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preface

Abstract algebra is a relatively modern topic in mathematics. In fact, when I took this course it
was called Modern Algebra. I used the fourth ed. of Contemporary Abstract Algebra by Joseph
Gallian. It happened that my double major in Physics kept me away from the lecture time for the
course. I learned this subject first from reading Gallian’s text. In my experience, it was an excellent
and efficient method to initiate the study of abstract algebra. Now, the point of this story is not
that I want you to skip class and just read Gallian. I will emphasize things in a rather different
way, but, certainly reading Gallian gives you a second and lucid narrative to gather your thoughts
on this fascinating topic. I provide these notes to gather ideas from Gallian and to add my own.

sources

I should confess, I have borrowed many ideas from:

1. Contemporary Abstract Algebra by Joseph Gallian

2. the excellent lectures given by Professor Gross of Harvard based loosely on Artin’s Algebra

3. Dummit and Foote’s Abstract Algebra

4. Fraleigh

5. Rotman

style guide

I use a few standard conventions throughout these notes. They were prepared with LATEX which
automatically numbers sections and the hyperref package provides links within the pdf copy from
the Table of Contents as well as other references made within the body of the text.

I use color and some boxes to set apart some points for convenient reference. In particular,

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a �.

However, I do make some definitions within the body of the text. As a rule, I try to put what I
am defining in bold. Doubtless, I have failed to live up to my legalism somewhere. If you keep a
list of these transgressions to give me at the end of the course it would be worthwhile for all involved.

The symbol � indicates that a proof is complete. The symbol O indicates part of a proof is done,
but it continues.

As I add sections, the Table of Contents will get longer and eventually change the page numbering
of the later content in terms of the pdf. When I refer to page number, it will be the document
numbering, not the pdf numbering.
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Chapter 1

Group Theory

The organization of these notes loosely follows Gallian. For the most part I include every theorem
which Gallian includes. However, I include some extra examples and background. I lack interesting
quotes12

1.1 Lecture 1: an origin story: groups, rings and fields

In a different notation, but with the same essential idea, the fact that solutions to ax2 + bx+ c = 0

are given by x = −b±
√
b2−4ac

2a has been known for millenia. In contrast, the formula for solutions of
the cubic equation ax3+bx2+cx+d is only about a half-millenia old. Del Ferro solve the cubic3 circa
1500, Tartaglia solved it around 1530 then it was published by Cardano in his Ars Magna in 1545.
Cardano’s student Ferrari solved quartic4 and that can also be found in the Ars Magna. Nearly
the same tricks give closed form equations for the cubic and quartic. Euler, Lagrange and other
18th century mathematicians knew volumes about how to factor and solve polynomial equations.
It seemed it was just a matter of time to find a formula for the solution of

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

But, after a great effort by Lagrange there was no formula forthcoming. Moreover, it began to be
clear that such a formula would be impossible due to the structure of Lagrange’s study. At the
dawn of the nineteenth century Ruffini gave the first (incomplete in 1799 and again in 1813) proofs
that there could not exist a general quintic formula. Abel, at the age of 19, gave a complete proof
of the non-existence of the quintic formula in 1821. In 1831 a young Frenchman named Evariste
Galois found a way to explain when it was possible to find the solutions to a 5-th order polynomial
equation (for example, x5 − 1 = 0 is easy to solve). Galois insight was to identify the patterns
in Lagrange’s work which involved permutations of the roots of the equation. In retrospect, this
was the birth of Group Theory. In short, Galois said there was a nice solution to a quintic if the
Galois group is solvable. If a group is simple5 then it cannot be broken down further, they’re sort of
atomic6. So, in particular, if you show the Galois group of a polynomial is simple then, game-over,

1I make up for these with odd footnotes.
2for example, this or this. No Rickroll, I promise.
3forgive me if I don’t reproduce the formula here. See this for example
4this is quite a formula, it takes about a page, for example see this
5we later define simple and solvable groups, the details are not too important for our current discussion.
6more a bit later on how the term atom breaks down: Neutrons, Protons, electrons then on to quarks and such...

1

https://www.youtube.com/watch?v=iIpfWORQWhU
https://www.youtube.com/watch?v=AjPau5QYtYs
http://www.math.vanderbilt.edu/~schectex/courses/cubic/
https://en.wikipedia.org/wiki/Quartic_function
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no solution7. This helps you understand why mathematicians were so happy we finally8 classified
all finite simple groups in 20049. To give a specific example of Galois’ Theory’s power,

3x5 − 15x+ 5 = 0

is not solvable by radicals. Gallian gives the group theoretic argument on why that is on page
559 of our text. Interestingly, Galois’ contribution was not recognized until several decades af-
ter his death. In 1846 Lioville understood the importance of Galois’ work and began to promote
Galois’ group concept. By 1870, Jordan10 understood Galois’ well-enough to write a text on it.
That said, I don’t have much more to say about Galois theor in this course. It is interesting, pow-
erful, and motivational to the study of group theory. But, our focus is on more elementary material.

Initially, groups were all about permutations, but, as the story continues mathematicians discovered
the structure of a group was not unique to permutations. For example, the symmetry groups
promoted by Klein and Lie in the late nineteenth century. Thinking of groups abstractly came a
bit later. Gallian credits this to Dyck and Weber circa 1883. Dyck, a student of Klein, emphasized
the importance of invertibility in a paper about Tesselations11. Let pause our historical tour to
examine the definition of a group and a few elementary examples.

Definition 1.1.1. A set G with an operation12 ? : G×G→ G forms a group if

(i.) Associativity: (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G,

(ii.) Identity: there exists e ∈ G such that a ? e = e ? a = a for each a ∈ G,

(iii.) Invertibility: for each g ∈ G there exists h ∈ G such that h ? g = g ? h = e.

If a ? b = b ? a for all a, b ∈ G then we say G is an abelian or commutative group. If there exist
a, b ∈ G for which a ? b 6= b ? a then G is a non-abelian group.

The notation ? is not typically used as we study specific examples. In fact, to denote a?b we typically
use either juxtaposition (ab) or in the case of an abelian group we use additive notation (a+b).
It is customary to only use + for a commutative operation.

Example 1.1.2. Let G = Z is a group under addition with identity 0: In particular, we know for
a, b, c ∈ Z there exists −a ∈ Z and 0 ∈ Z for which:

(i.) (a+ b) + c = a+ (b+ c), (ii.) a+ 0 = a = 0 + a, (iii.) a+ (−a) = 0 = (−a) + a.

Moreover, we know whenever a, b ∈ Z the sum a+ b ∈ Z.

7ok, to be precise, no closed-form solution in terms of radicals and such, a fifth order polynomial with real
coefficients has a zero by the intermediate value theorem. But, the existence of such a zero is not the same as the
existence of a nice formula for the zero

8 in 2004, Aschbacher and Smith published a 1221-page proof for the missing quasithin case
9we wont get to that in this course, its about 10,000 pages, including for example the paper of Feit-Thompson

which alone is 250 pages, but, I will loosely cover the appropriate section later in Gallian in due time
10of the Jordan form, yes, sorry bad memories for my Math 321 class
11see Dr. Runion’s office for an example
12this notation indicates that ? is a function from G×G to G. In other words, ? is a binary operation. This is

sometimes identified as an axiom of a group known as closure.
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You might wonder how we know such properties hold for Z. To be precise, we could build the
integers from scratch using set-theory, but, to properly understand that construction it more or
less begs an understanding of this course. Consequently, we will be content13 to use Z,C,R and
Q as known objects complete with their standard properties. That said, as our understanding of
abstract algebra increases we will begin to demonstrate how these standard number systems can
be constructed.

Example 1.1.3. Actually, this is a pair of non-examples. First, Z with subtraction is not a group.
Second, Z with multiplication is not a group. why ?

The next example is a bit meta.

Example 1.1.4. Let V be a vector space then V,+ where + denoted vector addition forms a
group where the identity element is the zero vector 0. The definition of a vector space includes the
assumption (x+ y) + z = x+ (y+ z) for all x, y, z ∈ V hence Axiom (i.) holds true. Axiom (ii.) is
satisfied since x+ 0 = 0 + x = 0 for each x ∈ V . Finally, Axiom (iii.) for each x ∈ V there exists
−x ∈ V such that x+ (−x) = 0. In summary, any vector space is also an abelian group where the
operation is understood to be vector addition14

I should pause to note, the examples considered thus far are not the sort of interesting examples
which motivated and caused mathematicians to coin the term group. These examples are just easy
and make for short discussion. Let me add a few more to our list:

Example 1.1.5. Let Q× = Q−{0} denote the set of nonzero rational numbers. Q× forms a group
with respect to multiplication. The identity element is 1.

Example 1.1.6. Let R× = R − {0} denote the set of nonzero real numbers. R× forms a group
with respect to multiplication. The identity element is 1.

Example 1.1.7. Let C× = C−{0} denote the set of nonzero complex numbers. C× forms a group
with respect to multiplication. The identity element is 1.

Example 1.1.8. Let Z× = Z− {0} denote the set of nonzero integers. Z× does not form a group
since 2x = 1 has solution x = 1/2 /∈ Z.

Let me give at least one interesting explicit example in this section. This group is closely tied to
invertible linear transformations on Rn:

Example 1.1.9. Let GL(n,R) = {A ∈ Rn×n | det(A) 6= 0}. We call GL(n,R) the general
linear group of n× n matrices over R. We can verify GL(n,R) paired with matrix multiplication
forms a nonabelian group. Notice, matrix multiplication is associative; (AB)C = A(BC) for all
A,B,C ∈ GL(n,R). Also, the identity matrix I defined15 by Iij = δij has AI = A = IA for each
A ∈ GL(n,R). It remains to check closure of multiplication and inversion. Both of these questions
are nicely resolved by the theory of determinants: if A,B ∈ GL(n,R) then

det(AB) = det(A)det(B) 6= 0

13in an intuitive sense, numbers exist independent of their particular construction, so, not much is lost here.
For example, I can construct C using vectors in the plane, particular 2 × 2 matrices, or via equivalence classes of
polynomials. Any of these three could reasonably be called C

14 Of course, there is more structure to a vector space, but, I leave that for another time and place.
15δij is one of my favorite things. This Kronecker delta is zero when i 6= j and is one when i = j.
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thus AB ∈ GL(n,R) hence we find matrix multiplication forms a binary operation on GL(n,R). Fi-
nally, we know det(A) 6= 0 implies there exists A−1 for which AA−1 = I = A−1A and det(AA−1) =
det(A)det(A−1) = det(I) = 1 thus det(A−1) = 1/det(A) 6= 0. Therefore, we find A ∈ GL(n,R)
implies A−1 ∈ GL(n,R)

The previous example is more in line with Klein and Lie’s investigations of transformation groups.
Many of those groups will appear as subgroups16 of the example above. At this point I owe you a
few basic theorems about groups.

Theorem 1.1.10. In a group G there can be only one identity element.

Proof: let G be a group with operation ?. Suppose e and e′ are identity elements in G. We have
(i.) e ? a = a = a ? e and (ii.) e′ ? a = a = a ? e′ for each a ∈ G. Thus, by (i.) with a = e′ and (ii.)
with a = e,

e ? e′ = e′ = e′ ? e & e′ ? e = e.

We observe e′ ? e = e′ = e. In summary, the identity in a group is unique. �

An examination of the proof above reveals that the axiom of associativity was not required for the
uniqueness of the identity. As a point of trivia, a group without the associativity axiom is a loop.
Here is a table17 with other popular terms for various weakenings of the group axioms:

Relax, I only expect you to know the definition of group for the time being18.

Theorem 1.1.11. Cancellation Laws: In a group G right and left cancellation laws hold.
In particular, ba = ca implies b = c and ab = ac implies b = c.

Proof: let G be a group with operation denoted by juxtaposition. Suppose a, b, c ∈ G and ba = ca.
Since G is a group, there exists a−1 ∈ G for which aa−1 = e where e is the identity. Multiply
ba = ca by a−1 to obtain baa−1 = caa−1 hence be = ce and we conclude b = c. Likewise, if ab = ac

16ask yourself about this next lecture
17I borrowed this from the fun article on groups at Wikipedia
18As my adviser would say, I include the table above for the most elusive creature, the interested reader
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then a−1ab = a−1ac hence eb = ec and we find b = c. �

Cancellation is nice. Perhaps this is also a nice way to see certain operations cannot be group
multiplications. For example, the cross product in R3 does not support the cancellation property.
For those who have taken multivariate calculus, quick question, which group axioms fail for the
cross product?

Theorem 1.1.12. Let G be a group with identity e. For each g ∈ G there exists a unique element
h for which gh = e = hg.

Proof: let G be a group with identity e. Suppose g ∈ G and h, h′ ∈ G such that

gh = e = hg & gh′ = e = h′g

In particular, we have gh = gh′ thus h = h′ by the cancellation law. �

At this point, I return to our historical overview of abstract algebra19 Returning to Lagrange and
Euler once more, they also played some with algebraic integers which were things like a + b

√
n

in order to attack certain questions in number theory. Gauss instead used modular arithmetic in
his master work Disquisitiones Arithmeticae (1801) to attack many of the same questions. Gauss
also used numbers20 of the form a + b

√
−1 to study the structure of primes. Gauss’ mistrust

of Lagrange’s algebraic numbers was not without merit, it was known that unique factorization
broke down in some cases, and this gave cause for concern since many arguments are based on
factorizations into primes. For example, in Z[

√
−5] = {a+ b

√
−5 | a, b ∈ Z} we have:

(2)(3) = (1 +
√
−5)(1−

√
−5).

It follows the usual arguments based on comparing prime factors break down. Thus, much as with
Abel and Ruffini and the quintic, we knew something was up. Kummer repaired the troubling
ambiguity above by introducing so-called ideal numbers. These ideal numbers were properly con-
structed by Dedekind who among other things was one of the first mathematicians to explicitly
use congruence classes. For example, it was Dedekind who constructed the real numbers using so-
called Dedekind-cuts in 1858. In any event, the ideals of Kummer and Dedekind and the modular
arithmetic of Gauss all falls under the general concept of a ring. What is a ring?

Definition 1.1.13. A set R with addition + : R × R → R and multiplication ? : R × R → R is
called a ring if

(i.) (R,+) forms an abelian group

(ii.) (a+ b) ? c = a ? c+ b ? c and a ? (b+ c) = a ? b+ a ? c for all a, b, c ∈ R.

If there exists 1 ∈ R such that a ? 1 = a = 1 ? a for each a ∈ R then R is called a ring with unity.
If a ? b = b ? a for all a, b ∈ R then R is a commutative ring.

Rings are everywhere, so many mathematical objects have both some concept of addition and mul-
tiplication which gives a ring structure. Rings were studied from an abstract vantage point by
Emmy Noether in the 1920’s. Jacobson, Artin, McCoy, many others, all added depth and appli-
cation of ring theory in the early twentieth century. If ab = 0 and neither a nor b is zero then a

19I have betrayed Cayley in this story, but, have no fear well get back to him and many others soon enough
20if a, b ∈ Z then a+ bi is known as a Gaussian integer
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and b are nontrivial zero-divisors. If ab = c then we say that b divides c. Notice, zero always is a
divisor of zero. Anyway, trivial comments aside, if a ring has no zero divisors then we say the ring
is an integral domain. Ok at this point, it becomes fashionable (unless youre McCoy) to assume
R is commutative. A good example of an integral domain is the integers. Next, if a has b for which
ab = 1 then we say a is a unit. If every nonzero element of a ring is a unit then we call such a ring
a field. Our goal this semester is to understand the rudiments of groups, rings and fields. Well
focus on group structure for a while, but, truth be told, some of our examples have more structure.
We return to the formal study of rings after Test 2. Finally, if you stick with me until the end, Ill
explain what an algebra is at the end of this course.

Since we have a minute, let me show you a recent application of group representation theory to
elementary particle physics. First, the picture below illustrates how a quark and an antiquark
combine to make Pions, and Kaons:

These were all the rage in early-to-mid-twentieth century nuclear physics. But, perhaps the next
pair of examples will bring us to something you have heard of previously. Let’s look at how quarks
can build Protons and Neutrons:

Let me briefly explain the patterns. These are drawn in the isospin-hypercharge plane. They
show how the isospin and hypercharge of individual up, down or strange quarks combine together
to make a variety of hadronic particles. The N and P stand for Neutron and Proton. These
patterns were discovered before quarks. Then, the mathematics of group representations suggested
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the existence of quarks. The ⊗ is a tensor product. These pictures are taken from a talk I gave
in graduate school in Dr. Misra’s Representation Theory course. Incidentally, on the suspicion the
pattern continued, Gell-Mann predicted the Ω− particle existed in 1962. It was experimentally
verified in 1964. Murray Gell-Mann won the Nobel Prize in Physics for this work on what he called
the eight-fold way. Gell-Mann and Zweig (independently) proposed the quark model in 1964. It
took about three decades for physicsists to experimentally confirm the existence of the quarks21.

I recommend working on Chapter 2 Gallian problems such as:

#7, 11, 14, 15, 16, 17, 18, 19, 20, 26, 28, 30, 31, 34,

these should help bring the Group concept to life. I do not collect these, but, I will keep them in
mind as I construct tests.

Problems for Lecture 1: (these are collected at the beginning of Lecture 3)

Problem 1: Determine which of the following sets with operations are groups. If it is a group,
state its identity, what the inverse of a typical element looks like, and determine if it
is Abelian. If it is not a group, state which axioms hold and give counter-examples
for those which fail (don’t forget closure).

(a) (Z≥0,+) non-negative integers with addition

(b) (3Z,+) multiples of 3 (i.e. 0,±3,±6, . . . ) with addition

(c) (R<0, · ) negative reals with multiplication

(d) (R 6=0,÷) non-zero reals with division

(e) (Q>0, · ) positive rationals with multiplication

Problem 2: explain why Z does not form a group with respect to subtraction. Also, explain why
Z does not form a group with respect to multiplication.

Problem 3: I claimed GL(n,R) was nonabelian. Prove my claim in the case n = 2.

Problem 4: solve number 37 from page 56 of Gallian.

21I’ll let our physics department explain the details of those experiments for you...

http://www.supermath.info/quarks.pdf
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1.2 Lecture 2: on orders and subgroups

In this section we introduce more groups and we initiate our study of subgroups and orders. Next,
for our final new example before I get to the meat and potatoes of Gallian Chapter 3, I take a
logical loan from our future: in particular, the assumption that Zn forms a commutative ring with
respect to the operations of addition and multiplication given below:

Definition 1.2.1. modular arithmetic Suppose n ∈ N where n ≥ 2. Let Zn = {0, 1, . . . , n− 1}
and define addition and multiplication on Zn as follows: if a, b ∈ Zn then a + b = c and
a× b = ab = d where c, d ∈ Zn and a+ b− c, ab− d ∈ nZ where nZ = {nk | k ∈ Z}.

In Lectures 4 and 5 we’ll study this structure carefully. Essentially, the idea is just to add or
multiply in Z then remove multiples of n until we have some integer in {0, 1, . . . , n − 1}. This
means multiples of n serve as zero in Zn.

Example 1.2.2. The addition and multiplication tables for Z3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

&

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Notice, (Z3,+) forms an abelian group whereas (Z3,×) is not a group because 0 is not invertible.
However, G = {1, 2} with multiplication modulo 3 does form a group with two elements. Notice,
2× 2 = 1 hence 2−1 = 2.

The multiplicative group we exhibited in the example above is part of a much larger story. In
particular, it can be shown that if the gcd(n, k) = 1 then there exists j ∈ Zn for which jk = 1
which is to say k−1 = j ∈ Zn. Again, we’ll prove such assertions in Lectures 4 and 5 for the sake
of the students who do not already know these fun facts from previous course work. That said, for
the sake of conversation, let us define:

Definition 1.2.3. The group of units in Zn is the set of all x ∈ Zn such that gcd(x, n) = 1. We
denote this group by U(n).

For example, the G of Example 1.2.2 is U(3).

Example 1.2.4. In Z10 we have 1, 3, 7, 9 relatively prime to 10. Hence, U(10) = {1, 3, 7, 9}. The
multiplication (aka Cayley) table for U(10) is:

× 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Example 1.2.5. In Z11 since 11 is prime, all smaller integers are relatively prime to 11:

U(11) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Notice, as a sample calculation, 9× 5 = 1 modulo 11 hence 9−1 = 5 in U(11).
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In fact, whenever p is prime, we should notice Zp with addition and multiplication modulo p
provides the structure of a field because addition and multiplication behave as they ought and
every nonzero element has a multiplicative inverse22. We say Zp is a finite field in constrast to the
infinite fields R,Q,C etc. I should mention, an example we studied last lecture generalizes to any
field:

Definition 1.2.6. The general linear group of n × n matrices over a field F is the set of all
invertible matrices in Fn×n which is denoted GL(n,F).

The group operation is given by the natural matrix multiplication of n × n matrices with entries
in F. With appropriate modifications the usual linear algebra for invertible matrices equally well
applies in this context. In particular, in linear algebra we found a formula for the inverse in terms
of the classical adjoint. This formula continues to make sense over F with the understanding that
division is replaced by multiplication by multiplicative inverse. Perhaps you will have a homework
on this after we discuss modular arithmetic a bit more.

Definition 1.2.7. The number of elements of a group (finite or infinite) is called the order. The
order of G is denoted |G|.

Notice this allows |G| ∈ N or |G| = ∞. Notice |G| ≥ 1 since every group has at least the identity
element.

Example 1.2.8. If G = {e} where e ? e = e then G forms a group where e−1 = e and |G| = 1.

Example 1.2.9. The order of Zn = {0, 1, . . . , n− 1} is simply n.

To discuss the order of an element we should define some notation23. The additive notation ng is
a notation for successive group additions:

g + g + · · ·+ g︸ ︷︷ ︸
n−summands

= ng

to be precise, g + g = 2g and for n ∈ N we recursively define (n + 1)g = ng + g. Likewise, the
multiplicative notation

gg · · · g︸ ︷︷ ︸
n−factors

= gn

is defined recursively via gn+1 = gng for each n ∈ N.

Definition 1.2.10. The order of an element g in a group G is the smallest n ∈ N such that
gn = e. If no such n ∈ N exists then g has infinite order. We denote the order of an element g
by |g|. In additive notation, with additive identity 0 ∈ G, if |g| = n then ng = 0.

Example 1.2.11. In the context of Z4 as an additive group we have

1 + 1 + 1 + 1 = 0, 2 + 2 = 0, 3 + 3 + 3 + 3 = 0

thus |1| = |3| = 4 whereas |2| = 2.

22that is, every nonzero element is a unit
23my apologies if I used this previously without explaination, we should be careful to not assume usual math

automatically applies to the abstract group context. Since group operations are abstract, we must define things like
powers in terms of the group operation alone.
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Example 1.2.12. Consider G = R×. We note a ∈ G with a 6= 1 has an 6= 1 for all n ∈ N. Thus
|a| = ∞. Every element of G, except 1, has infinite order. Moreover, |G| = ∞. We can make the
same observation about C× or Q×.

Definition 1.2.13. Subgroup If H is a subset of a group G and H is itself a group with respect
to the operations of G then we say H is a subgroup of G. We denote24 H ≤ G.

A silly example, G ⊆ G hence G ≤ G. If we wish to indicate H is a subgroup of G and H 6= G
then we write H < G. If H < G then we say H is a proper subgroup of G. A second silly example,
if e is the identity in G, then {e} = H forms the trivial subgroup. If H ≤ G and H 6= {e} then
H is a nontrivial subgroup of G. Notice, I wrote {e} not e because one is a set and the other is
not. I expect you to do likewise.

Example 1.2.14. Is Zn a subgroup of Z under addition ? why not ?

Example 1.2.15. In Z4 = {0, 1, 2, 3} we have H = {0, 2} with 2 + 2 = 0 hence H ≤ Z4 as it
clearly forms a group.

Clearly is always suspicious, but, I really say it because of the wonderful theorems which follow
next:

Theorem 1.2.16. one-step subgroup test25: Let G be a group. If H ⊆ G and H 6= ∅ then
H ≤ G if ab−1 ∈ H whenever a, b ∈ H. Equivalently, in additive notation, H ≤ G if a − b ∈ H
whenever a, b ∈ H.

Proof: I will give the proof in multiplicative notation. Suppose H a nonempty subset of G with
the property that ab−1 ∈ H whenever a, b ∈ H. To show H ≤ G we must prove H satisfies the
axioms of a group where the operation is the multiplication of G suitably restricted to H.

Identity: Notice, since H 6= ∅ there exists a ∈ H hence aa−1 = e ∈ H. Observe he = h = eh for
each h ∈ H by the given group structure of G and the fact h ∈ H implies h ∈ G since H ⊆ G.
Thus e is the identity in H.

Invertibility: let a ∈ H and note aa−1 = e ∈ H thus a−1 ∈ H. It follows every element of H has
an inverse in H.

Closure: suppose a, b ∈ H and note by invertiblility b−1 ∈ H. Moreover, we can prove, (b−1)−1 =
b. Thus ab = a(b−1)−1 ∈ H and we have shown the operation on G restricts to a binary operation
on H as desired.

Associativity: of multiplication in H is easy, if a, b, c ∈ H then a, b, c ∈ G thus a(bc) = (ab)c. �

Theorem 1.2.17. two-step subgroup test: Let G be a group. If H ⊆ G and H 6= ∅ then
H ≤ G if H is closed under multiplication and inversion. That is, H ≤ G if (1.) ab ∈ H whenever
a, b ∈ H and (2.) a−1 ∈ H whenever a ∈ H.

Proof: suppose H is a nonempty subset of a group G with properties (1.) and (2.) as described
in the theorem. Suppose a, b ∈ H then by (2.) we have b−1 ∈ H. Thus, as a, b−1 ∈ H we have
ab−1 ∈ H using (1.). Therefore, Theorem 1.2.16 applies and we conclude H ≤ G. �

It is important to prove H 6= ∅ as we use the subgroup theorems to analyze potential subgroups.

24this is read ” H is a subgroup of G ”
25depending on how you parse things, you might see more steps here, see page 60 of Gallian for commentary
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Example 1.2.18. In problem 37 of page 56, you are asked to show G = {
[
a a
a a

]
|a ∈ R, a 6= 0}

forms a group with respect to matrix multiplication. Is this a subgroup of GL(2,R) ?

Example 1.2.19. Let G = GL(n,R) and define H = {A ∈ Rn×n | det(A) = 1}. Notice, det(I) = 1
thus I ∈ H 6= ∅. If A,B ∈ H then notice det(AB) = det(A)det(B) = 1(1) = 1 thus AB ∈ H. Also
if A ∈ H then det(A) = 1 thus A−1 ∈ G exists with AA−1 = I. Note, as det(I) = 1,

1 = det(AA−1) = det(A)det(A−1)

We find det(A−1) = 1 and conclude A−1 ∈ H. We conclude by the two-step subgroup test H ≤ G.

The example above shows the following name-calling is warranted. Also, while I stated the example
for R we can just as well use any field F.

Definition 1.2.20. Special Linear Group: of n× n matrices over the field F is given by

SL(n,F) = {A ∈ Fn×n | det(A) = 1}.

It is interesting to note that in the case |G| < ∞ it suffices to check that a nonempty subset H
is closed under the operation of G. See Theorem 3.3 in Gallian. The remainder of this section
is devoted to special subgroups which we can construct for any given group. We begin with the
subgroup generated by a particular element. First some notation26

Definition 1.2.21. cyclic subgroup generated by an element: Let G be a multiplicative group
and g ∈ G then 〈g〉 = {gn | n ∈ Z}. If G is an additive group and g ∈ G then 〈g〉 = {ng | n ∈ Z}

Of course, the definition above would be very out of place if we didn’t have the following theorem:

Theorem 1.2.22. Let a ∈ G where G is a group. Then 〈a〉 ≤ G. In other words, the cyclic
subgroup generated by a is indeed a subgroup.

Proof: let a ∈ G with multiplicative notation. We define a−n = (a−1)n for n ∈ N and a0 = e.
Observe a ∈ 〈a〉 6= ∅. Suppose aj , ak ∈ 〈a〉 where j, k ∈ Z. Notice27 ajak = aj+k and as j + k ∈ Z
we find ajak ∈ 〈a〉. Moreover, ak ∈ 〈a〉 with k ∈ Z has −k ∈ Z and thus a−k ∈ 〈a〉 where
aka−k = a0 = e. Thus 〈a〉 is closed under multiplication and inversion in G and we conclude by
the two-step subgroup test that 〈a〉 ≤ G. �

Of course, we could prove the theorem above with the one-step test if we prefer that course of
action. See Gallians slick argument at top of page 63.

Definition 1.2.23. Center of Group: let G be a group then we define the center of G by
Z(G) = {a ∈ G | ax = xa for each x ∈ G}.

In an additive group notation, Z(G) = {a ∈ G | a + x = x + a for each x ∈ G}. For example,
Z(Zn) = Zn since addition in Zn commutes. The center is more interesting for nonabelian groups.
This much we can say with relatively little effort:

Theorem 1.2.24. If G is a group then Z(G) ≤ G.

26this is important!
27This is a pretty big leap! As it happens, this takes some work to prove... see solution to Lecture 2 problems.
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Proof: see Gallian page 64. �

We can also study a similar object for a particular element in the group:

Definition 1.2.25. Centralizer of a group element: let g be a fixed element in a group G. We
define C(x) = {g ∈ G | gx = xg} to be the centralizer of x in G.

A silly example, in an abelian group G we have C(x) = G for any x ∈ G since x commutes with
all elements of G.

Theorem 1.2.26. For each x ∈ G the centralizer of x is a subgroup of G; C(x) ≤ G .

Proof: Suppose x ∈ G. Note xe = ex thus e ∈ C(x) 6= ∅. Let a, b ∈ C(x). We are given ax = xa
and bx = xb. Notice, bx = xb implies b−1bxb−1 = b−1xbb−1 thus xb−1 = b−1x. Therefore,

(ab−1)x = a(b−1x) = a(xb−1) = (ax)b−1 = (xa)b−1 = x(ab−1)

hence ab−1 ∈ C(x). We conclude C(x) ≤ G by the one-step subgroup test. �

I recommend working on Chapter 2 Gallian problems such as:

#12, 13, 21, 23, 29

also, Chapter 3 Gallian problems such as:

#1, 6, 8, 9, 10, 14, 15, 16, 20, 21, 24, 28, 34, 35, 38, 39, 40, 41, 42, 44, 45, 46, 54

these should help bring the Group concept to life. I do not collect these, but, I will keep them in
mind as I construct tests.

Problems for Lecture 2: (these are collected at the beginning of Lecture 4)

Problem 5: solve number 24 from page 55 of Gallian (construct Cayley table for U(12).)

Problem 6: solve number 4 from page 67 of Gallian. (|g| = |g−1|)

Problem 7: solve number 45 from page 70 of Gallian. (subgroup problem)

Problem 8: solve number 51 from page 71 of Gallian. (centralizer and center GL(2,R))
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1.3 Lecture 3: on the dihedral group and symmetries

In this section we discuss groups which are tied to the concept of distance in euclidean space. I’ll
focus on the context of Rn, and I will state without proof some of the deeper theorems in this
section to euclidean n-space Rn. Before I get into that, I should make a general comment. There
is a group we can construct for any set S.

Definition 1.3.1. Let S be a nonempty set a bijections on S is called a permutation of S.

If G is the set of permutations on a nonempty set S then it is not hard to show that G forms a
group with respect to function composition. For example, the mapping IdS : S → S defined by
IdS(x) = x for each x ∈ S serves as the identity of G. I’ll let you complete the proof in your
homework. Ultimately in this section we explain that the set of distance preserving functions on
Rn form a subgroup of the permutations on Rn.

We denote euclidean norm or vector length by ||(x1, . . . , xn)|| =
√
x2

1 + · · ·+ x2
n. This norm

satisfies the needed axioms for a norm:

||x+ y|| ≤ ||x||+ ||y||︸ ︷︷ ︸
triangle inequality

, ||cx|| = |c| ||x||︸ ︷︷ ︸
absolute homogeneity

, ||x|| = 0 only if x = 0, ||x|| ≥ 0︸ ︷︷ ︸
positive definite

.

The distance between P,Q ∈ Rn is naturally given by the length of the displacement vector from
P to Q; d(P,Q) = ||Q− P || = ||P −Q||. Let us define:

Definition 1.3.2. If P,Q ∈ Rn then we define distance between P,Q as d(P,Q) = ||P −Q||.

Of course, we can also express ||v|| =
√
v • v thus d(P,Q) =

√
(P −Q) • (P −Q). This is nice since

we already know many nice properties of the dot-product from our work in linear algebra. The
term isometry means same measure. In particular, an isometry of a space is a mapping on the
space which preserves the distance between points.

Definition 1.3.3. Isometry: if φ : Rn → Rn has

||φ(P )− φ(Q)|| = ||P −Q||

for each P,Q ∈ Rn then φ is an isometry.

Notice the definition above allows φ to be any function in principle. However, after some study,
we’ll find isometries are quite rigid in their construction. I follow §2.3 of Rotman’s A First Course
in Abstract Algebra, although, he focuses entirely on n = 2.

Theorem 1.3.4. Let φ be an isometry of Rn. Then φ preserves dot-products28 iff φ(0) = 0.

Proof: Suppose φ(P ) •φ(Q) = P •Q for all P,Q ∈ Rn. Thus φ(P ) •φ(P ) = P •P = ||P ||2. Hence,
φ(0) •φ(0) = ||0||2 = 0 and it follows φ(0) = 0.

To prove the converse direction we begin by assuming φ is an isometry for which φ(0) = 0. As φ
is an isometry we have d(P, 0) = d(φ(P ), φ(0)) hence ||P || = ||φ(P ) − φ(0)|| = ||φ(P )||. Consider

28this means φ(P ) •φ(Q) = P •Q for all P,Q ∈ Rn
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then, by the usual algebra of dot-products,

||φ(P )||2 + ||φ(Q)||2 − 2φ(P ) •φ(Q) = [φ(P )− φ(Q)] • [φ(P )− φ(Q)]

= ||φ(P )− φ(Q)||2

= ||P −Q||2

= (P −Q) • (P −Q)

= ||P ||2 + ||Q||2 − 2P •Q.

Thus φ(P ) •φ(Q) = P •Q for all P,Q ∈ Rn and the theorem follows. �

Since the Cauchy Schwarz inequality says |v •w| ≤ ||v|| ||w|| it is reasonable to define the angle
between nonzero vectors. Notice from the Cauchy Schwarz inequality we have, for v, w 6= 0,∣∣∣∣ v •w

||v|| ||w||

∣∣∣∣ < 1

hence define θ ∈ [0, π] to be the value for which

v •w

||v|| ||w||
= cos θ.

In this way we provide a definition for angle between vectors in n-dimensions.

Theorem 1.3.5. If φ is an isometry of Rn and θ is the angle between v, w ∈ Rn then θ is also the
angle between φ(v), φ(w). In other words, φ preserves angles.

Proof: simply apply Theorem 1.3.4. In particular, if θ′ is the angle between φ(v), φ(w) for v, w 6= 0
then, by definition,

cos θ′ =
φ(v) •φ(w)

||φ(v)|| ||φ(w)||
=

v •w

||v|| ||w||
= cos θ

thus θ′ = θ as both θ, θ′ ∈ [0, π] by definition of angle between vectors. �

In summary, isometries of euclidean space preserve both the euclidean distance between points and
the usual angle between line-segments. It is good to have a notation for the set of all isometries,
and, also those special isometries which fix the origin:

Definition 1.3.6. The set of all isometries is denoted Isom(Rn) = {φ | φ an isometry of Rn}.
We also denote the origin-fixing isometries of Rn by Orth(n,R) = {φ ∈ Isom(Rn) | φ(0) = 0}.

Distinct points P,Q ∈ Rn determine a line L[P,Q] which we define via

L[P,Q] = {tP + (1− t)(Q− P ) | t ∈ R}

in contrast, the line-segment PQ is given by simply restricting t to the unit-interval [0, 1],

PQ = {tP + (1− t)(Q− P ) | t ∈ [0, 1]}.

We need these terminologies to discuss some of the isometries below. There are three types we
wish to discuss: (feel free to visualize in R2 for geometric clarity, but, these are also defined in Rn
with a bit more imagination)
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1. Rotations: about the origin, Rθ(0) = 0 whereas Rθ(P ) = P ′ where P ′ is rotated angle θ in
CCW direction from P . Observe this is distance preserving hence rotations are isometries.

2. Reflections: about a line L is denoted ρL. If x ∈ L then ρL(x) = x. Otherwise, if y 6= L
then ρL(y) = y′ where y′ is on the perpendicular bisector of L through y and y′ is the same
distance from L as y. Once again, geometrically, it is clear these are distance preserving hence
reflections are isometries.

3. Translations: given a point Q, a translation by Q is the function τQ : Rn → Rn by
τQ(x) = x+Q for each x ∈ Rn. I leave it to the reader to prove translations are isometries.

There are also glide reflections and you can read more about those in Chapter 28 of Gallian,
however, don’t do that right now, it’s not the right time29. Independent of whatever ambiguities
exist in my brief descriptions of rotations, reflections and translations above, it can be shown from
properties of euclidean geometry (dot-products, linear algebra, collinearity arguments,... see page
140-141 of Rotman’s A First Course in Abstract Algebra or see my video where I argue that every
isometry of euclidean n-space is the composition of a linear map and a translation in this video
which is based on Barret Oneill’s Elementary Differential Geometry30 Ok, fond memories aside:

Theorem 1.3.7. Every isometry of Rn is a bijection. Moreover, every isometry fixing 0 is a
nonsingular linear transformation.

With the result above given, it’s not too hard to prove the following:

Theorem 1.3.8. Isom(Rn) = {φ | φ an isometry of Rn} forms a group with respect to function
composition. Moreover, Orth(n,R) ≤ Isom(Rn).

Proof: left to reader. �

Since orthogonal transformations fix the origin we know they are nonsingular linear transformations
by Theorem 1.3.7. It follows that we can write T ∈ Orth(n,R) via multiplication by its standard
matrix; that is T (x) = Rx for some R ∈ Rn×n. Such matrices are naturally called orthogonal
matrices.

Definition 1.3.9. The set of all standard matrices of orthogonal transformations on Rn is denoted
O(n,R). That is, O(n,R) = {[T ] | T ∈ Orth(n,R)}.

You should show that O(n,R) = {R ∈ Rn×n | RTR = I} where RT denotes the transpose of the
matrix R. Just as the set of orthogonal transformations forms a subgroup of the set of all bijections
on Rn we will see that O(n,R) ≤ GL(n,R). We pick up this discussion again in the problems at
the conclusion of this section. For now, we turn to the discussion of the dihedral group and its origin.

We turn our focus to n = 2. The isometries of the plane are particularly nice to visualize and study.
In particular, you can envision what happens to shapes as they are transported by an isometry.
A circle maps to a circle. A line maps to a line. Things made by gluing lines together at regular
angles are sent to likewise constructed objects. In short, isometries preserve the shape of objects
in the plane. With this in mind, it is interesting to study those isometries which leave a particular
shape invariant. These are examples of symmetry. To be precise,

29also, for future edification past my course, you ought to watch the four lectures given by Professor Gross of
Harvard on the structure of isometries and discrete symmetries of the plane. I have not included all of his wonderful
arguments here, he uses group actions which we have yet to discuss. See this lecture approximately

30The proof I skip here is not abstract algebra, it is geometry, beautiful analytic geometry mixed with linear
algebra.

https://www.youtube.com/watch?v=OnsVHOmPIds&index=17&list=PLBY4G2o7DhF38OEvEImfR2heX7Szmq5Gs
https://www.youtube.com/watch?v=tx2yCz8MEvU
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Definition 1.3.10. Let Ω ⊆ R2. The symmetry group of Ω is defined via:

Σ(Ω) = {φ ∈ Isom(R2) | φ(Ω) = Ω}.

To show the symmetry group of Ω is indeed a group we can easily verify the identity map is a
symmetry of Ω. Can we prove the rest? Is it clear to you that the inverse of a symmetry is a
symmetry and is the product of any two symmetries once more a symmetry of Ω. What else should
we check to be careful?

In any event, it is true the symmetry group of a figure in the plane is a subgroup of the isometries
of the plane. In particular, the symmetry groups of regular polygons are known as the dihedral
groups 31 I hope this larger discussion has put Chapter 1 of Gallian in a bit more context.

Definition 1.3.11. Let Dn denote the symmetry group of a regular, unit-side-length, n-polygon.
We call this the dihedral group of order 2n.

It can be shown that all elements in Dn are produced by a rotation and a reflection. In particular,
Problem 32 on page 56 of Gallian is very helpful towards calculation in dihedral groups. The key
is:

fRf = R−1.

I intend to show how we argue that in this lecture, but, I’ll abstain here as I have no pretty pictures
to include. In short, for Dn the rotation which is fundamental is the CCW rotation R by 2π/n
radians; it is geometrically clear that Rn = e. Furthermore, if f is a reflection of the n-gon then
we can list the elements of Dn as:

{e,R,R2, . . . , Rn−1, f, fR,R2f, . . . , Rn−1f}

you can easily count there are n + n = 2n elements above and it follows that |Dn| = 2n. This is
not a proof! Of course, we can exhibit this in n = 3 or n = 4 without much trouble.

Example 1.3.12. Let R be a rotation about the origin by 120o or 2π/3 radians if you must. Let f
be the reflection about the vertical axis of the equilateral triangle where it has one side horizontal.
We can verify the symmetry group of the triangle is precisely:

{e,R,R2, f, Rf,R2f}

Furthermore, we can either fill out a Cayley Table for D3 via geometry or we can use fRf = R−1

to algebraically subdue the task. For example,

(R2f)(Rf) = R2(fRf) = R2R−1 = R.

whereas,

(Rf)(R2f) = (RfR)(Rf) = R−1(Rf) = f.

There you have it, D3 is nonabelian. We should try to fill out the Cayley table for D3 some time.

It is more subtle to actually prove that every element of Dn has the form I exhibit above. You
by now should not be surprised that I tell you to see page 144-145 of Rotman’s A First Course in

31The term Dihedral is due to Klein who initiated a larger study of symmetries known as the Erlangen Program.
See this Wikipedia article for a sense of the scope and importance of Klein’s program as it continues to this day

https://en.wikipedia.org/wiki/Erlangen_program
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Abstract Algebra for the gory and somewhat subtle details.

I recommend working on Chapter 1 Gallian problems such as:

#1, 2, 3, 12

I recommend working on Chapter 2 Gallian problems such as:

#32

also, Chapter 3 Gallian problems such as:
#7.

these should help bring the Group concept to life. I do not collect these, but, I will keep them in
mind as I construct tests.

Problems for Lecture 3: (these are collected at the beginning of Lecture 5)

Problem 9: Let S be a nonempty set. Let G be the set of permutations on S. Prove G forms a
group under function composition.

Problem 10: Prove Theorem 1.3.8 of this section. Keep in mind that Theorem 1.3.7 is known as
you construct the proof.

Problem 11: Using Definition 1.3.9 as the definition of O(n,R), show that

O(n,R) = {R ∈ Rn×n | RTR = I}.

Problem 12: Consider the dihedral group D5 = {R0◦ , R72◦ , R144◦ , R216◦ , R288◦ , V1, V2, V3, V4, V5}
(symmetries of a regular pentagon). [Rotations are done counter-clockwise and re-
flections are labeled in the picture below.]

V1

V2

V3V4

V5

R0◦ , R72◦ , R144◦ , . . .

(a) Compute V1R72◦ , R144◦V3, and V2V5.

(b) Is D5 Abelian? Why or why not?

(c) Find the inverse of each element (R−1
0◦ =???, R−1

72◦ =???, etc.).

(d) Find the order of each element.
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1.4 Lecture 4: back to Z-number theory

In the interest of getting to nice examples of groups I have delayed the proper discussion of the
topics in this section. For most students of this course the content of this section is a review. I will
not cover the entirety during the classtime, but, I include all the gory details here since we need
these details to give proper, careful, arguments in the upcoming lectures about cyclic groups. This
material overlaps Chapter 0 of Gallian.

1.4.1 Z-Basics

Let’s start at the very beginning, it is a good place to start.

Definition 1.4.1. The integers Z are the set of natural numbers N together with 0 and the negatives
of N. It is possible to concretely construct (we will not) these from sets and set-operations.

From the construction of Z it is clear (we assume these to be true)

1. the sum of integers is an integer

2. the product of integers is an integer

3. the usual rules of arithmetic hold for Z

Much is hidden in (3.): let me elaborate, we assume for all a, b, c ∈ Z,

a+ b = b+ a

ab = ba

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc

(a+ b) + c = a+ (b+ c)

(ab)c = a(bc)

a+ 0 = 0 + a = a

1a = a1.

Where we assume the order of operations is done multiplication then addition; so, for example,
ab+ ac means to first multiply a with b and a with c then you add the result.

Let me comment briefly about our standard conventions for the presentation of numbers. If I write
123 then we understand this is the base-ten representation. In particular,

123 = 1× 102 + 2× 10 + 3.

On the other hand, 1 · 2 · 3 denotes the product of 1, 2 and 3 and 1 · 2 · 3 = 6. By default, algebraic
variables juxtaposed denote multiplication; xy denotes x multiplied by y. If we wish for symbolic
variables to denote digits in a number then we must explain this explicitly. For example, to study
all numbers between 990 and 999 I could analyze 99x where x ∈ {0, 1, . . . , 9}. But, to be clear
I ought to preface such analysis by a statement like: let 99x be the base-ten representation of a
number where x represents the 1’s digit.
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1.4.2 division algorithm

Division is repeated subtraction. For example, consider 11/3. Notice repeated subtraction of the
dividing number32 3 gives:

11− 3 = 8 8− 3 = 5 5− 3 = 2

then we cannot subtract anymore. We were able to subtract 3 copies of 3 from 11. Then we stopped
at 2 since 2 < 3. To summarize,

11 = 3(3) + 2

We say 2 is the remainder; the remainder is the part which is too small to subtract for the given
dividing number. Divide the boxed equation by the divisor to see:

11

3
= 3 +

2

3
.

The generalization of the boxed equation for an arbitrary pair of natural numbers is known as the
division algorithm.

Theorem 1.4.2. positive division algorithm: If a, b ∈ Z with b > 0 then there is a unique
quotient q ∈ Z and remainder r ∈ Z for which a = qb+ r and 0 ≤ r < b.

Proof (existence): suppose a, b ∈ Z and b > 0. Construct R = {a − nb | q ∈ Z, a − nb ≥ 0}.
The set R comprises all non-negative integers which are reached from a by integer multiples of b.
Explicitly,

R = {a, a± b, a± 2b, . . . } ∩ {0, 1, 2, . . . }.

To prove R is non-empty we consider n = −|a| ∈ Z yields a− nb = a + |a|b. If a ≥ 0 then clearly
a+ |a|b ≥ 0. If a < 0 then |a| = −a hence a+ |a|b = −|a|+ |a|b = |a|(b−1) but b ∈ N by assumption
hence b ≥ 1 and we find a + |a|b ≥ 0. Therefore, as R is a non-empty subset of the non-negative
integers. We apply the Well-Ordering-Principle to deduce there exists a smallest element r ∈ R.

Suppose r is the smallest element in R and r ≥ b. In particular, r = a− nb for some n ∈ Z. Thus
a− nb ≥ b hence r′ = a− (n+ 1)b ≥ 0 hence r′ ∈ R and r′ < r. But r′ < r contradicts r being the
smallest element. Thus, using proof by contradiction, we find r < b.

Proof (uniqueness): assume q, q′ ∈ Z and r, r′ ∈ Z such that a = qb + r and a = q′b + r′

where 0 ≤ r, r′ < b. We have qb + r = q′b + r′ hence (q − q′)b = r − r′. Suppose towards a
contradiction q 6= q′. Since q, q′ ∈ Z the inequality of q and q′ implies |q − q′| ≥ 1 and thus
|r− r′| = |(q− q′)b| ≥ |b| = b. However, r, r′ ∈ [0, b) thus the distance33 between r and r′ cannot be
larger than or equal to b. This is a contradiction, therefore, q = q′. Finally, qb+ r = q′b+ r′ yields
r = r′. �

We can say more about q and r in the case b > 0. We have

a

b
= q +

r

b
& q = ba/bc

32my resident Chinese scholar tells me in Chinese a/b has the ”dividing” number b and the ”divided” number a. I
am tempted to call b the divisor, but the term ”divisor” has a precise meaning, if b is a divisor of a then a = mb for
some n ∈ Z. In our current discussion, to say b is a divisor assumes the remainder is zero.

33for a non-geometric argument here: note 0 ≤ r < b and 0 ≤ r′ < b imply −r′ < r − r′ < b− r′ ≤ b. But, r′ < b
gives −b < −r′ hence −b < r − r′ < b. Thus |r − r′| < b. Indeed, the distance between r and r′ is less than b.
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That is q is the greatest integer which is below a/b. The function x 7→ bxc is the floor function.
For example,

b−0.4c = −1, bπc = 3, bn+ εc = n

for all n ∈ Z provided 0 ≤ ε < 1. It is easy to calculate the floor function of x when x is presented
in decimal form. For example,

324

11
= 29.4545... ⇒ 324

11
= 29 + 0.4545... ⇒ 324 = 29(11) + (0.4545...)(11)

We can calculate, 0.4545 · 11 = 4.9995. From this we find

324 = 29(11) + 5

In other words, 324
11 = 29 + 5

11 . The decimal form of numbers and the floor function provides a
simple way to find quotients and remainders.

Consider 456/(−10) = −45.6 = −45−0.6 suggests 456 = (−10)(−45) + 6. In the case of a negative
divisor (b < 0) the division algorithm needs a bit of modification:

Theorem 1.4.3. nonzero division algorithm: If a, b ∈ Z with b 6= 0 then there is a unique
quotient q ∈ Z and remainder r ∈ Z for which

a = qb+ r & 0 ≤ r < |b|.

Proof: Theorem 1.4.2 covers case b > 0. Thus, assume b < 0 hence b′ = −b > 0. Apply Theorem
1.4.2 to a, b′ ∈ Z to find q′, r′ such that a = q′b′ + r′ with 0 ≤ r′ < b′. However, b′ = −b = |b| as
b < 0. Thus,

a = −q′b+ r′

with 0 ≤ r′ < |b|. Identify q = −q′ and r = r′ in the case b < 0. Uniqueness is clear from the
equations which define q and r from the uniquely given q′ and r′. This concludes the proof as b 6= 0
means either b < 0 or b > 0. �

The selection of the quotient in the negative divisor case is given by the ceiling function x 7→ dxe.
The notation dxe indicates the next integer which is greater than or equal to x. For example,

d456/(−10)e = −45, d3.7e = 4, dn− εe = n

for all n ∈ Z given 0 ≤ ε < 1.

Remark 1.4.4. The division algorithm proves an assertion of elementary school arithmetic. For
example, consider the improper fraction 10/3 we can write it as the sum of 3 and 1/3. When you
write 31

3 what is truly meant is 3+ 1
3 . In fact, the truth will set you free of a myriad of errors which

arise from the poor notation 31
3 . With this example in mind, let a, b ∈ N. The division algorithm

simply says for a/b there exists q, r ∈ N ∪ {0} such that a = qb + r hence a/b = q + r/b where
0 ≤ r < b. This is merely the statement that any improper fraction can be reduced to the sum of
a whole number and a proper fraction. In other words, you already knew the division algorithm.
However, thinking of it without writing fractions is a bit of an adjustment for some of us.
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1.4.3 divisibility in Z

Consider 105 = 3 · 5 · 7. We say 3 is a factor or divisor of 105. Also, we say 35 divides 105.
Furthermore, 105 is a multiple of 3. Indeed, 105 is also a multiple of 5, 7 and even 21 or 35.
Examples are nice, but, definitions are crucial:

Definition 1.4.5. Let a, b ∈ Z then we say b divides a if there exists c ∈ Z such that a = bc. If b
divides a then we also say b is a factor of a and a is a multiple of b.

The notation b | a means b divides a. If b is does not divide a then we write b - a. The divisors of
a given number are not unique. For example, 105 = 7(15) = (3)(35) = (−1)(−105). However, the
prime divisors are unique up to reordering: 105 = (3)(5)(7). Much of number theory is centered
around the study of primes. We ought to give a proper definition:

Definition 1.4.6. If p ∈ N such that n | p implies n = p or n = 1 then we say p is prime.

In words: a prime is a positive integer whose only divisors are 1 and itself.

There are many interesting features of divisibility. Notice, every number b ∈ Z divides 0 as 0 = b ·0.
Furthermore, b | b for all b ∈ Z as b = b · 1. In related news, 1 is a factor of every integer and every
integer is a multiple of 134

Proposition 1.4.7. Let a, b, c, d,m ∈ Z. Then,

(i.) if a | b and b | c then a | c,

(ii.) if a | b and c | d then ac | bd,

(iii.) if m 6= 0, then ma | mb if and only if a | b

(iv.) if d | a and a 6= 0 then |d| ≤ |a|.

Proof (i.) : suppose a | b and b | c. By the definition of divisibility there exist m,n ∈ Z such that
b = ma and c = nb. Hence c = n(ma) = (nm)a. Therefore, a | c as nm ∈ Z.

Proof (ii.) : suppose a | b and c | d. By the definition of divisibility there exist m,n ∈ Z such
that b = ma and d = nc. Subsitution yields bd = (ma)(nc) = mn(ac). But, mn ∈ Z hence we have
shown ac | bd.

Proof (iii.) : left to the reader.

Proof (iv.) : if d | a and a 6= 0 then a = md for some m ∈ Z. Suppose m = 0 then a = (0)d = 0
which contradicts a 6= 0. Therefore, m 6= 0. Recall that the absolute value function is multiplica-
tive; |md| = |m||d|. As m 6= 0 we have |m| ≥ 1 thus |a| = |m||d| ≥ |d|. �

I hope you see these proofs are not too hard. You ought to be able to reproduce them without
much effort.

Theorem 1.4.8. Let a1, . . . , ak, c ∈ Z. Then,

(i.) if c | ai for i = 1, . . . , k then c | (u1a1 + · · ·+ ukak) for all u1, . . . , uk ∈ Z,

34I should mention, I am partly following the excellent presentation of Jones and Jones Elementary Number Theory
which I almost used as the text for Math 307 in Spring 2015. We’re on page 4.
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(ii.) a | b and b | a if and only if a = ±b.

Proof (i.): suppose c | a1, c | a2, . . . , c | ak. It follows there exist m1,m2, . . . ,mk ∈ Z such that
a1 = cm1, a2 = cm2 and ak = cmk. Let u1, u2, . . . , uk ∈ Z and consider,

u1a1 + · · ·+ ukak = u1(cm1) + · · ·+ uk(cmk) = c(u1m1 + · · ·+ ukmk).

Notice u1m1 + · · ·+ ukmk ∈ Z thus the equation above shows c | (u1a1 + · · ·+ ukak).

Proof (ii.): suppose a | b and b | a. If a = 0 then a | b implies there exists m ∈ Z such that
b = m(0) = 0 hence b = 0. Observe a = ±b = 0. Continuing, we suppose a 6= 0 which implies b 6= 0
by the argument above. Notice a | b and b | a imply there exist m,n ∈ Z − {0} such that a = mb
and b = na. Multiply a = mb by n 6= 0 to find na = mnb. But, b = na hence na = mn(na) which
implies 1 = mn. Thus, m = n = 1 or m = n = −1. These cases yield a = b and a = −b respective
hence a = ±b. �

The proof above is really not much more difficult than those we gave for Proposition 1.4.7. The
most important case of the Theorem above is when k = 2 in part (i.).

Corollary 1.4.9. If c | x and c | y then c | (ax+ by) for all a, b ∈ Z.

The result above is used repeatedly as we study the structure of common divisors.

Definition 1.4.10. If d | a and d | b then d is a common divisor of a and b.

Proposition 1.4.7 part (iv.) shows that a divisor cannot have a larger magnitude than its multiple.
It follows that the largest a common divisor could be is max{|a|, |b|}. Furthermore, 1 is a divisor
of all nonzero integers. If both a and b are not zero then max{|a|, |b|} ≥ 1. Therefore, if both a
and b are not zero then there must be a largest number between 1 and max{|a|, |b|} which divides
both a and b. Thus, the definition to follow is reasonable:

Definition 1.4.11. If a, b ∈ Z, not both zero, then the greatest common divisor of a and b is
denoted gcd(a, b).

