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THE FOURIER TRANSFORM AND TEMPERED
DISTRIBUTIONS
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In this chapter, we introduce the Fourier transform and study its more el-
ementary properties, and extend the definition to the space of tempered dis-
tributions. We also give some characterizations of operators commuting with
translations.

1.1 The L' theory of the Fourier transform

We begin by introducing some notation that will be used throughout this
work. R™ denotes n-dimensional real Euclidean space. We consistently write
x = (x1,22,  ,Tpn), & = (&1,&2, -+ ,&n), - -+ for the elements of R". The inner
product of z, £ € R™ is the number z - £ = Z?Zl x;€;, the norm of x € R" is the
nonnegative number |z| = \/x - x. Furthermore, dz = dzidxs - - - dx,, denotes the
element of ordinary Lebesgue measure.

We will deal with various spaces of functions defined on R". The simplest
of these are the LP = LP(R") spaces, 1 < p < oo, of all measurable functions
fsuch that [|f[, = ([gn |f(x)|pda:)1/p < o0o. The number ||f||, is called the L?
norm of f. The space L>°(R") consists of all essentially bounded functions on R"
and, for f € L>®(R"), we let || f||c be the essential supremum of |f(z)|, x € R™.
Often, the space Cy(R") of all continuous functions vanishing at infinity, with

1



-2- 1. The Fourier Transform and Tempered Distributions

the L> norm just described, arises more naturally than L>° = L*(R"). Unless
otherwise specified, all functions are assumed to be complex valued; it will be
assumed, throughout the note, that all functions are (Borel) measurable.

In addition to the vector-space operations, L' (R") is endowed with a “mul-
tiplication” making this space a Banach algebra. This operation, called convolu-
tion, is defined in the following way: If both f and g belong to L!(R"), then their
convolution h = f x g is the function whose value at z € R" is

h(z) —/R f(x = y)g(y)dy.

One can show by an elementary argument that f(z — y)g(y) is a measurable
function of the two variables = and y. It then follows immediately from Fib-
ini’s theorem on the interchange of the order of integration that h € L!(R™)
and [|A|l1 < [|fll1]lg]/1- Furthermore, this operation is commutative and associa-
tive. More generally, we have, with the help of Minkowski’s integral inequality
| [ F(z,y)dyllr < [ | F(x,y)||»dy, the following result:

Theorem 1.1. If f € LP(R"), p € [1,00|, and g € L*(R") then h = f * g is well
defined and belongs to LP(R™). Moreover,

121l < I £1lpllglla-

Now, we first consider the Fourier! transform of L! functions.

Definition 1.2. Let w € R\ {0} be a constant. If f € LY(R™), then its Fourier
transform is 7 f or f : R™ — C defined by
F1©) = [ e f(a)da 1)

n

for all £ € R™.

We now continue with some properties of the Fourier transform. Before do-
ing this, we shall introduce some notations. For a measurable function f on R",
x € R" and a # 0 we define the translation and dilation of f by

Ty f(z) =f(z —y), (1.2)
daf () =f(ax). (1.3)

Hean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician
and physicist best known for initiating the investigation of Fourier series and their applications
to problems of heat transfer and vibrations. The Fourier transform and Fourier’s Law are also
named in his honor. Fourier is also generally credited with the discovery of the greenhouse effect.



1.1. The L?! theory of the Fourier transform -3-

Proposition 1.3. Given f,g € L'(R"), x,y,¢ € R, a multiindex, a,b € C, e € R
and e # 0, we have

(i) Linearity: 7 (af +bg) = a7 f + bFg.

(i) Translation: Fr,f(£) = e “WEf(£).

(iti) Modulation: F (e~ f (x))(€) = 7, f(€).

(iv) Scaling: F5.1(€) = |e| 5.1 ().

(v) Differentiation: F0°f(£) = (wi€)*f (&), 0 (&) = F ((—wiz)* f(x))(£).

(vi) Convolution: F(f * g)(€) = f(€)g(€).

/\

(vii) Transformation: .F (f o A)(€) = f(AE), where A is an orthogonal matrix and
& is a column vector.

(viii) Conjugation: f(x) = f(—g).
Proof. These results are easy to be verified. We only prove (vii). In fact,

F(foa)) = [ e pAnde = [ e gy

—wiATy —wiy- £
= [ ey = [ e gy = fag),
where we used the change of variables y = Az and the fact that A~! = AT and
|det A] = 1. [ |
Corollary 1.4. The Fourier transform of a radial function is radial.
Proof. Let £, € R™ with |£| = |n|. Then there exists some orthogonal matrix A
such that A¢ = 7. Since f is radial, we have f = f o A. Then, it holds

Ffn) = Ff(A&) = F(f o A)(E) = F [ (&),
by (vii) in Proposition 1.3. |
It is easy to establish the following results:

Theorem 1.5 (Uniform continuity). (i) The mapping .# is a bounded linear trans-
formation from L*(R™) into L>°(R™). In fact, |.Z flloo < || f|l1-
(ii) If f € LY(R™), then .Z f is uniformly continuous.
Proof. (i) is obvious. We now prove (ii). By
fern - o = [ ewiresint Sy (wys,

R”

we have

Fe 1) = HOI< [ e 1| f(a) dz

</ et |5 >\dx+2/ f(@)|da
|z|<r |z|>r
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< /m@ (ol Al () dz + 2 / f (@) |de

|z|>r
::Il + I27
since for any 6 > 0

le? — 1| = \/(0050 —1)2 +5sin?6 = V2 — 2cosf = 2|sin(/2)] < |4).
Given any £ > 0, we can take r so large that I> < ¢/2. Then, we fix this r and
take |h| small enough such that I; < /2. In other words, for given € > 0, there
exists a sufficiently small § > 0 such that | f(¢ + h) — f(€)] < e when |h| < 6,
where ¢ is independent of . |

Ex. 1.6. Suppose that a signal consists of a single rectangular pulse of width 1 and
height 1. Let’s say that it gets turned on at x = —% and turned off at x = 1. The

2
standard name for this “normalized” rectangular pulse is

1, if —i<x<i, —_
II(z) = rect(x) := { 0 ;therzuise. 2 1

_I 1 T
2 2

It is also called, variously, the normalized boxcar function, the top hat function, the in-
dicator function, or the characteristic function for the interval (—1/2,1/2). The Fourier

transform of this signal is

N . 1/2 . —wizg |1/2 9
II(¢) = / e ¥ I (z)dr = / e~wintdy = & = —sin we
R

_1/2 —wif _1/2 wf 2
when £ # 0. When & = 0, T1(0) = f_l{% dx = 1. By I'Hopital’s rule,
s w w wé
. ~ Y Sin 2 1 5 (O] 5 _ _ ~
%lgg)ﬂ(f) = lim 275 = lim 25— "= =1 11(0),

so TI(€) is continuous at € = 0. There is a standard function called “sinc”? that is

defined by sinc(§) = Sigf. In this notation TI(¢) = sinc%g. Here is the graph ofﬁ(g).

1

AT e &

w

’The term “sinc” (English pronunciation:['smk]) is a contraction, first introduced by Phillip
M. Woodward in 1953, of the function’s full Latin name, the sinus cardinalis (cardinal sine).
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Remark 1.7. The above definition of the Fourier transform in (1.1) extends imme-
diately to finite Borel measures: if 4 is such a measure on R”, we define .# 11, by
letting

Fule) = /R (),

Theorem 1.5 is valid for this Fourier transform if we replace the L' norm by the
total variation of p.

The following theorem plays a central role in Fourier Analysis. It takes its
name from the fact that it holds even for functions that are integrable accord-
ing to the definition of Lebesgue. We prove it for functions that are absolutely
integrable in the Riemann sense.’

Theorem 1.8 (Riemann-Lebesgue lemma). If f € L*(R") then # f — 0as |¢] —
oo; thus, in view of the last result, we can conclude that .7 f € Cp(R™).

Proof. First, for n = 1, suppose that f(x) = X (4 (), the characteristic function

of an interval. Then
6—wmf _ e—wibf

b
f(6) = / ey = — 40, asl|f|— .
a wi§
Similarly, the result holds when f is the characteristic function of the n-dimensional
rectangle I = {x € R" : a1 < 21 < by, -+ ,ay < 2, < by} since we can calcu-
late .7 f explicitly as an iterated integral. The same is therefore true for a finite
linear combination of such characteristic functions (i.e., simple functions). Since
all such simple functions are dense in L!, the result for a general f € L'(R")
follows easily by approximating f in the L! norm by such a simple function g,
then f = g+ (f — g), where .# f — % g is uniformly small by Theorem 1.5, while
Fg(&) — 0as [¢] — oc. [ |

Theorem 1.8 gives a necessary condition for a function to be a Fourier trans-
form. However, that belonging to Cj is not a sufficient condition for being the
Fourier transform of an integrable function. See the following example.

® Let us very briefly recall what this means. A bounded function f on a finite interval [a, ]
is integrable if it can be approximated by Riemann sums from above and below in such a way
that the difference of the integrals of these sums can be made as small as we wish. This definition
is then extended to unbounded functions and infinite intervals by taking limits; these cases are
often called improper integrals. If I is any interval and f is a function on I such that the (possibly
improper) integral [} | f(z)|dx has a finite value, then f is said to be absolutely integrable on 1.
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Ex. 1.9. Suppose, for simplicity, that n = 1. Let

1
1.~ §> €,
g(§) = In¢
. osese

g(g):_g(_g)a §<0.

It is clear that g(€) is uniformly continuous on R and g(§) — 0 as [§| — oc.
Assume that there exists an f € L*(R) such that (&) = g(£), i.e.,
9O = | e pla)da

—0o0

Since g(§) is an odd function, we have
_ 0 izt do — i o) ' e — e ' P p
0O = [ @ = =i [ sinwat) flado = [ " sinwrt) Fa)do.

where F(z) = i[f(—z) — f(z)] € L*(R). Integmtmg 9(&) over (0, N) yields

[ i ([
/ F(x (/ Sl?tdt) dx.

N
i [T
N—oo 0 t 2
and by Lebesgue dominated convergence theorem,we get that the integral of r.h.s. is

convergent as N — oo. That is,

N 00
. 9§ . ™
A}gréo/o r ¢ = 2/0 F(z)dr < oo,
which yields [ %df < oo since [ %d& = 1. However,

N N
lim ﬁdf = lim / a3 =
N—oo [, f N—oo [, §ln§
This contradiction indicates that the assumption was invalid.

We now turn to the problem of inverting the Fourier transform. That is, we
shall consider the question: Given the Fourier transform f of an integrable function
f, how do we obtain f back again from f ? The reader, who is familiar with the
elementary theory of Fourier series and integrals, would expect f(x) to be equal
to the integral

Noticing that

C | e™$f(e)de. (1.4)

R
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Unfortunately, f need not be integrable (for example, let n = 1 and f be the
characteristic function of a finite interval). In order to get around this difficulty,
we shall use certain summability methods for integrals. We first introduce the
Abel method of summability, whose analog for series is very well-known. For each
e > 0, we define the Abel mean A, = A.(f) to be the integral

A(f) = Ac = / el f(2)da. (1.5)
]Rn
It is clear that if f € L'(R") then lim Ac(f) = [gn f(x)dz. On the other hand,
E—
these Abel means are well-defined even when f is not integrable (e.g., if we only
assume that f is bounded, then A.(f) is defined for all € > 0). Moreover, their
limit
lim A.(f) = lim / el f(2)dx (1.6)
e—0 e—=0 Jrn

may exist even when f is not integrable. A classical example of such a case is
obtained by letting f(z) = sinc(z) when n = 1. Whenever the limit in (1.6) exists
and is finite we say that fR" fdx is Abel summable to this limit.

A somewhat similar method of summability is Gauss summability. This method
is defined by the Gauss (sometimes called Gauss-Weierstrass) means

G = | e e (17)
Rn
We say that [, fdz is Gauss summable (to /) if
3 — 15 —E|SC|2 7
lim G () = limy [ P p(a)da (16)

exists and equals the number /.
We see that both (1.6) and (1.6”) can be put in the form

Mealf) = M.(f) = [ @(eo) (oo (1.9
where ® € Cpand ®(0) = 1. Then [, f()dx is summable to £ if lim. o M.(f) =
¢. We shall call M.(f) the ® means of this integral.

We shall need the Fourier transforms of the functions e~<*I* and e~¢l*l. The
first one is easy to calculate.
Theorem 1.10. For all a > 0, we have

ar ,—a|wz|? _ M
Feolf(e) = (4

2
_ L€l
4a

>_n ()2

Proof. The integral in question is

—wir-& — 2
/ Wiz 56 alwz| dar.
n
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Notice that this factors as a product of one variable integrals. Thus it is suffi-
cient to prove the case n = 1. For this we use the formula for the integral of a
Gaussian: [, =™ dz = 1. Tt follows that

o & 2
/ €_wixfe—aw21’2 dr = / e_a(wx+i§/(2a))2€_%ldx
— 00

—o0
& /(2
—oo+i&/(2a)

2 o0
:]w\_le_fm\/ﬂ/a/ e ™ dy
—0o0

jw] - /2,5
=(— (47a) /2™ 4a
2T
where we used contour integration at the next to last one. |

The second one is somewhat harder to obtain:
Theorem 1.11. For all a > 0, we have

—alwz|y _ M - Cna _ F((n+1)/2)
F e )= (2W> @+ [gp)E+D2 T T wne (110

Proof. By a change of variables, i.e.,

ﬂ(e—a\wx\) _ / e—wi:p~§e—a\wx|d$ _ (a‘wD—n/ e—ix-ﬁ/ae—\:ﬂdx’

n

we see that it suffices to show this result when a = 1. In order to show this, we
need to express the decaying exponential as a superposition of Gaussians, i.e.,

e gy >0, (1.11)

LTS
Then, using (1.9) to establish the third equality,

6—im.te—|m|dm :/ —iz-t ( / —\x| /4nd77) dx
/n n NG f
1 / [ -1 (/ —imet _| |2/477 >
=— — e e T dy ) d
VT Jo V1 \Jrn 7

e 2
——= [ —= ((@myp)/2e )dn
_on_(n-1)/2 / e—nHR) 25t g
0

n+1 n
:2nﬂ_(n71)/2 (1 + tQ);/ ,CC n+1 1d€
0
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_on_(n-1)/2p (M1 1
2 F( > ><1+|t|2><n+1>/2‘

Thus,

ﬁf(e—a\wx\) (a|w’)7 (27T) _ (M) - Cn@ )
(1+1¢/al)m D) 7=\ (a® + [2) /2
Consequently, the theorem will be established once we show (1.11). In fact,
by changes of variables, we have

Le” > ﬂe—v2/4nd77
VT Jo V0
2
paval / e =5 4o (byn =~0?)
2[ oty 1 1
/ 35 Td(]‘ (by o %)
\F / (0—%) < > do (by averaging the last two formula)

1
. 'yu _ -
_\f/ e du (byu =0 5 )

=1, (by / e dy = 1)
R
which yields the desired identity (1.11). [ |

n n
We shall denote the Fourier transform of (%) e~awz® and (%) e~alwzl,

a > 0,by W and P, respectively. That is,
11 CnQ
W&, a) = dma)" " ?e e 4, P(a)= n
The first of these two functions is called the Wezerstmss (or Gauss—Weierstmss)
kernel while the second is called the Poisson kernel.

Theorem 1.12 (The multiplication formula). If f,g € L*(R"), then

/ F(€)g(€)de = / f(@)5(x)de
R™ R”

Proof. Using Fubini’s theorem to interchange the order of the integration on R?",
we obtain the identity. [ |

(1.12)

Theorem 1.13. If f and ® belong to L' (R"), p = & and 905( ) = e "p(z/e), then

[ et feds = /sos — ) f(y)dy
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forall e > 0. In particular,

w i S —lw N
(50) [ emecelfoe = [ P-o.2ran
i n R

and .

w ix-& —e|lwé|? p

(52) [ et iae = [ wiu-zeifian

s n Rn
Proof. From (iii) and (iv) in Proposition 1.3, it implies (.F e* @ <®(£€))(y) = ¢e(y—
x). The first result holds immediately with the help of Theorem 1.12. The last
two follow from (1.9), (1.10) and (1.12). [ |

Lemma 1.14. (i) fRn (z,e)dz =1 forall e > 0.
(ii) Jgn P(z,€)dx =1 forall e > 0.

Proof. By a change of variable, we first note that

2|2
W(z,e)dr = / (4%5)_”/26_‘4|s de = W(z,1)dx,
n R

Rn

CnE B
/n P(z,e)dr = /]R” e ’$‘2)(n+1)/2dx = /n P(z,1)dx.

Thus, it suffices to prove the lemma when ¢ = 1. For the first one, we use a

change of variables and the formula for the integral of a Gaussian: [ e ™ dy =
1 to get

and

- 2
W(z,1)dx = / (471')_”/26_‘41' de = / (4%)_"/26_”|y|22”7r”/2dy =1.
R" R n

For the second one, we have

1
P(x,1)dx = c, dx.
/n (x’ )x ¢ /Rn(].+|$)n+1/2
Letting r = |z|, 2/ = z/r (when x # 0), S" ! = {z € R" : |z| = 1}, d2’ the

element of surface area on S™~! whose surface a1rea4 is denoted by w,—1 and,
finally, putting » = tan 6, we have

1 = > 1 /,.n—1
/Rn (1+yx\2><n+1>/2dm‘/0 /S A5yt dr
o] rn 1
:wnl/o Wdr

w/2
=wy_1 / sin” 1 6do.
0

Yop_1 = 20"% T (n)2).
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But w,,_;sin” 14 is clearly the surface area of the
sphere of radius sin # obtained by intersecting S
with the hyperplane 1 = cosf. Thus, the area of
the upper half of S™ is obtained by summing these
(n— 1) dimensional areas as 6 ranges from 0 to 7/2,
that is,

/2
Wh—1 / sin” 1 9dh = &,
0 2

which is the desired result by noting that 1/c,, = wj/2.
Theorem 1.15. Suppose p € L'(R") with [p, ¢(z)de = 1 and let p.(z) =

e Mp(xfe) fore > 0. If f € LP(R™), 1 < p < oo, 0r f € Cyo(R™) C L>®(R"™),
then for 1 < p < oo

| f * e — fllp = 0, ase — 0.
In particular, the Poisson integral of f:
uwe)= [ Pla=v.e)fw)dy

and the Gauss-Weierstrass integral of f:

s(z,e) = L Wi(x —y,e)f(y)dy
converge to f in the LP norm as e — 0.

Proof. By a change of variables, we have

/Rn pe(y)dy = /R e "ply/e)dy = /Rn p(y)dy = 1.
Hence,

(F +9)(@) = f@) = [ 17 =) = F@loe)dn

Therefore, by Minkowski’s inequality for integrals and a change of variables, we
get

1f e = [fllp < /Rn 1 (& = y) = F(@)llpe™" | (y/e)ldy

- /R £z~ ey) — F(@)llple(w)ldy.

We point out that if f € LP(R"), 1 < p < oo, and denote || f(z —t) — f(x)]|, =
Ag(t), then Ag(t) — 0,ast — 0.° In fact, if i € Z(R") := C(R") of all
C* functions with compact support, the assertion in that case is an immediate

>This statement is the continuity of the mapping ¢t — f(z — t) of R" to L?(R™).
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consequence of the uniform convergence fi(z —t) — fi(x), ast — 0. In general,
for any o > 0, we can write f = fi + fa, such that f; is as described and || f2|, <
o, since Z(R") is dense in LP(R") for 1 < p < co. Then, Af(t) < Ay, (1) + Ay, (1),
with Ag (t) = 0ast — 0,and Ay, (t) < 20. This shows that A(t) -+ 0ast — 0
for general f € LP(R"), 1 < p < 0.

For the case p = co and f € Cy(R"), the same argument gives us the result
since Z(R") is dense in Cy(R"™) (cf. [Rud87, p.70, Proof of Theorem 3.17]).

Thus, by the Lebesgue dominated convergence theorem (due to ¢ € L' and
the fact A¢(ey)|e(v)| < 2| fllple(y)|) and the fact Af(ey) — 0 as e — 0, we have

lim || £+ e = fllp < 1im/ Ar(ey)le(y)ldy = / lim A f(ey)|(y)|dy = 0.
e—0 e—0 R Rn e—0
This completes the proof. |

With the same argument, we have

Corollary 1.16. Let 1 < p < oo. Suppose ¢ € L'(R") and [, o(x)dz = 0, then
| f * @cllp — 0as e — 0 whenever f € LP(R"), 1 < p < oo, or f € Cp(R") C
L (R™).

Proof. Once we observe that

(F *9)(@) =(f + 9)(a) = Fla) -0 = (Frp)@) ~ @) [ oelu)dy
= [ V=9 f@lewa.

the rest of the argument is precisely that used in the last proof. |

In particular, we also have

Corollary 1.17. Suppose ¢ € LYR"™) with [;, o(x)de = 1 and let p-(z) =
"p(x/¢e) fore > 0. Let f(x) € L>(R™) be continuous at {0} Then,

e /R f(@)pe(x)dz = f(0)

e—0

Proof. Since [, f(2)pe(x)dz — = Jpuf f(0))pe(x)dx, then we may
assume without loss of generahty that f(0 ) = 0 Since f is continuous at {0},
then for any n > 0, there exists a > 0 such that

whenever |z| < §. Noticing that | [, ¢(x )da:\ llell1, we have

[ @) < [l [ ol




1.1. The L?! theory of the Fourier transform -13-

n
<ol + 1 e / o(y)ldy
el ly

Z0/€

=1+ [ flloo -
But I. — 0 as e — 0. This proves the result. [

From Theorems 1.13 and 1.15, we obtain the following solution to the Fourier
inversion problem:

Theorem 1.18. If both ® and its Fourier transform ¢ = & are integrable and
Jan p(x)dz = 1, then the ® means of the integral (|w|/2m)" [qn €€ f(€)dE con-
verges to f(z) in the L' norm. In particular, the Abel and Gauss means of this integral
converge to f(z) in the L' norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summa-
bility. The former is probably the simplest and is connected with the solution of
the heat equation; the latter is intimately connected with harmonic functions
and provides us with very powerful tools in Fourier analysis.

Since s(z,¢) = (%)n Jzn evir€eelwtl” f(£)d¢ convergesin L' to f(z)ase > 0
tends to 0, we can find a sequence ¢;, — 0 such that s(z,e) — f(z) for a.e. z.

If we further assume that f € L'(R"), the Lebesgue dominated convergence
theorem gives us the following pointwise equality:

Theorem 1.19 (Fourier inversion theorem). If both f and f are integrable, then

f@) = (’;’;’) /R e f(e)de,

Remark 1.20. We know from Theorem 1.5 that f is continuous. If f is integrable,
the integral fRn e f(€)de also defines a continuous function (in fact, it equals

for almost every .

~

f(=x)). Thus, by changing f on a set of measure 0, we can obtain equality in
Theorem 1.19 for all z.

It is clear from Theorem 1.18 that if f(¢) = 0 for all £ then f(2) = 0 for almost
every z. Applying this to f = fi — f2, we obtain the following uniqueness result
for the Fourier transform:

Corollary 1.21 (Uniqueness). If f; and fo belong to L'(R™) and f1(€) = fa(6) for
€ € R", then fi(z) = fa(x) for almost every x € R".

We will denote the inverse operation to the Fourier transform by .% ! or *. If
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f € L', then we have

fla) = (';J) / eEf(€)de. (113)

We give a very useful result.
Theorem 1.22. Suppose f € L'(R™) and f > 0. If f is continuous at 0, then

1(0) = ("‘")n [ e,

2r
Moreover, we have f € L'(R") and

= <|2U;|> [ e,
Proof. By Theorem 1.13, we have

From Lemma 1.14, we get, for any § > 0,

'/Rn P(y,e)f(y)dy — f(o)‘ = ’/Rn Py, e)[f(y) — f(())]dy’

for almost every .

<

P(y,e)lf(y) — f(0)]dy

ly|<é

=I1 + I.
Since f is continuous at 0, for any given o > 0, we can choose ¢ small enough
such that |f(y) — f(0)| < o when |y| < 6. Thus, I} < o by Lemma 1.14. For the
second term, we have, by a change of variables, that

I <||fllx sup P(y,e) + [f(0)] P(y,e)dy
ly|=>0 ly|>6

+ / P(y,&)[f(y) — F(0)]dy
ly|>6

Cne
= 0 P(y,1)d 0
I a1 [ Py o,
as e — 0. Thus, (%)n Jzn e <lEl f(€)de — f(0) as e — 0. On the other hand, by
Lebesgue dominated convergence theorem, we obtain

wl\" i w\" .. elwt| £
(51) [ eie=(51) i [ e fierac = oo
T Rn 27T e—0 n
which implies f € L'(R") due to f > 0. Therefore, from Theorem 1.19, it follows

the desired result. [ ]

An immediate consequence is




1.1. The L?! theory of the Fourier transform -15-

Corollary 1.23. 1) [, e €W (€, e)dE = eIl
11) f wzm EP € €)d§ _ e—s\wz|

Proof. Noticing that

W(e) =F ((';;‘)n e—flwxP) ,and P(£,¢) = .F ((;r')n e—wx> ,

we have the desired results by Theorem 1.22. [

We also have the semigroup properties of the Weierstrass and Poisson ker-
nels.

Corollary 1.24. If Oq and o are positive real numbers, then
i) W(E o+ a2) = Jgu W(E—n,a1)W(n, az)dn.
11) P(§7 ar + a? fRn 6 m, Oél)P(Ua O[2)d77.

Proof. 1t follows, from Corollary 1.23, that
Wit = () ety

- <M> F (ool ety (g)
_ <M> n 7 <e_a1wx|2 ewimﬂW(n’ 062)d77> (5)
R

n
_ <]w\> o~ win€ —ai|wal? e TN (0, g )dndax
Rn R~

- [ ( [ et (M)|daz> W (n, az)dn
R" n 27T

= [ Wie=nanWnau)dn
A similar argument can give the other equality. |

Finally, we give an example of the semigroup about the heat equation.

Ex. 1.25. Consider the Cauchy problem to the heat equation
—Au=0, u(0)=wup(x), t>0, zeR"
Taking the Fourier transform, we have
iy + |we P = 0, a(0) = o (€)-
Thus, it follows, from Theorem 1.10, that
U :9’_16_|w§‘2tﬁu0 = (ﬂ_le_wa%) * ug = (47715)_”/26_"”'2/4'5 * UQ
=W (x,t) * up =: H(t)up.
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Then, we obtain
H(t1 + to)ug =W (z,t1 + ta) x up = Wz, t1) * W(x,t2) * ug
W(x, 1) % (W (x, ta) xug) = Wiz, t1) x H(ta)uop
H (t1)H (t2)uo,
ie, H(ty +t2) = H(tl)H(tg).

1.2 The L? theory and the Plancherel theorem

The integral defining the Fourier transform is not defined in the Lebesgue
sense for the general function in L?(R"); nevertheless, the Fourier transform has
a natural definition on this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then
f will also be square-integrable. In fact, we have the following basic result:

Theorem 1.26 (Plancherel theorem). If f € L'(R") N L3(R"), then |f|la =

()™ 1l

Proof. Let g(x) = f(—x). Then, by Theorem 1.1, h = f x g € L'(R") and, by
Proposition 1.3, h = fg. But g = f, thus = |f|> > 0. Applying Theorem 1.22,
we have h € L'(R™) and h(0 (‘w‘) Jan R(€)dE. Thus, we get

[ ik [ o= () no
_ <‘2"‘7’T’> [ 1@ - 2o

_ <|;T|> [ 1) e = ('2";’) [ 1f@)Ps,

which completes the proof. |

Since L' N L? is dense in L2, there exists a unique bounded extension, .Z, of
this operator to all of L?. .7 will be called the Fourier transform on L?; we shall
also use the notation f = .Z f whenever f € L2(R").

A linear operator on L?(R™) that is an isometry and maps onto L%(R") is
called a unitary operator. It is an immediate consequence of Theorem 1.26 that

n/2 n/2
<%) Z is anisometry. Moreover, we have the additional property that ( ] > F
is onto:
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n/2
Theorem 1.27. (%) F is a unitary operator on L*(R").

n/2
Proof. Since <|2“’—7r|> Z is an isometry, its range is a closed subspace of L?(R").

If this subspace were not all of L?(R™), we could find a function g such that
Jgn fgdz = O forall f € L? and ||g||2 # 0. Theorem 1.12 obviously extends to

L?; consequently, [p, fgdz = [g, fgdx = 0 for all f € L?. But this implies that
—n/2

g(x) = 0 for almost every z, contradicting the fact that ||g||2 = (%) llgll2 #

0 |

Theorem 1.27 is a major part of the basic theorem in the L? theory of the
Fourier transform:

Theorem 1.28. The inverse of the Fourier transform, % ~1, can be obtained by letting
n
_ w
e = () @nea
forall f € L*(R™).
We can also extend the definition of the Fourier transform to other spaces,
such as Schwartz space, tempered distributions and so on.

1.3 Schwartz spaces

Distributions (generalized functions) aroused mostly due to Paul Dirac and
his delta function §. The Dirac delta gives a description of a point of unit mass
(placed at the origin). The mass density function is such that if its integrated on
a set not containing the origin it vanishes, but if the set does contain the origin
it is 1. No function (in the traditional sense) can have this property because we
know that the value of a function at a particular point does not change the value
of the integral.

In mathematical analysis, distributions are objects which generalize func-
tions and probability distributions. They extend the concept of derivative to all
integrable functions and beyond, and are used to formulate generalized solu-
tions of partial differential equations. They are important in physics and en-
gineering where many non-continuous problems naturally lead to differential
equations whose solutions are distributions, such as the Dirac delta distribution.

“Generalized functions” were introduced by Sergei Sobolev in 1935. They
were independently introduced in late 1940s by Laurent Schwartz, who devel-
oped a comprehensive theory of distributions.



-18- 1. The Fourier Transform and Tempered Distributions

The basic idea in the theory of distributions is to consider them as linear func-
tionals on some space of “regular” functions — the so-called “testing functions”.
The space of testing functions is assumed to be well-behaved with respect to the
operations (differentiation, Fourier transform, convolution, translation, etc.) we
have been studying, and this is then reflected in the properties of distributions.

We are naturally led to the definition of such a space of testing functions by
the following considerations. Suppose we want these operations to be defined
on a function space, ./, and to preserve it. Then, it would certainly have to
consist of functions that are indefinitely differentiable; this, in view of part (v)
in Proposition 1.3, indicates that each function in .7, after being multiplied by a
polynomial, must still be in .. We therefore make the following definition:

Definition 1.29. The Schwartz space . (R™) of rapidly decaying functions is de-
fined as

S (R") = {w € C*R") : |pla,p = Sup |2%(8%¢)(x)| < 00, Vo, B € NS},
TER™

(1.14)
where Ny = N U {0}.

If o € .7, then |p(x)| < Cp(1 + |z|)™™ for any m € Ny. The second part of
next example shows that the converse is not true.

Ex. 1.30. ¢(x) = e‘amz, e > 0, belongs to .; on the other hand, ¢(x) = 6_5‘”3|fails
to be differential at the origin and, therefore, does not belong to .7 .

Ex. 1.31. o(z) = e=<OH1) belongs to .7 for any ,~ > 0.

Ex. 1.32. .7 contains the space Z(R"™).

But it is not immediately clear that & is nonempty. To find a function in &,
consider the function
—1/t
e , t>0
)= ’

0, t<0.
Then, f € C*, is bounded and so are all its derivatives. Let ¢(t) = f(1 +
£)f(1—t), then o(t) = e=2/(=#) if |t| < 1, is zero otherwise. It clearly belongs to
2 = P(R'). We can easily obtain n-dimensional variants from ¢. For examples,
(i) For x € R", define ¢ (z) = p(z1)p(z2) - - - ¢(zy), then ¢p € Z(R");
(i) For z € R", define ¢(z) = e~2(1~12*) for |z| < 1 and 0 otherwise, then
Y € 2(R");
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(iii) If n € C*° and 9 is the function in (ii), then ¢ (ez)n(x) defines a function
in 2(R"); moreover, ey (cz)n(z) — n(z) ase — 0.

Ex. 1.33. We observe that the order of multiplication by powers of xi,--- ,x, and
differentiation, in (1.14), could have been reversed. That is, ¢ € .7 if and only if
¢ € C* and sup,cgn |0° (2% (x))| < oo for all multi-indices o and B of nonnegative
integers. This shows that if P is a polynomial in n variables and ¢ € . then P(x)p(x)
and P(0)p(x) are again in ., where P(0) is the associated differential operator (i.e.,
we replace z* by 0“ in P(x)).

Ex. 1.34. Sometimes . (R™) is called the space of rapidly decaying functions. But
observe that the function o(x) = e~*"¢'®" is not in .#(R). Hence, rapid decay of the
value of the function alone does not assure the membership in .7 (R).

Theorem 1.35. The spaces Cy(R™) and LP(R™), 1 < p < oo, contain . (R™). More-
over, both . and & are dense in Co(R™) and LP(R™) for 1 < p < oo.

Proof. ./ C Cy C L™ is obvious by (1.14). The L? norm of ¢ € .7 is bounded by
a finite linear combination of L* norms of terms of the form z%¢(z). In fact, by
(1.14), we have

1/p
([ 1o@pa)
1/p 1/p
< x)|[Pdx x)|Pdx
(/Ww ) ) *(/M*"( ) )
1/p 1/p
2n —2n
<||sauoo</|m|<ldx) . so<x>|uoo</lm|>l|xr de>

_ [(Wn—1 1/p Wn—1 e 2n
(=)ol + (=) el

<00.

For the proof of the density, we only need to prove the case of & since 7 C
.. We will use the fact that the set of finite linear combinations of characteristic
functions of bounded measurable sets in R” is dense in LP(R"), 1 < p < oo. This
is a well-known fact from functional analysis.

Now, let E C R" be a bounded measurable set and let ¢ > 0. Then, there
exists a closed set F' and an open set Q suchthat F C £ C Q and m(Q \ F') < &P
(or only m(Q) < &P if there is no closed set ' C E). Here m is the Lebesgue
measure in R™. Next, let ¢ be a function from 2 such that suppy C Q, ¢p|r =1
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and 0 < ¢ < 1. Then,
lo - xall2 = / (@) — xu(@)Pds < / dr = m(Q\ F) < &
Rn Q\F

or
le — xellp, <e,
where x g denotes the characteristic function of E. Thus, we may conclude that
Z(R") = LP(R™) with respect to LP measure for 1 < p < oo.
For the case of Cj, we leave it to the interested reader. [ |

Remark 1.36. The density is not valid for p = co. Indeed, for a nonzero constant
function f = ¢y # 0 and for any function ¢ € Z(R"), we have
If = #lloe = |col > 0.
Hence we cannot approximate any function from L*°(R") by functions from
Z(R™). This example also indicates that . is not dense in L* since
lim |¢(x)]=0forall p € .¥.
|z|—o0

From part (v) in Proposition 1.3, we immediately have
Theorem 1.37. If p € .7, then ¢ € .¥.

If ¢, ¢ € &, then Theorem 1.37 implies that ¢, Y € .Z. Therefore, cfn[z e 7.
By part (vi) in Proposition 1.3, i.e., # (¢ * ¢) = ¢1), an application of the inverse
Fourier transform shows that
Theorem 1.38. If p, ) € .7, then ¢ x ) € 7.

The space . (R") is not a normed space because |¢|, 3 is only a semi-norm
for multi-indices « and (3, i.e., the condition

|¢|a,s = 0if and only if o =0

fails to hold, for example, for constant function ¢. But the space (., p) is a
metric space if the metric p is defined by

= 3 glel-isl 12" Vlas |l — Ylas
14| = Plas’

a,BeENy
Theorem 1.39 (Completeness). The space (-7, p) is a complete metric space, i.e.,
every Cauchy sequence converges.

Proof. Let {¢}72, C . be a Cauchy sequence. For any ¢ > 0 and any v € N,

2-1lg

let e = +20 , then there exists an Ny(¢) € N such that p(pg, pm) < € when
k,m > Ny(e) since {¢;}72 , is a Cauchy sequence. Thus, we have

"Pk - Spm|0,7 g
1+ |k — emloy, 1+0’
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and then

sup |07 (v — om)| < o

zeK
for any compact set K C R”. It means that {¢;}7° , is a Cauchy sequence in the
Banach space C1"/(K). Hence, there exists a function ¢ € C1!(K) such that

lim ¢ = ¢, in CVI(K).

k—oo
Thus, we can conclude that ¢ € C*°(R"). It only remains to prove that ¢ € .7.
It is clear that for any «, 3 € Nj

sup |2%0° | < sup [2°0° (or, — ¢)| + sup [220° oy
reK rzeK rxeK

<Co(K) sup |0° (o1, — )| + sup |299%¢y|.
rzeK reK

Taking k — oo, we obtain

sup [299% | < limsup |@ppla,s < 0.

zeK k—o0
The last inequality is valid since {¢;}7° ; is a Cauchy sequence, so that |¢;|a 5 is
bounded. The last inequality doesn’t depend on K either. Thus, |¢|,,s < oo and
then p € .7. ]

Moreover, some easily established properties of . and its topology, are the
following;:

Proposition 1.40. i) The mapping ¢(x) — 220°p(z) is continuous.

ii) If ¢ € 7, then limyp,_,o Thp = .

iii) Suppose p € % and h = (0,--- , h;,--- ,0) lies on the i-th coordinate axis of
R™, then the difference quotient [y — T /h; tends to Op/0z; as |h| — 0.

iv) The Fourier transform is a homeomorphism of . onto itself.

v) .7 is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that
is known as the uncertainty principle. In fact this theorem was ”discovered”
by W. Heisenberg in the context of quantum mechanics. Expressed colloquially,
the uncertainty principle says that it is not possible to know both the position
and the momentum of a particle at the same time. Expressed more precisely,
the uncertainty principle says that the position and the momentum cannot be
simultaneously localized.

In the context of harmonic analysis, the uncertainty principle implies that
one cannot at the same time localize the value of a function and its Fourier trans-
form. The exact statement is as follows.
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Theorem 1.41 (The Heisenberg uncertainty principle). Suppose 1 is a function
in /(R). Then
W\ 13

lovllledl > (51) Dtz

and equality holds if and only if ¢ (x) = Ae=B*" where B > 0 and A € R.
Moreover, we have

1/2 2
(@ = 20)l2ll(€ — &0 llz > ('5;’) %

for every xg, & € R.

Proof. The last inequality actually follows from the first by replacing ¢ (x) b
e~wi€oq)(z + x0) (whose Fourier transform is e“0(E+€0)4)(¢ + &) by parts (11)
and (iii) in Proposition 1.3) and changing variables. To prove the first inequality,
we argue as follows.

Since ¢ € ., we know that ¢) and ¢ are rapidly decreasing. Thus, an inte-
gration by parts gives

o0 oo d
W= [ W@Pde =~ [~ ol o)

-/ " (@0 + @) da.

—0o0

The last identity follows because |¢|?> = 1. Therefore,

1113 <2/_ 2|l ()14 ()| da < 2|z ]|a][9 |2,

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition
1.3, we have .Z (¢')(&) = wi€ 1/}(5 ). It follows, from the Plancherel theorem, that

= ()" iz = () wedns

Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the
Cauchy-Schwarz inequality, and as a result, we find that ¢'(z) = Bz (z) for
some constant 5. The solutions to this equation are ¢)(z) = AeP*/2 where Ais a
constant. Since we want 1) to be a Schwartz function, we must take 8 = —2B <
0. |
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1.4 The class of tempered distributions

The collection .#” of all continuous linear functionals on . is called the space
of tempered distributions. That is

Definition 1.42. The functional T : . — C is a tempered distribution if

i) T is linear, i.e., (T,ap + ByY) = (T, @) + B(T,¢) for all a,f € C and
0, € L.

ii) T is continuous on ., i.e., there exist ng € Ny and a constant ¢y > 0 such
that

Tl <o 3 1lag
lal,|8]<no

for any ¢ € .77.

In addition, for T}, T € ., the convergence T, — T in .’ means that
(T, ) — (T, @) in Cfor all p € ..

Remark 1.43. Since & C .7, the space of tempered distributions .’ is more nar-

row than the space of distributions 7/, i.e., ¥/ C 2'. Another more narrow dis-

tribution space &” which consists of continuous linear functionals on the (widest

test function) space & := C*>°(R"). In short, 2 C . C & implies that
gcs'ca.

Ex.1.44. Let f € LP(R™), 1 < p < oo, and define T' = T by letting

R”

forp € L. 1tis clear that T} is a linear functional on .. To show that it is continuous,
therefore, it suffices to show that it is continuous at the origin. Then, suppose @y, — 0 in
" as k — oo. From the proof of Theorem 1.35, we have seen that for any q¢ > 1, ||¢kl|4
is dominated by a finite linear combination of L> norms of terms of the form z%py(x).
That is, || k|4 is dominated by a finite linear combination of semi-norms | |q,0. Thus,
|¢kllq = 0as k — oo. Choosing ¢ = p/, i.e., 1/p+1/q = 1, Holder’s inequality shows
that (T, )| < || flIpllekllyy = 0as k — oco. Thus, T € 7.

Ex. 1.45. We consider the case n = 1. Let f(z) = S 1, ara" be a polynomial, then

f €. since
[ St
R

k=0

[(Ty, )| =
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<> Iakl/R(l + 12T fa]) ] lo(e) | da
k=0

N

m
€S lanllglirrneo [ (1+ la) " wd
k=0 R
so that the condition ii) of the definition is satisfied for ¢ = 1 and ng = m + 2.

Ex. 1.46. Fix xo € R" and a multi-index € N{. By the continuity of the semi-
norm | - |op in ., we have that (T, ) = 0°p(xo), for ¢ € 7, defines a tempered
distribution. A special case is the Dirac 6-function: (Ty,p) = ¢(0).

The tempered distributions of Examples 1.44-1.46 are called functions or
measures. We shall write, in these cases, f and ¢ instead of T and Ts. These
functions and measures may be considered as embedded in .#”. If we put on .#”
the weakest topology such that the linear functionals ' — (T, ¢) (¢ € ) are
continuous, it is easy to see that the spaces LP(R"), 1 < p < oo, are continuously
embedded in .. The same is true for the space of all finite Borel measures on
R", i.e., A(R").

There exists a simple and important characterization of tempered distribu-
tions:

Theorem 1.47. A linear functional T on . is a tempered distribution if and only if
there exists a constant C' > 0 and integers ¢ and m such that

(T, o) SC Y |olag

lal<6,|8l<m

forall p € 7.

Proof. 1t is clear that the existence of C, ¢, m implies the continuity of 7.

Suppose T is continuous. It follows from the definition of the metric that a
basis for the neighborhoods of the origin in .7 is the collection of sets N, s, =
{o + 2ja1<e)p1<m [¥la,s < €}, where ¢ > 0 and £ and m are integers, because
or — pas k — oo if and only if |pr — p|as — 0 for all (o, §) in the topology
induced by this system of neighborhoods and their translates. Thus, there exists
such a set N, ¢, satisfying [(T’, p)| < 1 whenever ¢ € N, ¢ p,.

Let ol = X2 \a1<e81<m |#las forall p € 7. If o € (0,¢), then ¢ = op/||¢]| €
N ¢.m if ¢ # 0. From the linearity of 7', we obtain

ml@@\ = KT, ¢)| < 1.

But this is the desired inequality with C' = 1/0. |
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Ex. 1.48. Let T € %" and ¢ € Z(R"™) with p(0) = 1. Then the product p(x/k)T is
well-defined in .’ by

(pla/k)T, ) = (T, o(a/k)w),
forall € 7. If we consider the sequence Ty, := ¢(x/k)T", then
as k — oo since p(x/k)y — ¢ in /. Thus, T, — T in " as k — oo. Moreover,
T}, has compact support as a tempered distribution in view of the compactness of i, =

pla/k).
Now we are ready to prove more serious and more useful fact.

Theorem 1.49. Let T € ., then there exists a sequence {T},}7° , C . such that

Ti) = [ Tu@)e(o)dz = (L), a5k =
R
where p € . In short, 7 is dense in .7 with respect to the topology on .7

Proof. If h and g are integrable functions and ¢ € .7, then it follows, from Fu-
bini’s theorem, that

te9.9) = [ ola) [ na—wgt)duds = [ o) [ o= y)o(e)dady

= [ o) [ Rh(y—aela)dady = (5. Rh+ o),
where Rh(x) := h(—z) is the reflection of h.

