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Chapter 1

Absolute (Neutral) Geometry

Preamble

Following Hilbert, in our treatment of neutral geometry (called also absolute geometry and composed of facts true in
both Euclidean and Lobachevskian geometries) we define points, lines, and planes as mathematical objects with the
property that these objects, as well as some objects formed from them, like angles and triangles, satisfy the axioms
listed in sections 1 through 4 of this chapter. We shall denote points, lines and planes by capital Latin A, B, C, . . .,
small Latin a, b, c, . . ., and small Greek α, β, γ, . . . letters respectively, possibly with subscripts.

1.1 Incidence

Hilbert’s Axioms of Incidence

Denote by CPt, CL and CPl the classes of all points, lines and planes respectively. 1 Axioms A 1.1.1 – A 1.1.8 define
two relations ∈L ⊂ CPt × CL and ∈Pl ⊂ CPt × CPl. If A∈La or A∈Plα

2, we say that A lies on, or incident with, a
(respectively α), or that a (respectively α) goes through A. As there is no risk of confusion, when speaking of these
two relations in the future, we will omit the clumsy subscripts L and Pl.

We call a set of points (or, speaking more broadly, of any geometrical objects for which this relation is defined)
lying on one line a (plane α) 3, a collinear (coplanar) set. 4 Points of a collinear (coplanar) set are said to colline of
be collinear (coplane or be coplanar, respectively).

Denote Pa ⇋ {A|A ∈ a} and Pα ⇋ {A|A ∈ α} the set of all point of line a and plane α, respectively. We shall
also sometimes refer to the set Pa (Pα) as the ”contour of the line a” (respectively, ”contour of the plane α”).

Axiom 1.1.1. Given distinct points A, B, there is at least one line a incident with both A and B.

Axiom 1.1.2. There is at most one such line.

We denote the line incident with the points A, B by aAB.

Axiom 1.1.3. Each line has at least two points incident with it. There are at least three points not on the same line.

Axiom 1.1.4. If A, B, C are three distinct points not on the same line, there is at least one plane incident with all
three. Each plane has at least one point on it.

Axiom 1.1.5. If A, B, C are three distinct points not on the same line, there is at most one plane incident with all
three.

We denote the plane incident with the non-collinear points A, B, C by αABC .

Axiom 1.1.6. If A, B are distinct points on a line l that lies on a plane α, then all points of l lie on α.

If all points of the line a lie in the plane α, one writes a ⊂ α and says ”a lies on α”, ”α goes through a.” In
general, if for a geometric object, viewed as a point set X , we have X ⊂ Pa or X ⊂ Pα, we say that the object X
lies on line a or in (on) plane α, respectively.

1The reader will readily note that what we mean by points, lines, planes, and, consequently, the classes CPt, CL and CPl changes
from section to section in this chapter. Thus, in the first section we denote by CPt, CL and CPl the classes of all points, lines and planes,
respectively satisfying axioms A 1.1.1 – A 1.1.8. But in the second section we already denote by CPt, CL and CPl the classes of all points,
lines and planes, respectively satisfying those axioms plus A 1.2.1 – A 1.2.4, etc.

2As is customary in mathematics, if mathematical objects a ∈ A and b ∈ B are in the relation ρ, we write aρb; that is, we let

aρb
def
⇐⇒ (a, b) ∈ ρ ⊂ A× B.

3Obviously, to say that several points or other geometric object lie on one line a (plane α) equals to saying that there is a line a (plane
α) containing all of them

4Obviously, this definition makes sense only for sets, containing at least two points or other appropriate geometric objects.
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Axiom 1.1.7. If a point lies on two distinct planes, at least one other point lies on both planes.

Axiom 1.1.8. There are at least four points not on the same plane.

Obviously, axioms A 1.1.3, A 1.1.4 imply there exists at least one line and at least one plane.
If A ∈ a (A ∈ α) and A ∈ b (A ∈ β), the lines (planes) a (α) and b (β) are said to intersect or meet in their

common point. We then write A ∈ a ∩ b 5 Unless other definitions are explicitly given for a specific case, a point set
A is said to meet another point set B (line a or plane alpha in their common points A ∈ A∩B (A ∈ A∩α and A∩α
respectively). 6

If two (distinct) lines meet, they are said to form a cross.
If two or more point sets, lines or planes meet in a single point, they are said to concur, or be concurrent, in (at)

that point.
A non-empty set of points is usually referred to as a geometric figure. A set of points all lying in one plane (on

one line) is referred to as plane geometric figure (line figure).

Consequences of Incidence Axioms

Proposition 1.1.1.1. If A, C are distinct points and C is on aAB then aAC = aAB.

Proof. A ∈ aAC & C ∈ aAC & A ∈ aAB & C ∈ aAB
A1.1.2
=⇒ aAC = aAB. 2

Corollary 1.1.1.2. If A, C are distinct points and C is on aAB then B is on aAC.

Corollary 1.1.1.3. If A, B, C are distinct points and C is on aAB then aAB = aAC = aBC .

Lemma 1.1.1.4. If {Ai|i ∈ U}, is a set of points on one line a then a = aAiAj
for all i 6= j, i, j ∈ U .

Proof. Ai ∈ a & Aj ∈ a ⇒ a = aAiAj
. 2

Corollary 1.1.1.5. If {Ai|i ∈ U}, is a set of points on one line a then any of these points Ak lies on all lines aAiAj
,

i 6= j, i, j ∈ U . 2

Lemma 1.1.1.6. If the point E is not on the line aAC , then all other points of the line aAE except A are not on
aAC.

Proof. Suppose F ∈ aAE ∩ aAC and F 6= A. Then by A 1.1.2 aAE = aAC , whence E ∈ aAC - a contradiction. 2

Lemma 1.1.1.7. If A1, A2, . . . , An(, . . .), n ≥ 3, is a finite or (countably) infinite sequence of (distinct) points, and
any three consecutive points Ai, Ai+1, Ai+2, i = 1, 2, . . . , n − 2(, . . .) of the sequence are collinear, then all points of
the sequence lie on one line.

Proof. By induction. The case n = 3 is trivial. If A1, A2, . . . , An−1 are on one line a (induction!), then by C 1.1.1.5
Ai ∈ a = aAn−2An−1 , i = 1, 2, . . . , n. 2

Lemma 1.1.1.8. If two points of a collinear set lie in plane α then the line, containing the set, lies in plane α.

Proof. Immediately follows from A 1.1.6. 2

Theorem 1.1.1. Two distinct lines cannot meet in more than one point.

Proof. Let A 6= B and (A ∈ a ∩ b)& (B ∈ a ∩ b). Then by A1.1.2 a = b. 2

Lemma 1.1.2.1. For every line there is a point not on it.

Proof. By A1.1.3 ∃{A, B, C} such that ¬∃b (A ∈ b & B ∈ b & C ∈ b), whence ∃P ∈ {A, B, C} such that P /∈ a
(otherwise A ∈ a & B ∈ a & C ∈ a.) 2

Lemma 1.1.2.2. If A and B are on line a and C is not on line a then A, B, C are not on one line.

Proof. If ∃B (A ∈ b & B ∈ b & C ∈ b), then A ∈ b & B ∈ b & A ∈ a & B ∈ a
A1.1.2
=⇒ a = b ∋ C - a contradiction. 2

Corollary 1.1.2.3. If C is not on line aAB then A, B, C are not on one line, B is not on aAC , and A is not on
aBC. If A, B, C are not on one line, then C is not on line aAB, B is not on aAC, and A is not on aBC .

Lemma 1.1.2.4. If A and B are distinct points, there is a point C such that A, B, C are not on one line.

Proof. By L1.1.2.1 ∃C /∈ aAB. By C 1.1.2.3 C /∈ aAB ⇒ ¬∃b (A ∈ b & B ∈ b & C ∈ b). 2

Lemma 1.1.2.5. For every point A there are points B, C such that A, B, C are not on one line.

5Similar to the definition of a ⊂ α, this notation agrees with the set-theoretical interpretation of a line or plane as an array of points.
However, this interpretation is not made necessary by axioms. This observation also applies to the definitions that follow.

6These relations ”to meet” are obviously symmetric, which will be reflected in their verbal usage.
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Proof. By A1.1.3 ∃B 6= A. By C1.1.2.3 ∃C such that ¬∃b (A ∈ b & B ∈ b & C ∈ b). 2

Lemma 1.1.2.6. For every plane α there is a point P not on it.

Proof. By A1.1.8 ∃{A, B, C, D} such that ¬∃β (A ∈ β & B ∈ β & C ∈ β & D ∈ β), whence ∃P ∈ {A, B, C, D} such
that P /∈ α. (otherwise (A ∈ α & B ∈ α & C ∈ α & D ∈ α). 2

Lemma 1.1.2.7. If three non-collinear points A, B, C are on plane α, and D is not on it, then A, B, C, D are not
all on one plane.

Proof. If ∃β (A ∈ β & B ∈ β & C ∈ β & D ∈ β) then (¬∃b (A ∈ b & B ∈ b & C ∈ b))& (A ∈ α & B ∈ α & C ∈ α & A ∈

β & B ∈ β & C ∈ β)
A1.1.5
=⇒ α = β ∋ D - a contradiction. 2

Corollary 1.1.2.8. If D is not on plane αABC , then A, B, C, D are not on one plane. 2

Lemma 1.1.2.9. If A, B, C are not on one line, there is a point D such that A, B, C, D are not on one plane.

Proof. ¬∃b (A ∈ b & B ∈ b & C ∈ b)
A1.1.4
=⇒ ∃αABC . By L1.1.2.6 ∃D /∈ αABC , whence by C1.1.2.8¬∃β (A ∈ β & B ∈

β & C ∈ β & D ∈ β). 2

Lemma 1.1.2.10. For any two points A, B there are points C, D such that A, B, C, D are not on one plane.

Proof. By L1.1.2.4 ∃C such that ¬∃b(A ∈ b & B ∈ b & C ∈ b), whence by By L1.1.2.9 ∃D ¬∃β (A ∈ β & B ∈ β & C ∈
β & D ∈ β). 2

Lemma 1.1.2.11. For any point A there are points B, C, D such that A, B, C, D are not one plane.

Proof. By A1.1.3 ∃B 6= A. By L 1.1.2.10 ∃{C, D} such that ¬∃β (A ∈ β & B ∈ β & C ∈ β & D ∈ β). 2

Lemma 1.1.2.12. A point A not in plane α cannot lie on any line a in that plane.

Proof. A ∈ a & a ⊂ α ⇒ A ∈ α - a contradiction. 2

Theorem 1.1.2. Through a line and a point not on it, one and only one plane can be drawn.

Proof. Let C /∈ a. By A1.1.3 ∃{A, B} ((A ∈ a)& (B ∈ a)). By L1.1.2.2 ¬∃ b ((A ∈ b)& (B ∈ b)& (C ∈ b)), whence
by A1.1.4 ∃α ((A ∈ α)& (B ∈ α)& (C ∈ α)). By 1.1.6 (A ∈ a)& (B ∈ a)& (A ∈ α)& (B ∈ α) ⇒ a ⊂ α. To show
uniqueness note that (a ⊂ α)& (C ∈ α)& (a ⊂ β)& (C ∈ β) ⇒ (A ∈ α)& (B ∈ α)& (C ∈ α)& (A ∈ β)& (B ∈
β)& (C ∈ β) ⇒ α = β. 2

We shall denote the plane drawn through a line a and a point A by αaA.

Theorem 1.1.3. Through two lines with a common point, one and only one plane can be drawn.

Proof. Let A = a∩b. By A1.1.3 ∃B ((B ∈ b)& (B 6= A)). By T1.1.1 B /∈ a, whence by T1.1.2 ∃α ((a ⊂ α)& (B ∈ α)).
By A1.1.6 (A ∈ α)& (B ∈ α)& (A ∈ b)& (B ∈ b) ⇒ b ⊂ α. If there exists β such that a ⊂ β & b ⊂ β then

b ⊂ β & B ∈ b ⇒ B ∈ β and (a ⊂ α & B ∈ α & a ⊂ β & B ∈ β)
T1.1.2
=⇒ α = β. 2

Theorem 1.1.4. A plane and a line not on it cannot have more than one common point.

Proof. If A 6= B then by A1.1.6 A ∈ a & A ∈ α & B ∈ a & B ∈ α ⇒ a ⊂ α. 2

Theorem 1.1.5. Two distinct planes either do not have common points or there is a line containing all their common
points.

Proof. Let α ∩ β 6= ∅. Then ∃A (A ∈ α & A ∈ β)
A1.1.7
=⇒ ∃B (B 6= A& B ∈ α & B ∈ β) and by A1.1.6 aAB ⊂ α ∩ β. If

C /∈ aAB & C ∈ α ∩ β then aAB ⊂ α ∩ β & C /∈ aAB & C ∈ α ∩ β
T1.1.2
=⇒ α = β - a contradiction. 2

Lemma 1.1.6.1. A point A not in plane α cannot lie on any line a in that plane.

Proof. A ∈ a & a ⊂ α ⇒ A ∈ α - a contradiction. 2

Corollary 1.1.6.2. If points A, B are in plane α, and a point C is not in that plane, then C is not on aAB.

Proof. A ∈ α & B ∈ α
A1.1.6
=⇒ aAB ⊂ α. C /∈ α & aAB ⊂ α

L1.1.6.1
=⇒ C /∈ aAB. 2

Corollary 1.1.6.3. If points A, B are in plane α, and a point C is not in that plane, then A, B, C are not on one
line.

Proof. By C1.1.6.2 C /∈ aAB, whence by 1.1.2.3 A, B, C are not on one line. 2

Theorem 1.1.6. Every plane contains at least three non-collinear points.
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Figure 1.1: Every plane contains at least three non-collinear points.

Proof. (See Fig. 1.1.) By A 1.1.4 ∃AA ∈ α. By L 1.1.2.6 ∃B B /∈ α. By L1.1.2.1 ∃D D /∈ aAB, whence by T1.1.2

∃β (aAB ⊂ β & D ∈ β). aAB ⊂ β ⇒ A ∈ β & B ∈ β . A /∈ α & A ∈ β ⇒ α 6= β. A ∈ α & A ∈ β & α 6= β
A1.1.7
=⇒ ∃C C ∈

α ∩ β. A ∈ β & C ∈ β
A1.1.6
=⇒ aAC ⊂ β. By L 1.1.2.6 ∃E E /∈ β. E /∈ β & aAB ⊂ β

L1.1.6.1
=⇒ E /∈ aAB

T1.1.2
⇒ ∃γ aAB ⊂

γ & E ∈ γ. aAB ⊂ γ ⇒ A ∈ γ & B ∈ γ. B /∈ α & B ∈ γ ⇒ α 6= γ. E /∈ β & E ∈ γ ⇒ β 6= γ. A ∈ α ∩ γ
A1.1.7
=⇒ ∃F F ∈

α∩γ. F /∈ aAC , since otherwise F ∈ aAC & aAC ⊂ β ⇒ F ∈ β, and A ∈ α & F ∈ α & B /∈ α
C1.1.6.3
=⇒ ¬∃b (A ∈ b & B ∈

b & F ∈ b), and ¬∃b (A ∈ b & B ∈ b & F ∈ b)& A ∈ β & B ∈ β & F ∈ β & A ∈ γ & B ∈ γ & & F ∈ γ
A1.1.4
=⇒ β = γ - a

contradiction. Finally, F /∈ aAC
A1.1.4
=⇒ ¬∃b (A ∈ b & C ∈ b & F ∈ b). 2

Corollary 1.1.6.4. In any plane (at least) three distinct lines can be drawn.

Proof. Using T 1.1.6, take three non - collinear points A, B, C in plane α. Using A 1.1.1, draw lines aAB, aBC , aAC .
By A 1.1.6 they all line in α. Finally, they are all distinct in view of non-collinearity of A, B, C. 2

Corollary 1.1.6.5. Given a line a lying in a plane α, there is a point A lying in α outside a.

Proof. See T 1.1.6. 2

Corollary 1.1.6.6. In every plane α there is a line a and a point A lying in α outside a.

Proof. See T 1.1.6, A 1.1.1. 2

We say that a line a is parallel to a line b, or that lines a and b are parallel (the relation being obviously symmetric),
and write a ‖ b, if a and b lie in one plane and do not meet.

A couple of parallel lines a, b will be referred to as an abstract strip (or simply a strip) ab.
A line a is said to be parallel to a plane α (the plane α is then said to be parallel to the line a) if they do not

meet.
A plane α is said to be parallel to a plane β (or, which is equivalent, we say that the planes α, β are parallel, the

relation being obviously symmetric) if α ∩ β = ∅.

Lemma 1.1.7.1. If lines aAB, aCD are parallel, no three of the points A, B, C, D are collinear, and, consequently,
none of them lies on the line formed by two other points in the set {A, B, C, D}.

Proof. In fact, collinearity of any three of the points A, B, C, D would imply that the lines aAB, aCD meet. 2

Lemma 1.1.7.2. For any two given parallel lines there is exactly one plane containing both of them.

Proof. Let a ‖ b, where a ⊂ α, a ⊂ β, b ⊂ α, b ⊂ β. Using A 1.1.3, choose points A1 ∈ a, A2 ⊂ a, B ∈ b. Since a ‖ b,

the points A1, A2, B are not collinear. Then A1 ∈ α & A2 ∈ α & & B ∈ α & A1 ∈ β & A2 ∈ β & B ∈ β
A1.1.5
=⇒ α = β.

2
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We shall denote a plane containing lines a, b, whether parallel or having a common point, by αab.

Lemma 1.1.7.3. If lines a, b and b, c are parallel and points A ∈ a, B ∈ b, C ∈ c are collinear, the lines a, b, c all
lie in one plane.

Proof. That A, B, C are collinear means ∃d (A ∈ d & B ∈ d & C ∈ d). We have B ∈ d∩αbc & C ∈ d∩αbc
A1.1.6
=⇒ d ⊂ αbc.

A ∈ a & a ‖ b ⇒ A /∈ b. Finally, A ∈ d ⊂ αbc & A ∈ a ⊂ αab & b ⊂ αab & b ⊂ αbc & A /∈ b
T1.1.2
=⇒ αab = αbc. 2

Two lines a, b that cannot both be contained in a common plane are called skew lines. Obviously, skew lines are
not parallel and do not meet (see T 1.1.3.)

Lemma 1.1.7.4. If four (distinct) points A, B, C, D are not coplanar, the lines aAB, aCD are skew lines.

Proof. Indeed, if the lines aAB, aCD were contained in a plane α, this would make the points A, B, C, D coplanar
contrary to hypothesis. 2

Lemma 1.1.7.5. If a plane α not containing a point B contains both a line a and a point A lying outside a, the
lines a, aAB are skew lines.

Proof. If both a, aAB were contained in a single plane, this would be the plane α, which would in this case contain
B contrary to hypothesis. 2

1.2 Betweenness and Order

Hilbert’s Axioms of Betweenness and Order

Axioms A 1.2.1 - A 1.2.4 define a ternary relation ”to lie between” or ”to divide” ρ ⊂ CPt × CPt × CPt. If points
A, B, C are in this relation, we say that the point B lies between the points A and C and write this as [ABC].

Axiom 1.2.1. If B lies between A and C, then A, C are distinct, A, B, C lie on one line, and B lies between C and
A.

Axiom 1.2.2. For every two points A and C there is a point B such that C lies between A and B.

Axiom 1.2.3. If the point B lies between the points A and C, then the point C cannot lie between the points A and
B.

For any two distinct points A, B define the following point sets:

An (abstract) interval AB ⇋ {A, B};

An open interval (AB) ⇋ {X |[AXB]};

Half-open (half-closed) intervals [AB) ⇋ {A} ∪ (AB) and (AB] ⇋ (AB) ∪ {B};

For definiteness, in the future we shall usually refer to point sets of the form [AB) as the half-open intervals, and
to those of the form (AB] as the half-closed ones.

A closed interval, also called a line segment, [AB] ⇋ (AB) ∪ AB.

Open, half-open (half - closed), and closed intervals thus defined will be collectively called interval - like sets.
Abstract intervals and interval - like sets are also said to join their ends A, B.

An interval AB is said to meet, or intersect, another interval CD (generic point set A 7, line a, plane α) in a
point X if X ∈ (AB) ∩ (CD) ( X ∈ (AB) ∩ A, X ∈ (AB) ∩ a, X ∈ (AB) ∩ α, respectively).

Given an abstract interval or any interval-like set X with the ends A, B, we define its interior IntX by IntX ⇋

(AB), and its exterior ExtX by ExtX ⇋ PaAB
\ [AB] = {C|C ∈ aAB & C /∈ [AB]}. If some point C lies in the

interior (exterior) of X , we say that it lies inside (outside ) X . 8

Axiom 1.2.4 (Pasch). Let a be a line in a plane αABC , not containing any of the points A, B, C. Then if a meets
AB, it also meets either AC or BC.

7That is, a set conforming to the general definition on p. 4.
8The topological meaning of these definitions will be elucidated later; see p. 18.
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Figure 1.2: Construction for the proofs of L 1.2.1.6 and C 1.2.1.7

Basic Properties of Betweenness Relation

The axiom A 1.2.3 can be augmented by the following statement.

Proposition 1.2.1.1. If B lies between A and C, then A, B, C are distinct points. 9

Proof. [ABC]
A1.2.3
=⇒ ¬[ABC]. [ABC] &¬[ACB] & B = C ⇒ [ABB] &¬[ABB] - a contradiction. 2

Proposition 1.2.1.2. If a point B lies between points A and C, then the point A cannot lie between the points B
and C.10

Proof. [ABC]
A1.2.1
=⇒ [CBA]

A1.2.3
=⇒ ¬[CAB]

A1.2.1
=⇒ ¬[BAC]. 2

Lemma 1.2.1.3. If a point B lies between points A and C, then B is on line aAC , C is on aAB, A is on aBC , and
the lines aAB, aAC , aBC are equal.

Proof. [ABC]
A1.2.1
=⇒ A 6= B 6= C & ∃a (A ∈ a & B ∈ a & C ∈ a). By C 1.1.1.5 B ∈ aAC & C ∈ aAB & A ∈ aBC . Since

A 6= B 6= C, by C 1.1.1.3 aAB = aAC = aBC . 2

Lemma 1.2.1.4. If a point B lies between points A and C, then the point C lies outside AB (i.e., C lies in the set
ExtAB), and the point A lies outside BC (i.e., A ∈ ExtBC).

Proof. Follows immediately from A 1.2.1, A 1.2.3, L 1.2.1.3. 2

Lemma 1.2.1.5. A line a, not containing at least one of the ends of the interval AB, cannot meet the line aAB in
more than one point.

Proof. If C ∈ a ∩ aAB and D ∈ a ∩ aAB, where D 6= C, then by A 1.1.2 a = aAB ⇒ A ∈ a & B ∈ a. 2

Lemma 1.2.1.6. Let A, B, C be three points on one line a; the point A lies on this line outside the interval BC,
and the point D is not on a. If a line b, drawn through the point A, meets one of the intervals BD, CD, it also meets
the other.

Proof. (See Fig. 1.2.) Let A ∈ b and suppose that ∃E ([BED] & E ∈ b). Then [BED]
L1.2.1.3
=⇒ E ∈ aBD & D ∈ aBE .

A ∈ a = aBC ⊂ αBCD & E ∈ aBD ⊂ αBCD & A ∈ b & E ∈ b
A1.1.6
=⇒ b ⊂ αBCD. E /∈ a, since otherwise B ∈ a & E ∈

a ⇒ a = aBE ∋ D - a contradiction. B /∈ b & C /∈ b, because (B ∈ b ∨ C ∈ b)& A ∈ b ⇒ a = b ∋ E. D /∈ b,
otherwise D ∈ b & E ∈ b ⇒ B ∈ b = aDE . By A 1.2.4 ∃F (F ∈ b & [CFD]), because if ∃H (H ∈ b & [BHC]) then

a 6= b & H ∈ a = aBC & H ∈ b & A ∈ a & A ∈ b
T1.1.1
=⇒ H = A, whence [BAC]- a contradiction. Replacing E with F

and B with C, we find that ∃F (F ∈ b & [CFD]) ⇒ ∃E ([BED] & E ∈ b). 2

Corollary 1.2.1.7. Let a point B lie between points A and C, and D be a point not on aAC . If a line b, drawn
through the point A, meets one of the intervals BD, CD, it also meets the other. Furthermore, if b meets BD in E
and CD in F , the point E lies between the points A, F .

Proof. (See Fig. 1.2.) Since by A 1.2.1, A 1.2.3 [ABC] ⇒ A 6= B 6= C & ∃a (A ∈ a & B ∈ a & C ∈ a)&¬[BAC],

the first statement follows from L 1.2.1.6. To prove the rest note that D /∈ aAC
C1.1.2.3
=⇒ A /∈ aCD, [DFC] & A /∈

aCD & D ∈ aDB & B ∈ aDB & [CBA]
above
=⇒ ∃E′ E′ ∈ aDB ∩ (AF ), and E′ ∈ aDB ∩ aAF & E ∈ aBD ∩ aAF & B /∈

aAF = b
L1.2.1.5
=⇒ E′ = E. 11

2

9For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.1.
10For convenience, in the future we shall usually refer to A 1.2.3 instead of P 1.2.1.2.
11We have shown that B /∈ b in L 1.2.1.6
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Figure 1.3: For any two distinct points A and C there is a point D between them.

Corollary 1.2.1.8. Let A, C be two distinct points and a point E is not on line aAC . Then any point F such that
[AEF ] or [AFE] or [EAF ], is also not on aAC .

Proof. Observe that [AEF ] ∨ [AFE] ∨ [EAF ]
A1.2.1
=⇒ A 6= F & F ∈ aAE and then use L 1.1.1.6. 2

Lemma 1.2.1.9. If half-open/half-closed intervals [AB), (BC] have common points, the points A, B, C colline. 12

Proof. [AB) ∩ (BC] 6= ∅ ⇒ ∃D D ∈ [AB) ∩ (BC]
L1.2.1.3
=⇒ D ∈ aAB ∩ aBC

A1.1.2
=⇒ aAB = aBC , whence the result. 2

Corollary 1.2.1.10. If lines a, b and b, c are parallel and a point B ∈ b lies between points A ∈ a, C ∈ c, the lines
a, b, c all lie in one plane.

Proof. Follows immediately from L 1.2.1.3, L 1.1.7.3. 2

Corollary 1.2.1.11. Any plane containing two points contains all points lying between them.

Proof. Follows immediately from A 1.1.6, L 1.2.1.3. 2

Corollary 1.2.1.12. Suppose points A, B, C are not collinear and a line a has common points with (at least) two
of the open intervals (AB), (BC), (AC). Then these common points are distinct and the line a does not contain any
of the points A, B, C.

Proof. Let, for definiteness, F ∈ a ∩ (AB), D ∈ a ∩ (AC). Obviously, F 6= D, for otherwise we would have (see
L 1.2.1.3, A 1.1.2) F = D ∈ aAB ∩ aAC ⇒ aAB = aAC - a contradiction. Also, we have A /∈ a, B /∈ a, C /∈ a,
because otherwise 13 (A ∈ a ∨ B ∈ a ∨ C ∈ a)& F ∈ a & D ∈ a & F ∈ aAB & D ∈ aAC ⇒ a = aAB ∨ a = aAC ⇒ F ∈
aAB ∩ aAC ∨ F ∈ aAB ∩ aAC ⇒ aAB = aAC - again a contradiction. 2

Corollary 1.2.1.13. If a point A lies in a plane α and a point B lies outside α, then any other point C 6= A of the
line aAB lies outside the plane α. 14

Proof. B /∈ α ⇒ aAB /∈ α. Hence by T 1.1.2 aAB and α concur at A (that is, A is the only common point of the line
aAB and the plane α). 2

Theorem 1.2.1. For any two distinct points A and C there is a point D between them.

Proof. (See Fig. 1.3.) By L 1.1.2.1 ∃E E /∈ aAC . By A 1.2.2 ∃F [AEF ]. From C 1.2.1.8 F /∈ aAC , and therefore

C /∈ aAF by L 1.1.1.6. Since F 6= C, by A 1.2.2 ∃G [FCG]. C /∈ aAF & [FCG]
C1.2.1.8
=⇒ G /∈ aAF

C1.1.2.3
=⇒ G 6= E & A /∈

aFG. [AEF ]
A1.2.1
=⇒ [FEA] & A 6= F . Denote b = aGE. As [FCG], A /∈ aFG, G ∈ b, and E ∈ b & [FEA], by C 1.2.1.7

∃D (D ∈ b & [ACD]). 2

12This lemma will also be used in the following form:
If points A, B, C do not colline, the half-open/half-closed intervals [AB), (BC] do not meet, i.e. have no common points.
13Again, we use (see L 1.2.1.3, A 1.1.2).
14In particular, this is true if any one of the points A, B, C lies between the two others (see L 1.2.1.3). Note also that we can formulate

a pseudo generalization of this corollary as follows: Given a line a, if a point A ∈ a lies in a plane α, and a point B ∈ a lies outside α,
then any other point C 6= A of the line a lies outside the plane α.
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E

Figure 1.4: Among any three collinear points A, B, C one always lies between the others.

A B C D

H, J

G, I
E

F

Figure 1.5: If B is on (AC), and C is on (BD), then both B and C lie on (AD).

Theorem 1.2.2. Among any three collinear points A, B, C one always lies between the others. 15

Proof. (See Fig. 1.4.) Suppose A ∈ a, B ∈ a, C ∈ a, and ¬[BAC], ¬[ACB]. By L 1.1.2.1 ∃D D /∈ a. By A 1.2.2
∃G [BDG]. From L 1.2.1.8 F /∈ aBC = a = aAC , and therefore C /∈ aBG, A /∈ aCG by C 1.1.2.3. (B 6= G by A 1.2.1).

D ∈ aAD & A ∈ aAD & D ∈ aCD & C ∈ aCD & [BDG]
C1.2.1.7
=⇒ ∃E (E ∈ aAD & [CEG])& ∃F (F ∈ aCD & [AFG]).

[CEG] & A /∈ aCG & C ∈ aCD & F ∈ aCD & [AFG]
C1.2.1.7
=⇒ ∃I (I ∈ aCD & [AIE]). E ∈ aAD & A 6= E

C1.1.1.2
=⇒

D ∈ aAE . D /∈ aAC = a
C1.1.2.3
=⇒ A /∈ aCD. A /∈ aCD & D ∈ aAE & [AIE] & D ∈ aCD & I ∈ aCD

L1.2.1.5
=⇒ I = D,

whence [ADE]
A1.2.2
=⇒ [EDA]. [CEG] & A /∈ aCG & G ∈ aGD & D ∈ aGD & [ADE]

C1.2.1.7
=⇒ ∃J (J ∈ aGD & [AJC]).

B ∈ aGD & J ∈ aGD & [AJC] & B ∈ aBC = a & C /∈ aGD = aBD
L1.2.1.5
=⇒ J = B, whence [ABC]. 2

Lemma 1.2.3.1. If a point B lies on an open interval (AC), and the point C lies on an open interval (BD), then
both B and C lie on the open interval (AD), that is, [ABC] & [BCD] ⇒ [ABD] & [ACD].

Proof. (See Fig. 1.5) D 6= A, because [ABC]
A1.2.3
=⇒ ¬[BCA]. By A 1.2.1, L 1.1.1.7 ∃a (A ∈ a & B ∈ a & C ∈ a & D ∈

a). By L 1.1.2.1 ∃E E /∈ a. By A 1.2.2 ∃F [ECF ]. From C 1.2.1.8 F /∈ aAC , and therefore A /∈ aCF by C 1.1.2.3.
[ABC] & F /∈ aAC & A ∈ aAE & [CEF ] & A /∈ ACF & F ∈ aBF & B ∈ aBF∃G (G ∈ aBF & [AGE])& ∃I (I ∈

aAE & [BIF ]). E /∈ aAB
C1.1.2.3
=⇒ B /∈ aAE . B /∈ aAE & [BIF ] & I ∈ aAE & G ∈ aAE & G ∈ aBF

L1.2.1.5
=⇒ I = G. From

F /∈ aBD by C 1.1.2.3 D /∈ aBF and by C 1.2.1.8 G /∈ aBD, whence G 6= D. [BCD] & F /∈ aBD & D ∈ aGD & G ∈

aGD & [BGF ] & D /∈ aBF & F ∈ aCF & C ∈ aCF
C1.2.1.7
=⇒ ∃H (H ∈ aGD & [CHF ])& ∃J (J ∈ aCF & [GJD]).

G /∈ aCD = aBD
C1.1.2.3
=⇒ C ∈ aGD. C /∈ aGD & J ∈ aGD & H ∈ aGD & J ∈ aCF & [CHF ]

L1.2.1.5
=⇒ J = H .

E /∈ aAC = aAD
C1.1.2.3
=⇒ D /∈ aAE & A /∈ aEC . [AGE] & D /∈ aAE & E ∈ aEC & H ∈ aEC & [GHD]

C1.2.1.7
=⇒ ∃K (K ∈

aEC & [AKD]). A /∈ aEC & K ∈ aEC & C ∈ aEC & C ∈ aAD & [AKD]
L1.2.1.5
=⇒ K = C. Using the result just proven,

we also obtain [ABC] & [BCD]
A1.2.2
=⇒ [DCB] & [CBA]

above
=⇒ [DBA]

A1.2.2
=⇒ [ABD]. 2

15The theorem is, obviously, also true in the case when one of the points lies on the line formed by the two others, i.e. when, say,
B ∈ aAC , because this is equivalent to collinearity.
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A B C D

H
G

M

F

L

Figure 1.6: If B lies on (AC), and C lies on (AD), then B also lies on (AD), and C lies on (BD). The converse is
also true.

Lemma 1.2.3.2. If a point B lies on an open interval (AC), and the point C lies on an open interval (AD), then
B also lies on the open interval (AD), and C lies on the open interval (BD). The converse is also true. That is,
[ABC] & [ACD] ⇔ [BCD] & [ABD].16

Proof. (See Fig. 1.6.) By A 1.2.1, L 1.1.1.7 ∃a (A ∈ a & B ∈ a & C ∈ a & D ∈ a). By L 1.1.2.1 ∃G G /∈ a. By
A 1.2.2 ∃F [BGF ]. From C 1.2.1.8 F /∈ aAB = aAC = aBC = aBD, and therefore by C 1.1.2.3 A /∈ aBF , A /∈ aFC ,

D /∈ aFC , D /∈ aBF . ¬∃M (M ∈ aFC & [AMC]), because [BGF ] & A /∈ aBF & F ∈ aFC & M ∈ aFC & [AMG]
C1.2.1.7
=⇒

∃L (L ∈ aFC & [ALB]) and therefore A /∈ aFC & L ∈ aFC & C ∈ aFC & [ALB] & C ∈ aAB
L1.2.1.5
=⇒ L = C, whence

[ACB]
A1.2.3
=⇒ ¬[ABC]- a contradiction. B ∈ aAD ⊂ αAGD & G ∈ αAGD & F ∈ aBG & C ∈ aAD ⊂ αAGD

A1.1.6
=⇒ aFC ⊂

αAGD. C ∈ aFC & [ACD] &¬∃M (M ∈ aFC & [AMG])
A1.2.4
=⇒ ∃H (H ∈ aFC & [GHD]). [BGF ] & D /∈ aBF & F ∈

aCF & C ∈ aCF & [GHD]
C1.2.1.7
=⇒ ∃I (I ∈ aCF & [BID]). D /∈ aCF & I ∈ aCF & C ∈ aCF & [BID] & C ∈ aBD

L1.2.1.5
=⇒

I = C, whence [BCD]. [ABC] & [BCD]
L1.2.3.1
=⇒ [ABD]. To prove the converse, note that [ABD] & [BCD]

A1.2.1
=⇒

[DCB] & [DBA]
above
=⇒ [DCA] & [CBA]

A1.2.1
=⇒ [ACD] & [ABC]. 2

If [CD] ⊂ (AB), we say that the interval CD lies inside the interval AB.

Theorem 1.2.3. Suppose each of the points C, D lie between points A and B. If a point M lies between C and D,
it also lies between A and B. In other words, if points C, D lie between points A and B, the open interval (CD) lies
inside the open interval (AB).

Proof. (See Fig. 1.8) By A 1.2.1, L 1.1.1.7 ∃a (A ∈ a & B ∈ a & C ∈ a & D ∈ a), and all points A, B, C, D are distinct,

whence by T 1.2.2 [ACD] ∨ [ADC] ∨ [CAD]. But ¬[CAD], because otherwise [CAD] & [ADB]
L1.2.3.1
=⇒ [CAB]

A1.2.3
=⇒

¬[ACB] - a contradiction. Finally, [ACD] & [CMD]
L1.2.3.2
=⇒ [AMD] and [AMD] & [ADB]

L1.2.3.2
=⇒ [AMB]. 2

Lemma 1.2.3.3. If points A, B, D do not colline, a point F lies between A, B and the point C lies between B, D,
there is a point E, which lies between C, A as well as between D, F .

Proof. (See Fig. 1.7.) [AFB]
A1.2.1
=⇒ A 6= F 6= B. F 6= B

A1.2.2
=⇒ ∃H [FBH ]. [AFH ] & [FBH ]

L1.2.3.1
=⇒ [AFH ] & [ABH ].

Denote for the duration of this proof a ⇋ aFB = aAB = aAF = aFH = . . . (see L 1.2.1.3). By C 1.1.2.3

that A, B, D do not colline implies D /∈ a. We have [FBH ] & D /∈ a & [BCD]
C1.2.1.7
=⇒ ∃R [FRD] & [HCR].

[AFH ] & D /∈ a & [FRD]
C1.2.1.7
=⇒ ∃L [ALD] & [HRL]. [HCR] & [HRL]

L1.2.3.2
=⇒ [HCL]

L1.2.1.3
=⇒ H ∈ aCL. Observe that

B ∈ a & [BCD] & D /∈ a
C1.2.1.7
=⇒ C /∈ a, and therefore C /∈ aAL, 17 because otherwise C ∈ aAL & L 6= C

C1.1.1.2
=⇒ A ∈

aLC and A ∈ aLC & H ∈ aLC
A1.1.2
=⇒ aLC = aAH = a ⇒ C ∈ a - a contradiction. C /∈ aAL & [ALD] & [LRC]

C1.2.1.7
=⇒

∃E [AEC] & [DRE]. D /∈ a = aAB
C1.1.2.3
=⇒ A /∈ aBD. A /∈ aBD & [BCD] & [CEA]

C1.2.1.7
=⇒ ∃X ([BXA] & [DEX ]).

[DRE] & [DEX ]
L1.2.3.2
=⇒ [DRX ]. [FRD] & [DRX ] & [BXA]

L1.2.1.3
=⇒ F ∈ aDR & X ∈ aDR & X ∈ a. D /∈ a ⇒ aDR 6= a.

Finally, F ∈ a ∩ aDR & X ∈ a ∩ aDR & a 6= aDR
A1.1.2
=⇒ X = F . 2

Proposition 1.2.3.4. If two (distinct) points E, F lie on an open interval (AB) (i.e., between points A, B), then
either E lies between A and F or F lies between A and E.

16Note that in different words this lemma implies that if a point C lies on an open interval (AD), the open intervals (AC), (CD) are
both subsets of (AD).

17aAL definitely exists, because [ALD] ⇒ A 6= L.
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Figure 1.7: If A, B, D do not colline, F lies between A, B, and C lies between B, D, there is a point E with [CEA]
and [DEF ].

A Ñ D BM

Figure 1.8: If C, D lie between A and B, (CD) lies inside (AB).
18

Proof. By A 1.2.1 [AEB] & [AFB] ⇒ A 6= E & A 6= F , and the points A, B, E, F are collinear (by L 1.2.1.3
E ∈ aAB, F ∈ aAB). Also, by hypothesis, E 6= F . Therefore, by T 1.2.2 [EAF ]∨ [AEF ]∨ [AFE]. But [EAF ] & E ∈

(AB)& F ∈ (AB)
T1.2.3
=⇒ A ∈ (AB), which is absurd as it contradicts A 1.2.1. We are left with [AEF ]∨ [AFE], q.e.d.

2

Lemma 1.2.3.5. If both ends of an interval CD lie on a closed interval [AB], the open interval (CD) is included
in the open interval (AB).

Proof. Follows immediately from L 1.2.3.2, T 1.3.3. 2

Theorem 1.2.4. If a point C lies between points A and B, then none of the points of the open interval (AC) lie on
the open interval (CB).

Proof. (See Fig. 1.9) [AMC] & [ACB]
L1.2.3.2
=⇒ [MCB]

A1.2.3
=⇒ ¬[CMB]. 2

Theorem 1.2.5. If a point C lies between points A and B, then any point of the open interval (AB), distinct from
C, lies either on the open interval (AC) or on the open interval (CB). 19

Proof. By A 1.2.1, L 1.1.1.7 ∃a (A ∈ a & B ∈ a & C ∈ a & M ∈ a), whence by T 1.2.2 [CBM ] ∨ [CMB] ∨

[MCB]. But ¬[CBM ], because otherwise [ACB] & [CBM ]
L1.2.3.1
=⇒ [ABM ]

A1.2.3
=⇒ ¬[AMB] - a contradiction. Fi-

nally, [AMB] & [MCB]
L1.2.3.2
=⇒ [AMC]. 2

A M             C                           B

Figure 1.9: If C lies between A and B, then (AC) has no common points with (CB). Any point of (AB) lies either
on (AC) or (CB).
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A                               O                 C          D

Figure 1.10: If C lies between A and B, any point M of AB, M 6= C, lies either on (AC) or on CB.

A                 L           C             M              B g

a

A                                                        N                C N

M

B

L

a

1)

2)

M, N

Figure 1.11: If O divides A and C, A and D, it does not divide C and D.

Proposition 1.2.5.1. If a point O divides points A and C, as well as A and D, then it does not divide C and D.

Proof. (See Fig. 1.10) By L 1.1.1.7, A 1.2.1 [AOC] & [AOD] ⇒ A 6= C & A 6= D & ∃a (A ∈ a & C ∈ a & D ∈ a). If also

C 6= D 20, from T 1.2.2 [CAD]∨[ACD]∨[ADC]. But ¬[CAD], because [CAD] & [AOD]
L1.2.3.2
=⇒ [CAO]

A1.2.3
=⇒ ¬[AOC].

Hence by T 1.2.4 ([ACD] ∨ [ADC])& [AOC] & [AOD] ⇒ ¬[COD]. 2

Proposition 1.2.5.2. If two points or both ends of an interval-like set lie on line a, this set lies on line a.

Proposition 1.2.5.3. If two points or both ends of an interval-like set with the ends A, B lie in plane α, then the
line aAB, and, in particular, the set itself, lies in plane α.

Theorem 1.2.6. Let either
- A, B, C be three collinear points, at least one of them not on line a,
or
- A, B, C be three non-collinear point, and a is an arbitrary line.
Then the line a cannot meet all of the open intervals (AB), (BC), and (AC).

Proof. (See Fig. 1.2) Suppose ∃L (L ∈ a & [ALB])& ∃M (M ∈ a & [BMC])& ∃N (N ∈ a & [ANC]). If A /∈ a, then
also B /∈ a & C /∈ a, because otherwise by A 1.1.2, L 1.2.1.3 ((B ∈ a∨C ∈ a)& [ALB] & [ANC]) ⇒ (a = aAB)∨ (a =
aAC) ⇒ A ∈ a.

1) Let ∃g (A ∈ g & B ∈ g & C ∈ g). Then by T 1.2.2 [ACB] ∨ [ABC] ∨ [CAB]. Suppose that [ACB].21. Then

A /∈ a & A ∈ g ⇒ a 6= g, [ALB] & [BMC] & [ANC]
L1.2.1.3
=⇒ L ∈ aAB = g & M ∈ aBC = g & N ∈ aAC = g, and

therefore L ∈ a ∩ g & M ∈ a ∩ g & N ∈ a ∩ g & a 6= g
T1.1.1
=⇒ L = M = N , whence [ALC] & [CLB], which contradicts

[ACB] by T 1.1.1.
2) Now suppose ¬∃g (A ∈ g & B ∈ g & C ∈ g), and therefore aAB 6= aBC 6= aAC . L 6= M , because

[ALB] & [BLC]
L1.2.1.3
=⇒ L ∈ aAB & L ∈ aBC ⇒ aAB = aBC , L 6= N , because [ALB] & [ALC]

L1.2.1.3
=⇒ L ∈

aAB & L ∈ aAC ⇒ aAB = aAC , and M 6= N , because [BLC] & [ALC]
L1.2.1.3
=⇒ L ∈ aBC & L ∈ aAC ⇒ aBC = aAC .

L 6= M 6= N & L ∈ a & M ∈ a & N ∈ a
T1.2.2
=⇒ [LMN ] ∨ [LNM ] ∨ [MLN ]. Suppose [LMN ].22 Then [ANC] & aAB 6=

19Thus, based on this theorem and some of the preceding results (namely, T 1.2.1, L 1.2.3.2, T 1.2.4), we can write [ABC] ⇒ (AC) =
(AB) ∪ {B} ∪ (BC), (AB) ⊂ (AC), (BC) ⊂ (AC), (AB) ∩ (BC) = ∅.

20for C = D see A 1.2.1
21Since A,B, C, and therefore L,M,N , enter the conditions of the theorem symmetrically, we can do this without any loss of generality

and not consider the other two cases
22See previous footnote
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Figure 1.12: Every point, except the first and the last, lies between the two points with adjacent (in N) numbers

aAC ⇒ N /∈ aAB, [ALB] & N /∈ aAB & B ∈ aBC & C ∈ aBC & [LMN ]
C1.2.1.7
=⇒ ∃D (D ∈ aBC & [ADN ]) and

A /∈ aBC & C ∈ aBC & D ∈ & aBC & C ∈ aAN & [ADN ]
L1.2.1.5
=⇒ C = D, whence [ACN ]

A1.2.3
=⇒ ¬[ANC] -a con-

tradiction. 2

Denote Nn ⇋ {1, 2, . . . n}

Betweenness Properties for n Collinear Points

Lemma 1.2.7.1. Suppose A1, A2, . . . , An(, . . .), where n ∈ Nn(n ∈ N) is a finite (infinite) sequence of points with
the property that a point lies between two other points if its number has an intermediate value between the numbers
of these points. Then if a point of the sequence lies between two other points of the same sequence, its number has
an intermediate value between the numbers of these two points. That is, (∀i, j, k ∈ Nn (respectively, N) ((i < j <
k) ∨ (k < j < i) ⇒ [AiAjAk])) ⇒ (∀i, j, k ∈ Nn (respectively, N) ([AiAjAk] ⇒ (i < j < k) ∨ (k < j < i)).

Proof. Suppose [AiAjAk]. Then i < j < k or k < j < i, because (j < i < k) ∨ (k < i < j) ∨ (i < k < j) ∨ (j < k <

i) ⇒ [AjAiAk] ∨ [AjAkAi]
A1.2.3
=⇒ ¬[AiAjAk] - a contradiction. 2

Let an infinite (finite) sequence of points Ai, where i ∈ N (i ∈ Nn, n ≥ 4), be numbered in such a way that, except
for the first and (in the finite case) the last, every point lies between the two points with adjacent (in N) numbers.
(See Fig. 1.12.) Then:

Lemma 1.2.7.2. – All these points are on one line, and all lines aAiAj
(where i, j ∈ Nn, i 6= j) are equal.

Proof. Follows from A 1.2.1, L 1.1.1.7. 2

Lemma 1.2.7.3. – A point lies between two other points iff its number has an intermediate value between the numbers
of these two points;

Proof. By induction. [A1A2A3] & [A2A3A4]
L1.2.3.1
=⇒ [A1A2A4] & [A1A3A4] (n = 4). [AiAn−2An−1] & [An−2An−1An]

L1.2.3.1
=⇒ [AiAn−1An], [AiAjAn−1] & [AjAn−1An]

L1.2.3.2
=⇒ [AiAjAn]. 2

Lemma 1.2.7.4. – An arbitrary point cannot lie on more than one of the open intervals formed by pairs of points
with adjacent numbers;

Proof. Suppose [AiBAi+1], [AjBAj+1], i < j. By L 1.2.7.3 [AiAi+1Aj+1], whence [AiBAi+1] & [AiAi+1Aj+1]
T1.2.4
=⇒

¬[Ai+1BAj+1] ⇒ j 6= i+1. But if j > i+1 we have [Ai+1AjAj+1] & [AjBAj+1]
L1.2.3.2
=⇒ [Ai+1BAj+1] – a contradiction.

2

Lemma 1.2.7.5. – In the case of a finite sequence, a point which lies between the end (the first and the last) points
of the sequence, and does not coincide with the other points of the sequence, lies on at least one of the open intervals,
formed by pairs of points of the sequence with adjacent numbers.

Proof. By induction. For n = 3 see T 1.2.5. [A1BAn] & B /∈ {A2, . . . , An−1}
T1.2.5
=⇒ ([A1BAn−1] ∨ [An−1BAn])& B /∈

{A2, . . . , An−2} ⇒ (∃i i ∈ Nn−2 & [AiBAi+1) ∨ [An−1BAn] ⇒ ∃i i ∈ Nn−1 & [AiBAi+1]. 2

Lemma 1.2.7.6. – All of the open intervals (AiAi+1), where i = 1, 2, . . . , n− 1, lie in the open interval (A1An), i.e.
∀i ∈ {1, 2, . . . , n − 1} (AiAi+1) ⊂ (A1An).

Proof. By induction on n. For n = 4 ([A1MA2] ∨ [A2MA3])& [A1A2A3]
L1.2.3.2
=⇒ [A1MA3].

If M ∈ (AiAi+1), i ∈ {1, 2, . . . , n − 2}, then by induction hypothesis M ∈ (A1An−1), by L 1.2.7.3 [A1An−1An],

therefore [A1MAn−1] & [A1An−1An]
L1.2.3.2
=⇒ [A1MAn]; if M ∈ (An−1An) then [A1An−1An] & [An−1MAn]

L1.2.3.2
=⇒

[A1MAn]. 2

Lemma 1.2.7.7. – The half-open interval [A1An) is the disjoint union of the half-open intervals [AiAi+1), where
i = 1, 2, . . . , n − 1:

[A1An) =
n−1⋃
i=1

[AiAi+1).

Also,
The half-closed interval (A1An] is a disjoint union of the half-closed intervals (AiAi+1], where i = 1, 2, . . . , n− 1:

(A1An] =
n−1⋃
i=1

(AiAi+1].
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A A C A A A A        B1 2 n-2 n-1 n

Figure 1.13: Any open interval contains infinitely many points.

Proof. Use L 1.2.7.5, L 1.2.7.3, L 1.2.7.6. 2

This lemma gives justification for the following definition:
If a finite sequence of points Ai, where i ∈ Nn, n ≥ 4, has the property that every point of the sequence, except

for the first and the last, lies between the two points with adjacent (in N) numbers, we say that the interval A1An

is divided into n − 1 intervals A1A2, A2A3, . . . , An−1An (by the points A2, A3, . . . An−1).
If a finite (infinite) sequence of points Ai, i ∈ Nn, n ≥ 3 (n ∈ N) on one line has the property that a point lies

between two other points iff its number has an intermediate value between the numbers of these two points, we say
that the points A1, A2, . . . , An(, . . .) are in order [A1A2 . . . An(. . .)]. Note that for n = 3 three points A1, A2, A3 are
in order [A1A2A3] iff A2 divides A1 and A3, so our notation [A1A2A3] is consistent.

Theorem 1.2.7. Any finite sequence of distinct points Ai, i ∈ Nn, n ≥ 4 on one line can be renumbered in such a
way that a point lies between two other points iff its number has an intermediate value between the numbers of these
two points. In other words, any finite sequence of points Ai, i ∈ Nn, n ≥ 4 on a line can be put in order [A1A2 . . . An].

By a renumbering of a finite sequence of points Ai, i ∈ Nn, n ≥ 4 we mean a bijective mapping (permutation)
σ : Nn → Nn, which induces a bijective transformation σS : {A1, A2, . . . , An} → {A1, A2, . . . , An} of the set of points
of the sequence by Ai 7→ Aσ(i), i ∈ Nn.

The theorem then asserts that for any finite (infinite) sequence of points Ai, i ∈ Nn, n ≥ 4 on one line there is
a bijective mapping (permutation) of renumbering σ : Nn → Nn such that ∀ i, j, k ∈ Nn (i < j < k) ∨ (k < j < i) ⇔
[Aσ(i)Aσ(j)Aσ(k)].

23

Proof. Let [AlAmAn], l 6= m 6= n, l ∈ N4, m ∈ N4, n ∈ N4 (see T 1.2.2). If p ∈ N4 & p 6= l & p 6= m & p 6= n, then by
T 1.2.2, T 1.2.5 [ApAlAn] ∨ [AlApAm] ∨ [AmApAn] ∨ [AlApAn] ∨ [AlAnAp].

Define the values of the function σ by
for [ApAlAn] let σ(1) = p, σ(2) = l, σ(3) = m, σ(4) = n;
for [AlApAm] let σ(1) = l, σ(2) = p, σ(3) = m, σ(4) = n;
for [AmApAn] let σ(1) = l, σ(2) = m, σ(3) = p, σ(4) = n;
for [AlAnAp] let σ(1) = l, σ(2) = m, σ(3) = n, σ(4) = p.
Now suppose that ∃τ τ : Nn−1 → Nn−1 such that ∀i, j, k ∈ Nn−1 (i < j < k) ∨ (k < j < i) ⇔ [Aτ(i)Aτ(j)Aτ(k)].

By T 1.2.2, L 1.2.7.5 [AnAτ(1)Aτ(n−1)] ∨ [Aτ(1)Aτ(n−1)Aτ(n)] ∨ ∃i i ∈ Nn−2 & [Aτ(i)AnAτ(n+1)].
The values of σ are now given
for [AnAσ(1)Aσ(n−1)] by σ(1) = n and σ(i + 1) = τ(i), where i ∈ Nn−1;
for [Aσ(i)Aσ(n−1)Aσ(n)] by σ(i) = τ(i), where i ∈ Nn−1, and σ(n) = n;
for [Aσ(i)AnAσ(i+1)] by σ(j) = τ(j), where j ∈ {1, 2, . . . , i}, σ(i + 1) = n, and σ(j + 1) = τ(j), where j ∈

{i + 1, i + 2, . . . , n − 1}. See L 1.2.7.3. 2

Every Open Interval Contains Infinitely Many Points

Lemma 1.2.8.1. For any finite set of points {A1, A2, . . . , An} of an open interval (AB) there is a point C on (AB)
not in that set.

Proof. (See Fig. 1.13.) Using T 1.2.7, put the points of the set {A, A1, A2, . . . , An, B} in order [A, A1, A2, . . . , An, B].
By T 1.2.2 ∃C [A1CA2]. By T 1.2.3 [ACB] and C 6= A1, A2, . . . , An, because by A 1.2.3 [A1CA2] ⇒ ¬[A1A2C] and
by A 1.2.1 C 6= A1, A2. 2

Theorem 1.2.8. Every open interval contains an infinite number of points.

Corollary 1.2.8.2. Any interval-like set contains infinitely many points.

Further Properties of Open Intervals

Lemma 1.2.9.1. Let Ai, where i ∈ Nn, n ≥ 4, be a finite sequence of points with the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Then if
i ≤ j ≤ l, i ≤ k ≤ l, i, j, k, l ∈ Nn (i, j, k, l ∈ N), the open interval (AjAk) is included in the open interval (AiAl).

24

Furthermore, if i < j < k < l and B ∈ (AjAk) then [AiAjB]. 25

23The present theorem can thus be viewed as a direct generalization of T 1.2.2.
24In particular, given a finite (countable infinite) sequence of points Ai, i ∈ Nn (n ∈ N) in order [A1A2 . . . An(. . .)], if i ≤ j ≤ l,

i ≤ k ≤ l, i, j, k, l ∈ Nn (i, j, k, l ∈ N), the open interval (AjAk) is included in the open interval (AiAl).
25Also, [BAkAl], but this gives nothing new because of symmetry.
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Proof. Assume j < k. 26 Then i = j & k = l ⇒ (AiAl) = (AjAk); i = j & k < l ⇒ [AiAkAl]
L1.2.3.2
=⇒ (AjAk) ⊂ (AiAl);

i < j & k = l ⇒ [AiAjAk]
L1.2.3.2
=⇒ (AjAk) ⊂ (AiAl). i < j & k < l ⇒ [AiAjAl] & [AiAkAl]

L1.2.3.2
=⇒ (AjAk) ⊂ (AiAl).

The second part follows from [AiAjAk] & [AjBAk]
L1.2.3.2
=⇒ [AiAjB]. 2

Let an interval A0An be divided into intervals A0A1, A1A2, . . . An−1An.27 Then

Lemma 1.2.9.2. – If B1 ∈ (Ak−1Ak), B2 ∈ (Al−1Al), k < l then [A0B1B2]. Furthermore, if B2 ∈ (Ak−1Ak) and
[Ak−1B1B2], then [A0B1B2].

Proof. By L 1.2.7.3 [A0AkAm]. Using L 1.2.9.1, (since 0 ≤ k − 1, k ≤ l − 1 < n) we obtain [A0B1Ak], [AkB2An].

Hence [B1AkAm] & [AkB2Am]
L1.2.3.2
=⇒ [B1AkB2], [A0B1Ak] & [B1AkB2]

L1.2.3.1
=⇒ [A0B1B2]. To show the second part,

observe that for 0 < k − 1 we have by the preceding lemma (the second part of L 1.2.9.1) [A0Ak−1B2], whence

[A0Ak−1B2] & [Ak−1B1B2]
L1.2.3.2
=⇒ [A0B1B2]. 2

Corollary 1.2.9.3. – If B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), k < l, then [AB1B2].

Proof. Follows from the preceding lemma (L 1.2.9.2) and L 1.2.9.1. 2

Lemma 1.2.9.4. – If [A0B1B2] and B2 ∈ (A0An), then either B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), where 0 < k < l ≤ n,
or B1 ∈ [Ak−1Ak), B2 ∈ [Ak−1Ak), in which case either B1 = Ak−1 and B2 ∈ (Ak−1Ak), or [Ak−1B1B2], where
B1, B2 ∈ (Ak−1Ak).

Proof. [A0B1B2] & [A0B2An]
L1.2.3.2
=⇒ [A0B1Ak]. By L 1.2.7.7 we have B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), where k, l ∈ Nn.

Show k ≤ l. In fact, otherwise B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), k > l would imply [A0B2B1] by the preceding corollary,

which, according to A 1.2.3, contradicts [A0B1B2]. Suppose k = l. Note that [A0B1B2]
A1.2.1
=⇒ B1 6= B2 6= A0. The

assumption B2 = Ak−1 would (by L 1.2.9.1; we have in this case 0 < k − 1, because B2 6= A0) imply [A0B2B1] - a
contradiction. Finally, if B1, B2 ∈ (Ak−1Ak) then by P 1.2.3.4 either [Ak−1B1B2] or [Ak−1B2B1]. But [Ak−1B2B1]
would give [A0B2B1] by (the second part of) L 1.2.9.2. Thus, we have [Ak−1B1B2]. There remains also the possibility
that B1 = Ak−1 and B2 ∈ [Ak−1Ak). 2

Lemma 1.2.9.5. – If 0 ≤ j < k ≤ l − 1 < n and B ∈ (Al−1Al) then [AjAkB]. 28

Proof. By L 1.2.7.7 [AjAkAl]. By L 1.2.9.1 [AkBAl]. Therefore, [AjAkAl] & [AkBAl]
L1.2.3.2
=⇒ [AjAkB]. 2

Lemma 1.2.9.6. – If D ∈ (Aj−1Aj), B ∈ (Al−1Al), 0 < j ≤ k ≤ l − 1 < n, then [DAkB].

Proof. Since j ≤ k ⇒ j − 1 < k, we have from the preceding lemma (L 1.2.9.5) [Aj−1AkB] and from L 1.2.9.1
[Aj−1DAk]. Hence by L 1.2.3.2 [DAkB]. 2

Lemma 1.2.9.7. – If B1 ∈ (AiAj), B2 ∈ (AkAl), 0 ≤ i < j < k < l ≤ n then (AjAk) ⊂ (B1Ak) ⊂ (B1B2) ⊂
(B1Al) ⊂ (AiAl), (AjAk) 6= (B1Ak) 6= (B1B2) 6= (B1Al) 6= (AiAl) and (AjAk) ⊂ (AjB2) ⊂ (B1B2) ⊂ (AiB2) ⊂
(AiAl), (AjAk) 6= (AjB2) 6= (B1B2) 6= (AiB2) 6= (AiAl).

Proof. 29 Using the lemmas L 1.2.3.1, L 1.2.3.2 and the results following them (summarized in the footnote accom-

panying T 1.2.5), we can write [AiB1Aj ] & [AiAjAk]
L1.2.3.2
=⇒ [B1AjAk] ⇒ (AjAk) ⊂ (B1Ak)& (AjAk) 6= (B1Ak).

Also, [AjAkAl] & [AkB2Al] ⇒ [AjAkB2] ⇒ (AjAk) ⊂ (AjB2)& (AjAk) 6= (AjB2). [B1AjAk] & [AjAkB2]
L1.2.3.1
=⇒

[B1AjB2] & [B1AkB2] ⇒ (AjB2) ⊂ (B1B2)& (AjB2) 6= (B1B2)& (B1Ak) ⊂ (B1B2)& (B1Ak) 6= (B1B2).
[B1AkB2] & [AkB2Al] ⇒ [B1B2Al] ⇒ (B1B2) ⊂ (B1Al) ⇒ (B1B2) 6= (B1Al). [AiB1Aj ] & [B1AjB2] ⇒ [AiB1B2] ⇒
(B1B2) ⊂ (AiB2) ⇒ (B1B2) 6= (AiB2). [AiB1B2] & [B1B2Al] ⇒ [AiB1Al] & [AiB2Al] ⇒ (B1Al) ⊂ (AiAl)& (B1Al) 6=
(AiAl)& (AiB2) ⊂ (AiAl)& (AiB2) 6= (AiAl). 2

Lemma 1.2.9.8. – Suppose B1 ∈ [AkAk+1), B2 ∈ [AlAl+1), where 0 < k + 1 < l < n. Then (Ak+1Al) ⊂ (B1B2) ⊂
(AkAl+1), (Ak+1Al) 6= (B1B2) 6= (AkAl+1).

26Due to symmetry, we can do so without loss of generality.
27Recall that by L 1.2.7.3 this means that the points A0, A1, A2, . . . , An are in order [A0A1A2 . . . An].
28Similarly, it can be shown that if 0 < l ≤ j < k ≤ n and B ∈ (Al−1Al) then [BAjAk]. Because of symmetry this essentially adds

nothing new to the original statement.
29An easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set

{A0, A1, . . . , An, B1, B2} are in order [(A0 . . .)AiB1Aj . . . AkB2Al(. . . An).
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Proof. 30 Suppose B1 = Ak, B2 = Al. Then [AkAk+1Al] ⇒ (Ak+1Al) ⊂ (AkAl) = (B1B2)& (Ak+1Al) 6=
(B1B2). Also, in view of k < k + 1 < l < l + 1, taking into account L 1.2.9.1, we have (Ak+1Al) ⊂ (B1B2) ⊂
(AkAl+1)& (Ak+1Al) 6= (B1B2) 6= (AkAl+1). Suppose now B1 = Ak, B2 ∈ (AlAl+1). Then [AkAlAl+1] & [AlB2Al+1] ⇒
[AkAlB2] & [AkB2Al+1] ⇒ [B1B2Al+1 ⇒ (B1B2) ⊂ (AkAl+1)& (B1B2) 6= (AkAl+1). [AkAk+1Al] & [Ak+1AlB2] ⇒
[AkAk+1B2] ⇒ (Ak+1B2) ⊂ (AkB2) = (B1B2)& (Ak+1B2) 6= (B1B2). (Ak+1Al) ⊂ (Ak+1B2)& (Ak+1Al) 6=
(Ak+1B2)& (Ak+1B2) ⊂ (B1B2)& (Ak+1B2) 6= (B1B2) ⇒ (Ak+1Al) ⊂ (B1B2)& (Ak+1Al) 6= (B1B2). Now con-
sider the case B1 ∈ (AkAk+1), B2 = Al. We have [AkB1Ak+1] & [AkAk+1Al] ⇒ [A1Ak+1Al] ⇒ (Ak+1Al) ⊂
(B1B2)& (Ak+1Al) 6= (B1B2). [AkAk+1Al] & [AkB1Ak+1] ⇒ [B1Ak+1Al] ⇒ (Ak+1Al) ⊂ (B1B2)& (Ak+1Al) 6=
(B1B2). [B1Ak+1Al] & [Ak+1AlAl+1] ⇒ [B1AlAl+1] ⇒ (B1B2) = (B1Al) ⊂ (B1Al+1)& (B1B2) 6= (B1Al+1).
[AkBAk+1] & [AkAk+1Al+1] ⇒ [AkB1Al+1] ⇒ (B1Al+1) ⊂ (AkAl+1)& (B1Al+1) 6= (AkAl+1).
(B1B2) ⊂ (B1Al+1)& (B1B2) 6= (B1Al+1)& (B1Al+1) ⊂ (AkAl+1)& (B1Al+1) 6= (AkAl+1) ⇒
(B1B2) ⊂ (AkAl+1)& (B1B2) 6= (AkAl+1). Finally, in the case when B1 ∈ (AkAk+1), B2 ∈ (AlAl+1) the result
follows immediately from the preceding lemma (L 1.2.9.7). 2

Lemma 1.2.9.9. If open intervals (AD), (BC) meet in a point E and there are three points in the set {A, B, C, D}
known not to colline, the open intervals (AD), (BC) concur in E.

Proof. If also F ∈ (AD) ∩ (BC), F 6= E, then by L 1.2.1.3, A 1.1.2 aAD = aBC , contrary to hypothesis. 2

Lemma 1.2.9.10. Let (B1D1), (B2D2), . . . , (BnDn) be a finite sequence of open intervals containing a point C and
such that each of these open intervals (BjDj) except the first has at least one of its ends not on any of the lines
aBiDi

, 1 ≤ i < j formed by the ends of the preceding (in the sequence) open intervals. 31 Then all intervals (BiDi),
i ∈ Nn concur in C.

Proof. By L 1.2.9.9, we have for 1 ≤ i < j ≤ n: C ∈ (BiDi) ∩ (BjDj)& Bj /∈ aBiDi
∨ Dj /∈ aBiDi

⇒ C =
(BiDi) ∩ (BjDj), whence the result. 2

Lemma 1.2.9.11. Let (B1D1), (B2D2), . . . , (BnDn) be a finite sequence of open intervals containing a point C and
such that the line aBi0Di0

defined by the ends of a (fixed) given open interval of the sequence contains at least one of
the ends of every other open interval in the sequence. Then all points C, Bi, Di, i ∈ Nn colline.

Proof. By L 1.2.1.3, A 1.1.2, we have ∀i ⊂ Nn \ i0 (C ∈ (BiDi) ∩ (Bi0Di0))& (Bi ∈ aBi0Di0
∨ Di ∈ aBi0Di0

) ⇒
aBiDi

= aBi0Di0
, whence all points Bi, Di, i ∈ Nn, are collinear. C also lies on the same line by L 1.2.1.3. 2

Lemma 1.2.9.12. Let (B1D1), (B2D2), . . . , (BkDk) be a finite sequence of open intervals containing a point C and
such that the line aBi0Di0

defined by the ends of a (fixed) given interval of the sequence contains at least one of the
ends of every other interval in the sequence. Then there is an open interval containing the point C and included in
all open intervals (Bi, Di), i ∈ Nk of the sequence.

Proof. By (the preceding lemma) L 1.2.9.11 all points C, Bi, Di, i ∈ Nk colline. Let A1, A2, . . . , An be the sequence
of these points put in order [A1A2 . . . An], where C = Ai for some i ∈ Nn. (See T 1.2.7.) 32 Then [Ai−1AiAi+1]
and by L 1.2.9.1 for all open intervals (AkAl), 1 < k < l < n, corresponding to the open intervals of the original
sequence, we have (Ai−1Ai+1) ⊂ (AkAl). 2

Lemma 1.2.9.13. If a finite number of open intervals concur in a point, no end of any of these open intervals can
lie on the line formed by the ends of another interval.

In particular, if open intervals (AD), (BC) concur in a point E, no three of the points A, B, C, D colline.

Proof. Otherwise, by (the preceding lemma) L 1.2.9.12 two intervals would have in common a whole interval, which,
by T 1.2.8, contains an infinite number of points. 2

Corollary 1.2.9.14. Let (B1D1), (B2D2), . . . , (BnDn) be a finite sequence of open intervals containing a point C
and such that each of these open intervals (BjDj) except the first has at least one of its ends not on any of the lines
aBiDi

, 1 ≤ i < j formed by the ends of the preceding (in the sequence) open intervals. Then no end of any of these
open intervals can lie on the line formed by the ends of another interval.

In particular, if open intervals (AD), (BC) meet in a point E and there are three points in the set {A, B, C, D}
known not to colline, no three of the points A, B, C, D colline.

Proof. Just combine L 1.2.9.9, L 1.2.9.13. 2

30Again, we use in this proof the lemmas L 1.2.3.1, L 1.2.3.2, and the results following them (summarized in the footnote accompanying
T 1.2.5) without referring to these results explicitly.

31To put it shortly, ∀j ∈ {2, 3, . . . , n} Bj /∈ aBiDi
∨Dj /∈ aBiDi

, 1 ≤ i < j.
32Naturally, we count only distinct points. Also, it is obvious that 1 < i < n, because there is at least one interval containing C = Ai.
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O A                           OA

Figure 1.14: The point A lies on the ray OA.

Open Sets and Fundamental Topological Properties

Given a line a, consider a set A ⊂ Pa of points all lying on a. A point O is called an interior point of A if there is
an open interval (AB) containing this point and completely included in A. That is, O is an interior point of a linear
point set A iff ∃(AB) such that O ∈ (AB) ⊂ A.

Given a plane α, consider a set A ⊂ Pα of points all lying on α. A point O is called an interior point of A if
on any line a lying in α and passing through O there is an open interval (A(a)B(a)) containing the point O and
completely included in A.

Finally, consider a set A of points not constrained to lie on any particular plane. A point O is called an interior
point of A if on any line a passing through O there is an open interval (A(a)B(a)) containing the point O and
completely included in A.

The set of all interior points of a (linear, planar, or spatial) set A is called the interior of that set, denoted IntA.
A (linear, planar, or spatial) set A is referred to as open if it coincides with its interior, i.e. if IntA = A.

Obviously, the empty set and the set Pa of all points of a given line a are open linear sets.
The empty set and the set Pα of all points of a given plane α are open plane sets.
Finally, the empty set and the set of all points (of space) given are open (spatial) sets.
The following trivial lemma gives us the first non-trivial example of a linear open set.

Lemma 1.2.9.15. Any open interval (AB) is an open (linear) set.

Proof. 2

Now we can establish that our open sets are indeed open in the standard topological sense.

Lemma 1.2.9.16. A union of any number of (linear, planar, spatial) open sets is an open set.

Proof. (Linear case.) 33 Suppose P ∈
⋃

i∈U

Ai, where the sets Ai ⊂ Pa are open for all i ∈ U . Here U is a set of

indices. By definition of union ∃i0 ∈ U such that P ∈ Ai0 . By our definition of open set there are points A, B such
that P ∈ (AB) ⊂ Ai0 . Hence (using again the definition of union) P ∈ (AB) ⊂

⋃
i∈U

Ai, which completes the proof. 2

Lemma 1.2.9.17. An intersection of any finite number of (linear, planar, spatial) open sets is an open set.

Proof. Suppose P ∈
n⋂

i=1

Bi, where the sets Bi ⊂ Pa are open for all i = 1, 2, . . . , n. By definition of intersection

∀i ∈ Nn we have P ∈ Bi. Hence (from our definition of open set) ∀i ∈ Nn there are points Bi, Di ∈ Bi such that
P ∈ (BiDi) ⊂ Bi. Then by L 1.2.9.12 there is an open interval (BD) containing the point P and included in all open

intervals (Bi, Di), i ∈ Nn. Hence (using again the definition of intersection) P ∈ (BD) ⊂
n⋂

i=1

Bi. 2

Theorem 1.2.9. Given a line a, all open sets on that line form a topology on Pa. Given a plane α, all open sets in
that plane form a topology on Pα. Finally, all (spatial) open sets form a topology on the set of all points (of space).

Proof. Follows immediately from the two preceding lemmas (L 1.2.9.16, L 1.2.9.17). 2

Theorem 1.2.10. Proof. 2

Let O, A be two distinct points. Define the ray OA, emanating from its initial point (which we shall call also the
origin) O, as the set of points OA ⇋ {B|B ∈ aOA & B 6= O &¬[AOB]}. We shall denote the line aOA, containing
the ray h = OA, by h̄.

The initial point O of a ray h will also sometimes be denoted O = ∂h.

Basic Properties of Rays

Lemma 1.2.11.1. Any point A lies on the ray OA. (See Fig. 1.14)

Proof. Follows immediately from A 1.2.1. 2

Note that L 1.2.11.1 shows that there are no empty rays.

33We present here a proof for the case of linear open sets. For planar and spatial open sets the result is obtained by obvious modification
of the arguments given for the linear case. Thus, in the planar case we apply these arguments on every line drawn through a given point
and constrained to lie in the appropriate plane. Similarly, in the spatial case our argumentation concerns all lines in space that go through
a chosen point.
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O B A                      O = OA B

Figure 1.15: If B lies on OA, A lies on OB.

B                   O                    A                        OA

Figure 1.16: B lies on the opposite side of O from A iff O divides A and B.

Lemma 1.2.11.2. If a point B lies on a ray OA, the point A lies on the ray OB, that is, B ∈ OA ⇒ A ∈ OB .

Proof. (See Fig. 1.15) From A 1.2.1, C 1.1.1.2 B 6= O & B ∈ aOA &¬[AOB] ⇒ A ∈ aOB &¬[BOA]. 2

Lemma 1.2.11.3. If a point B lies on a ray OA, then the ray OA is equal to the ray OB.

Proof. Let C ∈ OA. If C = A, then by L 1.2.11.2 C ∈ OB. C 6= O 6= A&¬[AOC]
T1.2.2
=⇒ [OAC] ∨ [OCA]. Hence

¬[BOC], because from L 1.2.3.1, L 1.2.3.2 [BOC] & ([OAC] ∨ [OCA]) ⇒ [BOA]. 2

Lemma 1.2.11.4. If rays OA and OB have common points, they are equal.

Proof. OA ∩ OB 6= ∅ ⇒ ∃C C ∈ OA & C ∈ OB
L1.2.11.3

=⇒ OA = OC = OB . 2

If B ∈ OA (B ∈ aOA & B /∈ OA & B 6= O), we say that the point B lies on line aOA on the same side (on the
opposite side) of the given point O as (from) the point A.

Lemma 1.2.11.5. The relation ”to lie on the given line a the same side of the given point O ∈ a as” is an equivalence
relation on Pa \ O. That is, it possesses the properties of:

1) Reflexivity: A geometric object A always lies in the set the same side of the point O as itself;
2) Symmetry: If a point B lies on the same side of the point O as A, then the point A lies on the same side of

O as B.
3) Transitivity: If a point B lies on the same side of the point O as the point A, and a point C lies on the same

side of O as B, then C lies on the same side of O as A.

Proof. 1) and 2) follow from L 1.2.11.1, L 1.2.11.2. Show 3): B ∈ OA & C ∈ OB
L1.2.11.3

=⇒ OA = OB = OC ⇒ C ∈ OA.
2

Lemma 1.2.11.6. A point B lies on the opposite side of O from A iff O divides A and B.

Proof. (See Fig. 1.16) By definition of the ray OA, B ∈ aOA & B /∈ OA & B 6= O ⇒ [AOB].
Conversely, from L 1.2.1.3, A 1.2.1 [AOB] ⇒ B ∈ aOA & B 6= O & B /∈ OA. 2

Lemma 1.2.11.7. The relation ”to lie on the opposite side of the given point from” is symmetric.

Proof. Follows from L 1.2.11.6 and [AOB]
A1.2.1
=⇒ [BOA]. 2

If a point B lies on the same side (on the opposite side) of the point O as (from) a point A, in view of symmetry
of the relation we say that the points A and B lie on the same side (on opposite sides) of O.

Lemma 1.2.11.8. If points A and B lie on one ray OC , they lie on line aOC on the same side of the point O. If,
in addition, A 6= B, then either A lies between O and B or B lies between O and A.

Proof. (See Fig. 1.17) A ∈ OC
L1.2.11.3

=⇒ OA = OC . B ∈ OA ⇒ B ∈ aOA & B 6= O &¬[BOA]. When also B 6= A, from
T 1.2.2 [OAB] ∨ [OBA]. 2

Lemma 1.2.11.9. If a point C lies on the same side of the point O as a point A, and a point D lies on the opposite
side of O from A, then the points C and D lie on the opposite sides of O. 34

34Making use of L 1.2.11.6, this statement can be reformulated as follows:
If a point C lies on the ray OA, and the point O divides the points A and D, then O divides C and D.

O A               C              B                           OC

Figure 1.17: If A and B lie on OC , they lie on aOC on the same side of O.
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D                   O                    A                       C          OA

Figure 1.18: If C lies on OA, and O divides A and D, then O divides C and D.

D               C                     O                      A                     OA

Figure 1.19: If C and D lie on the opposite side of O from A, then C and D lie on the same side of O.

Proof. (See Fig. 1.18) C ∈ OA ⇒ ¬[AOC] & C 6= O. If also C 6= A 35, from T 1.2.2 [ACO] or [CAO], whence by
L 1.2.3.1, L 1.2.3.2 ([ACO] ∨ [CAO])& [AOD] ⇒ [COD]. 2

Lemma 1.2.11.10. If points C and D lie on the opposite side of the point O from a point A,36 then C and D lie
on the same side of O.

Proof. (See Fig. 1.19) By A 1.2.1, L 1.1.1.7, and P 1.2.5.1 [AOC] & [AOD] ⇒ D ∈ aOC & O 6= C &¬[COD] ⇒ D ∈
OC . 2

Lemma 1.2.11.11. Suppose a point C lies on a ray OA, a point D lies on a ray OB, and O lies between A and B.
Then O also lies between C and D.

Proof. (See Fig. 1.21) Observe that D ∈ OB
L1.2.11.3

=⇒ OB = OD and use L 1.2.11.9. 2

Lemma 1.2.11.12. The point O divides the points A and B iff the rays OA and OB are disjoint, OA ∩OB = ∅, and
their union, together with the point O, gives the set of points of the line aAB, PaAB

= OA ∪ OB ∪ {O}. That is,
[OAB] ⇔ (PaAB

= OA ∪ OB ∪ {O})& (OA ∩ OB = ∅).

Proof. Suppose [AOB]. If C ∈ PaAB
and C /∈ OB, C 6= O then [COB] by the definition of the ray OB.

[COB] & [AOB] & O 6= C
P1.2.5.1
=⇒ ¬[COA]. ⇒ C ∈ OA. OA ∩ OB = ∅, because otherwise C ∈ OA & C ∈ OB

L1.2.11.4
=⇒

B ∈ OA ⇒ ¬[AOB].

Now suppose (PaAB
= OA ∪ OB ∪ O) and (OA ∩ OB = ∅). Then O ∈ aAB & A 6= O

C1.1.1.2
=⇒ B ∈ aOA,

B ∈ OB & OA ∩ OB = ∅ ⇒ B /∈ OA, and B 6= O & B ∈ aOA & B /∈ OA ⇒ [AOB]. 2

Lemma 1.2.11.13. A ray OA contains the open interval (OA).

Proof. If B ∈ (OA) then from A 1.2.1 B 6= O, from L 1.2.1.3 B ∈ aOA, and from A 1.2.3 ¬[BOA]. We thus have
B ∈ OA. 2

Lemma 1.2.11.14. For any finite set of points {A1, A2, . . . , An} of a ray OA there is a point C on OA not in that
set.

Proof. Immediately follows from T 1.2.8 and L 1.2.11.13. 2

Lemma 1.2.11.15. If a point B lies between points O and A then the rays OB and OA are equal.

Proof. [OBA]
L1.2.11.13

=⇒ B ∈ OA
L1.2.11.3

=⇒ OB = OA. 2

Lemma 1.2.11.16. If a point A lies between points O and B, the point B lies on the ray OA.

Proof. By L 1.2.1.3, A 1.2.1, A 1.2.3 [OAB] ⇒ B ∈ aOA & B 6= O &¬[BOA] ⇒ B ∈ OA.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.11.15). 2

Lemma 1.2.11.17. If rays OA and O′
B are equal, their initial points coincide.

Proof. Suppose O′ 6= O (See Fig. 1.20.) We have also O′ 6= O & O′
B = OA ⇒ O′ /∈ OA. Therefore, O′ ∈ aOA & O′ 6=

O & O′ /∈ OA ⇒ O′ ∈ Oc
A. O′ ∈ Oc

A & B ∈ OA ⇒ [O′OB]. B ∈ O′
B & [O′OB]

L1.2.11.13
=⇒ O ∈ O′

B = OA - a
contradiction. 2

35Otherwise there is nothing else to prove
36One could as well have said: If O lies between A and C, as well as between A and D . . .
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O O’ O A B          O =O’
c

A A B

Figure 1.20: If OA and O′
B are equal, their origins coincide.

Lemma 1.2.11.18. If an interval A0An is divided into n intervals A0A1, A1A2 . . . , An−1An (by the points A1, A2, . . . An−1),
37 the points A1, A2, . . . An−1, An all lie 38 on the same side of the point A0, and the rays A0A1

, A0A2
, . . . , A0An

are
equal. 39

Proof. Follows from L 1.2.7.3, L 1.2.11.15. 2

Lemma 1.2.11.19. Every ray contains an infinite number of points.

Proof. Follows immediately from T 1.2.8, L 1.2.11.13. 2

This lemma implies, in particular, that

Lemma 1.2.11.20. There is exactly one line containing a given ray.

Proof. 2

The line, containing a given ray OA is, of course, the line aOA.

Theorem 1.2.11. A point O on a line a separates the rest of the points of this line into two non-empty classes
(rays) in such a way that...

Linear Ordering on Rays

Let A, B be two points on a ray OD. Let, by definition, (A ≺ B)OD

def
⇐⇒ [OAB]. If (A ≺ B),40 we say that the point

A precedes the point B on the ray OD, or that the point B succeeds the point A on the ray OD.
Obviously, A ≺ B implies A 6= B. Conversely, A 6= B implies ¬(A ≺ B).

Lemma 1.2.12.1. If a point A precedes a point B on the ray OD, and B precedes a point C on the same ray, then
A precedes C on OD:

A ≺ B & B ≺ C ⇒ A ≺ C, where A, B, C ∈ OD.

Proof. (See Fig. 1.22) [OAB] & [OBC]
L1.2.3.2
=⇒ [OAC]. 2

Lemma 1.2.12.2. If A, B are two distinct points on the ray OD then either A precedes B or B precedes A; if A
precedes B then B does not precede A.

Proof. A ∈ OD & B ∈ OD
L1.2.11.8

=⇒ B ∈ OA ⇒ ¬[AOB]. If A 6= B, then by T 1.2.2 [OAB] ∨ [OBA], that is, A ≺ Bor

B ≺ A. A ≺ B ⇒ [OAB]
A1.2.3
=⇒ ¬[OBA] ⇒ ¬(B ≺ A). 2

Lemma 1.2.12.3. If a point B lies on a ray OP between points A and C,41 then either A precedes B and B precedes
C, or C precedes B and B precedes A; conversely, if A precedes B and B precedes C, or C precedes B and B precedes
A, then B lies between A and C. That is,

[ABC] ⇔ (A ≺ B & B ≺ C) ∨ (C ≺ B & B ≺ A).

Proof. From the preceding lemma (L 1.2.12.2) we know that either A ≺ C or C ≺ A, i.e. [OAC] or [OCA]. Suppose

[OAC]. 42 Then [OAC] & [ABC]
L1.2.3.2
=⇒ [OAB] & [OBC] ⇒ A ≺ B & B ≺ C. Conversely, A ≺ B & B ≺ C ⇒

[OAB] & [OBC]
L1.2.3.2
=⇒ [ABC]. 2

For points A, B on a ray OD we let by definition A � B
def
⇐⇒ (A ≺ B) ∨ (A = B).

Theorem 1.2.12. Every ray is a chain with respect to the relation �.

Proof. A � A. (A � B)& (B � A)
L1.2.12.2

=⇒ A = B; (A ≺ B)& (B ≺ A)
L1.2.12.1

=⇒ A ≺ C; A 6= B
L1.2.12.2

=⇒ (A ≺
B) ∨ (B ≺ A). 2

37In other words, a finite sequence of points Ai, where i+ 1 ∈ Nn−1, n ≥ 4, has the property that every point of the sequence, except
for the first and the last, lies between the two points with adjacent (in N) numbers.

38Say, on aA0A1
. Observe also that L 1.2.7.2 implies that, given the conditions of this lemma, all lines aAiAj

, where i+ 1, j + 1 ∈ Nn,
i 6= j, are equal, so we can put any of these aAiAj

in place of aA0A1
39By the same token, we can assert also that the points A0, A1 . . . An−1 lie on the same side of the point An, but due to symmetry,

this adds essentially nothing new to the statement of the lemma.
40In most instances in what follows we will assume the ray OD (or some other ray) fixed and omit the mention of it in our notation.
41In fact, once we require that A,C ∈ OP and [ABC], this ensures that B ∈ OP . (To establish this, we can combine [OBC] shown

below with, say, L 1.2.11.3, L 1.2.11.13. ) This observation will be referred to in the footnote accompanying proof of T 1.2.14.
42Since [ABC] and [CBA] are equivalent in view of A 1.2.1, we do not need to consider the case [OCA] separately.
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O D          B                O                 A                 C              OB A

Figure 1.21: If C lies on the ray OA, D on OB, and O between A and B, then O lies between C and D.

O A            B                  C               OD

Figure 1.22: If A precedes B on OD, and B precedes C on the same ray, then A precedes C on OD.

Ordering on Lines

Let O ∈ a, P ∈ a, [POQ]. Define the direct (inverse) ordering on the line a, that is, a relation of ordering on the set
Pa of all points of the line a, as follows:

Call OP the first ray, and OQ the second ray. 43 A point A precedes a point B on the line a in the direct (inverse)
order iff: (See Fig. 1.23)

- Both A and B lie on the first (second) ray and B precedes A on it; or
- A lies on the first (second) ray, and B lies on the second (first) ray or coincides with O; or
- A = O and B lies on the second (first) ray; or
- Both A and B lie on the second (first) ray, and A precedes B on it.
Thus, a formal definition of the direct ordering on the line a can be written down as follows:

(A≺1B)a
def
⇐⇒ (A ∈ OP & B ∈ OP & B ≺ A) ∨ (A ∈ OP & B = O) ∨ (A ∈ OP & B ∈ OQ) ∨ (A = O & B ∈

OQ) ∨ (A ∈ OQ & B ∈ OQ & A ≺ B),

and for the inverse ordering: (A≺2B)a
def
⇐⇒ (A ∈ OQ & B ∈ OQ & B ≺ A) ∨ (A ∈ OQ & B = O) ∨ (A ∈ OQ & B ∈

OP ) ∨ (A = O & B ∈ OP ) ∨ (A ∈ OP & B ∈ OP & A ≺ B).
The term ”inverse order” is justified by the following trivial

Lemma 1.2.13.1. A precedes B in the inverse order iff B precedes A in the direct order.

Proof. 2

Obviously, for any order on any line A ≺ B implies A 6= B. Conversely, A = B implies ¬(A ≺ B).
For our notions of order (both direct and inverse) on the line to be well defined, they have to be independent, at

least to some extent, on the choice of the initial point O, as well as on the choice of the ray-defining points P and Q.
Toward this end, let O′ ∈ a, P ′ ∈ a, [P ′O′Q′], and define a new direct (inverse) ordering with displaced origin

(ODO) on the line a, as follows:
Call O′ the displaced origin, O′

P ′ and O′
Q′ the first and the second displaced rays, respectively. A point A

precedes a point B on the line a in the direct (inverse) ODO iff:
- Both A and B lie on the first (second) displaced ray, and B precedes A on it; or
- A lies on the first (second) displaced ray, and B lies on the second (first) displaced ray or coincides with O′; or
- A = O′ and B lies on the second (first) displaced ray; or
- Both A and B lie on the second (first) displaced ray, and A precedes B on it.

43Observe that if A ∈ OP and B ∈ OQ then [AOB (see L 1.2.11.11). This fact will be used extensively throughout this section.

O A B O OP Q

O O A              BP

O O=A B OP Q

O A O BP

O A O=B OP Q

Figure 1.23: To the definition of order on a line.
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O P’ O’ OP

Figure 1.24: If O′ lies on OP between O and P ′, then O′
P ′ ⊂ OP .

O P O’ B          O       Q’ O’P Q’

Figure 1.25: If O′ lies on OP , O lies on O′
Q′ , and B lies on both OP and O′

Q′ , then B also divides O and O′.

Thus, a formal definition of the direct ODO on the line a can be written down as follows:

(A≺′
1B)a

def
⇐⇒ (A ∈ O′

P ′ & B ∈ O′
P ′ & B ≺ A) ∨ (A ∈ O′

P ′ & B = O′) ∨ (A ∈ O′
P ′ & B ∈ O′

Q′) ∨ (A = O′ & B ∈
O′

Q′) ∨ (A ∈ O′
Q′ & B ∈ O′

Q′ & A ≺ B),

and for the inverse ordering: (A≺′
2B)a

def
⇐⇒ (A ∈ O′

Q′ & B ∈ O′
Q′ & B ≺ A) ∨ (A ∈ O′

Q′ & B = O′) ∨ (A ∈
O′

Q′ & B ∈ O′
P ′) ∨ (A = O′ & B ∈ O′

P ′) ∨ (A ∈ O′
P ′ & B ∈ O′

P ′ & A ≺ B).

Lemma 1.2.13.2. If the displaced ray origin O′ lies on the ray OP and between O and P ′, then the ray OP contains
the ray O′

P ′ , O′
P ′ ⊂ OP .

In particular, 44 if a point O′ lies between points O, P , the ray OP contains the ray O′
P .

Proof. (See Fig. 1.24) O′ ∈ OP ⇒ O′ ∈ aOP , [OO′P ]
L1.2.1.3
=⇒ O ∈ aO′P ′ , and therefore O ∈ aOP & O ∈ aO′P ′ & O′ ∈

aOP & O′ ∈ aO′P ′
A1.1.2
=⇒ aOP = aO′P ′ . A ∈ O′

P ′ ⇒ A ∈ OP , because otherwise A ∈ aOP & A 6= O & A /∈ OP & O′ ∈

OP
L1.2.11.9

=⇒ [AOO′] and [AOO′] & [OO′P ′]
L1.2.3.1
=⇒ [AO′P ′] ⇒ A /∈ O′

P ′ . 2

Lemma 1.2.13.3. Let the displaced origin O′ be chosen in such a way that O′ lies on the ray OP , and the point O
lies on the ray O′

Q′ . If a point B lies on both rays OP and O′
Q′ , then it divides O and O′.

Proof. (See Fig. 1.25) O′ ∈ OP & B ∈ OP & O ∈ O′
Q′ & B ∈ O′

Q′
L1.2.11.8

=⇒ ¬[O′OB] &¬[OO′B], whence by T 1.2.2
⇒ [OBO′]. 2

Lemma 1.2.13.4. An ordering with the displaced origin O′ on a line a coincides with either direct or inverse ordering
on that line (depending on the choice of the displaced rays). In other words, either for all points A, B on a A precedes
B in the ODO iff A precedes B in the direct order; or for all points A, B on a A precedes B in the ODO iff A precedes
B in the inverse order.

Proof. Let O′ ∈ OP , O ∈ O′
Q′ , (A≺′

1B)a. Then [P ′O′Q′] & O ∈ O′
Q′

L1.2.11.9
=⇒ [OO′P ′] and O′ ∈ OP & [OO′P ′]

L1.2.13.2
=⇒

O′
P ′ ⊂ OP .
Suppose A ∈ O′

P ′ , B ∈ O′
P ′ . A ∈ O′

P ′ & B ∈ O′
P ′ & O′

P ′ ⊂ OP ⇒ A ∈ OP & B ∈ OP . A ∈ O′
P ′ & B ∈

O′
P ′ & (A≺′

1B)a ⇒ (B ≺ A)O′
P ′

⇒ [O′BA]. B ∈ O′
P ′ & O ∈ O′

Q′
L1.2.11.11

=⇒ [OO′B], [OO′B] & [O′BA]
L1.2.3.1
=⇒

(B ≺ A)OP
⇒ (A≺1B)a.

Suppose A ∈ O′
P ′ & B = O′. A ∈ O′

P ′ & B = O′ & O ∈ O′
Q′

L1.2.11.11
=⇒ [OBA] ⇒ (A≺1B)a.

Suppose A ∈ O′
P ′ , B ∈ O′

Q′ . A ∈ OP & (B = O ∨ B ∈ OQ) ⇒ (A≺1B)a. If B ∈ OP then O′ ∈ OP & O ∈

O′
Q′ & B ∈ OP & B ∈ O′

Q′
L1.2.13.3

=⇒ [O′BO] and [AO′B] & [O′BO]
L1.2.3.1
=⇒ [ABO] ⇒ (A≺1B)a. 45

Suppose A, B ∈ O′
Q′ . (A≺′

1B)a ⇒ (A ≺ B)O′
Q′

⇒ [O′AB]. If A ∈ OP and B ∈ OP then by L 1.2.13.3 [O′BO]

and [O′BO] & [O′AB]
L1.2.3.2
=⇒ [ABO] ⇒ (A≺1B)a. (A ∈ OP & B = O) ∨ (A ∈ OP & B ∈ OQ)∨ (A = O & B ∈ OQ) ⇒

(A≺1B)a. Now let A ∈ OQ, B ∈ OQ. Then ¬[AOB]; ¬[OBA], because [OBA] & [BAO′]
L1.2.3.1
=⇒ [O′BO]

A1.2.3
=⇒

¬[BOO′] ⇒ O′ ∈ OB and B ∈ OQ & O′ ∈ OB ⇒ O′ ∈ OQ. Finally, ¬[AOB] &¬[OBA]
T1.2.2
=⇒ [OAB] ⇒ (A≺1B)a. 2

Lemma 1.2.13.5. Let A, B be two distinct points on a line a, on which some direct or inverse order is defined.
Then either A precedes B in that order, or B precedes A, and if A precedes B, B does not precede A, and vice versa.

Proof. 2

For points A, B on a line where some direct or inverse order is defined, we let A�iB
def
⇐⇒ (A≺iB) ∨ (A = B),

where i = 1 for the direct order and i = 2 for the inverse order.

44We obtain this result letting P ′ = P . Since [OO′P ]
L1.2.11.9

=⇒ O′ ∈ OP , the condition O′ ∈ OP becomes redundant for this particular
case

45We take into account that A ∈ O′
P ′ &B ∈ O′

Q′
L1.2.11.11

=⇒ [AO′B].
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Lemma 1.2.13.6. If a point A precedes a point B on a line a, and B precedes a point C on the same line, then A
precedes C on a:

A ≺ B & B ≺ C ⇒ A ≺ C, where A, B, C ∈ a.

Proof. Follows from the definition of the precedence relation ≺ and L 1.2.12.1. 46
2

Theorem 1.2.14. Every line with a direct or inverse order is a chain with respect to the relation �i.

Proof. See the preceding two lemmas (L 1.2.13.5, L 1.2.13.6.) 2

Theorem 1.2.14. If a point B lies between points A and C, then in any ordering, defined on the line containing
these points, either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if in some order,
defined on the line, containing points A, B, C, A precedes B and B precedes C, or C precedes B and B precedes A,
then B lies between A and C. That is,

[ABC] ⇔ (A ≺ B & B ≺ C) ∨ (C ≺ B & B ≺ A).

Proof. Suppose [ABC]. 47

For A, B, C ∈ OP and A, B, C ∈ OQ see L 1.2.12.3.
If A, B ∈ OP , C = O then [ABO] ⇒ (B ≺ A)OP

⇒ (A ≺ B)a; also B ≺ C in this case from definition of order
on line.

If A, B ∈ OP , C ∈ OQ then [ABC] & [BOC]
L1.2.3.2
=⇒ [ABO] ⇒ (A ≺ B)a and B ∈ OP & C ∈ OQ ⇒ (B ≺ C)a.

For A ∈ OP , B = O, C ∈ OQ see definition of order on line.

For A ∈ OP , B, C ∈ OQ we have [AOB] & [ABC]
L1.2.3.2
=⇒ [OBC] ⇒ B ≺ C.

If A = O and B, C ∈ OQ, we have [OBC] ⇒ B ≺ C.
Conversely, suppose A ≺ B and B ≺ C in the given direct order on a. 48

For A, B, C ∈ OP and A, B, C ∈ OQ see L 1.2.12.3.
If A, B ∈ OP , C = O then (A ≺ B)a ⇒ (B ≺ A)OP

⇒ [ABO].

If A, B ∈ OP , C ∈ OQ then [ABO] & [BOC]
L1.2.3.1
=⇒ [ABC].

For A ∈ OP , B = O, C ∈ OQ we immediately have [ABC] from L 1.2.11.11.

For A ∈ OP , B, C ∈ OQ we have [AOB] & [OBC]
L1.2.3.1
=⇒ [ABC].

If A = O and B, C ∈ OQ, we have B ≺ C ⇒ [OBC].
2

Corollary 1.2.14.1. Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 4, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers,
i.e. that the interval A1An is divided into n − 1 intervals A1A2, A2A3, . . . , An−1An (by the points A2, A3, . . . An−1).
Then in any order (direct or inverse), defined on the line containing these points, we have either A1 ≺ A2 ≺
. . . ≺ An−1 ≺ An or An ≺ An−1 ≺ . . . ≺ A2 ≺ A1. Conversely, if either A1 ≺ A2 ≺ . . . ≺ An−1 ≺ An or
An ≺ An−1 ≺ . . . ≺ A2 ≺ A1, then the points A1, A2, . . . , An are in order [A1A2 . . . An].

Proof. Follows from the two preceding theorems (T 1.2.14, T 1.2.14). 2

The following simple corollary may come in handy, for example, in discussing properties of vectors on a line.

Corollary 1.2.14.2. If points A, B both precede a point C (in some order, direct or inverse, defined on a line a),
they lie on the same side of C.

Proof. We know that A ≺ C & B ≺ C ⇒ A 6= C & B 6= C. Also, we have ¬[ACB], for [ACB] would imply that
either A ≺ C ≺ B or B ≺ C ≺ A, which contradicts either B ≺ C or A ≺ C by L 1.2.13.5. Thus, from the definition
of CA we see that B ∈ CA, as required. 2

By definition, an ordered abstract 49 interval is an ordered pair of points. A pair (A, B) will be denoted by
−−→
AB,

where the first point of the pair A is called the beginning, or initial point, of
−−→
AB, and the second point of the pair B

is called the end, or final point, of the ordered interval
−−→
AB. A pair (A, A) (i.e. (A, B) with A = B) will be referred

to as a zero ordered abstract interval. A non-zero ordered abstract interval (A, B), i.e. (A, B), A 6= B, will also be
referred to as a proper ordered abstract interval, although in most cases we shall leave out the words ”non-zero” and
”proper” whenever this usage is perceived not likely to cause confusion.

46The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote OP , OQ

respectively, the first and the second ray for the given direct order on a. If a point A ∈ {O} ∪OQ precedes a point B ∈ a, then B ∈ OQ.
If a point A precedes a point B ∈ OP ∪ {O}, then A ∈ OP .

47Again, we denote OP , OQ respectively, the first and the second ray for the given order on a. The following trivial observations help
limit the number of cases we have to consider: If A ∈ OP and C ∈ OP ∪ {O} then [ABC] implies B ∈ OP . Similarly, if A ∈ {O} ∪ OQ

and C ∈ OQ then [ABC] implies B ∈ OQ. In fact, in the case A ∈ OP , C = O this can be seen immediately using, say, L 1.2.11.3. For
A,C ∈ OP we conclude that B ∈ OP once [ABC] immediately from L 1.2.16.4, which, of course, does not use the present lemma or any
results following from it. Alternatively, this can be shown using proof of L 1.2.12.3 - see footnote accompanying that lemma.

48Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.13.6): If a point A ∈ {O} ∪OQ

precedes a point B ∈ a, then B ∈ OQ. If a point A precedes a point B ∈ OP ∪ {O}, then A ∈ OP .
49Again, for brevity we shall usually leave out the word ”abstract” whenever there is no danger of confusion.
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Figure 1.26: (OA) is the intersection of rays OA and AO, i.e. (OA) = OA ∩ AO.

B O A OAO
c

A

Figure 1.27: Oc
A is complementary to OA

The concept of a non-zero ordered abstract interval is intimately related to the concept of line order. For the
remainder of this subsection we shall usually assumed that one of the two possible orders (precedence relations) on

a is chosen and fixed on some given (in advance) line a. A non-zero ordered (abstract) interval
−−→
AB lying on a (i.e.

such that A ∈ a, B ∈ a) is said to have positive direction (with respect to the given order on a) iff A precedes B on

a. Similarly, a non-zero ordered interval
−−→
AB lying on a is said to have negative direction (with respect to the given

order on a) iff B precedes A on a.

A non-zero (abstract) ordered interval
−−→
AB is said to have the same direction as a non-zero ordered interval

−−→
CD

(lying on the same line a) iff either both
−−→
AB and

−−→
CD have positive direction on a or both

−−→
AB and

−−→
CD have negative

direction on a. If either
−−→
AB has positive direction on a and

−−→
CD negative direction, or

−−→
AB has negative direction on

a and
−−→
CD positive direction, we say that the ordered intervals

−−→
AB,

−−→
CD have opposite directions (on a).

Obviously, the relation ”to have the same direction as”, defined on the class of all non-zero ordered intervals lying
on a given line a, is an equivalence.

Consider a collinear set of points A, i.e. a set A ⊂ Pa of points lying on some line a. We further assume that
one of the two possible orders (precedence relations) on a is chosen. A transformation f : A → A is called sense-
preserving if for any points A, B ∈ A the precedence A ≺ B implies f(A) ≺ f(B). A transformation f : A → A
is called sense-reversing if for any points A, B ∈ A the precedence A ≺ B implies f(B) ≺ f(A). In other words,
the sense-preserving transformations transform non-zero (abstract) ordered intervals into ordered intervals with the
same direction, and the sense-reversing transformations transform non-zero (abstract) ordered intervals into ordered
intervals with the opposite direction.

Obviously, as we have noted above in different terms, the composition of any two sense-preserving transformations
of a line set A is a sense-preserving transformation, as is the composition of any two sense-reversing transforma-
tions. On the other hand, for line sets the composition of a sense-preserving transformation and a sense-reversing
transformation, taken in any order, is a sense-reversing transformation.

Complementary Rays

Lemma 1.2.15.1. An interval (OA) is the intersection of the rays OA and AO, i.e. (OA) = OA ∩ AO.

Proof. (See Fig. 1.26) B ∈ (OA) ⇒ [OBA], whence by L 1.2.1.3, A 1.2.1, A 1.2.3 B ∈ aOA = aAO, B 6= O, B 6= A,
¬[BOA], and ¬[BAO], which means B ∈ OA and B ∈ AO.

Suppose now B ∈ OA ∩AO. Hence B ∈ aOA, B 6= O, ¬[BOA] and B ∈ aAO, B 6= A, ¬[BAO]. Since O, A, B are
collinear and distinct, by T 1.2.2 [BOA] ∨ [BAO] ∨ [OBA]. But since ¬[BOA], ¬[BAO], we find that [OBA]. 2

Given a ray OA, define the ray Oc
A, complementary to the ray OA, as Oc

A ⇋ PaOA
\ ({O} ∪OA). In other words,

the ray Oc
A, complementary to the ray OA, is the set of all points lying on the line aOA on the opposite side of the

point O from the point A. (See Fig. 1.27) An equivalent definition is provided by

Lemma 1.2.15.2. Oc
A = {B|[BOA]}. We can also write Oc

A = OD for any D such that [DOA].

Proof. See L 1.2.11.6, L 1.2.11.3. 2

Lemma 1.2.15.3. The ray (Oc
A)c, complementary to the ray Oc

A, complementary to the given ray OA, coincides
with the ray OA: (Oc

A)c = OA.

Proof. PaOA
\ ({O} ∪ (PaOA

\ ({O} ∪ OA)) = OA 2

Lemma 1.2.15.4. Given a point C on a ray OA, the ray OA is a disjoint union of the half - open interval (OC]
and the ray Cc

O, complementary to the ray CO :
OA = (OC] ∪ Cc

O.

Proof. By L 1.2.11.3 OC = OA. Suppose M ∈ OC ∪Cc
O. By A 1.2.3, L 1.2.1.3, A 1.2.1 [OMC]∨M = C ∨ [OCM ] ⇒

¬[MOC] & M 6= O & M ∈ aOC ⇒ M ∈ OA = OC .

Conversely, if M ∈ OA = OC and M 6= C then M ∈ aOC & M 6= C & M 6= O &¬[MOC]
T1.2.2
=⇒ [OMC]∨[OCM ] ⇒

M ∈ (OC) ∨ M ∈ Cc
O. 2
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Figure 1.28: A1An
is a disjoint union of (AiAi+1], i = 1, 2, . . . , n − 1, with Ac

nAk
.

Lemma 1.2.15.5. Given on a line aOA a point B, distinct from O, the point B lies either on OA or on Oc
A.

Theorem 1.2.15. Let a finite sequence of points A1, A2, . . . , An, n ∈ N, be numbered in such a way that, except for
the first and (in the finite case) the last, every point lies between the two points with adjacent (in N) numbers. (See
Fig. 1.12) Then the ray A1An

is a disjoint union of half-closed intervals (AiAi+1], i = 1, 2, . . . , n − 1, with the ray
Ac

nAk
, complementary to the ray AnAk

, where k ∈ {1, 2, . . . , n − 1}, i.e.

A1An
=

n−1⋃
i=1

(AiAi+1] ∪ Ac
nAk

.

Proof. (See Fig. 1.28) Observe that [A1AkAn]
L1.2.15.5

=⇒ AnAk
= AnA1 , then use L 1.2.7.7, L 1.2.15.4. 2

Point Sets on Rays

Given a point O on a line a, a nonempty point set B ⊂ Pa is said to lie on line a on the same side (on the opposite
side) of the point O as (from) a nonempty set A ⊂ Pa iff for all A ∈ A and all B ∈ B the point B lies on the same
side (on the opposite side) of the point O as (from) the point A ∈ A. If the set A (the set B) consists of a single
element, we say that the set B (the point B) lies on line a on the same side of the point O as the point A (the set
A).

Lemma 1.2.16.1. If a set B ⊂ Pa lies on line a on the same side of the point O as a set A ⊂ Pa, then the set A
lies on line a on the same side of the point O as the set B.

Proof. See L 1.2.11.5. 2

Lemma 1.2.16.2. If a set B ⊂ Pa lies on line a on the same side of the point O as a set A ⊂ Pa, and a set C ⊂ Pa

lies on line a on the same side of the point O as the set B, then the set C lies on line a on the same side of the point
O as the set A.

Proof. See L 1.2.11.5. 2

Lemma 1.2.16.3. If a set B ⊂ Pa lies on line a on the opposite side of the point O from a set A ⊂ Pa, then the set
A lies on line a on the opposite side of the point O from the set B.

Proof. See L 1.2.11.6. 2

In view of symmetry of the relations, established by the lemmas above, if a set B ⊂ Pa lies on line a on the same
side (on the opposite side) of the point O as a set (from a set) A ⊂ Pa, we say that the sets A and B lie on line a
on one side (on opposite sides) of the point O.

Lemma 1.2.16.4. If two distinct points A, B lie on a ray OC , the open interval (AB) also lies on the ray OC .

Proof. By L 1.2.11.8 [OAB] ∨ [OBA], whence by T 1.2.15 (AB) ⊂ OA = OC . 2

Given an interval AB on a line aOC such that the open interval (AB) does not contain O, we have (L 1.2.16.5 -
L 1.2.16.7):

Lemma 1.2.16.5. If one of the ends of (AB) is on the ray OC , the other end is either on OC or coincides with O.

Proof. Let, say, B ∈ OC . By L 1.2.11.3 OB = OC . Assuming the contrary to the statement of the lemma, we have
A ∈ Oc

B ⇒ [AOB] ⇒ O ∈ (AB), which contradicts the hypothesis. 2

Lemma 1.2.16.6. If (AB) has common points with the ray OC , either both ends of (AB) lie on OC , or one of them
coincides with O.

Proof. By hypothesis ∃M M ∈ (AB) ∩ OC . M ∈ OC
L1.2.11.3

=⇒ OM = OC . Assume the contrary to the statement of

the lemma and let, say, A ∈ Oc
M . Then [AOM ] & [AMB]

L1.2.3.2
=⇒ [AOB] ⇒ O ∈ (AB) - a contradiction. 2

Lemma 1.2.16.7. If (AB) has common points with the ray OC , the interval (AB) lies on OC , (AB) ⊂ OC .

Proof. Use L 1.2.16.6 and L 1.2.15.4 or L 1.2.16.4. 2

Lemma 1.2.16.8. If A and B lie on one ray OC , the complementary rays Ac
O and Bc

O lie on line aOC on one side
of the point O.
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Lemma 1.2.16.9. If an open interval (CD) is included in an open interval (AB), neither of the ends of (AB) lies
on (CD).

Proof. A /∈ (CD), B /∈ (CD), for otherwise (A ∈ (CD) ∨ B ∈ (CD))& (CD) ⊂ (AB) ⇒ A ∈ (AB) ∨ B ∈ (AB),
which is absurd as it contradicts A 1.2.1. 2

Lemma 1.2.16.10. If an open interval (CD) is included in an open interval (AB), the closed interval [CD] is
included in the closed interval [AB]. 50

Proof. By T 1.2.1 ∃E [CED]. E ∈ (CD)& (CD) ⊂ (AB)
L1.2.15.1

=⇒ E ∈ (CD) ∩ (AB ∩ BA). A /∈ (CD)& B /∈

(CD)& E ∈ AB ∩ (CD)& E ∈ BA ∩ (CD)
L1.2.16.6

=⇒ C ∈ AB ∪ {A}& C ∈ BA ∪ {B}& D ∈ AB ∪ {A}& D ∈

BA ∪ {B} ⇒ C ∈ (AB ∩ BA) ∪ {A} ∪ {B}& D ∈ (AB ∩ BA) ∪ {A} ∪ {B}
L1.2.15.1

=⇒ C ∈ [AB] & D ∈ [AB]. 2

Corollary 1.2.16.11. For intervals AB, CD both inclusions (AB) ⊂ (CD), (CD) ⊂ (AB) (i.e., the equality
(AB) = (CD)) holds iff the (abstract) intervals AB, CD are identical.

Proof. #1. (CD) ⊂ (AB)
L1.2.16.10

=⇒ [CD] ⊂ [AB] ⇒ C ∈ [AB] & D ∈ [AB]. On the other hand, (AB) ⊂ (CD)
L1.2.16.9

=⇒
C /∈ (AB)& D /∈ (AB).

#2. (AB) ⊂ (CD)& (CD) ⊂ (AB)
L1.2.16.10

=⇒ [AB] ⊂ [CD] & [CD] ⊂ [AB]. (AB) = (CD)& [AB] = [CD] ⇒
{A, B} = [AB] \ (AB) = [CD] \ (CD) = {C, D}. 2

Lemma 1.2.16.12. Both ends of an interval CD lie on a closed interval [AB] iff the open interval (CD) is included
in the open interval (AB).

Proof. Follows immediately from L 1.2.3.5, L 1.2.16.10. 2

We can put some of the results above (as well as some of the results we encounter in their particular cases below)
into a broader context as follows.

A point set A is called convex if A ∈ A& B ∈ A implies (AB) ⊂ A for all points A, BA.

Theorem 1.2.16. Consider a ray OA, a point B ∈ OA, and a convex set A of points of the line aOA. If B ∈ A but
O /∈ A then A ⊂ OA. 51

Proof. Suppose that there exists C ∈ Oc
A ∩ A. Then O ∈ A in view of convexity, contrary to hypothesis. Since

A ⊂ Pa and Oc
A ∩ A = ∅, O /∈ A, we conclude that A ⊂ OA. 2

Basic Properties of Half-Planes

We say that a point B lies in a plane α on the same side (on the opposite (other) side) of a line a as the point A
(from the point A) iff:

- Both A and B lie in plane α;
- a lies in plane α and does not contain A, B;
- a meets (does not meet) the interval AB;
and write this as (ABa)α((AaB)α).
Thus, we let, by definition

(ABa)α
def
⇐⇒ A /∈ a & B /∈ a &¬∃C (C ∈ a & [ACB])& A ∈ α & B ∈ α; and

(AaB)α
def
⇐⇒ A /∈ a & B /∈ a & ∃C (C ∈ a & [ACB])& A ∈ α & B ∈ α.

Lemma 1.2.17.1. The relation ”to lie in plane α on the same side of a line a as”, i.e. the relation ρ ⊂ Pα \ Pa ×

Pα \ Pa defined by (A, B) ∈ ρ
def
⇐⇒ ABa, is an equivalence on Pα \ Pa.

Proof. By A 1.2.1 AAa and ABa ⇒ BAa. To prove ABa & BCa ⇒ ACa assume the contrary, i.e. that ABa, BCa
and AaC. Obviously, AaC implies that ∃D D ∈ a & [ADC]. Consider two cases:

If ∃b (A ∈ b & B ∈ b & C ∈ b), by T 1.2.2 [ABC] ∨ [BAC] ∨ [ACB]. But [ABC] & [ADC] & D 6= B
T1.2.5
=⇒

[ADB] ∨ [BDC], [BAC] & [ADC]
L1.2.3.2
=⇒ [BDC], [ACB] & [ADC]

L1.2.3.2
=⇒ [ADB], which contradicts ABa & BCa.

If ¬∃b (A ∈ b & B ∈ b & C ∈ b) (see Fig. 1.29), then A /∈ a & B /∈ a & C /∈ a & a ⊂ α = αABC & ∃D (D ∈

a & [ADC])
A1.2.4
=⇒ ∃E (E ∈ a & [AEB]) ∨ ∃F (F ∈ a & [BFC]), which contradicts ABa & BCa.

2

A half-plane (aA)α is, by definition, the set of points lying in plane α on the same side of the line a as the point
B, i.e. aA ⇋ {B|ABa}.52 The line a is called the edge of the half-plane aA. The edge a of a half-plane χ will also
sometimes be denoted by ∂χ.

50In particular, if an open interval (CD) is included in the open interval (AB), the points C, D both lie on the segment [AB].
51Alternatively, this theorem can be formulated as follows: Consider a ray OA, a point B ∈ OA, and a convex set A. (This time we do

not assume that the set A lies on aOA or on any other line or even plane.) If B ∈ A but O /∈ A then A ∩ aOA ⊂ OA.
52We shall usually assume the plane (denoted here α) to be fixed and omit the mention of it from our notation

27



C

A B

D aF

Figure 1.29: If A, B and B, C lie on one side of a, so do A, C.

Lemma 1.2.17.2. The relation ”to lie in plane α on the opposite side of the line a from” is symmetric.

Proof. Follows from A 1.2.1. 2

In view of symmetry of the corresponding relations, if a point B lies in plane α on the same side of a line a as
(on the opposite side of a line a from) a point A, we can also say that the points A and B lie in plane α on one side
(on opposite (different) sides) of the line a.

Lemma 1.2.17.3. A point A lies in the half-plane aA.

Lemma 1.2.17.4. If a point B lies in a half-plane aA, then the point A lies in the half-plane aB.

Lemma 1.2.17.5. Suppose a point B lies in a half-plane aA, and a point C in the half-plane aB. Then the point C
lies in the half-plane aA.

Lemma 1.2.17.6. If a point B lies on a half-plane aA then aB = aA.

Proof. To show aB ⊂ aA note that C ∈ aB & B ∈ aA
C1.2.17.5

=⇒ C ∈ aA. Since B ∈ aA
C1.2.17.4

=⇒ A ∈ aB, we have

C ∈ aA & A ∈ aB
C1.2.17.5

=⇒ C ∈ aB and thus aA ⊂ aB. 2

Lemma 1.2.17.7. If half-planes aA and aB have common points, they are equal.

Proof. aA ∩ aB 6= ∅ ⇒ ∃C C ∈ aA & C ∈ aB
L1.2.17.6

=⇒ aA = aC = aB. 2

Lemma 1.2.17.8. Let A, B be two points in plane α not lying on the line a ⊂ α. Then the points A and B lie either
on one side or on opposite sides of the line a.

Proof. Follows immediately from the definitions of ”to lie on one side” and ”to lie on opposite side”. 2

Lemma 1.2.17.9. If points A and B lie on opposite sides of a line a, and B and C lie on opposite sides of the line
a, then A and C lie on the same side of a.

Proof. (See Fig. 1.30.) AaB & BaC ⇒ ∃D (D ∈ a & [ADB])& ∃E (E ∈ a & [BEC])
T1.2.6
=⇒ ¬∃F (F ∈ a & [AFC]) ⇒

ACa. 53
2

Lemma 1.2.17.10. If a point A lies in plane α on the same side of the line a as a point C and on the opposite side
of a from a point B, the points B and C lie on opposite sides of the line a.

Proof. Points B, C cannot lie on the same side of a, because otherwise ACa & BCa ⇒ ABa - a contradiction. Then
BaC by L 1.2.17.8. 2

Lemma 1.2.17.11. Let points A and B lie in plane α on opposite sides of the line a, and points C and D - on the
half planes aA and aB, respectively. Then the points C and D lie on opposite sides of a.

Proof. ACa & AaB & BDa
L1.2.17.10

=⇒ CaD. 2

Theorem 1.2.17. Proof. 2

53Observe that since A /∈ a, the conditions of the theorem T 1.2.6 are met whether the points A, B, C are collinear or not.
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Figure 1.30: If A and B, as well as B and C, lie on opposite sides of a, A and C lie on the same side of a.

Point Sets on Half-Planes

Given a line a on a plane α, a nonempty point set B ⊂ Pα is said to lie in plane α on the same side (on the opposite
side) of the line a as (from) a nonempty set A ⊂ Pα, written (ABa)α or simply ABa ((AaB)α or simply AaB) iff for
all A ∈ A and all B ∈ B the point B lies on the same side (on the opposite side) of the line a as (from) the point
A ∈ A. If the set A (the set B) consists of a single element (i.e., only one point), we say that the set B (the point B)
lies in plane a on the same side of the line a as the point A (the set A).

If all elements of a point set A lie in some plane α on one side of a line a, it is legal to write aA to denote the
side of a that contains all points of A.

Lemma 1.2.18.1. If a set B ⊂ Pα lies in plane α on the same side of the line a as a set A ⊂ Pα, then the set A
lies in plane α on the same side of the line a as the set B.

Proof. See L 1.2.17.1. 2

Lemma 1.2.18.2. If a set B ⊂ Pα lies in plane α on the same side of the line a as a set A ⊂ Pα, and a set C ⊂ Pα

lies in plane α on the same side of the line a as the set B, then the set C lies in plane α on the same side of the line
a as the set A.

Proof. See L 1.2.17.1. 2

Lemma 1.2.18.3. If a set B ⊂ Pα lies in plane α on the opposite side of the line a from a set A ⊂ Pα, then the set
A lies in plane α on the opposite side of the line a from the set B.

Proof. See L 1.2.17.2. 2

The lemmas L 1.2.17.9 – L 1.2.17.11 can be generalized in the following way:

Lemma 1.2.18.4. If point sets A and B lie on opposite sides of a line a, and the sets B and C lie on opposite sides
of the line a, then A and C lie on the same side of a.

Lemma 1.2.18.5. If a point set A lies in plane α on the same side of the line a as a point set C and on the opposite
side of a from the point set B, the point sets B and C lie on opposite sides of the line a.

Proof. 2

Lemma 1.2.18.6. Let point sets A and B lie in plane α on opposite sides of the line a, and point sets C and D -
on the same side of a as A and B, respectively. Then C and D lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set B ⊂ Pα lies in plane α on the
same side (on the opposite side) of the line a as a set (from a set) A ⊂ Pα, we say that the sets A and B lie in plane
α on one side (on opposite sides) of the line a.

Theorem 1.2.18. Proof. 2
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Figure 1.31: A line b parallel to a and having common points with aA, lies in aA.
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Figure 1.32: Given a ray OB with a point C on αaA, not meeting a line a, if O lies in aA, so does OB .

Complementary Half-Planes

Given a half-plane aA in plane α, we define the half-plane ac
A, complementary to the half-plane aA, as Pα \ (Pa∪aA).

An alternative definition of complementary half-plane is provided by the following

Lemma 1.2.19.1. Given a half-plane aA, the complementary half-plane ac
A is the set of points B such that the open

interval (AB) meets the line a: ac
A ⇋ {∃O O ∈ a & [OAB]}. Thus, a point C lying in α outside a lies either on aA

or on ac
A.

Proof. B ∈ Pα \ (Pa ∪ aA)
L1.2.17.8
⇐⇒ AaB ⇔ ∃O O ∈ a & [AOB]. 2

Lemma 1.2.19.2. The half-plane (ac
A)c, complementary to the half-plane ac

A, complementary to the half-plane aA,
coincides with the half-plane aA itself.

Proof. In fact, we have aA = Pα \ (Pa ∪ (Pα \ (Pa ∪ aA))) = (ac
A)c. 2

Lemma 1.2.19.3. A line b that is parallel to a line a and has common points with a half-plane aA, lies (completely)
in aA.

Proof. (See Fig. 1.31, a).) B ∈ aA ⇒ B ∈ αaA. a ⊂ α & a ⊂ αaA & B ∈ α & B ∈ αaA
A1.1.2
⇐⇒ α = αaA. By hypothesis,

b ∩ a = ∅. To prove that b ∩ ac
A = ∅ suppose that ∃D D ∈ b ∩ ac

A (see Fig. 1.31, b).). Then ABa & AaD
L1.2.17.10

=⇒

∃C C ∈ a & [BCD]
L1.2.1.3
=⇒ ∃C C ∈ a∩aBD = b - a contradiction. Thus, we have shown that b ⊂ Pα \ (Pa∪ac

A) = aA.
2

Given a ray OB, having a point C on plane αaA and not meeting a line a

Lemma 1.2.19.4. – If the origin O lies in half-plane aA
54, so does the whole ray OB .

Proof. (See Fig. 1.32.) O ∈ αaA ∩ aOB & C ∈ αaA ∩ OB
A1.1.6
=⇒ aOB ⊂ αaA. By hypothesis, OB ∩ a = ∅. To prove

OB ∩ ac
A = ∅, suppose ∃F F ∈ OB ∩ ac

A. Then O ∈ aA & F ∈ ac
A ⇒ ∃E E ∈ a & [OEF ]

L1.2.11.13
=⇒ ∃E E ∈ a ∩ OB - a

contradiction. Thus, OB ⊂ Pα \ (Pa ∪ ac
A) = aA. 2

54Perhaps, it would be more natural to assume that the ray OB lies in plane αaA, but we choose here to formulate weaker, albeit
clumsier, conditions.
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Figure 1.33: Given a ray OB , not meeting a line a, and containing a point C ∈ αaA, if OB and aA share a point D,
distinct from C, then: a) O lies in aA or on a; b) OB lies in aA.
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Figure 1.34: Given an open interval (DB), not meeting a line a and having a point C on plane αaA, if one of the
ends of (DB) lies in aA, (DB) lies in aA and its other end lies either on aA or on a.

Lemma 1.2.19.5. - If the ray OB and the half-plane aA have a common point D, distinct from C 55, then:
a) The initial point O of OB lies either in half-plane aA or on (its edge) line a;
b) The whole ray OB lies in half-plane aA.

Proof. a) (See Fig. 1.33, a).) D ∈ αaA ∩ OB & C ∈ αaA ∩ OB
L1.1.1.8
=⇒ OB ⊂ αaA. To prove O /∈ ac

A suppose

O ∈ ac
A. Then D ∈ aA & O ∈ ac

A∃E E ∈ a & [OED]
L1.2.11.13

=⇒ ∃E E ∈ a ∩ OB - a contradiction. We see that
O ∈ Pα \ ac

A = aA ∪ Pa.
b) (See Fig. 1.33, b).)By hypothesis, a∩OB = ∅. If ∃F F ∈ OB ∩ac

A, we would have D ∈ aA & F ∈ ac
A ⇒ ∃E E ∈

a & [DEF ]
L1.2.16.4

=⇒ ∃E E ∈ a ∩ OB - a contradiction. Therefore, OB ⊂ Pα \ (Pa ∪ ac
A) = aA. 2

Given an open interval (DB) having a point C on plane αaA and not meeting a line a

Lemma 1.2.19.6. - If one of the ends of (DB) lies in half-plane aA, the open interval (DB) completely lies in
half-plane aA and its other end lies either on aA or on line a.

Proof. (See Fig. 1.34.) D ∈ αaA & C ∈ αaA ∩ (DB)
P1.2.5.3
=⇒ aDB ⊂ αaA ⇒ (DB) ⊂ αaA. If B ∈ ac

A then
D ∈ aA & B ∈ ac

A ⇒ ∃E E ∈ a & [DEB] - a contradiction. By hypothesis, (DB) ∩ a = ∅. To prove (DB) ∩ ac
A = ∅,

suppose F ∈ (DB) ∩ ac
A. Then D ∈ aA & F ∈ ac

A∃E E ∈ a & [DEF ]. But [DEF ] & [DFB]
L1.2.3.2
=⇒ [DEB] - a

contradiction. 2

Lemma 1.2.19.7. - If the open interval (DB) and the half-plane aA have at least one common point G, distinct
from C, then the open interval (DB) lies completely in aA, and either both its ends lie in aA, or one of them lies in
aA, and the other on line a.

Proof. By L 1.1.1.8 G ∈ αaA ∩ (DB)& C ∈ αaA ∩ (DB)aBD
P1.2.5.3
=⇒ ⊂ αaA ⇒ (DB) ⊂ αaA. Both ends of (DB)

cannot lie on a, because otherwise by A 1.1.2, L 1.2.1.3 D ∈ a & B ∈ a ⇒ (BD) ⊂ a ⇒ (BD) ∩ aA = ∅. Let D /∈ a.

To prove D /∈ ac
A suppose D ∈ ac

A. Then D ∈ ac
A & (BD)∩ a = ∅& C ∈ αaA ∩ (BD)

L1.2.19.6
=⇒ (DB) ⊂ ac

A ⇒ G ∈ ac
A -

a contradiction. Therefore, D ∈ aA. Finally, D ∈ aA & (DB) ∩ a = ∅& C ∈ αaA ∩ (DB)
L1.2.19.6

=⇒ (BD) ⊂ aA. 2

Lemma 1.2.19.8. A ray OB having its initial point O on a line a and one of its points C on a half-plane aA, lies
completely in aA, and its complementary ray Oc

B lies completely in the complementary half-plane ac
A.

In particular, given a line a and points O ∈ a and A /∈ a, we always have OA ⊂ aA, Oc
A ⊂ ac

A. We can thus write
ac

A = aOc
A
.

55see previous footnote
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Figure 1.35: A ray OB with its initial point O on a and one of its points C on aA, lies in aA, and Oc
B lies in ac

A.

Proof. (See Fig. 1.35.) O ∈ a ⊂ αaA & C ∈ aA ⊂ αaA
A1.1.6
=⇒ aOC ⊂ αaA. OB ∩ a = ∅, because if ∃E E ∈ OB & E ∈ a,

we would have O ∈ aOB ∩a & O ∈ aOB ∩a
A1.1.2
=⇒ a = aOB ⇒ C ∈ a - a contradiction. OB ⊂ aOB = aOC ⊂ αaA & C ∈

OB ∩ aA & OB ∩ a = ∅
L1.2.19.5

=⇒ OB ⊂ aA. By A 1.2.1 ∃F [BOF ]. Since F ∈ Oc
B ∩ ac

A, by preceding argumentation
we conclude that Oc

B ⊂ ac
A. 2

Lemma 1.2.19.9. If one end of an open interval (DB) lies in half - plane aA, and the other end lies either in aA

or on line a, the open interval (DB) lies completely in aA.

Proof. D ∈ aA & B ∈ aA
P1.2.5.3
=⇒ (DB) ⊂ αaA. Let B ∈ aA. If D ∈ aA we note that by L 1.2.11.13 (DB) ⊂ DB and

use L 1.2.19.8 . Let now D ∈ aA. Then (DB) ∩ a = ∅, because B ∈ aA & E ∈ (DB) ∩ a ⇒ D ∈ ac
A - a contradiction.

Finally, B ∈ aA & (DB) ⊂ αaA & (DB) ∩ a = ∅
L1.2.19.5

=⇒ (DB) ⊂ aA. 2

Lemma 1.2.19.10. Every half-plane contains an infinite number of points. Furthermore, every half-plane contains
an infinite number of rays.

Proof. 2

Lemma 1.2.19.11. There is exactly one plane containing a given half-plane.

Proof. 2

The plane, containing a given half-plane aA is, of course, the plane αaA.
For convenience, (especially when talking about dihedral angles - see p. 87), we shall often denote the plane

containing a half-plane χ by χ̄.56.

Lemma 1.2.19.12. Equal half-planes have equal edges.

Proof. Suppose aA = bB and X ∈ a. Then also αaA = αbB , 57 and we have X ∈ αbB & X /∈ bB ⇒ X ∈ b ∨ X ∈ bc
B.

Suppose X ∈ bc
B. Then, taking a point P ∈ bB, we would have P ∈ bB & X ∈ bc

B ⇒ ∃M [PMX ] & M ∈ b. On the

other hand, X ∈ a & P ∈ bB = aA & [PMX ]
L1.2.19.9

=⇒ M ∈ bB, which contradicts M ∈ b. This contradiction shows
that, in fact, X /∈ bc

B, and thus X ∈ b. Since we have shown that any point of the line a also lies on the line b, these
lines are equal, q.e.d. 2

Lemma 1.2.19.13. 1. If a plane α and the edge a of a half-plane χ concur at a point O, the plane α and the
half-plane χ have a common ray h with the origin O, and this ray contains all common points of α and χ.

If a plane α and a half-plane χ have a common ray h (and then, of course, they have no other common points),
we shall refer to the ray h as the section of the half-plane χ by the plane α.

58

2. Conversely, if a ray h is the section of a half-plane χ by a plane α, then the plane α and the edge a of the
half-plane χ concur at a single point - the origin O of the ray h.

56Cf. the corresponding notation for rays on p. 18
57See the preceding lemma, L 1.2.19.11.
58Observe that, obviously, if h is the section of χ by α, then the line h̄ lies in plane χ̄ (see A 1.1.6). Furthermore, we have then

h̄ = χ̄ ∩ α.
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Proof. 1. Since the planes α, χ̄ have a common point O, they have another common point A. Without loss of
generality we can assume A ∈ χ. 59 Then by L 1.2.19.8 we have OA ⊂ χ ∩ α, Oc

A ⊂ χc ∩ α, which implies that
OA = χ ∩ α. 60

2. We have h = χ ∩ α ⇒ h ⊂ χ
L1.2.19.5

=⇒ ∂h ∈ χ ∪ ∂χ. But O = ∂h /∈ h & h ⊂ χ ⇒ O /∈ χ. Hence, O ∈ a = ∂χ.
Since, using L 1.2.19.8, we have hc ⊂ χc, together with χc ∩ a = ∅, this gives hc ∩ a = ∅. Hence, we have O = a ∩ α.
2

Corollary 1.2.19.14. If a ray h is the section of a half-plane χ by a plane α, then the complementary ray hc is the
section of the complementary half-plane χc by α.

Proof. 2

Lemma 1.2.19.15. Given three distinct points A, O, B on one line b, such that the point O lies on a line a, if A,
B lie on one side (on opposite sides) of a, they also lie (on b) on one side (on opposite sides) of the point O.

Proof. Follows from L 1.2.19.8. 61
2

Given a strip ab (i.e. a pair of parallel lines a, b), we define its interior, written Int ab, as the set of points lying
on the same side of the line a as the line b and on the same side of the line b as the line a. 62 Equivalently, we could
take some points A on a and B on b and define Int ab as the intersection aB ∩ bA.

Lemma 1.2.19.16. If A ∈ a, B ∈ b, and a ‖ b then (AB) ⊂ Int ab. Furthermore, (AB) = PaAB
∩ Int ab.

Proof. Obviously, (AB) ⊂ PaAB
∩ Int ab (see L 1.2.1.3, L 1.2.19.9. On the other hand, C ∈ aAB

T1.2.2
=⇒ C = A ∨ C =

B ∨ [ABC] ∨ [ABC] ∨ [CAB]. From the definition of the interior of the strip ab it is evident that C ∈ Int ab
contradicts all of these options except [ABC], which means that PaAB

∩ Int ab ⊂ (AB) .
2

Given a line a with one of the two possible orders (direct or inverse) defined on it, we shall say that the choice of
the order defines one of the two possible directions on a. We shall sometimes refer to a line a with direction on it as
an oriented or directed line. Thus, an oriented line is the pair consisting of a line and an order defined on it.

Two parallel oriented lines a, b are said to have the same sense (or, loosely speaking, the same direction) iff the
following requirements hold for arbitrary points A, O, B ∈ a and A′, O′, B′ ∈ b: If A ≺ O on a and A′ ≺ O′ on b then
points A, A′ lie on the same side of the line aOO′ ; if O ≺ B on a and O′ ≺ B′ on b then points B, B′ lie on the same
side of the line aOO′ .

To formulate a simple criteria for deciding whether two given parallel lines have the same sense, we are going to
need the following simple lemmas.

Lemma 1.2.19.17. Given two parallel lines a, b and points A, C ∈ a, B, D ∈ b, all points common to the open
interval (AB) and the line aCD (if there are any) lie on the open interval (CD).

Proof. Suppose X ∈ (AB) ∩ aCD. By the preceding lemma we have X ∈ Int ab. Since the points C, X , D are
obviously distinct, from T 1.2.2 we see that either [XCD], or [CXD], or [CDX ]. But [XCD] would imply that the
points X and D ∈ b lie on opposite sides of the line a, which contradicts X ∈ Intab. Similarly, we conclude that
¬[CDX ]. 63 Hence [CXD], as required. 2

Lemma 1.2.19.18. Given two parallel lines a, b and points A, C ∈ a, B, D ∈ b, if points A, B lie on the same side
of the line aCD, then the points C, D lie on the same side of the line aAB.

Proof. Suppose the contrary, i.e. that the points C, D do not lie on the same side of the line aAB. Since, evidently,
C /∈ aAB, D /∈ aAB,64 this implies that C, D lie on opposite sides of aAB. Hence ∃X(X ∈ (CD) ∩ aAB). From the
preceding lemma (L 1.2.19.17) we then have X ∈ (CD) ∩ (AB), which means that A, B lie on opposite sides of aCD

- a contradiction. This contradiction shows that in reality the points C, D do lie on the same side of the line aAB. 2

Lemma 1.2.19.19. Suppose that for oriented lines a, b and points A, O ∈ a, A′, O′ ∈ b wave: a ‖ b; A ≺ O on a,
A′ ≺ O′ on b, and the points A, A′ lie on the same side of the line aOO′ . Then the oriented lines a, b have the same
direction.

59In fact, since a and α concur at O, the point A 6= O cannot lie on a. Hence A ∈ χ̄&A /∈ a
L1.2.17.8

=⇒ A ∈ χ ∨ A ∈ χc. In the second
case (when A ∈ χc) we can use A 1.2.2 to choose a point B such that [AOB]. Then, obviously, B ∈ χ, so we just need to rename A↔ B.

60Observe that, using T 1.1.5, we can write aOA = χ̄∩α. In view of Pχ̄ = χ∪Pa ∪χc, OA ⊂ χ∩α, Oc
A ⊂ χc∩α, this gives OA = χ∩α.

61In fact, since B ∈ aOA = b, we have either B ∈ OA or B ∈ Oc
A. L 1.2.19.8 then implies that in the first case B ∈ aA, while in the

second B ∈ ac
A. Hence the result. Indeed, suppose BAa, i.e. B ∈ aA. Then B ∈ OA, for B ∈ Oc

A would imply ac
A. Similarly, BaA

implies B ∈ Oc
A.

62Evidently, since the lines a, b are parallel, all points of b lie on the same side of a, and all points of a lie on the same side of b.
63This is immediately apparent from symmetry upon the substitution A ↔ B, C ↔ D, a ↔ b, which does not alter the conditions of

the theorem.
64Note that the lines a, aAB are distinct (B /∈ a) and thus have only one common point, namely, A. Consequently, the inclusion

C ∈ a ∩ aAB would imply C = A. But this contradicts the assumption that A, B lie on the same side of aCD , which presupposes that
the point A lies outside aCD .
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Proof. 65 Consider arbitrary points C, D ∈ a, C′, D′ ∈ b with the conditions that C ≺ D on a and C′ ≺ D′ on b. We
need to show that the points D, D′ lie on the same side of the line aCC′.

Suppose first that C ≺ O, C′ ≺ O′. Since also A ≺ O, A′ ≺ O′, and A, A′ lie on the same side of aOO′ (by
hypothesis), 66 we see that CC′aOO′ . Hence OO′aCC′ from the preceding lemma (L 1.2.19.18). Since also C ≺ D,
C′ ≺ D′, using again the observation just made, we have DD′aCC′ .

Suppose now C′ = O′. Without loss of generality we can assume that [ACO]. 67 AA′aOO′ ⇒ OO′aAA′ . Since
OO′aAA′ and C, O lie on the same side of A, we see that C, C′ = O′ lie on the same side of aAA′ , whence (again
using the preceding lemma (L 1.2.19.18)) AA′aCC′ . As, evidently, [ACD] and [A′C′D′], we find that DD′aCC′ , as
required.

Finally, suppose O′ ≺ C′. Again, without loss of generality we can assume that [ACO]. Since A′ ≺ O′ ≺ C′ T1.2.14
=⇒

[A′O′C′], 68 we see that C, C′ lie on the same side of aAA′ , and, consequently, AA′aCC′ (L 1.2.19.18). Finally, from
A ≺ C ≺ D, A′ ≺ C′ ≺ D′ using the observation made above we see that DD′aCC′, as required. 2

Lemma 1.2.19.20. Suppose that a line b is parallel to lines a, c and has a point B ∈ b inside the strip ac. Then
the line b lies completely inside ac.

Proof. 2

Corollary 1.2.19.21. Suppose that a line b is parallel to lines a, c and has a point B ∈ b lying on an open interval
(AC), where A ∈ a, C ∈ c. Then the line b lies completely inside ac.

Proof. See L 1.2.19.16, L 1.2.19.20. 2

Lemma 1.2.19.22. If a line b lies completely in a half-plane aA, then the lines a, b are parallel.

Lemma 1.2.19.23. If lines a, b lie on the same side of a line c, they are both parallel to the line c.

Lemma 1.2.19.24. If lines a, b lie on the opposite sides of a line c, they are parallel to each other and are both
parallel to the line c.

Lemma 1.2.19.25. If lines a, b lie on opposite sides of a line c, then the lines b, c lie on the same side of the line
a. 69

Proof. Since a, b lie on opposite sides of c, taking points A ∈ a, B ∈ b, we can find a point C ∈ c such that [ACB].
The rest is obvious (see, for example, L 1.2.19.9). 2

Lemma 1.2.19.26. Consider lines a, b, c such that c ‖ a and c ‖ b. If the line c meets at least one open interval
(A0B0), where A0 ∈ a, B0 ∈ b, then it meets any open interval (AB) such that A ∈ a, B ∈ b.

Proof. Denote C0 ⇋ (A0B0) ∩ c. Taking arbitrary points A ∈ a, B ∈ b we are going to show that ∃C ∈ c such that
C ∈ (AB) ∩ c. Since [A0C0B0] and c ‖ a, c ‖ b, the lines a, b, c coplane in view of C 1.2.1.10. Therefore, the line c
lies in the plane αA0B0A determined by the points A0, B0, A, as well as in the plane αB0AB determined by the points
B0, A, B. Furthermore, c ‖ a, c ‖ b implies that A0 /∈ c, B0 /∈ c, A /∈ c, B /∈ c. Thus, the conditions of A 1.2.4 are
met, and applying it twice, we first find that ∃C′ ∈ (BA0) ∩ c) and then that ∃C ∈ (AB) ∩ c, as required.

2

As before, we can generalize some of our previous considerations using the concept of a convex set.

Lemma 1.2.19.27. Consider a half-plane aA, a point B ∈ aA, and a convex set A of points of the plane αaA. If
B ∈ A but A ∩ Pa = ∅ then A ⊂ aA. 70

Proof. Suppose that there exists C ∈ ac
A ∩ A. Then ∃D (D ∈ A ∩ Pa) in view of convexity, contrary to hypothesis.

Since A ⊂ Pα and ac
A ∩ A = ∅, Pa ∩ A = ∅, we conclude that A ⊂ aA. 2

65In this, as well as many other proofs, we leave it to the reader to supply references to some well-known facts such as L 1.2.11.13,
T 1.2.14, etc.

66We make use of the following fact, which will be used (for different points and lines) again and again in this proof: C ≺ O, C′ ≺ O′,
A ≺ O, A′ ≺ O′, and A, A′ lie on the same side of aOO′ , then C, C′ lie on the same side of aOO′ . This, in turn, stems from the fact
that once the points A, A′ lie on the same side of aOO′ , the complete rays OA, O′

A′ (of course, including the points C, C′, respectively)
lie on the same side of aOO′ .

67We take into account that every point of the ray OA lies on the same side of aOO′ .
68We take into account that the points O, C lie on the line a on the same side of A and the points O′, C′ lie on the line b on the same

side of A′.
69And, of course, the lines a, c lie on opposite sides of the line b.
70Alternatively, this theorem can be formulated as follows: Consider a half-plane aA, a point B ∈ aA, and a convex set A. (This time

we do not assume that the set A lies completely on αaA or on any other plane.) If B ∈ A but A ∩Pa = ∅ then A ∩ αaA ⊂ aA.
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Theorem 1.2.19. Given a line a, let A be either
- A set {B1}, consisting of one single point B1 lying on a half - plane aA; or
- A line b1, parallel to a and having a point B1 on aA; or
- A ray (O1)B1 having a point C1 on αaA and not meeting the line a, such that the initial point O or one of its

points D1 distinct from C1 lies on aA; or
an open interval (D1B1) having a point C1 on plane αaA, and not meeting a line a, such that one of its ends lies

in aA, or one of its points, G1 6= C1, lies in aA; or
A ray (O1)B1 with its initial point O1 on a and one of its points, C1, in aA; or
An interval - like set with both its ends D1, B1 in aA, or with one end in aA and the other on a;
and let B be either
– A line b2, parallel to a and having a point B2 on aA; or
– A ray (O2)B2 having a point C2 on αaA and not meeting the line a, such that the initial point O or one of its

points D2 distinct from C2 lies on aA; or
– An open interval (D2B2) having a point C2 on plane αaA, and not meeting a line a, such that one of its ends

lies in aA, or one of its points, G2 6= C2, lies in aA; or
– A ray (O2)B2 with its initial point O2 on a and one of its points, C2, in aA; or
– An interval - like set with both its ends D2, B2 in aA, or with one end in aA and the other on a.
Then the sets A and B lie in plane αaA on one side of the line a.