The method to find the greatest common divisor which served me well as a child was simply to a
and b in their prime factorization. Then to find the gcd I just selected all the primes which I could
pair in both numbers.

Example 1.4.12.

gcd(105, 90) = gcd(3 · 5 · 7, 2 · 3 · 3 · 5) = 3 · 5 = 15.

The method above faces several difficulties as we attempt to solve non-elementary problems.

1. it is not an easy problem to find the prime factorization of a given integer. Indeed, this
difficulty is one of the major motivations RSA cryptography.

2. it is not so easy to compare lists and select all the common pairs. Admittedly, this is not as
serious a problem, but even with the simple example above I had to double-check.

Thankfully, there is a better method to find the gcd. It’s old, but, popular. Euclid (yes, the same
one with the parallel lines and all that) gave us the Euclidean Algorithm. We prove a Lemma
towards developing Euclid’s Algorithm.
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Lemma 1.4.13. Let a, b, q, r ∈ Z. If a = qb+ r then gcd(a, b) = gcd(b, r).

Proof: by Corollary 1.4.9 we see a divisor of both b and r is also a divisor of a. Likewise, as
r = a− qb we see any common divisor of a and b is also a divisor of r. It follows that a, b and b, r
share the same divisors. Hence, gcd(a, b) = gcd(b, r). �

We now work towards Euclid’s Algorithm. Let a, b ∈ Z, not both zero. Our goal is to calculate
gcd(a, b). If a = 0 and b 6= 0 then gcd(a, b) = |b|. Likewise, if a 6= 0 and b = 0 then gcd(a, b) = |a|.
Note gcd(a, a) = |a| hence we may asssume a 6= b in what follows. Furthermore,

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

Therefore, suppose a, b ∈ N with a > b35. Apply the division algorithm (Theorem 1.4.2) to select
q1, r1 such that

a = q1b+ r1 such that 0 ≤ r1 < b.

If r1 = 0 then a = q1b hence b | a and as b is the largest divisor of b we find gcd(a, b) = b. If r1 6= 0
then we continue to apply the division algorithm once again to select q2, r2 such that

b = q2r1 + r2 such that 0 ≤ r2 < r1.

If r2 = 0 then r1 | b and clearly gcd(b, r1) = r1. However, as a = q1b+ r1 allows us to apply Lemma
1.4.13 to obtain gcd(a, b) = gcd(b, r1) = r1. Continuing, we suppose r2 6= 0 with r1 > r2 hence we
may select q3, r3 for which:

r1 = q3r2 + r3 such that 0 ≤ r3 < r2.

Once again, if r3 = 0 then r2 | r1 hence it is clear gcd(r1, r2) = r2. However, as b = q2r1 + r2 gives
gcd(b, r1) = gcd(r1, r2) and a = q1b + r1 gives gcd(a, b) = gcd(b, r1) we find that gcd(a, b) = r2.
This process continues. It cannot go on forever as we have the conditions:

0 < · · · < r3 < r2 < r1 < b.

There must exist some n ∈ N for which rn+1 = 0 yet rn 6= 0. All together we have:

a = q1b+ r1,

b = q2r1 + r2,

r1 = q3r2 + r3, . . . ,

rn−2 = qnrn−1 + rn,

rn−1 = qn+1rn.

The last condition yields rn | rn−1 hence gcd(rn−1, rn) = rn. Furthermore, we find, by repeated
application of Lemma 1.4.13 the following string of equalities

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · = gcd(rn−1, rn) = rn−1.

In summary, we have shown that repeated division of remainders into remainder gives a strictly
decreasing sequence of positive integers whose last member is precisely gcd(a, b).

35the equation above shows we can cover all other cases once we solve the problem for positive integers.
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Theorem 1.4.14. Euclidean Algorithm: suppose a, b ∈ N with a > b and form the finite
sequence {b, r1, r2, . . . , rn} for which rn+1 = 0 and b, r1, . . . , rn are defined as discussed above.
Then gcd(a, b) = rn.

Example 1.4.15. Let me show you how the euclidean algorithm works for a simple example.
Consider a = 100 and b = 44. Euclid’s algorithm will allow us to find gcd(100, 44).

1. 100 = 44(2) + 12 divided 100 by 44 got remainder of 12

2. 44 = 12(3) + 8 divided 44 by 12 got remainder of 8

3. 12 = 8(1) + 4 divided 12 by 8 got remainder of 4

4. 8 = 4(2) + 0 divided 4 by 1 got remainder of zero

The last nonzero remainder will always be the gcd when you play the game we just played. Here we

find gcd(100, 44) = 4 . Moreover, we can write 4 as a Z-linear combination of 100 and 44. This

can be gleaned from the calculations already presented by working backwards from the gcd:

3. 4 = 12− 8

2. 8 = 44− 12(3) implies 4 = 12− (44− 12(3)) = 4(12)− 44

1. 12 = 100− 44(2) implies 4 = 4(100− 44(2))− 44 = 4(100)− 9(44)

I call this a ”Z-linear combination of 100 and 44 since 4,−9 ∈ Z. We find 4(100)− 9(44) = 4 .

The fact that we can always work euclid’s algorithm backwards to find how the gcd(a, b) is written
as ax + by = gcd(a, b) for some x, y ∈ Z is remarkable. I continue to showcase this side-benefit of
the Euclidean Algorithm as we continue. We will give a general argument after the examples. I
now shift to a less verbose presentation:

Example 1.4.16. Find gcd(62, 626)

626 = 10(62) + 6

62 = 10(6) + 2

6 = 3(2) + 0

From the E.A. I deduce gcd(62, 626) = 2. Moreover,

2 = 62− 10(6) = 62− 10[626− 10(62)] = 101(62)− 10(626)

Example 1.4.17. Find gcd(240, 11).

240 = 11(21) + 9

11 = 9(1) + 2

9 = 2(4) + 1

2 = 1(2)

Thus, by E.A., gcd(240, 11) = 1. Moreover,

1 = 9− 2(4) = 9− 4(11− 9) = −4(11) + 5(9) = −4(11) + 5(240− 11(21))

That is,

1 = −109(11) + 5(240)
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Example 1.4.18. Find gcd(4, 20). This example is a bit silly, but I include it since it is an
exceptional case in the algorithm. The algorithm works, you just need to interpret the instructions
correctly.

20 = 4(5) + 0

Since there is only one row to go from we identify 4 as playing the same role as the last non-zero
remainder in most examples. Clearly, gcd(4, 20) = 4. Now, what about working backwards? Since
we do not have the gcd appearing by itself in the next to last equation (as we did in the last example)
we are forced to solve the given equation for the gcd,

20 = 4(4 + 1) = 4(4) + 4 =⇒ 20− 4(4) = 4

The following result also follows from the discussion before Theorem 1.4.14. I continue to use the
notational set-up given there.

Theorem 1.4.19. Bezout’s Identity: if a, b ∈ Z, not both zero, then there exist x, y ∈ Z such
that ax+ by = gcd(a, b).

Proof: we have illustrated the proof in the examples. Basically we just back-substitute the division
algorithms. For brevity of exposition, I assume r3 = gcd(a, b). It follows that:

a = q1b+ r1 ⇒ r1 = a− q1b

b = q2r1 + r2 ⇒ r2 = b− q2r1

r1 = q3r2 + r3 ⇒ r3 = r1 − q3r2

where gcd(a, b) = r3. Moreover, r2 = b− q2(a− q1b) implies r3 = r1− q3[b− q2(a− q1b)]. Therefore,

gcd(a, b) = a− q1b− q3[b− q2(a− q1b)] = a− (q1 − q3[1− q2(a− q1)]b.

Identify x = 1 and y = q1 − q3[1− q2(a− q1)]. �

We should appreciate that x, y in the above result are far from unique. However, as we have
shown, the method at least suffices to find a solution of the equation ax+ by = gcd(a, b). One nice
application of Bezout’s identity is seen in Euclid’s Lemma: intuitively, Euclid’s Lemma testifies to
the indestructibly of primes.

Lemma 1.4.20. (Euclid): Let a, b ∈ Z. If p ∈ Z is prime and p | ab then p | a or p | b.

Proof: Suppose a, b, p ∈ Z and p is prime. Further, suppose p | ab but p - a. Since p does not
divide a we have gcd(a, p) = 1 and by Bezout’s identity there exist x, y ∈ Z for which ax+ py = 1.
Multiply by b to obtain bax+ bpy = b (label this by ?. Since p | ab we know there exists c ∈ Z for
which ab = cp. Hence, returning to ?,

b = cpx+ bpy = p(cx+ by)

since cx+ by ∈ Z the result above clearly shows p | b and Euclid’s Lemma follows. �

I recommend working on Chapter 0 Gallian problems such as:

#4, 7, 8, 16, 17

these should help bring the Group concept to life. I do not collect these, but, I will keep them in
mind as I construct tests.
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Problems for Lecture 4: (these are collected at the beginning of Lecture 6)

Problem 13: The Euclidean Algorithm

(a) Use the Euclidean Algorithm to find the greatest common divisor (gcd) of 1234
and 542.

(b) Use the (extended) Euclidean Algorithm to find the greatest common divisor of
a = 1001 and b = 53, say d = gcd(a, b). Then determine integers x and y such
that ax+ by = d.

(c) Use the (extended) Euclidean Algorithm to find 9−1 in U(1000).

Problem 14: Let d = gcd(a, b). If a = da′ and b = db′, show that gcd(a′, b′) = 1. [Of course,
a, a′, b, b′, d ∈ Z.]

Problem 15: Prove the rule of 9’s: that is, show that n ∈ N is divisible by 9 iff the sum
of the digits in its base-ten representation is divisible by 9. e.g. 136, 098 is
divisible by 9 since 1 + 3 + 6 + 0 + 9 + 8 = 27. You may use results from the next
Lecture. In fact, I would encourage you to offer a solution in terms of congruence.

Problem 16: Dihedral groups: generators and relations style. Recall that . . .

D4 =
〈
x, y | x4 = 1, y2 = 1, and (xy)2 = 1

〉
=
{

1, x, x2, x3, y, xy, x2y, x3y
}

(a) Write down the Cayley table for D4.

(b) Find the inverse of each element (i.e. 1−1 =???, x−1 =???, etc.).

(c) Find the order of each element.

(d) Find all of the distinct cyclic subgroups of D4.

(e) What is in Z(D4) (recall that Z(G) is the center of G)?

(f) Simplify x6y−3x3y8x−5yxy.
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1.5 Lecture 5: modular arithmetic and groups

This material overlaps Chapter 0 of Gallian, although, I have nothing to say about ISBN error digits.
It is an interesting topic and I assigned a token problem so you can appreciate that application
of modular arithmetic. In this section we assume n ∈ N throughout. In summary, we develop a
careful model for Zn in this section.

Remark 1.5.1. I use some notation in this section which we can omit elsewhere for the sake of
brevity. In particular, in the middle of this section I might use the notation [2] or 2̄ for 2 ∈ Zn
whereas in later work we simply use 2 with the understanding that we are working in the context
of modular arithmetic. I have a bit more to say about this notational issue and the deeper group
theory it involves at the conclusion of this section.

Definition 1.5.2. a ≡ b mod(n) if and only if n | (b− a).

The definition above is made convenient by the simple equivalent criteria below:

Theorem 1.5.3. Let a, b ∈ Z then we say a is congruent to b mod(n) and write a ≡ b mod(n) if
a and b have the same remainder when divided by n.

Proof: Suppose a ≡ b mod(n) then a and b share the same remainder after division by n. By
the Division Algorithm, there exist q1, q2 ∈ Z for which a = q1n + r and b = q2n + r. Observe,
b− a = (q2n+ r)− (q1n+ r) = (q2 − q1)n. Therefore, n | (b− a).

Conversely, suppose n | (b − a) then there exists q ∈ Z for which b − a = qn. Apply the Division
Algorithm to find q1, q2 and r1, r2 such that: a = q1n + r1 and b = q2n + r2 with 0 ≤ r1 < n and
0 ≤ r2 < n. We should pause to note |r2 − r1| < n. Observe,

b− a = qn = (q2n+ r2)− (q1n+ r1) = (q2 − q1)n+ r2 − r1.

Therefore, solving for the difference of the remainders and taking the absolute value,

|q − q2 + q1|n = |r2 − r1|

Notice |q − q2 + q1| ∈ N ∪ {0} and |r2 − r1| < n. It follows |q − q2 + q1| = 0 hence |r2 − r1| = 0 and
we conclude r1 = r2. �

Congruence has properties you might have failed to notice as a child.

Proposition 1.5.4. Let n be a positive integer, for all x, y, z ∈ Z,

(i.) x ≡ x mod(n),

(ii.) x ≡ y mod(n) implies y ≡ x mod(n),

(iii.) if x ≡ y mod(n) and y ≡ z mod(n) then x ≡ z mod(n).

Proof: we use Definition 1.5.2 throughout what follows.

(i.) Let x ∈ Z then x− x = 0 = 0 · n hence n | (x− x) and we find x ≡ x mod(n).

(ii.) Suppose x ≡ y mod(n). Observe n | (x − y) indicates x − y = nk for some k ∈ Z. Hence
y − x = n(−k) where −k ∈ Z. Therefore, n | (y − x) and we find y ≡ x mod(n).
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(iii.) Suppose x ≡ y mod(n) and y ≡ z mod(n). Thus n | (y − x) and n | z − y. Corol-
lary 1.4.9 indicates n also divides the sum of two integers which are each divisible by n. Thus,
n | [(y − x) + (z − y)] hence n | (z − x) which shows x ≡ z mod(n). �

I referenced the Corollary to prove part (iii.) to remind you how our current discussion fits naturally
with our previous discussion.

Corollary 1.5.5. Let n ∈ N. Congruence modulo n forms an equivalence relation on Z.

This immediately informs us of an interesting partition of the integers. Recall, a partition of
a set S is a family of subsets Uα ⊆ S where α ∈ Λ is some index set such that Uα ∩ Uβ = ∅ for
α 6= β and ∪α∈ΛUα = S. A partition takes a set and parses it into disjoint pieces which cover the
whole set. The partition induced from an equivalence relation is simply formed by the equivalence
classes of the relation. Let me focus on Z with the equivalence relation of congruence modulo a
positive integer n. We define:36:

Definition 1.5.6. equivalence classes of Z modulo n ∈ N:

[x] = {y ∈ Z | y ≡ x mod(n)}

Observe, there are several ways to characterize such sets:

[x] = {y ∈ Z | y ≡ x mod(n)} = {y ∈ Z | y − x = nk for some k ∈ Z} = {x+ nk | k ∈ Z}.

I find the last presentation of [x] to be useful in practical computations.

Example 1.5.7. Congruence mod(2) partititions Z into even and odd integers:

[0] = {2k | k ∈ Z} & [1] = {2k + 1 | k ∈ Z}

Example 1.5.8. Congruence mod(4) partititions Z into four classes of numbers:

[0] = {4k | k ∈ Z} = {. . . ,−8,−4, 0, 4, 8, . . . }

[1] = {4k + 1 | k ∈ Z} = {. . . ,−7,−3, 1, 5, 9, . . . }

[2] = {4k + 2 | k ∈ Z} = {. . . ,−6,−2, 2, 6, 10, . . . }

[3] = {4k + 3 | k ∈ Z} = {. . . ,−5,−1, 3, 7, 11, . . . }

The patterns above are interesting, there is something special about [0] and [2] in comparison to [1]
and [3]. Patterns aside, the notation of the previous two example can be improved. Let me share
a natural notation which helps us understand the structure of congruence classes.

Definition 1.5.9. Coset Notation: Let n ∈ N and a ∈ Z we define:

nZ = {nk | k ∈ Z} a+ nZ = {a+ nk | k ∈ Z}.

Observe, in the notation just introduced, we have

[a] = a+ nZ
36 there are other notations, the concept here is far more important than the notation we currently employ
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Example 1.5.10. Congruence mod(2) partititions Z into even and odd integers:

[0] = 2Z & [1] = 1 + 2Z.

Example 1.5.11. Congruence mod(4) partititions Z into four classes of numbers:

[0] = 4Z, [1] = 1 + 4Z, [2] = 2 + 4Z, [3] = 3 + 4Z.

We should pause to appreciate a subtle aspect of the notation. It is crucial to note [x] = [y] does
not imply x = y. For example, modulo 2:

[1] = [3] = [7] = [1000037550385987987987971] & [2] = [−2] = [−42].

Or, modulo 9:

[1] = [10] = [−8], & [3] = [12] = [−6], & [0] = [90] = [−9].

Yet, modulo 9, [1] 6= [3]. Of course, I just said [1] = [3]. How can this be? Well, context matters. In
some sense, the notation [x] is dangerous and [x]n would be better. We could clarify that [1]2 = [3]2
whereas [1]9 6= [3]9. I don’t recall such notation used in any text. What is more common is to use
the coset notation to clarify:

1 + 2Z = 3 + 2Z whereas 1 + 9Z 6= 3 + 9Z.

I’m not entirely sure the Proposition below is necessary.

Proposition 1.5.12. Let n ∈ N. We have [x] = [y] if and only if x ≡ y mod(n). Or, in the coset
notation x+ nZ = y + nZ if and only if y − x ∈ nZ.

Proof: Observe x ∈ [x]. If [x] = [y] then x ∈ [y] hence there exists k ∈ Z for which x = y + nk
hence x− y = nk and we find x ≡ y mod(n). Conversely, if x ≡ y mod(n) then there exists k ∈ Z
such that y − x = nk thus x = y − nk and y = x+ nk. Suppose a ∈ [x] then there exists j ∈ Z for
which a = nj + x hence a = nj + y − nk = n(j − k) + y ∈ [y]. We have shown [x] ⊆ [y]. Likewise,
if b ∈ [y] then there exists j ∈ Z for which b = nj + y hence b = nj + x+ nk = n(j + k) + x ∈ [x].
Thus [y] ⊆ [x] and we conclude [x] = [y]. �

Notice the proposition above allows us to calculate as follows: for n ∈ N

na+ b+ nZ = b+ nZ or [na+ b] = [b]

for a, b ∈ Z. There is more.

Proposition 1.5.13. Let n ∈ N. If [x] = [x′] and [y] = [y′] then

(i.) [x+ y] = [x′ + y′],

(ii.) [xy] = [x′y′]

(iii.) [x− y] = [x′ − y′]
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Proof: Suppose [x] = [x′] and [y] = [y′]. It follows there exists j, k ∈ Z such that x′ = nj + x and
y′ = nk+y. Notice x′±y′ = nj+x± (nk+y) = n(j±k)+x±y. Therefore, x±y ≡ x′±y′ mod(n)
and by Proposition 1.5.12 we find [x± y] = [x′ ± y′]. This proves (i.) and (iii.). Next, consider:

x′y′ = (nj + x)(nk + y) = n(jkn+ jy + xk) + xy

thus x′y′ ≡ xy mod(n) we apply Proposition 1.5.12 once more to find [xy] = [x′y′]. �

We ought to appreciate the content of the proposition above as it applies to congruence modulo n.
In fact, the assertions below all apear in the proof above.

Corollary 1.5.14. Let n ∈ N. If x ≡ x′ and y ≡ y′ modulo n then

(i.) x+ y ≡ x′ + y′ mod(n),

(ii.) xy ≡ x′y′ mod(n),

(iii.) x− y ≡ x′ − y′ mod(n),

Example 1.5.15. Suppose x+ y ≡ 3 and x− y ≡ 1 modulo 4. Then, by Corollary 1.5.14 we add
and substract the given congruences to obtain:

2x ≡ 4 2y ≡ 2

There are 4 cases to consider. Either x ∈ [0], x ∈ [1], x ∈ [2] or x ∈ [3]. Observe,

2(0) ≡ 0 ≡ 4, 2(0) 6≡ 2
2(1) ≡ 2 6≡ 4, 2(1) ≡ 2
2(2) ≡ 4, 2(2) ≡ 4 6≡ 2
2(3) ≡ 2 6≡ 4, 2(3) ≡ 2.

It follows that x ∈ [0] ∪ [2] and y ∈ [1] ∪ [3] forms the solution set of this system of congruences.

The method I used to solve the above example was not too hard since there were just 4 cases to
consider. I suppose, if we wished to solve the same problem modulo 42 we probably would like to
learn a better method.

Proposition 1.5.13 justifies that the definition below does give a binary operation on the set of
equivalence classes modulo n. Recall, a binary operation on a set S is simply a function from S×S
to S. It is a single-valued assignment of pairs of S-elements to S-elements.

Definition 1.5.16. modular arithmetic: let n ∈ N, define

[x] + [y] = [x+ y] & [x][y] = [xy]

for all x, y ∈ Z. Or, if we denote the set of all equivalence classes modulo n by Z/nZ then write:
for each x+ nZ, y + nZ ∈ Z/nZ

(x+ nZ) + (y + nZ) = x+ y + nZ & (x+ nZ)(y + nZ) = xy + nZ.

Finally, we often use the notation Zn = Z/nZ.
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Notice the operation defined above is a binary operation on Z/nZ (not Z). Many properties of
integer arithmetic transfer to Z/nZ:

[a] + [b] = [b] + [a]

[a][b] = [b][a]

[a]([b] + [c]) = [a][b] + [a][c]

([a] + [b])[c] = [a][c] + [b][c]

([a] + [b]) + [c] = [a] + ([b] + [c])

([a][b])[c] = [a]([b][c])

[a] + [0] = [0] + [a] = [a]

[1][a] = [a][1].

Furthermore, for k ∈ N,

[a1] + [a2] + · · ·+ [ak] = [a1 + a2 + · · ·+ ak]

[a1][a2] · · · [ak] = [a1a2 · · · ak]
[a]k = [ak].

Example 1.5.17. Simplify [1234] modulo 5. Notice,

1234 = 1× 103 + 2× 102 + 3× 10 + 4.

However, 10 = 2(5) thus,

1234 = 1× 2353 + 2× 2252 + 3× 2 · 5 + 4.

Note, [5] = [0] hence [5k] = [0] for k ∈ N. By the properties of modular arithmetic it is clear that the
10′s, 100′s and 1000′s digits are irrelevant to the result. Only the first digit matters, [1234] = [4].

It is not hard to see the result of the example above equally well applies to larger numbers; if
ak, ak−1, . . . , a2, a1 are the digits in a decimal representation of an integer then [akak−1 · · · a2a1] =
[a1] mod(5).

Example 1.5.18. Calculate the cube of 51 modulo 7.

[513] = [51][51][51] = [51]3 = [49 + 2]3 = [2]3 = [8].

Of course, you can also denote the same calculation via congruence:

513 = 51 · 51 · 51 ≡ 2 · 2 · 2 = 8 ⇒ [513] = [8].

The next example is a cautionary tale:

Example 1.5.19. Simplify 7100 modulo 6. Consider,

[7100] = [7]100 = [1]100 = [1100] = [1].

or, (incorrectly !)
[7100] = [7[100]] = [7[6(16)+4]] = [74] = [28] = [4].

The point is this: it is not true that [ak] = [a[k]].
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Naturally, as we discuss Zn it is convenient to have a particular choice of representative for this set
of residues. Two main choices: the set of least non-negative residues

Zn = {[0], [1], [2], . . . , [n− 1]}

alternatively, set of least absolute value residues or simply least absolute residues

Zn = {[0], [±1], [±2], . . . }

where the details depend on if n is even or odd. For example,

Z5 = {[0], [1], [2], [3], [4]} = {[−2], [−1], [0], [1], [2]}

or,
Z4 = {[0], [1], [2], [3]} = {[−2], [−1], [0], [1]}

Honestly, if we work in the particular context of Zn then there is not much harm in dropping the
[·]-notation. Sometimes, I use [x] = x̄. Whichever notation we choose, we must be careful to not
fall into the trap of assuming the usual properties of Z when calculating in the specific context of
modular arithmetic. The example that follows would be very clumsy to write in the [·]-notation.

Example 1.5.20. Consider f(x) = x2 + 2x+ 3 for x ∈ Z5. We can determine if f has a zero by
explicit calculation modulo 5:

f(−2) = (−2)2 + 2(−2) + 3 = 3

f(−1) = (−1)2 + 2(−1) + 3 = 2

f(0) = (0)2 + 2(0) + 1 = 3

f(1) = 1 + 2 + 3 ≡ 1

f(2) = 4 + 4 + 3 ≡ 1

Therefore, f(x) has no zero for x ∈ Z5.

The examples below are from Jones and Jones’ Elementary Number Theory pages 42-43.

Example 1.5.21. Calculate the least positive residue of 28×33 modulo 35. Note that 28 ≡ 28−35 =
−7 and 33 ≡ 33− 35 = −2 hence 28× 33 ≡ (−7)× (−2) = 14. Or, [28][33] = [14].

Example 1.5.22. Calculate the least absolute residue of 15×59 mod(75). Observe 59 ≡ 59−75 =
−16 thus

59× 15 ≡ −16× 15 = (−1− 15)× 15 = −15− 3(75) ≡ −15.

Since | − 15| = 15 ≤ 75/2 it is clear −15 is the least absolute residue modulo 75.

Example 1.5.23. To calculate 38 modulo 13 we break the problem into several doublings; 38 =
((32)2)2. At each stage we take care to use modular arithmetic to simplify:

32 = 9 ≡ −4

modulo 13. Next,
34 = (32)2 ≡ (−4)2 = 16 ≡ 3

thus
38 = (34)2 ≡ 32 = 9.
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Example 1.5.24. Prove that a(a + 1)(a + 2) is divisible by 6 for each integer a. In other words,
we wish to show a(a+ 1)(a+ 2) ≡ 0 mod(6). Note Z6 = {[0], [±1], [±2], [3]} so consider:

a = 0 : a(a+ 1)(a+ 2) = 0,

a = ±1 : a(a+ 1)(a+ 2) = (±1)(1± 1)(2± 1) = {6, 0} ≡ 0,

a = ±2 : a(a+ 1)(a+ 2) = (±2)(1± 2)(2± 2) = {12, 0} ≡ 0,

a = 3 : a(a+ 1)(a+ 2) = (3)(3 + 1)(3 + 2) = 60 ≡ 0.

Therefore, a(a+ 1)(a+ 2) ≡ 0 modulo 6 for all a ∈ Z hence 6 | a(a+ 1)(a+ 2) for all a ∈ Z.

The claim in the example above is very obviously true if we just think about some cases 1 ·2 ·3,2 ·3 ·
4,...10 · 11 · 12, 11 · 12 · 13 etc. You can see the reason a 6 appears is that in any triple of successive
integers you have at least one number divisible by 3 and at least one number divisible by 2. This
suggests a different method of proof.

Example 1.5.25. Prove that a(a + 1)(a + 2) is divisible by 6 for each integer a. Once again, we
wish to show a(a + 1)(a + 2) ≡ 0 mod(6). Observe, if 2 | x and 3 | x then x = 2j and x = 3k for
some j, k ∈ Z. It follows from the prime factorization of integers that 3 | j and 2 | k hence37 there
exists m ∈ Z for which j = 3m and we find x = 2j = 2(3m) = 6m which proves 6 | x. Therefore,
if we are able to show a(a + 1)(a + 2) is divisible by 2 and 3 it follows a(a + 1)(a + 2) is divisible
by 6. Consider congruence modulo 2:

a = 0 : a(a+ 1)(a+ 2) = 0,

a = 1 : a(a+ 1)(a+ 2) = (1)(2)(3) ≡ 0.

Next, the modulo 3 case:

a = 0 : a(a+ 1)(a+ 2) = 0,

a = 1 : a(a+ 1)(a+ 2) = (1)(2)(3) ≡ 0,

a = 2 : a(a+ 1)(a+ 2) = (2)(3)(4) ≡ 0.

Thus a(a+ 1)(a+ 2) ≡ 0 modulo 6 and we conclude 6 | a(a+ 1)(a+ 2) for each a ∈ Z.

Notice I had to invoke the Fundalmental Theorem of Arithmetic in the example above. Let me
state it without proof here:

Theorem 1.5.26. Let n ∈ N then there exist a unique set of distinct primes p1, p2, . . . , pk and
multiplicities r1, r2, . . . , rk for which n = pr11 p

r2
2 · · · p

rk
k .

Proof: to be found in Math 307 (the number theory course). �

We already saw a specific case of the theorem below in action to solve Example 1.5.25.

Theorem 1.5.27. Let n ∈ N such that there exist a unique set of distinct primes p1, p2, . . . , pk and
multiplicities r1, r2, . . . , rk for which n = pr11 p

r2
2 · · · p

rk
k . Then a ≡ b mod(n) if and only if a ≡ b

mod(prii ) for each i = 1, 2, . . . k.

37yes, I could just as well have messed with k
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Proof: to be found in Math 307( the number theory course). �

The theme of this section is illustrate the structure and utility of modular arithmetic. The Theorem
below is certainly a showcase of the technique. The problem of determining if f(x) = 0 for some
x ∈ Z is somewhat daunting as there are infinitely many integers. However, for polynomial f(x) we
are able to answer this question by analyzing the corresponding polynomial over Zn. Let’s study
an example before I state the general theorem.

Example 1.5.28. Show f(x) = x5 − x2 + x− 3 has no integer roots. Consider, modulo 4,

f(0) = −3, f(1) = 1− 1 + 1− 3 = −2,

f(−1) = −1− 1− 1− 3 = −6 ≡ 2, f(2) = 32− 4 + 2− 3 ≡ −1.

This means there is no integer for which f(x) = 0. Why? Because Z = 4Z ∪ (4Z + 1) ∪ (4Z + 2) ∪
(4Z + 3) and we have shown each partition gives no value in 4Z hence no integer input into f(x)
returns a value of 0.

Theorem 1.5.29. Let f(x) ∈ Z[x], that is let f(x) be a polynomial with integer coefficients, and
suppose n ∈ N. If a ≡ b mod(n) then f(a) ≡ f(b) mod(n).

Proof: Suppose a ≡ b mod(n) and f(x) = cmx
m+ · · ·+c1x+c0 where cm, . . . , c1, c0 ∈ Z. Consider

then, by repeated application of Corollary 1.5.14 we have:

f(a) = cma
m + · · ·+ c1a+ c0 ≡ cmbm + · · ·+ c1b+ c0 = f(b). �

To solve Example 1.5.28 we used the contrapositive. Let me remind you: the contrapositive al-
lows us to know that when P ⇒ Q is true then Q̃⇒ P̃ is true. Here I use P,Q to denote statements
and P̃ , Q̃ to denote the negation of those statements. Suppose f(a) = 0 for some some a ∈ Z. Then
a clear implication is that f(a) ≡ 0 mod(n) for all n ∈ N. In this case P is the statement about
integer zeros whereas Q is the statement about the congruence of f(a) modulo n for all n ∈ N. The
contrapositive negates Q to the statement there exists n ∈ N for which f(a) 6≡ 0 mod(n). On the
other hand, the negation of P is simply f(a) 6= 0. To finish the thought, the contrapositive of the
theorem suggests that if we can find an n such that f(a) 6≡ 0 for all a ∈ Z then it follows f(a) 6= 0
for all a ∈ Z.

This method is not generally successful in proving the non-existence of integer zeros for polyno-
mials over the integers. See page 45 of Jones and Jones’ Elementary Number Theory for comments38.

There is a large difference between ordinary arithmetic in Z and that of Zn. We already saw in
Example 1.5.15 the solution set of a system of equations in Z4 had four distinct solutions. In
the context of systems of equations over Z we either obtain no solutions, one solution, or infinitely
many. This distinction is largely tied to the fact that some numbers in Zn do not have multiplicative
inverses. For example, in Z4 the fact that [2][2] = [0] implies there cannot be [x] such that [2][x] = [1]
since that would give us [2][2][x] = [0][x] implying [2][1] = [2] = [0] which is absurd. Apparently,
only certain numbers in Zn have multiplicative inverses. Let us characterize which numbers have
inverses modulo n. Let n ∈ N and a ∈ Z we seek to solve:

[a][x] = [1] ⇒ ax− 1 = nk

38give me a warning via email if you want to look at this book, I might need to grab it from home
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for some k ∈ Z. This gives,

ax+ nk = 1

If a and n have a common factor larger than 1 then we obtain a contradiction since 1 has no
divisors. Thus, in the case there is a solution, we must have gcd(a, n) = 1. This is fortunate news
since we have a nice method to calculate gcd(a, n) and the criteria that a−1 exist in Zn is simply
that a is relatively prime or, if you prefer, coprime.

Example 1.5.30. In Example 1.4.16 we found gcd(62, 626) = 2. This shows 62 does not have a
multiplicative inverse modulo 626. Also, it shows 626 does not have a multiplicative inverse modulo
62.

Example 1.5.31. In Example 1.4.17 we found gcd(11, 240) = 1 and 1 = −109(11) + 5(240). From
this we may read several things:

[−109]−1 = [11] mod(240) & [−109]−1 = [11] mod(5)

and,

[5]−1 = [240] mod(11) & [5]−1 = [240] mod(109).

In terms of least positive residues the last statement reduces to [5]−1 = [22]. Of course, we can
check this; [5][22] = [110] = [1].

Remark 1.5.32. At this point our work on the model Z/nZ for Zn comes to an end. From this
point forward, we return to the less burdensome notation

Zn = {0, 1, 2, . . . , n− 1}

as a default. However, we are open-minded, if you wish, you can define

Zn = {1, 2, . . . , n}

where n serves as the additive identity of the group. Furthermore, we wish to allow calculations
such as: working modulo 5 we have:

3(17) = 3(15 + 2) = 3(2) = 6 = 1

thus 17−1 = 2 or 3−1 = 2 etc. Technically, if we define G1, G2, G3 ⊆ Z where

G1 = {0, 1, 2}, G2 = {1, 2, 3}, G3 = {10, 11, 12}

and addition is defined modulo 3 then G1, G2 and G3 are distinct point sets and hence are different
groups. However, these are all models of Z3. In fact, G1, G2, G3 are all isomorphic39. Algebraists
will say things like, all of the sets G1, G2, G3 are Z3. What they mean by that is that these set are
all to the inutition of a group theorist the same thing. What we define Zn to be is largely a matter
of convenience. Again, the two main models:

(1.) Zn = Z/nZ = {k + nZ | k ∈ Z} makes Zn a set of sets of integers, or, a set of cosets of Z.

(2.) Zn = {0, 1, . . . , n− 1} where Zn ⊂ Z.

39we will define this carefully in due time, for Fall 2016, this is after Test 1
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In either case, Zn is not a subgroup of Z, but, for slightly different reasons. In case (1.) the set of
cosets is not a subset of Z so it fails the subset criterion for subgroup. In case (2.) while it is a
subset it fails to have the same additive operation as Z.

We now have all the tools we need to prove U(n) is a group.

Theorem 1.5.33. The set U(n) = {x | gcd(x, n) = 1} with multiplication modulo n forms a group.

Proof: We suppose Zn = {0, 1, . . . , n − 1} and U(n) ⊂ Zn for the sake of specificity. Observe
gcd(1, n) = 1 thus 1 ∈ U(n). Moreover, 1x = x1 = x modulo n for each x ∈ U(n) so 1 is
the multiplicative identity for U(n). Suppose x, y ∈ U(n) hence by Bezout’s identity there exist
a, b, c, d ∈ Z for which

ax+ bn = 1 & cy + dn = 1

thus ax = 1− bn and cy = 1− dn so

(ax)(cy) = (1− bn)(1− dn) = 1 + (n− b− d)n

Thus (xy)(ac) + n(b + d − n) = 1 and as ac, b + d − n ∈ Z we see that gcd(xy, n) = 1. Therefore,
xy ∈ U(n). Moreover, we also see that

xa+ bn = 1 ⇒ gcd(x, n) = 1

thus x ∈ U(n). Furthermore, xa + bn = 1 modulo n yields xa ≡ 1 which means x = a−1. In
summary, we have shown U(n) has a binary operation with identity and inverses. I suppose to
complete the argument we ought to have shown that multiplication in Zn is associative. The proof
is similar to that which was given for Proposition 1.5.13 and we leave it to the reader. �

Matrices with entries in Zn are multiplied and added in the usual fashion. In particular,

(A+B)ij = Aij +Bij , (cA)ij = cAij , (XY )ij =

r∑
k=1

XirYrj

where A,B ∈ Zp×qn , X ∈ Zp×rn and Y ∈ Zr×qn . We can show Iij = δij has XI = IX = X for any
matrix. Naturally, the addition and multiplications above are all done modulo n. This has some
curious side-effects:

A+A+ · · ·+A︸ ︷︷ ︸
n−summands

= nA = 0

A square M ∈ Zp×pn is invertible only if det(M) ∈ U(n). To prove this we could go through all
the usual linear algebra simply replacing regular addition and multiplication with the modular
equivalent. In particular, we can show the classical adjoint of M satisfies

Madj(M) = det(M)I

If det(M) ∈ U(n) then there exists det(M)−1 ∈ U(n) for which det(M)−1 ·det(M) = 1. Multiplying
the classical adjoint equation we derive

M(det(M)−1 · adj(M)) = det(M)−1 · det(M)I = I.

Thus,

M−1 = det(M)−1 · adj(M).

https://en.wikipedia.org/wiki/Adjugate_matrix
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Calculation of the inverse in 3× 3 or larger cases requires some calculation, but, for the 2× 2 case

we have a simple formula: if

[
a b
c d

]
∈ Z2×2

n and ad− bc ∈ U(n) then

[
a b
c d

]−1

= (ad− bc)−1

[
d −b
−c a

]

In the case n = p a prime, U(p) = Z×p and the inverse of a matrix M over Zp exists whenever
det(M) 6= 0. In fact, we can define the general linear group over matrices even when the entries
are not taken from a field.

Definition 1.5.34. The general linear group of p× p matrices over Zn is defined by:

GL(p,Zn) = {A ∈ Zp×pn | det(A) ∈ U(n)}.

Moreover, GL(p,Z) = {A ∈ Zp×p | det(A) = ±1}.

I will forego proof that the general linear groups are indeed groups at the moment. In fact, we can
define the general linear group for matrices built over any ring in a similar fashion. These suffice
for our current purposes.

Example 1.5.35. Let M =

[
1 2
3 1

]
modulo 10. Note det(M) = 1(1) − 2(3) = −5 = 5 /∈ U(10).

I claim we can find X 6= 0 for which MX = 0. Let’s calculate:[
a b
c d

] [
1 2
3 1

]
=

[
0 0
0 0

]
we want to solve,

a+ 3b = 0, 2a+ b = 0, c+ 3d = 0, 2c+ d = 0

thus d = −2c and c + 3(−2c) = −5c = 0 we choose c = 2 hence d = −2c = −4 = 6. Continuing,
b = −2a this a + 3(−2a) = −5a = 0 so for fun we choose a = 4 and find b = −2a = −8 = 2.
Finally, check our work, does MX = 0 as we wished?[

4 2
2 6

] [
1 2
3 1

]
=

[
10 10
20 10

]
=

[
0 0
0 0

]
.

Do you understand why the existence of X for which MX = 0 forbids the possibility that M−1

exists? Suppose M−1 existed for the sake of discussion, notice:

M−1MX = M−10 ⇒ X = 0

but, X 6= 0 hence no multiplicative inverse for M can exist.

Example 1.5.36. Let M =

[
0 2
3 4

]
in Z2×2

6 . Let us find the order of M in the additive sense.

2M =

[
0 4
0 2

]
, 3M =

[
0 0
3 0

]
, 4M =

[
0 2
0 4

]
, 5M =

[
0 4
3 2

]
, 6M =

[
0 0
0 0

]
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Example 1.5.37. Let X =

[
2 4
6 0

]
in Z2×2

8 . Let us find the order of X in the additive sense.

2X =

[
4 0
4 0

]
, 3X =

[
6 4
2 0

]
, 4X =

[
0 0
0 0

]
.

Thus the order of X is 4.

There are additive groups of matrices and multiplicative groups of matrices. Let us consider a pair
of examples in the multiplicative realm.

Example 1.5.38. Let A =

[
2 1
1 2

]
in Z2×2

4 . Notice, det(A) = 4 − 1 = −1 = 3 and 3−1 = 3 as

3(3) = 9 = 1 modulo 4. Thus,

A−1 = 3

[
2 −1
−1 2

]
=

[
6 −3
−3 6

]
=

[
2 1
1 2

]
Indeed, you can check, AA = I thus A = A−1. Moreover, this shows A has order 2.

Example 1.5.39. Let A =

[
2 1
1 2

]
in Z2×2

5 . Notice, det(A) = 4 − 1 = 3 and 3−1 = 2 as

2(3) = 6 = 1 modulo 5. Thus,

A−1 = 2

[
2 −1
−1 2

]
=

[
4 −2
−2 4

]
=

[
4 3
3 4

]
Next, we determine the order of A by direct calculation:

A2 =

[
2 1
1 2

] [
2 1
1 2

]
=

[
0 4
4 0

]
as a quick check on my calculation, note det(A2) = −16 = 4 and [det(A)]2 = 32 = 9 = 4.
Continuing,

A3 = AA2 =

[
2 1
1 2

] [
0 4
4 0

]
=

[
4 3
3 4

]
.

Observe A3 = A−1 hence A4 = I and find |A| = 4.

I recommend working on Chapter 0 Gallian problems such as:

#3, 9, 14, 15, 28, 46, 47, 48,

I recommend working on Chapter 2 Gallian problems such as:

#5, 8,

also, Chapter 3 Gallian problems such as:

#13, 37.

these should help bring the Group concept to life. I do not collect these, but, I will keep them in
mind as I construct tests.
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Problems for Lecture 5: (these are collected at the beginning of Lecture 7)

Problem 17: Gallian Chapter 0 number 40 (ISBN code, based on 39 in part)

Problem 18: Workin’ mod 14.

(a) Find the additive inverse and order of each element in Z14.

(b) Find the multiplicative inverse or indicate “DNE” (does not exist) for each
element in Z14. If the multiplicative inverse exists, that element belongs to
U(14). In this case, find the order of that element (in U(14)).

(c) Compute 5−2 · (4− 10) · 13999 + 11 (mod 14).

(d) Compute A−1 given A =

[
1 5
4 9

]
∈ GL2(Z14).

Problem 19: The Matrix problem

(a) Compute A−1B2 where A =

[
1 2
3 4

]
, B =

[
3 2
1 1

]
∈ GL2(Z9)

(b) Find the cyclic subgroup generated by A. What is the order of A?

Problem 20: A function problem

(a) Let f : Z→ Z be defined by f(x) = 2x2 − 3.

i. Show f is not 1-1.

ii. Show f is not onto.

iii. Let A = {−1, 0, 1, 2, 3}. Find f(A) = {f(x) | x ∈ A} (the image of the
set A under the map f).

iv. Let A = {−1, 0, 1, 2, 3}. Find f−1(A) = {x ∈ Z | f(x) ∈ A} (the inverse
image of A).

(b) Let g : X → Y . Prove that g is onto if and only if g−1(B) 6= φ (the inverse
image of B is non-empty) for all non-empty subsets of Y : φ 6= B ⊂ Y .

Recall that for A ⊆ X and B ⊆ Y . . .

f(A) = {f(x) | x ∈ A} ⊆ Y and f−1(B) = {x ∈ X | f(x) ∈ B} ⊆ X
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1.6 Lecture 6: cyclic groups

We studied the subgroup 〈a〉 in Lecture 3. We now continue that discussion. This and the next
lecture are set aside to unravel the basic theory of cyclic groups. They are largely based on Chapter
4 of Gallian. What is a cyclic group? It40

Definition 1.6.1. If a group G = 〈a〉 for some a ∈ G then we say G is a cyclic group. Moreover,
any element b for which 〈b〉 = G is called a generator of G.

To prove G is not cyclic we can demonstrate that no element of G generates all of G.

Example 1.6.2. Consider D3 = {1, r, r2, f, rf, r2f} where frf = r−1 and r3 = 1 and f2 = 1. We
also may derive that fr−1f = r and fr = r−1f and fr−1 = rf . With these relations in mind it is
not much trouble to calculate the subgroup of D3 generated by various elements.

〈r〉 = {1, r, r2}, & 〈f〉 = {1, f}, & 〈rf〉 = {1, rf}

as (rf)(rf) = r(frf) = rr−1 = 1. Consider r2f , note r2r = 1 hence r2 = r−1,

(r2f)2 = (r−1f)(r−1f) = r−1(fr−1f) = r−1r = 1 ⇒ 〈r2f〉 = {1, r2f}

Notice, every element of D3 is covered by the 5 cyclic subgroups we have explicitly given. Do you
understand why this implies D3 is not a cyclic group? If not, then what is the remaining possibility?
Notice, 〈r2〉 = {1, r2, r} as (r2)2 = r4 = r. Visibly, D3 is not cyclic.

The method used in the example above is what I would call brute force. We shall learn a few
labor saving devices as we continue our study. That said, let me just give a few examples to get
used to the idea of a generator.

Example 1.6.3. A nice infinite group example is found in (Z,+). Observe,

〈1〉 = {n(1) | n ∈ Z} = Z.

likewise, 〈−1〉 = {n(−1) | n ∈ Z} = Z. Thus Z is generated by both 1 and −1.

Example 1.6.4. Z4 = {0, 1, 2, 3} has 〈1〉 = {0, 1, 2, 3} and 〈2〉 = {0, 2} and 〈3〉 = {0, 3, 2, 1} hence
1 and 3 = −1 serve as generators for Z4.

Example 1.6.5. Z7 = {0, 1, 2, 3, 4, 5, 6} has 6 = −1 and for much the same reasons as the past
two examples, 〈1〉 = 〈−1〉 = Z7. However, we also have,

〈2〉 = {0, 2, 4, 6, 1, 3, 5} = Z7 & 〈3〉 = {0, 3, 6, 2, 5, 1, 4} = Z7

in fact, 〈4〉 = 〈5〉 = 〈6〉 = Z7. Every nonzero element in Z7 serves as a generator of the group.

Example 1.6.6. Z10 has 〈1〉 = 〈−1〉 = Z10. However,

〈2〉 = {0, 2, 4, 6, 8} & 〈4〉 = {0, 4, 8, 2, 6} & 〈6〉 = {0, 6, 2, 8, 4} & 〈8〉 = {0, 8, 6, 4, 2}

and 〈5〉 = {0, 5〉. In contrast, 1, 3, 7, 9 all serve as generators of Z10.

A clear pattern begins to immerge. The generators of Zn are found in U(n). This is not a proof,
this is merely a conjecture at this point! (see Corollary 3 on page 77 of Gallian)

40is time for...
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Example 1.6.7. U(10) = {1, 3, 7, 9} has 〈a〉 = {1, a, a2, . . . }

〈1〉 = {1}, & 〈3〉 = {1, 3, 9, 7}, & 〈7〉 = {1, 7, 9, 3}, & 〈9〉 = {1, 9}

Apparently, 3 and 7 serve as generators for U(10) however, 9 does not. How are these numbers
different as they relate to 10?

I ask the question in the example above not hoping you find an answer. It is not that obvious
which integers serve as generators for the group of units. In fact, not all U(n) are cyclic.

Example 1.6.8. U(8) = {1, 3, 5, 7} we have 〈3〉 = {1, 3} as 32 = 9 = 1. Likewise, 52 = 25 = 1 and
72 = 49 = 1 hence 〈5〉 = {1, 5} and 〈7〉 = {1, 7}. By brute force we have shown U(8) is not cyclic.

Example 1.6.9. U(20) = {1, 3, 7, 9, 11, 13, 17, 19} is not cyclic. I invite the reader to verify this
through explicit computation. Or, you can watch me do it here see minute 35 onward. I show every
element of U(20) has order 1, 2 or 4.

I think we’ve seen enough examples for now. Let us begin our work on the theory of cyclic groups.
Before that, I must state a theorem:

Theorem 1.6.10. Let G be a group and g ∈ G if m,n ∈ Z then

(1.) gmgn = gm+n,

(2.) (gm)n = gmn.

Proof: I gave a proof of (1.) in the solution to Lecture 3 homework. I offer a partial proof of (2.)
here, fix m ∈ Z and note,

(gm)0 = e = gm(0).

Inductively suppose (gm)n = gmn for some n ∈ N. Consider,

(gm)n+1 = (gm)ngm = gmngm

by the induction hypothesis. Next, use (1.) to add exponents,

(gm)n+1 = gmn+m = gm(n+1)

thus (gm)n = gmn for all n ∈ N. Next, let k ∈ N and set n = −k,

(gm)n = (gm)−k = ((gm)−1)k

where we used the definition of negative power in the last step. Note, by applying (1.) once more
we obtain gmg−m = gm−m = g0 = e thus (gm)−1 = g−m. Hence,

(gm)n = ((gm)−1)k = (g−m)k = g(−m)k = gm(−k) = gmn. �

This could have been done much earlier. My apologies. In any event, we are free to use the laws
of exponents above going forward. Naturally, I might ask you to prove a law of exponents on an
exam, but, otherwise, they are for us all to enjoy. This matters a fair amount in this section since
we face many calculations involving products of powers.

https://www.youtube.com/watch?v=snuWHOFfBhs&index=6&list=PLBY4G2o7DhF0JCgapYKrqibGaJuvV4Gkb
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Theorem 1.6.11. Let G be a group and a ∈ G. If |a| =∞ then i 6= j implies ai 6= aj.
If |a| = n ∈ N then 〈a〉 = {1, a, . . . , an−1} where ai = aj if and only if n | (i− j).

Proof: begin with the case |a| =∞. Suppose i 6= j for some i, j ∈ Z and suppose ai = aj . Without
loss of generality we may suppose i > j. Multiply by a−j and obtain, aia−j = aja−j hence ai−j = e
thus |a| ≤ i− j which contradicts the infinite order of a. Therefore, we find ai 6= aj .

Suppose |a| = n for some n ∈ N. Suppose ai = aj for 1 ≤ j < i < n. Multiply by a−j as to obtain
ai−j = e. Notice, j < i < n implies i− j < n− j < n hence ai−j = e contradicts |a| = n. Therefore,
we find ai 6= aj for 1 ≤ j < i < n.

Suppose k ∈ Z then by the division algorithm there exists q, r ∈ Z with k = qn+r where 0 ≤ r < n.
Observe,

ak = aqn+r = aqnar = (an)qar = eqar = ar.

Notice, 0 ≤ r < n allows r = 0, 1, . . . , n− 1 and thus the cyclic subgroup generated by a is simply:

〈a〉 = {1, a, a2, . . . , an−1}

Suppose ai = aj for some i, j ∈ Z. Multiply by a−j as to obtain ai−j = e. Apply the division
algorithm to obtain q, r ∈ Z with 0 ≤ r < n and i− j = qn+ r. Hence,

e = ai−j = aqn+r = (an)qar = eqar = ar ⇒ ar = e.

since r < n we must conclude r = 0 as say otherwise contradicts |a| = n. Therefore, i − j = qn
and we conclude n | i − j. Conversely, if n | i − j then i − j = qn for some q ∈ Z hence
ai−j = aqn = (an)q = eq = 1 thus, multiplying by aj on the equation we derive ai = aj . �

Remark 1.6.12. The proof I give here is fairly similar to that given for Theorem 4.1 in Gallian.
The key is the division algorithm appropriately applied.

Corollary 1.6.13. If G be a group and a ∈ G then |a| = |〈a〉|.

Proof: if G is a group and a ∈ G and |a| = ∞ then Theorem 1.6.11 shows ai 6= aj for all
i, j ∈ Z hence 〈a〉 = {1, a, a−1, a2, a−2, . . . } is not a finite set. If |a| = n then Theorem 1.6.11 shows
〈a〉 = {1, a, . . . , an−1} with listed elements distinct. Thus, by counting, |〈a〉| = n = |a|. �.

Notice, all the hard work for the Corollary above really is done by Theorem 1.6.11. As a point of
etymology the terms theorem and corollary are quite old. According to Rotman page xii. in
his A First Course in Abstract Algebra with Applications, 3rd edition,

1. the term theorem is from a Greek word meaning to watch or to contemplate. In other words,
the term theorem indicates something worthy of contemplation.

2. the term corollary is from a Latin word meaning to flower, possibly because flowers were a
common gift in ancient Rome, so, the corollary is a gift from the theorem.

Rotman also explains mathematics is actually a classical Greek term which means to learn.
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Corollary 1.6.14. If G be a group and a ∈ G with |a| = n ∈ N. If ak = e then n | k.

Proof: if a ∈ G with |a| = n and ak = e. Then ak = a0 hence n | (k − 0) by Theorem 1.6.11. �

Discussion on factoring: How does this Corollary apply? Suppose |a| = 3 then the only way
ak = e is if k is a multiple of 3. Recall, n | k implies k = nm for some m ∈ Z. Again, a | b only
if b is a multiple of a. Working backwards, if a50 = e then the order of a must be some factor of
50. It could be, a2 = e or a5 = e or a10 = e or a25 = e. What can you say if we compute a26 6= e ?
What must the order of a be if a26 6= e and a50 = e ?

Discussion on similarity to Zn: If an = e and i = j + n then ai = aj+n = ajan = aj . Notice,
if |a| = n then Theorem 1.6.11 provides that ai = aj if and only if i is congruent to j modulo
n. Of course, in the case G = Zn and 〈a〉 = {0, a, 2a, . . . , na} we have |a| = n and ia = ja
only if i ≡ j mod n. The addition in Zn = {0, 1, . . . , n − 1} and exponent laws for multiplication
in 〈a〉 = {1, a, a2, . . . , an−1} are nicely connected. We state the theorems and corollaries in this
section in multiplicative notation, however, there are additive restatements of all our results. In
fact, anything fact we prove for a generic cyclic group we also know for Zn. Why? Because Zn is
the quintessential finite cyclic group. Figure 4.1 on page 76 of Gallian is helpful.

Theorem 1.6.15. If G is a group and a ∈ G with |a| = n ∈ N and k ∈ N then

〈ak〉 = 〈agcd(n,k)〉 and |ak| = n

gcd(n, k)
.

Proof: assume G is a group and a ∈ G with |a| = n ∈ N and k ∈ N. Let d = gcd(n, k). Observe,
as d is a divisor of k, there exists z ∈ Z for which k = zd.

Suppose x ∈ 〈ak〉 then there exists y ∈ Z for which x = (ak)y. Observe x = aky = azdy = (ad)zy ∈
〈agcd(n,k)〉. Thus 〈ak〉 ⊆ 〈agcd(n,k)〉.

Let w ∈ 〈agcd(n,k)〉 hence w = (ad)u for some u ∈ Z. By Bezout’s Identity41 there exist p, q ∈ Z for
which pn+ qk = d. Thus, noting an = e is given for the fifth equality,

w = (ad)u = (apn+qk)u = (apnaqk)u = ((an)paqk)u = (eaqk)u = aqku = (ak)qu ∈ 〈ak〉.

Thus 〈agcd(n,k)〉 ⊆ 〈ak〉 and we conclude 〈agcd(n,k)〉 = 〈ak〉

It remains to show |ak| = n
d . Observe (ad)n/d = an = e hence |ad| ≤ n/d. If 0 < i < n/d then

di < n and hence (ad)i = adi 6= e since |a| = n. Therefore, |ad| = n/d. Recall Corollary 1.6.13
assures us the order of an element is the same as the order of the cyclic subgroup it generates;
|ad| = |〈agcd(n,k)〉| and |ak| = |〈ak〉|. We already proved 〈agcd(n,k)〉 = 〈ak〉 thus |ak| = n/d. �

Corollary 1.6.16. If |a| = n. Then 〈ai〉 = 〈aj〉 if and only if gcd(n, i) = gcd(n, j).

Proof: let G be a group and a ∈ G with |a| = n ∈ N. By Theorem 1.6.15 we have

〈ai〉 = 〈agcd(n,i)〉 & 〈aj〉 = 〈agcd(n,j)〉

hence gcd(n, i) = gcd(n, j) yields immediately the equality 〈ai〉 = 〈aj〉. Conversely, suppose 〈ai〉 =
〈aj〉. Hence |ai| = |aj | and by Theorem 1.6.15 we find |ai| = n

gcd(n,i) and |aj | = n
gcd(n,j) thus

n

gcd(n, i)
=

n

gcd(n, j)

41Gallian refers to this as the GCD theorem
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and we derive gcd(n, i) = gcd(n, j). �

And now some corollaries to the Corollary above.

Corollary 1.6.17. If G = 〈a〉 is a cyclic group of order n then G = 〈ak〉 if and only if gcd(n, k) = 1.

