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Introduction

Graph theory may be said to have its beginning in 1736
when EULER considered the (general case of the) Königs-
berg bridge problem: Does there exist a walk crossing
each of the seven bridges of Königsberg exactly once? (So-
lutio Problematis ad geometriam situs pertinentis, Com-

mentarii Academiae Scientiarum Imperialis Petropolitanae

8 (1736), pp. 128-140.)

It took 200 years before the first book on graph theory was written. This was “Theorie der
endlichen und unendlichen Graphen” ( Teubner, Leipzig, 1936) by KÖNIG in 1936. Since then
graph theory has developed into an extensive and popular branch of mathematics, which has
been applied to many problems in mathematics, computer science, and other scientific and
not-so-scientific areas. For the history of early graph theory, see

N.L. BIGGS, R.J. LLOYD AND R.J. WILSON, “Graph Theory 1736 – 1936”, Clarendon Press, 1986.

There are no standard notations for graph theoretical objects. This is natural, because the
names one uses for the objects reflect the applications. Thus, for instance, if we consider a
communications network (say, for email) as a graph, then the computers taking part in this
network, are called nodes rather than vertices or points. On the other hand, other names are
used for molecular structures in chemistry, flow charts in programming, human relations in
social sciences, and so on.

These lectures study finite graphs and majority of the topics is included in

J.A. BONDY, U.S.R. MURTY, “Graph Theory with Applications”, Macmillan, 1978.

R. DIESTEL, “Graph Theory”, Springer-Verlag, 1997.

F. HARARY, “Graph Theory”, Addison-Wesley, 1969.

D.B. WEST, “Introduction to Graph Theory”, Prentice Hall, 1996.

R.J. WILSON, “Introduction to Graph Theory”, Longman, (3rd ed.) 1985.

In these lectures we study combinatorial aspects of graphs. For more algebraic topics and
methods, see

N. BIGGS, “Algebraic Graph Theory”, Cambridge University Press, (2nd ed.) 1993.

C. GODSIL, G.F. ROYLE, “Algebraic Graph Theory”, Springer, 2001.
and for computational aspects, see

S. EVEN, “Graph Algorithms”, Computer Science Press, 1979.
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In these lecture notes we mention several open problems that have gained respect among
the researchers. Indeed, graph theory has the advantage that it contains easily formulated open
problems that can be stated early in the theory. Finding a solution to any one of these problems
is another matter.

Sections with a star (∗) in their heading are optional.

Notations and notions

• For a finite set X , |X | denotes its size (cardinality, the number of its elements).
• Let

[1, n] = {1,2, . . . , n},

and in general,
[i, n] = {i, i + 1, . . . , n}

for integers i ≤ n.
• For a real number x , the floor and the ceiling of x are the integers

⌊x⌋=max{k ∈ Z | k ≤ x} and ⌈x⌉=min{k ∈ Z | x ≤ k}.

• A family {X1, X2, . . . , Xk} of subsets X i ⊆ X of a set X is a partition of X , if

X =
⋃

i∈[1,k]

X i and X i ∩ X j = ; for all different i and j .

• For two sets X and Y ,
X × Y = {(x , y) | x ∈ X , y ∈ Y }

is their Cartesian product, and

X△Y = (X \ Y )∪ (Y \ X )

is their symmetric difference. Here X \ Y = {x | x ∈ X , x /∈ Y }.
• Two integers n, k ∈ N (often n = |X | and k = |Y | for sets X and Y ) have the same parity, if
both are even, or both are odd, that is, if n≡ k (mod 2). Otherwise, they have opposite parity.

Graph theory has abundant examples of N P-complete problems. Intuitively, a problem is
in P1 if there is an efficient (practical) algorithm to find a solution to it. On the other hand,
a problem is in N P2, if it is first efficient to guess a solution and then efficient to check that
this solution is correct. It is conjectured (and not known) that P 6= N P. This is one of the great
problems in modern mathematics and theoretical computer science. If the guessing part in N P-
problems can be replaced by an efficient systematic search for a solution, then P = N P. For any
one N P-complete problem, if it is in P, then necessarily P = N P.

1 Solvable – by an algorithm – in polynomially many steps on the size of the problem instances.
2 Solvable nondeterministically in polynomially many steps on the size of the problem instances.
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1.1 Graphs and their plane figures

Let V be a finite set, and denote by

E(V ) = {{u, v} | u, v ∈ V, u 6= v} .

the 2-sets of V , i.e., subsets of two distinct elements.

DEFINITION. A pair G = (V, E) with E ⊆ E(V ) is called a graph (on V ). The elements of V are
the vertices of G, and those of E the edges of G. The vertex set of a graph G is denoted by VG

and its edge set by EG. Therefore G = (VG , EG).

In literature, graphs are also called simple graphs; vertices are called nodes or points; edges
are called lines or links. The list of alternatives is long (but still finite).

A pair {u, v} is usually written simply as uv. Notice that then uv = vu. In order to simplify
notations, we also write v ∈ G and e ∈ G instead of v ∈ VG and e ∈ EG .

DEFINITION. For a graph G, we denote

νG = |VG | and ǫG = |EG| .

The number νG of the vertices is called the order of G, and ǫG is the size of G. For an edge
e = uv ∈ G, the vertices u and v are its ends. Vertices u and v are adjacent or neighbours, if
uv ∈ G. Two edges e1 = uv and e2 = uw having a common end, are adjacent with each other.

A graph G can be represented as a plane figure by drawing a line
(or a curve) between the points u and v (representing vertices) if
e = uv is an edge of G. The figure on the right is a geometric
representation of the graph G with VG = {v1, v2, v3, v4, v5, v6} and
EG = {v1v2, v1v3, v2v3, v2v4, v5v6}.

v1

v2

v3

v4 v5

v6

Often we shall omit the identities (names v) of the vertices in our figures, in which case the
vertices are drawn as anonymous circles.

Graphs can be generalized by allowing loops vv and parallel (or multiple) edges between
vertices to obtain a multigraph G = (V, E,ψ), where E = {e1, e2, . . . , em} is a set (of symbols),
and ψ: E → E(V ) ∪ {vv | v ∈ V} is a function that attaches an unordered pair of vertices to
each e ∈ E: ψ(e) = uv.

Note that we can have ψ(e1) = ψ(e2). This is drawn in the figure
of G by placing two (parallel) edges that connect the common ends.
On the right there is (a drawing of) a multigraph G with vertices
V = {a, b, c} and edges ψ(e1) = aa, ψ(e2) = ab, ψ(e3) = bc, and
ψ(e4) = bc.

a

b

c
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Later we concentrate on (simple) graphs.

DEFINITION. We also study directed graphs or digraphs D = (V, E),
where the edges have a direction, that is, the edges are ordered: E ⊆

V × V . In this case, uv 6= vu.

The directed graphs have representations, where the edges are drawn as arrows. A digraph
can contain edges uv and vu of opposite directions.

Graphs and digraphs can also be coloured, labelled, and weighted:

DEFINITION. A function α: VG → K is a vertex colouring of G by a set K of colours. A function
α: EG → K is an edge colouring of G. Usually, K = [1, k] for some k ≥ 1.

If K ⊆ R (often K ⊆ N), then α is a weight function or a distance function.

Isomorphism of graphs

DEFINITION. Two graphs G and H are isomorphic, denoted by G ∼= H, if there exists a bijection
α: VG → VH such that

uv ∈ EG ⇐⇒ α(u)α(v) ∈ EH

for all u, v ∈ G.

Hence G and H are isomorphic if the vertices of H are renamings of those of G. Two iso-
morphic graphs enjoy the same graph theoretical properties, and they are often identified. In
particular, all isomorphic graphs have the same plane figures (excepting the identities of the
vertices). This shows in the figures, where we tend to replace the vertices by small circles, and
talk of ‘the graph’ although there are, in fact, infinitely many such graphs.

Example 1.1. The following graphs are isomorphic.
Indeed, the required isomorphism is given by v1 7→ 1,
v2 7→ 3, v3 7→ 4, v4 7→ 2, v5 7→ 5.

v1

v2 v3

v4

v5 1

3

42

5

Isomorphism Problem. Does there exist an efficient algorithm to check whether any two given

graphs are isomorphic or not?

The following table lists the number 2(
n
2) of all graphs on a given set of n vertices, and

the number of all nonisomorphic graphs on n vertices. It tells that at least for computational
purposes an efficient algorithm for checking whether two graphs are isomorphic or not would
be greatly appreciated.

n 1 2 3 4 5 6 7 8 9

graphs 1 2 8 64 1024 32 768 2 097 152 268 435 456 236 > 6 · 1010

nonisomorphic 1 2 4 11 34 156 1044 12 346 274 668
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Other representations

Plane figures catch graphs for our eyes, but if a problem on graphs is to be programmed, then
these figures are, to say the least, unsuitable. Integer matrices are ideal for computers, since
every respectable programming language has array structures for these, and computers are
good in crunching numbers.

Let VG = {v1, . . . , vn} be ordered. The adjacency matrix of G is
the n× n-matrix M with entries Mi j = 1 or Mi j = 0 according
to whether vi v j ∈ G or vi v j /∈ G. For instance, the graph in
Example 1.1 has an adjacency matrix on the right. Notice that
the adjacency matrix is always symmetric (with respect to its
diagonal consisting of zeros).





0 1 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0





A graph has usually many different adjacency matrices, one for each ordering of its set VG

of vertices. The following result is obvious from the definitions.

Theorem 1.1. Two graphs G and H are isomorphic if and only if they have a common adjacency

matrix. Moreover, two isomorphic graphs have exactly the same set of adjacency matrices.

Graphs can also be represented by sets. For this, let X = {X1, X2, . . . , Xn} be a family of
subsets of a set X , and define the intersection graph GX as the graph with vertices X1, . . . , Xn,
and edges X iX j for all i and j (i 6= j) with X i ∩ X j 6= ;.

Theorem 1.2. Every graph is an intersection graph of some family of subsets.

Proof. Let G be a graph, and define, for all v ∈ G, a set

X v = {{v,u} | vu ∈ G}.

Then Xu ∩ X v 6= ; if and only if uv ∈ G. ⊓⊔

Let s(G) be the smallest size of a base set X such that G can be represented as an intersection
graph of a family of subsets of X , that is,

s(G) =min{|X | | G ∼= GX for some X ⊆ 2X } .

How small can s(G) be compared to the order νG (or the size ǫG) of the graph? It was shown
by KOU, STOCKMEYER AND WONG (1976) that it is algorithmically difficult to determine the
number s(G) – the problem is NP-complete.

Example 1.2. As yet another example, let A ⊆ N be a finite set of natural numbers, and let
GA = (A, E) be the graph with rs ∈ E if and only if r and s (for r 6= s) have a common divisor
> 1. As an exercise, we state: All graphs can be represented in the form GA for some set A of natural

numbers.
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1.2 Subgraphs

Ideally, given a nice problem the local properties of a graph determine a solution. In these
situations we deal with (small) parts of the graph (subgraphs), and a solution can be found to
the problem by combining the information determined by the parts. For instance, as we shall
later see, the existence of an Euler tour is very local, it depends only on the number of the
neighbours of the vertices.

Degrees of vertices

DEFINITION. Let v ∈ G be a vertex a graph G. The neighbourhood of v is the set

NG(v) = {u ∈ G | vu ∈ G} .

The degree of v is the number of its neighbours:

dG(v) = |NG(v)| .

If dG(v) = 0, then v is said to be isolated in G, and if dG(v) = 1, then v is a leaf of the graph.
The minimum degree and the maximum degree of G are defined as

δ(G) =min{dG(v) | v ∈ G} and ∆(G) =max{dG(v) | v ∈ G} .

The following lemma, due to EULER (1736), tells that if several people shake hands, then
the number of hands shaken is even.

Lemma 1.1 (Handshaking lemma). For each graph G,

∑

v∈G

dG(v) = 2 · ǫG .

Moreover, the number of vertices of odd degree is even.

Proof. Every edge e ∈ EG has two ends. The second claim follows immediately from the first
one. ⊓⊔

Lemma 1.1 holds equally well for multigraphs, when dG(v) is defined as the number of edges
that have v as an end, and when each loop vv is counted twice.

Note that the degrees of a graph G do not determine G. Indeed, there are graphs G = (V, EG)

and H = (V, EH ) on the same set of vertices that are not isomorphic, but for which dG(v) = dH(v)

for all v ∈ V .
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Subgraphs

DEFINITION. A graph H is a subgraph of a graph G, denoted by H ⊆ G, if VH ⊆ VG and EH ⊆ EG .
A subgraph H ⊆ G spans G (and H is a spanning subgraph of G), if every vertex of G is in H,
i.e., VH = VG .

Also, a subgraph H ⊆ G is an induced subgraph, if EH = EG ∩ E(VH ). In this case, H is
induced by its set VH of vertices.

In an induced subgraph H ⊆ G, the set EH of edges consists of all e ∈ EG such that e ∈ E(VH).
To each nonempty subset A⊆ VG , there corresponds a unique induced subgraph

G[A] = (A, EG ∩ E(A)) .

To each subset F ⊆ EG of edges there corresponds a unique spanning subgraph of G,

G[F] = (VG , F) .

G subgraph spanning induced

For a set F ⊆ EG of edges, let
G−F = G[EG \ F]

be the subgraph of G obtained by removing (only) the edges e ∈ F from G. In particular, G−e

is obtained from G by removing e ∈ G.
Similarly, we write G + F , if each e ∈ F (for F ⊆ E(VG)) is added to G.

For a subset A⊆ VG of vertices, we let G−A⊆ G be the subgraph induced by VG \ A, that is,

G−A= G[VG \ A] ,

and, e.g., G−v is obtained from G by removing the vertex v together with the edges that have
v as their end.

Reconstruction Problem. The famous open problem, Kelly-Ulam problem or the Reconstruc-
tion Conjecture, states that a graph of order at least 3 is determined up to isomorphism by

its vertex deleted subgraphs G−v (v ∈ G): if there exists a bijection α: VG → VH such that
G−v ∼= H−α(v) for all v, then G ∼= H.
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2-switches

DEFINITION. For a graph G, a 2-switch with respect to the
edges uv, x y ∈ G with ux , v y /∈ G replaces the edges uv

and x y by ux and v y. Denote

G
2s
−→ H

if there exists a finite sequence of 2-switches that carries
G to H.

u

v

x

y

u

v

x

y

Note that if G
2s
−→ H then also H

2s
−→ G since we can apply the sequence of 2-switches in

reverse order.
Before proving Berge’s switching theorem we need the following tool.

Lemma 1.2. Let G be a graph of order n with a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, where

dG(vi) = di. Then there is a graph G′ such that G
2s
−→ G′ with NG′(v1) = {v2, . . . , vd1+1}.

Proof. Let d =∆(G) (= d1). Suppose that there is a vertex vi with 2≤ i ≤ d + 1 such
that v1vi /∈ G. Since dG(v1) = d , there exists a v j with j ≥ d+2
such that v1v j ∈ G. Here di ≥ d j, since j > i. Since v1v j ∈ G,
there exists a vt (2≤ t ≤ n) such that vi vt ∈ G, but v j vt /∈ G.
We can now perform a 2-switch with respect to the vertices
v1, v j , vi, vt . This gives a new graph H, where v1vi ∈ H and
v1v j /∈ H, and the other neighbours of v1 remain to be its
neighbours.

v1 vi v j

vt

When the process is repeated for all indices i with v1vi /∈ G for 2 ≤ i ≤ d + 1, we obtain a
graph G′ as required. ⊓⊔

Theorem 1.3 (BERGE (1973)). Two graphs G and H on a common vertex set V satisfy dG(v) =

dH(v) for all v ∈ V if and only if H can be obtained from G by a sequence of 2-switches.

Proof. If G
2s
−→ H, then clearly H has the same degrees as G.

In converse, we use induction on the order νG . Let G and H have the same degrees. By

Lemma 1.2, we have a vertex v and graphs G′ and H ′ such that G
2s
−→ G′ and H

2s
−→ H ′ with

NG′(v) = NH′(v). Now the graphs G′−v and H ′−v have the same degrees. By the induction

hypothesis, G′−v
2s
−→ H ′−v, and thus also G′

2s
−→ H ′. Finally, we observe that H ′

2s
−→ H by the

‘reverse 2-switches’, and this proves the claim. ⊓⊔

DEFINITION. Let d1, d2, . . . , dn be a descending sequence of nonnegative integers, that is, d1 ≥

d2 ≥ · · · ≥ dn. Such a sequence is said to be graphical, if there exists a graph G = (V, E) with
V = {v1, v2, . . . , vn} such that di = dG(vi) for all i.

Using the next result recursively one can decide whether a sequence of integers is graphical
or not.
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Theorem 1.4 (HAVEL (1955), HAKIMI (1962)). A sequence d1, d2, . . . , dn (with d1 ≥ 1 and n ≥

2) is graphical if and only if

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn (1.1)

is graphical (when put into nonincreasing order).

Proof. (⇐) Consider G of order n− 1 with vertices (and degrees)

dG(v2) = d2 − 1, . . . , dG(vd1+1) = dd1+1 − 1,

dG(vd1+2) = dd1+2, . . . , dG(vn) = dn

as in (1.1). Add a new vertex v1 and the edges v1vi for all i ∈ [2, dd1+1]. Then in the new graph
H, dH(v1) = d1, and dH(vi) = di for all i.

(⇒) Assume dG(vi) = di. By Lemma 1.2 and Theorem 1.3, we can suppose that NG(v1) =

{v2, . . . , vd1+1}. But now the degree sequence of G−v1 is in (1.1). ⊓⊔

Example 1.3. Consider the sequence s = 4,4,4,3,2,1. By Theorem 1.4,

s is graphical ⇐⇒ 3,3,2,1,1 is graphical

2,1,1,0 is graphical

0,0,0 is graphical.

The last sequence corresponds to a graph with no edges, and
hence also our original sequence s is graphical. Indeed, the
graph G on the right has this degree sequence.

v1

v2

v3

v4

v5

v6

Special graphs

DEFINITION. A graph G = (V, E) is trivial, if it has only one vertex, i.e., νG = 1; otherwise G is
nontrivial.

The graph G = KV is the complete graph on V , if every two ver-
tices are adjacent: E = E(V ). All complete graphs of order n are
isomorphic with each other, and they will be denoted by Kn.

The complement of G is the graph G on VG , where EG = {e ∈ E(V ) | e /∈ EG}. The comple-
ments G = KV of the complete graphs are called discrete graphs. In a discrete graph EG = ;.
Clearly, all discrete graphs of order n are isomorphic with each other.

A graph G is said to be regular, if every vertex of G has the same degree. If this degree is
equal to r, then G is r-regular or regular of degree r.
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A discrete graph is 0-regular, and a complete graph Kn is (n−1)-regular. In particular, ǫKn
=

n(n− 1)/2, and therefore ǫG ≤ n(n− 1)/2 for all graphs G that have order n.
Many problems concerning (induced) subgraphs are algorithmically difficult. For instance,

to find a maximal complete subgraph (a subgraph Km of maximum order) of a graph is unlikely
to be even in NP.

Example 1.4. The graph on the right is the Petersen graph that
we will meet several times (drawn differently). It is a 3-regular
graph of order 10.

Example 1.5. Let k ≥ 1 be an integer, and consider the set Bk of all binary strings of length
k. For instance, B3 = {000,001,010,100,011,101,110,111}. Let Qk be the graph, called the
k-cube, with VQk

= Bk, where uv ∈ Qk if and only if the strings u and v differ in exactly one
place.

The order of Qk is νQk
= 2k, the number of binary strings

of length k. Also, Qk is k-regular, and so, by the handshaking
lemma, ǫQk

= k · 2k−1. On the right we have the 3-cube, or sim-
ply the cube.

000

100 101

001

010

110 111

011

Example 1.6. Let n≥ 4 be any even number. We show by induction that there exists a 3-regular
graph G with νG = n. Notice that all 3-regular graphs have even order by the handshaking
lemma.

If n= 4, then K4 is 3-regular. Let G be a 3-regular graph of order
2m−2, and suppose that uv,uw ∈ EG. Let VH = VG∪{x , y}, and
EH = (EG \{uv,uw})∪{ux , xw,uy, yv, x y}. Then H is 3-regular
of order 2m.

u

vw

x y

1.3 Paths and cycles

The most fundamental notions in graph theory are practically oriented. Indeed, many graph
theoretical questions ask for optimal solutions to problems such as: find a shortest path (in
a complex network) from a given point to another. This kind of problems can be difficult, or
at least nontrivial, because there are usually choices what branch to choose when leaving an
intermediate point.

Walks

DEFINITION. Let ei = uiui+1 ∈ G be edges of G for i ∈ [1, k]. The sequence W = e1e2 . . . ek is
a walk of length k from u1 to uk+1. Here ei and ei+1 are compatible in the sense that ei is
adjacent to ei+1 for all i ∈ [1, k − 1].
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We write, more informally,

W : u1 −→ u2 −→ . . . −→ uk −→ uk+1 or W : u1
k
−→ uk+1 .

Write u
⋆
−→ v to say that there is a walk of some length from u to v. Here we understand that

W : u
⋆
−→ v is always a specific walk, W = e1e2 . . . ek, although we sometimes do not care to

mention the edges ei on it. The length of a walk W is denoted by |W |.

DEFINITION. Let W = e1e2 . . . ek (ei = uiui+1) be a walk.
W is closed, if u1 = uk+1.
W is a path, if ui 6= u j for all i 6= j.
W is a cycle, if it is closed, and ui 6= u j for i 6= j except that u1 = uk+1.
W is a trivial path, if its length is 0. A trivial path has no edges.
For a walk W : u = u1 −→ . . . −→ uk+1 = v, also

W−1 : v = uk+1 −→ . . . −→ u1 = u

is a walk in G, called the inverse walk of W .
A vertex u is an end of a path P, if P starts or ends in u.
The join of two walks W1 : u

⋆
−→ v and W2 : v

⋆
−→ w is the walk W1W2 : u

⋆
−→ w. (Here the end

v must be common to the walks.)
Paths P and Q are disjoint, if they have no vertices in common, and they are independent,

if they can share only their ends.

Clearly, the inverse walk P−1 of a path P is a path (the inverse path of P). The join of two
paths need not be a path.

A (sub)graph, which is a path (cycle) of length k − 1 (k, resp.)
having k vertices is denoted by Pk (Ck, resp.). If k is even (odd),
we say that the path or cycle is even (odd). Clearly, all paths
of length k are isomorphic. The same holds for cycles of fixed
length. P5 C6

Lemma 1.3. Each walk W : u
⋆
−→ v with u 6= v contains a path P : u

⋆
−→ v, that is, there is a path

P : u
⋆
−→ v that is obtained from W by removing edges and vertices.

Proof. Let W : u = u1 −→ . . . −→ uk+1 = v. Let i < j be indices such that ui = u j . If no such
i and j exist, then W , itself, is a path. Otherwise, in W = W1W2W3 : u

⋆
−→ ui

⋆
−→ u j

⋆
−→ v the

portion U1 =W1W3 : u
⋆
−→ ui = u j

⋆
−→ v is a shorter walk. By repeating this argument, we obtain

a sequence U1, U2, . . . , Um of walks u
⋆
−→ v with |W | > |U1| > · · · > |Um|. When the procedure

stops, we have a path as required. (Notice that in the above it may very well be that W1 or W3

is a trivial walk.) ⊓⊔
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DEFINITION. If there exists a walk (and hence a path) from u to v in G, let

dG(u, v) =min{k | u
k
−→ v}

be the distance between u and v. If there are no walks u
⋆
−→ v, let dG(u, v) =∞ by convention.

A graph G is connected, if dG(u, v) <∞ for all u, v ∈ G; otherwise, it is disconnected. The
maximal connected subgraphs of G are its connected components. Denote

c(G) = the number of connected components of G .

If c(G) = 1, then G is, of course, connected.

The maximality condition means that a subgraph H ⊆ G is a connected component if and
only if H is connected and there are no edges leaving H, i.e., for every vertex v /∈ H, the subgraph
G[VH ∪ {v}] is disconnected. Apparently, every connected component is an induced subgraph,
and

N ∗G(v) = {u | dG(v,u) <∞}

is the connected component of G that contains v ∈ G. In particular, the connected components
form a partition of G.

Shortest paths

DEFINITION. Let Gα be an edge weighted graph, that is, Gα is a graph G together with a weight
function α: EG → R on its edges. For H ⊆ G, let

α(H) =
∑

e∈H

α(e)

be the (total) weight of H. In particular, if P = e1e2 . . . ek is a path, then its weight is α(P) =∑k
i=1α(ei). The minimum weighted distance between two vertices is

dαG(u, v) =min{α(P) | P : u
⋆
−→ v} .

In extremal problems we seek for optimal subgraphs H ⊆ G satisfying specific conditions. In
practice we encounter situations where G might represent

• a distribution or transportation network (say, for mail), where the weights on edges are
distances, travel expenses, or rates of flow in the network;

• a system of channels in (tele)communication or computer architecture, where the weights
present the rate of unreliability or frequency of action of the connections;

• a model of chemical bonds, where the weights measure molecular attraction.
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In these examples we look for a subgraph with the smallest weight, and which connects two
given vertices, or all vertices (if we want to travel around). On the other hand, if the graph
represents a network of pipelines, the weights are volumes or capacities, and then one wants
to find a subgraph with the maximum weight.

We consider the minimum problem. For this, let G be a graph with an integer weight function
α: EG → N. In this case, call α(uv) the length of uv.

The shortest path problem: Given a connected graph G with a weight function α: EG → N, find

dαG(u, v) for given u, v ∈ G.

Assume that G is a connected graph. Dijkstra’s algorithm solves the problem for every pair
u, v, where u is a fixed starting point and v ∈ G. Let us make the convention that α(uv) =∞,
if uv /∈ G.

Dijkstra’s algorithm:

(i) Set u0 = u, t(u0) = 0 and t(v) =∞ for all v 6= u0.

(ii) For i ∈ [0,νG − 1]: for each v /∈ {u1, . . . ,ui},

replace t(v) by min{t(v), t(ui) +α(ui v)} .

Let ui+1 /∈ {u1, . . . ,ui} be any vertex with the least value t(ui+1).

(iii) Conclusion: dαG(u, v) = t(v).

Example 1.7. Consider the following weighted graph G. Apply Dijkstra’s algorithm to the vertex
v0.

• u0 = v0, t(u0) = 0, others are∞.

• t(v1) = min{∞, 2} = 2, t(v2) = min{∞, 3} = 3, others
are∞. Thus u1 = v1.