Let now ¢ € 2(R") with [, ¥(z)dx = 1 and ¢(—z) = ¢¥(z). Let ¢ € Z2(R™)
with ¢(0) = 1. Denote ¢y () := k"¢(kx). For any T' € ./, denote T}, := ¢y, * Tr,
where T}, = ((z/k)T. From above considerations, we know that (¢, * T, ) =
(Tk, Rpr = ).

Let us prove that these 7}, meet the requirements of the theorem. In fact, we
have

:<T’ C(‘T/k)(wk * SO)> - <T) SD>7 as k — oo,
by the fact ¢ *x ¢ — ¢ in . as k — oo in view of Theorem 1.15, and the fact
((z/k) — 1 pointwise as k — oo since ¢(0) = 1 and ((z/k)¢p — ¢ in . as
k — oo. Finally, since ¢, ¢ € 2(R"), it follows that T, € Z(R") ¢ (R"). 1

Definition 1.50. Let L : .¥ — .¥ be a linear continuous mapping. Then, the
dual/conjugate mapping L' : ¥/ — .’ is defined by

(L'T, ) :=(T,Ly), Te o
Clearly, L' is also a linear continuous mapping.
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Corollary 1.51. Any linear continuous mapping (or operator) L : . — . admits a
linear continuous extension L : ./ — ..

Proof. If T € .#’, then by Theorem 1.49, there exists a sequence {7} }7, C .~/
such that T}, — T in .¥’ as k — oo. Hence,
(LT}, @) = (Ty, L'¢) — (T, L'¢) := (LT, @), ask — oo,
forany p € .7. |
Now, we can list the properties of tempered distributions about the multipli-
cation, differentiation, translation, dilation and Fourier transform.

Theorem 1.52. The following linear continuous operators from . into ./ admit
unique linear continuous extensions as maps from . into #': For T € " and ¢ € .7,

i) WT,¢) = (T,¢%p), ¥ € Z.

ii) (99T, ) := (T, (—1)I9%p), o € Np.
iii) (1T, ) := (T, T_pp), h € R™.

iv) (T, ) := (T, |A\[7"010p), 0 £ A €R.
V) (ZFT,p) = (T, F).

Proof. See the previous definition, Theorem 1.49 and its corollary. |

Remark 1.53. Since (F " FT,¢) = (FT,F1p) = (T, FF o) = (T, ), we
get F 17 =77 1 =1in.7".

Ex. 1.54. Since for any ¢ € .7,

(F1g) =(1, Fyg) = / (Fo)(©)de

R

_ (';J) (";’J) /R (T ) ()
_ (';’T’)_n 1 Zp(0) = (’;)_n ©(0)
-(&) e

o |wl - . /
1_<27r 0, inS".

)

we have

Moreover, § = (%)n - 1.
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Ex. 1.55. For ¢ € ., we have
B.0) = (6.50) = 90) = [ e Op(a)do = (L6,
Thus, § = 1in ..

Ex. 1.56. Since
(990, 0) =(0°6,¢) = (—1)l°1(5,0°¢) = (5, Z[(wi&)™¢])
=(9, (wi§)*p) = ((wi&)*, ¢),
we have 525 = (wi&)“.

Now, we shall show that the convolution can be defined on the class ..
We first recall a notation we have used: If g is any function on R", we define
its reflection, Rg, by letting Rg(z) = g(—z). A direct application of Fubini’s
theorem shows that if u, ¢ and 1 are all in ., then

| s o@teris = [ ue)(Re b))

The mappings ¢ — [p.(u * ¢)(2)Y(z)de and 0 — [z, u(x)f(x)dx are linear
functionals on .. If we denote these functionals by u * ¢ and v, the last equality
can be written in the form:

(u* @, 1) = (u, Rp x ). (1.15)

If u e & and @, ¢ € .7, the right side of (1.15) is well-defined since Ry * ¢ €
7. Furthermore, the mapping ¢ — (u, Ry * 1)), being the composition of two
continuous functions, is continuous. Thus, we can define the convolution of the
distribution u with the testing function ¢, u * ¢, by means of equality (1.15).

It is easy to show that this convolution is associative in the sense that (u *
@) % 1) = u* (¢ * 1») whenever u € .’ and ¢, ¥ € .. The following result is a
characterization of the convolution we have just described.
Theorem 1.57. If u € ./ and ¢ € ., then the convolution u *  is the function f,
whose value at x € R" is f(z) = (u, 7, Ry), where T, denotes the translation by x
operator. Moreover, f belongs to the class C*° and it, as well as all its derivatives, are
slowly increasing.

Proof. We first show that f is C*° slowly increasing. Let h = (0,--- ,hj,---,0),
then by part iii) in Proposition 1.40,

TotnBo —mRp - ORp
hj * 8yj ’
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as |h| — 0, in the topology of .. Thus, since u is continuous, we have
fa+h) = @), meoe Ry, ong,
h; ’ hy 0y,
as h; — 0. This, together with ii) in Proposition 1.40, shows that f has con-
tinuous first-order partial derivatives. Since 0Ry/0y; € ., we can iterate this
argument and show that 0° f exists and is continuous for all multi-index 3 € Ng.
We observe that 8% f(z) = (u, (—1)!°l7,0° Rp). Consequently, since 3° Ry € .7,
if f were slowly increasing, then the same would hold for all the derivatives of
f. In fact, that f is slowly increasing is an easy consequence of Theorem 1.47:
There exist C' > 0 and integers ¢ and m such that
|f(@)] = [(u, 2 Rp)| < C Z 7o RP|a,p-
CISAEINY

But |7, Rpla,s = supyepn [y*0° Ro(y — )| = sup,epn |(y + 2)*0° Rp(y)| and the
latter is clearly bounded by a polynomial in .

In order to show that u ¢ is the function f, we must show that (u * ¢, 9) =

fRn f(z)¢(z)dz. But,
(s o0) =(w, R s b =, | Rp(c — a)b(o)ie)

n

=, [ Rl y(e)da)
:/ <u,TxR(p>w($)dx:/ f(:L‘)@b(x)dx,
Rn R7

since  is continuous and linear and the fact that the integral [, 7. Ro(y)(x)dzx
converges in ., which is the desired equality. [ |

— (u, =7y

1.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them
to the study of the basic class of linear operators that occur in Fourier analysis:
the class of operators that commute with translations.

Definition 1.58. A vector space X of measurable functions on R" is called closed
under translations if for f € X we have 7, f € X forall y € R". Let X and Y be
vector spaces of measurable functions on R” that are closed under translations.
Let also 7" be an operator from X to Y. We say that T' commutes with translations
or is translation invariant if

T(ryf) = m(Tf)
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forall f € X and all y € R™.

It is automatic to see that convolution operators commute with translations.
One of the main goals of this section is to prove the converse, i.e., every bounded
linear operator that commutes with translations is of convolution type. We have
the following:

Theorem 1.59. Let 1 < p,q < oo. Suppose T is a bounded linear operator from
LP(R™) into LY(R™) that commutes with translations. Then there exists a unique tem-
pered distribution v such that

Tf=uxf, VfeS.

The theorem will be a consequence of the following lemma.

Lemma 1.60. Let 1 < p < oo. If f € LP(R™) has derivatives in the LP norm of all
orders < n + 1, then f equals almost everywhere a continuous function g satisfying

g@I<C > 110°Flp,
|a|<n+1
where C depends only on the dimension n and the exponent p.

Proof. Let £ € R™. Then there exists a C}, such that

L+ P2 A+ &)+ G < e Yo 1€%.
o] <n+1

Let us first suppose p = 1, we shall show f € L'. By part (v) in Proposition
1.3 and part (i) in Theorem 1.5, we have

£ <Cp(L+ g~ 3 e (9

|| <n+1
=Cp (14 [¢) =2 3" w77 (02 ) ()]
ol <n+1
<C"(1+ €)= D2 N o .
|a| <n+1

Since (1 + |¢]?)~("+1)/2 defines an 1ntegrable function on R™, it follows that f €
LY(R"™) and, letting C" = C" [5,. (1 + |¢[%)~("+D/2d¢, we get

Ifle<c™ Y7 0% flh
la|<n+1

Thus, by Theorem 1.19, f equals almost everywhere a continuous function g and
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by Theorem 1.5,
w
19(0)!<HfHoo<<| ’) fh<c S 1070

o] <n+1
Suppose now that p > 1. Choose ¢ € Z(R") such that ¢(z) = 1if |z| < 1 and
¢(z) = 0if |z| > 2. Then, it is clear that fo € L'(R"). Thus, f¢ equals almost
everywhere a continuous function & such that

hOI<C Y 9°(fe)lh-
|| <n+1
By Leibniz’ rule for differentiation, we have 0%(fy) = > o u,y,@“ fo¥p, and
then

10%(fe)llr < > 7|3"f|!<9”<ﬂ|d$

|| <2 JIRRVES ot

< 3 Csup () /MQ 0 ()| d

utrv=a |lz|<2
<Ay / 0" f@)lde < AB Y [0y,
<o 7 17152 <

where A > ||0"¢||~, |v| < |a|, and B depends only on p and n. Thus, we can
find a constant K such that
hO) <K Y (10°flp-
o <n+1

Since ¢(x) = 1if |z| < 1, we see that f is equal almost everywhere to a

continuous function g in the sphere of radius 1 centered at 0, moreover,
9] = RO <K > 110°f],.
la|<n+1

But, by choosing ¢ appropriately, the argument clearly shows that f equals al-
most everywhere a continuous function on any sphere centered at 0. This proves
the lemma. |

Now, we turn to the proof of the previous theorem.
Proof of Theorem 1.59. We first prove that
PTf=Tdf, Vfe.ZR"). (1.16)
In fact, if h = (0,--- , hj,--- ,0) lies on the j-th coordinate axis, we have

w(Tf)—-Tf T(mf)-Tf _T<Thff>
h; a h; a hj )’
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since T is linear and commuting with translations. By part iii) in Proposition
1.40, % — _BBT]; in .7 as |h| — 0 and also in L? norm due to the density of

< in L. Since T is bounded operator from L? to L9, it follows that T’l(T}JZJ —

J

_aaixf in L? as |h| — 0. By induction, we get (1.16). By Lemma 1.60, T'f equals
almost everywhere a continuous function g satisfying

lgr () <C Y 1P(Thlly=C Y IT@ Nl

|Bl<n+1 |Bl<n+1

<ITe > 1107 Fllp-
|8]<n+1
From the proof of Theorem 1.35, we know that the LP norm of f € .# is bounded
by a finite linear combination of L> norms of terms of the form z® f(x). Thus,
there exists an m € N such that
grOI<c Y [z fle=C D flag
lo|<m,|Bl<n+1 || <m,| Bl <n+-1

Then, by Theorem 1.47, the mapping f — g¢(0) is a continuous linear functional
on .7, denoted by u;. We claim that v = Ru, is the linear functional we are
seeking. Indeed, if f € ., using Theorem 1.57, we obtain

(ux f)(x) =(u, 7o Rf) = (u, R(T-2 f)) = (Ru, T f) = (u1, 7= f)
=(T (7= ))(0) = (7 T'f)(0) = Tf(x).
We note that it follows from this construction that v is unique. The theorem
is therefore proved. n

Combining this result with Theorem 1.57, we obtain the fact that 7'f, for
f € .7, is almost everywhere equal to a C*° function which, together with all its
derivatives, is slowly increasing.

Now, we give a characterization of operators commuting with translations
in LY(R").
Theorem 1.61. Let T be a bounded linear operator mapping L' (R™) to itself. Then
a necessary and sufficient condition that T' commutes with translations is that there
exists a measure y in B(R™) such that Tf = p x f, forall f € L*(R™). One has then
170 = Nl
Proof. We first prove the sufficiency. Suppose that T'f = p * f for a measure
p € B(R") and all f € LY(R"). Since Z C ./, by Theorem 1.57, we have

w(Tf)(x) =(Tf)(@ = h) = (u, e-nRf) = (u(y), f(-y — 2 + h))
=(p, e R f) = px T f = T f,
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i.e., 7,7 = T'1y,. On the other hand, we have || T'f||1 = || * f|l1 < [|p]l]| f]l1 which
implies || 7] = | .

Now, we prove the necessariness. Suppose that 7" commutes with transla-
tions and ||Tf||1 < ||T||||f]l1 for all f € L*(R"). Then, by Theorem 1.59, there
exists a unique tempered distribution ; such that Tf = p * f for all f € .. The
remainder is to prove p € A(R").

We consider the family of L! functions p. = p* W(-,e) = TW(-,¢), e > 0.
Then by assumption and Lemma 1.14, we get

lpelle < ITHW )l = (171

That is, the family {y.} is uniformly bounded in the L' norm. Let us consider
L*(R™) as embedded in the Banach space Z(R"). %(R") can be identified with
the dual of Cp(R™) by making each v 6 % corresponding to the linear functional
assigning to ¢ € Cy the value [, ¢(z)dv(x). Thus, the unit sphere of # is
compact in the weak* topology. In particular, we can find a v € % and a null
sequence {ei} such that p,, — v as k — oo in this topology. That is, for each
v € Cy,

hm / x) pre,, (z)dx —/ o(x)dv(z). (1.17)
R’ﬂ
We now claim that v, con51der asa dlstrlbution equals u
Therefore, we must show that (u, fRﬂ ) for all v € . Let
Ve = W(-,e) x1. Then, for all a € NO, we have 8%05 = W(,e) x 0%. It

follows from Theorem 1.15 that 0%¢.(x) converges to 90*¢(x) uniformly in z.
Thus, ¢ — ¢ in . as ¢ — 0 and this implies that (u,.) — (u,). But, since
W(e) = RW(.e),

() = (W) ) = (s W00 = [ eyl

Thus, putting € = ¢, letting k — oo and applying (1.17) with ¢ = 1, we obtain
the desired equality (1, 1) = [p. ¥( ). Hence, 1 € 2. This completes the
proof. |

For L?, we can also give a very simple characterization of these operators.

Theorem 1.62. Let T be a bounded linear transformation mapping L*(R™) to itself.
Then a necessary and sufficient condition that T commutes with translation is that
there exists an m € L™ (R™) such that Tf = u  f with & = m, for all f € L*(R™).
One has then ||T|| = ||m||oo-

Proof. If v € ./ and ¢ € ., we define their product, vi, to be the element of
" such that (v, @) = (v, ) for all p € .. With the product of a distribution
with a testing function so defined we first observe that whenever u € .’ and
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¢ € .7, then

F(u* @) = up. (1.18)
To see this, we must show that (% (u x ), ) = (g, ) for all Y € .. It follows
immediately, from (1.15), part (vi) in Proposition 1.3 and the Fourier inversion
formula, that

=(tp, ).
Thus, (1.18) is established.

Now, we prove the necessariness. Suppose that 7' commutes with transla-
tions and ||Tf|l2 < ||T||||f]l2 for all f € L*(R"). Then, by Theorem 1.59, there
exists a unique tempered distribution v such that T'f = u x f for all f € .. The
remainder is to prove & € L>*(R").

w —n/2
Let pg = e_%mQ, then, we have ¢y € % and ¢y = (%) o by The-

orem 1.10 with a = 1/2|w|. Thus, Ty = u * g9 € L? and therefore ®; :=
F(u x ¢g) = Py € L? by (1.18) and the Plancherel theorem. Let m(¢) =

(1) !5 0 () = @0(6)/20(c).
We claim that
F(ux* @) =mep (1.19)
for all ¢ € .. By (1.18), it suffices to show that (4p,¥) = (mp, ) for allp € 2
since 7 is dense in .. But, if ) € Z, then (¢¥/$0)(§) = (%)n/2 w(g)e%\ﬂ? € 9;
thus,
(U@, ) =(, pY) = (4, Poyp /Po) = (o, P/ Po)

JRIGES (gjl)n/Qw(s)e'?'f'st

_ / m(E)FE(EO)E = (mp, ).

It follows immediately that ¢ = m: We have just shown that (a, p¢) =
(m@,) = (m,¢) for all ¢ € . and ¢ € 2. Selecting ¢ such that ¢(§) =1
for £ € supp v, this shows that (i, ) = (m, ) for all » € 2. Thus, & = m.
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Due to

2T

|w| —n/2
<(50) " irell = el

for all p € ., it follows that
L = i) e > 0
for all ¢ € .. This implies that || T||> — |m|? > 0 for almost all + € R". Hence,
m € L*(R") and [[m]lec < [IT-
Finally, we can show the sufficiency easily. If &« = m € L*(R"), the Plancherel
theorem and (1.18) immediately imply that

R w —n/2
Im@lle =7 (ux @)l = <H> lu* 2

@l

n/2 R
1T fll2 = flux fll2 = () [mfll2 < llmllooll f1l2

27
which yields || 7] < ||m|co-
Thus, if m = 4 € L*°, then ||T|| = [|m||co- [

For further results, one can see [SW71, p.30] and [Gra04, p.137-140].
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2.1 Riesz-Thorin’s and Stein’s interpolation theorems

We first present a notion that is central to complex analysis, that is, the holo-
morphic or analytic function.
Let Q2 be an open set in C and f a complex-valued function on 2. The func-
tion f is holomorphic at the point z € € if the quotient
f(z0+h) = f(z0)

h
converges to a limit when » — 0. Here h € C and h # 0 with 25 + h € Q, so that

the quotient is well defined. The limit of the quotient, when it exists, is denoted
by f’(z0), and is called the derivative of f at z:

f’(Z()) _ }11141)% f(ZO + hf})L - f(Z()) (21)

It should be emphasized that in the above limit, / is a complex number that may
approach 0 from any directions.

The function f is said to be holomorphic on 2 if f is holomorphic at every
point of 2. If C'is a closed subset of C, we say that f is holomorphic on C if f is
holomorphic in some open set containing C'. Finally, if f is holomorphic in all of
C we say that f is entire.

Every holomorphic function is analytic, in the sense that it has a power series
expansion near every point, and for this reason we also use the term analytic as

35
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a synonym for holomorphic. For more details, one can see [SS03, pp.8-10].

Ex. 2.1. The function f(z) = z is holomorphic on any open set in C, and f'(z) = 1.
The function f(z) = Z is not holomorphic. Indeed, we have

fzo+h) = f(0) _h

h h
which has no limit as h — 0, as one can see by first taking h real and then h purely
imaginary.

Ex. 2.2. The function 1/ z is holomorphic on any open set in C that does not contain the
origin, and f'(z) = —1/22

One can prove easily the following properties of holomorphic functions.
Proposition 2.3. If f and g are holomorphic in Q, then

i) f + g is holomorphic in Qand (f +g) = f' + 4.

ii) fg is holomorphic in Q and (fg) = f'g + f4'.

iii) If g(z0) # O, then f /g is holomorphic at zo and

(f)' _fl9— 14
g g

Moreover, if f : Q@ — U and g : U — C are holomorphic, the chain rule holds

(go ) (2) =4 (f(2)f'(2), forallze Q.
The next result pertains to the size of a holomorphic function.

Theorem 2.4 (Maximum modulus principle). Suppose that 2 is a region with com-
pact closure Q. If f is holomorphic on Q and continuous on (0, then

sup|f(2)] < sup |f(z)].
z€Q EIS9ANY)

Proof. See [SS03, p.92]. [ |

For convenience, let S = {z € C: 0 < Rz < 1} be the closed strip, S° = {z €
C:0 < Rz < 1} be the open strip, and 905 = {z € C: Rz € {0,1}}.
Theorem 2.5 (Phragmen-Lindel6f theorem/Maximum principle). Assume that
f(z) is analytic on S° and bounded and continuous on S. Then

o33 )] < e (sup £GiD)], sup| (1 +z‘t>|) .
zES teR teR

Proof. Assume that f(z) — 0 as |3z| — oo. Consider the mapping h : S — C
defined by

ez _ g

hz)=S—" ze8 2.2)
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Then h is a bijective mapping from S onto U = {z € C : |z| < 1} \ {£1}, thatis
analytic in S° and maps 95 onto {|z| = 1} \ {£1}. Therefore, g(z) := f(h1(2))
is bounded and continuous on U and analytic in the interior U°. Moreover, be-
cause of lim|g;| o f(2) = 0, lim, 41 g(2) = 0 and we can extend g to a contin-
uous function on {z € C : |z| < 1}. Hence, by the maximum modulus principle
(Theorem 2.4), we have
96611 < o o] = max (sup i) sup£(1+i0)] ).
lw]=1 teR teR
which implies the statement in this case.
Next, if f is a general function as in the assumption, then we consider

fé,zo(z) = 65(2—z0)2f(z)’ §>0, 2 € g0
Since |e5(z_z(’)2| < 3@ =) with » — zo=x+1iy,—1 <z <landy € R, we have
f5.20(2) = 0 as |Jz| — oo. Therefore

|f(ZU)| :‘fﬁ,zo(20)| < max (Sup |f5,zo(it)|a sup |f6,z0(1 + 'Lt)|)
teR teR

<e® max (sup |f(it)], sup |f(1+ ’Lt)|> .
teR teR

Passing to the limit § — 0, we obtain the desired result since z, € S is arbitrary.
[ |

As a corollary we obtain the following three lines theorem, which is the basis
for the proof of the Riesz-Thorin interpolation theorem and the complex inter-
polation method.

Theorem 2.6 (Hadamard three lines theorem). Assume that f(z) is analytic on S°

and bounded and continuous on S. Then ,

1-6
sup |£(6 + it)] < <sup|f(it)l> (suplf(1+it)\) ,
teR teR teR
for every 6 € [0, 1].

Proof. Denote
A :=sup|f(it)|, Ay :=sup|f(1+it)].

teR teR
Let A € R and define
Fa(2) = e f(2).
Then by Theorem 2.5, it follows that
|F\(2)| < max(Ag, e Ay).
Hence,
|£(0+it)] < e max(Ag, e*A;)
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forall t € R. Choosing A\ = In ’2—? such that e*4; = Ay, we complete the proof. B

In order to state the Riesz-Thorin theorem in a general version, we will state
and prove it in measurable spaces instead of R™ only.

Let (X, 1) be a measure space, i« always being a positive measure. We adopt
the usual convention that two functions are considered equal if they agree ex-
cept on a set of y-measure zero. Then we denote by LP (X, du) (or simply LP(dp),
LP(X) or even LP) the Lebesgue-space of (all equivalence classes of) scalar-
valued p-measurable functions f on X, such that

uﬂu—([Qﬂmme”p

is finite. Here we have 1 < p < oo. In the limiting case, p = oo, L? consists of all
pu-measurable and bounded functions. Then we write

[flloc = sup [f ().
X

In this section, scalars are supposed to be complex numbers.
Let T be a linear mapping from LP = LP(X, du) to L9(Y, dv). This means that
T(af + Bg) = oT(f) + BT (g). We shall write

T:LP — L1
if in addition 7" is bounded, i.e., if
T
4 — o 17l
20 1 fllp

is finite. The number A is called the norm of the mapping 7.

It will also be necessary to treat operators 7" defined on several L spaces
simultaneously.

Definition 2.7. We define LP' 4 LP? to be the space of all functions f, such that
f=fi+ fo,with f; € LP* and f5 € LP2.

Suppose now p; < pa. Then we observe that
LP C IP* + [P Vp € [p1,p2].
In fact, let f € L? and let «y be a fixed positive constant. Set
f(@),  |f(@)] >,
xTr) =
fit@) {a F(@)] <7,
and fo(z) = f(z) — fi(z). Then

/M@WMZ/M@WM@W”M<W”/W@W%
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since p; — p < 0. Similarly,

/ () P2da = / Fa(@) Pl fo ()PP < P2 / F (@) Pda,

so f1 € LPt and fy € LP2, with f = f1 + fo.
Now, we have the following well-known theorem.

Theorem 2.8 (The Riesz-Thorin interpolation theorem). Let T be a linear opera-
tor with domain (LP° + LP)(X,du), po, p1, qo, q1 € [1, 00]. Assume that

ITflleov,dvy < Aollfllzro(x,anys i f € LP(X, dp),
and

ITfllzar (vavy < Al flloenx,ays i f € LPY (X, dp),
for some py # p1 and qo # q1. Suppose that for a certain 0 < 6 < 1
1_1—0+0 1_1—9+0

» p p 9 @ @ a

Then
ITfllLav,avy < Aol fllex,any, ¥ f € LP(X, dp),
with
Ag < ALPAS. (2.4)

Remark 2.9. 1) (2.4) means that Ay is logarithmically
convex, i.e., In Ay is convex.

2) The geometrical meaning of (2.3) is that the points
(1/p,1/q) are the points on the line segment be-
tween (1/po, 1/q0) and (1/p1,1/q1)-

3) The original proof of this theorem, published in
1926 by Marcel Riesz, was a long and difficult calcu-
lation. Riesz’ student G. Olof Thorin subsequently Grvar)
discovered a far more elegant proof and published 5
it in 1939, which contains the idea behind the com-
plex interpolation method.

T,

(1,1)

==Y

Proof. Denote

(h,g) = /Y h(y)g(y)dv(y)

and 1/¢' =1 — 1/q. Then we have, by Hélder inequality,

Ihllq = sup [k, g)], and Ag = sup  [Tf,g)|-
lglly=1 17lp=lgllgr=1

Noticing that C.(X) is dense in LP(X, ) for 1 < p < oo, we can assume
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that f and g are bounded with compact supports since p, ¢ < co.! Thus, we
have |f(z)| < M < oo forall z € X, and supp f = {z € X : f(z) # 0} is com-
pact, i.e., u(supp f) < oo which implies [ | f(z)|‘du(z) = fsuppf |f ()| du(z) <
M*p(supp f) < oo for any £ > 0. So g does.

For 0 < Rz < 1, we put

L_l—z_}_i 1 _1—2’_'_3
p(z)  po p1 (2) @ 4
and (@)
p x
z) =n(z, z) = |f(z)|*® , T € X;
n(z) =n(z,z) = [f(z)| ()]
< g(y)

C(2) =C(y,2) = lgly )Iq“z)’ ol Y
Now, we prove n(z), n/(z) € LPs for j = 0, 1. Indeed, we have

Z)|=‘|fx 77| = | £ ()Pt (@)U F G =
#<W1“”z|ﬂnww
Thus,
[n(2) /]nwz\pfdu |f(z p(%z)dﬂ ) < 00.
X
We have
) =l | 2] @ g
”“)”m“>bwhﬂml”@‘
(LY s L@
2 (5= o) VP s

On one hand, we have lim|¢(,) 0, [f(2)|[*In[f(z)| = 0 for any a > 0, that is,
Ve > 0,36 > 0s.t. ||[f(2)|*In|f(z)|| < eif |f(z)] < 0. On the other hand, if
|f(z)| > 0, then we have
F@)[* [ f ()] < M [In[f(2)]] < M max(]n M|, [Ind]) < oo
Thus, ||f(x)|*In|f(z)|| < C. Hence,
1
i =p -

e | HOI

<C i)t

[ ()] [ £ ()]

= C|f()[78

1=1/90 > 1if ¢’ = oo.

!Otherwise, it will be pg = p1 = 0 if p = 00, or 6 = a1/ 2



2.1. Riesz-Thorin’s and Stein’s interpolation theorems -41-

which yields

I )IE < C / (@) TP () < oo

Therefore, 1(z), 1/'(z) € LPi for j = 0,1. So ((z), ¢'(z) € L% for j = 0,1 in the
same way. By the linearity of 7', it holds (7'n)'(z) = T%/(z) in view of (2.1). It
follows that T'n(z) € L%, and (Tn)'(z) € L% with 0 < Rz < 1, for j = 0, 1. This
implies the existence of

F(z) = (Tn(2),¢(2)), 0< Rz < L.

Since
4 (2 Z%@n(z),qz» / (Tn)(y, 2)C(y, 2)dv(y)
:/(Tn)z(y, 2)¢( +/ Tn)(y, 2)C:(y, 2)dv(y)
Y Y

=((Tn)(2),¢(2)) + (Tn(2), {'(2)),
F(z) is analytic on the open strip 0 < Rz < 1. Moreover it is easy to see that
F(z) is bounded and continuous on the closed strip 0 < £z < 1.
Next, we note that for j =0, 1

b
G + i), = I £llp" = 1.
Similarly, we also have ||{(j + it)Hq/ =1forj=0,1. Thus, for j =0,1

[F(j +it)] =[(Tn(j +it), (5 +it)] < [Tn(j + it)llq, ¢ + it)lly

<Al + i)l [1CG +it)llg, = A
Using Hadamard three line theorem, reproduced as Theorem 2.6, we get the
conclusion
|F(0+it) < AYPAY, vteR.

Taking t = 0, we have |F(0)| < A} 7 A{. We also note that 77(f) = f and ¢(§) = g,
thus F(0) = (Tf,g). Thatis, |(Tf,g)| < A} "?Af. Therefore, A9 < A}7°AY. =

Now, we shall give two rather simple applications of the Riesz-Thorin inter-
polation theorem.

Theorem 2.10 (Hausdorff-Young inequality). Let 1 <p < 2and 1/p+1/p' = 1.
Then the Fourier transform defined as in (1.1) satisfies

—n/p’
w
1751 < (52) 15l

Proof. 1t follows by interpolation between the L'-L*° result ||.F f|oo < ||f|l1 (cf.
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—n/2
Theorem 1.5) and Plancherel’s theorem ||.% f||2 = (%) I f1l2 (cf. Theorem

1.26). |

Theorem 2.11 (Young’s inequality for convolutions). If f € LP(R") and g €
LY(R™),1 < p,q,r < occand % = % +1 1, then

q
1f * gllr < [ £1lpllgllq-

Proof. We fix f € LP, p € [1, 00| and then will apply the Riesz-Thorin interpola-
tion theorem to the mapping g — f * g. Our endpoints are Holder’s inequality
which gives

N g@)] < A fllpllglly
and thus g — f * g maps L? (R") to L>°(R") and the simpler version of Young’s
inequality (proved by Minkowski’s inequality) which tells us that if g € L', then

1 * glly < I pllglls-
Thus g — f * g also maps L! to LP. Thus, this map also takes L4 to L” where

1 1-6 6 1 1-60 0
- =——+—,and - = —+ —.
q 1 P! r P o0
Eliminating 6, we have % =141_7
The condition ¢ > 1 is equivalent with § > 0 and » > 1 is equivalent with
the condition § < 1. Thus, we obtain the stated inequality for precisely the

exponents p, ¢ and r in the hypothesis. u

Remark 2.12. The sharp form of Young’s inequality for convolutions can be
found in [Bec75, Theorem 3], we just state it as follows. Under the assumption
of Theorem 2.11, we have

I1f * gllr < (ApAgAr)™[| fllpllgllg,

where A, = (mY/™/m/Y™)1/2 for m € (1,00), A; = As = 1 and primes always
denote dual exponents, 1/m + 1/m’ = 1.

The Riesz-Thorin interpolation theorem can be extended to the case where
the interpolated operators allowed to vary. In particular, if a family of operators
depends analytically on a parameter z, then the proof of this theorem can be
adapted to work in this setting.

We now describe the setup for this theorem. Suppose that for every z in the
closed strip S there is an associated linear operator 7, defined on the space of
simple functions on X and taking values in the space of measurable functions
on Y such that

/ IT2(f)gldv < oo 25)
Y
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whenever f and g are simple functions on X and Y, respectively. The family
{T.}. is said to be analytic if the function

z—)/YTZ(f)ng (2.6)

is analytic in the open strip S° and continuous on its closure S. Finally, the
analytic family is of admissible growth if there is a constant 0 < a < 7 and a
constant Cy 4 such that

_ Cx
e alSz| In

<Oy <00 (2.7)

/Y T.(f)gdv

for all z € S. The extension of the Riesz-Thorin interpolation theorem is now
stated.

Theorem 2.13 (Stein interpolation theorem). Let T, be an analytic family of linear
operators of admissible growth. Let 1 < po,pi1,q0,q1 < oo and suppose that My and
M, are real-valued functions such that

sup et In M;(t) < oo (2.8)
teR
for j =0,1and some0 < b < . Let 0 < 0 < 1 satisfy
= 1 1-6 6
TSI S S -
p Do b1 q 4q0 Uil
Suppose that
I Tie(Nllao < Mol fllpos  [1Taie(Nllay < Ma()Iflp (2.10)
for all simple functions f on X. Then
1To(H)llg < MO)|[fllp, when0 <6 <1 (2.11)
for all simple functions f on X, where
sin 6 In Mo(t) In M (t)
M) = dt y.
(6) = exp { 2 /R [cosh 7wt —cosmf  coshwt + cosl

By density, Ty has a unique extension as a bounded operator from LP(X,p) into
LYY, v) for all p and q as in (2.9).

The proof of the Stein interpolation theorem can be obtained from that of the
Riesz-Thorin theorem simply “by adding a single letter of the alphabet”. Indeed,
the way the Riesz-Thorin theorem is proven is to study an expression of the form

F(z) = (Tn(2),((2)),
the Stein interpolation theorem proceeds by instead studying the expression
F(z) = (T:n(2),¢(2))-
One can then repeat the proof of the Riesz-Thorin theorem more or less verbatim
to obtain the Stein interpolation theorem. Of course, the explicit expression of
M (0) need an extension of the three lines theorem. For the detailed proof, one
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can see [SW71, p. 205-209] or [Gra04, p.38-42].

2.2 The distribution function and weak L? spaces

We shall now be interested in giving a concise expression for the relative size
of a function. Thus we give the following concept.

Definition 2.14. Let f(z) be a measurable function on R”. Then the function
f« :[0,00) — [0, oo] defined by

fela) = m{z : |f(2)| > a})
is called to be the distribution function of f.

The distribution function f, provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on
R™ and each of its translates have the same distribution function.

In particular, the decrease of f.(a) as a grows describes the relative large-
ness of the function; this is the main concern locally. The increase of f.(«a) as «
tends to zero describes the relative smallness of the function “at infinity”; this
is its importance globally, and is of no interest if, for example, the function is
supported on a bounded set.

Now, we give some properties of distribution functions.

Proposition 2.15. For the distribution function, we have following fundamental prop-
erties.

(i) f«(«) is decreasing and continuous on the right.

(i) If | ()| < lg(@)], then f.(a) < g. ().

(iii) If | f(x)| < iminfg_oo |fi(2)| for ace. x, then fi(a) < liminfy oo (fr)«(c)
forany o > 0.

@) I 1£(2)] < lg(@)] + |h(@)], then fu(ar + az) < gu(ar) + ha(as) for any
a1, 2 0.

V) (f9)«(a1a2) < fi(ar) + g«(az) for any ai, az > 0.

(vi) Forany p € (0,00) and a > 0, it holds f.(o) < a™P f{x“(x)ba} |f(x)|Pdx.

(vil) If f € LP, p € [1,00), then limy—y 4+ o0 0P fu(ar) = 0 = limgy—0 o fi ().

(viii) If [° o~ fi(a)do < oo, p € [1,00), then P fu(a) — 0 as o — +o0 and
a — 0, respectively.

Proof. For simplicity, denote E¢(a) = {z : |f(z)| > o} for a > 0.
(i) Let {a4 } is a decreasing positive sequence which tends to «, then we have
E¢(a) = U2 | E¢(ay). Since {E¢(ay)} is a increasing sequence of sets, it follows
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limy_yo0 fi(ak) = fi(). This implies the continuity of f.(«) on the right.
(iii) Let £ = {z : |f(z)| > o} and E}, = {z : |fx(z)| > a}, k € N. By the
assumption and the definition of inferior limit, i.e.,

|f(2)] < liminf | fy.(2)] = sup inf | f(2)],
k—o0 teN k>4

for x € E, there exists an integer M such that for all k£ > M, |fi(x)| > «. Thus,
E Cc U1 Miers Ex,and forany £ > 1,

o
Ey | < inf m(E f m(Ey) = liminf m(E
m (ﬂ k) lin m(Fy) < Slt}p égz m(Ey) = im in inf m(Ey).
Since {2 s Ex}37_ is an increasing sequence of sets, we obtain

fo(@) =m(E) <m ( U N Ek> = lim m ( N Ek> < lim inf(fr). (a).

M=1k=M k=M
(v) Noticing that {z : |f(z)g(x)| > a1z} C {z : |f(z)| > a1} U{z : |g(x)] >
as}, we have the desired result.
(Vi) fu(a) = m({z : |f(x)] > a}) = f{z:\f(x)|>a} dr < f{x:lf(x)|>a}(|f(j)|)pdx
a™? f{m If ()] >a) | f(x)[Pdz.

(vii) From (vi), it follows o? f,(« f{x F@)>a) |f(x)Pde < [gn |f(x)[Pde.
Thus, m({z : |f(x)| > a}) > 0asa — +oo and
lim |f(x)[Pdx = 0.

a0 Sz f(x)|>a}
Hence, o? f,(a)) — 0 as a — +oo since o f,. (o) = 0.
For any 0 < o < 3, we have, by noticing that 1 < p < oo, that

lim o? £.(0) = lim o?(.(a) — fo(8)) = lim oPm({z o < |f(x)| < B})

a—
< / (@) Pda.
{z:|f(z)|<B}

By the arbitrariness of §, it follows o f, (o) — 0 as a — 0.
(viii) Since f (tP)'dt = of — (a/2)P and f. () < fu(t) for t < o, we have

fe(@)aP(1 —27P) < p/ tPLf () dt

a/2
which implies the desired result.
For other ones, they are easy to verify. [

From this proposition, we can prove the following equivalent norm of L”
spaces.
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Theorem 2.16 (The equivalent norm of LP). Let f(x) be a measurable function in
R™, then

l)Hpr—(pfo aP~1f,(a)da)'?, if1<p < oo,
ii) || flloo = inf {a : fi(a >—0}.

Proof. In order to prove i), we first prove the following conclusion: If f(z) is
finite and f.(«) < oo for any a > 0, then

/ |f(z)Pdx = — /OO aPdf.(a). (2.12)
R" 0

Indeed, the rh.s. of the equality is well-defined from the conditions. For the
integral in the Lh.s., we can split it into Lebesgue integral summation. Let 0 <
£<2 < - <ke<---and

then, m(Ej;) = f*((] - 1) ) f(je), and

[ 1t >\pdx—hngsme :—hngs 1.8) = £.(G = Do)

_ /OOO oPdf.(a).

Now we return to prove i). If the values of both sides are infinite, then it is
clearly true. If one of the integral is finite, then it is clear that f.(a) < +o00 and
f(z) is finite almost everywhere. Thus (2.12) is valid.

If either f € LP(R™) or [;° aP! f.(a)da < oo for 1 < p < oo, then we always
have o f,(a) — 0 as a — +oo and o — 0 from the property (vii) and (viii) in
Proposition 2.15.

Therefore, integrating by part, we have
o0

- /0 " aPdf.(a) =p /O TP (a)da — o fu(a)|T™ = p /0 a1 f,(a)da.

Thus, i) is true.
For ii), we have
inf {a : f(a) = 0} =inf {a : m({e : |f(2)| > a}) = 0}
—inf{a: |f(x)| < o, ae)
—ess supezn (1) = ||l
We complete the proofs. u

Using the distribution function f,, we now introduce the weak LP-spaces
denoted by L.
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Definition 2.17. The space L%, 1 < p < oo, consists of all f such that
| £llz2 = supafi’P(a) < oo,
«
In the limiting case p = oo, we put L° = L.

By the part (iv) in Proposition 2.15 and the triangle inequality of L” norms,
we have

1F + gl < 201 f1 e + N9l ze)-
Thus, one can verify that L% is a quasi-normed vector space. The weak L? spaces
are larger than the usual L? spaces. We have the following:

Theorem 2.18. Forany 1 < p < oo, and any f € LP, we have || f|
T2 o fih.

12 < || fllp, hence

Proof. From the part (vi) in Proposition 2.15, we have

1/p
ol () < ( / If(x)l”dfv>
{z:| f(@)|>a}
which yields the desired result. [

The inclusion LP C L% is strict for 1 < p < oo. For example, let h(z) =
|z|~"/P. Obviously, h is not in LP(R") but h is in L}(R™) and we may check
easily that

1]l 2 =sup ahi/P () = sup a(m({ : [2] "7 > a}))/"
—supa(m({z : |z| <« P/"})VP = sup a(a"PV,) /P

=V,
where V;, = 7/2/T'(1 + n/2) is the volume of the unit ball in R" and I'-function
[(z) = [;°t*te~"dt for Rz > 0.
It is not immediate from their definition that the weak L? spaces are complete
with respect to the quasi-norm || - || .. For the completeness, we will state it later
as a special case of Lorentz spaces.

2.3 The decreasing rearrangement and Lorentz spaces

The spaces LY are special cases of the more general Lorentz spaces L. In
their definition, we use yet another concept, i.e., the decreasing rearrangement
of functions.
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Definition 2.19. If f is a measurable function on R", the decreasing rearrangement
of fis the function f* : [0, 00) — [0, oo] defined by

fA(#) =inf{a>0: fu(a) <t},

where we use the convention that inf @ = oc.

Now, we first give some examples of distribution function and decreasing
rearrangement. The first example establish some important relations between a
simple function, its distribution function and decreasing rearrangement.

Ex. 2.20 (Decreasing rearrangement of a simple function). Let f be a simple function
of the following form

K
T) = Z ajxa,; ()
j=1

wherea; > ag > - >a >0,A; ={x € R: f(x) = a;} and x 4 is the characteristic
function of the set A (see Figure (a)). Then

k
fule) = m({z : [f(2)] > a}) = m({z : Z%XA )>a}) =Y bixs (@)
j=1

where bj = Y1 m(4;), Bj = [ajy1,a5) for j = 1,2,k and ajyy = 0 which
shows that the dzstrzbutlon functton of a simple functzon isa szmple function (see Figure
(b)). We can also find the decreasing rearrangement (by denoting by = 0)

k
1) =inf{a>0: fu(e) <t} =inf{a > 0: Y bixp,(a) <t}
j=1

k
- Z @jX[b; 1 ,6;) (1)
j=1

which is also a simple function (see Figure (c)).
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F@A Fe(a)] £r(t)
aif ﬁ al
I \

azy LM a2 |/

asf L I S— o

ast 1! L I bt asf || }_l
o ﬁ} } o by | = ————— L h

asf | | [ I S a |

gy b - o]

RN — -
L1 o L1 L | - [ L
As Ay AL As A as a4 azaz a1« b1 ba bs babs t

(a) (b) ()

Ex. 2.21. Let f : [0,00) > [0, 00) be

1—(x—1)2  0<2<2,

f(x)_{o, x> 2.

It is clear that f.(«) = 0 for a > 1since |f(z)| < 1. For a € [0, 1], we have
fr(a) =m({z € [0,00): 1 — (z — 1)® > a})
=m({z €[0,00):1-V]l-a<z<l++V1l—-a})=2vV1—a.
That is,

ﬂ@%:{%ﬂ_a’ 0<a<l,

0, a > 1.

The decreasing rearrangement f*(t) = 0 for t > 2 since f.(a) < 2 for any a > 0. For
t < 2, we have

2Vl —a <t}
ca>1—12/4) =1—t?/4.

Thus,

. 1—t2/4, 0<t<2,
f(t):{o / t>2.
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-~ . -~ VN
f fe f
24 9 24
1+ 14 14
. y . R \.4 >
1 2 T 1 ) « 1 2 t

Observe that the integral over f, f. and f* are all the same, i.e.,

/Ooof(x)dmZ/OQ[l—(1:—1)2]d:c:/12Mda:/2(1_t2/4)dt:4/3‘

0 0

Ex. 2.22. We define an extended function f : [0, 00) — [0, oo] as

0, z =0,
In(-1), O0<z<l,

flx) =< oo, 1<z <2,
In(-15), 2<z<3,
0, T = 3.