Proof: assume G = 〈a〉. Observe, by Corollary 1.6.16, 〈ak〉 = 〈a1〉 iff gcd(n, k) = gcd(n, 1). Clearly
gcd(n, 1) = 1 thus gcd(n, k) = 1. �

Corollary 1.6.18. If k ∈ Zn then k is a generator of Zn iff gcd(n, k) = 1.

Proof: almost the same as Corollary 1.6.17. Observe Zn = 〈1〉. By Corollary 1.6.16, 〈1〉 = 〈k〉 iff
gcd(n, k) = gcd(n, 1) hence gcd(n, k) = 1. �

I you return to all the examples we’ve done in the past few lectures you’ll see this Corollary at
work.

Example 1.6.19. In the dihedral group Dn we may study the subgroup of rotations H = {1, r, r2, . . . , rn−1}
where rn = 1 and |r| = n (this indicates the list defining H is comprised of distinct elements). No-
tice,

H = 〈r〉

thus H ≤ G by Theorem 1.2.22. Furthermore, the possible generators for H are simply rk where
gcd(k, n) = 1. For example, in D16 denoting H = 〈r〉 where r16 = 1 then r3, r5, r7, r9, r11, r13, r15

are other generators for H.

A more powerful example is given in Gallian on page 78. I give a different example here (less
impressive, I do U(14) as compared to his U(20) example)

Example 1.6.20. Consider U(14) = {1, 3, 5, 9, 11, 13} we can show 〈3〉 = U(14) since, modulo 14
we calculate (I maintain order across the equality)

1, 3, 32, 33, 34, 35 = 1, 3, 9, 13, 11, 5.

The order of U(14) is n = 6. Notice, only 1 and 5 are relatively prime to 6 hence the only other
generator of U(14) is given by 35 = 5. I am using Corollary 1.6.17.

I recommend working on Chapter 4 Gallian problems such as:

#1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15

I do not collect these, but, I will keep them in mind as I construct tests. There might be further
problems which are appropriate given this lecture. That said, by the end of Lecture 7 we should
be ready to try all the problems in Chapter 4 of Gallian.
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Problems for Lecture 6: (these are collected at the beginning of Lecture 8)

Problem 21: Exercise 13 of Chapter 4 in Gallian.

Problem 22: Orders of elements and number of such elements.

(a) Make a table which lists the possible orders of elements of Z294. List of the
number such elements in the second row. [I’ll get you started: There is 1 element
of order 1 ] How many generators does Z294 have?

(b) Repeat part (a) for D294.

(c) How many elements of order 8 are there in Z1440000? What are they?

(d) How many elements of order 7 are there in Z1440000?

Problem 23: Let g ∈ G (for some group G). Suppose |g| = 120. List the distinct elements of
〈g100〉. Is g30 ∈ 〈g100〉?

Problem 24: Let g, x ∈ G (for some group G).

i. Show that |x| = |gxg−1| (i.e. conjugates have the same order).

ii. Prove or give a counterexample: 〈x〉 = 〈gxg−1〉.
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1.7 Lecture 7: classification of cyclic subgroups

We begin with several examples.

Example 1.7.1. If G = 〈a〉 where a5 = e then the trivial subgroup 〈e〉 = {e}. However, there are
no nontrivial proper subgroups. Notice:

〈a〉 = {e, a, a2, a3, a4}
〈a2〉 = {e, a2, a4, a}
〈a3〉 = {e, a3, a, a4, a2}
〈a4〉 = {e, a4, a3, a2, a}

Thus every non-identity element serves as a generator for G.

The behaviour above is typical of groups of prime order. For a cyclic group, if the order is the
square of a prime then we get just one proper subgroup.

Example 1.7.2. Consider G = Z25. As always, the identity generates a subgroup containing itself
alone; 〈0〉 = {0}. Also, every element of G except for 0, 5, 10, 15, 20 generates Z25 since all other
numbers in Z25 are relatively prime to 25. We find the subgroup

〈5〉 = {0, 5, 10, 15, 20}

note 2, 3 and 4 are relatively prime to the order of |〈5〉| = 5 and so 10 = 2(5), 15 = 3(5) and
20 = 4(5) are also generators for 〈5〉. Here we see the additive version of Corollary 1.6.17 at play.

Cyclic groups of composite order can have many subgroups.

Example 1.7.3. Consider G = 〈a〉 where a8 = e. Observe:

〈a2〉 = {e, a2, a4, a6} = 〈a6〉
〈a4〉 = {e, a4}
〈e〉 = {e}

whereas a, a3, a5, a7 serve as generators for G itself 〈a〉 = 〈a3〉 = 〈a5〉 = 〈a7〉. For example,

〈a3〉 = {e, a3, (a3)2, (a3)3, (a3)4, (a3)5, (a3)6, (a3)7} = {e, a3, a6, a, a4, a7, a2, a5}

Example 1.7.4. Consider G = Z20. In this case we have a few more subgroups to consider.
Corollary 1.6.18 provides that U(20) = {1, 3, 7, 9, 11, 13, 17, 19} contains generators for Z20. There
are several proper subgroups,

〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}
〈4〉 = {0, 4, 8, 12, 16}
〈5〉 = {0, 5, 10, 15}
〈10〉 = {0, 10}
〈0〉 = {0}.

Incidentally, using the additive version of Corollary 1.6.17 we find from |〈2〉| = 10 and the fact that
3, 7 and 9 are relatively prime to 10 that 3(2) = 6, 7(2) = 14 and 9(2) = 18 are generators of 〈2〉.
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The patterns in the examples above turn out to be general for cyclic groups.

(1.) Every subgroup of a cyclic group is cyclic.

(2.) The order of a subgroup must divide the order of the group.

(3.) For each divisor of the order of the group there just one subgroup with that order

We later learn that (2.) holds for finite groups in general whereas (3.) is not generally true. Gallian
calls the following the Fundamental Theorem of Cyclic Groups.

Theorem 1.7.5. Let G = 〈a〉 be a cyclic group.

(1.) If H ≤ G then H is cyclic.

(2.) If |G| = n and H ≤ G with |H| = k then k | n.

(3.) If |G| = n and k ∈ N with k | n then H = 〈an/k〉 is the unique subgroup of order
n/k in G.

Proof: (1.) suppose G = 〈a〉 = {ak | k ∈ Z} and H ≤ G. Notice H = {e} is cyclic thus
assume H 6= {e} in what follows. Consider, if ak ∈ H then a−k ∈ H as aka−k = a0 = e. Let
Λ = {n ∈ N | an ∈ H} and note that Λ has a smallest element by the well-ordering-principle. Let
t ∈ Λ be the smallest element of Λ. We suspect H = 〈at〉.

Since at ∈ H it follows (at)s ∈ H for s ∈ Z by closure of the group operations of H. Thus, 〈at〉 ⊆ H.
Suppose ak ∈ H. By the division algorithm, there exist q, r for which k = qt+ r where 0 ≤ r < t.
Observe:

ak = aqt+r = aqtar ⇒ ar = a−qtak.

Note at ∈ H implies a−qt = ((at)−1)q ∈ H. Thus a−qt, ak ∈ H and ar = a−qtak ∈ H. Thus, r = 0
as t is the smallest element of Λ. Therefore, k = qt and we find ak = (at)q ∈ 〈at〉 thus H ⊆ 〈at〉.
We conclude H = 〈at〉 which shows H is cyclic with generator at.

(2.) Suppose G = 〈a〉 and |G| = n. Let H ≤ G and |H| = k. Following the proof of (1.) we know
there exists at ∈ G for which H = 〈at〉. Notice, (at)n = (an)t = et = e. Observe at has (at)n = e
in the group H thus Corollary 1.6.14 provides |at| | n which is to say k | n.

(3.) Suppose |G| = n and k is a positive divisor of n. Theorem 1.6.15 provides that |〈an/k〉| =
n

gcd(n,n/k) = n
n/k = k hence 〈an/k〉 is a subgroup of order k. Suppose H ≤ G is another subgroup of

order k. By the proof of (1.) we know there exists at ∈ H with 〈at〉 = H and t is a divisor of n.
Consider, t = gcd(t, n) and by Theorem 1.6.15

k = |at| = |agcd(t,n)| = n

gcd(t, n)
=
n

t
.

Therefore, t = n
k and we conclude the unique subgroup of order k is precisely H = 〈an/k〉. �

The order of the group of units in Zn is given by the Euler φ function:

Definition 1.7.6. The Euler φ function is defined by φ(n) = |U(n)| for each n ∈ N.

In other words, φ(n) is the number of relative prime positive integers to n. For example,

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

Notice Gallian’s Exercises 38,39 and 40 of Chapter 3 indicate certain formulas may hold for the
Euler-phi function. For example, φ(20) = φ(4 ·5) = φ(4) ·φ(5) whereas φ(8) = φ(2 ·4) 6= φ(2) ·φ(4).
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Perhaps you can determine some relations for the Euler φ function from the table on the past page.
Finding efficient methods to calculate φ(n) for larger n is important as it allows us to determine
the number of elements of a given order in a cyclic group.

Theorem 1.7.7. Let G = 〈a〉 be a cyclic group of order n. If d is a positive divisor of n then φ(d)
is the number of elements of order d in G

Proof: by Theorem 1.7.5 if G is cyclic with order n and d is a positive divisor of n then there is
a unique subgroup H of order d in G. Moreover, H = 〈a〉 for some a ∈ G and |a| = d. Recall,
Corollary 1.6.17 told us 〈a〉 = 〈ak〉 only if gcd(k, d) = 1. The number of distinct choices for k is
precisely φ(d). Thus the number of elements of order d is precisely φ(d). �
Let’s apply this Theorem.

Example 1.7.8. If G is a cyclic group of order n = 19k for some k ∈ N then 19 | n and we find
there are φ(19) = 18 elements of order 19 in G. This is true for Z19 or Z19,000,000.

It is important to notice the qualifier cyclic as it appears in most of the results in this section. Up
to isomorphism42 all cyclic groups are just Zn so the structure is fairly simple to decipher43.

Corollary 1.7.9. In a finite group the number of elements of order d is divisible by φ(d).

Proof: If G is a finite group and G has no elements of order d then φ(d) | 0. Otherwise, suppose d
has an element of order d, say a ∈ G. Observe 〈a〉 has φ(d) elements of order d since |〈a〉| = d and
Theorem 1.7.7 applies. Next, suppose b ∈ G also has order d but b /∈ 〈a〉. Once again, we argue 〈b〉
has φ(d) elements of order d. Suppose x ∈ 〈a〉 and x ∈ 〈b〉 where |x| = d then 〈a〉 = 〈x〉 = 〈b〉 which
implies b ∈ 〈a〉 a contradiction. Thus the elements of order d in 〈a〉 and 〈b〉 are distinct. Hence
we count 2φ(d) elements of order d thus far in G. Continuing this process44 yields the number of
elements of order d is a multiple of φ(d). �

We have considered groups which are not cyclic. For example, the Dihedral groups, GL(n,R) or
for certain n even U(n) is not cyclic.

Example 1.7.10. Consider U(8) = {1, 3, 5, 7} we have

32 = 52 = 72 = 1

In this group of order 4 we find 3 elements of order 2. Of course, 3 = 3φ(2) since φ(2) = 1.

Admittedly, the example above is not terribly exciting.

Example 1.7.11. Note U(20) = {1, 3, 7, 9, 11, 13, 17, 19} has elements 9, 11 and 19 with order 2.
This gives us three distinct subgroups of order 2 in U(20). That alone shows U(20) is not cyclic
as it violates the Fundamental Theorem of Cyclic groups. In contrast, my brute-force argument
given in the help-session (see 39:30 or so) required much more work. In fact, if we can show there
are two elements of order 2 that suffices to disprove G is cyclic! A bit of arithmetic shows that
|3| = |7| = |13| = |17| = 4 thus there are 4 elements of order 4 in U(20). Notice, φ(4) = 2 and
4 = 2(2). Observe this demonstrates the result put forth in Corollary 1.7.9.

42you hopefully discussed this concept in linear algebra, and, intuitively is has the same meaning here, more later...
43well, fortunately, when n gets big enough encryption works, but, the math of encryption is fairly simple.
44G is finite, we eventually must run out of new elements of order d

https://www.youtube.com/watch?v=snuWHOFfBhs&list=PLBY4G2o7DhF0JCgapYKrqibGaJuvV4Gkb&index=6
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At this point we reach the end of Chapter 4. I will probably draw a subgroup lattice or two for you
in class. There is a subgroup lattice diagram for Z30 given on page 81 of Gallian. In the last two
sections we have learned much about the structure of subgroups and the order of elements in finite
cyclic groups. There are further theorems about subgroups of a finite group and more can be said
about the Euler-phi function. In any event, I hope you realize as you attack the homework from
these sections that you should use a mixture of explicit calculation and the theorems we discuss
here. In particular, since we know many things about the structure of a cyclic group, it begins to
be easy to see when a group is not cyclic. For example, G is not cyclic when:

(1.) G has two elements of order 2.

(2.) G has two elements a 6= b of order 3 with b /∈ 〈a〉.
(3.) G has more than one element of order d and they generate different subgroups.

(4.) G has more than one subgroup of a given order

(5.) G has d a positive divisor of |G| and yet there is no subgroup of order d in G.

Basically, all I’m getting at in the above, is, if we see the results of the theorems for cyclic groups
fail in a given example, then the given example is not cyclic45

I recommend working on Chapter 4 Gallian problems such as:

#1− 61, 63− 65.

I do not collect these, but, I will keep them in mind as I construct tests. I recommended some of
these in the last lecture and I don’t expect you actually do all of them. But, the more you do, the
more you know.

Problems for Lecture 7: (these are collected at the beginning of Lecture 9)

Problem 25: Gallian exercise #24 of page 83 (subgroup and centeralizer)

Problem 26: Gallian exercises #32, 33 and 34 of page 84 (subgroup lattice diagrams)

Problem 27: Gallian exercise #41 of Chapter 4 (intersection of cyclic subgroups)

Problem 28: Gallian exercise #49 of Chapter 4 (extrapolation on cyclic data)

45or we miscalculated, but, that won’t happen...
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1.8 Lecture 8: permutations and cycle notation

I follow §2.2 of Rotman’s A First Course in Abstract Algebra, which, is like Chapter 5 of Gallian.
We defined a permutation in Definition 1.3.1. A permutation on a set S is simply a bijection
which takes S as its domain and range. This definition is quite broad. It implies all invertible
linear transformations on a vector space are permutations. In fact, any nonempty set of bijections
on a space forms a subgroup of the group of permutations on the space provided the given set
of bijections is closed under composition and inversion. All of this said, our primary focus in
this section and the next will be on permutations of S = {1, 2, . . . , n}. These have tremendous
application in problem solving and they provide beautiful formulas for very complicated ideas.

Remark 1.8.1. A good amount of this Section is notation. Your main goal here is to understand
the special cycle notation we develop for permutations.

Definition 1.8.2. The symmetric group on n-symbols is the set of bijections on {1, 2, . . . , n}
with the operation of function composition. We denote the symmetric group by Sn.

The proof that Sn forms a group stems from three easily verified facts: let Nn = {1, . . . , n}

(i.) the identity map Id(x) = x for x ∈ Nn is a bijection,

(ii.) the composite of bijections on Nn is once more a bijection on Nn
(iii.) the inverse of a bijection on Nn is a bijection on Nn.

Example 1.8.3. Consider n = 2. Sn = {Id, α} where α(x) =

{
2 if x = 1

1 if x = 2
. We calculate,

α2 = α ◦α = Id since α(α(1)) = α(2) = 1 and α(α(2)) = α(1) = 2.

Customarily, instead of writing α ◦β we simply write αβ when dealing with permutations. We
adopt this convention (as does Gallian) for permutations.

Definition 1.8.4. Let α ∈ Sn then α fixes i if α(i) = i. In contrast, α moves i if α(i) 6= i.

Since α ∈ Sn has domain Nn = {1, . . . , n} we either have that α moves or fixes each i ∈ Nn. Next,
we study S3 and use it to introduce both array and cycle notation.

Example 1.8.5. For n = 3 it is convenient to introduce a notation. Suppose α ∈ S3 is defined by:

α(1) = 2, α(2) = 3, α(3) = 1.

Denote the same permutation by α =

[
1 2 3
2 3 1

]
. In array notation,

S3 =

{[
1 2 3
1 2 3

]
,

[
1 2 3
2 3 1

]
,

[
1 2 3
3 1 2

]
,

[
1 2 3
3 2 1

]
,

[
1 2 3
2 1 3

]
,

[
1 2 3
1 3 2

]}
Honestly, I can’t bear this notation any longer. Let me show you the better way: the right-hand-side
of the equations below is what is known as cycle notation[

1 2 3
2 3 1

]
= (123),

[
1 2 3
3 1 2

]
= (132).

Generally, α = (abc) means α(a) = b, α(b) = c and α(c) = a. In other words,
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The cycles are read from left to right and they loop back.

This means there is some ambiguity to the cycle notation:

(123) = (231) = (312) & (132) = (213) = (321).

Furthermore, if one of the numbers is unmoved by the permutation then we may omit it as follows:[
1 2 3
3 2 1

]
= (13),

[
1 2 3
2 1 3

]
= (12),

[
1 2 3
1 3 2

]
= (23).

Again, there is some ambiguity, we have (13) = (31) and (12) = (21) and (23) = (32). In the cycle
notation, we write Id = (1). Let’s see how group multiplication works in cycle notation:

(21)(23) = (123) or (31)(32) = (132).

To recap, in cycle notation the symmetric group in 3 symbols is

S3 = {(1), (123), (132), (13), (12), (23)}

Let’s calculate some products. Note, (12)(12) = (1), (13)(13) = (1) and (23)(23) = (1).

(123)(123) = (132)

(123)(132) = (1) & (132)(123) = (1)

(123)(13) = (32) & (13)(123) = (12)

(123)(12) = (13) & (12)(123) = (23)

(123)(23) = (12) & (23)(123) = (13)

I’ll start a Cayley table for S3:

◦ (1) (123) (132) (13) (12) (23)

(1) (1) (123) (132) (13) (12) (23)

(123) (123) (132) (1) (23) (13) (12)

(132) (132) (1)

(13) (13) (12) (1)

(12) (12) (23) (1)

(23) (23) (13) (1)

Definition 1.8.6. Let α ∈ Sn and suppose α(aj) = aj+1 for j = 1, . . . , r and α fixes all x ∈ Nn
for which x 6= aj for j ∈ Nr. We say α is an r-cycle and we denote α = (a1 . . . ar). In the case
r = 2 we call α either a 2-cycle or a transposition

We can make pictures as on page 96 of Gallian. The diagram below equally well describes
(bcdfghija) or (cdfghijab) and so forth. You can start wherever you like and travel around the
circle (cycle)
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If we consider permutations in cycle notation it is relatively simple to prove certain claims. As you
read the example below, consider how it would have looked in the array notation!

Example 1.8.7. Let α = (123) and β = (456) in S6. Consider, for i = 1, 2, 3

α(β(i)) = α(i) & β(α(i)) = α(i)

since β(x) = x for x = 1, 2, 3. On the other hand, for i = 4, 5, 6 we have α(i) = i and

α(β(i)) = β(i) & β(α(i)) = β(i)

Thus, as we have considered all inputs from N6, we find:

αβ = (123)(456) = (456)(123) = βα.

The example above generalizes: if α = (a1a2 . . . aj) and β = (b1b2 . . . bk) have no common symbol
then αβ = βα. The argument is the same as the example above. For α, β ∈ Sn all the symbols
in neither α nor β are fixed by both. Then, the symbols in α are fixed by β and conversely the
symbols in β are fixed by α. That is, α(bi) = bi and β(ai) = ai. Observe α(ai) ∈ {a1, . . . , aj}
thus β(α(ai)) = α(ai) for each ai. Likewise, as β(bi) ∈ {b1, . . . , bk}, we calculate α(β(bi)) = β(bi) .
Therefore, for ai, bi as above and for x ∈ Nn − {a1, . . . , aj , b1, . . . , bk}

α(β(bi)) = β(bi) = β(α(bi)), α(β(ai)) = α(ai) = β(α(ai)), α(β(x) = x = β(α(x)).

Thus αβ = βα and we have proved the following:

Theorem 1.8.8. If α, β ∈ Sn and α = (a1a2 . . . aj) and β = (b1b2 . . . bk) have no common symbol
then αβ = βα. That is, disjoint cycles commute.

Not every permutation is a cycle. For example,

α =

[
1 2 3 4 5 6 7
3 2 7 5 4 6 1

]
= (137)(2)(45)(6) = (137)(45).

Let me walk through how I calculated the assertion above:

1. begin with 1 being sent to 3, write (13..,

2. next follow 3 to 7, write (137..,

3. next follow 7 to 1 this closes the first cycle (137),

4. pick a number not in (137), seems like 2 is good, note 2 goes to 2 hence write
(137)(2),

5. pick a number not in (137)(2) say 4 and note it goes to 5, so we add (45.. to obtain
(137)(2)(45..,

6. follow 5 back to 4, the circle is complete (137)(2)(45)

7. only (6) remains, hence α = (137)(2)(45)(6). But, writing (2) and (6) is superfluous
thus cut it back to our answer α = (137)(45).

I found a website that seems fairly reliable, but, backwards!. You can try it to check your answers,
but, keep in mind it swaps αβ for βα: Andrew G. Crowell’s permutation calculator. Or see the

http://www.bananattack.com/permutations/
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clunky but fun Cycle Notation Generator by James Hamblin. Finally, I would point out the leg-
endary Arturo Magidin agrees with my general approach.

It is probably obvious from the examples thus far that any permutation can be written as the
product of cycles. We study the existence and structure of cycle-decompositions of permutations
in Section 1.9.

I recommend working on Chapter 5 Gallian problems such as:

#17, 18, 23, 29, 30.

I do not collect these. But, I will keep them in mind as I construct tests.

Problems for Lecture 8: (these are collected in the Question Day before Test 1)

Problem 29: Complete the Cayley table for S3 in Example 1.8.5.

Problem 30: For each of the following permutations:

i. Write the permutation as a product of disjoint cycles.

ii. Find its inverse.

iii. Find its order.

iv. Write it as a product of transpositions and state whether it is even or odd.

v. Conjugate it by σ = (123)(45) (i.e. compute στσ−1).

vi. Compute τ99.

(a) τ = (124)(35)(24)(132)

(b) τ = (1253)(354)(135)

(c) τ = (12435)(134)(45)

Problem 31: Gallian exercise 10 on page 112.

Problem 32: Gallian exercise 35 on page 113.

http://webspace.ship.edu/jehamb/flash/cycleNotation.html
http://math.stackexchange.com/a/31764/36530
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1.9 Lecture 9: theory of permutations

Example 1.9.1. Consider,

α =

[
1 2 3 4 5 6 7 8 9
4 5 7 9 1 6 3 8 2

]
To write this in cycle-notation we identify 6 and 8 are fixed whereas Y = {1, 2, 3, 4, 5, 7, 9} are
moved. Indeed,

α = (14925)(37)

We could look at this in terms of sets which are fixed by α. To say U is fixed by α is to say
α(U) ⊆ U , but, as α is a bijection we have α(U) = U . There are two nonempty sets which are fixed
by α here; U1 = {3, 7} and U2 = {1, 2, 4, 5, 9}.

The Example above helps inspire the proof of the Lemma below:

Theorem 1.9.2. Each permutation in Sn can be expressed as a product of disjoint cycles.

Proof: let α ∈ Sn.
Step One: Suppose a1 ∈ Nn is the smallest element in Nn moved by α. If no such a1 exists then
α fixes every element in Nn and we find α = (1) = Id. Otherwise, let α(a1) = a2 where a2 6= a1. If
α(a2) = a1 then note j = 2 the go to Step 2. However, if α(a2) 6= a1 then define α(a2) = a3 and
continue to define α(ai) = ai+1 until either we exhaust the set Nn or we find α(aj) = a1 for some
j > 1. Note, we cannot have α(aj) = ai for some i > 1 as α(ai−1) = ai = α(aj) contradicts the
injectivity of α. Continue to Step Two,

Step Two: let b1 denote the smallest element moved by α in Nn − {a1, a2, . . . , aj}. If b1 does
not exist then α = (a1a2 . . . aj) as all elements except a1, a2, . . . , aj are fixed. Otherwise, define
recursively bi+1 = α(bi) and note there must exist k for which α(bk) = α(b1) just as in the argument
for the last case. If each element in Nn − {a1, . . . , aj , b1, . . . , bk} is fixed then we find

α = (a1 . . . aj)(b1 . . . bk)

Continuing: otherwise, we continue to select subsets of α-moved elements in Nn which are set-level
fixed by α. Each such set forms a cycle, thus as Nn is finite, we eventually cover all the α-moved
elements in Nn by a product of cycles. In our current notation:

α = (a1 . . . aj)(b1 . . . bk) · · · (c1 . . . cl)

Furthermore, by construction, the cycles above are disjoint. �

If this is not convincing. Feel free to read Rotman’s page 112-113 where he proves the Theorem
above with an explicit induction argument.

Theorem 1.9.3. Let n ≥ 2. Each permutation in Sn can be expressed as a product of 2-cycles.
That is, any element of Sn can be expressed as the product of transpositions.

Proof: by Theorem 1.9.2 we know α ∈ Sn has the form α = γ1 . . . γs where each γi is a cycle.
Thus, it suffices to prove a k-cycle can be written as a product of 2-cycles for each k ∈ N. We use
induction on cycle-length, note (1) = (12)(12) for Sn where n ≥ 2 hence a 1-cycle is the product of
two transpositions. Then for a k-cycle with k ≥ 2 we have the identity:

(a1a2 . . . ak) = (a1ak)(a1ak−1) . . . (a1a2)
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which is easily verified by case-by-case analysis. �

Example 1.9.4. Observe, (12345) = (15)(14)(13)(12). However, (ab)(ab) = (1) thus the decompo-
sition is far from unique, (12345) = (15)(14)(23)(23)(13)(12) etc.

You might notice, inserting or deleting (ab)(ab) = Id changes the number of transpositions by 2.
Our next example points out several general tricks for transpositions

Example 1.9.5. Let a, b, c, d be distinct elements in Nn then since disjoint cycles commute,

(ab)(cd) = (cd)(ab)

of course you could prove this directly without using the general disjoint cycles commute result we
proved earlier. Next, the multiply-out then cyclically permute tricks:

(bc)(ab) = (acb) = (cba) = (ca)(cb)

and
(ac)(ab) = (abc) = (bca) = (ba)(bc)

and finally, as we noted in the previous example, (ab)(ab) = 1.. Notice, we also find

(bc)(ab) = (ca)(cb) ⇒ (ca)(bc)(ab) = (cb)

and
(ac)(ab) = (ba)(bc) ⇒ (ba)(ac)(ab) = (bc)

Some of the identities above are important for our proof that the identity permutation is a product
of an even number of transpositions. Before I get to that result, let me exhibit a few more examples
of cycle calculation.

Example 1.9.6. for a ∈ N,

(12) = (1a)(21)(a2) & (12) = (2a)(a2)(a1)

or, if numbers help you check out,

(12) = (13)(21)(32) & (12) = (24)(42)(41).

Theorem 1.9.3 showed that every permutation can be expressed as a product of 2-cycles and the
examples above illustrate how the decomposition into 2-cycles is far from unique. Despite the
non-uniqueness there is still a fairly clear pattern to discern:

Conjecture: If a 2-cycle decomposition of a permutation has an even number of trans-
positions then any other decomposition also has an even number of transpositions.
Likewise, if the permutation permits a decomposition into an odd number of 2-cycles
then any other decomposition will also have an odd number of 2-cycles.

The next page or so of notes is devoted to proving the conjecture above is true.
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Lemma 1.9.7. Suppose n ≥ 2. If the identity permutation is written as a product of transpositions
then the number of transpositions in the decomposition is even.

Proof: First, we know that (1) = (12)(12), so the identity is even. Now suppose that (1) =
(a1a2) · · · (a`−1a`). We want to show that there must be an even number of these transpositions.
First, let’s see how to push transpositions past each other. There are 4 cases of interest: Let a, b, c, d
be distinct elements of the set {1, 2, . . . , n}.
• (cd)(ab) = (ab)(cd) — disjoint cycles commute.

• (bc)(ab) = (acb) = (cba) = (ca)(cb) — multiply out, cyclicly permute, transposition trick.

• (ac)(ab) = (abc) = (bca) = (ba)(bc) — same as before.

• (ab)(ab) = (1)
Notice that in the first 3 cases, we can move a to the left. In the last case, we cancel a out
completely.

Now suppose a is the largest number appearing among all the transpositions in (a1a2) · · · (a`−1a`).
We can take the right-most occurrence of a and move it to the left. As we move all of the a’s to the
left, at some point, the a’s must cancel out (we have to end up with the “(ab)(ab)” case). If not,
we would have (1) = (ab)τ with no a’s appearing in τ . But this is impossible since τ maps a to a
(no occurrences of a in τ) and (ab) maps a to b so that (ab)τ is not the identity! Therefore, we can
get rid of all of the occurrences of a by canceling out transpositions in pairs. Continuing in this
fashion (after a is gone pick the next smallest remaining number), we will eventually cancel out all
of the transpositions. Since cancelations always occur in pairs, it must be that (1) was written as
an even number of transpositions. Therefore, (1) cannot be odd. �

Definition 1.9.8. Let α ∈ Sn then α is an even permutation if it can be written as the product
of an even number of transpositions. Likewise, α is an odd permutation if it can be written as the
product of an odd number of transpositions.

The theorem below asserts that the categories of even and odd are mutually exclusive and cover
all possible permutations in Sn.

Theorem 1.9.9. Every permutation in Sn is either even or odd.

Proof: Let σ ∈ Sn. We know by the transposition trick (Theorem 1.9.3) above that σ can be
written as a product of transpositions. Suppose σ = (a1a2) · · · (a2`−1a2`) = (b1b2) · · · (b2k−1b2k).
Then

(1) = σσ−1 = (a1a2) · · · (a2`−1a2`)[(b1b2) · · · (b2k−1b2k)]
−1

= (a1a2) · · · (a2`−1a2`)(b2k−1b2k)
−1 · · · (b1b2)−1

= (a1a2) · · · (a2`−1a2`)(b2k−1b2k) · · · (b1b2)

So we have written (1) as the product of `+ k transpositions. Our lemma says that `+ k must be
even. Therefore, either both k and ` are even or both are odd. �

Thanks to my brother Bill for the proofs above. They are taken from his handout on permutations.

Corollary 1.9.10. Consider permutations in Sn. The product of two even or two odd permutations
is an even permutation. The product of an even with an odd permutation is an odd permutation.

Proof: let σ, β ∈ Sn and note by Theorem 1.9.9 σ is formed from k-transpositions and β is formed
from j-transpositions. We find σβ is formed from j + k transpositions. If j and k are even or odd
then j + k is even. If just one of j and k is odd then j + k is odd. Since j and k are either even or
odd by Theorem 1.9.9 the Corollary follows. �

http://mathsci2.appstate.edu/~cookwj/courses/math3110-spring2010/math3110-spring2010-even_odd.pdf
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Example 1.9.11. The identity (1) = (12)(12) is an even permutation. The permutation (123) =
(13)(12) is even. The permutation (12345) = (15)(14)(13)(12) is even. You see the pattern. An
r-cycle with r odd is in fact an even permutation. Remember, the terms even and odd refer to the
2-cycle decomposition of a given permutation.

Example 1.9.12. Note, (12) is odd. Also (1234) = (14)(13)(12) is odd. Indeed, (123456) =
(16)(15)(14)(13)(12) is odd. In summary, if we consider an r-cycle with r even then the permuta-
tion is odd.

It is convenient to define a function which captures the parity of a permutation. Theorem 1.9.9
indicates this function is well-defined for any choice46 of n.

Definition 1.9.13. The sign of a permutation is denoted sgn(σ) or (−1)σ for each σ ∈ Sn. In
particular, we define

sgn(σ) = (−1)σ =

{
1 if σ is even

−1 if σ is odd

Notice Corollary 1.9.10 implies that (−1)σβ = (−1)σ(−1)β. In fact, we can use the sign of a
permutation to define the determinant we studied in linear algebra: Let A = (Aij) be an n × n
matrix with entries Aij . Then

det(A) =
∑
σ∈Sn

(−1)σA1σ(1)A2σ(2) · · ·Anσ(n)

In particular, consider a 2×2 matrix. S2 = {(1), (12)}. Let σ = (1). σ is even so (−1)σ = +1. Also,
let τ = (12). τ is odd so (−1)τ = −1. Thus det(A) = (−1)σA1σ(1)A2σ(2) + (−1)τA1τ(1)A2τ(2) =
A11A22 −A12A21 (the regular determinant formula).

Our next result is computationally important.

Lemma 1.9.14. If α = (a1a2 . . . ak) is a k-cycle then α−1 = (ak · · · a2a1) and the order of α is k.

Proof: exercise for the reader. �

The following result is due to Ruffini in 1799 according to Gallian. This is interesting given that
the cycle notation is due to Cayley in an 1815 paper.

Theorem 1.9.15. If a permutation is formed from the product of disjoint cycles then the order of
a permutation is the least common multiple of the lengths of the disjoint cycle.

Proof: Suppose γ1, . . . , γk are disjoint cycles of lengths m1, . . . ,mk respective. Let σ = γ1γ2 · · · γk.
We proved disjoint cycles commute in pairs, I invite the reader to prove that inductively extends
to higher products. It follows that:

σn = (γ1γ2 · · · γk)(γ1γ2 · · · γk) · · · (γ1γ2 · · · γk)︸ ︷︷ ︸
n−copies

= γn1 γ
n
2 · · · γnk

If m = lcm(m1, . . . ,mk) then m is a multiple of each of the lengths m1, . . . ,mk. But, by Lemma
1.9.14 we know the order of a mi-cycle is simply mi hence |γi| = mi and mi | n for each i = 1, . . . , k.

46S1 is rather silly though
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Therefore, γmi = (1) for each i = 1, . . . , k and we find σm = (1). We have shown |σ| ≤ m. It re-
mains to show no smaller power than m produces the identity permutation. To see why it is not
possible, suppose there was a smaller power j < m for which σj = (1). By calculation above
that implies γji = (1) for j = 1, . . . , k. Hence m1 | j for each i = 1, . . . , k. Hence j is a common
multiple of m1, . . . ,mk and j < lcm(m1, . . . ,mk) which is impossible. Thus, by contradiction,
|σ| = lcm(m1, . . . ,mk). �

If you don’t care for my proof, feel free to read page 100 of Gallian.

Theorem 1.9.16. The set of even permutations forms a subgroup of Sn.

Proof: homework. �

Definition 1.9.17. We call An = {σ ∈ Sn | sgn(σ) = 1} the alternating group of degree n

It is important to use the word degree in the above since the order of An is not n.

Theorem 1.9.18. For n > 1, the order of the alternating group is n!/2.

Proof: see Gallian page 103, I will give a different proof a bit later in the course so I merely
mention this as a point of trivia for the moment. �

Example 1.9.19. Let’s exhibit A3 ≤ S3. In cycle notation,

S3 = {(1), (123), (132), (13), (12), (23)}

or, noting (123) = (13)(12) and (132) = (12)(13) we find the even cycles in S3 are just:

A3 = {(1), (13)(12), (12)(13)}.

If α = (13)(12) and β = (12)(13) then α3 = β3 = (1) and αβ = (1) = βα. What is A3 like ?

Example 1.9.20. We expect A4 ≤ S4 will have 4!/2 = 12 elements. The basic two-cycles we have
to build with in S4 are

(12), (13), (14), (23), (24), (34)

Disjoint cycles commute hence (12)(34) = (34)(12) and (13)(24) = (24)(13) and (14)(23) = (23)(14)
are all in A4 since they are even. Since (132) = (321) = (213) the products below are equal

(12)(13) = (132), (321) = (31)(32) = (13)(23), (213) = (23)(21) = (12)(23).

Likewise, (234) = (342) = (423) hence

(24)(23) = (32)(34) = (43)(42) ⇒ (24)(23) = (23)(34) = (34)(24)

All the three-cycles can be formed in such a way from products of appropriately chosen 2-cycles.
Let me conclude by listing the elements in A4 in a somewhat natural order:

A4 = {(1), (12)(34), (13)(24), (14)(23), (123), (132), (234), (243), (314), (341), (412), (421)}

In summary, we have the identity permutation, the elements of order two which are formed by
products of disjoint transpositions and finally the eight 3-cycles each of which fix one number while
moving the remaining 3. You can count, |A4| = 12. Incidentally, you can show A4 is formed by
products of (12)(34) and (123).
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We have more to say about alternating groups as the semester continues. They provide important
examples for a number of interesting questions. Incidentally, this document contains Cayley Graphs
of S3 and A4. I haven’t talked about Cayley Graphs yet, but, they’re another fun way to understand
the structure of a group. Gallian has a section on them much later in the text. There is more to
say about permutations, but, I defer further study for a time when we have more technology.

Example 1.9.21. Let α = (1234) and β = (174). Notice, following Lemma 1.9.14 we have:

α−1 = (4321) & |α| = 4

and
β−1 = (471) & |β| = 3

We cannot apply Ruffini’s Theorem to σ = αβ = (1234)(174) directly since α and β are not disjoint.
But, we can use the socks-shoes inverse identity to derive:

σ−1 = (αβ)−1 = β−1α−1 = (471)(4321).

Of course, we could multiply these to disjoint cycle notation:

σ−1 = (17)(243)

and Ruffini’s Theorem applies to the above as to show |σ−1| = lcm(2, 3) = 6. But, in retrospect, as
|σ| = |σ−1| we find the order of σ is also 6. Moreover, while I’m at it,

(σ−1)−1 = ((17)(243))−1 = (243)−1(17)−1 = (342)(71) = (17)(234).

where in the last step I used that disjoint cycles commute as well as the loop-back feature of cycle
notation. Naturally, the result above agrees with direct calculation of (1234)(174) = (17)(234).

I recommend working on Chapter 5 Gallian problems such as:

#2, 3, 6, 8, 9, 12, 19, 25, 27, 35, 45, 51

I do not collect these. But, I will keep them in mind as I construct tests.

Problems for Lecture 9: (these are collected in the Question Day before Test 1)

Problem 33: Gallian exercise 1 on page 111.

Problem 34: Orders in Sn.

(a) What are the orders of the elements in S5? Give an example of an element with
each order.

(b) Does S11 have an element of order 24? If so, find one. If not, explain why not.

(c) Does S11 have an element of order 16? If so, find one. If not, explain why not.

Problem 35: Given n > 1, prove An is a subgroup of Sn.

Problem 36: Gallian exercise 40 on page 113.

http://www.cs.lafayette.edu/~meierj/talkspdfs/SeminarWarmUp.pdf
http://www.cs.lafayette.edu/~meierj/talkspdfs/SeminarWarmUp.pdf
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Chapter 2

On the Structure of Groups

In the next series of lectures we study how to identify when two seemingly different groups are the
same. In particular, we study homomorphisms and isomorphisms. In order to create new examples
we also introduce several methods to create new groups from old. The construction of the factor
group is given and we also study internal and external direct products. Finally we discuss some
deeper results due to Sylow as well as the Fundamental Theorem of Finite Abelian Groups. Many
new constructions are given in these Chapters, but, largely these build off our work in the previous
chapter. The examples of Zn, U(n), Sn, An and the matrix groups provide players for the game we
now play. However, we introduce a few new groups in this chapter, for example the quaternion 8
group. I will likely intersperse parts of Chapter 10 along side the study of Chapter 6. This Chapter
in my notes contains concepts from Gallian Chapters 6-11 and 24-25. I also take some inspiration
from Rotman and other soruces as we study group actions and counting problems.

61
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2.1 Lecture 10: homomorphism and isomorphism

Isomorphisms are everywhere if we look for them. I’ll begin by defining the analog of a linear
transformation in our context. Recall, a linear transformation is a mapping of vector spaces which
preserved linear combinations. In other words, a linear transformation preserved the structure of
a vector space. In the same way, a homomorphism preserves the structure of a group.

Definition 2.1.1. Let (G1, ?) and (G2, • ) be groups. We say φ : G1 → G2 is a homomorphism
if φ(x ? y) = φ(x) •φ(y) for all x, y ∈ G1.

Example 2.1.2. Let φ(x) = ex define a map from R with addition to (0,∞) with multiplication.
Notice, φ(x+ y) = ex+y = exey = φ(x)φ(y) thus φ is a homomorphism.

Example 2.1.3. Let φ : GL(n,F)→ F× where F is a field and φ(A) = det(A). Notice, det(A) 6= 0
given A−1 exists hence φ is into F×. Furthermore, by the theory of determinants, φ(AB) =
det(AB) = det(A)det(B) = φ(A)φ(B) for all A,B ∈ textGL(n,F). Thus φ is a homomorphism
from the multiplicative group of invertible matrices over F to the multiplicative group F× = F−{0}.

Example 2.1.4. Let φ : Sn → Z2 be defined by φ(σ) = 0 iff σ ∈ An and φ(σ) = 1 if σ /∈ An. There
are four cases to consider.

(i.) If σ, β ∈ An then σβ ∈ An and then φ(σ) = 0 and φ(β) = 0 thus
φ(σβ) = 0 = 0 + 0 = φ(σ)φ(β).

(ii.) If σ, β /∈ An then σβ ∈ An and then σβ ∈ An and φ(σ) = 1 and φ(β) = 1 thus
φ(σβ) = 0 = 1 + 1 = φ(σ)φ(β).

(iii.) If σ ∈ An and β /∈ An then σβ /∈ An and φ(σ) = 0 and φ(β) = 1 thus
φ(σβ) = 1 = 0 + 1 = φ(σ)φ(β).

(iv.) If σ /∈ An and β ∈ An then σβ /∈ An and φ(σ) = 1 and φ(β) = 0 thus
φ(σβ) = 1 = 1 + 0 = φ(σ)φ(β).

Sometimes we have no alternative but to break into cases. It is one of the things that working
problems helps you gain a better sense of. What is the proper notation to attack a given problem.
Incidentally, I’m not certain there is not a more clever way to do the previous example. Perhaps
the next example is it?

Example 2.1.5. Define φ : Sn → U(3) = {−1, 1} by φ(σ) = sgn(σ) for each σ ∈ Sn. We
understand that −1 = 2 in Z3. We should note Corollary 1.9.10 we have sgn(σβ) = sgn(σ)sgn(β).
Hence φ(σβ) = sgn(σβ) = sgn(σ)sgn(β) = φ(σ)φ(β).

Example 2.1.6. Let V and W be vector spaces over R then V and W are additive groups with
respect to vector addition. If T : V → W is a linear transformation then T (x + y) = T (x) + T (y)
for all x, y ∈ V thus T is a homomorphism. Indeed, T has additional structure, but, I merely add
this example to make an explicit connection with your previous thinking on linear algebra.

Naturally, homomorphisms have nice properties:

Proposition 2.1.7. If G1 has identity e1 and G2 has identity e2 and φ : G1 → G2 is a homomor-
phism then φ(e1) = e2. In addition, φ(g−1) = (φ(g))−1.
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Proof: Let (G1, ?) and (G2, • ) be groups with identities e1, e2 respective. Observe,

e1 = e1 ? e1 ⇒ φ(e1) = φ(e1 ? e1) = φ(e1) •φ(e1).

But, e2 •φ(e1) = φ(e1) thus e2 •φ(e1) = φ(e1) •φ(e1) and by cancellation we deduce φ(e1) = e2.
Next, consider g?g−1 = e1 hence φ(g?g−1) = φ(g) •φ(g−1) = φ(e1) = e2 ⇒ φ(g−1) = (φ(g))−1. �

The inverse of a homomorphism need not exist, however, we can calculate the set-theoretic inverse
image of any function. For example, if φ(x) = x2 for x ∈ R× then φ−1{4} = {−2, 2} which goes to
show you φ−1 is not a function. Is φ : R× → (0,∞) even a homomorphism?

Proposition 2.1.8. If H1 ≤ G1 and K1 ≤ G2 and φ : G1 → G2 is a homomorphism then:

(1.) φ(H1) ≤ G2, (2.) φ−1(K1) ≤ G1.

Proof: to prove (1.). Notice e1 ∈ H1 and φ(e1) = e2 thus e2 ∈ φ(H1). Suppose x, y ∈ φ(H1) then
there exist hx, hy ∈ H1 for which x = φ(hx) and y = φ(hy). Notice, hxh

−1
y ∈ H1 since H1 ≤ G1

thus φ(hxh
−1
y ) = φ(hx)φ(h−1

y ) = φ(hx)(φ(hy))
−1 = xy−1 where we used Proposition 2.1.7 to pull

out the inverse. Thus, x, y ∈ φ(H1) implies xy−1 ∈ φ(H1) and by the one-step subgroup test we
have shown φ(H1) ≤ G2.O

To prove (2.), notice e1 ∈ φ−1(K1) since φ(e1) = e2 ∈ K1. Suppose a, b ∈ φ−1(K1) hence there
exist x, y ∈ K1 for which φ(a) = x and φ(b) = y. Hence

φ(ab−1) = φ(a)φ(b−1) = φ(a)(φ(b))−1 = xy−1 ∈ K1

where we again use Proposition 2.1.7 to pull out the inverse and also K1 ≤ G2. Therefore,
φ(ab−1) ∈ K1 which means ab−1 ∈ φ−1(K1) and we conclude φ−1(K1) ≤ G1 by the one-step
subgroup test. �

I ask you to prove a special case of the above Proposition in your homework. Please don’t just
quote the notes. I want you to work through it for yourself. The special cases are K1 = {e2} and
H1 = G1. These have names:

Definition 2.1.9. Let (G1, ?) and (G2, • ) be groups and φ : G1 → G2 a function then the kernel
of φ is given by: Ker(φ) = φ−1{e2} = {x ∈ G1 | φ(x) = e2}. The image of φ is given by:
Im(φ) = φ(G1) = {φ(x) | x ∈ G1}.

The fact that the kernel and image are subgroups provide us with powerful, efficient, methods to
prove various subsets are subgroups.

Example 2.1.10. To see An ≤ Sn simply observe that Ker(φ) = An for the homomorphism
φ : Sn → U(3) with φ(σ) = sgn(σ).

Example 2.1.11. Continuing Example 2.1.3 where we argued φ : GL(n,F) → F× where φ(A) =
det(A) is homomorphism, we find the special linear group is a subgroup since:

Ker(φ) = {A ∈ GL(n,F) | det(A) = 1} = SL(n,F).

Hence SL(n,F) ≤ GL(n,F).

In case you forgot, or I forgot to tell you, the special linear group is SL(n,F) whereas GL(n,F)
is the general linear group.
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Theorem 2.1.12. If φ : G1 → G2 is a homomorphism of groups φ is injective if and only if
Ker(φ) = {e1}.

Proof: let G1 and G2 be groups and φ : G1 → G2 a homomorphism.

Suppose φ is injective. Recall φ(e1) = e2 hence e1 ∈ Ker(φ). Suppose x ∈ Ker(φ) then φ(x) = e2

thus φ(x) = φ(e1) and by injectivity we find x = e1. Thus Ker(φ) = {e1}.

Conversely, suppose Ker(φ) = {e1}. Let x, y ∈ G1 and φ(x) = φ(y). Multiply by φ(x−1) on both
sides and use the homomorphism property:

φ(x−1)φ(x) = φ(x−1)φ(y) ⇒ e2 = φ(x−1y).

Thus x−1y ∈ Ker(φ) and we find x−1y = e1. Multiply by x to obtain xx−1y = xe1 and hence
y = x. We conclude that φ is injective. �

We saw the kernel of the sign-homormorphism and the determinant homomorphism provided non-
trivial subgroups. In contrast:

Example 2.1.13. Consider φ(x) = ex note Ker(φ) = {x ∈ R | ex = 1} = {0}. Thus φ is an
injective homomorphism.

Isomorphisms are homomorphisms which are both injective and surjective.

Definition 2.1.14. If φ : G → Ḡ is a homomorphism of groups and φ is a bijection then φ is an
isomorphism. Moreover, we say G is isomorphic to Ḡ under φ and we write G ≈ Ḡ.

In the case G and Ḡ are finite and |G| = |Ḡ| then we know the map φ : G → Ḡ is injective if and
only if φ is surjective. However, in most cases, we need to explicitly verify injectivtity (perhaps by
a kernel calculation) and surjectivity.

Example 2.1.15. For φ(x) = ex for each x ∈ R if y ∈ (0,∞) then note φ(ln(y)) = eln(y) = y thus
φ is onto (0,∞) and as Ker(φ) = {0} we have φ is a bijection. Indeed, φ is an isomorphism from
(R,+) to ((0,∞), ·). In other words, R ≈ (0,∞) under the isomorphism φ.

Proposition 2.1.16. Suppose φ : G1 → G2 and γ : G2 → G3 are isomorphisms. Then

(i.) IdG1 : G1 → G1 and IdG1(x) = x for each x ∈ G1 is an isomorphism on G1,

(ii.) φ−1 is an isomorphism,

(iii.) γ ◦φ is an isomorphism.

Proof: it is simply to verify IdG1(xy) = IdG1(x)IdG1(y) for all x, y ∈ G1 and Id−1
G1

= IdG1 hence

IdG1 is a bijection. Next, to prove φ−1 is an isomorphism first notice the inverse of a bijection is a
bijection1. It remains to show φ−1 is a homomorphism. Let a, b ∈ G2 and consider a = φ(φ−1(a))
and b = φ(φ−1(b)). Furthermore, by the homomorphism property,

φ(φ−1(a)φ−1(b)) = φ(φ−1(a))φ(φ−1(b)) = ab

1if you’re not sure about how to prove this then you should prove it!
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Therefore, φ−1(a)φ−1(b) = φ−1(ab) for all a, b ∈ G2 and we have thus shown φ−1 is a homomor-
phism23. Finally, to prove (iii.) we recall the composite of bijections is a bijection. It remains to
show γ ◦φ is operation-preserving: let x, y ∈ G1,

(γ ◦φ)(xy) = γ(φ(xy)) = γ(φ(x)φ(y)) = γ(φ(x))γ(φ(y)) = (γ ◦φ)(x)(γ ◦φ)(y).

where we have used the homomorphism property first of φ on x, y ∈ G1 and then of γ on
φ(x), φ(y) ∈ G2. �

Notice that the Proposition above allows us to see that G ≈ G, G ≈ H implies H ≈ G and finally,
G ≈ H and H ≈ K then G ≈ K. In short, isomorphism forms an equivalence relation on
groups. Each group fits into a particular equivalence class of isomorphic groups. Intuitively, two
isomorphic groups are the same. Essentially, isomorphic groups have the same group structure. We
put further detail on this thought in the next Lecture. For now, we conclude with an interesting
theorem due to Cayley4

Theorem 2.1.17. Let G be a group then G is isomorphic to a subgroup of permutations on G

Proof: we noted Id : G→ G is a bijection. Furthermore, define left multiplication by g via

Lg(x) = gx

for each x ∈ G. Suppose g, h ∈ G and calculate for x ∈ G, by associativtity of the multiplication
in G:

(Lg ◦Lh)(x) = g(hx) = (gh)x = Lgh(x)

for each x ∈ G. Thus Lg ◦Lh = Lgh. Moreover, Lg ◦Lg−1 = Lgg−1 = Le = Id. Observe,

G = {Lg | g ∈ G}

forms a subgroup of Perm(G) = {f : G → G | f a bijection}. Let φ : G → G be defined by
φ(g) = Lg. By construction, Lg is into. Note, φ(f ◦ g) = Lf ◦ g = Lf ◦Lg = φ(f) ◦φ(g) thus φ is a
homomorphism. Moreover, φ is a surjection since each Lf ∈ G has φ(f) = Lf . Finally,

φ(g) = Lg = Id ⇒ Lg(x) = Id(x) ⇒ gx = x ⇒ g = e.

Hence Ker(φ) = {e} and we find φ is injective. Therefore, φ is an isomorphism and we conclude
G ≈ G. �

I should mention, the construction ofG is called the regular representation ofG on permutations.

2Perhaps you recall this theorem from linear algebra as well; if a bijection is linear then its inverse is automatically
linear as well. That is a particular instance of this group theoretic theorem

3doubtless this theorem transcends mere group theory to some categorical uber theorem, but, I leave that to
Nathan BeDell for the moment

4this is our first time meeting Cayley’s Theorem, we return to this once or twice more and add further baggage
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I recommend working on Chapter 6 Gallian problems such as:

#1− 43.

I do not collect all of these. But, I will keep them in mind as I construct tests.

Problems for Lecture 10: (these are collected at the start of Lecture 12)

Problem 37: Let φ : G1 → G2 be a homomorphism of groups. Prove Ker(φ) ≤ G1 and Im(φ) ≤ G2,

Problem 38: Gallian number 5 on page 130

Problem 39: Gallian number 7 on page 130

Problem 40: Gallian number 24 on page 130-131.



2.2. LECTURE 11: ISOMORPHISM PRESERVES STRUCTURE 67

2.2 Lecture 11: isomorphism preserves structure

When groups are isomorphic they share the same group structure. There are many facets to this
statement; order of the group, number of elements of each order, abelian, size of center and types of
subgroups. I’m being a bit vague when I say types of subgroups, later we use collections of subsets
to characterize groups.

Example 2.2.1. Any pair of cyclic groups of order n are isomorphic. In particular, suppose
G = 〈a〉 and H = 〈x〉 where |a| = |x| = n. Define φ(aj) = xj. Notice,

φ(ajak) = φ(aj+k) = bj+k = bjbk = φ(aj)φ(ak)

Notice φ(aj) = bj = 1H implies j = 0 hence Ker(φ) = {1G}. I’m using Theorem 1.6.11 in the
preceding sentence. In any event, as |G| = |H| = n and we’ve shown φ is injective thus φ is
surjective. Thus φ establishes the isomorphism G ≈ H.

A similar argument can be used to prove any infinite cyclic group is isomorphic to Z. There are
several additional examples on page 121 in Gallian I hope you study.

Example 2.2.2. Let M = {
[
a −b
b a

]
| a, b ∈ R}. The mapping ψ(a + ib) =

[
a −b
b a

]
defines

two isomorphisms when suitably interpreted. Considering M as an additive group,

ψ((a+ ib) + (c+ id)) =

[
a+ c −(b+ d)
b+ d a+ c

]
=

[
a −b
b a

]
+

[
c −d
d c

]
= ψ(a+ ib) + ψ(c+ id).

hence M and C are isomorphic as additive groups (I leave the easy, but tedious, proof that ψ is a
bijection to the reader). On the other hand, for a+ ib 6= 0 the corresponding matrix is also nonzero
and we calculate

ψ((a+ ib)(c+ id)) = ψ((ac− bd) + i(ad+ bc)) =

[
ac− bd −(ad+ bc)
ad+ bc ac− bd

]
on the other hand,

ψ(a+ ib)ψ(c+ id) =

[
a −b
b a

] [
c −d
d c

]
=

[
ac− bd −(ad+ bc)
ad+ bc ac− bd

]
Thus ψ((a+ ib)(c+ id)) = ψ(a+ ib)ψ(c+ id) for all a+ ib, c+ id ∈ C×. Again, I leave showing ψ is
a bijection to the reader, but conclude this map demonstrates that C× is isomorphic to the nonzero
group of matrices in M with respect to matrix multiplication.

The Example above illustrates a representation of the complex numbers as 2 × 2 real matrices.
Generally, a representation of a group is a homomorphic group of matrices which serves to give
a concrete computationally useful model of the abstract group. In physics, the concept of a group
representation gains extra importance as these matrices are allowed to act on physical states and in
this way symmetry groups interact with quantum states. Much of the energy and progress in group
theory is tied to the connections which are known between the representation theory of groups and
its role in modern physics. We don’t get far enough in this course to do this topic justice, but, I
mention it for your future studies as appropriate.



68 CHAPTER 2. ON THE STRUCTURE OF GROUPS

Theorem 2.2.3. Let G and H be groups and let φ : G→ H be an isomorphism.

(i.) Z(H) = φ(Z(G))

(ii.) G is abelian if and only if H is abelian.

Proof: let φ : G→ H be an isomorphism. Suppose a ∈ Z(G) then ag = ga for all g ∈ G. Suppose
h ∈ H and consider

hφ(a) = φ(φ−1(h))φ(a) = φ(φ−1(h)a)

Now, φ−1(h) ∈ G hence it commutes with a and we find

hφ(a) = φ(aφ−1(h)) = φ(a)φ(aφ−1(h)) = φ(a)h.

