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Notation.

We use the standard notation: ℕ = {0, 1, 2, …}, ℤ = ring of integers, ℝ = field of real
numbers, ℂ = field of complex numbers, 𝔽𝑝 = ℤ∕𝑝ℤ = field with 𝑝 elements.

Given an equivalence relation, [∗] denotes the equivalence class containing ∗. The
cardinality of a set 𝑆 is denoted by |𝑆| (so |𝑆| is the number of elements in 𝑆when 𝑆 is
finite). Let 𝐼 and𝐴 be sets. A family of elements of𝐴 indexed by 𝐼, denoted by (𝑎𝑖)𝑖∈𝐼 , is a
function 𝑖 ↦ 𝑎𝑖 ∶ 𝐼 → 𝐴. Throughout the notes, 𝑝 is a prime number: 𝑝 = 2, 3, 5, 7, 11, ….
If 𝜎 is an element of a group, ⟨𝜎⟩ denotes the subgroup generated by 𝜎.

𝑋 ⊂ 𝑌 𝑋 is a subset of 𝑌 (not necessarily proper).
𝑋 def= 𝑌 indicates that the equality in question is a definition.
𝑋 ≈ 𝑌 𝑋 is isomorphic to 𝑌.
𝑋 ≃ 𝑌 𝑋 and 𝑌 are canonically isomorphic (or there is a given or unique isomorphism).

Following Bourbaki, we require compact spaces to be Hausdorff.

Prerequisites

Group theory (for example, GT), basic linear algebra, and some elementary theory of
rings.
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Chapter1

Basic De�nitions and Results

We require rings to have a 1, which entails that we require homomorphisms to preserve
it.

Rings

A ring is a set 𝑅 with two binary operations + and ⋅ such that
(a) (𝑅, +) is a commutative group;
(b) ⋅ is associative, and there exists an element 1𝑅 such that 𝑎 ⋅ 1𝑅 = 𝑎 = 1𝑅 ⋅ 𝑎 for all

𝑎 ∈ 𝑅;
(c) the distributive law holds: for all 𝑎, 𝑏, 𝑐 ∈ 𝑅,

(𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐
𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐.

We usually omit “⋅” and write 1 for 1𝑅 when this causes no confusion. If 1𝑅 = 0, then
the ring 𝑅 = {0}.

A subring of a ring 𝑅 is a subset 𝑆 that contains 1𝑅 and is closed under addition,
passage to the negative, and multiplication. It inherits the structure of a ring from that
on 𝑅.

A homomorphism of rings 𝛼∶ 𝑅 → 𝑅′ is a map such that

𝛼(𝑎 + 𝑏) = 𝛼(𝑎) + 𝛼(𝑏), 𝛼(𝑎𝑏) = 𝛼(𝑎)𝛼(𝑏), 𝛼(1𝑅) = 1𝑅′

for all 𝑎, 𝑏 ∈ 𝑅. A ring 𝑅 is said to be commutative if multiplication is commutative,

𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝑅.

A commutative ring is said to be an integral domain if 1𝑅 ≠ 0 and the cancellation law
holds for multiplication,

𝑎𝑏 = 𝑎𝑐, 𝑎 ≠ 0, implies 𝑏 = 𝑐.

An ideal 𝐼 in a commutative ring 𝑅 is a subgroup of (𝑅, +) that is closed under multipli-
cation by elements of 𝑅,

𝑟 ∈ 𝑅, 𝑎 ∈ 𝐼, implies 𝑟𝑎 ∈ 𝐼.
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8 1. Basic Definitions and Results

The ideal generated by elements 𝑎1, … , 𝑎𝑛 is denoted by (𝑎1, … , 𝑎𝑛). For example, (𝑎) is
the principal ideal 𝑎𝑅.

We assume that the reader has some familiarity with the elementary theory of rings.
For example, with the field of fractions of an integral domain, and with the quotient
𝑅∕𝐼 of a ring 𝑅 by an ideal 𝐼. This last is an integral domain if and only if 𝐼 is prime,
i.e., 𝐼 ≠ 𝑅 and 𝑎𝑏 ∈ 𝑅 implies in 𝑎 ∈ 𝑅 or 𝑏 ∈ 𝑅. Also, in ℤ (more generally, in any
Euclidean domain) an ideal 𝐼 is generated by any “smallest” nonzero element of 𝐼, and
unique factorization into powers of irreducible elements holds. We write gcd(𝑎, 𝑏) for
the greatest common divisor of 𝑎 and 𝑏, e.g., gcd(𝑎, 0) = 𝑎. An element of an integral
domain is irreducible if it is neither zero nor a unit and admits only trivial factorizations,
and it is prime if it is nonzero and generates a prime ideal — in a unique factorization
domain, the two notions coincide.

Fields

Definition 1.1 A field is a set 𝐹 with binary operations + and ⋅ such that
(a) (𝐹, +) is a commutative group;
(b) (𝐹×, ⋅), where 𝐹× def= 𝐹 ∖ {0}, is a commutative group;
(c) the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element has an
inverse. In particular, it is an integral domain. A field contains at least two distinct
elements, 0 and 1. The smallest, and one of the most important, fields is 𝔽2 = ℤ∕2ℤ =
{0, 1}.

A subfield 𝑆 of a field 𝐹 is a subring that is closed under passage to the inverse. It
inherits the structure of a field from that on 𝐹.

Lemma 1.2 A nonzero commutative ring 𝑅 is a field if and only if it has no ideals other
than (0) and 𝑅.

Proof. Suppose that 𝑅 is a field, and let 𝐼 be a nonzero ideal in 𝑅. If 𝑎 is a nonzero
element of 𝐼, then 1 = 𝑎−1𝑎 ∈ 𝐼, and so 𝐼 = 𝑅. Conversely, suppose that 𝑅 is a
commutative ring with no proper nonzero ideals. If 𝑎 ≠ 0, then (𝑎) = 𝑅, and so there
exists a 𝑏 in 𝑅 such that 𝑎𝑏 = 1. □

Example 1.3 The following are fields: ℚ, ℝ, ℂ, 𝔽𝑝 (𝑝 prime).

A homomorphism of fields is simply a homomorphism of rings. Such a homomor-
phism is always injective, because its kernel is a proper ideal (it doesn’t contain 1), which
must therefore be zero.

Let 𝐹 be a field. An 𝐹-algebra (or algebra over 𝐹) is a ring 𝑅 containing 𝐹 as a
subring. A homomorphism of 𝐹-algebras 𝛼∶ 𝑅 → 𝑅′ is a homomorphism of rings
such that 𝛼(𝑐) = 𝑐 for every 𝑐 ∈ 𝐹. An 𝐹-algebra 𝑅 is finite if it is finite-dimensional as
a 𝐹-vector space.

The characteristic of a field

One checks easily that the map

ℤ → 𝐹, 𝑛 ↦ 𝑛 ⋅ 1𝐹
def= 1𝐹 + 1𝐹 +⋯+ 1𝐹 (𝑛 copies of 1𝐹),



The characteristic of a field 9

is a homomorphism of rings. For example,

(1𝐹 +⋯+ 1𝐹⏟⎴⎴⏟⎴⎴⏟
𝑚

) + (1𝐹 +⋯+ 1𝐹⏟⎴⎴⏟⎴⎴⏟
𝑛

) = 1𝐹 +⋯+ 1𝐹⏟⎴⎴⏟⎴⎴⏟
𝑚+𝑛

because of the associativity of addition. Therefore its kernel is an ideal in ℤ.
Case 1: The kernel of the map is (0), so that

𝑛 ⋅ 1𝐹 = 0 (in 𝐹) ⟹ 𝑛 = 0 (in ℤ).

Nonzero integers map to invertible elements of 𝐹 under 𝑛 ↦ 𝑛 ⋅ 1𝐹 ∶ ℤ → 𝐹, and so this
map extends to a homomorphism

𝑚
𝑛 ↦ (𝑚 ⋅ 1𝐹)(𝑛 ⋅ 1𝐹)−1∶ ℚ ↪ 𝐹.

In this case, 𝐹 contains a copy of ℚ, and we say that it has characteristic zero.
Case 2: The kernel of themap is≠ (0), so that 𝑛⋅1𝐹 = 0 for some 𝑛 ≠ 0. The smallest

positive such 𝑛 is a prime 𝑝, because otherwise 𝐹 would contain two nonzero elements
whose product is zero, and 𝑝 generates the kernel. Thus, the map 𝑛 ↦ 𝑛 ⋅ 1𝐹 ∶ ℤ → 𝐹
defines an isomorphism from ℤ∕𝑝ℤ onto the subring

{𝑚 ⋅ 1𝐹 ∣ 𝑚 ∈ ℤ}

of 𝐹. In this case, 𝐹 contains a copy of 𝔽𝑝, and we say that it has characteristic 𝑝.
A field isomorphic to one of the fields 𝔽2, 𝔽3, 𝔽5, … ,ℚ is called a prime field. Every

field contains exactly one prime field (as a subfield).

1.4 More generally, a commutative ring 𝑅 is said to have characteristic 𝑝 (resp. 0) if it
contains a prime field of characteristic 𝑝 (resp. 0) as a subring.1 Then the prime field is
unique and, by definition, contains 1𝑅. If𝑅 has characteristic𝑝 ≠ 0, then 1𝑅+⋯+1𝑅 = 0
(𝑝 terms).

Let 𝑅 be a nonzero commutative ring. If 𝑅 has characteristic 𝑝 ≠ 0, then

𝑝𝑎 def= 𝑎 +⋯+ 𝑎⏟⎴⎴⏟⎴⎴⏟
𝑝 terms

= (1𝑅 +⋯+ 1𝑅)⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑝 terms

𝑎 = 0𝑎 = 0

for all 𝑎 ∈ 𝑅. Conversely, if 𝑝𝑎 = 0 for all 𝑎 ∈ 𝑅, then 𝑅 has characteristic 𝑝.
Let 𝑅 be a nonzero commutative ring. The usual argument by induction shows that

the binomial theorem holds in 𝑅,

(𝑎 + 𝑏)𝑚 = 𝑎𝑚 +
(𝑚
1
)
𝑎𝑚−1𝑏 +

(𝑚
2
)
𝑎𝑚−2𝑏2 +⋯+ 𝑏𝑚.

If 𝑝 is prime, then it divides (𝑝
𝑟
)
def= 𝑝!

𝑟!(𝑝 − 𝑟)!
for all 𝑟 with 1 ≤ 𝑟 ≤ 𝑝 − 1 because it divides the numerator but not the denominator.
Therefore, when 𝑅 has characteristic 𝑝,

(𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 for all 𝑎, 𝑏 ∈ 𝑅,
1A commutative ring has a characteristic if and only if it contains a field as a subring. For example,

neither ℤ nor 𝔽2 × 𝔽3 has a characteristic.



10 1. Basic Definitions and Results

and so the map 𝑎 ↦ 𝑎𝑝 ∶ 𝑅 → 𝑅 is a homomorphism of rings (even of 𝔽𝑝-algebras). It is
called the Frobenius endomorphism of 𝑅. The map 𝑎 ↦ 𝑎𝑝𝑛 ∶ 𝑅 → 𝑅, 𝑛 ≥ 1, is the
composite of 𝑛 copies of the Frobenius endomorphism, and so it also is a homomorphism.
Therefore,

(𝑎1 +⋯+ 𝑎𝑚)𝑝
𝑛 = 𝑎𝑝

𝑛

1 +⋯+ 𝑎𝑝
𝑛

𝑚

for all 𝑎𝑖 ∈ 𝑅.
When 𝐹 is a field, the Frobenius endomorphism is injective, and hence is an auto-

morphism if 𝐹 is finite.

The characteristic exponent of a field 𝐹 is 1 if 𝐹 has characteristic 0, and 𝑝 if 𝐹
has characteristic 𝑝 ≠ 0. Thus, if 𝑞 is the characteristic exponent of 𝐹 and 𝑛 ≥ 1, then
𝑥 ↦ 𝑥𝑞𝑛 is an isomorphism of 𝐹 onto a subfield of 𝐹 (denoted 𝐹𝑞𝑛).

Review of polynomial rings

Let 𝐹 be a field.

1.5 The ring 𝐹[𝑋] of polynomials in the symbol (or “indeterminate” or “variable”) 𝑋
with coefficients in 𝐹 is an 𝐹-vector space with basis 1, 𝑋, . . . , 𝑋𝑛, . . . , and with the
multiplication (∑

𝑖
𝑎𝑖𝑋𝑖

)
(
∑

𝑗
𝑏𝑗𝑋𝑗) =

∑
𝑘
(
∑

𝑖+𝑗=𝑘
𝑎𝑖𝑏𝑗)𝑋𝑘.

The 𝐹-algebra 𝐹[𝑋] has the following universal property: for any 𝐹-algebra 𝑅 and
element 𝑟 of 𝑅, there is a unique homomorphism of 𝐹-algebras 𝛼∶ 𝐹[𝑋] → 𝑅 such that
𝛼(𝑋) = 𝑟.

1.6 Division algorithm: given 𝑓(𝑋), 𝑔(𝑋) ∈ 𝐹[𝑋] with 𝑔 ≠ 0, there exist 𝑞(𝑋), 𝑟(𝑋) ∈
𝐹[𝑋] with 𝑟 = 0 or deg(𝑟) < deg(𝑔) such that

𝑓 = 𝑔𝑞 + 𝑟;

moreover, 𝑞(𝑋) and 𝑟(𝑋) are uniquely determined. Thus 𝐹[𝑋] is a Euclidean domain
with deg as norm, and so it is a unique factorization domain. A polynomial in 𝐹[𝑋] is
irreducible if it is nonconstant and not the product of two polynomials of lower degree.

1.7 Let 𝑓 ∈ 𝐹[𝑋] be nonconstant, and let 𝑎 ∈ 𝐹. The division algorithm shows that

𝑓 = (𝑋 − 𝑎)𝑞 + 𝑐

with 𝑞 ∈ 𝐹[𝑋] and 𝑐 ∈ 𝐹. Therefore, if 𝑎 is a root of 𝑓 (that is, 𝑓(𝑎) = 0), then 𝑋 − 𝑎
divides 𝑓. From unique factorization, it now follows that 𝑓 has at most deg(𝑓) roots (see
also Exercise 1-3).

1.8 Euclid’s algorithm: Let 𝑓(𝑋), 𝑔(𝑋) ∈ 𝐹[𝑋]. Euclid’s algorithm constructs polyno-
mials 𝑎(𝑋), 𝑏(𝑋), and 𝑑(𝑋) such that

𝑎(𝑋) ⋅ 𝑓(𝑋) + 𝑏(𝑋) ⋅ 𝑔(𝑋) = 𝑑(𝑋), deg(𝑎) < deg(𝑔), deg(𝑏) < deg(𝑓),

and 𝑑(𝑋) = gcd(𝑓, 𝑔).
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Recall how it goes. We may assume that deg(𝑓) ≥ deg(𝑔) since the argument is the
same in the opposite case. Using the division algorithm, we construct a sequence of
quotients and remainders

𝑓 = 𝑞0𝑔 + 𝑟0
𝑔 = 𝑞1𝑟0 + 𝑟1
𝑟0 = 𝑞2𝑟1 + 𝑟2
⋯

𝑟𝑛−2 = 𝑞𝑛𝑟𝑛−1 + 𝑟𝑛
𝑟𝑛−1 = 𝑞𝑛+1𝑟𝑛

with 𝑟𝑛 the last nonzero remainder. Then, 𝑟𝑛 divides 𝑟𝑛−1, hence 𝑟𝑛−2,. . . , hence 𝑔, and
hence 𝑓. Moreover,

𝑟𝑛 = 𝑟𝑛−2 − 𝑞𝑛𝑟𝑛−1 = 𝑟𝑛−2 − 𝑞𝑛(𝑟𝑛−3 − 𝑞𝑛−1𝑟𝑛−2) = ⋯ = 𝑎𝑓 + 𝑏𝑔

and so every common divisor of 𝑓 and 𝑔 divides 𝑟𝑛: we have shown that 𝑟𝑛 = gcd(𝑓, 𝑔).
Let 𝑎𝑓 + 𝑏𝑔 = 𝑑. If deg(𝑎) ≥ deg(𝑔), write 𝑎 = 𝑔𝑞 + 𝑟 with deg(𝑟) < deg(𝑔). Then

𝑟𝑓 + (𝑏 + 𝑞𝑓)𝑔 = 𝑑,

and 𝑏 + 𝑞𝑓 has degree < deg(𝑓) because (𝑏 + 𝑞𝑓)𝑔 = 𝑑 − 𝑟𝑓, which has degree <
deg(𝑔) + deg(𝑓).

PARI knows how to do Euclidean division: typing divrem(13,5) in PARI returns
[2, 3], meaning that 13 = 2×5+3, and gcd(48,87) returns the greatest common divisor
3 of 48 and 87.

1.9 Let 𝐼 be a nonzero ideal in 𝐹[𝑋], and let 𝑓 be a nonzero polynomial of least degree
in 𝐼; then 𝐼 = (𝑓) (because 𝐹[𝑋] is a Euclidean domain). When we choose 𝑓 to bemonic,
i.e., to have leading coefficient one, it is uniquely determined by 𝐼. Thus, there is a one-
to-one correspondence between the nonzero ideals of 𝐹[𝑋] and the monic polynomials
in 𝐹[𝑋]. The prime ideals correspond to the irreducible monic polynomials.

1.10 As 𝐹[𝑋] is an integral domain, we can form its field of fractions 𝐹(𝑋). Its elements
are quotients 𝑓∕𝑔, with 𝑓 and 𝑔 polynomials, 𝑔 ≠ 0, and 𝑓∕𝑔 = 𝑓′∕𝑔′ if and only if
𝑓𝑔′ = 𝑓′𝑔.

Factoring polynomials

The following results help in deciding whether a polynomial is reducible, and in finding
its factors.

Proposition 1.11 Let 𝑟 ∈ ℚ be a root of a polynomial

𝑎𝑚𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 +⋯+ 𝑎0, 𝑎𝑖 ∈ ℤ,

and write 𝑟 = 𝑐∕𝑑, 𝑐, 𝑑 ∈ ℤ, gcd(𝑐, 𝑑) = 1. Then 𝑐|𝑎0 and 𝑑|𝑎𝑚.

Proof. It is clear from the equation

𝑎𝑚𝑐𝑚 + 𝑎𝑚−1𝑐𝑚−1𝑑 +⋯+ 𝑎0𝑑𝑚 = 0

that 𝑑|𝑎𝑚𝑐𝑚, and therefore, 𝑑|𝑎𝑚. Similarly, 𝑐|𝑎0. □
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Example 1.12 The polynomial 𝑓(𝑋) = 𝑋3 − 3𝑋 − 1 is irreducible in ℚ[𝑋] because its
only possible roots are ±1, and 𝑓(1) ≠ 0 ≠ 𝑓(−1).

Proposition 1.13 (Gauss’s Lemma) Let 𝑓(𝑋) ∈ ℤ[𝑋]. If 𝑓(𝑋) factors nontrivially in
ℚ[𝑋], then it factors nontrivially in ℤ[𝑋].

Proof. Let 𝑓 = 𝑔ℎ in ℚ[𝑋] with 𝑔, ℎ nonconstant. For suitable integers 𝑚 and 𝑛,
𝑔1

def= 𝑚𝑔 and ℎ1
def= 𝑛ℎ have coefficients in ℤ, and so we have a factorization

𝑚𝑛𝑓 = 𝑔1 ⋅ ℎ1 in ℤ[𝑋].

If a prime number 𝑝 divides𝑚𝑛, then, looking modulo 𝑝, we obtain an equation

0 = 𝑔1 ⋅ ℎ1 in 𝔽𝑝[𝑋].

Since 𝔽𝑝[𝑋] is an integral domain, this implies that 𝑝 divides all the coefficients of one
of the polynomials 𝑔1, ℎ1, say 𝑔1, so that 𝑔1 = 𝑝𝑔2 for some 𝑔2 ∈ ℤ[𝑋]. Thus, we have a
factorization

(𝑚𝑛∕𝑝)𝑓 = 𝑔2 ⋅ ℎ1 in ℤ[𝑋].

Continuing in this fashion, we eventually remove all the prime factors of 𝑚𝑛, and so
obtain a nontrivial factorization of 𝑓 in ℤ[𝑋]. □

Proposition 1.14 If 𝑓 ∈ ℤ[𝑋] is monic, then every monic factor of 𝑓 in ℚ[𝑋] lies in
ℤ[𝑋].

Proof. Let 𝑔 be a monic factor of 𝑓 in ℚ[𝑋], so that 𝑓 = 𝑔ℎ with ℎ ∈ ℚ[𝑋] also
monic. Let𝑚, 𝑛 be positive integers, chosen to have the fewest prime factors, such that
𝑚𝑔, 𝑛ℎ ∈ ℤ[𝑋]. As in the proof of Gauss’s Lemma, if a prime 𝑝 divides 𝑚𝑛, then it
divides all the coefficients of one of the polynomials 𝑚𝑔, 𝑛ℎ, say 𝑚𝑔, in which case it
divides𝑚 because 𝑔 is monic. Now 𝑚

𝑝
𝑔 ∈ ℤ[𝑋], which contradicts the definition of𝑚.□

Aside 1.15 We sketch an alternative proof of Proposition 1.14. A complex number 𝛼 is said to
be an algebraic integer if it is a root of a monic polynomial inℤ[𝑋]. Proposition 1.11 shows that
every algebraic integer inℚ lies in ℤ. The algebraic integers form a subring of ℂ— see Theorem
6.5 of my notes on Commutative Algebra. Now let 𝛼1, … , 𝛼𝑚 be the roots of 𝑓 in ℂ. By definition,
they are algebraic integers, and the coefficients of any monic factor of 𝑓 are polynomials in
(certain of) the 𝛼𝑖 , and therefore are algebraic integers. If they lie in ℚ, then they lie in ℤ.

Proposition 1.16 (Eisenstein’s criterion) Let

𝑓 = 𝑎𝑚𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 +⋯+ 𝑎0, 𝑎𝑖 ∈ ℤ;

suppose that there is a prime number 𝑝 such that:
⋄ 𝑝 does not divide 𝑎𝑚,
⋄ 𝑝 divides 𝑎𝑚−1, ..., 𝑎0,
⋄ 𝑝2 does not divide 𝑎0.

Then 𝑓 is irreducible inℚ[𝑋].
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Proof. If 𝑓(𝑋) factors nontrivially in ℚ[𝑋], then it factors nontrivially in ℤ[𝑋], say,

𝑎𝑚𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 +⋯+ 𝑎0 = (𝑏𝑟𝑋𝑟 +⋯+ 𝑏0)(𝑐𝑠𝑋𝑠 +⋯+ 𝑐0)

with 𝑏𝑖, 𝑐𝑖 ∈ ℤ and 𝑟, 𝑠 < 𝑚. Since 𝑝, but not 𝑝2, divides 𝑎0 = 𝑏0𝑐0, 𝑝must divide exactly
one of 𝑏0, 𝑐0, say, 𝑏0. Now from the equation

𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0,

we see that 𝑝|𝑏1, and from the equation

𝑎2 = 𝑏0𝑐2 + 𝑏1𝑐1 + 𝑏2𝑐0,

that𝑝|𝑏2. By continuing in thisway, wefind that𝑝 divides 𝑏0, 𝑏1, … , 𝑏𝑟, which contradicts
the condition that 𝑝 does not divide 𝑎𝑚. □

The last three propositions hold mutatis mutandis with ℤ replaced by a unique
factorization domain𝑅 (replaceℚwith the field of fractions of𝑅 and𝑝with an irreducible
element of 𝑅).