• t(v2) = min{3, t(u1) + α(u1v2)} = min{3,4} = 3, t(v3) =

2+ 1 = 3, t(v4) = 2+ 3 = 5, t(v5) = 2+ 2 = 4. Thus choose
u2 = v3.

• t(v2) =min{3,∞} = 3, t(v4) =min{5,3+ 2}= 5, t(v5) =

min{4,3+ 1}= 4. Thus set u3 = v2.

v0

v1

v2

v3

v4

v5

2

3

1

3 2

1

2

1

2

2

• t(v4) =min{5,3+ 1}= 4, t(v5) =min{4,∞} = 4. Thus choose u4 = v4.

• t(v5) =min{4,4+ 1}= 4. The algorithm stops.

We have obtained:

t(v1) = 2, t(v2) = 3, t(v3) = 3, t(v4) = 4, t(v5) = 4 .

These are the minimal weights from v0 to each vi.
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The steps of the algorithm can also be rewritten as a table:

v1 2 - - - -
v2 3 3 3 - -
v3 ∞ 3 - - -
v4 ∞ 5 5 4 -
v5 ∞ 4 4 4 4

The correctness of Dijkstra’s algorithm can verified be as follows.
Let v ∈ V be any vertex, and let P : u0

⋆
−→ u

⋆
−→ v be a shortest path from u0 to v, where u

is any vertex u 6= v on such a path, possibly u = u0. Then, clearly, the first part of the path,
u0

⋆
−→ u, is a shortest path from u0 to u, and the latter part u

⋆
−→ v is a shortest path from u to

v. Therefore, the length of the path P equals the sum of the weights of u0
⋆
−→ u and u

⋆
−→ v.

Dijkstra’s algorithm makes use of this observation iteratively.



2

Connectivity of Graphs

2.1 Bipartite graphs and trees

In problems such as the shortest path problem we look for minimum solutions that satisfy the
given requirements. The solutions in these cases are usually subgraphs without cycles. Such
connected graphs will be called trees, and they are used, e.g., in search algorithms for databases.
For concrete applications in this respect, see

T.H. CORMEN, C.E. LEISERSON AND R.L. RIVEST, “Introduction to Algorithms”, MIT Press, 1993.

Certain structures with operations are representable as trees.
These trees are sometimes called construction trees, decom-

position trees, factorization trees or grammatical trees. Gram-
matical trees occur especially in linguistics, where syntactic
structures of sentences are analyzed. On the right there is a
tree of operations for the arithmetic formula x · (y + z) + y.

+

·

x +

y z

y

Bipartite graphs

DEFINITION. A graph G is called bipartite, if VG has a partition to two subsets X and Y such that
each edge uv ∈ G connects a vertex of X and a vertex of Y . In this case, (X , Y ) is a bipartition
of G, and G is (X , Y )-bipartite.

A bipartite graph G (as in the above) is complete (m, k)-bipartite, if
|X | = m, |Y | = k, and uv ∈ G for all u ∈ X and v ∈ Y .
All complete (m, k)-bipartite graphs are isomorphic. Let Km,k denote
such a graph.

A subset X ⊆ VG is stable, if G[X ] is a discrete graph.
K2,3

The following result is clear from the definitions.

Theorem 2.1. A graph G is bipartite if and only if VG has a partition to two stable subsets.

Example 2.1. The k-cube Qk of Example 1.5 is bipartite for all k. Indeed, consider A = {u |

u has an even number of 1′s} and B = {u | u has an odd number of 1′s}. Clearly, these sets par-
tition Bk, and they are stable in Qk.
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Theorem 2.2. A graph G is bipartite if and only if G it has no odd cycles (as subgraph).

Proof. (⇒) Observe that if G is (X , Y )-bipartite, then so are all its subgraphs. However, an odd
cycle C2k+1 is not bipartite.

(⇐) Suppose that all cycles in G are even. First, we note that it suffices to show the claim
for connected graphs. Indeed, if G is disconnected, then each cycle of G is contained in one of
the connected components G1, . . . , Gp of G. If Gi is (X i, Yi)-bipartite, then G has the bipartition
(X1 ∪ X2 ∪ · · · ∪ X p, Y1 ∪ Y2 ∪ · · · ∪ Yp).

Assume thus that G is connected. Let v ∈ G be a chosen vertex, and define

X = {x | dG(v, x) is even} and Y = {y | dG(v, y) is odd} .

Since G is connected, VG = X ∪ Y . Also, by the definition of distance, X ∩ Y = ;.
Let then u, w ∈ G be both in X or both in Y , and let P : v

⋆
−→ u and Q : v

⋆
−→ w be (among

the) shortest paths from v to u and w. Assume that x is the last common vertex of P and Q:
P = P1P2, Q = Q1Q2, where P2 : x

⋆
−→ u and Q2 : x

⋆
−→ w are independent. Since P and Q are

shortest paths, P1 and Q1 are shortest paths v
⋆
−→ x . Consequently, |P1| = |Q1|.

Thus |P2| and |Q2| have the same parity and hence the sum
|P2|+ |Q2| is even, i.e., the path P−1

2 Q2 is even, and so uw /∈ EG

by assumption. Therefore X and Y are stable subsets, and G is
bipartite as claimed. ⊓⊔

v x

u

w

P1

Q1

P2

Q2

uw

Checking whether a graph is bipartite is easy. Indeed, this can
be done by using two ‘opposite’ colours, say 1 and 2. Start from
any vertex v1, and colour it by 1. Then colour the neighbours of
v1 by 2, and proceed by colouring all neighbours of an already
coloured vertex by the opposite colour.

1
2

2

1

21

1

2

1

2

If the whole graph can be coloured without contradiction, then G is (X , Y )-bipartite, where X

consists of those vertices with colour 1, and Y of those vertices with colour 2; otherwise, at
some point one of the vertices gets both colours, and in this case, G is not bipartite.

Example 2.2 (ERDÖS (1965)). We show that each graph G has a bipartite subgraph H ⊆ G such
that ǫH ≥

1
2ǫG. Indeed, let VG = X ∪ Y be a partition such that the number of edges between X

and Y is maximum. Denote
F = EG ∩ {uv | u ∈ X , v ∈ Y } ,

and let H = G[F]. Obviously H is a spanning subgraph, and it is bipartite.
By the maximum condition, dH(v)≥ dG(v)/2, since, otherwise, v is on the wrong side. (That

is, if v ∈ X , then the pair X ′ = X \ {v}, Y ′ = Y ∪ {v} does better that the pair X , Y .) Now

ǫH =
1

2

∑

v∈H

dH(v)≥
1

2

∑

v∈G

1

2
dG(v) =

1

2
ǫG .
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Bridges

DEFINITION. An edge e ∈ G is a bridge of the graph G, if G−e

has more connected components than G, that is, if c(G−e) >

c(G). In particular, and most importantly, an edge e in a con-
nected G is a bridge if and only if G−e is disconnected.
On the right (only) the two horizontal lines are bridges.

We note that, for each edge e ∈ G,

e = uv is a bridge ⇐⇒ u, v in different connected components of G−e .

Theorem 2.3. An edge e ∈ G is a bridge if and only if e is not in any cycle of G.

Proof. (⇒) If there is a cycle in G containing e, say C = PeQ, then QP : v
⋆
−→ u is a path in G−e,

and so e is not a bridge.
(⇐) If e = uv is not a bridge, then u and v are in the same connected component of G−e,

and there is a path P : v
⋆
−→ u in G−e. Now, eP : u −→ v

⋆
−→ u is a cycle in G containing e. ⊓⊔

Lemma 2.1. Let e be a bridge in a connected graph G.

(i) Then c(G−e) = 2.

(ii) Let H be a connected component of G−e. If f ∈ H is a bridge of H, then f is a bridge of G.

Proof. For (i), let e = uv. Since e is a bridge, the ends u and v are not connected in G−e. Let
w ∈ G. Since G is connected, there exists a path P : w

⋆
−→ v in G. This is a path of G−e, unless

P : w
⋆
−→ u→ v contains e = uv, in which case the part w

⋆
−→ u is a path in G−e.

For (ii), if f ∈ H belongs to a cycle C of G, then C does not contain e (since e is in no cycle),
and therefore C is inside H, and f is not a bridge of H. ⊓⊔

Trees

DEFINITION. A graph is called acyclic, if it has no cycles. An acyclic graph is also called a forest.
A tree is a connected acyclic graph.

By Theorem 2.3 and the definition of a tree, we have

Corollary 2.1. A connected graph is a tree if and only if all its edges are bridges.

Example 2.3. The following enumeration result for trees has many different proofs, the first of
which was given by CAYLEY in 1889: There are nn−2 trees on a vertex set V of n elements. We
omit the proof.
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On the other hand, there are only a few trees up to isomorphism:

n 1 2 3 4 5 6 7 8
trees 1 1 1 2 3 6 11 23

n 9 10 11 12 13 14 15 16
trees 47 106 235 551 1301 3159 7741 19 320

The nonisomorphic trees of order 6 are:

We say that a path P : u
⋆
−→ v is maximal in a graph G, if there are no edges e ∈ G for which

Pe or eP is a path. Such paths exist, because νG is finite.

Lemma 2.2. Let P : u
⋆
−→ v be a maximal path in a graph G. Then NG(v) ⊆ P. Moreover, if G is

acyclic, then dG(v) = 1.

Proof. If e = vw ∈ EG with w /∈ P, then also Pe is a path, which contradicts the maximality
assumption for P. Hence NG(v) ⊆ P. For acyclic graphs, if wv ∈ G, then w belongs to P, and wv

is necessarily the last edge of P in order to avoid cycles. ⊓⊔

Corollary 2.2. Each tree T with νT ≥ 2 has at least two leaves.

Proof. Since T is acyclic, both ends of a maximal path have degree one. ⊓⊔

Theorem 2.4. The following are equivalent for a graph T.

(i) T is a tree.

(ii) Any two vertices are connected in T by a unique path.

(iii) T is acyclic and ǫT = νT − 1.

Proof. Let νT = n. If n= 1, then the claim is trivial. Suppose thus that n≥ 2.

(i)⇒(ii) Let T be a tree. Assume the claim does not hold, and let P,Q : u
⋆
−→ v be two different

paths between the same vertices u and v. Suppose that |P| ≥ |Q|. Since P 6= Q, there exists an
edge e which belongs to P but not to Q. Each edge of T is a bridge, and therefore u and v belong
to different connected components of T−e. Hence e must also belong to Q; a contradiction.

(ii)⇒(iii) We prove the claim by induction on n. Clearly, the claim holds for n = 2, and
suppose it holds for graphs of order less than n. Let T be any graph of order n satisfying (ii). In
particular, T is connected, and it is clearly acyclic.

Let P : u
⋆
−→ v be a maximal path in T . By Lemma 2.2, we have dT (v) = 1. In this case,

P : u
⋆
−→ w −→ v, where vw is the unique edge having an end v. The subgraph T−v is connected,
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and it satisfies the condition (ii). By induction hypothesis, ǫT−v = n−2, and so ǫT = ǫT−v+1=
n− 1, and the claim follows.

(iii)⇒(i) Assume (iii) holds for T . We need to show that T is connected. Indeed, let the
connected components of T be Ti = (Vi , Ei), for i ∈ [1, k]. Since T is acyclic, so are the connected
graphs Ti, and hence they are trees, for which we have proved that |Ei| = |Vi | − 1. Now, νT =∑k

i=1 |Vi |, and ǫT =
∑k

i=1 |Ei|. Therefore,

n− 1= ǫT =

k∑

i=1

(|Vi | − 1) =
k∑

i=1

|Vi | − k = n− k ,

which gives that k = 1, that is, T is connected. ⊓⊔

Example 2.4. Consider a cup tournament of n teams. If during a round there are k teams left
in the tournament, then these are divided into ⌊k⌋ pairs, and from each pair only the winner
continues. If k is odd, then one of the teams goes to the next round without having to play. How
many plays are needed to determine the winner?

So if there are 14 teams, after the first round 7 teams continue, and after the second round
4 teams continue, then 2. So 13 plays are needed in this example.

The answer to our problem is n− 1, since the cup tournament is a tree, where a play corre-
sponds to an edge of the tree.

Spanning trees

Theorem 2.5. Each connected graph has a spanning tree, that is, a spanning graph that is a tree.

Proof. Let T ⊆ G be a maximum order subtree of G (i.e., subgraph that is a tree). If VT 6=

VG , there exists an edge uv /∈ EG such that u ∈ T and v /∈ T . But then T is not maximal; a
contradiction. ⊓⊔

Corollary 2.3. For each connected graph G, ǫG ≥ νG −1. Moreover, a connected graph G is a tree

if and only if ǫG = νG − 1.

Proof. Let T be a spanning tree of G. Then ǫG ≥ ǫT = νT −1= νG−1. The second claim is also
clear. ⊓⊔

Example 2.5. In Shannon’s switching game a positive player P and a negative player N play
on a graph G with two special vertices: a source s and a sink r. P and N alternate turns so that
P designates an edge by +, and N by −. Each edge can be designated at most once. It is P ’s
purpose to designate a path s

⋆
−→ r (that is, to designate all edges in one such path), and N tries

to block all paths s
⋆
−→ r (that is, to designate at least one edge in each such path). We say that

a game (G, s, r) is

• positive, if P has a winning strategy no matter who begins the game,
• negative, if N has a winning strategy no matter who begins the game,
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• neutral, if the winner depends on who begins the game.

The game on the right is neutral.

s

r

LEHMAN proved in 1964 that Shannon’s switching game (G, s, r) is positive if and only if there

exists H ⊆ G such that H contains s and r and H has two spanning trees with no edges in common.

In the other direction the claim can be proved along the following lines. Assume that there
exists a subgraph H containing s and r and that has two spanning trees with no edges in com-
mon. Then P plays as follows. If N marks by − an edge from one of the two trees, then P marks
by + an edge in the other tree such that this edge reconnects the broken tree. In this way, P

always has two spanning trees for the subgraph H with only edges marked by + in common.
In converse the claim is considerably more difficult to prove.
There remains the problem to characterize those Shannon’s switching games (G, s, r) that

are neutral (negative, respectively).

The connector problem

To build a network connecting n nodes (towns, computers, chips in a computer) it is desirable to
decrease the cost of construction of the links to the minimum. This is the connector problem.
In graph theoretical terms we wish to find an optimal spanning subgraph of a weighted graph.
Such an optimal subgraph is clearly a spanning tree, for, otherwise a deletion of any nonbridge
will reduce the total weight of the subgraph.

Let then Gα be a graph G together with a weight function α: EG → R
+ (positive reals) on

the edges. Kruskal’s algorithm (also known as the greedy algorithm) provides a solution to the
connector problem.
Kruskal’s algorithm: For a connected and weighted graph Gα of order n:

(i) Let e1 be an edge of smallest weight, and set E1 = {e1}.

(ii) For each i = 2,3, . . . , n−1 in this order, choose an edge ei /∈ Ei−1 of smallest possible weight
such that ei does not produce a cycle when added to G[Ei−1], and let Ei = Ei−1 ∪ {ei}.

The final outcome is T = (VG , En−1).

By the construction, T = (VG , En−1) is a spanning tree of G, because it contains no cycles, it
is connected and has n− 1 edges. We now show that T has the minimum total weight among
the spanning trees of G.

Suppose T1 is any spanning tree of G. Let ek be the first edge produced by the algorithm that
is not in T1. If we add ek to T1, then a cycle C containing ek is created. Also, C must contain
an edge e that is not in T . When we replace e by ek in T1, we still have a spanning tree, say
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T2. However, by the construction, α(ek)≤ α(e), and therefore α(T2)≤ α(T1). Note that T2 has
more edges in common with T than T1.

Repeating the above procedure, we can transform T1 to T by replacing edges, one by one,
such that the total weight does not increase. We deduce that α(T ) ≤ α(T1).

The outcome of Kruskal’s algorithm need not be unique. Indeed, there may exist several
optimal spanning trees (with the same weight, of course) for a graph.

Example 2.6. When applied to the weighted graph on the
right, the algorithm produces the sequence: e1 = v2v4,
e2 = v4v5, e3 = v3v6, e4 = v2v3 and e5 = v1v2. The to-
tal weight of the spanning tree is thus 9.
Also, the selection e1 = v2v5, e2 = v4v5, e3 = v5v6, e4 =

v3v6, e5 = v1v2 gives another optimal solution (of weight
9).

v1 v2 v3

v4 v5 v6

3

4

2

1

1
22
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Problem. Consider trees T with weight functions α: ET → N. Each tree T of order n has exactly�
n
2

�
paths. (Why is this so?) Does there exist a weighted tree Tα of order n such that the (total)

weights of its paths are 1,2, . . . ,
�

n
2

�
?

In such a weighted tree Tα different paths have different
weights, and each i ∈ [1,

�
n
2

�
] is a weight of one path. Also,

α must be injective.

No solutions are known for any n≥ 7.
2

1

5

8

4

TAYLOR (1977) proved: if T of order n exists, then necessarily n= k2 or n= k2+2 for some k ≥ 1.

Example 2.7. A computer network can be presented as a graph G, where the vertices are the
node computers, and the edges indicate the direct links. Each computer v has an address a(v), a
bit string (of zeros and ones). The length of an address is the number of its bits. A message that is
sent to v is preceded by the address a(v). The Hamming distance h(a(v), a(u)) of two addresses
of the same length is the number of places, where a(v) and a(u) differ; e.g., h(00010,01100) =
3 and h(10000,00000) = 1.

It would be a good way to address the vertices so that the Hamming distance of two vertices
is the same as their distance in G. In particular, if two vertices were adjacent, their addresses
should differ by one symbol. This would make it easier for a node computer to forward a mes-
sage.

A graph G is said to be addressable, if it has an address-
ing a such that dG(u, v) = h(a(u), a(v)). 000

100

010

110 111

We prove that every tree T is addressable. Moreover, the addresses of the vertices of T can be

chosen to be of length νT − 1.

The proof goes by induction. If νT ≤ 2, then the claim is obvious. In the case νT = 2, the
addresses of the vertices are simply 0 and 1.
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Let then VT = {v1, . . . , vk+1}, and assume that dT (v1) = 1 (a leaf) and v1v2 ∈ T . By the
induction hypothesis, we can address the tree T−v1 by addresses of length k − 1. We change
this addressing: let ai be the address of vi in T−v1, and change it to 0ai. Set the address of v1

to 1a2. It is now easy to see that we have obtained an addressing for T as required.

The triangle K3 is not addressable. In order to gain more generality, we modify the addressing
for general graphs by introducing a special symbol ∗ in addition to 0 and 1. A star address will
be a sequence of these three symbols. The Hamming distance remains as it was, that is, h(u, v)

is the number of places, where u and v have a different symbol 0 or 1. The special symbol ∗
does not affect h(u, v). So, h(10∗∗01,0∗∗101) = 1 and h(1∗∗∗∗∗,∗00∗∗∗) = 0. We still want
to have h(u, v) = dG(u, v).

We star address this graph as follows:

a(v1) = 0000 , a(v2) = 10 ∗ 0 ,

a(v3) = 1 ∗ 01 , a(v4) = ∗ ∗ 11 .

These addresses have length 4. Can you design a star ad-
dressing with addresses of length 3?

v1 v2

v3

v4

WINKLER proved in 1983 a rather unexpected result: The minimum star address length of a

graph G is at most νG − 1.

For the proof of this, see VAN LINT AND WILSON, “A Course in Combinatorics”.

2.2 Connectivity

Spanning trees are often optimal solutions to problems, where cost is the criterion. We may also
wish to construct graphs that are as simple as possible, but where two vertices are always con-
nected by at least two independent paths. These problems occur especially in different aspects
of fault tolerance and reliability of networks, where one has to make sure that a break-down of
one connection does not affect the functionality of the network. Similarly, in a reliable network
we require that a break-down of a node (computer) should not result in the inactivity of the
whole network.

Separating sets

DEFINITION. A vertex v ∈ G is a cut vertex, if c(G−v)> c(G). A subset
S ⊆ VG is a separating set, if G−S is disconnected. We also say that S

separates the vertices u and v and it is a (u, v)-separating set, if u and
v belong to different connected components of G−S.

If G is connected, then v is a cut vertex if and only if G−v is disconnected, that is, {v} is a
separating set. The following lemma is immediate.

Lemma 2.3. If S ⊆ VG separates u and v, then every path P : u
⋆
−→ v visits a vertex of S.
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Lemma 2.4. If a connected graph G has no separating sets, then it is a complete graph.

Proof. If νG ≤ 2, then the claim is clear. For νG ≥ 3, assume that G is not complete, and let
uv /∈ G. Now VG \ {u, v} is a separating set. The claim follows from this. ⊓⊔

DEFINITION. The (vertex) connectivity number κ(G) of G is defined as

κ(G) =min{k | k = |S|, G−S disconnected or trivial,S ⊆ VG} .

A graph G is k-connected, if κ(G) ≥ k.

In other words,

• κ(G) = 0, if G is disconnected,
• κ(G) = νG − 1, if G is a complete graph, and
• otherwise κ(G) equals the minimum size of a separating set of G.

Clearly, if G is connected, then it is 1-connected.

DEFINITION. An edge cut F of G consists of edges so that G−F is disconnected. Let

κ′(G) =min{k | k = |F |, G−F disconnected, F ⊆ EG} .

For trivial graphs, let κ′(G) = 0. A graph G is k-edge connected, if κ′(G) ≥ k. A minimal
edge cut F ⊆ EG is a bond (F \ {e} is not an edge cut for any e ∈ F).

Example 2.8. Again, if G is disconnected, then κ′(G) = 0.
On the right, κ(G) = 2 and κ′(G) = 2. Notice that the
minimum degree is δ(G) = 3.

Lemma 2.5. Let G be connected. If e = uv is a bridge, then either G = K2 or one of u or v is a cut

vertex.

Proof. Assume that G 6= K2 and thus that νG ≥ 3, since G is connected. Let Gu = N ∗G−e(u) and
Gv = N ∗G−e(v) be the connected components of G−e containing u and v. Now, either νGu

≥ 2
(and u is a cut vertex) or νGv

≥ 2 (and v is a cut vertex). ⊓⊔

Lemma 2.6. If F be a bond of a connected graph G, then c(G−F) = 2.

Proof. Since G−F is disconnected, and F is minimal, the subgraph H = G−(F\{e}) is connected
for given e ∈ F . Hence e is a bridge in H. By Lemma 2.1, c(H−e) = 2, and thus c(G−F) = 2,
since H−e = G−F . ⊓⊔
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Theorem 2.6 (WHITNEY (1932)). For any graph G,

κ(G) ≤ κ′(G) ≤ δ(G) .

Proof. Assume G is nontrivial. Clearly, κ′(G) ≤ δ(G), since if we remove all edges with an end
v, we disconnect G. If κ′(G) = 0, then G is disconnected, and in this case also κ(G) = 0. If
κ′(G) = 1, then G is connected and contains a bridge. By Lemma 2.5, either G = K2 or G has a
cut vertex. In both of these cases, also κ(G) = 1.

Assume then that κ′(G) ≥ 2. Let F be an edge cut of G with |F | = κ′(G), and let e = uv ∈ F .
Then F is a bond, and G−F has two connected components.

Consider the connected subgraph

H = G−(F \ {e}) = (G−F) + e,

where e is a bridge.

...
...

G

F

...
...

H
e

Now for each f ∈ F \ {e} choose an end different from u and v. (The choices for different
edges need not be different.) Note that since f 6= e, either end of f is different from u or v. Let
S be the collection of these choices. Thus |S| ≤ |F | − 1 = κ′(G)− 1, and G−S does not contain
edges from F \ {e}.

If G−S is disconnected, then S is a separating set and so κ(G) ≤ |S| ≤ κ′(G)−1 and we are
done. On the other hand, if G−S is connected, then either G−S = K2 (= e), or either u or v (or
both) is a cut vertex of G−S (since H−S = G−S, and therefore G−S ⊆ H is an induced subgraph
of H). In both of these cases, there is a vertex of G−S, whose removal results in a trivial or a
disconnected graph. In conclusion, κ(G) ≤ |S|+ 1≤ κ′(G), and the claim follows. ⊓⊔

Menger’s theorem

Theorem 2.7 (MENGER (1927)). Let u, v ∈ G be nonadjacent vertices of a connected graph G.

Then the minimum number of vertices separating u and v is equal to the maximum number of

independent paths from u to v.

Proof. If a subset S ⊆ VG is (u, v)-separating, then every path u
⋆
−→ v of G visits S. Hence |S| is

at least the number of independent paths from u to v.
Conversely, we use induction on m = νG+ǫG to show that if S = {w1, w2, . . . , wk} is a (u, v)-

separating set of the smallest size, then G has at least (and thus exactly) k independent paths
u

⋆
−→ v.

The case for k = 1 is clear, and this takes care of the small values of m, required for the
induction.

(1) Assume first that u and v have a common neighbour w ∈ NG(u)∩NG(v). Then necessarily
w ∈ S. In the smaller graph G−w the set S \ {w} is a minimum (u, v)-separating set, and the
induction hypothesis yields that there are k − 1 independent paths u

⋆
−→ v in G−w. Together

with the path u −→ w −→ v, there are k independent paths u
⋆
−→ v in G as required.

(2) Assume then that NG(u) ∩ NG(v) = ;, and denote by Hu = N ∗G−S(u) and Hv = N ∗G−S(v)

the connected components of G−S for u and v.
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(2.1) Suppose next that S * NG(u) and S * NG(v).

Let bv be a new vertex, and define Gu to be the graph on
Hu∪S∪{bv} having the edges of G[Hu∪S] together with bvwi

for all i ∈ [1, k]. The graph Gu is connected and it is smaller
than G. Indeed, in order for S to be a minimum separating
set, all wi ∈ S have to be adjacent to some vertex in Hv .
This shows that ǫGu

≤ ǫG, and, moreover, the assumption
(2.1) rules out the case Hv = {v}. So |Hv| ≥ 2 and νGu

<

νG .

u

bv

w1

w2

. . .

wk

If S′ is any (u,bv)-separating set of Gu, then S′ will separate u from all wi ∈ S \ S′ in G. This
means that S′ separates u and v in G. Since k is the size of a minimum (u, v)-separating set, we
have |S′| ≥ k. We noted that Gu is smaller than G, and thus by the induction hypothesis, there
are k independent paths u

⋆
−→ bv in Gu. This is possible only if there exist k paths u

⋆
−→ wi , one

for each i ∈ [1, k], that have only the end u in common.