Even if f is infinite over some interval the distribution function and the decreasing rear-
rangement are still defined and can be calculated, for any o > 0

fela) =m({z € [1,2] : 0o > a} U{z € (0,1) : In(

1
5) > a})

—1m((1 - e, 1) + m((2e +2))
=1+2e"“,

1
1_$)>a}

U{z € (2,3) : In(

and
o0, 0<t<1,
ff)=1¢ (%), 1<t<3,
0, t>3.
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-~ f*4; .
Jg__ 5+ f5--
4T T 4T
3T 3 3T
21 T 21
14+ T 14+
! ! ) } } } ) } } ! )
H 5 5 T 1 2 3« 1 2 3t

Ex. 2.23. Consider the function f(x) = x for all x € [0,00). Then f.(a) = m({x €
[0,00) : & > a}) = oo for all a > 0, which implies that f*(t) = inf{a > 0 : 0o <
t} = oo forallt > 0.

Ex. 2.24. Consider f(z) = H forxz > 0. Itis
clear that f.(«) = 0 for a > 1 since |f(x)| < 1. For 4

a € [0,1), we have i
ful@) =m({z € 0,00) : ;77— > a}) 1 .
:m({xe[o,oo):x>1iya}):oo. 7
That is, | )
e ={ o0 039t L

Thus, f*(t) = inf{a > 0: fi(a) <t} = 1.
Proposition 2.25. The decreasing rearrangement f* of the measurable function f on
R™ has the following properties:
(i) f*(¢) is a non-negative and non-increasing function on [0, co).
(ii) f*(t) is right continuous on [0, 00).
(iil) (kf)* = |k|f* for k € C.
(1v) |f] lg| a.e. implies that f* < g*.
V) (f +9)"(t1 +t2) < f*(t1) + g*(t2).
(Vl) (fg)"(t1 + t2) < f*(t1)g" (t2).
(vii) | f| < liminfy_,o | fx| a.e. implies that f* < liminfy_,. f7.
(viii) | fx| T | f| a.e. implies that f; 1 f*.
(ix) f*(f«(a)) < a whenever f.(a) < oo.
() £ (7 (1) = m({|f] > F*O)) <t <m({If] > O if F(¢) <
(xi) f*(t) > aifand only if f.(a) >t
(xii) f* is equimeasurable with f, that is, (f*).(a) = f«(a) for any o > 0.
(xid) (f[7)*(¢) = (f*($))P for 1 < p < oo.
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iv) [[f*[lp = [If]lp for 1 < p < oo.

V) [[ flloo = *(0).

(xvi) sup;~q t° f*(t) = supyso o fe(@))® for 0 < s < oo.
Proof. (v) Assume that f*(¢1) + g*(t2) < oo, otherwise, there is nothing to prove.
Then for oy = f*(t1) and a2 = ¢*(2), by (x), we have fi(a1) < £ and g« (a2) <
to. From (iv) in Proposition 2.15, it holds

(f +9)s(a1 + a2) < fular) + gu(az) < t1 + 1o
Using the definition of the decreasing rearrangement, we have
(f +9)*(t1 +12) = inf{a: (f + g)«(@) <ty + 12} Sou+ a2 = 7 (t1) + g7 (t2).

(vi) Similar to (v), by (v) in Proposition 2.15, it holds that (fg).(a1a2) <

fi(a1) + g«(2) < t1 + to. Then, we have
(fg)*(t1 + t2) = inf{a : (fg)«(a) <t1+t2} < aran = f7(t1)g"(t2).

(xi) If fi(a) > t, then by the decreasing of f., we have a < inf{f : f.(8) <
t} = f*(t). Conversely, if f*(t) > o, ie., inf{f3: fi(B) <t} > a, we get fi(a) >t
by the decreasing of f. again.

(xii) By the definition and (xi), we have

(fF)ele) =m({t = 0: f*(t) > a}) = m{t = 0: fi(e) > t}) = fu(a).
(xiii) For « € [0, 00), we have
(LFP)*(t) =inf{a 2 0: m({z : | f(2)]" > a}) <t}
—inf{o? > 0: m({z: |f(@)] > o}) <t} = (),

where o = o!/P.

(xiv) From Theorem 2.16, we have

1@ = /0 PPt = p /0 a1 (f*)(@)do
= [ o (a)de= 11

We remain the proofs of others to interested readers. u

Having disposed of the basic properties of the decreasing rearrangement of
functions, we proceed with the definition of the Lorentz spaces.

Definition 2.26. Given f a measurable function on R™ and 1 < p, ¢ < oo, define

| fllea = </0Oo <t%f*(t)>q 67?); ’ q < o0,

suptr f*(t), g = o0.
t>0
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The set of all f with || f||zr.« < oo is denoted by LP9(R™) and is called the Lorentz
space with indices p and q.

As in LP and in weak L?, two functions in LP¢ will be considered equal if
they are equal almost everywhere. Observe that the previous definition implies
that LP>° = L% in view of (xvi) in Proposition 2.25 and LP? = LP in view of (xiv)
in Proposition 2.25 for 1 < p < oo. By (i) and (xv) in Proposition 2.25, we have
| fllLoooe = supysq f*(t) = f*(0) = || f||ooc which implies that Lo = L = Lg°.
Thus, we have
Theorem 2.27. Let 1 < p < oo. Then it holds, with equality of norms, that

PP =[P, [P™ =[P

Remark 2.28. For the Lorentz space LP4, the case whenp = ocoand 1 < ¢ < oo is
not of any interest. The reason is that || f ||L.a < oo implies that f = 0 a.e. onR™.
In fact, assume that L° is a non-trivial space, there exists a nonzero function
f € L°? on a nonzero measurable set, that is, there exists a constant ¢ > 0 and
a set E of positive measure such that |f(x)| > cfor all z € E. Then, by (iv) in
Proposition 2.25, we have
lma = [0S > [ @rs s [ aF =
0 0 0

since (fxg)*(t) = 0 for t > m(FE). Hence, we have a contradiction. Thus, f = 0
a.e. on R"”.

The next result shows that for any fixed p, the Lorentz spaces L increase
as the exponent ¢ increases.

Theorem 2.29. Let 1 <p < ocoand 1 < g < r < oco. Then, there exists some constant
Ch,q,r sSuch that

[fllzer < C
where Cp. 4 = (q/p) 971", In other words, LP9 C LP.

(2.13)

Proof. We may assume p < oo since the case p = oo is trivial. Since f* is non-
creasing, we have

o= (2 [ - {2 [ty d}/

{4 [ d}/ < ()" Wlone
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Hence, taking the supremum over all t > 0, we obtain

q 1/q
I£zme < (£) Wl .14)
This establishes (2.13) in the case » = oc. Finally, when r < oo, we have by (2.14)

o0 1/T
[ fllzer = {/0 [tl/pf*(t)]r—q+q6lt}

t

< sup[tV/P f* (¢)) -0/ { /0 e 1)) % }

t>0

.49
P

Q=

r—q
r— T T q T4
1211 < (2) 7 Wl
This completes the proof. |

In general, LP is a quasi-normed space, since the functional || - || r.« satisfies
the conditions of normed spaces except the triangle inequality. In fact, by (v) in
Proposition 2.25, it holds

If + gllra < 2P(1fllzoa + llgllzra)- (2.15)
However, is this space complete with respect to its quasi-norm? The next theo-
rem answers this question.

Theorem 2.30. Let 1 < p,q < oo. Then the spaces LP4(R™) are complete with respect
to their quasi-norms and they are therefore quasi-Banach spaces.

Proof. See [Gra04, p. 50, Theorem 1.4.11]. [ ]

For the duals of Lorentz spaces, we have

Theorem 2.31. Let 1 < p,q < oo, 1/p+1/p' =1and 1/q+1/q = 1. Then we have
(LMY = (LY = 1%, (LAY = {0}, (LP4) = 1P,

Proof. See [Gra04, p. 52-55, Theorem 1.4.17]. [ |
For more results, one can see [Gra04, Kri02].

24 Marcinkiewicz’ interpolation theorem
We first introduce the definition of quasi-linear operators.

Definition 2.32. An operator 7" mapping functions on a measure space into
functions on another measure space is called quasi-linear if T(f + g) is de-
fined whenever T'f and Tg are defined and if |T'(Af)(z)| < &|A|Tf(z)| and
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T(f + g)(x)] < K(|Tf(x)| + |Tg(x)|) for a.e. =, where k and K is a positive
constant independent of f and g.

The idea we have used, in Definition 2.7, of splitting f into two parts ac-
cording to their respective size, is the main idea of the proof of the theorem that
follows. There, we will also use two easily proved inequalities, which are well-
known results of Hardy’s (see [HLPS8S, p. 245-246]):

Lemma 2.33 (Hardy inequalities). If ¢ > 1, r > 0 and g is a measurable, non-
negative function on (0, 0c), then

</O°° </otg(y)dy>q“it>l/q . (/Ooo(yg(y))qyriyy/q, (2.16)
</0°° (/too g(y)dy>qtrcit>l/q <% (/Ooo(yg(y))qy’“i/y)l/q. (2.17)

Proof. To prove (2.16), we use Jensen’s inequality? with the convex function ¢(x) =
z% on (0, 00). Then

t q 1 t /g et q t Jet q
gydy)— /gyy‘”’y”_dy (/y”_dy>
</0 ®) (fgyr/q—ldy 0 (v) 0
t -1 ¢ q
<</O yr/q_ldy) /0 (g(y)yl_r/‘l> y" 1l dy

g—1 [t
= (gtr/ q) / (yg(y)?y™/* " " dy.
r 0

By integrating both sides over (0, c0) and use the Fubini theorem, we get that

/OOO </Otg(y)dy>qt""1dt
S (%)H /Ooo tir </0t (yg(y))qu/q‘l‘Tdy> dt
- (g)q_l /Ooo (yg(y)) y/o " </yoot“/qczt> dy

Jensen’s inequality: If f is any real-valued measurable function on a set {2 and ¢ is convex
over the range of f, then

¢ (& [ f@aee) < & [ etr@ns.

where g(x) > 0 satisfies G = [, g(x)dx > 0.

N
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= (g)q/ooo (yg(y)y~" " dy,

which yields (2.16) immediately.

To prove (2.17), we denote f(z) = g(1/z)/z*. Then by taking t = 1/s and
y = 1/x, and then applying (2.16) and changing variable again by = = 1/y, we
obtain

</Ooo (/toog(y)d?J)qtrldt) 1/q _ (/OOO (/1: g(y)dy>q8r1ds> 1/q
< < 1/93)/562d$>q5—7«_1d8> 1/q

( (/ f(z dx> s Tlds)l/q

g </ (xf(x))? _T_ldx) 1/q _

</ooo(9(1/w)/x)qx—r_1 dx) 1/d
:g (/Ooo(g(y)y)qyr_ldy) 1/q.

Thus, we complete the proofs. |

LS

Now, we give the Marcinkiewicz® interpolation theorem* and its proof due
to Hunt and Weiss in [HW64].
Theorem 2.34 (Marcinkiewicz interpolation theorem). Assume that 1 < p; <
¢i < 00, po < p1, o # qu and T is a quasi-linear mapping, defined on LP° + Lpl, which
is simultaneously of weak types (po, qo) and (p1, q1), i.e

1T fl|La0oe < Aol fllpo, 1T SfllLaroe < Axl[flp, - (2.18)

If0<6 <1, and
1 1-6 0 1
- = _l’_ —
p Po p1 q 40 q1
namely
ITfllq < Allfllp,  f €L

then T'is of type (p, q),

%J6zef Marcinkiewicz (1910-1940) was a Polish mathematician. He was a student of Antoni
Zygmund; and later worked with Juliusz Schauder, and Stefan Kaczmarz.

4The theorem was first announced by Marcinkiewicz (1939), who showed this result to Antoni
Zygmund shortly before he died in World War II. The theorem was almost forgotten by Zygmund,
and was absent from his original works on the theory of singular integral operators. Later Zyg-
mund (1956) realized that Marcinkiewicz’s result could greatly simplify his work, at which time
he published his former student’s theorem together with a generalization of his own.



2.4. Marcinkiewicz’ interpolation theorem -57-

Here A = A(Ai, pi, qi,0), but it does not otherwise depend on either T or f.

Proof. Let o be the slope of the line segment in R? joining (1/po, 1/q0) with (1/p1,1/q1).
Since (1/p, 1/q) lies on this segment, we can denote the slope of this segment by
yo Yao—=1a _1/a=Ya
I/po—1/p 1/p—1/p1’
which may be positive or negative, but is not either 0 or oo since ¢o # ¢1 and
Po < Pp1-
For any ¢ > 0, we split an arbitrary function f € L? as follows:

f=r+f
where
_ @), F@)] > (),
f'a) = { 0, otherwise,
and f; = f — f*.

Then we can verify that

: y>1 (2.19)
. frt7),  0<y <o, '
(ft) (y) <{ f*(y), y>t0.

In fact, by (iv) in Proposition 2.25, | f*| < | f| implies (f*)*(y) < f*(y) forally > 0.
Moreover, by the definition of f* and (x) in Proposition 2.25, we have (f*).(a) <
(FO(F*(t)) = £.(F*(#7)) < 17 for any @ > 0, since (f').(a) = m({z : |f(z)] >
ap) = m({z : [f(z)| > f*(t7),and |f(z)| > a}) = m({z : [f(2)] > [*(t7)}) =
m({z : [f{@)] > 07} = (f)-(F7(t9)) for 0 < o < f*(t7). Thus, for y > 17,
we get (f')*(y) = 0. Similarly, by (iv) in Proposition 2.25, we have (f;)*(y) <
f*(y) for any y > 0 since |fy| < |f|. On the other hand, for y > 0, we have
(fe) (y) < (f)"(0) = |filloo < f*(t7) with the help of the non-increasing of
(ft)*(y) and (xv) in Proposition 2.25. Thus, (f;)*(y) < min(f*(y), f*(¢t7)) for any
y = 0 which implies (2.19).

Suppose p; < oco. Notice that p < g, because p; < ¢;. By Theorems 2.27 and
2.29, (iv) and (v) in Proposition 2.25, (2.18), and then by a change of variables
and Hardy’s inequalities (2.16) and (2.17), we get

ITfllg = I T fllzos < (p/a) /P~ 9T f )| L

sk <Z>1/pl/q < /0 e s+ Ty en] ‘f) v
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1/p 1/q 1/p
21/f1K / tl/q Tft)*(t)}pcit>

([ [pronro) ) Up}
o ([ s )

i
(0
g ( i 1/muftum}”ff>l/p}
(

1/p 1/q
<21/‘1K

1/10 1/q
21/‘1K

1/p
1! " at
1/q—1/qo0 t
t <p0) s ||Lp0,1] t

1 1/p1 p dt 1/p
[tl/q 1/Q1 s Hft‘Lpl*li t)
1/p— l/q 1-1/po
-2 (2 > (5 )
p 1/p
. +1/4=1/q0 1/p0f dy @
y t
1-1/ 1/p
+ A ( > " < [Uq 1/q1 </ 1/p1f (y )dy>]pdt>
to Yy t
1-1/ 00 t 1/p
+ Al <1> " / |:t1/q—1/<11 (/ 1/P1f (tU)d >:| dt
P1 0 0 Y t
1/p—1/q 1-1/po
—ol/ag <p> ’U’*% Ao <1>
q Po
>0 dy\" ds\ '/
: (/ s P(1/po—1/p) </ y1/Po £ (y) y> >
0 0 y S
1-1 00 1/
+ Ay (1) o </ sP(1/p=1/p1) (/ Y/ (y )d )p ds) g
P1 0 s Yy S
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1 1-1/p1 00 s du\P ds 1/p
- (1/p—=1/p1) pr g9\ @5
() ([T ([ ety )
p=1/a 1-1/pp ) du\ VP
< 1/q p » A (1 < 1/p p* py)
<2 K<Q> 7! { " poﬁl/po—l/p) /0 <y f<y)) y
1\ 1"/p 1 00 p dy\ /P
A [ = - - 1/p px y)
e () ([ 0re)"

1 1-1/m oo ds 1/p
T A <> </ gl—p/p1 (plsl/plf*(s))p>
b1 0 S

1p—1/ Ao (L
_ollag <p) ' |U|q—1/p 0 (PO
q

1
T+ Ay S £l

=A[[flp-
For the case p; = oo the proof is the same except for the use of the estimate
| filloo < f*(t7), we can get

1-1/
D 1/p—1/q Ag (pio) P
q

po P
Thus, we complete the proof. [

From the proof given above it is easy to see that the theorem can be extended
to the following situation: The underlying measure space R" of the L”/(R") can
be replaced by a general measurable space (and the measurable space occurring
in the domain of 7" need not be the same as the one entering in the range of
T). A less superficial generalization of the theorem can be given in terms of
the notation of Lorentz spaces, which unify and generalize the usual L? spaces
and the weak-type spaces. For a discussion of this more general form of the
Marcinkiewicz interpolation theorem see [SW71, Chapter V] and [BL76, Chapter
5].

As an application of this powerful tool, we present a generalization of the
Hausdorff-Young inequality due to Paley. The main difference between the the-
orems being that Paley introduced a weight function into his inequality and
resorted to the theorem of Marcinkiewicz. In what follows, we consider the
measure space (R", 1) where i denotes the Lebesgue measure. Let w be a wei-
hgt function on R”, i.e., a positive and measurable function on R". Then we
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denote by LP(w) the LP-space with respect to wdx. The norm on LP(w) is

o = ([ @rue)

With this notation we have the following theorem.
Theorem 2.35 (Hardy-Littlewood-Paley theorem on R"). Assume that 1 < p <
2. Then

17 fll o ey < Cpll fllp-

Proof. We considering the mapping (T'f)(¢) = |¢]"f(¢). By Plancherel theorem,
we have
ITfllz2(e)-2m) < T fllz2qe-20) = I fll2 < Cll fll2s

which implies that 7" is of weak type (2,2). We now work towards showing that
T is of weak type (1, 1). Thus, the Marcinkiewicz interpolation theorem implies
the theorem.

Now, consider the set E,, = {¢ : |€]"f(€) > «}. For simplicity, we let v denote
the measure |¢|~2"d¢ and assume that || f||; = 1. Then, |f(¢)| < 1. For £ € E,,
we therefore have a < |¢]". Consequently,

(TF)a(0) = v(Ey) = /E €[~2de < /|e N €[~2de < Ca~l.

Thus, we proves that

a-(Tf)(a) < ClIfl,
which implies T is of weak type (1, 1). Therefore, we complete the proof. |
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3.1 Two covering lemmas

Lemma 3.1 (Finite version of Vitali covering lemma). Suppose B =
{B1,Bs,---,Bn} is a finite collection of open balls in R". Then, there exists a dis-
joint sub-collection Bj,, Bj,, - - -, Bj, of B such that

N k
m <U Bg) <3"Y m(Bj,).
(=1 =1

Proof. The argument we give is constructive and relies on the following simple
observation: Suppose B and B’ are a pair of balls that intersect, with the radius of B’
being not greater than that of B. Then B’ is contained in the ball B that is concentric
with B but with 3 times its radius. (See Fig 3.1.)

As a first step, we pick a ball B;, in B with maximal (i.e.,
largest) radius, and then delete from B the ball B;, as well as
any balls that intersect B;,. Thus all the balls that are deleted
are contained in the ball B;, concentric with B, , but with 3
times its radius.

The remaining balls yield a new collection ', for which
we repeat the procedure. We pick B;, and any ball that in-
tersects Bj,. Continuing this way, we find, after at most IV

61

Figure 3.1: ~The
balls B and B
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steps, a collection of disjoint balls B;,, Bj,, - - -, Bj,.

Finally, to prove that this disjoint collection of balls satis-
ties the inequality in the lemma, we use the observation made at the beginning
of the proof. Let Bj, denote the ball concentric with Bj,, but with 3 times its
radius. Since any ball B in B must intersect a ball B, and have equal or smaller
radius than Bj,, we must have Upn, B;,# »sBCB i,, thus

N k k k
m <U Bf) m (U Bh) < Zm(éh) = 3"Zm(Bji)_
=1 i=1 i=1 i=1
In the last step, we have used the fact that in R" a dilation of a set by 6 > 0
results in the multiplication by 6" of the Lebesgue measure of this set. |

For the infinite version of Vitali covering lemma, one can see the textbook
[Ste70, the lemma on p.9].

The decomposition of a given set into a disjoint union of cubes (or balls) is
a fundamental tool in the theory described in this chapter. By cubes we mean
closed cubes; by disjoint we mean that their interiors are disjoint. We have in
mind the idea first introduced by Whitney and formulated as follows.
Theorem 3.2 (Whitney covering lemma). Let F' be a non-empty closed set in R"
and Q) be its complement. Then there exists a collection of cubes F = {Q}} whose sides
are parallel to the axes, such that

() U, Qn = 2= F°,

(ii) Q;NQ; =2 if j # k, where Q° denotes the interior of Q,

(iii) there exist two constants ci,co > 0 independent of F' (In fact we may take
c1 = 1land cy = 4.), such that

c1 diam (Qp) < dist (Qk, F) < cadiam (Qy).

Proof.
Consider the lattice of points in R"
whose coordinates are integers. This

|
|
I
T
1
I
i
4
I
I
o 1ib
_\
I
|
I
|
4
|
I

lattice determines a mesh .#,, which . 2
is a collection of cubes: namely all - Tl
cubes of unit length, whose vertices are ‘

points of the above lattice. The mesh ,ﬁi_____if____ o

A leads to a two-way infinite chain
of such meshes {.#},}>, with .#}, = Figure 3.2: Meshes and layers: .#
2=k 4. with dashed (green) lines; .#; with

Thus each cube in the mesh .#; dotted lines; .# 1 with solid (blue)
gives rise to 2" cubes in the mesh .#;,; lines
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by bisecting the sides. The cubes in the
mesh ., each have sides of length 27* and are thus of diameter /n27*.

In addition to the meshes .7}, we consider the layers 2, defined by

Qp = {a: ce27F < dist (z, F) < c2_k+1} ,

where c is a positive constant which we shall fix momentarily. Obviously, {2 =
Urz oo -

Now we make an initial choice of cubes, and denote the resulting collection
by .%#y. Our choice is made as follows. We consider the cubes of the mesh .Z,
(each such cube is of size approximately 27%), and include a cube of this mesh in

P if it intersects (2, (the points of the latter are all approximately at a distance
2% from F). Namely,

Fo=\J{Qe M : QN # o} .
k

We then have
U e=2
QeFo
For appropriate choice of ¢, we claim that
diam (Q) < dist (Q, F) < 4diam (Q), Q € F. (3.1)

Let us prove (3.1) first. Suppose Q € .#}; then diam (Q) = /n27*. Since Q €
Zo, there exists an z € Q N . Thus dist (Q, F) < dist (z, F) < ¢27%+1, and
dist (Q, F) > dist (v, F) — diam (Q) > c27% — \/n27%. If we choose ¢ = 2\/n we
get (3.1).

Then by (3.1) the cubes Q) € % are disjoint from F' and clearly cover (.
Therefore, (i) is also proved.

Notice that the collection .%#; has all our required properties, except that the
cubes in it are not necessarily disjoint. To finish the proof of the theorem, we
need to refine our choice leading to .%y, eliminating those cubes which were
really unnecessary.

We require the following simple observation. Suppose @)1 and )2 are two
cubes (taken respectively from the mesh .#}, and .#},). Then if @); and Q2
are not disjoint, one of the two must be contained in the other. (In particular,
Q1 C Q2 if k1 = ko.)

Start now with any cube Q € %, and consider the maximal cube in .%
which contains it. In view of the inequality (3.1), for any cube Q' € .%; which
contains Q € .%;, we have diam (Q’') < dist (@', F) < dist (@, F') < 4diam (Q).
Moreover, any two cubes @)’ and Q" which contain @ have obviously a non-
trivial intersection. Thus by the observation made above each cube Q € %, has a
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unique maximal cube in .%; which contains it. By the same taken these maximal
cubes are also disjoint. We let .# denote the collection of maximal cubes of .%.
Then obviously

@) UQey Q=9

(ii) The cubes of .# are disjoint,

(iii) diam (Q) < dist (Q, F) < 4diam (Q), Q € .Z.

Therefore, we complete the proof. |

3.2 Hardy-Littlewood maximal function

Maximal functions appear in many forms in harmonic analysis. One of the
most important of these is the Hardy-Littlewood maximal function. They play
an important role in understanding, for example, the differentiability properties
of functions, singular integrals and partial differential equations. They often
provide a deeper and more simplified approach to understanding problems in
these areas than other methods.

First, we consider the differentiation of the integral for one-dimensional func-
tions. If f is given on [a, b] and integrable on that interval, we let

Fw) - | ")y, z < 0]

To deal with F’(x), we recall the definition of the derivative as the limit of the

(z+h)—F(z)
h

quotient F when h tends to 0, i.e.,

F(zx+h)— F(x)
- .

F = li
() = Jim,

We note that this quotient takes the form (say in the case h > 0)

1 x+h 1
[ rwar = [

where we use the notation I = (z,z + h) and |I| for the length of this interval.

At this point, we pause to observe that the above expression in the “average”
value of f over I, and thatin the limitas || — 0, we might expect that these averages
tend to f(x). Reformulating the question slightly, we may ask whether

. 1
i [ s = rta)

holds for suitable points . In higher dimensions we can pose a similar ques-
tion, where the averages of f are taken over appropriate sets that generalize the
intervals in one dimension.
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In particular, we can take the sets involved as the ball B(z,r) of radius r,

centered at z, and denote its measure by m(B(z,)). It follows
1
lim / fly)dy = f(x), fora.e. x? (3.2)
r—0 HH(B(.%',T)) B(z,r) ( ) ( )
Let us first consider a simple case, when f is continuous at x, the limit does
converge to f(z). Indeed, given € > 0, there exists a § > 0 such that | f(z)— f(y)| <

e whenever |z — y| < 4. Since
1 1

f(x) - m(B(z, 1) /B(m) fly)dy = m(B@. 1) /B(w’r)(f(x) — f(y))dy,

we find that whenever B(z, r) is a ball of radius r < §, then

1 1
flz) - m(B(z, 1) /B(m) f(y)dy| < m(B(z.1) /B(a:,r) If(z) — f(y)ldy <&,

as desired.

In general, for this “averaging problem” (3.2), we shall have an affirmative
answer. In order to study the limit (3.2), we consider its quantitative analogue,
where “lim,_,” is replaced by “sup,~”, this is the (centered) maximal function.
Since the properties of this maximal function are expressed in term of relative
size and do not involve any cancelation of positive and negative values, we

replace f by |f|.

Definition 3.3. If f is locally integrable! on R", we define its maximal function
Mf :R"™ — [0,00] by
1
Mf(z :sup/ fy)ldy, = eR" (3.3)
( ) r>0 HII(B(J‘,T)) B(w,r)| ( )|
Moreover, M is also called as the Hardy-Littlewood maximal operator.

The maximal function that we consider arose first in the one-dimensional
situation treated by Hardy and Littlewood.? It is to be noticed that nothing
excludes the possibility that M f(x) is infinite for any given z.

It is immediate from the definition that
Theorem 3.4. If f € L>°(R"), then M f € L*°(R"™) and

1M flloo < I f lloo-

*The Hardy-Littlewood maximal operator appears in many places but some of its most no-
table uses are in the proofs of the Lebesgue differentiation theorem and Fatou’s theorem and in
the theory of singular integral operators.
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By the previous statements, if f is continuous at x, then we have

. 1
e =tim ey

1

<sup/ fy)ldy = M f(x).
>0 ]IIl(B($,T‘)) B(m,r)‘ ( )‘ ( )

Thus, we have proved

Theorem 3.5. If f € C(R"), then

|f ()] < M f(z)
forall z € R™.

Sometimes, we will define the maximal function with cubes in place of balls.
If Q(x,r) is the cube [z; — 7, x; + r]", define
Mfa) =swp o [ i@y, @R 64
>0 (QT) Q(z,r)
When n = 1, M and M’ coincide. If n > 1, then there exist constants c,, and C,,
depending only on n, such that

ea'f(z) < Mf(x) < Cu'f(2). (35)

Thus, the two operators M and M’ are essentially interchangeable, and we will
use whichever is more appropriate, depending on the circumstances. In addi-
tion, we can define a more general maximal function

M f() = s /u )|dy, (3.6)

where the supremum is taken over all cubes containing x. Again, M" is point-
wise equivalent to M. One sometimes distinguishes between M’ and M" by
referring to the former as the centered and the latter as the non-centered maxi-
mal operator. Alternatively, we could define the non-centered maximal function
with balls instead of cubes:

Mf(z) = =sup /\f )|dy

at each x € R™. Here, the supremum is taken over balls B in R"™ which contain
the point  and m(B) denotes the measure of B (in this case a multiple of the
radius of the ball raised to the power n).

Ex. 3.6. Let f : R = R, f(z) = x(0,1)(x). Then
1

55 1’>1,
Mf(z) =M'f(z) ={ 1, 0<a <1,
1_ z <0
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%, x>1,
Mf(z) =M"f(z)={ 1, 0<z<1,
1;, x <0
In fact, for x > 1, we get
1 x+h
Mf(z) = M'f(w) =sup o X(0,1)(¥)dy
h>0 xz—h

l1—xz+h
=max| sup ——, su
:E—hI;O 2h r—hrg)(] 2h

~ 1 x+ho
Nf(x) = M"f(z) = sup / o) (¥)dy

h1,ho>0 hl + h2 x—hy

0<z—h1<1 hy

( 1—Ji+h1
=1max sup —_—,

For 0 < x < 1, it follows
1 x+h

Mf(z) =M f(z) =sup - X(0,1)(¥)dy
h>0 2h Sy,

2h

=max sup —, sup
O<z—h<a+h<1 2N 0<z—h<i<ath

r+h

sup

)
c—h<0<z+h<l 2h 4 p<o<i<z+h

=max 1,1,1,1min i, 1
2 ' l—-2x

~ 1 z+ho
Nf(x) = M"f(z) = sup / o) (¥)dy

h1,he>0 hl + h2 z—h

( hi 4+ ha
= max sup

) sup 5
O<z—h1<a+ha<1 P1+h2 o co<atho<t P1 + h2

l—x+M
0<w—h?gli<:c+h2 hi+hy '
=1.
For x < 0, we have

T+ h

Mf(x)zM’f(m)zmax( sup

, Sup o
O<z+h<l,h>0 2h " oip>12h

z—h1<0<1<z+ho hy + h2>
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Y " x + ho 1
Mf(w) = M"f(z) =max (hl,h2>os,g)lfx+h2<l hi+ hy’ h1>OS,clnl—|I-)hg>1 hy + h2>
- 1
1z
Observe that f € LY(R), but M f,M'f,M" f,Mf ¢ L'(R).

Remark 3.7. (i) M f is defined at every point z € R” and if f = g a.e,, then
M f(x) = Mg(z) at every x € R™.

(ii) It may be well that M f = oo for every « € R". For example, let n = 1 and
f(@) = 2

(iif) There are several definitions in the literature which are often equivalent.

Next, we state some immediate properties of the maximal function. The
proofs are left to interested readers.

Proposition 3.8. Let f,g € L} _(R™). Then

(i) Positivity: M f(x) > 0 for all x € R™.

(ii) Sub-linearity: M(f + g)(z) < M f(z) + Mg(x).

(iii) Homogeneity: M(af)(x) = |o|M f(x), a € R.

(iv) Translation invariance: M (tyf) = (tyM f)(x) = M f(z — y).

With the Vitali covering lemma, we can state and prove the main results for
the maximal function.
Theorem 3.9 (The maximal function theorem). Let f be a given function defined
on R™,

@) If f € LP(R™), p € [1, 00|, then the function M f is finite almost everywhere.

(i) If f € LY(R™), then for every o > 0, M is of weak type (1,1), i.e.,

3n
m({z : Mf(z) > a}) < —|fl1.
(iii) If f € LP(R™), p € (1, 00|, then M f € LP(R") and
IMFllp < Apll fllp,
where A, = 3"p/(p— 1) + 1 for p € (1,00) and A = 1.
Proof. We first prove the second one, i.e., (ii). Denote
Eo={z: Mf(z) > a},

then from the definitions of M f and the supremum, for each x € E, and 0 <
e < M f(x) — «, there exists a r > 0 such that

1
m(B(z,r)) /B(m) [f(y)ldy > Mf(z) —e>a

We denote that ball B(z,r) by B, that contains . Therefore, for each B,, we
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have .
mwa</ﬂw@. (3.7)
[0 By

Fix a compact subset K of E,. Since K is covered by U,cg, B;, by Heine-Borel
theorem,’ we may select a finite subcover of K, say K C |J), By. Lemma 3.1
guarantees the existence of a sub-collection Bj,, - - -, Bj, of disjoint balls with

N k
m(| J By) <3"> m(B;). (3.8)
(=1 =1

Since the balls Bj,, - - -, Bj, are disjoint and_ satisfy (3.7) as well as (3.8), we find
that

N k qn
m(K) <m By) < 3" m(B;) < — d
() < B < 3" () a;/}gﬂuw y
== sy <2 [ 1sw)lay.
@ Uf:1 By, a Jre

Since this inequality is true for all compact subsets K of E,, the proof of the
weak type inequality (ii) for the maximal operator is complete.

The above proof also gives the proof of (i) for the case when p = 1. For the
case p = 0o, by Theorem 3.4, (i) and (iii) is true with A, = 1.

Now, by using the Marcinkiewicz interpolation theorem between L1 — L1

and L> — L°°, we can obtain simultaneously (i) and (iii) for the case p € (1, c0).
|

Now, we make some clarifying comments.

Remark 3.10. (1) The weak type estimate (ii) is the best possible for the distribution
function of M f, where f is an arbitrary function in L(R").

Indeed, we replace |f(y)|dy in the definition of (3.3) by a Dirac measure
dp whose total measure of one is concentrated at the origin. The integral
il Blawr) dp = 1 only if the ball B(x,r) contains the origin; otherwise, it will be
zeros. Thus, .

M(du) (x) >0, zlelg(x,r) HH(B(Z, 7”))
i.e., it reaches the supremum when r = |z|. Hence, the distribution function of

= (Valal) ™,

* The Heine-Borel theorem reads as follows: A set K C R™ is closed and bounded if and only if
K is a compact set (i.e., every open cover of K has a finite subcover). In words, any covering of a
compact set by a collection of open sets contains a finite sub-covering. For the proof, one can see
the wiki: http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem.


http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem
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(M(dp)+(e) =m({z : |[M(dp)(@)] > o}) = m({z : (Valz|") ™" > a})
=m({z: V|z|" < a7'}) = m(B(0, (V) /™)
=Vo(Vya) ™' =1/a.

But we can always find a sequence {f,,(x)} of positive integrable functions,
whose L! norm is each 1, and which converges weakly to the measure du. So

we cannot expect an estimate essentially stronger than the estimate (ii) in The-
orem 3.9, since, in the limit, a similar stronger version would have to hold for

M (dp) ().

(2) It is useful, for certain applications, to observe that

1
Ap—O(p_l), asp — 1.

In contrast with the case p > 1, when p = 1 the mapping f — M f is not
bounded on L!(R™). So the proof of the weak bound (ii) for M f requires a
less elementary arguments of geometric measure theory, like the Vitali covering
lemma. In fact, we have

Theorem 3.11. If f € L*(R") is not identically zero, then M f is never integrable on
the whole of R™, i.e., M f ¢ LY(R").
Proof. We can choose an N large enough such that

/ NECIE Sl

)

Then, we take an = € R" such that || > N. Letr = 2(|]z| + N), we have

1 1
Mf(x) >Im(B($J’))/B(:p,r) |f(y)ldy = Vo2 £ V)" /B(a:,r) |f(y)|dy
1 1
R o 0 > 1
> oz

It follows that for sufficiently large |z|, we have
Mf(z) = cla] ™, c=(2Vad") 7| fllr-
This implies that M f ¢ LY(R"). |
Moreover, even if we limit our consideration to any bounded subset of R",

then the integrability of M f holds only if stronger conditions than the integra-
bility of f are required. In fact, we have
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Theorem 3.12. Let E be a bounded subset of R™. If f In™ | f| € L*(R"™) and supp f C
FE, then

/ M (z)dz < 2m(E) + C [E (@) 0 |f()|d,
where Int t = max(Int 0)

Proof. By Theorem 2.16, it follows that
/ M f(x)dx —2/ m({z € E: Mf(z)> 2a})da
E

_2(/ /) ({z € B: Mf(z) > 20})da

<om(E) + 2/ m({z € E: Mf(z) > 2a})da
1
Decompose f as fi + fa, where fi = fX(z:|f(2)>a} and fo = f — f1. Then, by
Theorem 3.4, it follows that

M fo(z) < [M follo < [[f2]lo0 < @,
which yields

{reE:Mf(x)>2a} C{xeE:Mfi(z)> a}l.
Hence, by Theorem 3.9, we have

/loolm({:v €eE:Mf(x) >2a})da < /loolm({:c € E:Mfi(z) > a})da

00 1 max(L1f(@))) g
<L) f@ldrda<c [ I | =
1 @ J{zeE:|f(z)|>a} E 1

= [ 1@l |f(a)ldo.
This completes the proof. [
As a corollary of Theorem 3.9, we have the differentiability almost every-
where of the integral, expressed in (3.2).
Theorem 3.13 (Lebesgue differentiation theorem). If f € LP(R"), p € [1, 0], or
more generally if f is locally integrable (i.e., f € L}, .(R™)), then

1
}g%m(B(W/B(%T) fly)dy = f(x), forae. z. (3.9)

Proof. We first consider the case p = 1. It suffices to show that for each a > 0, the

set
> Za}

. 1
E, = {x : lim sup m /B(LT) fy)dy — f(x)

r—0
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has measure zero, because this assertion then guarantees that the set E = | J,~ | F; /k
has measure zero, and the limit in (3.9) holds at all points of E°.

Fix a, since the continuous functions of compact support are dense in L (R"),
for each € > 0 we may select a continuous function g of compact support with

|lf — glli <e. As we remarked earlier, the continuity of g implies that

1
lim/ g(y)dy = g(z), forall z.
r—0 IID(B(:E’T)) B(z,r) ( ) ( )

Since we may write the difference m J Blar) S (y)dy — f(x) as

1
B o, T sy
1
+ W/jg(x’r)g(y)dy—g(w) +g(x) — f(2),
we find that
. 1
i sup | B @) /B(m Fy)dy — f(z)| < M(f - g)(x) + |g(x) — f(x)].
Consequently, if

Fo={x:M(f—9g)(z)>a} and G, ={z:|f(z)—g(z)| > a},
then E, C F, UG,, because if u; and us are positive, then u; + ug > 2« only if
u; > o for at least one u;.
On the one hand, Tchebychev’s inequality* yields
1
m(Ga) < f = glh.
and on the other hand, the weak type estimate for the maximal function gives
3n
m(Fa) < 217 ~ gl
Since the function g was selected so that || f — g||1 < ¢, we get

3
III](Ea) L —e+ —e= €.
o o o
Since ¢ is arbitrary, we must have m(E,) = 0, and the proof for p = 1 is com-
pleted.

Indeed, the limit in the theorem is taken over balls that shrink to the point
z, so the behavior of f far from x is irrelevant. Thus, we expect the result to

*Tchebychev inequality (also spelled as Chebyshev’s inequality): Suppose f > 0, and f is inte-
grable. If @ > 0and E, = {x € R" : f(z) > a}, then

m(E.) < 1 fdzx.

a Jgn
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remain valid if we simply assume integrability of f on every ball. Clearly, the
conclusion holds under the weaker assumption that f is locally integrable.

For the remained cases p € (1, o], we have by Holder inequality, for any ball
B,

/B F@lde < 1o 5y < B | £l

Thus, f € L},.(R™) and then the conclusion is valid for p € (1, 0o]. Therefore, we
complete the proof of the theorem. [

By the Lebesgue differentiation theorem, we have

Theorem 3.14. Let f € L} (R™). Then
|lf(x)| < Mf(x), ae. zeR"

Combining with the maximal function theorem (i.e., Theorem 3.9), we get

Corollary 3.15. If f € LP(R"), p € (1, 00|, then we have
1Fllp < IIM Fllp < Apllflp-

As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality

by using the maximal function theorem for the case 1 < p < n. We note that the

inequality also holds for the case p = 1 and one can see [Eva98, p.263-264] for
the proof.

Theorem 3.16 ((Gagliardo-Nirenberg-) Sobolev inequality). Let p € (1,n) and
its Sobolev conjugate p* = np/(n — p). Then for f € Z(R™), we have

£l < CUV flp,
where C' depends only on n and p.

Proof. Since f € 2(R"), we have

—/OOO ;f(m+rz)dr

where z € S"!. Integrating this over the whole unit sphere surface S"~! yields

wn—1f(x) = —f z + r2)drdo(z)
fo st == [

= / / Vi(x+rz)-zdrdo(z)
Snfl 0

= _ / Vfi(x+rz)-zdo(z)dr.
0 Jgn—1

Changing variables y = x + 72, do(z) = 1~ Vdo(y), 2 = (y — x)/|y — x| and
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r=|y— x|, we get

wn-1f(e / /6er \yy—_;!”da(y)dr
AL

Fa)l< / 'Vf(y),'d

W1 Jgn [y — x| !
We split this integral into two parts as [, = || B T fRn\ Bla.r): For the first

part, we have
1
[,
Wn—1 JB(ar) [T — Yl

1 oo

Wnp—1

dy,
’ n
which implies that

/ V()
B(z,2-Fr)\B(z,2—k1r) [T —y["~1

k=0

I V()
< _WVIWL
Wn—1 Z/ B(z,2=kr)\B(x,2=k—1r) (2—k—1r)n—1 Y
- L1 Vi)l
< n—1 ‘ d
vaz 5 oo ? A

—k+n— 1 1 d
< 22 BT s, [T

n—1

Qn rM(Vf)(x 22 k fTM (V) ().

For the second part, by Holder mequahty, wegetforl <p<n
i VW,
R™\B(z,r) |1’ - y‘

1/p
</ IV £( )I”dy> (/ |z — yl(l‘")”'dy>
R™\ B(z,r) R™\B(,r)

o 1 1 1/pl
(wnl P g dp> IV £,

1/p'

/

_1 e /P
o ) B
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_ (e 2V V" o
Choose r = (nfpl;<1’_1)/”wi/7nl2p (M(Vf)é)> satisfying
7 n (p B 1)“1171 v —n
() = (B ) T g,

then we get
|f(@)] < CIVFIB™ (M (Y f) ()P,
Thus, by part (iii) in Theorem 3.9, we obtain for 1 < p < n

1l <CITAR M IR

=C|V AL 1MV )l ™™ < CIV £l
This completes the proof. n

3.3 Calderén-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of R”,
called Calderén-Zygmund decomposition, which is extremely useful in har-
monic analysis.

Theorem 3.17 (Calderén-Zygmund decomposition of R"). Let f € L'(R") and
a > 0. Then there exists a decomposition of R™ such that

HR*"=FUQ FNQ=0.

(i) |f(z)| < aforae. x € F.

(iii) 2 is the union of cubes, Q = J, Qr, whose interiors are disjoint and edges
parallel to the coordinate axes, and such that for each Qy,

1 n
a< (08 /Qk|f(x)\dac<2 a. (3.10)

Proof. We decompose R™ into a mesh of equal cubes Q,(CO) (k=1,2,---), whose
interiors are disjoint and edges parallel to the coordinate axes, and whose com-
mon diameter is so large that

(1(0)) /Qm) \f(z)|dz < a, (3.11)
mitly

k
since f € L.
Split each Q,(CO) into 2" congruent cubes. These we denote by ng)’ k =
1,2, --. There are two possibilities:

1 1
ither / f(2)|dz < a, o / f(2)|de > a.
m(Q}) Jal m(Q) Jo
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In the first case, we split Q,(Cl) again into 2" congruent cubes to get Q,(f) (k =
1,2,---). In the second case, we have

! 1
m(Q") A N ON dz < 2"
<m<@é”>/cz$> S z-nm@,%“’)/czgm f@ldz < 2"a

in view of (3.11) where Q,(:) is split from QI%O), and then we take Q,(Cl) as one of
the cubes Q.

A repetition of this argument shows thatif x ¢ Q =: [ J;2, Q; then z € Qg)
(j =0,1,2,---) for which

m(Q,%>)—>Oasj—>oo, and (Q(J)/(J) \f2)dz <o (j=0,1,--).

Thus |f(z)| < aa.e. z € F = Q° by a variation of the Lebesgue differentiation
theorem. Thus, we complete the proof. [ |

We now state an immediate corollary.