Since h is arbitrary we’ve shown φ(a) ∈ Z(H) thus φ(Z(G)) ⊆ Z(H). Conversely, suppose b ∈ Z(H)
then as φ is surjective there exists x ∈ G for which φ(x) = b ( of course, x = φ−1(b)). Consider, for
g ∈ G,

gx = gφ−1(b) = φ−1(φ(g))φ−1(b) = φ−1(φ(g)b) = φ−1(bφ(g))︸ ︷︷ ︸
b∈Z(H) & φ(g)∈H

= φ−1(b)φ−1(φ(g)) = xg.

Thus, as g was arbitrary, x ∈ Z(G) and hence b = φ(x) ∈ φ(Z(G)) and we find Z(H) ⊆ φ(Z(G)).
Therefore, Z(H) = φ(Z(G)) and this completes the proof of (i.). The proof of (ii.) follows easily
since G is abelian iff G = Z(G). Note, by (i.), Z(H) = φ(Z(G)) = φ({eG}) = {eH}. �

I called part (i.) of this the lemmito in class.

Lemma 2.2.4. Let G and H be groups with φ : G→ H an isomorphism. For each g ∈ G we have:

(i.) φ(g−1) = (φ(g))−1

(ii.) φ(gn) = (φ(g))n for all n ∈ Z

Proof: to prove (i.) note gg−1 = eG thus

φ(eG) = φ(gg−1) ⇒ eH = φ(g)φ(g−1) ⇒ (φ(g))−1 = φ(g−1).

To prove (ii.) we begin by proving the claim for n ∈ N. Notice n = 1 is notation. Suppose
φ(gn) = (φ(g))n for some n ∈ N and g ∈ G. Consider,

φ(gn+1) = φ(gng) = φ(gn)φ(g) = (φ(g))n︸ ︷︷ ︸
using induction hypothesis

φ(g) = (φ(g))n+1

Thus the induction hypothesis is true for n+1 and we conclude by induction φ(gn) = (φ(g))n for all
n ∈ N. It remains to prove (ii.) for non-positive powers. Since g0 = eG and φ(eG) = eH = (φ(g))0

we are left with negative powers. Suppose n = −m for m ∈ N. Calculate,

φ(gn) = φ(g−m) = φ((g−1)m) = (φ(g−1)m = ((φ(g))−1)m︸ ︷︷ ︸
by(i.)

= (φ(g))−m = (φ(g))n

where we have used the definition g−m = (g−1)m throughout. This completes the proof of (ii.). �

I hope you understand my convention to denote the identity in G by eG where there might be
danger of confusion. Sometimes we will be less careful and use e for the identity in both eG and eH ,
but, I thought distinguishing them would be wise in the proofs above. And now, the main event:
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Theorem 2.2.5. Let G and H be groups and let φ : G→ H be an isomorphism.

(i.) φ(〈a〉) = 〈φ(a)〉 for each a ∈ G.

(ii.) G is cyclic if and only if H is cyclic.

Proof: suppose φ : G → H is an isomorphism and a ∈ G. Recall 〈a〉 = {an | n ∈ Z}. Let
x ∈ φ(〈a〉) then there exists n ∈ Z for which x = φ(an). Thus, by Lemma 2.2.4 part (ii.),

x = φ(an) = (φ(a))n ∈ 〈φ(a)〉

thus φ(〈a〉) ⊆ 〈φ(a)〉. Conversely, if y ∈ 〈φ(a)〉 then there exists n ∈ N for which y = (φ(a))n and
again by the Lemma 2.2.4 part (ii.) we find y = φ(an). Noting an ∈ 〈a〉 we have y ∈ φ(〈a〉) and
thus 〈φ(a)〉 ⊆ φ(〈a〉). Therefore, 〈φ(a)〉 = φ(〈a〉) and we have proved (i.). To prove (ii.) simply
note G cyclic implies G = 〈a〉 for some generator a ∈ G. Then φ(G) = H = 〈φ(a)〉 by (i.) hence H
is cyclic. The converse follows immediately as φ−1 : H → G is an isomorphism so H cyclic implies
G cyclic by the argument just given. �

The task of proving two groups are not isomorphic is often quickly accomplished via:

Theorem 2.2.6. If G and H are groups and φ : G→ H is an isomorphism then |a| = |φ(a)|

Proof: let φ : G→ H be an isomorphism of groups and a ∈ G. Recall |〈a〉| = |a| and, by the same
theorem, |〈φ(a)〉| = |φ(a)|. Consider, if |〈a〉| = n < ∞ then φ(〈a〉) also is a set with n-elements5.
Likewise, if |〈a〉| = ∞ then 〈a〉 is a set with infinitely many elements and as φ is a bijection the
image φ(〈a〉) is also an infinite set; |〈a〉| = |φ(〈a〉)|. In conclusion, |〈a〉| = |φ(〈a〉)| in all cases and:

|〈a〉| = | φ(〈a〉)| = |〈φ(a)〉︸ ︷︷ ︸
Theorem 2.2.6 part(i.)

| = |φ(a)|. �

The argument I sketched in class was at the level of elements and that is also a reasonable way to
prove the preservation of order. That said, I enjoy the argument above.

Theorem 2.2.7. If G and H are groups and φ : G → H is an isomorphism. If b ∈ G and k ∈ Z
then the equation xk = b has the same number of solutions in G as does the equation yk = φ(b) in
H (we suppose x ∈ G whereas y ∈ H).

Proof: suppose G,H, φ are as in the statement above. Let k ∈ Z and b ∈ G. Suppose xk = b.
Observe,

φ(xk) = φ(b) ⇒ (φ(x))k = φ(b)

Thus y = φ(x) is a solution of yk = φ(b) whenever x is a solution of xk = b. Conversely, suppose
yk = φ(b) for some y ∈ H. Notice,

φ−1(yk) = φ−1(φ(b)) ⇒ (φ−1(y))k = b

thus φ−1(y) is a solution of xk = b whenever y solves yk = φ(b). In conclusion, there is a one-to-one
correspondance between the solution sets and the Theorem follows. �

5to say otherwise violates both injecivity and surjectivty of φ
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Example 2.2.8. Observe G = R× = R− {0} is a multiplicative group and likewise H = (0,∞) is
also a multiplicative group. In fact, H ≤ G. Notice the equation x2 = 1 has solution x = ±1 in G.
If there was an isomorphism φ : G→ H then φ(1) = 1 necessarily and the equation y2 = φ(1) = 1
would need to have two solutions. But, y2 = 1 has only the y = 1 solution for y ∈ (0,∞). Therefore,
no isomorphism exists between R× and (0,∞).

Gallian gives the following example on page 125.

Example 2.2.9. The equation x4 = 1 has solutions x = ±1 for x ∈ R×. However, the equation
y4 = 1 has solutions y = ±1,±i for y ∈ C×. Thus R× 6≈ C× as the same equation has different
sized solution sets in R× verses C×.

What is the mathematics of thinking about the same equation with different choices of variable
data? Can we define an equation independent of the location of the variables? I think so. But, I’ll
leave the formalities of that for another time.

Changing gears considerably, we next study a special kind of isomorphism.

Definition 2.2.10. An isomorphism from a group G to G is called an automorphism. The set
of all automorpisms of G is denoted Aut(G).

Denote the set of permutations on G by Perm(G). We can argue Aut(G) is a subgroup of Perm(G).
Notice the identity IdG : G→ G is an automorphism and if φ, ψ ∈ Aut(G) then

φ ◦ψ−1 : G→ G

is again an automorphism (by Proposition 2.1.16 ) thus φ ◦ψ−1 ∈ Aut(G) and we conclude by the
one-step-subgroup test that Aut(G) ≤ Perm(G).

Example 2.2.11. Let G be a group and define the conjugation by g map by φg(x) = gxg−1.
We can show (exercise for the reader6) that

φe = IdG & φgh = φg ◦φh & φg−1 = (φg)
−1

It follows that H = {φg | g ∈ G} ≤ Aut(G).

We covered the example on page 121-122 in class. Of course, the Example above warrants a
definition:

Definition 2.2.12. An automorphism φ : G → G for which φ(x) = gxg−1 is called an inner
automorphism. Moreover, the set of all inner automorphisms is denoted Inn(G).

We have Inn(G) ≤ Aut(G) ≤ Perm(G). In general, there are many bijections which do not
preserve the structure of the group. The fact that automorphisms are isomorphisms strictly limits
their contruction.

Example 2.2.13. Consider automorphisms of Z3 = {0, 1, 2}. We have two generators; 〈1〉 = 〈2〉 =
Z3. Since generators much map to generators under an isomorphism we have two choices:

α1(1) = 1 & α2(1) = 2

6I’ll be nice, φgh(x) = (gh)x(gh)−1 = g(hxh−1)g−1 = gφh(x)g−1 = φg(φh(x)) for each x ∈ G...
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Notice, (although, I feel a bit silly for the abstraction below, note either k = 0, 1, 2)

α1(k) = α1(1) + · · ·+ α1(1)︸ ︷︷ ︸
k−summands

= kα1(1) = k

likewise, α2(k) = kα2(1) = 2k. Of course α1 = Id whereas we calculate:

(α2 ◦α2)(k) = α2(2k) = 2(2k) = (3 + 1)k = k.

Thus α2
2 = Id. Observe,

Aut(Z3) α1 α2

α1 α1 α2

α2 α2 α1

&

U(3) 1 2

1 1 2
2 2 1

It is not hard to see φ(αj) = j for j = 1, 2 defines an isomorphism of Aut(Z3) and U(3).

Gallian gives a more exciting example which exhibits the isomorphism of the order-four groups
U(8) and Aut(Z8). In addition, Gallian provides the following generalization of these examples:

Theorem 2.2.14. Automorphisms and the group of units for Zn are isomorphic; Aut(Zn) ≈ U(n).

Proof: an automorphism of Zn must send generators of Zn to generators7 of Zn. Recall j is a
generator of Zn iff j ∈ U(n). We prove that the assignment of 1 to j ∈ U(n) naturally induces an
isomorphism for each j ∈ U(n). Let αj be the isomorphism with αj(1) = j. Calculate:

αj(k) = αk(1 + · · ·+ 1︸ ︷︷ ︸
k−summands

) = αj(1) + · · ·+ αj(1)︸ ︷︷ ︸
k−summands

= kαj(1) = jk.

Observe, for l, j ∈ U(n) since U(n) is a group lj ∈ U(n) and

(αl ◦αj)(x) = αl(αj(x)) = ljx = αlj(x) ?

Thus αl ◦αj = αlj for each l, j ∈ U(n). Define Ψ : Aut(Zn) → U(n) by Ψ(α) = α(1) for each
α ∈ Aut(Zn). Observe α(1) ∈ U(n) since isomorphisms preserve order and each element of U(n)
has order n. Thus Ψ : Aut(Zn) → U(n) is into. Moreover, Ψ is surjective since for each j ∈ U(n)
we have Ψ(αj) = αj(1) = j. Suppose Ψ(α) = Ψ(β) then α(1) = β(1) thus α(k) = α(1 + · · ·+ 1) =
α(1) + · · · + α(1) = β(1) + · · · + β(1) = β(k) for each k ∈ Zn. Therefore, α = β and we’ve shown
Ψ is injective. Finally, to see Ψ is a homomorphism, if αl, αj ∈ Aut(Zn) then (following ?)

Ψ(αl ◦αj) = (αl ◦αj)(1) = lj = Ψ(αl)Ψ(αj).

Thus Aut(Zn) ≈ U(n). �

Are all the automorphisms inner automorphisms for Zn ? When a group is not cyclic, but, we have
a generators and relations presentation of the group it may still be relatively easy to calculate inner
automorphisms.

7recall isomorphisms preserve the order of elements so an element of order n must be sent to an element of order
n. That is, a generator of Zn must be sent to another generator of Zn
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Example 2.2.15. Let D3 = {1, x, x2, y, xy, x2y | x3 = 1, y2 = 1, (xy)2 = 1}. Notice, z ∈ D3 has
the form z = xk or z = xky where k = 0, 1, 2. Therefore, to study an automorphism φ on D3 it
suffices to check these two generic cases. Consider, if φ(x) = x and φ(y) = x2y then

φ(xm) = (φ(x))m = xm = xxmx−1 = φx(xm)

so φ agrees with the inner automorphism φx on rotations in D3. What about reflections?

φ(xmy) = φ(xm)φ(y) = (φ(x))mx2y = xmxyx−1 = x(xmy)x−1 = φx(xmy).

Therefore φ = φx and we have shown φ ∈ Inn(D3).

I expect you will have a good computational command of this idea after completing Problem 42.

Problems for Lecture 11: (these are collected at the start of Lecture 13)

Problem 41: Show Inn(G) is a subgroup of Aut(G).

Problem 42: Calculate Inn(D4) using the notation

D4 = {1, x, x2, x3, y, xy, x2y, x3y | x4 = 1, y2 = 1, (xy)2 = 1}

The answer is given in Gallian in the geometric notation.

Problem 43: Gallian number 30 on page 131

Problem 44: Gallian number 33 on page 131.
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2.3 Lecture 12: cosets and Lagrange’s Theorem

The concept of a coset is not new. We already considered this idea in the particular context of
building Zn. Recall,

Zn = {[0], [1], . . . , [n− 1]}

where [k] = k + nZ = {k + nj | j ∈ Z}. Two numbers in Zn are equal only if their difference is a
multiple of n. If we pay attention to the substructure of Zn then we will notice that the addition
in Zn is a method of adding sets of integers. Naturally, we would like to understand this concept
in more generality. The abstract coset construction is a relatively new idea in mathematics. The
concept of elevating sets in an initial object to points in a new object is rather imaginative. I think
Dedekind was one of the first mathematicians to really think at this level8 There are two main
directions we utilize these: (1.) towards counting problems in groups, (2.) in the construction of
factor groups. In this Lecture we only see (1.) in the proof of Lagrange’s Theorem. In our next
Lecture we see how it is sometimes possible to take the set of cosets and give it a natural group
structure.

Definition 2.3.1. Let G be a group and H a nonempty subset of G then we define

aH = {ah | h ∈ H}

as the left-H-coset with representative a. Also define:

Ha = {ha | h ∈ H}

as the right-H-coset with representative a. We denote the number of elements in aH or Ha by
|aH| and |Ha| respectively9.

In the case we work with an additive group then left cosets have the form a + H whereas right
cosets have the form H + a. I should emphasize H does not have to be a subgroup, but, most of
the fun results we soon cover do assume H ≤ G. I’ll follow the organization of Gallian, this is his
Lemma on page 135 essentially.

Proposition 2.3.2. Let G be a group with H ≤ G and suppose a, b ∈ G. We have:

(i.) a ∈ aH,

(ii.) aH = H if and only if a ∈ H,

(iii.) either aH = bH or aH ∩ bH = ∅,

(iv.) aH = bH if and only if a−1b ∈ H,

(v.) |aH| = |bH|

(vi.) aH = Ha if and only if H = aHa−1 = {aha−1 | h ∈ H}

(vii.) aH ≤ G if and only if a ∈ H
8In 1858 Dedekind gave a construction of the real numbers which used sets to describe numbers. We call them

Dedekind-cuts in his honor. Before that point, certain questions could not be rigorously asked or answered in real
analysis. Personally, I prefer the construction of R as the completion of the rational numbers. We will develop the
rational numbers with a fair amount of rigor by the completion of Math 422 if all goes as I hope

9we later define the number of distinct H-cosets to be the index of H in G which is denoted [G : H]
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Proof: (i.) to see (i.) simply notice a = ae thus a ∈ aH.
(ii.) I’ll prove (ii.) in two steps. First, assume aH = H thus, for any h ∈ H we have ah ∈ aH.
But, aH = H so ah ∈ H and ah = h2. Hence, a = h2h

−1 ∈ H. Second, we suppose a ∈ H. If
x ∈ aH then x = ah2 for some h2 ∈ H thus x ∈ H as a, h2 ∈ H ≤ G. Consequently, aH ⊆ H. If
x ∈ H then note x = aa−1x ∈ aH as a−1x ∈ H hence H ⊆ aH and we have shown aH = H which
completes the proof of (ii.)

(iii.) suppose aH ∩ bH 6= ∅. In particular, there exists x ∈ aH ∩ bH thus x ∈ aH and x ∈ bH.
Thus, there exist h, k ∈ H for which x = ah = bk. Note, ah = bk gives a = bkh−1. Suppose z ∈ aH
then z = ah2 for some h2 ∈ H. However,

z = ah2 = bkh−1h2 ∈ bH

as kh−1h2 ∈ H. We have shown aH ⊆ bH. By symmetry of argument, bH ⊆ aH and we deduce
aH = bH which completes the proof of (iii.).

(iv.) suppose aH = bH. From (i.) b ∈ aH hence we find there exists h ∈ H for which b = ah.
Thus, a−1b = h ∈ H. Conversely, suppose a−1b ∈ H thus a−1b = h for some h ∈ H and b = ah.
Note,

bH = ahH = aH.

where I used (ii.) which tells us hH = H for any h ∈ H.

(v.) Consider the function f(x) = ba−1x for each x ∈ aH. Notice, if bh ∈ bH then f(ah) =
ba−1(ah) = bh and we find f is surjective. If f(x) = f(y) then ba−1x = ba−1y hence x = y and we
find f is injective. Since f : aH → bH and f is a bijection we find the cardnality |aH| = |bH|.

(vi.) suppose aH = Ha. Let x ∈ aHa−1 hence x = aha−1 for some h ∈ H. But, ah ∈ aH = Ha
thus ah = ka for some k ∈ H hence x = kaa−1 = k ∈ H thus aHa−1 ⊆ H. Conversely, suppose
x ∈ H and consider x = a−1ax = a−1ha since ax ∈ aH = Ha implies there exists h ∈ H for which
ax = ha. Thus, x = a−1ha for some h ∈ H which means x ∈ a−1Ha. Hence, H ⊆ a−1Ha and we
conclude a−1Ha = H.

Conversely, assume H = a−1Ha. Notice,

aH = a(a−1Ha) = Ha.

To be more explicit, what is meant by the statement above is:

aH = a(a−1Ha) = a{a−1ha | h ∈ H} = {aa−1ha | h ∈ H} = {ha | h ∈ H} = Ha.

(vii.) if aH ≤ G then e ∈ aH since aH is a subgroup. Therefore, there exists h ∈ H such that
ah = e and we learn h = a−1 ∈ aH hence h−1 = a ∈ aH as aH is closed under inversion. Con-
versely, if a ∈ aH then by (ii.) aH = H ≤ G. �

Admittedly, my proofs are not as efficient as some of Gallian’s. Once you’re comfortable with the
coset notation and understand what it means then perhaps his proofs are superior to the rather
explicit proofs I offer above.
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Example 2.3.3. Consider Z6 = {0, 1, 2, 3, 4, 5} notice H = 〈3〉 = {0, 3}. Note the distinct cosets:

0 +H = {0, 3}, 1 +H = {1, 4}, 2 +H = {2, 5}

we also may note 0 + H = 3 + H and 1 + H = 4 + H and 2 + H = 5 + H. Furthermore, there is
no distinction a+H = H + a for each a ∈ Z6.

Definition 2.3.4. If G is a group and H ≤ G then we define the number of distinct H-cosets to
be the index of H in G. We denote the index by [G : H].

Example 2.3.5. In Z100 we have subgroup H = {0, 20, 40, 60, 80} of order 5 and we obtain 20
distinct cosets:

H, 1 +H, 2 +H, . . . , 19 +H = {19, 39, 59, 79, 99}.

Hence the index of H is 20; [Z100 : H] = 20.

The next two examples are very greedy. I attempt to outline natural cosets which appear in the
study of linear algebra.

Example 2.3.6. Let A ∈ Rm×n and recall the soution set to Ax = b has the form x = xp + xh
where Axp = b (the particular solution) and Axh = 0( the homogenous solution). In our current
notation, the solution set has the form xp + Null(A) where the null space is defined as Null(A) =
{x ∈ Rn | Ax = 0}. For a nonhomogeneous linear system the solution set is a coset.

I reference some material from the study of orthogonal complements with respect to an inner
product. If you are unfamilar with these concepts feel free to ask me for more details.

Example 2.3.7. Let W be a subspace of a vector space V . Then the coset p+W is a coset of W .
Geometrically, this is a parallel object to W where we have shifted the origin to p.

If W is a line through the origin and V = R2 then p + W is precisely a parallel line to W . It is
simple to see R2 is foliated by such cosets10. Notice W⊥ is the normal line through the origin
and we learned R2 = W ⊕W⊥. There is always some p2 ∈ W⊥ for which p + W = p2 + W since
p = p1 + p2 for p1 ∈W and p2 ∈W⊥ for each p ∈ V . In our current context, W⊥ is just a line so
each coset is uniquely given by the intersection point of W⊥ and p+W .

If W is a line through the origin and V = R3 then once again p+W is a parallel line. Now W⊥ is
the plane through the origin with normal line W . It follows that the coset p+W is uniquely labeled
by the intersection point of the line p+W with the plane W⊥.

This story continues for finite dimensional vector spaces. We can always11 define an inner product
on V and so define a perpendicular space to a given subspace W . In particular,

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}

The theory of orthogonal complements told us dim(W ) + dim(W⊥) = dim(V ). The perpendicular
space serves to label the W -cosets p+W . Notice, there are as many cosets of W as there are points
in W⊥.

10a foliation is essentially a partition of the space into equidimensional submanifolds which fit together nicely, see
this wikipedia article for some less trivial foliations

11if β = {v1, . . . , vn} is a basis for V then 〈vi, vj〉 = δij extended bilinearly defines an inner product for the real
vector space V

https://en.wikipedia.org/wiki/Foliation
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Example 2.3.8. Consider G = GL(n,R) the general linear group of n× n matrices over R. The
special linear group is defined by SL(n,R) = {A ∈ Rn×n | det(A) = 1}. Let H = SL(n,R) and
consider for g ∈ G,

gSL(n,R) = {gA | det(A) = 1} & SL(n,R)g = {Ag | det(A) = 1}

But, det(gA) = det(Ag) = det(A)det(g) = det(g) and we conclude:

gSL(n,R) = SL(n,R)g = {B ∈ Rn×n | det(B) = det(g)}.

The cosets of the special linear group are sets of equal determinant matrices.

18th-century work by Lagrange and Euler set the stage for the 19-th century work of Galois, Abel,
Cayley and others. This theorem was found by Lagrange before group theory had been completely
formed. I suppose this is much like the result of Ruffini we saw earlier. In the study of math,
we often find parts of a larger story before the whole story in known. There is something similar
happening right now with what is known as Langlands Program.

Theorem 2.3.9. Lagrange’s Theorem: If G is a finite group and H ≤ G then |H| | |G|.
Moreover, the number of distinct left (or right) cosets in G is |G|/|H|; that is, [G : H] = |G|/|H|.

Proof: from (iii.) of Proposition 2.3.2 we know that H ≤ G gives a partition of G into distinct
H-cosets . Moreover, by (v.) we know |H| = |aH| for each a ∈ G which means the distinct cosets
each have |H| elements. It follows there can only be finitely many cosets as G is a finite group.
Suppose H, a2H, . . . , akH are the distinct cosets which partition G. Thus,

G = H ∪ a2H ∪ · · · ∪ akH

counting,
|G| = |H|+ |a2H|+ · · ·+ |akH| = |H|+ · · ·+ |H|︸ ︷︷ ︸

k−summands

= k|H|

Thus |H| | |G| and [G : H] = k = |G|/|H|. �

You should notice, in our previous work we only knew this result for cyclic groups. You might recall
my reaction to your work on Problem 28 where I was not happy you assumed G was cyclic when
it was only given that G was abelian. In retrospect, you should understand, your (then) wrong
solution may well have been correct if you already knew Lagrange’s Theorem. Part of the challenge
of this course is keeping track of what is in our toolkit. The addition of Lagrange’s Theorem is a
game-changer.

We have a few flowers to pick.

Corollary 2.3.10. In a finite group G, |a| | |G| for each a ∈ G.

Proof: Let |G| < ∞ and take a ∈ G. Observe |〈a〉| = |a| and 〈a〉 ≤ G thus we find |a| | |G| by
Lagrange’s Theorem. �

https://en.wikipedia.org/wiki/Langlands_program
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Corollary 2.3.11. A group of prime order is cyclic.

Proof: suppose |G| = p where p is prime. Let a ∈ G and a 6= e. Observe |a| = |〈a〉| | p by
Lagrange’s Theorem. Hence |a| = 1 or |a| = p since p is prime. But, a 6= e hence |a| 6= 1 thus
|a| = p and we conclude 〈a〉 = G. �

You might also notice the theorem above allows us to prove every non-identity element of G serves
as a generator in the case |G| is prime.

Corollary 2.3.12. Let G be a finite group and a ∈ G then a|G| = e.

Proof: by Corollary 2.3.10 we know there exists k ∈ N for which |G| = k|a|. Thus,
a|G| = ak|a| = (a|a|)k = ek = e. �

There are a few results in Chapter 7 of Gallian we have yet to cover. Fermat’s Little Theorem, the
classification of groups of order 2p and most notably the Orbit Stabelizer Theorem. We will return
to those in a later lecture if all goes as planned.

I recommend working on Chapter 7 Gallian problems such as:

#1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 24.

I do not collect all of these. But, I will keep them in mind as I construct tests.

Problems for Lecture 12: (these are collected at the start of Lecture 14)

Problem 45: Gallian number 7 on page 145

Problem 46: The following pairs of groups are isomorphic. Prove it.

(a) U(7) and Z6

(b) H =

{[
1 n
0 1

] ∣∣∣∣∣ n ∈ Q

}
and Q

Problem 47: The following pairs of groups are not isomorphic. Prove it.

(a) (Z5)2×2 and GL2(R)

(b) Z222 and D111

(c) A4 and D6

(d) R 6=0 and C 6=0 (non-zero reals and complex numbers both under multiplication)

Problem 48: Gallian number 42 on page 132.
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2.4 Lecture 13: on dividing and multiplying groups

I’ll begin with how to divide groups since it fits into the storyline we began last lecture. In particular,
we should take another look at cosets. If you study the examples in the last lecture carefully, you’ll
notice that there is no difference between the left and right cosets. This is a quirk of the examples
I chose. It is not uncommon for there to be a difference.

Example 2.4.1. Consider S3 = {(1), (12), (13), (23), (123), (132)} and the subgroup H = {(1), (13)}.
Note: (12)(13) = (132) and (123)(13) = (23) and (13)(12) = (123) and (13)(132) = (23) thus:

Left H cosets Right H cosets

(1)H = {(1), (13)} = (13)H H(1) = {(1), (13)} = H(13)
(12)H = {(12), (132)} = (132)H H(12) = {(12), (123)} = H(123)
(123)H = {(123), (23)} = (23)H H(23) = {(23), (132)} = H(132)

You can see the left and right cosets which don’t contain (1) are not the same.

Suppose we tried to define an operation on cosets by multiplying representatives; that is, suppose
(aH)(bH) = abH. Would this make sense for the cosets of H = {(1), (13)} in S3? Notice,

(12)H(123)H = (12)(123)H = (23)H

yet, (12)H = (132)H and so,

(12)H(123)H = (132)H(123)H = (132)(123)H = (1)H

Apparently, the multiplication of the cosets (12)H and (123)H by the proposed rule does not yield
a single result. In short, the proposed operation is not a binary operation. It turns out the
missing ingredient is that the left and right cosets don’t match.

Definition 2.4.2. If G is a group and H ≤ G then we say H is a normal subgroup iff aH = Ha
for each a ∈ G. We indicate a subgroup is normal by writing H E G.

Example 2.4.3. If G is an abelian group and H ≤ G then

a+H = {a+ h | h ∈ H} = {h+ a | h ∈ H} = H + a

thus every subgroup of an abelian group is normal.

As an application of the above example, note every subspace of a vector space is a normal subgroup
of the additive group formed by the vector space with respect to vector addition.

Example 2.4.4. In retrospect, we showed SL(n,R) was a normal subgroup of GL(n,R) in Example
2.3.8.

Example 2.4.5. The dihedral group Dn = {1, x, . . . , xn−1, y, xy, . . . , xn−1y | xn = 1, y2 = 1, (xy)2 =
1} has a subgroup of rotations 〈x〉 = {1, x, . . . , xn−1}. Notice,

y〈x〉 = {yxk | k = 0, 1, . . . , n− 1} = {x−ky | k = 0, . . . , n− 1} = 〈x〉y

since x−k = xn−k. Here [Dn : 〈x〉] = 2n/n = 2 and we have just two cosets. In fact, 〈x〉 E Dn

If H ≤ G then eH = He so we only have to check aH = Ha for aH 6= H. In the example above
there was just one such coset to check.
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Example 2.4.6. It can be shown that An E Sn.

I’ll illustrate how this happens for n = 3.

Example 2.4.7. Consider S3 = {(1), (12), (13), (23), (123), (132)} and the subgroup
H = A3 = {(1), (123), (132)}.

Left H cosets Right H cosets

(1)H = {(1), (123), (132)} = (123)H = (132)H H(1) = {(1), (123), (132)} = H(123) = H(132)
(12)H = {(12), (13), (23)} = (13)H = (23)H H(12) = {(12), (13), (23)} = H(13) = H(23)

Note H E S3. Multiply (12)H by itself using different representatives:

(12)H(12)H = (1)H,

(13)H(12)H = (13)(12)H = (123)H

(23)H(12)H = (23)(12)H = (132)H

However, there is no problem this time since (1)H = (123)H = (132)H = H. I won’t show how
all calculations are unambiguous since we’re about to prove it follows directly from normality of the
subgroup in general. For now, let me just record the Cayley table of the group of cosets12 of H = A3

S3/H H (12)H

H H (12)H
(12)H (12)H H

Since |An| = n!/2 and |Sn| = n! the index of An is always 2; [Sn : An] = n!/(n!/2) = 2. It follows
the example above generalizes fairly easily. In Sn/An we’d have the coset An and the coset (12)An.

The following was found by O. Hölder in 1889 according to Gallian. Also, apparently the notation
G/H for the factor group of G by H is due to Jordan.

Theorem 2.4.8. Factor Group: Let H E G and denote the set of H-cosets by G/H. The operation
(aH, bH) 7→ abH defines a binary operation which makes G/H a group with identity H.

Proof: we begin by showing the operation is well-defined. Note that the rule (aH)(bH) = abH
does assign at least one element abH ∈ G/H for each pair (aH, bH) in G/H ×G/H. It remains to
show the assignment is single-valued. Suppose H is normal and aH = a′H and bH = b′H,

(a′H)(b′H) = a′b′H definition of operation

= a′bH we assumed b′H = bH

= a′Hb we have bH = Hb

= aHb we assumed a′H = aH

= abH once again Hb = bH

= (aH)(bH) definition of operation

thus (aH)(bH) = abH defines a binary operation on G/H. Next, we claim H serves as the identity.
Notice e ∈ H thus eH = H. Let aH ∈ G/H and consider13

(aH)(H) = (aH)(eH) = aeH = aH & (H)(aH) = (eH)(aH) = eaH = aH

12You can easily verify Ψ(0) = H and Ψ(1) = (12)H defines an isomorphism of Z2 and S3/A3.
13I’m using Proposition 2.3.2 part (i.) and (ii.) to absorb e into H
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thus H serves an identity for G/H. Next, observe (aH)−1 = a−1H for each aH ∈ G/H as

(aH)(a−1H) = aa−1H = eH = H & (a−1H)(aH) = a−1aH = eH = H

where we knew a−1 existed for a ∈ G and aa−1 = a−1a = e as G is a group. It remains to verify
the associativity of the product on G/H. Suppose aH, bH, cH ∈ G/H and observe:

(aH)
(
(bH)(cH)

)
= (aH)(bcH) = a(bc)H = (ab)cH = (abH)(cH) =

(
(aH)(bH)

)
(cH).

Thus G/H = {aH | a ∈ G} forms a group with identity H. �

Remark 2.4.9. The idea of the quotient group or factor group by H is to glue all the points in
H together into a single element. Because of the structure of group multiplication we are forced
to glue all points in each distinct coset of H together in the same fashion. The result is a smaller
group. We found in the previous lecture the number of cosets was [G : H] = |G|/|H| which we
know realize means |G/H| = |G|/|H|. A victory of notation I suppose.

The examples on pages 175-179 of Gallian help to bring my remark above to life. I hope you’ll
study those.

Example 2.4.10. Consider Z6 = {0, 1, 2, 3, 4, 5} we have subgroup H = 〈3〉 = {0, 3} with cosets
1 +H = {1, 4} and 2 +H = {2, 5}.

Z6/H H 1 +H 2 +H

H H 1 +H 2 +H
1 +H 1 +H 2 +H H
2 +H 2 +H H 1 +H

compare with

Z3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

You can see Z6/〈3〉 ≈ Z3.

Example 2.4.11. Consider Z6 = {0, 1, 2, 3, 4, 5} we have subgroup K = 〈2〉 = {0, 2, 4} with coset
1 +K = {1, 3, 5}.

Z6/K K 1 +K

K K 1 +K
1 +H 1 +K K

compare with

Z2 0 1

0 0 1
1 1 0

You can see Z6/〈2〉 ≈ Z2.

Naturally, we have much more to say about quotient groups in future lectures. I merely intiate the
discussion here. Likewise, let me introduce how we may form the product of groups. There are two
kinds of products to consider at this point:

1. Internal: recognize two or more subgroups of a given group may be multiplied to generate
the entire group.

2. External: take two distinct groups and multiply them to form a new group.

Definition 2.4.12. If G is a group and H,K ≤ G with H ∩K = {e} and

H ⊕K = {hk | h ∈ H, k ∈ K} = G

then we say G is the internal direct product of H and K and we write G = H ⊕K.
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Remark 2.4.13. In the case that G is an additive group we say G = H ⊕ K is a direct sum
decomposition. In addition, we write H + K = {h + k | h ∈ H, k ∈ K} and say G is formed by
the sum of H and K if G = H + K. The added condition H ∩K = {0} makes the sum a direct
sum. Likewise, for a multiplicative group we have the concept of a non-direct product. We write
HK = {hk | h ∈ H, k ∈ K} and if G = HK then we say G is formed by the product of H and K.
If in addition we have H ∩K = {e} for H,K E G then we say G is the direct product of H and K
and write G = H ⊕K. You might want me to write something like H ⊗K here, but, that notation
usually means something else we’ll discuss in Math 422.

Example 2.4.14. Note G = Z6 is formed by the internal direct product of H = 〈2〉 = {0, 2, 4} and
K = 〈3〉 = {0, 3}. Clearly H and K are normal since G is abelian and H ∩K = {0}. It is routine
arithmetic to verify H ⊕K = G. Note the elements of H ∪K are clearly in H +K and mod 6:

1 = 3 + 4, 5 = 2 + 3

thus H +K = Z6 and we conclude G = H ⊕K.

Gallian’s Chapter 8 also tells us how to recognize a groups is formed the internal direct product
of three or more subgroups, but, I wish to return to that more complicated discussion in a future
lecture. However, I can tolerate the general external product here:

Definition 2.4.15. Let G1, G2, . . . , Gn be groups then we define the external direct product of
G1, G2, . . . , Gn to be G1 ×G2 × · · · ×Gn = {(g1, g2, . . . , gn) | gi ∈ Gi for i = 1, . . . , n} with:

(x1, x2, . . . , xn)(y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn).

If ei ∈ Gi is the identity of Gi for each i = 1, 2, . . . , n then calculate:

(e1, e2, . . . , en)(x1, x2, . . . , xn) = (e1x1, e2x2, . . . , enxn) = (x1, x2, . . . , xn)

for each (x1, x2, . . . , xn) ∈ G where I let G = G1 ×G2 × · · · ×Gn. Therefore, eG = (e1, e2, . . . , en).
Furthermore,

(a1, a2, . . . , an)−1 = (a−1
1 , a−1

2 , . . . , a−1
n )

is easily verifed:

(a−1
1 , a−1

2 , . . . , a−1
n )(a1, a2, . . . , an) = (a−1

1 a1, a
−1
2 a2, . . . , a

−1
n an) = (e1, e2, . . . , en).

I’ll leave associativity to the reader.

Remark 2.4.16. The reason I choose to ignore Gallian’s non-standard notation (he trades × for ⊕)
is simply that I want our notation for products of groups to naturally fit with our already decided
notation for Cartesian products. The Definition and discussion above simply say that when we
take the Cartesian product of groups there is a natural group structure which is inherited from the
factors in the product. Futhermore, my notation here is now consistent with that of Math 321.

Example 2.4.17. Consider R2 = R × R has (a, b) + (c, d) = (a + c, b + d) this is the direct
product of the additive group of R and itself. We can also write R2 = (1, 0)R ⊕ (0, 1)R since
(1, 0)R = {(x, 0) | x ∈ R} and (0, 1)R = {(0, y) | y ∈ R} have (1, 0)R ∩ (0, 1)R = {(0, 0)} and
(1, 0)R + (0, 1)R = R2.
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Example 2.4.18. Let G = Z2 × Z3. Explicitly,

G = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

For the sake of curiousity, let’s build the Cayley table:

+ (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)
(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)

You can check |(1, 1)| = 6 and |(1, 2)| = 6 whereas |(1, 0)| = 2 and |(0, 1)| = |(0, 2)| = 3. Compare
this to Z6 which also has |1| = |5| = 6, |3| = 2 and |2| = |4| = 3. We could find an explicit
isomorphism of Z2 × Z3 ≈ Z6.

There is much theory to discover, prove and use here. I relegate all of that to a future Lecture.
I recommend working on Chapter 8 Gallian problems such as:

#1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

also Chapter 9 Gallian problems such as:

#1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 44.

I do not collect all of these. But, I will keep them in mind as I construct tests.

Problems for Lecture 13: (these are collected at the start of Lecture 15)

Problem 49: Cayley’s theorem tells us that Q = {±1,±i,±j,±k} is isomorphic to a subgroup of
S8. Find such a subgroup using the ordering of elements: 1,−1, i,−i, j,−j, k,−k (so,
for example, i is element #3). To help you get started, left multiplication by −1
sends 1 to −1, −1 to 1, i to −i, etc. so it sends 1 to 2, 2 to 1, 3 to 4, etc. Thus −1
corresponds with (12)(34)(56)(78).

Problem 50: Let H and K be subgroups of G.

(a) Suppose that H and K are normal subgroups of G. Show that H ∩K is a normal
subgroup of G as well.

(b) Let |G| = 36, |H| = 12, and |K| = 18. Using Lagrange’s Theorem, what are the
possible orders of H ∩K?

Problem 51: Let H = {1, x3, x6} ⊆ D9 = {1, x, . . . , x8, y, xy, . . . , x8y} = 〈x, y | x9 = 1, y2 =
1, xyxy = 1〉. Notice H = 〈x3〉, so H is a subgroup of D9. Quickly compute [D9 : H]
(i.e. the index of H in D9). Then find all of the left and right cosets of H in D9. Is
H a normal subgroup of D9?

Problem 52: Let G and H be groups.

(a) Show {e} ×H = {(e, h) | h ∈ H} is a normal subgroup of G×H (where e is the
identity of G).
Note: You need to show that {e} ×H is a subgroup AND that it’s normal.

(b) Show G×H ∼= H ×G.
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2.5 Lecture 14: on the first isomorphism theorem

In fact, to be honest, this Lecture is on an assortment of things I probably should have included
here and there earlier. But, better late than never. I begin with a discussion of the classification
of groups up to order 7. Then I detail a few important observations about normal subgroups,
including the definition of simple groups. We examine a few factor groups to showcase the utility
of the classification result. Then we present the main theorems of this section which naturally lead
to the first isomorphism theorem.

2.5.1 classification of groups up to order 7

First, recall Corollary 2.3.11 tells us that groups of prime order are cyclic. Therefore, up to isomor-
phism, there is just one group of order 1, 2, 3, 5 and 7. For orders 4 and 6 we need further analysis.

Groups of Order 4: suppose |G| = 4. By Corollary 2.3.10 the order of each element of G must
divide the order of G. Hence, if a ∈ G then |a| = 1, 2 or 4. If there is an element of order 4 then

G = {e, a, a2, a3}

and G = 〈a〉 is cyclic. However, if G does not have an element of order 4 then G must have an
element of order 2 since it cannot have more than one identity element (|e| = 1). Thus, in the
case G has no element of order 4, it must be that G has 3 elements, say a, b, c of order 2. That
is, a2 = b2 = c2 = e. If we write a multiplication table (aka Cayley table) for this potential group
we are forced to write: (everything except for the red terms is already forced by the assumption
a, b, c have order 2, then, you can see we have to write the red terms where they are otherwise we
can’t have a Cayley Table)

G e a b c

e e a b c
a a e c b
b b c e a
c c b a e

compare with

Z2 × Z2 (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

It is not immediately obvious from the table for G that the proposed group is associative. However,
as we compare with Z2 × Z2 the correspondence of a 7→ (1, 0), b 7→ (0, 1) and c 7→ (1, 1) and of
course e 7→ (0, 0) defines a bijection of G and Z2×Z2. We know Z2×Z2 (the Klein 4-group) is asso-
ciative hence it follows the table for G also represents a associative group structure. The argument
is that G has the same pattern as Z2 × Z2. Incidentally, this is one of the primary utilities of the
Cayley table. It allows us to prove isomorphisms for groups of small order with nice organization
and relatively little writing. In summary, any group of order 4 is either isomorphic to Z4 or Z2×Z2.

Groups of Order 6: suppose |G| = 6 then G has elements of order 1, 2, 3 or 6 by the corollary
to Lagrange’s Theorem. If G has an element of order 6 then G ≈ Z6. Otherwise, G must have
elements of order 2 and/or 3. I leave the details as a homework, but, we can argue that either G
is isomorphic to Z6 or S3.

Let us summarize the results we’ve found or you will soon work out. These will be labor saving as
we decide on whether a particular group of small order is isomorphic to another.
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Order of G Representative Example of G

1 {e}
2 Z2

3 Z3

4 Z4

Z2 × Z2

5 Z5

6 Z6

S3

7 Z7

As an example of the utility of this discussion, consider A3 ≤ S3. We saw |A3| = 6/2 = 3 thus
A3 ≈ Z3. No need for an explicit isomorphism now that we know all groups of order three are
isomorphic. We choose Z3 as the quintessiential example, but, this is merely a choice. We could
just as well use the group of the third roots of unity in the complex numbers:

S = {cos(2πj/3) + i sin(2πj/3) | j = 0, 1, 2} ≤ C× ≈ Z3

2.5.2 a discussion of normal subgroups

I should point out, for any group G we have several standard normal subgroups: it is simple to
verify gHg−1 ⊆ H for any g ∈ G in the case that H = {e},Z(G) and G. These groups are related:

{e} ≤ Z(G) ≤ G

However, these are not always distinct. For example, when G is abelian Z(G) = G. If there is a
H / G where H 6= G and H 6= {e} then the factor group G/H is interesting. Why is it not that
interesting in the case H = {e}? Well, the cosets are merely points so the factor group is just the
group again up to isomorphism; φ(x) = x{e} for each x ∈ G gives14 G/{e} ≈ G. In contrast, if
we quotient by G then G/G ≈ {e} since G is the only G-coset in G and a group of order 1 is the
identity group. In summary, for a quotient to form an interesting factor group there must be some
subgroup which is nontrivial and proper. If this is not possible then in some sense the group cannot
be factored so it is as basic as it can be. To give an analogy, 25/100 is not simple because we can
reduce it to 5/20 which is also not simple because we can break it further to 1/4. The fraction 1/4
is in least terms, it’s as simple a representative of the fraction 25/100 we can obtain in the world
of fractions. The idea of a simple group is somewhat the same. You probably have some informal
sense of when a fraction is reduced to lowest terms. The problem of enumerating all possible simple
groups is a harder problem which we will discuss further15 in a later lecture.

Definition 2.5.1. A group G is called simple if the only normal subgroups of G are {e} and G.

Example 2.5.2. Consider Zp where p is prime. Since the only subgroups of Zp are {0} and Zp we
observe Zp is a simple group.

Example 2.5.3. It can be shown (with considerable effort) that An is a simple group for n ≤ 5.
In contrast, A4 is not simple, but, this would take some effort to illustrate directly.

14this is a very silly quotient, note x{e} = y{e} only if x = y. In fact, x{e} = {x} so in total G/{e} = {{x} | x ∈ G}
15don’t worry, I’m not going to reproduce the 5-10 thousand page proof of the enumeration. Famously, the Feit-

Thompson result alone takes 250 pages to prove.
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We’ll talk about the simplicity of An for n ≥ 5 some other time, but, for now let us study a
relatively simple16 example of a group which is not simple. First, let me make an observation:

Observation in a factor group G/H the order of aH (as an element of G/H) is the
smallest positive power k for which ak ∈ H. This is due to the identity (aH)k = akH.

There is a distinction between the order of the coset aH and the order of the element aH ∈ G/H.
For example, the order of (12) + A3 is 2 in S3/A3 whereas the number of elements in the coset
(12) + A3 is simply 3. Unfortunately, we use |aH| to denote both concepts of order. If there is
danger of ambiguity we could adopt the alternate notation #(aH) for the cardnality of the coset
aH. I’m not sure if this will actually be an issue as we continue.

Example 2.5.4. Let G = Z4 × Z4. Observe,

H = {(0, 0), (2, 0), (0, 2), (2, 2)} = 2Z4 × 2Z4

is a normal subgroup17 with factor group:

G/H = {H, (1, 0) +H, (0, 1) +H, (1, 1) +H}.

We find every non-identity element in G/H has order 2:

2((1, 0) +H) = (2, 0) +H = H,

2((0, 1) +H) = (0, 2) +H = H,

2((1, 1) +H) = (2, 2) +H = H.

Thus G/H ≈ Z2 × Z2. The factor group of G by H is the Klein 4-group up to isomorphism. In
contrast, we can study the subgroup

K = {(1, 0), (2, 0), (3, 0), (4, 0)} = Z4 × {0}

which gives factor group

G/K = {K, (0, 1) +K, (0, 2) +K, (0, 3) +K}

Notice the order of (0, 1) +K is 4 hence G/K is isomorphic to Z4. Our results thus far:

Z4 × Z4

2Z4 × 2Z4
≈ Z2 × Z2 &

Z4 × Z4

Z4 × {0}
≈ Z4

I’ll prove in the next lecture that Zn/mZn ≈ Zm provided m is a divisor of n so with that future
knowledge in hand we note Z4/2Z4 ≈ Z2 and our results are quite nice:

Z4 × Z4

2Z4 × 2Z4
≈ Z4

2Z4
× Z4

2Z4
&

Z4 × Z4

Z4 × {0}
≈ Z4

Z4
× Z4

{0}
.

where I used that {0} × Z4 ≈ Z4 as well as {0} = Z4/Z4 to rewrite the G/K = Z4 result as a
product of factor groups. In fact, in the next lecture we’ll show if N1 E G1 and N2 E G2 then

16in the untechnical sense of the term
17G is abelian so every subgroup of G is normal
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G1×G2
N1×N2

≈ G1
N1
× G2

N2
. That said, not every factor group must be obtained in this way for a product

group such as G = Z4 × Z4. Consider,

N = {(0, 0), (1, 1), (2, 2), (3, 3)}

we have factor group,

G/N = {N, (1, 0) +N, (2, 0) +N, (3, 0) +N}

where (1, 0) +N generates G/N hence G/N ≈ Z4.

We came across a subgroup of index 2 in our last lecture when we studied how A3 is a normal
subgroup of S3. The reason that A3 has matching left and right cosets generalizes to other subgroups
with index 2.

Example 2.5.5. Suppose G is a group and H ≤ G with |H| = |G|/2 then [G : H] = 2. Note,
eH = He = H so H is both a left and right coset. However, we also know either left or right cosets
partition G into equal-sized parts. It follows that G−H is both a left and right coset and so H E G.

Thus, a group which has a subgroup which is half as large as the group cannot be simple. We just
saw such a subgroup is necessarily normal hence G/H is interesting. Well, not that interesting,
G/H ≈ Z2 in such a case.

2.5.3 first isomorphism theorem

Let us begin by discussing the natural homomorphism that comes with any factor group.

Definition 2.5.6. If H E G then define π : G→ G/H by π(x) = xH for each x ∈ G.

We say π is the coset map or fundamental homomorphism of the factor group G/H.

Theorem 2.5.7. If H E G and π : G→ G/H is defined by π(x) = xH for each x ∈ G then π is a
homomorphsm from G to G/H. Moreover, Ker(π) = H.

Proof: observe π(x) = xH is a mapping into the group G/H provided H is a normal subgroup of
G. Moreover,

π(xy) = xyH = (xH)(yH) = π(x)π(y)

by the definition of multiplication in the factor groupG/H. Thus π : G→ G/H is a homomorphism.
Furthermore, x ∈ Ker(π) implies π(x) = H. Hence, xH = H which means x ∈ H and we conclude
Ker(π) = H. �

Example 2.5.8. Consider the subgroup H = nZ of Z then the factor group Z/nZ = {[k] | k ∈
Z} = {[0], [1], . . . , [n− 1]} has coset map π(x) = [x] = x+ nZ. The kernel of π is nZ.

Normal subgroups play nicely with homomorphisms. The essential concept of the theorem below
is that normal subgroups are a part of the group structure which is preserved by homomorphism.

Theorem 2.5.9. Suppose φ : G1 → G2 is a homomorphism of groups. Then

(i.) if φ is a surjection and H1 E G1 then φ(H1) E G2,

(ii.) if H2 E G2 then φ−1(H2) E G1
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Proof:(i.) suppose φ : G1 → G2 is a surjective homomorphism and H1 E G1. Suppose y ∈ G1 and
suppose z ∈ yφ(H1)y−1 hence there exists h ∈ H1 for which z = yφ(h)y−1. Note, by surjectivity of
φ there exists x ∈ G1 for which y = φ(x). Thus, as φ is a homomorphism:

z = φ(x)φ(h)φ(x)−1 = φ(x)φ(h)φ(x−1) = φ(xhx−1)

By normality of H1 we know xhx−1 ∈ H1 thus z = φ(xhx−1) ∈ φ(H1). We find yφ(H1)y−1 ⊆ φ(H1)
for each y ∈ G1 and we conclude φ(H1) E G2.

(ii.) suppose H2 E G2 and φ : G1 → G2 is a homomorphism. Suppose g ∈ G1 and consider
x ∈ gφ−1(H2)g−1. Hence, suppose there exists h ∈ G1 for which φ(h) ∈ H2 and x = ghg−1.
Calculate, using the homomorphism property of φ,

φ(x) = φ(ghg−1) = φ(g)φ(h)φ(g)−1

by normality of H2 we find φ(g)φ(h)φ(g)−1 ∈ H2. Thus φ(x) ∈ H2 which means x ∈ φ−1(H2).
Hence gφ−1(H2)g−1 ⊆ φ−1(H2) and we find φ−1(H2) E G1. �

Corollary 2.5.10. If φ : G1 → G2 is a homomorphism then Ker(φ) E G1.

Proof: observe Ker(φ) = φ−1{e2} where {e2} E G2 hence by Theorem 2.5.9 part (ii.) we find the
kernel is a normal subgroup of G1. �

Surely this is prefered over checking whether left and right cosets match! Consider,

Example 2.5.11. Consider sgn : Sn → {1,−1} where sgn(σ) = 1 if σ ∈ An. Hence Ker(sgn) = An
and we conclude An E Sn as we argued before that sgn is a homomorphism.

Note also, for n ≥ 2, Sn has two kinds of permutations. The even permutations in An and the
odd permutations in (12)An. However, these are cosets of An hence |An| = |(12)An| which shows
2|An| = |Sn| = n! hence the order of An is n!/2. This counting is made easy by the uniform size of
cosets. We could have pointed this out in the coset lecture.

Theorem 2.5.12. Suppose φ : G1 → G2 is a homomorphism of groups. Then φ̄ : G1/Ker(φ) →
φ(G1) defined by φ̄(xKer(φ)) = φ(x) is an isomorphism which shows G1/Ker(φ) ≈ φ(G1).

Proof: suppose φ : G1 → G2 is a homomorphism. By Corollary 2.5.10 we have thatK = Ker(φ) is a
normal subgroup of G1 hence by Theorem 2.4.8 the set of cosets G1/K forms a group with operation
(aK)(bK) = abK for all aK, bK ∈ G1/K. Suppose φ̄(xK) = φ(x) for each xK ∈ G1/K. Clearly
φ(x) ∈ φ(G1) since x ∈ G1 whenever xK ∈ G1/K. To see φ̄ is single-valued, consider xK = yK
thus xy−1 ∈ K = Ker(φ) hence φ(xy−1) = e2 and φ(x)φ(y−1) = e2 as φ is a homomorphism.
Furthermore, homomorphisms have φ(y−1) = φ(y)−1 thus φ(x)φ(y)−1 = e2 and, multiplying φ(y)
on the right, we find φ(x) = φ(y). Therefore, φ̄(xK) = φ(x) = φ(y) = φ̄(yK) and we have shown
φ̄ : G1/K → φ(G1) is a function. To see φ̄ is a homomorphism, let aK, bK ∈ G1/K and calculate:

φ̄((aK)(bK)) = φ̄(abK) = φ(ab) = φ(a)φ(b) = φ̄(aK)φ̄(bK).

It remains to prove φ̄ is a bijection. If z ∈ φ(G1) then by definition of image there exists x ∈ G1

for which φ(x) = z and we note φ̄(xK) = φ(x) = z hence φ̄ is onto φ(G1). To show φ̄ is injective
we study its kernel: (remember we set K = Ker(φ))

Ker(φ̄) = {xK | φ̄(xK) = φ(x) = e2} = {xK | x ∈ K} = K.
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Thus φ̄ is injective. Thus, φ̄ : G1/Ker(φ)→ φ(G1) is an isomorphism and G1/Ker(φ) ≈ φ(G1). �

There are many applications of the first isomorphism theorem. Many of those we explore in the
next lecture. Let me conclude with a non-example:

Example 2.5.13. Let Lx2(g) = x2g for all g ∈ D4 where the dihedral group of order 8 is given by

D4 = {1, x, x2, x3, y, xy, x2y, x3y | x4 = 1, y2 = 1, (xy)2 = 1}.

You can calculate Ker(φ) = {1, x2}. Thus {1, x2} E D4. You may recall {1, x2} = Z(D4) so we are
not surprised this is a normal subgroup, but, the method of demonstration is new to us. Furthermore,
we note Lx2 is a surjective map. That is, Lx2(D4) = D4. Hence, by the first isomorphism theorem

D4/{1, x2} ≈ D4 ← INCORRECT

What is wrong with this ? We should have [K : D4] = 8/2 = 4 so this suggestion that the factor
group of D4 by {1, x2} is absurd. Let {1, x2} = N . Explicitly, we calculate:

D4/N = {N, xN, yN, xyN}

where xN = {x, x3}, yN = {y, x2y} and xyN = {xy, x3y}. In fact, while we’re at it, note |xN | =
|yN | = |xyN | = 2 since (xN)2 = x2N = N and (yN)2 = y2N = N and (xyN)2 = (xy)2N = N . It
follows D4/N ≈ Z2 × Z2 since D4 is a group of order 4 with 3 elements of order 2.

Again, I ask the reader, what is wrong with the Example above? How have I abused the first
isomorphism theorem?

I recommend working on Chapter 10 Gallian problems such as:

#1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

I do not collect all of these. But, I will keep them in mind as I construct tests.

Problems for Lecture 14: (these are collected at the start of Lecture 16)

Problem 53: Let G be a group of order 6. Prove G must have an element of order 2. However,
also prove not every element beside the identity may have order 2.

Problem 54: Let G be a group of order 6 and a, b ∈ G with |a| = 3 and |b| = 2. Show either G is
cyclic or ab 6= ba.

Problem 55: Let G be a group of order 6. Show that if G is not cyclic then its multiplication table
matches that of S3. Hint: use the previous two exercises to argue for G not cyclic,
there are a, b ∈ G with a3 = e and b2 = e and ba = ab

Problem 56: Suppose N1 is a normal subgroup of G1 and N2 is a normal subgroup of G2. Prove
that N1 ×N2 is a normal subgroup of G1 ×G2. Also, prove G1×G2

N1×N2
≈ G1

N1
× G2

N2
.
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2.6 Lecture 15: first isomorphism theorem, again!

I’ll begin with a discussion to attempt to bring some intuition and context to the first isomorphism
theorem. I’ll begin by discussing how we can create a bijection which naturally stems from any
given function.