By the present assumption, also u is nonadjacent to some vertex of S. A symmetric argument
applies to the graph Gv (with a new vertex bu), which is defined similarly to Gu. This yields that
there are k paths wi

⋆
−→ v that have only the end v in common. When we combine these with

the above paths u
⋆
−→ wi , we obtain k independent paths u

⋆
−→ wi

⋆
−→ v in G.

(2.2) There remains the case, where for all (u, v)-separating sets S of k elements, either
S ⊆ NG(u) or S ⊆ NG(v). (Note that then, by (2), S ∩ NG(v) = ; or S ∩ NG(u) = ;.)

Let P = e f Q be a shortest path u
⋆
−→ v in G, where e = ux , f = x y, and Q : y

⋆
−→ v. Notice

that, by the assumption (2), |P| ≥ 3, and so y 6= v. In the smaller graph G− f , let S′ be a
minimum set that separates u and v.

If |S′| ≥ k, then, by the induction hypothesis, there are k independent paths u
⋆
−→ v in G− f .

But these are paths of G, and the claim is clear in this case.
If, on the other hand, |S′| < k, then u and v are still connected in G−S′. Every path u

⋆
−→ v

in G−S′ necessarily travels along the edge f = x y, and so x , y /∈ S′.
Let

Sx = S′ ∪ {x} and Sy = S′ ∪ {y} .

These sets separate u and v in G (by the above fact), and they have size k. By our current
assumption, the vertices of Sy are adjacent to v, since the path P is shortest and so uy /∈ G

(meaning that u is not adjacent to all of Sy). The assumption (2) yields that u is adjacent to all
of Sx , since ux ∈ G. But now both u and v are adjacent to the vertices of S′, which contradicts
the assumption (2). ⊓⊔

Theorem 2.8 (MENGER (1927)). A graph G is k-connected if and only if every two vertices are

connected by at least k independent paths.

Proof. If any two vertices are connected by k independent paths, then it is clear that κ(G) ≥ k.
In converse, suppose that κ(G) = k, but that G has vertices u and v connected by at most

k−1 independent paths. By Theorem 2.7, it must be that e = uv ∈ G. Consider the graph G−e.
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Now u and v are connected by at most k − 2 independent paths in G−e, and by Theorem 2.7,
u and v can be separated in G−e by a set S with |S| = k− 2. Since νG > k (because κ(G) = k),
there exists a w ∈ G that is not in S ∪ {u, v}. The vertex w is separated in G−e by S from u

or from v; otherwise there would be a path u
⋆
−→ v in (G−e)−S. Say, this vertex is u. The set

S ∪ {v} has k − 1 elements, and it separates u from w in G, which contradicts the assumption
that κ(G) = k. This proves the claim. ⊓⊔

We state without a proof the corresponding separation property for edge connectivity.

DEFINITION. Let G be a graph. A uv-disconnecting set is a set F ⊆ EG such that every path
u

⋆
−→ v contains an edge from F .

Theorem 2.9. Let u, v ∈ G with u 6= v in a graph G. Then the maximum number of edge-disjoint

paths u
⋆
−→ v equals the minimum number k of edges in a uv-disconnecting set.

Corollary 2.4. A graph G is k-edge connected if and only if every two vertices are connected by at

least k edge disjoint paths.

Example 2.9. Recall the definition of the cube Qk from Example 1.5. We show that κ(Qk) = k.
First of all, κ(Qk) ≤ δ(Qk) = k. In converse, we show the claim by induction. Extract from

Qk the disjoint subgraphs: G0 induced by {0u | u ∈ Bk−1} and G1 induced by {1u | u ∈ Bk−1}.
These are (isomorphic to) Qk−1, and Qk is obtained from the union of G0 and G1 by adding the
2k−1 edges (0u, 1u) for all u ∈ Bk−1.

Let S be a separating set of Qk with |S| ≤ k. If both G0−S and G1−S were connected,
also Qk−S would be connected, since one pair (0u, 1u) necessarily remains in Qk−S. So we
can assume that G0−S is disconnected. (The case for G1−S is symmetric.) By the induction
hypothesis, κ(G0) = k−1, and hence S contains at least k−1 vertices of G0 (and so |S| ≥ k−1).
If there were no vertices from G1 in S, then, of course, G1−S is connected, and the edges (0u, 1u)

of Qk would guarantee that Qk−S is connected; a contradiction. Hence |S| ≥ k.

Example 2.10. We have κ′(Qk) = k for the k-cube. Indeed, by Whitney’s theorem, κ(G) ≤
κ′(G) ≤ δ(G). Since κ(Qk) = k = δ(Qk), also κ′(Qk) = k.

Algorithmic Problem. The connectivity problems tend to be algorithmically difficult. In the
disjoint paths problem we are given a set (ui, vi) of pairs of vertices for i = 1,2, . . . , k, and it
is asked whether there exist paths Pi : ui

⋆
−→ vi that have no vertices in common. This problem

was shown to be NP-complete by KNUTH in 1975. (However, for fixed k, the problem has a fast
algorithm due to ROBERTSON and SEYMOUR (1986).)
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Dirac’s fans

DEFINITION. Let v ∈ G and S ⊆ VG such that v /∈ S in a graph
G. A set of paths from v to a vertex in S is called a (v,S)-fan, if
they have only v in common.

Theorem 2.10 (DIRAC (1960)). A graph G is k-connected if and

only if νG > k and for every v ∈ G and S ⊆ VG with |S| ≥ k and

v /∈ S, there exists a (v,S)-fan of k paths.

v

. . .

∗

∗

∗

S

Proof. Exercise. ⊓⊔

Theorem 2.11 (DIRAC (1960)). Let G be a k-connected graph for k ≥ 2. Then for any k vertices,

there exists a cycle of G containing them.

Proof. First of all, since κ(G) ≥ 2, G has no cut vertices, and thus no bridges. It follows that
every edge, and thus every vertex of G belongs to a cycle.

Let S ⊆ VG be such that |S| = k, and let C be a cycle of G that contains the maximum
number of vertices of S. Let the vertices of S ∩ VC be v1, . . . , vr listed in order around C so that
each pair (vi , vi+1) (with indices modulo r) defines a path along C (except in the special case
where r = 1). Such a path is referred to as a segment of C . If C contains all vertices of S, then
we are done; otherwise, suppose v ∈ S is not on C .

It follows from Theorem 2.10 that there is a (v, VC )-fan of at least min{k, |VC |} paths. There-
fore there are two paths P : v

⋆
−→ u and Q : v

⋆
−→ w in such a fan that end in the same segment

(vi , vi+1) of C . Then the path W : u
⋆
−→ w (or w

⋆
−→ u) along C contains all vertices of S ∩ VC . But

now PWQ−1 is a cycle of G that contains v and all vi for i ∈ [1, r]. This contradicts the choice
of C , and proves the claim. ⊓⊔
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Tours and Matchings

3.1 Eulerian graphs

The first proper problem in graph theory was the Königsberg bridge problem. In general, this
problem concerns of travelling in a graph such that one tries to avoid using any edge twice.
In practice these eulerian problems occur, for instance, in optimizing distribution networks –
such as delivering mail, where in order to save time each street should be travelled only once.
The same problem occurs in mechanical graph plotting, where one avoids lifting the pen off the
paper while drawing the lines.

Euler tours

DEFINITION. A walk W = e1e2 . . . en is a trail, if ei 6= e j for all i 6= j. An Euler trail of a graph
G is a trail that visits every edge once. A connected graph G is eulerian, if it has a closed trail
containing every edge of G. Such a trail is called an Euler tour.

Notice that if W = e1e2 . . . en is an Euler tour (and so EG = {e1, e2, . . . , en}), also eiei+1 . . . ene1 . . . ei−1

is an Euler tour for all i ∈ [1, n]. A complete proof of the following Euler’s Theorem was first
given by HIERHOLZER in 1873.

Theorem 3.1 (EULER (1736), HIERHOLZER (1873)). A connected graph G is eulerian if and only

if every vertex has an even degree.

Proof. (⇒) Suppose W : u
⋆
−→ u is an Euler tour. Let v (6= u) be a vertex that occurs k times in

W . Every time an edge arrives at v, another edge departs from v, and therefore dG(v) = 2k.
Also, dG(u) is even, since W starts and ends at u.

(⇐) Assume G is a nontrivial connected graph such that dG(v) is even for all v ∈ G. Let

W = e1e2 . . . en : v0
⋆
−→ vn with ei = vi−1vi

be a longest trail in G. It follows that all e = vnw ∈ G are among the edges of W , for, otherwise,
W could be prolonged to We. In particular, v0 = vn, that is, W is a closed trail. (Indeed, if it
were vn 6= v0 and vn occurs k times in W , then dG(vn) = 2(k− 1) + 1 and that would be odd.)

If W is not an Euler tour, then, since G is connected, there exists an edge f = viu ∈ G for
some i, which is not in W . However, now

ei+1 . . . ene1 . . . ei f

is a trail in G, and it is longer than W . This contradiction to the choice of W proves the claim.
⊓⊔

Example 3.1. The k-cube Qk is eulerian for even integers k, because Qk is k-regular.
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Theorem 3.2. A connected graph has an Euler trail if and only if it has at most two vertices of odd

degree.

Proof. If G has an Euler trail u
⋆
−→ v, then, as in the proof of Theorem 3.1, each vertex w /∈ {u, v}

has an even degree.
Assume then that G is connected and has at most two vertices of odd degree. If G has no

vertices of odd degree then, by Theorem 3.1, G has an Euler trail. Otherwise, by the handshaking
lemma, every graph has an even number of vertices with odd degree, and therefore G has exactly
two such vertices, say u and v. Let H be a graph obtained from G by adding a vertex w, and
the edges uw and vw. In H every vertex has an even degree, and hence it has an Euler tour, say
u

⋆
−→ v −→ w −→ u. Here the beginning part u

⋆
−→ v is an Euler trail of G. ⊓⊔

The Chinese postman

The following problem is due to GUAN MEIGU (1962). Consider a village, where a postman
wishes to plan his route to save the legs, but still every street has to be walked through. This
problem is akin to Euler’s problem and to the shortest path problem.

Let G be a graph with a weight function α: EG → R
+. The Chinese postman problem is to

find a minimum weighted tour in G (starting from a given vertex, the post office).
If G is eulerian, then any Euler tour will do as a solution, because such a tour traverses each

edge exactly once and this is the best one can do. In this case the weight of the optimal tour is
the total weight of the graph G, and there is a good algorithm for finding such a tour:

Fleury’s algorithm:

• Let v0 ∈ G be a chosen vertex, and let W0 be the trivial path on v0.
• Repeat the following procedure for i = 1,2, . . . as long as possible: suppose a trail Wi =

e1e2 . . . ei has been constructed, where e j = v j−1v j.
Choose an edge ei+1 (6= e j for j ∈ [1, i]) so that

(i) ei+1 has an end vi, and
(ii)ei+1 is not a bridge of Gi = G−{e1, . . . , ei}, unless there is no alternative.

Notice that, as is natural, the weights α(e) play no role in the eulerian case.

Theorem 3.3. If G is eulerian, then any trail of G constructed by Fleury’s algorithm is an Euler

tour of G.

Proof. Exercise. ⊓⊔

If G is not eulerian, the poor postman has to walk at least one street twice. This happens, e.g.,
if one of the streets is a dead end, and in general if there is a street corner of an odd number
of streets. We can attack this case by reducing it to the eulerian case as follows. An edge e = uv

will be duplicated, if it is added to G parallel to an existing edge e′ = uv with the same weight,
α(e′) = α(e).
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Above we have duplicated two edges. The rightmost multigraph is eulerian.
There is a good algorithm by EDMONDS AND JOHNSON (1973) for the construction of an

optimal eulerian supergraph by duplications. Unfortunately, this algorithm is somewhat com-
plicated, and we shall skip it.

3.2 Hamiltonian graphs

In the connector problem we reduced the cost of a spanning graph to its minimum. There are
different problems, where the cost is measured by an active user of the graph. For instance, in
the travelling salesman problem a person is supposed to visit each town in his district, and this
he should do in such a way that saves time and money. Obviously, he should plan the travel so
as to visit each town once, and so that the overall flight time is as short as possible. In terms of
graphs, he is looking for a minimum weighted Hamilton cycle of a graph, the vertices of which
are the towns and the weights on the edges are the flight times. Unlike for the shortest path
and the connector problems no efficient reliable algorithm is known for the travelling salesman
problem. Indeed, it is widely believed that no practical algorithm exists for this problem.

Hamilton cycles

DEFINITION. A path P of a graph G is a Hamilton path, if P

visits every vertex of G once. Similarly, a cycle C is a Hamilton
cycle, if it visits each vertex once. A graph is hamiltonian, if it
has a Hamilton cycle.

Note that if C : u1→ u2→ · · · → un is a Hamilton cycle, then so is ui → . . . un→ u1→ . . . ui−1

for each i ∈ [1, n], and thus we can choose where to start the cycle.

Example 3.2. It is obvious that each Kn is hamiltonian whenever n≥ 3. Also, as is easily seen,
Kn,m is hamiltonian if and only if n = m ≥ 2. Indeed, let Kn,m have a bipartition (X , Y ), where
|X | = n and |Y | = m. Now, each cycle in Kn,m has even length as the graph is bipartite, and
thus the cycle visits the sets X , Y equally many times, since X and Y are stable subsets. But then
necessarily |X |= |Y |.

Unlike for eulerian graphs (Theorem 3.1) no good characterization is known for hamilto-
nian graphs. Indeed, the problem to determine if G is hamiltonian is NP-complete. There are,
however, some interesting general conditions.
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Lemma 3.1. If G is hamiltonian, then for every nonempty subset S ⊆ VG ,

c(G−S) ≤ |S| .

Proof. Let ; 6= S ⊆ VG , u ∈ S, and let C : u
⋆
−→ u be a Hamilton cycle of G. Assume G−S has k

connected components, Gi, i ∈ [1, k]. The case k = 1 is trivial, and hence suppose that k > 1.
Let ui be the last vertex of C that belongs to Gi , and let vi be the vertex that follows ui in C .
Now vi ∈ S for each i by the choice of ui , and v j 6= vt for all j 6= t, because C is a cycle and
ui vi ∈ G for all i. Thus |S| ≥ k as required. ⊓⊔

Example 3.3. Consider the graph on the right. In G, c(G−S) =

3> 2= |S| for the set S of black vertices. Therefore G does not
satisfy the condition of Lemma 3.1, and hence it is not hamil-
tonian. Interestingly this graph is (X , Y )-bipartite of even order
with |X |= |Y |. It is also 3-regular.

Example 3.4. Consider the Petersen graph on the right, which
appears in many places in graph theory as a counter example
for various conditions. This graph is not hamiltonian, but it does
satisfy the condition c(G−S) ≤ |S| for all S 6= ;. Therefore the
conclusion of Lemma 3.1 is not sufficient to ensure that a graph
is hamiltonian.

The following theorem, due to ORE, generalizes an earlier result by DIRAC (1952).

Theorem 3.4 (ORE (1962)). Let G be a graph of order νG ≥ 3, and let u, v ∈ G be such that

dG(u) + dG(v)≥ νG .

Then G is hamiltonian if and only if G + uv is hamiltonian.

Proof. Denote n = νG. Let u, v ∈ G be such that dG(u) + dG(v) ≥ n. If uv ∈ G, then there is
nothing to prove. Assume thus that uv /∈ G.

(⇒) This is trivial since if G has a Hamilton cycle C , then C is also a Hamilton cycle of G+uv.
(⇐) Denote e = uv and suppose that G + e has a Hamilton cycle C . If C does not use the

edge e, then it is a Hamilton cycle of G. Suppose thus that e is on C . We may then assume that
C : u

⋆
−→ v −→ u. Now u = v1 −→ v2 −→ . . . −→ vn = v is a Hamilton path of G. There exists an

i with 1 < i < n such that uvi ∈ G and vi−1v ∈ G. For, otherwise, dG(v) < n − dG(u) would
contradict the assumption.

v1 v2 ◦ ◦ vi−1 vi ◦ ◦ vn

But now u= v1
⋆
−→ vi−1 −→ vn −→ vn−1

⋆
−→ vi+1 −→ vi −→ v1 = u is a Hamilton cycle in G. ⊓⊔
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Closure

DEFINITION. For a graph G, define inductively a sequence G0, G1, . . . , Gk of graphs such that

G0 = G and Gi+1 = Gi + uv ,

where u and v are any vertices such that uv /∈ Gi and dGi
(u)+dGi

(v) ≥ νG. This procedure stops
when no new edges can be added to Gk for some k, that is, in Gk, for all u, v ∈ G either uv ∈ Gk

or dGk
(u) + dGk

(v) < νG . The result of this procedure is the closure of G, and it is denoted by
cl(G) (= Gk) .

In each step of the construction of cl(G) there are usually alternatives which edge uv is to
be added to the graph, and therefore the above procedure is not deterministic. However, the
final result cl(G) is independent of the choices.

Lemma 3.2. The closure cl(G) is uniquely defined for all graphs G of order νG ≥ 3.

Proof. Denote n= νG. Suppose there are two ways to close G, say

H = G + {e1, . . . , er} and H ′ = G + { f1, . . . , fs} ,

where the edges are added in the given orders. Let Hi = G+{e1, . . . , ei} and H ′
i
= G+{ f1, . . . , fi}.

For the initial values, we have G = H0 = H ′0. Let ek = uv be the first edge such that ek 6= fi

for all i. Then dHk−1
(u) + dHk−1

(v) ≥ n, since ek ∈ Hk, but ek /∈ Hk−1. By the choice of ek, we
have Hk−1 ⊆ H ′, and thus also dH′(u) + dH′(v) ≥ n, which means that e = uv must be in H ′; a
contradiction. Therefore H ⊆ H ′. Symmetrically, we deduce that H ′ ⊆ H, and hence H ′ = H. ⊓⊔

Theorem 3.5. Let G be a graph of order νG ≥ 3.

(i) G is hamiltonian if and only if its closure cl(G) is hamiltonian.

(ii) If cl(G) is a complete graph, then G is hamiltonian.

Proof. First, G ⊆ cl(G) and G spans cl(G), and thus if G is hamiltonian, so is cl(G).
In the other direction, let G = G0, G1, . . . , Gk = cl(G) be a construction sequence of the

closure of G. If cl(G) is hamiltonian, then so are Gk−1, . . . , G1 and G0 by Theorem 3.4.
The Claim (ii) follows from (i), since each complete graph is hamiltonian. ⊓⊔

Theorem 3.6. Let G be a graph of order νG ≥ 3. Suppose that for all nonadjacent vertices u and v,

dG(u) + dG(v)≥ νG . Then G is hamiltonian. In particular, if δ(G) ≥ 1
2νG, then G is hamiltonian.

Proof. Since dG(u) + dG(v) ≥ νG for all nonadjacent vertices, we have cl(G) = Kn for n = νG ,
and thus G is hamiltonian. The second claim is immediate, since now dG(u) + dG(v) ≥ νG for
all u, v ∈ G whether adjacent or not. ⊓⊔
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Chvátal’s condition

The hamiltonian problem of graphs has attracted much attention, at least partly because the
problem has practical significance. (Indeed, the first example where DNA computing was ap-
plied, was the hamiltonian problem.)

There are some general improvements of the previous results of this chapter, and quite many
improvements in various special cases, where the graphs are somehow restricted. We become
satisfied by two general results.

Theorem 3.7 (CHVÁTAL (1972)). Let G be a graph with VG = {v1, v2, . . . , vn}, for n ≥ 3, ordered

so that d1 ≤ d2 ≤ · · · ≤ dn, for di = dG(vi). If for every i < n/2,

di ≤ i =⇒ dn−i ≥ n− i , (3.1)

then G is hamiltonian.

Proof. First of all, we may suppose that G is closed, G = cl(G), because G is hamiltonian if and
only if cl(G) is hamiltonian, and adding edges to G does not decrease any of its degrees, that
is, if G satisfies (3.1), so does G + e for every e. We show that, in this case, G = Kn, and thus G

is hamiltonian.
Assume on the contrary that G 6= Kn, and let uv /∈ G with dG(u) ≤ dG(v) be such that

dG(u)+ dG(v) is as large as possible. Because G is closed, we must have dG(u)+ dG(v) < n, and
therefore dG(u) = i < n/2. Let A= {w | vw /∈ G, w 6= v}. By our choice, dG(w) ≤ i for all w ∈ A,
and, moreover,

|A|= (n− 1)− dG(v)≥ dG(u) = i .

Consequently, there are at least i vertices w with dG(w) ≤ i, and so di ≤ dG(u) = i.
Similarly, for each vertex from B = {w | uw /∈ G, w 6= u}, dG(w) ≤ dG(v)< n− dG(u) = n− i,

and
|B| = (n− 1)− dG(u) = (n− 1)− i .

Also dG(u) < n− i, and thus there are at least n− i vertices w with dG(w) < n− i. Consequently,
dn−i < n− i. This contradicts the obtained bound di ≤ i and the condition (3.1). ⊓⊔

Note that the condition (3.1) is easily checkable for any given graph.
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3.3 Matchings

In matching problems we are given an availability relation between the elements of a set. The
problem is then to find a pairing of the elements so that each element is paired (matched)
uniquely with an available companion.

A special case of the matching problem is the marriage problem, which is stated as follows.
Given a set X of boys and a set Y of girls, under what condition can each boy marry a girl who
cares to marry him? This problem has many variations. One of them is the job assignment
problem, where we are given n applicants and m jobs, and we should assign each applicant to
a job he is qualified. The problem is that an applicant may be qualified for several jobs, and a
job may be suited for several applicants.

Maximum matchings

DEFINITION. For a graph G, a subset M ⊆ EG is a matching of G, if M contains no adjacent
edges. The two ends of an edge e ∈ M are matched under M . A matching M is a maximum
matching, if for no matching M ′, |M | < |M ′|.

The two vertical edges on the right constitute a matching M that
is not a maximum matching, although you cannot add any edges
to M to form a larger matching. This matching is not maximum
because the graph has a matching of three edges.

DEFINITION. A matching M saturates v ∈ G, if v is an end of
an edge in M . Also, M saturates A ⊆ VG , if it saturates every
v ∈ A. If M saturates VG , then M is a perfect matching.

It is clear that every perfect matching is maximum.
On the right the horizontal edges form a perfect matching.

DEFINITION. Let M be a matching of G. An odd path P =

e1e2 . . . e2k+1 is M -augmented, if

• P alternates between EG \M and M

(that is, e2i+1 ∈ G−M and e2i ∈ M), and
• the ends of P are not saturated.

Lemma 3.3. If G is connected with ∆(G) ≤ 2, then G is a path or a cycle.

Proof. Exercise. ⊓⊔

We start with a result that gives a necessary and sufficient condition for a matching to be
maximum. One can use the first part of the proof to construct a maximum matching in an
iterative manner starting from any matching M and from any M -augmented path.

Theorem 3.8 (BERGE (1957)). A matching M of G is a maximum matching if and only if there

are no M-augmented paths in G.
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Proof. (⇒) Let a matching M have an M -augmented path P = e1e2 . . . e2k+1 in G. Here
e2, e4, . . . , e2k ∈ M , e1, e3, . . . , e2k+1 /∈ M . Define N ⊆ EG by

N = (M \ {e2i | i ∈ [1, k]}) ∪ {e2i+1 | i ∈ [0, k]} .

Now, N is a matching of G, and |N |= |M |+ 1. Therefore M is not a maximum matching.

(⇐) Assume N is a maximum matching, but M is not. Hence |N | > |M |. Consider the sub-
graph H = G[M △N] for the symmetric difference M △N . We have dH(v)≤ 2 for each v ∈ H,
because v is an end of at most one edge in M and N . By Lemma 3.3, each connected component
A of H is either a path or a cycle.

Since no v ∈ A can be an end of two edges from N or from M , each connected component
(path or a cycle) A alternates between N and M . Now, since |N | > |M |, there is a connected
component A of H, which has more edges from N than from M . This A cannot be a cycle, because
an alternating cycle has even length, and it thus contains equally many edges from N and M .
Hence A: u

⋆
−→ v is a path (of odd length), which starts and ends with an edge from N . Because

A is a connected component of H, the ends u and v are not saturated by M , and, consequently,
A is an M -augmented path. This proves the theorem. ⊓⊔

Example 3.5. Consider the k-cube Qk for k ≥ 1. Each maximum matching of Qk has 2k−1 edges.
Indeed, the matching M = {(0u, 1u) | u ∈ Bk−1}, has 2k−1 edges, and it is clearly perfect.

Hall’s theorem

For a subset S ⊆ VG of a graph G, denote

NG(S) = {v | uv ∈ G for some u ∈ S} .

If G is (X , Y )-bipartite, and S ⊆ X , then NG(S) ⊆ Y .

The following result, known as the

Theorem 3.9 (HALL (1935)). Let G be a (X , Y )-bipartite graph. Then G contains a matching M

saturating X if and only if

|S| ≤ |NG(S)| for all S ⊆ X . (3.2)

Proof. (⇒) Let M be a matching that saturates X . If |S|> |NG(S)| for some S ⊆ X , then not all
x ∈ S can be matched with different y ∈ NG(S).

(⇐) Let G satisfy Hall’s condition (3.2). We prove the claim by induction on |X |.
If |X | = 1, then the claim is clear. Let then |X | ≥ 2, and assume (3.2) implies the existence

of a matching that saturates every proper subset of X .
If |NG(S)| ≥ |S| + 1 for every nonempty S ⊆ X with S 6= X , then choose an edge uv ∈ G

with u ∈ X , and consider the induced subgraph H = G−{u, v}. For all S ⊆ X \ {u}, |NH(S)| ≥

|NG(S)| −1≥ |S| , and hence, by the induction hypothesis, H contains a matching M saturating
X \ {u}. Now M ∪ {uv} is a matching saturating X in G, as was required.
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Suppose then that there exists a nonempty subset R ⊆ X with R 6= X such that |NG(R)| =

|R|. The induced subgraph H1 = G[R ∪ NG(R)] satisfies (3.2) (since G does), and hence, by
the induction hypothesis, H1 contains a matching M1 that saturates R (with the other ends in
NG(R)).