Proof. 2

Theorem 1.2.20. Given a line a, let A be either
– A set {B1}, consisting of one single point B1 lying on a half - plane aA; or
– A line b1, parallel to a and having a point B1 on aA; or
– A ray (O1)B1 having a point C1 on αaA and not meeting the line a, such that the initial point O or one of its

points D1 distinct from C1 lies on aA; or
– An open interval (D1B1) having a point C1 on plane αaA, and not meeting a line a, such that one of its ends

lies in aA, or one of its points, G1 6= C1, lies in aA; or
– A ray (O1)B1 with its initial point O1 on a and one of its points, C1, in aA; or
– An interval - like set with both its ends D1, B1 in aA, or with one end in aA and the other on a;
and let B be either
– A line b2, parallel to a and having a point B2 on ac

A; or
– A ray (O2)B2 having a point C2 on αaA and not meeting the line a, such that the initial point O or one of its

points D2 distinct from C2 lies on ac
A; or

– An open interval (D2B2) having a point C2 on plane αaA, and not meeting a line a, such that one of its ends
lies in ac

A, or one of its points, G2 6= C2, lies in ac
A; or

– A ray (O2)B2 with its initial point O2 on a and one of its points, C2, in ac
A; or

– An interval - like set with both its ends D2, B2 in ac
A, or with one end in ac

A and the other on a.
Then the sets A and B lie in plane αaA on opposite sides of the line a.

Proof. 2

A non-ordered couple of distinct non-complementary rays h = OA and k = OB, k 6= hc, with common initial
point O is called an angle ∠(h, k)O, written also as ∠AOB. The point O is called the vertex,71 or origin, of the angle,
and the rays h, k (or OA, OB , depending on the notation chosen) its sides. Our definition implies ∠(h, k) = ∠(k, h)
and ∠AOB = ∠BOA.

Basic Properties of Angles

Lemma 1.2.21.1. If points C, D lie respectively on the sides h = OA and k = OB of the angle ∠(h, k) then
∠COD = ∠(h, k).

Proof. (See Fig. 1.36.) Immediately follows from L 1.2.11.3. 2

Lemma 1.2.21.2. Given an angle ∠AOB, we have B /∈ aOA, A /∈ aOB, and the points A, O, B are not collinear.
72

Proof. Otherwise, we would have B ∈ aOA & B 6= O
L1.2.15.5

=⇒ B ∈ OA ∨ B ∈ Oc
A

L1.2.11.3
=⇒ OB = OA ∨ OB = Oc

A,
contrary to hypothesis that OA, OB form an angle. We conclude that B /∈ aOA, whence by C 1.1.2.3 ¬∃b (A ∈
b & O ∈ b & B ∈ b) and A /∈ aOB. 2

71In practice the letter used to denote the vertex of an angle is usually omitted from its ray-pair notation, so we can write simply
∠(h, k)

72Thus, the angle ∠AOB exists if and only if the points A, O, B do not colline. A 1.1.3 shows that there exists at least one angle.
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Figure 1.36: If points C ∈ h = OA and D ∈ k = OB then ∠COD = ∠(h, k).
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Figure 1.37: If C lies inside ∠AOB, OC lies inside ∠AOB: OC ⊂ Int∠AOB.

The set of points, or contour, of the angle ∠(h, k)O, is, by definition, the set P∠(h,k) ⇋ h∪ {O} ∪ k. We say that
a point lies on an angle if it lies on one of its sides or coincides with its vertex. In other words, C lies on ∠(h, k) if it
belongs to the set of its points (its contour): C ∈ P∠(h,k).

Lemma 1.2.21.3. For any angle ∠(h, k), h = OA, k = OB, there is one and only one plane, containing the angle
∠(h, k), i.e. which contains the set P∠(h,k). It is called the plane of the angle ∠(h, k) and denoted α∠(h,k). Thus, we
have P∠(h,k) ⊂ α∠(h,k) = αAOB .

Proof. By L 1.2.21.2 ¬∃b (A ∈ b & O ∈ b & B ∈ b). Hence by A 1.1.4 ∃αAOB (A ∈ αAOB)& O ∈ αAOB & B ∈ αAOB.73

(A ∈ αAOB)& O ∈ αAOB & B ∈ αAOB
A1.1.6
=⇒ aOA ⊂ αAOB & aOB ⊂ αAOB . We thus have P∠AOB ⊂ αAOB. Since

any other plane, containing the angle ∠AOB (i.e., containing P∠AOB), would contain the three non-collinear points
A, O, B, by 1.1.5 there can be only one such plane. 2

We say that a point X lies inside an angle ∠(h, k) if it lies 74 on the same side of the line h̄ as any of the points
of the ray k, and on the same side of the line k̄ as any of the points of the ray h. 75

The set of all points lying inside an angle ∠(h, k) will be referred to as its interior Int∠(h, k) ⇋ {X |Xkh̄& Xhk̄}.
We can also write Int∠AOB = (aOA)B ∩ (aOB)A.

If a point X lies in plane of an angle ∠(h, k) neither inside nor on the angle, we shall say that X lies outside the
angle ∠(h, k).

The set of all points lying outside a given angle ∠(h, k) will be referred to as the exterior of the angle ∠(h, k),
written Ext∠(h, k). We thus have, by definition, Ext∠(h, k) ⇋ Pα∠(h,k)

\ (P∠(h,k) ∪ Int∠(h, k)).

Lemma 1.2.21.4. If a point C lies inside an angle ∠AOB, the ray OC lies completely inside ∠AOB: OC ⊂
Int∠AOB.

From L 1.2.11.3 it follows that this lemma can also be formulated as:
If one of the points of a ray OC lies inside an angle ∠AOB, the whole ray OC lies inside the angle ∠AOB.

Proof. (See Fig. 1.37.) Immediately follows from T 1.2.19. Indeed, by hypothesis, C ∈ Int∠AOB = (aOA)B∩(aOB)A.
Since also O ∈ h̄ ∩ k̄, by T 1.2.19 OC ⊂ Int∠AOB = (aOA)B ∩ (aOB)A. 2

Lemma 1.2.21.5. If a point C lies outside an angle ∠AOB, the ray OC lies completely outside ∠AOB: OC ⊂
Ext∠AOB. 76

73Our use of the notation αAOB is in agreement with the definition on p. 3.
74obviously, in plane of the angle
75The theorem T 1.2.19 makes this notion well defined in its ”any of the points” part.
76In full analogy with the case of L 1.2.21.4, from L 1.2.11.3 it follows that this lemma can be reformulated as: If one of the points of

a ray OC lies outside an angle ∠AOB, the whole ray OC lies outside the angle ∠AOB.
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Figure 1.38: If C lies outside ∠AOB, OC lies outside ∠AOB: OC ⊂ Ext∠AOB.
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Figure 1.39: Suppose that C ∈ OB , D ∈ Int∠AOB, and CD ∩ OA = ∅. Then CD ⊂ Int∠AOB.

Proof. (See Fig. 1.39.) O ∈ αAOB & C ∈ Int∠AOB ⊂ αAOB
A1.1.6
=⇒ aOC ⊂ αAOB ⇒ OC ⊂ αAOB . OC ∩ P∠AOB = ∅,

because C 6= O and OC ∩OA 6= ∅∨OC ∩OB 6= ∅
L1.2.11.4

=⇒ OC = OA∨OC = OB ⇒ C ∈ OA∨C ∈ OB - a contradiction.
OC ∩Int∠AOB = ∅, because if D ∈ OC ∩Int∠AOB, we would have OD = OC from L 1.2.11.3 and OD ⊂ Int∠AOB,
whence C ∈ Int∠AOB - a contradiction. Finally, OC ⊂ αAOB & OC ∩ P∠AOB = ∅& OC ∩ Int∠AOB = ∅ ⇒ OC ⊂
Ext∠AOB. 2

Lemma 1.2.21.6. Given an angle ∠AOB, if a point C lies either inside ∠AOB or on its side OA, and a point
D either inside ∠AOB or on its other side OB, the open interval (CD) lies completely inside ∠AOB, that is,
(CD) ⊂ Int∠AOB.

Proof. C ∈ Int∠AOB∪OA & D ∈ Int∠AOB∪OB ⇒ C ∈ ((aOA)B∩(aOB)A)∪OA & D ∈ ((aOA)B∩(aOB)A)∪OB ⇒
C ∈ ((aOA)B ∪OA)∩ ((aOB)A ∪OA)& D ∈ ((aOA)B ∪OB)∩ ((aOB)A ∪OB). Since, by L 1.2.19.8, OA ⊂ (aOB)A and
OB ⊂ (aOA)B, we have (aOB)A∪OA = (aOB)A, (aOA)B ∪OB = (aOA)B, and, consequently, C ∈ (aOA)B ∪OA & C ∈

(aOB)A & D ∈ (aOA)B & D ∈ (aOB)A ∪ OB
L1.2.19.9

=⇒ (CD) ⊂ (aOA)B & (CD) ⊂ (aOB)A ⇒ OC ⊂ Int∠AOB. 2

The lemma L 1.2.21.6 implies that the interior of an angle is a convex point set.

Lemma 1.2.21.7. Suppose that a point C lies on the side OB of an angle ∠AOB, a point D lies inside the angle
∠AOB, and the ray CD does not meet the ray OA. Then the ray CD lies completely inside the angle ∠AOB.

Proof. (See Fig. 1.39.) By definition of interior, D ∈ Int∠AOB ⇒ DOAaOB & DOBaOA. Then by hypothesis and
T 1.2.19 we have OACDaOB & OBCDaOA. 77 Hence the result follows from the definition of interior. 2

Lemma 1.2.21.8. Suppose that a point E of a ray CD lies inside an angle ∠AOB, and the ray CD has no common
points with the contour P∠AOB of the angle ∠AOB, i.e. we have CD ∩ OA = ∅, CD ∩ OB = ∅, O /∈ CD. Then the
ray CD lies completely inside the angle ∠AOB.

Proof. Follows from the definition of interior and T 1.2.19. 78
2

77By hypothesis, CD ∩OA = ∅. Note also that the ray CD cannot meet the ray Oc
A, for they lie on opposite sides of the line aOB .

78See proof of the preceding lemma. Note that L 1.2.21.4, L 1.2.21.7 can be viewed as particular cases of the present lemma.
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Figure 1.40: Illustration for proof of L 1.2.21.9.

Lemma 1.2.21.9. Given an angle ∠(h, k) and points A ∈ h, B ∈ k on its sides, any point C lying on the line aAB

inside ∠(h, k) will lie between A, B.

Proof. Since the points A, B, C colline (by hypothesis) and are obviously distinct (P∠(h,k) ∩ Int∠(h, k) = ∅), from
T 1.2.2 we see that either [CAB], or [ABC], or [ACB]. Note that [CAB] (see Fig. 1.40, a)) would imply that the
points C, B lie on opposite sides of the line k̄, which, in view of the definition of interior of the angle ∠(h, k) would
contradict the fact that the point C lies inside ∠(h, k) (by hypothesis). The case [ABC] is similarly brought to
contradiction. 79 Thus, we see that [ABC], as required (see Fig. 1.40, b)). 2

Lemma 1.2.21.10. Given an angle ∠(h, k)O and a point C inside it, for any points D on h and F on k, the ray
OC meets the open interval (DF ).

Proof. (See Fig. 1.41.) By A 1.2.2 ∃G [DOG]. By L 1.2.1.3 aGD = aOD = h̄. Since F ∈ k, using definition
of ∠(h, k) we conclude that F /∈ h̄. By C 1.1.2.3 ¬∃b (D ∈ b & G ∈ b & F ∈ b). Therefore ∃αDGF by A 1.1.4.

D ∈ h̄ & G ∈ h̄ & F ∈ k̄ & h̄ ⊂ α∠(h,k) & k̄ ⊂ α∠(h,k) ⇒ D ∈ α∠(h,k) & G ∈ α∠(h,k) & α∠(h,k)
A1.1.5
=⇒ αDGF = α∠(h,k).

O ∈ α∠(h,k) & C ∈ Int∠(h, k) ⊂ α∠(h,k)
A1.1.5
=⇒ aOC ⊂ α∠(h,k). We also have D /∈ aOC , G /∈ aAC , F /∈ aOC ,

because otherwise by A 1.1.2 aOC = h̄ ∨ aOC = k̄ ⇒ C ∈ h̄ ∨ C ∈ k̄, whence, taking note that Ph̄ = h ∪ {O} ∪ hc

and Ph̄ = h ∪ {O} ∪ hc, we get C ∈ Pα∠(h,k)
∪ Ext∠(h, k) ⇒ C /∈ Int∠(h, k) - a contradiction. Since C ∈

Int∠(h, k)
L1.2.21.6,L1.2.21.4

=⇒ OC ⊂ Int∠(h, k)& Oc
C ⊂ Int∠(hc, kc), F ∈ k & G ∈ hc L1.2.21.6

=⇒ (GF ) ⊂ Int∠(h, kc), we
have Int∠(h, k) ∩ Int∠(hc, k) = ∅& Int∠(hc, kc) ∩ Int∠(hc, k) = ∅& O /∈ Int∠(hc, k) ⇒ (GF ) ∩ OC = ∅& (GF ) ∩
OC = ∅& O /∈ (GF ). Taking into account PaOC

= OC ∪ {O} ∪ Oc
C , we conclude that (GF ) ∩ aOC = ∅. aOC ⊂

αDGF & D /∈ aOC & G /∈ aOC & F /∈ aOC & [DOG] & (GF ) ∩ aOC = ∅
A1.2.4
=⇒ ∃E E ∈ aOC & [DEF ]. [DEF ] & D ∈

h & F ∈ k
L1.2.21.6

=⇒ E ∈ Int∠(h, k). Since O /∈ Int∠(h, k) ⇒ E 6= O, Oc
C ⊂ ∠(h, k) ⇒ Oc

C ∩ Int∠(h, k) = ∅, we
conclude that E ∈ OC . 2

An angle is said to be adjacent to another angle (assumed to lie in the same plane) if it shares a side and vertex
with that angle, and the remaining sides of the two angles lie on opposite sides of the line containing their common
side. This relation being obviously symmetric, we can also say the two angles are adjacent to each other. We shall
denote any angle, adjacent to a given angle ∠(h, k), by adj∠(h, k). Thus, we have, by definition, ∠(k, m) = adj∠(h, k)
80 and ∠(l, h) = adj∠(h, k) if hk̄m and lh̄k, respectively. (See Fig. 1.43.)

Corollary 1.2.21.11. If a point B lies inside an angle ∠AOC, the angles ∠AOB, ∠BOC are adjacent. 81

79The contradiction for [ABC] is immediately apparent if we make the simultaneous substitutions A ↔ B, h ↔ k. Thus, due to
symmetry inherent in the properties of the betweenness relations both for intervals and angles, we do not really need to consider this
case separately.

80Of course, by writing ∠(k,m) = adj∠(h, k) we do not imply that ∠(k,m) is the only angle adjacent to ∠(h, k). It can be easily seen
that in reality there are infinitely many such angles. The situation here is analogous to the usage of the symbols o and O in calculus
(used particularly in the theory of asymptotic expansions).

81In particular, if a ray k, equioriginal with rays h, l, lies inside the angle ∠(h, l), then the angles ∠(h, k), ∠(k, l) are adjacent and thus
the rays h, l lie on opposite sides of the ray k.
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Figure 1.41: Given ∠(h, k)O and a point C inside it, for any points D on h and F on k, OC meets (DF ).
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Figure 1.42: If a point B lies inside an angle ∠AOC, the angles ∠AOB, ∠BOC are adjacent.

Proof. B ∈ Int∠AOC
L1.2.21.10

=⇒ ∃D D ∈ OB & [ADC]. Since D ∈ aOB ∩ (AC), A /∈ aOB , we see that the points A,
C, and thus the rays OA, OC (see T 1.2.20) lie on opposite sides of the line aOB . Together with the fact that the
angles ∠AOB, ∠BOC share the side OB this means that ∠AOB, ∠BOC are adjacent. 2

From the definition of adjacency of angles and the definitions of the exterior and interior of an angle immediately
follows

Lemma 1.2.21.12. In an angle ∠(k, m), adjacent to an angle ∠(h, k), the side m lies outside ∠(h, k).

which, together with C 1.2.21.11, implies the following corollary

Corollary 1.2.21.13. If a point B lies inside an angle ∠AOC, neither the ray OC has any points inside or on the
angle ∠AOB, nor the ray OA has any points inside or on ∠BOC.

Lemma 1.2.21.14. If angles ∠(h, k), ∠(k, m) share the side k, and points A ∈ h, B ∈ m lie on opposite sides of
the line k̄, the angles ∠(h, k), ∠(k, m) are adjacent to each other.

Proof. Immediately follows from L 1.2.11.15. 2

An angle ∠(k, l) is said to be adjacent supplementary to an angle ∠(h, k), written ∠(k, l) = adjsp∠(h, k), iff the

ray l is complementary to the ray h. That is, ∠(k, l) = adjsp∠(h, k)
def
⇐⇒ l = hc. Since, by L 1.2.15.3, the ray

(hc)c, complementary to the ray hc, complementary to the given ray h, coincides with the ray h: (hc)c = h, if ∠(k, l)
is adjacent supplementary to ∠(h, k), the angle ∠(h, k) is, in its turn, adjacent supplementary to the angle ∠(k, l).
Note also that, in a frequently encountered situation, given an angle ∠AOC such that the point O lies between the
point A and some other point B, the angle ∠BOC is adjacent supplementary to the angle AOC. 82

Lemma 1.2.21.15. Given an angle ∠(h, k), any point lying in plane of this angle on the same side of the line h̄ as
the ray k, lies either inside the angle ∠(h, k), or inside the angle ∠(k, hc), or on the ray k (See Fig. 1.44.) That is,

82For illustration on a particular case of this situation, see Fig. 1.113, a).
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Figure 1.43: Angles ∠(l, h) and ∠(k, m) are adjacent to the angle ∠(h, k). Note that h, m lie on opposite sides of k̄
and l, k lie on opposite sides of h̄.
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Figure 1.44: Any point lying in plane of ∠(h, k) on one side of h̄ with k, lies either inside ∠(h, k), or inside ∠(k, hc),
or on k.

h̄k = Int∠(h, k) ∪ k ∪ Int∠(k, hc). Furthermore, any point lying in the plane α∠(h,k) (of the angle ∠(h, k)) not on
either of the lines h̄, k̄ lies inside one and only one of the angles ∠(h, k), ∠(hc, k), ∠(h, kc), ∠(hc, kc).

Proof. h̄k = h̄k ∩ Pα∠(h,k)
= h̄k ∩ (k̄h ∪ Pk̄ ∪ k̄c

h)
L1.2.19.8

= h̄k ∩ (k̄h ∪ Pk̄ ∪ k̄hc) = (h̄k ∩ k̄h) ∪ (h̄k ∩ Pk̄) ∪ (h̄k ∩ k̄hc) =

Int∠(h, k) ∪ k ∩ Int∠(k, hc). Similarly, h̄kcInt∠(h, kc) ∪ kc ∩ Int∠(kc, hc), whence the second part. 2

Given an angle ∠(h, k), the angle ∠(hc, kc), formed by the rays hc, kc, complementary to h, k, respectively,
is called (the angle) vertical, or opposite, to ∠(h, k). We write vert ∠(h, k) ⇋ ∠(hc, kc). Obviously, the angle
vert (vert ∠(h, k)), opposite to the opposite ∠(hc, kc) of a given angle ∠(h, k) , coincides with the angle ∠(h, k).

Lemma 1.2.21.16. If a point C lies inside an angle ∠(h, k), the ray Oc
C , complementary to the ray OC , lies inside

the vertical angle ∠(hc, kc).

Proof. (See Fig. 1.45.) C ∈ Int∠(h, k) ⇒ C ∈ h̄k∩ k̄h
L1.2.19.8

=⇒ Oc
C ⊂ h̄c

k∩ k̄c
h ⇒ Oc

C ⊂ h̄kc ∩ k̄hc ⇒ Oc
C ⊂ Int∠(hc, kc).

2

Lemma 1.2.21.17. Given an angle ∠(h, k), all points lying either inside or on the sides hc, kc of the angle opposite
to it, lie outside ∠(h, k). 83

Proof. 2

Lemma 1.2.21.18. For any angle ∠AOB there is a point C 84 such that the ray OB lies inside the angle ∠AOC.85

83Obviously, this means that none of the interior points of ∠(hc, kc) can lie inside ∠(h, k).
84and, consequently, a ray OC
85This lemma is an analogue of A 1.2.2.
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Figure 1.45: If C lies inside ∠(h, k), the ray Oc
C lies inside the vertical angle ∠(hc, kc).
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Figure 1.46: For any angle ∠AOB there is a point C such that OB lies inside ∠AOC. For any angle ∠AOC there is
a point B such that OB lies inside ∠AOC.

Proof. (See Fig. 1.46.) By A 1.2.2 ∃C [ABC]. C /∈ aOA, because otherwise [ABC]
A1.2.1
=⇒ A 6= C

A1.1.2
=⇒ aAC =

aOA
L1.2.1.3
=⇒ B ∈ aOA, contrary to L 1.2.21.2. 86 Therefore, ∃ ∠AOC. Since [ABC], by L 1.2.21.2, L 1.2.21.6,

L 1.2.21.4 OB ⊂ Int∠AOC. 2

Lemma 1.2.21.19. For any angle ∠AOC there is a point B such that the ray OB lies inside the angle ∠AOC. 87

Proof. (See Fig. 1.46.) By T 1.2.2 ∃B [ABC]. By L 1.2.21.6, L 1.2.21.4 OB ⊂ Int∠AOC. 2

Lemma 1.2.21.20. Given an angle ∠(h, k), all points inside any angle ∠(k, m) adjacent to it, lie outside ∠(h, k).88

Proof. (See Fig. 1.47.) By definition of the interior, A ∈ Int∠(k, m) ⇒ Amk̄. By the definition of adjacency

∠(k, m) = adj(h, k) ⇒ hk̄m. Amk̄ & hk̄m
L1.2.18.5

=⇒ Ak̄h ⇒ A ∈ Ext∠(h, k). 2

Lemma 1.2.21.21. 1. If points B, C lie on one side of a line aOA, and OB 6= OC , either the ray OB lies inside the
angle ∠AOC, or the ray OC lies inside the angle ∠AOB. 2. Furthermore, if a point E lies inside the angle ∠BOC,
it lies on the same side of aOA as B and C. That is, Int∠BOC ⊂ (aOA)B = (aOA)C .

Proof. 1. Denote OD ⇋ Oc
A. (See Fig. 1.48.) BCaOA

T1.2.19
=⇒ OBOCaOA. OBOCaOA & OB 6= OC

L1.2.21.15
=⇒ OC ⊂

Int∠AOB ∨ OC ⊂ Int∠BOD. 89 Suppose OC ⊂ Int∠BOD. 90 Then by L 1.2.21.12 OB ⊂ Ext∠COD. But

since OBOCaOA & OB 6= OC
L1.2.21.15

=⇒ OB ⊂ Int∠AOC ∨ OB ⊂ Int∠COD, we conclude that OB ⊂ Int∠AOC. 2.

E ∈ Int∠BOC
L1.2.21.10

=⇒ ∃F F ∈ OE ∩ (BC). Hence by L 1.2.19.6, L 1.2.19.8 we have OE ⊂ (aOA)B = (aOA)C ,
q.e.d. 2

86According to L 1.2.21.2, B ∈ aOA contradicts the fact that the rays OA, OB form an angle.
87This lemma is analogous to T 1.2.2. In the future the reader will encounter many such analogies.
88Obviously, this means that given an angle ∠(h, k), none of the interior points of an angle ∠(k,m) adjacent to it, lies inside ∠(h, k).
89The lemma L 1.2.21.15 is applied here to every point of the ray OC .
90If OC ⊂ Int∠AOB we have nothing more to prove.
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Figure 1.47: Given an angle ∠(h, k), all points inside any angle ∠(k, m) adjacent to it, lie outside ∠(h, k).
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Figure 1.48: If points B, C lie on one side of aOA, and OB 6= OC , either OB lies inside ∠AOC, or OC lies inside
∠AOB.

Lemma 1.2.21.22. If a ray l with the same initial point as rays h, k lies inside the angle ∠(h, k) formed by them,
then the ray k lies inside the angle ∠(hc, l).

Proof. Using L 1.2.21.20, L 1.2.21.15 we have l ⊂ Int∠(h, k) ⇒ k ⊂ Ext∠(h, l)& lkh̄& l 6= k ⇒ k ⊂ Int∠(hc, l). 2

Lemma 1.2.21.23. If open intervals (AF ), (EB) meet in a point G and there are three points in the set {A, F, E, B}
known not to colline, the ray EB lies inside the angle ∠AEF . 91

Proof. C 1.2.9.14 ensures that A, E, F do not colline, so by L 1.2.21.2 ∠AEF exists. [EGB]
L1.2.11.13

=⇒ G ∈ EB. By
L 1.2.21.6, L 1.2.21.4 we have G ∈ EB & [AGF ] & A ∈ EA & F ∈ EF ⇒ EB ⊂ Int∠AEF . 2

Corollary 1.2.21.24. If open intervals (AF ), (EB) meet in a point G and there are three points in the set
{A, F, E, F} known not to colline, the points E, F lie on the same side of the line aAB. 92

Proof. Observe that by definition of the interior of ∠EAB, we have AF ⊂ Int∠EAB ⇒ EFaAB. 2

Corollary 1.2.21.25. If open intervals (AF ), (EB) concur in a point G, the ray EB lies inside the angle ∠AEF .
93

Proof. Immediately follows from L 1.2.9.13, L 1.2.21.23. 2

Corollary 1.2.21.26. If open intervals (AF ), (EB) concur in a point G, the points E, F lie on the same side of
the line aAB. 94

Proof. Immediately follows from L 1.2.9.13, C 1.2.21.24. 2

91And, by the same token (due to symmetry), the ray BE lies inside the angle ∠ABF , the ray AF lies inside lies inside the angle
∠EAB, and the ray FA lies inside the angle ∠EFB.

92Again, due to symmetry, we can immediately conclude that the points A, B also lie on the same side of the line aEF , etc.
93And, of course, the ray BE lies inside the angle ∠ABF , the ray AF lies inside lies inside the angle ∠EAB, and the ray FA lies inside

the angle ∠EFB.
94Again, A, B also lie on the same side of the line aEF , etc.
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Figure 1.49: If C lies inside ∠AOD, and B inside an angle ∠AOC, then OB lies inside ∠AOD, and OC inside ∠BOD.

Lemma 1.2.21.27. If a point C lies inside an angle ∠AOD, and a point B inside an angle ∠AOC, then the ray
OB lies inside the angle ∠AOD, and the ray OC lies inside the angle ∠BOD. In particular, if a point C lies inside
an angle ∠AOD, any point lying inside ∠AOC, as well as any point lying inside ∠COD lies inside ∠AOD. That
is, we have Int∠AOC ⊂ Int∠AOD, Int∠COD ⊂ Int∠AOD. 95

Proof. (See Fig. 1.49.) C ∈ Int∠AOD
L1.2.21.10

=⇒ ∃F [AFD] & F ∈ OC . B ∈ Int∠AOC
L1.2.21.10

=⇒ ∃E [AEF ] & E ∈ OB .

[AEF ] & [AFD]
L1.2.3.2
=⇒ [AED] & [EFD]. Hence, using L 1.2.21.6, L 1.2.21.4, we can write A ∈ OA & E ∈ OB & F ∈

OC & D ∈ OD & [AED] & [EFD] ⇒ OB ⊂ Int∠AOD & OC ⊂ Int∠BOD. 2

Lemma 1.2.21.28. Given a point C inside an angle ∠AOD, any point B lying inside ∠AOD not on the ray OC

lies either inside the angle ∠AOC or inside ∠COD.96

Proof. C ∈ Int∠AOD
L1.2.21.10

=⇒ ∃E E ∈ OC ∩ (AD). B ∈ Int∠AOD
L1.2.21.10

=⇒ ∃F F ∈ OB ∩ (AD). B /∈ OC ⇒

OB /∈ OC
L1.2.11.4

=⇒ OB ∩ OC = ∅ ⇒ F 6= E. F ∈ (AD)& F 6= E
T1.2.5
=⇒ F ∈ (AE) ∨ F ∈ (ED). Thus, we have

F ∈ OB ∩ (AE) ∨ F ∈ OB ∩ (ED) ⇒ OB ⊂ Int∠AOC ∨ OB ⊂ Int∠COD, q.e.d. 2

Lemma 1.2.21.29. If a ray OB lies inside an angle ∠AOC, the ray OC lies inside ∠BOD, and at least one of the
rays OB, OC lies on the same side of the line aOA as the ray OD, then the rays OB, OC both lie inside the angle
∠AOD.

Proof. Note that we can assume OBODaOA without any loss of generality, because by the definition of the interior

of an angle OB ⊂ Int∠AOC ⇒ OBOCaOA, and if OCODaOA, we have OBOCaOA & OCODaOA
L1.2.18.2

=⇒ OBODaOA.

OBODaOA & OB 6= OD
L1.2.21.21

=⇒ OB ⊂ Int∠AOD ∨ OD ⊂ Int∠AOB. If OB ⊂ Int∠AOD (see Fig. 1.50, a)),
by L 1.2.21.27 we immediately obtain OC ⊂ Int∠AOD. But if OD ⊂ Int∠AOB(see Fig. 1.50, b)), observing that
OB ⊂ Int∠AOC, we have by the same lemma OB ⊂ Int∠DOC, which, by C 1.2.21.13, contradicts OC ⊂ Int∠BOD.
2

Lemma 1.2.21.30. Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a point O lies outside the line a = A1An

97 Then the rays OA1 , OA2 , . . . , OAn
are in order

[OA1OA2 . . . OAn
], that is, OAj

⊂ Int∠AiOAk whenever either i < j < k or k < j < i.

Proof. (See Fig. 1.51.) Follows from L 1.2.7.3, L 1.2.21.6, L 1.2.21.4. 2

95L 1.2.21.4 implies that any other point of the ray OC can enter this condition in place of C, so instead of ”If a point C . . . ” we can
write ”if some point of the ray OC . . . ”; the same holds true for the ray OB and the angle ∠AOC. Note that, for example, L 1.2.21.16,
L 1.2.21.10, L 1.2.21.21 also allow similar reformulation, which we shall refer to in the future to avoid excessive mentioning of L 1.2.11.3.
Observe also that we could equally well have given for this lemma a formulation apparently converse to the one presented here: If a point
B lies inside an angle ∠AOD, and a point C lies inside the angle ∠BOD (the comments above concerning our ability to choose instead
of B and C any other points of the rays OB and OC , respectively being applicable here as well), the ray OC lies inside the angle ∠AOD,
and the ray OB lies inside the angle ∠AOC. This would make L 1.2.21.27 fully analogous to L 1.2.3.2. But now we don’t have to devise a
proof similar to that given at the end of L 1.2.3.2, because it follows simply from the symmetry of the original formulation of this lemma
with respect to the substitution A → D, B → C, C → B, D → A. This symmetry, in its turn, stems from the definition of angle as a
non-ordered couple of rays, which entails ∠AOC = ∠COA, ∠AOD = ∠DOA, etc.

96Summing up the results of L 1.2.21.4, L 1.2.21.27, and this lemma, given a point C inside an angle ∠AOD, we can write Int∠AOD =
Int∠AOC ∪OC ∪ Int∠COD.

97Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points Ai, Aj , i 6= j, i, j ∈ N, i.e. a = aAiAj
.
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Figure 1.50: If OB lies inside ∠AOC, OC lies inside ∠BOD, and at least one of OB, OC lies on the same side of the
line aOA as OD, then OB, OC both lie inside ∠AOD.

A A A A A A1 2 3 n-2 n-1 n

O

Figure 1.51: Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every point of the
sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose, further,
that a point O lies outside the line a = A1An Then the rays OA1 , OA2 , . . . , OAn

are in order [OA1OA2 . . . , OAn
].
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Figure 1.52: Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose,
further, that a ray BB1 does not meet the ray A1A2

and that the points A2, B1 lie on the same side of the line aA1B .
Then the rays BA1 , BA2 , . . . , BAn

BB1 are in order [BA1BA2 . . . , BAn
BB1 ].

Lemma 1.2.21.31. Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a ray BB1 does not meet the ray A1A2

and that the points A2, B1 lie on the same side of the
line aA1B . Then the rays BA1 , BA2 , . . . , BAn

BB1 are in order [BA1BA2 . . . BAn
BB1 ].

Proof. (See Fig. 1.52.) Since, by hypothesis, the ray A1A2
, and thus the open interval (A1A2), does not meet the

ray BB1 and, consequently, the line aBB1 ,
98 the points A1, A2 lie on the same side of the line aBB1 . Since, by

hypothesis, the points A2, B1 lie on the same side of the line aA1B, we have A2 ∈ Int∠A1BB1. Hence by L 1.2.21.4
we have Ai ∈ Int∠A1BB1, where i ∈ {3, 4, . . . , n}. This, in turn, by L ?? implies that BAi

⊂ Int∠A1BB1, where
i ∈ {3, 4, . . . , n}. From the preceding lemma (L 1.2.21.30) we know that the rays BA1 , BA2 , . . . , BAn

are in order
[BA1BA2 . . . BAn

]. Finally, taking into account Ai ∈ Int∠A1BB1, where i ∈ {2, 3, 4, . . . , n}, and using L 1.2.21.27,
we conclude that the rays BA1 , BA2 , . . . , BAn

BB1 are in order [BA1BA2 . . . BAn
BB1 ], q.e.d. 2

Lemma 1.2.21.32. Suppose rays k, l lie on the same side of a line h̄ (containing a third ray h), the rays h, l lie
on opposite sides of the line k̄, and the points H, L lie on the rays h, l, respectively. Then the ray k lies inside the
angle ∠(h, l) and meets the open interval (HL) at some point K.

Proof. (See Fig. 1.53.) H ∈ h & K ∈ l & hk̄l ⇒ ∃K K ∈ k̄ & [HKL]. [HKL] & H ∈ h̄
L1.2.19.9

=⇒ KLh̄. Hence K ∈ k,

for, obviously, K 6= O, and, assuming K ∈ kc, we would have: klh̄& kh̄kc L1.2.18.5
=⇒ lh̄kc, which, in view of L ∈ l,

K ∈ kc, would imply Lh̄K - a contradiction. Finally, H ∈ h & L ∈ l & [HKL]
L1.2.21.6

=⇒ K ∈ Int∠(h, l)
L1.2.21.4

=⇒ k ⊂
Int∠(h, l). 2

Lemma 1.2.21.33. Suppose that the rays h, k, l have the same initial point and the rays h, l lie on opposite sides
of the line k̄ (so that the angles ∠(h, k), ∠(k, l) are adjacent). Then the rays k, l lie on the same side of the line h̄
iff the ray l lies inside the angle ∠(hc, k), and the rays k, l lie on opposite sides of the line h̄ iff the ray hc lies inside
the angle ∠(k, l). Also, the first case takes place iff the ray k lies between the rays h, l, and the second case iff the
ray kc lies between the rays h, l.

Proof. Note that lk̄h & hck̄h
L1.2.18.4

=⇒ hclk̄. Suppose first that the rays k, l lie on the same side of the line h̄ (see
Fig. 1.54, a)). Then we can write hclk̄ & klh̄ ⇒ l ⊂ Int∠(hc, k). Conversely, form the definition of interior we have
l ⊂ Int∠(hc, k) ⇒ klh̄. Suppose now that the rays k, l lie on opposite sides of the line h̄ (see Fig. 1.54, b)). Then,
obviously, the ray l cannot lie inside the angle ∠(hc, k), for otherwise k,l would lie on the same side of h. Hence by
L 1.2.21.21 we have hc ⊂ Int∠(k, l). Conversely, if hc ⊂ Int∠(k, l), the rays k, l lie on opposite sides of the line l̄ in

98Since the points A2, B1 lie on the same side of the line aA1B , so do rays A1A2
, BB1

(T 1.2.19). Therefore, no point of the ray A1A2

can lie on Bc
B1

, which lies on opposite side of the line aA1B.
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Figure 1.53: Suppose rays k, l lie on the same side of a line h̄ (containing a third ray h), the rays h, l lie on opposite
sides of the line k̄ , and the points H , L lie on the rays h, l, respectively. Then the ray k lies inside the angle ∠(h, l)
and meets the open interval (HL) at some point K.
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Figure 1.54: Suppose that the rays h, k, l have the same initial point and the rays h, l lie on opposite sides of the
line k̄. Then the rays k, l lie on the same side of the line h̄ iff the ray l lies inside the angle ∠(hc, k), and the rays k,
l lie on opposite sides of the line h̄ iff the ray hc lies inside the angle ∠(k, l).

view of L 1.2.21.10. 99 Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.21.32)

and (in the second case) the observation that lh̄k & kch̄k
L1.2.18.4

=⇒ kclh̄. (See also C 1.2.21.11). 2

Lemma 1.2.21.34. Suppose that the rays h, k, l have the same initial point O and the rays h, l lie on opposite
sides of the line k̄. Then either the ray k lies inside the angle ∠(h, l), or the ray kc lies inside the angle ∠(h, l), or
l = hc. (In the last case we again have either k ⊂ Int∠(h, hc) or kc ⊂ Int∠(h, hc) depending on which side of the
line k̄ (i.e. which of the two half-planes having the line k̄ as its edge) is chosen as the interior of the straight angle
∠(h, hc)).

Proof. Take points H ∈ h, L ∈ l. Then hk̄l implies that there is a point K ∈ k̄ such that [HKL]. Then, obviously,
either K ∈ k, or K = O, or K ∈ kc. If K = O (see Fig. 1.55, a)) then L ∈ hc and thus l = hc (see L 1.2.11.3).
If K 6= O (see Fig. 1.55, b), c)) then the points H , O, L are not collinear, the lines k̄,aHL being different (see
L 1.2.1.3, T 1.1.1). Thus, ∠HOL = ∠(h, l) exists (see L 1.2.21.1, L 1.2.21.2). Hence by L 1.2.21.6, L 1.2.21.4 we have
either H ∈ h & L ∈ l & [HKL] & K ∈ k ⇒ k ⊂ Int∠(h, l), or H ∈ h & L ∈ l & [HKL] & K ∈ kc ⇒ kc ⊂ Int∠(h, l),
depending on which of the rays k, kc the point K belongs to.

Definition and Basic Properties of Generalized Betweenness Relations

We say that a set J of certain geometric objects A,B, . . . admits a weak 100 generalized betweenness relation, if there
is a ternary relation ρ ⊂ J3 = J × J × J, called weak generalized betweenness relation on J, whose properties are
given by Pr 1.2.1, Pr 1.2.3 – Pr 1.2.7. If (A,B, C) ⊂ ρ, where A,B, C ∈ J, where J is some set with a weak generalized
betweenness relation defined on it, we write [ABC](J) or (usually) simply [ABC], 101 and say that the geometric object
B lies in the set J between the geometric objects A and C, or that B divides A and C.

99By that lemma, any open interval joining a point K ∈ k with a point L ∈ l would then contain a point H ∈ Ph̄.
100We shall usually omit the word weak for brevity.
101The superscript J in parentheses in [ABC](J) is used to signify the set (with generalized betweenness relation) J containing the

geometric objects A,B, C. This superscript is normally omitted when the set J is obvious from context or not relevant.
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Figure 1.55: Suppose that the rays h, k, l have the same initial point O and the rays h, l lie on opposite sides of the
line k̄. Then either k lies inside ∠(h, l), or kc lies inside ∠(h, l), or l = hc.
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We say that a set J of certain geometric objects A,B, . . . admits a strong, linear, or open 102 generalized between-
ness relation, if there is a ternary relation ρ ⊂ J3 = J × J × J, called strong generalized betweenness relation on J,
whose properties are given by Pr 1.2.1 – Pr 1.2.7.

Property 1.2.1. If geometric objects A,B, C ∈ J and B lies between A and C, then A,B, C are distinct geometric
objects, and B lies between C and A.

Property 1.2.2. For every two geometric objects A,B ∈ J there is a geometric object C ∈ J such that B lies between
A and C.

Property 1.2.3. If a geometric object B ∈ J lies between geometric objects A, C ∈ J, then the object C cannot lie
between the objects A and B.

Property 1.2.4. For any two geometric objects A, C ∈ J there is a geometric object B ∈ J between them.

Property 1.2.5. Among any three distinct geometric objects A,B, C ∈ J one always lies between the others.

Property 1.2.6. If a geometric object B ∈ J lies between geometric objects A, C ∈ J, and the geometric object C lies
between B and D ∈ J, then both B and C lie between A and D. 103

Property 1.2.7. If a geometric object B ∈ J lies between geometric objects A, C ∈ J , and the geometric object C
lies between A and D ∈ J, then B lies also between A and D and C lies between B and D.

Lemma 1.2.21.35. The converse is also true. That is, ∀A,B, C,D ∈ J ([ABC] & [ACD] ⇔ [ABD] & [BCD]).

Given a set J with a weak (and, in particular, strong) generalized betweenness relation, define the following
subsets of J:

generalized abstract intervals, which are simply two - element subsets of J: AB ⇋ {A,B}
generalized open intervals, called also open generalized intervals (AB) ⇋ {X |[AXB],X ∈ J};
generalized half-open (called also generalized half-closed) intervals [AB) ⇋ {A} ∪ (AB) and (AB] ⇋ (AB ∪ B);
For definiteness, in the future we shall usually refer to sets of the form [AB) as the generalized half-open intervals,

and to those of the form (AB] as the generalized half-closed ones.
generalized closed intervals, also called generalized segments, [AB] ⇋ (AB) ∪ {A} ∪ {B}.
As in the particular case of points, generalized open, generalized half-open, generalized half-closed and generalized

closed intervals thus defined are collectively called generalized interval - like sets, joining their ends A,B.

Proposition 1.2.21.36. The set of points Pa of any line a admits a strong generalized betweenness relation.

Proof. Follows from A 1.1.1 – A 1.1.3, T 1.2.1, T 1.2.2, L 1.2.3.1, L 1.2.3.2. 2

We say that a set J of certain geometric objects A,B, . . . admits an angular, or closed, 104 generalized betweenness
relation, if there is a ternary relation ρ ⊂ J3 = J×J×J, called angular generalized betweenness relation on J, whose
properties are given by Pr 1.2.1, Pr 1.2.3 – Pr 1.2.7, Pr 1.2.8.

Property 1.2.8. The set J is a generalized closed interval, i.e. there are two geometric objects A0,B0 ∈ J such that
any other geometric object of the set J lies between A0, B0.

105

We shall refer to a collection of rays emanating from a common initial point O as a pencil of rays or a ray pencil,
which will be written sometimes as P(O). The point O will, naturally, be called the initial point, origin, or vertex of
the pencil. A ray pencil whose rays all lie in one plane is called a planar pencil (of rays). If two or more rays lie in
the same pencil, they will sometimes be called equioriginal (to each other).

Theorem 1.2.21. Given a line a in plane α, a point Q lying in α outside a, and a point O ∈ a, the set (pencil)
J of all rays with the initial point O, lying in α on the same side of the line a as the point Q 106, admits a strong
generalized betweenness relation.

To be more precise, we say that a ray OB ∈ J lies between rays OA ∈ J and OC ∈ J iff OB lies inside the angle
∠AOC, i.e. iff OB ⊂ Int∠AOC. 107 Then the following properties hold, corresponding to Pr 1.2.1 - Pr 1.2.7 in the
definition of strong generalized betweenness relation:

1. If a ray OB ∈ J lies between rays OA ∈ J and OC ∈ J, then OB also lies between OC and OA, and OA, OB ,
OC are distinct rays.

2. For every two rays OA, OB ∈ J there is a ray OC ∈ J such that OB lies between OA and OC .
3. If a ray OB ∈ J lies between rays OA, OC ∈ J, the ray OC cannot lie between the rays OA and OB .

102The term linear here reflects the resemblance to the betweenness relation for points on a line. The word open is indicative of the
topological properties of J.
103Note that, stated in different terms, this property implies that if a geometric object C lies on an open interval (AD), the open intervals

(AC), (CD) are both subsets of (AD) (see below the definition of intervals in the sets equipped with a generalized betweenness relation).
104The use of the term angular in this context will be elucidated later, as we reveal its connection with the properties of angles. The

word closed reflects the topological properties of J.
105In this situation it is natural to call A0, B0 the ends of the set J.
106That is, of all rays with origins at O, lying in the half-plane aQ.
107If OB ∈ J lies between OA ∈ J and OC ∈ J, we write this as [OAOBOC ] in accord with the general notation. Sometimes, however,

it is more convenient to write simply OB ⊂ Int∠AOC.
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4. For any two rays OA, OC ∈ J there is a ray OB ∈ J between them.
5. Among any three distinct rays OA, OB , OC ∈ J one always lies between the others.
6. If a ray OB ∈ J lies between rays OA, OC ∈ J, and the ray OC lies between OB and OD ∈ J, both OB , OC lie

between OA and OD.
7. If a ray OB ∈ J lies between rays OA, OC ∈ J, and the ray OC lies between OA and OD ∈ J, then OB lies also

between OA, OD, and OC lies between OB and OD. The converse is also true. That is, for all rays of the pencil J

we have [OAOBOC ] & [OAOCOD] ⇔ [OAOBOD] & [OBOCOD].
The statements of this theorem are easier to comprehend and prove when given the following formulation in

”native” terms.
1. If a ray OB ∈ J lies inside an angle ∠AOC, where OA, OC ∈ J, it also lies inside the angle ∠COA, and the

rays OA, OB , OC are distinct.
2. For every two rays OA, OB ∈ J there is a ray OC ∈ J such that the ray OB lies inside the angle ∠AOC.
3. If a ray OB ∈ J lies inside an angle ∠AOC, where OA, OC ∈ J, the ray OC cannot lie inside the angle ∠AOB.
4. For any two rays OA, OC ∈ J, there is a ray OB ∈ J which lies inside the angle ∠AOC.
5. Among any three distinct rays OA, OB , OC ∈ J one always lies inside the angle formed by the other two.
6. If a ray OB ∈ J lies inside an angle ∠AOC, where OA, OC ∈ J, and the ray OC lies inside ∠BOD, then both

OB and OC lie inside the angle ∠AOD.
7. If a ray OB ∈ J lies inside an angle ∠AOC, where OA, OC ∈ J, and the ray OC lies inside ∠AOD, then OB

also lies inside ∠AOD, and the ray OC lies inside the angle ∠BOD. The converse is also true. That is, for all rays
of the pencil J we have OB ⊂ Int∠AOC & OC ⊂ Int∠AOD ⇔ OB ⊂ Int∠AOD & OC ⊂ Int∠BOD.

Proof. 1. Follows from the definition of Int∠AOC.
2. See L 1.2.21.18.
3. See C 1.2.21.13.
4. See L 1.2.21.19.
5. By A 1.1.3 ∃D D ∈ a & D 6= O. By A 1.1.2 a = aOD. Then OAOBa & OA 6= OB & OAOCa & OA 6=

OC & OBOCa & OB 6= OC
L1.2.21.21

=⇒ (OA ⊂ Int∠DOB∨OB ⊂ Int∠DOA)& (OA ⊂ Int∠DOC∨OC ⊂ Int∠DOA)& (OB ⊂
Int∠DOC ∨ OC ⊂ Int∠DOB). Suppose OA ⊂ Int∠DOB. 108 If OB ⊂ Int∠DOC (see Fig. 1.56, a) then

OA ⊂ Int∠DOB & OB ⊂ Int∠DOC
L1.2.21.27

=⇒ OB ⊂ Int∠AOC. Now suppose OC ⊂ Int∠DOB. If OC ⊂ Int∠DOA

(see Fig. 1.56, b) then OC ⊂ Int∠DOA& OA ⊂ Int∠DOB
L1.2.21.27

=⇒ OA ⊂ Int∠BOC. Finally, if OA ⊂ Int∠DOC

(see Fig. 1.56, c) then OA ⊂ Int∠DOC & OC ⊂ Int∠DOB
L1.2.21.27

=⇒ OC ⊂ Int∠AOB.
6. (See Fig 1.57.) Choose a point E ∈ a, E 6= O, so that OB ⊂ Int∠EOD. 109 OB ⊂ Int∠EOD & OC ⊂

Int∠BOD
L1.2.21.27

=⇒ OC ⊂ Int∠EOD & OB ⊂ Int∠EOC. Using the definition of interior, and then L 1.2.16.1,
L 1.2.16.2, we can write OB ⊂ Int∠EOC & OB ⊂ Int∠AOC ⇒ OBOEaOC & OBOAaOC ⇒ OAOCaOC . Using the
definition of the interior of ∠EOC, we have OAOEaOC & OAOCaOE ⇒ OA ⊂ Int∠EOC. OA ⊂ Int∠EOC & OC ⊂

Int∠EOD
L1.2.21.27

=⇒ OC ⊂ Int∠AOD. Finally, OC ⊂ Int∠AOD & OB ⊂ Int∠AOC
L1.2.21.27

=⇒ OB ⊂ Int∠AOD.
7. See L 1.2.21.27. 2

At this point it is convenient to somewhat extend our concept of an angle.
A pair ∠(h, hc) of mutually complementary rays h, hc is traditionally referred to as a straight angle. The rays h,

hc are, naturally, called its sides. Observe that, according to our definitions, a straight angle is not, strictly speaking,
an angle. We shall refer collectively to both the (conventional) and straight angles as extended angles.

Given a line a in plane α, a point Q lying in α outside a, and a point O ∈ a, consider the set (pencil), which we
denote here by J0, of all rays with the initial point O, lying in α on the same side of the line a as the point Q.110

Taking a point P ∈ a, P 6= O (see A 1.1.3), we let h ⇋ OP . Denote by J the set obtained as the union of J0 with
the pair of sides of the straight angle ∠(h, hc) (viewed as a two-element set): J ⇋ J0 ∪ {h, hc}. We shall say that
that a ray OC lies between the rays h, hc, or, worded another way, a ray OC lies inside the straight angle ∠(h, hc),
if OC ⊂ aQ. With the other cases handled traditionally,111 we can formulate the following proposition:

Proposition 1.2.21.29. Given a line a in plane α, a point Q lying in α outside a, and two distinct points O ∈ a,
P ∈ a, P 6= O, the set (pencil) J, composed of all rays with the initial point O, lying in α on the same side of the
line a as the point Q, plus the rays h ⇋ OP and hc, 112 admits an angular generalized betweenness relation, i.e. the
rays in the set J thus defined satisfy 1, 3-8 below, corresponding to Pr 1.2.1, Pr 1.2.3 - Pr 1.2.7, Pr 1.2.8:

1. If a ray OB ∈ J lies between rays OA ∈ J and OC ∈ J, then OB also lies between OC and OA, and OA, OB,
OC are distinct rays.

2. For every two rays OA, OB ∈ J there is a ray OC ∈ J such that OB lies between OA and OC .
3. If a ray OB ∈ J lies between rays OA, OC ∈ J, the ray OC cannot lie between the rays OA and OB .

108We can do this without any loss of generality. No loss of generality results from the fact that the rays OA, OB, OC enter the
conditions of the theorem symmetrically.
109By A 1.1.3 ∃E E ∈ a&E 6= O. By A 1.1.2 a = aOE . By L 1.2.21.15, L 1.2.21.4 ODOBa&OD 6= OB ⇒ OB ⊂ Int∠EOD ∨OB ⊂
Int∠FOD, where OF = (OE)c. We choose OB ⊂ Int∠EOD, renaming E → F , F → E if needed.
110We shall find the notation J0 convenient in the proof of P 1.2.21.29.
111That is, we say that a ray OB ∈ J lies between rays OA ∈ J and OC ∈ J iff OB lies inside the angle ∠AOC, i.e. iff OB ⊂ Int∠AOC.
112That is, of all rays with origins at O, lying in the half-plane aQ.
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Figure 1.56: Among any three distinct rays OA, OB, OC ∈ J one always lies inside the angle formed by the other two.
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Figure 1.57: If a ray OB ∈ J lies between rays OA, OC ∈ J, and the ray OC lies between OB and OD ∈ J, both OB ,
OC lie between OA and OD.

4. For any two rays OA, OC ∈ J there is a ray OB ∈ J between them.
5. Among any three distinct rays OA, OB , OC ∈ J one always lies between the others.
6. If a ray OB ∈ J lies between rays OA, OC ∈ J, and the ray OC lies between OB and OD ∈ J, both OB , OC lie

between OA and OD.
7. If a ray OB ∈ J lies between rays OA, OC ∈ J, and the ray OC lies between OA and OD ∈ J, then OB lies also

between OA, OD, and OC lies between OB and OD. The converse is also true. That is, for all rays of the pencil J

we have [OAOBOC ] & [OAOCOD] ⇔ [OAOBOD] & [OBOCOD].
8. The set J coincides with the generalized closed interval [hhc].
In addition, we have the following property:
9. The ray h cannot lie between any two other rays of the set J. Neither can hc.

Proof. 1. For the cases when both OA ∈ J0, OC ∈ J0 (where J0 is the pencil of rays with the initial point O, lying in
α on the same side of the line a as the point Q) or one of OA, OC lies in J0 and the other coincides with h = OP or
hc, 113 the result follows from the definitions of the corresponding angles and their interiors. When one of the rays
OA, OC coincides with h, and the other - with hc, it is a trivial consequence of the definition of the interior of the
straight angle ∠(h, hc) for our case as the half-plane aQ.

9. In fact, h ⊂ Int∠BOC, where OB ∈ J0, OC ∈ J0, would imply (by L 1.2.21.21, 2) hBh̄, which is absurd.
This contradiction shows that the ray h cannot lie between two rays from J0. Also, ∀k ∈ J0 we can write ∠(k, hc) =

adj ∠(h, k)
L1.2.21.12

=⇒ hc ⊂ Ext∠(h, k), whence the result.
8. According to our definition of the interior of the straight angle ∠(h, hc) we have [hkhc] for all k ∈ J0.
3. By hypothesis, OB ∈ J lies between rays OA, OC ∈ J. From 9 necessarily OBJ0. If OC = h the result

again follows from 9. If OC 6= h, the rays OA, OC form an angle (i.e. the angle ∠AOC necessarily exists), and by
C 1.2.21.13 OC cannot lie inside the angle ∠AOB.

4. If at least one of the rays OA, OC is distinct from h, hc, then the angle ∠AOC exists, and the result follows
from L 1.2.21.19. If one of the rays OA, OC coincides with h, and the other with hc, we can let B ⇋ Q.

5. For OA, OB, OC ∈ J0 see T 1.2.21, 5. If one of the rays OA, OC coincides with h, and the other with hc, then
the ray OB lies in J0 and thus lies inside the straight angle ∠(h, hc). Now suppose that only one of the rays OA, OC

coincides with either h or hc. Due to symmetry, in this case we can assume without loss of generality that OA = h.
114 The result then follows from L 1.2.21.21.

7. Observe that by 9. the rays OB, OC necessarily lie in J0. Suppose one of the rays OA, OD coincides with h
and the other with hc. We can assume without loss of generality that OA = h, OD = hc.115 This already means that
the ray OB lies inside the straight angle ∠(h, hc), i.e. OB lies between OA and OD. Since the rays OB, OC both lie
in J0, i.e. on the same side of a and, by hypothesis, OB lies between OA = h and OC , from L 1.2.21.22 we conclude
that the ray OC lies between OB and OD = hc.

Suppose now that only no more than one of the rays OA, OB ,OC ,OD can coincide with h,hc. Then, obviously,
the rays OA,OD necessarily form an angle (in the conventional sense, not a straight angle), and the required result
follows from L 1.2.21.27.

6. For OA, OB, OC , OD ∈ J0 see T 1.2.21, 6. Observe that by 9. the rays OB , OC necessarily lie in J0. If one of
the rays OA, OD coincides with h and the other with hc, we immediately conclude that OB, OC lie inside the straight

113Since h and hc enter the conditions of the theorem in the completely symmetrical way, we do not really need to consider the case
of hc separately. Thus when only one side of the straight angle ∠(h, hc) is in question, for the rest of this proof we will be content with
considering only h.
114If necessary, we can make one or both of the substitutions A ↔ C, h↔ hc.
115Making the substitution A ↔ D or h ↔ hc if necessary.
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angle ∠(h, hc). Now suppose that only one of the rays OA, OD coincides with one of the rays h, hc. As in our proof
of 5, we can assume without loss of generality that OA = h.116 Then both OB and OD lie in J0, i.e. on one side of
a. Hence by L 1.2.21.21 either the ray OD lies inside the angle ∠AOB, or the ray OB lies inside the angle ∠AOD.
To disprove the first of these alternatives, suppose OD ⊂ Int∠AOB. Taking into account that, by hypothesis,
OC ⊂ Int∠BOD, L 1.2.21.27 gives OC ⊂ Int∠AOB, which contradicts OB ⊂ Int∠AOC in view of C 1.2.21.13.

Thus, we have shown that OB ⊂ Int∠AOD. Finally, OB ⊂ Int∠AOD & OC ⊂ Int∠BOD
L1.2.21.12

=⇒ OC ⊂ Int∠AOD.
2

Proposition 1.2.21.30. If A, B are two elements of a set J with weak generalized betweenness relation, the gen-
eralized open interval (AB) is a set with linear generalized betweenness relation, and the generalized closed interval
[AB] is a set with angular generalized betweenness relation.

Proof. 2

Lemma 1.2.21.31. Let the vertex O of an angle ∠(h, k) lies in a half-plane aA. Suppose further that the sides h,
k of ∠(h, k) lie in the plane αaA

117 and have no common points with a. Then the interior of the angle ∠(h, k) lies
completely in the half-plane aA: Int∠(h, k) ⊂ aA.

Proof. 2

Lemma 1.2.21.32. Given an angle ∠(h, k) and points B ∈ h, C ∈ k, there is a bijection between the open interval
(BC) and the open angular interval (hk).118

Proof. 2

Corollary 1.2.21.33. There is an infinite number of rays inside a given angle.

Proof. 2

Lemma 1.2.21.34. Suppose that lines b, c lie on the same side of a line a and a ‖ b, a ‖ c, b ‖ c. Then either the
line b lies inside the strip ac, or the line c lies inside the strip ab.

Proof. Take points A ∈ a, B ∈ b, C ∈ c. Consider first the case where A, B, C are collinear. By T 1.2.2 we have
either [BAC], or [ABC], or [ACB]. 119 But [BAC] would imply that the lines a, c lie on opposite sides of the line
b contrary to hypothesis. [ABC] (in view of C 1.2.19.21) implies that b lies inside the strip (ac). Similarly, [ACB]
implies that c lies inside the strip (ab) (note the symmetry!).

Suppose now that the points A, B, C do not lie on one line. The point B divides the line b into two rays, h and
hc, with initial point B. If one of these rays, say, h, lies inside the angle ∠ABC then in view of L 1.2.21.10 it is
bound to meet the open interval (AC) in some point H , and we see from C 1.2.19.21 that the line b lies inside the
strip (ac). Similarly, the point C divides the line c into two rays, k and kc, with initial point C. If one of these rays,
say, k, lies inside the angle ∠ACB then the line c lies inside the strip (ab). Suppose now that neither of the rays h,
hc lies inside the angle ∠ABC and neither of the rays k, kc lies inside the angle ∠ACB. Then using L 1.2.21.34 we
find that the points A, C lie on the same side of the line b and the points A, B lie on the same side of the line c. 120

Thus, we see that the lines a, c lie on the same side of the line b and the lines a, b lie on the same side of the line c,
as required. 2

Further Properties of Generalized Betweenness Relations

In the following we assume that J is a set of geometric objects which admits a generalized betweenness relation.

Lemma 1.2.22.2. If a geometric object B ∈ J lies between geometric objects A, C, then the geometric object A
cannot lie between B and C.

Lemma 1.2.22.3. Suppose each of the geometric objects C,D ∈ J lies between geometric objects A,B ∈ J. If a
geometric object M ∈ J lies between C and D, it also lies between A and B. In other words, if geometric objects
C,D ∈ J lie between geometric objects A,B ∈ J, the generalized open interval (CD) lies inside the generalized open
interval (AB), that is, (CD) ⊂ (AB).

Proof. [ACB] & [ADB] & [CMD]
Pr1.2.1
=⇒ A 6= C 6= D

Pr1.2.5
=⇒ [ACD] ∨ [ADC] ∨ [CAD]. But ¬[CAD], because oth-

erwise [CAD] & [ADB]
Pr1.2.6
=⇒ [CAB]

Pr1.2.3
=⇒ ¬[ACB] a contradiction. Finally, [ACD] & [CMD]

Pr1.2.7
=⇒ [AMD] and

[AMD] & [ADB]
Pr1.2.7
=⇒ [AMB]. 2

116Making, if necessary, one or both of the substitutions A↔ C, h↔ hc.
117In fact, in view of L 1.2.19.8, we require only that one of the points of h and one of the points of k lie in aA.
118Recall that (hk) is a set of rays lying inside the angle ∠(h, k) and having the vertex of ∠(h, k) as their initial point.
119Since, by hypothesis, the lines a ∋ A, b ∋ B, c ∋ C are pairwise parallel, the points A, B, C are obviously distinct.
120Since the points A, C do not lie on the line b, they lie either on one side or on opposite sides of the line b. But if A, C lie on opposite

sides of b, then by L 1.2.21.34 either h or hc lie inside the angle ∠ABC (recall that we now assume that A, B, C are not collinear),
contrary to our assumption.
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Lemma 1.2.22.4. If both ends of a generalized interval CD lie on a generalized closed interval [AB], the generalized
open interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from Pr 1.2.6, L 1.2.22.3. 2

Lemma 1.2.22.5. If a geometric object C ∈ J lies between geometric objects A and B, none of the geometric objects
of the generalized open interval (AC) lie on the generalized open interval (CB).

Proof. [AMC] & [ACB]
Pr1.2.7
=⇒ [MCB]

Pr1.2.3
=⇒ ¬[CMB]. 2

Proposition 1.2.22.6. If two (distinct) geometric objects E, F lie on an generalized open interval (AB) (i.e., between
geometric objects A, B), then either E lies between A and F or F lies between A and E.

Proof. By Pr 1.2.1 [AEB] & [AFB] ⇒ A 6= E &A 6= F . Also, by hypothesis, E 6= F . Therefore, by Pr 1.2.5

[EAF ] ∨ [AEF ] ∨ [AFE ]. But [EAF ] & E ∈ (AB)&F ∈ (AB)
L1.2.22.5

=⇒ A ∈ (AB), which is absurd as it contradicts
Pr 1.2.1. We are left with [AEF ] ∨ [AFE ], q.e.d. 2

Lemma 1.2.22.7. Both ends of a generalized interval CD lie on a generalized closed interval [AB] iff the open
interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from Pr 1.2.6, L 1.2.22.4. 2

Lemma 1.2.22.8. If a geometric object C ∈ J lies between geometric objects A,B ∈ J, any geometric object of the
open interval (AB), distinct from C, lies either on (AC) or on (CB). 121

Proof. Suppose [AMB], M 6= C. Since also [ACB] & [AMB]
Pr1.2.1
=⇒ C 6= B&M 6= B, by Pr 1.2.5 [CBM] ∨ [CMB] ∨

[MCB]. But ¬[CBM], because otherwise [ACB] & [CBM]
Pr1.2.6
=⇒ [ABM]

Pr1.2.3
=⇒ ¬[AMB] - a contradiction. Finally,

[AMB] & [MCB]
Pr1.2.7
=⇒ [AMC]. 2

Lemma 1.2.22.9. If a geometric object O ∈ J divides geometric objects A ∈ J and C ∈ J, as well as A , D ∈ J, it
does not divide C and D.

Proof. [AOC] & [AOD]
Pr1.2.1
=⇒ A 6= C &A 6= D. If also C 6= D 122, from Pr 1.2.5 we have [CAD] & [ACD] & [ADC]. But

¬[CAD], because [CAD] & [AOD]
Pr1.2.7
=⇒ [CAO]

Pr1.2.3
=⇒ ¬[AOC]. Hence by L 1.2.22.5 ([ACD]∨[ADC])& [AOC] & [AOD] ⇒

¬[COD]. 2

Generalized Betweenness Relation for n Geometric Objects

Lemma 1.2.22.10. Suppose A1,A2, . . . ,An, (. . .) is a finite (countably infinite) sequence of geometric objects of
the set J with the property that a geometric object of the sequence lies between two other geometric objects of the
sequence if its number has an intermediate value between the numbers of these geometric objects. Then the converse
of this property is true, namely, that if a geometric object of the sequence lies between two other geometric objects
of the sequence, its number has an intermediate value between the numbers of these two geometric objects. That
is, (∀i, j, k ∈ Nn (respectively, N) ((i < j < k) ∨ (k < j < i) ⇒ [AiAjAk])) ⇒ (∀i, j, k ∈ Nn (respectively, N)
([AiAjAk] ⇒ (i < j < k) ∨ (k < j < i))).

Let an infinite (finite) sequence of geometric objects Ai ∈ J, where i ∈ N (i ∈ Nn, n ≥ 4), be numbered in such
a way that, except for the first and the last, every geometric object lies between the two geometric objects of the
sequence with numbers, adjacent (in N) to the number of the given geometric object. Then:

Lemma 1.2.22.11. – A geometric object from this sequence lies between two other members of this sequence iff its
number has an intermediate value between the numbers of these two geometric objects.

Proof. By induction. [A1A2A3] & [A2A3A4]
Pr1.2.6
=⇒ [A1A2A4] & [A1A3A4] (n = 4). [AiAn−2An−1]

& [An−2An−1An]
Pr1.2.6
=⇒ [AiAn−1An], [AiAjAn−1] & [AjAn−1An]

Pr1.2.7
=⇒ [AiAjAn]. 2

Lemma 1.2.22.12. – An arbitrary geometric object from the set J cannot lie on more than one of the generalized
open intervals formed by pairs of geometric objects of the sequence having adjacent numbers in the sequence.

Proof. Suppose [AiBAi+1], [AjBAj+1], i < j. By L 1.2.22.11 [AiAi+1Aj+1], whence [AiBAi+1] & [AiAi+1Aj+1]
L1.2.22.5

=⇒

¬[Ai+1BAj+1] ⇒ j 6= i+1. But if j > i+1, we have [Ai+1AjAj+1] & [AjBAj+1]
Pr1.2.7
=⇒ [Ai+1BAj+1] – a contradiction.

2

121Thus, based on this lemma and some of the preceding results, we can write [ABC] ⇒ (AC) = (AB) ∪ {B} ∪ (BC), (AB) ⊂ (AC),
(BC) ⊂ (AC), (AB) ∩ (BC) = ∅.
122For C = D see Pr 1.2.1.
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Lemma 1.2.22.13. – In the case of a finite sequence, a geometric object which lies between the end (the first and the
last, nth), geometric objects of the sequence, and does not coincide with the other geometric objects of the sequence,
lies on at least one of the generalized open intervals, formed by pairs of geometric objects with adjacent numbers.

Proof. By induction. For n = 3 see L 1.2.22.8. [A1BAn] &B /∈ {A2, . . . ,An−1}
L1.2.22.8

=⇒ ([A1BAn−1]∨[An−1BAn])&B /∈
{A2, . . . ,An−2} ⇒ (∃i i ∈ Nn−2 & [AiBAi+1) ∨ [An−1BAn] ⇒ ∃i i ∈ Nn−1 & [AiBAi+1]. 2

Lemma 1.2.22.14. – All of the generalized open intervals (AiAi+1), where i = 1, 2, . . . , n − 1, lie inside the gener-
alized open interval (A1An), i.e. ∀i ∈ {1, 2, . . . , n − 1} (AiAi+1) ⊂ (A1An).

Proof. By induction. For n = 4 ([A1MA2] ∨ [A2MA3])& [A1A2A3]
Pr1.2.7
=⇒ [A1MA3]. If M ∈ (AiAi+1), i ∈

{1, 2, . . . , n − 2}, then by the induction hypothesis M ∈ (A1An−1), by L 1.2.22.11 we have [A1An−1An], therefore

[A1MAn−1] & [A1An−1An]
Pr1.2.7
=⇒ [A1MAn]; if M ∈ (An−1An) then [A1An−1An] & [An−1MAn]

Pr1.2.7
=⇒ [A1MAn].

2

Lemma 1.2.22.15. – The generalized half-open interval [A1An) is a disjoint union of the generalized half-open
intervals [AiAi+1), where i = 1, 2, . . . , n − 1 :

[A1An) =
n−1⋃
i=1

[AiAi+1).

Also,

The generalized half-closed interval (A1An] is a disjoint union of the generalized half-closed intervals (AiAi+1],
where i = 1, 2, . . . , n − 1 :

(A1An] =
n−1⋃
i=1

(AiAi+1].

In particular, if J = [A1An] is a set with angular generalized betweenness relation then we have

J =
n−1⋃
i=1

[AiAi+1].

Proof. Use L 1.2.22.13, L 1.2.22.11, L 1.2.22.14. 2

If a finite (infinite) sequence of geometric objects Ai ∈ J, i ∈ Nn, n ≥ 4 (n ∈ N) has the property that a geometric
object from the sequence lies between two other geometric objects of the sequence iff its number has an intermediate
value between the numbers of these two geometric objects, we say that the geometric objects A1,A2, . . . ,An(, . . .)
are in order [A1A2 . . .An(. . .)].

Theorem 1.2.22. Any finite sequence of geometric objects Ai ∈ J, i ∈ Nn, n ≥ 4 can be renumbered in such a way
that a geometric object from the sequence lies between two other geometric objects of the sequence iff its number has
an intermediate value between the numbers of these two geometric objects. In other words, any finite sequence of
geometric objects Ai ∈ J, i ∈ Nn, n ≥ 4 can be put in order [A1A2 . . .An].

By a renumbering of a finite (infinite) sequence of geometric objects Ai, i ∈ Nn, n ≥ 4, we mean a bijective map-
ping (permutation) σ : Nn → Nn, which induces a bijective transformation {σS : A1,A2, . . . ,An} → {A1,A2, . . . ,An}
of the set of geometric objects of the sequence by Ai 7→ Aσ(i), i ∈ Nn.

The theorem then asserts that for any finite sequence of distinct geometric objects Ai, i ∈ Nn, n ≥ 4 there is a
bijective mapping (permutation) of renumbering σ : Nn → Nn such that ∀ i, j, k ∈ Nn (i < j < k) ∨ (k < j < i) ⇔
[Aσ(i)Aσ(j)Aσ(k)].

Proof. Let [AlAmAn], l 6= m 6= n, l ∈ N4, m ∈ N4, n ∈ N4 (see Pr 1.2.5). If p ∈ N4 & p 6= l & p 6= m & p 6= n, then by
Pr 1.2.5, L 1.2.22.8 [ApAlAn] ∨ [AlApAm] ∨ [AmApAn] ∨ [AlApAn] ∨ [AlAnAp].

Define the values of the function σ by

for [ApAlAn] let σ(1) = p, σ(2) = l, σ(3) = m, σ(4) = n;

for [AlApAm] let σ(1) = l, σ(2) = p, σ(3) = m, σ(4) = n;

for [AmApAn] let σ(1) = l, σ(2) = m, σ(3) = p, σ(4) = n;

for [AlAnAp] let σ(1) = l, σ(2) = m, σ(3) = n, σ(4) = p.

Now suppose that ∃τ τ : Nn−1 → Nn−1 such that ∀i, j, k ∈ Nn−1 (i < j < k) ∨ (k < j < i) ⇔ [Aτ(i)Aτ(j)Aτ(k)].
By Pr 1.2.5, L 1.2.22.13 [AnAτ(1)Aτ(n−1)] ∨ [Aτ(1)Aτ(n−1)Aτ(n)] ∨ ∃i i ∈ Nn−2 & [Aτ(i)AnAτ(n+1)].

The values of σ are now given

for [AnAσ(1)Aσ(n−1)] by σ(1) = n and σ(i + 1) = τ(i), where i ∈ Nn−1;

for [Aσ(i)Aσ(n−1)Aσ(n)] by σ(i) = τ(i), where i ∈ Nn−1, and σ(n) = n;

for [Aσ(i)AnAσ(i+1)] by σ(j) = τ(j), where j ∈ {1, 2, . . . , i}, σ(i + 1) = n, and σ(j + 1) = τ(j), where j ∈
{i + 1, i + 2, . . . , n − 1}. See L 1.2.22.11. 2
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Some Properties of Generalized Open Intervals

Lemma 1.2.23.1. For any finite set of geometric objects {A1,A2, . . . ,An} of a generalized open interval (AB) ⊂ J

there is a geometric object C on (AB) not in that set.

Proof. Using T 1.2.22, put the geometric objects of the set {A,A1,A2, . . . ,An,B} in order [A,A1,A2, . . . ,An,B].
By Pr 1.2.5 ∃C [A1CA2]. By L 1.2.22.3 [ACB] and C 6= A1,A2, . . . ,An, because by Pr 1.2.3 [A1CA2] ⇒ ¬[A1A2C]
and by Pr 1.2.1 C 6= A1,A2. 2

Theorem 1.2.23. Every generalized open interval in J contains an infinite number of geometric objects.

Corollary 1.2.23.2. Any generalized interval-like set in J contains infinitely many geometric objects.

Lemma 1.2.24.3. Let Ai, where i ∈ Nn, n ≥ 4, be a finite sequence of geometric objects with the property that every
geometric object of the sequence, except for the first and the last, lies between the two geometric objects with adjacent
(in N) numbers. Then if i ≤ j ≤ l, i ≤ k ≤ l, i, j, k, l ∈ Nn (i, j, k, l ∈ N), the generalized open interval (AjAk) is
included in the generalized open interval (AiAl).

123 Furthermore, if i < j < k < l and B ∈ (AjAk) then [AiAjB].
124

Proof. Assume j < k. 125 Then i = j & k = l ⇒ (AiAl) = (AjAk); i = j & k < l ⇒ [AiAkAl]
Pr1.2.7
=⇒ AjAk) ⊂

(AiAl); i < j & k = l ⇒ [AiAjAk]
Pr1.2.7
=⇒ (AjAk) ⊂ (AiAl). i < j & k < l ⇒ [AiAjAl] & [AiAkAl]

Pr1.2.7
=⇒ (AjAk) ⊂

(AiAl).

The second part follows from [AiAjAk] & [AjBAk]
Pr1.2.7
=⇒ [AiAjB]. 2

Let a generalized interval A0An be divided into generalized intervals A0A1,A1A2, . . .An−1An. Then

Lemma 1.2.24.4. – If B1 ∈ (Ak−1Ak), B2 ∈ (Al−1Al), k < l then [A0B1B2]. Furthermore, if B2 ∈ (Ak−1Ak) and
[Ak−1B1B2], then [A0B1B2].

Proof. By L 1.2.22.11 [A0AkAm]. Using L 1.2.24.3 (since 0 ≤ k − 1, k ≤ l− 1 < n), we obtain [A0B1Ak], [AkB2An].

Hence [B1AkAm] & [AkB2Am]
Pr1.2.7
=⇒ [B1AkB2], [A0B1Ak] & [B1AkB2]

Pr1.2.6
=⇒ [A0B1B2]. To show the second part,

observe that for 0 < k − 1 we have by the preceding lemma (the second part of L 1.2.24.3) [A0Ak−1B2], whence

[A0Ak−1B2] & [Ak−1B1B2]
Pr1.2.7
=⇒ [A0B1B2]. 2

Corollary 1.2.24.5. – If B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), k < l, then [AB1B2].

Proof. Follows from the preceding lemma (L 1.2.24.4) and L 1.2.24.3. 2

Lemma 1.2.24.6. – If [A0B1B2] and B2 ∈ (A0An), then either B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), where 0 < k < l ≤ n,
or B1 ∈ [Ak−1Ak), B2 ∈ [Ak−1Ak), in which case either B1 = Ak−1 and B2 ∈ (Ak−1Ak), or [Ak−1B1B2], where
B1,B2 ∈ (Ak−1Ak).

Proof. [A0B1B2] & [A0B2An]
Pr1.2.7
=⇒ [A0B1Ak]. By L 1.2.22.15 we have B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), where

k, l ∈ Nn. Show k ≤ l. In fact, otherwise B1 ∈ [Ak−1Ak), B2 ∈ [Al−1Al), k > l would imply [A0B2B1] by the

preceding corollary, which, according to Pr 1.2.3, contradicts [A0B1B2]. Suppose k = l. Note that [A0B1B2]
Pr1.2.1
=⇒

B1 6= B2 6= A0. The assumption B2 = Ak−1 would (by L 1.2.24.3; we have in this case 0 < k − 1, because B2 6= A0)
imply [A0B2B1] - a contradiction. Finally, if B1,B2 ∈ (Ak−1Ak) then by P 1.2.3.4 either [Ak−1B1B2] or [Ak−1B2B1].
But [Ak−1B2B1] would give [A0B2B1] by (the second part of) L 1.2.24.4. Thus, we have [Ak−1B1B2]. There remains
also the possibility that B1 = Ak−1 and B2 ∈ [Ak−1Ak). 2

Lemma 1.2.24.7. – If 0 ≤ j < k ≤ l − 1 < n and B ∈ (Al−1Al) then [AjAkB]. 126

Proof. By L 1.2.22.15 [AjAkAl]. By L 1.2.24.3 [AkBAl]. Therefore, [AjAkAl] & [AkBAl]
Pr1.2.7
=⇒ [AjAkB]. 2

Lemma 1.2.24.8. – If D ∈ (Aj−1Aj), B ∈ (Al−1Al), 0 < j ≤ k ≤ l − 1 < n, then [DAkB].

Proof. Since j ≤ k ⇒ j − 1 < k, we have from the preceding lemma (L 1.2.24.7) [Aj−1AkB] and from L 1.2.24.3
[Aj−1DAk]. Hence by Pr 1.2.7 [DAkB]. 2

Lemma 1.2.24.9. – If B1 ∈ (AiAj), B2 ∈ (AkAl), 0 ≤ i < j < k < l ≤ n then (AjAk) ⊂ (B1Ak) ⊂ (B1B2) ⊂
(B1Al) ⊂ (AiAl), (AjAk) 6= (B1Ak) 6= (B1B2) 6= (B1Al) 6= (AiAl) and (AjAk) ⊂ (AjB2) ⊂ (B1B2) ⊂ (AiB2) ⊂
(AiAl), (AjAk) 6= (AjB2) 6= (B1B2) 6= (AiB2) 6= (AiAl).

123In particular, given a finite (countable infinite) sequence of geometric objects Ai, i ∈ Nn (n ∈ N) in order [A1A2 . . .An(. . .)], if
i ≤ j ≤ l, i ≤ k ≤ l, i, j, k, l ∈ Nn (i, j, k, l ∈ N), the generalized open interval (AjAk) is included in the generalized open interval (AiAl).
124Also, [BAkAl], but this gives nothing new because of symmetry.
125Due to symmetry, we can do so without loss of generality.
126Similarly, it can be shown that if 0 < l ≤ j < k ≤ n and B ∈ (Al−1Al) then [BAjAk]. Because of symmetry this essentially adds

nothing new to the original statement.
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Proof. 127 Using the properties Pr 1.2.6, Pr 1.2.7 and the results following them (summarized in the footnote ac-

companying T ??), we can write [AiB1Aj ] & [AiAjAk]
Pr1.2.7
=⇒ [B1AjAk] ⇒ (AjAk) ⊂ (B1Ak)& (AjAk) 6= (B1Ak).

Also, [AjAkAl] & [AkB2Al] ⇒ [AjAkB2] ⇒ (AjAk) ⊂ (AjB2)& (AjAk) 6= (AjB2). [B1AjAk] & [AjAkB2]
Pr1.2.6
=⇒

[B1AjB2] & [B1AkB2] ⇒ (AjB2) ⊂ (B1B2)& (AjB2) 6= (B1B2)& (B1Ak) ⊂ (B1B2)& (B1Ak) 6= (B1B2).
[B1AkB2] & [AkB2Al] ⇒ [B1B2Al] ⇒ (B1B2) ⊂ (B1Al) ⇒ (B1B2) 6= (B1Al). [AiB1Aj ] & [B1AjB2] ⇒ [AiB1B2] ⇒
(B1B2) ⊂ (AiB2) ⇒ (B1B2) 6= (AiB2). [AiB1B2] & [B1B2Al] ⇒ [AiB1Al] & [AiB2Al] ⇒ (B1Al) ⊂ (AiAl)& (B1Al) 6=
(AiAl)& (AiB2) ⊂ (AiAl)& (AiB2) 6= (AiAl). 2

Lemma 1.2.24.10. – Suppose B1 ∈ [AkAk+1), B2 ∈ [AlAl+1), where 0 < k + 1 < l < n. Then (Ak+1Al) ⊂
(B1B2) ⊂ (AkAl+1), (Ak+1Al) 6= (B1B2) 6= (AkAl+1).

Proof. 128 Suppose B1 = Ak, B2 = Al. Then [AkAk+1Al] ⇒ (Ak+1Al) ⊂ (AkAl) = (B1B2)& (Ak+1Al) 6=
(B1B2). Also, in view of k < k + 1 < l < l + 1, taking into account L 1.2.24.3, we have (Ak+1Al) ⊂ (B1B2) ⊂
(AkAl+1)& (Ak+1Al) 6= (B1B2) 6= (AkAl+1). Suppose now B1 = Ak, B2 ∈ (AlAl+1). Then [AkAlAl+1] & [AlB2Al+1] ⇒
[AkAlB2] & [AkB2Al+1] ⇒ [B1B2Al+1 ⇒ (B1B2) ⊂ (AkAl+1)& (B1B2) 6= (AkAl+1). [AkAk+1Al] & [Ak+1AlB2] ⇒
[AkAk+1B2] ⇒ (Ak+1B2) ⊂ (AkB2) = (B1B2)& (Ak+1B2) 6= (B1B2). (Ak+1Al) ⊂ (Ak+1B2)& (Ak+1Al) 6=
(Ak+1B2)& (Ak+1B2) ⊂ (B1B2)& (Ak+1B2) 6= (B1B2) ⇒ (Ak+1Al) ⊂ (B1B2)& (Ak+1Al) 6= (B1B2). Now con-
sider the case B1 ∈ (AkAk+1), B2 = Al. We have [AkB1Ak+1] & [AkAk+1Al] ⇒ [A1Ak+1Al] ⇒ (Ak+1Al) ⊂
(B1B2)& (Ak+1Al) 6= (B1B2). [AkAk+1Al] & [AkB1Ak+1] ⇒ [B1Ak+1Al] ⇒ (Ak+1Al) ⊂ (B1B2)& (Ak+1Al) 6=
(B1B2). [B1Ak+1Al] & [Ak+1AlAl+1] ⇒ [B1AlAl+1] ⇒ (B1B2) = (B1Al) ⊂ (B1Al+1)& (B1B2) 6= (B1Al+1).
[AkBAk+1] & [AkAk+1Al+1] ⇒ [AkB1Al+1] ⇒ (B1Al+1) ⊂ (AkAl+1)& (B1Al+1) 6= (AkAl+1).
(B1B2) ⊂ (B1Al+1)& (B1B2) 6= (B1Al+1)& (B1Al+1) ⊂ (AkAl+1)& (B1Al+1) 6= (AkAl+1) ⇒
(B1B2) ⊂ (AkAl+1)& (B1B2) 6= (AkAl+1). Finally, in the case when B1 ∈ (AkAk+1), B2 ∈ (AlAl+1) the result
follows immediately from the preceding lemma (L 1.2.24.9). 2

Theorem 1.2.24.

Basic Properties of Generalized Rays

Given a set J, which admits a generalized betweenness relation, a geometric objects O ∈ J and another geometric

object A ∈ J, define the generalized ray O
(J)
A

,129 emanating from its origin O, as the set O
(J)
A

⇋ {B|B ∈ J &B 6=
O&¬[AOB]}.130

Lemma 1.2.25.1. Any geometric object A lies on the ray OA.

Proof. Follows immediately from Pr 1.2.1. 2

Lemma 1.2.25.2. If a geometric object B lies on a generalized ray OA, the geometric object A lies on the generalized
ray OB, that is, B ∈ OA ⇒ A ∈ OB.

Proof. From Pr 1.2.1 O ∈ J &A ∈ J &B ∈ J &¬[AOB] ⇒ ¬[BOA]. 2

Lemma 1.2.25.3. If a geometric object B lies on a generalized ray OA, then the ray OA is equal to the ray OB.

Proof. Let C ∈ OA. If C = A, then by L 1.2.25.2 C ∈ OB. C 6= O 6= A&¬[AOC]
Pr1.2.5
=⇒ [OAC] ∨ [OCA]. Hence

¬[BOC], because from Pr 1.2.6, Pr 1.2.7 [BOC] & ([OAC] ∨ [OCA]) ⇒ [BOA]. 2

Lemma 1.2.25.4. If generalized rays OA and OB have common points, they are equal.

Proof. OA ∩ OB 6= ∅ ⇒ ∃C C ∈ OA & C ∈ OB
L1.2.25.3

=⇒ OA = OC = OB. 2

If B ∈ OA (B ∈ J &B /∈ OA &B 6= O), we say that the geometric object B lies in the set J on the same side (on
the opposite side) of the given geometric object O as (from) the geometric object A.

127An easier and perhaps more elegant way to prove this lemma follows from the observation that the elements of the set
{A0,A1, . . . ,An,B1,B2} are in order [(A0 . . .)AiB1Aj . . .AkB2Al(. . .An).
128Again, we use in this proof the properties Pr 1.2.6, Pr 1.2.7 and the results following them (summarized in the footnote accompanying

L 1.2.22.8) without referring to these results explicitly.
129The set J is usually assumed to be known and fixed, and so its symbol (along with the accompanying parentheses) is dropped from

the notation for a generalized ray. (See also our convention concerning the notation for generalized betweenness relation on p. 46.)
130One might argue that this definition of a generalized ray allows to be viewed as rays objects very different from our traditional

”common sense” view of a ray as an ”ordered half-line” (for examples, see pp. 65, 104). However, this situation is quite similar
to that of many other general mathematical theories. For example, in group theory multiplication in various groups, such as groups
of transformations, may at first sight appear to have little in common with number multiplication. Nevertheless, the composition of
appropriately defined transformations and number multiplication have the same basic properties reflected in the group axioms. Similarly,
our definition of a generalized ray is corroborated by the fact that the generalized rays thus defined possess the same essential properties
the conventional, ”half-line” rays, do.
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Lemma 1.2.25.5. The relation ”to lie in the set J on the same side of the given geometric object O ∈ J as” is an
equivalence relation on J \ {O}. That is, it possesses the properties of:

1) Reflexivity: A geometric object A always lies on the same side of the geometric object O as itself;
2) Symmetry: If a geometric object B lies on the same side of the geometric object O as A, the geometric object

A lies on the same side of O as B.
3) Transitivity: If a geometric object B lies on the same side of the geometric object O as the geometric object A,

and a geometric object C lies on the same side of O as B, then C lies on the same side of O as A.

Proof. 1) and 2) follow from L 1.2.25.1, L 1.2.25.2. Show 3): B ∈ OA & C ∈ OB
L1.2.25.3

=⇒ OA = OB = OC ⇒ C ∈ OA.
2

Lemma 1.2.25.6. A geometric object B lies on the opposite side of O from A iff O divides A and B.

Proof. By the definition of the generalized ray OA we have B ∈ J &B /∈ OA &B 6= O ⇒ [AOB]. Conversely, from
Pr 1.2.1 O ∈ J &A ∈ J &B ∈ J & [AOB] ⇒ B 6= O&B /∈ OA. 2

Lemma 1.2.25.7. The relation ”to lie in the set J on the opposite side of the given geometric object O from” is
symmetric.

Proof. Follows from L 1.2.25.6 and [AOB]
Pr1.2.1
=⇒ [BOA]. 2

If a geometric object B lies in the set J on the same side (on the opposite side) of the geometric object O as
(from) a geometric object A, in view of symmetry of the relation we say that the geometric objects A and B lie in
the set J on the same side (on opposite sides) of O.

Lemma 1.2.25.8. If geometric objects A and B lie on one generalized ray OC ⊂ J, they lie in the set J on the same
side of the geometric object O. If, in addition, A 6= B, then either A lies between O and B, or B lies between O and
A.

Proof. A ∈ OC
L1.2.25.3

=⇒ OA = OC . B ∈ OA ⇒ B 6= O&¬[BOA]. When also B 6= A, from Pr 1.2.5 [OAB]∨ [OBA]. 2

Lemma 1.2.25.9. If a geometric object C lies in the set J on the same side of the geometric object O as a geometric
object A, and a geometric object D lies on the opposite side of O from A, then the geometric objects C and D lie on
opposite sides of O. 131

Proof. C ∈ OA ⇒ ¬[AOC] & C 6= O. If also C 6= A 132, from Pr 1.2.5 [ACO] or [CAO], whence by Pr 1.2.6, Pr 1.2.7
([ACO] ∨ [CAO])& [AOD] ⇒ [COD]. 2

Lemma 1.2.25.10. If geometric objects C and D lie in the set J on the opposite side of the geometric object O from
a geometric object A, 133 then C and D lie on the same side of O.

Proof. By Pr 1.2.1, L 1.2.22.9 [AOC] & [AOD] ⇒ O 6= C &¬[COD] ⇒ D ∈ OC . 2

Lemma 1.2.25.11. Suppose a geometric object C lies on a generalized ray OA, a geometric object D lies on a
generalized ray OB, and O lies between A and B. Then O also lies between C and D.

Proof. Observe that D ∈ OB
L1.2.25.3

=⇒ OB = OD and use L 1.2.25.9. 2

Lemma 1.2.25.12. A geometric object O ∈ J divides geometric objects A ∈ J and B ∈ J iff the generalized rays
OA and OB are disjoint, OA ∩ OB = ∅, and their union, together with the geometric object O, gives the set J, i.e.
J = OA ∪ OB ∪ {O}. That is,

[AOB] ⇔ (J = OA ∪ OB ∪ {O})& (OA ∩ OB = ∅).

Proof. Suppose [AOB]. If C ∈ J and C /∈ OB, C 6= O then [COB] by the definition of the generalized ray OB.

[COB] & [AOB]
L1.2.25.5

=⇒ ¬[COA] ⇒ C ∈ OA. OA ∩ OB = ∅, because otherwise C ∈ OA & C ∈ OB
L1.2.25.4

=⇒ B ∈ OA ⇒
¬[AOB].

Now suppose J = OA ∪ OB ∪ {O}) and (OA ∩ OB = ∅). Then B ∈ OB &OA ∩ OB = ∅ ⇒ B /∈ OA, and
B ∈ J &B 6= O&B /∈ OA ⇒ [AOB]. 2

Lemma 1.2.25.13. A generalized ray OA contains the generalized open interval (OA).

Proof. If B ∈ (OA) then from Pr 1.2.1 B 6= O and from Pr 1.2.3 ¬[BOA]. We thus have B ∈ OA. 2

Lemma 1.2.25.14. For any finite set of geometric objects {A1,A2, . . . ,An} of a ray OA there is a geometric object
C on OA not in that set.

131Making use of L 1.2.25.6, this statement can be reformulated as follows:
If a geometric object C lies on OA, and O divides the geometric objects A and D, then O divides C and D.

132Otherwise there is nothing else to prove
133One could as well have said: If O lies between A and C, as well as between A and D . . .
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Proof. Immediately follows from T 1.2.23 and L 1.2.25.13. 2

Lemma 1.2.25.15. If a geometric object B lies between geometric objects O and A then the generalized rays OB

and OA are equal.

Proof. [OBA]
L1.2.25.13

=⇒ B ∈ OA
L1.2.25.3

=⇒ OB = OA. 2

Lemma 1.2.25.16. If a geometric object A lies between geometric objects O and B, the geometric object B lies on
the generalized ray OA.

Proof. By Pr 1.2.1, Pr 1.2.3 [OAB] ⇒ B 6= O&¬[BOA] ⇒ B ∈ OA.
Alternatively, this lemma can be obtained as an immediate consequence of the preceding one (L 1.2.25.15). 2

Lemma 1.2.25.17. If generalized rays OA and O′
B are equal, their origins coincide.

Proof. Suppose O′ 6= O We have also O′ 6= O&O′
B = OA ⇒ O′ /∈ OA. Therefore, O′ ∈ J &O′ 6= O&O′ /∈ OA ⇒

O′ ∈ Oc
A. O′ ∈ Oc

A &B ∈ OA ⇒ [O′OB]. B ∈ O′
B & [O′OB]

L1.2.25.13
=⇒ O ∈ O′

B = OA - a contradiction. 2

Lemma 1.2.25.18. If a generalized interval A0An is divided into n generalized intervals A0A1,A1A2 . . . ,An−1An

(by the geometric objects A1,A2, . . .An−1),
134 the geometric objects A1,A2, . . .An−1,An all lie on the same side of

the geometric object A0, and the generalized rays A0A1
,A0A2

, . . . ,A0An
are equal. 135

Proof. Follows from L 1.2.22.11, L 1.2.25.15. 2

Theorem 1.2.25. Every generalized ray contains an infinite number of geometric objects.

Linear Ordering on Generalized Rays

Suppose A,B are two geometric objects on a generalized ray OD. Let, by definition, (A ≺ B)OD

def
⇐⇒ [OAB]. If

A ≺ B, 136 we say that the geometric object A precedes the geometric object B on the generalized ray OD, or that
the geometric object B succeeds the geometric object A on the generalized ray OD.

Lemma 1.2.26.1. If a geometric object A precedes a geometric object B on the generalized ray OD, and B precedes
a geometric object C on the same generalized ray, then A precedes C on OD:

A ≺ B&B ≺ C ⇒ A ≺ C, where A,B, C ∈ OD.

Proof. [OAB] & [OBC]
Pr1.2.7
=⇒ [OAC]. 2

Lemma 1.2.26.2. If A,B are two distinct geometric objects on a generalized ray OD then either A precedes B or B
precedes A; if A precedes B then B does not precede A.

Proof. A ∈ OD &B ∈ OD
L1.2.25.8

=⇒ B ∈ OA ⇒ ¬[AOB]. If A 6= B, then by Pr 1.2.5 [OAB] ∨ [OBA], that is, A ≺ B

or B ≺ A. A ≺ B ⇒ [OAB]
Pr1.2.3
=⇒ ¬[OBA] ⇒ ¬(B ≺ A). 2

Lemma 1.2.26.3. If a geometric object B lies on a generalized ray OP between geometric objects A and C, 137 then
either A precedes B and B precedes C, or C precedes B and B precedes A; conversely, if A precedes B and B precedes
C, or C precedes B and B precedes A, then B lies between A and C. That is,

[ABC] ⇔ (A ≺ B&B ≺ C) ∨ (C ≺ B&B ≺ A).

Proof. From the preceding lemma (L 1.2.26.2) we know that either A ≺ C or C ≺ A, i.e. [OAC] or [OCA]. Suppose

[OAC]. 138 Then [OAC] & [ABC]
Pr1.2.7
=⇒ [∠OAB] & [∠OBC] ⇒ A ≺ B&B ≺ C. Conversely, A ≺ B&B ≺ C ⇒

[OAB] & [OBC]
Pr1.2.7
=⇒ [ABC]. 2

For geometric objects A,B on a generalized ray OD we let, by definition, A � B
def
⇐⇒ (A ≺ B) ∨ (A = B).

Theorem 1.2.26. Every generalized ray is a chain with respect to the relation �.

Proof. A � A. (A � B)& (B � A)
L1.2.26.2

=⇒ A = B; (A ≺ B)& (B ≺ A)
L1.2.26.1

=⇒ A ≺ C; A 6= B
L1.2.26.2

=⇒ (A ≺
B) ∨ (B ≺ A). 2

134In other words, a finite sequence of geometric objects Ai, where i + 1 ∈ Nn−1, n ≥ 4, has the property that every geometric object
of the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in N) numbers.
135By the same token, we can assert also that the geometric objects A0,A1, . . . ,An−1 lie on the same side of the geometric object An,

but due to symmetry, this adds essentially nothing new to the statement of the lemma.
136In most instances in what follows we will assume the generalized ray OD (or some other generalized ray) fixed and omit the mention

of it in our notation.
137In fact, once we require that A, C ∈ OP and [ABC], this ensures that B ∈ OP . (To establish this, we can combine [OBC] shown below

with, say, L 1.2.25.3, L 1.2.25.13. ) This observation will be referred to in the footnote accompanying proof of T 1.2.28.
138Since [ABC] and [CBA] are equivalent in view of Pr 1.2.1, we do not need to consider the case [OCA] separately.
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Linear Ordering on Sets With Generalized Betweenness Relation

Let O ∈ J, P ∈ J, [POQ]. Define the relation of direct (inverse) ordering on the set J, which admits a generalized
betweenness relation, as follows:

Call OP the first generalized ray, and OQ the second generalized ray. A geometric object A precedes a geometric
object B in the set J in the direct (inverse) order iff:

- Both A and B lie on the first (second) generalized ray and B precedes A on it; or
- A lies on the first (second) generalized ray, and B lies on the second (first) generalized ray or coincides with O;

or
- A = O and B lies on the second (first) generalized ray; or
- Both A and B lie on the second (first) generalized ray, and A precedes B on it.
Thus, a formal definition of the direct ordering on the set J can be written down as follows:

(A≺1B)J
def
⇐⇒ (A ∈ OP &B ∈ OP &B ≺ A) ∨ (A ∈ OP &B = O) ∨ (A ∈ OP &B ∈ OQ) ∨ (A = O&B ∈

OQ) ∨ (A ∈ OQ &B ∈ OQ &A ≺ B),

and for the inverse ordering: (A≺2B)J
def
⇐⇒ (A ∈ OQ &B ∈ OQ &B ≺ A) ∨ (A ∈ OQ &B = O) ∨ (A ∈ OQ &B ∈

OP) ∨ (A = O&B ∈ OP) ∨ (A ∈ OP &B ∈ OP &A ≺ B).
The term ”inverse order” is justified by the following trivial

Lemma 1.2.27.1. A precedes B in the inverse order iff B precedes A in the direct order.

For our notions of order (both direct and inverse) on the set J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin O, as well as on the choice of the ray-defining geometric objects
P and Q.

Toward this end, let O′ ∈ J, P ′ ∈ J, [P ′O′Q′], and define a new direct (inverse) ordering with displaced origin
(ODO) on the set J, as follows:

Call O′ the displaced origin, O′
P′ and O′

Q′ the first and the second displaced generalized rays, respectively. A
geometric object A precedes a geometric object B in the set J in the direct (inverse) ODO iff:

- Both A and B lie on the first (second) displaced generalized ray, and B precedes A on it; or
- A lies on the first (second) displaced generalized ray, and B lies on the second (first) displaced generalized ray

or coincides with O′; or
- A = O′ and B lies on the second (first) displaced generalized ray; or
- Both A and B lie on the second (first) displaced generalized ray, and A precedes B on it.
Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(A≺′
1B)J

def
⇐⇒ (A ∈ O′

P′ &B ∈ O′
P′ &B ≺ A) ∨ (A ∈ O′

P′ &B = O′) ∨ (A ∈ O′
P′ &B ∈ O′

Q′) ∨ (A = O′ &B ∈
O′

Q′) ∨ (A ∈ O′
Q′ &B ∈ O′

Q′ &A ≺ B),

and for the inverse ordering: (A≺′
2B)J

def
⇐⇒ (A ∈ O′

Q′ &B ∈ O′
Q′ &B ≺ A) ∨ (A ∈ O′

Q′ &B = O′) ∨ (A ∈
O′

Q′ &B ∈ O′
P′) ∨ (A = O′ &B ∈ O′

P′) ∨ (A ∈ O′
P′ &B ∈ O′

P′ &A ≺ B).

Lemma 1.2.27.2. If the displaced generalized ray origin O′ lies on the generalized ray OP and between O and P ′,
then the generalized ray OP contains the generalized ray O′

P′ , O′
P′ ⊂ OP .

Proof. A ∈ O′
P′ ⇒ A ∈ OP , because otherwise A 6= O&A /∈ OP &O′ ∈ OP

L1.2.25.9
=⇒ [AOO′] and [AOO′] & [OO′P ′]

Pr1.2.7
=⇒

[AO′P ′] ⇒ A /∈ O′
P′ . 2

Lemma 1.2.27.3. Let the displaced origin O′ be chosen in such a way that O′ lies on the generalized ray OP , and
the geometric object O lies on the ray O′

Q′ . If a geometric object B lies on both generalized rays OP and O′
Q′ , then

it divides O and O′.

Proof. O′ ∈ OP &B ∈ OP &O ∈ O′
Q′ &B ∈ O′

Q′
L1.2.25.8

=⇒ ¬[O′OB] &¬[OO′B], whence by Pr 1.2.5 ⇒ [OBO′]. 2

Lemma 1.2.27.4. An ordering with the displaced origin O′ on a set J which admits a generalized betweenness rela-
tion, coincides with either direct or inverse ordering on that set (depending on the choice of the displaced generalized
rays). In other words, either for all geometric objects A,B in J we have that A precedes B in the ODO iff A precedes
B in the direct order; or for all geometric objects A,B in J we have that A precedes B in the ODO iff A precedes B
in the inverse order.

Proof. Let O′ ∈ OP , O ∈ O′
Q′ , (A≺′

1B)J. Then [P ′O′Q′] &O ∈ O′
Q′

L1.2.25.9
=⇒ [OO′P ′] and O′ ∈ OP & [OO′P ′]

L1.2.27.2
=⇒

O′
P′ ⊂ OP .
Suppose A ∈ O′

P′ , B ∈ O′
P′ . A ∈ O′

P′ &B ∈ O′
P′ &O′

P′ ⊂ OP ⇒ A ∈ OP &B ∈ OP . A ∈ O′
P′ &B ∈

O′
P′ & (A≺′

1B)J ⇒ (B ≺ A)
O′

P′
⇒ [O′BA]. B ∈ O′

P′ &O ∈ O′
Q′

L1.2.25.11
=⇒ [OO′B], [OO′B] & [O′BA]

Pr1.2.6
=⇒

(B ≺ A)
OP

⇒ (A≺1B)J.

Suppose A ∈ O′
P′ &B = O′. A ∈ O′

P′ &B = O′ &O ∈ O′
Q′

L1.2.25.11
=⇒ [OBA] ⇒ (A≺1B)J.

Suppose A ∈ O′
P′ , B ∈ O′

Q′ . A ∈ OP & (B = O ∨ B ∈ OQ) ⇒ (A≺1B)J. If B ∈ OP then O′ ∈ OP &O ∈

O′
Q′ &B ∈ OP &B ∈ O′

0Q′
L1.2.27.3

=⇒ [O′BO] and [AO′B] & [O′BO]
Pr1.2.6
=⇒ [ABO] ⇒ (A≺1B)J. 139

139We take into account that A ∈ O′
P′ &B ∈ O′

Q′
L1.2.25.11

=⇒ [AO′B].
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Suppose A,B ∈ O′
Q′ . (A≺′

1B)J ⇒ (A ≺ B)
O′

Q′
⇒ [O′AB]. If A ∈ OP and B ∈ OP then by L 1.2.27.3 [O′BO]

and [O′BO] & [O′AB]
Pr1.2.7
=⇒ [ABO] ⇒ (A≺1B)J. (A ∈ OP &B = O) ∨ (A ∈ OP &B ∈ OQ) ∨ (A = O&B ∈

OQ) ⇒ (A≺1B)J. Now let A ∈ OQ, B ∈ OQ. Then ¬[AOB]; ¬[OBA], because [OBA] & [BAO′]
Pr1.2.6
=⇒ [O′BO]

Pr1.2.3
=⇒

¬[BOO′] ⇒ O′ ∈ OB and B ∈ OQ &O′ ∈ OB ⇒ O′ ∈ OQ. Finally, ¬[AOB] &¬[OBA]
Pr1.2.5
=⇒ [OAB] ⇒ (A≺1B)J. 2

Lemma 1.2.27.5. Let A,B be two distinct geometric objects in a set J, which admits a generalized betweenness
relation, and on which some direct or inverse order is defined. Then either A precedes B in that order, or B precedes
A, and if A precedes B, B does not precede A, and vice versa.

Proof. 2

Lemma 1.2.27.6. If a geometric object A precedes a geometric object B on set line J with generalized betweenness
relation, and B precedes a geometric object C in the same set, then A precedes C on J:

A ≺ B&B ≺ C ⇒ A ≺ C, where A,B, C ∈ J.

Proof. Follows from the definition of the precedence relation ≺ (on sets with generalized betweenness relation) and
L 1.2.26.1. 140

2

For geometric objects A,B in a set J, which admits a generalized betweenness relation, and where some direct

or inverse order is defined, we let A�iB
def
⇐⇒ (A≺iB) ∨ (A = B), where i = 1 for the direct order and i = 2 for the

inverse order.

Theorem 1.2.27. Every set J, which admits a generalized betweenness relation, and equipped with a direct or inverse
order, is a chain with respect to the relation �i.

Proof. 2

Theorem 1.2.28. If a geometric object B lies between geometric objects A and C, then in any ordering of the kind
defined above, defined on the set J, containing these geometric objects, either A precedes B and B precedes C, or C
precedes B and B precedes A; conversely, if in some order, defined on the set J admitting a generalized betweenness
relation and containing geometric objects A,B, C, A precedes B and B precedes C, or C precedes B and B precedes A,
then B lies between A and C. That is,

∀A,B, C ∈ J [ABC] ⇔ (A ≺ B&B ≺ C) ∨ (C ≺ B&B ≺ A).

Proof. Suppose [ABC]. 141

For A,B, C ∈ OP and A,B, C ∈ OQ see L 1.2.26.3.

If A,B ∈ OP , C = O then [ABO] ⇒ (B ≺ A)OP
⇒ (A ≺ B)J; also B ≺ C in this case from definition of order on

line.

If A,B ∈ OP , C ∈ OQ then [ABC] & [BOC]
Pr1.2.7
=⇒ [ABO] ⇒ (A ≺ B)J and B ∈ OP & C ∈ OQ ⇒ (B ≺ C)J.

For A ∈ OP , B = O, C ∈ OQ see definition of order on line.

For A ∈ OP , B, C ∈ OQ we have [AOB] & [ABC]
Pr1.2.7
=⇒ [OBC] ⇒ B ≺ C.

If A = O and B, C ∈ OQ, we have [OBC] ⇒ B ≺ C.

Conversely, suppose A ≺ B and B ≺ C in the given direct order on J. 142

For A,B, C ∈ OP and A,B, C ∈ OQ see L 1.2.26.3.

If A,B ∈ OP , C = O then (A ≺ B)J ⇒ (B ≺ A)OP
⇒ [ABO].

If A,B ∈ OP , C ∈ OQ then [ABO] & [BOC]
Pr1.2.6
=⇒ [ABC].

For A ∈ OP , B = O, C ∈ OQ we immediately have [ABC] from L 1.2.25.11.

For A ∈ OP , B, C ∈ OQ we have [AOB] & [OBC]
Pr1.2.6
=⇒ [ABC].

If A = O and B, C ∈ OQ, we have B ≺ C ⇒ [OBC]. 2

140The following trivial observations may be helpful in limiting the number of cases one has to consider: As before, denote OP , OQ

respectively, the first and the second ray for the given direct order on J. If a geometric object A ∈ {O}∪OQ precedes a geometric object
B ∈ J, then B ∈ OQ. If a geometric object A precedes a geometric object B ∈ OP ∪ {O}, then A ∈ OP .
141Again, we denote OP , OQ respectively, the first and the second generalized ray for the given order on J. The following trivial

observations help limit the number of cases we have to consider: If A ∈ OP and C ∈ OP ∪ {O} then [ABC] implies B ∈ OP . Similarly,
if A ∈ {O} ∪ OQ and C ∈ OQ then [ABC] implies B ∈ OQ. In fact, in the case A ∈ OP , C = O this can be seen immediately using,
say, L 1.2.25.3. For A, C ∈ OP we conclude that B ∈ OP once [ABC] immediately from L 1.2.30.4, which, of course, does not use the
present lemma or any results following from it. Alternatively, this can be shown using proof of L 1.2.26.3 - see footnote accompanying
that lemma.
142Taking into account the following two facts lowers the number of cases to consider (cf. proof of L 1.2.27.6): If a geometric object
A ∈ {O} ∪ OQ precedes a geometric object B ∈ J, then B ∈ OQ. If a geometric object A precedes a geometric object B ∈ OP ∪ {O},
then A ∈ OP .
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Complementary Generalized Rays

Lemma 1.2.29.1. A generalized interval (OA) is the intersection of the generalized rays OA and AO, i.e. (OA) =
OA ∩ AO.

Proof. B ∈ (OA) ⇒ [OBA], whence by Pr 1.2.1, Pr 1.2.3 B 6= O, B 6= A, ¬[BOA], and ¬[BAO], which means
B ∈ OA and B ∈ AO.

Suppose now B ∈ OA ∩AO. Hence B 6= O, ¬[BOA] and B 6= A, ¬[BAO]. Since O,A,B are distinct, by Pr 1.2.5
[BOA] ∨ [BAO] ∨ [OBA]. But since ¬[BOA], ¬[BAO], we find that [OBA]. 2

Given a generalized ray OA, define the generalized ray O
c(J)
A (usually written simply as Oc

A
143), complementary in

the set J to the generalized ray OA, as Oc
A ⇋ J\({O}∪OA). In other words, the generalized ray Oc

A, complementary
to the generalized ray OA, is the set of all geometric objects lying in the set J on the opposite side of the geometric
object O from the geometric object A. An equivalent definition is provided by

Lemma 1.2.29.2. Oc
A = {B|[BOA]}. We can also write Oc

A = OD for any geometric object D ∈ J such that [DOA].

Proof. See L 1.2.25.6, L 1.2.25.3. 2

Lemma 1.2.29.3. The generalized ray (Oc
A)c, complementary to the generalized ray Oc

A, complementary to the given
generalized ray OA, coincides with the generalized ray OA: (Oc

A)c = OA.

Proof. J \ ({O} ∪ (J \ ({O} ∪ OA)) = OA 2

Lemma 1.2.29.4. Given a geometric object C on a generalized ray OA, the generalized ray OA is a disjoint union
of the generalized half - open interval (OC] and the generalized ray Cc

O, complementary to the generalized ray CO :
OA = (OC] ∪ Cc

O.

Proof. By L 1.2.25.3 OC = OA. Suppose M ∈ OC ∪ Cc
O. By Pr 1.2.3, Pr 1.2.1[OMC] ∨ M = C ∨ [OCM] ⇒

¬[MOC] &M 6= O ⇒ M ∈ OA = OC .

Conversely, if M ∈ OA = OC and M 6= C then M 6= C &M 6= O&¬[MOC]
Pr1.2.5
=⇒ [OMC] ∨ [OCM] ⇒ M ∈

(OC) ∨M ∈ Cc
O. 2

Lemma 1.2.29.5. Given in a set J, which admits a generalized betweenness relation, a geometric object B, distinct
from a geometric object O ∈ J, the geometric object B lies either on OA or on Oc

A, where A ∈ J, A 6= O.

Proof. 2

Theorem 1.2.29. Let a finite sequence of geometric objects A1,A2, . . . ,An, n ∈ N, from the set J be numbered
in such a way that, except for the first and (in the finite case) the last, every geometric object lies between the two
geometric objects with adjacent (in N) numbers. Then the generalized ray A1An

is a disjoint union of generalized
half-closed intervals (AiAi+1], i = 1, 2, . . . , n − 1, with the generalized ray An

c
Ak

, complementary to the generalized
ray AnAk

, where k ∈ {1, 2, . . . , n − 1}, i.e.

A1An
=

n−1⋃
i=1

(AiAi+1] ∪An
c
Ak

.

Proof. Observe that [A1AkAn]
L1.2.29.5

=⇒ AnAk
= AnA1

, then use L 1.2.22.15, L 1.2.29.4. 2

Sets of Geometric Objects on Generalized Rays

Given a geometric object O in a set J, which admits a generalized betweenness relation, a nonempty set B ⊂ J is
said to lie in the set J on the same side (on the opposite side) of the geometric object O as (from) a nonempty set
A ⊂ J iff for all geometric objects A ∈ A and all geometric objects B ∈ B, the geometric object B lies on the same
side (on the opposite side) of the geometric object O as (from) the geometric object A ∈ A. If the set A (the set B)
consists of a single element, we say that the set B (the geometric object B) lies in the set J on the same side of the
geometric object O as the geometric object A (the set A).

Lemma 1.2.30.1. If a set B ⊂ J lies in the set J on the same side of the geometric object O as a set A ⊂ J, then
the set A lies in the set J on the same side of the geometric object O as the set B.

Proof. See L 1.2.25.5. 2

Lemma 1.2.30.2. If a set B ⊂ J lies in the set J on the same side of the geometric object O as a set A ⊂ J, and a
set C ⊂ J lies in the set J on the same side of the geometric object O as the set B, then the set C lies in the set J

on the same side of the geometric object O as the set A.

Proof. See L 1.2.25.5. 2

143Whenever the set J is assumed to be known from context or unimportant.
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Lemma 1.2.30.3. If a set B ⊂ J lies in the set J on the opposite side of the geometric object O from a set A ⊂ J,
then the set A lies in the set J on the opposite side of the geometric object O from the set B.

Proof. See L 1.2.25.6. 2

In view of symmetry of the relations, established by the lemmas above, if a set B ⊂ J lies in the set J on the
same side (on the opposite side) of the geometric object O as a set (from a set) A ⊂ J, we say that the sets A and
B lie in the set J on one side (on opposite sides) of the geometric object O.

Lemma 1.2.30.4. If two distinct geometric objects A,B lie on a generalized ray OC, the generalized open interval
(AB) also lies on the generalized ray OC.

Proof. By L 1.2.25.8 [OAB] ∨ [OBA], whence by T 1.2.29 (AB) ⊂ OA = OC . 2

Given a generalized interval AB in the set J such that the generalized open interval (AB) does not contain O ∈ J,
we have (L 1.2.30.5 - L 1.2.30.7):

Lemma 1.2.30.5. – If one of the ends of (AB) is on the generalized ray OC, the other end is either on OC or
coincides with O.

Proof. Let, say, B ∈ OC . By L 1.2.25.3 OB = OC . Assuming the contrary to the statement of the lemma, we have
A ∈ Oc

B ⇒ [AOB] ⇒ O ∈ (AB), which contradicts the hypothesis. 2

Lemma 1.2.30.6. – If (AB) has some geometric objects in common with the generalized ray OC , either both ends
of (AB) lie on OC, or one of them coincides with O.

Proof. By hypothesis ∃M M ∈ (AB) ∩ OC . M ∈ OC
L1.2.25.3

=⇒ OM = OC . Assume the contrary to the statement of

the lemma and let, say, A ∈ Oc
M. Then [AOM] & [AMB]

Pr1.2.7
=⇒ [AOB] ⇒ O ∈ (AB) - a contradiction. 2

Lemma 1.2.30.7. – If (AB) has common points with the generalized ray OC, the generalized interval (AB) lies on
OC, (AB) ⊂ OC.

Proof. Use L 1.2.30.6 and L 1.2.29.4 or L 1.2.30.4. 2

Lemma 1.2.30.8. If A and B lie on one generalized ray OC, the complementary generalized rays Ac
O and Bc

O lie in
the set J on one side of the geometric object O.

Proof. 2

Lemma 1.2.30.9. If a generalized open interval (CD) is included in a generalized open interval (AB), neither of the
ends of (AB) lies on (CD).

Proof. A /∈ (CD), B /∈ (CD), for otherwise (A ∈ (CD) ∨ B ∈ (CD))& (CD) ⊂ (AB) ⇒ A ∈ (AB) ∨ B ∈ (AB), which
is absurd as it contradicts Pr 1.2.1. 2

Lemma 1.2.30.10. If a generalized open interval (CD) is included in a generalized open interval (AB), the gener-
alized closed interval [CD] is included in the generalized closed interval [AB].

Proof. By Pr 1.2.4 ∃E [CED]. E ∈ (CD)& (CD) ⊂ (AB)
L1.2.29.1

=⇒ E ∈ (CD) ∩ (AB ∩ BA). A /∈ (CD)&B /∈ (CD)& E ∈

AB ∩ (CD)& E ∈ BA ∩ (CD)
L1.2.30.6

=⇒ C ∈ AB ∪ {A}& C ∈ BA ∪ {B}&D ∈ AB ∪ {A}&D ∈ BA ∪ {B} ⇒ C ∈

(AB ∩ BA) ∪ {A} ∪ {B}&D ∈ (AB ∩ BA) ∪ {A} ∪ {B}
L1.2.29.1

=⇒ C ∈ [AB] &D ∈ [AB]. 2

Corollary 1.2.30.11. For generalized intervals AB, CD both inclusions (AB) ⊂ (CD), (CD) ⊂ (AB) (i.e., the
equality (AB) = (CD)) holds iff the generalized (abstract) intervals AB, CD are identical.

Proof. #1. (CD) ⊂ (AB)
L1.2.30.10

=⇒ [CD] ⊂ [AB] ⇒ C ∈ [AB] &D ∈ [AB]. On the other hand, (AB) ⊂ (CD)
L1.2.30.9

=⇒
C /∈ (AB)&D /∈ (AB).

#2. (AB) ⊂ (CD)& (CD) ⊂ (AB)
L1.2.30.10

=⇒ [AB] ⊂ [CD] & [CD] ⊂ [AB]. (AB) = (CD)& [AB] = [CD] ⇒ {A,B} =
[AB] \ (AB) = [CD] \ (CD) = {C,D}. 2

Lemma 1.2.30.12. Both ends of a generalized interval CD lie on a generalized closed interval [AB] iff the generalized
open interval (CD) is included in the generalized open interval (AB).

Proof. Follows immediately from L 1.2.22.5, L 1.2.30.10. 2

Theorem 1.2.30. A geometric object O in a set J which admits a generalized betweenness relation, separates the
rest of the geometric objects in this set into two non-empty classes (generalized rays) in such a way that...

Proof. 2
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Figure 1.58: If rays l, m ∈ J lie between rays h, k ∈ J, the open angular interval (lm) is contained in the open angular
interval (hk).

Betweenness Relation for Rays

Given a pencil J of rays, all lying in some plane α on a given side of a line a ⊂ α and having an initial point O, define
an open angular interval (OAOC), formed by the rays OA, OC ∈ J, as the set of all rays OB ∈ J lying inside the angle
∠AOC. That is, for OA, OC ∈ J we let (OAOC) ⇋ {OB|OB ⊂ Int∠AOC}. In analogy with the general case, we
shall refer to [OAOC), (OAOC ], [OAOC ] as half-open, half-closed, and closed angular intervals, respectively. 144 In
what follows, open angular intervals, half-open, half-closed and closed angular intervals will be collectively referred
to as angular interval-like sets. The definition just given for open, half-open, dots, angular intervals is also applicable
for the set J of rays, all lying in some plane α on a given side of a line a ⊂ α and having an initial point O, with two
additional rays added: the ray h ⇋ OA, where A ∈ a, A 6= O, and its complementary ray hc. For convenience, we
can call the set of rays, all lying in α on a given side of a ⊂ α and having the origin O, an open angular pencil. And
we can refer to the same set with the rays h, hc added, as a closed angular pencil.145

Given a set J of rays having the same initial point O and all lying in plane α on the same side of a line a as a
given point Q (an open pencil), or the same set with the rays h ⇋ OA, where A ∈ a, A 6= O, and hc added to it (a
closed pencil), the following L 1.2.31.1 – T 1.2.37 hold. The angles spoken about in these statements are all assumed
to be extended angles. 146

Lemma 1.2.31.1. If a ray OB ∈ J lies between rays OA, OC of the pencil J, the ray OA cannot lie between the
rays OB and OC . In other words, if a ray OB ∈ J lies inside ∠AOC, where OA, OC ∈ J, then the ray OA cannot lie
inside the angle ∠BOC.

Lemma 1.2.31.2. Suppose each of l, m ∈ J lies inside the angle formed by h, k ∈ J. If a ray n ∈ J lies inside the
angle ∠(l, m), it also lies inside the angle ∠(h, k). In other words, if rays l, m ∈ J lie between rays h, k ∈ J, the open
angular interval (lm) is contained in the open angular interval (hk), i.e. (lm) ⊂ (hk) (see Fig 1.58).

Lemma 1.2.31.3. Suppose each side of an (extended) angles ∠(l, m) (where l, m ∈ J) either lies inside an (extended)
angle ∠(h, k), where h, k ∈ J, or coincides with one of its sides. Then if a ray n ∈ J lies inside ∠(l, m), it also lies
inside the angle ∠(h, k). 147

Lemma 1.2.31.4. If a ray l ∈ J lies between rays h, k ∈ J, none of the rays of the open angular interval (hl) lie on
the open angular interval (lk). That is, if a ray l ∈ J lies inside ∠(h, k), none of the rays 148 lying inside the angle
∠(h, l) lie inside the angle ∠(l, k).

Proposition 1.2.31.5. If two (distinct) rays l ∈ J, m ∈ J lie inside the angle ∠(h, k), where h ∈ J, k ∈ J, then
either the ray l lies inside the angle ∠(h, m), or the ray m lies inside the angle ∠(h, l).

144It should be noted that, as in the case of intervals consisting of points, in view of the equality ∠(h, k) = ∠(k, h) and the corresponding
symmetry of open angular intervals, this distinction between half-open and half-closed angular intervals is rather artificial, similar to the
distinction between a half-full glass and a half-empty one!
145Later, we will elaborate on the topological meaning of the words ”open”, ”closed” used in this context.
146Some of them merely reiterate or even weaken the results proven earlier specifically for rays, but they are given here nonetheless to

illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for the
generalized betweenness relation on the ray pencil J, we give two formulations for a few results to follow.
147It may prove instructive to reformulate this result using the ”pointwise” terminology for angles: Suppose each side of an angle ∠COD

either lies inside an (extended) angle ∠AOB, or coincides with one of its sides. Then if a ray has initial point O and lies inside ∠COD,
it lies inside the (extended) angle AOB.
148Actually, none of the points lying on any of these rays.
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Figure 1.59: If o ∈ J divides h, k ∈ J, as well as h and l ∈ J, it does not divide k, l.
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Figure 1.60: Suppose h1, h2, . . . , hn(, . . .) is a finite (countably infinite) sequence of rays of the pencil J with the
property that a ray of the sequence lies between two other rays of the sequence. Then if a ray of the sequence lies
inside the angle formed by two other rays of the sequence, its number has an intermediate value between the numbers
of these two rays.

Lemma 1.2.31.6. Each of l, m ∈ J lies inside the closed angular interval formed by h, k ∈ J (i.e. each of the rays
l, m either lies inside the angle ∠(h, k) or coincides with one of its sides) iff all the rays n ∈ J lying inside the angle
∠(l, m) lie inside the angle ∠(k, l).

Lemma 1.2.31.7. If a ray l ∈ J lies between rays h, k of the pencil J, any ray of the open angular interval (hk),
distinct from l, lies either on the open angular interval (hl) or on the open angular interval (lk). In other words, if
a ray l ∈ J lies inside ∠(h, k), formed by the rays h, k of the pencil J, any other (distinct from l) ray lying inside
∠(h, k), also lies either inside ∠(h, l) or inside ∠(l, k).

Lemma 1.2.31.8. If a ray o ∈ J divides rays h, k ∈ J, as well as h and l ∈ J, it does not divide k, l. (see Fig. 1.59)

Betweenness Relation For n Rays With Common Initial Point

Lemma 1.2.31.9. Suppose h1, h2, . . . , hn(, . . .) is a finite (countably infinite) sequence of rays of the pencil J with the
property that a ray of the sequence lies between two other rays of the sequence 149 if its number has an intermediate
value between the numbers of these rays. (see Fig. 1.60) Then the converse of this property is true, namely, that if
a ray of the sequence lies inside the angle formed by two other rays of the sequence, its number has an intermediate
value between the numbers of these two rays. That is, (∀i, j, k ∈ Nn (respectively, N) ((i < j < k) ∨ (k < j < i) ⇒
[hihjhk])) ⇒ (∀i, j, k ∈ Nn (respectively, N) ([hihjhk] ⇒ (i < j < k) ∨ (k < j < i))).

Let an infinite (finite) sequence of rays hi of the pencil J, where i ∈ N (i ∈ Nn, n ≥ 4), be numbered in such a
way that, except for the first and the last, every ray lies inside the angle formed by the two rays of sequence with
numbers, adjacent (in N) to that of the given ray. Then:

149i.e., lies inside the angle formed by two other rays of the sequence
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Lemma 1.2.31.10. – A ray from this sequence lies inside the angle formed by two other members of this sequence
iff its number has an intermediate value between the numbers of these two rays.

Lemma 1.2.31.11. – An arbitrary ray of the pencil J cannot lie inside of more than one of the angles formed by
pairs of rays of the sequence having adjacent numbers in the sequence.

Lemma 1.2.31.12. – In the case of a finite sequence, a ray which lies between the end (the first and the last, nth)
rays of the sequence, and does not coincide with the other rays of the sequence, lies inside at least one of the angles,
formed by pairs of rays with adjacent numbers.

Lemma 1.2.31.13. – All of the open angular intervals (hihi+1), where i = 1, 2, . . . , n−1, lie inside the open angular
interval (h1hn). In other words, any ray k, lying inside any of the angles ∠(hi, hi+1), where i = 1, 2, . . . , n − 1, lies
inside the angle ∠(h1, hn), i.e. ∀i ∈ {1, 2, . . . , n − 1} k ⊂ Int∠(hi, hi+1) ⇒ k ⊂ Int∠(h1, hn).

Lemma 1.2.31.14. – The half-open angular interval [h1hn) is a disjoint union of the half-closed angular intervals
[hihi+1), where i = 1, 2, . . . , n − 1 :

[h1hn) =
n−1⋃
i=1

[hihi+1).

Also,
The half-closed angular interval (h1hn] is a disjoint union of the half-closed angular intervals (hihi+1], where

i = 1, 2, . . . , n − 1 :

(h1hn] =
n−1⋃
i=1

(hihi+1].

Thus, if J = [h1, hn], where h1 = h, hn = hc, is a pencil of rays with initial point O lying (in a given plane) on

the same side of a line a as a point A, plus the rays h, hc, we have aA =

(
n−1⋃
i=1

Int∠(hi, hi+1)

) ⋃ (
n−1⋃
i=2

hi

)
.

Proof. 2

If a finite (infinite) sequence of rays hi of the pencil J, i ∈ Nn, n ≥ 4 (n ∈ N) has the property that if a ray of
the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate value
between the numbers of these two rays, we say that the rays h1, h2, . . . , hn(, . . .) are in order [h1h2 . . . hn(. . .)].

Theorem 1.2.31. Any finite sequence of rays hi ∈ J, i ∈ Nn, n ≥ 4 can be renumbered in such a way that a ray
from the sequence lies inside the angle formed by two other rays of the sequence iff its number has an intermediate
value between the numbers of these two rays. In other words, any finite (infinite) sequence of rays hi ∈ J, i ∈ Nn,
n ≥ 4 can be put in order [h1h2 . . . hn].

Lemma 1.2.31.12. For any finite set of rays {h1, h2, . . . , hn} of an open angular interval (hk) ⊂ J there is a ray l
on (hk) not in that set.

Proposition 1.2.31.13. Every open angular interval in J contains an infinite number of rays.

Corollary 1.2.31.14. Every angular interval-like set in J contains an infinite number of rays.

Basic Properties of Angular Rays

Given a pencil J of rays lying in plane α on the same side of a line a as a given point Q, and two distinct rays o,
h, h 6= o of the pencil J, define the angular ray oh, emanating from its origin, or initial ray o, as the set of all rays
k 6= o of the pencil J such that the ray o does not divide the rays h, k. 150 That is, for o, h ∈ J, o 6= h, we define
oh ⇋ {k|k ⊂ J & k 6= o&¬[hok]}. 151

Lemma 1.2.32.1. Any ray h lies on the angular ray oh.

Lemma 1.2.32.2. If a ray k lies on an angular ray oh, the ray h lies on the angular ray ok. That is, k ∈ oh ⇒ h ∈ ok.

Lemma 1.2.32.3. If a ray k lies on an angular ray oh, the angular ray oh coincides with the angular ray ok.

Lemma 1.2.32.4. If angular rays oh and ok have common rays, they are equal.

Lemma 1.2.32.5. The relation ”to lie in the pencil J on the same side of a given ray o ∈ J as” is an equivalence
relation on J \ {o}. That is, it possesses the properties of:

1) Reflexivity: A ray h always lies on the same side of the ray o as itself;
2) Symmetry: If a ray k lies on the same side of the ray o as h, the ray h lies on the same side of o as k.
3) Transitivity: If a ray k lies on the same side of the ray o as h, and a ray l lies on the same side of o as k,

then l lies on the same side of o as h.

150i.e. the ray o does not lie inside the angle ∠(h, k).
151Note that, according to our definition, an angular ray is formed by traditional rays instead of points! In a similar manner we could

construct a ”hyper-angular” ray formed by angular rays instead of points or rays. This hyper-angular ray would have essentially the
same properties given by Pr 1.2.1 - Pr 1.2.7 as the two types of rays already considered, but, on the other hand, it would definitely be
too weird to allow any practical use.
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Lemma 1.2.32.6. A ray k lies on the opposite side of o from h iff o divides h and k.

Lemma 1.2.32.7. The relation ”to lie in the pencil J on the opposite side of the given ray o from . . . ” is symmetric.

If a ray k lies in the pencil J on the same side (on the opposite side) of the ray o as (from) a ray h, in view of
symmetry of the relation we say that the rays h and k lie in the set J on the same side (on opposite sides) of o.

Lemma 1.2.32.8. If rays h and k lie on one angular ray ol ⊂ J, they lie in the pencil J on the same side of the ray
O. If, in addition, h 6= k, then either h lies between o and k, or k lies between o and h.

Lemma 1.2.32.9. If a ray l lies in the pencil J on the same side of the ray o as a ray h, and a ray m lies on the
opposite side of o from h, then the rays l and m lie on opposite sides of o. 152

Lemma 1.2.32.10. If rays l and m lie in the pencil J on the opposite side of the ray o from a ray h, 153 then l and
m lie on the same side of o.

Lemma 1.2.32.11. Suppose a ray l lies on an angular ray oh, a ray m lies on an angular ray ok, and o lies between
h and k. Then o also lies between l and m.

Lemma 1.2.32.12. A ray o ∈ J divides rays h ∈ J and k ∈ J iff the angular rays oh and ok are disjoint, oh∩ok = ∅,
and their union, together with the ray o, gives the pencil J, i.e. J = oh ∪ ok ∪ {o}. That is,

[hok] ⇔ (J = oh ∪ ok ∪ {o})& (oh ∩ ok = ∅).

Lemma 1.2.32.13. An angular ray oh contains the open angular interval (oh).

Lemma 1.2.32.14. For any finite set of rays {h1, h2, . . . , hn} of an angular ray oh, there is a ray l on oh not in
that set.

Lemma 1.2.32.15. If a ray k lies between rays o and h then the angular rays ok and oh are equal.

Lemma 1.2.32.16. If a ray h lies between rays o and k, the ray k lies on the angular ray oh.

Lemma 1.2.32.17. If angular rays oh and o′k are equal, their origins coincide.

Lemma 1.2.32.18. If an angle (=abstract angular interval) ∠(h0, hn) is divided into n angles ∠(h0, h1), ∠(h1, h2),
. . . , ∠(hn−1, hn) (by the rays h1, h2, . . . , hn−1),

154 the rays h1, h2, . . . hn−1, hn all lie on the same side of the ray h0,
and the angular rays h0h1

, h0h2
, . . . , h0hn

are equal. 155

Theorem 1.2.32. Every angular ray contains an infinite number of rays.

Line Ordering on Angular Rays

Suppose h, k are two rays on an angular ray om. Let, by definition, (h ≺ k)om

def
⇐⇒ [≀〈‖]. If h ≺ k, 156 we say that

the ray h precedes the ray k on the angular ray om, or that the ray k succeeds the ray h on the angular ray om.

Lemma 1.2.33.1. If a ray h precedes a ray k on an angular ray om, and k precedes a ray l on the same angular
ray, then h precedes l on om:

h ≺ k & k ≺ l ⇒ h ≺ l, where h, k, l ∈ om.

Proof. 2

Lemma 1.2.33.2. If h, k are two distinct rays on an angular ray om then either h precedes k, or k precedes h; if h
precedes k then k does not precede h.

Proof. 2

For rays h, k on an angular ray om we let, by definition, h � k
def
⇐⇒ (h ≺ k) ∨ (h = k).

Theorem 1.2.33. Every angular ray is a chain with respect to the relation �.

152Making use of L 1.2.32.6, this statement can be reformulated as follows:
If a ray l lies on oh, and o divides h and m, then o divides l and m.

153One could as well have said: If o lies between h and l, as well as between h and m . . .
154In other words, a finite sequence of rays hi, where i + 1 ∈ Nn−1, n ≥ 4, has the property that every ray of the sequence, except for

the first and the last, lies between the two rays with adjacent (in N) numbers.
155By the same token, we can assert also that the rays h0, h1 . . . , hn−1 lie on the same side of the ray hn, but due to symmetry, this

adds essentially nothing new to the statement of the lemma.
156In most instances in what follows we will assume the angular ray om (or some other angular ray) fixed and omit the mention of it in

our notation.
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Line Ordering on Pencils of Rays

Let o ∈ J, p ∈ J, [poq]. Define the relation of direct (inverse) ordering on the pencil J of rays lying in plane α on the
same side of a line a as a given point Q, which admits a generalized betweenness relation, as follows:

Call op the first angular ray, and oq the second angular ray. A ray h precedes a ray k in the pencil J in the direct
(inverse) order iff:

- Both h and k lie on the first (second) angular ray and k precedes h on it; or
- h lies on the first (second) angular ray, and k lies on the second (first) angular ray or coincides with o; or
- h = o and k lies on the second (first) angular ray; or
- Both h and k lie on the second (first) angular ray, and h precedes k on it.
Thus, a formal definition of the direct ordering on the pencil J can be written down as follows:

(h≺1k)J
def
⇐⇒ (h ∈ op & k ∈ op & k ≺ h) ∨ (h ∈ op & k = o) ∨ (h ∈ op & k ∈ oq) ∨ (h = o& k ∈ oq) ∨ (h ∈ oq & k ∈

oq & h ≺ k),

and for the inverse ordering: (h≺2k)J
def
⇐⇒ (h ∈ oq & k ∈ oq & k ≺ h)∨ (h ∈ oq & k = o)∨ (h ∈ oq & k ∈ op)∨ (h =

o& k ∈ op) ∨ (h ∈ op & k ∈ op & h ≺ k).
The term ”inverse order” is justified by the following trivial

Lemma 1.2.34.1. h precedes k in the inverse order iff k precedes h in the direct order.

For our notion of order (both direct and inverse) on the pencil J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin o of the pencil J, as well as on the choice of the rays p and q,
forming, together with the ray o, angular rays op and oq, respectively.

Toward this end, let o′ ∈ J, p′ ∈ J, [p′o′q′], and define a new direct (inverse) ordering with displaced origin (ODO)
on the pencil J, as follows:

Call o′ the displaced origin, o′p′ and o′q′ the first and the second displaced angular rays, respectively. A ray h
precedes a ray k in the set J in the direct (inverse) ODO iff:

- Both h and k lie on the first (second) displaced angular ray, and k precedes h on it; or
- h lies on the first (second) displaced angular ray, and k lies on the second (first) displaced angular ray or

coincides with o′; or
- h = o′ and k lies on the second (first) displaced angular ray; or
- Both h and k lie on the second (first) displaced angular ray, and h precedes k on it.
Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(h≺′
1k)J

def
⇐⇒ (h ∈ o′p′ & k ∈ o′p′ & k ≺ h) ∨ (h ∈ o′p′ & k = o′) ∨ (h ∈ o′p′ & k ∈ o′q′) ∨ (h = o′ & k ∈ o′q′ ) ∨ (h ∈

o′q′ & k ∈ o′q′ & h ≺ k),

and for the inverse ordering: (h≺′
2k)J

def
⇐⇒ (h ∈ o′q′ & k ∈ o′q′ & k ≺ h) ∨ (h ∈ o′q′ & k = o′) ∨ (h ∈ o′q′ & k ∈

o′p′) ∨ (h = o′ & k ∈ o′p′) ∨ (h ∈ o′p′ & k ∈ o′p′ & h ≺ k).

Lemma 1.2.34.2. If the origin o′ of the displaced angular ray o′p′ lies on the angular ray op and between o and p′,
then the angular ray op contains the angular ray o′p′ , o′p′ ⊂ op.

Lemma 1.2.34.3. Let the displaced origin o′ be chosen in such a way that o′ lies on the angular ray op, and the ray
o lies on the angular ray o′q′ . If a ray k lies on both angular rays op and o′q′ , then it divides o and o′.

Lemma 1.2.34.4. An ordering with the displaced origin o′ on a pencil J of rays lying in plane α on the same side of
a line a as a given point Q, which admits a generalized betweenness relation, coincides with either direct or inverse
ordering on that pencil (depending on the choice of the displaced angular rays). In other words, either for all rays
h, k in J we have that h precedes k in the ODO iff h precedes k in the direct order; or for all rays h, k in J we have
that h precedes k in the ODO iff h precedes k in the inverse order.

Lemma 1.2.34.5. Let h, k be two distinct rays in a pencil J of rays lying in plane α on the same side of a line a
as a given point Q, which admits a generalized betweenness relation, and on which some direct or inverse order is
defined. Then either h precedes k in that order, or k precedes h, and if h precedes k, k does not precede h, and vice
versa.

For rays h, k in a pencil J of rays lying in plane α on the same side of a line a as a given point Q, which admits a

generalized betweenness relation, and where some direct or inverse order is defined, we let h�ik
def
⇐⇒ (h≺ik)∨(h = k),

where i = 1 for the direct order and i = 2 for the inverse order.

Theorem 1.2.34. Every set J of rays lying in plane α on the same side of a line a as a given point Q, which admits
a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation
�i.

Theorem 1.2.35. If a ray k lies between rays h and l, then in any ordering of the kind defined above, defined on
the pencil J, containing these rays, either h precedes k and k precedes l, or l precedes k and k precedes h; conversely,
if in some order, defined on the pencil J of rays lying in plane α on the same side of a line a as a given point Q,
admitting a generalized betweenness relation and containing rays h, k, l, we have that h precedes k and k precedes l,
or l precedes k and k precedes h, then k lies between h and l. That is,
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∀h, k, l ∈ J [hkl] ⇔ (h ≺ k & k ≺ l) ∨ (l ≺ k & k ≺ h).

Complementary Angular Rays

Lemma 1.2.36.1. An angular interval (oh) is the intersection of the angular rays oh and ho, i.e. (oh) = oh ∩ ho.

Given an angular ray oh, define the angular ray oc
h, complementary in the pencil J to the angular ray oh, as

oc
h ⇋ J \ ({o} ∪ oh). In other words, the angular ray oc

h, complementary to the angular ray oh, is the set of all rays
lying in the pencil J on the opposite side of the ray o from the ray h. An equivalent definition is provided by

Lemma 1.2.36.2. oc
h = {k|[koh]}. We can also write oc

h = om for any ray m ∈ J such that [moh].

Lemma 1.2.36.3. The angular ray (oc
h)c, complementary to the angular ray oc

h, complementary to the given angular
ray oh, coincides with the angular ray oh: (oc

h)c = oh.

Lemma 1.2.36.4. Given a ray l on an angular ray oh, the angular ray oh is a disjoint union of the half - open
angular interval (ol] and the angular ray lco, complementary to the angular ray lo :

oh = (ol] ∪ lco.

Lemma 1.2.36.5. Given in a pencil J of rays lying in plane α on the same side of a line a as a given point Q,
which admits a generalized betweenness relation, a ray k, distinct from a ray o ∈ J, the ray k lies either on oh or on
oc

h, where h ∈ J, h 6= o.

Theorem 1.2.36. Let a finite sequence of rays h1, h2, . . . , hn, n ∈ N, from the pencil J, be numbered in such a way
that, except for the first and (in the finite case) the last, every ray lies between the two rays with adjacent (in N)
numbers. Then the angular ray h1hn

is a disjoint union of half-closed angular intervals (hihi+1], i = 1, 2, . . . , n − 1,
with the angular ray hc

nhk
, complementary to the angular ray hnhk

, where k ∈ {1, 2, . . . , n − 1}, i.e.

h1hn
=

n−1⋃
i=1

(hihi+1] ∪ hc
nhk

.

Given a ray o in a pencil J of rays lying in plane α on the same side of a line a as a given point Q, which admits
a generalized betweenness relation, a nonempty set B ⊂ J of rays is said to lie in the pencil J on the same side (on
the opposite side) of the ray o as (from) a nonempty set A ⊂ J of rays iff for all rays h ∈ A and all rays k ∈ B,
the ray k lies on the same side (on the opposite side) of the ray o as (from) the ray h ∈ A. If the set A (the set B)
consists of a single element, we say that the set B (the ray k) lies in the pencil J on the same side of the ray o as
the ray h (the set A).

Sets of (Traditional) Rays on Angular Rays

Lemma 1.2.37.1. If a set B ⊂ J lies in the pencil J on the same side of the ray o as a set A ⊂ J, then the set A

lies in the pencil J on the same side of the ray o as the set B.

Lemma 1.2.37.2. If a set B ⊂ J lies in the pencil J on the same side of the ray o as a set A ⊂ J, and a set C ⊂ J

lies in the set J on the same side of the ray o as the set B, then the set C lies in the pencil J on the same side of the
ray o as the set A.

Lemma 1.2.37.3. If a set B ⊂ J lies in the set J on the opposite side of the ray o from a set A ⊂ J, then the set A

lies in the set J on the opposite side of the ray o from the set B.

In view of symmetry of the relations, established by the lemmas above, if a set B ⊂ J lies in the pencil J on the
same side (on the opposite side) of the ray o as a set (from a set) A ⊂ J, we say that the sets A and B lie in the
pencil J on one side (on opposite sides) of the ray o.

Lemma 1.2.37.4. If two distinct rays h, k lie on an angular ray ol, the open angular interval (hk) also lies on the
angular ray ol.

Given an angle ∠(h, k),157 whose sides h, k both lie in the pencil J, such that the open angular interval (hk) does
not contain o ∈ J, we have (L 1.2.37.5 - L 1.2.37.7):

Lemma 1.2.37.5. – If one of the ends of (hk) lies on the angular ray ol, the other end is either on ol or coincides
with o.

Lemma 1.2.37.6. – If (hk) has rays in common with the angular ray ol, either both ends of (hk) lie on ol, or one
of them coincides with o.

