZAOC', then Op lies inside ZAOD, and O¢ inside ZBOD.

Lemma 1.2.21.27. If a point C lies inside an angle ZAOD, and a point B inside an angle ZAOC, then the ray
Op lies inside the angle ZAOD, and the ray O¢ lies inside the angle ZBOD. In particular, if a point C lies inside
an angle ZAOD, any point lying inside ZAOC, as well as any point lying inside ZCOD lies inside ZAOD. That
is, we have Int/AOC C IntZAOD, IntZCOD C Int/AOD. %

Proof. (See Fig.1.49.) C € Int/AOD ""2%"° 3F [AFD|& F € O¢. B € IntZA0C “"22"° 3E [AEF|& E € O5.

[AEF) & [AFD] “223? [AED] & [EF D). Hence, using L 1.2.21.6, L 1.2.21.4, we can write A € O4 & E € Og & F €

Oc & D € Op & [AED] & [EFD] = Op C IntZAOD & O¢ C IntZBOD. O

Lemma 1.2.21.28. Given a point C inside an angle ZAOD, any point B lying inside ZAOD not on the ray O¢
lies either inside the angle ZAOC or inside ZCOD .%

Proof. C € IntZAOD ""22'° 3E E € Oc N (AD). B € IntZA0D “"22'° 3F F € O N (AD). B ¢ O¢ =

Op ¢ Oc "'22* 05 N0Oc =0 = F#E. Fe (AD)&F # E 23’ F € (AE) V F € (ED). Thus, we have

FeOpnN(AE)VF € OpnN(ED) = Op C IntZAOC VvV Op C IntZCOD, q.e.d. O

Lemma 1.2.21.29. If a ray Op lies inside an angle ZAOC, the ray O¢ lies inside ZBOD, and at least one of the
rays Op, O¢ lies on the same side of the line apa as the ray Op, then the rays Op, Oc both lie inside the angle
ZAOD.

Proof. Note that we can assume OpOpapa without any loss of generality, because by the definition of the interior

of an angle Op C IntZAOC = OpOcaoa, and if OcOpaoa, we have OpOcaoa & OcOpaoa ~22% O5Opaca.

050paoa& Op # Op “'22* 0p C IntZAOD vV Op C IntZAOB. 1f Op C IntZAOD (see Fig. 1.50, a)),
by L 1.2.21.27 we immediately obtain O¢ C IntZAOD. But if Op C IntZAOB(see Fig. 1.50, b)), observing that
Op C IntZAOC, we have by the same lemma Opg C Int/DOC, which, by C 1.2.21.13, contradicts Oc C Int/BOD.

0O

Lemma 1.2.21.30. Suppose that a finite sequence of points A;, where i € N,,, n > 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a point O lies outside the line a = A1 A, °7 Then the rays Oa,,0a4,,...,04, are in order
04,04, ...04,], that is, Oa, C IntZLA;OAy whenever either i < j <k ork <j <i.

Proof. (See Fig. 1.51.) Follows from L 1.2.7.3, L. 1.2.21.6, L. 1.2.21.4. O

”

951, 1.2.21.4 implies that any other point of the ray O¢ can enter this condition in place of C, so instead of ”If a point C' ...” we can
write ”if some point of the ray O¢ ...”; the same holds true for the ray Op and the angle ZAOC. Note that, for example, L 1.2.21.16,
L 1.2.21.10, L 1.2.21.21 also allow similar reformulation, which we shall refer to in the future to avoid excessive mentioning of L. 1.2.11.3.
Observe also that we could equally well have given for this lemma a formulation apparently converse to the one presented here: If a point
B lies inside an angle ZAOD, and a point C lies inside the angle ZBOD (the comments above concerning our ability to choose instead
of B and C any other points of the rays Op and O¢, respectively being applicable here as well), the ray O¢ lies inside the angle ZAOD,
and the ray Op lies inside the angle ZAOC'. This would make L 1.2.21.27 fully analogous to L 1.2.3.2. But now we don’t have to devise a
proof similar to that given at the end of L 1.2.3.2, because it follows simply from the symmetry of the original formulation of this lemma
with respect to the substitution A — D, B — C, C — B, D — A. This symmetry, in its turn, stems from the definition of angle as a
non-ordered couple of rays, which entails LZAOC = LZCOA, LZAOD = £LDOA, etc.

96Summing up the results of L 1.2.21.4, L 1.2.21.27, and this lemma, given a point C' inside an angle ZAOD, we can write IntZAOD =
IntZAOC UO¢ U IntZCOD.

97Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points A;, Aj,i#j,1,j€EN ie a= QA A;-
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a) b)

Figure 1.50: If Op lies inside ZAOC', O¢ lies inside ZBOD, and at least one of Op, O¢ lies on the same side of the
line ap as Op, then Opg, O¢ both lie inside ZAOD.

A] AZ A3 n-2 n-1 An
Figure 1.51: Suppose that a finite sequence of points A;, where i € N,,, n > 3, has the property that every point of the
sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose, further,

that a point O lies outside the line a = A; A,, Then the rays O4,,04,,...,04, are in order [04,04,...,04,].
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Figure 1.52: Suppose that a finite sequence of points A;, where i € N,,, n > 3, has the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose,
further, that a ray Bp, does not meet the ray A 4, and that the points Ay, B; lie on the same side of the line a4, 5.
Then the rays Ba,, Ba,,...,Ba, Bp, are in order [Ba,Ba, ..., Ba, Bp,].

Lemma 1.2.21.31. Suppose that a finite sequence of points A;, where i € N,,, n > 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a ray Bp, does not meet the ray A1 4, and that the points Az, By lie on the same side of the
line aa,p. Then the rays Ba,,Ba,,...,Ba, Bp, are in order [Ba,Ba, ...Ba,Bp,].

Proof. (See Fig. 1.52.) Since, by hypothesis, the ray A;4,, and thus the open interval (4;Az), does not meet the
ray Bp, and, consequently, the line app,,”® the points A;, A, lie on the same side of the line agp,. Since, by
hypothesis, the points A, B lie on the same side of the line a4, g, we have Ay € IntZA;BB;. Hence by L 1.2.21.4
we have A; € Int/A; BBy, where i € {3,4,...,n}. This, in turn, by L ?? implies that B4, C Int£A; BBy, where
i € {3,4,...,n}. From the preceding lemma (L 1.2.21.30) we know that the rays Ba,, Ba,,...,Ba, are in order
[Ba,Ba, ...Ba,]. Finally, taking into account A; € IntZA; BBy, where i € {2,3,4,...,n}, and using L 1.2.21.27,
we conclude that the rays Ba,, Ba,,...,Ba, Bp, are in order [Ba, Ba, ... Ba, Bp,|, q.e.d. O

Lemma 1.2.21.32. Suppose rays k, I lie on the same side of a line h (containing a third ray h), the rays h, | lie
on opposite sides of the line k, and the points H, L lie on the rays h, I, respectively. Then the ray k lies inside the
angle Z(h,l) and meets the open interval (HL) at some point K.

7 L1.2.19.9

Proof. (See Fig. 1.53.) H € h& K € 1&hkl = 3K K € k& [HKL]. [HKL|& H € h ~==" KLh. Hence K € k,
for, obviously, K # O, and, assuming K € k¢, we would have: klh& khke "'22%° [hke, which, in view of L € I,

K € k¢, would imply LhK - a contradiction. Finally, H € h& L € & [HKL] "'23'° K € Int/(h,1) '23" k

Int/(h,1). O

Lemma 1.2.21.33. Suppose that the rays h, k, | have the same initial point and the rays h, | lie on opposite sides
of the line k (so that the angles Z(h,k), Z(k,1) are adjacent). Then the rays k, | lic on the same side of the line h
iff the ray | lies inside the angle Z(h°, k), and the rays k, 1 lie on opposite sides of the line h iff the ray h lies inside
the angle Z(k,1). Also, the first case takes place iff the ray k lies between the rays h, 1, and the second case iff the
ray k¢ lies between the rays h, [.

Proof. Note that lkh & h¢kh V2484 perg. Suppose first that the rays k, I lie on the same side of the line h (see
Fig. 1.54, a)). Then we can write h°lk & klh = [ C Int/(h°, k). Conversely, form the definition of interior we have
I C IntZ(h¢,k) = klh. Suppose now that the rays k, [ lie on opposite sides of the line h (see Fig. 1.54, b)). Then,
obviously, the ray I cannot lie inside the angle Z(h¢, k), for otherwise k,l would lie on the same side of h. Hence by
L 1.2.21.21 we have h¢ C Int/(k,l). Conversely, if h¢ C Int/(k,1), the rays k, I lie on opposite sides of the line [ in

98Since the points Az, Bj lie on the same side of the line aa, B, sodo rays A1 4,, B, (T 1.2.19). Therefore, no point of the ray A; Ao
can lie on B%l, which lies on opposite side of the line a4, .
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Figure 1.53: Suppose rays k, [ lie on the same side of a line h (containing a third ray ), the rays h, I lie on opposite
sides of the line & , and the points H, L lie on the rays h, [, respectively. Then the ray k lies inside the angle Z(h,1)
and meets the open interval (HL) at some point K.

Figure 1.54: Suppose that the rays h, k, [ have the same initial point and the rays h, [ lie on opposite sides of the
line k. Then the rays k, [ lie on the same side of the line h iff the ray [ lies inside the angle Z(h¢, k), and the rays k,
[ lie on opposite sides of the line A iff the ray h€ lies inside the angle Z(k,1).

view of L 1.2.21.10. *° Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.21.32)

and (in the second case) the observation that Ihk & k°hk ML2AS4 per, (See also C 1.2.21.11). O

Lemma 1.2.21.34. Suppose that the rays h, k, | have the same initial point O and the rays h, | lie on opposite
sides of the line k. Then either the ray k lies inside the angle Z(h,1), or the ray k¢ lies inside the angle Z(h,1), or
I = he. (In the last case we again have either k C IntZ(h,h¢) or k® C IntZ(h,h®) depending on which side of the
line k (i.e. which of the two half-planes having the line k as its edge) is chosen as the interior of the straight angle
Z(h,h®)).

Proof. Take points H € h, L € . Then hkl implies that there is a point K € k such that [HK L]. Then, obviously,
either K € k, or K = O, or K € k° If K = O (see Fig. 1.55, a)) then L € h° and thus | = h° (see L 1.2.11.3).
If K # O (see Fig. 1.55, b), ¢)) then the points H, O, L are not collinear, the lines k,agy being different (see
L1.2.1.3, T1.1.1). Thus, ZHOL = Z(h,l) exists (see L. 1.2.21.1, L. 1.2.21.2). Hence by L 1.2.21.6, L. 1.2.21.4 we have
either H € h& L € I& [HKL|& K € k= k C IntZ(h,l),or H € h& L € l& [HKL| & K € k¢ = k¢ C IntZ(h,l),
depending on which of the rays k, k¢ the point K belongs to.

Definition and Basic Properties of Generalized Betweenness Relations

We say that a set J of certain geometric objects A, B, ... admits a weak 1% generalized betweenness relation, if there
is a ternary relation p C 33 =3 x 3 x 7, called weak generalized betweenness relation on J, whose properties are
given by Pr 1.2.1, Pr 1.2.3 - Pr 1.2.7. If (A, B,C) C p, where A, B,C € J, where J is some set with a weak generalized
betweenness relation defined on it, we write [[ABC]) or (usually) simply [ABC], ! and say that the geometric object
B lies in the set J between the geometric objects A and C, or that B divides A and C.

99By that lemma, any open interval joining a point K € k with a point L € [ would then contain a point H € P, -

100We shall usually omit the word weak for brevity.

101The superscript J in parentheses in [ABC](3) is used to signify the set (with generalized betweenness relation) J containing the
geometric objects A, B,C. This superscript is normally omitted when the set J is obvious from context or not relevant.
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Figure 1.55: Suppose that the rays h, k, [ have the same initial point O and the rays h, [ lie on opposite sides of the
line k. Then either k lies inside Z(h, 1), or k¢ lies inside Z(h,1), or | = h°.
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We say that a set J of certain geometric objects A, B, ... admits a strong, linear, or open '°2 generalized between-
ness relation, if there is a ternary relation p C P =FxJxJ, called strong generalized betweenness relation on J,
whose properties are given by Pr 1.2.1 — Pr 1.2.7.

Property 1.2.1. If geometric objects A,B,C € J and B lies between A and C, then A,B,C are distinct geometric
objects, and B lies between C and A.

Property 1.2.2. For every two geometric objects A, B € J there is a geometric object C € J such that B lies between
A and C.

Property 1.2.3. If a geometric object B € J lies between geometric objects A,C € J, then the object C' cannot lie
between the objects A and B.

Property 1.2.4. For any two geometric objects A,C € J there is a geometric object B € J between them.
Property 1.2.5. Among any three distinct geometric objects A,B,C € J one always lies between the others.

Property 1.2.6. If a geometric object B € J lies between geometric objects A,C € J, and the geometric object C lies
between B and D € J, then both B and C lie between A and D. 103

Property 1.2.7. If a geometric object B € J lies between geometric objects A,C € J, and the geometric object C
lies between A and D € J, then B lies also between A and D and C lies between B and D.

Lemma 1.2.21.35. The converse is also true. That is, VA, B,C,D € J ([ABC] & [ACD] < [ABD] & [BCD]).

Given a set J with a weak (and, in particular, strong) generalized betweenness relation, define the following
subsets of J:

generalized abstract intervals, which are simply two - element subsets of J: AB = {A, B}

generalized open intervals, called also open generalized intervals (AB) = {X|[AXB], X € J};

generalized half-open (called also generalized half-closed) intervals [AB) = {A} U (AB) and (AB] = (AB U B);

For definiteness, in the future we shall usually refer to sets of the form [AB) as the generalized half-open intervals,
and to those of the form (AB] as the generalized half-closed ones.

generalized closed intervals, also called generalized segments, [AB] = (AB) U {A} U {B}.

As in the particular case of points, generalized open, generalized half-open, generalized half-closed and generalized
closed intervals thus defined are collectively called generalized interval - like sets, joining their ends A, B.

Proposition 1.2.21.36. The set of points P, of any line a admits a strong generalized betweenness relation.
Proof. Follows from A 1.1.1 - A 1.1.3, T 1.2.1, T 1.2.2,L 1.23.1, L 1.2.3.2. O

We say that a set J of certain geometric objects A, B, ... admits an angular, or closed, %4 generalized betweenness
relation, if there is a ternary relation p C J% = J x J x J, called angular generalized betweenness relation on J, whose
properties are given by Pr 1.2.1, Pr 1.2.3 — Pr 1.2.7, Pr 1.2.8.

Property 1.2.8. The set J is a generalized closed interval, i.e. there are two geometric objects Ay, Bg € J such that
any other geometric object of the set J lies between Agy, By.'%°

We shall refer to a collection of rays emanating from a common initial point O as a pencil of rays or a ray pencil,
which will be written sometimes as P(?). The point O will, naturally, be called the initial point, origin, or vertex of
the pencil. A ray pencil whose rays all lie in one plane is called a planar pencil (of rays). If two or more rays lie in
the same pencil, they will sometimes be called equioriginal (to each other).

Theorem 1.2.21. Given a line a in plane «, a point Q lying in o outside a, and a point O € a, the set (pencil)
J of all rays with the initial point O, lying in o on the same side of the line a as the point Q %6, admits a strong
generalized betweenness relation.

To be more precise, we say that a ray Op € J lies between rays Oy € J and O¢ € J iff Op lies inside the angle
ZAOC, i.e. iff Op C IntZAOC. %7 Then the following properties hold, corresponding to Pr 1.2.1 - Pr 1.2.7 in the
definition of strong generalized betweenness relation:

1. If a ray Op € J lies between rays O € J and O¢ € J, then Op also lies between O¢ and Oa, and O 4, Op,
Oc¢ are distinct rays.

2. For every two rays Oa,0p € J there is a ray Oc € J such that Op lies between O4 and O¢.

3. If a ray Op € J lies between rays O 4,0¢ € J, the ray Oc cannot lie between the rays O4 and Op.

102The term linear here reflects the resemblance to the betweenness relation for points on a line. The word open is indicative of the
topological properties of J.

103Note that, stated in different terms, this property implies that if a geometric object C lies on an open interval (AD), the open intervals
(AC), (CD) are both subsets of (AD) (see below the definition of intervals in the sets equipped with a generalized betweenness relation).

104The use of the term angular in this context will be elucidated later, as we reveal its connection with the properties of angles. The
word closed reflects the topological properties of J.

1051 this situation it is natural to call Ag, By the ends of the set J.

106 That is, of all rays with origins at O, lying in the half-plane aq.

1071f Op € J lies between O 4 € J and O¢ € J, we write this as [0 4OpO¢] in accord with the general notation. Sometimes, however,
it is more convenient to write simply O C IntZAOC.

48



4. For any two rays O4,0¢ € J there is a ray Op € J between them.

5. Among any three distinct rays Oa,0p,0c € J one always lies between the others.

6. If a ray Op € J lies between rays O4,0c € J, and the ray Oc¢ lies between Op and Op € J, both Op, O¢ lie
between Oy and Op.

7. If a ray Op € J lies between rays O, 0c € J, and the ray O¢ lies between Oy and Op € J, then Op lies also
between O4, Op, and O¢ lies between Op and Op. The converse is also true. That is, for all rays of the pencil J
we have [OAOBOC] & [OAOcOD] 54 [OAOBOD] & [OBOcOD].

The statements of this theorem are easier to comprehend and prove when given the following formulation in
"native” terms.

1. If a ray Op € J lies inside an angle ZAOC, where O4,0¢ € J, it also lies inside the angle ZCOA, and the
rays Oa,0p,0¢ are distinct.

2. For every two rays O4,0p € J there is a ray Oc € J such that the ray Op lies inside the angle ZAOC.

3. If a ray Op € J lies inside an angle ZAOC, where Oy, O¢ € J, the ray O¢ cannot lie inside the angle ZAOB.

4. For any two rays Oa,0¢ € J, there is a ray Op € J which lies inside the angle ZAOC.

5. Among any three distinct rays Oa,0p,0c € J one always lies inside the angle formed by the other two.

6. If a ray Op € J lies inside an angle ZAOC, where Oa,0¢ € J, and the ray O¢ lies inside ZBOD, then both
Op and O¢ lie inside the angle ZAOD.

7. If a ray Op € J lies inside an angle ZAOC, where O 4,0¢c € J, and the ray O¢ lies inside ZAOD, then Op
also lies inside ZAOD, and the ray Oc¢ lies inside the angle ZBOD. The converse is also true. That is, for all rays
of the pencil J we have O C IntZAOC & O¢ C IntZ/AOD < Op C IntZAOD & O¢ C Int/BOD.

Proof. 1. Follows from the definition of IntZAOC.
2. See L 1.2.21.18.
3. See C 1.2.21.13.
4. See 1. 1.2.21.19.

5. By A113 3D D € a& D # O. By A 1.1.2 a = app. Then O40pa& O4 # Op& O040ca& Oy #

Oc & 0p0ca& Op # Oc " 222" (04 € Int/DOBVOg C Int/DOA) & (04 C Int/DOCVO: C Int/DOA)& (Op C

Int/DOC VvV Oc C IntZDOB). Suppose Ox C IntZDOB. 1% If Op C IntZDOC (see Fig. 1.56, a) then

Oa C IntZ/DOB & Op C IntZDOC “"22*" O  IntZAOC. Now suppose O¢ C IntZDOB. If Oc C Int/DOA

see Fig. 1.56, then O¢ C Int A C Int = 4 C Int . Finally, if O4 C Int
Fig. 1.56, b) then O¢ C Int/DOA& O4 C IntZDOB “'22*" 0, c IntZ/BOC. Finally, it O4 C IntZDOC

(see Fig. 1.56, ¢) then O4 C Int/DOC & O¢ C IntZDOB “"22*7 0 c Int/AOB.

6. (See Fig 1.57.) Choose a point E € a, E # O, so that Og C Int/EOD. ' Op C Int/EOD& O¢ C

Int/BOD “'Z22T O¢c C IntZEOD & Op C IntZEOC. Using the definition of interior, and then L 1.2.16.1,

L 1.2.16.2, we can write Og C Int/EOC & Op C IntZAOC = OpOgaoc & OO saoc = Oa0caoc. Using the
definition of the interior of ZEOC, we have OsOgapc & OaOcapr = O C IntLEOC. Oy C IntZEOC & O¢ C

IntZEOD " 22" O ¢ Int/AOD. Finally, Oc C IntZAOD & Op C IntZAOC *" 22" Oy c IntZAOD.
7. See L 1.2.21.27. O

At this point it is convenient to somewhat extend our concept of an angle.

A pair Z(h, h®) of mutually complementary rays h, h¢ is traditionally referred to as a straight angle. The rays h,
h¢ are, naturally, called its sides. Observe that, according to our definitions, a straight angle is not, strictly speaking,
an angle. We shall refer collectively to both the (conventional) and straight angles as extended angles.

Given a line a in plane a, a point @ lying in « outside a, and a point O € a, consider the set (pencil), which we
denote here by Jo, of all rays with the initial point O, lying in « on the same side of the line a as the point @Q.''°
Taking a point P € a, P # O (see A 1.1.3), we let h = Op. Denote by J the set obtained as the union of Jo with
the pair of sides of the straight angle Z(h,h¢) (viewed as a two-element set): J = Jo U {h, h°}. We shall say that
that a ray O¢ lies between the rays h, h€, or, worded another way, a ray O¢ lies inside the straight angle Z(h, h¢),
if Oc C ag. With the other cases handled traditionally,''! we can formulate the following proposition:

Proposition 1.2.21.29. Given a line a in plane a, a point Q lying in « outside a, and two distinct points O € a,
P € a, P +# O, the set (pencil) J, composed of all rays with the initial point O, lying in o on the same side of the
line a as the point Q, plus the rays h = Op and h°¢, 112 admits an angular generalized betweenness relation, i.e. the
rays in the set J thus defined satisfy 1, 3-8 below, corresponding to Pr 1.2.1, Pr 1.2.8 - Pr 1.2.7, Pr 1.2.8:

1. If a ray Op € J lies between rays O4 € J and O¢c € J, then Op also lies between Oc and O 4, and O4, Op,
Oc¢ are distinct rays.

2. For every two rays Oa,0p € J there is a ray Oc € J such that Op lies between O4 and Oc¢.

3. If a ray Op € J lies between rays O 4,0¢ € J, the ray Oc cannot lie between the rays O4 and Op.

108We can do this without any loss of generality. No loss of generality results from the fact that the rays O4, Op, Oc enter the
conditions of the theorem symmetrically.

109By A1.1.33EE€a&E# 0. By A11.2a=apg. By L 1.2.21.15, L. 1.2.21.4 OpOpa& Op # Op = Op C IntZEOD V O C
IntZFOD, where O = (Og)¢. We choose Op C IntZEOD, renaming F — F, F — E if needed.

110We shall find the notation Jo convenient in the proof of P 1.2.21.29.

11 That is, we say that a ray Op € J lies between rays O4 € J and O¢ € J iff Op lies inside the angle ZAOC, i.e. iff Og C IntZAOC.

112That is, of all rays with origins at O, lying in the half-plane aq.
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Figure 1.56: Among any three distinct rays O4,Op,O¢ € J one always lies inside the angle formed by the other two.
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Figure 1.57: If a ray Op € J lies between rays O4, O¢ € J, and the ray O¢ lies between Op and Op € J, both Op,
Oc¢ lie between O4 and Op.

4. For any two rays Ox,0c € J there is a ray Op € J between them.

5. Among any three distinct rays Oa,0p,0c € J one always lies between the others.

6. If a ray Op € J lies between rays O, O0c € J, and the ray Oc¢ lies between Op and Op € J, both Op, O¢ lie
between Oy and Op.

7. If a ray Op € J lies between rays Oa,0c € F, and the ray O¢ lies between O and Op € J, then Op lies also
between O4, Op, and O¢ lies between Op and Op. The converse is also true. That is, for all rays of the pencil J
we have [OAOBOC] & [OAOcOD] 54 [OAOBOD] & [OBOcOD].

8. The set J coincides with the generalized closed interval [hh¢].

In addition, we have the following property:

9. The ray h cannot lie between any two other rays of the set J. Neither can he.

Proof. 1. For the cases when both O4 € Jo, Oc € Jo (where Jo is the pencil of rays with the initial point O, lying in
a on the same side of the line a as the point Q) or one of O 4, O¢ lies in Jo and the other coincides with h = Op or
he, 113 the result follows from the definitions of the corresponding angles and their interiors. When one of the rays
04, O¢ coincides with h, and the other - with A€, it is a trivial consequence of the definition of the interior of the
straight angle Z(h, h®) for our case as the half-plane ag.

9. In fact, h C IntZBOC, where Op € Jo, Oc € Jo, would imply (by L 1.2.21.21, 2) hBh, which is absurd.

This contradiction shows that the ray h cannot lie between two rays from Jo. Also, Vk € Jo we can write Z(k, h¢) =

adj Z(h, k) " 22" he ¢ Ext/(h, k), whence the result.

8. According to our definition of the interior of the straight angle Z(h, h®) we have [hkh®] for all k € Jo.

3. By hypothesis, Op € J lies between rays O4,0¢c € J. From 9 necessarily OpJo. If Oc = h the result
again follows from 9. If O¢ # h, the rays Oa, O¢ form an angle (i.e. the angle ZAOC necessarily exists), and by
C 1.2.21.13 O¢ cannot lie inside the angle ZAOB.

4. If at least one of the rays O 4, O¢ is distinct from h, h¢, then the angle ZAOC exists, and the result follows
from L 1.2.21.19. If one of the rays O4, O¢ coincides with h, and the other with h¢, we can let B = Q.

5. For O4,0p,0¢ € Jg see T 1.2.21, 5. If one of the rays O 4, O¢ coincides with h, and the other with h¢, then
the ray Op lies in Jo and thus lies inside the straight angle Z(h, h¢). Now suppose that only one of the rays O4, O¢
coincides with either A or h¢. Due to symmetry, in this case we can assume without loss of generality that O4 = h.
114 The result then follows from L 1.2.21.21.

7. Observe that by 9. the rays Op, O¢ necessarily lie in Jg. Suppose one of the rays O4, Op coincides with h
and the other with h¢. We can assume without loss of generality that O = h, Op = h¢.!15 This already means that
the ray Op lies inside the straight angle Z(h, h¢), i.e. Op lies between O4 and Op. Since the rays Op, O¢ both lie
in Jo, i.e. on the same side of a and, by hypothesis, Op lies between O4 = h and O¢, from L 1.2.21.22 we conclude
that the ray O¢ lies between Op and Op = h°.

Suppose now that only no more than one of the rays O4, Op,0O¢c,0Op can coincide with h,h¢. Then, obviously,
the rays O4,0p necessarily form an angle (in the conventional sense, not a straight angle), and the required result
follows from L 1.2.21.27.

6. For O4,0p,0¢,0p € Jo see T 1.2.21, 6. Observe that by 9. the rays Op, O¢ necessarily lie in Jg. If one of
the rays O4, Op coincides with h and the other with i¢, we immediately conclude that Op, O¢ lie inside the straight

113Gince h and h¢ enter the conditions of the theorem in the completely symmetrical way, we do not really need to consider the case
of h¢ separately. Thus when only one side of the straight angle Z(h, h¢) is in question, for the rest of this proof we will be content with
considering only h.

H141f necessary, we can make one or both of the substitutions A < C, h < h°.

115Making the substitution A < D or h < h¢ if necessary.
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angle Z(h, h¢). Now suppose that only one of the rays O4, Op coincides with one of the rays h, h®. As in our proof
of 5, we can assume without loss of generality that O4 = h.''® Then both Og and Op lie in Jo, i.e. on one side of
a. Hence by L 1.2.21.21 either the ray Op lies inside the angle ZAOB, or the ray Op lies inside the angle ZAOD.
To disprove the first of these alternatives, suppose Op C IntZAOB. Taking into account that, by hypothesis,

Oc¢ C Int/ZBOD, L 1.2.21.27 gives O¢ C IntZAOB, which contradicts O C IntZAOC in view of C 1.2.21.13.

Thus, we have shown that O C IntZAOD. Finally, O C IntZAOD & Oc C IntZBOD " 222 O¢  Int/AOD.

O

Proposition 1.2.21.30. If A, B are two elements of a set J with weak generalized betweenness relation, the gen-
eralized open interval (AB) is a set with linear generalized betweenness relation, and the generalized closed interval
[AB] is a set with angular generalized betweenness relation.

Proof. O

Lemma 1.2.21.31. Let the vertex O of an angle Z(h,k) lies in a half-plane as. Suppose further that the sides h,
k of Z(h,k) lie in the plane aga *7 and have no common points with a. Then the interior of the angle Z(h,k) lies
completely in the half-plane as: IntZ(h,k) C aa.

Proof. O

Lemma 1.2.21.32. Given an angle Z(h,k) and points B € h, C € k, there is a bijection between the open interval
(BC) and the open angular interval (hk).*'®

Proof. O
Corollary 1.2.21.33. There is an infinite number of rays inside a given angle.
Proof. O

Lemma 1.2.21.34. Suppose that lines b, ¢ lie on the same side of a line a and a || b, a || ¢, b || c. Then either the
line b lies inside the strip ac, or the line c lies inside the strip ab.

Proof. Take points A € a, B € b, C' € ¢. Consider first the case where A, B, C are collinear. By T 1.2.2 we have
either [BAC], or [ABC], or [ACB]. ¥ But [BAC] would imply that the lines a, ¢ lie on opposite sides of the line
b contrary to hypothesis. [ABC] (in view of C 1.2.19.21) implies that b lies inside the strip (ac). Similarly, [AC B]
implies that c lies inside the strip (ab) (note the symmetry!).

Suppose now that the points A, B, C' do not lie on one line. The point B divides the line b into two rays, h and
h¢, with initial point B. If one of these rays, say, h, lies inside the angle ZABC' then in view of L. 1.2.21.10 it is
bound to meet the open interval (AC) in some point H, and we see from C 1.2.19.21 that the line b lies inside the
strip (ac). Similarly, the point C' divides the line ¢ into two rays, k and k¢, with initial point C. If one of these rays,
say, k, lies inside the angle ZAC B then the line ¢ lies inside the strip (ab). Suppose now that neither of the rays h,
he lies inside the angle ZABC and neither of the rays k, k¢ lies inside the angle ZAC'B. Then using L 1.2.21.34 we
find that the points A, C lie on the same side of the line b and the points A, B lie on the same side of the line ¢. !2°
Thus, we see that the lines a, c lie on the same side of the line b and the lines a, b lie on the same side of the line ¢,
as required. O

Further Properties of Generalized Betweenness Relations
In the following we assume that J is a set of geometric objects which admits a generalized betweenness relation.

Lemma 1.2.22.2. If a geometric object B € J lies between geometric objects A,C, then the geometric object A
cannot lie between B and C.

Lemma 1.2.22.3. Suppose each of the geometric objects C,D € J lies between geometric objects A, B € J. If a
geometric object M € J lies between C and D, it also lies between A and B. In other words, if geometric objects
C,D € J lie between geometric objects A, B € J, the generalized open interval (CD) lies inside the generalized open
interval (AB), that is, (CD) C (AB).

Proof. [ACB] & [ADB| & [CMD] "3 A £ ¢ # D "22° [ACD] v [ADC] V [CAD]. But —[CAD], because oth-

erwise [CAD] & [ADB] "22° [cAB] "E2® —[ACB] a contradiction. Finally, [ACD] & [CMD] "227 [AMD] and

[AMD] & [ADB] "L27 [AMB]. O

116 Making, if necessary, one or both of the substitutions A < C, h < h°.

171n fact, in view of L 1.2.19.8, we require only that one of the points of h and one of the points of k lie in a4.

118Recall that (hk) is a set of rays lying inside the angle Z(h, k) and having the vertex of Z(h, k) as their initial point.

119Gince, by hypothesis, the lines a 3 A, b3 B, ¢ 3 C are pairwise parallel, the points A, B, C are obviously distinct.

120Gince the points A, C' do not lie on the line b, they lie either on one side or on opposite sides of the line b. But if A, C lie on opposite
sides of b, then by L 1.2.21.34 either h or h€¢ lie inside the angle ZABC' (recall that we now assume that A, B, C are not collinear),
contrary to our assumption.
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Lemma 1.2.22.4. If both ends of a generalized interval CD lie on a generalized closed interval [AB], the generalized
open interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from Pr 1.2.6, L. 1.2.22.3. O

Lemma 1.2.22.5. If a geometric object C € J lies between geometric objects A and B, none of the geometric objects
of the generalized open interval (AC) lie on the generalized open interval (CB).

Proof. [AMC] & [ACB] "2 [MmeB) PR3P —jemB). O

Proposition 1.2.22.6. If two (distinct) geometric objects €, F lie on an generalized open interval (AB) (i.e., between
geometric objects A, B), then either £ lies between A and F or F lies between A and E.

Proof. By Pr 1.2.1 [AEB|&[AFB] = A # E& A # F. Also, by hypothesis, £ # F. Therefore, by Pr 1.2.5

[EAF)V [AEF|V [AFE]. But [EAF|&E € (AB) & F € (AB) M2225 g e (AB), which is absurd as it contradicts
Pr 1.2.1. We are left with [AEF]V [AFE], q.e.d. O

Lemma 1.2.22.7. Both ends of a generalized interval CD lie on a generalized closed interval [AB] iff the open
interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from Pr 1.2.6, L. 1.2.22.4. O

Lemma 1.2.22.8. If a geometric object C € J lies between geometric objects A, B € J, any geometric object of the
open interval (AB), distinct from C, lies either on (AC) or on (CB). 12!

Pr1.2.1

Proof. Suppose [AMB], M # C. Since also [ACB] & [AMB] P22 ¢ £ B& M # B, by Pr 1.2.5 [CBM] V [CMB] v
[MCB]. But —[CBM]|, because otherwise [ACB] & [CBM]| P20 [ABM] PrL2s =[AMB] - a contradiction. Finally,
Pr1.2.7

[AMB)] & [McB) P22 [AMc). O

Lemma 1.2.22.9. If a geometric object O € § divides geometric objects A € J and C € J, as well as A , D € 3J, it
does not divide C and D.

Proof. [AOC] & [AOD] V23" A £ C& A # D. Tfalso C # D 22, from Pr 1.2.5 we have [CAD] & [ACD] & [ADC]. But

~[CAD], because [CAD] & [AOD] "E37 [c.A0] "E2® [ A0C]. Hence by L 1.2.22.5 ([ACD|V][ADC]) & [AOC] & [AOD] =

-[COD]. O

Generalized Betweenness Relation for n Geometric Objects

Lemma 1.2.22.10. Suppose Ay, As, ..., An,(...) is a finite (countably infinite) sequence of geometric objects of
the set § with the property that a geometric object of the sequence lies between two other geometric objects of the
sequence if its number has an intermediate value between the numbers of these geometric objects. Then the converse
of this property is true, namely, that if a geometric object of the sequence lies between two other geometric objects
of the sequence, its number has an intermediate value between the numbers of these two geometric objects. That
is, (Vi,7,k € N, (respectively, N) ((1 < 7 < k)V (k < j < 1) = [AAjA]) = (Vi,j,k € N, (respectively, N)
([AiA AL = (i< j <k)V(k<j<i))).

Let an infinite (finite) sequence of geometric objects A; € J, where i € N (i € N,,, n > 4), be numbered in such
a way that, except for the first and the last, every geometric object lies between the two geometric objects of the
sequence with numbers, adjacent (in N) to the number of the given geometric object. Then:

Lemma 1.2.22.11. — A geometric object from this sequence lies between two other members of this sequence iff its
number has an intermediate value between the numbers of these two geometric objects.

Prl.2.6

Proof. By induction. [.A1 AzAg] & [A2A3A4] — [A1A2A4] & [A1A3A4] (TL = 4). [.Ai.Anfz.Anfﬂ

Prl.2.6 Prl1.2.7

&[An_zAn_1An] - [AiAn_lAn], [AiAj.An_l]&[.Aj.An_lAn] = [AiA_jAn]. O

Lemma 1.2.22.12. — An arbitrary geometric object from the set J cannot lie on more than one of the generalized
open intervals formed by pairs of geometric objects of the sequence having adjacent numbers in the sequence.

Proof. Suppose [AiBA; 1], [A;BAji1],i < j. ByL1.2.22.11 [A;A;1Aj 1], whence [A;BAi 1] & [AiAipr Ajyq] ©'2320

S[Ais1BAj11] = j #i+1. Butifj > i+1, we have [Aj 11 Aj A j11] & [A;BA;11] P27 [Ai+1BA;11] — a contradiction.

O

121Thus, based on this lemma and some of the preceding results, we can write [ABC] = (AC) = (AB) U {B} U (BC), (AB) C (AC),
(BC) C (AC), (AB) N (BC) = 0.
122For C = D see Pr 1.2.1.
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Lemma 1.2.22.13. - In the case of a finite sequence, a geometric object which lies between the end (the first and the
last, n'" ), geometric objects of the sequence, and does not coincide with the other geometric objects of the sequence,
lies on at least one of the generalized open intervals, formed by pairs of geometric objects with adjacent numbers.

Proof. By induction. Forn = 3see L 1.2.22.8. [41BA,| & B ¢ {Ay, ..., Ap_1} ""Z2° (A1 BA,_1|V][A,_1BA,]) & B ¢

{Ag, ey An_g} = (32' 1eN,_2 & [AlBAH.l) V [An_lB.An] =diieN,_1& [AiBAi+1]. O

Lemma 1.2.22.14. — All of the generalized open intervals (A;A;+1), where i = 1,2, ... ,n — 1, lie inside the gener-
alized open interval (A1 Ay,), i.e. Vi€ {1,2,...,n—1} (AiAit1) C (A1 A4,).

Pr1.2.7

Proof. By induction. For n = 4 ([AxMAg] V [A2MA3]) & [A1 A2 A3] =" [AAMA;]. T M € (AAiq), @ €

{1,2,...,n — 2}, then by the induction hypothesis M € (414,,—1), by L 1.2.22.11 we have [A;1.A,,—1.A,], therefore
Pri.2.7 Pri.2.7

[.AlMAnfl] & [.AlAnfl.An] — [.Al./\/l.An], if M e (Anfl.An) then [.Al.AnfLAn] & [.An71./\/l./4n] — [./41./\/1./4"]
O

Lemma 1.2.22.15. — The generalized half-open interval [A1.Ay) is a disjoint union of the generalized half-open
intervals [A;Aiv1), wherei=1,2,....,n—1:
n—1

[A1A,) = U [Aidit1).

i=1
Also,
The generalized half-closed interval (A1.A,)] is a disjoint union of the generalized half-closed intervals (A; Aiy1],
where it =1,2,...,n—1:

n—1

(ArAn] = U (AiAi].
i=1
In particular, if 3 = [A1.A,] is a set with angular generalized betweenness relation then we have
n—1

3= U i),

i=1
Proof. Use L 1.2.22.13, L. 1.2.22.11, L 1.2.22.14. O

If a finite (infinite) sequence of geometric objects A; € J, i € N,,, n > 4 (n € N) has the property that a geometric
object from the sequence lies between two other geometric objects of the sequence iff its number has an intermediate
value between the numbers of these two geometric objects, we say that the geometric objects Aj, A, ..., An(,...)

are in order [A;As. .. A,(...)].

Theorem 1.2.22. Any finite sequence of geometric objects A; € J, i € N, n > 4 can be renumbered in such a way
that a geometric object from the sequence lies between two other geometric objects of the sequence iff its number has
an intermediate value between the numbers of these two geometric objects. In other words, any finite sequence of
geometric objects A; € J, 1 € Ny, n >4 can be put in order [A1 Az ... Ay].

By a renumbering of a finite (infinite) sequence of geometric objects A;, i € Ny, n >4, we mean a bijective map-
ping (permutation) o : N,, — N,,, which induces a bijective transformation {os : A1, Aa, ..., An} — {A1, Aa, ..., An}
of the set of geometric objects of the sequence by A; — Ay, 1 € Ny

The theorem then asserts that for any finite sequence of distinct geometric objects A;, i € N,,, n > 4 there is a
bijective mapping (permutation) of renumbering o : N, — N,, such that Vi,j,k e N, i <j<k)V(k<j<i) e
[As (i) Ao () Ao ()]-

Proof. Let [AjAn A, L £m #n, 1 € Ny, m e Ny, n €Ny (see Pr 1.2.5). If pe Ny &p #1&p # m&p # n, then by
Pr1.2.5, L 1.2.22.8 [A) Al A, V [AjA, AR V [ A ApAn] V [ALAL ALV [ALAL AR

Define the values of the function o by

for [ApAiAL] let 0(1) = p, 0(2) =1, 0(3) =m, 0(4) = n;

for [AiApAn] let 0(1) =1, 0(2) =p, 0(3) =m, 0(4) = n;

for [AmApAy,] let 0(1) =1, 0(2) =m, 0(3) =p, c(4) = n;

for [AiARAp) let 0(1) =1, 0(2) =m, 0(3) =n, 0(4) = p.

Now suppose that 37 7 : Ny, 1 — Nj,_; such that Vi, j,k € N, (i <j <k)V (k <j<i) e [Aru)Arg)Arm)
By Pr 1.2.5, L 1.2.22.13 [-AnAr(l)-A-r(n—l)] \Y [AT(I)AT(n—l)AT(n)] V3iieN, 2& [AT(i)AnAT(nJ,-l)]-

The values of o are now given

for [AnAy1)Asn-1)] by o(1) =n and o(i + 1) = 7(i), where i € N,,_y;

for [Ag (i) As(n-1)Asn)] by (i) = 7(i), where i € N,,_1, and o(n) = n;

for [A, iy AnAsiit1)] by 0(j) = 7(j), where j € {1,2,...,i}, o(i +1) = n, and o(j + 1) = 7(j), where j €
(i+1,i+2,...,n—1}. See L 1.2.22.11. O
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Some Properties of Generalized Open Intervals

Lemma 1.2.23.1. For any finite set of geometric objects { A1, Aa, ..., A} of a generalized open interval (AB) C J
there is a geometric object C on (AB) not in that set.

Proof. Using T 1.2.22, put the geometric objects of the set {A, A1, As,..., Ay, B} in order [A, A1, As, ..., An, B].
By Pr 1.2.5 3C [A1CAs]. By L 1.2.22.3 [ACB] and C # Ay, A, ..., A,, because by Pr 1.2.3 [A;CAs] = —[A1.A42C]
and by Pr 1.2.1 C # A;, Ap. O

Theorem 1.2.23. Every generalized open interval in J contains an infinite number of geometric objects.
Corollary 1.2.23.2. Any generalized interval-like set in J contains infinitely many geometric objects.

Lemma 1.2.24.3. Let A;, where i € N,,, n > 4, be a finite sequence of geometric objects with the property that every
geometric object of the sequence, except for the first and the last, lies between the two geometric objects with adjacent
(in N) numbers. Then if i < j <1,i<k <1, 4,5,k 1N, (i,j, k1 €N), the generalized open interval (A;Ay) is

included in the generalized open interval (A;A;). 23 Furthermore, if i < j < k <1 and B € (A;Ay) then [A;A;B].
124

Proof. Assume j < k. 12 Then i = j&k =1 = (AA) = (AjAr); i = j&k <1 = [A AkAz] P27 A;Ag) C
(AA): i < j&k =1 = [AA AL TE3T (AAL) C (AA). i < &k < 1= [AAA) & [AiAnAl] P23 (4;A,) C
(AiAl).

The second part follows from [A;A; A & [A;BA;] = Pt [A;A;B]. O

Let a generalized interval Ag.A, be divided into generalized intervals AgA;, A1 As, ... A, 1.A,. Then

Lemma 1.2.24.4. — If By € (Ax—1.Ax), Bz € (Ai—1A)), k <1 then [AoB1B2]. Furthermore, if By € (Ax—1Ax) and
[Ak718182], then [A()BlBQ].

Proof. By L. 1.2.22.11 [Ag ArAp]. Using L 1.2.24.3 (since 0 < k—1, kK <1—1 < n), we obtain [AoB1Ax], [AxB2Ay)-

Hence [B1ArAn] & [ArB2Ar] P27 [B1ABs], [AoB1Ak] & [B1.AkBs] Pri.2.6 [AoB1B3]. To show the second part,
observe that for 0 < k — 1 we have by the preceding lemma (the second part of L 1.2.24.3) [Ag.Ag—182], whence

[AoAr—1Bs] & [Ar1BiBa] "3 [AoB1Bo). O
Corollary 1.2.24.5. — If By € [Ax_1.Ak), B2 € [Ai_1A)), k <, then [AB1Bs).
Proof. Follows from the preceding lemma (L 1.2.24.4) and L 1.2.24.3. O

Lemma 1.2.24.6. — If [AoB1Bs] and By € (AoAy), then either By € [Ax—1.Ax), Ba € [A_1.A;), where 0 < k <1 < mn,
or By € [Ak—1Ar), Bz € [Ak_1Ag), in which case either By = Ag—1 and By € (Ag—1Ak), or [Ax_1B1Bs], where
81782 S (Ak_lAk)

Proof. [AoB1Bs] & [AoBaAn] "E27 [AoBiAy]. By L 1.2.22.15 we have By € [Aw_1Ar), B2 € [A;_1A), where

k,l € N,,. Show k < [. In fact, otherwise By € [Ax_1.Ak), B2 € [Ai—1A4;), k > 1 would imply [AoB2B:1] by the

preceding corollary, which, according to Pr 1.2.3, contradicts [AoB1Bz2]. Suppose k = . Note that [AgB1Bs] = P2t

B1 # B # Ap. The assumption By = A1 would (by L 1.2.24.3; we have in this case 0 < k — 1, because By # Ap)
imply [AoB2Bi] - a contradiction. Finally, if By, By € (Ax—1.Ax) then by P 1.2.3.4 either [Ak_lBlBg] or [Ag—1B281].
But [Ay—1B281] would give [AyB2B1] by (the second part of) L 1.2.24.4. Thus, we have [Aj_181Bs]. There remains
also the possibility that B1 = Ax_1 and By € [A;_1.Ax). O

Lemma 1.2.24.7. - I[f0<j<k<l—1<n and B € (A_1A;) then [A;A,B]. 126

Proof. By L 1.2.22.15 [A; A, A)]. By L 1.2.24.3 [A,BA;]. Therefore, [A; A Al & [ArBA] "237 [A;ALB]. O
Lemma 1.2.24.8. - If D € (Aj71Aj), Be (A—1A),0<j<k<l—1<n, then [DALB].

Proof. Since j < k = j —1 < k, we have from the preceding lemma (L 1.2.24.7) [A;_1.AxB] and from L 1.2.24.3
[.AJ;lD.Ak]. Hence by Pr 1.2.7 [D.Ak[j’] O

Lemma 1.2.24.9. - If By € (A4;Aj), Bo € (A A), 0<i<j<k<
(B1A) C (AiA), (AjAg) # (BiAg) # (BiB2) # (B1A) # (A; z) an
(AiA), (AjAx) # (AjB2) # (B1B2) # (AiB2) # (AiA).

< n then (.Aj.Ak) C (B1Ag) C (B1By) C
Bg) C (8182) C (AZBQ) C

1231n particular, given a finite (countable infinite) sequence of geometric objects A;, i € Ny, (n € N) in order [A1 Az ... An(...)], if
1<j<l,i<k<lI 4kl €Ny, (i35 k1 €N), the generalized open interval (A;Aj) is included in the generalized open interval (A;A;).

124 Also, [BAy.A;], but this gives nothing new because of symmetry.

125Dye to symmetry, we can do so without loss of generality.

126Gimilarly, it can be shown that if 0 <1 < j < k < n and B € (A;_1.4;) then [BA;A;]. Because of symmetry this essentially adds
nothing new to the original statement.
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Proof. 127 Using the properties Pr 1.2.6, Pr 1.2.7 and the results following them (summarized in the footnote ac-
Pri1.2.7

companying T ?7), we can write [A;B1A;] & [A;A;A;] =" [B1A; Akl = (AjAx) C (BiAg) & (A;Ag) # (BiAg).
Also, [Aj AL A & [ABoAl] = [AjABa] = (AjAk) C (A;Ba) & (AjAR) # (A;Bs). [BrAjA] & [Aj A4, Bs) T3¢
[BlAjBQ] & [BlAkBQ] = (AJBQ) C (3132)&(./4]32) 75 (Ble)& (BlAk) C (Ble)& (BlAk) # (Ble)
[BlAkBQ]&[AkBQA[] = [BlBQAl] = (8182) C (81./41) = (3132) 75 (BlAl). [AiBlAj]&[BlAjBQ] = [Ai3132] =
(3132) C (AZBQ) = (Ble) # (Ale) [A»LBlBQ] & [3182./4[] = [.A181.Al] & [.AZBQ.AZ] = (BlAl) C (AZ.AZ)& (BLAZ) 7£
(Aid) & (AiBs) C (Aidy) & (AiBa) # (AsAy). O

Lemma 1.2.24.10. - Suppose By € [ApAky1), Ba € [AjAi11), where 0 < k+ 1 <1 < n. Then (Ax414;) C
(B1B2) C (A A1), (Ap+141) # (B1B2) # (AkAi1).

Proof. 128 Suppose By = Ay, Bo = A;. Then [AxAri1A)] = (Ag+1 A1) C (AA) = (BiB2) & (Ak+1A4;) #
(B1B2). Also, in view of k < k+ 1 <1 < [+ 1, taking into account L 1.2.24.3, we have (Ay+1.4;) C (B1B2) C
(Ap A1) & (App1Ar) # (BiBs) # (ApAi1). Suppose now By = A, B2 € (AiAi41). Then [Ap A A1) & [AiBo A1) =
[AkAlBQ]&[AkB2A[+1] = [8182./4[+1 = (BlBg) C (.Ak.A[+1)&(BlBg) 75 (AkA[+1). [AkAk+1Al]&[Ak+1A[BQ] =
[ArAp1B2] = (Axp1B2) C (ArB2) = (B1B2) & (Aky1B2) # (BiB2). (Ars1A1) C (Apr1B2) & (App1 Al) #
(Ak+1BQ>&(Ak+1BQ> C (3132)&(Ak+132) 75 (8182) = (AkJrlAl) C (BlBQ)&(Ak+1A[) 75 (3132). Now con-
sider the case By € (ApAg+1), B = A;. We have [ApB1Ak+1] & [ApAkr1All = [A1 Ak All = (Ak1 A C
(B1B2) & (Ap1 A1) # (BiB2). [ApAri1 Al & [ARB1 AR 1] = [BiAr1 Al = (Arp1Ai) C (BiB2) & (Apy1Ar) #
(8182). [BlAk+1Al]&[Ak+1AlAl+1] = [BlA[.A[J,_l] = (8182) = (BlAl) C (81A1+1)&(8182) 75 (BlsAH-l)'
[ApBAki1] & [ApAkp1 A1) = [ABiAdi] = (Bidia) 0 (Apdip) & (Bidig)  # (AgAiga).
(BiB2) €  (BiAi1) & (BiB2)  #  (BiAdi1) & (Bidipr)  C (Apdip) & (Bidipr)  #  (Aedin) =
(B1B2) C (ArAi41) & (B1B2) # (ArAir1). Finally, in the case when By € (ApAk11), Ba € (A A1) the result
follows immediately from the preceding lemma (L 1.2.24.9). O

Theorem 1.2.24.

Basic Properties of Generalized Rays

Given a set J, which admits a generalized betweenness relation, a geometric objects O € J and another geometric
object A € J, define the generalized ray Off),ug emanating from its origin O, as the set Off) ={B|BeJ&B +#
0 & —[AOB]}.130

Lemma 1.2.25.1. Any geometric object A lies on the ray O 4.
Proof. Follows immediately from Pr 1.2.1. O

Lemma 1.2.25.2. If a geometric object B lies on a generalized ray O 4, the geometric object A lies on the generalized
ray Og, that is, B€ O4 = A € Og.

Proof. From Pr1.21 0 € J& A€ J&B e J&-[AOB] = —-[BOA]. O

Lemma 1.2.25.3. If a geometric object B lies on a generalized ray O 4, then the ray O 4 is equal to the ray Op.

Proof. Let C € O4. If C = A, then by L 1.2.25.2 C € Op. C # O # A& —[A0C] "23° [0.AC] V [OCA]. Hence
=[BOC], because from Pr 1.2.6, Pr 1.2.7 [BOC| & ([OAC]V [OCA|) = [BOA]. O

Lemma 1.2.25.4. If generalized rays O 4 and Op have common points, they are equal.

Proof. O4NOz#0=3CC 0 &C e O "2ZX 04 =0p = 0p. O

IfBeOy BeJ&B¢ O &8+ O), we say that the geometric object B lies in the set J on the same side (on
the opposite side) of the given geometric object O as (from) the geometric object A.

127 An easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set
{Ao0, A1, ..., An,B1, B2} are in order [(Ao...)A;B1A; ... ApBaAj(... An).

128 Again, we use in this proof the properties Pr 1.2.6, Pr 1.2.7 and the results following them (summarized in the footnote accompanying
L 1.2.22.8) without referring to these results explicitly.

129The set J is usually assumed to be known and fixed, and so its symbol (along with the accompanying parentheses) is dropped from
the notation for a generalized ray. (See also our convention concerning the notation for generalized betweenness relation on p. 46.)

1300ne might argue that this definition of a generalized ray allows to be viewed as rays objects very different from our traditional
”common sense” view of a ray as an “ordered half-line” (for examples, see pp. 65, 104). However, this situation is quite similar
to that of many other general mathematical theories. For example, in group theory multiplication in various groups, such as groups
of transformations, may at first sight appear to have little in common with number multiplication. Nevertheless, the composition of
appropriately defined transformations and number multiplication have the same basic properties reflected in the group axioms. Similarly,
our definition of a generalized ray is corroborated by the fact that the generalized rays thus defined possess the same essential properties
the conventional, ”half-line” rays, do.
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Lemma 1.2.25.5. The relation ”to lie in the set J on the same side of the given geometric object O € J as” is an
equivalence relation on J\ {O}. That is, it possesses the properties of:

1) Reflezivity: A geometric object A always lies on the same side of the geometric object O as itself;

2) Symmetry: If a geometric object B lies on the same side of the geometric object O as A, the geometric object
A lies on the same side of O as B.

3) Transitivity: If a geometric object B lies on the same side of the geometric object O as the geometric object A,
and a geometric object C lies on the same side of O as B, then C lies on the same side of O as A.

Proof. 1) and 2) follow from L 1.2.25.1, L 1.2.25.2. Show 3): B€ O4&C € O "'Z2? 04 =05 = 0c = C € 0.

O
Lemma 1.2.25.6. A geometric object B lies on the opposite side of O from A iff O divides A and B.

Proof. By the definition of the generalized ray O 4 we have B € J&B ¢ O, & B # O = [AOB]. Conversely, from
Pr1210ecJ&AcJ&BecIJ&[AOB = B#0&B ¢ O, O

Lemma 1.2.25.7. The relation "to lie in the set J on the opposite side of the given geometric object O from” is
symmetric.

Proof. Follows from L 1.2.25.6 and [AOB] P2t [BOA]. O

If a geometric object B lies in the set J on the same side (on the opposite side) of the geometric object O as
(from) a geometric object A, in view of symmetry of the relation we say that the geometric objects A and B lie in
the set J on the same side (on opposite sides) of O.

Lemma 1.2.25.8. If geometric objects A and B lie on one generalized ray O¢ C J, they lie in the set J on the same
side of the geometric object O. If, in addition, A # B, then either A lies between O and B, or B lies between O and

A.

Proof. A€ O "'Z2% 04 =0c. Be Oy = B+ 0&—[BOA]. When also B # A, from Pr 1.2.5 [0AB]V [OBA]. O
Lemma 1.2.25.9. If a geometric object C lies in the set J on the same side of the geometric object O as a geometric
object A, and a geometric object D lies on the opposite side of O from A, then the geometric objects C' and D lie on
opposite sides of O. 31

Proof. C € O = —[AOC| & C # O. If also C # A 132, from Pr 1.2.5 [ACO] or [CAOQ], whence by Pr 1.2.6, Pr 1.2.7
([ACO] Vv [CAQ)) & [AOD] = [COD]. O

Lemma 1.2.25.10. If geometric objects C and D lie in the set J on the opposite side of the geometric object O from
a geometric object A, 133 then C and D lie on the same side of O.

Proof. By Pr1.2.1,L 1.2.22.9 [AOC]| & [AOD] = O #C& —[COD] = D € O¢. O

Lemma 1.2.25.11. Suppose a geometric object C lies on a generalized ray O, a geometric object D lies on a
generalized ray Op, and O lies between A and B. Then O also lies between C and D.

Proof. Observe that D € Op 112253 Op = Op and use L. 1.2.25.9. O

Lemma 1.2.25.12. A geometric object O € J divides geometric objects A € J and B € J iff the generalized rays
O and Og are disjoint, O, N Op = 0, and their union, together with the geometric object O, gives the set J, i.e.
J=0,4U0U{0}. That is,

[.AOB] = (3 =0,4U0pU {O})&(OAQOB = @)

Proof. Suppose [AOB]. If C € J and C ¢ Op, C # O then [COB] by the definition of the generalized ray Op.

[COB| & [A0B] "'Z2° L[COA] = C € O4. 4N Op =0, because otherwise C € O4&C € O "ZX* B e Oy =

~[408].
Now suppose J = O4 U Og U{0}) and (04N O = 0). Then B € Op&Oo1NOg =0 = B ¢ Oy, and
Be3&B#0&B¢ 04— [AOB]. O

Lemma 1.2.25.13. A generalized ray O 4 contains the generalized open interval (O.A).
Proof. If B € (OA) then from Pr 1.2.1 B # O and from Pr 1.2.3 =[BOA]. We thus have B € O4. O

Lemma 1.2.25.14. For any finite set of geometric objects { A1, Az, ..., An} of a ray O 4 there is a geometric object
C on O4 not in that set.

131 Making use of L 1.2.25.6, this statement can be reformulated as follows:

If a geometric object C lies on O 4, and O divides the geometric objects A and D, then O divides C and D.
1320therwise there is nothing else to prove
1330ne could as well have said: If O lies between A and C, as well as between A and D ...
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Proof. Immediately follows from T 1.2.23 and L 1.2.25.13. O

Lemma 1.2.25.15. If a geometric object B lies between geometric objects O and A then the generalized rays Op
and O 4 are equal.

Proof. [OBA] 22 Be 04 "EE P 05 =04, O

Lemma 1.2.25.16. If a geometric object A lies between geometric objects O and B, the geometric object B lies on
the generalized ray O 4.

Proof. By Pr1.2.1, Pr 1.2.3 [OAB] = B # O & —[BOA] = B € O 4.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.25.15). O

Lemma 1.2.25.17. If generalized rays O 4 and O'5 are equal, their origins coincide.

Proof. Suppose O’ # O We have also O # Q& O'p = 04 = O ¢ Oy. Therefore, O’ € J&O' £ O & O ¢ Oy =

O €0y O cOY&BEeOL= [00B]. BeOp&|00B"EEP 0 c 05 =04 - a contradiction. O

Lemma 1.2.25.18. If a generalized interval Ao A, is divided into n generalized intervals Ag A1, A1 As ..., An_1An
(by the geometric objects A1, Aa, ... A,_1), 13 the geometric objects A1, Az, ... An_1, A, all lie on the same side of
the geometric object Ay, and the generalized rays Ao, Aoy -- -+ Aoa, are equal. 35

Proof. Follows from L 1.2.22.11, L. 1.2.25.15. O

Theorem 1.2.25. Every generalized ray contains an infinite number of geometric objects.

Linear Ordering on Generalized Rays

Suppose A, B are two geometric objects on a generalized ray Op. Let, by definition, (A < B)o,, FEN [OAB]. If

A < B, 135 we say that the geometric object A precedes the geometric object B on the generalized ray Op, or that
the geometric object B succeeds the geometric object A on the generalized ray Op.

Lemma 1.2.26.1. If a geometric object A precedes a geometric object B on the generalized ray Op, and B precedes
a geometric object C on the same generalized ray, then A precedes C on Op:
A<B&B<C= A=<C, where A,B,C € Op.

Proof. [0AB] & [0BC] "2 [0 AC). O

Lemma 1.2.26.2. If A, B are two distinct geometric objects on a generalized ray Op then either A precedes B or B
precedes A; if A precedes B then B does not precede A.

Proof. A€ Op&Be Op "'22® B e 04 = —[AOB]. If A # B, then by Pr 1.2.5 [0OAB] V [OBA], that is, A < B

Pr1.2.3

or B<A A<B=[0OAB] =" —-[OBA] = ~(B< A). O

Lemma 1.2.26.3. If a geometric object B lies on a generalized ray Op between geometric objects A and C, 137 then
either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if A precedes B and B precedes
C, or C precedes B and B precedes A, then B lies between A and C. That is,

[ABC] < (A< B&B<C)V(C<B&B=<A).

Proof. From the preceding lemma (L 1.2.26.2) we know that either A < C or C < A, i.e. [OAC] or [OCA]. Suppose
[OAC]. '3 Then [0AC] & [ABC] 227 [LOAB) & [£OBC] = A < B&B < C. Conversely, A < B&B < C =
[0AB] & [0BC) "227 [4Bc). O

For geometric objects A, B on a generalized ray Op we let, by definition, A < B PN (A=< B)V(A=DB).

Theorem 1.2.26. Every generalized ray is a chain with respect to the relation <.

Proof. A=A (A=B&B=<A)"Z? A =B (A<B&B <A "Z" 4 <0 A£BES? (U<
B)V(B<A).DO

1341n other words, a finite sequence of geometric objects A;, where i +1 € Ny,_1, n > 4, has the property that every geometric object
of the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in N) numbers.

135By the same token, we can assert also that the geometric objects Ag, A1, ..., An_1 lie on the same side of the geometric object Ay,
but due to symmetry, this adds essentially nothing new to the statement of the lemma.

136Tn most instances in what follows we will assume the generalized ray Op (or some other generalized ray) fixed and omit the mention
of it in our notation.

1371 fact, once we require that A,C € Op and [ABC], this ensures that B € Op. (To establish this, we can combine [OBC] shown below
with, say, L 1.2.25.3, L. 1.2.25.13. ) This observation will be referred to in the footnote accompanying proof of T 1.2.28.

138Gince [ABC] and [CBA] are equivalent in view of Pr 1.2.1, we do not need to consider the case [OC.A] separately.
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Linear Ordering on Sets With Generalized Betweenness Relation

Let O € 3, P € J, [POQ]. Define the relation of direct (inverse) ordering on the set J, which admits a generalized
betweenness relation, as follows:

Call Op the first generalized ray, and Og the second generalized ray. A geometric object A precedes a geometric
object B in the set J in the direct (inverse) order iff:

- Both A and B lie on the first (second) generalized ray and B precedes A on it; or

- A lies on the first (second) generalized ray, and B lies on the second (first) generalized ray or coincides with O;
or

- A= 0O and B lies on the second (first) generalized ray; or

- Both A and B lie on the second (first) generalized ray, and A precedes B on it.

Thus, a formal definition of the direct ordering on the set J can be written down as follows:
def

(A<1B)y <= (A € Op&B € Op&B < A V(A€ Op&kB=0)V(A € Op&kBeOg)V(A=0&B €
Og)V(A€e0g&BeOg&A=<B),

and for the inverse ordering: (A<23)3g(AEOg&BEOg&B%A)\/(AEOQ&B:O)\/(AEOQ&BE
Op)VA=0&BeOp)V(AcOp&BecOp& A=< DB).

The term ”inverse order” is justified by the following trivial
Lemma 1.2.27.1. A precedes B in the inverse order iff B precedes A in the direct order.

For our notions of order (both direct and inverse) on the set J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin O, as well as on the choice of the ray-defining geometric objects
P and Q.

Toward this end, let O' € J, P’ € J, [P'O’'Q'], and define a new direct (inverse) ordering with displaced origin
(ODO) on the set J, as follows:

Call O’ the displaced origin, O'p; and O’ o the first and the second displaced generalized rays, respectively. A
geometric object A precedes a geometric object B in the set J in the direct (inverse) ODO iff:

- Both A and B lie on the first (second) displaced generalized ray, and B precedes A on it; or

- A lies on the first (second) displaced generalized ray, and B lies on the second (first) displaced generalized ray
or coincides with @’; or

- A= O and B lies on the second (first) displaced generalized ray; or

- Both A and B lie on the second (first) displaced generalized ray, and A precedes B on it.

Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(A<\B); €L (A e O'p &BEOp &B<A) V(A€ O p &B=0)V(AcOp &BE O o)V (A=0&BE

O'g)VAeO g &Be O g &A<DB),
and for the inverse ordering: (A=<4LB)5 JLUN (AeO0g&BecOg&B<AVAecOg&B=0)V(Ac
Og&BeOp)VA=0&BcOp)VA€cO p &BeOp &A<DB).

Lemma 1.2.27.2. If the displaced generalized ray origin O’ lies on the generalized ray Op and between O and P’,
then the generalized ray Op contains the generalized ray O'pr, O'p) C Op.

Proof. A€ O'p = A€ Op, because otherwise A # O & A ¢ Op & O € Op 22 [A00') and [AOO'| & [00'P'] PE3T

[AO/P/] = A §§ O'p. O

Lemma 1.2.27.3. Let the displaced origin O’ be chosen in such a way that O’ lies on the generalized ray Op, and
the geometric object O lies on the ray O’ o/. If a geometric object B lies on both generalized rays Op and O' g/, then
it divides O and O'.

L1.2.25.8

Proof. 0' € Op&BeOp&k O e 0o &Be O o "Z2® [0'0B] & ~[00'B], whence by Pr 1.2.5 = [OBO']. O

Lemma 1.2.27.4. An ordering with the displaced origin O’ on a set J which admits a generalized betweenness rela-
tion, coincides with either direct or inverse ordering on that set (depending on the choice of the displaced generalized
rays). In other words, either for all geometric objects A, B in J we have that A precedes B in the ODO iff A precedes
B in the direct order; or for all geometric objects A, B in § we have that A precedes B in the ODO iff A precedes B
in the inverse order.

Proof. Let 0" € Op, 0 € 0'g/, (A<"1B)3. Then [P'O'Q]& 0 € 0'g "Z27 [00'P| and O € Op & [0O'P'] V232

O/p/ C Op.

Suppose A€ 0/7)/, B € O/p/. A€ O/p/&B S O/p/&o/p/ COp=>AecOp&Be Op. Ac O/p/&B S
O'p & (A=<1B)y = (B=A), , = [0O'BA. B e O'p&0 e 0o "B [00'B], [00'B|&[0'BA] "=3°
(B =< Ao, = (A=<1B);.

Suppose A€ O'p &B=0". Ac O'p &B=0'&0 € 0o ""ZE [0BA] = (A4=<1B);.

Suppose A € O'p/, B Og. A€ Op&(B=0OVBe Og) = (A<1B)3. If B € Op then O’ € Op& O €

0o &BeOp&Be 0y 23 [0/BO] and [AO'B] & [0'BO] "23° [ABO] = (A<1B);. 139

’

139We take into account that A € O'p, & B € O o L1.228-11 [AO'B].
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Suppose A, B € O g. (A<'1B); = (A< B)O/Q, = [O'AB]. If A€ Op and B € Op then by L 1.2.27.3 [O'BO]
and [0'BO] & [0’ AB] 227 [ABO] = (A<1B);. (A€ Op&B = 0)V (A€ Op&B e Og)V(A=0&B €
0g) = (A=<1B);. Now let A € Og, B € Og. Then —[AOB]; ~[OBA], because [OBA] & [BAO') "22° [0/BO] PEL3°
~[BOO'| = 0’ € O and B€ Og & O’ € O = O’ € Og. Finally, <[A0B] & —[OBA] V23 [0AB] = (A<1B);. O

Lemma 1.2.27.5. Let A, B be two distinct geometric objects in a set J, which admits a generalized betweenness
relation, and on which some direct or inverse order is defined. Then either A precedes B in that order, or B precedes
A, and if A precedes B, B does not precede A, and vice versa.

Proof. O

Lemma 1.2.27.6. If a geometric object A precedes a geometric object B on set line J with generalized betweenness
relation, and B precedes a geometric object C in the same set, then A precedes C on J:
A<B&B <C= A=<C, where A,B,C € J.

Proof. Follows from the definition of the precedence relation < (on sets with generalized betweenness relation) and
L 1.2.26.1. 40 O

For geometric objects A, 5 in a set J, which admits a generalized betweenness relation, and where some direct

or inverse order is defined, we let A=<;B <& (A=<;B) V (A = B), where ¢ = 1 for the direct order and ¢ = 2 for the

inverse order.

Theorem 1.2.27. FEvery set J, which admits a generalized betweenness relation, and equipped with a direct or inverse
order, is a chain with respect to the relation =;.

Proof. O

Theorem 1.2.28. If a geometric object B lies between geometric objects A and C, then in any ordering of the kind
defined above, defined on the set J, containing these geometric objects, either A precedes B and B precedes C, or C
precedes B and B precedes A; conversely, if in some order, defined on the set J admitting a generalized betweenness
relation and containing geometric objects A, B,C, A precedes B and B precedes C, or C precedes B and B precedes A,
then B lies between A and C. That is,

VAB,CeJ[ABCl < (A<B&B<C)V(C<B&B < A).

Proof. Suppose [ABC]. 141

For A,B,C € Op and A, B,C € Og see L 1.2.26.3.

If A,B € Op,C= 0 then [ABO] = (B < A)o, = (A < B)j; also B < C in this case from definition of order on
line.

If A,B € Op, C e Og then [ABC) & [BOC) 23" [ABO] = (A < B); and B € Op &C € Og = (B < C);.

For A € Op, B= 0, C € Og see definition of order on line.

For A € Op, B,C € Og we have [AOB| & [ABC] 237 [0BC] = B < C.
If A= 0O and B,C € Og, we have [OBC] = B < C.
Conversely, suppose A < B and B < C in the given direct order on J.
For A,B,C € Op and A, B,C € Og see L 1.2.26.3.

If A,B € Op,C=0 then (A< B); = (B=< Ao, = [ABO].

If A,B € Op, C € Og then [ABO] & [BOC] "22° [ABC).

For A€ Op, B= 0, C € Og we immediately have [ABC] from L 1.2.25.11.

For A € Op, B,C € Og we have [AOB] & [0BC] "22° [ABC).

If A=0 and B,C € Og, we have B < C = [OBC]. O

142

140The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote Op, Og
respectively, the first and the second ray for the given direct order on J. If a geometric object A € {O} UOg precedes a geometric object
B € 3, then B € Og. If a geometric object A precedes a geometric object B € Op U {O}, then A € Op.

M1 Again, we denote Op, Og respectively, the first and the second generalized ray for the given order on J. The following trivial
observations help limit the number of cases we have to consider: If A € Op and C € Op U {O} then [ABC| implies B € Op. Similarly,
if Ae {O}UOg and C € Og then [ABC] implies B € Og. In fact, in the case A € Op, C = O this can be seen immediately using,
say, L 1.2.25.3. For A,C € Op we conclude that B € Op once [ABC] immediately from L 1.2.30.4, which, of course, does not use the
present lemma or any results following from it. Alternatively, this can be shown using proof of L 1.2.26.3 - see footnote accompanying
that lemma.

142 Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.27.6): If a geometric object
A € {O} UOg precedes a geometric object B € J, then B € Og. If a geometric object A precedes a geometric object B € Op U {O},
then A € Op.
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Complementary Generalized Rays

Lemma 1.2.29.1. A generalized interval (OA) is the intersection of the generalized rays O and Ao, i.e. (OA) =
O4NAo.

Proof. B € (OA) = [OBA], whence by Pr 1.2.1, Pr 1.2.3 B # O, B # A, =[BOA]|, and —[B.AQ], which means
BeOyand B e Ap.

Suppose now B € O 4N Ap. Hence B # O, =[BOA] and B # A, —[BAO]. Since O, A, B are distinct, by Pr 1.2.5
[BOA]V [BAO]V [OBA]. But since =[BOA], —[BAO], we find that [OBA]. O

Given a generalized ray O 4, define the generalized ray (9;(3) (usually written simply as O% 143) " complementary in

the set J to the generalized ray O 4, as 0§ = J\ ({O}UO4). In other words, the generalized ray 0%, complementary
to the generalized ray O4, is the set of all geometric objects lying in the set J on the opposite side of the geometric
object O from the geometric object A. An equivalent definition is provided by

Lemma 1.2.29.2. 0% = {B|[BOA]}. We can also write O% = Op for any geometric object D € J such that [DOA].
Proof. See L 1.2.25.6, L. 1.2.25.3. O

Lemma 1.2.29.3. The generalized ray (O%)°, complementary to the generalized ray O, complementary to the given
generalized ray O 4, coincides with the generalized ray O 4: (0%)¢ = O4.

Proof. 3\ ({0} U@\ ({0}U04) =040

Lemma 1.2.29.4. Given a geometric object C on a generalized ray O 4, the generalized ray O 4 s a disjoint union
of the generalized half - open interval (OC| and the generalized ray C¢, complementary to the generalized ray Co :
04 = (OClUCE.
Proof. By L 1.2.25.3 O¢ = O4. Suppose M € O¢ UCg. By Pr 1.2.3, Pr 1.2.1[OMC|V M = CV [OCM] =
SMOCI&EMAO => Me Oy =0c.
Conversely, if M € O4 = Oc and M # C then M # C& M # O & —~[MOC] 225 [OMC] v [0CM] = M €
(OC)VMecCE. O

Lemma 1.2.29.5. Given in a set J, which admits a generalized betweenness relation, a geometric object B, distinct
from a geometric object O € J, the geometric object B lies either on O4 or on 0%, where A€ J, A# O.

Proof. O

Theorem 1.2.29. Let a finite sequence of geometric objects A1, As,..., A, n € N, from the set J be numbered
in such a way that, except for the first and (in the finite case) the last, every geometric object lies between the two
geometric objects with adjacent (in N) numbers. Then the generalized ray Ai 4, is a disjoint union of generalized

half-closed intervals (A;Aiy1], i = 1,2,...,n — 1, with the generalized ray A,5, , complementary to the generalized
ray An a,, where k € {1,2,...,n— 1}, i.e.
n—1

Ara, = U (Aidi ] U ALY, -

i=1

Proof. Observe that [A; A An] 22 A, 4 = A4, then use L 1.2.22.15, L, 1.2.29.4. O

Sets of Geometric Objects on Generalized Rays

Given a geometric object O in a set J, which admits a generalized betweenness relation, a nonempty set B C J is
said to lie in the set J on the same side (on the opposite side) of the geometric object O as (from) a nonempty set
A C J iff for all geometric objects A € A and all geometric objects B € 9B, the geometric object B lies on the same
side (on the opposite side) of the geometric object O as (from) the geometric object A € 2. If the set A (the set B)
consists of a single element, we say that the set B (the geometric object B) lies in the set J on the same side of the
geometric object O as the geometric object A (the set 2).

Lemma 1.2.30.1. If a set B C J lies in the set J on the same side of the geometric object O as a set A C J, then
the set A lies in the set J on the same side of the geometric object O as the set *B.

Proof. See L 1.2.25.5. O

Lemma 1.2.30.2. If a set B C J lies in the set J on the same side of the geometric object O as a set A C J, and a
set € C J lies in the set J on the same side of the geometric object O as the set B, then the set € lies in the set J
on the same side of the geometric object O as the set 2.

Proof. See L 1.2.25.5. O

143Whenever the set J is assumed to be known from context or unimportant.
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Lemma 1.2.30.3. If a set B C J lies in the set J on the opposite side of the geometric object O from a set A C J,
then the set U lies in the set J on the opposite side of the geometric object O from the set B.

Proof. See L 1.2.25.6. O

In view of symmetry of the relations, established by the lemmas above, if a set B C J lies in the set J on the
same side (on the opposite side) of the geometric object O as a set (from a set) 2 C J, we say that the sets 2 and
B lie in the set J on one side (on opposite sides) of the geometric object O.

Lemma 1.2.30.4. If two distinct geometric objects A, B lie on a generalized ray O¢, the generalized open interval
(AB) also lies on the generalized ray Oc.

Proof. By L 1.2.25.8 [OAB] V [OBA], whence by T 1.2.29 (AB) C O4 = O¢. O

Given a generalized interval AB in the set J such that the generalized open interval (AB) does not contain O € J,
we have (L 1.2.30.5 - L 1.2.30.7):

Lemma 1.2.30.5. — If one of the ends of (AB) is on the generalized ray Oc, the other end is either on Oc¢ or
coincides with O.

Proof. Let, say, B € O¢c. By L 1.2.25.3 Op = O¢. Assuming the contrary to the statement of the lemma, we have
A€ Og = [AOB] = O € (AB), which contradicts the hypothesis. O

Lemma 1.2.30.6. — If (AB) has some geometric objects in common with the generalized ray O¢, either both ends
of (AB) lie on O¢, or one of them coincides with O.

Proof. By hypothesis IM M € (AB)NO¢c. M € O¢ M2353 04 = Op. Assume the contrary to the statement of

the lemma and let, say, A € O5,. Then [AOM] & [AMB] = Prl 2T [AOB] = O € (AB) - a contradiction. O

Lemma 1.2.30.7. — If (AB) has common points with the generalized ray Oc, the generalized interval (AB) lies on
Oc, (AB) C Oc.

Proof. Use L 1.2.30.6 and L 1.2.29.4 or LL 1.2.30.4. O

Lemma 1.2.30.8. If A and B lie on one generalized ray Oc, the complementary generalized rays A% and Bg, lie in
the set J on one side of the geometric object O.

Proof. O

Lemma 1.2.30.9. If a generalized open interval (CD) is included in a generalized open interval (AB), neither of the
ends of (AB) lies on (CD).

Proof. A ¢ (CD), B ¢ (CD), for otherwise (A € (CD) VB € (CD)) & (CD) C (AB) = A€ (AB)V B € (AB), which
is absurd as it contradicts Pr 1.2.1. O

Lemma 1.2.30.10. If a generalized open interval (CD) is included in a generalized open interval (AB), the gener-
alized closed interval [CD] is included in the generalized closed interval [AB].

Proof. By Pr 1.2.4 3€ [CED). € € (CD) & (CD) C (AB) "2 ¢ € (CD)N (AN Ba). A (CD)&B ¢ (CD)&E €

Ag N (CD)&E € Ban (CD) 22 C e AgU{A}&C € BAU{B}&D € Ag U{A}&D € B4U{B} = C €

(AsNBAU{AU{B}&D € (AsNBa)U{AU{B} "2 C e [AB| & D € [AB]. O

Corollary 1.2.30.11. For generalized intervals AB, CD both inclusions (AB) C (CD), (CD) C (AB) (i.e., the
equality (AB) = (CD)) holds iff the generalized (abstract) intervals AB, CD are identical.

Proof. #1. (CD) C (AB) “"222'° (D] c [AB] = C € [AB] & D € [AB]. On the other hand, (AB) C (CD) “'ZX"
C¢ (AB) D ¢ (AB).

2. (AB) C (CD) & (CD) C (AB) "' 220 [4B] (D] & [CD] C [AB]. (AB) = (CD) & [AB] = [CD] = {A4,B} =
[AB] \ (AB) = [€D] \ (CD) = {¢, D}. O

Lemma 1.2.30.12. Both ends of a generalized interval CD lie on a generalized closed interval [AB] iff the generalized
open interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from L 1.2.22.5, . 1.2.30.10. O

Theorem 1.2.30. A geometric object O in a set J which admits a generalized betweenness relation, separates the
rest of the geometric objects in this set into two non-empty classes (generalized rays) in such a way that...

Proof. O
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Figure 1.58: If rays [, m € J lie between rays h, k € J, the open angular interval (Im) is contained in the open angular
interval (hk).

Betweenness Relation for Rays

Given a pencil J of rays, all lying in some plane « on a given side of a line a C a and having an initial point O, define
an open angular interval (O40¢), formed by the rays O 4, O¢ € J, as the set of all rays Op € J lying inside the angle
ZAOC. That is, for O4,0¢ € J we let (0O4O0¢) = {Op|Op C IntZAOC}. In analogy with the general case, we
shall refer to [04O0¢), (0aOc¢], [040¢] as half-open, half-closed, and closed angular intervals, respectively. 44 In
what follows, open angular intervals, half-open, half-closed and closed angular intervals will be collectively referred
to as angular interval-like sets. The definition just given for open, half-open, dots, angular intervals is also applicable
for the set J of rays, all lying in some plane « on a given side of a line a C a and having an initial point O, with two
additional rays added: the ray h = O4, where A € a, A # O, and its complementary ray h°. For convenience, we
can call the set of rays, all lying in « on a given side of @ C « and having the origin O, an open angular pencil. And
we can refer to the same set with the rays h, h° added, as a closed angular pencil.!4®

Given a set J of rays having the same initial point O and all lying in plane o on the same side of a line a as a
given point @ (an open pencil), or the same set with the rays h = O4, where A € a, A # O, and h¢ added to it (a
closed pencil), the following L. 1.2.31.1 — T 1.2.37 hold. The angles spoken about in these statements are all assumed
to be extended angles. 146

Lemma 1.2.31.1. If a ray Op € J lies between rays Oa, Oc of the pencil J, the ray O4 cannot lie between the
rays Op and Oc¢. In other words, if a ray Op € J lies inside ZAOC, where O 4,0¢c € J, then the ray O4 cannot lie
inside the angle ZBOC.

Lemma 1.2.31.2. Suppose each of l,m € J lies inside the angle formed by h,k € J. If a ray n € J lies inside the
angle Z(I,m), it also lies inside the angle Z(h,k). In other words, if rays l,m € J lie between rays h,k € J, the open
angular interval (Im) is contained in the open angular interval (hk), i.e. (Im) C (hk) (see Fig 1.58).

Lemma 1.2.31.3. Suppose each side of an (extended) angles Z(I,m) (wherel,m € J) either lies inside an (extended)
angle Z(h, k), where h,k € J, or coincides with one of its sides. Then if a ray n € J lies inside Z(I,m), it also lies
inside the angle Z(h,k). 147

Lemma 1.2.31.4. If a ray | € J lies between rays h,k € J, none of the rays of the open angular interval (hl) lie on
the open angular interval (Ik). That is, if a ray | € J lies inside Z(h, k), none of the rays 48 lying inside the angle
Z(h,1) lie inside the angle Z(1, k).

Proposition 1.2.31.5. If two (distinct) rays | € J, m € J lie inside the angle Z(h,k), where h € J, k € J, then
either the ray 1 lies inside the angle Z(h,m), or the ray m lies inside the angle Z(h,l).

147t should be noted that, as in the case of intervals consisting of points, in view of the equality Z(h, k) = Z(k, h) and the corresponding
symmetry of open angular intervals, this distinction between half-open and half-closed angular intervals is rather artificial, similar to the
distinction between a half-full glass and a half-empty one!

145 ater, we will elaborate on the topological meaning of the words ”open”, ”closed” used in this context.

14650me of them merely reiterate or even weaken the results proven earlier specifically for rays, but they are given here nonetheless to
illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for the
generalized betweenness relation on the ray pencil J, we give two formulations for a few results to follow.

1471t may prove instructive to reformulate this result using the ”pointwise” terminology for angles: Suppose each side of an angle ZCOD
either lies inside an (extended) angle ZAOB, or coincides with one of its sides. Then if a ray has initial point O and lies inside ZCOD,
it lies inside the (extended) angle AOB.

148 A ctually, none of the points lying on any of these rays.
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O a

Figure 1.59: If 0 € J divides h,k € J, as well as h and [ € J, it does not divide k, [.

O a

Figure 1.60: Suppose hi,ha,...,h,(,...) is a finite (countably infinite) sequence of rays of the pencil J with the
property that a ray of the sequence lies between two other rays of the sequence. Then if a ray of the sequence lies
inside the angle formed by two other rays of the sequence, its number has an intermediate value between the numbers
of these two rays.

Lemma 1.2.31.6. Each of Il,m € J lies inside the closed angular interval formed by h,k € J (i.e. each of the rays
1, m either lies inside the angle Z(h,k) or coincides with one of its sides) iff all the rays n € J lying inside the angle
Z(l,m) lie inside the angle Z(k,1).

Lemma 1.2.31.7. If a ray l € J lies between rays h,k of the pencil J, any ray of the open angular interval (hk),
distinct from 1, lies either on the open angular interval (hl) or on the open angular interval (Ik). In other words, if
aray l € J lies inside Z(h,k), formed by the rays h, k of the pencil J, any other (distinct from 1) ray lying inside
Z(h, k), also lies either inside Z(h,l) or inside Z(l, k).

Lemma 1.2.31.8. If a ray o € J divides rays h,k € J, as well as h and l € J, it does not divide k,l. (see Fig. 1.59)

Betweenness Relation For n Rays With Common Initial Point

Lemma 1.2.31.9. Suppose h1,ha, ..., ho(,...) is a finite (countably infinite) sequence of rays of the pencil J with the
property that a ray of the sequence lies between two other rays of the sequence '*° if its number has an intermediate
value between the numbers of these rays. (see Fig. 1.60) Then the converse of this property is true, namely, that if
a ray of the sequence lies inside the angle formed by two other rays of the sequence, its number has an intermediate
value between the numbers of these two rays. That is, (Vi,j, k € N,, (respectively, N) (i <j < k)V(k<j<i)=
[hihjhi))) = (Vi, j, k € Ny, (respectively, N) ([hihjhi] = (i < j <k)V (k< j<i))).

Let an infinite (finite) sequence of rays h; of the pencil J, where i € N (i € N,,, n > 4), be numbered in such a
way that, except for the first and the last, every ray lies inside the angle formed by the two rays of sequence with
numbers, adjacent (in N) to that of the given ray. Then:

149j e., lies inside the angle formed by two other rays of the sequence
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Lemma 1.2.31.10. — A ray from this sequence lies inside the angle formed by two other members of this sequence
iff its number has an intermediate value between the numbers of these two rays.

Lemma 1.2.31.11. - An arbitrary ray of the pencil J cannot lie inside of more than one of the angles formed by
pairs of rays of the sequence having adjacent numbers in the sequence.

Lemma 1.2.31.12. - In the case of a finite sequence, a ray which lies between the end (the first and the last, n*")
rays of the sequence, and does not coincide with the other rays of the sequence, lies inside at least one of the angles,
formed by pairs of rays with adjacent numbers.

Lemma 1.2.31.13. — All of the open angular intervals (hihi11), wherei =1,2,...,n—1, lie inside the open angular
interval (hihy). In other words, any ray k, lying inside any of the angles Z(hi, hiy1), where i =1,2,...,n— 1, lies
inside the angle Z(h1,hy), i.e. Vi€ {1,2,....,n—1} k C IntZL(hi, hit1) = k C IntZ(h1, hy,).

Lemma 1.2.31.14. — The half-open angular interval [hihy,) is a disjoint union of the half-closed angular intervals
[hihiy1), wherei=1,2,...,n—1:
n—1
[h1hy) = U [hihis1)-
i=1
Also,
The half-closed angular interval (h1hy] is a disjoint union of the half-closed angular intervals (h;h;y1], where
1=1,2,...,n—1:
n—1
(hihn] = U (hihita].
1

Thus, szj; [h1, hy], where hy = h, hy, = h€, is a pencil of rays with initial point O lying (in a given plane) on
n—1 n—1

the same side of a line a as a point A, plus the rays h, h¢, we have as = ( U IntZ(h;, hi+1)> U ( U hi).

i=1 i=2

(2

Proof. O

If a finite (infinite) sequence of rays h; of the pencil J, ¢ € N, n > 4 (n € N) has the property that if a ray of
the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate value
between the numbers of these two rays, we say that the rays hi, ho,..., hy(,...) are in order [h1hg ... hy(...)].

Theorem 1.2.31. Any finite sequence of rays h; € J, i € N,,, n > 4 can be renumbered in such a way that a ray
from the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate
value between the numbers of these two rays. In other words, any finite (infinite) sequence of rays h; € J, i € Ny,
n >4 can be put in order [hiha ... hy].

Lemma 1.2.31.12. For any finite set of rays {h1,ha,...,hn} of an open angular interval (hk) C J there is a ray
on (hk) not in that set.

Proposition 1.2.31.13. Every open angular interval in J contains an infinite number of rays.

Corollary 1.2.31.14. FEvery angular interval-like set in J contains an infinite number of rays.

Basic Properties of Angular Rays

Given a pencil J of rays lying in plane « on the same side of a line a as a given point @), and two distinct rays o,
h, h # o of the pencil J, define the angular ray oy, emanating from its origin, or initial ray o, as the set of all rays
k # o of the pencil J such that the ray o does not divide the rays h, k. ' That is, for o,h € J, 0 # h, we define
on = {klk CJ&k # o0& —[hok]}. 151

Lemma 1.2.32.1. Any ray h lies on the angular ray op,.

Lemma 1.2.32.2. If a ray k lies on an angular ray on, the ray h lies on the angular ray or. That is, k € o, = h € oy
Lemma 1.2.32.3. If a ray k lies on an angular ray oy, the angular ray oy, coincides with the angular ray ok.
Lemma 1.2.32.4. If angular rays oy and o have common rays, they are equal.

Lemma 1.2.32.5. The relation “to lie in the pencil J on the same side of a given ray o € J as” is an equivalence
relation on 3\ {o}. That is, it possesses the properties of:

1) Reflezivity: A ray h always lies on the same side of the ray o as itself;

2) Symmetry: If a ray k lies on the same side of the ray o as h, the ray h lies on the same side of o as k.

3) Transitivity: If a ray k lies on the same side of the ray o as h, and a ray l lies on the same side of o as k,
then 1 lies on the same side of o as h.

150 e. the ray o does not lie inside the angle Z(h, k).

151 Note that, according to our definition, an angular ray is formed by traditional rays instead of points! In a similar manner we could
construct a ”hyper-angular” ray formed by angular rays instead of points or rays. This hyper-angular ray would have essentially the
same properties given by Pr 1.2.1 - Pr 1.2.7 as the two types of rays already considered, but, on the other hand, it would definitely be
too weird to allow any practical use.
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Lemma 1.2.32.6. A ray k lies on the opposite side of o from h iff o divides h and k.
Lemma 1.2.32.7. The relation "to lie in the pencil J on the opposite side of the given ray o from ...” is symmetric.

If a ray k lies in the pencil J on the same side (on the opposite side) of the ray o as (from) a ray h, in view of
symmetry of the relation we say that the rays h and k lie in the set J on the same side (on opposite sides) of o.

Lemma 1.2.32.8. If rays h and k lie on one angular ray o; C J, they lie in the pencil J on the same side of the ray
O. If, in addition, h # k, then either h lies between o and k, or k lies between o and h.

Lemma 1.2.32.9. If a ray | lies in the pencil § on the same side of the ray o as a ray h, and a ray m lies on the
opposite side of o from h, then the rays | and m lie on opposite sides of 0. 152

Lemma 1.2.32.10. If rays | and m lie in the pencil J on the opposite side of the ray o from a ray h, > then | and
m lie on the same side of o.

Lemma 1.2.32.11. Suppose a ray l lies on an angular ray on, a ray m lies on an angular ray oy, and o lies between
h and k. Then o also lies between I and m.

Lemma 1.2.32.12. A ray o € J divides rays h € J and k € J iff the angular rays oy, and oy are disjoint, op, Nox = 0,
and their union, together with the ray o, gives the pencil J, i.e. J = op Uog U {o}. That is,
[hok] < (J = op, U ok U{o}) & (op, Mo, = 0).

Lemma 1.2.32.13. An angular ray oy, contains the open angular interval (oh).

Lemma 1.2.32.14. For any finite set of rays {h1,ha,...,hy} of an angular ray oy, there is a ray I on op not in
that set.

Lemma 1.2.32.15. If a ray k lies between rays o and h then the angular rays or and oy, are equal.
Lemma 1.2.32.16. If a ray h lies between rays o and k, the ray k lies on the angular ray op,.
Lemma 1.2.32.17. If angular rays oy, and o'y are equal, their origins coincide.

Lemma 1.2.32.18. If an angle (=abstract angular interval) Z(ho, hy) is divided into n angles Z(ho, h1), Z(h1, ha),
ooy L(hn—1,hn) (by the rays hi, ha, ..., hyo1), 154 the rays hi,ha, ... hn_1, hn all lie on the same side of the Tay ho,
and the angular rays hop,, hop,, ..., hop, are equal. 155

Theorem 1.2.32. Every angular ray contains an infinite number of rays.

Line Ordering on Angular Rays

Suppose h, k are two rays on an angular ray o,,. Let, by definition, (h < k), <% [(||]. If h < k, 1% we say that

the ray h precedes the ray k on the angular ray o,,, or that the ray & succeeds the ray h on the angular ray op,.

Lemma 1.2.33.1. If a ray h precedes a ray k on an angular ray o, and k precedes a ray I on the same angular
ray, then h precedes | on op,:
h<k&k<1=h=<I, where h,k,l € op,.

Proof. O

Lemma 1.2.33.2. If h, k are two distinct rays on an angular ray o,, then either h precedes k, or k precedes h; if h
precedes k then k does not precede h.

Proof. O

For rays h, k on an angular ray o,, we let, by definition, h < k & (h<k)VvV(h=k).

Theorem 1.2.33. Every angular ray is a chain with respect to the relation <.

152 Making use of L 1.2.32.6, this statement can be reformulated as follows:
If a ray [ lies on oy, and o divides h and m, then o divides [ and m.

1530ne could as well have said: If o lies between h and [, as well as between h and m . ..

1541n other words, a finite sequence of rays h;, where i + 1 € N,,_1, n > 4, has the property that every ray of the sequence, except for
the first and the last, lies between the two rays with adjacent (in N) numbers.

155By the same token, we can assert also that the rays ho,hi...,hn_1 lie on the same side of the ray hn,, but due to symmetry, this
adds essentially nothing new to the statement of the lemma.

1561n most instances in what follows we will assume the angular ray om, (or some other angular ray) fixed and omit the mention of it in
our notation.
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Line Ordering on Pencils of Rays

Let 0 € 3, p € J, [pog|. Define the relation of direct (inverse) ordering on the pencil J of rays lying in plane « on the
same side of a line a as a given point ), which admits a generalized betweenness relation, as follows:

Call o, the first angular ray, and o4 the second angular ray. A ray h precedes a ray k in the pencil J in the direct
(inverse) order iff:

- Both h and k lie on the first (second) angular ray and k precedes h on it; or

- h lies on the first (second) angular ray, and k& lies on the second (first) angular ray or coincides with o; or

- h =0 and k lies on the second (first) angular ray; or

- Both & and k lie on the second (first) angular ray, and h precedes k on it.

Thus, a formal definition of the direct ordering on the pencil J can be written down as follows:

(h=1k); €5 (he o, &k €0, &k < h)V (h €o0,&k=0)V (h€o0y&k €oy)V(h=o0&keo,)V(heo&ke

0q&h < k),

and for the inverse ordering: (h<2k)3 PN (heos&kecos&k<h)V(he€o,&k=0)V(heo&ke o,V (h=
o&keo,)V(heo,&keo,&h<k).
The term ”inverse order” is justified by the following trivial

Lemma 1.2.34.1. h precedes k in the inverse order iff k precedes h in the direct order.

For our notion of order (both direct and inverse) on the pencil J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin o of the pencil J, as well as on the choice of the rays p and g,
forming, together with the ray o, angular rays o, and o,, respectively.

Toward this end, let o' € J, p’ € J, [p'0'¢’], and define a new direct (inverse) ordering with displaced origin (ODO)
on the pencil J, as follows:

Call o' the displaced origin, o',y and o', the first and the second displaced angular rays, respectively. A ray h
precedes a ray k in the set J in the direct (inverse) ODO iff:

- Both h and k lie on the first (second) displaced angular ray, and k precedes h on it; or

- h lies on the first (second) displaced angular ray, and k lies on the second (first) displaced angular ray or
coincides with o'; or

- h =0 and k lies on the second (first) displaced angular ray; or

- Both h and k lie on the second (first) displaced angular ray, and h precedes k on it.

Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(h=lk)y &5 (he oy &k e oy &k <=h)V(hedy &k=0)V(hedy&kedy)V(h=0&kedy)V(he

g &kedy&h=<k),
and for the inverse ordering: (h<4k); PN (hedp&kedy&k<h)V((hedyg&k=0)V(hedys&k e
Olp/)V(h:O/&kE 0/p/)\/(h€ 0/p/&k€ 0/p/&h< k)

Lemma 1.2.34.2. If the origin o' of the displaced angular ray o'y lies on the angular ray o, and between o and p’,
then the angular ray o, contains the angular ray o'y, o'y C op.

Lemma 1.2.34.3. Let the displaced origin o' be chosen in such a way that o' lies on the angular ray oy, and the ray
o lies on the angular ray o'y . If a ray k lies on both angular rays o, and oy, then it divides o and o'.

Lemma 1.2.34.4. An ordering with the displaced origin o' on a pencil J of rays lying in plane a on the same side of
a line a as a given point Q, which admits a generalized betweenness relation, coincides with either direct or inverse
ordering on that pencil (depending on the choice of the displaced angular rays). In other words, either for all rays
h,k in J we have that h precedes k in the ODO iff h precedes k in the direct order; or for all rays h, k in J we have
that h precedes k in the ODO iff h precedes k in the inverse order.

Lemma 1.2.34.5. Let h, k be two distinct rays in a pencil J of rays lying in plane o on the same side of a line a
as a given point @, which admits a generalized betweenness relation, and on which some direct or inverse order is
defined. Then either h precedes k in that order, or k precedes h, and if h precedes k, k does not precede h, and vice
versa.

For rays h, k in a pencil J of rays lying in plane « on the same side of a line a as a given point @), which admits a

generalized betweenness relation, and where some direct or inverse order is defined, we let h=<;k PN (h=:k)V(h = k),

where ¢ = 1 for the direct order and i = 2 for the inverse order.

Theorem 1.2.34. Every set J of rays lying in plane o on the same side of a line a as a given point Q, which admits
a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation
=,

i

Theorem 1.2.35. If a ray k lies between rays h and [, then in any ordering of the kind defined above, defined on
the pencil J, containing these rays, either h precedes k and k precedes [, or | precedes k and k precedes h; conversely,
if in some order, defined on the pencil J of rays lying in plane o on the same side of a line a as a given point @Q,
admitting a generalized betweenness relation and containing rays h, k, [, we have that h precedes k and k precedes [,
or l precedes k and k precedes h, then k lies between h and l. That is,
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Vhkle3 [kl e (h<k&k=<1)Vv(I=<k&k=h).

Complementary Angular Rays
Lemma 1.2.36.1. An angular interval (oh) is the intersection of the angular rays op, and he, i.e. (0h) = op N h,.

Given an angular ray o, define the angular ray o}, complementary in the pencil J to the angular ray o, as
05 = J\ ({o} Uoy). In other words, the angular ray of, complementary to the angular ray o, is the set of all rays
lying in the pencil J on the opposite side of the ray o from the ray h. An equivalent definition is provided by

Lemma 1.2.36.2. of = {k|[koh]}. We can also write 0§ = oy, for any ray m € J such that [moh)].

Lemma 1.2.36.3. The angular ray (of,)°, complementary to the angular ray of,, complementary to the given angular
ray oy, coincides with the angular ray op: (05)° = op,.

Lemma 1.2.36.4. Given a ray [ on an angular ray op, the angular ray oy, is a disjoint union of the half - open
angular interval (ol] and the angular ray 1S, complementary to the angular ray l, :
op = (o] UIS.

Lemma 1.2.36.5. Given in a pencil J of rays lying in plane o on the same side of a line a as a given point @,
which admits a generalized betweenness relation, a ray k, distinct from a ray o € J, the ray k lies either on oy, or on
o5, where h € J, h # o.

Theorem 1.2.36. Let a finite sequence of rays hi, ha, ..., hy,, n € N, from the pencil J, be numbered in such a way
that, except for the first and (in the finite case) the last, every ray lies between the two rays with adjacent (in N)
numbers. Then the angular ray hyy,, is a disjoint union of half-closed angular intervals (hihit1], 1 =1,2,...,n—1,

with the angular ray hy,, , complementary to the angular ray hyy, , where k € {1,2,...,n =1}, i.e.

n—1
hip, = U (hihia] URS,
i=1

Given a ray o in a pencil J of rays lying in plane « on the same side of a line a as a given point @, which admits
a generalized betweenness relation, a nonempty set 8 C J of rays is said to lie in the pencil J on the same side (on
the opposite side) of the ray o as (from) a nonempty set 2 C J of rays iff for all rays h € 2 and all rays k € B,
the ray k lies on the same side (on the opposite side) of the ray o as (from) the ray h € 2. If the set 2 (the set B)
consists of a single element, we say that the set B (the ray k) lies in the pencil J on the same side of the ray o as
the ray h (the set ).

Sets of (Traditional) Rays on Angular Rays

Lemma 1.2.37.1. If a set B C J lies in the pencil J on the same side of the ray o as a set A C J, then the set A
lies in the pencil J on the same side of the ray o as the set B.

Lemma 1.2.37.2. If a set B C J lies in the pencil J on the same side of the ray o as a set A C J, and a set € C J
lies in the set J on the same side of the ray o as the set B, then the set € lies in the pencil § on the same side of the
ray o as the set 2.

Lemma 1.2.37.3. If a set B C J lies in the set J on the opposite side of the ray o from a set A C J, then the set A
lies in the set J on the opposite side of the ray o from the set 5.

In view of symmetry of the relations, established by the lemmas above, if a set B C J lies in the pencil J on the
same side (on the opposite side) of the ray o as a set (from a set) A C J, we say that the sets 2 and 9B lie in the
pencil J on one side (on opposite sides) of the ray o.

Lemma 1.2.37.4. If two distinct rays h, k lie on an angular ray oy, the open angular interval (hk) also lies on the
angular ray oy.

Given an angle Z(h, k),*®” whose sides h, k both lie in the pencil J, such that the open angular interval (hk) does
not contain o € J, we have (L 1.2.37.5 - L 1.2.37.7):

Lemma 1.2.37.5. — If one of the ends of (hk) lies on the angular ray oy, the other end is either on oy or coincides
with o.

Lemma 1.2.37.6. — If (hk) has rays in common with the angular ray oy, either both ends of (hk) lie on o, or one
of them coincides with o.

Lemma 1.2.37.7. — If (hk) has common points with the angular ray oy, the interval (hk) lies on oy, (hk) C o;.

Lemma 1.2.37.8. If h and k lie on one angular ray o;, the complementary angular rays hS and kS lie in the pencil
J on one side of the ray o.

157In unified terms, an abstract angular interval.
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Table 1.1: Names of polygons

n | polygon n | polygon n polygon
2 | digon 11 | undecagon (hendecagon) 30 triacontagon
3 | triangle (trigon) 12 | dodecagon 40 tetracontagon
4 | quadrilateral (tetragon) || 13 | tridecagon (triskaidecagon) 50 pentacontagon
5 | pentagon 14 | tetradecagon (tetrakaidecagon) 60 hexacontagon
6 | hexagon 15 | pentadecagon (pentakaidecagon) || 70 heptacontagon
7 | heptagon 16 | hexadecagon (hexakaidecagon) 80 octacontagon
8 octagon 17 | heptadecagon (heptakaidecagon) 90 enneacontagon
9 | nonagon enneagon 18 | octadecagon (octakaidecagon) 100 | hectogon
10 | decagon 19 | enneadecagon (enneakaidecagon) || 1000 | myriagon

20 | icosagon

Lemma 1.2.37.9. If the interior of an angle Z(I,m) is included in the interior of an angle Z(h, k), neither of the
sides of the angle Z(h, k) lies inside Z(I,m).