Also, the induced subgraph H2 = G[VG \A], for A= R∪NG(R), satisfies (3.2). Indeed, if there
were a subset S ⊆ X \ R such that |NH2

(S)| < |S|, then we would have

|NG(S ∪ R)| = |NH2
(S)|+ |NH1

(R)| < |S|+ |NG(R)| = |S|+ |R|= |S ∪ R|

(since S∩R= ;), which contradicts (3.2) for G. By the induction hypothesis, H2 has a matching
M2 that saturates X \ R (with the other ends in Y \ NG(R)). Combining the matchings for H1

and H2, we get a matching M1 ∪M2 saturating X in G. ⊓⊔

Second proof. This proof of the direction (⇐) uses Menger’s theorem. Let H be the graph
obtained from G by adding two new vertices x , y such that x is adjacent to each v ∈ X and y

is adjacent to each v ∈ Y . There exists a matching saturating X if (and only if) the number of
independent paths x

⋆
−→ y is equal to |X |. For this, by Menger’s theorem, it suffices to show that

every set S that separates x and y in H has at least |X | vertices.

Let S = A∪B, where A⊆ X and B ⊆ Y . Now, vertices in X \A are
not adjacent to vertices of Y \B, and hence we have NG(X \A) ⊆

B, and thus that |X \ A| ≤ |NG(X \ A)| ≤ |B| using the condition
(3.2).

x y

X \ A Y \ B

A B

We conclude that |S|= |A|+ |B| ≥ |X |. ⊓⊔

Corollary 3.1 (FROBENIUS (1917)). If G is a k-regular bipartite graph with k > 0, then G has a

perfect matching.

Proof. Let G be k-regular (X , Y )-bipartite graph. By regularity, k · |X |= ǫG = k · |Y |, and hence
|X | = |Y |. Let S ⊆ X . Denote by E1 the set of the edges with an end in S, and by E2 the set of
the edges with an end in NG(S). Clearly, E1 ⊆ E2. Therefore, k · |NG(S)| = |E2| ≥ |E1| = k · |S|,
and so |NG(S)| ≥ |S|. By Theorem 3.9, G has a matching that saturates X . Since |X | = |Y |, this
matching is necessarily perfect. ⊓⊔

Applications of Hall’s theorem

DEFINITION. Let S = {S1,S2, . . . ,Sm} be a family of finite nonempty subsets of a set S. (Si need
not be distinct.) A transversal (or a system of distinct representatives) of S is a subset T ⊆ S

of m distinct elements one from each Si.

As an example, let S = [1,6], and let S1 = S2 = {1,2}, S3 = {2,3} and S4 = {1,4,5,6}. For
S = {S1,S2,S3,S4}, the set T = {1,2,3,4} is a transversal. If we add the set S5 = {2,3} to S ,
then it is impossible to find a transversal for this new family.
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The connection of transversals to the Marriage Theorem is as follows. Let S = Y and X =

[1, m]. Form an (X , Y )-bipartite graph G such that there is an edge (i, s) if and only if s ∈ Si.
The possible transversals T of S are then obtained from the matchings M saturating X in G by
taking the ends in Y of the edges of M .

Corollary 3.2. Let S be a family of finite nonempty sets. Then S has a transversal if and only if

the union of any k of the subsets Si of S contains at least k elements.

Example 3.6. An m× n latin rectangle is an m× n integer matrix M with entries Mi j ∈ [1, n]

such that the entries in the same row and in the same column are different. Moreover, if m = n,
then M is a latin square. Note that in a m× n latin rectangle M , we always have that m≤ n.

We show the following: Let M be an m × n latin rectangle (with m < n). Then M can be

extended to a latin square by the addition of n−m new rows.

The claim follows when we show that M can be extended to an (m+ 1)× n latin rectangle.
Let Ai ⊆ [1, n] be the set of those elements that do not occur in the i-th column of M . Clearly,
|Ai| = n−m for each i, and hence

∑
i∈I |Ai|= |I |(n−m) for all subsets I ⊆ [1, n]. Now |∪i∈IAi| ≥

|I |, since otherwise at least one element from the union would be in more than n−m of the sets
Ai with i ∈ I . However, each row has all the n elements, and therefore each i is missing from
exactly n−m columns. By Marriage Theorem, the family {A1,A2, . . . ,An} has a transversal, and
this transversal can be added as a new row to M . This proves the claim.

Tutte’s theorem

The next theorem is a classic characterization of perfect matchings.

DEFINITION. A connected component of a graph G is said to be odd (even), if it has an odd
(even) number of vertices. Denote by codd(G) the number of odd connected components in G.

Denote by m(G) be the number of edges in a maximum matching of a graph G.

Theorem 3.10 (Tutte-Berge Formula). Each maximum matching of a graph G has

m(G) = min
S⊆VG

νG + |S| − codd(G−S)

2
(3.3)

elements.

Note that the condition in (ii) includes the case, where S = ;.

Proof. We prove the result for connected graphs. The result then follows for disconnected
graphs by adding the formulas for the connected components.

We observe first that ≤ holds in (3.3), since, for all S ⊆ VG ,

m(G) ≤ |S|+m(G−S) ≤ |S|+
|VG \ S| − codd(G−S)

2
=
νG + |S| − codd(G−S)

2
.
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Indeed, each odd component of G−S must have at least one unsaturated vertex.
The proof proceeds by induction on νG . If νG = 1, then the claim is trivial. Suppose that

νG ≥ 2.
Assume first that there exists a vertex v ∈ G such that v is saturated by all maximum match-

ings. Then m(G−v) = m(G)− 1. For a subset S′ ⊆ G−v, denote S = S′ ∪ {v}. By the induction
hypothesis, for all S′ ⊆ G−v,

m(G)− 1≥
1

2

�
(νG − 1) + |S′| − codd(G−(S

′ ∪ {v}))
�

=
1

2
((νG + |S| − codd(G−S)))− 1.

The claim follows from this.
Suppose then that for each vertex v, there is a maximum matching that does not saturate v.

We claim that m(G) = (νG −1)/2. Suppose to the contrary, and let M be a maximum matching
having two different unsaturated vertices u and v, and choose M so that the distance dG(u, v)

is as small as possible. Now dG(u, v) ≥ 2, since otherwise uv ∈ G could be added to M , con-
tradicting the maximality of M . Let w be an intermediate vertex on a shortest path u

⋆
−→ v. By

assumption, there exists a maximum matching N that does not saturate w. We can choose N

such that the intersection M ∩N is maximal. Since dG(u, w) < dG(u, v) and dG(w, v) < dG(u, v),
N saturates both u and v. The (maximum) matchings N and M leave equally many vertices un-
saturated, and hence there exists another vertex x 6= w saturated by M but which is unsaturated
by N . Let e = x y ∈ M . If y is also unsaturated by N , then N ∪ {e} is a matching, contradicting
maximality of N . It also follows that y 6= w. Therefore there exists an edge e′ = yz in N , where
z 6= x . But now N ′ = N ∪ {e} \ {e′} is a maximum matching that does not saturate w. However,
N∩M ⊂ N ′∩M contradicts the choice of N . Therefore, every maximum matching leaves exactly
one vertex unsaturated, i.e., m(G) = (νG − 1)/2.

In this case, for S = ;, the right hand side of (3.3) gets value (νG − 1)/2, and hence, by the
beginning of the proof, this must be the minimum of the right hand side. ⊓⊔

For perfect matchings we have the following corollary, since for a perfect matching we have
m(G) = (1/2)νG .

Theorem 3.11 (TUTTE (1947)). Let G be a nontrivial graph. The following are equivalent.

(i) G has a perfect matching.

(ii) For every proper subset S ⊂ VG , codd(G−S) ≤ |S|.

Tutte’s theorem does not provide a good algorithm for constructing a perfect matching, be-
cause the theorem requires ‘too many cases’. Its applications are mainly in the proofs of other
results that are related to matchings. There is a good algorithm due to EDMONDS (1965), which
uses ‘blossom shrinkings’, but this algorithm is somewhat involved.

Example 3.7. The simplest connected graph that has no perfect matching is the path P3. Here
removing the middle vertex creates two odd components.
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The next 3-regular graph (known as the Sylvester graph) does
not have a perfect matching, because removing the black vertex
results in a graph with three odd connected components. This
graph is the smallest regular graph with an odd degree that has
no perfect matching.

Using Theorem 3.11 we can give a short proof of PETERSEN’s result for 3-regular graphs
(1891).

Theorem 3.12 (PETERSEN (1891)). If G is a bridgeless 3-regular graph, then it has a perfect

matching.

Proof. Let S be a proper subset of VG , and let Gi , i ∈ [1, t], be the odd connected components
of G−S. Denote by mi the number of edges with one end in Gi and the other in S. Since G is
3-regular, ∑

v∈Gi

dG(v) = 3 · νGi
and
∑

v∈S

dG(v) = 3 · |S| .

The first of these implies that
mi =
∑

v∈Gi

dG(v)− 2 · ǫGi

is odd. Furthermore, mi 6= 1, because G has no bridges, and therefore mi ≥ 3. Hence the number
of odd connected components of G−S satisfies

t ≤
1

3

t∑

i=1

mi ≤
1

3

∑

v∈S

dG(v) = |S| ,

and so, by Theorem 3.11, G has a perfect matching. ⊓⊔

Stable Marriages

DEFINITION. Consider a bipartite graph G with a bipartition (X , Y ) of the vertex set. In addition,
each vertex x ∈ G supplies an order of preferences of the vertices of NG(x). We write u<x v, if
x prefers v to u. (Here u, v ∈ Y , if x ∈ X , and u, v ∈ X , if x ∈ Y .) A matching M of G is said to
be stable, if for each unmatched pair x y /∈ M (with x ∈ X and y ∈ Y ), it is not the case that x

and y prefer each other better than their matched companions:

x v ∈ M and y <x v, or uy ∈ M and x <y u.

We omit the proof of the next theorem.

Theorem 3.13. For bipartite graphs G, a stable matching exists for all lists of preferences.

Example 3.8. That was the good news. There is a catch, of course. A
stable matching need not saturate X and Y . For instance, the graph
on the right does have a perfect matching (of 4 edges).

4

2

3

1 5

6

7

8
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Suppose the preferences are the following:

1: 5 2: 6< 8< 7 3: 8< 5 4: 7< 5

5: 4< 1< 3 6: 2 7: 2< 4 8: 3< 2

Then there is no stable matchings of four edges. A stable matching of G is the following:
M = {28,35,47}, which leaves 1 and 6 unmatched. (You should check that there is no sta-
ble matching containing the edges 15 and 26.)

Theorem 3.14. Let G = Kn,n be a complete bipartite graph. Then G has a perfect and stable match-

ing for all lists of preferences.

Proof. Let the bipartition be (X , Y ). The algorithm by GALE AND SHAPLEY (1962) works as
follows.

Procedure.
Set M0 = ;, and P(x) = ; for all x ∈ X .
Then iterate the following process until all vertices are saturated:
Choose a vertex x ∈ X that is unsaturated in Mi−1. Let y ∈ Y be the most
preferred vertex for x such that y /∈ P(x).

(1)Add y to P(x).
(2)If y is not saturated, then set Mi = Mi−1 ∪ {x y}.
(3)If z y ∈ Mi−1 and z <y x , then set Mi = (Mi−1 \ {z y}) ∪ {x y}.

First of all, the procedure terminates, since a vertex x ∈ X takes part in the iteration at most
n times (once for each y ∈ Y ). The final outcome, say M = Mt , is a perfect matching, since the
iteration continues until there are no unsaturated vertices x ∈ X .

Also, the matching M = Mt is stable. Note first that, by (3), if x y ∈ Mi and z y ∈ M j for
some x 6= z and i < j, then x <y z. Assume the that x y ∈ M , but y <x z for some z ∈ Y . Then
x y is added to the matching at some step, x y ∈ Mi, which means that z ∈ P(x) at this step
(otherwise x would have ‘proposed’ z). Hence x took part in the iteration at an earlier step Mk,
k < i (where z was put to the list P(x), but xz was not added). Thus, for some u ∈ X , uz ∈ Mk−1

and x <z u, and so in M the vertex z is matched to some w with x <z w.
Similarly, if x <y v for some v ∈ X , then y <v z for the vertex z ∈ Y such that vz ∈ M . ⊓⊔
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Colourings

4.1 Edge colourings

Colourings of edges and vertices of a graph G are useful, when one is interested in classifying
relations between objects.

There are two sides of colourings. In the general case, a graph G with a colouring α is given,
and we study the properties of this pair Gα = (G,α). This is the situation, e.g., in transportation
networks with bus and train links, where the colour (buss, train) of an edge tells the nature of
a link.

In the chromatic theory, G is first given and then we search for a colouring that the satisfies
required properties. One of the important properties of colourings is ‘properness’. In a proper
colouring adjacent edges or vertices are coloured differently.

Edge chromatic number

DEFINITION. A k-edge colouring α: EG → [1, k] of a graph G is an assignment of k colours to
its edges. We write Gα to indicate that G has the edge colouring α.

A vertex v ∈ G and a colour i ∈ [1, k] are incident with each other, if α(vu) = i for some
vu ∈ G. If v ∈ G is not incident with a colour i, then i is available for v.

The colouring α is proper, if no two adjacent edges obtain the same colour: α(e1) 6= α(e2)

for adjacent e1 and e2.
The edge chromatic number χ ′(G) of G is defined as

χ ′(G) =min{k | there exists a proper k-edge colouring of G} .

A k-edge colouring α can be thought of as a partition {E1, E2, . . . , Ek} of EG , where Ei = {e |

α(e) = i}. Note that it is possible that Ei = ; for some i. We adopt a simplified notation

Gα[i1, i2, . . . , it] = G[Ei1
∪ Ei2
∪ · · · ∪ Eit

]

for the subgraph of G consisting of those edges that have a colour i1, i2, . . . , or it . That is, the
edges having other colours are removed.

Lemma 4.1. Each colour set Ei in a proper k-edge colouring is a matching. Moreover, for each

graph G, ∆(G) ≤ χ ′(G) ≤ ǫG.

Proof. This is clear. ⊓⊔
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Example 4.1. The three numbers in Lemma 4.1 can be equal. This happens, for instance, when
G = K1,n is a star. But often the inequalities are strict.

A star, and a graph with χ ′(G) = 4.

Optimal colourings

We show that for bipartite graphs the lower bound is always optimal: χ ′(G) =∆(G).

Lemma 4.2. Let G be a connected graph that is not an odd cycle. Then there exists a 2-edge colour-

ing (that need not be proper), in which both colours are incident with each vertex v with dG(v)≥ 2.

Proof. Assume that G is nontrivial; otherwise, the claim is trivial.

(1) Suppose first that G is eulerian. If G is an even cycle, then a 2-edge colouring exists as
required. Otherwise, since now dG(v) is even for all v, G has a vertex v1 with dG(v1) ≥ 4. Let
e1e2 . . . et be an Euler tour of G, where ei = vi vi+1 (and vt+1 = v1). Define

α(ei) =

¨
1, if i is odd ,

2, if i is even .

Hence the ends of the edges ei for i ∈ [2, t − 1] are incident with both colours. All vertices are
among these ends. The condition dG(v1) ≥ 4 guarantees this for v1. Hence the claim holds in
the eulerian case.

(2) Suppose then that G is not eulerian. We define a new graph G0 by adding a vertex v0 to
G and connecting v0 to each v ∈ G of odd degree.

In G0 every vertex has even degree including v0 (by the hand-
shaking lemma), and hence G0 is eulerian. Let e0e1 . . . et be an
eulerian tour of G0, where ei = vi vi+1. By the previous case,
there is a required colouring α of G0 as above. Now, α restricted
to EG is a colouring of G as required by the claim, since each
vertex vi with odd degree dG(vi) ≥ 3 is entered and departed at
least once in the tour by an edge of the original graph G: ei−1ei.

v0
1

2
1

2

12

⊓⊔

DEFINITION. For a k-edge colouring α of G, let

cα(v) = |{i | v is incident with i ∈ [1, k]}| .

A k-edge colouring β is an improvement of α, if
∑

v∈G

cβ (v)>
∑

v∈G

cα(v) .

Also, α is optimal, if it cannot be improved.
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Notice that we always have cα(v)≤ dG(v), and if α is proper, then cα(v) = dG(v), and in this
case α is optimal. Thus an improvement of a colouring is a change towards a proper colouring.
Note also that a graph G always has an optimal k-edge colouring, but it need not have any
proper k-edge colourings.

The next lemma is obvious.

Lemma 4.3. An edge colouring α of G is proper if and only if cα(v) = dG(v) for all vertices v ∈ G.

Lemma 4.4. Let α be an optimal k-edge colouring of G, and let v ∈ G. Suppose that the colour i

is available for v, and the colour j is incident with v at least twice. Then the connected component

H of Gα[i, j] that contains v, is an odd cycle.

Proof. Suppose the connected component H is not an odd cycle. By Lemma 4.2, H has a 2-edge
colouring γ: EH → {i, j}, in which both i and j are incident with each vertex x with dH(x)≥ 2.
(We have renamed the colours 1 and 2 to i and j.) We obtain a recolouring β of G as follows:

β(e) =

¨
γ(e), if e ∈ H ,

α(e), if e /∈ H .

Since dH(v) ≥ 2 (by the assumption on the colour j) and in β both colours i and j are now
incident with v, cβ (v) = cα(v)+1. Furthermore, by the construction of β , we have cβ (u) ≥ cα(u)

for all u 6= v. Therefore
∑

u∈G cβ (u) >
∑

u∈G cα(u), which contradicts the optimality of α. Hence
H is an odd cycle. ⊓⊔

Theorem 4.1 (KÖNIG (1916)). If G is bipartite, then χ ′(G) =∆(G).

Proof. Let α be an optimal ∆-edge colouring of a bipartite G, where ∆ = ∆(G). If there were
a v ∈ G with cα(v) < dG(v), then by Lemma 4.4, G would contain an odd cycle. But a bipartite
graph does not contain such cycles. Therefore, for all vertices v, cα(v) = dG(v). By Lemma 4.3,
α is a proper colouring, and ∆ = χ ′(G) as required. ⊓⊔

Vizing’s theorem

In general we can have χ ′(G) >∆(G) as one of our examples did show. The following important
theorem, due to VIZING, shows that the edge chromatic number of a graph G misses ∆(G) by
at most one colour.

Theorem 4.2 (VIZING (1964)). For any graph G, ∆(G) ≤ χ ′(G) ≤∆(G) + 1.

Proof. Let ∆ =∆(G). We need only to show that χ ′(G) ≤∆+1. Suppose on the contrary that
χ ′(G) >∆+ 1, and let α be an optimal (∆+ 1)-edge colouring of G.
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We have (trivially) dG(u) <∆+ 1< χ ′(G) for all u ∈ G, and so

Claim 1. For each u ∈ G, there exists an available colour b(u) for u.

Moreover, by the counter hypothesis, α is not a proper colouring, and hence there exists a
v ∈ G with cα(v)< dG(v), and hence a colour i1 that is incident with v at least twice, say

α(vu1) = i1 = α(v x) . (4.1)

Claim 2. There is a sequence of vertices u1,u2, . . . such that

α(vu j) = i j and i j+1 = b(u j) .

Indeed, let u1 be as in (4.1). Assume we have already found the vertices u1, . . . ,u j , with j ≥ 1,
such that the claim holds for these. Suppose, contrary to the claim, that v is not incident with
b(u j) = i j+1.

We can recolour the edges vuℓ by iℓ+1 for ℓ ∈ [1, j], and obtain
in this way an improvement of α. Here v gains a new colour
i j+1. Also, each uℓ gains a new colour iℓ+1 (and may loose the
colour iℓ). Therefore, for each uℓ either its number of colours
remains the same or it increases by one. This contradicts the
optimality of α, and proves Claim 2.

Let t be the smallest index such that for some r < t, it+1 = ir .
Such an index t exists, because dG(v) is finite.

x
u1

u2

ur

v ut

...

.. .

ur−1

i1i1

i2

ir−1

ir = it+1

it

Let β be a recolouring of G such that for 1≤ j ≤ r−1, β(vu j) =

i j+1, and for all other edges e, β(e) = α(e).

Claim 3. β is an optimal (∆+ 1)-edge colouring of G.

Indeed, cβ (v) = cα(v) and cβ (u) ≥ cα(u) for all u, since each u j

(1 ≤ j ≤ r − 1) gains a new colour ji+1 although it may loose
one of its old colours. x

u1

u2

ur

v ut

...

.. .

ur−1

i1i2

i3

ir

ir = it+1

it

Let then the colouring γ be obtained from β by recolouring the
edges vu j by i j+1 for r ≤ j ≤ t. Now, vut is recoloured by ir =

it+1.

Claim 4. γ is an optimal (∆+ 1)-edge colouring of G.

Indeed, the fact ir = it+1 ensures that ir is a new colour incident
with ut , and thus that cγ(ut) ≥ cβ (ut). For all other vertices,
cγ(u) ≥ cβ (u) follows as for β . x

u1

u2

ur

v ut

...

.. .

ur−1

i1i2

i3

ir

ir+1

ir
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By Claim 1, there is a colour i0 = b(v) that is available for v. By Lemma 4.4, the connected
components H1 of Gβ [i0, ir] and H2 of Gγ[i0, ir] containing the vertex v are cycles, that is,
H1 is a cycle (vur−1)P1(ur v) and H2 is a cycle (vur−1)P2(ut v), where both P1 : ur−1

⋆
−→ ur and

P2 : ur−1
⋆
−→ ut are paths. However, the edges of P1 and P2 have the same colours with respect

to β and γ (either i0 or ir). This is not possible, since P1 ends in ur while P2 ends in a different
vertex ut . This contradiction proves the theorem. ⊓⊔

Example 4.2. We show that χ ′(G) = 4 for the Petersen graph. Indeed, by Vizing’ theorem,
χ ′(G) = 3 or 4. Suppose 3 colours suffice. Let C : v1 −→ . . . −→ v5 −→ v1 be the outer cycle and
C ′ : u1 −→ . . . −→ u5 −→ u1 the inner cycle of G such that viui ∈ EG for all i.

Observe that every vertex is adjacent to all colours 1,2,3. Now C uses one colour (say 1)
once and the other two twice. This can be done uniquely (up to permutations):

v1
1
−→ v2

2
−→ v3

3
−→ v4

2
−→ v5

3
−→ v1.

Hence v1
2
−→ u1, v2

3
−→ u2, v3

1
−→ u3, v4

1
−→ u4, v5

1
−→ u5. However, this means that 1 cannot be a

colour of any edge in C ′. Since C ′ needs three colours, the claim follows.

Edge Colouring Problem. Vizing’s theorem (nor its present proof) does not offer any charac-
terization for the graphs, for which χ ′(G) = ∆(G) + 1. In fact, it is one of the famous open
problems of graph theory to find such a characterization. The answer is known (only) for some
special classes of graphs. By HOLYER (1981), the problem whether χ ′(G) is ∆(G) or ∆(G) + 1
is NP-complete.

The proof of Vizing’s theorem can be used to obtain a proper colouring of G with at most
∆(G) + 1 colours, when the word ‘optimal’ is forgotten: colour first the edges as well as you
can (if nothing better, then arbitrarily in two colours), and use the proof iteratively to improve
the colouring until no improvement is possible – then the proof says that the result is a proper
colouring.

4.2 Ramsey Theory

In general, Ramsey theory studies unavoidable patterns in combinatorics. We consider an in-
stance of this theory mainly for edge colourings (that need not be proper). A typical example
of a Ramsey property is the following: given 6 persons each pair of whom are either friends or
enemies, there are then 3 persons who are mutual friends or mutual enemies. In graph theoretic
terms this means that each colouring of the edges of K6 with 2 colours results in a monochro-
matic triangle.

Turan’s theorem for complete graphs

We shall first consider the problem of finding a general condition for Kp to appear in a graph.
It is clear that every graph contains K1, and that every nondiscrete graph contains K2.
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DEFINITION. A complete p-partite graph G consists of p dis-
crete and disjoint induced subgraphs G1, G2, . . . , Gp ⊆ G, where
uv ∈ G if and only if u and v belong to different parts, Gi and
G j with i 6= j.

Note that a complete p-partite graph is completely determined
by its discrete parts Gi, i ∈ [1, p].

Let p ≥ 3, and let H = Hn,p be the complete (p− 1)-partite graph of order n= t(p − 1) + r,
where r ∈ [1, p−1] and t ≥ 0, such that there are r parts H1, . . . , Hr of order t+1 and p−1− r

parts Hr+1, . . . , Hp−1 of order t (when t > 0). (Here r is the positive residue of n modulo (p−1),
and is thus determined by n and p.)

By its definition, Kp * H. One can compute that the number ǫH of edges of H is equal to

T (n, p) =
p− 2

2(p− 1)
n2 −

r

2

�
1−

r

p− 1

�
. (4.2)

The next result shows that the above bound T (n, p) is optimal.

Theorem 4.3 (TURÁN (1941)). If a graph G of order n has ǫG > T (n, p) edges, then G contains

a complete subgraph Kp.

Proof. Let n = (p− 1)t + r for 1≤ r ≤ p− 1 and t ≥ 0. We prove the claim by induction on t.
If t = 0, then T (n, p) = n(n− 1)/2, and there is nothing to prove.

Suppose then that t ≥ 1, and let G be a graph of order n such that ǫG is maximum subject
to the condition Kp * G.

Now G contains a complete subgraph G[A] = Kp−1, since adding any one edge to G results
in a Kp, and p− 1 vertices of this Kp induce a subgraph Kp−1 ⊆ G.

Each v /∈ A is adjacent to at most p − 2 vertices of A; otherwise G[A ∪ {v}] = Kp. Also,
Kp * G−A, and νG−A = n − p + 1. Because n − p + 1 = (t − 1)(p − 1) + r, we can apply the
induction hypothesis to obtain ǫG−A ≤ T (n− p+ 1, p). Now

ǫG ≤ T (n− p+ 1, p) + (n− p+ 1)(p− 2) +
(p − 1)(p− 2)

2
= T (n, p) ,

which proves the claim. ⊓⊔

When Theorem 4.3 is applied to triangles K3, we have the following interesting case.

Corollary 4.1 ( MANTEL (1907)). If a graph G has ǫG >
1
4ν

2
G

edges, then G contains a triangle

K3.
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Ramsey’s theorem

DEFINITION. Let α be an edge colouring of G. A subgraph H ⊆ G is said to be (i-) monochro-
matic, if all edges of H have the same colour i.

The following theorem is one of the jewels of combinatorics.

Theorem 4.4 (RAMSEY (1930)). Let p,q ≥ 2 be any integers. Then there exists a (smallest) in-

teger R(p,q) such that for all n ≥ R(p,q), any 2-edge colouring of Kn → [1,2] contains a 1-

monochromatic Kp or a 2-monochromatic Kq.

Before proving this, we give an equivalent statement. Recall that a subset X ⊆ VG is stable,
if G[X ] is a discrete graph.