Lemma 1.2.37.7. – If (hk) has common points with the angular ray ol, the interval (hk) lies on ol, (hk) ⊂ ol.

Lemma 1.2.37.8. If h and k lie on one angular ray ol, the complementary angular rays hc
o and kc

o lie in the pencil
J on one side of the ray o.

157In unified terms, an abstract angular interval.
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Table 1.1: Names of polygons
n polygon
2 digon
3 triangle (trigon)

4 quadrilateral (tetragon)

5 pentagon
6 hexagon
7 heptagon
8 octagon
9 nonagon enneagon

10 decagon

n polygon
11 undecagon (hendecagon)

12 dodecagon
13 tridecagon (triskaidecagon)

14 tetradecagon (tetrakaidecagon)

15 pentadecagon (pentakaidecagon)

16 hexadecagon (hexakaidecagon)

17 heptadecagon (heptakaidecagon)

18 octadecagon (octakaidecagon)

19 enneadecagon (enneakaidecagon)

20 icosagon

n polygon
30 triacontagon
40 tetracontagon
50 pentacontagon
60 hexacontagon
70 heptacontagon
80 octacontagon
90 enneacontagon
100 hectogon
1000 myriagon

Lemma 1.2.37.9. If the interior of an angle ∠(l, m) is included in the interior of an angle ∠(h, k), neither of the
sides of the angle ∠(h, k) lies inside ∠(l, m).

Proof. 2

Lemma 1.2.37.10. If the interior of an angle ∠(l, m) is included in the interior of an angle ∠(h, k), the set
Int∠(l, m) ∪ P∠(l,m) is included in the set Int∠(l, m) ∪ P∠(l,m).

Proof. 2

Corollary 1.2.37.11. For angles ∠(h, k), ∠(l, m) both inclusions Int∠(h, k) ⊂ Int∠(l, m), Int∠(l, m) ⊂ Int∠(h, k)
(i.e., the equality Int∠(h, k) = Int∠(l, m) holds iff the angles ∠(h, k), ∠(l, m) are identical.

Proof. 2

Lemma 1.2.37.12. Both sides of an angle ∠(l, m) are included in the set Int∠(h, k) ∪ P∠(h,k) iff the interior
Int∠(l, m) of the angle ∠(l, m) is included in the interior Int∠(h, k) of the angle ∠(h, k).

Proof. 2

Theorem 1.2.37. A ray o in a pencil J of rays lying in plane α on the same side of a line a as a given point
Q, which admits a generalized betweenness relation, separates the rest of the rays in this pencil into two non-empty
classes (angular rays) in such a way that...

Paths and Polygons: Basic Concepts

Following Hilbert, we define paths and polygons as follows:
A (rectilinear) path, 158 or a way A0A1A2 . . . An−1An, in classical synthetic geometry, is an (ordered) n-tuple,

n ≥ 1, of abstract intervals A0A1, A1A2, . . . , An−1An , such that each interval AiAi+1, except possibly for the first
A0A1 and the last, An−1An, shares one of its ends, Ai, with the preceding (in this n-tuple) interval Ai−1Ai, and the
other end Ai+1 with the succeeding interval Ai+1Ai+2. (See Fig. 1.61, a).)

Given a path A0A1A2 . . . An, the abstract intervals AkAk+1, or open interval (AkAk+1), depending on the context
(an attempt is made in this book to always make clear in which sense the term is used in any particular instance
of its use), is called the kth side of the path, the closed interval [AkAk+1] the kth side-interval of the path, the line
aAkAk+1

the kth side-line of the path, and the point Ak - the kth vertex of the path. The path A0A1A2 . . . An−1An

is said to go from A0 to An and to connect, or join, its beginning A0 with end An. The first A0 and the last An

vertices of the path are also collectively called its endpoints, or simply its ends. Two vertices, together forming a
side, are called adjacent.

The contour PA0A1...An
of the path A0A1 . . . An is, by definition, the union of its sides and vertices:

PA0A1...An
⇋

⋃n

i=0
(AiAi+1)

⋃
{A0, A1, . . . , An}

If the first and the last vertices in a path A0A1 . . . AnAn+1 coincide, i.e. if A0 = An+1, the path is said to be
closed and is called a polygon A0A1 . . . An, or n-gon, to be more precise. 159 (See Fig. 1.61, b).)

A polygon with n = 3 is termed a triangle, with n = 4 a quadrilateral, and the names of the polygons for n ≥ 5
are formed using appropriate Greek prefixes to denote the number of sides: pentagon (n = 5), hexagon (n = 6),
octagon (n = 8), decagon(n = 10), dodecagon (n = 12), dots (see Table 1.1).

158In this part of the book we shall drop the word rectilinear because we consider only such paths.
159Since, whenever we are dealing with a polygon, we explicitly mention the fact that we have a polygon, and not just general path, the

notation ”polygon A0A1 . . . An” should not lead to confusion with the ”general path” notation A0A1 . . . AnAn+1 for the same object,
where in the case of the given polygon A0 = An+1.
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Figure 1.61: a) A general path; b) A polygon with 15 sides

To denote a triangle A1A2A3,
160 which is a path A1A2A3A4 with the additional condition A4 = A1, a special

notation △ABC is used.

For convenience, in a polygon A1A2 . . . An, viewed from the standpoint of the general path notation A1A2 . . . AnAn+1,
where A1 = An+1, we let, by definition An+2 ⇋ A2.

Alternatively, one could explicate the intuitive notion of a jagged path or a polygon using the concept of an
ordered path, using the definition of an ordered interval:

An ordered (rectilinear) path, 161 or a way
−−−−−−−−−−−−−−→
A0A1A2 . . . An−1An, in classical synthetic geometry, is an (ordered)

n-tuple, n ≥ 1, of ordered abstract intervals
−−−→
A0A1,

−−−→
A1A2, . . . ,

−−−−−→
An−1An , such that each ordered interval

−−−−→
AiAi+1,

except possibly for the first
−−−→
A0A1 and the last,

−−−−−→
An−1An, has as its beginning Ai the end of the preceding (in this

(n − 1)-tuple) ordered interval
−−−−→
Ai−1Ai, and its end Ai+1 coincides with the beginning of the succeeding ordered

interval
−−−−−−→
Ai+1Ai+2.

Although it might appear that the concept of an ordered path better grasps the ordering of the intervals which
make up the path, we shall prefer to stick with the concept of non-ordered path (including non-ordered polygons),
which, as above, will be referred to simply as paths. This is not unreasonable since the results concerning paths (and,
in particular, polygons), are formulated ultimately in terms of the basic relations of betweenness and congruence
involving the sides of these paths, and these relations are symmetric.

A path Al+1Al+2 . . . Al+k, formed by intervals Al+1Al+2, Al+2Al+3, . . . , Al+k−1Ak, consecutively joining k con-
secutive vertices of a path A1A2 . . . An, is called a subpath of the latter. A subpath Al+1Al+2 . . . Al+k of a path
A1A2 . . . An, different from the path itself, is called a proper subpath.

A path A1A2 . . . An, in particular, a polygon, is called planar, if all its vertices lie in a single plane α, that is,
∃α Ai ∈ α for all i ∈ Nn.

Given a path A1A2 . . . An, we can define on the set PA1A2...An
\ {An} an ordering relation as follows. We say that

a point A ∈ PA1A2...An
\ {An} precedes a point B ∈ PA1A2...An

\ {An} and write A ≺ B, 162 or that B succeeds A,
and write B ≻ A iff (see Fig. 1.62)

– either both A and B lie on the same half-open interval [AiAi+1) and A precedes B on it; or

– A lies on the half-open interval [Ai, Ai+1), B lies on [Aj , Aj+1) and i < j.

We say that A precedes B on the half-open interval [AiAi+1) iff A = Ai and B ∈ (Ai, Ai+1), or both A, B ∈
(AiAi+1) and [AiAB].

For an open path A1A2 . . . An, we can extend this relation onto the set PA1A2...An
if we let, by definition, A ≺ An

for all A ∈ PA1A2...An
\ {An}.

Lemma 1.2.38.1. The relation ≺ thus defined is transitive on PA1A2...An
\ {An}, and in the case of an open path

on PA1A2...An
. That is, for A, B, C ∈ PA1A2...An

\ {An} (A, B, C ∈ PA1A2...An
if A1A2 . . . An is open) we have

A ≺ B & B ≺ C ⇒ A ≺ C.

160It is sometimes more convenient to number points starting from the number 1 rather than 0, i.e. we can also name points A1, A2, . . .
instead of A0, A1, . . ..
161In this part of the book we shall drop the word rectilinear because we consider only such paths.
162Properly, we should have written (A ≺ B)A1A2...An . However, as there is no risk of confusion with precedence relations defined for

other kinds of sets, we prefer the shorthand notation.
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Figure 1.62: An illustration of ordering on a path. Here on an open path A1A2 . . . An we have, for instance,
A1 ≺ A3 ≺ A5 ≺ A ≺ B ≺ A6 ≺ A7 ≺ C ≺ A8 ≺ A9. Note that our definition of ordering on a path A1A2 . . . An

conforms to the intuitive notion that a point A ∈ PA1A2...An
precedes another point B ∈ PA1A2...An

if we encounter
A sooner than B when we ”take” the open path A1A2 . . . An from A1 to An.

A1

A2
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A6
A7
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B4

B5

B6
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a) b)

Figure 1.63: A peculiar path A1A2 . . . A12 (a), and the corresponding naturalized path B1B2 . . . B7 (b). Note that
the path A1A2 . . . A12 drawn here is a very perverse one: aside from being peculiar, it is not even semi-simple!

Proof. (sketch) Let A ≺ B, B ≺ C. If A, B, C ∈ (Ai, Ai+1) for some i ∈ Nn, we have, using the definition,

A ≺ B & B ≺ C ⇒ [AiAB] & [AiBC]
L1.2.3.2
=⇒ [AiAC]. The other cases are even more obvious. 2

We shall call a path A1A2 . . . An, which contains (at least once) three or more consecutive collinear vertices, a
peculiar path. Otherwise the path is called non-peculiar. A subpath Al+1Al+2 . . . Al+k−1Ak+l, (k ≥ 3), formed by
consecutive collinear vertices in a peculiar path, is called a peculiar k- tuple, and the corresponding vertices are called
peculiar vertices. 163 If Al+1Al+2 . . . Al+k), k ≥ 2, is a peculiar k-tuple, Al+1 is called its first, and Al+k its last
point.

If two (or more 164) sides of a path share a vertex, they are said to be adjacent.
By definition, the angle between adjacent sides Ai−1Ai, AiAi+1, called also the angle at the vertex Ai, of a

non-peculiar path A1A2 . . . An is the angle ∠(AiAi−1
, AiAi+1

) = ∠Ai−1AiAi+1.
This angle is also denoted ∠Ai whenever this simplified notation is not likely to lead to confusion. 165

An angle adjacent supplementary to an angle of a non-peculiar path (in particular, a polygon) is called an exterior
angle of the path (polygon).

An angle ∠Ai−1AiAi+1, formed by two adjacent sides of the path A1A2 . . . An, is also said to be adjacent to its
sides Ai−1Ai, AiAi+1, any of which, in its turn, is said to be adjacent to the angle ∠Ai−1AiAi+1.

Given a peculiar path A1A2 . . . An, define the corresponding depeculiarized, or naturalized path B1B2 . . . Bp by
induction, as follows (see Fig. 1.63):

Let B1 ⇋ A1; if Bk−1 = Al let Bk ⇋ Am, where m is the least integer greater than l such that the points Al−1,
Al, Am are not collinear, i.e. m ⇋ min{p | l + 1 ≤ p ≤ n &¬∃b (Al−1 ∈ b & Al ∈ b & Am ∈ b)}. If no such m exists,
B1B2 . . . Bk−1 is the required naturalized path.

In addition to naturalization, in the future we are going to need a related operation which we will refer to as
straightening: given a path A1 . . . Ai . . . Ai+k . . . An, we can replace it with the path A1 . . . AiAi+k . . . An (note that

163Note that peculiar vertices are not necessarily all different. Only adjacent vertices are always distinct. So are all peculiar vertices in
a semisimple path.
164for paths that are not even semi-simple; see below
165An angle between adjacent sides of a non-peculiar path (in particular, a polygon) will often be referred to simply as an angle of the

path (polygon).
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Figure 1.64: No three side - intervals meet in any point.

the vertices Ai, Ai+k are now adjacent). We say that we straighten the sides AiAi+1, . . . , Ai+k−1Ai+k of the path
A1 . . . An into the single side AiAi+k of the new path A1 . . . AiAi+k . . . An. Of course, this new path always contain
fewer sides than the initial path.

Of course, there are paths (polygons) on which we can perform successive straightenings.

Simplicity and Related Properties

A path is termed semisimple if it has the following properties:

Property 1.2.9. All its vertices (except the first and the last one in the case of a polygon) are distinct;

Property 1.2.10. No vertex lies on a side of the path;

Property 1.2.11. No pair of its sides meet.

Alternatively, a path is called semisimple if the following properties hold:

Property 1.2.12. No two side-intervals meet in any point which is not a vertex;

Property 1.2.13. No three side - intervals meet in any point.

Property 1.2.14. No side can contain an endpoint of the path.

Lemma 1.2.38.2. The two definitions of a semisimple path are equivalent.

Proof. Obviously, Pr 1.2.12 is just a reformulation of Pr 1.2.11, so Pr 1.2.11 and Pr 1.2.12 are equivalent. It is also
obvious that Pr 1.2.14 is a particular case of Pr 1.2.12.

To prove that Pr 1.2.9 – Pr 1.2.11 imply Pr 1.2.13 suppose the contrary, namely, that ∃B B ∈ [AiAi+1] ∩
[AjAj+1] ∩ [AkAk+1], i 6= j 6= k. By Pr 1.2.12 B is an end of at least two of these side-intervals. Without loss of
generality, we can assume B = Ai+1 = Aj ,

166 and thus we have i + 1 = j by Pr 1.2.9. 167 B = Ai+1 does not
coincide with either of the ends of [AkAk+1] (Fig. 1.64, a) shows how this hypothetic situation would look), because
each end is a vertex of the path, i 6= j 6= k from our assumption, i + 1 > 1, and by Pr 1.2.9 the vertices Ai, where
i = 2, . . . , n, are distinct. Nor can B lie on (AkAk+1), (see Fig. 1.64, b)) because Ai+1 is a vertex, and by Pr 1.2.10
no vertex of the path can lie on its side. We have thus come to a contradiction which shows that Pr 1.2.13 is true.
To show Pr 1.2.12 – Pr 1.2.14 ⇒ Pr 1.2.9 let B ⇋ Ai = Ak, where 1 < k − i < n − 1. 168 Then the following three
side - intervals meet in B:

for i = 1: [A1A2], [Ak−1Ak], [AkAk+1].
169

for i > 1: [Ai−1Ai], [AiAi+1], [Ak−1Ak]
They are all distinct because 1 < k − i, and we arrive at a contradiction with Pr 1.2.13, which testifies the truth

of Pr 1.2.9.
Finally, to prove Pr 1.2.12 – Pr 1.2.14 ⇒ Pr 1.2.10 suppose Ai ∈ (AkAk+1). But by Pr 1.2.14 i 6= 1, n, and thus

[Ai−1Ai], [AiAi+1] are both defined and meet [AkAk+1] and each other in B ⇋ Ai contrary to Pr 1.2.13. 2

Lemma 1.2.38.3. If Al+1Al+2 . . . Al+k is a peculiar k-tuple in a semisimple path A1A2 . . . An, then Al+1, Al+2, . . . , Al+k

are distinct points in order [Al+1Al+2 . . . Al+k].

166Note that [AiAi+1] and [AjAj+1] enter our assumption symmetrically, so we can ignore the case Aj+1 = Ai.
167From Pr 1.2.9 all vertices of the path are distinct, except A1 = An in a polygon, and so the mapping ψ : i 7→ Ai, where i =

1, 2, . . . , n− 1, is injective.
168The first part of this inequality can be assumed due to symmetry on i, k (k− i > 0) and definition of a side as an (abstract) interval,

which is a pair of distinct points (this gives k − i 6= 1). The second part serves to exclude the case of a polygon.
169[AkAk+1] makes sense because i = 1& k − i < n− 1 ⇒ k < n.
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Figure 1.65: Illustration for proof of L 1.2.38.3.

Proof. By induction on k. Let k = 3. Al+1 6= Al+2, Al+2 6= Al+3 because Al+1Al+2, Al+2Al+3 are sides of the path
and therefore are intervals, which are, by definition, pairs of distinct points. Al+1 6= Al+3 (this hypothetic case is

shown in Fig.1.65, a)), because Al+1Al+2 = Al+2Al+3
T1.2.1
=⇒ (Al+1Al+2) ∩ (Al+2Al+3) 6= ∅, contrary to Pr 1.2.11.

Since Al+1, Al+2, Al+3 are distinct and collinear (due to peculiarity), by T 1.2.2 [Al+1Al+3Al+2]∨ [Al+2Al+1Al+3]∨
[Al+1Al+2Al+3, but the first two cases (shown in Fig.1.65, b, c) contradict semisimplicity of A1A2 . . . An by Pr 1.2.10.

Obviously, since Al+1Al+2 . . . Al+k is a peculiar k- tuple, Al+1Al+2 . . . Al+k−1 is a peculiar (k − 1)-tuple. Then,
by induction hypothesis, Al+1, Al+2, . . ., Al+k−1 are distinct points in order [Al+1Al+2 . . . Al+k−1]. Al+k 6= Al+k−1

by definition of Al+k−1Al+k. Al+k 6= Al+1, (this hypothetic case is shown in Fig.1.65, d)) because otherwise
[Al+1Al+2 . . . Al+k−1] ⇒ Al+2 ∈ (Al+k−1Al+k), which by Pr 1.2.10 contradicts semisimplicity. Since Al+1, Al+k−1,
Al+k are distinct and collinear, we have by T 1.2.2 [Al+k−1Al+1Al+k] ∨ [Al+1Al+kAl+k−1] ∨ [Al+1Al+k−1Al+k]. But
[Al+k−1Al+1Al+k] contradicts Pr 1.2.10. (This situation is shown is shown in Fig.1.65, e).) [Al+1Al+kAl+k−1] ⇒

Al+k ∈ [Al+1Al+k−1)
L1.2.7.7
=⇒ ∃i ∈ Nk−2 Al+k ∈ [Al+iAl+i+1), (see Fig.1.65, f)) which contradicts either Pr 1.2.9

or Pr 1.2.10, because Al+i is a vertex, and Al+iAl+i+1 is a side of the path. Therefore, we can conclude that

[Al+1Al+k−1Al+k]. Finally, [Al+1Al+2 . . . Al+k−1] ⇒ [Al+1Al+k−1Al+k], [Al+1Al+k−2Al+k−1] & [Al+1Al+k−1Al+k]
L1.2.3.2
=⇒

[Al+k−2Al+k−1Al+k], [Al+1Al+2 . . . Al+k−1] & [Al+k−2Al+k−1Al+k]
L1.2.7.3
=⇒ [Al+1Al+2 . . . Al+k−1Al+k]. 2

Theorem 1.2.38. Naturalization preserves the contour of a semisimple path. That is, if A1A2 . . . Anis a peculiar
semisimple path, and B1B2 . . . Bp is the corresponding naturalized path, then PB1B2...Bp=PA1A2...An

.

Proof. 2

A path that is both non-peculiar and semisimple is called simple. In the following, unless otherwise explicitly
stated, all paths are assumed to be simple. 170

Some Properties of Triangles and Quadrilaterals

Theorem 1.2.39. If points A1, A2, A3 do not colline, the triangle △A1A2A3
171 is simple.

Proof. Non-peculiarity is trivial. Let us show semisimplicity. Obviously, we must have A1 6= A2 6= A3 for the abstract
intervals A1A2, A2A3, A3A1 forming the triangle △A1A2A3 to make any sense. So Pr 1.2.9 holds. Pr 1.2.10, Pr 1.2.11

are also true for our case, because ¬∃a (Ai ∈ a & Aj ∈ a & Ak ∈ a)
L1.2.1.9
=⇒ [AiAj) ∩ (AjAk] = ∅, where i 6= j 6= k. 2

Lemma 1.2.40.1. If points A, F lie on opposite sides of a line aEB, the quadrilateral FEAB is semisimple.

Proof. (See Fig. 1.66.) Obviously, ∃aAB ⇒ A 6= B and AaEBF ⇒ A 6= F . Thus, the points F , E, A, B are all
distinct, so Pr 1.2.9 holds in our case. 172 AaEBF implies that A, E, B, as well as F , E, B are not collinear,
whence by L 1.2.1.9 [BE) ∩ (EF ] = ∅, [BE) ∩ (EA] = ∅, [EB) ∩ (BF ] = ∅, [EB) ∩ (BA] = ∅, [EA) ∩ (AB] = ∅,

[EF )∩ (FB] = ∅. This means, in particular, that B /∈ (EF ), B /∈ (EA), E /∈ (BF ), E /∈ (BA). Also, AaEBF
T1.2.20
=⇒

170Note that, according to the naturalization theorem T 1.2.38, usually there is not much sense in considering peculiar paths.
171Recall that, by definition, △A1A2A3 is a closed path A1A2A3A4 with A4 = A1.
172We have also taken into account the trivial observation that adjacent vertices of the quadrilateral are always distinct. (Every such

pair of vertices forms an abstract interval.)
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Figure 1.66: If points A, F lie on opposite sides of a line aEB, the quadrilateral FEAB is semisimple.

[AE)aEB(EF ] & [AE)aEB(BF ] & [AB)aEB(BF ] & [AB)aEB(EF ]. From all this we can conclude that Pr 1.2.10,
Pr 1.2.11 are true for the case in question. 2

Theorem 1.2.40. Given a quadrilateral FEAB, if points E, B lie on opposite sides of the line aAF , and A, F lie
on opposite sides of aEB, then the quadrilateral FEAB is simple and no three of its vertices colline. 173

Proof. EaAF B ⇒ E /∈ aAF & B /∈ aAF , AaEBF ⇒ A /∈ aEB & F /∈ aEB. Thus, no three of the points F , E, A, B
are collinear. This gives non-peculiarity of FEAB as a particular case. But by (the preceding lemma) L 1.2.40.1,
the quadrilateral FEAB is also semisimple. 2

Given a quadrilateral FEAB, the open intervals (AF ), (EB) are referred to as the diagonals of the quadrilateral
FEAB.

Theorem 1.2.41. Given a quadrilateral FEAB, if points E, B lie on opposite sides of the line aAF , and A, F lie
on opposite sides of aEB, then the open intervals (EB), (AF ) concur, i.e. the diagonals of the quadrilateral FEAB
meet in exactly one point. If, in addition, a point X lies between E, A, and a point Y lies between F , B, the open
intervals (XY ), (AF ) are also concurrent. 174

Proof. (See Fig. 1.67, a).)By the preceding theorem (T 1.2.40), the quadrilateral FEAB is simple and no three of
its vertices colline. We have also EaAF B ⇒ ∃G G ∈ aAF & [EGB], AaEBF ⇒ ∃H H ∈ aEB & [AHF ], and therefore
by L 1.2.1.3, A 1.1.2 G ∈ aAF ∩ (EB)& H ∈ aEB ∩ (AF )&¬∃a (E ∈ a & A ∈ a & F ∈ a) ⇒ G = H . Thus,
G ∈ (EB) ∩ (AF ), and by L 1.2.9.10, in view of the fact that no three of the points F , E, A, B colline, we can even
write G = (EB) ∩ (AF ).

Show 2nd part. We have [EXA] & [FY B] & EaAF B
T1.2.20
=⇒ XaAF Y ⇒ ∃Z Z ∈ aAF & [XZY ] and G = (AF ) ∩

(EB)
C1.2.21.26

=⇒ EFaAB. EFaAB & [AXE] & [BY F ]
Pr??
=⇒ Y FaAB & XFaAB. With [XZY ], by L 1.2.19.9 this

gives ZFaAB. To show Z 6= F , suppose Z = F . (See Fig. 1.67, b).) Then [XFY ] & [FY B]
L1.2.3.1
=⇒ [XFB]

and by L 1.2.11.13, 175 we have [AXE] & B ∈ EB & [XFB] ⇒ EF ⊂ Int∠AEB. On the other hand, G =

(EB) ∩ (AF )
C1.2.21.25

=⇒ EB ⊂ Int∠AEF , so, in view of C 1.2.21.13 we have a contradiction. Also, ¬[ZAF ],

for [ZAF ] & [AGF ]
L1.2.3.2
=⇒ [ZGF ] ⇒ ZaEBF - a contradiction. Now the obvious symmetry of the conditions of

the second part of the lemma with respect to the substitution A ↔ F , X ↔ Y , B ↔ E 176 allows us to con-

clude that also A 6= Z and ¬[ZFA]. [AGF ]
L1.2.1.3
=⇒ G ∈ aAF , Z ∈ aAF , the points A, F , Z colline. Therefore,

A 6= Z 6= F &¬[ZAF ] &¬[ZFA]
T1.2.1
=⇒ [AZF ]. 2

Theorem 1.2.42. Given four (distinct) coplanar points A, B, C, D, no three of them collinear, if the open interval
(AB) does not meet the line aCD and the open interval (CD) does not meet the line aAB, then either the open
intervals (AC), (BD) concur, or the open intervals (AD), (BC) concur.

Proof. (See Fig. 1.68, a).) By definition, that A, B, C, D are coplanar means ∃α (A ∈ α & B ∈ α & C ∈ α & D ∈ α).
Since, by hypothesis, A, B, C and A, B, D, as well as A, C, D and B, C, D are not collinear (which means, of course,
C /∈ aAB, D /∈ aAB, A /∈ aCD, B /∈ aCD), we have C ∈ Pα\PaAB

& D ∈ Pα\PaAB
& (CD)∩aAB = ∅ ⇒ CDaAB . Also,

BC 6= BD, for otherwise B, C, D would colline. Therefore, CDaAB & BC 6= BD
L1.2.21.21

=⇒ BC ⊂ Int∠ABD ∨ BD ⊂

Int∠ABC
L1.2.21.10

=⇒ (∃X1 X1 ∈ BC & [AX1D]) ∨ (∃X2 X2 ∈ BD & [AX2C]). Since the points A, B enter the
conditions of the lemma symmetrically, we can immediately conclude that also AC ⊂ Int∠BAD ∨AD ⊂ Int∠BAC,

173Thus, the theorem is applicable, in particular, in the case when the open intervals (AF ), (BE) concur.
174We do not assume a priori the quadrilateral to be either non-peculiar or semisimple. That our quadrilateral in fact turns out to be

simple is shown in the beginning of the proof.
175which gives [EXA] ⇒ X ∈ EA
176That is, we substitute A for F , F for A, X for Y , etc.
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Figure 1.67: Illustration for proof of T 1.2.41.
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Figure 1.68: Illustration for proof of T 1.2.42.

whence (∃Y1 Y1 ∈ AC & [BY1D]) ∨ (∃Y2 Y2 ∈ AD & [BY2C]). To show that ∃X1 X1 ∈ BC & [AX1D] and ∃Y1 Y1 ∈
AC & [BY1D] cannot hold together, suppose the contrary.(See Fig. 1.68, b).) Then ¬∃a (A ∈ a & B ∈ a & D ∈

a)& [AX1D] & [DY1B]
L1.2.3.3
=⇒ ∃C′ [AC′Y1] & [BC′X1]

L1.2.1.3
=⇒ C′ ∈ aAY1 ∩ aBX1 . Obviously, also Y1 ∈ AC & C /∈

aAB & X1 ∈ BC ⇒ aAY1 = aAC 6= aBC = aBX1 . Therefore, C′ ∈ aAY1 ∩ aBX1 & C ∈ aAY1 ∩ aBX1 & aAY1 6=

aBX1

T1.1.1
=⇒ C′ = C, and we have B /∈ aAD & [AX1D] & [BCX1]

C1.2.1.7
=⇒ ∃R R ∈ aCD & [ARB], which contradicts

the condition aCD ∩ (AB) = ∅. Since the conditions of the theorem are symmetric with respect to the substitution
C ↔ D, we can immediately conclude that (∃X2 X2 ∈ BD & [AX2C]) and (∃Y2 Y2 ∈ AD & [BY2C]) also cannot hold
together. Thus, either both (∃X1 X1 ∈ BC & [AX1D]) and (∃Y2 Y2 ∈ AD & [BY2C]), or (∃X2 X2 ∈ BD & [AX2C])
and (∃Y1 Y1 ∈ AC & [BY1D]). In the first of these cases we have X1 ∈ aBC ∩ aAD & Y2 ∈ aBC ∩ aAD & aBC 6=

aAD
T1.1.1
=⇒ X1 = Y2. Thus, X1 ∈ (AD) ∩ (BC). Similarly, using symmetry with respect to the simultaneous

substitutions A ↔ B, C ↔ D, we find that X2 ∈ (BD) ∩ (AC). 2

Theorem 1.2.43. If points A, B, C, D are coplanar, either the line aAD and the segment [BC] concur, or aBD

and [AC] concur, or aCD and [AB] concur.

Proof. We can assume that no three of the points A, B, C, D colline, since otherwise the result is immediate.
Suppose aCD ∩ [AB] = ∅. If also aAB ∩ (CD) = ∅ then by (the preceding theorem) T 1.2.42 either (AC) and (BD)
concur, whence aBD and [AC] concur, or (AD) and (BC) concur, whence aAD and [BC] concur. Suppose now

∃E E ∈ aAB ∩ (CD). Using our another assumption aCD ∩ [AB] = ∅, we have E ∈ Ext[AB]
T1.2.1
=⇒ [ABE]∨ [EAB]. If

[ABE] (see Fig. 1.69, a)), then A /∈ aCD & [CED] & [ABE]
C1.2.1.7
=⇒ ∃F [AFC] & aBD, and if [EAB] (see Fig. 1.69, b)),
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Figure 1.69: Illustration for proof of T 1.2.43.
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Figure 1.70: If a point X lies between A, Y , lines aXB, aY C are parallel, and A, B, C colline, B lies between A, C.

then B ∈ aCD & [CED] & [EAB]
C1.2.1.7
=⇒ ∃F F ∈ aAD & [BFC]. Thus, ∃F [AFC] & aBD or ∃F F ∈ aAD & [BFC].

2

Theorem 1.2.44. If a point X lies between points A, Y , lines aXB, aY C are parallel, and the points A, B, C colline,
then B lies between A, C.

Proof. (See Fig. 1.70.) Obviously, 177 the collinearity of A, B, C implies A ∈ aBC , aAC = aAB. Using A 1.1.6, A 1.1.5
we can write A ∈ aBC ⊂ αaBXaCY

⇒ αACY = αaBXaCY
⇒ aBX ⊂ αACY . We have aBX ‖ aCY ⇒ C /∈ aBX & Y /∈

aBX . Also, aBX 6= aAC (otherwise C ∈ aBX , which contradicts aBX ‖ aCY ), and aBX 6= aAC = aAB ⇒ A /∈ aBX .

Therefore, aBX ⊂ αACY & A /∈ aBX & C /∈ aBX & Y /∈ aBX & [AXY ] & X ∈ aBX & aBX ∩ (CY ) = ∅
A1.2.4
=⇒ ∃B′ B′ ∈

aBX & [AB′C]. But B ∈ aBX ∩ aAC & B′ ∈ aBX ∩ aAC & aBX 6= aAC
T1.1.1
=⇒ B′ = B. Hence [ABC] as required. 2

Proposition 1.2.44.1. If a line a is parallel to the side-line aBC of a triangle △ABC and meets its side AB 178 at
some point E, it also meets the side AC of the same triangle.

Proof. (See Fig. 1.71.) By the definition of parallel lines, a ‖ aBC ⇒ ∃α a ⊂ α & aBC ⊂ α. Also, a ‖ aBC & E ∈

a ⇒ E /∈ aBC ; E ∈ a & a ⊂ α ⇒ E ∈ α; [AEB]
C1.2.1.7
=⇒ E ∈ αABC . Therefore, E ∈ α & aBC ⊂ α & E ∈

αABC & aBC ⊂ E ∈ αABC
T1.1.2
=⇒ α = αABC . Thus, a ⊂ αABC . Obviously, a ‖ aBC ⇒ B /∈ a & C /∈ a. Also,

A /∈ a, for otherwise A ∈ aAB ∩ a & E ∈ aAB ∩ a & A 6= E
A1.1.2
=⇒ a = aAB ⇒ B ∈ a - a contradiction. 179 Finally,

a ⊂ αABC & A /∈ a & B /∈ a & C /∈ a & ∃E (E ∈ (AB) ∩ a)& a ‖ aBC
A1.2.4
=⇒ ∃F (F ∈ (AC) ∩ a), q.e.d. 2

Theorem 1.2.45. If a point A lies between points X, Y , lines aXB, aY C are parallel, and the points A, B, C colline,
A lies between B, C.

177see C 1.1.1.5, L 1.1.1.4
178That is, the open interval (AB) - see p. 69 on the ambiguity of our usage concerning the word ”side”.
179Obviously, we are using in this, as well as in many other proofs, some facts like [AEB]

A1.2.1
=⇒ A 6= E, but we choose not to stop to

justify them to avoid overloading our exposition with trivial details.
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Figure 1.71: If a is parallel to aBC and meets its side (AB) at E, it also meets (AC).
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Figure 1.72: Illustration for proof of T 1.2.45.

Proof. We have aXB ‖ aY C
L1.1.7.1
=⇒ X /∈ aY C & B /∈ aXY and ∃a (A ∈ a & B ∈ a & C ∈ a)

T1.2.2
=⇒ [ABC] ∨

[ACB] & [BAC]. If [ABC] (see Fig. 1.72, a)), we would have X /∈ aY C & [XAY ] & [ACB]
C1.2.1.7
=⇒ ∃D D ∈

aXB & [Y DC]
L1.2.1.3
=⇒ ∃D ∈ aXB ∩ aY C ⇒ aXB ∦ aY C - a contradiction. Similarly, assuming that [ACB] (see

Fig. 1.72, b)), we would have B /∈ aXY & [XAY ] & [ACB]
C1.2.1.7
=⇒ ∃D D ∈ aY C & [XDB]

L1.2.1.3
=⇒ ∃D ∈ aY C ∩ aXB ⇒

aY C ∦ aXB. 180 Thus, we are left with [BAC], q.e.d. 2

Theorem 1.2.46. If a point B lies between points A, C, lines aAX , aBY are parallel, as are aBY , aCZ , and if the
points X, Y , Z colline, then Y lies between X and Z.

Proof. (See Fig. 1.73.) By C 1.2.1.10 the lines aAX , aBY , aCZ coplane. Therefore, [ABC] ⇒ AaBXC. We
also have (from the condition of parallelism) (CZ] ∩ aBY = ∅& (AX ] ∩ aBY = ∅ ⇒ CZaBY & AXaBY . Then

AXaBY & CZaBY & AaBY C
L1.2.17.11

=⇒ XaBY Z ⇒ ∃Y ′ Y ′ ∈ aBY & [XY ′Z]. But Y ∈ aBY ∩ aXZ & Y ′ ∈ aBY ∩

aXZ & aXZ 6= aBY
T1.1.1
=⇒ Y ′ = Y . 2

180There is a more elegant way to show that ¬[ACB] if we observe that the conditions of the theorem are symmetric with respect to
the simultaneous substitutions B ↔ C, X ↔ Y .
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Figure 1.73: If a point B lies between A, C; lines aAX ‖ aBY , aBY ‖ aCZ , and if X , Y , Z colline, then Y divides X
and Z.

Basic Properties of Trapezoids and Parallelograms

A quadrilateral is referred to as a trapezoid if (at least) two of its side-lines are parallel. A quadrilateral ABCD is
called a parallelogram if aAB ‖ aCD, aAC ‖ aBD. 181 ABCD

Corollary 1.2.47.1. In a trapezoid no three of its vertices colline. Thus, a trapezoid, and, in particular, a parallel-
ogram ABCD, is a non-peculiar quadrilateral. Furthermore, any side - line formed by a pair of adjacent vertices of
a parallelogram lies completely on one side 182 of the line formed by the other two vertices. In particular, we have
CDaAB, etc.

Proof. Follows immediately from the definition of parallelogram and L 1.1.7.3, T 1.2.19. 2

Lemma 1.2.47.2. Given a parallelogram ABCD, if a point X lies on the ray AB , the open intervals (AC), (DX)
concur. In particular, (AC) and (BD) concur.

Proof. By the preceding corollary (C 1.2.47.1) B /∈ AD and, moreover, BCaAD. Therefore, X ∈ AB & B /∈

aAD
L1.2.19.8

=⇒ XBaAD, and XBaAD & BCaAD
L1.2.17.1

=⇒ XCaAD ⇒ (XC) ∩ aAD = ∅
L1.2.1.3
=⇒ (XC) ∩ (AD) = ∅.

Since also aAX = aAB ‖ aCD
L1.2.1.3
=⇒ (AX) ∩ aCD = ∅& aAX ∩ (CD) = ∅, the open intervals (AC), (XD) concur by

T 1.2.42. 2

Corollary 1.2.47.3. Given a parallelogram ABCD, if a point X lies on the ray AB, the ray AC lies inside the angle
∠XAD. 183 In particular, the points X, D are on opposite sides of the line aAC and A, C are on opposite sides of
aDX . In particular, the vertices B, D are on opposite sides of the line aAC and A, C are on opposite sides of aDB .

Proof. Follows immediately from the preceding lemma (L 1.2.47.2) and C 1.2.21.25. 2

Corollary 1.2.47.4. Suppose that in a trapezoid ABCD with aAB ‖ aCD the vertices B, C lie on the same side of
the line aAD. Then the open intervals (AC), (BD) concur and ABCD is a simple quadrilateral.

Proof. Observe that the assumptions of the theorem imply that no three of the coplanar points A, B, C, D are
collinear, the open interval (AB) does not meet the line aCD, the open interval (CD) does not meet the line aAB,
and the open intervals (AD), (BC) do not meet. Then the open intervals (AC), (BD) concur by T 1.2.42 and the
trapezoid ABCD is simple by T 1.2.40. 2

Corollary 1.2.47.5. Suppose that in a trapezoid ABCD with aBC ‖ aAD the open intervals (AB), (CD) do not
meet. Then the points C, D lie on the same side of the line aAB. 184

Proof. First, observe that no three vertices of ABCD colline (see C 1.2.47.1), and thus C /∈ aAB, D /∈ aAB. To
show that the points C, D lie on the same side of the line aAB, suppose the contrary, i.e. that there is a point E ∈
(CD)∩aAB. Since (CD) ⊂ Int aBCaAD (by L 1.2.19.16), we have E ∈ Int aBCaAD. Since (AB) = aAB∩Int aBCaAD

(again by L 1.2.19.16), we find that E ∈ (AB), which in view of E ∈ (CD) contradicts the condition of the theorem
that the open intervals (AB), (CD) do not meet. This contradiction shows that in reality the points C, D lie on the
same side of the line aAB. 2

Corollary 1.2.47.6. Suppose that in a trapezoid ABCD with aBC ‖ aAD the open intervals (AB), (CD) do not
meet. 185 Then the ray AC lies inside the angle ∠BAD and the ray DB lies inside the angle ∠ADC. 186

181Thus, parallelogram is a particular case of trapezoid. Note that in the traditional terminology a trapezoid has only two parallel
side-lines so that parallelograms are excluded.
182i.e. completely inside one of the half-planes into which the line formed by the remaining vertices divides the plane of the parallelogram
183And, of course, by symmetry the ray XD then lies inside the angle ∠AXC, the ray CA lies inside ∠XCD, and DX lies inside ∠ADC.
184Then also by symmetry the points A, B lie one the same side of the line aCD . In particular, given a trapezoid ABCD with aBC ‖ aAD ,

if the points A, B lie on the same side of the line aCD then the points C, D lie on the same side of the line aAB .
185This will be true, in particular, if either A, B lie on the same side of aCD or C, D lie on the same side of aAB .
186Then also by symmetry the ray BD lies inside the angle ∠ABC and the ray CA lies inside the angle ∠BCD.
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Figure 1.74: Illustration for proof of T 1.2.48.

Proof. Since (by hypothesis) aAD ‖ aBC , the points B, C lie on the same side of aAD. Furthermore, from the
preceding corollary (C 1.2.47.5) we have CDaAB, ABaCD. Hence in view of the definition of interior of angle we can
write ABaCD & BCaAD ⇒ DB ⊂ Int∠ADC (see also L 1.2.21.4), CDaAB & BCaAD ⇒ AC ⊂ Int∠BAD. 2

Theorem 1.2.47. A parallelogram is a simple quadrilateral.

Proof. It is non-peculiar by C 1.2.47.1 and semisimple by C 1.2.47.1, L 1.2.40.1. 2

Theorem 1.2.48. Given a parallelogram CAY X, if a point O lies between A, C, a point B lies on the line aAC,
and the lines aXB, aOY are parallel, then the point O lies between A, B. (See Fig. 1.74, a).)

Proof. Suppose the contrary, i.e. ¬[BOA].(See Fig. 1.74, b).) We have by L 1.2.1.3, A 1.2.1 [COA] ⇒ O ∈ aAC & A 6=
O. Since also, by hypothesis, B ∈ aAC , the points O, A, B are collinear. Taking into account aXB ‖ aOY ⇒ O 6= B,
we can write B ∈ aOA &¬[BOA] & B 6= O & O 6= A. Then by L 1.2.11.9, L 1.2.13.2 [COA] & B ∈ OA ⇒ [COB] & B ∈
CA. Since CAY X is a parallelogram and B ∈ CA, by L 1.2.47.2 ∃D D ∈ (XB) ∩ (CY ). Therefore, Y /∈ aCB =

aCA & [CDY ] & D ∈ aBX & [COB]
C1.2.1.7
=⇒ ∃E E ∈ aBX & [OEY ] ⇒ ∃E E ∈ aBX ∩ aOY - a contradiction. 2

Lemma 1.2.49.1. Proof. 2

Theorem 1.2.49. If a polygon A1A2A3 . . . An−1An (i.e., a path A1A2 . . . AnAn+1 with An+1 = A1) is non-peculiar
(semisimple, simple) the polygons A2A3 . . . An−1AnA1, A3A4 . . . AnA1A2, . . . , AnA1 . . . An−2An−1 are non-peculiar
(semisimple, simple) as well. Furthermore, the polygons AnAn−1An−2 . . . A2A1 , An−1An−2 . . . A2A1An , . . . ,
A1AnAn−1 . . . A3A2 are also non-peculiar (semisimple, simple). Written more formally, if a polygon A1A2A3 . . . An−1An

is non-peculiar (semisimple, simple), the polygon Aσ(1)Aσ(2) . . . Aσ(n−1)Aσ(n) is non-peculiar (semisimple, simple) as
well, and, more generally, the polygon Aσk(1)Aσk(2) . . . Aσk(n−1)Aσk(n) is also non-peculiar (semisimple, simple),
where σ is the permutation

σ =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)
,

i.e. σ(i) = i + 1, i = 1, 2, . . . n − 1, σ(n) = 1, and k ∈ N. Furthermore, the polygon Aτk(1)Aτk(2) . . . Aτk(n−1)Aτk(n)

is non-peculiar (semisimple, simple), where τ is the permutation

τ = σ−1 =

(
1 2 . . . n − 1 n
n 1 . . . n − 2 n − 1

)
,

i.e. τ(1) = n, τ(i) = i − 1, i = 2, 3, . . . n, and k ∈ {0} ∪ N.

Proof. Follows immediately by application of the appropriate definitions of non-peculiarity (semisimplicity, simplicity)
to the polygons in question. 187

2

Theorem 1.2.50. Proof. 2

187See the definition of peculiarity in p. 71 and the properties Pr 1.2.12 - Pr 1.2.14 defining semisimplicity.
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Figure 1.75: If A, B and B, C lie on one side of α, so do A, C.

Basic Properties of Half-Spaces

We say that a point B lies (in space) on the same side (on the opposite (other) side) of a plane α as the point A
(from the point A) iff:

- Both A and B do not lie in plane α;
- the interval AB meets (does not meet) the plane α;
and write this as ABα(AαB)
Thus, we let, by definition

ABα
def
⇐⇒ A ∈ α & B ∈ α &¬∃C (C ∈ α & [ACB]); and

ABα
def
⇐⇒ A ∈ α & B ∈ α & ∃C (C ∈ α & [ACB]).

Lemma 1.2.51.1. The relation ”to lie (in space) on the same side of a plane α as”, i.e. the relation ρ ⊂ CPt \Pα ×

CPt \ Pα defined by (A, B) ∈ ρ
def
⇐⇒ ABα, is an equivalence on CPt \ Pα.

Proof. By A 1.2.1 AAα and ABα ⇒ BAα. To prove ABα& BCα ⇒ ACα assume the contrary, i.e. that ABα,
BCα and AαC. Obviously, AαC implies that ∃D D ∈ α & [ADC]. Consider two cases:

If ∃b (A ∈ b & B ∈ b & C ∈ b), by T 1.2.2 [ABC] ∨ [BAC] ∨ [ACB]. But [ABC] & [ADC] & D 6= B
T1.2.5
=⇒

[ADB] ∨ [BDC], [BAC] & [ADC]
L1.2.3.2
=⇒ [BDC], [ACB] & [ADC]

L1.2.3.2
=⇒ [ADB], which contradicts ABα & BCα.

Suppose now ¬∃b (A ∈ b & B ∈ b & C ∈ b) (See Fig. 1.75.) then (by A 1.1.1) ∃αABC . D ∈ α ∩ αABC
A1.1.7
=⇒

∃G G 6= D & G ∈ α ∩ αABC . By A 1.1.6 aDG ⊂ α ∩ αABC . A /∈ α & B /∈ α & C /∈ α & aDG ⊂ α ⇒ A /∈

aDG & B /∈ aDG & C /∈ aDG. A /∈ aDG & B /∈ aDG & C /∈ aDG & aDG ⊂ α = αABC & (D ∈ aDG & [ADC])
A1.2.4
=⇒

∃E (E ∈ aDG & [AEB])∨ ∃F (F ∈ aDG & [BFC]). Since, in view of aDG ⊂ α, we have either [AEB] & E ∈ αABC or
[BFC] & F ∈ αABC , this contradicts ABα& BCα. 2

A half-space αA is, by definition, the set of points lying (in space) on the same side of the plane α as the point
B, i.e. αA ⇋ {B|ABα}.

Lemma 1.2.51.2. The relation ”to lie on the opposite side of the plane α from” is symmetric.

Proof. Follows from A 1.2.1. 2

In view of symmetry of the corresponding relations, if a point B lies on the same side of a plane α as (on the
opposite side of a plane α from) a point A, we can also say that the points A and B lie on one side (on opposite
(different) sides) of the plane α.

Lemma 1.2.51.3. A point A lies in the half-space αA.

Lemma 1.2.51.4. If a point B lies in a half-space αA, then the point A lies in the half-space αB.

Lemma 1.2.51.5. Suppose a point B lies in a half-space αA, and a point C in the half-space αB. Then the point C
lies in the half-space αA.

Lemma 1.2.51.6. If a point B lies in a half-space αA then αB = αA.
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Proof. To show αB ⊂ αA note that C ∈ αB & B ∈ αA
C1.2.51.5

=⇒ C ∈ αA. Since B ∈ αA
C1.2.51.4

=⇒ A ∈ αB, we have

C ∈ αA & A ∈ αB
C1.2.51.5

=⇒ C ∈ αB and thus αA ⊂ αB. 2

Lemma 1.2.51.7. If half-spaces αA and αB have common points, they are equal.

Proof. αA ∩ αB 6= ∅ ⇒ ∃C C ∈ αA & C ∈ αB
L1.2.51.6

=⇒ αA = αC = αB. 2

Lemma 1.2.51.8. Two points A, B in space lie either on one side or on opposite sides of a given plane α.

Proof. Follows immediately from the definitions of ”to lie on one side” and ”to lie on opposite side”. 2

Lemma 1.2.51.9. If points A and B lie on opposite sides of a plane α, and B and C lie on opposite sides of the
plane α, then A and C lie on the same side of α.

Proof. 188 AαB & BαC ⇒ ∃D (D ∈ α & [ADB])& ∃E (E ∈ α & [BEC]). Let α1 be a plane drawn through points
A, B, C. (And possibly also through some other point G if A, B, C are collinear - see A 1.1.3, A 1.1.4. ) Since

A ∈ α1 but A /∈ α, the planes α1, α are distinct. We also have [ADB] & A ∈ α1 & B ∈ α1 & [BEC] & C ∈ α1
C1.2.1.11

=⇒
D ∈ α1 & E ∈ α1, whence it follows that D ∈ α1 ∩ α ⇒ α1 ∩ α 6= ∅. Since the planes α1, α are distinct but have
common points, from T 1.1.5 it follows that there is a line a containing all their common points. In particular,
we have D ∈ a, E ∈ a. We are now in a position to prove that points A, C lie on the same side of the plane α,

i.e. that ¬∃F (F ∈ α & [AFC]). In fact, otherwise A ∈ α1 & C ∈ α1 & [AFC] ⇒
C1.2.1.11

=⇒ F ∈ α1, and we have
F ∈ α1 ∩ α ⇒ F ∈ a. But since A /∈ α ⇒ A /∈ a, we can always (whether points A, B, C are collinear or not) write

(D ∈ a & [ADB])& (E ∈ a & [BEC])
T1.2.6
=⇒ ¬∃F (F ∈ a & [AFC]), and we arrive at a contradiction. 2

Lemma 1.2.51.10. If a point A lies on the same side of a plane α as a point C and on the opposite side of α from
a point B, the points B and C lie on opposite sides of the plane α.

Proof. Points B, C cannot lie on the same side of α, because otherwise ACα & BCα ⇒ ABα - a contradiction. Then
BαC by L 1.2.51.8. 2

Lemma 1.2.51.11. Let points A and B lie in on opposite sides of plane α, and points C and D - in the half-spaces
αA and αB, respectively. Then the points C and D lie on opposite sides of α.

Proof. ACα & AαB & BDα
L1.2.51.10

=⇒ CαD. 2

Theorem 1.2.51. Proof. 2

Point Sets in Half-Spaces

Given a plane α, a nonempty point set B is said to lie (in space) on the same side (on the opposite side) of the plane
α as (from) a nonempty point set A iff for all A ∈ A and all B ∈ B the point B lies on the same side (on the opposite
side) of the plane α as (from) the point A ∈ A. If the set A (the set B) consists of a single element (i.e., only one
point), we say that the set B (the point B) lies in plane a on the same side of the line a as the point A (the set A).

If all elements of a point set A lie (in space) on one side of a plane α, it is legal to write αA to denote the side of
α that contains all points of A.

Lemma 1.2.52.1. If a set B lies on the same side of a plane α as a set A, then the set A lies on the same side of
the plane α as the set B.

Proof. See L 1.2.51.1. 2

Lemma 1.2.52.2. If a set B lies in on the same side of a plane α as a set A, and a set C lies in on the same side
of the plane α as the set B, then the set C lies in on the same side of the plane α as the set A.

Proof. See L 1.2.51.1. 2

Lemma 1.2.52.3. If a set B lies on the opposite side of a plane α from a set A, then the set A lies in on the opposite
side of the plane α from the set B.

Proof. See L 1.2.51.2. 2

The lemmas L 1.2.51.9 – L 1.2.51.11 can be generalized in the following way:

Lemma 1.2.52.4. If point sets A and B lie on opposite sides of a plane α, and the sets B and C lie on opposite
sides of the plane α, then A and C lie on the same side of α.

Lemma 1.2.52.5. If a point set A lies on the same side of a plane α as a point set C and on the opposite side of α
from the point set B, the point sets B and C lie on opposite sides of the plane α.

188The reader can refer to Fig. 1.75 after making appropriate (relatively minor) replacements in notation.
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Proof. 2

Lemma 1.2.52.6. Let point sets A and B lie in on opposite sides of a plane α, and point sets C and D - on the
same side of α as A and B, respectively. Then C and D lie on opposite sides of a.

In view of symmetry of the relations, established by the lemmas above, if a set B lies on the same side (on the
opposite side) of a plane α as a set (from a set) A, we say that the sets A and B lie in on one side (on opposite sides)
of the plane α.

Theorem 1.2.52. Proof. 2

Complementary Half-Spaces

Given a half-space αA, we define the half-space ac
A, complementary to the half-space αA, as CPt \ (Pα ∪ αA).

An alternative definition of complementary half-space is provided by the following

Lemma 1.2.53.1. Given a half-space αA, the complementary half-space αc
A is the set of points B such that the open

interval (AB) meets the plane α: αc
A ⇋ {∃O O ∈ α & [OAB]}. A point C lying in space outside α lies either in αA

or on αc
A.

Proof. B ∈ CPt \ (Pα ∪ αA)
L1.2.51.8
⇐⇒ AαB ⇔ ∃O O ∈ α & [AOB]. 2

Lemma 1.2.53.2. The half-space (αc
A)c, complementary to the half-space αc

A, complementary to the half-space αA,
coincides with the half-space αA itself.

Proof. In fact, we have αA = CPt \ (Pα ∪ (CPt \ (Pα ∪ αA))) = (αc
A)c. 2

Lemma 1.2.53.3. A line b that is parallel to a plane α and has common points with a half-space αA, lies (completely)
in αA.

Proof. (See Fig. 1.76, a).) By hypothesis, b ∩ α = ∅. To prove that b ∩ αc
A = ∅ suppose that ∃D D ∈ b ∩ αc

A (see

Fig. 1.76, b).). Then ABα& AαD
L1.2.51.10

=⇒ ∃C C ∈ α & [BCD]
L1.2.1.3
=⇒ ∃C C ∈ α ∩ aBD = b - a contradiction. Thus,

we have shown that b ⊂ CPt \ (Pα ∪ αc
A) = αA. 2

Given a ray OB, not meeting a plane α

Lemma 1.2.53.4. – If the origin O lies in a half-space αA, so does the whole ray OB .

Proof. (See Fig. 1.77.) By hypothesis, OB ∩α = ∅. To prove OB ∩αc
A = ∅, suppose ∃F F ∈ OB ∩αc

A. O ∈ αA & F ∈

αc
A ⇒ ∃E E ∈ α & [OEF ]

L1.2.11.13
=⇒ ∃E E ∈ α ∩ OB - a contradiction. Thus, OB ⊂ CPt \ (Pα ∪ αc

A) = αA. 2

Lemma 1.2.53.5. - If the ray OB and the half-space αA have a common point D, then:
a) The initial point O of OB lies either in half-space αA or on plane α;
b) The whole ray OB lies in the half-space aA.

Proof. a) (See Fig. 1.78, a).) To prove O /∈ αc
A, suppose the contrary, i.e. O ∈ αc

A. Then D ∈ αA & O ∈ αc
A∃E E ∈

α & [OED]
L1.2.11.13

=⇒ ∃E E ∈ α ∩ OB - a contradiction. We see that O ∈ CPt \ αc
A = αA ∪ Pα.

b) (See Fig. 1.78, b).) By hypothesis, α ∩ OB = ∅. If ∃F F ∈ OB ∩ αc
A, we would have D ∈ αA & F ∈ αc

A ⇒

∃E E ∈ α & [DEF ]
L1.2.16.4

=⇒ ∃E E ∈ α ∩ OB - a contradiction. Therefore, OB ⊂ CPt \ (Pα ∪ αc
A) = αA. 2

Given an open interval (DB), not meeting a plane α

Lemma 1.2.53.6. - If one of the ends of (DB) lies in the half-space αA, the open interval (DB) completely lies in
the half-space αA and its other end lies either on αA or on plane α.

Proof. (See Fig. 1.79.) If B ∈ αc
A then D ∈ αA & B ∈ αc

A ⇒ ∃E (E ∈ α & [DEB]) - a contradiction. By hypothesis,
(DB)∩α = ∅. To prove (DB)∩αc

A = ∅, suppose F ∈ (DB)∩αc
A. Then D ∈ αA & F ∈ αc

A ⇒ ∃E (E ∈ α & [DEF ]).

But [DEF ] & [DFB]
L1.2.3.2
=⇒ [DEB] - a contradiction. 2

Lemma 1.2.53.7. - If the open interval (DB) and the half-space αA have at least one common point G, then the
open interval (DB) lies completely in αA, and either both its ends lie in αA, or one of them lies in αA, and the other
in plane α.

Proof. Both ends of (DB) cannot lie on α, because otherwise by C 1.2.1.11 we have (BD) ⊂ α, whence (BD)∩αA = ∅.

Let D /∈ α. To prove D /∈ αc
A suppose the contrary, i.e. D ∈ αc

A. Then D ∈ αc
A & (BD) ∩ α = ∅

L1.2.53.6
=⇒ (DB) ⊂

αc
A ⇒ G ∈ αc

A - a contradiction. Therefore, D ∈ αA. Finally, D ∈ αA & (DB) ∩ α = ∅
L1.2.19.6

=⇒ (BD) ⊂ αA. 2
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Figure 1.76: A line b parallel to a plane α and having common points with αA, lies in αA.
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Figure 1.77: Given a ray OB, not meeting a plane α, if a point O lies in the half-space αA, so does OB.
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Figure 1.78: Given a ray OB, not meeting a plane α, if OB and αA share a point D, then: a) O lies in αA or on α;
b) OB lies in αA.
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Figure 1.79: Given an open interval (DB), not meeting a plane α, if one of the ends of (DB) lies in αA, then (DB)
lies in αA and its other end lies either in αA or on α.
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Figure 1.80: A ray OB with its initial point O on α and one of its points C in αA, lies in αA, and Oc
B lies in αc

A.

Lemma 1.2.53.8. A ray OB having its initial point O on a plane α and one of its points C in a half-space αA, lies
completely in αA, and its complementary ray Oc

B lies completely in the complementary half-space αc
A.

In particular, given a plane α and points O ∈ α and A /∈ α, we always have OA ⊂ αA, Oc
A ⊂ αc

A. We can thus
write αc

A = αOc
A
.

Proof. (See Fig. 1.80.) OB ∩α = ∅, because if ∃E E ∈ OB & E ∈ α, we would have O ∈ aOB ∩α & O ∈ aOB ∩α
A1.1.6
=⇒

aOB ⊂ α ⇒ C ∈ α - a contradiction. OB ⊂ aOB = aOC ⊂ αaA & C ∈ OB ∩ aA & OB ∩ a = ∅
L1.2.19.5

=⇒ OB ⊂ aA. By
A 1.1.2 ∃F [BOF ]. Since F ∈ Oc

B ∩ ac
A, by preceding argumentation we conclude that Oc

B ⊂ ac
A. 2

Lemma 1.2.53.9. If one end of an open interval (DB) lies in half - space αA, and the other end lies either in αA

or on plane α, the open interval (DB) lies completely in αA.

Proof. Let B ∈ αA. If D ∈ αA we note that by L 1.2.11.13 (DB) ⊂ DB and use the preceding lemma (L 1.2.53.8).
Let now D ∈ αA. Then (DB) ∩ α = ∅, because B ∈ αA & E ∈ (DB) ∩ α ⇒ D ∈ αc

A - a contradiction. Finally,

B ∈ αA & (DB) ∩ α = ∅
L1.2.19.6

=⇒ (DB) ⊂ αA. 2

Lemma 1.2.53.10. If a plane β, parallel to a plane α, has at least one point in a half-space αA, it lies completely
in αA.

Proof. (See Fig. 1.81, a).) By hypothesis, β∩α = ∅. To show β∩αc
A = ∅, suppose the contrary, i.e. that ∃D D ∈ β∩αc

A

(see Fig. 1.81, b)). Then B ∈ αA & D ∈ αc
A ⇒ ∃C [BCD] & C ∈ α. But B ∈ β & D ∈ β & [BCD]

C1.2.1.11
=⇒ C ∈ β.

Hence C ∈ α ∩ β, which contradicts the hypothesis. Thus, we have β ⊂ CPt \ (Pα ∪ αc
A) = αA. 2

Lemma 1.2.53.11. If a half-plane χ has no common points with a plane α and one of its points, B, lies in a
half-space αA, the half-plane χ lies completely in the half-space αA.

Proof. By hypothesis, χ ∩ α = ∅. To show χ ∩ αc
A = ∅, suppose the contrary, i.e. that ∃D D ∈ χ ∩ αc

A. Then

B ∈ αA & D ∈ αc
A ⇒ ∃C [BCD] & C ∈ α. But B ∈ β & D ∈ β & [BCD]

L1.2.19.9
=⇒ C ∈ χ. Hence C ∈ α ∩ χ, which

contradicts the hypothesis. Thus, we have χ ⊂ CPt \ (Pα ∪ αc
A) = αA. 2

Lemma 1.2.53.12. A half-plane χ having its edge a on a plane α and one of its points, B, in a half-space αA, lies
completely in αA, and the complementary half-plane χc lies completely in the complementary half-space αc

A.

In particular, given a plane α, a line a in it, and a point A /∈ α, we always have aA ⊂ αA, ac
A ⊂ αc

A. We can
thus write αc

A = αac
A
.

Proof. 189 By T 1.1.2 αaB = χ̄. By the same theorem we have χ ∩ α = ∅, for otherwise ∃E E ∈ χ ∩ α together with
a ⊂ αaB ∩α would imply αaB ∩α, whence B ∈ α, which contradicts B ∈ αA. Therefore, using the preceding lemma

gives B ∈ χ ∩ αA & χ ∩ α = ∅
L1.2.53.11

=⇒ χ ⊂ αA. Choosing points C, D such that C ∈ a = α ∩ αaB and [BCD] (see
A 1.1.3, A 1.2.2), we have by L 1.2.19.1, L 1.2.53.1 ∃D D ∈ χc ∩ αc

A. Then the first part of the present proof gives
χc ⊂ αc

A, which completes the proof. 2

189The reader can refer to Fig. 1.81, making necessary corrections in notation.
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Figure 1.81: If a plane β, parallel to a plane α, has at least one point in a half-space αA, it lies completely in αA.

86



Theorem 1.2.53. Given a plane α, let A be either
– A set {B1}, consisting of one single point B1 lying in a half - space αA; or
– A line b1, parallel to α and having a point B1 in αA; or
– A ray (O1)B1 , not meeting the plane α, such that the initial point O or one of its points, D1, lies in αA; or
– An open interval (D1B1), not meeting the plane α, such that one of its ends lies in αA, or one of its points,

G1, lies in αA; or
– A ray (O1)B1 with its initial point O1 on α and one of its points, C1, in αA; or
– An interval - like set with both its ends D1, B1 in αA, or with one end in αA and the other on α;
– A plane β1, parallel to α and having a point B1 in αA;
– A half-plane χ1 having no common points with α and one of its points, B1, in a half-space αA;
– A half-plane χ1, having its edge a1 on α and one of its points, B1, in a half-space αA;
and let B be either
– A line b2, parallel to α and having a point B2 in αA; or
– A ray (O2)B2 , not meeting the plane α, such that the initial point O or one of its points, D2, lies in αA; or
– An open interval (D2B2), not meeting the plane α, such that one of its ends lies in αA, or one of its points,

G2, lies in αA; or
– A ray (O2)B2 with its initial point O2 on α and one of its points, C2, in αA; or
– An interval - like set with both its ends D2, B2 in αA, or with one end in αA and the other on α;
– A plane β2, parallel to α and having a point B2 in αA;
– A half-plane χ2 having no common points with α and one of its points, B2, in αA;
– A half-plane χ2, having its edge a2 on α and one of its points, B2, in αA.
Then the sets A and B lie in plane on one side of the plane α.

Proof. 2

Theorem 1.2.54. Given a plane α, let A be either
– A set {B1}, consisting of one single point B1 lying in a half - space αA; or
– A line b1, parallel to α and having a point B1 in αA; or
– A ray (O1)B1 , not meeting the plane α, such that the initial point O or one of its points, D1, lies in αA; or
– An open interval (D1B1), not meeting the plane α, such that one of its ends lies in αA, or one of its points,

G1, lies in αA; or
– A ray (O1)B1 with its initial point O1 on α and one of its points, C1, in αA; or
– An interval - like set with both its ends D1, B1 in αA, or with one end in αA and the other on α;
– A plane β1, parallel to α and having a point B1 in αA;
– A half-plane χ1 having no common points with α and one of its points, B1, in a half-space αA;
– A half-plane χ1, having its edge a1 on α and one of its points, B1, in a half-space αA;
and let B be either
– A line b2, parallel to α and having a point B2 in αc

A; or
– A ray (O2)B2 , not meeting the plane α, such that the initial point O or one of its points, D2, lies in αc

A; or
– An open interval (D2B2), not meeting the plane α, such that one of its ends lies in αc

A, or one of its points,
G2, lies in αc

A; or
– A ray (O2)B2 with its initial point O2 on α and one of its points, C2, in αc

A; or
– An interval - like set with both its ends D2, B2 in αc

A, or with one end in αc
A and the other on α;

– A plane β2, parallel to α and having a point B2 in αc
A;

– A half-plane χ2 having no common points with α and one of its points, B2, in αc
A;

– A half-plane χ2, having its edge a2 on α and one of its points, B2, in αc
A.

Then the sets A and B lie in plane on opposite sides of the plane α.

Proof. 2

Basic Properties of Dihedral Angles

A pair of distinct non-complementary half-planes χ = aA, κ = aB, χ 6= κ, with a common edge a is called a dihedral

angle (χ̂κ)a, 190 which can also be written as ÂaB. The following trivial lemma shows that the latter notation is
well defined:

Lemma 1.2.55.1. If points C, D lie, respectively, on the sides χ = aA, κ = aB of the dihedral angle χ̂κ then

ĈaD = χ̂κ.

Proof. (See Fig. 1.82.) Follows immediately from L 1.2.17.6. 2

In a dihedral angle ÂaB = {aA, aB} the half-planes aA, aB will be called the sides, and the line a (the common

edge of the half-planes aA, aB) the edge, of the dihedral angle ÂaB.

190In practice we shall usually omit the subscript as being either obvious from context or irrelevant.
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Figure 1.82: If points C, D lie, respectively, on the sides χ = aA, κ = aB of the dihedral angle χ̂κ then ĈaD = χ̂κ.

Lemma 1.2.55.2. 1. Given a dihedral angle ÂaB, we have B /∈ αaA, A /∈ αaB , and the line a cannot be coplanar
with both points A, B simultaneously. 191 The lines a, aAB are then skew lines.

2. If any of the following conditions:
i): B /∈ αaA;
ii): A /∈ αaB ;
iii): a, aAB are skew lines;

are met, then the other conditions are also met, and the dihedral angle ÂaB exists. 192

Proof. 1. Otherwise, we would have B ∈ αaA & B /∈ a ⇒ aB = aA ∨ aB = ac
A (see L 1.2.17.6, L 1.2.19.1), contrary

to hypothesis that aA, aB form a dihedral angle. We conclude that B /∈ αaA, whence ¬∃α (A ∈ α & a ⊂ α & B ∈ α)
and A /∈ αaB.

2. We have B /∈ αaA ⇒ B /∈ aA & B /∈ ac
A, for B ∈ aA ∨ B ∈ ac

A ⇒ B ∈ αaA. Hence aB 6= aA and aB 6= ac
A, so

ÂaB exists.
To show that i) implies iii), suppose the contrary, i.e. that B ∈ αaA. Then by A 1.1.6 we have aAB ⊂ αaA,

whence we conclude that the lines a, aAB lie in one plane, which is, by definition, not possible for skew lines. 2

The set of points, or contour, of the dihedral angle (χ̂κ)a is, by definition, the set P(χ̂κ) ⇋ χ ∪ Pa ∪ κ. We say
that a point lies on a dihedral angle if it lies on one of its sides or coincides with its edge. In other words, C lies on
χ̂, κ if it lies on its contour, that is, belongs to the set of its points: C ∈ P(χ̂κ).

We say that a point X lies inside a dihedral angle χ̂κ if it lies on the same side of the plane χ̄ as any of the points
of the half-plane κ, and on the same side of the plane κ̄ as any of the points of the half-plane χ. 193

The set of all points lying inside a dihedral angle χ̂κ will be referred to as its interior Int (χ̂κ) ⇋ {X |Xχκ̄& Xκχ̄}.

We can also write IntÂaB = (αaA)B ∩ (αaB)A.
If a point X lies in space neither inside nor on a dihedral angle χ̂κ, we shall say that X lies outside the dihedral

angle χ̂κ.
The set of all points lying outside a given dihedral angle χ̂κ will be referred to as the exterior of the dihedral

angle χ̂κ, written Ext(χ̂κ). We thus have, by definition, Ext(χ̂κ) ⇋ CPt \ (P(χ̂κ) ∪ Int (χ̂κ)).

Lemma 1.2.55.3. If a point C lies inside a dihedral angle ÂaB, the half-plane aC lies completely inside ÂaB:

aC ⊂ IntÂOB.
From L 1.2.17.6 it follows that this lemma can also be formulated as:

If one of the points of a half-plane aC lies inside a dihedral angle ÂaB, the whole half-plane aC lies inside the

dihedral angle ÂaB.

Proof. (See Fig. 1.83.) Immediately follows from T 1.2.53. Indeed, by hypothesis, C ∈ IntÂaB = (αaA)B ∩ (αaB)A.
Since also a = χ̄ ∩ κ̄, by T 1.2.53 αC ⊂ IntAaB = (αaA)B ∩ (αaB)A. 2

Lemma 1.2.55.4. If a point C lies outside a dihedral angle ÂaB, the half-plane aC lies completely outside ÂaB:

aC ⊂ Ext(ÂaB). 194

191Thus, the dihedral angle ÂaB exists if and only if A, a, B do not coplane. With the aid of T 1.1.2, L 1.1.2.6 we can see that there
exists at least one dihedral angle.
192In other words, the present lemma states that the conditions (taken separately) i), ii), iii), and the condition of the existence of the

dihedral angle ÂaB are equivalent to one another.
193Theorem T 1.2.53 makes this notion well defined in its ”any of the points” part.
194In full analogy with the case of L 1.2.55.3, from L 1.2.17.6 it follows that this lemma can be reformulated as: If one of the points of

a half-plane aC lies outside a dihedral angle ÂaB, the whole half-plane aC lies outside the dihedral angle ÂaB.
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Figure 1.83: If C lies inside a dihedral angle ÂaB, the half-plane aC lies completely inside ÂaB: aC ⊂ IntÂaB.
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Figure 1.84: If a point C lies outside a dihedral angle ÂaB, the half-plane aC lies completely outside ÂaB: aC ⊂

Ext(ÂaB).

Proof. (See Fig. 1.84.) aC ∩ P(ÂaB) = ∅, because C /∈ a and aC ∩ aA 6= ∅ ∨ aC ∩ aB 6= ∅
L1.2.17.7

=⇒ aC = aA ∨

aC = aB ⇒ C ∈ aA ∨ C ∈ aB - a contradiction. aC ∩ Int (ÂaB) = ∅, because if D ∈ aC ∩ Int (ÂaB), we

would have aD = aC from L 1.2.17.6 and aD ⊂ Int (ÂaB), whence C ∈ Int (ÂaB) - a contradiction. Finally,

aC ⊂ CPt & aC ∩ P
(ÂaB)

= ∅& aC ∩ Int (ÂaB) = ∅ ⇒ aC ⊂ Ext∠AaB. 2

Lemma 1.2.55.5. Given a dihedral angle ÂaB, if a point C lies either inside ÂaB or on its side aA, and a

point D either inside ÂaB or on its other side aB, the open interval (CD) lies completely inside ÂaB, that is,

(CD) ⊂ Int (ÂaB).

Proof. C ∈ Int (ÂaB)∪ aA & D ∈ Int (ÂaB)∪ aB ⇒ C ∈ ((αaA)B ∩ (αaB)A)∪ aA & D ∈ ((αaA)B ∩ (αaB)A)∪ aB ⇒
C ∈ ((αaA)B ∪ aA) ∩ ((αaB)A ∪ aA)& D ∈ ((αaA)B ∪ aB) ∩ ((αaB)A ∪ aB). Since, by L 1.2.53.12, aA ⊂ (αaB)A and
aB ⊂ (αaA)B, we have (αaB)A ∪ aA = (αaB)A, (αaA)B ∪ aB = (αaA)B, and, consequently, C ∈ (αaA)B ∪ aA & C ∈

(αaB)A & D ∈ (αaA)B & D ∈ (αaB)A ∪ aB
L1.2.53.9

=⇒ (CD) ⊂ (αaA)B & (CD) ⊂ (αaB)A ⇒ aC ⊂ Int (ÂaB). 2

The lemma L 1.2.55.5 implies that the interior of a dihedral angle is a convex point set.

Lemma 1.2.55.6. If a point C lies inside a dihedral angle (χ̂κ)a (with the edge a), the half-plane ac
C, complementary

to the half-plane aC , lies inside the vertical dihedral angle χ̂cκc.

Proof. (See Fig. 1.86.) C ∈ Int ((χ̂κ)) ⇒ C ∈ χ̄κ∩κ̄χ
L1.2.53.12

=⇒ ac
C ⊂ χ̄c

κ∩κ̄c
χ ⇒ ac

C ⊂ χ̄κc∩κ̄χc ⇒ ac
C ⊂ Int∠((χ̂cκc)).

2

Lemma 1.2.55.7. Given a dihedral angle χ̂κ, all points lying either inside or on the sides χc, κc of the dihedral
angle opposite to it, lie outside χ̂κ. 195

Proof. 2

195Obviously, this means that none of the interior points of χ̂cκc can lie inside χ̂κ.
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Figure 1.85: Dihedral angles λ̂χ and κ̂µ are adjacent to the dihedral angle χ̂κ. Note that χ, µ lie on opposite sides
of κ̄ and λ, κ lie on opposite sides of χ̄.
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Figure 1.86: If C lies inside a dihedral angle (χ̂κ)a, the half-plane ac
C lies inside χ̂cκc.
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Lemma 1.2.55.8. 1. If a plane α and the edge a of a dihedral angle χ̂κ concur at a point O, the rays h, k that are
the sections by the plane α of the half-planes χ, κ, respectively, form an angle ∠(h, k) with the vertex O.

The angle ∠(h, k), formed by the sections of the sides χ, κ of a dihedral angle χ̂κ by a plane α, will be referred to
as the section of the dihedral angle χ̂κ by the plane α. 196

2. Conversely, if an angle ∠(h, k) is the section of a dihedral angle χ̂κ by a plane α, the edge a of χ̂κ concurs
with the plane α at the vertex O of the angle ∠(h, k). 197

Proof. 1. We have k 6= hc, for otherwise the half-planes χc, κ, in addition to having a common edge (a), would by
L 1.2.19.8 have a common point, for which we can then take any point lying on hc = k. This would, by L 1.2.17.7,
imply χc = κ, in contradiction with the definition of dihedral angle. Thus, the two distinct rays h, k form an angle
∠(h, k) with the vertex O, q.e.d.

2. Follows immediately from L 1.2.19.13, part 2. 2

A dihedral angle is said to be adjacent to another dihedral angle if it shares a side and the edge with that dihedral
angle, and the remaining sides of the two dihedral angles lie on opposite sides of the line containing their common
side. This relation being obviously symmetric, we can also say the two dihedral angles are adjacent to each other.
We shall denote any dihedral angle, adjacent to a given dihedral angle χ̂κ, by adjχ̂κ. Thus, we have, by definition,

κ̂µ = adjχ̂κ 198 and λ̂χ = adjχ̂κ if χk̄µ and λχ̄κ, respectively. (See Fig. 1.85.)

Corollary 1.2.55.9. If a point B lies inside a dihedral angle ÂaC, the dihedral angles ÂaB, B̂aC are adjacent.

Proof. B ∈ IntÂaC
L1.2.55.18

=⇒ ∃D D ∈ aB & [ADC]. Since D ∈ αaB ∩ (AC), A /∈ αaB, we see that the points A, C,
and thus the half-planes aA, aC (see T 1.2.54) lie on opposite sides of the plane αaB. Together with the fact that

the dihedral angles ÂaB, B̂aC share the side aB this means that ÂaB, B̂aC are adjacent. 2

From the definition of adjacency of dihedral angles, taken together with the definition of the interior and exterior
of a dihedral angle, immediately follows

Lemma 1.2.55.10. In a dihedral angle κ̂µ, adjacent to a dihedral angle χ̂κ, the side µ lies outside χ̂κ.

which, together with C 1.2.55.9, implies the following corollary

Corollary 1.2.55.11. If a point B lies inside a dihedral angle ÂaC, neither the half-plane aC has any points inside

or on the dihedral angle ÂaB, nor the half-plane aA has any points inside or on B̂aC.

Lemma 1.2.55.12. If dihedral angles χ̂κ, κ̂µ share the side κ, and points A ∈ χ, B ∈ µ lie on opposite sides of the
plane κ̄, the dihedral angles χ̂κ, κ̂µ are adjacent to each other.

Proof. Immediately follows from L 1.2.19.12. 2

A dihedral angle κ̂λ is said to be adjacent supplementary to a dihedral angle χ̂κ, written κ̂λ = adjsp χ̂κ, iff

the half-plane λ is complementary to the half-plane χ. That is, κ̂λ = adjsp χ̂κ
def
⇐⇒ λ = χc. Since, by L 1.2.19.2,

the half-plane (χc)c, complementary to the half-plane χc, complementary to the given half-plane χ, coincides with

the half-plane χ: (χc)c = χ, if κ̂λ is adjacent supplementary to χ̂κ, the dihedral angle χ̂κ is, in its turn, adjacent

supplementary to the dihedral angle κ̂λ.

Lemma 1.2.55.13. Given a dihedral angle χ̂κ, all points lying inside any dihedral angle κ̂µ adjacent to it, lie outside
χ̂κ. 199

Proof. (See Fig. 1.87.) By definition of the interior, A ∈ Int(χ̂κ) ⇒ Aµκ̄. By the definition of adjacency κ̂µ =

adjχ̂κ ⇒ χκ̄µ. Aµκ̄ & χκ̄µ
L1.2.52.5

=⇒ Aκ̄χ ⇒ A ∈ Extχ̂κ. 2

Corollary 1.2.55.14. If ∠(h, k) is the section of a dihedral angle Int (χ̂κ) by a plane α, then the adjacent supple-
mentary angles ∠(hc, k), ∠(h, kc) are the sections of the corresponding adjacent supplementary dihedral angles χ̂cκ,
χ̂κc, respectively, and the vertical angle ∠(hc, kc) is the section of the vertical dihedral angle χ̂cκc.

Proof. See C 1.2.19.14. 2

Lemma 1.2.55.15. If a point C lies inside a section of a dihedral angle χ̂κ by a plane α ∋ C, it lies inside the
dihedral angle itself: C ∈ χ̂κ.

196Obviously, for any such section ∠(h, k) of a dihedral angle χ̂κ, we have h ⊂ χ, k ⊂ κ.
197Compare this lemma with L 1.2.19.13 and the definition accompanying it.
198Of course, by writing κ̂µ = adjχ̂κ we do not imply that κ̂µ is the only dihedral angle adjacent to χ̂κ. It can be easily seen that in

reality there are infinitely many such dihedral angles. The situation here is analogous to the usage of the symbols o and O in calculus
(used particularly in the theory of asymptotic expansions).
199Obviously, this means that given a dihedral angle χ̂κ, none of the interior points of a dihedral angle κ̂µ adjacent to it, lie inside χ̂κ.
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Figure 1.87: Given a dihedral angle χ̂κ, all points lying inside any dihedral angle κ̂µ adjacent to it, lie outside χ̂κ.

Proof. Taking points D, F on the sides h, k, respectively, of a section ∠(h, k), we have C ∈ Int∠(h, k)
L1.2.21.10

=⇒
∃E [DEF ] & E ∈ OC . D ∈ h & h ⊂ χ ⇒ D ∈ χ, F ∈ k & k ⊂ κ ⇒ F ∈ κ, whence D ∈ χ & F ∈ κ & E ∈

(DF )
L1.2.55.5

=⇒ E ∈ Int (χ̂κ). Using L 1.2.53.8, L 1.2.55.3 we can write OC ⊂ ac ⊂ Int (χ̂κ), whence C ∈ Int (χ̂κ),
q.e.d. 2

Thus, for an arbitrary section ∠(h, k) of a dihedral angle χ̂κ we can write Int∠(h, k) ⊂ Int (χ̂κ). Furthermore,
applying the same argument to the adjacent supplementary and vertical angles, we can also write Int∠(hc, k) ⊂

Int (χ̂cκ), Int∠(h, kc) ⊂ Int (χ̂κc), Int∠(hc, kc) ⊂ Int (χ̂cκc)

Lemma 1.2.55.16. A point C lying inside a dihedral angle χ̂κ also lies inside all sections of χ̂κ by planes α ∋ C.
200

Proof. Let ∠(h, k) be the section of χ̂κ by a plane α ∋ C. C ∈ α = α∠(h,k) & C /∈ h̄ & C /∈ k̄
L1.2.21.10

=⇒ C ∈ Int∠(h, k)∨
C ∈ Int∠(hc, k)∨C ∈ Int∠(h, kc)∨C ∈ Int∠(hc, kc). But the two preceding results (C 1.2.55.14, L 1.2.55.15) imply

that C ∈ Int∠(hc, k) ⇒ C ∈ Int (χ̂cκ), C ∈ Int∠(h, kc) ⇒ C ∈ Int (χ̂κc), C ∈ Int∠(hc, kc) ⇒ C ∈ Int (χ̂cκc).

In view of L 1.2.55.13, L 1.2.55.7, the variants C ∈ Int (χ̂cκ), C ∈ Int (χ̂κc), C ∈ Int (χ̂cκc) all contradict the
hypothesis C ∈ Int (χ̂κ). This contradiction shows that, in fact, C ∈ Int∠(h, k) is the only possible option, q.e.d. 2

Lemma 1.2.55.17. Suppose points D, F lie, respectively, on the sides χ, κ, and a point O lies on the edge a of a
dihedral angle χ̂κ. Then:

1. The points D, O, F are not collinear;
2. The plane αDOF concurs with the line a at O;
3. The angle ∠DOF is the section of the dihedral angle χ̂κ by the plane αDOF .

Proof. (See Fig. 1.88.) 1. We have D ∈ χ & F ∈ κ
L1.2.55.1

=⇒ D̂aF = χ̂κ. O ∈ a ⊂ χ̄ = αaD & D ∈ χ̄
A1.1.6
=⇒ aOD ⊂ χ̄.

Hence F /∈ aOD, for otherwise F ∈ aOD ⊂ χ̄ ⇒ F ∈⊂ χ̄, which contradicts L 1.2.55.2. Thus, the points D, O, F are
not collinear.

2. If P ∈ a∩αDOF ,201 P 6= O, then we would have O ∈ a∩αDOF & P ∈ a∩αDOF
A1.1.6
=⇒ a ⊂ ∠DOF

T1.1.2
=⇒ αaD =

αDOF , whence F ∈ αaD - a contradiction with L 1.2.55.2.
3. Follows from 2. and L 1.2.55.8. 2

Lemma 1.2.55.18. Given a dihedral angle χ̂κa (with the line a as its edge) and a point C inside it, for any points
D on χ and F on κ, the half-plane aC meets the open interval (DF ).

Proof. (See Fig. 1.89.) Take a point O ∈ a. Since, by the preceding lemma (L 1.2.55.17, 2.), the line a and the plane
αDOF concur at O, by L 1.2.19.13 the plane αDOF and the half-plane aA have a common ray l whose initial point

is O. We have C ∈ Int(χ̂κ)κ
L1.2.55.3

=⇒ aC ⊂ Int(χ̂κ) ⇒ l ⊂ Int(χ̂κ). Observe also that, from the preceding lemma
(L 1.2.55.17, 3.), the angle ∠DOF is the section of χ̂κ by αDOF . Hence, taking an arbitrary point P ∈ l, we conclude

from L 1.2.55.16 that P ∈ Int∠DOF , i.e. l ⊂ Int∠DOF . Finally, D ∈ OD & F ∈ OF & l ⊂ Int∠DOF
L1.2.21.10

=⇒
∃E E ∈ l & [DEF ]. Thus, E ∈ aC ∩ (DF ), as required. 2

Lemma 1.2.55.19. Given a dihedral angle χ̂κ, any point lying on the same side of the plane χ̄ as the half-plane κ,
lies either inside the dihedral angle χ̂κ, or inside the dihedral angle κ̂χc, or on the half-plane κ (See Fig. 1.91). That
is, χ̄κ = Int (χ̂κ) ∪ κ ∪ Int (κ̂χc).

200By L 1.2.55.8, when drawing a plane α through a point C ∈ Int(χ̂κ), we obtain a section of χ̂κ by α iff the plane α and the edge a
of the dihedral angle χ̂κ concur at a point O.
201The existence of αDOF follows from 1. (in the present lemma) and the axiom A 1.1.4.
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Figure 1.88: Suppose points D, F lie, respectively, on the sides χ, κ, and a point O lies on the edge a of a dihedral
angle χ̂κ. Then: 1. The points D, O, F are not collinear; 2. The plane αDOF concurs with the line a at O; 3. The
angle ∠DOF is the section of the dihedral angle χ̂κ by the plane αDOF .
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Figure 1.89: Given a dihedral angle χ̂κa and a point C inside it, for any points D on χ and F on κ, the half-plane
aC meets the open interval (DF ).
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Figure 1.90: If a point B lies inside an angle ∠AOC, the angles ∠AOB, ∠BOC are adjacent.
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Figure 1.91: Given a dihedral angle χ̂κ, any point lying on the same side of χ̄ as κ, lies either inside χ̂κ, or inside
κ̂χc, or on κ.
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Figure 1.92: For any dihedral angle ÂaB there is a point C (and, consequently, a half-plane aC) such that the

half-plane aB lies inside the dihedral angle ÂaC.

Proof. χ̄κ = χ̄κ ∩ CPt = χ̄κ ∩ (κ̄χ ∪ Pk̄ ∪ k̄c
χ)

L1.2.53.12
= χ̄κ ∩ (κ̄χ ∪ Pκ̄ ∪ k̄χc) = (χ̄k ∩ κ̄χ) ∪ (χ̄κ ∩ Pκ̄) ∪ (χ̄k ∩ κ̄χc) =

Int (χ̂κ) ∪ κ ∩ Int (χ̂κ). 2

Given a dihedral angle χ̂κ, the dihedral angle χ̂cκc, formed by the half-planes χc, κc, complementary to χ, κ,
respectively, is called (the dihedral angle) vertical, or opposite, to χ̂κ. We write vert (χ̂κ) ⇋ χ̂cκc. Obviously, the

angle vert (vert (χ̂κ)), opposite to the opposite χ̂cκc of a given dihedral angle χ̂κ , coincides with the dihedral angle
χ̂κ.

Lemma 1.2.55.20. For any dihedral angle ÂaB there is a point C 202 such that the half-plane aB lies inside the

dihedral angle ÂaC.203

Proof. (See Fig. 1.92.) Since ÂaB is a dihedral angle, by L 1.2.55.2 we have B /∈ αaA. Hence by C 1.2.1.13 also

C /∈ αaA. By L 1.2.55.2 the dihedral angle ÂaC exists. By L 1.2.55.5, L 1.2.55.3 the half-plane aB lies inside the

dihedral angle ÂaC, q.e.d. 2

Lemma 1.2.55.21. For any dihedral angle ÂaC there is a point B such that the half-plane aB lies inside ÂaC. 204

Proof. (See Fig. 1.92.) By T 1.2.2 ∃B [ABC]. By L 1.2.55.5, L 1.2.55.3 aB ⊂ Int(ÂaC). 2

Lemma 1.2.55.22. If points B, C lie on one side of a plane αaA, and aB 6= aC , either the half-plane aB lies inside

the dihedral angle ÂaC, or the half-plane aC lies inside the dihedral angle ÂaB.

202and, consequently, a half-plane aC
203This lemma is an analogue of A 1.2.2, L 1.2.21.18.
204This lemma is analogous to T 1.2.2, L 1.2.21.19. In the future the reader will encounter many such analogies.
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Figure 1.93: If B, C lie on one side of αaA, and aB 6= aC , either aB lies inside ÂaC, or the half-plane aC lies inside

ÂaB.

Proof. Denote aD ⇋ ac
A. (See Fig. 1.93.) BCαaA

T1.2.53
=⇒ aBaCαaA. aBaCαaA & aB 6= aC

L1.2.55.19
=⇒ aC ⊂

Int(ÂaB) ∨ aC ⊂ Int(B̂aD). 205 Suppose aC ⊂ Int(B̂aD). 206 Then by L 1.2.55.10 aB ⊂ Ext(ĈaD). But

since aBaCaOA & OB 6= OC
L1.2.55.19

=⇒ aB ⊂ Int(ÂaC) ∨ aB ⊂ Int(ĈaD), we conclude that aB ⊂ Int(ÂaB). 2

Corollary 1.2.55.23. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a
plane α. If the rays k, l lie in α on the same side of h̄, then the half-planes κ, λ lie on the same side of the plane χ̄.

Proof. Obviously, we can assume without loss of generality that the rays k, l are distinct.207 Then by L 1.2.21.21

either k ⊂ Int∠(h, l) or l ⊂ Int∠(h, k). Hence, in view of L 1.2.55.15, L 1.2.55.3 we have either κ ⊂ Intχ̂λ or
λ ⊂ Intχ̂κ. Then from definition of interior of dihedral angle we see that the half-planes κ, λ lie on the same side of
the plane χ̄. 2

Corollary 1.2.55.24. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a
plane α. If κ, λ lie on the same side of the plane χ̄, then the rays k, l lie in α on the same side of h̄.

Proof. Follows from L 1.2.55.22, L 1.2.55.16. 2

Corollary 1.2.55.25. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a
plane α. If the rays k, l lie in α on opposite sides of h̄, then the half-planes κ, λ lie on opposite sides of the plane χ̄.

Proof. Take points K ∈ k, L ∈ l. Since, by hypothesis, the rays k, l lie in α on opposite sides of h̄, the open interval
(KL) is bound to meet the line h̄ in some point H . But h̄ ⊂ a, k ⊂ κ, l ⊂ λ, whence the result. 2

Corollary 1.2.55.26. Suppose that the rays h, k, l are the sections of half-planes χ, κ, λ with common edge a by a
plane α. If χ, λ lie on opposite sides of the plane κ̄, then the rays h, l lie in α on opposite sides of k̄.

Proof. Obviously, the rays h, k, l lie in the same plane, namely, the plane of the section. Also, neither of the rays h,
l lie on the line k̄. 208 Therefore, the rays h, l lie either on one side or on opposite sides of the line k̄. But if h, l lie
on the same side of k̄ then χ, λ lie on the same side of the plane κ̄ (see C 1.2.55.23), contrary to hypothesis. Thus,
we see that h, l lie in α on opposite sides of k̄, q.e.d. 2

Lemma 1.2.55.27. If a half-plane λ with the same edge as half-planes χ, κ lies inside the dihedral angle χ̂κ formed
by them, then the half-plane κ lies inside the dihedral angle χ̂cκ.

Proof. Using L 1.2.55.13, L 1.2.55.19 we have λ ⊂ Int(χ̂κ) ⇒ κ ⊂ Extχ̂λ & λκχ̄& λ 6= κ ⇒ κ ⊂ Int(χ̂κ). 2

205The lemma L 1.2.55.19 is applied here to every point of the half-plane aC .
206If aC ⊂ Int(ÂaB), we have nothing more to prove.
207If k = l, using T 1.1.3 we can see that the half-planes κ, λ coincide.
208In fact, suppose the contrary, i.e. that, for example h lies on k̄. Then by T 1.1.3 the planes χ̄ and κ̄ would coincide, which contradicts

the hypothesis that χ, λ lie on opposite sides of the plane κ̄.

95



A aA

aB

aC

aD

D

B

C

E

F

a

Figure 1.94: If a point C lies inside a dihedral angle ÂaD, and a point B inside a dihedral angle ÂaC, then the

half-plane aB lies inside the dihedral angle ÂaD, and the half-plane aC lies inside the dihedral angle B̂aD.

Lemma 1.2.55.28. If a point C lies inside a dihedral angle ÂaD, and a point B inside a dihedral angle ÂaC, then

the half-plane aB lies inside the dihedral angle ÂaD, and the half-plane aC lies inside the dihedral angle B̂aD. 209

Proof. (See Fig. 1.49.) C ∈ Int(ÂaD)
L1.2.55.18

=⇒ ∃F [AFD] & F ∈ aC . B ∈ Int(ÂaC)
L1.2.55.18

=⇒ ∃E [AEF ] & E ∈ aB.

[AEF ] & [AFD]
L1.2.3.2
=⇒ [AED] & [EFD]. Hence, using L 1.2.55.5, L 1.2.55.3, we can write A ∈ aA & E ∈ aB & F ∈

aC & D ∈ aD & [AED] & [EFD] ⇒ aB ⊂ Int(ÂaD)& aC ⊂ Int(B̂aD). 2

Lemma 1.2.55.29. If a half-plane aB lies inside a dihedral angle ÂaC, the ray aC lies inside a dihedral B̂aD, and
at least one of the half-planes aB, aC lies on the same side of the plane αaA as the half-plane aD, then the half-planes

aB, aC both lie inside the dihedral angle ÂaD.

Proof. Note that we can assume aBaDαaA without any loss of generality, because by the definition of dihedral angle

aB ⊂ IntÂaC ⇒ aBaCaOA, and if aCaDαaA, we have aBaCαaA & aCaDαaA
L1.2.52.2

=⇒ aBaDαaA. aBaDαaA & aB 6=

aD
L1.2.55.22

=⇒ aB ⊂ Int(ÂaD) ∨ aD ⊂ Int(ÂaB). If aB ⊂ Int(ÂaD) (see Fig. 1.95, a)), then using the preceding

lemma (L 1.2.55.28), we immediately obtain aC ⊂ Int(ÂaD). But if aD ⊂ Int(ÂaB)(see Fig. 1.95, b.), observing that

aB ⊂ Int(ÂaC), we have by the same lemma aB ⊂ Int(D̂aC), which, by C 1.2.55.11, contradicts aC ⊂ Int(B̂aD).
2

Lemma 1.2.55.30. Suppose that a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every
point of the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers.
Suppose, further, that a line b is skew to the line a = A1An

210 Then the half-planes bA1 , bA2 , . . . , bAn
are in order

[bA1bA2 . . . bAn
], that is, bAj

⊂ IntÂibAk whenever either i < j < k or k < j < i.

Proof. Follows from L 1.2.7.3, L 1.2.55.10, L 1.2.55.4. 2

Lemma 1.2.55.31. Suppose half-planes κ, λ lie on the same side of a plane χ̄ (containing a third half-plane χ), the
half-planes χ, λ lie on opposite sides of the half-plane κ̄, and the points H, L lie on the half-planes χ, λ, respectively.

Then the half-plane κ lies inside the dihedral angle χ̂λ and meets the open interval (HL) at some point K.

209L 1.2.55.3 implies that any other point of the half-plane aC can enter this condition in place of C, so instead of ”If a point C . . . ”

we can write ”if some point of the half-plane OC . . . ”; the same holds true for the half-plane aB and the dihedral angle ÂaC. Note that,
for example, L 1.2.55.6, L 1.2.55.18, L 1.2.55.22 also allow similar reformulation, which we shall refer to in the future to avoid excessive
mentioning of L 1.2.17.6. Observe also that we could equally well have given for this lemma a formulation apparently converse to the one

presented here: If a point B lies inside a dihedral angle ÂaD, and a point C lies inside the dihedral angle B̂aD (the comments above
concerning our ability to choose instead of B and C any other points of the half-planes aB and aC , respectively being applicable here as

well), the half-plane aC lies inside the dihedral angle ÂaD, and the half-plane aB lies inside the dihedral angle ÂaC. This would make
L 1.2.55.28 fully analogous to L 1.2.3.2. But now we don’t have to devise a proof similar to that given at the end of L 1.2.3.2, because
it follows simply from the symmetry of the original formulation of this lemma with respect to the substitution A→ D, B → C, C → B,
D → A. This symmetry, in its turn, stems from the definition of dihedral angle as a non-ordered couple of half-planes, which entails

ÂaC = ĈaA, ÂaD = D̂aA, etc.
210That is, there is no plane containing both a and b. Evidently, in view of L 1.1.1.4 the line a is defined by any two distinct points Ai,
Aj , i 6= j, i, j ∈ N, i.e. a = aAiAj

.
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Figure 1.95: If a half-plane aB lies inside a dihedral angle ÂaC, the ray aC lies inside a dihedral B̂aD, and at least
one of the half-planes aB, aC lies on the same side of the plane αaA as the half-plane aD, then the half-planes aB,

aC both lie inside the dihedral angle ÂaD.
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Proof. H ∈ χ & K ∈ λ& χκ̄λ ⇒ ∃K K ∈ κ̄ & [HKL]. [HKL] & H ∈ χ̄
L1.2.53.9

=⇒ KLχ̄. Hence K ∈ κ, for, obviously,

K 6= O, and, assuming K ∈ κc, we would have: κλχ̄ & κ ¯chiκc L1.2.18.5
=⇒ λχ̄κc, which, in view of L ∈ λ, K ∈ κc, would

imply Lχ̄K - a contradiction. Finally, H ∈ χ & L ∈ λ& [HKL]
L1.2.55.10

=⇒ K ∈ χ̂λ
L1.2.55.4

=⇒ k ⊂ χ̂λ. 2

Lemma 1.2.55.32. Suppose that the half-planes χ, κ, λ have the same edge and the half-planes χ, λ lie on opposite

sides of the plane κ̄ (so that the dihedral angles χ̂κ, κ̂λ are adjacent). Then the half-planes χ, λ lie on the same side
of the plane χ̄ iff the half-plane λ lies inside the dihedral angle χ̂cκ, and the half-planes κ, λ lie on opposite sides of

the plane χ̄ iff the half-plane χc lies inside the dihedral angle κ̂λ. Also, the first case takes place iff the half-plane κ
lies between the half-planes χ, λ, and the second case iff the half-plane κc lies between the half-planes χ, λ.

Proof. Note that λκ̄χ & χcκ̄χ
L1.2.52.4

=⇒ χcλκ̄. Suppose first that the half-planes κ, λ lie on the same side of the plane χ̄.
Then we can write χcλκ̄ & κλχ̄ ⇒ λ ⊂ Intχ̂cκ. Conversely, form the definition of interior we have λ ⊂ Intχ̂cκ ⇒ κλχ̄.
Suppose now that the half-planes κ, λ lie on opposite sides of the plane χ̄. Then, obviously, the half-plane λ cannot
lie inside the dihedral angle χ̂cκ, for otherwise κ, λ would lie on the same side of χ. Hence by L 1.2.55.22 we have

χc ⊂ κ̂λ. Conversely, if χc ⊂ Intκ̂λ, the half-planes κ, λ lie on opposite sides of the plane λ̄ in view of L 1.2.55.22.
211 Concerning the second part, it can be demonstrated using the preceding lemma (L 1.2.55.31) and (in the second

case) the observation that λχ̄κ & κcχ̄κ
L1.2.52.4

=⇒ κcλχ̄. (See also C 1.2.55.9). 2

Lemma 1.2.55.33. Suppose that the half-planes χ, κ, λ have the same edge a and the half-planes χ, λ lie on opposite

sides of the plane κ̄. Then either the half-plane κ lies inside the dihedral angle χ̂λ, or the half-plane κc lies inside

the dihedral angle χ̂λ, or λ = χc. (In the last case we again have either κ ⊂ Intχ̂χc or κc ⊂ Intχ̂χc depending on
which side of the plane κ̄ (i.e. which of the two half-planes having the plane κ̄ as its edge) is chosen as the interior
of the straight dihedral angle χ̂χc).

Proof. Take points H ∈ χ, L ∈ λ. Then χκ̄λ implies that there is a point K ∈ κ̄ such that [HKL]. Then,
obviously, either K ∈ κ, or K ∈ a, or K ∈ κc. If K ∈ a then L ∈ κc (see L 1.2.19.8) and thus λ = χc (see
L 1.2.51.6). If K /∈ a then the points H , L and the line a are not coplanar. 212 Therefore, the proper (non-

straight) dihedral angle χ̂λ exists (see L 1.2.21.1, L 1.2.55.2). Hence by L 1.2.55.5, L 1.2.55.3 we have either

H ∈ χ & L ∈ λ& [HKL] & K ∈ κ ⇒ κ ⊂ Intχ̂λ, or H ∈ χ & L ∈ λ& [HKL] & K ∈ κc ⇒ κc ⊂ Intχ̂λ, depending on
which of the half-planes κ, κc the point K belongs to.

Betweenness Relation for Half-Planes

We shall refer to a collection of half-planes emanating from a common edge a as a pencil of half-planes or a half-plane
pencil, which will be written sometimes as S(a). The line a will, naturally, be called the edge, or origin, of the pencil.
If two or more half-planes lie in the same pencil (i.e. have the same edge), they will sometimes be called equioriginal
(to each other).

Theorem 1.2.55. Given a plane α, a line a lying in α, and a point A lying outside α, the set (pencil) J of all half-
planes with the edge a, lying in on the same side of the plane α as the point A 213, admits a generalized betweenness
relation.

To be more precise, we say that a half-plane aB ∈ J lies between half-planes aA ∈ J and aC ∈ J iff aB lies inside

the dihedral angle ÂaC, i.e. iff aB ⊂ Int(ÂaC). 214 Then the following properties hold, corresponding to Pr 1.2.1 -
Pr 1.2.7 in the definition of generalized betweenness relation:

1. If a half-plane aB ∈ J lies between half-planes aA ∈ J and aC ∈ J, then aB also lies between aC and aA, and
aA, aB, aC are distinct half-planes.

2. For every two half-planes aA, aB ∈ J there is a half-plane aC ∈ J such that aB lies between aA and aC .
3. If a half-plane aB ∈ J lies between half-planes aA, aC ∈ J, the half-plane aC cannot lie between the rays aA

and aB.
4. For any two half-planes aA, aC ∈ J there is a half-plane aB ∈ J between them.
5. Among any three distinct half-planes aA, aB, aC ∈ J one always lies between the others.
6. If a half-plane aB ∈ J lies between half-planes aA, aC ∈ J, and the half-plane aC lies between aB and aD ∈ J,

both aB, aC lie between aA and aD.
7. If a half-plane aB ∈ J lies between half-planes aA, aC ∈ J, and the half-plane aC lies between aA and aD ∈ J,

then aB lies also between aA, aD, and aC lies between aB and aD. The converse is also true. That is, for all
half-planes of the pencil J we have [aAaBaC ] & [aAaCaD] ⇔ [aAaBaD] & [aBaCaD].

The statements of this theorem are easier to comprehend and prove when given the following formulation in
”native” terms.

211By that lemma, any open interval joining a point K ∈ κ with a point L ∈ λ would then contain a point H ∈ Pχ̄.
212Suppose the contrary, i.e. that H, L, a coplane. (Then the points H, L lie in the plane χ̄ = λ̄ on opposite sides of the line a (this

can easily be seen using L 1.2.19.8; actually, we have in this case λ = χc)). Then K ∈ a = χ̄ ∩ κ̄ - a contradiction.
213That is, of all half-planes with the edge a, lying in the half-space αA.
214If aB ∈ J lies between aA ∈ J and aC ∈ J, we write this as [aAaBaC ] in accord with the general notation. Sometimes, however, it is

more convenient to write simply aB ⊂ Int(ÂaC).
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1. If a half-plane aB ∈ J lies inside the angle ÂaC, where aA, aC ∈ J, it also lies inside the dihedral angle ĈaA,
and the half-planes aA, aB, OC are distinct.

2. For every two half-planes aA, aB ∈ J there is a half-plane aC ∈ J such that the half-plane aB lies inside the

dihedral angle ÂaC.

3. If a half-plane aB ∈ J lies inside a dihedral angle ÂaC, where aA, aC ∈ J, the half-plane aC cannot lie inside

the dihedral angle ÂaB.

4. For any two half-planes aA, aC ∈ J, there is a half-plane aB ∈ J which lies inside the dihedral angle ÂaC.
5. Among any three distinct half-planes aA, aB, aC ∈ J one always lies inside the dihedral angle formed by the

other two.
6. If a half-plane aB ∈ J lies inside an angle ÂaC, where aA, aC ∈ J, and the half-plane aC lies inside B̂aD,

then both aB and aC lie inside the dihedral angle ÂaD.

7. If a half-plane aB ∈ J lies inside a dihedral angle ÂaC, where aA, aC ∈ J, and the half-plane aC lies inside ÂaD,

then aB also lies inside ÂaD, and the half-plane aC lies inside the dihedral angle B̂aD. The converse is also true. That

is, for all half-planes of the pencil J we have aB ⊂ Int(ÂaC)& aC ⊂ Int(ÂaD) ⇔ aB ⊂ Int(ÂaD)& aC ⊂ Int(B̂aD).

Proof. 1. Follows from the definition of Int(ÂaC).
2. See L 1.2.55.20.
3. See C 1.2.55.11.
4. See L 1.2.55.21.
5. By C 1.1.6.6 there is a point D lying in α outside a. By T 1.1.2 we have α = αaD. Then aAaBα & aA 6=

aB & aAaCα & aA 6= aC & aBaCα & aB 6= aC
L1.2.55.22

=⇒ (aA ⊂ Int(D̂aB)∨aB ⊂ Int(D̂aA))& (aA ⊂ Int(D̂aC)∨aC ⊂

Int(D̂aA))& (aB ⊂ Int(D̂aC) ∨ aC ⊂ (D̂aB)). Suppose aA ⊂ Int(D̂aB). 215 If aB ⊂ Int(D̂aC) (see Fig. 1.96, a)

then aA ⊂ Int(D̂aB)& aB ⊂ Int(D̂aC)
L1.2.55.28

=⇒ aB ⊂ Int(ÂaC). Now suppose aC ⊂ Int(D̂aB). If aC ⊂ Int(D̂aA)

(see Fig. 1.96, b) then aC ⊂ Int(D̂aA)& aA ⊂ (D̂aB)
L1.2.55.28

=⇒ aA ⊂ Int(B̂aC). Finally, if aA ⊂ Int(D̂aC) (see

Fig. 1.96, c) then aA ⊂ Int(D̂aC)& aC ⊂ Int(D̂aB)
L1.2.55.28

=⇒ aC ⊂ Int(ÂaB).

6. (See Fig. 1.97.) Choose a point E ∈ α, E /∈ a, so that aB ⊂ Int(ÊaD). 216 aB ⊂ Int(ÊaD)& aC ⊂

Int(B̂aD)
L1.2.55.28

=⇒ aC ⊂ Int(ÊaD)& aB ⊂ Int(ÊaC). Using the definition of interior, and then L 1.2.18.1,

L 1.2.18.2, we can write aB ⊂ Int(ÊaC)& aB ⊂ Int(ÂaC) ⇒ aBaEαaC & aBaAαaC ⇒ aAaCαaC . Using the

definition of the interior of (ÊaC), we have aAaEαaC & aAaCαaE ⇒ aA ⊂ Int(ÊaC). aA ⊂ Int(ÊaC)& aC ⊂

Int(ÊaD)
L1.2.55.28

=⇒ aC ⊂ Int(ÂaD). Finally, aC ⊂ Int(ÂaD)& aB ⊂ Int(ÂaC)
L1.2.55.28

=⇒ aB ⊂ Int(ÊaD).
7. See L 1.2.55.28. 2

Given a pencil J of half-planes, all lying on a given side of a plane α, define an open dihedral angular interval
(aAaC) formed by the half-planes aA, aC ∈ J, as the set of all half-planes aB ∈ J lying inside the dihedral angle

ÂaC. That is, for aA, aC ∈ J we let (aAaC) ⇋ {aB|aB ⊂ Int(ÂaC)}. In analogy with the general case, we shall
refer to [aAaC), (aAaC ], [aAaC ] as half-open, half-closed, and closed dihedral angular intervals, respectively. 217 In
what follows, open dihedral angular intervals, half-open, half-closed and closed dihedral angular intervals will be
collectively referred to as dihedral angular interval-like sets.

Given a pencil J of half-planes having the same edge a and all lying on the same side of a plane α as a given
point O, the following L 1.2.56.1 – T 1.2.61 hold. 218

Lemma 1.2.56.1. If a half-plane aB ∈ J lies between half-planes aA, aC of the pencil J, the half-plane aA cannot

lie between the half-planes aB and aC . In other words, if a half-plane aB ∈ J lies inside ÂaC, where aA, aC ∈ J,

then the half-plane aA cannot lie inside the dihedral angle B̂aC.

Lemma 1.2.56.2. Suppose each of λ, µ ∈ J lies inside the dihedral angle formed by χ, κ ∈ J. If a half-plane ν ∈ J

lies inside the dihedral angle λ̂µ, it also lies inside the dihedral angle χ̂κ. In other words, if half-planes λ, µ ∈ J lie
between half-planes χ, κ ∈ J, the open dihedral angular interval (λµ) is contained in the open dihedral angular interval
(χκ) 219, i.e. (λµ) ⊂ (χκ). (see Fig 1.98)

215We can do this without any loss of generality. No loss of generality results from the fact that the half-planes aA, aB , aC enter the
conditions of the theorem symmetrically.
216By C 1.1.6.5 ∃E E ∈ α&E /∈ a. By T 1.1.2 α = αaE . By L 1.2.55.19, L 1.2.55.3 aDaBα&aD 6= aB ⇒ aB ⊂ Int(ÊaD) ∨ aB ⊂

Int(F̂ aD), where aF = (aE)c. We choose aB ⊂ (ÊaD), renaming E → F , F → E if needed.
217It should be noted that, as in the case of intervals consisting of points, in view of the equality χ̂κ = κ̂χ, and the corresponding

symmetry of open dihedral angular intervals, this distinction between half-open and half-closed dihedral angular intervals is rather
artificial, similar to the distinction between a half-full glass and a half-empty one!
218Some of them merely reiterate or even weaken the results proven earlier specifically for half-planes, but they are given here nonetheless

to illustrate the versatility and power of the unified approach. To let the reader develop familiarity with both flavors of terminology for
the generalized betweenness relation on the half-plane pencil J, we give two formulations for a few results to follow.
219A notation like (χκ) for an open dihedral angular interval should not be confused with the notation (χ̂κ) used for the corresponding

dihedral angle.
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Figure 1.96: Among any three distinct half-planes aA, aB, aC ∈ J one always lies inside the dihedral angle formed by
the other two.
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Figure 1.97: If a half-plane aB ∈ J lies inside an angle ÂaC, where aA, aC ∈ J, and the half-plane aC lies inside

B̂aD, then both aB and aC lie inside the dihedral angle ÂaD.
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Figure 1.98: If half-planes λ, µ ∈ J lie between half-planes χ, κ ∈ J, the open dihedral angular interval (λµ) is
contained in the open dihedral angular interval (χκ)
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Figure 1.99: If o ∈ J divides χ, κ ∈ J, as well as χ and λ ∈ J, it does not divide κ, λ.

Lemma 1.2.56.3. Suppose each side of an (extended) dihedral angles λ̂µ (where λ, µ ∈ J) either lies inside an
(extended) dihedral angle χ̂κ, where χ, κ ∈ J, or coincides with one of its sides. Then if a half-plane ν ∈ J lies inside

λ̂µ, it also lies inside the dihedral angle χ̂κ. 220

Lemma 1.2.56.4. If a half-plane λ ∈ J lies between half-planes χ, κ ∈ J, none of the half-planes of the open dihedral
angular interval (χλ) lie on the open dihedral angular interval (λκ). That is, if a half-plane λ ∈ J lies inside χ̂κ,

none of the half-planes 221 lying inside the dihedral angle χ̂λ lie inside the dihedral angle λ̂κ.

Proposition 1.2.56.5. If two (distinct) half-planes λ ∈ J, µ ∈ J lie inside the dihedral angle χ̂κ, where χ ∈ J,
κ ∈ J, then either the half-plane λ lies inside the dihedral angle χ̂µ, or the half-plane µ lies inside the dihedral angle

χ̂λ.

Lemma 1.2.56.6. Each of λ, µ ∈ J lies inside the closed dihedral angular interval formed by χ, κ ∈ J (i.e. each of
the half-planes λ, µ either lies inside the dihedral angle χ̂κ or coincides with one of its sides) iff all the half-planes

ν ∈ J lying inside the dihedral angle λ̂µ lie inside the dihedral angle κ̂λ.

Lemma 1.2.56.7. If a half-plane λ ∈ J lies between half-planes χ, κ of the pencil J, any half-plane of the open
dihedral angular interval (χκ), distinct from λ, lies either on the open angular interval (χλ) or on the open dihedral
angular interval (λκ). In other words, if a half-plane λ ∈ J lies inside χ̂κ, formed by half-planes χ, κ of the pencil

J, any other (distinct from λ) half-plane lying inside χ̂κ, also lies either inside χ̂λ or inside λ̂κ.

Lemma 1.2.56.8. If a half-plane o ∈ J divides half-planes χ, κ ∈ J, as well as χ and λ ∈ J, it does not divide κ, λ
(see Fig. 1.99).

Betweenness Relation for n Half-Planes with Common Edge

Lemma 1.2.56.9. Suppose χ1, χ2, . . . , χn(, . . .) is a finite (countably infinite) sequence of half-planes of the pencil
J with the property that a half-plane of the sequence lies between two other half-planes of the sequence 222 if its
number has an intermediate value between the numbers of these half-planes. (see Fig. 1.100) Then the converse of
this property is true, namely, that if a half-plane of the sequence lies inside the dihedral angle formed by two other
half-planes of the sequence, its number has an intermediate value between the numbers of these two half-planes. That
is, (∀i, j, k ∈ Nn (respectively, N) ((i < j < k) ∨ (k < j < i) ⇒ [χiχjχk])) ⇒ (∀i, j, k ∈ Nn (respectively, N)
([χiχjχk] ⇒ (i < j < k) ∨ (k < j < i))).

220It may prove instructive to reformulate this result using the ”pointwise” terminology for dihedral angles: Suppose each side of a

dihedral angle ĈaD either lies inside an (extended) dihedral angle ÂaB, or coincides with one of its sides. Then if a half-plane has edge

point a and lies inside ĈaD, it lies inside the (extended) dihedral angle AaB.
221Actually, none of the points lying on any of these half-planes.
222i.e., lies inside the dihedral angle formed by two other half-planes of the sequence
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Figure 1.100: Suppose χ1, χ2, . . . , χn(, . . .) is a finite (countably infinite) sequence of half-planes of the pencil J with
the property that a half-plane of the sequence lies between two other half-planes of the sequence if its number has
an intermediate value between the numbers of these half-planes. Then the converse of this property is true, namely,
that if a half-plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence, its
number has an intermediate value between the numbers of these two half-planes.
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Let an infinite (finite) sequence of half-planes χi of the pencil J, where i ∈ N (i ∈ Nn, n ≥ 4), be numbered in
such a way that, except for the first and the last, every half-plane lies inside the dihedral angle formed by the two
half-planes of sequence with numbers, adjacent (in N) to that of the given half-plane. Then:

Lemma 1.2.56.10. – A half-plane from this sequence lies inside the dihedral angle formed by two other members of
this sequence iff its number has an intermediate value between the numbers of these two half-planes.

Lemma 1.2.56.11. – An arbitrary half-plane of the pencil J cannot lie inside of more than one of the dihedral angles
formed by pairs of half-planes of the sequence having adjacent numbers in the sequence.

Lemma 1.2.56.12. – In the case of a finite sequence, a half-plane which lies between the end (the first and the last,
nth) half-planes of the sequence, and does not coincide with the other half-planes of the sequence, lies inside at least
one of the dihedral angles, formed by pairs of half-planes with adjacent numbers.

Lemma 1.2.56.13. – All of the open dihedral angular intervals (χiχi+1), where i = 1, 2, . . . , n−1, lie inside the open
dihedral angular interval (χ1χn). In other words, any half-plane κ, lying inside any of the dihedral angles χ̂i, χi+1,
where i = 1, 2, . . . , n − 1, lies inside the dihedral angle χ̂1, χn, i.e. ∀i ∈ {1, 2, . . . , n − 1} k ⊂ Int(χ̂i, χi+1) ⇒ κ ⊂
Int(χ̂1, χn).

Lemma 1.2.56.14. – The half-open dihedral angular interval [χ1χn) is a disjoint union of the half-closed dihedral
angular intervals [χiχi+1), where i = 1, 2, . . . , n − 1 :

[χ1χn) =
n−1⋃
i=1

[χiχi+1).

Also,
The half-closed dihedral angular interval (χ1χn] is a disjoint union of the half-closed dihedral angular intervals

(χiχi+1], where i = 1, 2, . . . , n − 1 :

(χ1χn] =
n−1⋃
i=1

(χiχi+1].

Proof. 2

If a finite (infinite) sequence of half-planes χi of the pencil J, i ∈ Nn, n ≥ 4 (n ∈ N) has the property that if a half-
plane of the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its number has
an intermediate value between the numbers of these two half-planes, we say that the half-planes χ1, χ2, . . . , χn(, . . .)
are in order [χ1χ2 . . . χn(. . .)].

Theorem 1.2.56. Any finite sequence of half-planes χi ∈ J, i ∈ Nn, n ≥ 4 can be renumbered in such a way that
a half-plane from the sequence lies inside the dihedral angle formed by two other half-planes of the sequence iff its
number has an intermediate value between the numbers of these two half-planes. In other words, any finite (infinite)
sequence of half-planes hi ∈ J, i ∈ Nn, n ≥ 4 can be put in order [χ1χ2 . . . χn].

Lemma 1.2.56.12. For any finite set of half-planes {χ1, χ2, . . . , χn} of an open dihedral angular interval (χκ) ⊂ J

there is a half-plane λ on (χκ) not in that set.

Proposition 1.2.56.13. Every open dihedral angular interval in J contains an infinite number of half-planes.

Corollary 1.2.56.14. Every dihedral angular interval-like set in J contains an infinite number of half-planes.

Basic Properties of Dihedral Angular Rays

Given a pencil J of half-planes lying on the same side of a plane α as a given point Q, and two distinct half-planes o,
χ, χ 6= o of the pencil J, define the dihedral angular ray oχ, emanating from its origin, or initial half-plane o, as the
set of all half-planes κ 6= o of the pencil J such that the half-plane o does not divide the half-planes χ, κ. 223 That
is, for o, χ ∈ J, o 6= χ, we define oχ ⇋ {κ|κ ⊂ J & κ 6= o&¬[χoκ]}. 224

Lemma 1.2.57.1. Any half-plane χ lies on the dihedral angular ray oχ.

Lemma 1.2.57.2. If a half-plane κ lies on a dihedral angular ray oχ, the half-plane χ lies on the dihedral angular
ray oκ. That is, κ ∈ oχ ⇒ χ ∈ oκ.

Lemma 1.2.57.3. If a half-plane κ lies on a dihedral angular ray oχ, the dihedral angular ray oχ coincides with the
dihedral angular ray oκ.

Lemma 1.2.57.4. If dihedral angular rays oχ and oκ have common half-planes, they are equal.

223i.e. the half-plane o does not lie inside the dihedral angle χ̂κ.
224Note that, according to our definition, a dihedral angular ray is formed by half-planes instead of points! In a similar manner we could

construct a ”hyper- dihedral angular” ray formed by dihedral angular rays instead of points, rays, or half-planes. This hyper- dihedral
angular ray would have essentially the same properties given by Pr 1.2.1 - Pr 1.2.7 as the types of rays already considered, but, on the
other hand, it would definitely be too weird to allow any practical use.
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Lemma 1.2.57.5. The relation ”to lie in the pencil J on the same side of a given half-plane o ∈ J as” is an
equivalence relation on J \ {o}. That is, it possesses the properties of:

1) Reflexivity: A half-plane h always lies on the same side of the half-plane o as itself;
2) Symmetry: If a half-plane κ lies on the same side of the half-plane o as χ, the half-plane χ lies on the same

side of o as κ.
3) Transitivity: If a half-plane κ lies on the same side of the half-plane o as χ, and a half-plane λ lies on the

same side of o as κ, then λ lies on the same side of o as χ.

Lemma 1.2.57.6. A half-plane κ lies on the opposite side of o from χ iff o divides χ and κ.

Lemma 1.2.57.7. The relation ”to lie in the pencil J on the opposite side of the given half-plane o from . . . ” is
symmetric.

If a half-plane κ lies in the pencil J on the same side (on the opposite side) of the half-plane o as (from) a
half-plane χ, in view of symmetry of the relation we say that the half-planes χ and κ lie in the set J on the same
side (on opposite sides) of o.

Lemma 1.2.57.8. If half-planes χ and κ lie on one dihedral angular ray oλ ⊂ J, they lie in the pencil J on the same
side of the half-plane o. If, in addition, χ 6= κ, then either χ lies between o and κ, or κ lies between o and χ.

Lemma 1.2.57.9. If a half-plane λ lies in the pencil J on the same side of the half-plane o as a half-plane χ, and
a half-plane µ lies on the opposite side of o from χ, then the half-planes λ and µ lie on opposite sides of o. 225

Lemma 1.2.57.10. If half-planes λ and µ lie in the pencil J on the opposite side of the half-plane o from a half-plane
χ, 226 then λ and µ lie on the same side of o.

Lemma 1.2.57.11. Suppose a half-plane λ lies on a dihedral angular ray oχ, a half-plane µ lies on a dihedral angular
ray oκ, and o lies between χ and κ. Then o also lies between λ and µ.

Lemma 1.2.57.12. A half-plane o ∈ J divides half-planes χ ∈ J and κ ∈ J iff the dihedral angular rays oχ and oκ

are disjoint, oχ ∩ oκ = ∅, and their union, together with the ray o, gives the pencil J, i.e. J = oχ ∪ oκ ∪ {o}. That is,
[χoκ] ⇔ (J = oχ ∪ oκ ∪ {o})& (oχ ∩ oκ = ∅).

Lemma 1.2.57.13. A dihedral angular ray oχ contains the open dihedral angular interval (oχ).

Lemma 1.2.57.14. For any finite set of half-planes {χ1, χ2, . . . , χn} of a dihedral angular ray oχ, there is a half-plane
λ on oχ not in that set.

Lemma 1.2.57.15. If a half-plane κ lies between half-planes o and χ then the dihedral angular rays oκ and oχ are
equal.

Lemma 1.2.57.16. If a half-plane χ lies between half-planes o and κ, the half-plane κ lies on the dihedral angular
ray oχ.

Lemma 1.2.57.17. If dihedral angular rays oχ and o′κ are equal, their origins coincide.

Lemma 1.2.56.18. If a dihedral angle (=abstract dihedral angular interval) χ̂0χn is divided into n dihedral angles
χ̂0χ1, χ̂1χ2 . . . , χ̂n−1χn (by the half-planes χ1, χ2, . . . χn−1),

227 the half-planes χ1, χ2, . . . χn−1, χn all lie on the same
side of the half-plane χ0, and the dihedral angular rays χ0χ1

, χ0χ2
, . . . , χ0χn

are equal. 228

Theorem 1.2.56. Every dihedral angular ray contains an infinite number of half-planes.

Linear Ordering on Dihedral Angular Rays

Suppose χ, κ are two half-planes on a dihedral angular ray oµ. Let, by definition, (χ ≺ κ)oµ

def
⇐⇒ [ohk]. If χ ≺ κ,

229 we say that the half-plane χ precedes the half-plane κ on the dihedral angular ray oµ, or that the half-plane κ
succeeds the half-plane χ on the dihedral angular ray oµ.

Lemma 1.2.57.1. If a half-plane χ precedes a half-plane κ on the dihedral angular ray oµ, and κ precedes a half-plane
λ on the same dihedral angular ray, then χ precedes λ on oµ:

χ ≺ κ & κ ≺ λ ⇒ χ ≺ λ, where χ, κ, λ ∈ oµ.

Proof. 2

225Making use of L 1.2.57.6, this statement can be reformulated as follows:
If a half-plane λ lies on oχ, and o divides χ and µ, then o divides λ and µ.

226One could as well have said: If o lies between χ and λ, as well as between χ and µ . . .
227In other words, a finite sequence of half-planes χi, where i+1 ∈ Nn−1, n ≥ 4, has the property that every half-plane of the sequence,

except for the first and the last, lies between the two half-planes with adjacent (in N) numbers.
228By the same token, we can assert also that the half-planes χ0, χ1, . . . , χn−1 lie on the same side of half-plane χn, but due to symmetry,

this adds essentially nothing new to the statement of the lemma.
229In most instances in what follows we will assume the dihedral angular ray oµ (or some other dihedral angular ray) fixed and omit

the mention of it in our notation.
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Lemma 1.2.57.2. If χ, κ are two distinct half-planes on the dihedral angular ray oµ then either χ precedes κ, or κ
precedes χ; if χ precedes κ then κ does not precede χ.

Proof. 2

For half-planes χ, κ on a dihedral angular ray oµ we let, by definition, χ � κ
def
⇐⇒ (χ ≺ κ) ∨ (χ = κ).

Theorem 1.2.57. Every dihedral angular ray is a chain with respect to the relation �.

Line Ordering on Pencils of Half-Planes

Let o ∈ J, π ∈ J, [π≀ρ]. Define the relation of direct (inverse) ordering on the pencil J of half-planes lying on the
same side of a plane α as a given point Q, which admits a generalized betweenness relation, as follows:

Call oπ the first dihedral angular ray, and oρ the second dihedral angular ray. A half-plane χ precedes a half-plane
κ in the pencil J in the direct (inverse) order iff:

- Both χ and κ lie on the first (second) dihedral angular ray and κ precedes χ on it; or
- χ lies on the first (second) dihedral angular ray, and κ lies on the second (first) dihedral angular ray or coincides

with o; or
- χ = o and κ lies on the second (first) dihedral angular ray; or
- Both χ and κ lie on the second (first) dihedral angular ray, and χ precedes κ on it.
Thus, a formal definition of the direct ordering on the pencil J can be written down as follows:

(χ≺1κ)J
def
⇐⇒ (χ ∈ opi & κ ∈ opi & κ ≺ χ)∨ (χ ∈ oπ & κ = o)∨ (χ ∈ oπ & κ ∈ oρ)∨ (χ = o& κ ∈ oρ)∨ (χ ∈ oρ & κ ∈

oρ & χ ≺ κ),

and for the inverse ordering: (χ≺2κ)J
def
⇐⇒ (χ ∈ oρ & κ ∈ oρ & κ ≺ χ)∨(χ ∈ oρ & κ = o)∨(χ ∈ oρ & κ ∈ oπ)∨(χ =

o& κ ∈ oπ) ∨ (χ ∈ oπ & κ ∈ oπ & χ ≺ κ).
The term ”inverse order” is justified by the following trivial

Lemma 1.2.58.1. χ precedes κ in the inverse order iff κ precedes χ in the direct order.

For our notion of order (both direct and inverse) on the pencil J to be well defined, they have to be independent,
at least to some extent, on the choice of the origin o of the pencil J, as well as on the choice of the half-planes π and
ρ, forming, together with the half-plane o, dihedral angular rays oπ and oρ, respectively.

Toward this end, let o′ ∈ J, π′ ∈ J, [π′o′ρ′], and define a new direct (inverse) ordering with displaced origin
(ODO) on the pencil J, as follows:

Call o′ the displaced origin, o′π′ and o′ρ′ the first and the second displaced dihedral angular rays, respectively. A
half-plane χ precedes a half-plane κ in the set J in the direct (inverse) ODO iff:

- Both χ and κ lie on the first (second) displaced dihedral angular ray, and κ precedes χ on it; or
- χ lies on the first (second) displaced dihedral angular ray, and κ lies on the second (first) displaced dihedral

angular ray or coincides with o′; or
- χ = o′ and κ lies on the second (first) displaced dihedral angular ray; or
- Both χ and κ lie on the second (first) displaced dihedral angular ray, and χ precedes κ on it.
Thus, a formal definition of the direct ODO on the set J can be written down as follows:

(χ≺′
1κ)J

def
⇐⇒ (χ ∈ o′π′ & κ ∈ o′π′ & κ ≺ χ) ∨ (χ ∈ o′π′ & κ = o′) ∨ (χ ∈ o′π′ & κ ∈ o′ρ′) ∨ (χ = o′ & κ ∈ o′ρ′)∨ (χ ∈

o′ρ′ & κ ∈ o′ρ′ & χ ≺ κ),

and for the inverse ordering: (χ≺′
2κ)J

def
⇐⇒ (χ ∈ o′ρ′ & κ ∈ o′ρ′ & κ ≺ χ) ∨ (χ ∈ o′ρ′ & κ = o′) ∨ (χ ∈ o′ρ′ & κ ∈

o′π′) ∨ (χ = o′ & κ ∈ o′π′) ∨ (χ ∈ o′π′ & κ ∈ o′π′ & χ ≺ κ).

Lemma 1.2.58.2. If the origin o′ of the displaced dihedral angular ray o′π′ lies on the dihedral angular ray oπ and
between o and π′, then the dihedral angular ray oπ contains the dihedral angular ray o′π′ , o′π′ ⊂ oπ.

Lemma 1.2.58.3. Let the displaced origin o′ be chosen in such a way that o′ lies on the dihedral angular ray oπ,
and the half-plane o lies on the dihedral angular ray o′ρ′ . If a half-plane κ lies on both dihedral angular rays oπ and
o′ρ′ , then it divides o and o′.

Lemma 1.2.58.4. An ordering with the displaced origin o′ on a pencil J of half-planes lying on the same side of a
plane α as a given point Q, which admits a generalized betweenness relation, coincides with either direct or inverse
ordering on that pencil (depending on the choice of the displaced dihedral angular rays). In other words, either for all
half-planes χ, κ in J we have that χ precedes κ in the ODO iff χ precedes κ in the direct order; or for all half-planes
χ, κ in J we have that χ precedes κ in the ODO iff χ precedes κ in the inverse order.

Lemma 1.2.58.5. Let χ, κ be two distinct half-planes in a pencil J of half-planes lying on the same side of a plane
α as a given point Q, which admits a generalized betweenness relation, and on which some direct or inverse order is
defined. Then either χ precedes κ in that order, or κ precedes χ, and if χ precedes κ, κ does not precede χ, and vice
versa.
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For half-planes χ, κ in a pencil J of half-planes lying on the same side of a plane α as a given point Q, which admits

a generalized betweenness relation, and where some direct or inverse order is defined, we let χ�iκ
def
⇐⇒ (χ≺iκ)∨(χ =

kappa), where i = 1 for the direct order and i = 2 for the inverse order.

Theorem 1.2.58. Every set J of half-planes lying on the same side of a plane α as a given point Q, which admits
a generalized betweenness relation, and equipped with a direct or inverse order, is a chain with respect to the relation
�i.

Theorem 1.2.59. If a half-plane κ lies between half-planes χ and λ, then in any ordering of the kind defined above,
defined on the pencil J, containing these rays, either χ precedes κ and κ precedes λ, or λ precedes κ and κ precedes
χ; conversely, if in some order, defined on the pencil J of half-planes lying on the same side of a plane α as a given
point Q, admitting a generalized betweenness relation and containing half-planes χ, κ, λ, we have that χ precedes κ
and κ precedes λ, or λ precedes κ and κ precedes χ, then κ lies between χ and λ. That is,

∀χ, κ, λ ∈ J [χκλ] ⇔ (χ ≺ κ & κ ≺ λ) ∨ (λ ≺ κ & κ ≺ χ).

Complementary Dihedral Angular Rays

Lemma 1.2.60.1. An dihedral angular interval (oχ) is the intersection of the dihedral angular rays oχ and χo, i.e.
(oχ) = oχ ∩ χo.

Given a dihedral angular ray oχ, define the dihedral angular ray oc
χ, complementary in the pencil J to the dihedral

angular ray oχ, as oc
χ ⇋ J \ ({o} ∪ oχ). In other words, the dihedral angular ray oc

χ, complementary to the dihedral
angular ray oχ, is the set of all half-planes lying in the pencil J on the opposite side of the half-plane o from the
half-plane χ. An equivalent definition is provided by

Lemma 1.2.60.2. oc
χ = {κ|[κoχ]}. We can also write oc

χ = oµ for any half-plane µ ∈ J such that [µoχ].

Lemma 1.2.60.3. The dihedral angular ray (oc
χ)c, complementary to the dihedral angular ray oc

χ, complementary to
the given dihedral angular ray oh, coincides with the dihedral angular ray oχ: (oc

χ)c = oχ.

Lemma 1.2.60.4. Given a hal-plane λ on an dihedral angular ray oχ, the dihedral angular ray oχ is a disjoint
union of the half - open dihedral angular interval (oλ] and the dihedral angular ray λc

o, complementary to the dihedral
angular ray λo :

oh = (ol] ∪ lco.

Lemma 1.2.60.5. Given in a pencil J of half-planes lying on the same side of a plane α as a given point Q, which
admits a generalized betweenness relation, a half-plane κ, distinct from a half-plane o ∈ J, the half-plane κ lies either
on oχ or on oc

χ, where χ ∈ J, χ 6= o.

Theorem 1.2.60. Let a finite sequence of half-planes χ1, χ2, . . . , χn, n ∈ N, from the pencil J, be numbered in such
a way that, except for the first and (in the finite case) the last, every half-plane lies between the two half-planes
with adjacent (in N) numbers. Then the dihedral angular ray χ1χn

is a disjoint union of half-closed dihedral angular
intervals (χiχi+1], i = 1, 2, . . . , n− 1, with the dihedral angular ray χc

nχk
, complementary to the dihedral angular ray

χnχk
, where k ∈ {1, 2, . . . , n − 1}, i.e.

χ1χn
=

n−1⋃
i=1

(χiχi+1] ∪ χc
nχk

.

Sets of Half-Planes on Dihedral Angular Rays

Given a half-plane o in a pencil J of half-planes lying on the same side of a plane α as a given point Q, which admits
a generalized betweenness relation, a nonempty set B ⊂ J is said to lie in the pencil J on the same side (on the
opposite side) of the ray o as (from) a nonempty set A ⊂ J iff for all half-planes χ ∈ A and all half-planes κ ∈ B, the
half-plane κ lies on the same side (on the opposite side) of the half-plane o as (from) the half-plane χ ∈ A. If the set
A (the set B) consists of a single element, we say that the set B (the half-plane κ) lies in the pencil J on the same
side of the half-plane o as the half-plane χ (the set A).

Lemma 1.2.61.1. If a set B ⊂ J lies in the pencil J on the same side of the half-plane o as a set A ⊂ J, then the
set A lies in the pencil J on the same side of the half-plane o as the set B.

Lemma 1.2.61.2. If a set B ⊂ J lies in the pencil J on the same side of the half-plane o as a set A ⊂ J, and a set
C ⊂ J lies in the set J on the same side of the half-plane o as the set B, then the set C lies in the pencil J on the
same side of the half-plane o as the set A.

Lemma 1.2.61.3. If a set B ⊂ J lies in the set J on the opposite side of the half-plane o from a set A ⊂ J, then
the set A lies in the set J on the opposite side of the half-plane o from the set B.

In view of symmetry of the relations, established by the lemmas above, if a set B ⊂ J lies in the pencil J on the
same side (on the opposite side) of the half-plane o as a set (from a set) A ⊂ J, we say that the sets A and B lie in
the pencil J on one side (on opposite sides) of the half-plane o.
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Lemma 1.2.61.4. If two distinct half-planes χ, κ lie on an dihedral angular ray oλ, the open dihedral angular
interval (χκ) also lies on the dihedral angular ray oλ.

Given a dihedral angle χ̂kappa,230 whose sides χ, κ both lie in the pencil J, such that the open dihedral angular
interval (χκ) does not contain o ∈ J, we have (L 1.2.61.5 - L 1.2.61.7):

Lemma 1.2.61.5. – If one of the ends of (χκ) lies on the dihedral angular ray oλ, the other end is either on oλ or
coincides with o.

Lemma 1.2.61.6. – If (hk) has half-planes in common with the dihedral angular ray oλ, either both ends of (χκ)
lie on oλ, or one of them coincides with o.

Lemma 1.2.61.7. – If (χκ) has common points with the dihedral angular ray oλ, the interval (χκ) lies on oλ,
(χκ) ⊂ oλ.

Lemma 1.2.61.8. If χ and κ lie on one dihedral angular ray oλ, the complementary dihedral angular rays χc
o and

κc
o lie in the pencil J on one side of the half-plane o.

Theorem 1.2.61. A half-plane o in a pencil J of half-planes lying on the same side of a plane α as a given point Q,
which admits a generalized betweenness relation, separates the rest of the half-planes in this pencil into two non-empty
classes (dihedral angular rays) in such a way that...

Properties of Convex Polygons

A polygon A1A2 . . . An is called convex iff for any side AiAi+1 for i = 1, 2, . . . , n (where, of course, An+1 = A1) the
set P \ [AiAi+1] lies completely on one side of the line aAiAi+1 .

231

Lemma 1.2.62.1. Every triangle is a convex polygon.

Proof. 2

Lemma 1.2.62.2. Suppose that a polygon A1A2 . . . An, n ≥ 4, has the following property: for any side AiAi+1

for i = 1, 2, . . . , n (where, of course, An+1 = A1) the remaining vertices of the polygon lie on the same side of the
corresponding line aAiAi+1 . Then the polygon is convex.

Proof. Follows from L 1.2.19.9. 2

Lemma 1.2.62.3. If points A, C lie on opposite sides of the line aBD, and B, D lie on opposite sides of aAC, then
the quadrilateral ABCD is convex. 232

Proof. According to T 1.2.41, the diagonals (AC), (BD) meet in a point O. The result is then easily seen using
L 1.2.21.6, L 1.2.21.4 and the definition of interior of the angle. 2

Lemma 1.2.62.4. Suppose A1A2 . . . An, where n ≥ 4, is a convex polygon, where the vertices Ak, Al are both
adjacent to the vertex Ai. Then for any other vertex Aj (distinct from Ai, Ak, Al) of the same polygon the ray AiAj

lies completely inside the angle ∠AkAiAl.
233

Proof. Follows directly from the definitions of convexity and the interior of angle. 234
2

Lemma 1.2.62.5. Consider a trapezoid ABCD with aBC ‖ aAD. If the vertices C, D lie on one side of the line
aAB formed by the other two vertices,235 then ABCD is convex. 236

Proof. See C 1.2.47.4, L 1.2.62.3. 2

Theorem 1.2.62. Every convex polygon is simple.

Proof. 2

230In unified terms, an abstract dihedral angular interval.
231This is a rather unfortunate piece of terminology in that it seems to be at odds with the definition of convex point set. Apparently,

this definition is related to the fact (proved) below that the interior of a convex polygon does form a convex set.
232Thus, ABCD is convex, in particular, if its diagonals (AC), (BD) meet (see beginning of proof).
233Note also that the result, converse to the preceding lemma, is true: If a quadrilateral ABCD is convex, then the points A, C lie on

opposite sides of the line aBD , and B, D lie on opposite sides of aAC .
234Indeed, from convexity the vertices Aj , Al lie on the same side of the line aAiAk

and Aj , Ak lie on the same side of the line aAiAl
.

Hence Aj ⊂ Int∠AkAiAl by the definition of interior and, finally, AiAj
⊂ Int∠AkAiAl by L 1.2.21.4.

235It is evident that due to symmetry we could alternatively assume that the vertices A, B lie on the line aCD .
236It should be noted that we do not assume here that ABCD is simple. This will follow from C 1.2.47.4.

108



Consider two non-adjacent vertices Ai, Aj of a polygon A1A2 . . . An (assuming the polygon in quetion does have
two non-adjacent vertices; this obviously cannot be the case for a triangle), there are evidently two open paths with
Ai, Aj as the ends. We shall refer to these paths as the (open) separation paths generated by Ai, Aj and associated
with the polygon A1A2 . . . An, and denote them Path1(A1A2 . . . An) and Path2(A1A2 . . . An), the choice of numbers
1, 2 being entirely coincidental. Sometimes (whenever it is well understood which polygon is being considered) we
shall omit the parentheses.

Consider two non-adjacent vertices Ai, Aj of a convex polygon A1A2 . . . An.

Lemma 1.2.63.1. The open interval (AiAj) does not meet either of the separation paths (generated by Ai, Aj and
associated with A1A2 . . . An). 237

Proof. Consider one of the separation paths, say, Path1. Suppose the contrary to what is stated by the lemma, i.e.
that the open interval (AiAj) meets the side-line [AkAl] of Path1. This means that the points Ai, Aj lie on the
opposite sides of the line aAkAl

, 238 which contradicts the convexity of the polygon A1A2 . . . An. This contradiction
shows that in reality (AiAj) does not meet Path1 (and by the same token it does not meet Path2). 2

Lemma 1.2.63.2. The separation paths Path1, Path2 lie on opposite sides of the line aAiAj
.

Proof. Suppose the contrary, i.e. that the paths Path1, Path2 lie on the same side of the line aAiAj
. 239 Consider

the vertices Ak, Al of Path1, Path2,respectively, adjacent on the polygon A1A2 . . . An to Ai. Using L 1.2.21.21,
we can assume without loss of generality that the ray Ak lies inside the angle ∠AjAiAl. But this implies that the
vertices Aj , Al of the polygon A1A2 . . . An lie on opposite sides of the line aAiAk

containing the side AiAk, which
contradicts the convexity of A1A2 . . . An. 2

Lemma 1.2.63.3. Straightening of convex polygons preserves their convexity.

Proof. We need to show that for any side of the new polygon the remaining vertices lie on the same side of the line
containing that side. This is obvious for all sides except the one formed as the result of straightening. (In fact,
straightening can only reduce the number of sides for which the condition of convexity must be satisfied.) But for the
latter this is an immediate consequence of L 1.2.63.1. Indeed, given the side AiAj resulting from straightening, the
remaining vertices of the new polygon are also vertices of one of the separation paths generated by Ai, Aj , associated
with the original polygon A1A2 . . . An. 2

Lemma 1.2.63.4. If vertices Ap, Aq lie on different separation paths (generated by Ai, Aj) then the ray AiAj
(in

particular, the point Aj and the open interval (AiAj)) lies completely inside the angle ∠ApAiAq.

Proof. Follows from L 1.2.63.3, L 1.2.62.4. 240
2

Consider a path A1A2 . . . An
241 (in particular, a polygon) and a connected collinear set A.

We shall define a single instance of traversal of the path A1A2 . . . An by the set A, or, which is by definition the
same, a single instance of traversal of the set A by the path A1A2 . . . An as one of the following situations taking
place:

– (Type I traversal): A point A ∈ A lies on the side AiAi+1 of the path and this is the only point that the set
and the side have in common;

– (Type II traversal): A vertex Ai lies in the set A, and the adjacent vertices Ai−1, Ai+1 lie on opposite sides of
the line containing the set A.

– (Type III traversal): Vertices Ai, Ai+1 lie in the set A, and the vertices Ai−1, Ai+2 lie on opposite sides of the
line containing the set A.

242

Lemma 1.2.63.5. Proof. 2

Theorem 1.2.64. Proof. 2

237Thus, it follows that each path lies completely on one side of the line aAiAj
, although we have yet to prove that the paths lie on

opposite sides of the line aAiAj
(this proof will be done in the next lemma).