First, note to make f a surjection we simply swap B for f(B). In words, trade the codomain for
the range if need be. The problem of obtaining injectivity is a bit more involved. Consider, for
f : A→ B we can partition the domain A into fibers. The inverse image of a singleton is a fiber.
In particular, for b ∈ f(A),

f−1{b} = {a ∈ A | f(a) = b}

if f is not a surjection then b /∈ f(A) has f−1(b) = ∅. I’m primarily interested in the nontrivial fibers.
For an injective map the fibers are singletons as well; a1, a2 ∈ f−1(b) implies f(a1) = b = f(a2)
hence a1 = a2 if f is injective. However, when f is not injective the fibers can be larger, sometimes
very large. For example, f : R2 → R with f(x, y) = y has fibers of the form R × {y}. In any
event, you can prove the fibers partition the domain: for each a ∈ A we have a ∈ f−1(f(a)) and if
a ∈ f−1(b1) and a ∈ f−1(b2) then f(a) = b1 and f(a) = b2, but, f is a function and hence b1 = b2.
We’ve shown fibers cover the domain and are disjoint. You could look at this as an equivalence
relation, two points in the domain are related if they map to the same point in the range. Finally,
to obtain injectivity, we simply select just one point from each fiber and restrict the function to this
section of the domain. Let C denote the section then the map f̄ : C → f(A) defines a bijection
where f̄(x) = f(x) for each x ∈ C.

For a homomorphism φ : G1 → G2 the fibers are precisely the cosets of the kernel. Suppose
x ∈ φ−1(p) where p ∈ φ(G1) then we may argue φ−1(p) = xKer(φ). Here’s how:

If z ∈ xKer(φ) then z = xy where y ∈ Ker(φ) and φ(z) = φ(xy) = φ(x)φ(y) = pe2 = p hence
z ∈ φ−1(p) and we find xKer(φ) ⊆ φ−1(p). Conversely, if z ∈ φ−1(p) then φ(z) = p = φ(x) thus
φ(x)−1φ(z) = e2 and we find φ(x−1z) = e2 which gives x−1z ∈ Ker(φ). Hence x−1zKer(φ) =
Ker(φ) which gives zKer(φ) = xKer(φ). But, z ∈ zKer(φ) hence z ∈ xKer(φ) and we conclude
φ−1(p) ⊆ xKer(φ) and thus φ−1(p) = xKer(φ).

For general functions there is no reason the fibers should be so nicely related. The fact that the
fibers of a homomorphism are cosets of the kernel of the map is very special. Consider f : G→ H
which is a homomorphism with Ker(f) = K. Suppose [G : K] = 4 and the distinct cosets are
K, aK, bK, abK. There are just 4 distinct points in the codomain H which are attained by f :
f(a), f(b), f(ab) and f(e) = eH . We can picture this data as follows:



90 CHAPTER 2. ON THE STRUCTURE OF GROUPS

The pictured map envisions f : G → H as being far from surjective. We propose f̄(gK) = f(g)
for gK = K, aK, bK, abK. It’s easy to see this makes f̄ : G/K → f(G) an homomorphism: for
example:

f̄(aK)f̄(bK) = f(a)f(b) = f(ab) = f̄(abK).

It is clear f̄ is onto f(A) = {eH , f(a), f(b), f(ab)} and Ker(f̄) = K hence f̄ : G/K → f(A) is an
isomorphism. Of course, we proved the First Isomorphism Theorem in detail in the last Lecture,
so I’ll refer you to Theorem 2.5.12 for a complete proof. This discussion is merely to attempt some
intuition for why it works.

Example 2.6.1. Consider φ : GL(n,R) → R× defined by φ(A) = det(A) for each A ∈ GL(n,R).
Note, det(AB) = det(A)det(B) hence φ is a homomorphism. Moreover, Ker(φ) = {A ∈ GL(n,R) | φ(A) =
1} = SL(n,R). Furthermore, A = E11(k − 1) + I clearly has det(A) = k for any k ∈ R× thus φ is
a surjection. Hence, by the first isomorphism theorem,

GL(n,R)/SL(n,R).

Of course, there is little reason to keep it real in the example above. We could just as well replace
R with another field F.

Example 2.6.2. Consider Id : G→ G where Id(x) = x for each x ∈ G. Clearly Id is a surjection
with Ker(Id) = {e} and we find G/{e} ≈ G.

The set G/{e} = {g{e} | g ∈ G} = {{g} | g ∈ G is rather silly. We mentioned φ({g}) = g gives
the isomorphism of G/{e} and G directly. I added the Example above to show you another way to
think about this result. Likewise,

Example 2.6.3. Let G be a group and define φ : G → G by φ(g) = e for each g ∈ G. Clearly
φ(G) = {e} and Ker(φ) = G hence G/G ≈ {e} by the first isomorphism theorem.

Again, the isomorphism G/G ≈ {e} can be established by any number of easy arguments beside
the one I offer above. For example, G/G has one coset thus is a group with one element hence is
isomorphic to the trivial group {e}.

Example 2.6.4. Let G = 〈a〉 where |a| =∞ then define φ : Z→ G by φ(m) = am. Note,

φ(x+ y) = ax+y = axay = φ(x)φ(y)

and φ(x) = ax = e iff x = 0 hence Ker(φ) = {0}. As φ is clearly a surjection we have Z/{0} ≈ G.
But, we know Z/{0} ≈ Z hence G ≈ Z.

Next, consider cyclic groups of finite order.
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Example 2.6.5. Let G = 〈a〉 where |a| = n ∈ N. Define φ : Z→ G by φ(k) = ak. Note

φ(j + k) = aj+k = ajak = φ(j)φ(k)

hence φ is homomorphism. Also,

φ(k) = ak = e ⇒ n | k ⇒ Ker(φ) = nZ

If ak ∈ G then φ(k) = ak thus φ(Z) = G. Hence the first isomorphism theorem provides Z/nZ ≈ G.

It might be helpful to revisit the example above in the case that G = Zn explicitly:

Example 2.6.6. Define φ : Z→ Zn by φ(x) = [x]n where [x]n = x+ nZ. Observe,

φ(x+ y) = [x+ y]n = [x]n + [y]n

hence φ is a homomorphism. Furthermore, it is clear φ is a surjection since [k]n = φ(k) for
k = 0, 1, . . . , n− 1. Also, φ(x) = [0]n iff x ∈ nZ which is to say Ker(φ) = nZ. We conclude, by the
first isomorphism theorem,

Z/nZ ≈ Zn
Of course, this should not be surprising as our very construction of Zn was to parse Z into cosets
of nZ. In fact, we can replace ≈ with = and write Z/nZ = Zn given our construction of Zn.

It is not usually the case we can replace≈ with =. In this course I use equality to indicate the objects
are the same as point-sets. Isomorphism is a looser requirement. For example, U(8) ≈ Z2×Z2 but
U(8) 6= Z2 × Z2.

Example 2.6.7. Let φ : R→ C× be defined by

φ(θ) = cos θ + i sin θ

for θ ∈ R. It can be shown with some trigonometry that φ(θ + β) = φ(θ)φ(β) hence φ is a
homomorphism. Moreover, φ(θ) = 1 only if both cos θ = 1 and sin θ = 0 hence θ = 2πk for some
k ∈ Z. That is,

Ker(φ) = {2πk | k ∈ Z} = 2πZ}

Notice18, |φ(θ)|2 = | cos θ + i sin θ|2 = cos2 θ + sin2 θ = 1. We find the image of φ falls on the
collection of points in C× which are distance one from the origin. In other words, φ(R) = S1 the
unit-circle in the complex plane. To see φ is onto S1 simply pick any point on S1, calculate its
standard angle θ and notice that φ(θ) is precisely the point in question. Thus R/2πZ ≈ S1 by the
first isomorphism theorem. In this case, we can visualize the homomorphism by imagining wrapping
R around S1 over and over again. As we wind 2π-length of the number line we arrive back at the
same point once more. It follows that all the points which differ by an integer-multiple of 2π end
up over the same point on S1. The process of geometrically identifying standard angles which differ
by a multiple of 2π radians is precisely the concept of working with the quotient R/2πZ.

In other words, the reason angles are a little tricky is that the proper understanding of them
necessitates the concept of a coset. A geometric angle is not really a single number, it’s a whole
collection of numbers each of which gives the same geometric direction... such numbers must differ
by 2πk for some k ∈ Z in the case we use radians. For degree-based geometry we identify angles
which differ by 360ok for some k ∈ Z.

18in case you never had the talk, |x+ iy| =
√
x2 + y2 is called the modulus of x+ iy. The modulus is simply the

distance from the origin to x+ iy in the complex plane
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Example 2.6.8. Suppose G,H are groups and form the direct product

G×H = {(g, h) | g ∈ G, h ∈ H}

Define projections π1 : G×H → G and π2 : G×H → H by

π1(x, y) = x & π2(x, y) = y

for each (x, y) ∈ G×H. We calculate,

Ker(π1) = {eG} ×H & Ker(π2) = G× {eH}

since the projections are clearly surjective the first isomorphism theorem provides:

G×H
{eG} ×H

≈ G &
G×H
G× {eH}

≈ H

I asked you to prove a general version of this result in Problem 56.

I recommend working on Chapter 10 Gallian problems such as:

#11− 36.

You may need to consult Chapter 8 for some of these, and keep in mind the notation⊕Gallian = ×me.

Problems for Lecture 15: (these are collected at the start of Lecture 17)

Problem 57: Prove that a nontrivial surjective homomorphism from Zn to Zk requires that k | n.
this problem modified from its original form, I restate the problem as Problem 72

Problem 58: Let mZn = {mx | x ∈ Zn}. Give a condition under which Zn/mZn ≈ Zm (you supply
the condition and the proof these are isomorphic). Hint: ψ : Zn → Zm defined by
ψ([x]n) = [x]m has kernel mZn

Problem 59: Show that φ(θ) = cos θ + i sin θ defines a homomorphism from R under addition to
C×. Also, prove that S1 = {cos θ + i sin θ | θ ∈ R} ≤ C×.

Problem 60: Gallian problem 7 on page 169. yes, I know I sent you a link to a page with multiple
solutions to this, the point here is not that you can find an answer, the point is for
you to make one of those proofs your own... own it.
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2.7 Lecture 16: direct products inside and outside

My goal in this section is to show the basic interaction between external and internal direct products
and to prove the major results from Chapter 8 of Gallian (although, I will be translating his ⊕ to
our ×). Let me remind the reader, the external direct product of H and K is given by:

G′ = H ×K = {(h, k) | h ∈ H, k ∈ K}

whereas the internal direct product assumes H,K E G with H ∩K = {e} and

G = H ⊕K = {hk | h ∈ H, k ∈ K}

Clearly G 6= G′ since H ×K ⊂ G×G whereas H ⊕K ⊂ G.

Why do we require the normality of the subgroups forming the internal direct product? Consider
the following example:

Example 2.7.1. Consider D3 = {1, x, x2, y, xy, x2y | x3 = 1, y2 = 1, (xy)2 = 1}. Let H =
〈x〉 = {1, x, x2} and K = {1, y} then HK = D3 and H ∩ K = {1}. We have H E D3 however
xK = {x, xy} and Kx = {x, yx} = {x, x2y} thus xK 6= Kx which shows K is not a normal
subgroup of D3. Let’s study the external direct product of H and K:

H ×K = {(1, 1), (1, y), (x, 1), (x, y), (x2, 1), (x2, y)} ≤ D3 ×D3

It happens that |HK| = |H ×K| = 6. However, these are not isomorphic. Notice, since (x, y)n =
(xn, yn) and x3 = 1 and y2 = 1 we have:

(x, y)2 = (x2, 1), (x, y)3 = (1, y), (x, y)4 = (x, 1), (x, y)5 = (x2, y), (x, y)6 = (1, 1)

thus (x, y) is an element or order 6 in H ×K which indicates H ×K ≈ Z6. We know D3 is not
cyclic thus D3 = HK 6≈ H ×K.

We wish for H ×K to be isomorphic to H ⊕K. We show now this is indeed the case. But, first
we need a lemma:

Lemma 2.7.2. Suppose H,K E G and H ∩K = {e}.

(i.) if ab = a′b′ where a, a′ ∈ H and b, b′ ∈ K then a = a′ and b = b′,

(ii.) if a ∈ H and b ∈ K then ab = ba.

Proof: let H,K be normal subgroups with H ∩K = {e}. Suppose a, a′ ∈ H and b, b′ ∈ K with
ab = a′b′. Notice, bb′−1 ∈ K and a−1a′ ∈ H. Multiplying on the left by a−1 and on the right by
b′−1 we derive bb′−1 = a−1a′ which shows bb′−1, a−1a′ ∈ H ∩K. However, H ∩K = {e} so we find
bb′−1 = e and a−1a′ = e which yield a = a′ and b = b′ which completes the proof of (i.)

Suppose a ∈ H and b ∈ K. To show ab = ba we must show aba−1b−1 = e. Notice, K E G
provides that aba−1 ∈ K once more as gKg−1 ⊆ K. Hence, (aba−1)b−1 ∈ K as it is the product
of aba−1, b−1 ∈ K. Likewise, by the normality of H we find ba−1b−1 ∈ H once more and hence
a, ba−1b−1 ∈ H and thus the product a(ba−1b−1) ∈ H. Hence aba−1b−1 ∈ H ∩ K which shows
aba−1b−1 = e thus ab = ba and this completes the proof of (ii.). �

Theorem 2.7.3. If G = H ⊕K then G ≈ H ×K. Here the notation H ⊕K = HK = {hk | h ∈
H, k ∈ K} where H,K E G and H ∩K = {e}.
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Proof: assume H,K E G and H ∩ K = {e} and HK = G. Define φ(x, y) = xy for each
(x, y) ∈ H ×K. Consider,

φ((x, y)(a, b)) = φ((xa, yb)) = (xa)(yb) = (xy)(ab) = φ(x, y)φ(a, b)

where we used part (ii.) of Lemma 2.7.2 to commute a ∈ H with y ∈ K. Hence φ is a homomorphism
from H ×K to G. If g ∈ G = HK then g = hk for some h ∈ H and k ∈ K thus φ(h, k) = hk = g
and we find φ(H ×K) = G. Next we study the kernel of φ. Suppose φ(x, y) = e thus xy = e = ee
and by part (i.) of Lemma 2.7.2 we find x = e and y = e hence Ker(φ) = {(e, e)} which completes
the proof that φ : H ×K → H ⊕K is an isomorphism; H ×K ≈ H ⊕K. �

Theorem 2.7.4. If |x|, |y| are finite then (x, y) ∈ G×H has order |(x, y)| = lcm(|x|, |y|).

Proof: Suppose |x| = m and |y| = n hence xm = e and yn = e. Let lcm(|x|, |y|) = s hence s = km
and s = ln for some l, k ∈ N. Calculate,

(x, y)s = (xs, ys) = (xkm, yln) = ((xm)k, (yn)l) = (ek, el) = (e, e).

Thus |(x, y)| ≤ s. Suppose (x, y)j = (e, e) for some j < s then,

(x, y)j = (xj , yj) = (e, e)

hence xj = e and yj = e thus m | j and n | j and if j < s we have a common multiple of m and n
which is smaller than the least common multiple. Of course, that is absurd, hence no such j exists
and we conclude |(x, y)| = s = lcm(|x|, |y|). �

Example 2.7.5. We noticed that (x, y) ∈ D3 has order 6. This makes sense as |x| = 3 and |y| = 2
hence |(x, y)| = lcm(2, 3) = 6.

Since |a| = |〈a〉| we can say much about subgroups. If 〈a〉 has order m and 〈b〉 has order n then
〈(a, b)〉 has order lcm(m,n).

Example 2.7.6. Observe 〈10〉 is a group of order 4 in Z40 and 〈3〉 is a group of order 10 in Z30

hence 〈(4, 3)〉 is a subgroup of order 20 in Z40 × Z30.

Example 2.7.7. How many elements of order 6 are there in Z6 × Z2 ? We obtain 6 as the least
common multiple of 6 and 1 or as 3 and 2. In Z6 we have 1 and 5 with order 6 and the identity 0
is the element of order 1 in Z2. Thus, (1, 0), (5, 0) have order 6. Next, the elements of order 3 in
Z6 are precisely 2 and 4. Of course 1 is the only element of order 2 in Z2, thus (2, 1), (4, 1) have
order 6. In total,

(1, 0), (5, 0), (2, 1), (4, 1)

are the elements of order 6 in Z6 × Z2. You can see 〈(1, 0)〉 = 〈(5, 0)〉 and 〈(2, 1)〉 = 〈(4, 1)〉. In
particular,

〈(2, 1)〉 = {(2, 1), (4, 0), (0, 1), (2, 0), (4, 1), (0, 0)}

Cyclic subgroups of order 6 come with φ(6) = 2 generators each. So, to count the number of
subgroups of order 6 we have to divide 4 by 2.

I’ll work on a slight twist of Example 3 on page 152.

Example 2.7.8. Find the number of elements of order 7 in Z49×Z7. For |(a, b)| = lcm(|a|, |b|) = 7
we have 3 distinct cases:
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(i.) |a| = 7, |b| = 1 note 〈a〉 is cyclic group of order 7 hence there are 6 generators. In total we
have 6 elements of order 7 in this case.

(ii.) |a| = 1, |b| = 7. Again, 〈b〉 contains 6 generators and this provides us 6 elements of order 7.

(iii.) |a| = 7, |b| = 7. We have 6 choices for a and b hence 36 total choices for elements of order
7 formed in this fashion

In summary, 6 + 6 + 36 = 48 elements of order 7.

Example 2.7.9. Gallian explains how Z100×Z25 has 24 distinct elements of order 10. Then, since
every cyclic subgroup of order 10 has φ(10) = 4 generators. It follows there are 24/4 = 6 distinct
subgroups of order 10.

I enjoy how Gallian explains this counting in terms of counting the number of legs of sheep then
dividing by 4 to count sheep. So, I guess if we’re counting subgroups of order 20 then as φ(20) =
φ(4)φ(5) = 2(4) = 8 we should think of the elements of order 20 like legs of a spider. I’m not sure
I know enough zoology19 to generalize this method.

Theorem 2.7.10. If G and H are finite cyclic groups then G×H is cyclic if and only if |G| and
|H| are relatively prime.

Proof: suppose G and H have order m,n respective with gcd(m,n) = 1. Note, lcm(m,n) = mn
in this case. Futher, if G = 〈a〉 and H = 〈b〉 then |a| = m and |b| = n. Hence, |〈(a, b)〉| = mn by
Theorem 2.7.15. But, |G×H| = mn by counting hence G×H = 〈(a, b)〉.

Conversely, suppose G×H is cyclic and |G| = m and |H| = n. Let d = gcd(m,n). Suppose (x, y)
is a generator of G×H. Notice, xm = e and yn = e, hence:

(x, y)mn/d = ((xm)n/d, (yn)m/d) = (en/d, em/d) = (e, e).

Thus, mn = |(x, y)| ≤ mn/d from which we find d = 1 hence m,n are relatively prime. �

Corollary 2.7.11. Zmn ≈ Zm × Zn iff m,n are relatively prime.

Proof: apply Theorem 2.7.10. �

We should generalize to products of more than two groups.

Definition 2.7.12. If H1, H2, . . . ,Hn E G and

(i.) G = H1H2 · · ·Hn = {x1x2 · · ·xn | xi ∈ Hi, i = 1, 2, . . . , n}

(ii.) (H1 · · ·Hi) ∩Hi+1 = {e} for i = 1, 2, . . . , n− 1.

then we say G = H1 ⊕H2 ⊕ · · · ⊕Hn.

Condition (i.) provides that the product of the subgroups generate the entire group. Condition (ii.)
provides the subgroups are independent. Once again, this definition is made so that the internal
direct product be isomorphic to the external direct product which is defined in the natural fashion
(see Definition 2.4.15). Lemma 2.7.2 generalizes nicely:

19and you thought I’d never work this in
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Lemma 2.7.13. G = H1 ⊕H2 ⊕ · · · ⊕Hn

(i.) if a1a2 · · · an = x1x2 · · ·xn where ai, xi ∈ Hi for each i = 1, 2, . . . , n then ai = xi
for each i = 1, 2, . . . , n

(ii.) if ai ∈ Hi for i = 1, 2, . . . , n then a1a2 . . . an = aσ(1)aσ(2) . . . , aσ(n) for any σ ∈ Sn.

Proof: notice the n = 2 case was shown Lemma 2.7.2 hence a1a2 = x1x2 for a1, x1 ∈ H1 and
a2, x2 ∈ H2 where H1 ∩ H2 = {e} provides a1 = x1 and a2 = x2 and a1a2 = a2a1. For n = 3,
note H1H2 E H1H2H3 and H1H2 ∩H3 = {e} hence we apply Lemma 2.7.2 using H = H1H2 and
K = H3; if (a1a2)a3 = (x1x2)x3 where ai, xi ∈ Hi then we deduce a1a2 = x1x2 and a3 = x3.
Moreover,

(a1a2)a3 = a3(a1a2).

But, recalling our work from n = 2 we have:

a1 = x1, a2 = x2, a3 = x3,

(a1a2)a3 = a3(a1a2) = (a2a1)a3 = a3(a2a1), a1a2 = a2a1, a2a3 = a3a2, a1a3 = a3a1.

In other words, a1a2a3 = aσ(1)aσ(2)aσ(3) for any σ. Suppose inductively (i.) and (ii.) hold for all
n = 1, 2, . . . ,m. If ai, xi ∈ Hi for i = 1, 2, . . . ,m+ 1 and

a1a2 · · · amam+1 = x1x2 · · ·xmxm+1

then applying Lemma 2.7.2 to the normal subgroup H = H1H2 · · ·Hm and K = Hm+1 we find

a1a2 · · · am = x1x2 · · ·xm & am+1 = xm+1

and
(a1a2 · · · am)am+1 = am+1(a1a2 · · · am)

Then, by the induction hypothesis,

a1 = x1, a2 = x2, . . . , am = xm, am+1 = xm+1 & a1a2 · · · am = aσ(1)aσ(2) · · · aσ(m)

for all σ ∈ Sm. I leave it to the reader to complete the proof that (ii.) holds for the n = m+ 1 case
hence by induction the Lemma follows. �

The Lemma above makes easy work of the Theorem to follow:

Theorem 2.7.14. G = H1 ⊕H2 ⊕ · · · ⊕Hn then G ≈ H1 ×H2 × · · · ×Hn.

Proof: let φ(x1, . . . , xn) = x1 · · ·xn define a map from H1 × · · · × Hn to G = H1 ⊕ · · · ⊕ Hn.
Consider,

φ((a1, a2, . . . , an)(x1, x2, . . . , xn)) = φ((a1x1, a2x2, . . . , anxn))

= (a1x1)(a2x2) · · · (an)(xn)

= (a1a2 · · · an)(x1x2 · · ·xn)

= φ((a1, a2, . . . , an))φ((x1, x2, . . . , xn))

Thus φ is a homomorphism. Moreover, φ is surjective since each g ∈ G = H1 ⊕ · · · ⊕ Hn can be
written as g = a1 · · · an and φ(a1, . . . , an) = g. Part (ii.) of Lemma 2.7.13 provides injectivity since:

φ(a1, a2, . . . , an) = φ(x1, x2, . . . , xn) ⇒ a1a2 · · · an = x1x2 · · ·xn
⇒ a1 = x1, a2 = x2, . . . , an = xn.

Thus φ is a bijective homomorphism and we conclude H1⊕H2⊕· · ·⊕Hn ≈ H1×H2×· · ·×Hn. �



2.7. LECTURE 16: DIRECT PRODUCTS INSIDE AND OUTSIDE 97

There is also a natural generalization of the order of an element theorem we had for 2-tuples. I’ll
skip the proof of this Theorem since it is nearly identical to the n = 2 case.

Theorem 2.7.15. If |x1|, |x2|, . . . , |xn| are finite then (x1, x2, . . . , xn) ∈ H1 × H2 × · · · × Hn has
order |(x1, x2, . . . , xn)| = lcm(|x1|, |x2|, . . . , |xn|).

Example 2.7.16. Consider G = Z6 × Z3 × Z4. How elements of order 6 and how many cyclic
subgroups of order 6 ? Considering (a, b, c) ∈ G has |(a, b, c)| = lcm(|a|, |b|, |c|) we have the following
cases:

(1.) |a| = 6, |b| = 1, 3, |c| = 1, 2: Let #(a) denote the number of choices for a with
|a| = 6 in Z6 we have #(a) = 2. For |b| = 1, 3 in |ZN3 we obtain all of Z3 hence
#(b) = 3. On the other hand #(c) = 2 since c = 0, 2 have |c| = 1, 2 in Z4. In total,
the number of elements of order 6 in this case are #(a)#(b)#(c) = (2)(3)(2) = 12.

(2.) |a| = 3, |b| = 1, |c| = 2: we determine #(a)#(b)#(c) = (2)(1)(1) = 2

(3.) |a| = 1, |b| = 3, |c| = 2: we determine #(a)#(b)#(c) = (1)(2)(1) = 2

In total, there are 12 + 2 + 2 = 16 elements of order 6 in Z6×Z3×Z4. It follows there are 8 cyclic
subgroups of order 6 since each cyclic subgroup of order 6 has 2 generators.

There is also a nice generalization of Theorem 2.7.10 to three or more factors.

Theorem 2.7.17. If H1, H2, . . . ,Hn are cyclic groups of finite order then H1 ×H2 × · · · ×Hn is
cyclic if and only if |Hi|, |Hj | is relatively prime whenever i 6= j.

Proof: exercise for reader. �

Corollary 2.7.18. Zn1n2...nk
≈ Zn1 ×Zn2 × · · · ×Znk

if and only if gcd(ni, nj) = 1 whenever i 6= j

Proof: since |Zn| = n and Zn is cyclic we find Zn1 × Zn2 × · · · × Znk
is cyclic if and only if

gcd(ni, nj) = 1 whenever i 6= j by Theorem 2.7.17. Moreover, as the order of Zn1 ×Zn2 × · · ·×Znk

is given by |Zn1 ||Zn2 | · · · |Znk
| = n1n2 · · ·nk we determine Zn1 × Zn2 × · · · × Znk

is isomorphic to a
cyclic group of order n1n2 · · ·nk and the Corollary follows. �

Example 2.7.19. Since 105 = 3 · 5 · 7 (relatively prime factors) we have Z105 ≈ Z3 × Z5 × Z7.

Example 2.7.20. Consider Z20 since 2 and 10 are not relatively prime it is not the case that
Z20 ≈ Z2 × Z10. On the other hand, 20 = 4 · 5 and gcd(4, 5) = 1 hence Z20 ≈ Z4 × Z5.

2.7.1 classification of finite abelian groups

I choose to not prove this result in the first semester. Honestly, it’s part of a much larger story
which includes the rational cannonical form and modules. The proper proof is significantly harder
than most of what we’ve been up to in this course thus far and I’d rather invest our energy in
other pursuits (like group actions and counting). That said, I should communicate the result we
will likely prove next semester. There is a proof in Chapter 11 of Gallian if you cannot wait until
Math 422.

Theorem 2.7.21. Every finite abelian group is the direct product of cyclic groups of prime-power
order. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely
determined by the group.
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It is helpful to discuss a generic prime p to appreciate the content of the Theorem.

order isomorphism classes

p Zp
Zp2

p2 Zp × Zp
Zp3

Zp2 × Zp
p3 Zp × Zp × Zp

The listed cases are clearly not isomorphic. For example, Zp2 is cyclic whereas Zp×Zp is not cyclic.
Being formed from the product of cyclic groups is not the same as being cyclic!

Example 2.7.22. What are the possible types of abelian groups of order 100 up to isomorphism?
Well, notice 100 = 22 · 52 hence we have the following choices:

Z4 × Z25 ≈ Z100,

Z2 × Z2 × Z25 ≈ Z2 × Z50,

Z4 × Z5 × Z5 ≈ Z20 × Z5,

Z2 × Z2 × Z5 × Z5 ≈ Z10 × Z10

where I have made ample use of Corollary 2.7.11.

I recommend working on Chapter 11 Gallian problems such as:

#11− 36.

also Chapter 8 Gallian problems such as:

#4− 63

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Problems for Lecture 16: (these are collected at the start of Lecture 18)

Problem 61: Prove the product H1H2 · · ·Hk of normal subgroups H1, . . . ,Hk of a group G is once
more a normal subgroup.

Problem 62: Gallian Chapter 8 #32 from page 163

Problem 63: Gallian Chapter 8 #41 from page 163.

Problem 64: Gallian Chapter 11 #8 from page 219.



2.8. LECTURE 17: A LITTLE NUMBER THEORY AND ENCRYPTION 99

2.8 Lecture 17: a little number theory and encryption

I claimed without proof a bit earlier in this course that20 for a prime p and relatively prime s, t,

φ(p) = p− 1 φ(pk) = pk − pk−1 & φ(st) = φ(s)φ(t).

In this section I intend to investigate these identities via studying the U(n). Note, φ(n) = |U(n)|
since the group of units is the set of integers relatively prime to n under the operation of mul-
tiplication modulo n and the Euler-phi-function φ(n) counts the number of integers which are
relatively prime to n and not larger than n.

Proposition 2.8.1. If p is prime then |U(p)| = p− 1 hence φ(p) = p− 1.

Proof: if p is prime then gcd(p, j) = 1 for j = 1, 2, . . . , p− 1 hence |U(n)| = p− 1. �

Proposition 2.8.2. If p is prime then |U(pk)| = pk − pk−1 hence φ(pk) = pk − pk−1.

Proof: Let n = pk where p is prime. Observe the divisors of n include 1 and multiples of p from p
to pk = pk−1p. In particular the list has pk−1 members:

1, p, 2p, . . . , pp, (p+ 1)p, . . . , pk−1p

Thus there are pk−1 integers in Zn which are not relatively prime to n = pk. It follows that the
remaining numbers in Zn are relatively prime to n. Hence, |U(n)| = pk − pk−1 = φ(pk). �

The results above are mostly just counting and the definition of prime in Z. Our next result is a
bit more group-theoretic.

Theorem 2.8.3. Suppose s, t are relatively prime then U(st) ≈ U(s)× U(t)

Proof: consider the mapping ψ([x]st) = ([x]s, [x]t) for each [x]st ∈ U(st). We seek to show this
gives an isomorphism from U(st) to U(s) × U(t). Let us begin by showing ψ is single-valued. If
[x]st = [y]st then y = x+ j(st) hence

ψ([y]st) = ([y]s, [y]t) = ([x+ jst]s, [x+ jst]t) = ([x]s, [x]t) = ψ([x]st).

To show ψ is into U(s)× U(t) we need to demonstrate the inverse of [x]s, [x]t exist whenever [x]st
has a multiplicative inverse. Consider, [x]st ∈ U(st) implies there exists [y]st such that

xy − 1 = n(st)

for some n ∈ Z hence xy−1 = (nt)s and xy−1 = (ns)t hence [x]s[y]s = [1]s and [x]t[y]t = [1]t which
shows ψ is into. The homomorphism property of ψ follows naturally from modular arithmetic:

ψ([x]st[y]st) = ψ([xy]st) = ([xy]s, [xy]t)

= ([x]s[y]s, [x]t[y]t)

= ([x]s, [x]t)([y]s, [y]t)

= ψ([x]st)ψ([y]st).

Finally, since U(st) and U(s)×U(t) are finite we show ψ is a bijection if we either show injectivity or
surjectivity. Consider the kernel: Ker(ψ) = {[x]st | [x]s = [1]s & [x]t = [1]t}. Thus [x]st ∈ Ker(ψ) iff
x ≡ 1(mod s) and x ≡ 1(mod t) for s, t relatively prime. By the Chinese Remainder Theorem
there is a simultaneous solution to these congruences and x ≡ 1(mod st). In other words, by the
Chinese Remainder Theorem, we obtain Ker(ψ) = {[1]st} and we find ψ is an isomorphism of U(st)
and U(s)× U(t). �

20I will take care to not use φ as an isomorphism in this section as it always means the euler-phi-function in this
Lecture
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Multiplicativity of the euler-phi-function follows easily:

Corollary 2.8.4. If s, t ∈ N are relatively prime then φ(st) = φ(s)φ(t).

Proof: by Theorem 2.8.7, if s, t are relatively prime then U(st) ≈ U(s) × U(t). Hence |U(st)| =
|U(s)| · |U(t)| but, φ(n) = |U(n)| thus φ(st) = φ(s)φ(t). �

I would wager not all of you are familar with the Chinese Remainder Theorem. In short, it gives us
a result which links calculations with respect to several moduli. The simplest form of the Theorem
is for just two moduli which are relatively prime. We used that result to prove Theorem 2.8.7. I’ll
state a bit more general version which we need to prove the extended version of the Theorem.

Theorem 2.8.5. Suppose m1,m2, . . . ,mr have gcd(ni, nj) = 1 for i 6= j then the system of con-
gruences

x ≡ a1 (modm1), x ≡ a2 (modm2), . . . , x ≡ ar (modmr)

has a unique solution modulo M = m1m2 . . .mr

Proof: First we construct a solution of the system. Define Mk = M/mk for each k = 1, 2, . . . , r.
Observe gcd(Mk,mk) = 1 since by construction all the factors composing Mk are relatively prime
to mk. For each k, By Bezout’s Theorem, the observation gcd(Mk,mk) = 1 earns the existence of
yk, bk ∈ Z for which ykMk + bkmk = 1 thus ykMk ≡ 1 mod mk. By math magic, consider:

x = a1M1y1 + a2M2y2 + · · ·+ arMryr

clearly Mj ≡ 0 mod mi for each i 6= j hence

x ≡ aiMiyi ≡ ai

modulo mi. But, i was arbitrary hence x solves all r of the congruences. Suppose y is another
solution of all the congruences then x ≡ y ≡ ai mod i for i = 1, 2, . . . , r. Hence mi | (y−x) for each
i and hence M = m1m2 · · ·mr | (y − x) and we conclude y ≡ x mod M as the Theorem claims. �

The proof above is more than a proof. It’s a template for how to solve these multiple congruence
problems. I use the notation of the proof to guide my calculation in the example below:

Example 2.8.6. Solve x ≡ 2 mod 3 and x ≡ 7 mod 11. Observe M = 3(11) = 33 and m1 = 3
whereas M1 = 11 and conversely m2 = 11 and M2 = 3. We calculate,

(mod 3) : 11−1 = 2 = y1

(mod 11) : 3−1 = 4 = y2

Hence, noting a1 = 2 and a2 = 7 we construct:

x = a1M1y1 + a2M2y2 = 2(11)(2) + (7)(3)(4) = 44 + 84 = 128 ≡ 29 mod 33

as 128− 3(33) = 29. We can check that x = 29 is indeed congruent to 2 mod 3 and 7 mod 11.

The other way to solve these sort of problems is by substitution, but, I’m not trying to be general
here at the moment. In number theory perhaps you saw other methods to solve such a problem
as well as how we deal with the case the moduli are not relatively prime. These questions are
interesting, but, I leave them for another time.
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Theorem 2.8.7. Suppose m1,m2, . . . ,mr have gcd(mi,mj) = 1 whenever i 6= j then

U(m1m2 · · ·mr) ≈ U(m1)× U(m2)× · · · × U(mr).

Proof: let M = m1m2 · · ·mr and define

ψ([x]M ) = ([x]m1 , [x]m2 , . . . , [x]mr)

the proof that ψ is single-valued, into and a homomorphism are very similar to that given in
Theorem 2.8.7. We’ll examine the kernel calculation in detail. If [x]M ∈ Ker(ψ) then

([x]m1 , [x]m2 , . . . , [x]mr) = ([1]m1 , [1]m2 , . . . , [1]mr)

which is to say
x ≡ 1 mod m1, x ≡ 1 mod m2, . . . , x ≡ 1 mod mr

By the Theorem 2.8.5 the simultaneous solution x = 1 is unique modulo m1m2 · · ·mr which is
to say Ker(ψ) = {[1]M} and we conclude ψ is an isomorphism of U(m1m2 · · ·mr) and U(m1) ×
U(m2)× · · · × U(mr). �

Corollary 2.8.8. If m1,m2, . . . ,mr have gcd(mi,mj) = 1 for all i 6= j then

φ(m1m2 . . .mr) = φ(m1)φ(m2) · · ·φ(mr).

Proof: by Theorem 2.8.7 we observe for m1,m2, . . . ,mr with gcd(mi,mj) = 1 we have

|U(m1m2 · · ·mr)| = |U(m1)× U(m2)× · · · × U(mr)| = |U(m1)||U(m2)| · · · |U(mr|

thus φ(m1m2 · · ·mr) = φ(m1)φ(m2) · · ·φ(mr). �

Discussion: the classification of U(n): the fundamental theorem of arithmetic states n can be
expressed uniquely, up to reordering, as the product of prime powers. Denote,

n = pk1pk2 · · · pks

By Theorem 2.8.7 we can decompose U(n) into the product below:

U(n) ≈ U(pk1)× U(pk2)× · · ·U(pks)

It can be shown, Gallian credits Gauss circa 1801 as one source, that U(2) ≈ {0}, U(4) ≈ Z2 and
U(2n) ≈ Z2 × Z2n−2 for n ≥ 3. Moreover, U(pn) ≈ Zpn−pn−1 for any odd prime power. With these
results and the decomposition scheme above this means we can express any U(n) as the direct
product of copies of Zn.

Example 2.8.9.

U(200) = U(52 · 23) ≈ U(52)× U(23) ≈ Z25−5 × Z2 × Z2 = Z20 × Z2 × Z2

Example 2.8.10.

U(405) = U(5 · 34) ≈ U(5)× U(34) ≈ Z4 × Z81−27 = Z4 × Z54

Example 2.8.11.

U(195) = U(5 · 3 · 13) ≈ U(5)× U(3)× U(13) ≈ Z4 × Z2 × Z12.
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We should recall, Theorem 2.2.14 showed us the automorphisms of Zn were isomorphic to U(n).
Now that we have a method of picking apart U(n) into a product of cyclic groups this old result
gains new utility.

Example 2.8.12. Find how many automorphisms of Z100 have order k. Since Aut(Z100) ≈ U(100)
we can trade the given question for a related question of how many elements of order k are there
in U(100)? Note,

U(100) ≈ U(4)× U(25) ≈ Z2 × Z20

Now, let’s be specific, suppose we look at k = 4 then to get (a, b) ∈ Z2 × Z20 we need either |a| = 1
and |b| = 4 or |a| = 2 and |b| = 4. There are 2 elements of order 4 in Z20 and there is just
one element of order 1 (or 2) in Z2 hence there are 4 elements of order 4 in Z2 × Z20 (not that
it matters, but they are (0, 5), (0, 15), (1, 5), (1, 15)) thus there exist 4 automorphisms of Z100 with
order 4.

Remark 2.8.13. Gallian’s example on page 156 is more impressive. But, I go on since I believe
the example above suffices to illustrate how we can combine the various tools we’ve developed in
this part of the course.

We now return to a little Theorem from Chapter 7 which is terribly useful for calculations. Al-
though, I prove a slightly different version,

Theorem 2.8.14. Fermat’s Little Theorem: if p is prime and a 6= 0 mod p then ap−1 = 1 mod p.

Proof: Consider Zp has p-elements and U(p) has p − 1 elements. Observe 〈a〉 ≤ U(p) hence by
Lagrange’s Theorem we require |a| | (p− 1). Thus, there exists n for which p− 1 = n|a| and mod
p we calculate that ap−1 = an|a| = (a|a|)n = 1n = 1. �

Theorem 2.8.15. Euler’s Theorem: if x ∈ U(k) then xφ(k) = 1 mod k.

Proof: as |U(k)| = φ(k) this result follows immediately from Corollary 2.3.12 with G = U(k). �

2.8.1 encryption

Both of the results above are useful for modular calculation. A good example of nontrivial modular
calculation is given by the RSA encryption scheme. A bit of history, the basic idea of a trapdoor
function goes to Diffie and Hillman around 1976, then the method I describe here was proposed
by Rivest, Shamir and Adleman (RSA) in 1978. Apparently, a British Intelligence’s Clifford Cocks
also invented the same trick in the 1970’s. I learned this material from Elements of Number Theory
by Stillwell. Honestly, if you think about mathematical magic tricks where the magician does some
complicated sequence of operations to the number and then ciphers the original guess... such tricks
are based on a reversable algorithm much like the RSA algorithm I describe in this subsection.
Only a computer can feasibly implement the encryption of RSA, even my silly toy example takes
considerable effort to work through with a traditional handheld calculator. You can get a lot further
with Wolframalpha etc. Anyway, let’s get to it: the RSA algorithm is roughly as follows:

(1.) Choose a pair of large prime numbers p1 and p2 and define n = p1p2 (this is huge
in real applications)

(2.) Calculate n = p1p2 and choose an encryption exponent e with gcd(e, φ(n)) = 1
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(3.) Publish e and n so anyone can send you an encrypted message subject to commonly
held conventions.

(4.) Your friend takes a message and uses simple transcription to translate it into a
coded number. For example, the message ”cast” might be traded for 03011920
using a = 01, b = 02, . . . z = 26 and taking 4-letters at a time. Obviously, there is
more involved here in real applications, but, I think you can use your imagination to
see we can trade words and symbols for a string of numbers with the appropriate
scheme. This sort of raw coding is not hard to break and it has been used for
centuries. In any event, let us agree that m denotes the message and m ∈ N where
m < n.

(5.) Your friend takes the n and e you published and runs their message through the
map f(m) = me which scrambles the message m to the encrypted message f(m).
They communicate f(m) to you without hiding it, anyone could intercept f(m)
mid-transit and it matters not. Even if the interceptor knows n and e !

(6.) Since you know p1, p2 you can calculate φ(n) = (p1 − 1)(p2 − 1). Suppose ed = 1
mod φ(n) then note that (me)d = m1+kφ(n) = m1(mφ(n))k = m mod n by Euler’s
Theorem. Thus, raising f(m) to the d power reveals the message m mod n.

We can try this out using some artificially small primes just to appreciate the algorithm better.

Example 2.8.16. I tried this example when I last taught number theory. I hope it goes better now:

(1.) Consider p1 = 13 and p2 = 17 hence n = 221.

(2.) φ(221) = φ(13)φ(17) = 12(16) = 192 choose e = 37 as gcd(37, 192) = 1.

(3.) my public key is n = 221 and e = 37

(4.) my friend chooses a single-letter message of ”J” which translates by the alphabet
code to m = 10

(5.) my friend encrypts the message m = 10 by calculating m37 = 1037 mod 221. There
are various tricks to actually perform this calculation. Notice 37 = 32 + 4 + 1 so
(37)2 = (100101) which inspires us to look at m37 as

((((m2)2)2)2)2((m2))2m

Note 102 = 100 then 104 = (102)2 = 10000 = 221(45) + 55 = 55 mod 221. Hence,

108 = ((102)2)2 = 552 = 3025 = 13(221) + 152 = 152 = −69

mod 221. Continuing,

1016 = (−69)2 = 4761 = 21(221) + 120 = 120

1032 = (120)2 = 14400 = 65(221) + 35 = 35

1037 = 1032104101 = (35)(55)(10) = 19250 = 87(221) + 23 = 23 ⇒ f(m) = 23

(6.) my private decryption key requires me to calculate the multiplicative inverse of
e = 37 modulo φ(221) = 192. We can use the extended euclidean algorithm to
accomplish this generally.

192 = 37(5) + 7, 37 = 5(7) + 2, 7 = 3(2) + 1
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hence working backwards,

1 = 7− 3(2) = 7− 3(37− 5(7)) = 16(7)− 3(37) = 16(192− 5(37))− 3(37)

thus 1 = 16(192) − 83(37) hence 37−1 = −83 = 109. Hence, to decrypt the
message f(m) = 23 I simply raise the message to the 109-th power mod 221.
Notice, 109 = 64 + 32 + 8 + 4 + 1 so we can calculate 23109 mod 221 systematically
as follows:

234 = 279841 = 1266(221) + 55 = 55

238 = 552 = 3025 = 13(221) + 152 = 152

2316 = (238)2 = 1522 = 23104 = 104(221) + 120 = 120

2332 = 1202 = 14400 = 65(221) + 35 = 35

2364 = 352 = 1225 = 5(221) + 120 = 120

Hence, mod 221 we have:

23109 = 2364233223823423

= (120)(35)(152)(55)(23)

= (4200)(192280)

= (1)(10)

= 10.

As you can see, my friend sent the coded message of 23 and I was able to cipher it was the hidden
message of 10. In order to calculate the decryption d = 109 it was necessary to calculate φ(n) which
is simple when the factorization of n is known. Of course, for n = 221 you can easily find 13 and
17 as factors and hence φ(n) = 12(16) = 192 was easy to find hence the inverse of the public e = 37
is also very much possible to calculate in my toy example. The difference with real encryption is the
p1, p2 are typically hundreds of digits long so the modulus p1p2 is pragmatically impossible to factor
and the problem of calculating φ(n) directly is also rather daunting. It is neat that the difficulty
of finding large primes allows us to communicate securely. It’s not without holes, and from what I
read, the algorithm I describe here has further refinements in practice. I just thought it would be
fun to run through this as a real world example of sorts.

Remark 2.8.17. When I did this toy example the first time I used e = 49. This was a most
unfortunate choice since U(221) ≈ U(13) × U(17) ≈ Z12 × Z16 ≈ 〈a〉 × 〈b〉 where |a| = 12 and
|b| = 16 and you can easily calculate (x, y)48 = ((x12)4, (y16)3) = (e, e) hence (x, y)49 = (x, y).
In other words, my encryption exponent was the worst possible choice. I gave the students some
time to encrypt a message then after leaving the room and returning the gave me f(m) and told
me m was the same. If I had picked most any other number it would have been ok. I thought
gcd(49, 192) = 1 sufficed to make the method go, but, as my story shows, there are hidden dangers
and the algorithm I sketch in this section is just the most rudimentary version.
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I recommend working on Supplemental Exercises for Gallian Chapters 5-8 such as: (page 169-171)

#1− 47.

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Problems for Lecture 17: (these are collected at the start of Lecture 19)

Problem 65: Gallian page 169 #3

Problem 66: Gallian #6 from page 169 .

Problem 67: Gallian #54 from page 164 .

Problem 68: Prove the following:

(a) Suppose G,H,K are finite. Prove: if G⊕H = G⊕K then H ≈ K.

(b) Show that removing the finiteness condition in the previous part makes the claim
false. Give an explicit counterexample to be precise.

(c) Show that G⊕H = G⊕K does not imply H = K even for abelian groups. Give
an infinite and finite counterexample (of course, logically just one is needed, but,
I want you to think about both cases)
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2.9 Lecture 18: group actions

The concept of a group action has thus far been underplayed in our course. If you watch the videos
by Professor Gross of Harvard based on Artin’s Algebra then you might notice he introduces the
concept of a group action much earlier and he centers much of the course around the concept.
Group actions do put groups into action and they help bring the application of group theory into
the foreground. I’m following a combination of §7.3 in Beachy and Blair’s Abstract Algebra as well
as §2.7 in Rotman’s A First Course in Abstract Algebra both in their 3rd edition.

Definition 2.9.1. Let G be a group and S a set. A multiplication of G on S defined by ? : G×S → S
is called a group action of G on S if for each x ∈ S,

(i.) e ? x = x for e the identity of G,

(ii.) a ? (b ? x) = (ab) ? x for all a, b ∈ G

Let’s look at a few examples to get a sense of the breadth of this concept.

Example 2.9.2. Consider G a subgroup of the group of permutations on some set S; G ≤ Perm(S).
We define ? : G× S as follows for σ ∈ G,

σ ? x = σ(x)

for each x ∈ S. Recall, σ : S → S is a bijection by the definition of permutations. Moreover, as G
is a group the identity map σ = Id is in G and

Id ? x = Id(x) = x

for each x ∈ S. Furthermore, if σ, β ∈ G then

(σ ◦β) ? x = (σ ◦β)(x) = σ(β(x)) = σ(β ? x) = σ ? (β ? x)

for each x ∈ S. Thus ? defines a group action of G on S.

Notice, we could take S = G and use the permutations induced from left-multiplications on G as
a particular instance of the above Example. In other words, we can view the proof of Cayley’s
Theorem 2.1.17 as an example of using a group action to study the group. Many interesting
applications appear when S and G are not the same set.

Example 2.9.3. Suppose H ≤ G then H acts on G according to the following action:

h ? x = hx

for each h ∈ H and x ∈ G. Naturally,

e ? x = ex = x, & (ab) ? x = (ab)x = a(bx) = a ? (b ? x)

for all a, b ∈ H and x ∈ G using the associativity of group multiplication and the existence of the
identity e ∈ H ≤ G.

With a bit more imagination, we can define a second action of H on G:

https://www.youtube.com/watch?v=VdLhQs_y_E8
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Example 2.9.4. Suppose H ≤ G then H acts on G according to the following action:

h •x = xh−1

for each h ∈ H and x ∈ G. Naturally,

e •x = xe−1 = x, & (ab) •x = x(ab)−1 = xb−1a−1 = (b •x)a−1 = a • (b •x).

for all a, b ∈ H and x ∈ G. This action is brought to you courtesy of the socks-shoes formula for
the inverse.

Example 2.9.5. Scalar multiplication by F× gives an action on a vector space over F. Recall
F× = F− {0} forms a group and note

1 · x = x, & (ab) · x = a · (b · x)

for each x ∈ V and a, b ∈ F×. These identities given in the definition of a vector space over F serve
to show scalar multiplication forms a group action by the nonzero-scalars.

Example 2.9.6. Let S = Fn and consider G = GL(n,F) the general linear group of invertible
n × n matrices over the field F. A natural group action of GL(n,F) on Fn is given by matrix
multiplication:

A ? x = Ax

for each A ∈ GL(n,F) and x ∈ Fn. Observe,

I ? x = Ix = x, & (AB) ? x = (AB)x = A(Bx) = A(B ? x) = A ? (B ? x)

for all A,B ∈ GL(n,F) and x ∈ Fn where I denotes the n× n identity matrix.

Of course, you can replace GL(n,F) with a suitable subgroup and still obtain a group action.
Indeed, if you think about any of our group actions if we have an action by G on S then you can
easily see how to create a corresponding action by H ≤ G on S simply by restricting the given
action. In particular, Problem 69 investigates the action of a particular subgroup of GL(2,R).

Theorem 2.9.7. Let G be a group and suppose S is a set. Any group homomorphism from G into
Perm(S) corresponds to an action of G on S. Conversely, every group action of G on S arises in
this manner.

Proof: was given in class on 10-14-16. I hope to type it up sometime soon... �

Definition 2.9.8. Let G be a group and S a set and ? : G× S → S a group action. We define:

(i.) for each x ∈ S the orbit of x under G is O(x) = {g ? x | g ∈ G}

(ii.) for each x ∈ S the stabilizer of x in G is Gx = {g ∈ G | g ? x = x}

(iii.) the subset of S fixed by G is denoted SG = {x ∈ S | g ? x = x, for all g ∈ G}

The stabilizer Gx is also known as the isotropy subgroup of x. Notice, e ∈ Gx is immediate from
the definition of a group action.
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Example 2.9.9. Continuing Example 2.9.3, we note for H ≤ G

O(x) = {hx | h ∈ H} = Hx.

the orbits are right-H-cosets. Let x ∈ G then the stabilizer of x in H is given by:

Hx = {h ∈ H | hx = x}

notice hx = x implies h = e thus Hx = {e} for each x ∈ G. There is no subset of G fixed by H
unless H = {e} in which case all of G is fixed by H.

Example 2.9.4 gives orbits which are left-H-cosets.

Example 2.9.10. The scalar multiplication action of Example 2.9.5 gives interesting orbits. In
particular, if v ∈ Fn then c ·v gives the line with direction-vector v with origin removed since c ∈ F×
forbids c = 0. The orbit of v = 0 is just the origin. In contrast, if v 6= 0 the stabilizer is (F×)v = {1}
and the stabilizer of the origin is the F× ( (F×)0 = F× ).

Conjugation provides an important group action of a group on itself.

Example 2.9.11. Consider S = G a group and define an action of G on itself as follows:

g ? x = gxg−1

for all g, x ∈ G. Clearly e ? x = exe = x for each x ∈ G. Moreover, if a, b ∈ G then

(ab) ? x = (ab)x(ab)−1 = a(bxb−1)a−1 = a(b ? x)a−1 = a ? (b ? x)

for each x ∈ G. Furthermore, the orbit of x is its conjugacy class21:

O(x) = {gxg−1 | g ∈ G}

and the stabilizer of x in G is the centralizer of x

Gx = {g ∈ G | gxg−1 = x} = {g ∈ G | gx = xg}.

The centralizer of x is the set of all group elements which commute with x. Finally, the fixed subset
of this group action is the center of G:

SG = {g ∈ G | xgx−1 = g for all x ∈ G} = {g ∈ G | xg = gx for all x ∈ G} = Z(G).

The action of G on itself by conjugation is at the heart of many of the major theorems which are
derived from the theory of group actions. I won’t prove all of these theorems this semester, but, I
hope I show you enough you can see the spirit of the arguments.

21we soon prove that the orbits define a partition of S and they are the equivalence classes for a natural equivalence
relation given by the group action
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I recommend working on Supplemental Exercises for Gallian Chapters 5-8 such as: (page 169-171)

#1− 47.

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Problems for Lecture 18: (these are collected at the start of Lecture 20)

Problem 69: Let G = O(2,R) = {R ∈ R2×2 | RTR = I}. Consider the action of G on R2 by
matrix multiplication. Find the orbits and stabilizers for the given action.

Problem 70: Gallian Chapter 7, #27 from page 146. (this is not particularly attached to the topic
of group actions, but this is a useful identity to know and use)

Problem 71: Find all homomorphisms from Z5 to Z7.

Problem 72: Show any homomorphism from Zn to Zk must have the form φ([x]n) = [mx]k for all
[x]n ∈ Zn for some m where k | mn.
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2.10 Lecture 19: orbit stabilizer theorem and conjugacy

In this Lecture we develop the main tools we need to solve counting problems. The orbit stabilizer
theorem gives a simple connection between the number of cosets of the stabilizer and the orbit of
a particular point: they match. When we apply this theorem to the conjugation action of G on
itself we obtain interesting new insight into conjugacy classes. Ultimately, this allows us to prove
Cauchy’s Theorem in the next Lecture.

Theorem 2.10.1. If G is a group which acts on a set S and x ∈ S then Gx ≤ G.

Proof: let x ∈ S and consider Gx = {g ∈ G | g ? x = x} where ? is a group action on S. Note
e ? y = y for all y ∈ S hence e ? x = x and we find e ∈ Gx 6= ∅. Suppose a, b ∈ Gx and calculate:

(ab) ? x = a ? (b ? x) = a ? x = x

thus ab ∈ Gx. Consider a ∈ Gx note that as G is a group there exists a−1 for which aa−1 = e.
Remember a ? x = x as a ∈ Gx hence:

x = e ? x = (a−1a) ? x = a−1 ? (a ? x) = a−1 ? x

which shows a−1 fixes x thus a−1 ∈ Gx and we conclude Gx ≤ G by the two-step subgroup test. �

Theorem 2.10.2. If G is a group which acts on a set S then the orbits O(x) partition S. Moreover,
for a finite set,

|S| =
∑
i

|O(xi)|,

where one xi is selected for each orbit.

Proof: define x ∼ y if x = g ? y for some g ∈ G. We claim ∼ is an equivalence relation on S.
Notice, x = e ? x hence x ∼ x for each x ∈ S. If x ∼ y then x = g ? y for some g ∈ G hence
g−1 ? x = g−1 ? (g ? y) = y and we find y ∼ x. If x ∼ y and y ∼ z then there exist g, h ∈ G for
which x = g ? y and y = h ? z thus x = g ? (h ? z) = (gh) ? z whence x ∼ z. In summary, ∼ is
reflexive, symmetric and transitive. It follows the equivalence classes of ∼ partition S. Notice, the
equivalence class containing x is given by:

{y ∈ S | y ∼ x} = {y ∈ S | y = g ? x for some g ∈ G} = {g ? x | g ∈ G} = O(x).

Hence the orbits of the group action partition S. Counting gives us the formula for |S|. �

Theorem 2.10.3. If G is a group which acts on a set S and x ∈ S then the elements of the orbit
O(x) are in one-to-one correspondence with the left-cosets of Gx in G. Moreover, |O(x)| = [G : Gx]
which is to say the size of the orbit |O(x)| is the index of the stabilizer Gx in G.