Remark 1.17 There is an algorithm for factoring a polynomial in ℚ[𝑋]. To see this,
consider 𝑓 ∈ ℚ[𝑋]. Multiply 𝑓(𝑋) by a rational number so that it is monic, and then
replace it by 𝐷deg(𝑓)𝑓(𝑋

𝐷
), with 𝐷 equal to a common denominator for the coefficients of

𝑓, to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

𝑓(𝑋) = 𝑋𝑚 + 𝑎1𝑋𝑚−1 +⋯+ 𝑎𝑚, 𝑎𝑖 ∈ ℤ.
From the fundamental theorem of algebra (see Theorem 5.6 below), we know that 𝑓

splits completely in ℂ[𝑋],

𝑓(𝑋) =
∏𝑚

𝑖=1
(𝑋 − 𝛼𝑖), 𝛼𝑖 ∈ ℂ.

From the equation
0 = 𝑓(𝛼𝑖) = 𝛼𝑚𝑖 + 𝑎1𝛼𝑚−1𝑖 +⋯+ 𝑎𝑚,

it follows that |𝛼𝑖| is less than some bound depending only on the degree and coefficients
of 𝑓; in fact,

|𝛼𝑖| ≤ max{1,𝑚𝐵}, 𝐵 = max |𝑎𝑖|.
Now if 𝑔(𝑋) is a monic factor of 𝑓(𝑋), then its roots in ℂ are certain of the 𝛼𝑖, and its
coefficients are symmetric polynomials in its roots (see p. 78). Therefore, the absolute
values of the coefficients of 𝑔(𝑋) are bounded in terms of the degree and coefficients of 𝑓.
Since they are also integers (by 1.14), we see that there are only finitely many possibilities
for 𝑔(𝑋). Thus, to find the factors of 𝑓(𝑋) we (better PARI) only have to make a finite
search.2

We shall not concern ourselves with the problem of factoring polynomials inℚ[𝑋] or
𝔽𝑝[𝑋] because PARI knowshow to do this. For example, typing content(6*X^2+18*X-24)
in PARI returns 6, and factor(6*X^2+18*X-24) returns 𝑋 − 1 and 𝑋 + 4, showing that

6𝑋2 + 18𝑋 − 24 = 6(𝑋 − 1)(𝑋 + 4) in ℚ[𝑋].

Typing factormod(X^2+3*X+3,7) returns 𝑋 + 4 and 𝑋 + 6, showing that

𝑋2 + 3𝑋 + 3 = (𝑋 + 4)(𝑋 + 6) in 𝔽7[𝑋].
2Of course, there are much faster methods. For example, the Berlekamp–Zassenhaus algorithm factors

the polynomial over certain suitable finite fields 𝔽𝑝, lifts the factorizations to ringsℤ∕𝑝𝑚ℤ for some𝑚, and
then searches for factorizations in ℤ[𝑋] with the correct form modulo 𝑝𝑚. See the Wikipedia.



14 1. Basic Definitions and Results

Remark 1.18 One other observation is useful. Let 𝑓 ∈ ℤ[𝑋]. If the leading coefficient
of 𝑓 is not divisible by a prime 𝑝, then a nontrivial factorization 𝑓 = 𝑔ℎ in ℤ[𝑋] will
give a nontrivial factorization 𝑓 = 𝑔̄ℎ̄ in 𝔽𝑝[𝑋]. Thus, if 𝑓(𝑋) is irreducible in 𝔽𝑝[𝑋] for
some prime 𝑝 not dividing its leading coefficient, then it is irreducible in ℤ[𝑋].

This test is very useful, but it is not always effective: for example, 𝑋4 − 10𝑋2 + 1 is
irreducible in ℤ[𝑋] but it is reducible modulo every prime 𝑝. We prove this using only
that the product of two nonsquares in 𝔽×𝑝 is a square, which follows from the fact that
𝔽×𝑝 is cyclic (see Exercise 1-3). If 𝑝 is such that 2 is a square in 𝔽𝑝, then

𝑋4 − 10𝑋2 + 1 = (𝑋2 − 2
√
2𝑋 − 1)(𝑋2 + 2

√
2𝑋 − 1).

If 𝑝 is such that 3 is a square in 𝔽𝑝, then

𝑋4 − 10𝑋2 + 1 = (𝑋2 − 2
√
3𝑋 + 1)(𝑋2 + 2

√
3𝑋 + 1).

If neither 2 nor 3 is a square in 𝔽𝑝, then 6 is a square in 𝔽𝑝, and

𝑋4 − 10𝑋2 + 1 = (𝑋2 − (5 + 2
√
6))(𝑋2 − (5 − 2

√
6)).

The general study of such polynomials requires nonelementary methods. See, for exam-
ple, the paper Brandl, Amer. Math. Monthly, 93 (1986), pp. 286–288, which proves that
for every composite integer 𝑛 ≥ 1, there exists a polynomial in ℤ[𝑋] of degree 𝑛 that is
irreducible over ℤ but reducible modulo all primes.

Extensions

Let 𝐹 be a field. An extension of 𝐹 is field containing 𝐹 as a subfield. In other words,
an extension is an 𝐹-algebra whose underlying ring is a field. An extension 𝐸 of 𝐹 is, in
particular, an 𝐹-vector space, whose dimension is called the degree [𝐸 ∶ 𝐹] of 𝐸 over 𝐹.
An extension is said to be finite (resp. quadratic, cubic, etc.) if its degree is finite (resp.
2, 3, etc.).

When 𝐸 and 𝐸′ are extensions of 𝐹, an 𝐹-homomorphism 𝐸 → 𝐸′ is a homomor-
phism 𝜑∶ 𝐸 → 𝐸′ such that 𝜑(𝑐) = 𝑐 for all 𝑐 ∈ 𝐹. An 𝐹-isomorphism is a bijective
𝐹-homomorphism.

Example 1.19 (a) The field of complex numbers ℂ has degree 2 over ℝ (basis {1, 𝑖}).
(b) The field of real numbers ℝ has infinite degree overℚ: the fieldℚ is countable,

and so every finite-dimensionalℚ-vector space is also countable, but a famous argument
of Cantor shows that ℝ is not countable.

(c) The field of Gaussian numbers

ℚ(𝑖) def= {𝑎 + 𝑏𝑖 ∈ ℂ ∣ 𝑎, 𝑏 ∈ ℚ}

has degree 2 over ℚ (basis {1, 𝑖}).
(d) The field 𝐹(𝑋) has infinite degree over 𝐹; in fact, even its subspace 𝐹[𝑋] has

infinite dimension over 𝐹 (basis 1, 𝑋, 𝑋2, …).

Proposition 1.20 (multiplicativity of degrees) Consider fields 𝐿 ⊃ 𝐸 ⊃ 𝐹. Then
𝐿∕𝐹 is of finite degree if and only if 𝐿∕𝐸 and 𝐸∕𝐹 are both of finite degree, in which case

[𝐿∶ 𝐹] = [𝐿∶ 𝐸][𝐸 ∶ 𝐹].
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Proof. If 𝐿 is finite over 𝐹, then it is certainly finite over 𝐸; moreover, 𝐸, being a
subspace of a finite-dimensional 𝐹-vector space, is also finite-dimensional.

Thus, assume that 𝐿∕𝐸 and 𝐸∕𝐹 are of finite degree, and let (𝑒𝑖)1≤𝑖≤𝑚 be a basis for 𝐸
as an 𝐹-vector space and let (𝑙𝑗)1≤𝑗≤𝑛 be a basis for 𝐿 as an 𝐸-vector space. We’ll complete
the proof by showing that (𝑒𝑖𝑙𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛 is a basis for 𝐿 over 𝐹.

First, (𝑒𝑖𝑙𝑗)𝑖,𝑗 spans 𝐿. Let 𝛾 ∈ 𝐿. Then, because (𝑙𝑗)𝑗 spans 𝐿 as an 𝐸-vector space,

𝛾 = ∑
𝑗 𝛼𝑗𝑙𝑗, some 𝛼𝑗 ∈ 𝐸,

and because (𝑒𝑖)𝑖 spans 𝐸 as an 𝐹-vector space,

𝛼𝑗 =
∑

𝑖 𝑎𝑖𝑗𝑒𝑖, some 𝑎𝑖𝑗 ∈ 𝐹.

On putting these together, we find that

𝛾 = ∑
𝑖,𝑗 𝑎𝑖𝑗𝑒𝑖𝑙𝑗.

Second, (𝑒𝑖𝑙𝑗)𝑖,𝑗 is linearly independent. A linear relation
∑𝑎𝑖𝑗𝑒𝑖𝑙𝑗 = 0, 𝑎𝑖𝑗 ∈ 𝐹,

can be rewritten
∑

𝑗(
∑

𝑖 𝑎𝑖𝑗𝑒𝑖)𝑙𝑗 = 0. The linear independence of the 𝑙𝑗 now shows that∑
𝑖 𝑎𝑖𝑗𝑒𝑖 = 0 for each 𝑗, and the linear independence of the 𝑒𝑖 shows that each 𝑎𝑖𝑗 = 0.□

The subring generated by a subset

An intersection of subrings of a ring is again a ring (this is easy to prove). Let 𝐹 be
a subfield of a field 𝐸 and 𝑆 a subset of 𝐸. The intersection of all the subrings of 𝐸
containing 𝐹 and 𝑆 is obviously the smallest subring of 𝐸 containing both 𝐹 and 𝑆. We
call it the subring of 𝐸 generated by 𝐹 and 𝑆 (or the 𝐹-algebra generated by 𝑆), and
we denote it by 𝐹[𝑆]. When 𝑆 = {𝛼1, ..., 𝛼𝑛}, we write 𝐹[𝛼1, ..., 𝛼𝑛] for 𝐹[𝑆]. For example,
ℂ = ℝ[

√
−1].

Lemma 1.21 The ring 𝐹[𝑆] consists of the elements of 𝐸 that can be expressed as finite
sums of the form

∑
𝑎𝑖1⋯𝑖𝑛𝛼

𝑖1
1 ⋯𝛼𝑖𝑛𝑛 , 𝑎𝑖1⋯𝑖𝑛 ∈ 𝐹, 𝛼𝑖 ∈ 𝑆, 𝑖𝑗 ∈ ℕ. (1)

Proof. Let 𝑅 be the set of all such elements. Obviously, 𝑅 is a subring of 𝐸 containing
𝐹 and 𝑆 and contained in every other such subring. Therefore it equals 𝐹[𝑆]. □

Example 1.22 The ringℚ[𝜋], 𝜋 = 3.14159..., consists of the real numbers that can be
expressed as a finite sum

𝑎0 + 𝑎1𝜋 + 𝑎2𝜋2 +⋯+ 𝑎𝑛𝜋𝑛, 𝑎𝑖 ∈ ℚ.

The ring ℚ[𝑖] consists of the complex numbers of the form 𝑎 + 𝑏𝑖, 𝑎, 𝑏 ∈ ℚ.

Note that the expression of an element in the form (1) will not be unique in general.
This is so already in ℝ[𝑖].

Lemma 1.23 Let 𝑅 be a finite 𝐹-algebra. If 𝑅 is an integral domain, then it is a field.

Proof. Let 𝛼 be a nonzero element of 𝑅—we have to show that 𝛼 has an inverse in
𝑅. The map 𝑥 ↦ 𝛼𝑥∶ 𝑅 → 𝑅 is an injective linear map of finite-dimensional 𝐹-vector
spaces, and is therefore surjective. In particular, there is an element 𝛽 ∈ 𝑅 such that
𝛼𝛽 = 1. □

In particular, every subring (containing 𝐹) of a finite extension of 𝐹 is a field.
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The subfield generated by a subset

An intersection of subfields of a field is again a field. Let 𝐹 be a subfield of a field 𝐸
and 𝑆 a subset of 𝐸. The intersection of all the subfields of 𝐸 containing 𝐹 and 𝑆 is
obviously the smallest subfield of 𝐸 containing both 𝐹 and 𝑆. We call it the subfield of
𝐸 generated by 𝐹 and 𝑆 (or generated over 𝐹 by 𝑆), and we denote it by 𝐹(𝑆). It is
the field of fractions of 𝐹[𝑆] in 𝐸 because this is a subfield of 𝐸 containing 𝐹 and 𝑆 and
contained in every other such field. When 𝑆 = {𝛼1, ..., 𝛼𝑛}, we write 𝐹(𝛼1, ..., 𝛼𝑛) for 𝐹(𝑆).
Thus, 𝐹[𝛼1, … , 𝛼𝑛] consists of all elements of 𝐸 that can be expressed as polynomials in
the 𝛼𝑖 with coefficients in 𝐹, and 𝐹(𝛼1, … , 𝛼𝑛) consists of all elements of 𝐸 that can be
expressed as a quotient of two such polynomials.

Lemma 1.23 shows that 𝐹[𝑆] is already a field if it is finite-dimensional over 𝐹, in
which case 𝐹(𝑆) = 𝐹[𝑆].

Example 1.24 (a) The field ℚ(𝜋), 𝜋 = 3.14…, consists of the complex numbers that
can be expressed as a quotient

𝑔(𝜋)∕ℎ(𝜋), 𝑔(𝑋), ℎ(𝑋) ∈ ℚ[𝑋], ℎ(𝑋) ≠ 0.

(b) The ring ℚ[𝑖] is already a field.

An extension 𝐸 of 𝐹 is said to be simple if 𝐸 = 𝐹(𝛼) some 𝛼 ∈ 𝐸. For example,ℚ(𝜋)
and ℚ[𝑖] are simple extensions of ℚ.

Let 𝐹 and 𝐹′ be subfields of a field 𝐸. The intersection of the subfields of 𝐸 containing
both 𝐹 and 𝐹′ is obviously the smallest subfield of 𝐸 containing both 𝐹 and 𝐹′. We call
it the composite of 𝐹 and 𝐹′ in 𝐸, and we denote it by 𝐹 ⋅ 𝐹′. It can also be described as
the subfield of 𝐸 generated over 𝐹 by 𝐹′, or the subfield generated over 𝐹′ by 𝐹:

𝐹(𝐹′) = 𝐹 ⋅ 𝐹′ = 𝐹′(𝐹).

Construction of some extensions

Let 𝑓(𝑋) ∈ 𝐹[𝑋] be amonic polynomial of degree𝑚, and let (𝑓) be the ideal generated by
𝑓(𝑋). Consider the quotient ring 𝐹[𝑋]∕(𝑓), and write 𝑥 for the image of 𝑋 in 𝐹[𝑋]∕(𝑓),
i.e., 𝑥 is the coset 𝑋 + (𝑓(𝑋)).

(a) The map
𝑃(𝑋) ↦ 𝑃(𝑥)∶ 𝐹[𝑋] → 𝐹[𝑥]

is an 𝐹-homomorphism sending 𝑓(𝑋) to 0. Therefore, 𝑓(𝑥) = 0.
(b) The division algorithm shows that every element 𝑔 of 𝐹[𝑋]∕(𝑓) is represented

by a unique polynomial 𝑟 of degree < 𝑚. Hence each element of 𝐹[𝑥] can be expressed
uniquely as a sum

𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑚−1𝑥𝑚−1, 𝑎𝑖 ∈ 𝐹. (2)

(c) To add two elements, expressed in the form (2), simply add the corresponding
coefficients.

(d) To multiply two elements expressed in the form (2), multiply in the usual way,
and use the relation 𝑓(𝑥) = 0 to express the monomials of degree ≥ 𝑚 in 𝑥 in terms of
lower degree monomials.

(e)Now assume that 𝑓(𝑋) is irreducible. Then every nonzero 𝛼 ∈ 𝐹[𝑥] has an inverse,
which can be found as follows. Use (b) to write 𝛼 = 𝑔(𝑥) with 𝑔(𝑋) a polynomial of
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degree≤ 𝑚−1, and apply Euclid’s algorithm in 𝐹[𝑋] to find polynomials 𝑎(𝑋) and 𝑏(𝑋)
such that

𝑎(𝑋)𝑓(𝑋) + 𝑏(𝑋)𝑔(𝑋) = 𝑑(𝑋)

with 𝑑(𝑋) the gcd of 𝑓 and 𝑔. In our case, 𝑑(𝑋) is 1 because 𝑓(𝑋) is irreducible and
deg 𝑔(𝑋) < deg 𝑓(𝑋). When we replace 𝑋 with 𝑥, the equality becomes

𝑏(𝑥)𝑔(𝑥) = 1.

Hence 𝑏(𝑥) is the inverse of 𝑔(𝑥).
We have proved the following statement.

1.25 For a monic irreducible polynomial 𝑓(𝑋) of degree𝑚 in 𝐹[𝑋],

𝐹[𝑥] def= 𝐹[𝑋]∕(𝑓(𝑋))

is a field of degree𝑚 over 𝐹. Computations in 𝐹[𝑥] come down to computations in 𝐹.

Note that, because 𝐹[𝑥] is a field, 𝐹(𝑥) = 𝐹[𝑥].3

Example 1.26 Let 𝑓(𝑋) = 𝑋2 + 1 ∈ ℝ[𝑋]. Then ℝ[𝑥] has
elements: 𝑎 + 𝑏𝑥, 𝑎, 𝑏 ∈ ℝ;
addition: (𝑎 + 𝑏𝑥) + (𝑎′ + 𝑏′𝑥) = (𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝑥;
multiplication: (𝑎 + 𝑏𝑥)(𝑎′ + 𝑏′𝑥) = (𝑎𝑎′ − 𝑏𝑏′) + (𝑎𝑏′ + 𝑎′𝑏)𝑥;
inverses: in this case, it is possible write down the inverse of 𝑎 + 𝑏𝑥 directly.

We usually write 𝑖 for 𝑥 and ℂ for ℝ[𝑥].

Example 1.27 Let 𝑓(𝑋) = 𝑋3 − 3𝑋 − 1 ∈ ℚ[𝑋]. We observed in (1.12) that this is
irreducible over ℚ, and so ℚ[𝑥] is a field. It has basis {1, 𝑥, 𝑥2} as a ℚ-vector space. Let

𝛽 = 𝑥4 + 2𝑥3 + 3 ∈ ℚ[𝑥].

Using that 𝑥3 − 3𝑥 − 1 = 0, we find that 𝛽 = 3𝑥2 + 7𝑥 + 5. Because 𝑋3 − 3𝑋 − 1 is
irreducible,

gcd(𝑋3 − 3𝑋 − 1, 3𝑋2 + 7𝑋 + 5) = 1.

In fact, Euclid’s algorithm gives
(
𝑋3 − 3𝑋 − 1

)(−7
37
𝑋 + 29

111

)
+
(
3𝑋2 + 7𝑋 + 5

)( 7
111
𝑋2 − 26

111
𝑋 + 28

111

)
= 1.

Hence (
3𝑥2 + 7𝑥 + 5

)( 7
111
𝑥2 − 26

111
𝑥 + 28

111

)
= 1,

and we have found the inverse of 𝛽.
We can also do this in PARI: b=Mod(X^4+2*X^3+3,X^3-3*X-1) reveals that 𝛽 =

3𝑥2 + 7𝑥 + 5 in ℚ[𝑥], and b^(-1) reveals that 𝛽−1 = 7
111
𝑥2 − 26

111
𝑥 + 28

111
.

3Thus, we can denote it by 𝐹(𝑥) or by 𝐹[𝑥]. The former is more common, but I use 𝐹[𝑥] to emphasize
the fact that its elements are polynomials in 𝑥.
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Stem fields

Let 𝑓 be a monic irreducible polynomial in 𝐹[𝑋]. A pair (𝐸, 𝛼) consisting of an extension
𝐸 of 𝐹 and an 𝛼 ∈ 𝐸 is called4 a stem field for 𝑓 if 𝐸 = 𝐹[𝛼] and 𝑓(𝛼) = 0. For example,
the pair (𝐸, 𝛼) with 𝐸 = 𝐹[𝑋]∕(𝑓) = 𝐹[𝑥] and 𝛼 = 𝑥 is a stem field for 𝑓. Let (𝐸, 𝛼) be a
stem field, and consider the surjective homomorphism of 𝐹-algebras

𝑔(𝑋) ↦ 𝑔(𝛼)∶ 𝐹[𝑋] → 𝐸.

Its kernel is generated by a nonzero monic polynomial, which divides 𝑓, and so must
equal 𝑓. Therefore the homomorphism defines an 𝐹-isomorphism

𝑥 ↦ 𝛼∶ 𝐹[𝑥] → 𝐸, where 𝐹[𝑥] = 𝐹[𝑋]∕(𝑓).

In other words, the stem field (𝐸, 𝛼) of 𝑓 is 𝐹-isomorphic to the standard stem field
(𝐹[𝑋]∕(𝑓), 𝑥). It follows that every element of a stem field (𝐸, 𝛼) for 𝑓 can be written
uniquely in the form

𝑎0 + 𝑎1𝛼 +⋯+ 𝑎𝑚−1𝛼𝑚−1, 𝑎𝑖 ∈ 𝐹, 𝑚 = deg(𝑓),

and that arithmetic in 𝐹[𝛼] can be performed using the same rules as in 𝐹[𝑥]. If (𝐸′, 𝛼′)
is a second stem field for 𝑓, then there is a unique 𝐹-isomorphism 𝐸 → 𝐸′ sending 𝛼 to
𝛼′. We sometimes abbreviate “stem field (𝐹[𝛼], 𝛼)” to “stem field 𝐹[𝛼]”.

Algebraic and transcendental elements

Let 𝐹 be a field and 𝐸 an integral domain containing 𝐹 as a subring. An element 𝛼 of 𝐸
defines a homomorphism

𝑓(𝑋) ↦ 𝑓(𝛼)∶ 𝐹[𝑋] → 𝐸.

There are two possibilities.
Case 1: The kernel of the map is (0), so that, for 𝑓 ∈ 𝐹[𝑋],

𝑓(𝛼) = 0 ⟹ 𝑓 = 0 (in 𝐹[𝑋]).

In this case, we say that𝛼 transcendental over𝐹. The homomorphism𝑋 ↦ 𝛼∶ 𝐹[𝑋] →
𝐹[𝛼] is an isomorphism, and it extends to an isomorphism 𝐹(𝑋) → 𝐹(𝛼) if 𝐸 is a field.

Case 2: The kernel is ≠ (0), so that 𝑔(𝛼) = 0 for some nonzero 𝑔 ∈ 𝐹[𝑋]. In this
case, we say that 𝛼 is algebraic over 𝐹. The polynomials 𝑔 such that 𝑔(𝛼) = 0 form a
nonzero ideal in 𝐹[𝑋], which is generated by the monic polynomial 𝑓 of least degree
such 𝑓(𝛼) = 0. We call 𝑓 theminimal (orminimum) polynomial of 𝛼 over 𝐹.5 It is
irreducible, because otherwise there would be two nonzero elements of 𝐸 whose product
is zero.

The minimal polynomial is characterized as an element of 𝐹[𝑋] by each of the
following conditions,
⋄ 𝑓 is monic, 𝑓(𝛼) = 0, and 𝑓 divides every other 𝑔 in 𝐹[𝑋] such that 𝑔(𝛼) = 0;
4Following A.A.Albert (Modern Higher Algebra, 1937) who calls the splitting field of a polynomial its

root field.
5When we order the polynomials by degree, 𝑓 is a minimal element of the set of polynomials having 𝛼

as a root, and the minimum (i.e., least) element of the the set ofmonic polynomials having 𝛼 as a root.
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⋄ 𝑓 is the monic polynomial of least degree such that 𝑓(𝛼) = 0;
⋄ 𝑓 is monic, irreducible, and 𝑓(𝛼) = 0.

Note that 𝑔(𝑋) ↦ 𝑔(𝛼) defines an isomorphism 𝐹[𝑋]∕(𝑓) → 𝐹[𝛼]. Since the first is a
field, so also is the second. Thus, 𝐹[𝛼] is a stem field for 𝑓.