238Obviously, the points Ai, Aj , Ak, Al cannot be all collinear.
239In this proof we implicitly use the results of the preceding lemma (L 1.2.63.1) and T 1.2.20.
240Here are some details: Performing successive straightening operations, we turn the polygon A1A2 . . . An into the (convex according

to L 1.2.63.3) quadrilateral AiApAjAq (it takes up to four straightenings). Using L 1.2.62.4 we then conclude that AiAj
⊂ Int∠AkAiAl.

241In a polygon A1A2 . . . An, i.e. in a path A1A2 . . . AnAn+1 with An+1 = A1 we shall use the following notation wherever it is believed
to to lead to excessive confusion: An+2 ⇋A2, An+3 = A3, ldots. While sacrificing some pedantry, this notation saves us much hassle at
the place where ”the snake bites at its tail”.
242Observe that there are certain requirements on the minimum number of sides the polygon must possess in order to make a traversal

of the given type: While traversals of the first type can happen to a digon, it takes a triangle to have a traversal of the second type and
a quadrilateral for a traversal of the third type.
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A’ B’ X A’X

Figure 1.101: Given an interval AB, on any ray A′
X′ there is a point B′ such that AB ≡ A′B′.

A’ B’ C’

A                                B                  C

Figure 1.102: If intervals AB, BC are congruent to A′B′, B′C′, B lies between A, C and B′ lies between A′, C′, the
interval AC is congruent to A′C′.

1.3 Congruence

Hilbert’s Axioms of Congruence

The axioms A 1.3.1 – A 1.3.3 define the relation of congruence on the class of intervals, i.e. for all two - element
point sets: ρ ⊂ {{A, B}|A, B ∈ CPt}2. If a pair (AB, CD) ∈ ρ, we say that the interval AB is congruent to the
interval CD and write AB ≡ CD. The axiom A 1.3.4 defines the relation of congruence on the class of all angles. If
angles ∠(h, k) and ∠(l, m) are in this relation, we say that the angle ∠(h, k) is congruent to the angle ∠(l, m) and
write ∠(h, k) ≡ ∠(l, m).

Axiom 1.3.1. Given an interval AB, on any ray A′
X′ there is a point B′ such that AB is congruent to the interval

A′B′, AB ≡ A′B′. (See Fig. 1.101.)

Axiom 1.3.2. If intervals A′B′ and A′′B′′ are both congruent to the same interval AB, the interval A′B′ is congruent
to the interval A′′B′′. That is, A′B′ ≡ AB & A′′B′′ ≡ AB ⇒ A′B′ ≡ A′′B′′.

Axiom 1.3.3. If intervals AB, BC are congruent to intervals A′B′,B′C′, respectively, where the point B lies between
the points A and C and the point B′ lies between A′ and C′, then the interval AC is congruent to the interval A′C′.
That is, AB ≡ A′B′ & BC ≡ B′C′ ⇒ AC ≡ A′C′. (See Fig. 1.102)

Axiom 1.3.4. Given an angle ∠(h, k), for any ray h′ in a plane α′ ⊃ h′ containing this ray, and for any point
A ∈ Pα′ \ Ph̄, there is exactly one ray k′ with the same origin O′ as h′, such that the ray k′ lies in α′ on the same
side of h̄ as A, and the angle ∠(h, k) is congruent to the angle ∠(h′, k′).

Every angle is congruent to itself: ∠(h, k) ≡ ∠(h, k).

A point set A is said to be pointwise congruent, or isometric, to a point set B, written A ≡ B, iff there is a
bijection φ : A → B, called isometry, congruence, or (rigid) motion, or which maps (abstract) intervals formed by
points of the set A to congruent intervals formed by points of the set B: for all A1, A2 ∈ A such that A1 6= A2, we
have A1A2 ≡ B1B2, where B1 = φ(A1), B2 = φ(A2). Observe that, by definition, all motions are injective, i.e. they
transform distinct points into distinct points.

A finite (countably infinite) sequence of points Ai, where i ∈ Nn (i ∈ N), n ≥ 2, is said to be congruent to a finite
(countably infinite) sequence of points Bi, where i ∈ Nn (i ∈ N), if every interval AiAj , i 6= j, i, j ∈ Nn (i, j ∈ N)
formed by a pair of points from the first sequence, is congruent to the corresponding (i.e. formed by the points with
the same numbers) interval BiBj , i 6= j, i, j ∈ Nn (i, j ∈ N) formed by a pair of points of the second sequence.

A path A1A2 . . . An, in particular, a polygon, is said to be weakly congruent to a path B1B2 . . . Bm (we write
this as A1A2 . . . An ≃ B1B2 . . . Bm) iff m = n 243 and each side of the first path is congruent to the corresponding
244 side of the second path. That is,

A1A2 . . . An ≃ B1B2 . . . Bm
def
⇐⇒ (m = n)& (∀i ∈ Nn−1 AiAi+1 ≡ BiBi+1).

A path A1A2 . . . An, in particular, a polygon, is said to be congruent to a path B1B2 . . . Bm, written A1A2 . . . An ≡
B1B2 . . . Bm, iff

– the path A1A2 . . . An is weakly congruent to the path B1B2 . . . Bn; and

243Thus, only paths with equal number of vertices (and, therefore, of sides), can be weakly congruent.
244i.e., formed by vertices with the same numbers as in the first path
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Figure 1.103: Congruences AB ≡ A′B′, AC ≡ A′C′, ∠BAC ≡ ∠B′A′C′ imply ∠ABC ≡ ∠A′B′C′.

– each angle between adjacent sides of the first path is congruent to the corresponding angle 245 between adjacent
sides of the second path. That is,

A1A2 . . . An ≡ B1B2 . . . Bn
def
⇐⇒ A1A2 . . . An ≃ B1B2 . . . Bn &

(∀i ∈ {2, 3, . . . , n − 1} ∠Ai−1AiAi+1 ≡ ∠Bi−1BiBi+1)& (A1 = An & B1 = Bn ⇒ ∠An−1AnA2 ≡ ∠Bn−1BnB2).

A path A1A2 . . . An is said to be strongly congruent to a path B1B2 . . . Bn, written A1A2 . . . An
∼= B1B2 . . . Bn,

iff the contour of A1A2 . . . An is pointwise congruent to the contour of B1B2 . . . Bn. That is,

A1A2 . . . An
∼= B1B2 . . . Bn

def
⇐⇒ PA1A2...An

= PB1B2...Bn

Axiom 1.3.5. Given triangles △ABC, △A′B′C′, congruences AB ≡ A′B′, AC ≡ A′C′, ∠BAC ≡ ∠B′A′C′ imply
∠ABC ≡ ∠A′B′C′. (See Fig. 1.103)

Basic Properties of Congruence

Lemma 1.3.1.1. Given triangles △ABC, △A′B′C′, congruences AB ≡ A′B′, AC ≡ A′C′, ∠BAC ≡ ∠B′A′C′

imply ∠ACB ≡ ∠A′C′B′. 246 (See Fig. 1.103)

Proof. Immediately follows from A 1.3.5. 2

Theorem 1.3.1. Congruence is an equivalence relation on the class of all (abstract) intervals, i.e., it is reflexive,
symmetric, and transitive.

Proof. Given an interval AB, by A 1.3.1 ∃A′B′ AB ≡ A′B′.

Reflexivity: AB ≡ A′B′ & AB ≡ A′B′ A1.3.2
=⇒ AB ≡ AB.247

Symmetry: A′B′ ≡ A′B′ & AB ≡ A′B′ A1.3.2
=⇒ A′B′ ≡ AB.

Transitivity: AB ≡ A′B′ & A′B′ ≡ A′′B′′ ⇒ A′B′ ≡ AB & A′B′ ≡ A′′B′′ A1.3.2
=⇒ AB ≡ A′′B′′. 2

Corollary 1.3.1.2. Congruence of geometric figures is an equivalence relation (on the class of all geometric figures.)
Congruence of finite or countably infinite sequences is an equivalence relation (on the class of all such sequences.)
Weak congruence is an equivalence relation (on the class of all paths (in particular, polygons.)) That is, all these
relations have the properties of reflexivity, symmetry, and transitivity.

Proof. 2

Owing to symmetry, implied by T 1.3.1, of the relation of congruence of intervals, if A1A2 ≡ B1B2, i.e. if the
interval A1A2 is congruent to the interval B1B2, we can say also that the intervals A1A2 and B1B2 are congruent.

Similarly, because of C 1.3.1.2, if A1A2 . . . An ≃ B1B2 . . . Bn instead of saying that the path A1A2 . . . An is weakly
congruent to the path B1B2 . . . Bn, one can say that the paths A1A2 . . . An, B1B2 . . . Bn are weakly congruent (to
each other).

The following simple technical facts will allow us not to worry too much about how we denote paths, especially
polygons, in studying their congruence.

Proposition 1.3.1.3. If a path (in particular, a polygon) A1A2A3 . . . An−1An is weakly congruent to a path (in par-
ticular, a polygon) B1B2B3 . . . Bn−1Bn, the paths A2A3 . . . An−1AnA1 and B2B3 . . . Bn−1BnB1 are also weakly con-
gruent, as are the paths A3A4 . . . AnA1A2 and B3B4 . . ., . . . , AnA1 . . . An−2An−1 and BnB1 . . . Bn−2Bn−1. Further-
more, the paths AnAn−1An−2 . . . A2A1 and BnBn−1Bn−2 . . . B2B1, An−1An−2 . . . A2A1An and Bn−1Bn−2 . . . B2B1Bn,
. . . , A1AnAn−1 . . . A3A2 and B1BnBn−1 . . . B3B2 are then weakly congruent as well. Written more formally, if

245i.e., formed by sides made of pairs of vertices with the same numbers as in the first path
246For convenience, in what follows we shall usually refer to A 1.3.5 instead of L 1.3.1.1.
247The availability of an interval A′B′ with the property AB ≡ A′B′ is guaranteed by A 1.3.1.
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a path (in particular, a polygon) A1A2A3 . . . An−1An is weakly congruent to a path (in particular, a polygon)
B1B2B3 . . . Bn−1Bn, the paths Aσ(1)Aσ(2) . . . Aσ(n−1)Aσ(n) and Bσ(1)Bσ(2) . . . Bσ(n−1)Aσ(n) are also weakly congru-
ent, and more generally, the paths Aσk(1)Aσk(2) . . . Aσk(n−1)Aσk(n) and Bσk(1)Bσk(2) . . . Bσk(n−1)Bσk(n) are weakly
congruent, where σ is the permutation

σ =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)
,

i.e. σ(i) = i + 1, i = 1, 2, . . . n− 1, σ(n) = 1, and k ∈ N. Furthermore, the paths Aτk(1)Aτk(2) . . . Aτk(n−1)Aτk(n) and
Bτk(1)Bτk(2) . . . Bτk(n−1)Bτk(n) are weakly congruent, where τ is the permutation

τ = σ−1 =

(
1 2 . . . n − 1 n
n 1 . . . n − 2 n − 1

)
,

i.e. τ(1) = n, τ(i) = i − 1, i = 2, 3, . . . n, and k ∈ {0} ∪ N.

Proposition 1.3.1.4. If a polygon A1A2A3 . . . An−1An (i.e., a path A1A2 . . . AnAn+1 with An+1 = A1) is congruent
to a polygon B1B2B3 . . . Bn−1Bn (i.e., a path B1B2 . . . BnBn+1 with Bn+1 = B1), the polygon A2A3 . . . An−1AnA1 is
congruent to the polygon B2B3 . . . Bn−1BnB1, and A3A4 . . . AnA1A2 is congruent to B3B4 . . ., . . . , AnA1 . . . An−2An−1

is congruent to BnB1 . . . Bn−2Bn−1. Furthermore, the polygon AnAn−1An−2 . . . A2A1 is congruent to the polygon
BnBn−1Bn−2 . . . B2B1, An−1An−2 . . . A2A1An is congruent to Bn−1Bn−2 . . . B2B1Bn, . . . , A1AnAn−1 . . . A3A2 is
congruent to B1BnBn−1 . . . B3B−2. Written more formally, if a polygon A1A2A3 . . . An−1An is congruent to a poly-
gon B1B2B3 . . . Bn−1Bn, the polygon Aσ(1)Aσ(2) . . . Aσ(n−1)Aσ(n) is congruent to the polygon Bσ(1)Bσ(2) . . . Bσ(n−1)Aσ(n),
and more generally, the polygon Aσk(1)Aσk(2) . . . Aσk(n−1)Aσk(n) is congruent to the polygon Bσk(1)Bσk(2) . . . Bσk(n−1)Bσk(n),
where σ is the permutation

σ =

(
1 2 . . . n − 1 n
2 3 . . . n 1

)
,

i.e. σ(i) = i + 1, i = 1, 2, . . . n − 1, σ(n) = 1, and k ∈ N. Furthermore, the polygon Aτk(1)Aτk(2) . . . Aτk(n−1)Aτk(n)

is congruent to the polygon Bτk(1)Bτk(2) . . . Bτk(n−1)Bτk(n), where τ is the permutation

τ = σ−1 =

(
1 2 . . . n − 1 n
n 1 . . . n − 2 n − 1

)
,

i.e. τ(1) = n, τ(i) = i − 1, i = 2, 3, . . . n, and k ∈ {0} ∪ N.

Proposition 1.3.1.5. Suppose finite sequences of n points A1, A2, . . . , An and B1, B2, . . . , Bn, where n ≥ 3, have
the property that every point of the sequence, except the first (A1, B1) and the last (An, Bn, respectively), lies
between the two points of the sequence with the numbers adjacent (in N) to the number of the given point. Then if
all intervals formed by pairs of points of the sequence A1, A2, . . . , An with adjacent (in N) numbers are congruent to
the corresponding intervals 248 of the sequence B1, B2, . . . , Bn, the intervals formed by the first and the last points
of the sequences are also congruent, A1An ≡ B1Bn. To recapitulate in more formal terms, let A1, A2, . . . , An

and B1, B2, . . . , Bn, n ≥ 3, be finite point sequences such that [AiAi+1Ai+2], [BiBi+1Bi+2] for all i ∈ Nn−2 (i.e.
∀ i = 1, 2, . . . n − 2). Then congruences AiAi+1 ≡ BiBi+1 for all i ∈ Nn−1 imply A1An ≡ B1Bn.

Proof. By induction on n. For n = 3 see A 1.3.3. Now suppose A1An−1 ≡ B1Bn−1 (induction!).249 We have
[A1An−1An], [B1Bn−1Bn] by L 1.2.7.3. Therefore, [A1An−1An] & [B1Bn−1Bn] & A1An−1 ≡ B1Bn−1 & An−1An ≡

Bn−1Bn
A1.3.3
=⇒ A1An ≡ B1Bn. 2

Lemma 1.3.2.1. Let points B1, B2 lie on one side of a line aAC, and some angle ∠(h, k) be congruent to both
∠CAB1 and CAB2. Then the angles ∠CAB1, ∠CAB2, and, consequently, the rays AB1 , AB2 , are identical.

Proof. (See Fig. 1.104.) B1B2aAC & B1 ∈ AB1 & B2 ∈ AB2

T1.2.19
=⇒ AB1AB2aAC . ∠(h, k) ≡ ∠CAB1 & ∠(h, k) ≡

∠CAB2 & AB1AB2aAC
A1.3.4
=⇒ ∠CAB1 = ∠CAB2 ⇒ AB1 = AB2 .

250
2

Corollary 1.3.2.2. If points B1, B2 lie on one side of a line aAC, and the angle ∠CAB1 is congruent to the angle
∠CAB2 then ∠CAB1 = ∠CAB2 and, consequently, AB1 = AB2 .

Proof. By A 1.3.4 ∠CAB1 ≡ ∠CAB1, so we can let ∠(h, k) ⇋ CAB1 and use L 1.3.2.1. 2

248i.e., intervals formed by pairs of points with equal numbers
249We are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for n−1, i.e. if [AiAi+1Ai+2],

[BiBi+1Bi+2] for all i = 1, 2, . . . n− 2, then obviously [AiAi+1Ai+2], [BiBi+1Bi+2] for all i = 1, 2, . . . n− 3; if AiAi+1 ≡ BiBi+1 for all
i = 1, 2, . . . , n− 1, then AiAi+1 ≡ BiBi+1 for all i = 1, 2, . . . , n− 2.
250In what follows we shall increasingly often use simple facts and arguments such as that, for instance,

DAB1
aAC &AB1

AB2
aAC

L1.2.18.2
=⇒ DAB2

aAC without mention, so as not to clutter exposition with excessive trivial details.
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Figure 1.104: If points B1, B2 lie on one side of aAC , and some angle ∠(h, k) is congruent to both ∠CAB1, CAB2,
then the angles ∠CAB1, ∠CAB2, and, consequently, the rays AB1 , AB2 , are identical.

A’

C’

B’ B” A’  =A’B’ B”

C’B”

C’B’

Figure 1.105: Given an interval AB, on any ray A′
X there is at most one point B′ such that AB is congruent to the

interval A′B′

Theorem 1.3.2. Given an interval AB, on any ray A′
X there is exactly one point B′ such that AB is congruent to

the interval A′B′, AB ≡ A′B′.

Proof. (See Fig. 1.105.) To show that given an interval AB, on any ray A′
X there is at most one point B′ such that

AB is congruent to the interval A′B′, suppose the contrary, i.e. ∃B′′ ∈ A′
B′ such that AB ≡ A′B′, AB ≡ A′B′′.

By L 1.1.2.1 ∃C′ /∈ aA′B′ . B′′ ∈ A′
B′

L1.2.11.3
=⇒ A′

B′′ = A′
B′′

A1.3.4
=⇒ ∠B′A′C′ ≡ ∠B′′A′C′. AB ≡ A′B′ & AB ≡

A′B′′ T1.3.1
=⇒ A′B′ ≡ A′B′′. A′B′ ≡ A′B′′ & A′C′ ≡ A′C′ & ∠B′A′C′ ≡ ∠B′′A′C′ L1.3.1.1

=⇒ ∠A′C′B′ ≡ ∠A′C′B′′. B′′ ∈
A′

B′
L1.2.19.8

=⇒ B′′ ∈ (aA′C′)B′ . B′B′′aA′C′ & ∠C′A′B′ ≡ ∠C′A′B′′ C1.3.2.2
=⇒ C′

B′ = C′
B′′ . 251 But, on the other hand,

B′′ ∈ aA′B′ & B′′ 6= B′ P1.1.1.1
=⇒ aA′B′ = aB′B′′ , and C′ /∈ aA′B′ = aB′B′′

C1.1.2.3
=⇒ B′′ /∈ aB′C′

L1.2.11.1
=⇒ C′

B′ 6= C′
B′′ - a

contradiction. 2

Congruence of Triangles: SAS & ASA

A triangle with (at least) two congruent sides is called an isosceles triangle. In an isosceles triangle △ABC with
AB ≡ CB the side AC is called the base of the triangle △ABC, and the angles ∠BAC and ∠ACB are called its
base angles. (See Fig. 1.106.)

Theorem 1.3.3. In an isosceles triangle △ABC with AB ≡ CB the base angles ∠BAC, ∠ACB are congruent.

Proof. Consider △ABC, △CBA. Then AB ≡ CB & CB ≡ AB & ∠ABC ≡ ∠CBA
A1.3.5
=⇒ ∠CAB ≡ ∠ACB. 2

Theorem 1.3.4 (First Triangle Congruence Theorem (SAS)). Let two sides, say, AB and AC, and the angle ∠BAC
between them, of a triangle △ABC, be congruent, respectively, to sides A′B′, A′C′, and the angle ∠B′A′C′ between
them, of a triangle △A′B′C′. Then the triangle △ABC is congruent to the triangle △A′B′C′.

Proof. (See Fig. 1.107.) By A 1.3.5, L 1.3.1.1 AB ≡ A′B′ & AC ≡ A′C′ & ∠A ≡ ∠A′ ⇒ ∠B ≡ ∠B′ & ∠C ≡

∠C′. 252 Show BC ≡ B′C′. By A 1.3.1.1 ∃C′′ ∈ B′
C′ BC ≡ B′C′′. C′′ ∈ B′

C′
L1.2.11.3

=⇒ B′
C′′ = B′

C′ ⇒

∠A′B′C′ = ∠A′B′C′′. AB ≡ A′B′ & BC ≡ B′C′′ & ∠B ≡ ∠B′ = ∠A′B′C′′. C′′ ∈ B′
C′

L1.2.19.8
=⇒ C′′ ∈ (aA′B′)C′ .

251We take into account the obvious fact that the angles ∠B′A′C′, ∠B′′A′C′ are equal to, respectively, to ∠C′A′B′, C′A′B′′.
252Recall that, according to the notation introduced on p. 71, in a △ABC ∠A ⇋ ∠BAC = ∠CAB.
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Figure 1.106: An isosceles triangle with AB ≡ CB.
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B’  =B’C’ C”

Figure 1.107: AB ≡ A′B′, AC ≡ A′C′, and ∠BAC ≡ ∠B′A′C′ imply △ABC ≡ △A′B′C′. (SAS, or The First
Triangle Congruence Theorem)

∠BAC ≡ ∠B′A′C′ & ∠BAC ≡ ∠B′A′C′′ & C′C′′aA′B′
L1.3.2.1
=⇒ A′

C′ = A′
C′′ . Finally, C′′ = C′, because otherwise

C′′ 6= C′ & C′′ ∈ aB′C′ ∩ aA′C′ & C′ ∈ aB′C′ ∩ aA′C′
A1.1.2
=⇒ aA′C′ = aB′C′ - a contradiction . 2

Theorem 1.3.5 (Second Triangle Congruence Theorem (ASA)). Let a side, say, AB, and the two angles ∠A and
∠B adjacent to it (i.e. the two angles of △ABC having AB as a side) of a triangle △ABC, be congruent respectively
to a side A′B′ and two angles, ∠A′ and ∠B′, adjacent to it, of a triangle ∠A′B′C′. Then the triangle △ABC is
congruent to the triangle △A′B′C′.

Proof. (See Fig. 1.108.) By hypothesis, AB ≡ A′B′ & ∠A ≡ ∠A′ & ∠B ≡ ∠B′. By A 1.3.1 ∃C′′ C′′ ∈ A′
C′ & AC ≡

A′C′′. C′′ ∈ A′
C′

L1.2.11.3
=⇒ A′

C′′ = A′
C′ ⇒ ∠B′A′C′ ≡ ∠B′A′C′′. AB ≡ A′B′ & AC ≡ A′C′′ & ∠ABC ≡

∠A′B′C′′ A1.3.5
=⇒ ∠ABC ≡ ∠A′B′C′′. C′′ ∈ A′

C′
L1.2.19.8

=⇒ (aA′B′)C′ . ∠ABC ≡ ∠A′B′C′ & ∠ABC ≡ ∠A′B′C′′

& C′C′′aA′B′
A1.3.4
=⇒ B′

C′ = B′
C′′ . Finally, C′′ = C′, because otherwise C′′ 6= C′ & C′′ ∈ aB′C′ ∩ aA′C′ & C′ ∈

aB′C′ ∩ aA′C′
A1.1.2
=⇒ aA′C′ = aB′C′ - a contradiction . 2

Congruence of Adjacent Supplementary and Vertical Angles

Theorem 1.3.6. If an angle ∠(h, k) is congruent to an angle ∠(h′, k′) , the angle ∠(hc, k) adjacent supplementary
to the angle ∠(h, k) is congruent to the angle ∠(h′c, k′) adjacent supplementary to the angle ∠(h′, k′). 253

Proof. (See Fig. 1.109.) Let B and B′ be the common origins of the triples (3-ray pencils) of rays h, k, hc

and h′, k′, h′c, respectively. Using L 1.2.11.3, A 1.3.1, we can choose points A ∈ h, C ∈ k, D ∈ hc and
A′ ∈ h′, C′ ∈ k′, D′ ∈ h′c in such a way that AB ≡ A′B′, BC ≡ B′C′, BD ≡ B′D′. Then also, by

hypothesis, ∠ABC ≡ ∠A′B′C′. We have AB ≡ A′B′ & BC ≡ B′C′ & ∠ABC ≡ ∠A′B′C′ T1.3.4
=⇒ △ABC ≡

253Under the conditions of the theorem, the angle ∠(h, kc) (which is obviously also adjacent supplementary to the angle ∠(h, k)) is also
congruent to the angle ∠(h′, k′c) (adjacent supplementary to the angle ∠(h′, k′)). But due to symmetry in the definition of angle, this
fact adds nothing new to the statement of the theorem.
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Figure 1.108: AB ≡ A′B′, ∠A ≡ ∠A′, and ∠B ≡ ∠B′ imply △ABC ≡ △A′B′C′. (ASA, or The Second Triangle
Congruence Theorem)

h          A                  B                D        h
c
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C

h’ A’ B’ D’ h’
c

C’

k’

Figure 1.109: If angles ∠(h, k), ∠(h′, k′) are congruent, their adjacent supplementary angles ∠(hc, k), ∠(h′c, k′) are
also congruent.

△A′B′C′ ⇒ AC ≡ A′C′ & ∠CAB ≡ ∠C′A′B′. AB ≡ A′B′ & BD ≡ B′D′ & [ABD] & [A′B′D′]
A1.3.3
=⇒ AD ≡ A′D′.

[ABD] & [A′B′D′]
L1.2.15.1

=⇒ B ∈ AD ∩ DA & A′
D′ ∩ D′

A′ ⇒ B ∈ AD & B′ ∈ A′
D′ & B ∈ DA & B′ ∈ D′

A′
L1.2.11.3

=⇒
AB = AD & A′

B′ = A′
D′ & DB = DA & D′

B′ = D′
A′ ⇒ ∠CAB = ∠CAD & ∠C′A′B′ = ∠C′A′D′ & ∠CDB =

∠CDA& ∠C′D′B′ = ∠C′D′A′. ∠CAB ≡ ∠C′A′B′ & ∠CAB = ∠CAD & ∠C′A′B′ = ∠C′A′D′ ⇒ ∠CAD ≡
∠C′A′D′. AC ≡ A′C′ & AD ≡ A′D′ & ∠CAD ≡ ∠C′A′D′ T1.3.4

=⇒ △ACD ≡ △A′C′D′ ⇒ CD ≡ C′D′ & ∠CDA ≡

∠C′D′A′. ∠CDA ≡ ∠C′D′A′ & ∠CDA = ∠CDB & ∠C′D′A′ = ∠C′D′B′ A1.3.5
=⇒ ∠CBD ≡ ∠C′B′D′. 2

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.6.

Corollary 1.3.6.1. Suppose ∠(h, k), ∠(k, l) are two adjacent supplementary angles (i.e. l = hc) and ∠(h′, k′),
∠(k′, l′) are two adjacent angles such that ∠(h, k) ≡ ∠(h′, k′), ∠(k, l) ≡ ∠(k′, l′). Then the angles ∠(h′, k′), ∠(k′, l′)
are adjacent supplementary, i.e. l′ = h′c. (See Fig. 1.110.)

Proof. Since, by hypothesis, ∠(h′, k′), ∠(k′, l′) are adjacent, by definition of adjacency the rays h′, l′ lie on opposite
sides of k̄′. Since the angles ∠(h, k), ∠(k, l) are adjacent supplementary, as are the angles ∠(h′, k′), ∠(k′, h′c),

we have by T 1.3.6 ∠(k, l) ≡ ∠(k′, h′c). We also have, obviously, h′k̄′h′c. Hence h′k̄′l′ & h′k̄′h′c L1.2.18.4
=⇒ l′h′ck̄′.

∠(k, l) ≡ ∠(k′, l′)& ∠(k, l) ≡ ∠(k′, h′c)& l′h′ck̄′ A1.3.4
=⇒ h′c = l′. Thus, the angles ∠(h′, k′), ∠(k′, l′) are adjacent

supplementary, q.e.d. 2

Corollary 1.3.6.2. Consider two congruent intervals AC, A′C′ and points B, B′, D, D′ such that ∠BAC ≡
∠B′A′C′, ∠DCA ≡ ∠D′C′A′, the points B, D lie on the same side of the line aAC, and the points B′, D′ lie on the
same side of the line aA′C′ . Suppose further that the lines aAB, aCD meet in some point E. Then the lines aA′B′

and aC′D′ meet in a point E′ such that the triangles △AEC, △A′E′C′ are congruent. Furthermore, if the points B,
E lie on the same side of the line aAC then the points B′, E′ lie on the same side of the line aA′C′ , and if the points
B, E lie on the opposite sides of the line aAC then the points B′, E′ lie on the opposite sides of the line aA′C′ . Thus,
if the rays AB, CD meet in E, then the rays A′

B′ meet ray C′
D′ in some point E′.
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Figure 1.110: Suppose ∠(h, k), ∠(k, l) are adjacent supplementary, ∠(h′, k′), ∠(k′, l′) are adjacent, and ∠(h, k) ≡
∠(h′, k′), ∠(k, l) ≡ ∠(k′, l′). Then ∠(h′, k′), ∠(k′, l′) are adjacent complementary, i.e. l′ = h′c.
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h
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Figure 1.111: ∠(h, k) is congruent to its vertical angle ∠(hc, kc).

Proof. Consider first the case where E ∈ AB , that is, the points B, D, E all lie on the same side of aAC (see L 1.2.19.8,
L 1.2.17.1). Using A 1.3.1 take E′ ∈ A′

B′ such that AE ≡ A′E′. Then AC ≡ A′C′ & AE ≡ A′E′ & ∠EAC ≡

∠E′A′C′ T1.3.4
=⇒ △AEC ≡ △A′E′C′ ⇒ ∠ACE ≡ ∠A′C′E′. 254 Taking into account that E ∈ CD

L1.2.11.15
=⇒ ∠ACD =

∠ACE, we can write ∠ACD ≡ ∠A′C′D′ & ∠ACE ≡ ∠A′C′E′ & D′E′aA′C′
A1.3.4
=⇒ A′

E′ = A′
D′ .

Now suppose that the points B, E lie on the opposite sides of the line aAC . Then (see L 1.2.17.10) the points D, E
lie on the opposite sides of aAC . Taking points G, H , G′, H ′ such that [BAG], [DCH ], [B′A′G′], [D′C′H ′] and thus
∠GAC = adjsp∠BAC, ∠HCA = adjsp∠DCA, ∠G′A′C′ = adjsp∠B′A′C′, ∠H ′C′A′ = adjsp∠D′C′A′, we see that
∠GAC ≡ ∠G′A′C′, ∠HCA ≡ ∠H ′C′A′ by hypothesis and in view of T 1.3.6. Using L 1.2.17.9, L 1.2.17.10 we can
write BaACG& BDaAC & DaACH ⇒ GHaAC , BaACE & BaACG ⇒ EGaAC , B′aA′C′G′ & B′D′aA′C′ & D′aA′C′H ′ ⇒
G′H ′aA′C′ , B′aA′C′E′ & B′aA′C′G′ ⇒ E′G′aA′C′ . Thus, the remainder of the proof is essentially reduced to the case
already considered. 2

Theorem 1.3.7. Every angle ∠(h, k) is congruent to its vertical angle ∠(hc, kc).

Proof. ∠(hc, k) = adjsp∠(h, k)& ∠(hc, k) = adjsp∠(hc, kc)& ∠(hc, k) ≡ ∠(hc, k)
T1.3.6
=⇒ ∠(h, k) ≡ ∠(hc, kc). (See

Fig. 1.111.) 2

The following corollary is opposite, in a sense, to the preceding theorem T 1.3.7.

Corollary 1.3.7.1. If angles ∠(h, k) and ∠(hc, k′) (where hc is, as always, the ray complementary to the ray h)
are congruent and the rays k, k′ lie on opposite sides of the line h̄, then the angles ∠(h, k) and ∠(hc, k′) are vertical
angles. (See Fig. 1.112.)

Proof. 255 By the preceding theorem (T 1.3.7) the vertical angles ∠(h, k), ∠(hc, kc) are congruent. We have also

kh̄kc & kh̄k′ L1.2.18.4
=⇒ kck′h̄. Therefore, ∠(h, k) ≡ ∠(hc, kc)& ∠(h, k) ≡ ∠(hc, k′)& kck′h̄

A1.3.4
=⇒ k′ = kc, which

completes the proof. 2

An angle ∠(h′, l′), congruent to an angle ∠(h, l), adjacent supplementary to a given angle ∠(h, k), 256, is said to
be supplementary to the angle ∠(h, k). This fact is written as ∠(h′, l′)suppl∠(h, k). Obviously (see T 1.3.1), this
relation is also symmetric, which gives as the right to speak of the two angles ∠(h, k), ∠(h, l) as being supplementary
(to each other).

254We take into account here that in view of L 1.2.11.3 we have E ∈ AB ⇒ ∠EAC = ∠BAC, E′ ∈ A′
B′ ⇒ ∠E′A′C′ = ∠B′A′C′.

Thus, ∠BAC ≡ ∠B′A′C′ turns into ∠EAC ≡ ∠E′A′C′.
255Alternatively, to prove this corollary we can write: ∠(hc, k) = adjsp∠(h, k)& ∠(hc, k) = adj∠(hc, k′)& ∠(h, k) ≡

∠(hc, k′)& ∠(hc, k) ≡ ∠(hc, k)
C1.3.6.1

=⇒ k′ = kc. Hence the result follows immediately by the preceding theorem T 1.3.7.
256I.e. we have ∠(h′, l′) ≡ ∠(h, l), where l = kc
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Figure 1.112: If angles ∠(h, k),∠(hc, k′) are congruent and k, k′ lie on opposite sides of h̄, then the angles ∠(h, k),
∠(hc, k′) are vertical angles and thus are congruent.

Right Angles and Orthogonality

An angle ∠(h, k) congruent to its adjacent supplementary angle ∠(hc, k) is called a right angle. An angle which is
not a right angle is called an oblique angle.

If ∠(h, k) is a right angle, the ray k, as well as the line k̄, are said to be perpendicular, or orthogonal, to ray h,
as well as the line h̄, written k ⊥ l. (respectively, the fact that the line k̄ is perpendicular to the line h̄ is written as
k̄ ⊥ h̄, etc.) The ray k is also called simply a perpendicular to h̄, and the vertex O of the right angle ∠(h, k) is called
the foot of the perpendicular k. If P ∈ {O} ∪ k, the point O is called the orthogonal projection 257 of the point P
on the line h̄. Furthermore, if Q ∈ h, the interval OQ is called the (orthogonal) projection of the interval OP on the
line k̄.

In general, we shall call the orthogonal projection 258 of the point A on line a and denote by proj(A, a):
– The point A itself if A ∈ a;
– The foot O of the perpendicular to a drawn through A.
Also, if A, B are points each of which lies either outside or on some line a, the interval A′B′ formed by the

orthogonal projections A′, B′ (assuming A′, B′ are distinct!) of the points A, B, respectively, on a, 259 is called the
orthogonal projection of the interval AB on the line a and denoted proj(AB, a).

Note that orthogonality of lines is well defined, because if ∠(h, k) is a right angle, we have ∠(h, k) ≡ ∠, so that
∠(hc, k), ∠(h, kc), ∠(hc, kc) are also right angles.

The concept of projection can be extended onto the case of non-orthogonal projections. Consider a line a
on which one of the two possible orders is defined, an angle ∠(h, k), and a point A. We define the projection
B = proj(A, a, ∠(h, k))260 of the point A on our oriented line under the given angle ∠(h, k) as follows: If A ∈ a then
B ⇋ A. If A /∈ a then B is the (only) point with the property ∠BAC ≡ ∠(h, k), where C is a point succeeding A in
the chosen order. 261 The uniqueness of this point can easily be shown using T 1.3.17. 262

Lemma 1.3.8.1. Given a line aOA, through any point C not on it at least one perpendicular to aOA can be drawn.

Proof. Using A 1.3.4, L 1.2.11.3, A 1.3.1, choose B so that ∠AOC ≡ ∠AOB & OB ⊂ (aOA)c
C & OC ≡ OB ⇒

∃D D ∈ aOA & [CDB]. If D = O (See Fig. 1.113, a).) then ∠AOB = adjsp∠AOC, whence, taking into account
∠AOC ≡ ∠AOB, we conclude that ∠AOC is a right angle. If D ∈ OA (See Fig. 1.113, b).) then from L 1.2.11.3
it follows that OD = OA and therefore ∠AOC = ∠DOC, ∠AOB = ∠DOB. Together with ∠AOC ≡ ∠AOB,

this gives ∠DOC ≡ ∠DOB. We then have OA ≡ OA& OC ≡ OB & ∠DOC ≡ ∠DOB
A1.3.5
=⇒ ∠ODC ≡ ∠ODB.

Since also [CDB], angle ∠ODC is right. If D ∈ Oc
A (See Fig. 1.113, c).) then ∠DOC = adjsp∠AOC & ∠DOB =

adjsp∠AOB & ∠AOC ≡ ∠AOB
T1.3.6
=⇒ ∠DOC ≡ ∠DOB. Finally, OD ≡ OD & OC ≡ OB & ∠DOC ≡ ∠DOB

A1.3.5
=⇒

∠ODC ≡ ∠ODB. 2

Theorem 1.3.8. Right angles exist.

Proof. Follows immediately from L 1.3.8.1. 2

257In our further exposition in this part of the book the word ”projection” will mean orthogonal projection, unless otherwise stated. We
will also omit the mention of the line onto which the interval is projection whenever this mention is not relevant.
258Again, we will usually leave out the word ”orthogonal”. We shall also mention the line on which the interval is projected only on an

as needed basis.
259For example, if both A /∈ a, B /∈ a, then A′, B′ are the feet of the perpendicular to the line a drawn, respectively, through the points
A, B in the planes containing the corresponding points.
260We normally do not mention the direction explicitly, as, once defined and fixed, it is not relevant in our considerations.
261Evidently, the projection is well defined, for is does not depend on the choice of the point C as long as the point C succeeds A. To

see this, we can utilize the following property of the precedence relation: If A ≺ B then A ≺ C for any point C ∈ AB .
262The trivial details are left to the reader to work out as an exercise. Observe that we are not yet in a position to prove the existence

of the projection B of a given point A onto a given line a under a given angle ∠(h, k). Establishing this generally requires the continuity
axioms.
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Figure 1.113: Construction for proof of T 1.3.8. ∠AOC in a) and ∠ODC in b), c) are right angles.

A’ B’                 C’’=C’

A                                B                  C

Figure 1.114: Let B and B′ divide A, C and A′, C′, respectively. Then AB ≡ A′B′, AC ≡ A′C′ imply BC ≡ B′C′.

Lemma 1.3.8.2. Any angle ∠(h′, k′) congruent to a right angle ∠(h, k), is a right angle.

Proof. Indeed, by T 1.3.6, T 1.3.11 we have ∠(h′, k′) ≡ ∠(h, k)& ∠(h, k) ≡ ∠(hc, k) ⇒ ∠(h′c, k′) ≡ ∠(hc, k)& ∠(h′, k′) ≡
∠(h′, k′) ≡ ∠(hc, k) ⇒ ∠(h′, k′) ≡ ∠(h′c, k′). 2

Lemma 1.3.8.3. Into any of the two half-planes into which the line a divides the plane α, one and only one
perpendicular to a with O as the foot can be drawn. 263

Proof. See T 1.3.8, A 1.3.4. 2

Congruence and Betweenness for Intervals

Lemma 1.3.9.1. If intervals AB, A′B′, as well as AC, A′C′, are congruent, B divides A, C, and B′, C′ lie on one
side of A′, then B′ divides A′, C′, and BC, B′C′ are congruent. 264

Proof. (See Fig. 1.114.) By A 1.3.1 ∃C′′ C′′ ∈ (B′
A′)c & BC ≡ B′C′′.

C′′ ∈ (B′
A′)c L1.2.15.2

=⇒ [A′B′C′′]. [A′B′C′] & [A′B′C′′]
L1.2.11.13

=⇒ B′ ∈ A′
C′ & B′ ∈ A′

C′′
L1.2.11.4

=⇒ A′
C′ = A′

C′′ .

AC ≡ A′C′ & AC ≡ A′C′′ & A′
C′ = A′

C′′
A1.3.1
=⇒ A′C′ = A′C′′ ⇒ C′ = C′′. 2

Corollary 1.3.9.2. Given congruent intervals AC, A′C′, for any point B ∈ (AC) there is exactly one point B′ ∈
(A′C′) such that AB ≡ A′B′, BC ≡ B′C′.

263The following formulation of this lemma will also be used: Given a line a and a point O on it, in any plane α containing the line a
there exists exactly one line b perpendicular to a (and meeting it) at O.
264For the particular case where it is already known that the point B′ divides the points A′, C′, we can formulate the remaining part of

the lemma as follows: Let points B and B′ lie between points A,C and A′, C′, respectively. Then congruences AB ≡ A′B′, AC ≡ A′C′

imply BC ≡ B′C′.
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Proof. Using A 1.3.1, choose B′ ∈ A′
C′ so that AB ≡ A′B′. Then apply L 1.3.9.1. Uniqueness follows from T 1.3.1.

2

Proposition 1.3.9.3. Let point pairs B, C and B′, C′ lie either both on one side or both on opposite sides of the
points A and A′, respectively. Then congruences AB ≡ A′B′, AC ≡ A′C′ imply BC ≡ B′C′.

Proof. First, suppose B ∈ AC , B′ ∈ A′
C′ . B ∈ AC & B 6= C

L1.2.11.8
=⇒ [ABC] ∨ [ACB]. Let [ABC]. 265 Then

[ABC] & B′ ∈ A′
C′ & AB ≡ A′B′ & AC ≡ A′C′ L1.3.9.1

=⇒ BC ≡ B′C′.
If B,C and B′, C′ lie on opposite sides of A and A′, respectively, we have [BAC] & [B′A′C′] & AB ≡ A′B′ & AC ≡

A′C′ A1.3.3
=⇒ BC ≡ B′C′. 2

Corollary 1.3.9.4. Let intervals AB, A′B′, as well as AC, A′C′, be congruent. Then if the point B lies between
the points A, C, the point C′ lies outside the interval A′B′ (i.e. C′ lies in the set ExtA′B′ = PaA′B′ \ [A′B′]).

Proof. [ABC]
L1.2.11.13

=⇒ C ∈ AB. B′ 6= C′, because otherwise A′B′ ≡ AB & A′C′ ≡ AC & B = C & C ∈ AB
A1.3.1
=⇒

B = C - a contradiction. Also, C′ /∈ (A′B′), because otherwise [A′C′B′] & C ∈ AB & A′B′ ≡ AB & A′C′ ≡ AC
L1.3.9.1
=⇒

[ACB] ⇒ ¬[ABC] - a contradiction. 2

Congruence and Betweenness for Angles

At this point it is convenient to extend the notion of congruence of angles to include straight angles. A straight
angle ∠(h, hc) is, by definition, congruent to any straight angle ∠(k, kc), including itself, and not congruent to any
extended angle that is not straight.

This definition obviously establishes congruence of straight angles as an equivalence relation.

Theorem 1.3.9. Let h, k, l and h′, k′, l′ be planar 3-ray pencils with the origins O and O′, respectively. Let also
pairs of rays h, k and h′, k′ lie in corresponding planes α and α′ either both on one side or both on opposite sides of
the lines l, l′, respectively. 266 In the case when h, k lie on opposite sides of l we require further that the rays h, k
do not lie on one line. 267 Then congruences ∠(h, l) ≡ ∠(h′, l′), ∠(k, l) ≡ ∠(k′, l′) imply ∠(h, k) ≡ ∠(h′, k′).

Proof. (See Fig. 1.115.) Let h, k lie in α on the same side of l̄. Then, by hypothesis, h′, k′ lie in α′ on the same
side of l̄′. Using A 1.3.1, choose K ∈ k, K ′ ∈ k′, L ∈ l, L′ ∈ l′ so that OK ≡ O′K ′, OL ≡ O′L′. Then, obviously,

by L 1.2.11.3 ∠(k, l) = ∠KOL, ∠(k′, l′) = ∠K ′O′L′. hkl̄ & h′k′ l̄′ & h 6= k & h′ 6= k′ L1.2.21.21
=⇒ (h ⊂ Int∠(k, l) ∨

k ⊂ Int∠(h, l))& (h′ ⊂ ∠(k′, l′) ∨ k′ ⊂ Int∠(h′, l′)). Without loss of generality, we can assume h ⊂ Int∠(k, l),
h′ ⊂ Int∠(k′, l′). 268

The rest of the proof can be done in two ways:

(#1) h ⊂ Int∠(k, l)& K ∈ k & L ∈ l
L1.2.21.10

=⇒ ∃H H ∈ h & [LHK]. By A 1.3.1 ∃H ′ H ′ ∈ h′ & OH ≡

O′H ′. OL ≡ O′L′ & OH ≡ O′H ′ & OK ≡ O′K ′ & ∠HOL ≡ ∠H ′O′L′ & ∠KOL ≡ ∠K ′O′L′ T1.3.4
=⇒ △OHL ≡

△O′H ′L′ &△OKL ≡ △O′K ′L′ ⇒ HL ≡ H ′L′ & KL ≡ K ′L′ & ∠OLH ≡ ∠O′H ′L′ & ∠OLK ≡ ∠O′L′K ′ & ∠OKL ≡

∠O′K ′L′. [LHK]
L1.2.11.15

=⇒ LH = LK ⇒ ∠OLH = ∠OLK. By definition of the interior of the angle ∠(l′, k′), we
have K ′ ∈ k′ & H ′ ∈ h′ & h′ ⊂ Int∠(l′, k′) ⇒ H ′K ′aO′L′ .269 ∠OLH = ∠OLK & ∠OLH ≡ ∠O′L′H ′ & ∠OLK ≡

O′L′K ′ & H ′K ′aO′L′
L1.3.2.1
=⇒ ∠O′L′H ′ = ∠O′L′K ′ ⇒ L′

H′ = L′
K′ ⇒ H ′ ∈ aL′K′ . h′ ⊂ Int∠(l′, k′)& K ′ ∈ k′ & L′ ∈

l′
L1.2.21.10

=⇒ ∃H ′′ H ′′ ∈ h′ & [L′H ′′K ′]. L′ /∈ aO′H′ & H ′ ∈ aO′H′ ∩ aL′K′ & H ′′ ∈ aO′H′ ∩ aL′K′
L1.2.1.5
=⇒ H ′′ = H ′,270

whence [L′H ′K ′]. [LHK] & [L′H ′K ′] & LH ≡ L′H ′ & LK ≡ L′K ′ L1.3.9.1
=⇒ HK ≡ H ′K ′. [KHL] & [K ′H ′L′]

L1.2.11.15
=⇒

KH = KL & K ′
H′ = K ′

L′ ⇒ ∠OKH = ∠OKL & ∠O′K ′H ′ = ∠O′K ′L′. Combined with ∠OKL ≡ ∠O′K ′L′,

this gives ∠OKH ≡ ∠O′K ′H ′. OK ≡ O′K ′ & HK ≡ H ′K ′ & ∠OKH ≡ ∠O′K ′H ′ A1.3.5
=⇒ ∠KOH ≡ ∠K ′O′H ′ ⇒

∠(h, k) ≡ ∠(h′, k′).
Now suppose h, k and h′, k′ lie in the respective planes α and α′ on opposite sides of l̄ and l̄′, respectively.

By hypothesis, in this case hc and k are distinct. Then we also have k′ 6= h′c, for otherwise we would have

k′ = h′c & ∠(h′, l′) ≡ ∠(h, l)& ∠(l′, k′) ≡ ∠(l, k)& hl̄k
C1.3.6.1
=⇒ k = hc - a contradiction. Now we can write

hl̄k & h′l̄′k′ & hcl̄h & h′cl̄′h′ L1.2.18.4
=⇒ hckl̄ & h′ck′ l̄′. ∠(h, l) ≡ ∠(h′, l′)

T1.3.6
=⇒ ∠(hc, l) ≡ (h′c, l′). Using the first part

265Since B, C enter the conditions of the proposition symmetrically, as do B′, C′, because B′ ∈ A′
C′

L1.2.11.3
=⇒ C′ ∈ A′

B′ , we do not
really need to consider the case when [ACB].
266These conditions are met, in particular, when both k ⊂ Int∠(h, l), k′ ⊂ Int∠(h′, l′) (see proof).
267In the case when h, k lie on one line, i.e. when the ray k is the complementary ray of h and thus the angle ∠(h, l) is adjacent

supplementary to the angle ∠(l, k) = ∠(l, hc), the theorem is true only if we extend the notion of angle to include straight angles and declare
all straight angles congruent. In this latter case we can write ∠(h, l) ≡ ∠(h′, l′) &∠(l, k) ≡ ∠(l′, k′)& ∠(l, k) = adjsp∠(h, l)& ∠(l′, k′) =

adj∠(h′, l′)
C1.3.6.1

=⇒ l′ = h′c.
268Note that h, k, as well as, h′, k′, enter the conditions of the theorem symmetrically. Actually, it can be proven that under these

conditions h ⊂ Int∠(l, k) implies h′ ⊂ Int∠(l′, k′) (see P 1.3.9.5 below), but this fact is not relevant to the current proof.
269Obviously, aO′L′ = l̄′.
270Note that aO′H′ = h̄′.
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Figure 1.115: Construction for proof of T 1.3.9, P 1.3.9.5.

of this proof, we can write, hckl̄ & h′ck′ l̄′ & ∠(hc, l) ≡ ∠(h′c, l′)& ∠(k, l) ≡ ∠(k′, l′) ⇒ ∠(hc, k) ≡ ∠(h′c, k′)
T1.3.6
=⇒

∠(h, k) ≡ ∠(h′, k′). 2

(#2) OK ≡ O′K ′ & OL ≡ O′L′ & ∠KOL ≡ ∠K ′O′L′ T1.3.4
=⇒ △OKL ≡ △O′K ′L′ ⇒ KL ≡ K ′L′ & ∠OLK ≡

∠O′L′K ′ & ∠OKL ≡ ∠O′K ′L′. h ⊂ Int∠(k, l)& K ∈ k & L ∈ l & h′ ⊂ Int∠(k′, l′)& K ′ ∈ k′ & L′ ∈ l′
L1.2.21.10

=⇒

(∃H H ∈ h & [LHK])& (∃H ′ H ′ ∈ h′ & [L′H ′K ′]). [LHK] & [L′H ′K ′]
L1.2.11.15

=⇒ LH = LK & L′
H′ = L′

K′ & KH =
KL & K ′

H′ = K ′
L′ ⇒ ∠OLH = ∠OLK & ∠O′L′H ′ = ∠O′L′K ′ & ∠OKH = ∠OKL & ∠O′K ′H ′ = ∠O′K ′L′.

Combined with ∠OLK ≡ ∠O′L′K ′, ∠OKL ≡ ∠O′K ′L, this gives ∠OLH ≡ ∠O′L′H ′, ∠OKH ≡ ∠O′K ′H ′.

OL ≡ O′L′ & ∠HOL ≡ ∠H ′O′L′ & ∠OLH ≡ ∠O′L′H ′ T1.3.5
=⇒ △OHL ≡ ∠O′H ′L′ ⇒ LH ≡ L′H ′ & ∠LHO ≡

∠L′H ′O′. Since [LHK], [L′H ′K ′], we have ∠KHO = adjsp∠LHO & ∠K ′H ′O′ = adjsp∠L′H ′O′. ∠LHO ≡

∠L′H ′O′ & ∠KHO = adjsp∠LHO & ∠K ′H ′O′ = adjsp∠L′H ′O′ T1.3.6
=⇒ ∠KHO ≡ ∠K ′H ′O′. [LHK] & [L′H ′K ′]

& LK ≡ L′K ′ & LH ≡ L′H ′ L1.3.9.1
=⇒ HK ≡ H ′K ′. HK ≡ H ′K ′ & ∠OHK ≡ ∠O′H ′K ′ & ∠OKH ≡ ∠O′K ′H ′ A1.3.5

=⇒
∠HOK ≡ ∠H ′O′K ′ ⇒ ∠(h, k) ≡ ∠(h′, k′). The rest is as in (#1). 2

Proposition 1.3.9.5. Let h, k, l and h′, k′, l′ be planar 3-ray pencils with the origins O and O′. If the ray h lies inside
the angle ∠(l, k), and the rays h′, k′ lie on one side of the line l̄′, the congruences ∠(h, l) ≡ ∠(h′, l′), ∠(k, l) ≡ ∠(k′, l′)
imply h′ ⊂ Int∠(l′, k′). 271

Proof. (See Fig. 1.115.) 272 Using A 1.3.1, choose K ∈ k, K ′ ∈ k′, L ∈ l, L′ ∈ l′ so that OK ≡ O′K ′, OL ≡ O′L′.
Then, obviously, by L 1.2.11.3 ∠(k, l) = ∠KOL, ∠(k′, l′) = ∠K ′O′L′. OL ≡ O′L′ & OK ≡ O′K ′ & ∠KOL ≡

∠K ′O′L′ T1.3.4
=⇒ &△OKL ≡ △O′K ′L′ ⇒ & KL ≡ K ′L′ & ∠OLK ≡ ∠O′L′K ′. h ⊂ Int∠(k, l)& K ∈ k & L ∈

l
L1.2.21.10

=⇒ ∃H H ∈ h & [LHK]. [LHK] & KL ≡ K ′L′ C1.3.9.2
=⇒ ∃H ′ [L′H ′K ′] & LH ≡ L′H ′ & KH ≡ K ′H ′.

[LHK] & [L′H ′K ′]
L1.2.11.15

=⇒ LH = LK & L′
H′ = L′

K′ ⇒ ∠OLH = ∠OLK & ∠O′L′H ′ = ∠O′L′K ′. Combined

with ∠OLK ≡ ∠O′L′K ′, this gives ∠OLH ≡ ∠O′L′H ′. OL ≡ O′L′ & LH ≡ L′H ′ & ∠OLH ≡ ∠O′L′H ′ A1.3.5
=⇒

∠HOL ≡ ∠H ′O′L′. By L 1.2.21.6, L 1.2.21.4 K ′ ∈ k′ & L′ ∈ l′ & [L′H ′K ′] ⇒ O′
H′ ⊂ Int∠(k′, l′) ⇒ O′

H′k′ l̄′. Also,

by hypothesis, k′h′ l̄′, and therefore O′
H′k′ l̄′ & k′h′ l̄′ ∈ l

L1.2.18.2
=⇒ O′

L′h′ l̄′. Finally, ∠(h, l) ≡ ∠(h′, l′)& ∠HOL ≡

∠H ′O′L′ & ∠(h, l) = ∠HOL & O′
H′h′ l̄′ ∈ l

A1.3.4
=⇒ h′ ⊂ Int∠(l′, k′). 2

Corollary 1.3.9.6. Let rays h, k and h′, k′ lie on one side of lines l̄ and l̄′, and let the angles ∠(l, h), ∠(l, k) be
congruent, respectively, to the angles ∠(l′, h′), ∠(l′, k′). Then if the ray h′ lies outside the angle ∠(l′, k′), the ray h
lies outside the angle ∠(l, k).

Proof. Indeed, if h = k then h = k & ∠(l, h) ≡ ∠(l′, h′)& ∠(l, k) ≡ ∠(l′, k′)& h′k′ l̄′
A1.3.4
=⇒ ∠(l′, h′) = ∠(l′, k′) ⇒ h′ =

k′ - a contradiction; if h ⊂ Int∠(l, k) then h ⊂ Int∠(l, k)& h′k′ l̄′ & ∠(l, h) ≡ ∠(l′, h′)& ∠(l, k) ≡ ∠(l′, k′)
P1.3.9.5
=⇒ h′ ⊂

Int∠(l′, k′) - a contradiction. 2

Proposition 1.3.9.7. Let an angle ∠(l, k) be congruent to an angle ∠(l′, k′). Then for any ray h of the same origin
as l, k, lying inside the angle ∠(l, k), there is exactly one ray h′ with the same origin as l′, k′, lying inside the angle
∠(l′, k′) such that ∠(l, h) ≡ ∠(l′, h′), ∠(h, k) ≡ ∠(h′, k′).

Proof. Using A 1.3.4, choose h′ so that h′k′ l̄′ & ∠(l, h) ≡ ∠(l′, h′). The rest follows from P 1.3.9.5, T 1.3.9. 2

271According to T 1.3.9, they also imply in this case ∠(h, k) ≡ ∠(h′, k′).
272Note that this proof, especially in its beginning, follows closely in the footsteps of the proof of T 1.3.9.
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Congruence of Triangles:SSS

Lemma 1.3.10.1. If points Z1, Z2 lie on opposite sides of a line aXY , the congruences XZ1 ≡ XZ2, Y Z1 ≡ Y Z2

imply ∠XY Z1 ≡ XY Z2 (and ∠Y XZ1 ≡ ∠Y XZ2).

Proof. Z1aXY Z2 ⇒ ∃X ′ X ′ ∈ aXY & [Z1X
′Z2]. Observe that the lines aXY , aZ1Z2 meet only in X ′, because Z1 /∈

aXY ⇒ aZ1Z2 6= aXY , and therefore for any Y ′ such that Y ′ ∈ aXY , Y ′ ∈ aZ1Z2 , we have X ′ ∈ aXY ∩ aZ1Z2 & Y ′ ∈

aXY ∩ aZ1Z2

T1.1.1
=⇒ Y ′ = X ′. 273 We also assume that Y /∈ aZ1Z2 .

274 For the isosceles triangle △Z1Y Z2

the theorem T 1.3.3 gives Y Z1 ≡ Y Z2 ⇒ ∠Y Z1Z2 ≡ Y Z2Z1. On the other hand, [Z1X
′Z2]

L1.2.11.15
=⇒ Z1X′ =

Z1Z2
& Z2X′ = Z2Z1

⇒ ∠Y Z1X
′ = ∠Y Z1Z2 & ∠Y Z2X

′ = ∠Y Z2Z1. Therefore, ∠Y Z1Z2 ≡ ∠Y Z2Z1 & ∠Y Z1X
′ =

∠Y Z1Z2 & ∠Y Z2Z = ∠Y Z2Z1 ⇒ ∠Y Z1X
′ ≡ ∠Y Z2X

′.
Let Z1, Z2, X be collinear, i.e. X ∈ aZ1Z2 (See Fig. 1.116, a)). Then we have X ∈ aXY ∩ aZ1Z2 ⇒ X ′ = X ,

and we can write XZ1 ≡ XZ2 & Y Z1 ≡ Y Z2 & ∠Y Z1X
′ ≡ ∠Y Z2X

′ T1.3.4
=⇒ △XY Z1 ≡ △XY Z2 ⇒ ∠XY Z1 ≡

∠XY Z2 & ∠Y XZ1 ≡ XY Z2.
275

Now suppose neither X nor Y lie on aZ1Z2 . In this case X ′ ∈ aXY & X ′ 6= X 6= Y
T1.2.2
=⇒ [X ′XY ] ∨ [X ′Y X ] ∨

[XX ′Y ]. Suppose [X ′XY ] (See Fig. 1.116, b)). 276 Then Y ∈ ZiY & X ′ ∈ ZiX′ & X ∈ ZiX
L1.2.21.6,L1.2.21.4

=⇒

ZiX ⊂ Int∠Y ZiX
′, where i = 1, 2. [X ′XY ]

L1.2.11.15
=⇒ X ′

X = X ′
Y ⇒ ∠Z1X

′X = ∠Z1X
′Y & ∠Z2X

′X =
∠Z2X

′Y . Furthermore, arguing exactly as above, we see that XZ1X
′ = ∠XZ1Z2 & ∠XZ2X

′ = ∠XZ2Z1, whence
∠XZ1X

′ ≡ ∠XZ2X
′. Using T 1.3.9 we obtain ∠XZ1Y ≡ ∠XZ2Y , which allows us to write XZ1 ≡ XZ2 & Y Z1 ≡

Y Z2 & ∠XZ1Y ≡ ∠XZ2Y
T1.3.4
=⇒ △XZ1Y ≡ △XZ2Y ⇒ ∠XY Z1 ≡ XY Z2 & ∠Y XZ1 ≡ ∠Y XZ2.

Finally, suppose [XX ′Y ] (See Fig. 1.116, c)). Then [XX ′Y ] ⇒ [Y X ′X ]
L1.2.11.15

=⇒ YX′ = YX ⇒ ∠XY Zi ≡
∠X ′Y Zi, where i = 1, 2. Together with ∠X ′Y Z1 ≡ ∠X ′Y Z2, this gives ∠XY Z1 ≡ ∠XY Z2. 2

Theorem 1.3.10 (Third Triangle Congruence Theorem (SSS)). If all sides of a triangle △ABC are congruent to
the corresponding sides of a triangle △A′B′C′, i.e. if AB ≡ A′B′, BC ≡ B′C′, AC ≡ A′C′, the triangle △ABC is
congruent to the triangle △A′B′C′. In other words, if a triangle △ABC is weakly congruent to a triangle △A′B′C′,
this implies that the triangle △ABC is congruent to the triangle △A′B′C′.

Proof. (See Fig. 1.117.) By hypothesis, △ABC ≃ △A′B′C′, i.e., AB ≡ A′B′, BC ≡ B′C′, AC ≡ A′C′. Using
A 1.3.4, A 1.3.1, L 1.2.11.3, choose B′′ so that C′

B′′C′
B′aA′C′ , ∠ACB ≡ ∠A′C′B′′, BC ≡ B′′C′, and then choose

B′′′ so that C′
B′′′aA′C′C′

B′′ .277 Then we have AC ≡ A′C′ & BC ≡ B′′C′ & ∠ACB ≡ ∠A′C′B′′ T1.3.4
=⇒ △ABC ≡

△A′B′′C′ ⇒ AB ≡ A′B′′. A′C′ ≡ A′C′ & B′′C′ ≡ B′′′C′ & ∠A′C′B′′ ≡ ∠A′C′B′′′ T1.3.4
=⇒ △A′B′′C′ ≡ △A′B′′′C′ ⇒

AB ≡ A′B′′. Since AB ≡ A′B′ & AB ≡ A′B′′ & A′B′′ ≡ A′B′′′ & BC ≡ B′C′ & BC ≡ B′′C′ & B′′C′ ≡ B′′′C′ T1.3.1
=⇒

A′B′′′ ≡ A′B′ & A′B′′′ ≡ A′B′′ & B′′′C′ ≡ B′C′ & B′′′C′ ≡ B′′C′ T1.3.1
=⇒ B′′C′ ≡ B′C′, B′′B′aA′C′ & B′′′aA′C′B′′ L1.2.17.10

=⇒

B′′′aA′C′B′, we have A′B′′′ ≡ A′B′′ & B′′′C′ ≡ B′′C′ & B′′′aA′C′B′′ L1.3.10.1
=⇒ ∠A′C′B′′′ ≡ ∠A′C′B′′, A′B′′′ ≡

A′B′ & B′′′C′ ≡ B′C′ & B′′′aA′C′B′. Finally, ∠A′C′B′′′ ≡ ∠A′C′B′′ & ∠A′C′B′′′ ≡ ∠A′C′B′ & C′
B′′C′

B′aA′C′
A1.3.4
=⇒

∠A′C′B′′ = ∠A′C′B′ ⇒ C′
B′′ = C′

B′′ , C′B′′ ≡ C′B′ & C′
B′′ = C′

B′
A1.3.1
=⇒ B′′ = B′. 2

Congruence of Angles and Congruence of Paths as Equivalence Relations

Lemma 1.3.11.1. If angles ∠(h′, k′), ∠(h′′, k′′) are both congruent to an angle ∠(h, k), the angles ∠(h′, k′), ∠(h′′, k′′)
are congruent to each other, i.e., ∠(h′, k′) ≡ ∠(h′′, k′′) and ∠(h′′, k′′) ≡ ∠(h′, k′).

Proof. (See Fig. 1.118.) Denote O, O′, O′′ the vertices of the angles ∠(h, k), ∠(h′, k′), ∠(h′′, k′′), respectively. Us-
ing A 1.3.1, choose H ∈ h, K ∈ k, H ′ inh′, K ′ ∈ k′, H ′′ ∈ h′′ so that OH ≡ O′H ′, OK ≡ O′K ′, OH ≡ O′′H ′′,
OK ≡ O′′K ′′, whence by T 1.3.1 O′H ′ ≡ OH , O′K ′ ≡ OK, O′′H ′′ ≡ OH , O′′K ′′ ≡ OK, and by L 1.2.21.1 ∠HOK =
∠(h, k), ∠H ′O′K ′ = ∠(h′, k′), ∠H ′′O′′K ′′ = ∠(h′′, k′′). Then we have O′H ′ ≡ OH & O′K ′ ≡ OK & ∠H ′O′K ′ ≡

∠HOK & O′′H ′′ ≡ OH & O′′K ′′ ≡ OK & ∠H ′′O′′K ′′ T1.3.4
=⇒ △H ′O′K ′ ≡ △HOK &△H ′′O′′K ′′ ≡ △HOK ⇒

K ′H ′ ≡ KH & K ′′H ′′ ≡ KH
T1.3.1
=⇒ K ′H ′ ≡ K ′′H ′′. Also, O′H ′ ≡ OH & O′′H ′′ ≡ OH & O′K ′ ≡ OK & O′′K ′′ ≡

273We take into account that, obviously, [Z1X′Z2]
L1.2.1.3

=⇒ X′ ∈ aZ1Z2
.

274We can assume this without loss of generality - see next footnote.
275Observe that the seemingly useless fact that ∠Y XZ1 ≡ Y XZ2 allows us to avoid considering the case Y ∈ aZ1Z2

separately. Instead,
we can substitute X for Y and Y for X to obtain the desired result, taking advantage of the symmetry of the conditions of the theorem
with respect to this substitution.
276Again, because of obvious symmetry with respect to substitution X → Y , Y → X, we do not need to consider the case when [X′Y X].

Note that we could have avoided this discussion altogether if we united both cases [X′XY ], [X′Y X] into the equivalent Y ∈ X′
X , Y 6= X,

but the approach taken here has the appeal of being more illustrative.
277To be more precise, we take a point B0 such that C′

B′′aA′C′B0, and then, using A 1.3.4, draw the angle ∠A′C′B′′′ such

that C′
B′′′B0aA′C′ , ∠A′C′B′′ ≡ ∠A′C′B′′′, B′′C′ ≡ B′′′C′. We then have, of course, C′

B′′aA′C′B0 &C′
B′′′B0aA′C′

L1.2.18.5
=⇒

C′
B′′′aA′C′C′

B′′ . Using jargon, as we did here, allows one to avoid cluttering the proofs with trivial details, thus saving the space
and intellectual energy of the reader for more intricate points.
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X’ X Y

Z2
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XY X’

aXY

aXY

a) b)

c)

Figure 1.116: If points Z1, Z2 lie on opposite sides of a line aXY , the congruences XZ1 ≡ XZ2, Y Z1 ≡ Y Z2 imply
∠XY Z1 ≡ XY Z2. In a) Z1, Z2, X are collinear, i.e. X ∈ aZ1Z2 ; in b), c) X , Y do not lie on aZ1Z2 and [X ′XY ] in
b), [XX ′Y ] in c).

A

B

C
A’

B’’=B’

C’

B’’’ B0

Figure 1.117: if AB ≡ A′B′, BC ≡ B′C′, AC ≡ A′C′, the triangle △ABC is congruent to the triangle △A′B′C′

(SSS, or The Third Triangle Congruence Theorem ).
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k’’

Figure 1.118: ∠(h′, k′) ≡ ∠(h, k) and ∠(h′′, k′′) ≡ ∠(h, k) imply ∠(h′, k′) ≡ ∠(h′′, k′′) and ∠(h′′, k′′) ≡ ∠(h′, k′).

OK
T1.3.1
=⇒ O′H ′ ≡ O′′H ′′ & O′K ′ ≡ O′′K ′′. Finally, O′H ′ ≡ O′′H ′′ & O′K ′ ≡ O′′K ′′ & K ′H ′ ≡ K ′′H ′′ T1.3.10

=⇒
△H ′O′K ′ ≡ △H ′′O′′K ′′ ⇒ ∠H ′O′K ′ ≡ ∠H ′′O′′K ′′ ⇒ ∠(h′, k′) ≡ ∠(h′′, k′′). 2

Theorem 1.3.11. Congruence of angles is a relation of equivalence on the class of all angles, i.e. it possesses the
properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity follows from A 1.3.4.

Symmetry: Let ∠(h, k) ≡ ∠(h′, k′). Then ∠(h′, k′) ≡ ∠(h′, k′)& ∠(h, k) ≡ ∠(h′, k′)
L1.3.11.1

=⇒ ∠(h′, k′) ≡ ∠(h, k).

Transitivity: ∠(h, k) ≡ ∠(h′, k′)& ∠(h′, k′) ≡ ∠(h′′, k′′)
above
=⇒ ∠(h, k) ≡ ∠(h′, k′)& ∠(h′′, k′′) ≡ ∠(h′, k′)

L1.3.11.1
=⇒

∠(h, k) ≡ ∠(h′′, k′′). 2

Therefore, if an angle ∠(h, k) is congruent to an angle ∠(h′, k′), we can say the angles ∠(h, k), ∠(h′, k′) are
congruent (to each other).

Corollary 1.3.11.2. Congruence of paths (in particular, of polygons) is a relation of equivalence on the class of all
paths. That is, any path A1A2 . . . An is congruent to itself. If a path A1A2 . . . An is congruent to a path B1B2 . . . Bn,
the path B1B2 . . . Bn is congruent to the path A1A2 . . . An. A1A2 . . . An ≡ B1B2 . . . Bn, B1B2 . . . Bn ≡ C1C2 . . . Cn

implies A1A2 . . . An ≡ C1C2 . . . Cn.

Proof. 2

Again, if a path, in particular, a polygon, A1A2 . . . An is congruent to a path B1B2 . . . Bn, we shall also say (and
C 1.3.11.2 gives us the right to do so) that the paths A1A2 . . . An and B1B2 . . . Bn are congruent.

We are now in a position to prove theorem opposite to T 1.3.3.

Theorem 1.3.12. If one angle, say, ∠CAB, of a triangle △ABC is congruent to another angle, say, ∠ACB, then
△ABC is an isosceles triangle with ∠ABC ≡ ∠ABC.

Proof. Let in a △ABC ∠CAB ≡ ∠ACB. Then by T 1.3.12 ∠ACB ≡ ∠CAB and AC ≡ & ∠CAB ≡ ∠ACB & ∠CAB ≡

∠ACB
T1.3.11
=⇒ △CAB ≡ △ACB ⇒ AB ≡ CB. 2

Comparison of Intervals

Lemma 1.3.13.1. For any point C lying on an open interval (AB), there are points E, F ∈ (AB) such that
AC ≡ EF .

Proof. (See Fig. 1.119.) Suppose [ACB]. By T 1.2.1 ∃F [CFB]. Then [ACB] & [CFB]
L1.2.3.2
=⇒ [ACF ] & [AFB].

[ACF ] & AF ≡ FA
C1.3.9.2
=⇒ ∃E [FEA] & AC ≡ FE. Finally, [AEF ] & [AFB]

L1.2.3.2
=⇒ [AEB]. 2

The following lemma is opposite, in a sense, to L 1.3.13.1
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A E C F B

Figure 1.119: Construction for L 1.3.13.1, L 1.3.13.2.

Lemma 1.3.13.2. For any two (distinct) points E, F lying on an open interval (AB), there is exactly one point
C ∈ (AB) such that EF ≡ AC.

Proof. (See Fig. 1.119.) By P 1.2.3.4 [AEF ] ∨ [AFE]. Since E, F enter the conditions of the lemma symmetrically,

we can assume without any loss of generality that [AEF ]. Then AF ≡ FA& [FEA]
C1.3.9.2
=⇒ ∃!C FE ≡ AC & [ACF ].

Finally, [ACF ] & [AFB]
L1.2.3.2
=⇒ [ACB]. 2

An (abstract) interval A′B′ is said to be shorter, or less, than or congruent to an (abstract) interval AB, written
A′B′ < AB, if there is an interval CD such that the abstract interval A′B′ is congruent to the interval CD, and the
open interval (CD) is included in the open interval (AB).278 If A′B′ is shorter than or congruent to AB, we write
this fact as A′B′ ≦ AB. Also, if an interval A′B′ is shorter than or congruent to an interval AB, we shall say that
the (abstract) interval AB is longer, or greater than or congruent to the (abstract) interval A′B′, and write this as
AB ≧ A′B′.

If an (abstract) interval A′B′ is shorter than or congruent to an (abstract) interval AB, and, on the other hand,
the interval A′B′ is known to be incongruent (not congruent) to the interval AB, we say that the interval A′B′ is
strictly shorter, or strictly less 279 than the interval AB, and write A′B′ < AB. If an interval A′B′ is (strictly)
shorter than an interval AB, we shall say also that the (abstract) interval AB is strictly longer, or strictly greater
280 than (abstract) interval A′B′, and write this as AB > A′B′.

Lemma 1.3.13.3. An interval A′B′ is (strictly) shorter than an interval AB iff:
– 1. There exists a point C on the open interval (AB) such that the interval A′B′ is congruent to the interval

AC; 281 or
– 2. There are points E, F on the open interval AB such that A′B′ ≡ EF .
In other words, an interval A′B′ is strictly shorter than an interval AB iff there is an interval CD, whose ends

both lie on a half-open [AB) (half-closed interval (AB]), such that the interval A′B′ is congruent to the interval CD.

Proof. Suppose A′B′ ≡ AC and C ∈ (AB). Then by L 1.2.3.2, L 1.2.11.13 C ∈ (AB) ⇒ (AC) ⊂ AB & C ∈ AB.

Therefore, A′B′ ≦ AB. Also, A′B′ 6≡ AB, because otherwise C ∈ AB & A′B′ ≡ AC & A′B′ ≡ AB
A1.3.1
=⇒ AC =

AB ⇒ C = B, whence C /∈ (AB) - a contradiction. Thus, we have A′B′ ≦ AB & A′B′ 6≡ AB, i.e. A′B′ < AB.
Suppose A′B′ ≡ EF , where E ∈ (AB), F ∈ (AB). By L 1.3.13.2 ∃C C ∈ (AB)& EF ≡ AC. Then A′B′ ≡

EF & EF ≡ AC
T1.3.1
=⇒ A′B′ ≡ AC and A′B′ ≡ AC & C ∈ (AB)

above
=⇒ A′B′ < AB.

Now suppose A′B′ < AB. By definition, this means that there exists an (abstract) interval CD such that

(CD) ⊂ (AB), A′B′ ≡ CD, and also A′B′ 6≡ AB. Then we have (CD) ⊂ (AB)
L1.2.16.10

=⇒ C ∈ [AB] & D ∈ [AB],
A′B′ 6≡ AB & A′B′ ≡ CD ⇒ CD 6= AB. Therefore, either one of the ends or both ends of the interval CD lie on the
open interval (AB). The statement in 1. then follows from L 1.3.13.2, in 2.– from L 1.3.13.3. 2

Observe that the lemma L 1.3.13.3 (in conjunction with A 1.3.1) indicates that we can lay off from any point an
interval shorter than a given interval. Thus, there is actually no such thing as the shortest possible interval.

Corollary 1.3.13.4. If a point C lies on an open interval (AB) (i.e. C lies between A and B), the interval AC is
(strictly) shorter than the abstract interval AB.

If two (distinct) points E, F lie on an open interval (AB), the interval EF is (strictly) less than the interval AB.

Proof. Follows immediately from L 1.3.13.3. 2

Lemma 1.3.13.5. An interval A′B′ is shorter than or congruent to an interval AB iff there is an interval CD
whose ends both lie on the closed interval [AB], such that the interval A′B′ is congruent to the interval CD.

Proof. Follows immediately from L 1.2.16.12 and the definition of ”shorter than or congruent to”. 2

Lemma 1.3.13.6. If an interval A′′B′′ is congruent to an interval A′B′ and the interval A′B′ is less than an interval
AB, the interval A′′B′′ is less than the interval AB.

Proof. (See Fig. 1.120.) By definition and L 1.3.13.3, A′B′ < AB ⇒ ∃C C ∈ (AB)& A′B′ ≡ AC. A′′B′′ ≡

A′B′ & A′B′ ≡ AC
T1.3.1
=⇒ A′′B′′ ≡ AC. A′′B′′ ≡ AC & C ∈ (AB) ⇒ A′′B′′ < AB. 2

278This definition is obviously consistent, as can be seen if we let CD = AB.
279We shall usually omit the word ’strictly’.
280Again, we shall omit the word ’strictly’ whenever we feel that this omission does not lead to confusion
281We could have said here also that A′B′ < AB iff there is a point D ∈ (AB) such that A′B′ ≡ BD, but because of symmetry this

adds nothing new to the statement of the theorem, so we do not need to consider this case separately.

124



A’’ B’’

A’ B’

A C B

Figure 1.120: If an interval A′′B′′ is congruent to an interval A′B′ and the interval A′B′ is less than an interval AB,
the interval A′′B′′ is less than the interval AB.

A’’ B’’

A’ C’ B’

A C B

Figure 1.121: If an interval A′′B′′ is less than an interval A′B′ and the interval A′B′ is congruent to an interval AB,
the interval A′′B′′ is less than the interval AB.

Lemma 1.3.13.7. If an interval A′′B′′ is less than an interval A′B′ and the interval A′B′ is congruent to an interval
AB, the interval A′′B′′ is less than the interval AB.

Proof. (See Fig. 1.121.) A′′B′′ < A′B′ ⇒ ∃C′ C′ ∈ (A′B′)& A′′B′′ ≡ A′C′. A′B′ ≡ AB & C′ ∈ (A′B′)
C1.3.9.2
=⇒

∃C C ∈ (AB)& A′C′ ≡ AC. A′′B′′ ≡ A′C′ & A′C′ ≡ AC
T1.3.1
=⇒ A′′B′′ ≡ AC. A′′B′′ ≡ AC & C ∈ (AB) ⇒ A′′B′′ <

AB. 2

Lemma 1.3.13.8. If an interval A′′B′′ is less than an interval A′B′ and the interval A′B′ is less than an interval
AB, the interval A′′B′′ is less than the interval AB.

Proof. (See Fig. 1.122.) A′′B′′ < A′B′ ⇒ ∃C′ C′ ∈ (A′B′)& A′′B′′ ≡ A′C′. A′B′ < AB ⇒ ∃D D ∈ (AB)& A′B′ ≡

AD. C′ ∈ (A′B′)& A′B′ ≡ AD
C1.3.9.2
=⇒ ∃C C ∈ (AD)& A′C′ ≡ AC. A′′B′′ ≡ A′C′ & A′C′ ≡ AC

T1.3.1
=⇒ A′′B′′ ≡ AC.

[ACD] & [ADB]
L1.2.3.2
=⇒ [ACB]. A′′B′′ ≡ AC & [ACB] ⇒ A′′B′′ < AB. 2

Lemma 1.3.13.9. If an interval A′′B′′ is less than or congruent to an interval A′B′ and the interval A′B′ is less
than or congruent to an interval AB, the interval A′′B′′ is less than or congruent to the interval AB.

A’’ B’’

A’ C’ B’

A C D B

Figure 1.122: If an interval A′′B′′ is less than an interval A′B′ and the interval A′B′ is less than an interval AB, the
interval A′′B′′ is less than the interval AB.
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Proof. We have, using T 1.3.1, L 1.3.13.6, L 1.3.13.7, L 1.3.13.8 on the way: A′′B′′ ≦ A′B′ & A′B′ ≦ AB ⇒ (A′′B′′ <
A′B′ ∨ A′′B′′ ≡ A′B′)& (A′B′ < AB ∨ A′B′ ≡ AB) ⇒ (A′′B′′ < A′B′ & A′B′ < AB) ∨ (A′′B′′ < A′B′ & A′B′ ≡
AB) ∨ (A′′B′′ ≡ A′B′ & A′B′ < AB) ∨ (A′′B′′ ≡ A′B′ & A′B′ ≡ AB) ⇒ A′′ < B′′ ∨ A′′B′′ ≡ AB ⇒ A′′B′′ ≦ AB. 2

Lemma 1.3.13.10. If an interval A′B′ is less than an interval AB, the interval AB cannot be less than the interval
A′B′.

Proof. Suppose the contrary, i.e., that both A′B′ < AB and AB < A′B′, that is, ∃C C ∈ (AB)& A′B′ ≡ AC and

∃C′ C′ ∈ (A′B′)& AB ≡ A′C′. Then A′B′ ≡ AC
T1.3.1
=⇒ AC ≡ A′B′ and AC ≡ A′B′ & AB ≡ A′C′ & [ACB]

C1.3.9.4
=⇒

C′ ∈ ExtA′B′ – a contradiction with C′ ∈ (A′B′). 2

Lemma 1.3.13.11. If an interval A′B′ is less than an interval AB, it cannot be congruent to that interval.

Proof. Suppose the contrary, i.e. that both A′B′ < AB and A′B′ ≡ AB. We have then A′B′ < AB ⇒ ∃C C ∈

(AB)& A′B′ ≡ AC. [ACB]
L1.2.11.13

=⇒ C ∈ AB. But A′B′ ≡ AC & A′B′ ≡ AB & C ∈ AB
A1.3.1
=⇒ C = B - a

contradiction. 2

Corollary 1.3.13.12. If an interval A′B′ is congruent to an interval AB, neither A′B′ is shorter than AB, nor
AB is shorter than A′B′.

Proof. Follows immediately from L 1.3.13.11. 2

Lemma 1.3.13.13. If an interval A′B′ is less than or congruent to an interval AB and the interval AB is less than
or congruent to the interval A′B′, the interval A′B′ is congruent to the interval AB.

Proof. (A′B′ < AB ∨ A′B′ ≡ AB)& (AB < A′B′ ∨ AB ≡ A′B′) ⇒ A′B′ ≡ AB, because A′B′ < AB contradicts
both AB < A′B′ and A′B′ ≡ AB in view of L 1.3.13.10, L 1.3.13.11. 2

Lemma 1.3.13.14. If an interval A′B′ is not congruent to an interval AB, then either the interval A′B′ is less
than the interval AB, or the interval AB is less than the interval A′B′.

Proof. Using A 1.3.1, choose points C ∈ AB , C′ ∈ A′
B′ so that A′B′ ≡ AC, AB ≡ A′C′. Then C 6= B, because

A′B′ 6≡ AB by hypothesis, and C ∈ AB & C 6= B
L1.2.11.8

=⇒ [ACB] ∨ [ABC]. We have in the first case (i.e., when
[ACB]) [ACB] & A′B′ ≡ AC ⇒ A′B′ < AB, and in the second case AB ≡ A′C′ & AC ≡ A′B′ & [ABC] & C′ ∈

A′
B′

L1.3.9.1
=⇒ [A′C′B′], [A′C′B′] & AB ≡ A′C′ ⇒ AB < A′B′. 2

An (extended) angle ∠(h′, k′) is said to be less than or congruent to an (extended) angle ∠(h, k) if there is an
angle ∠(l, m) with the same vertex O as ∠(h, k) such that the angle ∠(h′, k′) is congruent to the angle ∠(l, m) and
the interior of the angle ∠(l, m) is included in the interior of the angle ∠(h, k). If ∠(h′, k′)is less than or congruent
to ∠(h, k), we shall write this fact as ∠(h′, k′) ≦ ∠(h, k). If an angle ∠(h′, k′) is less than or congruent to an angle
∠(h, k), we shall also say that the angle ∠(h, k) is greater than or congruent to the angle ∠(h′, k′), and write this as
∠(h, k) ≧ ∠(h′, k′).

If an angle ∠(h′, k′)is less than or congruent to an angle ∠(h, k), and, on the other hand, the angle ∠(h′, k′) is
known to be incongruent (not congruent) to the angle ∠(h, k), we say that the angle ∠(h′, k′) is strictly less 282 than
the angle ∠(h, k), and write this as ∠(h′, k′) < ∠(h, k). If an angle ∠(h′, k′) is (strictly) less than an angle ∠(h, k),
we shall also say that the angle ∠(h, k) is strictly greater 283 than the angle ∠(h′, k′).

Obviously, this definition implies that any non-straight angle is less than a straight angle.

We are now in a position to prove for angles the properties of the relations ”less than” and ”less than or congruent
to” (and, for that matter, the properties of the relations ”greater than” and greater than or congruent to”) analogous
to those of the corresponding relations of (point) intervals. It turns out, however, that we can do this in a more
general context. Some definitions are in order.

Generalized Congruence

Let Cgbr be a subclass of the class Cgbr
0 of all those sets J that are equipped with a (weak) generalized betweenness

relation.284 Generalized congruence is then defined by its properties Pr 1.3.1 – Pr 1.3.5 as a relation ρ ⊂ I2, where
I ⇋ {{A,B}|∃J ∈ Cgbr A ∈ J &B ∈ J}. 285 If a pair (AB, CD) ∈ ρ, we say that the generalized abstract interval AB

282We shall usually omit the word ’strictly’.
283Again, the word ’strictly’ is normally omitted
284As we shall see, in practice the subclass Cgbr is ”homogeneous”, i.e. its elements are of the same type: they are either all lines, or

pencils of rays lying on the same side of a given line, etc.
285This notation, obviously, shows that the two - element set (generalized abstract interval) {A,B}, formed by geometric objects A, B,

lies in the set {{A,B}|∃J ∈ Cgbr (A ∈ J&B ∈ J)} iff there is a set J in Cgbr, containing both A and B.
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is congruent to the generalized abstract interval CD and write, as usual, AB ≡ CD. We also denote, for convenience,
J∪ ⇋

⋃
J∈Cgbr

J. 286

Property 1.3.1. Suppose AB is a generalized abstract interval formed by geometric objects A, B lying in a set J

from the class Cgbr. Then for any geometric object A′ ∈ J∪ and any geometric object X ′ ∈ J∪ distinct from A′ and
such that A′X ′ ∈ I, 287 there is at least one geometric object B′ ∈ J∪ with the properties that X ′, B′ lie in some
set J′ ∈ Cgbr on one side of the geometric object A′288 and such that the generalized interval AB is congruent to the
generalized interval A′B′.

Furthermore, given two distinct geometric objects A, B, where A,B ∈ J ∈ Cgbr, and a geometric object A′ ∈ J′ ∈
Cgbr, then for any geometric object X ′ ∈ J′, X ′ 6= A′, there is at most 289 one geometric object B′ such that X ′,
B′ lie in the set J′ with generalized betweenness relation on one side of the geometric object A′ and the generalized
intervals AB and A′B′ are congruent.

Property 1.3.2. If generalized (abstract) intervals A′B′, where A′,B′ ∈ J′ and A′′B′′, where A′′,B′′ ∈ J′′ are
both congruent to a generalized interval AB, where A,B ∈ J, then the generalized interval A′B′ is congruent to the
generalized interval A′′B′′.

Property 1.3.3. If generalized intervals AB, A′B′, as well as AC, A′C′, formed by the geometric objects A,B, C ∈ J

and A′,B′, C′ ∈ J′, (where J,J ′ ∈ Cgbr) are congruent, B divides A, C, and B′, C′ lie on one side of A′, then B′

divides A′, C′, and BC, B′C′ are congruent. 290

Property 1.3.4. Suppose a geometric object B lies in a set J ∈ Cgbr (with generalized betweenness relation) between
geometric objects A ∈ J, C ∈ J. Then any set J′ ∈ Cgbr containing the geometric objects A, C, will also contain the
geometric object B.

Property 1.3.5. Any generalized interval AB ∈ I, A,B ∈ J, has a midpoint, 291 i.e. ∃C AC ≡ AB, where
A,B, C ∈ J.

The idea of generalized congruence is partly justified by the following L 1.3.13.15, T 1.3.13, although we are not
yet in a position to fully prove that congruence of (conventional) intervals is a generalized congruence.

Lemma 1.3.13.15. Congruence of (conventional) intervals satisfies the properties P 1.3.1 – P 1.3.3, P 1.3.6. (Here
Cgbr = {J|J = Pa, a ∈ CL} is the class of contours of all lines.)

Proof. P 1.3.1 – P 1.3.3 in this case follow immediately from, respectively, A 1.3.1, A 1.3.2, and L 1.3.9.1. P 1.3.6
follows from the fact that in view of A 1.1.2 any line a (and thus the set Pa of all its points) is completely defined
by two points on it. 2

Theorem 1.3.13. Congruence of conventional angles 292 satisfies the properties P 1.3.1 - P 1.3.3, P 1.3.6. Here
the sets J with generalized betweenness relation are the pencils of rays lying on the same side of a given line a and
having the same initial point O ∈ a (Of course, every pair consisting of a line a and a point O on it gives rise to
exactly two such pencils.); each of these pencils is supplemented with the (two) rays into which the appropriate point
O (the pencil’s origin, i.e. the common initial point of the rays that constitute the pencil) divides the appropriate line
a. 293

Proof. The properties P 1.3.1 - P 1.3.3 follow in this case from A 1.3.4, L 1.3.11.1, T 1.3.9, P 1.3.9.5. To demonstrate
P 1.3.6, suppose a ray n lies in a pencil J between rays l, m. 294 Suppose now that the rays l, m also belong to
another pencil J′. The result then follows from L 1.2.31.3 applied to J′ viewed as a straight angle. 295

2

286It appears that all of the conditions Pr 1.3.1 – Pr 1.3.5 are necessary to explicate the relevant betweenness properties for points, rays,
half-planes, etc. Unfortunately, the author is not aware of a shorter, simpler, or just more elegant system of conditions (should there
exist one!) to characterize these properties.
287Recall that A′X ′ ∈ I means there is a set J′′ in Cgbr, such that A′ ∈ J′, X ′ ∈ J′.
288That is, geometric objects A′, X ′, B′ all lie in one set J′ (with generalized betweenness relation), which lies in the class Cgbr , and

may be either equal to, or different from, the set J. Note that in our formulation of the following properties we shall also assume that
the sets (possibly primed) J with generalized betweenness relation lie in the set Cgbr.
289As always, ”at most” in this context means ”one or none”.
290For the particular case where it is already known that the geometric object B′ divides the geometric objects A′, C′, we can formulate

the remaining part of this property as follows:
Let geometric objects B ∈ J and B′ ∈ J′ lie between geometric objects A ∈ J, C ∈ J and A′ ∈ J′, C′ ∈ J′, respectively. Then

congruences AB ≡ A′B′, AC ≡ A′C′ imply BC ≡ B′C′.
291As explained above, AB ∈ I means that there is a set J ∈ Cgbr with a generalized betweenness relation containing the generalized

abstract interval AB. Note also that a geometric object does not have to be a point in order to be called a midpoint in this generalized
sense. Later we will see that it can also be a ray, a half-plane, etc. To avoid confusion of this kind, we will also be referring to the
midpoint AB as the middle of this generalized interval.
292Conventional angles are those formed by rays made of points in the traditional sense, as opposed to angles formed by any other kind

of generalized rays.
293Worded another way, we can say that each of the sets J is formed by the two sides of the corresponding straight angle plus all the

rays with the same initial point inside that straight angle.
294Here the pencil J is formed by the rays lying on the same side of a given line a and having the same initial point O ∈ a,plus the two

rays into which the point O divides the line a.
295Moreover, we are then able to immediately claim that the ray n lies between l, m in J′ as well. (See also L 1.3.14.2.)
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Let us now study the properties of generalized congruence. 296

Lemma 1.3.14.1. Generalized congruence is an equivalence relation on the class I of appropriately chosen gener-
alized abstract intervals, i.e., it is reflexive, symmetric, and transitive.

Proof. Given a generalized interval AB, where A,B ∈ J ∈ Cgbr, by Pr 1.3.1 we have ∃A′B′ AB ≡ A′B′, A′,B′ ∈ J′ ∈
Cgbr.

Reflexivity: AB ≡ A′B′ &AB ≡ A′B′ Pr1.3.2
=⇒ AB ≡ AB.297

Symmetry: A′B′ ≡ A′B′ &AB ≡ A′B′ Pr1.3.2
=⇒ A′B′ ≡ AB.

Transitivity: AB ≡ A′B′ &A′B′ ≡ A′′B′′ ⇒ A′B′ ≡ AB&A′B′ ≡ A′′B′′ Pr1.3.2
=⇒ AB ≡ A′′B′′. 2

Now we can immediately reformulate the property Pr 1.3.6 in the following enhanced form:

Lemma 1.3.14.2. Suppose a geometric object B lies in a set J ∈ Cgbr (with generalized betweenness relation) between
geometric objects A ∈ J, C ∈ J. Then any set J′ ∈ Cgbr containing the geometric objects A, C, will also contain the
geometric object B, and B will lie in J′ between A and C.

Proof. Suppose B lies in J ∈ Cgbr between geometric objects A, C, and a set J′ ∈ Cgbr also contains A, C. Then by

Pr 1.3.6 B ∈ J′. Hence on J′ we have A ∈ J′ &B ∈ J′ & C ∈ J′ &A 6= B 6= C
Pr1.2.5
=⇒ BAC ∨ ABC ∨ ACB. Now from

L 1.2.25.13 it follows that in J′ either B, C lie on one side of A, or A, B lie on one side of C. The preceding lemma
gives AB ≡ AB, AC ≡ AC, BC ≡ BC. The facts listed in the preceding two sentences plus ABC on J allow us to
conclude, using P 1.3.3, that for all considered cases the geometric object B will lie between A and C in J′ as well,
q.e.d. 2

Corollary 1.3.14.3. Given congruent generalized intervals AC, A′C′, where A, C ∈ J and A′, C′ ∈ J′, (J, J′ ∈ Cgbr)
then for any geometric object B ∈ (AC) ⊂ J there is exactly one geometric object B′ ∈ (A′C′) ⊂ J′ such that
AB ≡ A′B′, BC ≡ B′C′.

Proof. By Pr 1.3.1 there is a geometric object B′ such that B′, C′ lie in some set J′′ ∈ Cgbr on the same side of the
geometric object A′, and AB ≡ A′B′. Since also, by hypothesis, we have [ABC] on J and AC ≡ A′C′, using Pr 1.3.3
we find that B′ lies (in J′′) between A′, C′, and, furthermore, the generalized intervals BC, B′C′ are congruent. As
the set J′ by hypothesis also contains A′, C′, from the preceding lemma (L 1.3.14.2) we conclude that B′ lies between
A′, C′ in J′ as well. Uniqueness the geometric object B′ with the required properties now follows immediately by the
second part of Pr 1.3.1. 2

Lemma 1.3.14.4. If generalized intervals AB, BC are congruent to generalized intervals A′B′, B′C′, respectively,
where the geometric object B ∈ J ∈ Cgbr lies between the geometric objects A ∈ J and C ∈ J and the geometric object
B′ ∈ J′ ∈ Cgbr lies between A′ ∈ J′ and C′ ∈ J′, then the generalized interval AC is congruent to the generalized
interval A′C′.

Proof. By Pr 1.3.1 there exists a geometric object C′′ such that C′, C′′ lie in some set J′′ ∈ Cgbr with generalized
betweenness relation on one side of A′ and the generalized interval AC is congruent to the generalized interval A′C′′.
Since A′ ∈ J′′, C′ ∈ J′′, and (by hypothesis) B′ lies in J′ between A′, C′, by L 1.3.14.2 the geometric object B′ lies
between A′, C′ in J′′ as well. In view of L 1.2.25.13 the last fact implies that the geometric objects B′, C′ lie in the

set J′′ on the same side of A′. We can write C′ ∈ A′(J
′′)

B′ & C′′ ∈ A′(J
′′)

C′

L1.2.25.5
=⇒ C′′ ∈ A′(J

′′)
B′ . AB ≡ A′B′ &AC ≡

A′C′ & [ABC](J
′′) & C′′ ∈ A′(J

′′)
B′

Pr1.3.3
=⇒ [A′B′C′′](J

′′) &BC ≡ B′C′′. [A′B′C′](J
′′) & [A′B′C′′](J

′′) L1.2.25.10
=⇒ & C′′ ∈ B′(J

′′)
C′ .

BC ≡ B′C′ &BC ≡ B′C′′ & C′′ ∈ B′(J
′′)

C′

Pr1.3.3
=⇒ C′′ = C′, whence the result. 2

Proposition 1.3.14.5. Let pairs B, C and B′, C′ of geometric objects B, C ∈ J and B′, C′ ∈ J′ (where J,J ′ ∈ Cgbr)
lie either both on one side or both on opposite sides of the geometric objects A ∈ J and A′ ∈ J′, respectively. Then
congruences AB ≡ A′B′, AC ≡ A′C′ imply BC ≡ B′C′.

Proof. First, suppose B ∈ AC , B′ ∈ A′
C′ . B ∈ AC &B 6= C

L1.2.25.8
=⇒ [ABC] ∨ [ACB]. Let [ABC]. 298 Then

[ABC] &B′ ∈ A′
C′ &AB ≡ A′B′ &AC ≡ A′C′ Pr1.3.3

=⇒ BC ≡ B′C′.
If B, C and B′, C′ lie on opposite sides of A and A′, respectively, we have [BAC] & [B′A′C′] &AB ≡ A′B′ &AC ≡

A′C′ L1.3.14.4
=⇒ BC ≡ B′C′. 2

296When applied to the particular cases of conventional (point-pair) or angular abstract intervals, they sometimes reiterate of perhaps
even weaken some already proven results. We present them here nonetheless to illustrate the versatility and power of the unified approach.
Furthermore, the proofs of general results are more easily done when following in the footsteps of the illustrated proofs of the particular
cases.

Also, to avoid clumsiness of statements and proofs, we shall often omit mentioning that a given geometric object lies in a particular
set with generalized betweenness relation when this appears to be obvious from context.
297As shown above, the availability of an interval A′B′ ∈ I with the property AB ≡ A′B′ is guaranteed by Pr 1.3.1.
298Since B, C enter the conditions of the proposition symmetrically, as do B′, C′, because B′ ∈ A′

C′
L1.2.25.3

=⇒ C′ ∈ A′
B′ , we do not really

need to consider the case when [ACB].
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Corollary 1.3.14.6. Let generalized intervals AB, A′B′, as well as AC, A′C′, formed by the geometric objects
A,B, C ∈ J and A′,B′, C′ ∈ J′, (where J, J′ ∈ Cgbr), be congruent. Then if the geometric object B lies between the
geometric A, C, the geometric object C′ lies outside the generalized interval A′B′ (i.e. C′ lies in the set ExtA′B′ =
J′ \ [A′B′]).

Proof. [ABC]
L1.2.25.13

=⇒ C ∈ AB. B′ 6= C′, because otherwise A′B′ ≡ AB&A′C′ ≡ AC &B′ = C′ & C ∈ AB
Pr1.3.1
=⇒ B = C

- a contradiction. Also, C′ /∈ (A′B′), because otherwise [A′C′B′] & C ∈ AB &A′B′ ≡ AB&A′C′ ≡ AC
L1.3.14.4

=⇒
[ACB] ⇒ ¬[ABC] - a contradiction. 2

Theorem 1.3.14. Suppose finite sequences of n geometric objects A1,A2, . . . ,An and B1,B2, . . . ,Bn, where Ai ∈ J,
Bi ∈ J′, i = 1, 2, . . . , n, J ∈ Cgbr, J′ ∈ Cgbr, n ≥ 3, have the property that every geometric object of the sequence,
except the first (A1, B1) and the last (An, Bn, respectively), lies between the two geometric objects of the sequence
with the numbers adjacent (in N) to the number of the given geometric object. Then if all generalized intervals
formed by pairs of geometric objects of the sequence A1,A2, . . . ,An with adjacent (in N) numbers are congruent
to the corresponding generalized intervals 299 of the sequence B1,B2, . . . ,Bn, the generalized intervals formed by the
first and the last geometric objects of the sequences are also congruent, A1An ≡ B1Bn. To recapitulate in more
formal terms, let A1,A2, . . . ,An and B1,B2, . . . ,Bn, n ≥ 3, be finite sequences of geometric objects Ai ∈ J, Bi ∈ J′,
i = 1, 2, . . . , n, J ∈ Cgbr, J′ ∈ Cgbr, such that [AiAi+1Ai+2], [BiBi+1Bi+2] for all i ∈ Nn−2 (i.e. ∀ i = 1, 2, . . . n − 2).
Then congruences AiAi+1 ≡ BiBi+1 for all i ∈ Nn−1 imply A1An ≡ B1Bn.

Proof. By induction on n. For n = 3 see Pr 1.3.3. Now suppose A1An−1 ≡ B1Bn−1 (induction!).300 We have
[A1An−1An], [B1Bn−1Bn] by L 1.2.22.14. Therefore, [A1An−1An] & [B1Bn−1Bn] &A1An−1 ≡ B1Bn−1 &An−1An ≡

Bn−1Bn
L1.3.14.4

=⇒ A1An ≡ B1Bn. 2

Comparison of Generalized Intervals

Lemma 1.3.15.1. For any geometric object C lying on a generalized open interval (AB), where A,B, C ∈ J, J ∈ Cgbr,
there are geometric objects E ∈ (AB),F ∈ (AB) such that AC ≡ EF .

Proof. Suppose [ACB]. By Pr 1.2.4 ∃F ∈ J such that [CFB]. Then [ACB] & [CFB]
Pr1.2.7
=⇒ [ACF ] & [AFB]. [ACF ] &AF ≡

FA
C1.3.14.3

=⇒ ∃E E ∈ J & [FEA] &AC ≡ FE . Finally, [AEF ] & [AFB]
Pr1.2.7
=⇒ [AEB]. 2

The following lemma is opposite, in a sense, to L 1.3.15.1

Lemma 1.3.15.2. For any two (distinct) geometric objects E, F lying on a generalized open interval (AB), where
A,B ∈ J, J ∈ Cgbr, there is exactly one geometric object C ∈ (AB) such that EF ≡ AC.

Proof. By P 1.2.22.6 [AEF ] ∨ [AFE ]. Since E , F enter the conditions of the lemma symmetrically, we can assume

without any loss of generality that [AEF ]. Then AF ≡ FA& [FEA]
C1.3.14.3

=⇒ ∃!C FE ≡ AC & [ACF ]. Finally,

[ACF ] & [AFB]
Pr1.2.7
=⇒ [ACB]. 2

A generalized (abstract) interval A′B′, where A′,B′ ∈ J′, J′ ∈ Cgbr, is said to be shorter, or less, than or congruent
to a generalized (abstract) interval AB, where A,B ∈ J, J ∈ Cgbr, if there is a generalized interval CD 301 such that
the generalized abstract interval A′B′ is congruent to the generalized interval CD, and the generalized open interval
(CD) is included in the generalized open interval (AB).302 If A′B′ is shorter than or congruent to AB, we write this
fact as A′B′ ≦ AB. Also, if a generalized interval A′B′ is shorter than or congruent to a generalized interval AB,
we shall say that the generalized (abstract) interval AB is longer, or greater than or congruent to the generalized
(abstract) interval A′B′, and write this as AB ≧ A′B′.

If a generalized (abstract) interval A′B′ is shorter than or congruent to a generalized (abstract) interval AB,
and, on the other hand, the generalized interval A′B′ is known to be incongruent (not congruent) to the generalized
interval AB, we say that the generalized interval A′B′ is strictly shorter, or strictly less 303 than the generalized
interval AB, and write A′B′ < AB. If a generalized interval A′B′ is (strictly) shorter than a generalized interval AB,
we shall say also that the generalized (abstract) interval AB is strictly longer, or strictly greater 304 than (abstract)
interval A′B′, and write this as AB > A′B′.

299i.e., generalized intervals formed by pairs of geometric objects with equal numbers
300We are using the obvious fact that if the conditions of our proposition are satisfied for n, they are satisfied for n−1, i.e. if [AiAi+1Ai+2],

[BiBi+1Bi+2] for all i = 1, 2, . . . n− 2, then obviously [AiAi+1Ai+2], [BiBi+1Bi+2] for all i = 1, 2, . . . n − 3; if AiAi+1 ≡ BiBi+1 for all
i = 1, 2, . . . , n− 1, then AiAi+1 ≡ BiBi+1 for all i = 1, 2, . . . , n− 2.
301From the following it is apparent that C,D ∈ J.
302This definition is obviously consistent, as can be seen if we let CD = AB.
303We shall usually omit the word ’strictly’.
304Again, we shall omit the word ’strictly’ whenever we feel that this omission does not lead to confusion
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Lemma 1.3.15.3. A generalized interval A′B′ is (strictly) shorter than a generalized interval AB iff:
– 1. There exists a geometric object C on the generalized open interval (AB) such that the generalized interval

A′B′ is congruent to the generalized interval AC; 305 or
– 2. There are geometric objects E, F on the generalized open interval AB such that A′B′ ≡ EF .
In other words, a generalized interval A′B′ is strictly shorter than a generalized interval AB iff there is a generalized

interval CD, whose ends both lie on a generalized half-open [AB) (generalized half-closed interval (AB]), such that
the generalized interval A′B′ is congruent to the generalized interval CD.

Proof. Suppose A′B′ ≡ AC and C ∈ (AB). Then by Pr 1.2.7, L 1.2.25.13 C ∈ (AB) ⇒ (AC) ⊂ AB& C ∈ AB.

Therefore, A′B′ ≦ AB. Also, A′B′ 6≡ AB, because otherwise C ∈ AB &A′B′ ≡ AC &A′B′ ≡ AB
Pr1.3.1
=⇒ AC = AB ⇒

C = B, whence C /∈ (AB) - a contradiction. Thus, we have A′B′ ≦ AB&A′B′ 6≡ AB, i.e. A′B′ < AB.
Suppose A′B′ ≡ EF , where E ∈ (AB), F ∈ (AB). By L 1.3.15.2 ∃C C ∈ (AB)& EF ≡ AC. Then A′B′ ≡

EF & EF ≡ AC
L1.3.14.1

=⇒ A′B′ ≡ AC and A′B′ ≡ AC & C ∈ (AB)
above
=⇒ A′B′ < AB.

Now suppose A′B′ < AB. By definition, this means that there exists a generalized (abstract) interval CD such

that (CD) ⊂ (AB), A′B′ ≡ CD, and also A′B′ 6≡ AB. Then we have (CD) ⊂ (AB)
L1.2.30.10

=⇒ C ∈ [AB] &D ∈ [AB],
A′B′ 6≡ AB&A′B′ ≡ CD ⇒ CD 6= AB. Therefore, either one of the ends or both ends of the generalized interval CD
lie on the generalized open interval (AB). The statement in 1. then follows from L 1.3.15.1, in 2.– from L 1.3.15.2.
2

Observe that the lemma L 1.3.15.3 (in conjunction with Pr 1.3.1) indicates that we can lay off from any geometric
object an interval shorter than a given generalized interval. Thus, there is actually no such thing as the shortest
possible generalized interval.

Corollary 1.3.15.4. If a geometric object C lies on a generalized open interval (AB) (i.e. C lies between A and B),
the generalized interval AC is (strictly) shorter than the generalized abstract interval AB.

If two (distinct) geometric objects E, F lie on a generalized open interval (AB), the generalized interval EF is
(strictly) less than the generalized interval AB.

Proof. Follows immediately from the preceding lemma (L 1.3.15.3). 2

Lemma 1.3.15.5. A generalized interval A′B′ is shorter than or congruent to a generalized interval AB iff there
is a generalized interval CD whose ends both lie on the generalized closed interval [AB], such that the generalized
interval A′B′ is congruent to the generalized interval CD.

Proof. Follows immediately from L 1.2.30.12 and the definition of ”shorter than or congruent to”. 2

Lemma 1.3.15.6. If a generalized interval A′′B′′, where A′′,B′′ ∈ J′′, J′′ ∈ Cgbr, is congruent to a generalized
interval A′B′, where A′,B′ ∈ J′, J′ ∈ Cgbr, and the generalized interval A′B′ is less than a generalized interval AB,
where A,B ∈ J, J ∈ Cgbr, the generalized interval A′′B′′ is less than the generalized interval AB.

Proof. By definition and L 1.3.15.3, A′B′ < AB ⇒ ∃C C ∈ (AB)&A′B′ ≡ AC. A′′B′′ ≡ A′B′ &A′B′ ≡ AC
L1.3.14.1

=⇒
A′′B′′ ≡ AC. A′′B′′ ≡ AC & C ∈ (AB) ⇒ A′′B′′ < AB. 2

Lemma 1.3.15.7. If a generalized interval A′′B′′, where A′′,B′′ ∈ J′′, J′′ ∈ Cgbr, is less than a generalized interval
A′B′, where A′,B′ ∈ J′, J′ ∈ Cgbr, and the generalized interval A′B′ is congruent to a generalized interval AB, where
A,B ∈ J, J ∈ Cgbr, the generalized interval A′′B′′ is less than the generalized interval AB.

Proof. A′′B′′ < A′B′ ⇒ ∃C′ C′ ∈ (A′B′)&A′′B′′ ≡ A′C′. A′B′ ≡ AB & C′ ∈ (A′B′)
C1.3.14.3

=⇒ ∃C C ∈ (AB)&A′C′ ≡

AC. A′′B′′ ≡ A′C′ &A′C′ ≡ AC
L1.3.14.1

=⇒ A′′B′′ ≡ AC. A′′B′′ ≡ AC & C ∈ (AB) ⇒ A′′B′′ < AB. 2

Lemma 1.3.15.8. If a generalized interval A′′B′′ is less than a generalized interval A′B′ and the generalized interval
A′B′ is less than a generalized interval AB, the generalized interval A′′B′′ is less than the generalized interval AB.

Proof. A′′B′′ < A′B′ ⇒ ∃C′ C′ ∈ (A′B′)&A′′B′′ ≡ A′C′. A′B′ < AB ⇒ ∃D D ∈ (AB)&A′B′ ≡ AD. C′ ∈

(A′B′)&A′B′ ≡ AD
C1.3.14.3

=⇒ ∃C C ∈ (AD)&A′C′ ≡ AC. A′′B′′ ≡ A′C′ &A′C′ ≡ AC
Pr1.3.1
=⇒ A′′B′′ ≡ AC.

[ACD] & [ADB]
Pr1.2.7
=⇒ [ACB]. A′′B′′ ≡ AC & [ACB] ⇒ A′′B′′ < AB. 2

Lemma 1.3.15.9. If a generalized interval A′′B′′ is less than or congruent to a generalized interval A′B′ and the
generalized interval A′B′ is less than or congruent to a generalized interval AB, the generalized interval A′′B′′ is less
than or congruent to the generalized interval AB.

305We could have said here also that A′B′ < AB iff there is a point D ∈ (AB) such that A′B′ ≡ BD, but because of symmetry this adds
nothing new to the statement of the theorem, so we do not need to consider this case separately.
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Proof. We have, using L 1.3.14.1, L 1.3.15.6, L 1.3.15.7, L 1.3.15.8 on the way: A′′B′′ ≦ A′B′ &A′B′ ≦ AB ⇒
(A′′B′′ < A′B′ ∨ A′′B′′ ≡ A′B′)& (A′B′ < AB ∨ A′B′ ≡ AB) ⇒ (A′′B′′ < A′B′ &A′B′ < AB) ∨ (A′′B′′ <
A′B′ &A′B′ ≡ AB) ∨ (A′′B′′ ≡ A′B′ &A′B′ < AB) ∨ (A′′B′′ ≡ A′B′ &A′B′ ≡ AB) ⇒ A′′ < B′′ ∨ A′′B′′ ≡
AB ⇒ A′′B′′ ≦ AB. 2

Lemma 1.3.15.10. If a generalized interval A′B′ is less than a generalized interval AB, the generalized interval AB
cannot be less than the generalized interval A′B′.

Proof. Suppose the contrary, i.e., that both A′B′ < AB and AB < A′B′, that is, ∃C C ∈ (AB)&A′B′ ≡ AC and

∃C′ C′ ∈ (A′B′)&AB ≡ A′C′. Then A′B′ ≡ AC
L1.3.14.1

=⇒ AC ≡ A′B′ and AC ≡ A′B′ &AB ≡ A′C′ & [ACB]
C1.3.14.6

=⇒
C′ ∈ ExtA′B′ – a contradiction with C′ ∈ (A′B′). 2

Lemma 1.3.15.11. If a generalized interval A′B′ is less than a generalized interval AB, it cannot be congruent to
that generalized interval.

Proof. Suppose the contrary, i.e. that both A′B′ < AB and A′B′ ≡ AB. We have then A′B′ < AB ⇒ ∃C C ∈

(AB)&A′B′ ≡ AC. [ACB]
L1.2.25.13

=⇒ C ∈ AB. But A′B′ ≡ AC &A′B′ ≡ AB& C ∈ AB
Pr1.3.1
=⇒ C = B - a contradiction.

2

Corollary 1.3.15.12. If a generalized interval A′B′ is congruent to a generalized interval AB, neither A′B′ is shorter
than AB, nor AB is shorter than A′B′.

Proof. Follows immediately from L 1.3.15.11. 2

Lemma 1.3.15.13. If a generalized interval A′B′ is less than or congruent to a generalized interval AB and the
generalized interval AB is less than or congruent to the generalized interval A′B′, the generalized interval A′B′ is
congruent to the generalized interval AB.

Proof. (A′B′ < AB ∨ A′B′ ≡ AB)& (AB < A′B′ ∨AB ≡ A′B′) ⇒ A′B′ ≡ AB, because A′B′ < AB contradicts both
AB < A′B′ and A′B′ ≡ AB in view of L 1.3.15.10, L 1.3.15.11. 2

Lemma 1.3.15.14. If a generalized interval A′B′ is not congruent to a generalized interval AB, then either the
generalized interval A′B′ is less than the generalized interval AB, or the generalized interval AB is less than the
generalized interval A′B′.

Proof. Using Pr 1.3.1, choose geometric objects C ∈ AB, C′ ∈ A′
B′ so that A′B′ ≡ AC, AB ≡ A′C′. Then C 6= B,

because A′B′ 6≡ AB by hypothesis, and C ∈ AB & C 6= B
L1.2.25.8

=⇒ [ACB] ∨ [ABC]. We have in the first case (i.e.,
when [ACB]) [ACB] &A′B′ ≡ AC ⇒ A′B′ < AB, and in the second case AB ≡ A′C′ &AC ≡ A′B′ & [ABC] & C′ ∈

A′
B′

L1.3.14.4
=⇒ [A′C′B′], [A′C′B′] &AB ≡ A′C′ ⇒ AB < A′B′. 2

Theorem 1.3.15. Suppose finite pencils of n rays h1, h2, . . . , hn and k1, k2, . . . , kn, where n ≥ 3, have the property
that every ray of the pencil, except the first (h1, k1) and the last (hn, kn, respectively), lies inside the angle formed
by the rays of the pencil with the numbers adjacent (in N) to the number of the given ray. Then if all angles formed
by pairs of rays of the pencil h1, h2, . . . , hn with adjacent (in N) numbers are congruent to the corresponding angles
306 of the pencil k1, k2, . . . , kn, the angles formed by the first and the last rays of the pencils are also congruent,
∠(h1, hn) ≡ ∠(k1, kn). To recapitulate in more formal terms, let h1, h2, . . . , hn and k1, k2, . . . , kn, n ≥ 3, be finite
pencils of rays such that hi+1 ⊂ Int∠(hi, hi+2), ki+1 ⊂ Int∠(ki, ki+2) for all i ∈ Nn−2 (i.e. ∀ i = 1, 2, . . . n − 2).
Then congruences ∠(hi, hi+1) ≡ ∠(ki, ki+1) for all i ∈ Nn−1 imply ∠(h1, hn) ≡ ∠(k1, kn).

Proof. 2

Comparison of Angles

Lemma 1.3.16.1. For any ray l having the same origin as rays h, k and lying inside the angle ∠(h, k) formed by
them, there are rays m, n with the same origin as h, k, l and lying inside ∠(h, k), such that ∠(h, k) ≡ ∠(m, n).

Proof. See T 1.3.13, L 1.3.15.1. 2

The following lemma is opposite, in a sense, to L 1.3.16.1

Lemma 1.3.16.2. For any two (distinct) rays m, n sharing the origin with (equioriginal to) rays h, k and lying
inside the angle ∠(h, k) formed by them, there is exactly one ray l with the same origin as h, k, l, m and lying inside
∠(h, k) such that ∠(m, n) ≡ ∠(h, l).

Proof. See T 1.3.13, L 1.3.15.2.

306i.e., angles formed by pairs of rays with equal numbers
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Lemma 1.3.16.3. An angle ∠(h′, k′) is (strictly) less than an angle ∠(h, k) iff:
– 1. There exists a ray l equioriginal to rays h, k and lying inside the angle ∠(h, k) formed by them, such that

the angle ∠(h′, k′) is congruent to the angle ∠(h, l); 307 or
– 2. There are rays m, n equioriginal to rays h, k and lying inside the ∠(h, k) such that ∠(h′, k′) ≡ ∠(m, n).
In other words, an angle ∠(h′, k′) is strictly less than an angle ∠(h, k) iff there is an angle ∠(l, m), whose sides

are equioriginal to h, k and both lie on a half-open angular interval [hk) (half-closed angular interval (hk]), such that
the angle ∠(h′, k′) is congruent to the angle ∠(h, k).

Proof. See T 1.3.13, L 1.3.15.3.2

Observe that the lemma L 1.3.16.3 (in conjunction with A 1.3.4) indicates that we can lay off from any ray an
angle less than a given angle. Thus, there is actually no such thing as the least possible angle.

Corollary 1.3.16.4. If a ray l is equioriginal with rays h, k and lies inside the angle ∠(h, k) formed by them, the
angle ∠(h, l) is (strictly) less than the angle ∠(h, k).

If two (distinct) rays m, n are equioriginal to rays h, k and both lie inside the angle ∠(h, k) formed by them, the
angle ∠(m, n) is (strictly) less than the angle ∠(h, k).

Suppose rays k, l are equioriginal with the ray h and lie on the same side of the line h̄. Then the inequality
∠(h, k) < ∠(h, l) implies k ⊂ Int∠(h, l).

Proof. See T 1.3.13, C 1.3.15.4, L 1.2.21.21. 2

Lemma 1.3.16.5. An angle ∠(h′, k′) is less than or congruent to an angle ∠(h, k) iff there are rays l, m equioriginal
to the rays h, k and lying on the closed angular interval [hk], such that the angle ∠(h′, k′) is congruent to the angle
∠(h, k).

Proof. See T 1.3.13, L 1.3.15.5. 2

Lemma 1.3.16.6. If an angle ∠(h′′, k′′) is congruent to an angle ∠(h′, k′) and the angle ∠(h′, k′) is less than an
angle ∠(h, k), the angle ∠(h′′, k′′) is less than the angle ∠(h, k).

Proof. See T 1.3.14, L 1.3.15.6. 2

Lemma 1.3.16.7. If an angle ∠(h′′, k′′) is less than an angle ∠(h′, k′) and the angle ∠(h′, k′) is congruent to an
angle ∠(h, k), the angle ∠(h′′, k′′) is less than the angle ∠(h, k).

Proof. See T 1.3.13, L 1.3.15.7. 2

Lemma 1.3.16.8. If an angle ∠(h′′, k′′) is less than an angle ∠(h′, k′) and the angle ∠(h′, k′) is less than an angle
∠(h, k), the angle ∠(h′′, k′′) is less than the angle ∠(h, k).

Proof. See T 1.3.13, L 1.3.15.8. 2

Lemma 1.3.16.9. If an angle ∠(h′′, k′′) is less than or congruent to an angle ∠(h′, k′) and the angle ∠(h′, k′) is
less than or congruent to an angle ∠(h, k), the angle ∠(h′′, k′′) is less than or congruent to the angle ∠(h, k).

Proof. See T 1.3.13, L 1.3.15.9. 2

Lemma 1.3.16.10. If an angle ∠(h′, k′) is less than an angle ∠(h, k), the angle ∠(h, k) cannot be less than the angle
∠(h′, k′).

Proof. See T 1.3.13, L 1.3.15.10.2

Lemma 1.3.16.11. If an angle ∠(h′, k′) is less than an angle ∠(h, k), it cannot be congruent to that angle.

Proof. See T 1.3.13, L 1.3.15.11. 2

Corollary 1.3.16.12. If an angle ∠(h′, k′) is congruent to an angle ∠(h, k), neither ∠(h′, k′) is less than ∠(h, k),
nor ∠(h, k) is less than ∠(h′, k′).

Proof. See T 1.3.13, C 1.3.15.12. 2

Lemma 1.3.16.13. If an angle ∠(h′, k′) is less than or congruent to an angle ∠(h, k) and the angle ∠(h, k) is less
than or congruent to the angle ∠(h′, k′), the angle ∠(h′, k′) is congruent to the angle ∠(h, k).

Proof. See T 1.3.13, L 1.3.15.13. 2

307Again, we could have said here also that ∠(h′, k′) < ∠(h, k) iff there is a ray o ⊂ Int∠(h, k) equioriginal with h, k such that
∠(h′, k′) ≡ ∠(o, k), but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this
case separately.
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Lemma 1.3.16.14. If an angle ∠(h′, k′) is not congruent to an angle ∠(h, k), then either the angle ∠(h′, k′) is less
than the angle ∠(h, k), or the angle ∠(h, k) is less than the angle ∠(h′, k′).

Proof. See T 1.3.13, L 1.3.15.14.2

Lemma 1.3.16.15. If an angle ∠(h′, k′) is less than an angle ∠(h, k), the angle ∠(h′c, k′) adjacent supplementary
to the former is greater than the angle ∠(hc, k) adjacent supplementary to the latter.

Proof. ∠(h′, k′) < ∠(h, k)
L1.3.16.3

=⇒ ∃l l ⊂ Int∠(h, k)& ∠(h′, k′) ≡ ∠(h, l)
P1.3.9.7
=⇒ ∃k′ k′ ⊂ Int∠(h′, l′)& ∠(h, k) ≡

∠(h′, l′). k′ ⊂ Int∠(h′, l′)
L1.2.21.22

=⇒ l′ ⊂ Int∠(h′c, k′). Also, ∠(h, k) ≡ ∠(h′, l′)
T1.3.6
=⇒ ∠(hc, k) ≡ ∠(h′c, l′). Finally,

l′ ⊂ Int∠(h′c, k′)& ∠(hc, k) ≡ ∠(h′c, l′)
L1.3.16.3

=⇒ ∠(hc, k) < ∠(h′c, k′). 2

Acute, Obtuse and Right Angles

An angle which is less than (respectively, greater than) its adjacent supplementary angle is called an acute (obtuse)
angle.

Obviously, any angle is either an acute, right, or obtuse angle, and each of these attributes excludes the others.
Also, the angle, adjacent supplementary to an acute (obtuse) angle, is obtuse (acute).

Lemma 1.3.16.16. An angle ∠(h′, k′) congruent to an acute angle ∠(h, k) is also an acute angle. Similarly, an
angle ∠(h′, k′) congruent to an obtuse angle ∠(h, k) is also an obtuse angle.

Proof. Indeed, ∠(h′, k′) ≡ ∠(h, k)
T1.3.6
=⇒ ∠(h′c, k′) ≡ ∠(hc, k). Therefore, by L 1.3.16.6, L 1.3.56.18 we have

∠(h′, k′) ≡ ∠(h, k) < ∠(hc, k) ≡ ∠(h′c, k′) ⇒ ∠(h′, k′) < ∠(h′c, k′) and ∠(h′, k′) ≡ ∠(h, k) > ∠(hc, k) ≡ ∠(h′c, k′) ⇒
∠(h′, k′) > ∠(h′c, k′), q.e.d. 2

Lemma 1.3.16.17. Any acute angle ∠(h′, k′) is less than any right angle ∠(h, k).

Proof. By T 1.3.8 there exists a right angle, i.e. an angle ∠(h, k) such that ∠(h, k) ≡ ∠(hc, k). By A 1.3.4
∃l lkh̄& ∠(h′, k′) ≡ ∠(h, l). l 6= k, because otherwise by L 1.3.8.2 ∠(h′, k′) ≡ ∠(h, k) implies that ∠(h′, k′) is a
right angle. By L 1.3.16.16, ∠(h′, l′) is also acute, i.e. ∠(h, l) < ∠(hc, l). We have by L 1.2.21.15, L 1.2.21.21

l 6= k & lkh̄l ⊂ Int∠(h, k) ∨ (l ⊂ Int∠(hc, k)& k ⊂ Int∠(h, l)). Then l ⊂ Int∠(hc, k)& k ⊂ Int∠(h, l)
C1.3.16.4

=⇒
∠(hc, l) < ∠(hc, k)& ∠(h, k) < ∠(h, l). Together with ∠(h, k) ≡ ∠(hc, k), (recall that ∠(h, k) is a right angle!) by
L 1.3.16.6, L 1.3.56.18 ∠(hc, l) < ∠(h, l) - a contradiction. Thus, l ⊂ Int∠(h, k), which means, in view of L 1.3.16.5,

that ∠(h, l) < ∠(h, k)l. Finally, ∠(h′, k′) ≡ ∠(h, l)& ∠(h, l) < ∠(h, k)
L1.3.16.6

=⇒ ∠(h′, k′) < ∠(h, l). 2

Lemma 1.3.16.18. Any obtuse angle ∠(h′, k′) is greater than any right angle ∠(h, k). 308

Proof. ∠(h′, k′) is obtuse ⇒ ∠(h′c, k′) is acute
L1.3.16.17

=⇒ ∠(h′c, k′) < ∠(h, k)
L1.3.16.15

=⇒ ∠(h′, k′) = ∠((h′c)c, k′) >

∠(hc, k). Finally, ∠(h, k) ≡ ∠(hc, k)& ∠(hc, k) < (h′, k′)
L1.3.16.6

=⇒ ∠(h, k) < ∠(h′, k′), q.e.d. 2

Lemma 1.3.16.19. Any acute angle is less than any obtuse angle.

Proof. Follows from T 1.3.8, L 1.3.16.17, L 1.3.16.18. 2

Corollary 1.3.16.20. An angle less than a right angle is acute. An angle greater than a right angle is obtuse. An
angle less than an acute angle is acute. An angle greater than an obtuse angle is obtuse.

Theorem 1.3.16. All right angles are congruent.

Proof. Let ∠(h′, k′), ∠(h, k) be right angles. If, say, ∠(h′, k′) < ∠(h, k) then by L 1.3.16.15 ∠(hc, k) < ∠(h′c, k′),
and by L 1.3.16.6, L 1.3.56.18 ∠(h′, k′) < ∠(h, k)& ∠(h, k) ≡ (hc, k)& ∠(hc, k) < ∠(h′c, k′) ⇒ ∠(h′, k′) < ∠(h′c, k′),
which contradicts the assumption that ∠(h′, k′) is a right angle. 2

Lemma 1.3.16.21. Suppose that rays h, k, l have the same initial point, as do rays h′, k′, l′. Suppose, further,
that hk̄l and h′k̄′l (i.e. the rays h, l and h′, l′ lie on opposite sides of the lines k̄, k̄′, respectively, that is, the angles
∠(h, k), ∠(k, l) are adjacent, as are angles ∠(h′, k′), ∠(k′, l′)) and ∠(h, k) ≡ ∠(h′, k′), ∠(k, l) ≡ ∠(k′, l′). Then the
rays k, l lie on the same side of the line h̄ iff the rays k′, l′ lie on the same side of the line h̄′, and the rays k, l lie
on opposite sides of the line h̄ iff the rays k′, l′ lie on opposite sides of the line h̄.

308In different words:
Any right angle is less than any obtuse angle.
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Figure 1.123: Suppose that rays h, k, l have the same initial point, as do rays h′, k′, l′. Suppose, further, that hk̄l
and h′k̄′l and ∠(h, k) ≡ ∠(h′, k′), ∠(k, l) ≡ ∠(k′, l′). Then k, l lie on the same side of h̄ iff k′, l′ lie on the same side
of h̄′, and k, l lie on opposite sides of h̄ iff k′, l′ lie on opposite sides of h̄.

Proof. Suppose that klh̄. Then certainly l′ 6= h′c, for otherwise in view of C 1.3.6.1 we would have l = hc. Suppose
now k′h̄′l′ (see Fig. 1.123.). Using L 1.2.21.33 we can write l ⊂ Int∠(hc, k), h′c ⊂ Int∠(k′, l′). In addition,

∠(h, k) ≡ ∠(h′, k′)
T1.3.6
=⇒ ∠(hc, k) = adjsp∠(h, k) ≡ adsp∠(h′, k′) = ∠(h′c, k′). Hence, using C 1.3.16.4, L 1.3.16.6

– L 1.3.16.8, we can write ∠(k, l) < ∠(hc, k) ≡ ∠(h′c, k′) < ∠(k′, l′) ⇒ ∠(k, l) < ∠(k′, l′). Since, however, we have
∠(h, l) ≡ ∠(h′, l′) by T 1.3.9, we arrive at a contradiction in view of L 1.3.16.11. Thus, we have k′l′h̄′ as the only
remaining option.

2

Lemma 1.3.16.22. Suppose that a point D lies inside an angle ∠BAC and the points A, D lie on the same side of
the line aBC . Then the angle ∠BAC is less than the angle ∠DC.

Proof. First, observe that the ray BD lies inside the angle ∠ABC. In fact, the points C, D lie on the same side of the
line aAB = aBA by definition of interior of ∠BAC, and ADaBC by hypothesis. From L 1.2.21.10 we see that the ray
BD meets the open interval (AC) in some point E. Since the points B, D lie on the same side of the line aAC (again
by definition of interior of ∠BAC), the points D lies between B, E (see also L 1.2.11.8). Finally, using T 1.3.17 (see
also L 1.2.11.15), we can write ∠BAC = ∠BAE < ∠BEC = ∠DEC < angleBDC, whence ∠BAC < ∠BDC, as
required. 2

Suppose two lines a, b concur in a point O. Suppose further that the lines a, b are separated by the point O into
the rays h, hc and k, kc, respectively. Obviously, we have either ∠(h, k) ≦ ∠(hc, k) or ∠(hc, k) ≦ ∠(h, k). If the angle
∠(h, k) is not greater than the angle ∠(hc, k) adjacent supplementary to it, the angle ∠(h, k), as well as the angle
∠(hc, k) will sometimes be (loosely 309) referred to as the angle between the lines a, b. 310

Interior and Exterior Angles

Lemma 1.3.17.2. If a point A lies between points B, D and a point C does not lie on the line aAB, the angles
∠CAD, ∠ACB cannot be congruent.

Proof. (See Fig. 1.124.) Suppose the contrary, i.e. that ∠CAD ≡ ∠ACB. According to A 1.3.1, L 1.2.11.3, we can

assume with no loss of generality that CB ≡ AD. 311 AD ≡ CB & AC ≡ CA& ∠CAD ≡ ∠ACB
A1.3.5
=⇒ ∠ACD ≡

CAB. Using A 1.2.2, choose a point E so that [BCE] and therefore (see L 1.2.15.2) CE = (CB)c. Then ∠CAD ≡

∠ACB
T1.3.6
=⇒ ∠CAB = adjsp∠CAD ≡ adjsp∠ACB = ∠ACE. [BAD] & [BCE] ⇒ BaACD & BaACE

L1.2.17.9
=⇒

DEaAC . ∠CAB ≡ ∠ACD & ∠CAB ≡ ∠ACE & DEaAC
L1.3.2.1
=⇒ CD = CE - a contradiction, for C /∈ aAB = aBD ⇒

D /∈ aBC = aCE. 2

Lemma 1.3.17.3. If an angle ∠A′B′C′ is less than an angle ∠ABC, there is a point D lying between A and C and
such that the angle ∠A′B′C′ is congruent to the angle ABD.

Proof. (See Fig. 1.125.) ∠A′B′C′ < ∠ABC
L1.3.16.3

=⇒ ∃BD′ BD′ ⊂ Int∠ABC & ∠A′B′C′ ≡ ∠ABD′. BD′ ⊂

Int∠ABC & A ∈ BA & C ∈ BC
L1.2.21.10

=⇒ ∃D D ∈ BD′ & [ADC]. D ∈ BD′
L1.2.11.3

=⇒ BD = BD′ . 2
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Figure 1.124: If a point A lies between points B, D and a point C does not lie on aAB, the angles ∠CAD, ∠ACB
cannot be congruent.
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Figure 1.125: If an angle ∠A′B′C′ is less than an angle ∠ABC, there is a point D lying between A and C and such
that ∠A′B′C′ ≡ ABD.
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Figure 1.126: If a point A lies between points B, D and a point C does not lie on aAB, the angle ∠ACB is less than
the angle ∠CAD.

Lemma 1.3.17.4. If a point A lies between points B, D and a point C does not lie on the line aAB, the angle ∠ACB
is less than the angle ∠CAD.

Proof. (See Fig. 1.126.) By L 1.3.17.2 ∠ACB 6≡ ∠CAD. Therefore, by L 1.3.16.14 ∠CAD < ∠ACB ∨ ∠ACB <

∠CAD. Suppose ∠CAD < ∠ACB. We have ∠CAD < ∠ACB
L1.3.17.3

=⇒ ∃B′ [AB′B] & ∠CAD ≡ ∠ACB′.

[BB′A] & [BAD]
L1.2.3.2
=⇒ [B′AD]. But [B′AD] & C /∈ aAB′ = aAB

L1.3.17.2
=⇒ ∠CAB 6≡ ∠CAD. 2

Theorem 1.3.17. An exterior angle, say, ∠CAD, of a triangle △ACB, is greater than either of the angles ∠ACB,
∠ABC of △ACB, not adjacent supplementary to it.

Proof. [BAD] & C /∈ aAB
L1.3.17.4

=⇒ ∠ACB < ∠CAD & ∠ABC < vert ∠CAD∠((AC)c, (AD)c) ≡ ∠CAD. 2

Relations Between Intervals and Angles

Corollary 1.3.17.4. In any triangle △ABC at least two angles are acute.

Proof. If the angle ∠C is right or obtuse, its adjacent supplementary angle is either right or acute. Since adjsp ∠C is
an exterior angle of △ABC, by T 1.3.17 we have ∠A < adjsp ∠C, ∠B < adjsp ∠C. Hence ∠A, ∠B are both acute
angles. 2

Corollary 1.3.17.5. All angles in an equilateral triangle are acute.

Proof. See L 1.3.8.2, L 1.3.16.16, and the preceding corollary (C 1.3.17.4). 2

Corollary 1.3.17.6. The right angle in a right triangle is greater than any of the two remaining angles.

Proof. Follows immediately from C 1.3.17.4, L 1.3.16.17. 2

Theorem 1.3.18. If a side, say, AB, of a triangle △ABC, is greater than another side, say, BC of △ABC, the
same relation holds for the angles opposite to these sides, i.e. the angle ∠C is then greater than the angle ∠A,
∠ACB > ∠BAC.

Conversely, if an angle, say, ∠C = ∠ACB, of a triangle △ABC, is greater than another angle, say, ∠A = ∠BAC
of △ABC, the same relation holds for the opposite sides, i.e. the side AB is then greater than the side BC, AB > BC.

Proof. (See Fig. 1.127.) Suppose BC < BA. Then by L 1.3.13.3 ∃D [BDA] & BC ≡ BD. 312 BC ≡ BD
T1.3.3
=⇒

∠BCD ≡ ∠BDC. B ∈ CB & A ∈ CA & [BDA]
L1.2.21.6,L1.2.21.4

=⇒ CD ⊂ Int∠ACB
L1.3.16.3

=⇒ ∠BCD < ∠ACB =

∠C. [BDA] & C /∈ aBD
L1.3.17.4

=⇒ ∠BDC > ∠BAC = ∠A. Finally, by L 1.3.16.6, L 1.3.56.18, T 1.3.11 ∠A <
∠BDC & ∠BCD ≡ ∠BDC & ∠BDC < ∠C ⇒ ∠A < ∠C.

Suppose now ∠A < ∠C. Then BC < AB, because otherwise by L 1.3.16.14, T 1.3.3, and the preceding part
of the present proof, BC ≡ AB ∨ AB < BC ⇒ ∠A ≡ ∠C ∨ ∠C < ∠A. Either result contradicts our assumption
∠A < ∠C in view of L 1.3.13.10, L 1.3.13.11. 2

309Strictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.
310It goes without saying that in the case ∠(hc, k) ≦ ∠(h, k) it is the angle ∠(hc, k) that is referred to as the angle between the lines a,
b.
311Indeed, by A 1.3.1 ∃D′ D′ ∈ AD &CB ≡ AD′. But D′ ∈ AD

L1.2.11.3
=⇒ AD′ = AD.

312Note also that A /∈ aBC & [BDA]
C1.2.1.8

=⇒ D /∈ aBC
C1.1.2.3

=⇒ C /∈ aBD .
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Figure 1.127: If a side AB, of △ABC, is greater than another side BC, the same relation holds for the opposite
angles, ∠C < ∠A. Conversely, if ∠C > ∠A, the same relation holds for the opposite sides, i.e. AB > BC.

A D C

B

E

Figure 1.128: For a bisector BD of △ABC if ∠C > ∠A then CD < AD.

Corollary 1.3.18.1. If aAC ⊥ a, A ∈ a, then for any point B ∈ a, B 6= A, we have AC < BC.313

Proof. Since ∠BAC is right, the other two angles ∠ACB, ∠ABC of the triangle △ACB are bound to be acute by
C 1.3.17.4. This means, in particular, that ∠ABC < ∠BAC (see L 1.3.16.17). Hence by the preceding theorem
(T 1.3.18) we have AC < BC. 2

Corollary 1.3.18.2. Any interval is longer than its orthogonal projection on an arbitrary line.

Proof. Follows from the preceding corollary (C 1.3.18.1). 314
2

A triangle with at least one right angle is called a right triangle. By L 1.3.8 right triangles exist, and by C 1.3.17.4
all of them have exactly one right angle. The side of a right triangle opposite to the right angle is called the hypotenuse
of the right triangle, and the other two sides are called the legs. In terms of right triangles the corollary C 1.3.18.2
means that in any right triangle the hypothenuse is longer than either of the legs.

Corollary 1.3.18.3. Suppose BD is a bisector of a triangle △ABC. (That is, we have [ADC] and ∠ABD ≡ ∠CBD,
see p. 151. ) If the angle ∠C is greater than the angle ∠A then the interval CD is shorter than the interval AD. 315

Proof. (See Fig. 1.128.) We have ∠A < ∠C
T1.3.18
=⇒ BC < AB

L1.3.17.4
=⇒ ∃E [BEA] & BC ≡ BE. [ADC]

L1.2.11.3
=⇒

AD = AC & CD = CA ⇒ ∠BAD = ∠A& ∠BCD = ∠C. [AEB]
L1.2.11.3

=⇒ AE = AB & BE = BA ⇒ ∠EAD =

∠A& ∠EBD = ∠ABD. BC ≡ BE & BD ≡ BD & ∠EBD ≡ ∠CBD
T1.3.4
=⇒ △EBD ≡ △CBD ⇒ ED ≡

CD & ∠BED ≡ ∠BCD. Observe that adjsp∠C, being an external angle of the triangle △ABC, by T 1.3.17 is

greater than the angle ∠A. Hence ∠BED ≡ ∠BCD = ∠C
T1.3.6
=⇒ ∠AED = adjsp∠BED ≡ adjsp∠C. ∠EAD =

∠A < adjsp∠C ≡ ∠AED
L1.3.56.18

=⇒ ∠EAD < ∠AED
T1.3.18
=⇒ ED < AD. Finally, ED < AD & ED ≡ CD

L1.3.13.6
=⇒

CD < AD. 2

313The reader can refer to Fig. 1.140 for the illustration.
314See also the observation accompanying the definition of orthogonal projections on p. 117.
315Observe that instead of ∠A < ∠C we could directly require that BC < AB (see beginning of proof).
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Figure 1.129: Illustration for proofs of C 1.3.18.4, C 1.3.18.5.

Corollary 1.3.18.4. Let an interval A0An, n ≥ 2, be divided into n intervals A0A1, A1A2 . . . , An−1An by the points
A1, A2, . . . An−1.

316 Suppose further that B is such a point that the angle ∠BA0A1 is greater than the angle ∠BA1A0.
317 Then the following inequalities hold: ∠BAnAn−1 < ∠BAn−1An−2 < . . . < ∠BA3A2 < ∠BA2A1 < ∠BA1A0 <
∠BA0A1 < ∠BA1A2 < ∠BA2A3 < . . . < ∠BAn−2An−1 < ∠BAn−1An, ∀i ∈ Nn−1 ∠BAi+1Ai−1 < ∠BAi−1Ai+1,
and BA0 < BA1 < · · · < BAn−1 < BAn.

Proof. (See Fig. 1.129.) We have (using L 1.2.11.3 to show the equality of rays) ∀i ∈ Nn−1 ([Ai−1AiAi+1] ⇒
∠Ai−1BAi = adjsp∠AiBAi+1 & Ai−1Ai

= Ai−1Ai+1
& Ai+1Ai

= Ai−1Ai+1
). Hence by T refT 1.3.17 we can write

∠BAnAn−1 < ∠BAn−1An−2 < . . . < ∠BA3A2 < ∠BA2A1 < ∠BA1A0 < ∠BA0A1 < ∠BA1A2 < ∠BA2A3 < . . . <
∠BAn−2An−1 < ∠BAn−1An. Applying repeatedly L 1.3.16.8 to these inequalities, we obtain ∀i ∈ Nn−1 ∠BAi+1Ai <
∠BAi−1Ai. Taking into account Ai−1Ai

= Ai−1Ai+1
, Ai+1Ai

= Ai−1Ai+1
, valid for all i ∈ Nn−1, we have ∀i ∈

Nn−1 ∠BAi+1Ai−1 < ∠BAi−1Ai+1. Also, using T 1.3.18 we conclude that BA0 < BA1 < · · · < BAn−1 < BAn. 2

Corollary 1.3.18.5. Let an interval A0An, n ≥ 2, be divided into n intervals A0A1, A1A2 . . . , An−1An by the points
A1, A2, . . . An−1.

318 Suppose further that B is such a point that that all angles ∠Ai−1BAi, i ∈ Nn are congruent
and the angle ∠BA0A1 is greater than the angle ∠BA1A0. Then A0A1 < A1A2 < A2A3 < . . .An−2An−1 < An−1An.

Proof. (See Fig. 1.129.) From the preceding corollary (C 1.3.18.4) we have ∀i ∈ Nn−1 ∠BAi+1Ai−1 < ∠BAi−1Ai+1.
Together with ∠Ai−1BAi ≡ ∠AiBAi+1 (true by hypothesis), the corollary C 1.3.18.3 applied to every triangle
△Ai−1BAi+1, ∀i ∈ Nn−1, gives ∀i ∈ Nn−1 Ai−1Ai < AiAi+1, q.e.d. 2

Corollary 1.3.18.6. Let an interval A0An, n ≥ 2, be divided into n intervals A0A1, A1A2 . . . , An−1An by the points
A1, A2, . . . An−1. Suppose further that B is such a point that that all angles ∠Ai−1BAi, i ∈ Nn are congruent and
∠BA0A1 is a right angle. Then A0A1 < A1A2 < A2A3 < . . . < An−2An−1 < An−1An.