Proof: Let x ∈ S and suppose G acts on S. Let G/Gx denote the family of Gx-cosets in G. Define
f : O(x)→ G/Gx as follows: for y ∈ O(x) there exists g ∈ G with y = g ? x we define f(y) = gGx.
To see f is well-defined note it is clearly into G/Gx. Suppose y = h ? x for some h ∈ G. Then
h ? x = g ? x and hence (h−1g) ? x = x which provides h−1g ∈ Gx and hence hGx = gGx thus f is
single-valued. To see that f is injective suppose f(y) = f(z) hence there exist h, g ∈ G for which
y = h ? x and z = g ? x where hGx = gGx. Thus h−1g ∈ Gx and (h−1g) ? x = x or h ? x = g ? x
hence y = z and we conclude f is injective. If gGx ∈ G/Gx then observe y = g ? x ∈ O(x) and
f(y) = gGx. Thus f is a bijection and we can use it to count: |O(x)| = |G/Gx| = [G : Gx]. �
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Corollary 2.10.4. Orbit Stabilizer Theorem: If a finite group G acts on a set S then the num-
ber of elements in any orbit O(x) must divide the order of the group. Moreover, |G| = |O(x)||Gx|
for each x ∈ S.

Proof: by Theorem 2.10.3 we know |O(x)| = |G/Gx| = [G : Gx]. But, for a finite group the
number of Gx-cosets is the order of the group G divided by the order of Gx: [G : Gx] = |G|/|Gx|.
Hence |G| = [G : Gx]|Gx| = |O(x)||Gx|. �

The orbit stabilizer theorem gives us a nice tool for a variety of counting problems.

Example 2.10.5. Consider S = {vo, v1, v2, v3} the vertices of a square. We have a natural action
of D4 acting on S. The following picture makes the discussion easiest to follow:

In cycle notation the rotations are (1), (vov1v2v3), (v0v2)(v1v3), (v0v3v2v1) whereas the reflections
are (v1v3), (v0v2), (v0v1)(v2v3), (v0v3)(v1v2). It is not hard to see which vertex is fixed or moved by
each element of D4. Observe,

O(v0) = {g ? v0 | g ∈ D4} = {v0, v1, v2, v3}

indeed, you could start with any vertex and find the same orbit. This makes the given action a
transitive action. Furthermore, observe:

Gv0 = {g ∈ D4 | g ? v0 = v0} = {(1), (v1v3)}

Note, |D4| = 8 = |O(v0)||Gvo |. In fact, we can do the same for any vertex. For example,

Gv1 = {(1), (v0v2)}, & O(v1) = {v0, v1, v2, v3}

Example 2.10.6. Think about a cube. There are six faces to a cube. If we think about the
symmetries of the cube, notice that the stabilizer of the face is given by four the rotations about the
center of the face. So, thinking of our set S as the set of faces we find the stabilizer of a particular
face x has |Gx| = 4. On the other hand, there is a symmetry of the square which moves any face
to another face hence the group action is transitive; |O(x)| = 6. It follows the group of symmetries
on the cube has order 24.

Following Example 2.9.2 we consider some rather special subgroups of the permutation group on
Nn. Begin with n = 6 to get warmed-up:
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Example 2.10.7. Consider S = {1, 2, 3, 4, 5, 6} and σ = (123)(56). The cyclic group 〈σ〉 =
{σk | k ∈ Z} ≤ S6 acts on S in the natural way. Observe,

O(1) = {1, 2, 3}, O(5) = {5, 6}, O(4) = {4}

As you can see the size of the orbits divide the order of G which is of course the order of σ =
lcm(2, 3) = 6. Furthemore, we see Theorem 2.10.2 in action:

|S| = 6 = |O(1)|+ |O(5)|+ |O(4)|

The example above naturally generalizes.

Example 2.10.8. Consider S = {1, 2, . . . , n} and σ ∈ Sn. Let G = 〈σ〉 act on S and note:

O(i) = {σk(i) | i ∈ Z}

If we know the disjoint cycle factorization of σ = β1β2 · · ·βt where βj = (ij1ij2 · · · ijrj ) for j =
1, . . . , t then i ∈ S is only moved by the particular βj which contains it. Moreover, the orbit is
simply the entries in βj listed: in the notation I chose,

O(ij1) = {ij1, ij2, . . . , ijrj}

for j = 1, 2, . . . , t. Here we know |G| = lcm(r1, r2, . . . , rt). The size of the orbits are just r1, r2, . . . , rt
and 1 for the numbers left out. Again, we see that the orbit sizes divide the order of the group in
action.

I recommend working on Supplemental Exercises for Gallian Chapters 5-8 such as: (page 169-171)

#1− 47.

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Problems for Lecture 19: (these are collected at the start of Lecture 21)

Problem 73: Let G be a group and let S be the set of all subgroups of G. If a ∈ G and H ≤ G
then define a?H = aHa−1. Show that ? forms a group action and describe the orbits
and stabilizers.

Problem 74: Let H be a proper subgroup of a group G and let S = G/H denote the set of left
cosets of H. Define g ? (xH) = (gx)H for each g, x ∈ G. Show ? forms a group action
and describe the orbits, stabilizers, and fixed subset of this action.

Problem 75: Let H,K be subgroups of G and let H act on the left cosets of K in the natural way;
h ? (gK) = (hg)K for each h ∈ H and g ∈ G. Show that |HK| = |H||K|

|H∩K| . Hint: study
the orbit of K under the given action

Problem 76: How many symmetries does a tetrahedron have? Prove your result in three ways by
considering the set of faces, edges or vertices of the regular tetrahedron. There are 4
faces, 6 edges and 4 vertices for this platonic solid.
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2.11 Lecture 20: Cauchy and Sylow theorems

In Example 2.10.8 we saw that the action of α ∈ 〈σ〉 ≤ Sn on Nn = {1, . . . , n} defined by α?x = α(x)
for x ∈ Nn gave orbits which directly related to the disjoint cycle factorization of σ. For example,
if σ = (1234)(56)(78) acts on N10 then orbits of the action of 〈σ〉 are just:

O(1) = {1, 2, 3, 4}, O(5) = {5, 6}, O(7) = {7, 8}, O(9) = {9}, O(10) = {10}.

The conjugation action of Sn on itself is also interesting. Let me point out a feature of cycle
calculation we have not yet appreciated in our study:

Example 2.11.1. Let us study conjugation of α = (12)(34) in S4. Conjugate by (123),

(123)α(123)−1 = (123)(12)(34)(321) = (14)(23)

(124)α(124)−1 = (124)(12)(34)(421) = (13)(24)

(23)α(23)−1 = (23)(12)(34)(23) = (13)(24)

(1234)α(1234)−1 = (1234)(12)(34)(4321) = (14)(23)

(12)α(12)−1 = (12)(12)(34)(12) = (12)(34)

In short, α is fixed under conjugation by any cycle which is in its own cycle decomposition whereas
conjugation by other permutations moves α to some other permutation in its conjugacy class. Notice
the cycle type is the same; we still have a product of two transpositions. Let β = (1234) then

(12)β(12)−1 = (12)(1234)(12) = (1342)

or γ = (123),
(124)γ(124)−1 = (124)(123)(421) = (1)(243) = (243)

Conjugation of β produces another 4-cycle and conjugation of γ produces another 3-cycle. You can
try other possible conjugations, the result will be the same. Conjugation preserves cycle-type.

We can generalize the observation of the example above. You could view the next example as an
informal definition of cycle-type.

Example 2.11.2. Let α = β1β2 · · ·βt be a disjoint cycle factorization of α ∈ Sn. If we conjugate
α by any σ ∈ Sn then the result is a permutation σασ−1 which has a disjoint cycle factorization
σασ−1 = γ1γ2 · · · γt where |βi| = |γi| for i = 1, 2, . . . , t. In other words, the conjugation of α by σ
produces another permutation with the same cycle-type. Furthermore, if σ is formed by the product
of some subset of the cycles β1, . . . , βt then σασ−1 = α.

Corollary 2.11.3. (to the orbit stabilizer theorem) Let G be a finite group and x ∈ G. The number
of conjugates to x is the index of the centralizer of x; |{gxg−1 | g ∈ G}| = [G : C(x)].

Proof: consider the action of G on itself by conjugation. Notice,

O(x) = {gxg−1 | g ∈ G} & Gx = {g ∈ G | gxg−1 = x} = {g ∈ G | gx = xg} = C(x).

The orbit stabilizer theorem provides |O(x)| = [G : Gx] hence |{gxg−1 | g ∈ G}| = [G : C(x)]. �
The notation {gxg−1 | g ∈ G} is a bit cumbersome. The following is a common notation to avoid
all that writing:
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Definition 2.11.4. The conjugacy class of x in a group G is denoted xG = {gxg−1 | g ∈ G}.
In the language just introduced, we find |xG| = [G : C(x)]. Since the index of a subgroup necessarily
divdes the order of a group we find an application of Corollary 2.11.3:

Corollary 2.11.5. The number of permutations in Sn with a particular cycle type must divide n!.

Proof: consider the group action of Sn on itself by conjugation. Observe the conjugacy classes
are formed by permutations of the same cycle type. Thus |σSn | is the number of permutations
with the same cycle-type as σ. Apply Corollary 2.11.3 to find |σSn | = [Sn : C(σ)] but we know
|C(σ)|[Sn : C(σ)] = |Sn| = n! and the Corollary follows. �

Example 2.11.6. Consider S4, we find 5 distinct cycle-types:

representative cycle σ |σS4 | = # of cycles with same type

(1) 1

(12) 6

(123) 8

(1234) 6

(12)(34) 3

Since the O(σ) = σS4 under the conjugation action and we know the orbits partition the set on
which the group acts (Theorem 2.10.2 ) we are not surprised to notice:

4! = 24 = 1 + 6 + 8 + 6 + 3.

I invite the reader to think through the analog of the Example above for S5. Here’s a hint:

120 = 5! = 1 + 10 + 20 + 30 + 24 + 20 + 15.

Theorem 2.11.7. If G is a finite group with order divisible by a prime p then G contains an
element of order p.

Proof: assume G is a finite group with order divisible by a prime p. Our proof will proceed
by induction on |G|. Note, for |G| = 1 the theorem is trivially true as 1 has no prime divisors.
Suppose the theorem is true for groups upto order n − 1 and consider |G| = n. If x ∈ G then
|xG| = [G : C(x)] where C(x) is the centralizer of x in G. If x /∈ Z(G) then xG has more than one
element22 hence

|C(x)| < |G|
If p | |C(x)| for some23 x /∈ Z(G) then by the inductive hypothesis C(x) ≤ G has an element
of order p and thus G has an element of order p. It remains to study the case p - C(x) for all
noncentral x. Recall we assume p | |G| and note

|G| = [G : C(x)]|C(x)|

thus by Euclid’s Lemma (as p - C(x)) it must be that p | [G : C(x)]. Since the conjugacy classes
partition G we have: (applying Theorem 2.10.2 to the action by conjugation on G)

|G| = |Z(G)|+
∑
i

[G : C(xi)]

where one xi is selected from each conjugacy class containing more than one element. To be clear,
the |Z(G)| counts the elements which fit into conjugacy classes which are mere singletons; x ∈ Z(G)
implies xG = {x}. Now, p | G and p | [G : C(xi)] for each i thus p | |Z(G)|. Claim24, an abelian

22think about why x ∈ Z(G) makes xG = {x}.
23we say such an x is non-central
24seems like a good bonus homework problem
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group whose order is divisible by p contains an element of order p. Since Z(G) is abelian and
p | Z(G) we conclude that Z(G) contains an element of order p hence G contains an element of
order p and we are done. �.

Definition 2.11.8. The class equation of a finite group G is:

|G| = |Z(G)|+
∑
i

[G : C(xi)]

where one xi is selected from each conjugacy class containing more than one element.

I recommend working on Supplemental Exercises for Gallian Chapters 5-8 such as: (page 169-171)

#1− 47.

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Remark 2.11.9. Notes currently missing statement of Sylow Theorems and some discussion here,
we did a bit more in Lecture, I’ll have to leave the notes a bit unfinished here for the time being.
10-30-16.

Problems for Lecture 20: (these are collected at the start of Test 2 Question Day)

Problem 77: Find the distinct cycle types for S5 and determine the number of each type. Make
a table to organize your results in similar fashion to the table given for S4. Explain
how your data is consistent with the class equation.

Problem 78: Prove: a finite abelian group whose order is divisible by a prime p has an element
of order p. Hint: the proof is by induction on the order of the group.

Problem 79: Solve [x]2 = [3]2 and [x]7 = [4]7 and [x]37 = [20]37 simultaneously. Here [x]n = x+nZ
denotes x ∈ Zn in our usual less cumbersome notation. This problem involves several
moduli so I invoke the clumsy notation as to reduce ambiguity.

Problem 80: Find the conjugacy classes for A4 and verify the class equation.
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2.12 Lecture 21: lattice theorem, finite simple groups

Remark 2.12.1. Notes currently missing statement of the second, third and lattice isomorphism
theorems and the overview of the classification of simple groups. I gave some handouts in class to
fill the gap here, unfortunately the notes will have to remain incomplete here for the time begin
10-30-16.

I recommend working on Supplemental Exercises for Gallian Chapters 5-8 such as: (page 169-171)

#1− 47.

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know.

Problems for Lecture 21: (these are collected at the start of Test 2 Question Day)

Problem 81: Prove: if A,B are subgroups of G and A ≤ NG(B) then AB ≤ G.

Problem 82: Prove the Third Isomorphism Theorem. In particular, suppose G is a group with
normal subgroups H and K where H ≤ K.

(a.) Prove K/H E G/H

(b.) Define φ : G/H → G/K by φ(gH) = gK for each gH ∈ G/H. Show φ is
well-defined and φ is a homomorphism with Ker(φ) = K/H

(c.) apply the first isomorphism theorem to the data you found in the last part to
argue that K/H is a normal subgroup of G/H and (G/H)/(K/H) ≈ G/K

Problem 83: Find the subgroup lattice for G = Z12. Apply the lattice isomorphism theorem to
find lattice diagrams for all possible factor groups of G.

Problem 84: Gallian number 51 from page 208.

2.13 Lecture 22: Boolean group, rank nullity theorem

Remark 2.13.1. There was no homework assigned in this Lecture which was given on 10-26-16.



Chapter 3

Introduction to Rings and Fields

The groups we have thus far studied are sometimes just half of a larger system. We don’t just have
addition or multiplication, no, we have both. The addition is commutative and the multiplication
is sometimes commutative. However, with matrices we know AB 6= BA. Furthermore, sometimes
there is some object which serves as the multplicative identity and sometimes there is no such ob-
ject. For example, even integers are closed under multiplication and addition in the natural sense,
yet, there is no number which serves as a multiplicative identity. The concept of a ring is given
here to collect nearly all the examples you have ever encountered which involve both an addition
and multiplication. By abstracting the concept of a ring we are able to prove common truths about
a myriad of examples by one sweeping proof.

However, the ring concept is more than just an efficiency of argument. We learn there are different
kinds of rings which merit our study; integral domains, euclidean domains, principal ideal domains,
unique factorization domains and fields. These are interconnected and there theory generalizes the
story we already know for prime factorization of integers. Formal power series ith coefficients in
a ring and the simple polynomials contained within them provide a canvas on which we can paint
much of the mathematics we hold dear. Highschool algebra is studied from the vantage of modern
algebra. We even learn how to invent new number systems where solutions exist to polynomial
equations which were before unsolvable.

Finally, this portion of the course gives the student another chance to assimilate concepts such as a
subring, coset, or the first isomorphism theorem. Nearly everything we did for groups has an
analog in the study of rings. Ideally this next exposure will help the main concepts of the course
finally ring true to every student.

Roughly, we cover Chapters 12-21 of Gallian’s 5-th edition in this Chapter.

117
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3.1 Lecture 23: rings and integral domains

As usual, we follow Gallian, this definition is taken from the beginning of Chapter 12. Gallian
mentions the term ring is due to Hilbert who introduced the term in 1897.

Definition 3.1.1. A ring R is a nonempty set with two binary operations known as addition
and multiplication deoted by + and juxtaposition respectively; addition has (a, b) 7→ a+ b whereas
multiplication has (a, b) 7→ ab. These operations satisfy:

(1.) a+ b = b+ a for all a, b ∈ R
(2.) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R
(3.) there exists 0 ∈ R (known as zero) for which a+ 0 = a for each a ∈ R.

(4.) for each a ∈ R there exists an additive inverse denoted −a for which a+ (−a) = 0.

(5.) (ab)c = a(bc) for all a, b, c ∈ R
(6.) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ R

In words, (1.) says addition commutes, (2.) says addition is associative, (3.) say an additive iden-
tity exists, (4.) says R is closed under additive inversion. Collectively, (1.)-(4.) and the fact that
+ : R×R→ R is a binary operation make (R,+) an Abelian group. Condition (5.) says multi-
plication of R is associative. The conditions comprising (6.) are known as the right-distributive
property a(b+ c) = ab+ ac and the left-distributive property (b+ c)a = ba+ ca.

We recognize (6.) as the main facts which power factoring in precollegiate algebra. Read one
direction (6.) gives you the pattern needed to factor out a, read the other way, (6.) tells us how to
multiply a across a sum b+ c. We need to set a few more terms:

Definition 3.1.2. Let R be a ring.

(1.) If ab = ba for all a, b ∈ R then R is a commutative ring. Otherwise, R is known
as a noncommutative ring.

(2.) If there exists 1 ∈ R for which a 1 = 1 a = a for each a ∈ R then we say R is a
ring with unity or we say R is unital with unity 1.

Most of the rings we study are commutative rings with unity. Some authors insist that the definition
of ring includes the existence of a multiplicative identity. For example, Rotman’s elementary
abstract text uses such a definition. Next, we generalize divisibility terminology: I’ll assume the
ring is commutative as I do not desire to invest energy studying left verses right factors. If you
wish to read about noncommutative ring theory then you should consult the classic text Rings and
Ideals by McCoy which develops ring theory in surprising generality.

Definition 3.1.3. Let R be a commutative ring.

(1.) Let a, b ∈ R. If there exists k ∈ R for which a = kb then we say a is a multiple
of b or equivalently that b divides a and we write b | a. When b | a we also may
state that b is a factor of a. If no k ∈ R exists for which a = kb then we write
b - a to express that b does not divide a.

(2.) If R is a unital ring and a ∈ R has b ∈ R for which ab = 1 then we write b = a−1

and say that a is a unit.

(3.) Suppose a, b ∈ R and a, b 6= 0. If ab = 0 then we say a and b are zero-divisors.

https://books.google.com/books/about/Rings_and_ideals.html?id=FHAGAQAAIAAJ
https://books.google.com/books/about/Rings_and_ideals.html?id=FHAGAQAAIAAJ
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You might worry the notation a−1 is ambiguous, I mean, what if there are two multiplicative
inverses to a? Fortunately, for the same reasons as we covered in Lecture 1:

Theorem 3.1.4. If R is a unital ring then the multiplicative identity is unique and each unit in
R has a unique multiplicative inverse.

Proof: see Theorems 1.1.12 and 1.1.10. �

It is convenient to use our usual notation for repeated addition or subtraction: for n ∈ N,

n · a = a+ a+ · · ·+ a︸ ︷︷ ︸
n−summands

& − n · a = n · (−a) = (−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
n−summands

.

We could define the operation above recursively, (n+1) ·a = n ·a+a for each n ∈ N and 0 ·a = 0. Of
course, in the case R = Z we have n ∈ Z and what is described above is merely the multiplication
of the ring.

Example 3.1.5. Z forms a ring with respect to the usual addition and multiplication.

Example 3.1.6. Zn forms a ring with respect to the usual modular addition and multiplication.

Example 3.1.7. Polynomials in x with integer coefficients are denoted Z[x]. Since the sum and
product of polynomials with integer coeffients is once more a polynomial with integer coefficients
the usual addition and multiplication of polynomials provide binary operations on Z[x].

Example 3.1.8. Let S be a set and let F(S,R) denote functions with domain S and range a
ring R. Add and multiply functions by the usual point-wise rules; (f + g)(x) = f(x) + g(x) and
(fg)(x) = f(x)g(x) for each x ∈ S. Because f(x), g(x) ∈ R we can show F(S,R) forms a ring where
the zero is the constant zero function. Moreover, if R is commutative then F(S,R) is commutative.
Likewise, if R is unital with 1 ∈ R then I(x) = 1 for each x ∈ S defines 1 ∈ F(S,R) as (If)(x) =
I(x)f(x) = 1f(x) = f(x) for each x ∈ S hence If = f for each f ∈ F(S,R). In invite the reader
to verify the rest of the ring properties for F(S,R) naturally follow from those given for R.

In an initial discussion of rings the example below would be out of place, but, given our discussion
thus far we should mention:

Example 3.1.9. Any field F is a ring with respect to the usual multiplication and addition in the
field. For example, F = Q,R,C or Zp where p is prime.

The following pair of examples give us a two interesting ways of building new rings from old.

Example 3.1.10. Let R be a ring then define Rn×n to be square matrices with entries from R. The
sum and product of such matrices are naturally defined by the usual formulas from linear algebra:

Example 3.1.11. Let R1, R2, . . . , Rk be a rings then define

R = R1 ×R2 × · · · ×Rk

with the i-th component’s addition and multiplication given by Ri for each i = 1, . . . , k. That is:

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk)

and
(x1, x2, . . . , xk)(y1, y2, . . . , yk) = (x1y1, x2y2, . . . , xkyk)

for each (x1, . . . , xk), (y1, . . . , yk) ∈ R1×· · ·×Rk. We say R is the direct product ring of R1, R2, . . . , Rk.
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Th wealth of examples above just scratches the surface of rings. In any event, the axioms of the
ring once verified for any of the examples above then immediately reward us with the properties
given below. The reasoning is simple; the properties below are those of rings, so, once you have a
ring you get the power contained within it. Of course this is Theorem 12.1 on page 231 of Gallian.
I often use this Theorem without explicit reference in the remainder of this work.

Theorem 3.1.12. Suppose a, b, c ∈ R where R is a ring. Then,

(1.) a0 = 0a = 0

(2.) a(−b) = (−a)b = −(ab)

(3.) (−a)(−b) = ab

(4.) a(b− c) = ab− ac and (b− c)a = ba− ca

(5.) if R is unital with unity 1 then (−1)a = −a and(−1)(−1) = 1.

Proof: to prove (1.) notice that by the definition of a ring,

0 + a0 = a0 = a(0 + 0) = a0 + a0 ⇒ a0 = 0.

where I used the cancellation property for the additive group (R,+) in the last implication. On
the other hand,

0 + 0a = 0a = (0 + 0)a = 0a+ 0a ⇒ 0a = 0.

To prove (2.), use (.1) with 0 = a+ (−a) hence

0 = 0b = [a+ (−a)]b = ab+ (−a)b

by distributive law and hence −(ab) = (−a)b. The proof that a(−b) = −(ab) is similar. I leave (3.)
and (4.) to the reader. Consider R with unity 1 and a ∈ R, note −1 ∈ R and 1 + (−1) = 0 by the
fact (R,+) is an additive group. Notice, by (1.),

0a = 0 ⇒ [1 + (−1)]a = 0 ⇒ (1)a+ (−1)a = 0 ⇒ a+ (−1)a = 0

hence −a + a + (−1)a = −a + 0 or 0 + (−1)a = −a which gives (−1)a = −a. The proof that
(−1)(−1) = 1 is left to the reader. �

I will not say it’s an easy exercise. Rather, it is an exercise which could be easy. As a general rule on
these sort of proofs, if you spend longer than 10 minutes, then you should stop and do something dif-
ferent for a while before trying again. They’re not that hard, but, you have to choose the right path.

You might be wondering, if we study subgroups, is there also such a thing as a subring. Indeed!

Definition 3.1.13. Let R be a ring. A subset S ⊆ R is a subring of R if it is a ring with respect
to the addition and multiplication of R.

Naturally, there is a generalization of the one-step-subgroup test Theorem 1.2.16:

Theorem 3.1.14. A nonempty subset S of a ring R is a subring if S is closed under subtraction
and multiplication. That is, if for each a, b ∈ S we have a− b, ab ∈ S then S is a subring of R.
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Proof: suppose S ⊆ R and S 6= ∅. Also, assume if a, b ∈ S then a − b, ab ∈ S. Observe the
one-step-subgroup test provides (S,+) is a subgroup of (R,+). Moreover, multiplication restricted
to S is a binary operation since know (a, b) 7→ ab is a function on S×S ⊆ R×R and ab ∈ S is given
hence multiplication on S is a binary operation. Furthermore, the multiplication on S satisfies the
ring axioms since it the multiplication on R satisfies the ring axioms. For example, for a, b, c ∈ S
we note a, b, c ∈ R as well hence

a(b+ c) = ab+ ac (b+ c)a = ba+ ca.

I leave the remaining details to the reader, they should very unsurprising. �

Notice, there is nothing about unity in the subring test. Only zero is certain to be in a subring.

Example 3.1.15. Consider R = Z and S = 2Z. Notice if 2x, 2y ∈ S then 2x− 2y = 2(x− y) ∈ S
and (2x)(2y) = 2(2xy) ∈ S. Since 2 ∈ 2Z = S we note S 6= ∅ hence by subring test S is a subring
of R. Notice, R is a unital ring whereas S is not unital. It is also nice to notice 2Z + 1 does not
form a subring of the integers as 0 /∈ 2Z + 1.

I think the next example is helpful to remove a likely misconception.

Example 3.1.16. Consider R = Z6 and S = 2Z6 = {0, 2, 4}. For essentially the same reasons
as the last example, S is a subring of R. Of course, in this case you could make a pair of Cayley
tables to check out the way addition and multiplication work for S. Let’s look at the tables for fun:

+ 0 2 4

0 0 2 4
2 2 4 0
4 4 0 2

&

0 2 4

0 0 0 0
2 0 4 2
4 0 2 4

Notice, 4s = s4 = s for each s ∈ S. In other words, 4 is the multiplicative identity in the subring
S. In contrast, 1r = r1 = r for each r ∈ Z6.

Remark 3.1.17. The unity of R need not be the unity of a subring S of R. In constrast, R and
all its subrings share the same zero. Multiplication is a more subtle in rings than addition.

I leave the proof of these claims to the reader:

Example 3.1.18. If R = Zn then S = mZn forms a subring.

Example 3.1.19. If R = C then S = Z[i] = {a + bi | a, b ∈ Z} forms the ring of Gaussian
Integers. We can show S is a subring of the complex numbers.

What follows is an abstraction of Example 12 in Gallian on page 233-234.

Example 3.1.20. Following Example 3.1.8 let S be a nonempty set and R a ring. Define R′ =
F(S,R) to be the set of R-valued functions of S. Pick so ∈ S and define:

S = {f ∈ R′ | f(so) = 0}

you can show S is a subring of R′.

Example 3.1.21. Following Example 3.1.10 we study R′ = Rn×n where R is a given ring. Define
S to be the set of diagonal matrices in R′. You can show the difference and product of diagonal
matrices in R′ is once more in R′ thus S is a subring of R′.
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Of course, we could give many more examples, but this will suffice for our current needs. I should
mention the subring lattice diagram on page 234 is pretty. I will try to draw that in class. This
brings us to Chapter 13.

Definition 3.1.22. Let R be a commutative ring with unity. We say R is an integral domain if
R has no zero-divisors.

Recall, zero-divisors are nonzero elements in R which multiply to produce 0. The term integral
domain is largely due to the fact that Z is an integral domain. It is helpful to contrast zero divisors
and units. In fact, I should make a definition before we go further, I leave the proof that U(R)
forms a group to your homework.

Definition 3.1.23. Let R be a commutative ring with unity. The set of all units in R is denoted
U(R). In particular, U(R) = {r ∈ R | there exists s ∈ R with sr = 1}.

Example 3.1.24. Z forms a ring with respect to the usual addition and multiplication. Z has no
zero-divisors as ab = 0 implies either a or b is zero. Furthermore, 1 is the multiplicative identity and
the equation ab = 1 has only the solutions a = b = 1 or a = b = −1. You could say U(Z) = {−1, 1}.
In other words, the group of units in Z is just the two-element multiplicative group {−1, 1}.

Example 3.1.25. Zn forms a ring with respect to the usual modular addition and multiplication.
There may be zero divisors in the case that n is not prime. For example, in Z6 we have 3(2) = 0
with 2, 3 6= 0. On the other hand, Z5 = {0, 1, 2, 3, 4} has no zero divisors. In Zn you can prove
that each element is either 0, a unit, or a zero-divisor. We have already spent considerable effort
to study U(n). Now we recognize U(n) is the set of units in Zn.

Example 3.1.26. Recall, polynomials in x with integer coefficients are denoted Z[x]. If f(x)g(x) =
0 the either f(x) = 0 or g(x) = 0 hence Z[x] has no zero-divisors and we observe Z[x] is an
integral domain. The polynomial I(x) = 1 serves as the multiplicative identity and you can see
f(x)g(x) = I(x) = 1 forces us to set f(x) = g(x) = ±1. In short U(Z[x]) = {−1, 1}.

Example 3.1.27. The ring Z[
√

2] = {a+ b
√

2 | a, b ∈ Z} forms an integral domain.

Example 3.1.28. The ring Zp where p is prime forms an integral domain. But, Zn where n = mk
for m, k 6= 1 does not form an integral domain since mk = 0 in Zn yet m, k 6= 0.

Example 3.1.29. If R is a ring then it is not generally the case that Rn×n forms an integral
domain. We can have the product of nonzero matrices form a zero matrix. The group of units in
Rn×n was defined in an earlier lecture,

U(Rn×n) = GL(n,R) = {A ∈ Rn×n | det(A) ∈ U(R)}

Example 3.1.30. Z× Z is not an integral domain since (a, 0)(0, b) = (0, 0) for any a, b ∈ Z. The
ring Z× Z has many zero-divisors. This is not special to Z, generally direct product rings are not
integral domains.

An important property of integral domains is cancellation.

Theorem 3.1.31. Let a, b and c belong to an integral domain. If a 6= 0 and ab = ac then b = c.
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Proof: suppose a, b, c are elements of an integral domain and a 6= 0. If ab = ac then ab − ac = 0
hence a(b− c) = 0 hence b− c = 0 as a 6= 0 and there are no zero-divisors in an integral domain. �

Notice a need not be a unit for cancellation to hold. We may not be able to multiply ab =
ac by a−1, yet, the cancellation still is valid for a 6= 0 in an integral domain. For example, if
(x+3)(x2 +1) = (x+3)f(x) then the fact that Z[x] is an integral domain allows us to immediately
conclude f(x) = x2 + 1. Of course, if you pay close attention to what I have carefully shown about
polynomials thus far, you should realize I haven’t earned this claim in all honesty. We will later
spend some time developing polynomials with some care. Until then, I will continue to make vague
claims about what you know from past classes.

Definition 3.1.32. A commutative ring with unity for which every nonzero element is a unit is
called a field.

It is easy to see a field is an integral domain. Suppose ab = 0 for a 6= 0. In a field, a−1 exists hence
a−1ab = a−10 which yields b = 0.

Theorem 3.1.33. Each finite integral domain is a field.

Proof: suppose D is a finite integral domain with unity 1 ∈ D. Let a ∈ D with a 6= 0. If a = 1
then a−1 = 1 since 1(1) = 1. Otherwise, a 6= 1 and we notice the list a, a2, a3, . . . must eventually
loop back to itself since D is finite. In other words, finiteness of D suggests the existence of i, j
for which ai = aj . Thus, ai−j = 1 which provides ai−j−1a = 1 hence a−1 = ai−j−1. Thus, every
nonzero element of D is a unit and we conclude D is a field. �

The proof above is charmingly simple. I suppose we already know the following from our work on
U(n), but, it’s nice to see it as part of the natural flow of ideas here:

Corollary 3.1.34. If p is prime then Zp is a field.

Proof: in Zp if ab = 0 then ab = pk for some k ∈ Z hence by Euclid’s Lemma either p divides a
or b which implies either a = 0 or b = 0 in Zp. Thus Zp is a finite integral domain and is hence a
field by Theorem 3.1.33. �

I’ll follow Gallian page 243 where he introduces Z3[i] the Gaussian integers modulo 3 and Q[
√

2]
the rational numbers with the square root of two adjoined.

Example 3.1.35. Define Z3[i] = {a+ bi | a, b ∈ Z3} hence

Z3[i] = {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}

To see this is an integral domain, suppose

(x+ yi)(a+ bi) = xa− yb+ i(xb+ ya) = 0

hence xa− yb = 0 and xb+ ya = 0. Let’s look at these linear equations as:[
x −y
y x

] [
a
b

]
=

[
0
0

]
⇒ 1

x2 + y2

[
x y
−y x

] [
x −y
y x

] [
a
b

]
=

[
a
b

]
= 0.

where x+ yi 6= 0 implies x2 + y2 6= 0. In short, if x+ yi 6= 0 and (x+ yi)(a+ bi) = 0 then we are
forced to conclude a + bi = 0, hence no zero-divisors in Z3[i] exist and thus Z3[i] is a field with 9
elements. The multiplication table for the 8 nonzero elements is given on page 243 of Gallian.
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Example 3.1.36. Define Q[
√

2] = {a+ b
√

2 | a, b ∈ Q}. This is not a finite integral domain! Yet,

(a+ b
√

2)(x+ y
√

2) = ax+ 2by + (ay + bx)
√

2

and of course (a+ b
√

2) + (x+ y
√

2) = (a+ x) + (b+ y)
√

2 hence Q[
√

2] is closed under addition
and multiplication. Furthermore, if a + b

√
2 6= 0 then we can solve (a + b

√
2)(x + y

√
2) = 1 in R

and derive

x+ y
√

2 =
1

a+ b
√

2
=

a− b
√

2

(a+ b
√

2)(a− b
√

2)
=
a− b

√
2

a2 − 2b2

hence (a+b
√

2)−1 = a
a2−2b2

− b
a2−2b2

√
2 and as a2−2b2 6= 0 for a, b ∈ Q we note a

a2−2b2
,− b

a2−2b2
∈ Q.

Therefore, we’ve shown every nonzero element in Q[
√

2] is a unit. The field Q[
√

2] is larger than
Q but, still much smaller than R which contains many more irrational numbers.

Definition 3.1.37. The characteristic of a ring R is the smallest positive integer for which
nx = 0 for all x ∈ R. We denote the character of R by char(R) = n. If no such integer exists then
we say char(R) = 0.

In practice, we usually can judge the character of a ring by how its identity behaves.

Theorem 3.1.38. If R is a ring with unity 1 then R has characteristic zero if 1 has infinite order.
If 1 has additive order n then char(R) = n.

Proof: If 1 has infinite additive order then there is no positive n for which n · 1 = 0 and hence R
has characteristic zero. Otherwise, suppose |1| = n in the additive sense. That is n · 1 = 0 and n
is the least positive integer for which we obtain 0. Calculate,

n · x = x+ x+ · · ·+ x︸ ︷︷ ︸
n−summands

= 1x+ 1x+ · · ·+ 1x = (1 + 1 + · · ·+ 1)x = (n · 1)x = 0x = 0.

therefore char(R) = n. �

Theorem 3.1.39. The characteristic of an integral domain is either 0 or a prime.

Proof: notice if 1 has infinite order than char(R) = 0 and we’re done. So, suppose n · 1 = 0 where
|1| = n in the additive sense. Let us suppose n = st for some 1 ≤ s, t ≤ n. Calculate,

0 = n · 1 = (st) · 1 = (s · 1)(t · 1)

hence either s · 1 = 0 or t · 1 = 0 thus either s = n and t = 1 or s = 1 and t = n since |1| = n.
We’ve determined factors of n are 1 and n hence n is prime. �

Please study the table on page 246. It is a great summary of examples with attention to unity,
commutativity, integral domain, field and characteristic.
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I recommend working on Exercises for Gallian Chapter 12 such as: (page 234-237)

#1− 49 (odds).

and Exercises for Gallian Chapter 13 such as: (page 246-249)

#1− 59 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 23: (these are collected at the start of Lecture 25)

Problem 85: Gallian number 19 from page 235.

Problem 86: Gallian number 22 from page 236.

Problem 87: Gallian number 23 from page 236.

Problem 88: Gallian number 40 from page 237.

Problem 89: Gallian number 43 from page 237.

Problem 90: Gallian number 48 from page 237.
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3.2 Lecture 24: ideals and factor rings

As usual, we follow Gallian, we’re in Chapter 14 now. In this lecture we study the concept of
quotients of rings. What follows you might expect us to call a normal subring, but, that is not
a commonly used term. It happens that group theory is the oddball here. As you study other
abstract algebraic systems, it is typically the case that subobjects which allow natural quotients
are called ideals. This terminology goes back to Kummer in the late 1800’s who introduced ideal
numbers to repair the failure of certain algebraic numbers. It was left to Dedekind to clarify and
make rigorous the somewhat fuzzy work of Kummer1

Definition 3.2.1. A subring A of a ring R is called an ideal if for every r ∈ R and every a ∈ A
both ar ∈ A and ra ∈ A. We say A is a proper ideal if A 6= R.

Later in this Lecture we will see that this definition allows us well-defined operations on R/A.
Notice, in the case R is commutative ar = ra so we only have to check one thing. This closure of
A by elements inside and outside A has been called uber-closure by some.

Theorem 3.2.2. A nonempty subset A of a ring R is an ideal of R if

(i.) if a, b ∈ A then a− b ∈ A
(ii.) if a ∈ A and r ∈ R then ar, ra ∈ A

Proof: observe A ⊆ R hence (i.) and (ii.) provide a, b ∈ A implies a − b, ab ∈ A hence A is a
subring by Theorem 3.1.14. Furthermore, (ii.) provides that A is an ideal. �

Example 3.2.3. Observe for R a ring we always have R and {0} as ideals since conditions (i.)
and (ii.) of Theorem 3.2.2 are easily verified.

Example 3.2.4. Consider R = Z then nZ forms an ideal for any n ∈ N. Suppose a, b ∈ nZ then
a = na′ and b = nb′ for some a′, b′ ∈ Z and

a− b = na′ − nb′ = n(a′ − b′) ∈ nZ

and for x ∈ Z,

ax = xa = na′x ∈ nZ

Thus, noting 0 = n(0) ∈ nZ 6= ∅, nZ is an ideal of Z by Theorem 3.2.2.

Gallian hid this definition within Example 3 on page 254, but, I know this needs further emphasis.
The concept of a set generated by an element in a ring is a central idea for many future lectures.
It is important to carefully understand this concept as soon as possible.

Definition 3.2.5. Let R be a commutive ring with unity and let a ∈ R then we denote the principal
ideal generated by a by 〈a〉 = {ar | r ∈ R} = aR = Ra

Example 3.2.6. Let n ∈ N then 〈n〉 = {nz | z ∈ Z} = nZ. We have shown this is an ideal of Z.

Theorem 3.2.7. Let R be a commutative ring with unity and a ∈ R then 〈a〉 is an ideal of R.

1this is what I gather from reading Stillwell’s Elements of Number Theory where there is much discussion of the
ideal numbers and algebraic integers.
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Proof: if x, y ∈ 〈a〉 then x = ax′ and y = ay′ for some x′, y′ ∈ R. Thus, x − y = ax′ − ay′ =
a(x′ − y′) ∈ 〈a〉 as x′ − y′ ∈ R. Also, for r ∈ R,

xr = ax′r ∈ 〈a〉

since x′, r ∈ R implies x′r ∈ R. Finally, a(0) = 0 ∈ 〈a〉 6= ∅ thus 〈a〉 forms an ideal of R by Theorem
3.2.2. �

You should appreciate this gives us a very nice way to prove certain ideals are ideal. This is very
much the analog of the span is a subspace theorem in linear algebra.

Example 3.2.8. Consider the ring of polynomials with real coefficients: R[x]. The ideal 〈x〉 is the
set of polynomials with zero constant term.

Example 3.2.9. If we consider R[x, y] to be bivariate polynomials then 〈x〉 would be the ideal
of polynomials which have zero constant term and no terms with just y. For example, f(x, y) =
y + y3 + x2y2 ∈ R[x, y], but, f(x, y) /∈ 〈xy〉. Anything in 〈xy〉 has the form xyg(x, y) for some
g(x, y) ∈ R[x, y].

This definition is given inside Example 5 on page 254 of Gallian.

Definition 3.2.10. Let R be a commutive ring with unity and let a1, a2, . . . , an ∈ R then we denote
the ideal generated by a1, a2, . . . , an by

〈a1, a2, . . . , an〉 = {a1r1 + a2r2 + · · ·+ anrn | r1, r2, . . . , rn ∈ R}.

It is not wrong to call 〈a1, a2, . . . , an〉 an ideal:

Theorem 3.2.11. If R is a commutive unital ring and a1, . . . , an ∈ R then 〈a1, . . . , an〉 is an ideal.

Proof: I leave this to the reader as an exercise. �

The notation 〈a1, . . . , an〉 allows concise description of many interesting ideals.

Example 3.2.12. Consider Z[x] which is a commutative, unital ring. The ideal 〈x, 2〉 is the
set of polynomials with even constant term. To see this, note: f(x) ∈ 〈x, 2〉 means there exist
h(x), j(x) ∈ Z[x] for which

f(x) = xh(x) + 2j(x)

If h(x) = ho + h1x+ · · ·+ hkx
k and j(x) = jo + j1x+ · · ·+ jlx

l then

f(x) = x(ho + h1x+ · · ·+ hkx
k) + 2(jo + j1x+ · · ·+ jlx

l) = 2jo + (ho + 2j1)x+ · · ·

Example 3.2.13. Observe F(R,R) = {f : R → R | f a function} forms a ring by the pointwise
addition and multiplication of functions. Since the product and difference of differentiable func-
tions on R is once more differentiable it follows the set of differentiable functions forms a subring.
However, it is not the case that the product of any function in F(R,R) with a differentiable func-
tion is differentiable. For example, f(x) = 1 has f ′(x) = 0 and g(x) = |x| defines a function yet
f(x)g(x) = |x| is not everywhere differentiable. In short, the set of differentiable functions is a
subring, but, it is not an ideal of F(R,R).
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Theorem 3.2.14. Let R be a ring and A a subring of R then define for set of cosets R/A =
{r +A | r ∈ R} the following possible operations

(s+A) + (t+A) = (s+ t) +A & (s+A)(t+A) = st+A

for each s, t ∈ R. Then R/A forms a ring with respect to the above operations if and only if A is
an ideal.

Proof: suppose A is an ideal of R then A is a normal subgroup of (R.+) thus (R/A,+) forms
a factor group with respect to addition. It remains to show R/A has a multiplication which is
well-defined. Suppose there exist s, s′, t, t′ ∈ R for which s+A = s′+A and t+A = t′+A. Hence,
t− t′ = a ∈ A and s− s′ = b ∈ A. Consider,

st = (b+ s′)(a+ t′) = ba+ s′a+ bt′ + s′t′

now, a, b ∈ A gives ba ∈ A as A is a subring. Moreover, using the closure of A under multiplication
on the left or right by ring elements we find s′a ∈ A and bt′ ∈ A. Since A is a subring it follows
that ba+ s′a+ bt′ ∈ A thus st− s′t′ ∈ A and we find st+ A = s′t′ + A which shows the proposed
multiplication on R/A is well-defined. Verification of the associative and distributive properties are
straightforward and rest squarely on the respective properties of R: for r, s, t ∈ R,

(r +A)((s+A)(t+A)) = (r +A)(st+A) = r(st) +A = (rs)t+A = ((r +A)(s+A))(t+A).

and distributivity is similarly shown: the key step is where I use corresponding distributivity of R

(r +A)((s+A) + (t+A)) = (r +A)((s+ t) +A)

= r(s+ t) +A

= rs+ rt+A

= (rs+A) + (rt+A)

= (r +A)(s+A) + (r +A)(t+A)

The proof of left distributivity is similar and I omit it. Thus R/A forms a ring known as the Factor
Ring of R by A.

Conversely, suppose A is not an ideal. If A is not a subring then R/A is not an additive group with
respect to addition of cosets. So, suppose A is subring, but, not an ideal. We have the additive
structure on R/A, but there exist r ∈ A and a ∈ A for which ra or ar are not in A. Take the case
ar /∈ A. Observe, a+A = 0 +A and r +A are elements of R/A and yet (a+A)(r +A) = ar +A
and (0 + A)(r + A) = 0r + A = A are at odds since ar + A 6= A since we have assumed ar /∈ A.
Similar argument can be offered for the case ra /∈ A. In any event, the multiplication on R/A is
spoiled when A is not an ideal. �

Example 3.2.15. Consider R = Z and A = 3Z then R/A = {3Z, 1 + 3Z, 2 + 3Z}. We have:

+ 3Z 1 + 3Z 2 + 3Z
3Z 3Z 1 + 3Z 2 + 3Z

1 + 3Z 1 + 3Z 2 + 3Z 3Z
2 + 3Z 2 + 3Z 3Z 1 + 3Z

&

· 3Z 1 + 3Z 2 + 3Z
3Z 3Z 3Z 3Z

1 + 3Z 3Z 1 + 3Z 2 + 3Z
2 + 3Z 3Z 2 + 3Z 1 + 3Z

You can compare Z/3Z to the Cayley tables for Z3. In fact, these are the same object as we have
defined them. Our usual notation is 3Z = [0]3 and 1 + 3Z = [1]3 or simply 0, 1 ∈ Z3 as is oft
convenient exposition. Notation aside, Z/nZ is a quotient ring of Z by the principal ideal nZ.
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Example 3.2.16. Let R = Z2×2 then consider A = 2Z2×2 which is the set of 2× 2 matrices with
even entries. If X,Y ∈ A then X = 2X ′ and Y = 2Y ′ where X ′, Y ′ ∈ R thus,

X − Y = 2X ′ − 2Y ′ = 2(X ′ − Y ′) ∈ A

and for Z ∈ R,
XZ = 2X ′Z ∈ A

as 0 ∈ A 6= ∅ we find A is an ideal of R. Gallian claims that R/A is a ring with 16 elements. Think
about the uniqueness of representatives, the following are distinct since they differ by a matrix which
is not in A:

R/A = {A,
[

1 0
0 0

]
+A,

[
0 1
0 0

]
+A,

[
1 1
0 0

]
+A, · · · ,

[
1 1
1 0

]
+A,

[
1 1
1 1

]
+A}

We have 4 entries with 2 choices each so 24 = 16 distinct cosets.

Example 3.2.17. Consider the Gaussian integers Z[i] and the principal ideal 〈2 − i〉. Let us try
to understand the structure of cosets a+ bi+ 〈2− i〉. The key here is that 2 + 〈2− i〉 = i+ 〈2− i〉
since 2 − i ∈ 〈2 − i〉. So, for simplifying representatives we have the very simple rule i = 2.
Thus, a + ib and a + 2b are representatives of the same coset in Z[i]/〈2 − i〉. That said, I think
a geometric approach is most clear for this example. Consider Z[i] as the lattice Z ⊕ iZ in the
complex plane. Observe 〈2 − i〉 has elements 0, 2 − i,−1(2 − i), i(2 − i),−i(2 − i) which simplify
to 0, 2− i, i− 2, 1 + 2i,−1− 2i. Any representative a+ ib can be shifted by some sum of the basic
vectors 2− i, i− 2, 1 + 2i,−1− 2i as to obtain a different representative of the same coset. It turns
out there are five such cosets. I used color coding to indicate these cosets

(a.) blue is 〈2− i〉,
(b.) green is 1 + 〈2− i〉,
(c.) red is 2 + 〈2− i〉,
(d.) yellow is 2 + i+ 〈2− i〉 = −1 + 〈2− i〉
(e.) pink is 1 + i+ 〈2− i〉 = 3 + 〈2− i〉

In summary, Z[i]/〈2− i〉 = {[0], [1], [2], [3], [4]} where we introduce the notation [x] = x+ 〈2− i〉.
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My way of understanding the quotient of Z[i] is rather different than that given by Gallian. Of
course, I can’t draw such pictures for most quotient rings. Often we have to calculate directly to
understand the structure of the cosets. But, when our ring is a subring of C it is at least possible
to do some direct visualization.

Example 3.2.18. Let R[x] denote polynomials with real coefficients and consider the principal
ideal 〈x2 + 1〉:

〈x2 + 1〉 = {(x2 + 1)f(x) | f(x) ∈ R[x]}

Since x2 + 〈x2 + 1〉 = x2 + 1− 1 + 〈x2 + 1〉 = −1 + 〈x2 + 1〉 we find x2 is congruent to −1 modulo
x2 + 1. It follows we can reduce all the higher powers of a given representative and just keep the
linear terms. For example, using the notation f(x) + 〈x2 + 1〉 = [f(x)],

[1 + 2x+ x4 + x2] = [1 + 2x+ (x2)2 − 1] = [2x+ (−1)2] = [1 + 2x].

More generally, if f(x) ∈ R[x] then we may use the division algorithm for polynomials to find q(x)
and r(x) such that

f(x) = q(x)(x2 + 1) + r(x)

and r(x) = ax+ b for some a, b ∈ R. Thus,

f(x) + 〈x2 + 1〉 = ax+ b+ 〈x2 + 1〉

as q(x)(x2 + 1) ∈ 〈x2 + 1〉 hence we absorb it into the ideal. In summary,

R[x]/〈x2 + 1〉 = {a+ bx+ 〈x2 + 1〉 | a, b ∈ R}

Observe,
[a+ bx][c+ dx] = [ac+ adx+ bcx+ bdx2] = [ac− bd+ (bd+ bc)x].

Compare this to the multiplication of a + bi with c + di. Basically, x functions as i in this con-
struction. This is one of the many ways to construct the complex number system, it was given by
Cauchy in 1847.

The definition below is very important. We need to remember and absorb these terms for the
remainder of our study of rings.

Definition 3.2.19. Let R be a commutative ring and A a proper ideal of R,

(i.) A is a prime ideal of R if a, b ∈ R and ab ∈ A implies a ∈ A or b ∈ A.

(ii.) A is a maximal ideal of R if any ideal B of R with A ⊆ B ⊆ R has B = A or B = R.

The terminology of prime naturally ties into the concept of prime we know from our work in Z.
Recall that Euclid’s Lemma states that if a prime p | ab then p | a or p | b.

Example 3.2.20. Let p be a prime and consider the ideal pZ. If a, b ∈ Z and ab ∈ pZ then ab = pk
for some k ∈ Z hence p | ab and thus p | a or p | b by Euclid’s Lemma. If p | a then a = pn for
some n ∈ Z and hence a ∈ pZ. Likewise, p | b then b ∈ pZ. In summary, if p is prime then pZ is a
prime ideal.

I suppose I should mention, there is another way of definining a prime ideal which helps make
the correspondence between containment of ideals and divisibility of integers a bit more clear. See
Lecture 22 of my Math 307 notes. You don’t have to study that just yet, I mostly mention this to
remind my Math 307 students how we treated prime ideals in terms of containment. I like Gallian’s
definition, pragmatically it is simple enough to use.

http://www.supermath.info/ma307lecture22s2015.pdf
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Example 3.2.21. Consider Z36 the ideals 〈2〉 and 〈3〉 are maximal ideals in Z36. On the other
hand, we also note 〈12〉 and 〈18〉 are maximal ideals in 〈6〉. You can see the maximality in the
lattice diagram below:

You might notice Z36/2Z36 ≈ Z2 and Z36/3Z36 ≈ Z3 are both fields. What about 〈6〉/〈12〉 ? I’ll be
explicit,

〈6〉 = {0, 6, 12, 18, 24, 30} & 〈12〉 = {0, 12, 24}
So, you can see,

〈6〉/〈12〉 = {〈12〉, 6 + 〈12〉} ≈ Z2

Showing 〈x2 + 1〉 is maximal in R[x] requires some careful calculation:

Example 3.2.22. Let A be an ideal of R[x] for which 〈x2 + 1〉 ⊆ A ⊆ R[x] and A 6= 〈x2 + 1〉. In
other words, suppose 〈x2 +1〉 is properly contained in A. There exists f(x) ∈ A and f(x) /∈ 〈x2 +1〉.
By the division of polynomials, there exists q(x), r(x) ∈ R[x] for which

f(x) = q(x)(x2 + 1) + r(x)

and r(x) 6= 0 and r(x) = ax+b. Note r(x) 6= 0 indicates at least one of a, b is nonzero. Furthermore,

ax+ b = f(x)− q(x)(x2 + 1) ∈ A

since f(x) ∈ A and q(x)(x2 + 1) ∈ 〈x2 + 1〉 ⊆ A and A is an ideal. Moreover,

a2x2 − b2 = (ax+ b)(ax− b) ∈ A

since the produce of ax+ b ∈ A and ax− b ∈ R[x] must be in A again as A is an ideal. As 〈x2 + 1〉
is contained in A we also may note a2(x2 + 1) ∈ A. Therefore,

0 6= a2 + b2 = (a2x2 + a2)− (a2x2 − b2) ∈ A

But, 1 = 1
a2+b2

(a2 + b2) ∈ A hence 〈1〉 ⊂ A and 〈1〉 = {(1)f(x) | f(x) ∈ R[x]} = R[x]. Therefore,

〈x2 + 1〉 is a maximal ideal.

I followed Gallian on page 258-259 for the most part in the example above. Likewise, the next
example is Gallian’s Example 16 on page 259.

Example 3.2.23. In Z2[x] the ideal 〈x2+1〉 is not a prime ideal as (x+1)2 = x2+2x+1 = x2+1 ∈
〈x2 + 1〉 yet x+ 1 /∈ 〈x2 + 1〉. To elaborate on the noncontainment claim, suppose x+ 1 ∈ 〈x2 + 1〉
for some f(x) ∈ Z2[x] we need

x+ 1 = f(x)(x2 + 1)

why can we not solve the above for appropriate f(x) ∈ Z2[x]?
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Theorem 3.2.24. Let R be a commutative ring with unity and let A be an ideal of R. The quotient
ring R/A is an integral domain if and only if A is prime.

Proof: suppose R is a unital commutative ring with ideal A in R. Suppose R/A is an integral
domain. Let a, b ∈ R and ab ∈ A. Note,

A = ab+A = (a+A)(b+A)

thus a + A = A or b + A = A as R/A has no zero divisors (here A serves as zero in R/A). Hence
a ∈ A or b ∈ A.

Conversely, suppose A is a prime ideal. We need to show R/A has no zero divisors. Suppose
(a + A)(b + A) = A then ab + A = A hence ab ∈ A. But, A is prime hence a ∈ A or b ∈ A thus
a+A = A or b+A = A. Furthermore, denoting the unity of R as 1 we note that (1 +A)(r+A) =
1r+A = r+A for each r+A ∈ R/A. Also, calculate (r+A)(s+A) = rs+A = sr+A = (s+A)(r+A)
hence R/A is a commutative ring. Therefore, R/A is an integral domain. �

Theorem 3.2.25. Let R be a commutative ring with unity and let A be an ideal of R. The quotient
ring R/A is a field if and only if A is maximal.

Proof: suppose R is a commutative ring with unity 1 ∈ R and suppose A is an ideal of R. Assume
R/A is a field. Consider an ideal B of R for which A ⊆ B ⊆ R with A 6= B. It follows there
exists x ∈ B for which x /∈ A hence x + A 6= A which means x + A is a nonzero element in
R/A. Since R/A is a field and 1 + A serves as the unity we have the existence of y + A for which
(x+ A)(y + A) = 1 + A. Thus, xy + A = 1 + A and we find 1− xy ∈ A. However, x ∈ B implies
xy ∈ B as B is an ideal. Since A ⊆ B we find 1− xy ∈ B. Thus,

xy + (1− xy) = 1 ∈ B

But, x = 1(x) ∈ B for each x ∈ R hence B = R and we find A is a maximal ideal.