Proof. O

Lemma 1.2.37.10. If the interior of an angle Z(I,m) is included in the interior of an angle Z(h,k), the set
IntZ(l,m) UPs(,m) is included in the set IntZ(l,m) U P, m)-

Proof. O

Corollary 1.2.37.11. For angles Z(h, k), Z(I,m) both inclusions Int/(h,k) C IntZ(l,m), IntZ(l,m) C IntZ(h,k)
(i.e., the equality IntZ(h, k) = IntZ(l,m) holds iff the angles Z(h, k), Z(I,m) are identical.

Proof. O

Lemma 1.2.37.12. Both sides of an angle Z(l,m) are included in the set IntZ/(h,k) U P k) iff the interior
IntZ(l,m) of the angle Z(I,m) is included in the interior Int/(h,k) of the angle Z(h,k).

Proof. O

Theorem 1.2.37. A ray o in a pencil J of rays lying in plane o on the same side of a line a as a given point
Q, which admits a generalized betweenness relation, separates the rest of the rays in this pencil into two non-empty
classes (angular rays) in such a way that...

Paths and Polygons: Basic Concepts

Following Hilbert, we define paths and polygons as follows:

A (rectilinear) path, 1°® or a way AgA;As... A,_1A,, in classical synthetic geometry, is an (ordered) n-tuple,
n > 1, of abstract intervals AgA;, A1As, ..., Ap—1A4, , such that each interval A;A;;1, except possibly for the first
ApA; and the last, A,,_1A,, shares one of its ends, A;, with the preceding (in this n-tuple) interval A;_1A;, and the
other end A;;1 with the succeeding interval A;114;4+2. (See Fig. 1.61, a).)

Given a path AgA;1As ... A, the abstract intervals Ay Ag1, or open interval (A Agy1), depending on the context
(an attempt is made in this book to always make clear in which sense the term is used in any particular instance
of its use), is called the k*" side of the path, the closed interval [AjAyy1] the k*" side-interval of the path, the line
aa, A, the k" side-line of the path, and the point Ay - the k" vertex of the path. The path AgA1As... A1 4,
is said to go from Ag to A, and to connect, or join, its beginning Ay with end A,. The first Ag and the last A,
vertices of the path are also collectively called its endpoints, or simply its ends. Two vertices, together forming a
side, are called adjacent.

The contour Pa,4,...4, of the path AgA; ... A, is, by definition, the union of its sides and vertices:

Paga;..a, = U;O(AiAiH) Jf40, 41,0 A}

If the first and the last vertices in a path AgA;...A,A,+1 coincide, i.e. if Ag = A,41, the path is said to be
closed and is called a polygon AgA; ...A,, or n-gon, to be more precise. %? (See Fig. 1.61, b).)

A polygon with n = 3 is termed a triangle, with n = 4 a quadrilateral, and the names of the polygons for n > 5
are formed using appropriate Greek prefixes to denote the number of sides: pentagon (n = 5), hexagon (n = 6),
octagon (n = 8), decagon(n = 10), dodecagon (n = 12), dots (see Table 1.1).

1581n this part of the book we shall drop the word rectilinear because we consider only such paths.

159Gince, whenever we are dealing with a polygon, we explicitly mention the fact that we have a polygon, and not just general path, the
notation ”polygon AgAj ... Ay” should not lead to confusion with the ”general path” notation AgA; ... AnAp+1 for the same object,
where in the case of the given polygon Ag = Ap41.
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Figure 1.61: a) A general path; b) A polygon with 15 sides

To denote a triangle A, A5A43,'%0 which is a path A; 43434, with the additional condition A4 = A;, a special
notation AABC' is used.

For convenience, in a polygon A; A, ... A, viewed from the standpoint of the general path notation A1 As ... A, Apt,

where A1 = A, 41, we let, by definition A, 12 = As.
Alternatively, one could explicate the intuitive notion of a jagged path or a polygon using the concept of an
ordered path, using the definition of an ordered interval:

An ordered (rectilinear) path, 16 or a way AgA; Az ... A, 14, in classical synthetic geometry, is an (ordered)
—_—

n-tuple, n > 1, of ordered abstract intervals AgA;, A1 Ay, ..., Ay_1A, , such that each ordered interval A;A; 1,
except possibly for the first M and the last, A,_1A4,, has as its beginning A; the end of the preceding (in this
(n — 1)-tuple) ordered interval A;_1A;, and its end A;;; coincides with the beginning of the succeeding ordered
interval AH_lAH_Q.

Although it might appear that the concept of an ordered path better grasps the ordering of the intervals which
make up the path, we shall prefer to stick with the concept of non-ordered path (including non-ordered polygons),
which, as above, will be referred to simply as paths. This is not unreasonable since the results concerning paths (and,
in particular, polygons), are formulated ultimately in terms of the basic relations of betweenness and congruence
involving the sides of these paths, and these relations are symmetric.

A path Aj1A149... A4k, formed by intervals Aj4q1Ai42, Ajr2Aiys, ..., Aipk—1A4k, consecutively joining k con-
secutive vertices of a path A;A,...A,, is called a subpath of the latter. A subpath A;41A4;42... A4 of a path
A1 Ay ... Ay, different from the path itself, is called a proper subpath.

A path A1As...A,, in particular, a polygon, is called planar, if all its vertices lie in a single plane «, that is,
Ja A; € a for all i € N,,.

Given a path A; Ay ... A, we can define on the set P4, 4,..4, \ {An} an ordering relation as follows. We say that
a point A € Pa, a,..a, \ {A,} precedes a point B € Py, 4,..4, \ {A} and write A < B, %2 or that B succeeds A,
and write B >~ A iff (see Fig. 1.62)

— either both A and B lie on the same half-open interval [A;A;+1) and A precedes B on it; or

— A lies on the half-open interval [A;, A;1+1), B lies on [A;, Aj41) and @ < j.

We say that A precedes B on the half-open interval [A4;A4;.1) iff A = A; and B € (A;,A4;11), or both A, B €
(AiAi—i-l) and [AlAB]

For an open path A;As ... A,, we can extend this relation onto the set Pa, 4,...a, if we let, by definition, A < A4,
for all A € PA1A2~~~An \ {An}

Lemma 1.2.38.1. The relation < thus defined is transitive on Pa, a,..a, \ {An}, and in the case of an open path
on Pa,as...A,- That is, for A,B,C € Pa,a,..a, \{An} (A, B,C € Pa,a,..a, if A1Az... A, is open) we have
A<B&B<C=A<C.

1601t is sometimes more convenient to number points starting from the number 1 rather than 0, i.e. we can also name points A1, Ao, ...
instead of Ag, A1,....

1611 this part of the book we shall drop the word rectilinear because we consider only such paths.

162Properly, we should have written (A < B) Ay As...A,- However, as there is no risk of confusion with precedence relations defined for
other kinds of sets, we prefer the shorthand notation.
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Figure 1.62: An illustration of ordering on a path. Here on an open path A;As...A, we have, for instance,
A} < A3 < A5 < A< B < Ag < A7 < C < Ag < Ag. Note that our definition of ordering on a path A; A4, ... A,
conforms to the intuitive notion that a point A € Py, 4,..4, precedes another point B € Pa, 4, 4, if we encounter
A sooner than B when we "take” the open path A1 A5 ... A, from A; to A,.

Figure 1.63: A peculiar path A;As... A2 (a), and the corresponding naturalized path B1Bs... By (b). Note that
the path A1 A5 ... Ajo drawn here is a very perverse one: aside from being peculiar, it is not even semi-simple!

Proof. (sketch) Let A < B, B < C. It A,B,C € (A;, A;41) for some i € N,,, we have, using the definition,
A<B&B<C=[A4AB|&[A;BC] hL2g2 [A;AC]. The other cases are even more obvious. O

We shall call a path A;As...A,, which contains (at least once) three or more consecutive collinear vertices, a
peculiar path. Otherwise the path is called non-peculiar. A subpath A;41A;42... Ajgk—1Ak41, (k> 3), formed by
consecutive collinear vertices in a peculiar path, is called a peculiar k- tuple, and the corresponding vertices are called
peculiar vertices. 03 If Aj 1 A;10... Ajig), k > 2, is a peculiar k-tuple, A;q is called its first, and A, its last
point.

If two (or more sides of a path share a vertex, they are said to be adjacent.

By definition, the angle between adjacent sides A;_1A;, A;A;t1, called also the angle at the vertex A;, of a
non-peculiar path A; Ay ... A, is the angle Z(A; 4, |, AiAHl) =LA 1A A,

This angle is also denoted ZA; whenever this simplified notation is not likely to lead to confusion.

An angle adjacent supplementary to an angle of a non-peculiar path (in particular, a polygon) is called an exterior
angle of the path (polygon).

An angle ZA;_1A;A;41, formed by two adjacent sides of the path A; A, ... A,, is also said to be adjacent to its
sides A;_1A;, A;A;+1, any of which, in its turn, is said to be adjacent to the angle ZA; 1 A;A; 1.

Given a peculiar path A;As ... A, define the corresponding depeculiarized, or naturalized path B1 By ... B, by
induction, as follows (see Fig. 1.63):

Let By = Ay, if By_1 = A; let By = A,,, where m is the least integer greater than [ such that the points A;_1,
A, Ay, are not collinear, ie. m=min{p |l+1<p<n& -3 (4;-1 €b& A € b& A, € b)}. If no such m exists,
B1Bs ... Bjy_1 is the required naturalized path.

In addition to naturalization, in the future we are going to need a related operation which we will refer to as
straightening: given a path Ay ... A;... Aiyg ... Ay, we can replace it with the path Ay ... A;A;4k ... A, (note that

164)

165

163Note that peculiar vertices are not necessarily all different. Only adjacent vertices are always distinct. So are all peculiar vertices in
a semisimple path.

164for paths that are not even semi-simple; see below

165 An angle between adjacent sides of a non-peculiar path (in particular, a polygon) will often be referred to simply as an angle of the

path (polygon).
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AAkJrl B:Aiﬂ :Aj:Ak Ak B:Aiﬂ Ak+1

Figure 1.64: No three side - intervals meet in any point.

the vertices A4;, A;yr are now adjacent). We say that we straighten the sides A;A;41,..., Aiyr—1A;4r of the path
A; ... A, into the single side A;A;; of the new path Ay ... A;A;yk ... A,. Of course, this new path always contain
fewer sides than the initial path.

Of course, there are paths (polygons) on which we can perform successive straightenings.

Simplicity and Related Properties
A path is termed semisimple if it has the following properties:
Property 1.2.9. All its vertices (except the first and the last one in the case of a polygon) are distinct;
Property 1.2.10. No vertex lies on a side of the path;
Property 1.2.11. No pair of its sides meet.
Alternatively, a path is called semisimple if the following properties hold:
Property 1.2.12. No two side-intervals meet in any point which is not a vertex;
Property 1.2.13. No three side - intervals meet in any point.
Property 1.2.14. No side can contain an endpoint of the path.

Lemma 1.2.38.2. The two definitions of a semisimple path are equivalent.

Proof. Obviously, Pr 1.2.12 is just a reformulation of Pr 1.2.11, so Pr 1.2.11 and Pr 1.2.12 are equivalent. It is also
obvious that Pr 1.2.14 is a particular case of Pr 1.2.12.

To prove that Pr 1.2.9 — Pr 1.2.11 imply Pr 1.2.13 suppose the contrary, namely, that 3B B € [4;A;41] N
[AjAj1] N [AgAgt+a], @ # 5 # k. By Pr 1.2.12 B is an end of at least two of these side-intervals. Without loss of
generality, we can assume B = A;11 = A;, 1% and thus we have i + 1 = j by Pr 1.2.9. 7 B = A,,; does not
coincide with either of the ends of [A;Ak11] (Fig. 1.64, a) shows how this hypothetic situation would look), because
each end is a vertex of the path, i # j # k from our assumption, ¢ + 1 > 1, and by Pr 1.2.9 the vertices A;, where
i=2,...,n, are distinct. Nor can B lie on (A;Ak+1), (see Fig. 1.64, b)) because A;;1 is a vertex, and by Pr 1.2.10
no vertex of the path can lie on its side. We have thus come to a contradiction which shows that Pr 1.2.13 is true.
To show Pr 1.2.12 — Pr 1.2.14 = Pr 1.2.9 let B = A; = Ay, where 1 < k —i < n — 1. 15 Then the following three
side - intervals meet in B:

for:=1: [AlAQ], [AkflAk], [AkAkJrl]. 169

for ¢ > 1: [AiflAi], [AiA»L'Jrl], [AkflAk]

They are all distinct because 1 < k — ¢, and we arrive at a contradiction with Pr 1.2.13, which testifies the truth
of Pr 1.2.9.

Finally, to prove Pr 1.2.12 — Pr 1.2.14 = Pr 1.2.10 suppose 4; € (ApAk+1). But by Pr 1.2.14 i # 1, n, and thus
[A;—14;], [A;A;11] are both defined and meet [AgAg41] and each other in B = A; contrary to Pr 1.2.13. O

Lemma 1.2.38.3. If Aj11A142 ... Ak 15 a peculiar k-tuple in a semisimple path A1 Ay ... Ay, then Appq, Ao, .o, Ak
are distinct points in order [Ajp1Ai42 ... Ak

166Note that [A;A;+1] and [A;A;41] enter our assumption symmetrically, so we can ignore the case A1 = A;.

167From Pr 1.2.9 all vertices of the path are distinct, except A1 = A, in a polygon, and so the mapping v : i — A;, where i =
1,2,...,n — 1, is injective.

168 The first part of this inequality can be assumed due to symmetry on i, k (k —i > 0) and definition of a side as an (abstract) interval,
which is a pair of distinct points (this gives k — i # 1). The second part serves to exclude the case of a polygon.

1691 A, Aj1 1] makes sense because i = 1&k—i<n—1=k<n.
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AHl:AH} Al+2 AHI Al+3 Al+2 Al+2 AHI A1+3
a) b) 0)
AHI :Al+k AHZ AHk-l
d)
AHZ Al+k-1 A1+1 Al+k
e)
A1+1 A1+2 A1+i Al+k A1+i+1 A1+k-1

Figure 1.65: Illustration for proof of L 1.2.38.3.

Proof. By induction on k. Let k = 3. Ajy1 # Ao, Ajyo # Ajys because Ajy1Ajys, AjpoA; 3 are sides of the path

and therefore are intervals, which are, by definition, pairs of distinct points. A;11 # Aj4+s (this hypothetic case is

shown in Fig.1.65, a)), because A;41A;42 = Ajy2Aiys LAl (A1 A12) N (Ajp2A;13) # 0, contrary to Pr 1.2.11.

Since Ajy1, Ajyo, Ajys are distinct and collinear (due to peculiarity), by T 1.2.2 [Aj41A143A142] V [Ajp2 Ai41A143] V
[Ai41 4142443, but the first two cases (shown in Fig.1.65, b, ¢) contradict semisimplicity of A A4s ... A, by Pr 1.2.10.

Obviously, since Aj41 442 ... Ay is a peculiar k- tuple, Aj11A;49... Aj4x—1 is a peculiar (k — 1)-tuple. Then,
by induction hypothesis, A;11, Ajta, ..., Aitk—1 are distinct points in order [Aj11Ai42 ... Aivk-1]- Airr # Aigk-1
by definition of Ajyr—1Ai4k. Ak # Ai+1, (this hypothetic case is shown in Fig.1.65, d)) because otherwise
[Ai41A142 .. Aigk—1] = Aigo € (Ai4r-1A4i1k), which by Pr 1.2.10 contradicts semisimplicity. Since A;y1, Ajyx—1,
A4, are distinct and collinear, we have by T 1.2.2 [Aj1x—1Ai41 4145 V [Ais1 A1k Arri—1) V [Ai41 A4 k-1 Ai+x]. But

[Aj+k—1A1+1A1+k] contradicts Pr 1.2.10. (This situation is shown is shown in Fig.1.65, e).) [Ai41Ai+xAi+r—1] =

Aivr € [Al1Ai4k—1) L2217 5 ¢ Ni—2 Ai1r € [Ai+iAiyit1), (see Fig.1.65, f)) which contradicts either Pr 1.2.9

or Pr 1.2.10, because A;y; is a vertex, and A;;;A;1;41 is a side of the path. Therefore, we can conclude that

[Ars1 Al k1 Arpr]. Finally, [Aj 1 Aprs . Ajre1] = [Ai Ak Akl [Ar Avpr o A e 1] & [Ars Arpra A g] 722872

[Arfr—2Aiik—1Air], [Ai1 Ao A1) & [Ar k2 Ay k-1 Al k] = (A1 Ao Appp—1Ays]. O

Theorem 1.2.38. Naturalization preserves the contour of a semisimple path. That is, if A1As...Ayis a peculiar
semisimple path, and B1Bsy ... By, is the corresponding naturalized path, then Pp,B,...B,=Pa, a,. 4, -

Proof. O

A path that is both non-peculiar and semisimple is called simple. In the following, unless otherwise explicitly
stated, all paths are assumed to be simple. 17

Some Properties of Triangles and Quadrilaterals

Theorem 1.2.39. If points Ay, Az, As do not colline, the triangle NA; Ay As 1™ is simple.

Proof. Non-peculiarity is trivial. Let us show semisimplicity. Obviously, we must have A, # Ay # Az for the abstract

intervals A1 As, As Az, A3 A; forming the triangle A A1 As A3 to make any sense. So Pr 1.2.9 holds. Pr 1.2.10, Pr 1.2.11

are also true for our case, because =3a (4; € a& A; € a& Ay, € a) RE [A;A;) N (AjAL] =0, where i # j # k. O

Lemma 1.2.40.1. If points A, F lie on opposite sides of a line agp, the quadrilateral FEAB is semisimple.

Proof. (See Fig. 1.66.) Obviously, Jaap = A # B and AagpF = A # F. Thus, the points F, E, A, B are all
distinct, so Pr 1.2.9 holds in our case. "> AappF implies that A, E, B, as well as F, E, B are not collinear,
whence by L 1.2.1.9 [BE) N (EF] = 0, [BE)N (EA] = 0, [EB) N (BF] =0, [EB) N (BA] = 0, [EA) N (AB] = 0,

[EF)N (FB] = (). This means, in particular, that B ¢ (EF), B ¢ (EA), E ¢ (BF), E ¢ (BA). Also, AappF "=2°

170Note that, according to the naturalization theorem T 1.2.38, usually there is not much sense in considering peculiar paths.

171Recall that, by definition, AA; A2 A3 is a closed path A; As A3 A4 with Ag = Aj.

172\We have also taken into account the trivial observation that adjacent vertices of the quadrilateral are always distinct. (Every such
pair of vertices forms an abstract interval.)

73



A

Figure 1.66: If points A, F lie on opposite sides of a line agp, the quadrilateral FEAB is semisimple.

[AE)agp(EF| & [AE)agp(BF| & [AB)agp(BF| & [AB)agp(EF]. From all this we can conclude that Pr 1.2.10,
Pr 1.2.11 are true for the case in question. O

Theorem 1.2.40. Given a quadrilateral FEAB, if points E, B lie on opposite sides of the line aar, and A, F lie
on opposite sides of app, then the quadrilateral FEAB is simple and no three of its vertices colline. '™

Proof. EaapB = FE ¢ axp& B ¢ aap, AappF = A ¢ app & F ¢ agp. Thus, no three of the points F, E, A, B
are collinear. This gives non-peculiarity of FEAB as a particular case. But by (the preceding lemma) L 1.2.40.1,
the quadrilateral FFEAB is also semisimple. O

Given a quadrilateral FEAB, the open intervals (AF'), (EB) are referred to as the diagonals of the quadrilateral
FEAB.

Theorem 1.2.41. Given a quadrilateral FEAB, if points E, B lie on opposite sides of the line aap, and A, F lie
on opposite sides of agp, then the open intervals (EB), (AF) concur, i.e. the diagonals of the quadrilateral FEAB
meet in exactly one point. If, in addition, a point X lies between E, A, and a point Y lies between F', B, the open
intervals (XY), (AF) are also concurrent. 1™

Proof. (See Fig. 1.67, a).)By the preceding theorem (T 1.2.40), the quadrilateral FEAB is simple and no three of
its vertices colline. We have also EaarB = 3G G € aar & [EGB), AagpF = 3H H € agp & [AHF], and therefore
by L 1.2.1.3, A 1.1.2 G € aar N(EB)& H € agp N (AF)&—3a(E € a& A € a& F € a) = G = H. Thus,
G € (EB)N(AF), and by L 1.2.9.10, in view of the fact that no three of the points F', E, A, B colline, we can even
write G = (EB) N (AF).

Show 2nd part. We have [EXA) & [FY B|& EaarB "22° XaspY = 327 € aap & [XZY] and G = (AF) N

(EB) “"22*° EFa,p. EFaip&|[AXE)&[BYF] 25 YFaap& XFasp. With [XZY], by L 1.2.19.9 this

gives ZFasp. To show Z # F, suppose Z = F. (See Fig. 1.67, b).) Then [XFY]&[FYB] "222' [XFB]

and by L 1.2.11.13, ™ we have [AXE|& B € Ep&[XFB] = Er C IntZAEB. On the other hand, G =

(EB) N (AF) “'2%* Ep ¢ IntZAEF, so, in view of C 1.2.21.13 we have a contradiction. Also, ~[ZAF],

for [ZAF] & [AGF) hl2g2 [ZGF) = ZagpF - a contradiction. Now the obvious symmetry of the conditions of

the second part of the lemma with respect to the substitution A « F, X < Y, B « E "6 allows us to con-

clude that also A # Z and —[ZFA]. [AGF] MLZLS o e aar, Z € aarp, the points A, F, Z colline. Therefore,

A+ 7+ F&-[ZAF| & ~[ZFA] 23! [AZF). O

Theorem 1.2.42. Given four (distinct) coplanar points A, B, C, D, no three of them collinear, if the open interval
(AB) does not meet the line acp and the open interval (CD) does not meet the line asp, then either the open
intervals (AC), (BD) concur, or the open intervals (AD), (BC) concur.

Proof. (See Fig. 1.68, a).) By definition, that A, B, C, D are coplanar means Jo (A € a& B € a&C € a& D € a).
Since, by hypothesis, 4, B, C'and A, B, D, aswell as A, C, D and B, C, D are not collinear (which means, of course,

C ¢ AAB, D ¢ AAB, A ¢ acp, B ¢ aCD), we have C' € PQ\PGAB &D e Pa\PaAB & (OD)QCLAB =)= CDayp. AISO7

Be # Bp, for otherwise B, C, D would colline. Therefore, CDaap & Bo # Bp “22?' Bo ¢ IntZABDV Bp C

Int/ABC "22' (3X, X, € Be&[AX1D]) V (3Xy X € Bp&[AX,C]). Since the points A, B enter the

conditions of the lemma symmetrically, we can immediately conclude that also Ac C IntZ/BADV Ap C Int/BAC,

173 Thus, the theorem is applicable, in particular, in the case when the open intervals (AF), (BE) concur.

174We do not assume a priori the quadrilateral to be either non-peculiar or semisimple. That our quadrilateral in fact turns out to be
simple is shown in the beginning of the proof.

175 which gives [EXA] = X € Ex

176 That is, we substitute A for F, F for A, X for Y, etc.
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Figure 1.67: Illustration for proof of T 1.2.41.
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Figure 1.68: Illustration for proof of T 1.2.42.

whence (3Y1 Y1 € Ac & [BY1D]) V (32 Yz € Ap & [BY2C]). To show that 3X; X; € Bo & [AX1D] and 37 Y1 €
Ac & [BY1 D] cannot hold together, suppose the contrary.(See Fig. 1.68, b).) Then —Ja (A € a& B € a& D €
a) & [AX, D] & [DY1B] "222° 3¢7 [AC'Y1) & [BC'X,) "223% €7 € aay, Napx,. Obviously, also ¥; € Ac&C ¢
aap& X1 € Be = aay, = aac # apc = apx,. Therefore, C' € aay, Napx, &C € aay, Napx, &aay, #
apx, LL' ¢ = C, and we have B ¢ aap & [AX1D] & [BCX,] “LZTIR R € acp & [ARB], which contradicts
the condition acp N (AB) = . Since the conditions of the theorem are symmetric with respect to the substitution
C < D, we can immediately conclude that (3X2 X5 € Bp & [AX2C]) and (3Y2 Yz € Ap & [BY>(C) also cannot hold
together. Thus, either both (3X; X; € Be & [AX1D]) and (Y, Vs € Ap & [BY2C)), or (3Xs Xs € Bp & [AXC))

and (Y7 Y1 € Ac & [BY1D]). In the first of these cases we have X7 € apc Naap &Ya € agec Naap &apc #
aAD = X1 = Y,. Thus, X; € (AD) N (BC). Similarly, using symmetry with respect to the simultaneous

substitutions A < B, C' < D, we find that X, € (BD) N (AC). O

Theorem 1.2.43. If points A, B, C, D are coplanar, either the line aap and the segment [BC| concur, or app
and [AC] concur, or acp and [AB] concur.

Proof. We can assume that no three of the points A, B, C, D colline, since otherwise the result is immediate.
Suppose acp N[AB] = 0. If also aap N (CD) = () then by (the preceding theorem) T 1.2.42 either (AC) and (BD)

concur, whence app and [AC] concur, or (AD) and (BC) concur, whence asap and [BC] concur. Suppose now
JE E € aapN(CD). Using our another assumption acp N[AB] = 0, we have E € Ext[AB)| LA [ABE|V[EAB]. If

see Fig. 1.69, a)), then acp = app, and i see Fig. 1.69, ,
ABE F hen A &[CED|& [ABE] “X7 3F [AFC & dif [EAB F b
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Figure 1.69: Illustration for proof of T 1.2.43.

C
/B«
A X Y

Figure 1.70: If a point X lies between A, Y, lines axp, ayc are parallel, and A, B, C colline, B lies between A, C.

then B € acp & [CED) & [EAB] 227 3F F € aap & [BFC). Thus, 3F [AFC)& app or IF F € asp & [BFC.
O

Theorem 1.2.44. If a point X lies between points A, Y, lines axp, ayc are parallel, and the points A, B, C colline,
then B lies between A, C.

Proof. (See Fig. 1.70.) Obviously, 77 the collinearity of A, B, C implies A € apc, aac = aap. Using A 1.1.6, A 1.1.5
we can write A € apc C Qapyacy = YACY = Qapxacy = 0Bx C aacy. We have apx || acy = C ¢ apx &Y ¢

apx. Also, apx # aac (otherwise C' € apx, which contradicts apx || acy), and apx # aac = aap = A ¢ apx.

Therefore, apx C OéAcy&A ¢ an&O ¢ aBx &Y % an&[AXY]&X S an&aBX n (OY) =0 A%LL dB’' B’ €

apx &[AB'C]. But B €apx Naac& B’ € apx Naac & apx # aac L1 B/ — B. Hence [ABC] as required. O

Proposition 1.2.44.1. If a line a is parallel to the side-line apc of a triangle NABC' and meets its side AB '™ at
some point E, it also meets the side AC of the same triangle.

Proof. (See Fig. 1.71.) By the definition of parallel lines, a || apc = Ja a C a&apc C a. Also, a | apc & E €

a = FE ¢ apc; E € aka C a = FE € «; [AEB] CL2lT B¢ aapc. Therefore, F € a&ape C a& FE €

T1.1.2 .
aapc&ape C E € aape =" a = aape. Thus, a C aape. Obviously, a || apc = B ¢ a& C ¢ a. Also,

A ¢ a, for otherwise A € aapNa& E € apapNa& A#E ALL2  — 4up = B € a - a contradiction. 17 Finally,

aCoaapc&A¢a&kB¢a&C¢a&IE(Ee(AB)Na)&a | apc ARt 3R (F e (AC)Na), qed. O

Theorem 1.2.45. If a point A lies between points X, Y | lines axp, ayc are parallel, and the points A, B, C colline,
A lies between B, C.

177see C 1.1.1.5, L 1.1.1.4

178 That is, the open interval (AB) - see p. 69 on the ambiguity of our usage concerning the word ”side”.

179 Obviously, we are using in this, as well as in many other proofs, some facts like [AE B] Al:'2>‘1 A # E, but we choose not to stop to

justify them to avoid overloading our exposition with trivial details.
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Figure 1.71: If a is parallel to agc and meets its side (AB) at F, it also meets (AC).

C
B
D
C
Xe
B D X
A A
Figure 1.72: Illustration for proof of T 1.2.45.
L1.1.7.1 T1.2.2
Proof. We have axp || ayc =" X ¢ ayc& B ¢ axy and Ja(A € a& B € a&C € a) =" [ABC]V

[ACB] & [BAC]. 1If [ABC] (see Fig. 1.72, a)), we would have X ¢ ayc & [XAY]&[ACB] 2227 3D D €
axp & [YDC)| LL243 3p ¢ axp Nayc = axp ff ayc - a contradiction. Similarly, assuming that [ACB] (see

Fig. 1.72, b)), we would have B ¢ axy & [XAY] & [ACB] 227 3D D € ay¢ & [XDB] "22* 3D € ayc Naxp =

ayc faxp. 180 Thus, we are left with [BAC], q.e.d. O

Theorem 1.2.46. If a point B lies between points A, C, lines aax, agy are parallel, as are apy, acz, and if the
points X, Y, Z colline, then Y lies between X and Z.

Proof. (See Fig. 1.73.) By C 1.2.1.10 the lines aax, apy, acz coplane. Therefore, [ABC] = AapxC. We

also have (from the condition of parallelism) (CZ] Napy = W& (AX|Napy = 0 = CZapy & AXapy. Then

AXapy & CZapy & AapyC Ll'g'll XapyZ = Y'Y € aBy&[XY/Z]. But Y € agpy Naxz &Y' € agy N

T1.1.1
axz&axz#agy ="Y'=Y.0O

180There is a more elegant way to show that =[ACB] if we observe that the conditions of the theorem are symmetric with respect to
the simultaneous substitutions B < C;, X < Y.

7



A X

Figure 1.73: If a point B lies between A, C; lines aax || apy, apy || acz, and if X, Y, Z colline, then Y divides X
and Z.

Basic Properties of Trapezoids and Parallelograms

A quadrilateral is referred to as a trapezoid if (at least) two of its side-lines are parallel. A quadrilateral ABCD is
called a parallelogram if aap || acp, aac || app. ¥ ABCD

Corollary 1.2.47.1. In a trapezoid no three of its vertices colline. Thus, a trapezoid, and, in particular, a parallel-
ogram ABCD, is a non-peculiar quadrilateral. Furthermore, any side - line formed by a pair of adjacent vertices of
a parallelogram lies completely on one side 132 of the line formed by the other two vertices. In particular, we have
CDayp, etc.

Proof. Follows immediately from the definition of parallelogram and L 1.1.7.3, T 1.2.19. O

Lemma 1.2.47.2. Given a parallelogram ABCD, if a point X lies on the ray Ap, the open intervals (AC), (DX)
concur. In particular, (AC) and (BD) concur.

Proof. By the preceding corollary (C 1.2.47.1) B ¢ Ap and, moreover, BCasp. Therefore, X € Ag& B ¢

aAD L1i,1>9,8 XBaAD, and XBCLAD&BOCLAD ng?.l XCCLAD = (XO) Naap = @ L%'B (XO) n (AD) = @

Since also aax = aap || acp bl2gs (AX)Nacp =0 & aax N (CD) = 0, the open intervals (AC), (X D) concur by

T 1.2.42. O

Corollary 1.2.47.3. Given a parallelogram ABCD, if a point X lies on the ray Ag, the ray Ac lies inside the angle
LXAD. 183 In particular, the points X, D are on opposite sides of the line axc and A, C are on opposite sides of
apx- In particular, the vertices B, D are on opposite sides of the line aac and A, C are on opposite sides of app.

Proof. Follows immediately from the preceding lemma (L 1.2.47.2) and C 1.2.21.25. O

Corollary 1.2.47.4. Suppose that in a trapezoid ABCD with aap || acp the vertices B, C lie on the same side of
the line aap. Then the open intervals (AC), (BD) concur and ABCD is a simple quadrilateral.

Proof. Observe that the assumptions of the theorem imply that no three of the coplanar points A, B, C, D are
collinear, the open interval (AB) does not meet the line acp, the open interval (CD) does not meet the line aap,
and the open intervals (AD), (BC) do not meet. Then the open intervals (AC), (BD) concur by T 1.2.42 and the
trapezoid ABCD is simple by T 1.2.40. O

Corollary 1.2.47.5. Suppose that in a trapezoid ABCD with apc || aap the open intervals (AB), (CD) do not
meet. Then the points C, D lie on the same side of the line aap. '3

Proof. First, observe that no three vertices of ABCD colline (see C 1.2.47.1), and thus C ¢ aap, D ¢ aap. To
show that the points C', D lie on the same side of the line ap, suppose the contrary, i.e. that there is a point E €
(CD)Naap. Since (CD) C Int apcaap (by L 1.2.19.16), we have E € Int agcaap. Since (AB) = aapNInt apcaap
(again by L 1.2.19.16), we find that E € (AB), which in view of E € (CD) contradicts the condition of the theorem
that the open intervals (AB), (CD) do not meet. This contradiction shows that in reality the points C, D lie on the
same side of the line aap. O

Corollary 1.2.47.6. Suppose that in a trapezoid ABCD with apc || aap the open intervals (AB), (CD) do not
meet. 18° Then the ray Ac lies inside the angle Z/BAD and the ray Dp lies inside the angle /ADC. 186

181Thus, parallelogram is a particular case of trapezoid. Note that in the traditional terminology a trapezoid has only two parallel
side-lines so that parallelograms are excluded.

182} e. completely inside one of the half-planes into which the line formed by the remaining vertices divides the plane of the parallelogram

183 And, of course, by symmetry the ray X p then lies inside the angle ZAXC, the ray C4 lies inside ZXCD, and Dx lies inside ZADC.

184Then also by symmetry the points A, B lie one the same side of the line acp. In particular, given a trapezoid ABC'D with agc || aap,
if the points A, B lie on the same side of the line acp then the points C, D lie on the same side of the line a4 p.

185This will be true, in particular, if either A, B lie on the same side of agp or C, D lie on the same side of a4 3.

186Then also by symmetry the ray Bp lies inside the angle ZABC' and the ray Cy4 lies inside the angle ZBCD.
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Figure 1.74: Illustration for proof of T 1.2.48.

Proof. Since (by hypothesis) aap || apc, the points B, C lie on the same side of asp. Furthermore, from the
preceding corollary (C 1.2.47.5) we have CDasp, ABacp. Hence in view of the definition of interior of angle we can
write ABacp & BCaap = Dp C IntZADC (see also L 1.2.21.4), CDaap & BCaap = Ac C IntZBAD. O

Theorem 1.2.47. A parallelogram is a simple quadrilateral.
Proof. 1t is non-peculiar by C 1.2.47.1 and semisimple by C 1.2.47.1, L. 1.2.40.1. O

Theorem 1.2.48. Given a parallelogram CAY X, if a point O lies between A, C, a point B lies on the line aac,
and the lines axp, aoy are parallel, then the point O lies between A, B. (See Fig. 1.74, a).)

Proof. Suppose the contrary, i.e. =[BOA].(See Fig. 1.74,b).) We have by L 1.2.1.3, A 1.2.1 [COA] = O € aac & A #
0. Since also, by hypothesis, B € asc, the points O, A, B are collinear. Taking into account axp || apy = O # B,
we can write B € apg & 7[BOA|& B# 0& O # A. Thenby L 1.2.11.9,1 1.2.13.2 [COA] & B € O4 = [COB|& B €

Ca. Since CAY X is a parallelogram and B € C4, by L 1.2.47.2 3D D € (XB) N (CY). Therefore, Y ¢ acp =

aca & [CDY & D € apx & [COB] CLLLTIp B e apx & [OEY) = 3E E € apx Napy - a contradiction. O

Lemma 1.2.49.1. Proof. O

Theorem 1.2.49. If a polygon A1A3As ... A1 A, (ie., a path A1As ... Ay Anyr with A,1 = A1) is non-peculiar
(semisimple, simple) the polygons AsAs ... Ap_1A,A1, AsAy.. . AnA1As, ..., AyAr ... Ap_2A,—1 are non-peculiar
(semisimple, simple) as well. Furthermore, the polygons AnAn_1An—o...AsAr , Ap_1An—o... AsA1A, , ...,
A1ApAn_1 ... A3 Ay are also non-peculiar (semisimple, simple). Written more formally, if a polygon A1 AsAs ... Ap—14,
is non-peculiar (semisimple, simple), the polygon As)Ac(2) - - - Ag(n—1)As(n) 18 non-peculiar (semisimple, simple) as
well, and, more generally, the polygon AsryAsk(2y .- Agk(n—1)Agk(n) 18 also non-peculiar (semisimple, simple),

where o is the permutation
(1 2 ... n—1 n
> \23 ... n 1)

ie. o(i) =i+1,i=1,2,...n—1, 0(n) =1, and k € N. Furthermore, the polygon A k1)Arre) - Ark(n_1)Arrm)
is non-peculiar (semisimple, simple), where T is the permutation

(1 2 ... n-1 n
T "\n1 ...on-2 n-1)
ie. 7(1)=n,7(1) =i—1,i=2,3,...n, and k € {0} UN.

Proof. Follows immediately by application of the appropriate definitions of non-peculiarity (semisimplicity, simplicity)
to the polygons in question. 87 O

Theorem 1.2.50. Proof. O

187Gee the definition of peculiarity in p. 71 and the properties Pr 1.2.12 - Pr 1.2.14 defining semisimplicity.
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Figure 1.75: If A, B and B, C lie on one side of a, so do A, C.

Basic Properties of Half-Spaces

We say that a point B lies (in space) on the same side (on the opposite (other) side) of a plane a as the point A
(from the point A) iff:

- Both A and B do not lie in plane «;

- the interval AB meets (does not meet) the plane «;

and write this as ABa(AaB)

Thus, we let, by definition

ABa €% Ac a& B € a&-3C (C € a& [ACB]); and

ABa &5 A ca&Bea&IC (C € ak[ACH)).

Lemma 1.2.51.1. The relation "to lie (in space) on the same side of a plane o as”, i.e. the relation p C CP*\ P, x

CPt\ P, defined by (A,B) € p &L ABa, is an equivalence on CT* \ Pa.

Proof. By A 1.2.1 AAa and ABa = BA«a. To prove ABa& BCa = ACa assume the contrary, i.e. that ABa,
BCa and AaC'. Obviously, AaC implies that 3D D € a & [ADC]. Consider two cases:

If 3b (A € b& B € b&C € b), by T 1.2.2 [ABC] V [BAC] vV [ACB]. But [ABC|& [ADC|&D # B =3°
[ADB] v [BDC], [BAC] & [ADC] “222 [BDC], [ACB] & [ADC] "222 [ADB], which contradicts ABa & BCa.

Suppose now —3b (A € b& B € b& C € b) (See Fig. 1.75.) then (by A 1.1.1) Jaapc. D € aNaape ALLT

3G G # D&G € aNaape. By A 116 ape C aNaape. A ¢ a&B ¢ a&C ¢ a&kape C o = A ¢

apg&B % apg&c % apaG. A % apg&B % apg&c % apg&aDG C o = QABC&(D S apg&[ADO]) Agél

JE (E € apg & [AEB])VAF (F € apg & [BFC]). Since, in view of apg C «, we have either [AEB]|& E € aapc or
[BFC| & F € aaspc, this contradicts ABa & BCa. O

A half-space a4 is, by definition, the set of points lying (in space) on the same side of the plane « as the point
B, ie. ay = {B|ABa}.

Lemma 1.2.51.2. The relation “to lie on the opposite side of the plane o from” is symmetric.

Proof. Follows from A 1.2.1. O

In view of symmetry of the corresponding relations, if a point B lies on the same side of a plane « as (on the
opposite side of a plane « from) a point A, we can also say that the points A and B lie on one side (on opposite
(different) sides) of the plane a.

Lemma 1.2.51.3. A point A lies in the half-space a4.
Lemma 1.2.51.4. If a point B lies in a half-space a4, then the point A lies in the half-space ap.

Lemma 1.2.51.5. Suppose a point B lies in a half-space aa, and a point C' in the half-space ag. Then the point C
lies in the half-space a4 .

Lemma 1.2.51.6. If a point B lies in a half-space aa then ap = a4.
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1.2.51. . 1.2.51.4
Proof. To show ap C a4 note that C € ap& B € ay CLZBLS o € ay. Since B € ag CLzile 4 € ap, we have

1.2.51.
CEaA&AEQBC:5> 5CEaB and thus ay C ag. O

Lemma 1.2.51.7. If half-spaces vy and ap have common points, they are equal.

Proof. aaNap #0=3CCe€as&C € ap ngl'ﬁaA:ozc:ozB. O

Lemma 1.2.51.8. Two points A, B in space lie either on one side or on opposite sides of a given plane .
Proof. Follows immediately from the definitions of "to lie on one side” and ”to lie on opposite side”. O

Lemma 1.2.51.9. If points A and B lie on opposite sides of a plane o, and B and C lie on opposite sides of the
plane «, then A and C' lie on the same side of a.

Proof. 188 AaB& BaC = 3D (D € a & [ADB])&3E (E € a& [BEC)). Let a1 be a plane drawn through points
A, B, C. (And possibly also through some other point G if A, B, C are collinear - see A 1.1.3, A 1.1.4. ) Since
A € a3 but A ¢ a, the planes a1, a are distinct. We also have [ADB|& A€ a1 & B € ay & [BEC| & C € oy oLz
D € a1 & E € a1, whence it follows that D € ay Na = a3 N« # 0. Since the planes ay, « are distinct but have
common points, from T 1.1.5 it follows that there is a line a containing all their common points. In particular,
we have D € a, E € a. We are now in a position to prove that points A, C lie on the same side of the plane «,
ie. that ~3F (F € a&[AFC]). In fact, otherwise A € a1 & C € oy &[AFC) =92ZEM P e oy, and we have

FeaNa= F ca. Butsince A¢ a= A¢ a, we can always (whether points A, B, C are collinear or not) write

(D €a&[ADB)) & (F € a& [BEC]) 229 3R (F € a & [AFC]), and we arrive at a contradiction. O

Lemma 1.2.51.10. If a point A lies on the same side of a plane a as a point C and on the opposite side of a from
a point B, the points B and C' lie on opposite sides of the plane «.

Proof. Points B, C' cannot lie on the same side of «, because otherwise ACa & BCa = AB« - a contradiction. Then
BaC by L 1.2.51.8. O

Lemma 1.2.51.11. Let points A and B lie in on opposite sides of plane «, and points C' and D - in the half-spaces
aa and ap, respectively. Then the points C' and D lie on opposite sides of c.

Proof. ACaé& AaB & BDa M2 00D, O

Theorem 1.2.51. Proof. O

Point Sets in Half-Spaces

Given a plane «, a nonempty point set B is said to lie (in space) on the same side (on the opposite side) of the plane
« as (from) a nonempty point set A iff for all A € A and all B € B the point B lies on the same side (on the opposite
side) of the plane « as (from) the point A € A. If the set A (the set B) consists of a single element (i.e., only one
point), we say that the set B (the point B) lies in plane a on the same side of the line a as the point A (the set A).

If all elements of a point set A lie (in space) on one side of a plane «, it is legal to write a4 to denote the side of
« that contains all points of A.

Lemma 1.2.52.1. If a set B lies on the same side of a plane a as a set A, then the set A lies on the same side of
the plane « as the set B.

Proof. See L 1.2.51.1. O

Lemma 1.2.52.2. If a set B lies in on the same side of a plane a as a set A, and a set C lies in on the same side
of the plane « as the set B, then the set C lies in on the same side of the plane o as the set A.

Proof. See L 1.2.51.1. O

Lemma 1.2.52.3. If a set B lies on the opposite side of a plane o from a set A, then the set A lies in on the opposite
side of the plane o from the set B.

Proof. See L 1.2.51.2. O

The lemmas L 1.2.51.9 — L 1.2.51.11 can be generalized in the following way:

Lemma 1.2.52.4. If point sets A and B lie on opposite sides of a plane «, and the sets B and C lie on opposite
sides of the plane a, then A and C lie on the same side of a.

Lemma 1.2.52.5. If a point set A lies on the same side of a plane a as a point set C and on the opposite side of o
from the point set B, the point sets B and C lie on opposite sides of the plane .

188 The reader can refer to Fig. 1.75 after making appropriate (relatively minor) replacements in notation.
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Proof. O

Lemma 1.2.52.6. Let point sets A and B lie in on opposite sides of a plane a, and point sets C and D - on the
same side of a as A and B, respectively. Then C and D lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set B lies on the same side (on the
opposite side) of a plane « as a set (from a set) A, we say that the sets A and B lie in on one side (on opposite sides)
of the plane a.

Theorem 1.2.52. Proof. O

Complementary Half-Spaces

Given a half-space a4, we define the half-space a4, complementary to the half-space a4, as C PE\ (Py Uaa).
An alternative definition of complementary half-space is provided by the following

Lemma 1.2.53.1. Given a half-space a4, the complementary half-space o is the set of points B such that the open
interval (AB) meets the plane o: o = {30 O € a& [OAB]}. A point C lying in space outside o lies either in aa
or on a.

Proof. B €CPt\ (PaUas) 22 ® AaB < 30 0 € a & [AOB]. O

Lemma 1.2.53.2. The half-space (a$)¢, complementary to the half-space o, complementary to the half-space a4,
coincides with the half-space oy itself.

Proof. In fact, we have aq = CF'\ (P, U (CF1\ (PyUa))) = (o). O

Lemma 1.2.53.3. A line b that is parallel to a plane a and has common points with a half-space ca, lies (completely)
m agy.
Proof. (See Fig. 1.76, a).) By hypothesis, b N a = 0. To prove that b N a$ = 0 suppose that 3D D € bNa (see

Fig. 1.76, b).). Then ABa & AaD M2 30 0 ek [BCD] M24% 30 C e anapp = b - a contradiction. Thus,
we have shown that b C CP*\ (P, U aA) =ayu. O

Given a ray Op, not meeting a plane «

Lemma 1.2.53.4. — If the origin O lies in a half-space a4, so does the whole ray Op.

Proof. (See Fig. 1.77.) By hypothesis, Og N = 0. To prove OgNa$ =0, suppose IF F € OpNaG. O € aa& F €
a4 = 3IE FE € a& [OFEF] M2U 35 B e anOp - a contradiction. Thus, O C CF* \ (PaUa$y)=as. O

Lemma 1.2.53.5. - If the ray Op and the half-space a4 have a common point D, then:
a) The initial point O of Op lies either in half-space aa or on plane a;
b) The whole ray Op lies in the half-space a4 .

Proof. a) (See Fig. 1.78, a).) To prove O ¢ af, suppose the contrary, i.e. O € a4. Then D € ax & O € o43IE E €

a& [OED] MZUB 3R B e anOp - a contradiction. We see that O € CP* \ a4 =aq UP,.

b) (See Fig. 1.78, b).) By hypothesis, « NOp = 0. If IF F € Og N a5, we would have D € a, & F € a4 =
JE E € a& [DEF] L, 28435 E € anOp - a contradiction. Therefore, O C CF* \ (PaUa$y)=caa. O

Given an open interval (DB), not meeting a plane «

Lemma 1.2.53.6. - If one of the ends of (DB) lies in the half-space s, the open interval (DB) completely lies in
the half-space aca and its other end lies either on a4 or on plane «.

Proof. (See Fig. 1.79.) If B € o then D € ay & B € a4 = JE (E € a & [DEB]) - a contradiction. By hypothesis,
(DB)Na =0. To prove (DB)Na4 =0, suppose F € (DB)Na. Then D € ay & F € o = IE (E € a & [DEF]).

But [DEF) & [DFB] ““23? [DEB] - a contradiction. O

Lemma 1.2.53.7. - If the open interval (DB) and the half-space aa have at least one common point G, then the
open interval (DB) lies completely in aa, and either both its ends lie in aa, or one of them lies in aa, and the other
i plane a.

Proof. Both ends of (D B) cannot lie on «, because otherwise by C 1.2.1.11 we have (BD) C «, whence (BD)Na4 = 0.
Let D ¢ a. To prove D ¢ a5 suppose the contrary, i.e. D € a%. Then D € aA& (BD)Na=10 112886 (DB) C

a = G € of - a contradiction. Therefore, D € as. Finally, D € as & (DB)Na =) 1249 6 (BD) Caas. O
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Figure 1.76: A line b parallel to a plane « and having common points with a4, lies in a4.

O,

Figure 1.77: Given a ray Op, not meeting a plane «, if a point O lies in the half-space a4, so does Op.
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Figure 1.78: Given a ray Op, not meeting a plane «, if Op and a4 share a point D, then: a) O lies in a4 or on «;
b) Op lies in a4.

B

Figure 1.79: Given an open interval (DB), not meeting a plane «, if one of the ends of (DB) lies in a4, then (DB)
lies in av4 and its other end lies either in cvyq or on «.
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Figure 1.80: A ray Op with its initial point O on « and one of its points C' in a4, lies in a4, and O% lies in a.

Lemma 1.2.53.8. A ray Op having its initial point O on a plane « and one of its points C' in a half-space a4, lies
completely in oy, and its complementary ray O% lies completely in the complementary half-space o .

In particular, given a plane o and points O € a and A ¢ o, we always have O C aa, O C a. We can thus
write ay = oy, -

Proof. (See Fig. 1.80.) OpNa = 0, because if 3F E € Op & E € a, we would have O € appNa & O € appNa ALLS

. L1.2.19.
aop C a = C € « - a contradiction. Op C apoB = aoc C aea & C € OpNas&OpNa=10 :>95OB C ap. By

A 1.1.2 3F [BOF]. Since F € O% N a$, by preceding argumentation we conclude that Of C 5. O

Lemma 1.2.53.9. If one end of an open interval (DB) lies in half - space aa, and the other end lies either in aa
or on plane «, the open interval (DB) lies completely in .

Proof. Let B € as. If D € a g we note that by L 1.2.11.13 (DB) C Dp and use the preceding lemma (L 1.2.53.8).

Let now D € aa. Then (DB) N« = 0, because B € ax & E € (DB)Na = D € o - a contradiction. Finally,

Beas&(DB)Na=0"2¥°(DB) cay. O

Lemma 1.2.53.10. If a plane B, parallel to a plane «, has at least one point in a half-space aa, it lies completely
m ay.

Proof. (See Fig. 1.81, a).) By hypothesis, SNa = 0. To show fNa$ = 0, suppose the contrary, i.e. that 3D D € fNaf

see Fig. 1.81, b)). Then B € as& D € a5 = 3C [BCD]&C € a. But B € B& D € B&[BCD] 22" ¢ € 3.
A

Hence C' € a N B, which contradicts the hypothesis. Thus, we have 8 C CP*\ (P, Ua4) = aa. O

Lemma 1.2.53.11. If a half-plane x has mo common points with a plane o and one of its points, B, lies in a
half-space aa, the half-plane x lies completely in the half-space aa.

Proof. By hypothesis, x N« = (. To show x Na§ = (), suppose the contrary, i.e. that 3D D € x Na%. Then

B€as&kD e a = 3C[BCD|&C € a. But B € B&D € B&[BCD] “'2X° ¢ € y. Hence C € a Ny, which

contradicts the hypothesis. Thus, we have y C CF'\ (P, Ua%) = au. O

Lemma 1.2.53.12. A half-plane x having its edge a on a plane o and one of its points, B, in a half-space a4, lies
completely in aa, and the complementary half-plane x¢ lies completely in the complementary half-space of .

In particular, given a plane «, a line a in it, and a point A ¢ «, we always have ax C aa, 05§ C a. We can
thus write o = aqe, .

Proof. ' By T 1.1.2 a,p = X. By the same theorem we have x N« = (), for otherwise 3E E € x N a together with

a C agp Na would imply a,p Na, whence B € a, which contradicts B € a4. Therefore, using the preceding lemma

gives BeE xNaas&kxNa=>0 L1:2.33-11 X C a4. Choosing points C, D such that C' € a = a N a,p and [BCD] (see

A 113, A 1.2.2), we have by L 1.2.19.1, L 1.2.53.1 3D D € x° N 5. Then the first part of the present proof gives
Xx¢ C o, which completes the proof. O

189The reader can refer to Fig. 1.81, making necessary corrections in notation.
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Figure 1.81: If a plane (3, parallel to a plane «, has at least one point in a half-space a4, it lies completely in ay4.
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Theorem 1.2.53. Given a plane «, let A be either

— A set {B1}, consisting of one single point By lying in a half - space aa; or

— A line by, parallel to o and having a point By in aa; or

— A ray (O1)p,, not meeting the plane «, such that the initial point O or one of its points, D1, lies in aa; or

— An open interval (D1B1), not meeting the plane a, such that one of its ends lies in ca, or one of its points,
G, lies in ay; or

— A ray (01) B, with its initial point O1 on a and one of its points, C1, in aa; or

— An interval - like set with both its ends D1, By in aa, or with one end in aq and the other on «;

— A plane (1, parallel to o and having a point By in aa;

— A half-plane x1 having no common points with o and one of its points, By, in a half-space a4;

— A half-plane x1, having its edge a1 on « and one of its points, By, in a half-space ay;

and let B be either

— A line ba, parallel to o and having a point By in aa; or

— A ray (0O2) B,, not meeting the plane a, such that the initial point O or one of its points, Do, lies in ca; or

— An open interval (D2Bs), not meeting the plane a, such that one of its ends lies in ca, or one of its points,
Go, lies in ayg; or

— A ray (O2)p, with its initial point Oy on « and one of its points, Ca, in as; or

— An interval - like set with both its ends Do, By in aa, or with one end in s and the other on «;

— A plane (s, parallel to o and having a point Bs in aa;

— A half-plane x2 having no common points with « and one of its points, Ba, in aa;

— A half-plane x2, having its edge as on o and one of its points, Ba, in .

Then the sets A and B lie in plane on one side of the plane «.

Proof. O

Theorem 1.2.54. Given a plane «, let A be either

— A set {B1}, consisting of one single point By lying in a half - space aa; or

— A line by, parallel to o and having a point By in aa; or

— A ray (O1)p,, not meeting the plane «, such that the initial point O or one of its points, D1, lies in aa; or

— An open interval (D1B1), not meeting the plane a, such that one of its ends lies in ca, or one of its points,
G, lies in ay; or

— A ray (01) B, with its initial point O1 on a and one of its points, C1, in aa; or

— An interval - like set with both its ends D1, By in aa, or with one end in aq and the other on «;

— A plane (1, parallel to o and having a point By in aa;

— A half-plane x1 having no common points with « and one of its points, By, in a half-space a4;

— A half-plane x1, having its edge a1 on « and one of its points, By, in a half-space ay;

and let B be either

— A line by, parallel to o and having a point By in a; or

— A ray (O2)B,, not meeting the plane c, such that the initial point O or one of its points, Da, lies in o ; or

— An open interval (D2Bs), not meeting the plane «, such that one of its ends lies in a5, or one of its points,
Ga, lies in a; or

- A ray (O2) g, with its initial point Oz on « and one of its points, Ca, in a; or

— An interval - like set with both its ends Dy, By in o, or with one end in o and the other on a;

— A plane (2, parallel to o and having a point Ba in o ;

— A half-plane x2 having no common points with o and one of its points, Ba, in af;

— A half-plane x2, having its edge ax on o and one of its points, Ba, in af.

Then the sets A and B lie in plane on opposite sides of the plane a.

Proof. O

Basic Properties of Dihedral Angles

A pair of distinct non-complementary half-planes x = a4, K = ap, x # Kk, with a common edge «a is called a dihedral
angle (Y#)q, '
well defined:

which can also be written as AaB. The following trivial lemma shows that the latter notation is

Lemma 1.2.55.1. If points C, D lie, respectively, on the sides x = aas, k = ap of the dihedral angle Xk then
CaD = Xk.
Proof. (See Fig. 1.82.) Follows immediately from L 1.2.17.6. O

In a dihedral angle 1@ = {aa,ap} the half-planes a4, ap will be called the sides, and the line a (the common
edge of the half-planes a4, ap) the edge, of the dihedral angle AaB.

1901n practice we shall usually omit the subscript as being either obvious from context or irrelevant.
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K=a,

Figure 1.82: If points C, D lie, respectively, on the sides x = a4, k = ap of the dihedral angle X% then CaD = XK.

Lemma 1.2.55.2. 1. Given a dihedral angle Za??, we have B ¢ aga, A ¢ aqp, and the line a cannot be coplanar
with both points A, B simultaneously. °' The lines a, arp are then skew lines.

2. If any of the following conditions:

i): B¢ qga;

Zl) A ¢ Aa B,

ii): a, aap are skew lines;

are met, then the other conditions are also met, and the dihedral angle AaB exists. 192

Proof. 1. Otherwise, we would have B € a,a & B ¢ a = ap = aa Vap = af (see L 1.2.17.6, L 1.2.19.1), contrary
to hypothesis that a4, ap form a dihedral angle. We conclude that B ¢ a,4, whence -3a (A € a&a C a& B € a)
and A ¢ a,p.

2. We have B ¢ aga = B¢ aa& B ¢ a5, for B€asV B € a% = B € aga. Hence ap # aa and ap # a5, so
1@ exists.

To show that i) implies iii), suppose the contrary, i.e. that B € ayza. Then by A 1.1.6 we have aap C g4,
whence we conclude that the lines a, a4 p lie in one plane, which is, by definition, not possible for skew lines. O

The set of points, or contour, of the dihedral angle (Xk)q is, by definition, the set P(g) = x U Py U k. We say
that a point lies on a dihedral angle if it lies on one of its sides or coincides with its edge. In other words, C' lies on
X R if it lies on its contour, that is, belongs to the set of its points: C' € P(s)-

We say that a point X lies inside a dihedral angle Yk if it lies on the same side of the plane Y as any of the points
of the half-plane «, and on the same side of the plane % as any of the points of the half-plane x. 1?3

The set of all points lying inside a dihedral angle Y% will be referred to as its interior Int (k) = {X|X xk & Xrx}.
We can also write IntAaB = (aa)B N (aeB)A-

If a point X lies in space neither inside nor on a dihedral angle X%, we shall say that X lies outside the dihedral
angle Y.

The set of all points lying outside a given dihedral angle Yk will be referred to as the exterior of the dihedral
angle Yk, written Ezt(X%). We thus have, by definition, Ezt(Yr) = C*\ (P(Xk) U Int (XR)).

Lemma 1.2.55.3. If a point C lies inside a dihedral angle z@, the half-plane ac lies completely inside AaB:
ac C Int@.

From L 1.2.17.6 it follows that this lemma can also be formulated as:

If one of the points of a half-plane ac lies inside a dihedral angle 1@, the whole half-plane ac lies inside the
dihedral angle AaB.

Proof. (See Fig. 1.83.) Immediately follows from T 1.2.53. Indeed, by hypothesis, C € IntAaB = (aga)B N (aaB)A-
Since also a = YN R, by T 1.2.53 a¢ C IntAaB = (aqa)p N (@ap)a. O

Lemma 1.2.55.4. If a point C lies outside a dihedral angle z@, the half-plane ac lies completely outside AaB:
ac C Ext(AaB). 194

191Thus, the dihedral angle AaB exists if and only if A, a, B do not coplane. With the aid of T 1.1.2, L 1.1.2.6 we can see that there
exists at least one dihedral angle.

1921n other words, the present lemma states that the conditions (taken separately) i), ii), iii), and the condition of the existence of the
dihedral angle AaB are equivalent to one another.

193Theorem T 1.2.53 makes this notion well defined in its ”any of the points” part.

1941n full analogy with the case of L 1.2.55.3, from L 1.2.17.6 it follows that this lemma can be reformulated as: If one of the points of
a half-plane a¢ lies outside a dihedral angle AaB, the whole half-plane ac lies outside the dihedral angle AaB.
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Figure 1.83: If C lies inside a dihedral angle AaB , the half-plane ac lies completely inside AaB: ac C I ntAaB.

a,

ac

ap

Figure 1.84: If a point C' lies outside a dihedral angle AaB , the half-plane a¢ lies completely outside AaB: ac C
Ext(AaB).

Proof. (See Fig. 1.84.) ac ﬂP(gaB) = 0, because C' ¢ a and ac Nas # OVacNap # 0 L1.247.7 ac = as V

ac = ap = C € aap VC € ap - a contradiction. ac N Int(A\aB) = (), because if D € ac N Imf(@), we
would have ap = ac¢ from L 1.2.17.6 and ap C Int (A\aB), whence C' € Int(AaB) - a contradiction. Finally,
ac C CP* & ac 077(@) =0&acnNInt(AaB) =0 = ac C Ext/AaB. O

Lemma 1.2.55.5. Given a dihedral angle z@, if a point C lies either inside AaB or on its side aas, and a
point D either inside AaB or on its other side ap, the open interval (CD) lies completely inside AaB, that is,
(CD) C Int (AaB).

Proof. C € Int(AaB)Uax & D € Int (AaB) Uap = C € ((ctan)p N (aap)a)Uaa & D € ((aan)s N (aap)a)Uas =
C € ((aga)BUas) N ((agp)aUan)& D € ((ga)pUap) N ((ap)a Uap). Since, by L 1.2.53.12, a4 C (aqp)a and

ap C (aqa)B, we have (aap)aUaa = (agp)a, (daa)p Uap = (aqa)p, and, consequently, C € (agaa)pUas & C €

(eB)a& D € (aga)p & D € (aup)aUap 11.2.83.9 (CD) C (aqa)B & (CD) C (agp)a = ac C Int (1@) O

The lemma L 1.2.55.5 implies that the interior of a dihedral angle is a convex point set.

Lemma 1.2.55.6. If a point C lies inside a dihedral angle (xk)q (with the edge a), the half-plane af., complementary
to the half-plane ac, lies inside the vertical dihedral angle x°k€.

Proof. (See Fig. 1.86.) C € Int ((YR)) = C € ¥Ry ~ 2272 4% C YENRS = 4% C XpeNRye = af C IntZ((X°RE)).

O

Lemma 1.2.55.7. Given a dihedral angle Xk, all points lying either inside or on the sides x©, k¢ of the dihedral
angle opposite to it, lie outside xr. '9°

Proof. O

195Obviously, this means that none of the interior points of W can lie inside Xk.
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Figure 1.85: Dihedral angles X;< and kfi are adjacent to the dihedral angle Y%. Note that y, u lie on opposite sides
of K and A, x lie on opposite sides of Y.

Figure 1.86: If C lies inside a dihedral angle (x&)q, the half-plane af, lies inside X/CE
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Lemma 1.2.55.8. 1. If a plane o and the edge a of a dihedral angle Xk concur at a point O, the rays h, k that are
the sections by the plane a of the half-planes x, k, respectively, form an angle Z(h, k) with the vertex O.

The angle Z(h, k), formed by the sections of the sides x, k of a dihedral angle XK by a plane o, will be referred to
as the section of the dihedral angle Xk by the plane o. 196

2. Conwversely, if an angle Z(h,k) is the section of a dihedral angle Xk by a plane «, the edge a of Xk concurs
with the plane « at the vertex O of the angle Z(h, k). 197

Proof. 1. We have k # h€, for otherwise the half-planes x°, , in addition to having a common edge (a), would by
L 1.2.19.8 have a common point, for which we can then take any point lying on h® = k. This would, by L 1.2.17.7,
imply x¢ = &, in contradiction with the definition of dihedral angle. Thus, the two distinct rays h, k form an angle
Z(h, k) with the vertex O, q.e.d.

2. Follows immediately from L 1.2.19.13, part 2. O

A dihedral angle is said to be adjacent to another dihedral angle if it shares a side and the edge with that dihedral
angle, and the remaining sides of the two dihedral angles lie on opposite sides of the line containing their common
side. This relation being obviously symmetric, we can also say the two dihedral angles are adjacent to each other.
We shall denote any dihedral angle, adjacent to a given dihedral angle Y&, by adjxk. Thus, we have, by definition,
Ri = adjxr 198 and Nx = adjxR if xku and Ayk, respectively. (See Fig. 1.85.)

Corollary 1.2.55.9. If a point B lies inside a dihedral angle m, the dihedral angles 1@, BaC are adjacent.

Proof. B € IntAaC "' 223D D e ap& [ADC]. Since D € aap N (AC), A ¢ aup, we see that the points A, C,

and thus the half-planes a4, ac (see T 1.2.54) lie on opposite sides of the plane a,p. Together with the fact that
the dihedral angles AaB, BaC' share the side ap this means that AaB, BaC' are adjacent. O

From the definition of adjacency of dihedral angles, taken together with the definition of the interior and exterior
of a dihedral angle, immediately follows

Lemma 1.2.55.10. In a dihedral angle kji, adjacent to a dihedral angle XK, the side p lies outside XK.

which, together with C 1.2.55.9, implies the following corollary

Corollary 1.2.55.11. If a point B lies inside a dihedral angle R, neither the half-plane ac has any points inside
or on the dihedral angle AaB, nor the half-plane aa has any points inside or on BaC.

Lemma 1.2.55.12. If dihedral angles Xk, kji share the side k, and points A € x, B € p lie on opposite sides of the
plane &, the dihedral angles Xk, kfi are adjacent to each other.

Proof. Immediately follows from L 1.2.19.12. O

A dihedral angle kA is said to be adjacent supplementary to a dihedral angle Y&, written R\ = adjsp xk, iff

the half-plane A is complementary to the half-plane x. That is, R = adjsp Xk &L= x¢. Since, by L 1.2.19.2,
the half-plane (x¢)¢, complementary to the half-plane x¢, complementary to the given half-plane x, coincides with

the half-plane x: (x¢)¢ = ¥, if kA is adjacent supplementary to Y&, the dihedral angle Y is, in its turn, adjacent
supplementary to the dihedral angle xA.

Lemma 1.2.55.13. Given a dihedral angle X£, all points lying inside any dihedral angle kfi adjacent to it, lie outside

)/(-I\i 199

Proof. (See Fig. 1.87.) By definition of the interior, A € Int(xk) = Apk. By the definition of adjacency ku =
.A _ 112325 —
adjxr = xkp. Aur & xkp =" ARx = A € Extyk. O

Corollary 1.2.55.14. If Z(h, k) is the section of a dihedral angle Int (xr) by a plane «, then the adjacent supple-
mentary angles Z(h¢, k), Z(h,k®) are the sections of the corresponding adjacent supplementary dihedral angles x°k,
XK, respectively, and the vertical angle Z(h®, k°) is the section of the vertical dihedral angle x°k°.

Proof. See C 1.2.19.14. O

Lemma 1.2.55.15. If a point C lies inside a section of a dihedral angle Xk by a plane o > C, it lies inside the
dihedral angle itself: C € XK.

196 Obviously, for any such section Z(h, k) of a dihedral angle x&, we have h C x, k C k.

197 Compare this lemma with L 1.2.19.13 and the definition accompanying it.

198 Of course, by writing & = adjxk we do not imply that &g is the only dihedral angle adjacent to X&. It can be easily seen that in
reality there are infinitely many such dihedral angles. The situation here is analogous to the usage of the symbols o and O in calculus
(used particularly in the theory of asymptotic expansions).

199 Obviously, this means that given a dihedral angle Y&, none of the interior points of a dihedral angle & adjacent to it, lie inside X&.
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X

Figure 1.87: Given a dihedral angle Y&, all points lying inside any dihedral angle %ji adjacent to it, lie outside k.

Proof. Taking points D, F on the sides h, k, respectively, of a section Z(h,k), we have C € IntZ(h,k) b1.220.10

JF [DEF|&E € O¢c. D € h&h C x = D € x, F € k&k C Kk = F € k, whence D € x&F € k& E €

(DF) M2 oo Int (xr). Using L 1.2.53.8, L 1.2.55.3 we can write O¢ C a. C Int (Xk), whence C € Int (YR),

q.ed. O

Thus, for an arbitrary section Z(h, k) of a dihedral angle xr we can write IntZ(h,k) C Int (xk). Furthermore,
applying the same argument to the adjacent supplementary and vertical angles, we can also write IntZ(h¢ k) C
Int (X°K), IntZ(h, k°) C Int (xr°), IntZ(he,k°) C Int (x°k°)

Lemma 1.2.55.16. A point C lying inside a dihedral angle Xi also lies inside all sections of Xk by planes o > C.
200

Proof. Let Z(h, k) be the section of Y& by aplanea > C. C € a = a (5 & C ¢ h& C ¢ k M2210 0 e IntZ(h, k)V
C e IntL(h k)VC € IntZL(h, k%) v C € IntZ(h¢, k°). But the two preceding results (C 1.2.55.14, L 1.2.55.15) imply
that C € IntZ(h¢,k) = C € Int (x°k), C € IntZ(h,k°) = C € Int (xx°), C € IntZ(h¢,k) = C € Int (x°k°).
In view of L 1.2.55.13, L 1.2.55.7, the variants C' € Int (x°x), C € Int(xx¢), C € Int(x°x°) all contradict the
hypothesis C' € Int (). This contradiction shows that, in fact, C' € Int/(h, k) is the only possible option, q.e.d. O

Lemma 1.2.55.17. Suppose points D, F lie, respectively, on the sides x, k, and a point O lies on the edge a of a
dihedral angle XK. Then:

1. The points D, O, F are not collinear;

2. The plane apor concurs with the line a at O;

3. The angle ZDOF is the section of the dihedral angle X by the plane apor.
Proof. (See Fig. 1.88.) 1. We have D € x& F € & M281 BoF = Xk. OcaCx=0a,D&D €y ALLS aop C X.
Hence F' ¢ aop, for otherwise F' € app C x = F €C ¥, which contradicts L 1.2.55.2. Thus, the points D, O, F are
not collinear.

2. If P € aNnapor,?®' P # O, then we would have O € aNapor & P € aNapor Aéﬁﬁ a C /DOF 242 Qup =
apor, whence F' € a,p - a contradiction with L 1.2.55.2.

3. Follows from 2. and L 1.2.55.8. O

Lemma 1.2.55.18. Given a dihedral angle Xk, (with the line a as its edge) and a point C inside it, for any points
D on x and F on k, the half-plane ac meets the open interval (DF).

Proof. (See Fig. 1.89.) Take a point O € a. Since, by the preceding lemma (L 1.2.55.17, 2.), the line a and the plane

apor concur at O, by L 1.2.19.13 the plane apor and the half-plane a4 have a common ray ! whose initial point

is O. We have C € Int(xr)k M2 00 ¢ Int(xk) = | C Int(xk). Observe also that, from the preceding lemma

(L 1.2.55.17, 3.), the angle ZDOF is the section of Yk by apor. Hence, taking an arbitrary point P € [, we conclude

from L 1.2.55.16 that P € IntZDOF, ie. | C IntZDOF. Finally, D € Op & F € Op &1 C IntZDOF "'221°

JE E € l& [DEF). Thus, E € ac N (DF), as required. O

Lemma 1.2.55.19. Given a dihedral angle XK, any point lying on the same side of the plane X as the half-plane k,
lies either inside the dihedral angle XK, or inside the dihedral angle kx¢, or on the half-plane k (See Fig. 1.91). That
is, Xx = Int (Xr) U Kk U Int (kx©).

200By 1, 1.2.55.8, when drawing a plane « through a point C' € Int(X&), we obtain a section of X& by « iff the plane a and the edge a
of the dihedral angle X% concur at a point O.
201 The existence of apor follows from 1. (in the present lemma) and the axiom A 1.1.4.
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Figure 1.88: Suppose points D, F lie, respectively, on the sides x, k, and a point O lies on the edge a of a dihedral
angle Y%. Then: 1. The points D, O, F are not collinear; 2. The plane apor concurs with the line a at O; 3. The
angle ZDOF is the section of the dihedral angle Y& by the plane apor.

Figure 1.89: Given a dihedral angle Y%, and a point C inside it, for any points D on x and F on &, the half-plane
ac meets the open interval (DF).

Figure 1.90: If a point B lies inside an angle ZAOC, the angles ZAOB, /BOC' are adjacent.
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Figure 1.91: Given a dihedral angle Y%, any point lying on the same side of ¥ as k, lies either inside Y&, or inside
KX€, or on K.

Figure 1.92: For any dihedral angle AaB there is a point C' (and, consequently, a half-plane a¢) such that the
half-plane ap lies inside the dihedral angle AaC'.

L1.2.53.12 _
) =

Proof. Xr = Xx NCP* = X N (Fy U PR UKS X N (Fy UPr Ukye) = (Xe N Ey) U (Xs NPr) U (Xk N Eye) =
]

Int (xk) U kN Int (XR).

Given a dihedral angle Y&, the dihedral angle W, formed by the half-planes x¢, x¢, complementary to x, k,
respectively, is called (the dihedral angle) vertical, or opposite, to Xx. We write vert (Yr) = x¢x¢. Obviously, the
angle vert (vert (X)), opposite to the opposite W of a given dihedral angle Y& , coincides with the dihedral angle
XE-

Lemma 1.2.55.20. For any dihedral angle AaB there is a point C 22 such that the half-plane ap lies inside the
dihedral angle AaC 203

Proof. (See Fig. 1.92.) Since AaB is a dihedral angle, by L 1.2.55.2 we have B ¢ a,4. Hence by C 1.2.1.13 also
C ¢ aga. By L 1.2.55.2 the dihedral angle AaC' exists. By L 1.2.55.5, L 1.2.55.3 the half-plane ap lies inside the
dihedral angle AaC, q.e.d. O

Lemma 1.2.55.21. For any dihedral angle AaC there is a point B such that the half-plane ap lies inside AaC. 204

Proof. (See Fig. 1.92.) By T 1.2.2 3B [ABC]. By L 1.2.55.5, L 1.2.55.3 ap C Int(AaC). O

Lemma 1.2.55.22. If points B, C' lie on one side of a plane aga, and ap # ac, either the half-plane ap lies inside
the dihedral angle AaC, or the half-plane ac lies inside the dihedral angle AaB.

2023nd, consequently, a half-plane ac

203This lemma is an analogue of A 1.2.2, L, 1.2.21.18.
204 This lemma is analogous to T 1.2.2, L 1.2.21.19. In the future the reader will encounter many such analogies.
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Figure 1.93: If B, C lie on one side of ay4, and ap # ac, either ap lies inside EE, or the half-plane a¢ lies inside
AaB.

. T1.2,53 L1.2.55.19
Proof. Denote ap = a%. (See Fig. 1.93.) BCa,a == apacqga. apacoq.a&ap # ac =" ac C

Imf(@) Vac C Imf(EcE)). 205 Suppose ac C Imf(EcE)). 206 Then by L 1.2.55.10 ap C Ext(@). But

since apacapa & Op # Oc L1.258.19 ap C Imf(zm) Vapg C Imf(C/'aT)), we conclude that ag C Imf(@). O

Corollary 1.2.55.23. Suppose that the rays h, k, | are the sections of half-planes x, r, A with common edge a by a
plane . If the rays k, [ lie in o on the same side of h, then the half-planes k, \ lie on the same side of the plane x.

Proof. Obviously, we can assume without loss of generality that the rays k, [ are distinct.2’” Then by L 1.2.21.21
either &k C IntZ(h,l) or I C IntZ(h,k). Hence, in view of L 1.2.55.15, L 1.2.55.3 we have either x C Int)a or
A C Intxk. Then from definition of interior of dihedral angle we see that the half-planes , A lie on the same side of
the plane y. O

Corollary 1.2.55.24. Suppose that the rays h, k, | are the sections of half-planes x, k, A with common edge a by a
plane a. If k, X\ lie on the same side of the plane X, then the rays k, | lie in o on the same side of h.

Proof. Follows from L 1.2.55.22, L. 1.2.55.16. O

Corollary 1.2.55.25. Suppose that the rays h, k, | are the sections of half-planes x, r, A with common edge a by a
plane . If the rays k, | lie in a on opposite sides of h, then the half-planes k, X\ lie on opposite sides of the plane x.

Proof. Take points K € k, L € l. Since, by hypothesis, the rays k, [ lie in a on opposite sides of h, the open interval
(K L) is bound to meet the line h in some point H. But h C a, k C &, I C A, whence the result. O

Corollary 1.2.55.26. Suppose that the rays h, k, | are the sections of half-planes x, r, A with common edge a by a
plane a. If x, A lie on opposite sides of the plane R, then the rays h, [ lie in a on opposite sides of k.

Proof. Obviously, the rays h, k, [ lie in the same plane, namely, the plane of the section. Also, neither of the rays h,
[ lie on the line k. 20? Therefore, the rays h, [ lie either on one side or on opposite sides of the line k. But if h, [ lie
on the same side of k then y, A lie on the same side of the plane % (see C 1.2.55.23), contrary to hypothesis. Thus,

we see that h, [ lie in a on opposite sides of k, q.e.d. O

Lemma 1.2.55.27. If a half-plane \ with the same edge as half-planes x, k lies inside the dihedral angle Xk formed
by them, then the half-plane k lies inside the dihedral angle x°k.

Proof. Using L 1.2.55.13, L 1.2.55.19 we have A C Int(YK) = k C E:ct;(j\& M &N\ # k= k C Int(xr). O

205The lemma L 1.2.55.19 is applied here to every point of the half-plane ac.

2061f g C Imt(@), we have nothing more to prove.

2071f | = I, using T 1.1.3 we can see that the half-planes &, A coincide.

2081y fact, suppose the contrary, i.e. that, for example h lies on k. Then by T 1.1.3 the planes ¥ and & would coincide, which contradicts
the hypothesis that x, A lie on opposite sides of the plane &.
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Figure 1.94: If a point C lies inside a dihedral angle /TJ), and a point B inside a dihedral angle 1@, then the
half-plane ap lies inside the dihedral angle AaD, and the half-plane a¢ lies inside the dihedral angle BaD.

Lemma 1.2.55.28. If a point C' lies inside a dihedral angle %T), and a point B insitde a dihedral angle ,@, then
the half-plane ap lies inside the dihedral angle AaD, and the half-plane ac lies inside the dihedral angle BaD. 2%°

Proof. (See Fig. 1.49.) C € Int(AaD) “"22"® 3F [AFD|& F € ac. B € Int(AaC) “"22"® 3E [AEF|& E € ap.

[AEF) & [AFD] tl2g2 [AED] & [EFD]. Hence, using L 1.2.55.5, L 1.2.55.3, we can write A € aa& E € ap& F €

ac& D € ap & [AED] & [EFD] = ap C Int(AaD) & ac C Int(BaD). O

Lemma 1.2.55.29. If a half-plane ap lies inside a dihedral angle XGE, the ray ac lies inside a dihedral @, and
at least one of the half-planes ap, ac lies on the same side of the plane a4 as the half-plane ap, then the half-planes
ap, ac both lie inside the dihedral angle AaD.

Proof. Note that we can assume apapag,a without any loss of generality, because by the definition of dihedral angle

—_— . L1.2.52.2
ap C IntAaC = apacaopa, and if acapaga, we have apacags & acapags =" apapga. apapoga & ap #

ap "R 4p Imf(zm) Vap C Imf(@). If ap C Imf(zm) (see Fig. 1.95, a)), then using the preceding
lemma (L 1.2.55.28), we immediately obtain ac C Int(AaD). Butif ap C Int(AaB)(see Fig. 1.95, b.), observing that

ap C Int(zm), we have by the same lemma ap C Int(ﬁa\C), which, by C 1.2.55.11, contradicts ac C Int(@).
O

Lemma 1.2.55.30. Suppose that a finite sequence of points A;, where i € N,,, n > 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a line b is skew to the line a = A1 A, 2'° Then the half-planes ba,,ba,,...,ba, are in order

[ba,ba,...ba,], that is, ba; C Intm whenever either i < j <k ork < j <i.
Proof. Follows from L 1.2.7.3, L 1.2.55.10, L. 1.2.55.4. O
Lemma 1.2.55.31. Suppose half-planes k, X lie on the same side of a plane Y (containing a third half-plane x ), the

half-planes x, X lie on opposite sides of the half-plane K, and the points H, L lie on the half-planes x, A, respectively.
Then the half-plane k lies inside the dihedral angle xA and meets the open interval (HL) at some point K.

2091, 1.2.55.3 implies that any other point of the half-plane ac can enter this condition in place of C, so instead of ”If a point C ...”
we can write ”if some point of the half-plane O¢ ...”; the same holds true for the half-plane ap and the dihedral angle AaC. Note that,
for example, L 1.2.55.6, L. 1.2.55.18, L 1.2.55.22 also allow similar reformulation, which we shall refer to in the future to avoid excessive
mentioning of L 1.2.17.6. Observe also that we could equally well have given for this lemma a formulation apparently converse to the one
presented here: If a point B lies inside a dihedral angle &B, and a point C lies inside the dihedral angle BaD (the comments above
concerning our ability to choose instead of B and C any other points of the half-planes ap and ac, respectively being applicable here as
well), the half-plane a¢ lies inside the dihedral angle m, and the half-plane ap lies inside the dihedral angle @. This would make
L 1.2.55.28 fully analogous to L 1.2.3.2. But now we don’t have to devise a proof similar to that given at the end of L 1.2.3.2, because
it follows simply from the symmetry of the original formulation of this lemma with respect to the substitution A — D, B — C, C — B,
D — A. This symmetry, in its turn, stems from the definition of dihedral angle as a non-ordered couple of half-planes, which entails
AaC = CaA, AaD = DaA, etc.

210That is, there is no plane containing both a and b. Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points A;,
Aj,i#j,1,j€N ie a= QA A;-
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Figure 1.95: If a half-plane ap lies inside a dihedral angle z@, the ray ac lies inside a dihedral Eﬂ), and at least
one of the half-planes ap, ac lies on the same side of the plane a,4 as the half-plane ap, then the half-planes ap,

ac both lie inside the dihedral angle AaD.
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Proof. H € y& K € N& v\ = 3K K € & [HKL]. [HKL & H € v "'22° KLy. Hence K € &, for, obviously,

K # O, and, assuming K € k¢, we would have: KAy & kchire M1220

imply LYK - a contradiction. Finally, H € x& L € A& [HKL

AXxk€, which, in view of L € A\, K € k¢, would
]L125510KE /\L12554kC . O

Lemma 1.2.55.32. Suppose that the half-planes x, k, A have the same edge and the half-planes x, A lie on opposite
sides of the plane & (so that the dihedral angles XF, R are adjac/eﬁt). Then the half-planes x, X\ lie on the same side
of the plane x iff the half-plane X lies inside the dihedral angle x°k, and the half-planes k, A lie on opposite sides of
the plane x iff the half-plane x° lies inside the dihedral angle 5y Also, the first case takes place iff the half-plane k
lies between the half-planes x, A, and the second case iff the half-plane k€ lies between the half-planes x, .

Proof. Note that A&y & x“kx b2 XC/\/i Suppose first that the half-planes x, A lie on the same side of the plane .

Then we can write y°A& & kAY = A C Intx°s. Conversely, form the definition of interior we have A C Intx°r = KAX.
Suppose now that the half- planes K, A lie on opposite sides of the plane x. Then, obviously, the half-plane A cannot
lie 1n51de the dihedral angle x¢k, for otherwise k, A would lie on the same side of x. Hence by L 1.2.55.22 we have
xX¢ C 5y Conversely, if x¢ C Intm\ the half-planes , A lie on opposite sides of the plane X in view of L 1.2.55.22.

211 Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.55.31) and (in the second

case) the observation that Ayx & k°xx b2z KA. (See also C 1.2.55.9). O

Lemma 1.2.55.33. Suppose that the half-planes x, &, X have the same edge a and the half-planes x, A lie on opposite
sides of the plane K. Then either the half-plane k lies inside the dihedral angle X/\ or the half- plane K¢ lies inside
the dihedral angle X)\ or A = x¢. (In the last case we again have either k C Intxx or kK¢ C Intxx depending on
which side of the plane k (Z.eﬂhzch of the two half-planes having the plane R as its edge) is chosen as the interior
of the straight dihedral angle xx¢).

Proof. Take points H € x, L € XA. Then xR\ implies that there is a point K € & such that [HKL]. Then,
obviously, either K € k, or K € a, or K € k° If K € a then L € k° (see L 1.2.19.8) and thus A = x° (see
L 1.2.51.6). If K ¢ a then the points H, L and the line a are not coplanar. 2'2 Therefore, the proper (non-
straight) dihedral angle );}\ exists (see L 1.2.21.1, L 1.2.55.2). Hence by L 1.2.55.5, L 1.2.55.3 we have either

Hex&Le) & [HKL&K €ek=kC Imf)z}\, or He x& L e AN&[HKL &K € k° = k° C Int)/(j\, depending on
which of the half-planes k, k¢ the point K belongs to.

Betweenness Relation for Half-Planes

We shall refer to a collection of half-planes emanating from a common edge a as a pencil of half-planes or a half-plane
pencil, which will be written sometimes as S(®). The line a will, naturally, be called the edge, or origin, of the pencil.
If two or more half-planes lie in the same pencil (i.e. have the same edge), they will sometimes be called equioriginal
(to each other).

Theorem 1.2.55. Given a plane «, a line a lying in «, and a point A lying outside o, the set (pencil) J of all half-
planes with the edge a, lying in on the same side of the plane o as the point A 23, admits a generalized betweenness
relation.

To be more precise, we say that a half-plane ap € J lies between half-planes a4 € J and ac € J iff ap lies inside
the dihedral angle R, i.e. iff ap C Int(m). 214 Then the following properties hold, corresponding to Pr 1.2.1 -
Pr 1.2.7 in the definition of generalized betweenness relation:

1. If a half-plane ap € J lies between half-planes a4 € J and ac € J, then ap also lies between ac and a4, and
aa, ap, ac are distinct half-planes.

2. For every two half-planes ax,ap € J there is a half-plane ac € J such that ap lies between a4 and ac.

3. If a half-plane ap € J lies between half-planes aa,ac € J, the half-plane ac cannot lie between the rays aa
and ap.

4. For any two half-planes as,ac € J there is a half-plane ap € J between them.

5. Among any three distinct half-planes aa,ap,ac € J one always lies between the others.

6. If a half-plane ap € J lies between half-planes aa,ac € J, and the half-plane ac lies between ap and ap € J,
both ap, ac lie between ay and ap.

7. If a half-plane ap € J lies between half-planes aa,ac € J, and the half-plane ac lies between as and ap € J,
then ap lies also between aa, ap, and ac lies between ap and ap. The converse is also true. That is, for all
half-planes of the pencil J we have [agapac] & [asacap] < [asapapl & [apacap].

The statements of this theorem are easier to comprehend and prove when given the following formulation in
"native” terms.

211By that lemma, any open interval joining a point K € k with a point L € XA would then contain a point H € Px-

212Suppose the contrary, i.e. that H, L, a coplane. (Then the points H, L lie in the plane ¥ = X on opposite sides of the line a (this
can easily be seen using L 1.2.19.8; actually, we have in this case A = x¢)). Then K € a = Y N & - a contradiction.

213That is, of all half-planes with the edge a, lying in the half-space a 4.

2141f g € J lies between as € J and ac € J, we write this as [aaapac] in accord with the general notation. Sometimes, however, it is

more convenient to write simply ag C Int(m).

98



1. If a half-plane ap € J lies inside the angle R, where aa,ac € J, it also lies inside the dihedral angle @71,
and the half-planes aa, apg, O¢ are distinct.

2. For every tu two half-planes aa,ap € J there is a half-plane ac € J such that the half-plane ap lies inside the
dihedral angle AaC.

8. If a half-plane ap € J lies inside a dihedral angle %?7, where a4, ac € J, the half-plane ac cannot lie inside
the dihedral angle AaB.

4. For any two half-planes as,ac € J, there is a half-plane ap € J which lies inside the dihedral angle AaC.

5. Among any three distinct half-planes ax,ap,ac € J one always lies inside the dihedral angle formed by the
other two.

6. If a half-plane ap € J lies inside an angle ,@, where ays,ac € J, and the half-plane ac lies inside B/(LT),
then both ap and ac lie inside the dihedral angle z@.

7. If a half-plane ap € J lies inside a dihedral angle zm, where as,ac € J, and the half-plane ac lies inside z@,
then ap also lies inside @, and the half-plane ac lies inside the dihedral angle BaD. The converse is also true. That
is, for all half-planes of the pencil J we have ap C Imf(zm) &ac C Int(zm) & ap C Imf(zm) &ac C Int(@).

Proof. 1. Follows from the definition of Int(zm).

2. See L 1.2.55.20.

3. See C 1.2.55.11.

4. See L 1.2.55.21.

5. By C 1.1.6.6 there is a point D lying in « outside a. By T 1.1.2 we have @ = a,p. Then asapa&ay #
ap&asacalas # ac & agaca&ap # ac L1.255.22 (aa C Int(lﬁ)\/ag - Int(m))& (aa C Int(ﬁa\C)\/ac C
Int(@))&(ag C Int(ﬁz') \Y ac C (D/a?B)) Suppose a4 C Int(lﬁ). 25 Ifap C Int(ﬁa\C) (see Fig. 1.96, a)
then ay C Int(DaB) &ap C Int(DaC) h1255:28 ap C Int(zm) Now suppose ac C Imf(D/a?B). If ac C Imf(D/aTél)
(see Fig. 1.96, b) then ac C Int(DaA)&aA C (DaB) M2, Imf(f?at'). Finally, if ag C Int(ﬁa\C) (see
Fig. 1.96, c¢) then ay C Int(DaC)&ac C Int(DaB) 259 28 ac C Int(@).

6. (See Fig. 1.97.) Choose a point E € a, E ¢ a, so that ag C Int(EaD). 2 ap C Int(EaD)&ac C
Int(BaD) ""22** 4o ¢ Int(EaD)&ap C Int(EaC). Using the definition of interior, and then L 1.2.18.1,
L 1.2.18.2, we can write ag C Int(@)&ag C Int(@) = apapo.c & apasac = asacec. Using the
definition of the interior of (ECE') we have aAaEaac&aAacaaE = as C C Int(ﬁc-zz') aa C Int(@)&ac C
Int(EaD) "' 22 4 ¢ Int(AaD). Finally, ac C Int(AaD) & ap C Int(AaC) "' 22 4p C Int(EaD).

7. See L 1.2.55.28. O

Given a pencil J of half-planes, all lying on a given side of a plane «, define an open dihedral angular interval
(apac) formed by the half-planes a4,ac € J, as the set of all half-planes ap € J lying inside the dihedral angle
AaC. That is, for ax,ac € J we let (aaac) = {aplap C Int(zm)}. In analogy with the general case, we shall
refer to [asac), (asac), [aaac] as half-open, half-closed, and closed dihedral angular intervals, respectively. 27 In
what follows, open dihedral angular intervals, half-open, half-closed and closed dihedral angular intervals will be
collectively referred to as dihedral angular interval-like sets.

Given a pencil J of half-planes having the same edge a and all lying on the same side of a plane « as a given
point O, the following L 1.2.56.1 — T 1.2.61 hold. 2!8

Lemma 1.2.56.1. If a half-plane ap € J lies between half-planes a4, ac of the pencil J, the half-plane a4 cannot
lie between the half-planes ap and ac. In other words, if a half-plane ap € J lies inside AaC, where aa,ac € J,
then the half-plane a4 cannot lie inside the dihedral angle BaC'.

Lemma 1.2.56.2. Suppose each of A\, u € J lies inside the dihedral angle formed by x,k € J. If a half-plane v € J
lies inside the dihedral angle Ay, it also lies inside the dihedral angle XK. In other words, if half-planes A\, € J lie
between half-planes x, k € J, the open dihedral angular interval (Au) is contained in the open dihedral angular interval

(xk) 219, d.e. (M) C (xk). (see Fig 1.98)

215We can do this without any loss of generality. No loss of generality results from the fact that the half-planes a4, ap, ac enter the
conditions of the theorem symmetrically.

216By C 1.1.6.5 3B E € a& E ¢ a. By T 1.1.2 a = aup. By L 1.2.55.19, L 1.2.55.3 apapa&ap # ap = ap C Int(EaD)V ap C
Int(F/'aB), where ap = (ag)¢. We choose ap C (E/'aB), renaming £ — F, F — E if needed.

2171t should be noted that, as in the case of intervals consisting of points, in view of the equality Xk = kX, and the corresponding
symmetry of open dihedral angular intervals, this distinction between half-open and half-closed dihedral angular intervals is rather
artificial, similar to the distinction between a half-full glass and a half-empty one!

2183ome of them merely reiterate or even weaken the results proven earlier specifically for half-planes, but they are given here nonetheless
to illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for
the generalized betweenness relation on the half-plane pencil J, we give two formulations for a few results to follow.

219 A notation like (xx) for an open dihedral angular interval should not be confused with the notation (X#) used for the corresponding
dihedral angle.
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Figure 1.96: Among any three distinct half-planes a4, a Byfl € J one always lies inside the dihedral angle formed by
the other two.
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Figure 1.97: If a half-plane ap € J lies inside an angle R, where a4,ac € J, and the half-plane ac lies inside
BaD, then both ap and ac¢ lie inside the dihedral angle AaD.
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Figure 1.98: If half-planes A, € J lie between half-planes x,x € J, the open dihedral angular interval (Au) is
contained in the open dihedral angular interval (xk)
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a

Figure 1.99: If 0 € J divides x,x € J, as well as x and A € J, it does not divide x, .

Lemma 1.2.56.3. Suppose each side of an (extended) dihedral angles X,z: (where A\, € J) either lies inside an
(extended) dihedral angle XK, where X,k € J, or coincides with one of its sides. Then if a half-plane v € J lies inside

i, it also lies inside the dihedral angle Yk. 229

Lemma 1.2.56.4. If a half-plane \ € J lies between half-planes x, k € J, none of the half-planes of the open dihedral
angular interval (x\) lie on the open dihedral angular interval (Ak). That is, if a half-plane \ € J lies inside Xk,

none of the half-planes ?** lying inside the dihedral angle )/(j\ lie inside the dihedral angle Ak.

Proposition 1.2.56.5. If two (distinct) half-planes A\ € J, p € J lie inside the dihedral angle X, where x € J,
Kk € J, then either the half-plane X lies inside the dihedral angle X[i, or the half-plane u lies inside the dihedral angle

XA

Lemma 1.2.56.6. Each of A\, u € J lies inside the closed dihedral angular interval formed by x,k € J (i.e. each of
the half-planes A, p either lies inside the dihedral angle X or coincides with one of its sides) iff all the half-planes

v € J lying inside the dihedral angle X/\J, lve inside the dihedral angle 5y

Lemma 1.2.56.7. If a half-plane A € J lies between half-planes x, k of the pencil J, any half-plane of the open
dihedral angular interval (xk), distinct from X, lies either on the open angular interval (xA) or on the open dihedral
angular interval (Ak). In other words, if a half-plane X\ € J lies inside Xk, formed by half-planes x, k of the pencil

3, any other (distinct from \) half-plane lying inside X&, also lies either inside x\ or inside \k.

Lemma 1.2.56.8. If a half-plane o € J divides half-planes x,k € J, as well as x and X € J, it does not divide k, A
(see Fig. 1.99).

Betweenness Relation for n Half-Planes with Common Edge

Lemma 1.2.56.9. Suppose Xx1,X2,---,Xn(,--.) 15 a finite (countably infinite) sequence of half-planes of the pencil
J with the property that a half-plane of the sequence lies between two other half-planes of the sequence 222 if its
number has an intermediate value between the numbers of these half-planes. (see Fig. 1.100) Then the converse of
this property is true, namely, that if a half-plane of the sequence lies inside the dihedral angle formed by two other
half-planes of the sequence, its number has an intermediate value between the numbers of these two half-planes. That
is, (Vi,j,k € N, (respectively, N) (1 < j < k)V (k < j <1i) = [xix;jxk))) = (Vi,j,k € N,, (respectively, N)
(Dxaxsxel = (i <j <k)Vv(k<j<i))).

2201t may prove instructive to reformulate this result using the ”pointwise” terminology for dihedral angles: Suppose each side of a
dihedral angle CaD either lies inside an (extended) dihedral angle AaB, or coincides with one of its sides. Then if a half-plane has edge

point a and lies inside CA'aD, it lies inside the (extended) dihedral angle AaB.
221 Actually, none of the points lying on any of these half-planes.
222§ ¢, lies inside the dihedral angle formed by two other half-planes of the sequence
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Figure 1.100: Suppose X1, X2, -, Xn(,-..) is a finite (countably infinite) sequence of half-planes of the pencil J with
the property that a half-plane of the sequence lies between two other half-planes of the sequence if its number has
an intermediate value between the numbers of these half-planes. Then the converse of this property is true, namely,
that if a half-plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence, its
number has an intermediate value between the numbers of these two half-planes.
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Let an infinite (finite) sequence of half-planes x; of the pencil J, where i € N (i € N,,, n > 4), be numbered in
such a way that, except for the first and the last, every half-plane lies inside the dihedral angle formed by the two
half-planes of sequence with numbers, adjacent (in N) to that of the given half-plane. Then:

Lemma 1.2.56.10. — A half-plane from this sequence lies inside the dihedral angle formed by two other members of
this sequence iff its number has an intermediate value between the numbers of these two half-planes.

Lemma 1.2.56.11. — An arbitrary half-plane of the pencil J cannot lie inside of more than one of the dihedral angles
formed by pairs of half-planes of the sequence having adjacent numbers in the sequence.

Lemma 1.2.56.12. — In the case of a finite sequence, a half-plane which lies between the end (the first and the last,
n") half-planes of the sequence, and does not coincide with the other half-planes of the sequence, lies inside at least
one of the dihedral angles, formed by pairs of half-planes with adjacent numbers.

Lemma 1.2.56.13. — All of the open dihedral angular intervals (xiXi+1), wherei = 1,2,...,n—1, lie inside the open
dihedral angular interval (x1Xn). In other words, any half-plane r, lying inside any of the dihedral angles X, Xit1,
where i = 1,2,...,n — 1, lies inside the dihedral angle X1, Xn, i.e. Vi € {1,2,...,n— 1} k C Int(x3, Xiz1) = & C
Int(X1, Xn)-

Lemma 1.2.56.14. — The half-open dihedral angular interval [x1xx») s a disjoint union of the half-closed dihedral

angular intervals [xiXi+1), where i =1,2,...,n—1:
n—1
[X1Xn) = ‘Ul [XiXi+1)-
i=
Also,

The half-closed dihedral angular interval (x1xns] is a disjoint union of the half-closed dihedral angular intervals
(XiXit+1], wherei=1,2,....n—1:
n—1

(x1xnl = U (XiXi+1]-

=1
Proof. O

If a finite (infinite) sequence of half-planes y; of the pencil J, i € N,,, n > 4 (n € N) has the property that if a half-
plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its number has

an intermediate value between the numbers of these two half-planes, we say that the half-planes x1, x2, .-, Xn(,---)
are in order [x1x2...Xxn(-..)].

Theorem 1.2.56. Any finite sequence of half-planes x; € J, i € N,,, n > 4 can be renumbered in such o way that
a half-plane from the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its
number has an intermediate value between the numbers of these two half-planes. In other words, any finite (infinite)
sequence of half-planes h; € 3, i € N,,, n >4 can be put in order [x1x2--- Xn]-

Lemma 1.2.56.12. For any finite set of half-planes {x1,x2,---,Xn} of an open dihedral angular interval (xx) C J
there is a half-plane X on (xk) not in that set.

Proposition 1.2.56.13. Every open dihedral angular interval in J contains an infinite number of half-planes.

Corollary 1.2.56.14. FEvery dihedral angular interval-like set in J contains an infinite number of half-planes.

Basic Properties of Dihedral Angular Rays

Given a pencil J of half-planes lying on the same side of a plane « as a given point @), and two distinct half-planes o,
X, X 7 o of the pencil J, define the dihedral angular ray o,, emanating from its origin, or initial half-plane o, as the
set of all half-planes x # o of the pencil J such that the half-plane o does not divide the half-planes x, x. 222 That
is, for 0, x € J, 0 # x, we define o, = {k|k C J& k # o0& —[xok]}. ?**

Lemma 1.2.57.1. Any half-plane x lies on the dihedral angular ray oy .

Lemma 1.2.57.2. If a half-plane & lies on a dihedral angular ray oy, the half-plane x lies on the dihedral angular
ray o,. That is, K € 0y, = X € 0Ox.

Lemma 1.2.57.3. If a half-plane & lies on a dihedral angular ray oy, the dihedral angular ray oy coincides with the
dihedral angular ray o,.

Lemma 1.2.57.4. If dihedral angular rays oy, and o, have common half-planes, they are equal.

223§ e. the half-plane o does not lie inside the dihedral angle X&.

224 Note that, according to our definition, a dihedral angular ray is formed by half-planes instead of points! In a similar manner we could
construct a ”hyper- dihedral angular” ray formed by dihedral angular rays instead of points, rays, or half-planes. This hyper- dihedral
angular ray would have essentially the same properties given by Pr 1.2.1 - Pr 1.2.7 as the types of rays already considered, but, on the
other hand, it would definitely be too weird to allow any practical use.

104



Lemma 1.2.57.5. The relation ”to lie in the pencil J on the same side of a given half-plane o € J as” is an
equivalence relation on J \ {o}. That is, it possesses the properties of:

1) Reflexivity: A half-plane h always lies on the same side of the half-plane o as itself;

2) Symmetry: If a half-plane k lies on the same side of the half-plane o as x, the half-plane x lies on the same
side of 0 as K.

3) Transitity: If a half-plane k lies on the same side of the half-plane o as x, and a half-plane \ lies on the
same side of o as Kk, then A lies on the same side of o as x.

Lemma 1.2.57.6. A half-plane k lies on the opposite side of o from x iff o divides x and k.

»

Lemma 1.2.57.7. The relation “to lie in the pencil J on the opposite side of the given half-plane o from ...” is
symmetric.

If a half-plane & lies in the pencil J on the same side (on the opposite side) of the half-plane o as (from) a
half-plane x, in view of symmetry of the relation we say that the half-planes x and & lie in the set J on the same
side (on opposite sides) of o.

Lemma 1.2.57.8. If half-planes x and & lie on one dihedral angular ray oy C J, they lie in the pencil J on the same
side of the half-plane o. If, in addition, x # k, then either x lies between o and k, or Kk lies between o and x.

Lemma 1.2.57.9. If a half-plane X\ lies in the pencil J on the same side of the half-plane o as a half-plane x, and
a half-plane p lies on the opposite side of o from x, then the half-planes \ and u lie on opposite sides of 0. 2%°

Lemma 1.2.57.10. If half-planes A and p lie in the pencil J on the opposite side of the half-plane o from a half-plane
X, 225 then \ and p lie on the same side of o.

Lemma 1.2.57.11. Suppose a half-plane X lies on a dihedral angular ray oy, a half-plane p lies on a dihedral angular
ray ok, and o lies between x and k. Then o also lies between A and p.

Lemma 1.2.57.12. A half-plane o € J divides half-planes x € J and k € J iff the dihedral angular rays o, and oy
are disjoint, oy, No, =0, and their union, together with the ray o, gives the pencil J, i.e. J = 0y, Uo, U{o}. That is,
[xok] & (J =0y Uo, U{o}) & (o No, =0).

Lemma 1.2.57.13. A dihedral angular ray o, contains the open dihedral angular interval (ox).

Lemma 1.2.57.14. For any finite set of half-planes {x1, X2, - .., Xn} of a dihedral angular ray oy, there is a half-plane
A on oy not in that set.

Lemma 1.2.57.15. If a half-plane k lies between half-planes o and x then the dihedral angular rays o, and oy are
equal.

Lemma 1.2.57.16. If a half-plane x lies between half-planes o and k, the half-plane k lies on the dihedral angular
TaY Oy .

Lemma 1.2.57.17. If dihedral angular rays oy and o', are equal, their origins coincide.

Lemma 1.2.56.18. If a dihedral angle (=abstract dihedral angular interval) XoXn is divided into n dihedral angles

XOX15X1X2 - - s Xn—1Xn (by the half-planes X1, X2, - - - Xn—1), 227 the half-planes X1, X2, - - - Xn—1, Xn all liec on the same
side of the half-plane xo, and the dihedral angular rays Xoy,, X0y,» - - -» X0y, @€ equal. 228

Theorem 1.2.56. FEvery dihedral angular ray contains an infinite number of half-planes.