Proof. Being a right angle, by C 1.3.17.6 the angle ∠BA0A1 is greater than the angle ∠BA1A0. The result then
follows from the preceding corollary (C 1.3.18.5). 2

Corollary 1.3.18.7. Suppose BE is a median of a triangle △ABC. (That is, we have [AEC] and AE ≡ EC, see
p. 151. ) If the angle ∠C is greater than the angle ∠A then the angle ∠CBE is greater than the angle ∠ABE . 319

Proof. (See Fig. 1.130.) Let BD be the bisector of the triangle △ABC drawn from the vertex B to the side AC. By
C 1.3.18.3 we have CD < AD. This implies that [AED] and [EDC]. 320 Using L 1.2.21.6, L 1.2.21.4, C 1.3.16.4,
we can write [AED] & [CDE] ⇒ ∠ABE < ∠ABD & ∠CBD < ∠CBE. Finally, by L 1.3.16.6 - L 1.3.16.8 we have
∠ABE < ∠ABD & ∠ABD ≡ ∠CBD & ∠CBD < ∠CBE ⇒ ∠ABE < ∠CBE, q.e.d. 2

316In other words, the finite sequence of points Ai, where i ∈ Nn, n ≥ 2, has the property that every point of the sequence, except for
the first and the last, lies between the two points with adjacent (in N) numbers (see definition on p. 15.
317Observe that this condition is always true if the angle ∠BA0A1 is either right or obtuse.
318In other words, the finite sequence of points Ai, where i ∈ Nn, n ≥ 2, has the property that every point of the sequence, except for

the first and the last, lies between the two points with adjacent (in N) numbers (see definition on p. 15.)
319Note again that instead of ∠A < ∠C we could directly require that BC < AB (see beginning of proof).
320[ADC]& [AEC]

T1.2.5
=⇒ [ADE]∨D = E ∨ [EDC]. D 6= E, for CD < AD contradicts CD ≡ AD in view of L 1.3.13.11. Also, ¬[ADE],

for otherwise [ADE]& [AEC]
L1.2.3.2

=⇒ [DEC], [ADE]& [DEC]
C1.3.13.4

=⇒ AD < AE&CE < CD, AD < AE&AE ≡ CE&CE < CD ⇒

AD < CD, which contradicts CD < AD in view of L 1.3.13.10. Thus, we have the remaining case [AED]. Hence [AED]& [ADC]
L1.2.3.2

=⇒
[EDC].
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Figure 1.130: Given a median BE of a triangle △ABC, iff the ∠C > ∠A then the angle ∠CBE > ∠ABE .

A A A           A A A A0 1 2 3 n-2 n-1 n

B

Figure 1.131: Let an interval A0An, n ≥ 2, be divided into n congruent intervals A0A1, A1A2 . . . , An−1An. Suppose
further that B is such a point that ∠BA0A1 is greater than ∠BA1A0. Then we have: ∠AnBAn−1 < ∠An−1BAn−2 <
. . . < ∠A3BA2 < ∠A2BA1 < ∠A1BA0.

Corollary 1.3.18.8. Let an interval A0An, n ≥ 2, be divided into n congruent intervals A0A1, A1A2 . . . , An−1An

by the points A1, A2, . . . An−1.
321 Suppose further that B is such a point that the angle ∠BA0A1 is greater than the

angle ∠BA1A0. Then the following inequalities hold: ∠AnBAn−1 < ∠An−1BAn−2 < . . . < ∠A3BA2 < ∠A2BA1 <
∠A1BA0.

Proof. (See Fig. 1.131.) From C 1.3.18.4 we have ∀i ∈ Nn−1 ∠BAi+1Ai−1 < ∠BAi−1Ai+1. Together with Ai−1Ai ≡
AiAi+1 (true by hypothesis), the preceding corollary (C 1.3.18.7) applied to every triangle △Ai−1BAi+1 for all
i ∈ Nn−1, gives ∀i ∈ Nn−1 ∠AiBAi+1 < ∠Ai−1BAi, q.e.d. 2

Corollary 1.3.18.9. Let an interval A0An, n ≥ 2, be divided into n congruent intervals A0A1, A1A2 . . . , An−1An

by the points A1, A2, . . . An−1. Suppose further that B is such a point that the angle ∠BA0A1 is a right angle. Then
the following inequalities hold: ∠AnBAn−1 < ∠An−1BAn−2 < . . . < ∠A3BA2 < ∠A2BA1 < ∠A1BA0.

Proof. Being a right angle, by C 1.3.17.6 the angle ∠BA0A1 is greater than the angle ∠BA1A0. The result then
follows from the preceding corollary (C 1.3.18.8). 2

Corollary 1.3.18.10. Let F be the foot of the perpendicular drawn through a point A on the side k of an angle
∠(h, k) to the line h̄ containing the other side h. If F ∈ h then ∠(h, k) is an acute angle. If F ∈ hc then ∠(h, k) is
an obtuse angle. 322

Proof. Denote the vertex of ∠(h, k) by O. Suppose first F ∈ h (see Fig. 1.132, a) ). Then A ∈ k & F ∈ h
L1.2.3.2
=⇒

∠AOF = ∠(h, k). From the condition of orthogonality ∠AFO is a right angle. Since the triangle △AOF is required
by C 1.3.17.4 to have at least two acute angles (and ∠AFO is a right angle), the angle ∠(h, k) is acute. Now suppose
F ∈ hc (see Fig. 1.132, a) ). Using the preceding arguments, we see immediately that ∠(hc, k) is acute. Hence
∠(h, k) = adjsp∠(hc, k) is obtuse, q.e.d. 2

The converse is also true.

321In other words, the finite sequence of points Ai, where i ∈ Nn, n ≥ 2, has the property that every point of the sequence, except for
the first and the last, lies between the two points with adjacent (in N) numbers, and all intervals AiAi+1, where i ∈ Nn, are congruent.
(See p. 147. )
322Obviously, If F = O, where O is the vertex of ∠(h, k), then ∠(h, k) is a right angle.
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Figure 1.132: Let F be the foot of the perpendicular drawn through a point A on the side k of an angle ∠(h, k) to
the line h̄ containing the other side h. If F ∈ h then ∠(h, k) is an acute angle. If F ∈ hc then ∠(h, k) is an obtuse
angle.
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Figure 1.133: Suppose rays h2, h3, h4 have a common origin O and the rays h2, h4 lie on opposite sides of the line
h̄3. Then the ray h3 lies inside the angle ∠(h2, h4), and the open interval (AC), where A ∈ h2, C ∈ h4, meets the
ray h3 in some point B.

Corollary 1.3.18.11. Let F be the foot of the perpendicular drawn through a point A on the side k of an angle
∠(h, k) to the line h̄ containing the other side h. If ∠(h, k) is an acute angle, then F ∈ h. If ∠(h, k) is an obtuse
angle then F ∈ hc.

Proof. Suppose ∠(h, k) is an acute angle. Then F ∈ h. Indeed, if we had F ∈ hc, the angle ∠(h, k) would be obtuse
by the preceding corollary (C 1.3.18.10) - a contradiction; and if F = O, where O is the vertex of ∠(h, k), the angle
∠(h, k) would be right. Similarly, the fact that ∠(h, k) is an obtuse angle implies F ∈ hc. 2

Corollary 1.3.18.12. Suppose rays h2, h3, h4 have a common origin O, the angles ∠(h2, h3), ∠(h3, h4) are both
acute, and the rays h2, h4 lie on opposite sides of the line h̄3.

323 Then the ray h3 lies inside the angle ∠(h2, h4),
and the open interval (AC), where A ∈ h2, C ∈ h4, meets the ray h3 in some point B.

Proof. Using L 1.3.8.3, draw a ray h1 so that ∠(h1, h3) is a right angle. Then the angle ∠(h3, h5), where h5 ⇋ hc
1 is,

obviously, also a right angle. Since the rays h1, h5 lie on opposite sides of the line h̄3, we can assume without loss
of generality that the rays h1, h2 lie on one side of the line h̄3 (renaming h1 → h5, h5 → h1 if necessary). Taking
into account that, by hypothesis, the rays h2, h4 lie on opposite sides of the line h̄3, from L 1.2.18.4, L 1.2.18.5
we conclude that the rays h4, h5 lie on one side of the line h̄3. Since the angles ∠(h2, h3), ∠(h3, h4) are acute and
∠(h1, h3), ∠(h3, h5) are right angles, using L 1.3.16.17 we can write ∠(h2, h3) < ∠(h2, h3), ∠(h3, h4) < ∠(h3, h5).
Together with the facts that h1, h2 lie on one side of the line h̄3 and that h4, h5 lie on one side of the line h̄3,
these inequalities give, respectively, the following inclusions: h2 ⊂ Int∠(h1, h3), h4 ⊂ Int∠(h3, h5).

324 Hence using
L 1.2.21.27 we can write 325 [h1h2h3] & [h1h3h5] ⇒ [h2h3h5]. [h2h3h5] & [h3h4h5] ⇒ [h2h3h4]. 2

Corollary 1.3.18.13. Suppose adjacent angles ∠(h, k), ∠(k, l) are both acute. Then the rays k, l lie on the same
side of the line h̄. 326

323In other words, we require that the angles ∠(h2, h3), ∠(h3, h4) are adjacent (see p. 38) and are both acute.
324At this point it is instructive to note that the rays h2, h3, h4 all lie on the same side of the line h̄1.
325Recall that [hihjhk] is a shorthand for hj ⊂ Int∠(hi, hk).
326And then, of course, k, h lie on the same side of the line l̄, but, due to symmetry this essentially adds nothing new.
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Figure 1.134: If a side AB and angles ∠A, ∠C of a triangle △ABC are congruent, respectively, to a side A′B′

and angles ∠A′, ∠C′ of a triangle △A′B′C′, the triangles △ABC, △A′B′C′ are congruent. (SAA, or The Fourth
Triangle Congruence Theorem)

Proof. Take points H ∈ h, L ∈ l. By the preceding corollary (C 1.3.18.12) the ray k meets the open interval (HL)
in some point K. Since the points K, L lie on the same ray HL whose initial point H lies on h̄, they lie on one side
of h̄ (see L 1.2.11.13, L 1.2.19.8). Then by T 1.2.19 the rays k, l, containing these points, also lie on the same side
of h̄, q.e.d. 2

SAA

Theorem 1.3.19 (Fourth Triangle Congruence Theorem (SAA)). If a side AB and angles ∠A, ∠C of a triangle
△ABC are congruent, respectively, to a side A′B′ and angles ∠A′, ∠C′ of a triangle △A′B′C′, the triangles △ABC,
△A′B′C′ are congruent.

Proof. (See Fig. 1.134.) Suppose the contrary, i.e. △ABC 6≡ △A′B′C′. Then by T 1.3.5 ∠B 6≡ ∠B′. 327 Let

∠B < ∠B′. 328 ∠B < ∠B′ L1.3.16.3
=⇒ ∠ABC ≡ A′B′D′ & [A′D′C′]. [A′D′C′]

L1.2.11.15
=⇒ A′

D′ = A′
C′ ⇒ ∠B′A′D′ =

∠B′A′C′ = ∠A′. AB ≡ A′B′ & ∠A ≡ ∠B′A′D′ = ∠A′ & ∠ABC ≡ ∠A′B′D′ T1.3.5
=⇒ △ABC ≡ △A′B′D′. But

∠A′C′B′ ≡ ∠ACB & ∠ACB ≡ ∠A′D′B′ T1.3.11
=⇒ ∠A′C′B′ ≡ ∠A′D′B′, which contradicts T 1.3.17. 2

Proposition 1.3.19.1. Consider two simple quadrilaterals, ABCD and A′B′C′D′ with AB ≡ A′B′, BC ≡ B′C′,
∠ABC ≡ ∠A′B′C′, ∠BAD ≡ ∠B′A′D′, ∠BCD ≡ ∠B′C′D′. Suppose further that if A, D lie on the same side of
the line aBC then A′, D′ lie on the same side of the line aB′C′ , and if A, D lie on the opposite sides of the line aBC

then A′, D′ lie on the opposite sides of the line aB′C′ . Then the quadrilaterals are congruent, ABCD ≡ A′B′C′D′.
329

Proof. Denote E ⇋ aBC ∩ aAD. Evidently, E 6= A, E 6= D. 330 Observe that D ∈ AE . In fact, otherwise in view
of C 1.2.1.7 we would have ∃F ([AFB] & [DFC]) contrary to simplicity of ABCD. Note also that D ∈ AE & D 6=

E
L1.2.11.8

=⇒ [ADE]∨[AED]. Similarly, D′ ∈ A′
E′ and, consequently, we have either [A′D′E′] or [A′E′D′]. Furthermore,

AB ≡ A′B′ & BC ≡ B′C′ & ∠ABC ≡ ∠A′B′C′ T1.3.4
=⇒ △ABC ≡ △A′B′C′ ⇒ ∠BAC ≡ ∠B′A′C′ & ∠ACB ≡

∠A′C′B′ & AC ≡ A′C′.
According to T 1.2.2 we have either [EBC], or [BEC], or [BCE]. Suppose that [EBC]. Then ¬[ADE], for

otherwise ∃F ([CFD] & [AFB]) by C 1.2.1.7. Turning to the quadrilateral A′B′C′D′ we find that here, too, we
always have D′ ∈ A′

E′ and either [E′B′C′], or [B′E′C′], or [B′C′E′]. We are going to show that under our current
assumption that [EBC] we have [E′B′C′]. In fact, [B′E′C′] is inconsistent with [A′E′D′], for E′ ∈ (B′C′) ∩ (A′D′)
contradicts simplicity. 331 Suppose that [B′C′E′]. Then using T 1.3.17 we can write ∠BCD = ∠ECD < ∠CEA =
∠BEA < ∠ABC ≡ ∠A′B′C′ < angleA′C′E′ < ∠C′E′D′ < ∠B′C′D′, whence ∠BCD < ∠B′C′D′ (see L 1.3.16.6 –
L 1.3.16.8), which contradicts ∠BCD ≡ ∠B′C′D′ (see L 1.3.16.11). Thus, we see that [E′B′C′]. We can now write

∠BAD ≡ ∠B′A′D′ & ∠BAC ≡ ∠B′A′C′ & AB ⊂ Int∠CAD & A′
B′ ⊂ Int∠C′A′D′ T1.3.9

=⇒ ∠CAD ≡ ∠C′A′D′, 332

327For otherwise AB ≡ A′B′ &∠A ≡ ∠A′ & ∠B ≡ ∠B′ T1.3.5
=⇒ △ABC ≡ △A′B′C′.

328Due to symmetry of the relations of congruence of intervals, angles, and, as a consequence, triangles (see T 1.3.1, T 1.3.11, C 1.3.11.2).
329Perhaps this is not a very elegant result with a proof that is still less elegant, but we are going to use it to prove some fundamental

theorems. (See, for example, T 3.1.11.)
330Since ABCD is simple, no three vertices of this quadrilateral are collinear.
331We cannot have [A′D′E′], for this would mean that the points A′, D′ lie on the same side of the line aB′C′ . But since A, D lie on

the opposite sides of aBC , one of the conditions of our proposition dictates that A′, D′ lie on the opposite sides of aB′C′ .
332We take into account that in view of L 1.2.21.6, L 1.2.21.4 we have B ∈ (EC) ⇒ AB ⊂ Int∠CAD and similarly B′ ∈ (E′C′) ⇒

A′
B′ ⊂ Int∠C′A′D′. We also take into account that [AED]

L1.2.11.15
=⇒ AE = AD ⇒ ∠CAE = ∠CAD. Similarly, we conclude that

∠C′A′E′ = ∠C′A′D′.
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∠ACB ≡ ∠A′C′B′ & ∠BCD ≡ ∠B′C′D′ & CB ⊂ Int∠ACD & C′
B′ ⊂ Int∠A′C′D′ T1.3.9

=⇒ ∠ACD ≡ ∠A′C′D′, 333

AC ≡ A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠ACD ≡ ∠A′C′D′∠A′C′D′ T1.3.5
=⇒ △ADC ≡ △A′D′C′ ⇒ AD ≡ A′D′ & CD ≡

C′D′ & ∠ADC ≡ ∠A′D′C′.

Suppose now that [BEC]. Then, as we have seen, [ADE]. We are going to show that in this case we have [B′E′C′].
In order to do this, suppose that [B′C′E′]. (We have seen above that [E′B′C′] is incompatible with [A′E′D′]). Then

AD ⊂ Int∠BAC
C1.3.13.4

=⇒ ∠BAD < ∠BAC, A′
C′ ⊂ Int∠B′A′D′ C1.3.13.4

=⇒ ∠B′A′C′ < ∠B′A′D′. Hence ∠BAD <
∠BAC & ∠BAC ≡ ∠B′A′C′ & ∠B′A′C′ < ∠B′A′D′ ⇒ ∠BAD < ∠B′A′D′ (see L 1.3.16.6 – L 1.3.16.8), which
contradicts the assumption ∠BAD ≡ ∠B′A′D′ (see L 1.3.16.11). Thus, we see that [B′E′C′]. Using L 1.2.11.15,
L 1.2.21.6, L 1.2.21.4, together with [ADE], [BEC] it is easy to see that AD ⊂ Int∠BAC, CD ⊂ Int∠ACB. Similarly,
A′

D′ ⊂ Int∠B′A′C′, C′
D′ ⊂ Int∠A′C′B′. We can now write ∠BAD ≡ angleB′A′D′ & ∠BAC ≡ ∠B′A′C′ & AD ⊂

Int∠BAC & A′
D′ ⊂ Int∠B′A′C′ T1.3.9

=⇒ ∠CAD ≡ ∠C′A′D′, ∠BCD ≡ ∠B′C′D′ & ∠BCA ≡ ∠B′C′A′ & CD ⊂

Int∠BCA& C′
D′ ⊂ Int∠B′C′A′ T1.3.9

=⇒ ∠ACD ≡ ∠A′C′D′, AC ≡ A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠ACD ≡ ∠A′C′D′ T1.3.5
=⇒

△ADC ≡ △A′D′C′ ⇒ AD ≡ A′D′ & CD ≡ C′D′ & ∠ADC ≡ ∠A′D′C′.

Finally, suppose that [BCE]. The arguments given above show that [B′C′E′]. Then we have ∠BAC ≡

∠B′A′C′ & ∠BAD ≡ ∠B′A′D′ & AC ⊂ Int∠BAD & A′
C′ ⊂ Int∠B′A′D′ T1.3.9

=⇒ ∠CAD ≡ ∠C′A′D′. First, suppose
that [ADE], i.e. that the points A, D lie on the same side of aBC . Then, according to our assumption, A′, D′ lie
on the same side of aB′C′ , which means in this case that [A′D′E′]. We can write [BCE] ⇒ ∠BCD = adjsp∠ECD,

whence CD ⊂ Int∠ACE
L1.2.21.22

=⇒ CA ⊂ Int∠BCD. Similarly, we have [B′C′E′] ⇒ ∠B′C′D′ = adjsp∠E′C′D′,

whence C′
D′ ⊂ Int∠A′C′E′ L1.2.21.22

=⇒ C′
A′ ⊂ Int∠B′C′D′. Hence ∠BCA ≡ ∠B′C′A′ & ∠BCD ≡ ∠B′C′D′ & CA ⊂

Int∠BCD & C′
A′ ⊂ Int∠B′C′D′ T1.3.9

=⇒ ∠ACD ≡ ∠A′C′D′, AC ≡ ∠A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠ACD ≡

∠A′C′D′ T1.3.19
=⇒ △ACD ≡ △A′C′D′ ⇒ CD ≡ C′D′ & AD ≡ A′D′ & angleCDA ≡ ∠C′D′A′.

At last, suppose that [AED], i.e. that the points A, D lie on opposite sides of the line aBC . We have [BCE] ⇒
∠ACE = adjsp∠ACB & ∠DCE = adjspDCB, [B′C′E′] ⇒ ∠A′C′E′ = adjsp∠A′C′B′ & ∠D′C′E′ = adjspD′C′B′.
Hence in view of T 1.3.6 we can write ∠ACB ≡ ∠A′C′B′ ⇒ ∠ACE ≡ ∠A′C′E′, ∠DCB ≡ ∠D′C′B′ ⇒ ∠DCE ≡
∠D′C′E′. But from L 1.2.21.6, L 1.2.21.4 we have [AED] ⇒ CE ⊂ Int∠ACD, [A′E′D′] ⇒ C′

E′ ⊂ Int∠A′C′D′.

Finally, we can write ∠ACE ≡ ∠A′C′E′ & ∠DCE ≡ ∠D′C′E′ & CE ⊂ Int∠ACD & C′
E′ ⊂ Int∠A′C′D′ T1.3.9

=⇒

∠ACD ≡ ∠A′C′D′ and AC ≡ A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠CDA ≡ ∠C′D′A′ T1.3.5
=⇒ △CAD ≡ △C′A′D′, whence

the result. 2

Proposition 1.3.19.2. Consider two simple quadrilaterals, ABCD and A′B′C′D′ with AB ≡ A′B′, BC ≡ B′C′,
∠ABC ≡ ∠A′B′C′, ∠BAD ≡ ∠B′A′D′, ∠ACD ≡ ∠A′C′D′. Suppose further that if C, D lie on the same side of
the line aAB then C′, D′ lie on the same side of the line aA′B′ , and if C, D lie on the opposite sides of the line aAB

then C′, D′ lie on the opposite sides of the line aA′B′ . Then the quadrilaterals are congruent, ABCD ≡ A′B′C′D′.

Proof. As in the preceding proposition, we can immediately write AB ≡ A′B′ & BC ≡ B′C′ & ∠ABC ≡ ∠A′B′C′ T1.3.4
=⇒

△ABC ≡ △A′B′C′ ⇒ ∠BAC ≡ ∠B′A′C′ & ∠ACB ≡ ∠A′C′B′ & AC ≡ A′C′. We start with the case where the
points C, D lie on the same side of the line aAB. Then, by hypothesis, C′, D′ lie on the same side of the line
aA′B′ . First, suppose that also the points B, D lie on the same side of the line aAC . This implies B′D′aA′C′ .
In fact, since, as shown above, the points C′, D′ lie on the same side of aA′B′ , from L 1.2.21.21 we have either
A′

C′ ⊂ Int∠B′A′D′ or A′
D′ ⊂ Int∠B′A′D′. 334 But the first of these options in view of C ?? would imply

∠BAC < ∠BAD ≡ ∠B′A′D′ < ∠B′A′C′, whence by L 1.3.16.6 - L 1.3.16.8 we have ∠BAC < ∠B′A′C′, which
contradicts ∠BAC ≡ ∠B′A′C′ in view of L 1.3.16.8. Thus, we conclude that in this case B′D′aA′C′ .

We can write ∠BAC ≡ ∠B′A′C′ & ∠BAD ≡ ∠B′A′D′ & CDaAB & C′D′aA′B′
T1.3.9
=⇒ ∠CAD ≡ ∠C′A′D′. AC ≡

A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠ADC ≡ ∠A′D′C′ T1.3.19
=⇒ △ADC ≡ △A′D′C′ ⇒ AD ≡ A′D′ & CD ≡ C′D′ & ∠ACD ≡

∠A′C′D′. ∠ACB ≡ ∠A′C′B′ & ∠ACD ≡ ∠A′C′D′ & BDaAC & B′D′aA′C′
T1.3.9
=⇒ ∠BCD ≡ ∠B′C′D′.

Now suppose that the points B, D lie on the opposite sides of the line aAC . 335 The points B′, D′ then evidently
lie on the opposite sides of the line aA′C′ . 336 Using the same arguments as above, 337 we see that AD ≡ A′D′,
CD ≡ C′D′, ∠BCD ≡ ∠B′C′D′, as required.

We now turn to the situations where the points C, D lie on the opposite sides of the line aAB. Then, by hy-
pothesis, the points C, D lie on the opposite sides of the line aAB, and we can write ∠BAD ≡ ∠B′A′D′ & ∠BAC ≡

333Again, we take into account that [EBC]
L1.2.11.15

=⇒ CE = CB and E ∈ (AD) ⇒ CE ⊂ Int∠ACD in view of L 1.2.21.6, L 1.2.21.4.
Similarly, we conclude that C′

E′ = C′
B′ and E′ ∈ (A′D′) ⇒ C′

E′ ⊂ Int∠A′C′D′.
334Of course, the rays A′

C′ , A′
D′ cannot coincide due to simplicity of the quadrilateral A′B′C′D′.

335But the points C, D are still assumed to lie on the opposite sides of the line aAB !
336If B′, D′ were on the same side of the line aA′C′ , the points B, D would lie on the same side of the line aAC . This can shown be

using essentially the same arguments as those used above to show that BDaAC implies B′D′aA′C′ . ( Observe that the quadrilaterals
ABCD, A′B′C′D′ enter the conditions of the theorem symmetrically.)
337We can write ∠BAC ≡ ∠B′A′C′ &∠BAD ≡ ∠B′A′D′ &CDaAB &C′D′aA′B′

T1.3.9
=⇒ ∠CAD ≡ ∠C′A′D′. AC ≡ A′C′ & ∠CAD ≡

∠C′A′D′ & ∠ADC ≡ ∠A′D′C′ T1.3.19
=⇒ △ADC ≡ △A′D′C′ ⇒ AD ≡ A′D′ &CD ≡ C′D′ & ∠ACD ≡ ∠A′C′D′. ∠ACB ≡

∠A′C′B′ &∠ACD ≡ ∠A′C′D′ &BaACD&B′aA′C′D′ T1.3.9
=⇒ ∠BCD ≡ ∠B′C′D′.
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∠B′A′C′ & CaABD & C′aA′B′D′ T1.3.9
=⇒ ∠CAD ≡ ∠C′A′D′, AC ≡ A′C′ & ∠CAD ≡ ∠C′A′D′ & ∠ADC ≡ ∠A′D′C′ T1.3.9

=⇒
△ACD ≡ △A′C′D′ ⇒ AD ≡ A′D′ & CD ≡ C′D′ & ∠ACD ≡ ∠A′C′D′.

Again, we start proving the rest of the congruences by assuming that the points B, D lie on the same side of the
line aAC . We are going to show that in this case the points B′, D′ lie on the same side of the line aA′C′ . Suppose
the contrary, i.e. that B′aA′C′D′. Choosing a point E′ such that [C′A′E′] (see A 1.2.2), it is easy to see that
the ray A′

E′ lies inside the angle ∠B′A′D′,338 which, in turn, implies that ∠B′A′E′ < ∠B′A′D′ (see C 1.3.16.4).

Note that BDaAC
L1.2.21.21

=⇒ AD ⊂ Int∠CAB ∨ AB ⊂ Int∠CAD. But AD ⊂ Int∠CAB in view of definition of
interior would imply that the points C, D lie on the same side of the line aAB contrary to our assumption. Thus,

we see that AB ⊂ Int∠CAD. By L 1.2.21.10 ∃E(E ∈ AB ∩ (CD)). We have E ∈ AB
L1.2.21.21

=⇒ [AEB] ∨ E =
B ∨ [ABE]. But [ABE] and E = B contradict simplicity of the quadrilateral ABCD. Thus, we conclude that
[ABE]. Hence using T 1.3.17 (see also L 1.2.11.15) we can write ∠BAD = ∠DAE < ∠AEC = ∠BEC < ∠ABC,
whence ∠BAD < ∠ABC (see L 1.3.16.6 – L 1.3.16.8). On the other hand, we have ∠A′B′C′ < ∠B′A′E′. Taking
into account ∠B′A′E′ < ∠B′A′D′ and using L 1.3.16.8, we find that ∠A′B′C′ < ∠B′A′D′. Now we can write
∠BAD < ∠ABC ≡ ∠A′B′C′ < ∠B′A′D′ ⇒ ∠BAD < ∠B′A′D′ (see L 1.3.16.6 – L 1.3.16.8), which (in view
of L 1.3.16.11) contradicts ∠BAD ≡ ∠B′A′D′ (the latter is true by hypothesis). This contradiction refutes our
assumption that the points B′, D′ lie on the opposite sides of the line aA′C′ given that the points B, D lie on
the same side of aAC . Thus, since we assume BDaAC , we also have B′D′aA′C′ . Now we can write ∠ACB ≡

∠A′C′B′ & ∠ACD ≡ ∠A′C′D′ & BDaAC & B′D′aA′C′
T1.3.9
=⇒ ∠BCD ≡ ∠B′C′D′.

Finally, observing that BaACD implies that B′aA′C′D′, 339 we can write ∠ACB ≡ ∠A′C′B′ & ∠ACD ≡

∠A′C′D′ & aACD & B′aA′C′D′ T1.3.9
=⇒ ∠BCD ≡ ∠B′C′D′. 2

Proposition 1.3.19.3. Consider two simple quadrilaterals, ABCD and A′B′C′D′ with AB ≡ A′B′, BC ≡ B′C′,
CD ≡ C′D′, ∠ABC ≡ A′B′C′, ∠BCD ≡ ∠B′C′D′. 340 Suppose further that if A, D lie on the same side of the
line aBC then A′, D′ lie on the same side of the line aB′C′ , and if A, D lie on the opposite sides of the line aBC

338We have C′aA′B′D′ &C′aA′B′E′ L1.2.18.4
=⇒ D′E′aA′B′ , D′E′aA′B′

L1.2.21.21
=⇒ A′

D′ ⊂ Int∠B′A′E′ ∨ A′
D′ ⊂ Int∠B′A′E′. But

A′
D′ ⊂ Int∠B′A′E′ in view of the definition of interior of the angle ∠B′A′E′ would imply that the points B′, D′ lie on the same side

of the line aA′C′ , contrary to our assumption.
339Evidently, B′D′aA′C′ would imply BDaAC . This is easily seen using arguments completely symmetrical (with respect to priming)

to those employed to show that BDaAC implies B′D′aA′C′ .
340Actually, we need to assume simplicity only for ABCD. The simplicity of A′B′C′D′ can then be established using the other conditions

of the proposition in the following less than elegant proof. Observe that AB ≡ A′B′ &BC ≡ B′C′ & ∠ABC ≡ ∠A′B′C′ T1.3.4
=⇒ △ABC ≡

△A′B′C′ ⇒ ∠ABC ≡ ∠A′B′C′ &∠ACB ≡ ∠A′C′B′ &AC ≡ A′C′, BC ≡ B′C′ &CD ≡ C′D′ & ∠BCD ≡ ∠B′C′D′ T1.3.4
=⇒ △BCD ≡

△B′C′D′ ⇒ BD ≡ B′D′ & ∠CBD ≡ ∠C′B′D′ & ∠CDB ≡ ∠C′D′B′. Since either both A, D lie on the same side of aBC and A′, D′ lie
on the same side of aB′C′ or both A, D lie on the opposite side of aBC and A′, D′ lie on the opposite sides of aB′C′ , taking into account
the congruences ∠ABC ≡ ∠A′B′C′, ∠DBC ≡ D′B′C′, ∠ACB ≡ A′C′B′, ∠DCB ≡ ∠D′C′B′, assuming that both A, B, D as well as
A, D, C are not collinear (and, as we will see below, this is indeed the case given the conditions of the proposition) using T 1.3.9 we find

that ∠ABD ≡ ∠A′B′D′, ∠ACD ≡ ∠A′C′D′, whence AB ≡ A′B′ &BD ≡ B′D′ & ∠ABD ≡ ∠A′B′D′ T1.3.4
=⇒ △ABD ≡ △A′B′D′ ⇒

AD ≡ A′D′ & ∠BAD ≡ ∠B′A′D′ &∠BDA ≡ ∠B′D′A′, AC ≡ A′C′ &CD ≡ C′D′ &∠ACD ≡ ∠A′C′D′ T1.3.4
=⇒ △ACD ≡ △A′C′D′ ⇒

∠CAD ≡ ∠C′A′D′ & ∠CDA ≡ ∠C′D′A′. Consider first the case where the points A, D lie on the opposite sides of the line aBC and,
consequently, the points A′, D′ lie on the opposite sides of the line aB′C′ . Given the assumptions implicit in the conditions of the
theorem, we just need to establish that the open intervals (AD), (BC) do not meet and that the points A′, B′, D′, as well as the points
B′, C′, D′, are not collinear, for the only ways that the quadrilateral A′B′C′D′ can be not simple are if (AD)∩ (BC) 6= ∅, or B′ ∈ aA′D′ ,
or C′ ∈ aA′D′ . (Since the (non-straight) angles ∠A′B′C′, ∠B′C′D′ are assumed to exist, the points A′, B′, C′ are not collinear, as are
points B′, C′, D′. Therefore, (A′B′)∩(B′C′) = ∅ and (B′C′)∩(C′D′) = ∅, as is easy to see using L 1.2.1.3. Furthermore, since points A′,
D′ lie on the opposite sides of aB′C′ , the open intervals (A′B′), (C′D′) lie on the opposite sides of the line aB′C′ (see T 1.2.20) and thus
also have no common points.) Denote E ⇋ (AD)∩aBC , E′ ⇋ (A′D′)∩aB′C′ . Evidently, E 6= B, E 6= C, and ¬[BEC] due to simplicity
of the quadrilateral ABCD. Hence by T 1.2.2 we have either [EBC] or [BCE]. We are going to show that E′ 6= B′ and E′ 6= C′, which
will imply that A′, B′, D′, as well as B′, C′, D′, are not collinear for the case in question. To do this, suppose the contrary, i.e. that, say,
E′ = B′. Then ∠C′B′D′ is adjacent supplementary to ∠A′B′C′, and in view of ∠ABC ≡ ∠A′B′C′, ∠CBD ≡ ∠C′B′D′ using C 1.3.6.1
(recall that the points A, D lie on the opposite sides of the line aBC ), we conclude that the angle ∠CBD is adjacent supplementary to
the angle ∠ABC, which, in turn, implies that the points A, B, D are collinear, contrary to the simplicity of the quadrilateral ABCD.
Similarly, assuming that E′ = C′ (which obviously makes the angles ∠A′C′B′, ∠D′C′B′ adjacent supplementary), taking into account
that AaBCD, ∠ACB ≡ ∠A′C′B′, ∠DCB ≡ ∠D′C′B′, and using C 1.3.6.1 we would find that the angles ∠ACB, ∠DCB are adjacent
supplementary in contradiction with the simplicity of ABCD. (Once we know that E′ 6= B′, we can immediately conclude that E′ 6= C′

because the conditions of the proposition are invariant with respect to the simultaneous substitutions A ↔ D, B ↔ C, A′ ↔ D′, B′ ↔ C′.)
To show that ¬[B′E′C′], suppose the contrary. If [EBC] then using L 1.2.11.15, L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way, we
can write ∠BAC < ∠EAC = ∠CAD ≡ ∠C′A′D′ = ∠C′A′E′ < ∠B′A′C′, whence (see L 1.3.16.6 – L 1.3.16.8 ) ∠BAC < ∠B′A′C′,
which in view of L 1.3.16.11 contradicts the congruence ∠BAC ≡ ∠B′A′C′ established earlier. If [BCE] then (using again L 1.2.11.15,
L 1.2.21.6, L 1.2.21.4, C 1.3.16.4 along the way) we can write ∠CDB < ∠BDE = ∠BDA ≡ ∠B′D′A′ = ∠B′D′E′ < ∠C′D′B′, whence
(see L 1.3.16.6 – L 1.3.16.8 ) ∠CDB < ∠C′D′B′, which in view of L 1.3.16.11 contradicts the congruence ∠CDB ≡ ∠C′D′B′ established
earlier. (Again, once the case where [EBC] has been considered, the contradiction for the case where [BCE] can be immediately
obtained from symmetry considerations; namely, from the fact that the conditions of the theorem are left unchanged by the simultaneous
substitutions A ↔ D, B ↔ C, A′ ↔ D′, B′ ↔ C′. ) We now turn to the case where the points A, D lie on the same side of the line
aBC and, consequently, the points A′, D′ lie on the same side of the line aB′C′ . Obviously, the only way the quadrilateral A′B′C′D′

could be not simple given the conditions of the theorem is if the half-closed intervals (B′A′], (C′D′] have a common point, say, E′. But
then it is easy to show using C 1.3.6.2 that the half-closed intervals (BA], (CD] have a common point, say, E, which contradicts the
assumed simplicity of ABCD. (In fact, since E′ = (B′A′] ∩ (C′D′] and (B′A′] ⊂ B′

A′ , (C′D′] ⊂ C′
D′ (see L 1.2.11.1, L 1.2.11.13), we

have E′ = B′
A′ ∩ C′

D′ . Taking into account ∠ABC ≡ ∠A′B′C′, ∠BCD ≡ ∠B′C′D′ and using C 1.3.6.2, we see that the rays BA, CD

meet in some point E such that △AEC ≡ △A′E′C′, which implies that AE ≡ A′E′, CE ≡ C′E′. Then from L 1.3.13.3, T 1.3.2 we find
that the point E lies on the half-closed intervals (BA], (CD] in contradiction with the assumed simplicity of ABCD.
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then A′, D′ lie on the opposite sides of the line aB′C′ . Then the quadrilaterals are congruent, ABCD ≡ A′B′C′D′.

Proof. As in the preceding two propositions, we can immediately write AB ≡ A′B′ & BC ≡ B′C′ & ∠ABC ≡

∠A′B′C′ T1.3.4
=⇒ △ABC ≡ △A′B′C′ ⇒ ∠BAC ≡ ∠B′A′C′ & ∠ACB ≡ ∠A′C′B′ & AC ≡ A′C′. We start with

the case where the points A, D lie on the same side of the line aBC . Then, by hypothesis, A′, D′ lie on the
same side of the line aB′C′ . Using T 1.3.9 we find that ∠ACD ≡ ∠A′C′D′, whence AC ≡ A′C′ & CD ≡

C′D′ & ∠ACD ≡ ∠A′C′D′ T1.3.4
=⇒ AD ≡ A′D′ & ∠CDA ≡ C′D′A′. From L 1.2.21.21 we have either CA ⊂

Int∠BCD or CD ⊂ Int∠BCA. If CA ⊂ Int∠BCD then by P 1.3.9.5 also C′
A′ ⊂ Int∠B′C′D′, and we can

write ∠BAC ≡ ∠B′A′C′ & ∠DAC ≡ ∠D′A′C′ & BDaAC & B′D′aA′C′
T1.3.9
=⇒ ∠BAD ≡ ∠B′A′D′. Suppose CD ⊂

Int∠BCA. Then ∃E(E ∈ CD ∩ (BA)). Hence (see also L 1.2.19.8 ) we can write ∠CAD ≡ ∠C′A′D′ & ∠CAE ≡

∠AE & EDaAC & E′D′aA′C′
T1.3.9
=⇒ ∠DAE ≡ ∠D′A′E′, whence ∠DAB ≡ ∠D′A′B′ (we also take into account that

∠CAE = ∠CAB, ∠DAB = ∠DAE, ∠C′A′E′ = ∠C′A′B′, ∠D′A′B′ = ∠D′A′E′ in view of L 1.2.11.15).
Consider now the case where AaBCD. Then, by hypothesis, also A′aB′C′D′. We can write ∠ACB ≡ ∠A′C′B′ & ∠DCB ≡

∠D′C′B′ & AaBCD & A′aBCD′ T1.3.9
=⇒ ∠ACD ≡ ∠A′C′D′, AC ≡ A′C′ & CD ≡ C′D′ & ∠ACD ≡ ∠A′C′D′ T1.3.4

=⇒
△CDA ≡ △C′D′A′ ⇒ AD ≡ A′D′ & ∠CDA ≡ ∠C′D′A′.

Denote E ⇋ (AD) ∩ aBC , 341 E′ ⇋ (A′D′) ∩ aB′C′ . In view of T 1.2.2 we have either [EBC] or [BCE] and,
similarly, either [E′B′C′] or [B′C′E′]. (Evidently, due to simplicity of ABCD, we can immediately discard from our
consideration the cases E = B, [BEC], E = C, E′ = B′, [B′E′C′], E′ = C′.2 We are going to show that if [EBC]
then also [E′B′C′]. To establish this suppose the contrary, i.e. that both [EBC] and [B′C′E′]. Then, using T 1.3.17
we would have ∠BCD = ∠ECD < ∠AEC = ∠AEB < ∠ABC ≡ ∠A′B′C′ = ∠A′B′E′ < ∠B′E′D′ = ∠C′E′D′ <
∠B′C′D′ (see also L 1.2.11.15), whence ∠BCD < ∠B′C′D′ (see L 1.3.16.6 – L 1.3.16.8), which contradicts
∠BCD ≡ ∠B′C′D′ in view of L 1.3.16.11. Thus, we see that [BEC] implies [B′E′C′]. Similar arguments show that
[BCE] implies [B′C′E′]. 342 Consider first the case where [EBC], [E′B′C′]. Then we can write [EBC] ⇒ ABADaAC ,

[E′B′C′] ⇒ A′
B′A′

D′aA′C′ , ∠CAB ≡ ∠C′A′B′ & ∠CAD ≡ ∠C′A′D′ & ABADaAC & A′
B′A′

D′aA′C′
T1.3.9
=⇒ ∠BAD ≡

∠B′A′D′. Finally, suppose [BCE], [B′C′E′]. Then ∠CAB ≡ ∠C′A′B′ & ∠CAD ≡ ∠C′A′D′ & ABaACAD & A′
B′aA′C′A′

D′
T1
=

∠BAD ≡ ∠B′A′D′.

Theorem 1.3.20. Suppose a point B does not lie on a line aAC and D is the foot of the perpendicular drawn to
aAC through B. Then:

– The angle ∠BAC is obtuse if and only if the point A lies between D, C.
– The angle ∠BAC is acute if and only if the point D lies on the ray AC . 343

– The point D lies between the points A, C iff the angles ∠BCA, ∠BAC are both acute.

Proof. Suppose [ADC] (see Fig. 1.135, a)). Then [ADC]
L1.2.11.15

=⇒ AD = AC ⇒ ∠BAD = ∠BAC. On the other
hand, ∠BDC is a right angle, and by T 1.3.17 ∠BAD < ∠BDC, which, in its turn, means that ∠BAC is an acute
angle. Since [ADC] ⇒ [CDA], we immediately conclude that the angle ∠BCA is also acute.

Suppose [DAC] (see Fig. 1.135, b)). Then, again by T 1.3.17, ∠BDA < ∠BAC. Since ∠BDA is a right angle,
344 the angle BAC is bound to be obtuse in this case.

Suppose ∠BAC is acute.345 Then D 6= A and ¬[DAC] - otherwise the angle ∠BAC would be, respectively, either
right or obtuse. But D ∈ aAC & D 6= A&¬[DAC] ⇒ D ∈ AC .

Substituting A for C and C for A in the newly obtained result, we can conclude at once that if the angle ∠BCA
is acute, this implies that D ∈ CA.

Therefore, when ∠BAC and ∠BCA are both acute, we can write D ∈ AC ∩ CA = (AC) (see L 1.2.15.1).
Finally, if ∠BAC is obtuse, then D /∈ AC (otherwise ∠BAC would be acute), D ∈ aAC , and D 6= A. Therefore,

[DAC]. 2

Relations Between Intervals Divided into Congruent Parts

Lemma 1.3.21.1. Suppose points B and B′ lie between points A,C and A′, C′, respectively. Then AB ≡ A′B′ and
BC < B′C′ imply AC < A′C′.

Proof. (See Fig. 1.136.) BC < B′C′ L1.3.13.3
=⇒ ∃C′′ [B′C′′C′] & BC ≡ B′C′′. [A′B′C′] & [B′C′′C′]

L1.2.3.2
=⇒ [A′B′C′′]

& [A′C′′C′]. [ABC] & [A′B′C′′] & AB ≡ A′B′ & BC ≡ B′C′′ A1.3.3
=⇒ AC ≡ A′C′. Since also [A′C′′C′], by L 1.3.13.3

we conclude that AC < A′C′. 2

Lemma 1.3.21.2. Suppose points B and B′ lie between points A, C and A′, C′, respectively. Then AB ≡ A′B′ and
AC < A′C′ imply BC < B′C′.

341Obviously, E exists by definition of ”points A, D lie on the opposite sides of aBC”
342Observe that the quadrilaterals ABCD, A′B′C′D′ enter the conditions of the theorem symmetrically.
343And, of course, the angle BAC is right iff D = A.
344Recall that, by hypothesis, aBD ⊥ aDA = aAC .
345The reader can refer to any of the figures Fig. 1.135, a), c), d) for this case.
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A D C

A D=C

D A C

A C D
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a) b)

c) d)

Figure 1.135: Illustration for proof of L 1.3.20.

A B C

A’ B’ C’’ C’

Figure 1.136: Suppose points B and B′ lie between points A,C and A′,C′, respectively. Then AB ≡ A′B′ and
BC < B′C′ imply AC < A′C′.
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A B C

A’               A’’                     B’ C’’              C’

Figure 1.137: Suppose points B and B′ lie between points A,C and A′,C′, respectively. Then AB < A′B′ and
BC < B′C′ imply AC < A′C′.

Proof. By L 1.3.13.14 we have either BC ≡ B′C′, or B′C′ < BC, or BC < B′C′. Suppose BC ≡ B′C′. Then

[ABC] & [A′B′C′] & AB ≡ A′B′ & BC ≡ B′C′ A1.3.3
=⇒ AC ≡ A′C′, which contradicts AC < A′C′ in view of L 1.3.13.11.

Suppose B′C′ < BC. In this case [ABC] & [A′B′C′] & A′B′ ≡ AB & B′C′ < BC
L1.3.21.1

=⇒ A′C′ ≡ AC, which
contradicts AC < A′C′ in view of L 1.3.13.10. Thus, we have BC < B′C′ as the only remaining possibility. 2

Lemma 1.3.21.3. Suppose points B and B′ lie between points A,C and A′,C′, respectively. Then AB < A′B′ and
BC < B′C′ imply AC < A′C′.

Proof. (See Fig. 1.137.) AB < A′B′ & BC < B′C′ L1.3.13.3
=⇒ ∃A′′ [B′A′′A′] & BA ≡ B′A′′ & ∃C′′ [B′C′′C′] & BC ≡

B′C′′. [A′B′C′] & [A′A′′B′] & [B′C′′C′]
L1.2.3.2
=⇒ [A′B′C′′] & [A′C′′C′] & [A′A′′C′] & [A′′B′C′]. [A′′B′C′] & [B′C′′C′]

L1.2.3.2
=⇒

[A′′B′C′′]. [ABC] & [A′′B′C′′] & AB ≡ A′′B′ & BC ≡ B′C′′ A1.3.3
=⇒ AC ≡ A′′C′′. Finally, [A′A′′C′] & [A′C′′C′] & AC ≡

A′′C′′ L1.3.13.3
=⇒ AC < A′C′. 2

In the following L 1.3.21.4 - L 1.3.21.7 we assume that finite sequences of n points A1, A2, . . . , An and B1, B2, . . . , Bn,
where n ≥ 3, have the property that every point of the sequence, except the first (A1, B1) and the last (An, Bn,
respectively), lies between the two points of the sequence with the numbers adjacent (in N) to the number of the
given point. Suppose, further, that ∀i ∈ Nn−2 AiAi+1 ≡ Ai+1Ai+2, BiBi+1 ≡ Bi+1Bi+2.

346

Lemma 1.3.21.4. If ∀i ∈ Nn−1 AiAi+1 ≦ BiBi+1 and ∃i0 ∈ Nn−1 Ai0Ai0+1 < Bi0Bi0+1, then A1An < B1Bn.

Proof. Choose i0 ⇋ min{i|AiAi+1 < BiBi+1}. For i0 ∈ Nn−2 we have by induction assumption A1An−1 <

B1Bn−1. Then we can write either A1An−1 < B1Bn−1 & An−1An ≡ Bn−1Bn
L1.3.21.1

=⇒ A1An < B1Bn or A1An−1 <

B1Bn−1 & An−1An < Bn−1Bn
L1.3.21.3

=⇒ A1An < B1Bn. For i0 = n − 1 we have by P 1.3.1.5 A1An−1 ≡ B1Bn−1.

Then A1An−1 ≡ B1Bn−1 & An−1An < Bn−1Bn
L1.3.21.1

=⇒ A1An < B1Bn. 2

Corollary 1.3.21.5. If ∀i ∈ Nn−1 AiAi+1 ≦ BiBi+1, then A1An ≦ B1Bn.

Proof. Immediately follows from P 1.3.1.5, L 1.3.21.4. 2

Lemma 1.3.21.6. The inequality A1An < B1Bn implies that ∀i, j ∈ Nn−1 AiAi+1 < BjBj+1.

Proof. It suffices to show that A1A2 < B1B2, because then by L 1.3.13.6, L 1.3.13.7 we have A1A2 < B1B2 & A1A2 ≡
AiAi+1 & B1B2 ≡ BjBj+1 ⇒ AiAi+1 < BjBj+1 for all i, j ∈ Nn−1. Suppose the contrary, i.e. that B1B2 ≦ A1A2.
Then by T 1.3.1, L 1.3.13.6, L 1.3.13.7 we have B1B2 ≦ A1A2 & B1B2 ≡ BiBi+1 & A1A2 ≡ AiAi+1 ⇒ BiBi+1 ≦

AiAi+1 for all i ∈ Nn−1, whence by C 1.3.21.5 B1Bn ≦ A1An, which contradicts the hypothesis in view of L 1.3.13.10,
C 1.3.13.12. 2

Lemma 1.3.21.7. The congruence A1An ≡ B1Bn implies that ∀i, j ∈ Nn−k AiAi+k ≡ BjBj+k, where k ∈ Nn−1.
347

Proof. Again, it suffices to show that A1A2 ≡ B1B2, for then we have A1A2 ≡ B1B2 & A1A2 ≡ AiAi+1 & B1B2 ≡

BjBj+1
T1.3.1
=⇒ AiAi+1 ≡ BjBj+1 for all i, j ∈ Nn−1, whence the result follows in an obvious way from P 1.3.1.5

and T 1.3.1. Suppose A1A2 < B1B2.
348 Then by L 1.3.13.6, L 1.3.13.7 we have A1A2 < B1B2 & A1A2 ≡

AiAi+1 & B1B2 ≡ BiBi+1 ⇒ AiAi+1 < BiBi+1 for all i ∈ Nn−1, whence A1An < B1Bn by L 1.3.21.4, which
contradicts A1An ≡ B1Bn in view of L 1.3.13.11. 2

346Observe that these conditions imply, and this will be used in the ensuing proofs, that [A1An−1An], [B1Bn−1Bn] by L 1.2.7.3, and
for all i, j ∈ Nn−1 we have AiAi+1 ≡ AjAj+1, BiBi+1 ≡ BjBj+1 by T 1.3.1.
347Observe that the argument used to prove the present lemma, together with P 1.3.1.5, allows us to formulate the following facts:

Given an interval AB consisting of k congruent intervals, each of which (or, equivalently, congruent to one which) results from division of
an interval CD into n congruent intervals, and given an interval A′B′ consisting of k congruent intervals (congruent to those) resulting
from division of an interval C′D′ into n congruent intervals, if CD ≡ C′D′ then AB ≡ A′B′. Given an interval AB consisting of k1
congruent intervals, each of which (or, equivalently, congruent to one which) results from division of an interval CD into n congruent
intervals, and given an interval A′B′ consisting of k2 congruent intervals (congruent to those) resulting from division of an interval C′D′

into n congruent intervals, if CD ≡ C′D′ , AB ≡ A′B′, then k1 = k2.
348Due to symmetry and T 1.3.1, we do not really need to consider the case B1B2 < A1A2.
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If a finite sequence of points Ai, where i ∈ Nn, n ≥ 3, has the property that every point of the sequence,
except for the first and the last, lies between the two points with adjacent (in N) numbers, and, furthermore,
A1A2 ≡ A2A3 ≡ . . . ≡ An−1An, 349 we say that the interval A1An is divided into n − 1 congruent intervals
A1A2, A2A3, . . . , An−1An (by the points A2, A3, . . . An−1).

If an interval A1An is divided into intervals AiAi+1, i ∈ Nn−1, all congruent to an interval AB (and, consequently,
to each other), we can also say, with some abuse of language, that the interval A1An consists of n − 1 intervals AB
(or, to be more precise, of n − 1 instances of the interval AB).

If an interval A0An is divided into n intervals Ai−1Ai, i ∈ Nn, all congruent to an interval CD (and, consequently,
to each other), we shall say, using a different kind of folklore, that the interval CD is laid off n times from the point A0

on the ray A0P , reaching the point An, where P is some point such that the ray A0P contains the points A1, . . . , An.
350

Lemma 1.3.21.8. If intervals A1Ak and B1Bn consist, respectively, of k − 1 and n− 1 intervals AB, where k < n,
then the interval A1Ak is shorter than the interval B1Bn.

Proof. We have, by hypothesis (and T 1.3.1) AB ≡ A1A2 ≡ A2A3 ≡ . . . ≡ Ak−1Ak ≡ B1B2 ≡ B2B3 ≡ . . . ≡
Bn−1Bn, where [AiAi+1Ai+2] for all i ∈ Nk−2 and [BiBi+1Bi+2] for all i ∈ Nn−2. Hence by P 1.3.1.5 A1Ak ≡ B1Bk,
and by L 1.2.7.3 [B1BkBn]. By L 1.3.13.3 this means A1Ak < B1Bn. 2

Lemma 1.3.21.9. If an interval EF consists of k − 1 intervals AB, and, at the same time, of n − 1 intervals CD,
where k > n, the interval AB is shorter than the interval CD.

Proof. We have, by hypothesis, EF ≡ A1Ak ≡ B1Bn, where AB ≡ A1A2 ≡ A2A3 ≡ . . . ≡ Ak−1Ak, CD ≡ B1B2 ≡
B2B3 ≡ . . . ≡ Bn−1Bn, and, of course, ∀i ∈ Nk−2 [AiAi+1Ai+2] and ∀i ∈ Nn−2 [BiBi+1Bi+2]. Suppose AB ≡ CD.
Then the preceding lemma (L 1.3.21.8) would give A1Ak > B1Bn, which contradicts A1Ak ≡ B1Bn in view of
L 1.3.13.11. On the other hand, the assumption AB > CD would again give A1Ak > B1Bn by C 1.3.21.5, L 1.3.21.8.
Thus, we conclude that AB < CD. 2

Corollary 1.3.21.10. If an interval AB is shorter than the interval CD and is divided into a larger number of
congruent intervals than is AB, then (any of) the intervals resulting from this division of AB are shorter than (any
of) those resulting from the division of CD.

Proof. 2

Lemma 1.3.21.11. Any interval CD can be laid off from an arbitrary point A0 on any ray A0P any number n > 1
of times.

Proof. By induction on n. Start with n = 2. By A 1.3.1 ∃A1 A1 ∈ A0P & CD ≡ A0A1. Using A 1.3.1 again, choose

A2 such that A2 ∈ (A1A0
)c & CD ≡ A1A2. Since A2 ∈ (A1A0

)c L1.2.15.2
=⇒ [A0A1A2], we obtain the required result.

Observe now that if the conditions of the theorem are true for n > 2, they are also true for n − 1. Assuming the
result for n − 1 so that CD ≡ A0A1 ≡ · · · ≡ An−1An and [Ai−1AiAi+1] for all i ∈ Nn−1, choose An such that

An ∈ (An−1An−2
)c & CD ≡ An−1An. Then An ∈ (An−1An−2

)c L1.2.15.2
=⇒ [An−2An−1An], so we have everything that is

required. 2

Let an interval A0An be divided into n intervals A0A1, A1A2 . . . , An−1An (by the points A1, A2, . . . An−1) and
an interval A′

0A
′
n be divided into n intervals A′

0A
′
1, A

′
1A

′
2 . . . , A′

n−1A
′
n in such a way that ∀i ∈ Nn Ai−1Ai ≡ A′

i−1A
′
i.

Also, let a point B′ lie on the ray A′
0A′

i0

, where A′
i0

is one of the points A′
i, i ∈ Nn; and, finally, let AB ≡ A′B′.

Then:

Lemma 1.3.21.12. – If B lies on the open interval (Ak−1Ak), where k ∈ Nn, then the point B′ lies on the open
interval (A′

k−1A
′
k).

Proof. For k = 1 we obtain the result immediately from L 1.3.9.1, so we can assume without loss of generality that
k > 1. Since A′

i0
, B′ (by hypothesis) and A′

i0
, A′

k−1, A′
k (see L 1.2.11.18) lie on one side of A′

0, so do A′
k−1, A′

k, B′.

Since also (by L 1.2.7.3 [A0Ak−1Ak], [A′
0A

′
k−1A

′
k], we have [A0Ak−1Ak] & [Ak−1BAk]

L1.2.3.2
=⇒ [A0Ak−1B] & [A0BAk].

Taking into account that (by hypothesis) A0B ≡ A′
0B

′ and (by L 1.3.21.7) A0Ak−1 ≡ A′
0 ≡ A′

k−1, A0Ak ≡ A′
0 ≡ A′

k,
we obtain by L 1.3.9.1 [A′

0A
′
k−1B

′], [A′
0B

′A′
k], whence by L 1.2.3.1 [A′

k−1B
′A′

k], as required. 2

Lemma 1.3.21.13. – If B coincides with the point Ak0 , where k0 ∈ Nn, then B′ coincides with A′
k0

.

Proof. Follows immediately from L 1.3.21.7, A 1.3.1. 2

Corollary 1.3.21.14. – If B lies on the half-open interval [Ak−1Ak), where k ∈ Nn, then the point B′ lies on the
half-open interval [A′

k−1A
′
k).

349In other words, all intervals AiAi+1, where i ∈ Nn−1, are congruent
350For instance, it is obvious from L 1.2.7.3, L 1.2.11.15 that P can be any of the points A1, . . . , An.
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Proof. Follows immediately from the two preceding lemmas, L 1.3.21.12 and L 1.3.21.13. 2

Theorem 1.3.21. Given an interval A1An+1, divided into n congruent intervals A1A2, A2A3, . . . , AnAn+1, if the
first of these intervals A1A2 is further subdivided into m1 congruent intervals A1,1A1,2, A1,2A1,3, . . . , A1,m1A1,m1+1,
where ∀i ∈ Nm1−1 [A1,iA1,i+1A1,i+2], and we denote A1,1 ⇋ A1 and A1,m1+1 ⇋ A2; the second interval A2A3 is
subdivided into m2 congruent intervals A2,1A2,2, A2,2A2,3, . . . , A2,m2A2,m2+1, where ∀i ∈ Nm2−1 [A2,iA2,i+1A2,i+2],
and we denote A2,1 ⇋ A2 and A2,m1+1 ⇋ A3; dots; the nth interval AnAn+1 - into mn congruent intervals
An,1An,2, An,2An,3, . . . , An,mn

An,mn+1, where ∀i ∈ Nmn−1 [An,iAn,i+1An,i+2], and we denote A1,1 ⇋ A1 and
A1,m1+1 ⇋ An+1. Then the interval A1An+1 is divided into the m1 + m2 + · · · + mn congruent intervals
A1,1A1,2, A1,2A1,3, . . . , A1,m1A1,m1+1, A2,1A2,2, A2,2A2,3, . . . , A2,m2A2,m2+1, . . . , An,1An,2, An,2An,3, . . . , An,mn

An,mn+1.
In particular, if an interval is divided into n congruent intervals, each of which is further subdivided into m

congruent intervals, the starting interval turns out to be divided into mn congruent intervals.

Proof. Using L 1.2.7.3, we have for any j ∈ Nn−1: [Aj,1Aj,mj
Aj,mj+1], [Aj+1,1Aj+1,2Aj+1,mj+1+1]. Since, by defini-

tion, Aj,1 = Aj , Aj,mj+1 = Aj+1,1 = Aj+1 and Aj+1,mj+1+1 = Aj+2, we can write [AjAj,mj
Aj+1] & [AjAj+1Aj+2]

L1.2.3.2
=⇒

[Aj,mj
Aj+1Aj+2] and [Aj,mj

Aj+1Aj+2] & [Aj+1Aj+1,2Aj+2]
L1.2.3.2
=⇒ [Aj,mj

Aj+1Aj+1,2]. Since this is proven for all
j ∈ Nn−1, we have all the required betweenness relations. The rest is obvious. 351

2

Midpoints

A point M which divides an interval AB into congruent intervals AM , MB is called a midpoint of AB. If M is a
midpoint of AB, 352 we write this as M = mid AB.

We are going to show that every interval has a unique midpoint.

Lemma 1.3.22.1. If ∠CAB ≡ ∠ABD, and the points C, D lie on opposite sides of the line aAB, then the open
intervals (CD), (AB) concur in some point E.

Proof. 353 CaABD ⇒ ∃E (E ∈ aAB)& [CED] (see Fig. 1.138, a)). We have E 6= A, because otherwise [CAD] & B /∈

aAD
L1.3.17.4

=⇒ ∠CAB > ∠ABD, 354 which contradicts ∠CAB ≡ ∠ABD in view of C 1.3.16.12. Similarly, E 6= B,

for otherwise (see Fig. 1.138, b)) [CBD] & A /∈ aBC
L1.3.17.4

=⇒ ∠BAC < ∠ABD - a contradiction. 355 Therefore, E ∈

aAB & E 6= A& E 6= B
T1.2.2
=⇒ [AEB] ∨ [EAB] ∨ [ABE]. But ¬[EAB], because otherwise, using T 1.3.18, L 1.2.11.15,

we would have [EAB] & C /∈ aAE & [CED] & B /∈ aED ⇒ ∠BAC > ∠AEC = ∠BEC > ∠EBD = ∠ABD - a
contradiction. Similarly, ¬[ABE], for otherwise (see Fig. 1.138, c) ) [ABE] & D /∈ aEB & [CED] & A /∈ aEC ⇒
∠ABD > ∠BED = ∠AED > ∠EAC = ∠BAC. 356 Thus, we see that [AEB], which completes the proof. 357

2

Making use of A 1.3.4, A 1.3.1, choose points C, D so that ∠CAB ≡ ∠ABD and Then A point E which divides
an interval AB into congruent intervals AE, EB is called a midpoint of AB. If E is a midpoint of AB, 358 we write
this as E = mid AB.

Theorem 1.3.22. Every interval AB has a unique midpoint E.

Proof. Making use of A 1.3.4, A 1.3.1, choose points C, D so that ∠CAB ≡ ∠ABD, AC ≡ BD, and the points C,
D lie on the opposite sides of the line aAB. From the preceding lemma the open intervals (CD), (AB) meet in some
point E. Hence the angles ∠AEC, ∠BED, being vertical, are congruent (T 1.3.7). Furthermore, using L 1.2.11.15
we see that ∠CAE = ∠CAB, ∠EBD = ∠ABD. Now we can write AC ≡ BD & ∠CAE ≡ ∠EBD & ∠AEC ≡

∠BED
T1.3.19
=⇒ △AEC ≡ △BED ⇒ AE ≡ EB & CE ≡ ED. Thus, we see that B is a midpoint.

To show that the midpoint E is unique, suppose there is another midpoint F . Then [AEB] & [AFB] & E 6=

F
P1.2.3.4
=⇒ [AEF ] ∨ [AFE]. Assuming [AFE],359 we have by C 1.3.13.4 AF < AE and [AFE] & [AEB]

L1.2.3.2
=⇒

[FEB]
C1.3.13.4

=⇒ EB < FB, so that AF < AE ≡ EB < FB ⇒ AF < FB ⇒ AF 6≡ FB - a contradiction. Thus, E is
the only possible midpoint. 2

351All congruences we need are already true by hypothesis.
352And the following theorem T 1.3.22 shows that it is the midpoint of AB.
353The reader is encouraged to draw for himself figures for the cases left unillustrated in this proof.
354Observe that (see C 1.1.2.3, C 1.1.1.3) C /∈ aAB &D /∈ aAB ⇒ B /∈ aAD &A /∈ aBC ; C /∈ aAE = aAB ⇒ A /∈ aEC ; D /∈ aEB =
aAB ⇒ B /∈ aED .
355Once we have established that E 6= A, the inequality E 6= B follows simply from symmetry considerations, because our construction

is invariant with respect to the simultaneous substitution A ↔ B, C ↔ D, which maps the angle ∠CAB into the angle ∠ABD, and the
angle ∠DBA into the angle ∠BAC, and so preserves the congruence (by construction) of ∠CAB and ∠ABD.
356Again, once we know that ¬[EAB], the fact that ¬[ABE] follows already from the symmetry of our construction under the simulta-

neous substitution A↔ B, C ↔ D.
357Obviously, E is the only common point of the open interval (CD), (AB), for otherwise the lines aCD , aAB would coincide, thus

forcing the points C, D to lie on the line aAB contrary to hypothesis.
358And the following theorem T 1.3.22 shows that it is the midpoint of AB.
359Due to symmetry, we do not need to consider the case [AEF ].
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Figure 1.138: Illustration for proof of T 1.3.22.
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D=D’

Figure 1.139: If ∠BAC ≡ ∠ACD, AB ≡ CD, and B, D lie on opposite sides of aAC , then (BD), (AC) concur in M
which is the midpoint for both AC and BD.

aA B

C

Figure 1.140: Given a line a, through any point C not on it at most one perpendicular to a can be drawn.

Corollary 1.3.23.1. Every interval AB can be uniquely divided into 2n congruent intervals, where n is any positive
integer.

Proof. By induction on n. The case of n = 1 is exactly T 1.3.22. If AB is divided into 2n−1 congruent intervals,
dividing (by T 1.3.22) each of these intervals into two congruent intervals, we obtain by T 1.3.21 that AB is now
divided into 2n congruent intervals, q.e.d. 2

Corollary 1.3.23.2. If a point E lies on a line aAB and AE ≡ EB, then E is a midpoint of AB, i.e. also [AEB].

Proof. E ∈ aAB & A 6= E 6= B
T1.2.2
=⇒ [ABE] ∨ [EAB] ∨ [AEB]. But by C 1.3.13.4 [ABE] would imply BE < AE,

which by L 1.3.13.11 contradicts AE ≡ EB. Similarly, [EAB]
C1.3.13.4

=⇒ AE < EB - again a contradiction. This leaves
[AEB] as the only option. 360

2

Corollary 1.3.23.3. Congruence of (conventional) intervals has the property P 1.3.5. 361

Corollary 1.3.23.4. If ∠BAC ≡ ∠ACD, AB ≡ CD, and the points B, D lie on opposite sides of the line aAC ,
then the open interval (BD), (AC) concur in the point M which is the midpoint for both AC and BD.

Proof. 2

Lemma 1.3.24.1. Given a line a, through any point C not on it at most one perpendicular to a can be drawn. 362

Proof. Suppose the contrary, i.e. that there are two perpendiculars to a drawn through C with feet A, B. (See
Fig. 1.140.) Then we have aCA ⊥ aAB = a, aCB ⊥ aAB = a. This means that ∠CAB, adjsp ∠CBA, both being
right angles, are congruent by T 1.3.16. On the other hand, since adjsp ∠CBA is an exterior angle of △ACB, by
T 1.3.17 we have ∠CAB < adjsp ∠CBA. Thus, we arrive at a contradiction with L 1.3.16.11.

360Again, due to symmetry with respect to the substitution A ↔ B, we do not really need to consider the case [EAB] once the case
[ABE] has been considered and discarded.
361Thus, we have completed the proof that congruence of conventional intervals is a relation of generalized congruence.
362Combined with the present lemma, L 1.3.8.1 allows us to assert that given a line aOA, through any point C not on it exactly one

perpendicular to aOA can be drawn. Observe also that if aCA ⊥ a, aCA′ ⊥ a, where both A ∈ a, A′ ∈ a, then A′ = A.
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Figure 1.141: Illustration for proof of P 1.3.24.2.

Triangle Medians, Bisectors, and Altitudes

A vertex of a triangle is called opposite to its side (in which case the side, in turn, is called opposite to a vertex) if
this side (viewed as an interval) does not have that vertex as one of its ends.

An interval joining a vertex of a triangle with a point on the line containing the opposite side is called a cevian.
A cevian BD in a triangle △ABC, (AC) ∋ D, is called

– a median if AD ≡ DC;
– a bisector if ∠ABD ≡ CAD;
– an altitude if aBD ⊥ aAC .

Proposition 1.3.24.2. Consider an altitude BD of a triangle △ABC. The foot D of the altitude BD lies between
the points A, C iff both the angles ∠BAC, ∠BCA are acute. In this situation we shall refer to BD as an interior,
or proper, altitude of △ABC. The foot D of the altitude BD coincides with the point A iff the angle ∠BAC is right
and the angle BCA is acute. In this situation we shall refer to BD as the side altitude of △ABC. The points A,
C, D are in the order [DAC] iff both the angle ∠BAC is obtuse and the angle ∠BCA is acute. In this situation we
shall refer to BD as the exterior altitude of △ABC. 363

Proof. Suppose [ADC] (see Fig. 1.141, a)). Then ∠BAC = ∠BAD < ∠BDC (see L 1.2.11.15, T 1.3.17). ∠BDC
being a right angle, ∠BAC is bound to be acute (C ??). Similarly, ∠BCA is acute.

Suppose A = D. Then, obviously, ∠BAC = ∠BDC is a right angle.
Suppose [DAC] (see Fig. 1.141, b)). Then ∠BDC = ∠BDA < ∠BAC (see L 1.2.11.15, T 1.3.17). Since ∠BDC

is a right angle, ∠BAC has to be obtuse (C ??).
Observe now that, in view of T 1.2.2, for points A, C, D on one line, of which A, C are known to be distinct,

we have either [DAC], or D = A, or [ADC], or D = C, or [ACD]. Suppose first that the angles ∠BAC, ∠BCA are
both acute. The first part of this proof then shows that this can happen only if the point D lies between A, C, for in
the other four cases one of the angles ∠BAC, ∠BCA would be either right or obtuse. Similarly, we see that D = A
only if ∠BAC is right, and [DAC] only if ∠BAC is obtuse, which completes the proof. 2

Proposition 1.3.24.3. If a median BD in a triangle △ABC is also an altitude, then BD is also a bisector, and
△ABC is an isosceles triangle. 364

Proof. Since BD is a median, we have AD ≡ CD. Since it is also an altitude, the angles ∠ABD, ∠CBD, both being

right angles, are also congruent. Hence AD ≡ CD & ∠ABD ≡ ∠CBD & BD ≡ BD
T1.3.4
=⇒ △ABD ≡ △CBD ⇒

AB ≡ CB & ∠ABD ≡ ∠CBD. 2

Proposition 1.3.24.4. If a bisector BD in a triangle △ABC is also an altitude, then BD is also a median, and
△ABC is an isosceles triangle.

Proof. The interval BD being a bisector implies ∠ABD ≡ ∠CBD. Since it is also an altitude, we have ∠ABD ≡

∠CBD. Hence ∠ABD ≡ ∠CBD & BD ≡ BD & 1∠ABD ≡ ∠CBD
T1.3.5
=⇒ △ABD ≡ △CBD ⇒ AB ≡ CB & AD ≡

CD. 2

Proposition 1.3.24.5. If a median BD in a triangle △ABC is also a bisector, then BD is also an altitude, and
△ABC is an isosceles triangle.

363One could add here the following two statements: The foot D of the altitude BD coincides with the point C iff the angle ∠BCA is
right and the angle BAC is acute. (In this situation we also refer to BD as the side altitude of △ABC.) The points A, C, D are in the
order [ACD] iff both the angle ∠BCA is obtuse and the angle ∠BAC is acute. (In this situation we again refer to BD as the exterior
altitude of △ABC.) It is obvious, however, that due to symmetry these assertions add nothing essentially new. Observe also that any
triangle can have at most one either exterior or side altitude and, of course, at least two interior altitudes. The exterior and side altitudes
can also be sometimes referred to as improper altitudes.
364Note also an intermediate result of this proof that then the triangle △ABD is congruent to the triangle △CBD
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Figure 1.142: Given a cevian BD in △ABC with AB ≡ CB, if BD is a median, it is also a bisector and an altitude;
if BD is a bisector, it is also a median and an altitude; if BD is an altitude, it is also a median and a bisector.

Proof. We have ∠A ≡ ∠C. In fact, the inequality ∠A < ∠C would by C 1.3.18.3 imply CD < AD, which, in view
of L 1.3.13.11, contradicts AD ≡ DC (required by the fact that BD is a median). Similarly, ∠C < ∠A would by
C 1.3.18.3 imply CD < AD, which again contradicts AD ≡ DC. 365 Thus, we have ∠A ≡ ∠C as the remaining
option. Hence the result by T 1.3.12, T 1.3.24. 2

Theorem 1.3.24. Given a cevian BD, where (AC) ∋ D, in an isosceles triangle △ABC with AB ≡ CB, we have:
1. If BD is a median, it is also a bisector and an altitude;
2. If BD is a bisector, it is also a median and an altitude;
3. If BD is an altitude, it is also a median and a bisector.

Proof. (See Fig. 1.142.) 1. AB ≡ CB & DB ≡ DB & AD ≡ DC
T1.3.10
=⇒ △ABD ≡ △CBD ⇒ ∠ABD ≡

∠CBD & ∠ADB ≡ ∠CDB. Thus, BD is a bisector and an altitude (the latter because the relation [ADC] im-
plies that ∠ADB, ∠ADB are adjacent complementary angles, and we have shown that ∠ADB ≡ ∠CDB).

2. AB ≡ CB & DB ≡ DB & ∠ABD ≡ ∠CBD
T1.3.4
=⇒ △ABD ≡ △CBD ⇒ AD ≡ DC, so BD is a median.

3. By T 1.3.3 ∠BAC ≡ ∠BCA. Also, [ADC]
L1.2.11.15

=⇒ ∠BAC = ∠BAD & ∠BCA ≡ ∠BCD. Finally, AB ≡

CB & ∠BAD ≡ ∠BCD & ∠ADB ≡ ∠CDB
T1.3.19
=⇒ △ABD ≡ △CBD, whence the result. 366

2

Given a ray l lying (completely) inside an extended angle ∠(h, k) 367 and having its initial point in the vertex of
∠(h, k), if the angles ∠(h, l), ∠(l, k) are congruent, the ray l is called a bisector of the extended angle ∠(h, k). If a
ray l is the bisector of an extended angle ∠(h, k), we shall sometimes say that either of the angles ∠(h, l), ∠(l, k) is
half the extended angle ∠(h, k). 368

Theorem 1.3.25. Every extended angle ∠(h, k) has a unique bisector l.

Proof. Obviously, for h = hc we have l ⊥ h̄ (see L 1.3.8.3). 369 (See Fig. 1.143.) Suppose now h 6= hc. Using A 1.3.1,
choose points A ∈ k, C ∈ h such that AB ≡ BC. If D is the midpoint of AC (see T 1.3.22), by the previous theorem
(T 1.3.24) and L 1.2.21.1 we have ∠(k, l) = ∠ABD ≡ ∠CBD = ∠(l, h). To show uniqueness, suppose ∠(h, k) has a
bisector l′. By this bisector meets (AC) in a point D′, and thus BD′ is a bisector in △ABC. Hence by the previous
theorem (T 1.3.24) D′ is a midpoint of AC and is unique by T 1.3.22, which implies D′ = D and l′ = BD′ = BD = l.
2

Corollary 1.3.25.1. For a given vertex, say, B, of a triangle △ABC, there is only one median, joining this vertex
with a point D on the opposite side AC. Similarly, there is only one bisector per every vertex of a given triangle.

Proof. In fact, by T 1.3.22, the interval AC has a unique midpoint D, so there can be only one median for the
given vertex D. The bisector l of the angle ∠ABC exists and is unique by T 1.3.25. By L 1.2.21.4, L 1.2.21.6
A ∈ BA & C ∈ BC & l ⊂ Int∠ABC ⇒ ∃E E ∈ l & [AEC], i.e. the ray l is bound to meet the open interval (AC) at
some point E. Then BE is the required bisector. It is unique because the ray l = BE is unique, and the line aBE

365Once we have shown that ¬(∠A < ∠C), the inequality ¬(∠C < ∠A) follows immediately from symmetry considerations expressed
explicitly in the substitutions A→ C, C → A.
366Note that this part of the proof can be made easier using L 1.3.24.1.
367That is ∠(h, k) is either an angle (in the conventional sense of a pair of non-collinear rays) or a straight angle ∠(h, hc).
368More broadly, using the properties of congruence of angles, we can speak of any angle congruent to the angles ∠(h, l), ∠(l, k), as half

of the extended angle congruent to the ∠(h, k).
369Thus, in the case of a straight angle ∠(h, hc) the role of the bisector is played by the perpendicular l to h̄. The foot of the perpendicular

is, of course, the common origin of the rays h and hc.
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Figure 1.143: Every angle ∠(h, k) has a unique bisector l.
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Figure 1.144: Illustration for proof of T 1.3.26.

containing it, by L 1.2.1.5 (we take into account that A /∈ aBE) cannot meet the line aAC , and, consequently, the
open interval (AC) (see L 1.2.1.3), in more than one point. 2

Corollary 1.3.25.2. Congruence of (conventional) angles has the property P 1.3.5. 370

Congruence and Parallelism

Theorem 1.3.26. If points B, D lie on the same side of a line aAC, the point C lies between A and a point E, and
the angle ∠BAC is congruent to the angle ∠DCE, then the lines aAB, aCD are parallel.

Proof. Suppose the contrary, i.e. ∃F F ∈ aAB ∩aCD. We have, by hypothesis, BDaAC
T1.2.19
=⇒ ABCDaAC . Therefore,

F ∈ aAB ∩ aCD & ABCDaAC ⇒ F ∈ AB ∩ CD ∨ F ∈ (AB)c ∩ (CD)c. In the first of these cases (see Fig. 1.144, a))
we would have by L 1.2.11.3, T 1.3.17 F ∈ AB ∩ CD ⇒ ∠BAC = ∠EAC & ∠FCE = ∠DCE & ∠FAC < ∠FCE ⇒
∠BAC < FCE which contradicts ∠BAC ≡ ∠DCE in view of L 1.3.16.11. Similarly, for the second case (see
Fig. 1.144, b)), using also L 1.3.16.15), we would have F ∈ (AB)c ∩ (CD)c ⇒ ∠FAC = adjsp∠BAE & ∠FCE =
adjsp∠DCE & ∠FAC < ∠FCE ⇒ adjsp∠BAE < adjsp∠DCE ⇒ ∠DCE < ∠BAE - again a contradiction. 2

370Thus, we have completed the proof that congruence of conventional angles is a relation of generalized congruence.
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Figure 1.145: If A, B, C, D coplane and aAB, aCD are both perpendicular to aAC , the lines aAB, aCD are parallel.
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Figure 1.146: If B, F lie on opposite sides of aAC and ∠BAC, ∠ACF are congruent, then aAB, aCF are parallel.

Corollary 1.3.26.1. If points B, D lie on the same side of a line aAC and the angles ∠BAC, ∠DCA are supple-
mentary then aAB ‖ aCD.

Proof. Since ∠BAC = suppl∠DCA, we have ∠BAC ≡ adjsp∠DCE, where CE = (CA)c. 371 Hence the result of
the present corollary by the preceding theorem (T 1.3.26). 2

Corollary 1.3.26.2. If points A, B, C, D coplane and the lines aAB, aCD are both perpendicular to the line aAC ,
the lines aAB, aCD are parallel. In other words, if two (distinct) lines b, c coplane and are both perpendicular to a
line a, they are parallel to each other.

Proof. (See Fig. 1.145.) By hypothesis, the lines aAB, aCD both form right angles with the line aAC . But by
T 1.3.16 all right angles are congruent. Therefore, we can consider the angles formed by aAB, aCD with aAC as
supplementary,372 whence by the preceding corollary (C 1.3.26.1) we get the required result. 2

Corollary 1.3.26.3. If points B, F lie on opposite sides of a line aAC and the angles ∠BAC, ∠ACF are congruent,
then the lines aAB, aCF are parallel.

Proof. (See Fig. 1.146.) Since, by hypothesis, B, F lie on opposite sides of a line aAC , we have B(CF )caAC (see
L 1.2.19.8, L 1.2.18.4). Also, the angle formed by the rays AC , (CF )c, is supplementary to ∠BAC. Hence the result
by C 1.3.26.1. 2

Corollary 1.3.26.4. Given a point A not on a line a in a plane α, at least one parallel to a goes through A.

Corollary 1.3.26.5. Suppose that A, B, C ∈ a, A′, B′, C′ ∈ b, and ∠A′AB ≡ ∠B′BC ≡ adjsp∠C′CB. 373 If B lies
between A, C then B′ lies between A′, C′.

371Obviously, using A 1.2.2, we can choose the point E so that [ACE]. Then, of course, CE = (CA)c.
372See discussion accompanying the definition of orthogonality on p. 117.
373We can put the assumption ∠B′BC ≡ adjsp∠C′CB into a slightly more symmetric form by writing it as ∠B′BC ≡ ∠C′CD, where
D is an arbitrary point such that [BCD]. Obviously, the two assumptions are equivalent.
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Proof. According to T 1.3.26, C 1.3.26.3 we have aAA′ ‖ aBB′ , aBB′ ‖ aCC′ . 374 Seeing that aBB′ lies inside the
strip aAA′aCC′ , we conclude (using T 1.2.2) that [A′B′C′], 375 as required. 2

Corollary 1.3.26.6. Suppose that A, B, C ∈ a, [ABC], A′, B′, C′ ∈ b, where A, B, C, are respectively the feet of
the perpendiculars to a drawn through A′, B′, C′. 376 Then [A′B′C′].

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16). 2

Corollary 1.3.26.7. Suppose that A, B, C ∈ a, A′, B′, C′ ∈ b, and [A′B′C′], where A, B, C, are respectively the
feet of the perpendiculars to a drawn through A′, B′, C′. Suppose further that the lines a, b are not perpendicular.
377 Then [ABC].

Proof. Follows immediately from the preceding corollary because all right angles are congruent (T 1.3.16). 2

Corollary 1.3.26.8. Suppose that A1, A2, A3, . . . , An(, . . .) ∈ a, B1, B2, B3, . . . , Bn(, . . .) ∈ b, and ∠B1A1A2 ≡
∠B2A2A3 ≡ · · · ≡ ∠Bn−1An−1An ≡ ∠BnAnAn+1. Suppose further that the points A1, A2, . . . , An(, . . .) have the
following property: Every point Ai, where i = 2, 3, . . . , n(, . . .) lies between the two points (namely, Ai−1, Ai+1) with
adjacent (in N) numbers. Then the points A1, A2, . . . , An(, . . .) are in order [B1B2 . . . Bn(. . .).

Proof. 2

Corollary 1.3.26.9. Suppose that A1, A2, A3, . . . , An(, . . .) ∈ a, B1, B2, B3, . . . , Bn(, . . .) ∈ b, where Ai, i = 1, 2, . . . , n(, . . .)
are the feet of the perpendiculars to a drawn through the corresponding points Bi. Suppose further that the points
A1, A2, . . . , An(, . . .) have the following property: Every point Ai, where i = 2, 3, . . . , n(, . . .) lies between the two
points (namely, Ai−1, Ai+1) with adjacent (in N) numbers. Then the points B1, B2, . . . , Bn(, . . .) are in order
[B1B2 . . . Bn(. . .).

Proof. 2

Corollary 1.3.26.10. Suppose that A1, A2, A3, . . . , An(, . . .) ∈ a, B1, B2, B3, . . . , Bn(, . . .) ∈ b, where Ai, i =
1, 2, . . . , n(, . . .) are the feet of the perpendiculars to a drawn through the corresponding points Bi. We assume
that the lines a, b are not perpendicular (to each other). Suppose further that the points B1, B2, . . . , Bn(, . . .) have
the following property: Every point Bi, where i = 2, 3, . . . , n(, . . .) lies between the two points (namely, Bi−1, Bi+1)
with adjacent (in N) numbers. Then the points A1, A2, . . . , An(, . . .) are in order [A1A2 . . . An(. . .).

Proof. 2

Proposition 1.3.26.11. Suppose we are given lines a, a′, points B /∈ a, B′ /∈ a′, an angle ∠(h, k), and points C, C′

such that AB ≡ A′B′, BC ≡ B′C′, ∠ABC ≡ ∠A′B′C′, where A ⇋ proj(B, a, ∠(h, k)), A′ ⇋ proj(B′, a′, ∠(h, k)).
In addition, in the case a′ 6= a then we impose the following requirement on the orders used to define the projection
on a, a′ under ∠(h, k) (see p. 117): if A ≺ D on a then A′ ≺ D′ on a′, and if D ≺ A on a then A′ ≺ D′

on a′. Then AD ≡ A′D′, where D ⇋ proj(C, a, ∠(h, k)) if BCaAD, D′ ⇋ proj(C′, a′, ∠(h, k)) if B′C′a′, D ⇋

proj(C, a, suppl∠(h, k)) if BaADC, D′ ⇋ proj(C′, a′, suppl∠(h, k)) if B′a′C′. Furthermore, if C /∈ a 378 then
CD ≡ C′D′ and ∠BCD ≡ B′C′D′. 379

Proof. First, observe that the points C, D always lie on the same side of the line aAB and C′, D′ lie on the same
side of aA′B′ . In fact, this is vacuously true if D = C (D′ = C′), and in the case D 6= C (D′ 6= C′) this follows

from T 1.3.26, C 1.3.26.3. 380 Furthermore, we have AB ≡ A′B′ & BC ≡ B′C′ & ∠ABC & ∠A′B′C′ T1.3.4
=⇒ △ABC ≡

△A′B′C′ ⇒ AC ≡ A′C′ & ∠BAC ≡ ∠B′A′C′. Note also that we can assume without loss of generality that A ≺ D.
Then, by hypothesis, A′ ≺ D′. This, in turn, means that the angles ∠BAD, ∠B′A′D′, both being congruent to the
angle ∠(h, k), are congruent to each other. Suppose that C ∈ a. 381 We are going to show that in this case also

374Note that the lines aAA′ , aBB′ and aBB′ , aCC′ are parallel no matter whether the points A′, B′, C′ all lie on one side of a or one
of them (evidently, this can only be either A or C but not B) lies on the side of a opposite to the one containing the other two points.
375We have aAA′ ‖ aBB′ ⇒ B′ 6= A′, aBB′ ‖ aCC′ ⇒ B′ 6= C′. Then from T 1.2.2 we have either [B′A′C′], or [A′C′B′], or [A′B′C′].

But [B′A′C′] would imply that the point B′, C′ lie on opposite sides of the line aAA′ . This, however, contradicts the fact that the line
aBB′ lies inside the strip aAA′aCC′ . (Which, according to the definition of interior of a strip, means that the lines aBB′ , aCC′ lie on
the same side of the line aAA′ .) This contradiction shows that we have ¬[B′A′C′]. Similarly, we can show that ¬[A′C′B′].
376Here we assume, of course, that A′ 6= A, B′ 6= B, C′ 6= C.
377Again, we assume that A′ 6= A, B′ 6= B, C′ 6= C.
378And then, as we shall see in the beginning of the proof, C′ /∈ a′
379In the important case of orthogonal projections this result can be formulated as follows: Suppose we are given a line a, points B, B′

not on it, and points C, C′ such that AB ≡ A′B′, BC ≡ B′C′, ∠ABC ≡ ∠A′B′C′, where A ⇋ proj(B, a), A′ ⇋ proj(B′, a′). Then
AD ≡ A′D′, where D ⇋ proj(C, a), D′ ⇋ proj(C′, a′). Furthermore, if C /∈ a then CD ≡ C′D′ and ∠BCD ≡ B′C′D′.
380Note the following properties: If the points B, C lie on the same side of a and F ∈ a is such a point that D ≺ F on a, i.e. such

that [ADF ], then ∠BAD ≡ ∠CDF , since both these angles are congruent to the ∠(h, k) by hypothesis and by definition of projection
under ∠(h, k). Similarly, if B′, C′ lie on the same side of a′ and F ′ ∈ a′ is such a point that D′ ≺ F ′ on a′, i.e. such that [A′D′F ′], then
∠B′A′D′ ≡ ∠C′D′F ′. On the other hand, it is easy to see that if B, C lie on the opposite sides of a then ∠BAD ≡ ∠ADC. (In fact,
by hypothesis and by definition of projection under suppl∠(h, k) we then have ∠CDF ≡ suppl∠(h, k), where F ∈ a is any point such
that D ≺ F on a, i.e. such that [ADF ]. Evidently, ∠CDF = adjsp∠ADC, whence in view of T 1.3.6 we find that ∠ADC ≡ ∠(h, k).)
Similarly, B′, C′ lie on the opposite sides of a′ then ∠B′A′D′ ≡ ∠A′D′C′.
381Which means, by definition, that D = C.
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C′ ∈ a′ and thus D′ = C′. In fact, since the angle ∠ABC = ∠ACD is congruent both to ∠A′B′C′ and ∠A′B′D′,
and, as shown above, the points C′, D′ lie on the same side of the line aA′B′ , using A 1.3.4 we see that the points
C′, D′ lie on the line a′ on the same side of the point A′. But from the definition of projection it is evident that C′

can lie on a′ only if D′ = C′.

Turning to the case C 6= D, we observe that either both B, C lie on the same side of aAD and B′, C′ lie on
the same side of aA′D′ , or B, C lie on the opposite sides of aAD and B′, C′ lie on the opposite sides of aA′D′ . To
show this in a clumsy yet logically sound manner suppose the contrary, i.e. that, say, 382 B, C lie on the same

side of aAD and B′, C′ lie on the opposite sides of aA′D′ . Then B′a′C′ & ∠B′A′D′ ≡ ∠A′D′C′ L1.3.22.1
=⇒ ∃E′(E′ ∈

(A′D′) ∩ (B′C′)). Taking E ∈ AD such that A′E′ ≡ AE (see A 1.3.1), we find that E ∈ AD & E′ ∈ (A′D′) ⇒
∠BAD = ∠BAE & ∠B′A′D′ ≡ ∠B′A′E′ (see L 1.2.11.3, L 1.2.11.15), whence ∠BAE ≡ ∠B′A′E′. Now we can

write A′B′ ≡ AB & A′E′ ≡ AE & ∠B′A′E′ ≡ ∠BAE
T1.3.4
=⇒ △A′B′E′ ≡ △ABE ⇒ ∠A′B′E′ ≡ ∠ABE. Since also

E′ ∈ (B′C′) ⇒ B′
C′ = B′

E′ ⇒ ∠A′B′C′ = ∠A′B′E′ (see L 1.2.11.15), ∠A′B′C′ ≡ ∠ABC (by hypothesis), and

ECaAB, 383 using A 1.3.4 we find that E ∈ BC . B′C′ ≡ BC & BE ≡ BE & [B′E′C′] & E ∈ BC
L1.3.22.1

=⇒ [BEC],
which implies that the points B, C lie on the opposite sides of the line a contrary to assumption.

Consider the case BCa. Then, as shown above, we have B′C′a′. Since the quadrilaterals ABCD, A′B′C′D′

are simple in this case (see L 1.2.62.5), in view of P 1.3.19.2 we have ABCD ≡ A′B′C′D′ whence, in particular,
AD ≡ A′D′, CD ≡ C′D′, ∠BCD ≡ ∠B′C′D′.

Suppose now that BaC. Then, as we have seen, also B′a′C′. Furthermore, as shown above, ∃E(E ∈ (AD) ∩
(BC)) and ∃E′(E′ ∈ (A′D′) ∩ (B′C′)). In view of L 1.2.11.15 we have ∠BAE = ∠BAD, ∠ABE = ∠ABC,
∠CDA = ∠CDE, ∠BCD = ∠ECD, ∠B′A′E′ = ∠B′A′D′, ∠A′B′E′ = ∠A′B′C′, ∠BCD ≡ ∠ECD. Since, by
hypothesis, ∠ABC ≡ ∠A′B′C′, ∠BAD ≡ ∠B′A′D′, ∠C′D′A′ = ∠C′D′E′ and AB ≡ A′B′, in view of T 1.3.5
we have △ABE ≡ △A′B′E′, whence AE ≡ A′E′, BE ≡ B′E′, and ∠AEB ≡ ∠A′E′B′. From L 1.3.9.1 we have
CE ≡ C′E′, and using T 1.3.7 we find that ∠CED ≡ ∠C′E′D′. Hence CE ≡ C′E′ & ∠CED ≡ ∠C′E′D′ & ∠CDE ≡

C′D′E′ T1.3.19
=⇒ △CED ≡ △C′E′D′, whence CD ≡ C′D′, DE ≡ D′E′, ∠BCD ≡ ∠B′C′D′. 384 Finally, we can

write AE ≡ A′E′ & DE ≡ D′E′ & [AED] & [A′E′D′]
A1.3.3
=⇒ AD ≡ A′D′. 2

Corollary 1.3.26.12. Consider an acute angle ∠(h, k). Let A1, A2 ∈ k and let B1, B2 be the feet of the perpendic-
ulars to h̄ drawn through A1, A2, respectively. Then [OA1A2] if and only if [OB1B2], where O is the vertex of the
angle ∠(h, k).

Proof. Since (by hypothesis) both aA1B1 ⊥ h̄, aA2B2 ⊥ h̄, we have aA1B1 ‖ aA2B2 (see C ??). Then the required
result follows from T 1.2.46. 2

Corollary 1.3.26.13. Consider an acute angle ∠(h, k). Let A1, A2, . . . , An ∈ k, n ∈ N, n ≥ 2 and let B1, B2, . . . , Bn

be the feet of the perpendiculars to h̄ drawn through A1, A2, . . . , An, respectively. Then [OA1A2 . . . An] if and only if
[OB1B2 . . . Bn], where O is the vertex of the angle ∠(h, k).

Proof. Follows from the preceding corollary (C 1.3.26.13) and C 1.3.26.9, C 1.3.26.10. 2

Lemma 1.3.26.14. The altitude drawn from the vertex B of the right angle ∠B = ∠ABC of a right triangle △ABC
to the (line containing the) opposite side AC is an interior altitude. Furthermore, the feet of the perpendiculars
drawn from points of the sides (AB), (BC) to the line aAB also lie between A and C.

Proof. Since, by hypothesis, ∠ABC is a right angle, the angles ∠BAC, ∠BCA are acute. Therefore, D ∈ AC ∩CA =
(AC) (see C 1.3.18.11, L 1.2.15.1). Now suppose E ∈ (AB), F ∈ aAC , and aEF ⊥ aAC . From C 1.3.26.12 we have

[AFD], and we can write [AFD] & [ADC]
L1.2.3.2
=⇒ [AFC]. 2

Lemma 1.3.26.15. Given an acute or right angle ∠(h, k) and a point C inside it, the foot B of the perpendicular
lowered from C to h̄ lies on h. Similarly, by symmetry the foot A of the perpendicular lowered from C to k̄ lies on k.

Proof. Denote by O the vertex of the angle (h, k) and denote l ⇋ OC . Using L 1.2.21.4, C 1.3.16.4 we see that
∠(h, l) < ∠(h, k). Since, by hypothesis, ∠(h, k) is acute, the angle ∠(h, l) is also acute in view of L 1.3.16.20. Hence
F ∈ h by C 1.3.18.11. 2

Theorem 1.3.27. Let a point D lie between points A, C and the intervals AD, DC are congruent. Suppose, further,
that the lines aAH, aCL are both perpendicular to the line aHL and the points H, D, L colline. Then the point D
lies between the points H, L and AH ≡ CL, ∠AHD ≡ ∠CLD.

382Due to symmetry we do not need to consider the other logically possible case, i.e. the one where B, C lie on the opposite sides of
aAD .
383We have E ∈ AD

L1.2.19.8
=⇒ DEaAB, CDaAB &DEaAB ⇒ CEaAB

384We take into account that ∠BCD ≡ ∠ECD, ∠B′C′D′ ≡ ∠E′C′D′.
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Figure 1.147: If point D lies between A, C, the intervals AD, DC are congruent, the lines aAH , aCL are both
perpendicular to aHL, and the points H , D, L colline, then D lies between H , L and AH ≡ CL, ∠AHD ≡ ∠CLD.
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Figure 1.148: If aPX is the right bisector of KL then KX ≡ XL.

Proof. (See Fig. 1.147.) Using A 1.2.2, A 1.3.1, choose a point L′ so that [HDL′] and DH ≡ DL′. Then we have
385 AD ≡ DC & DH ≡ DL′ & ∠ADH ≡ ∠CDL′ A1.3.5

=⇒ ∠AHD ≡ ∠CL′D. Hence aCL′ ⊥ aHL & aCL ⊥ aHL & L′ ∈

aHL = aHD
L1.3.24.1

=⇒ L′ = L. 2

Right Bisectors of Intervals

A line a drawn through the center of an interval KL and perpendicular to the line aKL is called the right bisector
of the interval KL.

Lemma 1.3.28.1. Every interval has exactly one right bisector in the plane containing both the interval and the
bisector.

Proof. See T 1.3.22, L 1.3.8.3. 2

Lemma 1.3.28.2. If a line aPX is the right bisector of an interval KL then KX ≡ XL.

Proof. Let M = mid KL. (Then, of course, M ∈ aPX .) If X = M (see Fig. 1.148, a)) then there is noting to prove.

If M 6= X (see Fig. 1.148, b)) then 386 We have KM ≡ ML & MX ≡ MX & ∠KMX ≡ ∠LMX
T1.3.4
=⇒ △KMX ≡

△LMX ⇒ KX ≡ XL. 2

Lemma 1.3.28.3. If KX ≡ XL and aXY ⊥ aKL, then the line aXY is the right bisector of the interval KL.

Proof. Denote M ⇋ aXY ∩ aKL. By hypothesis, XM is the altitude, drawn from the vertex X of an isosceles (with
KX ≡ XL) triangle △KXL to its side KL. Therefore, by T 1.3.25, XM is also a median. Hence KM ≡ ML and
[KML], which makes aXY the right bisector of the interval KL. 2

Lemma 1.3.28.4. If KX ≡ XL, KY ≡ Y L, Y 6= X, and the points K, L, X, Y are coplanar, then the line aXY

is the right bisector of the interval KL.

385The angles ∠ADH, ∠CDL′, being vertical angles, are congruent. Observe also that the angles ∠AHD, ∠AHL are identical in view
of L 1.2.11.15, and the same is true for ∠CLD, ∠CLH.
386The angles ∠KMX, ∠LMX, both being right angles (because aPX is the right bisector of KL), are congruent by T 1.3.16.
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Figure 1.149: If KX ≡ XL, KY ≡ Y L, Y 6= X , and the points K, L, X , Y are coplanar, then aXY is the right
bisector of KL.

Proof. (See Fig. 1.149.) Denote M ⇋ mid KL. Since X 6= Y , either X or Y is distinct from M . Suppose X 6= M .
387 Since XM is the median joining the vertex X of the isosceles triangle △KXL with its base, by T 1.3.24 XM
is also an altitude. That is, we have aXM ⊥ aKL. In the case when Y = M there is nothing else to prove, as aXY

then has all the properties of a right bisector. If Y 6= M , we have aY M ⊥ aKL. 388 Since the lines aXM , aY M

perpendicular to the line aKL at M lie in the same plane containing aKL, by L 1.3.8.3 we have aXM = aY M = aXY ,
which concludes the proof for this case. 2

Theorem 1.3.28. Suppose points B, C lie on the same side of a line aKL, the lines aKB, aLC are perpendicular to
the line aKL, and the interval KB is congruent to the interval LC. Then the right bisector of the interval KL (in
the plane containing the points B, C, K, L) is also the right bisector of the interval BC, ∠KBC ≡ ∠LCB, and the
lines aKL, aBC are parallel.

Proof. (See Fig. 1.150.) Let a be the right bisector of the interval KL in the plane αBKL. Denote M ⇋

(KL) ∩ a. We have aKB ⊥ aKL & a ⊥ aKL & aLC ⊥ aKL
C1.3.26.3

=⇒ aKB ‖ a & a ‖ aLC & aKB ‖ aLC . a ⊂

αBKL & M ∈ (KL) ∩ a ‖ aKB
P1.2.44.1

=⇒ ∃Y ([BY L] & Y ∈ a). a ⊂ αBLC & Y ∈ (BL) ∩ a & a ‖ aLC
P1.2.44.1

=⇒

∃X ([BXC] & X ∈ a). 389 BCaKL & X ∈ (BC)
L1.2.19.9

=⇒ BXaKL & CXaKL. Note that M ∈ (KL) ∩ a & X ∈

a & a ⊥ aKL ⇒ ∠KMX ≡ ∠LMX . Hence, KM ≡ LM & MX ≡ MX & ∠KMX ≡ ∠LMX
T1.3.4
=⇒ △KMX ≡

△LMX ⇒ KX ≡ LX & ∠MKX ≡ ∠MLX & ∠KXM ≡ ∠LXM . Since, evidently, aKM = aKL, we have

BXaKL ⇒ BXaKM
L1.2.21.21

=⇒ KX ⊂ Int∠MKB ∨ KB ⊂ Int∠MKX ∨ KX = KB. But KB ⊂ Int∠MKX
L1.2.21.21

=⇒
∃P (P ∈ KB ∩ (MX)) ⇒ ∃P P ∈ aKB ∩ a, which contradicts aKB ‖ a. It is even easier to note that KX =
KB ⇒ X ∈ aKB ∩ a - again a contradiction. Thus, we have KX ⊂ ∠MKB. Similarly, we can show that
LX ⊂ Int∠MLC. 390 By T 1.3.16 the angles ∠MKB, ∠MLC, both being right angles (recall that, by hy-
pothesis, aKB ⊥ aKL = aKM and aLC ⊥ aKL = aLM ), are congruent. Therefore, we have ∠MKB ≡ ∠MLC.

Hence BXaKM & CXaLM & ∠MKB ≡ ∠MLC & ∠MKX ≡ ∠MLX
T1.3.9
=⇒ ∠BKX ≡ ∠CLX . KB ≡ LC & KX ≡

LX & ∠BKX ≡ ∠CLX
T1.3.4
=⇒ △BKX ≡ △CLX ⇒ BX ≡ CX & ∠KBX ≡ ∠LCX & ∠KXB ≡ ∠LXC.

[BXC]
L1.2.11.15

=⇒ BX = BC & CX = CB ⇒ ∠KBX = ∠KBC & ∠LCX = ∠LCB. ∠KBX ≡ ∠LCX & ∠KBX =
∠KBC & ∠LCX = ∠LCB ⇒ ∠KBC ≡ ∠LCB. Since ∠MKB is a right angle, by C 1.3.17.4 the other two
angles, ∠KMB and ∠KBM , of the triangle △MKB, are bound to be acute. Since the angle ∠KMB is acute
and the angle ∠KMX is a right angle, by L 1.3.16.17 we have ∠KMB < ∠KMX . Hence BXaKM & ∠KMB <

∠KMX
C1.3.16.4

=⇒ MB ⊂ Int∠KMX
L1.2.21.10

=⇒ ∃E ([KEX ] & E ∈ MB). [KEX ]
L1.2.11.15

=⇒ KE = KX & XE = XK .

E ∈ MB
L1.2.11.8

=⇒ [MEB]∨[MBE]∨E = B. But the assumptions that [MBE] or E = B lead (by L 1.2.21.4, L 1.2.21.6,
L 1.2.11.3) respectively, to KB ⊂ Int∠MKX or KX = KB - the possibilities discarded above. Thus, we have [MEB].
By L 1.2.21.4, L 1.2.21.6 [MEB] ⇒ XK = XE ⊂ Int∠BXM . Similarly, it can be shown that XL ⊂ Int∠CXM .

387Due to symmetry of the assumptions of the theorem with respect to the interchange of X, Y , we can do so without any loss of
generality.
388To show that aY M ⊥ aKL, one could proceed in full analogy with the previously considered case as follows:
Since YM is the median joining the vertex Y of the isosceles triangle △KYL with its base, by T 1.3.24 YM is also an altitude.
On the other hand, the same result is immediately apparent from symmetry considerations.

389We take into account that, obviously, BCaKL ⇒ αBKL = αBLC .
390This can be done in the following way, using arguments fully analogous to those we have used to show that KX ⊂ ∠MKB. Since

aLM = aKL, we have CXaKL ⇒ CXaKM
L1.2.21.21

=⇒ LX ⊂ Int∠MLC ∨ LC ⊂ Int∠MLX ∨ LX = LC . But LC ⊂ Int∠MLX
L1.2.21.21

=⇒
∃P (P ∈ LC ∩ (MX)) ⇒ ∃P P ∈ aLC ∩ a, which contradicts aLC ‖ a. It is even easier to note that LX = LC ⇒ X ∈ aLC ∩ a - again
a contradiction. Thus, we have LX ⊂ ∠MLC. Alternatively, we can simply observe that the conditions of the theorem are symmetric
with respect to the simultaneous substitutions K ↔ L, B ↔ C.
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Figure 1.150: Suppose points B, C lie on the same side of aKL, the lines aKB, aLC are perpendicular to aKL, and
the interval KB ≡ LC. Then the right bisector of KL (in the plane containing B, C, K, L) is also the right bisector
of BC, ∠KBC ≡ ∠LCB, and aKL ‖ aBC .

391 ∠KXM ≡ ∠LXM & ∠KXB ≡ ∠LXC & XK ⊂ Int∠BXM & XL ⊂ Int∠CXM
T1.3.9
=⇒ ∠BXM ≡ ∠CXM . In

view of [BXC] this implies that ∠BXM , ∠CXM are both right angles. Together with BX ≡ CX and X ∈ a this
means that the line a is the right bisector of the interval BC. Finally, the lines aKL = aKM , aBC = aKX , both being
perpendicular to the line a = aMX , are parallel by C 1.3.26.2. 2

Proposition 1.3.28.1. If F , D are the midpoints of the sides AB, AC, respectively, of a triangle △ABC, then the
right bisector of the interval BC is perpendicular to the line aFD and the lines aBC , aFD are parallel.

Proof. Obviously, F 6= D ⇒ ∃aFD. Using L 1.3.8.1, draw through points A, B, C the perpendiculars to aFD with
feet H , K, L, respectively. 392 If D = H (see Fig. 1.151, a) ), then, obviously, also D = L, but certainly F 6= K 6= D.
If F = H (see Fig. 1.151, b) ), then also F = K, but D 6= L 6= F . In both of these cases we have aKB ⊥ aKL = aFD,
aLC ⊥ aKL. On the other hand, if both D 6= H and F 6= H (and then, consequently, D 6= K, D 6= L, F 6= K, F 6= L,
H 6= K, H 6= L, K 6= L - see Fig. 1.151, c) ) then [ADC] & aAH ⊥ aHL = aFD & aLC ⊥ aHL & [AFB] & aKB ⊥

aKH = aFD & H ∈ aFD & K ∈ aFD & L ∈ aFD
T1.3.9
=⇒ AH ≡ KB & AH ≡ LC ⇒ KB ≡ LC. 393 We have also

[AFB] & [ADC] & A /∈ aFD & B /∈ aFD & C /∈ aFDAaFDB & AaFDC
L1.2.17.9

=⇒ BCaFD = aKL. Since aKB ⊥ aKL,
aLC ⊥ aKL, and BCaKL, by T 1.3.28 the right bisector a of the interval KL is also the right bisector of the interval.
This means that the line a is perpendicular to aFD and the lines aBC , aFD are parallel. 2

Proposition 1.3.28.2. If ABCD is a simple plane quadrilateral with AB ≡ CD, BC ≡ AD, then ABCD is a
parallelogram. 394 Furthermore, we have AE ≡ EC, BE ≡ ED, where E = (AC) ∩ (BD). 395

Proof. AB ≡ CD & BC ≡ AD & AC ≡ AC
T1.3.10
=⇒ △ABC ≡ △CDA ⇒ ∠ABC ≡ ∠CDA& ∠BAC ≡ ∠ACD

& ∠ACB ≡ ∠CAD. Since, by hypothesis, the points A, B, C, D are coplanar and no three of them are collinear,
by L 1.2.17.8 the points B, D lie either on one side or on opposite sides of the line aAC . Suppose the former.

Then BDaAC & AB 6= AD
L1.2.21.21

=⇒ AD ⊂ Int∠BAC ∨ AB ⊂ Int∠CAD. 396 Suppose AD ⊂ Int∠BAC (see

Fig. 1.152, a) ). Then
L1.2.21.10

=⇒ ∃X (X ∈ AD & [BXC]). X ∈ AD
L1.2.11.8

=⇒ [ADX ] ∨ X = D ∨ [AXD]. But the
last two options contradict the simplicity of ABCD in view of Pr 1.2.10, Pr 1.2.11. Thus, [ADX ] is the only

remaining option. But [BXC]
L1.2.11.15

=⇒ CX = CB, and by L 1.2.21.6, L 1.2.21.4 [ADX ] ⇒ CD ⊂ Int∠ACX .

391Again, this can be done using arguments fully analogous to those employed to prove XK ⊂ Int∠BXM . Since ∠MLC is a right angle,
by C 1.3.17.4 the other two angles, ∠LMC and ∠LCM , of the triangle △MLC, are bound to be acute. Since the angle ∠LMC is acute

and the angle ∠LMX is a right angle, by L 1.3.16.17 we have ∠LMC < ∠LMX. Hence CXaLM & ∠LMC < ∠LMX
C1.3.16.4

=⇒ MC ⊂

Int∠LMX
L1.2.21.10

=⇒ ∃F ([LFX] &F ∈ MC). [LFX]
L1.2.11.15

=⇒ LF = LX &XF = XL. F ∈ MC
L1.2.11.8

=⇒ [MFC] ∨ [MCF ] ∨ F = C.
But the assumptions that [MCF ] or F = C lead (by L 1.2.21.4, L 1.2.21.6, L 1.2.11.3) respectively, to LC ⊂ Int∠MLX or LX = LC -
the possibilities discarded above. Thus, we have [MFC]. By L 1.2.21.4, L 1.2.21.6 [MFC] ⇒ XL = XF ⊂ Int∠CXM . Alternatively, it
suffices to observe that the conditions of the theorem are symmetric with respect to the simultaneous substitutions K ↔ L, B ↔ C.
392Observe that F ∈ (AB) ∩ aF D &D ∈ (AC) ∩ aF D

C1.2.1.12
=⇒ A /∈ aF D &B /∈ aF D &C /∈ aF D .

393Obviously, since all of the points D, F , H, K, L are distinct in this case, and we know that H ∈ aF D , K ∈ aF D , L ∈ aF D, by
A 1.1.2 the line formed by any two of the five points is identical to aF D .
394Note also the congruences ∠ABC ≡ ∠CDA, ∠BAC ≡ ∠ACD, ∠ACB ≡ ∠CDA, obtained as by-products of the proof.
395Note also the congruence of the following vertical angles: ∠AED ≡ ∠BEC, ∠AEB ≡ ∠CED.
396We can safely discard the possibility that AB = AD, for it would imply that the points A, B, D are collinear contrary to simplicity

of ABCD.
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Figure 1.151: If F , D are the midpoints of the sides AB, AC, respectively, of △ABC, then the right bisector of BC
is perpendicular to aFD and aBC , aFD are parallel.
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Figure 1.152: If ABCD is a simple plane quadrilateral with AB ≡ CD, BC ≡ AD, then ABCD is a parallelogram.

Using C 1.3.16.4 then gives ∠ACD < ∠ACX = ∠ACB ≡ ∠CAD < ∠BAC. Hence by L 1.3.16.6 - L 1.3.16.8
∠ACD < ∠BAC, which contradicts ∠BAC ≡ ∠ACD in view of L 1.3.16.11. Similarly, suppose AB ⊂ Int∠CAD

(see Fig. 1.152, b) ). Then
L1.2.21.10

=⇒ ∃Y (Y ∈ AB & [CY D]). Y ∈ AB
L1.2.11.8

=⇒ [ABY ] ∨ Y = B ∨ [AY B]. But
the last two options contradict the simplicity of ABCD in view of Pr 1.2.10, Pr 1.2.11. Thus, [ABY ] is the only

remaining option. But [CY D]
L1.2.11.15

=⇒ CY = CD, and by L 1.2.21.6, L 1.2.21.4 [ABY ] ⇒ CB ⊂ Int∠ACY .
Using C 1.3.16.4 then gives ∠ACB < ∠ACY = ∠ACD ≡ ∠BAC < ∠CAD. Hence by L 1.3.16.6 - L 1.3.16.8
∠ACB < ∠CAD, which contradicts ∠ACB ≡ ∠CAD in view of L 1.3.16.11. The two contradictions show that, in

fact, the points B, D lie on opposite sides of the line aAC . Hence BaACD & ∠BAC ≡ ∠ACD
C1.3.26.3

=⇒ aAB ‖ aCD.
Since the conditions of the theorem obviously apply also to the quadrilateral BCDA (see, for instance, T 1.2.49
about simplicity), we can conclude immediately that the lines aBC , aAD are also parallel, so ABCD is indeed a
parallelogram. Since ABCD is a parallelogram, by L 1.2.47.2 the open intervals (AC), (BD) concur at some point

E. We have [AEC] & [BED]
L1.2.11.15

=⇒ AE = AC & CE = CA & BE = BD & DE = DB. Hence AB ≡ CD & ∠BAE =

∠BAC ≡ ∠DCA = ∠DCE & ∠ABE = ∠ABD ≡ ∠CDB = ∠CDE
T1.3.5
=⇒ △AEB ≡ △CED ⇒ AE ≡ CE & BE ≡

ED. 2

Consider a pair (just a two-element set) of lines {a, b} (in particular, we can consider a strip ab) and points A ∈ a,
B ∈ b. If for all A1 ∈ a, B1 ∈ b such that A1 6= A, B1 6= B and the points A1, B1 lie on the same side of the line
aAB we have ∠ABB1 ≡ ∠BAA1, we say that the interval AB (or, for that matter, the line aAB) is equally inclined
with respect to the pair {a, b} or simply that it is equally inclined to (the lines) a, b.

Using T 1.3.6 it is easy to see that for the interval AB (line aAB) to be equally inclined to the strip ab it suffices
to find just one pair A1 ∈ a, B1 ∈ b such that A1 6= A, B1 6= B, A1B1aAB and ∠ABB1 ≡ ∠BAA1.

Given an interval AB equally inclined to a strip ab, where A ∈ a, B ∈ b, draw through the midpoint M of AB
the line c perpendicular to aAB (see T 1.3.22, L 1.3.8.1). In other words, c is the right bisector of AB. Then we have

Proposition 1.3.29.1. The line c is parallel to both a and b. Furthermore, c is the right bisector of any interval
A′B′, where A′ ∈ a, B′ ∈ b, equally inclined to the strip ab.

Proof. To show that c is parallel to both a and b suppose the contrary, i.e. that c meets, say, a in some point A1.
Using A 1.3.1 take a point B1 such that AA1 ≡ BB1 and the points A1, B1 lie on the same side of the line aAB. Since,
by hypothesis, the interval AB is equally inclined to the strip ab, we have ∠A1AB ≡ ∠ABB1. As M is the midpoint

of AB, we have (by definition of midpoint) [AMB] and AM ≡ MB. Hence [AMB]
L1.2.11.15

=⇒ AM = AB & BM =
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BA ⇒ ∠A1AM = ∠A1AB & ∠MBB1 = ∠ABB1 Now we can write AA1 ≡ BB1 & ∠A1AM ≡ ∠MBB1 & AM ≡

MB
T1.3.4
=⇒ △MAA1 ≡ △MBB1 ⇒ ∠AMA1 ≡ ∠BMB1 & MA1 ≡ MB1. Since, by hypothesis, the line c ∋ A1 is

perpendicular to aAB at M , the angles ∠AMA1, ∠BMA1 are congruent to each other (they are both right angles).
As ∠BMA1 ≡ ∠BMB1

397 and the points A1, B1 lie on the same side of the line aAB, we have MA1 = MB1 . But

B1 ∈ MA1 & MA1 ≡ MB1
T1.3.2
=⇒ B1 = A1, which implies that the line a ∋ A1 meets the line b ∋ B1 contrary to our

assumption that a ‖ b. This contradiction shows that in fact we have c ‖ a, c ‖ b.
Now from L 1.2.19.26 we have ∃M ′ ∈ c ∩ (A′B′). Using L 1.2.19.9 (see also L 1.2.1.3) we see that the points

A′, M ′, as well as M ′, B′ lie on the same side of the line aAM = aMB = aAB. Since AM ≡ MB & MM ′ ≡

MM ′ & ∠AMM ′ ≡ ∠BMM ′ T1.3.4
=⇒ △AMM ′ ≡ △BMM ′ ⇒ AM ′ ≡ BM ′ & ∠MAM ′ ≡ ∠MBM ′ & ∠AM ′M ≡

∠BM ′M . Taking into account that ∠BAA′ ≡ ∠ABB′ (recall that AB is equally inclined to the strip ab by

hypothesis) and [AMB]
L1.2.11.15

=⇒ AM = AB & BM = BA ⇒ ∠A′AM = ∠A′AB & ∠MBB′ = ∠ABB′, we have
∠MAA′ ≡ ∠MBB′. In view of the fact that the points A′, M ′, as well as M ′, B′ lie on the same side of the line
aAM = aMB = aAB, from T 1.3.9 we find that ∠M ′AA′ ≡ ∠M ′BB′. Since the points A′, B′ lie on the same side
of the line aAB and the lines a = aAA′ , b = bBB′ are parallel, the points A, B lie on the same side of the line aA′B′

(see C 1.2.47.5). Arguing as above (using L 1.2.19.9, L 1.2.1.3), or directly using C 1.2.47.5, 398 we see that the
points A, M , as well as M , B lie on the same side of the line aA′M ′ = aM ′B′ = aA′B′ . Furthermore, in view of
C 1.2.47.6 the ray M ′

A lies inside the angle ∠MM ′A′ and the ray M ′
B lies inside the angle ∠MM ′B′. In view of

the fact that the interval A′B′ is equally inclined with respect to the strip ab, this implies that ∠AA′B′ ≡ ∠BB′A′.

Taking into account [A′M ′B′]
L1.2.11.15

=⇒ A′
M ′ = A′

B′ & B′
M ′ = B′

A′ ⇒ ∠AA′M ′ = ∠AA′B & ∠M ′B′B = ∠A′B′B,

we have ∠AA′M ′ ≡ ∠BB′M ′. Now we can write AM ′ ≡ BM ′ & ∠M ′AA′ ≡ ∠M ′BB′ & ∠AA′M ′ ≡ ∠BB′M ′ T1.3.19
=⇒

△AA′M ′ ≡ △BB′M ′ ⇒ A′M ′ ≡ B′M ′ & ∠AM ′A′ ≡ ∠BM ′B′. Finally, ∠AM ′M ≡ ∠BM ′M & ∠AM ′A′ ≡

∠BM ′B′ & M ′
A ⊂ Int∠A′M ′M & M ′

B ⊂ Int∠B′M ′M
T1.3.9
=⇒ ∠A′M ′M ≡ ∠B′M ′M . But the relation [A′M ′B′]

implies that the angles ∠A′M ′M , ∠B′M ′M are adjacent supplementary, and we see that these angles are right, as
required.

2

Isometries on the Line

Lemma 1.3.29.2. If [ABC], AB ≡ A′B′, BC ≡ B′C′, AC ≡ A′C′, then [A′B′C′].

Proof. First, observe that using L 1.3.13.3, L 1.3.13.7 399 [ABC] & AB ≡ A′B′ & BC ≡ B′C′ & AC ≡ A′C′ ⇒ A′B′ <
A′C′ & B′C′ < A′C′. To show that B′ ∈ aA′C′ , suppose the contrary, i.e. B′ /∈ aA′C′ . Let B′′ be the foot of the
perpendicular to aA′C′ drawn through B′. Obviously, B′′ 6= A′ (see Fig. 1.153, a), c) ), for otherwise by C 1.3.18.2
A′C′ = B′′C′ < B′C′, which (in view of L 1.3.16.10) contradicts the inequality B′C′ < A′C′ proven above. Similarly,
we have B′′ 6= C′, because the assumption B′′ = C′ would imply A′C′ = A′B′′ < A′B′ - a contradiction with

A′B′ < A′C′ shown above. 400 We can write B′′ ∈ aA′C′ & B′′ 6= A′ & B′′ 6= C′ T1.2.2
=⇒ [B′′A′C′]∨[A′B′′C′]∨[A′C′B′′].

The assumption that [B′′A′C′] (see Fig. 1.153, a), d) ) would (by L 1.3.13.3) imply A′C′ < B′′C′, whence A′C′ <

B′′C′ & B′′C′ < B′C′ L1.3.13.8
=⇒ A′C′ < B′C′ - a contradiction with B′C′ < A′C′. Similarly, [A′C′B′′] would (by

L 1.3.13.3) imply A′C′ < B′′C′, whence A′C′ < B′′C′ & B′′C′ < B′C′ L1.3.13.8
=⇒ A′C′ < B′C′ - a contradiction with

B′C′ < A′C′. 401 But the remaining variant [A′B′′C′] (see Fig. 1.153, a), b) ) also leads to contradiction, for (using
T 1.3.1, L 1.3.13.7) A′B′′ < A′B′ & AB ≡ A′B′ ⇒ A′B′′ < AB, B′′C′ < B′C′ & B′C′ ≡ BC ⇒ B′′C′ < BC,

and [A′B′′C′] & [ABC] & A′B′′ < AB & B′′C′ < BC
L1.3.21.3

=⇒ A′C′ < AC, which (in view of L 1.3.13.11) contradicts
AC ≡ A′C′. The resulting major contradiction shows that in fact the point B′ has to lie on the line aA′C′ . We

have B′ ∈ aA′C′ & B′ 6= A′ & B′ 6= C′ T1.2.2
=⇒ [B′A′C′] ∨ [A′B′C′] ∨ [A′C′B′]. But the first of these cases leads to

contradiction, as does the third, because [B′A′C′]
C1.3.13.4

=⇒ A′C′ < B′C′, [A′C′B′]
C1.3.13.4

=⇒ A′C′ < A′B′. Thus, we
conclude that [A′B′C′], q.e.d. 2

Corollary 1.3.29.3. Isometries transform line figures (sets of points lying on one line) into line figures. 402

Proof. Obviously, we need to consider only figures containing at least 3 points. If we take such a figure A and a line
aA1A3 defined by two arbitrarily chosen points A1, A3 of A, by L 1.1.1.4 any other point A2 of A will lie on aA1A3 .
Using T 1.2.2, we can assume without any loss of generality that [A1A2A3]. If φ : A → B is a motion, mapping the

397We take into account that ∠AMA1 ≡ ∠BMA1 &∠AMA1 ≡ ∠BMB1 ⇒ ∠BMA1 ≡ ∠BMB1.
398Recall that a ‖ c ‖ b, and thus the quadrilaterals AMM ′A′, BMM ′B′ are trapezoids.
399Actually, we are also using T 1.3.1, but we do not normally cite our usage of this theorem and other highly familiar facts explicitly

to avoid cluttering the proofs with trivial details.
400Observe that, having proven B′′ 6= A′, we could get B′′ 6= C′ simply out of symmetry considerations. Namely, we need to note that

the conditions of the lemma are invariant with respect to the simultaneous interchanges A ↔ C, A′ ↔ C′, and make the appropriate
substitutions.
401Again, once we know that ¬[B′′A′C′], we can immediately exclude the possibility that [A′C′B′′] using symmetry considerations,

namely, that the conditions of the lemma are invariant with respect to the substitutions A ↔ C, A′ ↔ C′.
402This corollary can be given a more precise formulation as follows: Given two points A, B in a line figure A, all points of the image
A′ ⇋ f(A) of the set A under an isometry f lie on the line aA′B′ , where A′ ⇋ f(A), B′ =⇋ f(B).
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A B C A’ B” C’

A’= B” C’ A’ C’B”

B’

B’

B’

a) b)

c) d)

Figure 1.153: Illustration for proof of L 1.3.29.2.

figure A into a point set B, we have by the preceding lemma (L 1.3.34.1): [B1B2B3], where Bi = φ(Ai), i = 1, 2, 3.
Hence by L 1.2.1.3 the points B1, B2, B3 are collinear, q.e.d. 2

Corollary 1.3.29.4. Isometries transform lines into lines. 403

Proof. From the preceding corollary we immediately have f(a) ⊂ a′. 404
2

Lemma 1.3.29.5. Given a collinear set of points A congruent to a set of points A′, for any point O, lying on the
line a containing the set A and distinct from points A, B ∈ A, there is exactly one point O′ lying on the line a′

containing the set A′ such that the sets A∪ O, A′ ∪ O′ are congruent.

Proof. Suppose an interval AB is congruent to an interval A′B′, where A, B ∈ A, A′, B′ ∈ A′. Since the points
A, B, O are collinear, by T 1.2.2 either [OAB], or [OBA], or [AOB]. Suppose first A lies between O, B. Using
A 1.3.1, choose A′ O′c

B′ (unique by T 1.3.1) such that OA ≡ O′A′. Now we can write [OAB] & [O′A′B′] & OA ≡

O′A′ & AB ≡ A′B′ P1.3.9.3
=⇒ OB ≡ O′B′. Thus, we have {O, A, B} ≡ {O′, A′, B′}. Similarly, by symmetry for the

case when B lies between O, A we also have {O, A, B} ≡ {O′, A′, B′}. 405 Finally, if O lies between A, B, by
C 1.3.9.2 we have ∃O′ [A′O′B′] & OA ≡ O′A′ & OB ≡ O′B′. Thus, again {O, A, B}, {O′, A′, B′} are congruent.
To complete the proof of the lemma we need to show that for all P ∈ A we have OP ≡ O′P ′, where P ′ ∈ A′.
We already know this result to be correct for P = A and P = B. We need to prove it for P 6= A, P 6= B. We
further assume that the point P ′ ∈ A′ is chosen so that AP ≡ A′P ′. Then, of course, also BP ≡ B′P ′. These
facts reflect the congruence of the sets A, A′. Again, we start with the case when [OAB]. Since the points O,
A, B, P are collinear and distinct, from T 1.2.2, T 1.2.5 we have either [POB], or [OPA], or [APB], or [OBP ]

(see Fig. 1.154, a)-d), respectively). Suppose first [POB]. We then have: [POB] & [OAB]
L1.2.3.2
=⇒ [POA] & [PAB].

[PAB] & PA ≡ P ′A′ & AB ≡ A′B′ & PB ≡ P ′B′ L1.3.29.2
=⇒ [P ′A′B′]. [P ′A′B′] & [O′A′B′]

L1.2.15.2
=⇒ P ′ ∈ A′c

B′ & O′ ∈

A′c
B′ . [POA] & P ′ ∈ A′c

B′ & O′ ∈ A′c
B′ & AP ≡ A′P ′ & OA ≡ O′A′ L1.3.9.1

=⇒ OP ≡ O′P ′. Suppose now [OPA].

Then [OPA] & [OAB]
L1.2.3.2
=⇒ [PAB] & [OPB]. [PAB] & PA ≡ P ′A′ & AB ≡ A′B′ & PB ≡ P ′B′ L1.3.29.2

=⇒ [P ′A′B′].

[P ′A′B′] & [O′A′B′]
L1.2.15.2

=⇒ P ′ ∈ A′c
B′ & O′ ∈ A′c

B′ . [OPA] & P ′ ∈ A′c
B′ & O′ ∈ A′c

B′ & AP ≡ A′P ′ & OA ≡

O′A′ L1.3.9.1
=⇒ OP ≡ O′P ′. Suppose [APB]. Then [APB] & AP ≡ A′P ′ & PB ≡ P ′B′ & AB ≡ A′B′ L1.3.29.2

=⇒ [A′P ′B′].

[OAB] & [APB]
L1.2.3.2
=⇒ [OAP ]. [O′A′B′] & [A′P ′B′]

L1.2.3.2
=⇒ [O′A′P ′]. [OAP ] & [O′A′P ′] & OA ≡ O′A′ & AP ≡

A′P ′ P1.3.9.3
=⇒ OP ≡ O′P ′. Finally, suppose [OBP ]. Then [OBP ] & [OAB]

L1.2.3.2
=⇒ [OAP ] & [ABP ]. [ABP ] & AB ≡

A′B′ & BP ≡ B′P ′ & AP ≡ A′P ′ L1.3.29.2
=⇒ [A′B′P ′]. [O′A′B′] & [A′B′P ′]

L1.2.3.1
=⇒ [O′A′P ′]. [OAP ] & [O′A′P ′] & OA ≡

O′A′ & AP ≡ A′P ′ P1.3.9.3
=⇒ OP ≡ O′P ′. Similarly, it can be shown that when [OBA] the congruence OP ≡ O′P ′ al-

ways holds. 406 We turn to the remaining case, when O lies between A, B. Since the points O, A, B, P are collinear

403This corollary can be stated more precisely as follows: Any isometry f whose domain contains the set Pa of all points of a line a
transforms Pa into the set P ′

a of all points of a line a′, not necessarily distinct from a.
404For convenience, we are making use of a popular jargon, replacing the notation for the set (say, Pa in our example) of points of a

line a by the notation for the line itself.
405In fact, since A, B, as well as A′, B′ enter the conditions symmetrically, we just need to substitute A → B, B → A in the preceding

arguments: Using A 1.3.1, choose B′ O′c
A′ (unique by T 1.3.1) such that OB ≡ O′B′. Now we can write [OBA] & [O′B′A′] &OB ≡

O′B′ &BA ≡ B′A′ P1.3.9.3
=⇒ OA ≡ O′A′.

406Due to symmetry, we just need to make the substitutions A → B, B → A in our preceding arguments concerning the case
[OAB]. To further convince the reader, we present here the result of this mechanistic replacement. Since the points O, A, B,
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and distinct, from T 1.2.2, T 1.2.5 we have either [PAB], or [APO], or [OPB], or [ABP ] (see Fig. 1.154, e)-h),

respectively). Suppose first [PAB]. We have: [PAB] & PA ≡ P ′A′ & AB ≡ A′B′ & PB ≡ P ′B′ L1.3.29.2
=⇒ [P ′A′B′].

[PAB] & [AOB]
L1.2.3.2
=⇒ [PAO]. [P ′A′B′] & [A′O′B′]

L1.2.3.2
=⇒ [P ′A′O′]. [PAO] & [P ′A′O′] & OA ≡ O′A′ & AP ≡

A′P ′ P1.3.9.3
=⇒ OP ≡ O′P ′. Suppose now [OPB]. Then [AOB] & [OPB]

L1.2.3.2
=⇒ [AOP ] & [APB]. [APB] & AP ≡

A′P ′ & PB ≡ P ′B′ & AB ≡ A′B′ L1.3.29.2
=⇒ [A′P ′B′]. [A′O′B′] & [A′P ′B′]

L1.2.11.13
=⇒ O′ ∈ A′

B′ & P ′ ∈ A′
B′ . [AOP ] & O′ ∈

A′
B′ & P ′ ∈ A′

B′ & AO ≡ A′O′ & AP ≡ A′P ′A′c
B′ & O′ ∈ A′c

B′ & AP ≡ A′P ′ & OA ≡ O′A′ L1.3.9.1
=⇒ OP ≡ O′P ′. The

cases when [ABP ], [APO] can be reduced to the cases [PAB], [OPB], respectively by the substitutions A → B,
B → A. 407

2

Theorem 1.3.29. Let Ai, where i ∈ Nn, n ≥ 3, be a finite sequence of points with the property that every point of
the sequence, except for the first and the last, lies between the two points with adjacent (in N) numbers. Suppose,
further, that the sequence Ai is congruent to a sequence Bi, where i ∈ Nn. 408 Then the points B1, B2, . . . , Bn are in
order [B1B2 . . . Bn], i.e. the sequence of points Bi, i ∈ Nn, n ≥ 3 (n ∈ N) on one line has the property that a point
lies between two other points iff its number has an intermediate value between the numbers of these two points.

Proof. By induction on n. For n = 3 see the preceding lemma (L 1.3.29.2). Observe further that when n ≥ 4
the conditions of the theorem, being true for the sequences Ai, Bi of n points, are also true for the sequences
A1, A2, . . . , An−1 and B1, B2, . . . , Bn−1, each consisting of n− 1 points. The induction assumption then tells us that
the points B1, B2, . . . , Bn−1 are in order [B1B2 . . . Bn−1]. Since the points A1, A2, . . . , An are in order [A1A2 . . . An]

(see L 1.2.7.3), we can write [A1An−1An] & A1An−1 ≡ B1Bn−1 & An−1An ≡ Bn−1Bn & A1An ≡ B1Bn
L1.3.29.2

=⇒

[B1Bn−1Bn]. [B1Bn−2Bn−1] & [B1Bn−1Bn]
L1.2.3.2
=⇒ [Bn−2Bn−1Bn]. Applying L 1.2.7.3 again, we see that the points

B1, B2, . . . , Bn are in order [B1B2 . . . Bn], q.e.d. 2

Corollary 1.3.29.1. Isometries are either sense-preserving or sense-reversing transformations.

Proof. 2

Theorem 1.3.30. Given a figure A containing a point O on line a, a point A on a, and a line a′ containing points
O′, A′, there exists exactly one motion f : A → A′ and, correspondingly, one figure A′ such that f(O) = O′ and if A,
B lie (on line a) on the same side (on opposite sides) of the point O, where B ∈ A then the points A′ and B′ = f(B)
also lie (on line a′) on the same side (on opposite sides) of the point O′. 409

Proof. We set, by definition, f(O)
def
⇐⇒ O′. For B ∈ OA ∩ A, using A 1.3.1, choose B′ ∈ O′

A′ so that OB ≡ O′B′.
Similarly, for B ∈ Oc

A ∩ A, using A 1.3.1, choose B′ ∈ (O′
A′)c so that again OB ≡ O′B′. In both cases we let, by

definition, f(B) ⇋ B′. Note that, by construction, if B, C ∈ A and B′ = f(B), C′ = f(C), then the point pairs
B, C and B′, C′ lie either both on one side (see Fig. 1.155, a)) or both on opposite sides (see Fig. 1.155, b)) of the
points O, O′, respectively. Hence by P 1.3.9.3 BC ≡ B′C′ for all B, C ∈ A, which completes the proof. 410

2

P are collinear and distinct, from T 1.2.2, T 1.2.5 we have either [POA], or [OPB], or [BPA], or [OAP ]. Suppose first [POA].

We then have: [POA]& [OBA]
L1.2.3.2

=⇒ [POB]& [PBA]. [PBA] &PB ≡ P ′B′ &BA ≡ B′A′ &PA ≡ P ′A′ L1.3.29.2
=⇒ [P ′B′A′].

[P ′B′A′] & [O′B′A′]
L1.2.15.2

=⇒ P ′ ∈ B′c
A′ &O′ ∈ B′c

A′ . [POB]&P ′ ∈ B′c
A′ &O′ ∈ B′c

A′ &BP ≡ B′P ′ &OB ≡ O′B′ L1.3.9.1
=⇒ OP ≡ O′P ′.

Suppose now [OPB]. Then [OPB]& [OBA]
L1.2.3.2

=⇒ [PBA] & [OPA]. [PBA] &PB ≡ P ′B′ &BA ≡ B′A′ &PA ≡ P ′A′ L1.3.29.2
=⇒ [P ′B′A′].

[P ′B′A′] & [O′B′A′]
L1.2.15.2

=⇒ P ′ ∈ B′c
A′ &O′ ∈ B′c

A′ . [OPB]&P ′ ∈ B′c
A′ &O′ ∈ B′c

A′ &BP ≡ B′P ′ &OB ≡ O′B′ L1.3.9.1
=⇒ OP ≡ O′P ′.

Suppose [BPA]. Then [BPA] &BP ≡ B′P ′ &PA ≡ P ′A′ &BA ≡ B′A′ L1.3.29.2
=⇒ [B′P ′A′]. [OBA] & [BPA]

L1.2.3.2
=⇒ [OBP ].

[O′B′A′] & [B′P ′A′]
L1.2.3.2

=⇒ [O′B′P ′]. [OBP ]& [O′B′P ′] &OB ≡ O′B′ &BP ≡ B′P ′ P1.3.9.3
=⇒ OP ≡ O′P ′. Finally, suppose

[OBP ]. Then [OBP ]& [OAB]
L1.2.3.2

=⇒ [OBP ]& [BAP ]. [BAP ] &BA ≡ B′A′ &AP ≡ A′P ′ &BP ≡ B′P ′ L1.3.29.2
=⇒ [B′A′P ′].

[O′B′A′] & [B′A′P ′]
L1.2.3.1

=⇒ [O′B′P ′]. [OBP ]& [O′B′P ′] &OB ≡ O′B′ &BP ≡ B′P ′ P1.3.9.3
=⇒ OP ≡ O′P ′.

407Again, to further convince the reader of the validity of these substitutions and the symmetry considerations underlying them, we

present here the results of such substitutions. Suppose first [PBA]. We have: [PBA] &PB ≡ P ′B′ &BA ≡ B′A′ &PA ≡ P ′A′ L1.3.29.2
=⇒

[P ′B′A′]. [PBA] & [BOA]
L1.2.3.2

=⇒ [PBO]. [P ′B′A′] & [B′O′A′]
L1.2.3.2

=⇒ [P ′B′O′]. [PBO] & [P ′B′O′] &OB ≡ O′B′ &BP ≡ B′P ′ P1.3.9.3
=⇒

OP ≡ O′P ′. Suppose now [OPA]. Then [BOA] & [OPA]
L1.2.3.2

=⇒ [BOP ]& [BPA]. [BPA] &BP ≡ B′P ′ &PA ≡ P ′A′ &BA ≡

B′A′ L1.3.29.2
=⇒ [B′P ′A′]. [B′O′A′] & [B′P ′A′]

L1.2.11.13
=⇒ O′ ∈ B′

A′ &P ′ ∈ B′
A′ . [BOP ] &O′ ∈ B′

A′ &P ′ ∈ B′
A′ &BO ≡ B′O′ &BP ≡

B′P ′B′c
A′ &O′ ∈ B′c

A′ &BP ≡ B′P ′ &OB ≡ O′B′ L1.3.9.1
=⇒ OP ≡ O′P ′.

408According to the definition, two sequences can be congruent only if they consist of equal number of points.
409That is, for B ∈ A if B ∈ OA then B′ ∈ O′

A′ and B ∈ Oc
A implies B′ ∈ O′c

A′ .
410Uniqueness is obvious from A 1.3.1.

164



P       O A B

O P A B

O A P B

O       A B P

P A O B

A      P                  O             B

A         O P B

P’     O’ A’ B’

O’ P’ A’ B’

O’ A’ P’ B’

O’      A’ B’ P’

P’ A’ O’ B’

A’     P’                 O’            B’

A’        O’ P’ B’

a)

b)

c)

d)

e)

f)

g)

A O                  B P A’ O’                 B’ P’

h)

Figure 1.154: Illustration for proof of L 1.3.29.5.
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Figure 1.155: Illustration for proof of T 1.3.30.

165



O C A B    OA O’ C’ A’ B’   O’A

O A B       OAC

O C        OAA B

O’ A’ B’     O’AC’

O’ C’       O’AA’ B’

a)

b)

c)

Figure 1.156: Isometries transform rays into rays.

Isometries of Collinear Figures

Corollary 1.3.30.1. Isometries transform rays into rays. If a ray OA is transformed into O′
A′ then O maps into

O′.

Proof. Taking a point B such that [OAB],411 using A 1.3.1, we can choose O′ with the properties [O′A′B′] (i.e.,
O′ ∈ A′c

B′), OA ≡ O′A′, where A′ = f(A), B′ = f(B), f being a given isometry. Suppose now C is an arbitrary

point on the ray OA, distinct from A, B. Denote C′ ⇋ f(C). 412 We have C ∈ OA = OB & C 6= A& CneB
T1.2.15
=⇒

C ∈ (OA) ∨ C ∈ (AB) ∨ C ∈ Bc
A.

Consider first the case when [OCA] (see Fig. 1.156, a)). We have then [OCA] & [OAB]
L1.2.3.2
=⇒ [CAB]. By

congruence we can write [CAB] & AB ≡ A′B′ & BC ≡ B′C′ & AC ≡ A′C′ L1.3.29.2
=⇒ [C′A′B′]. Also, we have

[O′A′B′] & [C′A′B′]
L1.2.11.16

=⇒ O′ ∈ B′
A′ & C′ ∈ B′

A′ . Hence [OCA] & OA ≡ O′A′ & AC ≡ A′C′ & O′ ∈ A′c
B′ & C′ ∈

A′c
B′

L1.3.9.1
=⇒ [O′C′A′] & OC ≡ O′C′ L1.2.11.13

=⇒ C′ ∈ O′
A′ .

Now we turn to the case when [ACB] (see Fig. 1.155, b)). Note that this implies [OAB] & [ACB]
L1.2.3.2
=⇒

[OAC]. By congruence we can write [ACB] & AB ≡ A′B′ & BC ≡ B′C′ & AC ≡ A′C′ L1.3.29.2
=⇒ [A′C′B′]. Hence

[O′A′B′] & [A′B′C′]
L1.2.3.2
=⇒ [O′A′C′]

L1.2.11.16
=⇒ C′ ∈ O′

A′ .

Finally, suppose C ∈ Bc
A, i.e. [ABC] (see Fig. 1.155, c)). Note that this implies [OAB] & [ABC]

L1.2.3.1
=⇒

[OAC]. By congruence we can write [ABC] & AB ≡ A′B′ & BC ≡ B′C′ & AC ≡ A′C′ L1.3.29.2
=⇒ [A′B′C′]. Hence

[O′A′B′] & [A′B′C′]
L1.2.3.1
=⇒ [O′A′C′]

L1.2.11.16
=⇒ C′ ∈ O′

A′ .

Furthermore, in the last two cases we can write [OAC] & [O′A′C] & OA ≡ O′A′ & AC ≡ A′C′ P1.3.9.3
=⇒ OC ≡ O′C′.

Thus, we have shown that C ∈ OA implies C′ ∈ O′
A′ , where C′ = f(C). This fact can be written down as

f(OA) ⊂ O′
A′ . Also, we have OC ≡ O′C′, where C′ = f(C).

To show that f(O) = O′ denote O′′ ⇋ f(O) (now we assume that the domain of f includes O). f being an

isometry, we have [OAB] & OA ≡ O′′A′ & OB ≡ O′′B′ & AB ≡ A′B′ L1.3.29.2
=⇒ [O′′A′B′]. [O′A′B′] & [O′′A′B′]

L1.2.15.2
=⇒

O′ ∈ A′c
B′ & O′′ ∈ A′c

B′ . Hence by T 1.3.1 O′′ = O′.
To show that f(OA) = O′

A′ we need to prove that for all C′ ∈ O′
A′ there exists C ∈ OA such that f(C) = C′. To

achieve this, given C′ ∈ O′
A′ it suffices to choose (using A 1.3.1) C ∈ OA so that OC ≡ O′C′. Then C′ will coincide

with f(C) (this follows from T 1.3.1 and the arguments given above showing that OC ≡ O′f(C) for any C ∈ OA). )
2

Corollary 1.3.30.2. Isometries transform open intervals into open intervals. If an open interval (AB) is transformed
into an open interval (A′B′) then A maps into one of the ends of the interval A′B′, and B maps into its other end.

Proof. Let C, D be two points on the open interval (AB) (see T 1.2.8). Without loss of generality we can assume

that [ACD]. 413 Then [ACD] & [ADB]
L1.2.3.2
=⇒ [CDB] & [ACB]. Thus, the points A, B, C, D are in the order

[ACDB]. Suppose f is a given isometry. We need to prove that the image of the open interval (AB) under f
is an open interval . Denote C′ ⇋ f(C), D′ ⇋ f(D). Using A 1.3.1, choose points A′ ∈ C′c

D′ , B′ ∈ D′c
C′ (in

view of L 1.2.15.2 this means that [A′C′D′], [C′D′B′], respectively) such that AC ≡ A′C′, DB ≡ D′B′. Note

that [A′C′D′] & [C′D′B′]
L1.2.3.1
=⇒ [A′C′B′] & [A′D′B′]. In order to prove that the open interval (A′B′) is the im-

age (AB) we need to show that ∀P ∈ (AB) f(P ) ∈ (A′B′). Denote P ′ ⇋ f(P ). We have P ∈ (AB)& P 6=

411Note that, obviously, [OAB] ⇒ B ∈ OA (see L 1.2.11.16).
412Since the points A, B, C are, obviously, collinear, by T 1.2.2 one of them lies between the two others. Using L 1.2.30.1 it will be

shown that the points A′, B′, C′ are in the same lexicographic order as A, B, C. That is, [ABC] implies [A′B′C′], [CAB] implies
[C′A′B′], ACB implies [A′C′B′].
413By P 1.2.3.4 we have either [ACD] or [ADC]. In the latter case we can simply rename C → D, D → C.
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Figure 1.157: Illustration for proof of C 1.3.30.2.