Corollary 3.18. Suppose f, a, F, Q and Q. have the same meaning as in Theorem
3.17. Then there exists two constants A and B (depending only on the dimension n),
such that (i) and (ii) of Theorem 3.17 hold and

@m(©) < 2 1flh.

1
b / |fldx < Ba
Proof. In fact, by (3. 10) we can take B = 2", and also because of (3.10)

= Y@ < - @i < 21

This proves the corollary w1th A=1land B =2". |

It is possible however to give another proof of this corollary without using
Theorem 3.17 from which it was deduced, but by using the maximal function
theorem (Theorem 3.9) and also the theorem about the decomposition of an ar-
bitrary open set as a union of disjoint cubes. This more indirect method of proof
has the advantage of clarifying the roles of the sets F' and ) into which R™ was di-
vided.

Another proof of the corollary. We know that in F, |f(z)| < «, but this fact does
not determine F'. The set I is however determined, in effect, by the fact that the
maximal function satisfies M f(z) < a onit. So we choose F' = {z : M f(z) < a}
and Q = E, = {z: M f(z) > a}. Then by Theorem 3.9, part (ii) we know that
m(Q) < 3E"||f||1 Thus, we can take A = 3".
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Since by definition F' is closed, we can choose cubes ()}, according to The-
orem 3.2, such that Q@ = J, Q, and whose diameters are approximately pro-
portional to their distances from F'. Let Qi then be one of these cubes, and pj, a
point of F' such that

dist (F, Qk) = dist (pk, Qk)

Let By, be the smallest ball whose center is p;, and which contains the interior

of Q. Let us set
m(By)

Yk =
m(Qk)
We have, because py, € {z : M f(z) < a}, that

1 1
a>Mf(p )/ fa:dx}/ f(x)|dz.
00> iy [, V@l s | 15@)
Thus, we can take a upper bound of v, as the value of B.

The elementary geometry and the inequality (iii) of Theorem 3.2 then show
that

radius(By) <dist (px, Qx) + diam (Qy) = dist (F, Q) + diam (Qy)
<(ez + 1) diam (@),
and so
m(By) =Vp(radius(Byg))" < Vi (c2 + 1) (diam (Qk))"
=Va(ez +1)"n"*m(Qy),

since m(Qy,) = (diam (Qx)/v/n)". Thus, v < Vi, (ca +1)"n™/? for all k. Thus, we
complete the proof with A = 3" and B = V,(cy + 1)"n"/2. ]

Remark 3.19. Theorem 3.17 may be used to give another proof of the fundamen-
tal inequality for the maximal function in part (ii) of Theorem 3.9. (See [Ste70,
§5.1, p.22-23] for more details.)

The Calderén-Zygmund decomposition is a key step in the real-variable
analysis of singular integrals. The idea behind this decomposition is that it is
often useful to split an arbitrary integrable function into its “small” and “large”
parts, and then use different techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude «, we
write f = g + b, where g is called the good function of the decomposition since
it is both integrable and bounded; hence the letter g. The function b is called the
bad function since it contains the singular part of f (hence the letter b), but it is
carefully chosen to have mean value zero. To obtain the decomposition f = g+b,
one might be tempted to “cut” f at the height o; however, this is not what works.
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Instead, one bases the decomposition on the set where the maximal function of
f has height a.

Indeed, the Calderén-Zygmund decomposition on R"™ may be used to de-
duce the Calderén-Zygmund decomposition on functions. The later is a very
important tool in harmonic analysis.

Theorem 3.20 (Calderén-Zygmund decomposition for functions). Let f &
LY(R™) and o > 0. Then there exist functions g and b on R™ such that f = g + b
and

(i) ||g||1 < [ flhand lglloo < 270

(ii) b = > ,;bj, where each b; is supported in a dyadic cube Q; satisfying
fQ z)dzr = 0 and ||b;]|1 < 2" am(Q;). Furthermore, the cubes Q; and Qy, have
dzs]omt interiors when j # k.

(i) 32, m(Q;) < a7 f]
Proof. Applying Corollary 3.18 (with A = 1 and B = 2"), we have
DR"=FUQ, FNQ =g,
2) |f(z)| < a,a.e.x €F;
3) @ = UU;2, Qj, with the interiors of the (); mutually disjoint;

4) m(Q) <oz_1fRn|f )dz, and o < —75~ fQ |f(z)|dz < 2"

Now define
1
bj = (f N m(Q;) /Qj fdx) X

b=>_,bjand g = f —b. Consequently,
[ Wildo < [ 1f@)ds + m(@;)

j Qj

1
(@) Jo, T

<2 / F(@)ldr < 2 am(Q;),

which proves ||b;]|1 < 2"+1a1m(Q])
Next, we need to obtain the estimates on g. Write R" = U;Q; U F, where
F is the closed set obtained by Corollary 3.18. Since b = O on F and f — b; =
Q]) fQ x)dz, we have

1, on F,

g= 1 4 (3.12)
@) Jo f(z)dm, on Q;.

On the cube @)}, g is equal to the constant f Q x)dz, and this is bounded
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by 2"« by 4). Then by 2), we can get ||g||c < 2"a. Finally, it follows from (3.12)
that ||g|[1 < ||f|l1. This completes the proof. [ |

As an application of Calderén-Zygmund decomposition and Marcinkiewicz
interpolation theorem, we now prove the weighted estimates for the Hardy-
Littlewood maximal function.

Theorem 3.21 (Weighted inequality for Hardy-Littlewood maximal function).
Forp € (1,00), there exists a constant C = C,, ,, such that, for any nonnegtive measur-
able function (x) on R™, we have the inequality

/ (M f(z))Pp(z)dz < C / )P Mo(z)dz. (3.13)
R™

Proof. Except when M ¢(z) = oo a.e., in which case (3.13) holds trivially, M is
the density of a positive measure p. Thus, we may assume that M¢(x) < oo a.e.
x € R" and My(x) > 0. If we denote
dp(r) = Mp(x)de and dv(z) = ¢(x)dz,

then by the Marcinkiewicz interpolation theorem in order to get (3.13), it suffices
to prove that M is both of type (L>(u), L(v)) and of weak type (L' (u), L*(v)).

Let us first show that M is of type (L>(u), L>°(v)). In fact, if || f||Loc () < o,
then

/ Me(a)ds = p({z € R" : |f(z)| > a}) = 0.
{zeR™:|f(z)|>a}

Since Mp(z) > 0 for any € R", we have m({x € R" : |f(z)] > a}) = 0,
equivalently, |f(z)] < a a.e. x € R™. Thus, Mf(z) < aa.e. x € R" and this
follows || M f|| oo (,y < a. Therefore, | M f|| ooy < || flnoo (-

Before proving that M is also of weak type (L*(u), L'(v)), we give the fol-
lowing lemma.

Lemma 3.22. Let f € LY(R™) and o > 0. If the sequence {Qy.} of cubes is chosen from
the Calderén-Zygmund decomposition of R™ for f and oo > 0, then

{z eR": M'f(zx) > 7"} | JQr,
where Q. = 2Qy. Then we have ’
m({z € R": M'f(z) > "a}) < 2" Y _m(Qy).
k

Proof. Suppose that = ¢ | J,, Q5. Then there are two cases for any cube ) with the
center z. If Q C F :=R"\ J,, Qp, then

1
el /Q (@)lde < a.
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If Q N Q. # @ for some £, then it is easy to check that @), C 3Q, and
(@ : QrnQ # 2} c3Q.
k

Hence, we have

[is@ie< [ e [ il

RQLNQ#D
Z 2"am(Qx)
QrNQ#Y
<om(Q) + 2"am(3Q)
<7"am(Q).
Thus we know that M’ f(z) < 7"a for any x ¢ J, Q5 and it yields that

m({z € R" : M'f(z) > 7"a}) < <UQ1€> —Z"Zm (Qk)-

We complete the proof of the lemma. |

Let us return to the proof of weak type (L'(u), L*(v)). We need to prove that
there exists a constant C such that for any a > 0 and f € L'(u)
/ o(x)dr =v({x e R" : M f(x) > a})
{z€R™:M f(z)>a} 3.14
C ( * )
<— . | f(z)|[Mp(x)dz.
We may assume that f € LY(R"). In fact, if we take f; = | f1XB(0,), then
fo € LYR™), 0 < fi(z) < foyr(x) forz € R* and £ = 1,2,---. Moreover,
limgﬁoo fg(a}) = ’f(l‘)’ and
{z eR": Mf(zx)>a} = J{z e R": Mfy(z) > a}.
¢
By the pointwise equivalence of M and M, there exists ¢, > 0 such that
M f(z) < e, M' f(x) for all z € R™. Applying the Calder6n-Zygmund decompo-
sition on R" for f and o/ = a/(c,7"), we get a sequence {Qy; } of cubes satisfying

/ 1 n/
/riﬂ 1)ldr < 270

= m(Qr)

By Lemma 3.22 and the pointwise equivalence of M and M”, we have that

/ p(x)dx
{z€R™: M f(z)>a}

< / o(z)dx
{zeR™:M' f(z)>7T"a’}
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g/ o(z)dr < / o(z)dx
" 2 e

<Z<m 3l SO(w)d-’IJ) (3 ] vwia)
:Cn Z/ ( Qk)/ (p(:L’)d.f) dy

n14
<° Z/ Y) Mo (y)dy

<< /R 17w) M (y)dy

Thus, M is of weak type (L'(u), L*(v)), and the inequality can be obtained by
applying the Marcinkiewicz interpolation theorem. n
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4.1 Harmonic functions and Poisson equation

Among the most important of all PDEs are undoubtedly Laplace equation
Au=0 (4.1)
and Poisson equation
—Au = f. (4.2)
In both (4.1) and (4.2), z € Q and the unknown is u : @ — R, u = u(x),
where (2 C R" is a given open set. In (4.2), the function f : Q@ — R is also given.
Remember that the Laplacian of u is Au = Y7, 92 u.

Definition 4.1. A C? function u satisfying (4.1) is called a harmonic function.

Now, we derive a fundamental solution of Laplace’s equation. One good
strategy for investigating any PDEs is first to identify some explicit solutions and
then, provided the PDE is linear, to assemble more complicated solutions out of
the specific ones previously noted. Furthermore, in looking for explicit solutions
it is often wise to restrict attention to classes of functions with certain symmetry

83
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properties. Since Laplace equation is invariant under rotations, it consequently
seems advisable to search first for radial solutions, that is, functions of r = |z|.
Let us therefore attempt to find a solution u of Laplace equation (4.1) in 2 = R",
having the form

u(z) = v(r),
where r = |z| and v is to be selected (if possible) so that Au = 0 holds. First note
fork=1,--- nthat

or T
We thus have , )
1
O =) %, Fu= ()% +v0) (5 - %)
fork=1,---,n,and so
-1
Au="(r) + L V' (r).
T
Hence Au = 0 if and only if
-1
o+ Ty =, (4.3)
T
If ' # 0, we deduce
" 1-n
1 N = v— =
(Inv') v/ r

and hence v'(r) = %t for some constant a. Consequently, if » > 0, we have
blnr+¢, n=2,
v(r) =< b
7“”7_2 +c, n= 3,
where b and ¢ are constants.
These considerations motivate the following

Definition 4.2. The function .
= In |z|, n =2,
T

=3,
n(n—2)Vy a2 "
defined for x € R", z # 0, is the fundamental solution of Laplace equation.

The reason for the particular choices of the constants in (4.4) will be apparent
in a moment.

We will sometimes slightly abuse notation and write ®(z) = ®(|z|) to em-
phasize that the fundamental solution is radial. Observe also that we have the
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estimates
C

(Ve (2)] < s [V2®(z)| < (z # 0) (4.5)

W7
for some constant C' > 0.

By construction, the function x — ®(xz) is harmonic for = # 0. If we shift the
origin to a new point y, the PDE (4.1) is unchanged; and so z — ®(z — y) is also
harmonic as a function of x for x # y. Let us now take f : R®™ — R and note that
the mapping « — ®(z — y) f(y) (z # y) is harmonic for each point y € R", and
thus so is the sum of finitely many such expression built for different points y.
This reasoning might suggest that the convolution

1
[l = sy n=2.

Con

uw) = [ e@-prwa=q ‘o) @6)

d >3
n(n—2)V, /R o — g2 "

would solve Laplace equation (4.1). However, this is wrong: we cannot just com-
pute

Au(z) = A A ®(z —y) f(y)dy = 0. (4.7)

Indeed, as intimated by estimate (4.5), A®(x — y) is not summable near the sin-
gularity at y = z, and so the differentiation under the integral sign above is
unjustified (and incorrect). We must proceed more carefully in calculating Awu.

Let us for simplicity now assume f € C2(R"™), that is, f is twice continuously
differentiable, with compact support.
Theorem 4.3 (Solving Poisson equation). Let f € C%(R"), define u by (4.6). Then
u € C2(R") and —Au = f in R™

We consequently see that (4.6) provides us with a formula for a solution of
Poisson’s equation (4.2) in R™.

Proof. Step 1: To show u € C?(R™). We have
uw)= [ @@ -p)iwids= [ 2wy,

hence

dy,

h n h
where h # 0and e, = (0,---,1,---,0), the 1 in the k*P-slot. But

flx+hep—y)—flx—y)  Of
Y %axk(w—y)
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uniformly on R" as h — 0, and thus

)= [ ewgt @y k=1

8xk (%ck
Similarly,
0%u 0% f
= (b — | = 1 R . .

As the expression on the r.h.s. of (4.8) is continuous in the variable =, we see that
u € C?(R™).

Step 2: To prove the second part. Since ® blows up at 0, we will need for sub-
sequent calculations to isolate this singularity inside a small ball. So fix ¢ > 0.
Then

Au(z) = / D(y)Acf(x — y)dy + / D(y)Asf(x —y)dy =: I + J..
B(0,¢) R"\B(0,¢)
(4.9)
Now
Li<clarle [ ey < {CL0TIRDER gy
e > 0,e Y ys 0527 n 2 37 '
since
&€ €
/ Hn|y]|dy:—27r/ rilnrdr = —m (T21HT|8—/ Td?“)
B(0,¢) 0 0
= —7(e%Ine — £2/2)
=7e?|Ine| + g52,
for e € (0,1] and n = 2 by an integration by parts.
An integration by parts yields
T=[ WAy
R™\B(0,¢)
0
=/ <I>(y)a*f(x —y)do(y) — / Vo)V, i@ —ydy G
0B(0) v R™\B(0,¢)

=K. + Le,

where v denotes the inward pointing unit normal along 0B(0,¢). We readily
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check
| Ke| <||Vf||oo/ [@(y)|do(y) < C[2(e)] do(y) = C|®(e)[e"!
OB(0,¢) 0B(0,e)
Ce|lne|l, n=2,
<
Ce, n =3,

(4.12)
since ®(y) = @(|y|) = ®(¢) on 0B(0,¢) = {y e R™: |y| = ¢}.
We continue by integrating by parts once again in the term L., to discover

0P
L= [ Dwie-ndow+ [ ABE) -y
0B(0,c) 9V R™\B(0,¢)
0P
=- - W) f (@ —y)do(y),
Lo, 5y G ot
since ¢ is harmonic away from the origin. Now, V&(y) = _nivnﬁ fory # 0

and v = ﬁ = —% on 0B(0,¢). Consequently, g—f(y) =v-Vo(y) = W on
OB(0,¢). Since nV,e" ! is the surface area of the sphere dB(0, ¢), we have
1
L.=- / flx —y)do(y
=l B Ct)

1
- e /an) f(y)do(y) = —f(x) ase 0.
by Lebesgue differentiation theorem.
Combining now (4.9)-(4.13) and letting ¢ — 0, we find that —Au(z) = f(z),
as asserted. [

(4.13)

Remark 4.4. We sometimes write
—AD = 50 in Rn,
where dy denotes the Dirac measure on R" giving unit mass to the point 0.
Adopting this notation, we may formally compute
—tu@) = [ ~Adw- W= [ G0y = f@), zeR",

R”
in accordance with Theorem 4.3. This corrects the erroneous calculation (4.7).

Consider now an open set 2 C R" and suppose u is a harmonic function
within ©. We next derive the important mean-value formulas, which declare
that u(x) equals both the average of u over the sphere 0B(x,r) and the average
of u over the entire ball B(z, ), provided B(z,r) C .
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Theorem 4.5 (Mean-value formula for harmonic functions). If u € C%(Q) is

harmonic, then for each ball B(x,r) C €,
1 1

“0) = H@B@ ) /aB@,T) wl)do W) = B ) /B(z,ﬂ )y
Proof. Denote
1 1

50 = @B o, "0 = o [ e eyt
Obviously,

fi(r)= L /Sn_l Z@Iju(:c +rz)zido(z) = ! /Sn_l gZ(ﬂc + rz)do(z),

Wn—1 — Wn—1
7j=1

where 8% denotes the differentiation w.r.t. the outward normal. Thus, by changes
of variable

1 ou,
£r) .

B Wn—lrn_l
By Stokes theorem, we get

/ 1 /
fi(r) T (y)dy

Thus f(r) = const. Since lim, o f(r) = u(z), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives, by the first iden-
tity proved just now, that

/B(W) u(y)dy :/07" (/83(%8) u(Q)da(y)) ds = /OT m(dB(x, s))u(z)ds

—u(a?)/ nVy,s" tds = Vyr™u(z).
0
This completes the proof. u

Theorem 4.6 (Converse to mean-value property). If u € C?(2) satisfies

u(z) u(y)do(y)

1
B rrn(@B(x, T)) /8B(:c,r)

for each ball B(x,r) C 2, then u is harmonic.

Proof. If Au # 0, then there exists some ball B(z,r) C 2 such that, say, Au > 0
within B(z,r). But then for f as above,

1
0=f(r)= T P /B(x , Au(y)dy > 0,

is a contradiction. [ ]
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4.2 Poisson kernel and Hilbert transform

We shall now introduce a notation that will be indispensable in much of
our further work. Indeed, we have shown some properties of Poisson kernel
in Chapter 1. The setting for the application of this theory will be as follows.
We shall think of R™ as the boundary hyperplane of the (n + 1) dimensional
upper-half space R"*!. In coordinate notation,

R = {(z,y) : 2 € R",y > 0} .

We shall consider the Poisson integral of a function f given on R". This Pois-
son integral is effectively the solution to the Dirichlet Problem for R”"': find a
harmonic function u(z,y) on R, whose boundary values on R" (in the appro-
priate sense) are f(z), thatis

Agyu(z,y) =0, (z,y)€ Rfrl,
{U(I,O) =f, zeR"™
The formal solution of this problem can be given neatly in the context of the
L? theory.
In fact, let f € L?(R"), and consider

(4.14)

lwl

u(z,y) = (27r>n/n emg'xe*|wf|yf(§)d§, y > 0. (4.15)

This integral converges absolutely (cf. Theorem 1.15), because f € L*(R"), and
e~ 1“¢lv is rapidly decreasing in |¢| for y > 0. For the same reason, the integral
above may be differentiated w.r.t. z and y any number of times by carrying out
the operation under the sign of integration. This gives

*u - 0%u

Aoyt =55+

— =0,
P Oz
because the factor e¥’¢%e~“¢lY satisfies this property for each fixed ¢. Thus,
u(z,y) is a harmonic function on R’}fl.

By Theorem 1.15, we get that u(z,y) — f(z) in L?(R") norm, as y — 0. That
is, u(z, y) satisfies the boundary condition and so u(z,y) structured above is a
solution for the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the
Fourier transform. For this purpose, we define the Poisson kernel P,(z) := P(x,y)
by

[wl

Py(x) = <27r>n/n e llyge — (F e ) (1), y > 0. (4.16)
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Then the function u(z, y) obtained above can be written as a convolution

u(z,y) = /IR" Py(2)f(z — 2)dz, (4.17)

as the same as in Theorem 1.15. We shall say that v is the Poisson integral of f.
For convenience, we recall (1.12) and (1.10) as follows.
Proposition 4.7. The Poisson kernel has the following explicit expression:

_ cny _T((n+1)/2)
Py(z) = (Pt ) B = (4.18)

Remark 4.8. We list the properties of the Poisson kernel that are now more or less
evident:

(i) Py(z) > 0fory > 0.

(ii) [gn Py(x)dz = P,(0) = 1, y > 0; more generally, P,(¢) = e« by
Lemma 1.14 and Corollary 1.23, respectively.

(iii) P,(z) is homogeneous of degree —n: P,(z) =y "Pi(z/y), y > 0.

(iv) P,(z) is a decreasing function of |z|, and P, € LP(R"), 1 < p < oo.
Indeed, by changes of variables, we have for 1 < p < oo

P
p_ Yy
1Pyllp =cx /R <<rx\2 +y2><n+1>/2> e

= 1
Y2 py,—nlp—1)
C?ly /]R” (1 4 ’Z‘Q)p(n—f—l)/de
st €9 1
Z=rs —n(p—1) n—1
chy Wn—1 /0 i+ Tz)p(n+1)/2r dr

1 o)
écﬁy_"(p_l)wn_l (/ dr + r”_l_p(""'l)dr)
0 1

1
<y, (14 L)
Sy e 1( +p(n+1)—n

For p = o0, it is clear that || Py (2)||cc = cny ™"

(v) Suppose f € LP(R"), 1 < p < oo, then its Poisson integral u, given by
(4.17), is harmonic in R’"*. This is a simple consequence of the fact that P, (x) is
harmonic in ]Rfrl; the latter is immediately derived from (4.16).

(vi) We have the “semi-group property” Py, * Py, = Py, 4y, if y1,52 > 01in
view of Corollary 1.24.

The boundary behavior of Poisson integrals is already described to a signifi-
cant extension by the following theorem.



4.2. Poisson kernel and Hilbert transform -91-

Theorem 4.9. Suppose f € LP(R"), 1 < p < oo, and let u(x,y) be its Poisson
integral. Then

(a) supy~ |u(z,y)| < M f(x), where M f is the maximal function.

(b) limy o u(x,y) = f(z), for almost every x.

(©) If p < o0, u(z,y) converges to f(x) in LP(R™) norm, as y — 0.

The theorem will now be proved in a more general setting, valid for a large
class of approximations to the identity.

Let ¢ be an integrable function on R", and set p.(z) = ¢ "p(x/¢c), € > 0.
Theorem 4.10. Suppose that the least decreasing radial majorant of ¢ is integrable; i.e.,
let ¢(x) = supjy | 19(y)], and we suppose [g, P(x)dx = A < co. Then with the
same A,

(@) sup_o |(f * we) ()| < AM f(2), f € LP(R"), 1 < p < o0.

(b) If in addition [g, p(x)dx = 1, then lim._,o(f * ¢:)(x) = f(x) almost every-
where.

(c)Ifp < oo, then || f * ¢e — f|lp = 0,as € — 0.

Proof. For the part (c), we have shown in Theorem 1.15.

Next, we prove assertion (a). We have already considered a special case of
(a) in Chapter 3, with ¢ = ﬁ xB- The point of the theorem is to reduce matters
to this fundamental special case.

With a slight abuse of notation, let us write ¢ (r) = 1 (x), if |x| = r; it should
cause no confusion since ) (z) is anyway radial. Now observe that v (r) is de-
creasing and then fr/2§|x|<r¢(x)dx > (r) fr/2<|x|<r dr = cp(r)r". Therefore
the assumption ¢ € L! proves that 7"¢(r) — 0 asr — 0 or 7 — oc. To prove (a),
we need to show that

(f * ) (x) < AMf( ) (4.19)
where f >0, f € LP(R"),e > 0and A = [, ¥(x)dx.

Since (4.19) is clearly translation invariant w.r.t f and also dilation invariant
w.r.t. ¢ and the maximal function, it suffices to show that

(f *9)(0) < AM[(0). (4.20)

In proving (4.20), we may clearly assume that M f(0) < oo. Let us write

fSn y fra")do(x'), and A(r) = x|<r f(z)dz, so

/ / f(tado (" )t" dt = / A)t"tdt, de., A (r) = X(r)r"L.
Sn— 1

We have
:/ flx) dx—/ " 1/ (ra")ap(r)do(z')dr
Rn Sn— 1
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00 N
:/0 "IN (r)dr = lim () (r)r™Ldr

e—0
g

N N —o0
= lim N (r)y(r)dr = lslirg{ / A(r)dyp(r }

N — oo N—o0
Since A(r) = f|x|<r f(z)dx < Vor™M f(0), and the fact v (r) — 0 asr — 0 or
r — 00, we have
0< lim AN)Y(N) < V,Mf(0) lim N"(N) =0,
N—o0 N—oo

which implies limy_, A(N)9(N) = 0 and similarly lim._,o A(¢)y(e) = 0. Thus,

by integration by parts, we have
[e.9]

(f % 1)(0) = /0 " A)A(—(r) < VaDLF(0) [ rmave)

0
RV MF(0) /0 gy dr = MF(0) [ wla)da

since ¢ (r) is decreasing which implies ¢/(r) < 0, and nV;, = w,,—;. This proves
(4.20) and then (4.19).

Finally, we prove (b) in a familiar way as follows. First, we can verify that if
fi € Ce, then (f1 % pz)(x) — fi(x) uniformly as € — 0 (cf. Theorem 1.15). Next
we can deal with the case f € LP(R"), 1 < p < oo, by writing f = f1 + f2 with
fi1 as described and with || f2||, small. The argument then follows closely that
given in the proof of Theorem 3.13 (the Lebesgue differentiation theorem). Thus
we get that lim._,o f * ¢.(x) exists almost everywhere and equals f(z).

To deal with the remaining case, that of bounded f, we fix any ball B =
B(zp,r), and set ourselves the task of showing that

lin%(f x @:)(x) = f(z), for almost every z € B.
e—
Let B be any other ball which strictly contains B and the origin {0} satisfy-

ing 6 > |xg|+r where 6 = dist (B, BY) is the distance from B to the complement

of B;. Let fi(z) = { é‘(x), i ; gi’ ; f(x) = fi(x) + fa(x). Then, f1 € L' (R™),

and so the appropriate conclusion holds for it. However, for = € B,

!(f2*soa)(x)|=/R fa(@ —y)ee(y)dy </| s Olfz(w—y)\lsoe(y)ldy
n r—Y| 20>

<Hf||oo/ lo(y)|dy — 0, ase — 0.
ly|=(0—I|=z|)/e>0

Thus, we complete the proof. |
Proof of Theorem 4.9. Theorem 4.10 then applies directly to prove Theorem 4.9,
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because of properties (i)—(iv) of the Poisson kernel in the case ¢(z) = ¢ (z) =

There are also some variants of the result of Theorem 4.10, which apply
equally well to Poisson integrals. The first is an easy adaptation of the argu-
ment already given, and is stated without proof.

Corollary 4.11. Suppose f is continuous and bounded on R™. Then (f * pc)(x) —
f(z) uniformly on compact subsets of R".

The second variant is somewhat more difficult. It is the analogue for finite
Borel measures in place of integrable functions, and is outlined in further result
of [Ste70, §4.1, p.77-78].

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.12. The harmonic conjugate to a given function u(z, y) is a function
v(x,y) such that
f,y) = u(z,y) +iv(z,y)
is analytic, i.e., satisfies the Cauchy-Riemann equations
Uiy = Ty, Uiy = =W,
where u, = du/0z, u, = 0u/0y. Itis given by

(z.y)

v(z,y) = / Uz dy — uydx + C,
(0,%0)

along any path connecting (zo,%0) and (z,y) in the domain, where C is a con-

stant of integration.

Given a function f in .#(R), its harmonic extension to the upper half-plane
is given by u(z,y) = P, * f(x), where P, is the Poisson kernel. We can also write,
in view of (4.15),

u(e) =ulay) = o [ eere o fpag

_ el

00 0
| [T enemebienfagy [ ey

|w’ > wil-(z+isgn (w)y) £ 0
— [ foas+ |
™ 0 —00
where z = x + iy. If we now define

ise () = [ [ eeterimen fieyie

Y

Wi (z—isgn (w)y)f(g)df] ’
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0
_ / ewi€-(z—isgn (w)y)f(ﬁ)dé] ’

—00

then v is also harmonic in Ri and both v and v are real if f is. Furthermore, u+iv
is analytic since it satisfies the Cauchy-Riemann equations u, = v, = wifu(z)
and u, = —v, = —wiév(z), so v is the harmonic conjugate of w.

Clearly, v can also be written as, by Theorem 1.12, Proposition 1.3 and Theo-
rem 1.28,

U(Z) :’;;! . —isgn (w) sgn (f)e“’ig'xe*|wf|yf(§)d€
-5 | —isgn (w) Felsgn (e e W) n) f ()
:’;}J —isgn (w).F¢[sgn (g)e—lwﬁly](n — 2)f(n)dn
R

= [ —isgn @7 sen (O (w = n) )
which is equivalent to

v(z,y) = Qy * f(z), (4.21)

where

Qy(€) = —isgn (w) sgn (e . (422)
Now we invert the Fourier transform, we get, by a change of variables and inte-
gration by parts,

Q, () = —isgn (@) / i€ sgn (€)1 e

= — 'Lsgn 2i |: Wlxg _‘w‘gydg / "”$€ wgyd§:|
71_
= — ngn ‘2 | |: UJZI& _‘w‘gydé' / —wiz-§ _|W|§yd€:|
_ Ore—wl€y
= —isgn(w / Wi _ —wwﬁ) 75_6‘{#’1/ d€
=1 Sgn |: ( wiz-§ _ "J”?{) €_|w‘€y’zo

_/ OJZSL’( wiz-€ + e—wix-{) e—\w|£yd£]
0

:5;1;, /oo ((me'é + efwix{) 6f\w\£yd§
0
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:Wf/fm%wm%:xy\MKMy
2y Jr Y 2

x T cy c1x

=P = — =

y v(@) yy?+a2 24 a2

where ¢; =T'(1)/m = 1/x. That is,
1 T
W)=

One can immediately verify that Q(x,y) = Qy(x) is a harmonic function in the
upper half-plane and the conjugate of the Poisson kernel P,(z) = P(z,y). More
precisely, they satisfy Cauchy-Riemann equations

1 2zy 1 22

— y2

7 (y2 + 22)2’ OyP = —0,Q = 7 (y2 + 22)2

In Theorem 4.9, we studied the limit of u(z,t) as y — 0 using the fact that
{P,} is an approximation of the identity. We would like to do the same for
v(z,y), but we immediately run into an obstacle: {Q,} is not an approximation
of the identity and, in fact, ), is not integrable for any y > 0. Formally,

) 1
:1311}(1) Qy (I’) - Ea

this is not even locally integrable, so we cannot define its convolution with
smooth functions.

We define a tempered distribution called the principal value of 1/x, abbrevi-

ated p.v.1/z, by
<p.v.1,¢>:lim/ @dm, pes.
X e—0 |z|>e x

To see that this expression defines a tempered distribution, we rewrite it as

()= [ 00, [ o

this holds since the integral of 1/z on ¢ < |z| < 1 is zero. It is now immediate

that
1
(2.0} < U+ 001c)
Proposition 4.13. In .'(R), we have lin% Qy(z) =1ipv. 1.
Y—>

0P = 0,Q = —

Proof. For each & > 0, the functions . (z) = 27! X|z|>= are bounded and define
tempered distributions. It follows at once from the definition that in .7”,

1
li = p.v.—.
i vela) = pv- g
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Therefore, it will suffice to prove that in .

lim (Qy — ;_wy) = 0.

y—0
Fix ¢ € ., then by a change of variables, we have

<7TQy_¢y>¢> —/ igb(x) dl’—/|> Mdl‘

R Y2 + 22 x

[ ) (s~ otan
Joirts [, (i =) oo

_ zp(yz) _9lyz)
B /x|<1 1422 e /x|>1 z(1+ HTQ)dw'

If we take the limit as y — 0 and apply the dominated convergence theorem,
we get two integrals of odd functions on symmetric domains. Hence, the limit

equals 0. [
As a consequence of this proposition, we get that
. 1 flz=1)

and by the continuity of the Fourier transform on ./ and by (4.22), we get
1 1 )
7 (7r b, ) (6) = —isgn (w) sen (£).

Given a function f € ., we can define its Hilbert transform by any one of the
following equivalent expressions:

Hf =1im Qy* f.

Hf :lp.v.l*f,
Hf =7 (—isgn (w)sgn () £(9)).

The third expression also allows us to define the Hilbert transform of functions
in L?(R), which satisfies, with the help of Theorem 1.26,

sl = (50) 1FED = (50) W=l @2
that is, H is an isometry on L?(R). Moreover, H satisfies
H?f = H(H ) =7 " ((—isgn (w) sgn (§)*f(€)) = — , (4.24)

By Theorem 1.28, we have
(tf.g) = [ Hf-gde = [ 77 (isen ()50 (9F(©) - g
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_ / —isgn (w) sgn (&) (&) - §(€)de

/ f(z) - Fl—isen (w) sen (€)5(6))(x)da

/f [~ sz () szm () 2

/ f(z) - Fisgn (w) sen (n)a(n)) (z)de

- /]R [ Hgde = (f,~Hg), (425)

namely, the dual/conjugate operator of H is H' = —H. Similarly, the adjoint
operator H* of H is uniquely defined via the identity

(1Hg) = [ 1 Tgds =~ [ Higds = (~1f.g) = (I f.9).
thatis, H* = —H.
Note that for given = € R, H f(x) is defined for all integrable functions f on
R that satisfy a Holder condition near the point z, that is,

|f(z) = ()] < Cylz —t|*
for some C; > 0 and ¢, > 0 whenever |t — z| < J,. Indeed, suppose that this is
the case, then

lim Q * f(z) llim f()dt—i-l/' Mdt

y—0 T e—0 e<|z—t|<bz r—1 T—t|>64 T —1

1 M1y, L[ H0,
\

T e=0 Jocla—t|<s, T 1

9(=9)](x)dz

z—t|>6, T — t

Both integrals converge absolutely, and hence the limit of Q, * f(z) exists as e —
0. Therefore, the Hilbert transform of a piecewise smooth integrable function is
well defined at all points of Holder-Lipschitz continuity of the function. On the
other hand, observe that @, * f is well defined for all f € L?, 1 < p < o0, as it
follows from the Holder inequality, since Q, () is in L”".

Ex. 4.14. Consider the characteristic function x4y of an interval [a,b]. It is a simple

calculation to show that
1. |x—ad

H(X[a,b})(x) = ;ln |.’E — b| :

Let us verify this identity. By the definition, we have
L a 1
Hlo)e) = St [ XeA0 =0, Ly, Ly
ly[>¢

T e—0 Yy T e—0 ly|>e Yy
rz—bly<Lzr—a

(4.26)
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Thus, we only need to consider three cases: t —b > 0, x —a < O0andx—b < 0 < z —a.
For the first two cases, we have
1 [ 1 1. |z—al
H == Sdy = ~1 .
(an)e) = = [ Sy = S
For the third case we get (without loss of generality, we can assume ¢ < min(|z —

a"> |I’ - b’))
1. -1 z=a ]
o)) = iy ([ v [ )

:ilim (ln ]J;—a] +1n c >
e

T e—0 ‘.I'—b|
1. |z—al

—1
7r n]m—b|’

where it is crucial to observe how the cancellation of the odd kernel 1/x is manifested.
Note that H(x(q)) () blows up logarithmically for x near the points a and b and decays
like v=1 as x — Foo. See the following graph with a = 1 and b = 3:

¥

B W11 Z_ 1z M
e

It is obvious, for the dilation operator J. with € > 0, by changes of variables
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(ey — y), that

(1) fr) =lim = [ LEE==)g,
o0 Jiy|>0 )
i [ LY o),
720 Jly|ze0 Yy

so Hé. = 6.H; and it is equally obvious that Hé. = —6.H, if ¢ < 0.

These simple considerations of dilation “invariance” and the obvious trans-
lation invariance in fact characterize the Hilbert transform.
Proposition 4.15 (Characterization of Hilbert transform). Suppose T is a
bounded linear operator on L?(R) which satisfies the following properties:

(@) T commutes with translations;

(b) T' commutes with positive dilations;

(c) T anticommutes with the reflection f(x) — f(—x).
Then, T is a constant multiple of the Hilbert transform.

Proof. Since T commutes with translations and maps L?(R) to itself, according to

Theorem 1.62, there is a bounded function m(£) such that Tt (&) = m(&)f(£). The
assumptions (b) and (c) may be written as T8 f = sgn ()5.Tf forall f € L*(R).
By part (iv) in Proposition 1.3, we have

F(T8:1)(€) =m(€) F (5-1)(€) = m(©)|e| " f(&/e),

sgn (). (0.Tf)(€) =sgn (¢)|e| ' Tf(€/2) = sgn (e)[e| " m(€/e) f(€ /),
which means m(e§) = sgn (¢)m(§), if € # 0. This shows that m(§) = csgn (£),
and the proposition is proved. [
The next theorem shows that the Hilbert transform, now defined for func-
tions in .7 or L?, can be extended to functions in L?, 1 < p < oo.

Theorem 4.16. For f € .7(R), the following assertions are true:
(i) (Kolmogorov) H is of weak type (1,1):

C
m({z € R: [Hf(z)| > a}) < —|If]1.
(i) (M. Riesz) H is of type (p,p), 1 < p < oc:
IH fllp < Cpllfllp-

Proof. (i) Fix o > 0. From the Calderén-Zygmund decomposition of f at height
a (Theorem 3.20), there exist two functions g and b such that f = g + band

() llgll < £l and [|g[loc < 20

(2 ) b = >, bj, where each b; is supported in a dyadic interval /; satisfying
J; b I x)dr = 0 and ||b;||1 < 4am(I;). Furthermore, the intervals I; and Ij, have
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disjoint interiors when j # k.

3) X, m(Lj) < o™ £l

Let 21; be the interval with the same center as I; and twice the length, and
let Q = UjIj and OQ* = UJQI]‘. Then IIIl(Q*) < QIIH(Q) < 2a‘1\|f||1.

Since H f = Hg + Hb, from parts (iv) and (vi) of Proposition 2.15, (4.23) and
(1), we have

(Hf)«(o) < (Hg)«(r/2) + (Hb)s+(r/2)
<(a/2)72 /R |Hg(x)|?dz + m(Q*) + m({z ¢ Q" : |Hb(z)| > a/2})

4
<2/ yg(a;)|2da:+2a1\|f||1+2a1/ |Hb(z)|dx
a” Jr R\Q*
<3 / lg(@)ldz + 2|\ flls + = / S| Hbj () |da
I - 1 - 1
a Jr (6 (6 ]R\Q* ; J

8 2 2
<=||fllx + =fll1 + — / Hb:(z)|dzx.
S 20 25 [ e

For x ¢ 21;, we have

Hbj(x) = ip.v./j b () dyzl/I Mdy,

ST =Y TJ; =y

since suppb; C Ij and |x — y| > m([;)/2 for y € I;. Denote the center of I; by
c;, then, since b; is mean zero, we have

1 .
[l [ L[ 20,
R\21, R\2[; |7 J; T — Y

J
1 1 1
2/ /bj(y)< — = —— ,)dy
T JR\21; |1, T—Yy TG

1 —Cj
< [ [ ) ay
T Ji; R\21; |z — yllz — ¢
1 m([;
I ——
T JI; R\21; |z — ¢

The last inequality follows from the fact that |y — ¢;| < m(Z;)/2 and |z — y| >
|z — ¢;|/2. Since |x — ¢;j| > m([;), the inner integral equals

> 1 1
21mI-/ —dr =2m([;)——— = 2.
(]) ]m(Ij) 7’2 (])II’H(I])

dzx

dzr
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Thus, by (2) and (3),
10 4
() <M+ 2 3 [ sl < b+ 23 sl
10 161 10416
<+ D2l = T gy

(ii) Since H is of weak type (1,1) and of type (2,2), by the Marcinkiewicz
interpolation theorem, we have the strong (p,p) inequality for 1 < p < 2. If
p > 2, we apply the dual estimate with the help of (4.25) and the result for p’ < 2
(where 1/p+1/p' =1):

IHfllp = sup [(Hf g)l= sup [{f Hg)

llgll,r <1 llgllyr <1
<Iflly sup [[Hglly < Cp | £llp-
llgll,r <1
This completes the proof. [

Remark 4.17. i) Recall from the proof of the Marcinkiewicz interpolation theorem
that the coefficient

1/2
21/p<1()—|—16/7'r+ (1/2) _,_21/2)’ 1<p<?2,
C

1-1/p  1/p—1/2
=

1/2
1yl A2 7" e
2 <(1O+16/7T)p+1/21/p+2 ) p>2.

So the constant ), tends to infinity as p tends to 1 or co. More precisely,
Cp,=0(p)asp — oo, and C, = O((p— 1) 1) asp — 1.
ii) The strong (p, p) inequality is false if p = 1 or p = oo, this can easily be
seen from the previous example H (. = 1ln “2:2“ which is neither integrable
nor bounded. See the following figure.

The integra
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iii) By using the inequalities in Theorem 4.16, we can extend the Hilbert
transform to functions in L?, 1 < p < oo. If f € L' and {f,} is a sequence
of functions in . that converges to f in L!, then by the weak (1, 1) inequality
the sequence {H f,, } is a Cauchy sequence in measure: for any € > 0,

lim m({zeR: [(Hf, — Hfm)(x)| >c})=0.

m,n—00
Therefore, it converges in measure to a measurable function which we define to
be the Hilbert transform of f.

If fe LP,1 < p < oo, and {f,} is a sequence of functions in . that converges
to f in L?, by the strong (p, p) inequality, { H f,,} is a Cauchy sequence in L?, so
it converges to a function in LP which we call the Hilbert transform of f.

In either case, a subsequence of { H f,, }, depending on f, converges pointwise
almost everywhere to H f as defined.
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4.3 The Calder6n-Zygmund theorem

From this section on, we are going to consider singular integrals whose ker-
nels have the same essential properties as the kernel of the Hilbert transform.
We can generalize Theorem 4.16 to get the following result.

Theorem 4.18 (Calderén-Zygmund Theorem). Let K be a tempered distribution
in R™ which coincides with a locally integrable function on R™ \ {0} and satisfies

K () < B, (4.27)
/ |K(z —y) — K(z)|de < B, ye&R" (4.28)

|| >2]y|

Then we have the strong (p, p) estimate for 1 < p < oo

1K * fllp < Cpll fllps (4.29)

and the weak (1, 1) estimate

C

(K * f)e(@) < Il (4.30)

We will show that these inequalities are true for f € ./, but they can be
extended to arbitrary f € LP as we did for the Hilbert transform. Condition
(4.28) is usually referred to as the Hormander condition; in practice it is often de-
duced from another stronger condition called the gradient condition (i.e., (4.31) as
below).

Proposition 4.19. The Hormander condition (4.28) holds if for every x # 0

IVK(x)| < T (4.31)
Proof. By the integral mean value theorem and (4.31), we have
1
[ K@y =K@l [ [ E@ =0l
|z[>2ly] |z[>2[y]
/ / O g < / / CWLHdme
2| =2yl 17 — 0y \x\>2\y| (lz/2)
<2”+10]y|wn 1/ —dr—2”+10\y|wn 1— = 2"Cw,_1.
20y " 2|2/|
This completes the proof. n

Proof of Theorem 4.18. Since the proof is (essentially) a repetition of the proof of
Theorem 4.16, we will omit the details.
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Let f € Yand T f = K * f. From (4.27), it follows that

’w| n/2 o |OJ| n/2 o
rsle = (D) 171 = (K1) 120,
n/2 R n/2 ) (4.32)
w w
<(5) IR <5 (52) 1

=Bl||fll2,
by the Plancherel theorem (Theorem 1.26) and part (vi) in Proposition 1.3.

It will suffice to prove that T' is of weak type (1,1) since the strong (p,p)
inequality, 1 < p < 2, follows from the interpolation, and for p > 2 it follows
from the duality since the conjugate operator 7" has kernel K'(z) = K(—x)
which also satisfies (4.27) and (4.28). In fact,

(Tf,¢) = / Ti@p@de= [ [ K- @i

= [ [ K@it = [ [ &)y
=(f,T"p).

To show that f is of weak type (1,1), fix @« > 0 and from the Calderén-
Zygmund decomposition of f at height o, then as in Theorem 4.16, we can write
f =g+0b where

@ llglls < [[fll and [lgflec < 2"c

(ii) b = >_;bj, where each b; is supported in a dyadic cube @Q; satisfying
fQ z)dr = 0 and ||b;][1 < 2" am(Q;). Furthermore, the cubes Q; and Q
have d1s]o1nt interiors when j # k.