Linear Ordering on Dihedral Angular Rays

Suppose X,  are two half-planes on a dihedral angular ray o,. Let, by definition, (x < %), PN [ohk]. If x < K,

229 we say that the half-plane x precedes the half-plane x on the dihedral angular ray oy, or that the half-plane »
succeeds the half-plane x on the dihedral angular ray o,,.

Lemma 1.2.57.1. If a half-plane x precedes a half-plane x on the dihedral angular ray o,, and k precedes a half-plane
A on the same dihedral angular ray, then x precedes A on o,:
X <k&K<A=>x <A\, where x,k, X € 0.

Proof. O

225©Making use of L 1.2.57.6, this statement can be reformulated as follows:
If a half-plane X lies on oy, and o divides x and p, then o divides A and p.

226 One could as well have said: If o lies between x and ), as well as between x and p ...

2271n other words, a finite sequence of half-planes x;, where i +1 € N,,_1, n > 4, has the property that every half-plane of the sequence,
except for the first and the last, lies between the two half-planes with adjacent (in N) numbers.

228 By the same token, we can assert also that the half-planes xo, X1, ..., Xn—1 lie on the same side of half-plane xn, but due to symmetry,
this adds essentially nothing new to the statement of the lemma.

229Tn most instances in what follows we will assume the dihedral angular ray o, (or some other dihedral angular ray) fixed and omit
the mention of it in our notation.
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Lemma 1.2.57.2. If x, & are two distinct half-planes on the dihedral angular ray o, then either x precedes k, or k
precedes x; if x precedes k then k does not precede x.

Proof. O

For half-planes x, ~ on a dihedral angular ray o, we let, by definition, x < & PN (x < K)V(x = k).

Theorem 1.2.57. Every dihedral angular ray is a chain with respect to the relation <.

Line Ordering on Pencils of Half-Planes

Let 0 € 3, m € J, [mlp]. Define the relation of direct (inverse) ordering on the pencil J of half-planes lying on the
same side of a plane « as a given point (), which admits a generalized betweenness relation, as follows:

Call o, the first dihedral angular ray, and o, the second dihedral angular ray. A half-plane x precedes a half-plane
k in the pencil J in the direct (inverse) order iff:

- Both x and & lie on the first (second) dihedral angular ray and k precedes x on it; or

- x lies on the first (second) dihedral angular ray, and  lies on the second (first) dihedral angular ray or coincides
with o; or

- x = o and « lies on the second (first) dihedral angular ray; or

- Both x and & lie on the second (first) dihedral angular ray, and x precedes x on it.

Thus, a formal definition of the direct ordering on the pencil J can be written down as follows:

(X=<1K)3 PN (X €opi&kreo &k <X)V(x€or&rh=0)V(x €0 &K E0,)V(x=0&KEO0,)V(xE0&KE
o0p& X < K),

and for the inverse ordering: (y~<2k)j PN (x€o0,&r€0, &Kk <x)V(X €0, &Kk =0)V(xX €0, &K E0:)V(x=
o0&k €o0r)V (X Eor&kk € o0r&X < EK).

The term ”inverse order” is justified by the following trivial

Lemma 1.2.58.1. x precedes k in the inverse order iff k precedes x in the direct order.

For our notion of order (both direct and inverse) on the pencil J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin o of the pencil J, as well as on the choice of the half-planes = and
p, forming, together with the half-plane o, dihedral angular rays o, and o,, respectively.

Toward this end, let o’ € J, n' € J, [7'0'p’], and define a new direct (inverse) ordering with displaced origin
(ODO) on the pencil J, as follows:

Call o the displaced origin, o'r and o', the first and the second displaced dihedral angular rays, respectively. A
half-plane x precedes a half-plane « in the set J in the direct (inverse) ODO iff:

- Both x and k lie on the first (second) displaced dihedral angular ray, and x precedes x on it; or

- x lies on the first (second) displaced dihedral angular ray, and & lies on the second (first) displaced dihedral
angular ray or coincides with o'; or

- x = 0" and &k lies on the second (first) displaced dihedral angular ray; or

- Both x and & lie on the second (first) displaced dihedral angular ray, and x precedes « on it.

Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(x=<iK)3 PN (x€drm&rhed & <x)V(x€drn&r=0)V(x€dn&red,)V(x=0&red,)V(xe
oy &redy&x=<k),

and for the inverse ordering: (x—<54k)3 PN (x€dp&redy &k <x)V(x€dy&rn=0)V(xe€edy&r e
e )Vix=0&Kk€d)V(xEr&K€E&X<EK).

Lemma 1.2.58.2. If the origin o' of the displaced dihedral angular ray o' .+ lies on the dihedral angular ray o, and
between o and 7', then the dihedral angular ray o contains the dihedral angular ray o' 71, o'z C 0x.

Lemma 1.2.58.3. Let the displaced origin o' be chosen in such a way that o' lies on the dihedral angular ray o,
and the half-plane o lies on the dihedral angular ray o . If a half-plane k lies on both dihedral angular rays or and
o, then it divides o and o'.

Lemma 1.2.58.4. An ordering with the displaced origin o' on a pencil J of half-planes lying on the same side of a
plane « as a given point @, which admits a generalized betweenness relation, coincides with either direct or inverse
ordering on that pencil (depending on the choice of the displaced dihedral angular rays). In other words, either for all
half-planes x, Kk in § we have that x precedes k in the ODO iff x precedes k in the direct order; or for all half-planes
X, K in J we have that x precedes k in the ODO iff x precedes k in the inverse order.

Lemma 1.2.58.5. Let x, x be two distinct half-planes in a pencil § of half-planes lying on the same side of a plane
« as a giwen point Q, which admits a generalized betweenness relation, and on which some direct or inverse order is
defined. Then either x precedes k in that order, or k precedes x, and if x precedes k, k does not precede x, and vice
versa.

106



For half-planes y, k in a pencil J of half-planes lying on the same side of a plane « as a given point ), which admits

a generalized betweenness relation, and where some direct or inverse order is defined, we let x=;x PN (x=<ik)V(x =
kappa), where i = 1 for the direct order and ¢ = 2 for the inverse order.

Theorem 1.2.58. Every set J of half-planes lying on the same side of a plane a as a given point Q, which admits
a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation
=

g

Theorem 1.2.59. If a half-plane k lies between half-planes x and X, then in any ordering of the kind defined above,
defined on the pencil J, containing these rays, either x precedes k and k precedes \, or \ precedes k and k precedes
X; conversely, if in some order, defined on the pencil J of half-planes lying on the same side of a plane o as a given
point Q, admitting a generalized betweenness relation and containing half-planes x, k, A\, we have that x precedes k
and k precedes A\, or X\ precedes Kk and k precedes x, then k lies between x and A. That s,

VX, ko, A€J [xrA] & (x < k& <A V(A< r&kr < X).

Complementary Dihedral Angular Rays

Lemma 1.2.60.1. An dihedral angular interval (ox) is the intersection of the dihedral angular rays o, and x,, i.e.
(0x) = 0x N Xo-

Given a dihedral angular ray oy, define the dihedral angular ray of, complementary in the pencil J to the dihedral
angular ray oy, as of, = J \ ({0} Uoy). In other words, the dihedral angular ray of, complementary to the dihedral
angular ray o,, is the set of all half-planes lying in the pencil J on the opposite side of the half-plane o from the
half-plane y. An equivalent definition is provided by

Lemma 1.2.60.2. of = {k|[rox]}. We can also write o, = o,, for any half-plane p € J such that [pox].

Lemma 1.2.60.3. The dihedral angular ray (oi)c, complementary to the dihedral angular ray oS, complementary to

X7
the given dihedral angular ray on, coincides with the dihedral angular ray oy : (0;)c = 0y.

Lemma 1.2.60.4. Given a hal-plane A on an dihedral angular ray oy, the dihedral angular ray oy is a disjoint
union of the half - open dihedral angular interval (oA and the dihedral angular ray XS, complementary to the dihedral
angular ray Ao :

op = (o] UIS.

Lemma 1.2.60.5. Given in a pencil J of half-planes lying on the same side of a plane o as a given point QQ, which
admits a generalized betweenness relation, a half-plane k, distinct from a half-plane o € J, the half-plane k lies either
on oy or on oy, where x € J, X # o.

Theorem 1.2.60. Let a finite sequence of half-planes x1,Xx2,---,Xn, » € N, from the pencil §, be numbered in such
a way that, except for the first and (in the finite case) the last, every half-plane lies between the two half-planes
with adjacent (in N) numbers. Then the dihedral angular ray X1, is a disjoint union of half-closed dihedral angular

intervals (xixi+1], 1 = 1,2,...,n— 1, with the dihedral angular ray Xny,» complementary to the dihedral angular ray
Xny,» Where k€ {1,2,...,n—1}, ie.
n—1

X1y, = U (ixi+1] UXay, -

i=1

Sets of Half-Planes on Dihedral Angular Rays

Given a half-plane o in a pencil J of half-planes lying on the same side of a plane « as a given point ), which admits
a generalized betweenness relation, a nonempty set B C J is said to lie in the pencil J on the same side (on the
opposite side) of the ray o as (from) a nonempty set 2 C J iff for all half-planes x € 2 and all half-planes k € B, the
half-plane x lies on the same side (on the opposite side) of the half-plane o as (from) the half-plane x € 2. If the set
A (the set 9B) consists of a single element, we say that the set B (the half-plane x) lies in the pencil J on the same
side of the half-plane o as the half-plane y (the set 2/).

Lemma 1.2.61.1. If a set B C J lies in the pencil J on the same side of the half-plane o as a set A C J, then the
set A lies in the pencil J on the same side of the half-plane o as the set 5.

Lemma 1.2.61.2. If a set B C J lies in the pencil J on the same side of the half-plane o as a set A C J, and a set
¢ C J lies in the set J on the same side of the half-plane o as the set B, then the set € lies in the pencil J on the
same side of the half-plane o as the set 2.

Lemma 1.2.61.3. If a set B C J lies in the set J on the opposite side of the half-plane o from a set A C J, then
the set A lies in the set J on the opposite side of the half-plane o from the set B.

In view of symmetry of the relations, established by the lemmas above, if a set B C J lies in the pencil J on the
same side (on the opposite side) of the half-plane o as a set (from a set) 20 C J, we say that the sets 2 and B lie in
the pencil J on one side (on opposite sides) of the half-plane o.
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Lemma 1.2.61.4. If two distinct half-planes x, x lie on an dihedral angular ray oy, the open dihedral angular
interval (xk) also lies on the dihedral angular ray oy.

Given a dihedral angle X@a,%o whose sides , k both lie in the pencil J, such that the open dihedral angular
interval (xx) does not contain o € J, we have (L 1.2.61.5 - L 1.2.61.7):

Lemma 1.2.61.5. — If one of the ends of (xx) lies on the dihedral angular ray oy, the other end is either on oy or
coincides with o.

Lemma 1.2.61.6. — If (hk) has half-planes in common with the dihedral angular ray oy, either both ends of (xk)
lie on oy, or one of them coincides with o.

Lemma 1.2.61.7. — If (xk) has common points with the dihedral angular ray oy, the interval (xk) lies on oy,
(xK) C ox.

Lemma 1.2.61.8. If x and k lie on one dihedral angular ray oy, the complementary dihedral angular rays x& and
kS lie in the pencil J on one side of the half-plane o.

Theorem 1.2.61. A half-plane o in a pencil J of half-planes lying on the same side of a plane o as a given point @,
which admits a generalized betweenness relation, separates the rest of the half-planes in this pencil into two non-empty
classes (dihedral angular rays) in such a way that...

Properties of Convex Polygons

A polygon A1 A, ... A, is called convex iff for any side A;A; 1 for i = 1,2,...,n (where, of course, A, 11 = A;) the

set P\ [A;4;11] lies completely on one side of the line aa, 4, ,. 23!

Lemma 1.2.62.1. FEwvery triangle is a convex polygon.
Proof. O

Lemma 1.2.62.2. Suppose that a polygon A1As...A,, n > 4, has the following property: for any side A;A;1
fori=1,2,...,n (where, of course, Any1 = A1) the remaining vertices of the polygon lie on the same side of the
corresponding line aa,a,.,. Then the polygon is conver.

Proof. Follows from L 1.2.19.9. O

Lemma 1.2.62.3. If points A, C lie on opposite sides of the line agp, and B, D lie on opposite sides of aac, then
the quadrilateral ABCD is convex. 232

Proof. According to T 1.2.41, the diagonals (AC), (BD) meet in a point O. The result is then easily seen using
L 1.2.21.6, L 1.2.21.4 and the definition of interior of the angle. O

Lemma 1.2.62.4. Suppose A1Ay ... A,, where n > 4, is a convex polygon, where the vertices Ay, A; are both
adjacent to the vertex A;. Then for any other vertex A; (distinct from A, Ay, Ar) of the same polygon the ray A; 4,
lies completely inside the angle /AR A;A;. 233

Proof. Follows directly from the definitions of convexity and the interior of angle. 234 O

Lemma 1.2.62.5. Consider a trapezoid ABCD with agc || aap. If the vertices C, D lie on one side of the line
aap formed by the other two vertices,?>® then ABCD is convex. %3¢

Proof. See C 1.2.47.4, L 1.2.62.3. O
Theorem 1.2.62. Every convex polygon is simple.

Proof. O

2301n unified terms, an abstract dihedral angular interval.

231This is a rather unfortunate piece of terminology in that it seems to be at odds with the definition of convex point set. Apparently,
this definition is related to the fact (proved) below that the interior of a convex polygon does form a convex set.

232Thus, ABCD is convex, in particular, if its diagonals (AC), (BD) meet (see beginning of proof).

233 Note also that the result, converse to the preceding lemma, is true: If a quadrilateral ABCD is convex, then the points A, C' lie on
opposite sides of the line agp, and B, D lie on opposite sides of aa¢-

234Indeed, from convexity the vertices Aj, A; lie on the same side of the line aa, 4, and Aj, Ay lie on the same side of the line a4, 4,-
Hence A; C Int£A,A;A; by the definition of interior and, finally, AZ-A], C IntZLARA;A; by L 1.2.21.4.

2351t is evident that due to symmetry we could alternatively assume that the vertices A, B lie on the line acp.

2361t should be noted that we do not assume here that ABCD is simple. This will follow from C 1.2.47.4.
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Consider two non-adjacent vertices A;, A; of a polygon A1 A, ... A, (assuming the polygon in quetion does have
two non-adjacent vertices; this obviously cannot be the case for a triangle), there are evidently two open paths with
A;, A; as the ends. We shall refer to these paths as the (open) separation paths generated by A;, A; and associated
with the polygon AjAs ... A, and denote them Pathl(A1As ... A,) and Path2(A;As ... A,), the choice of numbers
1, 2 being entirely coincidental. Sometimes (whenever it is well understood which polygon is being considered) we
shall omit the parentheses.

Consider two non-adjacent vertices A;, A; of a convex polygon A; Az ... A,.

Lemma 1.2.63.1. The open interval (A;A;) does not meet either of the separation paths (generated by A;, A; and
associated with A1 Ay ... A, ). 237

Proof. Consider one of the separation paths, say, Pathl. Suppose the contrary to what is stated by the lemma, i.e.
that the open interval (A4;A;) meets the side-line [A;A4;] of Pathl. This means that the points A;, A; lie on the
opposite sides of the line a4, 4,, 238 which contradicts the convexity of the polygon A; A, ... A,. This contradiction
shows that in reality (A;A;) does not meet Pathl (and by the same token it does not meet Path2). O

Lemma 1.2.63.2. The separation paths Pathl, Path2 lie on opposite sides of the line aa,a;.

Proof. Suppose the contrary, i.e. that the paths Pathl, Path2 lie on the same side of the line aa,4;. 239 Consider
the vertices Ay, A; of Pathl, Path2respectively, adjacent on the polygon A1As... A, to A;. Using L 1.2.21.21,
we can assume without loss of generality that the ray Ay lies inside the angle ZA;A4;A;. But this implies that the
vertices A;, A; of the polygon A1 A, ... A, lie on opposite sides of the line a4, , containing the side A; A, which
contradicts the convexity of A1As... A,. O

Lemma 1.2.63.3. Straightening of convex polygons preserves their convezity.

Proof. We need to show that for any side of the new polygon the remaining vertices lie on the same side of the line
containing that side. This is obvious for all sides except the one formed as the result of straightening. (In fact,
straightening can only reduce the number of sides for which the condition of convexity must be satisfied.) But for the
latter this is an immediate consequence of L 1.2.63.1. Indeed, given the side A;A; resulting from straightening, the
remaining vertices of the new polygon are also vertices of one of the separation paths generated by A;, A;, associated
with the original polygon A1 A5 ... A,. O

Lemma 1.2.63.4. If vertices Ay, Ay lie on different separation paths (generated by A;, A;) then the ray A; 4, (in
particular, the point A; and the open interval (A;A;)) lies completely inside the angle LA, A; A,

Proof. Follows from L 1.2.63.3, L 1.2.62.4. 240 O

Consider a path A; Ay ... A, 2! (in particular, a polygon) and a connected collinear set A.

We shall define a single instance of traversal of the path A;As... A, by the set A, or, which is by definition the
same, a single instance of traversal of the set A by the path A;As... A, as one of the following situations taking
place:

— (Type I traversal): A point A € A lies on the side A;A4;11 of the path and this is the only point that the set
and the side have in common;

— (Type II traversal): A vertex A; lies in the set A, and the adjacent vertices A;—1, A;41 lie on opposite sides of
the line containing the set A.

— (Type III traversal): Vertices A;, A;4+1 lie in the set A, and the vertices A;_1, A;12 lie on opposite sides of the

line containing the set A.
242

Lemma 1.2.63.5. Proof. O

Theorem 1.2.64. Proof. O

237 Thus, it follows that each path lies completely on one side of the line ap;A;, although we have yet to prove that the paths lie on
opposite sides of the line A A, (this proof will be done in the next lemma).

238 Obviously, the points A;, Aj, Ay, A; cannot be all collinear.

239In this proof we implicitly use the results of the preceding lemma (L 1.2.63.1) and T 1.2.20.

240Here are some details: Performing successive straightening operations, we turn the polygon AjAs...A, into the (convex according
to L 1.2.63.3) quadrilateral A; ApAj Ay (it takes up to four straightenings). Using L 1.2.62.4 we then conclude that AiAj C IntLAR A A;.

241Tn a polygon A1 As ... Ay, ie. in a path A1 As... Ay Ayt1 with A,y = A; we shall use the following notation wherever it is believed
to to lead to excessive confusion: Ay,y2 = Az, Ap+3 = Asz,ldots. While sacrificing some pedantry, this notation saves us much hassle at
the place where ”the snake bites at its tail”.

242Observe that there are certain requirements on the minimum number of sides the polygon must possess in order to make a traversal
of the given type: While traversals of the first type can happen to a digon, it takes a triangle to have a traversal of the second type and
a quadrilateral for a traversal of the third type.
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A’ B’ X A

Figure 1.101: Given an interval AB, on any ray Ay, there is a point B’ such that AB = A'B’.

A B C

A B’ C

Figure 1.102: If intervals AB, BC' are congruent to A’B’, B'C’, B lies between A, C and B’ lies between A’, C’, the
interval AC is congruent to A'C".

1.3 Congruence

Hilbert’s Axioms of Congruence

The axioms A 1.3.1 — A 1.3.3 define the relation of congruence on the class of intervals, i.e. for all two - element
point sets: p C {{A, B}|A, B € CF''}2. If a pair (AB,CD) € p, we say that the interval AB is congruent to the
interval CD and write AB = CD. The axiom A 1.3.4 defines the relation of congruence on the class of all angles. If
angles Z(h, k) and Z(I,m) are in this relation, we say that the angle Z(h, k) is congruent to the angle Z(I,m) and
write Z(h, k) = Z(l,m).

Axiom 1.3.1. Given an interval AB, on any ray A'x, there is a point B’ such that AB is congruent to the interval
A'B', AB=A'B’. (See Fig. 1.101.)

Axiom 1.3.2. Ifintervals A'B’ and A" B" are both congruent to the same interval AB, the interval A’ B’ is congruent
to the interval A”B"”. That is, AB' = AB& A"B" = AB= A'B'= A"B".

Axiom 1.3.3. Ifintervals AB, BC are congruent to intervals A’ B’',B'C’, respectively, where the point B lies between
the points A and C and the point B’ lies between A’ and C’, then the interval AC is congruent to the interval A'C’.
That is, AB= A'B'& BC = B'C' = AC = A'C". (See Fig. 1.102)

Axiom 1.3.4. Given an angle Z(h,k), for any ray b’ in a plane o/ D B’ containing this ray, and for any point
A € Py \ Py, there is exactly one ray k' with the same origin O’ as h', such that the ray k' lies in o/ on the same
side of h as A, and the angle Z(h,k) is congruent to the angle Z(h',k").

Every angle is congruent to itself: Z(h,k) = Z(h, k).

A point set A is said to be pointwise congruent, or isometric, to a point set B, written A = B, iff there is a
bijection ¢ : A — B, called isometry, congruence, or (rigid) motion, or which maps (abstract) intervals formed by
points of the set A to congruent intervals formed by points of the set B: for all A;, A; € A such that A; # Ay, we
have Ay As = B1Ba, where By = ¢(A1), Ba = ¢(Az). Observe that, by definition, all motions are injective, i.e. they
transform distinct points into distinct points.

A finite (countably infinite) sequence of points A;, where ¢ € N, (i € N), n > 2, is said to be congruent to a finite
(countably infinite) sequence of points B;, where i € N,, (i € N), if every interval A;A4;, i # j, 1,7 € N, (i, € N)
formed by a pair of points from the first sequence, is congruent to the corresponding (i.e. formed by the points with
the same numbers) interval B;B;, ¢ # j, 4,j € N, (i,7 € N) formed by a pair of points of the second sequence.

A path A;As ... A,, in particular, a polygon, is said to be weakly congruent to a path By Bs...B,, (we write
this as A1A4s... A, ~ B1By...B,,) iff m = n 243 and each side of the first path is congruent to the corresponding
244 side of the second path. That is,

A1As .. A, ~B1B>y...B,, g (m = TL) & (Vl eN,_ 1 AiAi+1 = BiBi+1)-

A path A1 A5 ... A,, in particular, a polygon, is said to be congruent to a path B1Bs ... B,,, written A1 A5 ... A, =
B1Bs... By, iff

— the path A1 As ... A, is weakly congruent to the path B1Bs ... B,; and

243Thus, only paths with equal number of vertices (and, therefore, of sides), can be weakly congruent.
244§ ¢, formed by vertices with the same numbers as in the first path
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Figure 1.103: Congruences AB = A’B’, AC = A'C’, /BAC = /B’A’C’ imply ZABC = Z/A'B'C".

— each angle between adjacent sides of the first path is congruent to the corresponding angle 24> between adjacent
sides of the second path. That is,

AlAQAnEBlBQBng}AlAQAnﬁBlBQBn&

(V’L S {2, 3, ey — 1} lAiflAiAiJrl = LBileiBiJrl) & (Al = An &Bl = Bn = ZAnflAnAQ = LananBQ).
A path A1 A, ... A, is said to be strongly congruent to a path B1Bs ... By, written AjAs... A, 2 B1By... By,
iff the contour of A; A, ... A, is pointwise congruent to the contour of By By ... B,. That is,

A1Ay. . A, =2 B1B,y...B, g Pa,As...A, = PBiB,..B,

Axiom 1.3.5. Given triangles NABC, NA'B'C’, congruences AB = A'B', AC = A'C', /BAC = /B’A’C" imply
LZABC = LA'B'C'. (See Fig. 1.103)

Basic Properties of Congruence

Lemma 1.3.1.1. Given triangles NABC, NA'B'C’, congruences AB = A'B’, AC = A'C', /ZBAC = /B'A'C'
imply /ACB = Z/A'C'B’. 246 (See Fig. 1.103)

Proof. Immediately follows from A 1.3.5. O

Theorem 1.3.1. Congruence is an equivalence relation on the class of all (abstract) intervals, i.e., it is reflexive,
symmetric, and transitive.

Proof. Given an interval AB, by A 1.3.1 3A’'B’ AB= A'B’.

Reflexivity: AB = A'B' & AB = A'B' "£%? AB = AB.247
Symmetry: A'B' = A'B' & AB = A'B' “2%% o'’ = AB.

Transitivity: AB= A'B'& A'B' = A"B" = A'B' = AB& A'B' = A"B" 2% Ap = A"B". O

Corollary 1.3.1.2. Congruence of geometric figures is an equivalence relation (on the class of all geometric figures.)
Congruence of finite or countably infinite sequences is an equivalence relation (on the class of all such sequences.)
Weak congruence is an equivalence relation (on the class of all paths (in particular, polygons.)) That is, all these
relations have the properties of reflexivity, symmetry, and transitivity.

Proof. O

Owing to symmetry, implied by T 1.3.1, of the relation of congruence of intervals, if A1 As = By B>, i.e. if the
interval A A5 is congruent to the interval By Bo, we can say also that the intervals A; As and By Bs are congruent.

Similarly, because of C 1.3.1.2,if A1 A5 ... A, ~ B1Bs... B, instead of saying that the path A; A5 ... A, is weakly
congruent to the path B1Bs ... B,, one can say that the paths A1 As...A,, B1By...B, are weakly congruent (to
each other).

The following simple technical facts will allow us not to worry too much about how we denote paths, especially
polygons, in studying their congruence.

Proposition 1.3.1.3. If a path (in particular, a polygon) A1AsAs ... An_1 A, is weakly congruent to a path (in par-
ticular, a polygon) B1B2Bs ... B,_1B,, the paths AsAs ... An_1A, A1 and BaBs ... B, 1B, By are also weakly con-
gruent, as are the paths AsAy ... AyA1Ay and BsBy ..., ..., ApAy... Ay _2A,_1 and BBy ... By 9B, 1. Further-
more, the paths AnAnflAn,Q NN AQAl and Banlen72 BN B2B1, AnflAn,Q NN AQAlAn and anan72 . BQBan,
ceny, AJARAL ... A3As and B1B,By,_1...B3By are then weakly congruent as well. Written more formally, if

245§ ¢, formed by sides made of pairs of vertices with the same numbers as in the first path

246 For convenience, in what follows we shall usually refer to A 1.3.5 instead of L, 1.3.1.1.
247The availability of an interval A’B’ with the property AB = A’B’ is guaranteed by A 1.3.1.
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a path (in particular, a polygon) A1AsAs...A,_1A, is weakly congruent to a path (in particular, a polygon)
B1B3Bs ... By_1By, the paths Ay1)As2) - - Ao(n—1)Ac(n) and By1yBo(2) - - Bo(n—1)Asn) are also weakly congru-
ent, and more generally, the paths Asr1)Agk(2) - - Agk(n—1)Ack(n) and Bor1)Bor ) - - Bok(n—1)Bgk(n) are weakly
congruent, where o is the permutation
U<1 2 ... n—1 n>
2 3 ... n 1)’

ie. o(i) =i+1,1=1,2,...n—1, 0(n) =1, and k € N. Furthermore, the paths A xqyArk(2) ... Ark(n_1)Ark(n) and
BrryBrry - - Brk(n—1)Brr(n) are weakly congruent, where 7 is the permutation

4 (1 2 ... n-1 n
T T \n1 ..on=2 n-1)
ie. 7(1)=n,7() =i—-1,9i=2,3,...n, and k € {0} UN.

Proposition 1.3.1.4. If a polygon A1A3As ... A 1A, (ie., apath AjAy ... ApAniy with Apq1 = A1) is congruent
to a polygon B1BaB3 ... Bn_1By, (i-e., a path B1Bs ... B, By1 with B,11 = By ), the polygon AsAs ... Ap_1An A1 is

congruent to the polygon BoBs ... B,_1B, By, and AsAy ... A, A1 As is congruent to BsBy ..., ..., ApAy ... Ay _2A, 1
is congruent to B, Bi ... By_oB,_1. Furthermore, the polygon A, Ap_1An_o...AsAy is congruent to the polygon
Banlen72 SN BQBl, AnflAn,Q BN AQAlAn 18 COTLgTUETlt to anan72 SN BQBan, ey AlAnAn,1 e A3A2 18

congruent to ByB, B, _1 ... B3B—2. Written more formally, if a polygon A1A3As ... A,_1A, is congruent to a poly-
gon B1BaBs ... By, 1By, the polygon Ag1)Ag(2) - - - Ag(n—1)Ac(n) 18 congruent to the polygon B,(1)Bg(2) - - - Bo(n—1)Ac(n);
and more generally, the polygon Agk1yAgk(2) - - - Agk(n—1) Ak (n) s congruent to the polygon Byk(1yBok 2y - - - Bok(n—1)Bok (n)

where o is the permutation
(1 2 ... n—=1 n
= \23 ... n 1)

ie. o(i) =i+1,i=1,2,...n—1,0(n) =1, and k € N. Furthermore, the polygon A x1)Arre) .- Arkn_1)Arkmn)
is congruent to the polygon Box(1)Brr(a) ... Brk(n_1)Brrn), where T is the permutation

o (1 2 ... n-1 n
T T\n1 ... on-2 n-1)
ie. 7)) =n,7()=i—1,i=2,3,...n, and k € {0} UN.

Proposition 1.3.1.5. Suppose finite sequences of n points A1, Aa,..., Ay, and B, Bo, ..., B,, where n > 3, have
the property that every point of the sequence, except the first (A1, Bi) and the last (A, By, respectively), lies
between the two points of the sequence with the numbers adjacent (in N) to the number of the given point. Then if

all intervals formed by pairs of points of the sequence A1, A, ..., A, with adjacent (in N) numbers are congruent to
the corresponding intervals 2*® of the sequence By, Ba, ..., By, the intervals formed by the first and the last points
of the sequences are also congruent, A1A, = B1B,. To recapitulate in more formal terms, let Ay, As,..., An

and B1,Ba,...,Bn, n > 3, be finite point sequences such that [A;A;11Ai12], [BiBiy1Bit2] for all i € N,_o (i.e.
Vi=1,2,...n—2). Then congruences A;A;+1 = B;B;y1 for alli € N,,_1 imply A1 A,, = B1B,,.

Proof. By induction on n. For n = 3 see A 1.3.3. Now suppose A1A4,,_1 = B1B,_1 (induction!).?* We have
[AlAn—lAn]a [Ban_an] by L 1.2.7.3. Therefore, [AlAn_lAn]&[Ban_an]&AlAn_l = Ban—l&An—lAn =

B, B, “%% 4,4, = B,B,. O

Lemma 1.3.2.1. Let points B1, Bs lie on one side of a line aac, and some angle Z(h, k) be congruent to both
LCABy and CABy. Then the angles ZCAB,, ZCABs, and, consequently, the rays Ap,, Ap,, are identical.

Proof. (See Fig. 1.104.) BiBoaac & By € Ap, & By € Ap, =2 Ap Ap,asc. Z(hk) = LCAB, & Z(h,k) =

/CABy & Ap, Ap,asc 25" /CABy) = ZCABy = Ap, = Ap,. 20 O

Corollary 1.3.2.2. If points By, By lie on one side of a line aac, and the angle ZCAB; is congruent to the angle
LCAB; then LCABy = LCABs and, consequently, Ap, = Ap,-

Proof. By A 1.3.4 ZCAB; = ZCAB;q, so we can let Z(h, k) = CAB; and use L 1.3.2.1. O

248

i.e., intervals formed by pairs of points with equal numbers

249We are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for n—1, i.e. if [A; A; 41 Ai12],
[BiBit+1Bit2] foralli=1,2,...n — 2, then obviously [4;A;+1Ai+2], [BiBit1Biy2] for alli=1,2,...n —3; if A;A;41 = B; B4 for all
1=1,2,...,n—1, then A;A;y1 = B;B;41 foralli=1,2,...,n— 2.

250Ty  what follows we shall increasingly often wuse simple facts and arguments such as that, for instance,

DAp,aac & Ap, AByaac ng&z DAp,asc without mention, so as not to clutter exposition with excessive trivial details.
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Figure 1.104: If points By, Bs lie on one side of a4, and some angle Z(h, k) is congruent to both ZCAB;, C ABs,
then the angles ZCAB,, ZC ABs, and, consequently, the rays Ap,, Ap,, are identical.

C7

Figure 1.105: Given an interval AB, on any ray A’y there is at most one point B’ such that AB is congruent to the
interval A’B’

Theorem 1.3.2. Given an interval AB, on any ray A’y there is exactly one point B’ such that AB is congruent to
the interval A'B’, AB = A'B’.

Proof. (See Fig. 1.105.) To show that given an interval AB, on any ray A’y there is at most one point B’ such that

AB is congruent to the interval A’B’, suppose the contrary, i.e. 3B” € A’ such that AB = A’'B’, AB = A'B".
L1.2.11.3 Al1.3.4

By L 1.1.2.1 3¢’ ¢ aaA B’ B" € AIB/ — AIBN = A/BN =" /B'A'C' = /B"A'C'. AB = A'B'& AB =
A'B""EEY B = ABY. AB = A'B" & AIC! = AC" & /B'AC! = /B'A'C! 2L s 0'B = /A'C'B". B €
Al M2 B ¢ (aper) . BB aye & LO'AB = LC'A'B" 222 ¢’ = €', %' But, on the other hand,

P1.1.1.1 C1.1.2.3 L1.2.11.1
B’ e aAr B! & B” 75 B = aap = appr, and C’ ¢ aap'g = ap'pr —> B” ¢ apcr = C/B/ 75 CIBN -a

contradiction. O

Congruence of Triangles: SAS & ASA

A triangle with (at least) two congruent sides is called an isosceles triangle. In an isosceles triangle AABC with
AB = CB the side AC is called the base of the triangle AABC, and the angles /BAC and ZACB are called its
base angles. (See Fig. 1.106.)

Theorem 1.3.3. In an isosceles triangle AABC' with AB = CB the base angles /BAC, ZACB are congruent.

Proof. Consider AABC, ACBA. Then AB=CB&CB = AB& /ABC = /CBA %" /OAB = /ACB. 0O

Theorem 1.3.4 (First Triangle Congruence Theorem (SAS)). Let two sides, say, AB and AC, and the angle ZBAC
between them, of a triangle ANABC, be congruent, respectively, to sides A’B’, A'C’, and the angle ZB'A'C’ between
them, of a triangle NA’B'C’. Then the triangle NABC is congruent to the triangle NA’B'C".

Proof. (See Fig. 1.107.) By A 1.3.5, L 1.3.1.1 AB = AB'&AC = AC'& /A = /A = /B = /B'&/C =

£C". 252 Show BC = B'C'. By A 1.3.1.1 3C" € B'c» BC = B'C". C" € B'ew "22° B = Blor =
/A'B'C' = /AB'C". AB= A'B'&BC = B'C"&/B = /B = /ABC". C" € B'o, "2¥° " ¢ (anp)e.

251\We take into account the obvious fact that the angles ZB’A’C’, ZB" A'C’ are equal to, respectively, to £C'A'B’, C'A’B".
252Recall that, according to the notation introduced on p. 71, in a AABC /A = /BAC = Z/CAB.
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Figure 1.106: An isosceles triangle with AB = CB.

B B’

Figure 1.107: AB = A'B’, AC = A'C’, and ZBAC = £ZB'A'C’ imply AABC = AA'B'C’. (SAS, or The First
Triangle Congruence Theorem)

/BAC = /B'A'C' & /BAC = /B'A'C" & C'C"axp "222" A'cy = A'co. Finally, C” = C', because otherwise

AL.1.2 L
C"+C'&C" €eapc Nayc &C' € agicr Naycr = aacr = apor - a contradiction . O

Theorem 1.3.5 (Second Triangle Congruence Theorem (ASA)). Let a side, say, AB, and the two angles ZA and
/B adjacent to it (i.e. the two angles of NABC having AB as a side) of a triangle NABC, be congruent respectively
to a side A’B’ and two angles, ZA' and £B’, adjacent to it, of a triangle ZA'B'C’. Then the triangle NABC' is
congruent to the triangle NA'B'C".

Proof. (See Fig. 1.108.) By hypothesis, AB=A'B' & /A= /A& /B=/B'. By A1313C" C" € Alc & AC =
ACT. C" e Ag M2V New = Ao = /BAC = LB'AC". AB = A'B'&AC = A'C" & LABC =
ZABC" ML LABC = ZA'BC. ¢ € Ao V2P (aap)p. ZABC = LABC' & /ABC = LA'B'C"
&C'C"aprp AL B'c: = B'¢wv. Finally, C” = (', because otherwise C" # C'&C" € apc Nagc &C' €
aprcrNaarcr AlL2 aacr = apcr - a contradiction . O

Congruence of Adjacent Supplementary and Vertical Angles

Theorem 1.3.6. If an angle Z(h,k) is congruent to an angle Z(W', k') , the angle Z(h¢, k) adjacent supplementary
to the angle Z(h,k) is congruent to the angle Z(h'°, k') adjacent supplementary to the angle Z(h',k'). 253

Proof. (See Fig. 1.109.) Let B and B’ be the common origins of the triples (3-ray pencils) of rays h, k, h¢
and b/, k', B'°, respectively. Using L 1.2.11.3, A 1.3.1, we can choose points A € h, C € k, D € h® and
A € W, C" € k', D' € I° in such a way that AB = A'B’, BC = B'C', BD = B'D’. Then also, by

hypothesis, ZABC' = /A'B'C'. We have AB = A'B'& BC = B'C'& /ABC = /A'B'C" "2%' AABC =

253Under the conditions of the theorem, the angle Z(h, k¢) (which is obviously also adjacent supplementary to the angle Z(h, k)) is also
congruent to the angle Z(h/,k’¢) (adjacent supplementary to the angle Z(h/,k’)). But due to symmetry in the definition of angle, this
fact adds nothing new to the statement of the theorem.
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Figure 1.108: AB = A'B’, /A= /A', and /B = /B’ imply AABC = AA’B'C’. (ASA, or The Second Triangle
Congruence Theorem)

k k’

h A B D h' h’ A B’ D’ h

Figure 1.109: If angles Z(h, k), Z(h', k') are congruent, their adjacent supplementary angles Z(h¢, k), Z(h', k") are
also congruent.

AA'B'C' = AC = A'C'& LCAB = LC'A'B'. AB = A'B'&BD = B'D' & [ABD| & [A’B'D'] "2%* AD = A'D'.
[ABD) & [A'B'D') "'28" B € ApNDA& A'p N D'ss = B € Ap&B' € A'p & B € Da& B € D'y W237
Ap = Ap&A'p = A'p & Dp = Da& D'y = D'y = /CAB = /CAD& /C'A'B' = /C'A'D' & /CDB
/CDA& /C'D'B' = /C'D'A'. /CAB = /C'A'B'& /CAB = /CAD& /C'A'B' = /C'A'D' = /CAD
/C'A'D'. AC = AC'& AD = A'D' & /CAD = /C'A'D' 22" AACD = AA'C'D' = CD = C'D' & /CDA =

ZC'D'A'. /CDA= /C'D'A' & /CDA = /CDB& LC'D'A' = /C'D'B' %% ,0BD = /C'B'D'. O

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.6.

Corollary 1.3.6.1. Suppose Z(h,k), Z(k,l) are two adjacent supplementary angles (i.e. 1 = h¢) and L(W, k'),
Z(K' ') are two adjacent angles such that Z(h,k) = Z(h' k'), Z(k,1) = ZL(K',I"). Then the angles Z(W, k"), Z(K',l")
are adjacent supplementary, i.e. I' = h'°. (See Fig. 1.110.)

Proof. Since, by hypothesis, Z(h', k'), Z(k',l') are adjacent, by definition of adjacency the rays h', I’ lie on opposite
sides of k’. Since the angles Z(h, k), Z(k,l) are adjacent supplementary, as are the angles Z(h', k'), Z(k', h'¢),

we have by T 1.3.6 Z(k,1) = Z(K',h'®). We also have, obviously, W'k’h’®. Hence h'k'l' & Wk'h'e "2 1'prefy.

L) = LK) & Z(k1) = Z(K W) &URER "EEY e = 7. Thus, the angles Z(W, k), Z(k',l') are adjacent
supplementary, q.e.d. O

Corollary 1.3.6.2. Consider two congruent intervals AC, A'C’ and points B, B’, D, D' such that ZBAC =
/B'A'C', /ZDCA = £D'C'A’, the points B, D lie on the same side of the line aac, and the points B', D’ lie on the
same side of the line aacr. Suppose further that the lines aap, acp meet in some point E. Then the lines as p/
and ac'pr meet in a point E' such that the triangles NAEC, NA'E'C’ are congruent. Furthermore, if the points B,
E lie on the same side of the line aac then the points B', E' lie on the same side of the line aa ¢, and if the points
B, E lie on the opposite sides of the line aac then the points B', E' lie on the opposite sides of the line aacr. Thus,
if the rays Ag, Cp meet in E, then the rays A’ g meet ray C'p, in some point E'.
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Figure 1.110: Suppose Z(h,k), Z(k,l) are adjacent supplementary, Z(h', k"), Z(k',l") are adjacent, and Z(h,k) =
LW K, Z(k,1) = Z(K',1"). Then Z(W, k"), Z(K',l") are adjacent complementary, i.e. I’ = h'°.

Figure 1.111: Z(h, k) is congruent to its vertical angle Z(h¢, k°).

Proof. Consider first the case where E € Ap, that is, the points B, D, E all lie on the same side of a4 (see L 1.2.19.8,

L 1.2.17.1). Using A 1.3.1 take E' € A’ps such that AE = A'E’. Then AC = A'C'& AE = A'E'& LEAC =

LE'AC IR NABC = AA'E'C! = LACE = /A'C'E'. 254 Taking into account that B € Cp “ 25" LACD =

/ACE, we can write ZACD = /A'C'D' & L/ACE = ZA'C'E' & D'E'apr ¢ AL A'pr=A'pr.

Now suppose that the points B, E lie on the opposite sides of the line a4¢. Then (see L 1.2.17.10) the points D, F
lie on the opposite sides of aac. Taking points G, H, G’, H' such that [BAG], [DCH]|, [B'A’G’], [D’C'H’] and thus
/GAC = adjsp/BAC, /HCA = adjsp/DCA, /G'A'C' = adjsp/B'A'C', /H'C'A" = adjsp/D'C'A’, we see that
/GAC = /G'A'C', /ZHCA = ZH'C' A’ by hypothesis and in view of T 1.3.6. Using L 1.2.17.9, L. 1.2.17.10 we can
write BaAcG & BDaac & DascH = GHaAc, BaacFE & BaAcG = EGaAc, BI(IA/C/G/ & BIDI(IA/C/ & D'aA/c/H’ =
G'H'aycr, Blayc B & B'ayc'G' = E'G'apcr. Thus, the remainder of the proof is essentially reduced to the case
already considered. O

Theorem 1.3.7. Every angle Z(h, k) is congruent to its vertical angle Z(h®, k°).
Proof. Z(he, k) = adjsp Z(h, k) & Z(h®, k) = adjsp Z(h®, k) & Z(he, k) = £(he, k) =% Z(h, k) = £(he,k°). (See
Fig. 1.111.) O

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.7.

Corollary 1.3.7.1. If angles Z(h,k) and Z(h¢, k') (where h® is, as always, the ray complementary to the ray h)
are congruent and the rays k, k' lie on opposite sides of the line h, then the angles Z(h,k) and Z(h¢, k") are vertical
angles. (See Fig. 1.112.)

Proof. 2°® By the preceding theorem (T 1.3.7) the vertical angles Z(h, k), Z(h¢, k¢) are congruent. We have also

khke & khk! “'225Y kek/h. Therefore, Z(h,k) = Z(he, k)& Z(h,k) = Z(he, k) &kk'h 25" k' = ke, which
completes the proof. O
An angle Z(h', 1), congruent to an angle Z(h,1), adjacent supplementary to a given angle Z(h, k), 2°¢, is said to

be supplementary to the angle Z(h, k). This fact is written as Z(h',1")supplZ(h, k). Obviously (see T 1.3.1), this
relation is also symmetric, which gives as the right to speak of the two angles Z(h, k), Z(h,l) as being supplementary
(to each other).

254We take into account here that in view of L 1.2.11.3 we have E € Ag = LEAC = ZBAC, E' € Al = LE'A'C' = L/B'A'C".
Thus, ZBAC = /B’ A’C’ turns into ZEAC = ZE'A'C’.
255 Alternatively, to prove this corollary we can write: Z(h, k) = adjspL(h, k)& L(h, k) = adjZ(h®, k)& L(h,k) =

Z(he, k") & £(he, k) = Z(h, k) CL3S-1 1/ — ke Hence the result follows immediately by the preceding theorem T 1.3.7.

2561.e. we have Z(h/,1") = Z(h,1), where | = k°
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Figure 1.112: If angles Z(h, k),Z(h¢, k') are congruent and k, k" lie on opposite sides of h, then the angles Z(h, k),
Z(h®, k") are vertical angles and thus are congruent.

Right Angles and Orthogonality

An angle Z(h, k) congruent to its adjacent supplementary angle Z(h¢ k) is called a right angle. An angle which is
not a right angle is called an oblique angle.

If Z(h,k) is a right angle, the ray k, as well as the line k, are said to be perpendicular, or orthogonal, to ray A,
as well as the line h, written k L I. (respectively, the fact that the line k is perpendicular to the line h is written as
k L h, etc.) The ray k is also called simply a perpendicular to &, and the vertex O of the right angle Z(h, k) is called
the foot of the perpendicular k. If P € {O} Uk, the point O is called the orthogonal projection 257 of the point P
on the line h. Furthermore, if Q € h, the interval OQ is called the (orthogonal) projection of the interval OP on the
line k.

In general, we shall call the orthogonal projection

— The point A itself if A € q;

— The foot O of the perpendicular to a drawn through A.

Also, if A, B are points each of which lies either outside or on some line a, the interval A’B’ formed by the
orthogonal projections A’, B’ (assuming A’, B" are distinct!) of the points A, B, respectively, on a, 2°? is called the
orthogonal projection of the interval AB on the line a and denoted proj(AB,a).

Note that orthogonality of lines is well defined, because if Z(h, k) is a right angle, we have Z(h,k) = Z, so that
Z(he k), Z(h,Ek®), Z(h®, k°) are also right angles.

The concept of projection can be extended onto the case of non-orthogonal projections. Consider a line a
on which one of the two possible orders is defined, an angle Z(h,k), and a point A. We define the projection
B = proj(A,a, Z(h, k))?° of the point A on our oriented line under the given angle Z(h, k) as follows: If A € a then
B = A. If A¢ athen B is the (only) point with the property ZBAC = Z(h, k), where C is a point succeeding A in
the chosen order. 26! The uniqueness of this point can easily be shown using T 1.3.17. 262

258 of the point A on line a and denote by proj(4, a):

Lemma 1.3.8.1. Given a line apa, through any point C' not on it at least one perpendicular to apa can be drawn.

Proof. Using A 1.3.4, L 1.2.11.3, A 1.3.1, choose B so that ZAOC = ZAOB&Op C (a0a)$z & OC = OB =
dD D € apa & [CDB]. If D = O (See Fig. 1.113, a).) then ZAOB = adjsp ZAOC, whence, taking into account
LAOC = LAOB, we conclude that ZAOC is a right angle. If D € Oy4 (See Fig. 1.113, b).) then from L 1.2.11.3

it follows that Op = O4 and therefore LZAOC = /DOC, ZAOB = /DOB. Together with ZAOC = ZAOB,

this gives ZDOC = /DOB. We then have OA = OA& OC = OB & /DOC = /DOB “:%° ,ODC = /ODB.

Since also [C'DBJ, angle ZODC is right. If D € 0% (See Fig. 1.113, ¢).) then ZDOC = adjsp LAOC & £DOB =

adjsp ZAOB & ZAOC = /AOB "24° /DOC = /DOB. Finally, OD = OD & OC = Op & /DOC = /DOB “£%°

Z0DC = /Z0DB. O
Theorem 1.3.8. Right angles exist.

Proof. Follows immediately from L 1.3.8.1. O

257In our further exposition in this part of the book the word ”projection” will mean orthogonal projection, unless otherwise stated. We
will also omit the mention of the line onto which the interval is projection whenever this mention is not relevant.

258 Again, we will usually leave out the word ”orthogonal”. We shall also mention the line on which the interval is projected only on an
as needed basis.

259For example, if both A & a, B ¢ a, then A’, B’ are the feet of the perpendicular to the line a drawn, respectively, through the points
A, B in the planes containing the corresponding points.

260We normally do not mention the direction explicitly, as, once defined and fixed, it is not relevant in our considerations.

261Eyidently, the projection is well defined, for is does not depend on the choice of the point C' as long as the point C succeeds A. To
see this, we can utilize the following property of the precedence relation: If A < B then A < C for any point C € Ap.

262The trivial details are left to the reader to work out as an exercise. Observe that we are not yet in a position to prove the existence
of the projection B of a given point A onto a given line a under a given angle Z(h, k). Establishing this generally requires the continuity
axioms.
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Figure 1.113: Construction for proof of T 1.3.8. ZAOC in a) and ZODC in b), c) are right angles.

A B C
A’ é’ 6)7:(:’

Figure 1.114: Let B and B’ divide A,C and A’, C’, respectively. Then AB = A’B’, AC = A’C’ imply BC = B'C".

Lemma 1.3.8.2. Any angle Z(h', k') congruent to a right angle Z(h,k), is a right angle.

Proof. Tndeed, by T 1.3.6, T 1.3.11 we have Z (W, k') = Z(h, k) & Z(h, k) = Z(h¢, k) = (W, k') = L(he, k) & Z(W, k') =
Z(W K = Z(he, k) = Z(W,K) = Z(W°, k). O

Lemma 1.3.8.3. Into any of the two half-planes into which the line a divides the plane «, one and only one
perpendicular to a with O as the foot can be drawn. 263

Proof. See T 1.3.8, A 1.3.4. O

Congruence and Betweenness for Intervals

Lemma 1.3.9.1. If intervals AB, A’B’, as well as AC, A'/C’, are congruent, B divides A, C, and B’, C' liec on one
side of A', then B’ divides A’', C', and BC, B'C’ are congruent. 264

Proof. (See Fig. 1.114.) By A 131 3JC” c” € (B'4)¢ & BC = B'C".
c” e (B/A/)C ngSQ [A/B/ON]. [A/B/Cl]&[A/B/ON] Ll.%.lS B e A/c/&B/ S A/C// nglA A/C/ = A/C//-

AC = AC' & AC = AC" & Al = Al 231 A0 = A0 = ¢ = . O

Corollary 1.3.9.2. Given congruent intervals AC, A'C’, for any point B € (AC) there is exactly one point B’ €
(A’C") such that AB= A'B’, BC = B'C".

263 The following formulation of this lemma will also be used: Given a line @ and a point O on it, in any plane o containing the line a
there exists exactly one line b perpendicular to a (and meeting it) at O.

264For the particular case where it is already known that the point B’ divides the points A’, C’, we can formulate the remaining part of
the lemma as follows: Let points B and B’ lie between points A,C and A’, C’, respectively. Then congruences AB = A’B’, AC = A'C’
imply BC = B'C’.
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Proof. Using A 1.3.1, choose B’ € A’ so that AB = A’B’. Then apply L 1.3.9.1. Uniqueness follows from T 1.3.1.
O

Proposition 1.3.9.3. Let point pairs B, C and B’, C' lie either both on one side or both on opposite sides of the
points A and A’, respectively. Then congruences AB = A'B’', AC = A'C'" imply BC = B'C".

Proof. First, suppose B € Ac, B' € A'cs. B € Ac&B # C "'2318

[ABC|&B' € A'c» & AB= A'B'& AC = A'C' "222" BC = B'C".
If B,C and B’, C’ lie on opposite sides of A and A’, respectively, we have [BAC] & [B'A'C'| & AB = A'B' & AC =
Ao po=pe. o

ABC] Vv [ACB)]. Let [ABC]. 255 Then
[ IV ] [ ]

Corollary 1.3.9.4. Let intervals AB, A'B’, as well as AC, A’C’, be congruent. Then if the point B lies between
the points A, C, the point C" lies outside the interval A'B’ (i.e. C' lies in the set ExtA'B' =P, ,, ., \ [A'B']).

Proof. [ABC] "2 ¢ € Ap. B’ # €, because otherwise A’B' = AB& A'C' = AC& B = C&C € Ap L&'

B = (- a contradiction. Also, C' ¢ (A’B’), because otherwise [A'C'B'| & C € Ap& A’'B' = AB& A'C' = AC bL3g
[ACB] = —[ABC] - a contradiction. O

Congruence and Betweenness for Angles

At this point it is convenient to extend the notion of congruence of angles to include straight angles. A straight
angle Z(h, h®) is, by definition, congruent to any straight angle Z(k, k°), including itself, and not congruent to any
extended angle that is not straight.

This definition obviously establishes congruence of straight angles as an equivalence relation.

Theorem 1.3.9. Let h,k,l and h',k',1' be planar 3-ray pencils with the origins O and O', respectively. Let also
pairs of rays h,k and h', k' lie in corresponding planes v and o' either both on one side or both on opposite sides of
the lines 1, l', respectively. 256 In the case when h, k lie on opposite sides of | we require further that the rays h, k
do not lie on one line. 257 Then congruences Z(h,1) = Z(h', 1), Z(k,1) = Z(K',I') imply Z(h, k) = Z(1 k).

Proof. (See Fig. 1.115.) Let h,k lie in o on the same side of I. Then, by hypothesis, i/, k’ lie in o/ on the same
side of I’. Using A 1.3.1, choose K € k, K' € k', L € I, L' € I so that OK = O'K’, OL = O'L’. Then, obviously,
by L 1.2.11.3 Z(k,1) = ZKOL, Z(K,I') = ZK'O'L. hkl&hWKT&h # k&b # & ""2E2 (b ¢ IntZ(k,1) Vv
k C IntZ(h,0)& (W C Z(K',I") VK C IntZ(l,l')). Without loss of generality, we can assume h C IntZ(k,l),
W C IntZ(K 1), 268

The rest of the proof can be done in two ways:

#1) h C IntZ(k,)&K € k&L € 1 ""22'° 30 H € h&|[LHK]. By A 1.3.1 3H' H' € W &OH =
O'H'. OL = O'L'&OH = O'H'&OK = O'K'& ZHOL = /H'O'L' & Z/KOL = /K'O'L’ "2%" AOHL =
NO'HL&NOKL=NO'K'l = HL=HL'&KL=K'L'& /OLH = /0'H'L' & Z/OLK = ZO’L K & /0KL =
ZO'K'L'. [LHK] M2ZU = Lg = ZOLH = ZOLK. By definition of the interior of the angle LUK, we
have K/ € K& H' € h/&h/ C IntZ(I'K') = H'K'ap1,.*® /OLH = /OLK & /OLH = /O'L'H' & /OLK =
OLK' & HK'aprpy "2 JOLUH = Z/OL'K' = L'y = L' = H' € apgr. W CIntZ( K &K' € K &L €
U L. 221 10 JH" H" € hl&[LIHI/K]. L ¢ aom & H € aog Napg & H' € aprgr Nar i LL2. 15 H'" = HI,27O
whence [L'H'K"]. [LHK|& [L'H'K'|& LH = UH' & LK = I'K' "228' HK = B'K’. [KHL]) & [K'H'L) "' 25"
Ky =K &K'y =K'y = /OKH = /OKL& /O'K'H' = /O'K'L’. Combined with Z/OKL = /O'K'L’,
this gives ZOKH = ZO'K'H'. OK = O'K' & HK = H'K'& /OKH = /O'K'H' "2%° /KOH = /K'O'H' =
Z(h,k) = LW, K).

Now suppose h,k and I/, k" lie in the respective planes o and o on opposite sides of [ and I/, respectively.

By hypothesis, in this case h and k are distinct. Then we also have k' # ', for otherwise we would have

K o= We& LW 1) = (D& LK) = Z(1,k)&hlk T8 & = he - a contradiction. Now we can write

Kk & WK & helh & WelR W' 2280 nekl& wek'l. Z(h,1) = Z(W, 1) =25 £(he,1) = (W, 1'). Using the first part

L1:2.11.3
C’" € A'gr, we do not

265Gince B, C enter the conditions of the proposition symmetrically, as do B’, C’, because B’ € A’
really need to consider the case when [ACB].

266 These conditions are met, in particular, when both k C IntZ(h,l), k' C IntZ(h',1') (see proof).

267In the case when h, k lie on one line, i.e. when the ray k is the complementary ray of h and thus the angle Z(h,l) is adjacent
supplementary to the angle Z(I, k) = Z(I, h¢), the theorem is true only if we extend the notion of angle to include straight angles and declare
all straight angles congruent. In this latter case we can write Z(h,l) = Z(R', ') & £(l, k) = £Z(I', k') & Z(, k) = adjspL(h, 1) & £(I', k') =
adj Z(h', 1) TS = e,

268 Note that h,k, as well as, h’,k’, enter the conditions of the theorem symmetrically. Actually, it can be proven that under these
conditions h C Inté(l k) implies h’ C Int£(l', k") (see P 1.3.9.5 below), but this fact is not relevant to the current proof.

269 Obviously, aprpr = I’

270Note that apr g/ = h'.
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O L 1 (o} 1% r

Figure 1.115: Construction for proof of T 1.3.9, P 1.3.9.5.

of this proof, we can write, Rkl & k'l & Z(he,1) = L(We, 1) & L(k,1) = LK, 1) = L(h¢, k) = L(We, k) =%
Z(h,k) = Z(W k). O

(#2) OK = O'K'&OL = O'L' & /KOL = /K'O'L’ 24" AOKL = AO'K'L’ = KL = K'L' & ZOLK =
/OL'K'& /OKL = ZO'K'L'. h C Int/(k,)& K € k&L € &N C IntZ(K, I &K' € K &L e 1! “2210
(3H H € h& [LHK)) & (3H' H' € W & [LH'K'])). [LHK)& [LH'K') "' 25 Ly = L& L'y = L' & Ky =
K &K'y = K'y) = /OLH = /OLK & /O'L'H' = LO’L’K’&:AOKH = /OKL& /O'K'H = /O'K'L.
Combined with Z/OLK = /O'L'K', ZOKL = ZO'K'L, this gives ZOLH = /O'L'H', /OKH = ZO'K'H’.
OL = O'L' & ZHOL = /IO & ZOLH = JOL'H 5 AOHL = JO'H'L = LH = I'H' & /LHO
ZL’H'O'. Since [LHK], [L'H'K'], we have ZKHO = adjspéLHO&éK H'O' = adjsp£ZL'H'O’. ZLHO
JIH'O' & /KHO = adjsp ZLHO & /K'H'O' = adjsp ZL'H'O' "2%° /KHO = /K'H'O'. [LHK|& [L'H'K']
&LK = L'K'&LH = I'H' "' UK = I'K'. HK = H'K' & /OHK = LO'H'K' & ZOKH = /O'K'H' "£%°
/HOK = /H'O'K’' = Z(h, k) = /(h',K'). The rest is as in (#1). O

Proposition 1.3.9.5. Let h,k,l and b/, k', 1" be planar 3-ray pencils with the origins O and O'. If the ray h lies inside
the angle Z(1, k), and the rays h', k' lie on one side of the line l’, the congruences Z(h,l) = Z(W,1"), Z(k,1) = L(K',l")
imply b’ C IntZ(U', k). 27

Proof. (See Fig. 1.115.) 272 Using A 1.3.1, choose K € k, K’ € k', L €1, L' € I’ so that OK = O'K', OL = O'L".
Then, obviously, by L 1.2.11.3 Z(k,l) = /KOL, /(K ,lI') = /ZK'O'L'. OL = O'L'&OK = O'K'& /KOL =
/K'O'L "X & AOKL = AOK'L' = &KL = K'L'& ZOLK = LO'U'K'. h C IntZ(k,) &K € k&L €
1 Y220 3 H e W& ([LHK]. [LHK|& KL = K'L’ "7 3 [VH'K'|&LH = I'H'&KH = K'H'.
[LHK|& [UH'K') " 25 Ly = Ly & L'y = U'x) = ZOLH = /OLK & ZO'’H' = /O'L'K’. Combined
with ZOLK = £O'L'K’, this gives Z/OLH = /O'L'H'. OL = O'L'&LH = L'H' & ZOLH = /O'L'H' "2&°
/HOL = /H'O'L’. By L1.2.21.6,L 12214 K' € ¥ & L' € ' & [L'H'K'| = O’y C IntZL(K' ') = O' g/ K'I'. Also,
by hypothesis, k'h'l’, and therefore O' g k'l & K'W'T € 1 V2352 O/ W'l Finally, Z(h,1) = Z(W,1') & ZHOL =
JH'OL' & Z(h,1) = ZHOL& O' i h'T € 122 W ¢ Int /(1K) O

Corollary 1.3.9.6. Let rays h, k and b/, k" lie on one side of lines | and ', and let the angles Z(1,h), Z(I,k) be
congruent, respectively, to the angles Z(I';h'), Z(I',k"). Then if the ray h' lies outside the angle Z(I', k"), the ray h
lies outside the angle Z(1, k).

Proof. Indeed, if h =k then h = k& Z(1,h) = Z(I',h) & Z(1,k) = Z(I, k) & WET L5 2@ b)) = 2(UK) = W =
k' - a contradiction; if h C IntZ(1, k) then h C IntZ(1, k) & WK & £(1,h) = (I, W) & £(1, k) = LI, k) V225 W ¢
IntZ(l', k') - a contradiction. O

Proposition 1.3.9.7. Let an angle Z(1, k) be congruent to an angle Z(I',k’). Then for any ray h of the same origin
as l, k, lying inside the angle Z(l, k), there is exactly one ray h' with the same origin as ', k', lying inside the angle

Z(U,K') such that Z(1,h) = Z(U, 1), Z(h,k) = Z(W,K).

Proof. Using A 1.3.4, choose h’ so that h'k'l’ & Z(I,h) = Z(I',h’). The rest follows from P 1.3.9.5, T 1.3.9. O

271 According to T 1.3.9, they also imply in this case Z(h, k) = Z(h', k').
272Note that this proof, especially in its beginning, follows closely in the footsteps of the proof of T 1.3.9.
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Congruence of Triangles:SSS

Lemma 1.3.10.1. If points Zy, Zs lie on opposite sides of a line axy, the congruences XZy = XZo, Y71 =Y Zs
imply LXYZ1 =XYZy (and LYXZ, =LY XZ,).

Proof. ZiaxyZs = 31X’ X' € axy &[Z1X'Z;]). Observe that the lines axy, az, z, meet only in X’ because Z; ¢
axy = az,z, # axy, and therefore for any Y’ such that Y’ € axy, Y’ € az,z,, we have X' € axy Naz,z, &Y' €

axy Nag, z, Ly — X7 278 We also assume that Y ¢ az,z,- 2™ TFor the isosceles triangle AZ1Y Z,
L1.2.11.15

the theorem T 1.3.3 gives YZy = YZy = £YZ1Z5 = YZsZ;. On the other hand, [Z:X'Z;] " =" Z1x, =
Z1Z2 &ZQX/ = ZQZ1 = 4YZ1X/ = ZYleQ &4YZ2X/ = AYZQZ:[ Therefore, AYZlZQ = ZYZQZl &4YZ1X/ =
LYZ\ 2y & LY ZoZ = LY ZoZ) = LY 1/ X' =LY 25X

Let Z1, Z3, X be collinear, i.e. X € az,z, (See Fig. 1.116, a)). Then we have X € axy Naz,z, = X' = X,
and we can write XZ) = XZo& Y72 = Y2 & LYZ1X' = /Y2 X' 25 AXYZ) = AXY Zo = /XY =
LXY 2o & L YXZ = XY Zy. 270

Now suppose neither X nor Y lie on az, z,. In this case X' € axy &X' # X #Y a2 (X'XY]V[X'YX]V
[XX'Y]. Suppose [X'XY] (See Fig. 1.116, b)). 20 Then YV € Ziy & X' € Zix) & X € Ziy = 2HELN2214
Zix C Int/YZ;X', where i = 1,2. [X'XY] "28Y° X'y = X'y = LZ1X'X = LZX'Y & LZ:X'X =
/Z5X'Y. Furthermore, arguing exactly as above, we see that XZ1 X' = /X717, & /X 7> X' = /X 757, whence

/X7 X'=/X7,X'. Using T 1.3.9 we obtain /X Z,Y = /X Z5Y, which allows us to write XZ; = X7, &Y Z; =

Y2y & LXZ)Y = /X ZY Z2AXZY = AXZY = /XY Z = XY 2o & /YXZ = LY X Zo.
Finally, suppose [XX'Y] (See Fig. 1.116, c)). Then [XX'V] = [YX'X] "2 vy, = Yx = ZXVZ =

/£X'Y Z;, where i = 1,2. Together with Z/X'Y Z, = /X'Y Z5, this gives /XY 71 = /XY Zy. O

Theorem 1.3.10 (Third Triangle Congruence Theorem (SSS)). If all sides of a triangle AABC are congruent to
the corresponding sides of a triangle NA’B'C’, i.e. if AB= A'B', BC = B'C', AC = A'C’, the triangle NABC 1is
congruent to the triangle NA'B'C’. In other words, if a triangle NABC' is weakly congruent to a triangle NA'B'C’,
this implies that the triangle ANABC is congruent to the triangle NA'B'C".

Proof. (See Fig. 1.117.) By hypothesis, AABC ~ AA'B'C’, ie., AB = A'B', BC = B'C’, AC = A'C’. Using
A 1.3.4, A 1.3.1, L 1.2.11.3, choose B” so that C'gC'graac, ZACB = ZA'C'B"”, BC = B”C’, and then choose

B so that C'gmac:C e 277 Then we have AC = A'C' & BC = B"C' & /ACB = /A'C'B" "22* AABC =
T1.3.4

ANA'B"C' = AB= A'B". A/C' = A'C'"&B"C' = B"C'"& LA'C'B" = ZAC'B" =" NA'B"C' = NA'B"'C' =
AB = A'B". Since AB = A'B'& AB = A'B" & A'B" = A'B"' & BC = B'C" & BC = B"C' & B"C' = B"C’ '=&!
A'B" = AB' & A'B" = A'B" & B"'C' = B'C' & B"'C' = B"C' Tgl B'C' = B'C", B"B'ayc: & B"axc B” L1~g~10
B"anc B, we have A/B" = A'B"& B"C' = B"C'& B" axc B Ll%&l JA'C'B" = JA'C'B". A'B"
A'B"& B"C' = B'C' & B"ap¢'B’'. Finally, ZA'C'B" = L/A'C'B" & LA'C'B" = LA'C'B" & C' g1 C' grapr ¢ Ag}.

JAC'B" = /AC'B = C'gn = Clgn, O'B" = C'B' &' = O’ 23 B — g/ O

i

Congruence of Angles and Congruence of Paths as Equivalence Relations

Lemma 1.3.11.1. If angles Z(W k"), Z(h", k") are both congruent to an angle Z(h, k), the angles Z(h', k"), Z(h" k")
are congruent to each other, i.e., Z(W k') = Z(h", k") and Z(W' k") = ZL(W k).

Proof. (See Fig. 1.118.) Denote O, O', O” the vertices of the angles Z(h, k), Z(h', k"), Z(h", k"), respectively. Us-
ing A 1.3.1, choose H € h, K € k, H inh/, K' € k', H" € I/ so that OH = O'H', OK = O'K’, OH = O"H",
OK = O"K"”,whenceby T1.3.10'H' =0OH,0O'K'=0K,0"H" =0H,0"K" =0OK,and by L 1.2.21.1 ZHOK =
L(h,k), ZHO'K' = Z(h k), ZH"O"K" = Z(h",K"). Then we have O'H' = OH& O'K’ = OK & ZH'O'K' =
/HOK &O"H" = OH&O"K" = OK & /H"O"K" 22 AH'O'K' = AHOK & AH"O"K" = AHOK =

K'H =KH&K'H' = KH 2%' K'H' = K"H". Also, O'H' = OH& O"H" = OH& O'K' = OK & O"K" =

273We take into account that, obviously, [Z1 X’ Z2] e = az, z,-

274We can assume this without loss of generality - see next footnote.

275 Observe that the seemingly useless fact that £/Y X Z; = Y X Z» allows us to avoid considering the case Y € az, z, separately. Instead,
we can substitute X for Y and Y for X to obtain the desired result, taking advantage of the symmetry of the conditions of the theorem
with respect to this substitution.

276 Again, because of obvious symmetry with respect to substitution X — Y, Y — X, we do not need to consider the case when [X'Y X].
Note that we could have avoided this discussion altogether if we united both cases [ X’ XY], [X'Y X] into the equivalent Y € X'x,Y # X,
but the approach taken here has the appeal of being more illustrative.

277To be more precise, we take a point Bg such that C’pgras/crBo, and then, using A 1.3.4, draw the angle ZA’C’'B’ such
that C' g Boaagr, LA'C'B" = LZA'C'B", B"C'" = B"'C’. We then have, of course, C'pgra crBo& C' g Boarcr L12.185
C’'girapcC' g Using jargon, as we did here, allows one to avoid cluttering the proofs with trivial details, thus saving the space
and intellectual energy of the reader for more intricate points.
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X Y X’ X Y
Ayy Axy
a) b)
Z, Z,
Z,
Y X’ X
aXY
c) Z

Figure 1.116: If points Z;, Zs lie on opposite sides of a line axy, the congruences X7, = X7, Y7, = Y Z5 imply
LXYZy = XYZ,. Ina) Zy, Zy, X are collinear, i.e. X € az,z,;inb), ¢) X, Y do not lie on az, z, and [X'XY] in
b), [XX'Y] in ¢).

B B”=B’

A’ C 2

B”’ BO.

Figure 1.117: if AB = A’B’, BC = B'C’', AC = A'C’, the triangle AABC is congruent to the triangle AA’B’'C’
(SSS, or The Third Triangle Congruence Theorem ).
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k”

K’B

O” H” h”
Figure 1.118: Z(I', k') = Z(h,k) and Z(K", k") = Z(h, k) imply Z(K, k') = /(" k") and Z(h", k") = Z (W', K').

OK &' OH' = 0"H"& O'K' = O"K". Finally, O'H' = O"H"&O'K' = O"K"& K'H' = K"H" "22°

AH'O'K' = AH"O"K" = /H'O'K' = /ZH'O"K" = /(I k') = Z(h" k"). O

Theorem 1.3.11. Congruence of angles is a relation of equivalence on the class of all angles, i.e. it possesses the
properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity follows from A 1.3.4.
Symmetry: Let Z(h, k) = Z(R', k). Then Z(K k') = L(W, k)& L(h, k) = L(I', &) " 23 20 k) = Z(h, k).
— L1.3

Transitivity: Z(h,k) = Z(W, k)& Z(W', k') = Z(W", k") 22 £(h, k) = L(W, k) & Z(W" k") = L(W, k') W23
Z(h,k) = Z(h",k"). O

Therefore, if an angle Z(h,k) is congruent to an angle Z(h’, k'), we can say the angles Z(h,k), Z(h', k") are
congruent (to each other).

Corollary 1.3.11.2. Congruence of paths (in particular, of polygons) is a relation of equivalence on the class of all
paths. That is, any path A1 As ... A, is congruent to itself. If a path A1As ... A, is congruent to a path B1Bs ... B,,
the path B1Bs ... By, is congruent to the path A1As...A,. A1As... A, = B1B>...B,, B1Bs...B, = C1(Cs...C,
implies A1As ... A, = C1Cs ... Cy.

Proof. O

Again, if a path, in particular, a polygon, A;As ... A, is congruent to a path B1Bs... B, we shall also say (and
C 1.3.11.2 gives us the right to do so) that the paths A; Ay ... A, and B; B> ... B, are congruent.
We are now in a position to prove theorem opposite to T 1.3.3.

Theorem 1.3.12. If one angle, say, ZCAB, of a triangle AABC is congruent to another angle, say, ZACB, then
AABC is an isosceles triangle with ZABC = LABC.

Proof. Letina AABC /CAB = ZACB. Thenby T 1.3.12ZACB = ZCAB and AC = & ZCAB = ZACB& LCAB =

/ACB " ACAB = AACB = AB = CB. O

Comparison of Intervals

Lemma 1.3.13.1. For any point C lying on an open interval (AB), there are points E,F € (AB) such that
AC = EF.
Proof. (See Fig. 1.119.) Suppose [ACB]. By T 1.2.1 3F [CFB]. Then [ACB]&[CFB] ":28? [ACF] & [AFB.

[ACF] & AF = FA “22? 3F [FEA] & AC = FE. Finally, [AEF] & [AFB] "22° [AEB]. O

The following lemma is opposite, in a sense, to L 1.3.13.1
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A E C F B

Figure 1.119: Construction for L 1.3.13.1, L 1.3.13.2.

Lemma 1.3.13.2. For any two (distinct) points E, F lying on an open interval (AB), there is exactly one point
C € (AB) such that EF = AC.

Proof. (See Fig. 1.119.) By P 1.2.3.4 [AEF] V [AFE]. Since E, F enter the conditions of the lemma symmetrically,

we can assume without any loss of generality that [AEF]. Then AF = FA& [FEA| L0 FE= ACK [ACF).

Finally, [ACF] & [AFB] "22? [ACB]. O

An (abstract) interval A’B’ is said to be shorter, or less, than or congruent to an (abstract) interval AB, written
A’'B’ < AB, if there is an interval C'D such that the abstract interval A’B’ is congruent to the interval C'D, and the
open interval (CD) is included in the open interval (AB).2"® If A'B’ is shorter than or congruent to AB, we write
this fact as A’B’ < AB. Also, if an interval A’B’ is shorter than or congruent to an interval AB, we shall say that
the (abstract) interval AB is longer, or greater than or congruent to the (abstract) interval A’B’, and write this as
AB =z A'B'.

If an (abstract) interval A’B’ is shorter than or congruent to an (abstract) interval AB, and, on the other hand,
the interval A’B’ is known to be incongruent (not congruent) to the interval AB, we say that the interval A’B’ is
strictly shorter, or strictly less 27 than the interval AB, and write A’B’ < AB. If an interval A’B’ is (strictly)
shorter than an interval AB, we shall say also that the (abstract) interval AB is strictly longer, or strictly greater
280 than (abstract) interval A’B’, and write this as AB > A'B’.

Lemma 1.3.13.3. An interval A'B’ is (strictly) shorter than an interval AB iff:

— 1. There exists a point C on the open interval (AB) such that the interval A’B’ is congruent to the interval
AC; 281 or

— 2. There are points E, F on the open interval AB such that A’B’ = EF.

In other words, an interval A’B’ is strictly shorter than an interval AB iff there is an interval CD, whose ends
both lie on a half-open [AB) (half-closed interval (AB]), such that the interval A’ B’ is congruent to the interval CD.

Proof. Suppose A’B’ = AC and C' € (AB). Then by L 1.2.3.2, L 1.2.11.13 C € (AB) = (AC) C AB&C € Ap.

Therefore, A’B" < AB. Also, A’B’ # AB, because otherwise C € Ag& A'B’ = AC& A’'B’ = AB ALRL A0 =

AB = C = B, whence C ¢ (AB) - a contradiction. Thus, we have A’B' < AB& A'B’ # AB, i.e. A’B’ < AB.

Suppose A'B’ = EF, where E € (AB), F € (AB). By L 1.3.13.23C C € (AB)& EF = AC. Then A'B’ =

EF&EF = AC 23" A/B' = AC and A'B' = AC & C € (AB) 2%° A'B’ < AB.

Now suppose A’B’ < AB. By definition, this means that there exists an (abstract) interval CD such that

(CD) C (AB), A’B' = CD, and also A'B’ # AB. Then we have (CD) C (AB) "'22'° ¢ € [AB|& D € [AB],

A'B'# AB& A'B' = CD = CD # AB. Therefore, either one of the ends or both ends of the interval C'D lie on the
open interval (AB). The statement in 1. then follows from L 1.3.13.2, in 2.— from L 1.3.13.3. O

Observe that the lemma L 1.3.13.3 (in conjunction with A 1.3.1) indicates that we can lay off from any point an
interval shorter than a given interval. Thus, there is actually no such thing as the shortest possible interval.

Corollary 1.3.13.4. If a point C lies on an open interval (AB) (i.e. C lies between A and B), the interval AC is
(strictly) shorter than the abstract interval AB.
If two (distinct) points E, F' lie on an open interval (AB), the interval EF is (strictly) less than the interval AB.

Proof. Follows immediately from L 1.3.13.3. O

Lemma 1.3.13.5. An interval A’B’ is shorter than or congruent to an interval AB iff there is an interval CD
whose ends both lie on the closed interval [AB], such that the interval A'B’ is congruent to the interval C'D.

Proof. Follows immediately from L 1.2.16.12 and the definition of ”shorter than or congruent to”. O

Lemma 1.3.13.6. If an interval A" B" is congruent to an interval A’ B’ and the interval A’ B’ is less than an interval
AB, the interval A" B" is less than the interval AB.

Proof. (See Fig. 1.120.) By definition and L 1.3.13.3, A’B’ < AB = 3C C € (AB)&A'B’ = AC. A"B" =

A'B' & A'B' = AC 22" A"B" = AC. A"B" = AC&C € (AB) = A"B" < AB. O

278 This definition is obviously consistent, as can be seen if we let CD = AB.

279We shall usually omit the word ’strictly’.

280 Again, we shall omit the word ’strictly’ whenever we feel that this omission does not lead to confusion

281We could have said here also that A’B’ < AB iff there is a point D € (AB) such that A’B’ = BD, but because of symmetry this
adds nothing new to the statement of the theorem, so we do not need to consider this case separately.
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A C B

Figure 1.120: If an interval A” B” is congruent to an interval A’B’ and the interval A’ B’ is less than an interval AB,
the interval A” B” is less than the interval AB.

A” B'”

A ¢ B’
A C B

Figure 1.121: If an interval A” B” is less than an interval A’ B’ and the interval A’ B’ is congruent to an interval AB,
the interval A” B” is less than the interval AB.

Lemma 1.3.13.7. If an interval A" B" is less than an interval A’ B’ and the interval A’ B’ is congruent to an interval
AB, the interval A" B" is less than the interval AB.

Proof. (See Fig. 1.121.) A"B" < A'B' = 3C" C' € (A'B))& A"B" = A'C'. A'B' = AB&(C' € (A'B/) “227
30 C € (AB)& A'C' = AC. A"B" = A'C' & A'C' = AC 22" A"B" = AC. A"B" = AC&C € (AB) = A"B" <
AB. O

Lemma 1.3.13.8. If an interval A" B" is less than an interval A’B’ and the interval A'B’ is less than an interval
AB, the interval A" B" is less than the interval AB.

Proof. (See Fig. 1.122.) A"B" < A'B' = 3C" C" € (A'B')& A"B" = A'C". A'B' < AB = 3D D € (AB)& A'B' =
AD. C' € (A'B)& A'B' = AD “ 29?30 C € (AD) & A'C" = AC. A"B" = A'C' & A'C' = AC "X A"B" = AC.

[ACD] & [ADB] ““28? [ACB]. A"B" = AC & |[ACB] = A"B" < AB. 0O

Lemma 1.3.13.9. If an interval A”B" is less than or congruent to an interval A'B’ and the interval A’B’ is less
than or congruent to an interval AB, the interval A” B" is less than or congruent to the interval AB.

A” B'”
bt o 5
A C D B

Figure 1.122: If an interval A” B” is less than an interval A’B’ and the interval A’B’ is less than an interval AB, the
interval A” B” is less than the interval AB.
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Proof. We have, using T 1.3.1, L. 1.3.13.6, L. 1.3.13.7, L. 1.3.13.8 on the way: A"B"” < A'B'& A’B' £ AB = (A"B" <
A'B'vVA'"B" = AAB"& (A'B' < ABV A'B' = AB) = (A"B" < AAB'&A'B' < AB)V (A"B" < AB'& A'B’' =
AB)V (A"B"=A'B'& A'B' < AB)V (A"B"=A'B'& A'B'=AB) = A" < B"VA"B"=AB = A"B" < AB. O

Lemma 1.3.13.10. If an interval A'B’ is less than an interval AB, the interval AB cannot be less than the interval
A'B’.

Proof. Suppose the contrary, i.e., that both A’B’ < AB and AB < A’B’, that is, 3C C € (AB)& A'B’ = AC and

3C' C' € (A'B')& AB = A'C’. Then A'B' = AC 2" AC = A'B’ and AC = A'B'& AB = A'C' & [ACB] “22*

C’ € ExtA'B' — a contradiction with ¢’ € (A’B’). O
Lemma 1.3.13.11. If an interval A'B’ is less than an interval AB, it cannot be congruent to that interval.

Proof. Suppose the contrary, i.e. that both A’B’ < AB and A’B’ = AB. We have then A’B’ < AB = 3C C €

(AB)& A'B' = AC. [ACB] "2 ¢ ¢ Ap. But A'B' = AC&A'B' = AB&C € Ap 2% ¢ = B - a

contradiction. O

Corollary 1.3.13.12. If an interval A’B’ is congruent to an interval AB, neither A'B’ is shorter than AB, nor
AB is shorter than A'B’.

Proof. Follows immediately from L 1.3.13.11. O

Lemma 1.3.13.13. If an interval A’ B’ is less than or congruent to an interval AB and the interval AB is less than
or congruent to the interval A'B’, the interval A’ B’ is congruent to the interval AB.

Proof. (A’B’ < ABV A'B' = AB)& (AB < A'B'V AB = A'’B’) = A'B’ = AB, because A’B’ < AB contradicts
both AB < A'B’ and A’B’ = AB in view of 1. 1.3.13.10, L. 1.3.13.11. O

Lemma 1.3.13.14. If an interval A'B’ is not congruent to an interval AB, then either the interval A’B’ is less
than the interval AB, or the interval AB is less than the interval A’ B’.

Proof. Using A 1.3.1, choose points C € Ag, C' € A'ps so that A’B’ = AC, AB = A’C’. Then C # B, because

A'B" # AB by hypothesis, and C € Ap& C # B L2408 [ACB] V [ABC]. We have in the first case (i.e., when

[ACB]) [ACB]& A’'B’ = AC = A'B’ < AB, and in the second case AB = A'C' & AC = AB'&[ABC|&C' €

Al VS A0 B [A'C'B'| & AB= A'C' = AB < A'B'. O

An (extended) angle Z(h/, k') is said to be less than or congruent to an (extended) angle Z(h, k) if there is an
angle Z(I,m) with the same vertex O as Z(h, k) such that the angle Z(h’, k') is congruent to the angle Z(I, m) and
the interior of the angle Z(I,m) is included in the interior of the angle Z(h, k). If Z(h/, k")is less than or congruent
to Z(h, k), we shall write this fact as Z(h/, k") £ Z(h,k). If an angle Z(h/, k') is less than or congruent to an angle
Z(h, k), we shall also say that the angle Z(h, k) is greater than or congruent to the angle Z(h/, k'), and write this as
Z(h,k) =2 Z(W k).

If an angle Z(h/, k')is less than or congruent to an angle Z(h, k), and, on the other hand, the angle Z(h', k) is
known to be incongruent (not congruent) to the angle Z(h, k), we say that the angle Z(h/, k') is strictly less 82 than
the angle Z(h, k), and write this as Z(h', k") < Z(h, k). If an angle Z(h', k') is (strictly) less than an angle Z(h, k),
we shall also say that the angle Z(h, k) is strictly greater 283 than the angle Z(h/, k').

Obviously, this definition implies that any non-straight angle is less than a straight angle.

We are now in a position to prove for angles the properties of the relations ”less than” and ”less than or congruent
to” (and, for that matter, the properties of the relations ”greater than” and greater than or congruent to”) analogous
to those of the corresponding relations of (point) intervals. It turns out, however, that we can do this in a more
general context. Some definitions are in order.

Generalized Congruence

Let C9°" be a subclass of the class Cgbr of all those sets J that are equipped with a (weak) generalized betweenness
relation.?®* Generalized congruence is then defined by its properties Pr 1.3.1 — Pr 1.3.5 as a relation p C J2, where
J={{AB}33cC% AcJ&BcJ}. 2 If apair (AB,CD) € p, we say that the generalized abstract interval AB

282We shall usually omit the word ’strictly’.

283 Again, the word ’strictly’ is normally omitted

284 As we shall see, in practice the subclass C9°" is ”homogeneous”, i.e. its elements are of the same type: they are either all lines, or
pencils of rays lying on the same side of a given line, etc.

285This notation, obviously, shows that the two - element set (generalized abstract interval) {A, B}, formed by geometric objects A, B,
lies in the set {{.A, B}|33 € C9°" (A € J& B € J)} iff there is a set J in C9°", containing both A and B.
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is congruent to the generalized abstract interval CD and write, as usual, AB = CD. We also denote, for convenience,
GU = U 3 286
Jecabr

Property 1.3.1. Suppose AB is a generalized abstract interval formed by geometric objects A, B lying in a set J
from the class C9°". Then for any geometric object A’ € 3 and any geometric object X' € 3 distinct from A’ and
such that A'X’ € 3, 287 there is at least one geometric object B’ € JY with the properties that X', B' lie in some
set J' € C9°" on one side of the geometric object A'*®® and such that the generalized interval AB is congruent to the
generalized interval A'B'.

Furthermore, given two distinct geometric objects A, B, where A,B € J € C9", and a geometric object A' € ' €
CI, then for any geometric object X' € J', X' # A', there is at most **° one geometric object B' such that X,
B’ lie in the set J' with generalized betweenness relation on one side of the geometric object A’ and the generalized
intervals AB and A'B’ are congruent.

Property 1.3.2. If generalized (abstract) intervals A'B’, where A", B € J and A"B", where A", B" € J" are
both congruent to a generalized interval AB, where A,B € J, then the generalized interval A'B’ is congruent to the
generalized interval A”B".

Property 1.3.3. If generalized intervals AB, A'B’, as well as AC, A'C’, formed by the geometric objects A,B,C € J
and A',B',C" € 3, (where 3,J" € C97) are congruent, B divides A, C, and B', C' lie on one side of A’, then B’
divides A’, C', and BC, B'C' are congruent. 2°°

Property 1.3.4. Suppose a geometric object B lies in a set J € CI°" (with generalized betweenness relation) between
geometric objects A € 3, C € J. Then any set J' € C9" containing the geometric objects A, C, will also contain the
geometric object B.

Property 1.3.5. Any generalized interval AB € 3, A,B € J, has a midpoint, 2! i.e. 3C AC = AB, where
A,B.Cej.

The idea of generalized congruence is partly justified by the following L 1.3.13.15, T 1.3.13, although we are not
yet in a position to fully prove that congruence of (conventional) intervals is a generalized congruence.

Lemma 1.3.13.15. Congruence of (conventional) intervals satisfies the properties P 1.8.1 — P 1.3.3, P 1.3.6. (Here
C9" = {J|3 = Pa,a € CL} is the class of contours of all lines.)

Proof. P 1.3.1 — P 1.3.3 in this case follow immediately from, respectively, A 1.3.1, A 1.3.2, and L 1.3.9.1. P 1.3.6
follows from the fact that in view of A 1.1.2 any line a (and thus the set P, of all its points) is completely defined
by two points on it. O

Theorem 1.3.13. Congruence of conventional angles %2 satisfies the properties P 1.3.1 - P 1.3.8, P 1.3.6. Here
the sets J with generalized betweenness relation are the pencils of rays lying on the same side of a given line a and
having the same initial point O € a (Of course, every pair consisting of a line a and a point O on it gives rise to
exactly two such pencils.); each of these pencils is supplemented with the (two) rays into which the appropriate point

O (the pencil’s origin, i.e. the common initial point of the rays that constitute the pencil) divides the appropriate line
293
a.

Proof. The properties P 1.3.1 - P 1.3.3 follow in this case from A 1.3.4, L. 1.3.11.1, T 1.3.9, P 1.3.9.5. To demonstrate
P 1.3.6, suppose a ray n lies in a pencil J between rays I, m. 2°* Suppose now that the rays [, m also belong to
another pencil J'. The result then follows from L 1.2.31.3 applied to J’ viewed as a straight angle. 2%° O

2861t appears that all of the conditions Pr 1.3.1 — Pr 1.3.5 are necessary to explicate the relevant betweenness properties for points, rays,
half-planes, etc. Unfortunately, the author is not aware of a shorter, simpler, or just more elegant system of conditions (should there
exist one!) to characterize these properties.

28TRecall that A’ X’ € J means there is a set J” in C9°", such that A’ € J/, X’ € ¥'.

288That is, geometric objects A’, X', B’ all lie in one set J' (with generalized betweenness relation), which lies in the class C9%" and
may be either equal to, or different from, the set J. Note that in our formulation of the following properties we shall also assume that
the sets (possibly primed) J with generalized betweenness relation lie in the set C9°".

289 As always, ”at most” in this context means ”one or none”.

290For the particular case where it is already known that the geometric object B’ divides the geometric objects A’, C’, we can formulate
the remaining part of this property as follows:

Let geometric objects B € J and B’ € J' lie between geometric objects A € J, C € Jand A’ € J, C' € ¥, respectively. Then
congruences AB = A'B’, AC = A’C’' imply BC = B'C’.

291 As explained above, AB € J means that there is a set J € C9°" with a generalized betweenness relation containing the generalized
abstract interval AB. Note also that a geometric object does not have to be a point in order to be called a midpoint in this generalized
sense. Later we will see that it can also be a ray, a half-plane, etc. To avoid confusion of this kind, we will also be referring to the
midpoint AB as the middle of this generalized interval.

292 Conventional angles are those formed by rays made of points in the traditional sense, as opposed to angles formed by any other kind
of generalized rays.

293Worded another way, we can say that each of the sets J is formed by the two sides of the corresponding straight angle plus all the
rays with the same initial point inside that straight angle.

294Here the pencil J is formed by the rays lying on the same side of a given line a and having the same initial point O € a,plus the two
rays into which the point O divides the line a.

295Moreover, we are then able to immediately claim that the ray n lies between I, m in J’ as well. (See also L 1.3.14.2.)
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Let us now study the properties of generalized congruence. 2%
Lemma 1.3.14.1. Generalized congruence is an equivalence relation on the class J of appropriately chosen gener-
alized abstract intervals, i.e., it is reflexive, symmetric, and transitive.

Proof. Given a generalized interval AB, where A, B € J € C9°", by Pr 1.3.1 we have 3IA'B AB=A'B', A, B cJ ¢
cobr,

Reflexivity: AB = A'B & AB = A'B "22% AB = AB.27

Symmetry: A'B'= A'B' & AB= A'B’ P32 4rp/ = AB.

Transitivity: AB = AB' & A'B' = A'B" = AB = AB& AB = A"B" V222 AB= A"B". O

Now we can immediately reformulate the property Pr 1.3.6 in the following enhanced form:

Lemma 1.3.14.2. Suppose a geometric object B lies in a set J € C9" (with generalized betweenness relation) between
geometric objects A €3, C € J. Then any set J' € C9°" containing the geometric objects A, C, will also contain the
geometric object B, and B will lie in §' between A and C.

Proof. Suppose B lies in J € C9°" between geometric objects A, C, and a set J' € C9°" also contains A, C. Then by

Pr13.6B€J. Henceon J wehave A € J&B e J & CeJ &A#B#C P25 B AC v ABC v ACB. Now from

L 1.2.25.13 it follows that in J either B, C lie on one side of A, or A, B lie on one side of C. The preceding lemma
gives AB = AB, AC = AC, BC = BC. The facts listed in the preceding two sentences plus ABC on J allow us to
conclude, using P 1.3.3, that for all considered cases the geometric object B will lie between A and C in J’ as well,
q.ed. O

Corollary 1.3.14.3. Given congruent generalized intervals AC, A'C', where A,C €3 and A',C' € ¥, (3,3 €C9")
then for any geometric object B € (AC) C J there is exactly one geometric object B’ € (A'C') C J' such that
AB= A'B', BC=B'C'.

Proof. By Pr 1.3.1 there is a geometric object B’ such that B’, C’ lie in some set J” € C9" on the same side of the
geometric object A’, and AB = A'B’. Since also, by hypothesis, we have [ABC] on J and AC = A’C’, using Pr 1.3.3
we find that B’ lies (in J”) between A’, C’, and, furthermore, the generalized intervals BC, B'C’ are congruent. As
the set J' by hypothesis also contains A", C’, from the preceding lemma (L 1.3.14.2) we conclude that B’ lies between
A’ C'in §" as well. Uniqueness the geometric object B’ with the required properties now follows immediately by the
second part of Pr 1.3.1. O

Lemma 1.3.14.4. If generalized intervals AB, BC are congruent to generalized intervals A'B', B'C', respectively,
where the geometric object B € J € CI" lies between the geometric objects A € J and C € J and the geometric object
B €3 € C% lies between A € 3 and C' € ¥, then the generalized interval AC is congruent to the generalized
interval A'C’.

Proof. By Pr 1.3.1 there exists a geometric object C” such that C’, C" lie in some set J” € C9°" with generalized
betweenness relation on one side of A" and the generalized interval AC is congruent to the generalized interval A'C".
Since A’ € 37, ¢’ € 3", and (by hypothesis) B’ lies in J' between A’, C’, by L 1.3.14.2 the geometric object B’ lies

between A’, C' in J” as well. In view of L 1.2.25.13 the last fact implies that the geometric objects B’, C’ lie in the

set J” on the same side of A’. We can write C' € A’g/”) &C" e A’g//) L2355 on ¢ A’g//). AB = AB & AC =

AC & [ABC)O) & e Q) PRES 4 BiemG) & BC = BIC!. [ABIC O & [ABIC) Q) 20 g o e g7
BC=BC &BC=BC"&C" e BY ) "EL? 07 — ¢/ whence the result. O

Proposition 1.3.14.5. Let pairs B, C and B, C' of geometric objects B,C € J and B',C' € J' (where J,J' € C9")
lie either both on one side or both on opposite sides of the geometric objects A € J and A’ € J', respectively. Then
congruences AB= A'B', AC = A'C’ imply BC = B'C’.

Proof. First, suppose B € Ac, B € Ae. B € Ac&B # ¢ "'22° [ABC] v [ACB]. Let [ABC]. 2% Then
[ABC|& B € Al & AB= A'B & AC = A'C’ 2% Bc = B¢

If B, C and B/, C’ lie on opposite sides of A and A’, respectively, we have [BAC] & [B'A'C'| & AB = A'B' & AC =
Ac M2 ge=pe o

296When applied to the particular cases of conventional (point-pair) or angular abstract intervals, they sometimes reiterate of perhaps
even weaken some already proven results. We present them here nonetheless to illustrate the versatility and power of the unified approach.
Furthermore, the proofs of general results are more easily done when following in the footsteps of the illustrated proofs of the particular
cases.
Also, to avoid clumsiness of statements and proofs, we shall often omit mentioning that a given geometric object lies in a particular
set with generalized betweenness relation when this appears to be obvious from context.

297 As shown above, the availability of an interval A’B’ € J with the property AB = A’B’ is guaranteed by Pr 1.3.1.

298Gince B, C enter the conditions of the proposition symmetrically, as do B, C’, because B’ € A’ ¢ L122353 o ¢ A’ s, we do not really

need to consider the case when [ACB].
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Corollary 1.3.14.6. Let genemlized intervals AB, A'B’, as well as AC, A'C’', formed by the geometric objects
A B,C €3 and A,B,C' €3, (where 3,3 € CI"), be congruent. Then if the geometric object B lies between the
geometric A, C, the geometric object c lzes outside the generalized interval A'B’ (i.e. C' lies in the set ExtA'B' =

J\[AB).

Proof. [ABC| M22813 0 ¢ Ag. B' 4 €', because otherwise A/B' = AB& A'C' = AC&B =C' &C e Ag 22'B=¢

- a contradiction. Also, C' ¢ (A'B), because otherwise [A'C'B|&C € Az& A'B = AB&A'C' = AC “'24H
[ACB] = —[ABC] - a contradiction. O

Theorem 1.3.14. Suppose finite sequences of n geometric objects Ay, As, ..., A, and By, Bs, ..., B,, where A; € J,
B, cy,i=1,2,....,n,J€C%, 3 €C9%, n >3, have the property that every geometric object of the sequence,
except the first (A1, Bi) and the last (An, By, Tespectwely), lies between the two geometric objects of the sequence
with the numbers adjacent (in N) to the number of the given geometric object. Then if all generalized intervals
formed by pairs of geometric objects of the sequence Ay, As,..., A, with adjacent (in N) numbers are congruent
to the corresponding generalized intervals 2°° of the sequence Bi,Ba, ..., B,, the generalized intervals formed by the
first and the last geometric objects of the sequences are also congruent, A1 A, = B1B,. To recapitulate in more
formal terms, let Ay, As, ..., Ay and By, Bs,...,B,, n > 3, be finite sequences of geometric objects A; € J, B; € ¥,
i=1,2,...,n, J€CI,F €CI, such that [A;Air1.Aisa], [BiBiy1Biia] for alli € N, o (i.e. Vi=1,2,...n—2).
Then congruences AiAHl = B;B;11 for alli € N,,_1 imply A1 A, = B1B,.

Proof. By induction on n. For n = 3 see Pr 1.3.3. Now suppose A1 A, 1 = B1B,_1 (induction!).3%° We have
[./41./4” 1./4 ] [Bl n— 18 ] by L 1.2.22.14. Therefore, [AlAn_lAn]&[Ban_lgn]&AlAn_l = BIBn—l &An_lAn =

By 1Bn "2 AL A, = BiB,. O

Comparison of Generalized Intervals

Lemma 1.3.15.1. For any geometric object C lying on a generalized open interval (AB), where A,B,C € 3, J € C9",
there are geometric objects € € (AB), F € (AB) such that AC = EF.

Proof. Suppose [ACB]. By Pr 1.2.4 3F € J such that [CFB]. Then [ACB] & [CFB] = = [ACF| & [AFB]. [ACF| & AF =
FATEY 3¢ € € J& [FEA & AC = FE. Finally, [AEF] & [AFB] 227 [A€B)]. O

The following lemma is opposite, in a sense, to L 1.3.15.1

Lemma 1 3.15.2. For any two (distinct) geometric objects £, F lying on a generalized open interval (AB), where
A,B €3, 3 €C9, there is exactly one geometric object C € (AB) such that EF = AC.

Proof. By P 1.2.22.6 [AEF] V [AFE]. Since &, F enter the conditions of the lemma symmetrically, we can assume
without any loss of generality that [AEF]. Then AF = FA&[FEA] G243 10 FE = ACk [ACF]. Finally,
[ACF] & [AFB) 227 [AcB). O

A generalized (abstract) interval A’B’, where A’, B’ € J', J' € C9", is said to be shorter, or less, than or congruent
to a generalized (abstract) interval AB, Where A, Be 3, 6 Cgl”", if there is a generalized interval CD 3°' such that
the generalized abstract interval A’'B’ is congruent to the generalized interval CD, and the generalized open interval
(CD) is included in the generalized open interval (AB).392 If A’B’ is shorter than or congruent to AB, we write this
fact as A'B’ £ AB. Also, if a generalized interval A'B’ is shorter than or congruent to a generalized interval AB,
we shall say that the generalized (abstract) interval AB is longer, or greater than or congruent to the generalized
(abstract) interval A'B’, and write this as AB = A'B'.

If a generalized (abstract) interval A’B’ is shorter than or congruent to a generalized (abstract) interval AB,
and, on the other hand, the generalized interval A’'B’ is known to be incongruent (not congruent) to the generalized
interval AB, we say that the generalized interval A'B’ is strictly shorter, or strictly less 3°3 than the generalized
interval AB, and write A'B’ < AB. If a generalized interval A'B’ is (strictly) shorter than a generalized interval AB,
we shall say also that the generalized (abstract) interval AB is strictly longer, or strictly greater 34 than (abstract)
interval A’B’, and write this as AB > A'B'.

299j ., generalized intervals formed by pairs of geometric objects with equal numbers

300We are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for n—1, i.e. if [4;.4;11.A;42],
[BiBi+1Bit2] for all i = 1,2,...n — 2, then obviously [A;A;jr1.Ait2], [BiBit1Biy2] forall i =1,2,...n — 3; if A;A;41 = BBy for all
1=1,2,...,n—1, then A1A1+1 BiBiy1 foralli=1,2,...,n—2.

301From thc followmg it is apparent that C,D € J.

302This definition is obviously consistent, as can be seen if we let CD = AB.

303We shall usually omit the word ’strictly’.

304 Again, we shall omit the word ’strictly’ whenever we feel that this omission does not lead to confusion
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Lemma 1.3.15.3. A generalized interval A'B’ is (strictly) shorter than a generalized interval AB iff:

— 1. There exists a geometric object C on the generalized open interval (AB) such that the generalized interval
A'B’ is congruent to the generalized interval AC; 3% or

— 2. There are geometric objects £, F on the generalized open interval AB such that A'B' = EF.

In other words, a generalized interval A'B' is strictly shorter than a generalized interval AB iff there is a generalized
interval CD, whose ends both lie on a generalized half-open [AB) (generalized half-closed interval (AB]), such that
the generalized interval A'B’ is congruent to the generalized interval CD.

Proof. Suppose A'B’ = AC and C € (AB). Then by Pr 1.2.7, L 1.2.25.13 C € (AB) = (AC) C AB&C € Ag.

Therefore, A’'B" < AB. Also, A'B’ # AB, because otherwise C € Ag& A'B' = AC& A'B' = AB PILEL AC = AB =

C = B, whence C ¢ (AB) - a contradiction. Thus, we have A'B' < AB& A'B' £ AB, i.e. A'/B' < AB.

Suppose A'B’ = EF, where £ € (AB), F € (AB). By L 1.3.152 3C C € (AB)&EF = AC. Then A'B' =
L1.3.14.1

EF&EF = AC 2L /B = AC and A'B' = AC&C € (AB) 2%° A'B' < AB.

Now suppose A'B’ < AB. By definition, this means that there exists a generalized (abstract) interval CD such
that (CD) C (AB), A'B' = CD, and also A'B’' % AB. Then we have (CD) C (AB) “"22'% ¢ ¢ [AB]& D € [AB],
A'B #£ AB& A'B' =CD = CD # AB. Therefore, either one of the ends or both ends of the generalized interval CD

lie on the generalized open interval (AB). The statement in 1. then follows from L 1.3.15.1, in 2.— from L 1.3.15.2.
O

Observe that the lemma L 1.3.15.3 (in conjunction with Pr 1.3.1) indicates that we can lay off from any geometric
object an interval shorter than a given generalized interval. Thus, there is actually no such thing as the shortest
possible generalized interval.

Corollary 1.3.15.4. If a geometric object C lies on a generalized open interval (AB) (i.e. C lies between A and B),
the generalized interval AC is (strictly) shorter than the generalized abstract interval AB.

If two (distinct) geometric objects £, F lie on a generalized open interval (AB), the generalized interval EF is
(strictly) less than the generalized interval AB.

Proof. Follows immediately from the preceding lemma (L 1.3.15.3). O

Lemma 1.3.15.5. A generalized interval A'B’ is shorter than or congruent to a generalized interval AB iff there
is a generalized interval CD whose ends both lie on the generalized closed interval [AB], such that the generalized
interval A'B’ is congruent to the generalized interval CD.

Proof. Follows immediately from L 1.2.30.12 and the definition of ”shorter than or congruent to”. O

Lemma 1.3.15.6. If a generalized interval A"B", where A" B" € 3", 3" € C97, is congruent to a generalized
interval A'B’, where A',B' €3, J' € C9", and the generalized interval A'B' is less than a generalized interval AB,
where A,B €3, J € C9", the generalized interval A"B" is less than the generalized interval AB.