A& P 6= C & P 6= D
L1.2.7.7
=⇒ P ∈ (AC) ∨ P ∈ (CD) ∨ P ∈ (DB). Suppose first P ∈ (AC) (see Fig. 1.157,

a)). Then [ACD] & [APC]
L1.2.3.2
=⇒ [PCD]. Since f is a motion, we can write [PCD] & PC ≡ P ′C′ & CD ≡

C′D′ & PD ≡ P ′D′ L1.3.29.2
=⇒ [P ′C′D′]. [A′C′D′] & [P ′C′D′]

L1.2.15.2
=⇒ A′ ∈ C′c

D′ & P ′ ∈ C′c
D′ . [APC] & A′ ∈

C′c
D′ & P ′ ∈ C′c

D′ & AC ≡ A′C′ & CP ≡ C′P ′ L1.3.9.1
=⇒ [A′P ′C′] & AP ≡ A′P ′. [A′P ′C′] & [A′C′B′]

L1.2.3.2
=⇒ [A′P ′B′].

Suppose now P ∈ (CD) (see Fig. 1.157, b)). f being a motion, we have [CPD] & CP ≡ C′P ′ & PD ≡ P ′D′ & CD ≡

C′D′ L1.3.29.2
=⇒ [C′P ′D′]. [C′P ′D′] & C′ ∈ (A′B′)& D′ ∈ (A′B′)

T1.2.3
=⇒ P ′ ∈ (A′B′). [A′C′D′] & [C′P ′D′]

L1.2.3.2
=⇒

[A′C′P ′]. [ACP ] & [A′C′P ′] & AC ≡ A′C′ & CP ≡ C′P ′ L1.3.9.1
=⇒ AP ≡ A′P ′. With the aid of the substitutions

A → B, B → A, C → D, D → C, A′ → B′, B′ → A′, C′ → D′, D′ → C′ we can show that the congruence
BP ≡ B′P ′ holds in this case as well. 414 Finally, for [DPB] we can show that P ′ ∈ (A′B′) using the substitutions
A → B, B → A, C → D, D → C, A′ → B′, B′ → A′, C′ → D′, D′ → C′, and our result for the case [APC]. 415

Making the substitutions A → B, C → D, D → C, A′ → B′, C′ → D′, D′ → C′, A′′ → B′′, we find that
f(B) = B′.

417

To show that f(AB) = (A′B′) we need to prove that for all P ′ ∈ (A′B′) there exists P ∈ (AB) such that
f(P ) = P ′.

To achieve this, given P ′ ∈ (A′B′) it suffices to choose (using C 1.3.9.2) P ∈ (AB) so that AP ≡ A′P ′. Then
P ′ will coincide with f(P ) (this follows from T 1.3.1 and the arguments given above showing that AP ≡ A′f(P ) for
any P ∈ (AB)). 2

Corollary 1.3.30.3. Isometries transform half-open (half-closed) intervals into half-open (half-closed) intervals.

Proof. 2

Corollary 1.3.30.4. Isometries transform closed intervals into closed intervals.

Proof. 2

General Notion of Symmetry

Some general definitions are in order. 418 Consider an arbitrary set M. 419 A function f : M → M, mapping the set M onto
itself, will be referred to as a transformation of the set M. Given a subset A ⊂ M of the set M, a transformation f of M is
called a symmetry transformation, or a symmetry element, of the set A iff it has the following properties:

Property 1.3.6. The function f transforms elements of the set A into elements of the same set, i.e. ∀x ∈ A f(x) ∈ A.

414In fact, making the substitutions indicated above, we write: [B′D′C′] & [D′P ′C′]
L1.2.3.2

=⇒ [B′D′P ′]. [BDP ] & [B′D′P ′] &BD ≡

B′D′ &DP ≡ D′P ′ L1.3.9.1
=⇒ BP ≡ B′P ′.

415To make our arguments more convincing, we write down the results of the substitutions explicitly: Suppose P ∈ (BD). Then

[BDC] & [BPD]
L1.2.3.2

=⇒ [PDC]. Since f is a motion, we can write [PDC]&PD ≡ P ′D′ &DC ≡ D′C′ &PC ≡ P ′C′ L1.3.29.2
=⇒ [P ′D′C′].

[B′D′C′] & [P ′D′C′]
L1.2.15.2

=⇒ B′ ∈ D′c
C′ &P ′ ∈ D′c

C′ . [BPD] &B′ ∈ D′c
C′ &P ′ ∈ D′c

C′ &BD ≡ B′D′ &DP ≡ D′P ′ L1.3.9.1
=⇒

[B′P ′D′] &BP ≡ B′P ′. [B′P ′D′] & [B′D′A′]
L1.2.3.2

=⇒ [B′P ′A′].
Thus, we have shown that P ∈ (AB) implies P ′ ∈ (A′B′), where P ′ = f(P ). This fact can be written down as f(AB) ⊂ (A′B′). Also,

we have AP ≡ A′P ′, BP ≡ B′P ′, where P ′ = f(P ).
To show that f(A) = A′ denote A′′ ⇋ f(A) (now we assume that the domain of f includes A). 416 f being an isometry, we have

[ACD] &AC ≡ A′′C′ &AD ≡ A′′D′ &CD ≡ C′D′ L1.3.29.2
=⇒ [A′′C′D′]. [A′C′D′] & [A′′C′D′]

L1.2.15.2
=⇒ A′ ∈ C′c

D′ &A′′ ∈ C′c
D′ . Hence by

T 1.3.1 A′′ = A′.
417To show that f(B) = B′ denote B′′ ⇋ f(B) (now we assume that the domain of f includes B). f being an isometry, we have

[BDC] &BD ≡ B′′D′ &BC ≡ B′′C′ &DC ≡ D′C′ L1.3.29.2
=⇒ [B′′D′C′]. [B′D′C′] & [B′′D′C′]

L1.2.15.2
=⇒ B′ ∈ D′c

C′ &B′′ ∈ D′c
C′ . Hence

by T 1.3.1 B′′ = B′.
418In volume 1 we reiterate some of the material presented here in small print. This is done for convenience of the reader and to make

exposition in each volume more self-contained.
419Generally speaking, M need not be a set of points or any other geometric objects. However, virtually all examples of M we will

encounter in this volume will be point sets, also referred to as geometric figures.
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Property 1.3.7. f transforms distinct elements of A into distinct elements of this set, i.e. x1 6= x2 ⇒ f(x1) 6= f(x2), where
x1, x2 ∈ A. 420

Property 1.3.8. Every element y of A is an image of some element x of this set: ∀y ∈ A ∃x ∈ A y = f(x). 421

If f is a symmetry element of A, we also say that A is symmetric with respect to (or symmetric under) the transformation
A. Let S0(A) be the set of all symmetry elements of A. Define multiplication on S0(A) by ψ◦ϕ(x) = ψ(ϕ(x)), where ψ,ϕ ∈ S0.
Then (S0(A), ◦) is a group 422 with identity function as the identity element, and inverse functions as inverse elements. We call
this group the full symmetry group of A. However, the full symmetry group is so broad as to be practically useless. Therefore,
for applications to concrete problems, we need to restrict it as outlined below. Let S(A) be the set of all elements of S0(A),
satisfying conditions C1,C2, . . ., so that for each condition Ci the following properties hold:

1. If ϕ(x) and ψ(x) satisfy the condition Ci then their product ψ(x) ◦ φ(x) also satisfies this condition;

2. If ϕ(x) satisfies the condition Ci, then its inverse function (ϕ(x))−1 also satisfies this condition.

Thus (S(A), ◦) forms a subgroup of the full symmetry group and is also termed a (partial) symmetry 423 group.
With these definitions, we immediately obtain the following simple, but important theorems.

Theorem 1.3.31. If the object A is a (set-theoretical) union of objects Aα, α ∈ A, its symmetry group contains as a subgroup
the intersection of the groups of symmetry of all objects Aα. This can be written as

S(
⋃

α∈A

Aα) ⊃
⋂

α∈A

S(Aα) (1.1)

Proof. Let f ∈
⋂

α∈A
S(Aα) and x ∈

⋃
α∈A

Aα. Then ∃α0 such that x ∈ Aα0 . Because f ∈ S(Aα0), we have f(x) ∈ Aα0 ,
whence f(x) ∈

⋃
α∈A

Aα and therefore f ∈ S(
⋃

α∈A
Aα). If y ∈

⋃
α∈A

Aα, since y ∈ Aα0 and f ∈ S(Aα0), there exists x ∈ Aα0

such that y = f(x). Therefore, for every y ∈
⋃

α∈A
Aα we can find x ∈

⋃
α∈A

Aα such that y = f(x). 2

Theorem 1.3.32. If the object A is a (set-theoretical) union of objects Aα, α ∈ A, and all its symmetry transformations f
satisfy f(Aα) ∩Aβ = ∅, where α 6= β, α, β ∈ A, then

S(
⋃

α∈A

Aα) =
⋂

α∈A

S(Aα) (1.2)

Proof. Given the condition of the theorem, we need to prove that

S(
⋃

α∈A

Aα) ⊂
⋂

α∈A

S(Aα) (1.3)

Let f ∈ S(
⋃

α∈A
Aα) and x ∈ Aα0 α0 ∈ A. Then x ∈

⋃
α∈A

Aα and therefore f(x) ∈
⋃

α∈A
Aα. But since f(Aα) ∩ Aβ = ∅,

where α 6= β, α, β ∈ A, we have f(x) ∈ Aα0 . If y ∈ Aα0 ⊂
⋃

α∈A
Aα, there exists x ∈

⋃
α∈A

Aα such that y = f(x). Then
x ∈ Aα0 , because otherwise x ∈ Aβ , where α0 6= β, and f(x) ∈ Aβ ∩ Aα0 = ∅ - a contradiction. Since the choice of α0 ∈ A
was arbitrary, we have proven that f ∈

⋂
α∈A

S(Aα). 2

In what follows, we shall usually refer to transformations on a line a, i.e. functions Pa → Pa (transformations
on a plane α, i.e. functions Pα → Pα; transformations in space, i.e. functions CPt → CPt) as line transformations
(plane transformations; spatial, or space transformations).

For convenience we denote the identity transformation (the transformation sending every element of the set into
itself: x 7→ x for all x ∈ M.) of an arbitrary set M by idM, or simply id when M is assumed to be known from
context or not relevant.

Given a point O on a line a, define the transformation f = refl(a,O) of the set Pa of the points of the line a, as
follows: For A ∈ Pa \ {O} we choose, using A 1.3.1, A′ ∈ Oc

A so that OA ≡ OA′, and let, by definition, f(A) ⇋ A′.
Finally, we let f(O) ⇋ O. This transformation is called the reflection of (the points of) the line a in the point O.

Observe that, of the two rays into which the point O separates the line a, the reflection of the set of points of a
in O transforms the first ray into the second ray and the second into the first.

Theorem 1.3.33. Given a set of at least two points 424 A on a line a and a point O′ on a line a′, there are at most
two figures on a′ congruent to A and containing the point O′. To be precise, there is exactly one figure A′ if it is
symmetric under the transformation of reflection in the point O′. There are two figures A′, A′′, both containing O′

and congruent to A when A′ (and then, of course, also A′′) is not symmetric under the reflection in O′.

Proof. 2

Lemma 1.3.33.1. The reflection of a line a in a point O is a bijection.

420Obviously, Pr 1.3.7 means that the restriction of f on A is an injection.
421Obviously, Pr 1.3.8 means that the restriction of f on A is a surjection.
422Obviously, a combination of any two symmetry transformations is again a symmetry transformation, and this composition law is

associative
423Except as in this definition, we will virtually never use the word partial when speaking about these symmetry groups, since in practice

we will encounter only such groups, and almost never deal with S0-type (unrestricted) groups.
424It is evident that we need to have at least two points in the set A to be able to speak about congruence. In the future we may choose

to omit obvious conditions of this type.
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Proof. Obvious from A 1.3.1, T 1.3.1, T 1.3.2. 2

Lemma 1.3.33.2. The reflection of a line a in a point O preserves distances between points. That is, the reflection
of a line a in a point O is an isometry.

Proof. We need to show that AB ≡ A′B′, where A′ ⇋ refl(a,O)(A), B′ ⇋ refl(a,O)(B) for all points A ∈ a, B ∈ a.
In the case where one of the points A, B coincides with O this is already obvious from the definition of the reflection
transformation.

Suppose now that the points O, A, B are all distinct. Then from T 1.2.2 we have either [AOB], or [OAB], or
[OBA].

Assuming the first of these variants, we can write using the definition of reflection [AOB] & [A′OB′] & OA ≡

OA′ & OB ≡ OB′ A1.3.3
=⇒ AB ≡ A′B′.

Suppose now that [OAB]. Then [OAB] & B′ ∈ O′
A′ & OA ≡ OA′ & OB ≡ OB′ L1.3.9.1

=⇒ AB ≡ A′B′ & [O′A′B′].
425

2

Lemma 1.3.33.3. Double reflection of the same line a in the same point O (i.e. a composition of this reflection
with itself) is the identity transformation, i.e. refl2(a,O) = id. 426

Proof. 2

Lemma 1.3.33.4. The point O is the only fixed point of the reflection of the line a in O.

Proof. 2

Lemma 1.3.33.5. The reflection of a line a in a point O is a sense-reversing transformation.

Proof. In view of L 1.2.13.4 we can assume without loss of generality that O is the origin with respect to which the
given order on a is defined. The result then follows in a straightforward way from the definition of order on the line
a and the trivial details are left to the reader to work out. 427

2

Theorem 1.3.34. Proof. 2

Given a line a on a plane α, define the transformation f = refl(α,a) of the set Pα of the points of the plane
α, as follows: For A ∈ Pα \ Pa we choose, using A 1.3.1, A′ ∈ Oc

A so that OA ≡ OA′, where O is the foot of
the perpendicular lowered from A to a (this perpendicular exists according to L 1.3.8.1), and let, by definition,
f(A) ⇋ A′. Finally, we let f(P ) ⇋ P for any P ∈ a.

This transformation is called the reflection of (the points of) the plane α in the line a.

Lemma 1.3.34.1. The reflection of a plane α in a line a is a bijection.

Proof. 2

Lemma 1.3.34.2. The reflection of a plane α in a line a preserves distances between points. That is, the reflection
of a plane α in a line a is an isometry.

Proof. 2

Lemma 1.3.34.3. Double reflection of the same plane α in the same line a (i.e. a composition this reflection with
itself) is the identity transformation, i.e. refl2(α,a) = id. 428

Proof. 2

Lemma 1.3.34.4. The set Pa is the maximum fixed set of the reflection of the line α in the line a.

Proof. 2

Theorem 1.3.34. Consider a non-collinear point set A, points A, B ∈ A, and points A′, B′, C′ such that AB ≡ A′B′

and C′ /∈ aA′B′ . Then there are at most four figures A′ containing A′, B′, lying in the plane αA′B′C′ and such that
A ≡ A′. Given one such figure A′ the remaining figures are obtained by reflection in the line aA′B′ , by reflection in
the line drawn through the midpoint M ′ of A′B′ perpendicular to it, and by the combination of the two reflections
(this combination is reflection in M ′).

425Since A, B lie on a on the same side of O but (by definition of reflection) A, A′ as well as B, B′ lie on opposite sides of O, using
L 1.2.17.9, L 1.2.17.10 we see that A′, B′ lie on the same side of O.
426In other words, a reflection of a line a in a point O coincides with its inverse function.
427Suppose A ≺ B on a. Denote A′ ⇋ refl(a,O)(A), B′ ⇋ refl(a,O)(B). We need to show that B′ ≺ A′ on a. Suppose that A, B both

lie on the first ray (see p. 22). The definition of order on a then tells us that [ABO]. This, in turn, implies that [OB′A′]. (This can be
seen either directly, using L 1.3.9.1 and the observation that the points A′, B′ lie on the same side of O (both A′,B′ lie on the opposite
side of O from A, B), or using L 1.3.33.2, L 1.3.29.2.) We see that B′ precedes A′ on the second ray, and thus on the whole line a. Most
of the other cases to consider are even simpler. For example, if A lies on the first ray and B on the second ray, then, evidently, A′ lies
on the second ray, and B′ on the first ray. Hence B′ ≺ A′ in this case.
428In other words, a reflection of a plane α in a line a coincides with its inverse function.
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Proof. 2

Theorem 1.3.36. Motion preserves angles. That is, if a figure A is congruent to a figure B, the angle ∠A1A2A3

formed by any three non-collinear points A1, A2, A3 ∈ A of the first figure is congruent to the angle formed by the
corresponding three points B1, B2, B3 of the second figure, i.e. ∠A1A2A3 ≡ ∠B1B2B3, where Bi = φ(Ai) (φ being
the motion ), i = 1, 2, 3.

Proof. By hypothesis, the points A1, A2, A3 are not collinear. Neither are B1, B2, B3 (see C 1.3.29.3). Since φ A → B
is a motion, we can write A1A2 ≡ B1B2, A1A3 ≡ B1B3, A2A3 ≡ B2B3, whence by T 1.3.10 △A1A2A3 ≡ △B1B2B3,
which implies ∠A1A2A3 ≡ ∠B1B2B3, q.e.d. 2

Theorem 1.3.37. Suppose we are given:
– A figure A lying in plane α and containing at least three non-collinear points;
– A line a ⊂ α, containing a point O of A and a point A (not necessarily lying in A);
– A point E lying in plane α not on a;
– Two distinct points O′, A′ on a line a′ lying in a plane α′, and a point E′ lying in α′ not on a′.
Then there exists exactly one motion f : A → A′ and, correspondingly, one figure A′, such that:
1. O′ = f(O).
2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A′ and B′ = f(B)

also lie on line a′ on the same side (on opposite sides) of the point O′.
3. If E, F lie in plane α on the same side (on opposite sides) of the line a, then the points E′ and F ′ = f(F )

also lie (in plane α′) on the same side (on opposite sides) of the line a′. 429

Proof. 1, 2 are proved exactly as in T 1.3.30. 430 Thus, we have contsructed the restriction of f to A∩Pa, which is
itself a motion (see proof of T 1.3.30). Suppose now F ∈ A, F /∈ a. Using A 1.3.4, A 1.3.1, construct a point F ′ such
that F ′ ∈ α′, F ′ /∈ a′, ∠AOF ≡ ∠A′O′F ′, OF ≡ O′F ′, and, finally, if E, F lie in plane α on one side (on opposite
sides) of the line a, then E′, F ′ lie in plane α′ on one side (on opposite sides) of the line a′. 431 (See Fig. 1.158, a).) We
set, by definition, f(F ) ⇋ F ′. For the case B ∈ OA, B′ ∈ O′

A′ we have by L 1.2.11.3 OB = OA, O′
B′ = O′

A′ , whence
∠AOF = ∠BOF , ∠A′O′F ′ = ∠B′O′F ′. Thus, we have ∠BOF ≡ ∠B′O′F ′. Recall that also OB ≡ O′B′, where
B ∈ OA∩A, B′ ∈ O′

A′ ∩A′, B′ = f(B), for, as we have shown above, the restriction of f to A∩Pa is itself a motion.

Therefore, we obtain OB ≡ O′B′ & OF ≡ O′F ′ & ∠BOF ≡ ∠B′O′F ′ T1.3.4
=⇒ △BOF ≡ △B′O′F ′ ⇒ BF ≡ B′F ′.

Observe further, that ∠AOF ≡ ∠A′O′F ′ T1.3.6
=⇒ adjsp∠AOF ≡ adjsp∠A′O′F ′. If C ∈ OA, i.e. if [AOC] (see

L 1.2.15.2), then ∠COF = adjsp∠AOF . Similarly, C′ ∈ O′c
A′ implies ∠COF = adjsp∠AOF . Recall again that

for points C, C′ such that C ∈ Oc
A ∩ A, C′ ∈ O′c

A′ ∩ A, C′ = f(C), in view of the already established properties

of line motion, we can write OC ≡ O′C′. Hence OC ≡ O′C′ & OF ≡ O′F ′ & ∠COF ≡ ∠C′O′F ′ T1.3.4
=⇒ △COF ≡

△C′O′F ′ ⇒ CF ≡ C′F ′. Thus, we have proven that for all points B ∈ Pa ∩ A and all points F ∈ Pα \ Pa ∩ A we
have BF ≡ B′F ′ = f(B)f(F ).

Suppose now F ∈ Pα \ Pa ∩A, G ∈ Pα \ Pa ∩A. We need to prove that always FG ≡ F ′G′, where F ′ = f(F ) ∈
Pα′ \ Pa′ ∩ A′, G′ = f(G) ∈ Pα′ \ Pa′ ∩ A′. Consider first the case when the points F , O, G are collinear. Then
either G ∈ OF or G ∈ Oc

F . Suppose first G ∈ OF . (See Fig. 1.158, b).) Then by L 1.2.11.3 OG = OF , whence
∠AOF = ∠AOG. In view of L 1.2.19.8 G ∈ OF implies that F , G lie in α on one side of a. We also have by
construction above: ∠AOF ≡ ∠A′O′F ′, ∠AOG ≡ ∠A′O′G′. Consider the case when E, F lie in α on one side of

a. Then E, G also lie on the same side of a. In fact, otherwise EFa & EaG
L1.2.17.10

=⇒ FaG, which contradicts our
assumption that FGa. Since both E, F and E, G lie on one side of a, by construction the pairs E′, F ′ and E′,
G′ lie in α′ on the same side of a′. And, obviously, by transitivity of the relation ”to lie on one side”, we have
F ′G′a′. Now turn to the case when E, F lie in α on opposite sides of a.432 Then E, G also lie on opposite sides

of a. In fact, otherwise EaF & EGa
L1.2.17.10

=⇒ FaG, which contradicts our assumption that FGa. Since both E,
F and E, G lie on opposite sides of a, by construction the pairs E′, F ′ and E′, G′ lie in α′ on opposite sides of

a′. Hence E′a′F ′ & E′a′G′ L1.2.17.9
=⇒ F ′G′a′. Now we can write ∠AOF ≡ ∠A′O′F ′ & ∠AOG ≡ ∠A′O′G′ & ∠AOF =

∠AOG& F ′G′a′ L1.3.2.1
=⇒ O′

F ′ = O′
G′ ⇒ G′ ∈ O′

F ′ . Thus, we have shown that once F , G lie on one side of O, the
points F ′, G′ lie on one side of O′. Suppose now G ∈ Oc

F , i.e. [FOG]. In view of L 1.2.19.8 G ∈ Oc
F implies that

F , G lie in α on opposite sides of a. We also have by construction above: ∠AOF ≡ ∠A′O′F ′, ∠AOG ≡ ∠A′O′G′.
Consider the case when E, F lie in α on one side of a. Then E, G lie on opposite sides of a. (See Fig. 1.158, c).)
In fact, otherwise transitivity of the relation ”to lie on one side of a line” would give EFa & EGa ⇒ FaG, which
contradicts our assumption that FaG. Since E, F lie in α on one side of a and E, G lie on opposite sides of a, by
construction it follows that the points E′, F ′ lie in α′ on one side of a′ and E′, G′ lie on opposite sides of a′. Hence

E′F ′a′ & E′a′G′ L1.2.17.10
=⇒ F ′a′G′. Now turn to the case when E, F lie in α on opposite sides of a. Then E, G lie on

one side of a. In fact, otherwise EaF & EaG
L1.2.17.9

=⇒ FGa, which contradicts our assumption that FaG. Since E, F

429That is, for F ∈ A if F ∈ aE then F ′ ∈ a′E′ and F ∈ ac
E implies F ′ ∈ a′cE′ .

430We set, by definition, f(O)
def
⇐⇒ O′. For B ∈ OA∩A, using A 1.3.1, choose B′ ∈ O′

A′ so that OB ≡ O′B′. Similarly, for B ∈ Oc
A∩A,

using A 1.3.1, choose B′ ∈ (O′
A′ )c so that again OB ≡ O′B′. In both cases we let, by definition, f(B) ⇋B′.

431For F ∈ aE we let F ′ ∈ a′E′ and for F ∈ ac
E we let F ′ ∈ a′cE′ .

432The reader is encouraged to draw for himself the figure for this case, as well as all other cases left unillustrated in this proof.
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lie in α on opposite sides of a and E, G lie on one side of a, by construction the points E′, F ′ lie in α′ on opposite

sides of a′ and E′, G′ lie on one side of a′. Hence E′a′F ′ & E′G′a′ L1.2.17.10
=⇒ F ′a′G′. Now, using C 1.3.6.1,433 we can

write ∠AOF ≡ ∠A′O′F ′ & ∠AOG ≡ ∠A′O′G′ & ∠AOG = adjsp∠AOF & F ′a′G′ ⇒ O′
G′ = O′c

F ′ ⇒ G′ ∈ O′c
F ′ .

Thus, we conclude that in the case when the points F , O, G are collinear, either F , G lie on one side of O and
F ′, G′ lie on one side of O′, or F , G lie on opposite sides of O and F ′, G′ lie on opposite sides of O′. Combined with
the congruences (true by construction) OF ≡ O′F ′, OG ≡ O′G′, by P 1.3.9.3 this gives us FG ≡ F ′G′.

Suppose now F , O, G are not collinear. Then, obviously, OG 6= Oc
F . We also know that if the points F , G lie in α

on one side (on opposite sides) of a, the points F ′, G′ lie in α′ on one side (on opposite sides) of a′. (See Fig. 1.158,
d), e).) Hence, taking into account ∠AOF ≡ ∠A′O′F ′, ∠AOG ≡ ∠A′O′G′, by T 1.3.9 we get ∠FOG ≡ ∠F ′O′G′.

Finally, we have OF ≡ O′F ′ & ∠FOG ≡ ∠F ′O′G′ & OG ≡ O′G′ T1.3.4
=⇒ △FOG ≡ △F ′O′G′ ⇒ FG ≡ F ′G′, which

completes the proof.
2

Lemma 1.3.37.1. Isometries transform a cross into a cross.434

Proof. 2

Theorem 1.3.38. Proof. 2

Denote by µAB the equivalence class of congruent intervals containing an interval AB. We define addition of
classes of congruent intervals as follows: Take an element AB of the first class µAB and, using A 1.3.1, lay off
the interval BC of the second class µBC into the ray Bc

A, complementary to the ray AB.435 Then the sum of the
classes AB, BC is, by definition, the class µAC, containing the interval AC. Note that this addition of classes

is well defined, for AB ≡ A1B1 & BC ≡ B1C1 & [ABC] & [A1B1C1]
L1.3.9.1
=⇒ AC ≡ A1C1, which implies that the

result of summation does not depend on the choice of representatives in each class. Thus, put simply, we have
[ABC] ⇒ µAC = µAB + µBC. Conversely, the notation AC ∈ µ1 + µ2 means that there is a point B such that
[ABC] and AB ∈ µ1, BC ∈ µ2. In the case when µAB + µCD = µEF and A′B′ ≡ AB, C′D′ ≡ CD, E′F ′ ≡ EF
(that is, when µAB + µCD = µEF and A′B′ ∈ µAB, C′D′ ∈ µCD, E′F ′ ∈ µEF ), we can say, with some abuse of
terminology, that the interval E′F ′ is the sum of the intervals A′B′, C′D′.

The addition (of classes of congruent intervals) thus defined has the properties of commutativity and associativity,
as the following two theorems (T 1.3.39, T 1.3.40) indicate:

Theorem 1.3.39. The addition of classes of congruent intervals is commutative: For any classes µ1, µ2 we have
µ1 + µ2 = µ2 + µ1.

Proof. Suppose A′C′ ∈ µ1 + µ2. According to our definition of the addition of classes of congruent intervals this
means that there is an interval AC such that [ABC] and AB ∈ µ1 = µAB, BC ∈ µ2 = µBC. But the fact that
CB ∈ µ2 = µCB, BA ∈ µ1 = µBA, [CBA], and A′C′ ≡ CA implies A′C′ ∈ µ2 + µ1. Thus, we have proved
that µ1 + µ2 ⊂ µ2 + µ1 for any two classes µ1, µ2 of congruent intervals. By symmetry, we immediately have
µ2 + µ1 ⊂ µ1 + µ2. Hence µ1 + µ2 = µ2 + µ1, q.e.d. 2

Theorem 1.3.40. The addition of classes of congruent intervals is associative: For any classes µ1, µ2, µ3 we have
(µ1 + µ2) + µ3 = µ1 + (µ2 + µ3).

Proof. Suppose AD ∈ (µ1 + µ2) + µ3. Then there is a point C such that [ACD] and AC ∈ µ1 + µ2, CD ∈ µ3. In its

turn, AC ∈ µ1+µ2 implies that ∃B [ABC] & AB ∈ µ1 & BC ∈ µ2. We have [ABC] & [ACD]
L1.2.3.2
=⇒ [ABD] & [BCD].

Hence [BCD] & BC ∈ µ2 & CD ∈ µ3 ⇒ BD ∈ µ2 + µ3. [ABD] & AB ∈ µ1 & BD ∈ µ2 + µ3 ⇒ AD ∈ µ1 + (µ2 + µ3).
Thus, we have proved that (µ1 + µ2) + µ3 ⊂ µ1 + (µ2 + µ3) for any classes µ1, µ2, µ3 of congruent intervals. 2

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write
µ1 + µ2 + · · ·+ µn for the sum of n classes µ1, µ2, . . . , µn of congruent intervals without needing to care about where
we put the parentheses.

If a class µBC of congruent intervals is equal to the sum µB1C1+µB2C2+· · ·+µBnCn of classes µB1C1, µB2C2, . . . , µBnCn

of congruent intervals, and µB1C1 = µB2C2 = · · · = µBnCn (that is, B1C1 ≡ B2C2 ≡ · · · ≡ BnCn), we write
µBC = nµB1C1 or µB1C1 = (1/n)µBC.

Proposition 1.3.40.1. If µAB + µCD = µEF , A′B′ ∈ µAB, C′D′ ∈ µCD, E′F ′ ∈ µEF , then A′B′ < E′F ′,
C′D′ < E′F ′.

433Observing also that F ′a′G′ ⇒ ∠A′O′G′ = adj∠A′O′F ′.
434A cross is a couple of intersecting lines (see definition on p. 4).
435In other words, we take the point C ∈ Bc

A (recall that C ∈ Bc
A means that [ABC], see L 1.2.15.2) such that the interval BC lies in

the second class, which we denote µBC. The notation employed here is perfectly legitimate: we know that A1B1 ∈ µAB ⇒ A1B1 ≡
AB ⇒ µA1B1 = µAB. In our future treatment of classes of congruent intervals we shall often resort to this convenient abuse of notation.
Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter µ (possibly with subscripts)
without the accompanying name of defining representative to denote congruence classes of intervals whenever giving a particular defining
representative for a class is not relevant.
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Figure 1.158: Illustration for proof of T 1.3.37.
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Proof. By the definition of addition of classes of congruent intervals, there are intervals LM ∈ µAB, MN ∈ CD,
LN ∈ EF such that [LMN ]. By C 1.3.13.4 LM < LN . Finally, using T 1.3.1, L 1.3.13.6, L 1.3.13.7 we can write
A′B′ ≡ AB & LM ≡ AB & E′F ′ ≡ EF & LN ≡ EF & LM < LN ⇒ A′B′ < E′F ′. Similarly, C′D′ < E′F ′. 2

At this point we can introduce the following jargon. For classes µAB, µCD or congruent intervals we write
µAB < µCD or µCD > µAB if there are intervals A′B′ ∈ µAB, C′D′ ∈ CD such that A′B′ < C′D′. T 1.3.1,
L 1.3.13.6, L 1.3.13.7 then show that this notation is well defined: it does not depend on the choice of the intervals
A′B′, C′D′. For arbitrary classes µAB, µCD of congruent intervals we then have either µAB < µCD, or µAB =
µCD, or µAB > µCD (with the last inequality being equivalent to µCD < µAB). From L 1.3.13.11 we see also that
any one of these options excludes the two others.

Proposition 1.3.40.2. If µAB + µCD = µEF , µAB + µGH = µLM , and CD < GH, then EF < LM . 436

Proof. By hypothesis, there are intervals PQ ∈ µAB, QR ∈ µCD, P ′Q′ ∈ µAB, Q′R′ ∈ µGH , such that

[PQR], [P ′Q′R′], PR ∈ µEF , P ′R′ ∈ µLM . Obviously, PQ ≡ AB & P ′Q′ ≡ AB
T1.3.1
=⇒ PQ ≡ P ′Q′. Using

L 1.3.13.6, L 1.3.13.7 we can also write QR ≡ CD & CD < GH & Q′R′ ≡ GH ⇒ QR < Q′R′. We then have

[PQR] & [P ′Q′R′] & PQ ≡ P ′Q′ & QR < Q′R′ L1.3.21.1
=⇒ PR < P ′R′. Finally, again using L 1.3.13.6, L 1.3.13.7, we

obtain PR ≡ EF & PR < P ′R′ & P ′R′ ≡ LM ⇒ EF < LM . 2

Proposition 1.3.40.3. If µAB + µCD = µEF , µAB + µGH = µLM , and EF < LM , then CD < GH. 437

Proof. We know that either µCD = µGH , or µGH < µCD, or µCD < µGH. But µCD = µGH would imply
µEF = µLM , which contradicts EF < LM in view of L 1.3.13.11. Suppose µGH < µCD. Then, using the
preceding proposition (P 1.3.40.2), we would have LM < EF , which contradicts EF < LM in view of L 1.3.13.10.
Thus, we have CD < GH as the only remaining possibility. 2

Proposition 1.3.40.4. A class µBC of congruent intervals is equal to the sum µB1C1 + µB2C2 + · · · + µBnCn of
classes µB1C1, µB2C2, . . . , µBnCn of congruent intervals iff there are points A0, A1, . . . , An such that [Ai−1AiAi+1]
for all i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn and A0An ∈ µBC. 438

Proof. Suppose µBC = µB1C1 + µB2C2 + · · · + µBnCn. We need to show that there are points A0, A1, . . . , An

such that [Ai−1AiAi+1] for all i ∈ Nn−1, Ai−1Ai ≡ BiCi for all i ∈ Nn, and A0An ≡ BC. For n = 2 this has been
established previously. 439 Suppose now that for the class µn−1 ⇋ µB1C1+µB2C2+· · ·+µBn−1Cn−1 there are points
A0, A1, . . . , An−1 such that [Ai−1AiAi+1] for all i ∈ Nn−2, Ai−1Ai ∈ µBiCi for all i ∈ Nn−1, and A0An−1 ∈ µn−1.
Using A 1.3.1, choose a point An such that A0An ≡ BC and the points An−1, An lie on the same side of the
point A0. Since, by hypothesis, µBC = µn−1 + µBnCn, there are points D0, Dn−1, Dn such that D0Dn−1 ∈ µn−1,
Dn−1Dn ∈ µBnCn, D0Dn ∈ µBC, and [D0Dn−1Dn]. Since D0Dn−1 ∈ µn−1 & A0An−1 ∈ µn−1 ⇒ D0Dn−1 ≡
A0An−1, D0Dn ∈ µBC & A0An ∈ µBC ⇒ D0Dn ≡ A0An, [D0Dn−1Dn], and An−1, An lie on the same side of A0,
by L 1.3.9.1 we have Dn−1Dn ≡ An−1An, [A0An−1An]. By L 1.2.7.3 the fact that [Ai−1AiAi+1] for all i ∈ Nn−2

implies that the points A0, A1, . . . , An−1 are in order [A0A1 . . . An−1]. In particular, we have [A0An−2An−1]. Hence,

& [A0An−1An]
L1.2.3.2
=⇒ [An−2An−1An]. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are points A0, A1, . . . An such that [Ai−1AiAi+1] for all
i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn and A0An ∈ µBC. We need to show that the class µBC of congruent
intervals is equal to the sum µB1C1 + µB2C2 + · · · + µBnCn of the classes µB1C1, µB2C2, . . . , µBnCn. For n = 2
this has been proved before. Denote µn−1 the class containing the interval A0An−1. Now we can assume that
µn−1 = µB1C1 + µB2C2 + · · ·+ µBn−1Cn−1.

440 Since the points A0, A1, . . . , An are in the order [A0A1 . . . An] (see
L 1.2.7.3), we have, in particular, [A0An−1 . . . An]. As also A0An−1 ∈ µn−1, An−1An ∈ µBnCn, A0An ∈ µBC, it
follows that µBC = µn−1 + µBnCn = µB1C1 + µB2C2 + · · · + µBn−1Cn−1 + µBnCn, q.e.d. 2

Proposition 1.3.40.5. For classes µ1, µ2, µ3 of congruent intervals we have: µ1 + µ2 = µ1 + µ3 implies µ2 = µ3.

Proof. We know that either µ2 < µ3, or µ2 = µ3, or µ2 < µ3. But by P 1.3.40.2 µ2 < µ3 would imply µ1+µ2 < µ1+µ3,
and µ2 > µ3 would imply µ1 + µ2 > µ1 + µ3. But both µ1 + µ2 < µ1 + µ3 and µ1 + µ2 > µ1 + µ3 contradict
µ1 + µ2 = µ1 + µ3, whence the result. 2

Proposition 1.3.40.6. For any classes µ1, µ3 of congruent intervals such that µ1 < µ3, there is a unique class µ2

of congruent intervals with the property µ1 + µ2 = µ3.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that µ1 < µ3 in view
of L 1.3.13.3 implies that there are points A, B, C such that AB ∈ µ1, AC ∈ µ3, and [ABC]. Denote µ2 ⇋ µBC.441

436This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of intervals as follows: µ2 < µ3 implies
µ1 + µ2 < µ1 + µ3.
437This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of intervals as follows: µ1 +µ2 < µ1 +µ3

implies µ2 < µ3.
438That is, we have Ai−1Ai ≡ BiCi for all i ∈ Nn, and A0An ≡ BC.
439See the discussion following the definition of addition of classes of congruent intervals.
440Observe that if the n points A0, A1, . . . An are such that [Ai−1AiAi+1] for all i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn, then all

these facts remain valid for the n− 1 points A0, A1, . . . An−1. Furthermore, we have A0An−1 ∈ µn−1 from the definition of µn−1.
441That is, we take µ2 to be the class of congruent intervals containing the interval BC.
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From the definition of sum of classes of congruent intervals then follows that µ1 + µ2 = µ3. 2

If µ1 + µ2 = µ3 (and then, of course, µ2 + µ1 = µ3 in view of T 1.3.39), we shall refer to the class µ2 of
congruent intervals as the difference of the classes µ3, µ1 of congruent intervals and write µ2 = µ3 − µ1. That is,

µ2 = µ3−µ1
def
⇐⇒ µ1 +µ2 = µ3. The preceding proposition shows that the difference of classes of congruent intervals

is well defined.

With subtraction of classes of congruent intervals thus defined, the familiar rules of algebra apply, analogous to
the corresponding properties of subtraction of natural numbers. For example, we have the following identities:

Proposition 1.3.40.7. µ1 + (µ2 − µ3) = (µ1 − µ3) + µ2 = (µ1 + µ2) − µ3 for any classes µ1, µ2, µ3 of congruent
intervals assuming, of course, that µ2 > µ3.

Proof. 2

Proposition 1.3.40.8. µ1 − (µ1 − µ2) = µ2 for any classes µ1, µ2 of congruent intervals assuming, of course, that
µ1 > µ2.

Proof. 2

Proposition 1.3.40.9 (The Triangle Inequality). Any side of a triangle is less than the sum of its other two sides.
In other words, in a triangle △ABC we have µAC < µAB + µBC, etc.

Proof. Follows from C 1.3.18.2. 2

A line a, meeting a plane α in the point O,442 is said to be perpendicular to α (at the point O) if it is perpendicular
to any line b drawn in plane α through O. We will write this as a ⊥ α, or sometimes as (a ⊥ α)O. 443 If a line a is
perpendicular to a plane α (at a point O), the plane α is said to be perpendicular to the line a, written α ⊥ a, or we
can also say that the line a and the plane α (mentioned in any order) are perpendicular (at O).

Theorem 1.3.41. Suppose a line d is perpendicular to two (distinct) lines a, c, drawn in a plane α through a point
O.444 Then d is perpendicular to α, i.e. it is perpendicular to any line b drawn in plane α through O.

Proof. Let lines a, b, c be divided by the point O into the following pairs of rays: h and hc, k and kc, l and lc,
respectively. In other words, we have Pa = h∪{O}∪hc, Pb = k∪{O}∪kc, Pc = l∪{O}∪lc. It should be obvious that
by renaming the rays h, k, l and their complementary rays hc, kc, lc appropriately, we can arrange them so that k ⊂
Int∠(h, l).445 Making use of A 1.1.3, A 1.3.1, choose points D1 ∈ d, D2 ∈ d so that [D1OD2], OD1 ≡ OD2. Taking
some points A ∈ h, C ∈ l, we have ∠D1OA ≡ ∠D2OA, ∠D1OC ≡ ∠D2OC (the angles in question being right angles,

because, by hypothesis, aOD1 = d ⊥ a, aOD2 = d ⊥ c.) Hence OD1 ≡ ∠OD2 & OA ≡ OA& ∠D1OA ≡ ∠D2OA
T1.3.4
=⇒

△AOD1 ≡ △AOD2 ⇒ AD1 ≡ AD2, OD1 ≡ OD2 & OC ≡ OC & ∠D1OC ≡ ∠D2OC
T1.3.4
=⇒ △COD1 ≡ △COD2 ⇒

CD1 ≡ CD2. Therefore, AD1 ≡ AD2 & CD1 ≡ CD2 & AC ≡ AC
T1.3.10
=⇒ △AD1C ≡ △AD2C ⇒ ∠D1AC ≡

∠D2AC. We also have k ⊂ Int∠(h, l)
L1.2.21.10

=⇒ ∃B (B ∈ k & [ABC]). But [ABC]
L1.2.11.15

=⇒ AB = AC ⇒ ∠D1AB =
∠D1AC & ∠D2AB = ∠D2AC, and we have ∠D1AC ≡ ∠D2AC & ∠D1AB = ∠D1AC & ∠D2AB = ∠D2AC ⇒

∠D1AB ≡ ∠D2AB. Hence AD1 ≡ AD2 & AB ≡ AB & D1AB ≡ ∠D2AB
T1.3.4
=⇒ △D1AB ≡ △D2AB ⇒ BD1 ≡

BD2. Finally, we have OD1 ≡ OD2 & BD1 ≡ BD2 ⇒ ∠aOB ⊥ aD1D2 ,
446 which obviously amounts to b ⊥ d, q.e.d.

2

Theorem 1.3.42. Suppose a line d is perpendicular to two (distinct) lines a, c, meeting in a point O. Then any
line b perpendicular to d in O 447 lies in the plane α defined by the intersecting lines a, c. In particular, if a line d
is perpendicular to a plane α at a point O, any line b drawn through O perpendicular to d lies in the plane α.

442Obviously, O is the only point that a and α can have in common (see T 1.1.4.)
443The point of intersection (denoted here O) is often assumed to be known from context or not relevant, so we write simply a ⊥ α, as

is customary.
444Observe that O is the only point that d and α can have in common. In fact, if d and α have another common point, the line d lies in

the plane α. Then d cannot meet both a and c at O, as this would contradict the uniqueness of the perpendicular with the given point
(see L 1.3.8.3.) Suppose d meets a, c in two distinct points A1, C1, respectively. Then the triangle △A1OC1 (This IS a triangle, the
three (obviously distinct) points O, A1, C1 being not collinear. ) would have two right angles, which contradicts C 1.3.17.4. Thus, the
contradictions we have arrived to convince us that the line d and the plane α have no common points other than O.
445In fact, suppose B2 ∈ b, C2 ∈ c, where B2 6= O, C2 6= O. Then both B2 /∈ a, C2 /∈ a, for if B2 ∈ a or C2 ∈ a then, respectively, either

b or c would coincide with a, having two points in common with it (see A 1.1.2.) We have B2inPα \ Pa &Pα \ Pa
L1.2.17.8

=⇒ BCa ∨BaC.
Denoting k ⇋ OB and l ⇋ OC if BCa, l ⇋ (OC)c if BaC, wee see that in both cases the rays k, l lie (in plane α) on the same side of

the line a = h̄. (see L 1.2.18.4, T 1.2.19.)) But kla
L1.2.21.21

=⇒ k ⊂ Int∠(h, l) ∨ l ⊂ Int∠(h, k). Making the substitution b ↔ c, which, in
its turn, induces the substitution k ↔ l, we see that, indeed, no generality is lost in assuming that k ⊂ Int∠(h, l).
446This implication can be substantiated using either T 1.3.24 or T 1.3.10.
447I.e. such that O = b ∩ d, b ⊥ d
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Figure 1.159: Suppose a line d is perpendicular to two lines a, c, drawn in a plane α through a point O. Then d is
perpendicular to α.

Proof. By T 1.1.3 ∃α (a ⊂ α & c ⊂ α). By T 1.3.41 d ⊥ α. Let b be a line, perpendicular to d at O, i.e. O = b ∩ d,
b ⊥ d. Using T 1.1.3, draw a plane β containing the lines b, d, intersecting at O. Since the point O lies on both
planes α, β, these planes by T 1.1.5 have a common line f . Note that, from definition, d ⊥ α & f ⊂ α ⇒ d ⊥ f . But
since the lines b, f both lie in one plane β and are both perpendicular to d at the same point O, by L 1.3.8.3 we have
b = f ⊂ α, q.e.d. 2

Theorem 1.3.43. Given a line a and an arbitrary point O on it, there is exactly one plane α perpendicular to a at
O.

Proof. (See Fig. 1.161.) By L 1.1.2.1 ∃B B /∈ a. By T 1.2.1 ∃β (a ⊂ β & B ∈ β). By L 1.1.2.6 ∃C C /∈ β. By T 1.2.1
∃γ (a ⊂ γ & B ∈ γ). C /∈ β & C ∈ γ ⇒ β 6= γ. Using L 1.3.8.3, we can draw in plane β a line b perpendicular to a.
Similarly, by L 1.3.8.3 ∃c (c ⊂ γ & c ⊥ a). Obviously, b 6= c, for otherwise the planes β and γ, both drawn through
the lines a and b = c, intersecting at O, would coincide. Since the lines b, c are distinct and concur at O, by T 1.1.3
there exists a plane α containing both b and c. Then by T 1.3.41 a ⊥ α.

To show uniqueness, suppose there are two distinct planes α, β, α 6= β, both perpendicular to the line a at the
same point O. (See Fig. 1.162.) Since the planes α, β are distinct, there is a point B such that B ∈ β, B /∈ α. We have

B /∈ a
T1.1.2
=⇒ ∃γ (a ⊂ γ & B ∈ γ). 448 We have O ∈ α ∩ γ

T1.1.5
=⇒ ∃c (c = α ∩ γ).449 a ⊥ α & c ⊂ α & O ∈ c ⇒ a ⊥ c.

a ⊥ β & aOB ⊂ β & O ∈ aOB ⇒ a ⊥ aOB . We see now that the lines aOB, c, lying in the plane γ, are both
perpendicular to the line a at the same point O. By L 1.3.8.3 this means that aOB = c, which implies B ∈ c ⊂ α - a
contradiction with B having been chosen so that B /∈ α. The contradiction shows that in fact there can be no more
than one plane perpendicular to a given line at a given point, q.e.d. 2

Theorem 1.3.44. Given a plane α and an arbitrary point O on it, there is exactly one line a perpendicular to α at
O.

Proof. It is convenient to start by proving uniqueness. Suppose the contrary, i.e. that there are two distinct lines,
a and b, both perpendicular to the plane α at the same point O (see Fig. 1.163.) Since a, b are distinct lines

concurrent at O, by T 1.1.3 there is a plane β containing both of them. We have O ∈ α ∩ β
T1.1.5
=⇒ ∃f f = α ∩ β.

a ⊥ α & b ⊥ α & f ⊂ α ⇒ a ⊥ f & b ⊥ f . We come to the conclusion that the lines a, b, lying in the same plane β
as the line f , are both perpendicular to f in the same point O, in contradiction with L 1.3.8.3. This contradiction
shows that in fact there can be no more than one line perpendicular to a given plane at a given point.

To show existence of a line a such that a ⊥ α at O (See Fig. 1.164), take in addition to O two other points B, C
on α such that O, B, C do not colline (see T 1.1.6). Using the preceding theorem (T 1.3.43), construct planes β, γ
such that (aOB ⊥ β)O, (aOC ⊥ γ)O. 450 Observe, further, that β 6= γ, for otherwise, using the result of the proof
of uniqueness given above, we would have (aOB ⊥ β)O & (aOC ⊥ γ)O & β = γ ⇒ aOB = aOC , which contradicts the

448Obviously, O ∈ α&B /∈ α ⇒ B 6= O. Therefore, B /∈ a, O being the only point that the line a and the plane B have in common.
Note also that by A 1.1.6 aOB ⊂ γ.
449Note that it is absolutely obvious that, containing all common points of the planes α, γ, the line c is bound to contain O.
450In other words aOB ⊥ β at O and aOC ⊥ γ at O - see p. 174.
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Figure 1.160: Suppose a line d is perpendicular to two (distinct) lines a, c, meeting in a point O. Then any line b
perpendicular to d in O lies in the plane α defined by the intersecting lines a, c.
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Figure 1.161: Illustration for proof of existence in T 1.3.43.
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Figure 1.162: Illustration for proof of uniqueness in T 1.3.43.

choice of the points B, C as non-collinear with O. Sharing a point O, the distinct planes β, γ have in common a
whole line a by T 1.1.5. We have aOB ⊥ β & a ⊂ β ⇒ a ⊥ aOB , aOC ⊥ γ & a ⊂ γ ⇒ a ⊥ aOC . Being perpendicular
at the same point O to both lines aOB, aOC lying in plane α, the line a is perpendicular to α by T 1.3.41. 2

Theorem 1.3.45. Given a plane α and an arbitrary point O not on it, exactly one line a perpendicular to α can be
drawn through O.

Proof. (See Fig. 1.165.) Draw a line a in plane α (see C 1.1.6.4). Using L 1.3.8.1, draw through O a line b perpendicular
to a at some point Q. Using L 1.3.8.3, draw in α a line c perpendicular to a at Q. Using L 1.3.8.3 again, draw through
O a line d perpendicular to c at some point P . If P = Q, the line aOP , being perpendicular at the point P = Q to
two distinct lines a, c in the plane α, is perpendicular to the plane α itself by T 1.3.41. Suppose now P 6= Q. Using
A 1.3.1, choose a point O′ such that [OPO′], OP ≡ O′P . Note that (d ⊥ c)P implies that ∠OPQ, ∠O′PQ are both

right angles. Now we can write OP ≡ O′P & ∠OPQ ≡ ∠O′PQ & PQ ≡ PQ
T1.3.4
=⇒ △OPQ ≡ △O′PQ ⇒ OQ ≡ O′Q.

Using T 1.1.3, draw a plane β through the two distinct lines aOQ, aPQ meeting at Q. Since the line a is perpendicular
at Q to both aOQ = b, aPQ = c, it is perpendicular to the plane β by T 1.3.41, which means, in particular, that a
is perpendicular to aO′Q ⊂ β. Since a ⊥ aOQ, a ⊥ aO′Q, where aOQ ⊂ β, aO′Q ⊂ β,451 choosing on the line a a
point A distinct from Q, we have by T 1.3.16 ( ∠AQO, ∠AQO′ both being right angles) ∠AQO ≡ ∠AQO′. Hence

AQ ≡ AQ & ∠AQO ≡ ∠AQO′ & ∠OQ ≡ ∠O′Q
T1.3.4
=⇒ △AQO ≡ △AQO′ ⇒ AO ≡ AO′. The interval AP , being the

median of the isosceles triangle △OAO′ joining the vertex A with the base OO′, is also an altitude. That is, we have

aAP ⊥ aOO′ , where aOO′ = d. Note that A ∈ a ⊂ α & P ∈ c ⊂ α
A1.1.6
=⇒ aAP ⊂ α. Since the line d is perpendicular at

P to both c ⊂ α, aAP ⊂ α, by T 1.3.41 we obtain d ⊥ α, which completes the proof of existence.
To show uniqueness, suppose the contrary, i.e. suppose there are two lines a, b, both drawn through a point O,

such that a, b are both perpendicular to a plane α 6∋ O at two distinct points A and B, respectively (See Fig. 1.166.)

. Then A ∈ α & B ∈ α
A1.1.6
=⇒ aAB ⊂ α, and the angles ∠OAB, ∠OBA of the triangle △OAB would both be right

angles, which contradicts This contradiction shows that in fact through a point O not lying on a plane α at most
one line perpendicular to α can be drawn. 2

In geometry, the set of geometric objects (usually points) with a given property is often referred to as the locus
of points with that property.

Given an interval AB, a plane α, perpendicular to the line aAB at the midpoint M of AB, is called a perpendicular
plane bisector of the interval AB.

Theorem 1.3.46. Every interval has exactly one perpendicular plane bisector.

451Making use of L 1.2.1.3, A 1.1.6, we can write O ∈ aOQ ⊂ β&P ∈ aPQ ⊂ β ⇒ aOP ⊂ β, [OPO′] ⇒ O′ ∈ aOP , Q ∈ aPQ ⊂ β&O′ ∈
aOP ⊂ β ⇒ aO′Q ⊂ β.
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Figure 1.163: Illustration for proof of uniqueness in T 1.3.44.
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Figure 1.164: Illustration for proof of existence in T 1.3.44.
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Figure 1.166: Illustration for proof of uniqueness in T 1.3.45.
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Figure 1.167: The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane
bisector of the interval AB.

Proof. In fact, by T 1.3.22 every interval AB has exactly one midpoint M . By T 1.3.43 there is exactly one plane
perpendicular to aAB at M . 2

Theorem 1.3.47. The locus of points, equidistant (in space) from two given points A, B, is the perpendicular plane
bisector of the interval AB.

Proof. (See Fig. 1.167.) Using T 1.3.43, draw a plane α perpendicular to aAB at M = mid AB. Obviously, AM ≡
MB by the definition of midpoint. If C 6= M , C ∈ α, then aAB ⊥ α implies ∠AMC ≡ ∠BMC, both ∠AMC, ∠BMC

being right angles. Hence AM ≡ MB & ∠AMC ≡ ∠BMC & CM ≡ CM
T1.3.4
=⇒ △ACM ≡ △BCM ⇒ AC ≡ CB,

452 i.e. the point C is equidistant from A, B.
Suppose now that a point C is equidistant from A, B, and show that C lies in α. For C = M this is true by

construction. Suppose C 6= M . Then C /∈ aAB, the midpoint M of AB being (by C 1.3.23.2) the only point of

the line aAB equidistant from A, B. Hence we can write AC ≡ BC & AM ≡ BM
T1.3.24
=⇒ aCM ⊥ aAB, whence by

T 1.3.42 aCM ⊂ α. 2

Theorem 1.3.48. Proof. 2

Theorem 1.3.49. Proof. 2

Theorem 1.3.50. Proof. 2

Consider a subclass Cgbr of the class Cgbr
0 of all those sets J that are equipped with a (weak) generalized betweenness

relation. Let I = {{A,B}|∃J ∈ Cgbr A ∈ J &B ∈ J} be a set (of two - element subsets of Cgbr) where a relation of
generalized congruence is defined. 453 Then we have:454

Lemma 1.3.51.1. Suppose geometric objects B ∈ J and B′ ∈ J′ lie between geometric objects A ∈ J, C ∈ J and
A′ ∈ J′, C′ ∈ J′, respectively. Then AB ≡ A′B′ and BC < B′C′ imply AC < A′C′.

Proof. BC < B′C′ L1.3.15.3
=⇒ ∃C′′ [B′C′′C′] &BC ≡ B′C′′. [A′B′C′] & [B′C′′C′]

Pr1.2.7
=⇒ [A′B′C′′]

& [A′C′′C′]. [ABC] & [A′B′C′′] &AB ≡ A′B′ &BC ≡ B′C′′ Pr1.3.3
=⇒ AC ≡ A′C′. Since also [A′C′′C′], by L 1.3.15.3

we conclude that AC < A′C′. 2

Lemma 1.3.51.2. Suppose geometric objects B and B′ lie between geometric objects A, C and A′, C′, respectively.
Then AB ≡ A′B′ and AC < A′C′ imply BC < B′C′.

Proof. By L 1.3.15.14 we have either BC ≡ B′C′, or B′C′ < BC, or BC < B′C′. Suppose BC ≡ B′C′. Then

[ABC] & [A′B′C′] &AB ≡ A′B′ &BC ≡ B′C′ L1.3.14.4
=⇒ AC ≡ A′C′, which contradicts AC < A′C′ in view of L 1.3.15.11.

Suppose B′C′ < BC. In this case [ABC] & [A′B′C′] &A′B′ ≡ AB&B′C′ < BC
L1.3.51.1

=⇒ A′C′ ≡ AC, which contradicts
AC < A′C′ in view of L 1.3.15.10. Thus, we have BC < B′C′ as the only remaining possibility. 2

452See also P 1.3.24.3 for a shorter way to demonstrate AC ≡ CB.
453The latter, by definition, has properties given by Pr 1.3.1 – Pr 1.3.5 (see p 126).
454We assume that all sets J,J′, . . . with generalized betweenness relation belong to the class Cgbr .
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Lemma 1.3.51.3. Suppose geometric objects B and B′ lie between geometric objects A, C and A′, C′, respectively.
Then AB < A′B′ and BC < B′C′ imply AC < A′C′.455

Proof. AB < A′B′ &BC < B′C′ L1.3.15.3
=⇒ ∃A′′ ([B′A′′A′])&BA ≡ B′A′′)& ∃C′′ ([B′C′′C′] &BC ≡ B′C′′). [A′B′C′] & [A′A′′B′]

& [B′C′′C′]
L1.2.7
=⇒ [A′B′C′′] & [A′C′′C′] & [A′A′′C′] & [A′′B′C′]. [A′′B′C′] & [B′C′′C′]

Pr1.2.7
=⇒ [A′′B′C′′]. [ABC] & [A′′B′C′′] &AB ≡

A′′B′ &BC ≡ B′C′′ Pr1.3.3
=⇒ AC ≡ A′′C′′. Finally, [A′A′′C′] & [A′C′′C′] &AC ≡ A′′C′′ L1.3.15.3

=⇒ AC < A′C′. 2

In the following L 1.3.51.4 - L 1.3.51.7 we assume that finite sequences of n geometric objects A1,A2, . . . ,An ∈ J

and B1,B2, . . . ,Bn ∈ J′, where n ≥ 3, have the property that every geometric object of the sequence, except the first
(A1, B1) and the last (An, Bn, respectively), lies between the two geometric objects of the sequence with the numbers
adjacent (in N) to the number of the given geometric object. Suppose, further, that ∀i ∈ Nn−2 AiAi+1 ≡ Ai+1Ai+2,
BiBi+1 ≡ Bi+1Bi+2.

456

Lemma 1.3.51.4. If ∀i ∈ Nn−1 AiAi+1 ≦ BiBi+1 and ∃i0 ∈ Nn−1 Ai0Ai0+1 < Bi0Bi0+1, then A1An < B1Bn.

Proof. Choose i0 ⇋ min{i|AiAi+1 < BiBi+1}. For i0 ∈ Nn−2 we have by the induction assumption A1An−1 <

B1Bn−1. Then we can write either A1An−1 < B1Bn−1 &An−1An ≡ Bn−1Bn
L1.3.51.1

=⇒ A1An < B1Bn, or A1An−1 <

B1Bn−1 &An−1An < Bn−1Bn
L1.3.51.3

=⇒ A1An < B1Bn. For i0 = n − 1 we have by T 1.3.14 A1An−1 ≡ B1Bn−1. Then

A1An−1 ≡ B1Bn−1 &An−1An < Bn−1Bn
L1.3.51.1

=⇒ A1An < B1Bn. 2

Corollary 1.3.51.5. If ∀i ∈ Nn−1 AiAi+1 ≦ BiBi+1, then A1An ≦ B1Bn.

Proof. Immediately follows from T 1.3.14, L 1.3.51.4. 2

Lemma 1.3.51.6. The inequality A1An < B1Bn implies that ∀i, j ∈ Nn−1 AiAi+1 < BjBj+1.

Proof. It suffices to show that A1A2 < B1B2, because then by L 1.3.15.6, L 1.3.15.7 we have A1A2 < B1B2 &A1A2 ≡
AiAi+1 &B1B2 ≡ BjBj+1 ⇒ AiAi+1 < BjBj+1 for all i, j ∈ Nn−1. Suppose the contrary, i.e. that B1B2 ≦ A1A2.
Then by L 1.3.14.1, L 1.3.15.6, L 1.3.15.7 we have B1B2 ≦ A1A2 &B1B2 ≡ BiBi+1 &A1A2 ≡ AiAi+1 ⇒ BiBi+1 ≦

AiAi+1 for all i ∈ Nn−1, whence by C 1.3.51.5 B1Bn ≦ A1An, which contradicts the hypothesis in view of L 1.3.15.10,
C 1.3.15.12. 2

Lemma 1.3.51.7. The congruence A1An ≡ B1Bn implies that ∀i, j ∈ Nn−k AiAi+k ≡ BjBj+k, where k ∈ Nn−1.
457

Proof. Again, it suffices to show that A1A2 ≡ B1B2, for then we have A1A2 ≡ B1B2 &A1A2 ≡ AiAi+1 &B1B2 ≡

BjBj+1
L1.3.14.1

=⇒ AiAi+1 ≡ BjBj+1 for all i, j ∈ Nn−1, whence the result follows in an obvious way from T 1.3.14
and L 1.3.14.1. Suppose A1A2 < B1B2.

458 Then by L 1.3.15.6, L 1.3.15.7 we have A1A2 < B1B2 &A1A2 ≡
AiAi+1 &B1B2 ≡ BiBi+1 ⇒ AiAi+1 < BiBi+1 for all i ∈ Nn−1, whence A1An < B1Bn by L 1.3.51.4, which
contradicts A1An ≡ B1Bn in view of L 1.3.15.11. 2

If a finite sequence of geometric objects Ai, where i ∈ Nn, n ≥ 4, has the property that every geometric object of
the sequence, except for the first and the last, lies between the two geometric objects with adjacent (in N) numbers,
and, furthermore, A1A2 ≡ A2A3 ≡ . . . ≡ An−1An, 459 we say that the generalized interval A1An is divided into
n − 1 congruent intervals A1A2,A2A3, . . . ,An−1An (by the geometric objects A2,A3, . . .An−1).

If a generalized interval A1An is divided into generalized intervals AiAi+1, i ∈ Nn−1, all congruent to a generalized
interval AB (and, consequently, to each other), we can also say, with some abuse of language, that the generalized
interval A1An consists of n− 1 generalized intervals AB (or, to be more precise, of n− 1 instances of the generalized
interval AB).

If a generalized interval A0An is divided into n intervals Ai−1Ai, i ∈ Nn, all congruent to a generalized interval
CD (and, consequently, to each other), we shall say, using a different kind of folklore, that the generalized interval
CD is laid off n times from the geometric object A0 on the generalized ray A0P , reaching the geometric object An,
where P is some geometric object such that the generalized ray A0P contains the geometric objects A1, . . . ,An. 460

455As before, in order to avoid clumsiness in statements and proofs, we often do not mention explicitly the set with generalized
betweenness relation where a given geometric object lies whenever this is felt to be obvious from context or not particularly relevant.
456Observe that these conditions imply, and this will be used in the ensuing proofs, that [A1An−1An], [B1Bn−1Bn] by L 1.2.22.11, and

for all i, j ∈ Nn−1 we have AiAi+1 ≡ AjAj+1, BiBi+1 ≡ BjBj+1 by L 1.3.14.1.
457Observe that the argument used to prove the present lemma, together with T 1.3.14, allows us to formulate the following facts: Given

a generalized interval AB consisting of k congruent generalized intervals, each of which (or, equivalently, congruent to one which) results
from division of a generalized interval CD into n congruent generalized intervals, and given a generalized interval A′B′ consisting of k
congruent generalized intervals (congruent to those) resulting from division of a generalized interval C′D′ into n congruent generalized
intervals, if CD ≡ C′D′ then AB ≡ A′B′. Given a generalized interval AB consisting of k1 congruent generalized intervals, each of
which (or, equivalently, congruent to one which) results from division of a generalized interval CD into n congruent generalized intervals,
and given a generalized interval A′B′ consisting of k2 congruent generalized intervals (congruent to those) resulting from division of a
generalized interval C′D′ into n congruent generalized intervals, if CD ≡ C′D′ , AB ≡ A′B′, then k1 = k2.
458Due to symmetry and T 1.3.14, we do not really need to consider the case B1B2 < A1A2.
459In other words, all generalized intervals AiAi+1, where i ∈ Nn−1, are congruent
460For instance, it is obvious from L 1.2.22.11, L 1.2.25.15 that P can be any of the geometric objects A1, . . . ,An.
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Lemma 1.3.51.8. If generalized intervals A1Ak and B1Bn consist, respectively, of k − 1 and n − 1 generalized
intervals AB, where k < n, then the generalized interval A1Ak is shorter than the generalized interval B1Bn.

Proof. We have, by hypothesis (and T 1.3.1) AB ≡ A1A2 ≡ A2A3 ≡ . . . ≡ Ak−1Ak ≡ B1B2 ≡ B2B3 ≡ . . . ≡ Bn−1Bn,
where [AiAi+1Ai+2] for all i ∈ Nk−2 and [BiBi+1Bi+2] for all i ∈ Nn−2. Hence by T 1.3.14 A1Ak ≡ B1Bk, and by
L 1.2.22.11 [B1BkBn]. By L 1.3.15.3 this means A1Ak < B1Bn. 2

Lemma 1.3.51.9. If a generalized interval EF consists of k − 1 generalized intervals AB, and, at the same time, of
n− 1 generalized intervals CD, where k > n, the generalized interval AB is shorter than the generalized interval CD.

Proof. We have, by hypothesis, EF ≡ A1Ak ≡ B1Bn, where AB ≡ A1A2 ≡ A2A3 ≡ . . . ≡ Ak−1Ak, CD ≡ B1B2 ≡
B2B3 ≡ . . . ≡ Bn−1Bn, and, of course, ∀i ∈ Nk−2 [AiAi+1Ai+2] and ∀i ∈ Nn−2 [BiBi+1Bi+2]. Suppose AB ≡ CD.
Then the preceding lemma (L 1.3.51.8) would give A1Ak > B1Bn, which contradicts A1Ak ≡ B1Bn in view of
L 1.3.15.11. On the other hand, the assumption AB > CD would again give A1Ak > A1An > B1Bn by C 1.3.51.5,
L 1.3.51.8. Thus, we conclude that AB < CD. 2

Corollary 1.3.51.10. If a generalized interval AB is shorter than the generalized interval CD and is divided into a
larger number of congruent generalized intervals than is AB, then (any of) the generalized intervals resulting from
this division of AB are shorter than (any of) those resulting from the division of CD.

Proof. 2

Lemma 1.3.51.11. Proof. 2

Let a generalized interval A0An be divided into n generalized intervals A0A1,A1A2 . . . ,An−1An (by the geometric
objects A1,A2, . . .An−1) and a generalized interval A′

0A
′
n be divided into n generalized intervals A′

0A
′
1,A

′
1A

′
2 . . . ,A′

n−1A
′
n

in such a way that ∀i ∈ Nn Ai−1Ai ≡ A′
i−1A

′
i. Also, let a geometric object B′ lie on the generalized ray A′

0A′
i0

,

where A′
i0

is one of the geometric objects A′
i, i ∈ Nn; and, finally, let AB ≡ A′B′. Then:

Lemma 1.3.51.12. – If B lies on the generalized open interval (Ak−1Ak), where k ∈ Nn, then the geometric object
B′ lies on the generalized open interval (A′

k−1A
′
k).

Proof. For k = 1 we obtain the result immediately from Pr 1.3.3, so we can assume without loss of generality that k >
1. Since A′

i0
, B′ (by hypothesis) and A′

i0
, A′

k−1, A
′
k (see L 1.2.56.18) lie on one side of A′

0, so do A′
k−1, A

′
k, B′. Since

also (by L 1.2.22.11) [A0Ak−1Ak], [A′
0A

′
k−1A

′
k], we have [A0Ak−1Ak] & [Ak−1BAk]

Pr1.2.7
=⇒ [A0Ak−1B] & [A0BAk].

Taking into account that (by hypothesis) A0B ≡ A′
0B

′ and (by L 1.3.51.7) A0Ak−1 ≡ A′
0A

′
k−1, A0Ak ≡ A′

0A
′
k, we

obtain by Pr 1.3.3 [A′
0A

′
k−1B

′], [A′
0B

′A′
k], whence by Pr 1.2.6 [A′

k−1B
′A′

k], as required. 2

Lemma 1.3.51.13. – If B coincides with the geometric object Ak0 , where k0 ∈ Nn, then B′ coincides with A′
k0

.

Proof. Follows immediately from L 1.3.51.7, Pr 1.3.1. 2

Corollary 1.3.51.14. – If B lies on the generalized half-open interval [Ak−1Ak), where k ∈ Nn, then the geometric
object B′ lies on the generalized half-open interval [A′

k−1A
′
k).

Proof. Follows immediately from the two preceding lemmas, L 1.3.51.12 and L 1.3.51.13. 2

Theorem 1.3.51. Given a generalized interval A1An+1, divided into n congruent generalized intervals
A1A2,A2A3, . . . ,AnAn+1, if the first of these generalized intervals A1A2 is further subdivided into m1 congru-
ent generalized intervals A1,1A1,2,A1,2A1,3, . . . ,A1,m1A1,m1+1, where ∀i ∈ Nm1−1 [A1,iA1,i+1A1,i+2], and we denote
A1,1 ⇋ A1 and A1,m1+1 ⇋ A2; the second generalized interval A2A3 is subdivided into m2 congruent generalized
intervals A2,1A2,2,A2,2A2,3, . . . ,A2,m2A2,m2+1, where ∀i ∈ Nm2−1 [A2,iA2,i+1A2,i+2], and we denote A2,1 ⇋ A2 and
A2,m1+1 ⇋ A3; . . . ; the nth generalized interval AnAn+1 - into mn congruent generalized intervals
An,1An,2,An,2An,3, . . . ,An,mn

An,mn+1, where ∀i ∈ Nmn−1 [An,iAn,i+1An,i+2], and we denote A1,1 ⇋ A1 and
A1,m1+1 ⇋ An+1. Then the generalized interval A1An+1 is divided into the m1 + m2 + · · · + mn congruent general-
ized intervals A1,1A1,2,A1,2A1,3, . . . ,A1,m1A1,m1+1, A2,1A2,2,A2,2A2,3, . . . ,A2,m2A2,m2+1, . . . , An,1An,2,An,2An,3,
. . . ,An,mn

An,mn+1.
In particular, if a generalized interval is divided into n congruent generalized intervals, each of which is further

subdivided into m congruent generalized intervals, the starting generalized interval turns out to be divided into mn
congruent generalized intervals.

Proof. Using L 1.2.22.11, we have for any j ∈ Nn−1: [Aj,1Aj,mj
Aj,mj+1], [Aj+1,1Aj+1,2Aj+1,mj+1+1]. Since, by defini-

tion, Aj,1 = Aj , Aj,mj+1 = Aj+1,1 = Aj+1 and Aj+1,mj+1+1 = Aj+2, we can write [AjAj,mj
Aj+1] & [AjAj+1Aj+2]

Pr1.2.7
=⇒

[Aj,mj
Aj+1A]j+2] and [Aj,mj

Aj+1Aj+2] & [Aj+1Aj+1,2Aj+2]
Pr1.2.7
=⇒ [Aj,mj

Aj+1Aj+1,2]. Since this is proven for all
j ∈ Nn−1, we have all the required betweenness relations. The rest is obvious. 461

2

461All congruences we need are already true by hypothesis.
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Let J,J′ be, respectively, either the pencil J0, J′
0 of all rays lying in a plane α, α′ on the same side of a line a,a′

containing the initial point O,O′ of the rays, or the pencil J0, J′
0 just described, augmented by the rays h,hc and h′,

h′c, respectively, where h∪ {O}hc = Pa, h′ ∪ {O′}h′c = Pa′ .462 Then we have the following results through T 1.3.52:

Lemma 1.3.52.1. Suppose rays k ∈ J and k′ ∈ J′ lie between rays h ∈ J, l ∈ J and h′ ∈ J′, l′ ∈ J, respectively.
Then ∠(h, k) ≡ ∠(h′, k′) and ∠(k, l) < ∠(k′, l′) imply ∠(h, l) < ∠(h′, l′).

Lemma 1.3.52.2. Suppose rays k ∈ J and k′ ∈ J′ lie between rays h ∈ J, l ∈ J and h′ ∈ J′, l′ ∈ J, respectively.
Then ∠(h, k) ≡ ∠(h′, k′) and ∠(h, l) < ∠(h′, l′) imply ∠(k, l) < ∠(k′, l′).

Lemma 1.3.52.3. Suppose rays h and h′ lie between rays h, l and h′, l′, respectively. Then ∠(h, k) < ∠(h′, k′) and
∠(k, l) < ∠(k′, l′) imply ∠(h, l) < ∠(h′, l′). 463

In the following L 1.3.52.4 - L 1.3.52.7 we assume that finite sequences of n rays h1, h2, . . . , hn ∈ J and
k1, k2, . . . , kn ∈ J′, where n ≥ 3, have the property that every ray of the sequence, except the first (h1, k1) and
the last (hn, kn, respectively), lies between the two rays of the sequence with the numbers adjacent (in N) to the
number of the given ray. Suppose, further, that ∀i ∈ Nn−2 ∠(hi, hi+1) ≡ ∠(hi+1, hi+2), ∠(ki, ki+1) ≡ ∠(ki+1, ki+2).

Lemma 1.3.52.4. If ∀i ∈ Nn−1 ∠(hi, hi+1) ≦ ∠(ki, ki+1) and ∃i0 ∈ Nn−1 ∠(hi0 , hi0+1) < ∠(ki0 , ki0+1), then
∠(h1, hn) < ∠(k1, kn).

Corollary 1.3.52.5. If ∀i ∈ Nn−1 ∠(hi, hi+1) ≦ ∠(ki, ki+1), then ∠(h1, hn) ≦ ∠(k1, kn).

Lemma 1.3.52.6. The inequality ∠(h1, hn) < ∠(k1, kn) implies that ∀i, j ∈ Nn−1 ∠(hi, hi+1) < ∠(kj , kj+1).

Lemma 1.3.52.7. The congruence ∠(h1, hn) ≡ ∠(k1, kn) implies that ∀i, j ∈ Nn−k ∠(hi, hi+k) ≡ ∠(kj , kj+k),
where k ∈ Nn−1.

464

If a finite sequence of rays hi, where i ∈ Nn, n ≥ 4, has the property that every ray of the sequence, except for the
first and the last, lies between the two rays with adjacent (in N) numbers, and, furthermore, ∠(h1, h2) ≡ ∠(h2, h3) ≡
. . . ≡ ∠(hn−1, hn), 465 we say that the angle ∠(h1, hn) is divided into n−1 congruent angles ∠(h1, h2), ∠(h2, h3), . . . ,
∠(hn−1, hn) (by the rays h2, h3, . . . hn−1).

If an angle ∠(h1, hn) is divided angles ∠(hi, hi+1), i ∈ Nn−1, all congruent to an angle ∠(h, k) (and, consequently,
to each other), we can also say, with some abuse of language, that the angle ∠(h1, hn) consists of n−1 angles ∠(h, k)
(or, to be more precise, of n − 1 instances of the angle ∠(h, k)).

Lemma 1.3.52.8. If angles ∠(h1, hk) and ∠(k1, kn) consist, respectively, of k − 1 and n − 1 angles ∠(h, k), where
k < n, then the angle ∠(h1, hk) is less than the angle ∠(k1, kn).

Lemma 1.3.52.9. If an angle ∠(p, q) consists of k−1 angles ∠(h, k), and, at the same time, of n−1 angles ∠(l, m),
where k > n, the angle ∠(h, k) is less than the angle ∠(l, m).

Corollary 1.3.52.10. If an angle ∠(h, k) is less than the angle ∠(l, m) and is divided into a larger number of
congruent angles than is ∠(h, k), then (any of) the angles resulting from this division of ∠(h, k) are less than (any
of) those resulting from the division of ∠(l, m).

Let an angle ∠(h0, hn) be divided into n angles ∠(h0, h1), ∠(h1, h2) . . . , ∠(hn−1, hn) (by the rays h1, h2, . . . hn−1)
and an angle ∠(h′

0, h
′
n) be divided into n angles ∠(h′

0, h
′
1), ∠(h′

1, h
′
2) . . . , ∠(h′

n−1, h
′
n) in such a way that ∀i ∈

Nn hi−1hi ≡ h′
i−1h

′
i. Also, let a ray k′ lie on the angular ray h′

0h′
i0

, where h′
i0

is one of the rays h′
i, i ∈ Nn;

and, finally, let ∠(h, k) ≡ ∠(h′, k′). Then:

Lemma 1.3.52.11. – If the ray k lies inside the angle ∠(hk−1, hk), where k ∈ Nn, then the ray k′ lies inside the
angle ∠(h′

k−1, h
′
k).

Lemma 1.3.52.12. – If k coincides with the ray hk0 , where k0 ∈ Nn, then k′ coincides with h′
k0

.

Corollary 1.3.52.13. – If k lies on the angular half-open interval [hk−1hk), where k ∈ Nn, then the ray k′ lies on
the angular half-open interval [h′

k−1h
′
k).

462That is, in the second case J = J0 ∪ {h, hc}, J′ = J′
0 ∪ {h′, h′c}.

463As before, in order to avoid clumsiness in statements, we often do not mention explicitly the pencil in question whenever this is felt
to be obvious from context or not particularly relevant.
464We can also formulate the following facts: Given an angle ∠(h, k) consisting of p congruent angles, each of which (or, equivalently,

congruent to one which) results from division of an angle ∠(l,m) into n congruent angles, and given a generalized interval ∠(h′, k′)
consisting of p congruent angles (congruent to those) resulting from division of an angle ∠(l′, m′) into n congruent angle, if ∠(l,m) ≡
∠(l′,m′) then ∠(h, k) ≡ ∠(h′, k′). Given an angle ∠(h, k) consisting of k1 congruent angles, each of which (or, equivalently, congruent to
one which) results from division of an angle ∠(l,m) into n congruent angles, and given an angle ∠(h′, k′) consisting of k2 congruent angles
(congruent to those) resulting from division of an angle ∠(l′,m′) into n congruent angles, if ∠(l,m) ≡ ∠(l′, m′) , ∠(h, k) ≡ ∠(h′, k′),
then k1 = k2.
465In other words, all angles ∠(hi, hi+1), where i ∈ Nn−1, are congruent
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Theorem 1.3.52. Given an angle ∠(h1, hn+1), divided into n congruent angles ∠(h1, h2), ∠(h2, h3), . . . , ∠(hn, hn+1),
if the first of these angles ∠(h1, h2) is further subdivided into m1 congruent angles ∠(h1,1, h1,2), ∠(h1,2, h1,3), . . . ,
∠(h1,m1 , h1,m1+1), where ∀i ∈ Nm1−1 h1,i+1 ⊂ Int∠(h1,i, h1,i+2), and we denote h1,1 ⇋ h1 and h1,m1+1 ⇋

h2; the second angle h2h3 is subdivided into m2 congruent angles h2,1h2,2, h2,2h2,3, . . . , h2,m2h2,m2+1, where ∀i ∈
Nm2−1 h2,i+1 ⊂ Int∠(h2,i, h2,i+2), and we denote h2,1 ⇋ h2 and h2,m1+1 ⇋ h3; . . . ; the nth angle ∠(hn, hn+1) - into
mn congruent angles ∠(hn,1, hn,2), ∠(hn,2, hn,3), . . . , ∠(hn,mn

, hn,mn+1), where ∀i ∈ Nmn−1 hn,i+1 ⊂ Int∠(hn,i, hn,i+2),
and we denote h1,1 ⇋ h1 and h1,m1+1 ⇋ hn+1. Then the angle ∠(h1, hn+1) is divided into the m1 + m2 + · · · + mn

congruent angles ∠(h1,1, h1,2), ∠(h1,2, h1,3), . . . , ∠(h1,m1 , h1,m1+1), ∠(h2,1, h2,2), ∠(h2,2, h2,3), . . . , ∠(h2,m2 , h2,m2+1),
. . . , ∠(hn,1, hn,2), ∠(hn,2, hn,3), . . . , ∠(hn,mn

, hn,mn+1).
In particular, if an angle is divided into n congruent angles, each of which is further subdivided into m congruent

angles, the starting angle turns out to be divided into mn congruent angles.

Theorem 1.3.53. Suppose that we are given:
– A line a is perpendicular to planes γ, γ′ at points O, O′, respectively.
– Two (distinct) planes α, β containing the line a.
Suppose further that:
– Points A ∈ α ∩ γ, A1 ∈ α ∩ γ′, where A 6= O, A1 6= O′, lie (in the plane α) on the same side of the line a.
– Points B ∈ β ∩ γ, B1 ∈ β ∩ γ′, where B 6= O, B1 6= O′, lie (in the plane β) on the same side of the line a.
Then the angles ∠AOB, ∠A1O

′B1 are congruent.

Proof. Using A 1.3.1 take points A′, B′ so that OA ≡ O′A′, OB ≡ O′B′, [A1O
′A′], [B1O

′B′]. Since aOO′ = a ⊥
γ ⇒ a ⊥ aOA & a ⊥ aOB , a ⊥ γ′ ⇒ a ⊥ aO′A1 & a ⊥ aO′B1 , and by T 1.3.16 all right angles are congruent, we can
write ∠AOO′ ≡ ∠A′O′O, ∠BOO′ ≡ ∠B′O′O. 466 Evidently, AA1a & [A1O

′A′] ⇒ AaA′ (see L 1.2.17.10). Similarly,
BB1a & [B1O

′B′] ⇒ BaB′ (see L 1.2.17.10). Since OA ≡ O′A′, ∠AOO′ ≡ ∠A′O′O, AaA′, and OB ≡ O′B′,
∠BOO′ ≡ ∠B′O′O, BaB′, we can use C 1.3.23.4 to conclude that the open intervals (OO′), (AA′), (BB′) concur
in the single point M which is the midpoint to all these intervals. This means that AM ≡ A′M , BM ≡ B′M ,
[AMA′], [BMB′]. 467 The relations [AMA′], [BMB′] imply that the angles ∠AMB, ∠A′MB′ are congruent and

are, therefore, vertical. Hence AM ≡ A′M & BM ≡ B′M , ∠AMB ≡ ∠A′MB′ T1.3.4
=⇒ △AMB ≡ △A′MB′ ⇒ AB ≡

A′B′. Finally, OA ≡ O′A′ & OB ≡ O′B′ & AB ≡ A′B′ T1.3.10
=⇒ △AOB ≡ △A′O′B′. 2

Consider two half-planes χ, κ, forming the dihedral angle χ̂κ, and let a be their common edge. Take a point
O ∈ a. Let further α be the plane perpendicular to a at O (T 1.3.43). From L 1.2.55.8, the rays h, k that are the
sections by the plane α of the half-planes χ, κ, respectively, form an angle ∠(h, k) with the vertex O.468 We shall
refer to such an angle ∠(h, k) as a plane angle of the dihedral angle χ̂κ. Evidently, any dihedral angle has infinitely
many plane angles, actually, there is a one-to-one correspondence between the points of a and the corresponding
plane angles. 469 But the preceding theorem (T 1.3.53) shows that all the plane angles of a given dihedral angles
are congruent. This observation legalizes the following definition: Dihedral angles are called congruent if their plane
angles are congruent. We see from T 1.3.53 (and T 1.3.11) that congruence of angles is well defined.

Theorem 1.3.54. Congruence of dihedral angles satisfies the properties P 1.3.1 - P 1.3.3, P 1.3.6. Here the sets
J with generalized betweenness relation are the pencils of half-planes lying on the same side of a given plane α and
having the same edge a ∈ α (Of course, every pair consisting of a plane α and a line a on it gives rise to exactly two
such pencils.); each of these pencils is supplemented with the (two) half-planes into which the appropriate line a (the
pencil’s origin, i.e. the common edge of the half-planes that constitute the pencil) divides the appropriate plane α.
470

Proof. To show that P 1.3.1 is satisfied, consider a dihedral angle χ̂κ with a plane angle ∠(h, k). Basically, we need
to show that, given an arbitrary half -plane χ′ with the line a′ as its edge, we can draw in any of the two subspaces
(defined by the plane containing χ′) a half-plane κ′ with edge a′, such that χ̂κ ≡ χ̂′κ′. Take a point O′ ∈ a′ and draw
(using T 1.3.43) the plane α′ perpendicular to a′ at O′. Denote by h′ the ray that is the section of χ′ by α′. Using
A 1.3.4, we then find the ray k′ with initial point O′ such that k′ lies on appropriate side of χ′ (i.e. on appropriate
side of the plane χ̄′ containing it) and ∠(h, k) ≡ ∠(h′, k′). 471 Now, drawing a plane β′ through a′ and a point on k′

(see T 1.1.2), we see from our definition of congruence of dihedral angles that χ̂κ ≡ χ̂′κ′, where κ′ is the half-plane
of β′ with edge a′, containing the ray k′, i.e. k′ ⊂ κ′. Uniqueness of κ′ is shown similarly using C 1.2.55.24, A 1.3.4.

466Obviously, A 6= O&B 6= O&A1 6= O′ &B1 6= O′ A1.1.1
=⇒ ∃aOA &∃aOB &∃aO′A1

& ∃aO′B1
. O ∈ γ&A ∈ γ

A1.1.6
=⇒ aOA ⊂ γ.

O ∈ γ&B ∈ γ
A1.1.6
=⇒ aOB ⊂ γ. O′ ∈ γ&A1 ∈ γ′

A1.1.6
=⇒ aO′A1

⊂ γ′. O′ ∈ γ&B1 ∈ γ′
A1.1.6
=⇒ aO′B1

⊂ γ′. Hence a ⊥ γ ⇒ a ⊥ aOA & a ⊥
aOB, a ⊥ γ′ ⇒ a ⊥ aO′A1

& a ⊥ aO′B1
.

467Obviously, the points A, M , B are non-collinear, for M ∈ a ⊥ γ ⊃ aAB , M 6= O. In a similar manner, the points A′, M , B′ are also
not collinear.
468This angle is referred to as the section of χ̂κ by α.
469Loosely speaking, one can say that the (transfinite) ”number” of plane angles corresponding to the given dihedral angle with edge a

equal the ”number” of points on a.
470Worded another way, we can say that each of the sets J is formed by the two sides of the corresponding straight dihedral angle plus

all the half-planes with the same edge inside that straight dihedral angle.
471Note that each of the two sides (half-planes) of the line h̄′ in α′ is a subset of the corresponding side of the plane χ̄′ in space (see

L 1.2.53.11).
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The property P 1.3.2 in our case follows immediately from the definition of congruence of dihedral angles and
L 1.3.11.1.

To check P 1.3.3 consider three half-planes χ, κ, λ with common edge a, such that κ lies inside the dihedral angle
χ̂κ. Consider further the half-planes κ′, λ′ with common edge a′ lying on the same side of the plane χ̄′ (with the

same edge a′) with the requirement that χ̂κ ≡ χ̂′κ′, χ̂λ ≡ χ̂′λ′. Denote by h, k, l the sections of χ, κ, λ, respectively,
by a plane α ⊥ a, drawn through a point O ∈ a (T 1.3.43). Similarly, denote by h′, k′, l′ the sections of χ′, κ′, λ′,
respectively, by a plane α′ ⊥ a′, drawn through a point O′ ∈ a′ (T 1.3.43). From definition of congruence of dihedral
angles we immediately obtain ∠(h, k) ≡ ∠(h′, k′), ∠(h, l) ≡ ∠(h′, l′). Using C 1.2.55.24 we conclude that k′, l′ lie (in
plane α′) on the same side of the line h̄. Hence ∠(k, l) ≡ ∠(k′, l′) (T 1.3.9) and k′ ⊂ Int∠(h′, l′) (P 1.3.9.5). The
result now follows from definition of congruence of dihedral angles and L 1.2.55.3.

To demonstrate P 1.3.6, suppose a half-plane ν lies in a pencil J between half-planes λ, µ. 472 Suppose now that
the half-planes λ, µ also belong to another pencil J′. The result then follows from L 1.2.56.3 applied to J′ viewed as
a straight dihedral angle. 473

2

Lemma 1.3.55.1. If a dihedral angle χ̂κ is congruent to a dihedral angle χ̂κ, the dihedral angle χ̂cκ adjacent
supplementary to the dihedral angle χ̂κ is congruent to the dihedral angle χ̂′cκ adjacent supplementary to the dihedral
angle χ̂′κ′. 474

Proof. Follows immediately from C 1.2.55.14, T 1.3.6. 2

Corollary 1.3.55.2. Suppose χ̂κ, κ̂λ are two adjacent supplementary dihedral angles (i.e. λ = χc) and χ̂′κ′, κ̂′λ′

are two adjacent dihedral angles such that χ̂κ ≡ χ̂′κ′, κ̂λ ≡ κ̂′λ′. Then the dihedral angles χ̂′κ′, κ̂′λ′ are adjacent
supplementary, i.e. λ′ = χ′c.

Proof. Since, by hypothesis, the dihedral angles χ̂′κ′, κ̂′λ′ are adjacent, by definition of adjacency the half-planes χ′,

λ′ lie on opposite sides of κ̄′. Since the dihedral angles χ̂κ, κ̂λ are adjacent supplementary, as are the dihedral angles

χ̂′κ′, κ̂′χ′c, we have from the preceding lemma (L 1.3.55.1) κ̂λ ≡ κ̂′χ′c. We also have, obviously, χ′κ̄′χ′c. Hence

χ′κ̄′λ′ & χ′κ̄′χ′c L1.2.52.4
=⇒ λ′χ′cκ̄′. κ̂λ ≡ κ̂′λ′ & κ̂λ ≡ κ̂χ′c & λ′χ′cκ̄′ T1.3.54

=⇒ χ′c = λ′. Thus, the dihedral angles χ̂′κ′, κ̂′λ′

are adjacent supplementary, q.e.d. 2

Lemma 1.3.55.3. Every dihedral angle χ̂κ is congruent to its vertical dihedral angle χ̂cκc.

Proof. Follows immediately from C 1.2.55.14, T 1.3.6. 2

Corollary 1.3.55.4. If dihedral angles χ̂κ and χ̂cκ′ (where χc is, as always, the half-plane complementary to the
half-plane χ) are congruent and the half-planes κ, κ′ lie on opposite sides of the plane χ̄, then the dihedral angles χ̂κ

and χ̂cκ′ are vertical dihedral angles (and thus are congruent).

Proof. 475 By the preceding lemma (L ??) the vertical dihedral angles χ̂κ, χ̂cκc are congruent. We have also

κχ̄κc & κχ̄κ′ L1.2.52.4
=⇒ κcκ′χ̄. Therefore, χ̂κ ≡ χ̂cκc & χ̂κ ≡ χ̂cκ′ & κcκ′χ̄

T1.3.54
=⇒ κ′ = κc, which completes the proof. 2

Now we are in a position to obtain for half-planes/dihedral angles the results analogous to T 1.3.9, C 1.3.9.6, and
P 1.3.9.7 for conventional angles.

Theorem 1.3.56. Let χ, κ, λ and χ′, κ′, λ′ be triples of half-planes with edges a and a′, respectively. Let also half-
planes χ, κ and χ′, κ′ lie either both on one side or both on opposite sides of the planes λ, λ′, respectively. 476 In
the case when χ, κ lie on opposite sides of λ we require further that the half-planes χ, κ do not lie on one plane. 477

Then congruences χ̂λ ≡ χ̂′λ′, κ̂λ ≡ κ̂′λ′ imply χ̂κ ≡ χ̂′κ′.

472Here the pencil J is formed by the half-planes lying on the same side of a given plane α and having the same edge a ∈ α, plus the
two half-planes into which the line a divides the plane α.
473Moreover, we are then able to immediately claim that the half-plane ν lies between λ, µ in J′ as well. (See also L 1.3.14.2.)
474Under the conditions of the theorem, the dihedral angle χ̂κc (which is obviously also adjacent supplementary to the dihedral angle

χ̂κ) is also congruent to the dihedral angle χ̂′κ′c (adjacent supplementary to the dihedral angle χ̂′κ′). But due to symmetry in the
definition of dihedral angle, this fact adds nothing new to the statement of the theorem.
475Alternatively, to prove this corollary we can write: ∠(hc, k) = adjsp∠(h, k)& ∠(hc, k) = adj∠(hc, k′)& ∠(h, k) ≡

∠(hc, k′)& ∠(hc, k) ≡ ∠(hc, k)
C1.3.6.1

=⇒ k′ = kc. Hence the result follows immediately by the preceding theorem T 1.3.7.
476These conditions are met, in particular, when both κ ⊂ Intχ̂λ, κ′ ⊂ Intχ̂′λ′ (see proof).
477In the case when χ, κ do lie on one plane, i.e. when the half-plane κ is the complementary half-plane of χ and thus the dihedral

angle χ̂λ is adjacent supplementary to the angle λ̂κ = λ̂χc, the theorem is true only if we extend the notion of dihedral angle to include

straight dihedral angles and declare all straight dihedral angles congruent. In this latter case we can write χ̂λ ≡ χ̂′λ′ & λ̂κ ≡ λ̂′κ′ & λ̂κ =

adjspχ̂λ& λ̂′κ′ = adjχ̂′λ′
C1.3.55.2

=⇒ λ′ = χ′c.
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Proof. Take points O ∈ a, O′ ∈ a′ and draw planes α ∋ O, α′ ∋ O′ such that α ⊥ a, α′ ⊥ a′. Denote by h, k, l,
respectively, the sections of the half-planes χ, κ, λ by the plane α, and by h′, k′, l′, respectively, the sections of the

half-planes χ′, κ′, λ′ by the plane α′. Since, by hypothesis, we have χ̂λ ≡ χ̂′λ′, κ̂λ ≡ κ̂′λ′, using the definition of
congruence of dihedral angles we see that ∠(h, l) ≡ ∠(h′, l′), ∠(k, l) ≡ (k′, l′). Hence, taking into account C 1.2.55.24,
C 1.2.55.26, and T 1.3.9, we see that ∠(h, k) ≡ ∠(h′, k′). Finally, using the definition of congruence of dihedral angles

again, we conclude that χ̂κ ≡ χ̂′κ′, q.e.d. 2

Proposition 1.3.56.5. Let χ, κ, λ and χ′, κ′, λ′ be triples of half-planes with edges a and a′. If the half-plane χ lies

inside the dihedral angle λ̂κ, and the half-planes χ′, κ′ lie on one side of the line λ̄′, the congruences χ̂λ ≡ χ̂′λ′,

κ̂λ ≡ κ̂′λ′ imply χ′ ⊂ Intλ̂′κ′. 478

Proof. Follows from L 1.2.55.16, C 1.2.55.24, P 1.3.9.5 and the definition of interior of dihedral angle. 479
2

Corollary 1.3.56.6. Let half-planes χ, κ and χ′, κ′ lie on one side of planes λ̄ and λ̄′, and let the dihedral angles

λ̂χ, λ̂κ be congruent, respectively, to the dihedral angles λ̂′χ′, λ̂′κ′. Then if the half-plane χ′ lies outside the dihedral

angle λ̂′κ, the half-plane χ lies outside the dihedral angle λ̂κ.

Proof. Indeed, if χ = κ then χ = κ & λ̂χ ≡ λ̂′χ′ & λ̂κ ≡ λ̂′κ′ & χ′κ′λ̄′ T1.3.54
=⇒ λ̂′χ′ = λ̂′κ′ ⇒ χ′ = κ′ - a contradiction;

if χ ⊂ Intλ̂κ then χ ⊂ Intλ̂κ & χ′κ′ l̄′ & λ̂χ ≡ λ̂′χ′ & λ̂κ ≡ λ̂′κ′ P1.3.56.5
=⇒ χ′ ⊂ Intλ̂′κ′ - a contradiction. 2

Proposition 1.3.56.7. Let a dihedral angle λ̂κ be congruent to an angle λ̂′κ′. Then for any half-plane χ with the

same edge as λ, κ, lying inside the dihedral angle λ̂κ, there is exactly one half-plane χ′ with the same edge as λ′, κ′,

lying inside the dihedral angle λ̂′κ′ such that λ̂χ ≡ λ̂′χ′, χ̂κ ≡ χ̂′κ′.

Proof. Using T 1.3.54, choose χ′ so that χ′κ′λ̄′ & λ̂χ ≡ λ̂′χ′. The rest follows from P 1.3.56.5, T 1.3.56. 2

An (extended) dihedral angle χ̂′κ′ is said to be less than or congruent to an (extended) dihedral angle χ̂κ if there

is a dihedral angle λ̂µ with the same edge a as χ̂κ such that the dihedral angle χ̂′κ′ is congruent to the dihedral

angle λ̂µ and the interior of the dihedral angle λ̂µ is included in the interior of the dihedral angle χ̂κ. If χ̂′κ′ is less
than or congruent to χ̂κ, we shall write this fact as χ̂′κ′ ≦ χ̂κ. If a dihedral angle χ̂′κ′ is less than or congruent to
a dihedral angle χ̂κ, we shall also say that the dihedral angle χ̂κ is greater than or congruent to the dihedral angle
χ̂′κ′, and write this as χ̂κ ≧ χ̂′κ′.

A dihedral angle congruent to its adjacent supplementary dihedral angle will be referred to as a right dihedral
angle.

Lemma 1.3.56.8. Any plane angle ∠(h, k) of a right dihedral angle χ̂κ is a right angle. Conversely, any dihedral
angle χ̂κ having a right plane angle ∠(h, k) is right.

Proof. Follows from the definition of congruence of dihedral angles and C 1.2.55.14. 2

Lemma 1.3.56.9. Any dihedral angle χ̂′κ′, congruent to a right dihedral angle χ̂κ, is a right dihedral angle.

Proof. Denote by ∠(h, k), ∠(h′, k′) plane angles (chosen arbitrarily) of χ̂κ, χ̂′κ′, respectively. By the preceding lemma
(L 1.3.56.8) ∠(h, k) is a right angle. From definition of congruence of dihedral angles we have ∠(h, k) ≡ ∠(h′, k′).
Hence by L ?? the angle ∠(h′, k′) is a right angle. Using the preceding lemma (L 1.3.56.8) again, we see that χ̂κ is
a right dihedral angle, as required. 2

If half-planes χ, κ form a right dihedral angle χ̂κ, the plane χ̄ is said to be perpendicular, or orthogonal, to the
plane κ̄. If a plane α is perpendicular to a plane β, we write this as α ⊥ β.

Lemma 1.3.56.10. Orthogonality of planes is symmetric, i.e. α ⊥ β implies β ⊥ α.

Proof. 2

Lemma 1.3.56.11. Suppose α ⊥ β and γ ⊥ c, where c = α∩ β. Then the lines c, b = α∩ γ, a = β ∩ γ are mutually
perpendicular (i.e. each is so to each), and so are the planes α, β, γ. Also, a ⊥ α, b ⊥ β.

Proof. Since, by hypothesis, the line c is perpendicular to the plane γ, by definition of orthogonality of a line and a
plane the line c is perpendicular to any line in γ through O, where O = c∩ γ = α ∩ β ∩ γ is the point where the line
c meets the plane γ. In particular, we have c ⊥ a, c ⊥ b. Also, we see that a ⊥ b, for the angle between lines a, b is
a plane angle of the dihedral angle between planes α, β (see L 1.3.56.8). Since a ⊥ c ⊂ α, a ⊥ b ⊂ α, a ∋ O = b ∩ c,
from T 1.3.41 we see that the line a is perpendicular to the plane α. Similarly, b ⊥ β. Finally, since a ⊥ b and the
angle between

2

478According to T 1.3.56, they also imply in this case χ̂κ ≡ χ̂′κ′.
479At the outset we proceed exactly as in the proof of the preceding theorem. Then we use L 1.2.55.16 to show that h ⊂ ∠(k, l) and

C 1.2.55.24 to show that h′k′ l̄′.
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If a dihedral angle χ̂′κ′ is less than or congruent to a dihedral angle χ̂κ, and, on the other hand, the dihedral
angle χ̂′κ′ is known to be incongruent (not congruent) to the dihedral angle χ̂κ, we say that the dihedral angle χ̂′κ′

is strictly less 480 than the dihedral angle χ̂κ, and write this as χ̂′κ′ < χ̂κ. If a dihedral angle χ̂′κ′ is (strictly) less
than a dihedral angle χ̂κ, we shall also say that the dihedral angle χ̂κ is strictly greater 481 than the dihedral angle
χ̂′κ′.

Obviously, this definition implies that any proper (non-straight) dihedral angle is less than a straight dihedral
angle.

We are now in a position to prove for dihedral angles the properties of the relations ”less than” and ”less than
or congruent to” (and, for that matter, the properties of the relations ”greater than” and greater than or congruent
to”) analogous to those of the corresponding relations of (point) intervals and conventional angles.

Comparison of Dihedral Angles

Lemma 1.3.56.12. For any half-plane λ having the same edge as the half-planes χ, κ and lying inside the dihedral
angle χ̂κ formed by them, there are dihedral angles µ, ν with the same edge as χ, κ, λ and lying inside χ̂κ, such that
χ̂κ ≡ µ̂ν.

Proof. See T 1.3.54, L 1.3.15.1. 2

The following lemma is opposite, in a sense, to L 1.3.56.12

Lemma 1.3.56.13. For any two (distinct) half-planes µ, ν sharing the edge with the half-planes χ, κ and lying
inside the dihedral angle χ̂κ formed by them, there is exactly one half-plane λ with the same edge as χ, κ, λ, µ and
lying inside χ̂κ such that µ̂ν ≡ χ̂κ.

Proof. See T 1.3.54, L 1.3.15.2.

Lemma 1.3.56.14. A dihedral angle χ̂′κ′ is (strictly) less than an angle χ̂κ iff:
– 1. There exists a half-plane λ sharing the edge with the half-planes χ, κ and lying inside the dihedral angle χ̂κ

formed by them, such that the dihedral angle χ̂′κ′ is congruent to the dihedral angle χ̂λ; 482 or
– 2. There are half-planes µ, ν sharing the edge with the half-planes χ, κ and lying inside the dihedral angle χ̂κ

such that χ̂′κ′ ≡ ∠(µ, ν).

In other words, a dihedral angle χ̂′κ′ is strictly less than a dihedral angle χ̂κ iff there is a dihedral angle λ̂µ,
whose sides have the same edge as χ, κ and both lie on a half-open dihedral angular interval [χκ) (half-closed dihedral

angular interval (χκ]), such that the dihedral angle χ̂κ′ is congruent to the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.3.2

Observe that the lemma L 1.3.56.14 (in conjunction with A 1.3.4) indicates that we can lay off from any half-plane
a dihedral angle less than a given dihedral angle. Thus, there is actually no such thing as the least possible dihedral
angle.

Corollary 1.3.56.15. If a half-plane λ shares the edge with half-planes χ, κ and lies inside the dihedral angle χ̂κ

formed by them, the dihedral angle χ̂λ is (strictly) less than the dihedral angle χ̂κ.
If two (distinct) half-planes µ, ν share the edge with half-planes χ, κ and both lie inside the dihedral angle χ̂κ

formed by them, the dihedral angle µ̂ν is (strictly) less than the dihedral angle χ̂κ.
Suppose half-planes κ, λ share the edge with the half-plane χ and lie on the same side of the plane χ̄. Then the

inequality χ̂κ < χ̂λ implies κ ⊂ Intχ̂λ.

Proof. See T 1.3.54, C 1.3.15.4, L 1.2.55.22. 2

Lemma 1.3.56.16. A dihedral angle χ̂′κ′ is less than or congruent to a dihedral angle χ̂κ iff there are half-planes
λ, µ with the same edge as χ, κ and lying on the closed dihedral angular interval [χκ], such that the dihedral angle
χ̂κ is congruent to the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.5. 2

Lemma 1.3.56.17. If a dihedral angle χ̂′′κ′′ is congruent to a dihedral angle χ̂′κ′ and the dihedral angle χ̂′κ′ is less

than a dihedral angle χ̂κ, the dihedral angle χ̂′′κ′′ is less than the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.6. 2

480We shall usually omit the word ’strictly’.
481Again, the word ’strictly’ is normally omitted
482Again, we could have said here also that χ̂′κ′ < χ̂κ iff there is a half-plane ø ⊂ Intχ̂κ sharing the edge with χ, κ such that χ̂′κ′ ≡ χ̂κ,

but because of symmetry this adds nothing new to the statement of the theorem, so we do not need to consider this case separately.
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Lemma 1.3.56.18. If a dihedral angle χ̂′′κ′′ is less than a dihedral angle χ̂′κ′ and the dihedral angle χ̂′κ′ is congruent

to a dihedral angle χ̂κ, the dihedral angle χ̂′′κ′′ is less than the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.7. 2

Lemma 1.3.56.19. If a dihedral angle χ̂′′κ′′ is less than a dihedral angle χ̂′κ′ and the dihedral angle χ̂′κ′ is less

than a dihedral angle χ̂κ, the dihedral angle χ̂′′κ′′ is less than the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.8. 2

Lemma 1.3.56.20. If a dihedral angle χ̂′′κ′′ is less than or congruent to a dihedral angle χ̂′κ′ and the dihedral angle

χ̂′κ′ is less than or congruent to a dihedral angle χ̂κ, the dihedral angle χ̂′′κ′′ is less than or congruent to the dihedral
angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.9. 2

Lemma 1.3.56.21. If a dihedral angle χ̂′κ′ is less than a dihedral angle χ̂κ, the dihedral angle χ̂κ cannot be less
than the dihedral angle χ̂′κ′.

Proof. See T 1.3.54, L 1.3.15.10.2

Lemma 1.3.56.22. If a dihedral angle χ̂′κ′ is less than a dihedral angle χ̂κ, it cannot be congruent to that dihedral
angle.

Proof. See T 1.3.54, L 1.3.15.11. 2

Corollary 1.3.56.23. If a dihedral angle χ̂′κ′ is congruent to a dihedral angle χ̂κ, neither χ̂′κ′ is less than χ̂κ, nor
χ̂κ is less than χ̂′κ′.

Proof. See T 1.3.54, C 1.3.15.12. 2

Lemma 1.3.56.24. If a dihedral angle χ̂′κ′ is less than or congruent to a dihedral angle χ̂κ and the angle χ̂κ is less
than or congruent to the dihedral angle χ̂′κ′, the dihedral angle χ̂′κ′ is congruent to the dihedral angle χ̂κ.

Proof. See T 1.3.54, L 1.3.15.13. 2

Lemma 1.3.56.25. If a dihedral angle χ̂′κ′ is not congruent to a dihedral angle χ̂κ, then either the dihedral angle
χ̂′κ is less than the dihedral angle χ̂κ, or the dihedral angle χ̂κ is less than the angle χ̂′κ′.

Proof. See T 1.3.54, L 1.3.15.14.2

Lemma 1.3.56.26. If a dihedral angle χ̂′κ′ is less than a dihedral angle χ̂κ, the dihedral angle χ̂′cκ′ adjacent
supplementary to the former is greater than the dihedral angle χ̂cκ adjacent supplementary to the latter.

Proof. χ̂′κ′ < χ̂κ
L1.3.56.14

=⇒ ∃λ λ ⊂ χ̂κ& χ̂′κ′ ≡ χ̂λ
P1.3.56.7

=⇒ ∃κ′ κ′ ⊂ Intχ̂′λ′ & χ̂κ ≡ χ̂′λ′. κ′ ⊂ Intχ̂′λ′ L1.2.55.27
=⇒ λ′ ⊂

Intχ̂′cκ′. Also, χ̂κ ≡ χ̂′λ′ L1.3.55.1
=⇒ χ̂cκ ≡ χ̂′λ′. Finally, λ′ ⊂ Intχ̂′κ′ & χ̂cκ ≡ χ̂′cλ′ L1.3.56.14

=⇒ χ̂cκ < χ̂′cκ′. 2

Lemma 1.3.56.27. Suppose ∠(h, k), ∠(h′, k′) are plane angles of the angles χ̂κ, χ̂′κ′, respectively. Then ∠(h, k) <

∠(h′, k′) implies χ̂κ < χ̂′κ′.

Proof. By hypothesis, the angles ∠(h, k), ∠(h′, k′) are, respectively, the sections of the dihedral angles χ̂κ, χ̂′κ′

by planes α, α′ drawn perpendicular to the edges a, a′ of χ̂κ, χ̂′κ′. Since ∠(h, k) < ∠(h′, k′), there is a ray
l′ ⊂ Int∠(h′, k′) such that ∠(h, k) ≡ ∠(h′, l′) (see L 1.3.16.3). Drawing a plane β through a′ and a point L′ ∈ l′

(see T ??), from L 1.2.55.3 we have λ′ ⊂ Intχ̂′κ′, where λ′ is the half-plane with edge a containing L′. Since also,

obviously, χ̂κ ≡ χ̂λ′ (by definition of congruence of dihedral angles), we obtain the desired result. 2

The following lemma is converse, in a sense, to the one just proved.

Lemma 1.3.56.28. Suppose that a dihedral angle χ̂κ is less than a dihedral angle χ̂κ. Then any plane angle ∠(h, k)
of χ̂κ is less than any plane angle ∠(h′, k′) of χ̂κ.

Proof. By hypothesis, the angles ∠(h, k), ∠(h′, k′) are, respectively, the sections of the dihedral angles χ̂κ, χ̂′κ′ by

planes α, α′ drawn perpendicular to the edges a, a′ of χ̂κ, χ̂′κ′. Since χ̂κ < χ̂′κ′, there is a half-plane λ′ ⊂ Intχ̂κ′

such that χ̂κ ≡ χ̂′λ′ (see L 1.3.55.3). Denote by l′ the section of the half-plane λ by the plane α′ (l′ is a ray by
L 1.2.19.13). Using L 1.2.55.16, we see that l′ ⊂ Int∠(h′, k′). Since also, obviously, ∠(h, k) ≡ ∠(h′, l′) (by definition
of congruence of dihedral angles), from L 1.3.16.3 we see that ∠(h, k) < ∠(h′, k′), as required.
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Acute, Obtuse and Right Dihedral Angles

A dihedral angle which is less than (respectively, greater than) its adjacent supplementary dihedral angle is called
an acute (obtuse) dihedral angle.

Obviously, any dihedral angle is either an acute, right, or obtuse dihedral angle, and each of these attributes
excludes the others. Also, the dihedral angle, adjacent supplementary to an acute (obtuse) dihedral angle, is obtuse
(acute).

Furthermore, any plane angle of an acute (obtuse) dihedral angle is an acute angle. Conversely, if a plane angle
of a given dihedral angle is acute (obtuse), the dihedral angle itself is acute (obtuse), as the following two lemmas
show.

Lemma 1.3.56.29. A dihedral angle χ̂′κ′ congruent to an acute dihedral angle χ̂κ is also an acute dihedral angle.
Similarly, a dihedral angle χ̂′κ′ congruent to an obtuse dihedral angle χ̂κ is also an obtuse dihedral angle.

Proof. Follows from L 1.3.56.27, L 1.3.16.16, L 1.3.56.28. 2

Lemma 1.3.56.30. Any acute dihedral angle χ̂′κ′ is less than any right dihedral angle χ̂κ.

Proof. Follows from L 1.3.56.27, L 1.3.16.17, L 1.3.56.28. 2

Lemma 1.3.56.31. Any obtuse dihedral angle χ̂′κ is greater than any right dihedral angle χ̂κ. 483

Proof. Follows from L 1.3.56.27, L 1.3.16.18, L 1.3.56.28. 2

Lemma 1.3.56.32. Any acute dihedral angle is less than any obtuse dihedral angle.

Proof. Follows from L 1.3.56.27, L 1.3.16.19, L 1.3.56.28. 2

Lemma 1.3.56.33. A dihedral angle less than a right dihedral angle is acute. A dihedral angle greater than a right
dihedral angle is obtuse.

Theorem 1.3.56. All right dihedral angles are congruent.

Proof. Follows from L 1.3.56.8, T 1.3.16. 2

Lemma 1.3.56.21. Suppose that half-planes χ, κ, λ have the same initial edge, as do half-planes χ′, κ′, λ′. Suppose,
further, that χκ̄λ and χ′κ̄′λ (i.e. the half-planes χ, λ and χ′, λ′ lie on opposite sides of the planes κ̄, κ̄′, respectively,

that is, the dihedral angles χ̂κ, κ̂λ are adjacent, as are dihedral angles χ̂′κ′, κ̂′λ′) and χ̂κ ≡ χ̂′κ′, κ̂λ ≡ κ̂′. Then the

half-planes κ, λ lie on the same side of the plane χ̄ iff the half-planes κ′, λ′ lie on the same side of the plane ¯chi
′
,

and the half-planes κ, λ lie on opposite sides of the plane χ̄ iff the rays κ′, λ′ lie on opposite sides of the plane χ̄.

Proof. Suppose that κλχ̄. Then certainly λ′ 6= χ′c, for otherwise in view of C 1.3.55.2 we would have λ = χc.

Suppose now κ′χ̄′λ′. Using L 1.2.55.32 we can write λ ⊂ Intχ̂cκ, χ′c ⊂ Intκ̂′λ′. In addition, χ̂κ ≡ χ̂′κ′ T1.3.55.1
=⇒

χ̂cκ = adjspχ̂κ ≡ adspχ̂′κ′ = χ̂′cκ′. Hence, using C 1.3.56.15, L 1.3.56.17 – L 1.3.56.19, we can write κ̂λ < χ̂cκ ≡

χ̂′cκ′ < κ̂′λ′ ⇒ κ̂λ < κ̂′λ′. Since, however, we have χ̂λ ≡ χ̂′λ′ by T 1.3.56, we arrive at a contradiction in view of
L 1.3.56.22. Thus, we have κ′λ′χ̄′ as the only remaining option. 2

Suppose two planes α, β have a common line a. Suppose further that the planes α, β are separated by the line a
into the half-planes χ, χc and κ, κc, respectively. Obviously, we have either χ̂κ ≦ χ̂cκ or χ̂cκ ≦ χ̂κ. If the dihedral
angle χ̂κ is not greater than the dihedral angle ∠(χc, κ) adjacent supplementary to it, the dihedral angle χ̂κ, as well
as the dihedral angle χ̂cκ will sometimes be (loosely 484) referred to as the dihedral angle between the planes α, β.
485

Proposition 1.3.56.22. Suppose α, β are two (distinct) planes drawn through a common point O and points P , Q
are chosen so that aOP ⊥ α, aOP ⊥ β. Then any plane angle of the dihedral angle between α, β is congruent either
to the angle ∠POQ or to the angle adjacent supplementary to ∠POQ.

Proof. 2

Proposition 1.3.56.23. Suppose α, β are two (distinct) planes drawn through a common point O and points P , Q
are chosen so that aOP ⊥ α, aOP ⊥ β. Then any plane angle of the dihedral angle between α, β is congruent either
to the angle ∠POQ or to the angle adjacent supplementary to ∠POQ.

Proof. 2

??

483In different words: Any right dihedral angle is less than any obtuse dihedral angle.
484Strictly speaking, we should refer to the appropriate classes of congruence instead, but that would be overly pedantic.
485It goes without saying that in the case χ̂cκ ≦ χ̂κ it is the dihedral angle χ̂cκ that is referred to as the dihedral angle between the

planes α, β.
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Figure 1.168:

Theorem 1.3.58. Suppose we are given:
– A figure A containing at least four non-coplanar points;
– A plane α;
– A line a ⊂ α, containing a point O of A and a point A (not necessarily lying in A);
– A point E lying in plane α not on a;
– A point P lying outside α;
– A line a′ lying in a plane α′, two distinct points O′, A′ on a′, a point E′ lying in α′ not on a′, and a point P ′

lying outside α′.
Then there exists exactly one motion f : A → A′ and, correspondingly, one figure A′, such that:
1. O′ = f(O).
2. If A, B lie on line a on the same side (on opposite sides) of the point O, then the points A′ and B′ = f(B)

also lie on line a′ on the same side (on opposite sides) of the point O′.
3. If E, F lie in plane α on the same side (on opposite sides) of the line a, then the points E′ and F ′ = f(F )

also lie (in plane α′) on the same side (on opposite sides) of the line a′.
3. If P , Q lie on the same side (on opposite sides) of the plane α, then the points P ′ and Q′ = f(Q) also lie on

the same side (on opposite sides) of the plane α′.
486

Proof. 2

Denote by µAB the equivalence class of congruent generalized intervals, containing a generalized interval AB.
This class consists of all generalized intervals CD ∈ I congruent to the given generalized interval AB ∈ I. We
define addition of classes of congruent generalized intervals as follows: Take an element AB of the first class µAB.
Suppose that we are able to lay off the generalized interval BC of the second class µBC into the generalized ray Bc

A,
complementary to the generalized ray AB. 487 Then the sum of the classes AB, BC is, by definition, the class µAC,
containing the generalized interval AC. Note that this addition of classes is well defined, for AB ≡ A1B1 &BC ≡

B1C1 & [ABC] & [A1B1C1]
Pr1.3.3
=⇒ AC ≡ A1C1, which implies that the result of summation does not depend on the

choice of representatives in each class. Thus, put simply, we have [ABC] ⇒ µAC = µAB + µBC. Conversely, the
notation AC ∈ µ1 + µ2 means that there is a geometric object B such that [ABC] and AB ∈ µ1, BC ∈ µ2.

In the case when µAB+µCD = µEF and A′B′ ≡ AB, C′D′ ≡ CD, E ′F ′ ≡ EF (that is, when µAB+µCD = µEF
and A′B′ ∈ µAB, C′D′ ∈ µCD, E ′F ′ ∈ µEF), we can say, with some abuse of terminology, that the generalized
interval E ′F ′ is the sum of the generalized intervals A′B′, C′D′.

The addition (of classes of congruent generalized intervals) thus defined has the properties of commutativity and
associativity, as the following two theorems (T 1.3.59, T 1.3.60) indicate:

486That is, for Q ∈ A if Q ∈ αP then Q′ ∈ α′
P ′ and Q ∈ αc

P implies Q′ ∈ α′c
P ′ .

487In other words, we must be in a position to take a geometric object C ∈ Bc
A

(recall that C ∈ Bc
A

means that [ABC], see L 1.2.29.2)
such that the generalized interval BC lies in the second class, which we denote µBC. The notation employed here is perfectly legitimate:
we know that A1B1 ∈ µAB ⇒ A1B1 ≡ AB ⇒ µA1B1 = µAB. As in the case of classes of (traditional) congruent intervals, in our future
treatment of classes of congruent generalized intervals we shall often resort to this convenient abuse of notation. Although we have agreed
previously to use Greek letters to denote planes, we shall sometimes use the letter µ (possibly with subscripts) without the accompanying
name of defining representative to denote congruence classes of generalized intervals whenever giving a particular defining representative
for a class is not relevant.

190



Theorem 1.3.59. The addition of classes of congruent generalized intervals is commutative: For any classes µ1,
µ2, for which the addition is defined, we have µ1 + µ2 = µ2 + µ1.

Proof. Suppose A′C′ ∈ µ1 + µ2. According to our definition of the addition of classes of congruent generalized
intervals this means that there is a generalized interval AC such that [ABC] and AB ∈ µ1 = µAB, BC ∈ µ2 = µBC.
But the fact that CB ∈ µ2 = µCB, BA ∈ µ1 = µBA, [CBA], and A′C′ ≡ CA implies A′C′ ∈ µ2 + µ1. Thus, we
have proved that µ1 + µ2 ⊂ µ2 + µ1 for any two classes µ1, µ2 of congruent generalized intervals. By symmetry, we
immediately have µ2 + µ1 ⊂ µ1 + µ2. Hence µ1 + µ2 = µ2 + µ1, q.e.d. 2

Theorem 1.3.60. The addition of classes of congruent generalized intervals is associative: For any classes µ1, µ2,
µ3, for which the addition is defined, we have (µ1 + µ2) + µ3 = µ1 + (µ2 + µ3).

Proof. Suppose AD ∈ (µ1 + µ2) + µ3. Then there is a geometric object C such that [ACD] and AC ∈ µ1 + µ2,

CD ∈ µ3. In its turn, AC ∈ µ1 + µ2 implies that ∃B [ABC] &AB ∈ µ1 &BC ∈ µ2.
488 We have [ABC] & [ACD]

Pr1.2.7
=⇒

[ABD] & [BCD]. Hence [BCD] &BC ∈ µ2 & CD ∈ µ3 ⇒ BD ∈ µ2 + µ3. [ABD]AB ∈ µ1 &BD ∈ µ2 + µ3 ⇒ AD ∈
µ1 + (µ2 + µ3). Thus, we have proved that (µ1 + µ2) + µ3 ⊂ µ1 + (µ2 + µ3) for any classes µ1, µ2, µ3 of congruent
intervals. 2

Once the associativity is established, a standard algebraic argumentation can be used to show that we may write
µ1 + µ2 + · · · + µn for the sum of n classes µ1, µ2, . . . , µn of congruent generalized intervals without needing to care
about where we put the parentheses.

If a class µBC of congruent generalized intervals is equal to the sum µB1C1 + µB2C2 + · · · + µBnCn of classes
µB1C1, µB2C2, . . . , µBnCn of congruent intervals, and µB1C1 = µB2C2 = · · · = µBnCn (that is, B1C1 ≡ B2C2 ≡ · · · ≡
BnCn), we write µBC = nµB1C1 or µB1C1 = (1/n)µBC.

Proposition 1.3.60.1. If µAB + µCD = µEF ,489 A′B′ ∈ µAB, C′D′ ∈ µCD, E ′F ′ ∈ µEF , then A′B′ < E ′F ′,
C′D′ < E ′F ′.

Proof. By the definition of addition of classes of congruent generalized intervals, there are generalized intervals
LM ∈ µAB, MN ∈ CD, LN ∈ EF such that [LMN ]. By C 1.3.15.4 LM < LN . Finally, using L 1.3.14.1,
L 1.3.15.6, L 1.3.15.7 we can write A′B′ ≡ AB &LM ≡ AB& E ′F ′ ≡ EF &LN ≡ EF &LM < LN ⇒ A′B′ < E ′F ′.
Similarly, C′D′ < E ′F ′. 2

At this point we can introduce the following jargon. For classes µAB, µCD or congruent generalized intervals we
write µAB < µCD or µCD > µAB if there are generalized intervals A′B′ ∈ µAB, C′D′ ∈ CD such that A′B′ < C′D′.
L 1.3.14.1, L 1.3.15.6, L 1.3.15.7 then show that this notation is well defined: it does not depend on the choice of
the generalized intervals A′B′, C′D′. For arbitrary classes µAB, µCD of congruent generalized intervals we then have
either µAB < µCD, or µAB = µCD, or µAB > µCD (with the last inequality being equivalent to µCD < µAB).
From L 1.3.15.11 we see also that any one of these options excludes the two others.

Proposition 1.3.60.2. If µAB + µCD = µEF , µAB + µGH = µLM, and CD < GH, then EF < LM. 490

Proof. By hypothesis, there are generalized intervals PQ ∈ µAB, QR ∈ µCD, P ′Q′ ∈ µAB, Q′R′ ∈ µGH, such

that [PQR], [P ′Q′R′], PR ∈ µEF , P ′R′ ∈ µLM. Obviously, PQ ≡ AB&P ′Q′ ≡ AB
T1.3.1
=⇒ PQ ≡ P ′Q′. Using

L 1.3.15.6, L 1.3.15.7 we can also write QR ≡ CD& CD < GH&Q′R′ ≡ GH ⇒ QR < Q′R′. We then have

[PQR] & [P ′Q′R′] &PQ ≡ P ′Q′ &QR < Q′R′ L1.3.21.1
=⇒ PR < P ′R′. Finally, again using L 1.3.15.6, L 1.3.15.7, we

obtain PR ≡ EF &PR < P ′R′ &P ′R′ ≡ LM ⇒ EF < LM. 2

Proposition 1.3.60.3. If µAB + µCD = µEF , µAB + µGH = µLM, and EF < LM, then CD < GH. 491

Proof. We know that either µCD = µGH, or µGH < µCD, or µCD < µGH. But µCD = µGH would imply
µEF = µLM, which contradicts EF < LM in view of L 1.3.15.11. Suppose µGH < µCD. Then, using the preceding
proposition (P 1.3.60.2), we would have LM < EF , which contradicts EF < LM in view of L 1.3.15.10. Thus, we
have CD < GH as the only remaining possibility. 2

Proposition 1.3.60.4. A class µBC of congruent generalized intervals is equal to the sum µB1C1+µB2C2+· · ·+µBnCn

of classes µB1C1, µB2C2, . . . , µBnCn of congruent generalized intervals iff there are geometric objects A0,A1, . . . ,An

such that [Ai−1AiAi+1] for all i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn and A0An ∈ µBC. 492

488There is a tricky point here. AD ∈ (µ1 + µ2) + µ3 implies that there is a geometric object C lying between A and D in some set J.
In its turn, AC ∈ µ1 +µ2 implies that there is a geometric object B lying between A and C in some set J′. Note that the set J′, generally
speaking, is distinct from the set J. L 1.3.14.2 asserts, however, that in this case B will lie between A and C in J as well.
489We assume that the classes µAB, µCD can indeed be added.
490This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of generalized intervals as follows:
µ2 < µ3 implies µ1 + µ2 < µ1 + µ3.
491This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of generalized intervals as follows:
µ1 + µ2 < µ1 + µ3 implies µ2 < µ3. Note also that, due to the commutativity property of addition, µ1 + µ2 < µ1 + µ3 is the same as
µ2 + µ1 < µ3 + µ1. In the future we will often implicitly use such trivial consequences of commutativity.
492That is, we have Ai−1Ai ≡ BiCi for all i ∈ Nn, and A0An ≡ BC.
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Proof. Suppose µBC = µB1C1+µB2C2+· · ·+µBnCn. We need to show that there are geometric objects A0,A1, . . . ,An

such that [Ai−1AiAi+1] for all i ∈ Nn−1, Ai−1Ai ≡ BiCi for all i ∈ Nn, and A0An ≡ BC. For n = 2 this has been
established previously. 493 Suppose now that for the class µn−1 ⇋ µB1C1 + µB2C2 + · · · + µBn−1Cn−1 there are
geometric objects A0,A1, . . .An−1 such that [Ai−1AiAi+1] for all i ∈ Nn−2, Ai−1Ai ∈ µBiCi for all i ∈ Nn−1, and
A0An−1 ∈ µn−1. Using Pr 1.3.1, choose a geometric object An such that A0An ≡ BC and the geometric objects
An−1, An lie on the same side of the geometric object A0. Since, by hypothesis, µBC = µn−1 + µBnCn, there are
geometric objects D0, Dn−1, Dn such that D0Dn−1 ∈ µn−1, Dn−1Dn ∈ µBnCn, D0Dn ∈ µBC, and [D0Dn−1Dn].
Since D0Dn−1 ∈ µn−1 &A0An−1 ∈ µn−1 ⇒ D0Dn−1 ≡ A0An−1, D0Dn ∈ µBC&A0An ∈ µBC ⇒ D0Dn ≡ A0An,
[D0Dn−1Dn], and An−1, An lie on the same side of A0, by Pr ?? we have Dn−1Dn ≡ An−1An, [A0An−1An].
By L 1.2.22.11 the fact that [Ai−1AiAi+1] for all i ∈ Nn−2 implies that the geometric objects A0,A1, . . . ,An−1

are in order [A0A1 . . .An−1]. In particular, we have [A0An−2An−1]. Hence, [A0An−2An−1] & [A0An−1An]
Pr1.2.7
=⇒

[An−2An−1An]. Thus, we have completed the first part of the proof.

To prove the converse statement suppose that there are geometric objects A0,A1, . . .An such that [Ai−1AiAi+1]
for all i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn and A0An ∈ µBC. We need to show that the class µBC of congruent
generalized intervals is equal to the sum µB1C1 + µB2C2 + · · · + µBnCn of the classes µB1C1, µB2C2, . . . , µBnCn. For
n = 2 this has been proved before. Denote µn−1 the class containing the generalized interval A0An−1. Now we
can assume that µn−1 = µB1C1 + µB2C2 + · · · + µBn−1Cn−1.

494 Since the points A0,A1, . . . ,An are in the order
[A0A1 . . .An] (see L 1.2.22.11), we have, in particular, [A0An−1 . . .An]. As also A0An−1 ∈ µn−1, An−1An ∈ µBnCn,
A0An ∈ µBC, it follows that µBC = µn−1 + µBnCn = µB1C1 + µB2C2 + · · · + µBn−1Cn−1 + µBnCn, q.e.d. 2

Proposition 1.3.60.5. For classes µ1, µ2, µ3 of congruent generalized intervals we have: µ1 +µ2 = µ1 +µ3 implies
µ2 = µ3.

Proof. We know that either µ2 < µ3, or µ2 = µ3, or µ2 < µ3. But by P 1.3.60.2 µ2 < µ3 would imply µ1+µ2 < µ1+µ3,
and µ2 > µ3 would imply µ1 + µ2 > µ1 + µ3. But both µ1 + µ2 < µ1 + µ3 and µ1 + µ2 > µ1 + µ3 contradict
µ1 + µ2 = µ1 + µ3, whence the result. 2

Proposition 1.3.60.6. For any classes µ1, µ3 of congruent generalized intervals such that µ1 < µ3, there is a unique
class µ2 of congruent generalized intervals with the property µ1 + µ2 = µ3.

Proof. Uniqueness follows immediately from the preceding proposition. To show existence recall that µ1 < µ3 in
view of L 1.3.15.3 implies that there are geometric objects A, B, C such that AB ∈ µ1, AC ∈ µ3, and [ABC]. Denote
µ2 ⇋ µBC.495 From the definition of sum of classes of congruent generalized intervals then follows that µ1 +µ2 = µ3.
2

If µ1 + µ2 = µ3 (and then, of course, µ2 + µ1 = µ3 in view of T 1.3.59), we shall refer to the class µ2 of congruent
generalized intervals as the difference of the classes µ3, µ1 of congruent generalized intervals and write µ2 = µ3 −µ1.

That is, µ2 = µ3 −µ1
def
⇐⇒ µ1 + µ2 = µ3. The preceding proposition shows that the difference of classes of congruent

generalized intervals is well defined.

Proposition 1.3.60.7. For classes µ1, µ2, µ3, µ4 of congruent generalized intervals the inequalities µ1 < µ2, µ3 < µ4

imply µ1 + µ3 < µ2 + µ4.
496

Proof. Using P 1.3.60.2 twice, we can write: µ1 + µ3 < µ2 + µ3 < µ2 + µ4, which, in view of transitivity of the
relation < gives the result. 2

Proposition 1.3.60.8. For classes µ1, µ2, µ3, µ4 of congruent generalized intervals we have: µ1 + µ2 ≤ µ3 + µ4

and µ2 > µ4 implies µ1 < µ3 .

Proof. We know that either µ1 < µ3, or µ1 = µ3, or µ1 > µ3. But by P 1.3.60.2 µ1 = µ3 would imply µ1+µ2 > µ3+µ4,
and µ1 > µ3 would imply µ1 +µ2 > µ1 +µ3 in view of the preceding proposition (P 1.3.60.7). But µ1 +µ2 > µ3 +µ4

contradicts µ1 + µ2 ≤ µ1 + µ3, whence the result. 2

Denote by µ∠(h, k) the equivalence class of congruent angles, containing an angle ∠(h, k). This class consists of
all angles ∠(l, m) congruent to the given angle ∠(h, k). We define addition of classes of congruent angles as follows:
Take an angle ∠(h, k) of the first class µ∠(h, k). Suppose that we are able to lay off the angle ∠(k, l) of the second

493See the discussion following the definition of addition of classes of congruent generalized intervals.
494Observe that if the n geometric objects A0,A1, . . .An are such that [Ai−1AiAi+1] for all i ∈ Nn−1, Ai−1Ai ∈ µBiCi for all i ∈ Nn,

then all these facts remain valid for the n − 1 geometric objects A0,A1, . . .An−1. Furthermore, we have A0An−1 ∈ µn−1 from the
definition of µn−1.
495That is, we take µ2 to be the class of congruent generalized intervals containing the generalized interval BC.
496And, of course, the inequalities µ1 > µ2, µ3 > µ4 imply µ1 + µ3 > µ2 + µ4. The inequalities involved will also hold for any

representatives of the corresponding classes.
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class µ∠(k, l) into the angular ray kc
h, complementary to the angular ray hk. 497 Then the sum of the classes ∠(h, k),

∠(k, l) is, by definition, the class µ∠(h, l), containing the extended angle ∠(h, l). Note that this addition of classes

is well defined, for ∠(h, k) ≡ ∠(h1, k1)& ∠(k, l) ≡ ∠(k1, l1)& [hkl] & [h1k1l1]
T1.3.9
=⇒ ∠(h, l) ≡ ∠(h1, l1), which implies

that the result of summation does not depend on the choice of representatives in each class. Thus, put simply, we
have [hkl] ⇒ µ∠(h, l) = µ∠(h, k) + µ∠(k, l). Conversely, the notation ∠(h, l) ∈ µ1 + µ2 means that there is a ray k
such that [hkl] and ∠(h, k) ∈ µ1, ∠(k, l) ∈ µ2.

Observe that in our definition we allow the possibility that the sum of classes of congruent angles may turn out
to be the class of straight angles. 498 We shall find it convenient to denote this equivalence class by π(abs), where
the superscript is used to indicate that we are dealing with equivalence classes, not numerical angular measures.

Note further that µ∠(h, k) + µ∠(l, m) = π(abs) iff the angles ∠(h, k), ∠(l, m) are supplementary.
In the case when µ∠(h, k) + µ∠(l, m) = µ∠(p, q) and ∠(h′, k′) ≡ ∠(h, k), ∠(l′, m′) ≡ ∠(l, m), ∠(p, q) ≡ ∠(p′, q′)

(that is, when µ∠(h, k) + µ∠(l, m) = µ∠(p, q) and ∠(h′, k′) ∈ µ∠(h, k), ∠(l′, m′) ∈ µ∠(l, m), ∠(p, q) ∈ µ∠(p′, q′)),
we can say, with some abuse of terminology, that the angle ∠(p′, q′) is the sum of the angles ∠(h′, k′), ∠(l′, m′).

The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity,
as the following two theorems (T 1.3.61, T 1.3.62) indicate:

Theorem 1.3.61. The addition of classes of congruent angles is commutative: For any classes µ1, µ2, for which
the addition is defined, we have µ1 + µ2 = µ2 + µ1.

Proof. 2

Theorem 1.3.62. The addition of classes of congruent angles is associative: For any classes µ1, µ2, µ3 for which
the addition is defined, we have (µ1 + µ2) + µ3 = µ1 + (µ2 + µ3).

Proof. 2

Note that we may write µ1 + µ2 + · · · + µn for the sum of n classes µ1, µ2, . . . , µn of angles without needing to
care about where we put the parentheses.

If a class µ∠(k, l) of congruent angles is equal to the sum µ∠(k1, l1) + µ∠(k2, l2) + · · · + µ∠(kn, ln) of classes
µ∠(k1, l1), µ∠(k2, l2), . . . , µ∠(kn, ln) of congruent angles, and µ∠(k1, l1) = µ∠(k2, l2) = · · · = µ∠(kn, ln) (that is,
∠(k1, l1) ≡ ∠(k2, l2) ≡ · · · ≡ ∠(kn, ln)), we write µ∠(k, l) = nµ∠(k1, l1) or µ∠(k1, l1) = (1/n)µ∠(k, l).

Proposition 1.3.63.1. If µ∠(h, k) + µ∠(l, m) = µ∠(p, q), 499 ∠(h′, k′) ∈ µ∠(h, k), ∠(l′, m′) ∈ µ∠(l, m), ∠(p′, q′) ∈
µ∠(p, q), then ∠(h′, k′) < ∠(p′, q′), ∠(l′, m′) < ∠(p′, q′).

Proof. 2

At this point we can introduce the following jargon. For classes µ∠(h, k), µ∠(l, m) or congruent angles we write
µ∠(h, k) < µ∠(l, m) or µ∠(l, m) > µ∠(h, k) if there are angles ∠(h′, k′) ∈ µ∠(h, k), ∠(l′, m′) ∈ µ∠(l, m) such that
∠(h′, k′) < ∠(l′, m′). T 1.3.11, L 1.3.16.6, L 1.3.56.18 then show that this notation is well defined: it does not depend
on the choice of the angles ∠(h′, k′), ∠(l′, m′). For arbitrary classes µ∠(h, k), µ∠(l, m) of congruent angles we then
have either µ∠(h, k) < µ∠(l, m), or µ∠(h, k) = µ∠(l, m), or µ∠(h, k) > µ∠(l, m) (with the last inequality being
equivalent to µ∠(l, m) < µ∠(l, m)). From L 1.3.16.10 – C 1.3.16.12 we see also that any one of these options excludes
the two others.

Proposition 1.3.63.2. If µ∠(h, k) + µ∠(l, m) = µ∠(p, q), µ∠(h, k) + µ∠(r, s) = µ∠(u, v), and ∠(l, m) < ∠(r, s),
then ∠(p, q) < ∠(u, v). 500

Proof. 2

Proposition 1.3.63.3. If µ∠(h, k) + µ∠(l, m) = µ∠(p, q), µ∠(h, k) + µ∠(r, s) = µ∠(u, v), and ∠(p, q) < ∠(u, v),
then ∠(l, m) < ∠(r, s). 501

Proof. 2

497In other words, we must be in a position to take a ray l ∈ kc
h

(recall that l ∈ kc
h

means that [hkl], see L 1.2.36.2) such that
the angle ∠(k, l) lies in the second class, which we denote µ∠(k, l). The notation employed here is perfectly legitimate: we know that
∠(h1, k1) ∈ µ∠(h, k) ⇒ ∠(h1, k1) ≡ ∠(h, k) ⇒ µ∠(h1, k1) = µ∠(h, k). As in the case of classes of congruent intervals, both traditional
and generalized ones, in our future treatment of classes of congruent angles we shall often resort to this convenient abuse of notation.
Although we have agreed previously to use Greek letters to denote planes, we shall sometimes use the letter µ (possibly with subscripts)
without the accompanying name of defining representative to denote congruence classes of angles whenever giving a particular defining
representative for a class is not relevant.
498Recall that by definition all straight angles are congruent to each other and are not congruent to non-straight angles. Thus, all

straight angles lie in the single class of equivalence.
499We assume that the classes µ∠(h, k), µ∠(l,m) can indeed be added.
500This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of angles as follows: µ2 < µ3 implies
µ1 + µ2 < µ1 + µ3.
501This proposition can be formulated in more abstract terms for congruence classes µ1, µ2, µ3 of angles as follows: µ1 + µ2 < µ1 + µ3

implies µ2 < µ3.
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Proposition 1.3.63.4. A class µ∠(k, l) of congruent angles is equal to the sum µ∠(k1, l1) + µ∠(k2, l2) + · · · +
µ∠(kn, ln) of classes µk1l1, µk2l2, . . . , µknln of congruent angles iff there are rays h0, h1, . . . , hn such that [hi−1hihi+1]
for all i ∈ Nn−1, ∠(hi−1, hi) ∈ µ∠(ki, li) for all i ∈ Nn, and ∠(h0, hn) ∈ µ∠(k, l). 502

Proof. 2

Proposition 1.3.63.5. For classes µ1, µ2, µ3 of congruent angles we have: µ1 + µ2 = µ1 + µ3 implies µ2 = µ3.

Proposition 1.3.63.6. For any classes µ1, µ3 of congruent angles such that µ1 < µ3, there is a unique class µ2 of
congruent angles with the property µ1 + µ2 = µ3.

If µ1 + µ2 = µ3 (and then, of course, µ2 + µ1 = µ3 in view of T 1.3.59), we shall refer to the class µ2 of
congruent angles as the difference of the classes µ3, µ1 of congruent angles, and write µ2 = µ3 − µ1. That is,

µ2 = µ3 − µ1
def
⇐⇒ µ1 + µ2 = µ3. The preceding proposition shows that the difference of classes of congruent angles

is well defined.

Proposition 1.3.63.7. For classes µ1, µ2, µ3, µ4 of congruent angles the inequalities µ1 < µ2, µ3 < µ4 imply
µ1 + µ3 < µ2 + µ4.

503

Proof. See P ??. 2

Proposition 1.3.63.8. For classes µ1, µ2, µ3, µ4 of congruent angles we have: µ1 + µ2 ≤ µ3 + µ4 and µ2 > µ4

implies µ1 < µ3 .

Proof. See P ??. 2

Corollary 1.3.63.9. In a triangle △ABC we have µ∠BAC + µ∠ACB < π(abs). 504

Proof. In fact, ∠BAC < adjsp∠ACB by T 1.3.17. Hence using P 1.3.63.2 we can write µ∠ABC + µ∠ACB <
µadjsp∠ACB + µ∠ACB = π(abs), which gives the desired result. 2

We shall refer to an (ordered) pair (∠(h, k), n) consisting of an extended angle ∠(h, k) and a positive integer
n ∈ Nn (here N0 ⇋ {0, 1, 2, . . .} is the set of all positive integers) as an overextended angle. Overextended angles
with n = 0 will be called improper, while those with n ∈ N will be termed proper overextended angles. Evidently,
we can identify improper overextended angles with extended angles. In fact, there is a one-to-one correspondence
between improper overextended angles of the form (∠, 0) and the corresponding extended angles ∠.

Overextended angles (∠(h1, k1), n1), (∠(h2, k2), n2) will be called congruent iff ∠(h1, k1) = ∠(h2, k2) and n1 = n2.
Obviously, the congruence relation thus defined is an equivalence relation.

We shall denote by µ(∠(h, k), n) the equivalence class of overextended angles congruent to the overextended angle
(∠(h, k), n). When there is no danger of confusion, we will also use a shorter notation µ(∠, n) 505 or simply µ(xt).