Conversely, suppose A is a maximal ideal. Suppose x ∈ R yet x /∈ A. In other words, we consider
a nonzero element x+A in R/A. Construct,

B = {xr + a | r ∈ R, a ∈ A}

I’ll leave it to the reader to verify that B is indeed an ideal of R. Moreover, if a ∈ A then
note a = x(0) + a ∈ B thus A ⊆ B. By maximality of A we have B = R. Therefore, 1 ∈ B
and we find there exists r ∈ R, a ∈ A for which xr + a = 1 or 1 − xr = a ∈ A. Observe,
(x+A)(r+A) = xr+A = 1+A. Thus x+A has multiplicative inverse r+A in R/A. Furthermore,
we note that (1+A)(r+A) = 1r+A = r+A for each r+A ∈ R/A. Also, calculate (r+A)(s+A) =
rs+A = sr+A = (s+A)(r+A) hence R/A is a commutative ring with unity where every nonzero
element has a multiplicative inverse. That is, R/A forms a field. �

Example 3.2.26. Since a field is an integral domain it follows that a maximal ideal must be a
prime ideal in view of Theorems 3.2.24 and 3.2.25. On the other hand, we can exhibit an ideal
which is prime, but, not maximal. Consider 〈x〉 in Z[x] if f(x), g(x) ∈ Z[x] and f(x)g(x) ∈ 〈x〉
then f(x)g(x) = xh(x) for some h(x) ∈ Z[x]. It follows that x must be a factor in f(x) or g(x) thus
f(x) ∈ 〈x〉 or g(x) ∈ 〈x〉 and we find 〈x〉 is a prime ideal of Z[x]. Consider, 〈x, 2〉 contains 〈x〉 since
〈x, 2〉 = {xf(x) + 2g(x) | f(x), g(x) ∈ Z[x]} so to obtain 〈x〉 simply select elements with g(x) = 0.
On the other hand, 2 ∈ 〈x, 2〉 and 2 /∈ 〈x〉. Also, 1 ∈ Z[x] and 1 /∈ 〈2, x〉 hence 〈x〉 ⊂ 〈2, x〉 ⊂ Z[x].
This proves 〈x〉 is not maximal.
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I recommend working on Exercises for Gallian Chapter 14 such as: (page 260-263)

#1− 57 (odds).

and supplementary exercises for Chapters 12-14 such as: (page 267-269)

#1− 47 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 24: (these are collected at the start of Lecture 26)

Problem 91: Gallian number 16 from page 247.

Problem 92: Gallian number 24 from page 247.

Problem 93: Gallian number 35 from page 247.

Problem 94: Gallian number 34 from page 262.

Problem 95: Gallian number 45 from page 262.

Problem 96: Prove Theorem 3.2.11.
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3.3 Lecture 25: ring homomorphism

We saw the concept of homomorphism allowed us connect groups which seemed the same in terms
of their group structure. In the same way, the concept of ring homomorphism gives us a precise
method to describe when two rings share similar structure. Or, in the case of isomorphism, the
rings in question are, from the viewpoint of algebraic structure, the same. Much of this section
directly echoes our previous work on groups, as such I will omit some proofs. In contrast, the field
of quotients construction at the end of this Lecture is fascinating and new.

Definition 3.3.1. A ring homomorphism φ from a ring R to a ring S is a function φ : R→ S
which preserves the ring operations:

(i.) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R,

(ii.) φ(ab) = φ(a)φ(b) for all a, b ∈ R.

If φ is a bijective ring homomorphism then φ is a ring isomorphism and we write R ≈ S

The meaning of R ≈ S should be clear from the context. We use ≈ to indicate an isomorphism of
groups or rings as appropriate2.

Example 3.3.2. Consider φ : Z → Zn defined by φ(x) = [x]n. Observe, φ is a function since the
domain is Z so there is no ambiguity in x ∈ Z3.

φ(x+ y) = [x+ y]n = [x]n + [y]n = φ(x) + φ(y) & φ(xy) = [xy]n = [x]n[y]n = φ(x)φ(y)

for all x, y ∈ Z. Thus Z and Zn are homomorphic rings under the ring homomorphism φ. Inciden-
tally, this is the natural homomorphism which also call the coset map since Zn is the factor
ring of Z by nZ and [x]n = x+ nZ, so we could write φ(x) = x+ nZ.

Example 3.3.3. The map φ(z) = z∗ is a ring isomorphism from C to C with respect to the usual
complex arithmetic where I intend the complex conjugate given by (x+ iy)∗ = x− iy for x, y ∈ R.
You can check:

(zw)∗ = z∗w∗ & (z + w)∗ = z∗ + w∗

thus φ is a ring homomorphism. In fact, φ : C→ C is an automorphism of C since φ−1 = φ as
(z∗)∗ = z for each z ∈ C. You can verify, φ2 = Id thus φ is an automorphism of order 2.

My next example is an deeper version of Gallian’s Example 3 on page 271.

Example 3.3.4. The evaluation map is an important homomorphism which connects a ring R
with polynomials R[x]. Pick a ∈ R and define φa(f(x)) = f(a) for each f(x) ∈ R[x]. Observe,

φa((f + g)(x)) = (f + g)(a) = f(a) + g(a) = φa(f(x)) + φa(g(x))

and

φa((fg)(x)) = (fg)(a) = f(a)g(a) = φa(f(x))φa(g(x))

thus φa : R[x]→ R is a ring homomorphism.

2currently we have no notation for homomorphism of groups or rings, I was toying with idea of changing ≈ to u
but, it was denied by the students... maybe next year

3in contrast, g([x]n) = x is rather disfunctional
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Gallian’s Examples 4,5,6,7,8 and 9 on page 271-272 are interesting. I will cover some of those in
class.

Theorem 3.3.5. Let φ : R → S be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and B an ideal of S

(i.) for any r ∈ R and n ∈ N, φ(nr) = nφ(r) and φ(rn) = (φ(r))n,

(ii.) φ(A) is a subring of S

(iii.) if A is an ideal and φ(R) = S then φ(A) is an ideal of S

(iv.) φ−1(B) is an ideal of R

(v.) if R is commutative then φ(R) is commutative

(vi.) if R has unity 1 and S 6= {0} and φ is a surjection then φ(1) is the unity of S

(vii.) φ is an isomorphism iff φ is surjective and Ker(φ) = {r ∈ R | φ(r) = 0} = {0}.
(viii.) If φ : R→ S is a ring isomorphism of then φ−1 : S → R is a ring isomorphism.

Proof: similar to those given for groups. Main difference, for the multiplicative properties we
cannot use the existence of inverses. However, if you study our proofs for the corresponding group
claims then you’ll see we can adopt those proofs with little modification. I will leave these proofs
as exercises for the reader. �

Notice the additive kernel determines injectivity of the ring homomorphism. This is not surprising
as (R,+) enjoys the structure of an abelian group so the injectivity from trivial kernel is precisely
our group theoretic theorem.

Theorem 3.3.6. Let φ : R → S be a ring homomorphism from a ring R to a ring S. Then
Ker(φ) = {r ∈ R | φ(r) = 0} is an ideal of R.

Proof: suppose φ : R → S is a ring homomorphism. Suppose a, b ∈ Ker(φ) then φ(a) = 0 and
φ(b) = 0 consequently,

φ(a− b) = φ(a)− φ(b) = 0− 0 = 0,

and for r ∈ R,

φ(ra) = φ(r)φ(a) = φ(r)0 = 0 & φ(ar) = φ(a)φ(r) = 0φ(r) = 0.

Thus a − b ∈ Ker(φ) and ar, ra ∈ Ker(φ) for all a, b ∈ Ker(φ) and r ∈ R. We find Ker(φ) is an
ideal via Theorem 3.2.2. �

The first isomorphism theorem is also available for rings:

Theorem 3.3.7. Let φ : R → S be a ring homomorphism. Then the mapping from R/Ker(φ) to
φ(R) given by r + Ker(φ) 7→ φ(r) is a ring isomorphism; R/Ker(φ) ≈ φ(R).

Proof: exercise for the reader. �

The next theorem is also available for groups, but, I don’t think I emphasized it much if at all this
semester: I follow Gallian as usual, this is his Theorem 15.4 on page 274.

Theorem 3.3.8. Every ideal of a ring R is the kernel of a ring homomorphism of R. In particular,
an ideal A is the kernel of the mapping r 7→ r +A from R to R/A.
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Proof: if A is an ideal of R then the quotient ring R/A is well-defined and we construct π : R →
R/A by π(r) = r +A. Observe,

π(r + s) = r + s+A = (r +A) + (s+A) = π(r) + π(s)

and
π(rs) = rs+A = (r +A)(s+A) = π(r)π(s)

for each r, s ∈ R. Morover, Ker(π) = A hence A is the kernel of a ring homomorphism. �

Example 3.3.9. Consider φ : Z[x] → Z defined by φ(f(x)) = f(0). Since φ is a surjective
ring homomorphism with Ker(φ) = 〈x〉 we have by the first isomorphism theorem Z[x]/〈x〉 ≈ Z.
However, we know Z is an integral domain hence by Theorem 3.2.24 we find 〈x〉 is a prime ideal
of Z[x]. Indeed, by Theorem 3.2.25 we also see 〈x〉 is not maximal as Z is not a field.

Theorem 3.3.10. If R is a ring with unity 1 then the mapping φ : Z→ R defined by φ(n) = n · 1
is a ring homomorphism.

Proof: recall n · 1 is a notation for n-fold additions of 1 for n ∈ N or k-fold additions of −1 if
k = −n ∈ N. The proof is given on page 274-275 of Gallian. Essentially, this affirms that:

(m+ n) · 1 = m · 1 + n · 1 & (m · 1)(n · 1) = (mn) · 1 �

Corollary 3.3.11. If R is a ring with unity 1 and Char(R) = n > 0 then R contains a subring
which is isomorphic to Zn. If Char(R) = 0 then R contains a subring which is isomorphic to Z.

Proof: suppose R is unital. Construct

S = {k · 1 | k ∈ Z}

in view of from Theorem 3.3.10 we note φ(k) = k · 1 is a homomorphism of Z and R and by
construction φ(R) = S. Suppose Char(R) = n, then Ker(φ) = {k ∈ Z | k · 1 = 0} = nZ. Hence, by
the first isomorphism theorem, Z/Ker(φ) ≈ φ(R) which gives Z/nZ ≈ S. If R has characteristic
zero then S ≈ Z/〈0〉 ≈ Z. �

Corollary 3.3.12. For any positive integer m, the mapping φ : Z→ Zm defined by φ(x) = [x]m is
a ring homomorphism.

Proof: note [x]m = [1 + 1 + · · · + 1]m = x · [1]m hence φ(x) = [x]m is a mapping with the same
form as that given in Theorem 3.3.10. �

The calculation in the Corollary above, the main point is that [x]m = x · [1]m. We needed to make
this same calculational observation in several past problems. For example, it is the heart of why
homomorphisms from Zn to Zk have the form [x]n 7→ [mx]k where k | mn (Problem 72).

Corollary 3.3.13. (Steinitz, 1910): If F is a field of characteristic p then F contains a subfield
which is isomorphic to Zp. If F is a field of characteristic 0, then F contains a subfield isomorphic
to the rational numbers.

Proof: if F is a field of characteristic p then as a field is also a ring by Corollary 3.3.11. Thus F
contains a subring isomorphic to Zp. If F has characteristic 0 then F has a subring S isomorphic
to Z and we can construct a copy of Q from S as follows:

SQ = {ab−1 | a, b ∈ S with b 6= 0} �
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Definition 3.3.14. Given a field F the subfield of F which is contained in all other subfields of F
is called the prime subfield of F.

We can argue from Steinitz Theorem that the prime subfield of F is either Q or Zp. Any field of
characteristic zero has Q as its smallest subfield. Any field of prime p characteristic has Zp as its
smallest subfield.

Theorem 3.3.15. Let D be an integral domain. Then, there exists a field F that contains a subring
isomorphic to D.

Proof: an explicit and beautiful construction, see page 277-278 of Gallian. I may change the
notation a bit. The notation which Gallian uses is the notation we wish to use in eventuality, but,
to begin we should divorce our thinking from the familar so we don’t assume more than we ought
from the notation.

Let D be an integral domain with 1 the unity in D. Let S = {(a, b) | a, b ∈ D, b 6= 0}. Define
(a, b) ∼ (c, d) if4 ad = bc. We prove ∼ forms an equivalence relation on S:

(i.) let (a, b) ∈ S then (a, b) ∼ (a, b) since ab = ba ( D is a commutative ring )

(ii.) if (a, b) ∼ (c, d) then ad = bc hence cb = da thus (c, d) ∼ (a, b).

(iii.) if (a, b) ∼ (c, d) and (c, d) ∼ (e, f) then ad = bc and cf = de. Consider, by
associativity of multiplication and the known data on a, b, c, d, e, f ,

(ad)f = (bc)f = b(cf) = b(de)

Thus (af)d = (be)d where (c, d) ∈ S hence d 6= 0 and by the cancellation property
of integral domains we find af = be hence (a, b) ∼ (e, f)

Therefore, ∼ is a reflexive, symmetric and transitive relation on S. Denote the equivalence class
containing (a, b) by [a, b] = {(c, d) | (c, d) ∼ (a, b)}. We claim that S/ ∼ the set of equivalence classes
of S under ∼ forms a field with respect to the following operations of addition and multiplication:

[a, b] + [c, d] = [ad+ bc, bd] & [a, b][c, d] = [ac, bd].

We must show these operations are well-defined since we used a representative to define the rule
for an equivalence class. Suppose (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) hence ab′ = ba′ and cd′ = dc′.
Observe that

[ad+ bc, bd] = [a′d′ + b′c′, b′d′] if and only if (ad+ bc)b′d′ = bd(a′d′ + b′c′).

Thus consider:

(ad+ bc)b′d′ = (ab′)(dd′) + (cd′)(bb′) = (ba′)(dd′) + (dc′)(bb′) = bd(a′d′ + b′c′).

Therefore addition on S/ ∼ is well-defined. Next, observe that

[ac, bd] = [a′c′, b′d′] if and only if (ac)(b′d′) = (bd)(a′c′)

Consider then,
(ac)(b′d′) = (ab′)(cd′) = (ba′)(dc′) = (bd)(a′c′)

4yes, intuitively, we want (a, b) to model the fraction a/b whatever that means... surely a/b = c/d gives ad = bc
hence this definition
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Therefore, multiplication on S/ ∼ is well-defined. It remains to verify addition and multiplica-
tion satisfy the field axioms. I’ll begin by noting the operations are commutative since D is a
commutative ring:

[a, b] + [c, d] = [ad+ bc, bd] = [cb+ da, db] = [c, d] + [a, b]

likewise,

[a, b][c, d] = [ac, bd] = [ca, db] = [c, d][a, b].

Let x ∈ D be nonzero, and [a, b] ∈ S/ ∼. Note:

[a, b] + [0, x] = [ax+ b(0), bx] = [ax, bx] = [a, b]

as (ax, bx) ∼ (a, b) is easy to verify (remember x 6= 0). We find [0, x] serves as the additive identity
of S/ ∼. Next, consider [1, 1] and [a, b] ∈ S/ ∼,

[a, b][1, 1] = [a(1), b(1)] = [a, b]

hence [1, 1] is the unity of S/ ∼. Multiplicative inverse is easy [a, b] 6= 0 has a, b 6= 0 hence [b, a] is
in S/ ∼ and

[a, b][b, a] = [ab, ba] = [1, 1]

as (ab, ba) ∼ (1, 1) is easy to verify. Associativity,

[a, b] +
(

[c, d] + [e, f ]
)

= [a, b] + [cf + de, df ] = [a(df) + (cf + de)b, bdf ]

and (
[a, b] + [c, d]

)
+ [e, f ] = [ad+ bc, bd] + [e, f ] = [(ad+ bc)f + e(bd), bdf ]

Thus addition is associative. I leave it to the reader to prove associativity of multiplication as
well as the needed distributive properties linking addition and mulitplication. In summary, we
have shown S/ ∼ is a field. It remains to explain how it contains a subring which is isomorphic
to D. You should not be surprised when I tell you that φ : D → S/ ∼ defines an injective ring
homomorphism if we set φ(x) = [x, 1]. Notice, φ(x) = [x, 1] = 0 implies x = 0 hence Ker(φ) = {0}.
Moreover,

φ(x+ y) = [x+ y, 1] = [x(1) + 1(y), 1(1)] = [x, 1] + [y, 1] = φ(x) + φ(y)

and

φ(xy) = [xy, 1] = [xy, 1(1)] = [x, 1][y, 1] = φ(x)φ(y)

for all x, y ∈ D. Thus D/{0} ≈≈ φ(D) by the first isomorphism theorem of rings and hence
D ≈ φ(D). �

Definition 3.3.16. The field F constructed from an integral domain D as in the proof above is
called the field of quotients of D. We use the notation a/b or a

b for the equivalence class [a, b].
We have shown,

F =

{
a

b
| a, b ∈ D, b 6= 0

}
is a field where we define

a

b
+
c

d
=
ad+ bc

bd

a

b
· c
d

=
ac

bd
.
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You can trace back through the proof of the field of quotients construction to see we have proved
all the usual properties of rational numbers:

0

a
= 0,

a

b
· b
a

= 1,
ax

bx
=
a

b
.

So, on the one hand, this proof we went over just now proves that Q exists if we are given Z. On
the other hand, it allows us to construct abstract fields which play the same role for a given integral
domain as does Q for Z. Personally, I view this construction and the clarity it can bring to what
rational numbers are as a high point of abstract algebra. Is 1/2 and 3/6 the same number? I say
emphatically yes. We have shown 1/2 = 3/6 because the rigorous definition of Q says a/b = c/d
only if ad = bc and surely we can agree 1(6) = 2(3). Now, does a given rational number have many
different fractions which represent the same number? Yes. We also can agree about that. The
pair (1, 2) 6= (3, 6). In any event, we should keep in mind, equivalence classes are always with us
whether we understand them or not. You might read this post by Paul Garrett.

Example 3.3.17. If D = Z[x] then the field of quotients for D is the set {f(x)/g(x) | f(x), g(x) ∈
Z[x], g(x) 6= 0}

Example 3.3.18. If D = F[x] then the field of quotients for D is the set {f(x)/g(x) | f(x), g(x) ∈
F[x], g(x) 6= 0} = F(x) the rational functions over F. For F = R this is just the usual rational
functions.

Example 3.3.19. The notation Zp[x] is polynomials with Zp-coefficients. In contrast, Zp(x) =
{f(x)/g(x) | f(x), g(x) ∈ Zp[x], g(x) 6= 0}. This gives an example of an infinite field with charac-
teristic p.

Outside this conversation, I might be tempted to agree that fields with finite characteristic are
finite fields. This is clearly false by our last example !

I recommend working on Exercises for Gallian Chapter 15 such as: (page 260-263)

#1− 57 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 25: (these are collected at the start of Lecture 27)

Problem 97: Gallian number 11 from page 261.

Problem 98: Gallian number 28 from page 261.

Problem 99: Gallian number 29 from page 261.

Problem 100: Gallian number 34 from page 262.

Problem 101: Gallian number 43 from page 262.

Problem 102: Gallian number 47 from page 262.

http://matheducators.stackexchange.com/a/1215/128
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3.4 Lecture 26: polynomials in an indeterminant

It seems to me something is missing here in Gallian and I need to add a bit of material from Rotman
(and many other texts) to build up the foundations of polynomials over a ring.

We use the phrase indeterminant form in early calculus to capture the idea of a limit whose
form does not indicate its eventual convergence or divergence. The term indeterminant here is
given mainly to divorce the concept of a polynomial function from a polynomial expression.
This much I should say, when x is an indeterminant this means x is not a variable. We do not
have in mind some bucket of things which we can pour into x as our imagination warrants. We
wish instead to think of x as a sort of place-holder. Of course, x and x2 are different. Moreover,
1, x, x2, x3, . . . are distinct. I could go on about the idea here, but, the best way to be clear is to
give the actual definition. Before we define polynomials we first define formal power series5.

Definition 3.4.1. Suppose R is a commutative ring, then a formal power series over R is a
function σ : N ∪ {0} → R. Write σ(j) = sj for j ∈ N ∪ {0} and we use the sequential notation:

σ = (s0, s1, . . . , sj , . . . )

where we call sj ∈ R the coefficients6 of the formal power series.

So, what is a polynomial?

Definition 3.4.2. A formal power series σ = (so, s1, . . . , sj , . . . ) over a commutative ring R is
called a polynomial over R if there is some integer m ≥ 0 with sj = 0 for all j > m; that is σ =
(s0, s1, . . . , sm, 0, 0, . . . ). Furthermore, the zero polynomial is σ = (0, 0, . . . ). If σ = (s0, s1, . . . )
is a nonzero polynomial and n ∈ N is the smallest integer for which sj = 0 for all j > n then we
say deg(σ) = n and sn is the leading coefficient.

We are using sequences to build polynomial expressions. Our next step is to define addition and
multiplication of such sequences:

Definition 3.4.3. Denote the set of polynomials with coefficients in R by R[x]. If σ, τ ∈ R[x] then

σ + τ = (s0 + t0, s1 + t1, . . . , sj + tj , . . . )

where σ = (sj) and τ = (tj). Moreover,

στ = (s0t0, sot1 + s1t0, s0t2 + s1t1 + s2t0, . . . ),

where to be precise στ = (a0, a1, . . . , ak, . . . ) and ak =
∑

i+j=k sitj =
∑k

i=0 sitk−i.

To be careful, we should explain why this definition is reasonable. Let me outline the argument:

(1.) deg(σ + τ) ≤ max(deg(σ),deg(τ)). It follows that the number of nonzero entries
in σ + τ is finite. Hence σ + τ is a polynomial.

(2.) either στ = 0 or deg(στ) ≤ deg(σ)deg(τ). Therefore the product of two polyno-
mials is once more a polynomial.

5These are known as formal power series because there is no expectation of convergence. For example,∑∞
j=0 sjx

j = s0 + s1x+ s2x
2 + · · · is a formal power series. But, I’m getting a bit ahead of the story here.

6Rotman, page 236 of First Course in Abstract Algebra shares that the term coefficient means acting together
to some single end, here the coefficients together form the formal power series.
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Next, we should show R[x] forms a commutative ring with respect to the addition and multiplication
just defined. Consider,

(s0, s1, . . . , sn, 0, . . . ) + (0, 0, . . . ) = (s0 + 0, s1 + 0, . . . , sn + 0, 0 + 0, . . . ) = (s0, s1, . . . , sn, 0, . . . )

hence 0 = (0, 0, . . . ). Moreover, setting n = max(deg(σ),deg(σ)),

σ + τ = (s0 + t0, s1 + t1, . . . , sn + tn, 0, . . . ) = (t0 + s0, t1 + s1, . . . , tn + sn, 0, . . . ) = τ + σ

hence addition is commutative. Clearly, σ = (sj) has additive inverse −σ = (−sj). Addition of
sequences is addition of functions from N∪{0} and we know that is associative. It remains to prove
multiplication is associative and distributive. I leave those to the reader. Let me explain how x
comes into the picture. We need to assume R is unital for our convenience at this point.

Definition 3.4.4. Let R be a commutative ring with unity 1 then in the polynomials R[x] we define
x = (0, 1, 0, . . . ).

We finally learn why the notation R[x] is warranted. Also, it should be fairly clear we cannot make
x a variable in this context. Is (0, 1, 0, . . . ) a variable ?

Theorem 3.4.5. Let R be a commutative unital ring and σ ∈ R[x] with σ = (sj) then σ =
∞∑
j=0

~sjx
j

where we define ~r = (r, 0, . . . ) for each r ∈ R.

Proof: first, we note a property of the multiplication, if ~c = (c, 0, 0, . . . ) and τ = (t0, t1, . . . , tn, 0 . . . )
then ~cτ = (ct0, ct1, . . . , ctn, 0, . . . ). Second, notice x2 = xx is calculated by:

x2 = (0, 1, 0, . . . )(0, 1, 0, . . . ) = (0, 0, 1, 0, . . . )

since α = (0, 1, 0, . . . ) = x and β = (0, 1, 0, . . . ) = x has α = (ai) and β = (bj) with ai = bi = 0 for
i 6= 1 hence:

αβ = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . ) = (0, 0, 1, 0, . . . ).

Furthermore, if we suppose inductively for some n ∈ N, xn = en+1 where (ei)j = δij defines the
sequence which is everywhere zero except in the i-th entry where we find 1. Then, xxn = en+2 by
the definition of the multiplication, only the (n + 2) − th entry is nontrivial since x has x1 = 1
whereas (xn)n+1 = 1 and all other entries are zero. Hence inductively xn = en+1 for all n ∈ N. We
also define x0 = ~1 and x1 = x where we may note x0x = ~1x = x as we should expect. Now that we
have the structure of x and powers of x sorted out we can produce the main result. Observe, we
can write a polynomial as a sum of mostly zero sequences: σ with deg(σ) = n,

σ = (s0, s1, . . . , sn, . . . , 0)

= (s0, 0, . . . ) + (0, s1, 0, . . . ) + · · ·+ (0, . . . , 0, sn, 0, . . . )

= ~s0(1, 0, . . . ) + ~s1(0, 1, 0, . . . ) + · · ·+ ~snen+1

= ~s0x
0 + ~s1x+ · · ·+ ~snx

n

=

∞∑
j=0

~sjx
j

where we threw in a few zeros in the last step. �



142 CHAPTER 3. INTRODUCTION TO RINGS AND FIELDS

At this point, we tire of the notation ~sj . It is customary to simply write sj in place of ~sj . With
this notation, a typical polynomial in R[x] can be expressed as:

σ = s0 + s1x+ s2x
2 + · · ·+ snx

n

where s0, s1, . . . , sn ∈ R and deg(σ) = n. I hope you appreciate how removed this is from our
standard viewpoint in previous math courses. Notice this is merely notation to overlay sequences
with finitely many nonzero entries. In any event, what we should take with us going forward is that
R[x] behaves precisely as we have assumed thus far in this course. The construction I’ve outlined
merely shows you how we can construct indeterminants and expressions without use of functions
on R. At this point we return to Gallian and follow his presentation going forward from Theorem
16.1 on page 286. Gallian has a concrete example worth including from page 284:

Example 3.4.6. The polynomials f(x) = x3+2x and g(x) = x5+2x are distinct in Z3[x]. However,
if we consider f, g as functions on Z3 notice

f(1) = 13 + 2(1) = 1 + 2 = 0, & g(1) = 15 + 2(1) = 1 + 2 = 0

f(2) = 23 + 2(2) = 8 + 4 = 0, & g(2) = 25 + 2(2) = 32 + 4 = 0

f(3) = 33 + 2(3) = 0, & g(1) = 35 + 2(3) = 0

Thus, as polynomial functions on Z3, f = g.

I should also mention, Example 3.3.4 is a bit more interesting with our new view of R[x]. In fact,
when I write φa(f(x)) = f(a) we mean to define the value f(a) as if f was a function of R. Very
sneaky.

Definition 3.4.7. Let R be a commutative unital ring. Define the evaluation map for a ∈ R by:

φa(s0 + s1x+ · · ·+ snx
n) = s0 + s1a+ · · ·+ sna

n.

for each s0 + s1x+ · · · snxn ∈ R[x].

Pragmatically, it doesn’t matter for many applications if we think of R[x] as polynomial functions,
but, algebraically, we take the viewpoint R[x] is the set of polynomials in indeterminant x. If we
wish to obtain the corresponding function then we simply make use of the evaluation map (in fact,
φa : R[x]→ R is a ring homomorphism).

Theorem 3.4.8. If D is an integral domain then D[x] is an integral domain.

Proof: suppose f(x), g(x) ∈ D[x] are nonzero polynomials f(x) = anx
n + · · · + a0 and g(x) =

bmx
m + · · ·+ b0 where an, bm are the leading coefficients of f(x), g(x) respective. Observe,

f(x)g(x) = anbmx
m+n + · · ·+ a0b0.

Note an, bm 6= 0 in integral domain D hence anbm 6= 0 and we find f(x)g(x) 6= 0. Therefore, there
are no zero divisors in D[x]. Furthermore, D[x] is a commutative ring with unity f(x) = 1 hence
D[x] is an integral domain. �

The proof of the following is really not much removed from standard highschool algebra.

Theorem 3.4.9. Let F be a field and f(x), g(x) ∈ F [x] with g(x) 6= 0. Then there exist unique
q(x), r(x) ∈ F [x] such that f(x) = g(x)q(x) + r(x) and either r(x) = 0 or deg(r(x)) < deg(g(x)).
We call q(x) the quotient and r(x) the remainder in the division of f(x) by g(x).
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Proof: see page 286-287 of Gallian. If you don’t understand it when you read it, try getting out
a piece of paper and writing it out. It’s not too hard to follow. �

Corollary 3.4.10. Let F be a field and a ∈ F and f(x) ∈ F [x]. Then f(a) is the remainder in
the division of f(x) by x− a.

Proof: by the division algorithm, there exists g(x), r(x) for which f(x) = (x−a)g(x) + r(x) where
either r(x) = 0 or deg(r(x)) < deg(x−a) = 1. It follows r(x) = r ∈ R. Moreover, by the evaluation
homomorphism at a we find,

φa(f(x)) = f(a) = (a− a)g(a) + r = r ⇒ r = f(a). �

Definition 3.4.11. Let F be a field. Let f(x) ∈ F [x], we say c ∈ F is a zero of f(x) if φc(f(x)) =
f(c) = 0. If (x− c)k is a factor of f(x) and (x− c)k+1 is not a factor of f(x) then we say c is a
zero with multiplicity k.

There are pretty connections between the algebra of calculus and the existence of repeated zeros.
But, we save that for another time.

Corollary 3.4.12. Let F be a field and a ∈ F and f(x) ∈ F [x]. Then a is a zero of f(x) if and
only if x− a is a factor of f(x).

Proof: left to reader. �

Example 3.4.13. An interesting counterpoint to the Corollary below is found in the polynomials
with coefficients in Z6. The polynomial f(x) = x2 + 3x + 2 has four zeros. Gallian mentions
Lagrange proved the Corollary below for Zp where p is prime. Another interesting point, Z6[x] is
also not an integral domain; (2x+2)(3x2 +3) = 0 yet 2x+2, 3x2 +3 6= 0. The study of zero divisors
in D[x] for D which is not integral is a nice topic to investigate. Perhaps we’ll look at that further
in a future lecture.

Corollary 3.4.14. A polynomial of degree n over a field F has at most n zeros counting multiplicity.

Proof: the proof is by induction on degree. If f(x) ∈ F [x] has deg(f(x)) = 0 then f(x) = c 6= 0
hence there are zero zeroes for f(x). Suppose inductively that each polynomial up to degree n− 1
has at most n − 1 zeros. Consider f(x) with degree n. Suppose a is a zero with multiplicity k
then f(x) = (x − a)kq(x) for some q(x) with degree n − k. If f(x) has no additional zeros then
the Corollary holds since f(x) has less than n zeros. Otherwise, f(b) = 0 for some a 6= b hence
f(b) = (b− a)kq(b) = 0 and as (b− a)k 6= 0 and F is an integral domain since it’s a field it follows
q(b) = 0. But, the deg(q(x)) = n− k < n hence by the inductive hypothesis q(x) has at most n− k
zeros counting multiplicity thus f(x) = (x − a)kq(x) has at most k + n − k = n zeros counting
multiplicity. �

The argument above is great for you who are fans of formal induction, but, I am also fond of the
simple argument, n is the degree of f(x). Notice each zero a1 generates a factor (x − a1) in the
factorization of f(x). Suppose there were n+ 1 zeros (possibly duplicate). Then

f(x) = (x− a1)(x− a2) · · · (x− an+1)g(x)

for some polynomial g(x) and degree of f(x) is at least n+1. This contradicts deg(f(x)) = n hence
there cannot be more than n-zeros. I’m not usually a fan of contradiction, but, this argument
resonates for me.
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Example 3.4.15. Consider f(x) = xn − 1 ∈ C[x]. Notice ω = exp(2πi/n) has ωn = 1 but ωk 6= 1
for k = 1, 2, . . . , n− 1. It follows that 1, ω, ω2, . . . , ωn−1 are all solutions of ωn = 1. Furthermore,

f(x) = xn − 1 = (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1)

The number ω = exp(2πi/n) is called the primitive n-th root of unity in C. To be pedantic, we
really should say ωn is the primitive n-th root. Then ω2 = −1, ω3 = cos(2π/3) + i sin(2π/3) and
ω4 = i etc. For example,

f(x) = x4 − 1 = (x2 + 1)(x2 − 1) = (x+ i)(x− i)(x− 1)(x+ 1)

where ω4 = i and ω2
4 = −1 and ω3

4 = −i and ω4
4 = 1.

We have studied principal ideals a bit in previous lectures, we now give a name to a ring where
every ideal is principal.

Definition 3.4.16. A principal ideal domain or PID is an integral domain R in which every
ideal has the form 〈a〉 = {ra | r ∈ R} for some a ∈ R.

Many of our examples are PIDs, some are not. This much we can say:

Theorem 3.4.17. If F is a field then F [x] is a principal ideal domain.

Proof: we know F [x] is an integral domain. Suppose I is an ideal in F [x]. If I = 0 then I = 〈0〉 is
principal. If I 6= 0 then the degree of polynomials in I is bounded below hence there must be an poly-
nomial of least degree by the well-ordering-principal. Let g(x) be a polynomial of least degree in I.
If f(x) ∈ I then note the division algorithm provides q(x) with f(x) = g(x)q(x)+r(x) with r(x) = 0
or deg(r(x)) < deg(g(x)). But, g(x) is of minimal degree in I and r(x) = f(x)−g(x)q(x) ∈ I hence
r(x) = 0. Thus f(x) = g(x)q(x) and f(x) ∈ 〈g(x)〉 and hence I ⊆ 〈g(x)〉. Conversely, it is easy to
see 〈g(x)〉 ⊆ I thus I = 〈g(x)〉 and as I was arbitrary we’ve shown F [x] is a PID. �

From the proof above we also obtain the following:

Theorem 3.4.18. If F is a field and I a nonzero ideal in F [x] and g(x) ∈ F [x]. Then, I = 〈g(x)〉
if and only if g(x) is a nonzero polynomial of minimum degree in I.

Example 3.4.19. Consider φ : R[x] → C given by φ(f(x)) = f(i). Observe Ker(φ) is an ideal in
R[x] hence Ker(φ) is a principal ideal. Notice, no linear polynomial f(x) = mx + b has f(i) = 0
since mi+ b = 0 implies b = −mi which is impossible as m, b ∈ R. Consequently, x2 + 1 ∈ Ker(φ)
is an element of smallest degree in Ker(φ) which implies Ker(φ) = 〈x2 + 1〉. If a + ib ∈ C
then φ(a + bx) = a + bi hence φ(R[x]) = C. Thus, by the first isomorphism theorem for rings,
R[x]/〈x2 + 1〉 ≈ C.

Remark 3.4.20. Sorry about the timing this Semester. Ideally, I’d like to avoid having both
the construction of the field of fractions and the formal polynomials in the same day. Too much
construction. That said, I think the next Lecture will be less contructive (but, in a good way).
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I recommend working on Exercises for Gallian Chapter 16 such as: (page 290-293 )

#1− 43 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 26: (these are collected at the start of Lecture 28)

Problem 103: Prove that the addition and multiplication for the field of fractions construction has:
(i.) an associative multiplication, (ii) the left distributive property. (this makes the
proof of Theorem 3.3.15 a bit closer to being complete)

Problem 104: Prove Corollary 3.4.12.

Problem 105: Gallian number 20 from page 279.

Problem 106: Gallian number 40 from page 280.

Problem 107: Gallian number 63 from page 281.

Problem 108: Gallian number 12 from page 291.
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3.5 Lecture 27: factorization of polynomials

What are the rules for factoring? How do we factor? We begin to answer these questions in certain
special cases. We discover some suprising results about the interplay between Z, Zn and Q.

Definition 3.5.1. Let D be an integral domain. We say f(x) ∈ D[x] which is neither zero nor a
unit in D[x] is irreducible over D if whenever f(x) = g(x)h(x) with g(x), h(x) ∈ D[x] then g(x)
or h(x) is a unit in D[x]. A nonzero, nonunit, element of D[x] that is not irreducible over D is
known as a reducible polynomial over D.

In other words, if a polynomials is not not reducible then it’s reducible.

Example 3.5.2. Consider f(x) = x2 + 1. Note f(x) is irreducible over R or Q. However, f(x) is
reducible over C as f(x) = (x+ i)(x− i).

Example 3.5.3. If f(x) = 2x+ 4 then f(x) = 2(x+ 2) thus f(x) is reducible over Z as 2 is not a
unit in Z. On the other hand, f(x) is irreducible over Q or R as 2x+ 4 = g(x)h(x) implies one of
these is a nonzero constant. In Q or R every nonzero element is a unit.

Our main point in these examples is that context matters. Irreducibility depends both on the
polynomial in question and the ring from which coefficients are taken.

Example 3.5.4. Let f(x) = x2 − 7 then f(x) = (x−
√

7)(x+
√

7) hence f(x) is reducible over R
(it is obvious that the factors are not units in R[x], the units in R[x] are all in R×). In contrast,
f(x) is irreducible over Q or Z.

Example 3.5.5. Consider f(x) = x2 + 1. We use Corollary 3.4.12 in what follows. Considering
f(x) ∈ Z3 we calculate:

f(0) = 1, f(1) = 1 + 1 = 2, f(2) = 4 + 1 = 5 = 2

thus f(x) has no factor of the form x − a in Z3[x]. That is, x2 + 1 is irreducible in Z3[x]. In
contrast, for f(x) ∈ Z5[x] we have f(2) = 4 + 1 = 5 = 0 hence (x− 2) | f(x). We seek a for which:

x2 + 1 = (x− 2)(x+ a) = x2 + (a− 2)x− 2a

apparently, a− 2 = 0 whereas −2a = 1 which are simultaneously solved by a = 2 as −4 = 1 modulo
5. Indeed, this squares well with the following calculation: in Z5[x] we find:

x2 + 1 = x2 − 4 = (x− 2)(x+ 2)

As you can see, f(x) is reducible over Z5.

The following theorem is very useful.

Theorem 3.5.6. Suppose F is a field and f(x) ∈ F [x] has degree 2 or 3 then f(x) is reducible
over F if and only if f(x) has a zero in F .

Proof: let F be a field and f(x) ∈ F [x] with degree 2 or 3. If f(x) is reducible then f(x) has a
factorization including a linear factor hence f(x) has a zero7 by Corollary 3.4.12. Conversely, if
f(x) has a zero c then f(x) = (x− c)g(x) where either g(x) is degree 1 or degree 2. Thus, g(x) is
not a unit and find f(x) is reducible. �

I use the observation that units of F [x] are simply the nonzero constant polynomials in F [x] which
we naturally identify with F×.

7hmmm, it seems half of the solution to Problem 104 is contained in the proof of Theorem 17.1
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Example 3.5.7. Consider f(x) = x4 +14x2 +49 = (x2 +7)2 thus f(x) is reducible over R yet f(x)
has no zeros in R. At fourth order we lose the necessary connection between zeros and reducibility.

The next few theorems we consider are probably new to most students in this course.

Definition 3.5.8. The content of a nonzero polynomial anx
n + · · · + a1x + a0 ∈ Z[x] is the

gcd(a0, a1, . . . , an). If the content of f(x) ∈ Z[x] is 1 then we say f(x) is a primitive polynomial.

Gallian calls this Gauss’s Lemma. That doesn’t seem overly descriptive given Gauss’s work.

Example 3.5.9. Let f(x) = 3x+6 then the content of f(x) is gcd(3, 6) = 3. Notice, f(x) = 3(x+2)
and x+2 is primitive as gcd(1, 2) = 1. Any monic polynomial is primitive, g(x) = xn+an−1x

n−1 +
· · ·+ a1x+ a0 has gcd(1, an−1, . . . , a1, a0) = 1. The idea of the content is to find that integer which
naturally factors out of a polynomial in Z[x]. Of course, 3x2 + 5x + 7 is also primitive since its
coefficients are relatively prime. We can’t factor out an integer n > 1 from a primitive polynomial.

Theorem 3.5.10. The product of two primitive polynomials is primitive.

Proof: we follow Gallian’s argument on page 297. Suppose f(x), g(x) ∈ Z[x] are primitive and
f(x)g(x) is not primitive. If p is a prime divisor of the content of f(x)g(x) = ph(x) then consider
the polynomials f(x), g(x) ∈ Zp[x] formed by reducing the coefficients of f(x), g(x) respective.
Observe,

0 = ph(x) = f(x) · g(x)

Thus, as Zp[x] is an integral domain, f(x) = 0 or g(x) = 0. It follows p divides f(x) or g(x) thus
f(x) or g(x) is not primitive. Hence, by proof by contradiction, f(x)g(x) is primitive. �

A concept is used in the proof above which merits some discussion. If φ : R → S is a ring
homomorphism then there is a natural homomorphism ψ : R[x] → S[x] induced by mapping the
coefficients of R to corresponding coefficients of S. In particular,

Ψ(anx
n + · · ·+ a1x+ a0) = φ(an)xn + · · ·+ φ(a1)x+ φ(a0)

for each anx
n + · · ·+ a1x+ a0 ∈ R[x]. In the proof for the primitive product theorem we used the

natural homomorphism φ(k) = [k]p where φ : Z → Zp to induce ψ : Z[x] → Zp[x]. Our notation

was f(x) for ψ(f(x)). We continue to use such induced homomorphisms of polynomials in many
of the proofs and examples we soon consider, often without explicit mention.

Theorem 3.5.11. Let f(x) ∈ Z[x]. If f(x) is reducible over Q then it is reducible over Z.

Proof: Let f(x) ∈ Z[x] be monic8. Also, suppose there exist h(x), g(x) ∈ Q[x] with f(x) =
h(x)g(x). Suppose a is the least common multiple of the denominators of the coefficients in h(x)
and let b be the least common multiple of the denominators in g(x). It follows ah(x), bg(x) ∈ Z[x]
and abf(x) = ah(x) · bg(x). If ch is the content of ah(x) and cg is the content of bg(x) then there
are primitive polynomials g1(x), h1(x) for which bg(x) = cgg1(x) and ah(x) = chh1(x). Observe,

abf(x) = ah(x) · bg(x) = cgg1(x) · chh1(x) = chcgh1(x)g1(x)

note h1(x)g1(x) is primitive as it is the product of primitive polynomials. Thus the content of abf(x)
precisely chcg. But, f(x) is monic thus ab is the content of abf(x). Hence, ab = chcg and it follows

8a polynomial is monic if it has a leading coefficient of 1
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f(x) = h1(x)g1(x) where h1(x), g1(x) ∈ Z[x]. In summary, for monic f(x) ∈ Z[x] if f(x) = h(x)g(x)
for some h(x), g(x) ∈ Q[x] then there exist h1(x), g1(x) ∈ Z[x] for which f(x) = h1(x)g1(x) with
deg(h(x)) = deg(h1(x)) and deg(g(x)) = deg(g1(x)). If f(x) ∈ Z[x] is not monic then we can factor
out the content c of f(x) to write f(x) = cf1(x) where f1(x) is primitive. If f(x) is reducible
over Q then it follows f1(x) is reducible hence by our argument for primitive polynomials f1(x) is
reducible over Z and consequently f(x) = cf1(x) is reducible over Z as well. �

Example 3.5.12. Consider, f(x) = 6x2 + 19x− 7 notice

f(x) = 6x2 + 19x− 7 = 6(x2 + (19/6)x− 7/6) = 6(x+ 7/2)(x− 1/3)

hence f(x) = (2x + 7)(3x − 1). If we can reduce f(x) ∈ Z[x] using Q then the reduction transfers
nicely back to Z[x]. Pragmatically, in this example, it’s way easier to just see that f(x) = (2x +
7)(3x− 1) from the outset.

Gauss taught us that modular arithmetic gives great insight into ordinary integer arithmetic. Here
is a prime example of such indirect reasoning. Notice p could be any prime.

Theorem 3.5.13. Let p ∈ Z be prime and suppose f(x) ∈ Z[x] has deg(f(x)) ≥ 1. Consider f(x)
the corresponding polynomial in Zp[x] formed from f(x) by reducing the coefficients of f(x) modulo

p. If f(x) is irreducible over Zp and deg(f(x)) = deg(f(x)) then f(x) is irreducible over Q.

Proof: suppose f(x) ∈ Z[x] with deg(f(x)) ≥ 1. Furthermore, suppose f(x) is irreducible over
Zp and deg(f(x)) = deg(f(x)) but f(x) is reducible over Q. Hence, by Theorem 3.5.11 there
exist g(x), h(x) ∈ Z[x] with f(x) = g(x)h(x) and deg(g(x)), deg(h(x)) < deg(f(x)). Using the
homomorphism of Z[x] and Zp[x] given by f(x) 7→ f(x) we find

f(x) = g(x) · h(x)

Note, since the leading coefficient might be divisible by p the degree of the induced polynomi-
als could be smaller; deg(g(x)) ≤ deg(g(x)) and deg(h(x)) ≤ deg(h(x)). However, deg(f(x)) =
deg(f(x)) hence

deg(g(x)) ≤ deg(g(x)) < deg(f(x)) = deg(f(x))

and
deg(h(x)) ≤ deg(h(x)) < deg(f(x)) = deg(f(x))

hence f(x) = g(x) ·h(x) shows f(x) is reducible thus contradicting the irreducibility of f(x). Thus
f(x) must be irreducible given the conditions of the Theorem. �

Example 3.5.14. Consider f(x) = 29x3 + 5x2 + 2x+ 1. Modulo 2, f(x) = x3 + x2 + 1 hence

f(0) = 1 & f(1) = 1 + 1 + 1 = 1

hence f(x) is irreducible in Z2[x] from which we find f(x) is irreducible over Q.

I used a combination of Theorems 3.5.6 and 3.5.13 to guide my logic in the above Example. I’ll use
Gallian’s example from the paragraph on page 299.

Example 3.5.15. Consider f(x) = 21x3 − 3x2 + 2x+ 8. Over Z2 we can factor f(x) = x3 + x2 =
x2(x+1). However, if we study the polynomial induced from f(x) in Z5(x) we can calculate modulo
5, f(x) = x3 + 2x2 + 2x+ 3 hence

f(0) = 3, f(1) = 1 + 2 + 2 + 3 = 3, f(2) = 8 + 2(4) + 2(2) + 3 = 23 = 3,

f(3) = f(−2) = −8 + 8− 4 + 3 = −1, f(4) = f(−1) = −1 + 2− 2 + 3 = 2.
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But, sometimes, no choice of p reveals the irreducibility. Theorem 3.5.13 only affirms irreducibility
over Q, it does not deny it.

Example 3.5.16. Let f(x) = x4 + 1. We can show that f(x) is reducible in Zp[x] for any prime
p. Yet, f(x) = x4 + 1 is irreducible over Q. (proof of these claims is the content of Exercise 29,
which it seems likely I assign)

There is an obvious way to trade a polynomial in Q[x] for a corresponding polynomial in Z[x].
After making this correspondence we are free to use the tools at our disposal for irreducibility over
Q for polynomials in Z[x].

Example 3.5.17. Let f(x) = (3/7)x4 − (2/7)x2 + (9/35)x + 3/5 the contruct the corresponding
h(x) = 35f(x) = 15x4 − 10x2 + 9x + 21. It should be clear that irreducibility of h(x) over Q is
naturally tied to irreducibility of f(x). Working modulo 2, h(x) = x4 + x + 1 and h(0) = 1 and
h(1) = 1 + 1 + 1 = 1 thus h(x) has no linear factors. To search for possible quadratic factors we
need only consider x2, x2 + 1, x2 + x and x2 + x+ 1 as there are no other quadratic factors possible
in Z2[x]. Since x2 and x2 + 1 and x2 + x have zeros in Z2 it follows they cannot be factors of h(x).
To see why x2 + x+ 1 is not a factor consider the following:

(x2 + x+ 1)(x2 + ax+ b) = x4 + x+ 1

then x4 + (a+ 1)x3 + (b+ a+ 1)x2 + (a+ b)x+ b = x4 + x+ 1 from which we would require

a+ 1 = 0, b+ a+ 1 = 0, a+ b = 0, b = 1

these equations are inconsistent as the first two provide b = 0 whereas the last gives b = 1. Thus
x2 + x+ 1 does not factor h(x) and we deduce h(x) is irreducible in Z2[x] thus h(x) is irreducible
over Q and hence f(x) = 1

35h(x) is irreducible over Q.

To decide irreduciblility of quartics in a given Zp[x] we can enumerate the possible quadratics
and test if they factor the given quartic via long-division or the algebraic technique I used in the
Example above. This is illustrated for p = 3 in Example 8 of Gallian on page 299-300 and is
motivation for Problems 15 and 16 on page 308. Given the effort required for such an example, the
criterion below is amazing:

Theorem 3.5.18. Eisenstein’s Criterion: Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x].
If there is a prime p such that p - an but p | aj for j = n − 1, . . . , 0 and p2 - a0 then f(x) is
irreducible over Q.

Proof: I’ll postpone proof until a bit later, I found the argument given in Example 4 on page 321
of Gallian far more interesting than the proof by contradiction given on page 300. �

Example 3.5.19. Consider f(x) = 13x7 + 2x6 + 4x3 + 18x+ 2. Observe p = 2 is such that 2 - 13
and 22 = 4 - 2 but 2 does divide 2, 4, 18 and 2 (and the zero coefficients, note p | 0 for any p since
0 = p(0)) thus by Eisenstein’s Criterion with p = 2 we find f(x) is irreducible over Q.

Consider, if S = 1 + x+ · · ·+ xp−1 then xS = x+ x2 + · · ·+ xp then

S − xS = (x+ x2 + · · ·+ xp)− (1 + x+ · · ·+ xp−1) = xp − 1

thus, formally, solving for S yields 1 + x+ · · ·+ xp−1 = xp−1
1−x . Perhaps you remember this algebra

from the derivation of the geometric series. In any event, the polynomial Φp(x) = 1+x+ · · ·+xp−1

is defined to be the p-th cyclotomic polynomial.
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Theorem 3.5.20. For p ∈ Z prime Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible over Q.

Proof: the proof in Gallian you’ll find in many books, and, my notes: let f(x) = Φp(x+ 1) thus

f(x) =
(x+ 1)p − 1

(x+ 1)− 1
=

1

x

(
xp +

(
p

1

)
xp−1 +

(
p

2

)
xp−2 + · · ·+

(
p

p− 1

)
x+ 1− 1

)
Cleaning things up a bit,

f(x) = xp−1 + pxp−2 + · · ·+ p

where we may observe every coefficient except the leading coefficient is divided by p and the con-
stant term is not divisible by p2 hence f(x) is irreducible by Eisenstein’s Criterion. Suppose Φp(x)
is reducible over Q. In particular, suppose there exist g(x), h(x) ∈ Q[x] of degree less than p − 1
where Φp(x) = g(x)h(x). Then Φp(x+ 1) = f(x) = g(x+ 1)h(x+ 1) shows f(x) is reducible since
g(x+ 1), h(x+ 1) ∈ Q[x] is easily seen with a little algebra. But, this contradicts the irreducibility
of f(x) hence Φp(x) is irreducible over Q. �

Irreducible polynomials are useful for building new fields. This is seen in the Corollary to the
Theorem below:

Theorem 3.5.21. Let F be a field and suppose p(x) ∈ F [x]. Then 〈p(x)〉 is a maximal ideal in
F [x] if and only if p(x) is irreducible over F .

Proof: suppose that F is a field and p(x) ∈ F [x]. If 〈p(x)〉 is a maximal ideal in F [x] then 〈p(x)〉 is
a nonzero proper ideal hence p(x) 6= 0 and p(x) is nonconstant. Suppose p(x) = g(x)h(x) is a fac-
torization of p(x) over F . If j(x) ∈ 〈p(x)〉 then j(x) = p(x)k(x) = g(x)h(x)k(x) thus j(x) ∈ 〈g(x)〉
and we find 〈p(x)〉 ⊆ 〈g(x)〉 ⊆ F [x]. Thus, by maximality, 〈p(x)〉 = 〈g(x)〉 or 〈g(x)〉 = F [x].
If 〈p(x)〉 = 〈g(x)〉 then we have g(x) ∈ 〈p(x) hence g(x) = q(x)p(x) and p(x) = g(x)h(x) so
deg(g(x)) ≥ deg(p(x)) and deg(p(x)) ≥ deg(g(x)) from which we find deg(g(x)) = deg(p(x)).
On the other hand, if 〈g(x)〉 = F [x] then each f(x) = g(x)k(x) for some k(x) ∈ F [x] for each
f(x) ∈ F [x]. It follows that g(x) ∈ F× hence deg(g(x)) = 0. In summary, if p(x) = g(x)h(x)
then neither of the factors may have nontrivial degree smaller than that of p(x). That is, p(x) is
irreducible over F .

Conversely, suppose p(x) is irreducible. Suppose I is an ideal of F [x] for which 〈p(x)〉 ⊆ I ⊆ F [x].
Recall from Theorem 3.4.17 we know F [x] is a PID hence I = 〈g(x)〉 for some g(x) ∈ F [x]. Note
p(x) = p(x)1 ∈ 〈p(x)〉 ⊆ 〈g(x)〉 hence there exists k(x) ∈ F [x] for which p(x) = k(x)g(x). How-
ever, irreducibilty of p(x) implies either deg(k(x)) = 0 or deg(g(x)) = 0. If deg(k(x)) = 0 then
〈p(x)〉 = 〈g(x)〉. If deg(g(x)) = 0 then 〈p(x)〉 = F [x]. Thus 〈p(x)〉 is a maximal ideal in F [x]. �

Corollary 3.5.22. Let F be a field and p(x) ∈ F [x] is irreducible over F . Then F [x]/〈p(x)〉 is a
field.

Proof: if F is a field and p(x) is an irreducible polynomial then 〈p(x)〉 is maximal by Theorem
3.5.21. Thus F [x]/〈p(x)〉 if a field by Theorem 3.2.25. �

Corollary 3.5.23. Let F be a field and p(x), a(x), b(x) ∈ F [x]. If p(x) is irreducible over F and
p(x) | a(x)b(x) then p(x) | a(x) or p(x) | b(x).
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Proof: suppose p(x) ∈ F [x] is irreducible over a field F . Then 〈p(x)〉 is a maximal ideal hence
a prime ideal as F [x]/〈p(x)〉 is a field and thus an integral domain which implies primality of
〈p(x)〉 via Theorem 3.2.24. If a(x), b(x) ∈ F [x] an p(x) | a(x)b(x) then a(x)b(x) = p(x)k(x) hence
a(x)b(x) ∈ 〈p(x)〉 hence a(x) ∈ 〈p(x)〉 or b(x) ∈ 〈p(x)〉 as 〈p(x)〉 is a prime ideal. But, a(x) ∈ 〈p(x)〉
implies p(x) | a(x) and b(x) ∈ 〈p(x)〉 implies p(x) | b(x). The Corollary follows. �.

The Theorem above is important in the proof that Z[x] forms a Unique Factorization Domain. In
particular, the uniqueness stems from this Theorem. Gallian’s Example 10 illustrates the utility of
the theory in building weird new fields.

Example 3.5.24. Consider F = Z2 and the polynomial x3 + x + 1. Notice x3 + x + 1 6= 0 for
x = 0, 1 thus x3 + x + 1 is irreducible over Z2 and hence Z2[x]/〈x3 + x + 1〉 is a field. See page
302-303 for further calculations in this field with eight elements. Another way we can understand
this field is to work directly with indeterminants. The essential rule is that x3 = −x− 1 = x+ 1 in
Z2. So, we can look at elements of the field as a + bx + cx2 where a, b, c ∈ Z2 and we multiply as
usual subject the interesting rule x3 = x+ 1. For example,

x(e+ fx+ gx2) = ex+ fx2 + gx3 = ex+ fx2 + g(x+ 1) = g + (e+ 1)x+ fx2

Or, to focus on the interesting part,

x(x2) = x3 = x+ 1 & x2(x2) = xx3 = x(x+ 1) = x2 + x

Consider, always working modulo 2,

(x+ 1)(x2 + x) = x3 + x2 + x2 + x = x+ 1 + x = 1

Of course this field is less fun if we write the coset and not just the representative. In practice, we
just write the representative when we do a lot of calculation in a particular context. For example,
C = R[x]/〈x2+1〉 has typical element a+bx+〈x2+1〉, but, we usually just write a+bi where i2 = −1.

I’ll include another of Gallian’s excellent examples here:

Example 3.5.25. The polynomial x2 + 1 ∈ Z3 can be shown to be irreducible. Thus

Z3[x]/〈x2 + 1〉 ≈ {a+ bx+ 〈x2 + 1〉 | a, b ∈ Z3}

forms a field with nine elements. At the level of representatives, (a+bx)(c+dx) = ac−bd+(ad+bc)x
so you can see this is isomorphic to Z3[i] which Gallian gave as Example 12 in Chapter 14.

We begin to understand the interplay between ideals in rings and the structure of polynomials.
The next feature to explore is the polynomial analog of the prime factorization of integers. Any
integer z ∈ Z can be expressed as z = pr11 p

r2
2 · · · p

rk
k where p1, p2, . . . , pk are distinct primes. This

decomposition is unique upto reordering of the primes.