Proof. By definition and L 1.3.15.3, A'B' < AB = 3C C € (AB) & A'B' = AC. A'B" = AB' & AB = AC “'254
A'B" = AC. A'B" = AC&C € (AB) = A"B" < AB. O

Lemma 1.3.15.7. If a generalized interval A”B", where A" ,B" € 3", 3" € C97, is less than a generalized interval
A'B', where A',B' € J', 3 € C9", and the generalized interval A'B' is congruent to a generalized interval AB, where
A, B €3, J€C9%, the generalized interval A"B" is less than the generalized interval AB.

Proof. A'B" < AB' = 3C' C' € (AB)&A'B" = AC'. AB = AB&C' € (AB) 2L 3¢ ¢ e (UB) & AC' =
L1.3.14.1

AC. A'B" = AC & AC'=AC "= A"B"=AC. A"B"=AC&C € (AB) = A"B" < AB. O

Lemma 1.3.15.8. If a generalized interval A”B" is less than a generalized interval A'B’ and the generalized interval
A'B' is less than a generalized interval AB, the generalized interval A”"B" is less than the generalized interval AB.

Proof. A'B" < A'B' = 3C' C' € (AB)&A'B" = AC'. AB < AB = 3D D € (AB)& A'B = AD. C' €
(AB)Y&AB = AD “2X° 3¢ ¢ € UD)&AC' = AC. A'B" = AC'&AC = AC "22' 4'B" = Ac.

Pr1.2.7

[ACD] & [ADB] P22 [ACB]. A"B" = AC & [ACB] = A"B" < AB. O

Lemma 1.3.15.9. If a generalized interval A”B" is less than or congruent to a generalized interval A'B’ and the
generalized interval A'B' is less than or congruent to a generalized interval AB, the generalized interval A”"B" is less
than or congruent to the generalized interval AB.

305We could have said here also that A’B’ < AB iff there is a point D € (AB) such that A’B’ = BD, but because of symmetry this adds
nothing new to the statement of the theorem, so we do not need to consider this case separately.
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Proof. We have, using L 1.3.14.1, L. 1.3.15.6, L. 1.3.15.7, L. 1.3.15.8 on the way: A"B" < A'B' & A'B" £ AB
(A"B" < AB' v A'B" = AB)&(AB < ABV AB = AB) = (A'B" < AB'&AB < AB) vV (A"B"
AB &AB = AB)V (A"B" = AB&AB < AB)V (A'B" = AB&AB = AB) = A" < B" v A"B"
AB = A"B" < AB. O

m A4

Lemma 1.3.15.10. If a generalized interval A'B’ is less than a generalized interval AB, the generalized interval AB
cannot be less than the generalized interval A'B'.

Proof. Suppose the contrary, i.e., that both A’'B’ < AB and AB < A'B’, that is, 3C C € (AB) & A'B’ = AC and
3¢’ C' e (AB) & AB = A'C’. Then AB = AC "2 AC = A'B' and AC = A'B' & AB = AC' & [ACB) ©'234
C' € ExtA'B’' — a contradiction with C" € (A'B’). O

Lemma 1.3.15.11. If a generalized interval A'B’ is less than a generalized interval AB, it cannot be congruent to
that generalized interval.

Proof. Suppose the contrary, i.e. that both A’'B’ < AB and A'B’ = AB. We have then A'B’ < AB = 3C C €

(AB)& A'B' = AC. [ACB] "'22"% ¢ ¢ Ap. But A'B = AC& A'B = AB&C € Ag "22' € = B - a contradiction.

O

Corollary 1.3.15.12. If a generalized interval A’'B’ is congruent to a generalized interval AB, neither A'B’ is shorter
than AB, nor AB is shorter than A'B’.

Proof. Follows immediately from L 1.3.15.11. O

Lemma 1.3.15.13. If a generalized interval A'B’ is less than or congruent to a generalized interval AB and the
generalized interval AB is less than or congruent to the generalized interval A'B’, the generalized interval A'B’ is
congruent to the generalized interval AB.

Proof. (A'B' < ABVAB =AB)& (AB < A'B'V AB = A'B') = A'B' = AB, because A'B’ < AB contradicts both
AB < A'B" and A'B' = AB in view of L. 1.3.15.10, L. 1.3.15.11. O

Lemma 1.3.15.14. If a generalized interval A'B’ is not congruent to a generalized interval AB, then either the
g g g

generalized interval A'B’ is less than the generalized interval AB, or the generalized interval AB is less than the

generalized interval A'B'.

Proof. Using Pr 1.3.1, choose geometric objects C € Ag, C' € A'p so that A’'B' = AC, AB = A'C’. Then C # B,

because A'B’ # AB by hypothesis, and C € Az&C # B “'23® [ACB] v [ABC]. We have in the first case (i.e.,

when [ACB]) [ACB]& A'B' = AC = A'B’ < AB, and in the second case AB = A'C'& AC = A'B' & [ABC] & C' €
Al VES e, [ACB & AB= A'C' = AB < AB. O

Theorem 1.3.15. Suppose finite pencils of n rays hi, ho, ..., hy and k1, ko, ..., k,, where n > 3, have the property
that every ray of the pencil, except the first (hi, k1) and the last (hy, kn, respectively), lies inside the angle formed
by the rays of the pencil with the numbers adjacent (in N) to the number of the given ray. Then if all angles formed
by pairs of rays of the pencil hy,ha, ..., hy, with adjacent (in N) numbers are congruent to the corresponding angles
306 of the pencil ki,ka, ..., kn, the angles formed by the first and the last rays of the pencils are also congruent,
L(hi,hy) = Lk, ky). To recapitulate in more formal terms, let hy, ha, ..., hy and k1, ko, ... kn, n > 3, be finite
pencils of rays such that hiv1 C IntZ(hi, hiva), kiv1 C IntZ(ki, kiy2) for all i € Ny_o (ie. Vi=1,2,...n—2).
Then congruences Z(h;, hit1) = ZL(kiykig1) for all i € Ny imply Z(hy, hy) = Z(k1, kn).

Proof. O

Comparison of Angles

Lemma 1.3.16.1. For any ray | having the same origin as rays h, k and lying inside the angle Z(h, k) formed by
them, there are rays m, n with the same origin as h, k, I and lying inside Z(h, k), such that Z(h, k) = Z(m,n).

Proof. See T'1.3.13, L 1.3.15.1. O

The following lemma is opposite, in a sense, to L 1.3.16.1

Lemma 1.3.16.2. For any two (distinct) rays m, n sharing the origin with (equioriginal to) rays h, k and lying
inside the angle Z(h, k) formed by them, there is exactly one ray | with the same origin as h, k, l, m and lying inside
Z(h, k) such that Z(m,n) = Z(h,l).

Proof. See T 1.3.13, L 1.3.15.2.

306

i.e., angles formed by pairs of rays with equal numbers
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Lemma 1.3.16.3. An angle Z(h', k') is (strictly) less than an angle Z(h, k) iff:

— 1. There exists a ray | equioriginal to rays h, k and lying inside the angle Z(h,k) formed by them, such that
the angle Z (I, k') is congruent to the angle Z(h,1); 3°7 or

— 2. There are rays m, n equioriginal to rays h, k and lying inside the Z(h, k) such that Z(hW', k') = Z(m,n).

In other words, an angle Z(h', k') is strictly less than an angle Z(h,k) iff there is an angle Z(I,m), whose sides
are equioriginal to h, k and both lie on a half-open angular interval [hk) (half-closed angular interval (hk]), such that
the angle Z(W', k') is congruent to the angle Z(h, k).

Proof. See T 1.3.13, L 1.3.15.3.0

Observe that the lemma L 1.3.16.3 (in conjunction with A 1.3.4) indicates that we can lay off from any ray an
angle less than a given angle. Thus, there is actually no such thing as the least possible angle.

Corollary 1.3.16.4. If a ray | is equioriginal with rays h, k and lies inside the angle Z(h,k) formed by them, the
angle Z(h,l) is (strictly) less than the angle Z(h, k).

If two (distinct) rays m, n are equioriginal to rays h, k and both lie inside the angle Z(h,k) formed by them, the
angle Z(m,n) is (strictly) less than the angle Z(h, k).

Suppose rays k, | are equioriginal with the ray h and lie on the same side of the line h. Then the inequality
Z(h,k) < Z(h,1) implies k C Int/(h,1).
Proof. See T 1.3.13, C 1.3.15.4, L 1.2.21.21. O

Lemma 1.3.16.5. An angle Z(h', k') is less than or congruent to an angle Z(h, k) iff there are rays 1, m equioriginal
to the rays h, k and lying on the closed angular interval [hk], such that the angle Z(h', k') is congruent to the angle
Z(h, k).

Proof. See T 1.3.13, L 1.3.15.5. O

Lemma 1.3.16.6. If an angle Z(h" k") is congruent to an angle Z(W', k') and the angle Z(h', k') is less than an
angle Z(h, k), the angle Z(h" k") is less than the angle Z(h, k).

Proof. See T 1.3.14, L 1.3.15.6. O

Lemma 1.3.16.7. If an angle Z(h", k") is less than an angle Z(I', k") and the angle Z(h', k') is congruent to an
angle Z(h, k), the angle Z(h" k") is less than the angle Z(h,k).

Proof. See T 1.3.13, L 1.3.15.7. O

Lemma 1.3.16.8. If an angle Z(h", k") is less than an angle Z(h', k") and the angle Z(N' k") is less than an angle
Z(h, k), the angle Z(h" k") is less than the angle Z(h, k).

Proof. See T 1.3.13, L 1.3.15.8. O

Lemma 1.3.16.9. If an angle Z(h" k") is less than or congruent to an angle Z(h', k') and the angle Z(W, k') is
less than or congruent to an angle Z(h, k), the angle Z(h", k") is less than or congruent to the angle Z(h, k).

Proof. See T 1.3.13, L 1.3.15.9. O

Lemma 1.3.16.10. If an angle Z(R', k') is less than an angle Z(h, k), the angle Z(h,k) cannot be less than the angle
Z(W,K).

Proof. See T 1.3.13, L 1.3.15.10.0
Lemma 1.3.16.11. If an angle Z(h', k") is less than an angle Z(h,k), it cannot be congruent to that angle.
Proof. See T 1.3.13, L. 1.3.15.11. O

Corollary 1.3.16.12. If an angle Z(h', k') is congruent to an angle Z(h,k), neither Z(h', k') is less than Z(h, k),
nor Z(h, k) is less than Z(h', k').

Proof. See T 1.3.13, C 1.3.15.12. O

Lemma 1.3.16.13. If an angle Z(W k') is less than or congruent to an angle Z(h,k) and the angle Z(h,k) is less
than or congruent to the angle Z(h', k'), the angle Z(h', k") is congruent to the angle Z(h,k).

Proof. See T 1.3.13, L 1.3.15.13. O

307 Again, we could have said here also that Z(h/,k’) < Z(h,k) iff there is a ray o C IntZ(h,k) equioriginal with h, k such that
Z(h k') = Z(o, k), but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this
case separately.
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Lemma 1.3.16.14. If an angle Z(h', k') is not congruent to an angle Z(h, k), then either the angle Z(h', k") is less
than the angle Z(h,k), or the angle Z(h,k) is less than the angle Z(h' k).

Proof. See T 1.3.13, L 1.3.15.14.0

Lemma 1.3.16.15. If an angle Z(h',K') is less than an angle Z(h,k), the angle Z(W'°, k') adjacent supplementary
to the former is greater than the angle Z(h¢, k) adjacent supplementary to the latter.

Proof. Z(W,K') < Z(h,k) "'225% 311 ¢ IntZ(h, k) & Z(W, k') = Z(h,1) TEELT Ak K C IntZ(W 1) & L(h, k) =
Z(WU). K C IntZ(W 1) MPEEP U Int/(e k). Also, Z(hk) = Z(W, 1) "EE° £(he k) = Z(We,1'). Finally,

U'C IntZ(We, k') & £(he, k) = Z(We, 1) 2252 (he k) < Z(We, k). O

Acute, Obtuse and Right Angles

An angle which is less than (respectively, greater than) its adjacent supplementary angle is called an acute (obtuse)
angle.

Obviously, any angle is either an acute, right, or obtuse angle, and each of these attributes excludes the others.
Also, the angle, adjacent supplementary to an acute (obtuse) angle, is obtuse (acute).

Lemma 1.3.16.16. An angle Z(h', k') congruent to an acute angle Z(h,k) is also an acute angle. Similarly, an
angle Z(h', k') congruent to an obtuse angle Z(h,k) is also an obtuse angle.

Proof. Indeed, Z(W, k') = Z(h,k) =X° /(W' k')

Z(W K = Z(h,k) < Z(he, k) = Z(We, k') = Z(W k') <
/(WK > Z(W°, k), qed. O

Z(h¢, k). Therefore, by L 1.3.16.6, L. 1.3.56.18 we have
Z(We K'Y and Z(h k') = Z(h, k) > £(h¢, k) = L(W k) =

Lemma 1.3.16.17. Any acute angle Z(h', k') is less than any right angle Z(h, k).

Proof. By T 1.3.8 there exists a right angle, i.e. an angle Z(h,k) such that Z(h,k) = Z(h° k). By A 1.34
Al lkh& L(W,E') = Z(h,1). | # k, because otherwise by L 1.3.8.2 Z(h', k') = Z(h, k) implies that Z(h/,k’) is a
right angle. By L 1.3.16.16, Z(h/,l’) is also acute, i.e. Z(h,l) < Z(h¢1). We have by L 1.2.21.15, L 1.2.21.21

I # k&lkhl C IntZ(h,k)V (I C IntZ(he, k) &k C IntZ(h,1)). Then | C Int/(h¢,k)&k C Int/(h,1) <225

Z(he,l) < Z(he, k) & ZL(h, k) < Z(h,l). Together with Z(h,k) = Z(h, k), (recall that Z(h, k) is a right angle!) by
L 1.3.16.6, L 1.3.56.18 Z(h*,1) < Z(h,l) - a contradiction. Thus, I C IntZ(h, k), which means, in view of L 1.3.16.5,

that Z(h,1) < Z(h, k)l. Finally, Z(h', k') = Z(h,1) & Z(h,1) < Z(h, k) “"225C 2(0' k') < Z(h,1). O

Lemma 1.3.16.18. Any obtuse angle Z(h', k') is greater than any right angle Z(h, k). 308

Proof. Z(W,K') is obtuse = Z(W°, k') is acute " 2T L(he k) < L(h k) MPEE 20 k) = Z(W)°, k) >
Z(he, k). Finally, Z(h, k) = Z(he, k) & Z(he, k) < (W', k') "'225C 2(h, k) < Z(W, k'), q.ed. O

Lemma 1.3.16.19. Any acute angle is less than any obtuse angle.
Proof. Follows from T 1.3.8, L. 1.3.16.17, L. 1.3.16.18. O

Corollary 1.3.16.20. An angle less than a right angle is acute. An angle greater than a right angle is obtuse. An
angle less than an acute angle is acute. An angle greater than an obtuse angle is obtuse.

Theorem 1.3.16. All right angles are congruent.

Proof. Let Z(h', k'), Z(h,k) be right angles. If, say, Z(h/,k") < Z(h,k) then by L 1.3.16.15 Z(h¢, k) < Z(h'°, k'),
and by L 1.3.16.6, L 1.3.56.18 Z(h', k') < Z(h, k) & Z(h, k) = (h°, k) & Z(h®, k) < Z(W'°,K') = L(h',K) < Z(h', k'),
which contradicts the assumption that Z(h/, k') is a right angle. O

Lemma 1.3.16.21. Suppose that rays h, k, | have the same initial point, as do rays h', k', I'. Suppose, further,
that hkl and W'E'l (i.e. the rays h, | and W', ' lie on opposite sides of the lines k, k', respectively, that is, the angles
Z(h, k), Z(k,1) are adjacent, as are angles Z(W', k'), Z(K',1")) and Z(h, k) = ZL(W k"), £(k,1) = Z(K',l"). Then the
rays k, | lie on the same side of the line h iff the rays k', ' lie on the same side of the line h', and the rays k, 1 lie
on opposite sides of the line h iff the rays k', ' lie on opposite sides of the line h.

3081y different words:
Any right angle is less than any obtuse angle.
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Figure 1.123: Suppose that rays h, k, [ have the same initial point, as do rays h', k', I’. Suppose, further, that hkl
and W'k'l and Z(h, k) = Z(W', k'), Z(k,1) = Z(K',1"). Then k, [ lie on the same side of h iff £, I’ lie on the same side
of i/, and k, [ lie on opposite sides of h iff £/, I’ lie on opposite sides of h.

Proof. Suppose that klh. Then certainly I’ # h'¢, for otherwise in view of C 1.3.6.1 we would have I = h®. Suppose

now k'h'l' (see Fig. 1.123.). Using L 1.2.21.33 we can write | C IntZ(h° k), h'® C IntZ(K',l'). In addition,

Z(hk) = Z(W,K) "ZE 2(he, k) = adjspZ(h, k) = adspZ (W, k') = Z(W°,K'). Hence, using C 1.3.16.4, L 1.3.16.6

~ L 1.3.16.8, we can write Z(k,1) < Z(h¢, k) = Z(W, k') < Z(K',I') = Z(k,1) < Z(K',l"). Since, however, we have
Z(h,1) = Z(R,I') by T 1.3.9, we arrive at a contradiction in view of L 1.3.16.11. Thus, we have k’l’h/ as the only
remaining option.

O

Lemma 1.3.16.22. Suppose that a point D lies inside an angle Z/BAC and the points A, D lie on the same side of
the line apc. Then the angle ZBAC is less than the angle ZDC.

Proof. First, observe that the ray Bp lies inside the angle ZABC. In fact, the points C, D lie on the same side of the
line ayp = apa by definition of interior of ZBAC, and ADapgc by hypothesis. From L 1.2.21.10 we see that the ray
Bp meets the open interval (AC) in some point E. Since the points B, D lie on the same side of the line a4¢ (again
by definition of interior of ZBAC'), the points D lies between B, E (see also L 1.2.11.8). Finally, using T 1.3.17 (see
also L 1.2.11.15), we can write /ZBAC = /BAFE < /BEC = /DEC < angleBDC, whence /BAC < /BDC, as
required. O

Suppose two lines a, b concur in a point O. Suppose further that the lines a, b are separated by the point O into
the rays h, h¢ and k, k¢, respectively. Obviously, we have either Z(h, k) < Z(h¢, k) or Z(h¢, k) < Z(h, k). If the angle
Z(h,k) is not greater than the angle Z(h¢, k) adjacent supplementary to it, the angle Z(h, k), as well as the angle
Z(h¢, k) will sometimes be (loosely 39?) referred to as the angle between the lines a, b. 319

Interior and Exterior Angles

Lemma 1.3.17.2. If a point A lies between points B, D and a point C' does not lie on the line aap, the angles
/CAD, ZACB cannot be congruent.

Proof. (See Fig. 1.124.) Suppose the contrary, i.e. that ZCAD = ZACB. According to A 1.3.1, L. 1.2.11.3, we can

assume with no loss of generality that CB = AD. 3! AD = CB& AC = CA& Z/CAD = ZACB ALLS 40D =

CAB. Using A 1.2.2, choose a point E so that [BCE] and therefore (see L 1.2.15.2) Cg = (Cp)¢. Then ZCAD =

/ACB "% /CAB = adjsp ZCAD = adjsp LZACB = L/ACE. [BAD|&[BCE] = BaacD & BascE “'25"7

DFEaysc. LCAB = /ZACD & LCAB = LZACE & DEasc Lisgl Cp = Cg - a contradiction, for C' ¢ aap = app =

D ¢ apc =acg. O

Lemma 1.3.17.3. If an angle ZA'B'C’ is less than an angle ZABC), there is a point D lying between A and C' and
such that the angle ZA'B'C" is congruent to the angle ABD.

Proof. (See Fig. 1.125.) LA'B'C' < /ABC “'22°° 3B, Bp C Int/ABC& /A'B'C' = /ABD'. Bp C

Int/ABC& A€ Bp&C € Be ""22'° 3D D € Bp & [ADC). D € Bp “'22° B, = Bp. O
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Figure 1.124: If a point A lies between points B, D and a point C does not lie on a4, the angles Z/CAD, Z/ACB
cannot be congruent.

C)

B’ A B A

Figure 1.125: If an angle ZA’B’C’ is less than an angle ZABC, there is a point D lying between A and C and such
that ZA'B'C’ = ABD.
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Figure 1.126: If a point A lies between points B, D and a point C' does not lie on a4 p, the angle ZACB is less than
the angle ZC'AD.

Lemma 1.3.17.4. If a point A lies between points B, D and a point C' does not lie on the line aap, the angle ZACB
1s less than the angle ZCAD.

Proof. (See Fig. 1.126.) By L 1.3.17.2 ZACB # Z/CAD. Therefore, by L 1.3.16.14 ZCAD < LACB Vv ZACB <
/CAD. Suppose ZCAD < /ACB. We have ZCAD < /ACB “'2&° 3B’ [AB'B|& /CAD = /ACB'.

[BB'A] & [BAD] "228? [B'AD]. But [B'AD| & C ¢ aap = asp "2 /CAB # /CAD. O

Theorem 1.3.17. An exterior angle, say, ZCAD, of a triangle AACB, is greater than either of the angles ZACB,
ZABC of ANACB, not adjacent supplementary to it.

Proof. [BAD|&C ¢ anp “'22* JACB < Z/CAD & ZABC < vert ZCADZ((Ac)¢, (Ap)¢) = ZCAD. O

Relations Between Intervals and Angles

Corollary 1.3.17.4. In any triangle ANABC at least two angles are acute.

Proof. If the angle ZC' is right or obtuse, its adjacent supplementary angle is either right or acute. Since adjsp ZC is
an exterior angle of AABC, by T 1.3.17 we have ZA < adjsp £C, ZB < adjsp £C. Hence ZA, /B are both acute
angles. O

Corollary 1.3.17.5. All angles in an equilateral triangle are acute.

Proof. See L 1.3.8.2, L. 1.3.16.16, and the preceding corollary (C 1.3.17.4). O

Corollary 1.3.17.6. The right angle in a right triangle is greater than any of the two remaining angles.
Proof. Follows immediately from C 1.3.17.4, L. 1.3.16.17. O

Theorem 1.3.18. If a side, say, AB, of a triangle AABC, is greater than another side, say, BC of AABC, the
same relation holds for the angles opposite to these sides, i.e. the angle ZC is then greater than the angle ZA,
LACB > Z/BAC.

Conversely, if an angle, say, LC = LACB, of a triangle AABC, is greater than another angle, say, /A = ZBAC
of NABC, the same relation holds for the opposite sides, i.e. the side AB is then greater than the side BC, AB > BC.

Proof. (See Fig. 1.127.) Suppose BC < BA. Then by L 1.3.13.3 3D [BDA|& BC = BD. 3?2 BC = BD =%°

/BCD = /BDC. B € Cp&A € Ca&[BDA] "2 op  mitszAcB V22 /BCD < /ACB =
L1.3.17.4

ZC. [BDAJ&C ¢ agp = 4BDC > /BAC = ZA. Finally, by L 1.3.16.6, L. 1.3.56.18, T 1.3.11 ZA <
/BDC& /BCD = /BDC&/BDC < /C = /A< /C.

Suppose now LA < ZC. Then BC < AB, because otherwise by L 1.3.16.14, T 1.3.3, and the preceding part
of the present proof, BC = ABV AB < BC = /A = /CV ZC < ZA. Either result contradicts our assumption
/A < /C in view of L, 1.3.13.10, . 1.3.13.11. O

309Gtrictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.
3101t goes without saying that in the case Z(h®, k) < Z(h, k) it is the angle Z(h¢, k) that is referred to as the angle between the lines a,

b.
311 ndeed, by A 1.3.1 3D’ D' € Ap & CB = AD'. But D' € Ap "'23% A, = Ap.

312Note also that A ¢ apc & [BDA] CLzls p ¢ apc CLLed o ¢ app.
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A C

Figure 1.127: If a side AB, of AABC, is greater than another side BC, the same relation holds for the opposite
angles, Z/C < ZA. Conversely, if ZC > ZA, the same relation holds for the opposite sides, i.e. AB > BC.

B

D C

>|

Figure 1.128: For a bisector BD of AABC if Z/C > ZA then CD < AD.

Corollary 1.3.18.1. If aac L a, A € a, then for any point B € a, B # A, we have AC < BC 313

Proof. Since Z/BAC is right, the other two angles ZACB, ZABC of the triangle AACB are bound to be acute by
C 1.3.17.4. This means, in particular, that ZABC < ZBAC (see L 1.3.16.17). Hence by the preceding theorem
(T 1.3.18) we have AC < BC. O

Corollary 1.3.18.2. Any interval is longer than its orthogonal projection on an arbitrary line.

Proof. Follows from the preceding corollary (C 1.3.18.1). 314 O

A triangle with at least one right angle is called a right triangle. By L 1.3.8 right triangles exist, and by C 1.3.17.4
all of them have exactly one right angle. The side of a right triangle opposite to the right angle is called the hypotenuse
of the right triangle, and the other two sides are called the legs. In terms of right triangles the corollary C 1.3.18.2
means that in any right triangle the hypothenuse is longer than either of the legs.

Corollary 1.3.18.3. Suppose BD is a bisector of a triangle NABC. (That is, we have [ADC] and ZABD = ZCBD,
see p. 151. ) If the angle ZC is greater than the angle Z A then the interval CD is shorter than the interval AD. 315

Proof. (See Fig. 1.128.) We have /A < /C "2%° BC < AB "'247* 3F [BEA|& BC = BE. [ADC] "'23'°

Ap = Ac&Cp = Cy = /BAD = /A& /BCD = /C. [AEB] "'23'% Ap = A& By = By = /EAD =

/A& /EBD = /ABD. BC = BE&BD = BD&/EBD = /CBD *%* AEBD = ACBD = ED

CD& /BED = /BCD. Observe that adjspZC, being an external angle of the triangle AABC, by T 1.3.17 is

greater than the angle ZA. Hence ZBED = /BCD = /C "2%° JAED = adjspZ/BED = adjspZC. /EAD =

LA < adjsp/C = LAED ""EX /EAD < ZAED "X ED < AD. Finally, ED < AD&ED = D "'24°

CD < AD. O

313The reader can refer to Fig. 1.140 for the illustration.
3148ee also the observation accompanying the definition of orthogonal projections on p. 117.
315Observe that instead of ZA < ZC we could directly require that BC' < AB (see beginning of proof).
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Figure 1.129: Ilustration for proofs of C 1.3.18.4, C 1.3.18.5.

Corollary 1.3.18.4. Let an interval AgA,,, n > 2, be divided into n intervals AgA1, A1 As ..., A1 A, by the points
Ay, As, . A,y 316 Suppose further that B is such a point that the angle ZBAgA; is greater than the angle ZBA1 Ay.
317 Then the following inequalities hold: /BA,Ap_1 < ZBAj,_1An_9 < ...< LBA3Ay < /BAsA, < /BA Ay <
/LBAgAL < LBA1Ay < LBAyA3 < ... < LBA, 2A, 1 < 4BAn_1An, Vi € N, 4BA¢+1A1‘_1 < 4BA1‘_1A1'+1,
and BAg < BAy < --- < BA,_1 < BA,.

Proof. (See Fig. 1.129.) We have (using L 1.2.11.3 to show the equality of rays) Vi € N,_; ([Ai—14;4i11] =
ZA;_1BA; = adjsp£A;BA;4+1 &Ai—lAi = Ai_lAHl &Ai+1Ai = Ai_lAi+1)' Hence by T refT 1.3.17 we can write
/BA,A,_1 < LBA, 1A, > <...< LBA3Ay < LBAsA| < LBA{Ay < LBAgA1 < LBA1As < LBA3A3 < ... <
/BA, 9A,_1 < LBA,_1A,. Applying repeatedly L 1.3.16.8 to these inequalities, we obtain Vi € N,,_1 ZBA;114; <
/BA;_1A;. Taking into account AiflAi = Ai,lAHl, AiJrlAi = AiflAiﬂ’ valid for all ¢ € N,,_1, we have Vi €
N,,_1 £BA;1A;-1 < LBA;_1A;1. Also, using T 1.3.18 we conclude that BAy < BA; < --- < BA,,_1 < BA,,. O

Corollary 1.3.18.5. Let an interval AgAy,, n > 2, be divided into n intervals AgA1, A1As ..., An_1A, by the points
A Ag, . Ay 318 Suppose further that B is such a point that that all angles ZA;_1BA;, i € N,, are congruent
and the angle Z/ BAyA1 is greater than the angle ZBA1Ay. Then AgAy < AjAs < AsAs < ... A, oA, 1 < Ap_1A,.

Proof. (See Fig. 1.129.) From the preceding corollary (C 1.3.18.4) we have Vi € N,,_1 ZBA;41A;—1 < LBA;_14;11.
Together with LA;_1BA; = ZA;BA;11 (true by hypothesis), the corollary C 1.3.18.3 applied to every triangle
AAi_lBAH_l, Vi eN,_1, gives VieN,_1 A;_14; < AiAi-‘rlu q.e.d. d

Corollary 1.3.18.6. Let an interval AgA,,, n > 2, be divided into n intervals AgA1, A1 As ..., A1 A, by the points
Ay, Ag, .. A1, Suppose further that B is such a point that that all angles /A;_1BA;, i € Ny, are congruent and
/BAgA;1 is a right angle. Then AgA; < A1As < AsAs < ... < Ap 24,1 < Apn_1A,.

Proof. Being a right angle, by C 1.3.17.6 the angle /BAyA; is greater than the angle /BA;Ay. The result then
follows from the preceding corollary (C 1.3.18.5). O

Corollary 1.3.18.7. Suppose BE is a median of a triangle NABC. (That is, we have [AEC] and AE = EC, see
p. 151. ) If the angle ZC is greater than the angle /A then the angle ZCBE is greater than the angle /ABE . 319

Proof. (See Fig. 1.130.) Let BD be the bisector of the triangle AABC drawn from the vertex B to the side AC. By
C 1.3.18.3 we have CD < AD. This implies that [AED] and [EDC]. 32° Using L 1.2.21.6, L. 1.2.21.4, C 1.3.16.4,
we can write [AED] & [CDE] = ZABE < ZABD & ZCBD < ZCBE. Finally, by L 1.3.16.6 - L 1.3.16.8 we have
/ABE < /ABD & /ABD = /CBD & /CBD < /CBE = ZABE < Z/CBE, q.ed. O

316In other words, the finite sequence of points A;, where i € Ny, n > 2, has the property that every point of the sequence, except for
the first and the last, lies between the two points with adjacent (in N) numbers (see definition on p. 15.

317Observe that this condition is always true if the angle ZBAgA; is either right or obtuse.

318In other words, the finite sequence of points A;, where i € N,,, n > 2, has the property that every point of the sequence, except for
the first and the last, lies between the two points with adjacent (in N) numbers (see definition on p. 15.)

319Note again that instead of ZA < ZC we could directly require that BC' < AB (see beginning of proof).

320[ADC| & [AEC] "23° [ADE|V D = EV [EDC]. D # E, for CD < AD contradicts CD = AD in view of L 1.3.13.11. Also, ~[ADE],

for otherwise [ADE] & [AEC] “222% [DEC), [ADE]| & [DEC) ©'22%* AD < AE& CE < CD, AD < AE& AE = CE&CE < CD =

AD < CD, which contradicts CD < AD in view of L 1.3.13.10. Thus, we have the remaining case [AED]. Hence [AED] & [ADC] Ll2g2
[EDC).

138



A E D C

Figure 1.130: Given a median BE of a triangle AABC, iff the ZC > ZA then the angle ZCBE > ZABE .

B

A, A, A, A, A, A A

n-1 n

Figure 1.131: Let an interval AgA,, n > 2, be divided into n congruent intervals AgAi, A1 As ..., A,_1A,. Suppose
further that B is such a point that /B AgA; is greater than Z/BA; Ag. Then we have: LA, BA,,_1 < LA, 1BA, 2 <
...< LA3BAy < LA3BA, < LA{BA,.

Corollary 1.3.18.8. Let an interval AgA,, n > 2, be divided into n congruent intervals AgA1, A1As ..., An_14,
by the points Ay, As, ... A,_1. 321 Suppose further that B is such a point that the angle ZBAgA; is greater than the
angle /BA1Ag. Then the following inequalities hold: /A, BA,_1 < LA, _1BA, 2 < ...< /ZAsBAs < LA3BA; <
/A1BAy.

PT’OOf. (See Flg 1131) From C 1.3.18.4 we have Vi € anl LBA'L-JrlA'L-*l < ABAiflAiJrl. Together with AiflAi =
A; A4 (true by hypothesis), the preceding corollary (C 1.3.18.7) applied to every triangle AA;_1BA;11 for all
1 €N,_1q, gives Vi € N, ZAiBAH_l < 4Ai_1BAi, q.e.d. d

Corollary 1.3.18.9. Let an interval AgA,, n > 2, be divided into n congruent intervals AgA1, A1As ..., An_14,
by the points Ay, As, ... Ap_1. Suppose further that B is such a point that the angle ZBAyA;1 is a right angle. Then
the following inequalities hold: LA, BA,_1 < LAn_1BA, o< ... < LA3BAy < LA3BA; < LA1BAy.

Proof. Being a right angle, by C 1.3.17.6 the angle ZBAyA; is greater than the angle ZBA;Ay. The result then
follows from the preceding corollary (C 1.3.18.8). O

Corollary 1.3.18.10. Let F be the foot of the perpendicular drawn through a point A on the side k of an angle
Z(h,k) to the line h containing the other side h. If F € h then Z(h,k) is an acute angle. If F € h® then /(h, k) is
an obtuse angle. 322

Proof. Denote the vertex of Z(h,k) by O. Suppose first F' € h (see Fig. 1.132, a) ). Then A € k& F € h bl2g2
ZAOF = Z(h, k). From the condition of orthogonality ZAFO is a right angle. Since the triangle AAOF is required
by C 1.3.17.4 to have at least two acute angles (and ZAFO is a right angle), the angle Z(h, k) is acute. Now suppose
F € h¢ (see Fig. 1.132, a) ). Using the preceding arguments, we see immediately that Z(h¢ k) is acute. Hence
Z(h, k) = adjspZ(h¢, k) is obtuse, gq.e.d. O

The converse is also true.

3211n other words, the finite sequence of points A;, where i € N, n > 2, has the property that every point of the sequence, except for
the first and the last, lies between the two points with adjacent (in N) numbers, and all intervals A; A;11, where ¢ € Ny, are congruent.
(See p. 147. )

3220bviously, If F' = O, where O is the vertex of Z(h, k), then Z(h, k) is a right angle.
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a) b)
Figure 1.132: Let F' be the foot of the perpendicular drawn through a point A on the side k of an angle Z(h, k) to

the line i containing the other side h. If F' € h then Z(h, k) is an acute angle. If F' € h¢ then /(h, k) is an obtuse
angle.

h,

h,

Figure 1.133: Suppose rays ha, hs, hy have a common origin O and the rays ha, hy lie on opposite sides of the line
hs. Then the ray hs lies inside the angle Z(hs, hs), and the open interval (AC), where A € ho, C' € hy, meets the
ray hg in some point B.

Corollary 1.3.18.11. Let F' be the foot of the perpendicular drawn through a point A on the side k of an angle
Z(h,k) to the line h containing the other side h. If Z(h,k) is an acute angle, then F' € h. If Z(h,k) is an obtuse
angle then F € h°.

Proof. Suppose Z(h, k) is an acute angle. Then F' € h. Indeed, if we had F' € h€, the angle Z(h, k) would be obtuse
by the preceding corollary (C 1.3.18.10) - a contradiction; and if F' = O, where O is the vertex of Z(h, k), the angle
Z(h, k) would be right. Similarly, the fact that Z(h, k) is an obtuse angle implies F' € h¢. O

Corollary 1.3.18.12. Suppose rays ha, hs, hy have a common origin O, the angles Z(h2,h3), Z(hs, hs) are both
acute, and the rays ha, hy lie on opposite sides of the line hz. 3% Then the ray hs lies inside the angle Z(ha, hy),
and the open interval (AC), where A € hy, C € hy, meets the ray hg in some point B.

Proof. Using L 1.3.8.3, draw a ray h; so that Z(h1, hs3) is a right angle. Then the angle Z(hg, hs), where hs = h§ is,
obviously, also a right angle. Since the rays hi, hs lie on opposite sides of the line h3, we can assume without loss
of generality that the rays hi, ho lie on one side of the line hs (renaming hy — hs, hs — hy if necessary). Taking
into account that, by hypothesis, the rays ha, hy lie on opposite sides of the line hs, from L 1.2.18.4, L 1.2.18.5
we conclude that the rays hy, hs lie on one side of the line hs. Since the angles Z(ha, hs3), Z(hs, hs) are acute and
Z(hi,h3), Z(hs, hs) are right angles, using L. 1.3.16.17 we can write Z(hg, h3) < Z(ha,h3), Z(hs, hs) < Z(h3, hs).
Together with the facts that hy, hs lie on one side of the line hs and that hy, hs lie on one side of the line hs,
these inequalities give, respectively, the following inclusions: hy C IntZ(hy, h3), hy C IntZ(hs, hs). 32* Hence using
L 1.2.21.27 we can write 325 [h1h2h3] & [h1h3h5] = [h2h3h5]. [h2h3h5] & [h3h4h5] = [h2h3h4]. O

Corollary 1.3.18.13. Suppose adjacent angles Z(h,k), Z(k,l) are both acute. Then the rays k, | liec on the same
side of the line h. 326

3231n other words, we require that the angles Z(hz, h3), Z(hs, h4) are adjacent (see p. 38) and are both acute.

324 At this point it is instructive to note that the rays ha, h3, hy all lie on the same side of the line hy.

325Recall that [h;h;hy] is a shorthand for h; C IntZ(h;, hy).

326 And then, of course, k, h lie on the same side of the line I, but, due to symmetry this essentially adds nothing new.
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Figure 1.134: If a side AB and angles /A, ZC of a triangle AABC are congruent, respectively, to a side A’B’
and angles ZA', ZC' of a triangle AA’B’C’, the triangles AABC, AA'B'C’ are congruent. (SAA, or The Fourth
Triangle Congruence Theorem)

Proof. Take points H € h, L € l. By the preceding corollary (C 1.3.18.12) the ray k meets the open interval (HL)
in some point K. Since the points K, L lie on the same ray Hy, whose initial point H lies on h, they lie on one side
of h (see L 1.2.11.13, L. 1.2.19.8). Then by T 1.2.19 the rays k, [, containing these points, also lie on the same side
of h, q.e.d. O

SAA

Theorem 1.3.19 (Fourth Triangle Congruence Theorem (SAA)). If a side AB and angles LA, ZC of a triangle
AABC are congruent, respectively, to a side A’B’ and angles ZA', ZC" of a triangle ANA’B'C’, the triangles NABC,
ANA'B'C’" are congruent.

Proof. (See Fig. 1.134.) Suppose the contrary, i.e. AABC # AA’B'C’'. Then by T 1.3.5 /B # /B'. 3?7 Let

/B < /B. 38 /B < /B V2P JABC = AB'D' & [A'D'CY). [AD'C) MEE A, = Ale) = /BAD =
T1.3.5

/B'AC' = /A'. AB = A'B' & /A = /B'A'D' = /A' & /ABC = /A'B'D' "=%° AABC = AA'B'D’. But
/A'C'B' = /ACB& ZACB = /A'D'B' "2 JAC'B' = /A'D'B’, which contradicts T 1.3.17. O

Proposition 1.3.19.1. Consider two simple quadrilaterals, ABCD and A’B'C'D’" with AB = A'B’, BC = B'C’,
/ABC = L/A'B'C', /BAD = /B'A'D’, /BCD = /B'C'D’. Suppose further that if A, D lie on the same side of
the line apc then A’, D’ lie on the same side of the line ap.¢:, and if A, D lie on the opposite sides of the line agc

then A’, D' lie on the opposite sides of the line agrcr. Then the quadrilaterals are congruent, ABCD = A'B'C'D’.
329

Proof. Denote E = apc Naap. Evidently, E # A, E # D. 33° Observe that D € Ag. In fact, otherwise in view

of C 1.2.1.7 we would have 3F ([AFB] & [DFC]) contrary to simplicity of ABCD. Note also that D € Ag & D #

2 [ADE|V[AED]. Similarly, D’ € A’ g and, consequently, we have either [A’D’E’] or [A’ E'D']. Furthermore,

AB = AB'&BC = B'C'&/ABC = LA'B'C' =5 AABC = AA'B'C' = ZBAC = /B'A'C' & LACB =
LAC'B & AC = A'C.

According to T 1.2.2 we have either [EBC], or [BEC], or [BCE]. Suppose that [EBC]. Then —[ADE], for
otherwise 3F ([CFD] & [AFB]) by C 1.2.1.7. Turning to the quadrilateral A’B’C’D’ we find that here, too, we
always have D' € A’'g: and either [E'B'C'], or [B'E'C"], or [B'C'E’]. We are going to show that under our current
assumption that [EBC] we have [E'B’C’]. In fact, [B'E’C"] is inconsistent with [A’E’'D'], for E' € (B'C") N (A’D’)
contradicts simplicity. 33! Suppose that [B’C’E’]. Then using T 1.3.17 we can write /BCD = /ECD < /CEA =
/BEA < LABC = ZA'B'C' < angle A'C'E’' < LC'E'D' < ZB'C'D’, whence ZBCD < Z/B'C'D’ (see L 1.3.16.6 —
L 1.3.16.8), which contradicts ZBCD = ZB'C’'D’ (see L 1.3.16.11). Thus, we see that [E'B’'C’]. We can now write

/BAD = /B'A'D'& /BAC = /B'A'C' & Ap C IntZCAD& A'pr © Int/C'A'D' "2%° ,0AD = 20" A'D', 332

327 Ror otherwise AB = A'B' & /A= /A' & /B = /B "=%° AABC = AA'B/C.

328 Due to symmetry of the relations of congruence of intervals, angles, and, as a consequence, triangles (see T 1.3.1, T 1.3.11, C 1.3.11.2).

329 Perhaps this is not a very elegant result with a proof that is still less elegant, but we are going to use it to prove some fundamental
theorems. (See, for example, T 3.1.11.)

330Since ABCD is simple, no three vertices of this quadrilateral are collinear.

331We cannot have [A’D’E'], for this would mean that the points A’, D’ lie on the same side of the line agscs. But since A, D lie on
the opposite sides of agc, one of the conditions of our proposition dictates that A’, D’ lie on the opposite sides of ap/cr.

332We take into account that in view of L 1.2.21.6, L 1.2.21.4 we have B € (EC) = Ap C IntZCAD and similarly B’ € (E'C') =

A'gr C Int£LC'A’D’. We also take into account that [AED] L2115 Agp = Ap = LCAE = ZCAD. Similarly, we conclude that

LCO'A'E' = LC"A'D'.
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/ACB = /A'C'B'& /BCD = /B'C'D'&Cg C IntZACD & C'g € IntZA'C'D' "2%° ,ACD = /A'C'D', 333

AC = A'C'& LCAD = LO'A'D' & ZACD = ZA'C'D' ZAC'D' =5 AADC = AA'D'C' = AD = A'D' & CD =
C'D'& /ADC = Z/A'D'C".
Suppose now that [BEC]. Then, as we have seen, [ADE]. We are going to show that in this case we have [B'E’C’].

In order to do this, suppose that [B’C'E’]. (We have seen above that [E'B’C’] is incompatible with [A’E’D’]). Then

Ap C Int/BAC 233 /BAD < /BAC, A'cy ¢ Int/B'A'D' T2834 /B A’ < /B'A'D'. Hence /BAD <

/BAC& /BAC = /B'AC' & /B'A'C' < /B'A'D' = /BAD < /B’A’D’ (see L 1.3.16.6 — L 1.3.16.8), which
contradicts the assumption /BAD = ZB’A’D’ (see L 1.3.16.11). Thus, we see that [B’E’C’]. Using L 1.2.11.15,
L 1.2.21.6,L 1.2.21.4, together with [ADE], [BEC] it is easy to see that Ap C Int/BAC, Cp C IntZACB. Similarly,
A'pr C Int/B'A'C’', C'pr C Int/ZA'C'B’. We can now write Z/ZBAD = angleB’A’D' & /BAC = /B'A'C' & Ap C
Int/BAC& A'p: C Int/B'AC' 2%’ /CAD = /C'A'D', /BCD = /B'C'D'& /BCA = /B'C'A'&Cp C
Int/BCA&C'py C Int/B'C'A' " 2%° JACD = /A'C'D', AC = A/C' & /CAD = /C'A'D' & ZACD = /A'C'D' "25°
ANADC = NA'D'C'= AD=A'D'&CD=C'D'& /ADC = LA'D'C".

Finally, suppose that [BCE]. The arguments given above show that [B’C'E’]. Then we have ZBAC =

/B'A'C' & /BAD = /B'A'D' & Ac C Int/BAD& A'cy C Int/B'A'D' 2% /OAD = /C'A'D'. First, suppose
that [ADE], i.e. that the points A, D lie on the same side of apc. Then, according to our assumption, A’, D’ lie

on the same side of ap/cs, which means in this case that [A’D’E’]. We can write [BCE] = ZBCD = adjsp/ECD,

whence Cp C IntZACE “"22** ¢4 ¢ Int/BCD. Similarly, we have [B'C'E'] = /B'C'D' = adjsp/E'C'D/,

whence O pr C IntZ/A'C'E' " 2222 v\, « Int/B'C'D'. Hence /BCA= /B'C'A'& /BCD = /B'C'D' & Cp C

Int/BCD&C' s C Int/B'C'D' 2% /ACD = /A'C'D/, AC = /A'C'&/CAD = /C'A'D' & /ACD =
LAC'D T NACD = AA'C'D! = CD = C'D' & AD = A'D’ & angleCDA = /C'D' A’

At last, suppose that [AED], i.e. that the points A, D lie on opposite sides of the line agc. We have [BCE] =
ZACE = adjsp/ACB & /DCE = adjspDCB, [B'C'E'] = LA'C'E’ = adjspLA'C'B' & /D'C'E' = adjspD'C'B’.
Hence in view of T 1.3.6 we can write ZACB = LZA'C'B' = /ACE = L/AC'E', /ZDCB = /D'C'B' = /DCE =

ZD'C'E’. But from L 1.2.21.6, L 1.2.21.4 we have [AED] = Cg C IntZACD, [A'E'D'] = C'g C IntLA'C'D’.

Finally, we can write ZACE = /A'C'E'& /DCE = /D'C'E'&Cy C Int/ACD& C'p C Int/A'C'D! 27

/ACD = /AC'D' and AC = A/C' & /CAD = /C'A'D' & /CDA = /C'D' A’ 255 A\CAD = AC"A'D’, whence
the result. O

Proposition 1.3.19.2. Consider two simple quadrilaterals, ABCD and A’B'C'D’" with AB = A'B’, BC = B'C’,
/ABC = LA'B'C', /ZBAD = /B'A'D’, ZACD = LA'C'D’. Suppose further that if C, D lie on the same side of
the line aap then C', D’ lie on the same side of the line aa g, and if C, D lie on the opposite sides of the line aap
then C', D’ lie on the opposite sides of the line aa g:. Then the quadrilaterals are congruent, ABCD = A'B'C'D’.

Proof. Asin the preceding proposition, we can immediately write AB = A’B' & BC = B'C' & /ABC = Z/A’B'C’ S
ANABC = NA'B'C' = /BAC = LB'AC' & LACB = LA'C'B' & AC = A’C’'. We start with the case where the
points C, D lie on the same side of the line asg. Then, by hypothesis, C’, D’ lie on the same side of the line
ay pr. First, suppose that also the points B, D lie on the same side of the line ayc. This implies B'D’a/cr.
In fact, since, as shown above, the points C’, D’ lie on the same side of a4 g/, from L 1.2.21.21 we have either
Alcr € IntZB'A'D’ or A'p: C Int/ZB'A'D’. 33% But the first of these options in view of C ?? would imply
/BAC < /BAD = /B'A'D’ < /B’A’C’, whence by L 1.3.16.6 - L 1.3.16.8 we have ZBAC < /B’'A’C’, which
contradicts ZBAC = Z/B’A’C’ in view of L 1.3.16.8. Thus, we conclude that in this case B'D’a¢.

We can write /BAC = /B'A'C' & /BAD = /B'A'D' & CDaap & C'D'ayp =%" /CAD = /C'A'D'. AC =
A'C'& /CAD = /C'A'D' & ZADC = LA'D'C" "2 AADC = AA'D'C' = AD = A'D' & CD = C'D’ & ZACD =
LA'C'D. LACB = /AC'B' & /ACD = /A'C'D' & BDaac & B'D'aye =%° /BCD = /B'C'D'.

Now suppose that the points B, D lie on the opposite sides of the line a4c. 33° The points B’, D’ then evidently
lie on the opposite sides of the line a4.cr. 335 Using the same arguments as above, 237 we see that AD = A'D/,
CD=C'D', /BCD = /B'C'D’, as required.

We now turn to the situations where the points C, D lie on the opposite sides of the line ag4p. Then, by hy-
pothesis, the points C, D lie on the opposite sides of the line a5, and we can write /ZBAD = /B’A'D’ & /BAC =

333 Again, we take into account that [EBC] L1.200.15 Cg =Cp and E € (AD) = Cg C IntZACD in view of L 1.2.21.6, L 1.2.21.4.

Similarly, we conclude that C' g/ = C'g/ and E' € (A'D’) = C' g/ C IntLA'C'D’.

3340f course, the rays A’cs, A’ p/ cannot coincide due to simplicity of the quadrilateral A’B/C’D’.

335But the points C, D are still assumed to lie on the opposite sides of the line a4 3!

3361f B’, D' were on the same side of the line ay/cr, the points B, D would lie on the same side of the line a4¢. This can shown be
using essentially the same arguments as those used above to show that BDa ¢ implies B’ D’a 4. ( Observe that the quadrilaterals
ABCD, A'B'C'D’ enter the conditions of the theorem symmetrically.)

33TWe can write ZBAC = /B'A'C' & /BAD = /B'A'D' & CDaap & C'D'ang =% L/OAD = LC'A'D'. AC = A'C' & LCAD
LC'A'D' & ZADC = £A'D'C! TESY AADC = AA'D'C’ = AD = A'D'&CD = C'D'& ZACD = LA'C'D'. /ACB

ZA'C'B' & LACD = LA'C'D' & BaacD & Blayon D' "2%° /BOD = /B'C'D'.
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/B'AC' & CaapD& Clayp D' '=%° /OAD = /O'A'D', AC = A'C' & /CAD = /C'A'D' & /ADC = LA'D'¢" "2%°
NACD = NA'C'D' = AD=A'D'&CD=C'D'& L/ACD = Z/A'C'D'.

Again, we start proving the rest of the congruences by assuming that the points B, D lie on the same side of the
line axc. We are going to show that in this case the points B’, D’ lie on the same side of the line a4.¢:. Suppose
the contrary, i.e. that B'aa/cD’. Choosing a point E’ such that [C'A'E’] (see A 1.2.2), it is easy to see that
the ray A’g lies inside the angle /B’ A’D’ 33 which, in turn, implies that /B'A'E’ < /B'A’D’ (see C 1.3.16.4).
Note that BDaac 122121 Ap C IntZCABV A C IntZCAD. But Ap C IntZCAB in view of definition of

interior would imply that the points C', D lie on the same side of the line ap contrary to our assumption. Thus,

we see that Ag C Int/CAD. By L 1.2.21.10 3E(E € A N (CD)). We have E € Ag “'22* [AEB|V E =

BV [ABE]. But [ABE] and E = B contradict simplicity of the quadrilateral ABCD. Thus, we conclude that
[ABE]. Hence using T 1.3.17 (see also L 1.2.11.15) we can write ZBAD = /DAFE < ZAEC = /BEC < LABC,
whence ZBAD < ZABC (see L 1.3.16.6 — L 1.3.16.8). On the other hand, we have ZA'B'C' < ZB'A'E’. Taking
into account /B’A'E’ < /B'A’D’ and using L 1.3.16.8, we find that ZA'B'C' < /B’A’D’. Now we can write
/BAD < /ABC = LA'B'C' < 4/B'A'D' = /BAD < /B'A'D’ (see L. 1.3.16.6 — L 1.3.16.8), which (in view
of L 1.3.16.11) contradicts ZBAD = ZB’A'D’ (the latter is true by hypothesis). This contradiction refutes our
assumption that the points B’, D’ lie on the opposite sides of the line a4/¢: given that the points B, D lie on
the same side of aac. Thus, since we assume BDasc, we also have B’D’aacr. Now we can write ZACB =
LA'C'B'& /ACD = /A'C'D' & BDaac & B'D'axcr =% /BCD = /B'C'D.

Finally, observing that BascD implies that B'aac:D’, 33° we can write LZACB = LA'C'B'& LACD =
LAC'D & arcD& Baye: D' =5’ /BCOD = /B'C'D'. O

Proposition 1.3.19.3. Consider two simple quadrilaterals, ABCD and A’B'C'D’" with AB = A'B’, BC = B'C’,
CD = (C'D', ZABC = A'B'C', Z/ZBCD = /B'C'D’. 3% Suppose further that if A, D lie on the same side of the
line agpc then A’, D' lie on the same side of the line ap:c/, and if A, D lie on the opposite sides of the line agc

338We have C'a gD’ & Clay g E D'Elajyp, D'Elay g W22 A'p, ¢ Int/B'A'E' v A'p, C Int/B'A'E'. But

A'pr C Int£B’A’E’ in view of the definition of interior of the angle ZB’A’E’ would imply that the points B’, D’ lie on the same side
of the line a 4/¢r, contrary to our assumption.

339Evidently, B’ D’a 4/¢ would imply BDaac. This is easily seen using arguments completely symmetrical (with respect to priming)
to those employed to show that BDa ¢ implies B'D’'a /.

340 A ctually, we need to assume simplicity only for ABC'D. The simplicity of A’ B’C’ D’ can then be established using the other conditions

of the proposition in the following less than elegant proof. Observe that AB = A’B’ & BC = B'C' & ZABC = LA’B'C’ &4 AaBO =
g g

AA'B'C' = ZABC = Z/A'B'C' & ZACB = ZA'C'B' & AC = A'C’, BC = B'C' &CD = C'D' & /BCD = /B'C'D' "22* ABCD =
AB'C'D' = BD=B'D'& /CBD = /C'B'D’' & Z/CDB = £C'D’B’. Since either both A, D lie on the same side of apc and A’, D’ lie
on the same side of ag/cs or both A, D lie on the opposite side of apc and A’, D’ lie on the opposite sides of ap: o, taking into account
the congruences ZABC = Z/A'B'C', /DBC = D'B'C', ZACB = A'C'B’, Z/ZDCB = /D'C’'B’, assuming that both A, B, D as well as
A, D, C are not collinear (and, as we will see below, this is indeed the case given the conditions of the proposition) using T 1.3.9 we find
that ZABD = ZLA'B'D', ZACD = LA'C'D’, whence AB = A'B' & BD = B'D' & ZABD = /A'B'D' "23* AABD = AA'B'D' =
AD = A'D' & /BAD = /B'A'D' & /BDA = /B'D'A’', AC = A/C' & CD = C'D' & ZACD = /A'C'D' "23* AACD = pA'C'D =
LOAD = LC'"A'D' & ZCDA = ZC'D'A’. Consider first the case where the points A, D lie on the opposite sides of the line agc and,
consequently, the points A’, D’ lie on the opposite sides of the line ap/c/. Given the assumptions implicit in the conditions of the
theorem, we just need to establish that the open intervals (AD), (BC) do not meet and that the points A’, B/, D’, as well as the points
B', C’, D', are not collinear, for the only ways that the quadrilateral A’B’C’D’ can be not simple are if (AD)N(BC) # 0, or B’ € a,/pr,
or C' € ayrpr. (Since the (non-straight) angles ZA’B/C’, ZB'C’'D’ are assumed to exist, the points A’, B’, C’ are not collinear, as are
points B’, C’, D’. Therefore, (A’B’)N(B'C’) = 0 and (B’C’')N(C'D’) = 0, as is easy to see using L 1.2.1.3. Furthermore, since points A’,
D’ lie on the opposite sides of ag/ ¢, the open intervals (A’B’), (C'D’) lie on the opposite sides of the line ag/ ¢/ (see T 1.2.20) and thus
also have no common points.) Denote £ = (AD)Napc, B’ = (A’D’')Napg/cr. Evidently, E # B, E # C, and =[BEC] due to simplicity
of the quadrilateral ABCD. Hence by T 1.2.2 we have either [EBC| or [BCE]. We are going to show that E’ # B’ and E’ # C’, which
will imply that A’, B’, D', as well as B’, C’, D', are not collinear for the case in question. To do this, suppose the contrary, i.e. that, say,
E’' = B’. Then ZC’'B’D’ is adjacent supplementary to ZA’B’C’, and in view of ZABC = ZA'B'C’, ZOCBD = Z/C’'B’D’ using C 1.3.6.1
(recall that the points A, D lie on the opposite sides of the line ag¢), we conclude that the angle ZCBD is adjacent supplementary to
the angle ZABC, which, in turn, implies that the points A, B, D are collinear, contrary to the simplicity of the quadrilateral ABCD.
Similarly, assuming that £/ = C’ (which obviously makes the angles ZA'C'B’, ZD’'C’B’ adjacent supplementary), taking into account
that Aage D, LACB = LA'C'B’', ZDCB = ZD'C’'B’, and using C 1.3.6.1 we would find that the angles ZACB, ZDCB are adjacent
supplementary in contradiction with the simplicity of ABCD. (Once we know that E’ # B’, we can immediately conclude that E’ # C’
because the conditions of the proposition are invariant with respect to the simultaneous substitutions A < D, B « C, A’ < D', B’ < C".)
To show that —[B’E’C’], suppose the contrary. If [EBC| then using L 1.2.11.15, L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way, we
can write ZBAC < LEAC = LCAD = £C'A'D’ = LC'"A'E’ < B’ A’C’, whence (see L 1.3.16.6 — L 1.3.16.8 ) ZBAC < £B'A'C’,
which in view of L 1.3.16.11 contradicts the congruence ZBAC = £ZB’A’C’ established earlier. If [BCE] then (using again L 1.2.11.15,
L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way) we can write ZCDB < /BDE = /BDA = /B'D’'A’ = /B'D'E’ < £C'D’'B’, whence
(see L 1.3.16.6 — L 1.3.16.8 ) ZCDB < ZC'D’B’, which in view of L 1.3.16.11 contradicts the congruence ZCDB = ZC'D’B’ established
earlier. (Again, once the case where [EBC] has been considered, the contradiction for the case where [BCE] can be immediately
obtained from symmetry considerations; namely, from the fact that the conditions of the theorem are left unchanged by the simultaneous
substitutions A < D, B < C, A’ < D', B’ « C’. ) We now turn to the case where the points A, D lie on the same side of the line
apc and, consequently, the points A’, D’ lie on the same side of the line ag/cs. Obviously, the only way the quadrilateral A’ B’C’'D’
could be not simple given the conditions of the theorem is if the half-closed intervals (B’A’], (C’'D’] have a common point, say, E’. But
then it is easy to show using C 1.3.6.2 that the half-closed intervals (BA], (CD] have a common point, say, E, which contradicts the
assumed simplicity of ABC'D. (In fact, since E' = (B’A'] N (C'D’'] and (B’A’] C B’ 4/, (C'D'] C C'ps (see L 1.2.11.1, L 1.2.11.13), we
have E' = B’ ,» N C' p,. Taking into account LZABC = ZA'B'C’, ZBCD = ZB’C’D’ and using C 1.3.6.2, we see that the rays B4, Cp
meet in some point E such that AAEC = AA’E’C’, which implies that AE = A’E’, CE = C'E’. Then from L 1.3.13.3, T 1.3.2 we find
that the point E lies on the half-closed intervals (BA], (C'D] in contradiction with the assumed simplicity of ABCD.

, L1.2.18.4
=
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then A', D' lie on the opposite sides of the line ag/c,. Then the quadrilaterals are congruent, ABCD = A'B'C'D’.

Proof. As in the preceding two propositions, we can immediately write AB = A'B’& BC = B'C' & ZABC =
ZABC LAY NABC = AA'B'CY = /BAC = /BAC' & ZACB = /AC'B' & AC = A'C’. We start with
the case where the points A, D lie on the same side of the line agc. Then, by hypothesis, A’, D’ lie on the
same side of the line agc/. Using T 1.3.9 we find that LZACD = ZA'C'D’, whence AC = A'C'&CD =

C'D' & /ACD = LA'C'D "23% AD = A'D'& /CDA = C'D'A’. From L 1.2.21.21 we have either Cy C

Int/BCD or Cp C IntZBCA. If Cy C IntZBCD then by P 1.3.9.5 also C'4» C IntZB'C'D’, and we can

write /BAC' = /B'A'C' & /DAC = /D' A'C' & BDaac & B'D'aycr =%° /BAD = /B'A'D'. Suppose Cp C

IntZBCA. Then 3E(E € Cp N (BA)). Hence (see also L 1.2.19.8 ) we can write ZCAD = LC'"A'D' & LCAE =

LAE& EDajc & E'D'aqrcr LAY pAE = /D'A'E’, whence /ZDAB = /D'A’'B’ (we also take into account that
LCAE = /CAB, /DAB = /DAE, /C'A'E' = /C'A'B', /D'A'B' = /D' A'E' in view of L 1.2.11.15).

Consider now the case where AagcD. Then, by hypothesis, also A’ag:c'D’. We can write ZACB = L/A'C'B’' & /DCB =

/D'C'B' & AapcD & AlapeD' =% JACD = ZA'C'D', AC = A'C'&CD = C'D'& ZACD = LA'C'D’ "2&*

ACDA=NANC'D'A’ = AD = A'D'& /CDA= /C'D'A’.

Denote E = (AD) Nagpc, 3 E' = (A'D’) Naprer. In view of T 1.2.2 we have either [EBC| or [BCE] and,
similarly, either [E'B'C’] or [B'C'E’]. (Evidently, due to simplicity of ABC'D, we can immediately discard from our
consideration the cases F = B, [BEC|, E=C, E' = B, [B'E'C’], E' = C’.0 We are going to show that if [EBC]
then also [E'B’C'’]. To establish this suppose the contrary, i.e. that both [EBC] and [B’C'E’]. Then, using T 1.3.17
we would have /BCD = /ZECD < LAEC = ZAEB < L/ABC = LA'B'C' = ZAB'E' < /B'E'D' = ZC'"E'D' <
LB'C'D' (see also L 1.2.11.15), whence ZBCD < /ZB'C'D’ (see L 1.3.16.6 — L 1.3.16.8), which contradicts
ZBCD = £ZB'C'D’ in view of L 1.3.16.11. Thus, we see that [BEC] implies [B’E’C’]. Similar arguments show that
[BCE] implies [B'C"E']. 3*2 Consider first the case where [EBC], [E'B’'C’]. Then we can write [EBC| = AgApaac,

[E'B'C') = A'p A prajicr, ZCAB = /C'A'B' & /CAD = /C'A'D' & ApApaac & A'p A paye =5 /BAD =

ZBIA/DI. Finally, suppose [BCE], [BIC/EI]. Then ZCAB = ZC/A/B/ & LCAD = ZC/A/D/ &ABCLAcAD & A/B/CLA/C/A/D/

/BAD = /B'A'D'".

Theorem 1.3.20. Suppose a point B does not lie on a line aac and D is the foot of the perpendicular drawn to
aac through B. Then:

— The angle ZBAC is obtuse if and only if the point A lies between D, C.

— The angle ZBAC is acute if and only if the point D lies on the ray Ac. 3*3

— The point D lies between the points A, C iff the angles /BCA, Z/BAC are both acute.

Proof. Suppose [ADC] (see Fig. 1.135, a)). Then [ADC] M2US 4 = Ag = /BAD = /BAC. On the other

hand, ZBDC is a right angle, and by T 1.3.17 ZBAD < /BDC, which, in its turn, means that ZBAC is an acute
angle. Since [ADC] = [CDA], we immediately conclude that the angle ZBCA is also acute.

Suppose [DAC] (see Fig. 1.135, b)). Then, again by T 1.3.17, ZBDA < Z/BAC. Since ZBDA is a right angle,
344 the angle BAC is bound to be obtuse in this case.

Suppose Z/BAC is acute.3*® Then D # A and —=[DAC] - otherwise the angle Z BAC would be, respectively, either
right or obtuse. But D € aac & D # A& —[DAC] = D € Ac.

Substituting A for C and C for A in the newly obtained result, we can conclude at once that if the angle ZBC A
is acute, this implies that D € C4.

Therefore, when ZBAC and ZBC A are both acute, we can write D € Ac NCx = (AC) (see L 1.2.15.1).

Finally, if ZBAC is obtuse, then D ¢ Ac (otherwise ZBAC would be acute), D € aac, and D # A. Therefore,
[DAC]. O

Relations Between Intervals Divided into Congruent Parts
Lemma 1.3.21.1. Suppose points B and B’ lie between points A,C' and A’, C', respectively. Then AB = A'B’ and
BC < B'C’ imply AC < A'C".

Proof. (See Fig. 1.136.) BC < B'C' “'2%® 3¢ [B'Cc"C'|& BC = B'C". [A'B'C'| & [B'C"C'] “22% (A'B/C")

& [A'C"C"). [ABC| & [A'B'C") & AB = A'B' & BC = B'C" 4% AC = A'C’. Since also [A'C"C"], by L 1.3.13.3
we conclude that AC < A’C’. O

Lemma 1.3.21.2. Suppose points B and B’ lie between points A, C and A’, C', respectively. Then AB = A’B’ and
AC < A'C’ imply BC < B'C".

3410Qbviously, E exists by definition of ”points A, D lie on the opposite sides of apc”

342Observe that the quadrilaterals ABC'D, A’B'C'D’ enter the conditions of the theorem symmetrically.
343 And, of course, the angle BAC is right iff D = A.

344Recall that, by hypothesis, agp L apa = aac.

345The reader can refer to any of the figures Fig. 1.135, a), c), d) for this case.

144

T



A D C D A C
a) b)
B B
A D=C A C D
C) d)

Figure 1.135: Illustration for proof of L 1.3.20.

>II
wll
On

[&, B’ 6” C=7

Figure 1.136: Suppose points B and B’ lie between points A,C' and A’,C’, respectively. Then AB = A’B’ and
BC < B'C’ imply AC < A'C".
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A’ ;’9 B, 6” C’

Figure 1.137: Suppose points B and B’ lie between points A,C' and A’,C’, respectively. Then AB < A’B’ and
BC < B'C’ imply AC < A'C".

Proof. By L 1.3.13.14 we have either BC = B'C’, or B'C’ < BC, or BC < B’C’. Suppose BC = B’'C’. Then

[ABC| & [A'B'C"| & AB = A'B' & BC = B'C" "4 AC = A'C’, which contradicts AC' < A'C” in view of L 1.3.13.11.
Suppose B'C' < BC. In this case [ABC|& [A'B'C"|& A'B' = AB& B'C' < BC "'23"' 4'¢’ = AC, which

contradicts AC < A’C’ in view of L 1.3.13.10. Thus, we have BC < B’C’ as the only remaining possibility. O

Lemma 1.3.21.3. Suppose points B and B’ lie between points A,C and A’,C’, respectively. Then AB < A'B’ and
BC < B'C’ imply AC < A'C".
Proof. (See Fig. 1.137.) AB < A'B'& BC < B'C' "'25% 347 [B'A"A')& BA = B'A" & 3C" [B'C"C') & BC =
B'C". [A'B'C'| & [A'A"B'| & [B'C"C') 227 [A/B/C"] & [A'CC") & [A'A"C| & [A"B'C"). [A"B'C") & [B'C"C") ML2E?
[A"B'C"]. [ABC|& [A"B'C"| & AB = A"B'& BC = B'C"” AL&S Jo = Ao, Finally, [A’A"C"| & [A'C"C") & AC =
A MERS qo < A0 O

In the following L. 1.3.21.4 - 1. 1.3.21.7 we assume that finite sequences of n points A1, Az, ..., A, and By, Ba, ..., By,
where n > 3, have the property that every point of the sequence, except the first (A;, By) and the last (A,, B,
respectively), lies between the two points of the sequence with the numbers adjacent (in N) to the number of the
given point. Suppose, further, that Vi € N,,_o A;A; 11 = Ajy1Ai492, BiBiy1 = Biy1Biy0. 3%

Lemma 1.3.21.4. ]f Vi e N, AiAi+1 § BiBi-i-l and Jig € N,,_1 AioAio-i-l < BioBio-i—l; then A1A, < B1B,.

Proof. Choose ig = min{i|4;4;4+1 < B;Bi11}. For ig € N,,_5 we have by induction assumption A;4,_1 <
L1.3.21.1

B1B,,_1. Then we can write either A1A,,_1 < Bi1B,_1& A,_1A4, = B,,_1B, = A1A, < B1B, or A1A,_1 <
BiBy_1 & Ap_1An < Bn_1Bn W22 A1 A, < BiB,. Forig = n— 1 we have by P 1.3.1.5 A Ap_1 = BiBn_1.

Then AlAn,1 = B1B,_1 &AnflAn < B,_1B, ngLl AlAn < B1B,. O

Corollary 1.3.21.5. ]fV’L eN,_1 AiArL'Jrl é BiBrL'Jrl, then A1 A, § B1B,.
Proof. ITmmediately follows from P 1.3.1.5, L, 1.3.21.4. O
Lemma 1.3.21.6. The inequality A1 A, < B1B,, implies that Vi,j € N1 AjAi1 < BjBji1.

Proof. Tt suffices to show that A1 As < B1Bs, because then by L 1.3.13.6, L. 1.3.13.7 we have A1 A < B1By & A1 As =
AiArL'Jrl & B1By = BijJrl = AiAiJrl < BijJrl for all 1,] € N,_1. SuppOSG the contrary, i.e. that By By é A1 As.
Then by T 131, L 13136, L 1.3.13.7 we have B1B2 § AlAQ&BlBQ = B»L'BiJrl &AlAQ = A»L'AiJrl = BiBrL'Jrl §
A; A for alli € N, 1, whence by C 1.3.21.5 B1B,, £ A; A,,, which contradicts the hypothesis in view of L 1.3.13.10,
C 1.3.13.12. O

Lemma 1.3.21.7. The congruence A1 A,, = B1B,, implies that Vi,j € N,,_1, A; A1, = BjBjik, where k € N;,_;.
347

Proof. Again, it suffices to show that A1 Ay = B Bs, for then we have A1 Ay = B1Ba & A1 Ay = A;jAi11& B1By =

B;Bj1 LAl AjAi11 = BjBj4q for all 4,5 € N,,_1, whence the result follows in an obvious way from P 1.3.1.5

and T 1.3.1. Suppose A1A2 < B1Bs. 348 Then by L 13136, L 1.3.13.7 we have A1A2 < BlBQ&AlAQ =
AiAH_l&BlBQ = BiBi-i-l = AiAi+1 < BiBi-i-l for all i € N,,_1, whence A1A, < B1B, by L 1.3.21.4, which
contradicts A1A4,, = B1B,, in view of L 1.3.13.11. O

346 Observe that these conditions imply, and this will be used in the ensuing proofs, that [A1An—1Ay], [BiBn—1Bn] by L 1.2.7.3, and
for all i,j S anl we have AiAi+1 = AjAj+1, BiBi+1 = Bij+1 by T 1.3.1.

34TObserve that the argument used to prove the present lemma, together with P 1.3.1.5, allows us to formulate the following facts:
Given an interval AB consisting of k congruent intervals, each of which (or, equivalently, congruent to one which) results from division of
an interval C'D into n congruent intervals, and given an interval A’ B’ consisting of k congruent intervals (congruent to those) resulting
from division of an interval C/D’ into n congruent intervals, if CD = C'D’ then AB = A’B’. Given an interval AB consisting of kj
congruent intervals, each of which (or, equivalently, congruent to one which) results from division of an interval C'D into n congruent
intervals, and given an interval A’B’ consisting of k2 congruent intervals (congruent to those) resulting from division of an interval C’D’
into n congruent intervals, if CD = C'D’ | AB = A’B’, then k1 = ks.

348Dye to symmetry and T 1.3.1, we do not really need to consider the case B1Bs < AjAs.
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If a finite sequence of points A;, where i € N,,, n > 3, has the property that every point of the sequence,
except for the first and the last, lies between the two points with adjacent (in N) numbers, and, furthermore,
A1Ay = AyAs = ... = A,_14,, 3* we say that the interval A; A, is divided into n — 1 congruent intervals
A1A2, AQAg, ey AnflAn (by the pOiIltS AQ, Ag, RPN Anfl).

If an interval Ay A, is divided into intervals A;A;41, ¢ € N,,_1, all congruent to an interval AB (and, consequently,
to each other), we can also say, with some abuse of language, that the interval A; A4, consists of n — 1 intervals AB
(or, to be more precise, of n — 1 instances of the interval AB).

If an interval AgA,, is divided into n intervals A;_1 A;, @ € N,,, all congruent to an interval CD (and, consequently,
to each other), we shall say, using a different kind of folklore, that the interval C'D is laid off n times from the point A

on the ray Agp, reaching the point A,,, where P is some point such that the ray Agp contains the points Ay, ..., A,.
350

Lemma 1.3.21.8. If intervals A1 Ay and B1B,, consist, respectively, of k — 1 and n — 1 intervals AB, where k < n,
then the interval A1 Ay is shorter than the interval B1 B

Proof. We have, by hypothesis (and T 1.3.1) AB = A1As = AsA3 = ... = Ay_1Ax = B1By = ByB3 = =
B,,_1B,, where [AiAi+1Ai+2] for all 1 € Ni_» and [BiBi+lBi+2] foralli € N _9. Hence by P1.3.15 A4, = BlBk,
and by L 1.2.7.3 [B; B By]. By L 1.3.13.3 this means A; Ay < B1B,,. O

Lemma 1.3.21.9. If an interval EF consists of k — 1 intervals AB, and, at the same time, of n — 1 intervals CD,
where k > n, the interval AB is shorter than the interval CD.

Proof. We have, by hypothesis, FF = A1 Ay = B1B,,, where AB = A1 Ay = AsAs = ... = Ap_1A;, CD = B1 By =
BsBs =...= B,_1B,, and, of course, Vi € Ng_o [AiA»L'+1AfL'+2] and Vi € N,,_o [B»L'Bi+1BfL'+2]. Suppose AB = CD.
Then the preceding lemma (L 1.3.21.8) would give A1 Ax > BiB,, which contradicts A1Ar = B1B, in view of
L 1.3.13.11. On the other hand, the assumption AB > C'D would again give A1 Ay, > B1B,, by C 1.3.21.5, L 1.3.21.8.
Thus, we conclude that AB < CD. O

Corollary 1.3.21.10. If an interval AB is shorter than the interval CD and is divided into a larger number of
congruent intervals than is AB, then (any of) the intervals resulting from this division of AB are shorter than (any
of ) those resulting from the division of CD.

Proof. O

Lemma 1.3.21.11. Any interval CD can be laid off from an arbitrary point Ag on any ray Agp any number n > 1
of times.

Proof. By induction on n. Start with n =2. By A 1.3.1 3A; A; € Agp & CD = ApA;. Using A 1.3.1 again, choose

Ay such that Ay € (A14,)°& CD = A1 As. Since Ay € (A14,)° L1215 [Ag A1 As], we obtain the required result.
Observe now that if the conditions of the theorem are true for n > 2, they are also true for n — 1. Assuming the
result for n — 1 so that CD = AgA; = -+ = A1 A, and [4;_14;A4;41] for all i € N,,_1, choose A,, such that

A, € (An_lAniz)c&CD = A, _1A,. Then A, € (14,1_1147%2)c L1.2.45.2 [An—2An_1A4,], so we have everything that is
required. O

Let an interval AgA, be divided into n intervals AgA;, AjAs ..., A,—14, (by the points Ay, As,...A,_1) and
an interval Ay A/, be divided into n intervals AjA%, Aj A5 ..., Al,_1 Al insuch a way that Vi e N,, 4,_1A4; = A, | AL
Also, let a point B’ lie on the ray Ap,, , where Aj is one of the points Aj, i € N,,; and, finally, let AB = A'B’.

i0
Then:

Lemma 1.3.21.12. - If B lies on the open interval (Ax—1Ak), where k € N,,, then the point B’ lies on the open
interval (A}, A}).

Proof. For k =1 we obtain the result immediately from L 1.3.9.1, so we can assume without loss of generality that
k> 1. Since A} , B" (by hypothesis) and A] , Aj_,, A} (see L 1.2.11.18) lie on one side of A, so do A;_,, A, B’

Since also (by L 1.2.7.3 [AgAg_1 Ag], [AhA}_ | AL], we have [AgA_1 Ay] & [Ar_1BAy]) "2232 [Ag A1 B] & [AgBAy].
Taking into account that (by hypothesis) AgB = A{B’ and (by L 1.3.21.7) AgAy_1 = Ao =4, ,, AAr=A)= A,
we obtain by L 1.3.9.1 [Aj A} _, B'], [A)B’A}], whence by L 1.2.3.1 [4},_, B"A}], as required. O

Lemma 1.3.21.13. - If B coincides with the point Ay,, where ko € Ny, then B’ coincides with Aj, .
Proof. Follows immediately from L 1.3.21.7, A 1.3.1. O

Corollary 1.3.21.14. — If B lies on the half-open interval [Ap—1Ax), where k € N,,, then the point B’ lies on the
half-open interval [A},_, A}).

3497n other words, all intervals A;Aiy1, where i € Ny, _1, are congruent
350 For instance, it is obvious from L 1.2.7.3, L 1.2.11.15 that P can be any of the points A1, ..., An.
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Proof. Follows immediately from the two preceding lemmas, L 1.3.21.12 and L 1.3.21.13. O

Theorem 1.3.21. Given an interval A1 A, 1, divided into n congruent intervals Ay As, AgAs, ..., ApAns1, if the

first of these intervals AiAs is further subdivided into mq congruent intervals A1 1412, 412413, A1.m; A1l mi+1,
where ¥i € Ny, 1 [A1,:41,i4141,i42], and we denote A11 = Ay and A1m,41 = As; the second interval AsAs is
subdivided into mq congruent intervals As1As 2, As2As s, ..., Asmy Ao myt1, where Vi € Ny, 1 [A2iAs i4142,i12],

and we denote Az = Az and Ag ;41 = As; dots; the nt" interval A,An1 - into m, congruent intervals
An,lAn,27An,2An,37---aAn,mnAn,anrl; where Vi S Nmn,1 [An7iAn1i+1An7i+2], and we denote Al.,l - A1 and
Al mi+1 = Apgy1. Then the interval A1Anyq is divided into the mi + mo + --- + my, congruent intervals
Ar11A12, A1 2A1 3, AL A1, A1 A2 20, Ao 0 Ao s, o Ad iy As g t1s oo AniAne, AnpAn s, Anmy Anm +1-

In particular, if an interval is divided into m congruent intervals, each of which is further subdivided into m
congruent intervals, the starting interval turns out to be divided into mn congruent intervals.

PT’OOf. Using L 1273, we have for anyj S Nn,y [Aj,lAj,mj Aj,ijrl]; [Aj+171Aj+172Aj+17mj+1+1]. Since, by defini-
. . L1.2.3.2
thIl7 Aj71 = Aj, Aj,mj—i-l = Aj+1)1 = Aj+1 and Aj+1,mj+1+1 = Aj+2, we can write [AjAj)mj Aj+1] & [AjAj+1Aj+2] —

L1.2.3.2 . .
[Ajm; Ajr1A o] and [Aj ., Aji1Aj o] & [Aj1 A1 2A4549] [Ajm; Aj+1 4 412]. Since this is proven for all
j € N,,_1, we have all the required betweenness relations. The rest is obvious. 3°! O

Midpoints

A point M which divides an interval AB into congruent intervals AM, M B is called a midpoint of AB. If M is a
midpoint of AB, 352 we write this as M = mid AB.
We are going to show that every interval has a unique midpoint.

Lemma 1.3.22.1. If ZCAB = ZABD, and the points C, D lie on opposite sides of the line aap, then the open
intervals (CD), (AB) concur in some point E.

Proof. 353 CaspD = 3E (E € aap) & [CED] (see Fig. 1.138, a)). We have E # A, because otherwise [CAD] & B ¢
L1.3.17.4

asp =" ZCAB > /ABD, 3%* which contradicts ZCAB = ZABD in view of C 1.3.16.12. Similarly, E # B,
for otherwise (see Fig. 1.138, b)) [CBD|& A ¢ apc ~'23"! /BAC < ZABD - a contradiction. > Therefore, E €

aap& E # A& E # B '=%° [AEB| Vv [EAB] V [ABE). But —=|[EAB], because otherwise, using T 1.3.18, L 1.2.11.15,

we would have [EAB|&C ¢ aap & [CED|& B ¢ agp = £ZBAC > LAEC = /BEC > ZEBD = ZABD - a
contradiction. Similarly, =[ABE], for otherwise (see Fig. 1.138, ¢) ) [ABE]|& D ¢ app&[CED|& A ¢ apc =
/ABD > /BED = /AED > /EAC = /BAC. 3% Thus, we see that [AEB], which completes the proof. 37 O

Making use of A 1.3.4, A 1.3.1, choose points C, D so that ZCAB = ZABD and Then A point E which divides
an interval AB into congruent intervals AE, EB is called a midpoint of AB. If E is a midpoint of AB, 3°® we write
this as £ = mid AB.

Theorem 1.3.22. FEwvery interval AB has a unique midpoint E.

Proof. Making use of A 1.3.4, A 1.3.1, choose points C, D so that ZCAB = ZABD, AC = BD, and the points C,
D lie on the opposite sides of the line a4 . From the preceding lemma the open intervals (CD), (AB) meet in some
point E. Hence the angles ZAEC, ZBED, being vertical, are congruent (T 1.3.7). Furthermore, using L. 1.2.11.15

we see that /CAE = Z/CAB, /ZEBD = ZABD. Now we can write AC = BD& /CAE = /EBD & /ZAEC =

/BED "2 NAAEC = ABED = AE = EB&CE = ED. Thus, we see that B is a midpoint.

To show that the midpoint E is unique, suppose there is another midpoint F. Then [AEB|& [AFB|& E #

F "224 (AEF] v [AFE]. Assuming [AFE]* we have by C 1.3.13.4 AF < AFE and [AFE]& [AEB] "1232
C1.3.13.4

[FEB]) "=="" EB < FB, so that AF < AE = EB < FB = AF < FB = AF # FB - a contradiction. Thus, F is
the only possible midpoint. O

351 A]] congruences we need are already true by hypothesis.

352 And the following theorem T 1.3.22 shows that it is the midpoint of AB.

353The reader is encouraged to draw for himself figures for the cases left unillustrated in this proof.

354Observe that (see C 1.1.2.3, C 1.1.1.3) C ¢ aap & D ¢ aap = B ¢ aap & A ¢ apc; C ¢ aagp = aap = A ¢ apc; D ¢ agp =
aap = B¢ agp.

355Once we have established that E # A, the inequality E # B follows simply from symmetry considerations, because our construction
is invariant with respect to the simultaneous substitution A < B, C' < D, which maps the angle ZC' AB into the angle ZABD, and the
angle ZDBA into the angle ZBAC, and so preserves the congruence (by construction) of ZCAB and ZABD.

356 Again, once we know that =[EAB], the fact that =[ABE] follows already from the symmetry of our construction under the simulta-
neous substitution A < B, C < D.

357Obviously, E is the only common point of the open interval (CD), (AB), for otherwise the lines acp, aap would coincide, thus
forcing the points C, D to lie on the line ayp contrary to hypothesis.

358 And the following theorem T 1.3.22 shows that it is the midpoint of AB.

359Due to symmetry, we do not need to consider the case [AEF].

148



A

C
% b A
D
a) b)
C
. . E
A B
D

Figure 1.138: Illustration for proof of T 1.3.22.
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Figure 1.139: If /BAC = ZACD, AB = CD, and B, D lie on opposite sides of aa¢, then (BD), (AC) concur in M
which is the midpoint for both AC and BD.

C

A B a

Figure 1.140: Given a line a, through any point C not on it at most one perpendicular to a can be drawn.

Corollary 1.3.23.1. Every interval AB can be uniquely divided into 2™ congruent intervals, where n is any positive
integer.

Proof. By induction on n. The case of n = 1 is exactly T 1.3.22. If AB is divided into 2"~! congruent intervals,
dividing (by T 1.3.22) each of these intervals into two congruent intervals, we obtain by T 1.3.21 that AB is now
divided into 2" congruent intervals, q.e.d. O

Corollary 1.3.23.2. If a point E lies on a line apxp and AE = EB, then E is a midpoint of AB, i.e. also [AEB].

Proof. E € axp& A # E # B '=2° [ABE| V [EAB] V [AEB]. But by C 1.3.13.4 [ABE] would imply BE < AE,

which by L 1.3.13.11 contradicts AE = EB. Similarly, [EAB] G4 4p < EB- again a contradiction. This leaves

[AEB] as the only option. 360 O

Corollary 1.3.23.3. Congruence of (conventional) intervals has the property P 1.3.5. 361

Corollary 1.3.23.4. If /BAC = ZACD, AB = CD, and the points B, D lie on opposite sides of the line aac,
then the open interval (BD), (AC) concur in the point M which is the midpoint for both AC and BD.

Proof. O

Lemma 1.3.24.1. Given a line a, through any point C not on it at most one perpendicular to a can be drawn. 32
Proof. Suppose the contrary, i.e. that there are two perpendiculars to a drawn through C' with feet A, B. (See
Fig. 1.140.) Then we have aca L aap = a, acp L aap = a. This means that ZCAB, adjsp ZCOBA, both being
right angles, are congruent by T 1.3.16. On the other hand, since adjsp ZCBA is an exterior angle of AACB, by
T 1.3.17 we have ZCAB < adjsp ZCBA. Thus, we arrive at a contradiction with L. 1.3.16.11.

360 Again, due to symmetry with respect to the substitution A + B, we do not really need to consider the case [EAB] once the case
[ABE] has been considered and discarded.

361Thus, we have completed the proof that congruence of conventional intervals is a relation of generalized congruence.

362Combined with the present lemma, L 1.3.8.1 allows us to assert that given a line ap 4, through any point C' not on it exactly one
perpendicular to ap 4 can be drawn. Observe also that if aca L a, acas L a, where both A € a, A’ € a, then A’ = A.
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Figure 1.141: Illustration for proof of P 1.3.24.2.

Triangle Medians, Bisectors, and Altitudes

A vertex of a triangle is called opposite to its side (in which case the side, in turn, is called opposite to a vertex) if
this side (viewed as an interval) does not have that vertex as one of its ends.

An interval joining a vertex of a triangle with a point on the line containing the opposite side is called a cevian.
A cevian BD in a triangle AABC, (AC) 3 D, is called

— a median if AD = DC;,

— a bisector if ZABD = CAD;

— an altitude if app L aac.

Proposition 1.3.24.2. Consider an altitude BD of a triangle AABC. The foot D of the altitude BD lies between
the points A, C iff both the angles /BAC, /BCA are acute. In this situation we shall refer to BD as an interior,
or proper, altitude of AABC. The foot D of the altitude BD coincides with the point A iff the angle ZBAC is right
and the angle BC A is acute. In this situation we shall refer to BD as the side altitude of ANABC. The points A,
C, D are in the order [DAC] iff both the angle ZBAC is obtuse and the angle Z/BCA is acute. In this situation we
shall refer to BD as the exterior altitude of ANABC. 353

Proof. Suppose [ADC] (see Fig. 1.141, a)). Then ZBAC = ZBAD < ZBDC (see L 1.2.11.15, T 1.3.17). £BDC
being a right angle, ZBAC' is bound to be acute (C ??). Similarly, ZBCA is acute.

Suppose A = D. Then, obviously, /BAC = ZBDC is a right angle.

Suppose [DAC] (see Fig. 1.141, b)). Then /BDC = ZBDA < ZBAC (see L 1.2.11.15, T 1.3.17). Since ZBDC
is a right angle, ZBAC has to be obtuse (C ?7?).

Observe now that, in view of T 1.2.2, for points A, C, D on one line, of which A, C are known to be distinct,
we have either [DAC], or D = A, or [ADC], or D = C, or [ACD]. Suppose first that the angles ZBAC, ZBCA are
both acute. The first part of this proof then shows that this can happen only if the point D lies between A, C, for in
the other four cases one of the angles ZBAC, ZBC A would be either right or obtuse. Similarly, we see that D = A
only if ZBAC is right, and [DAC] only if ZBAC' is obtuse, which completes the proof. O

Proposition 1.3.24.3. If a median BD in a triangle NABC is also an altitude, then BD is also a bisector, and
AABC is an isosceles triangle. 364

Proof. Since BD is a median, we have AD = CD. Since it is also an altitude, the angles ZABD, ZCBD, both being

right angles, are also congruent. Hence AD = CD& /ABD = /CBD & BD = BD &4 ANABD = ACBD =

AB=CB&/ZABD = /ZCBD. O

Proposition 1.3.24.4. If a bisector BD in a triangle NABC is also an altitude, then BD is also a median, and
ANABC is an isosceles triangle.

Proof. The interval BD being a bisector implies ZABD = ZCBD. Since it is also an altitude, we have ZABD =

/CBD. Hence /ABD = /CBD & BD = BD&1/ABD = /CBD 2%° AABD = ACBD = AB = CB& AD =

CD. O

Proposition 1.3.24.5. If a median BD in a triangle NABC is also a bisector, then BD is also an altitude, and
ANABC is an isosceles triangle.

3630ne could add here the following two statements: The foot D of the altitude BD coincides with the point C' iff the angle ZBC A is
right and the angle BAC is acute. (In this situation we also refer to BD as the side altitude of AABC.) The points A, C, D are in the
order [ACD] iff both the angle ZBCA is obtuse and the angle ZBAC is acute. (In this situation we again refer to BD as the exterior
altitude of AABC.) It is obvious, however, that due to symmetry these assertions add nothing essentially new. Observe also that any
triangle can have at most one either exterior or side altitude and, of course, at least two interior altitudes. The exterior and side altitudes
can also be sometimes referred to as improper altitudes.

364 Note also an intermediate result of this proof that then the triangle AABD is congruent to the triangle ACBD
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A D C

Figure 1.142: Given a cevian BD in AABC with AB = CB, if BD is a median, it is also a bisector and an altitude;
if BD is a bisector, it is also a median and an altitude; if BD is an altitude, it is also a median and a bisector.

Proof. We have /A = ZC. In fact, the inequality /A < ZC would by C 1.3.18.3 imply CD < AD, which, in view
of L 1.3.13.11, contradicts AD = DC (required by the fact that BD is a median). Similarly, ZC < ZA would by
C 1.3.18.3 imply CD < AD, which again contradicts AD = DC. 3% Thus, we have ZA = ZC as the remaining
option. Hence the result by T 1.3.12, T 1.3.24. O

Theorem 1.3.24. Given a cevian BD, where (AC) > D, in an isosceles triangle NABC with AB = C'B, we have:
1. If BD is a median, it is also a bisector and an altitude;
2. If BD is a bisector, it is also a median and an altitude;
3. If BD is an altitude, it is also a median and a bisector.

Proof. (See Fig. 1.142.)) 1. AB = CB&DB = DB&AD = DC '23° AABD = ACBD = /ABD =

ZCBD& ZADB = ZCDB. Thus, BD is a bisector and an altitude (the latter because the relation [ADC] im-
plies that ZADB, ZADB are adjacent complementary angles, and we have shown that ZADB = ZCDB).

2. AB=CB& DB = DB& /ABD = /CBD %' AABD = ACBD = AD = DC, so BD is a median.
3. By T 1.3.3 ZBAC = /BCA. Also, [ADC] ""25"° /BAC = /BAD & /BCA = /BCD. Finally, AB =

CB& /BAD = /BCD & Z/ADB = /CDB "2 AABD = ACBD, whence the result. 3% O

Given a ray [ lying (completely) inside an extended angle Z(h, k) 267 and having its initial point in the vertex of
Z(h, k), if the angles Z(h,1), Z(l, k) are congruent, the ray [ is called a bisector of the extended angle Z(h, k). If a
ray [ is the bisector of an extended angle Z(h, k), we shall sometimes say that either of the angles Z(h,1), Z(l,k) is
half the extended angle Z(h, k). 3¢%

Theorem 1.3.25. Every extended angle Z(h,k) has a unique bisector l.

Proof. Obviously, for h = h¢ we have | L h (see L 1.3.8.3). 3% (See Fig. 1.143.) Suppose now h # h°. Using A 1.3.1,
choose points A € k, C' € h such that AB = BC. If D is the midpoint of AC' (see T 1.3.22), by the previous theorem
(T 1.3.24) and L 1.2.21.1 we have Z(k,l) = LZABD = ZCBD = Z(l,h). To show uniqueness, suppose Z(h, k) has a
bisector I’. By this bisector meets (AC) in a point D', and thus BD’ is a bisector in AABC. Hence by the previous
theorem (T 1.3.24) D’ is a midpoint of AC and is unique by T 1.3.22, which implies D' = D and I’ = Bp, = Bp = 1.
O

Corollary 1.3.25.1. For a given vertez, say, B, of a triangle AABC), there is only one median, joining this vertex
with a point D on the opposite side AC. Similarly, there is only one bisector per every vertex of a given triangle.

Proof. In fact, by T 1.3.22, the interval AC has a unique midpoint D, so there can be only one median for the
given vertex D. The bisector ! of the angle ZABC' exists and is unique by T 1.3.25. By L 1.2.21.4, LL 1.2.21.6
A€ Bs&C e Bc&lCIntZABC = 3E E € [ & [AEC], i.e. the ray [ is bound to meet the open interval (AC') at
some point F. Then BE is the required bisector. It is unique because the ray | = Bpg is unique, and the line apg

3650nce we have shown that =(£A < ZC), the inequality —(£C < ZA) follows immediately from symmetry considerations expressed
explicitly in the substitutions A — C, C — A.

366 Note that this part of the proof can be made easier using L 1.3.24.1.

367That is Z(h, k) is either an angle (in the conventional sense of a pair of non-collinear rays) or a straight angle Z(h, h¢).

368 More broadly, using the properties of congruence of angles, we can speak of any angle congruent to the angles Z(h,1), Z(1, k), as half
of the extended angle congruent to the Z(h, k).

369Thus, in the case of a straight angle Z(h, h¢) the role of the bisector is played by the perpendicular [ to h. The foot of the perpendicular
is, of course, the common origin of the rays h and h€.
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Figure 1.143: Every angle Z(h, k) has a unique bisector .

Figure 1.144: Illustration for proof of T 1.3.26.

containing it, by L 1.2.1.5 (we take into account that A ¢ apg) cannot meet the line aa¢, and, consequently, the
open interval (AC) (see L 1.2.1.3), in more than one point. O

Corollary 1.3.25.2. Congruence of (conventional) angles has the property P 1.8.5. 37°

Congruence and Parallelism

Theorem 1.3.26. If points B, D lie on the same side of a line aac, the point C lies between A and a point E, and
the angle ZBAC is congruent to the angle ZDCE, then the lines aap, acp are parallel.

Proof. Suppose the contrary, i.e. IF F € aapNacp. We have, by hypothesis, BDa s¢ TL209 ApCpaac. Therefore,
FeaspNacp& AgCpasc = F € ApNCpVF € (Ap)°N (Cp)°. In the first of these cases (see Fig. 1.144, a))
we would have by L 1.2.11.3, T 1.3.17T F € AN Cp = LBAC = L/ZFAC& L/FCE = /DCE & /FAC < LFCE =
/ZBAC < FCE which contradicts ZBAC = ZDCE in view of L 1.3.16.11. Similarly, for the second case (see
Fig. 1.144, b)), using also L 1.3.16.15), we would have F' € (Ag)°N (Cp)® = LFAC = adjspLBAE & /FCE =
adjsp LDCE & LFAC < LFCE = adjsp £LBAE < adjsp £ZDCFE = /DCFE < £/BAFE - again a contradiction. O

370Thus, we have completed the proof that congruence of conventional angles is a relation of generalized congruence.
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Figure 1.145: If A, B, C, D coplane and asp, acp are both perpendicular to as¢, the lines asap, acp are parallel.

B

;

Figure 1.146: If B, I lie on opposite sides of agc and ZBAC, ZACF are congruent, then asp, acpg are parallel.

Corollary 1.3.26.1. If points B, D lie on the same side of a line aac and the angles ZBAC, Z/DCA are supple-
mentary then aap || acp-

Proof. Since Z/BAC = suppl/DCA, we have Z/BAC = adjsp ZDCE, where Cr = (C4)¢. 3" Hence the result of
the present corollary by the preceding theorem (T 1.3.26). O

Corollary 1.3.26.2. If points A, B, C, D coplane and the lines aap, acp are both perpendicular to the line aac,
the lines aap, acp are parallel. In other words, if two (distinct) lines b, ¢ coplane and are both perpendicular to a
line a, they are parallel to each other.

Proof. (See Fig. 1.145.) By hypothesis, the lines aap, acp both form right angles with the line asc. But by
T 1.3.16 all right angles are congruent. Therefore, we can consider the angles formed by aap, acp with aac as
supplementary,®”? whence by the preceding corollary (C 1.3.26.1) we get the required result. O

Corollary 1.3.26.3. If points B, F' lie on opposite sides of a line aac and the angles Z/BAC, ZACF are congruent,
then the lines aap, acp are parallel.

Proof. (See Fig. 1.146.) Since, by hypothesis, B, F' lie on opposite sides of a line aac, we have B(Cr)¢aac (see
L 1.2.19.8, L 1.2.18.4). Also, the angle formed by the rays Ac, (Cr)¢, is supplementary to ZBAC. Hence the result
by C 1.3.26.1. O

Corollary 1.3.26.4. Given a point A not on a line a in a plane «, at least one parallel to a goes through A.

Corollary 1.3.26.5. Suppose that A,B,C € a, A’,B',C’ € b, and LA'AB = /B'BC = adjspZC'CB. 3™ If B lies
between A, C then B’ lies between A’, C".

371 Obviously, using A 1.2.2, we can choose the point E so that [ACE]. Then, of course, C = (C4)°.

3723ee discussion accompanying the definition of orthogonality on p. 117.

373We can put the assumption ZB’'BC = adjspZC’CB into a slightly more symmetric form by writing it as ZB’BC = £C'CD, where
D is an arbitrary point such that [BC'D]. Obviously, the two assumptions are equivalent.
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Proof. According to T 1.3.26, C 1.3.26.3 we have aaas || agp/, app || accr. >™ Seeing that app: lies inside the
strip aaaraccr, we conclude (using T 1.2.2) that [A’B’'C’], 37 as required. O

Corollary 1.3.26.6. Suppose that A, B,C € a, [ABC], A", B',C" € b, where A, B, C, are respectively the feet of
the perpendiculars to a drawn through A’, B', C'. 37 Then [A’B'C"].

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16). O

Corollary 1.3.26.7. Suppose that A,B,C € a, A',B’,C" € b, and [A'B'C’], where A, B, C, are respectively the
feet of the perpendiculars to a drawn through A’, B', C'. Suppose further that the lines a, b are not perpendicular.
377 Then [ABC).

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16). O

Corollary 1.3.26.8. Suppose that Ai,As, As,...,An(,...) € a, B1,B2,Bs3,...,By(,...) € b, and £B1A1Ay =
[LBoAyAs = - = LBy 1A, 1A, = £BrALAnt1. Suppose further that the points Ay, Aa, ..., An(,...) have the
following property: Every point A;, where i =2,3,...,n(,...) lies between the two points (namely, A;—1, A;11) with
adjacent (in N) numbers. Then the points A1, Aa, ..., An(,...) are in order [B1Ba ... By(...).

Proof. O

Corollary 1.3.26.9. Suppose that Ay, As, As, ..., An(,...) €a, B1,B2,Bs,...,Bu(,...) €b, where A;, i=1,2,...,n(,...)
are the feet of the perpendiculars to a drawn through the corresponding points B;. Suppose further that the points

Ay, Agy ..., An(,...) have the following property: Every point A;, where i = 2,3,...,n(,...) lies between the two
points (namely, A;—1, Aiy1) with adjacent (in N) numbers. Then the points Bi, Ba,...,Byn(,...) are in order
[B1Bz...B,(...).

Proof. O

Corollary 1.3.26.10. Suppose that Ai, As, As,..., An(,...) € a, B1,B2,Bs,...,Bu(,...) € b, where A;, i =
1,2,...,n(,...) are the feet of the perpendiculars to a drawn through the corresponding points B;. We assume
that the lines a, b are not perpendicular (to each other). Suppose further that the points By, Ba,...,Bn(,...) have
the following property: Every point B;, where i = 2,3,...,n(,...) lies between the two points (namely, B;—1, Bit1)
with adjacent (in N) numbers. Then the points Ay, Aa, ..., An(,...) are in order [A1As... Ap(...).

Proof. O

Proposition 1.3.26.11. Suppose we are given lines a, o', points B ¢ a, B' ¢ o', an angle Z(h, k), and points C, C’
such that AB = A'B’, BC = B'C’, ZABC = LA'B'C’, where A = proj(B,a, Z(h,k)), A" = proj(B’,d’, Z(h,k)).
In addition, in the case a’ # a then we impose the following requirement on the orders used to define the projection
on a, & under Z(h,k) (see p. 117): if A < D on a then A < D' on d, and if D < A on a then A’ < D’
on a'. Then AD = A’'D’, where D = proj(C,a, Z(h,k)) if BCaap, D' = proj(C’,d’, Z(h,k)) if B'C'd’, D =
proj(C, a, supplZ(h,k)) if BaapC, D' = proj(C’,a’,suppl/(h,k)) if B'a’C’'. Furthermore, if C ¢ a *™® then
CD=C'D' and /BCD = B'C'D’. 37

Proof. First, observe that the points C, D always lie on the same side of the line aag and C’, D’ lie on the same

side of a4 p/. In fact, this is vacuously true if D = C (D’ = ("), and in the case D # C (D’ # C’) this follows

from T 1.3.26, C 1.3.26.3. 330 Furthermore, we have AB = A'B' & BC = B'C" & /ABC & /A'B'C' 2% NABC =

ANA'B'C' = AC = A/C' & LBAC = £B'A’C’. Note also that we can assume without loss of generality that A < D.
Then, by hypothesis, A’ < D’. This, in turn, means that the angles /BAD, /B’A’D’, both being congruent to the
angle Z(h, k), are congruent to each other. Suppose that C' € a. *! We are going to show that in this case also

374 Note that the lines a4 4/, agps and agps, acer are parallel no matter whether the points A’, B’, C’ all lie on one side of a or one
of them (evidently, this can only be either A or C' but not B) lies on the side of a opposite to the one containing the other two points.

375We have ay 4/ || appr = B' # A’, agp' || accr = B’ # C’. Then from T 1.2.2 we have either [B’A’C'], or [A'C'B’], or [A’B'C"].
But [B’A’C’] would imply that the point B’, C’ lie on opposite sides of the line a4 4/. This, however, contradicts the fact that the line
app lies inside the strip as4/accr. (Which, according to the definition of interior of a strip, means that the lines agp/, acc lie on
the same side of the line a4 4-.) This contradiction shows that we have —[B’A’C’]. Similarly, we can show that —[A’C'B’].

376 Here we assume, of course, that A’ # A, B’ # B, C' # C.

377 Again, we assume that A’ # A, B’ # B, C' # C.

378 And then, as we shall see in the beginning of the proof, C’ ¢ a’

379In the important case of orthogonal projections this result can be formulated as follows: Suppose we are given a line a, points B, B’
not on it, and points C, C’ such that AB = A’B’, BC = B'C’', ZABC = ZA'B’'C’, where A = proj(B,a), A’ = proj(B’,a’). Then
AD = A'D’, where D = proj(C,a), D' = proj(C’,a’). Furthermore, if C ¢ a then CD = C'D’ and £BCD = B'C'D’.