Example 1.28 Let 𝛼 ∈ ℂ be such that 𝛼3 − 3𝛼 − 1 = 0. Then 𝑋3 − 3𝑋 − 1 is monic,
irreducible, and has 𝛼 as a root, and so it is the minimal polynomial of 𝛼 overℚ. The set
{1, 𝛼, 𝛼2} is a basis for ℚ[𝛼] over ℚ. The calculations in Example 1.27 show that if 𝛽 is
the element 𝛼4 + 2𝛼3 + 3 of ℚ[𝛼], then 𝛽 = 3𝛼2 + 7𝛼 + 5, and

𝛽−1 = 7
111
𝛼2 − 26

111
𝛼 + 28

111
.

Remark 1.29 PARI knows how to compute in ℚ[𝑎]. For example, factor(X^4+4)
returns the factorization

𝑋4 + 4 = (𝑋2 − 2𝑋 + 2)(𝑋2 + 2𝑋 + 2)

inℚ[𝑋]. Now type F=nfinit(a^2+2*a+2) to define a number field “F” generated over
ℚ by a root 𝑎 of 𝑋2 + 2𝑋 + 2. Then nffactor(F,x^4+4) returns the factorization

𝑋4 + 4 = (𝑋 − 𝑎 − 2)(𝑋 − 𝑎)(𝑋 + 𝑎))(𝑋 + 𝑎 + 2),

in ℚ[𝑎].

An extension 𝐸 of 𝐹 is said to be algebraic (and 𝐸 is said to be algebraic over 𝐹), if
every element of 𝐸 is algebraic over 𝐹; otherwise it is said to be transcendental (and 𝐸
is said to be transcendental over 𝐹). Thus, 𝐸∕𝐹 is transcendental if at least one element
of 𝐸 is transcendental over 𝐹.

Proposition 1.30 Let 𝐸 ⊃ 𝐹 be fields. If 𝐸∕𝐹 is finite, then 𝐸 is algebraic and finitely
generated (as a field) over 𝐹; conversely, if 𝐸 is generated over 𝐹 by a finite set of algebraic
elements, then it is of finite degree over 𝐹.

Proof. ⟹: To say that an element 𝛼 of 𝐸 is transcendental over 𝐹 amounts to saying
that its powers 1, 𝛼, 𝛼2, … are linearly independent over 𝐹. As 𝐸 is finite over 𝐹, its
elements are algebraic over 𝐹. It remains to show that 𝐸 is finitely generated over 𝐹. If
𝐸 = 𝐹, then it is generated by the empty set. Otherwise, there exists an 𝛼1 ∈ 𝐸 ∖ 𝐹. If
𝐸 ≠ 𝐹[𝛼1], then there exists an 𝛼2 ∈ 𝐸 ∖ 𝐹[𝛼1], and so on. Since

[𝐹[𝛼1]∶ 𝐹] < [𝐹[𝛼1, 𝛼2]∶ 𝐹] < ⋯ < [𝐸∶ 𝐹]

this process terminates with 𝐸 = 𝐹[𝛼1, 𝛼2, … , 𝛼𝑛].
⟸: Let 𝐸 = 𝐹(𝛼1, ..., 𝛼𝑛)with 𝛼1, 𝛼2, … 𝛼𝑛 algebraic over 𝐹. The extension 𝐹(𝛼1)∕𝐹

is finite because𝛼1 is algebraic over𝐹, and the extension𝐹(𝛼1, 𝛼2)∕𝐹(𝛼1) is finite because
𝛼2 is algebraic over 𝐹 and hence over 𝐹(𝛼1). Thus, by (1.20), 𝐹(𝛼1, 𝛼2) is finite over 𝐹.
Now repeat the argument. □

Corollary 1.31 Consider fields 𝐿 ⊃ 𝐸 ⊃ 𝐹. If 𝐿 is algebraic over 𝐸 and 𝐸 is algebraic
over 𝐹, then 𝐿 is algebraic over 𝐹.
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Proof. By assumption, every 𝛼 ∈ 𝐿 is a root of a monic polynomial

𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 +⋯+ 𝑎0, 𝑎𝑖 ∈ 𝐸.

According to the proposition, 𝐹[𝑎0, … , 𝑎𝑚−1] is finite over 𝐹 and 𝐹[𝑎0, … , 𝑎𝑚−1, 𝛼] is
finite over 𝐹[𝑎0, … , 𝑎𝑚−1], and so 𝐹[𝑎0, … , 𝑎𝑚−1, 𝛼] is finite over 𝐹 (see 1.20); hence 𝛼 is
algebraic over 𝐹. □

Proposition 1.32 Let 𝐹 be a field and 𝑅 an integral domain containing 𝐹 as a subring.
If 𝑅 is generated as an 𝐹-algebra by elements algebraic over 𝐹, then it is a field algebraic
over 𝐹.

Proof. Suppose first that 𝑅 = 𝐹[𝛼1, … , 𝛼𝑛] with each 𝛼𝑖 algebraic over 𝐹. For each 𝑖,
there exist an𝑚𝑖 > 0 and 𝑎𝑗 ∈ 𝐹 such that

𝛼𝑚𝑖
𝑖 = 𝑎0 +⋯+ 𝑎𝑚𝑖−1𝛼

𝑚𝑖−1
𝑖 .

Hence 𝑅 is spanned as an 𝐹-vector space by the elements

𝛼𝑖11 ⋯𝛼𝑖𝑛𝑛 , 𝑖1 < 𝑚1, … , 𝑖𝑛 < 𝑚𝑛.

In particular, 𝑅 is a finite 𝐹-algebra, and hence a field algebraic over 𝐹 (1.23, 1.30). In
the general case, each element of 𝑅 is contained in the 𝐹-algebra generated by a finite
set of elements algebraic over 𝐹, and so it has an inverse in 𝑅 and is algebraic over 𝐹.□

Transcendental numbers

A complex number is said to be algebraic or transcendental according as it is algebraic
or transcendental over ℚ. First we provide a little history.

1844: Liouville showed that certain numbers, now called Liouville numbers, are
transcendental.

1873: Hermite showed that 𝑒 is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable, but that ℝ is

not countable, and so most real numbers are transcendental.
1882: Lindemann showed that 𝜋 is transcendental.
1934: Gel’fond and Schneider independently showed that 𝛼𝛽 is transcendental if

𝛼 and 𝛽 are algebraic, 𝛼 ≠ 0, 1, and 𝛽 ∉ ℚ. (This was the seventh of Hilbert’s famous
problems.)

2022: Euler’s constant

𝛾 def= lim
𝑛→∞

(1 + 1
2 +⋯+ 1

𝑛 − log 𝑛)

has not yet been proven to be transcendental or even irrational (see Lagarias, Euler’s
constant. Bull. Amer. Math. Soc. 50 (2013), 527–628, arXiv:1303:1856).

2022: The numbers 𝑒 + 𝜋 and 𝑒 − 𝜋 are surely transcendental, but they have not
even been proved to be irrational!

Proposition 1.33 The set of algebraic numbers is countable.

https://doi.org/10.48550/arXiv.1303.1856
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Proof. Every algebraic number is a root of a polynomial

𝑎0𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯+ 𝑎𝑛, 𝑎0, … , 𝑎𝑛 ∈ ℤ.

For an𝑁 ∈ ℕ, there are only finitelymany such polynomialswith𝑛 ≤ 𝑁 and |𝑎0|, … , |𝑎𝑛| ≤
𝑁, and each polynomial has only finitely many roots. Thus, the set of algebraic numbers
is a countable union of finite sets

⋃
𝑁≥1𝐴(𝑁), and any such union is countable — for

example, choose a bijection from some segment [0, 𝑛(1)] of ℕ onto 𝐴(1), extend it to a
bijection from a segment [0, 𝑛(2)] onto 𝐴(2), and so on. □

A typical Liouville number is
∑∞

𝑛=0
1
10𝑛!

— in its decimal expansion there are increas-
ingly long strings of zeros. Since its decimal expansion is not periodic, the number is
not rational. We prove that the analogue of this number in base 2 is transcendental.

Theorem 1.34 The number 𝛼 = ∑ 1
2𝑛!

is transcendental.

Proof. 6Suppose not, and let

𝑓(𝑋) = 𝑋𝑑 + 𝑎1𝑋𝑑−1 +⋯+ 𝑎𝑑, 𝑎𝑖 ∈ ℚ,

be the minimal polynomial of 𝛼 overℚ. Thus [ℚ[𝛼]∶ ℚ] = 𝑑. Choose a nonzero integer
𝐷 such that 𝐷 ⋅ 𝑓(𝑋) ∈ ℤ[𝑋].

Let 𝛴𝑁 = ∑𝑁
𝑛=0

1
2𝑛!
, so that 𝛴𝑁 → 𝛼 as 𝑁 → ∞, and let 𝑥𝑁 = 𝑓(𝛴𝑁). As 𝛼 is not

rational, 𝑓(𝑋), being irreducible of degree > 1, has no rational root. Since 𝛴𝑁 ≠ 𝛼, it
can’t be a root of 𝑓(𝑋), and so 𝑥𝑁 ≠ 0. Obviously, 𝑥𝑁 ∈ ℚ; in fact (2𝑁!)𝑑𝐷𝑥𝑁 ∈ ℤ, and
so

|(2𝑁!)𝑑𝐷𝑥𝑁| ≥ 1. (3)

From the fundamental theorem of algebra (see 5.6 below), we know that 𝑓 splits in
ℂ[𝑋], say,

𝑓(𝑋) =
𝑑∏

𝑖=1
(𝑋 − 𝛼𝑖), 𝛼𝑖 ∈ ℂ, 𝛼1 = 𝛼,

and so

|𝑥𝑁| =
𝑑∏

𝑖=1
|𝛴𝑁 − 𝛼𝑖| ≤ |𝛴𝑁 − 𝛼1|(𝛴𝑁 +𝑀)𝑑−1, where𝑀 = max

𝑖≠1
{1, |𝛼𝑖|}.

But

|𝛴𝑁 − 𝛼1| =
∞∑

𝑛=𝑁+1

1
2𝑛! ≤

1
2(𝑁+1)!

(
∞∑

𝑛=0

1
2𝑛 ) =

2
2(𝑁+1)!

.

Hence
|𝑥𝑁| ≤

2
2(𝑁+1)!

⋅ (𝛴𝑁 +𝑀)𝑑−1

and
|(2𝑁!)𝑑𝐷𝑥𝑁| ≤ 2 ⋅ 2

𝑑⋅𝑁!𝐷
2(𝑁+1)!

⋅ (𝛴𝑁 +𝑀)𝑑−1

which tends to 0 as 𝑁 → ∞ because 2𝑑⋅𝑁!

2(𝑁+1)!
= ( 2𝑑

2𝑁+1
)
𝑁!
→ 0. This contradicts (3). □

6This proof, which I learnt from David Masser, also works for
∑ 1

𝑎𝑛!
, where 𝑎 is any integer ≥ 2.
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Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were surprised to find
that the length of the diagonal of a square of side 1, namely,

√
2, is not rational. They

thus realized that they needed to extend their number system. They then hoped that the
“constructible” numbers would suffice. Suppose that we are given a length, which we
call 1, a straight-edge, and a compass (device for drawing circles). A real number (better
a length) is constructible if it can be constructed by forming successive intersections of
⋄ lines drawn through two points already constructed, and

⋄ circles with centre a point already constructed and radius a constructed length.
This led them to three famous questions that they were unable to answer: is it

possible to duplicate the cube, trisect an angle, or square the circle by straight-edge and
compass constructions? We’ll see that the answer to all three is negative.

Let 𝐹 be a subfield of ℝ. For a positive 𝑎 ∈ 𝐹,
√
𝑎 denotes the positive square root of

𝑎 in ℝ. The 𝐹-plane is 𝐹 × 𝐹 ⊂ ℝ × ℝ. We make the following definitions:
An 𝐹-line is a line in ℝ × ℝ through two points in the 𝐹-plane. These are
the lines given by equations

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, 𝑎, 𝑏, 𝑐 ∈ 𝐹.

An 𝐹-circle is a circle inℝ×ℝwith centre an 𝐹-point and radius an element
of 𝐹. These are the circles given by equations

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑐2, 𝑎, 𝑏, 𝑐 ∈ 𝐹.

Lemma 1.35 Let 𝐿 ≠ 𝐿′ be 𝐹-lines, and let 𝐶 ≠ 𝐶′ be 𝐹-circles.
(a) 𝐿 ∩ 𝐿′ = ∅ or consists of a single 𝐹-point.
(b) 𝐿 ∩ 𝐶 = ∅ or consists of one or two points in the 𝐹[

√
𝑒]-plane, some 𝑒 ∈ 𝐹, 𝑒 > 0.

(c) 𝐶 ∩ 𝐶′ = ∅ or consists of one or two points in the 𝐹[
√
𝑒]-plane, some 𝑒 ∈ 𝐹, 𝑒 > 0.

Proof. The points in the intersection are found by solving the simultaneous equations,
and hence by solving (at worst) a quadratic equation with coefficients in 𝐹. □

Lemma 1.36 (a) If 𝑐 and 𝑑 are constructible, then so also are 𝑐 + 𝑑, −𝑐, 𝑐𝑑, and 𝑐
𝑑
(𝑑 ≠ 0).

(b) If 𝑐 > 0 is constructible, then so also is
√
𝑐.

Sketch of proof. First show that it is possible to construct a line perpendicular to a
given line through a given point, and then a line parallel to a given line through a given
point. Hence it is possible to construct a triangle similar to a given one on a side with
given length. By an astute choice of the triangles, one constructs 𝑐𝑑 and 𝑐−1. For (b),
draw a circle of radius 𝑐+1

2
and centre ( 𝑐+1

2
, 0), and draw a vertical line through the point

𝐴 = (1, 0) to meet the circle at 𝑃. The length 𝐴𝑃 is
√
𝑐. (For more details, see Michael

Artin, Algebra, 1991, Chap. 13, Section 4.) □

Theorem 1.37 (a) The set of constructible numbers is a field.

(b) A number 𝛼 is constructible if and only if it is contained in a subfield ofℝ of the form

ℚ[
√
𝑎1, … ,

√
𝑎𝑟], 𝑎𝑖 ∈ ℚ[

√
𝑎1, … ,

√
𝑎𝑖−1], 𝑎𝑖 > 0.
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Proof. (a) This restates (a) of Lemma 1.36.
(b) It follows from Lemma 1.35 that every constructible number is contained in such

a fieldℚ[
√
𝑎1, … ,

√
𝑎𝑟]. Conversely, if, for some 𝑖 < 𝑟, the elements ofℚ[

√
𝑎1, … ,

√
𝑎𝑖−1]

are constructible, then
√
𝑎𝑖 is constructible (by 1.36b), and so the elements ofℚ[

√
𝑎1, … ,

√
𝑎𝑖]

are constructible (by (a)). Applying this for 𝑖 = 0, 1, …, we find that the elements of
ℚ[
√
𝑎1, … ,

√
𝑎𝑟] are constructible. □

Corollary 1.38 If 𝛼 is constructible, then 𝛼 is algebraic over ℚ, and [ℚ[𝛼]∶ ℚ] is a
power of 2.

Proof. According to Proposition 1.20, [ℚ[𝛼]∶ ℚ] divides

[ℚ[
√
𝑎1]⋯ [

√
𝑎𝑟]∶ ℚ]

and [ℚ[
√
𝑎1, … ,

√
𝑎𝑟]∶ ℚ] is a power of 2. □

Corollary 1.39 It is impossible to duplicate the cube by straight-edge and compass con-
structions.

Proof. The problem is to construct a cube with volume 2. This requires constructing
the real root of the polynomial 𝑋3−2. But this polynomial is irreducible (by Eisenstein’s
criterion 1.16 for example), and so [ℚ[ 3

√
2]∶ ℚ] = 3. □

Corollary 1.40 In general, it is impossible to trisect an angle by straight-edge and com-
pass constructions.

Proof. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore,
to trisect 3𝜃, we have to construct a solution to

cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃.

For example, take 3𝜃 = 60 degrees. As cos 60◦ = 1
2
, to construct cos 𝜃, we have to find a

root of 8𝑥3 − 6𝑥 − 1, which is irreducible (apply 1.11), and so [ℚ[cos 𝜃]∶ ℚ] = 3. □

Corollary 1.41 It is impossible to square the circle by straight-edge and compass con-
structions.

Proof. A square with the same area as a circle of radius 𝑟 has side
√
𝜋𝑟. Since 𝜋 is

transcendental7, so also is
√
𝜋. □

We next consider another problem that goes back to the ancient Greeks: list the
integers 𝑛 such that the regular 𝑛-sided polygon can be constructed using only straight-
edge and compass. Here we consider the question for a prime 𝑝 (see 5.12 for the general
case). Note that 𝑋𝑝 − 1 is not irreducible; in fact

𝑋𝑝 − 1 = (𝑋 − 1)(𝑋𝑝−1 + 𝑋𝑝−2 +⋯+ 1).

Lemma 1.42 If 𝑝 is prime, then 𝑋𝑝−1 +⋯+ 1 is irreducible; henceℚ[𝑒2𝜋𝑖∕𝑝] has degree
𝑝 − 1 overℚ.

7Proofs of this can be found in many books on number theory, for example, in 11.14 of Hardy and
Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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Proof. Let 𝑓(𝑋) = (𝑋𝑝 − 1)∕(𝑋 − 1) = 𝑋𝑝−1 +⋯+ 1; then

𝑓(𝑋 + 1) = (𝑋 + 1)𝑝 − 1
𝑋 = 𝑋𝑝−1 +⋯+ 𝑎𝑖𝑋𝑖 +⋯+ 𝑝,

with 𝑎𝑖 =
( 𝑝
𝑖+1

)
. We know (1.4) that 𝑝|𝑎𝑖 for 𝑖 = 1, ..., 𝑝−2, and so 𝑓(𝑋+1) is irreducible

by Eisenstein’s criterion 1.16. This implies that 𝑓(𝑋) is irreducible. □

In order to construct a regular 𝑝-gon, 𝑝 an odd prime, we need to construct

cos 2𝜋
𝑝
= 𝑒

2𝜋𝑖
𝑝 + 𝑒−

2𝜋𝑖
𝑝

2 .

Note that
ℚ[𝑒

2𝜋𝑖
𝑝 ] ⊃ ℚ[cos 2𝜋

𝑝
] ⊃ ℚ.

The degree of ℚ[𝑒
2𝜋𝑖
𝑝 ] over ℚ[cos 2𝜋

𝑝
] is 2 because the equation

𝛼2 − 2 cos 2𝜋
𝑝
⋅ 𝛼 + 1 = 0, 𝛼 = 𝑒

2𝜋𝑖
𝑝 ,

shows that it is at most 2, and it is not 1 because 𝑒
2𝜋𝑖
𝑝 ∉ ℝ. Hence

[ℚ[cos 2𝜋
𝑝
]∶ ℚ] = 𝑝 − 1

2 .

We deduce that, if the regular 𝑝-gon is constructible, then (𝑝 − 1)∕2 is a power of 2.
Later (5.12) we shall prove a converse. Thus, the regular 𝑝-gon (𝑝 prime) is constructible
if and only if 𝑝 = 2𝑛 + 1 for some positive integer 𝑛.

A number 2𝑛 + 1 can be prime only if 𝑛 is a power of 2, because, otherwise, 𝑛 = 𝑟𝑠
with 𝑠 odd, and

𝑌𝑠 + 1 = (𝑌 + 1)(𝑌𝑠−1 − 𝑌𝑠−2 +⋯+ 1)
2𝑟𝑠 + 1 = (2𝑟 + 1)((2𝑟)𝑠−1 − (2𝑟)𝑠−2 +⋯+ 1).

We conclude that the primes 𝑝 for which the regular 𝑝-gon is constructible are exactly
those of the form 22𝑟 + 1 for some 𝑟. Such 𝑝 are called Fermat primes (because Fermat
conjectured that all numbers of the form 22𝑟 + 1 are prime). For 𝑟 = 0, 1, 2, 3, 4, we
have 22𝑟 + 1 = 3, 5, 17, 257, 65537, which are indeed prime, but Euler showed that
232+1 = (641)(6700417), and we do not know of any more Fermat primes. It is expected
that there are no more, but this has not been proved. See Wikipedia: Fermat number.

Gauss showed that8

cos 2𝜋17 = − 1
16+

1
16
√
17+ 1

16

√
34 − 2

√
17+18

√

17 + 3
√
17 −

√
34 − 2

√
17 − 2

√
34 + 2

√
17

when he was 18 years old. This success encouraged him to become a mathematician.
8Or perhaps that

cos 2𝜋
17
= − 1

16
+ 1

16

√
17 + 1

16

√
34 − 2

√
17 + 1

8

√
17 + 3

√
17 − 2

√
34 − 2

√
17 −

√
170 − 26

√
17

— both expressions are correct.
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Algebraically closed fields

Let 𝐹 be a field. A polynomial is said to split in 𝐹[𝑋] if it is a product of polynomials of
degree at most 1 in 𝐹[𝑋].

Proposition 1.43 For a fieldΩ, the following statements are equivalent:
(a) Every nonconstant polynomial inΩ[𝑋] splits inΩ[𝑋].
(b) Every nonconstant polynomial inΩ[𝑋] has at least one root inΩ.
(c) The irreducible polynomials inΩ[𝑋] are those of degree 1.
(d) Every field of finite degree overΩ equalsΩ.

Proof. The implications (a)⇒(b)⇒(c) are obvious.
(c)⇒(a). This follows from the fact that Ω[𝑋] is a unique factorization domain.
(c)⇒(d). Let 𝐸 be a finite extension of Ω, and let 𝛼 ∈ 𝐸. The minimal polynomial of 𝛼,
being irreducible, has degree 1, and so 𝛼 ∈ Ω.
(d)⇒(c). Let 𝑓 be an irreducible polynomial in Ω[𝑋]. Then Ω[𝑋]∕(𝑓) is an extension of
Ω of degree deg(𝑓) (see 1.30), and so deg(𝑓) = 1. □

Definition 1.44 (a) A field Ω is algebraically closed if it satisfies the equivalent state-
ments of Proposition 1.43.

(b) A field Ω is an algebraic closure of a subfield 𝐹 if it is algebraically closed and
algebraic over 𝐹.

For example, the fundamental theorem of algebra (see 5.6 below) says that ℂ is
algebraically closed. It is an algebraic closure of ℝ.

Proposition 1.45 IfΩ is algebraic over 𝐹 and every polynomial 𝑓 ∈ 𝐹[𝑋] splits inΩ[𝑋],
thenΩ is algebraically closed (hence an algebraic closure of 𝐹).

Proof. Let 𝑓 = 𝑎𝑛𝑋𝑛 +⋯ + 𝑎0, 𝑎𝑖 ∈ Ω, be a nonconstant polynomial in Ω[𝑋]. We
have to show that 𝑓 has a root in Ω. We know (see 1.25) that 𝑓 has a root 𝛼 in some
finite extension Ω′ of Ω. Consider the fields

𝐹 ⊂ 𝐹[𝑎0, … , 𝑎𝑛] ⊂ 𝐹[𝑎0, … , 𝑎𝑛, 𝛼].

Each extension is generated by a finite set of algebraic elements, and hence is finite
(1.30). Therefore 𝛼 lies in a finite extension of 𝐹 (see 1.20), and so is algebraic over 𝐹—
it is a root of a polynomial 𝑔 with coefficients in 𝐹. By assumption, 𝑔 splits in Ω[𝑋], and
so the roots of 𝑔 in Ω′ all lie in Ω. In particular, 𝛼 ∈ Ω. □

In fact, it suffices to assume that every 𝑓 ∈ 𝐹[𝑋] has a root in Ω (see 6.5 below).

Proposition 1.46 Let 𝐹 be a field andΩ an integral domain containing 𝐹 as a subring.
Then

𝐹̄ def= {𝛼 ∈ Ω ∣ 𝛼 algebraic over 𝐹}

is a field (called the algebraic closure of 𝐹 inΩ).