(iii) >°; m(Qy) < M| flh.

The argument now proceeds as before, and the proof reduces to showing

that
/ ITb; (2)|dr < o/ 2)|dz, 4.33)
R\Q;

where Q] is the cube with the same center as (); and whose sides are 2./n times
longer. Denote their common center by c;. Inequality (4.33) follows from the
Hoérmander condition (4.28): since each b; has zero average, if = ¢ Q;

()= | K=y = | (K )~ KG = ety o)y
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hence,

/RH\Q; |Tb;(x)|dx < /Qj </R"\Q; |K(z —y) — K(z — Cj)\dgg) 1b; ()| dy.

However, by changing variables # — ¢; = 2’ and y — ¢; = ¢/, and the fact
that [z — ¢j| > 2|y — ¢ forall z ¢ Q] and y € Q; as an obvious geometric
consideration shows, and (4.28), we get

[ K@y -Ke-clde< [ K@ ~y) - K)ldd' < B.

RMQ? @' >2]y|
This completes the proof. n

4.4 Truncated integrals

There is still an element which may be considered unsatisfactory in our for-
mulation, and this is because of the following related points:

1) The L? boundedness of the operator has been assumed via the hypothesis
that K € L> and not obtained as a consequence of some condition on the kernel
K;

2) An extraneous condition such as K € L? subsists in the hypothesis; and
for this reason our results do not directly treat the “principal-value” singular
integrals, those which exist because of the cancelation of positive and negative
values. However, from what we have done, it is now a relatively simple matter
to obtain a theorem which covers the cases of interest.

Definition 4.20. Suppose that K € L} (R"\ {0}) and satisfies the following
conditions:
K (2)] < Bla|™", Va #0,

/ |K(z—y) - K(z)lde < B, Vy#0, (4.34)
|z|>2y|

and
/ K(z)dr =0, V0< R; <Ry < o0. (4.35)
R1<|$|<R2

Then K is called the Calderén-Zygmund kernel, where B is a constant independent
of z and y.

Theorem 4.21. Suppose that K is a Calderon-Zygmund kernel. For e > 0and f €
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LP(R™), 1 < p < 00, let
T.f(c) = / f(@ - 9K (y)dy. (4.36)
ly|>e

Then the following conclusions hold.
(i) We have

ITefllp < Apll £l (4.37)
where Ay, is independent of f and e.

(ii) For any f € LP(R™), lim._,o T.(f) exists in the sense of L norm. That is, there

exists an operator T' such that
Tf@)=pv. | Ky)f(z-y)dy.

(iii) |Tf]lp < Apllfllp for f € LP(R™).

Remark 4.22. 1) The linear operator 7" defined by (ii) of Theorem 4.21 is called the
Calderén-Zygmund singular integral operator. T is also called the truncated operator
of T

2) The cancelation property alluded to is contained in condition (4.35). This
hypothesis, together with (4.34), allows us to prove the L? boundedness and
from this the L” convergence of the truncated integrals (4.37).

3) We should point out that the kernel K (z) = ?lmf r € Rl clearly satisfies
the hypotheses of Theorem 4.21. Therefore, we have the existence of the Hilbert
transform in the sense that if f € LP(R), 1 < p < oo, then

lim 1 7f(x —v) dy

e—=0 T lyl=e Yy
exists in the L” norm and the resulting operator is bounded in L?, as has shown
in Theorem 4.16.

For L? boundedness, we have the following lemma.

Lemma 4.23. Suppose K satisfies the conditions (4.34) and (4.35) of the above theorem
with bound B. Let

_ | K(z), |z|>e¢,
Ke(z) = { 0, lz| < e.
Then, we have the estimate
sup [K-(€)| < CB, >0, (4.38)
3

where C' depends only on the dimension n.

Proof. First, we prove the inequality (4.38) for the special case ¢ = 1. Since
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K1(0) = 0, thus we can assume ¢ # 0 and have

RO =, [ HeN
:/ e YK (2)de + lim e WS K (x)dx
|z <27/ (|wl[€]) R=o0 Jom /(|wll¢))<|o|<R
=11 + I5.

By the condition (4.35), [} _ ;<2 /(ju|e)) K (¥)dz = O which implies

/ Ky (z)dz = 0.
|lz|<2m/(Jwll€])
Thus, ||

—wiz-§ — —wiz-§ _
|x\<27r/(|a{||§\)e Kl(x)dl‘ - f\x|<27‘r/(|w|\§|)[6 1]K1($)d$ Hence,
from the fact |’ — 1| < || (see Section 1.1) and the first condition in (4.34), we
get

|11 </ |wllz][E][ K1 (2)|de < |w[BE] |~ de
|| <27 /(|wlI&]) |z[<27/(|wl|€])
2m/(|wll€])
:wn_1B|wH§|/ dr = 27w, —1B.
0
To estimate I, choose z = z(¢) such that e™%* = —1. This choice can be

realized if z = 7&/(w|¢]?), with |z| = 7/(Jw||£]). Since, by changing variables
T+ z =y, weget

/ e UK (2)dr = —/ e_m(ﬁz){Kl(fB)dﬁU = —/ e WK (y — 2)dy

= — / e_w”'EKl(m — z)dz,

which implies [, e Ky (2)dz = § [pn e @ ¢[Ky(z) — K1 (2 — z)]dz, then we
have

<hm/ / > e WK (x)dx
R=oo Jiz|<R  Jla|<2n/(wll€])

— lim / e WK (x) — Ky (z — 2)]dx — / e YK (2)dx
2 =00 Jloi<h Jal <2/ (JwI€)
:% lim e WK (x) — Ky (z — 2)]dz

R=00 Jor /(lwll€)<||<R

‘ 1 .
- 1/ e WK (2)da — / e K (¢ — 2)d.
2 Jywl<2n/(wll€]) 2 Jywl<2m/(wll€])
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The last two integrals are equal to, in view of the integration by parts,

1 ; 1 ;
- 2/ e UK () da — 5 / e LK (y)dy
| <2/ (Jwl]€]) ly+2|<2m/(|lwll€])
1 - 1 .
=— 2/ e WK (2)dx + 2/ e WK (x)dx
|z <27/ (wl]€]) |42 <27/ (Jw][€])
1 - 1 .
__ = 7wzx~§K d - ﬂ.um-{K dr.
2 /z|<2w/(u|s> ¢ i(z)dz + 2 [z+z|<2w/(w|e|) ¢ (z)de

otz >27 /(Jw€]) l2[>27/(Jwl[€])
For the first integral, we have 27/(|w||{]) > |z| >
@+ 2 — |2 > 2x/(wligl) — 7/(wllel) = =/(wllel),
and for the second one, 27/(|wl|[¢]) < |z| < |z + 2| +
|z| < 3m/(Jw||§]). These two integrals are taken over
a region contained in the spherical shell, 7/(Jwl|[¢]) <
lz] < 37/(Jw|€]|) (see the figure), and is bounded
by 1Bw,_1In3 since |Ki(z)| < Blz|™. By |z| =
7/(Jw||¢]) and the condition (4.34), the first integral of
I is majorized by

1
2/ |Ki(x — 2) — Ky (z)|dz
|z|>27/ (lwl|€])

1

1
:/ |K1(z — 2z) — Ki(x)|de < =B.
2 Jia|>22| 2
Thus, we have obtained
- 1 1
K1(§)] < 2mwn1B + 5B + 5 Bun1 103 < OB,

where C' depends only on n. We finish the proof for K.

To pass to the case of general K., we use a simple observation (dilation ar-
gument) whose significance carries over to the whole theory presented in this
chapter.

Let d. be the dilation by the factor ¢ > 0, i.e., (6. f)(z) = f(ez). Thusif T'is a
convolution operator

Tf(x)=px f(z)= / o(x —y)f(y)dy,

n

then
5.1 T6-f(x) = / o'z — ) fley)dy

n

— [ el = )z = e .
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where p.(r) = e "p(e¢~'z). In our case, if T corresponds to the kernel K (z),
then §,-1T6. corresponds to the kernel e " K (¢ ~'x). Notice that if K satisfies the
assumptions of our theorem, then ="K (e ~1x) also satisfies these assumptions with the
same bounds. (A similar remark holds for the assumptions of all the theorems in
this chapter.) Now, with our K given, let K’ = ¢"K(ex). Then K’ satisfies the
conditions of our lemma with the same bound B, and so if we denote
/ K /<$)7 ‘:L‘ ‘ > 17
Kiz) = { 0, ] <1,
then we know that |K(¢)| < CB. The Fourier transform of e "K](c'z) is
K/ (£€) which is again bounded by CB; however e "K/(¢1z) = K.(z), there-
fore the lemma is completely proved. [

We can now prove Theorem 4.21.

Proof of Theorem 4.21. Since K satisfies the conditions (4.34) and (4.35), then
K. (x) satisfies the same conditions with bounds not greater than C' B. By Lemma
4.23 and Theorem 4.18, we have that the L? boundedness of the operators { K. } .-,
are uniformly bounded.

Next, we prove that {T; fi}.>¢ is a Cauchy sequence in L provided f; €
C(R™). In fact, we have

T: fi(z) = Ty fr(z) = K(y) fi(z —y)dy — K(y) fi(z —y)dy
ly|>e ly|>n

—sgu(n-<) K()[fi(x—v) ~ fi(@)dy,
min(e,n) < y|<max(e,n)

because of the cancelation condition (4.35). For p € (1, 00), we get, by the mean

value theorem with some 6 € [0, 1], Minkowski’s inequality and (4.34), that

ITefr = Ty fullp < KWV f1(z — 0y)llyldy

/min(s,n) <ly[<max(e,n)

p

< / LK)V f1( — ) lyldy
min(e,n) < |y| <max(e,n)

<C | K (y)|yldy
min(e,n) < |y|<max(e,n)

<CB / ly| 7"y
min(e,n) <yl <max(e,n)

max(e,n)
=CBwp-1 / dr

min(e,n)
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:C’Bwn_1|n - 5|
which tends to 0 as €,7 — 0. Thus, we obtain 7} f; converges in L” as ¢ — 0 by
the completeness of LP.

Finally, an arbitrary f € L” can be written as f = f1 4+ f2 where f; is of the
type described above and || f2||,, is small. We apply the basic inequality (4.37) for
fa to get |1 f2||, < C||f2]|p, then we see that lim._,o T} f exists in L” norm; that
the limiting operator T also satisfies the inequality (4.37) is then obvious. Thus,
we complete the proof of the theorem. u

4.5 Singular integral operators commuted with dilations

In this section, we shall consider those operators which not only commute
with translations but also with dilations. Among these we shall study the class
of singular integral operators, falling under the scope of Theorem 4.21.

If T corresponds to the kernel K(z), then as we have already pointed out,
§.—1T6. corresponds to the kernel e " K (¢7'z). So if §.-1T6. = T we are back to
the requirement K (z) = e "K (e 'z),ie., K(ex) = e "K(x), ¢ > 0; thatis K is
homogeneous of degree —n. Put another way

Q(x)
Kie) =0
with © homogeneous of degree 0, i.e., Q(ex) = Q(x), € > 0. This condition on 2
is equivalent with the fact that it is constant on rays emanating from the origin;
in particular, €2 is completely determined by its restriction to the unit sphere
Ssn-l,
Let us try to reinterpret the conditions of Theorem 4.21 in terms of (2.

(4.39)

1) By (4.34), Q(x) must be bounded and consequently integrable on S™~1;
Qz—y) _ Qz)
z|22ly| | fa—y[*  fa]?
stated precisely in terms of 2. However, what is evident is that it requires a
certain continuity of €. Here we shall content ourselves in treating the case

where (2 satisfies the following “Dini-type” condition suggested by (4.34):

dx < C which is not easily re-

and another condition fl

if w(n) = oW Hw(n)

ifw(n):= sup |Qz)—Q")], then ; dn < oc. (4.40)
le—z/|<n 0
o= =1

Of course, any 2 which is of class C L or even merely Lipschitz continuous,
satisfies the condition (4.40).
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2) The cancelation condition (4.35) is then the same as the condition
/ Q(x)do(z) = 0 (4.41)
Sn—1

where do(z) is the induced Euclidean measure on S"~1. In fact, this equation
implies that
Ro 0 /
/ K(z)dx :/ / (T: )dO'(CC/)Tn_ldT
Ri<|z|<R2 Ry Jsn—1 T

=In <RQ> / Q(2')do ().
Rl Sn—1
Theorem 4.24. Let Q € L>®(S™ 1) be homogeneous of degree 0, and suppose that

satisfies the smoothness property (4.40), and the cancelation property (4.41) above. For
1 <p<oo,and f € LP(R™), let
0
ni@= [ LR
Y

|>e ‘y’n
(a) Then there exists a bound A,, (independent of f and ¢) such that

1T fllp < Apllf1lp-
(b) lim._,o T.f = T f exists in LP norm, and

IT$lp < Al fllp. N
(Iffe L?(R™), then the Fourier transforms of f and T f are related by T f (&) =
m(§) f(&), where m is a homogeneous function of degree 0. Explicitly,

m(©) = [ |- s @) (€-a) + 1/l o) | Q@)dota), 1e1=1.
(4.42)

Proof. The conclusions (a) and (b) are immediately consequences of Theorem

4.21, once we have shown that any K (z) of the form Az) catisfies

|z[™
[ K@=y~ K@lds < B, (4.43)
|z >2y|
if 2 is as in condition (4.40). Indeed,
Qz —y) — Q=) [ 1 1 ]
Krx—-y)—K(z)= + Q) | ————— - — .

The second group of terms is bounded since (2 is bounded and

T =

|z —y[* |z

e A

_/ 2| = |z =yl Y52 [ o — y)?
2| >2]y| |z — y|"|z|"

|z = y[*fal]?

dx
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n—1
</ 1wl >l — P de
|z >2]y]

J=0

n—1
</||> | ‘IyIZIIEI’]’l(Ix\/Q)]’"dw (since |z —y| > || — |y| = |[/2)
T|=22ly

j*O
2/ ly |Z2” |~ = 2(2" = 1)y i
lzI=2[yl 550 |z >2]y|
1
=2(2" = Dyl 77 = (2" = Dot

Now, we estimate the first group of terms.
Let 0 be the angle with sides x and  — y whose
opposite side is y in the triangle formed by vec-
tors z, y and = — y. Since |y| < |z]/2 < |z,

we have 6§ < 7 and so cosf > 0 and then

cos § = (/10 > 1/1/2. Moreover, by the sine

theorem, we have sin 6 < ly| On the other hand,
= Jaf:
in the triangle formed by O? |l,| , @

and @ |Z, y‘ \wl ,itis clear

\x yl

that § = Z(POQ) and %@ = ﬁ by the sine theorem. Then, we have

T — T sin @ sm@
Y _ T pg| = I <valul <ol
lz—yl |z sin(Z — %) cos ¢ | \90!

Thus, the integral corresponding to the first group of terms is dominated by

2"/ w(2|y>dx_2”/ w(2/z))
lz|>2ly| x| ) || |2[>2 ’Z’”

o d ! d
:2”wn_1/ w(2/7’)—r = Q"wn_l/ windn < 00
2 r 0 n

in view of changes of variables = = |y|z and the Dini-type condition (4.40).

Now, we prove (c). Since T is a bounded linear operator on L? which com-
mutes with translations, we know, by Theorem 1.62 and Proposition 1.3, that
T can be realized in terms of a multiplier m such that Tt (&) = m(€)f(€). For
such operators, the fact that they commute with dilations is equivalent with the
property that the multiplier is homogeneous of degree 0.

For our particular operators we have not only the existence of m but also
an explicit expression of the multiplier in terms of the kernel. This formula is
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deduced as follows.
Since K (z) is not integrable, we first consider its truncated function. Let
0<e<n<oo and
Qz)
K. p(z) = |z’
0, otherwise.
Clearly, K., € L'(R™). If f € L2(R") then K., = f(€) = K., (€) ().
We shall prove two facts about I?e\n(f ).
(i) sup, |I?€\77(§ )| < A, with A independent of € and 7;
(ii) if £ # 0, lim .0 K., (&) = m(€), see (4.42).
n— 00
For this purpose, it is convenient to introduce polar coordinates. Let z = ra/,
r=lz, 2 =x/|r| € 8", and ¢ = R¢, R = |¢, & = &/|¢] € S"~L. Then we
have

e< |z <,

. g
Ko@) = [ e msiiey@e= [ st
! e<|z|<n

7] - i
:/ Q") (/ e wilirz'§ r_”r"_ldr> do(z")
Sn—1 €
n : Il
:/ Q(2)) </ e wilira™ dr) do(z').
Sn—1 € T

/ Q2 )do(2") = 0,

Sn—1

we can introduce the factor cos(|w|Rr) (which does not depend on z’) in the
integral defining K. ,,(£). We shall also need the auxiliary integral

n . ! ! d
Laf&) = [l cos(lwlRn) T R >0
€

Since

Thus, it follows
Ronl©) = [ Ll o @),

Now, we first consider I. ,,(§, 2’). For its imaginary part, we have, by chang-
ing variable wRr(2’ - &) = t, that

. Rn(z'-€") _-
SLy(ol) = [ st
S r t
€ wRe(x'-€")
lwlRnle"-&'] i ¢
= — sgn (w)sgn (2’ - &) ek

w|Relar-¢’|
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is uniformly bounded' and converges to
sint

~sen@)sgn (o' +€) [ T = <D sen @)sen (07 €),

ase — 0and n — oo.

For its real part, since cosr is an even function, we have

n d
RLy(¢,') = [ leos(flBrla’ - ¢') — cos(fwl )] -

If 2’ - ¢ = %1, then RI. (£, 2') = 0. Now we assume 0 < € < 1 < 7. For the case
x' - ¢ # +1, we get the absolute value of its real part

1
d
‘%Igm(é,mlﬂ < / —2sin @Rr(\x’ & +1)sin ’w2|Rr(|x’ €| - 1)%
€

U dr U
+ ‘/ cos |w|Rr|z’ - &'|— — / cos
1 r 1

w 201 _ | .2 !
< R*(1—|2"- &' rdr
2 €
|w|Rnlg" 2’| ¢ || Ry ¢
/ cos dt—/ cos gt
wlRlg |t wr t
If n|¢’ - 2] > 1, then we have
|w| R |w| Rn t
I = / t—/ COST
wiRE | b w|Rnler-a!|

lwlR gt lwlRn g4
Y -
wRg 2’| b Jiw|Rylerar|

<2n(1/[¢ - ).

_l’_

For any 0 < a < 1 < b < oo, by the fact sint < ¢ for any ¢ > 0 and integration by parts, we

have
b b
/ smt / smtd _/ (cost)' al <14 |- _/ costdt
t -

<3+/ —dt = %<4.

cost
t
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If 0 < nlg - 2’| <1, then
(wlR/E /| gy
ne | L <oam(1/le o)
|

w|R|E 2|
Thus,

/ @ 2 U
[RI. (&) < SR +2(1/|¢’ - o)),

and so the real part converges ase — 0 and  — co. By the fundamental theorem
of calculus, we can write

n _

/ cos()\r) oS ,ur / / sin(tr)dtdr — / / sin(tr)drdt
n —

/ / Oy cos(tr) d d — / cos(tn) t cos(ts)dt

:/’\77 COS(S)dS_//\ cos(ts)dt: sins‘Mle/)‘" sir;sds_/’\ cos(ta)dt
pn s © t s w8 " t

K7 n

A
1
—0— / Edt = —In(A/u) =In(u/N), asn — oo, € = 0.
o
Take A = |w|R|z" - &'|, and pu = |w|R. So
0 dr
lig R(Ley(€:2") = [ lcos ol Rra’-€) = cos|wlRr)°T = In1/[a’ ).
E—> 0
77—)00

By the properties of I, just proved, we have

wael< [ [or BER 2w 2] 106 st

<C(4+ u:JH’Q)(,un_l + 2C/ In(1/|¢" - 2'|)do(2).
Sn—1

Forn =1, wehave S° = {—1,1} and then [, , In(1/|¢'-2'|)do(2') = 2In1 =
0. For n > 2, we can pick an orthogonal matrix A such that Ae; = £, and so by
changes of variables and using the notation § = (y2,y3, ..., Yn),

/ In(1/|¢ - o/ |)dor(2') :/ In(1/|Aes - 2 |)do ()
Snfl Snfl
:/ In(1/|ex -A_lsc'|)d0(a:') ATy / In(1/|e1 - y|)do(y)
Snfl Snfl
1
= [ mmhdot) = [ w/nl) [ =B (@

1
:wn_g/lln(1/|y1)(1 — 2) =32,
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1
Y /0 In(1/ly1)(1 — )" 2dy,

w/2
:2wn_2/ In(1/ cos ) (sin 9)"*2d0 = 2wn_2l, (lety; = cosb),
0
since if for ¢; € [0,7] (j =1,--- ,n —2) and ¢, € [0, 27], let

Y1 =cos ¢1
Y2 = sin @1 cos ¢

Y3 = sin ¢ sin ¢ cos ¢3

Yn—1 =Sin @y - - - sin ¢, —2 COS Pp—1
Yn =SiN @1 - - - SN Py 2 SIN Dy 1,
then the volume element dgn-10(y) of the (n — 1)-sphere is given by
dgn-10(y) =sin"">(¢1) sin">(¢) - - - sin(¢—2) dpy depa - - - dp 1
=sin""?(¢1) sin" " (¢2) - - sin(¢p-—2) dyr dga - - - dpy—1
=(1 =) dy dgn—20(7),
due to dy; = rsin(¢1)depr and sin ¢y = \/@

For n > 3, we have, by integration by parts,
/2 /2
I < / In(1/ cos 0) sin Odf = / sinfdf = 1.
0 0

For n = 2, we have, by the formula foﬂ /2 In(cos 0)df) = —5 In2 (see [GR, 4.225.3,
p.531]),

w/2 w/2 T
I, = / In(1/ cos0)db = —/ In(cos 0)do = 5 In 2.
0 0

Hence, [q,—1 In(1/[¢" - 2/|)do(2’) < C forany &' € 5™ 1.
Thus, we have proved the uniform boundedness of I?;(f ), i.e., (i). In view

of the limit of I., (&, ') as € — 0, n — oo just proved, and the dominated con-
vergence theorem, we get

lim K_,(€) = m(¢),

e—0
7]*)00

if £ # 0, that is (ii).
By the Plancherel theorem, if f € L?*(R"), K., * f converges in L? norm as

e — 0 and 7 — oo, and the Fourier transform of this limit is m(§) f(£).
However, if we keep ¢ fixed and let n — oo, then clearly [ K. ,(y)f(z — y)dy



4.6. The maximal singular integral operator -117 -

converges everywhere to f‘y|>8 K(y)f(xz —y)dy, which is T. f.
Letting now ¢ — 0, we obtain the conclusion (c) and our theorem is com-

pletely proved. [

Remark 4.25. 1) In the theorem, the condition that  is mean zero on S"~! is
necessary and cannot be neglected. Since in the estimate

Q) .. _ Qy) ¢
| TR y>dy—[/|y<1+ /y|>1] R =)y,

the main difficulty lies in the first integral.

2) From the formula of the symbol m(&), it is homogeneous of degree 0 in
view of the mean zero property of 2.

3) The proof of part (c) holds under very general conditions on 2. Write
Q = Q. + Q, where ). is the even part of 2, Q.(z) = Qc(—2z), and Q,(z) is the
odd part, Q,(—z) = —Q,(z). Then, because of the uniform boundedness of the
sine integral, i.e., 31, (£, 2’), we required only [, [Q(2')|do(2") < o0, i.e., the
integrability of the odd part. For the even part, the proof requires the uniform
boundedness of

[ 19:) (/¢ o/ do(a),

This observation is suggestive of certain generalizations of Theorem 4.21, see
[Ste70, §6.5, p.49-50].
4.6 The maximal singular integral operator

Theorem 4.24 guaranteed the existence of the singular integral transforma-
tion

: Q) ..
lim /|y flx —y)dy (4.44)

=0 >e |y‘n
in the sense of convergence in the ‘LP norm. The natural counterpart of this result
is that of convergence almost everywhere. For the questions involving almost
everywhere convergence, it is best to consider also the corresponding maximal
function.
Theorem 4.26. Suppose that Q) satisfies the conditions of the previous theorem. For
feLP(R™), 1< p< oo, consider
i@ = [ TWia-yiy, >0
yie Yl
(The integral converges absolutely for every x.)
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(a) lim._,o T f () exists for almost every x.

(b) Let T* f(x) = sup.~q [T-f(x)|. If f € LY(R™), then the mapping f — T*f is
of weak type (1,1).

() If1 < p < o0, then |T* fllp < Ayl fll

Proof. The argument for the theorem presents itself in three stages.

The first one is the proof of inequality (c) which can be obtained as a rela-
tively easy consequence of the LP norm existence of lim._,o 7, already proved,
and certain general properties of “approximations to the identity”.

Let Tf(z) = lime07:f(x), where the limit is taken in the L” norm. Its
existence is guaranteed by Theorem 4.24. We shall prove this part by showing
the following Cotlar inequality

T"f(z) < M(Tf)(x) + CM f(x).

Let ¢ be a smooth non-negative function on R", which is supported in the

unit ball, has integral equal to one, and which is also radial and decreasing in

|z|. Consider
Q(z)
K()={ B [7l=e
0, |z| < e.

This leads us to another function ® defined by
d=pxK - K, (4.45)
where ¢ * K = lim._,0 ¢ x K. = lim._,q flﬂv—yl% K(z —y)e(y)dy.
We shall need to prove that the smallest decreasing radial majorant ¥ of @ is
integrable (so as to apply Theorem 4.10). In fact, if |z| < 1, then

/ K(y)p(z — y)dy‘ = K(y)(p(z —y) — ¢(v))dy
R” R"

</|K@mwx—m—¢mmw<c lole = o) = el 4, ¢
R™ R™ ‘y’

since (4.41) implies [, K (y)dy = 0 and by the smoothness of (.

If 1 < |z| <2, then ® = p* K — K is again bounded by the same reason and
K is bounded in this case.

Finally if |z| > 2,

B(x) = K@—yW@My—K@%=/KJK@—y%Jﬂ@M@My

|®| =[p* K| =

R”
Similar to (4.43), we can get the bound for |y| < 1 and so |z| > 2|y|,

\K@—y»—K@n<Tw(HT>|”+2< )9yl
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<" (,er%+%w—1meM|W“>

as in the proof of Theorem 4.24, since w is increasing. Thus, due to ||¢|j; = 1, we
obtain for |z| > 2

@@Héfw<,0hﬂ"+% D).
Therefore, we get |V| < C for |z| < 2, and
!W@N<Tw<H>m4”+%T—1WQ@MI”“

for |z| > 2, and then we can proved that ¥ € L!(R") with the help of the Dini-
type condition.

From (4.45), it follows, because the singular integral operator ¢ — ¢ * K
commutes with dilations, that

pex K — K. = ®., with®.(x) = "®(z/e). (4.46)
Now, we claim that for any f € LP(R"), 1 < p < oo,
(¢ * K) % f(x) = Tf * pe(x), (4.47)
where the identity holds for every z. In fact, we notice first that
(pe * K5) * f(z) =T5f * p-(x), foreveryd >0 (4.48)

because both sides of (4.48) are equal for each x to the absolutely convergent
double integral [, _p. =6 K(y)f(z —y)pe(x — 2)dydz. Moreover, p. € L1(R"),
with1l < g < ccand 1/p+1/q = 1,50 p- *x K5 — ¢ * K in L? norm, and
Tsf — Tf in LP norm, as 6 — 0, by Theorem 4.24. This proves (4.47), and so by
(4.46)
T.f=Kcxf=p.«Kxf—P.xf=Tfxp.— f*P..

Passing to the supremum over ¢ and applying Theorem 4.10, part (a), Theo-

rem 3.9 for maximal funtions and Theorem 4.24, we get

1T fllp <l sup Tf * eelllp + | sup | e[l

<CHM(Tf)Hp + CHMpr CITfllp +Cllfllp < Clifllp-
Thus, we have proved (c).

The second and most difficult stage of the proof is the conclusion (b). Here
the argument proceeds in the main as in the proof of the weak type (1, 1) result
for singular integrals in Theorem 4.18. We review it with deliberate brevity so
as to avoid a repetition of details already examined.

For a given a > 0, we split f = g + b as in the proof of Theorem 4.18. We
also consider for each cube @Q; its mate @}, which has the same center ¢; but
whose side length is expanded 2,/n times. The following geometric remarks



-120- 4. Singular Integrals

concerning these cubes are nearly obvious (The first one has given in the proof
of Theorem 4.18).

() If z ¢ Q, then |z — ¢j| > 2]y — ¢j| forall y € Q;, as an obvious geometric
consideration shows.

(ii) Suppose z € R" \ Q} and assume that
for some y € Qj, |[r — y| = €. Then the closed
ball centered at x, of radius v,¢, contains @)}, i.e.,
B(z,7) D Qj, if r = ype.

(iii) Under the same hypotheses as (ii), we
have that |z — y| > ~,,¢, for every y € Q.

Here v, and ~,, depend only on the dimen- ' R\ V;0;
sion n, and not the particular cube Q);.

With these observations, and following the
development in the proof of Theorem 4.18, we Figure 4.1: Observation for

shall prove that if z € R" \ U;Q7, (i) and (iii)
ﬂmW%@Néij/!K@—y%4ﬂ$—%WMwWy
e>0 j Q;

1
+ C'sup / b(y)|dy,
B @) Sy )
(4.49)

with K (z) = 2@

- ‘x|n .
The addition of the maximal function to the r.h.s of (4.49) is the main new
element of the proof.

To prove (4.49), fix x € R\ U; ;‘f, and ¢ > 0. Now the cubes @); fall into
three classes:

1) forally € Qj, |z —y| <e;

2)forally € Qj, |z —y| > &;

3) thereisay € @, such that |z — y| = €.
We now examine

EEDY /Q K~ y)b(u)dy. (4.50)

Case 1). K.(z —y) = 0if |x — y| < ¢, and so the integral over the cube Q; in
(4.50) is zero.

Case 2). K.(x —y) = K(x —y), if |z — y| > ¢, and therefore this integral over
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Q)j equals

[ Kby = [ 1K =)~ K = ety
i i
This term is majorized in absolute value by

[ 1 =) = K =l

which expression appears in the r.h.s. of (4.49).
Case 3). We write simply

K (z —y)b(y)dy

B Kgl'— b d
5 <[ 1o = )l

J
_ / K (2 — y)|[b(y)|dy,
Q;NB(z,r)

by (ii), with r = ~,¢. However, by (iii) and the fact that Q(z) is bounded, we
have

C
= (e

Qx —y)
lz —y|"

|Ke(z—y)l =

Thus, in this case,
C
K (x —y)b(y)dy / b(y)|dy.
o, K TIPW S ) Jay e

If we add over all cubes @), we finally obtain, for r = v,e,
| Teb(z)| < Z/Q |K(z —y) — K(z — ¢)|[b(y)|dy
P i

C
B o MO
Taking the supremum over ¢ gives (4.49).
This inequality can be written in the form
|T*b(z)| < X(x) + CMb(x), =€ R"\U;Q7,

<

and so
m({z € R"\ UjQ;f C|T(x)| > af2})
<m({r € R"\ U;Q5 : ¥(z) > a/4}) + m({z € R" \ U;Q; : CMb(x) > a/4}).
The first term in the r.h.s. is similar to (4.33), and we can get

/ S(z)dz < C|Jb|s
R™\U; Q%

which implies m({z € R" \ U;Q; : ¥(z) > a/4}) < 0|5
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For the second one, by Theorem 3.9, i.e., the weak type estimate for the max-
imal function M, we get m({z € R" \ U;Q} : CMb(z) > a/4}) < %||b||1

The weak type (1, 1) property of T* then follows as in the proof of the same
property for T', in Theorem 4.18 for more details.

The final stage of the proof, the passage from the inequalities of T to the
existence of the limits almost everywhere, follows the familiar pattern described
in the proof of the Lebesgue differential theorem (i.e., Theorem 3.13).

More precisely, for any f € LP(R"), 1 < p < oo, let

Af(z) = |limsup 7. f(x) — lim i(glf T.f(z)|.
e—0 e~

Clearly, A f(z) < 2T* f(z). Now write f = f1 + fo where f1 € CL, and || f2|, < 0.

We have already proved in the proof of Theorem 4.21 that 7 f; converges
uniformly as ¢ — 0, so Afi(z) = 0. By (4.37), we have ||Afa]|, < 24, f2]lp <
24,0 if 1 < p < oo. This shows Afy = 0, almost everywhere, thus by Af(z) <
Afi(z)+Afa(x), wehave A f = 0 almost everywhere. So lim._, 7~ f exists almost
everywhere if 1 < p < oo.

In the case p = 1, we get similarly

Ad

m({z: Af(z) > a}) < g”h\h < o’

and so again Af(xz) = 0 almost everywhere, which implies that lim._,o 7. f ()
exists almost everywhere. |

4.7 *Vector-valued analogues

It is interesting to point out that the results of this chapter, where our func-
tions were assumes to take real or complex values, can be extended to the case
of functions taking their values in a Hilbert space. We present this generaliza-
tion because it can be put to good use in several problems. An indication of this
usefulness is given in the Littlewood-Paley theory.

We begin by reviewing quickly certain aspects of integration theory in this
context.

Let . be a separable Hilbert space. Then a function f(xz), from R" to /¢
is measurable if the scalar valued functions (f(x), @) are measurable, where (-, )
denotes the inner product of 7, and ¢ denotes an arbitrary vector of J7Z.

If f(z) is such a measurable function, then |f(x)| is also measurable (as a
function with non-negative values), where | - | denotes the norm of .J#.
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Thus, LP(R", 77) is defined as the equivalent classes of measurable functions
f(z) from R" to /¢, with the property that the norm || f||, = ([gn |f(z)[Pdz)'/?
is finite, when p < oo; when p = oo there is a similar definition, except || f||oc =
esssup | f(z)].

Next, let s# and 7% be two separable Hilbert spaces, and let L(.74, .745)
denote the Banach space of bounded linear operators from J# to /%, with the
usual operator norm.

We say that a function f(z), from R” to L(J#, 74) is measurable if f(z)p
is an J#-valued measurable function for every ¢ € 7. In this case |f(x)| is
also measurable and we can define the space LP(R", L(4, .7%)), as before; here
again | - | denotes the norm, this time in L(74, 743).

The usual facts about convolution hold in this setting. For example sup-
pose K (z) € LY(R", L(JA, #5)) and f(x) € LP(R™, /4), then g(x) = [z, K
y) f (y)dy converges in the norm of .7% for almost every =, and

o)l < [ 1K@ =n)fldy < [ K@=l

Also [lgllr < [Kllgll fllp i 1/r=1/p+1/q =1, with 1 <7 < o0.
Suppose that f(z) € LY(R", 7). Then we can define its Fourier transform
€) = Jgn €“¢ f(2)dx which is an element of L>(R", ). If f € L'(R", )N

L2(R", 2¢), then f(¢) € L2(R", ) with ||f]|2 = (%) "2 || fll2. The Fourier
transform can then be extended by continuity to a unitary mapping of the Hilbert
space L?(R™, /) to itself, up to a constant multiplication.

These facts can be obtained easily from the scalar-valued case by introducing
an arbitrary orthonormal basis in .77

Now suppose that 77 and % are two given Hilbert spaces. Assume that

f(x) takes values in .41, and K (x) takes values in L(.74, 7). Then

/ K(y)f(z —y)dy,

whenever defined, takes values in /4.

Theorem 4.27. The results in this chapter, in particular Theorem 4.18, Proposition
4.19, Theorems 4.21, 4.24 and 4.26 are valid in the more general context where f takes
its value in 7, K takes its values in L(J61, 7) and T f and T, f take their value in
3, and where throughout the absolute value | - | is replaced by the appropriate norm in
4, L(74, 76) or 7 respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvi-
ous way. However, its proof consists of nothing but a identical repetition of the
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arguments given for the scalar-valued case, if we take into account the remarks
made in the above paragraphs. So, we leave the proof to the interested reader.

Remark 4.28. 1) The final bounds obtained do not depend on the Hilbert spaces
S or s, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality of Ba-
nach space-valued functions, appropriately defined. The Hilbert space structure
is used only in the L? theory when applying the variant of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.
Corollary 4.29. With the same assumptions as in Theorem 4.27, if in addition
ITfll2 = cllfllz, ¢>0, feL*R",4),
then || fllp < AT fllp if f € LP(R™, 74), if 1 < p < oc.

Proof. We remark that the L?(R™, .%#;) are Hilbert spaces. In fact, let (-, -); denote
the inner product of .7, j = 1,2, and let (-, -); denote the corresponding inner
product in L*(R"™, %); that is

(g = [ (F@)g(o)sd.

Now T is abounded linear transformation from the Hilbert space L?(R", /4 )
to the Hilbert space L?(R", /%), and so by the general theory of inner products
there exists a unique adjoint transformation 7T, from L?(R", /%) to L*(R", 74),
which satisfies the characterizing property

(Thi, f2)2 = {fi. Tfa)1, with f; € L*(R", 7).
But our assumption is equivalent with the identity (see the theory of Hilbert
spaces, e.g. [Din07, Chapter 6])

<Tf,Tg>2202<f,g>1, for all f?gELz(Rnaf%ﬂl)'
Thus using the definition of the adjoint, (TTf,g)1 = 2(f,g)1, and so the as-
sumption can be restated as

TTf=cf, feL*R",4). (4.51)
T is again an operator of the same kind as 7 but it takes function with values
in % to functions with values in .74, and its kernel K (z) = K*(—z), where x
denotes the adjoint of an element in L(54, 76).
This is obvious on the formal level since

<rmﬁ»=/°/<K@—wﬁ@»mmbww

R» JR™
:/n/n(fl(y)aK*((yx))fg(x))ldxdy = (f1, T fo)1.
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The rigorous justification of this identity is achieved by a simple limiting argu-
ment. We will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—x) satisfies the
same conditions as K (), and so we have, for it, similar conclusions as for K
(with the same bounds). Thus by (4.51),

Ellflp = ITTfllp < AplI TSl
This proves the corollary with A) = A,,/c?. [

Remark 4.30. This corollary applies in particular to the singular integrals com-
muted with dilations, then the condition required is that the multiplier m(&)

have constant absolute value. This is the case, for example, when 7' is the Hilbert

transform, K (z) = -1, and m(¢) = —isgn (w) sgn (£).

wn?






RIESZ TRANSFORMS AND SPHERICAL
HARMONICS

5.1 The Riesz transforms

We look for the operators in R™ which have the analogous structural char-
acterization as the Hilbert transform. We begin by making a few remarks about
the interaction of rotations with the n-dimensional Fourier transform. We shall
need the following elementary observation.

Let p denote any rotation about the origin in R". Denote also by p its induced
action on functions, p(f)(z) = f(pz). Then

(Fof© = [ e ilpmdn = [ ey

Rn n
= [ e gy = F1(6) = 07 £6),
that is,
Fp=pF.
Let {(z) = (41(z),l2(x), ..., {n(x)) be an n-tuple of functions defined on R".
For any rotation p about the origin, write p = (p;;) for its matrix realization.
Suppose that ¢ transforms like a vector. Symbolically this can be written as

l(px) = p(£(2)),
or more explicitly

li(px) = Z pile(z), for every rotation p. (5.1)
k

Lemma 5.1. Suppose ¢ is homogeneous of degree 0, i.e., {(cx) = {(x), for e > 0. If £
transforms according to (5.1) then {(z) = i for some constant c; that is
-~
li(x) = c’j. (5.2)
Proof. 1t suffices to consider x € S"~! due to the homogeneousness of degree 0
for £. Now, let e, e, ..., e, denote the usual unit vectors along the axes. Set

127
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c = {1(e1). We can see that £;(e;) = 0,if j # 1.

In fact, we take a rotation arbitrarily such that e; fixed under the acting of
p, i.e., pe; = e;. Thus, we also have e; = p~lpe; = p~lte; = p'e;. From
per = plel = e, we get pi11 = land p1, = pj1 = Ofork # land j # 1.

-1
Sop = <(1) 31) . Because <(1) B[) = <(1) A01> and p~! = p', we obtain
A1 = AT and det A = 1, i.e., Aisarotation in R"~!. On the other hand, by (5.1),
we getlj(e1) = > o pjrli(er) for j = 2,...,n. Thatis, the n—1 dimensional vec-
tor (l2(e1),?3(e1),- - ,€n(e1)) is left fixed by all the rotations on this n — 1 dimen-
sional vector space. Thus, we have to take ¢3(e1) = l3(e1) = -+ = £y(e1) = 0.
Inserting again in (5.1) gives £;(pe1) = p;ili(e1) = cpji1. If we take a rotation
such that pe; = z, then we have p;; = z;, so ¢;(x) = cx;, (|z| = 1), which proves
the lemma. ]

We now define the n Riesz transforms. For f € LP(R™), 1 < p < oo, we set

: Yj ‘
Rif(x :hmcn/ x—y)dy, j=1,...n, (5.3)
J ( ) 0 | >e ]y\”“ ( )
with ¢, = % where 1/¢, = % is half the surface area of the unit
sphere S™ of R""!. Thus, R; is defined by the kernel K/(z) = Q&—Tf), and Q;(z) =
Cntl.
"

Next, we derive the multipliers which correspond to the Riesz transforms,
and which in fact justify their definition. Denote

Q(x) = (Ql(x)’ QQ('%')’ ey Qn(.%')), and m(é) = (ml(g)ﬂ m2(§)7 ceey mn(ﬁ))
Let us recall the formula (4.42), i.e.,

m©) = [ e 00@is). ld-1. 64

with ®(t) = —Z' sgn (w) sgn (¢) + In|1/¢|. For any rotation p, since €2 commutes
with any rotations, i.e., Q(px) = p(£2(z)), we have, by changes of variables,

pm©) = [ ae-ap@@)irt) = [ #(e-2)pa)do

Snfl
_ / B(E - p L) y)do(y) / B(p¢ - y)Uy)do (y)
gn—1 snt
=m(p§).

Thus, m commutes with rotations and so m satisfies (5.1). However, the m; are
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each homogeneous of degree 0, so Lemma 5.1 shows that m;(£) = c%, with
c=mj(e1) = / 1 d(ey - ) (z)do(x)
Sn-

:/ [—%isgn (w)sgn (z1) +In |1/21|]cpz1do(x)
Sn—1

= — sgn (w)%zcn / |z1|do(x) (the 2nd is 0 since it is odd w.r.t. z1)
n—1

B miT((n+1)/2) 2x(~D/2
= ) e Tt 1)2)
Here we have used the fact [, |[z1]|do(z) = 2r("~1/2/T'((n +1)/2). Therefore,
we obtain
RF©) = —san (@i f©). i =1Lon. 55

This identity and Plancherel’s theorem also imply the following “unitary” char-
acter of the Riesz transforms

—sgn (w)i.

D IRfI = (1F115-
j=1
By m(p§) = p(m(€)) proAved above, we haveAmj(pf) = > 1 pikmi(§) for any
rotation p and then m;(p€) f(&) = >k pjkmi(§) f(§). Taking the inverse Fourier
transform, it follows

F " mi(p€) f( - Zp]kmk ) ()
Zp]krj mk fA Zp]kka
k
But by changes of Varlables, we have

w)
("") e, o) )

T
F N (m; ( ) F(p~')))(px) = pZ " (m;(§) f(p™'9)) ()
Zpij ',
since the Fourier transform commutes with rotations. Therefore, it reaches
pRip~ f = pirRif, (5.6)

k
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which is the statement that under rotations in R", the Riesz operators transform
in the same manner as the components of a vector.
We have the following characterization of Riesz transforms.

Proposition 5.2. Let T' = (11,15, ..., T,,) be an n-tuple of bounded linear transforms
on L?(R™). Suppose

(a) Each T commutes with translations of R™;

(b) Each T; commutes with dilations of R";

(c) For every rotation p = (pji) of R™, pTjp~ ' f = > pix T f-
Then the T} is a constant multiple of the Riesz transforms, i.e., there exists a constant c
such that T; = cRj, j =1,...,n.

Proof. All the elements of the proof have already been discussed. We bring them
together.