380Note the following properties: If the points B, C lie on the same side of a and F' € a is such a point that D < F on a, i.e. such
that [ADF], then ZBAD = ZCDF, since both these angles are congruent to the Z(h, k) by hypothesis and by definition of projection
under Z(h, k). Similarly, if B, C’ lie on the same side of a’ and F’ € a’ is such a point that D’ < F’ on d, i.e. such that [A’D’F’], then
ZB'A'D' = ZC'D'F’. On the other hand, it is easy to see that if B, C' lie on the opposite sides of a then ZBAD = ZADC'. (In fact,
by hypothesis and by definition of projection under supplZ(h,k) we then have ZCDF = supplZ(h, k), where F € a is any point such
that D < F on a, i.e. such that [ADF]. Evidently, ZCDF = adjspZADC, whence in view of T 1.3.6 we find that LZADC = Z(h,k).)
Similarly, B’, C’ lie on the opposite sides of a’ then ZB'A'D' = LA'D'C’.

381Which means, by definition, that D = C.
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C’ € o' and thus D’ = C’. In fact, since the angle ZABC = ZACD is congruent both to ZA’B'C’ and LA’B'D’,
and, as shown above, the points C’, D’ lie on the same side of the line a4 g/, using A 1.3.4 we see that the points
C’, D' lie on the line @’ on the same side of the point A’. But from the definition of projection it is evident that C’
can lie on o’ only if D' = C".

Turning to the case C # D, we observe that either both B, C lie on the same side of asp and B’, C’ lie on
the same side of a4/p/, or B, C lie on the opposite sides of ayp and B’, C’ lie on the opposite sides of a4/p/. To
show this in a clumsy yet logically sound manner suppose the contrary, i.e. that, say, 332 B, C lie on the same
side of ayp and B’, C’ lie on the opposite sides of a4 p/. Then B'a’C' & LB'A'D' = LA'D'C’ L3321 JE'(E' €
(A’'D'Yn (B'C")). Taking E € Ap such that A'E’ = AFE (see A 1.3.1), we find that F € AD&E’ e (AD) =

/BAD = /BAE& /B'A'D' = /B'A'E’ (see L. 1.2.11.3, L 1.2.11.15), whence /BAFE = /B’A’E’. Now we can

write A'B' = AB& A'E' = AE& /B'A'E' = /BAE T%“ AA'B'E' = NABE = /A'B'E' = /ABE. Since also

E' € (B'C') = B'cv = B'g = LA'B'C' = ZA'B'E’ (see L 1.2.11.15), LA'B'C’ = ZABC (by hypothesis), and
ECaup, % using A 1.3.4 we find that E € Be. B'C' = BC& BE = BE&|[B'E'C'|& E € Be "2 [BEC),
which implies that the points B, C' lie on the opposite sides of the line a contrary to assumption.

Consider the case BCa. Then, as shown above, we have B'C’a’. Since the quadrilaterals ABCD, A’B'C'D’
are simple in this case (see L 1.2.62.5), in view of P 1.3.19.2 we have ABCD = A’B’C'D’ whence, in particular,
AD=A'D',CD=C'D', /BCD = /B'C'D'.

Suppose now that BaC. Then, as we have seen, also B’a’C’. Furthermore, as shown above, 3E(E € (AD) N
(BC)) and 3E/(E' € (A'D') N (B'C")). In view of L 1.2.11.15 we have ZBAE = /BAD, /ABE = /ABC,
/CDA = /CDE, /BCD = /ECD, /B'A'E = /B'A'D', /A'B'E' = /A'B'C', /BCD = /ECD. Since, by
hypothesis, ZABC = L/A'B'C', /BAD = /B'A'D’', /C'D'A" = Z/C'D'E" and AB = A’B’, in view of T 1.3.5
we have AABE = NA'B'E’, whence AE = A'E’, BE = B'E’, and ZAEB = ZA'E’'B’. From L 1.3.9.1 we have
CE = C'E’, and using T 1.3.7 we find that ZCED = ZC'E'D’. Hence CE = C'E' & /CED = /C'E'D’' & /CDE =

C'D'E TR 3 " ACED = AC'E'D’, whence CD = C'D', DE = D'E', /BCD = /B'C'D'. 3% TFinally, we can
write AE = A'E' & DE = D'E' & [AED| & [A/E'D') "2%% AD = A'D'.

Corollary 1.3.26.12. Consider an acute angle Z(h, k). Let A1, As € k and let By, By be the feet of the perpendic-
ulars to h drawn through Ay, As, respectively. Then [OA1As] if and only if [OB1 B3], where O is the vertex of the
angle Z(h, k).

Proof. Since (by hypothesis) both aa,5, L h, aa,p, L h, we have aa,p, | aa,B, (see C ??). Then the required
result follows from T 1.2.46. O

Corollary 1.3.26.13. Consider an acute angle Z(h, k). Let Ay, Az, ..., A, € k,n € N, n>2 and let By, Ba, ..., By,
be the feet of the perpendiculars to h drawn through Ay, As, ..., Ay, respectively. Then [OA1As ... Ay if and only if
[OB1Bs ... By,], where O is the vertex of the angle Z(h, k).

Proof. Follows from the preceding corollary (C 1.3.26.13) and C 1.3.26.9, C 1.3.26.10. O

Lemma 1.3.26.14. The altitude drawn from the vertex B of the right angle /B = LABC' of a right triangle AABC
to the (line containing the) opposite side AC is an interior altitude. Furthermore, the feet of the perpendiculars
drawn from points of the sides (AB), (BC) to the line aap also lie between A and C.

Proof. Since, by hypothesis, ZABC'is a right angle, the angles ZBAC, ZBC A are acute. Therefore, D € AcNCy =
(AC) (see C 1.3.18.11, L 1.2.15.1). Now suppose E € (AB), F € aac, and agr L asc. From C 1.3.26.12 we have

[AFD], and we can write [AF D] & [ADC)] tl2g2 [AFC]. O

Lemma 1.3.26.15. Given an acute or right angle Z(h, k) and a point C inside it, the foot B of the perpendicular
lowered from C to h lies on h. Similarly, by symmetry the foot A of the perpendicular lowered from C to k lies on k.

Proof. Denote by O the vertex of the angle (h,k) and denote | = O¢. Using L 1.2.21.4, C 1.3.16.4 we see that
Z(h,1) < Z(h, k). Since, by hypothesis, Z(h, k) is acute, the angle Z(h,!) is also acute in view of L 1.3.16.20. Hence
FehbyC1.3.18.11. O

Theorem 1.3.27. Let a point D lie between points A, C' and the intervals AD, DC are congruent. Suppose, further,
that the lines aap, acr are both perpendicular to the line agyp and the points H, D, L colline. Then the point D
lies between the points H, L and AH = CL, ZAHD = ZCLD.

382Due to symmetry we do not need to consider the other logically possible case, i.e. the one where B, C' lie on the opposite sides of

aAD-
383We have E € Ap “'22%® DBaap, CDasp & DEaap = CEaagp

384We take into account that /BCD = ZECD, /B'C'D’' = /E'C'D’.
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Figure 1.147: If point D lies between A, C, the intervals AD, DC are congruent, the lines aspy, acp are both
perpendicular to agy, and the points H, D, L colline, then D lies between H, L and AH = CL, ZAHD = /CLD.

a’PX aPX
P
. . K L
K M=X L M
'Y P
a) b) X

Figure 1.148: If apx is the right bisector of KL then KX = X L.

Proof. (See Fig. 1.147.) Using A 1.2.2, A 1.3.1, choose a point L’ so that [HDL'] and DH = DL'. Then we have

385 AD = DC & DH = DL/ & /ADH = /CDL' “:%° JAHD = /CL'D. Hence acr | apr & acr L agr &L €

L1.3.24.1
agr, =agp = L' =L.0O

Right Bisectors of Intervals

A line a drawn through the center of an interval K L and perpendicular to the line ax, is called the right bisector
of the interval K L.

Lemma 1.3.28.1. Every interval has exvactly one right bisector in the plane containing both the interval and the
bisector.

Proof. See T'1.3.22, L. 1.3.8.3. O
Lemma 1.3.28.2. If a line apx is the right bisector of an interval KL then KX = X L.

Proof. Let M = mid K L. (Then, of course, M € apx.) It X = M (see Fig. 1.148, a)) then there is noting to prove.

If M # X (see Fig. 1.148, b)) then 336 We have KM = ML& MX = MX & ZKMX = /LMX =2* AKMX =

ALMX = KX =XL. O

Lemma 1.3.28.3. If KX = XL and axy L axy, then the line axy is the right bisector of the interval K L.

Proof. Denote M = axy Naky. By hypothesis, X M is the altitude, drawn from the vertex X of an isosceles (with
KX = XL) triangle AKXL to its side K L. Therefore, by T 1.3.25, XM is also a median. Hence KM = ML and
[K M L], which makes axy the right bisector of the interval K L. O

Lemma 1.3.28.4. If KX = XL, KY =YL,Y # X, and the points K, L, X, Y are coplanar, then the line axy
s the right bisector of the interval K L.

385The angles ZADH, Z/CDL’, being vertical angles, are congruent. Observe also that the angles ZAHD, ZAHL are identical in view
of L 1.2.11.15, and the same is true for ZCLD, ZCLH.
386 The angles /KM X, /LM X, both being right angles (because apx is the right bisector of K L), are congruent by T 1.3.16.
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X

Figure 1.149: If KX = XL, KY =YL, Y # X, and the points K, L, X, Y are coplanar, then axy is the right
bisector of K L.

Proof. (See Fig. 1.149.) Denote M = mid K L. Since X # Y, either X or Y is distinct from M. Suppose X # M.
387 Since X M is the median joining the vertex X of the isosceles triangle AK X L with its base, by T 1.3.24 XM
is also an altitude. That is, we have axy L axr. In the case when Y = M there is nothing else to prove, as axy
then has all the properties of a right bisector. If Y # M, we have ayyr L agxr. %% Since the lines axns, ay
perpendicular to the line ax at M lie in the same plane containing axr, by L 1.3.8.3 we have axy = ayy = axy,
which concludes the proof for this case. O

Theorem 1.3.28. Suppose points B, C lie on the same side of a line ax, the lines axp, apc are perpendicular to
the line axr, and the interval KB is congruent to the interval LC. Then the right bisector of the interval KL (in
the plane containing the points B, C, K, L) is also the right bisector of the interval BC, /KBC = Z/LCB, and the
lines axr, apc are parallel.

Proof. (See Fig. 1.150.) Let a be the right bisector of the interval KL in the plane apkr. Denote M =

(KL)ﬂa. We have aOKB 1 CLKL&CL 1 CLKL&CLLC 1 aKrJ, Cli.%G.S KB H a&a || CLLc&ZCLKB || arc. a C

aprr&M € (KL)Na | axp 23" 3y (BYL]&Y € a). a C apre&Y € (BL)Nak&a | are 23"

3X ([BXC|&X € a). 3% BCaxp&X € (BC) "'22° BXax & CXaxy. Note that M € (KL)Na& X €

a&a L agr = /KMX = /ZLMX. Hence, KM = LM&MX = MX& /KMX = /LMX 22" AKMX =

ALMX = KX = LX&IMKX = /IMLX&/KXM = ZLXM. Since, evidently, axy = axp, we have

BXax; = BXaxy “EEM Ky c Int/MKBV Kp C Int/MKXV Kx = Kg. But Kp C Int/MKX 222

P (P € KgN(MX)) = 3P P € akp N a, which contradicts axp || a. It is even easier to note that Ky =
Kp = X € axp Na - again a contradiction. Thus, we have Kx C ZMKB. Similarly, we can show that
Lx C IntZMLC. 3% By T 1.3.16 the angles /M KB, /MLC, both being right angles (recall that, by hy-

pothesis, axp | axr = axym and arec L axr = apa), are congruent. Therefore, we have ZMKB = ZMLC.
T1.3.9

Hence BXapy & CXapy & LMKB = /ZMLC& /IMKX = /MLX 2% /BKX = /CLX. KB=LC&KX =
LX& /BKX = /CLX 22 ABKX = ACLX = BX = CX&/KBX = /LCX&/KXB = /LXC.

[BxC) "2 By = Bo&Cx = Cp = /KBX = /KBC& /LCX = /LCB. /KBX = /LCX & /KBX =

/KBC&/LCX = /LCB = /KBC = /LCB. Since ZMKB is a right angle, by C 1.3.17.4 the other two
angles, ZKMB and ZKBM, of the triangle AMK B, are bound to be acute. Since the angle /KM B is acute

and the angle ZKM X is a right angle, by L 1.3.16.17 we have ZKMB < ZKMX. Hence BXagy & LZKMB <

/EMX T2 My Int/KMX MEE 3B (KEX|&E € M), [KEX] "' 287 Kp = Ky & Xp = Xk.

E e Mg "'22"® (MEB|V[M BE|VE = B. But the assumptions that [M BE] or E = B lead (by L 1.2.21.4, L 1.2.21.6,

L 1.2.11.3) respectively, to Kp C IntZMKX or Kx = Kp - the possibilities discarded above. Thus, we have [M EB|.
By L 1.2.21.4, L 1.2.21.6 [MEB] = Xk = X C IntZBXM. Similarly, it can be shown that X; C IntZCXM.

387TDue to symmetry of the assumptions of the theorem with respect to the interchange of X, Y, we can do so without any loss of
generality.
388To show that ay ps L axr, one could proceed in full analogy with the previously considered case as follows:
Since Y M is the median joining the vertex Y of the isosceles triangle AKY L with its base, by T 1.3.24 Y M is also an altitude.
On the other hand, the same result is immediately apparent from symmetry considerations.
389We take into account that, obviously, BCaxr = aBirL = ¢BLC-

390This can be done in the following way, using arguments fully analogous to those we have used to show that Kx C ZMKB. Since

apa = agr, we have CXaxr = CXagar "V 222 Ly € Int/MLCV Lo C Int/MLX V Ly = Le. But Lo C Int/MLX “22821

3P (P € LcN(MX)) = 3P P € arc Na, which contradicts arc || a. It is even easier to note that Lx = Lo = X € arc Na - again
a contradiction. Thus, we have Lx C LM LC. Alternatively, we can simply observe that the conditions of the theorem are symmetric
with respect to the simultaneous substitutions K « L, B < C.
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Figure 1.150: Suppose points B, C lie on the same side of ax, the lines axp, arc are perpendicular to axy, and
the interval KB = LC'. Then the right bisector of K'L (in the plane containing B, C, K, L) is also the right bisector
of BC, ZKBC = ZLCB, and ax_, || apc.

391 JKXM = /LXM&/KXB=/LXC& Xx C Int/BXM&X; C Int/CXM 2%° /BXM = /CXM. Tn

view of [BX (] this implies that ZBXM, ZCX M are both right angles. Together with BX = CX and X € a this
means that the line a is the right bisector of the interval BC'. Finally, the lines axr = axpy, apc = axx, both being
perpendicular to the line a = apsx, are parallel by C 1.3.26.2. O

Proposition 1.3.28.1. If F', D are the midpoints of the sides AB, AC, respectively, of a triangle NABC, then the
right bisector of the interval BC' is perpendicular to the line app and the lines apc, arpp are parallel.

Proof. Obviously, F' # D = Jarp. Using L 1.3.8.1, draw through points A, B, C' the perpendiculars to arpp with
feet H, K, L, respectively. 392 If D = H (see Fig. 1.151, a) ), then, obviously, also D = L, but certainly F # K # D.
If F = H (see Fig. 1.151, b) ), then also F = K, but D # L # F. In both of these cases we have axp L axr = arp,
arc L akxr. On the other hand, if both D # H and F' # H (and then, consequently, D # K, D # L, F # K, F # L,
H # K, H # L, K # L - see Fig. 1.151, C) ) then [ADC]&CLAH L agr — CLFD&CLLC L CLHL&[AFB]&CLKB L

axy = app& H € app & K € app & L € app == AH = KB& AH = LC = KB = LC. 3% We have also

[AFB]&[ADC]&A §§ CLFD&B ¢ CLFD&O §é CLFDACLFDB&ACLFDO ngg,g BOCLFD = 4dK[- Since QKB 1 QK L,

arc L akr, and BCagky, by T 1.3.28 the right bisector a of the interval KL is also the right bisector of the interval.
This means that the line a is perpendicular to arpp and the lines apc, arpp are parallel. O

Proposition 1.3.28.2. If ABCD is a simple plane quadrilateral with AB = CD, BC = AD, then ABCD is a
parallelogram. 3% Furthermore, we have AE = EC, BE = ED, where E = (AC) N (BD). 3%

Proof. AB = CD&BC = AD& AC = AC "23° AABC = ACDA = /ABC = /CDA& /BAC = ZACD
& ZACB = ZCAD. Since, by hypothesis, the points A, B, C, D are coplanar and no three of them are collinear,

by L 1.2.17.8 the points B, D lie either on one side or on opposite sides of the line asc. Suppose the former.

Then BDaac & Ap # Ap L1.224.21 Ap C Int/BAC V Ag C IntZCAD. 3% Suppose Ap C Int/BAC (see

Fig. 1.152, a) ). Then "2 3X (X € Ap & [BXC)). X € Ap “'23'®° [ADX]Vv X = DV [AXD]. But the

last two options contradict the simplicity of ABCD in view of Pr 1.2.10, Pr 1.2.11. Thus, [ADX] is the only

remaining option. But [BXC] M2ZUI o = Cp, and by L 1.2.21.6, L 1.2.21.4 [ADX] = Cp C IntLACX.

391 Again, this can be done using arguments fully analogous to those employed to prove X C IntZ/BXM. Since ZMLC is a right angle,

by C 1.3.17.4 the other two angles, ZLMC and ZLCM, of the triangle AM LC, are bound to be acute. Since the angle ZLMC' is acute

and the angle ZLMX is a right angle, by L 1.3.16.17 we have ZLMC < ZLMX. Hence CXapn & ZLMC < 2LMX 24554 po ¢

IntZLMX "2 3p ((LFX)& F € Mo). [LFX] "2 Lp = Ly & Xp = X1, F € Mc "'228 [MFC) v [MCF|V F = C.

But the assumptions that [MCF] or F = C lead (by L 1.2.21.4, L. 1.2.21.6, L 1.2.11.3) respectively, to Lc C IntZMLX or Lx = L¢ -
the possibilities discarded above. Thus, we have [M FC]. By L 1.2.21.4, L. 1.2.21.6 [MFC]| = X1 = Xp C IntZCXM. Alternatively, it
suffices to observe that the conditions of the theorem are symmetric with respect to the simultaneous substitutions K < L, B < C.

392 Observe that F € (AB) Napp & D € (AC) Napp “' 23" A¢ app & B ¢ app & C ¢ app.

393 Obviously, since all of the points D, F, H, K, L are distinct in this case, and we know that H € arp, K € arp, L € app, by
A 1.1.2 the line formed by any two of the five points is identical to agp.

394Note also the congruences ZABC = LCDA, ZBAC = LACD, ZACB = ZCDA, obtained as by-products of the proof.

395 Note also the congruence of the following vertical angles: ZAED = /BEC, ZAEB = Z/CED.

396We can safely discard the possibility that Ag = Ap, for it would imply that the points A, B, D are collinear contrary to simplicity
of ABCD.
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Figure 1.151: If F', D are the midpoints of the sides AB, AC, respectively, of AABC, then the right bisector of BC'
is perpendicular to app and apc, app are parallel.
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Figure 1.152: If ABCD is a simple plane quadrilateral with AB = CD, BC = AD, then ABCD is a parallelogram.

Using C 1.3.16.4 then gives ZACD < LACX = L/ACB = Z/CAD < /BAC. Hence by L 1.3.16.6 - L 1.3.16.8

/ACD < /BAC, which contradicts /ZBAC = ZACD in view of L 1.3.16.11. Similarly, suppose Ag C IntZCAD

(see Fig. 1.152, b) ). Then “"22'° 3y (v € Ag&[CYD)). Y € Ag “'23'° [ABY]VY = BV [AYB]. But

the last two options contradict the simplicity of ABCD in view of Pr 1.2.10, Pr 1.2.11. Thus, [ABY] is the only

remaining option. But [CY D] "2 ¢y = Cp, and by L 1.2.21.6, L 1.2.21.4 [ABY] = Cp C IntZACY.

Using C 1.3.16.4 then gives ZACB < LACY = LACD = /BAC < ZCAD. Hence by L 1.3.16.6 - L. 1.3.16.8

/ZACB < ZCAD, which contradicts ZACB = ZCAD in view of L. 1.3.16.11. The two contradictions show that, in

fact, the points B, D lie on opposite sides of the line aac. Hence BaacD & /BAC = ZACD C13.363 aap || acp.

Since the conditions of the theorem obviously apply also to the quadrilateral BCDA (see, for instance, T 1.2.49
about simplicity), we can conclude immediately that the lines apc, aap are also parallel, so ABCD is indeed a

parallelogram. Since ABCD is a parallelogram, by L 1.2.47.2 the open intervals (AC), (BD) concur at some point

E. We have [AEC] & [BED] "' 21" Ap = Ac & Cp = Co & Bg = Bp & Dg = Dy. Hence AB = CD & /BAE =

/BAC = /DCA = /DCE & /ABE = /ABD = /CDB = /CDE =%°> NANAEB = ACED = AE = CE& BE =

ED. O

Consider a pair (just a two-element set) of lines {a, b} (in particular, we can consider a strip ab) and points A € a,
B € b. If for all A; € a, By € b such that A; # A, By # B and the points Ay, B; lie on the same side of the line
aap we have ZABB, = ZBAA,, we say that the interval AB (or, for that matter, the line a4p) is equally inclined
with respect to the pair {a,b} or simply that it is equally inclined to (the lines) a, b.

Using T 1.3.6 it is easy to see that for the interval AB (line asp) to be equally inclined to the strip ab it suffices
to find just one pair A; € a, By € b such that A} #% A, By # B, AiBiaap and ZABBy = /BAA,.

Given an interval AB equally inclined to a strip ab, where A € a, B € b, draw through the midpoint M of AB
the line ¢ perpendicular to aap (see T 1.3.22, L 1.3.8.1). In other words, ¢ is the right bisector of AB. Then we have

Proposition 1.3.29.1. The line c is parallel to both a and b. Furthermore, c is the right bisector of any interval
A'B’, where A" € a, B’ € b, equally inclined to the strip ab.

Proof. To show that c is parallel to both a and b suppose the contrary, i.e. that ¢ meets, say, a in some point Aj.
Using A 1.3.1 take a point B; such that AA; = BB; and the points A, B lie on the same side of the line a4 5. Since,

by hypothesis, the interval AB is equally inclined to the strip ab, we have ZA1AB = ZABB;. As M is the midpoint

of AB, we have (by definition of midpoint) [AM B] and AM = M B. Hence [AM B] MZUIS g = Ap & By =
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By = LAAM = LAJ1AB& Z/MBB, = ZABB; Now we can write AA; = BB1 & LA1AM = Z/MBB1 & AM =

MB 22" AMAA, = AMBB, = ZAMA, = /BMB; & MA, = MB,. Since, by hypothesis, the line ¢ 5 A; is

perpendicular to aap at M, the angles ZAM Ay, ZBM A; are congruent to each other (they are both right angles).
As /BMA, = /ZBM By 37 and the points A;, B; lie on the same side of the line a4, we have Mas, = Mp,. But

By e Ma, &EMAL =MB, Tgf By, = Aj, which implies that the line a > A; meets the line b © By contrary to our
assumption that a || b. This contradiction shows that in fact we have ¢ || a, ¢ || b.
Now from L 1.2.19.26 we have IM’ € ¢n (A’B’). Using L 1.2.19.9 (see also L 1.2.1.3) we see that the points

A', M', as well as M’, B’ lie on the same side of the line aay = ayp = aap. Since AM = MB& MM' =

MM' & ZAMM' = /BMM' "23* AAMM' = ABMM' = AM’ = BM' & /MAM' = /MBM' & ZAM'M =

/ZBM'M. Taking into account that ZBAA’" = ZABB' (recall that AB is equally inclined to the strip ab by

hypothesis) and [AMB] ""25"° Ay, = Ag& By = By = LA'AM = /A'AB& /MBB' = /ABB', we have

/MAA" = /ZMBB’. In view of the fact that the points A’, M’, as well as M’ B’ lie on the same side of the line
aayM = ayB = aap, from T 1.3.9 we find that ZM'AA’ = ZM'BB’. Since the points A’, B’ lie on the same side
of the line asp and the lines a = a4 4/, b = bgp: are parallel, the points A, B lie on the same side of the line a4/ p/
(see C 1.2.47.5). Arguing as above (using L 1.2.19.9, L 1.2.1.3), or directly using C 1.2.47.5, 3% we see that the
points A, M, as well as M, B lie on the same side of the line a4/p;r = aprrpr = aarp. Furthermore, in view of
C 1.2.47.6 the ray M’ 4 lies inside the angle ZM M'A’ and the ray M'p lies inside the angle ZMM’B’. In view of
the fact that the interval A’ B’ is equally inclined with respect to the strip ab, this implies that ZLAA'B’ = /BB'A’.
Taking into account [A/M'B'] "' 21" A7\, = A'p & By = B'a = LAA'M' = ZAAB& /M'B'B = /A'B'B,
we have ZAA'M’ = /BB'M’. Now we can write AM' = BM' & /M'AA' = /M'BB' & LAA'M' = /BB'M’ "£%"
NAA'M' = ABB'M' = AM = BM' & /AM'A’ = /BM'B’. Finally, ZAM'M = /BM'M & ZAM'A’ =
/BM'B'& M’y C IntZAM'M&M'y € IntZB'M'M 22" /A'M'M = /B'M'M. But the relation [A’M'B']
implies that the angles ZA'M'M, /B'M’'M are adjacent supplementary, and we see that these angles are right, as
required.
O

Isometries on the Line
Lemma 1.3.29.2. If [ABC|, AB= A'B’, BC = B'C’, AC = A'C’, then [A'B'C"].

Proof. First, observe that using L 1.3.13.3, L. 1.3.13.73% [ABC| & AB = A'B'& BC = B'C' & AC = A'C' = A'B’' <
A'C'"&B'C' < A'C’'. To show that B’ € aacr, suppose the contrary, i.e. B’ ¢ aacr. Let B” be the foot of the
perpendicular to a /¢ drawn through B’. Obviously, B” # A’ (see Fig. 1.153, a), ¢) ), for otherwise by C 1.3.18.2
A'C" = B"C’" < B'C’, which (in view of L. 1.3.16.10) contradicts the inequality B'C" < A’C’ proven above. Similarly,
we have B"” # C’, because the assumption B” = C’ would imply A'C' = A’B” < A’B’ - a contradiction with
A'B’ < A’C” shown above. 40 We can write B” € aucr & B" # A' & B" # ' 237 [B"A'C'|V[A'B"C"|V][A'C'B"].
The assumption that [B” A'C’] (see Fig. 1.153, a), d) ) would (by L 1.3.13.3) imply A’C’" < B”(C’, whence A'C' <
B'C' & B"C' < B'C' M'EX® 4'¢’ < B'C’ - a contradiction with B'C’ < A'C’. Similarly, [A'C'B"] would (by
L 1.3.13.3) imply A’C’ < B"C’, whence A'C" < B"C' & B"C' < B'C' "'2%*% 4'c’ < B/C" - a contradiction with
B'C" < A'C’. 491 But the remaining variant [A’B”C'] (see Fig. 1.153, a), b) ) also leads to contradiction, for (using
T 1.3.1, L 1.3.13.7) A'B" < A'B'& AB = A'B' = A'B" < AB, B"C' < B'C"& B'C' = BC = B"C' < BC,
and [A'B"C"| & [ABC) & A'B" < AB& B"C’ < BC "'23"% A/C’ < AC, which (in view of L 1.3.13.11) contradicts
AC = A’C’'. The resulting major contradiction shows that in fact the point B’ has to lie on the line a .cr. We
have B' € agcn & B' # A& B # C' 122 [B'A'C'| v [A'B'C’"] v [A’C'B’]. But the first of these cases leads to

contradiction, as does the third, because [B'A’'C’] G2 qrer < B, [A'C'B’ G243 40t < A'B'. Thus, we

conclude that [A’B'C’], q.e.d. O

Corollary 1.3.29.3. Isometries transform line figures (sets of points lying on one line) into line figures. 402

Proof. Obviously, we need to consider only figures containing at least 3 points. If we take such a figure A and a line
aA, 4, defined by two arbitrarily chosen points A;, Az of A, by L 1.1.1.4 any other point Ay of A will lie on a4, ,.
Using T 1.2.2, we can assume without any loss of generality that [A; A2 As]. If ¢ : A — B is a motion, mapping the

39TWe take into account that LZAMA; = ZBM A, & ZAM A, = ZBMB, = ZBMA; = ZBMB.

398Recall that a || ¢ || b, and thus the quadrilaterals AMM’A’, BMM'B’ are trapezoids.

399 Actually, we are also using T 1.3.1, but we do not normally cite our usage of this theorem and other highly familiar facts explicitly
to avoid cluttering the proofs with trivial details.

400Observe that, having proven B” # A’, we could get B” # C’ simply out of symmetry considerations. Namely, we need to note that
the conditions of the lemma are invariant with respect to the simultaneous interchanges A < C, A’ +» C’, and make the appropriate
substitutions.

401 Again, once we know that —[B””A’C’], we can immediately exclude the possibility that [A’C’B’'] using symmetry considerations,
namely, that the conditions of the lemma are invariant with respect to the substitutions A < C, A’ « C’.

402This corollary can be given a more precise formulation as follows: Given two points A, B in a line figure A, all points of the image
A’ = f(A) of the set A under an isometry f lie on the line a s/ g/, where A’ = f(A), B’ == f(B).
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Figure 1.153: Illustration for proof of L 1.3.29.2.

figure A into a point set B, we have by the preceding lemma (L 1.3.34.1): [B1B2 B3], where B; = ¢(4;), i = 1,2, 3.
Hence by L 1.2.1.3 the points Bj, B2, B3 are collinear, q.e.d. O

Corollary 1.3.29.4. Isometries transform lines into lines. 49

Proof. From the preceding corollary we immediately have f(a) C a’. 44 O

Lemma 1.3.29.5. Given a collinear set of points A congruent to a set of points A, for any point O, lying on the
line a containing the set A and distinct from points A, B € A, there is exactly one point O’ lying on the line o
containing the set A" such that the sets AUO, A" U O’ are congruent.

Proof. Suppose an interval AB is congruent to an interval A’B’, where A,B € A, A’,B’ € A’. Since the points
A, B, O are collinear, by T 1.2.2 either [OAB], or [OBA], or [AOB]. Suppose first A lies between O, B. Using
A 1.3.1, choose A’ O'%, (unique by T 1.3.1) such that OA = O’A’. Now we can write [OAB] & [0’A’B'| & OA =
O'A&AB = AB' "¥2% op = 0'B. Thus, we have {O, A, B} = {O’, A’, B'}. Similarly, by symmetry for the
case when B lies between O, A we also have {0, A, B} = {O',A’,B’}. 4% Finally, if O lies between A, B, by
C 1.3.9.2 we have 30’ [A'O’'B'1& OA = O’A’& OB = O'B’. Thus, again {0, A, B}, {0, A’, B’} are congruent.
To complete the proof of the lemma we need to show that for all P € A we have OP = O'P’, where P’ € A'.
We already know this result to be correct for P = A and P = B. We need to prove it for P # A, P # B. We
further assume that the point P’ € A’ is chosen so that AP = A’P’. Then, of course, also BP = B'P’. These
facts reflect the congruence of the sets A, A’. Again, we start with the case when [OAB]. Since the points O,
A, B, P are collinear and distinct, from T 1.2.2, T 1.2.5 we have either [POB], or [OPA], or [APB], or [OBP]

(see Fig. 1.154, a)-d), respectively). Suppose first [POB]. We then have: [POB] & [OAB] = 3 2 [POA]) & [PAB].
[PAB|& PA= P'A&AB = A'B'& PB = P'B' “'22? [P'A'B']. [P'A'B'| & [0'A'D’) L”:>15 PPle A &O €

. [POAJ& P € A%, &0 € A'% & AP = AP &0A = O'A' "222" 0P = O'P'. Suppose now [OPA].
Then [OPA] & [0AB] “:22? [PAB| & [OPB). [PAB]& PA = P'A'& AB = A'B'& PB = P'B' "'2%? [P'A'B
[P'A'B & [0'A'B') 2 V2 ple A% &0 € A%, [OPAI&P € A5 &0 € A% &AP = A'P'&OA
o'A V2L Op = O'P'. Suppose [APB]. Then [APB|& AP = A'P' & PB= P'B'& AB = A'B' “'22? [A'P'B
[OAB] & [APB] "2282 [0AP]. [0'A'B|&[A'P'B] "222 [0'A'P']. [0AP|&[0'A'P|&OA = O'A’' & AP
AP P93 Op = O'P'. Finally, suppose [OBP]. Then [OBP]& [0AB] "228? [0AP) & [ABP]. [ABP]& AB =
A'B'& BP = B'P' & AP = A'P' "'22? [A'B'P'). [0'A'B'| & [A'B'P') "£28 o [0’A'P']. [OAP]& [0’ A'P'| & OA =
O'A&AP = A'P' "22° Op = O'P'. Similarly, it can be shown that when [OBA] the congruence OP = O'P’ al-
ways holds. 406 We turn to the remaining case, when O lies between A, B. Since the points O, A, B, P are collinear

ik
]

403 This corollary can be stated more precisely as follows: Any isometry f whose domain contains the set P, of all points of a line a
transforms P, into the set P/, of all points of a line a’, not necessarily distinct from a.

404For convenience, we are making use of a popular jargon, replacing the notation for the set (say, P, in our example) of points of a
line a by the notation for the line itself.

4051 fact, since A, B, as well as A’, B’ enter the conditions symmetrically, we just need to substitute A — B, B — A in the preceding
arguments: Using A 1.3.1, choose B’ O’$s (unique by T 1.3.1) such that OB = O’B’. Now we can write [OBA] & [0'B’A’| & OB =

O'B'&BA=B'A' "2 oa=0A.
406Dye to symmetry, we just need to make the substitutions A — B, B — A in our preceding arguments concerning the case
[OAB]. To further convince the reader, we present here the result of this mechanistic replacement. Since the points O, A, B,
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respectively). Suppose first [PAB]. We have: [PAB]|& PA = P'A'& AB = A'B'& PB = P'B' "'2%? [P'A'B

[PAB] & [AOB] "228? [PAO]. [P'A'B|&[A'O'B'] “2222 [P'A'0Y]. [PAO]&[P'A'0'|& OA = O'A' & AP

L1232

and distinct, from T 1.2.2, T 1.2.5 we have either [PAB], or [APO], or [OPB], or [ABP] (see Fig. 1.154, e)-h),
ik

AP P22% 0p = O'P'. Suppose now [OPB]. Then [AOB] & [OPB] [AOP| & [APB]. [APB]& AP =
A'P'& PB=P'B' & AB = A'B' "'2%X? [A'P'B'|. [A/O'B') & [A'P' B’ Ll'%“ O' € Alp &P € Ap. [AOP]& O
Ap &P € Alp & AO = A'O' & AP = A'P'A'%, & O' € A, & AP = AP’ & 0OA = 0'A "8 0P = O'P'. The
c;ses thzz(% [élBP], [APO] can be reduced to the cases [PAB], [OPB], respectively by the substitutions A — B,

Theorem 1.3.29. Let A;, where i € Ny, n > 3, be a finite sequence of points with the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose,
further, that the sequence A; is congruent to a sequence B;, where i € N,,. 498 Then the points By, Bo, ..., B, are in
order [B1Bs...By], i.e. the sequence of points B;, i € N,,, n >3 (n € N) on one line has the property that a point
lies between two other points iff its number has an intermediate value between the numbers of these two points.

Proof. By induction on n. For n = 3 see the preceding lemma (L 1.3.29.2). Observe further that when n > 4
the conditions of the theorem, being true for the sequences A;, B; of n points, are also true for the sequences
Ay, As,...,Ap_1 and By, Bs, ..., B,_1, each consisting of n — 1 points. The induction assumption then tells us that
the points By, Ba, ..., B,_1 are in order [B1Bs ... B,_1]. Since the points A1, Ag, ..., A, are in order [A; Az ... A,)
(see L 1.2.7.3), we can write [A1 A4, 1A,|& A1A,_1 = B1B,_1& A, 1A, = B,_1B, & A1A, = BB, 11.3.29.2
[B1Bo1By). [BiBu—2By1]& [B1Bn_1B,) =227 |
Bi, Ba, ..., By are in order [B1Bs ... B,], q.e.d. O

B, _2B,_1By]. Applying L 1.2.7.3 again, we see that the points

Corollary 1.3.29.1. Isometries are either sense-preserving or sense-reversing transformations.

Proof. O

Theorem 1.3.30. Given a figure A containing a point O on line a, a point A on a, and a line a’ containing points
O', A, there exists exactly one motion f: A — A" and, correspondingly, one figure A" such that f(O) = O and if A,
B lie (on line a) on the same side (on opposite sides) of the point O, where B € A then the points A’ and B' = f(B)
also lie (on line a') on the same side (on opposite sides) of the point O'. 409

Proof. We set, by definition, f(O) &L 0. For B e O4NA, using A 1.3.1, choose B’ € O’ 4+ so that OB = O'B’.

Similarly, for B € O N A, using A 1.3.1, choose B’ € (O’ 4/)° so that again OB = O’B’. In both cases we let, by
definition, f(B) = B’. Note that, by construction, if B,C' € A and B’ = f(B), C' = f(C), then the point pairs
B, C and B’, C’ lie either both on one side (see Fig. 1.155, a)) or both on opposite sides (see Fig. 1.155, b)) of the
points O, O’, respectively. Hence by P 1.3.9.3 BC = B'C’ for all B,C € A, which completes the proof. 41° O

P are collinear and distinct, from T 1.2.2, T 1.2.5 we have either [POA], or [OPB], or [BPA], or [OAP]. Suppose first [POA].
We then have: [POA|&[0BA] "“2£? [POB|& [PBA]. [PBA|&PB = P'B'& BA = B'A'& PA = p'A’ M'2292 [pipar,
[P'B' A & [0'B'A') 12252 pr e B, & O € B',. [POB|& P’ € B'S, &0’ € B', & BP = B'P' & OB = 0'B' "2 o1 OP=0'P'.
Suppose now [OPB]. Then [OPB] & [0BA] "2 7 [PBA] &[OPA]. [PBA]& PB=P'B'& BA=B'A' & PA=P'A’ oy 2292 prpr ).
[P'B'A & [0'B' A M1 2252 pr e B, & O’ € B',. [OPB|& P’ € B'S, &0’ € B', & BP = B'P' & OB = 0'B' "2 Iy OP=0'P'.
Suppose [BPA]. Then [BPA]& BP = B'P'& PA = P'A'&BA = B'A 3 292 |B'P'A’). [OBA] & |BPA] “ 232 10BP).
[(0'B'A" & |B'P'A) “2£2 [0'B'P'|. [OBP|&[0'B'P'|& OB = O'B'&BP = B'P' P1:3§ ® OP = O'P'. Finally, suppose
[OBP]. Then [OBP]&[0AB] ““22? [0BP|& [BAP]. [BAP|&BA = B'A'& AP = A'P'&BP = B'P' “'2292 [prap).
[0'B' A & [B'A'P] V22 [0'B/P!). [0OBP|&[0'B'P|&OB=0'B'&BP=B'P' "223 op =o' P
407 Again, to further convince the reader of the validity of these substitutions and the symmetry considerations underlying them, we
present here the results of such substitutions. Suppose first [PBA]. We have: [PBA]& PB=P'B'& BA= B'A'& PA= P'A’ L1.329.2
[P'B'A']. [PBA| & [BOA] 222 [PBO). [P'B' A & [B'O'A'] "222 [p'B'O"]. [PBO| & [P'B'0'|& OB = O'B' & BP = B'P' "293
OP = O'P'. Suppose now [OPA]. Then [BOA]& [OPA] [BOP)& [BPA|. [BPA|&BP = B'P'&PA = P'A'&BA =
BA 222 prpran [B'O'AN & [B'P'A M2 0 e B! & P! € B! 4. [BOP|&O' € B' s & P' € B' 4 & BO = B'O' & BP =
B'P'B'S, &0' € B'S, & BP=B'P'&0B=0'B' "2 op=0'p'.
408 A ccording to the definition, two sequences can be congruent only if they consist of equal number of points.
409That is, for B € A if B € O4 then B’ € O’ 4+ and B € O implies B’ € 0’S,,.
410Uniqueness is obvious from A 1.3.1.
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Figure 1.154: Illustration for proof of L 1.3.29.5.
O B A C ¢ 0 A B
6: f?), 1&7 6, éa 6: &’ ﬁ
a) b)

Figure 1.155: Ilustration for proof of T 1.3.30.
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0 A C B O, O’ A C B 0O,
b)

———————e e ——————o — P ———————e ¢ —————o — P

O A B cC O, N B’ cC 0,

Figure 1.156: Isometries transform rays into rays.

Isometries of Collinear Figures

Corollary 1.3.30.1. Isometries transform rays into rays. If a ray O, is transformed into O’ 4, then O maps into
o'

Proof. Taking a point B such that [OAB],*!! using A 1.3.1, we can choose O’ with the properties [0’A’B’] (i.e.,
O € A'%), OA = O'A', where A’ = f(A), B’ = f(B), f being a given isometry. Suppose now C' is an arbitrary
point on the ray Oy, distinct from A, B. Denote C’ = f(C). 412 We have C € Oy = Op & C # A& CneB "£2'°

Ce(0A)VvCe(AB)VC € BS.

Consider first the case when [OCA] (see Fig. 1.156, a)). We have then [OCA] & [OAB] bl2g2 [CAB]. By
congruence we can write [CAB]|& AB = A'B'&BC = B'C'& AC = A'CY 13592 [C'A'B']. Also, we have
[O'A'B & [C'A'B) "'28° 0" € B4 & C' € B 4. Hence [0CA|& OA = O'A' & AC = A'C' &0’ € A%, & C' €

e M iorcr A g o = ot MR o e 07y

Now we turn to the case when [ACB] (see Fig. 1.155, b)). Note that this implies [0AB] & [ACB]
[OAC). By congruence we can write [ACB]& AB = A'B'& BC = B'C' & AC = A'C' "'22? [A'C'B/]. Hence
[0'A'B & [A/B'C') M 28% (oA M2 0 e 07 4.

Finally, suppose C' € B9, ie. [ABC] (see Fig. 1.155, c)). Note that this implies [OAB] & [ABC]
[OAC]. By congruence we can write [ABC|& AB = A’'B'& BC = B'C' & AC = A'CY 3292 [A’B'C']. Hence
[0'A'B & [A'B'C') 23 oA M2 o e 07y,

Furthermore, in the last two cases we can write [0AC] & [0’ A'C]& OA = O'A' & AC = A'C' "E28° 0Cc = 0'C'.

Thus, we have shown that C' € O4 implies C’ € O’ 4/, where C' = f(C). This fact can be written down as
f(O4) C O 4. Also, we have OC = O'C’, where C' = f(C).

To show that f(O) = O’ denote O” = f(O) (now we assume that the domain of f includes O). f being an
isometry, we have [0AB]& OA = 0"A' & OB = 0"B' & AB = A'B' "'222 (0" A'B']. [0'A'B| & [0" A'B') “'2252
0 eA%L &0" e AG. Hence by T 1.3.1 0" = 0.

To show that f(O4) = O’ a» we need to prove that for all C! € O’ 4+ there exists C' € O 4 such that f(C) = C’. To
achieve this, given C’ € 0’ 4/ it suffices to choose (using A 1.3.1) C' € O4 so that OC = O'C’. Then C’ will coincide

with f(C) (this follows from T 1.3.1 and the arguments given above showing that OC = O’ f(C) for any C € O4). )
O

L1.2.3.2
—

L1.2.3.1
>

Corollary 1.3.30.2. Isometries transform open intervals into open intervals. If an open interval (AB) is transformed
into an open interval (A’B’) then A maps into one of the ends of the interval A'B’, and B maps into its other end.

Proof. Let C, D be two points on the open interval (AB) (see T 1.2.8). Without loss of generality we can assume

that [ACD]. %3 Then [ACD]& [ADB] hL2g2 [CDB] & [ACB]. Thus, the points A, B, C, D are in the order

[ACDB]. Suppose f is a given isometry. We need to prove that the image of the open interval (AB) under f
is an open interval . Denote C' = f(C), D' = f(D). Using A 1.3.1, choose points A" € C'},,, B’ € D'¢, (in

view of L 1.2.15.2 this means that [A’C'D’], [C'D’'B’], respectively) such that AC = A’C’, DB = D'B’. Note

that [A’'C'D'] & [C'D'B’] bLzgd [A'C'B'| & [A’D'B’]. In order to prove that the open interval (A’B’) is the im-

age (AB) we need to show that VP € (AB) f(P) € (A'B’). Denote P = f(P). We have P € (AB)& P #

411 Note that, obviously, [OAB] = B € O, (see L 1.2.11.16).

412Since the points A, B, C are, obviously, collinear, by T 1.2.2 one of them lies between the two others. Using L 1.2.30.1 it will be
shown that the points A’, B/, C’ are in the same lexicographic order as A, B, C. That is, [ABC| implies [A’B’C’], [CAB] implies
[C'A'B'], ACB implies [A'C'B’].

413By P 1.2.3.4 we have either [ACD] or [ADC]. In the latter case we can simply rename C — D, D — C.
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Figure 1.157: Illustration for proof of C 1.3.30.2.

L1277

A&P # C&P # D € (AC)Vv P € (CD)V P € (DB). Suppose first P € (AC) (see Fig. 1.157,
L1232

a)). Then [ACD]|& [APC] "= [PCD]. Since f is a motion, we can write [PCD]& PC = P'C'&CD =

C'D'&PD = P'D' VE2F? [pio'p!). [AC'D & [P'C' D) L2152 € C'%5 &P € C. [APCI&A €

C'%, &P € C'% & AC = A/C'&CP = C'P' "2 [A/P/C'|& AP = A'P'. [A'P'C'| & [A'C'B] "2282 (4 P'BY).
Suppose now P € (CD) (see Fig. 1.157, b)). f being a motion, we have [CPD|& CP = C'P'& PD = P'D' &CD =
o'p MER2 [C'P'D). [C'P'D|&C € (AB)&D' € (AB) =2 P e (A'B). [AC'D&[C'P'D] M
[A'C'P'). [ACP|&[A'C'P'|& AC = A'C'&CP = C'P' "222 AP = A’P'. With the aid of the substitutions
A—- B, B—- A C—-D,D—-C, A —-B,B — A, C — D, D — C' we can show that the congruence
BP = B'P’ holds in this case as well. 14 Finally, for [DPB] we can show that P’ € (A’B’) using the substitutions
A—B B—AC—D,D—C,A—B,B —A, C — D, D — C' and our result for the case [APC]. 415

Making the substitutions A — B, C — D, D — C, A’ - B, C' — D', D' — (', A” — B”, we find that
f(B) =B

417

To show that f(AB) = (A’B’) we need to prove that for all P’ € (A’B’) there exists P € (AB) such that
f(p) =P

To achieve this, given P’ € (A’B’) it suffices to choose (using C 1.3.9.2) P € (AB) so that AP = A’P’. Then
P’ will coincide with f(P) (this follows from T 1.3.1 and the arguments given above showing that AP = A’ f(P) for
any P € (AB)). O

Corollary 1.3.30.3. Isometries transform half-open (half-closed) intervals into half-open (half-closed) intervals.
Proof. O

Corollary 1.3.30.4. Isometries transform closed intervals into closed intervals.

Proof. O

General Notion of Symmetry

Some general definitions are in order. **® Consider an arbitrary set M. % A function f : M — M, mapping the set M onto
itself, will be referred to as a transformation of the set M. Given a subset A C M of the set M, a transformation f of M is
called a symmetry transformation, or a symmetry element, of the set A iff it has the following properties:

Property 1.3.6. The function f transforms elements of the set A into elements of the same set, i.e. Vx € A f(x) € A.

414Tn fact, making the substitutions indicated above, we write: [B’'D’C']& [D'P'C’] Ll282

B'D'&DP=D'P' "2 pp=p'p’.
415To make our arguments more convincing, we write down the results of the substitutions explicitly: Suppose P € (BD). Then

[B'D'P'). [BDP]&[B'D'P'|& BD =

[BDC]& [BPD] Li23.2 [PDC]. Since f is a motion, we can write [PDC|& PD = P'D' & DC = D'C' & PC = P'C’ L13.39.2 [P'D'C’].
[B'D'C') & [P'D'C"] L12=1>° > B € D'& &P € D'S. [BPD|&B' € D'& &P € D'$ &BD = B'D'&DP = p'p M1
[B'P'D'|& BP = B'P'. [B'P'D'| & [B'D'A'| ":2£2 [B'P’ A").

Thus, we have shown that P € (AB) implies P’ (A’B’"), where P’ = f(P). This fact can be written down as f(AB) C (A’B’). Also,
we have AP = A’P’', BP = B'P’, where P’ = f(P).

To show that f(A) = A’ denote A” = f(A) (now we assume that the domain of f includes A). 416 f being an isometry, we have
[ACD]& AC = A"C' & AD = A"D' & CD = C'D' “"23%2 [41C'D. [A'C' D' & [A"C' D) 12552 A7 € €75, & A" € C'S,,. Hence by
T131A"=A".

417To show that f(B) = B’ denote B"” = f(B) (now we assume that the domain of f includes B). f being an isometry, we have
[BDC]& BD = B"D' & BC = B"C' & DC = D'C’ “'23%2 pnprc). [B'D'C' & [B"D'C') “'23°2 B/ € DS, & B" € D'$,. Hence
by T 1.3.1 B” = B'.

418Tn volume 1 we reiterate some of the material presented here in small print. This is done for convenience of the reader and to make
exposition in each volume more self-contained.

419 Generally speaking, M need not be a set of points or any other geometric objects. However, virtually all examples of M we will
encounter in this volume will be point sets, also referred to as geometric figures.
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Property 1.3.7. f transforms distinct elements of A into distinct elements of this set, i.e. x1 # x2 = f(x1) # f(x2), where
z1, 20 € A 120

Property 1.3.8. Every element y of A is an image of some element x of this set: Yy € Az € Ay = f(z). ***

If f is a symmetry element of A, we also say that A is symmetric with respect to (or symmetric under) the transformation
A. Let So(A) be the set of all symmetry elements of A. Define multiplication on So(A) by $op(z) = ¥ (p(x)), where 1, ¢ € So.
Then (So(A), o) is a group *?? with identity function as the identity element, and inverse functions as inverse elements. We call
this group the full symmetry group of A. However, the full symmetry group is so broad as to be practically useless. Therefore,
for applications to concrete problems, we need to restrict it as outlined below. Let S(A) be the set of all elements of Sp(A),
satisfying conditions C1, Ca, ..., so that for each condition C; the following properties hold:

1. If ¢(x) and ¢ (x) satisfy the condition C; then their product ¢ (z) o ¢(z) also satisfies this condition;

2. If p(x) satisfies the condition C;, then its inverse function (¢(x))™" also satisfies this condition.

Thus (S(A), o) forms a subgroup of the full symmetry group and is also termed a (partial) symmetry *** group.
With these definitions, we immediately obtain the following simple, but important theorems.

Theorem 1.3.31. If the object A is a (set-theoretical) union of objects Aa,a € A, its symmetry group contains as a subgroup
the intersection of the groups of symmetry of all objects Ao. This can be written as

S(lJ 4a) > ) S(Aa) (1.1)
acA acA
Proof. Let f € N,exS(Aa) and z € [J,c 4 Aa. Then Jap such that © € Aq,. Because f € S(Aa,), we have f(z) € Aq,,

whence f(x) € U, c 4 Ao and therefore f € S(U,cq Aa)- Iy € Uypea Aa, since y € Ao,y and f € S(Aq,), there exists x € Aq,
such that y = f(x). Therefore, for every y € |J,c 4 Ao we can find x € |J,c 4 Aa such that y = f(z). O

Theorem 1.3.32. If the object A is a (set-theoretical) union of objects Ao, € A, and all its symmetry transformations f
satisfy f(Aa) N Ag =0, where a # 3, a, 8 € A, then

S(lJ 4a) = ) S(Aa) (1.2)

acA acA

Proof. Given the condition of the theorem, we need to prove that

S(lJ 4a) € N S(Aa) (1.3)
acA acA
Let f € S(Upea Aa) and & € Aoy a0 € A. Then z € |, 4 Ao and therefore f(z) € J,c4 Aa- But since f(Aa) N Ag =0,
where a # 3, o, 8 € A, we have f(z) € Any. If y € Aay C Uyen Aas there exists € |J,c 4 Ao such that y = f(z). Then
x € Aay, because otherwise © € Ag, where ap # 3, and f(z) € AgN As, = 0 - a contradiction. Since the choice of oy € A
was arbitrary, we have proven that f € (), c 4 S(4a). D

In what follows, we shall usually refer to transformations on a line a, i.e. functions P, — P, (transformations
on a plane «, i.e. functions P, — P,; transformations in space, i.e. functions C¥'* — CF?) as line transformations
(plane transformations; spatial, or space transformations).

For convenience we denote the identity transformation (the transformation sending every element of the set into
itself: x — x for all z € M.) of an arbitrary set M by idM, or simply id when M is assumed to be known from
context or not relevant.

Given a point O on a line a, define the transformation f = refl, o) of the set P, of the points of the line a, as
follows: For A € P, \ {O} we choose, using A 1.3.1, A’ € O so that OA = OA’, and let, by definition, f(A) = A"
Finally, we let f(O) = O. This transformation is called the reflection of (the points of) the line a in the point O.

Observe that, of the two rays into which the point O separates the line a, the reflection of the set of points of a
in O transforms the first ray into the second ray and the second into the first.

Theorem 1.3.33. Given a set of at least two points *>* A on a line a and a point O’ on a line a’, there are at most
two figures on a' congruent to A and containing the point O'. To be precise, there is exactly one figure A’ if it is
symmetric under the transformation of reflection in the point O'. There are two figures A’, A", both containing O’
and congruent to A when A’ (and then, of course, also A”) is not symmetric under the reflection in O’.

Proof. O

Lemma 1.3.33.1. The reflection of a line a in a point O is a bijection.

420 Obviously, Pr 1.3.7 means that the restriction of f on A is an injection.

421 Obviously, Pr 1.3.8 means that the restriction of f on A is a surjection.

422Obviously, a combination of any two symmetry transformations is again a symmetry transformation, and this composition law is
associative

423 Fxcept as in this definition, we will virtually never use the word partial when speaking about these symmetry groups, since in practice
we will encounter only such groups, and almost never deal with So-type (unrestricted) groups.

42471t is evident that we need to have at least two points in the set A to be able to speak about congruence. In the future we may choose
to omit obvious conditions of this type.
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Proof. Obvious from A 1.3.1, T 1.3.1, T 1.3.2. O

Lemma 1.3.33.2. The reflection of a line a in a point O preserves distances between points. That is, the reflection
of a line a in a point O is an isometry.

Proof. We need to show that AB = A'B’, where A" = refl(, oy(A), B' = refl, o)(B) for all points A € a, B € a.
In the case where one of the points A, B coincides with O this is already obvious from the definition of the reflection
transformation.

Suppose now that the points O, A, B are all distinct. Then from T 1.2.2 we have either [AOB], or [OAB], or
[OBA].

Assuming the first of these variants, we can write using the definition of reflection [AOB] & [A’OB’| & OA =

OA' & OB = OB "33 AB = A'B’.

Suppose now that [0AB]. Then [OAB|&B' € O’ 4 & OA = OA'& OB = OB’ "2 AB = A'B' & [0'A'B/).
425 O

Lemma 1.3.33.3. Double reflection of the same line a in the same point O (i.e. a composition of this reflection
with itself) is the identity transformation, i.e. refl%a_’o) = id. 4%6

Proof. O

Lemma 1.3.33.4. The point O is the only fixed point of the reflection of the line a in O.

Proof. O

Lemma 1.3.33.5. The reflection of a line a in a point O is a sense-reversing transformation.

Proof. In view of L 1.2.13.4 we can assume without loss of generality that O is the origin with respect to which the
given order on a is defined. The result then follows in a straightforward way from the definition of order on the line
a and the trivial details are left to the reader to work out. 427 O

Theorem 1.3.34. Proof. O

Given a line a on a plane «, define the transformation f = refl, ,) of the set P, of the points of the plane
«, as follows: For A € P, \ P, we choose, using A 1.3.1, A’ € 0% so that OA = OA’, where O is the foot of
the perpendicular lowered from A to a (this perpendicular exists according to L 1.3.8.1), and let, by definition,
f(A) = A’. Finally, we let f(P) = P for any P € a.

This transformation is called the reflection of (the points of) the plane « in the line a.

Lemma 1.3.34.1. The reflection of a plane o in a line a is a bijection.
Proof. O

Lemma 1.3.34.2. The reflection of a plane o in a line a preserves distances between points. That is, the reflection
of a plane « in a line a is an isometry.

Proof. O

Lemma 1.3.34.3. Double reflection of the same plane « in the same line a (i.e. a composition this reflection with
itself) is the identity transformation, i.e. Tefl%aya) =id. 428

Proof. O
Lemma 1.3.34.4. The set P, is the mazximum fized set of the reflection of the line v in the line a.
Proof. O

Theorem 1.3.34. Consider a non-collinear point set A, points A, B € A, and points A’, B', C' such that AB = A’B’
and C' & aarp. Then there are at most four figures A’ containing A’, B', lying in the plane carprcr and such that
A= A". Given one such figure A’ the remaining figures are obtained by reflection in the line aa g/, by reflection in
the line drawn through the midpoint M’ of A'B’ perpendicular to it, and by the combination of the two reflections
(this combination is reflection in M’ ).

425Gince A, B lie on a on the same side of O but (by definition of reflection) A, A’ as well as B, B’ lie on opposite sides of O, using
L 1.2.17.9, L 1.2.17.10 we see that A’, B’ lie on the same side of O.

4261 other words, a reflection of a line a in a point O coincides with its inverse function.

427Suppose A < B on a. Denote A’ = refliq,0)(A), B' = refl,,0)(B). We need to show that B’ < A’ on a. Suppose that A, B both
lie on the first ray (see p. 22). The definition of order on a then tells us that [ABO]. This, in turn, implies that [OB’A’]. (This can be
seen either directly, using L 1.3.9.1 and the observation that the points A’, B’ lie on the same side of O (both A’,B’ lie on the opposite
side of O from A, B), or using L 1.3.33.2, L 1.3.29.2.) We see that B’ precedes A’ on the second ray, and thus on the whole line a. Most
of the other cases to consider are even simpler. For example, if A lies on the first ray and B on the second ray, then, evidently, A’ lies
on the second ray, and B’ on the first ray. Hence B’ < A’ in this case.

4281p other words, a reflection of a plane « in a line a coincides with its inverse function.
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Proof. O

Theorem 1.3.36. Motion preserves angles. That is, if a figure A is congruent to a figure B, the angle LA A3 A3
formed by any three non-collinear points Ay, Aa, A3 € A of the first figure is congruent to the angle formed by the
corresponding three points By, Ba, Bs of the second figure, i.e. ZA1AsAs = £B1BaBs, where B; = ¢(A;) (¢ being
the motion ), i =1,2,3.

Proof. By hypothesis, the points A, As, A3 are not collinear. Neither are By, By, B3 (see C 1.3.29.3). Since ¢ A — B
is a motion, we can write Ay Ay = B1Bs, A1 A3 = B1B3, AsAs = B3B3, whence by T 1.3.10 AA, As A3 = AB1 B> Bs,
which implies /A1 A3 A3 = /B1B2Bs, q.e.d. O

Theorem 1.3.37. Suppose we are given:

— A figure A lying in plane o and containing at least three non-collinear points;

— A line a C «, containing a point O of A and a point A (not necessarily lying in A);

— A point E lying in plane o not on a;

— Two distinct points O', A" on a line a’ lying in a plane o/, and a point E' lying in o’ not on a’.

Then there exists exactly one motion f: A — A’ and, correspondingly, one figure A’, such that:

1. O' = f(0).

2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A’ and B’ = f(B)
also lie on line a' on the same side (on opposite sides) of the point O'.

3. If E, F lie in plane o on the same side (on opposite sides) of the line a, then the points E' and F' = f(F)
also lie (in plane o’) on the same side (on opposite sides) of the line a’. 4%

Proof. 1, 2 are proved exactly as in T 1.3.30. 30 Thus, we have contsructed the restriction of f to AN P,, which is
itself a motion (see proof of T 1.3.30). Suppose now F' € A, F ¢ a. Using A 1.3.4, A 1.3.1, construct a point F’ such
that F' € o/, F' ¢ o/, ZAOF = LA'O'F’, OF = O'F’, and, finally, if E, F lie in plane « on one side (on opposite
sides) of the line a, then E’, F” lie in plane o’ on one side (on opposite sides) of the line a’. 43! (See Fig. 1.158, a).) We
set, by definition, f(F) = F’. For the case B € O4, B’ € O’ s we have by L 1.2.11.3 Op = Oy4, O’ = O’ 4/, whence
/AOF = /BOF, ZA'O'F' = Z/B’O'F’. Thus, we have Z/BOF = /B’O’F’. Recall that also OB = O’B’, where

BeOanA, B €O 4nNA, B = f(B), for, as we have shown above, the restriction of f to ANP, is itself a motion.
Therefore, we obtain OB = O'B' & OF = O'F' & /BOF = /B'O'F' %' ABOF = AB'O'F' = BF = B'F'.
Observe further, that ZAOF = ZA'O'F "22° adjspZAOF = adjspZA'O'F'. If C € Oy, ie. if [AOC] (see
L 1.2.15.2), then ZCOF = adjspZAOF. Similarly, C' € O’ implies ZCOF = adjspZ/AOF. Recall again that

for points C, €’ such that C € OGN A, C" € O’y N A, C' = f(C), in view of the already established properties

of line motion, we can write OC = O'C’. Hence OC = O'C' & OF = O'F' & Z/COF = £C'O'F’ L&t ANCOF =

AC'O'F' = CF = C'F'. Thus, we have proven that for all points B € P, N A and all points F € P, \ P, N A we
have BF = B'F' = f(B)f(F).

Suppose now F' € P, \ P,NA, G € Py \ P, NA. We need to prove that always FG = F'G’, where F' = f(F) €
Por \Pur NA', G = f(G) € Por \ Por N A’. Consider first the case when the points F'; O, G are collinear. Then
either G € Op or G € OF%. Suppose first G € Op. (See Fig. 1.158, b).) Then by L 1.2.11.3 O¢ = Op, whence
ZAOF = ZAOG. 1In view of I, 1.2.19.8 G € Op implies that F', G lie in « on one side of a. We also have by

construction above: LAOF = LA'O'F', ZAOG = LA'O'G’. Consider the case when E, I lie in o on one side of

a. Then E, G also lie on the same side of a. In fact, otherwise EFa & FaG b1.217.10 FaG, which contradicts our

assumption that F'Ga. Since both E, F and E, G lie on one side of a, by construction the pairs E’, F’ and E’,
G’ lie in o on the same side of a’. And, obviously, by transitivity of the relation ”to lie on one side”, we have

F'G’a’. Now turn to the case when E, F lie in o on opposite sides of a.*3> Then E, G also lie on opposite sides

of a. In fact, otherwise FaF & EGa L1.217.10 FaG, which contradicts our assumption that FGa. Since both E,

F and E, G lie on opposite sides of a, by construction the pairs E’', F’ and E’, G’ lie in o’ on opposite sides of

a'. Hence E'a/F' & E'a’ " "'257° F'GVa/. Now we can write ZAOF = LAO'F' & LAOG = LA'O'G' & LAOF =

LZAOG& F'G'a! " 23 O'pr = Oy = G € O p. Thus, we have shown that once F, G lie on one side of O, the
points F’, G’ lie on one side of O’. Suppose now G € 0%, i.e. [FOG]. In view of L 1.2.19.8 G € O% implies that
F, G lie in « on opposite sides of a. We also have by construction above: ZAOF = ZA'O'F', ZAOG = LA'O'G'.
Consider the case when E, F lie in « on one side of a. Then E, G lie on opposite sides of a. (See Fig. 1.158, ¢).)
In fact, otherwise transitivity of the relation "to lie on one side of a line” would give EFa & EGa = FaG, which
contradicts our assumption that FaG. Since E, F' lie in « on one side of a and E, G lie on opposite sides of a, by
construction it follows that the points E’, F’ lie in o’ on one side of @’ and E’, G’ lie on opposite sides of a’. Hence

E'F'a & E'a'G " 22 Fra/GY. Now turn to the case when E, F lie in a on opposite sides of a. Then E, G lie on

one side of a. In fact, otherwise FaF & FEaG 12179 FGa, which contradicts our assumption that FaG. Since E, F

429That is, for F € Aif F € ap then F/ € a’ g/ and F € a$, implies F’ € o/

430We set, by definition, f(O) &L o' For B e OaNA, using A 1.3.1, choose B’ € O’ 4/ so that OB = O'B’. Similarly, for B € O§ N A,

using A 1.3.1, choose B’ € (O’ 4/)¢ so that again OB = O’B’. In both cases we let, by definition, f(B) = B’'.
43lFor F € ap we let F' € o’ g/ and for F € a$, we let F/ € a’§y.
432The reader is encouraged to draw for himself the figure for this case, as well as all other cases left unillustrated in this proof.
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lie in « on opposite sides of @ and E, G lie on one side of a, by construction the points E’, F’ lie in o/ on opposite

sides of @’ and E’, G’ lie on one side of a’. Hence E'a’F' & E'G’a’ MLZLT10 prgr e, Now, using C 1.3.6.1,%33 we can

write ZAOF = ZA'O'F' & ZAOG = LA O'G' & ZAOG = adjsp/AOF & F'd’'G' = O’ = 0’y = G € O’

Thus, we conclude that in the case when the points F', O, G are collinear, either F'; G lie on one side of O and
F’, G’ lie on one side of O', or F', G lie on opposite sides of O and F’, G’ lie on opposite sides of O’. Combined with
the congruences (true by construction) OF = O'F’, OG = O'G’, by P 1.3.9.3 this gives us F'G = F'G’.

Suppose now F, O, G are not collinear. Then, obviously, Og # O%. We also know that if the points F', G lie in a
on one side (on opposite sides) of a, the points F’, G’ lie in o’ on one side (on opposite sides) of a’. (See Fig. 1.158,
d), e).) Hence, taking into account LAOF = LA'O'F', ZAOG = LZA'O'G’, by T 1.3.9 we get LFOG = LF'O'G.
Finally, we have OF = O'F' & /ZFOG = /F'O'G' & OG = 0'G' 2% AFOG = AF'O'G' = FG = F'G', which
completes the proof.

O

Lemma 1.3.37.1. Isometries transform a cross into a cross.*3*

Proof. O

Theorem 1.3.38. Proof. O

Denote by uAB the equivalence class of congruent intervals containing an interval AB. We define addition of
classes of congruent intervals as follows: Take an element AB of the first class pAB and, using A 1.3.1, lay off
the interval BC of the second class uBC into the ray BY, complementary to the ray Ap.*3® Then the sum of the

classes AB, BC'is, by definition, the class uAC, containing the interval AC. Note that this addition of classes

is well defined, for AB = A1 B, & BC = B,Cy & [ABC| & [41B1Cy] "2 AC = A,Cy, which implies that the

result of summation does not depend on the choice of representatives in each class. Thus, put simply, we have
[ABC] = pAC = puAB + uBC. Conversely, the notation AC € p; + pe means that there is a point B such that
[ABC] and AB € p1, BC € uy. In the case when uAB + uCD = uEF and A’B’ = AB, C'D' = CD, E'F' = EF
(that is, when pAB + uCD = uEF and A'B’ € uAB, C'D’' € uCD, E'F' € uEF ), we can say, with some abuse of
terminology, that the interval E'F” is the sum of the intervals A’B’, C'D’.

The addition (of classes of congruent intervals) thus defined has the properties of commutativity and associativity,
as the following two theorems (T 1.3.39, T 1.3.40) indicate:

Theorem 1.3.39. The addition of classes of congruent intervals is commutative: For any classes ui1, ps we have
H1 Tt po = pho .

Proof. Suppose A'C’ € 1 + pe. According to our definition of the addition of classes of congruent intervals this
means that there is an interval AC such that [ABC| and AB € pu3 = uAB, BC € us = uBC. But the fact that
CB € uy = uCB, BA € u1 = uBA, [CBA], and A'C' = CA implies A'C’ € ps + p1. Thus, we have proved
that p1 + pe C po + p1 for any two classes pi, po of congruent intervals. By symmetry, we immediately have
p2 + g1 C pa + po. Hence pn + po = po + pa, qee.d. O

Theorem 1.3.40. The addition of classes of congruent intervals is associative: For any classes 1, po, pus3 we have
(1 + p2) + p3 = pa + (2 + p3).

Proof. Suppose AD € (u1 + u2) 4+ p3. Then there is a point C such that [ACD] and AC € p; 4 p2, CD € ps. In its

turn, AC € pi1 + 1 implies that 3B [ABC] & AB € juy & BC € pip. We have [ABC) & [ACD] "2 [ABD] & [BCD].
Hence [BCD]& BC € 2 & CD € p3 = BD € g + p3. [ABD]|& AB € 1 & BD € g + pus = AD € py + (2 + p3)-
Thus, we have proved that (u1 + p2) + ps C p1 + (ue + ps) for any classes p1, pe, ps of congruent intervals. O

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write
11+ p2 + - - -+ py, for the sum of n classes pq, pa, . . ., pin, of congruent intervals without needing to care about where
we put the parentheses.
If a class uBC of congruent intervals is equal to the sum uB1C14+uB2Co+- - -+uB, C,, of classes uB1C1, uB2Cs, . .., uB,Cy
of congruent intervals, and uB1Cy = uB2Cy = -+ = uB,C, (that is, BiC1y = B:Cy = --- = B, C,,), we write
uBC =nuB1Cy or uB1Cy = (1/n)uBC.

Proposition 1.3.40.1. If pAB + uCD = uEF, A’B’ € uAB, C'D’ € uCD, E'F' € uEF, then A'B’ < E'F’,
C'D' < E'F'.

433OQbserving also that F’a’G! = LA'O'G' = adj LA'O'F'.

434 A cross is a couple of intersecting lines (see definition on p. 4).

435In other words, we take the point C' € BY (recall that C € B means that [ABC], see L 1.2.15.2) such that the interval BC lies in
the second class, which we denote pBC. The notation employed here is perfectly legitimate: we know that A1B; € pAB = A1B; =
AB = pA1 By = pAB. In our future treatment of classes of congruent intervals we shall often resort to this convenient abuse of notation.
Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter p (possibly with subscripts)
without the accompanying name of defining representative to denote congruence classes of intervals whenever giving a particular defining
representative for a class is not relevant.
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Proof. By the definition of addition of classes of congruent intervals, there are intervals LM € pAB, MN € CD,
LN € EF such that [LMN]. By C 1.3.13.4 LM < LN. Finally, using T 1.3.1, L 1.3.13.6, L. 1.3.13.7 we can write
A'B' =AB& LM = AB& E'F = EF& LN = EF& LM < LN = A'B’ < E'F’. Similarly, C'D’' < F'F'. O

At this point we can introduce the following jargon. For classes uAB, uCD or congruent intervals we write
wAB < uCD or uCD > uAB if there are intervals A’B’ € uAB, C'D’ € CD such that A’B’ < C'D’. T 1.3.1,
L 1.3.13.6, L 1.3.13.7 then show that this notation is well defined: it does not depend on the choice of the intervals
A’'B’, C'D’. For arbitrary classes uAB, uCD of congruent intervals we then have either pAB < uCD, or uAB =
pCD, or uAB > pCD (with the last inequality being equivalent to uCD < pAB). From L 1.3.13.11 we see also that
any one of these options excludes the two others.

Proposition 1.3.40.2. If uAB + uCD = uEF, uAB + pGH = uLM, and CD < GH, then EF < LM . 436

Proof. By hypothesis, there are intervals PQ € pAB, QR € pCD, P'Q" € uAB, Q'R' € uGH, such that

[PQR], [P'Q'R'), PR € uEF, P'R' € uLM. Obviously, PQ = AB& P'Q' = AB 2%' PQ = P'Q’. Using

L 1.3.13.6, L 1.3.13.7 we can also write QR = CD&CD < GH&Q'R' = GH = QR < Q'R’. We then have

[PQR| & [P'Q'R'| & PQ = P'Q'& QR < Q'R “'23"' PR < P'R'. Finally, again using L 1.3.13.6, L 1.3.13.7, we

obtain PR=EF& PR< PR & PR =LM = EF <LM. O
Proposition 1.3.40.3. If uAB + nCD = uEF, nAB + unGH = uLM, and EF < LM, then CD < GH. %37

Proof. We know that either uCD = uGH, or puGH < uCD, or uCD < pGH. But puCD = pGH would imply
uEF = puLM, which contradicts EF < LM in view of L 1.3.13.11. Suppose uGH < pCD. Then, using the
preceding proposition (P 1.3.40.2), we would have LM < EF, which contradicts EF < LM in view of L 1.3.13.10.
Thus, we have CD < GH as the only remaining possibility. O

Proposition 1.3.40.4. A class uBC of congruent intervals is equal to the sum puB1C1 + uB2Cs + -+ - + uB,C,, of
classes uB1Cy, uBoCly, ..., uB,Cy of congruent intervals iff there are points Ag, A1, ..., An such that [A;—1A; Aiy1]
for alli € N,_1, A;_1A; € nB;C; for all i € N,, and AgA, € uBC. %38

Proof. Suppose uBC = uB1C1 + uBsCs + -+ + uB,C,. We need to show that there are points Ag, 41,..., 4,
such that [A;—1A;A;41] for all i € N,,_q, A;_1A; = B;C; for all i € N,,, and ApA,, = BC. For n = 2 this has been
established previously. 3? Suppose now that for the class i, 1 = pB1C1+puBoCo+- - -+ uB,,_1Cy_1 there are points
Ao,Al, .. .,An,1 such that [AiflAiAiJrl] for all i € N, _o, A;_1A; € uBlCl for all i € N,_1, and A()Anfl € lnp—1-
Using A 1.3.1, choose a point A, such that ApA, = BC and the points A,_1, A, lie on the same side of the
point Ag. Since, by hypothesis, uBC = pp—1 + uB,C,, there are points Dy, D,_1, D,, such that DoD,_1 € pn_1,
D, 1D, € uBnCn, DyD,, € ,U,B(j7 and [DQDn_an]. Since DoD,,_1 € ,u,n_l&AoAn_l € Up—1 = DoD,,_1 =
AoAn—1, DoD,, € uBC & AgA,, € uBC = DyD,, = AoA,, [DoD,—1D,), and A,,_1, A, lie on the same side of Ay,
by L 1.3.9.1 we have D,,_1D,, = A,,_1A,, [AoAn-14,]. By L 1.2.7.3 the fact that [4;,_1A4;A;41] for all i € N,,_»

implies that the points Ag, A1, ..., A,—1 are in order [AgA; ... A,_1]. In particular, we have [AgA;,,—2A4,_1]. Hence,

& [AgAn—1A,] Li2g.2 [Ay—2A4,-1A,]. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are points Ag, A,... A, such that [4;_14;A;41] for all
1 € Np_1, A;_1A; € uB;C; for all i € N,, and AgA,, € uBC. We need to show that the class uBC of congruent
intervals is equal to the sum uB,Ci + uB2Cy + -+ - + uB, C,, of the classes uB1C1, uB2Co, ..., uB,C,. For n = 2
this has been proved before. Denote pu,_; the class containing the interval AgA,_;. Now we can assume that
1 = pB1Cy + uBoCo + - -+ + uB,,_1Cp, 1. *40 Since the points Ag, A1, ..., A, are in the order [AgA; ... A,] (see
L 1.2.7.3), we have, in particular, [AgA,_1...A]. As also AgAp—1 € pn-1, An—14, € uB,Cp, AgA, € uBC, it
follows that uBC' = pup—1 + uB,Cp = uB1Cy + pB2Co + -+ - + uB,_1Cp_1 + uB,C,, q.e.d. O

Proposition 1.3.40.5. For classes p1, pe, ps of congruent intervals we have: py + po = p1 + s implies ps = 3.

Proof. We know that either po < ps, or ps = s, or ps < ps. But by P 1.3.40.2 pe < ps would imply pg +pe < p1+ps,
and pe > ps would imply pg + po > p1 + ps. But both gy + pe < py + ps and pg + pe > py1 + ps contradict
11+ e = p1 + p3, whence the result. O

Proposition 1.3.40.6. For any classes p1, ps of congruent intervals such that p1 < ps, there is a unique class pa
of congruent intervals with the property pi + po = us.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that 1 < pg in view
of L. 1.3.13.3 implies that there are points A, B, C such that AB € py, AC € u3, and [ABC]. Denote uy = uBC. 44!

436 This proposition can be formulated in more abstract terms for congruence classes p1, p2, us of intervals as follows: pa < p3 implies
p1+ p2 < p1 4 ps.

43T This proposition can be formulated in more abstract terms for congruence classes u1, 2, u3 of intervals as follows: p1 4 p2 < p1 + ps
implies p2 < p3.

438 That is, we have A;_1A; = B;C; for all i € N, and AgA, = BC.

439Gee the discussion following the definition of addition of classes of congruent intervals.

440Qbserve that if the n points Ag, A1, ... A, are such that [Ai—1A;Ai4q] for all i € Njy—q, Aj—1A; € uB;C; for all ¢ € Ny, then all
these facts remain valid for the n — 1 points Ag, A1, ... Ap—1. Furthermore, we have AgA,—1 € pp—1 from the definition of pn,—1.
441That is, we take pa to be the class of congruent intervals containing the interval BC.
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From the definition of sum of classes of congruent intervals then follows that i + uo = pu3. O

If w1 + pe = ps (and then, of course, ps + 1 = ps in view of T 1.3.39), we shall refer to the class us of
congruent intervals as the difference of the classes u3, p1 of congruent intervals and write pus = ps — pq. That is,
Lo = i3 — 41 PN 11+ p2 = ps. The preceding proposition shows that the difference of classes of congruent intervals
is well defined.

With subtraction of classes of congruent intervals thus defined, the familiar rules of algebra apply, analogous to
the corresponding properties of subtraction of natural numbers. For example, we have the following identities:

Proposition 1.3.40.7. 1 + (p2 — p3) = (u1 — p3) + p2 = (1 + p2) — ps for any classes pa, p2, ps of congruent
intervals assuming, of course, that ps > us.

Proof. O

Proposition 1.3.40.8. p; — (41 — pe2) = pe for any classes pi1, pa of congruent intervals assuming, of course, that
M1 > 2.

Proof. O

Proposition 1.3.40.9 (The Triangle Inequality). Any side of a triangle is less than the sum of its other two sides.
In other words, in a triangle AABC we have pAC < uAB + uBC, etc.

Proof. Follows from C 1.3.18.2. O

A line a, meeting a plane « in the point O,%#? is said to be perpendicular to « (at the point O) if it is perpendicular
to any line b drawn in plane a through O. We will write this as a L «, or sometimes as (a L a)o. ** If a line a is
perpendicular to a plane « (at a point O), the plane « is said to be perpendicular to the line a, written « L a, or we
can also say that the line a and the plane « (mentioned in any order) are perpendicular (at O).

Theorem 1.3.41. Suppose a line d is perpendicular to two (distinct) lines a, ¢, drawn in a plane « through a point
0.2 Then d is perpendicular to «, i.e. it is perpendicular to any line b drawn in plane o through O.

Proof. Let lines a, b, ¢ be divided by the point O into the following pairs of rays: h and h¢, k and k€, [ and [°,
respectively. In other words, we have P, = hU{O}UhL®, P, = kU{O}Uk®, P, = 1U{O}UI°. It should be obvious that
by renaming the rays h, k, [ and their complementary rays h¢, k¢, (¢ appropriately, we can arrange them so that k C
Int/(h,1).4*> Making use of A 1.1.3, A 1.3.1, choose points D; € d, Dy € d so that [D10Ds], OD; = OD,. Taking
some points A € h, C € I, we have ZD10A = ZD;0A, ZD10C = £D>0C (the angles in question being right angles,

because, by hypothesis, aop, =d L a, app, =d L ¢.) Hence OD; = LZOD2 & OA = OA& LD10A = £LD30A L
AAOD; = AAODy = ADy = ADy, OD; = ODy & OC = OC & /D,0C = /D;0C =2 ACOD, = ACODy =
CD; = CD,. Therefore, AD; = ADy& CD; = CDy& AC = AC "23° AADC = AAD,C = /DyAC =

/Dy AC. We also have k C IntZ(h,1) “"22'° 3B (B € k& [ABC)). But [ABC] " 28" Ay = A = /D1 AB =

LD1AC& LDyAB = ZDyAC, and we have /D1AC = £DyAC & £LD1AB = £D1AC& LDyAB = /ZDyAC =

/D1AB = /DyAB. Hence AD, = ADy& AB = AB& DiAB = /D>AB =3* AD,AB = ADyAB = BD; =

BD,. Finally, we have ODy = OD & BD; = BDy = Zaop L ap, p,, **® which obviously amounts to b L d, q.e.d.
O

Theorem 1.3.42. Suppose a line d is perpendicular to two (distinct) lines a, ¢, meeting in a point O. Then any
line b perpendicular to d in O *47 lies in the plane o defined by the intersecting lines a, c. In particular, if a line d
is perpendicular to a plane « at a point O, any line b drawn through O perpendicular to d lies in the plane «.

442Obviously, O is the only point that a and o can have in common (see T 1.1.4.)

443The point of intersection (denoted here O) is often assumed to be known from context or not relevant, so we write simply a L «, as
is customary.

444Observe that O is the only point that d and « can have in common. In fact, if d and a have another common point, the line d lies in
the plane a. Then d cannot meet both a and c at O, as this would contradict the uniqueness of the perpendicular with the given point
(see L 1.3.8.3.) Suppose d meets a, ¢ in two distinct points A1, C1, respectively. Then the triangle AA;OC: (This IS a triangle, the
three (obviously distinct) points O, A1, C1 being not collinear. ) would have two right angles, which contradicts C 1.3.17.4. Thus, the
contradictions we have arrived to convince us that the line d and the plane a have no common points other than O.

445Tn fact, suppose B2 € b, Oz € ¢, where Bz # O, C2 # O. Then both Bz ¢ a, Ca ¢ a, for if Ba € a or C2 € a then, respectively, either

b or ¢ would coincide with a, having two points in common with it (see A 1.1.2.) We have B2inPq \ Pa & Pa \ Pa L1£_J;.8 BCaV BaC.

Denoting k = Op and | = O¢ if BCa, | = (O¢)¢ if BaC, wee see that in both cases the rays k, [ lie (in plane «) on the same side of

the line a = h. (see L 1.2.18.4, T 1.2.19.)) But kla L2202l g - IntZ(h,l) V1 C IntZ(h, k). Making the substitution b < ¢, which, in

its turn, induces the substitution k < [, we see that, indeed, no generality is lost in assuming that k C IntZ(h,l).
446 This implication can be substantiated using either T 1.3.24 or T 1.3.10.
447 e, such that O =bNd, b L d
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Figure 1.159: Suppose a line d is perpendicular to two lines a, ¢, drawn in a plane a through a point O. Then d is
perpendicular to a.

Proof. By T 1.1.3 3a (a C a&c C a). By T 1.3.41 d L «. Let b be a line, perpendicular to d at O, i.e. O =bNd,
b L d. Using T 1.1.3, draw a plane [ containing the lines b, d, intersecting at O. Since the point O lies on both
planes «, 3, these planes by T 1.1.5 have a common line f. Note that, from definition, d L a& f Ca=d L f. But
since the lines b, f both lie in one plane § and are both perpendicular to d at the same point O, by L 1.3.8.3 we have
b=fCa,qed O

Theorem 1.3.43. Given a line a and an arbitrary point O on it, there is exactly one plane o perpendicular to a at

0.

Proof. (See Fig. 1.161.) By L 1.1.2.13BB¢a. By T1.2138 (e C & B € (). ByL1.1.263C C ¢ 5. By T 1.2.1
Iy(aCc~y&Bey). C¢p&C e€vy= [ +#~. Using L 1.3.8.3, we can draw in plane  a line b perpendicular to a.
Similarly, by L 1.3.8.3 3¢ (¢ C v& ¢ L a). Obviously, b # ¢, for otherwise the planes 8 and 7, both drawn through
the lines a and b = ¢, intersecting at O, would coincide. Since the lines b, ¢ are distinct and concur at O, by T 1.1.3
there exists a plane « containing both b and ¢. Then by T 1.3.41 a L a.

To show uniqueness, suppose there are two distinct planes «, 3, o # 3, both perpendicular to the line a at the

same point O. (See Fig. 1.162.) Since the planes «, 3 are distinct, there is a point B such that B € 3, B ¢ . We have

B¢aTé>'237(aC7&B€7). 448 WehaveOEaﬂvTé>'5ﬂc(c:aﬂw).449 ala&kcCa&Oec=alec

a L B&aop C B&O € app = a L app. We see now that the lines app, ¢, lying in the plane 7, are both
perpendicular to the line a at the same point O. By L 1.3.8.3 this means that app = ¢, which implies B€cC a-a
contradiction with B having been chosen so that B ¢ a. The contradiction shows that in fact there can be no more
than one plane perpendicular to a given line at a given point, q.e.d. O

Theorem 1.3.44. Given a plane o and an arbitrary point O on it, there is exactly one line a perpendicular to « at

0.

Proof. 1t is convenient to start by proving uniqueness. Suppose the contrary, i.e. that there are two distinct lines,

a and b, both perpendicular to the plane « at the same point O (see Fig. 1.163.) Since a, b are distinct lines

concurrent at O, by T 1.1.3 there is a plane  containing both of them. We have O € a N g TLLs if f=anp.

ala&kbla&kfCa=al f&b L f. We come to the conclusion that the lines a, b, lying in the same plane (3
as the line f, are both perpendicular to f in the same point O, in contradiction with L 1.3.8.3. This contradiction
shows that in fact there can be no more than one line perpendicular to a given plane at a given point.

To show existence of a line a such that a L « at O (See Fig. 1.164), take in addition to O two other points B, C
on « such that O, B, C' do not colline (see T 1.1.6). Using the preceding theorem (T 1.3.43), construct planes 3, «y
such that (aop L B)o, (aoc L 7)o. *°° Observe, further, that 3 # ~, for otherwise, using the result of the proof
of uniqueness given above, we would have (app L 8)o & (aoc L 7)o & 8 =~ = aop = aoc, which contradicts the

448 Obviously, O € a & B ¢ a = B # O. Therefore, B ¢ a, O being the only point that the line a and the plane B have in common.
Note also that by A 1.1.6 app C 7.

449Note that it is absolutely obvious that, containing all common points of the planes ¢, -, the line ¢ is bound to contain O.

4501 other words app L 3 at O and apc L v at O - see p. 174.
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Figure 1.160: Suppose a line d is perpendicular to two (distinct) lines a, ¢, meeting in a point O. Then any line b
perpendicular to d in O lies in the plane « defined by the intersecting lines a, c.

Figure 1.161: Illustration for proof of existence in T 1.3.43.
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Figure 1.162: Hlustration for proof of uniqueness in T 1.3.43.

choice of the points B, C' as non-collinear with O. Sharing a point O, the distinct planes (3, v have in common a
whole line @ by T 1.1.5. We have app L f&a C 8= a 1 aop, aoc L v&a C v = a L apc. Being perpendicular
at the same point O to both lines app, apc lying in plane «, the line a is perpendicular to o by T 1.3.41. O

Theorem 1.3.45. Given a plane a and an arbitrary point O not on it, exactly one line a perpendicular to o can be
drawn through O.

Proof. (See Fig. 1.165.) Draw a line a in plane « (see C 1.1.6.4). Using L 1.3.8.1, draw through O a line b perpendicular
to a at some point (). Using L. 1.3.8.3, draw in « a line ¢ perpendicular to a at Q. Using L 1.3.8.3 again, draw through
O a line d perpendicular to ¢ at some point P. If P = @, the line app, being perpendicular at the point P = @ to
two distinct lines a, ¢ in the plane a, is perpendicular to the plane « itself by T 1.3.41. Suppose now P # (). Using

A 1.3.1, choose a point O’ such that [OPO’], OP = O’ P. Note that (d L c)p implies that ZOPQ, ZO'PQ are both

right angles. Now we can write OP = O'P & ZOPQ = Z0'PQ & PQ = PQ =%' AOPQ = AO'PQ = 0Q = 0'Q.

Using T 1.1.3, draw a plane [ through the two distinct lines apq, apg meeting at (). Since the line a is perpendicular
at @ to both apg = b, apg = ¢, it is perpendicular to the plane § by T 1.3.41, which means, in particular, that a

is perpendicular to apg C 3. Since a L apg, a L ap'q, where apg C 3, ap/q C 3,41 choosing on the line a a

point A distinct from @, we have by T 1.3.16 ( LZAQO, ZAQO’ both being right angles) ZAQO = LAQO’. Hence

AQ = AQ & LAQO = LAQO' & £20Q = £0'Q 22" AAQO = AAQO’ = AO = AO'. The interval AP, being the

median of the isosceles triangle AOAQ’ joining the vertex A with the base OO’ is also an altitude. That is, we have
asp L apo’, where apor = d. Note that AcaCa& PecC Aéﬁﬁ aap C a. Since the line d is perpendicular at
P to both ¢ C o, agp C o, by T 1.3.41 we obtain d L «, which completes the proof of existence.

To show uniqueness, suppose the contrary, i.e. suppose there are two lines a, b, both drawn through a point O,

such that a, b are both perpendicular to a plane o Z O at two distinct points A and B, respectively (See Fig. 1.166.)

. Then A € a& B € a "2 aap C «, and the angles ZOAB, ZOBA of the triangle AOAB would both be right

angles, which contradicts This contradiction shows that in fact through a point O not lying on a plane o at most
one line perpendicular to o can be drawn. O

In geometry, the set of geometric objects (usually points) with a given property is often referred to as the locus
of points with that property.

Given an interval AB, a plane «, perpendicular to the line a 4p at the midpoint M of AB, is called a perpendicular
plane bisector of the interval AB.

Theorem 1.3.46. FEvery interval has exactly one perpendicular plane bisector.

451 Making use of L 1.2.1.3, A 1.1.6, we can write O € apg C B& P € apg C B = aop C 3, [OPO'] = O’ € app, Q €Eapg C B& O’ €
aop C B = apqg CB.
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Figure 1.163: Hlustration for proof of uniqueness in T 1.3.44.

\ 72
\ ,
N %
N . s
N 7z /
N 7z ,
N 7z 7
N , ,
N N , 2
N \ , 7
N N , .
\ N , ,
N , ,
\ , ,
N s 2
N
\ 7
\ /
\ ,
\ ,
N ,
\ ,
N ,
\ /
N /
\ ,
N ,
\ ,
\ %
\
,
N ,
\ ,
N

Figure 1.164: Illustration for proof of existence in T 1.3.44.
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Figure 1.165: Illustration for proof of existence in T 1.3.45.

Figure 1.166: Illustration for proof of uniqueness in T 1.3.45.
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B

Figure 1.167: The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane
bisector of the interval AB.

Proof. In fact, by T 1.3.22 every interval AB has exactly one midpoint M. By T 1.3.43 there is exactly one plane
perpendicular to aap at M. O

Theorem 1.3.47. The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane
bisector of the interval AB.

Proof. (See Fig. 1.167.) Using T 1.3.43, draw a plane « perpendicular to aap at M = mid AB. Obviously, AM =

M B by the definition of midpoint. If C # M, C' € «, then ayp L « implies ZAMC = ZBMC, both ZAMC, /BMC

being right angles. Hence AM = MB& ZAMC = /BMC & CM = CM "2%* AACM = ABCM = AC = CB,

452§ e. the point C is equidistant from A, B.
Suppose now that a point C is equidistant from A, B, and show that C' lies in a. For C = M this is true by

construction. Suppose C # M. Then C ¢ asp, the midpoint M of AB being (by C 1.3.23.2) the only point of

the line a4 p equidistant from A, B. Hence we can write AC = BC & AM = BM T2>24 acy L aap, whence by

T1342 acpy C . O

Theorem 1.3.48. Proof. O
Theorem 1.3.49. Proof. O

Theorem 1.3.50. Proof. O

Consider a subclass C9°" of the class Cf b of all those sets J that are equipped with a (weak) generalized betweenness
relation. Let J = {{A,B}|3J € C9" A € J& B € J} be a set (of two - element subsets of C9") where a relation of
generalized congruence is defined. 453 Then we have:%*

Lemma 1.3.51.1. Suppose geometric objects B € J and B’ € J' lie between geometric objects A € J, C € J and
A €3, ey, respectively. Then AB= A'B’ and BC < B'C’ imply AC < A'C’.

Proof. BC < B¢’ M2E23 0 3em giere| & B BC". Be&Bere] TEET (aBe
&[AC"C. [ABC)& [A'BC"| & AB = AB' & BC = B'¢” "2 Ac = A'C’. Since also [A'C"C'], by L 1.3.15.3

we conclude that AC < A’C'. O

2 Il

Lemma 1.3.51.2. Suppose geometric objects B and B’ lie between geometric objects A, C and A’, C', respectively.
Then AB = A'B' and AC < A'C’ imply BC < B'C’.

Proof. By L 1.3.15.14 we have either BC = B'C’, or B'C' < BC, or BC < B'C’. Suppose BC = B'C’. Then

[ABC) & [A'B'C'| & AB = A'B' & BC = B'C' "'25* AC = A'C’, which contradicts AC < A'C’ in view of L 1.3.15.11.

Suppose B'C’ < BC. In this case [ABC] & [A'B'C'|& A'B' = AB& B'C’ < BC M2 per = AC, which contradicts

AC < A'C’ in view of L 1.3.15.10. Thus, we have BC < B'C’ as the only remaining possibility. O

452Gee also P 1.3.24.3 for a shorter way to demonstrate AC = CB.
453 The latter, by definition, has properties given by Pr 1.3.1 — Pr 1.3.5 (see p 126).
454\We assume that all sets J,J, ... with generalized betweenness relation belong to the class C9b7.
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Lemma 1.3.51.3. Suppose geometric objects B and B’ lie between geometric objects A, C and A’, C', respectively.
Then AB < A'B’ and BC < B'C’ imply AC < A'C’ 4%

Proof. AB < A'B'&BC < B'C' “'257% 347 (IB' A" A')) & BA= B'A") &3C" ([B'C"C') & BC = B'C"). [A'B'C'| & [A' A" B
L1.2.7 Prl1.2.7

& [BCIC) AT [ABIC] & [ACIC) & [AA'C!) & [A"BIC). [A"B'C') & [B'C C’) PEET [AVBIC). [ABC) & [A"B'C") & AB =
A'B & BC = B'C" 2P AC = A’C”. Finally, [A'A"C')| & [A'C"C') & AC = A" V2RS4 < AC’. O

In the following L 1.3.51.4 - L 1.3.51.7 we assume that finite sequences of n geometric objects A, As,..., A, €J
and By, Ba, ..., B, € J', where n > 3, have the property that every geometric object of the sequence, except the first
(A1, B1) and the last (A,,, By, respectively), lies between the two geometric objects of the sequence with the numbers
adjacent (in N) to the number of the given geometric object. Suppose, further, that Vi € N,,_o A; 4,41 = Air1Ait2,
BiBiy1 = Biy1Bita. 456

Lemma 1.3.51.4. IfVi e N,y A; A1 S BiBit1 and Jip € Np—1 Ajg Aig+1 < BigBig+1, then A1 A, < B1B,,.

Proof. Choose ig = min{i|A;A;iy1 < BiBiy1}. For ig € N,,_5 we have by the induction assumption A1 4,1 <
L1.3.51.1

B1B,_1. Then we can write either A1 A,,_1 < B1B,_1& A1 A, = B,.18, = A1A, < B1B,, or A1 A,_1 <
BB 1& A1 Ay < Bp—1By, L1.341.3 A1 A, < B1B,,. For ig =n — 1 we have by T 1.3.14 A1 A,,_1 = B1B,_1. Then

L1.3.51.1

AtAn 1 = BB 1 & Ay 1 Ap < BB, == ALA, < BB, O

Corollary 1.3.51.5. IfVi € N,,_y A;Air1 < BBy, then A1 A, < B1B,.

Proof. Immediately follows from T 1.3.14, L. 1.3.51.4. O

Lemma 1.3.51.6. The inequality A1 A, < B1B,, implies that Vi, j € Npy_1 A;Air1 < BiBjt1.

Proof. Tt suffices to show that A Ay < B1Bs, because then by L 1.3.15.6, L 1.3.15.7 we have A1 Az < B1Bs & A1 Ay =
AiAi+1 & BBy = Bij+1 = .Ai.AiJrl < Bj3j+1 for all 1,7 € Np_1. Suppose the contrary, i.e. that B1Bs § A1 As.
Then by L 13141, L 1.3.15.6, L 1.3.15.7 we have 8182 § A1A2 &8182 = BiBi-i-l &AlAQ = AiAi-i—l = BiBi+1 §
A; Aiyq for alli € N,,_1, whence by C 1.3.51.5 B1B,, £ Aj A, which contradicts the hypothesis in view of L. 1.3.15.10,
C 1.3.15.12. O

Lemma 1.3.51.7. The congruence A1 A, = B1B,, implies that Vi,j € Ny, AjAiv, = BjBjtk, where k € Ny_q.
457

Proof. Again, it suffices to show that A;As = B1Bs, for then we have A1 Ay = B1Bo & A1 Ay = Aj A1 & BBy =
BiBji1 L1311 AiAip1 = BB for all i,j € N,,_;1, whence the result follows in an obvious way from T 1.3.14
and L 1.3.14.1. Suppose A1 Ay < BiBs. %3 Then by L 1.3.15.6, L 1.3.15.7 we have A1 Ay < BiBs & A1 Ay =
AiAi1 &B1By = BBiv1 = AiAi1 < BiB;q for all i € N,,_1, whence A1 4, < BB, by L 1.3.51.4, which
contradicts A4, = B1B,, in view of LL 1.3.15.11. O

If a finite sequence of geometric objects A;, where ¢ € N,,, n > 4, has the property that every geometric object of
the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in N) numbers,
and, furthermore, A; Ay = A A3 = ... = A,_1A,, ¥ we say that the generalized interval A, A, is divided into
n — 1 congruent intervals A;As, AsAs, ..., A,—1.A, (by the geometric objects As, As, ... A,_1).

If a generalized interval A;.A4,, is divided into generalized intervals A;A; 41, i € N,,_1, all congruent to a generalized
interval AB (and, consequently, to each other), we can also say, with some abuse of language, that the generalized
interval A;.A,, consists of n — 1 generalized intervals AB (or, to be more precise, of n — 1 instances of the generalized
interval AB).

If a generalized interval Ap.A,, is divided into n intervals A;_1.A4;, ¢ € N,,, all congruent to a generalized interval
CD (and, consequently, to each other), we shall say, using a different kind of folklore, that the generalized interval
CD is laid off n times from the geometric object A4y on the generalized ray Agp, reaching the geometric object A,
where P is some geometric object such that the generalized ray Agp contains the geometric objects A1, ..., A,. 469

455 Ag before, in order to avoid clumsiness in statements and proofs, we often do not mention explicitly the set with generalized
betweenness relation where a given geometric object lies whenever this is felt to be obvious from context or not particularly relevant.

456 Observe that these conditions imply, and this will be used in the ensuing proofs, that [A1An,—1.45], [B1Br—1Bn] by L 1.2.22.11, and
for all 4,j € N1 we have A; A1 = Aj A1, BiBBip1 = BjBj1 by L 1.3.14.1.

457 Observe that the argument used to prove the present lemma, together with T 1.3.14, allows us to formulate the following facts: Given
a generalized interval AB consisting of k congruent generalized intervals, each of which (or, equivalently, congruent to one which) results
from division of a generalized interval CD into m congruent generalized intervals, and given a generalized interval A’B’ consisting of k
congruent generalized intervals (congruent to those) resulting from division of a generalized interval C'D’ into n congruent generalized
intervals, if CD = C'D’ then AB = A’B’. Given a generalized interval AB consisting of k1 congruent generalized intervals, each of
which (or, equivalently, congruent to one which) results from division of a generalized interval CD into n congruent generalized intervals,
and given a generalized interval A’'B’ consisting of k2 congruent generalized intervals (congruent to those) resulting from division of a
generalized interval C'D’ into n congruent generalized intervals, if CD = C'D’ , AB = A’B’, then k1 = k.

458 Dye to symmetry and T 1.3.14, we do not really need to consider the case BiBa < A1 As.

4591 other words, all generalized intervals A;A;41, where ¢ € N;,_1, are congruent

460For instance, it is obvious from L 1.2.22.11, L 1.2.25.15 that P can be any of the geometric objects A1, ..., Ap.
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Lemma 1.3.51.8. If generalized intervals A1 Ax and BB, consist, respectively, of k — 1 and n — 1 generalized
intervals AB, where k < n, then the generalized interval Ay Ay is shorter than the generalized interval B115,,.

Proof. We have, by hypothesis (and T 1.3.1) AB = A1 Ay = Ay A3 = ... = A1 Ax = B1B2 = B3
where [A;A;+1Ai42] for all i € Ni_o and [B;B;+1B;42] for all i € N,,_5. Hence by T 1.3.14 A; A
L 1.2.22.11 [B1BB,]. By L 1.3.15.3 this means A; A, < B1B,,. O

el = anlgn;
B1B, and by

Lemma 1.3.51.9. If a generalized interval EF consists of k — 1 generalized intervals AB, and, at the same time, of
n — 1 generalized intervals CD, where k > n, the generalized interval AB is shorter than the generalized interval CD.

Proof. We have, by hypothesis, EF = A1 Ay, = B1B,,, where AB= A1 A = Ay A3 = ... = A1 Ag, CD = B1B; =
BaBs = ... = B,_18B,, and, of course, Vi € Ny_o [A;Ai11.4i42] and Vi € N,,_o [B;B;1B;42]. Suppose AB = CD.
Then the preceding lemma (L 1.3.51.8) would give A1 Ax > Bi1B,, which contradicts A1 A = B1B, in view of
L 1.3.15.11. On the other hand, the assumption AB > CD would again give A1 Ay > A1 A, > B1B,, by C 1.3.51.5,
L 1.3.51.8. Thus, we conclude that AB < CD. O

Corollary 1.3.51.10. If a generalized interval AB is shorter than the generalized interval CD and is divided into a
larger number of congruent generalized intervals than is AB, then (any of) the generalized intervals resulting from
this division of AB are shorter than (any of) those resulting from the division of CD.

Proof. O

Lemma 1.3.51.11. Proof. O
Let a generalized interval Ag.A,, be divided into n generalized intervals Ag. A1, A1 Az ..., A,—1.A, (by the geometric
objects Ay, Ag, ... A,_1) and a generalized interval Af.A}, be divided into n generalized intervals AjA7, Aj A5 ..., AL AL
in such a way that Vi € N,, A;_1A; = Aj_,Aj. Also, let a geometric object B lie on the generalized ray Aj 4 ,
0

where A; is one of the geometric objects Aj, i € Ny,; and, finally, let AB = A'B’. Then:

Lemma 1.3.51.12. — If B lies on the generalized open interval (Ai—1.Ay), where k € N,,, then the geometric object
B’ lies on the generalized open interval (A},_,A}).