Proof. If 𝛼 and 𝛽 are algebraic over 𝐹, then 𝐹[𝛼, 𝛽] = 𝐹[𝛼][𝛽] is a field of finite degree
over 𝐹 (see p. 19). Thus, every element of 𝐹[𝛼, 𝛽] is algebraic over 𝐹. In particular, 𝛼±𝛽,
𝛼∕𝛽, and 𝛼𝛽 are algebraic over 𝐹. □
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Corollary 1.47 Let Ω be an algebraically closed field. For any subfield 𝐹 of Ω, the
algebraic closure 𝐸 of 𝐹 inΩ is an algebraic closure of 𝐹.

Proof. It is algebraic over 𝐹 by definition. Every polynomial in 𝐹[𝑋] splits inΩ[𝑋] and
has its roots in 𝐸, and so splits in 𝐸[𝑋]. Now apply Proposition 1.45. □

Thus, when we admit the fundamental theorem of algebra (5.6), every subfield of ℂ
has an algebraic closure (in fact, a canonical algebraic closure). Later (Chapter 6) we’ll
prove, using the axiom of choice, that every field has an algebraic closure.

Notes Although various classes of field, for example, number fields and function fields, had
been studied earlier, the first systematic account of the theory of abstract fields was given by
Steinitz in 1910 (Algebraische Theorie der Körper, J. Reine Angew. Math., 137:167–309). Here
he introduced the notion of a prime field, distinguished between separable and inseparable
extensions, and showed that every field can be obtained as an algebraic extension of a purely
transcendental extension. He also proved that every field has an algebraic closure, unique up to
isomorphism. His work influenced later algebraists (Emmy Noether, van der Waerden, Emil
Artin, . . . ) and his article has been described by Bourbaki as “. . . a fundamental work that may
be considered as having given birth to the current conception9 of algebra”. See: Roquette, Peter,
In memoriam Ernst Steinitz (1871–1928). J. Reine Angew. Math. 648 (2010), 1–11.

Exercises

1-1 Let 𝐸 = ℚ[𝛼], where 𝛼3 − 𝛼2 + 𝛼 + 2 = 0. Express (𝛼2 + 𝛼 + 1)(𝛼2 − 𝛼) and
(𝛼 − 1)−1 in the form 𝑎𝛼2 + 𝑏𝛼 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℚ.

1-2 Determine [ℚ(
√
2,
√
3)∶ ℚ].

1-3 Let 𝐹 be a field, and let 𝑓(𝑋) ∈ 𝐹[𝑋].
(a) For every 𝑎 ∈ 𝐹, show that there is a polynomial 𝑞(𝑋) ∈ 𝐹[𝑋] such that

𝑓(𝑋) = 𝑞(𝑋)(𝑋 − 𝑎) + 𝑓(𝑎).

(b) Deduce that 𝑓(𝑎) = 0 if and only if (𝑋 − 𝑎)|𝑓(𝑋).
(c) Deduce that 𝑓(𝑋) can have at most deg 𝑓 roots.
(d) Let 𝐺 be a finite abelian group. If 𝐺 has at most𝑚 elements of order dividing𝑚

for each divisor𝑚 of (𝐺 ∶ 1), show that 𝐺 is cyclic.
(e) Deduce that every finite subgroup of 𝐹×, 𝐹 a field, is cyclic.

1-4 Show that with straight-edge, compass, and angle-trisector, it is possible to construct
a regular 7-gon.

1-5 Let 𝑓(𝑋) be an irreducible polynomial over 𝐹 of degree 𝑛, and let 𝐸 be a field
extension of 𝐹 with [𝐸 ∶ 𝐹] = 𝑚. If gcd(𝑚, 𝑛) = 1, show that 𝑓 is irreducible over 𝐸.

1-6 Show that there does not exist a polynomial 𝑓(𝑋) ∈ ℤ[𝑋] of degree > 1 that is
irreducible modulo 𝑝 for all primes 𝑝.

1-7 Let 𝛼 = 3
√
2, and let 𝑅 be the set of complex numbers of the form 𝑎 + 𝑏𝛼 + 𝑐𝛼2 with

𝑎, 𝑏, 𝑐 ∈ ℚ. Show that 𝑅 is a field.

1-8 If you understand the Legendre symbol, use its properties to show that the polyno-
mial (𝑋2 − 13)(𝑋2 − 17)(𝑋2 − 221) has roots modulo every integer (but not in ℤ).

9In which objects are to be defined abstractly by axioms.



Chapter2

Splitting Fields; Multiple Roots

Homomorphisms from simple extensions.

Let𝐹 be a field, and let𝐸 and𝐸′ be fields containing𝐹. An𝐹-homomorphism𝜑∶ 𝐸 → 𝐸′
maps a polynomial

∑
𝑎𝑖1⋯𝑖𝑚𝛼

𝑖1
1 ⋯𝛼𝑖𝑚𝑚 , 𝑎𝑖1⋯𝑖𝑚 ∈ 𝐹, 𝛼𝑖 ∈ 𝐸,

to ∑
𝑎𝑖1⋯𝑖𝑚𝜑(𝛼1)

𝑖1 ⋯𝜑(𝛼𝑚)𝑖𝑚 .
An 𝐹-homomorphism 𝐸 → 𝐸′ of fields is, in particular, an injective 𝐹-linear map of

𝐹-vector spaces, and so it is an 𝐹-isomorphism if 𝐸 and 𝐸′ have the same finite degree
over 𝐹.

Proposition 2.1 Let 𝐹(𝛼) be a simple extension of 𝐹 andΩ a second extension of 𝐹.
(a) Suppose𝛼 is transcendental over𝐹. For every𝐹-homomorphism𝜑∶ 𝐹(𝛼) → Ω,𝜑(𝛼)

is transcendental over𝐹, and themap 𝜑 ↦ 𝜑(𝛼) defines a one-to-one correspondence

{𝐹-homomorphisms 𝐹(𝛼) → Ω} ↔ {elements ofΩ transcendental over 𝐹}.

(b) Suppose 𝛼 is algebraic over 𝐹, and let 𝑓(𝑋) be its minimal polynomial. For every 𝐹-
homomorphism 𝜑∶ 𝐹[𝛼] → Ω, 𝜑(𝛼) is a root of 𝑓(𝑋) inΩ, and the map 𝜑 ↦ 𝜑(𝛼)
defines a one-to-one correspondence

{𝐹-homomorphisms 𝜑∶ 𝐹[𝛼] → Ω} ↔ {roots of 𝑓 inΩ}.

In particular, the number of such maps is the number of distinct roots of 𝑓 inΩ.

Proof. (a) To say that 𝛼 is transcendental over 𝐹 means that 𝐹[𝛼] is isomorphic to
the polynomial ring in the symbol 𝛼. Therefore, for every 𝛾 ∈ Ω, there is a unique
𝐹-homomorphism 𝜑∶ 𝐹[𝛼] → Ω such that 𝜑(𝛼) = 𝛾 (see 1.5). This 𝜑 extends (uniquely)
to the field of fractions 𝐹(𝛼) of 𝐹[𝛼] if and only if nonzero elements of 𝐹[𝛼] are sent to
nonzero elements of Ω, which is the case if and only if 𝛾 is transcendental over 𝐹. Thus
we see that there are one-to-one correspondences between (a) the 𝐹-homomorphisms
𝐹(𝛼) → Ω, (b) the 𝐹-homomorphisms 𝜑∶ 𝐹[𝛼] → Ω such that 𝜑(𝛼) is transcendental,
(c) the transcendental elements of Ω.

(b) Let 𝑓(𝑋) = ∑𝑎𝑖𝑋𝑖, and consider an 𝐹-homomorphism 𝜑∶ 𝐹[𝛼] → Ω. On
applying 𝜑 to the equality ∑𝑎𝑖𝛼𝑖 = 0, we obtain the equality ∑𝑎𝑖𝜑(𝛼)𝑖 = 0, which

27
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shows that 𝜑(𝛼) is a root of 𝑓(𝑋) in Ω. Conversely, if 𝛾 ∈ Ω is a root of 𝑓(𝑋), then
the map 𝐹[𝑋] → Ω, 𝑔(𝑋) ↦ 𝑔(𝛾), factors through 𝐹[𝑋]∕(𝑓(𝑋)). When composed
with the inverse of the canonical isomorphism 𝐹[𝑋]∕(𝑓(𝑋)) → 𝐹[𝛼], this becomes a
homomorphism 𝐹[𝛼] → Ω sending 𝛼 to 𝛾. □

Example 2.2 Consider a simple algebraic extensionℚ[𝛼] ofℚ, and let 𝑓 be theminimal
polynomial of 𝛼. We shall see later that 𝑓 has deg 𝑓 distinct roots in ℂ. Therefore, there
are exactly [ℚ[𝛼]∶ ℚ] distinct ℚ-homomorphism ℚ[𝛼] → ℂ, each sending 𝛼 to a root
of 𝑓 in ℂ.

Example 2.3 Let 𝐹 be a field of characteristic 𝑝 ≠ 0, and let 𝑎 ∈ 𝐹 ∖ 𝐹𝑝. Then 𝑋𝑝 − 𝑎
is irreducible, and we let 𝐹[𝛼] be a corresponding stem field. If 𝛽 is a root of 𝑋𝑝 − 𝑎
in an extension Ω of 𝐹, then 𝑋𝑝 − 𝑎 = (𝑋 − 𝛽)𝑝 in Ω[𝑋], and so there is exactly one
𝐹-homomorphism 𝐹[𝛼] → Ω (sending 𝛼 to 𝛽).

We shall need a slight generalization of 2.1.

Proposition 2.4 Let 𝐹(𝛼) be a simple extension of 𝐹 and 𝜑0∶ 𝐹 → Ω a homomorphism
from 𝐹 into a second fieldΩ.
(a) If 𝛼 is transcendental over 𝐹, then the map 𝜑 ↦ 𝜑(𝛼) defines a one-to-one correspon-

dence

{extensions 𝜑∶ 𝐹(𝛼) → Ω of 𝜑0} ↔ {elements ofΩ transcendental over 𝜑0(𝐹)}.

(b) If 𝛼 is algebraic over 𝐹, with minimal polynomial 𝑓(𝑋), then the map 𝜑 ↦ 𝜑(𝛼)
defines a one-to-one correspondence

{extensions 𝜑∶ 𝐹[𝛼] → Ω of 𝜑0} ↔ {roots of 𝜑0𝑓 inΩ}.

In particular, the number of such maps is the number of distinct roots of 𝜑0𝑓 inΩ.

By 𝜑0𝑓 we mean the polynomial obtained by applying 𝜑0 to the coefficients of 𝑓. By
an extension of 𝜑0 to 𝐹(𝛼) we mean a homomorphism 𝜑∶ 𝐹(𝛼) → Ω whose restriction
to 𝐹 is 𝜑0. The proof of the proposition is essentially the same as that of the preceding
proposition (indeed, it is essentially the same proposition).

Splitting fields

Let 𝑓 be a polynomial with coefficients in 𝐹. A field 𝐸 containing 𝐹 is said to split 𝑓 if 𝑓
splits in 𝐸[𝑋], i.e.,

𝑓(𝑋) = 𝑎
𝑚∏

𝑖=1
(𝑋 − 𝛼𝑖) 𝑎 ∈ 𝐹, 𝛼𝑖 ∈ 𝐸.

If 𝐸 splits 𝑓 and is generated by the roots of 𝑓, then it is called a splitting or root field
for 𝑓.

Note that
∏𝑓𝑖(𝑋)𝑚𝑖 (𝑚𝑖 ≥ 1) and∏𝑓𝑖(𝑋) have the same splitting fields. Note also

that 𝑓 splits in 𝐸 if it has deg(𝑓) − 1 roots in 𝐸 because the sum of the roots of 𝑓 lies in
𝐹 (if 𝑓 = 𝑎𝑋𝑚 + 𝑎1𝑋𝑚−1 +⋯, then

∑𝛼𝑖 = −𝑎1∕𝑎).

Example 2.5 Let 𝑓(𝑋) = 𝑎𝑋2 + 𝑏𝑋 + 𝑐 ∈ ℚ[𝑋], and let 𝛼 =
√
𝑏2 − 4𝑎𝑐. The subfield

ℚ[𝛼] of ℂ is a splitting field for 𝑓.
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Example 2.6 Let 𝑓(𝑋) = 𝑋3 + 𝑎𝑋2 + 𝑏𝑋 + 𝑐 ∈ ℚ[𝑋] be irreducible, and let 𝛼1, 𝛼2, 𝛼3
be its roots in ℂ. Then ℚ[𝛼1, 𝛼2, 𝛼3] = ℚ[𝛼1, 𝛼2] is a splitting field for 𝑓(𝑋). Note that
[ℚ[𝛼1]∶ ℚ] = 3 and that [ℚ[𝛼1, 𝛼2]∶ ℚ[𝛼1]] = 1 or 2, and so [ℚ[𝛼1, 𝛼2]∶ ℚ] = 3 or 6.
We’ll see later (4.2) that the degree is 3 if and only if the discriminant of 𝑓(𝑋) is a square
in ℚ. For example, the discriminant of 𝑋3 + 𝑏𝑋 + 𝑐 is −4𝑏3 − 27𝑐2, and so the splitting
field of 𝑋3 + 10𝑋 + 1 (discriminant −4027) has degree 6 over ℚ.

Proposition 2.7 Every polynomial 𝑓 ∈ 𝐹[𝑋] has a splitting field 𝐸𝑓 , and

[𝐸𝑓 ∶ 𝐹] ≤ (deg 𝑓)! (factorial deg 𝑓).

Proof. Let 𝐹1 = 𝐹[𝛼1] be a stem field for some monic irreducible factor of 𝑓 in 𝐹[𝑋].
Then 𝑓(𝛼1) = 0, and we let 𝐹2 = 𝐹1[𝛼2] be a stem field for somemonic irreducible factor
of 𝑓(𝑋)∕(𝑋 − 𝛼1) in 𝐹1[𝑋]. Continuing in this fashion, we arrive at a splitting field 𝐸𝑓.
Let 𝑛 = deg 𝑓. Then [𝐹1∶ 𝐹] = deg 𝑔1 ≤ 𝑛, [𝐹2∶ 𝐹1] ≤ 𝑛 − 1, ..., and so [𝐸𝑓 ∶ 𝐹] ≤ 𝑛!.□

Example 2.8 Let 𝑓(𝑋) = (𝑋𝑝 − 1)∕(𝑋 − 1) ∈ ℚ[𝑋], 𝑝 prime. If 𝜁 is one root of 𝑓, then
the remaining roots are 𝜁2, 𝜁3, … , 𝜁𝑝−1, and so the splitting field of 𝑓 is ℚ[𝜁].

Example 2.9 Let 𝐹 have characteristic 𝑝 ≠ 0, and let 𝑓 = 𝑋𝑝 − 𝑋 − 𝑎 ∈ 𝐹[𝑋]. If 𝛼 is
one root of 𝑓 in some extension of 𝐹, then the remaining roots are 𝛼 + 1, ..., 𝛼 + 𝑝 − 1,
and so the splitting field of 𝑓 is 𝐹[𝛼].

Example 2.10 If 𝛼 is one root of 𝑋𝑛 − 𝑎, then the remaining roots are all of the form
𝜁𝛼, where 𝜁𝑛 = 1. Therefore, 𝐹[𝛼] is a splitting field for 𝑋𝑛 − 𝑎 if and only if 𝐹 contains
all the 𝑛th roots of 1 (by which we mean that 𝑋𝑛 − 1 splits in 𝐹[𝑋]). Note that if 𝑝 is the
characteristic of 𝐹, then 𝑋𝑝 − 1 = (𝑋 − 1)𝑝, and so 𝐹 automatically contains all the 𝑝th
roots of 1.

Aside 2.11 Let 𝐹 be a field. For a given integer 𝑛, there may or may not exist polynomials of
degree 𝑛 in 𝐹[𝑋] whose splitting field has degree 𝑛!— this depends on 𝐹. For example, there do
not exist such polynomials for 𝑛 > 1 if 𝐹 = ℂ (see 5.6), nor for 𝑛 > 2 if 𝐹 = ℝ or 𝐹 = 𝔽𝑝 (see
4.22). However, later (4.32) we’ll see how to write down infinitely many polynomials of degree 𝑛
in ℚ[𝑋] with splitting fields of degree 𝑛!.

Homomorphisms of algebraic extensions

Proposition 2.12 Let 𝑓 ∈ 𝐹[𝑋]. Let 𝐸 be an extension of 𝐹 generated by the roots of 𝑓 in
𝐸 andΩ an extension of 𝐹 splitting 𝑓. There exists an 𝐹-homomorphism 𝜑∶ 𝐸 → Ω; the
number of such homomorphisms is at most [𝐸 ∶ 𝐹], and equals [𝐸 ∶ 𝐹] if 𝑓 has distinct
roots inΩ.

Proof. We may suppose that 𝑓 is monic.
By hypothesis, 𝑓 = ∏(𝑋−𝛽𝑖) inΩ[𝑋]. Let 𝐿 be a subfield ofΩ containing 𝐹, and let

𝑔 be a monic factor of 𝑓 in 𝐿[𝑋]. Then 𝑔 divides 𝑓 inΩ[𝑋], and so it is a product there of
some of the 𝑋 − 𝛽𝑖. In particular, we see that 𝑔 splits in Ω, and that it has distinct roots
in Ω if 𝑓 does..

By hypothesis, 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑚] with each 𝛼𝑖 a root of 𝑓(𝑋) in 𝐸. The minimal
polynomial of 𝛼1 is an irreducible polynomial 𝑓1 dividing 𝑓. From the initial observation
with 𝐿 = 𝐹, we see that 𝑓1 splits in Ω, and that its roots are distinct if the roots of 𝑓 are
distinct. According to Proposition 2.1, there exists an𝐹-homomorphism 𝜑1∶ 𝐹[𝛼1] → Ω,
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and the number of such homomorphisms is at most [𝐹[𝛼1]∶ 𝐹], with equality holding
when 𝑓 has distinct roots in Ω.

The minimal polynomial of 𝛼2 over 𝐹[𝛼1] is an irreducible factor 𝑓2 of 𝑓 in 𝐹[𝛼1][𝑋].
On applying the initial observation with 𝐿 = 𝜑1𝐹[𝛼1] and 𝑔 = 𝜑1𝑓2, we see that 𝜑1𝑓2
splits in Ω, and that its roots are distinct if the roots of 𝑓 are distinct. According to
Proposition 2.4, each 𝜑1 extends to a homomorphism 𝜑2∶ 𝐹[𝛼1, 𝛼2] → Ω, and the
number of extensions is at most [𝐹[𝛼1, 𝛼2]∶ 𝐹[𝛼1]], with equality holding when 𝑓 has
distinct roots in Ω.

On combining these statements we conclude that there exists an 𝐹-homomorphism
𝜑∶ 𝐹[𝛼1, 𝛼2] → Ω,and that the number of suchhomomorphisms is atmost [𝐹[𝛼1, 𝛼2]∶ 𝐹],
with equality holding if 𝑓 has distinct roots in Ω.

On repeating this argument𝑚 times, we obtain the proposition. □

Corollary 2.13 If 𝐸1 and 𝐸2 are both splitting fields for 𝑓, then every 𝐹-homomorphism
𝐸1 → 𝐸2 is an isomorphism. In particular, any two splitting fields for 𝑓 are 𝐹-isomorphic.

Proof. Every 𝐹-homomorphism 𝐸1 → 𝐸2 is injective, and so, if there exists such a
homomorphism, then [𝐸1∶ 𝐹] ≤ [𝐸2∶ 𝐹]. If 𝐸1 and 𝐸2 are both splitting fields for 𝑓,
then 2.12 shows that there exist homomorphisms 𝐸1 ⇆ 𝐸2, and so [𝐸1∶ 𝐹] = [𝐸2∶ 𝐹].
It follows that every 𝐹-homomorphism 𝐸1 → 𝐸2 is an 𝐹-isomorphism. □

Corollary 2.14 Let 𝐸 and 𝐿 be extension of 𝐹, with 𝐸 finite over 𝐹. The number of
𝐹-homomorphisms 𝐸 → 𝐿 is at most [𝐸 ∶ 𝐹].

Proof. Write 𝐸 = 𝐹[𝛼1, … , 𝛼𝑚], and let 𝑓 ∈ 𝐹[𝑋] be the product of the minimal
polynomials of the 𝛼𝑖; thus 𝐸 is generated over 𝐹 by roots of 𝑓. Let Ω be a splitting
field for 𝑓 regarded as an element of 𝐿[𝑋]. Proposition 2.12 shows that there exists an
𝐹-homomorphism 𝐸 → Ω, and the number of such homomorphisms is at most [𝐸 ∶ 𝐹].
As an 𝐹-homomorphism 𝐸 → 𝐿 can be regarded as an 𝐹-homomorphism 𝐸 → Ω, this
proves the corollary. □

Remark 2.15 Let 𝐸1, 𝐸2, … , 𝐸𝑚 be finite extensions of 𝐹, and let 𝐿 be an extension of 𝐹.
From the corollary we see that there exists a finite extension 𝐿1∕𝐿 such that 𝐿1 contains
an isomorphic image of 𝐸1; then that there exists a finite extension 𝐿2∕𝐿1 such that 𝐿2
contains an isomorphic image of 𝐸2. On continuing in this fashion, we find that there
exists a finite extension Ω/𝐿 such that Ω contains an isomorphic copy of every 𝐸𝑖.

Warning 2.16 Let 𝑓 ∈ 𝐹[𝑋]. If 𝐸 and 𝐸′ are both splitting fields of 𝑓, then we know
that there exists an 𝐹-isomorphism 𝐸 → 𝐸′, but there will in general be no preferred
such isomorphism. Error and confusion can result if the fields are simply identified.
Also, it makes no sense to speak of “the field 𝐹[𝛼] generated by a root of 𝑓” unless 𝑓
is irreducible (the fields generated by the roots of two different factors are unrelated).
Even when 𝑓 is irreducible, it makes no sense to speak of “the field 𝐹[𝛼, 𝛽] generated
by two roots 𝛼, 𝛽 of 𝑓” (the extensions of 𝐹[𝛼] generated by the roots of two different
factors of 𝑓 in 𝐹[𝛼][𝑋]may be very different).

Multiplicity of roots

Even when polynomials in 𝐹[𝑋] have no common factor in 𝐹[𝑋], one might expect
that they could acquire a common factor in Ω[𝑋] for some Ω ⊃ 𝐹. In fact, this doesn’t
happen — greatest common divisors don’t change when the field is extended.
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Proposition 2.17 Let 𝑓 and 𝑔 be polynomials in 𝐹[𝑋], and letΩ be an extension of 𝐹. If
𝑟(𝑋) is the gcd of 𝑓 and 𝑔 computed in 𝐹[𝑋], then it is also the gcd of 𝑓 and 𝑔 inΩ[𝑋]. In
particular, distinct monic irreducible polynomials in 𝐹[𝑋] do not acquire a common root
in any extension of 𝐹.

Proof. Let 𝑟𝐹(𝑋) and 𝑟Ω(𝑋) be the greatest common divisors of 𝑓 and 𝑔 in 𝐹[𝑋] and
Ω[𝑋] respectively. Certainly 𝑟𝐹(𝑋)|𝑟Ω(𝑋) in Ω[𝑋], but Euclid’s algorithm (1.8) shows
that there are polynomials 𝑎 and 𝑏 in 𝐹[𝑋] such that

𝑎(𝑋)𝑓(𝑋) + 𝑏(𝑋)𝑔(𝑋) = 𝑟𝐹(𝑋),

and so 𝑟Ω(𝑋) divides 𝑟𝐹(𝑋) in Ω[𝑋].
For the second statement, note that the hypotheses imply that gcd(𝑓, 𝑔) = 1 (in

𝐹[𝑋]), and so 𝑓 and 𝑔 can’t acquire a common factor in any extension field. □

The proposition allows us to speak of the greatest common divisor of 𝑓 and 𝑔without
reference to a field.