Theorem 4.5. Let p,q ≥ 2 be any integers. Then there exists a (smallest) integer R(p,q) such that

for all n≥ R(p,q), any graph G of order n contains a complete subgraph of order p or a stable set

of order q.

Be patient, this will follow from Theorem 4.6. The number R(p,q) is known as the Ramsey
number for p and q.

It is clear that R(p, 2) = p and R(2,q) = q.
Theorems 4.4 and 4.5 follow from the next result which shows (inductively) that an upper

bound exists for the Ramsey numbers R(p,q).

Theorem 4.6 (ERDÖS and SZEKERES (1935)). The Ramsey number R(p,q) exists for all p,q ≥ 2,

and

R(p,q) ≤ R(p,q − 1) + R(p− 1,q) .

Proof. We use induction on p+ q. It is clear that R(p,q) exists for p = 2 or q = 2, and it is thus
exists for p+ q ≤ 5.

It is now sufficient to show that if G is a graph of order R(p,q − 1) + R(p− 1,q), then it has
a complete subgraph of order p or a stable subset of order q.

Let v ∈ G, and denote by A= VG \ (NG(v) ∪ {v}) the set of vertices that are not adjacent to
v. Since G has R(p,q−1)+R(p−1,q)−1 vertices different from v, either |NG(v)| ≥ R(p−1,q)
or |A| ≥ R(p,q − 1) (or both).

Assume first that |NG(v)| ≥ R(p − 1,q). By the definition of Ramsey numbers, G[NG(v)]

contains a complete subgraph B of order p− 1 or a stable subset S of order q. In the first case,
B ∪ {v} induces a complete subgraph Kp in G, and in the second case the same stable set of
order q is good for G.

If |A| ≥ R(p,q − 1), then G[A] contains a complete subgraph of order p or a stable subset S

of order q−1. In the first case, the same complete subgraph of order p is good for G, and in the
second case, S ∪ {v} is a stable subset of G of q vertices. This proves the claim. ⊓⊔
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A concrete upper bound is given in the following result.

Theorem 4.7 ( ERDÖS and SZEKERES (1935)). For all p,q ≥ 2,

R(p,q) ≤
�

p+ q− 2

p− 1

�
.

Proof. For p = 2 or q = 2, the claim is clear. We use induction on p+q for the general statement.
Assume that p,q ≥ 3. By Theorem 4.6 and the induction hypothesis,

R(p,q) ≤ R(p,q− 1) + R(p− 1,q)

≤

�
p+ q− 3

p− 1

�
+

�
p+ q− 3

p− 2

�
=

�
p+ q− 2

p− 1

�
,

which is what we wanted. ⊓⊔

In the table below we give some known values and estimates for the Ramsey numbers R(p,q).
As can be read from the table1, not so much is known about these numbers.

p\q 3 4 5 6 7 8 9 10

3 6 9 14 18 23 28 36 40-43
4 9 18 25 35-41 49-61 55-84 69-115 80-149
5 14 25 43-49 58-87 80-143 95-216 121-316 141-442

The first unknown R(p, p) (where p = q) is for p = 5. It has been verified that 43≤ R(5,5)≤
49, but to determine the exact value is an open problem.

Generalizations

Theorem 4.4 can be generalized as follows.

Theorem 4.8. Let qi ≥ 2 be integers for i ∈ [1, k] with k ≥ 2. Then there exists an integer R =

R(q1,q2, . . . ,qk) such that for all n ≥ R, any k-edge colouring of Kn has an i-monochromatic Kqi

for some i.

Proof. The proof is by induction on k. The case k = 2 is treated in Theorem 4.4. For k > 2, we
show that R(q1, . . . ,qk) ≤ R(q1, . . . ,qk−2, p), where p = R(qk−1,qk).

Let n = R(q1, . . . ,qk−2, p), and let α: EKn
→ [1, k] be an edge colouring. Let β : EKn

→

[1, k − 1] be obtained from α by identifying the colours k− 1 and k:

β(e) =

¨
α(e) if α(e) < k− 1 ,

k − 1 if α(e) = k− 1 or k .

1 S.P. RADZISZOWSKI, Small Ramsey numbers, Electronic J. of Combin., 2000 on the Web
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By the induction hypothesis, K
β
n has an i-monochromatic Kqi

for some 1≤ i ≤ k−2 (and we are

done, since this subgraph is monochromatic in Kαn ) or K
β
n has a (k−1)-monochromatic subgraph

Hβ = Kp. In the latter case, by Theorem 4.4, Hα and thus Kαn has a (k − 1)-monochromatic or
a k-monochromatic subgraph, and this proves the claim. ⊓⊔

Since for each graph H, H ⊆ Km for m= νH , we have

Corollary 4.2. Let k ≥ 2 and H1, H2, . . . , Hk be arbitrary graphs. Then there exists an integer

R(H1, H2, . . . , Hk) such that for all complete graphs Kn with n ≥ R(H1, H2, . . . , Hk) and for all

k-edge colourings α of Kn, Kαn contains an i-monochromatic subgraph Hi for some i.

This generalization is trivial from Theorem 4.8. However, the generalized Ramsey numbers
R(H1, H2, . . . , Hk) can be much smaller than their counter parts (for complete graphs) in Theo-
rem 4.8.

Example 4.3. We leave the following statement as an exercise: If T is a tree of order m, then

R(T, Kn) = (m− 1)(n− 1) + 1 ,

that is, any graph G of order at least R(T, Kn) contains a subgraph isomorphic to T , or the
complement of G contains a complete subgraph Kn.

Examples of Ramsey numbers∗

Some exact values are known in Corollary 4.2, even in more general cases, for some dear graphs
(see RADZISZOWSKI’s survey). Below we list some of these results for cases, where the graphs
are equal. To this end, let

Rk(G) = R(G, G, . . . , G) (k times G).

The best known lower bound of R2(G) for connected graphs was obtained by BURR AND ERDÖS

(1976),

R2(G) ≥

�
4νG − 1

3

�
(G connected).

Here is a list of some special cases:

R2(Pn) = n+

j
n

2

k
− 1,

R2(Cn) =






6 if n= 3 or n= 4,

2n− 1 if n≥ 5 and n odd ,

3n/2− 1 if n≥ 6 and n even,

R2(K1,n) =

¨
2n− 1 if n is even,

2n if n is odd,

R2(K2,3) = 10, R2(K3,3) = 18.
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The values R2(K2,n) are known for n≤ 16, and in general, R2(K2,n)≤ 4n−2. The value R2(K2,17)

is either 65 or 66.
Let Wn denote the wheel on n vertices. It is a cycle Cn−1, where a vertex v with degree n−1

is attached. Note that W4 = K4. Then R2(W5) = 15 and R2(W6) = 17.
For three colours, much less is known. In fact, the only nontrivial result for complete graphs

is: R3(K3) = 17. Also, 128 ≤ R3(K4) ≤ 235, and 385 ≤ R3(K5), but no nontrivial upper bound
is known for R3(K5). For the square C4, we know that R3(C4) = 11.

Needless to say that no exact values are known for Rk(Kn) for k ≥ 4 and n≥ 3.

It follows from Theorem 4.4 that for any complete Kn, there exists a graph G (well, any
sufficiently large complete graph) such that any 2-edge colouring of G has a monochromatic
(induced) subgraph Kn. Note, however, that in Corollary 4.2 the monochromatic subgraph Hi

is not required to be induced.
The following impressive theorem improves the results we have mentioned in this chapter

and it has a difficult proof.

Theorem 4.9 (DEUBER, ERDÖS, HAJNAL, PÓSA, and RÖDL (around 1973)). Let H be any graph.

Then there exists a graph G such that any 2-edge colouring of G has an monochromatic induced

subgraph H.

Example 4.4. As an application of Ramsey’s theorem, we shortly describe Schur’s theorem. For
this, consider the partition {1,4,10,13}, {2,3,11,12}, {5,6,7,8,9} of the set N13 = [1,13].
We observe that in no partition class there are three integers such that x + y = z. However, if
you try to partition N14 into three classes, then you are bound to find a class, where x + y = z

has a solution.
SCHUR (1916) solved this problem in a general setting. The following gives a short proof

using Ramsey’s theorem.

For each n ≥ 1, there exists an integer S(n) such that any partition S1, . . . ,Sn of NS(n) has a class

Si containing two integers x , y such that x + y ∈ Si .

Indeed, let S(n) = R(3,3, . . . , 3), where 3 occurs n times, and let K be a complete on NS(n).
For a partition S1, . . . ,Sn of NS(n), define an edge colouring α of K by

α(i j) = k, if |i − j| ∈ Sk .

By Theorem 4.8, Kα has a monochromatic triangle, that is, there are three vertices i, j, t such
that 1≤ i < j < t ≤ S(n) with t− j, j− i, t− i ∈ Sk for some k. But (t− j)+( j− i) = t− i proves
the claim.

There are quite many interesting corollaries to Ramsey’s theorem in various parts of math-
ematics including not only graph theory, but also, e.g., geometry and algebra, see

R.L. GRAHAM, B.L. ROTHSCHILD AND J.L. SPENCER, “Ramsey Theory”, Wiley, (2nd ed.) 1990.
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4.3 Vertex colourings

The vertices of a graph G can also be classified using colourings. These colourings tell that
certain vertices have a common property (or that they are similar in some respect), if they
share the same colour. In this chapter, we shall concentrate on proper vertex colourings, where
adjacent vertices get different colours.

The chromatic number

DEFINITION. A k-colouring (or a k-vertex colouring) of a graph G is a mapping α: VG → [1, k].
The colouring α is proper, if adjacent vertices obtain a different colour: for all uv ∈ G, we have
α(u) 6= α(v). A colour i ∈ [1, k] is said to be available for a vertex v, if no neighbour of v is
coloured by i.

A graph G is k-colourable, if there is a proper k-colouring for G. The (vertex) chromatic
number χ(G) of G is defines as

χ(G) =min{k | there exists a proper k-colouring of G} .

If χ(G) = k, then G is k-chromatic.

Each proper vertex colouring α: VG → [1, k] provides a partition {V1, V2, . . . , Vk} of the vertex
set VG , where Vi = {v | α(v) = i}.

Example 4.5. The graph on the right, which is often called a wheel
(of order 7), is 3-chromatic.

By the definitions, a graph G is 2-colourable if and only if it is
bipartite.

Again, the ‘names’ of the colours are immaterial:

Lemma 4.5. Let α be a proper k-colouring of G, and let π be any permutation of the colours. Then

the colouring β = πα is a proper k-colouring of G.

Proof. Indeed, if α: VG → [1, k] is proper, and if π: [1, k]→ [1, k] is a bijection, then uv ∈ G

implies that α(u) 6= α(v), and hence also that πα(u) 6= πα(v). It follows that πα is a proper
colouring. ⊓⊔

Example 4.6. A graph is triangle-free, if it has no subgraphs isomorphic to K3. We show that
there are triangle-free graphs with arbitrarily large chromatic numbers.

The following construction is due to GRÖTZEL: Let G be any triangle-free graph with VG =

{v1, v2, . . . , vn}. Let G t be a new graph obtained by adding n+1 new vertices v and u1,u2, . . . ,un

such that G t has all the edges of G plus the edges ui v and ui x for all x ∈ N (vi) and for all
i ∈ [1, n].
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Claim. G t is triangle-free and it is k + 1-chromatic
Indeed, let U = {u1, . . . ,un}. We show first that G t is triangle-free. Now, U is stable, and so a

triangle contains at most (and thus exactly) one vertex ui ∈ U . If {ui, v j , vk} induces a triangle,
so does {vi, v j , vk} by the definition of G t , but the latter triangle is already in G; a contradiction.

For the chromatic number we notice first that χ(G t) ≤ (k + 1). If α is a proper k-colouring
of G, extend it by setting α(ui) = α(vi) and α(v) = k+ 1.

Secondly, χ(G t) > k. Assume that α is a proper k-colouring of G t , say with α(v) = k. Then
α(ui) 6= k. Recolour each vi by α(ui). This gives a proper (k−1)-colouring to G; a contradiction.
Therefore χ(G t ) = k + 1.

Now using inductively the above construction starting from the triangle-free graph K2, we
obtain larger triangle -free graphs with high chromatic numbers.

Critical graphs

DEFINITION. A k-chromatic graph G is said to be k-critical, if χ(H) < k for all H ⊆ G with
H 6= G.

In a critical graph an elimination of any edge and of any vertex will reduce the chromatic
number: χ(G−e) < χ(G) and χ(G−v) < χ(G) for e ∈ G and v ∈ G. Each Kn is n-critical, since
in Kn−(uv) the vertices u and v can gain the same colour.

Example 4.7. The graph K2 = P2 is the only 2-critical graph. The 3-critical graphs are exactly
the odd cycles C2n+1 for n ≥ 1, since a 3-chromatic G is not bipartite, and thus must have a
cycle of odd length.

Theorem 4.10. If G is k-critical for k ≥ 2, then it is connected, and δ(G) ≥ k− 1.

Proof. Note that for any graph G with the connected components G1, G2, . . . , Gm, χ(G) =
max{χ(Gi) | i ∈ [1, m]} . Connectivity claim follows from this observation.

Let then G be k-critical, but δ(G) = dG(v) ≤ k − 2 for v ∈ G. Since G is critical, there is a
proper (k−1)-colouring of G−v. Now v is adjacent to only δ(G) < k−1 vertices. But there are
k colours, and hence there is an available colour i for v. If we recolour v by i, then a proper
(k − 1)-colouring is obtained for G; a contradiction. ⊓⊔

The case (iii) of the next theorem is due to SZEKERES AND WILF (1968).

Theorem 4.11. Let G be any graph with k = χ(G).

(i) G has a k-critical subgraph H.

(ii) G has at least k vertices of degree ≥ k − 1.

(iii) k ≤ 1+maxH⊆G δ(H).

Proof. For (i), we observe that a k-critical subgraph H ⊆ G is obtained by removing vertices
and edges from G as long as the chromatic number remains k.
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For (ii), let H ⊆ G be k-critical. By Theorem 4.10, dH(v)≥ k− 1 for every v ∈ H. Of course,
also dG(v)≥ k−1 for every v ∈ H. The claim follows, because, clearly, every k-critical graph H

must have at least k vertices.
For (iii), let H ⊆ G be k-critical. By Theorem 4.10, χ(G) − 1 ≤ δ(H), which proves this

claim. ⊓⊔

Lemma 4.6. Let v be a cut vertex of a connected graph G, and let Ai , for i ∈ [1, m], be the connected

components of G−v. Denote Gi = G[Ai∪{v}]. Then χ(G) =max{χ(Gi) | i ∈ [1, m]}. In particular,

a critical graph does not have cut vertices.

Proof. Suppose each Gi has a proper k-colouring αi. By Lemma 4.5, we may take αi(v) = 1 for
all i. These k-colourings give a k-colouring of G. ⊓⊔

Brooks’ theorem

For edge colourings we have Vizing’s theorem, but no such strong results are known for vertex
colouring.

Lemma 4.7. For all graphs G, χ(G) ≤∆(G) + 1. In fact, there exists a proper colouring α: VG →

[1,∆(G) + 1] such that α(v)≤ dG(v) + 1 for all vertices v ∈ G.

Proof. We use greedy colouring to prove the claim. Let VG = {v1, . . . , vn} be ordered in some
way, and define α: VG → N inductively as follows: α(v1) = 1, and

α(vi) =min{ j | α(vt) 6= j for all t < i with vi vt ∈ G} .

Then α is proper, and α(vi) ≤ dG(vi) + 1 for all i. The claim follows from this. ⊓⊔

Although, we always have χ(G) ≤∆(G)+1, the chromatic number χ(G) usually takes much
lower values – as seen in the bipartite case. Moreover, the maximum value∆(G)+1 is obtained
only in two special cases as was shown by BROOKS in 1941.

The next proof of Brook’s theorem is by LOVÁSZ (1975) as modified by BRYANT (1996).

Lemma 4.8. Let G be a 2-connected graph. Then the following are equivalent:

(i) G is a complete graph or a cycle.

(ii) For all u, v ∈ G, if uv /∈ G, then {u, v} is a separating set.

(iii) For all u, v ∈ G, if dG(u, v) = 2, then {u, v} is a separating set.

Proof. It is clear that (i) implies (ii), and that (ii) implies (iii). We need only to show that (iii)
implies (i). Assume then that (iii) holds.

We shall show that either G is a complete graph or dG(v) = 2 for all v ∈ G, from which the
theorem follows.

First of all, dG(v) ≥ 2 for all v, since G is 2-connected. Let w be a vertex of maximum degree,
dG(w) =∆(G).
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If the neighbourhood NG(w) induces a complete subgraph, then G is complete. Indeed, oth-
erwise, since G is connected, there exists a vertex u /∈ NG(w) ∪ {w} such that u is adjacent to a
vertex v ∈ NG(w). But then dG(v) > dG(w), and this contradicts the choice of w.

Assume then that there are different vertices u, v ∈ NG(w) such that uv /∈ G. This means
that dG(u, v) = 2 (the shortest path is u −→ w −→ v), and by (iii), {u, v} is a separating set of
G. Consequently, there is a partition VG = W ∪ {u, v} ∪ U , where w ∈ W , and all paths from a
vertex of W to a vertex of U go through either u or v.

We claim that W = {w}, and thus that ∆(G) = 2 as required. Suppose on the contrary that
|W | ≥ 2. Since w is not a cut vertex (since G has no cut vertices), there exists an x ∈ W with
x 6= w such that xu ∈ G or x v ∈ G, say xu ∈ G.

Since v is not a cut vertex, there exists a y ∈ U such that uy ∈

G. Hence dG(x , y) = 2, and by (iii), {x , y} is a separating set.
Thus VG = W1 ∪ {x , y} ∪ U1, where all paths from W1 to U1

pass through x or y. Assume that w ∈W1, and hence that also
u, v ∈W1. (Since uw, vw ∈ VG−{x , y}).

w x

u

v

y

There exists a vertex z ∈ U1. Note that U1 ⊆W ∪ U . If z ∈W (or z ∈ U , respectively), then
all paths from z to u must pass through x (or y, respectively), and x (or y, respectively) would
be a cut vertex of G. This contradiction, proves the claim. ⊓⊔

Theorem 4.12 ( BROOKS (1941)). Let G be connected. Then χ(G) =∆(G)+1 if and only if either

G is an odd cycle or a complete graph.

Proof. (⇐=) Indeed, χ(C2k+1) = 3, ∆(C2k+1) = 2, and χ(Kn) = n, ∆(Kn) = n− 1.

(=⇒) Assume that k = χ(G). We may suppose that G is k-critical. Indeed, assume the claim
holds for k-critical graphs. Let k = ∆(G) + 1, and let H ⊂ G be a k-critical proper subgraph.
Since χ(H) = k =∆(G)+1 >∆(H), we must have χ(H) =∆(H)+1, and thus H is a complete
graph or an odd cycle. Now G is connected, and therefore there exists an edge uv ∈ G with
u ∈ H and v /∈ H. But then dG(u) > dH(u), and ∆(G) >∆(H), since H = Kn or H = Cn.

Let then G be any k-critical graph for k ≥ 2. By Lemma 4.6, it is 2-connected. If G is an even

cycle, then k = 2 = ∆(G). Suppose now that G is neither complete nor a cycle (odd or even).
We show that χ(G) ≤∆(G).

By Lemma 4.8, there exist v1, v2 ∈ G with dG(v1, v2) = 2, say v1w, wv2 ∈ G with v1v2 /∈ G,
such that H = G−{v1, v2} is connected. Order VH = {v3, v4, . . . , vn} such that vn = w, and for all
i ≥ 3,

dH(vi , w) ≥ dH(vi+1, w) .

Therefore for each i ∈ [1, n−1], we find at least one j > i such that vi v j ∈ G (possibly v j = w).
In particular, for all 1≤ i < n,

|NG(vi)∩ {v1, . . . , vi−1}| < dG(vi) ≤∆(G) . (4.3)
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Then colour v1, v2, . . . , vn in this order as follows: α(v1) = 1= α(v2) and

α(vi) =min{r | r 6= α(v j) for all v j ∈ NG(vi) with j < i} .

The colouring α is proper.
By (4.3), α(vi) ≤∆(G) for all i ∈ [1, n− 1]. Also, w = vn has two neighbours, v1 and v2, of

the same colour 1, and since vn has at most ∆(G) neighbours, there is an available colour for
vn, and so α(vn) ≤ ∆(G). This shows that G has a proper ∆(G)-colouring, and, consequently,
χ(G) ≤∆(G). ⊓⊔

Example 4.8. Suppose we have n objects V = {v1, . . . , vn}, some of which are not compatible
(like chemicals that react with each other, or worse, graph theorists who will fight during a
conference). In the storage problem we would like to find a partition of the set V with as few
classes as possible such that no class contains two incompatible elements. In graph theoretical
terminology we consider the graph G = (V, E), where vi v j ∈ E just in case vi and v j are incom-
patible, and we would like to colour the vertices of G properly using as few colours as possible.
This problem requires that we find χ(G).

Unfortunately, no good algorithms are known for determining χ(G), and, indeed, the chro-
matic number problem is NP-complete. Already the problem if χ(G) = 3 is NP-complete. (How-
ever, as we have seen, the problem whether χ(G) = 2 has a fast algorithm.)

The chromatic polynomial

A given graph G has many different proper vertex colourings α: VG → [1, k] for sufficiently
large natural numbers k. Indeed, see Lemma 4.5 to be certain on this point.

DEFINITION. The chromatic polynomial of G is the function χG : N→ N, where

χG(k) = |{α | α: VG → [1, k] a proper colouring}| .

This notion was introduced by BIRKHOFF (1912), BIRKHOFF AND LEWIS (1946), to attack the
famous 4-Colour Theorem, but its applications have turned out to be elsewhere.

If k < χ(G), then clearly χG(k) = 0, and, indeed,

χ(G) =min{k | χG(k) 6= 0} .

Therefore, if we can find the chromatic polynomial of G, then we easily compute the chro-
matic number χ(G) just by evaluating χG(k) for k = 1,2, . . . until we hit a nonzero value.
Theorem 4.13 will give the tools for constructing χG.

Example 4.9. Consider the complete graph K4 on {v1, v2, v3, v4}. Let k ≥ χ(K4) = 4. The vertex
v1 can be first given any of the k colours, after which k−1 colours are available for v2. Then v3

has k − 2 and finally v4 has k − 3 available colours. Therefore there are k(k − 1)(k − 2)(k − 3)
different ways to properly colour K4 with k colours, and so
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χK4
(k) = k(k − 1)(k− 2)(k − 3) .

On the other hand, in the discrete graph K4 has no edges, and thus any k-colouring is a proper
colouring. Therefore

χK4
(k) = k4 .

Remark. The considered method for checking the number of possibilities to colour a ‘next vertex’
is exceptional, and for more nonregular graphs it should be avoided.

DEFINITION. Let G be a graph, e = uv ∈ G, and let x = x(uv) be a new contracted vertex. The
graph G ∗ e on

VG∗e = (VG \ {u, v}) ∪ {x}

is obtained from G by contracting the edge e, when

EG∗e = { f | f ∈ EG, f has no end u or v} ∪ {wx | wu ∈ G or wv ∈ G} .

Hence G∗e is obtained by introducing a new vertex x , and
by replacing all edges wu and wv by wx , and the vertices
u and v are deleted.
(Of course, no loops or parallel edges are allowed in the
new graph G ∗ e.)

v

u x

e

Theorem 4.13. Let G be a graph, and let e ∈ G. Then

χG(k) = χG−e(k)−χG∗e(k).

Proof. Let e = uv. The proper k-colourings α: VG → [1, k] of G−e can be divided into two
disjoint cases, which together show that χG−e(k) = χG(k) +χG∗e(k):

(1) If α(u) 6= α(v), then α corresponds to a unique proper k-colouring of G, namely α.
Hence the number of such colourings is χG(k).

(2) If α(u) = α(v), then α corresponds to a unique proper k-colouring of G ∗ e, namely
α, when we set α(x) = α(u) for the contracted vertex x = x(uv). Hence the number of such
colourings is χG∗e(k). ⊓⊔

Theorem 4.14. The chromatic polynomial is a polynomial.

Proof. The proof is by induction on ǫG. Indeed, χKn
(k) = kn for the discrete graph, and for two

polynomials P1 and P2, also P1−P2 is a polynomial. The claim follows from Theorem 4.13, since
there G−e and G ∗ e have less edges than G. ⊓⊔

The connected components of a graph can be coloured independently, and so

Lemma 4.9. Let the graph G have the connected components G1, G2, . . . , Gm. Then

χG(k) = χG1
(k)χG2

(k) . . .χGm
(k) .
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Theorem 4.15. Let T be a tree of order n. Then χT (k) = k(k − 1)n−1.

Proof. We use induction on n. For n ≤ 2, the claim is obvious. Suppose that n ≥ 3, and let
e = vu ∈ T , where v is a leaf. By Theorem 4.13, χT (k) = χT−e(k)−χT∗e(k). Here T ∗ e is a tree
of order n − 1, and thus, by the induction hypothesis, χT∗e(k) = k(k − 1)n−2. The graph T−e

consists of the isolated v and a tree of order n−1. By Lemma 4.9, and the induction hypothesis,
χT−e(k) = k · k(k − 1)n−2. Therefore χT (k) = k(k − 1)n−1. ⊓⊔

Example 4.10. Consider the graph G of order 4 from the above. Then we have the following
reductions.

= −

G G − e G ∗ e

e

= −

G − e G − {e, f } (G − e) ∗ f

f

Theorem 4.13 reduces the computation of χG to the discrete graphs. However, we know the
chromatic polynomials for trees (and complete graphs, as an exercise), and so there is no need
to prolong the reductions beyond these. In our example, we have obtained

χG−e(k) = χG−{e, f }(k)−χ(G−e)∗ f (k)

= k(k − 1)3 − k(k − 1)2 = k(k − 1)2(k − 2) ,

and so

χG(k) = χG−e(k)−χG∗e(k) = k(k− 1)2(k − 2)− k(k − 1)(k− 2)

= k(k − 1)(k − 2)2 = k4 − 5k3 + 8k2 − 4k .

For instance, for 3 colours, there are 6 proper colourings of the given graph.