Given classes µ(∠1, n1), µ(∠2, n2) of congruent overextended angles, we define their sum as follows:
Consider first the case when both ∠1 and ∠2 are non-straight angles. In this case we take an angle ∠(h, k) ∈ µ∠1

and construct, using A 1.3.4, the ray l such that ∠(k, l) ∈ ∠2 and the rays h, l lie on opposite sides of the line k̄. If
it so happens that the ray k lies inside the extended angle ∠(h, l) (which is the case when either k, l lie on the same
side of the line h̄ or l = hc), we define the sum of µ(∠1, n1), µ(∠2, n2) as µ(∠(h, l), n), where n = n1 +n2. In the case
when the ray k lies outside the (extended) angle ∠(h, l), i.e. when the rays k, l lie on opposite sides of the line h̄ and
the ray kc lies inside the angle ∠(h, l) (see L 1.2.21.33), we define the sum of µ(∠1, n1), µ(∠2, n2) as µ(∠(hc, l), n),
where n = n1 + n2 + 1. Suppose now ∠1 (respectively, ∠2 ) is a straight angle. Then we define the sum of µ(∠1, n1),
µ(∠2, n2) as µ(∠2, n) (µ(∠1, n) ), where n = n1 + n2 + 1.

It follows from T 1.3.9, L 1.3.16.21 that the addition of overextended angles is well defined.
The addition (of classes of congruent angles) thus defined has the properties of commutativity and associativity,

as the following two theorems (T 1.3.64, T 1.3.65) indicate:

Theorem 1.3.64. The addition of classes of congruent overextended angles is commutative: For any classes µ
(xt)
1 ,

µ
(xt)
2 , for which the addition is defined, we have µ

(xt)
1 + µ

(xt)
2 = µ

(xt)
2 + µ

(xt)
1 .

Proof. Suppose (∠(h, l), n) ∈ µ
(xt)
1 + µ

(xt)
2 . Then, according to our definition above, the following situations are

possible:

1) The rays h, l lie on opposite sides of the line k̄, where (∠(h, k), n1) ∈ µ
(xt)
1 , (∠(k, l), n2) ∈ µ

(xt)
2 .

(a) Suppose first that the ray k lies inside the extended angle ∠(h, l) and n = n1 + n2. Interchanging the rays h,
l and the subscripts ”1” and ”2” and noticing that they enter the appropriate part of the definition symmetrically,

we see that (∠(h, l), n) ∈ µ
(xt)
2 + µ

(xt)
1 . Thus, we have µ

(xt)
1 + µ

(xt)
2 ⊂ µ

(xt)
2 + µ

(xt)
1 .

Reversing our argument in an obvious way, we obtain µ
(xt)
2 + µ

(xt)
1 ⊂ µ

(xt)
1 + µ

(xt)
2 .

502That is, we have ∠(hi−1, hi) ≡ ∠(ki, li) for all i ∈ Nn, and ∠(h0, hn) ≡ ∠(k, l).
503And, of course, the inequalities µ1 > µ2, µ3 > µ4 imply µ1 + µ3 > µ2 + µ4. The inequalities involved will also hold for any

representatives of the corresponding classes.
504Loosely speaking, the sum of any two angles of any triangle is less than two right angles.
505Here we omit the letters that denote sides of the defining angle when they are not relevant.
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(b) Suppose now that the ray kc lies inside the extended angle ∠(h, l) and n = n1 + n2 + 1. Again, interchanging

the rays h, l and the subscripts ”1” and ”2”, we see that (∠(h, l), n) ∈ µ
(xt)
2 + µ

(xt)
1 in this case, too.

2) Suppose, finally, that (∠(h, hc), n1) ∈ µ
(xt)
1 . Then, according to our definition, (∠(h, l), n2) ∈ µ

(xt)
2 , where

n1 + n2 + 1. Hence (∠(h, l), n) ∈ µ
(xt)
2 + µ

(xt)
1 . Similar considerations apply to the case when (∠(l, lc), n1) ∈ µ

(xt)
2 .

2

Theorem 1.3.65. The addition of classes of congruent overextended angles is associative: For any classes µ
(xt)
1 ,

µ
(xt)
2 , µ

(xt)
3 , for which the addition is defined, we have (µ

(xt)
1 + µ

(xt)
2 ) + µ

(xt)
3 = µ

(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

Proof. 1) Suppose that (∠(h, k), n1) ∈ µ
(xt)
1 , (∠(k, l), n2) ∈ µ

(xt)
2 , and the ray k lies inside the non-straight angle

∠(h, l). Then, according to our definition of the sum of overextended angles, we have (∠(h, l), n1+n2) ∈ µ
(xt)
1 +(µ

(xt)
2 .

Taking a ray m such that (∠(l, m), n3) ∈ µ
(xt)
3 and the rays h, m lie on opposite sides of the line l̄, consider the

following possible situations:

(a) The ray l lies inside the extended angle ∠(h, m) (see Fig. 1.169, a), b)). Then (∠(h, m), n1 + n2 + n3) ∈

(µ
(xt)
1 + µ

(xt)
2 ) +µ

(xt)
3 . But in this case the ray l also lies between k, m, and the ray k lies between the rays h, m (see

P 1.2.21.29). Hence (∠(k, m), n2 + n3) ∈ µ
(xt)
2 + µ

(xt)
3 and (∠(h, m), n1 + n2 + n3) ∈ µ

(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

(b) Suppose now that the rays l, m lie on opposite sides of the line h̄. Then (from the definition of addition of

overextended angles) (∠(hc, m), n1 + n2 + n3 + 1) ∈ (µ
(xt)
1 + µ

(xt)
2 ) + µ

(xt)
3 . Observe also that in this case the ray hc

lies inside the angle ∠(l, m) by L 1.2.21.33, and ∠(h, mc) ≡ ∠(hc, m) as vertical angles (see T 1.3.7).

In addition, using the definition of the interior of an angle, we can write hc ⊂ Int∠(l, m)& k ⊂ Int∠(h, l) ⇒

lhcm̄ & mhcl̄ & hkl̄. Hence mhc l̄ & hcl̄h & hkl̄
L1.2.18.6

=⇒ ml̄k

Consider first the case when k, l lie on the same side of m̄ (see Fig. 1.169, c)). Since both ml̄k and klm̄, we conclude

that (∠(k, m), n2+n3) ∈ µ
(xt)
2 +µ

(xt)
3 . klm̄& ml̄k

L1.2.21.33
=⇒ l ⊂ Int∠(m, k) ⇒ mlk̄. mlk̄ & lk̄h

L1.2.18.6
=⇒ mk̄h. Also, (by

L 1.2.18.2, L 1.2.18.5) we have klm̄& lhcm̄ & hcm̄h ⇒ km̄h. According to the definition of addition of overextended

angles, this implies (∠(h, mc), n1 + n2 + n3 + 1) ∈ µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ). Note also that ∠(h, mc) ≡ ∠(hc, m) as

vertical angles (see T 1.3.7).

We now turn to the case when the rays l, k lie on opposite sides of the line m̄ (see Fig. 1.169, d)). Since both lm̄k

and ml̄k (see above), in this situation we have (∠(k, mc), n2+n3+1) ∈ µ
(xt)
2 +µ

(xt)
3 . Also, hclm̄& lm̄k & hcm̄h ⇒ hkm̄.

klh̄& kh̄m & mch̄mlmh̄ ⇒ mckh̄. Using the definition of interior points of an angle, we can write hkm̄& mckh̄ ⇒ k ⊂

Int∠(h, mc). Taking into account the fact that (∠(h, k), n1) ∈ µ
(xt)
1 , we finally obtain (∠(h, mc), n1 + n2 + n3 + 1) ∈

µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

There is also the case when mc = k (see Fig. 1.169, e)). In this case we have, evidently, (∠(m, mc), n2 + n3) ∈

µ
(xt)
2 + µ

(xt)
3 , (∠(h, mc), n1 + n2 + n3 + 1) ∈ µ

(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

Consider now the situation when (∠(l, m), n3) ∈ µ
(xt)
3 and m = lc, i.e. when ∠(l, m) is a straight angle. Then,

obviously, (∠(h, l), n1 +n2 +n3 +1) ∈ (µ
(xt)
1 +µ

(xt)
2 )+µ

(xt)
3 , (∠(k, l), n2 +n3 +1) ∈ µ

(xt)
2 +µ

(xt)
3 , (∠(h, m), n1 +n2 +

n3 + 1) ∈ µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

2) Suppose now that (∠(h, k), n1) ∈ µ
(xt)
1 , (∠(k, l), n2) ∈ µ

(xt)
2 , and hc = l, i.e. ∠(h, l) is a straight angle. Then,

according to our definition of the sum of overextended angles, we have (∠(h, hc), n1 + n2) ∈ µ
(xt)
1 + (µ

(xt)
2 .

Taking a ray m such that (∠(hc, m), n3) ∈ µ
(xt)
3 and the rays k, m lie on opposite sides of the line l̄ = h̄, we can

write (∠(hc, m), n1 + n2 + n3 + 1) ∈ (µ
(xt)
1 + µ

(xt)
2 ) + µ

(xt)
3 and consider the following possible situations (we have

mh̄k & mh̄mc L1.2.18.6
=⇒ mckh̄, whence in view of L 1.2.21.21 either k ⊂ Int∠(h, mc), or mc ⊂ Int∠(h, k), or mc = k

(see Fig. 1.169, f)-h))):

(a) k ⊂ Int∠(h, mc) (see Fig. 1.169, f)). From definition of interior we have hkm̄. Hence hkm̄ & hm̄hc L1.2.18.5
=⇒ km̄l.

Thus, we can write (∠(mc, k), n2 + n3 + 1) ∈ µ
(xt)
2 + µ

(xt)
3 and (∠(mc, h), n1 + n2 + n3 + 1) ∈ µ

(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

(b) mc ⊂ Int∠(h, k) (see Fig. 1.169, g)). Hence hm̄k (see C 1.2.21.11). Writing hm̄k & hm̄hc L1.2.18.4
=⇒ hckm̄ and

taking into account that kh̄m, we see that (∠(k, m), n2 + n3) ∈ µ
(xt)
2 + µ

(xt)
3 . Also, 506 hmck̄ & mck̄m

L1.2.18.5
=⇒ hk̄m.

Thus, we see that (∠(mc, h), n1 + n2 + n3 + 1) ∈ µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

3) Suppose that (∠(h, k), n1) ∈ µ
(xt)
1 , (∠(k, l), n2) ∈ µ

(xt)
2 , the rays h, l lie on opposite sides of the line k̄, and the

rays k, l lie on opposite sides of the line h̄. Then, according to our definition of the sum of overextended angles, we

have (∠(hc, l), n1 + n2 + 1) ∈ µ
(xt)
1 + (µ

(xt)
2 .

Furthermore, by L 1.2.21.33 hc ⊂ Int∠(k, l).

Taking a ray m such that (∠(l, m), n3) ∈ µ
(xt)
3 and the rays hc, m lie on opposite sides of the line l̄, consider the

following possible situations:

(a) The rays l, m lie on the same side of the line h̄. Then from L 1.2.21.32 we have l ⊂ Int∠(hc, m). Hence

(∠(hc, m), n1 + n2 + n3 + 1) ∈ (µ
(xt)
1 + µ

(xt)
2 ) + µ

(xt)
3 ).

506Using definition of the interior of ∠(h, k), we can write mc ⊂ Int∠(h, k) ⇒ hmck̄).
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Consider first the case when l, m lie on the same side of k (see Fig. 1.170, a)). Then, of course, hc ⊂ Int∠(k, l)& l ⊂

Int∠(hc, m)& lmk̄
L1.2.21.29

=⇒ l ⊂ Int∠(k, m)& hc ⊂ Int∠(k, m) ⇒ hcmk̄ & khcm̄. Hence (using L 1.2.18.5) we can
write hk̄hc & hcmk̄ ⇒ hk̄m, khcm̄ & hcm̄h ⇒ km̄h. These relations imply that (∠(mc, h), n1 + n2 + n3 + 1) ∈

µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

We turn now to the situation when l, m lie on opposite sides of k (see Fig. 1.170, b)). Taking into account that hc ⊂

Int∠(k, l) ⇒ khc l̄ (by definition of interior) and l ⊂ Int∠(hc, m)
C1.2.21.11

=⇒ hc l̄m, we can write khcl̄ & hcl̄m
L1.2.18.5

=⇒

kl̄m. This, together with lk̄m, implies (∠(kc, m), n2 + n3 + 1) ∈ µ
(xt)
2 + µ

(xt)
3 . Using L 1.2.18.4, L 1.2.18.5 we can

write kh̄l & lmh̄& kh̄kc ⇒ kcmh̄. In view of L 1.2.21.32 this implies m ⊂ Int∠(hc, kc), whence mc ⊂ Int∠(h, k) by

L 1.2.21.16. Thus, again (∠(mc, h), n1 + n2 + n3 + 1) ∈ µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

(b) The rays l, m lie on opposite same sides of the line h̄ (see Fig. 1.170, c)). In this case (∠(h, m), n1+n2+n3+2) ∈

(µ
(xt)
1 + µ

(xt)
2 ) + µ

(xt)
3 .

Using L 1.2.18.4, L 1.2.18.5 we can write khc l̄ & hl̄hc & kl̄m ⇒ mhl̄. mhl̄ & lh̄m
L1.2.21.32

=⇒ h ⊂ Int∠(l, m)
L1.2.21.22

=⇒

m ⊂ Int∠(h, lc)
L1.2.21.16

=⇒ mc ⊂ Int∠(hc, l). mc ⊂ Int∠(hc, l)& hc ⊂ Int∠(k, l)
L1.2.21.27

=⇒ mc ⊂ Int∠(k, l)& hc ⊂

Int∠(k, mc). Hence mc ⊂ Int∠(k, l)
C1.2.21.11

=⇒ km̄l. Also, khc l̄ & hcl̄h & hml̄
L1.2.18.5

=⇒ kl̄m. Thus, (∠(k, mc), n2 + n3 +

1) ∈ µ
(xt)
2 + µ

(xt)
3 . By definition of interior we have hc ⊂ Int∠(k, mc) ⇒ hcmck̄. Hence hcmck̄ & hck̄h

L1.2.18.5
=⇒ mck̄h.

Also, kh̄l & lh̄m & mh̄mc ⇒ kh̄mc. Thus, we see that (∠(h, m), n1 + n2 + n3 + 2) ∈ µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

c) Suppose m = h (see Fig. 1.170, d)). Then, obviously, (∠(h, hc), n1+n2+n3+1) ∈ (µ
(xt)
1 +µ

(xt)
2 )+µ

(xt)
3 . We know

that kh̄l, and khcl̄ & hc l̄h
L1.2.18.5

=⇒ kl̄h. Since (∠(h, k), n1) ∈ µ
(xt)
1 , it is now evident that (∠(h, hc), n1 +n2 +n3 +1) ∈

µ
(xt)
1 + (µ

(xt)
2 + µ

(xt)
3 ).

Finally, the case when at least one of the overextended angles (∠i, ni) ∈ µ
(xt)
i , i = 1, 2, 3 is straight, is almost

trivial and can be safely left as an exercise to the reader. 2

It turns out that we can compare overextended angles just as easily as we compare extended or only conventional
angles. We shall say that an overextended angle (∠(h1, k1), n1) is less than an overextended angle (∠(h2, k2), n2) iff:

– either n1 < n2;
– or n1 = n2 and ∠(h1, k1) < ∠(h2, k2).

In short, (∠(h1, k1), n1) < (∠(h2, k2), n2)
def
⇐⇒ (n1 < n2) ∨ ((n1 = n2)& ∠(h1, k1) < ∠(h2, k2)).

Theorem 1.3.66. The relation ”less than” for overextended angles is transitive. That is, (∠(h1, k1), n1) < (∠(h2, k2), n2)
and (∠(h2, k2), n2) < (∠(h3, k3), n3) imply (∠(h1, k1), n1) < (∠(h3, k3), n3).

Proof. See L 1.3.56.18. 2

Other properties of this relation are also fully analogous to those of the corresponding relation for extended angles
(cf. L 1.3.16.6 – L 1.3.16.14):

Proposition 1.3.66.1. If an overextended angle (∠(h′′, k′′), n′′) is congruent to an overextended angle (∠(h′, k′), n′)
and the overextended angle (∠(h′, k′), n′) is less than an overextended angle (∠(h, k), n), the overextended angle
(∠(h′′, k′′), n′′) is less than the overextended angle (∠(h, k), n).

Proof. See L 1.3.16.6. 2

Proposition 1.3.66.2. If an overextended angle (∠(h′′, k′′), n′′) is less than an overextended angle (∠(h′, k′), n′)
and the overextended angle (∠(h′, k′), n′) is congruent to an overextended angle (∠(h, k), n), the overextended angle
(∠(h′′, k′′), n′′) is less than the overextended angle (∠(h, k), n).

Proof. See L 1.3.56.18. 2

Proposition 1.3.66.3. If an overextended angle (∠(h′′, k′′), n′′) is less than or congruent to an overextended angle
(∠(h′, k′), n′) and the overextended angle (∠(h′, k′), n′) is less than or congruent to an overextended angle (∠(h, k), n),
the overextended angle (∠(h′′, k′′), n′′) is less than or congruent to the overextended angle (∠(h, k), n).

Proof. See L 1.3.16.9. 2

Proposition 1.3.66.4. If an overextended angle (∠(h′, k′), n′) is less than an overextended angle (∠(h, k), n), the
overextended angle (∠(h, k), n) cannot be less than the overextended angle (∠(h′, k′), n′).

Proof. See L 1.3.16.10.2

Proposition 1.3.66.5. If an overextended angle ∠(h′, k′) is less than an overextended angle ∠(h, k), it cannot be
congruent to that angle.

Proof. See L 1.3.16.11. 2
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Figure 1.169: Illustration for proof of T 1.3.65.
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Figure 1.170: Illustration for proof of T 1.3.65 (continued).
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Proposition 1.3.66.6. If an overextended angle (∠(h′, k′), n′) is congruent to an overextended angle (∠(h, k), n),
neither (∠(h′, k′), n′) is less than (∠(h, k), n), nor (∠(h, k), n) is less than (∠(h′, k′), n′).

Proof. See C 1.3.16.12. 2

Proposition 1.3.66.7. If an overextended angle (∠(h′, k′), n′) is less than or congruent to an overextended angle
(∠(h, k), n) and the overextended angle (∠(h, k), n) is less than or congruent to the overextended angle (∠(h′, k′), n′),
the overextended angle (∠(h′, k′), n′) is congruent to the overextended angle (∠(h, k), n).

Proof. See L 1.3.16.13. 2

Proposition 1.3.66.8. If an overextended angle (∠(h′, k′), n′) is not congruent to an overextended angle (∠(h, k), n),
then either the overextended angle (∠(h′, k′), n′) is less than the overextended angle (∠(h, k), n), or the overextended
angle (∠(h, k), n) is less than the overextended angle (∠(h′, k′), n′).

Proof. See L 1.3.16.14.2

The relation ”less than” for overextended angles induces in an obvious way the corresponding relation for
classes of overextended angles. For classes µ(∠(h, k), n1), µ(∠(l, m), n2) or congruent overextended angles we write
µ(∠(h, k), n1) < µ(∠(l, m), n2) or µ(∠(l, m), n2) > µ(∠(h, k), n1) if there are overextended angles (∠(h′, k′), n1) ∈
µ(∠(h, k), n1), (∠(l′, m′), n2) ∈ (∠(l, m), n2) such that (∠(h′, k′), n1) < (∠(l′, m′), n2). T 1.3.11, P 1.3.66.1, P 1.3.66.2
then show that this notation is well defined: it does not depend on the choice of the overextended angles (∠(h′, k′), n1),
(∠(l′, m′), n2). For arbitrary classes µ(∠(h, k), n1), µ(∠(l, m), n2) of congruent overextended angles we then have ei-
ther µ(∠(h, k), n1) < µ(∠(l, m), n2), or µ(∠(h, k), n1) = µ(∠(l, m), n2), or µ(∠(h, k), n1) > µ(∠(l, m), n2) (with the
last inequality being equivalent to µ∠(l, m) < µ∠(l, m)). From P 1.3.66.4 – P 1.3.66.6 we see also that any one of
these options excludes the two others.

Proposition 1.3.66.9. If µ(∠(h, k), n1)+µ(∠(l, m), n2) = µ(∠(p, q), n3), µ(∠(h, k), n1)+µ(∠(r, s), n4) = µ(∠(u, v), n5),
and (∠(l, m), n2) < (∠(r, s), n4), then (∠(p, q), n3) < (∠(u, v), n5).

507

Proof. 2

Proposition 1.3.66.10. If µ(∠(h, k), n1)+µ(∠(l, m), n2) = µ(∠(p, q), n3), µ(∠(h, k), n1)+µ(∠(r, s), n4) = µ(∠(u, v), n5),
and (∠(p, q), n3) < (∠(u, v), n5), then (∠(l, m), n2) < (∠(r, s), n4).
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Proof. 2

Proposition 1.3.66.11. For classes µ
(xt)
1 , µ

(xt)
2 , µ

(xt)
3 of congruent overextended angles we have: µ

(xt)
1 + µ

(xt)
2 =

µ
(xt)
1 + µ

(xt)
3 implies µ

(xt)
2 = µ

(xt)
3 .

Proof. We know that either µ
(xt)
2 < µ

(xt)
3 , or µ

(xt)
2 = µ

(xt)
3 , or µ

(xt)
2 < µ

(xt)
3 . But by P 1.3.66.9 µ

(xt)
2 < µ

(xt)
3

would imply µ
(xt)
1 + µ

(xt)
2 < µ

(xt)
1 + µ

(xt)
3 , and µ

(xt)
2 > µ

(xt)
3 would imply µ

(xt)
1 + µ

(xt)
2 > µ

(xt)
1 + µ

(xt)
3 . But both

µ
(xt)
1 +µ

(xt)
2 < µ

(xt)
1 +µ

(xt)
3 and µ

(xt)
1 +µ

(xt)
2 > µ

(xt)
1 +µ

(xt)
3 contradict µ

(xt)
1 +µ

(xt)
2 = µ

(xt)
1 +µ

(xt)
3 , whence the result.

2

Proposition 1.3.66.12. For any classes µ
(xt)
3 of congruent overextended angles such that µ

(xt)
1 < µ

(xt)
3 , there is a

unique class µ
(xt)
2 of congruent overextended angles with the property µ

(xt)
1 + µ

(xt)
2 = µ

(xt)
3 .

Proof. Uniqueness follows immediately from the preceding proposition. To show existence, we take an arbitrary

ray h and then construct (using A 1.3.4) rays k, l such that (∠(h, k), n1) ∈ µ
(xt)
1 , (∠(h, l), n3) ∈ µ

(xt)
3 , where, of

course, n1, n3 ∈ N. From L 1.2.21.21 we know that either the ray k lies inside the ray ∠(h, l), or the ray l lies inside
the angle ∠(h, k), or the rays k, l coincide. In the case k ⊂ Int∠(h, l) (see Fig. 1.171, a)) from the definition of

sum of classes of congruent overextended angles immediately follows that if we denote µ
(xt)
2 ⇋ µ(∠(k, l), n3 − n1),

we have µ
(xt)
1 + µ

(xt)
2 = µ

(xt)
3 . Suppose now l ⊂ Int∠(h, k) (see Fig. 1.171, b)). Then we have (from definition of

interior) l ⊂ Int∠(h, k) ⇒ hlk̄ & klh̄. Since klh̄& lh̄lc
L1.2.18.5

=⇒ kh̄lc, hlk̄ & lk̄lc
L1.2.18.5

=⇒ hk̄lc, we see that defining

µ
(xt)
2 ⇋ µ(∠(k, lc), n3 − n1 − 1), we have (from definition of interior) 509 µ

(xt)
1 + µ

(xt)
2 = µ

(xt)
3 , as required. Finally,

in the case k = l we let µ
(xt)
2 ⇋ µ(∠(k, kc), n3 − n1 − 1), which, obviously, again gives µ

(xt)
1 + µ

(xt)
2 = µ

(xt)
3 . 2

507This proposition can be formulated in more abstract terms for congruence classes µ
(xt)
1 , µ

(xt)
2 , µ

(xt)
3 of overextended angles as follows:

µ
(xt)
2 < µ

(xt)
3 implies µ

(xt)
1 + µ

(xt)
2 < µ

(xt)
1 + µ

(xt)
3 .

508This proposition can be formulated in more abstract terms for congruence classes µ
(xt)
1 , µ

(xt)
2 , µ

(xt)
3 of overextended angles as follows:

µ
(xt)
1 + µ

(xt)
2 < µ

(xt)
1 + µ

(xt)
3 implies µ

(xt)
2 < µ

(xt)
3 .

509Observe that the requirement µ
(xt)
1 < µ

(xt)
3 gives n1 ≤ n3. The fact that l ⊂ Int∠(h, k)

C1.3.16.4
=⇒ ∠(h, l) < ∠(h, k) in view of

µ
(xt)
1 < µ

(xt)
3 gives n1 6= n3. Thus, we have n1 + 1 ≤ n3.
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Figure 1.171: Illustration for proof of P 1.3.66.12.

If µ
(xt)
1 + µ

(xt)
2 = µ

(xt)
3 (and then, of course, µ

(xt)
2 + µ

(xt)
1 = µ

(xt)
3 in view of T 1.3.64), we shall refer to the class

µ
(xt)
2 of congruent overextended angles as the difference of the classes µ

(xt)
3 , µ

(xt)
1 of congruent overextended angles,

and write µ
(xt)
2 = µ

(xt)
3 − µ

(xt)
1 . That is, µ

(xt)
2 = µ

(xt)
3 − µ

(xt)
1

def
⇐⇒ µ

(xt)
1 + µ

(xt)
2 = µ

(xt)
3 . The preceding proposition

shows that the difference of classes of congruent overextended angles is well defined.

Proposition 1.3.66.13. For classes µ
(xt)
1 , µ2, µ3, µ4 of congruent overextended angles the inequalities µ

(xt)
1 < µ

(xt)
2 ,

µ
(xt)
3 < µ

(xt)
4 imply µ

(xt)
1 + µ

(xt)
3 < µ

(xt)
2 + µ

(xt)
4 . 510

Proof. 2

Proposition 1.3.66.14. For classes µ
(xt)
1 , µ

(xt)
2 , µ

(xt)
3 , µ

(xt)
4 of congruent overextended angles we have: µ

(xt)
1 +µ

(xt)
2 =

µ
(xt)
3 + µ

(xt)
4 and µ

(xt)
2 > µ4 implies µ1 < µ3 .

Proof. 2

The preceding results can be directly extended to any finite number of (congruence classes) of overextended
angles.

Corollary 1.3.66.15. Given a natural number n ∈ N, if µ(∠(hi, ki), ni) ≤ µ(∠(li, mi), pi) for all i ∈ Nn then∑n
i=1(∠(hi, ki), ni) ≤

∑n
i=1µ(∠(li, mi), pi). Furthermore, if there exists an i0 ∈ i ∈ Nn such that µ(∠(hi0 , ki0), ni0) ≤

µ(∠(li0 , mi0), pi0) then
∑n

i=1(∠(hi, ki), ni) <
∑n

i=1µ(∠(li, mi), pi). In particular, µ(∠(h, k), p) ≤ µ(∠(l, m), p) im-
plies nµ(∠(h, k), n) ≤ nµ(∠(l, m, p) for any n ∈ N.

Proof. 2

A similar result is obviously valid for classes of congruent overextended angles:

Corollary 1.3.66.16. Given a natural number n ∈ N, if µ
(xt)
i ≤ µ

′(xt)
i for all i ∈ Nn then

∑n
i=1µ

(xt)
i ≤

∑n
i=1µ

′(xt)
i .

Furthermore, if there exists an i0 ∈ i ∈ Nn such that µ
(xt)
i0

≤ µ
′(xt)
i0

then
∑n

i=1µ
(xt)
i <

∑n
i=1µ

′(xt)
i . In particular, if

µ(xt) < µ′(xt) then µ(xt) < µ′(xt)

Proof. 2

Proposition 1.3.66.17. Proof. 2

Proposition 1.3.66.18. Proof. 2

Proposition 1.3.66.19. Proof. 2

Given a triangle △ABC, we shall refer to the sum Σ
(abs)∠
△ABC ⇋ µ(∠BAC, 0) + µ(∠ABC, 0) + µ(∠ACB, 0) of

the classes µ(∠BAC, 0), µ(∠ABC, 0), µ(∠ACB, 0) of overextended angles as the abstract sum of the angles of the
triangle △ABC.

Evidently, congruent triangles always have equal abstract sums of angles.
We shall denote π(abs,xt) the class of congruent overextended angles formed by all pairs (∠(h, hc), 0), where

∠(h, hc) is, of course, a straight angle.

510And, of course, the inequalities µ
(xt)
1 > µ

(xt)
2 , µ

(xt)
3 > µ

(xt)
4 imply µ

(xt)
1 + µ

(xt)
3 > µ

(xt)
2 + µ

(xt)
4 . The inequalities involved will also

hold for any representatives of the corresponding classes.
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Figure 1.172: Given a triangle △ABC, there is a triangle one of whose angles is at least two times smaller than ∠A.

Since µ(∠1, 0) + µ(∠2, 0) + · · ·+ µ(∠n, 0) = µ(∠, 0) ⇔ µ∠1 + µ∠2 + · · ·+ µ∠n = µ∠, given a triangle △ABC, we
shall sometimes refer synonymously to the sum µ∠A + µ∠B + µ∠C, whenever it makes sense and is equal to some
congruence class µ∠ of extended angles, as the abstract sum of the angles of the triangle △ABC.

Proposition 1.3.67.8. Given a triangle △ABC, there is a triangle with the same abstract sum of angles, one of
whose angles is at least two times smaller than ∠A.

Proof. (See Fig. 1.172.) Denote O ⇋ midAC (see T 1.3.22). Take A′ so that [AOA′], OA ≡ OA′ (see A 1.3.1). Then

[AOA′] & [BOC] ⇒ ∠A′OC = vert∠AOB
T1.3.7
=⇒ ∠A′OC ≡ ∠AOB. AO ≡ OA′ & BO = OC∠A′OC ≡ ∠AOB

T1.3.4
=⇒

△A′OC ≡ △AOB ⇒ ∠OA′C ≡ ∠OAB & ∠OCA′ ≡ ∠OAB. Using L 1.2.21.6, L 1.2.21.4, we can write O ∈ (BC) ∩
(AA′) ⇒ AO ⊂ Int∠BAC & CO ⊂ Int∠ACA′ ⇒ µ∠BAC = µ∠BAO + µ∠CAO & µ∠ACA′ = µ∠ACO + µ∠A′CO.

Also, we shall make use of the fact that O ∈ (BC)∩(AA′)
L1.2.11.15

=⇒ ∠ABO = ∠ABC & ∠OA′C = ∠AA′C & ∠OAC =

∠A′AC. We can now write Σ
(abs)∠
△ABC = µ(∠BAC, 0) + µ(∠ABC, 0) + µ(∠ACB, 0) = µ(∠BAO, 0) + µ(∠CAO, 0) +

µ(∠ABC, 0)+µ(∠ACB, 0) = µ(∠OA′C, 0)+µ(∠CAA′, 0)+µ(∠OCA′, 0)+µ(∠ACO, 0) = µ(∠AA′C, 0)+µ(∠CAA′, 0)+

µ(∠ACA′, 0) = Σ
(abs)∠
△AA′C . Furthermore, since µ∠BAC = µ∠BAO+µ∠CAO = µ∠AA′C+µ∠CAA′, one of the angles

of △AA′C is at least two times smaller than ∠BAC. 511
2

Proposition 1.3.67.9. Given a cevian BD in a triangle △ABC, if the abstract sums of angles in the triangles
△ABD, △CBD are both equal to π(abs,xt), then the abstract sum of angles in the triangle △ABC also equals
π(abs,xt).

Proof. By definition, Σ
(abs)∠
△ABD = µ(∠BAD, 0)+µ(∠ABD, 0)+µ(∠ADB, 0), Σ

(abs)∠
△DBC = µ(∠BDC, 0)+µ(∠DBC, 0)+

µ(∠DCB, 0), Σ
(abs)∠
△ABC = µ(∠BAC, 0) + µ(∠ABC, 0) + µ(∠ACB, 0). Taking into account that µ(∠ABC, 0) =

µ(∠ABD, 0)+µ(∠DBC, 0), µ(∠ADB, 0)+µ(∠BDC, 0) = π(abs,xt), we have Σ
(abs)∠
△ABD +Σ

(abs)∠
△DBC = Σ

(abs)∠
△ABC +π(abs,xt).

Since, by hypothesis, Σ
(abs)∠
△ABD = Σ

(abs)∠
△DBC = π(abs,xt), from P 1.3.66.11 we have immediately Σ

(abs)∠
△ABC = π(abs,xt), as

required. 2

Proposition 1.3.67.10. Given a triangle △ACB such that ∠ACB is a right angle and Σ
(abs)∠
△ACB = π(abs,xt), in the

triangle △CDA such that [CBD], BC ≡ BD we also have Σ
(abs)∠
△CDA = π(abs,xt).

Proof. (See Fig. 1.173.) Using A 1.3.4, A 1.3.1, construct a point C′ such that C, C′ lie on opposite sides of the line
aAB and ∠CAB ≡ ∠ABC′, AC ≡ BC′. By T 1.3.4 △ACB ≡ △AC′B. It follows that ∠AC′B is a right angle (see
L 1.3.8.2) and ∠ABC ≡ ∠BAC′. By C 1.3.17.4 the angles ∠CAB, ∠ABC are acute, as consequently are angles
∠C′AB, ∠C′BA (see L 1.3.16.16). Hence by C 1.3.18.12 the ray AB lies inside the angle ∠CAC′ and the ray BA lies
inside the angle ∠CBC′. This, in turn, implies µ∠CAB + µ∠C′AB = µ∠CAC′, µ∠CBA + µ∠C′BA = µ∠C′BC.

Since ∠ACB, ∠AC′B are right angles and Σ
(abs)∠
△ACB = Σ

(abs)∠
△AC′B = π(abs,xt), we conclude that µ∠CAC′ = µ∠CBC′ =

(1/2)π(abs), i.e. ∠CAC′, ∠CBC′ are both right angles. Using A 1.3.1, choose D so that [CBD] and BC ≡ BD.
By L 1.2.21.6, L 1.2.21.4 we have AB ⊂ Int∠CAD. Since also AB ⊂ Int∠CAC′, by definition of interior both
AB, AC′ and AB, AD lie on the same side of the line aAC . Hence by L 1.2.18.2 the rays AD, AC′ lie on the
same side of aAC . Since ∠CAD < ∠CAC′ (the angle ∠CAD being an acute angle, and ∠CAC′ a right angle),

we have AD ⊂ Int∠CAC′ (see C 1.3.16.4). Now we can write AB ⊂ Int∠CAD & AD ⊂ Int∠CAC′ L1.2.21.27
=⇒

AD ⊂ Int∠BAC′ L1.2.21.10
=⇒ ∃O O ∈ AD ∩ (BC′). O ∈ AD

L1.2.11.8
=⇒ [AOD] ∨ [ADO] ∨ O = D. Using C 1.3.18.4

511In fact, if this were not the case, we would have µ∠AA′C > (1/2)µ∠BAC, µ∠CAA′ > (1/2)µ∠BAC, whence µ∠BAC > µ∠AA′C +
µ∠CAA′, which contradicts µ∠BAC = µ∠AA′C + µ∠CAA′.
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Figure 1.173: Given a triangle △ACB such that ∠ACB is a right angle and Σ
(abs)∠
△ACB = π(abs,xt), in the triangle

△CDA such that [CBD], BC ≡ BD we also have Σ
(abs)∠
△CDA = π(abs,xt).

we see that AO < AB < AD.512 These inequalities imply that [AOD]. 513 Thus, the angles ∠AOC′, ∠BOD

are vertical. They are, consequently, congruent (T 1.3.7). Evidently, [BOC′]
L1.2.11.15

=⇒ BO = BC′ & C′
O = CB ⇒

∠AC′B = ∠AC′O & ∠OBD = ∠C′BD. Furthermore, since the right angles ∠AC′B = ∠AC′O and ∠OBD =
∠C′BD = adjsp∠C′BC are congruent (T 1.3.16) and BC ≡ AC′ & BC ≡ BD ⇒ AC′ ≡ BD, by T 1.3.19 we have
△AOC′ ≡ △BOD, whence ∠C′AO ≡ ∠BDO. Using A 1.3.1, choose a point E such that [AC′E] and AC′ ≡ C′E.
Since [AC′E], [AOD], and [CBD], using L 1.2.11.15 we can write ∠C′AO = ∠EAD, ∠BDO = ∠CDA. Hence
∠EAD ≡ ∠CDA. Furthermore, in view of BC ≡ BD ≡ AC′ ≡ C′E and [CBD], [AC′E], by A 1.3.3 we have
CD ≡ AE. Hence from T 1.3.4 we have △CDA ≡ △EAD. In particular, ∠CAD ≡ ∠ADE, ∠ACD ≡ ∠AED. The
latter means that ∠AED is a right angle (see L 1.3.8.2). Since µ∠CAD + µ∠EAD = µ∠CAC′ = (1/2)π(abs), the
congruences ∠CDA ≡ ∠EAD, ∠CAD ≡ ∠ADE imply that also µ∠CDA + µ∠EDA = (1/2)π(abs). Therefore, we

have Σ
(abs)∠
△CDA +Σ

(abs)∠
△EAD = µ(∠ACD, 0)+µ(∠CDA, 0)+µ(∠CAD, 0)+µ(∠AED, 0)+µ(∠EAD, 0)+µ(∠ADE, 0) =

π(abs,xt) + π(abs,xt). Finally, since the congruence △CDA ≡ △EAD implies Σ
(abs)∠
△CDA = Σ

(abs)∠
△EAD, we conclude that

Σ
(abs)∠
△CDA = π(abs,xt), as required. 2

Proposition 1.3.67.11. Suppose that the (abstract) sum of the angles of a triangle △ABC is equal to π(abs,xt).
Then µ∠A + µ∠B = µ(adjsp∠C).

Proof. We can write µ∠A + µ∠B + µ∠C = π(abs) = µ∠C + µ(adjsp∠C). Hence the result follows by P 1.3.63.5. 2

In the case of triangles whose angle sums are less than π(abs,xt) we can take our consideration of angle sums
in triangles one step further with the following definitions, which have played a key role in the development of the
foundations of hyperbolic geometry:

A quadrilateral ABCD with right angles ∠ABC, ∠BCD is called a birectangle. We shall assume that the vertices
A, D lie on the same side of the line aBC containing the side BC. This guarantees that, as will be shown below in a
broader context, the birectangle is convex and, in particular, simple.

An isosceles birectangle ABCD, i.e. a birectangle ABCD whose sides AB, CD are congruent, is called a Saccheri
quadrilateral. The side BC is called the base, and the side AD the summit of the Saccheri quadrilateral. The
angles ∠BAD, ∠CDA are referred to as the summit angles of the quadrilateral ABCD. Finally, the interval MN
joining the midpoints M , N of the summit and the base, respectively, is referred to as the altitude of the Saccheri
quadrilateral, and the line aMN as the altitude line of the quadrilateral ABCD.

Consider a triangle △ABC with its (abstract) sum of the angles Σ
(abs)∠
△ABC less than π(abs,xt). We shall refer to

the difference δ
(abs)∠
△ABC ⇋ π(abs,xt) − Σ

(abs)∠
△ABC

514 as the angular defect of the triangle △ABC. Evidently, congruent

512In fact, since ∠AC′O = ∠AC′B is a right angle, as is ∠ACB, from L 1.3.16.17, C 1.3.17.4 we have ∠AOC′ < ∠AC′O, ∠ABC <
∠ACB.
513There are multiple ways to show that of the three alternatives [AOD], [ADO], A = D we must choose [AOD]. Unfortunately, the

author has failed to find an easy one. (Assuming such an easy way exists!) In addition to the one presented above, we outline here a
couple of other possible approaches. The first of them starts with the observation that aAC = aBC′ , so that the points A, C lie on the
same side of the line aBC′ . But [CBD] implies that C, D lie on opposite sides of the line aBC′ . By L 1.2.17.10 A, D lie on opposite sides
of the line aBC′ . Hence ∃O′ O′ ∈ (AD) ∩ aBC′ . Since the lines aAD , aBC′ are obviously distinct (A /∈ aBC′ ), O′ = O is the only point
they can have in common (T 1.1.1), whence the result. Perhaps the most perverse way to show that [AOD] involves the observation that
the line aBC′ lies in the plane αACD , does not contain any of the points A, C, D, and meets the open interval (CD) in the point B. The
Pasch’s axiom (A 1.2.4) then shows that the line aBC′ then meets the open interval (AD) in a point O′ which is bound to coincide with
O since the lines aAD , aBC′ are distinct.
514Since Σ

(abs)∠
△ABC

< π(abs,xt) the subtraction makes sense.
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triangles have equal angular defects.

Proposition 1.3.67.12. Given a cevian BD in a triangle △ABC, the sum of angular defects of the triangles
△ABD, △DBC equals the angular defect of the triangle ABC.

Proof. Using the definition of angular defect, we can write

µ(∠DAB, 0) + µ(∠ABD, 0) + µ(∠BDA, 0) + δ
(abs)∠
△ABD = π(abs,xt) (1.4)

and
µ(∠DCB, 0) + µ(∠CBD, 0) + µ(∠BDC, 0) + δ

(abs)∠
△CBD = π(abs,xt). (1.5)

Adding up the equations (1.4), (1.5) and taking into account that µ(∠ADB, 0) + µ(∠CDB, 0) = π(abs,xt) 515 ,
µ(∠ABD, 0) + µ(∠CBD, 0) = µ(∠ABC, 0), 516 we obtain

µ(∠CAB, 0) + µ(∠ABC, 0) + µ(∠BCA, 0) + δ
(abs)∠
△ABD + δ

(abs)∠
△CBD + π(abs,xt) = π(abs,xt) + π(abs,xt),

whence (see Pr 1.3.63.5)

µ(∠CAB, 0) + µ(∠ABC, 0) + µ(∠BCA, 0) + δ
(abs)∠
△ABD + δ

(abs)∠
△CBD = π(abs,xt).

But from the definition of the defect of △ABC we have µ(∠CAB, 0) + µ(∠ABC, 0) + µ(∠BCA, 0) + δ
(abs)∠
△ABC =

π(abs,xt). Hence, using Pr 1.3.63.5 again, we see that δ
(abs)∠
△ABD + δ

(abs)∠
△CBD = δ

(abs)∠
△ABC , q.e.d. 2

Corollary 1.3.67.13. Given a cevian BD in a triangle △ABC, the angular defect of each of the triangles △ABD,
△DBC is less than the angular defect of the triangle ABC.

Proof. Follows from the preceding proposition (P 1.3.67.12) and P 1.3.63.1. 2

Corollary 1.3.67.14. Given a triangle △ABC and points D ∈ (AC), E ∈ (AB), the angular defect of the triangle
△ADE is less than the angular defect of the triangle ABC.

Proof. We just need to apply the preceding corollary (C 1.3.67.13) twice 517 and then use T 1.3.66. 2

The preceding two corollaries can be reformulated in terms of the angle sums of the triangles involved as follows:

Corollary 1.3.67.15. Given a cevian BD in a triangle △ABC, the (abstract) angle sum of each of the triangles
△ABD, △DBC is less than the (abstract) angle sum of the triangle ABC.

Proof. Follows from C 1.3.67.13, P 1.3.66.8. 2

Corollary 1.3.67.16. Given a triangle △ABC and points D ∈ (AC), E ∈ (AB), the angle sum of the triangle
△ADE is greater than the angle sum of the triangle ABC.

Proof. Follows from C 1.3.67.14, P 1.3.66.9. 2

Theorem 1.3.67. Suppose that the (abstract) sum of the angles of any triangle △ABC equals π(abs,xt). Then the
sum of the angles of any convex polygon with n > 3 sides is (n − 2)π(abs,xt).

Proof. 2

Theorem 1.3.68. Suppose that the (abstract) sum of the angles of any triangle △ABC is less than π(abs,xt). Then
the sum of the angles of any convex polygon with n > 3 sides is less than (n − 2)π(abs,xt).

Proof. 2

We have saw previously that the summit of any Saccheri quadrilateral is parallel to its base (see T 1.3.28). This
implies, in particular, that any Saccheri quadrilateral is convex. It can be proved that the summit angles of any
Saccheri quadrilateral are congruent. We are going to do this, however, in a more general context.

Consider a quadrilateral ABCD such that the vertices A, D lie on the same side of the line aBC
518 and

∠ABC ≡ ∠BCD, BA ≡ CD. We will refer any such quadrilateral as an isosceles quadrilateral.

Lemma 1.3.68.1. Any isosceles quadrilateral ABCD 519 is a trapezoid.

515Since D ∈ (AC), the angles ∠ADB, ∠CDB are adjacent supplementary.
516We take into account that the ray BD lies completely inside the angle ∠ABC, which, in its turn, implies that µ(∠ABD, 0) +
µ(∠CBD, 0) = µ(∠ABC, 0) (see L 1.2.21.6, L 1.2.21.4). We also silently use the obvious equalities ∠BAD = ∠BAC, ∠BCD = ∠BCA.
517From C 1.3.67.13 the angular defect of △ADE is less than the angular defect of the triangle ABD, which, in turn, is less than the

angular defect of △ABC.
518This condition is required for the quadrilateral to be simple.
519That is, a quadrilateral ABCD with ADaBC and ∠ABC ≡ ∠BCD, BA ≡ CD.
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Proof. Denote by E, F , respectively the feet of the perpendiculars drawn through the points A, D to the line aBC .
To show that E, F are distinct, suppose the contrary, i.e. that E = F . Then we have A ∈ ED from L 1.3.24.1.
Furthermore, in this case E 6= B by L 1.3.8.1, and for the same reason E 6= C. Thus, the points A, B, E are not
collinear, as are the points D, C, E. Additionally, we can claim that [BEC]. In fact, since B 6= E 6= C, in view
of T 1.2.2 we have either [EBC], or [BCE], or [BEC]. Suppose that [EBC. Then the angle ∠BCD = ∠ECD is
acute as being a non-right angle in a right-angled triangle △DEC. Since ∠AEB is, by construction, a right angle,
we have ∠BCD < ∠AEB (see L 1.3.16.17). Oh the other hand, by T 1.3.17 we have ∠AEB < ∠ABC. Thus,
we obtain ∠BCD < ∠ABC, in contradiction with ∠ABC ≡ ∠BCD (by hypothesis). This contradiction shows
that the assumption that [EBC] is not valid. Similarly, it can be shown that ¬[BCE]. 520 Thus, [BEC], which
implies that ∠ABE = ∠ABC, ∠ECD = ∠BCD. Consequently, we have ∠ABE ≡ ∠ECD, which together with

∠AEB ≡ ∠DEC (see T 1.3.16) gives △AEB ≡ △DEC, whence EA ≡ ED. But EA ≡ ED & D ∈ EA
A1.3.1
=⇒ A = D,

in contradiction with the requirements A 6= D, necessary if the quadrilateral ABCD is to make any sense. The
contradiction shows that in reality E 6= F . Suppose now E = B. Then also F = C (see L 1.3.8.1, L 1.3.8.2), and
ABCD is a Saccheri quadrilateral, and, consequently, a trapezoid by T 1.3.28. Suppose E 6= B. Then also F 6= C.
521 We are going to show that ∠ABE ≡ ∠DCF . Suppose that ∠ABC is acute. 522 Then E ∈ BC (see C 1.3.18.11),
whence ∠ABE = ∠ABC (see L 1.2.11.3). Similarly, we have F ∈ CB ,523 whence ∠DCF = ∠DCB. Taking into
account ∠ABC ≡ ∠BCD, we conclude that ∠ACE ≡ ∠DCF . Suppose now that ∠ABC is obtuse. Then ∠DCB is
also obtuse and, using C 1.3.18.11, L 1.2.11.3, and, additionally, T 1.3.6, we again find that ∠ACE ≡ ∠DCF . Now

we can write 524 BA ≡ CD & ∠ABE ≡ ∠DCF & ∠AEB ≡ ∠DFC
T1.3.19
=⇒ △AEB ≡ △DFC ⇒ AE ≡ DF . Finally,

applying T 1.3.28 to the Saccheri quadrilateral AEFD, we reach the required result. 2

Lemma 1.3.68.2. Consider an arbitrary isosceles quadrilateral ABCD, in which, by definition ADaBC , ∠ABC ≡
∠BCD, and BA ≡ CD. Suppose further that its sides (AB), CD do not meet. Then:

1. The diagonals (AC), (BD) concur in a point O.
2. The quadrilateral ABCD is convex.
3. The summit angles ∠BAD, ∠CDA are congruent.
4. Furthermore, we have BO ≡ CO, AO ≡ DO, ∠BAC ≡ ∠CDB, ∠BDA ≡ ∠CAD, ∠BCA ≡ ∠CBD,

∠ABD ≡ ∠DCA.

Proof. 1. See T 1.2.42 (see also the preceding lemma, L 1.3.68.1).
2. See L 1.2.62.3.
3, 4. AB ≡ DC & ∠ABC ≡ ∠DCB & BC ≡ CB

T1.3.4
=⇒ △ABC ≡ △DCB ⇒ ∠BAC ≡ ∠CDB & ∠BCA ≡

∠CBD & AC ≡ DB. AB ≡ DC & AD ≡ DA& BD ≡ CA
T1.3.10
=⇒ △BAD ≡ △CDA ⇒ ∠BAD ≡ ∠CDA& ∠BDA ≡

∠CAD & ∠ABD ≡ ∠CDA. Using L 1.2.11.15 we can write [AOC] & [DOB] ⇒ ∠BCO = ∠BCA& ∠CBO =
∠CBD & ∠DAO ≡ ∠DAC & ∠ADO ≡ ∠ADB. Hence ∠BCO ≡ ∠CBO, ∠ADO ≡ ∠DAO.

2

Corollary 1.3.69.1. Suppose that the (abstract) sum of the angles of any triangle △ABC equals π(abs,xt). Then
any Saccheri quadrilateral is a rectangle.

Proof. 2

Corollary 1.3.69.2. Suppose that the (abstract) sum of the angles of any triangle △ABC is less than π(abs,xt).
Then any Saccheri quadrilateral has two acute angles.

Proof. 2

A quadrilateral ABCD with three right angles (say, ∠DAB, ∠ABC, and ∠BCD) is called a Lambert quadrilat-
eral.

Corollary 1.3.69.3. Suppose that the (abstract) sum of the angles of any triangle △ABC equals π(abs,xt). Then
any Lambert quadrilateral is a rectangle.

Proof. 2

Corollary 1.3.69.4. Suppose that the (abstract) sum of the angles of any triangle △ABC is less than π(abs,xt).
Then any Lambert quadrilateral has an acute angle.

Proof. 2

520It is convenient to do this by substituting A ↔ D, B ↔ C and using the symmetry of the conditions of the lemma with respect to
these substitutions.
521Otherwise we would have E = B.
522We silently employ the facts that any angle is either acute, or right, or obtuse, and that there is at most one right angle in a right

triangle.
523If ∠ABC is acute, then the angle BCD, congruent to it, is also acute.
524T 1.3.16 ensures that ∠AEB ≡ ∠DFC.
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In general, it is not possible to introduce plane or space vectors in absolute geometry so that all axioms of vector
space concerning addition of vectors are satisfied. However, this can be successfully achieved on the line.

In all cases vectors are defined as equivalence classes of ordered abstract intervals. By definition, any zero ordered
abstract interval is equivalent to any zero ordered abstract interval (including itself) and is not equivalent to any

non-zero ordered abstract interval. Zero vectors will be denoted by
−→
O. We shall say that a non-zero ordered abstract

interval
−−→
AB is equivalent 525 to a non-zero ordered abstract interval

−−→
CD collinear to it (i.e. such that there is a line

a such that A ∈ a, B ∈ a, C ∈ a, D ∈ a), and write
−−→
AB ≡

−−→
CD if and only if:

Either
−−→
AB =

−−→
CD, i.e. A = C and B = D;

or AB ≡ CD and AC ≡ BD.
Evidently, the condition

−−→
AB ≡

−−→
CD is equivalent to

−→
AC ≡

−−→
BD.

Theorem 1.3.71. An ordered abstract interval
−−→
AB is equivalent to an ordered abstract interval

−−→
CD collinear to it

if and only if:
AB ≡ CD and in any order on a (direct or inverse) A ≺ B & C ≺ D or B ≺ A& D ≺ C.

Also,
−−→
AB ≡

−−→
CD iff either B = C = midAD, or A = D = midBC, or midBC = midAD. 526

Proof. Suppose AB ≡ CD, AC ≡ BD, and B 6= C. Then, obviously, A 6= D. In fact, the three points B, C are
necessarily distinct in this case. 527 Hence [ABC] ∨ [BAC] ∨ [ACB] by T 1.2.2. But all these options contradict
either AB ≡ CD or AC ≡ BD in view of C 1.3.13.4, L 1.3.13.11. Denote M ⇋ midBC. By definition of midpoint,
M = midBC ⇒ BM ≡ MC & [BMC]. For distinct collinear points A, B, C, D we have one of the following six orders
[ABCD], [ABDC], [ACBD], [ACDB], [ADBC], [ADCB] or one of the 18 orders obtained from these 6 orders either
by the simultaneous substitutions A ↔ B, C ↔ D, or by the simultaneous substitutions A ↔ C, B ↔ D (see T 1.2.7).
Due to symmetry of the conditions AB ≡ CD, AC ≡ BD, B 6= C, A = D with respect to these substitutions, we
can without any loss of generality restrict our consideration to the six orders mentioned above. Applying C 1.3.13.4,
L 1.3.13.11 we can immediately disregard [ABDC], [ACDB], [ADBC], and [ADCB]. For example, [ABDC] is
incompatible with AC ≡ BD. Thus, of the six cases [ABCD], [ABDC], [ACBD], [ACDB], [ADBC], [ADCB] only

[ABCD], [ACBD] are actually possible. Observe further that [ABCD]
L??
=⇒ (A ≺ B ≺ C ≺ D) ∨ (D ≺ C ≺ B ≺

A) ⇒ (A ≺ B)& (C ≺ D) ∨ (D ≺ C)& (B ≺ A). Similarly, [ACBD] ⇒ (A ≺ B)& (C ≺ D) ∨ (D ≺ C)& (B ≺ A).
Conversely, if both AB ≡ CD and (A ≺ B)& (C ≺ D) ∨ (D ≺ C)& (B ≺ A), of the six cases [ABCD], [ABDC],
[ACBD], [ACDB], [ADBC], [ADCB] only [ABCD], [ACBD] survive the conditions.528 Observe also that if we
have (A ≺ B)& (C ≺ D) ∨ (D ≺ C)& (B ≺ A), this remains true after the simultaneous substitutions A ↔ B,
C ↔ D, as well as A ↔ C, B ↔ D.

Suppose [ABCD]. Then [ABC] & [BMC] &
L1.2.3.2
=⇒ [ABM ] & [MCD] and AB ≡ CD & BM ≡ MC & [ABM ] & [MCD]

A1.3.3
=⇒

AM ≡ MD, i.e. M is the midpoint of AD as well. The case [ACBD] is considered by full analogy with [ABCD];
we need only to substitute B ↔ C and use AC ≡ BD in place of AB ≡ CD. 529

Conversely, suppose that either B = C = midAD, or A = D = midBC, or midBC = midAD. If B = C = midAD
or A = D = midBC the congruences AB ≡ CD and AC ≡ BD are obtained trivially from definition of midpoint.
Suppose now that midBC = midAD, where A 6= B, and the points A, B, C, D colline.530 Suppose further
that A, C lie (on the single line containing the points A, B, C, D) on the same side of M = midAD. Then
L 1.2.11.8 either A lies between M , C, or C lies between M , A, or A = C. Furthermore, taking into account that
M = midBC = midAD ⇒ [BMC] & [AMD] and using L 1.2.11.9, L 1.2.11.10, we see that B, D also lie on the same
side of the point M . Hence if A = C, then also B = D and evidently AB ≡ CD. 531 Suppose now [MCA]. Then

from L 1.3.9.1 we see that AC ≡ BD and [MBD]. [ACM ] & [CMB]
L1.2.3.2
=⇒ [ACB], [CMB] & [MBD]

L1.2.3.2
=⇒ [CBD].

[ACB] & [CBD] & AC ≡ BD & CB ≡ CB
A1.3.3
=⇒ AB ≡ CD. 532

2

Theorem 1.3.72. The relation of equivalence of ordered abstract intervals on a given line is indeed an equivalence
relation, i.e. it possesses the properties of reflexivity, symmetry, and transitivity.

Proof. Reflexivity and symmetry are obvious. In order to show transitivity, suppose
−−→
AB ≡

−−→
CD and

−−→
CD ≡

−−→
EF . In

view of the preceding theorem AB ≡ CD and in any order on a (direct or inverse) A ≺ B & C ≺ D or B ≺ A& D ≺ C.

525Strictly speaking, it is an offence against mathematical rigor to call a relation an equivalence before it is shown to possess the
properties of reflexivity symmetry sand transitivity. However, as long as these properties are eventually shown to hold, in practice this
creates no problem.
526In the last case we also assume that A 6= B (and then it follows in an obvious way that C 6= D), so that the abstract intervals AB,
CD make sense. We also require, of course, that three of (and thus all of) the points A, B, C, D are collinear.
527A 6= B, A 6= C because AB, AC make sense by hypothesis.
528In fact, using C 1.2.14.1, L 1.2.13.6, we can write [ABDC] ⇒ A ≺ D ≺ B ≺ C ⇒ (A ≺ B) & (D ≺ C), [ADBC] ⇒ A ≺ D ≺ B ≺
C ⇒ (A ≺ B)& (D ≺ C), [ADCB] ⇒ A ≺ D ≺ C ≺ B ⇒ (A ≺ B)& (D ≺ C), i.e. in all cases we have a contradiction in view of
L 1.2.13.5.
529Suppose [ACBD]. Then [ACB] & [CMB] & [CBD]

L1.2.3.2
=⇒ [ACM ] & [MBD] and AC ≡ BD&CM ≡ MB& [ACM ] & [MBD]

A1.3.3
=⇒

AM ≡ MD, i.e. M is the midpoint of AD.
530As mentioned above, it suffices to require that any three of them colline.
531In fact, BM ≡MC &AM ≡MD&A = C ⇒ BM ≡ MD, whence B = D by T 1.3.2.
532Observe that we do not need to consider the case [MAC] as the result of the simultaneous substitutions A ↔ C, B ↔ D which do

not alter our assumptions.
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Similarly, CD ≡ EF and in any order on a (direct or inverse) C ≺ D & E ≺ F or D ≺ C & F ≺ E. Suppose
A ≺ B & C ≺ D. Then necessarily C ≺ D & E ≺ F . Thus, we have A ≺ B & E ≺ F . Since also, obviously,

AB ≡ CD & CD ≡ EF
T1.3.1
=⇒ AB ≡ EF . Thus, in this case

−−→
AB ≡

−−→
CD. The case B ≺ A& D ≺ C is considered

similarly. 2

A line vector is a class of equivalence of ordered abstract intervals on a given line a. Denote the class of equivalence

of ordered abstract intervals on a given line a 533 containing the ordered abstract interval
−−→
AB by

−−→
AB. We shall also

denote vectors by small letters as follows: −→a (of course, the letter a used in this way has nothing to do with the
letter a employed to denote lines; this coincidence merely reflects the regretful (but objective) tendency to run out

of the letters of the alphabet in mathematical and scientific notation),
−→
b , −→c , . . ..

Lemma 1.3.73.1. Given an ordered abstract interval
−−→
AB and a point C on the line aAB, there is exactly one ordered

abstract interval
−−→
CD (having C as its initial point), equivalent to

−−→
AB on aAB.

Proof. If A = C, we just let B = D. Suppose now that B, C lie on the same side of A. In view of L 1.2.11.8 this
implies that either [ACB], or B = C, or [ABC]. Using A 1.3.1, choose a point D such that AB ≡ CD and the
points A, D lie on opposite sides of the point C (i.e. D ∈ Cc

A). Suppose first that [ACB]. Then B, D lie on the
same side of the point C (see L 1.2.11.10), and using L 1.2.11.8 we see that either [CDB], or B = D, or [CBD]. But
the first two options would give CD < AB by C 1.3.13.4, which contradicts AB ≡ CD in view of L 1.3.13.11. In

the case when [ABC], we can write [ABC] & [ACD]
L1.2.3.2
=⇒ [BCD]. We see that in all cases we have either [ACBD],

or B = C, or [ABCD], which, together with AB ≡ CD in view of the preceding theorem (T 1.3.72) implies that
−−→
AB ≡

−−→
CD. Suppose now that B, C lie on opposite sides of A, i.e. [CAB]. Then from C 1.3.9.2 there is a unique point

D ∈ (CB) such that AB ≡ CD. Obviously, in any order on aAB we either have both C ≺ A ≺ B and C ≺ D ≺ B,
or B ≺ A ≺ C and B ≺ D ≺ C from T 1.2.14. Thus, we have either both A ≺ B and C ≺ D, or B ≺ A and

D ≺ C, and using the preceding theorem (T 1.3.72) we again conclude that
−−→
AB ≡

−−→
CD. To show uniqueness suppose

−−→
AB ≡

−−→
CD,

−−→
AB ≡

−−→
CE, where C, D, E ∈ aAB and D 6= E, so that

−−→
CD,

−−→
CE are distinct ordered abstract intervals.

Since from the preceding theorem (T 1.3.72) we have both AB ≡ CD and AB ≡ CE, in view of T 1.3.2 (see also
T 1.3.1) the points D, E must lie on opposite sides of C if they are to be distinct. Hence in any order on aAB we

have either E ≺ C ≺ D or D ≺ C ≺ E. But from our assumption
−−→
AB ≡

−−→
CD,

−−→
AB ≡

−−→
CE and the preceding theorem

(T 1.3.72) it is clear that we must have either both E ≺ C, D ≺ C, or both C ≺ D and C ≺ E. Thus, in view of

L 1.2.13.5 we obtain a contradiction, which shows that in fact the point D ∈ aAB with the property
−−→
AB ≡

−−→
CD is

unique. 2

Given two vectors −→a ,
−→
b , we define their sum −→a +

−→
b as follows: By definition, −→a +

−→
O =

−→
O + −→a = −→a for any

vector a including the case when −→a is itself a zero vector. In order to define the sum of non-zero vectors −→a ,
−→
b , take

an ordered abstract interval
−−→
AB ∈ −→a and construct an ordered abstract interval

−−→
BC ∈

−→
b . This is always possible

to do by the preceding lemma (L 1.3.73.1). The sum −→a +
−→
b of the vectors −→a and

−→
b is then by definition the vector

−→c (which, by the way, may happen to be a zero vector) containing the ordered abstract interval
−→
AC.

To establish that the sum of −→a ,
−→
b is well defined, consider ordered abstract intervals

−−→
AB ∈ −→a ,

−−−→
A′B′ ∈ −→a ,

−−→
BC ∈

−→
b ,

−−−→
B′C′ ∈

−→
b . We need to show that

−→
AC ≡

−−→
A′C′. Since A 6= B and B 6= C (we disregard the trivial cases

where either −→a =
−→
O or

−→
b =

−→
O and where the result is obvious), by T 1.2.2 we have either [ABC], or [ACB], or

A = C, or [CAB]. Suppose first [ABC]. Then by T 1.2.14 we have either A ≺ B ≺ C or C ≺ B ≺ A. Assuming
for definiteness the first option (the other option is handled automatically by the substitutions A ↔ C, A′ ↔ C′)

and using T 1.3.72, we can write
−−→
AB ≡

−−−→
A′B′ &

−−→
BC ≡

−−−→
B′C′ & A ≺ B ≺ C ⇒ A′ ≺ B′ ≺ C′ L1.2.13.6

=⇒ A′ ≺ C′.

Also, [A′B′C′] from T 1.2.14, whence [ABC] & [A′B′C′] & AB ≡ A′B′ & BC ≡ B′C′ A1.3.3
=⇒ AC ≡ A′C′. Thus, we

have AC ≡ A′C′ and either both A ≺ C and A′ ≺ C′, or C ≺ A and C′ ≺ A′, which means that
−→
AC ≡

−−→
A′C′.

Suppose now that [ACB]. Then A ≺ C ≺ B (see T 1.2.14). Using the fact that
−−→
AB ≡

−−−→
A′B′ and

−−→
BC ≡

−−−→
B′C′ and

T 1.3.72, we can write A′ ≺ B′, C′ ≺ B′. Hence by C 1.2.14.2 the points A′, C′ are on the same side of B′. But

[ACB] & C′ ∈ B′
A′ & AB ≡ A′B′ & BC ≡ B′C′ L1.3.9.1

=⇒ AC ≡ A′C′ & [A′C′B′]. Using T 1.2.14, we see again that

either both A ≺ C and A′ ≺ C′, or C ≺ A and C′ ≺ A′. Suppose A = C. Then
−−→
AB ≡

−−−→
A′B′ &

−−→
BC ≡

−−−→
B′C′ & C =

A ≺ B
T1.3.72
=⇒ A′ ≺ B′ & C′ ≺ B′ C1.2.14.2

=⇒ C′ ∈ B′
A′ . Hence C′ = B′ by T 1.3.2. Finally, for [CAB] the result is

obtained immediately from the already considered case [ACB] by the simultaneous substitutions A ↔ C, A′ ↔ C′.

Theorem 1.3.73. Addition of vectors on a line is commutative: −→a +
−→
b =

−→
b + −→a .

Proof. Taking an ordered abstract interval
−−→
AB ∈ −→a and laying off from B an ordered abstract interval

−−→
BC ∈

−→
b , we

see (from definition of addition of line vectors) that
−→
AC ∈ −→a +

−→
b . Now laying off

−−→
CD ∈ −→a , we see that

−−→
BD ∈

−→
b +−→a .

Since the vector −→a is an equivalence class of ordered abstract intervals, we have
−−→
AB ≡

−−→
CD. If A = C, then using the

preceding lemma (L 1.3.73.1) we see that also B = D, which implies that −→a +
−→
b =

−→
b +−→a =

−→
O. Suppose now A 6= C

533We usually assume the line a to be known and fixed and so do not include it in our notation for line vectors.
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and, consequently, B 6= D. Then (from definition) both AB ≡ CD and AC ≡ BD, which implies the equivalence

of the ordered abstract intervals:
−−→
AB ≡

−−→
CD if and only if

−→
AC ≡

−−→
BD. But from our construction

−→
AC ∈ −→a +

−→
b ,

−−→
BD ∈

−→
b + −→a , whence from definition of vector as a class of congruent intervals we have −→a +

−→
b =

−→
b + −→a , as

required. 2

Theorem 1.3.74. Addition of vectors on a line is associative: (−→a +
−→
b ) + −→c = −→a + (

−→
b + −→c ).

Proof. Taking an ordered abstract interval
−−→
AB ∈ −→a , laying off from B an ordered abstract interval

−−→
BC ∈

−→
b , and

then laying off
−−→
CD ∈ −→a , we see that

−→
AC ∈ −→a +

−→
b ,

−−→
BD ∈

−→
b + −→c . Therefore,

−−→
AD ∈ (−→a +

−→
b ) + −→c , −→a + (

−→
b + −→c ),

whence (recall that classes of equivalence either have no common elements or coincide) (−→a +
−→
b )+−→c = −→a +(

−→
b +−→c ).

2

Now observe that for any vector −→a there is, evidently, exactly one vector
−→
b such that −→a +

−→
b =

−→
b + −→a =

−→
O.

We shall denote this vector −−→a and refer to it as the vector, opposite to −→a .

Note also that, given a representative
−−→
AB of a vector −→a , the vector −−→a will be the class of ordered intervals

equivalent to
−−→
BA.

We are now in a position to define the subtraction of arbitrary vectors −→a ,
−→
b as follows: −→a −

−→
b ⇋ −→a + (−−→a ).

We see that all vectors on a given line a form an abelian additive group.
Consider a line a and a vector

−→
t on this line. We define the transformation f = transl

(a,
−→
t )

of translation of

the line a by the vector
−→
t as follows: Take a point A ∈ a and lay off the vector

−→
t from it to obtain the ordered

(abstract) interval
−−→
AB ∈

−→
t . Then by definition the point B is the image of the point A under translation

−→
t . We

write this as B = transl
(a,

−→
t )

(A).

Theorem 1.3.75. A translation by a vector
−→
t (lying on a) is a bijective sense-preserving isometric transformation

of the line a.

Proof. Consider an arbitrary point A ∈ a. To establish surjectivity we have to find a point B ∈ a such that

A = transl
(a,

−→
t )

(B). This is achieved by laying off the vector −
−→
t from A to obtain the ordered interval

−−→
AB whose

end B, obviously, has the property that A = transl
(a,

−→
t )

(B).

Now consider two points A, B ∈ a. Denote A′ ⇋ transl
(a,

−→
t )

(A), B′ ⇋ transl
(a,

−→
t )

(B). Since both
−−→
AA′ ∈

−→
t ,

−−→
BB′ ∈

−→
t , we have

−−→
AA′ ≡

−−→
BB′. But this is equivalent to

−−→
AB ≡

−−−→
A′B′, which, in turn, implies that AB ≡ A′B′

and either (A ≺ B)& (A′ ≺ B′), or (B ≺ A)& (B′ ≺ A′). 534 Thus, we see that transl
(a,

−→
t )

is isometric (preserves

distances) and, in particular, it is injective (transforms different points into different points); furthermore, it preserves
direction. 2

Theorem 1.3.76. Any isometry on a line is either a translation or a reflection.

Proof. We know from C 1.3.29.1 that any isometry f on a line a is either sense-preserving or sense reversing.
Consider first the case where f is a sense-reversing transformation. Take an arbitrary point A ∈ a. Denote A′ ⇋

transl
(a,

−→
t )

(A). We are going to show that the transformation f is in this case the reflection of the line a in the point

O, where, by definition, O is the midpoint of the interval AA′. 535 To achieve this, we need to check that for any
point B ∈ a distinct from A we have BO ≡ OB′, where B′ ⇋ transl

(a,
−→
t )

(B). Of the two possible orders on a with

O as origin we choose the one in which the ray OA is the first. 536

Suppose first that B ≺ A on a in this order. Then A′ ≺ B′ by assumption. Since A′ lies on the second ray (on
the opposite side of O from A), so does B′ (otherwise we would have B′ ≺ A′). Furthermore, from the definition of

order on a we have [OA′B′]. Now we can write [OAB] & [OA′B′] & OA ≡ OA′ & AB ≡ A′B′ A1.3.3
=⇒ OB ≡ OB′.

Suppose now A ≺ B. First assume that B ∈ OA. Evidently, in this case the points O, B′ lie on the same side
of the point A′. (Otherwise we would have [OA′B′], whence A′ ≺ B′ in view of the definition of order on a, and
we arrive at a contradiction with our assumption that order is reversed.) [ABO] & B′ ∈ A′

O & AO ≡ A′O & AB ≡

A′B′ L1.3.9.1
=⇒ OB ≡ OB′.

Consider now the case B ∈ Oc
A, i.e. [AOB]. As above, we see that B′ ∈ A′

O. In view of L 1.2.11.8 we

must have either [A′B′O], or B′ = O, or A′OB′. But [A′B′O]
C1.3.13.4

=⇒ A′B′ < A′O, [AOB]
C1.3.13.4

=⇒ AO < AB,
AO < AB & AB ≡ A′B′ & A′B′ < A′O′ ⇒ AO < A′O′ (see L 1.3.13.6 – L 1.3.13.8), which contradicts AO ≡ A′O′

(see L 1.3.13.11).
Thus, we see that in the case when the isometry on the line a reverses order, it is a reflection.
Finally, consider the case when the transformation is sense-preserving. Then for arbitrary points A, B ∈ a we

have AB ≡ A′B′ (isometry!) and either (A ≺ B)& (A′ ≺ B′) or (B ≺ A)& (B′ ≺ A′). But in view of T 1.3.71 this

534In other words, we can say that the vectors
−→
AB,

−−−→
A′B′ have equal magnitudes and the same direction.

535Of course, we take care to choose the point A in such a way that A′ 6= A. This is always possible for a sense-reversing transformation.
536How we choose this order is purely a matter of convenience.
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is equivalent to
−−→
AB ≡

−−−→
A′B′, which, in turn, is equivalent to

−−→
AA′ ≡

−−→
BB′. We see that our transformation in this case

is the translation by the vector defined as the class of ordered intervals equivalent to
−−→
AA′.

2

1.4 Continuity, Measurement, and Coordinates

Axioms of Continuity

The continuity axioms allow us to put into correspondence

– With every interval a positive real number called the measure or length of the interval;

– With every point of an arbitrary line a real number called the coordinate of the point on the line;

– With every point of an arbitrary plane an ordered pair of numbers called the (plane) coordinates of the point;

– With every point of space an ordered triple of real numbers called spatial coordinates the point.

These correspondences enable us to study geometric objects by powerful analytical methods. This study forms
the subject of analytical geometry.

Furthermore, from the continuity axioms, combined with the axioms listed in the preceding sections, its follows
that the set Pa of all points of an arbitrary line a has essentially the same topological properties as the ordered field
R. Consequently, the set Pα of all points of an arbitrary plane has essentially the same topological properties as
R2 (or C, depending on the viewpoint), and the class of all points (of space) has essentially the same topological
properties as R3.

Axiom 1.4.1 (Archimedes Axiom). Given a point P on a ray A0A1
, there is a positive integer n such that if

[Ai−1AiAi+1] for all i ∈ Nn−1 and A0A1 ≡ A1A2 ≡ · · · ≡ An−1An then [A0PAn].

By definition, a sequence of closed sets X1,X2, . . .Xn, . . . is said to be nested if X1 ⊃ X2 ⊃ . . . ⊃ Xn ⊃
. . ., i.e. if every set of the sequence contains the next. In particular, for a nested sequence of closed intervals
[A1B1], [A2, B2], . . . , [AnBn], . . . we have [A1B1] ⊃ [A2, B2] ⊃ . . . ⊃ [AnBn] ⊃ . . ..

Axiom 1.4.2 (Cantor’s Axiom). Let [EiFi], i ∈ {0} ∪ N be a nested sequence of closed intervals with the prop-
erty that given (in advance) an arbitrary interval B1B2, there is a number n ∈ {0} ∪ N such that the (abstract)
interval EnFn is shorter than the interval B1B2. Then there is at least one point B lying on all closed intervals
[E0F0], [E1F1], . . . , [EnFn], . . . of the sequence.

The following lemma gives a more convenient formulation of the Archimedes axiom:

Lemma 1.4.1.1. Given any two intervals A0B, CD, there is a positive integer n such that if [Ai−1AiAi+1] for all
i ∈ Nn−1 and ∀i ∈ Nn CD ≡ Ai−1Ai then [A0BAn]. 537

Proof. Using A 1.3.1, choose A1 ∈ A0B such that CD ≡ A0A1
. Then by L 1.2.11.3 B ∈ A0A1

, and ∀i ∈
Nn−1 [Ai−1AiAi+1] together with CD ≡ A0A1 ≡ A1A2 ≡ · · · ≡ An−1An by A 1.4.1 implies [A0BAn]. 2

It can be further refined as follows:

Lemma 1.4.1.2. Given any two intervals A0B, CD, there is a positive integer n such that if [Ai−1AiAi+1] for all
i ∈ Nn−1 and ∀i ∈ Nn CD ≡ Ai−1Ai then B ∈ [An−1An).538

Proof. Let n be a minimal element of the set of natural numbers m such that if [Ai−1AiAi+1] for all i ∈ Nm−1 and
∀i ∈ Nm CD ≡ Ai−1Ai then [A0BAm]. (The set is not empty by the preceding lemma L 1.4.1.1.) By L 1.2.7.7

∃i ∈ Nn B ∈ [Ai−1Ai). But B ∈ [Ai−1Ai)
L1.2.7.7
=⇒ B ∈ [A1Ai), so i < n would contradict the minimality of n.

Therefore, i = n and B ∈ [Ai−1Ai), q.e.d. 2

Lemma 1.4.1.3. Given any two intervals A0B, CD, the interval A0B can be divided into congruent intervals shorter
than CD.

Proof. Using L 1.3.21.11, L 1.4.1.1, find a positive integer n such that ∀i ∈ Nn−1 [Ai−1AiAi+1], ∀i ∈ Nn CD ≡

Ai−1Ai, and [A0BAn]. We have [A0BAn]
C1.3.13.4

=⇒ A0B < A0An. Hence, dividing (according to C 1.3.23.1) A0B into
2n congruent intervals and taking into account that ∀n ∈ N n < 2n, we obtain by C 1.3.21.10 intervals shorter than
CD. 2

537In other words, given any two intervals A0B, CD, there is a positive integer n such that if the interval CD is laid off n times from
the point A0 on the ray A0B , reaching the point An, then the point B divides A0 and An.
538In other words, for any two intervals A0B, CD, there is a natural number n such that if CD is laid off n times from the point A0 on
A0B , reaching An, then the point B lies on the half - open interval [An−1An).
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Lemma 1.4.1.4. Let [EiFi], i ∈ {0} ∪ N be a nested sequence of closed intervals with the property that given (in
advance) an arbitrary interval B1B2, there is a number n ∈ {0}∪N such that the (abstract) interval EnFn is shorter
than the interval B1B2. Then there is at most one point B lying on all closed intervals [E0F0], [E1F1], . . . , [EnFn], . . .
of the sequence. 539

Proof. Suppose the contrary, i.e. let there be two points B1, B2 lying on the intervals [E0F0], [E1F1], . . . , [EnFn], . . ..
Then, using C 1.3.13.4, we see that ∀n ∈ {0} ∪ N B1B2 ≤ EnFn. On the other hand, we have, by hypothesis
∃n ∈ {0} ∪ N EnFn < B1B2. Thus, we arrive at a contradiction with L 1.3.13.10, L 1.3.13.11. 2

In this book we shall refer to the process whereby we put into correspondence with any interval its length as the
measurement construction for the given interval.

We further assume that all intervals are measured against the interval CD, chosen and fixed once and for all.
This ”etalon” interval (and, for that matter, any interval congruent to it) will be referred to as the unit interval, and
its measure (length) as the unit of measurement.

Given an interval A0B, its measurement construction consists of the following steps (countably infinite in number):
540

– Step 0: Using L 1.3.21.11, L 1.4.1.2, construct points A1, A2, . . . , An−1, An such that [Ai−1AiAi+1] for all
i ∈ Nn−1, CD ≡ A0A1 ≡ A1A2 ≡ · · ·An−1An, and B ∈ [An−1An). Denote E0 ⇋ An−1, F0 ⇋ An, e0 ⇋ n − 1,
f0 ⇋ n.

The other steps are defined inductively:
– Step 1: Denote C1 the midpoint of An−1An, i.e. the point C1 such that [An−1C1An] and An−1C1 ≡ C1An. By

T 1.3.22 this point exists and is unique. Worded another way, the fact that C1 is the midpoint of An−1An means
that the interval D1,0D1,2 is divided into two congruent intervals D1,0D1,1, D1,1D1,2, where we denote D1,0 ⇋ An−1,

D1,1 ⇋ C1, D1,2 ⇋ An. 541 We have B ∈ [D1,0D1,2)
L1.2.7.7
=⇒ B ∈ [D1,0D1,1)∨B ∈ B ∈ [D1,1D1,2). If B ∈ [D1,0D1,1),

we let, by definition E1 ⇋ D1,0, F1 ⇋ D1,1, e1 ⇋ n − 1, f1 ⇋ e1 + 1
2 = n − 1 + 1

2 . For B ∈ [D1,1D1,2), we denote
E1 ⇋ D1,1, F1 ⇋ D1,2, f1 ⇋ n, e1 ⇋ f1−

1
2 = n− 1

2 . Obviously, in both cases we have the inclusions [E1F1] ⊂ [E0F0]
and [e1f1] ⊂ [e0f0].

.....................................................................................................
Step m:
As the result of the previous m − 1 steps the interval An−1An is divided into 2m−1 congruent intervals

Dm−1,0Dm−1,1, Dm−1,1Dm−1,2, . . . , Dm−1,2m−1−1Dm−1,2m−1 , where we let Dm−1,0 ⇋ An−1, Dm−1,2m−1 ⇋ An .
That is, we have Dm−1,0Dm−1,1 ≡ Dm−1,1Dm−1,2 ≡ · · · ≡ Dm−1,2m−1−2Dm−1,2m−1−1 ≡ Dm−1,2m−1−1Dm−1,2m−1

and [Dm−1,j−1Dm−1,jDm−1,j+1], j = 1, 2, . . . , 2m−1−1. We also know that B ∈ [Em−1Fm−1), em−1 = (n−1)+ k−1
2m−1 ,

fm−1 = (n − 1) + k
2m−1 , where Em−1 = Dm−1,k−1, Fm−1 = Dm−1,k, k ∈ N2m−1 . Dividing each of the intervals

Dm−1,0Dm−1,1, Dm−1,1Dm−1,2, . . . Dm−1,2m−1−1Dm−1,2m−1 into two congruent intervals 542, we obtain by T 1.3.21
the division of An−1An into 2m−1·2 = 2m congruent intervals Dm,0Dm,1, Dm,1Dm,2, . . . , Dm,2m−1Dm,2m , where we let
Dm,0 ⇋ An−1, Dm,2m ⇋ An. That is, we have Dm,0Dm,1 ≡ Dm,1Dm,2 ≡ · · · ≡ Dm,2m−2Dm,2m−1 ≡ Dm,2m−1Dm,2m

and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1. Furthermore, note that (see L 1.2.7.3) when n > 1 the points
A0, . . . , An−1 = Dm,0, Dm,1, . . . , Dm,2m−1, An = Dm,2m are in order [A0 . . .Dm,0Dm,1 . . . Dm,2m−1Dm,2m ]. Denote
Cm ⇋ mid Em−1Fm−1. By L 1.2.7.7 B ∈ [Em−1Fm−1) ⇒ [Em−1Cm) ∨ B ∈ [CmFm−1). In the former case we
let, by definition, Em ⇋ Em−1, Fm ⇋ Cm, em ⇋ em−1, fm ⇋ em + 1

2m ; in the latter Em ⇋ Cm, Fm ⇋ Fm−1,
em ⇋ em−1, fm ⇋ fm−1 −

1
2m . Obviously, we have in both cases [EmFm] ⊂ [Em−1Fm−1)], [em, fm] ⊂ [em−1, fm−1],

fm−em = 1
2m . Also, note that if Em = Dm,l−1, Fm = Dm,l, l ∈ N2m , then em = (n−1)+ l−1

2m , fm = (n−1)+ l
2m .543

Observe further that if n − 1 > 0, concurrently with the mth step of the measurement construction, we can divide
each of the intervals A0A1, A1A2, . . . , An−2An−1 into 2m intervals. Now, using T 1.3.21, we can conclude that the
interval A0Em, whenever it is defined, 544 turns out to be divided into (n− 1)2m + l− 1 congruent intervals, and the
interval A0Fm into (n − 1)2m + l congruent intervals.

Continuing this process indefinitely (for all m ∈ N), we conclude that either ∃m0 Em0 = B, and then, obviously,
∀m ∈ N \ Nm0 Em = B; or ∀m ∈ N B ∈ (EmFm). In the first case we also have ∀p ∈ N em0+p = em0 , and we let,
by definition, |A0B| ⇋ em0 . In the second case we define |A0B| to be the number lying on all the closed numerical

539Thus, we can now reformulate Cantor’s Axiom A 1.4.2 in the following form: Let [EiFi], i ∈ {0} ∪ N be a nested sequence of closed
intervals with the property that given (in advance) an arbitrary interval B1B2, there is a number n ∈ {0}∪N such that the (abstract) inter-
val EnFn is shorter than the interval B1B2. Then there is exactly one point B lying on all closed intervals [E0F0], [E1F1], . . . , [EnFn], . . .

of the sequence. We can write this fact as B =
∞⋂

i=0
[EiFi].

540The argumentation used in proofs in this section will appear to be somewhat more laconic than in the preceding ones. I believe that
the reader who has reached this place in sequential study of the book does not need the material to be chewed excessively before being
put into his mouth, as it tends to spoil the taste.
541The first index here refers to the step of the measurement construction.
542In each case, such division is possible and unique due to T 1.3.22.
543In fact, after m− 1 steps we have B ∈ [Dm−1,k−1Dm−1,k) = [Em−1Fm−1), and after m steps B ∈ [Dm−1,l−1Dm−1,l) = [EmFm).

First, consider the case B ∈ [Em−1Cm), where Cm = midEm−1Fm−1. Then, evidently, l − 1 = 2(k − 1) and (see above) em =
em−1, fm = em + 1/2m. Hence we have em = em−1 = (n − 1) + (k − 1)/2m−1 = (n − 1) + 2(k − 1)/2m = (n − 1) + (l − 1)/2m,
fm = (n − 1) + (l − 1)/2m + 1/2m = (n − 1) + l/2m. Suppose now B ∈ [CmFm−1). Then l = 2k and fm = fm−1. Hence
fm = fm−1 = (n− 1) + k/2m−1 = (n− 1) + 2k/2m = (n− 1) + l/2m, em = (n− 1) + l/2m − 1/2m = (n− 1) + (l − 1)/2m.
544The interval A0Em is defined when either n > 1 or l > 1.
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intervals [em, fm], m ∈ N. We can do so because the closed numerical intervals [em, fm], m ∈ N, as well as the closed
point intervals [EmFm], form a nested sequence, where the difference fm − em = 1

2m can be made less than any given
positive real number ǫ > 0. 545 Thus, we have proven

Theorem 1.4.1. The measurement construction puts into correspondence with every interval AB a unique positive
real number |AB| called the length, or measure, of AB. A unit interval has length 1.

Note than we can write

A0B < · · · ≤ A0Fm ≤ A0Fm−1 ≤ · · · ≤ A0F1 ≤ A0F0. (1.6)

and

e0 ≤ e1 ≤ · · · ≤ em−1 ≤ em ≤ · · · ≤ |A0B| < · · · ≤ fm ≤ fm−1 ≤ · · · ≤ f1 ≤ f0. (1.7)

If n > 1, we also have

A0E0 ≤ A0E1 ≤ · · · ≤ A0Em−1 ≤ A0Em ≤ · · · ≤ A0B. (1.8)

Some additional properties of the measurement construction are given by

Lemma 1.4.2.1. Given an arbitrary interval GH, in the measurement construction for any interval A0B there is
an (appropriately defined) interval EmFm shorter than GH.

Proof. By L 1.4.1.3 the interval An−1An (appropriately defined for the measurement construction in question) can
be divided into some number m of congruent intervals shorter than GH . Since m < 2m, dividing An−1An into 2m

intervals at the mthstep of the measurement construction for A0B gives by L 1.3.21.9 still shorter intervals. Hence
the result. 2

This lemma shows that even if n = 1, for sufficiently large m the intervals A0Em, A0Em+1, . . . are defined, i.e.
Em 6= A0, etc., and we have 546

A0Em ≤ A0Em+1 ≤ · · · ≤ A0B. (1.9)

Lemma 1.4.2.2. In the measurement process for an interval A0B there can be no more than one point lying on all
closed intervals [E0F0], [E1F1], . . . , [EnFn], . . . defined appropriately for the measurement construction in question,
and this point, when its exists, coincides with the point B.

Proof. As is evident from our exposition of the measurement construction, the closed intervals [E0F0], [E1F1], . . . , [EnFn], . . .
form a nested sequence, i.e. we have [E1F1] ⊃ [E2, F2] ⊃ . . . ⊃ [EnFn] ⊃ . . .. The result then follows from L 1.4.2.1,
L 1.4.1.4. 2

Theorem 1.4.2. Congruent intervals have equal lengths.547

Proof. Follows from C 1.3.21.14, L 1.3.21.12, L 1.3.21.13 applied to the measurement constructions of these intervals.
In fact, let A0B ≡ A′

0B
′. On step 0, if B ∈ [An−1An) then, by C 1.3.21.14, also B′ ∈ [A′

n−1A
′
n), and therefore

e′0 = e0, f ′
0 = f0.

548 If B ∈ [D1,0D1,1) then (again by C 1.3.21.14) B′ ∈ [D′
1,0D

′
1,1), and if B ∈ [D1,1D1,2) then B′ ∈

[D′
1,1D

′
1,2). Therefore (see the exposition of measurement construction) e′1 = e1, f ′

1 = f1. Now assume inductively

that after the m − 1thstep of the measurement constructions the interval An−1An is divided into 2m−1 congruent
intervals Dm−1,0Dm−1,1, Dm−1,1Dm−1,2, . . . , Dm−1,2m−1−1Dm−1,2m−1 with Dm−1,0 = An−1, Dm−1,2m−1 = An and
A′

n−1A
′
n is divided into 2m−1 congruent intervals D′

m−1,0D
′
m−1,1, D

′
m−1,1D

′
m−1,2, . . . , D

′
m−1,2m−1−1D

′
m−1,2m−1 with

D′
m−1,0 = A′

n−1, D′
m−1,2m−1 = A′

n. Then we have (induction assumption implies here that we have the same k in both

cases) B ∈ [Em−1Fm−1), em−1 = (n−1)+ k−1
2m−1 , fm−1 = (n−1)+ k

2m−1 , where Em−1 = Dm−1,k−1, Fm−1 = Dm−1,k,

k ∈ N2m−1 and B′ ∈ [E′
m−1F

′
m−1), e′m−1 = (n − 1) + k−1

2m−1 , f ′
m−1 = (n − 1) + k

2m−1 , where E′
m−1 = D′

m−1,k−1,
F ′

m−1 = D′
m−1,k, k ∈ N2m−1 .

At the mthstep we divide each of the intervals Dm−1,0Dm−1,1, Dm−1,0Dm−1,1, . . . Dm−1,2m−1−1Dm−1,2m−1 into
two congruent intervals to obtain the division of An−1An into 2m congruent intervals Dm,0Dm,1, Dm,1Dm,2, . . . ,
Dm,2m−1Dm,2m , where, by definition, Dm,0 ⇋ An−1, Dm,2m ⇋ An. That is, we have Dm,0Dm,1 ≡ Dm,1Dm,2 ≡
· · · ≡ Dm,2m−2Dm,2m−1 ≡ Dm,2m−1Dm,2m and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1.

545By the properties of real numbers, these conditions imply that the number lying on all closed numerical intervals [em, fm] exists and
is unique.
546In fact, once EmFm is shorter than A0B, the point Em cannot coincide with A0 any longer. To demonstrate this, take

the case n = 1 (if n > 1 we have the result as a particular case of the equation (1.7)) and consider the congruent intervals
Dm,0Dm,1, Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m into which the interval A0A1 = A0 = An is divided after m steps of the measure-
ment construction. If B were to lie on the first of the division intervals, as it would be the case if Em = A0, we would have
B ∈ [Dm,0Dm,1) = [EmFm), whence (see C 1.3.13.4) A0B < EmFm, contrary to our choice of m large enough for the inequality
EmFm < A0B to hold.
547In particular, every unit interval has length 1.
548For the duration of this proof, all elements of the measurement construction for A′

0B′ appear primed; for other notations, please
refer to the exposition of the measurement construction.
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Similarly, we divide each of the intervals D′
m−1,0D

′
m−1,1, D

′
m−1,0D

′
m−1,1, . . .D

′
m−1,2m−1−1D

′
m−1,2m−1 into two con-

gruent intervals to obtain the division of A′
n−1A

′
n into 2m congruent intervals D′

m,0D
′
m,1, D

′
m,1D

′
m,2, . . . , D

′
m,2m−1D

′
m,2m ,

where D′
m,0 ⇋ A′

n−1, D′
m,2m ⇋ A′

n. That is, we have D′
m,0D

′
m,1 ≡ D′

m,1D
′
m,2 ≡ · · · ≡ D′

m,2m−2D
′
m,2m−1 ≡

D′
m,2m−1D

′
m,2m and [D′

m,j−1D
′
m,jD

′
m,j+1], j = 1, 2, . . . , 2m − 1.

Since the points (A0, . . . , )An−1 = Dm,0, Dm,1, . . . , Dm,2m−1, An = Dm,2m
549 are in order

[(A0 . . .)Dm,0Dm,1 . . . Dm,2m−1Dm,2m and the points (A′
0, . . . , )A

′
n−1 = D′

m,0, D
′
m,1, . . . , D

′
m,2m−1, A

′
n = D′

m,2m are
in order [(A′

0 . . .)D′
m,0D

′
m,1 . . . D′

m,2m−1D
′
m,2m , if B ∈ [EmFm) = [Dm,l−1Dm,l) then by C 1.3.21.14 B′ ∈ [E′

mF ′
m) =

[D′
m,l−1D

′
m,l), and we have e′m = em = (n − 1) + l−1

2m , f ′
m = fm = (n − 1) + l

2m . Furthermore, if B = Em then by
L 1.3.21.13 also B′ = E′

m and in this case |A0B| = em, |A′
0B

′| = e′m, whence |A′
0B

′| = |A0B|. On the other hand, if
∀m ∈ N B ∈ (EmFm), and, therefore (see L 1.3.21.12), ∀m ∈ N B′ ∈ (E′

mF ′
m), then both ∀m ∈ N |A0B| ∈ (em, fm)

and ∀m ∈ N |A′
0B

′| ∈ (e′m, f ′
m). But since, as we have shown, e′m = em, f ′

m = fm, using the properties of real
numbers, we again conclude that |A′

0B
′| = |A0B|. 2

Note that the theorem just proven shows that our measurement construction for intervals is completely well-
defined. When applied to the identical intervals AB, BA, the procedure of measurement gives identical results.

Lemma 1.4.3.1. Every interval, consisting of k congruent intervals resulting from division of a unit interval into
2m congruent intervals, has length k/2m.

Proof. Given an interval A0B, consisting of k congruent intervals resulting from division of a unit interval into 2m

congruent intervals, at the mthstep of the measurement construction for A0B we obtain the interval A0Em consisting
of k intervals resulting from division of the unit interval into 2m congruent intervals, and we have A0Em ≡ A0B(see
L 1.2.21.6). Then by T 1.3.2 Em = B. As explained in the text describing the measurement construction, in this
case we have k = (n − 1)2m + l − 1. Hence |A0B| = |A0Em| = em = (n − 1) + (l − 1)/2m = k/2m. 2

Theorem 1.4.3. If an interval A′B′ is shorter than the interval A0B then |A′B′| < |A0B|.

Proof. Using L 1.3.13.3, find B1 ∈ (A0B) so that A′B′ ≡ A0B1. Consider the measurement construction of A0B,
which, as will become clear in the process of the proof, induces the measurement construction for A0B1. Suppose
B ∈ [An−1An), n ∈ N. Then by L 1.2.9.4 B1 ∈ [Ak−1Ak), k ≤ n, k ∈ N. Agreeing to supply (whenever it is necessary
to avoid confusion) the numbers (and sometimes points) related to the measurement constructions for A0B, A0B1

with superscript indices (B), (B1), respectively, from 1.7 we can write for the case k < n: e
(B1)
0 ≤ |A0B1| < f

(B1)
0 ≤

e
(B)
0 ≤ |A0B| < f

(B)
0 , whence |A0B1| < |A0B|. Suppose now k = n. Let there be a step number m in the measurement

process for A0B such that when after the m−1thstep of the measurement construction the interval An−1An is divided
into 2m−1 congruent intervals Dm−1,0Dm−1,1, Dm−1,1Dm−1,2, . . . , Dm−1,2m−1−1Dm−1,2m−1 with Dm−1,0 = An−1,
Dm−1,2m−1 = An and both B1 and B lie on the same half-open interval [D′

m−1,p−1D
′
m−1,p), p ∈ N2m−1 , at the

mthstep B1, B lie on different half-open intervals [D′
m,l−2D

′
m,l−1), [D′

m,l−1D
′
m,l), where l ∈ N2m , resulting from

the division of the interval D′
m−1,p−1D

′
m−1,p into two congruent intervals D′

m,l−2D
′
m,l−1, D′

m,l−1D
′
m,l.

550 Then,

using 1.7, we have |A0B1| < f
(B1)
m = (n − 1) + l−1

2m = e
(B)
m ≤ |A0B|, whence |A0B1| < |A0B|. Finally, consider the

case when for all m ∈ N the points B1, B lie on the same half-open interval [EmFm), where Em = E
(B1)
m = E

(B)
m ,

Fm = FB1
m = FB

m . By L 1.4.2.2 B1, B cannot lie both at once on all closed intervals [E0F0], [E1F1], . . . , [EnFn], . . ..
Therefore, by L 1.2.9.4, we are left with B1 = Em, B ∈ (EmFm) for some m as the only remaining option. In this
case we have, obviously, |A0B1| = em < |A0B|. 2

Corollary 1.4.3.2. If |A′B′| = |AB| then A′B′ ≡ AB.

Proof. See L 1.3.13.14, T 1.4.3. 2

Corollary 1.4.3.3. If |A′B′| < |AB| then A′B′ < AB.

Proof. See L 1.3.13.14, T 1.4.2, T 1.4.3. 2

Theorem 1.4.4. If a point B lies between A and C, then |AB| + |BC| = |AC|

Proof. After the mthstep of the measurement construction for the interval BC we find that the point C lies on the

half-open interval [E
(C)
m , F

(C)
m ), where the intervals BE

(C)
m , BF

(C)
m consist, respectively, of some numbers k ∈ N, k+1

of congruent intervals resulting from division of a unit interval into 2m congruent intervals, and, consequently, have
lengths k/2m, (k + 1)/2m.551 Hence, using (1.6, 1.9) and applying the preceding theorem (T 1.4.3), we can write the
following inequalities:

k/2m ≤ |BC| < (k + 1)/2m. (1.10)

549The expression in parentheses in this paragraph pertain to the case n > 1.
550The fact that B1 ∈ [D′

m,l−2D
′
m,l−1) and B ∈ [D′

m,l−1D
′
m,l) and not the other way round, follows from L 1.2.9.4.

551We take m large enough for the points B, E
(C)
m to be distinct and thus for the interval BE

(C)
m to make sense. (See the discussion

accompanying the equation (1.9).)
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(The superscripts A, C are being employed here to signify that we are using elements of the measurement constructions
for the intervals BA and BC, respectively. ) Similarly, after the mthstep of the measurement construction for the

interval BA the point A lies on [E
(A)
m , F

(A)
m ), where the intervals BE

(A)
m , BF

(A)
m consist, respectively, of l, l + 1

congruent intervals resulting from division of a unit interval into 2m congruent intervals, and have lengths l/2m,
(l + 1)/2m. 552 Again, using (1.6), (1.9) and applying the preceding theorem (T 1.4.3), we can write:

l/2m ≤ |BA| < (l + 1)/2m. (1.11)

Since, from the properties of the measurement constructions, the points E
(A)
m , A, F

(A)
m all lie on the same side of the

point B, the points E
(C)
m , C, F

(C)
m lie on the same side of B,553 and, by hypothesis, the point lies between A, C, it

follows that B also lies between F
(A)
m , E

(C)
m , as well as between E

(A)
m , F

(C)
m , i.e., we have [F

(A)
m BE

(C)
m ] and [E

(A)
m ,

F
(C)
m ]. Furthermore, by T 1.3.21 the interval F

(A)
m E

(C)
m then consists of l+k intervals resulting from division of a unit

interval into 2m congruent intervals, and the interval E
(A)
m F

(C)
m then consists of (l +1)+ (k +1) of such intervals. By

L 1.4.3.1 this implies |F
(A)
m E

(C)
m | = (k + l)/2m, |E

(A)
m F

(C)
m | = (k + l+2)/2m. From the properties of the measurement

constructions for the intervals BA, BC and the lemmas L 1.2.9.5, L 1.2.9.6 it follows that the points A, C both lie

on the closed interval [E
(A)
m F

(C)
m ] and the points F

(A)
m , E

(C)
m both lie on the closed interval [AC]. By C 1.3.13.4 these

facts imply F
(A)
m E

(C)
m ≤ AC ≤ E

(A)
m F

(C)
m , whence we obtain (we can use T 1.4.3 to convince ourselves of this)

(k + l)/2m = |F (A)
m E(C)

m | ≤ |AC| < |E(A)
m F (C)

m | = (k + l + 2)/2m. (1.12)

On the other hand, adding together the inequalities (1.10), (1.11) gives

(k + l)/2m = |F (A)
m E(C)

m | ≤ |AB| + |BC| < |E(A)
m F (C)

m | = (k + l + 2)/2m. (1.13)

Subtracting (1.13) from (1.12), we get

||AB| + |BC| − |AC|| < 2/2m = 1/2m−1. (1.14)

Finally, taking the limit m → ∞ in (1.14), we obtain |AB| + |BC| − |AC| = 0, as required. 2

Corollary 1.4.4.1. If a class µAB of congruent intervals is the sum of classes of congruent intervals µCD, µEF
(i.e. if µAB = µCD + µEF ), then for any intervals A1B1 ∈ µAB, C1D1 ∈ µCD, E1F1 ∈ µEF we have |A1B1| =
|C1D1| + |E1F1|.

Proof. See T 1.4.2, T 1.4.4. 2

Corollary 1.4.4.2. If a class µAB of congruent intervals is the sum of classes of congruent intervals
µA1B1, µA2B2, . . . , µAnBn (i.e. if µAB = µA1B1 + µA2B2 + · · · + µAnBn), then for any intervals CD ∈ µAB,
C1D1 ∈ µA1B1, C2D2 ∈ µA2B2, . . . , CnDn ∈ µAnBn we have |CD| = |C1D1|+ |C2D2|+ · · ·+ |CnDn|. In particular,
if µAB = nµA1B1 and CD ∈ µAB, C1D1 ∈ µA1B1, then |CD| = n|C1D1|. 554

Theorem 1.4.5. For any positive real number x there is an interval (and, in fact, an infinity of intervals congruent
to it) whose length equals to x.

Proof. The construction of the required interval consists of the following steps (countably infinite in number): 555. –
Step 0: By the Archimedes axiom applied to R there is a number n ∈ N such that n − 1 ≤ x < n.

Starting with the point A0 and using L 1.3.21.11, construct points A1, A2, . . . , An−1, An such that [Ai−1AiAi+1]
for all i ∈ Nn−1, CD ≡ A0A1 ≡ A1A2 ≡ · · ·An−1An. Denote E0 ⇋ An−1, F0 ⇋ An, e0 ⇋ n − 1, f0 ⇋ n.

The other steps are defined inductively:
– Step 1: Denote C1 the midpoint of An−1An, i.e. the point C1 such that [An−1C1An] and An−1C1 ≡ C1An. By

T 1.3.22 this point exists and is unique. Worded another way, the fact that C1 is the midpoint of An−1An means
that the interval D1,0D1,2 is divided into two congruent intervals D1,0D1,1, D1,1D1,2, where we denote D1,0 ⇋ An−1,
D1,1 ⇋ C1, D1,2 ⇋ An. 556 If x ∈ [n − 1, n − 1

2 ), i.e. for n − 1 ≤ x < n − 1
2 , we let, by definition E1 ⇋ D1,0,

F1 ⇋ D1,1, e1 ⇋ n − 1, f1 ⇋ e1 + 1
2 = n − 1 + 1

2 . For x ∈ [n − 1
2 , n), we denote E1 ⇋ D1,1, F1 ⇋ D1,2, f1 ⇋ n,

e1 ⇋ f1 −
1
2 = n − 1

2 . Obviously, in both cases we have the inclusions [E1F1] ⊂ [E0F0] and [e1, f1] ⊂ [e0, f0].
.....................................................................................................
Step m:

552We take m large enough for the points B, E
(A)
m to be distinct and thus for the interval BE

(A)
m to make sense. (See the discussion

accompanying the equation (1.9).)
553Obviously, as we shall explain shortly, the points E

(C)
m , C, F

(C)
m lie on the opposite side (i.e. ray) of the point B from the points

E
(A)
m , A, F

(A)
m .

554Obviously, µAB = (1/n)µA1B1 and CD ∈ µAB, C1D1 ∈ µA1B1 then imply |CD| = (1/n)|C1D1|.
555We will construct an interval A0B with |A0B| = x in a way very similar to its measurement construction. In fact, we’ll just make

the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps
556Again, the first index here refers to the step of the measurement construction.
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As the result of the previous m − 1 steps the interval An−1An is divided into 2m−1 congruent intervals
Dm−1,0Dm−1,1, Dm−1,1Dm−1,2, . . . , Dm−1,2m−1−1Dm−1,2m−1 , where we let Dm−1,0 ⇋ An−1, Dm−1,2m−1 ⇋ An .
That is, we have Dm−1,0Dm−1,1 ≡ Dm−1,1Dm−1,2 ≡ · · · ≡ Dm−1,2m−1−2Dm−1,2m−1−1 ≡ Dm−1,2m−1−1Dm−1,2m−1

and [Dm−1,j−1Dm−1,jDm−1,j+1], j = 1, 2, . . . , 2m−1−1. We also know that x ∈ [em−1, fm−1), em−1 = (n−1)+ k−1
2m−1 ,

fm−1 = (n − 1) + k
2m−1 , where Em−1 = Dm−1,k−1, Fm−1 = Dm−1,k, k ∈ N2m−1 . Dividing each of the intervals

Dm−1,0Dm−1,1, Dm−1,0Dm−1,1, . . . Dm−1,2m−1−1Dm−1,2m−1 into two congruent intervals 557, we obtain by T 1.3.21
the division of An−1An into 2m−1·2 = 2m congruent intervals Dm,0Dm,1, Dm,1Dm,2, . . . , Dm,2m−1Dm,2m , where we let
Dm,0 ⇋ An−1, Dm,2m ⇋ An. That is, we have Dm,0Dm,1 ≡ Dm,1Dm,2 ≡ · · · ≡ Dm,2m−2Dm,2m−1 ≡ Dm,2m−1Dm,2m

and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1. Furthermore, note that (see L 1.2.7.3) when n > 1 the points
A0, . . . , An−1 = Dm,0, Dm,1, . . . , Dm,2m−1, An = Dm,2m are in order [A0 . . .Dm,0Dm,1 . . . Dm,2m−1Dm,2m . From the
properties of real numbers it follows that either x ∈ [em−1, (em−1 + fm−1)/2) or x ∈ [(em−1 + fm−1)/2, fm−1).
In the former case we let, by definition, Em ⇋ Em−1, Fm ⇋ Cm, em ⇋ em−1, fm ⇋ em + 1

2m ; in the latter
Em ⇋ Cm, Fm ⇋ Fm−1, em ⇋ em−1, fm ⇋ fm−1 −

1
2m . Obviously, we have in both cases (EmFm) ⊂ (Em−1Fm−1),

(emfm) ⊂ (em−1fm−1), fm − em = 1
2m .

Continuing this process indefinitely (for all m ∈ N), we conclude that either ∃m0 em0 = x, and then, obviously,
∀m ∈ N \ Nm0 em = x; or ∀m ∈ N x ∈ (em, fm). In the first case we let, by definition, B ⇋ Em0 .

In the second case we define B to be the (unique) point lying on all the closed intervals [EmFm], m ∈ N. We can
do this by the Cantor’s axiom A 1.4.2 because the closed point intervals [EmFm] form a nested sequence, where by
L 1.4.2.1 the interval EmFm can be made shorter than any given interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to
the interval A0B, we can write |A0B| = x, as required. 2

Having established that any interval can be measured, we can proceed to associate with every point on any given
line a unique real number called the coordinate of the point on that line.

Toward this end, consider an arbitrary line a. Let O ∈ a, P ∈ a, [POQ]. We refer to the point O as the origin,
and the rays OP , OQ as the first and the second rays, respectively. The line coordinate xM of an arbitrary point
M ∈ a is then defined as follows. If M = O, we let, by definition, xm ⇋ 0. If the point M lies on the first ray
OP , we define xM ⇋ −|OM |. Finally, in the case M ∈ OQ, we let xM ⇋ |OM |. 558 The number xM is called the
coordinate of the point M on the line a. From our construction its follows that for any point on any given line this
number exists and is unique.

We can state the following:

Theorem 1.4.6. If a point A precedes a point B in the direct order defined on a line a, the coordinate xA of the
point A is less than the coordinate xB of the point B.

Proof. If A precedes B in the direct order on a then 559

– Both A and B lie on the first ray and B precedes A on it; or
– A lies on the first ray, and B lies on the second ray or coincides with O; or
– A = O and B lies on the second ray; or
– Both A and B lie on the second ray, and A precedes B on it.
If (B ≺ A)OP

then by the definition of order on the ray OP (see p. 21) the point B lies between points O and A,

and we can write [OBA]
C1.3.13.4

=⇒ OB < OA
T1.4.3
=⇒ |OB| < |OA| ⇒ −xB < −xA ⇒ xA < xB .

For the other three cases we have:
A ∈ OP & (B = O ∨ B ∈ OQ) ⇒ xA = −|OA|& (xB = 0 ∨ xB = |OB|) ⇒ xA < 0 ≤ xB ;
A = O & B ∈ OQ ⇒ xA = 0 < |OB| = xB;

(A ≺ B)OQ
⇒ [OAB]

C1.3.13.4
=⇒ OA < OB

T1.4.3
=⇒ |OA| < |OB| ⇒ xA < xB. 2

Theorem 1.4.7. There is a bijective correspondence between the set Pa of (all) points of an arbitrary line a and the
set R of (all) real numbers.

Proof. The correspondence is injective. In fact, suppose A, B ∈ a, A 6= B. We have A ∈ a & B ∈ a & A 6= B
L1.2.13.5

=⇒

(A ≺ B)a ∨ (B ≺ A)a
T1.4.6
=⇒ xA < xB ∨ xB < xA ⇒ xA 6= xB .

The surjectivity follows from T 1.4.5. 2

We are now in a position to introduce plane coordinates, i.e. associate with every point on a given plane an
ordered pair of real numbers.

Let α be a given plane. Taking a line a1 lying in this plane, construct another line a2 ⊂ α such that a2 ⊥ a1.
Denote O ⇋ a1 ∩ a2 (that is, O is the point where the lines a1, a2 concur) and call the point O the origin of
the coordinate system. We shall refer to the line a1 as the horizontal axis, the x- axis, or the abscissa line of the
coordinate system, and the line a2 as the vertical axis, the y- axis, or the ordinate line.

557In each case, such division is possible and unique due to T 1.3.22.
558Recall that Pa = OP ∪ {O} ∪OQ, the union being disjoint.
559See definition on p. 22.
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Theorem 1.4.8. There is a bijective correspondence between the set Pα of (all) points of an arbitrary plane α and
the set R2 of (all) ordered pairs of real numbers.

Proof. 2

Theorem 1.4.9. Proof. 2

Theorem 1.4.10. Proof. 2

Angles and even dihedral angles have continuity properties partly analogous to those of intervals. Before we
demonstrate this, however, it is convenient to put our concept of continuity into a broader perspective.

Consider a set I, equipped with a relation of generalized congruence (see p. 46). By definition, the elements of I

possess the properties Pr 1.3.1 – Pr 1.3.5. Recall that the elements of I are pairs AB ⇋ {A,B} (called generalized
abstract intervals) of geometric objects. Each such pair AB lies in (i.e. is a subset in at least) one of the sets J

equipped with a generalized betweenness relation. The sets J are, in their turn, elements of some special class Cgbr

of sets with generalized betweenness relation, such as the class of all lines, the class of all pencils of rays lying on the
same side of a given line, the class of all pencils of half-planes lying on the same side of a given plane, etc.

We are now in a position to define a measurement construction for elements of such a set I whose class Cgbr

consists of specially chosen sets J with generalized angular betweenness relation. 560

We shall assume that the sets J with generalized angular betweenness relation in Cgbr are chosen in such a way
that the generalized abstract intervals formed by their ends are congruent: if J = [AB] ∈ Cgbr, J′ = [A′B′] ∈ Cgbr

then AB ≡ A′B′.
We shall further assume that the generalized abstract intervals involved (elements of the set I) have the following

property:

Property 1.4.1. Given any two generalized intervals AB, CD, the generalized interval AB can be divided into
congruent generalized intervals shorter than CD.

as well as the following generalized Cantor property:

Property 1.4.2 (Generalized Cantor’s Axiom). Let [EiFi], i ∈ {0} ∪ N be a nested sequence 561 of generalized
closed intervals with the property that given (in advance) an arbitrary generalized interval B1B2, there is a number
n ∈ {0} ∪ N such that the (abstract) generalized interval EnFn is shorter than the generalized interval B1B2. Then
there is at least one geometric object B lying on all closed intervals [E0F0], [E1F1], . . . , [EnFn], . . . of the sequence.

which we can reformulate in the following stronger form:

Lemma 1.4.11.1. Let [EiFi], i ∈ {0} ∪ N be a nested sequence of generalized closed intervals with the property that
given (in advance) an arbitrary generalized interval B1B2, there is a number n ∈ {0} ∪ N such that the generalized
(abstract) interval EnFn is less than the generalized interval B1B2. Then there is at most one geometric object B
lying on all generalized closed intervals [E0F0], [E1F1], . . . , [EnFn], . . . of the sequence. 562

Proof. Suppose the contrary, i.e. let there be two geometric objects B1, B2 lying on the generalized closed intervals
[E0F0], [E1F1], . . . , [EnFn], . . .. Then by C 1.3.15.4 ∀n ∈ {0} ∪ N B1B2 < EnFn. On the other hand, we have, by
hypothesis ∃n ∈ {0} ∪ N EnFn < B1B2. Thus, we arrive at a contradiction with L 1.3.15.10. 2

Now, given a set J = [AB] with angular generalized betweenness relation, of the kind just defined, we can construct
the measurement construction for any interval of the form AP ,563 where P ∈ J, as follows:

We set, by definition, the measure of the generalized interval AB ∈ J, as well as of all generalized intervals A′B′

congruent to it,564 equal to a positive real number b. For example, in practice of angle measurement b can be equal
to π (radian) or 180 (degrees). We denote the measure of AB by mesAB or |AB|.

– Step 0: Denote A0 ⇋ A, B0 ⇋ B, a0 ⇋ 0, b0 ⇋ b.
The other steps are defined inductively:
– Step 1: Denote C1 the middle of AB, i.e. the geometric object C1 such that [AC1B] and AC1 ≡ C1B. By Pr 1.3.5

this point exists and is unique. Worded another way, the fact that C1 is the middle of AB means that the generalized
interval D1,0D1,2 is divided into two congruent intervals D1,0D1,1, D1,1D1,2, where we denote D1,0 ⇋ A, D1,1 ⇋ C1,

560See p. 48. Similarly, the measurement construction given above for intervals could have been easily generalized to the general case of
a set I whose class Cgbr consists of sets J with generalized linear betweenness relation if we additionally require the following generalized
Archimedean property: Given a geometric object P on a generalized ray A0A1

, there is a positive integer n such that if [Ai−1AiAi+1]
for all i ∈ Nn−1 and A0A1 ≡ A1A2 ≡ · · · ≡ An−1An then [A0PAn]. However, all conceivable examples of the sets I of this kind seem
too contrived to merit a separate procedure of measurement.
561In accordance with the general definition, a sequence of generalized closed intervals [A1B1], [A2,B2], . . . , [AnBn], . . . is said to be

nested if [A1B1] ⊃ [A2,B2] ⊃ . . . ⊃ [AnBn] ⊃ . . ..
562Thus, we can now reformulate the Generalized Cantor’s Axiom Pr 1.4.2 in the following form: Let [EiFi], i ∈ {0} ∪ N be a nested

sequence of generalized closed intervals with the property that given (in advance) an arbitrary generalized interval B1B2, there is a number
n ∈ {0} ∪ N such that the generalized (abstract) interval EnFn is shorter than the generalized interval B1B2. Then there is exactly one
geometric object B lying on all generalized closed intervals [E0F0], [E1F1], . . . , [EnFn], . . . of the sequence.
563Given the properties of angles and dihedral angles, even after restriction to the intervals of this form, our consideration is sufficient

for all practical purposes.
564Generalized intervals AB such that [AB] = J∈ Cgbr can sometimes for convenience be referred to as reference generalized intervals.
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D1,2 ⇋ B. 565 We have P ∈ [D1,0D1,2)
L1.2.22.15

=⇒ P ∈ [D1,0D1,1) ∨ P ∈ [D1,1D1,2). If B ∈ [D1,0D1,1), we let, by
definition A1 ⇋ D1,0, B1 ⇋ D1,1, a1 ⇋ a0 = 0, b1 ⇋ a0 + b/2 = b/2. For P ∈ [D1,1D1,2), we denote A1 ⇋ D1,1,
B1 ⇋ D1,2, b1 ⇋ a, a1 ⇋ b1 − b/2 = b/2. Obviously, in both cases we have the inclusions [A1B1] ⊂ [A0B0] and
[a1, b1] ⊂ [a0, b0].

.....................................................................................................
Step m:
As the result of the previous m− 1 steps the generalized interval AB is divided into 2m−1 congruent generalized

intervals Dm−1,0Dm−1,1,Dm−1,1Dm−1,2, . . . ,Dm−1,2m−1−1Dm−1,2m−1 , where we let Dm−1,0 ⇋ A, Dm−1,2m−1 ⇋ B.
That is, we have Dm−1,0Dm−1,1 ≡ Dm−1,1Dm−1,2 ≡ · · · ≡ Dm−1,2m−1−2Dm−1,2m−1−1 ≡ Dm−1,2m−1−1Dm−1,2m−1

and [Dm−1,j−1Dm−1,jDm−1,j+1], j = 1, 2, . . . , 2m−1 − 1. We also know that P ∈ [Am−1Bm−1), am−1 = k−1
2m−1 · b,

bm−1 = k
2m−1 · b, where Am−1 = Dm−1,k−1, Bm−1 = Dm−1,k, k ∈ N2m−1 . Dividing each of the generalized intervals

Dm−1,0Dm−1,1,Dm−1,1Dm−1,2, . . .Dm−1,2m−1−1Dm−1,2m−1 into two congruent generalized intervals 566, we obtain by
T 1.3.51 the division of AB into 2m−1·2 = 2m congruent generalized intervalsDm,0Dm,1,Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m ,
where we let Dm,0 ⇋ A, Dm,2m ⇋ B. That is, we have Dm,0Dm,1 ≡ Dm,1Dm,2 ≡ · · · ≡ Dm,2m−2Dm,2m−1 ≡
Dm,2m−1Dm,2m and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1.

Denote Cm ⇋ midAm−1Bm−1. By L 1.2.22.15 P ∈ [Am−1Bm−1) ⇒ P ∈ [Am−1Cm) ∨ P ∈ [CmBm−1). In
the former case we let, by definition, Am ⇋ Am−1, Bm ⇋ Cm, am ⇋ am−1, bm ⇋ am + 1

2m ; in the latter
Am ⇋ Cm, Bm ⇋ Bm−1, am ⇋ am−1, bm ⇋ bm−1 −

1
2m . Obviously, we have in both cases [AmBm] ⊂ [Am−1Bm−1],

[am, bm] ⊂ [am−1, bm−1], bm − am = 1
2m . Also, note that if Am = Dm,l−1, Bm = Dm,l, l ∈ N2m , then am = l−1

2m ,

bm = (n − 1) + l
2m . 567

Continuing this process indefinitely (for all m ∈ N), we conclude that either ∃m0 Am0 = P , and then, obviously,
∀m ∈ N \ Nm0 Am = P ; or ∀m ∈ N P ∈ [AmBm]. In the first case we also have ∀p ∈ N am0+p = am0 , and we let,
by definition, |AP| ⇋ em0 . In the second case we define |AP| to be the number lying on all the closed numerical
intervals [am, bm], m ∈ N. We can do so because the closed numerical intervals [am, bm], m ∈ N, as well as the
generalized closed intervals (AmBm), form a nested sequence, where the difference bm − am = 1

2m can be made less
than any given positive real number ǫ > 0. 568 Thus, we have proved

Theorem 1.4.11. The measurement construction puts into correspondence with every generalized interval AP,
where P ∈ (AB) and [AB] = J ∈ Cgbr, a unique positive real number |AP| called the measure, of AP. The reference
generalized interval, as well as any generalized interval congruent to it, has length b.

Note than we can write

AP < · · · ≤ ABm ≤ ABm−1 ≤ · · · ≤ AB1 ≤ AB0. (1.15)

and

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≤ · · · ≤ |A0B| < · · · ≤ fm ≤ fm−1 ≤ · · · ≤ f1 ≤ f0. (1.16)

Some additional properties of the measurement construction are given by

Lemma 1.4.12.1. Given an arbitrary generalized interval GH, in the measurement construction for any generalized
interval AP there is an (appropriately defined) generalized interval AmBm shorter than GH.

Proof. By Pr 1.4.1 the generalized interval AB (appropriately defined for the measurement construction in question)
can be divided into some number m of congruent generalized intervals shorter than GH. Since m < 2m, dividing AB
into 2m generalized intervals at the mth step of the measurement construction for AP gives by L 1.3.51.9 still shorter
generalized intervals. Hence the result. 2

This lemma shows that for sufficiently large m the generalized intervals AAm,AAm+1, . . . are defined, i.e. Am 6=
A, etc., and we have 569

AAm ≤ AAm+1 ≤ · · · ≤ AP . (1.17)

565The first index here refers to the step of the measurement construction.
566In each case, such division is possible and unique due to Pr 1.3.5.
567In fact, after m − 1 steps we have P ∈ [Dm−1,k−1Dm−1,k) = [Am−1Bm−1), and after m steps P ∈ [Dm−1,l−1Dm−1,l) = [AmBm).

First, consider the case P ∈ [Am−1Cm), where Cm = midAm−1Bm−1. Then, evidently, l − 1 = 2(k − 1) and (see above) am = am−1,
bm = am + 1/2m. Hence we have am = am−1 = (n − 1) + (k − 1)/2m−1 = (n − 1) + 2(k − 1)/2m = (n − 1) + (l − 1)/2m, bm =
(n − 1) + (l − 1)/2m + 1/2m = (n − 1) + l/2m. Suppose now P ∈ [CmBm−1). Then l = 2k and bm = bm−1. Hence bm = bm−1 =
(n− 1) + k/2m−1 = (n− 1) + 2k/2m = (n− 1) + l/2m, am = (n− 1) + l/2m − 1/2m = (n− 1) + (l − 1)/2m.
568By the properties of real numbers, these conditions imply that the number lying on all open numerical intervals (am, bm) exists and

is unique.
569In fact, once AmBm is shorter than AP, the geometric object Am cannot coincide with A any longer. To demonstrate this, consider

the congruent generalized intervals Dm,0Dm,1,Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m into which the generalized interval AB is divided after m
steps of the measurement construction. If P were to lie on the first of the division intervals, as it would be the case if Am = A, we would
have P ∈ [Dm,0Dm,1) = [AmBm), whence (see C 1.3.15.4) AP < AmBm, contrary to our choice of m large enough for the inequality
AmBm < AP to hold.
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Lemma 1.4.12.2. In the measurement process for a generalized interval AP there can be no more than one ge-
ometric object lying on all generalized closed intervals [A0B0], [A1B1], . . . , [AnBn], . . . defined appropriately for the
measurement construction in question, and this geometric object, when its exists, coincides with the geometric object
P.

Proof. As is evident from our exposition of the measurement construction, the closed generalized intervals [A0B0], [A1B1], . . . , [A
form a nested sequence, i.e. we have [A1B1] ⊃ [A2,B2] ⊃ . . . ⊃ [AnBn] ⊃ . . .. The result then follows from L 1.4.12.1,
L 1.4.11.1. 2

Theorem 1.4.12. Congruent generalized intervals have equal measures.

Proof. Suppose AP ≡ A′P ′. On step 0, if P ∈ [AB) then also P ′ ∈ [A′B′), and therefore a′
0 = a0, b′0 = b0.

570 If
P ∈ [D1,0D1,1) then (by C 1.3.51.14) P ′ ∈ [D′

1,0D
′
1,1), and if B ∈ [D1,1D1,2) then P ′ ∈ [D′

1,1D
′
1,2). Therefore (see

the exposition of measurement construction) a′
1 = a1, b′1 = b1. Now assume inductively that after the m − 1th step

of the measurement constructions the generalized interval AB is divided into 2m−1 congruent generalized intervals
Dm−1,0Dm−1,1,Dm−1,1Dm−1,2, . . . ,Dm−1,2m−1−1Dm−1,2m−1 with Dm−1,0 = A, Dm−1,2m−1 = B and A′B′ is divided
into 2m−1 congruent generalized intervals D′

m−1,0D
′
m−1,1,D

′
m−1,1D

′
m−1,2, . . . ,D

′
m−1,2m−1−1D

′
m−1,2m−1 with D′

m−1,0 =

A′, D′
m−1,2m−1 = B′. Then we have (induction assumption implies here that we have the same k in both cases)

P ∈ [Am−1Bm−1), am−1 = k−1
2m−1 · b, bm−1 = k

2m−1 · b, where Am−1 = Dm−1,k−1, Bm−1 = Dm−1,k, k ∈ N2m−1 and

P ′ ∈ [A′
m−1B

′
m−1), a′

m−1 = k−1
2m−1 · b, b′m−1 = k

2m−1 · b, where A′
m−1 = D′

m−1,k−1, B
′
m−1 = D′

m−1,k, k ∈ N2m−1 .

At the mthstep we divide each of the generalized intervals Dm−1,0Dm−1,1,Dm−1,0Dm−1,1, . . .Dm−1,2m−1−1Dm−1,2m−1

into two congruent generalized intervals to obtain the division of AB into 2m congruent generalized intervals
Dm,0Dm,1,Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m , where, by definition, Dm,0 ⇋ A, Dm,2m ⇋ B. That is, we haveDm,0Dm,1 ≡
Dm,1Dm,2 ≡ · · · ≡ Dm,2m−2Dm,2m−1 ≡ Dm,2m−1Dm,2m and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1.

Similarly, we divide each of the generalized intervals D′
m−1,0D

′
m−1,1,D

′
m−1,0D

′
m−1,1, . . .D

′
m−1,2m−1−1D

′
m−1,2m−1

into two congruent generalized intervals to obtain the division of A′B′ into 2m congruent generalized intervals
D′

m,0D
′
m,1,D

′
m,1D

′
m,2, . . . ,D

′
m,2m−1D

′
m,2m , where D′

m,0 ⇋ A′, D′
m,2m ⇋ B′. That is, we haveD′

m,0D
′
m,1 ≡ D′

m,1D
′
m,2 ≡

· · · ≡ D′
m,2m−2D

′
m,2m−1 ≡ D′

m,2m−1D
′
m,2m and [D′

m,j−1D
′
m,jD

′
m,j+1], j = 1, 2, . . . , 2m − 1.

Since the geometric objects A = Dm,0,Dm,1, . . . ,Dm,2m−1,B = Dm,2m are in order [Dm,0Dm,1 . . .Dm,2m−1Dm,2m

and the geometric objects A′ = D′
m,0,D

′
m,1, . . . ,D

′
m,2m−1, B

′ = D′
m,2m are in order [D′

m,0D
′
m,1 . . .D′

m,2m−1D
′
m,2m , if

P ∈ [AmBm) = [Dm,l−1Dm,l) then by C 1.3.51.14 P ′ ∈ [A′
mB′

m) = [D′
m,l−1D

′
m,l), and we have a′

m = am = l−1
2m · b,

b′m = bm = l
2m · b. Furthermore, if P = Am then by L 1.3.51.13 also P ′ = A′

m and in this case |AP| = am,
|A′P ′| = a′

m, whence |A′P ′| = |AP|. On the other hand, if ∀m ∈ N P ∈ [AmBm], and, therefore (see L 1.3.51.12),
∀m ∈ NP ′ ∈ [A′

mB′
m], then both ∀m ∈ N |AP| ∈ [am, bm] and ∀m ∈ N |A′P ′| ∈ [a′

m, b′m]. But since, as we have
shown, a′

m = am, b′m = bm, using the properties of real numbers, we again conclude that |A′P ′| = |AP|. 2

Note that the theorem just proven shows that our measurement construction for generalized intervals is completely
well-defined. When applied to the identical generalized intervals AB, BA, the procedure of measurement gives
identical results.

Lemma 1.4.13.1. Every generalized interval, consisting of k congruent generalized intervals resulting from division
of a reference generalized interval into 2m congruent intervals, has measure (k/2m) · b.

Proof. Given a generalized interval AP , consisting of k congruent generalized intervals resulting from the division of a
reference generalized interval into 2m congruent generalized intervals, at the mthstep of the measurement construction
for AP we obtain the generalized interval AAm consisting of k generalized intervals resulting from division of the
reference generalized interval into 2m congruent generalized intervals, and we have AAm ≡ AP(see L 1.2.51.6). Then
by Pr 1.3.1 Am = P . As explained in the text describing the measurement construction, in this case we have k = l−1.
Hence |AP| = |AAm| = am = ((l − 1)/2m) · b = (k/2m) · b. 2

Theorem 1.4.13. If a generalized interval A′P ′ is shorter than the generalized interval AP then |A′P ′| < |AP|.

Proof. Using L 1.3.15.3, find P1 ∈ (AP) so that A′P ′ ≡ AP1. Consider the measurement construction of AP ,
which, as will become clear in the process of the proof, induces the measurement construction for AP1. Sup-
pose P ∈ [AB), where A, B are the ends of an appropriate 571 set J with generalized betweenness relation.
Let there be a step number m in the measurement process for AP such that when after the m − 1thstep of
the measurement construction the generalized interval AB is divided into 2m−1 congruent generalized intervals
Dm−1,0Dm−1,1,Dm−1,1Dm−1,2, . . . ,Dm−1,2m−1−1Dm−1,2m−1 with Dm−1,0 = A, Dm−1,2m−1 = B and both P1 and P
lie on the same generalized half-open interval [D′

m−1,p−1D
′
m−1,p), p ∈ N2m−1 , at the mthstep P1, P lie on different

570For the duration of this proof, all elements of the measurement construction for A′P ′ appear primed; for other notations, please refer
to the exposition of the measurement construction.
571Appropriate means here conforming to the conditions set forth above. Namely, we assume the set I to be equipped with a relation of

generalized congruence, and the sets J with generalized angular betweenness relation in Cgbr are chosen in such a way that the abstract
intervals formed by their ends are congruent: if J = [AB] ∈ Cgbr , J′ = [A′B′] ∈ Cgbr then AB ≡ A′B′.
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generalized half-open intervals [D′
m,l−2D

′
m,l−1), [D′

m,l−1D
′
m,l), where l ∈ N2m , resulting from the division of the gen-

eralized interval D′
m−1,p−1D

′
m−1,p into two congruent generalized intervals D′

m,l−2D
′
m,l−1, D′

m,l−1D
′
m,l.

572 Then,

using 1.16, we have |AP1| < f
(P1)
m = l−1

2m · · · b = a
(P)
m ≤ |AP|, whence |AP1| < |AP|. Finally, consider the case

when for all m ∈ N the geometric objects P1, P lie on the same generalized half-open interval [AmBm), where
Am = AP1

m = AP
m, Bm = BP1

m = BP
m. By L 1.4.12.2 P1, P cannot lie both at once on all closed generalized inter-

vals [A0B0], [A1B1], . . . , [AnBn], . . .. Therefore, by L 1.2.24.6, we are left with P1 = Am, P ∈ (AmBm) as the only
remaining option. In this case we have, obviously, |AP1| = am < |AP|. 2

Corollary 1.4.13.2. If |A′B′| = |AB| then A′B′ ≡ A.

Proof. See L 1.3.15.14, T 1.4.13. 2

Corollary 1.4.13.3. If |A′B′| < |AB| then A′B′ < AB.

Proof. See L 1.3.15.14, T 1.4.12, T 1.4.13. 2

Theorem 1.4.14. If a geometric object P lies between A and Q, then |AP| + |PQ| = |AQ|.

Proof. After the mthstep of the measurement construction for the generalized interval AP we find that the geometric
object P lies on the generalized half-open interval [Am,Bm), where the generalized intervals AAm, ABm consist,
respectively, of some numbers k ∈ N, k + 1 of congruent generalized intervals resulting from division of a reference
generalized interval into 2m congruent generalized intervals, and, consequently, have measures equal to k

2m · b and
k+1
2m · b, respectively.

573 Hence, using (1.15, 1.17) and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

k

2m
· b ≤ |AP| <

k + 1

2m
· b (1.18)

Consider first the case Q = B.
We know that after the mth step of the measurement construction for AP we obtain the division of AB

into 2m congruent generalized intervals Dm,0Dm,1,Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m , where Dm,0 ⇋ A, Dm,2m ⇋ B.
We know also that P lies on the generalized half-open interval [Dm,kDm,k+1), where Dm,k = Am, Dm,k+1 =
Bm. Observe now that the interval BDm,k+1 = BmB 574 consists of 2m − k − 1 congruent generalized intervals
Dm,k+1Dm,k+2,Dm,k+2Dm,k+3, . . . ,Dm,2m−1Dm,2m . Similarly, the interval BDm,k = AmB 575 consists of 2m−k con-
gruent generalized intervals Dm,kDm,k+1,Dm,k+1Dm,k+2,Dm,k+2Dm,k+3, . . . ,Dm,2m−1Dm,2m . Hence by L 1.4.13.1
the generalized intervals BBm, BAm have measures equal to 1 − k

2m · b and 1 − k+1
2m · b, respectively. Hence, using

(1.15, 1.17) and applying the preceding theorem (T 1.4.13), we can write the following inequalities:

1 −
k + 1

2m
· b < |BP| ≤ 1 −

k

2m
· b (1.19)

Adding together 1.18 and 1.19, we can write

(1 −
1

2m
) · b < |AP| + |BP| ≤ (1 +

k

2m
) · b. (1.20)

Finally, taking in 1.20 the limit m → ∞, we have |AP| + |BP| = b, q.e.d.
Suppose now Q lies on AB. Since [APQ] and Q ∈ (AB), after the mth step of the measurement construction

for AQ by L 1.2.24.6 we have P ∈ [Dm,k−1Dm,k), Q ∈ [Dm,l−1Dm,l), where 0 < k ≤ l ≤ 2m. Observe that, making
use of L 1.2.12.2, we can take m so large that k < l − 1.576 Furthermore, our previous discussion shows that m
can also be taken so large that k > 1. With these assumptions concerning the choice of m, we see that the interval

572The fact that P1 ∈ [D′
m,l−2D

′
m,l−1) and P ∈ [D′

m,l−1D
′
m,l) and not the other way round, follows from L 1.2.24.6.

573We take m large enough for the geometric objects A, Am to be distinct and thus for the generalized interval AAm to make sense.
(See the discussion accompanying the equation (1.17).)
574We take m large enough for the geometric objects B, Bm to be distinct and thus for the generalized interval BBm to make sense. (See

the discussion accompanying the equation (1.17)). Note also how symmetric is our discussion of this with the discussion in the preceding
footnote.
575We take m large enough for the geometric objects B, Bm to be distinct and thus for the generalized interval BBm to make sense. (See

the discussion accompanying the equation (1.17).) Note also how symmetric is our discussion of this with the discussion in the preceding
footnote.
576First, we note that we can take m so large that k < l. In fact, if both P and Q were to lie on P ∈ [Dm,k(m)−1Dm,k(m)) (note that the

number k (of the generalized interval Dm,k−1Dm,k resulting from the division of AB into 2m congruent intervals) depends on m, which is
reflected in the self-explanatory notation used here), then by C 1.3.15.4 we would have PQ < Dm,k−1Dm,k for allm ∈ N, which contradicts
L 1.2.12.2. Thus, we conclude that ∃m ∈ N such that P ∈ [Dm,k−1Dm,k), Q ∈ [Dm,l−1Dm,l), where 0 < k < l ≤ 2m. To prove that we can
go even further and find such m ∈ N that P ∈ [Dm,k−1Dm,k), Q ∈ [Dm,l−1Dm,l), where k < l−1, suppose that there is a natural number
m0 such that P ∈ [Dm0,k(m0)−1Dm0,k(m0)), Q ∈ [Dm0,k(m0)Dm0,k(m0)+1) (note that if there is no such natural number m0, then there
is nothing else to prove). Now, using L 1.4.12.1, we choose a (still larger) number m such that Dm,k(m)−1Dm,k(m)) < PDm0,k(m0). If
we still had P ∈ [Dm,k(m)−1Dm,k(m)), Q ∈ [Dm,l(m)−1Dm,l(m)), where l(m) − k(m) = 1 and Dm,l(m)−1 = Dm0,k(m0), then this would
imply P ∈ [Dm,k(m)−1Dm,k(m)) = [Dm,k(m)−1Dm,l(m)−1) = [Dm,k(m)−1Dm,k(m0)) ⇒ PDm0,k(m0) < Dm,k(m)−1Dm,k(m), contrary
to our choice of m. This contradiction shows that the number m can be chosen large enough for the inequality l − 1 > k to hold when
P ∈ [Dm,k−1Dm,k), Q ∈ [Dm,l−1Dm,l).
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Dm,kDm,l−1 consists of l−1−k congruent intervals obtained by division of the reference interval AB into 2m congruent
intervals and by L 1.4.13.1 has measure l−1−k

2m · b. Similarly, the interval Dm,k−1Dm,l consists of l + 1 − k congruent

intervals of the type described above and has measure l−1−k
2m · b. In this way we also obtain |ADm,k−1| = k−1

2m · b,

|ADm,k| = k
2m · b, |ADm,l−1| = l−1

2m · b, |ADm,l| = l
2m · b. Since ADm,k−1 ≦ AP < ADm,k, ADm,l−1 ≦ AQ < ADm,l,

Dm,kDm,l−1 < PQ < Dm,k−1Dm,l, we have

k − 1

2m
· b < |AP| <

k

2m
· b, (1.21)

l − k − 1

2m
· b < |PQ| <

l + 1 − k

2m
· b, (1.22)

l − 1

2m
· b < |AQ| <

l

2m
· b. (1.23)

Adding together the inequalities (1.21), (1.22) gives

l − 2

2m
· b < |AP| + |PQ| <

l + 1

2m
· b. (1.24)

Subtracting (1.24) from (1.23), we get
Finally, taking the limit m → ∞ in (??), we obtain |AP| + |PQ| − |AQ| = 0, as required. 2

Corollary 1.4.14.1. If a class µAB of congruent generalized intervals is the sum of classes of congruent generalized
intervals µCD, µEF (i.e. if µAB = µCD + µEF), then for any generalized intervals A1B1 ∈ µAB, C1D1 ∈ µCD,
E1F1 ∈ µEF we have |A1B1| = |C1D1| + |E1F1|.

Proof. See T 1.4.12, T 1.4.14. 2

Corollary 1.4.14.2. If a class µAB of congruent generalized intervals is the sum of classes of congruent generalized
intervals µA1B1, µA2B2, . . . , µAnBn (i.e. if µAB = µA1B1+µA2B2+· · ·+µAnBn), then for any generalized intervals
CD ∈ µAB, C1D1 ∈ µA1B1, C2D2 ∈ µA2B2, . . . , CnDn ∈ µAnBn we have |CD| = |C1D1| + |C2D2| + · · · + |CnDn|. In
particular, if µAB = nµA1B1 and CD ∈ µAB, C1D1 ∈ µA1B1, then |CD| = n|C1D1|. 577

Theorem 1.4.15. For any positive real number 0 < x ≤ b there is a generalized interval AP (and, in fact, an
infinity of generalized intervals congruent to it) whose measure is equal to x.

Proof. The construction of the required generalized interval consists of the following steps (countably infinite in
number): 578.

– Step 0: Denote A0 ⇋ A, B0 ⇋ B, a0 ⇋ 0, b0 ⇋ b.
The other steps are defined inductively:
– Step 1: Denote C1 the middle of AB, i.e. the geometric object C1 such that [AC1B] and AC1 ≡ C1B. By Pr 1.3.5

this geometric object exists and is unique. Worded another way, the fact that C1 is the middle of AB means that the
generalized interval D1,0D1,2 is divided into two congruent generalized intervals D1,0D1,1, D1,1D1,2, where we denote
D1,0 ⇋ A, D1,1 ⇋ C1, D1,2 ⇋ B. 579 If x ∈ (0, 1

2 ·b), i.e. for 0 < x < 1
2 ·b, we let, by definition A1 ⇋ D1,0, B1 ⇋ D1,1,

a1 ⇋ 0, b1 ⇋ a1 + 1
2 · b = 1

2 · b. For x ∈ [ 12 · b, b), we denote A1 ⇋ D1,1, B1 ⇋ D1,2, b1 ⇋ b, a1 ⇋ b1 −
1
2 · b = 1

2 · b.
Obviously, in both cases we have the inclusions [A1B1] ⊂ [A0B0] and [a1, b1] ⊂ [a0b0].

.....................................................................................................
Step m:
As the result of the previous m− 1 steps the generalized interval AB is divided into 2m−1 congruent generalized

intervals Dm−1,0Dm−1,1,Dm−1,1Dm−1,2, . . . ,Dm−1,2m−1−1Dm−1,2m−1 , where we let Dm−1,0 ⇋ A, Dm−1,2m−1 ⇋ B
. That is, we have Dm−1,0Dm−1,1 ≡ Dm−1,1Dm−1,2 ≡ · · · ≡ Dm−1,2m−1−2Dm−1,2m−1−1 ≡ Dm−1,2m−1−1Dm−1,2m−1

and [Dm−1,j−1Dm−1,jDm−1,j+1], j = 1, 2, . . . , 2m−1 − 1. We also know that x ∈ [am−1bm−1), am−1 = k−1
2m−1 · b,

bm−1 = k
2m−1 · b, where Am−1 = Dm−1,k−1, Bm−1 = Dm−1,k, k ∈ N2m−1 . Dividing each of the generalized intervals

Dm−1,0Dm−1,1, Dm−1,0Dm−1,1, . . . Dm−1,2m−1−1Dm−1,2m−1 into two congruent intervals 580, we obtain by T 1.3.21
the division of AB into 2m−1 ·2 = 2m congruent generalized intervals Dm,0Dm,1,Dm,1Dm,2, . . . ,Dm,2m−1Dm,2m , where
we let Dm,0 ⇋ A, Dm,2m ⇋ B. That is, we have Dm,0Dm,1 ≡ Dm,1Dm,2 ≡ · · · ≡ Dm,2m−2Dm,2m−1 ≡ Dm,2m−1Dm,2m

and [Dm,j−1Dm,jDm,j+1], j = 1, 2, . . . , 2m − 1.
From the properties of real numbers it follows that either x ∈ [am−1, (am−1 + bm−1)/2) or x ∈ [(am−1 +

bm−1)/2, bm−1). In the former case we let, by definition, Am ⇋ Am−1, Bm ⇋ Cm, am ⇋ am−1, bm ⇋ am + 1
2m · b;

in the latter Am ⇋ Cm, Bm ⇋ Bm−1, am ⇋ am−1, bm ⇋ bm−1 − 1
2m · b. Obviously, we have in both cases

[AmBm] ⊂ [Am−1Bm−1], [am, bm] ⊂ [am−1bm−1], bm − am = 1
2m .

577Obviously, µAB = (1/n)µA1B1 and CD ∈ µAB, C1D1 ∈ µA1B1 then imply |CD| = (1/n)|C1D1|.
578We will construct a generalized interval AP with |AP| = x in a way very similar to its measurement construction. In fact, we’ll just

make the measurement construction go in reverse direction - from numbers to intervals, repeating basically the same steps
579Again, the first index here refers to the step of the measurement construction.
580In each case, such division is possible and unique due to Pr 1.3.5
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Continuing this process indefinitely (for all m ∈ N), we conclude that either ∃m0 am0 = x, and then, obviously,
∀m ∈ N \ Nm0 am = x; or ∀m ∈ N x ∈ (ambm). In the first case we let, by definition, P ⇋ Am0 .