Let 𝑓 ∈ 𝐹[𝑋]. Then 𝑓 splits into linear factors

𝑓(𝑋) = 𝑎
𝑟∏

𝑖=1
(𝑋 − 𝛼𝑖)𝑚𝑖 , 𝑎 ∈ 𝐹, 𝛼𝑖 distinct, 𝑚𝑖 ≥ 1,

𝑟∑

𝑖=1
𝑚𝑖 = deg(𝑓), (4)

in 𝐸[𝑋] for some extension 𝐸 of 𝐹 (see 2.7). We say that 𝛼𝑖 is a root of 𝑓 ofmultiplicity
𝑚𝑖 in 𝐸. If𝑚𝑖 > 1, then 𝛼𝑖 is said to be amultiple root of 𝑓, and otherwise it is a simple
root.

The unordered sequence of integers𝑚1, … ,𝑚𝑟 in (4) is independent of the extension
𝐸 chosen to split 𝑓. Certainly, it is unchanged when 𝐸 is replaced with its subfield
𝐹[𝛼1, … , 𝛼𝑟], and so we may suppose that 𝐸 is a splitting field for 𝑓. Let 𝐸 and 𝐸′ be
splitting fields for 𝐹, and suppose that 𝑓(𝑋) = 𝑎∏𝑟

𝑖=1(𝑋 − 𝛼𝑖)𝑚𝑖 in 𝐸[𝑋] and 𝑓(𝑋) =
𝑎∏𝑟′

𝑖=1(𝑋 − 𝛼′𝑖 )
𝑚′
𝑖 in 𝐸′[𝑋]. Let 𝜑∶ 𝐸 → 𝐸′ be an 𝐹-isomorphism, which exists by 2.13,

and extend it to an isomorphism 𝐸[𝑋] → 𝐸′[𝑋] by sending 𝑋 to 𝑋. Then 𝜑 maps the
factorization of 𝑓 in 𝐸[𝑋] onto a factorization 𝑓(𝑋) = 𝑎∏𝑟

𝑖=1(𝑋 − 𝜑(𝛼𝑖))𝑚𝑖 in 𝐸′[𝑋].
By unique factorization, this coincides with the earlier factorization in 𝐸′[𝑋] up to a
renumbering of the 𝛼𝑖. Therefore 𝑟 = 𝑟′, and

{𝑚1, … ,𝑚𝑟} = {𝑚′
1, … ,𝑚

′
𝑟}

(equality of multisets).
We say that 𝑓 has a multiple root when at least one of the 𝑚𝑖 > 1, and that 𝑓

has only simple roots when all𝑚𝑖 = 1. Thus “𝑓 has a multiple root” means “𝑓 has a
multiple root in one, hence every, extension of 𝐹 splitting 𝑓”.

Separable polynomials

When does a polynomial have a multiple root? If 𝑓 has a multiple factor in 𝐹[𝑋], say
𝑓 = 𝑔2ℎ, then obviously it will have a multiple root. If is a product of distinct irreducible
polynomials, then Proposition 2.17 shows that 𝑓 has a multiple root if and only if at least
one of its factors has a multiple root. Thus, it suffices to determine when an irreducible
polynomial has a multiple root.
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Example 2.18 Let𝐹 be of characteristic𝑝 ≠ 0, and assume that𝐹 contains an element 𝑎
that is not a 𝑝th-power, for example, 𝑎 = 𝑇 in the field 𝔽𝑝(𝑇). Then 𝑋𝑝 −𝑎 is irreducible
in 𝐹[𝑋], but 𝑋𝑝 − 𝑎 = (𝑋 − 𝛼)𝑝 in its splitting field (see 1.4). Thus an irreducible
polynomial can have multiple roots.

The derivative of a polynomial 𝑓(𝑋) = ∑𝑎𝑖𝑋𝑖 is defined to be 𝑓′(𝑋) = ∑ 𝑖𝑎𝑖𝑋𝑖−1.
The usual rules for differentiating sums and products still hold, but note that in charac-
teristic 𝑝 the derivative of 𝑋𝑝 is zero.

Lemma 2.19 A root of 𝑓 is multiple if and only if it is also a root of 𝑓′.

Proof. Let
𝑓(𝑋) = (𝑋 − 𝛼)𝑚𝑔(𝑋), 𝑚 ≥ 1, 𝑔(𝛼) ≠ 0,

in some extension field. Then

𝑓′(𝑋) = { 𝑔(𝑋) + (𝑋 − 𝛼)𝑔′(𝑋) if𝑚 = 1,
𝑚(𝑋 − 𝛼)𝑚−1𝑔(𝑋) + (𝑋 − 𝛼)𝑚𝑔′(𝑋) if𝑚 > 1. (5)

Thus 𝑓′(𝛼) = 0 ⟺ 𝑚 > 1. □

Proposition 2.20 For a nonconstant irreducible polynomial 𝑓 in 𝐹[𝑋], the following
statements are equivalent:
(a) 𝑓 has a multiple root;
(b) gcd(𝑓, 𝑓′) ≠ 1;
(c) 𝐹 has nonzero characteristic 𝑝 and 𝑓 is a polynomial in 𝑋𝑝;

(d) all the roots of 𝑓 are multiple.

Proof. (a)⇒ (b). If 𝛼 is a multiple root of 𝑓, then 𝑓 and 𝑓′ have 𝑋 − 𝛼 as a common
factor.

(b)⇒ (c). As 𝑓 is irreducible and deg(𝑓′) < deg(𝑓),

gcd(𝑓, 𝑓′) ≠ 1 ⟹ 𝑓′ = 0.

Let 𝑓 = 𝑎0 +⋯+ 𝑎𝑑𝑋𝑑, 𝑑 ≥ 1. Then 𝑓′ = 𝑎1 +⋯+ 𝑖𝑎𝑖𝑋𝑖−1 +⋯+ 𝑑𝑎𝑑𝑋𝑑−1, which is
the zero polynomial if only if 𝐹 has characteristic 𝑝 ≠ 0 and 𝑎𝑖 = 0 for all 𝑖 not divisible
by 𝑝.

(c)⇒ (d). By hypothesis, 𝑓(𝑋) = 𝑔(𝑋𝑝)with 𝑔(𝑋) ∈ 𝐹[𝑋]. Let 𝑔(𝑋) = ∏
𝑖(𝑋 −𝑎𝑖)

𝑚𝑖

in some extension field. Then each 𝑎𝑖 becomes a 𝑝th power, say, 𝑎𝑖 = 𝛼𝑝𝑖 , in some
possibly larger extension field. Now

𝑓(𝑋) = 𝑔(𝑋𝑝) =
∏

𝑖
(𝑋𝑝 − 𝑎𝑖)𝑚𝑖 =

∏
𝑖
(𝑋 − 𝛼𝑖)𝑝𝑚𝑖

which shows that every root of 𝑓(𝑋) has multiplicity at least 𝑝.
(d)⇒ (a). Obvious. □

Proposition 2.21 The following conditions on a nonzero polynomial 𝑓 ∈ 𝐹[𝑋] are
equivalent:
(a) gcd(𝑓, 𝑓′) = 1 in 𝐹[𝑋];
(b) 𝑓 has only simple roots.



Perfect fields 33

Proof. Let Ω be an extension of 𝐹 splitting 𝑓. We know that a root 𝛼 of 𝑓 in Ω is
multiple if and only if it is also a root of 𝑓′.

If gcd(𝑓, 𝑓′) = 1, then 𝑓 and 𝑓′ have no common factor in Ω[𝑋] (see 2.17). In
particular, they have no common root, and so 𝑓 has only simple roots.

If 𝑓 has only simple roots, then gcd(𝑓, 𝑓′)must be the constant polynomial, because
otherwise it would have a root in Ω which would then be a common root of 𝑓 and 𝑓′.□
Definition 2.22 A polynomial is separable if it is nonzero and satisfies the equivalent
conditions on (2.21).1

Constant polynomials are separable, and a nonconstant irreducible polynomial 𝑓
is separable unless 𝐹 has characteristic 𝑝 ≠ 0 and 𝑓 is a polynomial in 𝑋𝑝 (see 2.20);
in particular, 𝑓 is separable if 𝑝 does not divide the degree of 𝑓. Let 𝑓 = ∏𝑓𝑖 with
𝑓 and the 𝑓𝑖 monic and the 𝑓𝑖 irreducible; then 𝑓 is separable if and only if the 𝑓𝑖 are
distinct and separable. If 𝑓 is separable as a polynomial in 𝐹[𝑋], then it is separable as a
polynomial in 𝐸[𝑋] for every extension 𝐸 of 𝐹.

Perfect fields

Definition 2.23 A field 𝐹 is perfect if it has characteristic zero or it has characteristic
𝑝 and every every element of 𝐹 is a 𝑝th power.

Or, as Bourbaki says, a field 𝐹 of characteristic exponent 𝑞 is perfect if 𝐹 = 𝐹𝑞.

Proposition 2.24 A field 𝐹 is perfect if and only if every irreducible polynomial in 𝐹[𝑋]
is separable.

Proof. If 𝐹 has characteristic zero, the statement is obvious, and so we may suppose 𝐹
has characteristic 𝑝 ≠ 0. If 𝐹 contains an element 𝑎 that is not a 𝑝th power, then 𝑋𝑝 −𝑎
is irreducible in 𝐹[𝑋] but not separable (see 2.18). Conversely, if every element of 𝐹 is a
𝑝th power, then every polynomial in 𝑋𝑝 with coefficients in 𝐹 is a 𝑝th power in 𝐹[𝑋],

∑
𝑎𝑖𝑋𝑖𝑝 =

(∑
𝑏𝑖𝑋𝑖

)𝑝
if 𝑎𝑖 = 𝑏𝑝𝑖 ,

and so it is not irreducible. □

Example 2.25 (a) A finite field 𝐹 is perfect, because the Frobenius endomorphism
𝑎 ↦ 𝑎𝑝 ∶ 𝐹 → 𝐹 is injective and therefore surjective (by counting).

(b) A field that can be written as a union of perfect fields is perfect. Therefore, every
field algebraic over 𝔽𝑝 is perfect.

(c) Every algebraically closed field is perfect.

(d) If 𝐹0 has characteristic 𝑝 ≠ 0, then 𝐹 = 𝐹0(𝑋) is not perfect, because 𝑋 is not a
𝑝th power.

Aside 2.26 When 𝐹 is perfect, we shall see (5.1) that every finite extension 𝐸∕𝐹 is simple, i.e.,
𝐸 = 𝐹[𝛼] with 𝛼 a root of a (separable) polynomial 𝑓 ∈ 𝐹[𝑋] of degree [𝐸 ∶ 𝐹]. Thus it follows
directly from (2.1b) that, for any extension Ω of 𝐹, the number of 𝐹-homomorphisms 𝐸 → Ω is
≤ [𝐸∶ 𝐹], with equality if and only if 𝑓 splits in Ω. We can’t use this argument here because it
would make the exposition circular.

1This is Bourbaki’s definition. Often, for example, in the books of Jacobson and in earlier versions of
these notes, a polynomial 𝑓 is said to be separable if each of its irreducible factors has only simple roots.
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Exercises

2-1 Let 𝐹 be a field of characteristic ≠ 2.
(a) Let 𝐸 be quadratic extension of 𝐹; show that

𝑆(𝐸) = {𝑎 ∈ 𝐹× ∣ 𝑎 is a square in 𝐸}

is a subgroup of 𝐹× containing 𝐹×2.
(b) Let𝐸 and𝐸′ be quadratic extensions of𝐹; show that there exists an𝐹-isomorphism

𝜑∶ 𝐸 → 𝐸′ if and only if 𝑆(𝐸) = 𝑆(𝐸′).
(c) Show that there is an infinite sequence of fields 𝐸1, 𝐸2, … with 𝐸𝑖 a quadratic

extension of ℚ such that 𝐸𝑖 is not isomorphic to 𝐸𝑗 for 𝑖 ≠ 𝑗.
(d) Let 𝑝 be an odd prime. Show that, up to isomorphism, there is exactly one field

with 𝑝2 elements.

2-2 (a) Let 𝐹 be a field of characteristic 𝑝. Show that if 𝑋𝑝 −𝑋 − 𝑎 is reducible in 𝐹[𝑋],
then it splits into distinct factors in 𝐹[𝑋].

(b) For every prime 𝑝, show that 𝑋𝑝 − 𝑋 − 1 is irreducible in ℚ[𝑋].

2-3 Construct a splitting field for 𝑋5 − 2 over ℚ. What is its degree over ℚ?

2-4 Find a splitting field of 𝑋𝑝𝑚 − 1 ∈ 𝔽𝑝[𝑋]. What is its degree over 𝔽𝑝?

2-5 Let 𝑓 ∈ 𝐹[𝑋], where 𝐹 is a field of characteristic 0. Let 𝑑(𝑋) = gcd(𝑓, 𝑓′). Show
that 𝑔(𝑋) def= 𝑓(𝑋)𝑑(𝑋)−1 has the same roots as 𝑓(𝑋), and these are all simple roots of
𝑔(𝑋).

2-6 Let 𝑓(𝑋) be an irreducible polynomial in 𝐹[𝑋], where 𝐹 has characteristic 𝑝. Show
that 𝑓(𝑋) can be written 𝑓(𝑋) = 𝑔(𝑋𝑝𝑒)where 𝑔(𝑋) is irreducible and separable. Deduce
that every root of 𝑓(𝑋) has the same multiplicity 𝑝𝑒 in any splitting field.



Chapter3

The Fundamental Theorem of

Galois Theory

In this chapter, we prove the fundamental theorem of Galois theory, which classifies the
subfields of the splitting field of a separable polynomial 𝑓 in terms of the Galois group
of 𝑓.

Groups of automorphisms of fields

Consider fields 𝐸 ⊃ 𝐹. An 𝐹-isomorphism 𝐸 → 𝐸 is called an 𝐹-automorphism of 𝐸.
The 𝐹-automorphisms of 𝐸 form a group, which we denote Aut(𝐸∕𝐹).

Example 3.1 (a) There are two obvious automorphisms of ℂ, namely, the identity map
and complex conjugation. We’ll see later (9.18) that by using the Axiom of Choice we
can construct uncountably many more.

(b) Let 𝐸 = ℂ(𝑋). A ℂ-automorphism of 𝐸 sends 𝑋 to another generator of 𝐸 over ℂ.
It follows from Lemma 9.24 below that these are exactly the elements 𝑎𝑋+𝑏

𝑐𝑋+𝑑
, 𝑎𝑑 − 𝑏𝑐 ≠ 0.

Therefore Aut(𝐸∕ℂ) consists of the maps 𝑓(𝑋) ↦ 𝑓
(𝑎𝑋+𝑏
𝑐𝑋+𝑑

)
, 𝑎𝑑 − 𝑏𝑐 ≠ 0, and so

Aut(𝐸∕ℂ) ≃ PGL2(ℂ),

the group of invertible 2 × 2 matrices with complex coefficients modulo its centre.
Analysts will note that this is the same as the automorphism group of the Riemann
sphere. Here is the explanation. The field 𝐸 of meromorphic functions on the Riemann
sphere ℙ1ℂ consists of the rational functions in 𝑧, i.e., 𝐸 = ℂ(𝑧) ≃ ℂ(𝑋), and the natural
map Aut(ℙ1ℂ) → Aut(𝐸∕ℂ) is an isomorphism.

(c) The group Aut(ℂ(𝑋1, 𝑋2)∕ℂ) is quite complicated — there is a map

PGL3(ℂ) = Aut(ℙ2ℂ) ↪ Aut(ℂ(𝑋1, 𝑋2)∕ℂ),

but this is very far frombeing surjective. When there are evenmore variables𝑋, the group
is not known. The groupAut(ℂ(𝑋1, … , 𝑋𝑛)∕ℂ) is the group of birational automorphisms
of projective 𝑛-space ℙ𝑛ℂ, and is called the Cremona group. Its study is part of algebraic
geometry (Wikipedia: Cremona group).

In this section, we’ll be concerned with the groups Aut(𝐸∕𝐹) when 𝐸 is a finite
extension of 𝐹.

35
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Proposition 3.2 Let 𝐸 be a splitting field of a separable polynomial 𝑓 in 𝐹[𝑋]; then
Aut(𝐸∕𝐹) has order [𝐸 ∶ 𝐹].

Proof. As 𝑓 is separable, it has deg 𝑓 distinct roots in 𝐸. Therefore Proposition 2.12
shows that the number of 𝐹-homomorphisms 𝐸 → 𝐸 is [𝐸 ∶ 𝐹]. Because 𝐸 is finite over
𝐹, all such homomorphisms are isomorphisms. □

Example 3.3 We give examples to show that, in the statement of the proposition, is
necessary that 𝐸 be a splitting field of a separable polynomial.

Consider a simple extension 𝐸 = 𝐹[𝛼], and let 𝑓 be a polynomial in 𝐹[𝑋] having 𝛼
as a root. If 𝛼 is the only root of 𝑓 in 𝐸, then Aut(𝐸∕𝐹) = 1 by (2.1b). For example, if 3

√
2

is the real cube root of 2, then Aut(ℚ[ 3
√
2]∕ℚ) = 1.

Let 𝐹 be a field of characteristic 𝑝 ≠ 0, let 𝑎 be an element of 𝐹 that is not a 𝑝th
power, and let 𝐸 = 𝐹[𝛼], where 𝛼 is a root of 𝑓 = 𝑋𝑝 − 𝑎. Then 𝑓 = (𝑋 − 𝛼)𝑝 in 𝐸, and
so 𝐸 is a splitting field for 𝑓, but as 𝑓 has only one root in 𝐸, Aut(𝐸∕𝐹) = 1.

When 𝐺 is a group of automorphisms of a field 𝐸, we set

𝐸𝐺 = Inv(𝐺) = {𝛼 ∈ 𝐸 ∣ 𝜎𝛼 = 𝛼, all 𝜎 ∈ 𝐺}.

It is a subfield of 𝐸, called the the fixed field of 𝐺.

Theorem 3.4 (Artin) Let 𝐺 be a finite group of automorphisms of a field 𝐸, then

[𝐸 ∶ 𝐸𝐺] ≤ (𝐺∶ 1).

Proof. Let 𝐹 = 𝐸𝐺 , and let 𝐺 = {𝜎1, … , 𝜎𝑚} with 𝜎1 the identity map. It suffices to
show that every set {𝛼1, … , 𝛼𝑛} of elements of 𝐸 with 𝑛 > 𝑚 is linearly dependent over
𝐹. For such a set, consider the system of linear equations

𝜎1(𝛼1)𝑋1 +⋯+ 𝜎1(𝛼𝑛)𝑋𝑛 = 0
⋮ (6)

𝜎𝑚(𝛼1)𝑋1 +⋯+ 𝜎𝑚(𝛼𝑛)𝑋𝑛 = 0

with coefficients in 𝐸. There are𝑚 equations and 𝑛 > 𝑚 unknowns, and hence there are
nontrivial solutions in 𝐸. We choose one (𝑐1, … , 𝑐𝑛) having the fewest possible nonzero
elements. After renumbering the 𝛼𝑖, we may suppose that 𝑐1 ≠ 0, and then, after
multiplying by a scalar, that 𝑐1 ∈ 𝐹. With these normalizations, we’ll show that all
𝑐𝑖 ∈ 𝐹, and so the first equation

𝛼1𝑐1 +⋯+ 𝛼𝑛𝑐𝑛 = 0

(recall that 𝜎1 is the identity map) is a linear relation on the 𝛼𝑖.
If not all 𝑐𝑖 are in 𝐹, then 𝜎𝑘(𝑐𝑖) ≠ 𝑐𝑖 for some 𝑘 ≠ 1 and 𝑖 ≠ 1. On applying 𝜎𝑘 to the

system of linear equations

𝜎1(𝛼1)𝑐1 +⋯+ 𝜎1(𝛼𝑛)𝑐𝑛 = 0
⋮

𝜎𝑚(𝛼1)𝑐1 +⋯+ 𝜎𝑚(𝛼𝑛)𝑐𝑛 = 0

and using that {𝜎𝑘𝜎1, … , 𝜎𝑘𝜎𝑚} = {𝜎1, … , 𝜎𝑚}, i.e., 𝜎𝑘 merely permutes the 𝜎𝑖, we find
that

(𝑐1, 𝜎𝑘(𝑐2), … , 𝜎𝑘(𝑐𝑖), …)
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is also a solution to the system of equations (6). On subtracting it from the first solution,
we obtain a solution (0, … , 𝑐𝑖 − 𝜎𝑘(𝑐𝑖), …), which is nonzero (look at the 𝑖th entry), but
has more zeros than the first solution (look at the first entry) — contradiction. □

Corollary 3.5 Let 𝐺 be a finite group of automorphisms of a field 𝐸; then

𝐺 = Aut(𝐸∕𝐸𝐺).

Proof. As 𝐺 ⊂ Aut(𝐸∕𝐸𝐺), we have inequalities

[𝐸 ∶ 𝐸𝐺]
3.4
≤ (𝐺∶ 1) ≤ (Aut(𝐸∕𝐸𝐺)∶ 1)

2.14a
≤ [𝐸∶ 𝐸𝐺].

All the inequalities must be equalities, and so 𝐺 = Aut(𝐸∕𝐸𝐺). □

Separable, normal, and Galois extensions

Definition 3.6 An algebraic extension 𝐸∕𝐹 is separable if the minimal polynomial of
every element of 𝐸 is separable; otherwise, it is inseparable.

Thus, an algebraic extension 𝐸∕𝐹 is separable if every irreducible polynomial in
𝐹[𝑋] having a root in 𝐸 is separable, and it is inseparable if
⋄ 𝐹 is nonperfect, and in particular has characteristic 𝑝 ≠ 0, and
⋄ there is an element 𝛼 of 𝐸 whose minimal polynomial is of the form 𝑔(𝑋𝑝), 𝑔 ∈

𝐹[𝑋].
See 2.22 et seq. For example, the extension 𝔽𝑝(𝑇) of 𝔽𝑝(𝑇𝑝) is inseparable because 𝑇 has
minimal polynomial 𝑋𝑝 − 𝑇𝑝.

Definition 3.7 An algebraic extension 𝐸∕𝐹 is normal if it is algebraic and theminimal
polynomial of every element of 𝐸 splits in 𝐸[𝑋].

Thus, an algebraic extension 𝐸∕𝐹 is normal if every irreducible polynomial in 𝐹[𝑋]
having at least one root in 𝐸 splits in 𝐸[𝑋].

Let 𝐸 be an algebraic extension of 𝐹, and let 𝑓 be a monic irreducible polynomial in
𝐹[𝑋]. If 𝑓 has a root in 𝐸, so that it is the minimal polynomial of an element of 𝐸, then

𝐸∕𝐹 normal ⟹ 𝑓 splits in 𝐸
𝐸∕𝐹 separable ⟹ 𝑓 has only simple roots

} ⟹ 𝑓 has deg 𝑓 distinct roots in 𝐸.

It follows that 𝐸∕𝐹 is normal and separable if and only if every irreducible polynomial
in 𝐹[𝑋] having a root in 𝐸 has deg(𝑓) distinct roots in 𝐸.

Example 3.8 (a) The polynomial 𝑋3 − 2 has one real root 3
√
2 and two nonreal roots in

ℂ. Therefore the extension ℚ[ 3
√
2]∕ℚ (which is separable) is not normal.

(b) The extension 𝔽𝑝(𝑇)∕𝔽𝑝(𝑇𝑝) (which is normal) is not separable because the
minimal polynomial of 𝑇 is not separable.