Chromatic Polynomial Problems. It is difficult to determine χG of a given graph, since the
reduction method provided by Theorem 4.13 is time consuming. Also, there is known no char-
acterization, which would tell from any polynomial P(k) whether it is a chromatic polynomial
of some graph. For instance, the polynomial k4−3k3+3k2 is not a chromatic polynomial of any
graph, but it seems to satisfy the general properties (that are known or conjectured) of these
polynomials. REED (1968) conjectured that the coefficients of a chromatic polynomial should
first increase and then decrease in absolute value. REED (1968) and TUTTE (1974) proved that
for each G of order νG = n:
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• The degree of χG(k) equals n.
• The coefficient of kn equals 1.
• The coefficient of kn−1 equals −ǫG.
• The constant term is 0.
• The coefficients alternate in sign.
• χG(m) ≤ m(m− 1)n − 1 for all positive integers m, when G is connected.
• χG(x) 6= 0 for all real numbers 0< x < 1.
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Graphs on Surfaces

5.1 Planar graphs

The plane representations of graphs are by no means unique. Indeed, a graph G can be drawn in
arbitrarily many different ways. Also, the properties of a graph are not necessarily immediate
from one representation, but may be apparent from another. There are, however, important
families of graphs, the surface graphs, that rely on the (topological or geometrical) properties
of the drawings of graphs. We restrict ourselves in this chapter to the most natural of these, the
planar graphs. The geometry of the plane will be treated intuitively.

A planar graph will be a graph that can be drawn in the plane so that no two edges intersect
with each other. Such graphs are used, e.g., in the design of electrical (or similar) circuits, where
one tries to (or has to) avoid crossing the wires or laser beams. Planar graphs come into use
also in some parts of mathematics, especially in group theory and topology.

There are fast algorithms (linear time algorithms) for testing whether a graph is planar or
not. However, the algorithms are all rather difficult to implement. Most of them are based on
an algorithm designed by AUSLANDER AND PARTER (1961) see Section 6.5 of

S. SKIENA, “Implementing Discrete Mathematics: Combinatorics and Graph Theory with Math-
ematica”, Addison-Wesley, 1990.

Definition

DEFINITION. A graph G is a planar graph, if it has a plane
figure P(G), called the plane embedding of G, where the
lines (or continuous curves) corresponding to the edges do
not intersect each other except at their ends.

The complete bipartite graph K2,4 is a planar graph.

DEFINITION. An edge e = uv ∈ G is subdivided, when it is replaced by a path u −→ x −→ v of
length two by introducing a new vertex x . A subdivision H of a graph G is obtained from G by
a sequence of subdivisions.
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The following result is clear.

Lemma 5.1. A graph is planar if and only if its subdivisions are planar.

Geometric properties

It is clear that the graph theoretical properties of G are inherited by all of its plane embeddings.
For instance, the way we draw a graph G in the plane does not change its maximum degree or its
chromatic number. More importantly, there are – as we shall see – some nontrivial topological
(or geometric) properties that are shared by the plane embeddings.

We recall first some elements of the plane geometry. Let F be an open set of the plane R×R,
that is, every point x ∈ F has a disk centred at x and contained in F . Then F is a region, if any
two points x , y ∈ F can be joined by a continuous curve the points of which are all in F . The
boundary ∂ (F) of a region F consists of those points for which every neighbourhood contains
points from F and its complement.

Let G be a planar graph, and P(G) one of its plane embeddings. Regard now each edge
e = uv ∈ G as a line from u to v. The set (R × R) \ EG is open, and it is divided into a finite
number of disjoint regions, called the faces of P(G).

DEFINITION. A face of P(G) is an interior face, if it is bounded.
The (unique) face that is unbounded is called the exterior face of
P(G). The edges that surround a face F constitute the boundary
∂ (F) of F . The exterior boundary is the boundary of the exte-
rior face. The vertices (edges, resp.) on the exterior boundary are
called exterior vertices (exterior edges, resp.). Vertices (edges,
resp.) that are not on the exterior boundary are interior vertices
(interior edges, resp.).

F0

F1

F3F2

Embeddings P(G) satisfy some properties that we accepts at face value.

Lemma 5.2. Let P(G) be a plane embedding of a planar graph G.

(i) Two different faces F1 and F2 are disjoint, and their boundaries can intersect only on edges.

(ii) P(G) has a unique exterior face.

(iii) Each edge e belongs to the boundary of at most two faces.

(iv) Each cycle of G surrounds (that is, its interior contains) at least one internal face of P(G).

(v) A bridge of G belongs to the boundary of only one face.

(vi) An edge that is not a bridge belongs to the boundary of exactly two faces.

If P(G) is a plane embedding of a graph G, then so is any drawing P ′(G) which is obtained
from P(G) by an injective mapping of the plane that preserves continuous curves. This means, in
particular, that every planar graph has a plane embedding inside any geometric circle of arbitrarily

small radius, or inside any geometric triangle.
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Euler’s formula

Lemma 5.3. A plane embedding P(G) of a planar graph G has no interior faces if and only if G is

acyclic, that is, if and only if the connected components of G are trees.

Proof. This is clear from Lemma 5.2. ⊓⊔

The next general form of Euler’s formula was proved by LEGENDRE (1794).

Theorem 5.1 (Euler’s formula). Let G be a connected planar graph, and let P(G) be any of its

plane embeddings. Then

νG − ǫG +ϕ = 2 ,

where ϕ is the number of faces of P(G).

Proof. We shall prove the claim by induction on the number of faces ϕ of a plane embedding
P(G). First, notice that ϕ ≥ 1, since each P(G) has an exterior face.

If ϕ = 1, then, by Lemma 5.3, there are no cycles in G, and since G is connected, it is a tree.
In this case, by Theorem 2.4, we have ǫG = νG − 1, and the claim holds.

Suppose then that the claim is true for all plane embeddings with less than ϕ faces forϕ ≥ 2.
Let P(G) be a plane embedding of a connected planar graph such that P(G) has ϕ faces.

Let e ∈ G be an edge that is not a bridge. The subgraph G−e is planar with a plane embedding
P(G−e) = P(G)−e obtained by simply erasing the edge e. Now P(G−e) has ϕ−1 faces, since the
two faces of P(G) that are separated by e are merged into one face of P(G−e). By the induction
hypothesis, νG−e − ǫG−e + (ϕ − 1) = 2, and hence νG − (ǫG − 1) + (ϕ − 1) = 2, and the claim
follows. ⊓⊔

In particular, we have the following invariant property of planar graphs.

Corollary 5.1. Let G be a planar graph. Then every plane embedding of G has the same number

of faces:

ϕG = ǫG − νG + 2

Maximal planar graphs

Lemma 5.4. If G is a planar graph of order νG ≥ 3, then ǫG ≤ 3νG − 6. Moreover, if G has no

triangles C3, then ǫG ≤ 2νG − 4.

Proof. If G is disconnected with connected components Gi, for i ∈ [1, k], and if the claim holds
for these smaller (necessarily planar) graphs Gi , then it holds for G, since

ǫG =

νG∑

i=1

ǫGi
≤ 3

νG∑

i=1

νGi
− 6k = 3νG − 6k ≤ 3νG − 6 .

It is thus sufficient to prove the claim for connected planar graphs.
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Also, the case where ǫG ≤ 2 is clear. Suppose thus that ǫG ≥ 3.
Each face F of an embedding P(G) contains at least three edges on its boundary ∂ (F). Hence

3ϕ ≤ 2ǫG, since each edge lies on at most two faces. The first claim follows from Euler’s formula.
The second claim is proved similarly except that, in this case, each face F of P(G) contains

at least four edges on its boundary (when G is connected and ǫG ≥ 4). ⊓⊔

An upper bound for δ(G) for planar graphs was achieved by HEAWOOD.

Theorem 5.2 (HEAWOOD (1890)). If G is a planar graph, then δ(G) ≤ 5.

Proof. If νG ≤ 2, then there is nothing to prove. Suppose νG ≥ 3. By the handshaking lemma
and the previous lemma,

δ(G) · νG ≤
∑

v∈G

dG(v) = 2ǫG ≤ 6νG − 12 .

It follows that δ(G) ≤ 5. ⊓⊔

Theorem 5.3. K5 and K3,3 are not planar graphs.

Proof. By Lemma 5.4, a planar graph of order 5 has at most 9 edges, but K5 has 5 vertices and
10 edges. By the second claim of Lemma 5.4, a triangle-free planar graph of order 6 has at most
8 edges, but K3,3 has 6 vertices and 9 edges. ⊓⊔

DEFINITION. A planar graph G is maximal, if G + e is nonplanar for every e /∈ G.

Example 5.1. Clearly, if we remove one edge from K5, the result is a maximal planar graph.
However, if an edge is removed from K3,3, the result is not maximal!

Lemma 5.5. Let F be a face of a plane embedding P(G) that has at least four edges on its boundary.

Then there are two nonadjacent vertices on the boundary of F.

Proof. Assume that the set of the boundary vertices of F induces a complete subgraph K . The
edges of K are either on the boundary or they are not inside F (since F is a face.) Add a new
vertex x inside F , and connect the vertices of K to x . The result is a plane embedding of a graph
H with VH = VG ∪ {x} (that has G as its induced subgraph). The induced subgraph H[K ∪ {x}]

is complete, and since H is planar, we have |K |< 4 as required. ⊓⊔

By the previous lemma, if a face has a boundary of at least four edges, then an edge can
be added to the graph (inside the face), and the graph remains to be planar. Hence we have
proved

Corollary 5.2. If G is a maximal planar graph with νG ≥ 3, then G is triangulated, that is, every

face of a plane embedding P(G) has a boundary of exactly three edges.

Theorem 5.4. For a maximal planar graph G of order νG ≥ 3, ǫG = 3νG − 6 .

Proof. Each face F of an embedding P(G) is a triangle having three edges on its boundary.
Hence 3ϕ = 2ǫG, since there are now no bridges. The claim follows from Euler’s formula. ⊓⊔
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Kuratowski’s theorem

Theorem 5.5 will give a simple criterion for planarity of graphs. This theorem (due to KURA-
TOWSKI in 1930) is one of the jewels of graph theory. In fact, the theorem was proven earlier
by PONTRYAGIN (1927-1928), and also independently by FRINK AND SMITH (1930). For history
of the result, see

J.W. KENNEDY, L.V. QUINTAS, AND M.M. SYSLO, The theorem on planar graphs. Historia Math.

12 (1985), 356 – 368.
The graphs K5 and K3,3 are the smallest nonplanar graphs, and, by Lemma 5.1, if G contains

a subdivision of K5 or K3,3 as a subgraph, then G is not planar. We prove the converse of this
result in what follows. Therefore

Theorem 5.5 (KURATOWSKI (1930)). A graph is planar if and only if it contains no subdivision

of K5 or K3,3 as a subgraph.

We prove this result along the lines of THOMASSEN (1981) using 3-connectivity.

Example 5.2. The cube Qk is planar only for k = 1,2,3. Indeed, the graph Q4 contains a sub-
division of K3,3, and thus by Theorem 5.5 it is not planar. On the other hand, each Qk with
k ≥ 4 has Q4 as a subgraph, and therefore they are nonplanar. The subgraph of Q4 that is a
subdivision of K3,3 is given below.

1000 1100 0010

0000 1010 1001

0100 1110 1101 0001

0011

DEFINITION. A graph G is called a Kuratowski graph, if it is a subdivision of K5 or K3,3.

Lemma 5.6. Let E ⊆ EG be the set of the boundary edges of a face F in a plane embedding of G.

Then there exists a plane embedding P(G), where the edges of E are exterior edges.

Proof. This is a geometric proof. Choose a circle that contains every point of the plane embed-
ding (including all points of the edges) such that the centre of the circle is inside the given face.
Then use geometric inversion with respect to this circle. This will map the given face as the
exterior face of the image plane embedding. ⊓⊔
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Lemma 5.7. Let G be a nonplanar graph without Kuratowski graphs of minimal total size ǫG+νG .

Then G is 3-connected.

Proof. By the minimality assumption, G is connected. We show then that G is 2-connected. On
the contrary, assume that v is a cut vertex of G, and let A1, . . . ,Ak be the connected components
of G−v.
Since G is minimal nonplanar with respect to ǫG, the subgraphs
Gi = G[Ai ∪ {v}] have plane embeddings P(Gi), where v is an
exterior vertex. We can glue these plane embeddings together
at v to obtain a plane embedding of G, and this will contradict
the choice of G.

A1 A2

Assume then that G has a separating set S = {u, v}. Let G1 and G2 be any subgraphs of G

such that EG = EG1
∪ EG2

, S = VG1
∩ VG2

, and both G1 and G2 contain a connected component
of G−S. Since G is 2-connected (by the above), there are paths u

⋆
−→ v in G1 and G2. Indeed,

both u and v are adjacent to a vertex of each connected component of G−S. Let Hi = Gi + uv.
(Maybe uv ∈ G.)

If both H1 and H2 are planar, then, by Lemma 5.6, they have
plane embeddings, where uv is an exterior edge. It is now easy
to glue H1 and H2 together on the edge uv to obtain a plane
embedding of G + uv, and thus of G.

H1 H2

We conclude that H1 or H2 is nonplanar, say H1. Now ǫH1
< ǫG, and so, by the minimality

of G, H1 contains a Kuratowski graph H. However, there is a path u
⋆
−→ v in H2, since G2 ⊆ H2.

This path can be regarded as a subdivision of uv, and thus G contains a Kuratowski graph. This
contradiction shows that G is 3-connected. ⊓⊔

Lemma 5.8. Let G be a 3-connected graph of order νG ≥ 5. Then there exists an edge e ∈ G such

that the contraction G ∗ e is 3-connected.

Proof. On the contrary suppose that for any e ∈ G, the graph G ∗ e has a separating set S with
|S| = 2. Let e = uv, and let x = x(uv) be the contracted vertex. Necessarily x ∈ S, say S = {x , z}
(for, otherwise, S would separate G already). Therefore T = {u, v, z} separates G. Assume that
e and S are chosen such that G−T has a connected component A with the least possible number
of vertices.

There exists a vertex y ∈ A with z y ∈ G. (Otherwise {u, v}

would separate G.) The graph G ∗ (z y) is not 3-connected by
assumption, and hence, as in the above, there exists a vertex w

such that R = {z, y, w} separates G. It can be that w ∈ {u, v},
but by symmetry we can suppose that w 6= u.

u

v

z y

B

T
A

Since uv ∈ G, G−R has a connected component B such that u, v /∈ B. For each y ′ ∈ B, there
exists a path P : u

⋆
−→ y ′ in G−{z, w}, since G is 3-connected, and hence this P goes through

y. Therefore y ′ is connected to y also in G−T , that is, y ′ ∈ A, and so B ⊆ A. The inclusion is
proper, since y /∈ B. Hence |B| < |A|, and this contradicts the choice of A. ⊓⊔
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By the next lemma, a Kuratowski graph cannot be created by contractions.

Lemma 5.9. Let G be a graph. If for some e ∈ G the contraction G ∗ e has a Kuratowski subgraph,

then so does G.

Proof. The proof consists of several cases depending on the Kuratowski graph, and how the
subdivision is made. We do not consider the details of these cases.

Let H be a Kuratowski graph of G ∗ e, where x = x(uv) is the contracted vertex for e = uv.
If dH(x) = 2, then the claim is obviously true. Suppose then that dH(x) = 3 or 4. If there exists
at most one edge x y ∈ H such that uy ∈ G (or v y ∈ G), then one easily sees that G contains a
Kuratowski graph.

There remains only one case, where H is a subdivision of K5, and both u and v have 3
neighbours in the subgraph of G corresponding to H. In this case, G contains a subdivision of
K3,3. ⊓⊔

v1

v2

x

v3

v4

v1

v2

u v

v3

v4

Lemma 5.10. Every 3-connected graph G without Kuratowski subgraphs is planar.

Proof. The proof is by induction on νG. The only 3-connected graph of order 4 is the planar
graph K4. Therefore we can assume that νG ≥ 5.

By Lemma 5.8, there exists an edge e = uv ∈ G such that G ∗ e (with a contracted vertex x)
is 3-connected. By Lemma 5.9, G ∗ e has no Kuratowski subgraphs, and hence G ∗ e has a plane
embedding P(G ∗ e) by the induction hypothesis. Consider the part P(G ∗ e)−x , and let C be the
boundary of the face of P(G ∗ e)−x containing x (in P(G ∗ e)). Here C is a cycle of G (since G

is 3-connected).
Now since G−{u, v} = (G∗e)−x , P(G∗e)−x is a plane embedding of G−{u, v}, and NG(u) ⊆

VC ∪ {v} and NG(v) ⊆ VC ∪ {u}. Assume, by symmetry, that dG(v) ≤ dG(u). Let NG(v) \ {u} =

{v1, v2, . . . , vk} in order along the cycle C . Let Pi, j : vi
⋆
−→ v j be the path along C from vi to v j .

We obtain a plane embedding of G−u by drawing (straight) edges vvi for 1≤ i ≤ k.

(1) If NG(u) \ {v} ∈ Pi,i+1 (i + 1 is taken modulo k) for some i, then, clearly, G has a plane
embedding (obtained from P(G)−u by putting u inside the triangle (v, vi, vi+1) and by drawing
the edges with an end u inside this triangle).

(2) Assume there are y, z ∈ NG(u) \ {v} such that y ∈ Pi j and
z /∈ Pi j for some i and j, where y, z /∈ {vi, v j}. Now, {u, vi , vi+1}∪

{v, z, y} form a subdivision of K3,3. v

u

y

z
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By (1) and (2), we can assume that NG(u)\{v} ⊆ NG(v). There-
fore, NG(u)\{v} = NG(v)\{u} by the assumption dG(v)≤ dG(u).
Also, by (1), dG(v) = dG(u) > 3. But now u, v, v1, v2, v3 give a
subdivision of K5. ⊓⊔

v

u

Proof of Theorem 5.5. By Theorem 5.3 and Lemma 5.1, we need to show that each nonplanar
graph G contains a Kuratowski subgraph. On the contrary, suppose that G is a nonplanar graph
that has a minimal size ǫG such that G does not contain a Kuratowski subgraph. Then, by
Lemma 5.7, G is 3-connected, and by Lemma 5.10, it is planar. This contradiction proves the
claim. ⊓⊔

Example 5.3. Any graph G can be drawn in the plane so that three of its edges never intersect
at the same point. The crossing number ×(G) is the minimum number of intersections of its
edges in such plane drawings of G. Therefore G is planar if and only if ×(G) = 0, and, for
instance, ×(K5) = 1.

We show that ×(K6) = 3. For this we need to show that ×(K6) ≥ 3. For the equality, one is
invited to design a drawing with exactly 3 crossings.

Let X (K6) be a drawing of K6 using c crossings so that two edges cross at most once. Add
a new vertex at each crossing. This results in a planar graph G on c + 6 vertices and 2c + 15
edges. Now c ≥ 3, since ǫG = 2c + 15≤ 3(c + 6)− 6= 3νG − 6.

5.2 Colouring planar graphs

The most famous problem in the history of graph theory is that of the chromatic number of
planar graphs. The problem was known as the 4-Colour Conjecture for more than 120 years,
until it was solved by APPEL AND HAKEN in 1976: if G is a planar graph, then χ(G) ≤ 4. The
4-Colour Conjecture has had a deep influence on the theory of graphs during the last 150 years.
The solution of the 4-Colour Theorem is difficult, and it requires the assistance of a computer.

The 5-colour theorem

We prove HEAWOOD’s result (1890) that each planar graph is properly 5-colourable.

Lemma 5.11. If G is a planar graph, then χ(G) ≤ 6.

Proof. The proof is by induction on νG. Clearly, the claim holds for νG ≤ 6. By Theorem 5.2, a
planar graph G has a vertex v with dG(v)≤ 5. By the induction hypothesis, χ(G−v)≤ 6. Since
dG(v)≤ 5, there is a colour i available for v in the 6-colouring of G−v, and so χ(G) ≤ 6. ⊓⊔

The proof of the following theorem is partly geometric in nature.

Theorem 5.6 (HEAWOOD (1890)). If G is a planar graph, then χ(G) ≤ 5.
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Proof. Suppose the claim does not hold, and let G be a 6-critical planar graph. Recall that for
k-critical graphs H, δ(H) ≥ k − 1, and thus there exists a vertex v with dG(v) = δ(G) ≥ 5. By
Theorem 5.2, dG(v) = 5.

Let α be a proper 5-colouring of G−v. Such a colouring exists,
because G is 6-critical. By assumption, χ(G) > 5, and therefore
for each i ∈ [1,5], there exists a neighbour vi ∈ NG(v) such that
α(vi) = i. Suppose these neighbours vi of v occur in the plane
in the geometric order of the figure.

v

v4

v5

v3

v2

v1

P13

Consider the subgraph G[i, j] ⊆ G made of colours i and j. The vertices vi and v j are in the
same connected component of G[i, j] (for, otherwise we interchange the colours i and j in the
connected component containing v j to obtain a recolouring of G, where vi and v j have the same
colour i, and then recolour v with the remaining colour j).

Let Pi j : vi
⋆
−→ v j be a path in G[i, j], and let C = (vv1)P13(v3v). By the geometric assumption,

exactly one of v2, v4 lies inside the region enclosed by the cycle C . Now, the path P24 must meet
C at some vertex of C , since G is planar. This is a contradiction, since the vertices of P24 are
coloured by 2 and 4, but C contains no such colours. ⊓⊔

The final word on the chromatic number of planar graphs was proved by APPEL AND HAKEN

in 1976.

Theorem 5.7 (4-Colour Theorem). If G is a planar graph, then χ(G) ≤ 4.

By the following theorem, each planar graph can be decomposed into two bipartite graphs.

Theorem 5.8. Let G = (V, E) be a 4-chromatic graph, χ(G) ≤ 4. Then the edges of G can be

partitioned into two subsets E1 and E2 such that (V, E1) and (V, E2) are both bipartite.

Proof. Let Vi = α
−1(i) be the set of vertices coloured by i in a proper 4-colouring α of G. The

define E1 as the subset of the edges of G that are between the sets V1 and V2; V1 and V4; V3 and
V4. Let E2 be the rest of the edges, that is, they are between the sets V1 and V3; V2 and V3; V2

and V4. It is clear that (V, E1) and (V, E2) are bipartite, since the sets Vi are stable. ⊓⊔

Map colouring∗

The 4-Colour Conjecture was originally stated for maps. In the map-colouring problem we are
given several countries with common borders, and we wish to colour each country so that no
neighbouring countries obtain the same colour. How many colours are needed?

A border between two countries is assumed to have a positive length – in particular, countries
that have only one point in common are not allowed in the map colouring.

Formally, we define a map as a connected planar (embedding of a) graph with no bridges.
The edges of this graph represent the boundaries between countries. Hence a country is a face
of the map, and two neighbouring countries share a common edge (not just a single vertex).
We deny bridges, because a bridge in such a map would be a boundary inside a country.
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The map-colouring problem is restated as follows:

How many colours are needed for the faces of a plane em-

bedding so that no adjacent faces obtain the same colour.

The illustrated map can be 4-coloured, and it cannot be
coloured using only 3 colours, because every two faces
have a common border.

Let F1, F2, . . . , Fn be the countries of a map M , and define a graph G with VG = {v1, v2, . . . , vn}

such that vi v j ∈ G if and only if the countries Fi and F j are neighbours. It is easy to see that G

is a planar graph. Using this notion of a dual graph, we can state the map-colouring problem
in new form: What is the chromatic number of a planar graph? By the 4-Colour Theorem it is at
most four.

Map-colouring can be used in rather generic topological setting, where the maps are defined
by curves in the plane. As an example, consider finitely many simple closed curves in the plane.
These curves divide the plane into regions. The regions are 2-colourable.

That is, the graph where the vertices correspond to
the regions, and the edges correspond to the neigh-
bourhood relation, is bipartite. To see this, colour a
region by 1, if the region is inside an odd number of
curves, and, otherwise, colour it by 2. 2

1

2

1
2

1

2

1 2

1

1

2

History of the 4-Colour Theorem

That four colours suffice planar maps was conjectured around 1850 by FRANCIS GUTHRIE, a
student of DE MORGAN at University College of London. During the following 120 years many
outstanding mathematicians tried to solve the problem, and some of them even thought that
they had been successful.

In 1879 CAYLEY pointed out some difficulties that lie in the conjecture. The same year ALFRED

KEMPE published a paper, where he claimed a proof of the 4CC. The basic idea in KEMPE’s
argument (known later as Kempe chains) was the same as later used by HEAWOOD to prove the
5-Colour Theorem, (Theorem 5.6).

For more than 10 years KEMPE’s proof was considered to be valid. For instance, TAIT pub-
lished two papers on the 4CC in the 1880’s that contained clever ideas, but also some further
errors. In 1890 HEAWOOD showed that KEMPE’s proof had serious gaps. As we shall see in the
next chapter, HEAWOOD discovered the number of colours needed for all maps on other surfaces
than the plane. Also, he proved that if the number of edges around each region is divisible by
3, then the map is 4-colourable.

One can triangulate any planar graph G (drawn in the plane), by adding edges to divide the
faces into triangles. BIRKHOFF introduced one of the basic notions (reducibility) needed in the
proof of the 4CC. In a triangulation, a configuration is a part that is contained inside a cycle.
An unavoidable set is a set of configurations such that any triangulation must contain one of
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the configurations in the set. A configuration is said to be reducible, if it is not contained in a
triangulation of a minimal counter example to the 4CC.

The search for avoidable sets began in 1904 with work of WEINICKE, and in 1922 FRANKLIN

showed that the 4CC holds for maps with at most 25 regions. This number was increased to
27 by REYNOLDS (1926), to 35 by WINN (1940), to 39 by ORE AND STEMPLE (1970), to 95 by
MAYER (1976).

The final notion for the solution was due to HEESCH, who in 1969 introduced discharging.
This consists of assigning to a vertex v the charge 6− dG(v). From Euler’s formula we see that
for the sum of the charges, we have

∑

v

(6− dG(v)) = 12.

Now, a given set S of configurations can be proved to be unavoidable, if for a triangulation, that
does not contain a configuration from S, one can ‘redistribute’ the charges so that no v comes
up with a positive charge.

According to HEESCH one might be satisfied with a set of 8900 configurations to prove the
4CC. There were difficulties with his approach that were solved in 1976 by APPEL AND HAKEN.
They based the proof on reducibility using Kempe chains, and ended up with an unavoidable set
with over 1900 configurations and some 300 discharging rules. The proof used 1200 hours of
computer time. (KOCH assisted with the computer calculations.) A simplified proof by ROBERT-
SON, SANDERS, SEYMOUR AND THOMAS (1997) uses 633 configurations and 32 discharging rules.
Because of these simplifications also the computer time is much less than in the original proof.

The following book contains the ideas of the proof of the 4-Colour Theorem.
T.L. SAATY AND P.C. KAINEN, “The Four-Color Problem”, Dover, 1986.