In the second case we define P to be the (unique) geometric object lying on all the generalized closed intervals
[AmBm], m ∈ N. We can do this by the Cantor’s axiom Pr 1.4.2 because the closed generalized intervals [AmBm]
form a nested sequence, where by L 1.4.2.1 the generalized interval AmBm can be made shorter than any given
generalized interval.

Since from our construction it is obvious that the number x is the result of measurement construction applied to
the generalized interval AP , we can write |AP| = x, as required. 2

In the forthcoming treatment we shall assume that whenever we are given a line a, one of the two possible opposite
orders is chosen on it (see p. 22 ff.). Given such a line a with order ≺ and a (non-empty) set A ⊂ Pa of points on a,
we call a point B ∈ a an upper bound (respectively, lower bound) of A iff A � B (B � A) for all A ∈ A. An upper
bound B0 is called a least upper bound, or supremum, written supA (greatest lower bound, or infimum, written
infA) of A iff B0 � B for any upper bound B of A. Thus, supA is the least element in the set of upper bounds
of A, and inf A is the greatest element in the set of lower bounds of A. Obviously, the second requirement in the
definition of least upper bound (namely, that B0 � B for any upper bound B of A) can be reformulated as follows:
For whatever point B′ ∈ a preceding B0 (i.e. such that B′ ≺ B0) there is a point X succeeding B′ (i.e. with the
property that X ≻ B′).

It is also convenient to assume, unless explicitly stated otherwise, that for an interval AB we have A ≺ B. 581

With this convention in mind, we can view the open interval (AB) as the set {X |A ≺ X ≺ B} (see T 1.2.14). Also,
obviously, we have [AB) = {X |A � X ≺ B}, (AB] = {X |A ≺ X � B}, [AB] = {X |A � X � B}. A ray OA may
be viewed as the set of all such points X that O ≺ X (or X ≻ O, which is the same) if O ≺ A, and as the set of all
such points X that X ≺ O if A ≺ O. Moreover, if X ∈ OA then either O ≺ X � A or A ≺ X . 582 These facts will
be extensively used in the succeeding exposition. 583

Theorem 1.4.16. If a non-empty set of points A on a line a has an upper bound (respectively, a lower bound), it
has a least upper bound (greatest lower bound). 584

Proof. 585 By hypothesis, there is a point B1 ∈ a such that A � B1 for all A ∈ A. Without loss of generality we can
assume that A ≺ B1 for all A ∈ A. 586

We shall refer to an interval XY as normal iff:

a) there is A ∈ A such that A ∈ [XY ]; and b) for all B ∈ a the relation B ≻ Y implies B /∈ A. Observe that at
least one of the halves 587 of a normal interval is normal. 588

Take an arbitrary point A1 ∈ A. Then, evidently, the interval A1B1 is normal. Denote by A2B2 its normal half.
Continuing inductively this process of division of intervals into halves, we denote An+1Bn+1 a normal half of the
interval AnBn.

With the sequence of intervals thus constructed, there is a unique point C lying on all the closed intervals [AiBi],

i ∈ N (see L 1.4.1.4, T 1.4.1). This can be written as {C} =
∞⋂

i=0

[AiBi].

We will show that C = supA. First, we need to show that C is an upper bound of A. If C were not an upper

bound of A, there would exist a point A0 ∈ A such that C < A0. But then A0 /∈
∞⋂

i=0

[AiBi] = {C}, whence we would

have ∃n0 ∈ N(An0 ≤ C ≤ Bn0 < A0), i.e. the closed interval [An0Bn0 ] cannot be normal - a contradiction. Thus, we
have ∀A ∈ A(A � C). In order to establish that C = supA, we also need to prove that given any X1 ∈ Pa with the
property X1 ≺ C, there is a point A ∈ A such that X1 ≺ A (see the discussion accompanying the definition of least
upper bound).

Observe that for any X1 ∈ Pa with the property X1 ≺ C there is a number n1 ∈ N such that X1 ≺ An1 � C � Bn1 .

Otherwise (if An � X1 for all n ∈ N) we would have X1 ∈
∞⋂

i=0

[AiBi] = {C} ⇒ X1 = C, which contradicts X1 ≺ C.

But then in view of normality of [An1Bn1 ] there is A ∈ A such that A ∈ [An1Bn1 ], i.e. An1 � A � Bn1 . Together
with X1 ≺ An1 , this gives X1 ≺ A, whence the result. 2

581That is, the point denoted by the letter written first in the notation of the interval precedes in the chosen order the point designated
by the letter written in the second position.
582This can be shown either referring to L 1.2.15.4, or directly using the facts presented above.
583Basically, they mean that we can work with order on sets of points on a line just like we are accustomed to work with order on sets

of ”points” (numbers) on the ”real line”.
584The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding

results for real numbers in calculus.
585The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.
586In fact, if A ≺ B1 for all A ∈ A and B1 ∈ A, we would immediately have B1 ∈ A, and the proof would be complete.
587If D is the midpoint of the interval AB, the intervals AD, DB are (as sometimes are intervals congruent to them) referred to as the

halves of AB.
588In fact, if A ∈ [XY ] and M = midXY , then either A ∈ [XM ] or A ∈ [MY ] (see T 1.2.5). If A ∈ [MY ] then the second condition in

the definition of normal interval is unchanged, so that it holds for MY if it does for XY . If A /∈ [MY ] then necessarily A ∈ [XM ]. In
this case the relation B ≻ M (together with X ≺M ≺ Y ) implies that either M ≺ B � Y (which amounts to B ∈ (MY ]), or B ≻ Y .
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Theorem 1.4.17 (Dedekind). Let A, B be two non-empty sets on a line a such that A∪B = Pa. Suppose, further,
that any element of the set A (strictly) precedes any element of the set B, i.e. (∀A ∈ A)(∀B ∈ B)(A ≺ B). Then
either there is a point C such that all points of A precede C, or there is a point C such that C precedes all points of
B.

In this case we say that the point C makes a Dedekind cut in Pa. We can also say that A, B define a Dedekind
cut in Pa.

Proof. Since A is not empty and has an upper bound, by the preceding theorem (T 1.4.16) it has the least upper
bound C ⇋ supA.

Observe that A ∩ B = ∅. Otherwise we would have (by hypothesis) A0 ∈ A ∩ B ⇒ (A0 ∈ A)&B ⇒ A0 ≺ A0,
which is impossible.

Since A ∩ B = ∅, we have either C ∈ A, or C ∈ B, but not both. If C ∈ A then (∀A ∈ A)(A � C) because
C = supA. Suppose now C ∈ B. To show that (∀B ∈ B)(C ≺ B) suppose the contrary, i.e. that there is B0 ∈ B
such that B0 ≺ C. Since C = supA, from the properties of least upper bound (see discussion following its definition)
it would then follow that there exists A0 ∈ A such that B0 ≺ A0. But this would contradict the assumption that
any point of A precedes any point of B (see L 1.2.13.5). Thus, in the case C ∈ B we have C ≺ B for all B ∈ B, which
completes the proof. 2

Theorem 1.4.18. Let A, B be two non-empty sets on a line a with the property that any element of the set A
(strictly) precedes any element of the set B, i.e. (∀A ∈ A)(∀B ∈ B)(A ≺ B). Then there is a point C such that
A � C � B for all A ∈ A, B ∈ B.

Proof. Construct a Dedekind cut in Pa defined by sets A1, B1 such that A1 6= ∅, B1 6= ∅, A1cupB1 = Pa, A ⊂ A1,
B ⊂ B1. To achieve this, we define B1 ⇋ {B1 ∈ a|(∃B ∈ B)(B � B1)} and A1 = Pa \ B1. To show that B ⊂ B1

observe that for any point B1 ∈ B1 there is B = B1 ∈ B, i.e. B1 ∈ B1. To show that A∩B1 = ∅ suppose the contrary,
i.e. that there is a point A0 ∈ A ∩B1. Then from the definition of B1 we would have (∃B0 ∈ B)(B0 � A0). But this
contradicts the assumption (∀A ∈ A)(∀B ∈ B)(A ≺ B). Thus, we have A ∩ B1 = ∅, whence A ⊂ Pa \ A1 = A1.

To demonstrate that any point of the set A1 precedes any point of the set B1 suppose the contrary, i.e. that
there are A0 ∈ A1, B0 ∈ B1 such that B0 ≺ A0. Then using the definition of the set B1 we can write B � B0 � A0,
whence by the same definition A0 ∈ B1 = Pa \A1 - a contradiction. Thus, we have Pa = A1∪B1, where A1 ⊃ A 6= ∅,
B1 ⊃ B 6= ∅, and (∀A1 ∈ A1)(∀B1 ∈ B1)(A1 ≺ B1), which implies that the sets define a Dedekind cut in Pa. Now by
the preceding theorem (T 1.4.17) we can find a point C ∈ a such that (∀A1 ∈ A1)(∀B1 ∈ B1)(A1 � C � B1). But
then from the inclusions A ⊂ A1, B ⊂ B1 we conclude that (∀A ∈ A)(∀B ∈ B)(A � C � B), as required. 2

Lemma 1.4.18.1. Given an arbitrary angle ∠(h, k), a straight angle can be divided into congruent angles less than
∠(h, k).

Proof. (See Fig. 1.174.) Consider a right angle ∠BOC, whose side OC is also one of the sides of a given straight
angle. Using L 1.2.21.1, A 1.3.1, we can choose points B, C so that OB ≡ OC. Using C 1.3.25.1 (or T 1.3.22),
choose the point A0 such that the (abstract) interval OA0 is a median of △BOC. That is, we have [BA0C] and
BA0 ≡ A0C. Then by T 1.3.24 OA0 is also a bisector and an altitude. That is, we have ∠BOA0 ≡ ∠COA0

and ∠BA0O, ∠CA0O are right angles. We can assume that ∠(h, k) < ∠BOA0.
589 Then we can find A1 ∈

(A0B) such that ∠(h, k) ≡ ∠A0OA1.
590 Using L 1.3.21.11 and the Archimedes’ axiom (A 1.4.1), construct points

A2, A3, . . . An−1, An such that [Ai−1AiAi+1] for all i ∈ Nn−1, A0A1 ≡ A1A2 ≡ · · · ≡ An−1An, and [A0BAn].
Using L 1.2.21.6, L 1.2.21.4, L 1.3.16.4, we obtain ∠AOOB < ∠AOOAn. We construct further a sequence of rays
h0, h1, h2, . . . , hm, . . . with origin at O inductively as follows: Denote h0 ⇋ OA0, h1 ⇋ OA1. With h0, h1, h2, . . . , hm

already constructed, we choose (using A 1.3.4) hm+1 such that the rays hm−1, hm+1 lie on opposite sides of the ray
hm and ∠(hm−1, hm) ≡ ∠(hm, hm+1). Then there is a number k ∈ N such that hk−1 ⊂ Int∠A0OB, but the ray hk

either coincides with OB or lies inside the angle ∠BOD, adjacent supplementary to the angle ∠BOC. We will take
k to be the least number with this property,591 should there be more than one such number. We need to prove that
there is at least such number. Suppose there are none and the rays hi lie inside the angle ∠A0OB for all i ∈ N. By
construction (and T 1.3.1) the angles ∠(hihi+1), i ∈ N, are all congruent to the angle ∠(h, k) and thus are all acute.
Since the rays hi−1, hi+1 lie on opposite sides of the line h̄i and the angles ∠(hi−1, hi), ∠(hi, hi+1) are congruent,
using C 1.3.18.12 we conclude that the ray hi lies inside the angle ∠(hi−1, hi+1) for all i ∈ N. By construction,
∠OA0A1 is a right angle. This, together with the fact that A0A1 ≡ A1A2 ≡ · · · ≡ An−1An and [Ai−1AiAi+1] for all
i ∈ Nn−1, gives the following inequalities: ∠AnOAn−1 < ∠An−1OAn−2 < . . . < ∠A3OA2 < ∠A2OA1 < ∠A1OA0.

589Since the angle BOA0 is obtained by repeated congruent dichotomy (i.e. by repeated division into two congruent angles) of the
original straight angle (see T 1.3.52), in the case when ∠BOA0 < ∠(h, k) we have nothing more to prove. Likewise, for ∠BOA0 ≡ ∠(h, k)
we only need to divide ∠BOA0 into two congruent parts once to get a division of our straight angle into congruent parts smaller than
∠(h, k). Thus, we can safely assume that ∠(h, k) < ∠BOA0, the only remaining option.
590In fact, we have ∠(h, k) < ∠BOA0

L1.3.16.3
=⇒ ∃h1;h1 ⊂ Int∠A0OB&∠(OA0

, h1) ≡ ∠(h, k)
L1.2.21.10

=⇒ ∃A1 A1 ∈ (A0B) ∪ h1. By
L 1.2.11.3 OA1 = h1.
591That is, with the property that hk−1 ⊂ Int∠A0OB, but hk either coincides with OB or lies inside the angle ∠BOD, adjacent

supplementary to the angle ∠BOC. In reality, there are infinitely many k’s satisfying these conditions, but the proof of this would be
too messy and pointless. For our purposes in this proof we can be content with knowing that there is at least one such k.
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Figure 1.174: Given an arbitrary angle ∠(h, k), a straight angle can be divided into congruent angles less than ∠(h, k).

592 Note also that by L 1.2.21.6, L 1.2.21.4 the ray OAi
lies inside the angle ∠Ai−1OAi+1 for all i ∈ N. Hence

by L 1.3.52.4 we have ∠A0OAn < ∠(h0, hn). On the other hand, by our assumption the rays hi lie inside the
angle ∠A0OB for all i ∈ N. In view of C 1.3.16.4 this implies ∠(h0, hn) < ∠A0OB, which, together with the
inequality ∠A0OB < A0OAn gives ∠(h0, hn) < ∠A0OAn, which contradicts ∠A0OAn < ∠(h0, hn) (see L 1.3.16.10).
Thus, we have shown that there is a positive integer k such that the ray hk does not lie inside the angle ∠A0OB.
As we have already pointed out, we shall take as k the least number with this property. Then all the rays in
the sequence h1, h2, . . . , hk−1 lie inside the angle ∠A0OB, but hk does not. Obviously, the rays h0, h1, . . . , hk−1

lie on one side of the line aOC . 593 Furthermore, by L 1.2.22.11 these rays are in order [h0h1h2 . . . hk−1].
594

This implies, in particular, that [h0hk−2hk−1], or, equivalently, hk−2 ⊂ Int∠(h0, hk−1), which means, by definition,
that the rays h0, hk−2 lie on the same side of the ray hk−1. On the other hand, by hypothesis, the rays hn−2,

hn lie on opposite sides of the line h̄n−1. Hence h0hn−2h̄n−1 & hn−2h̄n−1hn
L1.2.18.5

=⇒ h0h̄n−1hn. Since the angles
∠(h0, hn−1), ∠(hn−1, hn) are both acute,595 by C 1.3.18.12 we can write hn−1 ⊂ Int∠(h0, hn), or, in different

notation, [h0hn−1hn]. Taking into account that [h0hn−1OB]
L1.2.21.11

=⇒ h0h̄n−1OB , we have h0h̄n−1hn & h0h̄n−1
L1.2.18.4

=⇒

OBhnh̄n−1
L1.2.21.21

=⇒ [hn−1hnOB ] ∨ [hn−1OBhn]. We have to exclude the first of these alternatives, for choosing it

would give: [h0hn−1OB] & [hn−1hnOB]
L1.2.21.27

=⇒ [h0hnOB ], contrary to our assumption. Thus, we have [hn−1OBhn],

whence [h0hn−1hn] & [hn−1OBhn]
L1.2.21.27

=⇒ [h0OBhn]
L??
=⇒ ∠A0OB < ∠(h0hn). Divide the angle ∠A0OB into 2n

congruent angles. The straight angle ∠COD then turns out to be divided into 2n+2 congruent angles. Since
2n+2 > n and ∠(h0, nn) < ∠COD, using C 1.3.52.10 we see that these angles are less than ∠(h, k).

Corollary 1.4.18.2. Given an arbitrary angle ∠(h, k), any other angle can be divided into congruent angles less
than ∠(h, k).

Corollary 1.4.18.3. Given two (arbitrary) overextended angles (∠(h, k), p1), (∠(l, m), p2), there is a natural number
n ∈ N such that n(∠(h, k), p1) > n(∠(l, m), p2).

Theorem 1.4.19. Suppose ∠(h1, k1), ∠(h2, k2), . . . , ∠(hn, kn), . . . is a nested sequence of angles with common vertex.
That is, the angles ∠(h1, k1), ∠(h2, k2), . . . , ∠(hn, kn), . . . of the sequence all share the same vertex O and we have

592Observe that under our assumption that all rays hi, for i ∈ N, lie inside the angle ∠A0OB, all these rays lie on the same side of the
line aOC .
593The reader can refer to L 1.2.31.14 to convince himself of this.
594That is, hj lies inside ∠(hi, hk) iff either i < j < k or k < j < i (see p. 65).
595In fact, we have hn−1 ⊂ Int∠A0OB, A0 ⊂ Int∠COB. This implies, respectively, ∠(h0, hn−1) < ∠A0OB, ∠A0OB < ∠COB, which

together give (in view of transitivity of the relation <, demonstrated in L 1.3.16.8) ∠(h0, hn−1) < ∠COB. But ∠COB is a right angle,
so it follows that ∠(h0, hn−1) is acute. 2
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Int∠(h1, k1)∪P∠(h1,k1) ⊃ Int∠(h2, k2)∪P∠(h2,k2) ⊃ . . . ⊃ Int∠(hn, kn)∪P∠(hn,kn) ⊃ . . .. 596 Suppose, further, that
for whatever angle ∠(h, k) (given in advance) there is a lesser angle in the sequence ∠(h1, k1), ∠(h2, k2), . . . , ∠(hn, kn), . . ..
That is, given any ∠(h, k) there is n ∈ N such that ∠(hn, kn) < ∠(h, k). Then there is a ray l with origin O such
that for all the angles of the sequence ∠(h1, k1), ∠(h2, k2), . . . , ∠(hn, kn), . . . the ray l either lies inside or coincides
with the side, i.e. ∀n ∈ N l ⊂ Int∠(hn, kn).

Proof. (See Fig. 1.175.) Take points A1 ∈ h1, B1 ∈ k1. Consider the rays h2, k2.
597 It is easy to show that they

necessarily meet the closed interval [A1B1] in the points which we will denote A2, B2, respectively (see L 1.2.37.12,
L 1.2.21.10).

Of the two orders of points possible on the line a (see T 1.2.14) containing the points A1, B1, we shall choose the
one where the point A1 precedes the point B1. It is easy to show that the notation for the points A1, A2, . . . , An, . . .
and B1, B2, . . . , Bn, . . ., as well as, ultimately, for the rays h1, h2, . . . , hn, . . . and k1, k2, . . . , kn, . . ., can then be
chosen in such a way that A1 � A2 � An ≺ Bn � B2 � B1 for any n ∈ N. Denote A ⇋ {Ai|i ∈ N}, A ⇋ supA;
B ⇋ {Bi|i ∈ N}, B ⇋ inf B.

598

Since A 6= ∅, B 6= ∅, and (∀A ∈ A)(∀B ∈ B)(A ≺ B), from T 1.4.18 there is a point P such that (∀A ∈ A)(∀B ∈
B)(A � P � B). Then from the properties of the precedence relation (see T 1.2.14) it follows that the point P lies on
all the closed intervals [AiBi], i ∈ N. This, in view of L 1.2.21.6, L 1.2.21.4, L 1.2.11.3 implies that for all i ∈ N the
ray OP lies on all the closed angular intervals [hi, ki]. In other words, for all i ∈ N the ray OP either lies completely
inside the angle ∠(hi, ki), or coincides with one of the rays hi, ki.

599
2

Theorem 1.4.20. We can put into correspondence with every extended angle ∠(h, k) a unique real number |∠(h, k)|,
0 < |∠(h, k)| ≥ π, referred to as its (numerical 600) measure. Furthermore, for a straight angle ∠(h, hc) we have
|∠(h, hc)| = π, and for any angle ∠(h, k) which is not straight, we have 0 < |∠(h, k)| < π.

Proof. We let b ⇋ π in the generalized treatment of measurement construction. The theorem then follows from
L 1.4.18.1, T 1.4.19, Pr 1.4.1, Pr 1.4.2. 2

Theorem 1.4.21. Congruent angles have equal measures.

Proof. 2

Theorem 1.4.22. If an angle ∠(h′, k′) is less than an extended angle ∠(h, k) then |∠(h′, k′)| < ∠(h, k).

Proof. 2

Corollary 1.4.22.1. If |∠(h′, k′)| = |∠(h, k)| then ∠(h′, k′) ≡ ∠(h, k). 2

Corollary 1.4.22.2. If |∠(h′, k′)| < |∠(h, k)| then ∠(h′, k′) < ∠(h, k). 2

Theorem 1.4.23. If a ray l lies inside an extended angle ∠(h, k), the measure of ∠(h, k) is the sum of the measures
of the angles ∠(h, l), ∠(h, k), i.e. |∠(h, k)| = |∠(h, l)| + |∠(l, k)|.

Proof. 2

Corollary 1.4.23.1. If a class µ∠(h, k) of extended angles is the sum of classes of congruent angles µ∠(l, m),
µ∠(p, q) (i.e. if µ∠(h, k) = µ∠(l, m) + µ∠(p, q)), then for any angles ∠(h1, k1) ∈ µ∠(h, k), ∠(l1, m1) ∈ µ∠(l, m),
∠(p1, q1) ∈ µ∠(p, q) we have |∠(h1, k1)| = |∠(l1, m1)| + |∠(p1, q1)|.

596It would be more precise to call ∠(h1, k1),∠(h2, k2), . . . ,∠(hn, kn), . . . a nested sequence of set-theoretical complements of angle
exteriors. We, however, prefer shorter, albeit somewhat misleading, description.
597Note that we do not assume h2, k2 to be distinct from h1, k1, although we still need to assume that hi 6= ki for all i ∈ N for the

corresponding angles to exist.
598Without T 1.4.18 this theorem can be proved by the following lengthy argument. While being absolutely redundant (it can be

replaced by a mere reference to T 1.4.18 and thus rendered useless) and having substantial overlaps with the proofs of T 1.4.17, T 1.4.18,
it might still help to clarify some points. Observe that any of the points B1, B2, . . . , Bn, . . . may serve as an upper bound for the set
A = {Ai|i ∈ N}. Similarly, any of the points A1, A2, . . . , An, . . . may serve as a lower bound for the set B = {Bi|i ∈ N}. Evidently,
A � B. To show that actually A = B suppose the contrary, i.e. A ≺ B. Taking two (distinct) points C, D on the open interval (AB) (see
C 1.2.8.2), we see that the angle ∠COD is then less than any angle of the sequence ∠(h1, k1),∠(h2, k2), . . . ,∠(hn, kn), . . . (by L 1.2.21.6,
L 1.2.21.4, C 1.3.16.4), contrary to hypothesis. Taking an arbitrary interval, construct an interval EF congruent to it, such that the
points E, F lie on a, and the point A = B lies between them. This can be done as follows: Choose E ∈ AA1

so that EA is shorter than
the given interval (see comment following L 1.3.13.3). Then choose F ∈ EA such that EF is congruent to the given interval. Evidently,
we have [EAF ] (see L 1.3.13.3, T 1.3.2). Since E ≺ A ≺ F (recall that if A1 ≺ A in the chosen order, as it is in our case, the ray AA1

is the collection of points preceding A), A = sup{Ai|i ∈ N} = B = inf{Bi|i ∈ N}, from the definitions of least upper bound and greatest
lower bound we conclude that there are points G ∈ A, H ∈ B such that E ≺ G � A = B � H ≺ F . Since E ≺ G ≺ F ⇒ [EGF ],
E ≺ H ≺ F ⇒ [EHF ] (see T 1.2.14), in view of L 1.3.13.3 we have GH ≺ EF . Thus, for any given interval we can find a shorter one in
the sequence AiBi, i ∈ N. Hence by Cantor’s axiom there is a point P lying on all the closed intervals [AiBi], i ∈ N. But, obviously, so
does also A = B. Since, in view of L 1.4.1.4, there is exactly one point with this property, we have P = A = B.
599Using L 1.3.16.4 it can be seen independently that the ray OP with this property is unique, for if there were another such ray OQ,

the (fixed) angle ∠POQ would be less than any angle ∠(hi, ki), i ∈ N.
600In contract to an ”abstract measure” which can be defined as a class of equivalence of congruent extended angles.
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Proof. See T 1.4.21, T 1.4.23. 2

Corollary 1.4.23.2. If a class µ∠(h, k) of congruent extended is the sum of classes of congruent angles
µ∠(h1, k1), µ∠(h2, k2), . . . , µ∠(hnkn) (i.e. if µ∠(h, k) = µ∠(h1k1) + µ∠(h2k2) + · · · + µ∠(hnkn)), then for any
angles ∠(l, m) ∈ µ∠(h, k), ∠(l1, m1) ∈ µ∠(h1, k1), ∠(l2, m2) ∈ µ∠(h2, k2), . . . , ∠(ln, mn) ∈ µ∠(hnkn) we have
|∠(l, m)| = |∠(l1, m1)|+|∠(l2m2)|+· · ·+|∠(ln, mn)|. In particular, if µ∠(h, k) = nµ∠(h1, k1) and ∠(l, m) ∈ µ∠(h, k),
∠(l1, m1) ∈ µ∠(h1, k1), then |∠(l, m)| = n|∠(l1, m1)|. 601

Theorem 1.4.24. For any real number x such that 0 < x ≥ π there is an angle ∠(h, k) (and, in fact, an infinity of
angles congruent to it) whose measure equals x, i.e. |∠(h, k)| = x.

The concept of angular measure can be extended to overextended 602 angles. Denote |(∠(h, k), n)| ⇋ |∠(h, k)|+πn.
We see that

Theorem 1.4.25. We can put into correspondence with every overextended angle (∠(h, k), n), n ∈ N0, a unique real
number |(∠(h, k)| > 0, referred to as its (numerical 603) measure.

Theorem 1.4.26. The abstract sum of angles of a triangle never exceeds a straight angle. That is, for any triangle

△ABC we have Σ
(abs)∠
△ABC ⇋ µ(∠BAC, 0) + µ(∠ABC, 0) + µ(∠ACB, 0) ≤ π(abs,xt).

Proof. Suppose the contrary, i.e. that there is a triangle △A′B′C′ such that Σ
(abs)∠
△A′B′C′ > π(abs,xt). Without any loss of

generality we can assume that Σ
(abs)∠
△A′B′C′ = (∠(h′, k′), 1), where ∠(h′, k′) is some non-straight angle. (See C 1.3.63.9.)

Using P 1.3.67.8 repeatedly, we can construct a triangle △ABC with Σ
(abs)∠
△ABC = Σ

(abs)∠
△A′B′C′ = (∠(h′, k′), 1), one of

whose angles ∠A is less than ∠(h′, k′). In view of C 1.3.63.9 the (abstract) sum of the remaining two angles ∠B, ∠C

of the triangle △ABC is less than π(abs,xt). Hence Σ
(abs)∠
△ABC = (∠A, 0)+(∠B, 0)+(∠C, 0) < (∠(h′, k′), 0)+π(abs,xt) =

(∠(h′, k′), 1) = Σ
(abs)∠
△A′B′C′ = Σ

(abs)∠
△ABC - a contradiction which shows that in fact we always have Σ

(abs)∠
△ABC ≤ π(abs,xt)

for any triangle △ABC. 2

Corollary 1.4.26.1. The (abstract) sum of any two angles of a triangle is no greater than the angle, adjacent
complementary to the third angle of the same triangle. That is, in any △ABC we have µ∠A + µ∠B ≤ µ(adjsp∠C).

Proof. Using the preceding theorem (T 1.4.26), we can write µ∠A + µ∠B + µ∠C ≤ π(abs) = µ∠C + µ(adjsp∠C).
Hence the result follows by P 1.3.63.3, P 1.3.63.5. 2

Proposition 1.4.26.2. Given a cevian BD in a triangle △ABC such that D ∈ (AC), if the abstract sum of angles
in the triangle △ABC equals π(abs,xt), the abstract sums of angles in the triangles △ABD, △CBD are also both
equal to π(abs,xt).

Proof. We know that Σ
(abs)∠
△ABD+Σ

(abs)∠
△DBC = Σ

(abs)∠
△ABC +π(abs,xt) (see proof of P 1.3.67.9). Also, by hypothesis, Σ

(abs)∠
△ABC =

π(abs,xt). Since, from T 1.4.26, we also have Σ
(abs)∠
△ABD ≤ π(abs,xt), Σ

(abs)∠
△DBC ≤ π(abs,xt), we conclude that Σ

(abs)∠
△ABD =

π(abs,xt), Σ
(abs)∠
△DBC = π(abs,xt), for otherwise we would have Σ

(abs)∠
△ABD + Σ

(abs)∠
△DBC < Σ

(abs)∠
△ABC + π(abs,xt). 2

Corollary 1.4.26.3. Given a △ABC with the abstract sum of angles equal to π(abs,xt), for any points X ∈ (AB],
Y ∈ (AC], the abstract sum of angles of the triangle △AXY also equals π(abs,xt).

Proof. Follows immediately from the preceding proposition (P 1.4.26.2). 2

Lemma 1.4.26.4. Suppose that there is a right triangle △ABC whose abstract sum of angles equals π(abs,xt). Then
every right triangle has abstract sum of angles equal to π(abs,xt).

Proof. Consider an arbitrary right triangle △A′B′C′. Using A 1.3.1 choose points B′′ ∈ AB, C′′ ∈ AC such that
A′B′ ≡ AB′′, A′C′ ≡ AC′′. Now choose B1 such that [ABB1] and AB ≡ BB1. Continuing this process, we
can construct inductively a sequence of points B1, B2, . . . , Bn, . . . on the ray AB as follows: choose Bn such that
[ABn−1Bn] and ABn−1 ≡ Bn−1Bn. Evidently, for the construction formed in this way we have µABn+1 = 2µABn

for all n ∈ N, where the points A, B, B1, B2, . . . , Bn, . . . are in order [ABB1B2 . . . Bn . . .] (see also L 1.3.21.11). Since
µABn = 2nµAB for all n ∈ N, Archimedes’ axiom (A 1.4.1) guarantees that there is l ∈ N such that [AB′′Bl].

604

Similarly, we can choose C1 such that [ACC1] and AC ≡ CC1. Then we go on to construct inductively a sequence of
points C1, C2, . . . , Cn, . . . on the ray AC as follows: choose Cn such that [ACn−1Cn] and ACn−1 ≡ Cn−1Cn. Again,
we have µACn+1 = 2µACn for all n ∈ N, where the points A, C, C1, C2, . . . , Cn, . . . are in order [ACC1C2 . . . Cn . . .]
(see also L 1.3.21.11). Since µACn = 2nµAC for all n ∈ N, Archimedes’ axiom (A 1.4.1) again ensures that there
is m ∈ N such that [AC′′Cm]. Consider the triangle △ABlCm. From the way its sides ABl, ACm were constructed

601Obviously, µ∠(h, k) = (1/n)µ∠(h1, k1) and ∠(l,m) ∈ µ∠(h, k), ∠(l1,m1) ∈ µ∠(h1, k1) then imply |∠(l,m)| = (1/n)|∠(l1, m1)|.
602No pun intended.
603In contract to an ”abstract measure” which can be defined as a class of equivalence of congruent overextended angles.
604Basically, Archimedes’ axiom and its immediate corollaries assert that for any two intervals AB, CD there is always a positive integer
n such that µAB < nµCD. Then, of course, µAB < 2nµCD.
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using P 1.3.67.10 we have Σ
(abs)∠
△ABlCm

= π(abs,xt). Since Bl ∈ (AB′′], Cm ∈ (AC′′], in view of the preceding corollary
(C 1.4.26.3) we conclude that the abstract sum of angles of the triangle △AB′′C′′, as well as the abstract sum of the
triangle △A′B′C′ congruent to △AB′′C′′ by T 1.3.4, is equal to π(abs,xt). 2

Corollary 1.4.26.5. Any birectangle has at least one acute angle.

Proof. See T 1.4.26, T 1.3.67, T 1.3.68. 2

Theorem 1.4.27. Suppose that there is a triangle △ABC whose abstract sum of angles equals π(abs,xt). Then every
triangle has abstract sum of angles equal to π(abs,xt).

Proof. We can assume without loss of generality that the angle ∠A is acute. 605 Then by P 1.3.24.2 the foot D of
the altitude BD in △ABC lies between A, C. Consider also an arbitrary triangle A′B′C′ with the altitude B′D′

such that D′ ∈ (AC). From P 1.4.26.2 the abstract sum of angles of the right triangle △ABD is π(abs,xt). But then,
by the preceding lemma (L 1.4.26.4) every right triangle has the same abstract sum of angles, and this applies, in

particular, to the right triangles △A′B′D′, △C′B′D′. Hence from P 1.3.67.9 Σ
(abs)∠
△A′B′C′ = π(abs,xt), as required. 2

Theorem 1.4.28. Suppose every triangle has abstract sum of angles equal to π(abs,xt). Then for any line a and any
point A not on it, in the plane αaA there is exactly one line a′ through A parallel to a.

Proof. Consider a line a and a point A not on it. Denote by B the foot of the perpendicular to a drawn through A
(see L 1.3.8.1). Draw through A the line a′ perpendicular to aAB (see L 1.3.8.3). By C 1.3.26.2 the lines a, a′ are
parallel. We need to show that any line other than a′, drawn through A, meets a in some point. Denote by h the ray
with initial point A lying on such a line b 6= a′. We can assume without loss of generality that the ray h lies inside
the angle ∠BAA1, where A1 ∈ a′. 606 Construct now a sequence of points B1, B2, . . . , Bn, . . . as follows: Choose
a point B1 so that A1, B1 lie on the same side of the line aAB and AB ≡ BB1. Then choose a point B2 so that
[BB1B2] and BB1 ≡ B1B2. At the nth, where n ∈ N, step of the construction we choose Bn so that [Bn−2Bn−1Bn],
and ABn−1 ≡ Bn−1Bn. Hence from T 1.3.3 we have ∠BAB1 ≡ ∠BB1A, ∠B1AB2 ≡ ∠B1B2A, ldots, ∠Bn−1ABn ≡
∠Bn−1BnA, ldots. According to hypothesis, all the triangles involved have the same abstract sum of angles equal
to π(abs,xt). This fact will be used throughout the proof. Since, from construction, ∠ABB1 is a right angle, in view
of ∠BAB1 ≡ ∠BB1A we have µ∠BAB1 = µ∠BB1A = (1/4)π(abs). Observe also the following interesting fact:
since AB1 ⊂ Int∠BAA1,

607 we have µ∠BAB1 + µ∠B1AA1 = µ∠BAA1. In view of µ∠BAA1 = (1/2)π(abs),
we obtain µ∠B1AA1 = (1/4)π(abs). Since µ∠AB1B = µ∠B1AB2 + µ∠AB2B1 (in view of P 1.3.67.11) and
µ∠AB1B = (1/4)π(abs), we have µ∠B1AB2 = µ∠AB2B1 = (1/8)π(abs). It is easy to see that AB2 ⊂ B1AA1 (see
below), and thus µ∠B1AA1 = µ∠B1AB2 + µ∠A1AB2. Since µ∠B1AA1 = (1/4)π(abs) and µ∠B1AB2 = (1/8)π(abs),
this implies µ∠B2AA1 = (1/8)π(abs). Continuing inductively, suppose that µ∠Bn−2ABn−1 = µ∠Bn−1AA1 =
(1/2n)π(abs). Observe that by L 1.2.21.31 the rays AB, AB1 , AB2 , . . . , ABn

AA1 are in order [ABAB1AB2 . . . ABn
AA1 ].

Since ∠Bn−2ABn−1 ≡ ∠ABn−1Bn−2, ∠Bn−1ABn ≡ ∠ABnBn−1, µ∠Bn−2Bn−1A = µ∠Bn−1ABn + µ∠ABnBn−1,
∠Bn−1AA1 = µ∠Bn−1ABn + µ∠BnAA1, we find that µ∠BnAA1 = µ∠Bn−1ABn = (1/2n+1)π(abs). We see that
with increasing number n the angle ∠BnAA1 can be made smaller than any given angle. In particular, it can be
made smaller than the angle ∠DAA1. Hence the ray ABn

lies inside the angle ∠DAA1 (see C 1.3.16.4). In view of
L 1.2.21.27 this amounts to the ray AD lying inside the angle ∠BABn. Hence by L 1.2.21.27 the ray AD meets the
open interval (BBn) and thus the line a containing it. 2

Theorem 1.4.29. Given an interval EF and a non-acute (that is, either right or obtuse) angle ∠(h, k) with a point
A ∈ k, there is a unique point B ∈ h on its other side, such that AB ≡ EF .

Proof. Of the two possible orders on h̄ we take the one in which the vertex O of ∠(h, k) precedes any point of the
ray h. It is easy to see that the sets A ⇋ hc ∪ {O} ∪ {P |P ∈ h & (AP < EF ∨ AP ≡ EF )} and B ⇋ {P |AP > F}
define a Dedekind cut in the set of points of the line h̄ (use C 1.3.18.4). Denote by B the point which makes this cut
(see T 1.3.17). We have either AB < EF , or AB > EF , or AB ≡ EF . Suppose first AB < EF . Taking a point C
such that [OBC] (or, equivalently, B ≺ C), BC ∈ µEF −µAB, and using the triangle inequality (P 1.3.40.9) we can
write µAC < µAB + µBC = µAB + (µEF − µAB) = µEF (see also P 1.3.40.7), whence C ∈ A and C � B (for B
makes the cut), in contradiction to our choice of the point C. Suppose now AB > EF . Taking a point D such that
[ODB] and BD ∈ µAB − µEF , we can write µAD > µAB − µBD = µAB − (µAB − µEF ) = µEF (see P 1.3.40.8,
P 1.3.40.9)), whence D ∈ B and B � D, in contradiction to our choice of the point D. Thus, the contradictions we
have arrived to show that AB ≡ EF , as required. 2

605In fact, in any triangle at least two angles are acute.
606We choose h to be that ray with the initial point A which lies on the same side of a′ as the point B (see, in particular, L 1.2.19.8).

Then we take a point A1 ∈ a′ such that this point and the ray h lie on the same side of the line aAB . Evidently, with h and A1 so chosen,
we have h ⊂ Int∠BAA1.
607Note that the points A1, B1, and thus the rays AA1

, AB1
lie on the same side of the line aAB by construction. The points B, B1,

and, consequently, the rays AB , AB1
lie on the same side of the line a. Hence AB1

⊂ Int∠BAA1, as stated.
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We are now ready to extend our knowledge of continuity properties on a line to sets with generalized betweenness
relation.

Consider a class Cgbr of sets J with generalized betweenness relation. We assume that the sets I, whose elements
are pairs AB ⇋ {A,B} of geometric objects satisfying Pr 1.3.1 – Pr 1.3.5, are equipped with a relation of generalized
congruence (see p. 46). We assume further that the generalized abstract intervals involved (elements of the set I)
have the properties Pr 1.4.1, Pr 1.4.2.

It is also understood that on every set J ∈ Cgbr one of the two possible opposite orders is chosen (see p. 54 ff.).
Given such a set J with order ≺ and a (non-empty) set A ⊂ J, we call a geometric object B ∈ J an upper bound
(respectively, lower bound) of A iff A � B (B � A) for all A ∈ A. An upper bound B0 is called a least upper bound,
or supremum, written supA (greatest lower bound, or infimum, written infA) of A iff B0 � B for any upper bound
B of A. Thus, supA is the least element in the set of upper bounds of A, and inf A is the greatest element in the set
of lower bounds of A. Obviously, the second requirement in the definition of least upper bound (namely, that B0 � B
for any upper bound B of A) can be reformulated as follows: For whatever geometric object B′ ∈ J preceding B0 (i.e.
such that B′ ≺ B0) there is a geometric object X succeeding B′ (i.e. with the property that X ≻ B′).

It is also convenient to assume, unless explicitly stated otherwise, that for a generalized interval AB we have
A ≺ B. 608 With this convention in mind, we can view the open generalized interval (AB) as the set {X |A ≺ X ≺ B}
(see T 1.2.28). Also, obviously, we have [AB) = {X |A � X ≺ B}, (AB] = {X |A ≺ X � B}, [AB] = {X |A � X � B}.
A generalized ray OA may be viewed as the set of all such geometric objects X that O ≺ X (or X ≻ O, which is the
same) if O ≺ A, and as the set of all such geometric objects X that X ≺ O if A ≺ O. Moreover, if X ∈ OA then
either O ≺ X � A or A ≺ X . 609 These facts will be extensively used in the succeeding exposition. 610

Theorem 1.4.30. If a non-empty set of geometric objects A on a set J has an upper bound (respectively, a lower
bound), it has a least upper bound (greatest lower bound). 611

Proof. 612

By hypothesis, there is a geometric object B1 ∈ J such that A � B1 for all A ∈ A. Without loss of generality we
can assume that A ≺ B1 for all A ∈ A. 613

We shall refer to a generalized interval XY as normal iff:

a) there is A ∈ A such that A ∈ [XY]; and b) for all B ∈ J the relation B ≻ Y implies B /∈ A. Observe that at
least one of the halves 614 of a normal generalized interval is normal. 615

Take an arbitrary geometric object A1 ∈ A. Then, evidently, the generalized interval mathcalA1B1 is normal.
Denote by A2B2 its normal half. Continuing inductively this process of division of generalized intervals into halves,
we denote An+1Bn+1 a normal half of the generalized interval AnBn. With the sequence of generalized intervals
thus constructed, there is a unique geometric object C lying on all the generalized closed intervals [AiBi], i ∈ N (see

L 1.4.11.1, T 1.4.11). This can be written as {C} =
∞⋂

i=0

[AiBi].

We will show that C = supA. First, we need to show that C is an upper bound of A. If C were not an upper

bound of A, there would exist a geometric object A0 ∈ A such that C < A0. But then A0 /∈
∞⋂

i=0

[AiBi] = {C}, whence

we would have ∃n0 ∈ N(An0 ≤ C ≤ Bn0 < A0), i.e. the closed generalized interval [An0Bn0 ] cannot be normal - a
contradiction. Thus, we have ∀A ∈ A(A � C). In order to establish that C = supA, we also need to prove that
given any X1 ∈ J with the property X1 ≺ C, there is a geometric object A ∈ A such that X1 ≺ A (see the discussion
accompanying the definition of least upper bound).

Observe that for any X1 ∈ J with the property X1 ≺ C there is a number n1 ∈ N such that X1 ≺ An1 � C � Bn1 .

Otherwise (if An � X1 for all n ∈ N) we would have X1 ∈
∞⋂

i=0

[AiBi] = {C} ⇒ X1 = C, which contradicts X1 ≺ C.

But then in view of normality of [An1Bn1 ] there is A ∈ A such that A ∈ [An1Bn1 ], i.e. An1 � A � Bn1 . Together
with X1 ≺ An1 , this gives X1 ≺ A, whence the result. 2

Theorem 1.4.31 (Dedekind). Let A, B be two non-empty subsets of J such that A∪B = J. Suppose, further, that
any element of the set J (strictly) precedes any element of the set B, i.e. (∀A ∈ A)(∀B ∈ B)(A ≺ B). Then either

608That is, the geometric object denoted by the letter written first in the notation of the generalized interval precedes in the chosen
order the point designated by the letter written in the second position.
609This can be shown either referring to L 1.2.29.4, or directly using the facts presented above.
610Basically, they mean that we can work with order on sets of geometric objects in a set with generalized betweenness relation just like

we are accustomed to work with order on sets of ”points” (numbers) on the ”real line”.
611The arguments in the proof of this and the following two theorems are completely similar to those used to establish the corresponding

results for real numbers in calculus.
612The proof will be done for upper bound. The case of lower bound is completely analogous to the lower bound case.
613In fact, in the case where A ≺ B1 for all A ∈ A we would immediately have B1 = sup A, and the proof would be complete.
614If D is the midpoint of the generalized interval AB, the generalized intervals AD, DB are (as sometimes are generalized intervals

congruent to them) referred to as the halves of AB.
615In fact, if A ∈ [mathcalXY ] and M = midXY, then either A ∈ [XM] or A ∈ [mathcalMY ] (see L 1.2.22.8). If A ∈ [MY] then the

second condition in the definition of normal generalized interval is unchanged, so that it holds for MY if it does for XY. If A /∈ [MY]
then necessarily A ∈ [XM]. In this case the relation B ≻ M (together with X ≺ M ≺ Y ) implies that either M ≺ B � Y (which
amounts to B ∈ (MY ]), or B ≻ Y .
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there is a geometric object C such that all geometric objects in A precede C, or there is a geometric object C such that
C precedes all geometric objects in B.

In this case we say that the geometric object C makes a Dedekind cut in J. We can also say that A, B define a
Dedekind cut in J.

Proof. Since A is not empty and has an upper bound, by the preceding theorem (T ??) it has the least upper bound
C ⇋ supA.

Observe that A ∩ B = ∅. Otherwise we would have (by hypothesis) A0 ∈ A ∩ B ⇒ (A0 ∈ A)& B ⇒ A0 ≺ A0,
which is impossible.

Since A ∩ B = ∅, we have either C ∈ A, or C ∈ B, but not both. If C ∈ A then (∀A ∈ A)(A � C) because
C = supA. Suppose now C ∈ B. To show that (∀B ∈ B)(C ≺ B) suppose the contrary, i.e. that there is B0 ∈ B such
that B0 ≺ C. Since C = supA, from the properties of least upper bound (see discussion following its definition) it
would then follow that there exists A0 ∈ A such that B0 ≺ A0. But this would contradict the assumption that any
geometric object of A precedes any geometric object of B (see L 1.2.27.5). Thus, in the case C ∈ B we have C ≺ B
for all B ∈ B, which completes the proof. 2

Theorem 1.4.32. Let A, B be two non-empty sets in the set J with the property that any element of the set A

(strictly) precedes any element of the set B, i.e. (∀A ∈ A)(∀B ∈ B)(A ≺ B). Then there is a geometric object C
such that A � C � B for all A ∈ A, B ∈ B.

Proof. Construct a Dedekind cut in J defined by sets A1, B1 such that A1 6= ∅, B1 6= ∅, A1cupB1 = J, A ⊂ A1,
B ⊂ B1. To achieve this, we define B1 ⇋ {B1 ∈ J|(∃B ∈ B)(B � B1)} and A1 = J \ B1. To show that B ⊂ B1

observe that for any geometric object B1 ∈ B1 there is B = B1 ∈ B, i.e. B1 ∈ B1. To show that A∩B1 = ∅ suppose
the contrary, i.e. that there is a geometric object A0 ∈ A ∩ B1. Then from the definition of B1 we would have
(∃B0 ∈ B)(B0 � A0). But this contradicts the assumption (∀A ∈ A)(∀B ∈ B)(A ≺ B). Thus, we have A ∩ B1 = ∅,
whence A ⊂ J \ A1 = A1.

To demonstrate that any geometric object of the set A1 precedes any geometric object of the set B1 suppose
the contrary, i.e. that there are A0 ∈ A1, B0 ∈ B1 such that B0 ≺ A0. Then using the definition of the set B1

we can write B � B0 � A0, whence by the same definition A0 ∈ B1 = J \ A1 - a contradiction. Thus, we have
J = A1 ∪ B1, where A1 ⊃ A 6= ∅, B1 ⊃ B 6= ∅, and (∀A1 ∈ A1)(∀B1 ∈ B1)(A1 ≺ B1), which implies that the
sets define a Dedekind cut in J. Now by the preceding theorem (T 1.4.31) we can find a geometric object C ∈ J

such that (∀A1 ∈ A1)(∀B1 ∈ B1)(A1 � C � B1). But then from the inclusions A ⊂ A1, B ⊂ B1 we conclude that
(∀A ∈ A)(∀B ∈ B)(A � C � B), as required. 2
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Chapter 2

Elementary Euclidean Geometry

2.1

Axiom 2.1.1. There is at least one line a and at least one point A such that in the plane αaA defined by a and A,
no more than one parallel to a goes through A. 1

Theorem 2.1.1. Given a line a and a point A not on it, no more than one parallel to a goes through A.

Proof. (See Fig. 2.1.) By A 2.1.1 there is a line a and a point A such that in the plane αaA defined by a and A, no
more than one parallel to a goes through A. Denote this unique parallel by b (it exists by C ??). Choose points B, C,
E, F so that B, C ∈ a, E ∈ b, aAB ⊥ a (L 1.3.8.1), [BCF ] (A 1.2.2). With this choice, we can assume without loss
of generality that AB ⊂ Int∠EAC. It can be shown that ∠EAC ≡ ∠ACF , ∠EAB ≡ ∠ABC. 2 Observe that the
second of these congruences implies that ∠EAB is a right angle because ∠ABC is (see L 1.3.8.2). Now we can write
µ∠BAC +µ∠ABC +µ∠ACB = µ∠BAC +µ∠EAB+µ∠ACB = µ∠EAC +µ∠ACB = µ∠ACF +µ∠ACB = π(abs).
Thus, there exists at least one triangle whose abstract sum of angles equals π(abs,xt). Therefore, from T 1.4.27 every
triangle has abstract sum of angles equal to π(abs,xt). Hence by T 1.4.28 follows the present theorem. 2

Proposition 2.1.1.1. Proof. In Euclidean geometry every triangle has abstract sum of the angles equal to π(abs,xt).
Correspondingly, the sum of numerical measures of angles in every triangle in Euclidean geometry equals π. 2

Corollary 2.1.1.2. In Euclidean geometry the (abstract) sum of the angles of any convex polygon with n > 3 sides
is (n − 2)π(abs,xt). Correspondingly, the sum of numerical measures of the angles of any convex polygon with n > 3
sides is (n− 2)π. In particular, the (abstract) sum of the angles of any convex quadrilateral is 2π(abs,xt) and the sum
of numerical measures of the angles of any convex quadrilateral is (n − 2)π.

Proof. 2

Corollary 2.1.1.3. In Euclidean geometry any Saccheri quadrilateral is a rectangle.

Proof. 2

Corollary 2.1.1.4. In Euclidean geometry any Lambert quadrilateral is a rectangle.

Proof. 2

Theorem 2.1.2. If a ‖ b and c ‖ b, where b 6= c and then a ‖ c. Since the relation of parallelism is symmetric, we
can immediately reformulate this result as follows: If a ‖ b, b ‖ c, and a 6= c, then a ‖ c.

Proof. Suppose ∃C C ∈ a ∩ c. Then by T 2.1.1 a = c, contrary to hypothesis. 2

Theorem 2.1.3. If points B, D lie on the same side of a line aAC , the point C lies between A and a point E, and
the line aAB is parallel to the line aCD, then the angles ∠BAC, ∠DCE are congruent.

1Without continuity considerations, we would have to formulate this axiom in the following stronger form: There is at least one plane
α containing at least one line a such that if A is any point in α not on a, no more than one parallel to a goes through A.

2This follows from C 1.3.26.3 and the fact that we have chosen the line a and the point A according to A 2.1.1 (so that at most one
parallel to a can be drawn through A in αaA). Observe that since the notation for the points B, C was chosen so that the ray AB lies
inside the angle ∠EAC, by definition of anterior of angle the rays AE , AB lie on the same side of the line aAC . In conjunction with
[BCF ] this implies that the points E, F lie on opposite sides of the line aAC . Also (in view of C 1.2.21.11), the points E, C lie on
opposite sides of the line aAB . Then the remaining arguments needed to establish the congruences ∠EAC ≡ ∠ACF , ∠EAB ≡ ∠ABC
essentially replicate those that used to prove C 2.1.4.4.
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Figure 2.1: If points B, D lie on the same side of aAC , the point C lies between A and E, and aAB is parallel to
aCD, then ∠BAC, ∠DCE are congruent.
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Figure 2.2: If points B, D lie on the same side of aAC , the point C lies between A and E, and aAB is parallel to
aCD, then ∠BAC, ∠DCE are congruent.

Proof. (See Fig. 2.2.) Using A 1.3.4, construct CF such that the rays AB, CF lie on the same side of the line aAC

and ∠BAC ≡ ∠FCE. Then by T 1.3.26 we have aAB ‖ aCF . But aAB ‖ aCD & aAB ‖ aCF
T2.1.1
=⇒ aCD = aCF . Also,

using L 1.2.18.2, we can write ABCDaAC & ABCF aAC ⇒ CDCF aAC . In view of L 1.2.19.15, L 1.2.11.3 this implies
CF = CD. Thus, we have ∠BAC ≡ ∠DCE, as required. 2

Theorem 2.1.4. If points B, D lie on the same side of a line aAC, the point C lies between A and a point E, and
∠DCE < ∠BAC, then the rays BA, DC concur.

Proof. (See Fig. 2.3.) The lines aAB, aCD are not parallel, for otherwise by the preceding theorem (T 2.1.3) we
would have ∠BAC ≡ ∠DCE, which contradicts ∠DCE < ∠BAC in view of L 1.3.16.11. Thus, ∃F F ∈ aAB ∩ aCD.
Suppose F ∈ AB. Then by L 1.2.19.8 B, F lie on one side of aAC . Also, obviously, BFaAC & BDaAC ⇒ DFaAC .

By L 1.2.19.15 we have F ∈ CD. Taking into account that F ∈ AB ∩ CD
T2.1.1
=⇒ AF = AB & CF = CD and using

T 1.3.17, we can write: ∠BAC = ∠FAC < ∠FCE = ∠DCE, which contradicts the inequality ∠DCE < ∠BAC in
view of L 1.3.16.10. The contradiction shows that in fact F ∈ (AB)c. Then from L 1.2.15.4 we have (AB)c ⊂ BA.
Hence F ∈ BA. 2

Corollary 2.1.4.1. If a line b is perpendicular to a line a but parallel to a line c, then the lines a, c are perpendicular.

Proof. (See Fig. 2.4.) Obviously, we can reformulate this corollary as follows: If aAB ⊥ aAC and aAB ‖ aCD then
aCD ⊥ aAC . Choosing appropriate points A, B, C, D, E so that b = aAB ⊥ aAC = a, aAB ‖ aCD, and, in addition,
[ACE] (A 1.2.2)and B, D lie on the same side of the line aAD. Then from T 2.1.3 have ∠BAC ≡ ∠DCE, which
implies a ⊥ c. 2

Corollary 2.1.4.2. Suppose a line c is perpendicular to a line b but parallel to a line a. Suppose further that the
line a is also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are
parallel.

Proof. a ‖ c & b ⊥ c
C2.1.4.1
=⇒ a ⊥ b. a ⊥ b & a ⊥ d & b 6= d & ∃α(b ⊂ α & d ⊂ α)

C1.3.26.2
=⇒ b ‖ d. 2

Corollary 2.1.4.3. If points B, D lie on the same side of a line aAC and aAB ‖ aCD, then the angles ∠BAC,
∠DCA are supplementary.
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Figure 2.3: If points B, D lie on the same side of a line aAC , the point C lies between A and a point E, and
∠DCE < ∠BAC, then the rays BA, DC concur.
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Figure 2.4: Suppose a line c is perpendicular to a line b but parallel to a line a. Suppose further that the line a is
also perpendicular to a line d distinct from b, and the lines b, d lie on one plane. Then the lines b, d are parallel.
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Figure 2.5: Suppose that points O, A, B, as well as O, A′, B′ colline, and the line aAA′ is collinear to the line aBB′ .
Then ∠OAA′ ≡ ∠OBB′.

Proof. Taking a point E so that [ACE] (A 1.2.2), we have ∠BAC ≡ ∠DCE by T 2.1.3. Since [ACE] implies that the
angles ∠DCA, ∠DCE are adjacent supplementary, we conclude that the angles ∠BAC, ∠DCA are supplementary.
2

Corollary 2.1.4.4. If points B, F lie on opposite sides of a line aAC and aAB ‖ aCD, then the angles ∠BAC,
∠FCA are congruent.

Proof. Taking points E, D such that [ACE], [FCD], we have ∠BAC ≡ ∠DCE by T 2.1.3. 3 But ∠DCE ≡ ∠ACF
by T 1.3.7, whence the result. 2

Proposition 2.1.4.5. Suppose that points O, A, B, as well as O, A′, B′ colline, and the line aAA′ is collinear to
the line aBB′ . Then ∠OAA′ ≡ ∠OBB′.

Proof. Obviously, the points O, A, B, A′, B′ are all distinct. (Note that aAA′ ‖ aBB′ ⇒ aAA′ ∩aBB′ = ∅.) By T 1.2.2
we have either [OAB], or [OBA], or [AOB]. Suppose [OAB] (see Fig. 2.5, a)). 4 Then [OA′B′] by T 1.2.44. Hence
A′, B′ are on the same side of the line aAB (see L 1.2.19.9). Then, using T 2.1.4, we conclude that ∠OAA′ ≡ ∠OBB′.
Suppose now that [AOB] (see Fig. 2.5, b)). Then [A′OB′] by T 1.2.45. This, in turn, implies that the points A′, B′

are on opposite sides of the line aAB. Then ∠BAA′ ≡ ∠ABB′, whence the result. 5
2

Theorem 2.1.5. In a parallelogram ABCD we have AB ≡ CD, BC ≡ DA, ∠ABC ≡ ∠ADC, ∠BAD ≡ ∠BCD.

Proof. By C 1.2.47.3 the ray AC lies inside the angle ∠BAD and the points B, D lie on opposite sides of the line
aAC . Since aAB ‖ aCD, C 2.1.4.4 gives ∠BAC ≡ ∠DCA. Similarly,6 CA ⊂ Int∠BCD and ∠BCA ≡ ∠DAC. Now

we can write ∠BAC ≡ ∠DCA& ∠DAC ≡ ∠BCA& AC ⊂ Int∠BAD & CA ⊂ Int∠BCD
T1.3.9
=⇒ ∠BAD ≡ ∠BCD.

Furthermore, since also ∠ADB ≡ ∠CBD 7, we have BD ≡ BD & ∠ADB ≡ ∠CBD & ∠DAB ≡ ∠BCD
T1.3.20
=⇒

△DBA ≡ △BDC ⇒ AD ≡ BC & AB ≡ CD. 2

Theorem 2.1.6. In a parallelogram ABCD the open intervals (AC), (BD) concur in the common midpoint X of
the diagonals AC, BD.

Proof. The open intervals (AC), (BD) concur by L 1.2.47.2. We also have ∠BCA ≡ ∠DAC, ∠CBD ≡ ∠ADB (see

proof of the preceding theorem (T 1.2.5)). But [AXC]
L1.2.11.3

=⇒ AX = AC & CX = CA ⇒ ∠DAX = ∠DAC & ∠BCX =

∠BCA, [BXD]
L1.2.11.3

=⇒ BX = BD & DX = DB ⇒ ∠CBX = ∠CBD & ∠ADX = ∠ADB. Hence ∠BCX ≡ ∠DAX ,
∠CBX ≡ ∠ADX . Taking into account that BC ≡ DA from the preceding theorem (T 2.1.5), from T 1.3.5 we
obtain △CXB ≡ △AXD, whence AX ≡ CX , BX ≡ DX . 8

2

3Note that [FCD] ⇒ FaACD, BaACF &FaACD
L1.2.17.9

=⇒ BDaAC .
4Since the pairs of points A, A′ and B, B′ enter the conditions of the proposition symmetrically, and, as is shown further, [OAB]

implies [OA′B′], we do not need to consider the case when [OBA] separately. Alternatively, the result for this case can be immediately
obtained by substituting A in place of B and B in place of A.

5Of course, we also need to make the trivial observation that ∠BAA′ = ∠OAA′, ∠ABB′ = ∠OBB′ in view of L 1.2.11.3.
6By symmetry. Observe that the assumptions of the theorem remain valid upon the substitution B ↔ D.
7Again, this can be established using arguments completely analogous to those employed above to show that ∠BAC ≡ ∠DCA,

∠BCA ≡ ∠DAC (symmetry again!)
8Alternatively, we could note that ∠CXB ≡ ∠AXD by T 1.3.7 and use T 1.3.20.
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Figure 2.6: In a parallelogram ABCD the open intervals (AC), (BD) concur in the common midpoint X of the
diagonals AC, BD.

Theorem 2.1.7. Suppose in a trapezoid ABCD with aAB ‖ aCD the vertices B, C lie on the same side of the line
aAD. Then ABCD is a parallelogram.

Proof. By C 1.2.47.4 the open intervals (AC), (BD) concur and ABCD is a simple quadrilateral. In particular,
the points A, C lie on opposite sides of the line aBD, whence in view of aAB ‖ aCD we have ∠BAD ≡ ∠CDB
by C 2.1.4.4. Since also AB ≡ CD, BD ≡ DB, from T 1.3.4 (SAS) we conclude that △ABD ≡ △CDB, which
implies AD ≡ BC. Finally, AB ≡ CD, AD ≡ BC, and the trapezoid ABCD being simple imply that ABCD is a
parallelogram (P 1.3.28.2). 2
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Chapter 3

Elementary Hyperbolic (Lobachevskian)
Geometry

3.1

Axiom 3.1.1. There is at least one line a and at least one point A with the following property: if there is a line b
containing A and parallel to a, there is another (distinct from b) line c parallel to a.

Theorem 3.1.1. Given a point A on a line a in a plane α, there is more than one parallel to a containing A.

Proof. Suppose the contrary, i.e. that there is a line a and a point A not on it such that no more than one line
parallel to a goes through A. But then, according to T 2.1.1 the same would be true about any line and any point
not on it. This, however, contradicts A 3.1.1. 2

Proposition 3.1.1.1. Proof. In hyperbolic geometry every triangle has abstract sum of the angles less than π(abs,xt).
Correspondingly, the sum of numerical measures of angles in every triangle in hyperbolic geometry is less than π. 2

Corollary 3.1.1.2. In hyperbolic geometry the (abstract) sum of the angles of any convex polygon with n > 3 sides
is less than (n − 2)π(abs,xt). Correspondingly, the sum of numerical measures of the angles of any convex polygon
with n > 3 sides is less than (n − 2)π. In particular, the (abstract) sum of the angles of any convex quadrilateral is
less than 2π(abs,xt) and the sum of numerical measures of the angles of any convex quadrilateral is less than (n−2)π.

Proof. 2

Corollary 3.1.1.3. In hyperbolic geometry the (abstract) sum of the summit angles of any birectangle is less than
π(abs,xt). In particular, both summit angles of any Saccheri quadrilateral are acute. Thus, there are no rectangles in
hyperbolic geometry.

Proof. 2

Corollary 3.1.1.4. In hyperbolic geometry any Lambert quadrilateral has one acute angle.

Proof. 2

Lemma 3.1.1.5. In a birectangle ABCD with right angles ∠B, ∠C we have ∠A < adjsp∠D, ∠D < adjsp∠A.

Proof. Using C 3.1.1.3 we can write

µ(∠A, 0) + µ(∠D, 0) < π(abs,xt) = µ(∠D, 0) + µ(adjsp∠D, 0)

, whence µ(∠A, 0) < µ(adjsp∠D, 0) (see P 1.3.66.9). The other inequality is established similarly. 2

Consider a line a and a point A not on it. Using L 1.3.8.1, construct a perpendicular to a through A. Denote by
O the foot of this perpendicular. Suppose also one of the two possible orders on a is chosen (see T 1.2.14). We shall
say that this choice of order defines a certain direction on a. (Thus, there are two opposite directions defined on a.)

Now take a point P ∈ a, P 6= O, such that O precedes P in the chosen order. 1 Let J be the set of all rays having
initial point A and lying on the same side of a as the point P (and, consequently, as the ray OP ) plus the rays AO,
Ac

O. According to P 1.2.21.29 this is a set with generalized angular betweenness relation. This relation is defined in
a traditional way: a ray k ∈ J lies between rays h, l ∈ J iff k lies inside the angle ∠(h, l). Let A be the set of such
rays k ∈ J that the line k̄ does not meet a. Now, of the two possible orders on the set J (see T 1.2.35) choose the

1We can also say that the direction on a is dictated by choosing a point P on one of the two rays into which the point O separates
the line a. This amounts to choosing one of the rays as the first and another ray as the second in the process of defining the order on a.
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Figure 3.1: If a ray l ∈ J meets OP , so does any ray l′ preceding it. If the ray hc, complementary to a ray h ∈ J,
meets the ray Oc

P , so does any ray h′c, complementary to the ray h′ succeeding h.

one in which the ray AO precedes the ray Ac
O. This implies, in particular, (in view of [AOkAc

O] (which follows from
definition of interior of straight angle) and T 1.2.35) that AO ≺ k ≺ Ac

O for any k ∈ J.

Observe that if a ray l ∈ J meets OP , so does any ray l′ preceding l (see Fig. 3.1). In fact, suppose l′ ≺ l and the
ray l ∈ J meets OP in some point R. AO ≺ l′ ≺ l 2 implies [AOl′l], i.e. l′ ⊂ Int∠(AO, l). Hence by L 1.2.21.10 the
ray l′ meets the open interval (OP ), and, consequently, the ray OP in some point Q.

Thus, any ray l ∈ J which meets OP , is a lower bound for A. 3

Similarly, if the ray hc, complementary to a ray h ∈ J, meets the ray Oc
P , so does any ray h′c, complementary

to the ray h′ succeeding h (see Fig. 3.1). In fact, suppose h′ ≻ h and the ray hc meets Oc
P in some point N . Note

that h ≺ h′ ≺ AO
4 implies [hh′Ac

O], i.e. h′ ⊂ Int∠(Ac
O, h) and h′c ⊂ Int∠(AO, hc) (see L 1.2.21.16). Hence by

L 1.2.21.10 the ray h′c meets the open interval (ON), and, consequently, the ray Oc
P , in some point M .

Thus, any ray h ∈ J, whose complementary ray hc meets Oc
P , is an upper bound for A. 5

Let llim(a, A) ⇋ inf A, hlim(a, A) ⇋ sup A. (Since the set A, obviously, has both upper and lower bounds, it has
the least upper bound and the greatest lower bound by T 1.4.30.) We shall refer to llim, hlim

6 as, respectively, the
lower and upper limiting rays for the pair (a, A) with the given direction on a 7 (see Fig. 3.2).

Strictly speaking, in place of llim(a, A) we should write llim(h, A), where h (and, of course, other letters suitable
to denote rays may be used in place of h) is a ray giving the direction (i.e. one of the two possible orders) on a.
8 Still, (mostly for practical reasons) we prefer to write llim(a, A) or simply llim whenever there is no threat of
ambiguity. The notation like llim(h, A) will be reserved for the cases where it is important which of the two possible
directions on a is chosen.

Both lower and upper limiting rays lie in A.

To demonstrate that llim ∈ A suppose the contrary, i.e. that llim ∈ J \ A. Then either llim meets OP , or lclim
meets Oc

P . 9

2For l′ = AO our claim is vacuously true, so we do not consider this case.
3Since J is a chain with respect to the relation � (see T 1.2.34), for any ray l ∈ J which meets OP and for any ray k ∈ A we have

either l � k, or k � l. Obviously, k 6= l, for l meets OP , but k does not according to the definition of A. Also, we have ¬(k � l), for,
as shown above, if a ray in k ∈ J precedes a ray l ∈ J that meets OP , then the ray k also meets OP , which our ray k does not. Hence
l ≺ k ∈ A as claimed.

4For h′c = AO our claim is vacuously true, so we do not consider this case.
5Since J is a chain with respect to the relation � (see T 1.2.34), for any ray h ∈ J whose complementary ray hc meets Oc

P and for
any ray k ∈ A we have either h � k, or k � h. Obviously, k 6= h, for hc meets Oc

P , but kc does not according to the definition of A. Also,
we have ¬(k � h), for, as shown above, if a ray in k ∈ J succeeds a ray h ∈ J whose complementary ray meets Oc

P , then the ray kc also
meets OP , which the ray complementary to our ray k does not. Hence k ≺ h ∈ A, as claimed.

6For brevity, we prefer to write simply llim, hlim instead of llim(a, A), hlim(a, A), respectively, whenever there is no danger of
confusion.

7Here, as in quite a few other places, I break up with what appears to be the established terminology.
8For example, h can be one of the two rays into which the point O, the foot of the perpendicular lowered from A to a, separates the

line a. But, of course, this role (of giving the direction) can be played by any other ray h with the property that its origin precedes (on
a) every point of the ray h.

9Since llim and Oc
P lie on opposite sides of aAO (see L 1.2.18.5), they cannot meet. The same is true of lclim and OP . Also, it is

absolutely obvious that O /∈ llim, O /∈ lclim. (In the case O ∈ llim we would have AO = llim by L 1.2.11.3. This, in turn, would imply
that llim, the greatest lower bound of A, precedes the ray OP , which is a lower bound of A. The contradiction shows that, in fact, we
have O /∈ llim. The assumption O ∈ lclim would imply (by L 1.2.11.3) that AO = lclim, or, equivalently, that Ac

O = llim, which leads us
to the absurd conclusion that Ac

O precedes any element of the set A. Thus, we have O /∈ lclim.
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Figure 3.2: All rays l in the set A lie between the rays llim(a, A), hlim(a, A). That is, they traverse the shaded area
in the figure.
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Figure 3.3: Illustration for proof that both lower and upper limiting rays lie in A.

But lclim cannot meet Oc
P , for that would make llim an upper bound of A, which would contradict the fact that

llim is the greatest lower bound of A.

Suppose llim meets OP in some point Q (see Fig. 3.3). Taking a point R such that [OQR] (A 1.2.2) and using
L 1.2.21.6, L 1.2.21.4, we see that llim ⊂ Int∠(AO, l), where l = OR. Hence llim ≺ l (see T 1.2.35). Since l meets OP

in R, we see that l is a lower bound of A. We arrive at a contradiction with the fact that llim is the greatest lower
bound of A. This contradiction shows that in reality llim does not meet OP and we have llim ∈ A.

Similarly, we can demonstrate that hlim ∈ A. 10

Note that llim 6= hlim, for otherwise we would have exactly one line through A parallel to a, contrary to T 3.1.1.
Thus, evidently, for any ray k ∈ A we have AO ≺ llim ≺ hlim ≺ Ac

O.

If b is any other (i.e. distinct from l̄lim, h̄lim) line through A parallel to a, separated by the point A into rays k,
kc, then one of these rays, say, k, lies inside the angle ∠(llim, llim), and the complementary ray kc then lies inside

10Suppose the contrary, i.e. that hlim ∈ J \ A. Then either hlim meets OP , or hc
lim

meets Oc
P . (Since hlim and Oc

P lie on opposite
sides of aAO (see L 1.2.18.5), they cannot meet. The same is true of lclim and OP . Also, it is absolutely obvious that O /∈ hlim, O /∈ hc

lim.
(In the case O ∈ hc

lim we would have AO = hc
lim by L 1.2.11.3. Hence Ac

O = hlim. This, in turn, would imply that hlim, the least upper
bound of A, succeeds a ray h (whose complementary ray hc meets Oc

P , which is an upper bound of A), which is an upper bound of A.
The contradiction shows that, in fact, we have O /∈ hc

lim. The assumption O ∈ hlim would imply (by L 1.2.11.3) that AO = hlim, which
leads us to the absurd conclusion that AO succeeds any element of the set A. Thus, we have O /∈ hlim.) But hlim cannot meet OP , for
that would make hlim a lower bound of A, which would contradict the fact that hlim is the least upper bound of A. Suppose now hc

lim
meets Oc

P in some point M (see Fig. 3.3). Taking a point N such that [OMN ] (A 1.2.2) and using L 1.2.21.6, L 1.2.21.4, we see that
hc

lim
⊂ Int∠(AO , h

c), where hc = ON . Hence hlim ⊂ Int∠(Ac
O, h) (see L 1.2.21.16) and, consequently, llim ≺ l (see T 1.2.35). Since hc

meets Oc
P in N , we see that h is an upper bound of A. We arrive at a contradiction with the fact that hlim is the least upper bound of

A. This contradiction shows that in reality hc
lim does not meet Oc

P .
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the angle ∠(lclim, lclim).
Hence it follows that llim(Oc

P , A) = hc
lim(OP , A), hlim(Oc

P , A) = lclim(OP , A). 11

To show that ∠(AO, llim(Oc
P , A)) ≡ ∠(AO, llim(OP , A)) suppose the contrary. Without any loss of generality we

can assume that ∠(AO, llim(Oc
P , A)) < ∠(AO, llim(OP , A)) (see L 1.3.16.14). Then there is a ray l′ with initial point

O such that ∠(AO, llim(OP , A)) ≡ ∠(AO, l′), l′ ⊂ Int∠∠(AO, llim(Oc
P , A)). Since l′ ≺ llim(Oc

P , A), we see that l′ has
to meet the ray Oc

P at some point Q′. Taking a point Q ∈ OP such that OQ′ ≡ OQ, and taking into account that

aAO ⊥ a ⇒ ∠AOQ′ ≡ ∠AOQ, we can write OQ′ ≡ OQ & OA ≡ OA& ∠AOQ′ ≡ ∠AOQ
T1.3.4
=⇒ △AOQ′ ≡ △AOQ ⇒

∠OAQ′ ≡ ∠OAQ. Since ∠(AO, llim(OP , A)) ≡ ∠(AO, l′) = ∠OAQ′ ≡ ∠OAQ and the rays llim(OP , A), AQ lie on
the same side of the line aAO, from A 1.3.4 we have llim(OP , A) = AQ, i.e. the ray llim(OP , A) meets the line a at
Q - a contradiction which shows that in fact ∠(AO, llim(Oc

P , A)) ≡ ∠(AO, llim(OP , A)).
We shall call either of the two congruent angles ∠(AO, llim(OP , A)), ∠(AO, llim(Oc

P , A)) the angle of parallelism
for the line a and the point A. We see that angles of parallelism are always acute.

We shall refer to l̄lim as the line parallel to a in the given direction (on a). To prove that the concept of the line
parallel to a given line in a given direction is well defined, we need to show that in our case llim is parallel to a in
the chosen (on a) direction regardless of the choice of the point A on llim.

Take A′ ∈ l̄lim . Denote by O′ the foot of the perpendicular through A′ to a. Now take a point P ′ ∈ a, P ′ 6= O′,
such that O′ precedes P ′ in the chosen order. 12

Let J′ be the set of all rays having initial point A′ and lying on the same side of a as the point P ′ (and,
consequently, as the ray O′

P ′) with initial point A′, plus the rays A′
O′ , A′c

O′ . According to P 1.2.21.29, this is a set
with generalized angular betweenness relation. This relation is defined in a traditional way: a ray k ∈ J lies between
rays h, l ∈ J iff k lies inside the angle ∠(h, l). Let A′ be the set of such rays k ∈ J′ that the line k̄ does not meet a.
Now, of the two possible orders on the set J′ (see T 1.2.35) choose the one in which the ray A′

O′ precedes the ray
A′c

O′ .
Let l′lim ⇋ llim(a, A′) ⇋ inf A′, h′

lim ⇋ hlim(a, A′) ⇋ sup A′.
First, suppose A′ ∈ llim(a, A) (see Fig. 3.4, a)). We are going to show that A′c

A = llim(a, A′).
As the lines aOA, aO′A′ are distinct and are both perpendicular (by construction) to the line aOO′ = a, the lines

aOA, aO′A′ are parallel (see C 1.3.26.2). Therefore, the points A, O lie on the same side of the line aA′O′ and the
points A′, O′ lie on the same side of the line aAO. Consequently, O′ ∈ OP . 13 From the properties of order on a it

follows that O ≺ O′. Hence O ≺ O′ ≺ P ′ T1.2.35
=⇒ [OO′P ′]. We know that the point A and the ray A′c

O′ lie on opposite
sides of the line aO′A′ , as do the point O and the ray O′

P ′ . At the same time, the points A, O lie on the same side
of aA′O′ . Therefore, the rays A′c

O′ and O′
P ′ lie on the same side of the line aOA (L 1.2.18.5, L 1.2.18.4).

Note that Ā′c

A = l̄lim(a, A) and, consequently, A′c
A ∈ A′. Now, to establish that A′c

A = llim(a, A′), we need to
prove only that any ray preceding A′c

A (in J′) meets the ray O′
P ′ and thus lies outside the set A′. Take a ray l′

emanating from A′ and distinct from A′
O′ , such that l′ precedes A′c

A in J′. Then we have l′ ⊂ Int∠(A′
O′ , A′c

A) (see
T 1.2.35). Take a point Q ∈ l′.

Since the lines llim(a, A) and a do not meet, the points O, O′ ∈ a, and, consequently, the rays AO, A′
O′ lie on the

same side of the line llim(a, A′). Also, from the definition of interior of angle the rays l′ and A′
O′ lie on the same side

of the line llim(a, A). Thus, we see (using L 1.2.18.2) that the rays l′ and AO lie on the same side of the llim(a, A).
Observe that the ray l′ and the line aAO lie on opposite sides of the line aA′O′ . 14 Therefore, the line l̄′ can have

no common points with the ray AO, 15 and, in particular, with (AO] (L 1.2.11.1, L 1.2.11.13).
Evidently, we can assume without any loss of generality that the point Q and the line llim(a, A) lie on the same

side of the line a. 16 Since both l′ and A′c
A lie on the same side of the line aA′O′ and the rays l′ and AO lie on the

same side of the llim(a, A), the point Q lies inside the angle ∠OAA′. But, in view of L 1.2.21.4, so does the whole
ray AQ. Hence AQ ≺ llim(a, A) in J (by T 1.2.35). Therefore, the ray AQ has to meet the line a in some point M .
Since the rays AQ, OP lie on the same side of aAO, 17 the point M lies on OP .

11Evidently, llim(Oc
P , A) is the lower limiting ray for the reverse direction on a, and hlim(Oc

P , A) is the upper limiting ray for that
direction.

12We proceed now to define the set A′ of rays with initial point A′ and the corresponding lower and upper limiting rays l′lim(a, A′),
h′lim(a, A′) in such a way that A′ and l′lim(a, A′), h′lim(a, A′) play for the line a and the point A′ the role completely analogous to that
played by llim(a, A), hlim(a, A) for A.

13In fact, we know that the point A′ ∈ llim(a, A) lies on the same side of the line aOA as the point P . Since A′ /∈ aOA, from L 1.3.8.3
we see that O′ 6= O. If the point O′ were to lie on the ray Oc

P , by L 1.2.17.10 the points A′, O′ would lie on opposite sides of the line
aOA, and the lines AOA, aO′A′ would meet - a contradiction. Thus, we see that O′ ∈ OP .

14In fact, since l′ ⊂ Int∠(A′
O′ , A′c

A), from the definition of interior of angle the rays l′ and A′c
A lie on the same side of the line aA′O′ .

Since the rays l′ and A′c
A lie on the same side of the line aA′O′ , and the point A and the ray A′c

A lie on opposite sides of the line aA′O′

(recall also that aAO ‖ aA′O′), we can conclude (using L 1.2.18.5, T 1.2.20) that the ray l′ and the line aAO lie on opposite sides of the
line aA′O′ .

15In fact, since A′ /∈ aAO and the rays l′c, AO lie on opposite sides of llim(a, A) (recall that l′ and AO lie on the same side of the
llim(a, A)) and thus have no common points, any common points of AO and l̄′ would have to lie on the ray l′. But we have just shown
that the ray l′ and the line aAO lie on opposite sides of the line aA′O′ and, therefore, cannot meet.

16We know that the rays l′ and A′c
A lie on the same side of the line aA′O′ , as do O′

P ′ and A′c
A. Hence l′ and O′

P ′ lie on the same
side of aA′O′ . Obviously, if the ray l′ meets the line a at all, it can do so only on the ray O′

P ′ (using L 1.2.18.5, we see that l′ and O′c
P ′

lie on opposite sides of aA′O′ and thus have no common points; also, it is obvious that O′ /∈ l′). So, if the point Q and the line llim(a, A)
containing the point A would lie on opposite sides of a, then the open interval (AQ), and, consequently, the ray l′, would meet O′

P ′ and
we would have noting more to prove.

17Indeed, llim(a, A), OP lie on the same side of aAO by construction, and llim(a, A), AQ lie on the same side of aAO by definition of
interior of ∠OAA′.
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Evidently, all common points the line l̄′ has with the contour of the triangle △AOM lie on the ray l′. 18 It is
also obvious that the line l̄′ lies in the plane αAOM and does not contain any of the points A, O, M . Since l̄′ meets
the open interval (AM) in Q (one can use L 1.2.21.9 to show that [AQM ]), by A 1.2.4 it meets the open interval
(OM), and thus the ray OP , in some point N , q.e.d.

Suppose A′ ∈ lclim(a, A) (see Fig. 3.4, b)). We are going to show that A′
A = llim(a, A′). Since the point P and

the ray llim(a, A) lie on on the same side of the line aAO (by construction), the ray llim(a, A) and the point A′ lie on
opposite sides of the line aAO, finally, as shown above, the points A′, O′ lie on the same side of aAO, using L 1.2.18.5
we conclude that the points O′, P lie on opposite sides of the line aAO. Therefore, points O′, P lie on the line a
on opposite sides of the point O, whence O′ ≺ O ≺ P in view of T 1.2.35 (we take into account that O ≺ P by
hypothesis). Since also, by construction, O′ ≺ P ′, from the properties of precedence on the line a it follows that the
points O, P ′ lie on a on the same side of O′ and, consequently, the rays A′

A and the point P ′ (as well as the whole
ray O′

P ′) lie on the same side of the line aA′O′ (recall that the points A, O lie on the same side of aA′O′). We see
that A′

A ∈ A′. Now, to complete our proof that A′
A = llim(a, A′), we are left to show only that any ray preceding

A′
A (in J′) meets the ray O′

P ′ and thus lies outside the set A′. Take a ray l′ emanating from A′ and distinct from
A′

O′ , such that l′ precedes A′
A in J′. Then we have l′ ⊂ Int∠A′O′A (see T 1.2.35). Take a point Q ∈ l′

c
. Evidently,

we can assume without any loss of generality that the points A′, Q lie on the same side of the line aAO. 19 Since
the ray l′ and the point Q, as well as the ray Ac

Q and the point Q, lie on opposite sides of the line l̄lim(a, A); the

rays A′
O′ , Ac

Q lie on the same side of l̄lim(a, A) (by definition of interior of ∠A′O′A), as do the rays A′
O′ , AO, using

L 1.2.18.2, L 1.2.18.4 we see that the rays AO, Ac
Q lie on the same side of l̄lim(a, A). Similarly, since A′ and Q lie

on the same side of aAO (by our assumption), A′ and llim(a, A), as well as Q and Ac
Q lie on opposite sides of aAO,

from L 1.2.18.5, L 1.2.18.4 we see that the rays Ac
Q and llim(a, A) lie on the same side of aAO. Thus, by definition

of interior, the ray Ac
Q lies inside the angle ∠(AO, llim(a, A)). Consequently, Ac

Q precedes llim(a, A) in the set J

(T 1.2.35). Now, from the properties of llim(a, A) as the greatest lower bound of A we see that the ray Ac
Q has to

meet the ray OP in some point M . Since l′ ⊂ Int∠A′O′A, by L 1.2.21.10 there is a point R ∈ l′ ∩ (A′A). Now

observe that [QAM ] & R ∈ l̄′ ∩ (A′A)
C1.2.1.7
=⇒ ∃N(N ∈ (O′M) ∩ l̄′). Since the M ∈ O′

P ′ and the rays O′
P ′ , l′ lie on

the same side of aA′O′ , we see that the open interval (O′M) and the line l̄′ can meet only in a point lying on l′. 20

Thus, ∃N(N ∈ (O′M) ∩ l′), which completes the proof of the fact that the notion of the line parallel to a given line
in a given (on that line) direction is well defined.

Theorem 3.1.2. Given a line a with direction on it and a point A not on a, there is exactly one line through A
parallel to a in the given (on A) direction.

Proof. 2

Theorem 3.1.3. If a line b is parallel to a line a in a given on a direction, then the line a is parallel to the line b
in the same direction.

Proof. Take points A ∈ a, B ∈ b. Denote D ⇋ l ∩ a, where l is the bisector of the angle ∠(BA, k) (see T 1.3.25) and
k ⇋ llim(a, B). 21 Denote by I the point of intersection of the bisector of the angle ∠BAD with the open interval
(BD) (see T 1.3.25, L 1.2.21.10). 22 Now choose points J , K, L such that aIJ ⊥ b, aIK ⊥ aAB, aIL ⊥ a. 23 Since the
rays BI , AI are the bisectors of proper (non-straight) angles, the angles ∠IBA, ∠IAB, ∠(BI , k), ∠IAD are acute.
Therefore, K ∈ (AB) by P 1.3.24.3. Hence ∠KBI = ∠ABI, ∠KAI = ∠BAI (L 1.2.11.3). Also, J ∈ k, L ∈ AD by
C 1.3.18.11, whence ∠IBJ = ∠(BI , k), ∠IAL = ∠IAD. Now we can write (taking into account that, by T 1.3.16,

all right angles are congruent) BI ≡ BI & ∠JBI ≡ ∠KBI & ∠BJI ≡ ∠BKI
T1.3.19
=⇒ △BJI ≡ △BKI ⇒ IJ ≡ IK,

IA ≡ IA& ∠KAI ≡ ∠LAI & ∠IKA ≡ ∠ILA
T1.3.19
=⇒ △AKI ≡ △ALI ⇒ IK ≡ IL. Thus, IJ ≡ IL. The points I,

J , L are not collinear. In fact, the angle, formed by the ray JL and one of the rays into which the point J separates
the line b, is the angle of parallelism corresponding to the line a and the point J . This angle, like any angle of
parallelism, is acute (see above) and thus cannot be a right angle. But I ∈ JL (we take into account that, since
I ∈ Int(ab) if the points I, J , L were collinear, we would necessarily have I ∈ JL

24 ) would imply that JL ⊥ b - a

18This follows from the even more obvious fact that the ray l′ and all points of the contour of △AOM except A lie on the same side of
the line llim(a, A). (Recall that the contour of the triangle △AOM is the union [AO)∪ [OM ∪ [MA). In order to make our exposition at
all manageable, in this as well as many other proofs we leave out some easy yet tedious details, leaving it to the reader to fill the gaps.)

19This follows from the fact that any half-plane is an open plane set.
20Of course, A′ /∈ (O′M). Also, [O′OP ]

L1.2.13.2
=⇒ OP ⊂ O′

P and O, P ′ lie on a on the same side of O′, whence M ∈ O′
P ′ and,

consequently, (O′M) ⊂ O′
P ′ .

21Observe that l definitely meets the line a. A clumsy, but sure way to see this is as follows: Lower a perpendicular from B to a with
the foot O. Since, loosely speaking, ∠(k, l) is half ∠(BA, k) and the latter is not straight, the angle ∠(k, l) is acute. Using L 1.3.16.17,
C 1.3.16.4 we see that l ⊂ Int∠(BO , k). But we have shown above that, in view of definition of k as the lower limiting ray, the ray l is
bound to meet the line a.

22Thus, AI is a bisector of the triangle △BAD.
23In other words, the points J , K, L are the feet of the perpendiculars lowered from I to the lines b, aAB , a, respectively.
24To show that the point I lies inside the strip ab, observe that I, lying on the bisector of the angle ∠(BA, k), lies on the same side

of the line b as the point A, and, consequently, as the whole line a. Similarly, since I lies on the bisector of ∠BAD, the point I lies on
the same side of a as B, and, consequently, as the whole line b. Thus, by definition of interior of the strip ab, the point I lies inside this
strip. If the points I, J , L were collinear, we would have either I ∈ JL, or I = J , or I ∈ Jc

L. Obviously, I 6= J . Also, I ∈ Jc
L, equivalent

to [IJL], would imply that the points I, L lie on opposite sides of the line b - a contradiction with I ∈ Int(ab). Thus, we conclude that
I ∈ JL.
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Figure 3.4: Illustration for proof that the notion of the line parallel to a given line in a given (on that line) direction
is well defined.

240



A

B J

LO

K

I

a

b

D P

Q
h’’

k’’

Figure 3.5: If a line b is parallel to a line a in a given on a direction, then a is parallel to b in the same direction.

contradiction. Denote h′ the ray with initial point L such that ∠(LJ , h′) is acute. Let k′ ⇋ llim(h′, J). 25 We are
going to show that h′ = llim(k′, J). 26 Since we know that a = h̄′ ‖ k̄′ = b, we need to establish only that any ray
h′′ lying inside the angle ∠(LF , h′) meets the line b. Evidently, without any loss of generality, it suffices to take an
arbitrary ray h′′ ⊂ Int∠(LJ , h′) and show that it meets b. Observe that the ray JL lies inside the angle ∠(JI , k

′).
27 Since ∠IJL ≡ ∠ILJ by T 1.3.3 (recall that IJ ≡ IL), the angles ∠(JI , k

′), ∠(LI , h
′) are congruent (both being

right angles), and JL ⊂ Int∠(JI , k
′), LJ ⊂ Int∠(LI , h

′), using T 1.3.9 we conclude that ∠(LJ , k′) ≡ ∠(JL, h′).
Consider the ray k′′ such that k′, k′′ lie on the same side of aJL and ∠(LJ , h′′) ≡ ∠(JL, k′′) (see A 1.3.4). We

have h′′ ⊂ Int∠(LJ , h′)& k′k′′aJL & ∠(LJ , h′′) ≡ ∠(JL, k′′)& ∠(LJ , k′) ≡ ∠(JL, h′)
P1.3.9.5
=⇒ k′′ ⊂ Int∠(JL, k′). Since

k′ = llim(h′, J), the ray k′′ meets the ray h′ in some point P . 28 Now take a point Q ∈ k′ such that JQ ≡ LP (see

A 1.3.1). Now we can write LJ ≡ JL & JQ ≡ LP & ∠LJQ ≡ ∠JLP
T1.3.4
=⇒ △LJQ ≡ △JLP ⇒ ∠JLQ ≡ ∠LJP . In

conjunction with ∠(JL, h′′) ≡ ∠(LJ , k′′), this gives LQ = h′′, i.e. h′′ meets the line b (or, to be more precise, the ray
k′) in the point Q. 2

Lemma 3.1.4.1. Suppose that lines a, b are parallel to a line c in the same direction. Suppose, further, that there is
a point B ∈ b lying inside the strip (ac). Then for any points A ∈ a, C ∈ c there is a point X ∈ b such that [AXC].

Proof. Evidently, a ‖ b, for if they met in some point, we would have two lines through a single point, parallel to
c in the same direction - in contradiction with T 1.3.2. Therefore, b ⊂ Intac (from L 1.2.19.20), i.e. the line b lies
completely inside the strip ac. Choose a ray l′ (with initial point C) such that l′ ⊂ Int∠(CA, l), l′ ⊂ Int∠(CG, l),
l′ ⊂ Int∠(CF , l), where l ⇋ llim(a, C), and G, F are the feet of the perpendiculars drawn through C to b and a,
respectively. Since a, c are parallel in a given direction, the ray l′ is bound to meet the line a in some point P . For
the same reason l′ meets b in a point Q. From L 1.2.19.16 we see that [CQP ]. Finally, since the line b lies in the
plane αACP and does not contain any of the points A, C, P , using Pasch’s axiom (A 1.2.4) we conclude that b meets
the open interval (AC) in some point X , as required. 29

2

Theorem 3.1.4. Suppose that two lines a, b are both parallel to a line c in the same direction. Then the lines a, b
are parallel to each other in that direction.

Proof. Observe that a ‖ b (see proof of the preceding lemma (L 3.1.4.1)). Obviously (since both a and b do not meet
c), either a, b lie on the same side of c, or a, b lie on opposite sides of the line c.

First, suppose that a, b lie on the same side of c. Then either the line b lies inside the strip ac, or the line c lies
inside the strip ab (see L 1.2.21.34). Evidently, we can assume without loss of generality (due to symmetry) that

25That is, llim(h′, J) is the lower limiting ray with respect to the order defined on a in such a manner that L precedes any point of h′.
26Consider the set J′ of such rays l′ with initial point L that the rays l′, k′ lie on the same side of the line aLF , plus the rays LF ,

Lc
F , where F ∈ b is the foot of the perpendicular drawn through L to b. Consider also the subset A′ ⊂ J′ defined by the additional

requirement that the line l̄′ does not meet the line b. As explained above, we can define on the set J′ two opposite orders, linked to the
betweenness relation, defined in the usual way as follows: a ray l′′ ∈ J′ lies between h′′ ∈ J′ and k′′ ∈ J′ with the same initial point iff
l′′ ⊂ Int∠(h′′, k′′). Of the two orders possible, we choose the one in which LF precedes Lc

F . We then define llim(k′, J) ⇋ inf A′.
27Here is a clumsy, but working way to show this: Since the rays LI , LJ lie on the same side of the line a and the angle ∠(LJ , h

′),
being acute (by our assumption), is less than the right angle ∠(LI , h

′) (see L 1.3.16.17), we see (using C 1.2.21.11) that the rays LI , h′

lie on opposite sides of the line aLJ . As the rays h′, k′ lie on the same side of the line Since the rays LI , h′ lie on the same side of aJL

(from our definition of k′ as llim(h′, J) ), using L 1.2.18.5 we conclude that the rays JI , k′ lie on opposite sides of the line aLJ . (Of
course, we also take into account that the rays LI , JI lie on the same side of aLJ . ) Finally, since the rays JI , JL (because the points I,
L ∈ a lie on the same side of b) lie on the same side of b, from L 1.2.21.32 we find that JL lies inside the angle ∠(JI , k

′).
28As k′′ ⊂ ∠(JL, k

′), the rays k′′, k′ lie on the same side of the line aJL. Since also h′k′aJL, we see that k′′aJLh
′, k′′aJLh

′c, which
implies that the ray k′′ can meet the line a only in a point lying on the ray h′. (We also take into account that, of course, L /∈ k′′. )

29Obviously, b cannot meet (AP ), for a ‖ b.
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b ⊂ Int(ac). To prove that h = llim(b, A) consider a ray h′ such that h′ ⊂ Int∠(h, AB), h′ ⊂ Int∠(h, AC). 30 We
need to show that the ray h′ chosen in this way meets the line b. Suppose the contrary. But then h′ would not meet
the line c either. For, if h′ met c in some point, in view of the preceding lemma (L 3.1.4.1) it would have to meet the
line b as well, which contradicts our assumption. On the other hand, from the fact that the line a is parallel to the
line c in the given direction it follows that h′ must meet c. From these contradictions we see that h′ does not meet
b, which means that the line a is parallel to the line b in the given direction.

Now suppose that a, b lie on opposite sides of the line c. Then the lines b, c lie on the same side of the line a (see
L 1.2.19.25). Take a point A ∈ a and a ray h′ such that h′ ⊂ Int∠(AC , h), h′ ⊂ Int∠(AB , h), where h = llim(c, A).
Observe that, since the lines a, c are directionally parallel, the ray h lies on the line a. For the same reason, the ray
h′ meets the line c. Now we see from the preceding lemma (L 3.1.4.1) that the ray h′ also meets the line b. Since
the choice of h′ was arbitrary, we see that a is directionally parallel to b, as required. 2

If a, b are parallel, but not directionally parallel, they are said to be hyperparallel or ultraparallel.

Theorem 3.1.5. Two (distinct) lines a, b, perpendicular to a line c, are hyperparallel.

Proof. Follows from the (previously shown) fact that the angles of parallelism are always acute. 2

Theorem 3.1.6. If A, B ∈ a, C, D ∈ b, points A, D lie on opposite sides of the line aBC, and ∠ABC ≡ ∠BCD,
then the lines a, b are hyperparallel.

Proof. Let O be the midpoint of the interval BC (see T 1.3.22). Taking points E ∈ a, F ∈ b such that aOE ⊥ a,
aOF ⊥ b (see L 1.3.8.3). Since the angles ∠ABC = ∠ABO and ∠BCD = ∠OCD, being congruent, are either
both acute or both obtuse, from C 1.3.18.11 we see that either (E ∈ BA)& (F ∈ CD), or (E ∈ Bc

A)& (F ∈ Cc
D).

Hence, using T 1.3.6 if necessary, we conclude that ∠OBE ≡ ∠OCF . Evidently, since both ∠OEB and ∠OFC
are right angles, they are congruent (T 1.3.16). Therefore, we can write OB ≡ OC & ∠OBE ≡ ∠OCF & ∠OEB ≡

∠OFC
T1.3.19
=⇒ △OBE ≡ △OCF ⇒ ∠BOE ≡ ∠COF . Observe that the points E, F lie on opposite sides of the line

aBC . 31 Since also OC = Oc
B , using C 1.3.7.1 we conclude that OF = Oc

E and, consequently, the points E, O, F are
collinear. Hence (see L 1.2.11.15) EO = EF , FE = FO. Therefore, the line aEF is perpendicular to both a and b,
whence the result follows by the preceding theorem T 3.1.5. 2

Corollary 3.1.6.1. If A, B ∈ a, C, D ∈ b, points B, D lie on the same side of the line aAC , and the angles ∠BAC,
∠ACD are supplementary, then the lines a, b are hyperparallel.

Proof. Take a point E such that [DCE] (see A 1.2.2). Then [DCE] ⇒ ∠ACE = adjsp∠ACD. Furthermore, the
points D, E lie on the opposite sides of the line aAC (see L 1.2.17.10). Since (by hypothesis) the angles ∠BAC,
∠ACD are supplementary, we have ∠BAC ≡ ∠ACE. Now, using T 3.1.6 we find that the lines a, b are hyperparallel.
2

Theorem 3.1.7. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, there is at
most one line c, perpendicular to both of them.

Proof. Otherwise we would get a rectangle, in contradiction with C 3.1.1.2. 2

Theorem 3.1.8. Given two parallel (in the sense of absolute geometry, i.e. non-intersecting) lines a, b, the set of
points on b equidistant from a contains at most two elements.

Proof. Suppose the contrary, i.e. that there are points A, B, C ∈ band A′, B′, C′ ∈ a such that AA′ ⊥ a, BB′ ⊥ a,
CC′ ⊥ a, and AA′ ≡ BB′ ≡ CC′. 2

Theorem 3.1.9. Proof. 2

Theorem 3.1.10. Proof. 2

We shall now construct the configuration we will refer to as the NTD configuration. 32

Take a line b and a point A not on it. Let B be a point B ∈ b such that aAB ⊥ b (see L 1.3.8.1). Suppose, further,
that Q is a point on a line a ∋ A with the additional condition that the angle ∠BAQ is obtuse.

Now we construct an infinite sequence of congruent intervals inductively as follows:
Take a point A1 ∈ AQ. 33 Then take a point A2 such that [AA1A2] and AA1 ≡ A1A2.

34 Now suppose that
we already have the first n − 1 members of the sequence: A1, A2, . . . , An−1. We define the next member An of the
sequence by the requirements that [An−2An−1An] and AA1 ≡ An−1An.

30That such a ray h′ actually exists can easily be shown using L 1.2.21.21, L 1.2.21.27. In fact, from L 1.2.21.21 we can assume without
loss of generality that AB ⊂ Int∠(h,AC). Now choosing h′ ⊂ Int∠(h,AB) (see, for example, C 1.2.31.14 for a much stronger statement
concerning the possibility of this choice), we get the required conclusion from L 1.2.21.27.

31In fact, we know (see above) that either both A, E lie on a on the same side of B (and thus lie on the same side of aBC) and D, F
lie on b on the same side of C, or A, E lie on a on the opposite sides of B (and thus lie on the opposite sides of aBC ) and D, F lie on b
on the opposite sides of C. Hence from L 1.2.19.8, L 1.2.17.9, L 1.2.17.10 we conclude that E, F lie on opposite sides of the line aBC .

32Due to the Arab astronomer and mathematician of the 13th century Nasir al-Din al-Tusi.
33Note that using A 1.3.1 we can choose A1 so that the interval AA1 is congruent to any interval given in advance.
34Of course, [AA1A2] is equivalent to A2 ∈ A1A.
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It is obvious from construction that all the intervals AA1, A1A2, . . . , An−1An, . . . are congruent. Furthermore,
the points of any finite (n + 1)-tuple of points AA1, A2, . . . , An are in order [AA1A2 . . . An]. 35 Denote Bi, i =
1, 2, . . . , n(, . . .) the feet of the perpendiculars to a drawn through the corresponding points Ai. Observe that, due to
C 1.3.26.10, this immediately implies that the points B, B1, B2, . . . , Bn−1, Bn(, . . .) are in order [BB1B2 . . . Bn−1Bn(, . . .)].
In particular, the points B1, B2, . . . , Bn−1, Bn(, . . .) all lie on the same side of the point B.

Theorem 3.1.11. In the NTD configuration defined above we have AB < A1B1 < A2B2 . . . An−1Bn−1 < AnBn <
. . .. What is more, we can claim that µA1B1 − µAB < µA2B2 − µA1B1 < . . . < An−1Bn−1 − An−2Bn−2 <
AnBn − An−1Bn−1 < . . .. Also, µBB1 > B1B2 > . . . > Bn−2Bn−1Bn−1Bn > . . ..

Proof. 36 Using A 1.3.1, choose points Ci ∈ BiAi
so that BiAi ≡ Bi+1Ci+1, where i = 1, 2, . . . , n, . . . and we denote

A0 ⇋ A, B0 ⇋ B. We are going to show that the ray Ai−1Ci
lies inside the angle ∠Bi−1Ai−1Ai for all i =

1, 2, . . . , n, . . .. First, observe that the angles ∠Bi−1Ai−1Ai, i ∈ N are all obtuse. In fact, the angle ∠BAA1 = ∠BAQ
is obtuse by construction. Using L 3.1.1.5, we can write the following chain of inequalities:

∠BAA1 < ∠B1A1A2 < . . . < Bn−1An−1An < BnAnAn+1 < . . . ,

which ensure that the angles ∠B1A1A2, ∠B2A2A3, . . . , ∠Bn−1An−1An, . . . are also obtuse. 37

On the other hand, the angle ∠Bi−1Ai−1Ci, i ∈ N, is acute as being a summit angle in the Saccheri quadrilateral
Ai−1Bi−1BiCi with the right angles ∠Ai−1Bi−1Bi and ∠Bi−1BiCi (see C 3.1.1.3).

Since ∠Bi−1Ai−1Ci < ∠Bi−1Ai−1Ai
38 and the rays Ai−1Ci

, Ai−1Ai
lie on the same side of the line aBi−1Ai−1 ,

39 the ray Ai−1Ci
lies inside the angle ∠Bi−1Ai−1Ai for all i = 1, 2, . . . , n, . . ..

Now we intend to show that Ci ∈ (BiAi) for all i ∈ N. Since Ai−1Bi−1BiCi, being a Saccheri quadrilat-
eral, is convex, the ray Ai−1Bi

lies inside the angle ∠Bi−1Ai−1Ci (see L 1.2.62.4). Now we can write Ai−1Ci
⊂

Int∠∠Bi−1Ai−1Ai & Ai−1Bi
⊂ Int∠Bi−1Ai−1Ci

L1.2.21.27
=⇒ Ai−1Ci

⊂ Int∠BiAi−1Ai. In view of L 1.2.21.6, L 1.2.21.4
the ray Ai−1Ci

is bound to meet the open interval BiAi in some point C′
i. Since the lines aAi−1Ci

, aBiAi
are distinct,

we find that C′
i = Ci.

Now, using C 1.3.13.4, we see that BiCi < BiAi for every i ∈ N.
Now we are going to show that the intervals C1A1, C2A2, . . . , CnAn, . . . form a monotonously increasing sequence,

i.e. that CiAi < Ci+1Ai+1 for all i ∈ N. Consider the triangle Ai−1CiAi for an arbitrary i ∈ N. Taking a
point C′

i such that [CiAiC
′
i] and CiAi ≡ AiC

′
i (see A 1.3.1), we find (taking into account that [Ai−1AiAi+1],

Ai−1Ai ≡ AiAi+1, and ∠Ai−1AiCi ≡ ∠C′
iAiAi+1 (as vertical; see T 1.3.7)) that △Ai−1AiCi ≡ △C′

iAiAi+1 and,
consequently, ∠Ai−1CiAi ≡ ∠AiC

′
iAi+1. Observe that the angle ∠Ai−1CiAi, being adjacent complementary to

the summit angle ∠Ai−1CiBi of the Saccheri quadrilateral Ai−1Bi−1BiCi, is obtuse. Hence the angle ∠AiC
′
iAi+1,

congruent to it, is also obtuse. Taking a point C′′
i+1 such that [Bi+1Ci+1C

′′
i+1] and AiC

′
i ≡ Ci+1C

′′
i+1, we obtain

a Saccheri quadrilateral C′
iBiBi+1C

′′
i+1.

40 Using arguments very similar to those already employed once in the
present proof, it is easy to show that [Ci+1C

′′
i+1Ai+1] and thus CiAi < Ci+1Ai+1.

41

Finally, we are going to show that the intervals B0B1, B1B2, . . . , Bn−1Bn, BnBn+1, . . . form a monotonously
decreasing sequence, i.e. BiBi+1 < Bi−1Bi for all iin ∈ N.

For an arbitrary i ∈ N choose a (unique) point A′
i−1 such that the points A′

i−1, Ai+1 lie on the opposite sides of
the line aAiBi

, ∠BiAiA
′
i−1 ≡ ∠BiAiAi+1, and AiA

′
i−1 ≡ AiAi+1 (see A 1.3.1, A 1.3.4). Denote now by B′

i−1 the
foot of the perpendicular to b drawn through A′

i−1 (see L 1.3.8.1).
Suppose that the ray AiA′

i−1
does not meet the ray Bi−1Ai−1

. Then it has no common points with the whole line
aAi−1Bi−1 .

Since the ray AiA′
i−1

lies on the same side of the line aAiBi
as the line aAi−1Bi−1 and on the same side of the

line aAi−1Bi−1 as the line aAiBi
, by the definition of strip interior the ray AiA′

i−1
lies inside the strip aAi−1Bi−1aAiBi

.
Consequently, the point A′

i−1 and with it the whole line A′
i−1B

′
i−1 (see L 1.2.19.20) lies inside aAi−1Bi−1aAiBi

.
But this, in turn, implies that the point B′

i−1 lies between Bi−1, Bi (see L 1.2.19.16), whence BiB
′
i−1 < BiBi−1

(see C 1.3.13.4). Since, by construction, AiA
′
i−1 ≡ AiAi+1 and ∠BiAiA

′
i−1 ≡ ∠BiAiAi+1, in view of P ?? we have

BiB
′
i−1 ≡ BiBi+1. Now we see that BiB

′
i−1 ≡ BiBi+1 & BiB

′
i−1 < BiBi−1 ⇒ BiBi+1 < Bi−1Bi.

35Compare with proof of L 1.3.21.11.
36As is customary, in the more lengthy proofs such as this one we omit some (hopefully!) trivial details of argumentation, leaving it to

the pedantic reader to fill the gaps.
37Of course, we are using the obvious fact that any angle greater than an obtuse angle is also acute.
38Any acute angle is less than any obtuse angle - see L 1.3.16.19.
39To show that the rays Ai−1Ci

, Ai−1Ai
lie on the same side of the line aBi−1Ai−1

one may observe that all points, including Ci, of
the line aBiAi

, which is parallel to the line aBi−1Ai−1
, lie on the same side of the line aBi−1Ai−1

.
40Note that BiC′

i ≡ Bi+1C′′
i+1 according to A 1.3.3.

41In fact, the points C′′
i+1, Ai+1 and thus the rays C′

iC
′′

i+1, C
′
iAi+1 lie on the same side of the line aBiAi

. Since the acute
angle ∠BiC

′
iC

′′
i+1 (it is acute as being a summit angle of the Saccheri quadrilateral C′

iBiBi+1C
′′

i+1) is less than the obtuse angle
∠BiC′

iAi+1 = ∠AiC′
iAi+1 (see L 1.3.16.19), we find that the ray C′

iC′′
i+1

lies inside the angle ∠BiC′
iAi+1. Since the Saccheri

quadrilateral C′
iBiBi+1C

′′
i+1 is convex, the ray C′

iBi+1
lies inside the angle ∠BiC

′
iC

′′
i+1 (see L 1.2.62.4). Using L 1.2.21.27 we see that

the ray C′
iC′′

i+1
lies (completely) inside the angle ∠Bi+1C

′
iC

′′
i+1. By L 1.2.21.6, L 1.2.21.4 there is then a point C′′′

i+1 ∈ C′
iC′′

i+1

such that [Bi+1C′′′
i+1Ai+1]. Since the lines aC′

iC′′
i+1

are evidently distinct, we find that C′′′
i+1 = C′′

i+1. Now we can write

[Bi+1Ci+1C′′
i+1] & [Bi+1C′′

i+1Ai+1]
L1.2.3.2

=⇒ [Ci+1C′′
i+1Ai+1].
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Now suppose that the ray AiA′
i−1

does meet the ray Bi−1Ai−1
in some point A′′

i−1. We are going to show that

[Bi−1Ai−1A
′
i−1]. First, we will demonstrate that the ray AiAi−1

lies inside the angle ∠BiAiA
′
i−1. In fact, since

the angle ∠BiAiAi−1 is acute (as being adjacent supplementary to the angle ∠∠BiAiAi+1 we have shown to be
acute) and the angle ∠BiAiA

′
i−1 is obtuse (as being congruent by construction to the obtuse angle ∠∠BiAiAi+1),

we find that ∠BiAiAi−1 < ∠BiAiA
′
i−1. But since Ai−1A

′
i−1aBiAi

, this inequality implies that the ray AiAi−1

lies inside the angle ∠BiAiA
′′

i−1 = ∠BiAiA
′
i−1. But the ray AiBi−1

, in turn, lies inside the angle ∠Bi−1BiAi,
as can be seen, for example, observing the convexity of the birectangle Ai−1Bi−1BiAi (see L 1.2.62.4). Hence in
view of L 1.2.21.27 we find that the ray AiAi−1

lies inside the angle ∠BiAiA
′′

i−1. By L 1.2.21.10 this means that
the ray AiAi−1

and the open interval (Bi−1A
′′

i) meet in some point, which, in view of the distinctness of the lines
aAi−1Ai

, aBi−1Ai−1 , coincides with the point Ai−1. Thus, we see that the point Ai−1 lies between points Bi−1 and
A′′

i−1. Therefore, we can write [Bi−1Ai−1A
′′

i−1] ⇒ ∠A′′
i−1Ai−1Ai = adjsp∠Bi−1Ai−1Ai ⇒ µ∠A′′

i−1Ai−1Ai +
µ∠Bi−1Ai−1Ai = π(abs). On the other hand, from C 3.1.1.3 we have µ∠Bi−1A

′′
i−1Ai + µ∠BiAiA

′′
i−1 < π(abs),

since ∠Bi−1A
′′

i−1Ai and ∠BiAiA
′′

i−1 are the summit angles of the birectangle A′′
i−1Bi−1BiAi. Therefore, we have

µ∠Bi−1A
′′

i−1Ai + µ∠BiAiA
′′

i−1 < µ∠A′′
i−1Ai−1Ai + µ∠Bi−1Ai−1Ai. Taking into account that (by construction)

∠BiAiA
′′

i−1 ≡ ∠BiAiAi+1, Bi−1Ai−1Ai < BiAiAi+1, and ∠Ai−1A
′′

i−1Ai = ∠Bi−1A
′′

i−1Ai (see L 1.2.11.15) using
P 1.3.63.8 we can write ∠Ai−1A

′′
i−1Ai < ∠A′′

i−1Ai−1Ai, which, in view of T 1.3.18, implies that Ai−1Ai < A′′
i−1Ai.

Since, by construction, Ai−1Ai ≡ AiAi−1, AiAi+1 ≡ AiA
′
i−1 and the points A′

i−1, A′′
i−1 lie on the same side of

the point Ai,
42, we conclude using C 1.3.13.4 that [AiA

′
i−1A

′′
i−1]. Proceeding as above, we find again that

BiBi+1 < Bi−1Bi. 2

Corollary 3.1.11.1. Suppose we are given lines a, b and points A, B such that aAB ⊥ a, aAB ⊥ b. Suppose further
that we are given an arbitrary interval CD. Then on any ray into which the point A separates the line a there is a
point E such that EF > CD, where F is the foot of the perpendicular to b drawn through E.

Proof. Follows from the preceding theorem (T 3.1.11) and Archimedes’ axiom (A 1.4.1). 2

Theorem 3.1.12. Given a line a, a point D /∈ a not on it, an angle ∠(h, k), and an interval EF , there are points
B ∈ a and C ∈ AD such that ∠ABC ≡ ∠(h, k), BC ≡ EF .

Proof. 2

Corollary 3.1.12.1. Given a line a, a point D /∈ a not on it, and an interval EF , there is a point C ∈ AD such
that BC ≡ EF , where the point B ∈ a is such that aBC ⊥ a. 43

Proof. 2

Theorem 3.1.13. Proof. 2

Theorem 3.1.14. Any two hyperparallel lines have a common perpendicular.

Proof. 2

Theorem 3.1.15. Suppose that the angles ∠A, ∠B, ∠C, of the triangle △ABC are congruent, respectively, to the
angles ∠A′, ∠B′, ∠C′, of the triangle △A′B′C′. Then the triangles △ABC, △A′B′C′ are congruent.

Proof. Suppose the contrary, i.e. that the triangles △ABC, △A′B′C′ are not congruent. Then we can assume
without loss of generality that the side AB of △ABC is not congruent to the side A′B′ of A′B′C′ and, fur-
thermore, that AB < A′B′. 44 By L 1.3.13.3 there is a point B′′ ∈ (A′B′) such that AB ≡ A′B′′. Us-
ing A 1.3.1, we also take a point C′′ ∈ A′

C′ such that AC ≡ A′C′′. Then, evidently, ∠B′′A′C′′ = ∠B′A′C′,
∠BAC ≡ ∠B′A′C′ & ∠B′′A′C′′ = ∠B′A′C′ ⇒ ∠BAC = ∠B′′A′C′′, AB ≡ A′B′′ & AC ≡ A′C′′ & ∠BAC ≡

∠B′′A′C′′ T1.3.4
=⇒ △ABC ≡ △A′B′′C′′ ⇒ ∠ABC ≡ ∠A′′B′C′′ & ∠BCA ≡ ∠B′′C′′A′. Since C′′ ∈ A′

C′ , we see
that either C′′ = C′, or [A′C′′C′], or [A′C′C′′]. We are going to show that each of these options is contradictory.

First, suppose C′′ = C′. Then ∠ABC ≡ ∠A′B′C′ & ∠ABC ≡ ∠A′B′′C′′ L1.3.11.1
=⇒ ∠A′B′C′ ≡ ∠A′B′′C′′. Since

also [A′B′′B′]
L1.2.11.15

=⇒ ∠B′′B′C′ = ∠A′B′C′, we obtain ∠B′′B′C′ ≡ ∠A′B′′C′, in contradiction with T 1.3.17. 45

Suppose now that the point C′′ lies between A′, C′. Since all angles of the triangle △A′B′C′ are congruent to the cor-
responding angles of the triangle △A′B′′C′′, their (abstract) angle sums are equal, which again leads to contradiction
in view of C 1.3.67.16. Finally, suppose that [A′C′C′′]. In view of C 1.2.1.7 the open intervals (B′C′), (B′′C′′) meet in

some point D. Obviously, [B′DC′] & [B′′DC′′] & [A′B′B′′]
L1.2.11.15

=⇒ ∠B′′B′D′ = ∠A′B′C′ & ∠A′B′′D′ = ∠A′B′′C′′,
whence ∠B′′B′D′ ≡ ∠A′B′′D′, and we arrive once more to a contradiction with T 1.3.17. The contradictions
obtained establish that △ABC ≡ △A′B′C′, q.e.d. 2

42Note that, by construction, both A′
i−1, Ai+1 and A′′

i−1, Ai+1 lie on the opposite sides of Ai, whence we conclude using L 1.2.11.10
that the points A′

i−1, A′′
i−1 lie on the same side of Ai.

43In other words, B is the foot of the perpendicular to a drawn through C.
44This is due to symmetry of congruence relation and to the fact that cyclic rearrangements of sides do not affect in any way the

congruence properties of polygons (see P 1.3.1.4).
45Alternatively, this case can be brought to contradiction using the angle sum argument (see the analysis of the next case later in this

proof) and C 1.3.67.15.
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Theorem 3.1.16. Proof. 2

Theorem 3.1.17. Consider two simple quadrilaterals, ABCD and A′B′C′D′ with AB ≡ A′B′, ∠ABC ≡ A′B′C′,
∠BCD ≡ ∠B′C′D′, ∠BAD ≡ ∠B′A′D′, ∠CDA ≡ ∠C′D′A′. Suppose further that if A, D lie on the same side of
the line aBC then A′, D′ lie on the same side of the line aB′C′ , and if A, D lie on the opposite sides of the line aBC

then A′, D′ lie on the opposite sides of the line aB′C′ . Then the quadrilaterals are congruent, ABCD ≡ A′B′C′D′.

Proof. Using A 1.3.1, we take points A′′ ∈ B′
A′ , D′′ ∈ C′

D′ such that BA ≡ B′A′′, CD ≡ C′D′′. We start
with the case where the points A, D lie on the opposite sides of the line aBC . Then, by hypothesis, A′, D′ lie
on the opposite sides of the line aB′C′ . Since, by construction, A′′ ∈ B′

A′ , D′′ ∈ C′
D′ , is is easy to see us-

ing T 1.2.20 that the points A′′, D′′ lie on the opposite sides of the line aB′C′ . Therefore, we can write AB ≡

A′′B′ & BC ≡ B′C′ & CD ≡ C′D′′ & ∠ABC ≡ A′B′C′′ & ∠BCD ≡ ∠B′C′D′′ & (AaBCD & A′′aB′C′D′′)
P1.3.19.3

=⇒

ABCD ≡ A′′B′C′D′′ ⇒ ∠DAB ≡ ∠D′′A′′B′ & ∠CDA ≡ ∠C′D′′A′′, ∠DAB ≡ ∠D′A′B′ & ∠DAB ≡ ∠D′′A′′B′ L1.3.11.1
=⇒

∠D′A′B′ ≡ ∠D′′A′′B′, ∠CDA ≡ ∠C′D′A′ & ∠CDA ≡ ∠C′D′′A′′ L1.3.11.1
=⇒ ∠C′D′A′ ≡ ∠C′D′′A′′.

Denote E ⇋ (AD)∩aBC , 46 E′ ⇋ (A′D′)∩aB′C′ , E′′ ⇋ (A′′D′′)∩aB′C′ . In view of T 1.2.2 we have either [EBC]
or [BCE] and, similarly, either [E′B′C′] or [B′C′E′] and either [E′′B′C′] or [B′C′E′′] . (Evidently, due to simplicity of
ABCD, A′B′C′D′, A′′B′C′D′′ we can immediately discard from our consideration the cases E = B, [BEC], E = C,
E′ = B′, [B′E′C′], E′ = C′, E′′ = B′, [B′E′′C′], E′′ = C′. We are going to show that if [EBC] then also [E′B′C′].
To establish this suppose the contrary, i.e. that both [EBC] and [B′C′E′]. Then, using T 1.3.17 we would have
∠BCD = ∠ECD < ∠AEC = ∠AEB < ∠ABC ≡ ∠A′B′C′ = ∠A′B′E′ < ∠B′E′D′ = ∠C′E′D′ < ∠B′C′D′ (see
also L 1.2.11.15), whence ∠BCD < ∠B′C′D′ (see L 1.3.16.6 – L 1.3.16.8), which contradicts ∠BCD ≡ ∠B′C′D′

in view of L 1.3.16.11. Thus, we see that [EBC] implies [E′B′C′]. Similar arguments show that [BCE] implies
[B′C′E′]. 47 Since, obviously, ∠A′′B′C′ = ∠A′B′C′, ∠B′C′D′′ = ∠B′C′D′ (see L 1.2.11.15), and, consequently,
∠ABC ≡ ∠A′B′C′′, ∠BCD ≡ ∠B′C′D′′, it is easy to see that also [EBC] implies [E′′B′C′] and [BCE′′] implies
[B′C′E′′].

Consider first the case where [EBC], [E′B′C′], [E′′B′C′]. We then have [A′E′D′] & B′ ∈ (E′C′)
C1.2.1.7
=⇒

∃F ′([C′F ′D′] & [A′B′F ′]). Similarly, [A′′E′′D′′] & B′ ∈ (E′′C′)
C1.2.1.7
=⇒ ∃F ′′([C′F ′′D′′] & [A′′B′F ′′]). Evidently,

F ′′ = F ′. In fact, as the points A′′, A′, B′ colline even if the points A′′, A′ were distinct (which, as we are
about to show, they are not), the lines aA′′B′ = aA′B′ and aC′D′ = aC′D′′ (distinct due to simplicity of A′B′C′D′)
can meet in at most one point (see T 1.1.1), which happens to be F ′′ = F ′. Since both C′, D′ and C′, D′′ lie on
the opposite sides of F ′′ = F ′, by L 1.2.11.10 the points D′′, D′ lie on the same side of F ′ even if D′′ 6= D′. (Which
again, as we are about to prove, they are not.) Using L 1.2.11.16 we can also see that the points A′, A′′ lie on the
same side of the point F ′. 48

Observe that [C′F ′D′]
L1.2.11.15

=⇒ ∠C′D′A′ = ∠F ′D′A′, [C′F ′D′′]
L1.2.11.15

=⇒ ∠C′D′′A′′ = ∠F ′D′′A′′, [F ′B′A′]
L1.2.11.15

=⇒

∠D′A′B′ = ∠D′A′F ′, [F ′B′A′′]
L1.2.11.15

=⇒ ∠D′′A′′B′ = ∠D′′A′′F ′. Furthermore, since, as we have seen, the points
D′′, D′ lie on the same side of F ′ as do the points A′, A′′, the angles ∠D′F ′A′, ∠D′′F ′A′′ are equal and thus are

congruent. Therefore, we can write ∠D′F ′A′ ≡ ∠D′′F ′A′′ & ∠F ′D′A′ ≡ ∠F ′D′′A′′ & ∠D′A′F ′ ≡ ∠D′′A′′F ′ T3.1.15
=⇒

△F ′D′A′ ≡ △F ′D′′A′′ ⇒ F ′D′ ≡ F ′D′′ & F ′A′ ≡ F ′A′′, whence in view of T 1.3.2 (taking into account that the
points D′′, D′, as well as the points A′, A′′, lie on the same side of F ′) we are forced to conclude that D′ = D′′ and
A′ = A′′.

Consider now the case where [BCE] and, consequently, [B′C′E′], [B′C′E′′] (see above), while the points A, D still
lie on the opposite sides of the line aBC (and, consequently, (by hypothesis) the points A′, D′, as well as the points A′′,

D′′, lie on the opposite sides of aB′C′). We then have 49 [A′E′D′] & C′ ∈ (B′E′)
C1.2.1.7
=⇒ ∃F ′([D′C′F ′] & [B′F ′A′]).

Similarly, [A′′E′′D′′] & C′ ∈ (B′E′′)
C1.2.1.7
=⇒ ∃F ′′([D′′C′F ′′] & [B′F ′′A′′]). Evidently, F ′′ = F ′ (shown as above) 50

46Obviously, E exists by definition of ”points A, D lie on the opposite sides of aBC”
47Observe that the quadrilaterals ABCD, A′B′C′D′ enter the conditions of the theorem symmetrically.
48We could do the rest of the proof in this case without using T 1.3.15 (which is used in the main body of the text), but this would

take much more work and proceed something like as follows: Note that the points D′′, D′ lie on the same side of the line aA′′B′ = aA′B′

(see L 1.2.11.10). (Otherwise, we would also have D′′ = D′ and the proof would be complete. In fact, suppose the contrary, i.e. that
A′′ = A′ but D′′ 6= D′. Then, taking into account that D′′ ∈ C′

D′ , in view of L 1.2.11.8 we have either [C′D′D′′] or [C′D′′D′]. Assuming
that [C′D′D′′] (evidently, we can do this without any loss in generality) and using T 1.3.17, we find that the angle ∠C′D′A′, being the
exterior angle of the triangle △D′A′D′′, is greater that the interior angle ∠D′D′′A = ∠C′D′′A′ (see L 1.2.11.15). This contradicts the
congruence ∠C′D′A′ ≡ ∠C′D′′A′′ established above (L 1.3.16.11). The contradiction shows that A′′ = A′ necessarily implies D′′ = D′.
) Suppose A′′ 6= A′. As A′′ ∈ B′

A′ , in view of L 1.2.11.8 we have either [B′A′A′′] or [B′A′′A′]. We can assume without any loss in
generality that [B′A′A′′]. (The other case is then immediately taken care of by the simultaneous substitutions A′ ↔ A′′, D′ ↔ D′′.)
Since [B′A′A′′], the points D′′, D′ lie on the same side of the line aA′′B′ = aA′B′ , and D′A′B′ ≡ ∠D′′A′′B′, the lines aA′D′ , aA′′D′′

are parallel (T 1.3.26). Hence using T 1.2.44 we find that [F ′D′D′′]. Thus, not only is the angle ∠D′A′A′′ adjacent supplementary
to the angle ∠D′A′B′ = ∠D′A′F ′, but also the angle ∠A′D′D′′ is adjacent supplementary to the angle ∠A′D′F ′ = ∠A′D′C′. Since,
as we have seen, ∠B′A′D′ ≡ ∠B′A′′D′′ and ∠C′D′A′ ≡ ∠C′D′′A′′, we find that the angles ∠D′A′A′′, ∠D′′A′′A′ = ∠D′′A′′B′ are

supplementary, as are the angles ∠A′D′D′′, ∠A′′D′′D′ = ∠A′′D′′C′ (note that [C′F ′D′] & [F ′D′D′′]
L1.2.3.1

=⇒ [C′D′D′′]). Hence we find

that Σ
(abs)∠
A′D′D′′A′′ = 2π(abs,xt), in contradiction with C 3.1.1.2. This contradiction shows that in reality in the given case we have A′ = A′′

and, as a consequence, D′ = D′′.
49Observe that the following argument is similar to that employed previously in this proof in our treatment of the preceding case.
50Since the points A′′, A′, B′ colline even if the points A′′, A′ were distinct (which, as we are about to show, they are not), the lines

aA′′B′ = aA′B′ and aC′D′ = aC′D′′ (distinct due to simplicity of A′B′C′D′) can meet in at most one point (see T 1.1.1), which happens
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Again, 51 the points D′′, D′ lie on the same side of F ′ even if D′′ 6= D′. Note that [D′C′F ′]
L1.2.11.15

=⇒ ∠C′D′A′ =

∠F ′D′A′, [D′′C′F ′]
L1.2.11.15

=⇒ ∠C′D′′A′′ = ∠F ′D′′A′′, [B′F ′A′]
L1.2.11.15

=⇒ ∠D′A′B′ = ∠D′A′F ′, [B′F ′A′′]
L1.2.11.15

=⇒
∠D′′A′′B′ = ∠D′′A′′F ′. As before, we see that the angles ∠D′F ′A′, ∠D′′F ′A′′ are equal and thus are congruent. 52

And, observing that the points A′, A′′ lie on the same side of the point F ′, 53 we can bring this case to contradiction
exactly as above. 54

Suppose now that the points A, D lie on the same side of the line aBC , and, consequently (by hypothesis) the
points A′, D′ lie on the same side of the line aB′C′ . Since, by construction, the points A′, A′′ lie on the same side
of the point of B′, we have either [B′A′A′′], or [B′A′′A′], or A′′ = A′ (see L 1.2.11.8). Similarly, the points D′, D′′

lie on the same side of the point of C′, we have either [C′D′D′′], or [D′D′′C′], or D′′ = D′ (see L 1.2.11.8). To
show that A′′ = A′, D′′ = D′ we are going to bring to contradiction the other options. Suppose [B′A′A′′]. Then
∠A′A′′D′′ = ∠B′A′′D′ (see L 1.2.11.15), ∠A′′A′D′ = adjsp∠B′A′D′. Taking into account that, as shown above,
∠B′A′D′ ≡ ∠B′A′′D′′, we see that µ∠A′A′′D′′ + µ∠A′′A′D′ = π(abs). Similarly, the assumption that [B′A′′A′]
also gives the equality µ∠A′A′′D′′ + µ∠A′′A′D′ = π(abs). 55 Employing similar arguments, it is easy to show that
if [C′D′D′′] or [C′D′′D′] then µ∠A′D′D′′ + µ∠A′D′′D′ = π(abs). 56 Finally, it is easy to see that the equalities
µ∠A′A′′D′′+µ∠A′′A′D′ = π(abs), µ∠A′D′D′′+µ∠A′D′′D′ = π(abs) lead us to contradiction with P 3.1.1.1, C 3.1.1.2
for all cases except A′′ = A′, D′′ = D′, which completes the proof. 2

Consider the class of intervals µAB congruent to some given interval AB. In hyperbolic geometry we can put
into correspondence with this class a unique class of congruent acute angles using the following construction:

Draw a line a ∋ A such that a ⊥ aAB. Choosing one of the two possible directions on a, draw through B
the line b parallel to a in that direction. By definition, the Lobachevsky function Π puts into correspondence with
the class µAB the class of angles congruent to the angle ∠(BA, llim(a, B)). We shall refer to ∠(BA, llim(a, B)), as
well as any angle congruent to it, as a Lobachevsky angle. In other words, a Lobachevsky angle is a representative
∠(h, k) ∈ Π(µAB) of the class Π(µAB). To show that the Lobachevsky function is well defined, we need to take
another interval CD ∈ µAB, choose one of the two possible directions on a line c ∈ C, c ⊥ aCD, draw through
D the line d parallel to c in that direction, and show that ∠(BA, llim(a, B)) ≡ ∠(DC , llim(c, D)). To achieve this
suppose the contrary, i.e. that either ∠(BA, llim(a, B)) < ∠(DC , llim(c, D)) or ∠(BA, llim(a, B)) > ∠(DC , llim(c, D))
(see L 1.3.16.14). Obviously, without loss of generality we can assume that ∠(BA, llim(a, B)) < ∠(DC , llim(c, D)).
57 Using A 1.3.4 draw a ray h emanating from D, lying with llim(c, D) on the same side of aCD and such that
∠(BA, llim(a, B)) ≡ ∠(DC , h). In view of ∠(BA, llim(a, B)) < ∠(DC , llim(c, D)) the ray h lies inside the angle
∠(DC , llim(c, D)). Hence in view of the definition of llim(c, D) (as the lower limiting ray) the ray h meets the
positive ray of the line c (that is, the ray whose points succeed the point C on the line c) in some point F . Now
take a point E on the positive ray of a (that is, the point of this ray succeed A on a) with the additional condition
that AE ≡ CF (see A 1.3.1). Observe also that ∠BAE, ∠DCF both being right angles, are congruent. Then we

can write AB ≡ CD & ∠BAE ≡ ∠DCF & AE ≡ CF
T1.3.4
=⇒ △ABE ≡ △CDF ⇒ ∠ABE ≡ ∠CDF . But since

∠(BA, llim(a, B)) ≡ ∠(DC , h) = ∠CDF and the rays BE , llim(a, B) lie on the same side of the line aAB, using
A 1.3.4 we find that BE = llim(a, B), which implies that llim(a, B) meets the line a, which is absurd in view of
llim(a, B) being the lower limiting ray. This contradiction shows that in fact ∠(BA, llim(a, B)) ≡ ∠(DC , llim(c, D)),
as required.

Theorem 3.1.18. If for some (abstract) intervals AB, CD we have AB < CD ( and then, of course, µAB < µCD)
then Π(µAB) < Π(µCD).

Proof. Consider the standard construction (see above), namely, a line a ∋ A such that a ⊥ aAB, a direction on a, and
draw through B the line b parallel to a in that direction. Take (using A 1.3.1) a point E ∈ AB such that CD ≡ AE.
Draw through E the line c parallel to a in the same direction that b is parallel to a. By T 3.1.4 then c is also parallel to
b in that direction. To prove the theorem, we need to show that ∠(BA, llim(a, B)) < ∠(EA, llim(a, E)). Using A 1.3.4
draw the ray k emanating from E, lying on the same side of the line aAB and such that ∠(BA, llim(a, B)) ≡ ∠(EA, k).
The lines b, k̄ are hyperparallel. Now it is easy to see that the ray llim(a, E)) lies inside the angle ∠(EA, k). 58 Thus,

to be F ′′ = F ′.
51As both C′, D′ and C′, D′′ lie on the opposite sides of F ′′ = F ′.
52We take into account that the points D′′, D′ lie on the same side of F ′ as do the points A′, A′′.
53This is easily seen using L 1.2.11.16.
54We write ∠D′F ′A′ ≡ ∠D′′F ′A′′ &∠F ′D′A′ ≡ ∠F ′D′′A′′ & ∠D′A′F ′ ≡ ∠D′′A′′F ′ T3.1.15

=⇒ △F ′D′A′ ≡ △F ′D′′A′′ ⇒ F ′D′ ≡
F ′D′′ &F ′A′ ≡ F ′A′′, whence in view of T 1.3.2 (taking into account that the points D′′, D′, as well as the points A′, A′′, lie on the
same side of F ′) we are forced to conclude that D′ = D′′ and A′ = A′′.

55This can be seen immediately from symmetry considerations by observing that the properties established up to this point of the
points involved are invariant with respect to the simultaneous substitutions A′ ↔ A′′, D′ ↔ D′′.

56This can be done at once by symmetry using the simultaneous substitutions B′ ↔ C′, A′ ↔ D′, A′′ ↔ D′′ (it is easy to see that these
substitutions preserve the validity of the facts established so far in this proof) or drawing an easy analogy with our preceding arguments.

57This is due to symmetry of the conditions of the theorem. Thus, if CD lies in the class µAB (of intervals congruent to the interval
CD) then AB lies in the class µCD (of intervals congruent to the interval AB.

58By construction, the rays llim(a, E), k lie on the same side of the line. Then either the ray k lies inside the angle ∠(EA, llim(a, E))
or the ray llim(a, E) lies inside the angle ∠(EA, k). But the first option would imply that the ray k meets the line a. On the other hand,
since CD ≡ AE and AB < CD we have [ABE]. As a ‖ b (they are directionally parallel) and b ‖ k̄ (they are hyperparallel), the lines a,
k̄ are parallel in the usual sense, that is, they coplane and do not meet. The contradiction shows that in fact llim(a, E) lies inside the
angle ∠(EA, k).
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we have ∠(BA, llim(a, B)) < ∠(EA, llim(a, E)) which obviously implies that Π(µAB) < Π(µCD). 2

Lemma 3.1.18.1. For any acute angle ∠(h, k) there is a ray l emanating from a point B ∈ h such that l ⊥ h, the
rays k, l lie on the same side of the line h̄, and the rays k, l do not meet.

Proof. Suppose the contrary, i.e. that there is an angle ∠(h, k) such that for any point B ∈ h the ray l ⊥ h emanating
from it into the half-plane containing k meets the ray k. Construct two sequences of points A1, A2, . . . , An, . . . and
B1, B2, . . . , Bn, . . . as follows:

Take an arbitrary point B1 ∈ h. Draw the ray l1 emanating from B1 such that l1 ⊥ h and the rays k, l1 lie on
the same side of the line h̄. Denote by A1 the point where l1 meets k (it does meet k according to our assumption).
Now choose B2 so that [OB1B2] and OB1 ≡ B1B2 where O is the vertex of ∠(h, k). Draw the ray l2 emanating from
B2 such that l1 ⊥ h and kl1h̄. Denote A2 ⇋ k∩ l1. Continuing this process inductively, we choose the point Bn+1 so
that [OBnBn+1] and OBn ≡ BnBn+1. The ray li, i ∈ N emanating from the point Bi is orthogonal to h, lies on the

same side of h̄ as k, and concurs with k in Ai (this constitutes the definition of the points Ai). Denote δi ⇋ δ
(abs)∠
△OBiAi

for all i ∈ N. We also let (for convenience) B0 ⇋ O. Since Bi−1Bi ≡ BiBi+1 (by construction) and ∠Bi−1BiAi ≡
∠Bi+1BiAi (the ray BiAi

being orthogonal to the line aBi−1Bi
= BiBi+1 = h̄), we have △Bi−1BiAi ≡ △Bi+1BiAi

for all i ∈ N, which implies δ
(abs)∠
△OBiAi

= δ
(abs)∠
△Bi+1BiAi

. In view of δi+1 = δ
(abs)∠
△Bi+1Ai+1

= δ
(abs)∠
△OAiBi+1

+ δ
(abs)∠
△Ai+1AiBi+1

,

δ
(abs)∠
△OAiBi+1

= δ
(abs)∠
△OBiAi

+ δ
(abs)∠
△Bi+1BiAi

(see P 1.3.67.12), whence δi+1 > 2deltai for all i ∈ N. Using these inequalities

for i = 1, 2, . . . , n we find that δn+1 > 2ndelta1, which implies (in view of C 1.4.18.3) that by appropriate choice
of n the angular defect of the triangle △OBiAi (viewed as an overextended angle) can be made greater than any
given (in advance) overtextended angle, in particular straight angle, which is absurd. This contradiction shows that
in reality there is a point B on the ray h such that the ray l ⊥ h emanating from B into the half-plane containing k
does not meet k. 2

Lemma 3.1.18.2. Consider an acute angle ∠(h, k) and the set B of points B ∈ h such that the ray l ⊥ h emanating
from B into the half-plane containing k does not meet k. Choosing (of the two orders possible on the line h̄) the order
in which the origin (which we will denote O) of the ray h precedes the points of that ray h, the set B has a minimal
element B0. Furthermore, the line l̄0 containing the ray l0, emanating from B0 into the half-plane containing k and
such that l0 ⊥ h, corresponding to B0, is directionally parallel to k̄.

Proof. Consider, in addition to B, the set A ⇋ hc ∪ {O} ∪ (h \ B). Obviously, A ∪ B = Ph̄. Furthermore, we have
A ≺ B for all points A ∈ A, B ∈ B. For A ∈ h \ B this follows from P 1.2.44.1, C 1.3.26.2. According to Dedekind’s
theorem (T 1.4.17), either the set A has the maximal element, or the set B has the minimal element. Denote this
element B0 (the one that performs the Dedekind section). To show that the first option is not the case, suppose the
contrary. Then the ray l0 ⊥ h emanating from B into the half-plane containing k, meets k in some point A0. Taking
a point A′ such that [AA0A

′] (see A 1.2.2) and lowering the perpendicular from A′ to h̄ (see L 1.3.8.1) which meets
h̄ in B′, we find that [OB0B

′] (using C 1.3.26.2, T 1.3.44), which means that B0 ≺ B′ and B′ ∈ A in contradiction
with our assumption that B0 is the maximal element of A. This contradiction shows that in fact the set B has B0

as its minimal element. To prove that the lines k̄, l̄0 are directionally parallel, lower from B0 the perpendicular to
k̄. Since the angle ∠(h, k) is acute (by hypothesis), by C 1.3.18.11 P ∈ k. We need to show that an arbitrary ray
l′ emanating from B0 into the interior of the angle ∠(B0P , l0) meets the ray P c

O. (We have seen above that the
line l̄0 is parallel to (in the sense of absolute geometry, i.e. does not meet) the line k̄.) Suppose the contrary, i.e.
that there is a ray l′ emanating from B0 into the interior of the angle ∠(B0P , l0) and such that l′ ∩ P c

O = ∅. Since
the angle ∠OPB0 is right by construction, the angle ∠OB0P is necessarily acute (see C 1.3.17.4) and thus is less
than the right angle ∠(BO, l0) (see L 1.3.16.17). Hence B0P ⊂ Int∠(B0O, l0) (see C 1.3.16.4), and we can write

B0P ⊂ Int∠(B0O, l0)& l′ ⊂ Int∠(B0P , l0)
L1.2.21.27

=⇒ l′ ⊂ Int∠(B0O, l0)& B0P ⊂ Int∠(B0O, l′). Then it is easy to see
that the ray l′ does not meet the line k̄ altogether. 59 Thus, by definition of interior the rays l′, l0 lie on the same
side of the line h̄ and the rays l′, B0O lie on the same side of the line h̄0. Furthermore, using L 1.2.19.4 we see that
the ray l′ lies on the same side of k̄ as the ray h (under the assumption, of course, that h′ does not meet k̄). On the
other hand, since the rays k, l0 lie on the same side of the line h̄ and the rays l′, l0 lie on the same side of h̄, we see
that the rays k, l′ lie on the same side of h̄ and thus the ray l′ lies completely inside the angle ∠(h, k) (by definition
of the interior of ∠(h, k)). Take a point E ∈ l′. Denote by F the foot of the perpendicular lowered from E to h̄.
It is easy to see that [OFB]. 60 Consider the ray FE . Since F ∈ (OB) (and, consequently, F ≺ B), the ray FE

necessarily meets the ray k in some point M . Recalling that E ∈ Int∠(h, k), using L 1.2.21.9 we find that [FEM ].
Then taking into account that E ∈ l′, from C 1.2.1.7 we see that l′ has to meet the open interval (OM) and thus
the ray k in some point. This contradiction (with the assumption made above that l′ ∩ k̄ = ∅) shows that in fact the

59To show this, albeit in a clumsy way, observe that the rays l′, B0O lie on the opposite sides of the line aB0P (because, as we just
saw, B0P ⊂ Int∠(B0O, l

′); see C 1.2.21.11) and the rays B0O, PO lie on the same side of the line k̄ (they share the point O). Hence
using L 1.2.18.5 we see that the rays l′, PO lie on the opposite sides of the line aB0P and thus they cannot meet. And, of course,
l′ ⊂ Int∠(B0P , l0) implies that P /∈ l′.

60A workable but certainly not very graceful way to show this is as follows: Since, as we saw above, the angle ∠OB0P is acute, using
C 1.3.18.11 we find that F ∈ B0O . Since, as we just saw l′ ⊂ Int∠(h, k) and, in particular, E ∈ Int∠(h, k), using L 1.3.26.15 we find
that F ∈ h = OB0

. Thus, we see that F ∈ h ∩ B0O = (OB0).
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line l̄0 is directionally parallel to the line k̄. Then in view of T 3.1.3 the line k̄ is directionally parallel to the line l̄0.
Now it is evident that ∠(h, k) is a Lobachevsky angle corresponding to the interval OB0.

61
2

Theorem 3.1.19. For any acute angle ∠(h, k) (and, for that matter, for the class of angles µ∠(h, k)) congruent to
that angle) there is an (abstract) interval AB (and, for that matter, the class µAB of intervals congruent to that
interval) such that Π(µAB) = µ∠(h, k).

Proof. See proof of the preceding lemma (L 3.1.18.2). 2

Theorem 3.1.20. Consider two lines a, b, parallel in some direction. Consider further two (distinct) planes α ⊃ a,
β ⊃ b drawn through the lines a, b, respectively. If c is the line of intersection of α, β (i.e. the line containing all
common points of the planes α, β), then c is parallel to both a and b in the same direction as they are parallel to
each other.

Proof. 2

61In other words, µ∠(h, k) = Π(µOB0).
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