Definition 3.9 An extension𝐸∕𝐹 of fields isGalois if it is finite, normal, and separable.
In this case, Aut(𝐸∕𝐹) is called the Galois group of 𝐸 over 𝐹, and denoted by Gal(𝐸∕𝐹).

Theorem 3.10 For an extension 𝐸∕𝐹, the following statements are equivalent:
(a) 𝐸 is the splitting field of a separable polynomial 𝑓 ∈ 𝐹[𝑋];
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(b) 𝐸 is finite over 𝐹 and 𝐹 = 𝐸Aut(𝐸∕𝐹);
(c) 𝐹 = 𝐸𝐺 for some finite group 𝐺 of automorphisms of 𝐸;
(d) 𝐸 is Galois over 𝐹.

Proof. (a)⇒ (b). Certainly, 𝐸 is finite over 𝐹. Let 𝐹′ = 𝐸Aut(𝐸∕𝐹) ⊃ 𝐹. We have to show
that 𝐹′ = 𝐹. Note that 𝐸 is also the splitting field of 𝑓 regarded as a polynomial with
coefficients in 𝐹′, and that 𝑓 is still separable when it is regarded in this way. Hence

|||Aut(𝐸∕𝐹′)|||
3.2= [𝐸∶ 𝐹′] ≤ [𝐸∶ 𝐹] 3.2= |||Aut(𝐸∕𝐹)||| .

According to Corollary 3.5, Aut(𝐸∕𝐹) = Aut(𝐸∕𝐹′), and so [𝐸 ∶ 𝐹′] = [𝐸∶ 𝐹] and
𝐹′ = 𝐹.

(b)⇒ (c). Let 𝐺 = Aut(𝐸∕𝐹). We are given that 𝐹 = 𝐸𝐺 , and 𝐺 is finite because 𝐸 is
finite over 𝐹 (apply 2.14a).

(c)⇒ (d). According to Theorem 3.4, [𝐸 ∶ 𝐹] ≤ (𝐺∶ 1); in particular, 𝐸∕𝐹 is finite.
Let 𝛼 ∈ 𝐸, and let 𝑓 be the minimal polynomial of 𝛼; we have to show that 𝑓 splits into
distinct factors in 𝐸[𝑋]. Let {𝛼1 = 𝛼, 𝛼2, ..., 𝛼𝑚} be the orbit of 𝛼 under the action of 𝐺
on 𝐸 (so the 𝛼𝑖 are distinct elements of 𝐸), and let

𝑔(𝑋) =
∏𝑚

𝑖=1
(𝑋 − 𝛼𝑖) = 𝑋𝑚 + 𝑎1𝑋𝑚−1 +⋯+ 𝑎𝑚.

The coefficients 𝑎𝑗 are symmetric polynomials in the 𝛼𝑖, and each 𝜎 ∈ 𝐺 permutes the 𝛼𝑖,
and so 𝜎𝑎𝑗 = 𝑎𝑗 for all 𝑗. Thus 𝑔(𝑋) ∈ 𝐹[𝑋]. As it is monic and 𝑔(𝛼) = 0, it is divisible
by 𝑓 (see the definition of minimal polynomial, p. 18). Let 𝛼𝑖 = 𝜎𝛼; on applying 𝜎 to
the equation 𝑓(𝛼) = 0 we find that 𝑓(𝛼𝑖) = 0. Therefore every 𝛼𝑖 is a root of 𝑓, and so 𝑔
divides 𝑓. Hence 𝑓 = 𝑔, and we conclude that 𝑓(𝑋) splits into distinct factors in 𝐸.

(d)⇒ (a). Because 𝐸 has finite degree over 𝐹, it is generated over 𝐹 by a finite number
of elements, say, 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑚], 𝛼𝑖 ∈ 𝐸, 𝛼𝑖 algebraic over 𝐹. Let 𝑓𝑖 be the minimal
polynomial of 𝛼𝑖 over 𝐹, and let 𝑓 be the product of the distinct 𝑓𝑖. Because 𝐸 is normal
over 𝐹, each 𝑓𝑖 splits in 𝐸, and so 𝐸 is the splitting field of 𝑓. Because 𝐸 is separable over
𝐹, each 𝑓𝑖 is separable, and so 𝑓 is separable. □

Corollary 3.11 (Artin’s Theorem) Let 𝐺 be a finite group of automorphisms of a
field 𝐸, and let 𝐹 = 𝐸𝐺 . Then 𝐸 is a Galois extension of 𝐹 with Galois group 𝐺, and
[𝐸 ∶ 𝐹] = (𝐺∶ 1).

Proof. That 𝐸 is Galois over 𝐹 follows from the theorem; that Gal(𝐸∕𝐹) = 𝐺 follows
from 3.5; that [𝐸 ∶ 𝐹] = |Gal(𝐸∕𝐹)| follows from 3.2. □

Corollary 3.12 Every finite separable extension 𝐸 of 𝐹 is contained in a Galois extension.

Proof. Let 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑚], and let 𝑓𝑖 be the minimal polynomial of 𝛼𝑖 over 𝐹. The
product of the distinct 𝑓𝑖 is a separable polynomial in 𝐹[𝑋] whose splitting field is a
Galois extension of 𝐹 containing 𝐸. □

Corollary 3.13 Let 𝐸 ⊃ 𝑀 ⊃ 𝐹; if 𝐸 is Galois over 𝐹, then it is Galois over𝑀.

Proof. We know 𝐸 is the splitting field of some separable 𝑓 ∈ 𝐹[𝑋]; it is also the
splitting field of 𝑓 regarded as an element of𝑀[𝑋]. □
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Remark 3.14 Let 𝐸 be Galois over 𝐹 with Galois group 𝐺, and let 𝛼 ∈ 𝐸. The elements
𝛼1, 𝛼2, ..., 𝛼𝑚 of the orbit of 𝛼 under 𝐺 are called the conjugates of 𝛼. In the course of
proving the theorem we showed that the minimal polynomial of 𝛼 is∏(𝑋 − 𝛼𝑖), i.e.,
the conjugates of 𝛼 are exactly the roots of its minimal polynomial in 𝐸.

Remark 3.15 An element 𝛼 of an algebraic extension of 𝐹 is said to be separable over
𝐹 if its minimal polynomial over 𝐹 is separable. The proof of Corollary 3.12 shows
that every finite extension generated by separable elements is separable. Therefore, the
elements of an algebraic extension 𝐸 of 𝐹 that are separable over 𝐹 form a subfield 𝐸sep
of 𝐸 that is separable over 𝐹. This is called the separable closure of 𝐹 in 𝐸. When 𝐸 is
finite over 𝐹, we let [𝐸 ∶ 𝐹]sep = [𝐸sep∶ 𝐹] and call it the separable degree of 𝐸 over 𝐹.

An algebraic extension 𝐸 is purely inseparable over 𝐹 if the only elements of 𝐸
separable over 𝐹 are the elements of 𝐹. If 𝐸 is a finite extension of 𝐹, then 𝐸 is purely
inseparable over 𝐸sep. See Jacobson 1964, Chap. I, Section 10, for more on this topic.

Definition 3.16 An extension 𝐸 of 𝐹 is cyclic (resp. abelian, resp. solvable, etc.) if it
is Galois with cyclic (resp. abelian, resp. solvable, etc.) Galois group.

The fundamental theorem of Galois theory

Let 𝐸 be an extension of 𝐹. A subextension of 𝐸∕𝐹 is an extension𝑀∕𝐹 with𝑀 ⊂ 𝐸,
i.e., a field𝑀 with 𝐹 ⊂ 𝑀 ⊂ 𝐸. When 𝐸 is Galois over 𝐹, the subextensions of 𝐸∕𝐹 are
in one-to-one correspondence with the subgroups of Gal(𝐸∕𝐹). More precisely, there is
the following statement.

Theorem 3.17 (Fundamental theorem of Galois theory) Let 𝐸 be a Galois ex-
tension of 𝐹 with Galois group 𝐺. The map𝐻 ↦ 𝐸𝐻 is a bijection from the set of subgroups
of 𝐺 to the set of subextensions of 𝐸∕𝐹,

{subgroups𝐻 of 𝐺}
1∶ 1
⟷{subextensions 𝐹 ⊂ 𝑀 ⊂ 𝐸},

with inverse𝑀 ↦ Gal(𝐸∕𝑀). Moreover,
(a) 𝐻1 ⊃ 𝐻2 ⟺ 𝐸𝐻1 ⊂ 𝐸𝐻2 (the correspondence is order reversing);

(b) (𝐻1∶ 𝐻2) = [𝐸𝐻2 ∶ 𝐸𝐻1];
(c) 𝜎𝐻𝜎−1 ↔ 𝜎𝑀, i.e.,

𝐸𝜎𝐻𝜎−1 = 𝜎(𝐸𝐻);
Gal(𝐸∕𝜎𝑀) = 𝜎Gal(𝐸∕𝑀)𝜎−1;

(d) 𝐻 is normal in 𝐺 ⟺ 𝐸𝐻 is normal (hence Galois) over 𝐹, in which case

Gal(𝐸𝐻∕𝐹) ≃ 𝐺∕𝐻.

Proof. For the first statement, we have to show that 𝐻 ↦ 𝐸𝐻 and𝑀 ↦ Gal(𝐸∕𝑀) are
inverse maps. Let𝐻 be a subgroup of 𝐺. Then, Corollary 3.11 shows that Gal(𝐸∕𝐸𝐻) =
𝐻. Let 𝑀∕𝐹 be a subextension. Then 𝐸 is Galois over 𝑀 by 3.13, which means that
𝐸Gal(𝐸∕𝑀) = 𝑀 .

(a) We have the obvious implications,

𝐻1 ⊃ 𝐻2 ⟹ 𝐸𝐻1 ⊂ 𝐸𝐻2 ⟹ Gal(𝐸∕𝐸𝐻1) ⊃ Gal(𝐸∕𝐸𝐻2).
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As Gal(𝐸∕𝐸𝐻𝑖 ) = 𝐻𝑖, this proves (a).
(b) Let𝐻 be a subgroup of 𝐺. According to 3.11,

(Gal(𝐸∕𝐸𝐻)∶ 1) = [𝐸∶ 𝐸𝐻].

This proves (b) in the case𝐻2 = 1, and the general case follows, using that

(𝐻1∶ 1) = (𝐻1∶ 𝐻2)(𝐻2∶ 1)

[𝐸 ∶ 𝐸𝐻1] 1.20= [𝐸∶ 𝐸𝐻2][𝐸𝐻2 ∶ 𝐸𝐻1].

(c) For 𝜏 ∈ 𝐺 and 𝛼 ∈ 𝐸,

𝜏𝛼 = 𝛼 ⟺ 𝜎𝜏𝜎−1(𝜎𝛼) = 𝜎𝛼.

Therefore, 𝜏 fixes𝑀 if and only if 𝜎𝜏𝜎−1 fixes 𝜎𝑀 , and soGal(𝐸∕𝜎𝑀) = 𝜎Gal(𝐸∕𝑀)𝜎−1.
This shows that 𝜎Gal(𝐸∕𝑀)𝜎−1 corresponds to 𝜎𝑀.

(d) Let 𝐻 be a normal subgroup of 𝐺. Because 𝜎𝐻𝜎−1 = 𝐻 for all 𝜎 ∈ 𝐺, we must
have 𝜎𝐸𝐻 = 𝐸𝐻 for all 𝜎 ∈ 𝐺, i.e., the action of 𝐺 on 𝐸 stabilizes 𝐸𝐻 . We therefore have
a homomorphism

𝜎 ↦ 𝜎|𝐸𝐻 ∶ 𝐺 → Aut(𝐸𝐻∕𝐹)

whose kernel is𝐻. As (𝐸𝐻)𝐺∕𝐻 = 𝐹, we see that 𝐸𝐻 is Galois over 𝐹 (by Theorem 3.10)
and that 𝐺∕𝐻 ≃ Gal(𝐸𝐻∕𝐹) (by 3.11).

Conversely, suppose that𝑀 is normal over 𝐹, and let 𝛼1, … , 𝛼𝑚 generate𝑀 over 𝐹.
For 𝜎 ∈ 𝐺, 𝜎𝛼𝑖 is a root of the minimal polynomial of 𝛼𝑖 over 𝐹, and so lies in𝑀. Hence
𝜎𝑀 = 𝑀, and this implies that 𝜎𝐻𝜎−1 = 𝐻 (by (c)). □

Remark 3.18 Let 𝐸∕𝐹 be a Galois extension, so that there is an order reversing bijection
between the subextensions of 𝐸∕𝐹 and the subgroups of 𝐺. From this, we can read off
the following results.

(a) Let 𝑀1,𝑀2, … ,𝑀𝑟 be subextensions of 𝐸∕𝐹, and let 𝐻𝑖 be the subgroup corre-
sponding to𝑀𝑖 (i.e.,𝐻𝑖 = Gal(𝐸∕𝑀𝑖)). Then (by definition)𝑀1𝑀2⋯𝑀𝑟 is the smallest
field containing all𝑀𝑖; hence it must correspond to the largest subgroup contained in
all𝐻𝑖, which is

⋂𝐻𝑖. We have shown that

Gal(𝐸∕𝑀1⋯𝑀𝑟) = 𝐻1 ∩ ... ∩ 𝐻𝑟.

(b) Let𝐻 be a subgroup of𝐺 and let𝑀 = 𝐸𝐻 . The largest normal subgroup contained
in𝐻 is 𝑁 = ⋂

𝜎∈𝐺 𝜎𝐻𝜎
−1 (see GT, 4.10), and so 𝐸𝑁 is the smallest normal extension of

𝐹 containing𝑀. Note that, by (a), 𝐸𝑁 is the composite of the fields 𝜎𝑀. It is called the
normal, or Galois, closure of𝑀 in 𝐸.

Proposition 3.19 Let 𝐸 and 𝐿 be extensions of 𝐹 contained in some common field. If
𝐸∕𝐹 is Galois, then 𝐸𝐿∕𝐿 and 𝐸∕𝐸 ∩ 𝐿 are Galois, and the map

𝜎 ↦ 𝜎|𝐸∶ Gal(𝐸𝐿∕𝐿) → Gal(𝐸∕𝐸 ∩ 𝐿)

is an isomorphism.
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Proof. Because 𝐸 is Galois over 𝐹, it is the splitting field of a separable polynomial
𝑓 ∈ 𝐹[𝑋]. Then 𝐸𝐿 is the splitting field of 𝑓 over 𝐿, and 𝐸 is the splitting
field of 𝑓 over 𝐸 ∩ 𝐿. Hence 𝐸𝐿∕𝐿 and 𝐸∕𝐸 ∩ 𝐿 are Galois. Every
automorphism 𝜎 of 𝐸𝐿 fixing the elements of 𝐿 maps roots of 𝑓 to roots
of 𝑓, and so 𝜎𝐸 = 𝐸. There is therefore a homomorphism

𝜎 ↦ 𝜎|𝐸∶ Gal(𝐸𝐿∕𝐿) → Gal(𝐸∕𝐸 ∩ 𝐿).

If 𝜎 ∈ Gal(𝐸𝐿∕𝐿) fixes the elements of 𝐸, then it fixes the elements of
𝐸𝐿, and hence is the identity map. Thus, 𝜎 ↦ 𝜎|𝐸 is injective. If 𝛼 ∈ 𝐸
is fixed by all 𝜎 ∈ Gal(𝐸𝐿∕𝐿), then 𝛼 ∈ 𝐸 ∩ 𝐿. By Corollary 3.5,

𝐸𝐿

𝐸 𝐿

𝐸 ∩ 𝐿

𝐹

=

=

this implies that the image of 𝜎 ↦ 𝜎|𝐸 is Gal(𝐸∕𝐸 ∩ 𝐿). □

Corollary 3.20 Suppose, in the proposition, that 𝐿 is finite over 𝐹. Then

[𝐸𝐿∶ 𝐹] = [𝐸∶ 𝐹][𝐿∶ 𝐹]
[𝐸 ∩ 𝐿∶ 𝐹]

.

Proof. According to Proposition 1.20,

[𝐸𝐿∶ 𝐹] = [𝐸𝐿∶ 𝐿][𝐿∶ 𝐹],

but
[𝐸𝐿∶ 𝐿] 3.19= [𝐸∶ 𝐸 ∩ 𝐿] 1.20= [𝐸∶ 𝐹]

[𝐸 ∩ 𝐿∶ 𝐹]
.

□

Proposition 3.21 Let 𝐸1 and 𝐸2 be extensions of 𝐹 contained in some common field. If
𝐸1 and 𝐸2 are Galois over 𝐹, then 𝐸1𝐸2 and 𝐸1 ∩ 𝐸2 are Galois over 𝐹, and the map

𝜎 ↦ (𝜎|𝐸1, 𝜎|𝐸2)∶ Gal(𝐸1𝐸2∕𝐹) → Gal(𝐸1∕𝐹) ×Gal(𝐸2∕𝐹)

is an isomorphism of Gal(𝐸1𝐸2∕𝐹) onto the subgroup

𝐻 = {(𝜎1, 𝜎2) ∣ 𝜎1|𝐸1 ∩ 𝐸2 = 𝜎2|𝐸1 ∩ 𝐸2}

of Gal(𝐸1∕𝐹) ×Gal(𝐸2∕𝐹).

In other words,

Gal(𝐸1𝐸2∕𝐹) ≃ Gal(𝐸1∕𝐹) ×
Gal(𝐸1∩𝐸2∕𝐹)

Gal(𝐸2∕𝐹).

Proof: Let 𝑎 ∈ 𝐸1 ∩ 𝐸2, and let 𝑓 be its minimal polynomial over 𝐹. Then 𝑓 has
deg 𝑓 distinct roots in 𝐸1 and deg 𝑓 distinct roots in 𝐸2. Since 𝑓
can have at most deg 𝑓 roots in 𝐸1𝐸2, it follows that it has deg 𝑓
distinct roots in 𝐸1 ∩ 𝐸2. This shows that 𝐸1 ∩ 𝐸2 is normal and
separable over 𝐹, and hence Galois (3.10). As 𝐸1 and 𝐸2 are
Galois over 𝐹, they are splitting fields for separable polynomials
𝑓1, 𝑓2 ∈ 𝐹[𝑋]. Now 𝐸1𝐸2 is a splitting field for lcm(𝑓1, 𝑓2), and
hence it also is Galois over 𝐹. The map 𝜎 ↦ (𝜎|𝐸1, 𝜎|𝐸2) is
clearly an injective homomorphism, and its image is contained
in𝐻. We’ll prove that the image is the whole of𝐻 by counting.

𝐸1𝐸2

𝐸1 𝐸2

𝐸1 ∩ 𝐸2

𝐹
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From the fundamental theorem,

Gal(𝐸2∕𝐹)
Gal(𝐸2∕𝐸1 ∩ 𝐸2)

≃ Gal(𝐸1 ∩ 𝐸2∕𝐹),

and so, for each 𝜎1 ∈ Gal(𝐸1∕𝐹), 𝜎1|𝐸1 ∩ 𝐸2 has exactly [𝐸2∶ 𝐸1 ∩ 𝐸2] extensions to an
element of Gal(𝐸2∕𝐹). Therefore,

(𝐻∶ 1) = [𝐸1∶ 𝐹][𝐸2∶ 𝐸1 ∩ 𝐸2] =
[𝐸1∶ 𝐹] ⋅ [𝐸2∶ 𝐹]
[𝐸1 ∩ 𝐸2∶ 𝐹]

,

which equals [𝐸1𝐸2∶ 𝐹] by (3.20). □

Examples

Example 3.22 We analyse the extensionℚ[𝜁]∕ℚ, where 𝜁 is a primitive 7th root of 1,
say 𝜁 = 𝑒2𝜋𝑖∕7.
Note thatℚ[𝜁] is the splitting field of the poly-

nomial 𝑋7 − 1, and that 𝜁 has minimal polyno-
mial

𝑋6 + 𝑋5 + 𝑋4 + 𝑋3 + 𝑋2 + 𝑋 + 1

(see 1.42). Therefore, ℚ[𝜁] is Galois of degree
6 over ℚ. For any 𝜎 ∈ Gal(ℚ[𝜁]∕ℚ), 𝜎𝜁 = 𝜁𝑖,
some 𝑖, 1 ≤ 𝑖 ≤ 6, and the map 𝜎 ↦ 𝑖 defines an
isomorphism Gal(ℚ[𝜁]∕ℚ) → (ℤ∕7ℤ)×. Let 𝜎
be the element of Gal(ℚ[𝜁]∕ℚ) such that 𝜎𝜁 =
𝜁3. Then 𝜎 generates Gal(ℚ[𝜁]∕ℚ) because the
class of 3 in (ℤ∕7ℤ)× generates it (the powers
of 3mod 7 are 3, 2, 6, 4, 5, 1). We investigate the
subfields ofℚ[𝜁] corresponding to the subgroups
⟨𝜎3⟩ and ⟨𝜎2⟩.

ℚ[𝜁]

ℚ[𝜁 + 𝜁] ℚ[
√
−7]

ℚ

⟨𝜎3⟩ ⟨𝜎2⟩

⟨𝜎⟩∕⟨𝜎3⟩ ⟨𝜎⟩∕⟨𝜎2⟩

Note that 𝜎3𝜁 = 𝜁6 = 𝜁 (complex conjugate of 𝜁), and so 𝜁 + 𝜁 = 2 cos 2𝜋
7
is fixed

by 𝜎3. Now ℚ[𝜁] ⊃ ℚ[𝜁]⟨𝜎3⟩ ⊃ ℚ[𝜁 + 𝜁] ≠ ℚ, and so ℚ[𝜁]⟨𝜎3⟩ = ℚ[𝜁 + 𝜁] (look at
degrees). As ⟨𝜎3⟩ is a normal subgroup of ⟨𝜎⟩, ℚ[𝜁 + 𝜁] is Galois over ℚ, with Galois
group ⟨𝜎⟩∕⟨𝜎3⟩. The conjugates of 𝛼1

def= 𝜁 + 𝜁 are 𝛼3 = 𝜁3 + 𝜁−3, 𝛼2 = 𝜁2 + 𝜁−2. Direct
calculation shows that

𝛼1 + 𝛼2 + 𝛼3 =
∑6

𝑖=1
𝜁𝑖 = −1,

𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼2𝛼3 = −2,
𝛼1𝛼2𝛼3 = (𝜁 + 𝜁6)(𝜁2 + 𝜁5)(𝜁3 + 𝜁4)

= (𝜁 + 𝜁3 + 𝜁4 + 𝜁6)(𝜁3 + 𝜁4)
= (𝜁4 + 𝜁6 + 1 + 𝜁2 + 𝜁5 + 1 + 𝜁 + 𝜁3)
= 1.
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Hence the minimal polynomial1 of 𝜁 + 𝜁 is

𝑔(𝑋) = 𝑋3 + 𝑋2 − 2𝑋 − 1.

The minimal polynomial of cos 2𝜋
7
= 𝛼1

2
is therefore

𝑔(2𝑋)
8 = 𝑋3 + 𝑋2∕2 − 𝑋∕2 − 1∕8.

The subfield of ℚ[𝜁] corresponding to ⟨𝜎2⟩ is generated by 𝛽 = 𝜁 + 𝜁2 + 𝜁4. Let
𝛽′ = 𝜎𝛽. Then (𝛽 − 𝛽′)2 = −7. Hence the field fixed by ⟨𝜎2⟩ is ℚ[

√
−7].

Example 3.23 We compute the Galois group of a splitting field 𝐸 of 𝑋5 − 2 ∈ ℚ[𝑋].
Recall from Exercise 2-3 that 𝐸 = ℚ[𝜁, 𝛼] where 𝜁 is a primitive
5th root of 1, and 𝛼 is a root of 𝑋5 − 2. For example, we could
take 𝐸 to be the splitting field of 𝑋5−2 inℂ, with 𝜁 = 𝑒2𝜋𝑖∕5 and
𝛼 equal to the real 5th root of 2. We have the picture at right,
and

[ℚ[𝜁] ∶ ℚ] = 4, [ℚ[𝛼] ∶ ℚ] = 5.