(i) Since the 7} is bounded linear on L?*(R") and commutes with transla-
tions, by Theorem 1.62 they can be each realized by bounded multipliers m,
i.e., y(T']f) = mjf.

(ii) Since the T; commutes with dilations, i.e., T;j0.f = 6.7} f, in view of
Proposition 1.3, we see that

FTy0.f = my(&) F6ef = my(©)e "0 f(€) = my (€)= " F(€/2)
and

FoLjf =e 0TI f = "0.1(myf) = e "m;({/e) f(€/e),
which imply m;(§) = m;({/¢e) or equivalently m;(¢£) = m;(§), € > 0; that is,
each m; is homogeneous of degree 0.

(iif) Finally, assumption (c) has a consequence by taking the Fourier trans-
form, i.e., the relation (5.1), and so by Lemma 5.1, we can obtain the desired
conclusion. ]

One of the important applications of the Riesz transforms is that they can
be used to mediate between various combinations of partial derivatives of a
function.

Proposition 5.3. Suppose f € C?(R"). Let Af = > =1 %. Then we have the a
J
’ S Apl|Afllp, 1<p<oo. 5.7)
P

Proof. Since .7 (0, f)(§) = wi&;.7 f(£), we have

a 82f _ o

priori bound
O’ f
ox 4 Ox k
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- (~o @) (-sm )12 w2 16
— — FR;RiAf.

Thus, agaka = —R;R;Af. By the LP boundedness of the Riesz transforms, we
have the desired result. n

Proposition 5.4. Suppose f € C}(R?). Then we have the a priori bound

2] 4| 2] < 2L+ 2] . 1<p<oo
8.2131 p 6.%'2 p 8.21?1 (91‘2 P
Proof. The proof is similar to the previous one. Indeed, we have
‘ 2 4 2
70,1 =iy Z1(€) = w710 = o LEL 2 5(6)
_, (G &) (& + Z&)g?f(g)
Y €]
=— FRj(R1 —iR2)(0z, f +i0s, f).
Thatis, 0, f = —R;j(R1 —iR2) (0, f +1i0y, f). Also by the L” boundedness of the
Riesz transforms we can obtain the result. |

We shall now tie together the Riesz transforms and the theory of harmonic
functions, more particularly Poisson integrals. Since we are interested here
mainly in the formal aspects we shall restrict ourselves to the L? case. For L?
case, one can see the further results in [Ste70, §4.3 and §4.4, p.78].

Theorem 5.5. Let f and f, ..., fr, all belong to L?(R™), and let their respective Poisson
integrals be up(x,y) = Py * f, uwi(x,y) = Py * fi, ..., un(x,y) = Py * fn. Then a
necessary and sufficient condition of
fj :R](f), j = 1,‘..,71, (58)
is that the following genemlized Cauchy-Riemann equations hold:
Ouj

Z « Oz =0

8u] _ Ouy

axk 871']'7

(5.9)
J 7é k, with o =Y.

Remark 5.6. At least locally, the system (5.9) is equivalent w1th the existence of a
harmonic function g of the n 4 1 variables, such that u; = 8 ,7=0,1,2,.
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Proof. Suppose f; = R; f, then fj(g) = —sgn (w)j&f(f), and so by (4.15)

£
Uj(l‘,y) = —sgn (w) <‘2u;_’> - A(g)%ewi&xe_lwglydga .] = 17 ey 1,
and .
ww) = (52) [ Feesre e

The equation (5.9) can then be immediately verified by differentiation under
the integral sign, which is justified by the rapid convergence of the integrals in
question.

Conversely, let u;(x,y) = (%)nfﬂ{n E(&)e“’i5'ze_|“5|yd§, Jj =0,1,...,n with

fo = f. Then the fact that g—zg? = 3% = %—?, j = 1,...,n, and Fourier inversion
theorem, show that
Wit fo(€)e™ W = —|we| F(€)e 4l
therefore f](f) = —sgn (w)%ﬁ)(f), and so
fi=Rifo=Rif, j=1,..,n.

5.2 Spherical harmonics and higher Riesz transforms

We return to the consideration of special transforms of the form
Tf(z) = lim ) f(z — y)dy, (5.10)
&0 Jiyjze lyl"
where Q is homogeneous of degree 0 and its integral over S"~! vanishes.

We have already considered the example, i.e., the case of Riesz transforms,
Qi(y) = c%‘,j =1,..,n. Forn =1, Q(y) = c¢sgny, and this is the only possible
case, i.e., the Hilbert transform. To study the matter further for n > 1, we recall
the expression

m© = [ A 000dot). 6 =1

where m is the multiplier arising from the transform (5.10).

We have already remarked that the mapping 2 — m commutes with rota-
tions. We shall therefore consider the functions on the sphere S"~! (more par-
ticularly the space L?(S™~1)) from the point of view of its decomposition under
the action of rotations. As is well known, this decomposition is in terms of the
spherical harmonics, and it is with a brief review of their properties that we
begin.
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We fix our attention, as always, on R", and we shall consider polynomials in
R"™ which are also harmonic.

Definition 5.7. Denote o = (a1, ..., an), |af = 77 aj and 2@ = 27" - - - apn. Let
2, denote the linear space of all homogeneous polynomials of degree £, i.e.,

Py = {P(x) = Zaaxo‘ el = k:}

Each such polynomial corresponds its dual object, the differential operator
P(0z) = ) an0y, where 93 = 0g!---03". On %, we define a positive inner
product (P,Q) = P(d,)Q. Note that two distinct monomials z* and z*' in 2,
are orthogonal w.r.t. it, since there exists at least one ¢ such that o;; > a;, then

02525 = 0. (P, P) = Y |an|?a! where a! = (a1!) - - - ().

Definition 5.8. We define 7, to be the linear space of homogeneous polynomi-
als of degree k which are harmonic: the solid spherical harmonics of degree k. That
is,

g, = {P(z) € P : AP(x) =0}.

It will be convenient to restrict these polynomials to S"~!, and there to define
the standard inner product,

(P,Q) = /Sn 1 P(x)Q(x)do(x).
For a function f on S"~!, we define the spherical Laplacean Ag by
Asf(z) = Af(x/|z]),

where f(x/|z|) is the degree zero homogeneous extension of the function f to
R™ \ {0}, and A is the Laplacian of the Euclidean space.!
Proposition 5.9. We have the following properties.

(1) The finite dimensional spaces {74} -, are mutually orthogonal.

(2) Every homogeneous polynomial P € &), can be written in the form P = P; +
|z|2 P, where Py € 7, and Py € Py,_s.

(3) Let Hy, denote the linear space of restrictions of 74, to the unit sphere.®> The

IThis is implied by the well-known formula for the Euclidean Laplacian in spherical polar

coordinates:
Af — T17n2 (Tnflg
or

oy ) +r2Agf.
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elements of Hy, are the surface spherical harmonics of degree k, i.e.,

Hy ={P(z) € G : |z| = 1}.
Then L*(S"') = S"3° ) Hy. Here the L* space is taken w.r.t. usual measure, and the
infinite direct sum is taken in the sense of Hilbert space theory. That is, if f € L?(S™™1),
then f has the development

= ZYk(l‘), Y, € Hy, (5.11)

where the convergence is in the LZ(S"*) norm, and

[ @)oo Z/ [Yi(2) 2do ().

(4) IfYk € Hy, then Asyk( ) = —k‘(k +n— )Yk( )

(5) Suppose f has the development (5.11). Then f (after correction on a set of mea-
sure zero, if necessary) is indefinitely differentiable on S™ ! (ie., f € C°(S"1)) if
and only if

/ Yi(x)2do(z) = O(k™™), ask — oo, for each fixed N. (5.12)
Sn—1

Proof HItPe @k,1e P(z) =) agx® with |a| =k, then

oc-—l
E 20y, P = g :C]E aq0;z]! xjj . gn—g ozjg aax™
7j=1

On S” L it follows k:P where 5, denotes differentiation w.r.t. the outward
normal vector. Thus, for P e 4, and Q € 2, then by Green’s theorem

=) [ Paaeo) = [ (@52~ P52 dote)

= / [QAP — PAQ)dx =
lz|<1

where A is the Laplacean on R".

(2) Indeed, let |x]2<@k_2 be the subspace of &, of all polynomials of the form
|z|? P, where Py € &;_5. Then its orthogonal complement w.r.t. (-, ) is exactly
;. In fact, Py is in this orthogonal complement if and only if (|z|?Py, P1) = 0
for all PQ. But <|ZL"2P2,P1> = (Pg(@x)A)Pl = <P2,AP1> SO APl = 0 and thus
Py, = A, @ |x|* Py_o, which proves the conclusion. In addition, we have for

P e 2
_ 2 |z["Py(x), K even,
P(ZL‘) = Pk(l‘) + |f73| Pk—2($) + + { |x‘k71P1(£B), k Odd,

where P; € J; by noticing that &7; = JZ; for j =0, 1.
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(3) In fact, by the further result in (2), if |z| = 1, then we have
B Py(z), keven,
P(z) = Py(x) + Py_a(z) +--- . + { Pi(z), kodd,
with P; € J7;. That is, the restriction of any polynomial on the unit sphere
is a finite linear combination of spherical harmonics. Since the restriction of
polynomials is dense in L?(S" 1) in the norm (see [SW71, Corollary 2.3, p.141])
by the Weierstrass approximation theorem,® the conclusion is then established.
(4) In fact, for |z| = 1, we have
AgYi(x) =A(z| *Yi(2)) = || *AY: + A(lz] %)Y 4+ 2V (2] 7F) - VYR
=(k2 + (2 — n)k)|z|*2Y;, — 2k2|2|F 2y,
= — k(k+n—2)|z[F2Y, = —k(k +n — 2)Y,
since Z?Zl 10y, Yy = kYy for Yy, € Zy.

(5) To prove this, we write (5.11) as f(z) = > 7o, ax Y (z), where the Y0 are
normalized such that [, |Y(z)[*do(x) = 1. Our assertion is then equivalent
with a, = O(k™N/?),as k — oo. If f is of class C?, then an application of Green’s
theorem shows that
AgfYQdo = / fAsYVdo.

Sn—1

Sn—1
Thus, if f € C*°, then by (4)

AL fYDdo = / B FALY do = [~k(k +n —2)]" / > a;YYdo
7=0

Ssn—1 Sn Sn—1 "

=[—k(k+n —2)]"ay /Sn_l V2 2do = ap[—k(k +n —2)]".

So aj, = O(k~?") for every r and therefore (5.12) holds.
To prove the converse, from (5.12), we have for any r € N

IAGLIIE =(AGf, AGf) = (O AGYj(x), > AYi(x))
j=0 k=0

~

e

<
Il
=)

(=3 +n—2)]"Y;(2), Y [~k(k +n —2)]"Yi())
k=0

[~k(k +n = 2)]" (Yi(2), Yi(2))

M

=
Il
o

*If g is continuous on S, we can approximate it uniformly by polynomials restricted to
st
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_Z k(k+n—-2)]"0kN) <0,

if we take N large enough. Thus, f € C°(S"71). ]
Theorem 5.10 (Hecke’s identity). It holds

vl

F(Pu(a)e3P) = (

—n/2
2w> (—isgn (w)*Pu(€)e 2 K, vP, € A RM).

(5.13)

Proof. That is to prove

|w]

—n/2
/ Pk<x>ew‘5"x'2df”:(gjr’> (—isgn (w)*Pu(€)e 2 . (5.14)

Applying the differential operator Py (0¢) to both sides of the identity (cf.

Theorem 1.10)
2 |w\ —n/2 [w||e(2
/ 6—wzr§——|r\ dr = <) e—7|§| ,
n 27
we obtain

—n/2
(it [ Py e - (M) g e,

Rn 2
Since Py () is polynomial, it is obvious analytic continuation Pj(z) to all of C".
Thus, by a change of variable

n/2
Q&) =(~wi)* <‘2°jr|> Py (z)e—wine= 5l e+ 5leR g

n/2 " '
:(_wz) <‘W|> Pk(x)e*%(xﬂsgn(w)ﬁ)zdw

w2 wl |, 12
—(—wi)t <") Puly —isgn (0)€)e 7 dy.

QUismn @) =i ()" [ Ay g Fiay

—=(—wi)" ] v =l i P, ! !
_ (€ + ry)dor(y )
27T 0 Sn—1

Since P, is harmonic, it satisfies the mean value property, i.e., Theorem 4.5, thus

[ Bl o) = PO = Pu(©) [ o)
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Hence

QUisen @) = () ng [0 [ aotyya

w|\"? 2
—eit (50) Ao [ e = iR,
Thus, Q(¢) = (—wi)¥Py(—isgn (w)€) = (—wi)*(—isgn (w))* Py (&), which proves
the theorem. |

The theorem implies the following generalization of itself, whose interest is
that it links the various components of the decomposition of L?(R™), for different
n.

If f is a radial function, we write f = f(r), where r = |z|.

Corollary 5.11. Let Py(z) € 74, (R™). Suppose that f is radial and Py(x)f(r) €
L%(R™). Then the Fourier transform of Py(z)f(r) is also of the form Py(x)g(r), with
g a radial function. Moreover, the induced transform f — g, T, ,f = g, depends
essentially only on n + 2k. More precisely, we have Bochner’s relation

k
w .
o = <|27r|> (—isgn (w)*Toion,0- (5.15)

Proof. Consider the Hilbert space of radial functions
2= {100 1512 = [T 1P <o
with the indicated norm. Fix now P (()x), and assume that P is normalized, i.e.,
[ AP =1

Our goal is to show that

(Tad)r) = (
for each f € Z.
|w

First, if f(r) = e*T‘TQ, then (5.16) is an immediate consequence of Theorem
5.10, i.e.,

[wl

k
27r> (—isgn (@))"(Tnsarof)(r), (5.16)

Wl 2 w —n/2 o
Toae 330 = (51) 7 (isgn e 20

21w
- <|W|>k(—' R(T, -5 R
=5 isgn (w))" (Thy2k,0€ )(R),

e w\*, . K _lwl,2
which implies T;, 1. f = (—) (—isgn (w)) Thiokof for f=e"2".

T
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Next, we consider e='5=" for a fixed ¢ > 0. By the homogeneity of P, and

the interplay of dilations with the Fourier transform (cf. Proposition 1.3), i.e.,
F 6. = e "6.-1.#,and Hecke’s identity, we get
_wl

y(Pk(x)e_%EkL’R) — g—k/Qy(Pk(gl/Qx)e 75|:c|2)

_lw|

:e_k/2_n/25€71/2y(f)}g($)6 2 |z|2)

_—k/2—n/2 M /2 . k _%K'Q
— ) Cisn ()6 (e 1)

—n/2 "
— <|°‘}‘> (—Z sgn (w))kgfk/an/QPk(671/25)87%‘§|2/€

W\ k_—k—n/2 _leljep2/e
() Cismptetrpge B,

w _n/2 w
This shows that Tn,keflT‘E’”Q = (%) (—isgn (w))"‘a_k_”ﬂe*%rz/s, and so

lwl 2 |w] Ao 0.0 2k) /2, — &y
Tnyokpe 27 = (2> (—isgn (w))0e 0 (+2k)/2 =577/
T

w|\ TR jwl, 2
_ <> 6—k—n/2e—7r /s‘
27

o] k Jo]
Thus, Tn,ke*T”z = (%) (—isgn (w))an+2k70€*T€T2 fore > 0.

™

w

To finish the proof, it suffices to see that the linear combination of {e™ 2 er? Yo<e<oo
is dense in %. Suppose the contrary, then there exists a (almost everywhere)

. |w]
non-zero g € #, such that g is orthogonal to every e™ 2 <"

/ e*%srzg(r)r%Jrn*ld’f’ — 0, (5.17)
0

2, .
in the sense of %, i.e.,

2

foralle > 0. Let ¢(s) = [ e " g(r)r"t®*~1dr for s > 0. Then, putting ¢ =
2(m+1)/|w|, where m is a positive integer, and by integration by parts, we have

0—/ e_mTQw'(r)dr —2m/ e_mrzw(r)rdr,
0 0

since ¥(0) = 0 and 0 < e ™ ¢(r) < Ce~™ rk+(=1)/2 _5 0 as r — oo by the
Holder inequality. By the change of variable z = e, this equality is equivalent

to
1
O—/ " hp(/Inl/2)dz, m=1,2,...
0

Since the polynomials are uniformly dense in the space of continuous functions



5.2. Spherical harmonics and higher Riesz transforms -139-

on the closed interval [0, 1], this can only be the case when ¢(4/In1/z) = 0 for
all zin [0,1]. Thus, ¥/(r) = e " g(r)r"+t2~1 = 0 for almost every r € (0,00),
contradicting the hypothesis that g(r) is not equal to 0 almost everywhere.

|
21

agree on the dense subspace, they must be equal. Thus, we have shown the
desired result. [

Since the operators 7}, ;, and ( (—isgn (w))an+2k70 are bounded and

We come now to what has been our main goal in our discussion of spherical
harmonics.

Theorem 5.12. Let Py(x) € 4, k > 1. Then the multiplier corresponding to the
Py ()

transform (5.10) with the kernel EiED is
Py (§) - /2 k L(k/2)

Remark 5.13. 1) If k > 1, then Py (x) is orthogonal to the constants on the sphere,
and so its mean value over any sphere centered at the origin is zero.
2) The statement of the theorem can be interpreted as

Py (x) Py (€)
a —
# () = e o1
3) As such it will be derived from the following closely related fact,
Py () Py(£)
7 (ents) = it o

where vy, o, = 7"/? (% (—isgn (W))k%

Lemma 5.14. The identity (5.19) holds in the sense that
Py(z) / Py (§)
———p(x)dr = Y o d¢, Ve L. 5.20
/Rn |x’k+n_aﬂﬂ( ) Vo [ |£’k+a<ﬂ(§) £, Ve (5.20)

It is valid for all non-negative integer k and for 0 < a < n.

Remark 5.15. For the complex number o with R € (0, n), the lemma and (5.19)
are also valid, see [SW71, Theorem 4.1, p.160-163].

Proof. From the proof of Corollary 5.11, we have already known that

—n/2
g(Pk(ﬂj)@i%E‘wP) _ <‘2‘*;T|> (—Z sgn (LL)))kéikin/sz(g)ei%lglz/sj
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so we have by the multiplication formula,

[ B@e e = [ F R ot

wl\ k_—k—n/2 ~lelle2 /e
:() (—isgn (w))"e Pi(&e 2 p(§)dg,

27 Rn
fore > 0.
We now integrate both sides of the above w.r.t. ¢, after having multiplied the
equation by a suitable power of ¢, (¢°~!, 8 = (k +n — a)/2, to be precise). That

is
/ 551/ Po(z)e” 5419 p(2) dude
0 n

w : 1 —fen _lwl
B (’2‘) (—isgn (w))" / Pt | Pu(g)em 7 Ko p(6) dede.
7r 0 R™
(5.21)
By changing the order of the double integral and a change of variable, we get

Lh.s. of (5.21) :/ Pk(:r)gb(x)/ Bl o= 5elal? ge gy
n 0

L [ g () [T e

- (‘“‘j)ﬁnm [ Pelareta)ial s,

]Rn
Similarly,
|w]

—n/2
rh.s. of (5.21) = <> (—isgn (w))k/" Pr(&)p(6)

2w
/ T e /2va2en) o~ 56 e g g
0
=lljg2/e /2 e
S (D) it [ nioeto (Ser)
/Oo tk/2+a/27167tdtd§
0
—n/2 (k+a)/2
- <M> (—isgn (w))* <|w]> [(k/2+ a/2)
2
/ Pu()p(©)le]~* ).



5.2. Spherical harmonics and higher Riesz transforms -141-

Thus, we get

|w’ (k+n—a)/2
<2) Nk +n - 0)/2) [ Pa)p(olel O da

:<|2";’)n/2(_¢sgn( ) (“;') e (k)2 + a/2)

| POl de

which leads to (5.20).

Observe that when 0 < o < n and ¢ € ., then double integrals in the
above converge absolutely. Thus the formal argument just given establishes the
lemma. [

Proof of Theorem 5.12. By the assumption that £ > 1, we have that the integral of
P, over any sphere centered at the origin is zero. Thus for ¢ € ., we get

[ preaetie= [ o) - poas

P(x)
+/ T e P(r)dT.
o[> |z[FTn—e
Py (z)
x|>1 \x|k+”

Obviously, the second term tends to fl o(x)dx as « — 0 by the domi-

nated convergence theorem. As in the proof of part (c) of Theorem 4.26, izl LDilz) +7)7 [P(x)—

©(0)] is locally integrable, thus we have, by the dominated convergence theorem,
the limit of the first term in the r.h.s. of the above

Pi(x) .. . / Py(x) . .
lim ———|p(x) — ¢(0)|dx = z) — ¢(0)|dz
a—04+ lz|<1 ’x‘k—kn a[go( ) (‘0( )] 2l<1 ’x‘k+n[90( ) (P( )]
Py(z) . Py(z) .
= dr = lim r)dz.
/a:|<1 ‘x’k—i-n () =0 Jeclel<1 ‘x’k-i-n(p( )
Thus, we obtain
. Py(z) Py(z)
R /x,> e (52
Similarly,
: Py (§) . / Py (§)
1 dé =1 d
ai%l+/Rn |§\k+a@(€) ¢=lim e I p(E)de.
Thus, by Lemma 5.11, we complete the proof with v;, = lima—0 Vx,a- [ |

For fixed k > 1, the linear space of operators in (5.10), where Q(y) = Pi(y)

and P, € 4, form a natural generalization of the Riesz transforms; the latter
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arise in the special case k = 1. Those for k > 1, we call the higher Riesz transforms,
with & as the degree of the higher Riesz transforms, they can also be character-
ized by their invariance properties (see [Ste70, §4.8, p.79]).

5.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L?(R"). The first
class consists of all transforms of the form W)
Qy

Tf=c-f+lim = f(z —y)dy, (5.23)
=0 Jiyize Yl

where cis a constant, Q € C°°(S"1) is a homogeneous function of degree 0, and
the integral [,,_, Q(x)do(z) = 0. The second class is given by those transforms
T for which

F(TF)(E) =m(&)f(€) (5.24)

where the multiplier m € C*°($"!) is homogeneous of degree 0.

Theorem 5.16. The two classes of transforms, defined by (5.23) and (5.24) respectively,
are identical.

Proof. First, support that T is of the form (5.23). Then by Theorem 4.24, T is of
the form (5.24) with m homogeneous of degree 0 and

m(© =c+ [ =T syl 0) +n1/l¢-ah)| Aado(e), 6 = 1.
(5.25)

Now, we need to show m € C*(S"~!). Write the spherical harmonic devel-
opments

Qx) = Yi(z), m(x) = Yi(z), Qn(z) =
k=1 k=0

1M

N
Yi(z), my(z) = Yi(@),
k=0

(5.26)
where Y, ffk € Hj, in view of part (3) in Proposition 5.9. k starts from 1 in the
development of (2, since |, gn—1 Q(z)dr = 0 implies that ()(z) is orthogonal to
constants, and Hj contains only constants.

Then, by Theorem 5.12, if 2 = Qp, then m(x) = my(z), with
Yk(ac) = ’kak(m), k > 1.
Butmay(2)—mn () = [gu s |5 sgn (@) sen (v - @) + In gy | 20 (1)~ ()do(y).
Moreover, by Holder’s inequality,

sup |mpy(z) — my(x)|
resSn—1
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9 1/2
< (sup / do (y)>
€T Sn—1

1/2
x (/S 9u(y) —QN(y)\Qda(y)) — 0, (5.27)
as M, N — oo, since* forn = 1, 8% = {—1,1},
m m
|5 s @seny-o) + 1/l - a))| dolw) =T
S0

and for n > 2, we can pick a orthogonal matrix A satisfying Ae; = x and det A =
1 for |z| = 1, and then by a change of variable,

sup /
x Snfl

—sup [ 2 1)) dot)

T

)

—5 sgn (w)sgn (y - ) + In(1/Jy - 2])

2 2

] 2
T sgn (@) sgn (y-2) + n(1/ly - )| dor(y)

7T2
= Wn-t1 + Sup/ (In]y - Aey|)?do(y)
x Sn—l
o I 1AL 2
—anfl + Sl;p n—l( n| Y- €1|) dO'(y)
z=A"1 2
4 Sn—l

Here, we have used the boundedness of the integral in the rh.s., i.e., (with the
notation z = (22, ..., 2 ), as in the proof of Theorem 4.24,

1
/Snl(ln|zl|)2da(z) :/_l(ln|z1])2/sn2(1 — ) "=3245(2)dz

1
:wn_g/ (In|z1)2(1 = 22)("=3/24z
-1
A= s / (In| cos 0])2(sin 0)"2d6 = wy_o1.
0

If n > 3, then, by integration by parts,

I < / (In | cos 0])? sin 0dO = —2/ In|cosf|sinfdf = 2/ sin 6df = 4.

0 0 0

If n = 2, then, by the formula fo (In(cos0))?dd = Z[(In2)* + n2/12], cf. [GR,

“There the argument is similar with some part of the proof of Theorem 4.24.
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4.225.8, p.531], we get
L= /W(ln | cos 0])2d0 — Q/W/Q(ln(cose))zdﬁ — r[(In2)? +72/12).
Thus, (5.207) shows that '
m(x) =c+ Zkak(x).
k=1

Since 2 € C*°, we have, in view of part (5) of Proposition 5.9, that

[ Wit () = OG~)

as k — oo for every fixed N. However, by the explicit form of v, we see that
i ~ k2, so m(zx) is also indefinitely differentiable on the unit sphere, i.e.,
m e C>®(S ).

Conversely, suppose m(x) € C*°(S™1) and let its spherical harmonic devel-
opment be as in (5.26). Set ¢ = Yj, and Y (z) = Wikf/k(x) Then Q(z), given by
(5.26), has mean value zero in the sphere, and is again indefinitely differentiable
there. But as we have just seen the multiplier corresponding to this transform is

m; so the theorem is proved. n

As an application of this theorem and a final illustration of the singular in-
tegral transforms we shall give the generalization of the estimates for partial
derivatives given in 5.1.

Let P(x) € 2, (R™). We shall say that P is elliptic if P(x) vanishes only at the
origin. For any polynomial P, we consider also its corresponding differential
polynomial. Thus, if P(z) = 3" aqz®, we write P(Z) = " an(£)* as in the
previous definition.

Corollary 5.17. Suppose P is a homogeneous elliptic polynomial of degree k. Let (a%)a
be any differential monomial of degree k. Assume f € C¥, then we have the a priori

estimate 506 5
|(z) + P (5:)1

Proof. From the Fourier transform of () fand P (&) f,

7(P(5)1) @ = [ == () flaa = @irp@ o).

7 ((;)0 (6) = (i) e f(©),

, l<p<oo. (5.28)
P

<4
b

and
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we have the following relation

ez ((5) 1)©-ez(r(2)1)©

Since P(¢) is non-vanishing except at the origin, % is homogenous of degree
0 and is indefinitely differentiable on the unit sphere. Thus

2\ 0
- —TlPl=
() =7 (7 (5) 7).
where 7' is one of the transforms of the type given by (5.24). By Theorem 5.16,

T is also given by (5.23) and hence by the result of Theorem 4.24, we get the
estimate (5.28). |
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In harmonic analysis, Littlewood-Paley theory is a term used to describe a
theoretical framework used to extend certain results about L? functions to L?
functions for 1 < p < oo. It is typically used as a substitute for orthogonality
arguments which only apply to L functions when p = 2. One implementation
involves studying a function by decomposing it in terms of functions with local-
ized frequencies, and using the Littlewood-Paley g-function to compare it with
its Poisson integral. The 1-variable case was originated by J. E. Littlewood and R.
Paley (1931, 1937, 1938) and developed further by Zygmund and Marcinkiewicz
in the 1930s using complex function theory (Zygmund 2002 [1935], chapters XIV,
XV). E. M. Stein later extended the theory to higher dimensions using real vari-
able techniques.

6.1 The Littlewood-Paley g-function

The g-function is a nonlinear operator which allows one to give a useful char-
acterization of the L? norm of a function on R" in terms of the behavior of its
Poisson integral. This characterization will be used not only in this chapter, but
also in the succeeding chapter dealing with function spaces.

147



-148 - 6. The Littlewood-Paley g-function and Multipliers

Let f € LP(R™) and write u(z, y) for its Poisson integral

we) = (B)" [ eerenfiae— [ post-oa

2 Rn
as defined in (4.15) and (4.17). Let A denote the Laplace operator in Rﬁ“, that
is A = 53—;2 + 200 %; V is the corresponding gradient, |Vu(z,y)* = ]%\2 +
Vau(z,y)|?, where [Vou(e, y)* = 327, [F

Definition 6.1. With the above notations, we define the Littlewood-Paley g-
function g(f)(z), by

o)) = ( I |Vu<x,y>|2ydy)1/2. (61)

We can also define two partial g-functions, one dealing with the y differentiation
and the other with the z differentiations,

% | 9y 2 1/2 0 1/2
gl<f><x>=< /0 0 ydy>,gx(f)(fﬁ)=< /0 |vmu<x,y>|2ydy) .

aiy (IE, y)
(6.2)
Obviously, ¢ = g7 + ¢2.

The basic result for g is the following.
Theorem 6.2. Suppose f € LP(R"), 1 < p < oo. Then g(f)(x) € LP(R™), and
A;Hpr < Hg(f>”p < Ap”f”p- (6.3)

Proof. Step 1: We first consider the simple case p = 2. For f € L*(R"), we have

L9 = / / Vu(e,y)Pydyde = / y / Vule,y)Pdedy.
R™ JO 0 Rn

In view of the identity
_ (|l n/ wit-x ,—|wEly £
ww) = (52) [ emsmetanfieyas
we have

Ou _ (Iw[\" €yt gt
o= () [ —eifgeereianag

) n o
5, (Z) | wigifeeelesvag

and
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= |17 7 (—|welf(&)e™ ") HerZHJ (wi f( )”“’)3]

Thus, by Plancherel’s formula,

| vu@afar= | {
n 2

qLa
e

2

axj

ou
9zj || 2

~(5) [ el fe 3+ Y wzfjf@)ewfy%]

Jj=1

W2 [[€1 £ (€)e e )3

- /]Rn 2 <|W|> W€ f(€))Pe 2l ge,

and so
oot = v [ 2 (1) e e tbasay
_/Rn2<|;r‘> w2\§!2|f(€)\2/0 ye~2Elu gy e
-2 () smier g =5 (5r) 1
1
=271
Hence,

lg(H)llz =272 f 2. (6.4)
We have also obtained [|g1(f)[l2 = llgz(f)ll2 = 11 12-

Step 2: We consider the case p # 2 and prove |g(f)|l, < Apl fll,- We define
the Hilbert spaces .77 and 7% which are to be consider now. .74 is the one-
dimensional Hilbert space of complex numbers. To define .75, we define first
3 as the L? space on (0, c0) with measure ydy, i.e.,

AP = {f P = /Ooo ) Pydy < oo}.

Let J% be the direct sum of n + 1 copies of %0; so the elements of 7% can be
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represented as (n + 1) component vectors whose entries belong to 4. Since
7€ is the same as the complex numbers, then L(74, .7%3) is of course identifiable
with 4. Now let € > 0, and keep it temporarily fixed.

Define
Ko()  (PPusele) DPpuc(w) | OByucle)
c oy ' Oxp 7 Oz, '
Notice that for each fixed x, K.(z) € 7. This is the same as saying that
2 2
o o0 P
/ 0Py () ydy < oo and / OPy ()
0 8y 0 (%j
In fact, since Py(x) = W, we have that both Baiyy and % are bounded

by W. So the norm in 7% of K.(x),

o d
K@ <+ 1) | o P

00 dy
<A? 1 —— < C,
(n+ )/0 (y + )2+ Ce

ydy < oo, forj=1,...,n

and in another way

2 2 > ydy A1) s o, —2n
K@) < 42u+1) [ oty = S (ol 4 77 < Cla ™
Thus,
|K(2)] € Lipe(R™). (6.5)
Similarly,
OK.(z)|? /°° ydy on—2
<C -2 (O n=
oa, . (el + g2y <Ok
Therefore, K, satisfies the gradient condition, i.e.,
81']

with C independent of .
Now we consider the operator T. defined by

0= [ K0fa-tar

The function f is complex—valued (take its value in 7)), but T, f(x) takes its
value in J%. Observe that

uwun-(AMWMay+aﬂw@é<(Lmvwamﬁwﬁégmﬂu»
6.7)
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Hence, ||T-f(x)||l2 < 27'/2| f||2, if f € L*(R™), by (6.4). Therefore,
|Ko(z)| <2712, (6.8)
Because of (6.5), (6.6) and (6.8), by Theorem 4.27 (cf. Theorem 4.18), we get

\T:fllp < Apllfllp, 1 < p < oo with A, independent of . By (6.7), for each z,
|T. f ()| increases to g(f)(x), as € — 0, so we obtain finally

lg(Hllp < Apll fllps 1 <p < oo (6.9)
Step 3: To derive the converse inequalities,
Al flly < lg(llps 1 <p < oo, (6.10)

In the first step, we have shown that ||gl(f)||2 = 2| fll2 for f € L*R").
Let up,us are the Poisson integrals of fi, fo € L?, respectively Then we have

g1 (f1 + fZ)H% = %Hfl + f2||%z ie., fRn fo 8<m+u2 |2ydydsn =1 fRn |f1 + f2|2d7j
It leads to the identity

/n/ 8u1 (3;' y)ydydm‘—/ filx f2( )d.

This identity, in turn, 1eads to the inequality, by Holder’s inequality and the
definition of g1,

1

f1(2) Fa@)der| < / a1(f1) (@)g1 (f2) (@) de
Rn R™

Suppose now in addition that f; € LP(R™) and f, € L” (R") with || fa||,y < 1
and 1/p + 1/p’ = 1. Then by Holder inequality and the result (6.9).

‘ - fi(@) fo(z)dr| < 4lgr(f)llpllgr(f2)lly < 44y llg1 (f)llp- (6.11)

Now we take the supremum in (6.11) as f» ranges over all function in L? N
L¥, with | fa]ly < 1. Then, we obtain the desired result (6.10), with A, =
1/4A,, but where f is restricted to be in L? N LP. The passage to the general
case is provided by an easy limiting argument. Let f,, be a sequence of func-
tions in L? N L?, which converges in L? norm to f. Notice that |g(f)(z) —
g(fn)(x)’ = “’vum”LQ(O,oo;ydy) - ”VUNHLz(O,oo;ydy)‘ < Hvum - vun”L2(O,oo;ydy) =
9(fm — fn)(x) by the triangle inequality. Thus, {g(f,»)} is a Cauchy sequence in
LP and so converges to g(f) in L”, and we obtain the inequality (6.10) for f as a
result of the corresponding inequalities for f,. [

We have incidentally also proved the following, which we state as a corollary.

Corollary 6.3. Suppose f € L*(R"), and g1(f) € LP(R"), 1 < p < oo. Then
f e LP(R™), and Ayl fllp < [lg1(F)llp-
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Remark 6.4. There are some very simple variants of the above that should be
pointed out:

(i) The results hold also with g, (f) instead of ¢g(f). The direct inequality
lgz(f)llp < Apllfllp is of course a consequence of the one for g. The converse
inequality is then proved in the same way as that for g;.

(ii) For any integer k > 1, define

oFu

a(F) () = (/Ooo o

Then the L? inequalities hold for g; as well. both (i) and (ii) are stated more
systematically in [Ste70, Chapter IV, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each z, gi(f)(z) >
Arg1(f)(z) where the bound Aj;, depends only on k.

It is easily verified from the Poisson integral formula that if f € LP(R"),
1 < p < oo, then

2 1/2

(z,y)| y*'dy

O u(z,y)

Dk — 0 foreachz, asy — cc.
Yy

Thus,
u(z,y) _/OO Ok lu(z, S)Sk§
o, sk +1 ok’

By Schwarz’s inequality, therefore,
e 2 oo | gk+1 = oo
0 U(l;y)‘ < / 0" u(x, 5) 2k s </ s_%ds> '
63/ Yy Y

sk +1
Hence, by Fubini’s theorem, we have

[e%) ku
(@) (@))% = /0 0

Tyk(%y)
<[ ( [

2
ka—ldy

2 (0.0
S2kd8> (/ SdeS> y2k71dy
Y

3k+1u

W(%S)

1 o) 00 ak+1u 2
:%_1/0 (/ St (w5 5 | dy
Yy
1 o) s ak+1u 2 i
:m ) </0 dy) W(‘T,S) S dS
1 o0 | 9ty 2
:2k—1/0 R (z,s)] s*lds
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_ 1 /°°
2%k -1 J,

:21@1_ 1 (grr1(f) (@))%

Thus, the assertion is proved by the induction on k.

2
S

ok tly

2(k+1)—lds
Osk+1

()

The proof that was given for the L? inequalities for the g-function did not, in
any essential way, depend on the theory of harmonic functions, despite the fact
that this function was defined in terms of the Poisson integral. In effect, all that
was really used is the fact that the Poisson kernels are suitable approximations
to the identity.

There is, however, another approach, which can be carried out without re-
course to the theory of singular integrals, but which leans heavily on character-
istic properties of harmonic functions. We present it here (more precisely, we
present that part which deals with 1 < p < 2, for the inequality (6.9)), because
its ideas can be adapted to other situations where the methods of Chapter 4 are
not applicable. Everything will be based on the following three observations.

Lemma 6.5. Suppose u is harmonic and strictly positive. Then
AuP = p(p — 1)uP2|Vu|? (6.12)

Proof. The proof is straightforward. Indeed,
O uP = pupflaxju, ('),%jup =p(p— 1)up*2(8xju)2 +pup718§ju,
which implies by summation
AP = p(p — 1)uP?|Vul* + pu?~ Au = p(p — 1)u? 2| Vul?,
since Au = 0. [ |
Lemma 6.6. Suppose F(z,y) € C(R™) N C?(REHY), and suitably small at infinity.
Then

/ yAF (z,y)dzdy = F(z,0)dx. (6.13)
R R

Proof. We use Green'’s theorem

ov ou
/D(UAU — vAu)dxdy = /6D (u&/\/ - U(?J\/) do

where D = B, N ]R’}fl, with B, the ball of radius r in R**! centered at the origin,
N is the outward normal vector. We take v = F', and u = y. Then, we will obtain
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our result (6.13) if
/yAF(x,y)dxdy%/ yAF(z,y)dzdy,
D R

oF oy >
~FY Vo >0,
/c’iDo ( (9./\f ON

as r — oo. Here 0Dy is the spherical part of the boundary of D. This will
certainly be the case, if for example AF > 0, and |F| < O((|z| +y)™"¢) and

and

|IVF| = O((|Jz| +y)™"17¢), as |z| + y — oo, for some & > 0. [
Lemma 6.7. If u(z,y) is the Poisson integral of f, then
sup |u(z,y)| < M f(z). (6.14)
y>0

Proof. This is the same as the part (a) of Theorem 4.9. It can be proved with a
similar argument as in the proof of part (a) for Theorem 4.10. [ |

Now we use these lemmas to give another proof for the inequality
lg(Nllp < Apll fllp, 1 <p<2.
Another proof of ||g(f)|lp < Apll fllp, 1 < p < 2. Suppose first 0 < f € Z(R") (and
at least f # 0 on a nonzero measurable set). Then the Poisson integral u of f,
z,y) = Jgu Py(t)f(x —t)dt > 0, since P, > 0 for any € R” and y > 0; and
the majorizations v (z,y) = O((|z| + y)~™) and |VuP| = O((|z| + y)~™~1), as
|z| +y — oo are valid. We have, by Lemma 6.5, Lemma 6.7 and the hypothesis
I<p<?2,
& 1
z))? :/ Vu(z,y)|?dy =
(9(f)(x)) ; y|Vu(z,y)|"dy Y
2—p 00
LEC iy g
p(p—1) Jo
We can write this as

9(f) (@) < Cp(M [ (x)) P2 (I ()", (6.15)
where I(z fo yAuPdy. However, by Lemma 6.6,

/ I(x)dx :/ yAuPdydz :/ uf (z,0)dz = || fI[D. (6.16)
n Ri‘Fl Rn

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (6.15), Holder’s inequality, Theorem 3.9 and
(6.16), we have, for 0 < f € 2(R"),

/ (9(f)(@)Pdz < CT / (M () P21 ()P 2d
Rn Rn

[e.e]
/ yu? P AuPdy
0

<
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1/r 1/r )
<cp ([ ousras) ([ roa) <y =g,

wherer =2/p € (1,2)and 1/r + 1/r' =1, then v’ = 2/(2 — p).
Thus, |[g(f)llp < Apllfllp, 1 < p <2, whenever 0 < f € Z(R").

For general f € LP(R") (which we assume for simplicity to be real-valued),
write f = ft — f~ as its decomposition into positive and negative part; then
we need only approximate in norm f* and f~, each by a sequences of positive
functions in Z(R™). We omit the routine details that are needed to complete the
proof. [

Unfortunately, the elegant argument just given is not valid for p > 2. There
is, however, a more intricate variant of the same idea which does work for the
case p > 2, but we do not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization
of the inequality for the g-functions.

Definition 6.8. Define the positive function

wo@r= [ [ () el ad @

t| +y

Before going any further, we shall make a few comments that will help to
clarify the meaning of the complicated expression (6.17).

First, g3 (f)(x) will turn out to be a pointwise majorant of g(f)(z). To under-

stand this situation better we have to introduce still another quantity, which is
roughly midway between g and g3. It is defined as follows.

Definition 6.9. Let I" be a fixed proper cone in ]Rf”fl with vertex at the origin and
which contains (0, 1) in its interior. The exact form of I" will not really matter,
but for the sake of definiteness let us choose for I' the up circular cone:
= {(t,y) e RY™:|t| <y,y >0}.
For any z € R", let I'(z) be the cone I' translated such that its vertex is at .
Now define the positive Luzin’s S-function S(f)(z) by

S( @) = / )Py = / Vu(e — t,y) Py "dydt.  (6.18)

We assert, as we shall momentarily prove, that
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Proposition 6.10.
9(f)(x) < CS(f)(z) < Cagx(f)(2)- (6.19)

What interpretation can we put on the in-
equalities relating these three quantities? A
hint is afforded by considering three corre-
sponding approaches to the boundary for har-
monic functions.

(a) With u(z,y) the Poisson integral of
f(z), the simplest approach to the boundary Ol T
point z € R" is obtained by letting y — 0, Figure6.1: I"and I'(z) for n = 1
(with z fixed). This is the perpendicular ap-
proach, and for it the appropriate limit exists almost everywhere, as we already
know.

(b) Wider scope is obtained by allowing the variable point (¢, y) to approach
(x,0) through any cone I'(z), (where vertex is z). This is the non-tangential
approach which will be so important for us later. As the reader may have al-
ready realized, the relation of the S-function to the g-function is in some sense
analogous to the relation between the non-tangential and the perpendicular ap-
proaches; we should add that the S-function is of decisive significance in its own
right, but we shall not pursue that matter now.

(c) Finally, the widest scope is obtained by allowing the variable point (¢, y)
to approach (z,0) in an arbitrary manner, i.e., the unrestricted approach. The
function g3 has the analogous role: it takes into account the unrestricted ap-
proach for Poisson integrals.

Notice that g} (z) depends on A. For each x, the smaller X the greater g3(x),
and this behavior is such that that L” boundedness of g} depends critically on
the correct relation between p and \. This last point is probably the main interest
in g3, and is what makes its study more difficult than g or S.

After these various heuristic and imprecise indications, let us return to firm
ground. The only thing for us to prove here is the assertion (6.19).