List colouring

DEFINITION. Let G be a graph so that each of its vertices v is given a list (set) Λ(v) of colours.
A proper colouring α: VG → [1, m] of G is a (Λ-)list colouring, if each vertex v gets a colour
from its list, α(v) ∈ Λ(v).

The list chromatic number χℓ(G) is the smallest integer k such that G has a Λ-list colouring
for all lists of size k, |Λ(v)| = k}. Also, G is k-choosable, if χℓ(G) ≤ k.

Example 5.4. The bipartite graph K3,3 is not 2-choosable.
Indeed, let the bipartition of K3,3 be (X , Y ), where X =

{x1, x2, x3} and Y = {y1, y2, y3}. The lists for the vertices
shown in the figure show that χℓ(K3,3) > 2.

x1

{1, 2}

y1

{1, 2}

x2

{1, 3}

y2

{1, 3}

x3

{2, 3}

y3

{2, 3}

Obviously χ(G) ≤ χℓ(G), since proper colourings are special cases of list colourings, but
equality does not hold in general. However, it was proved by VIZING (1976) and ERDÖS, RUBIN

AND TAYLOR (1979) that
χℓ(G) ≤∆(G) + 1 .
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For planar graphs we do not have a ‘4-list colour theorem’. Indeed, it was shown by VOIGT

(1993) that there exists a planar graph with χℓ(G) = 5. At the moment, the smallest such a
graph was produced by MIRZAKHANI (1996), and it is of order 63.

Theorem 5.9 (THOMASSEN (1994)). Let G be a planar graph. Then χℓ(G) ≤ 5.

In fact, THOMASSEN proved a stronger statement:

Theorem 5.10. Let G be a planar graph and let C be the cycle that is the boundary of the exterior

face. Let Λ consist of lists such that |Λ(v)| = 3 for all v ∈ C, and |Λ(v)| = 5 for all v /∈ C. Then G

has a Λ-list colouring α.

Proof. We can assume that the planar graph G is connected, and that it is given by a near-
triangulation; an embedding, where the interior faces are triangles. (If the boundary of a face
has more than 3 edges, then we can add an edge inside the face.) This is because adding edges
to a graph can only make the list colouring more difficult. Note that the exterior boundary is
unchanged by a triangulation of the interior faces.

The proof is by induction on νG under the additional constraint that one of the vertices of
C has a fixed colour. (Thus we prove a stronger statement than claimed.) For νG ≤ 3, the claim
is obvious. Suppose then that νG ≥ 4.

Let x ∈ C be a vertex, for which we fix a colour c ∈ Λ(x). Let v ∈ C be a vertex adjacent to
x , that is, C : v→ x

⋆
−→ v.

Let NG(v) = {x , v1, . . . , vk, y}, where y ∈ C , and vi are ordered
such that the faces are triangles as in the figure. It can be that
NG(v) = {x , y}, in which case x y ∈ G.

Consider the subgraph H = G−v. The exterior boundary of H is
the cycle x → v1 → · · · → vk → y

⋆
−→ x . Since |Λ(v)| = 3, there

are two colours r, s ∈ Λ(v) that differ from the colour c of x .

v

xy

v1
v2

vk

. . .

We define new lists for H as follows: Λ′(vi) ⊆ Λ(vi) \ {r, s} such that |Λ′(vi)| = 3 for each
i ∈ [1, k], and otherwise Λ′(z) = Λ(z).
Now νH = νG − 1, and by the induction hypothesis (with c still fixed for x), H has a Λ′-list
colouring α. For the vertex v, we choose α(v) = r or s such that α(v) 6= α(y). This gives a
Λ
′-list colouring for G. Since Λ′(z) ⊆ Λ(z) for all z, we have that α is a Λ-list colouring of G. ⊓⊔
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Straight lines and kissing circles∗

We state an interesting result of WAGNER, the proof of which can be deduced from the above
proof of Kuratowski’s theorem. The result is known as Fáry’s Theorem.

Theorem 5.11 (WAGNER (1936)). A planar graph G has a plane embedding, where the edges are

straight lines.

This raises a difficult problem:

Integer Length Problem. Can all planar graphs be drawn in the plane such that the edges are
straight lines of integer lengths?

We say that two circles kiss in the plane, if they intersect in one
point and their interiors do not intersect. For a set of circles,
we draw a graph by putting an edge between two midpoints of
kissing circles.
The following improvement of the above theorem is due to
KOEBE (1936), and it was rediscovered independently by AN-
DREEV (1970) and THURSTON (1985).

· ·

· ·

··

·

·

Theorem 5.12 (KOEBE (1936)). A graph is planar if and only if it is a kissing graph of circles.

Graphs can be represented as plane figures in many different ways. For this, consider a set
S of curves of the plane (that are continuous between their end points). The string graph of S

is the graph G = (S, E), where uv ∈ E if and only if the curves u and v intersect. At first it might
seem that every graph is a string graph, but this is not the case.

It is known that all planar graphs are string graphs (this is a trivial result).

Line Segment Problem. A graph is a line segment graph if it is a string graph for a set L of
straight line segments in the plane. Is every planar graph a line segment graph for some set L of

lines?

Note that there are also nonplanar graphs that are line segment graphs. Indeed, all complete
graphs are such graphs.

The above question remains open even in the case when
the slopes of the lines are +1, −1, 0 and∞.
A positive answer to this 4-slope problem for planar
graphs would prove the 4-Colour Theorem.

+1 −1 0 ∞
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The Minor Theorem∗

DEFINITION. A graph H is a minor of G, denoted by H ´ G, if H is isomorphic to a graph
obtained from a subgraph of G by successively contracting edges.

A recent result of ROBERTSON AND SEYMOUR (1983-2000) on graph minors is (one of) the
deepest results of graph theory. The proof goes beyond these lectures. Indeed, the proof of
Theorem 5.13 is around 500 pages long.

G a subgraph a contraction

e

Note that every subgraph H ⊆ G is a minor, H ´ G.
The following properties of the minor relation are easily established:

(i) G ´ G,
(ii) H ´ G and G ´ H imply G ∼= H,
(iii) H ´ L and L ´ G imply H ´ G.

The conditions (i) and (iii) ensure that the relation ´ is a quasi-order, that is, it is reflexive
and transitive. It turns out to be a well-quasi-order, that is, every infinite sequence G1, G2, . . .
of graphs has two graphs Gi and G j with i < j such that Gi ´ G j .

Theorem 5.13 (Minor Theorem). The minor order ´ is a well-quasi-order on graphs. In partic-

ular, in any infinite family F of graphs, one of the graphs is a (proper) minor of another.

Each property P of graphs defines a family of graphs, namely, the family of those graphs
that satisfy this property.

DEFINITION. A family F of graphs is said to be minor closed, if every minor H of a graph
G ∈ F is also in F . A property P of graphs is said to be inherited by minors, if all minors of
a graph G satisfy P whenever G does.

The following families of graphs are minor closed: the family of (1) all graphs, (2) planar
graphs (and their generalizations to other surfaces), (3) acyclic graphs.
The acyclic graphs include all trees. However, the family of trees is not closed under taking
subgraphs, and thus it is not minor closed. More importantly, the subgraph order of trees (T1 ⊆

T2) is not a well-quasi-order.
WAGNER proved a minor version of Kuratowski’s theorem:
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Theorem 5.14 (WAGNER (1937)). A graph G is nonplanar if and only if K5 ´ G or K3,3 ´ G.

Proof. Exercise. ⊓⊔

ROBERTSON AND SEYMOUR (1998) proved the Wagner’s conjecture:

Theorem 5.15 (Minor Theorem 2). Let P be a property of graphs inherited by minors. Then

there exists a finite set F of graphs such that G satisfies P if and only if G does not have a minor

from F .

One of the impressive application of Theorem 5.15 concerns embeddings of graphs on sur-
faces, see the next chapters. By Theorem 5.15, one can test (with a fast algorithm) whether a
graph can be embedded onto a surface.

Every graph can be drawn in the 3-dimensional space without crossing edges. An old problem
asks if there exists an algorithm that would determine whether a graph can be drawn so that
its cycles do not form (nontrivial) knots. This problem is solved by the above results, since the
property ‘knotless’ is inherited by minors: there exists a fast algorithm to do the job. However,
this algorithm is not known!

Hadwiger’s Problem. HADWIGER conjectured in 1943 that for every graph G,

Kχ(G) ´ G ,

that is, if χ(G) ≥ r, then G has a complete graph Kr as its minor. The conjecture is trivial for
r = 2, and it is known to hold for all r ≤ 6. The cases for r = 5 and 6 follow from the 4-Colour
Theorem.

5.3 Genus of a graph

A graph is planar, if it can be drawn in the plane without crossing edges. A plane is an important
special case of a surface. In this section we study shortly drawing graphs in other surfaces.

There are quite many interesting surfaces many of which are rather difficult to draw. We
shall study the ‘easy surfaces’ – those that are compact and orientable. These are surfaces that
have both an inside and an outside, and can be entirely characterized by the number of holes in
them. This number is the genus of the surface. There are also non-orientable compact surfaces
such as the Klein bottle and the projective plane.

Background on surfaces

We shall first have a quick look at the general surfaces and their classification without going
into the details. Consider the space R3, which has its (usual) distance function d(x , y) ∈ R of
its points.

Two figures (i.e., sets of points) A and B are topologically equivalent (or homeomorphic)
if there exists a bijection f : A → B such that f and its inverse f −1 : B → A are continuous.
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In particular, two figures are topologically equivalent if one can be deformed to the other by
bending, squeezing, stretching, and shrinking without tearing it apart or gluing any of its parts
together. All these deformations should be such that they can be undone.

A set of points X is a surface, if X is connected (there is a continuous line inside X be-
tween any two given points) and every point x ∈ X has a neighbourhood that is topologically
equivalent to an open planar disk D(a) = {x | dist(a, x) < 1}.

We deal with surfaces of the real space, and in this case a surface X is compact, if X is closed
and bounded. Note that the plane is not compact, since it it not bounded. A subset of a compact
surface X is a triangle if it is topologically equivalent to a triangle in the plane. A finite set of
triangles Ti , i = 1,2, . . . , m, is a triangulation of X if X = ∪m

i=1Ti and any nonempty intersection
Ti ∩ T j with i 6= j is either a vertex or an edge.

The following is due to RADÓ (1925).

Theorem 5.16. Every compact surface has a triangulation.

Each triangle of a surface can be oriented by choosing an order for its vertices up to cyclic
permutations. Such a permutation induces a direction for the edges of the triangle. A triangu-
lation is said to be oriented if the triangles are assigned orientations such that common edges
of two triangles are always oriented in reverse directions. A surface is orientable if it admits
an oriented triangulation.

Equivalently, orientability can be described as follows.

Theorem 5.17. A compact surface X is orientable if and only if it has no subsets that are topolog-

ically equivalent to the Möbius band.

In the Möbius band (which itself is not a surface according the above
definition) one can travel around and return to the starting point with
left and right reversed.

A connected sum X #Y of two compact surfaces is obtained by cutting an open disk off from
both surfaces and then gluing the surfaces together along the boundary of the disks. (Such a
deformation is not allowed by topological equivalence.)

The next result is known as the classification theorem of compact surfaces.

Theorem 5.18 (DEHN AND HEEGAARD (1907)). Let X be a compact surface. Then

(i) if X is orientable, then it is topologically equivalent to a sphere S = S0 or a connected sum of

tori: Sn = S1#S1#. . . #S1 for some n≥ 1, where S1 is a torus.

(ii) if X is nonorientable, then X is topologically equivalent to a connected sum of projective planes:

Pn = P#P#. . . #P for some n≥ 1, where P is a projective plane.

It is often difficult to imagine how a figure (say, a graph) can be drawn in a surface. There is
a helpful, and difficult to prove, result due to RADÓ (1920), stating that every compact surface
(orientable or not) has a description by a plane model, which consists of a polygon in the plane
such that

• each edge of the polygon is labelled by a letter,
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• each letter is a label of exactly two edges of the polygon, and
• each edge is given an orientation (clockwise or counter clockwise).

Given a plane model M , a compact surface is obtained by gluing together the edges having the
same label in the direction that they have.

a

a

b

b
Sphere

b

a

b

a

Torus

b

a

b

a

Klein bottle

a

a

b

b
Projective plane

From a plane model one can easily determine if the surface is oriented or not. It is nonori-
ented if and only if, for some label a, the edges labelled by a have the same direction when read
clockwise. (This corresponds to the Möbius band.)

A plane model, and thus a compact surface, can also be represented by a (circular) word
by reading the model clockwise, and concatenating the labels with the convention that a−1 is
chosen if the direction of the edge is counter clockwise. Hence, the sphere is represented by the
word abb−1a−1, the torus by aba−1 b−1, the Klein bottle by aba−1 b and the projective plane by
abb−1a.

These surfaces, as do the other surfaces, have many other
plane models and representing words as well. A word rep-
resenting a connected sum of two surfaces, represented by
words W1 and W2, is obtained by concatenating these words
to W1W2. By studying the relations of the representing words,
Theorem 5.18 can be proved.

Klein bottle

Drawing a graph (or any figure) in a surface can be elaborated compared to drawing in a
plane model, where a line that enters an edge of the polygon must continue by the correspond-
ing point of the other edge with the same label (since these points are identified when we glue
the edges together).

Example 5.5. On the right we have drawn K6 in the
Klein bottle. The black dots indicate, where the lines en-
ter and leave the edges of the plane model. Recall that
in the plane model for the Klein bottle the vertical edges
of the square have the same direction.
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Sphere

DEFINITION. In general, if S is a surface, then a graph G has an S-embedding, if G can be drawn
in S without crossing edges.

Let S0 be (the surface of) a sphere. According to the next
theorem a sphere has exactly the same embeddings as do the
plane. In the one direction the claim is obvious: if G is a pla-
nar graph, then it can be drawn in a bounded area of the
plane (without crossing edges), and this bounded area can
be ironed on the surface of a large enough sphere.

����
Clearly, if a graph can be embedded in one sphere, then it can be embedded in any sphere –
the size of the sphere is of no importance. On the other hand, if G is embeddable in a sphere
S0, then there is a small area of the sphere, where there are no points of the edges. We then
puncture the sphere at this area, and stretch it open until it looks like a region of the plane. In
this process no crossings of edges can be created, and hence G is planar.

Another way to see this is to use a projection of
the sphere to a plane:

Theorem 5.19. A graph G has an S0-embedding if and only if it is planar.

Therefore instead of planar embeddings we can equally well study embeddings of graphs
in a sphere. This is sometimes convenient, since the sphere is closed and it has no boundaries.
Most importantly, a planar graph drawn in a sphere has no exterior face – all faces are bounded
(by edges).

If a sphere is deformed by pressing or stretching, its embeddability properties will remain
the same. In topological terms the surface has been distorted by a continuous transformation.

Torus

Consider next a surface which is obtained from the sphere S0 by
pressing a hole in it. This is a torus S1 (or an orientable surface
of genus 1). The S1-embeddable graphs are said to have genus
equal to 1.

����
Sometimes it is easier to consider handles than holes: a torus S1 can be deformed (by a contin-
uous transformation) into a sphere with a handle.

���� ���� ����
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If a graph G is S1-embeddable, then it can be drawn in any one of the above surfaces without
crossing edges.

���� ����
Example 5.6. The smallest nonplanar graphs K5 and K3,3

have genus 1. Also, K7 has genus 1 as can be seen from the
plane model (of the torus) on the right.

1

1 1

1

2

3

4

5

6

7

Genus

Let Sn (n ≥ 0) be a sphere with n holes in it. The drawing of an S4 can already be quite
complicated, because we do not put any restrictions on the places of the holes (except that we
must not tear the surface into disjoint parts). However, once again an Sn can be transformed
(topologically) into a sphere with n handles.

������ ������
DEFINITION. We define the genus g(G) of a graph G as the smallest integer n, for which G is
Sn-embeddable.

For planar graphs, we have g(G) = 0, and, in particular, g(K4) = 0. For K5, we have g(K5) =

1, since K5 is nonplanar, but is embeddable in a torus. Also, g(K3,3) = 1.
The next theorem states that any graph G can be embedded in some surface Sn with n≥ 0.

Theorem 5.20. Every graph has a genus.

This result has an easy intuitive verification. Indeed, consider a
graph G and any of its plane (or sphere) drawing (possibly with
many crossing edges) such that no three edges cross each other
in the same point (such a drawing can be obtained). At each of
these crossing points create a handle so that one of the edges
goes below the handle and the other uses the handle to cross
over the first one.

������
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We should note that the above argument does not determine
g(G), only that G can be embedded in some Sn. However, clearly
g(G) ≤ n, and thus the genus g(G) of G exists.

The same handle can be utilized by several edges.
������

Euler’s formula with genus∗

The drawing of a planar graph G in a sphere has the advantage that the faces of the embedding
are not divided into internal and external. The external face of G becomes an ‘ordinary face’
after G has been drawn in S0.

In general, a face of an embedding of G in Sn (with g(G) = n) is a region of Sn surrounded
by edges of G. Let again ϕG denote the number of faces of an embedding of G in Sn. We omit
the proof of the next generalization of Euler’s formula.

Theorem 5.21. If G is a connected graph, then

νG − ǫG +ϕG = 2− 2g(G) .

If G is a planar graph, then g(G) = 0, and the above formula is the Euler’s formula for planar
graphs.

DEFINITION. A face of an embedding P(G) in a surface is a 2-cell, if every simple closed curve
(that does not intersect with itself) can be continuously deformed to a single point.

The complete graph K4 can be embedded in a torus such that it has a face that is not a 2-cell.
But this is because g(K4) = 0, and the genus of the torus is 1. We omit the proof of the general
condition discovered by YOUNGS:

Theorem 5.22 (YOUNGS (1963)). The faces of an embedding of a connected graph G in a surface

of genus g(G) are 2-cells.

Lemma 5.12. For a connected G with νG ≥ 3 we have 3ϕG ≤ 2ǫG.

Proof. If νG = 3, then the claim is trivial. Assume thus that νG ≥ 4. In this case we need the
knowledge that ϕG is counted in a surface that determines the genus of G (and in no surface
with a larger genus). Now every face has a border of at least three edges, and, as before, every
nonbridge is on the boundary of exactly two faces. ⊓⊔

Theorem 5.23. For a connected G with νG ≥ 3,

g(G) ≥
1

6
ǫG −

1

2
(νG − 2) .
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Proof. By the previous lemma, 3ϕG ≤ 2ǫG, and by the generalized Euler’s formula, ϕG = ǫG −

νG + 2− 2g(G). Combining these we obtain that 3ǫG − 3νG + 6− 6g(G) ≤ 2ǫG, and the claim
follows. ⊓⊔

By this theorem, we can compute lower bounds for the genus g(G) without drawing any
embeddings. As an example, let G = K8. In this case νG = 8, ǫG = 28, and so g(G) ≥ 5

3 . Since
the genus is always an integer, g(G) ≥ 2. We deduce that K8 cannot be embedded in the surface
S1 of the torus.

If H ⊆ G, then clearly g(H) ≤ g(G), since H is obtained from G by omitting vertices and
edges. In particular,

Lemma 5.13. For a graph G of order n, g(G) ≤ g(Kn).

For the complete graphs Kn a good lower bound was found early.

Theorem 5.24 (HEAWOOD (1890)). If n≥ 3, then

g(Kn) ≥
(n− 3)(n− 4)

12
.

Proof. The number of edges in Kn is equal to ǫG =
1
2 n(n − 1). By Theorem 5.23, we obtain

g(Kn)≥ (1/6)ǫG − (1/2)(n− 2) = (1/12)(n− 3)(n− 4) . ⊓⊔

This result was dramatically improved to obtain

Theorem 5.25 (RINGEL AND YOUNGS (1968)). If n≥ 3, then

g(Kn) =

¡
(n− 3)(n− 4)

12

¤
.

Therefore g(K6) = ⌈3 · 2/12⌉= ⌈1/2⌉= 1. Also, g(K7) = 1, but g(K8) = 2.
By Theorem 5.25,

Theorem 5.26. For all graphs G of order n≥ 3,

g(G) ≤

¡
(n− 3)(n− 4)

12

¤
.

Also, we know the exact genus for the complete bipartite graphs:

Theorem 5.27 ( RINGEL (1965)). For the complete bipartite graphs,

g(Km,n) =

¡
(m− 2)(n− 2)

4

¤
.
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Chromatic numbers∗

For the planar graphs G, the proof of the 4-Colour Theorem, χ(G) ≤ 4, is extremely long and
difficult. This in mind, it is surprising that the generalization of the 4-Colour Theorem for genus
≥ 1 is much easier. HEAWOOD proved a hundred years ago:

Theorem 5.28 (HEAWOOD). If g(G) = g ≥ 1, then

χ(G) ≤

�
7+
p

1+ 48g

2

�
.

Notice that for g = 0 this theorem would be the 4-colour theorem. HEAWOOD proved it ‘only’
for g ≥ 1.

Using the result of RINGEL AND YOUNGS and some elementary computations we can prove
that the above theorem is the best possible.

Theorem 5.29. For each g ≥ 1, there exists a graph G with genus g(G) = g so that

χ(G) =

�
7+
p

1+ 48g

2

�
.

If a nonplanar graph G can be embedded in a torus, then g(G) = 1, and χ(G) ≤ ⌊(7 +p
1+ 48g)/2⌋= 7. Moreover, for G = K7 we have that χ(K7) = 7 and g(K7) = 1.

Three dimensions∗

Every graph can be drawn without crossing edges in the 3-dimensional space. Such a drawing is
called spatial embedding of the graph. Indeed, such an embedding can be achieved by putting
all vertices of G on a line, and then drawing the edges in different planes that contain the line.
Alternatively, the vertices of G can be put in a sphere, and drawing the edges as straight lines
crossing the sphere inside.

A spatial embedding of a graph G is said to have linked cycles, if two cycles of G form a
link (they cannot be separated in the space). By CONWAY and GORDON in 1983 every spatial
embedding of K6 contains linked cycles.

It was shown by ROBERTSON, SEYMOUR AND THOMAS (1993) that there is a set of 7 graphs
such that a graph G has a spatial embedding without linked cycles if and only if G does not
have a minor belonging to this set.

This family of forbidden graphs was originally found by SACHS (without proof), and it con-
tains K6 and the Petersen graph. Every graph in the set has 15 edges, which is curious.

For further results and proofs concerning graphs in surfaces, see

B. MOHAR AND C. THOMASSEN, “Graphs on Surfaces”, Johns Hopkins, 2001.
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Directed Graphs

6.1 Digraphs

In some problems the relation between the objects is not sym-
metric. For these cases we need directed graphs, where the
edges are oriented from one vertex to another.
As an example consider a map of a small town. Can you make
the streets one-way, and still be able to drive from one house
to another (or exit the town)?

Definitions

DEFINITION. A digraph (or a directed graph) D = (VD, ED) consists of the vertices VD and
(directed) edges ED ⊆ VD×VD (without loops vv). We still write uv for (u, v), but note that now
uv 6= vu. For each pair e = uv define the inverse of e as e−1 = vu (= (v,u)).

Note that e ∈ D does not imply e−1 ∈ D.

DEFINITION. Let D be a digraph. Then A is its

• subdigraph, if VA ⊆ VD and EA ⊆ ED,
• induced subdigraph, A= D[X ], if VA = X and EA = ED ∩ (X × X ).

The underlying graph U(D) of a digraph D is the graph
on VD such that if e ∈ D, then the undirected edge with
the same ends is in U(D).

A digraph D is an orientation of a graph G, if G = U(D) and e ∈ D implies e−1 /∈ D. In this
case, D is said to be an oriented graph.

DEFINITION. Let D be a digraph. A walk W = e1e2 . . . ek : u
⋆
−→ v of U(D) is a directed walk,

if ei ∈ D for all i ∈ [1, k]. Similarly, we define directed paths and directed cycles as directed
walks and closed directed walks without repetitions of vertices.

The digraph D is di-connected, if, for all u 6= v, there exist directed paths u
⋆
−→ v and v

⋆
−→ u.

The maximal induced di-connected subdigraphs are the di-components of D.

Note that a graph G = U(D)might be connected, although the digraph D is not di-connected.
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DEFINITION. The indegree and the outdegree of a vertex are defined as follows

d I
D(v) = |{e ∈ D | e = x v}|, dO

D (v) = |{e ∈ D | e = v x}| .

We have the following handshaking lemma. (You offer and accept a handshake.)

Lemma 6.1. Let D be a digraph. Then

∑

v∈D

d I
D
(v) = |D|=
∑

v∈D

dO
D
(v).

Directed paths

The relationship between paths and directed paths is in gen-
eral rather complicated. This digraph has a path of length
five, but its directed paths are of length one.

There is a nice connection between the lengths of directed paths and the chromatic number
χ(D) = χ(U(D)).

Theorem 6.1 (ROY (1967),GALLAI (1968)). A digraph D has a directed path of length χ(D)−1.

Proof. Let A⊆ ED be a minimal set of edges such that the subdigraph D−A contains no directed
cycles. Let k be the length of the longest directed path in D−A.

For each vertex v ∈ D, assign a colour α(v) = i, if a longest directed path from v has length
i − 1 in D−A. Here 1≤ i ≤ k+ 1.

First we observe that if P = e1e2 . . . er (r ≥ 1) is any directed path u
⋆
−→ v in D−A, then

α(u) 6= α(v). Indeed, if α(v) = i, then there exists a directed path Q : v
⋆
−→ w of length i − 1,

and PQ is a directed path, since D−A does not contain directed cycles. Since PQ : u
⋆
−→ w,

α(u) 6= i = α(v). In particular, if e = uv ∈ D−A, then α(u) 6= α(v).
Consider then an edge e = vu ∈ A. By the minimality of A, (D−A)+e contains a directed cycle

C : u
⋆
−→ v −→ u, where the part u

⋆
−→ v is a directed path in D−A, and hence α(u) 6= α(v). This

shows that α is a proper colouring of U(D), and therefore χ(D)≤ k + 1, that is, k ≥ χ(D)− 1.
⊓⊔

The bound χ(D)− 1 is the best possible in the following sense:

Theorem 6.2. Every graph G has an orientation D, where the longest directed paths have lengths

χ(G)− 1.

Proof. Let k = χ(G) and let α be a proper k-colouring of G. As usual the set of colours is
[1, k]. We orient each edge uv ∈ G by setting uv ∈ D, if α(u) < α(v). Clearly, the so obtained
orientation D has no directed paths of length ≥ k− 1. ⊓⊔

DEFINITION. An orientation D of an undirected graph G is acyclic, if it has no directed cycles.
Let a(G) be the number of acyclic orientations of G.
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The next result is charming, since χG(−1) measures the number of proper colourings of G

using −1 colours!