Because 4 and 5 are relatively prime,

[ℚ[𝜁, 𝛼] ∶ ℚ] = 20.

ℚ[𝜁, 𝛼]

ℚ[𝜁] ℚ[𝛼]

ℚ

𝑁 𝐻

𝐺∕𝑁

Hence 𝐺 = Gal(ℚ[𝜁, 𝛼]∕ℚ) has order 20, and the subgroups 𝑁 and 𝐻 fixing ℚ[𝜁] and
ℚ[𝛼] have orders 5 and 4 respectively. Because ℚ[𝜁] is normal over ℚ (it is the splitting
field of 𝑋5 − 1), 𝑁 is normal in 𝐺. Because ℚ[𝜁] ⋅ ℚ[𝛼] = ℚ[𝜁, 𝛼], we have𝐻 ∩ 𝑁 = 1,
and so 𝐺 = 𝑁 ⋊𝜃 𝐻. Moreover,𝐻 ≃ 𝐺∕𝑁 ≃ (ℤ∕5ℤ)×, which is cyclic, being generated
by the class of 2. Let 𝜏 be the generator of𝐻 corresponding to 2 under this isomorphism,
and let 𝜎 be a generator of 𝑁. Thus 𝜎(𝛼) is another root of 𝑋5 − 2, which we can take to
be 𝜁𝛼 (after possibly replacing 𝜎 by a power). Hence:

{ 𝜏𝜁 = 𝜁2
𝜏𝛼 = 𝛼 { 𝜎𝜁 = 𝜁

𝜎𝛼 = 𝜁𝛼.

Note that 𝜏𝜎𝜏−1(𝛼) = 𝜏𝜎𝛼 = 𝜏(𝜁𝛼) = 𝜁2𝛼 and it fixes 𝜁; therefore 𝜏𝜎𝜏−1 = 𝜎2. Thus 𝐺
has generators 𝜎 and 𝜏 and defining relations

𝜎5 = 1, 𝜏4 = 1, 𝜏𝜎𝜏−1 = 𝜎2.

The subgroup𝐻 has five conjugates, which correspond to the five fieldsℚ[𝜁𝑖𝛼],

𝜎𝑖𝐻𝜎−𝑖 ↔ 𝜎𝑖ℚ[𝛼] = ℚ[𝜁𝑖𝛼], 1 ≤ 𝑖 ≤ 5.

Constructible numbers revisited

Earlier (1.37) we showed that a real number 𝛼 is constructible if and only if it is con-
tained in a subfield of ℝ of the formℚ[

√
𝑎1, … ,

√
𝑎𝑟] with each 𝑎𝑖 a positive element of

ℚ[
√
𝑎1, … ,

√
𝑎𝑖−1]. In particular

𝛼 constructible ⟹ [ℚ[𝛼]∶ ℚ] = 2𝑠 some 𝑠. (7)

Now we can prove a partial converse to this last statement.
1More directly, on setting 𝑋 = 𝜁 + 𝜁 in

(𝑋3 − 3𝑋) + (𝑋2 − 2) + 𝑋 + 1
one obtains 1 + 𝜁 + 𝜁2 +⋯+ 𝜁6 = 0.
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Theorem 3.24 If 𝛼 is contained in a subfield ofℝ that is Galois of degree 2𝑟 overℚ, then
it is constructible.

Proof. Suppose𝛼 ∈ 𝐸 ⊂ ℝwhere𝐸 is Galois of degree 2𝑟 overℚ, and let𝐺 = Gal(𝐸∕ℚ).
Because finite 𝑝-groups are solvable (GT, 6.7), there exists a sequence of groups

{1} = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ ⋯ ⊂ 𝐺𝑟 = 𝐺

with 𝐺𝑖∕𝐺𝑖−1 of order 2. Correspondingly, there will be a sequence of fields,

𝐸 = 𝐸0 ⊃ 𝐸1 ⊃ 𝐸2 ⊃ ⋯ ⊃ 𝐸𝑟 = ℚ

with 𝐸𝑖−1 of degree 2 over 𝐸𝑖. The next lemma shows that 𝐸𝑖 = 𝐸𝑖−1[
√
𝑎𝑖] for some

𝑎𝑖 ∈ 𝐸𝑖−1, and 𝑎𝑖 > 0 because otherwise 𝐸𝑖 would not be real. This proves the theorem.□
Lemma 3.25 Let 𝐸∕𝐹 be a quadratic extension of fields of characteristic ≠ 2. Then 𝐸 =
𝐹[
√
𝑑] for some 𝑑 ∈ 𝐹.

Proof. Let 𝛼 ∈ 𝐸, 𝛼 ∉ 𝐹, and let 𝑋2 + 𝑏𝑋 + 𝑐 be the minimal polynomial of 𝛼. Then
𝛼 = −𝑏±

√
𝑏2−4𝑐
2

, and so 𝐸 = 𝐹[
√
𝑏2 − 4𝑐]. □

Corollary 3.26 If 𝑝 is a prime of the form 2𝑘 + 1, then cos 2𝜋
𝑝
is constructible.

Proof. The fieldℚ[𝑒2𝜋𝑖∕𝑝] is Galois overℚwith Galois group 𝐺 ≃ (ℤ∕𝑝ℤ)×, which has
order 𝑝 − 1 = 2𝑘. The fieldℚ[cos 2𝜋

𝑝
] is contained in ℚ[𝑒2𝜋𝑖∕𝑝], and therefore is Galois

of degree dividing 2𝑘 (fundamental theorem 3.17 and 1.20). Asℚ[cos 2𝜋
𝑝
] is a subfield of

ℝ, we can apply the theorem. □

Thus a regular 𝑝-gon, 𝑝 prime, is constructible if and only if 𝑝 is a Fermat prime,
i.e., of the form 22𝑟 + 1. For example, we have proved that the regular 65537-polygon is
constructible, without (happily) having to exhibit an explicit formula for cos 2𝜋

65537
.

Remark 3.27 The converse to (7) is false. In fact, there are nonconstructible algebraic
numbers of degree 4 over ℚ.

For example, the polynomial 𝑓(𝑋) = 𝑋4 − 4𝑋 + 2 ∈ ℚ[𝑋] is irreducible, and we
show below (4.10) that the Galois group of its splitting field 𝐸 is 𝑆4. If the four roots of 𝑓
were constructible, then every element of 𝐸 would be constructible (1.36), but 𝑆4 has
a subgroup 𝐻 of order 8, and 𝐸𝐻 has degree 3 over ℚ, and so no element of 𝐸𝐻 ∖ ℚ is
constructible.

Alternatively, if a root 𝛼 of 𝑓(𝑋) were constructible, then there would exist a tower
of quadratic extensions ℚ[𝛼] ⊃ 𝑀 ⊃ ℚ. By Galois theory, the groups Gal(𝐸∕𝑀) ⊃
Gal(𝐸∕ℚ[𝛼]) have orders 12 and 6 respectively. As Gal(𝐸∕ℚ) = 𝑆4, Gal(𝐸∕𝑀) would be
𝐴4. But 𝐴4 has no subgroup of order 6, a contradiction.

The Galois group of a polynomial

If a polynomial 𝑓 ∈ 𝐹[𝑋] is separable, then its splitting field 𝐹𝑓 is Galois over 𝐹, and we
call Gal(𝐹𝑓∕𝐹) the Galois group 𝐺𝑓 of 𝑓.

Let 𝑓(𝑋) = ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖) in a splitting field 𝐹𝑓. We know that the elements of

Gal(𝐹𝑓∕𝐹)map roots of 𝑓 to roots of 𝑓, i.e., they map the set {𝛼1, 𝛼2, … , 𝛼𝑛} into itself.
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Being automorphisms, they act as permutations on {𝛼1, 𝛼2, … , 𝛼𝑛}. As the 𝛼𝑖 generate 𝐹𝑓
over 𝐹, an element of Gal(𝐹𝑓∕𝐹) is uniquely determined by the permutation it defines.
Thus 𝐺𝑓 can be identified with a subset of Sym({𝛼1, 𝛼2, … , 𝛼𝑛}) ≈ 𝑆𝑛 (symmetric group
on 𝑛 symbols). In fact, 𝐺𝑓 consists exactly of the permutations 𝜎 of {𝛼1, 𝛼2, … , 𝛼𝑛} such
that, for 𝑃 ∈ 𝐹[𝑋1, … , 𝑋𝑛],

𝑃(𝛼1, … , 𝛼𝑛) = 0 ⟹ 𝑃(𝜎𝛼1, … , 𝜎𝛼𝑛) = 0. (8)

To see this, note that the kernel of the map

𝐹[𝑋1, … , 𝑋𝑛] → 𝐹𝑓, 𝑋𝑖 ↦ 𝛼𝑖, (9)

consists of the polynomials 𝑃(𝑋1, … , 𝑋𝑛) such that 𝑃(𝛼1, … , 𝛼𝑛) = 0. Let 𝜎 be a permu-
tation of the 𝛼𝑖 satisfying the condition (8). Then the map

𝐹[𝑋1, … , 𝑋𝑛] → 𝐹𝑓, 𝑋𝑖 ↦ 𝜎𝛼𝑖,

factors through the map (9), and defines an 𝐹-isomorphism 𝐹𝑓 → 𝐹𝑓, i.e., an element of
the Galois group. This shows that every permutation satisfying the condition (8) extends
uniquely to an element of 𝐺𝑓, and it is obvious that every element of 𝐺𝑓 arises in this
way.

This gives a description of 𝐺𝑓 not mentioning fields or abstract groups, neither of
which were available to Galois. Note that it shows again that (𝐺𝑓 ∶ 1), hence [𝐹𝑓 ∶ 𝐹],
divides deg(𝑓)!.

Solvability of equations

For a polynomial 𝑓 ∈ 𝐹[𝑋], we say that 𝑓(𝑋) = 0 is solvable in radicals if its solutions
can be obtained by the algebraic operations of addition, subtraction, multiplication,
division, and the extraction of 𝑚th roots, or, more precisely, if there exists a tower of
fields

𝐹 = 𝐹0 ⊂ 𝐹1 ⊂ 𝐹2 ⊂ ⋯ ⊂ 𝐹𝑚
such that
(a) 𝐹𝑖 = 𝐹𝑖−1[𝛼𝑖], 𝛼

𝑚𝑖
𝑖 ∈ 𝐹𝑖−1;

(b) 𝐹𝑚 contains a splitting field for 𝑓.

Theorem 3.28 (Galois, 1832) Let 𝐹 be a field of characteristic zero, and let 𝑓 ∈ 𝐹[𝑋].
The equation 𝑓(𝑋) = 0 is solvable in radicals if and only if the Galois group of 𝑓 is solvable.

We’ll prove this later (5.34). Also we’ll exhibit polynomials 𝑓(𝑋) ∈ ℚ[𝑋]with Galois
group 𝑆𝑛, which are therefore not solvable when 𝑛 ≥ 5 by GT, 4.37.

Remark 3.29 When 𝐹 has characteristic 𝑝, the theorem fails for two reasons,
(a) 𝑓 need not be separable, and so not have a Galois group;
(b) 𝑋𝑝 − 𝑋 − 𝑎 = 0 need not be solvable in radicals even though it is separable with

abelian Galois group (cf. Exercise 2-2).
If the definition of solvable is changed to allow extensions defined by polynomials of the
type in (b) in the chain, then the theorem holds for fields 𝐹 of characteristic 𝑝 ≠ 0 and
separable 𝑓 ∈ 𝐹[𝑋].
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Aside 3.30 Abel (1828) proved the following statement: If three roots of an arbitrary irreducible
equation of a prime degree are such that one of them can be rationally expressed as function
of the other two, then the equation can be solved by radicals. Sylow (1902) claimed that Abel’s
statement is incorrect. Deligne (C. R. Math. Acad. Sci. Paris 359 (2021), 919–921) supplied a
complete and elegant proof for Abel’s statement (including its converse) by using the Galois
theory of fields to convert everything into the language of permutation groups. He proves that if
𝐸 is a set with 𝑝 elements (𝑝 a prime number) and 𝐺 is a transitive group of permutations of 𝐸,
then 𝐺 is a solvable group if and only if, for any three elements of 𝐸, there exists one of them
that is fixed by any element 𝑔 of 𝐺 such that 𝑔 fixes the other two elements.

Notes Much of what has been written about Galois is unreliable — see Tony Rothman, Genius
and Biographers: The Fictionalization of Evariste Galois, Amer. Math. Monthly, 89, 84 (1982). For
a careful explanation of Galois’s “Premier Mémoire”, see Harold Edwards, Galois for 21st-century
readers. Notices Amer. Math. Soc. 59 (2012), no. 7, 912–923.

Exercises

3-1 Let 𝐹 be a field of characteristic 0. Show that 𝐹(𝑋2) ∩ 𝐹(𝑋2 − 𝑋) = 𝐹 (intersection
inside 𝐹(𝑋)). [Hint: Find automorphisms 𝜎 and 𝜏 of 𝐹(𝑋), each of order 2, fixing 𝐹(𝑋2)
and 𝐹(𝑋2 − 𝑋) respectively, and show that 𝜎𝜏 has infinite order.]

3-2 Let 𝑝 be an odd prime, and let 𝜁 be a primitive 𝑝th root of 1 in ℂ. Let 𝐸 = ℚ[𝜁],
and let 𝐺 = Gal(𝐸∕ℚ); thus 𝐺 = (ℤ∕(𝑝))×. Let𝐻 be the subgroup of index 2 in 𝐺. Put
𝛼 = ∑

𝑖∈𝐻 𝜁
𝑖 and 𝛽 = ∑

𝑖∈𝐺⧵𝐻 𝜁
𝑖. Show:

(a) 𝛼 and 𝛽 are fixed by𝐻;
(b) if 𝜎 ∈ 𝐺 ⧵ 𝐻, then 𝜎𝛼 = 𝛽, 𝜎𝛽 = 𝛼.
Thus 𝛼 and 𝛽 are roots of the polynomial 𝑋2 + 𝑋 + 𝛼𝛽 ∈ ℚ[𝑋]. Compute 𝛼𝛽 (or

𝛼 − 𝛽) and show that the fixed field of 𝐻 is ℚ[
√
𝑝] when 𝑝 ≡ 1 mod 4 and ℚ[

√
−𝑝]

when 𝑝 ≡ 3 mod 4.2

3-3 Let𝑀 = ℚ[
√
2,
√
3] and 𝐸 = 𝑀[

√
(
√
2 + 2)(

√
3 + 3)] (subfields of ℝ).

(a) Show that𝑀 is Galois over ℚ with Galois group the 4-group 𝐶2 × 𝐶2.
(b) Show that 𝐸 is Galois overℚ with Galois group the quaternion group.

3-4 Let 𝐸 be a Galois extension of 𝐹 with Galois group 𝐺, and let 𝐿 be the fixed field of
a subgroup𝐻 of 𝐺. Show that the automomorphism group of 𝐿∕𝐹 is 𝑁∕𝐻 where 𝑁 is
the normalizer of𝐻 in 𝐺.

3-5 Let 𝐸 be a finite extension of 𝐹. Show that the order ofAut(𝐸∕𝐹) divides the degree
[𝐸 ∶ 𝐹].

2This problem shows that every quadratic extension of ℚ is contained in a cyclotomic extension of ℚ.
The Kronecker-Weber theorem says that every abelian extension ofℚ is contained in a cyclotomic extension.



Chapter4

Computing Galois Groups

In this chapter, we investigate general methods for computing Galois groups.

When is 𝐺𝑓 ⊂ 𝐴𝑛?

Let 𝜎 be a permutation of the set {1, 2, … , 𝑛}. The pairs (𝑖, 𝑗) with 𝑖 < 𝑗 but 𝜎(𝑖) > 𝜎(𝑗)
are called the inversions of 𝜎, and 𝜎 is said to be even or odd according as the number
of inversions is even or odd. The signature of 𝜎, sign(𝜎), is +1 or −1 according as 𝜎 is
even or odd. We can define the signature of a permutation 𝜎 of any set 𝑆 of 𝑛 elements
by choosing a numbering of the set and identifying 𝜎 with a permutation of {1, … , 𝑛}.
The group Sym(𝑆) of permutations of 𝑆 is generated by transpositions, and sign is the
unique homomorphism Sym(𝑆) → {±1} such that sign(𝜎) = −1 for every transposition.
In particular, it is independent of the choice of the numbering. See GT, 4.25.

Now consider a monic polynomial

𝑓(𝑋) = 𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯+ 𝑎𝑛

and let 𝑓(𝑋) = ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖) in some splitting field. Set

∆(𝑓) =
∏

1≤𝑖<𝑗≤𝑛
(𝛼𝑖 − 𝛼𝑗), 𝐷(𝑓) = ∆(𝑓)2 =

∏

1≤𝑖<𝑗≤𝑛
(𝛼𝑖 − 𝛼𝑗)2.

The discriminant of 𝑓 is defined to be 𝐷(𝑓). Note that 𝐷(𝑓) is nonzero if and only if 𝑓
has only simple roots, i.e., is separable. Let 𝐺𝑓 be the Galois group of 𝑓, and identify it
with a subgroup of Sym({𝛼1, … , 𝛼𝑛}) (as on p. 44).

Proposition 4.1 Let 𝑓 ∈ 𝐹[𝑋] be a separable polynomial, and let 𝜎 ∈ 𝐺𝑓 .
(a) 𝜎∆(𝑓) = sign(𝜎)∆(𝑓).
(b) 𝜎𝐷(𝑓) = 𝐷(𝑓).

Proof. Each inversion of 𝜎 introduces a negative sign into 𝜎∆(𝑓), and so (a) follows
from the definition of sign(𝜎). The equality in (b) is obtained by squaring that in (a).□

While ∆(𝑓) depends on the choice of the numbering of the roots of 𝑓, 𝐷(𝑓) does not.

Corollary 4.2 Let 𝑓(𝑋) ∈ 𝐹[𝑋] be separable of degree 𝑛. Let 𝐹𝑓 be a splitting field for
𝑓 and let 𝐺𝑓 = Gal(𝐹𝑓∕𝐹).

47
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(a) The discriminant 𝐷(𝑓) ∈ 𝐹.
(b) Assume that char(𝐹) ≠ 2. The subfield of 𝐹𝑓 corresponding to 𝐴𝑛 ∩ 𝐺𝑓 is 𝐹[∆(𝑓)].

Hence
𝐺𝑓 ⊂ 𝐴𝑛 ⟺ ∆(𝑓) ∈ 𝐹 ⟺ 𝐷(𝑓) is a square in 𝐹.

Proof. (a) The discriminant of 𝑓 is an element of 𝐹𝑓 fixed by 𝐺𝑓
def= Gal(𝐹𝑓∕𝐹), and

hence lies in 𝐹 (by the fundamental theorem).
(b) Because 𝑓 has simple roots, ∆(𝑓) ≠ 0, and so the formula 𝜎∆(𝑓) = sign(𝜎)∆(𝑓)

shows that an element of 𝐺𝑓 fixes ∆(𝑓) if and only if it lies in 𝐴𝑛. Thus, under the Galois
correspondence,

𝐺𝑓 ∩ 𝐴𝑛 ↔ 𝐹[∆(𝑓)].
Hence,

𝐺𝑓 ∩ 𝐴𝑛 = 𝐺𝑓 ⟺ 𝐹[∆(𝑓)] = 𝐹. □

The roots of 𝑋2 + 𝑏𝑋 + 𝑐 are −𝑏±
√
𝑏2−4𝑐
2

and so

∆(𝑋2 + 𝑏𝑋 + 𝑐) =
√
𝑏2 − 4𝑐 (or −

√
𝑏2 − 4𝑐),

𝐷(𝑋2 + 𝑏𝑋 + 𝑐) = 𝑏2 − 4𝑐.

Similarly,
𝐷(𝑋3 + 𝑏𝑋 + 𝑐) = −4𝑏3 − 27𝑐2.

By completing the cube, one can put any cubic polynomial in this form (in characteristic
≠ 3).

Although there is a not a universal formula for the roots of𝑓 in terms of its coefficients
when the deg(𝑓) > 4, there is for its discriminant. However, the formulas for the
discriminant rapidly become very complicated, for example, that for 𝑋5 + 𝑎𝑋4 + 𝑏𝑋3 +
𝑐𝑋2 + 𝑑𝑋 + 𝑒 has 59 terms. Fortunately, PARI knows them. For example, typing
poldisc(X^3+a*X^2+b*X+c,X) returns the discriminant of 𝑋3+𝑎𝑋2+𝑏𝑋 + 𝑐, namely,

−4𝑐𝑎3 + 𝑏2𝑎2 + 18𝑐𝑏𝑎 + (−4𝑏3 − 27𝑐2).

For an efficient way of calculating discriminants using resultants, see the appendix to
this chapter.

Remark 4.3 Suppose 𝐹 ⊂ ℝ. Then 𝐷(𝑓) will not be a square if it is negative. It is
known that the sign of 𝐷(𝑓) is (−1)𝑠 where 2𝑠 is the number of nonreal roots of 𝑓 in ℂ
(see ANT 2.40). Thus if 𝑠 is odd, then 𝐺𝑓 is not contained in 𝐴𝑛. This can be proved
more directly by noting that sign∶ 𝐺𝑓 → {±1} is surjective because complex conjugation
acts on the roots as the product of 𝑠 disjoint transpositions.

The converse is not true: when 𝑠 is even, 𝐺𝑓 is not necessarily contained in 𝐴𝑛.

Aside 4.4 When 𝐹 has characteristic 2, the discriminant is always a square, and so it is not useful
for deciding whether 𝐺𝑓 is contained in 𝐴𝑛. Instead, we must use the Berlekamp discriminant,
which for a separable polynomial 𝑓(𝑋) = ∏𝑛

𝑖=1(𝑋 − 𝛼𝑖) is defined to be

𝐷 =
∑

𝑖<𝑗

𝛼𝑖𝛼𝑗
𝛼2𝑖 + 𝛼2𝑗

.

The Galois group𝐺𝑓 of 𝑓 is contained in𝐴𝑛 if and only if there exists a 𝛿 ∈ 𝐹 such that 𝛿2+𝛿 = 𝐷.
See Berlekamp, An analog to the discriminant over fields of characteristic two. J. Algebra 38 (1976),
no. 2, 315–317.
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When does 𝐺𝑓 act transitively on the roots?
Proposition 4.5 Let 𝑓(𝑋) ∈ 𝐹[𝑋] be separable. Then 𝑓(𝑋) is irreducible if and only if
𝐺𝑓 permutes the roots of 𝑓 transitively.

Proof. ⟹ ∶ Let 𝐹𝑓 be a splitting field for 𝑓. If 𝛼 and 𝛽 are two roots of 𝑓(𝑋) in 𝐹𝑓,
then they both have 𝑓(𝑋) as their minimal polynomial (because 𝑓 is irreducible), and so
𝐹[𝛼] and 𝐹[𝛽] are both stem fields for 𝑓. Hence, there is an 𝐹-isomorphism

𝐹[𝛼] ≃ 𝐹[𝛽], 𝛼 ↔ 𝛽.

Write 𝐹𝑓 = 𝐹[𝛼1, 𝛼2, ...] with 𝛼1 = 𝛼 and 𝛼2, 𝛼3, … the other roots of 𝑓(𝑋). Then the
𝐹-homomorphism 𝛼 ↦ 𝛽∶ 𝐹[𝛼] → 𝐹𝑓 extends (step by step) to an 𝐹-homomorphism
𝐹𝑓 → 𝐹𝑓 (use 2.4b), which is an 𝐹-isomorphism sending 𝛼 to 𝛽.