Proof. For k =1 we obtain the result immediately from Pr 1.3.3, so we can assume without loss of generality that & >
1. Since Aj , B" (by hypothesis) and A; , Aj_;, A}, (see L 1.2.56.18) lie on one side of Aj, so do A} _,, A}, B'. Since
Prl1.2.7

also (by L 1.2.22.11) [AoAk_lAk], [./46 ;c—lA;c]v we have [AoAk_lAk]&[Ak_llgAk] s [AOAk_lB]&[AQBAk].
Taking into account that (by hypothesis) AoB = AB" and (by L 1.3.51.7) AgAk_1 = AA},_, Ao A = AjA;, we
obtain by Pr 1.3.3 [AyA}_, B'], [A(B'A}], whence by Pr 1.2.6 [A},_,B'A}], as required. O

Lemma 1.3.51.13. - If B coincides with the geometric object Ay,, where ko € Ny, then B' coincides with A}, .
Proof. Follows immediately from L 1.3.51.7, Pr 1.3.1. O

Corollary 1.3.51.14. - If B lies on the generalized half-open interval [Ag—1.Ax), where k € N,,, then the geometric
object B' lies on the generalized half-open interval [Aj,_,A}).

Proof. Follows immediately from the two preceding lemmas, L 1.3.51.12 and L 1.3.51.13. O

Theorem 1.3.51. Given a generalized interval AjA,y1, diwvided into n congruent generalized intervals
A1 Ag, AsAs, ..., Ay Ania, if the first of these gemeralized intervals A1 As is further subdivided into my congru-
ent generalized intervals Ay 141 2, A1,2A41 3, ..., A1 my Aty +1, where Vi € Ny, —1 [A1 A1 1141 i12], and we denote
A1 = A and Ay 41 = Ag; the second generalized interval AsAs is subdivided into mo congruent generalized
intervals A271A272, A212A273, .. ,A21m2¢421m2+1, where Vi € Ny, 1 [AzyiA21i+1A27i+2], and we denote A271 = Ay and
Az i1 = Az; ...; the nth generalized interval A, An+1 - into m, congruent generalized intervals
AnylAnyz,AnﬁzAnﬁg,...,Anymn.An,anrl, where Vi € Ny, 1 [AnyiAn1i+1An1i+2], and we denote A171 = A; and
At mi+1 = Any1. Then the generalized interval Ay Ayqq is divided into the mq + mgo + - - - + m,, congruent general-
ized intervals A1 1A1,2, 412413, . ALy Arma 41, A21 Ao, As Ao s, oy As s Ao s st -y AniAn 2, An 2 An s,
ey -An,mn An,mn-‘rl .

In particular, if a generalized interval is divided into n congruent generalized intervals, each of which is further
subdivided into m congruent generalized intervals, the starting generalized interval turns out to be divided into mn
congruent generalized intervals.

Proof. Using L 1.2.22.11, we have for any j € Ny, _1: [Aj 1 Ajm;Ajm;+1], [Ajr1,14541,24541,m,,,+1]). Since, by defini-

. . Pr1.2.7
tion, Aj)l = .Aj, Aj,mj+1 = Aj+1_]1 = Aj+1 and Aj+1,mj+1+1 = Aj+2, we can write [AjAj,mj.AjJrﬂ & [AjAj+1Aj+2]

[Aj_’mjAj+1A]j+2] and [Aj)mjAj+1Aj+2] & [Aj+1Aj+1,2Aj+2] Pé%j [.Aj_’m].AjJrlAjJrl_’Q]. Since this is proven for all

j € N,,_1, we have all the required betweenness relations. The rest is obvious. 46! O

461 A]] congruences we need are already true by hypothesis.
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Let 3,3 be, respectively, either the pencil Jo, Jj of all rays lying in a plane «, o/ on the same side of a line a,a’
containing the initial point O,0’ of the rays, or the pencil Jo, Jj just described, augmented by the rays h,h¢ and b/,
h'¢, respectively, where h U {O}h¢ = P,, b’ U{O'}h'¢ = P,/.A62 Then we have the following results through T 1.3.52:

Lemma 1.3.52.1. Suppose rays k € J and k' € J' lie between rays h € J, 1 € J and W € J', ' € J, respectively.
Then Z(h, k) = Z(W, k') and Z(k,1) < Z(K',I') imply Z(h,1) < Z(W,1').

Lemma 1.3.52.2. Suppose rays k € J and k' € J' lie between rays h € J, l € J and W € J', ! € J, respectively.
Then Z(h,k) = Z(1', k') and Z(h,1) < Z(', 1) imply Z(k,1) < Z(K,1').

Lemma 1.3.52.3. Suppose rays h and b’ lie between rays h, | and h', ', respectively. Then Z(h,k) < Z(h', k") and
Lk, 1) < Z(K' 1) imply Z(h,1) < Z(W,1"). 463

In the following L. 1.3.52.4 - L 1.3.52.7 we assume that finite sequences of n rays hi,he,...,h, € J and
k1,ko,...,k, € J', where n > 3, have the property that every ray of the sequence, except the first (hy, k1) and
the last (h,, kn, respectively), lies between the two rays of the sequence with the numbers adjacent (in N) to the
number of the given ray. Suppose, further, that Vi € N,,_o Z(h;, hit1) = Z(hiv1, hiv2), L(kiy kiv1) = Z(kiv1, kive).

Lemma 1.3.52.4. If Vi € N, 1 Z(h,i,hzurl) é Z(ki,qurl) and Jig € N,_1 4(himhio+1) < Z(kioakio+1)7 then
L(hi,hy) < Z(ky, kn).

Corollary 1.3.52.5. ]fV’L S Nn,1 Z(hi,hlqu) § l(kl, ki+1), then Z(hl,hn) é Z(kl,kn)
Lemma 1.3.52.6. The inequality Z(h1,hy) < Z(k1,kn) implies that Vi,j € Nyp_1 Z(hi, hix1) < Z(kj, kj+1).

Lemma 1.3.52.7. The congruence Z(h1,hy) = Z(k1,ky) implies that Vi,j € Np_, Z(hi, hiyr) = Z(kj, kj+r),
where k € N,,_;. 464

If a finite sequence of rays h;, where i € N,,, n > 4, has the property that every ray of the sequence, except for the
first and the last, lies between the two rays with adjacent (in N) numbers, and, furthermore, Z(hy, ho) = Z(ha, h3) =
oo = Z(hn—1,hn), ¥° we say that the angle Z(hy, h,,) is divided into n — 1 congruent angles Z(h1, ha), Z(ha, h3), ...,
Z(hn_l, hn) (by the rays hg, hg, .. 'hn—l)-

If an angle Z(hy, h,,) is divided angles Z(h;, hit+1), ¢ € N,,_1, all congruent to an angle Z(h, k) (and, consequently,
to each other), we can also say, with some abuse of language, that the angle Z(hq, h,,) consists of n — 1 angles Z(h, k)
(or, to be more precise, of n — 1 instances of the angle Z(h, k)).

Lemma 1.3.52.8. If angles Z(h1, hy) and Z(k1, k) consist, respectively, of k — 1 and n — 1 angles Z(h, k), where
k < mn, then the angle Z(h1,hy) is less than the angle Z(ki, k).

Lemma 1.3.52.9. If an angle Z(p, q) consists of k—1 angles Z(h, k), and, at the same time, of n—1 angles Z(I,m),
where k > n, the angle Z(h, k) is less than the angle Z(I,m).

Corollary 1.3.52.10. If an angle Z(h,k) is less than the angle Z(I,m) and is divided into a larger number of
congruent angles than is Z(h, k), then (any of) the angles resulting from this division of Z(h,k) are less than (any
of ) those resulting from the division of Z(I,m).

Let an angle Z(hg, hy,) be divided into n angles Z(hg, h1), Z(h1,h2) ..., Z(hn—1,hy) (by the rays hq,ho, ... hy—1)
and an angle Z(hg,h]) be divided into n angles Z(hy,hy), Z(h),hb) ..., Z(hl,_1,hl) in such a way that Vi €
Np hi—1hi = hj_,hj. Also, let a ray k' lie on the angular ray hg,, , where h] is one of the rays hj, i € Ny;

0

and, finally, let Z(h, k) = Z(h', k). Then:

Lemma 1.3.52.11. — If the ray k lies inside the angle Z(hi—1,hy), where k € N,,, then the ray k' lies inside the
angle Z(h},_1,h},).

Lemma 1.3.52.12. — If k coincides with the ray hy,, where kg € N,,, then k' coincides with h;%.

Corollary 1.3.52.13. — If k lies on the angular half-open interval [hi—1hy), where k € N,,, then the ray k' lies on
the angular half-open interval [h) _ h}).

462That, is, in the second case J = Jo U {h,h°}, J = Jo U{h', e}

463 A5 before, in order to avoid clumsiness in statements, we often do not mention explicitly the pencil in question whenever this is felt
to be obvious from context or not particularly relevant.

464WWe can also formulate the following facts: Given an angle Z(h, k) consisting of p congruent angles, each of which (or, equivalently,
congruent to one which) results from division of an angle Z(l,m) into n congruent angles, and given a generalized interval Z(h', k')
consisting of p congruent angles (congruent to those) resulting from division of an angle Z(I’,m’) into n congruent angle, if Z(I,m) =
Z(U',m’) then Z(h,k) = Z(h',k"). Given an angle Z(h, k) consisting of k1 congruent angles, each of which (or, equivalently, congruent to
one which) results from division of an angle Z(I, m) into n congruent angles, and given an angle Z(h’, k") consisting of k2 congruent angles
(congruent to those) resulting from division of an angle Z(I’,m’) into n congruent angles, if Z(I,m) = Z(U',m’) , Z(h,k) = Z(W, k'),
then k1 = ko.

465Tn other words, all angles Z(h;, hit1), where i € N,,_1, are congruent
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Theorem 1.3.52. Given an angle Z(hy, hyy1), divided into n congruent angles Z(hy,ha), Z(ha, hs), ..., Z(hn, Ant1),
if the first of these angles Z(h1,hs) is further subdivided into my congruent angles Z(h11,h12), Z(h1,2,h1,3),---,
Z(h17m1,h1)m1+1), where Vi € Nm1—1 h17i+1 C Inté(hu, hl,i+2); and we denote h171 = hy and h17m1+1 =
ha; the second angle hohs is subdivided into mo congruent angles ho1ho 2, haohos, ..., ha msho m,+1, where Vi €
Niny—1 ha,it1 C IntZ(ha g, hait2), and we denote ha1 = ha and ha m,+1 = hs; ...; the n'" angle Z(hy, hpy1) - into
my, congruent angles Z(hn. 1, hn2), Z(hn2,hna); - s Z(hnm, s Pnomp+1), WhereVi € Ny 1 hyip1 C IntZ(hn i, hniv2),
and we denote hi1 = h1 and b1 my+1 = hny1. Then the angle Z(hq, hny1) is divided into the mq +mao + - -+ 4+ my,
congruent cmgles 4(h1,17 hl)g), 4(h1)2, h1)3), ey 4(h1)m1 5 hl)m1+1), 4(h2)1, hg)g), 4(h2)2, h2)3), ey 4(h2)m2 5 h2,m2+1);
cos Llhnashn2)y Z(hn2,hns), .oy Z(hnma, » Pnm, +1)-

In particular, if an angle is divided into n congruent angles, each of which is further subdivided into m congruent

angles, the starting angle turns out to be divided into mn congruent angles.

Theorem 1.3.53. Suppose that we are given:
— A line a is perpendicular to planes vy, 7' at points O, O, respectively.
— Two (distinct) planes «, 5 containing the line a.
Suppose further that:
— Points A € aN~y, Ay € anNy', where A# O, Ay # O, lie (in the plane o) on the same side of the line a.
— Points B € BN~, By € BN~, where B # O, By # O, lie (in the plane 3) on the same side of the line a.
Then the angles ZAOB, ZA10'B; are congruent.

Proof. Using A 1.3.1 take points A’, B’ so that OA = O’A’, OB = O'B’, [A,0'A4'], [B1O'B’]. Since apor = a L
y=alaopa&a laop,aly =alaoa &al aop,, and by T 1.3.16 all right angles are congruent, we can
write ZAOO' = ZA'0'O, ZBOO' = /B'0'0. %65 Evidently, AAja & [A;0'A’] = AaA’ (see L 1.2.17.10). Similarly,
BB1a& [B10'B'] = BaB’ (see L 1.2.17.10). Since OA = O0'A’, LZAOO' = LA'O'O, AaA’, and OB = O'B/,
/BOO’ = /B’0'O, BaB’, we can use C 1.3.23.4 to conclude that the open intervals (00’), (AA’), (BB’) concur
in the single point M which is the midpoint to all these intervals. This means that AM = A'M, BM = B'M,
[AM A'], [BM B’]. %7 The relations [AM A’], [BM B’] imply that the angles ZAM B, /A’M B’ are congruent and

are, therefore, vertical. Hence AM = A'M & BM = B'M, /AMB = /A'MB' 22" AAMB = AA'MB' = AB =
A'B’. Finally, OA = 0'A' & OB = 0'B' & AB = A'B' "22/° AAOB = AA'O'B'. O

Consider two half-planes x, &, forming the dihedral angle Y%, and let a be their common edge. Take a point
O € a. Let further a be the plane perpendicular to a at O (T 1.3.43). From L 1.2.55.8, the rays h, k that are the
sections by the plane o of the half-planes x, &, respectively, form an angle Z(h, k) with the vertex 0.468 We shall
refer to such an angle Z(h, k) as a plane angle of the dihedral angle Y. Evidently, any dihedral angle has infinitely
many plane angles, actually, there is a one-to-one correspondence between the points of a and the corresponding
plane angles. %9 But the preceding theorem (T 1.3.53) shows that all the plane angles of a given dihedral angles
are congruent. This observation legalizes the following definition: Dihedral angles are called congruent if their plane
angles are congruent. We see from T 1.3.53 (and T 1.3.11) that congruence of angles is well defined.

Theorem 1.3.54. Congruence of dihedral angles satisfies the properties P 1.8.1 - P 1.3.3, P 1.83.6. Here the sets
J with generalized betweenness relation are the pencils of half-planes lying on the same side of a given plane o and
having the same edge a € a (Of course, every pair consisting of a plane « and a line a on it gives rise to exactly two
such pencils.); each of these pencils is supplemented with the (two) half-planes into which the appropriate line a (the

pencil’s origin, i.e. the common edge of the half-planes that constitute the pencil) divides the appropriate plane c.
470

Proof. To show that P 1.3.1 is satisfied, consider a dihedral angle Y% with a plane angle Z(h, k). Basically, we need
to show that, given an arbitrary half -plane x’ with the line o’ as its edge, we can draw in any of the two subspaces
(defined by the plane containing x’) a half-plane " with edge a’, such that Y& = x’x’. Take a point O’ € a’ and draw
(using T 1.3.43) the plane o’ perpendicular to a’ at O’. Denote by h’ the ray that is the section of x’ by o’. Using
A 1.3.4, we then find the ray &’ with initial point O’ such that k" lies on appropriate side of x’ (i.e. on appropriate
side of the plane Y’ containing it) and Z(h, k) = Z(h', k). ™' Now, drawing a plane 3’ through a’ and a point on &’
(see T 1.1.2), we see from our definition of congruence of dihedral angles that Yx = )?;’ , where «’ is the half-plane
of #" with edge a’, containing the ray k', i.e. k¥’ C k’. Uniqueness of ' is shown similarly using C 1.2.55.24, A 1.3.4.

466 Obviously, A # O&B # O& A1 # O'& By # O "' Jap, & Jaop &Tapra, &3agip,. O € Y&A € v "22% apy C 4.

Oe~&Be ’yAé}G aop Cv. O e~& A1 € ALLS apra, Cv. 0 ev&Br ey ALLS ao'p, C'. Hencea Ly=a Lapa&a L
aoB,a Ly =alapa, &alaop,.

467 Obviously, the points A, M, B are non-collinear, for M € a | v D aap, M # O. In a similar manner, the points A’, M, B’ are also
not collinear.

468 This angle is referred to as the section of X% by a.

4697 00sely speaking, one can say that the (transfinite) "number” of plane angles corresponding to the given dihedral angle with edge a
equal the "number” of points on a.

470Worded another way, we can say that each of the sets J is formed by the two sides of the corresponding straight dihedral angle plus
all the half-planes with the same edge inside that straight dihedral angle.

47T1Note that each of the two sides (half-planes) of the line A’ in o’ is a subset of the corresponding side of the plane X’ in space (see
L 1.2.53.11).
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The property P 1.3.2 in our case follows immediately from the definition of congruence of dihedral angles and
L 1.3.11.1.

To check P 1.3.3 consider three half—planes X, K, A with common edge a, such that « lies inside the dihedral angle
k. Consider further the half-planes ', \ Wlth common edge a’ lying on the same side of the plane Y’ (with the
same edge a’) with the requirement that Yx = X K/ X)\ X’)\’ Denote by h, k, [ the sections of x, k, A, respectlvely,
by a plane a L a, drawn through a point O € a (T 1.3.43). Similarly, denote by k', k', I’ the sections of ', k', X,
respectively, by a plane o/ L a’, drawn through a point O" € ' (T 1.3.43). From definition of congruence of dihedral
angles we immediately obtain Z(h, k) = Z(I, k'), Z(h,1) = Z(I/,l"). Using C 1.2.55.24 we conclude that &', I’ lie (in
plane o’) on the same side of the line h. Hence Z(k,l) = Z(K',I') (T 1.3.9) and k' C IntZ(h',l') (P 1.3.9.5). The
result now follows from definition of congruence of dihedral angles and L 1.2.55.3.

To demonstrate P 1.3.6, suppose a half-plane v lies in a pencil J between half-planes A, u. Suppose now that
the half-planes A, p also belong to another pencil J’. The result then follows from L 1.2.56.3 applied to J’ viewed as
a straight dihedral angle. 4™ O

472

Lemma 1.3.55.1. If a dihedral angle Xk is congruent to a dihedral angle Xk, the dihedral angle )?\Ii adjacent
supplementary to the dihedral angle X£ 1s congruent to the dihedral angle X'k adjacent supplementary to the dihedral
angle X'k!. 474

Proof. Follows immediately from C 1.2.55.14, T 1.3.6. O

Corollary 1.3.55.2. Suppose Xk, K\ are two adjacent supplementary dihedral angles (i.e. A = x¢) and )?;’, DY

are two adjacent dihedral angles such that Xk = 'K/, kA = #'N. Then the dihedral angles xX'k’, k' are adjacent
supplementary, i.e. X' = x'°.

Proof. Since, by hypothesis the dihedral angles )?;’ DY are adjacent, by definition of adjacency the half-planes x/,
/\ lie on opposite sides of &’. Since the dihedral angles Yk, KA are adjacent supplementary, as are the dihedral angles

I/Ic

X k!, kK'x'¢, we have from the precedlng lemma (L 1.3.55.1) RN = R 'x'¢. We also have, obviously, x'k'x'¢. Hence

X'E'N & X'R’' X' L12.32.4 N xR RN = /N & KA = ’C&)\’ g/ Té@ ¢ = X. Thus, the dihedral angles VK, Y
are adjacent supplementary, q.ed. O

Lemma 1.3.55.3. Every dihedral angle Xr is congruent to its vertical dihedral angle X/CEC.
Proof. Follows immediately from C 1.2.55.14, T 1.3.6. O

Corollary 1.3.55.4. If dihedral angles Xk and )?;’ (where x°© is, as always, the half-plane complementary to the
half-plane x) are congruent and the half-planes k, ' lie on opposite sides of the plane X, then the dihedral angles Xk

and x°k’ are vertical dihedral angles (and thus are congruent).

475 By the preceding lemma (L ??) the vertical dihedral angles Y&, X/C-E are congruent. We have also

kXKE & kYK MLZRA oy X. Therefore, Yk = x XORE & YR Xk =X er' & KOK/ X TL3S o = k¢, which completes the proof. O

Proof.

Now we are in a position to obtain for half-planes/dihedral angles the results analogous to T 1.3.9, C 1.3.9.6, and
P 1.3.9.7 for conventional angles.

Theorem 1.3.56. Let x,k, A and X', k', N be triples of half-planes with edges a and a’, respectively. Let also half-
planes x,k and X', lie either both on one side or both on opposite sides of the planes \, X, respectively. 476 In
the case when x, K lze on_opposite szdes of A we require further that the half-planes x, k do not lie on one plane. 477
Then congruences X/\ X’/\’ KA = KN imply Xk = XK.

472Here the pencil J is formed by the half-planes lying on the same side of a given plane a and having the same edge a € a, plus the
two half-planes into which the line a divides the plane a.

473 Moreover, we are then able to immediately claim that the half-plane v lies between A, p in J' as well. (See also L 1.3.14.2.)
474Under the conditions of the theorem, the dihedral angle )?f?‘ (which is obviously also adjacent supplementary to the dihedral angle
XFK) is also congruent to the dihedral angle W (adjacent supplementary to the dihedral angle )?;’) But due to symmetry in the
definition of dihedral angle, this fact adds nothing new to the statement of the theorem.

475 Alternatively, to prove this corollary we can write: Z(h® k) = adjspL(h, k)& £(h®,k) = adjZ(h®, k)& L(h, k) =
Z(he, k') & Z(he, k) = £(he, k) TE2E1
476 These conditions are met, in particular, when both x C Int)a K C Int)?}’ (see proof).

4771 tho case when yx, k do lie on one plane, i. -e. whcn the half-plane k is the complementary half-plane of x and thus the dihedral
angle X)\ is adjacent supplementary to the angle e = )\XC the theorem is true only if we extend the n0t10n of dlhcdral anglo to 1nc1udo

k' = k¢. Hence the result follows immediately by the preceding theorem T 1.3.7.

stralght dihedral angles and declare all straight dihedral angles congruent. In this latter case we can write x)\ X’)\’ &Nk = Nr! & Nk =
adJSpX)\&)\/Ii = adjx’)\’ C13:352 y/ _ x'€.
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Proof. Take points O € a, O’ € o' and draw planes @ 3 O, o/ > O’ such that o L a, & L a’. Denote by h, k, I,
respectively, the sections of the half—planes X, K, A by the plane «, and by h’ KU respectlvely, the sections of the

half-planes x’, k', A by the plane «’. Since, by hypothesis, we have X/\ =X /\’ AA =K /\’ using the definition of
congruence of dihedral angles we see that 4(h, =40, Lk, 1) = (K,1). Hence7 taking into account C 1.2.55.24,
C 1.2.55.26, and T 1.3.9, we see that Z(h, k) = Z(h/,k"). Finally, using the definition of congruence of dihedral angles

again, we conclude that Y& = y/x’, q.e.d. O

Proposition 1.3.56.5. Let X, K, A and X', k', N be tmples of half-planes with edges a and a’'. If the half- plane X lie lies
mszde the dihedral angle )\A and the half- planes X', K lie on one side of the line X', the congruences X)\ = ’)\’
RA= &N imply ' C IntNR/. 478

Proof. Follows from L 1.2.55.16, C 1.2.55.24, P 1.3.9.5 and the definition of interior of dihedral angle. 47 O

Corollary 1.3.56.6. Let half-planes x, k and X', k' lie _on one szde of planes A and X', and let the dihedral angles
Ax, )\Ii be congruent, respectively, to the dihedral angles )\’ ! Nw'. Then if the half-plane X' lies outside the dihedral
angle /\/Ii the half-plane x lies outside the dihedral angle /\Ii

Proof. Indeed, if x = k then x = ﬁ&/ﬁ )7\’ &Nk = )7\’&)( v TS N Nx! = Nr = X' = K’ - a contradiction;
if x C IntAr then x C Int/\fi&x’n’l’&)\x /\’X &k = N TR X C IntNw' - a contradiction. O

Proposition 1.3.56.7. Let a dihedral angle N be e_congruent to an angle N, Then for any half-plane x with the

same edge as A\, k, lying inside the dihedral angle )\Ii there is exactly one half-plane x' with the same edge as N, K/,
lying inside the dihedral angle N such that )\x )\’X XE = XK.

Proof. Using T 1.3.54, choose Y’ so that y'x/\ &X}( = )7)?’ The rest follows from P 1.3.56.5, T 1.3.56. O

An (extended) dihedral angle )?; is said to be less than or congruent to an (extended) dihedral angle Yk if there
is a dlhedral angle )\u with the same edge a as xn such that the dihedral angle x’x’ is congruent to the dihedral
angle )\,u and the interior of the dihedral angle )\,u is included in the interior of the dihedral angle k. If X k' is less
than or congruent to Y&, we shall write this fact as x VK < XK. If a dihedral angle x’k’ is less than or congruent to
a dihedral angle Xk, we shall _also say that the dihedral angle XF is greater than or congruent to the dihedral angle
X'k, and write this as Yk = x/x/.

A dihedral angle congruent to its adjacent supplementary dihedral angle will be referred to as a right dihedral
angle.

Lemma 1.3.56.8. Any plane angle Z(h, k) of a right dihedral angle X% is a right angle. Conversely, any dihedral
angle XKk having a right plane angle Z(h, k) is right.

Proof. Follows from the definition of congruence of dihedral angles and C 1.2.55.14. O
Lemma 1.3.56.9. Any dihedral angle )?;’, congruent to a right dihedral angle XK, is a right dihedral angle.

Proof. Denote by Z(h, k), Z(I/, k') plane angles (chosen arbitrarily) of X%, )?;’ , respectively. By the preceding lemma
(L 1.3.56.8) Z(h,k) is a right angle. From definition of congruence of dihedral angles we have Z(h,k) = Z(I', k).
Hence by L ?7? the angle Z(h/, k') is a right angle. Using the preceding lemma (L 1.3.56.8) again, we see that Y& is
a right dihedral angle, as required. O

If half-planes x, x form a right dihedral angle Y%, the plane Y is said to be perpendicular, or orthogonal, to the
plane k. If a plane « is perpendicular to a plane 3, we write this as o L 3.

Lemma 1.3.56.10. Orthogonality of planes is symmetric, i.e. « L 3 implies 8 L «.
Proof. O

Lemma 1.3.56.11. Suppose o L B and ~y L ¢, where c = anNB. Then the lines ¢, b= aN~y, a = BN~y are mutually
perpendicular (i.e. each is so to each), and so are the planes «, 3, v. Also, a L o, b L 3.

Proof. Since, by hypothesis, the line ¢ is perpendicular to the plane v, by definition of orthogonality of a line and a
plane the line ¢ is perpendicular to any line in v through O, where O = cN~y = a N BN~ is the point where the line
c meets the plane ~. In particular, we have ¢ 1 a, ¢ L b. Also, we see that a L b, for the angle between lines a, b is
a plane angle of the dihedral angle between planes «, 8 (see L 1.3.56.8). Sincea LcCa,a LbCa,a>0 =bNg,
from T 1.3.41 we see that the line a is perpendicular to the plane «. Similarly, b L (. Finally, since a L b and the
angle between

O

478 According to T 1.3.56, they also imply in this case xr = x/’;’.
479 At the outset we proceed exactly as in the proof of the preceding theorem. Then we use L 1.2.55.16 to show that h C Z(k,1) and
C 1.2.55.24 to show that h'k'l’.
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If a dihedral angle X k' is less than or congruent to a dihedral angle xn and, on the other hand, the dihedral
angle X k' is known to be incongruent (not congruent) to the dlhedral angle X%, we say that the dihedral angle X K
is strictly less 430 than the dihedral angle Y%, and write this as X k' < XK. If a dihedral angle x K’ is (strictly) less
than a dihedral angle Xk, we shall also say that the dihedral angle X% is strictly greater *3! than the dihedral angle
X'k

Obviously, this definition implies that any proper (non-straight) dihedral angle is less than a straight dihedral
angle.

We are now in a position to prove for dihedral angles the properties of the relations ”less than” and ”less than
or congruent to” (and, for that matter, the properties of the relations ”greater than” and greater than or congruent
t0”) analogous to those of the corresponding relations of (point) intervals and conventional angles.

Comparison of Dihedral Angles

Lemma 1.3.56.12. For any half-plane A having the same edge as the half-planes x, k and lying inside the dihedral
angle Xk formed by them, there are dihedral angles p, v with the same edge as X, k, A and lying inside Xk, such that

XK = uv.
Proof. See T 1.3.54, L. 1.3.15.1. O

The following lemma is opposite, in a sense, to L 1.3.56.12

Lemma 1.3.56.13. For any two (distinct) half-planes u, v sharing the edge with the half-planes x, k and lying
inside the dihedral angle Xk formed by them, there is exactly one half-plane \ with the same edge as x, k, A, p and
lying inside Xk such that v = XK.

Proof. See T 1.3.54, L 1.3.15.2.

Lemma 1.3.56.14. A dihedral angle x/; is (strictly) less than an angle Xr iff:

— 1. There exists a half-plane X\ sharing the edge with the half-planes x, k and lymg inside the dihedral angle Xk
formed by them, such that the dihedral angle X'k’ is congruent to the dihedral angle X)\ 482 o

— 2. There are half-planes 1, v sharing the edge with the half-planes x, k and lying inside the dihedral angle XK
such that x'k' = Z(p, V).

In other words, a dihedral angle )?’;’ is strictly less than a dihedral angle XK iff there is a dihedral angle XL\L,
whose sides have the same edge as x, k and both lie on a half-open dihedral angular interval [xx) (half-closed dihedral

angular interval (xk]), such that the dihedral angle xx' is congruent to the dihedral angle Xk.
Proof. See T 1.3.54, L. 1.3.15.3.0

Observe that the lemma L 1.3.56.14 (in conjunction with A 1.3.4) indicates that we can lay off from any half-plane
a dihedral angle less than a given dihedral angle. Thus, there is actually no such thing as the least possible dihedral
angle.

Corollary 1.3.56.15. If a half-plane )\ shares the edge with half-planes x, x and lies inside the dihedral angle Xk
formed by them, the dihedral angle )?5\ is (strictly) less than the dihedral angle XK.

If two (distinct) half-planes p, v share the edge with half-planes x, k and both lie inside the dihedral angle X%
formed by them, the dihedral angle v is (strictly) less than the dihedral angle XK.

Suppose half- planes Kk, \ share the edge with the half-plane x and lie on the same side of the plane x. Then the
inequality XK < X/\ implies k C IntX/\

Proof. See T 1.3.54, C 1.3.15.4, L 1.2.55.22. O

Lemma 1.3.56.16. A dihedral angle )?;’ is less than or congruent to a dihedral angle Xk iff there are half-planes
A, 1 with the same edge as x, k and lying on the closed dihedral angular interval [xk], such that the dihedral angle
XK is congruent to the dihedral angle XK.

Proof. See T 1.3.54, L. 1.3.15.5. O

Lemma 1.3.56.17. If a dihedral angle W is congruent to a dihedral angle )?;’ and the dihedral angle )?;’ is less

"

than a dihedral angle XK, the dihedral angle "K' is less than the dihedral angle XK.

Proof. See T 1.3.54, L. 1.3.15.6. O

480We shall usually omit the word ’strictly’.

481 Again, the word ’strictly’ is normally omltted

482 Again, we could have said here also that X k! < Xk iff there is a half-plane ¢ C Intxk sharing the edge with x, x such that X k' = XK,
but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.
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Lemma 1.3.56.18. If a dihedral angle )7,%\” is less than a dihedral angle )?;’ and the dihedral angle )?;’ 18 congruent

"

to a dihedral angle Xk, the dihedral angle X"k is less than the dihedral angle XF.

Proof. See T 1.3.54, L 1.3.15.7. O

Lemma 1.3.56.19. If a dihedral angle x/”-m\” 1s less than a dihedral angle )?;’ and the dihedral angle )?;’ is less

than a dihedral angle XK, the dihedral angle x"k" is less than the dihedral angle XK.

Proof. See T 1.3.54, L 1.3.15.8. O

Lemma 1.3.56.20. If a dihedral angle XN“N is less than or congruent to a dzhedml angle X k' and the dihedral angle

X k' is less than or congruent to a dihedral angle X&, the dihedral angle x " is less than or congruent to the dihedral
angle XK.

Proof. See T 1.3.54, L. 1.3.15.9. O

Lemma 1.3.56.21. If a dihedral angle )?;’ is less than a dihedral angle Xk, the dihedral angle XKk cannot be less
than the dihedral angle x'k'.

Proof. See T 1.3.54, L. 1.3.15.10.0

Lemma 1.3.56.22. If a dihedral angle )?;’ is less than a dihedral angle XK, it cannot be congruent to that dihedral
angle.

Proof. See T 1.3.54, L 1.3.15.11. O

Corollary 1.3.56.23. If a dihedral angle )7/2’ is congruent to a dihedral angle Xk, neither )7/2’ is less than YK, nor
XF is less than x'K'.

Proof. See T 1.3.54, C 1.3.15.12. O

Lemma 1.3.56.24. If a dihedral angle X K is less than or congruent to a dihedral angle Xk and the cmgle XK 1s less
than or congruent to the dihedral angle x /4 the dihedral angle X'k’ is congruent to the dihedral angle XF.

Proof. See T 1.3.54, L. 1.3.15.13. O

Lemma 1.3.56.25. If a dihedral angle )?;’ is mot congruent to a dihedral angle )ZR,/t_h\en either the dihedral angle
X'k is less than the dihedral angle Xk, or the dihedral angle X& is less than the angle X'K'.

Proof. See T 1.3.54, L. 1.3.15.14.0

Lemma 1.3.56.26. If a dihedral angle )?;’ is less than a dihedral angle xR, the dihedral angle W adjacent
supplementary to the former is greater than the dihedral angle x¢k adjacent supplementary to the latter.

— L1.3.56.14
Pmof X K < XK 350

Intx’%’. Also, Yk = ’)\’

P13567 L1.2.55.27
—

HAACXK;&XR’—X}\ N C

MLBRE-1 e XK ’/\’ Finally, \' C Intx K & Xk = ’C)\’

Ik’ K CImfx’)\’&xn— YN K C Inty ’)\’
L13.56.14 = 50
Xk < x'°k’. O

Lemma 1.3.56.27. Suppose Z(h,k), Z(W', k') are plane angles of the angles X%, )?;’, respectively. Then Z(h,k) <
Z(B' K implies Xk < X'K'.

Proof. By hypothesis, the angles Z(h,k), Z(I', k') are, respectively, the sections of the dihedral angles Y&, )?;’
by planes a, o’ drawn perpendicular to the edges a, a’ of Y, )?’;’ Since Z(h,k) < Z(h',K'), there is a ray
I C IntZ(W, k') such that Z(h,k) = Z(h/,1") (see L 1.3.16.3). Drawing a plane § through o’ and a point L' € I’
(see T 7?), from L 1.2.55.3 we have X' C Int;?’;’, where )\ is the half-plane with edge a containing L’. Since also,
obviously, Xk = ﬁ (by definition of congruence of dihedral angles), we obtain the desired result. O

The following lemma is converse, in a sense, to the one just proved.

Lemma 1.3.56.28. Suppose that a dihedral angle X is less than a dihedral angle Xr. Then any plane angle Z(h, k)
of Xk is less than any plane angle Z(h', k') of XK.

Proof. By hypothesis the angles Z(h, k), Z(W', k') are, respectively, the sections of the dihedral angles Y&, x V'K by
planes «, o drawn perpendlcular to the edges a, a’ of Xk, X'x’. Since Yk < x k', there is a half—plane N C I?’LtXFL
such that Yk = X’)\’ (see L 1.3.55.3). Denote by I’ the section of the half—plane A by the plane o’ (I’ is a ray by
L 1.2.19.13). Using L 1.2.55.16, we see that I’ C IntZ(h', k"). Since also, obviously, Z(h, k) = Z(h',1") (by definition
of congruence of dihedral angles), from L 1.3.16.3 we see that Z(h, k) < Z(h', k'), as required.
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Acute, Obtuse and Right Dihedral Angles

A dihedral angle which is less than (respectively, greater than) its adjacent supplementary dihedral angle is called
an acute (obtuse) dihedral angle.

Obviously, any dihedral angle is either an acute, right, or obtuse dihedral angle, and each of these attributes
excludes the others. Also, the dihedral angle, adjacent supplementary to an acute (obtuse) dihedral angle, is obtuse
(acute).

Furthermore, any plane angle of an acute (obtuse) dihedral angle is an acute angle. Conversely, if a plane angle
of a given dihedral angle is acute (obtuse), the dihedral angle itself is acute (obtuse), as the following two lemmas
show.

Lemma 1.3.56.29. A dihedral angle )?;’ congruent to an acute dihedral angle XK is also an acute dihedral angle.
Similarly, a dihedral angle X'k’ congruent to an obtuse dihedral angle Xk is also an obtuse dihedral angle.

Proof. Follows from L 1.3.56.27, L. 1.3.16.16, L. 1.3.56.28. O
Lemma 1.3.56.30. Any acute dihedral angle )?;’ is less than any right dihedral angle XK.
Proof. Follows from L 1.3.56.27, L. 1.3.16.17, L 1.3.56.28. O

Lemma 1.3.56.31. Any obtuse dihedral angle ﬁ is greater than any right dihedral angle xr. 483

Proof. Follows from L 1.3.56.27, L. 1.3.16.18, L 1.3.56.28. O
Lemma 1.3.56.32. Any acute dihedral angle is less than any obtuse dihedral angle.
Proof. Follows from L 1.3.56.27, L. 1.3.16.19, L 1.3.56.28. O

Lemma 1.3.56.33. A dihedral angle less than a right dihedral angle is acute. A dihedral angle greater than a right
dihedral angle is obtuse.

Theorem 1.3.56. All right dihedral angles are congruent.
Proof. Follows from L 1.3.56.8, T 1.3.16. O

Lemma 1.3.56.21. Suppose that half-planes x, k, A have the same initial edge, as do half-planes X', k', X'. Suppose,
further, that xRX and X'F'\ (i. e 1 the half-planes x, X and x', N lie on opposite sides of the planes Fa R', respectively,
that is, the dihedral angles XK, KA are adjacent, as are dihedral angles x'K' A’A’) and Xk = XK/, R = /2 Then the
half-planes k, X lie on the same side of the plane X iff the half-planes x’, /\ lie on the same szde of the plane cfmj,
and the half-planes k, X lie on opposite sides of the plane X iff the rays ', X' lie on opposite sides of the plane X.

Proof. Suppose that kAy. Then certainly N # ¢, for otherwise in view of C 1.3.55.2 we would have A= x“

Suppose now k'y'\. Using L 1.2.55.32 we can write A C Intx°k, X' C Int'N. In addition, Yk = X K T13:5>5 !

X K= adjspri = adspx K = X’% Hence, using C 1 3.56. 15 L 1.3.56.17 — L 1.3.56.19, we can write KA < X K=
X’C"f < KN = kX < KN, Since, however, we have X/\ = X’X by T 1.3.56, we arrive at a contradiction in view of
L 1.3.56.22. Thus, we have "f//\/X/ as the only remaining option. O

Suppose two planes «, 0 have a common line a. Suppose further that the planes a, § are separated by the line a
into the half-planes x, x© and &, k¢, respectively. Obviously, we have either Y < x°k or x°k < XK. If the dihedral
angle Xk is not greater than the dihedral angle /(x°, k) adjacent supplementary to it, the dihedral angle Y%, as well

as the dihedral angle x° will sometimes be (loosely 484) referred to as the dihedral angle between the planes a, 3.
485

Proposition 1.3.56.22. Suppose «, B are two (distinct) planes drawn through a common point O and points P, Q
are chosen so that apop L a, app L 3. Then any plane angle of the dihedral angle between «, (3 is congruent either
to the angle ZPOQ or to the angle adjacent supplementary to ZPOQ.

Proof. O

Proposition 1.3.56.23. Suppose «, B are two (distinct) planes drawn through a common point O and points P, Q
are chosen so that app L a, app L 3. Then any plane angle of the dihedral angle between o, B is congruent either
to the angle ZPOQ or to the angle adjacent supplementary to ZPOQ.

Proof. O

7?7

4831 different words: Any right dihedral angle is less than any obtuse dihedral angle.

4843trictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.

4851t goes without saying that in the case Xk < Xk it is the dihedral angle x°x that is referred to as the dihedral angle between the
planes «, 3.
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Figure 1.168:

Theorem 1.3.58. Suppose we are given:

— A figure A containing at least four non-coplanar points;

— A plane «o;

— A line a C «, containing a point O of A and a point A (not necessarily lying in A);

— A point E lying in plane o not on a;

— A point P lying outside a;

— A line @’ lying in a plane o, two distinct points O, A’ on d’, a point E' lying in o not on a’, and a point P’
lying outside o'.

Then there exists exactly one motion f: A — A’ and, correspondingly, one figure A’, such that:

1. O = f(O).

2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A" and B’ = f(B)
also lie on line a’ on the same side (on opposite sides) of the point O'.

3. If E, F lie in plane o on the same side (on opposite sides) of the line a, then the points E' and F' = f(F)
also lie (in plane o) on the same side (on opposite sides) of the line o .

3. If P, Q lie on the same side (on opposite sides) of the plane «, then the points P’ and Q' = f(Q) also lie on

the same side (on opposite sides) of the plane o.
486

Proof. O

Denote by uAB the equivalence class of congruent generalized intervals, containing a generalized interval AB.
This class consists of all generalized intervals CD € J congruent to the given generalized interval AB € J. We
define addition of classes of congruent generalized intervals as follows: Take an element AB of the first class u.AB.
Suppose that we are able to lay off the generalized interval BC of the second class uBC into the generalized ray B¢,
complementary to the generalized ray Agz. *®” Then the sum of the classes AB, BC is, by definition, the class AC,
containing the generalized interval AC. Note that this addition of classes is well defined, for AB = A8, & BC =

B1C1 & [ABC) & [A15:1C4] PILES pc = A1C1, which implies that the result of summation does not depend on the
choice of representatives in each class. Thus, put simply, we have [ABC] = puAC = pAB + uBC. Conversely, the
notation AC € uy + uo means that there is a geometric object B such that [[ABC] and AB € uq, BC € us.

In the case when pAB+ uCD = pEF and A'B' = AB,C'D' = CD, &'F' = EF (that is, when pAB+ uCD = uEF
and A'B" € uAB, C'D’' € uCD, &'F' € puEF), we can say, with some abuse of terminology, that the generalized
interval &'F’ is the sum of the generalized intervals A’'B’, C'D’.

The addition (of classes of congruent generalized intervals) thus defined has the properties of commutativity and
associativity, as the following two theorems (T 1.3.59, T 1.3.60) indicate:

486 That is, for Q € A if Q € ap then Q' € &’ p/ and Q € % implies Q' € /%

487In other words, we must be in a position to take a geometric object C € B (recall that C € B means that [ABC], see L 1.2.29.2)
such that the generalized interval BC lies in the second class, which we denote uBC. The notation employed here is perfectly legitimate:
we know that A1B1 € pAB = A1B1 = AB = pA1B1 = pAB. As in the case of classes of (traditional) congruent intervals, in our future
treatment of classes of congruent generalized intervals we shall often resort to this convenient abuse of notation. Although we have agreed
previously to use Greek letters to denote planes, we shall sometimes use the letter p (possibly with subscripts) without the accompanying
name of defining representative to denote congruence classes of generalized intervals whenever giving a particular defining representative
for a class is not relevant.
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Theorem 1.3.59. The addition of classes of congruent generalized intervals is commutative: For any classes i,
Wa, for which the addition is defined, we have p1 + o = po + 1.

Proof. Suppose A'C' € py + pa. According to our definition of the addition of classes of congruent generalized
intervals this means that there is a generalized interval AC such that [ABC] and AB € puy = pAB, BC € ps = ulBC.
But the fact that CB € pus = uCB, BA € p; = uBA, [CBA], and AC' = CA implies A'C' € ps + p1. Thus, we
have proved that p; + pe C po + p1 for any two classes p1, po of congruent generalized intervals. By symmetry, we
immediately have puo + p1 C p1 + pe. Hence pg + po = po + p1, qed. O

Theorem 1.3.60. The addition of classes of congruent generalized intervals is associative: For any classes p1, p2,
ws, for which the addition is defined, we have (u1 + po) + pg = p1 + (pe + ps).

Proof. Suppose AD € (u1 + p2) + p3. Then there is a geometric object C such that [ACD] and AC € puy + po,

CD € p3. In its turn, AC € pu1 + po implies that 3B [ABC| & AB € p1 & BC € p2.4®® We have [ABC] & [ACD] PrLRT

[ABD] & [BCD]. Hence [BCD]& BC € uas&CD € ps = BD € pg + ps. [ABDJAB € 1 & BD € pg + us = AD €
w1+ (p2 + p3). Thus, we have proved that (py + po) + pus C p1 + (p2 + ps) for any classes py, po, us of congruent
intervals. O

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write
11+ pe + - - - + pyp, for the sum of n classes p1, po, . . ., un of congruent generalized intervals without needing to care
about where we put the parentheses.

If a class uBC of congruent generalized intervals is equal to the sum uBiCi + uBaCo + - - - + uB,C, of classes
whB1Cy, uBoCo, . . ., uB3,Cy, of congruent intervals, and uB1C; = ulBeCo = - -+ = uBB,C, (that is, B1C1 = B2lo = -+ =
B,.C.), we write uBC = nuB31Cy or uBB1C1 = (1/n)uBC.

Proposition 1.3.60.1. If pAB + uCD = puEF,*® A'B' € uAB, C'D' € uCD, &'F' € uEF, then AB < E'F,
C'D < &F.

Proof. By the definition of addition of classes of congruent generalized intervals, there are generalized intervals
LM € pAB, MN € CD, LN € EF such that [LMAN]. By C 1.3.154 LM < LN. Finally, using L 1.3.14.1,
L 1.3.15.6, L. 1.3.15.7 we can write A’/B' = AB& LM = AB&E'F = EF& LN = EF& LM < LN = A'B < E'F'.
Similarly, C'D’' < &'F'. O

At this point we can introduce the following jargon. For classes uAB, uCD or congruent generalized intervals we
write pAB < puCD or uCD > pAB if there are generalized intervals A'B’ € uAB, C'D’ € CD such that A'B' < C'D'.
L 1.3.14.1, L 1.3.15.6, L 1.3.15.7 then show that this notation is well defined: it does not depend on the choice of
the generalized intervals A'B’, C'D’. For arbitrary classes uAB, uCD of congruent generalized intervals we then have
either uAB < uCD, or pAB = puCD, or wAB > uCD (with the last inequality being equivalent to uCD < uAB).
From L 1.3.15.11 we see also that any one of these options excludes the two others.

Proposition 1.3.60.2. If uAB + uCD = pEF, pAB+ uGH = uLM, and CD < GH, then EF < LM. 490

Proof. By hypothesis, there are generalized intervals PQ € uAB, QR € uCD, P'Q € uAB, Q'R' € uGH, such
that [POR], [P'Q'R], PR € péF, P'R' € uLM. Obviously, PO = AB&P'Q' = AB =%' PQ = P'Q’. Using

L 1.3.15.6, L 1.3.15.7 we can also write QR = CD&CD < GH& Q'R = GH = QR < QR’. We then have

[POR] & [P'QR'|&PQ =P'Q & QR < Q'R "'Z2"! PR < P'R’. Finally, again using L 1.3.15.6, L 1.3.15.7, we

obtain PR=EF&E&PR<P'R &P'R =LM=EF < LM. O
Proposition 1.3.60.3. If uAB + uCD = uEF, pAB + pGH = uLM, and EF < LM, then CD < GH. 491

Proof. We know that either uCD = pGH, or uGH < pCD, or uCD < pGH. But uCD = pGH would imply
pEF = pLM, which contradicts EF < LM in view of L 1.3.15.11. Suppose uGH < puCD. Then, using the preceding
proposition (P 1.3.60.2), we would have LM < EF, which contradicts EF < LM in view of L 1.3.15.10. Thus, we
have CD < GH as the only remaining possibility. O

Proposition 1.3.60.4. A class uBBC of congruent generalized intervals is equal to the sum pul31C1+uB2Co+- - -+ ul3,Cp,
of classes uBB1Cy, uBaCoa, ..., uBnCy of congruent generalized intervals iff there are geometric objects Ao, A1, ..., Ap
such that [A;_1A; Aiy1] for alli € Ny, Ai_1A; € uBiC; for all i € N, and Ay A, € uBC. 42

488 There is a tricky point here. AD € (u1 + p2) + pg implies that there is a geometric object C lying between A and D in some set J.
In its turn, AC € p1 + p2 implies that there is a geometric object B lying between A and C in some set J'. Note that the set J’, generally
speaking, is distinct from the set J. L 1.3.14.2 asserts, however, that in this case B will lie between A and C in J as well.

489We assume that the classes AB, uCD can indeed be added.

490This proposition can be formulated in more abstract terms for congruence classes g1, p2, ps of generalized intervals as follows:
p2 < pg implies p1 + p2 < p1 + ps.

491This proposition can be formulated in more abstract terms for congruence classes p1, p2, ps of generalized intervals as follows:
m1 + p2 < pr1 + ps implies po < p3. Note also that, due to the commutativity property of addition, p1 + p2 < p1 + p3 is the same as
w2 + p1 < p3 + p1. In the future we will often implicitly use such trivial consequences of commutativity.

492That is, we have A;_1.A; = B;C; for all i € Ny, and Ag A, = BC.
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Proof. Suppose uBBC = puBB31C1+uB2Co+- - -+ uBB,C,,. We need to show that there are geometric objects Ag, Ay, ..., An
such that [4;_1A4;A4,11] for all i € N,,_1, A;_1A; = B,C; for all i € N,,, and Ag.A,, = BC. For n = 2 this has been
established previously. 493 Suppose now that for the class pi,—1 = uBiC1 + uBB2Cs + -+ 4+ uBn_1Cp_1 there are
geometric objects Ag, A1, ... A,—1 such that [A4;_1.A4;A4;41] for all i € N,_o, A;_1A; € uBB;C; for all i € N,,_1, and
Ao An_1 € pin_1. Using Pr 1.3.1, choose a geometric object A, such that AgA, = BC and the geometric objects
An—1, A, lie on the same side of the geometric object Ag. Since, by hypothesis, uBC = pn—1 + ubBpCy, there are
geometric objects Dy, Dp_1, Dy such that DoDp—1 € pn—1, Dn—1Dn € pBnCrn, DoD,, € pBC, and [DyD,—_1Ds).
Since DoD,,_1 € Mn—1 & AgAp—1 € -1 = DoDp_1 = Ao An_1, DoD,, € MBC&AoAn S MBC = DoyD,, = Ao A.,
[DoDy—1Dy], and A,,_1, A, lie on the same side of Ay, by Pr ?? we have D,,_1D,, = An,_1A,, [AoAn_1A4,].

By L 1.2.22.11 the fact that [A;—1.4;A4;41] for all ¢ € N,,_5 implies that the geometric objects Ag, A1,..., An_1

are in order [ApA; ... A,—1]. In particular, we have [AgA,—2.4,-1]. Hence, [AgA,—2A4,-1] & [AoAn—1.A,] Priz7

[An—2A4,-1A4,]. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are geometric objects Ag, Az, ... A, such that [A;—1.4;4;41]
forall i € N,,_1, A;_1.A; € uBB;C; for all i € N,, and AgA,, € uBBC. We need to show that the class uBBC of congruent
generalized intervals is equal to the sum uB1Cy + pulBB2Co + - - - + uB3,C,, of the classes uBB1Cy, uB2Co, . . ., ul3,Cy,. For
n = 2 this has been proved before. Denote pu,_1 the class containing the generalized interval Ag.A,_1. Now we
can assume that p,_1 = uB1C1 + uBaCo + -+ + pB,—1Cph_1. *%* Since the points Ag, A, ..., A, are in the order
[AgA;g ... As] (see L 1.2.22.11), we have, in particular, [AgAn,—1 ... Ay]. As also AgAn—1 € pin—1, An—1An € uB,,Cr,
Ao A, € uBBC, it follows that puBC = p_1 + uBnCp = puB1C1 + uBoCo + -+ - + puBn_1Cn_1 + uBpCp, q.e.d. O

Proposition 1.3.60.5. For classes u1, 2, pus of congruent generalized intervals we have: py + po = p1 + ps implies
M2 = [3.

Proof. We know that either po < ps, or pa = ps, or pa < pus. But by P 1.3.60.2 pe < ps would imply pg +pa < pa+ps,
and po > ps would imply pg + pe > p1 + ps. But both g + po < p1 + ps and pg + pe > g1 + ps contradict
w1+ po = p1 + ps, whence the result. O

Proposition 1.3.60.6. For any classes p1, s of congruent generalized intervals such that p1 < ps, there is a unique
class pa of congruent generalized intervals with the property pi + o = ps.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that p; < ps in
view of L 1.3.15.3 implies that there are geometric objects A, B, C such that AB € pu;, AC € us, and [ABC]. Denote
po = puBC.4%5 From the definition of sum of classes of congruent generalized intervals then follows that pq + o = 3.
O

If 1 4+ w2 = ps (and then, of course, g + u1 = pg in view of T 1.3.59), we shall refer to the class ps of congruent
generalized intervals as the difference of the classes u3, p1 of congruent generalized intervals and write o = g — 1.

That is, po = ps — 1 PN 11 + pe = ps. The preceding proposition shows that the difference of classes of congruent
generalized intervals is well defined.

Proposition 1.3.60.7. For classes i1, p2, W3, ta of congruent generalized intervals the inequalities py < a2, s < g
imply pa + ps < po + pa. 19

Proof. Using P 1.3.60.2 twice, we can write: 1 + ps < po + ps < po + pg, which, in view of transitivity of the
relation < gives the result. O

Proposition 1.3.60.8. For classes 1, pz, pus, pa of congruent generalized intervals we have: p1 + po < usg =+ fig
and pg > (g tmplies p < ps .

Proof. We know that either p1 < ps, or p1 = ps, or pg > ps. But by P 1.3.60.2 p; = ps would imply g +pa > ps+pa,
and p1 > ps would imply pg + p2 > p1 + ps in view of the preceding proposition (P 1.3.60.7). But g + o > s + 4
contradicts p1 + p2 < p1 + p3, whence the result. O

Denote by pZ(h, k) the equivalence class of congruent angles, containing an angle Z(h, k). This class consists of
all angles Z(I,m) congruent to the given angle Z(h, k). We define addition of classes of congruent angles as follows:
Take an angle Z(h, k) of the first class pZ(h, k). Suppose that we are able to lay off the angle Z(k,1) of the second

493See the discussion following the definition of addition of classes of congruent generalized intervals.

494Observe that if the n geometric objects Ao, A1, ... An are such that [A;_1.4;A4;11] for all i € Ny,—1, A;_1.A; € uBB;C; for all i € Ny,
then all these facts remain valid for the n — 1 geometric objects Ag, A1,...Ap—1. Furthermore, we have AgA,—1 € pn—1 from the
definition of pp—1.

495That is, we take 2 to be the class of congruent generalized intervals containing the generalized interval BC.

496 And, of course, the inequalities p1 > 2, p3 > pa imply p1 + ps > po + pa. The inequalities involved will also hold for any
representatives of the corresponding classes.
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class p1Z(k, 1) into the angular ray kj, complementary to the angular ray hy. 497 Then the sum of the classes Z(h, k),

Z(k,1) is, by definition, the class uZ(h,l), containing the extended angle Z(h,l). Note that this addition of classes

is well defined, for Z(h, k) = Z(hy, k1) & Z(k,1) = Z(k1,11) & [hkl] & [hikil] =27 £(h,1) = Z(hy,11), which implies

that the result of summation does not depend on the choice of representatives in each class. Thus, put simply, we
have [hkl] = puZ(h,l) = uZ(h, k) + pZ(k,1). Conversely, the notation Z(h,l) € 1 + p2 means that there is a ray k
such that [hkl] and Z(h, k) € p1, Z(k,1) € ua.

Observe that in our definition we allow the possibility that the sum of classes of congruent angles may turn out
to be the class of straight angles. 49 We shall find it convenient to denote this equivalence class by 7(%*%)  where
the superscript is used to indicate that we are dealing with equivalence classes, not numerical angular measures.

Note further that pZ(h, k) + uZ(l,m) = 7(2**) iff the angles Z(h, k), Z(I,m) are supplementary.

In the case when puZ(h, k) + uZ(l,m) = pZ(p,q) and Z(h', k') = Z(h, k), Z({',m") = Z(,m), L(p,q) = £, ¢)
(that is, when pZ(h, k) + pZ(l,m) = puZ(p,q) and Z(h', k') € pZ(h, k), Z(I',m') € pZ(l,m), L(p,q) € nZ',q)),
we can say, with some abuse of terminology, that the angle Z(p’,q’) is the sum of the angles Z(h', k'), Z(I', m').

The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity,
as the following two theorems (T 1.3.61, T 1.3.62) indicate:

Theorem 1.3.61. The addition of classes of congruent angles is commutative: For any classes uy, po, for which
the addition is defined, we have p1 + po = po + p1.

Proof. O

Theorem 1.3.62. The addition of classes of congruent angles is associative: For any classes 1, 2, s for which
the addition is defined, we have (1 + p2) + s = p1 + (p2 + ps).

Proof. O

Note that we may write pu1 + po + - -+ + py, for the sum of n classes 1, po, . . ., b, of angles without needing to
care about where we put the parentheses.

If a class uZ(k,l) of congruent angles is equal to the sum pZ(k1,l1) + pl(ka,l2) + - + pl(kn,l,) of classes
pl(k,lh), pl(ka,la), ..., pl(kn,ly) of congruent angles, and pZ(ki,l1) = pl(ka,ls) = -+ = pl(kn,l,) (that is,
Lk, 1) = Lka,lo) = -+ = Lkn, 1n)), we write uZ(k, 1) = nul(ky,l1) or pZ(k1,l1) = (1/n)us(k,1).

Proposition 1.3.63.1. If u/(h, k) + pZ(l,m) = pZ(p,q), *° Z(h', k') € uZ(h, k), Z(I',m') € uZ(l,m), Z(p',q) €
wZ(p,q), then Z(W k') < Z(p',q"), Z(I',m") < Z(p',¢).

Proof. O

At this point we can introduce the following jargon. For classes pZ(h, k), uZ(l, m) or congruent angles we write
pZ(h, k) < puZ(l,m) or pZ(l,m) > pZ(h,k) if there are angles Z(h', k') € uZ(h, k), Z(I',m’) € pZ(l,m) such that
Z(WK) < Z(',m'). T 1.3.11, L 1.3.16.6, L 1.3.56.18 then show that this notation is well defined: it does not depend
on the choice of the angles Z(h/, k"), Z(I’;m’). For arbitrary classes uZ(h, k), uZ(l,m) of congruent angles we then
have either uZ(h,k) < pZ(l,m), or uZ(h,k) = uZ(l,m), or pZ(h,k) > pZ(l,m) (with the last inequality being
equivalent to pZ(l,m) < pZ(l,m)). From L 1.3.16.10 — C 1.3.16.12 we see also that any one of these options excludes
the two others.

Proposition 1.3.63.2. If u/(h, k) + pZ(l,m) = uZ(p,q), pZ(h,k) + pus(r,s) = pl(u,v), and Z(l,m) < Z(r,s),
then Z(p,q) < Z(u,v). 59

Proof. O

Proposition 1.3.63.3. If u/(h, k) + puZ(l,m) = uZ(p,q), pZ(h,k) + ps(r,s) = pl(u,v), and Z(p,q) < £(u,v),
then Z(l,m) < Z(r,s). °0

Proof. O

497In other words, we must be in a position to take a ray I € k¢ (recall that | € k¢ means that [hkl], see L 1.2.36.2) such that
the angle Z(k,1) lies in the second class, which we denote pZ(k,1). The notation employed here is perfectly legitimate: we know that
Z(h1,k1) € pL(h, k) = ZL(hi,k1) = Z(h,k) = pL(h1,k1) = pL(h, k). As in the case of classes of congruent intervals, both traditional
and generalized ones, in our future treatment of classes of congruent angles we shall often resort to this convenient abuse of notation.
Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter p (possibly with subscripts)
without the accompanying name of defining representative to denote congruence classes of angles whenever giving a particular defining
representative for a class is not relevant.

498Recall that by definition all straight angles are congruent to each other and are not congruent to non-straight angles. Thus, all
straight angles lie in the single class of equivalence.

499We assume that the classes uZ(h, k), uZ(1,m) can indeed be added.

500This proposition can be formulated in more abstract terms for congruence classes p1, p2, u3 of angles as follows: o < p3 implies
1+ p2 < pi+ ps.

501This proposition can be formulated in more abstract terms for congruence classes 1, po, us3 of angles as follows: p1 + po < 1 + p3
implies p2 < p3.

193



Proposition 1.3.63.4. A class uZ(k,l) of congruent angles is equal to the sum pZ(ki,l1) + pl(ka,l2) + - +
wZ(kn,lpn) of classes pkily, pkala, ..., pknly, of congruent angles iff there are rays ho, hi, . .., hy such that [h;—1hihit1]
for alli € N1, Z(hi—1,h;) € uZ(ki,l;) for all i € N, and Z(ho, hyn) € ps(k,1). °°2

Proof. O

Proposition 1.3.63.5. For classes u1, pe, ps of congruent angles we have: puy + po = 1 + ps implies po = us.

Proposition 1.3.63.6. For any classes p1, ps of congruent angles such that p1 < us, there is a unique class po of
congruent angles with the property pi + pe = ps.

If 41 + p2 = ps (and then, of course, ps + p1 = ps3 in view of T 1.3.59), we shall refer to the class o of
congruent angles as the difference of the classes ps, @1 of congruent angles, and write uo = usz — p1. That is,

o = 3 — [ PN 1 + p2 = pg. The preceding proposition shows that the difference of classes of congruent angles
is well defined.

Proposition 1.3.63.7. For classes p1, po, ps, pa of congruent angles the inequalities p1 < pa, ps < pa imply
pn + p3 < po + pa. O

Proof. See P 77. O

Proposition 1.3.63.8. For classes p1, po, i3, pa of congruent angles we have: 1 + po < ps + pa and po > fig
implies py < ps .

Proof. See P 77. O
Corollary 1.3.63.9. In a triangle NABC we have n/BAC + n/ACB < g(abs) 504

Proof. In fact, ZBAC < adjspZACB by T 1.3.17. Hence using P 1.3.63.2 we can write uZABC + uZACB <
padjsp/ACB + 11/ ACB = (%) which gives the desired result. O

We shall refer to an (ordered) pair (£(h,k),n) consisting of an extended angle Z(h,k) and a positive integer
n € N, (here N® = {0,1,2,...} is the set of all positive integers) as an overextended angle. Overextended angles
with n = 0 will be called improper, while those with n € N will be termed proper overextended angles. Evidently,
we can identify improper overextended angles with extended angles. In fact, there is a one-to-one correspondence
between improper overextended angles of the form (Z,0) and the corresponding extended angles Z.

Overextended angles (Z(h1, k1),n1), (£(h2, k2),n2) will be called congruent iff Z(hy, k1) = Z(ho, k2) and nq = na.
Obviously, the congruence relation thus defined is an equivalence relation.

We shall denote by u(Z(h, k), n) the equivalence class of overextended angles congruent to the overextended angle
(Z(h,k),n). When there is no danger of confusion, we will also use a shorter notation (2, n) 59 or simply p(®%.

Given classes p(Z1,n1), p(£2,n2) of congruent overextended angles, we define their sum as follows:

Consider first the case when both /; and Z5 are non-straight angles. In this case we take an angle Z(h, k) € p/y
and construct, using A 1.3.4, the ray [ such that Z(k,1) € Z5 and the rays h, [ lie on opposite sides of the line k. If
it so happens that the ray k lies inside the extended angle Z(h,1) (which is the case when either k, [ lie on the same
side of the line h or [ = h¢), we define the sum of j(£/1,n1), u(Z2,n2) as u(£(h,1),n), where n = ny +ny. In the case
when the ray k lies outside the (extended) angle Z(h, 1), i.e. when the rays k, I lie on opposite sides of the line h and
the ray k¢ lies inside the angle Z(h,l) (see L 1.2.21.33), we define the sum of u(Z1,n1), u(Za,n2) as p(Z£(h¢,1),n),
where n = nj + ng + 1. Suppose now Z; (respectively, Z5 ) is a straight angle. Then we define the sum of u(Z£1,n1),
w(Zayna) as p(ZLa,mn) (u(£1,n) ), where n =ny + ng + 1.

It follows from T 1.3.9, L 1.3.16.21 that the addition of overextended angles is well defined.

The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity,
as the following two theorems (T 1.3.64, T 1.3.65) indicate:

Theorem 1.3.64. The addition of classes of congruent overextended angles is commutative: For any classes ,ugmt),

mt), for which the addition is defined, we have ,u(wt) + (mt) (wt) + 1 (mt)
Proof. Suppose (£(h,l),n) € (It) + ,u(wt). Then, according to our definition above, the following situations are
possible:

1) The rays h, [ lie on opposite sides of the line k, where (Z(h,k),n1) € Mgm)’ (£L(k,1),n2) € ,uéxt).

(a) Suppose first that the ray k lies inside the extended angle Z(h,l) and n = n; 4+ ny. Interchanging the rays h,
[ and the subscripts ”1” and ”2” and noticing that they enter the appropriate part of the definition symmetrically,
we see that (£(h,l),n) € ,ué =t 4 u(mt) Thus, we have ,ugzt) + u(mt) C ,uézt) +u (zt)

(mt) (mt) (mt) +u (mt)

Reversing our argument in an obvious way, we obtain p C 1y

502That is, we have Z(h;—1,hi) = Z(ki,1;) for all i € Ny, and Z(hg, hn) = Z(k,1).

503 And, of course, the inequalities p1 > po, p3 > pa imply p1 + p3 > po + pa. The inequalities involved will also hold for any
representatives of the corresponding classes.

504 00sely speaking, the sum of any two angles of any triangle is less than two right angles.

505Here we omit the letters that denote sides of the defining angle when they are not relevant.
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(b) Suppose now that the ray k¢ lies inside the extended angle Z(h,l) and n = ny +nz + 1. Again, interchanging
the rays h, I and the subscripts ”1” and 727, we see that (Z(h,l),n) € ugmt) + u(m) in this case, too.
2) Suppose, finally, that (Z(h,h%),n1) € Mgm)' Then, according to our definition, (Z(h,1),ns) € ugmt), where
ny +ng + 1. Hence (Z(h,1),n) € uémt) + ugmt). Similar considerations apply to the case when (£(1,1°),n1) € ,u(mt).
O
(xt)

Theorem 1.3.65. The addition of classes of congruent overextended angles is associative: For any classes py"

uémt), u;t), for which the addition is defined, we have (u; @) | u(zt)) + uézt) = ugzt) T (u;zt) + uémt)).

Proof. 1) Suppose that (Z(h,k),n1) € ugm), (L(k,1),n2) € ng ). and the ray k lies inside the non-straight angle
Z(h,1). Then, according to our definition of the sum of overextended angles, we have (Z(h,l),n1+ng) € ,ugwt) + (,ugwt).
Taking a ray m such that (Z(I,m),n3) € uémt)
following possible situations:

(a) The ray [ lies inside the extended angle Z(h,m) (see Fig. 1.169, a), b)). Then (£(h,m),n1 + na + ng) €
(ugmt) + uémt)) + uémt). But in this case the ray [ also lies between k, m, and the ray k lies between the rays h, m (see
P 1.2.21.29). Hence (£(k,m),n2 + ng) € uéxt) + ugzt) and (Z(h,m),n1 +na +n3) € ugzt) + (ps (=) | u(zt)).

(b) Suppose now that the rays [, m lie on opposite sides of the line A. Then (from the deﬁnltlon of addition of
overextended angles) (Z(h¢,m),n1 +n2 +ns + 1) € (13 (@) 4 M(It)) + uézt). Observe also that in this case the ray h¢
lies inside the angle Z(I,m) by L 1.2.21.33, and Z(h, m°) = Z(h®,m) as vertical angles (see T 1.3.7).

In addition, using the definition of the interior of an angle, we can write h¢ C IntZ(l,m)&k C IntZ(h,l) =

[h®im & mhel & hkl. Hence mhel & helh & hkl "' 225 ik i
Consider first the case when &, [ lie on the same 51de of m (see Fig. 1.169, ¢)). Since both mlk and klm, we conclude

that (£(k,m),na+ns) € ugztum klm & mik " 2251 € IntZ(m, k) = mik. mik & Ukh "' 225 mkh. Also, (by

L 1.2.18.2, L 1.2.18.5) we have klm & lh°m & h*mh = kmh According to the definition of addition of overextended
angles, this implies (Z(h,m®),n1 +ng +ng +1) € u(mt) + (s (xt) | u(mt)). Note also that Z(h,m®) = Z(h®,m) as
vertical angles (see T 1.3.7).

We now turn to the case when the rays [, k lie on opposite sides of the line m (see Fig. 1.169, d)). Since both lmk
and mlk (see above), in this situation we have (Z(k, m®), no+n3+1) € uémt)—kugzt). Also, helm & Imk & h*mh = hkm.
klh & khm & mhmlmh = mkh. Using the definition of interior pomts of an angle, we can write hkm & mkh = k C
IntZ(h,m*). Taking into account the fact that (Z(h,k),n1) € u? we finally obtain (Z(h,m¢),n; +ns+ng+1) €

(xt) (xt) (mt)
pi (g ).

There is also the case when m® = k (see Fig. 1.169, e)). In this case we have, evidently, (£(m,m®),ns + ng) €
U5+ 10, (L) a4+ g + 1) € D + (a7 + D)

Consider now the situation when (£(I,m),ns) € ug Y and m = 1°, i.e. when Z(l,m) is a straight angle. Then,

obviously, (Z(h,1),n1 +na +ng +1) € (u{™ +uS™) +p§™, (£(k, 1), n2+n5+1) € puS™ + p§™, (£(hym), ny +nz+
ns+1) € pf™ + (u + 1),
2) Suppose now that (Z(h,k),n1) € ugmt), (L(k,1),n2) € ,ugwt) and h® =1, i.e. Z(h,l) is a straight angle. Then,

according to our definition of the sum of overextended angles, we have (Z(h, h¢),n1 + na) € ngt) + (ngt)'

Taking a ray m such that (Z(h¢,m),n3) € ngt) and the rays k, m lie on opposite sides of the line I = h, we can
xt)

write (Z(h®,m),ny +ng +ng + 1) € (" + u8") + p§" and consider the following possible situations (we have
mhk & mhme 1228 mCkh, whence in view of L 1.2.21.21 either k C Int/(h,m¢), or m¢ C IntZ(h,k), or m¢ =k

(see Fig. 1.169, f)-h))):
L1.2.18.5

(a) k C IntZ(h,m°) (see Fig. 1.169, f)). From definition of interior we have hkm. Hence hkm & himh® —=="" kml.

Thus, we can write (£(m®,k),ne +ns + 1) € uéxt) + u(m) and (Z(mf h),n1 +ns+mn3+1) € ugzt) + (15 (xt) 4 u(zt))

b) m© C IntZ(h,k) (see Fig. 1.169, g)). Hence hmk (see C 1.2.21.11). Writing hmk & hmh* L12:1>8 * hekm and
( g g g

taking into account that khm, we see that (Z(k,m),na + nsz) € uéxt) + u(xt Also, 56 hm®k & mkm “"22%° hkm

Thus, we see that (£(me, h),ny +ng +ng + 1) € p{" + (uS + p§).

3) Suppose that (£(h,k),n1) € ,ugm), (£(k,1),n9) € ,ugm ) the rays h, [ lie on opposite sides of the line k, and the
rays k, [ lie on opposite sides of the line h. Then, according to our definition of the sum of overextended angles, we
have (Z(he,1),ny + ng + 1) € p{" + (u™.

Furthermore, by L 1.2.21.33 h¢ C IntZ(k,1).

Taking a ray m such that (£(I,m),ns3) € ,ugwt)
following possible situations:

(a) The rays I, m lie on the same side of the line A. Then from L 1.2.21.32 we have | C Int/(h®,m). Hence

(l(hcvm)vnl +no +n3 + 1) (‘LLgmt) + u(mt)) + /L(mt))

and the rays h, m lie on opposite sides of the line I, consider the

and the rays h°, m lie on opposite sides of the line I, consider the

506 Using definition of the interior of Z(h, k), we can write m¢ C IntZ(h,k) = hm°k).
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Consider first the case when [, m lie on the same side of k (see Fig. 1.170, a)). Then, of course, h® C IntZ(k,1) &1 C
IntZ(he,m) &lmk " 22 1 Int/(k,m)&he C IntZ(k,m) = h°mk & khem. Hence (using L 1.2.18.5) we can
write hkh® & h°mk = hkm, khem & h“mh = kmh. These relations imply that (Z(m¢, h),n1 +ne2 +ng +1) €
8™ (S 4 ).

We turn now to the situation when I, m lie on opposite sides of k (see Fig. 1.170, b)). Taking into account that h® C
Int/(k,1) = khel (by definition of interior) and [ C IntZ(h¢,m) TZZM el we can write khel & helm ©'22
klm. This, together with lﬁm,_implies (£(k¢,m),na + ng+ 1) € uéwt) + ugmt). Using L 1.2.18.4, L 1.2.18.5 we can
write khl & lmh & khk® = k®mh. In view of L 1.2.21.32 this implies m C IntZ(h°, k°), whence m® C IntZ(h,k) by
L 1.2.21.16. Thus, again (Z(m®, h),n1 +nz +nz + 1) € p{™ + (u5™ + u§™).

(b) The rays, m lie on opposite same sides of the line h (see Fig. 1.170, ¢)). In this case (£(h,m), n1+n2+n3+2) €
W 4 p) 1 .

Using L 1.2.18.4, L 1.2.18.5 we can write kh°l & hlhe & klm = mhl. mhl & lhm "' 22 b ¢ IntZ(1,m) "' 227
m C Int/(h,1°) ZET R ©C IntZ(he,1). m¢ C IntZ(he,1)&he C Int/(k,1) " 222" me c Int/(k,1) & he C
Int/(k,me). Hence m¢ C IntZ(k,1) ' 22" kml. Also, khel & helh & hml “'Z2%° klm. Thus, (Z(k, m®),na +ns +
(@) | M(;Et) - : L1.2.18.5

1) € usy By definition of interior we have h¢ C Int/(k,m¢) = h*m°k. Hence h®m°k & h°kh ~"==" mkh.
Also, khl & lhm & mhme = khme. Thus, we see that (Z(h, m),n; +ng +ns + 2) € 8 + (u§ + p{™).
¢) Suppose m = h (see Fig. 1.170, d)). Then, obviously, (£(h, h®),n1+ns+ns3+1) € (u gmt) (It))—i-uz(ft) We know
that khl, and khel & helh “"22%° kih. Since (Z(h, k),n1) € p{™ it is now evident that (£(h, h¢),ny +ns+ns+1) €
(Et) (wt) (wt)
pi (g )
Finally, the case when at least one of the overextended angles (£;,n;) € qu(mt)
trivial and can be safely left as an exercise to the reader. O

, 1 =1,2,3 is straight, is almost

It turns out that we can compare overextended angles just as easily as we compare extended or only conventional
angles. We shall say that an overextended angle (Z(hy,k1),n1) is less than an overextended angle (Z(hq, k2), n2) iff:

— either ny < no;

—or n; = ng and Z(hl,kl) < Z(hQ,kQ).

In ShOl“t, (Z(hl,kl),nl) < (Z(hg,kg),’ng) g (nl < ng) \Y ((nl = ng)&é(hl,kl) < 4(h2,k2))

Theorem 1.3.66. The relation ”less than” for overextended angles is transitive. That is, (Z(h1,k1),n1) < (£(h2, k2),
and (Z(hQ, kQ), TLQ) < (Z(hg, kg), ng) Zmply (Z(hl, kl), nl) < (Z(hg, kg), ’ng).

Proof. See L 1.3.56.18. O

Other properties of this relation are also fully analogous to those of the corresponding relation for extended angles
(cf. L 1.3.16.6 — L 1.3.16.14):

Proposition 1.3.66.1. If an overextended angle (Z(h",k""),n"") is congruent to an overextended angle (Z(h',k'),n’)
and the overextended angle (Z(h',k'),n’) is less than an overextended angle (Z(h,k),n), the overextended angle
(Z(W" K"),n"") is less than the overextended angle (Z(h,k),n).

Proof. See L 1.3.16.6. O

Proposition 1.3.66.2. If an overextended angle (Z(h",k"),n") is less than an overextended angle (Z(h',K'),n’)
and the overextended angle (Z(h',K'),n’) is congruent to an overextended angle (Z(h,k),n), the overextended angle
(Z(W" K"),n"") is less than the overextended angle (Z(h,k),n).

Proof. See L 1.3.56.18. O

Proposition 1.3.66.3. If an overextended angle (Z(h",k"),n'"") is less than or congruent to an overextended angle
(Z(W,k"),n") and the overextended angle (Z(h',k'),n') is less than or congruent to an overextended angle (Z(h,k),n),
the overeztended angle (Z(h",k"),n") is less than or congruent to the overextended angle (Z(h,k),n).

Proof. See L. 1.3.16.9. O

Proposition 1.3.66.4. If an overextended angle (Z(h',k'"),n’) is less than an overextended angle (Z(h,k),n), the
overextended angle (£(h,k),n) cannot be less than the overextended angle (L(h',k'),n’).

Proof. See L. 1.3.16.10.0

Proposition 1.3.66.5. If an overextended angle Z(h', k') is less than an overextended angle Z(h,k), it cannot be
congruent to that angle.

Proof. See L 1.3.16.11. O
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Figure 1.169: Illustration for proof of T 1.3.65.
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Figure 1.170: Tllustration for proof of T 1.3.65 (continued).
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Proposition 1.3.66.6. If an overextended angle (Z(h',k"),n') is congruent to an overextended angle (Z(h,k),n),
neither (Z(h', k"), n') is less than (Z(h,k),n), nor (Z(h,k),n) is less than (L(R',K'),n’).

Proof. See C 1.3.16.12. O

Proposition 1.3.66.7. If an overeztended angle (Z(h',k'),n’) is less than or congruent to an overextended angle
(£(h,k),n) and the overextended angle (£(h,k),n) is less than or congruent to the overextended angle (L(h',k'),n’),
the overextended angle (Z(h', k'), n') is congruent to the overextended angle (Z(h,k),n).

Proof. See L. 1.3.16.13. O

Proposition 1.3.66.8. If an overextended angle (Z(h', k"), n') is not congruent to an overextended angle (£(h,k),n),
then either the overextended angle (Z(h',k"),n’) is less than the overextended angle (Z(h,k),n), or the overeztended
angle (Z(h,k),n) is less than the overextended angle (Z(h',k"),n’).

Proof. See L 1.3.16.14.0

The relation "less than” for overextended angles induces in an obvious way the corresponding relation for
classes of overextended angles. For classes pu(Z(h,k),n1), n(£(1,m),n2) or congruent overextended angles we write
w(Z(h, k), 1) < w(Z(l,m),n2) or (£, m),n2) > u(ZL(h,k),n1) if there are overextended angles (Z(h',k'),n1) €
w(Z(h, k), n1), (L', m'),ne) € (£(I,m), na) such that (ZL(h', k"), n1) < (L(I',m'),nz). T 1.3.11, P 1.3.66.1, P 1.3.66.2
then show that this notation is well defined: it does not depend on the choice of the overextended angles (Z(h/, k'), n1),
(£(l',m'),n2). For arbitrary classes pu(Z(h, k), n1), p(£(l,m), n2) of congruent overextended angles we then have ei-
ther u(Z(h,k),n1) < u(Z(l,m),nz2), or u(L(h,k),n1) = p(ZL(l,m),n2), or u(L(h,k),n1) > pn(L(l,m),ns) (with the
last inequality being equivalent to pZ(l,m) < puZ(l,m)). From P 1.3.66.4 — P 1.3.66.6 we see also that any one of
these options excludes the two others.

Proposition 1.3.66.9. If u(Z(h,k),n1)+u(Z(1,m),ne) = p(£L(p, q),ns3), u(L(h, k), n1)+p(L(r, s),ns) = p(£L(u,v),ns),
and (Z(l,m),n2) < (£(r,s),n4), then (L(p,q),n3) < (£L(u,v), n5) 7

Proof. O

Proposition 1.3.66.10. If u(Z(h, k), n1)+u(Z(l,m),n2) = u(ZL(p,q),ns), p(L(h, k), n1)+u(L(r, s),na) = p(L(u,v),ns),
and (£(p,q),n3) < (£(u,v),ns), then (Z(I,m),n2) < (£(r,s),n4). >

Proof. O

Proposition 1.3.66.11. For classes ugwt), /ngt), ,Mgm) of congruent overextended angles we have:
(xt) (zt) . . (xt) (i)
Wi s implies py o= s .

(zt) +pu (wt)

Proof. We know that either ngt) < uéxt), or ,uéxt) ugxt), or uéﬂ) < uéxt). But by P 1.3.66.9 M(It) < uéxt)

would imply " 4+ u$§ < {7 4 u$ ) and p$ > p$" would imply " 4+ p$ > p0 4 u{"™ . But both
(z1) () (zt) (zt) (z) ( (wt) _ (mt) (z)

,ugxt) + ,uéxt) < ugmt) + s +py > py 4 ps  contradict ,ulxt) + s +pus 7, whence the result.
O

and g

Proposition 1 3 66.12. For any classes ugﬂ of congruent overextended angles such that ugzt) < ugﬂ)

unique class u of congruent overextended angles with the property ug 2 + u(wt) = uz(ft).

there is a

Proof. Uniqueness follows immediately from the preceding proposition. To show existence, we take an arbitrary
ray h and then construct (using A 1.3.4) rays k, [ such that (Z(h,k),n1) € ugmt), (Z(h,1),n3) € ,ug Y where, of
course, n1,n3 € N. From L 1.2.21.21 we know that either the ray k lies inside the ray Z(h,1), or the ray [ lies inside

the angle Z(h, k), or the rays k, [ coincide. In the case k C IntZ(h,l) (see Fig. 1.171, a)) from the definition of
t)

sum of classes of congruent overextended angles immediately follows that if we denote ué = u(Z(k,1),n3 — ny),

we have 1\"" + u§™ = u{™ . Suppose now I € IntZ(h, k) (see Fig. 1.171, b)). Then we have (from definition of

interior) | C IntZ(h,k) = hlk& klh. Since kih& Ihic "'22°° khie, hik & ke “'22%° hkic, we see that defining
uémt) = u(£(k,1¢),n3 — ny — 1), we have (from definition of interior) 5 ui“’ + (mt) = uézt), as required. Finally,
(zt)

in the case k =1 we let uy = u(L(k, k%), n3 — ny — 1), which, obviously, again gives u(m) ugﬂ) = uz(ft). O

507 This proposition can be formulated in more abstract terms for congruence classes ,u(xt) éxt), ,u,:(,’xt)

(ﬂct) < H(ﬂc implies H( xt) +,u(xt) < u(ﬂct) +,u(xt)

508Thls proposition can be formulated in more abstract terms for congruence classes p;
(rt) _I_M(wt) < u(rt) + u(ﬂct) implies M( H < M(xt)

=t < u(m) gives n1 < m3. The fact that | C IntZ(h,k)
gives ny # n3. Thus, we have n; + 1 < ns.

of overextended angles as follows:

(xt) gxt), ,u,ém) of overextended angles as follows:

"OQObserve that the requirement py C1:3.16.4

(:L‘t) (zt)

Z(h,1) < Z(h,k) in view of
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lc
Figure 1.171: Hlustration for proof of P 1.3.66.12.

If ugmt) + ugmt) = uémt) (and then, of course, uémt) + ugmt) = ugﬂ) in view of T 1.3.64), we shall refer to the class

uémt) of congruent overextended angles as the difference of the classes ugmt), ,ugwt) of congruent overextended angles,

and write uémt) = ,ugwt) - ,ugwt). That is, uémt) = ugmt) - ugmt) FUN u?” + uéwt) = ,ugmt). The preceding proposition

shows that the difference of classes of congruent overextended angles is well defined.

Proposition 1.3.66.13. For classes ugmt), o, i3, pa of congruent overextended angles the inequalities ,ugwt) < uémt),

(zt) (xt) (wt) (xt) (zt) (zt) 510

py <y oamply py T+ g < g+ iy
Proof. O
Proposition 1.3.66.14. For classes ugzt), ugﬂ), ugﬂ), ufft) of congruent overextended angles we have: Mgmt)—f—ugmt) =

xt)

,Ug (zt) (zt)

+py 7 oand py 7 > pa implies py < ps .
Proof. O

The preceding results can be directly extended to any finite number of (congruence classes) of overextended
angles.

Corollary 1.3.66.15. Given a natural number n € N, if p(Z(hi,ki),ni) < pw(ZL(i,m;),pi) for all i € N, then
2?21 (L(hi ki), m;) < Z?:lu(l(li, m;), ;). Furthermore, if there exists an ig € i € N,, such that u(£L(hiy, ki), nig) <
(L (Ligs My ), Dio) then > (ZL(hiyki),ni) < Yoi (£, mi),pi). In particular, p(Z(h,k),p) < p(Z(l,m),p) im-
plies nu(Z(h, k),n) < nu(Z(l,m,p) for any n € N.

Proof. O

A similar result is obviously valid for classes of congruent overextended angles:

Corollary 1.3.66.16. Given a natural number n € N, if ugzt) < u;(zt) for all i € N, then Z?leil(-mt) < Z?Zlu;(zt).
Furthermore, if there exists an ig € i € N,, such that ugft) < u;gﬂ) then Z?:lugzt) < Z?Zlu;(zt). In particular, if
u(zt) < M/(zt) then M(mt) < M/(zt)

Proof. O

Proposition 1.3.66.17. Proof. O
Proposition 1.3.66.18. Proof. O

Proposition 1.3.66.19. Proof. O

Given a triangle AABC, we shall refer to the sum Zxﬂé = u(£BAC,0) + n(£LABC,0) + u(£LACB,0) of
the classes u(£BAC,0), u(£ZLABC,0), u(£LACB,0) of overextended angles as the abstract sum of the angles of the
triangle AABC.

Evidently, congruent triangles always have equal abstract sums of angles.

We shall denote 7(2¥%%%) the class of congruent overextended angles formed by all pairs (Z(h,h°),0), where
Z(h, h*) is, of course, a straight angle.

510 And, of course, the inequalities ,u,;xt) > ,uém), ,ugxt) > pﬁf”) imply ngt) + ngt) > ,uéxt) + ,uixt). The inequalities involved will also

hold for any representatives of the corresponding classes.
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Figure 1.172: Given a triangle AABC), there is a triangle one of whose angles is at least two times smaller than ZA.

Since p(£1,0) + u(Z2,0) + - -+ + p(Ln,0) = u(£,0) & ply + plo+ -+ usy = s, given a triangle AABC, we
shall sometimes refer synonymously to the sum puZA + /4B + pZC, whenever it makes sense and is equal to some
congruence class uZ of extended angles, as the abstract sum of the angles of the triangle AABC.

Proposition 1.3.67.8. Given a triangle ANABC, there is a triangle with the same abstract sum of angles, one of
whose angles is at least two times smaller than £ A.

Proof. (See Fig. 1.172.) Denote O = midAC (see T 1.3.22). Take A’ so that [AOA'], OA = OA’ (see A 1.3.1). Then

[AOA'| & [BOC] = ZA'OC = vert/AOB "=%7 /A'OC = /AOB. AO = OA' & BO = OC/A'OC = /AOB "2&*

NA'OC = ANAOB = LOA'C = LOAB & LOCA" = ZOAB. Using L 1.2.21.6, L 1.2.21.4, we can write O € (BC) N

(AA") = Ao C Int/BAC & Co C IntZACA' = p/BAC = n/BAO + u/CAO & pu/ACA' = i/ ACO + pl A'CO.

Also, we shall make use of the fact that O € (BC)N(AA") 25" LABO = ZABC & ZOA'C = ZAA'C & ZOAC =

Z/A'AC. We can now write S%)% — /(/BAC,0) + u(£ABC,0) + u(ZACB,0) = u(£/BAO,0) + u(Z/CAO,0) +
w(£LABC,0)+u(LACB,0) = p(LOA'C,0)+u(LCAA,0)+u(LOCA,0)+u(LACO,0) = n(LAA'C,0)+u(LCAA, 0)+
w(LACA',0) = E(Aa?a,éc. Furthermore, since u/BAC = u/BAO+u/CAO = un/AA'C+us/CAA, one of the angles
of AAA'C is at least two times smaller than ZBAC. 511 O

Proposition 1.3.67.9. Given a cevian BD in a triangle NABC, if the abstract sums of angles in the triangles

ANABD, ANCBD are both equal to w(®*Y)  then the abstract sum of angles in the triangle AABC also equals
(abs,zt)
T .

Proof. By definition, %)% — ,(/BAD,0)+ u(Z/ABD,0)+ u(ZADB,0), %)% — ,(/BDC,0)+ u(£/ DBC,0)+

u(£DCB,0), SWe — (/BAC,0) + u(ZABC,0) + u(ZACB,0). Taking into account that u(ZABC,0) =

4(ZABD,0)+ (£ DBC,0), u(Z/ADB,0) + u(£BDC,0) = 7@ e have £%04 4 w(0bae — w(abe) 2 | r(absat)

Since, by hypothesis, E(Aaffg% = EX%@ = r(abs:2t) from P 1.3.66.11 we have immediately E(Aaf’:])gé = mlabs:at) - 5q

required. O

Proposition 1.3.67.10. Given a triangle NACB such that ZACB s a right angle and E(Aaf:éé = r(abs:2t) jn the

triangle ACDA such that [CBD], BC = BD we also have E(Aag%j = qrlabs,at)

Proof. (See Fig. 1.173.) Using A 1.3.4, A 1.3.1, construct a point C’ such that C, C’ lie on opposite sides of the line
aap and LCAB = LZABC', AC = BC'. By T 1.3.4 AACB = AAC'B. Tt follows that ZAC'B is a right angle (see
L 1.3.8.2) and ZABC = /BAC’. By C 1.3.17.4 the angles ZCAB, ZABC are acute, as consequently are angles
ZC'AB, ZC'BA (see L 1.3.16.16). Hence by C 1.3.18.12 the ray Ap lies inside the angle ZC'AC" and the ray By lies
inside the angle ZC'BC’. This, in turn, implies uZCAB + u/C'AB = un/CAC’, n/CBA + n/C'BA = n/C'BC.
Since ZACB, ZAC'B are right angles and £%027 — 5009 €  — r(abs.at) we conclude that u/CAC! = p/CBC' =
(1/2)7(e9) ie. ZCAC', ZOBC' are both right angles. Using A 1.3.1, choose D so that [CBD] and BC' = BD.
By L 1.2.21.6, L 1.2.21.4 we have Ag C IntZCAD. Since also Agp C IntZCAC’, by definition of interior both
Ap, Acr and Ap, Ap lie on the same side of the line asc. Hence by L 1.2.18.2 the rays Ap, Acs lie on the
same side of agc. Since ZCAD < LZCAC’ (the angle ZC'AD being an acute angle, and ZCAC’ a right angle),

we have Ap C IntZCAC’ (see C 1.3.16.4). Now we can write Ag C IntZCAD& Ap C IntZCAC’ 122027

Ap C IntZBAC' "'227'° 30 0 € Apn(BC'). 0 € Ap “'23®* [AOD] v [ADO] vV O = D. Using C 1.3.18.4

5111n fact, if this were not the case, we would have uZAA’C > (1/2)uLBAC, pZCAA" > (1/2)uLBAC, whence u/BAC > n/AA'C +
uZCAA’, which contradicts u£BAC = uLAA'C + pZCAA’.
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Figure 1.173: Given a triangle AACB such that ZACB is a right angle and Z(Aags()é; = ml@2t) “in the triangle

ACDA such that [CBD], BC = BD we also have £(%) — r(abs.at)

we see that AO < AB < AD.5'? These inequalities imply that [AOD]. ®'3 Thus, the angles ZAOC’, Z/BOD

are vertical. They are, consequently, congruent (T 1.3.7). Evidently, [BOC’| MU By = Bo & Clp = Cp =

LAC'B = LAC'O& Z/OBD = ZC'BD. Furthermore, since the right angles ZAC'B = ZAC'O and ZOBD =
ZC'BD = adjsp£C'BC are congruent (T 1.3.16) and BC = AC' & BC = BD = AC’ = BD, by T 1.3.19 we have
AAOC" = ABOD, whence ZC'AO = ZBDO. Using A 1.3.1, choose a point E such that [AC'E] and AC' = C'E.
Since [AC'E], [AOD], and [CBD], using L 1.2.11.15 we can write ZC'AO = LEAD, /BDO = ZCDA. Hence
LEAD = ZCDA. Furthermore, in view of BC' = BD = AC' = C'E and [CBD], [AC'E], by A 1.3.3 we have
CD = AFE. Hence from T 1.3.4 we have ACDA = AEAD. In particular, Z/CAD = Z/ADE, ZACD = ZAED. The
latter means that ZAED is a right angle (see L 1.3.8.2). Since u/CAD + u/EAD = u/CAC’ = (1/2)7(%%9) | the
congruences ZCDA = /ZEAD, ZCAD = ZADE imply that also u/CDA + uZEDA = (1/2)7(#%*). Therefore, we
have £0)< 4 (0t — (L ACD,0) + u(£CDA,0) + u(£CAD,0) + u(L AED, 0) + (£ EAD, 0) + u(/ ADE, 0) =

mlabs.wt) L r(abs,zt) — RPipally, since the congruence ACDA = AEAD implies E(Aabcsl))j = E(Aags()é,, we conclude that

bs) < )
E(Aac%A = m(abs,2t) " ag required. O

Proposition 1.3.67.11. Suppose that the (abstract) sum of the angles of a triangle AABC is equal to w(@b%=t)
Then p/A + /B = p(adjspZC).

Proof. We can write u/A + u/B + p/C = 7(%) = 1/C + pu(adjspZC). Hence the result follows by P 1.3.63.5. O

In the case of triangles whose angle sums are less than 7(%0%%*) we can take our consideration of angle sums
in triangles one step further with the following definitions, which have played a key role in the development of the
foundations of hyperbolic geometry:

A quadrilateral ABC'D with right angles ZABC', ZBCD is called a birectangle. We shall assume that the vertices
A, D lie on the same side of the line apc containing the side BC. This guarantees that, as will be shown below in a
broader context, the birectangle is convex and, in particular, simple.

An isosceles birectangle ABCD, i.e. a birectangle ABC'D whose sides AB, C'D are congruent, is called a Saccheri
quadrilateral. The side BC' is called the base, and the side AD the summit of the Saccheri quadrilateral. The
angles ZBAD, ZCDA are referred to as the summit angles of the quadrilateral ABCD. Finally, the interval M N
joining the midpoints M, N of the summit and the base, respectively, is referred to as the altitude of the Saccheri
quadrilateral, and the line ap;n as the altitude line of the quadrilateral ABCD.

Consider a triangle AABC with its (abstract) sum of the angles E(Aaffgéc less than 7(2s#%)  We shall refer to

the difference 5(525])3?) = qlabsat) _ E(Aai%é 514 as the angular defect of the triangle AABC. Evidently, congruent

512In fact, since LZAC'O = LAC'B is a right angle, as is ZACB, from L 1.3.16.17, C 1.3.17.4 we have ZAOC' < LAC'O, LABC <
LACB.

513 There are multiple ways to show that of the three alternatives [AOD], [ADO], A = D we must choose [AOD]. Unfortunately, the
author has failed to find an easy one. (Assuming such an easy way exists!) In addition to the one presented above, we outline here a
couple of other possible approaches. The first of them starts with the observation that aac = apcr, so that the points A, C lie on the
same side of the line agcs. But [CBD] implies that C, D lie on opposite sides of the line agss. By L 1.2.17.10 A, D lie on opposite sides
of the line agc/. Hence 30’ O’ € (AD) Napcr. Since the lines aap, agcr are obviously distinct (A ¢ agcr), O’ = O is the only point
they can have in common (T 1.1.1), whence the result. Perhaps the most perverse way to show that [AOD] involves the observation that
the line agcr lies in the plane a4cp, does not contain any of the points A, C, D, and meets the open interval (C'D) in the point B. The
Pasch’s axiom (A 1.2.4) then shows that the line agcs then meets the open interval (AD) in a point O’ which is bound to coincide with
O since the lines a4p, agcr are distinct.

. bs) L .
514Gince Z(AGASJ)S,C < 7(abs,zt) the subtraction makes sense.
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triangles have equal angular defects.

Proposition 1.3.67.12. Given a cevian BD in a triangle AABC, the sum of angular defects of the triangles
AABD, ADBC equals the angular defect of the triangle ABC.

Proof. Using the definition of angular defect, we can write

1(LDAB,0) + 1(ZABD,0) + u(£BDA,0) + 557 = glabs.zt) (1.4)
and
1(£DCB,0) + u(ZCBD,0) + u(£BDC,0) + 6002 — plabs.at), (1.5)

Adding up the equations (1.4), (1.5) and taking into account that u(ZADB,0) 4+ u(ZCDB,0) = glabszt) 515
w(£ABD,0) + n(£ZCBD,0) = u(£LABC,0), ®'6 we obtain
(ZCAB,0) + u(ZABC,0) + u(£BCA,0) + 650507 4 5002 plabsat) — qlabs,ot) 4 plabsat),
whence (see Pr 1.3.63.5)

(ZCAB,0) + (£ ABC,0) + u(£BCA,0) + 6055 4 slebe) e qlabs,et)

But from the definition of the defect of AABC we have u(ZCAB,0) + u(£ZABC,0) + u(£BCA,0) + 5(525])340 =

n(abs:2t)  Hence, using Pr 1.3.63.5 again, we see that 621251;% + 5(5251)3% = 6(A‘lgséé, qed. O

Corollary 1.3.67.13. Given a cevian BD in a triangle AABC, the angular defect of each of the triangles NABD,
ADBC' is less than the angular defect of the triangle ABC'.

Proof. Follows from the preceding proposition (P 1.3.67.12) and P 1.3.63.1. O

Corollary 1.3.67.14. Given a triangle AABC and points D € (AC), E € (AB), the angular defect of the triangle
ANADE is less than the angular defect of the triangle ABC.

Proof. We just need to apply the preceding corollary (C 1.3.67.13) twice 517 and then use T 1.3.66. O

The preceding two corollaries can be reformulated in terms of the angle sums of the triangles involved as follows:

Corollary 1.3.67.15. Given a cevian BD in a triangle AABC, the (abstract) angle sum of each of the triangles
AABD, ADBC is less than the (abstract) angle sum of the triangle ABC.

Proof. Follows from C 1.3.67.13, P 1.3.66.8. O

Corollary 1.3.67.16. Given a triangle AABC and points D € (AC), E € (AB), the angle sum of the triangle
NANADE is greater than the angle sum of the triangle ABC.

Proof. Follows from C 1.3.67.14, P 1.3.66.9. O

Theorem 1.3.67. Suppose that the (abstract) sum of the angles of any triangle NABC' equals ©(**5*%) . Then the
sum of the angles of any convex polygon with n > 3 sides is (n — 2)7T(“b5’””t).

Proof. O

Theorem 1.3.68. Suppose that the (abstract) sum of the angles of any triangle AABC is less than w(@***%) Then
the sum of the angles of any convex polygon with n > 3 sides is less than (n — 2)mw(20s:*t)

Proof. O

We have saw previously that the summit of any Saccheri quadrilateral is parallel to its base (see T 1.3.28). This
implies, in particular, that any Saccheri quadrilateral is convex. It can be proved that the summit angles of any
Saccheri quadrilateral are congruent. We are going to do this, however, in a more general context.

Consider a quadrilateral ABCD such that the vertices A, D lie on the same side of the line apc
/ABC = /BCD, BA = CD. We will refer any such quadrilateral as an isosceles quadrilateral.

518 and

Lemma 1.3.68.1. Any isosceles quadrilateral ABCD 519 is a trapezoid.

5158ince D € (AC), the angles ZADB, ZCDB are adjacent supplementary.

516\We take into account that the ray Bp lies completely inside the angle ZABC, which, in its turn, implies that w(£LABD,0) +
w(£CBD,0) = u(£LABC,0) (see L 1.2.21.6, L 1.2.21.4). We also silently use the obvious equalities ZBAD = ZBAC, ZBCD = ZBCA.

517From C 1.3.67.13 the angular defect of AADE is less than the angular defect of the triangle ABD, which, in turn, is less than the
angular defect of AABC.

518 This condition is required for the quadrilateral to be simple.

519That is, a quadrilateral ABCD with ADagc and ZABC = Z/BCD, BA=CD.
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Proof. Denote by E, F, respectively the feet of the perpendiculars drawn through the points A, D to the line apc.
To show that E, F' are distinct, suppose the contrary, i.e. that £ = F. Then we have A € Ep from L 1.3.24.1.
Furthermore, in this case £ # B by L 1.3.8.1, and for the same reason F # C. Thus, the points A, B, E are not
collinear, as are the points D, C, E. Additionally, we can claim that [BEC]. In fact, since B # E # C, in view
of T 1.2.2 we have either [EBC], or [BCE], or [BEC]. Suppose that [EBC. Then the angle ZBCD = ZECD is
acute as being a non-right angle in a right-angled triangle ADEC. Since ZAEB is, by construction, a right angle,
we have /ZBCD < LAEB (see L 1.3.16.17). Oh the other hand, by T 1.3.17 we have ZAEB < ZABC. Thus,
we obtain /ZBCD < ZABC, in contradiction with ZABC = ZBCD (by hypothesis). This contradiction shows
that the assumption that [EBC] is not valid. Similarly, it can be shown that —=[BCE]. 2 Thus, [BEC], which

implies that ZABE = ZABC, /ZECD = /BCD. Consequently, we have ZABE = /FECD, which together with

/AEB = /DEC (see T 1.3.16) gives AAEB = ADEC, whence EA = ED. But EA= ED& D € E, "=%" 4 = D,

in contradiction with the requirements A # D, necessary if the quadrilateral ABCD is to make any sense. The
contradiction shows that in reality F # F. Suppose now E = B. Then also F = C (see L 1.3.8.1, L 1.3.8.2), and
ABCD is a Saccheri quadrilateral, and, consequently, a trapezoid by T 1.3.28. Suppose F # B. Then also F # C.
521 We are going to show that ZABE = /DCF. Suppose that ZABC is acute. °22 Then E € B¢ (see C 1.3.18.11),
whence ZABE = ZABC (see L 1.2.11.3). Similarly, we have F' € Cg,%*® whence ZDCF = Z/DCB. Taking into
account ZABC = /BCD, we conclude that ZACE = Z/DCF. Suppose now that ZABC is obtuse. Then Z/DCB is

also obtuse and, using C 1.3.18.11, L. 1.2.11.3, and, additionally, T 1.3.6, we again find that ZACE = ZDCF. Now

we can write °24 BA= CD& /ABE = /DCF & /AEB = /DFC "2 AAEB = ADFC = AE = DF. Finally,

applying T 1.3.28 to the Saccheri quadrilateral AEF D, we reach the required result. O

Lemma 1.3.68.2. Consider an arbitrary isosceles quadrilateral ABC D, in which, by definition ADapc, ZABC =
/BCD, and BA = CD. Suppose further that its sides (AB), CD do not meet. Then:

1. The diagonals (AC), (BD) concur in a point O.

2. The quadrilateral ABCD is convex.

8. The summit angles /BAD, Z/CDA are congruent.

4. Furthermore, we have BO = CO, AO = DO, /BAC = /CDB, /BDA = /CAD, /BCA = ZCBD,
/ABD = /DCA.

Proof. 1. See T 1.2.42 (see also the preceding lemma, L 1.3.68.1).
2. See L 1.2.62.3. 154

3,4 AB = DC& ZABC = Z/DCB&BC = (B =" AABC = ADCB = /BAC = ZCDB& /BCA =

/CBD& AC = DB. AB=DC&AD = DA& BD = CA "3 ABAD = ACDA = /BAD = /CDA& /BDA =

LCAD & LABD = ZCDA. Using L 1.2.11.15 we can write [AOC] & [DOB] = ZBCO = /ZBCA& ZCBO =
/CBD& £/DAO = LDAC & LADO = LADB. Hence Z/BCO = ZCBO, ZADO = ZDAO.
O

Corollary 1.3.69.1. Suppose that the (abstract) sum of the angles of any triangle NABC equals w(®*$*Y) . Then
any Saccheri quadrilateral is a rectangle.