Proof of Proposition 6.10. The inequality S(f)(z) < C\g}(f)(z) is obvious, since
the integral (6.17) majorizes that part of the integral taken only over I', and

An
Y 1
> -
<It| +y> 2

since || < y there. The non-trivial part of the assertion is:

9(f)(x) < CS(f)(x).
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It suffices to prove this inequality for z = 0. Let
us denote by B, the ball in R”"! centered at (0, y) and
tangent to the boundary of the cone I'; the radius of B,
is then proportional to y. Now the partial derivatives
dy and are, like u, harmonic functions. Thus, by
the mean Value theorem of harmonic functions (i.e.,
Theorem 4.5 by noticing (0, y) is the center of B,),

ou(0,y) _ 1 / ou(x, s) drds
Jy m(By) Jp, 0s
where m(B,) is the n + 1 dimensional measure of B,, i.e., m(B,) = cy"*! for an
appropriate constant c. By Schwarz’s inequality

Figure 6.2: I and B,

u(0,y)|? 1 / ou(z, s)|? /
< dxds dxds
Oy (m(By))* Jp, | Os B,
1 / ou(z,s)|”
= dzds.
m(By) Jp,| 0Os

If we integrate this inequality, we obtain

0o 2 0o 2
/ ,|2u(0.9) dyg/ g (/ du(z, s)
0 0 B,

ay 55 dwds) dy.

However, (z,s) € By clearly implies that ¢1s < y < ¢z, for two positive con-
stants c¢; and co. Thus, apart from a multiplicative factor by changing the order
of the double integrals, the last integral is majorized by

ou(z, s) |

c2s 2
/ </ y_”dy) Oulz, 5) drds < c’/ st dxds.
T c1s 85 T 05
This is another way of saying that,
00 2 2
/ y au(aou y) dy g c// / au(ax’ y) ‘ ylfndxdy
0 Yy 1" Yy
The same is true for the derlvatlves j = 1,...,,n, and adding the corre-

spondmg estimates proves our assertlon. |

We are now in a position to state the L” estimates concerning g3.
Theorem 6.11. Let A > 1 be a parameter. Suppose f € LP(R™). Then

(a) For every = € R™, g(f)(x) < Crg3(f)(2)-

b)If1 <p<oo,andp > 2/, then

g (F)llp < Ap (6.20)

Proof. The part (a) has already been proved in Proposition 6.10. Now, we prove
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(b).
For the case p > 2, only the assumption A > 1 is relevant since 2/\ < 2 < p.
Let ¢ denote a positive function on R", we claim that

L @@ <y [ Gn@Pom@e. 62
The Lh.s. of (6.21) equals

> () An, —
y|Vu(t,y)|? [/ 'y " d | didy,
/0 /teR" vern (|t — 2] +9)*

so to prove (6.21), we must show that
w (x) n, —n
sup/ —————— " "y "dr < A\M(t). (6.22)
oD ecwe T—al + 5 €
However, we know by Theorem 4.10, that

igg(w * e ) (t) < AMp(t)

for appropriate ¢, with ¢.(z) = ¢ "p(z/c). Here, we have in fact p(z) = (1 +
|z[)~*", e = y, and so with A\ > 1 the hypotheses of that theorem are satisfied.
This proves (6.22) and thus also (6.21).

The case p = 2 follows immediately from (6.21) by inserting in this inequality
the function ¢ = 1 (or by the definitions of ¢3(f) and g(f) directly), and using
the L? result for g.

Suppose now p > 2; let us set 1/q + 2/p = 1, and take the supremum of the
Lh.s. of (6.21) over all ¢ > 0, such that ¢ € LY(R") and ||¢||; < 1. Then, it gives
g5 (f)]12; Holder’s inequality yields an estimate for the right side:

Allg(HIFIMY -
However, by the inequalities for the g-function, ||g(f)[, < A4,||f|,; and by
the theorem of the maximal function ||[Mv[l, < AgllYll, < Ay, since ¢ > 1, if
p < oo. If we substitute these in the above, we get the result:

193 (Dlp < Apall fllp,  2<p <oo, A>T

The inequalities for p < 2 will be proved by an adaptation of the reasoning
used for g. Lemmas 6.5 and 6.6 will be equally applicable in the present situa-
tion, but we need more general version of Lemma 6.7, in order to majorize the
unrestricted approach to the boundary of a Poisson integral.

It is at this stage where results which depend critically on the L? class first
make their appearance. Matters will depend on a variant of the maximal func-
tion which we define as follows. Let . > 1, and write M, f(x) for

1 1/p
M, f(x) = (ig%m(B(x,r)) /B(”) |f(y)|“dy) . (6.23)
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Then M f(z) = M f(z), and M, f(z) = ((M|f|*)(x))"/*. From the theorem of
the maximal function, it immediately follows that, for p > 1,

|0 fllp =I(LLF#) @) H L = (L) @)

<CII = Cl £l (6:24)

This inequality fails for p < p, as in the special case u = 1.
The substitute for Lemma 6.7 is as follows.

Lemma 6.12. Let f € LP(R"), p > p > 1, if u(x, y) is the Poisson integral of f, then
t n
e~ )l <4 (14 1) arsa), (625)

and more generally
t
ue =t < 4 (1+ 1) ag s (626)

We shall now complete the proof of the inequality (6.20) for the case 1 < p <
2, with the restriction p > 2/\.

Let us observe that we can always find a p € [1,p) such that if we set \' =
A— u P then one still has \' > 1. In fact, if u = p, then A — = P > 1since A > 2/p;
this 1nequa11ty can then be maintained by a small variation of ;.. With this choice
of 11, we have by Lemma 6.12

n/u
o=t (25) < A @) 627)
We now proceed the argument with which we treated the function g.

(93(f)(@))?

1 / 1— ( Y >)\n 2-p
= " u Pz —t,y)AuP(x — t,y)dtdy
oD e ¥ g (& —t)aele — i)

1
“plp—1)

Nn
— Yy
I (x :/ Yyt <> AuP(x — t,y)dtdy.
= Jen? g
It is clear that

A'n
* = AP (t, y)dxdtd
IR /R/ (y+|t—x\> (b, y)dedtdy

:C)\/ / o yAup(t, y)dtdy
+

TP(Myuf (2)* 71 (), (6.28)

where
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The last step follows from the fact thatif A’ > 1

y Nn y Nn
o (o Y e [ (2 Y
/Rn<y+\t—ﬂfl> n \Y+ |7|

So, by Lemma 6.6

/ I*(2)dz = Cy / uP(t,0)dt = Cx ||| 6.29)
n Rn
Therefore, by (6.28), Holder’s inequality, (6.24) and (6.29),

Igi(F)llp < ClIMf(2) P2 (1% ()2, < ClI M fl1L PR < CY e
That is the desired result. [ |

Finally, we prove Lemma 6.12.

Proof of Lemma 6.12. One notices that (6.25) is unchanged by the dilation (z,t,y) —
(0x,0t, dy), it is then clear that it suffices to prove (6.25) with y = 1.

Setting y = 1 in the Poisson kernel, we have Py (z) = ¢, (1+|z[>)~*1/2, and
u(x —t,1) = f(x) * Pi(x —t), for each t. Theorem 4.10 shows that |u(x — t, 1)\ <
A M f(z), where Ay = [ Qi(z)dz, and Qy(z) is the smallest decreasing radial
majorant of P (z — t), i.e.,

1
Qi(x) = cp |;|l§\)fc| (1+ |a! —t2)(n+1)/2°
For Q:(z), we have the easy estimates, Q;(z) < ¢, for |z| < 2t and Q(z) <
A'(1 + |2[2)~(*+D/2 for |x| > 2|t|, from which it is obvious that 4; < A(1 + [t|)™
and hence (6 25) is proved

Since u(z — t,y) = [gn Py (r —t —s)ds, and [, Py(s)ds = 1, by Holder

inequality, we have

u(z —t,y) <IPHf 1l By

<([ nela-c- s>|“ds)1/“ = UV~ t,y)
where U is the Poisson integral of | f|**. Apply (6.25) to U, it gives
[ule — t,y)| AV [t /y)" (M| F1#) (2))/F
=Au(1+ |t]/y)"" M. f (),
and the Lemma is established. |
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6.2 Fourier multipliers on L?

In this section, we introduce briefly the Fourier multipliers on L?, and we
prove three main multiplier theorems.

In the study of PDEs, we often investigate the estimates of semigroups. For
example, we consider the linear heat equation

u—Au=0, u(0)=up.

It is clear that u = .Z ~le !¢ Zuy =: H(t)uo is the solution of the above heat
equation. The natural question is: Is H(t) a bounded semigroup from L? to LP?
In other word, is the following inequality true?

17~ e Fug|l, < Jluollp, for1 < p < .
Of course, we have known that this estimate is true due to Young’s inequality
and .7 “le € = (47t)/2e~1717/4% ¢ L1 From this example, we can give a
general concept.

Definition 6.13. Let p € .. pis called a Fourier multiplier on L? if the convo-
lution (#~1p) x f € LP for all f € ., and if

lpllag, = sup [(F 7 p) * fllp
I7ll5=1

is finite. The linear space of all such p is denoted by M,,.

Since . is dense in L? (1 < p < o0), the mapping from . to LP: f —
(Z1p) * f can be extended to a mapping from L? to LP with the same norm.
We write (% ~1p) x f also for the values of the extended mapping.

For p = oo (as well as for p = 2) we can characterize M,. Considering the
map:

f—=(Fp)xf forfe.,

we have
pEMue |F px fO) <Clflloe, fEF (6.30)
Indeed, if p € M, we have
a—1
1Z 0 F(0)] < annm < Ol .

On the other hand, if |.#Z ~1p x f(0)| < C||f|lco, we can get

17~ o flloo = sup [ F o f(z)] = sup [(F " p) + (f(a +-))](0)]

<O f(z+ oo = Cll flloo;
which yields ||p||a,, < C,ie., p € M.
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But (6.30) also means that .# ~!p is a bounded measure on R”. Thus M, is
equal to the space of all Fourier transforms of bounded measures. Moreover,
|l is equal to the total mass of .7 ~1p. In view of the inequality above and
the Hahn-Banach theorem, we may extend the mapping f — % !p* f from .%
to L>™ to a mapping from L*° to L*>° without increasing its norm. We also write
the extended mapping as f — % !p« f for f € L™.

Theorem 6.14. Let 1 < p < occand 1/p+ 1/p’ = 1, then we have

M, = M,y (equal norms). (6.31)
Moreover,
M = {p e " F 1 pisabounded measure}
. . (6.32)
lollas, —total mass of F~1p = / 1L p()|dz
Rn
and
My = L™ (equal norm). (6.33)
For the norms (1 < pg, p1 < 00)
ollas, < o5z ol . Vo € My N My, (6.34)

if1/p=(1-0)/po+6/p1 (0 <0 <1). In particular, the norm || - || pre decreases with
pin the interval 1 < p < 2, and

MiCcM,CMyCM, (1<p<g<2). (6.35)
Proof. Let f € LP, g € L and p € M,. Then, we have
lpllar, = sup [(F'p)xglly = sup  [(F'p)*g(x), f(—2))]
llgll,r =1 Ifll=llgll,r=1
= sup  |[(F'p)xgxf(0))= sup  [(F'p)xfxg(0)
Ifllp=llgll,r=1 lfllp=llgll,y=1
= sup || ((F ') = Nw)g(—y)dyl

Iflp=llgll,y=1 JR™
= sup [[(F"p) = fllp = lloll,-
I £llp=1
The assertion (6.32) has already been established because of M = M. The
Plancherel theorem immediately gives (6.33). In fact,

- w n/2 R
lplae = sup [[(F1p)* fll2 = sup ] lofll2 < llolloo-
I flla=1 Iflla=1 \ 27

On the other hand, for any ¢ > 0, we can choose a non-zero measurable set E
such that |p(¢)| = ||pllec — € for € € E. Then choose a function f € L? such that
supp . f C E, we can obtain ||p||ar, = |||l — €.
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Invoking the Riesz-Thorin theorem, (6.34) follows, since the mapping f —
(.7~ p)* f maps LP — LPo withnorm ||p||a,, and LP* — LP* with norm ||p|| s, -
Since 1/q = (1 —0)/p + 8/p for some 0 and p < ¢ < 2 < p/, by using (6.34)
with pg = p, p1 = p/, we see that
lollaz, < llplla,
from which (6.35) follows. ]

Proposition 6.15. Let 1 < p < oo. Then M), is a Banach algebra under pointwise
multiplication.

Proof. It is clear that || - |57, is a norm. Note also that M), is complete. Indeed, let
{pr} is a Cauchy sequence in M,. So does it in L> because of M,, C L*°. Thus,
it is convergent in L> and we denote the limit by p. From L C .¥”, we have
F o Ff — F1pF f for any f € .7 in sense of the strong topology on .7".
On the other hand, {.#!p;.7 f} is also a Cauchy sequence in L? C .#”, and
converges to a function g € L”. By the uniqueness of limit in ./, we know that
g =F 1pFf. Thus, ||pr — pllm, — 0as k — oo. Therefore, M, is a Banach
space.

Let p1 € M, and p» € M, For any f € ., we have

I(Z " p1p2) * fllp =I(F " o1) = (F 7 p2) = fllp < llpallag [(F 7 p2) * fp

<llprllag, llo2llag, || I,
which implies p1p2 € M, and
lp1p2llv, < llpallag, o2l -

Thus, M), is a Banach algebra. |

In order to clarify the next theorem we write M,, = M,(R") for Fourier mul-
tipliers which are functions on R". The next theorem says that M, (R") is iso-
metrically invariant under affine transforms of R".
Theorem 6.16. Let a : R™ — R™ be a surjective affine transform' with n > m, and
p € My(R™). Then

”p(a('))||Mp(R”) = ||pHMp(Rm)-
If m = n, the mapping a* is bijective. In particular, we have
o)l a,@my =Nl ag,®my, Ve # 0, (6.36)

o D, ®ey =[O, ®), Vo #0, (6.37)
where (z,&) =Y i1 z:&;.
Proof. It suffices to consider the case that a : R" — R™ is a linear transform.
Make the coordinate transform
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which can be written as 7 = A€ or & = An where det A # 0. Let AT be the
transposed matrix of A. It is easy to see, for any f € ./(R"), that

Jwl

Fa@) 71 = (M) [ epaienione
| det A (%) e s, ) A

—| det A <%>n/ne‘“m”'”p(m,m ,1m) f (An)dn
=|det ALZ " (p(m, - 1m) f(An)) (AT z)
=7 o, ) F (F(AT) 1)) ()] (AT ).
It follows from p € M,(R™) that for any f € .(R")
1F " p(a(€)F £l
= det AIV21F ol ) (ZFATY ) ()

—| det A|7V/P H(ﬁ,;}...,nmp(m,--- Jm)) % F((AT)H)

Lp (]Rm) Ip (Rn—m)

<Nl ag, ) L 11p-
Thus, we have
Ip(aC))la, ey < llpllag, mm)- (6.39)
Taking f((AT)™'2) = fi(21, -+ ,Zm) f2(Tm+1, -+, Tn), one can conclude that the
inverse inequality (6.39) also holds. |
Now we give a simple but very useful theorem for Fourier multipliers.

Theorem 6.17 (Bernstein multiplier theorem). Assume that k > n/2 is an integer,
and that 95 p € L*(R"), j = 1,--- ,nand 0 < o < k. Then we have p € M,(R"),
1<p<ooand

n n/2k
1-n/2k k
ol S llolls ™ (Zaz]pz) .
j=1

Proof. Lett > 0 and J(x) = >_7_, |zj|*. By the Cauchy-Schwartz inequality and
the Plancherel theorem, we obtain

/| t\fflp(w)!dxz/| tJ(a;)*J(x)@*lp(x)ydxgtn/%’fZHagijQ.
x> x|> jzl
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Similarly, we have
/ \F pla)ldz < 72 ol
lz|<t

Choosing t such that ||p|lz = t~* > i1 Ha’;j pll2, we infer, with the help of Theo-
rem 6.14, that

" n/2k
— 1-n/2k
lpllaz, <llplla :/]R 17 p(a)ldz S [lpll; ™ (Zafypz) :
j=1

This completes the proof. [

The first application of the theory of the functions g and g} will be in the
study of multipliers. Our main tool when proving theorems for the Sobolev
spaces, defined in the following chapter, is the following theorem. Note that
1 < p < oo here in contrast to the case in Theorem 6.17. We give the theorem as

follows.
Theorem 6.18 (Mikhlin multiplier theorem). Suppose that p(¢) € C*(R™ \ {0})
where k > n /2 is an integer. Assume also that for every differential monomial (%) .

a= (a1, ...,ap), With |a| = a1 + ag + ... + a,, we have Mikhlin’s condition

‘<§£) p(O)] < Alg|71 whenever o] < k. (6.40)
Then p € My, 1 < p < oo, and

plla, < CpnA.
The proof of the theorem leads to a generalization of its statement which we
formulate as a corollary.

Corollary 6.19 (Hérmander multiplier theorem). The assumption (6.40) can be
replaced by the weaker assumptions, i.e., Hormander's condition

p(§)] <A4,

@ - 6.41
sup R2lel—n / (8) p(§) o4
0<R<oco R<|é|<2r | \ 0§

d§ <A, ol <k
The theorem and its corollary will be consequences of the following lemma.
Its statement illuminates at the same time the nature of the multiplier transforms
considered here, and the role played by the g-functions and their variants.

Lemma 6.20. Under the assumptions of Theorem 6.18 or Corollary 6.19, let us set for
f € L*R")
F(z) =Tof(x) = (F7(p() * f)(@).
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Then
g1(F)(x) < Axgx(f)(z), where A = 2k/n. (6.42)
Thus in view of the lemma, the g-functions and their variants are the charac-
terizing expressions which deal at once with all the multipliers considered. On

the other hand, the fact that the relation (6.42) is pointwise shows that to a large
extent the mapping 7}, is “semi-local”.

Proof of Theorem 6.18 and Corollary 6.19. The conclusion is deduced from the
lemma as follows. Our assumption on k is such that A = 2k/n > 1. Thus,
Theorem 6.11 shows us that

195 (H)@)llp < Anpll fllps 2 <p < oo, if f € LN LP.

However, by Corollary 6.3, A || Fll, < [|g1(F)(z)||,, therefore by Lemma 6.20,
ITpfllp = I1F1lp < Allgi(N)@)llp < Apllfllp, if2<p<ooand fe L*nLP.
Thatis, p € M), 2 < p < co. By duality, i.e., (6.31) of Theorem 6.14, we have also
p € My, 1 < p <2, which gives the assertion of the theorem. |

Now we shall prove Lemma 6.20.

Proof of Lemma 6.20. Let u(x,y) denote the Poisson integral of f, and U(z,y) the
Poisson integral of F. Then with " denoting the Fourier transform w.r.t. the
variable, we have

i(€,y) = e W f(©), and U(€y) = e EVE(©) = e Wp(©) f(¢).
Define M (z,y) = <M>n Jn €21 Ce™ I8 p(€)d¢. Then clearly

27
M(&,y) = e Elp(e),
and so

U,y +y2) = M(Ey1)a(€, p2), y=v1+v2, y1,42 > 0.
This can be written as
U(xvyl + y2) = / M(t,yl)U([E - ta yQ)dt
]Rn

We differentiate this relation k£ times w.r.t. y; and once w.r.t. y2, and set y; =
y2 = y/2. This gives us the identity

U*HD (z,y) = / M® it y/2)ul) (@ — t,y/2)dt. (6.43)
R

Here the superscripts denote the differentiation w.r.t. y.
Next, we translates the assumptions (6.40) (or (6.41)) on p in terms of M (z, y).
The result is
IME) (1, y)| <Ay F, (6.44)
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/ 2B (1, ) Pt <Ay, (6.45)
Rn

where A’ depends only on n and k.
In fact, by the definition of M and the condition |p(§)| < A4, it follows that

wl\" iy
T Rn
<Awn—1 <|W|> |W‘k/ ’r‘kef‘wvyrnfldr
0

™

:Awn—l <1> ynk/ efRRk+n71dR
i 0

1 n
=Awpn_1 () D(k+n)y "k,
™
which is (6.44).
To prove (6.45), let us show more particularly that
[ oM@,y Pas < a7,
where |a| = k.
By Plancherel’s theorem and Proposition 1.3

et el = ()7 (2) et orere e

So we need to evaluate, by using Leibniz’ rule,

(5) (koo = 3 ca, (;)Bua%(é)) (5) . a7

(6.46)

2

Btr=a
Case I: (6.40) = (6.45). By the hypothesis (6.40) and Leibniz’ rule again, we
have
9 g k 1 ¢1k—|B] .
€ (1€[7p(&))| < AT, with [B] < k.
Thus,
O (et pleyertes)
29
<C > P wlyMeTlely <o el (Jwly) e
1B]+]vI=F 0<r<k

Since forr > 0

(|w|y)2r/R ‘£|2r672|w£|yd€ :wn_1(|w‘y)2r/0 R2r672\w\Ran71dR



-168- 6. The Littlewood-Paley g-function and Multipliers

0o
—wy 12" 2r+n)(|w|y) / 22r+n—1e—zdz
0

=wn—1(lwly) 270 (2r +n),
we get for |a| =k

w
”ICYM(k)(x,y)H% < <‘27'r|> Wh—1 ]w|y Z 2~ 2r+n 27“—|—n)
o<r<k
<C%my_n

which proves the assertion (6.45).
Case II: (6.41) = (6.45). From (6.46) and (6.47), we have, by Leibniz’ rule
again and (6.41),

120 ¥ (2, y)]l2

|w| n/2
(N G

[B'1+18" |+ |v|=k
2 " 2
o B
< 5) p(€)

(L] e

<|W|> CZ (el (Z/J £[26-18')

1
|8 |+18" |+ =k jez <‘f|<2”

1/2
e2w£y(wy)27d5)

5 1/2
€2w§yd§>

(;)i@)

<¢ <|2Ujr’) > (wiy {Z(zﬂ'ﬂ)?(kﬁ')ewwly

|B'1+]8" |+ 7=k JEL
" 2 1/2
P o\’
(27) 218" |+ (2y)2lﬁ\ / | <> p(€)| de
2iglel<2i+1 | \ 9§

1/2
<C M "2 AL/29k Z (|lwly)" 22] 23 2r+n—1 —|w|27+1
2T

0<r<k JEZ

|| "2 1/20k /Oo 2r+n—1_—|w|R, 2
< SRR r r+n w|Ry
<C <2ﬂ_ A2 E (lwly) ; R e dR

0<r<k

=C M n/2A1/22k Z (‘w|y)fn/2 /OOZQTJrnlede 12
2 0

0<r<k
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1 n/2
< L 1/20k 1/2 _ —n/2
<C (27Ty> AM=2 Z '“2r+n)=Crny ,

0<r<k

which yields (6.45).

Now, we return to the identity (6.43), and for each y divide the range of
integration into two parts, |t| < y/2 and [t| > y/2. In the first range, use the
estimate (6.44) on M*) and in the second range, use the estimate (6.45). This
together with Schwarz’ inequality gives immediately

U@ <oy [ e ty/2)Par
ltl<y/2
uM (@ —t,y/2)Pdt

+ C’y”/
t]>y/2 |2

=:1(y) + I2(y).

Now
oo 2 o
(gk+1(F)(x))2:/O [UED) (2, )2y dy < Z/O Li(y)y?+dy.
7j=1

However, by a change of variable y/2 — v,

/ I (y)y* T dy <C/ / (x —t,y/2)|%y " dtdy
0 t|<y/2

< /F V(e —t,y)Py " dtdy = C(S(f)(2))?

<Ca(gr(f)(x))*.
Similarly, with nA = 2k,

/ L(y)y?*+dy <C / / Y~ 2 Gy (o — £, y) Pdtdy
0 0 Jit|>y

<C(ga(f)(2))%.
This shows that gi41(F)(z) < Chrgi(f)(x). However by Remark 6.4 (iii) of g-
functions after Corollary 6.3, we know that g1 (F)(z) < Crgi+1(F)(z). Thus, the
proof of the lemma is concluded. [

6.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory,
(the first being the usage of the functions g and g*).
Let p denote an arbitrary rectangle in R". By rectangle we shall mean, in the
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rest of this chapter, a possibly infinite rectangle with sides parallel to the axes,
i.e., the Cartesian product of n intervals.

Definition 6.21. For each rectangle p denote by S, the partial sum operator, that
is the multiplier operator with m = x, = characteristic function of the rectangle
p. So

F(Sp() = xpf,  f€LPR™)NLPR"). (6.48)

For this operator, we immediately have the following theorem.
Theorem 6.22.
1S5(F)llp < Apllfllps £ € L2NV L2,
if 1 < p < oo. The constant A,, does not depend on the rectangle p.

However, we shall need a more extended version of the theorem which arises
when we replace complex-valued functions by functions taking their value in a
Hilbert space.

Let 7 be the sequence Hilbert space,

A ={(¢;)521 Z|CJ| )% = |¢| < oo}

Then we can represent a function f € LP(R”, J€), as sequences

f@) = (h(@),-- fi@), ),
where each f; is complex-valued and | f(z)| = (3272, [f;(2)] 2)1/2_ Let R be a se-
quence of rectangle, R = { p]} 1~ Then we can define the operator Sy, mapping
L*(R", #7) to itself, by the rule

S?R(f) ( pl(fl) : 7SPj(fj)7"')v Wheref:(flv"' 7fj7”')' (649)

We first give a lemma, which will be used in the proof of the theorem or its
generalization. Recall the Hilbert transform f — H(f), which corresponds to
the multiplier —isgn (w) sgn (§) in one dimension.
Lemma 6.23. Let f(x) = (fi(z), -, fj(z), ) € LA(R", ) N LP(R", 5¢). De-
note H f(z) = (H fi(z),--- ,Hf;j(z),---). Then

VBl < Apll fllp 1 <p < oo,

where A,, is the same constant as in the scalar case, i.e., when J is one-dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is described
more generally in Sec. 4.7. Let the Hilbert spaces .71 and % be both identical
with 7. Take in R, K(z) = I - 1/mz, where [ is the identity mapping on 7.
Then the kernel K (x) satisfies all the assumptions of Theorem 4.27 and Theorem
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4.24. Moreover,
lim K(y)f(z —y)dy = Hf (),

ly|>e
and so our lemma is proved. [ |

The generalization of Theorem 6.22 is then as follows.
Theorem 6.24. Let f € L*(R", #) N LP(R", 7). Then

1S (F)llp < Apll fllp, 1 <p < oo, (6.50)
where A, does not depend on the family R of rectangles.

Proof. The theorem will be proved in four steps, the first two of which already
contain the essence of the matter.
Step 1: n = 1, and the rectangles pi, po, ---, pj, --- are the semi-infinite
intervals (—o0, 0).
It is clear that S(_ o) f = f‘lx(_m,o)ﬁf = ﬁ_ll_%n(f)ﬁf, SO
I —isgn(w)H
Sy = R (651)
where [ is the identity, and S(_., o) is the partial sum operator corresponding to
the interval (—oo, 0).
Now if all the rectangles are the intervals (—oo, 0), then by (6.51),
S = I-— isg2n (w)H
and so by Lemma 6.23, we have the desired result.
Step 2: n = 1, and the rectangles are the intervals (—o0,a1), (—00,a2), - - -,
(—o0,aj),---. )
Notice that Z (f(z)e~w"®) = (¢ + a), therefore
F(H(e™"™™" f(2))) = —isgn (w)sgn (§) (€ + a),
and hence .7 (¥4 H (e~wia f(1))) = —isgn (w)sgn (£ — a)f(£). From this, we
see that

i — s (@) H (e £)

(S(—oc,ay) fi) (@) = 5 . (6.52)

If we now write symbolically e~ f for
(e—wlx-al flv ) e—wzx-a]-fj’ U )
with f = (f1,---, fj,---), then (6.52) may be written as
— isen (w ewimaﬁ e—wix-a
g = I i)
and so the result again follows in this case by Lemma 6.23.

(6.53)
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Step 3: General n, but the rectangles p; are the half-spaces x; < a;, i.e., p; =
{z 21 <aj}.
Let S((i)oo o) denote the operator defined on L?(R™), which acts only on the

z1 variable, by the action given by S ,,)- We claim that
S,, = S (6.54)

(—o0,a5)°
This identity is obvious for L? functions of the product form
fl@) f (@2, 2),
since their linear span is dense in L?, the identity (6.54) is established.

We now use the LP inequality, which is the result of the previous step for
each fixed 3, x3, - - -, x,. We raise this inequality to the pth power and integrate
w.rt. zo, -+, xp. This gives the desired result for the present case. Notice that
the result holds as well if the half-space {z : 1 < a;}72,, is replaced by the
half-space {z : 1 > a; }?‘;1, or if the role of the z; axis is taken by the z» axis,
etc.

Step 4: Observe that every general finite rectangle of the type considered is
the intersection of 2n half-spaces, each half-space having its boundary hyper-
plane perpendicular to one of the axes of R". Thus a 2n-fold application of the
result of the third step proves the theorem, where the family # is made up of
finite rectangles. Since the bounds obtained do not depend on the family &, we
can pass to the general case where it contains possibly infinite rectangles by an
obvious limiting argument. |

We state here the continuous analogue of Theorem 6.24. Let (I', dv) be a o-
finite measure space,? and consider the Hilbert space # of square integrable
functions on T, i.e., s# = L?(I, dv). The elements

feLlP(R", %)
are the complex-valued functions f(z,7) = f(z) on R™ x I', which are jointly
measuable, and for which ([, ([p [f(z,7)[2d)P/2dz)/P = || f||, < oo, if p < cc.
Let ® = {p, }yer, and suppose that the mapping v — p, is a measurable function
from I' to rectangles; that is, the numerical-valued functions which assign to
each v the components of the vertices of p, are all measurable.

Suppose f € L*(R", 5#). Then we define ' = Sy f by the rule

F(:U/Y) = Spw(f“/)(x)a (f’)’(x) = f($77))

’If ;1 is measure on a ring R, a set E is said to have o-finite measure if there exists a sequence
{En} of sets in R such that E C U321 E,, and pu(E,) < oo, n = 1,2,--- . If the measure of
every set I in R is o-finite, the measure 1 is called o-finite on R.
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Theorem 6.25.

1S0slls < Apllfllp 1 <p < oo, (6.55)
for f € L?(R™, )N LP(R™, ), where the bound A,, does not depend on the measure
space (I', d), or on the function v — p-.

Proof. The proof of this theorem is an exact repetition of the argument given for
Theorem 6.24. The reader may also obtain it from Theorem 6.24 by a limiting
argument. [ ]

6.4 The dyadic decomposition

\

w

\

We shall now consider a decomposition of !

R™ into rectangles. |
First, in the case of R, we decompose it as the —————] L
b~

\

T

|

\

union of the “disjoint” intervals (i.e., whose in- —F——F—1
teriors are disjoint) [2¥, 2¥+1], —0o < k < 00, and
[—2F+1 _2%) —o0 < k < co. This double collec-
tion of intervals, one collection for the positive
half-line, the other for the negative half-line, will
be the dyadic deftompos‘ition of R3 N Figure 6.3: The dyadic de-

Having obtained this decomposition of R,
we take the corresponding product decomposi-
tion for R”. Thus we write R" as the union of
“disjoint” rectangles, which rectangles are products of the intervals which occur
for the dyadic decomposition of each of the axes. This is the dyadic decomposition
of R™.

The family of resulting rectangles will be denoted by A. We recall the partial
sum operator S, defined in (6.48) for each rectangle. Now in an obvious sense,
(e.g. L? convergence)

composition

Z S, = Identity.
pEA
Also in the L? case, the different blocks, S,f, p € A, behave as if they were
independent; they are of course mutually orthogonal. To put the matter pre-
cisely: The L? norm of f can be given exactly in terms of the L? norms of S, f,

3Strictly speaking, the origin is left out; but for the sake of simplicity of terminology, we still
refer to it as the decomposition of R.
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ie.,
> 1Sof 13 = 11£113: (6.56)
pEA
(and this is true for any decomposition of R"). For the general L? case not as
much can be hoped for, but the following important theorem can nevertheless
be established.

Theorem 6.26 (Littlewood-Paley square function theorem). Suppose f €
LP(R™),1 < p < oco. Then
1 186 f @) 21y ~ 11£lp-
pEA

The Rademacher functions provide a very
useful device in the study of LP norms in terms
of quadratic expressions.

These functions, ro(t), r1(t), -+, rm(t), - S
are defined on the interval (0, 1) as follows: “ 2

wo-{ SEEE -
J ’ Figure 6.4: ro(t) and 7 (t)

ro is extended outside the unit interval by pe-
riodicity, i.e., ro(t + 1) = ro(t). In general, ry,(t) = 79(2™¢). The sequences of
Rademacher functions are orthonormal (and in fact mutually independent) over
[0,1]. In fact, for m < k, the integral

1 1 2m
/0 rm(t)rk(t)dt:/o ro(2™t)ro(28t)dt = 2m/0 ro(s)ro(28™s)ds

ESQ-.--H c—e o—e-0

1 1/2 1
:/ ro(s)r0(2k_ms)ds:/ ro(Qk_ms)ds—/ ro(2F™s)ds
0 0 1
ok—m

/2
—gm—k [ /0 ro(t)dt — /2 o ro(t)dt]
=271 Uolro(t)dt— /Olro(t)dt] =0,

so0, they are orthogonal. It is clear that they are normal since fol (rm(t))2dt = 1.
For our purposes, their importance arises from the following fact.
Suppose Y °°_|am|? < oo and set F(t) = >.°°_ amrm(t). Then for every
1 <p<oo, F(t) € LP[0,1] and

ok—m—1

Al Fllp < UIFllz = (D lam[*)'"? < Byl|Flp, (6.57)

m=0
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for two positive constants A, and B,,.

Thus, for functions which can be expanded in terms of the Rademacher func-
tions, all the LP norms, 1 < p < oo, are comparable.

We shall also need the n-dimensional form of (6.57). We consider the unit
cube Q@ CR", Q = {t = (t1,t2,-- ,tn) : 0 < t; < 1}. Let m be an n-tuple of non-
negative integers m = (mi, ma, - - ,my,). Define ry, (t) = 7, (t1)7m, (t2) - - - T, (E0).
Write F'(t) = > amrm(t). With

171 = ( / \F(tﬂpdt)l/p,

we also have (6.57), whenever 3 |a,,|> < co. That is
Lemma 6.27. Suppose Y. |am,|? < co. Then it holds

%0 1/2
IE|lp ~ |1 Fll2 = (Z Iaml2> , l<p<oo. (6.58)
m=0

Proof. We split the proof into four steps.

Step 1: Let i, ao, a1, - - -, an, be real numbers. Then because the Rademacher
functions are mutually independent variables, we have, in view of their defini-
tion,

1 1 om 1
/ ehamrm(t) gt :/ ehamro(2™) gy 2_m/ ehamro(s) g — / ehamro(s) g
0 0 0 0

=271 (e 4 e7H) = cosh pa,.

and form < k
1 1
/ euamrm(t)euakrk (t)dt _ / euamro(th) euakro(th)dt
0 0

2m 1
—9—m / euamro(s) euakro(Qk’ms)ds _ / euamro(s) euakro(Qk’ms)dS
0 0

1/2 1
k—m _ k—m
:/ eHam ptagro(2 S)ds+/ e Ham onarro(277s) g
0 1/2

=l

1 1 1
=971 (ekam 4 gmHam) / eraxro(t) gy — / eramrm(t) gy / erant(t) gt
0 0 0

2k7'mfl 2k7'm

eham ghato(t) gp 4 /

2k—m—1

e~ Ham gpagro(t) dt]
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Thus, by induction, we can verify

1 N N 1
/ ep’ Zm:O AmTm (t) dt — H / e,u'am""m (t) dt
0 m=0 0

If we now make use of this simple inequality coshz < ™’ (since coshz =
Yoo (2k:)' <> o k, = ¢*” for |z| < oo by Taylor expansion), we obtain

1
/ Mgt = H cosh pa,, < H eHam — = aﬁn,
0

with F(t) = SN, amrm(t)
Step 2: Let us make the normalizing assumption that SV
since el < et” 4 e=#" we have

1
/ eME®lgr < 2eH”
0

Recall the distribution function Fy(a) = m{t € [0,1] : |F(t)| > «a}. If we take
w = «/2 in the above inequality, we have

= 1. Then,

nOm

2 2

Fi(a) = / dt <e z / e2FOlgt < e~ 52T =2 7.
[F@)>a |F(t)|[>a

From Theorem 2.16, the above and changes of variables, it follows immediately

that
*° 1/p o0 o2 1/p
1Fp = (P/ OéplF*(a)da> < (2}9/ aPle™ T da>
0 0
o 1/p
— <2pp/ 8p/2_16_8d8> (Set s = 042/4)
0

=2(p'(p/2))"/7,
for 1 < p < o0, and so in general

1/2
IF|l, < Gy (Z \amF) , 1< p<oo. (6.59)
m=0

Step 3: We shall now extend the last inequality to several variables. The case
of two variables is entirely of the inductive procedure used in the proof of the
general case.

We can also limit ourselves to the situation when p > 2, since for the case
p < 2 the desired inequality is a simple consequence of Holder’s inequality.
(Indeed, for p < 2 and some ¢ > 2, we have

11 e 0,1) < I1FlLago,y U] pavra-m0,1) < I Lao,1)
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by Holder’s inequality.)

We have
t17t2 Z Z AmimaTmq tl)rmz t2 Z Fm1 tQ)Tml (tl)
m1=0 m2=0 m1=0
By(6.59), it follows

1 p/2
/0 [F'(t1, t2)[Pdts < Cp <Z | Fima (t2)!2> :
m

Integrating this w.r.t. 3, and using Minkowski’s inequlaity with p/2 > 1, we
have

1 p/2 p/2
/ (zww) dta = <<Z\\le<tz>\2up/z)
0 mi mi p/2 mi
p/2
= <Z [ Em, (tz)lfg) -
mi

However, Fyy,, (t2) = .., @mymsTm, (t2), and therefore the case already proved
shows that

p/2

mi (t2)‘2

| Fy (£2)]I2 < Gy Zamm

Inserting this in the above gives

Lo p/2
|| 1t pande < (ZZ mm> v
o Jo

mi mso
which leads to the desired inequality
[Fllp < CpllFll2, 2 <p < oo
Step 4: The converse inequality
[Fll2 < CpllFllp, p>1
is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Hoélder inequality
1/2
IFll2 < IIFI21F1,/2.
We already know that || F'||,; < A; NI F |2, p' > 2. We therefore get
1]l < Gyl Fllp,
which is the required converse inequality. |

Now, let us return to the proof of the Littlewood-Paley square function the-
orem.
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Proof of Theorem 6.26. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality

/
<Z ’Spf@)’Q)l : Sl fllp, 1 <p<oo, (6.60)

A
pE v

for f € L*(R™) N LP(R"). To see this sufficiency, let g € L?(R™) N L” (R"), and

consider the identity
> / S,fS,gdx = / fgdzx

pEA
which follows from (6.56) by polarization. By Schwarz’s inequality and then

Holder’s inequality
%
< /R n(z rspr) (Z rsp92> dz
P

[ fods
()| ()

Taking the supremum over all such g with the additional restriction that
lgllp <1, gives || f]|, for the Lh.s. of the above inequality. The r.h.s. is majorized

by

p/

7))

since we assume (6.60) for all p. Thus, we have also

1/2
(Z 1S, f |2> . 6.61)
P P
To dispose of the additional assumption that f € L?, for f € LP take f; € LN LP
such that || f; — f||, — 0; use the inequality (6.60) and (6.61) for f; and f; — fj/;
after a simple limiting argument, we get (6.60) and (6.61) for f as well.
Step 2: Here we shall prove the inequality (6.60) for n = 1.

Byl fllp <

We shall need first to introduce a little more notations. We let A; be the
family of dyadic intervals in R, we can enumerate them as Iy, I1, - - -, I, - - - (the
order is here immaterial). For each I € A, we consider the partial sum operator
S1, and a modification of it that we now define. Let ¢ € C 1 be a fixed function
with the following properties:
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1, 1<e<2, (&)
‘P(@_{o, £<1/2, or€ >4 lf

Suppose I is any dyadic interval, and

assume that it is of the form [2", 25+1]. De- } ! ? ’ ! ¢
fine Sy by ] ) FAigure 6.5: ©(§)
F(S1£)(§) = (27" f(€) = 1(€) f(€). (6.62)

That is, S;, like S, is a multiplier transform wherg the multiplier is equal to one
on the interval I; but unlike S7, the multiplier of St is smooth.
A similar definition is made for S; when I = [-2F*+1 —2]. We observe that
SrSr = S, (6.63)
since St has multiplier as the characteristic function of 1.
Now for each ¢ € [0, 1], consider the multiplier transform

Ty =Y rm(t)S,,.
m=0

That is, for each t, T is the multiplier transform whose multiplier is m, (), with

mi(€) = Y rm(t)er, (€)- (6.64)
m=0

By the definition of ¢y, it is clear that for any £ at most five terms in the sum
(6.64) can be non-zero. Moreover, we also see easily that
dmt B
m 5 < B ) T 5 < Tel?
where B is independent of t. Thus, by the Mikhlin multiplier theorem (Theorem
6.18)

(6.65)

ITfllp < Apllfllp, ~ for f € LN L7, (6.66)
and with A, independent of ¢. From this, it follows obviously that

I 1/p
( / rmfuzdt) < Al fll

However, by Lemma 6.27 about the Rademacher functions,

/01 | T2 f ||t :/Ol/R‘Z rm(t)(gjmf)(x)‘p dadt
p/2
>4, | (Z |Ssz<x>rz> dz.
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Thus, we have

1/2
<Z réfm(f)\?) < Byl|fllp- (6.67)

P
Now using (6.63), applying the general theorem about partial sums, Theo-
rem 6.24, with R = A; here and (6.67), we get, for F' = (S, f, Sr, .-+, St [, ),

1/2 1/2
(Z ISzm(f)P) (Z |SIm§1m(f)\2)

= HSAlFH;D

p

<APHFHP = Ap < Apo”pr = Cp”f“pv (6.68)

1/2
(Z IS’zm(f)|2>

which is the one-dimensional case of the inequality (6.60), and this is what we
had set out to prove.

Step 3: We are still in the one-dimensional case, and we write 7} for the oper-
ator

T, =Y rm(t)Ss,.
Our claim is that
”thHLﬁz < Apllfllp, 1<p<oo, (6.69)

with A4, independent of t, and f € L* N LP.

Write TN = 2%:0 rm(t)S1,,, and it suffices to show that (6.69) holds, with
T} in place of T; (and A, independent of N and t). Since each S, is a bounded
operator on L? and L, we have that TN f € L?N L and so we can apply Lemma

6.27 toitforn = 1. So
N 1/2
(Z |51mf\2>
m=0

by using (6.68). Letting N — oo, we get (6.69).

BTN fllup. < AN

p

Step 4: We now turn to the n-dimensional case and define Tt(ll), as the opera-
tor T}, acting only on the z; variable. Then, by the inequality (6.69), we get

1
/ /|Tt(11)f(901,$2,"' , ) [Pdrydty < Aﬁ/ |f(z1, - zn)|Pdry, (6.70)
o JR R

for almost every fixed xa, 23, -+ , oy, since x1 — f(z1,72, - ,7,) € L*(R) N
LP(R) for almost every fixed z2, - - - ,z,, if f € L?(R") N LP(R"). If we integrate
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(6.70) w.rt. x2,- - -, x,, We obtain
I ey, < Apllfllp feL?nir, (6.71)

with A, independent of ¢;. The same inequality of course holds with z; replaced
by x9, or x3, etc.

Step 5: We first describe the additional notation we shall need. With A rep-
resenting the collection of dyadic rectangles in R"”, we write any p € A, as
p=1Im, XIp, x---xIy, where Iy, I, -, I, - represents the arbitrary enu-
meration of the dyadic intervals used above. Thus if m = (my,ma, - ,my),
with each m; > 0, we write p,, = Ly, X Ly, X -+ X Iy,

We now apply the operator Tt(ll) for the x; variable, and successively its ana-
logues for x5, x3, etc. The result is

ITeflce, < ANl 6.72)
Here
Ty= > rm(t)Sp,
pPmEA

with 7, (t) = 7, (t1) - 7m, (tn) as described in the previous. The inequality
holds uniformly for each (¢;,t2,- - - ,ty) in the unit cube Q.

We raise this inequality to the p™ power and integrate it w.r.t. ¢, making use
of the properties of the Rademacher functions, i.e., Lemma 6.27. We then get, as
in the analogous proof of (6.67), that

1/2
> 180 f1 < Apll £ llps
PmEA
P
if f € L2(R") N LP(R"). This together with the first step concludes the proof of
Theorem 6.26. [ |

6.5 The Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most im-
portant results of the whole theory. For the sake of clarity, we state first the
one-dimensional case.