Theorem 6.3 (STANLEY (1973)). Let G be a graph of order n. Then the number of the acyclic

orientations of G is

a(G) = (−1)nχG(−1) ,

where χG is the chromatic polynomial of G.

Proof. The proof is by induction on ǫG. First, if G is discrete, then χG(k) = kn, and a(G) = 1=
(−1)n(−1)n = (−1)nχG(−1) as required.

Now χG(k) is a polynomial that satisfies the recurrence χG(k) = χG−e(k)−χG∗e(k). To prove
the claim, we show that a(G) satisfies the same recurrence.

Indeed, if
a(G) = a(G−e) + a(G ∗ e) (6.1)

then, by the induction hypothesis,

a(G) = (−1)nχG−e(−1) + (−1)n−1χG∗e(−1) = (−1)nχG(−1) .

For (6.1), we observe that every acyclic orientation of G gives an acyclic orientation of G−e.
On the other hand, if D is an acyclic orientation of G−e for e = uv, it extends to an acyclic
orientation of G by putting e1 : u → v or e2 : v → u. Indeed, if D has no directed path u

⋆
−→ v,

we choose e2, and if D has no directed path v
⋆
−→ u, we choose e1. Note that since D is acyclic,

it cannot have both ways u
⋆
−→ v and v

⋆
−→ u.

We conclude that a(G) = a(G−e) + b, where b is the number of acyclic orientations D of
G−e that extend in both ways e1 and e2. The acyclic orientations D that extend in both ways
are exactly those that contain

neither u
⋆
−→ v nor v

⋆
−→ u as a directed path. (6.2)

Each acyclic orientation of G ∗ e corresponds in a natural way to an acyclic orientation D of
G−e that satisfies (6.2). Therefore b = a(G ∗ e), and the proof is completed. ⊓⊔

One-way traffic

Every graph can be oriented, but the result may not be di-connected. In the one-way traffic
problem the resulting orientation should be di-connected, for otherwise someone is not able to
drive home. ROBBINS’ theorem solves this problem.

DEFINITION. A graph G is di-orientable, if there is a di-connected oriented graph D such that
G = U(D).

Theorem 6.4 (ROBBINS (1939)). A connected graph G is di-orientable if and only if G has no

bridges.
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Proof. If G has a bridge e, then any orientation of G has at least two di-components (both sides
of the bridge).

Suppose then that G has no bridges. Hence G has a cycle C , and a cycle is always di-
orientable. Let then H ⊆ G be maximal such that it has a di-orientation DH . If H = G, then
we are done.

Otherwise, there exists an edge e = vu ∈ G such that u ∈ H but
v /∈ H (because G is connected). The edge e is not a bridge and
thus there exists a cycle

C ′ = ePQ : v −→ u
⋆
−→ w

⋆
−→ v

in G, where w is the last vertex inside H.

w

u v

P

e

QP ′

In the di-orientation DH of H there is a directed path P ′ : u
⋆
−→ w. Now, we orient e : v −→ u

and the edges of Q in the direction Q : w
⋆
−→ v to obtain a directed cycle eP ′Q : v −→ u

⋆
−→ w

⋆
−→ v.

In conclusion, G[VH ∪ VC] has a di-orientation, which contradicts the maximality assumption
on H. This proves the claim. ⊓⊔

Example 6.1. Let D be a digraph. A directed Euler tour of D is a directed closed walk that
uses each edge exactly once. A directed Euler trail of D is a directed walk that uses each edge
exactly once.

The following two results are left as exercises.

(1) Let D be a digraph such that U(D) is connected. Then D has a directed Euler tour if and only

if d I
D(v) = dO

D (v) for all vertices v.

(2) Let D be a digraph such that U(D) is connected. Then D has a directed Euler trail if and only

if d I
D(v) = dO

D (v) for all vertices v with possibly excepting two vertices x , y for which |d I
D(v) −

dO
D (v)|= 1.

The above results hold equally well for multidigraphs, that is, for directed graphs, where we
allow parallel directed edges between the vertices.

Example 6.2. The following problem was first studied by HUTCHINSON AND WILF (1975) with
a motivation from DNA sequencing. Consider words over an alphabet A= {a1, a2, . . . , an} of n

letters, that is, each word w is a sequence of letters. In the case of DNA, the letters are A, T, C , G.
In a problem instance, we are given nonnegative integers si and ri j for 1 ≤ i, j ≤ n, and the
question is: does there exist a word w in which each letter ai occurs exactly si times, and ai is
followed by a j exactly ri j times.

For instance, if n = 2, s1 = 3, and r11 = 1, r12 = 2, r21 = 1, r22 = 0, then the word
a1a2a1a1a2 is a solution to the problem.

Consider a multidigraph D with VD = A for which there are ri j edges aia j. It is rather obvious
that a directed Euler trail of D gives a solution to the sequencing problem.

Tournaments

DEFINITION. A tournament T is an orientation of a complete graph.
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Example 6.3. There are four tournaments of four vertices that are not isomorphic with each
other. (Isomorphism of directed graphs is defined in the obvious way.)

Theorem 6.5 (RÉDEI (1934)). Every tournament has a directed Hamilton path.

Proof. The chromatic number of Kn is χ(Kn) = n, and hence by Theorem 6.1, a tournament
T of order n has a directed path of length n− 1. This is then a directed Hamilton path visiting
each vertex once. ⊓⊔

The vertices of a tournament can be easily reached from one vertex (sometimes called the
king).

Theorem 6.6 (LANDAU (1953)). Let v be a vertex of a tournament T of maximum outdegree.

Then for all u, there is a directed path v
⋆
−→ u of length at most two.

Proof. Let T be an orientation of Kn, and let dO
T
(v) = d be the maximum outdegree in T .

Suppose that there exists an x , for which the directed distance from v to x is at least three. It
follows that x v ∈ T and xu ∈ T for all u with vu ∈ T . But there are d vertices in A= {y | v y ∈

T}, and thus d+1 vertices in {y | x y ∈ T}= A∪{v}. It follows that the outdegree of x is d +1,
which contradicts the maximality assumption made for v. ⊓⊔

Problem. Ádám’s conjecture states that in every digraph D with a directed cycle there exists an

edge uv the reversal of which decreases the number of directed cycles. Here the new digraph has
the edge vu instead of uv.

Example 6.4. Consider a tournament of n teams that play once against each other, and suppose
that each game has a winner. The situation can be presented as a tournament, where the vertices
correspond to the teams vi, and there is an edge vi v j, if vi won v j in their mutual game.

DEFINITION. A team v is a winner (there may be more than one winner), if v comes out with
the most victories in the tournament.

Theorem 6.6 states that a winner v either defeated a team u or v defeated a team that
defeated u.

A ranking of a tournament is a linear ordering of the teams vi1
> vi2

> · · ·> vin
that should

reflect the scoring of the teams. One way of ranking a tournament could be by a Hamilton path:
the ordering can be obtained from a directed Hamilton path P : vi1

−→ vi2
−→ . . . −→ vin

. However,
a tournament may have several directed Hamilton paths, and some of these may do unjust for
the ‘real’ winner.
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Example 6.5. Consider a tournament of six teams 1,2, . . . , 6,
and let T be the scoring digraph as in the figure. Here 1 −→
2 −→ 4 −→ 5 −→ 6 −→ 3 is a directed Hamilton path, but this
extends to a directed Hamilton cycle (by adding 3 −→ 1)! So
for every team there is a Hamilton path, where it is a winner,
and in another, it is a looser.

6

5

1

4

2

3

Let s1( j) = dO
T ( j) be the winning number of the team j (the number of teams beaten by j).

In the above tournament,

s1(1) = 4, s1(2) = 3, s1(3) = 3, s1(4) = 2, s1(5) = 2, s1(6) = 1 .

So, is team 1 the winner? If so, is 2 or 3 next? Define the second-level scoring for each team
by

s2( j) =
∑

ji∈T

s1(i) .

This tells us how good teams j beat. In our example, we have

s2(1) = 8, s2(2) = 5, s2(3) = 9, s2(4) = 3, s2(5) = 4, s2(6) = 3 .

Now, it seems that 3 is the winner,but 4 and 6 have the same score. We continue by defining
inductively the mth-level scoring by

sm( j) =
∑

ji∈T

sm−1(i) .

It can be proved (using matrix methods) that for a di-connected tournament with at least four
teams, the level scorings will eventually stabilize in a ranking of the tournament: there exits an m

for which the mth-level scoring gives the same ordering as do the (m+ k)th-level scorings for
all k ≥ 1. If T is not di-connected, then the level scoring should be carried out with respect to
the di-components.

In our example the level scoring gives 1 −→ 3 −→ 2 −→ 5 −→ 4 −→ 6 as the ranking of the
tournament.
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6.2 Network Flows

Various transportation networks or water pipelines are conveniently represented by weighted
directed graphs. These networks usually possess also some additional requirements. Goods are
transported from specific places (warehouses) to final locations (marketing places) through a
network of roads. In modelling a transportation network by a digraph, we must make sure that
the number of goods remains the same at each crossing of the roads. The problem setting for
such networks was proposed by T.E. Harris in the 1950s. The connection to Kirchhoff ’s Current

Law (1847) is immediate. According to this law, in every electrical network the amount of
current flowing in a vertex equals the amount flowing out that vertex.

Flows

DEFINITION. A network N consists of

• an underlying digraph D = (V, E),
• two distinct vertices s and r, called the source and the sink

of N , and
• a capacity function α: V ×V → R+ (nonnegative real num-

bers), for which α(e) = 0, if e /∈ E.

Denote VN = V and EN = E.

s r

6

5

4

4

5

2

5

2

4

4

Let A⊆ VN be a set of vertices, and f : VN ×VN → R any function such that f (e) = 0, if e /∈ N .
We adopt the following notations:

[A,A] = {e ∈ D | e = uv, u ∈ A, v /∈ A} ,

f +(A) =
∑

e∈[A,A]

f (e) and f −(A) =
∑

e∈[A,A]

f (e) .

In particular,
f +(u) =
∑

v∈N

f (uv) and f −(u) =
∑

v∈N

f (vu) .

DEFINITION. A flow in a network N is a function f : VN × VN → R+ such that

0≤ f (e) ≤ α(e) for all e, and f −(v) = f +(v) for all v /∈ {s, r} .

Example 6.6. The value f (e) can be taught of as the rate at which transportation actually hap-
pens along the channel e which has the maximum capacity α(e). The second condition states
that there should be no loss.

If N = (D, s, r,α) is a network of water pipes, then the
value α(e) gives the capacity (x m3/min) of the pipe e.
The previous network has a flow that is indicated on the
right.

s r

4

5

3

4

4

0

4

1

3

4
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A flow f in N is something that the network can handle. E.g., in the above figure the source
should not try to feed the network the full capacity (11 m3/min) of its pipes, because the
junctions cannot handle this much water.

DEFINITION. Every network N has a zero flow defined by f (e) = 0 for all e. For a flow f and
each subset A⊆ VN , define the resultant flow from A and the value of f as the numbers

val( fA) = f +(A)− f −(A) and val( f ) = val( fs) (= f +(s)− f −(s)) .

A flow f of a network N is a maximum flow, if there does not exist any flow f ′ such that
val( f )< val( f ′).

The value val( f ) of a flow is the overall number of goods that are (to be) transported through
the network from the source to the sink. In the above example, val( f ) = 9.

Lemma 6.2. Let N = (D, s, r,α) be a network with a flow f .

(i) If A⊆ N \ {s, r}, then val( fA) = 0.

(ii) val( f ) = −val( fr ).

Proof. Let A⊆ N \ {s, r}. Then

0=
∑

v∈A

( f +(v)− f −(v)) =
∑

v∈A

f +(v)−
∑

v∈A

f −(v) = f +(A)− f −(A) = val( fA),

where the third equality holds since the values of the edges uv with u, v ∈ A cancel each out.
The second claim is also clear. ⊓⊔

Improvable flows

Let f be a flow in a network N , and let P = e1e2 . . . en be an undirected path in N where an edge
ei is along P, if ei = vi vi+1 ∈ N , and against P, if ei = vi+1vi ∈ N .

We define a nonnegative number ι(P) for P as follows:

ι(P) =min
ei

ι(e), where ι(e) =

¨
α(e)− f (e) if e is along P ,

f (e) if e is against P.

DEFINITION. Let f be a flow in a network N . A path P : s
⋆
−→

r is ( f -)improvable, if ι(P) > 0.

On the right, the bold path has value ι(P) = 1, and there-
fore this path is improvable.

s r

5

3

4

4

0

4

4

4
3

1

Lemma 6.3. Let N be a network. If f is a maximum flow of N, then it has no improvable paths.
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Proof. Define

f ′(e) =






f (e) + ι(P) if e is along P ,

f (e)− ι(P) if e is against P ,

f (e) if e is not in P .

Then f ′ is a flow, since at each intermediate vertex v /∈

{s, r}, we have ( f ′)−(v) = ( f ′)+(v), and the capacities of
the edges are not exceeded. Now val( f ′) = val( f ) + ι(P),
since P has exactly one edge sv ∈ N for the source s.
Hence, if ι(P) > 0, then we can improve the flow.

s r

5

3

4

4

0

4

4

5

2

2

⊓⊔

Max-Flow Min-Cut Theorem

DEFINITION. Let N = (D, s, r,α) be a network. For a subset S ⊂ VN with s ∈ S and r /∈ S, let the
cut by S be

[S] = [S,S] (= {uv ∈ N | u ∈ S, v /∈ S}) .

The capacity of the cut [S] is the sum

α[S] = α+(S) =
∑

e∈[S]

α(e) .

A cut [S] is a minimum cut, if there is no cut [R]
with α[R] < α[S].

Example 6.7. In our original network the capacity of the
cut for the indicated vertices is equal to 10.

s r
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Lemma 6.4. For a flow f and a cut [S] of N,

val( f ) = val( fS) = f +(S)− f −(S) .

Proof. Let SI = S \ {s}. Now val(SI) = 0 (since SI ⊆ N \ {s, r}), and val( f ) = val( fs). Hence

val( fS) =val( fs)−
∑

v∈SI

f (sv) +
∑

v∈SI

f (vs)

+ val( fSI
) +
∑

v∈SI

f (sv)−
∑

v∈SI

f (vs)

=val( fs) = val( f ) .

⊓⊔

Theorem 6.7. For a flow f and any cut [S] of N, val( f ) ≤ α[S]. Furthermore, equality holds if

and only if for each u ∈ S and v /∈ S,

(i) if e = uv ∈ N, then f (e) = α(e),
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(ii) if e = vu ∈ N, then f (e) = 0.

Proof. By the definition of a flow,

f +(S) =
∑

e∈[S]

f (e) ≤
∑

e∈[S]

α(e) = α[S] ,

and f −(S) ≥ 0. By Lemma 6.4, val( f ) = val( fS) = f +(S)− f −(S), and hence val( f ) ≤ α[S], as
required. Also, the equality val( f ) = α[S] holds if and only if

(1) f +(S) = α[S] and (2) f −(S) = 0. This holds if and only if f (e) = α(e) for all e ∈ [S] (since
f (e) ≤ α(e)), and

(2) f (e) = 0 for all e = vu with u ∈ S, v /∈ S.

This proves the claim. ⊓⊔

In particular, if f is a maximum flow and [S] a minimum cut, then

val( f )≤ α[S] .

Corollary 6.1. If f is a flow and [S] a cut such that val( f ) = α[S], then f is a maximum flow

and [S] a minimum cut.

The following main result of network flows was proved independently by ELIAS, FEINSTEIN,
SHANNON, by FORD AND FULKERSON, and by ROBACKER in 1955 – 56. The present approach is
due to Ford and Fulkerson.

Theorem 6.8. A flow f of a network N is maximum if and only if there are no f -improvable paths

in N.

Proof. By Lemma 6.3, a maximum flow cannot have improvable paths.
Conversely, assume that N contains no f -improvable paths, and let

SI = {u ∈ N | for some path P : s
⋆
−→ u, ι(P) > 0} .

Set S = SI ∪ {s}.
Consider an edge e = uv ∈ N , where u ∈ S and v /∈ S. Since u ∈ S, there exists a path

P : s
⋆
−→ u with ι(P) > 0. Moreover, since v /∈ S, ι(Pe) = 0 for the path Pe : s

⋆
−→ v. Therefore

ι(e) = 0, and so f (e) = α(e).
By the same argument, for an edge e = vu ∈ N with v /∈ S and u ∈ S, f (e) = 0.
By Theorem 6.7, we have val( f ) = α[S]. Corollary 6.1 implies now that f is a maximum

flow (and [S] is a minimum cut). ⊓⊔

Theorem 6.9. Let N be a network, where the capacity function α: V × V → N has integer values.

Then N has a maximum flow with integer values.

Proof. Let f0 be the zero flow, f0(e) = 0 for all e ∈ V ×V . A maximum flow is constructed using
Lemma 6.3 by increasing and decreasing the values of the edges by integers only. ⊓⊔
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The proof of Theorem 6.8 showed also

Theorem 6.10 (Max-Flow Min-Cut). In a network N, the value val( f ) of a maximum flow equals

the capacity α[S] of a minimum cut.

Applications to graphs⋆

The Max-Flow Min-Cut Theorem is a strong result, and many of our previous results follow
from it.

We mention a connection to the Marriage Theorem, Theorem 3.9. For this, let G be a bipartite
graph with a bipartition (X , Y ), and consider a network N with vertices {s, r} ∪ X ∪ Y . Let the
edges (with their capacities) be sx ∈ N (α(sx) = 1), yr ∈ N (α(yr) = 1) for all x ∈ X , y ∈ Y

together with the edges x y ∈ N (α(x y) = |X |+ 1), if x y ∈ G for x ∈ X , y ∈ Y . Then G has a
matching that saturates X if and only if N has a maximum flow of value |X |. Now Theorem 6.10
gives Theorem 3.9.

Next we apply the theorem to unit networks, where the capacities of the edges are equal
to one (α(e) = 1 for all e ∈ N). We obtain results for (directed) graphs.

Lemma 6.5. Let N be a unit network with source s and sink r.

(i) The value val( f ) of a maximum flow equals the maximum number of edge-disjoint directed

paths s
⋆
−→ r.

(ii) The capacity of a minimum cut [S] equals the minimum number of edges whose removal de-

stroys the directed connections s
⋆
−→ r from s to r.

Proof. Exercise. ⊓⊔

Corollary 6.2. Let u and v be two vertices of a digraph D. The maximum number of edge-disjoint

directed paths u
⋆
−→ v equals the minimum number of edges, whose removal destroys all the directed

connections u
⋆
−→ v from D.

Proof. A network N with source s and sink r is obtained by setting the capacities equal to 1.
The claim follows from Lemma 6.5 and Corollary 6.10. ⊓⊔

Corollary 6.3. Let u and v be two vertices of a graph G. The maximum number of edge-disjoint

paths u
⋆
−→ v equals the minimum number of edges, whose removal destroys all the connections

u
⋆
−→ v from G.

Proof. Consider the digraph D that is obtained from G by replacing each (undirected) edge uv ∈

G by two directed edges uv ∈ D and vu ∈ D. The claim follows then easily from Corollary 6.2.
⊓⊔

The next corollary is Menger’s Theorem for edge connectivity.

Corollary 6.4. A graph G is k-edge connected if and only if any two distinct vertices of G are

connected by at least k independent paths.

Proof. The claim follows immediately from Corollary 6.3. ⊓⊔
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Seymour’s 6-flows∗

DEFINITION. A k-flow (H,α) of an undirected graph G is an orientation H of G together with
an edge colouring α: EH → [0, k − 1] such that for all vertices v ∈ V ,

∑

e=vu∈H

α(e) =
∑

f=uv∈H

α( f ) , (6.3)

that is, the sum of the incoming values equals the sum of the outgoing values. A k-flow is
nowhere zero, if α(e) 6= 0 for all e ∈ H.

In the k-flows we do not have any source or sink. For convenience, let α(e−1) = −α(e) for

all e ∈ H in the orientation H of G so that the condition (6.3) becomes
∑

e=vu∈H

α(e) = 0 . (6.4)

Example 6.8. A graph with a nowhere zero 4-flow.
1

2

2

2

1

3

1

The condition (6.4) generalizes to the subsets A⊆ VG in a natural way,
∑

e∈[A,A]

α(e) = 0 , (6.5)

since the values of the edges inside A cancel out each other. In particular,

Lemma 6.6. If G has a nowhere zero k-flow for some k, then G has no bridges.

Tutte’s Problem. It was conjectured by TUTTE (1954) that every bridgeless graph has a nowhere

zero 5-flow. The Petersen graph has a nowhere zero 5-flow but does not have any nowhere 4-
flows, and so 5 is the best one can think of. Tutte’s conjecture resembles the 4-Colour Theorem,
and indeed, the conjecture is known to hold for the planar graphs. The proof of this uses the
4-Colour Theorem.

In order to fully appreciate Seymour’s result, Theorem 6.11, we mention that it was proved
as late as 1976 (by JAEGER) that every bridgeless G has a nowhere zero k-flow for some integer
k.

SEYMOUR’s remarkable result reads as follows:

Theorem 6.11 (SEYMOUR’s (1981)). Every bridgeless graph has a nowhere zero 6-flow.

Proof. Omitted. ⊓⊔
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DEFINITION. The flow number f (G) of a bridgeless graph G is the least integer k for which G

has a nowhere zero k-flow.

Theorem 6.12. A connected graph G has a flow number f (G) = 2 if and only if it is eulerian.

Proof. Suppose G is eulerian, and consider an Euler tour W of G. Let D be the orientation of
G corresponding to the direction of W . If an edge uv ∈ D, let α(e) = 1. Since W arrives and
leaves each vertex equally many times, the function α is a nowhere zero 2-flow.

Conversely, let α be a nowhere zero 2-flow of an orientation D of G. Then necessarily the
degrees of the vertices are even, and so G is eulerian. ⊓⊔

Example 6.9. For each 3-regular bipartite graph G, we have f (G) ≤ 3. Indeed, let G be (X , Y )-
bipartite. By Corollary 3.1, a 3-regular graph has a perfect matching M . Orient the edges e ∈ M

from X to Y , and set α(e) = 2. Orient the edges e /∈ M from Y to X , and set α(e) = 1. Since each
x ∈ X has exactly one neighbour y1 ∈ Y such that x y1 ∈ M , and two neighbours y2, y3 ∈ Y

such that x y2, x y3 /∈ M , we have that f (G) ≤ 3.

Theorem 6.13. We have f (K4) = 4, and if n> 4, then

f (Kn) =

¨
2 if n is odd ,

3 if n is even .

Proof. Exercise. ⊓⊔
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N P-complete problems, 3
2-sets, 4

acyclic, 18
digraph, 83

addressable, 22
adjacency matrix, 6
adjacent, 4
augmented path, 35
available colour, 42, 52

bipartite, 16
bond, 24
boundary, 61
bridge, 18

capacity, 90
capacity function, 88
choosable, 70
chromatic number χ(G), 52
chromatic polynomial χG , 56
closed walk, 12
colouring, 52
complement G, 10
complete bipartite Km,k, 16
complete graph Kn, 10
connected, 24
connected (component), 13
connected sum, 75
connectivity number κ(G), 24
contracted vertex, 57
critical, 53
crossing number, 67
cube, 11
cut (in a network), 90
cut vertex, 23
cycle, 12

degree dG(v), 7

di-connected di-component, 82
di-orientable, 84
digraph, 82
directed

Euler tour, trail, 85
walk, path, cycle, 82

directed graphs (digraph), 5
disconnected, 13
disconnecting set, 27
discrete graph, 10
disjoint walks, 12
distance, 13
distance function, 5

edge, 4
edge chromatic number χ ′(G), 42
edge colouring, 5, 42
edge cut, 24
embedding, 77
end (of a path), 12
end (of an edge), 4
Euler trail , tour, 29
Euler’s formula, 62
eulerian, 29
even component, 38
even cycle, 12
exterior: face, boundary,vertex,edge, 61

face, 61
fan, 28
flow, 88
flow number, 94
forest, 18

genus, 78
graph, 4
graphical sequence, 9

Hamilton path, cycle, 31
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hamiltonian, 31
Hamming distance, 22
homeomorphic, 74

improvable (path), 89
improvement (colouring), 43
incident colours, 42
indegree, 83
independent paths, 12
induced subdigraph, 82
induced subgraph, 8
interior: face, vertex, edge, 61
intersection graph, 6
inverse pair, 82
inverse walk (path), 12
isolated vertex, 7
isomorphic, 5

join of walks, 12

king, 86
kiss (circles), 72
Kuratowski graph, 64

latin rectangle, 38
latin square, 38
leaf, 7
line segment graph, 72
linked cycles, 81
list chromatic number, 70
list colouring, 70
loop, 4

Möbius band, 75
map, 68
matching, 35
maximal planar graph, 63
maximum

degree ∆(G), 7
flow, 89
matching, 35

minimum
cut, 90
degree δ(G), 7
weighted distance, 13

minor, 73
monochromatic, 48
multigraph, 4

near-triangulation, 71
neighbour, 4
neighbourhood NG(v), 7
network, 88
nontrivial graph, 10

odd component, 38
odd cycle, 12
optimal colouring, 43
order νG , 4
orientable surface, 75
orientation, 82
oriented, 75
oriented graph, 82
outdegree, 83

parallel edges, 4
partition, 3
path, 12
perfect matching, 35
Petersen graph, 11, 32
planar graph, 60
plane embedding, 60
plane model, 75
proper colouring, 42, 52

Ramsey number, 48
ranking, 86
regular graph, 10
resultant flow, 89

same parity, 3
saturate (matching), 35
separates, 23
separating set, 23
Shannon’s switching game, 20
sink and source, 88
size ǫG , 4
spanning subgraph, 8
spanning tree, 20
spatial embedding, 81
sphere, 77
sphere with a handle, 77
stable matching, 40
stable set, 16
subdigraph, 82
subdivision, 60
subgraph, 8
surface, 75
symmetric difference, 3

topologically equivalent, 74
torus, 77
tournament, 85
trail, 29
transversal, 37
tree, 18
triangle, 75
triangle-free, 52
triangulation, 75
trivial graph, 10
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trivial path, 12
2-cell, 79
2-switch, 9

underlying digraph, 88
underlying graph, 82
unit networks, 92

vertex, 4

vertex colouring, 5

walk, 11
weight, 13
weight function, 5
wheel, 51
winning number, 87

zero flow, 89
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