Proof. O

Corollary 1.3.69.2. Suppose that the (abstract) sum of the angles of any triangle AABC is less than mlabs,zt),
Then any Saccheri quadrilateral has two acute angles.

Proof. O

A quadrilateral ABC'D with three right angles (say, ZDAB, ZABC, and ZBCD) is called a Lambert quadrilat-
eral.

Corollary 1.3.69.3. Suppose that the (abstract) sum of the angles of any triangle ANABC' equals w(®*$*Y) . Then
any Lambert quadrilateral is a rectangle.

Proof. O

Corollary 1.3.69.4. Suppose that the (abstract) sum of the angles of any triangle AABC' is less than mw(?0$*),
Then any Lambert quadrilateral has an acute angle.

Proof. O

5207t is convenient to do this by substituting A < D, B < C and using the symmetry of the conditions of the lemma with respect to
these substitutions.

521 Otherwise we would have E = B.

522We silently employ the facts that any angle is either acute, or right, or obtuse, and that there is at most one right angle in a right
triangle.

5231f LABC is acute, then the angle BC'D, congruent to it, is also acute.

5247 1.3.16 ensures that ZAEB = ZDFC.
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In general, it is not possible to introduce plane or space vectors in absolute geometry so that all axioms of vector
space concerning addition of vectors are satisfied. However, this can be successfully achieved on the line.

In all cases vectors are defined as equivalence classes of ordered abstract intervals. By definition, any zero ordered
abstract interval is equivalent to any zero ordered abstract interval (including itself) and is not equivalent to any

non-zero ordered abstract interval. Zero vectors will be denoted by O. We shall say that a non-zero ordered abstract
interval AB is equivalent 2% to a non-zero ordered abstract interval C'D collinear to it (i.e. such that there is a line
a such that A € a, B € a, C € a, D € a), and write AB = CD if and only if:

Either@) 65 iie. A=C and B = D;

or AB=CD and AC = BD.

Evidently, the condition AB=CDis equivalent to AC = BD.

Theorem 1.3.71. An ordered abstract interval AB is equivalent to an ordered abstract interval _0—5 collinear to it
if and only if:

AB = CD and in any order on a (direct or inverse) A< B& C <D or B<A&D < C.

Also, AB=CD iff either B = C = midAD, or A =D = midBC, or midBC = midAD. 526

Proof. Suppose AB = CD, AC = BD, and B # C. Then, obviously, A # D. In fact, the three points B, C are
necessarily distinct in this case. %27 Hence [ABC|V [BAC]V [ACB] by T 1.2.2. But all these options contradict
either AB = CD or AC = BD in view of C 1.3.13.4, L. 1.3.13.11. Denote M = midBC. By definition of midpoint,
M = midBC = BM = MC & [BMC]. For distinct collinear points A, B, C, D we have one of the following six orders
[ABCD], [ABDC|, [ACBD], [ACDB], [ADBC|, [ADCB] or one of the 18 orders obtained from these 6 orders either
by the simultaneous substitutions A < B, C' <> D, or by the simultaneous substitutions A < C, B < D (see T 1.2.7).
Due to symmetry of the conditions AB = CD, AC = BD, B # C, A = D with respect to these substitutions, we
can without any loss of generality restrict our consideration to the six orders mentioned above. Applying C 1.3.13.4,
L 1.3.13.11 we can immediately disregard [ABDC], [ACDB], [ADBC], and [ADCB]. For example, [ABDC] is
incompatible with AC' = BD. Thus, of the six cases [ABCD], [ABDC], [ACBD] [ACDB], [ADBC], [ADCB] only

[ABCD], [ACBD] are actually possible. Observe further that [ABCD] S (A<B<C=<D)Vv(D<C<B<
A)= (A< B)&(C <D)V (D =<C)& (B < A). Similarly, [ACBD] = (A< B)&(C < D)V (D < C)& (B < A).
Conversely, if both AB = CD and (A < B)& (C < D)V (D < C)& (B < A), of the six cases [ABCD], [ABDC],
[ACBD], [ACDB], [ADBC], [ADCB] only [ABCD], [ACBD] survive the conditions.??® Observe also that if we
have (A < B)& (C < D)V (D < C)& (B < A), this remains true after the simultaneous substitutions A « B,
C o D,aswellas A — C, B+~ D.

L1.2.3.2

Suppose [ABCD). Then [ABC| & [BMC|& =" [ABM]& [MCD]and AB=CD & BM = MC & [ABM]&[MCD
AM = MD, i.e. M is the midpoint of AD as well. The case [ACBD)] is considered by full analogy with [ABCD];
we need only to substitute B «» C and use AC = BD in place of AB = CD. 5%

Conversely, suppose that either B = C' = midAD, or A = D = midBC, or midBC = midAD. If B=C = midAD
or A =D = midBC the congruences AB = CD and AC = BD are obtained trivially from definition of midpoint.
Suppose now that midBC = midAD, where A # B, and the points A, B, C, D colline.’3® Suppose further
that A, C lie (on the single line containing the points A, B, C, D) on the same side of M = midAD. Then
L 1.2.11.8 either A lies between M, C, or C' lies between M, A, or A = C. Furthermore, taking into account that
M = midBC = midAD = [BMC] & [AM D] and using L 1.2.11.9, L. 1.2.11.10, we see that B, D also lie on the same
side of the point M. Hence if A = C, then also B = D and evidently AB = CD. 53! Suppose now [MCA]. Then

from L 1.3.9.1 we see that AC = BD and [MBD]. [ACM] & [OMB] ML282 (ACB), [CMB] & [MBD] “2%? [CBD).
[ACB] & [CBD] & AC = BD & CB = CB “%® AB = CD. 53

A1.3.3
|'==

Theorem 1.3.72. The relation of equivalence of ordered abstract intervals on a given line is indeed an equivalence
relation, i.e. it possesses the properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity and symmetry are obvious. In order to show transitivity, suppose AB=CD and CD = EF. In
view of the preceding theorem AB = C'D and in any order on a (direct or inverse) A < B&C < Dor B < A& D < C.

525Gtrictly speaking, it is an offence against mathematical rigor to call a relation an equivalence before it is shown to possess the
properties of reflexivity symmetry sand transitivity. However, as long as these properties are eventually shown to hold, in practice this
creates no problem.

5261n the last case we also assume that A # B (and then it follows in an obvious way that C' # D), so that the abstract intervals AB,
CD make sense. We also require, of course, that three of (and thus all of) the points A, B, C, D are collinear.

527A # B, A # C because AB, AC make sense by hypothesis.

5281n fact, using C 1.2.14.1, L 1.2.13.6, we can write [ABDC] = A<D < B <C = (A< B)& (D < C), [ADBC]| = A<D < B <
C=(A<B)&(D <C),[ADCB] == A<D <C < B = (A< B)&(D < (), ie. in all cases we have a contradiction in view of
L 1.2.13.5.

529Suppose [ACBD]. Then [ACB] & [CMB] & [CBD]
AM = MD, i.e. M is the midpoint of AD.

530 As mentioned above, it suffices to require that any three of them colline.

531In fact, BM = MC & AM = MD& A = C = BM = MD, whence B =D by T 1.3.2.

5320bserve that we do not need to consider the case [M AC] as the result of the simultaneous substitutions A <+ C, B « D which do
not alter our assumptions.

L1232[ A133

ACM) & [MBD] and AC = BD & CM = MB & [ACM] & [MBD] &%
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Similarly, CD = EF and in any order on a (direct or inverse) C < D& FE < F or D < C& F < E. Suppose

A < B&C < D. Then necessarily C' < D& E < F. Thus, we have A < B& F < F. Since also, obviously,

T1.3.1 . . - _ =R . .
AB =CD&CD = EF = AB = EF. Thus, in this case AB = CD. The case B < A& D < C is considered

similarly. O

A line vector is a class of equivalence of ordered abstract intervals on a given line a. Denote the class of equivalence
of ordered abstract intervals on a given line a 533 containing the ordered abstract interval AB by AB. We shall also
denote vectors by small letters as follows: a (of course, the letter a used in this way has nothing to do with the
letter a employed to denote lines; this coincidence merely reflects the regretful (but objective) tendency to run out

=S
of the letters of the alphabet in mathematical and scientific notation), b, <, ...

—_—

Lemma 1.3.73.1. Given an ordered abstract interval AB and a point C' on the line aap, there is exactly one ordered
— —_—

abstract interval CD (having C as its initial point), equivalent to AB on aap.

Proof. It A = C, we just let B = D. Suppose now that B, C lie on the same side of A. In view of L 1.2.11.8 this
implies that either [ACB], or B = C, or [ABC]. Using A 1.3.1, choose a point D such that AB = CD and the
points A, D lie on opposite sides of the point C' (i.e. D € C%). Suppose first that [ACB]. Then B, D lie on the
same side of the point C' (see L 1.2.11.10), and using L 1.2.11.8 we see that either [CDB], or B = D, or [CBD]. But

the first two options would give CD < AB by C 1.3.13.4, which contradicts AB = CD in view of L 1.3.13.11. In

the case when [ABC), we can write [ABC] & [ACD] hL2g2 [BCD]. We see that in all cases we have either [ACBD],

or B = C, or [ABCD], which, together with AB = CD in view of the preceding theorem (T 1.3.72) implies that
—

AB =CD. Suppose now that B, C lie on opposite sides of A, i.e. [CAB]. Then from C 1.3.9.2 there is a unique point
D € (CB) such that AB = CD. Obviously, in any order on aap we either have both C < A < B and C < D < B,
or B<A<Cand B<D <C from T 1.2.14. Thus, we have either both A < B and C < D, or B < A and

D < C, and using the preceding theorem (T 1.3.72) we again conclude that AB = CD. To show uniqueness suppose

—_— —_— — — —_— —
AB =CD, AB = CFE, where C;D,FE € ayp and D # E, so that CD, CFE are distinct ordered abstract intervals.
Since from the preceding theorem (T 1.3.72) we have both AB = CD and AB = CFE, in view of T 1.3.2 (see also
T 1.3.1) the points D, E must lie on opposite sides of C' if they are to be distinct. Hence in any order on aap we

have either E < C < D or D < C' < E. But from our assumption AB = C—D>, AB = C’—E> and the preceding theorem
(T 1.3.72) it is clear that we must have either both E < C, D < C, or both C < D and C < E. Thus, in view of

L 1.2.13.5 we obtain a contradiction, which shows that in fact the point D € asp with the property AB = C’—D> is
unique. O

— — — —
Given two vectors a, b, we define their sum a + b as follows: By definition, @ + O = O + a = a for any
—
vector a including the case when @ is itself a zero vector. In order to define the sum of non-zero vectors a, b, take
— — —
an ordered abstract interval AB € & and construct an ordered abstract interval BC' € b. This is always possible
— —
to do by the preceding lemma (L 1.3.73.1). The sum a + b of the vectors @ and b is then by definition the vector
—
< (which, by the way, may happen to be a zero vector) containing the ordered abstract interval AC'.
— — —
To establish that the sum of @, b is well defined, consider ordered abstract intervals AB € a, A'B’ € A,
S = 5 g - 7 . . P
BC € b,B'C' € b. We need to show that AC = A’C’. Since A # B and B # C (we disregard the trivial cases

where either @ = O or b = O and where the result is obvious), by T 1.2.2 we have either [ABC], or [ACB], or
A = C, or [CAB]. Suppose first [ABC]. Then by T 1.2.14 we have either A < B < C or C' < B < A. Assuming
for definiteness the first option (the other option is handled automatically by the substitutions A <« C, A" < C”)

. L =T T 11.2.13.6

and using T 1.3.72, we can write AB = A/B'&BC = BC'& A < B <C = A < B <(C =" A < (.

Also, [A’B'C"] from T 1.2.14, whence [ABC] & [A'B'C'|& AB = A'B' & BC = B'C" "2%® AC = A'C’. Thus, we
—_—

have AC = A’C’" and either both A < C and A’ < C’, or C < A and ¢/ < A’, which means that AC = A'C.

— — — —
Suppose now that [ACB]. Then A < C < B (see T 1.2.14). Using the fact that AB = A’B’ and BC' = B’C’ and
T 1.3.72, we can write A’ < B’, ' < B’. Hence by C 1.2.14.2 the points A’, C’ are on the same side of B’. But
[ACB]&C' € B's/& AB = A'B'& BC = B'C’ 23" AC = A'C' & [A'C'B']. Using T 1.2.14, we see again that
— —_— —_—
either both A < C and A’ < C’, or C < A and C’ < A’. Suppose A = C. Then AB = A'B'&BC = B'C'&C =

A<B"™EP 4 2 pgc < B 24 ¢ € B’y Hence €' = B’ by T 1.3.2. Finally, for [CAB] the result is

obtained immediately from the already considered case [AC'B] by the simultaneous substitutions A « C, A" < C".

— —
Theorem 1.3.73. Addition of vectors on a line is commutative: @ + b = b + a.

Proof. Taking an ordered abstract interval AB € a and laying off from B an ordered abstract interval BC € g, we
.y oy . - — . —_— — — —
see (from definition of addition of line vectors) that AC € @+ b. Now laying off CD € a, we see that BD € b +a.
— —
Since the vector @ is an equivalence class of ordered abstract intervals, we have AB = CD. If A = C, then using the
— — —
preceding lemma (L 1.3.73.1) we see that also B = D, which implies that @+ b = b +a = O. Suppose now A # C

533 We usually assume the line a to be known and fixed and so do not include it in our notation for line vectors.
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and, consequently, B # D. Then (from definition) both AB = CD and AC = BD, which implies the equivalence
9£_t>he (idered abstract intervals: AB = CD if and only if AC = BD. But from our constructlog AC €a + b,
BD € b + @, whence from definition of vector as a class of congruent intervals we have @ + b = b + a, as
required. O

Theorem 1.3.74. Addition of vectors on a line is associative: (& + E)) +c=a+ (B) + 7).

Proof. Taking an ¢ ordered abstract 1nterval AB = a, laylng off from B an ordered abstract 1nterval BC €l b and
thenlaymgoﬁC’Dea weseethatAC€a+b BDeb + <. Therefore, ADE(a—I—b) , (b+ <),

whence (recall that classes of equivalence either have no common elements or coincide) (& + b )+ € =a+( b +7).
O

— — — —
Now observe that for any vector a there is, evidently, exactly one vector b such that @ + b = b +a = O.
We shall denote this vector —a and refer to it as the vector, opposite to a.
—_—
Note also that, given a representative AB of a vector a, the vector —a will be the class of ordered intervals
—
equivalent to BA.
— —
We are now in a position to define the subtraction of arbitrary vectors @, b as follows: @ — b = & + (—a).
We see that all vectors on a glven line a form an abelian additive group.

Consider a line a and a vector t on this line. We define the transformation f transl (@) of translation of

the line a by the vector T as follows: Take a point A € a and lay off the vector T from it to obtain the ordered

(abstract) interval 14—B> € t. Then by definition the point B is the image of the point A under translation T. We

write this as B = transl, ?)(A).

Theorem 1.3.75. A translation by a vector T (lying on a) is a bijective sense-preserving isometric transformation
of the line a.

Proof. Consider an arbitrary point A € a. To establish surjectivity we have to find a point B € a such that
— —

A = transl (a ?)(B). This is achieved by laying off the vector — t from A to obtain the ordered interval AB whose

end B, obviously, has the property that A = transl(a ?)(B).

(A), B’ = transl, — (B). Since both AA € ?,

— T e e ST N

BB’ € t, we have AA’ = BB’. But this is equivalent to AB = A’B’, which, in turn, implies that AB = A’B’
and either (A < B)& (A’ < B’), or (B < A) & (B’ < A’). 53% Thus, we see that transl, 3 is isometric (preserves
distances) and, in particular, it is injective (transforms different points into different points); furthermore, it preserves
direction. O

Now consider two points A, B € a. Denote A’ = transl(

Theorem 1.3.76. Any isometry on a line is either a translation or a reflection.

Proof. We know from C 1.3.29.1 that any isometry f on a line a is either sense-preserving or sense reversing.
Consider first the case where [ is a sense-reversing transformation. Take an arbitrary point A € a. Denote A’ =
transl (@) (A). We are going to show that the transformation f is in this case the reflection of the line a in the point
O, where, by definition, O is the midpoint of the interval AA’. 3% To achieve this, we need to check that for any
point B € a distinct from A we have BO = OB’, where B’ = transl , 7)(3). Of the two possible orders on a with

O as origin we choose the one in which the ray O,4 is the first. 53¢
Suppose first that B < A on a in this order. Then A’ < B’ by assumption. Since A’ lies on the second ray (on

the opposite side of O from A), so does B’ (otherwise we would have B’ < A’). Furthermore, from the definition of

order on a we have [OA’B’]. Now we can write [OAB] & [OA'B'|& OA=0A' & AB=A'B’ Agg OB =0B'.

Suppose now A < B. First assume that B € O4. Evidently, in this case the points O, B’ lie on the same side
of the point A’. (Otherwise we would have [OA’B’], whence A’ < B’ in view of the definition of order on a, and
we arrive at a contradiction with our assumption that order is reversed.) [ABO]& B’ € Ao & AO = A/O& AB =

Ap Y39 o = 0B

Consider now the case B € 0%, i.e. [AOB]. As above, we see that B’ € A'p. In view of L 1.2.11.8 we
must have either [A’B'O], or B' = O, or A'OB’. But [A'B'0] 23 4B < 4’0, [A0B] 22" 40 < AB,
AO < AB&AB=AB & A'B' < A’/0' = AO < A’O’ (see L 1.3.13.6 — L 1.3.13.8), which contradlcts AO = A’O'
(see L 1.3.13.11).

Thus, we see that in the case when the isometry on the line a reverses order, it is a reflection.

Finally, consider the case when the transformation is sense-preserving. Then for arbitrary points A, B € a we
have AB = A’B’ (isometry!) and either (A < B)& (A’ < B’) or (B < A) & (B’ < A’). But in view of T 1.3.71 this

—_— —

5341n other words, we can say that the vectors AB, A’ B’ have equal magnitudes and the same direction.

5350f course, we take care to choose the point A in such a way that A’ # A. This is always possible for a sense-reversing transformation.
536 How we choose this order is purely a matter of convenience.
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is equivalent to AB = A’B’, which, in turn, is equivalent to AA’ = BB’. We see that our transformation in this case
—

is the translation by the vector defined as the class of ordered intervals equivalent to AA’.
O

1.4 Continuity, Measurement, and Coordinates

Axioms of Continuity

The continuity axioms allow us to put into correspondence

— With every interval a positive real number called the measure or length of the interval;

— With every point of an arbitrary line a real number called the coordinate of the point on the line;

— With every point of an arbitrary plane an ordered pair of numbers called the (plane) coordinates of the point;

— With every point of space an ordered triple of real numbers called spatial coordinates the point.

These correspondences enable us to study geometric objects by powerful analytical methods. This study forms
the subject of analytical geometry.

Furthermore, from the continuity axioms, combined with the axioms listed in the preceding sections, its follows
that the set P, of all points of an arbitrary line a has essentially the same topological properties as the ordered field
R. Consequently, the set P, of all points of an arbitrary plane has essentially the same topological properties as
R? (or C, depending on the viewpoint), and the class of all points (of space) has essentially the same topological
properties as R3.

Axiom 1.4.1 (Archimedes Axiom). Given a point P on a ray Aoa,, there is a positive integer n such that if

[Ai—1A;Ai11] for all i € N,y and AgA; = AjAy = --- = A, 1A, then [AgPA,)].

By definition, a sequence of closed sets X7, Xs,...AX,,... is said to be nested if X1 D Xy D ... D X, D
.., 1l.e. if every set of the sequence contains the next. In particular, for a nested sequence of closed intervals
[AlBl], [AQ, BQ], ey [Aan], ... we have [AlBl] D) [Ag, Bg] D...D [Aan] D

Axiom 1.4.2 (Cantor’s Axiom). Let [E;F;], i € {0} UN be a nested sequence of closed intervals with the prop-
erty that given (in advance) an arbitrary interval ByBsa, there is a number n € {0} UN such that the (abstract)

interval EnF, s shorter than the interval B1Bs. Then there is at least one point B lying on all closed intervals
[EoFo], [E1FAl, ... [EnFL), ... of the sequence.

The following lemma gives a more convenient formulation of the Archimedes axiom:

Lemma 1.4.1.1. Given any two intervals AgB, CD, there is a positive integer n such that if [A;—1A; A1) for all
1€N,_1 and Vi eN,, CD = A;_1A; then [A()BA"] 537

Proof. Using A 1.3.1, choose A; € App such that CD = Ap,,. Then by L 1.2.11.3 B € Ap,,, and Vi €
Nn,1 [AiflAiAiJrl] together with CD = A()Al = AlAQ == AnflAn by Al4.1 implies [A()BA"] O

It can be further refined as follows:

Lemma 1.4.1.2. Given any two intervals AgB, CD, there is a positive integer n such that if [A;—1A; A1) for all
1€N,_1 andVie N, CD = A;,_1A; then B € [An_lAn).538

Proof. Let n be a minimal element of the set of natural numbers m such that if [4;_1A4;A4;1] for all i € N,;,_1 and

Vi € N, CD = A;_1A; then [AgBA,;,]. (The set is not empty by the preceding lemma L 1.4.1.1.) By L 1.2.7.7

3 eN, Be[A_14;). But B € [4;_14;) LL2TT B ¢ [A14;), so i < n would contradict the minimality of n.

Therefore, i = n and B € [A;_14;), qe.d. O

Lemma 1.4.1.3. Given any two intervals AgB, CD, the interval AgB can be divided into congruent intervals shorter
than CD.

Proof. Using L 1.3.21.11, L 1.4.1.1, find a positive integer n such that Vi € N,,_y [4;_14;4;11], Vi € N, CD =

Ai_1A;, and [AgBA,]. We have [AgBA,,] C13.434 ApB < ApA,,. Hence, dividing (according to C 1.3.23.1) Ay B into

2™ congruent intervals and taking into account that Vn € N n < 2", we obtain by C 1.3.21.10 intervals shorter than
CD. O

5371n other words, given any two intervals AgB, CD, there is a positive integer n such that if the interval CD is laid off n times from
the point Ap on the ray Agpg, reaching the point A, then the point B divides Ag and A,.

5381n other words, for any two intervals AgB, CD, there is a natural number n such that if CD is laid off n times from the point Ag on
Ao, reaching A, then the point B lies on the half - open interval [A,—1A4n).
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Lemma 1.4.1.4. Let [E;F;], i € {0} UN be a nested sequence of closed intervals with the property that given (in
advance) an arbitrary interval B1 Bz, there is a number n € {0} UN such that the (abstract) interval E, F, is shorter
than the interval By Bs. Then there is at most one point B lying on all closed intervals [EoFo), [E1F1],. .., [EnFy], ...
of the sequence. 539

Proof. Suppose the contrary, i.e. let there be two points By, Bs lying on the intervals [EgFy), [E1Fil, ..., [EnFy], .. ..
Then, using C 1.3.13.4, we see that Vn € {0} UN B1By < E,F,. On the other hand, we have, by hypothesis
dn € {0} UN E,,F,, < B1By. Thus, we arrive at a contradiction with L 1.3.13.10, L. 1.3.13.11. O

In this book we shall refer to the process whereby we put into correspondence with any interval its length as the
measurement construction for the given interval.

We further assume that all intervals are measured against the interval C'D, chosen and fixed once and for all.
This ”etalon” interval (and, for that matter, any interval congruent to it) will be referred to as the unit interval, and
its measure (length) as the unit of measurement.

Given an interval Ay B, its measurement construction consists of the following steps (countably infinite in number):
540

— Step 0: Using L 1.3.21.11, L 1.4.1.2, construct points Aj, Ag, ..., A,_1, A, such that [A;_1A4;A4;41] for all
1€ anl, CD = AOA1 = AlAQ = - "AnflAn, and B € [AnflAn) Denote EO - Anfl, FO - An, ep — N — 1,
fo =n.

The other steps are defined inductively:

— Step 1: Denote C; the midpoint of A,,_1A,, i.e. the point C; such that [4,,-1C14,] and A,,_1C; = C1A,,. By
T 1.3.22 this point exists and is unique. Worded another way, the fact that C; is the midpoint of A, 1A, means

that the interval D1 0D 2 is divided into two congruent intervals Dy 0D1 1, D1,1 D1 2, where we denote D g = A,,_1,

Dl,l = Cl, Dl)g - An 541 We have B (S [D1)0D172) Ll'é;j B e [D1)0D171)\/B € Be [D1)1D172). If Be [Dl)QDl)l),

we let, by definition £y = Dy o, F1 = D11, e1 =n—1, fi =e1 + % =n—1+ % For B € [D11D;2), we denote
Ei=Di1,Fi=Dia fi=ne1=fi —% =n— % Obviously, in both cases we have the inclusions [F1 F1] C [EyFp)
and [elfl] - [eofo].

Step m:

As the result of the previous m — 1 steps the interval A, 1A, is divided into 2™~! congruent intervals
Dm7170Dm7171,Dm7171Dm7172,...,Dm7172m7171Dm71127n71, where we let Dmfl,O - Anfl, Dm,LQm—l - An .
That iS, we have DmflﬁoDm,Ll = Dm,Lle,LQ = - = Dm_172m—1_2Dm_1)2m—1_1 = Dm_172m—1_1Dm_1)2m—1

and [Dmflyjlem,Lij,LjJrl], j= 1,2,..., 2m—1_1. We also know that B € [Emlemfl), Cm—1 = (n—l)—l—;fn%ll,
fm—1=(n—-1)+ zm%, where E,_1 = Dpy—1 k-1, Frmne1 = Dim—1,%, k € Nom-1. Dividing each of the intervals
Dy 1,0Dm-11,Dm-11Dm-1,2,... Dypy_1,9m-1_1Dy,_1 gm-1 into two congruent intervals 542 we obtain by T 1.3.21
the division of A,,_1 A,, into 2~1.2 = 2™ congruent intervals Dy0Dm1, D 1Dm 2, ..., D gm —1 Dy, om, where we let
Dm,O = An—la Dmygm = An That iS, we have Dm70Dm71 = Dm71Dm72 =...= Dmygm_gDQO_l = Dm)27n_1Dm72m
and [Dp j—1Dm jDm j+1], j = 1,2,...,2™ — 1. Furthermore, note that (see L 1.2.7.3) when n > 1 the points
Ao, ey An,1 = l)m’()7 Dm,l; ey Dm,2m717 An = Dm)2m are in order [AO RPN Dm,ODm,l NN Dm72m71Dm)2m]. Denote
Cp = midFE,, 1F,1. By L1277 B € [Ep—1Fn-1) = [En-1Cn)V B € [CpF—1). In the former case we
let, by definition, FE,, = Fm_1, Fin = Cny € = €m—1, fm = €m + 2%; in the latter E,, = C,,, F,, = Fn_1,
em = em—1, fm = fm-1— 2%,1 Obviously, we have in both cases [E;, Frn] C [Em—1Fm-1)], [m, fm] C [em—1, fm-1],
fm—em= 2%,1 Also, note that if E,, = Dy, -1, Fiy = Dy, | € Nom, then ey, = (n—1)+ g%,}, m=(Mn—-1)+ 2%.543
Observe further that if n — 1 > 0, concurrently with the m!* step of the measurement construction, we can divide
each of the intervals AgA;, A1As, ..., Ap_2A,_1 into 2™ intervals. Now, using T 1.3.21, we can conclude that the
interval AgFE,,, whenever it is defined, ®** turns out to be divided into (n — 1)2™ 41 — 1 congruent intervals, and the
interval AgF,, into (n — 1)2™ + [ congruent intervals.

Continuing this process indefinitely (for all m € N), we conclude that either Img E,,, = B, and then, obviously,
Vm € N\ Ny, E,, = B; or Vm € N B € (E,,,F,,). In the first case we also have ¥p € N e,4p = €m,, and we let,
by definition, |AgB| = e,,. In the second case we define |AgB| to be the number lying on all the closed numerical

539Thus, we can now reformulate Cantor’s Axiom A 1.4.2 in the following form: Let [E;F;], i € {0} UN be a nested sequence of closed
intervals with the property that given (in advance) an arbitrary interval B Ba, there is a number n € {0}UN such that the (abstract) inter-

val Ey Fy is shorter than the interval By Ba. Then there is exactly one point B lying on all closed intervals [Eo Fol, [E1F1], ..., [EnFn], ...
oo
of the sequence. We can write this fact as B = () [E; Fj].

i=0

540The argumentation used in proofs in this section will appear to be somewhat more laconic than in the preceding ones. I believe that
the reader who has reached this place in sequential study of the book does not need the material to be chewed excessively before being
put into his mouth, as it tends to spoil the taste.

541The first index here refers to the step of the measurement construction.

5421y each case, such division is possible and unique due to T 1.3.22.

5431n fact, after m — 1 steps we have B € [Dim—1,k—1Dm—1,&) = [Em—1Fm—1), and after m steps B € [Dp,_1,1-1Dm—1,1) = [EmFm).
First, consider the case B € [En—1Cm), where Cp, = mid Ey—1Fp—1. Then, evidently, [ — 1 = 2(k — 1) and (see above) en =
em—1, fm = em + 1/2™. Hence we have em = em—1 = (n — 1) + (k= 1)/2™" 1 = (n — 1) +2(k — 1)/2™ = (n — 1) + (I — 1)/2™,
fm=Mm-1)+{-1)/2" +1/2™ = (n — 1) +1/2™. Suppose now B € [CpFm—1). Then | = 2k and fmn = fm—1. Hence
fm=fmo1=Mm -1 +k/2m L =n—-1)+2k/2"=(n—-1)+1/2™, em =(n—1)+1/2™ —1/2™ = (n — 1) + (I — 1)/2™.

544The interval AgE., is defined when either n > 1 or [ > 1.
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intervals [, fm], m € N. We can do so because the closed numerical intervals [e,,, fm], m € N, as well as the closed
point intervals [E,, F,,], form a nested sequence, where the difference f,, —e,, = 2% can be made less than any given
positive real number ¢ > 0. 54> Thus, we have proven

Theorem 1.4.1. The measurement construction puts into correspondence with every interval AB a unique positive
real number |AB)| called the length, or measure, of AB. A unit interval has length 1.

Note than we can write

AogB < -+ < Aol < AgFp1 < -+ - < AgFy < Aoy (1.6)
and
ep<ler < <ep1<en < Z|AB| < < frn < fm1 < < i < fo. (1.7)
If n > 1, we also have
AoEy < AgEy < -+ < AgEj 1 < AgEy, < --- < AgB. (1.8)

Some additional properties of the measurement construction are given by

Lemma 1.4.2.1. Given an arbitrary interval GH, in the measurement construction for any interval AgB there is
an (appropriately defined) interval E,, Fy, shorter than GH.

Proof. By L 1.4.1.3 the interval A, _1 A, (appropriately defined for the measurement construction in question) can
be divided into some number m of congruent intervals shorter than GH. Since m < 2™, dividing A, _1A4,, into 2™
intervals at the m!step of the measurement construction for AygB gives by L 1.3.21.9 still shorter intervals. Hence
the result. O

This lemma shows that even if n = 1, for sufficiently large m the intervals AgEy,, AoEm+1, ... are defined, i.e.
E,, # Ay, etc., and we have %46

AoEm < AoEmi1 < -+ < ApB. (1.9)

Lemma 1.4.2.2. In the measurement process for an interval AgB there can be no more than one point lying on all
closed intervals [EgFy), [E1F1l, ..., [EnFy), ... defined appropriately for the measurement construction in question,
and this point, when its exists, coincides with the point B.

Proof. Asis evident from our exposition of the measurement construction, the closed intervals [Eo Fyl, [E1 F1], . .., [EnFynl, - ..
form a nested sequence, i.e. we have [E1F1] D [Ea, F3] D ... D [E,F,] D .... The result then follows from L 1.4.2.1,
L1414. O

Theorem 1.4.2. Congruent intervals have equal lengths.>*"

Proof. Follows from C 1.3.21.14, 1. 1.3.21.12, L. 1.3.21.13 applied to the measurement constructions of these intervals.
In fact, let AgB = A'¢B’. On step 0, if B € [4,-1A,) then, by C 1.3.21.14, also B’ € [A],_;A}), and therefore
ey = eo, fo = fo. ®** If B € [D1,0D1,1) then (again by C 1.3.21.14) B’ € [D] (D} ), and if B € [D1,1D12) then B’ €
[D]1D15). Therefore (see the exposition of measurement construction) ej = ey, fi = fi. Now assume inductively

that after the m — 1*step of the measurement constructions the interval A,_; A, is divided into 2! congruent

intervals Dm_l)QDm_Ll,Dm_l)le_172, . ,Dm_172m—1_1Dm_1)2m—1 with Dm_170 = An—17 Dm_172m—1 = An and
/ Iy L 3 m—1 3 / / / / / / 3
n_14;, is divided into 2 congruent intervals Dy, oDy, 115 Dpy 11Dy 19522+, D) g gy 1Dy gma With

D, _10=A45_1,D,, ;| 5m-1 = Aj,. Then we have (induction assumption implies here that we have the same k in both
cases) B € [Ep—1Fm-1), €m—1 = (n— 1)+2]fn;}1, fm—1=(n— 1)+%, where E,, 1 = D151, Fin1 = Din—11,
k € Ngm—s and B’ € [E), \F}, ), €y 1 = (n— 1)+ g2, fl,y = (n— 1) + 5=r, where E}, | = D, _,,_,,

m—1
72171 = :n—l,k’ k € Nom-1.
At the m'step we divide each of the intervals Dp1,0Dm-1,1,Dm-1,0Dm-1,1,... Dyy_1,9m-1_1Dp,_1 9m—1 into
two congruent intervals to obtain the division of A, _1A4, into 2™ congruent intervals Dy, 0Dm.1, Dm,1Dm2, ...,
Dy, om 1Dy, om, where, by definition, D,, o = An—1, Dimom = A,. That is, we have D, 0Dpm1 = D1 D2 =

e = Dm)Qm,QDm72m71 = Dm)meleﬂgm and [Dm_’jlem)ij_’j+1], j = 1, 2, ceey 2m — 1.

545By the properties of real numbers, these conditions imply that the number lying on all closed numerical intervals [em, fm] exists and
is unique.

546In fact, once Ep,Fy, is shorter than AgB, the point E, cannot coincide with Ag any longer. To demonstrate this, take
the case n = 1 (if n > 1 we have the result as a particular case of the equation (1.7)) and consider the congruent intervals
Dm,0Dm,1, Dm,1Dm,2,...,Dm2m_1Dm2m into which the interval AgA; = Ao = A, is divided after m steps of the measure-
ment construction. If B were to lie on the first of the division intervals, as it would be the case if E,, = Ap, we would have
B € [Dm,0Dm,1) = [EmFm), whence (see C 1.3.13.4) AgB < EpyFm, contrary to our choice of m large enough for the inequality
EmFrm < AoB to hold.

5471n particular, every unit interval has length 1.

548For the duration of this proof, all elements of the measurement construction for A’gB’ appear primed; for other notations, please
refer to the exposition of the measurement construction.
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Similarly, we divide each of the intervals D;, (D}, 11, D, 10Dy, 11, D)

m_172m,1_1D;n_1)2m,1 into two con-

gruent intervals to obtain the division of A}, _; Aj, into 2™ congruent intervals D;, D, 1, D}, 1Dy, 55+, Dy om 1Dy
where Dj, o = A1, Dy, om = Aj,. That is, we have D;, (D}, 1 = D;, 1D, 0 = -+ = Djyom oDy om g =
D;n)2m_1D;n72m and [D;n.,j—lD;n,jD;n,jJrl]v j=12...,2m—1.

Since the points (Ag,...,)An-1 = Dm0, Dmi,.-.,Dmamn_1,A, = Dpom 51 are in order
(Ao .- )Dim,oDm 1 ... Dy am—1Dpm 2m and the points (Ag,...,)A, 1 = Dy, 0, Dy, 15000, Dy om 1, Ay = Dy, o are

in order [(A)...)Dly oDl 1 - Dy g1 Dy g if B € [EyyFin) = [Dyn—1 Dy y) then by C 1.3.21.14 B € [E} Fl,) =
(D, 1-1D;,), and we have e;, = e, = (n — 1) + L, fl, = fm = (n— 1) + 5%. Furthermore, if B = E,, then by
L 1.3.21.13 also B’ = E], and in this case |AgB| = e, |AjB’| = €, whence |AjB’| = |AgB|. On the other hand, if
Vm € NB € (E,, F,,), and, therefore (see L 1.3.21.12), Vm € NB’ € (E|,F},), then both Ym € N|AyB| € (e, fm)
and Ym € N|A(B'| € (e, f},). But since, as we have shown, e, = e, f/, = fm, using the properties of real
numbers, we again conclude that |A{B’| = |AoB|. O

Note that the theorem just proven shows that our measurement construction for intervals is completely well-
defined. When applied to the identical intervals AB, BA, the procedure of measurement gives identical results.

Lemma 1.4.3.1. Every interval, consisting of k congruent intervals resulting from division of a unit interval into
2™ congruent intervals, has length k/2™.

Proof. Given an interval AgB, consisting of k congruent intervals resulting from division of a unit interval into 2™
congruent intervals, at the m*"step of the measurement construction for AqB we obtain the interval AyE,, consisting
of k intervals resulting from division of the unit interval into 2™ congruent intervals, and we have AgE,, = AyB(see
L 1.2.21.6). Then by T 1.3.2 E,,, = B. As explained in the text describing the measurement construction, in this
case we have k = (n — 1)2™ + 1 — 1. Hence |AoB| = |AgEm| =em=(n—-1)+({-1)/2m =k/2™. O

Theorem 1.4.3. If an interval A'B’ is shorter than the interval AgB then |A’B’| < |AoB|.

Proof. Using L 1.3.13.3, find B; € (AoB) so that A’B’ = AyB;. Consider the measurement construction of Ay B,
which, as will become clear in the process of the proof, induces the measurement construction for AygB;. Suppose
Be[A,—1A,),n €N. Then by L 1.2.94 By € [Ax,_14k), k <n, k € N. Agreeing to supply (whenever it is necessary
to avoid confusion) the numbers (and sometimes points) related to the measurement constructions for AgB, AyB

with superscript indices (B), (Bi), respectively, from 1.7 we can write for the case k < n: e((JBl) <|ApBi| < féBl) <

e(()B) < |ApB| < féB), whence |AgB1| < |AoB|. Suppose now k = n. Let there be a step number m in the measurement
process for Ay B such that when after the m— 1*"step of the measurement construction the interval A, _1 4,, is divided
into 2™~ congruent intervals Dp1,0Dm-1,1,Dm-11Dm-12,...,Dp_1 9m=1_1Dyy_1 gm—1 With Dy, 19 = Ap_1,
D,y 9m-1 = Ay and both By and B lie on the same half-open interval [D}, ;, 1D;, 1,), p € Nym-1, at the
mtstep By, B lie on different half-open intervals [Dri—oDri—1)s [Py -1D;y, ), where I € Nam, resulting from

the division of the interval D;, , , D, D!, D! . %% Then,

. . , ,
m—1,p Into two congruent intervals Dm,l72D 1

m,l—1°

using 1.7, we have |4gB1| < fr(nBl) =Mn-1)+ lz_—ml =P < |AoB|, whence |AgBi| < |AoB|. Finally, consider the
case when for all m € N the points B, B lie on the same half-open interval [E,, Fy,,), where E,, = EBY = E,(nB),

F,, = FB = FB. By L 1.4.2.2 By, B cannot lie both at once on all closed intervals [EqFy), [E1F], ..., [EnFh], .. ..
Therefore, by L 1.2.9.4, we are left with By = E,,,, B € (E,, F}y,) for some m as the only remaining option. In this
case we have, obviously, |AgB1| = e, < |ApB|. O

Corollary 1.4.3.2. If |A’B’'| = |AB| then A'B' = AB.

Proof. See L. 1.3.13.14, T 1.4.3. O

Corollary 1.4.3.3. If |A’B’| < |AB| then A'B’ < AB.

Proof. See L. 1.3.13.14, T 1.4.2, T 1.4.3. O

Theorem 1.4.4. If a point B lies between A and C, then |AB| + |BC| = |AC|

Proof. After the m'"step of the measurement construction for the interval BC we find that the point C' lies on the

half-open interval [Efnc ), F,gf))7 where the intervals BE,(nC ), BF,(nC) consist, respectively, of some numbers k € N, k+1
of congruent intervals resulting from division of a unit interval into 2™ congruent intervals, and, consequently, have
lengths k/2™, (k+1)/2™.5°! Hence, using (1.6, 1.9) and applying the preceding theorem (T 1.4.3), we can write the
following inequalities:

k/2m < |BC| < (k+1)/2™. (1.10)

549The expression in parentheses in this paragraph pertain to the case n > 1.
550The fact that By € [D! D! )yand B € [D] , ;D! ;) and not the other way round, follows from L 1.2.9.4.

m,l—2"m,l—1
551We take m large enough for the points B, E"? to be distinct and thus for the interval BE,(nC) to make sense. (See the discussion
accompanying the equation (1.9).)
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(The superscripts A, C are being employed here to signify that we are using elements of the measurement constructions
for the intervals BA and BC, respectively. ) Similarly, after the m*"step of the measurement construction for the
interval BA the point A lies on [Eff ),F,%A)), where the intervals BES{? ), BF,%A) consist, respectively, of I, [ + 1
congruent intervals resulting from division of a unit interval into 2™ congruent intervals, and have lengths [/2™
(I+1)/2™. 552 Again, using (1.6), (1.9) and applying the preceding theorem (T 1.4.3), we can write:

1/2™ < |BA| < (I+1)/2™. (1.11)

Since, from the properties of the measurement constructions, the points Er({‘ ), A, F,SiA) all lie on the same side of the
point B, the points Efnc), C, F,glc) lie on the same side of B,%>3 and, by hypothesis, the point lies between A, C, it

follows that B also lies between Fr(nA), Er(nc), as well as between E,(,fl), F,%C), i.e., we have [F&A)BE,(,?)] and [Er(,f‘),

F,Slc)]. Furthermore, by T 1.3.21 the interval F&A)Er(nc) then consists of [+ k intervals resulting from division of a unit

interval into 2 congruent intervals, and the interval ESYEL) then consists of (I+1)+ (k+1) of such intervals. By
L 1.4.3.1 this implies |F7(nA)E,(nC)| = (k+1)/2™, |E,(,24)F,$TC)| = (k+1+2)/2™. From the properties of the measurement
constructions for the intervals BA, BC and the lemmas L 1.2.9.5, L 1.2.9.6 it follows that the points A, C' both lie
on the closed interval [E,(f)F,%C)] and the points F&A), E,(nc) both lie on the closed interval [AC]. By C 1.3.13.4 these

facts imply F,%A)E,(f) < AC < ES,?’F,%C), whence we obtain (we can use T 1.4.3 to convince ourselves of this)
(k+1)/2m = |FVED| < |AC| < [ESNVF( | = (k+1+2)/2™ (1.12)
On the other hand, adding together the inequalities (1.10), (1.11) gives
(k+1)/2m = |FMEC)| < |AB| +|BC| < |[EYVF| = (k+1+2)/2™. (1.13)
Subtracting (1.13) from (1.12), we get
||AB| + |BC| — |AC|| < 2/2™ = 1/2™" 1. (1.14)
Finally, taking the limit m — oo in (1.14), we obtain |AB| 4 |BC| — |AC| = 0, as required. O

Corollary 1.4.4.1. If a class pAB of congruent intervals is the sum of classes of congruent intervals pCD, uEF
(i.e. if ptAB = uCD + pEF), then for any intervals AyBy € pnAB, C1Dy € uCD, E1Fy € uEF we have |A1By| =
|ClD1| + |E1F1|.

Proof. See T 1.4.2, T 1.4.4. O

Corollary 1.4.4.2. If a class pAB of congruent intervals is the sum of classes of congruent intervals
wA1 By, A2 By, ..., uApn By, (ie. if puAB = pA1By + pAsBe + -+ + pA,B,), then for any intervals CD € uAB,
C1D;y € uA1B1,CoDy € fAsBs, ..., Cy D, € pA, B, we have |CD| = |C1D1|+ |CoDa|+---+|CpDy|. In particular,
if WAB = nuA1By and CD € uAB, C1 Dy € nA1 By, then |CD| = n|CyD;]. 554

Theorem 1.4.5. For any positive real number x there is an interval (and, in fact, an infinity of intervals congruent
to it) whose length equals to x.

Proof. The construction of the required interval consists of the following steps (countably infinite in number): 555.

Step 0: By the Archimedes axiom applied to R there is a number n € N such that n — 1 < x < n.

Starting with the point Ay and using L 1.3.21.11, construct points Ay, As, ..., A1, A, such that [A;—1A;A4;41]
foralli e N,_1, CD = ApAy = A1As =---A,_1A,. Denote Eg = A1, Fo = A,,eo =n—1, fo =n.

The other steps are defined inductively:

— Step 1: Denote Cy the midpoint of A,,_1 A, i.e. the point C; such that [4,,-1C1A,] and A,,_1C; = C1A,,. By
T 1.3.22 this point exists and is unique. Worded another way, the fact that C; is the midpoint of A,,_1 A, means
that the interval Dq oD; 2 is divided into two congruent intervals D1 0D1 1, D1,1D1 2, where we denote D1 g = A,_1,
Dy =0, Dig=A, ® Ifren-1n-1) ie forn—-1<z<n-— %, we let, by definition Fy; = D o,
F = D1,17 e —n— 1, fl = e + % =n—1+ g For z € [n— %,n), we denote F; = D1,17 F = 131727 fl = n,
e1 = f1 — % =n— % Obviously, in both cases we have the inclusions [E1 Fy] C [EoFp| and [eq, f1] C [eo, fo]-

552We take m large enough for the points B, Eﬁ,’:‘) to be distinct and thus for the interval BE,(;‘) to make sense. (See the discussion
accompanying the equation (1.9).)

©

553 Obviously, as we shall explain shortly, the points E,,’, C, F7(nc) lie on the opposite side (i.e. ray) of the point B from the points

BV, A, BV,

k) b m

554 Obviously, uAB = (1/n)uA1 By and CD € pAB, C1 Dy € pA1 By then imply |CD| = (1/n)|C1D1|.

555We will construct an interval AgB with |AgB| = x in a way very similar to its measurement construction. In fact, we’ll just make
the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps

556 A gain, the first index here refers to the step of the measurement construction.
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As the result of the previous m — 1 steps the interval A,,_1A, is divided into 2™~! congruent intervals
Dm_170Dm_171,Dm_171Dm_172,...7Dm_172m—1_1Dm_1)2m—1, where we let Dm_170 - An—lu Dm_l)gm—l - An .
That is, we have Dy,—1,0Dm-1,1 = Din—11Dm-12 = -+ = Dyp_1o0m-1_2Dp_19m-1_1 = Dy 9m-1_1Dpyp 1 2m—1
and [Dy,—1j-1Dm—1iDm-1j+41), j = 1,2,...,2m~ 1 —1. We also know that = € [en—1, fr—1), €m—1 = (n—l)—i—fm%ll,
fmo1=(n—=1)+ Qm%, where Ep—1 = Dpm—1k-1, Frne1 = Dm—1%, k¥ € Nom-1. Dividing each of the intervals
Dy1,0Dm-1,1,Dm—1,0Dm—1,1,... D1 9m-1_1Dp,_1 om-1 into two congruent intervals 557 we obtain by T 1.3.21
the division of A,,_14,, into 2™~ 1.2 = 2™ congruent intervals Dy, 0D 1, Dim1Dm 2, - - -, Di2m —1 Dy, 2m, where we let
Dpo= An_1, Dy om = A,. That is, we have Dy, 0Dy = D1 Do =+ = Dpyom_9Dp om_1 = Dy om_1 Dy om
and [Dp j—1Dm jDm j+1], j = 1,2,...,2™ — 1. Furthermore, note that (see L 1.2.7.3) when n > 1 the points
AQ, N 7An—1 = Dm70, Dm717 . ,Dmygm_l, An = Dmygm are in order [AO .. .Dm70Dm)1 N Dm72m_1Dm)2m. From the
properties of real numbers it follows that either x € [ep—1,(em—-1 + fm-1)/2) or = € [(em-1 + fm-1)/2, frm—1)
In the former case we let, by definition, F,, = E,—1, Fin = Cn, em = €m—1, fm = em + 2%; in the latter
En=Cn Fpn=Fn 1, en=en_1, fm = fm_1— 2% Obviously, we have in both cases (E,, Fin) C (Em—1Fm-1),
(emfm) C (emflfﬂl71)7 fm —Em = 2Lm

Continuing this process indefinitely (for all m € N), we conclude that either Img e,,, = x, and then, obviously,
Vm € N\ Ny, e, = z; or Vm € Nz € (e, frn). In the first case we let, by definition, B = E,,.

In the second case we define B to be the (unique) point lying on all the closed intervals [E,, F,], m € N. We can
do this by the Cantor’s axiom A 1.4.2 because the closed point intervals [E,, Fy,,] form a nested sequence, where by
L 1.4.2.1 the interval E,, F}, can be made shorter than any given interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to
the interval AgB, we can write |AgB| = x, as required. O

Having established that any interval can be measured, we can proceed to associate with every point on any given
line a unique real number called the coordinate of the point on that line.

Toward this end, consider an arbitrary line a. Let O € a, P € a, [POQ]. We refer to the point O as the origin,
and the rays Op, Og as the first and the second rays, respectively. The line coordinate x; of an arbitrary point
M € a is then defined as follows. If M = O, we let, by definition, x,, = 0. If the point M lies on the first ray
Op, we define )y = —|OM]|. Finally, in the case M € Ogq, we let zpy = |OM|. 5°® The number z; is called the
coordinate of the point M on the line a. From our construction its follows that for any point on any given line this
number exists and is unique.

We can state the following:

Theorem 1.4.6. If a point A precedes a point B in the direct order defined on a line a, the coordinate x5 of the
point A is less than the coordinate xp of the point B.

Proof. If A precedes B in the direct order on a then ®°°
— Both A and B lie on the first ray and B precedes A on it; or
— A lies on the first ray, and B lies on the second ray or coincides with O; or
— A =0 and B lies on the second ray; or
— Both A and B lie on the second ray, and A precedes B on it.

If (B < A)o, then by the definition of order on the ray Op (see p. 21) the point B lies between points O and A,

and we can write [OBA] CL3B4 o <« 04 A8 |OB| < |OA| = —a2p < —x4 = 24 < TB.

For the other three cases we have:
A€Op&(B=0OVBeOg)=u24=—|0Al&(xg=0Vap=|0B|) =24 <0<uzp;
AZO&BEOQZ}.’L‘AZO< |OB|=CL‘B;

(A< B)o, = [0AB] "2 04 < 0B™2% |04 < |OB| = 24 < 5. O

Theorem 1.4.7. There is a bijective correspondence between the set P, of (all) points of an arbitrary line a and the
set R of (all) real numbers.

Proof. The correspondence is injective. In fact, suppose A, B € a, A # B. Wehave Ac a& Be€a& A#B L1:2.43.5

(A<B)a\/(B<A)aT1:'4>'6:EA<:EB\/xB<:vA:>xA7éxB.

The surjectivity follows from T 1.4.5. O

We are now in a position to introduce plane coordinates, i.e. associate with every point on a given plane an
ordered pair of real numbers.

Let o be a given plane. Taking a line a; lying in this plane, construct another line aa C a such that as L a;.
Denote O = a1 Nag (that is, O is the point where the lines a1, as concur) and call the point O the origin of
the coordinate system. We shall refer to the line a; as the horizontal axis, the x- axis, or the abscissa line of the
coordinate system, and the line as as the vertical axis, the y- axis, or the ordinate line.

55711 each case, such division is possible and unique due to T 1.3.22.
558 Recall that Py = Op U {O} U O, the union being disjoint.
559Gee definition on p. 22.
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Theorem 1.4.8. There is a bijective correspondence between the set Py of (all) points of an arbitrary plane o and
the set R? of (all) ordered pairs of real numbers.

Proof. O

Theorem 1.4.9. Proof. O

Theorem 1.4.10. Proof. O

Angles and even dihedral angles have continuity properties partly analogous to those of intervals. Before we
demonstrate this, however, it is convenient to put our concept of continuity into a broader perspective.

Consider a set J, equipped with a relation of generalized congruence (see p. 46). By definition, the elements of J
possess the properties Pr 1.3.1 — Pr 1.3.5. Recall that the elements of J are pairs AB = {A, B} (called generalized
abstract intervals) of geometric objects. Each such pair AB lies in (i.e. is a subset in at least) one of the sets J
equipped with a generalized betweenness relation. The sets J are, in their turn, elements of some special class C9°"
of sets with generalized betweenness relation, such as the class of all lines, the class of all pencils of rays lying on the
same side of a given line, the class of all pencils of half-planes lying on the same side of a given plane, etc.

We are now in a position to define a measurement construction for elements of such a set J whose class C9°"
consists of specially chosen sets J with generalized angular betweenness relation. 560

We shall assume that the sets J with generalized angular betweenness relation in C9°" are chosen in such a way
that the generalized abstract intervals formed by their ends are congruent: if J = [AB] € C9", J' = [A'B'] € C9*"
then AB = A'B'.

We shall further assume that the generalized abstract intervals involved (elements of the set J) have the following
property:

Property 1.4.1. Given any two generalized intervals AB, CD, the generalized interval AB can be divided into
congruent generalized intervals shorter than CD.

as well as the following generalized Cantor property:

Property 1.4.2 (Generalized Cantor’s Axiom). Let [£;F;], i € {0} UN be a nested sequence 5% of generalized
closed intervals with the property that given (in advance) an arbitrary generalized interval BiBa, there is a number
n € {0} UN such that the (abstract) generalized interval E,F, is shorter than the generalized interval B1Bs. Then
there is at least one geometric object B lying on all closed intervals [E9Fol, [E1F1], - -, [EnFnl, - - . of the sequence.

which we can reformulate in the following stronger form:

Lemma 1.4.11.1. Let [;F;], i € {0} UN be a nested sequence of generalized closed intervals with the property that
given (in advance) an arbitrary generalized interval B1Bz, there is a number n € {0} UN such that the generalized
(abstract) interval E,F,, is less than the generalized interval B1Ba. Then there is at most one geometric object B
lying on all generalized closed intervals [Eo o), [E1F1],s -+, [EnFul,- .. of the sequence. 552

Proof. Suppose the contrary, i.e. let there be two geometric objects By, B2 lying on the generalized closed intervals
[EoFol, [E1F1]s- -y [EnFn]y ... Then by C 1.3.15.4 Vn € {0} UN B1By < E,F,. On the other hand, we have, by
hypothesis In € {0} UN &, F,, < B1By. Thus, we arrive at a contradiction with L 1.3.15.10. O

Now, given a set J = [AB] with angular generalized betweenness relation, of the kind just defined, we can construct
the measurement construction for any interval of the form AP,%%3 where P € J, as follows:

We set, by definition, the measure of the generalized interval AB € J, as well as of all generalized intervals A’'B’
congruent to it,’** equal to a positive real number b. For example, in practice of angle measurement b can be equal
to m (radian) or 180 (degrees). We denote the measure of AB by mes AB or |AB].

— Step 0: Denote Ag = A, By = B, ag = 0, by = b.

The other steps are defined inductively:

— Step 1: Denote C; the middle of AB, i.e. the geometric object C; such that [AC1B] and AC; = C15. By Pr 1.3.5
this point exists and is unique. Worded another way, the fact that C; is the middle of AB means that the generalized
interval Dy oDs 2 is divided into two congruent intervals Dy oD1,1, D1,1D1,2, where we denote Dy g = A, D11 = Cy,

560Gee p. 48. Similarly, the measurement construction given above for intervals could have been easily generalized to the general case of
a set J whose class C9%" consists of sets J with generalized linear betweenness relation if we additionally require the following generalized
Archimedean property: Given a geometric object P on a generalized ray Ao 4, , there is a positive integer n such that if [A;_1.4;.4;11]

for all 4 € Nj,—1 and Ag A1 = A1 A2 = -+ = Ap—1.An then [AgPAy]. However, all conceivable examples of the sets J of this kind seem
too contrived to merit a separate procedure of measurement.
561Tn accordance with the general definition, a sequence of generalized closed intervals [A1B1],[Az, Ba],...,[AnBr],... is said to be

nested if [A1B1] D [A2,B2] D ... D [AnBr] D .. ..

562Thus, we can now reformulate the Generalized Cantor’s Axiom Pr 1.4.2 in the following form: Let [£;F;], ¢ € {0} UN be a nested
sequence of generalized closed intervals with the property that given (in advance) an arbitrary generalized interval B1 Bz, there is a number
n € {0} UN such that the generalized (abstract) interval £,Fy is shorter than the generalized interval B1B2. Then there is exactly one
geometric object B lying on all generalized closed intervals [E9Fo], [E1F1],- - -, [EnFn], ... of the sequence.

563 Given the properties of angles and dihedral angles, even after restriction to the intervals of this form, our consideration is sufficient
for all practical purposes.

564 Generalized intervals AB such that [AB] = J € C9°" can sometimes for convenience be referred to as reference generalized intervals.

214



D172 = B 565 We have 73 S [D170D172) Ll'%.15 73 S [DLOIDLl) \Y P S [D171D172). If B S [,DLOIDLl), we 1et, by

definition A4; = D10, B = Dii,a1 =a9=0,b = ap+ b/2 = 5/2. For P € ['D171'D172), we denote A; = D,
By = D12, bi = a, a1 = by — b/2 = b/2. Obviously, in both cases we have the inclusions [4151] C [AoBy] and
[0’17 bl] - [0’07 bO]

Step m:

As the result of the previous m — 1 steps the generalized interval AB is divided into 2™~ congruent generalized
intervals Dyp,—1,0Dm-1,1Pm-1,1Dm-1,2, - - - yDi—1,9m=1_1Dp 1 gm-1, where we let D,,_19 = A, Dyy1om—1 = B.
That iS, we have Dm_l)QDm_Ll = Dm—l,IDm—1,2 = - = Dm_1)2m—1_2Dm_1)2m—1_1 = Dm—l,mel—le—l,mel

and [Dmflyjflpmflﬁjpmfldurl], ] = 1,2,.. .,2m71 — 1. We also know that P € [.Amfl[j’mfl), Am—1 = 2%”_,11 . b,
bn_1 = 2,,{“—,1 -b, where Ap—1 = Dy—1,5—1, Bm—1 = Dm—1,k, k € Nom-1. Dividing each of the generalized intervals
Din-1,0Dm-1,1,Pm-11Dm-1,2,-- - Dpp—1,9m-1_1Dy,_1 gm—1 into two congruent generalized intervals 566 we obtain by
T 1.3.51 the division of AB into 2™~ 1.2 = 2™ congruent generalized intervals Dim,0Dm,1; Dm,1Dm2, ..., Dmom 1Dy om,
where we let D, 0 = A, Dy om = B. That is, we have Dy, 0Dm1 = Diy,iDim2 = -+ = Dipom—2Dmom_1 =
,Dm’Qm,l,Dm)Qm and [Dm_’jfl,Dm’ij_’jJrl], ] = 1, 2, ceey 2m — 1.

Denote C,, = midA,,—1Bm—1. By L 1.22215 P € [A,,-1Bm-1) = P € [Apn-1Cn) VP € [CiBm-1). In
the former case we let, by definition, A,, = Am_1, Bm = Cm, am = Gm_1, b = am + 2%; in the latter
A = Cm, Bio = Bp—1, G = Qm—1, by = bm_1 — 2% Obviously, we have in both cases [A,;,B,,] C [Am-1Bm-1],
[@m,bm] C [am—1,bm-1], bm — am = 2%,1 Also, note that if A, = Dy, -1, By = D1, | € Nom, then a,, = lQ_Tnl,
by = (n — 1) + 5k 567

Continuing this process indefinitely (for all m € N), we conclude that either Img A,,, = P, and then, obviously,
Vm € N\ N, Ap, = P; or Vm € NP € [A,B,,]. In the first case we also have Vp € N ay04+p = umy, and we let,
by definition, |AP| = en,. In the second case we define |AP| to be the number lying on all the closed numerical
intervals [am,bm], m € N. We can do so because the closed numerical intervals [a,,, by,], m € N, as well as the
generalized closed intervals (A,,B,,), form a nested sequence, where the difference b, — a,,, = Qim can be made less
than any given positive real number ¢ > 0. ®%® Thus, we have proved

Theorem 1.4.11. The measurement construction puts into correspondence with every generalized interval AP,
where P € (AB) and [AB] = 3 € C9", a unique positive real number | AP| called the measure, of AP. The reference
generalized interval, as well as any generalized interval congruent to it, has length b.

Note than we can write

AP <o < AB,, < ABy 1 < -+ < ABy < AB,. (1.15)

and

ap<a; < <amo1 Ly < S AB| < < frn S fn1 < <1 < fo (1.16)
Some additional properties of the measurement construction are given by

Lemma 1.4.12.1. Given an arbitrary generalized interval GH, in the measurement construction for any generalized
interval AP there is an (appropriately defined) generalized interval A, By, shorter than GH.

Proof. By Pr 1.4.1 the generalized interval AB (appropriately defined for the measurement construction in question)
can be divided into some number m of congruent generalized intervals shorter than GH. Since m < 2™, dividing AB
into 2™ generalized intervals at the m** step of the measurement construction for AP gives by L 1.3.51.9 still shorter
generalized intervals. Hence the result. O

This lemma shows that for sufficiently large m the generalized intervals AA,,, AA;, 11, ... are defined, i.e. A, #
A, etc., and we have 569

Adpy < Adyir < -+ < AP. (1.17)

565The first index here refers to the step of the measurement construction.

5661n each case, such division is possible and unique due to Pr 1.3.5.

5671n fact, after m — 1 steps we have P € [DPm—1,k—1Pm—-1,k) = [Am—1Bm—1), and after m steps P € [Dp,—1,1-1Dm—1,1) = [AmBm).
First, consider the case P € [Am—1Cm), where Cny, = mid Ay—1Bm—1. Then, evidently, ] — 1 = 2(k — 1) and (see above) am = am—1,
bm = am + 1/2™. Hence we have am = am—1 = (n — 1)+ (k—1)/2" = (n—-1)+2k—-1)/2" = (n— 1) + (1 —1)/2™, by, =
(n—1)+(-1)/2m +1/2™ = (n — 1) +1/2™. Suppose now P € [CmBm—1). Then | = 2k and by, = by,—1. Hence by, = byp—1 =
m—1+k/2m L =n—-1)+2k/2"=n—-1)+1/2™, am = (n—1)+1/2™ —1/2m = (n — 1) + (I — 1)/2™.

568By the properties of real numbers, these conditions imply that the number lying on all open numerical intervals (am,bm) exists and
is unique.

569Tn fact, once AmBm is shorter than AP, the geometric object A, cannot coincide with A any longer. To demonstrate this, consider
the congruent generalized intervals D, 0Dm,1, Pm,1Dm,2, - - ., Dm,2m 1Dy 2m into which the generalized interval AB is divided after m
steps of the measurement construction. If P were to lie on the first of the division intervals, as it would be the case if A,, = A, we would
have P € [Dy,0Dm,1) = [AmBm), whence (see C 1.3.15.4) AP < ApmBm, contrary to our choice of m large enough for the inequality
Am B < AP to hold.

215



Lemma 1.4.12.2. In the measurement process for a generalized interval AP there can be no more than one ge-
ometric object lying on all generalized closed intervals [AoBo), [A1B1], ..., [AnBnyl, ... defined appropriately for the
measurement construction in question, and this geometric object, when its exists, coincides with the geometric object

P.

Proof. Asis evident from our exposition of the measurement construction, the closed generalized intervals [AgBo], [41B1], . . .

form a nested sequence, i.e. we have [A1B1] D [A2,Bz] D ... D [A,B,] D .... The result then follows from L 1.4.12.1,
L14.11.1. 0O

Theorem 1.4.12. Congruent generalized intervals have equal measures.

Proof. Suppose AP = A'P’. On step 0, if P € [AB) then also P’ € [A'B’), and therefore a}), = ag, b, = by. 570 If
P € [D1D1,1) then (by C 1.3.51.14) P’ € [D} (D; ), and if B € [D11D12) then P’ € [D D} ,). Therefore (see
the exposition of measurement construction) a} = ay, b} = b;. Now assume inductively that after the m — 1*" step
of the measurement constructions the generalized interval AB is divided into 2™~! congruent generalized intervals

Dmflﬁopmflyl,,Dm,Lle,LQ, . ,Dm,LQm—l,le,LQm—l with ,Dm,110 = A, Dm,LQm—l = B and A/B/ is divided

into 2! congruent generalized intervals D), 4D}, 1 1, Dy 11Dy 1.9, -- D qom-1 1D 1 gma With Dy, o =
A, D:n 1om—1 = B’. Then we have (induction assumption implies here that we have the same k in both cases)

P e [Am—le—l), Ap—1 = 2m 1 b bp—1 = 2m =T b where .Am 1= Dm—l,k—lu Bm—l = Dm—l,ka k e Nmel and
Pre AL, 1B, 1), apq = 2m ot - b, b1 = 2m gt + b, where A;,_; = D:n—l,k—lﬂ B, 1= D:n—l,w k € Noym-1.

At the mthstep we divide each of the generalized intervals Dy, —1,0Dm—1,1, Dm—1,0Dm—1,15 -+ - Dyp—1,9m-1_1Dpp 1 9m—1
into two congruent generalized intervals to obtain the division of AB into 2™ congruent generalized intervals
Dim,0Dm 1, ’Dm71’Dm727 ..o, Dy om 1Dy, om, where, by definition, Dy, o = A, Dy, om = B. That is, we have Dy, 0Dy, 1 =
DmIDm2i :DQO 2,Dm2m liIDm2m 1Dm2mand[ m,j— 1DmJDmJ+1]j:12 2m_1

Similarly, we divide each of the generalized intervals D}, oDy, 11, Dy, 1005115 D;n Lom-1_1Dp 1 gm—1

into two congruent generalized intervals to obtain the division of A’ B’ into 2™ congruent generahzed intervals
D;,.0Dm15 D1 D, Dy om 1Dy gm, where Dy, o = A', Dy, o = B'. That is, we have D}, (D, D;, 1D,

m,1 m,27 ] ml— m2—
D 2m— 2D 2m_1 = =D 72m_1’Dm72m and [DI g 71Dm,jD;n,j+l]7 J = 1, 2, .. "277'7, — 1.
Slnce the geometric objects A =Dy, 0, D1,y Dmam—1,8 = Dy om are in order Dy, 0D 1 - - - Din,2m —1 Dy om
and the geometric objects A" =D}, 4, D}, 1,- -+, Dy, om 1, B' = D}, om ave in order [D}, 4D, 1 ...D;, 9m 1Dy, om, if
P € [AnBm) = [Dm,-1Dpm,) then by C 1.3.51.14 P’ € [A],B,,) = [D,,, 1D, ), and we have a;, = a;, = Lo,

Y, = by = 5= - b. Furthermore, if P = A, then by L 1.3.51.13 also P’ = A/, and in this case |[AP| = an,
|[A'P’| = al,, whence |A'P’'| = |AP|. On the other hand, if Vm € NP € [A,,B,,], and, therefore (see L 1.3.51.12),
vm € NP’ € [A), B, ], then both Vm € N|AP| € [am,bn] and ¥Ym € N|AP’| € [am,b;n] But since, as we have

shown, a,, = am, bl,, = by, using the properties of real numbers, we again conclude that |[A'P’| = |AP|. O

Note that the theorem just proven shows that our measurement construction for generalized intervals is completely
well-defined. When applied to the identical generalized intervals AB, BA, the procedure of measurement gives
identical results.

Lemma 1.4.13.1. Every generalized interval, consisting of k congruent generalized intervals resulting from division
of a reference generalized interval into 2™ congruent intervals, has measure (k/2™) - b.

Proof. Given a generalized interval AP, consisting of k congruent generalized intervals resulting from the division of a
reference generalized interval into 2™ congruent generalized intervals, at the m**step of the measurement construction
for AP we obtain the generalized interval A.A,, consisting of k generalized intervals resulting from division of the
reference generalized interval into 2™ congruent generalized intervals, and we have AA,, = AP(see L 1.2.51.6). Then
by Pr 1.3.1 A,, = P. As explained in the text describing the measurement construction, in this case we have k = [—1.
Hence |AP| = |AA,| =am = (1 —1)/2™) - b= (k/2™)-b. O

Theorem 1.4.13. If a generalized interval A"P’ is shorter than the generalized interval AP then |A'P'| < |AP|.

Proof. Using L 1.3.15.3, find P; € (AP) so that AP’ = AP;. Consider the measurement construction of AP,
which, as will become clear in the process of the proof, induces the measurement construction for AP;. Sup-
pose P € [AB), where A, B are the ends of an appropriate 5" set J with generalized betweenness relation.
Let there be a step number m in the measurement process for AP such that when after the m — 1*"step of
the measurement construction the generalized interval AB is divided into 2™~! congruent generalized intervals
Din—1,0Dm-1,1,Pm-11Dm-12,..., Dypy_1,9m-1_ 1Dm 1,2m—1 With Dy, 10 = A, Dp,_1 9m-1 = B and both P; and P
lie on the same generahzed half-open interval D], e 1Dl p) p € Nym-1, at the m'"step Py, P lie on different

570For the duration of this proof, all elements of the measurement construction for A’P’ appear primed; for other notations, please refer
to the exposition of the measurement construction.

571 Appropriate means here conforming to the conditions set forth above. Namely, we assume the set J to be equipped with a relation of
generalized congruence, and the sets J with generalized angular betweenness relation in C9°" are chosen in such a way that the abstract
intervals formed by their ends are congruent: if J = [AB] € C9°", J' = [A'B'] € CI°" then AB = A'B'.
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generalized half-open intervals [D:n,l—2,Dm, -1

)s [Dr1-1D,,.1), where | € Nom, resulting from the division of the gen-
eralized interval D}, , , D}, , into two congruent generalized intervals D), , 2D, ;_y, Db, ;Db ;. 5 Then,
using 1.16, we have |AP)| < £\ = ELob = all) < |AP|, whence |AP;| < |AP|. Finally, consider the case
when for all m € N the geometric objects P;, P lie on the same generalized half-open interval [A,,B,,), where
Ap = Av = AP B, = Bl = B, By L 1.4.12.2 P;, P cannot lie both at once on all closed generalized inter-
vals [AoBol, [A1B1], - -, [AnBn], - ... Therefore, by L 1.2.24.6, we are left with P; = A,,,, P € (A Br) as the only
remaining option. In this case we have, obviously, |AP;| = an < |AP]. O

Corollary 1.4.13.2. If |A'B'| = |AB| then A'B’' = A.

Proof. See L. 1.3.15.14, T 1.4.13. O

Corollary 1.4.13.3. If |A'B'| < |AB| then A'B’ < AB.

Proof. See L. 1.3.15.14, T 1.4.12, T 1.4.13. O

Theorem 1.4.14. If a geometric object P lies between A and Q, then |AP|+ |PQ| = |AQ|.

Proof. After the m'"step of the measurement construction for the generalized interval AP we find that the geometric
object P lies on the generalized half-open interval [A,,, B,,), where the generalized intervals AA,,, AB,, consist,
respectively, of some numbers k € N, k + 1 of congruent generalized intervals resulting from division of a reference
generalized interval into 2™ congruent generalized intervals, and, consequently, have measures equal to 2’fn - b and
k;{nl - b, respectively.

573 Hence, using (1.15, 1.17) and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

k k+1
op<ap < EEL

b 1.1
» (118)

Tom

Consider first the case Q = B.

We know that after the m'" step of the measurement construction for AP we obtain the division of AB
into 2™ congruent generalized intervals D, 0Dm. 1, Dim,1DPm,2, - - -, Dm,2m 1Dy, om, where Dy, 0 = A, Dy om = B.
We know also that P lies on the generalized half-open interval [Dp, 1D k+1), where Dy = Am, Dmit1 =
By,. Observe now that the interval BD,, 11 = BB 574 consists of 2™ — k — 1 congruent generalized intervals
D k+1Dm k+2, D k+2Dm k43, - - - » Dm,2m —1Dpy om. Similarly, the interval BD,, = A, B 575 consists of 2™ — k con-
gruent generalized intervals Dy, kD k+1; P k+1Dm, k+2, D k+2DPm k+3 - - - s Dm,2m— 1Dy om. Hence by L 1.4.13.1
the generalized intervals BB,,, BA,, have measures equal to 1 — 2% -band 1 — % - b, respectively. Hence, using
(1.15, 1.17) and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

k+1 k
1—2%-b<|87>|§1—2—m-b (1.19)
Adding together 1.18 and 1.19, we can write
1 k

Finally, taking in 1.20 the limit m — oo, we have |AP| + |BP| = b, q.e.d.

Suppose now Q lies on AB. Since [APQ] and Q € (AB), after the m'h step of the measurement construction
for AQ by L 1.2.24.6 we have P € Dy k—1Dm.k); Q € [Pm,i—1Dm,1), where 0 < k <1 < 2™. Observe that, making
use of L 1.2.12.2, we can take m so large that k < [ — 1.°7® Furthermore, our previous discussion shows that m
can also be taken so large that k£ > 1. With these assumptions concerning the choice of m, we see that the interval

572The fact that Py € [D},.1—2Dyn 1) and P € [D; ;D) ) and not the other way round, follows from L 1.2.24.6.
573We take m large enough for the geometric objects A, A, to be distinct and thus for the generalized interval AA;, to make sense.
(See the discussion accompanying the equation (1.17).)

574We take m large enough for the geometric objects B, By, to be distinct and thus for the generalized interval BB,, to make sense. (See
the discussion accompanying the equation (1.17)). Note also how symmetric is our discussion of this with the discussion in the preceding
footnote.

575We take m large enough for the geometric objects B, By, to be distinct and thus for the generalized interval BB,, to make sense. (See
the discussion accompanying the equation (1.17).) Note also how symmetric is our discussion of this with the discussion in the preceding
footnote.

576 First, we note that we can take m so large that k < I. In fact, if both P and Q were to lie on P € [P,k (m)—1Dm, k(m)) (note that the
number & (of the generalized interval Dy, 1Dy, i resulting from the division of .AB into 2™ congruent intervals) depends on m, which is
reflected in the self-explanatory notation used here), then by C 1.3.15.4 we would have PQ < D, j,—1 D, i, for all m € N, which contradicts
L 1.2.12.2. Thus, we conclude that 3m € Nsuch that P € [Dy, k—1Dm k), @ € [Dm,1—1Dm,1), where 0 < k < 1 < 2™. To prove that we can
go even further and find such m € N that P € [Dp, x—1Dm,k), 2 € [Dim,i—1Dm,1), where k < I—1, suppose that there is a natural number
mg such that P € [Dug k(mo)—1Pmog k(mo))s € [Pmg,k(mo) Pmog,k(mo)+1) (note that if there is no such natural number mg, then there
is nothing else to prove). Now, using L 1.4.12.1, we choose a (still larger) number m such that Dm’k(m),leyk(m)) < PDimg,k(mo)- 1f
we still had P € ['Dm,k(m)fllpm,k(m))v Qe ['Dm,l(m)fl'Dm,l(m))v where l(m) - k(m) =1and 'Dm,l(m)fl = Drrm,k:(mg)v then this would
imply P € [Dm,k(m)fl'Dm,k(m)) = ['Dm,k(m)flle,l(m)fl) = ['Dm,k(m)fllpm,k(mo)) = PDmo,k(7rL0) < ,Dm,k:(m)fl'Dm,k(m)v contrary
to our choice of m. This contradiction shows that the number m can be chosen large enough for the inequality { — 1 > k to hold when
Pe ['Dm,kfl'Dm,k)y Qe [,Dm,lflle,l)-
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DD i—1 consists of [ —1—k congruent intervals obtained by division of the reference interval AB into 2" congruent
intervals and by L 1.4.13.1 has measure = 2m -b. Similarly, the interval D,, 1Dy, consists of [ + 1 — k congruent
intervals of the type described above and has measure L le k. p. In this way we also obtain |AD,, x—1| = k—ml - b,
|ADmk| - b, |A’Dml 1| =="-b, |A’Dml| = QW b. Since ADmk 1 SAP <./4Dm;g, .ADml 1 f AQ <ADml,

Dm7k}Dm)l 1 < PQ < Dm,k 1'Dm)l, we have

k-1 k

— b — b 1.21
g O < AP < 55 b, (1.21)

l—k— 1 I+1-k
_— — b 1.22
o <IPQl < —5 : (1.22)

-1 l
— b<|AQ| < o - b. (1.23)
Adding together the inequalities (1.21), (1.22) gives

[ - [+1

b < |AP|+ POl < - + b, (1.24)

Subtracting (1.24) from (1.23), we get
Finally, taking the limit m — oo in (?7?), we obtain |AP|+ |PQ| — |AQ| = 0, as required. O

Corollary 1.4.14.1. If a class wAB of congruent generalized intervals is the sum of classes of congruent generalized
intervals uCD, uEF (i.e. if pAB = uCD + uEF), then for any generalized intervals A1B1 € uAB, C1D; € uCD,
EF1 € pEF we have |A1B1| = |C1D1| + |E1F1].

Proof. See T 1.4.12, T 1.4.14. O

Corollary 1.4.14.2. If a class unAB of congruent generalized intervals is the sum of classes of congruent generalized
intervals wA1 By, pAaBa, . .., p A By (ie. if uAB = p A1 Br1+pAaBa+ - -+ puAL By ), then for any generalized intervals
CD € uAB, C1D1 € uA1B1,CoDs € pAsBs,...,Ch D, € nA,B, we have |CD| = |61D1| + |C2D2| + -+ |CnDn| In
particular, if uAB = nuA1B1 and CD € pAB, C1Dy € pA1B, then |CD| = n|CiDy|. 577

Theorem 1.4.15. For any positive real number 0 < x < b there is a generalized interval AP (and, in fact, an
infinity of generalized intervals congruent to it) whose measure is equal to x.

Proof. The construction of the required generalized interval consists of the following steps (countably infinite in
number): 578.

— Step 0: Denote Ag = A, By = B, ag = 0, by = b.

The other steps are defined inductively:

— Step 1: Denote C; the middle of AB, i.e. the geometric object C; such that [AC;B] and AC; = C15. By Pr 1.3.5
this geometric object exists and is unique. Worded another way, the fact that C; is the middle of AB means that the
generalized interval D; (D 2 is divided into two congruent generalized intervals D; D11, D1,1D1,2, where we denote
Dig=A, D11 =C,D1a=8B.°7° Ifxe(() 3-b), ie. for 0 <z < 3-b, we let, by definition A; = Dlo,Bl D11,
alﬁ(),blﬁal—k%h—— bFOI‘.IE[ bb),wedenoteA1 D171781 D12,b1\—b alx—bl—— b—— b.
Obviously, in both cases we have the 1nclus10ns [A1B1] C [AoBo] and [a1,b1] C [aobo)-

Step m:

As the result of the previous m — 1 steps the generalized interval AB is divided into 2™~ congruent generalized
intervals Dy,—1,0Dm—1,1,Pm-1,1Pm-1,2,- -+, Dp—1,2m-1_1Dp,_1 2m-1, where we let Dy, 10 = A, D1 om—1 = B
. That is, we have Dy;,—10Dm-11 = Dm—11Dm-12 =+ = D1 9m—1_ 2Dy _19m—1_1 = Dyy_1o0m-1_1Dp 1 om—1
and [Dm 1J 1Dim—1Dm-14+1], 5 = 1,2,...,2m"1 — 1. We also know that = € [am-1bm—1), aGm-1 = 2’?{,11 - b,

b1 = 2m sm=r - b, where A,;,—1 = Dpy—1,k—1, Bmn—1 = Dm—1,k, k € Nom—1. Dividing each of the generalized intervals
Dp1,0Dm-11,Dm-1,0Dm-1,1,--. Dypy_1,9m-1_1Dp,_1 gm—1 into two congruent intervals 580 we obtain by T 1.3.21
the division of AB into 2™ ~!.2 = 2™ congruent generalized intervals Dm,0Dm,1; D1 D2, ..o s Dipom 1Dy 2m, Where
we let Dy o = A, Dy am = B. That is, we have Dy, D1 = Din,1Dmz2 =+ = Dimam—2Dpm 2m_1 = Dy am 1Dy 2m
and [Dm)jflpm_’jpm)jJrl], j = 1, 2, ceay 2m —1.

From the properties of real numbers it follows that either x € [am—1,(@m—1 + bm-1)/2) or € [(@m-1 +
bm-1)/2,bm—1). In the former case we let, by definition, A, = A;,—1, Bm = Cmy Gm = Gm—1, b = am + 5 * b;
in the latter A,, = Cpm, B = Bm_1, m = @m_1, by = bm_1 — - b. Obviously, we have in both cases
[AmBm] C [Am—le—1]7 [amubm] C [am—lbm—1]7 by — am = QLm

577 Obviously, wAB = (1/n)pA1B1 and CD € pAB, C1D1 € A1 By then imply [CD| = (1/n)|C1D1].

578We will construct a generalized interval AP with |AP| = x in a way very similar to its measurement construction. In fact, we’ll just
make the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps

579 Again, the first index here refers to the step of the measurement construction.

5801n each case, such division is possible and unique due to Pr 1.3.5

2
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Continuing this process indefinitely (for all m € N), we conclude that either Img a,n,, = 2, and then, obviously,
Vm € N\ Ny, am = x; or Ym € Nz € (a;,by). In the first case we let, by definition, P = A,,,.

In the second case we define P to be the (unique) geometric object lying on all the generalized closed intervals
[AmBm], m € N. We can do this by the Cantor’s axiom Pr 1.4.2 because the closed generalized intervals [A,, 5]
form a nested sequence, where by L 1.4.2.1 the generalized interval A,,B,, can be made shorter than any given
generalized interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to
the generalized interval AP, we can write |AP| = z, as required. O

In the forthcoming treatment we shall assume that whenever we are given a line a, one of the two possible opposite
orders is chosen on it (see p. 22 fI.). Given such a line a with order < and a (non-empty) set A C P, of points on a,
we call a point B € a an upper bound (respectively, lower bound) of A iff A < B (B < A) for all A € A. An upper
bound By is called a least upper bound, or supremum, written sup.A (greatest lower bound, or infimum, written
infA) of Aiff By < B for any upper bound B of A. Thus, sup.A is the least element in the set of upper bounds
of A, and inf A is the greatest element in the set of lower bounds of A. Obviously, the second requirement in the
definition of least upper bound (namely, that By < B for any upper bound B of A) can be reformulated as follows:
For whatever point B’ € a preceding By (i.e. such that B’ < By) there is a point X succeeding B’ (i.e. with the
property that X = B’).

It is also convenient to assume, unless explicitly stated otherwise, that for an interval AB we have A < B. 38!
With this convention in mind, we can view the open interval (AB) as the set {X|4 < X < B} (see T 1.2.14). Also,
obviously, we have [AB) = {X|A < X < B}, (AB] = {X|A < X < B}, [AB] = {X|A <% X < B}. A ray O4 may
be viewed as the set of all such points X that O < X (or X > O, which is the same) if O < A, and as the set of all
such points X that X < O if A < O. Moreover, if X € O4 then either O < X < A or A < X. %82 These facts will
be extensively used in the succeeding exposition. 583

Theorem 1.4.16. If a non-empty set of points A on a line a has an upper bound (respectively, a lower bound), it
has a least upper bound (greatest lower bound). 534

Proof. ®® By hypothesis, there is a point B; € a such that A < By for all A € A. Without loss of generality we can
assume that A < B; for all A € A. 586

We shall refer to an interval XY as normal iff:

a) there is A € A such that A € [XY]; and b) for all B € a the relation B >~ Y implies B ¢ A. Observe that at
least one of the halves °87 of a normal interval is normal. >88

Take an arbitrary point A; € A. Then, evidently, the interval A; B; is normal. Denote by Ay Bs its normal half.
Continuing inductively this process of division of intervals into halves, we denote A, 41 Bp+1 a normal half of the
interval A,,B,,.

With the sequence of intervals thus constructed, there is a unique point C' lying on all the closed intervals [A4; B;],
i € N (see L 1.4.1.4, T 1.4.1). This can be written as {C'} = ﬁ [A;Bi].

=0

We will show that C' = sup . A. First, we need to show that C' is an upper bound of A. If C' were not an upper
bound of A, there would exist a point Ay € A such that C < Ag. But then Ag ¢ () [A;B;] = {C}, whence we would

=0
have Ing € N(A,, < C < B,, < Ap), i.e. the closed interval [A,,By,] cannot be normal - a contradiction. Thus, we
have VA € A(A < C). In order to establish that C' = sup A, we also need to prove that given any X; € P, with the
property X7 < C, there is a point A € A such that X; < A (see the discussion accompanying the definition of least
upper bound).

Observe that for any X; € P, with the property X; < C there is anumber n; € Nsuch that X; < A,, < C <X B,,.
Otherwise (if A, < X for all n € N) we would have X; € ﬂ [A;B;] = {C} = X3 = C, which contradicts X; < C.

But then in view of normality of [A,, By,] there is A € A such that A € [An, By, ], i.e. Ay, = A =< B,,. Together
with X1 < A,,, this gives X1 < A, whence the result. O

581That is, the point denoted by the letter written first in the notation of the interval precedes in the chosen order the point designated
by the letter written in the second position.

582This can be shown either referring to L 1.2.15.4, or directly using the facts presented above.

583 Basically, they mean that we can work with order on sets of points on a line just like we are accustomed to work with order on sets
of ”points” (numbers) on the "real line”.

584 The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding
results for real numbers in calculus.

585 The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.

5861y fact, if A < Bj for all A € A and B; € A, we would immediately have B € A, and the proof would be complete.

5871f D is the midpoint of the interval AB, the intervals AD, DB are (as sometimes are intervals congruent to them) referred to as the
halves of AB.

5881n fact, if A € [XY] and M = midXY’, then either A € [XM] or A € [MY] (see T 1.2.5). If A € [MY] then the second condition in
the definition of normal interval is unchanged, so that it holds for MY if it does for XY. If A ¢ [MY] then necessarily A € [XM]. In
this case the relation B > M (together with X < M <Y) implies that either M < B XY (which amounts to B € (MY]), or B > Y.
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Theorem 1.4.17 (Dedekind). Let A, B be two non-empty sets on a line a such that AU B = P,. Suppose, further,
that any element of the set A (strictly) precedes any element of the set B, i.e. (VA € A)(VB € B)(A < B). Then
either there is a point C such that all points of A precede C, or there is a point C' such that C precedes all points of
B.

In this case we say that the point C makes a Dedekind cut in P,. We can also say that A, B define a Dedekind
cut in P,.

Proof. Since A is not empty and has an upper bound, by the preceding theorem (T 1.4.16) it has the least upper
bound C' = sup A.

Observe that AN B = ). Otherwise we would have (by hypothesis) 4g € ANB = (4g € A)&B = Ay < Ay,
which is impossible.

Since AN B = 0, we have either C € A, or C € B, but not both. If C' € A then (VA € A)(A < C) because
C = sup A. Suppose now C € B. To show that (VB € B)(C < B) suppose the contrary, i.e. that there is By € B
such that By < C. Since C' = sup A, from the properties of least upper bound (see discussion following its definition)
it would then follow that there exists Ay € A such that By < Ag. But this would contradict the assumption that
any point of A precedes any point of B (see L 1.2.13.5). Thus, in the case C' € B we have C' < B for all B € B, which
completes the proof. O

Theorem 1.4.18. Let A, B be two non-empty sets on a line a with the property that any element of the set A
(strictly) precedes any element of the set B, i.e. (VA € A)(VB € B)(A < B). Then there is a point C such that
A=XC=<BforallAc A BeB.

Proof. Construct a Dedekind cut in P, defined by sets Ay, By such that Ay # 0, By # 0, AicupBy = P,, A C Aj,
B C By. To achieve this, we define By = {By € a|(3B € B)(B < By)} and A; = P, \ B;1. To show that B C B;
observe that for any point By € Bj thereis B = By € B, i.e. By € By. To show that ANB; = () suppose the contrary,
i.e. that there is a point Ag € AN B;. Then from the definition of By we would have (3By € B)(By < Ap). But this
contradicts the assumption (VA € A)(VB € B)(A < B). Thus, we have AN B; = 0, whence A C P, \ A1 = A;.

To demonstrate that any point of the set A; precedes any point of the set 31 suppose the contrary, i.e. that
there are Ay € Ay, By € By such that By < Ap. Then using the definition of the set B; we can write B < By =< Ay,
whence by the same definition Ay € B; = P, \ A; - a contradiction. Thus, we have P, = A; UB;, where A1 D A # 0,
B1 D B#0,and (VA, € A1)(VBy € B1)(A; < By), which implies that the sets define a Dedekind cut in P,. Now by
the preceding theorem (T 1.4.17) we can find a point C' € a such that (VA; € A;)(VB1 € B1)(A1 < C < By). But
then from the inclusions A C Ay, B C B; we conclude that (VA € A)(VB € B)(A < C < B), as required. O

Lemma 1.4.18.1. Given an arbitrary angle Z(h, k), a straight angle can be divided into congruent angles less than
Z(h, k).

Proof. (See Fig. 1.174.) Consider a right angle ZBOC, whose side O¢ is also one of the sides of a given straight
angle. Using L 1.2.21.1, A 1.3.1, we can choose points B, C so that OB = OC. Using C 1.3.25.1 (or T 1.3.22),
choose the point Aj such that the (abstract) interval OAg is a median of ABOC. That is, we have [BAyC] and
BAy = AgC. Then by T 1.3.24 OAq is also a bisector and an altitude. That is, we have ZBOAy = ZCOAq
and /BAyO, ZCAyO are right angles. We can assume that Z(h,k) < ZBOAg. 5% Then we can find A; €
(AoB) such that Z(h, k) = ZAgOA;. 5 Using L 1.3.21.11 and the Archimedes’ axiom (A 1.4.1), construct points
Ag,A3,...An_1,An such that [Ai—lAiAi—i-l] for all ¢ € Nn—lu A0A1 = A1A2 = -0 = An—lAnu and [AQBAn]
Using L 1.2.21.6, L 1.2.21.4, L. 1.3.16.4, we obtain LZApOB < LApOA,,. We construct further a sequence of rays
ho,hi,ha, ... hm, ... with origin at O inductively as follows: Denote hg = OAg, h1 = OA;. With hg, hy, ho, ..., hny
already constructed, we choose (using A 1.3.4) h,,+1 such that the rays hy,—1, hm41 lie on opposite sides of the ray
ho and Z(hpm—1, hm) = Z(hm, hims1). Then there is a number k € N such that hy_1 C IntZA¢OB, but the ray hy
either coincides with Op or lies inside the angle ZBOD), adjacent supplementary to the angle ZBOC. We will take
k to be the least number with this property,®®! should there be more than one such number. We need to prove that
there is at least such number. Suppose there are none and the rays h; lie inside the angle ZA¢OB for all i € N. By
construction (and T 1.3.1) the angles Z(h;hit1), @ € N, are all congruent to the angle Z(h, k) and thus are all acute.
Since the rays h;_1, hi; 1 lie on opposite sides of the line h; and the angles Z(h;_1,h;), Z(hi, hiy1) are congruent,
using C 1.3.18.12 we conclude that the ray h; lies inside the angle Z(h;_1,h;11) for all ¢ € N. By construction,
Z0OApA, is a right angle. This, together with the fact that AgA; = A1As =--- = A,_14,, and [A;_1A4;A4;14] for all
1 € Np_1, gives the following inequalities: ZA,0A,_1 < LA, 104,52 < ... < LA30A; < LA0A, < LA10A.

589Gince the angle BOAq is obtained by repeated congruent dichotomy (i.e. by repeated division into two congruent angles) of the
original straight angle (see T 1.3.52), in the case when ZBO Ay < Z(h, k) we have nothing more to prove. Likewise, for ZBOAg = Z(h, k)
we only need to divide ZBOA into two congruent parts once to get a division of our straight angle into congruent parts smaller than

Z(h,k). Thus, we can safely assume that Z(h,k) < ZBOAp, the only remaining option.

5901 fact, we have Z(h,k) < ZBOAq “'23%% 3h;hy C Int£ZAGOB& £(Oay,h1) = Z(h k) ""221° 34, A; € (A0B) Uhy. By

L 1.2.11.3 OA; = h;.

591That is, with the property that hy_; C IntZAoOB, but hy either coincides with Op or lies inside the angle ZBOD, adjacent
supplementary to the angle ZBOC'. In reality, there are infinitely many k’s satisfying these conditions, but the proof of this would be
too messy and pointless. For our purposes in this proof we can be content with knowing that there is at least one such k.
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C 0 D

Figure 1.174: Given an arbitrary angle Z(h, k), a straight angle can be divided into congruent angles less than Z(h, k).

592 Note also that by L 1.2.21.6, L 1.2.21.4 the ray O, lies inside the angle ZA; 1OA;,; for all i € N. Hence
by L 1.3.52.4 we have LAgOA, < Z(hg,hy,). On the other hand, by our assumption the rays h; lie inside the
angle ZAqOB for all i € N. In view of C 1.3.16.4 this implies Z(hg, h,) < ZLAoOB, which, together with the
inequality ZAgOB < AgOA,, gives Z(hg, hy) < LAgOA,,, which contradicts LZAgOA,, < Z(hg,hy) (see L 1.3.16.10).
Thus, we have shown that there is a positive integer k such that the ray hj does not lie inside the angle ZAyOB.
As we have already pointed out, we shall take as k the least number with this property. Then all the rays in
the sequence hi, ho,...,hg_1 lie inside the angle ZAyOB, but hjy does not. Obviously, the rays hg, hi,...,hg_1
lie on one side of the line apc. °°2 Furthermore, by L 1.2.22.11 these rays are in order [hoh1ha ... hg_1]. 594
This implies, in particular, that [hohg_2hg—1], or, equivalently, hx_2 C IntZ(hg, hx—1), which means, by definition,

that the rays hg, hx—o lie on the same side of the ray hiy_1. On the other hand, by hypothesis, the rays h,_o,

hy lie on opposite sides of the line h,_;. Hence hohp—_ohn—1& hp—_ohn_1hp L1.2.18.5 hohp—1hy. Since the angles

Z(ho,hn—1), Z(hn_1,hy) are both acute,”® by C 1.3.18.12 we can write h,_1 C IntZ(hg,hy,), or, in different

notation, [hgh,—1h,]. Taking into account that [hoh,—105] L1221 hohn—10g, we have hohn—1hn & hohn_1 L1.2.18.4

Ophnhn_1 122421 [Mn—1hnOB] V [hn—10pBhy,]. We have to exclude the first of these alternatives, for choosing it

would give: [hohp,—108] & [hy—1hnOB) L1.224.27 [hoh, Op], contrary to our assumption. Thus, we have [h,—10ph,],

whence [hohn—1hn] & [hn—105hn] " 227 [hoOphn] 22 ZA,OB < Z(hohy). Divide the angle ZA OB into 2"

congruent angles. The straight angle ZCOD then turns out to be divided into 2"*2 congruent angles. Since
272 > n and Z(ho,n,) < ZCOD, using C 1.3.52.10 we see that these angles are less than Z(h, k).

Corollary 1.4.18.2. Given an arbitrary angle Z(h,k), any other angle can be divided into congruent angles less
than Z(h, k).

Corollary 1.4.18.3. Given two (arbitrary) overextended angles (Z(h,k),p1), (£(l,m),p2), there is a natural number
n € N such that n(£(h,k),p1) > n(Z(,m),p2).

Theorem 1.4.19. Suppose Z(hi,k1), Z(ha, k), ..., Z(hn,kpn), ... is a nested sequence of angles with common vertex.
That is, the angles Z(h1,k1), Z(ha,ka), ..., Z(hn,kn), ... of the sequence all share the same vertex O and we have

592Observe that under our assumption that all rays h;, for i € N, lie inside the angle ZApOB, all these rays lie on the same side of the
line apc.

593The reader can refer to L 1.2.31.14 to convince himself of this.

594That is, h; lies inside Z(h;, hy) iff either i < j < k or k < j < i (see p. 65).

5951n fact, we have hp—1 C IntZAoOB, Ag C IntZCOB. This implies, respectively, Z(ho, hn—1) < £LAgOB, ZAoOB < ZCOB, which
together give (in view of transitivity of the relation <, demonstrated in L 1.3.16.8) Z(ho, hn—1) < LCOB. But ZCOB is a right angle,
so it follows that Z(ho, hn—1) is acute. O
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IntZ(hi, k1) UP s(hy ey D IntZL(ho, k2) UP s (hy ky) D - oo D It L(hny kn)UP o1y o) D - - - 596 Suppose, further, that

for whatever angle Z(h, k) (given in advance) there is a lesser angle in the sequence Z(hy, k1), Z(ha,ka), ..., Z(hn,kn),. ...

That is, given any Z(h,k) there is n € N such that Z(hy, kn) < Z(h,k). Then there is a ray I with origin O such
that for all the angles of the sequence £(hi,k1), Z(ha,ka), ..., L(hn,kn), ... the ray 1 either lies inside or coincides
with the side, i.e. Vn € N1 C IntZ(hy, ky).

Proof. (See Fig. 1.175.) Take points A; € hy, By € k1. Consider the rays ha, ko. 597 It is easy to show that they
necessarily meet the closed interval [A; Bi] in the points which we will denote As, Ba, respectively (see L 1.2.37.12,
L 1.2.21.10).

Of the two orders of points possible on the line a (see T 1.2.14) containing the points A;, By, we shall choose the
one where the point A; precedes the point B;. It is easy to show that the notation for the points Ay, As, ..., A,, ...
and By, Bs,..., By, ..., as well as, ultimately, for the rays hy, ha,..., hy,... and ki,ka, ..., ky,..., can then be
chosen in such a way that A; < As < A, < B, < By =< By for any n € N. Denote A = {A4;|i € N}, A = sup A;
B = {B;|i € N}, B=infB.

598

Since A # 0, B# (), and (VA € A)(VB € B)(A < B), from T 1.4.18 there is a point P such that (VA € A)(VB €
B)(A <X P < B). Then from the properties of the precedence relation (see T 1.2.14) it follows that the point P lies on
all the closed intervals [A;B;], i € N. This, in view of L 1.2.21.6, L. 1.2.21.4, L. 1.2.11.3 implies that for all i € N the
ray Op lies on all the closed angular intervals [h;, k;]. In other words, for all i € N the ray Op either lies completely
inside the angle Z(h;, k;), or coincides with one of the rays h;, k;. 5%° O

Theorem 1.4.20. We can put into correspondence with every extended angle Z(h,k) a unique real number |Z(h, k)|,
0 < |4(h,k)| > 7, referred to as its (numerical °®°) measure. Furthermore, for a straight angle Z(h,h¢) we have
|Z(h, k)| =7, and for any angle Z(h, k) which is not straight, we have 0 < |Z(h, k)| < 7.

Proof. We let b = 7 in the generalized treatment of measurement construction. The theorem then follows from
L 14181, T1419,Pr14.1,Pr1.4.2. O

Theorem 1.4.21. Congruent angles have equal measures.

Proof. O

Theorem 1.4.22. If an angle Z(R', k) is less than an extended angle Z(h,k) then |Z(R', k") < Z(h, k).
Proof. O

Corollary 1.4.22.1. If |[Z(h',K')| = |Z(h, k)| then Z(h' k') = Z(h,k). O

Corollary 1.4.22.2. If |Z(h',K')| < |Z(h, k)| then Z(h' k') < Z(h,k). O

Theorem 1.4.23. If a ray l lies inside an extended angle Z(h, k), the measure of Z(h, k) is the sum of the measures
of the angles Z(h,l), Z(h,k), i.e. |Z(h, k)| =1Z(h,1)|+|£(, k).

Proof. O

Corollary 1.4.23.1. If a class pZ(h,k) of extended angles is the sum of classes of congruent angles pZ(l,m),
ul(pv Q) (28 Zf /Lé(ha k) = ul(lam) + ,Ul(p, Q))) then fOT any angles L(hlvkl) € /Lé(ha k): L(llvml) € ul(lam);
Z(p1,q1) € pl(p,q) we have |Z(hy, k)| = [£(l1,m1)| + [£(p1,q1)]-

5961t would be more precise to call Z(h1,k1), Z(ha,k2),..., Z(hn,kn),... a nested sequence of set-theoretical complements of angle
exteriors. We, however, prefer shorter, albeit somewhat misleading, description.

597Note that we do not assume ha, ko to be distinct from hy, ki, although we still need to assume that h; # k; for all ¢« € N for the
corresponding angles to exist.

598 Without T 1.4.18 this theorem can be proved by the following lengthy argument. While being absolutely redundant (it can be
replaced by a mere reference to T 1.4.18 and thus rendered useless) and having substantial overlaps with the proofs of T 1.4.17, T 1.4.18,
it might still help to clarify some points. Observe that any of the points Bi, Ba,...,Bn,... may serve as an upper bound for the set
A = {A;]i € N}. Similarly, any of the points A1, Aa,..., Ayn,... may serve as a lower bound for the set B = {B;|i € N}. Evidently,
A =X B. To show that actually A = B suppose the contrary, i.e. A < B. Taking two (distinct) points C', D on the open interval (AB) (see
C 1.2.8.2), we see that the angle ZCOD is then less than any angle of the sequence Z(h1,k1), Z(h2,k2),..., Z(hn,kn),... (by L 1.2.21.6,
L 1.2.21.4, C 1.3.16.4), contrary to hypothesis. Taking an arbitrary interval, construct an interval EF congruent to it, such that the
points E, F' lie on a, and the point A = B lies between them. This can be done as follows: Choose E € A4, so that A is shorter than
the given interval (see comment following L 1.3.13.3). Then choose F € E4 such that EF is congruent to the given interval. Evidently,
we have [EAF] (see L 1.3.13.3, T 1.3.2). Since E < A < F (recall that if A; < A in the chosen order, as it is in our case, the ray A4,
is the collection of points preceding A), A = sup{A4;|i € N} = B = inf{B;|i € N}, from the definitions of least upper bound and greatest
lower bound we conclude that there are points G € A, H € B such that E < G X A=B <X H < F. Since E < G < F = [EGF],
E < H<F = [EHF] (see T 1.2.14), in view of L 1.3.13.3 we have GH < EF. Thus, for any given interval we can find a shorter one in
the sequence A;B;, i € N. Hence by Cantor’s axiom there is a point P lying on all the closed intervals [A;B;], ¢ € N. But, obviously, so
does also A = B. Since, in view of L. 1.4.1.4, there is exactly one point with this property, we have P = A = B.

599Using L 1.3.16.4 it can be seen independently that the ray Op with this property is unique, for if there were another such ray Oq,
the (fixed) angle ZPOQ would be less than any angle Z(h;, k;), ¢ € N.

6001y contract to an ”abstract measure” which can be defined as a class of equivalence of congruent extended angles.
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Proof. See T 1.4.21, T 1.4.23. O

Corollary 1.4.23.2. If a class pZ(h,k) of congruent extended is the sum of classes of congruent angles
pZ(hy k), pZ(he, ka), ... pl(hnkn) (ie. if pZ(h k) = pZ(hiky) + ps(hoks) + -+ + pZ(hnkn)), then for any
angles Z(l,m) € pZ(h,k), Z(li,m1) € pZ(hi, k1), Z(l2,me) € pl(ha, k2),...,ZL(ln,mn) € pZ(hnky) we have
[Z(T,m)| = |Z(11, m1)|+|L(lam2) |+ -+ |ZL(ln, my)|. In particular, if uZ(h, k) = nuZ(hi, k1) and Z(l,m) € uZ(h, k),
Z(ly,m1) € uZ(ha, k1), then |£(l,m)] = n|Z£(l1,mq)|. 5

Theorem 1.4.24. For any real number x such that 0 < x > 7 there is an angle Z(h, k) (and, in fact, an infinity of
angles congruent to it) whose measure equals x, i.e. |Z(h, k)| = .