Theorem 6.28. Let m be a bounded function on R, which is of bounded variation on
every finite interval not containing the origin. Suppose

(@) [m(§)] < B, 00 <€ < o0,
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(b) [, |m(§)|dé < B, for every dyadic interval I.
Then m € My, 1 < p < oo; and more precisely, if f € L?> N LP,

1T fllp < Apll fllp:
where A,, depends only on B and p.

To present general theorem, we consider R as divided into its two half-lines,
R? as divided into its four quadrants, and generally R" as divided into its 2"
“octants”. Thus, the first octants in R” will be the open “rectangle” of those ¢ all
of whose coordinates are strictly positive. We shall assume that m(&) is defined
on each such octant and is there continuous together with its partial derivatives
up to and including order n. Thus m may be left undefined on the set of points
where one or more coordinate variables vanishes.

For every k < n, we regard R*¥ embedded in R" in the following obvious
way: R¥ is the subspace of all points of the form (&1, &2, -+ ,&,0,- -+, 0).
Theorem 6.29 (Marcinkiewicz’ multiplier theorem). Let m be a bounded function
on R" that is C™ in all 2" “octant”. Suppose also

(@) [m()| < B,

(b) foreach 0 < k < n

okm

o ), o506 76
as p ranges over dyadic rectangles of R¥. (If k = n, the “sup” sign is omitted.)

(c) The condition analogous to (b) is valid for every one of the n! permutations of the
variables 1,89, - , &,

Thenm € M,, 1 < p < oo; and more precisely, if f € L2OLP, | T, fllp < Apllfllp
where A, depends only on B, p and n.

dy---d&p < B

Proof. It will be best to prove Theorem 6.29 in the case n = 2. This case is already
completely typical of the general situation, and in doing only it we can avoid
some notational complications.
Let f € L2(R?) N LP(R?), and write F = T, f, that is .7 (F(x)) = m(£) f(€).
Let A denote the dyadic rectangles, and for each p € A, write f, = S,f,
F,=S,F, thus F, = T}, f,.
In view of Theorem 6.26, it suffices to show that

(S, <al (189, 679

The rectangles in A come in four sets, those in the first, the second, the third,
and fourth quadrants, respectively. In estimating the Lh.s. of (6.73), consider
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the rectangles of each quadrant separately, and assume from now on that our
rectangles belong to the first quadrant.

We will express F), in terms of an integral involving f, and the partial sum
operators. That this is possible is the essential idea of the proof.

Fix p and assume p = {(£1,&) @ 2F < & < 28120 < & < 2141}, Then, for
(&1,&2) € p, itis easy to verify the identity

&2 & 82m(t1 tg) & 8
— omity, t2) 4 9
m(fl,fz) /21 b B, 0t tidts + i 1 lm(tl, )dtl

&2 9
—m(2F, ty)dty + m(2F,21).

2l 8 2
Now let S; denote the multiplier transform corresponding to the rectangle {(¢1, &2) :
2kl > ¢ > 1y, 24 > & > to}. Similarly, let St(l1 ) denote the multiplier cor-

(2)

responding to the interval 25t! > & > ¢, similarly for S;”. Thus in fact,
P g y ta

Sy = St(ll) ~ St(f). Multiplying both sides of the above equation by the function y, f
and taking inverse Fourier transforms yields, by changing the order of integrals
in view of Fubini’s theorem and the fact that S,7,,f = F},, and S,fll)Sp = St(ll),

25, =52, 5,5, = S, we have
F,=T,S,f = ﬁflmxpf

fo)]ae

+ (M> / wz:r:{ / —m tl, dtlxp
2T R2 2k

+<|w]) /R2ewz'z-§[ €2 882 (2F t2)dt2Xp(§)f(€)}d£

2 9l
+. 7 tm(2", QI)Xp(f)f
2k+1

|W’ w1x§ t1,t2)
< /RQ /2 / Ot10ty ~aran X2k (F1)X (2 g (B2)dtrdto

2k+1

<|w]> /R2 me/Q %m (t1,2 )X[Qkéﬂ(tl)dtlxp(é)f(é-)dg

2l+1
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+ m(2F, 2!
<‘w|> /2 / /RQewme[tlg’vH](gl)x[t%QlH](52)Xp(£)f(£)d£
9’m(t1,t2)
. WdtldtQ

2k:+1

4 . 0
€ww§X[t1,2k+1] (gl)Xp(f)f(g)déaTm(tlv 2')dt,

L
()

+ m(2k )fp

/.
L & S €@ F (€ gom(F a)ay

t ) 2k+1
/Stf,, o alt dt1dts +/ st fp—m(tl, Nty

2l+1

+ /21 t2 fp—m(Q ,to)dty + m(Zk 2! ) fp-
We apply the Cauchy—Schwarz inequality in the first three terms of the above
w.rt. the measures |0y, 0y, m(t1,to)|dt1dta, |0y, m(t1,2")|dt1, |0, m(2F, t2)|dts, Te-
spectively, and we use the assumptions of the theorem to deduce

2
F,|? <
[Fl /'Stf” dirdt 2)( | 0t10t

ot, at dtldt?)

2k+1

2k+1 ) o
1
+ (/2k |St, m(t1,2) dt1></2k aTl’m(tl; h dt1>
ol+1 ol+1
+ (/2[ |St2 fp (2 t2) dt2> (/21 %m(Qk’tQ) dt2>
+ |m(2%, 2] \fp\2
827” 1 (tl 2l)
B’/S dtdt+/ g g 2| ImL,2))
{19002 g anto + [ 1580 1,2 | P25
) 2| Om(2*,15) 2
/ 1Sy, o dty + | f,|

=, + 95+ S0 + S, withp =TI x L.

To estimate (3, |F,|?)"/2[|,, we estimate separately the contributions of each
of the four terms on the rh.s. of the above inequality by the use of Theorem
6.25. To apply that theorem in the case of S, we take for I the first quadrant,
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and dy = ]%]dtldtg, the functions v — p, are constant on the dyadic
rectangles. Since for every rectangle,
0’m(ty, o)
d dt1dts < B,
7= 87518152 1an
1/2 1/2
(zm) <a|(sm)
p p p

Similarly, for 32, 33 and $7, which concludes the proof. [
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7.1 Riesz potentials and fractional integrals

Let f be a sufficiently smooth function which is small at infinity, then the
Fourier transform of its Laplacean A f is
F(=Af)(€) = W€ f(©). (7.1)
From this, we replace the exponent 2 in |w¢|? by a general exponent s, and
thus to define (at least formally) the fractional power of the Laplacean by
(=2)2f = Z7H (gD F(9)). (7.2)
Of special significance will be the negative powers s in the range —n < s < 0.
In general, with a slight change of notation, we can define

Definition 7.1. Let s > 0. The Riesz potential of order s is the operator

I, = (—A)"%/2, (7.3)
For 0 < s < n, I, is actually given in the form
1
Isfa::/ z —y| "t dy, 7.4
@) =25 Jo 1B YT W)y (7.4)
with ’
7225 (/2
y(e) = T,
I'((n—s)/2)

The formal manipulations have a precise meaning.
187
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Lemma 7.2. Let 0 < s < n.
(a) The Fourier transform of the function |x|~""5 is the function v(s)(Jw||¢]) %, in
the sense that

[ e = (‘2‘;’) [ A6uliee@e )
whenever p € .
(b) The identity .7 (Isf) = (|w||&]) =% f(§) holds in the sense that

| ri@ie = (5 ‘) / F(&) (l€l)~"aE)e.

whenever f,g € .7.

Proof. Part (a) is merely a restatement of Lemma 5.14 since y(s) = |w|*0.s.
Part (b) follows immediately from part (a) by writing

L@ =g [ e = (51) [ elieh= TG s
= (’;’r‘) [ etighoeeras = (B [ (il feeewae

[ @i =(E)" [ [ ellehser g
(&) [ et seraeae

This completes the proof. |

Now, we state two further identities which can be obtained from (7.2) or (7.3)
and which reflect essential properties of the potentials /.
IS(Itf): 5+tf, fEY s,t >0, s+t<n. (76)
A(Lf) = L(Af) = I, of, fE€F n>3 2<s<n. (7.7)
The deduction of these two identities have no real d1ff1cu1t1es, and these are
best left to the interested reader to work out.
A simple consequence of (7.6) is the n-dimensional variant of the Beta func-
tion,!
) (t) ’x’—n-&-(s-i-t) (78)

T — —n—+s —n+td — ’Y(S v
/Rn! yIm Ty = S

! The Beta functlon also called the Euler integral of the first kind, is a special function defined
by B(z,y) fo t*~1(1 — t)v"'dt for Rz > 0 and Ry > 0. It has the relation with I'-function:
B(z,y) =T (x)I'(y )/F(w+y)-
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with s,t > 0 and s 4+t < n. Indeed, for any ¢ € ., we have, by the definition of
Riesz potentials and (7.6), that

//n T yl 7"yl dy (2 — )da
_ —n+t T — —n+s 5y — (1 — N
_/Riy‘ /Rn o =yl 7" ez —y — (2 — y))dady
— /Rn ly| 7"y (s) Lap(z — y)dy = v(s)y() I (Is0) (2) = v(s)7(t) Ls4e0(2)

_’V(S)’Y(t) 2| (s+t) 2 — 2)dz
—7<5+t>/n' T+ (; — 2)da.

By the arbitrariness of ¢, we have the desired result.

We have considered the Riesz potentials formally and the operation for Schwartz
functions. But since the Riesz potentials are integral operators, it is natural to in-
quire about their actions on the spaces LP(R").

For this reason, we formulate the following problem. Given s € (0,n), for
what pairs p and ¢, is the operator f — I;f bounded from LP(R") to L9(R")?
That is, when do we have the inequality

s fllg < Allfllp? (7.9)
There is a simple necessary condition, which is merely a reflection of the
homogeneity of the kernel (y(s))~!|y|~""¢. In fact, we have
Proposition 7.3. If the inequality (7.9) holds for all f € ./ and a finite constant A,
then 1/qg=1/p — s/n.

Proof. Let us consider the dilation operator §., defined by 6. f(z) = f(ex) for
e > 0. Then clearly, fore > 0

_L -1,._ |—n+s
(oL f)@) = [ e e =y ey

*=cy —ni 1. _ \|—nts

==¢ 7 /R" le™ (z — 2)| f(2)dz
—e=5 1, f (). (7.10)

Also
16=Fllp = e fllps 118115 fllg = €N s f g (7.11)
Thus, by (7.9)

s f llg =e*[18:-1 18- fllg = /|| L6 £
<A T8 fl, = A*TITIP £
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If |75 || # 0O, then the above inequality implies

1/¢g=1/p—s/n. (7.12)
If f # 0is non-negative, then I, f > 0 everywhere and hence || I; f||, > 0, and we
can conclude the desired relations. [ |

Next, we observe that the inequality must fail at the endpoints p = 1 (then
g=n/(n—s))and ¢ = oo (then p = n/s).

Let us consider the case p = 1. It is not hard to see that the presumed in-
equality
cannot hold. In fact, we can choose a nice positive function ¢ € L' with [p =1
and a compact support. Then, with ¢.(z) = e "p(z/c), we have thatas e — 0T,

Ls(pe) (@) = (v(s)) a7,

If [|Is@elln/m—s) < Allpelli = A were valid uniformly as ¢, then Fatou’s lemma

will imply that
/ |z|"dx < oo,
and this is a contradiction.

The second atypical case occurs when ¢ = co. Again the inequality of the
type (7.9) cannot hold, and one immediate reason is that this case is dual to the
case p = 1 just considered. The failure at ¢ = oo may also be seen directly as
follows. Let f(x) = |z|~*(In1/|z|)~(+2)s/", for |z| < 1/2, and f(z) = 0, for
|z| > 1/2, where ¢ is positive but small. Then f € L"/*(R"), since || f ||Z?z =
f|x|<1/2 |z]7(In1/|z|)~17%dx < co. However, I, f is essentially unbounded near
the origin since

2

1
I, f(0 :/ 2|7 (In1/|z|)~F9s/"dg = oo,
f(0) 76) |5’3|<1/2‘ [~ (In1/]x)

aslongas (1+¢)s/n < 1.

After these observations, we can formulate the following Hardy-Littlewood-
Sobolev theorem of fractional integration. The result was first considered in one
dimension on the circle by Hardy and Littlewood. The n-dimensional result was
considered by Sobolev.

’Fatou’s lemma: If { f.} is a sequence of nonnegative measurable functions, then

/lim inf frdp < lim inf/fkdu.
k—oo k—oo
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Theorem 7.4 (Hardy-Littlewood-Sobolev theorem of fractional integrations).
Let0<s<n 1<p<qg<ool/g=1/p—s/n.

(@) If f € LP(R™), then the integral (7.4), defining I f, converges absolutely for
almost every x.

(b) If/ in addition/p >1, then HISqu < AP,(IHfHP‘

() If f € LYR"), then m{z : |I; f(z)| > o} < (Aa™ Y| f]1)%, for all o« > 0. That
is, the mapping f — I f is of weak type (1,q), with1/qg =1 — s/n.

Proof. We first prove parts (a) and (b). Let us write
WA@) = [ el sy [ ey )y
=:Ls(x) + Hj(x).
Divide the ball B(z,d) into the shells E; := B(z,2775) \ B(x,270*V¢), j =
0,1,2,..., thus

| Ls(x Ix— 7 f (y)

Z/ & — 47| £ () dy

<Z / —UHD) | £(y) dy
<Z / 2=+ §)=m | £ ()| dy

B(z,2— 35

(2-U05) (B, 2799)
T N

( ]+1 5) +SV (2 ]5)
m(B(z,2-75)) /B(x,m'f (w)ldy

V 0%2m

Mng

I
=)

J

<V 8%2n~ 822 SIM f(x) =

T Mf().

Now, we derive an estimate for Hs(x). By Holder’s inequality and the con-
dition 1/p > s/n (i.e., ¢ < 00), we obtain

/v
Hs(@)| </, ( [ ey dy)
R\ B(x,5)
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o0 , 1/p
=[£I, (/ / p(=nts)p r”_ldrda)
sn=1J§

1/p/ (=n+s)p’+n—1 v
=l oy )

/

1/p
Wn— n/p' —(n—s s
:Q1> = £y = 5, )0 |

n—s)p—n
By the above two inequalities, we have
Y (s)Lsf (2)] < C(n, )8 M f(z) + C(n, s,p)8° /7| ||, =: F(5).
Choose § = C(n,s,p)][||f|l,/M f]P/™, such that the two terms of the r.h.s. of the
above are equal, i.e., the minimizer of F'(¢), to get
() Ls f ()] < CMF) P | f e,

Therefore, by part (i) of Theorem 3.9 for maximal functions, i.e., M f is finite
almost everywhere if f € LP (1 < p < 00), it follows that |I, f(x)| is finite almost
everywhere, which proves part (a) of the theorem.

By part (iii) of Theorem 3.9, we know || M f||, < A4,/ f]|, (1 < p < o0), thus

sfllg < CIUM IR = ClL .
This gives the proof of part (b).
Finally, we prove (c). Since we also have |Hs(z)| < || f||107""*, taking o =
| £ll1677F5,ie., 6 = (|| fll1/a)*/™=%), by part (ii) of Theorem 3.9, we get
m{z : [Lf(x)] > 2(7(s)) " a}
<m{x : |Ls(x)| > a} + m{x : |Hs(z)| > a}
<m{z : |CO°M f(z)| > a}+0

C n/(mn—s
<= flh = ClIf I /el =) = €Il fa]"
This completes the proof of part (c). u

7.2 Bessel potentials

While the behavior of the kernel (y(s))~!|x|™""¢ as |z| — 0 is well suited for
their smoothing properties, their decay as |z| — oo gets worse as s increases.

We can slightly adjust the Riesz potentials such that we maintain their es-
sential behavior near zero but achieve exponential decay at infinity. The sim-
plest way to achieve this is by replacing the “nonnegative” operator —A by the
“strictly positive” operator I — A, where I = identity. Here the terms non-
negative and strictly positive, as one may have surmised, refer to the Fourier
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transforms of these expressions.

Definition 7.5. Let s > 0. The Bessel potential of order s is the operator
Jo=(I—A)~/2
whose action on functions is given by
Jif = F G Ff=Caxf,
where
Gs(z) = FH(L+W*EP) /%) ().

Now we give some properties of Gs(z) and show why this adjustment yields
exponential decay for G at infinity.
Proposition 7.6. Let s > 0.

(@) Gs(z) = m I ete i =

(b) Gs(z) > Ve € R% and G4 € Ll( ™), precisely, [ Gs(x)dz = 1.
(c) There exzst two constants 0 < C(s,n),c(s,n) < co such that
Gs(x) < C(s,n)e” V2 when || >

and such that
1 o Gs(x)
c(s,n) = Hy(x)
where H is a function that satisfies
|z~ + 1+ O(|z|*~"*2), 0<s<n,

< c(s,n), when |x| <2

Hy(z) = 1n%+1+0(|x|2), s=n,
1+ O(|z|*™™), 5>,
as |z| — 0.
(d) G5 € LY (R™) forany 1 < p < co and s > n/p.

Proof. (a) For A, s > 0, we have the I'-function identity

1 o0 dt
—s/2 _ —tAys/29Y
4 r<s/2>/o e

which we use to obtain

(1 oPe) 2 = o [ ettt L
I'(s/2) Jo t
Note that the above integral converges at both ends (as |{| — 0, or c0). Now take
the inverse Fourier transform in £ and use Theorem 1.10 to obtain

1 o0 2 dt
Go(x) = g1 [T ottt 20t
) =57y 7 /0 e :
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1 b —t —1 _ 2 dt
_ Z ( t|w§\>t8/27
r<s/2>/o ¢ T \° t

_ 1 /OO e—te— G 1252 dt
_(47r)n/2r(s/2) t
(b) We have easily® [;, Gs(z)dz = .ZG4(0) = 1. Thus, G, € L'(R").

¢) First, we suppose |z 2 Then t+ Iw\ >t+Landalsot+ 2 > |x|. This
pp t It
implies that

PO ISP A T
a4 S 2 2t 27
from which it follows that when |z| > 2
Gs(x) < —1 e_%e_%ttsgnﬂe_%l < C(s,n e_%‘,
(4m)"/2T(s/2) t
)" s 0
ls=nl/2D(|s—n
where C(S,n) = WW for S 7é n, and C(S,n) = WM for sSs=n

since

00 1 [e's] [e's]
/ e ;e ;t@ </ e_2ltdt—|—/ e_édt:/ _ydy—|—2 —1/2
0 t 0 t 1 1/2 y
o
<2/ e Ydy+2 < 4.

1/2
Next, suppose that |z| < 2. Write G5(z) = GL(z) + G%(z) + G2(x), where

]_ |£E‘ \m|2 s—n dt
) gk [ el
) =y Jy ¢ T
1 4 o2 s—n di
G2 — / ot 777‘;777
s(z) (47)7/2T (s/2) Iac\?e e 4t 2 ,

1 > 22 s—n dt
G3 :/ “ltemartte —.
) = Jy ©C T

*Or use (a) to show it. From part (a), we know G, (x) > 0. Since Jan eIty = t"/2, by
Fubini’s theorem, we have

1 ® _, _lel2 s—ndt
(2w = [ — e
[ Gutwae= [ 2 e ), e .
=2 s—n dt
4 2 -
~an "/2F (5/2) / /n fdatE

“t(4mt)™ 2T dt

(4w>n/2r<s/2> /
1 it —t 51
ZW/O e =1
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Since t|z|2 < 16 in G!, we have e~ = 1 4+ O(t|z[2) as |z| — 0; thus after
changing variables, we can write

1 1 2 1 s—ndt
1 |5 —tlz|? —4; -
Gs(m) |:E‘ (47T)n/2r(8/2)/06 e 4t 2 ;
1 s—n+2 1
S S /e—ittsz"dtJrO(’m‘ ) /e‘itt“fdt
(4m)"/2T(s/2) Jo t  (4m)"/2T(s/2) Jo
n—s—2 s—n o] n—s—4 s—n—+2 [e)
a2 [ O(Jzf+2) [t
(4m)"/2T (s/2) 1/4 Yy (4m)"/2T(s/2) 1 2

/4 Yy
=cbJa[*" + O(z[*™*2),  as|a| — 0.

i <P < 1land0 <t <4in G2 weh 174 o455 < 1 th
Since 0 < - < 7and 0 <t < 4in G5, we have e <e 2 < 1, thus

as |z| — 0, we obtain

‘$|S*7l . 257n+1
) 4 T s ms s< M,
Gs(x)w/ AN 5= 2In ¢, s=n,
B 2s—nt!
) s >n.

2

Finally, we have e /4 < e~ <1in G3, which yields that G3(z) is bounded
above and below by fixed positive constants. Combining the estimates for Gl(z),
we obtain the desired conclusion.

(d) For p = 1 and so p’ = oo, by part (c), we have ||Gs||cc < C for s > n.

Next, we assume that 1 < p < coand so 1 < p’ < co. Again by part (c), we
have, for |z| > 2, that Gg < CePlal/ 2 and then the integration over this range
|z| > 2 1is clearly finite.

On the range |z| < 2, it is clear that fm@ GZ (z)dx < C for s > n. For the

case s = n and n # 1, we also have me G’;l (z)dz < C by noticing that

) q 2 9 q
/ <1n ) dx = C/ <ln ) rldar <C
|z|<2 |z 0 r

for any ¢ > 0 since lim,_,or°In(2/r) = 0. For the case s = n = 1, we have
f|x‘<2(ln |%)qdﬂv = 2f02(ln 2/r)idr = 4]01(111 1/r)idr = 4 [ t9etdt = 4D (q + 1)
for ¢ > 0 by changing the variable » = e~'. For the final case s < n, we have
f02 rs=mP pn=lge < C'if (s — n)p' +n > 0,i.e, 5 > n/p.

Thus, we obtain ||G;|[,y < C for any 1 < p < co and s > n/p, which implies
the desired result. [ |

We also have a result analogues to that of Riesz potentials for the operator
Js.
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Theorem 7.7. (a) For all 0 < s < oo, the operator Js maps L"(R™) into itself with
norm 1 forall 1 < r < oo.
(b) Let 0 < s <nand 1 < p < q < oo satisfy 1/q = 1/p — s/n. Then there exists
a constant Cy, s , > 0 such that for all f € LP(R™), we have
1 Tsfllg < Crspll fllp-
(© If f € LYRY), then m{z : |Jsf(x)| > a} < (Cpsa™t|f]1)4, for all « > 0.
That is, the mapping f — Js f is of weak type (1,q), with1/q =1 — s/n.

Proof. By Young's inequality, we have ||.Js f||, = [|Gs * f|l» < ||Gsll1]| fllr = || f]l -
This proves the result (a).
In the special case 0 < s < n, we have, from the above proposition, that the
kernel G, of J, satisfies
27, el <2,
Gs(z) ~ { e-lal/2. 2] > 2.

Then, we can write

Jsf(x) gCn,s

/ |f(z —y)|ly| " dy + / |f(z - y)l@'y'”dy]
ly| <2 ly|>2

<Co | 1)) + [

o= gl 2y
Rn
We now use that the function e ¥//2 € " forall 1 < r < 00, Young's inequality
and Theorem 7.4 to complete the proofs of (b) and (c). |
The affinity between the two potentials is given precisely in the following
lemma.
Lemma 7.8. Let s > 0.
(i) There exists a finite measure j1; on R™ such that its Fourier transform [ is given
by
—~ jwél®
(ii) There exist a pair of finite measures vs and \g on R™ such that

(14 |we|?)*/? = 73(€) + |wE|* X (£).

Remark 7.9. 1) The first part states in effect that the following formal quotient
operator is bounded on every LP(R"), 1 < p < oo,
(_ A)s/2
(I —A)s/2’
2) The second part states also to what extent the same thing is true of the
operator inverse to (7.14).

s> 0. (7.14)
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Proof. To prove (i), we use the Taylor expansion

L=t P =1+ Apt™  Jt <1, (7.15)

m=1

= (—1ymaGDGomtl)  (CRAEMmoEml A phe

m!

where A4, s = (-1 )mCS”}2

Ay, s are of same sign for m > § + 1,50 3 [ Ay, 5| < 00, since (1 — ¢)*/2 remains
bounded ast — 1,if s > 0. Let t = (1 + |wé[?)~L. Then

we2 \* > o
<1+|w§\2> =1+ D Ans(L+ |wé) ™™ (7.16)

However, Gop () > 0 and [;, Gam(z)e " Sdz = (1 + [wg]?)™™.
We noticed already that [ G (z)dz = 1 and so ||Ganlj1 = 1.
Thus from the convergence of »  |A,, 4|, it follows that if y is defined by

s = 0 + (i Am,ngm(x)> dx (7.17)

m=1

m=1

with ¢y the Dirac measure at the origin, then p, represents a finite measure.
Moreover, by (7.16),

ey |wE]
1s(§) = 1+ ]w§|2)5/2'

For (ii), we now invoke the n-dimensional version of Wiener’s theorem, to wit:
If &, € LY(R") and ®;(¢) + 1 is nowhere zero, then there exists a ®; € L'(R"?)
such that (& (¢) + 1)~ = By(&) + 1.

For our purposes, we then write

(7.18)

ZAmsGQm +G( )

Then, by (7.18), we see that
wel® +1
(1 + Jwg]?)/2’
which vanishes nowhere. Thus, for an appropriate ®; € L', by Wiener’s theo-
rem, we have

016 +1=

(14 |we?)¥? = (1 + |wé]*)[@a(€) + 1],
and so we obtain the desired conclusion with v; = Ay = d¢ + Po(z)dz. [ |
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7.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of
distributions. The appropriate definition is stated in terms of the space Z(R").

Let 0“ be a differential monomial, whose total order is |a|. Suppose we are
given two locally integrable functions on R"”, f and g. Then we say that 9% f = ¢
(in the weak sense), if

F2)0%p(z)dx = (—1) / z)dz, Vo€ D. (7.19)
Rn

Integration by parts shows us that this is indeed the relation that we would
expect if f had continuous partial derivatives up to order |a|, and 0“f = ¢g had
the usual meaning.

Of course, it is not true that every locally integrable function has partial
derivatives in this sense: consider, for example, f(z) = ¢/I*I". However, when
the partial derivatives exist, they are determined almost everywhere by the defin-
ing relation (7.19).

In this section, we study a quantitative way of measuring smoothness of
functions. Sobolev spaces serve exactly this purpose. They measure the smooth-
ness of a given function in terms of the integrability of its derivatives. We begin
with the classical definition of Sobolev spaces.

Definition 7.10. Let k£ be a nonnegative integer and let 1 < p < oco. The Sobolev
space W*P(R") is defined as the space of functions f in LP(R") all of whose dis-
tributional derivatives 0° f are also in LP(R"™) for all multi-indices « that satisfies
|a| < k. This space is normed by the expression

£ lwew = D 10° Fllps (7.20)

|l <k
where 900 f = f.

The index k indicates the “degree” of smoothness of a given function in W,
As k increases, the functions become smoother. Equivalently, these spaces form
a decreasing sequence

LP O WP 5 WP 5

meaning that each W**12(R") is a subspace of W*?(R") in view of the Sobolev
norms.

We next observe that the space WkP(R™) is complete. Indeed, if {f,,} is a
Cauchy sequence in W*?, then for each a, {0“f,,} is a Cauchy sequence in
I?, |a| < k. By the completeness of LP, there exist functions f(*) such that
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£ = lim,, 9 f,, in LP, then clearly
(_1)\04 / fm0%dx = / O frmpdx — / f(c“)cpda:7
R~ R R™

for each ¢ € 2. Since the first expression converges to
(-1l [ foriad
R

it follows that the distributional derivative % f is f(®). This implies that f; — f
in W*P(R") and proves the completeness of this space.
First, we generalize Riesz and Bessel potentials to any s € R by
If =F el Ff, fe SR, 0¢ suppf,
If=F A+ |wEP) 2T, fe s (R
It is clear that I=° = I; and J~° = J, for s > 0 are exactly Riesz and Bessel
potentials, respectively. we also note that J* - J! = J5* for any s,¢ € R from the
definition.
Next, we shall extend the spaces W#P?(R") to the case where the number k is
real.

Definition 7.11. Let s € R and 1 < p < co. We write
1A g = 12 fllps 1SNy = 1T°F -
Then, the homogeneous Sobolev space H; (R™) is defined by

HyR") = {f € #'(R): f €Ll ®"), and |flz <o}, (72D
The nonhomogeneous Sobolev space H,;(R") is defined by
Hy®R") = {f € #'®"): |fllms < o0} (7.22)

If p = 2, we denote H3(R") by H*(R") and H3(R") by H*(R") for simplicity.

It is clear that the space H;(R") is a normed linear space with the above
norm. Moreover, it is complete and therefore Banach space. To prove the com-
pleteness, let {f,,} be a Cauchy sequence in H;. Then, by the completeness of
L?, there exists a g € LP such that

| frn — J_SQHH;; = |7 fm = gllp = 0, asm — oo.
Clearly, J=*g € ./’ and thus Hj, is complete.

We give some elementary results about Sobolev spaces.
Theorem 7.12. Let s € Rand 1 < p < oo, then we have

(a) S isdensein Hy, 1 < p < cc.

(b) Hste C Hy, Ve > 0.
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(c) Hy C L>,¥s > n/p.
(d) Suppose 1 <p<ooands>1. Then f € H5(R")ifand only if f € H5*(R")
and for each j, Bz of ¢ Hy~ L(R™). Moreover, the two norms are equivalent:

1fllzrg ~

8.’17] Hs 1 ’

(e) H¥(R") = WFP(R™),1 < p < o0, Vk: € N.

Proof. (a) Take f € Hy,ie., J°f € L. Since . is dense in L” (1 < p < o0), there
exists a g € . such that
Lf =T gllmy = 17°f = gllp

is smaller than any given positive number. Since J °g € .7, therefore . is
dense in Hy.

(b) Suppose that f € H3*e. By part (a) in Theorem 7.7, we see that .J. maps
LP into LP with norm 1 for € > 0. Form this, we get the result since

1F ez = 1 Fllp = 7727 Fllp = N TeT* = fllp < T Fllp = [1F ] gz

(c) By Young's inequality, the definition of the kernel G4(z) and part (d) of
Proposition 7.6, we get for s > 0

1f oo =17 7L+ [w€?)7*/2(1 + |wé?)2.F flloc
=[lF 71+ wEP) T 5 TP flloo
<IF L+ [wlP) ™l 172 £l
=[Gs@)llp 1 f 22y < Cllf g
(d) From the Mikhlin multiplier theorem, we can get (w¢;)(1 + |wé|?)~

M, for 1 < p < oo (or use part (i) of Lemma 7.8 and properties of Riesz trans-
forms), and thus

0
%f- =|F (1 + we) V2 (wig)) Z £,
J

1/2 ¢

Hy~?
=[.F (1 + |wE) T2 (W) (1 + [weP) P £

=77 1+ we )T (W) * T fllp < O fllp = ClL f Nl
Combining with ||fHH;_1 < | f g, we get

15

: < Cllf Nl
J st

Now, we prove the converse inequality. We use the Mikhlin multiplier the-
orem once more and an auxiliary function x on R, infinitely differentiable, non-
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negative and with x(z) = 1 for || > 2 and x(z) = 0 for |z| < 1. We obtain

(L4 w21+ X(E)IEN T € My, x(§)I&516" € My, 1< p < oc.
=1
Thus, ’
1 lles =17 fllp = 17 (1 + [we ) 2F T Iy

<CIZ7M 1+ Y x(&IENF I flp

j=1

n B - . 8f

<Ol flggr +C D 1F &G F T
j=1 !

<0Hf|H;1+Cj§:jl B

Thus, we have obtained the desired result.

(e) It is obvious that W? = HY = L? for k = 0. However, from part (d), if
k> 1,then f € Hl’f if and only if f and 597’; S H;f_l, j =1,...,n. Thus, we can
extends the identity of W*? = H¥ from k =0to k = 1,2, ... [ ]

We continue with the Sobolev embedding theorem.

Theorem 7.13 (Sobolev embedding theorem). Let1 < p < p; < coand s, s; € R.
Assume that s — 3 = s1 — o+. Then the following conclusions hold

s s TS TS
HS C H3', HSC H3.

JlEg—!

Proof. 1t is trivial for the case p = p; since we also have s = s; in this case. Now,

we assume that p < p;. Since p% = % — *21, by part (b) of Theorem 7.7, we get

ez = W7 Fllpe = 17T Fllpy = [ s—51 I Fllpn < CNT° Fllp = Ol f |l 15
Similarly, we can show the homogeneous case. Therefore, we complete the
proof. [

Theorem 7.14. Let s,0 € Rand 1 < p < oo. Then J° is an isomorphism between H,
and Hy™7.
Proof. 1t is clear from the definition. n
Corollary 7.15. Let s € Rand 1 < p < oo. Then

(H;)’ =H pi“”.

Proof. Tt follows from the above theorem and the fact that (L?) = L*,if 1 <p <
0. |
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Finally, we give the connection between the homogeneous and the nonho-
mogeneous spaces, one can see [BL76, Theorem 6.3.2] for the proofs.

Theorem 7.16. Suppose that f € #'(R") and 0 ¢ supp f. Then
feH,< feH, VseR, 1<p<co.
Moreover, for 1 < p < oo, we have .
HS =LPNH, Vs>0,
HS =L + HS, Vs <0,
H) =IP = HY.

7.4 More topics on Sobolev spaces with p = 2

In this section, we focus on the Sobolev spaces with p = 2. We first consider
the homogeneous cases.

From the previous section, we know that if s € N, then H? is the subset of
tempered distributions with locally integrable Fourier transforms and such that
0° f belongs to L? for all a € N" of length s.

In the case where s is a negative integer, the Sobolev space H* is described
by the following theorem.

Theorem 7.17. Let k € N. The space H~*(R™) consists of distributions which are the
sums of derivatives of order k of L?(R™) functions.

Proof. Let f € H—*(R"). Using the fact that for some integer constants a,,, we
have

PP = >0 &g = aa(if)* (i), (7.23)
1<, Jwsn la|=k
we get that
FO) = 3 (1w6)ga(6) with  ga(©) =(|‘wzj|§,2 (o).
la|=k

As f € H*(R"), the functions f, :=.% 'g, € L?>(R") in view of the Plancherel
theorem. We then obtain
F=> 0"fa

la|=k
This concludes the proof. |
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Theorem 7.18. H*(R") is a Hilbert space if and only if s < %

Proof. We first assume that s < n/2. We only need to prove the completeness. Let
{fx}xen be a Cauchy sequence in H*(R™). Then, { fk}keN is a Cauchy sequence
in L?(R"; [¢]**d¢). Because |€|**d¢ is a measure on R", there exists a function
g € L*(R™;|€[?>d¢) such that {fi }ren converges to g in L2(R™; |£[?*d€). Because
s < n/2,wehave

1/2

1/2
/ |g<5>|d5<(/ 15\28|g<5>|2d£> (/ |£25d£> < .
B(0,1) R B(0,1)

This ensures that .7 ~!(x B(o 1)9) is a bounded function. Now, xgn\ p(0,1)g clearly
belongs to L*(R"; (1 + |£]?)*d¢) and thus to .7/ (R™), so g is a tempered distribu-
tion. Define f := 5‘ 1g. It is then obvious that f € H*® and that hm fi = fin
Hs.
If s > n/2, observe that the function
p(f) = ”fHLl(B(o,l)) +11f N gy
is a norm over H*(R") and that (H*(R"), p) is a Banach space.

Now, if H*(R™) endowed with || - || 7= Were also complete, then, according to
Banach’s theorem, there would exist a constant C' such that p(f) < C|| f|| 5. Of
course, this would imply that

£z (B(0,1)) < Cl Il gs- (7.24)
This inequality is violated by the following example. Let A be an annulus in-
cluded in the unit ball B(0,1) and such that A N 2A = (), say, A = {{ € R" :
1/8 < |£] < 1/6}. Define
N 2k s+n/2)

-1
X2-kA-
k=1

We have
N
9k(s+n/2)
lan Il (B(0,1)) /B(o,l) N ; k 2-kA
N N
2k(s+n/2) o 2k(s—n/2)
I i S D Dy
k=1 k=1
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n N 5k(s+n/2) 2
w s 2
() L (R )

k=1

N
’w‘ " 2s 2k(2s+n)
= <7T - |wé| Z —z Xe—kadS

k=1

N
(M) B e
—<2F ; m ), el

N 9k(2s+n) k(2sin) N 1
=C) 52 =C) 5 <C VNEeN,
k=1 k=1
where the constants C' are independent of N. Since s > n/2, we deduce that
19~ 11 (B(0,1)) tends to infinity when NV goes to infinity. Hence, the inequality

(7.24) is false. L

Theorem 7.19. If s < n/2, then the space #,(R") of functions of ' (R"), the Fourier
transform of which vanishes near the origin, is dense in H*.

Proof. Consider f € H* such that
(10 = [ et FO3EdE =0, Vo € SR,

This implies that the L] . function f vanishes on R\ {0}. Thus, f = 0. From the
Plancherel theorem, we infer that f = 0. As we are considering the case where
H? is a Hilbert space, we deduce that .#,(R") is dense in H". n

In view of Theorem 7.13, we can not obtain the Sobolev embedding in L>*(R™).
In fact, the space H"/2(R™) is not included in L>(R"). We give an explicit coun-
terexample in dimension two. Let
f(@) = ¢(z) In(=In|z)
for some smooth function ¢ supported in B(0,1) with value 1 near 0. On the

one hand, f is not bounded. On the other hand, we have, near the origin,

C
o)< —C
937@) < el

so that f belongs to H'(R?).
This motivates the following definition.

Definition 7.20. The space BM O(R") of bounded mean oscillations is the set of

locally integrable functions f such that

| fllBaro = s%p m(lB) /B |f — fBldx < 00 with fp:= Im(lB)/dex.
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The above supremum is take over the set of Euclidean balls.

We point out that the seminorm || - |[gayo vanishes on constant functions.
Therefore, this is not a norm. We now state the critical theorem for Sobolev
embedding.

Theorem 7.21. The space L} (R™) N H™?(R™) is included in BMO(R™). Moreover,
there exists a constant C such that

Ifllzvo < Clifll g2
for all functions f € L}, (R™) N H"?R").

Proof. We split f into low and high frequencies. Let # be a function in . (R")
such that 6 is compactly supported in {¢ € R : |¢| < 2A}, has value 1 in {¢ €
R™ : [¢] < A}, and satisfies 0 < 6 < 1. Denote fy) = f*0and fry = f — fo
Then, for any Euclidean ball B with radius r, we have by Holder inequalities,

the mean value theorem and the Plancherel theorem,
1

zm(B)/Bf_fB‘dx
1
§m </B |fen — (fer)Bldx + /B | fox — (fh,/\)B|dm>
1/2
<m(;)1/2 (/B|f£,x—(fe,,\)3|2d:c> +m(é)1/2||fh)\||2

1/2
<Cr||V forlloo + Cr™/? ( /Ig 1f(1- é)Pd&)

[ZA

1/2
<Cr /R 1wt o ()l + Or 2 < /| wa‘“lw€!”|f2d£>

£l=A

1/2
<Cr (/ \fIQ”d§> £ g2 + CEN) 21 £l s
[£1<2A

SCA+ () )£l oo
Choosing A = 1/r, we complete the proof. [

Now, we turn to the nonhomogeneous Sobolev spaces H*(R").

The Sobolev spaces are not stable under multiplication by C* functions;
nevertheless, they are local. This is a consequence of the following result.
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Theorem 7.22. Multiplication by a function of .7 (R") is a continuous map from
H#(R™) into itself.

Proof. As we know that g;?f = ¢« f, the proof is reduced to the estimate of the
L?*(R™) norm of the function F defined by

F(€) = (1 ot [ 6= mllFonlan

We will temporarily assume that

(14 |wgl?)*/2 < 25121+ |w(€ — m)[H)!2(1 + wn|?)*/2. (7.25)
We then infer that
|Fy(&)] < 21172 /Rn(l + |w(€ =)D 16(E — )1+ lwnl®)*2( f(n)]dn.

Using Young's inequality, we get
lof s <220+ - 2)YV2R011 | £l e,
and the desired result follows.
For the sake of completeness, we now prove the inequality (7.25). Inter-
changing ¢ and 7, we see that it suffices to consider the case s > 0. We have

(1 + [wé*)* <(1+2(jw(E = n)* + |wnl*))*/?

<21+ (€ — M)A+ ).
This completes the proof of the theorem. u
As stated before, the space H*(R") is included in H*(R") whenever ¢ < s. If
the inequality is strict, then the following statement ensures that the embedding
is locally compact.

Theorem 7.23. Fort < s, multiplication by a function in .7 (R™) is a compact operator
from H*(R™) in H(R™).

Proof. Let ¢ be a function in . (R™). We have to prove that for any sequence { f;}
in H*(R"™) satisfying sup; || f;|[zs < 1, we can extract a subsequence { f;, } such
that {¢f), } converges in H*(R").

As H*(R") is a Hilbert space, the weak compactness theorem® ensures that
the sequence {f;};en converges weakly, up to extraction, to an element f of
H*(R™) with || f||zs < 1. We continue to denote this subsequence by {f;};en
and set g; = f; — f. By Theorem 7.22, sup; [|pg;|lgs < C. Our task is thus
reduced to proving that the sequence {¢g;},en tends to 0 in H'(R™). We now

4

“Theorem (Weak compactness in Hilbert spaces, cf. [GT01, Theorem 5.12, p. 85]). A bounded
sequence in a Hilbert space contains a weakly convergent subsequence. In other word, every
bounded point set in Hilbert space is weakly compact.
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have, for any positive real number R,

[ 17 ()€ P

<[ el 7 () e
IEI<R
[ ) g o)) P
lEIZR

<[l o @ Pae + 1Pl
XX €l<R J (1+w2R2)s—t'

As {¢g;}jen is uniformly bounded in H*(R"), for a given positive real number
e, we can choose R such that

logs |2 < =
)s—t 2

1
(1+ w?R?
On the other hand, as the function 1)¢ defined by

ve(n) == F (1 + lwnl*) 7@ (€ — )
belongs to .7’(R"™), we can write

Fle)©) = | ele = nas(n)dn

= [ lonl?) el (v = (e, )
As {g;}jen converges weakly to 0 in H*(R"), we can thus conclude that
Jim 7 (g;)(§) =0, VEER™.

Let us temporarily assume that

sup |7 (g;)(§)] < M < oo. (7.26)
41S]
Lebesgue’s dominated convergence theorem then implies that
lim (1 + |we*)' .7 (9g5)(§)Pdg = 0,

iz Jigl<r
which leads to the convergence of the sequence {¢g;}jen to 0 in H*(R™).
To complete the proof of the theorem, let us prove (7.26). It is clear that

F (o)1 < [ 1ot =mlastnldn

1/2
ol ([ 1+ lonP)lote - mPan)



-208- 7. Sobolev Spaces

Now, as ¢ € . (R"), there exists a constant C such that

. C i n
lp(€ —m)| < i+ \w(fj\ﬁ) )N with  Ng = 5t |s| + 1.
We thus obtain
[ ko)Lt = )P

</ (1+ wnIZ)_sls@(&—n)IanJr/ (1+ |wnl*)~*1@(& — n)[Pdn
In|<2R [n|>2R

<C /| (1 )+ O, / (1 + fwonf®) (1 + (€ —m)[2)~Nodn.
UIBS

In|=

Finally, since || < R, we always have [£ — n| > |2i| in the last integral, so we

eventually get

d
/ (14 |wn|*)*[¢(& = n)|*dn <C(1+ RA)HH2 4 C n

mi>2r (1 + wn|?)t+n/2
<C(1 + RY)lsHn/2 L oR2,
This yields (7.26) and completes the proof of the theorem. |

From the above theorem, we can deduce the following compactness result.
Theorem 7.24. For any compact subset K of R" and t < s, the embedding of Hj-(R™)

into HY-(R™) is a compact linear operator, where Hj (R™) denote the space of those
distributions of H*(R™) which are supported in K.

Proof. 1t suffices to consider a function ¢ € .(R™) which is identically equal to
1 in a neighborhood of the compact K and then to apply Theorem 7.23. [
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