Theorem 3.5.26. Every nonzero, non-unit polynomial f(x) in Z[x] can be written as:

f(x) = b1b2 · · · bsp1(x)p2(x) · · · pm(x)

where b1, b2, . . . , bs are irreducible polynomials of degree 0 and p1(x), p2(x), . . . , pm(x) are irreducible
polynomials of positive degree. This decomposition is unique up to reordering in the sense that if

f(x) = c1c2 . . . ctq1(x)q2(x) · · · qn(x)

then t = s and m = n and for each j there exists k such that cj = ±bk for j = 1, . . . , t for each
j′ = 1, . . . , n there exists k′ such that pj′(x) = ±qk′(x).
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Proof: I’ll let you read the proof in Gallian. The argument has three stages. First, we peel off the
content which is factored via the prime factorization of integers. This leaves a primitive polynomial
which we are able to factor into irreducible factors using a simple induction argument. Finally, the
unique factorization centers around the use of the analog of Gauss’ lemma for polynomials paired
with the fact that the units of Z are just ±1. �

Remark 3.5.27. How do we find the units in a given unital ring R? We have to solve xy = 1
for all possible x, y ∈ R. For Z a bit of common sense immediately reveals that x, y = ±1 is all
that can be done since otherwise either x or y is forced outside Z. For example, 2 needs 1

2 ∈ Q for
a multiplicative inverse. We learn in the next Lecture that many interesting examples are paired
with a norm and this new calculational tool allows us deeper insight into the structure of units.

I recommend working on Exercises for Gallian Chapter 17 such as: (page 307-311)

#1− 37 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 27: (these are collected at the start of Lecture 29)

Problem 109: Gallian number 28 from page 292.

Problem 110: Gallian number 38 from page 292.

Problem 111: Gallian number 39 from page 292.

Problem 112: Gallian number 8 from page 308.

Problem 113: Gallian number 10 from page 308.

Problem 114: Gallian number 29 from page 309.
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3.6 Lecture 28: divisibility in integral domains I

In this Lecture and the next we study the material presented in Chapter 18 of Gallian. This Lecture
is mostly focused on the interplay between the three concepts defined below:

Definition 3.6.1. Let D be an integral domain. Let a, b ∈ D

(i.) a and b are associates if there exists a unit u ∈ D for which b = au.

(ii.) a is an irreducible if a is not a unit and whenever a = cd then c or d is a unit.

(iii.) a with a 6= 0 is prime if a is not a unit and a | bc implies a | b or a | c.

The terms irreducible and prime have been interchanged at various points of your mathematical
education. For example, some texts call the irreducible factors in a polynomial factorization the
prime factors. It depends on which book you were taught from etc. In the integers every irreducible
is prime. The definition of prime in Z is often given to be that p ∈ Z has only itself and 1 as
positive divisors. Allowing for negative divisors we’d say p is prime only if p,−p, 1,−1 are its sole
divisors. This is precisely the notiion of irreducibility defined above. In contrast, we recognize
(iii.) as Euclid’s Lemma for Z. Of course, both hold for primes in Z so a prime in Z is both
prime and irreducible as given by (ii.) and (iii.) of the above Definition. Prime and irreducible are
not generally equivalent in rings. The example below taken from Gallian page 313 serves well to
illustrate:

Example 3.6.2. Consider Z[
√
d] = {a + b

√
d | a, b ∈ Z} where d is square-free. To say d is

square-free is to say that the prime factorization of d has no factor of the form p2 for some prime
p. For example, 35 = 5(7) is square free, but d = 50 = 52(2) is not square free. Consider d = −3
and study 1 +

√
−3 ∈ Z[

√
−3] we can show9 1 +

√
−3 = xy implies x or y is a unit thus 1 +

√
−3

is irreducible. On the other hand, note:

(1 +
√
−3)(1−

√
−3) = 1− (−3) = 4 = (2)(2)

thus 1 +
√
−3 divides (2)(2) yet 1 +

√
−3 does not divide 2. Why? Suppose a, b ∈ Z such that

( 1 +
√
−3 )( a+ b

√
−3 ) = 2 ⇒ (a− 3b) + (b+ a)

√
−3 = 2

from which we find a− 3b = 2 and a+ b = 0 hence a = −b thus 4a = 2 so a = 2/4 which is absurd
as a ∈ Z thus 1 +

√
−3 does not divide 2. Therefore, 1 +

√
−3 is not prime, but, 1 +

√
−3 is

irreducible.

To prove 1 +
√
−3 is irreducible we best introduce a new concept: taken from Dummit and Foote

page 270. I

Definition 3.6.3. Let R be an integral domain. Any function N : R → N ∪ {0} with N(0) = 0 is
called a norm on R. If N(a) > 0 for a 6= 0 then N is said to be a positive norm.

In particular, if we study Z[
√
d] where d is square-free then I propose we define the norm by analogy

to the square of the modulus in C. Remember, |x + iy|2 = x2 + y2 can be captured as |z| = zz∗

where z∗ = x− iy. By the same token, if we define (a+ b
√
d)∗ = a− b

√
d then

(a+ b
√
d)(a− b

√
d) = a2 − db2

This motivates the following convenient definition of norm:

9we’ll use the concept of a norm to accomplish this a bit later in this Lecture, see Example 3.6.6
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Definition 3.6.4. Let Z[
√
d] = {a+ b

√
d | a, b ∈ Z} where d is square-free then define

N(a+ b
√
d) = |a2 − db2|

for each a+ b
√
d ∈ Z[

√
d].

The fact that the formula above defines a norm is immediate from the fact N(0) = 0 and the fact
that the absolute value is non-negative. If d < 0 then we can write N(a+ b

√
d) = a2 + db2 as the

sum of squares is automatically non-negative.

Theorem 3.6.5. If d is square-free and N(a+ b
√
d) = |a2 − db2| for each a+ b

√
d ∈ Z[

√
d] then

(i.) N(x) = 0 if and only if x = 0

(ii.) N(xy) = N(x)N(y) for all x, y ∈ Z[
√
d]

(iii.) x ∈ Z[
√
d] is a unit if and only if N(x) = 1

(iv.) if N(x) is prime then x is irreducible in Z[
√
d]

Proof: I leave (i.) and (ii.) this as a rather enjoyable exercises. To prove (iii.), suppose x is a
unit then xy = 1 for some y and hence N(1) = N(x)N(y) but N(1) = |12 + d(02)| = 1 hence
1 = N(x)N(y) but N(x), N(y) ∈ Z hence N(x) = N(y) = 1. Next, to prove (iv.) suppose N(x) is
prime and suppose x = yz for some y, z ∈ Z[

√
d] then N(x) = N(yz) = N(y)N(z). Now, N(x) is

prime thus either N(y) = 1 or N(z) = 1 and hence either y or z is a unit by (iii.). Therefore, x is
irreducible. �

Example 3.6.6. Let us see why 1 +
√
−3 is irreducible. Suppose 1 +

√
−3 = xy. Observe

N(1 +
√
−3) = 12 − (−3)12 = 4 = N(xy) = N(x)N(y)

if x, y are not units then we must have N(x) = N(y) = 2. Consider,

a2 + 3b2 = 2

there is no solution! Consequently, 1 +
√
−3 = xy implies x or y is a unit. Thus 1 +

√
−3 is

irreducible.

Gallian warns us that proving things in Z[
√
d] is more trouble when d > 1. Let us work through

his Example 2 on page 313.

Example 3.6.7. Consider 7 ∈ Z[
√

5]. Suppose 7 = xy for some x, y ∈ Z[
√

5]. We have

N(7) = N(xy) = N(x)N(y) ⇒ 49 = N(x)N(y)

if x, y are not units we must have N(x) = N(y) = 7. Suppose x = a+ b
√

7 with N(x) = 7 then

7 = |a2 − 5b2| or if you prefer a2 − 5b2 = ±7.

Any integer solution of a2 − 5b2 = ±7 is an Z7 solution of a2 − 5b2. Explicit checking of possible
solutions shows the only solution is a = b = 0 modulo 7. Thus 7 | a and 7 | b which gives |a2 − 5b2|
is divisible by 49. Yet, |a2 − 5b2| = 7 which is clearly not divisible by 49 hence no solution of
a2 − 5b2 = ±7 exists for a, b ∈ Z.
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Theorem 3.6.8. In an integral domain every prime is an irreducible.

Proof: suppose a is a prime in an integral domain. If a = xy then as a is prime we have a | x or
a | y. Suppose a | x then x = ab for some b. Thus,

x(1) = x = ab = (xy)b = x(yb)

thus 1 = yb and we find y is a unit. Similar argument shows x is a unit in the case a | y thus
a = xy implies x or y is a unit and we conclude that a is ireducible. �

The concept of associates is helpful for some calculations we have struggled with a bit in our
recent work. Here is a Theorem that should help us with the task of identifying possible coset
representatives in a given quotient of a unital ring R by an ideal I:

Theorem 3.6.9. Let R be a commutative ring with identity 1. If a, b are associates then 〈a〉 = 〈b〉.
Furthermore, if R is an integral domain and I = 〈a〉 then any other generator of I is an associate
of a.

Proof: if a, b are associates then there exists a unit u in R for which a = bu and b = au−1. Let
x ∈ 〈a〉 then x = ar for some r ∈ R. Hence x = bur and as ur ∈ R this shows x ∈ 〈b〉 hence
〈a〉 ⊆ 〈b〉. If y ∈ 〈b〉 then y = br = au−1r ∈ 〈a〉 hence 〈b〉 ⊆ 〈a〉 and thus 〈a〉 = 〈b〉. Suppose
〈c〉 = 〈a〉 for some c ∈ R. If 〈a〉 = {0} then a = 0 otherwise a 6= 0 implies a(1) = a ∈ 〈a〉 6= {0}
and a = 0 then implies c = 0 as well. The Theorem is trivially true for a = 0 since 0 is an associate
of itself and there is no distinct associate of 0. Suppose a 6= 0 hence c 6= 0. Note a, c ∈ 〈c〉 and
a, c ∈ 〈a〉 thus there exists s, r ∈ R for which a = rc and c = sa hence a = rc = (rs)a. As a 6= 0 we
deduce from the cancellation property of the integral domain R that rs = 1 hence r is a unit and
a = rc shows a, c are associates. �

What happens in general when R is not integral. Is it possible that 〈a〉 = 〈c〉 and a, c are not
associates? Consider, R = Z6 for then 〈2〉 = 〈4〉 = {0, 2, 4}. Are 2, 4 associates? Well, can we
find a unit u ∈ U(Z6) = {1, 5} for which 4 = 2u? There are two choices: 2(1) = 2 6= 4 and
2(5) = 10 = 4. Yes, in this case, 2(5) = 4 and 5 is a unit hence 2, 4 are associates. This shows the
second part of Theorem 3.6.9 can be true outside the context that R be an integral domain. For
an non-example, see this mathstack Q and A.

Theorem 3.6.10. In a principal ideal domain, an element is prime if and only if it is irreducible.

Proof: Let D be a PID. Note D is an integral domain by assumption10 thus Theorem 3.6.8 tells
us that each prime is irreducible. Conversely, suppose a is irreducible. Suppose a | bc for some
b, c ∈ D. Define

I = {ax+ by | x, y ∈ D}

we can show I is an ideal. Note z, w ∈ I have the form z = ax + by and w = ax′ + by′ for some
x, y, x′, y′ ∈ D. Thus,

z − w = ax+ by − (ax′ + by′) = a(x− x′) + b(y − y′) ∈ I

and for r ∈ D,

rz = r(ax+ by) = a(rx) + b(ry) ∈ I
10a PID is an integral domain in which every ideal is principal.

http://math.stackexchange.com/q/1045673/36530
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thus I is an ideal. Since D is a PID we know I is principal. Thus there exists d ∈ D for which
I = 〈d〉. Observe a = a(1) + b(0) ∈ I thus a = rd for some r ∈ D. Since a is irreducible we have r
or d is a unit.

If d is a unit then 1 = dd′ for some d′ ∈ D thus 1 ∈ I. Therefore, 1 = ax + by for some x, y ∈ D.
Multiply by c to see:

c = cax+ cby = acx+ (bc)y.

Naturally, a | acx and we assumed a | bc thus, by the equation above, a | c.

If r is a unit then a = rd provides a and r are associates. Theorem 3.6.9 provides 〈d〉 = 〈a〉 hence
I = 〈a〉 and as b = a(0) + b(1) ∈ I we find b = aλ for some λ ∈ D. Therefore, a | b.

In summary, for an irreducible a ∈ D we find a | bc implies a | b or a | c which shows a is prime. �

In short, PIDs allow us to carelessly interchange the concepts of prime and irreducible. It’s sort of
like those new cars where they encourage you to ignore the road11.

Example 3.6.11. Z is a principal ideal domain. You can prove any ideal in Z has the form
〈n〉 = nZ. Likewise, if F is a field then we showed that F [x] is a principal ideal domain in Theorem
3.4.17. Not all integral domains are principal. Gallian provides us the example Z[x] of 〈2, x〉 which
he defines a bit differently on page 314-315. Details can be found in his Example 3.

I recommend working on Exercises for Gallian Chapter 17 such as: (page 307-311)

#1− 37 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 28: (these are collected at the start of Lecture 30)

Problem 115: Prove part (i.) of Theorem 3.6.5.

Problem 116: Prove part (ii.) of Theorem 3.6.5.

Problem 117: Gallian number 14 on page 308

Problem 118: Gallian number 4 from page 325.

Problem 119: Gallian number 17 from page 326.

Problem 120: Gallian number 18 from page 326.

11current commercials teach me it’s cool to day dream in the car
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3.7 Lecture 29: divisibility in integral domains II

In this Lecture we complete our study of Chapter 18 of Gallian. Here we explore the interplay
between Euclidean Domains, Principal Ideal Domains and Unique Factorization Domains.

Definition 3.7.1. Let D be an integral domain. Then D is said to be a Euclidean Domain if
there is a norm N on D such that for any two elements a, b ∈ D with b 6= 0 there exists elements
q, r ∈ D with

a = qb+ r

and r = 0 or N(r) < N(b). We call q the quotient and r the remainder of the division.

You can contrast the definition above to that which is given in Gallian. In part, a Euclidean Domain
is an integral domain D with a function d : D → N ∪ {0} such that d(a) ≤ d(ab) for all a, b 6= 0 in
D. If we have a positive norm for which N(xy) = N(x)N(y) then define d(x) = N(x) and note:

d(ab) = N(ab) = N(a)N(b) = d(a)d(b)

and as a, b 6= 0 we have d(a), d(b) ∈ N thus d(a) = d(ab)/d(b) ≤ d(ab). In short, if we have a
positive multiplicative norm then it provides a measure (in the langauge of Gallian page 321). I
should caution, we do not assume all norms are multiplicative, see Example 3.7.3.

We should notice a Euclidean Domain does not generally come with a division algorithm which
produces a unique quotient and remainder. Even the integers allow for non-unique quotient and
remainder in a division. Notice Theorem 3.6.5 applies to norms for rings other than Z[

√
d] for d

square-free. If N is a norm which is positive and multiplicative then we satisfy (i.) and (ii.) of
Theorem 3.6.5 hence (iii.) and (iv.) follow since the proof of (iii.) and (iv.) simply require the
verity of (i.) and (ii.).

Example 3.7.2. Consider D = Z with N(x) = |x|. It is simple to see N defines a positive norm
and N(xy) = |xy| = |x||y| = N(x)N(y) for all x, y ∈ Z. Notice |u| = 1 implies u = ±1. The units
in Z are just 1,−1. Let me give an explicit example to make the ambiguity of the division algorithm
a bit more explicit. Consider a = 54 and b = 8 we have:

54 = 6(8) + 6 or 54 = 7(8)− 2.

Now, in the context of the integers the use of a positive remainder is what is usually done.

I merely mean to indicate that even in Z the division algorithm may not be unique.

Example 3.7.3. If F is a field then D = F [x] is a Euclidean Domain where we define N(f(x)) =
deg(f(x)). Since deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) we don’t have a multiplicative norm. The
units of D are nonzero constant polynomials which have N(f(x)) = N(c) = 0.

Example 3.7.4. The Gaussian integers Z[i] = {a + bi | a, b ∈ Z} form a Euclidean Domain with
N(a + ib) = a2 + b2. It is easy to prove N(zw) = N(z)N(w) and N(z) = 0 iff z = 0 hence
N : Z[i] → N ∪ {0} forms a multiplicative norm. The proof that Z[i] is a Euclidean Domain with
respect to N is a bit involved. I’ll let you read page 322-323 for Gallian’s proof. I’ll sketch a similar
proof here. To divide a+ib by c+id we may accomplish this explicitly in C as z = a+ib

c+id is a complex
number. The Gaussian integers from a lattice of points and we simply pick one of the four points in
Z[i] which are closest to z and call it q. Define r = a+ib−q(c+id) then clearly a+ib = q(c+id)+r
and as

a+ ib

c+ id
= z = q +

r

c+ id
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by the construction of q, worst case scenario we find z as the center point of a cell in the Z[i] lattice.
Notice the center point is distance 1/

√
2 from each of the closest 4 points. Thus:∣∣∣∣ r

c+ id

∣∣∣∣ < 1√
2
⇒ |r| < |c+ id|√

2
⇒ N(r) < N(c+ id)/2.

Perhaps the following picture helps explain the proof in the Example above:

No matter where a+ib
c+id lands in the complex plane the closest point in Z[i] will be within 1/

√
2

distance. When we study other Z[
√
−d] for d > 0 the geometry of this argument is spoiled. There

is much to learn about Euclidean Domains which is not emphasized in Gallian. Familar algorithms
and concepts in Z have natural generalizations to abstract Euclidean Domains. For example, we
can execute the Euclidean Algorithm in Z[i] just as we do in Z by systematically removing first the
divisor, then the remainder, then the remainder of the remainder’s division etc...

Example 3.7.5. Consider α = 11 + 3i = a + ib and β = 3i + 2 = c + id (a, b, c, d notation in
reference to the proof above). Let’s walk through the Euclidean Algorithm in vector format: in each
step I have to do side calculation (not shown) to decide which multiple of the previous remainder
should be subtracted to make the difference minimal. If I don’t see it by inspection then I follow the
method of the proof.

(11 + 3i, 3i+ 2) = (α, β)

(3i+ 2, 1 + i) = (β, α− (2− 2i)β)

(1 + i,−i) = (α− (2− 2i)β, β − (3 + i)[α− (2− 2i)β])

at which point we stop since −i is a unit in Z[i]. Thus,

−i = β − (3 + i)α+ (3 + i)(2− 2i)β

or
−i = (9− 4i)β − (3 + i)α

hence
1 = (4 + 9i)(3i+ 2) + (1− 3i)(11 + 3i).

This calculation shows the greatest common divisor of 11 + 3i and 3i + 2 is 1, or, you could say
−1, i,−i. In fact, to study this properly we need to embrace the concept that the gcd is an ideal. In
this case,

〈11 + 3i〉+ 〈3i+ 2〉 = 〈1〉 = Z[i]

The ideals 〈11+3i〉 and 〈3i+2〉 are comaximal since there sum is the entire ring. Comaximal ideals
are the ideal version of relatively prime. Note, two integers a, b are relatively prime if gcd(a, b) = 1
which implies ak + bl = 1 hence x = akx+ blx for each x ∈ Z and thus 〈a〉+ 〈b〉 = Z.
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The calculations and concepts we find in Euclidean Domains were largely pioneered by mathemati-
cians such as Euler, Gauss and their students in the nineteenth century. The necessity of facing the
existence of a unique factorization and/or how to deal with the absence of a unique factorization
property took a bit longer to be appreciated. As Gallian describes on page 316, the assumption of
unique factorization misled Gabriel Lamé to claim he had a proof of Fermat’s last theorem (which
is that xn + yn = zn has no integer solutions for n ≥ 3). Unfortunately, Lamé was not familar with
the work of Kummer which demonstrated the factorization into irreducibles was not unique in the
natural sense which Lamé assumed.

It seems Gauss was aware of this issue when he basically avoided using abstract ring arguments.
Gauss was aware of Euler’s work and Euler and Lagrange used objects like a+ b

√
−d to prove var-

ious assertions about primes. Gauss likely realized the danger made explicit by Kummer. Stillwell
explains this story in more depth in his text Elements of Number Theory. Basically, Gauss just
brute-force12 solved the problems which Euler and Lagrange had been working on in more elegant
ways. In some sense, this was bad mathematics, it took some time for us to return to the elegance
which Euler and Lagrange had partially understood. The fix to the ambiguity suffered by Lamé
was given in part by Kummer with his introduction of ideal numbers. This program was fleshed
out by Dedekind. Basically, ideals play the role that numbers previously held. The ambiguity is
washed away in that there is a unique factorization property for ideals in a ring of algebraic integers13

Ultimately, the work of Dedekind brought questions to the mind of Emmy Noether who was one
of the first true abstract algebraists. Her work was about structure much more than particular
examples. She embraced the concept of abstraction as a means to solve many problems in an
elegant fashion. I mention Noether here because the chain condition argument below is certainly
due to her influence on our current understanding of abstract algebra.

Definition 3.7.6. Let D be an integral domain. D is a Unique Factorization Domain if

(i.) every nonzero element of D can be written as a product of irreducible elements in
D,

(ii.) the factorization of a given element in D into irreducibles is unique up to re-
ordering and associates. In particular, if x ∈ D has irreducible factorizations
x = x1x2 · · ·xn and x = y1y2 · · · yn then there exist units u1, u2, . . . , un for which

{y1, y2, . . . , yn} = {u1x1, u2x2, . . . , unxn}

where we do not intend the above equality to imply an ordering.

The uniqueness up to associates is easy enough to see in the context of Z where the units are ±1
or F [x] where any nonzero scalar is a unit.

Theorem 3.7.7. Ascending Chain Condition in a PID: In a principal ideal domain, any
strictly increasing chain of ideals I1 ⊂ I2 ⊂ · · · must be finite in length.

Proof: let I1 ⊂ I2 ⊂ · · · be a chain of strictly increasing ideals in an principlal ideal domain D.
Note ∪j∈NIj forms an ideal thus I = I1 ∪ I2 ∪ · · · = 〈d〉 for some d ∈ D. Note d ∈ I implies d ∈ In
for some n ∈ N. But, Ii ⊆ I = 〈d〉 ⊆ In for each i ∈ N hence In must be the terminal ideal in the
chain. �

12as in he solved congruence questions via explicit algebra in Z etc.
13see page 767, Corollary 16, of Dummit and Foote, this claim is quite a bit beyond our current course.
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I didn’t prove unique factorization of Z[x] (gory detail on page 304-305 of Gallian for the curious),
but, if I had this still would not help as Z[x] is not a PID. That said, if F is a field then this proof
gets us that F [x], a PID by Theorem 3.4.17, is a unique factorization domain. The proof of this
theorem is perhaps the most interesting proof we will study this semester:

Theorem 3.7.8. Every principal ideal domain is a unique factorization domain.

Proof: let D be a PID with set of units U . Let a0 ∈ D with a0 6= 0 and a0 /∈ U . Game plan:

(1.) show a factorization of a0 contains at least one irreducible

(2.) show there is a factorization of a0 into a product of irreducibles

(3.) show uniqueness up to associates

(1.) If a0 is irreducible then we have shown a0 contains an irreducible. Otherwise, a0 = a1b1 where
a1 is not a unit and b1 6= 0. If a1 is irreducible then a contains an irreducible. Otherwise, suppose
a1 = a2b2 where b2 6= 0 and a2 is not a unit. Continue in this fashion to define an+1 not a unit and
bn+1 6= 0 for which an = an+1bn+1 for n = 3, 4, . . . . Observe, an = an+1bn+1 implies 〈an〉 ⊂ 〈an+1〉
for n = 0, 1, 2, . . . thus by Theorem 3.7.7 there exists k for which this ascending chain of ideals
terminates:

〈a0〉 ⊂ 〈a1〉 ⊂ 〈a2〉 ⊂ · · · ⊂ 〈ak〉.

But, the chain terminates when ak does not permit a factorization into non-units. Hence ak is
irreducible hence a0 = rak shows a0 contains an irreducible.

(2.) if a0 is irreducible then we have a factoring of a0 into irreducibles. Otherwise, by (1.) there
exists an irreducible p1 and a non-unit c1 for which a0 = p1c1. If c1 is an irreducible then we have
factored a0 into irreducibles. Otherwise, apply (1.) to the non-unit c1 to find c1 = p2c2 where p2

is irreducible and c2 is not a unit. Notice we have another ascending chain of ideals:

〈a0〉 ⊂ 〈p1〉 ⊂ 〈p2〉 ⊂ · · ·

this must terminate, say at 〈pt〉. By the construction of the chain, we find pt is an irreducible and

a0 = p1c1 = p1p2c2 = · · · = p1p2 · · · pt.

Therefore, a0 is factored into a product of irreducibles.

(3.) Suppose a0 has two factorizations into irreducibles:

a0 = p1p2 · · · pt = q1q2 · · · qs

We prove the factorization is unique by induction on t. Suppose t = 1 then a0 = p1 = q1q2 · · · qs
implies s = 1 as to say otherwise contradicts the irreducibilty of p1. Next, suppose inductively, any
factorization into less than t irreducibles is unique up to associates. Again, if

a0 = p1p2 · · · pt = q1q2 · · · qs

then note p1 | q1q2 · · · qs hence (by an exercise I might assign) there exists some qj for which p1 | qj
and thus p1 = ujqj for some unit uj . Then,

qjujp2 · · · pt = qjq2 · · · qs
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and by the cancellation property for integral domains (qj 6= 0)

ujp2 · · · pt = qjq2 · · · qs

and by the induction hypothesis we conclude that the remaining t− 1 irreducibles ujp2, . . . , pj−1,
pj+1, . . . , pt must be associated to s − 1 = t − 1 irreducibles q2, . . . , qj−1, qj+1, . . . , qt. Thus, the
factorization of a0 into irreducibles is unique up to associates and ordering. �

I tried to follow Gallian pretty closely here. Essentially the same proof is given on page 319-320.

Corollary 3.7.9. Let F be a field. Then F [x] is a unique factorization domain.

Proof: we proved in Theorem 3.4.17 for F a field the polynomials F [x] form a PID hence by
Theorem 3.7.8 we find F [x] is a UFD. �

I abbreviate to illustrate the utility of these abbreviations.

Theorem 3.7.10. Every euclidean domain is a principal ideal domain.

Proof: let D be a Euclidean Domain with norm N . If I is a nonzero ideal in D then notice
S = {N(x) | x ∈ I} is a nonempty subset of non-negative integers. Thus, by the Well-Ordering-
Principle, S has a smallest member so. Let xo ∈ I be a member of I for which N(xo) = so. If z ∈ I
then apply the division algorithm in D to obtain q and r for which

z = qxo + r

Note z ∈ I by assumption and qxo ∈ I by as xo ∈ I thus

r = z − qxo ∈ I

Therefore, r = 0 as r 6= 0 would provide r ∈ I for which N(r) < N(xo) = so which contradicts the
minimality of so in S. In short, every element z ∈ I is found in 〈xo〉. But, I was arbitrary nonzero
ideal hence every nonzero ideal is princpal. Moreover, 〈0〉 = {0} and the Theorem follows. �

I hope you see this proof is nearly identical in structure to that we gave for Theorem 3.4.17. In
retrospect, we could have skipped that proof and simply applied this general result to the context
of the norm on F [x] being specified by the degree function.

Corollary 3.7.11. Every euclidean domain is a unique factorization domain.

Proof: note Theorem 3.7.10 gives that D Euclidean implies D is a PID. Then Theorem 3.7.8
provides that D a PID implies D is a UFD. �

Notice that Z[x] is a UFD, but, Z[x] is not a PID. The implications in the proof above are not
reversible. An example of a PID which is not a Euclidean Domain is a bit harder to find. Gallian
gives a reference. I’ll add the following link: Tom Oldfield’s Construction of PIDs which are not
Euclidean Domains the other answer by Bill Dubuque is also useful. Both answers are a bit beyond
this course. I expect you to be aware of these results, but, I don’t expect you can actually produce
a PID which is not a Euclidean Domain. In contrast, knowing that Z[x] is a UFD but not a PID
is exactly the sort of thing you ought to know.

Theorem 3.7.12. If D is a unique factorization domain then D[x] is a unique factorization do-
main.

http://math.stackexchange.com/a/858120/36530
http://math.stackexchange.com/a/858120/36530


162 CHAPTER 3. INTRODUCTION TO RINGS AND FIELDS

Proof: I’ll give exactly as much proof as Gallian on this one. �

Next, we study an elegant proof of Eisenstein’s Criterion: ( stated as Theorem 3.5.18 in these notes)

Proof: (Gallian credits Richard Singer for the proof we give here). Suppose f(x) = anx
n +

an−1x
n−1 + · · · + a0 ∈ Z[x] and the prime p is such that p - an but p | aj for j = n − 1, . . . , 0

and p2 - a0. Suppose f(x) is reducible over Q. Then f(x) = g(x)h(x) in Z[x] by Theorem 3.5.11.
Notice modulo p the polynomial reduces to f(x) = anx

n hence anx
n = g(x) h(x). But, x is an

irreducible in Zp[x] and as Zp[x] is a UFD as Zp is a field we deduce that x | g(x) and x | h(x)

from which we deduce g(0) = 0 and h(0) = 0 thus p | g(0) and p | h(0) and f(x) = h(x)g(x) gives
f(0) = a0 = h(0)g(0) and we find p2 | a0 which is a contradiction. Consequently, f(x) is irreducible
over Q. �.

Example 3.7.13. A nice example where unique factorization fails is provided by Z[
√
−5]. Note

Z[
√
−5] forms a subring of C hence is commutative and has no zero divisors. Moreover, 1 = 1 +

0
√
−5 ∈ Z[

√
−5] hence Z[

√
−5] is an integral domain. We have multiplicative norm N(a+b

√
−5) =

a2 + 5b2. Solving
a2 + 5b2 = 1

we find just two solutions, a = 1, b = 0 or a = −1, b = 0. There are just the units −1, 1 thus judging
if a pair of elements are associates is quite easy. Observe,

46 = (2)(23) & 46 = (1 + 3
√
−5)(1− 3

√
−5)

It is immediately clear these the factors 2, 23, 1 + 3
√
−5 and 1 − 3

√
−5 are not associates. Fur-

thermore, their irreducibility may be shown from the usual arguments involving the norm. Suppose
2 = xy for some x, y ∈ Z[

√
−5] then N(2) = 4 = N(x)N(y) and if x, y are not units then we need

N(x) = N(y) = 2. Yet, a2 + 5b2 = 2 clearly has no solution in Z. Therefore, 2 is irreducible.
Similarly, if 23 = xy then we would need to find a solution to a2 + 5b2 = 23 to give solution to
23 = xy where x, y are not units. Explicit trial of reasonable Z rules out hope of a solution to
a2 + 5b2 = 23. Continuing, if 1 + 3

√
−5 = xy then N(1 + 3

√
−5) = 1 + 5(9) = 46 we require

N(x) = 2 and N(y) = 23 without loss of generality. Again, it is not possible to solve a2 + 5b2 = 2
over Z. In summary, we have provided two factorizations of 46 into irreducibles and there is no
hope these are equivalent up to associates and reordering. Z[

√
−5] is not a UFD.
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I recommend working on Exercises for Gallian Chapter 18 such as: (page 325-327)

#1− 37 (odds).

also, Supplemental Exercises for Chapters 15-18 (page 331-332)

#1− 35 (odds).

keep in mind the notation ⊕Gallian = ×me. Of course, I doubt anyone has time to do these all, but,
the more you do, the more you know. (incidentally, this homework is worth 150hpts, the 4-problem
assignments in the past are weighted 100hpts in contrast)

Problems for Lecture 29: (these are collected at the start of Lecture 31)

Problem 121: Calculate the gcd(α, β) for α = 12 + 3i and β = 6 − 9i. Use the vector Euclidean
algorithm much as in Example 3.7.5.

Problem 122: Gallian number 10 on page 325

Problem 123: Gallian number 14 from page 325.

Problem 124: Gallian number 19 from page 326.

Problem 125: Gallian number 7 from page 331.

Problem 126: Gallian number 24 from page 332.
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3.8 Lecture 30: extension fields

Here we follow Section 29 of Fraleigh’s Abstract Algebra. We have discovered and studied many
abstract fields in various lectures up to this point. This Lecture introduces the major elementary
theorems of field theory14.

Definition 3.8.1. A field E is an extension field of F if F ⊆ E and the operations of F are
those of E restricted to F . We call F the base field of the extension.

We already know several examples.

Example 3.8.2. R is an extension of Q.

Example 3.8.3. C is an extension of R.

We also may take note that:

Example 3.8.4. C is an extension of Q.

We’ve also studied other less common cases.

Example 3.8.5. The set Q(
√

2) = {a + b
√

2 | a, b ∈ Q} forms a subfield of R. We see Q(
√

2) as
an extension field of Q. Furthermore, we find R is an extension field of Q(

√
2).

Example 3.8.6. In Problem 95 (Gallian’s exercise 45 of page 262) we showed Z2[x]/〈x2 + x+ 1〉
is a field. Noting that {I, 1 + I} serves as an isomorphic copy of Z2 in Z2[x]/〈x2 + x+ 1〉 we find
Z2[x]/〈x2 + x + 1〉 is an extension of Z2. This field appears as the final example in Section 29 of
Fraleigh.

In the Example above we assume the reader is willing to identify a field which is isomorphic to Z2

as Z2. This slight abuse of language pervades this section. The field which is honestly extended is
usually an isomorphic copy of the field we propose to extend.

Theorem 3.8.7. Fundamental Theorem of Field Theory (Kronecker, 1887): let F be a
field and f(x) ∈ F [x] a nonconstant polynomial. Then there exists an extension field E of F in
which f(x) has a zero.

Proof: if F is a field and f(x) ∈ F [x] is a nonconstant polynomial then f(x) is not a unit and
hence there exists a factorization of f(x) into irreducibles by Corollary 3.7.9. Suppose p(x) is an
irreducible in the factorization of f(x); that is f(x) = p(x)g(x) for p(x) irreducible in F [x]. Suppose

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

We propose E = F [x]/〈p(x)〉. Since 〈p(x)〉 is irreducible it follows E is a field (see Corollary 3.5.22).
It remains to show f(x) has a zero in E. Let α = x+ 〈p(x)〉. Observe,

αj = (x+ 〈p(x)〉)j = xj + 〈p(x)〉

Hence,

p(α) =

n∑
aj=0

aj
(
xj + 〈p(x)〉

)
=

 n∑
aj=0

ajx
j

+ 〈p(x)〉 = p(x) + 〈p(x)〉 = 〈p(x)〉 = 0. �

The proof above tells us how to create a field with a zero for a given polynomial.

14not to be confused with field theory in physics, which, means something rather different
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Example 3.8.8. Consider f(x) = x2 + 4x+ 5 ∈ R[x]. Notice,

f(x) = (x+ 2)2 + 1

hence there is no real zero of f(x) and hence f(x) is irreducible over R. However, α = x + 〈x2 +
4x+ 5〉 will serve as a zero of f(x) in R[x]/〈x2 + 4x+ 5〉. Indeed,

f(α) = α2 + 4α+ 5

= (x2 + 〈f(x)〉) + (4x+ 〈f(x)〉) + 5 + 〈f(x)〉
= x2 + 4x+ 5 + 〈f(x)〉
= 〈f(x)〉.

Here f(α) is understood to be f(x) evaluated via the evaluation homomorphism. Furthermore,
notice that 5 ∈ R is replaced with 5 + 〈x2 + 4x + 5〉 in the evaluation. We cannot add 5 ∈ R to
cosets in R[x]/〈x2 + 4x + 5〉, but, the coset represented by 5 is in natural correspondance to 5. In
short, Fraleigh and other abstract algebra texts expect you to set 5 = 5 + 〈f(x)〉 in such discussions.
Admittedly, this is necessary, but, I’m not entirely pleased about the lack of discussion on this point.

I follow Fraleigh’s Example 29.5 next:

Example 3.8.9. The polynomial f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) is reducible over Q,
however, x2 − 2 and x2 − 3 are irreducible over Q. It follows we can form field Q[x]/〈x2 − 2〉 in
which the element α = x + 〈x2 − 2〉 satisfies α2 − 2 = 0. Likewise, β = x + 〈x2 − 3〉 satisfies
β2 − 3 = 0 in Q[x]/〈x2 − 3〉. In fact, f(α) = (α2 − 2)(α2 − 3) = (0)(α2 − 3) = 0 and f(β) =
(β2 − 2)(β2 − 3) = (β2 − 2)(0) = 0. We can calculate, viewing f(x) ∈ (Q(α))[x]

f(x) = (x+ α)(x− α)(x2 − 3)

whereas if we view f(x) ∈ (Q(β))[x]

f(x) = (x2 − 2)(x+ β)(x− β).

lSince Q(α) = Q[x]/〈x2 − 2〉 is a field we can form Q(α)[t] and study the quotient by 〈t2 − 3〉

Q(α)[t]/〈t2 − 3〉

in this extension field we obtain β = t + 〈t2 − 3〉 in the sense that β2 − 3 = 0 and viewing
f(x) ∈ Q(α)[t]/〈t2 − 3〉 we find

f(t) = (t+ α)(t− α)(t+ β)(t− β)

The notation Q(α, β) is also used to denote the smallest extension field of Q which contains α, β.

Definition 3.8.10. Let E be an extension field of a field F . An element α ∈ E is called algebraic
over F if there exists a nonzero polynomial f(x) ∈ F [x] for which f(α) = 0. An element α ∈ E
which is not algebraic is called transcendental over F .

At times I forget to mention the base field over which a given element is algebraic or transcendental.
This is not wise because a given number is both algebraic and transcendental depending on context.
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Example 3.8.11. Let α ∈ F a field then f(x) = x − α has f(α) = 0 thus viewing F = E we
find α ∈ F is algebraic over F . This means π is algebraic over R, i is algebraic over C etc... the
examples are endless here.

Example 3.8.12. α = i ∈ C is algebraic over R since f(x) = x2 + 1 has f(i) = i2 + 1 = 0.

Example 3.8.13.
√

2 is algebraic over Q(
√

3) since x2 − 2 ∈ Q(
√

3)[x] has
√

2 as a zero in the
extension field Q(

√
2,
√

3).

Example 3.8.14. In fact if d ∈ Z then
√
d is algebraic over Q since x2 − d ∈ Q[x] takes

√
d as

a zero. Here Q(
√
d) might be a real or complex extension field. Or, in the case d = n2 we have√

d = n ∈ Q so Q(
√
d) = Q.

Example 3.8.15. The real number α = 2 +
√

1 +
√

3 is algebraic over Q since

(α− 2)2 = 1 +
√

3 ⇒ (α− 2)2 − 1 =
√

3 ⇒ [(α− 2)2 − 1]2 = 3

thus α is a zero of the rational polynomial

f(x) = [(x− 2)2 − 1]2 − 3 = [x2 − 4x+ 3]2 − 3 = x4 − 8x3 + 22x2 − 24x+ 6.

Given a number constructed from a finite sequence of arithmetic operations such as addition, sub-
traction, multiplication and positive roots will be an algebraic number since we can play the game
we play here to systematically remove the radicals by successive squaring or cubing etc.

Proving the assertion of the next example would require significant effort on our part. However,
there are exercises in some calculus II texts to provide a good part of the proof. See Salas, Hille,
and Eitgen’s text for instance.

Example 3.8.16. π, e ∈ R are algebraic over R as x − π and x − e naturally take π and e as
zeros. However, there do not exist f(x) ∈ Q[x] for which f(π) = 0 or f(e) = 0 thus π and e are
transcendental over Q.

The common venacular for discussing number systems in number theory is given below.

Definition 3.8.17. If x ∈ C is algebraic over Q then we say x is an algebraic number. An
x ∈ C which is not algebraic over Q is known as a transcendental number.

The following Theorem is helpful towards understanding the structure of transcendental numbers
and how they behave in extension fields:

Theorem 3.8.18. Let E be an extension field of F and α ∈ E. Then α is transcendental over
F if and only if φα gives an isomorphism of F [x] with a subdomain of E. In particular, α is
transcendental if and only if φα is injective.

Proof: recall φα : F [x]→ E is the evaluation homomorphism of F [x] in the extension field E of F
where we often denote φα(f(x)) = f(α). In particular, we define

φα(anx
n + · · ·+ a1x+ a0) = anα

n + · · ·+ a1α+ a0

We know φα is a ring homomorphism. We know φα is an injection if and only if

Ker(φα) = {f(x) ∈ F [x] | f(α) = 0}
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In other words, φα is injective if and only if there is no polynomial f(x) ∈ F [x] for which f(α) = 0.
Thus, φα is injective iff α is transcendental over F . By the first isomorphism theorem of rings,
F [x]/Ker(φα) ≈ φα(F [x]) which provides F [x] ≈ φα(F [x]). �

The image of F [x] under φα is not a field in the case that α is transcendental. Essentially, it just
gives us polynomials in the transcendental.

Example 3.8.19. Consider π as transcendental over Q. If we denote the smallest field which
contains π and Q by Q(π) then it is not the case that Q(π) = φπ(Q[x]). We could write φπ(Q[x]) =
Q[π] as

φπ(Q[x]) = {a0 + a1π + a2π
2 + · · ·+ anπ

n | a0, . . . , an ∈ Q, n ∈ N ∪ {0}}.

In short, a transcendental number over Q behaves as an indeterminant. Incidentally, Q(π) is formed
by the field of fractions of Q[π]. You could think of Q(π) as rational functions in the variable π.
Generically, for a field F the integral domain F [x] is contained within the field of fractions F (x)
which is naturally associated with rational functions over F .

There is more to say about transcendental numbers, but, I think that’s all we have for our current
discussion. Let us return to the study of algebraic numbers. We’ve seen there is a natural interplay
between the number α and the polynomial which takes α as its zero. It is useful to develop some
notation to select a particular, most simple, polynomial corresponding to a given α. Consider:

Theorem 3.8.20. Let E be an extension field of F with α ∈ E such that α is algebraic over
F . Then there exists an irreducible polynomial p(x) ∈ F [x] for which p(α) = 0. Moreover, p(x)
is unique up to a multiplicative constant in F polynomial of least degree for which p(α) = 0.
Furthermore, if f(α) = 0 for f(x) ∈ F [x] and f(x) 6= 0 then p(x) divides f(x).

Proof: suppose F is a field with extension field E and α ∈ E is algebraic over F . As usual,
we use the evaluation homomorphism to define φα(f(x)) = f(α). Note, Ker(φα) is an ideal of
the F [x] hence, as we know F [x] is a principal ideal domain, there exists p(x) ∈ F [x] for which
Ker(φα) = 〈p(x)〉. By definition, p(α) = 0. If f(x) ∈ F [x] with f(α) = 0 then f(x) ∈ Ker(φα)
hence f(x) = g(x)p(x) for some g(x) ∈ F [x]. Observe p(x) is a polynomial of least degree which
takes α as a zero and p(x) | f(x).

To see p(x) is irreducible, suppose otherwise; that is suppose p(x) = g(x)h(x) with g(x), h(x)
noncontant. Hence p(α) = g(α)h(α) = 0. It follows g(x) has g(α) = 0, but this contradicts our
observation that p(x) is a polynomial of least degree for which α is a zero. We find p(x) is irreducible.

Uniqueness of p(x)? If 〈p(x)〉 = 〈q(x)〉 then as F [x] is an integral domain we know p(x) and q(x)
are associaties (see Theorem 3.6.9) hence as the units of F [x] are just nonzero constant polynomials
we find q(x) = cp(x) for some c ∈ F×. �

Recall a polynomial is monic if it has a leading coefficient of 1. For example, 2x2 + 1 is not monic
whereas x4 + 2x+ 3 is monic.

Definition 3.8.21. Let E be an extension field of F and suppose α ∈ E is algebraic over F . The
unique monic polynomial p(x) ∈ F [x] of least degree for which p(α) = 0 is known as the irreducible
polynomial for α over F . Define irr(α, F ) = p(x) and deg(α, F ) = deg(irr(α, F )) is the degree
of α over F .
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Example 3.8.22. Note
√

2 ∈ R is algebraic over Q and irr(
√

2,Q) = x2−2 hence deg(
√

2,Q) = 2.

Example 3.8.23. Note i ∈ C is algebraic over R and irr(i,R) = x2 + 1 hence deg(i,R) = 2.

Example 3.8.24. Observe number 5
√

2 is a zero of x5 − 2. Moreover, x5 − 2 is irreducible by
Eisenstein’s Criterion with p = 2. Hence irr( 5

√
2,Q) = x5 − 2 and we note 5

√
2 has degree 5 over Q

Definition 3.8.25. A field E is an simple extension of F if E is an extension field of F for
which there exists α ∈ E with F (α) = E. We define F (α) is the smallest field which contains F
and α. Likewise, F (α1, . . . , αn) is the smallest field which contains F and α1, . . . , αn.

Operationally, we could define F (α) as the intersection of all fields which contain F and α. We say
F (α) is the field F with α adjoined. Or, F (α1, . . . , αn) is F with α1, . . . , αn adjoined. I hope
you can forgive me for using some of this language without formally defining it earlier. Better late
than never I think.

Theorem 3.8.26. Let E be a simple extension F (α) of a field F with α algebraic over F and
deg(α, F ) = n ≥ 1. Then for each β ∈ E there exist unique b0, b1, . . . , bn−1 ∈ F for which:

β = b0 + b1α+ b2α
2 + · · ·+ bn−1α

n−1.

Proof: suppose E = F (α) where irr(α, F ) = p(x) = xn+an−1x
n−1+· · ·+a1x+a0. By construction,

p(α) = 0 hence

αn = −an−1α
n−1 − an−2α

n−2 − · · · − a1α− a0 = −
n−1∑
k=0

akα
k (?).

The smallest field containing15 α and F is given by the quotient F [x]/〈p(x)〉 where we identify
α = x+ 〈p(x)〉. Hence E = F [x]/〈p(x)〉 has arbitrary elements of the form b0 + b1α+ · · ·+ bmα

m

for m ∈ N. We use ? to reduce any expression with m ≥ n as follows: first, ? shows how to
reduce m = n. Suppose inductively there exist cj ∈ F for which αm =

∑n−1
j=0 cjα

j for some m ≥ n.
Consider,

αm+1 = ααm = α
n−1∑
j=0

cjα
j = cn−1α

n +
n−2∑
j=0

cjα
j+1 = −cn−1

n−1∑
k=0

akα
k +

n−1∑
k=1

ck−1α
k

Thus, αm+1 = −cn−1a0 +
∑n−1

k=1(ck−1 − cn−1ak)α
k which verifies the induction step. Next, we

consider uniqueness of the expansion. Suppose there exist b0, . . . , bn−1 ∈ F and b′0, . . . , b
′
n−1 ∈ F

for which

β = b0 + b1α+ b2α
2 + · · ·+ bn−1α

n−1 = b′0 + b′1α+ b′2α
2 + · · ·+ b′n−1α

n−1.

Define g(x) = (b′0 − b0) + (b′1 − b1)x+ · · ·+ (b′n−1 − bn−1)xn−1 and notice by construction of bj , b
′
j

we have g(α) = 0. Yet, deg(g(x)) = n − 1 and so we find g(x) = 0 as p(x) is the polynomial
of smallest positive degree for which p(α) = 0. Note g(x) = 0 only if all its coefficients are zero
hence b′j − bj = 0 for j = 0, . . . , n − 1 which proves b′0 = b0, b

′
1 = b1, . . . , b

′
n−1 = bn−1 hence the

representation of β in terms of the F -linear combination of {1, α, . . . , αn−1} is unique. �

The Corollary below follows immediately from the proof above since we know linear independence
of a set is equivalent to the equating coefficients property of a set of vectors.

15Fraleigh avoids this point by simply defining F (α) to be the quotient of F [x]/〈p(x)〉, see Case I on page 270
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Corollary 3.8.27. Let E be a simple extension F (α) of a field F with α algebraic over F and
deg(α, F ) = n ≥ 1. Then {1, α, . . . , αn−1} is a basis for F (α) as a vector space over F . Furthermore,
F (α) is a vector space of dimension n over F ; dim(F (α)) = deg(α, F ).

Example 3.8.28. The complex numbers C can be seen as a simple extension of R by i. Note
R(i) = C has irr(i,R) = x2 + 1 and in fact C is a vector space of dimension 2 over R with basis
{1, i}.

Our focus in this Lecture and the next is primarily on fields and their extensions. However, I must
say, many of the ideas we study here are available for application outside the context of polyno-
mials with coefficients in a field. Also, quotients by reducible polynomials can be interesting. For
example, R[x]/〈x2−1〉 forms a set with j = x+ 〈x2−1〉 satisfying the property j2 = 1. Numbers of
the form a+ bj are known as hyperbolic numbers. Hyperbolic numbers are a little tricky since
(1 + j)(1 − j) = 1 − j2 = 0 yet 1 ± j 6= 0. Perhaps we’ll study algebra constructions further once
we have completed our study of field extensions.

Problems for Lecture 30: (these are collected 11-30-16 )

Problem 127: Fraleigh page 272, number 5

Problem 128: Fraleigh page 272, number 7

Problem 129: Fraleigh page 272, number 12

Problem 130: Fraleigh page 272, number 16

Problem 131: Fraleigh page 273, number 23

Problem 132: Fraleigh page 273, number 25
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3.9 Lecture 31: algebraic extensions

Here we follow Section 31 of Fraleigh’s Abstract Algebra.

Definition 3.9.1. An extension E of F is called an algebraic extension of F if every element of
E is algebraic over F . If E is not an algebraic extension of F then it is called a transcendental
extension of F .

We used the notation [G : H] to represent the number of H-cosets in G where G was a finite group
and H ≤ G. The notation introduced below shouldn’t cause confusion as the meaning should be
clear from the context.

Definition 3.9.2. If an extension field E of a field F forms a vector space of finite dimension n
over F then we say E is a finite extension of degree n and we write [E : F ] = n

Suppose [E : F ] = 1 then we can argue E = F . Since F contains 1 it follows this forms a basis for
E hence F = E = span(1). In other words, if we have a vector space E over F which contains a
copy of F and the vector space E has dimension 1 then E = F . Conversely, if E = F then clearly
[E : F ] = 1. What follows is more interesting:

Theorem 3.9.3. A finite extension field E over a field F is an algebraic extension of F .

Proof: let α ∈ E where dim(E) = n over F . Observe the set S = {1, α, α2, . . . , αn} has (n + 1)-
vectors in E. Therefore, S is a linearly dependent subset of E. It follows there exist c0, c1, . . . , cn−1 ∈
F (not all zero) for which

c0 + c1α+ c2α
2 + · · ·+ cnα

n = 0.

Thus α is algebraic over F as the nonzero f(x) = c0 + c1x+ · · ·+ cnx
n ∈ F [x] has f(α) = 0. �

Theorem 3.9.4. If E is a finite extension field of a field F and K is a finite extension field of a
field F then [K : F ] = [K : E][E : F ].

Proof: suppose E = spanF {α1, . . . , αn} and K = spanE{β1, . . . , βm} where {αi} and {βj} form
basis for E and K respective. We propose S = {αiβj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} forms a basis for
K as a vector space over F . Let γ ∈ K = spanE{β1, . . . , βm} then there exist bj ∈ E for which
γ =

∑m
j=1 bjβj . But, for each j = 1, . . . ,m we have bj ∈ E = spanF {α1, . . . , αn} hence there exist

cij ∈ F for which bj =
∑n

i=1 cijαi. Substituting,

γ =

m∑
j=1

bjβj =

m∑
j=1

(
n∑
i=1

cijαi

)
βj =

n∑
i=1

m∑
j=1

cijαiβj

thus γ ∈ spanF (S) and it follows K = span(S). Linear independence of S over F follows naturally
from the linear independence of the bases {αi} and {βj}. In detail: if

n∑
i=1

m∑
j=1

cijαiβj = 0

then
n∑
i=1

 m∑
j=1

cijαi

βj = 0 ⇒
m∑
j=1

cijαi = 0
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for each j = 1, . . . ,m by linear independence of {β1, . . . , βm}. Then, for each j = 1, . . . ,m we may
argue

∑m
j=1 cijαi = 0 implies cij = 0 for each i = 1, . . . , n by linear independence of {α1, . . . , αn}.

In summary, cij = 0 for all i, j possible and we have established the linear independence of S. Note,
dimF (K) = mn whereas dimF (E) = n and dimE(K) = m in summary,

[K : F ] = dimF (K) = mn = dimE(K)dimF (E) = [K : E][E : F ]. �

Induction naturally extends the Theorem above to multiple extensions:

Corollary 3.9.5. If Fi is a field and Fi+1 is a finite extension of Fi for each i = 1, . . . , r then Fr
is a finite extension of F1 where [Fr : F1] = [Fr : Fr−1][Fr−1 : Fr−2] · · · [F2 : F1].

The next Corollary is a useful tool. It plays an important role in the study of contructible numbers.
Roughly, numbers which are constructible follow from quadratic extensions. If a particular number
amounts to a degree three extension then the fact that 2 - 3 forbids the construction of that
particular number. For example, the trisection of an angle by compass-straight-edge operations.

Corollary 3.9.6. If E is an extension field of F and α ∈ E is algebraic over F and β ∈ F (α) then
deg(β, F ) divides deg(α, F ).

Proof: suppose E is an extension field of F and α ∈ E is algebraic. If β ∈ F (α) then observe
F ≤ F (β) ≤ F (α). Thus, by Theorem 3.9.4,

[F (α) : F (β)][F (β) : F ] = [F (α) : F ] ⇒ [F (α) : F (β)]deg(β, F ) = deg(α, F ).

Thus, deg(β, F ) | deg(α, F ) and the Corollary follows. �

Example 3.9.7. Suppose Q(
√

2) has a zero β for x3 − 2. We have deg(β,Q) = 3 as x3 − 2 is
irreducible by Eisenstein’s Criterion with p = 2. If β ∈ Q(

√
2) then by the Corollary 3.9.9, 3 | 2.

Thus, no zero to x3 − 2 exists within Q(
√

2).

Example 3.9.8. Consider Q(
√

2) = {a+ b
√

2 | a, b ∈ Q} then

(Q(
√

2))(
3
√

2) = {c1 + c221/3 + c322/3 | c1, c2, c3 ∈ Q(
√

2)}

Observe c1 + c221/3 + c322/3 ∈ (Q(
√

2))( 3
√

2) can be expressed in terms of rational coefficients
a1, b1, a2, b2, a3, b3 ∈ Q as follows:

c1 + c221/3 + c322/3 = (a1 + b1
√

2) + (a2 + b2
√

2)21/3 + (a3 + b3
√

2)22/3

= a1 + b123/6 + a222/6 + b2a
5/6 + a324/6 + 2b321/6.

Thus (Q(
√

2))( 3
√

2) = Q(21/6). In other words, Q(21/2, 21/3) = Q(21/6).

Theorem 3.9.9. Let E be an algebraic extension field of F . Then there exist a finite number of
elements α1, α2, . . . , αn ∈ E such that E = F (α1, α2, . . . , αn) iff E is a finite extension of F

Proof: see page 286 of Fraleigh. �.

The primitive element in Steinitz’ Theorem below is the element c. Generally, if an extension
field E = F (c) then we say c is a primitive element of E.

Theorem 3.9.10. Primitive Element Theorem (Steinitz, 1910) If F is a field with Char(F ) =
0 and a, b are algebraic over F then there exists c ∈ F (a, b) such that F (a, b) = F (c).
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Proof: see page 367 of Gallian. �

In the case Char(F ) = p then we still the more complicated result given by Theorem 3.9.9.

Problems for Lecture 31: (these are collected 11-30-16 )

Problem 133: Fraleigh page 291, number 3

Problem 134: Fraleigh page 291, number 6

Problem 135: Fraleigh page 291, number 7

Problem 136: Fraleigh page 291, number 9

Problem 137: Fraleigh page 291, number 10

Problem 138: Fraleigh page 292, number 29
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3.10 Lecture 32: algebraically closed fields

I intend to discuss the end of Section 31 in Fraleigh and tie up any loose ends from the previous
Lectures on extension fields. I’ll probably follow pages 286-291 of Fraleigh fairly closely, omitting
some details as appropriate due to time constraints.
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