The concept of angular measure can be extended to overextended %2 angles. Denote |(Z(h, k),n)| = |Z(h, k)|+7n.
We see that

Theorem 1.4.25. We can put into correspondence with every overeztended angle (Z(h,k),n), n € N°, a unique real
number |(£(h, k)| > 0, referred to as its (numerical ®*3) measure.

Theorem 1.4.26. The abstract sum of angles of a triangle never exceeds a straight angle. That is, for any triangle
ANABC we have E(KZS;LC = u(£/BAC,0) + u(£ABC,0) + n(ZACB,0) < qlabs.at)

Proof. Suppose the contrary, i.e. that there is a triangle A A’ B’C” such that E(Aaff,)g,c, > (@528 Without any loss of
generality we can assume that Z(Aaif,)ff,c, = (L(W,K'),1), where Z(h', k") is some non-straight angle. (See C 1.3.63.9.)

Using P 1.3.67.8 repeatedly, we can construct a triangle AABC with E(Aaffgéc = E(AGZS/)];,C, = (L(W,K'),1), one of

whose angles ZA is less than Z(h/,k’). In view of C 1.3.63.9 the (abstract) sum of the remaining two angles /B, ZC
of the triangle AABC is less than 7(?***Y) Hence E(Aafgé = (£LA,0)+ (£B,0)+(£C,0) < (Z(h', k), 0) +xlabsot) =

§4(h’, k'), 1) :1 EA%I;:/)]%C/ = E(Aaf:;é - a contradiction which shows that in fact we always have E(Aags;zc < qlabs,zt)
or any triangle BC. O

Corollary 1.4.26.1. The (abstract) sum of any two angles of a triangle is no greater than the angle, adjacent
complementary to the third angle of the same triangle. That is, in any ANABC we have un/A+ u/B < p(adjsp£C).

Proof. Using the preceding theorem (T 1.4.26), we can write uZA + u/B + p/C < 7l = 1/C + p(adjspZC).
Hence the result follows by P 1.3.63.3, P 1.3.63.5. O

Proposition 1.4.26.2. Given a cevian BD in a triangle NABC' such that D € (AC), if the abstract sum of angles
in the triangle NABC' equals 7@ the abstract sums of angles in the triangles NABD, ACBD are also both
equal to w(@bst)

Proof. We know that E(A“ZS])S% +E(A"§’)S)BLC = E(Aaf’:éé_i_w(abs,wt) (see proof of P 1.3.67.9). Also, by hypothesis, Z(Aaf’:])gé =

Since, from T 1.4.26, we also have E(Aaf])gfj < plabs,zt) Z(Aa%%% < wlabs:2t) we conclude that E(A'IZS;LD =

755})340 = qr(abs.2t) o1 otherwise we would have EXT)BLD + E(Aalg])g% < E(Aaf’:gé + mlabs,zt) O

7.‘.(abs,:ct)

7.‘_(abs,wt), E(Aa

Corollary 1.4.26.3. Given a AABC with the abstract sum of angles equal to 7%V | for any points X € (AB],
Y € (AC), the abstract sum of angles of the triangle AAXY also equals w(@b=t)

Proof. Follows immediately from the preceding proposition (P 1.4.26.2). O

Lemma 1.4.26.4. Suppose that there is a right triangle ANABC whose abstract sum of angles equals w(@***%) . Then
every right triangle has abstract sum of angles equal to mw(@s=),

Proof. Consider an arbitrary right triangle AA’B’C’. Using A 1.3.1 choose points B” € Ag, C"” € Ac such that
A'B' = AB", A/C' = AC”. Now choose By such that [ABB;] and AB = BB;. Continuing this process, we
can construct inductively a sequence of points By, Ba, ..., By,,... on the ray Ap as follows: choose B,, such that
[AB,,—1By] and AB,,_1 = B,,_1B,. Evidently, for the construction formed in this way we have uAB, 1 = 2uAB,
for all n € N, where the points A, B, By, Ba, ..., Bp,... are in order [ABB1Bs...B,, ...] (see also L. 1.3.21.11). Since
pAB,, = 2"uAB for all n € N, Archimedes’ axiom (A 1.4.1) guarantees that there is | € N such that [AB” B;]. 69
Similarly, we can choose C; such that [ACC,] and AC = CC;. Then we go on to construct inductively a sequence of
points C1,Cy,...,C,, ... on the ray Ac as follows: choose C,, such that [AC,,_1C,] and AC,_; = C,,_1C,,. Again,
we have pAC, 11 = 2pAC, for all n € N, where the points A, C,C,Cs,...,C,, ... are in order [ACC1Cs...C,, .. ]
(see also L 1.3.21.11). Since pAC,, = 2"uAC for all n € N, Archimedes’ axiom (A 1.4.1) again ensures that there
is m € N such that [AC”C,,]. Consider the triangle AAB;C,,. From the way its sides AB;, AC,, were constructed

601 Obviously, uZ(h, k) = (1/n)us(h1,k1) and Z(I,m) € us(h, k), Z(l1,m1) € pZ(h1,k1) then imply |Z(I,m)| = (1/n)|£(l1, m1)|.

602No pun intended.

6031y contract to an ”abstract measure” which can be defined as a class of equivalence of congruent overextended angles.

604 Basically, Archimedes’ axiom and its immediate corollaries assert that for any two intervals AB, CD there is always a positive integer
n such that pAB < nuCD. Then, of course, pAB < 2" uCD.
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using P 1.3.67.10 we have E(A“ZSJ)SZACM = rlabs2t) Since B, € (AB"], Cp, € (AC"], in view of the preceding corollary

(C 1.4.26.3) we conclude that the abstract sum of angles of the triangle AAB"”C", as well as the abstract sum of the
triangle AA’B’C’ congruent to AAB”C" by T 1.3.4, is equal to 7(e0s*t) O

Corollary 1.4.26.5. Any birectangle has at least one acute angle.
Proof. See T 1.4.26, T 1.3.67, T 1.3.68. O

Theorem 1.4.27. Suppose that there is a triangle NABC whose abstract sum of angles equals w(**5*Y) . Then every
triangle has abstract sum of angles equal to m(@bs*t)

Proof. We can assume without loss of generality that the angle ZA is acute. %5 Then by P 1.3.24.2 the foot D of
the altitude BD in AABC lies between A, C. Consider also an arbitrary triangle A’B’C’ with the altitude B’D’
such that D’ € (AC). From P 1.4.26.2 the abstract sum of angles of the right triangle AABD is 7(?***%), But then,
by the preceding lemma (L 1.4.26.4) every right triangle has the same abstract sum of angles, and this applies, in

particular, to the right triangles AA’B'D’, AC'B’D’. Hence from P 1.3.67.9 Z(Aaif,)g,c, = qlabs.2t) " aq required. O

abs,xt)

Theorem 1.4.28. Suppose every triangle has abstract sum of angles equal to Then for any line a and any

point A not on it, in the plane aqa there is exactly one line a’ through A parallel to a.

Proof. Consider a line a and a point A not on it. Denote by B the foot of the perpendicular to a drawn through A
(see L 1.3.8.1). Draw through A the line o' perpendicular to aap (see L 1.3.8.3). By C 1.3.26.2 the lines a, a’ are
parallel. We need to show that any line other than a’, drawn through A, meets a in some point. Denote by h the ray
with initial point A lying on such a line b # a’. We can assume without loss of generality that the ray h lies inside
the angle ZBAA,, where A; € a/. %% Construct now a sequence of points By, Bs, ..., B,,... as follows: Choose
a point B so that Ay, Bj lie on the same side of the line ayp and AB = BB;. Then choose a point Bs so that
[BB1Bs] and BB, = By Bs. At the n'*, where n € N, step of the construction we choose B,, so that [B,,_2B,,_1B,],
and AB,,_1 = B,,_1B,,. Hence from T 1.3.3 we have ZBAB, = /BB A, /B1ABys = /B1BsA,ldots, /B, _1AB, =
/Bn_1BpA,ldots. According to hypothesis, all the triangles involved have the same abstract sum of angles equal
to 7(as:#t)  This fact will be used throughout the proof. Since, from construction, ZABB; is a right angle, in view
of /BAB, = /BBy A we have u/BABy = u/BB,A = (1/4)7T(“b5). Observe also the following interesting fact:
since Ap, C IntZBAA; %7 we have u/BAB; + u/B1AA; = pZBAA,. In view of u/BAA; = (1/2)7(@bs)
we obtain u/B;AA; = (1/4)7(®). Since u/ABB = u/BiABy + u/AByB; (in view of P 1.3.67.11) and
u/ABB = (1/4)7(%%) | we have u/BiABy = n/AByBy = (1/8)m(99). Tt is easy to see that Ap, C BjAA; (see
below), and thus u/ByAA; = /By ABy + /Ay ABy. Since u/ByAA; = (1/4)7(%) and p/ By ABy = (1/8)r(abs)]
this implies u/BsAA, = (1/8)7r(“bs). Continuing inductively, suppose that u/B, 2AB,_1 = u/B,_1AA; =
(1/2™)m(@b) . Observe that by L 1.2.21.31 the rays Ap, Ap,, Ap,, ..., Ap, Aa, are in order [ApAp, Ap, ... Ap, Aa,].
Since ZBn,QABn,1 = ZAanan727 AanlABn = AABanfl, ILLZBn,QanlA = ,U,anflABn + IU,AABan,h
/B, 1AA| = u/B, 1AB, + n/B,AA;, we find that u/B,AA; = p/B,_1AB, = (1/2"t1)7(®%) We see that
with increasing number n the angle /B, AA; can be made smaller than any given angle. In particular, it can be
made smaller than the angle ZDAA;. Hence the ray Ap, lies inside the angle ZDAA; (see C 1.3.16.4). In view of
L 1.2.21.27 this amounts to the ray Ap lying inside the angle ZBAB,,. Hence by L 1.2.21.27 the ray Ap meets the
open interval (BB,,) and thus the line a containing it. O

Theorem 1.4.29. Given an interval EF and a non-acute (that is, either right or obtuse) angle Z(h, k) with a point
A € k, there is a unique point B € h on its other side, such that AB = EF.

Proof. Of the two possible orders on h we take the one in which the vertex O of Z(h,k) precedes any point of the
ray h. It is easy to see that the sets A = h¢ U{O}U{P|P € h& (AP < EFV AP = EF)} and B = {P|AP > F}
define a Dedekind cut in the set of points of the line h (use C 1.3.18.4). Denote by B the point which makes this cut
(see T 1.3.17). We have either AB < EF, or AB > EF, or AB = EF. Suppose first AB < EF. Taking a point C
such that [OBC] (or, equivalently, B < C), BC € uEF — pAB, and using the triangle inequality (P 1.3.40.9) we can
write pAC < uAB + uBC = pAB + (uEF — nAB) = uEF (see also P 1.3.40.7), whence C' € A and C < B (for B
makes the cut), in contradiction to our choice of the point C. Suppose now AB > EF. Taking a point D such that
[ODB] and BD € uAB — uEF, we can write uAD > uAB — uBD = uAB — (uAB — uEF) = uEF (see P 1.3.40.8,
P 1.3.40.9)), whence D € B and B < D, in contradiction to our choice of the point D. Thus, the contradictions we
have arrived to show that AB = EF, as required. O

6051y fact, in any triangle at least two angles are acute.

606We choose h to be that ray with the initial point A which lies on the same side of a’ as the point B (see, in particular, L 1.2.19.8).
Then we take a point A; € a’ such that this point and the ray h lie on the same side of the line a4 g. Evidently, with h and A; so chosen,
we have h C IntZBAA;.

607Note that the points A1, Bi, and thus the rays Ax,, Ap, lie on the same side of the line ayp by construction. The points B, B,
and, consequently, the rays Ap, Ap, lie on the same side of the line a. Hence A, C IntZBAA;, as stated.
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We are now ready to extend our knowledge of continuity properties on a line to sets with generalized betweenness
relation.

Consider a class C9"" of sets J with generalized betweenness relation. We assume that the sets J, whose elements
are pairs AB = {A, B} of geometric objects satisfying Pr 1.3.1 — Pr 1.3.5, are equipped with a relation of generalized
congruence (see p. 46). We assume further that the generalized abstract intervals involved (elements of the set J)
have the properties Pr 1.4.1, Pr 1.4.2.

It is also understood that on every set J € C9" one of the two possible opposite orders is chosen (see p. 54 ff.).
Given such a set J with order < and a (non-empty) set 2 C J, we call a geometric object B € J an upper bound
(respectively, lower bound) of 2 iff A X B (B < A) for all A € 2. An upper bound By is called a least upper bound,
or supremum, written sup 2 (greatest lower bound, or infimum, written inf2) of 2 iff By < B for any upper bound
B of /. Thus, sup 2 is the least element in the set of upper bounds of 2, and inf 2 is the greatest element in the set
of lower bounds of A. Obviously, the second requirement in the definition of least upper bound (namely, that By < B
for any upper bound B of ) can be reformulated as follows: For whatever geometric object B’ € J preceding By (i.e.
such that B’ < By) there is a geometric object X succeeding B’ (i.e. with the property that X' > B’).

It is also convenient to assume, unless explicitly stated otherwise, that for a generalized interval AB we have
A < B. 5% With this convention in mind, we can view the open generalized interval (AB) as the set {X|A < X < B}
(see T 1.2.28). Also, obviously, we have [AB) = {X|A < X < B}, (AB] = {X|A < X <X B}, [AB] = {X|A < X < B}
A generalized ray O 4 may be viewed as the set of all such geometric objects X that O < X (or X = O, which is the
same) if O < A, and as the set of all such geometric objects X that X < O if A < O. Moreover, if X € O4 then
either O < X < Aor A < X. 999 These facts will be extensively used in the succeeding exposition. 619

Theorem 1.4.30. If a non-empty set of geometric objects 2 on a set J has an upper bound (respectively, a lower
bound), it has a least upper bound (greatest lower bound). 11

Proof. 612

By hypothesis, there is a geometric object B; € J such that A < By for all A € 2. Without loss of generality we
can assume that A < By for all A € 2. 613

We shall refer to a generalized interval XY as normal iff:

a) there is A € A such that A € [X))]; and b) for all B € J the relation B >~ Y implies B ¢ . Observe that at
least one of the halves %1% of a normal generalized interval is normal. 6%

Take an arbitrary geometric object A; € . Then, evidently, the generalized interval mathcal A1B; is normal.
Denote by AsBs its normal half. Continuing inductively this process of division of generalized intervals into halves,
we denote A, 15,41 a normal half of the generalized interval A,B,. With the sequence of generalized intervals
thus constructed, there is a unique geometric object C lying on all the generalized closed intervals [A;B;], i € N (see

L 1.4.11.1, T 1.4.11). This can be written as {C} = () [A:Bi].
=0

We will show that C = sup®. First, we need to show that C is an upper bound of . If C were not an upper
bound of 2, there would exist a geometric object Ay € 2 such that C < Ag. But then A ¢ () [A:B;] = {C}, whence

=0
we would have Ing € N(A,, < C < B,, < Ap), i.e. the closed generalized interval [A,,B,,] cannot be normal - a
contradiction. Thus, we have VA € A(A < C). In order to establish that C = sup®, we also need to prove that
given any X7 € J with the property X7 < C, there is a geometric object A € 2 such that A7 < A (see the discussion
accompanying the definition of least upper bound).
Observe that for any A} € J with the property X; < C there is a number n; € N such that X} < A,, XC X B,,.

Otherwise (if A,, < X3 for all n € N) we would have X; € ﬂ [A;B;] = {C} = X1 = C, which contradicts X; < C.
But then in view of normality of [A,, B,,] there is A € 2 such that A € [A,,B,,], i.e. Ay, = A= B,,. Together
with X1 < A,,, this gives &} < A, whence the result. O

Theorem 1.4.31 (Dedekind). Let 2, B be two non-empty subsets of J such that AUB = 3. Suppose, further, that
any element of the set J (strictly) precedes any element of the set B, i.e. (VA € A)(VB € B)(A < B). Then either

608 That is, the geometric object denoted by the letter written first in the notation of the generalized interval precedes in the chosen
order the point designated by the letter written in the second position.

609This can be shown either referring to L 1.2.29.4, or directly using the facts presented above.

610 Basically, they mean that we can work with order on sets of geometric objects in a set with generalized betweenness relation just like
we are accustomed to work with order on sets of ”points” (numbers) on the ”real line”.

611The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding
results for real numbers in calculus.

612The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.

613In fact, in the case where A < B for all A € 2 we would immediately have B; = sup 2, and the proof would be complete.

6141f D is the midpoint of the generalized interval AB, the generalized intervals AD, DB are (as sometimes are generalized intervals
congruent to them) referred to as the halves of AB.

6151 fact, if A € [mathcalXY] and M = midX'Y, then either A € [XM] or A € [mathcal MY] (see L 1.2.22.8). If A € [MD] then the
second condition in the definition of normal generalized interval is unchanged, so that it holds for MY if it does for XY. If A ¢ [MY]
then necessarily A € [XM]. In this case the relation B > M (together with X < M < Y ) implies that either M < B < Y (which
amounts to B € (MY)]), or B > ).
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there is a geometric object C such that all geometric objects in A precede C, or there is a geometric object C such that
C precedes all geometric objects in B.

In this case we say that the geometric object C makes a Dedekind cut in J. We can also say that A, B define a
Dedekind cut in J.

Proof. Since 2 is not empty and has an upper bound, by the preceding theorem (T ?7?) it has the least upper bound
C = sup.

Observe that AN B = (). Otherwise we would have (by hypothesis) Ay € ANB = (A € A) &B = Ay < Ao,
which is impossible.

Since AN B = @, we have either C € A, or C € B, but not both. If C € A then (VA € A)(A < C) because
C = sup . Suppose now C € B. To show that (VB € B)(C < B) suppose the contrary, i.e. that there is By € B such
that By < C. Since C = sup %, from the properties of least upper bound (see discussion following its definition) it
would then follow that there exists Ag € 24 such that By < Ap. But this would contradict the assumption that any
geometric object of 2 precedes any geometric object of B (see L 1.2.27.5). Thus, in the case C € B we have C < B
for all B € 9B, which completes the proof. O

Theorem 1.4.32. Let A, B be two non-empty sets in the set J with the property that any element of the set A
(strictly) precedes any element of the set B, i.e. (VA € A)(VB € B)(A < B). Then there is a geometric object C
such that A <C =< B for all A € A, B € B.

Proof. Construct a Dedekind cut in J defined by sets 201, B1 such that A; # 0, By # 0, AjcupB; = J, A C Ay,
B C B;. To achieve this, we define B; = {B; € J|(IB € B)(B < B1)} and A, = J\ B1. To show that B C B,
observe that for any geometric object By € 9B there is B = By € 9B, i.e. By € B1. To show that AN B, = () suppose
the contrary, i.e. that there is a geometric object Ay € AN B;. Then from the definition of B; we would have
(3By € B)(By = Ap). But this contradicts the assumption (V.A € A)(VB € B)(A < B). Thus, we have AN By = 0,
whence A C 3\ 2 =2;.

To demonstrate that any geometric object of the set 2(; precedes any geometric object of the set B; suppose
the contrary, i.e. that there are Ag € 21, By € B1 such that By < Ag. Then using the definition of the set B,
we can write B < By < Ag, whence by the same definition Ay € B1 = J \ A - a contradiction. Thus, we have
J=22,UDBy, where 2y DA # 0, By DB # 0, and (VA € A1)(VB1 € B1)(A; < By), which implies that the
sets define a Dedekind cut in J. Now by the preceding theorem (T 1.4.31) we can find a geometric object C € J
such that (VA; € 2,)(VB; € B1)(A; =X C < B;). But then from the inclusions 2% C 21, B C B; we conclude that
(VA € )(VB € B)(A = C < B), as required. O
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Chapter 2

Elementary Euclidean Geometry

2.1

Axiom 2.1.1. There is at least one line a and at least one point A such that in the plane aqa defined by a and A,
no more than one parallel to a goes through A. !

Theorem 2.1.1. Given a line a and a point A not on it, no more than one parallel to a goes through A.

Proof. (See Fig. 2.1.) By A 2.1.1 there is a line a and a point A such that in the plane a,4 defined by a and A, no
more than one parallel to a goes through A. Denote this unique parallel by b (it exists by C ??). Choose points B, C,
E, F so that B,C € a, E €b,asap L a (L 1.3.8.1), [BCF] (A 1.2.2). With this choice, we can assume without loss
of generality that Agp C IntZEAC. Tt can be shown that /FAC = ZACF, /EAB = /ABC. % Observe that the
second of these congruences implies that ZEAB is a right angle because ZABC'is (see L 1.3.8.2). Now we can write
1ZBAC+ pu/ABC 4/ ACB = n/BAC + u/EAB+ u/ACB = p/EAC + u/ACB = n/ACF 4+ n/ACB = 7(ab9),
Thus, there exists at least one triangle whose abstract sum of angles equals 7(#%#Y)  Therefore, from T 1.4.27 every
triangle has abstract sum of angles equal to w(%**#!) Hence by T 1.4.28 follows the present theorem. O

Proposition 2.1.1.1. Proof. In Euclidean geometry every triangle has abstract sum of the angles equal to 7(40s#t)
Correspondingly, the sum of numerical measures of angles in every triangle in Euclidean geometry equals 7. O

Corollary 2.1.1.2. In Euclidean geometry the (abstract) sum of the angles of any convex polygon with n > 3 sides
is (n — 2)w(@2t) - Correspondingly, the sum of numerical measures of the angles of any convex polygon with n > 3
sides is (n— 2)w. In particular, the (abstract) sum of the angles of any convex quadrilateral is 2r(abs:2t) and the sum
of numerical measures of the angles of any convexr quadrilateral is (n — 2)m.

Proof. O

Corollary 2.1.1.3. In Euclidean geometry any Saccheri quadrilateral is a rectangle.

Proof. O

Corollary 2.1.1.4. In FEuclidean geometry any Lambert quadrilateral is a rectangle.

Proof. O

Theorem 2.1.2. Ifa | b and c || b, where b # ¢ and then a || ¢. Since the relation of parallelism is symmetric, we
can immediately reformulate this result as follows: If a || b, b || ¢, and a # ¢, then a || c.

Proof. Suppose 3C' C € anc. Then by T 2.1.1 a = ¢, contrary to hypothesis. O

Theorem 2.1.3. If points B, D lie on the same side of a line aac, the point C lies between A and a point E, and
the line aap is parallel to the line acp, then the angles /BAC, /DCE are congruent.

IWithout continuity considerations, we would have to formulate this axiom in the following stronger form: There is at least one plane
«a containing at least one line a such that if A is any point in « not on a, no more than one parallel to a goes through A.

2This follows from C 1.3.26.3 and the fact that we have chosen the line a and the point A according to A 2.1.1 (so that at most one
parallel to a can be drawn through A in ag4). Observe that since the notation for the points B, C was chosen so that the ray Ap lies
inside the angle ZEAC, by definition of anterior of angle the rays A, Ap lie on the same side of the line ag¢c. In conjunction with
[BCF] this implies that the points E, F lie on opposite sides of the line aac. Also (in view of C 1.2.21.11), the points E, C lie on
opposite sides of the line aap. Then the remaining arguments needed to establish the congruences LEAC = LACF, ZEAB = ZABC
essentially replicate those that used to prove C 2.1.4.4.
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Figure 2.1: If points B, D lie on the same side of as¢, the point C lies between A and F, and aap is parallel to
acp, then /BAC, Z/DCFE are congruent.

Figure 2.2: If points B, D lie on the same side of as¢, the point C lies between A and F, and aap is parallel to
acp, then /BAC, Z/DCFE are congruent.

Proof. (See Fig. 2.2.) Using A 1.3.4, construct Cp such that the rays A, Cr lie on the same side of the line as¢

and /ZBAC = /FCE. Then by T 1.3.26 we have asp || acr. But aap || acp & aap || acr 241 acp = acr. Also,
using L 1.2.18.2, we can write AgCpasc & ApCrasc = CpCraac. In view of L 1.2.19.15, L. 1.2.11.3 this implies
Cr = Cp. Thus, we have /ZBAC = /DCE, as required. O

Theorem 2.1.4. If points B, D lie on the same side of a line aac, the point C lies between A and a point E, and
/DCE < Z/BAC, then the rays Ba, D¢ concur.

Proof. (See Fig. 2.3.) The lines aap, acp are not parallel, for otherwise by the preceding theorem (T 2.1.3) we
would have ZBAC = ZDCE, which contradicts ZDCE < ZBAC in view of L. 1.3.16.11. Thus, 3F F € aag Nacp.

Suppose F' € Ag. Then by L 1.2.19.8 B, F lie on one side of a4c. Also, obviously, BFaac & BDaac = DFaac.

By L 1.2.19.15 we have F' € Cp. Taking into account that FF € Agp N Cp 241 Ap = Ap & Cr = Cp and using

T 1.3.17, we can write: ZBAC = /FAC < /ZFCE = Z/DCE, which contradicts the inequality /DCFE < ZBAC in
view of L 1.3.16.10. The contradiction shows that in fact F' € (Ap)®. Then from L 1.2.15.4 we have (Ap)® C Ba.
Hence F' € B4. O

Corollary 2.1.4.1. If a line b is perpendicular to a line a but parallel to a line c, then the lines a, ¢ are perpendicular.

Proof. (See Fig. 2.4.) Obviously, we can reformulate this corollary as follows: If aap L aac and aap || acp then
acp L aac. Choosing appropriate points A, B, C, D, E so that b=aap L aac = a, aap || acp, and, in addition,
[ACE] (A 1.2.2)and B, D lie on the same side of the line agp. Then from T 2.1.3 have /BAC = ZDCE, which
implies a L ¢. O

Corollary 2.1.4.2. Suppose a line c is perpendicular to a line b but parallel to a line a. Suppose further that the
line a is also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are
parallel.

Proof. a || cheb LS q 1, alb&al d&b#d&3albCaldC a) Clgﬁ'QbH d. O

Corollary 2.1.4.3. If points B, D lie on the same side of a line aac and aap || acp, then the angles ZBAC,
/DCA are supplementary.
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Figure 2.3: If points B, D lie on the same side of a line aac, the point C lies between A and a point E, and
/DCE < /BAC, then the rays B, D¢ concur.

Figure 2.4: Suppose a line ¢ is perpendicular to a line b but parallel to a line a. Suppose further that the line a is
also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are parallel.
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Figure 2.5: Suppose that points O, A, B, as well as O, A’, B’ colline, and the line a4 4+ is collinear to the line app:.
Then ZOAA' = ZOBB'.

Proof. Taking a point E so that [ACE] (A 1.2.2), we have ZBAC = ZDCE by T 2.1.3. Since [ACE] implies that the
angles /DCA, Z/DCE are adjacent supplementary, we conclude that the angles /BAC, ZDC A are supplementary.
O

Corollary 2.1.4.4. If points B, F lie on opposite sides of a line aac and aap || acp, then the angles ZBAC,
LFCA are congruent.

Proof. Taking points E, D such that [ACE], [FC D], we have /BAC = /DCE by T 2.1.3. 3 But /DCE = /ACF
by T 1.3.7, whence the result. O

Proposition 2.1.4.5. Suppose that points O, A, B, as well as O, A’, B" colline, and the line asa is collinear to
the line app'. Then ZOAA' = ZOBB’.

Proof. Obviously, the points O, A, B, A’, B’ are all distinct. (Note that asa/ || app = aaaNapp = 0.) By T 1.2.2
we have either [OAB], or [OBA], or [AOB]. Suppose [OAB] (see Fig. 2.5, a)). * Then [OA’B’] by T 1.2.44. Hence
A’, B’ are on the same side of the line a4p (see L 1.2.19.9). Then, using T 2.1.4, we conclude that ZOAA’ = Z/OBB’.
Suppose now that [AOB] (see Fig. 2.5, b)). Then [A’OB’] by T 1.2.45. This, in turn, implies that the points A’, B’
are on opposite sides of the line a4p. Then Z/BAA' = ZABB’, whence the result. ° O

Theorem 2.1.5. In a parallelogram ABCD we have AB =CD, BC = DA, ZABC = Z/ADC, /BAD = /BCD.

Proof. By C 1.2.47.3 the ray Ac¢ lies inside the angle ZBAD and the points B, D lie on opposite sides of the line

aac. Since aap || acp, C 2.1.4.4 gives ZBAC = /DCA. Similarly,® Cy C Int/BCD and /BCA = /DAC. Now

we can write /BAC = /DCA& /DAC = /BCA& Ac C Int/BAD & C4 C Int/BCD 2% /BAD = /BCD.

Furthermore, since also ZADB = /CBD 7, we have BD = BD& /ADB = /CBD & /DAB = /BCD "222°

ADBA=ABDC = AD=BC&AB=CD. O

Theorem 2.1.6. In a parallelogram ABCD the open intervals (AC), (BD) concur in the common midpoint X of
the diagonals AC, BD.

Proof. The open intervals (AC), (BD) concur by L 1.2.47.2. We also have /BCA = ZDAC, ZCBD = ZADB (see

proof of the preceding theorem (T 1.2.5)). But [AXC] "'23'° Ay = Ac & Cx = Cy = /DAX = /DAC & /BCX =

/BCA, [BXD) "'22"* By = Bp& Dx = Dy = /CBX = /CBD & /ADX = /ADB. Hence /BCX = /DAX,

/ZCBX = ZADX. Taking into account that BC' = DA from the preceding theorem (T 2.1.5), from T 1.3.5 we
obtain ACXB = AAXD, whence AX =CX,BX=DX. 83O

3Note that [FCD] = FaacD, BaacF & FaacD "' 23" BDaac.

4Since the pairs of points A, A’ and B, B’ enter the conditions of the proposition symmetrically, and, as is shown further, [OAB]
implies [OA’B’], we do not need to consider the case when [OBA] separately. Alternatively, the result for this case can be immediately
obtained by substituting A in place of B and B in place of A.

50f course, we also need to make the trivial observation that /BAA' = ZOAA', ZABB' = ZOBB’ in view of L 1.2.11.3.

6By symmetry. Observe that the assumptions of the theorem remain valid upon the substitution B « D.

7Again, this can be established using arguments completely analogous to those employed above to show that ZBAC = ZDCA,
/BCA = ZDAC (symmetry again!)

8 Alternatively, we could note that ZCXB = ZAXD by T 1.3.7 and use T 1.3.20.
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Figure 2.6: In a parallelogram ABCD the open intervals (AC), (BD) concur in the common midpoint X of the
diagonals AC, BD.

Theorem 2.1.7. Suppose in a trapezoid ABCD with aap || acp the vertices B, C lie on the same side of the line
aap. Then ABCD is a parallelogram.

Proof. By C 1.2.47.4 the open intervals (AC), (BD) concur and ABCD is a simple quadrilateral. In particular,
the points A, C lie on opposite sides of the line agp, whence in view of aap || acp we have ZBAD = Z/CDB
by C 2.1.4.4. Since also AB = CD, BD = DB, from T 1.3.4 (SAS) we conclude that AABD = ACDB, which
implies AD = BC. Finally, AB = CD, AD = BC, and the trapezoid ABCD being simple imply that ABCD is a
parallelogram (P 1.3.28.2). O
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Chapter 3

Elementary Hyperbolic (Lobachevskian)
Geometry

3.1

Axiom 3.1.1. There is at least one line a and at least one point A with the following property: if there is a line b
containing A and parallel to a, there is another (distinct from b) line ¢ parallel to a.

Theorem 3.1.1. Given a point A on a line a in a plane «, there is more than one parallel to a containing A.

Proof. Suppose the contrary, i.e. that there is a line a and a point A not on it such that no more than one line
parallel to a goes through A. But then, according to T 2.1.1 the same would be true about any line and any point
not on it. This, however, contradicts A 3.1.1. O

Proposition 3.1.1.1. Proof. In hyperbolic geometry every triangle has abstract sum of the angles less than 7(4bs#t).

Correspondingly, the sum of numerical measures of angles in every triangle in hyperbolic geometry is less than 7. O

Corollary 3.1.1.2. In hyperbolic geometry the (abstract) sum of the angles of any convex polygon with n > 3 sides
is less than (n — 2)w(®*%Y)  Correspondingly, the sum of numerical measures of the angles of any convex polygon
with n > 3 sides is less than (n — 2)w. In particular, the (abstract) sum of the angles of any conver quadrilateral is
less than 277t and the sum of numerical measures of the angles of any convex quadrilateral is less than (n—2)7.

Proof. O

Corollary 3.1.1.3. In hyperbolic geometry the (abstract) sum of the summit angles of any birectangle is less than
n(abs:2t) I particular, both summit angles of any Saccheri quadrilateral are acute. Thus, there are no rectangles in
hyperbolic geometry.

Proof. O
Corollary 3.1.1.4. In hyperbolic geometry any Lambert quadrilateral has one acute angle.
Proof. O
Lemma 3.1.1.5. In a birectangle ABC'D with right angles /B, Z/C we have /A < adjsp/D, /D < adjsp/A.
Proof. Using C 3.1.1.3 we can write
w(ZA,0) + u(£D,0) < 72t = (£ D,0) + p(adjsp/ D, 0)
, whence p(ZA,0) < p(adjspZD,0) (see P 1.3.66.9). The other inequality is established similarly. O

Consider a line a and a point A not on it. Using L 1.3.8.1, construct a perpendicular to a through A. Denote by
O the foot of this perpendicular. Suppose also one of the two possible orders on a is chosen (see T 1.2.14). We shall
say that this choice of order defines a certain direction on a. (Thus, there are two opposite directions defined on a.)

Now take a point P € a, P # O, such that O precedes P in the chosen order. ! Let J be the set of all rays having
initial point A and lying on the same side of a as the point P (and, consequently, as the ray Op) plus the rays Ao,
A% . According to P 1.2.21.29 this is a set with generalized angular betweenness relation. This relation is defined in
a traditional way: a ray k € J lies between rays h,l € J iff k lies inside the angle Z(h,1). Let 2 be the set of such
rays k € J that the line & does not meet a. Now, of the two possible orders on the set J (see T 1.2.35) choose the

IWe can also say that the direction on a is dictated by choosing a point P on one of the two rays into which the point O separates
the line a. This amounts to choosing one of the rays as the first and another ray as the second in the process of defining the order on a.
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Figure 3.1: If a ray | € J meets Op, so does any ray I’ preceding it. If the ray h¢, complementary to a ray h € J,
meets the ray O%, so does any ray h'°, complementary to the ray h’ succeeding h.

one in which the ray Ao precedes the ray Ag. This implies, in particular, (in view of [ApkAg)] (which follows from
definition of interior of straight angle) and T 1.2.35) that Ao < k < Ag, for any k € J.

Observe that if a ray [ € J meets Op, so does any ray I’ preceding [ (see Fig. 3.1). In fact, suppose I’ < [ and the
ray | € J meets Op in some point R. Ao <1’ <1 2 implies [Apl'l], i.e. I’ C Int/(Ao,l). Hence by L 1.2.21.10 the
ray I’ meets the open interval (OP), and, consequently, the ray Op in some point Q.

Thus, any ray [ € J which meets Op, is a lower bound for 2. 3

Similarly, if the ray h¢, complementary to a ray h € J, meets the ray 0%, so does any ray h'°, complementary
to the ray h' succeeding h (see Fig. 3.1). In fact, suppose b’ > h and the ray h® meets O% in some point N. Note
that h < b’ < Ao * implies [hh'AS), i.e. h' C IntZ(AS, h) and B/ C IntZ(Ao,h¢) (see L 1.2.21.16). Hence by
L 1.2.21.10 the ray h'° meets the open interval (ON), and, consequently, the ray O%, in some point M.

Thus, any ray h € J, whose complementary ray h¢ meets O%, is an upper bound for 2. °

Let ljim(a, A) = inf 2, hyim (a, A) = sup 2. (Since the set 2, obviously, has both upper and lower bounds, it has
the least upper bound and the greatest lower bound by T 1.4.30.) We shall refer to I, hiim ¢ as, respectively, the
lower and upper limiting rays for the pair (a, A) with the given direction on a 7 (see Fig. 3.2).

Strictly speaking, in place of lj;,(a, A) we should write lj;m, (h, A), where h (and, of course, other letters suitable
to denote rays may be used in place of h) is a ray giving the direction (i.e. one of the two possible orders) on a.
8 Still, (mostly for practical reasons) we prefer to write lj;m(a, A) or simply I, whenever there is no threat of
ambiguity. The notation like l};,, (h, A) will be reserved for the cases where it is important which of the two possible
directions on a is chosen.

Both lower and upper limiting rays lie in 2.

To demonstrate that l;;, € A suppose the contrary, i.e. that l;, € J\ 2. Then either l;;,, meets Op, or If,,
meets 0%. °

2For I’ = Ao our claim is vacuously true, so we do not consider this case.

3Since J is a chain with respect to the relation < (see T 1.2.34), for any ray | € J which meets Op and for any ray k € 2 we have
either I < k, or k = I. Obviously, k # [, for I meets Op, but k does not according to the definition of 2. Also, we have —(k <), for,
as shown above, if a ray in k € J precedes a ray [ € J that meets Op, then the ray k also meets Op, which our ray k does not. Hence
Il < k € A as claimed.

4For h/¢ = Ao our claim is vacuously true, so we do not consider this case.

5Since J is a chain with respect to the relation < (see T 1.2.34), for any ray h € J whose complementary ray h® meets 0% and for
any ray k € % we have either h = k, or k = h. Obviously, k # h, for h® meets O, but k¢ does not according to the definition of 2. Also,
we have =(k = h), for, as shown above, if a ray in k € J succeeds a ray h € J whose complementary ray meets O%, then the ray k¢ also
meets Op, which the ray complementary to our ray k does not. Hence k < h € 2, as claimed.

6For brevity, we prefer to write simply ljim, higm instead of i, (a, A), hiim(a, A), respectively, whenever there is no danger of
confusion.

"Here, as in quite a few other places, I break up with what appears to be the established terminology.

8For example, h can be one of the two rays into which the point O, the foot of the perpendicular lowered from A to a, separates the
line a. But, of course, this role (of giving the direction) can be played by any other ray h with the property that its origin precedes (on
a) every point of the ray h.

9Since lj;,, and O% lie on opposite sides of ago (see L 1.2.18.5), they cannot meet. The same is true of i, and Op. Also, it is
absolutely obvious that O € lj;,,, O € If, . (In the case O € lj;,, we would have Ao = lj;, by L 1.2.11.3. This, in turn, would imply
that lj;,,, the greatest lower bound of 2, precedes the ray Op, which is a lower bound of 2. The contradiction shows that, in fact, we
have O & ljsm- The assumption O € If; = would imply (by L 1.2.11.3) that Ao = If,,,, or, equivalently, that A = lj;p,, which leads us

(&

to the absurd conclusion that A, precedes any element of the set 2(. Thus, we have O ¢ If; .
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Figure 3.2: All rays [ in the set 2 lie between the rays lj;m (a, A), hiim(a, A). That is, they traverse the shaded area
in the figure.

h?im AO

Figure 3.3: Ilustration for proof that both lower and upper limiting rays lie in .

But [f;,, cannot meet O%, for that would make l;;,, an upper bound of 2, which would contradict the fact that
l1im is the greatest lower bound of 2.

Suppose lj;, meets Op in some point @ (see Fig. 3.3). Taking a point R such that [OQR] (A 1.2.2) and using
L 1.2.21.6, L 1.2.21.4, we see that l;,,, C IntZ£(Ap,l), where | = Og. Hence lj;m <1 (see T 1.2.35). Since [ meets Op
in R, we see that [ is a lower bound of 2. We arrive at a contradiction with the fact that l;;,, is the greatest lower
bound of . This contradiction shows that in reality {;;,, does not meet Op and we have lj;,, € .

Similarly, we can demonstrate that hy, € 2. 19

Note that ;5 # hiim, for otherwise we would have exactly one line through A parallel to a, contrary to T 3.1.1.
Thus, evidently, for any ray k € A we have Ao < ljim < hiim < A%.

If b is any other (i.e. distinct from lj;m, hiim) line through A parallel to a, separated by the point A into rays k,
k¢, then one of these rays, say, k, lies inside the angle Z(ljim, liim ), and the complementary ray k¢ then lies inside

10Suppose the contrary, i.e. that hyj, € J\ A Then either hy,, meets Op, or hf;,, meets O%. (Since hyim, and O lie on opposite
sides of a40 (see L 1.2.18.5), they cannot meet. The same is true of I, = and Op. Also, it is absolutely obvious that O & hyim, O € hf

(In the case O € hf, ~we would have Ao = hf, by L 1.2.11.3. Hence A% = hyjp,. This, in turn, would imply that hy;m, the least upiggr
bound of 2, succeeds a ray h (whose complementary ray h® meets O%, which is an upper bound of 2(), which is an upper bound of 2.
The contradiction shows that, in fact, we have O ¢ hf, . The assumption O € hyjy, would imply (by L 1.2.11.3) that Ao = hyjpm, which
leads us to the absurd conclusion that Ao succeeds any element of the set 20 Thus, we have O ¢ hy;p,.) But hy;,, cannot meet Op, for
that would make hy;,, a lower bound of 2(, which would contradict the fact that hy, is the least upper bound of 2I. Suppose now hf,
meets O% in some point M (see Fig. 3.3). Taking a point N such that [OMN] (A 1.2.2) and using L 1.2.21.6, L 1.2.21.4, we see that
hf,,, C IntZ(Ao, he), where h® = On. Hence hyypy C IntZ(Ag), h) (see L 1.2.21.16) and, consequently, lj;, <! (see T 1.2.35). Since h®
meets OF in N, we see that h is an upper bound of 2(. We arrive at a contradiction with the fact that hsp, is the least upper bound of

2. This contradiction shows that in reality hf, ~does not meet O%.
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the angle Z(1f,, . 1f...).

Hence it follows that l;m (0%, A) = kS, (Op, A), hiim (0%, A) =15, (Op, A). 11

To show that Z(Ao,lim (0%, A)) = Z(Ao,liim(Op, A)) suppose the contrary. Without any loss of generality we
can assume that Z(Ao, liim (0%, A)) < Z(Ao, liim(Op, A)) (see L 1.3.16.14). Then there is a ray I’ with initial point
O such that Z(Ao, lLim(Op, A)) = Z(Ao, '), I C IntZLZ(Ao, liim (0%, A)). Since I < 11;m (0%, A), we see that I’ has
to meet the ray O% at some point Q'. Taking a point @ € Op such that OQ’ = OQ), and taking into account that

aso L a= ZA0Q' = LAOQ, we can write 0Q' = 0Q & OA = OA& LAOQ' = LA0Q 22" ANAOQ' = AAOQ =

ZOAQ' = LOAQ. Since Z(Ao,liim(Op, A)) = £L(Ao,l') = LOAQ' = LOAQ and the rays lj;,,(Op, A), Ag lie on
the same side of the line a40, from A 1.3.4 we have l;;,,(Op, A) = Ag, i.e. the ray l;;m(Op, A) meets the line a at
Q - a contradiction which shows that in fact Z(Ao, ljim (0%, A)) = Z(Ao, liim(Op, A)).

We shall call either of the two congruent angles Z(Ao, liim(Op, A)), Z(Ao, liim (0%, A)) the angle of parallelism
for the line ¢ and the point A. We see that angles of parallelism are always acute.

We shall refer to lj;,, as the line parallel to a in the given direction (on a). To prove that the concept of the line
parallel to a given line in a given direction is well defined, we need to show that in our case [, is parallel to a in
the chosen (on a) direction regardless of the choice of the point A on ljy,.

Take A’ € ljjy, . Denote by O’ the foot of the perpendicular through A’ to a. Now take a point P’ € a, P’ # O/,
such that O’ precedes P’ in the chosen order. '2

Let J' be the set of all rays having initial point A’ and lying on the same side of a as the point P’ (and,
consequently, as the ray O’p/) with initial point A’, plus the rays A’o/, A’G,. According to P 1.2.21.29, this is a set
with generalized angular betweenness relation. This relation is defined in a traditional way: a ray k € J lies between
rays h,l € J iff k lies inside the angle Z(h,1). Let 2’ be the set of such rays k € J that the line & does not meet a.
Now, of the two possible orders on the set J" (see T 1.2.35) choose the one in which the ray A’os precedes the ray
A'G.

Let l/lim - llim(a, A/) = inf Q[/, h//lim - hlim(a, A/) = sup A

First, suppose A’ € I (a, A) (see Fig. 3.4, a)). We are going to show that A’} = ljim(a, A).

As the lines apa, aprar are distinct and are both perpendicular (by construction) to the line apos = a, the lines
apA, aorar are parallel (see C 1.3.26.2). Therefore, the points A, O lie on the same side of the line a4/os and the
points A’, O’ lie on the same side of the line as0. Consequently, O’ € Op. '* From the properties of order on a it

follows that O < O'. Hence O < O’ < P! 22 ==" [00'P']. We know that the point A and the ray A’(, lie on opposite
sides of the line aps 4+, as do the point O and the ray O'p,. At the same time, the points A, O lie on the same side
of aaror. Therefore, the rays A’y and O'ps lie on the same side of the line apa (L 1.2.18.5, L 1.2.18.4).

Note that A’ = ljim(a, A) and, consequently, A’ € A’. Now, to establish that A’ = ljm(a, A"), we need to
prove only that any ray preceding A’ (in J') meets the ray O’ps and thus lies outside the set 2'. Take a ray I’
emanating from A’ and distinct from A’o/, such that I’ precedes A’ in J’. Then we have I’ C IntZ(A'or, A’S,) (see
T 1.2.35). Take a point Q € ['.

Since the lines lj;, (a, A) and a do not meet, the points O, O’ € a, and, consequently, the rays Ao, A’ o lie on the
same side of the line lj;,, (a, A’). Also, from the definition of interior of angle the rays I’ and A’o lie on the same side
of the line lj;, (a, A). Thus, we see (usmg L 1.2.18.2) that the rays I’ and Ao lie on the same side of the ljim (a, A).

Observe that the ray I’ and the hne a0 lie on opposite sides of the line asor. * Therefore, the line I’ can have
no common points with the ray Ao, '* and, in particular, with (40] (L 1.2.11.1, L 1.2.11.13).

Evidently, we can assume without any loss of generality that the point @ and the line {j;,(a, A) lie on the same
side of the line a. 16 Since both I’ and A’ lie on the same side of the line a4/o/ and the rays I’ and Ao lie on the
same side of the lj;,(a, A), the point @ lies inside the angle ZOAA’. But, in view of L 1.2.21.4, so does the whole
ray Ag. Hence Ag < liim(a, A) in J (by T 1.2.35). Therefore, the ray Ag has to meet the line a in some point M.
Since the rays Ag, Op lie on the same side of a40, 17 the point M lies on Op.

U Evidently, liim (0%, A) is the lower limiting ray for the reverse direction on a, and hy;m, (0%, A) is the upper limiting ray for that
direction.

12We proceed now to define the set A’ of rays with initial point A’ and the corresponding lower and upper limiting rays I’;;,, (a, A’),
W im(a, A’) in such a way that 2 and U'j;,, (a, A"), h'1;m (a, A’) play for the line a and the point A’ the role completely analogous to that
played by lim (a, A), hiim(a, A) for 2.

13In fact, we know that the point A’ € Ui, (a, A) lies on the same side of the line ap 4 as the point P. Since A’ ¢ apa, from L 1.3.8.3
we see that O’ # O. If the point O’ were to lie on the ray O%, by L 1.2.17.10 the points A’, O’ would lie on opposite sides of the line
aoa, and the lines Ap 4, apr - would meet - a contradiction. Thus, we see that O’ € Op.

141n fact, since I’ C Inté(A oy A’%), from the definition of interior of angle the rays I’ and A’ lie on the same side of the line a 4/ 5.
Since the rays I’ and A’} lie on the same side of the line a 4/o/, and the point A and the ray A’$ lie on opposite sides of the line a4/
(recall also that aao || as70r), we can conclude (using L 1.2.18.5, T 1.2.20) that the ray I’ and the line a40 lie on opposite sides of the
line ay/or-

15Tn fact, since A’ ¢ a0 and the rays I’°, Ao lie on opposite sides of Ij;,, (a, A) (recall that I’ and Ao lie on the same side of the
liim(a, A)) and thus have no common points, any common points of Ap and " would have to lie on the ray I’. But we have just shown
that the ray !’ and the line a 40 lie on opposite sides of the line a4/os and, therefore, cannot meet.

16We know that the rays I’ and A’ lie on the same side of the line a /¢, as do O’ psr and A’S. Hence I’ and O’ p/ lie on the same
side of a 4/o/. Obviously, if the ray I’ meets the line a at all, it can do so only on the ray O’ ps (using L 1.2.18.5, we see that I’ and O’
lie on opposite sides of a 4/o/ and thus have no common points; also, it is obvious that O’ ¢ ). So, if the point Q and the line l;;,, (a, A)
containing the point A would lie on opposite sides of a, then the open interval (AQ), and, consequently, the ray I’, would meet O’ p; and
we would have noting more to prove.

17Indeed, ljim (a, A), Op lie on the same side of aqo by construction, and Iy, (a, A), Ag lie on the same side of a4o by definition of
interior of ZOAA’.
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Evidently, all common points the line I’ has with the contour of the triangle AAOM lie on the ray I’. '8 It is
also obvious that the line [’ lies in the plane a40s and does not contain any of the points A, O, M. Since I’ meets
the open interval (AM) in @ (one can use L 1.2.21.9 to show that [AQM]), by A 1.2.4 it meets the open interval
(OM), and thus the ray Op, in some point N, q.e.d.

Suppose A’ € If, (a, A) (see Fig. 3.4, b)). We are going to show that A’ 4 = ljm (a, A"). Since the point P and
the ray l;;m (a, A) lie on on the same side of the line a4o (by construction), the ray lj;m, (a, A) and the point A’ lie on
opposite sides of the line a 40, finally, as shown above, the points A’, O’ lie on the same side of a 40, using L 1.2.18.5
we conclude that the points O’, P lie on opposite sides of the line ayo. Therefore, points O’, P lie on the line a
on opposite sides of the point O, whence O" < O < P in view of T 1.2.35 (we take into account that O < P by
hypothesis). Since also, by construction, O’ < P’, from the properties of precedence on the line a it follows that the
points O, P’ lie on a on the same side of O" and, consequently, the rays A’ 4 and the point P’ (as well as the whole
ray O'p/) lie on the same side of the line a4/or (recall that the points A, O lie on the same side of a4/0/). We see
that A’4 € 2. Now, to complete our proof that A’ 4 = lj;;m(a, A"), we are left to show only that any ray preceding
A’ 4 (in J') meets the ray O’ ps and thus lies outside the set 2. Take a ray I’ emanating from A’ and distinct from
A’or, such that I’ precedes A’ 4 in J'. Then we have I’ C IntZ/A'O'A (see T 1.2.35). Take a point Q € I’°. Evidently,
we can assume without any loss of generality that the points A’, @ lie on the same side of the line as0. ' Since
the ray I’ and the point ), as well as the ray A% and the point @, lie on opposite sides of the line liim(a, A); the
rays Ao, 6 lie on the same side of liim(a, A) (by definition of interior of ZA’O’A), as do the rays A’o/, Ao, using
L 1.2.18.2, L. 1.2.18.4 we see that the rays Ao, A lie on the same side of liim(a, A). Similarly, since A’ and Q lie
on the same side of aao (by our assumption), A" and ljm (a, A), as well as Q and Ag lie on opposite sides of a0,
from I 1.2.18.5, L 1.2.18.4 we see that the rays AZ) and I (a, A) lie on the same side of aso. Thus, by definition
of interior, the ray ACQ lies inside the angle Z(Ao,liim(a, A)). Consequently, ) precedes ljim (a, A) in the set J
(T 1.2.35). Now, from the properties of lji,(a, A) as the greatest lower bound of 2 we see that the ray Ag, has to

meet the ray Op in some point M. Since ' C IntZA'O’A, by L 1.2.21.10 there is a point R € I’ N (A’A). Now

observe that [QAM]& R € I’ N (A’ A) CLELT IN(N € (O'M)N1). Since the M € O'pr and the rays O'pr, I lie on

the same side of a0/, we see that the open interval (O’M) and the line I’ can meet only in a point lying on /. 2°
Thus, AN (N € (O'M) N1’), which completes the proof of the fact that the notion of the line parallel to a given line
in a given (on that line) direction is well defined.

Theorem 3.1.2. Given a line a with direction on it and a point A not on a, there is exactly one line through A
parallel to a in the given (on A) direction.

Proof. O

Theorem 3.1.3. If a line b is parallel to a line a in a given on a direction, then the line a is parallel to the line b
in the same direction.

Proof. Take points A € a, B € b. Denote D = I Na, where [ is the bisector of the angle Z(By, k) (see T 1.3.25) and
k = ljim(a, B). 2! Denote by I the point of intersection of the bisector of the angle ZBAD with the open interval
(BD) (see T 1.3.25, 1. 1.2.21.10). 22 Now choose points J, K, L such that ary 1 b, arx L aap, arr L a. 2> Since the
rays By, A; are the bisectors of proper (non-straight) angles, the angles Z/IBA, ZIAB, Z(Br, k), ZIAD are acute.
Therefore, K € (AB) by P 1.3.24.3. Hence Z/KBI = ZABI, /KAI = /ZBAI (L 1.2.11.3). Also, J € k, L € Ap by

C 1.3.18.11, whence ZIBJ = Z(By,k), ZIAL = ZIAD. Now we can write (taking into account that, by T 1.3.16,

all right angles are congruent) BI = BI& /JBI = /KBI& /BJI = /BKI "2%° ABJI = ABKI = 1] = IK,

TA=TA& /KAl = /LAI& ZIKA = /ILA "2 AAKT = AALT = IK = IL. Thus, IJ = IL. The points I,

J, L are not collinear. In fact, the angle, formed by the ray J; and one of the rays into which the point J separates
the line b, is the angle of parallelism corresponding to the line a and the point J. This angle, like any angle of
parallelism, is acute (see above) and thus cannot be a right angle. But I € Ji, (we take into account that, since
I € Int(ab) if the points I, J, L were collinear, we would necessarily have I € Jr, 2* ) would imply that J, L b- a

18This follows from the even more obvious fact that the ray I’ and all points of the contour of AAOM except A lie on the same side of
the line {j;,, (a, A). (Recall that the contour of the triangle AAOM is the union [AO)U[OM U[MA). In order to make our exposition at
all manageable, in this as well as many other proofs we leave out some easy yet tedious details, leaving it to the reader to fill the gaps.)

19This follows from the fact that any half-plane is an open plane set.

200f course, A’ ¢ (O'M). Also, [O'OP] L12.43.2 Op C O'p and O, P’ lie on a on the same side of O’, whence M € O’p, and,

consequently, (O'M) C O'pr.

21Observe that | definitely meets the line a. A clumsy, but sure way to see this is as follows: Lower a perpendicular from B to a with
the foot O. Since, loosely speaking, Z(k,1) is half Z(Ba, k) and the latter is not straight, the angle Z(k,!) is acute. Using L 1.3.16.17,
C 1.3.16.4 we see that | C Int£(Bo, k). But we have shown above that, in view of definition of k as the lower limiting ray, the ray [ is
bound to meet the line a.

22Thus, Al is a bisector of the triangle ABAD.

23In other words, the points J, K, L are the feet of the perpendiculars lowered from I to the lines b, a4 g, a, respectively.

24To show that the point I lies inside the strip ab, observe that I, lying on the bisector of the angle Z(Ba, k), lies on the same side
of the line b as the point A, and, consequently, as the whole line a. Similarly, since I lies on the bisector of ZBAD, the point I lies on
the same side of a as B, and, consequently, as the whole line b. Thus, by definition of interior of the strip ab, the point I lies inside this
strip. If the points I, J, L were collinear, we would have either I € Jp, or I = J, or I € J{. Obviously, I # J. Also, I € J§, equivalent
to [IJL], would imply that the points I, L lie on opposite sides of the line b - a contradiction with I € Int(ab). Thus, we conclude that
IeJg.
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Figure 3.4: Hlustration for proof that the notion of the line parallel to a given line in a given (on that line) direction
is well defined.
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Figure 3.5: If a line b is parallel to a line a in a given on a direction, then a is parallel to b in the same direction.

contradiction. Denote h’ the ray with initial point L such that Z(Ly, k') is acute. Let k' = lym (W', J). 2> We are
going to show that h' = I, (k’, J). 26 Since we know that a = b’ || k' = b, we need to establish only that any ray
R lying inside the angle Z(Lp, h') meets the line b. Evidently, without any loss of generality, it suffices to take an
arbitrary ray h” C IntZ(Ly,h') and show that it meets b. Observe that the ray Jy, lies inside the angle Z(Jr, k).
2T Since /IJL = ZILJ by T 1.3.3 (recall that I.J = IL), the angles /(J;,k'), Z(Lz,h’) are congruent (both being
right angles), and Ji, C IntZ(J;, k"), Ly C IntZ(L,h'), using T 1.3.9 we conclude that Z(L s, k") = Z(J,h’).

Consider the ray k” such that k/, k" lie on the same side of a1, and Z(Lj,h") = Z(Jp, k") (see A 1.3.4). We

have h" C Int/(Ly,h) & k'K asp & Z(Ly h") = L(Jp, k") & Z(Ly, k') = Z(Jp, b)) T2 k7 < Int/(Jp, k). Since

k' = liim (K, J), the ray k" meets the ray h’ in some point P. 28 Now take a point @ € k' such that JQ = LP (see

A 1.3.1). Now we can write LJ = JL& JQ = LP& /LJQ = /JLP 2% ALJQ = AJLP = /JLQ = /LJP. In

conjunction with Z(Jg,h") = Z(Ly, k"), this gives Lo = h”, i.e. h” meets the line b (or, to be more precise, the ray
k') in the point Q. O

Lemma 3.1.4.1. Suppose that lines a, b are parallel to a line ¢ in the same direction. Suppose, further, that there is
a point B € b lying inside the strip (ac). Then for any points A € a, C € ¢ there is a point X € b such that [AXC].

Proof. Evidently, a || b, for if they met in some point, we would have two lines through a single point, parallel to
¢ in the same direction - in contradiction with T 1.3.2. Therefore, b C Intac (from L 1.2.19.20), i.e. the line b lies
completely inside the strip ac. Choose a ray I’ (with initial point C') such that I’ C Int£(Cy,l), I" C IntZ(Cg,1),
I C IntZ(Cp,l), where | = ljjm(a,C), and G, F are the feet of the perpendiculars drawn through C to b and a,
respectively. Since a, ¢ are parallel in a given direction, the ray I’ is bound to meet the line a in some point P. For
the same reason I’ meets b in a point Q. From L 1.2.19.16 we see that [CQP]. Finally, since the line b lies in the
plane a4cp and does not contain any of the points A, C, P, using Pasch’s axiom (A 1.2.4) we conclude that b meets
the open interval (AC) in some point X, as required. 29 O

Theorem 3.1.4. Suppose that two lines a, b are both parallel to a line ¢ in the same direction. Then the lines a, b
are parallel to each other in that direction.

Proof. Observe that a || b (see proof of the preceding lemma (L 3.1.4.1)). Obviously (since both a and b do not meet
c), either a, b lie on the same side of ¢, or a, b lie on opposite sides of the line c.

First, suppose that a, b lie on the same side of ¢. Then either the line b lies inside the strip ac, or the line ¢ lies
inside the strip ab (see L 1.2.21.34). Evidently, we can assume without loss of generality (due to symmetry) that

25That is, liim (R, J) is the lower limiting ray with respect to the order defined on a in such a manner that L precedes any point of h'.

26 Consider the set J' of such rays I’ with initial point L that the rays I/, k¥’ lie on the same side of the line arr, plus the rays Lp,
L%, where F' € b is the foot of the perpendicular drawn through L to b. Consider also the subset ' C J defined by the additional
requirement that the line I’ does not meet the line b. As explained above, we can define on the set J’ two opposite orders, linked to the
betweenness relation, defined in the usual way as follows: a ray I” € J’ lies between h” € J’ and k" € J with the same initial point iff
1" C IntZ(h",k"). Of the two orders possible, we choose the one in which Ly precedes L%,. We then define lj;,, (k’, J) = inf .

2THere is a clumsy, but working way to show this: Since the rays Lj, L lie on the same side of the line a and the angle Z(Ly,h'),
being acute (by our assumption), is less than the right angle Z(Ly,h’) (see L 1.3.16.17), we see (using C 1.2.21.11) that the rays Ly, b’/
lie on opposite sides of the line ar, ;. As the rays h/, k’ lie on the same side of the line Since the rays Ly, h’ lie on the same side of a;r,
(from our definition of k¥’ as lj;,, (h’,J) ), using L 1.2.18.5 we conclude that the rays Jy, k' lie on opposite sides of the line ar,y. (Of
course, we also take into account that the rays Ly, Jy lie on the same side of ar ;. ) Finally, since the rays Jy, Jr, (because the points I,
L € a lie on the same side of b) lie on the same side of b, from L 1.2.21.32 we find that J, lies inside the angle £(Jy, k’).

28As k" C Z(Jr, k'), the rays k", k' lie on the same side of the line asr. Since also h'k’a sz, we see that k”asrh’, k" ayrh'®, which
implies that the ray k”” can meet the line a only in a point lying on the ray h’. (We also take into account that, of course, L ¢ k. )

290bviously, b cannot meet (AP), for a || b.
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b C Int(ac). To prove that h = I, (b, A) consider a ray h' such that h' C IntZ(h,Ag), b’ C IntZ(h,Ac). 3° We
need to show that the ray h’ chosen in this way meets the line b. Suppose the contrary. But then A’ would not meet
the line ¢ either. For, if A’ met ¢ in some point, in view of the preceding lemma (L 3.1.4.1) it would have to meet the
line b as well, which contradicts our assumption. On the other hand, from the fact that the line a is parallel to the
line ¢ in the given direction it follows that A’ must meet ¢. From these contradictions we see that h’ does not meet
b, which means that the line a is parallel to the line b in the given direction.

Now suppose that a, b lie on opposite sides of the line ¢. Then the lines b, ¢ lie on the same side of the line a (see
L 1.2.19.25). Take a point A € a and a ray A’ such that »' C IntZ(Ac,h), B C IntZ(Ap,h), where h = l;;(c, A).
Observe that, since the lines a, ¢ are directionally parallel, the ray h lies on the line a. For the same reason, the ray
h’ meets the line ¢. Now we see from the preceding lemma (L 3.1.4.1) that the ray h’ also meets the line b. Since
the choice of b’ was arbitrary, we see that a is directionally parallel to b, as required. O

If a, b are parallel, but not directionally parallel, they are said to be hyperparallel or ultraparallel.

Theorem 3.1.5. Two (distinct) lines a, b, perpendicular to a line ¢, are hyperparallel.
Proof. Follows from the (previously shown) fact that the angles of parallelism are always acute. O

Theorem 3.1.6. If A,B € a, C,D € b, points A, D lie on opposite sides of the line apc, and ZABC = /BCD,
then the lines a, b are hyperparallel.

Proof. Let O be the midpoint of the interval BC (see T 1.3.22). Taking points E € a, F € b such that app L a,
aor L b (see L 1.3.8.3). Since the angles ZABC = ZABO and /BCD = ZOCD, being congruent, are either
both acute or both obtuse, from C 1.3.18.11 we see that either (E € Ba)& (F € Cp), or (E € BS) & (F € C%).
Hence, using T 1.3.6 if necessary, we conclude that Z/OBE = ZOCF. Evidently, since both ZOEB and ZOFC

are right angles, they are congruent (T 1.3.16). Therefore, we can write OB = OC & ZOBE = ZOCF & ZOEB =

£0FC "2 NAOBE = AOCF = /BOE = /COF. Observe that the points E, F' lie on opposite sides of the line

apc. 3! Since also Oc = 0%, using C 1.3.7.1 we conclude that Op = O% and, consequently, the points E, O, F are
collinear. Hence (see L 1.2.11.15) Ep = Ep, Fg = Fo. Therefore, the line app is perpendicular to both a and b,
whence the result follows by the preceding theorem T 3.1.5. O

Corollary 3.1.6.1. If A, B € a, C, D € b, points B, D lie on the same side of the line aac, and the angles Z/BAC,
ZACD are supplementary, then the lines a, b are hyperparallel.

Proof. Take a point E such that [DCE] (see A 1.2.2). Then [DCE] = ZACE = adjspZACD. Furthermore, the
points D, E lie on the opposite sides of the line asc (see L 1.2.17.10). Since (by hypothesis) the angles Z/BAC,
/ACD are supplementary, we have /BAC = ZACE. Now, using T 3.1.6 we find that the lines a, b are hyperparallel.
O

Theorem 3.1.7. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, there is at
most one line ¢, perpendicular to both of them.

Proof. Otherwise we would get a rectangle, in contradiction with C 3.1.1.2. O

Theorem 3.1.8. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, the set of
points on b equidistant from a contains at most two elements.

Proof. Suppose the contrary, i.e. that there are points A, B,C € band A’, B’,C’ € a such that AA" 1 a, BB’ 1 a,
CC" La,and AA' = BB'=(C(C'. O

Theorem 3.1.9. Proof. O

Theorem 3.1.10. Proof. O

We shall now construct the configuration we will refer to as the NTD configuration.

Take a line b and a point A not on it. Let B be a point B € b such that axp L b (see L 1.3.8.1). Suppose, further,
that @ is a point on a line a 3 A with the additional condition that the angle ZBAQ is obtuse.

Now we construct an infinite sequence of congruent intervals inductively as follows:

Take a point A; € Ag. 33 Then take a point Ay such that [AA;As] and AA; = A;As. 3* Now suppose that
we already have the first n — 1 members of the sequence: A, As,..., A,_1. We define the next member A, of the
sequence by the requirements that [A,_2A,_1A4,] and AA; = A,_1A,.

32

30That such a ray k' actually exists can easily be shown using L 1.2.21.21, L 1.2.21.27. In fact, from L 1.2.21.21 we can assume without
loss of generality that Ag C IntZ(h, Ac). Now choosing h’ C IntZ(h, Ap) (see, for example, C 1.2.31.14 for a much stronger statement
concerning the possibility of this choice), we get the required conclusion from L 1.2.21.27.

311n fact, we know (see above) that either both A, F lie on a on the same side of B (and thus lie on the same side of apc) and D, F
lie on b on the same side of C, or A, E lie on a on the opposite sides of B (and thus lie on the opposite sides of agc) and D, F lie on b
on the opposite sides of C. Hence from L 1.2.19.8, L. 1.2.17.9, L 1.2.17.10 we conclude that E, F' lie on opposite sides of the line apc.

32Due to the Arab astronomer and mathematician of the 13th century Nasir al-Din al-Tusi.

33Note that using A 1.3.1 we can choose A; so that the interval AA; is congruent to any interval given in advance.

340f course, [AA1A2] is equivalent to A € A1 4.
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It is obvious from construction that all the intervals AA;, A1As,..., A,_1A,,... are congruent. Furthermore,
the points of any finite (n + 1)-tuple of points AA;, Ay, ..., A, are in order [AA;45...A4,]. 3 Denote B;, i =
1,2,...,n(,...) the feet of the perpendiculars to a drawn through the corresponding points A4;. Observe that, due to

C 1.3.26.10, this immediately implies that the points B, By, B, ..., By—1, B,(,...) areinorder [BB1Bs ... Bp_1By(, ...

In particular, the points By, Ba, ..., Bn—1, Byn(,...) all lie on the same side of the point B.

Theorem 3.1.11. In the NTD configuration defined above we have AB < A1B1 < AsBy...Ap_1Bp_1 < ApB, <
What is more, we can claim that pA1By — pAB < pAsBs — pA1B1 < ... < Ap_1Bn1 — Ap_oBp_2 <
A,B,, — A,_1Bn_1 < .... AZSO, ,LLBBl >B1By>...> B, 2B, 1B,_1B, > ....

Proof. 3¢ Using A 1.3.1, choose points C; € B, 4, so that B;A; = B;11C;y1, where i = 1,2,...,n,... and we denote
Ag = A, By = B. We are going to show that the ray Aiflci lies inside the angle /B; 1A4; 1A; for all i =
1,2,...,n,.... First, observe that the angles /B;_1A4;_1A;, i € N are all obtuse. In fact, the angle /BAA, = /BAQ
is obtuse by construction. Using L 3.1.1.5, we can write the following chain of inequalities:

/BAA| < LB1A1Ay < ... < B, 14, 1A, < BnAnAn+1 <...,

which ensure that the angles /By A1 Ay, LBy AyAs, ..., LBy _1A,_1A,,... are also obtuse. 37

On the other hand, the angle /B;_1A;_1C;, i € N, is acute as being a summit angle in the Saccheri quadrilateral
Ai—lBi—lBiCi with the I’ight angles ZAi—lBi—lBi and ZBi_lBiCi (see C 3113)

Since ZB;1A; 10 < ZB;_1A;1A; *® and the rays A; 15, Ai—1,, lie on the same side of the line ap,_, 4
39 the ray Ai—lcl- lies inside the angle /B; _1A;_1A; foralli=1,2,...,n,....

Now we intend to show that C; € (B;A;) for all ¢ € N. Since A;_1B;_1B;C;, being a Saccheri quadrilat-
eral, is convex, the ray A;_1p lies inside the angle ZB; 1A, 1C; (see L 1.2.62.4). Now we can write Ai1g, C

Int//B;_1A;_1A; &Ai—lBi C IntdB;_1A;_1C; L1'2—;2;'27 Ai—lCi C Int/£B;A;_1A;. In view of LL 1.2.21.6,L 1.2.21.4

the ray A;—1, is bound to meet the open interval B;A; in some point C’;. Since the lines a4, ,¢,, ap, 4, are distinct,
we find that C’; = C;.

Now, using C 1.3.13.4, we see that B;C; < B;A; for every ¢ € N.

Now we are going to show that the intervals C1 Ay, CoAs, ..., CpA,, ... form a monotonously increasing sequence,
ie. that C;A; < Ciy1A;41 for all ¢+ € N. Consider the triangle A; 1C;A; for an arbitrary ¢ € N. Taking a
point C’; such that [C;A;C’;] and C;A; = A;C'; (see A 1.3.1), we find (taking into account that [A;_1A4;A;11],
Ai—lAi = AiAi-‘rlu and 4Ai_1AiCi = chiAiAi—i-l (as Vertical; see T 137)) that AAi_lAiCi = AC/Z'AZ'AZ'+1 and,
consequently, /A;_1C;A; = £A;C';A;+1. Observe that the angle ZA;_1C;A;, being adjacent complementary to
the summit angle ZA; 1C;B; of the Saccheri quadrilateral A; 1 B;_1B;C;, is obtuse. Hence the angle ZA;C’; A;11,
congruent to it, is also obtuse. Taking a point C";11 such that [B;11C;+1C";41] and A;C’; = C;41C" 141, we obtain
a Saccheri quadrilateral C’;B;B;11C" ;1. *° Using arguments very similar to those already employed once in the
present proof, it is easy to show that [Ci11C";114;11] and thus C;A; < Ciyq1Aipr. 4

Finally, we are going to show that the intervals ByBy, B1Bs,...,By,-1Byn, ByBpt1,... form a monotonously
decreasing sequence, i.e. B;B;+1 < B;—1B; for all iin € N.

For an arbitrary ¢ € N choose a (unique) point A’;_; such that the points A’;_1, A;+1 lie on the opposite sides of
the line AQA;B;» ABiAiA/i,1 = ZBiAiAiJrl, and AiA/i,1 = A»L'AiJrl (see A 131, A 134) Denote now by B/i,1 the
foot of the perpendicular to b drawn through A’;_; (see L 1.3.8.1).

Suppose that the ray A; 4/, _, does not meet the ray B;_1 ,, . Then it has no common points with the whole line
AA;1Bi-1-

Since the ray A; 4., , lies on the same side of the line a4,p, as the line a4, ,p, , and on the same side of the
line a4, ,B,_, as the line a4,p,, by the definition of strip interior the ray A; 4., , lies inside the strip a4, ,B,_,a4,B,-
Consequently, the point A’;_; and with it the whole line A’;_1B’;_1 (see L 1.2.19.20) lies inside aa, ,p, ,a4,;B;-
But this, in turn, implies that the point B’;_; lies between B;_1, B; (see L 1.2.19.16), whence B;B’;_1 < B;B;_1
(see C 1.3.13.4). Since, by construction, A;A’;_1 = A;A;41 and £B;A; A" 1 = £B;A; A4, in view of P 7?7 we have
BiB/i,1 = BrL'BrL'+1. Now we see that BiB/i,1 = BiB»L'Jrl &BiB/ifl < B;Bi_1 = BiBiJrl < B;_1B;.

i—17

35Compare with proof of L 1.3.21.11.

36 As is customary, in the more lengthy proofs such as this one we omit some (hopefully!) trivial details of argumentation, leaving it to
the pedantic reader to fill the gaps.

370f course, we are using the obvious fact that any angle greater than an obtuse angle is also acute.

38 Any acute angle is less than any obtuse angle - see L 1.3.16.19.

39To show that the rays Aiflci, AiflAl- lie on the same side of the line ap, , 4, , one may observe that all points, including C};, of
the line ap, 4,, which is parallel to the line ap, , 4, ,, lie on the same side of the line ap, , 4, ;-

4ONote that B;C’; = B;11C" ;41 according to A 1.3.3.

4n fact, the points C”; 41, A;41 and thus the rays C’;C";y1, C';A;+1 lie on the same side of the line ap,;a;- Since the acute
angle ZB;C’;C" ;11 (it is acute as being a summit angle of the Saccheri quadrilateral C’; B;B;+1C";+1) is less than the obtuse angle
£4BiC";Aiy1 = LA;C';A;41 (see L 1.3.16.19), we find that the ray C,ic//i+1 lies inside the angle ZB;C’;A;4+1. Since the Saccheri
quadrilateral C’; B; B;+1C" ;11 is convex, the ray C/iBHl lies inside the angle ZB;C’;C" ;11 (see L. 1.2.62.4). Using L 1.2.21.27 we see that
the ray C,iC”i+1 lies (completely) inside the angle ZB;+1C’;C";+1. By L 1.2.21.6, L 1.2.21.4 there is then a point C"";41 € C';cn
such that [B;11C"i41A;41]. Since the lines acr, o

i+1
L1.2.3.2
[Bi+1Ci41C"i11] & [Biy1C" i11Ai11] =7 [Cip1C" i1 A441].

i1
are evidently distinct, we find that C"’;;1 = C”;11. Now we can write

243



Now suppose that the ray A; 4/, , does meet the ray B;_1,, , in some point A”;_1. We are going to show that
[Bi—1A;—1A’;_1]. First, we will demonstrate that the ray A; 4, | lies inside the angle /B;A;A’;_. In fact, since
the angle /B;A;A;_1 is acute (as being adjacent supplementary to the angle //B;A;A;11 we have shown to be
acute) and the angle Z/B;A; A’;_1 is obtuse (as being congruent by construction to the obtuse angle Z//B;A;A;+1),
we find that ZBZAZA1,1 < ZBiAiA/ifl. But since AiflA/iflaBiAi, this inequality implies that the ray AiAi,l
lies inside the angle Z/B;A;A"; 1« = ZB;A;A’;_1. But the ray A;p._, in turn, lies inside the angle /B; 1 B;A,,
as can be seen, for example, observing the convexity of the birectangle A;_1B;_1B;A; (see L 1.2.62.4). Hence in
view of L 1.2.21.27 we find that the ray A;4, , lies inside the angle ZB;A;A”,_;. By L 1.2.21.10 this means that
the ray A;4, , and the open interval (B;—1A”;) meet in some point, which, in view of the distinctness of the lines
GA; 1 A;s OB;_,A;_,, coincides with the point A,_1. Thus, we see that the point A;_; lies between points B;_1 and
A/Iifl. Therefore, we can write [BiflAiflAHifl] = ZAI/iflAiflAi = adjSplBiflAiflAi = ‘LLZAHiflAiflAi +
pu/Bi_1A;_1A; = 7@ On the other hand, from C 3.1.1.3 we have u/B;_1A”;_1A; + p/B;A; A" < mw(abs),
since Z/B; _1A";_1A; and ZB;A;A”;_1 are the summit angles of the birectangle A”;_1B;_1B;A;. Therefore, we have
‘LLZBiflA//iflAi + ILLZBiAiANi,1 < ‘LLZA”iflAiflAi + ulBiflAiflAi. Taklng into account that (by COHStI‘uCtiOH)
lBiAiA”i,1 = LBiAiAiJrla BiflAiflAi < BrL'AiAiJr17 and ZAiflANiflAi = ZBiflA”iflAi (see L 121115) using
P 1.3.63.8 we can write ZAiflANiflAi < ZA//iflAiflAi, WhiCh, in view of T 1318, implies that AiflAi < A”iflAi.
Since, by construction, A;_1A; = A;A;_1, AjAiv1 = A;A’;—1 and the points A';_1, A”;_1 lie on the same side of
the point A;, 2, we conclude using C 1.3.13.4 that [A;A’;_1A";_1]. Proceeding as above, we find again that
BiBi+1 < B;_1B;. O

Corollary 3.1.11.1. Suppose we are given lines a, b and points A, B such that aap L a, aap L b. Suppose further
that we are given an arbitrary interval CD. Then on any ray into which the point A separates the line a there is a
point E such that EF > CD, where F is the foot of the perpendicular to b drawn through E.

Proof. Follows from the preceding theorem (T 3.1.11) and Archimedes’ axiom (A 1.4.1). O

Theorem 3.1.12. Given a line a, a point D ¢ a not on it, an angle Z(h, k), and an interval EF, there are points
Beca and C € Ap such that ZABC = Z(h,k), BC = EF.

Proof. O

Corollary 3.1.12.1. Given a line a, a point D ¢ a not on it, and an interval EF, there is a point C € Ap such
that BC = EF, where the point B € a is such that apc L a. 3

Proof. O

Theorem 3.1.13. Proof. O

Theorem 3.1.14. Any two hyperparallel lines have a common perpendicular.
Proof. O

Theorem 3.1.15. Suppose that the angles LA, /B, ZC, of the triangle NABC' are congruent, respectively, to the
angles LA, Z/B', ZC', of the triangle NA'B'C’. Then the triangles NABC, NA'B'C’ are congruent.

Proof. Suppose the contrary, i.e. that the triangles AABC, AA’B'C’ are not congruent. Then we can assume
without loss of generality that the side AB of AABC is not congruent to the side A’B’ of A’B'C’ and, fur-
thermore, that AB < A’B’. % By L 1.3.13.3 there is a point B” € (A’B’) such that AB = A’B”. Us-
ing A 1.3.1, we also take a point C” € A’cs such that AC = A’C”. Then, evidently, /B"A'C" = /B'A'C’,
/BAC = /B'AC'&/B"A'C" = /B'A'C' = /BAC = /B"A'C", AB = AB"& AC = A'C"& /BAC =
/B"A'C" "2 NABC = AA'B'C" = /ABC = /A'B'C" & /BCA = /B'C"A. Since C" € Alc, we sce
that either C” = C’, or [A'C"C"], or [A’C'C"]. We are going to show that each of these options is contradictory.
First, suppose C” = C’. Then ZABC = LA'B'C'& LABC = LA'B"C" W3 ppror = ZA'B"C". Since
also [A'B"B'| "2 /B"BIC! = LA'B'C, we obtain Z/B"B'C' = /A'B"C’, in contradiction with T 1.3.17. 4°
Suppose now that the point C” lies between A’, C’. Since all angles of the triangle AA’B’C’ are congruent to the cor-
responding angles of the triangle AA’B”C”| their (abstract) angle sums are equal, which again leads to contradiction

in view of C 1.3.67.16. Finally, suppose that [A’C’C"]. In view of C 1.2.1.7 the open intervals (B’'C"), (B"”C") meet in

some point D. Obviously, [B'DC’] & [B"DC") & [A'B'B") "' 211° /B'B'D! = /A'B'C' & /A'B"D' = /A'B"C",

whence /B"B'D' = Z/A’B"D’, and we arrive once more to a contradiction with T 1.3.17. The contradictions
obtained establish that AABC = AA’B'C’, q.e.d. O

42Note that, by construction, both A’;_1, A;y1 and A”;_1, A;11 lie on the opposite sides of A;, whence we conclude using L 1.2.11.10
that the points A’;_1, A”;_1 lie on the same side of A;.

43Tn other words, B is the foot of the perpendicular to a drawn through C.

44This is due to symmetry of congruence relation and to the fact that cyclic rearrangements of sides do not affect in any way the
congruence properties of polygons (see P 1.3.1.4).

45 Alternatively, this case can be brought to contradiction using the angle sum argument (see the analysis of the next case later in this
proof) and C 1.3.67.15.
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Theorem 3.1.16. Proof. O

Theorem 3.1.17. Consider two simple quadrilaterals, ABCD and A'B'C'D’ with AB= A'B', ZABC = A'B'C’,
/BCD = /B'C'D', /ZBAD = /B'A'D’, ZCDA = LC'D'A’. Suppose further that if A, D lie on the same side of
the line apc then A’, D’ lie on the same side of the line ap.¢:, and if A, D lie on the opposite sides of the line apc
then A', D' lie on the opposite sides of the line ag/c:. Then the quadrilaterals are congruent, ABCD = A'B'C'D’.

Proof. Using A 1.3.1, we take points A” € B'4,, D" € C'p: such that BA = B'A”, CD = C'D”. We start
with the case where the points A, D lie on the opposite sides of the line agpc. Then, by hypothesis, A’, D’ lie
on the opposite sides of the line ap:c:. Since, by construction, A” € B’a, D" € C'ps, is is easy to see us-
ing T 1.2.20 that the points A”, D" lie on the opposite sides of the line ap:c:. Therefore, we can write AB =
A"B'&BC = B'C"&CD = C'D"& /ABC = A'B'C" & /BCD = /B'C'D" & (AapcD & A"apcD") 7253
ABCD = A"B'C'D" = /DAB = /D"A"B'& /CDA = /C'D"A", /DAB = /D'A'B' & /DAB = /D" A" B’ “'23"!
/D'A'B' = /D"A"B', /CDA = /C'D'A' & ZCDA = £C'D" A" M'241 yorpr A’ = /¢' D" A

Denote £ = (AD)ﬂch, 6 p = (A/D/)QCLB/C/, E' = (ANDN)QCLB/C/. In view of T 1.2.2 we have either [EBO]
or [BCE] and, similarly, either [E'B’'C"] or [B'C'E’] and either [E” B'C’] or [B'C'E"] . (Evidently, due to simplicity of
ABCD, A'B'C'D', A”B'C' D" we can immediately discard from our consideration the cases F = B, [BEC|, E = C,
E'=DB',[B'E'C’', E'=C', E" = B, [B'E"C'], E” = C’". We are going to show that if [FBC] then also [E'B'C"].
To establish this suppose the contrary, i.e. that both [EBC] and [B’C’'E’]. Then, using T 1.3.17 we would have
/BCD = /ECD < LAEC = LZAEB < /ABC = LA'B'C' = LZA'B'E' < /B'E'D’' = ZC'E'D" < LB'C'D’ (see
also L 1.2.11.15), whence ZBCD < ZB'C'D’ (see L 1.3.16.6 — L 1.3.16.8), which contradicts /ZBCD = ZB'C'D’
in view of L 1.3.16.11. Thus, we see that [EBC|] implies [E’'B’C’]. Similar arguments show that [BCE] implies
[B'C'E’]. %7 Since, obviously, ZA"B'C" = /A'B'C', /B'C'D" = /B'C'D' (see L 1.2.11.15), and, consequently,
/LABC = LA'B'C", /BCD = /B'C’'D", it is easy to see that also [EBC] implies [E” B'C’] and [BCE"] implies
[B'C'E".

Consider first the case where [EBC|, [E'B'C’], [E"B'C’]. We then have [A'E'D'|& B’ € (E'C’)

AF'([C'F'D') & [A’B'F')). Similarly, [A"E"D"|& B' € (E"C’) 2247 IF7([C'F"D") & [A"B'F")). Evidently,

F” = F'. In fact, as the points A”, A’, B’ colline even if the points A”, A" were distinct (which, as we are
about to show, they are not), the lines aavp = aa g and ac'pr = ac'pr (distinet due to simplicity of A’B'C’'D")
can meet in at most one point (see T 1.1.1), which happens to be F” = F’. Since both C’; D" and C’, D" lie on
the opposite sides of F” = F’, by L 1.2.11.10 the points D", D’ lie on the same side of F’ even if D" # D’. (Which
again, as we are about to prove, they are not.) Using L. 1.2.11.16 we can also see that the points A’, A” lie on the

same side of the point F’. 48
L1.2.11.15 L1.2.11.15 L1.2.11.15

Observe that [C'F'D') "' 22 ,o'D/ A" = 2F' D' A [C'F'D") 1285 0D Ar = F' DAY [P B A M2
LD'A'B = /D'A'F', [F"B'A”] V2L prAnp = /DAY F. Furthermore, since, as we have seen, the points
D", D’ lie on the same side of F’ as do the points A’, A”, the angles Z/ZD'F'A’, /D" F'A” are equal and thus are
congruent. Therefore, we can write ZD'F'A' = /D"F'A" & /F'D'A' = L/ZF'D"A" & /D'A'F' = /D"A"F’ TaLJ5
AF'D'A" = AF'D"A" = F'D' = F'D"& F'A' = F'A”, whence in view of T 1.3.2 (taking into account that the
points D", D', as well as the points A’, A”, lie on the same side of F’) we are forced to conclude that D’ = D" and
A= A"

Consider now the case where [BCE] and, consequently, [B’C'E’], [B'C'E"] (see above), while the points A4, D still

lie on the opposite sides of the line apc (and, consequently, (by hypothesis) the points A’, D’, as well as the points A",
D", lie on the opposite sides of ap/cr). We then have ¥ [A’E'D'| & C’ € (B'E") CLELT JF'([D'C'F'| & [B'F'A")).

Similarly, [A”E"D"] & C" € (B'E") “227 3F"([D"C'F") & [B'F"A"]). Evidently, F” = F' (shown as above)

C1.2.1.7
—

46 Obviously, E exists by definition of ”points A, D lie on the opposite sides of agc”

47Observe that the quadrilaterals ABC'D, A’B'C'D’ enter the conditions of the theorem symmetrically.

48We could do the rest of the proof in this case without using T 1.3.15 (which is used in the main body of the text), but this would
take much more work and proceed something like as follows: Note that the points D/, D’ lie on the same side of the line a g/ = a/ g
(see L 1.2.11.10). (Otherwise, we would also have D" = D’ and the proof would be complete. In fact, suppose the contrary, i.e. that
A" = A’ but D" # D’. Then, taking into account that D" € C’ p/, in view of L 1.2.11.8 we have either [C'D’D"] or [C'D"” D’]. Assuming
that [C'D’D"] (evidently, we can do this without any loss in generality) and using T 1.3.17, we find that the angle ZC’'D’A’, being the
exterior angle of the triangle AD’A’D" | is greater that the interior angle £/D'D"" A = £C'D" A’ (see L 1.2.11.15). This contradicts the
congruence ZC'D'A" = ZC'D" A” established above (L 1.3.16.11). The contradiction shows that A" = A’ necessarily implies D" = D’.
) Suppose A" # A’. As A” € B’ 4/, in view of L 1.2.11.8 we have either [B’A’A"] or [B’A” A’]. We can assume without any loss in
generality that [B’A’A”]. (The other case is then immediately taken care of by the simultaneous substitutions A’ < A" D’ < D".)
Since [B’A’ A", the points D"/, D’ lie on the same side of the line a g/ = arp/, and D'A'B’ = ZD"” A" B’, the lines a/pr, asrmpr
are parallel (T 1.3.26). Hence using T 1.2.44 we find that [F'D’D"]. Thus, not only is the angle £D’A’ A" adjacent supplementary
to the angle ZD'A’B’ = /D' A’F’, but also the angle ZA’D’D" is adjacent supplementary to the angle ZA'’D'F’ = ZA’D'C’. Since,
as we have seen, /B'A'D’' = /B'A"D" and ZC'D'A’ = ZC'D" A", we find that the angles Z/D'A’A", /D" A" A" = /D" A" B" are

L1.2.3.1

supplementary, as are the angles ZA'D'D"”, ZA"D" D’ = £ZA"D"C’ (note that [C'F'D'| & [F'D'D"] "=%"" [C'D’D"]). Hence we find
that ZE:’Z}SJ)’E”A” = 2n(abs,zt) ip contradiction with C 3.1.1.2. This contradiction shows that in reality in the given case we have A’ = A”

and, as a consequence, D’ = D",
490bserve that the following argument is similar to that employed previously in this proof in our treatment of the preceding case.
50Since the points A", A’, B’ colline even if the points A", A’ were distinct (which, as we are about to show, they are not), the lines
apnpgr =ay g and acrpr = acrpr (distinet due to simplicity of A’B’C’D’) can meet in at most one point (see T 1.1.1), which happens
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Again, %! the points D”, D’ lie on the same side of F’ even if D” # D’. Note that [D'C’'F’] MLZLLS jorprgr =

JF'D'A', [D'C'F) MERS soprAr = P DYAY ) [BFA) MERY D A'B = /DA'FY, [B'FAY) MR
/D"A"B' = /D" A"F'. As before, we see that the angles ZD'F'A’, /D" F'A" are equal and thus are congruent. °2
And, observing that the points A’, A" lie on the same side of the point F’, >3 we can bring this case to contradiction
exactly as above. %4

Suppose now that the points A, D lie on the same side of the line apc, and, consequently (by hypothesis) the
points A’, D’ lie on the same side of the line ap:¢r. Since, by construction, the points A’, A” lie on the same side
of the point of B’, we have either [B’A’A”], or [B’A"A’], or A” = A’ (see L 1.2.11.8). Similarly, the points D', D"
lie on the same side of the point of C’, we have either [C'D'D"], or [D'D"C"], or D" = D’ (see L 1.2.11.8). To
show that A” = A’, D" = D’ we are going to bring to contradiction the other options. Suppose [B’A’A”]. Then
LA'A"D" = /B'A"D’ (see L 1.2.11.15), LA"A'D" = adjsp/B'A’D’. Taking into account that, as shown above,
/B'A'D' = /B'A"D", we see that u/A’A"D" + n/A"A'D' = 7(@)_ Similarly, the assumption that [B’A”A’]
also gives the equality uZA’A”"D" + ptA"A'D’ = 7(abs) 55 Employing similar arguments, it is easy to show that
if [C'D'D"] or [C"D"D'] then u/A'D'D" + u/A'D" D' = n(abs) 56 Finally, it is easy to see that the equalities
plAA"D" + /A" A'D' = 7(abs) 1/ A'D'D" + u/A’D" D' = 7(2%%) Jead us to contradiction with P 3.1.1.1, C 3.1.1.2
for all cases except A” = A’, D" = D’, which completes the proof. O

Consider the class of intervals ©uAB congruent to some given interval AB. In hyperbolic geometry we can put
into correspondence with this class a unique class of congruent acute angles using the following construction:

Draw a line a > A such that a L asp. Choosing one of the two possible directions on a, draw through B
the line b parallel to a in that direction. By definition, the Lobachevsky function II puts into correspondence with
the class uAB the class of angles congruent to the angle Z(Ba,liim(a, B)). We shall refer to Z(Buy,ljim(a, B)), as
well as any angle congruent to it, as a Lobachevsky angle. In other words, a Lobachevsky angle is a representative
Z(h,k) € II(uAB) of the class II(uAB). To show that the Lobachevsky function is well defined, we need to take
another interval CD € puAB, choose one of the two possible directions on a line ¢ € C, ¢ 1 a¢p, draw through
D the line d parallel to ¢ in that direction, and show that Z(Buy,liim(a, B)) = Z(D¢,liim(c, D)). To achieve this
suppose the contrary, i.e. that either Z(Ba,liim(a, B)) < Z(D¢, liim (¢, D)) or Z(Ba,liim(a, B)) > Z(D¢, liim/(c, D))
(see L 1.3.16.14). Obviously, without loss of generality we can assume that Z(Ba, liim(a, B)) < Z(Dc¢, liim/(c, D)).
57 Using A 1.3.4 draw a ray h emanating from D, lying with lj;,(c, D) on the same side of acp and such that
Z(Ba,liim(a,B)) = Z(D¢,h). In view of Z(Ba,liim(a,B)) < Z(Dc,liim(c, D)) the ray h lies inside the angle
Z(D¢y liim (¢, D)). Hence in view of the definition of (¢, D) (as the lower limiting ray) the ray h meets the
positive ray of the line ¢ (that is, the ray whose points succeed the point C' on the line ¢) in some point F. Now
take a point E on the positive ray of a (that is, the point of this ray succeed A on a) with the additional condition

that AE = CF (see A 1.3.1). Observe also that ZBAE, ZDCF both being right angles, are congruent. Then we

can write AB = CD& /BAE = /DCF & AE = CF 2% AABE = ACDF = /ABE = /CDF. But since

Z(Ba,liim(a,B)) = Z(D¢c,h) = ZCDF and the rays Bg, ljim(a, B) lie on the same side of the line asp, using
A 1.3.4 we find that Bg = ljym(a, B), which implies that lj;,(a, B) meets the line a, which is absurd in view of
l1im(a, B) being the lower limiting ray. This contradiction shows that in fact Z(Ba, liim(a, B)) = Z(D¢, liim/(c, D)),
as required.

Theorem 3.1.18. If for some (abstract) intervals AB, CD we have AB < CD ( and then, of course, uAB < uCD)
then II(uAB) < II(uCD).

Proof. Consider the standard construction (see above), namely, a line a 5 A such that a L aap, a direction on a, and
draw through B the line b parallel to a in that direction. Take (using A 1.3.1) a point E € Ap such that CD = AE.
Draw through F the line ¢ parallel to a in the same direction that b is parallel to a. By T 3.1.4 then c is also parallel to
b in that direction. To prove the theorem, we need to show that Z(Ba, liim(a, B)) < Z(Ea,liim(a, E)). Using A 1.3.4
draw the ray k emanating from E, lying on the same side of the line a 45 and such that Z(Buy, ljim(a, B)) = Z(Ea, k).
The lines b, k are hyperparallel. Now it is easy to see that the ray I, (a, E)) lies inside the angle Z(E4, k). °® Thus,

to be F"" = F".

51 As both C’, D’ and C’, D' lie on the opposite sides of F"' = F’.

52We take into account that the points D, D’ lie on the same side of F’ as do the points A’, A”.

53This is easily seen using L 1.2.11.16.

54We write LD'F'A’ = LD"F'A" & LF'D'A" = LF'D"A" & /D'A'F' = /D" A"F' Tgls AF'D'A" = AF'D"A” = F'D" =
F'D" & F'A" = F' A", whence in view of T 1.3.2 (taking into account that the points D", D’, as well as the points A’, A”, lie on the
same side of F’) we are forced to conclude that D’ = D" and A’ = A”.

55This can be seen immediately from symmetry considerations by observing that the properties established up to this point of the
points involved are invariant with respect to the simultaneous substitutions A’ « A", D’ < D".

56This can be done at once by symmetry using the simultaneous substitutions B’ « C’, A’ < D’ A" « D" (it is easy to see that these
substitutions preserve the validity of the facts established so far in this proof) or drawing an easy analogy with our preceding arguments.

57This is due to symmetry of the conditions of the theorem. Thus, if C'D lies in the class pAB (of intervals congruent to the interval
CD) then AB lies in the class puCD (of intervals congruent to the interval AB.

58By construction, the rays lj;m, (a, E), k lie on the same side of the line. Then either the ray k lies inside the angle Z(E, ljim (a, E))
or the ray lj;, (a, E) lies inside the angle Z(E 4, k). But the first option would imply that the ray k meets the line a. On the other hand,
since CD = AFE and AB < CD we have [ABE]. As a || b (they are directionally parallel) and b || k (they are hyperparallel), the lines a,
k are parallel in the usual sense, that is, they coplane and do not meet. The contradiction shows that in fact lj;,, (a, E) lies inside the
angle Z(Ea, k).
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we have Z(Ba,ljim(a, B)) < Z(Ea, liim(a, E)) which obviously implies that II(uAB) < II(uCD). O

Lemma 3.1.18.1. For any acute angle Z(h, k) there is a ray | emanating from a point B € h such that | L h, the
rays k, | lie on the same side of the line h, and the rays k, | do not meet.

Proof. Suppose the contrary, i.e. that there is an angle Z(h, k) such that for any point B € h the ray I | h emanating
from it into the half-plane containing k& meets the ray k. Construct two sequences of points Ay, As, ..., A,,... and
B1,Bs,...,B,,... as follows:

Take an arbitrary point B; € h. Draw the ray [y emanating from Bj such that I; L h and the rays k, [; lie on
the same side of the line h. Denote by A; the point where I; meets k (it does meet k according to our assumption).
Now choose By so that [OBBs] and OBy = By By where O is the vertex of Z(h, k). Draw the ray lo emanating from
B, such that {1 L h and kl1h. Denote A = kN1j. Continuing this process inductively, we choose the point B, 41 so
that [OB,, Byn+1] and OB, = B, By+1. The ray l;, i € N emanating from the point B; is orthogonal to h, lies on the
same side of h as k, and concurs with & in A; (this constitutes the definition of the points A4;). Denote ¢; = 621851)35 A,
for all ¢+ € N. We also let (for convenience) By = O. Since B;_1B; = B;B;+1 (by construction) and £/B;_1B;A; =
4B1+1B1A1 (the ray BiAi being orthogonal to the line aB; B; — BiB»L'Jrl = }_L), we have ABZ,1B1A1 = ABlJrlBlAl
(abs)Z

for all ¢ € N, which implies 5(585])3?& = 621251»531»,4; In view of §;41 = 6(Aab3i)flAHl = 5(5252531_“ T OAA L A Bisy
521851263#1 — 52185]);Ai + 6(5%141 BiA, (see P 1.3.67.12), whence d;+1 > 2delta; for all i € N. Using these inequalities

for i = 1,2,...,n we find that §,41 > 2"delta;, which implies (in view of C 1.4.18.3) that by appropriate choice
of n the angular defect of the triangle AOB;A; (viewed as an overextended angle) can be made greater than any
given (in advance) overtextended angle, in particular straight angle, which is absurd. This contradiction shows that
in reality there is a point B on the ray h such that the ray [ L h emanating from B into the half-plane containing k
does not meet k. O

Lemma 3.1.18.2. Consider an acute angle Z(h,k) and the set B of points B € h such that the ray l L h emanating
from B into the half-plane containing k does not meet k. Choosing (of the two orders possible on the line h) the order
in which the origin (which we will denote O) of the ray h precedes the points of that ray h, the set B has a minimal
element By. Furthermore, the line ly containing the ray ly, emanating from By into the half-plane containing k and
such that ly L h, corresponding to By, is directionally parallel to k.

Proof. Consider, in addition to B, the set A = h°U{O} U (h\ B). Obviously, AU B = Pj;. Furthermore, we have
A < B for all points A € A, B € B. For A € h'\ B this follows from P 1.2.44.1, C 1.3.26.2. According to Dedekind’s
theorem (T 1.4.17), either the set A has the maximal element, or the set B has the minimal element. Denote this
element By (the one that performs the Dedekind section). To show that the first option is not the case, suppose the
contrary. Then the ray [y L h emanating from B into the half-plane containing k, meets k in some point Ag. Taking
a point A’ such that [AA4pA’] (see A 1.2.2) and lowering the perpendicular from A’ to h (see L 1.3.8.1) which meets
hin B', we find that [OByB’] (using C 1.3.26.2, T 1.3.44), which means that By < B’ and B’ € A in contradiction
with our assumption that By is the maximal element of A. This contradiction shows that in fact the set B has By
as its minimal element. To prove that the lines k, ly are directionally parallel, lower from By the perpendicular to
k. Since the angle /(h, k) is acute (by hypothesis), by C 1.3.18.11 P € k. We need to show that an arbitrary ray
" emanating from By into the interior of the angle Z(Byp,ly) meets the ray P5. (We have seen above that the
line Iy is parallel to (in the sense of absolute geometry, i.e. does not meet) the line k.) Suppose the contrary, i.e.
that there is a ray !’ emanating from By into the interior of the angle Z(Byp,lp) and such that I’ N P§ = (). Since
the angle ZOPBy is right by construction, the angle ZOByP is necessarily acute (see C 1.3.17.4) and thus is less

than the right angle Z(Bo,lo) (see L 1.3.16.17). Hence Byp C IntZ(Byo,ly) (see C 1.3.16.4), and we can write

Bop C IntZ(Boo,lo) &I C IntZ(Bop,lo) " 221 € Int/(Boo,lo) & Bop C IntZ(Boo,l'). Then it is easy to see

that the ray I’ does not meet the line k altogether. °® Thus, by definition of interior the rays I, Iy lie on the same
side of the line h and the rays I’, By lie on the same side of the line hg. Furthermore, using L 1.2.19.4 we see that
the ray I’ lies on the same side of k as the ray h (under the assumption, of course, that A’ does not meet k). On the
other hand, since the rays k, Iy lie on the same side of the line h and the rays I/, [y lie on the same side of h, we see
that the rays k, I’ lie on the same side of h and thus the ray I’ lies completely inside the angle /(h, k) (by definition
of the interior of Z(h,k)). Take a point E € I’. Denote by F the foot of the perpendicular lowered from E to h.
It is easy to see that [OFB]. %0 Consider the ray F. Since F' € (OB) (and, consequently, ' < B), the ray Fg
necessarily meets the ray & in some point M. Recalling that E € IntZ(h, k), using L 1.2.21.9 we find that [FEM].
Then taking into account that E € I, from C 1.2.1.7 we see that I’ has to meet the open interval (OM) and thus
the ray k in some point. This contradiction (with the assumption made above that I’ Nk = () shows that in fact the

59To show this, albeit in a clumsy way, observe that the rays I/, Boo lie on the opposite sides of the line ap,p (because, as we just
saw, Bop C IntZ(Boo,l'); see C 1.2.21.11) and the rays Boo, Po lie on the same side of the line k (they share the point O). Hence
using L 1.2.18.5 we see that the rays I, Po lie on the opposite sides of the line ap,p and thus they cannot meet. And, of course,
U C IntZ(Bop,lo) implies that P ¢ I'.

60 A workable but certainly not very graceful way to show this is as follows: Since, as we saw above, the angle ZOBgP is acute, using
C 1.3.18.11 we find that F' € Bpp. Since, as we just saw I’ C IntZ(h,k) and, in particular, E € IntZ(h,k), using L 1.3.26.15 we find
that F' € h = Op,. Thus, we see that F' € h N Bop = (OBy).
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line [y is directionally parallel to the line k. Then in view of T 3.1.3 the line k is directionally parallel to the line [o.
Now it is evident that Z(h, k) is a Lobachevsky angle corresponding to the interval OBy. %1 O

Theorem 3.1.19. For any acute angle Z(h, k) (and, for that matter, for the class of angles pZ(h,k)) congruent to
that angle) there is an (abstract) interval AB (and, for that matter, the class pAB of intervals congruent to that
interval) such that TI(pAB) = pZ(h, k).

Proof. See proof of the preceding lemma (L 3.1.18.2). O

Theorem 3.1.20. Consider two lines a, b, parallel in some direction. Consider further two (distinct) planes a D a,
B D b drawn through the lines a, b, respectively. If ¢ is the line of intersection of a, B (i.e. the line containing all
common points of the planes «, (), then c¢ is parallel to both a and b in the same direction as they are parallel to
each other.

Proof. O

611n other words, puZ(h, k) = (1O By).
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