⟸ ∶ Let 𝑔(𝑋) ∈ 𝐹[𝑋] be an irreducible factor of 𝑓, and let 𝛼 be one of its roots. If
𝛽 is a second root of 𝑓, then (by assumption) 𝛽 = 𝜎𝛼 for some 𝜎 ∈ 𝐺𝑓. Now, because 𝑔
has coefficients in 𝐹,

𝑔(𝜎𝛼) = 𝜎𝑔(𝛼) = 0,
and so 𝛽 is also a root of 𝑔. Therefore, every root of 𝑓 is also a root of 𝑔, and so 𝑓(𝑋) =
𝑔(𝑋). □

Note that if 𝑓(𝑋) is irreducible of degree 𝑛, then 𝑛 divides (𝐺𝑓 ∶ 1) because 𝑛 =
[𝐹[𝛼]∶ 𝐹], which divides [𝐹𝑓 ∶ 𝐹] = (𝐺𝑓 ∶ 1). Thus 𝐺𝑓 is a transitive subgroup of 𝑆𝑛
whose order is divisible by 𝑛.

Polynomials of degree at most three

Example 4.6 Let 𝑓(𝑋) ∈ 𝐹[𝑋] be a polynomial of degree 2. When 𝐹 has odd character-
istic and 𝑓 is not a square,

𝑓 is irreducible ⟺ 𝐷(𝑓) is not a square ⟺ 𝐺𝑓 = 𝑆2.

In characteristic 2, a quadratic polynomial may be irreducible but not separable (e.g.,
𝑓(𝑋) = 𝑋2 − 𝑎 for some 𝑎 ∈ 𝐹 ∖ 𝐹2) or irreducible and separable but have discriminant
a square (e.g., 𝑓(𝑋) = 𝑋2 − 𝑋 − 𝑎 for suitable 𝑎).

Example 4.7 Let 𝑓(𝑋) ∈ 𝐹[𝑋] be a polynomial of degree 3, and suppose that char(𝐹) ≠
3. We may assume 𝑓 to be irreducible, for otherwise we are essentially back in the
previous case. Then 𝑓 is separable and 𝐺𝑓 is a transitive subgroup of 𝑆3 whose order
is divisible by 3. There are only two possibilities: 𝐺𝑓 = 𝐴3 or 𝑆3 according as 𝐷(𝑓) is a
square in 𝐹 or not. Note that 𝐴3 is generated by the cycle (123).

For example, 𝑋3 − 3𝑋 + 1 is irreducible in ℚ[𝑋] (see 1.12). Its discriminant is
−4(−3)3 − 27 = 81 = 92, and so its Galois group is 𝐴3.

On the other hand, 𝑋3 + 3𝑋 + 1 ∈ ℚ[𝑋] is also irreducible (apply 1.11), but its
discriminant is −135, and so its Galois group is 𝑆3.

Quartic polynomials

Let 𝑓(𝑋) be a separable quartic polynomial. In order to determine 𝐺𝑓 we’ll exploit the
fact that 𝑆4 has

𝑉 def= {1, (12)(34), (13)(24), (14)(23)}
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as a normal subgroup — it is normal because it contains all elements of type 2 + 2 (GT,
4.29). Let 𝐸 be a splitting field of 𝑓, and let 𝑓(𝑋) = (𝑋 − 𝛼1)(𝑋 − 𝛼2)(𝑋 − 𝛼3)(𝑋 − 𝛼4)
in 𝐸. We identify the Galois group 𝐺𝑓 of 𝑓 with a subgroup of the symmetric group
Sym({𝛼1, 𝛼2, 𝛼3, 𝛼4}). Consider the partially symmetric elements

𝛼 = 𝛼1𝛼2 + 𝛼3𝛼4
𝛽 = 𝛼1𝛼3 + 𝛼2𝛼4
𝛾 = 𝛼1𝛼4 + 𝛼2𝛼3.

They are distinct because the 𝛼𝑖 are distinct; for example,

𝛼 − 𝛽 = 𝛼1(𝛼2 − 𝛼3) + 𝛼4(𝛼3 − 𝛼2) = (𝛼1 − 𝛼4)(𝛼2 − 𝛼3).

The group Sym({𝛼1, 𝛼2, 𝛼3, 𝛼4}) permutes {𝛼, 𝛽, 𝛾} transitively. The stabilizer of each of
𝛼, 𝛽, 𝛾must therefore be a subgroup of index 3 in 𝑆4, and hence has order 8. For example,
the stabilizer of 𝛽 is ⟨(1234), (13)⟩. Groups of order 8 in 𝑆4 are Sylow 2-subgroups. There
are three of them, all isomorphic to𝐷4. By the Sylow theorems,𝑉 is contained in a Sylow
2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and 𝑉 is normal, it is
contained in all three. It follows that𝑉 is the intersection of the three Sylow 2-subgroups.
Each Sylow 2-subgroup fixes exactly one of 𝛼, 𝛽, or 𝛾, and therefore their intersection 𝑉
is the subgroup of Sym({𝛼1, 𝛼2, 𝛼3, 𝛼4}) fixing 𝛼, 𝛽, and 𝛾.

Lemma 4.8 Thefixedfield of𝐺𝑓∩𝑉 is𝐹[𝛼, 𝛽, 𝛾]. Hence𝐹[𝛼, 𝛽, 𝛾]
is Galois over 𝐹 with Galois group 𝐺𝑓∕𝐺𝑓 ∩ 𝑉.

Proof. The above discussion shows that the subgroup of 𝐺𝑓 of
elements fixing 𝐹[𝛼, 𝛽, 𝛾] is 𝐺𝑓 ∩ 𝑉, and so 𝐸𝐺𝑓∩𝑉 = 𝐹[𝛼, 𝛽, 𝛾]
by the fundamental theorem of Galois theory. The remaining
statements follow from the fundamental theorem using that 𝑉
is normal. □

𝐸

𝐹[𝛼, 𝛽, 𝛾]

𝐹

𝐺𝑓 ∩ 𝑉

𝐺𝑓∕𝐺𝑓 ∩ 𝑉

Let𝑀 = 𝐹[𝛼, 𝛽, 𝛾], and let 𝑔(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛽)(𝑋 − 𝛾) ∈ 𝑀[𝑋]— it is called
the resolvent cubic of 𝑓. Every permutation of the 𝛼𝑖 (a fortiori, every element of 𝐺𝑓)
permutes 𝛼, 𝛽, 𝛾, and so fixes 𝑔(𝑋). Therefore (by the fundamental theorem) 𝑔(𝑋) has
coefficients in 𝐹. More explicitly, the following is true.

Lemma 4.9 The resolvent cubic of 𝑓 = 𝑋4 + 𝑏𝑋3 + 𝑐𝑋2 + 𝑑𝑋 + 𝑒 is

𝑔 = 𝑋3 − 𝑐𝑋2 + (𝑏𝑑 − 4𝑒)𝑋 − 𝑏2𝑒 + 4𝑐𝑒 − 𝑑2.

The discriminants of 𝑓 and 𝑔 are equal.

Sketch of proof. Expand 𝑓 = (𝑋 − 𝛼1)(𝑋 − 𝛼2)(𝑋 − 𝛼3)(𝑋 − 𝛼4) to express 𝑏, 𝑐, 𝑑, 𝑒
in terms of 𝛼1, 𝛼2, 𝛼3, 𝛼4. Expand 𝑔 = (𝑋 − 𝛼)(𝑋 − 𝛽)(𝑋 − 𝛾) to express the coefficients
of 𝑔 in terms of 𝛼1, 𝛼2, 𝛼3, 𝛼4, and substitute to express them in terms of 𝑏, 𝑐, 𝑑, 𝑒. □

Now let 𝑓 be an irreducible separable quartic. Then 𝐺 = 𝐺𝑓 is a transitive subgroup
of 𝑆4 whose order is divisible by 4. There are the following possibilities for 𝐺:
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𝐺 (𝐺 ∩ 𝑉∶ 1) (𝐺∶ 𝑉 ∩ 𝐺)
𝑆4 4 6
𝐴4 4 3
𝑉 4 1
𝐷4 4 2
𝐶4 2 2

𝐸

𝑀

𝐹

𝐺 ∩ 𝑉

𝐺∕𝐺 ∩ 𝑉

The groups of type 𝐷4 are the Sylow 2-subgroups discussed above, and the groups of
type 𝐶4 are those generated by cycles of length 4.

We can compute (𝐺 ∶ 𝑉 ∩ 𝐺) from the resolvent cubic 𝑔, because 𝐺∕𝑉 ∩ 𝐺 =
Gal(𝑀∕𝐹) and 𝑀 is the splitting field of 𝑔. Once we know (𝐺 ∶ 𝑉 ∩ 𝐺), we can de-
duce 𝐺 except in the case that the index is 2. If [𝑀∶ 𝐹] = 2, then 𝐺 ∩𝑉 = 𝑉 or 𝐶2. Only
the first group acts transitively on the roots of 𝑓, and so (from 4.5) we see that in this
case 𝐺 = 𝐷4 or 𝐶4 according as 𝑓 is irreducible or not in𝑀[𝑋].

Example 4.10 Consider 𝑓(𝑋) = 𝑋4 − 4𝑋 + 2 ∈ ℚ[𝑋]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is 𝑔(𝑋) = 𝑋3 − 8𝑋 − 16, which is irreducible
because it has no roots modulo 5. The discriminant of 𝑔(𝑋) is −4864, which is not a
square, and so the Galois group of 𝑔(𝑋) is 𝑆3. From the table, we see that the Galois
group of 𝑓(𝑋) is 𝑆4.

Example 4.11 Consider 𝑓(𝑋) = 𝑋4 + 4𝑋2 + 2 ∈ ℚ[𝑋]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is (𝑋 − 4)(𝑋2 − 8); thus𝑀 = ℚ[

√
2]. From the

table we see that 𝐺𝑓 is of type 𝐷4 or 𝐶4, but 𝑓 factors over𝑀 (even as a polynomial in
𝑋2), and hence 𝐺𝑓 is of type 𝐶4.

Example 4.12 Consider𝑓(𝑋) = 𝑋4−10𝑋2+4 ∈ ℚ[𝑋]. It is irreducible inℚ[𝑋] because
(by inspection) it is irreducible in ℤ[𝑋]. Its resolvent cubic is (𝑋 + 10)(𝑋 + 4)(𝑋 − 4),
and so 𝐺𝑓 is of type 𝑉.

Example 4.13 Consider 𝑓(𝑋) = 𝑋4 − 2 ∈ ℚ[𝑋]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is 𝑔(𝑋) = 𝑋3 + 8𝑋. Hence𝑀 = ℚ[𝑖

√
2]. One

can check that 𝑓 is irreducible over𝑀, and 𝐺𝑓 is of type 𝐷4.
Alternatively, analyse the equation as in 3.23.

As we explained in 1.29, PARI knows how to factor polynomials with coefficients in
ℚ[𝛼].

Example 4.14 Consider 𝑓(𝑋) = 𝑋4 − 2𝑐𝑋3 − 𝑑𝑋2 + 2𝑐𝑑𝑋 − 𝑑𝑐2 ∈ ℤ[𝑋] with 𝑎 > 0,
𝑏 > 0, 𝑐 > 0, 𝑎 > 𝑏 and 𝑑 = 𝑎2 − 𝑏2. Let 𝑟 = 𝑑∕𝑐2 and let 𝑤 be the unique positive real
number such that 𝑟 = 𝑤3∕(𝑤2 + 4). Let𝑚 be the number of roots of 𝑓(𝑋) in ℤ (counted
with multiplicities). The Galois group of 𝑓 is as follows:
⋄ if𝑚 = 0 and 𝑤 not rational, then 𝐺 is 𝑆4;
⋄ if𝑚 = 1 and 𝑤 not rational then 𝐺 is 𝑆3;
⋄ if 𝑤 is rational and 𝑤2 + 4 is not a square then 𝐺 = 𝐷4;
⋄ if 𝑤 is rational and 𝑤2 + 4 is a square then 𝐺 = 𝑉 = 𝐶2 × 𝐶2.

This covers all possible cases. The hard part is to establish that𝑚 = 2 never happens.
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Examples of polynomials with 𝑆𝑝 as Galois group over ℚ
The next lemma gives a criterion for a subgroup of 𝑆𝑝 to be the whole of 𝑆𝑝.

Lemma 4.15 For 𝑝 prime, the symmetric group 𝑆𝑝 is generated by any transposition and
any 𝑝-cycle.

Proof. After renumbering, we may suppose that the transposition is 𝜏 = (12), and we
may write the 𝑝-cycle 𝜎 so that 1 occurs in the first position, 𝜎 = (1 𝑖2⋯𝑖𝑝). Now some
power of 𝜎will map 1 to 2 and will still be a 𝑝-cycle (here is where we use that 𝑝 is prime).
After replacing 𝜎with the power, we have 𝜎 = (1 2 𝑗3 …𝑗𝑝), and after renumbering again,
we have 𝜎 = (1 2 3…𝑝). Now

(𝑖 + 1 𝑖 + 2) = 𝜎𝑖(12)𝜎−𝑖

(see GT, 4.29) and so it lies in the subgroup generated by 𝜎 and 𝜏. These transpositions
generate 𝑆𝑝. □

Proposition 4.16 Let 𝑓 be an irreducible polynomial of prime degree 𝑝 in ℚ[𝑋]. If 𝑓
splits in ℂ and has exactly two nonreal roots, then 𝐺𝑓 = 𝑆𝑝.

Proof. Let 𝐸 be the splitting field of 𝑓 in ℂ, and let 𝛼 ∈ 𝐸 be a root of 𝑓. Because
𝑓 is irreducible, [ℚ[𝛼]∶ ℚ] = deg 𝑓 = 𝑝, and so 𝑝|[𝐸 ∶ ℚ] = (𝐺𝑓 ∶ 1). Therefore 𝐺𝑓
contains an element of order 𝑝 (Cauchy’s theorem, GT, 4.13), but the only elements of
order 𝑝 in 𝑆𝑝 are 𝑝-cycles (here we again use that 𝑝 is prime).

Let 𝜎 be complex conjugation onℂ. Then 𝜎 transposes the two nonreal roots of 𝑓(𝑋)
and fixes the rest. Therefore 𝐺𝑓 ⊂ 𝑆𝑝 and contains a transposition and a 𝑝-cycle, and so
is the whole of 𝑆𝑝. □

It remains to construct polynomials satisfying the conditions of the Proposition.

Example 4.17 Let 𝑝≥ 5 be a prime number. Choose a positive even integer𝑚 and even
integers

𝑛1 < 𝑛2 < ⋯ < 𝑛𝑝−2,

and let
𝑔(𝑋) = (𝑋2 +𝑚)(𝑋 − 𝑛1)⋯ (𝑋 − 𝑛𝑝−2).

The graph of 𝑔 crosses the 𝑥-axis exactly at the points 𝑛1, … , 𝑛𝑝−2, and it doesn’t have
a local maximum or minimum at any of those points (because the 𝑛𝑖 are simple roots).
Thus 𝑒 = min𝑔′(𝑥)=0 |𝑔(𝑥)| > 0, and we can choose an odd positive integer 𝑛 such that
2
𝑛
< 𝑒.
Consider

𝑓(𝑋) = 𝑔(𝑋) − 2
𝑛 .

As 2
𝑛
< 𝑒, the graph of 𝑓 also crosses the 𝑥-axis at exactly 𝑝 − 2 points, and so 𝑓 has

exactly two nonreal roots. On the other hand, when we write

𝑛𝑓(𝑋) = 𝑛𝑋𝑝 + 𝑎1𝑋𝑝−1 +⋯+ 𝑎𝑝,

the 𝑎𝑖 are all even and 𝑎𝑝 is not divisible by 22, and so Eisenstein’s criterion implies that
𝑓 is irreducible. Over ℝ, 𝑓 has 𝑝 − 2 linear factors and one irreducible quadratic factor,
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and so it certainly splits over ℂ (high school algebra). Therefore, the proposition applies
to 𝑓.1

Remark 4.18 The reader shouldn’t think that, in order to have Galois group 𝑆𝑝, a
polynomial must have exactly two nonreal roots. For example, 𝑋5 − 5𝑋3 + 4𝑋 − 1 has
Galois group 𝑆5 but its roots are all real.

Finite fields

Let 𝔽𝑝 = ℤ∕𝑝ℤ, the field of 𝑝 elements. As we noted in §1, every field 𝐸 of characteristic
𝑝 contains a copy of 𝔽𝑝, namely, {𝑚1𝐸 ∣ 𝑚 ∈ ℤ}. No harm results if we identify 𝔽𝑝 with
this subfield of 𝐸.

Let𝐸 be a field of degree 𝑛 over𝔽𝑝. Then𝐸 has 𝑞
def= 𝑝𝑛 elements, and so𝐸× is a group

of order 𝑞 − 1. Therefore the nonzero elements of 𝐸 are roots of 𝑋𝑞−1 − 1 (Lagrange’s
theorem, GT 1.27), and all elements of 𝐸 including 0 are roots of 𝑋𝑞 − 𝑋. Hence 𝐸 is a
splitting field for 𝑋𝑞 − 𝑋, and so any two fields with 𝑞 elements are isomorphic.

Proposition 4.19 Every extension of finite fields is simple.

Proof. Consider 𝐸 ⊃ 𝐹. Then 𝐸× is a finite subgroup of the multiplicative group of a
field, and hence is cyclic (see Exercise 1-3). If 𝜁 generates 𝐸× as a multiplicative group,
then certainly 𝐸 = 𝐹[𝜁]. □

Now let 𝐸 be a splitting field of 𝑓(𝑋) = 𝑋𝑞 − 𝑋, 𝑞 = 𝑝𝑛. As the derivative of 𝑓 is the
constant −1, which is relatively prime to 𝑓, we see that 𝑓(𝑋) has 𝑞 distinct roots in 𝐸
(2.21). Let 𝑆 be the set of its roots. Then 𝑆 is obviously closed under multiplication and
the formation of inverses, but it is also closed under subtraction: if 𝑎𝑞 = 𝑎 and 𝑏𝑞 = 𝑏,
then

(𝑎 − 𝑏)𝑞 = 𝑎𝑞 − 𝑏𝑞 = 𝑎 − 𝑏.

Hence 𝑆 is a field, and so 𝑆 = 𝐸. In particular, 𝐸 has 𝑞 elements.

Proposition 4.20 For each power 𝑞 = 𝑝𝑛 of𝑝 there exists a field𝔽𝑞 with 𝑞 elements. Every
such field is a splitting field for 𝑋𝑞 − 𝑋 over 𝔽𝑝, and so any two are isomorphic. Moreover,
𝔽𝑞 is Galois over 𝔽𝑝 with cyclic Galois group generated by the Frobenius automorphism
𝜎(𝑎) = 𝑎𝑝.

Proof. Only the final statement remains to be proved. The field 𝔽𝑞 is Galois over 𝔽𝑝
because it is the splitting field of a separable polynomial. We noted in 1.4 that 𝑥

𝜎
↦ 𝑥𝑝 is

an automorphism of 𝔽𝑞. An element 𝑎 of 𝔽𝑞 is fixed by 𝜎 if and only if 𝑎𝑝 = 𝑎, but 𝔽𝑝
consists exactly of such elements, and so the fixed field of ⟨𝜎⟩ is 𝔽𝑝. This proves that 𝔽𝑞
is Galois over 𝔽𝑝 and that ⟨𝜎⟩ = Gal(𝔽𝑞∕𝔽𝑝) (see 3.11). □

Corollary 4.21 Let 𝐸 be a field with 𝑝𝑛 elements. For each positive divisor 𝑚 of 𝑛, 𝐸
contains exactly one field with 𝑝𝑚 elements.

1If 𝑚 is taken sufficiently large, then 𝑔(𝑋) − 2 will have exactly two nonreal roots, i.e., we can take
𝑛 = 1, but the proof is longer (see Jacobson 1964, p. 107, who credits the example to Brauer). The shorter
argument in the text was suggested to me by Martin Ward.
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Proof. We know that 𝐸 is Galois over 𝔽𝑝 and thatGal(𝐸∕𝔽𝑝) is the cyclic group of order
𝑛 generated by 𝜎. The group ⟨𝜎⟩ has one subgroup of order 𝑛∕𝑚 for each𝑚 dividing 𝑛,
namely, ⟨𝜎𝑚⟩, and so 𝐸 has exactly one subfield of degree𝑚 over 𝔽𝑝 for each𝑚 dividing
𝑛, namely, 𝐸⟨𝜎𝑚⟩. Because it has degree𝑚 over 𝔽𝑝, 𝐸⟨𝜎

𝑚⟩ has 𝑝𝑚 elements. □

Corollary 4.22 Let 𝑓 ∈ 𝔽𝑝[𝑋] be a monic irreducible of degree 𝑑. If 𝑑|𝑛, then 𝑓 occurs
exactly once as a factor of 𝑋𝑝𝑛 − 𝑋. The degree of the splitting field of 𝑓 is ≤ 𝑑.

Proof. The factors of 𝑋𝑝𝑛 − 𝑋 are distinct because it has no common factor with its
derivative.2 As 𝑓(𝑋) is irreducible of degree 𝑑, it has a root in a field of degree 𝑑 over 𝔽𝑝.
But the splitting field of 𝑋𝑝𝑛 − 𝑋 contains a copy of every field of degree 𝑑 over 𝔽𝑝 with
𝑑|𝑛. Hence some root of 𝑋𝑝𝑛 − 𝑋 is also a root of 𝑓(𝑋), and therefore 𝑓(𝑋)|𝑋𝑝𝑛 − 𝑋.
This proves the first statement. For the second, 𝑓 divides 𝑋𝑝𝑑 −𝑋, and therefore it splits
in its splitting field, which has degree 𝑑 over 𝔽𝑝. □

Proposition 4.23 Let 𝔽 be an algebraic closure of 𝔽𝑝. Then 𝔽 contains exactly one field
𝔽𝑝𝑛 with 𝑝𝑛 elements for each integer 𝑛 ≥ 1, and 𝔽𝑝𝑛 consists of the roots of 𝑋𝑝𝑛 − 𝑋.
Moreover,

𝔽𝑝𝑚 ⊂ 𝔽𝑝𝑛 ⟺ 𝑚|𝑛,

in which case, 𝔽𝑝𝑛 is Galois over 𝔽𝑝𝑚 with Galois group generated by 𝑥 ↦ 𝑥𝑝𝑚 .

Proof. In fact, the set of roots of 𝑋𝑝𝑛 −𝑋 is a field (see above) with 𝑝𝑛 elements, and it
is the only such subfield. If 𝔽𝑝𝑚 ⊂ 𝔽𝑝𝑛 , say, [𝔽𝑝𝑛 ∶ 𝔽𝑝𝑚] = 𝑑, then 𝑝𝑛 = (𝑝𝑚)𝑑 = 𝑝𝑚𝑑,
and so𝑚|𝑛; the converse follows from the first statement. If𝑚|𝑛, then 𝔽𝑝𝑚 is the fixed
field of the group generated by the automorphism 𝑥 ↦ 𝑥𝑝𝑚 of 𝔽𝑝𝑛 , and so the final
assertion follows from Artin’s theorem (3.11). □

The proposition shows that the partially ordered set of finite subfields of 𝔽 is isomor-
phic to the set of integers 𝑛 ≥ 1 partially ordered by divisibility.

Proposition 4.24 The field 𝔽𝑝 has an algebraic closure 𝔽.

Proof. Choose a sequence of integers 1 = 𝑛1 < 𝑛2 < 𝑛3 < ⋯ such that 𝑛𝑖|𝑛𝑖+1 for all
𝑖, and every integer 𝑛 divides some 𝑛𝑖. For example, let 𝑛𝑖 = 𝑖!. Define the fields 𝔽𝑝𝑛𝑖
inductively as follows: 𝔽𝑝𝑛1 = 𝔽𝑝; 𝔽𝑝𝑛𝑖 is the splitting field of 𝑋𝑝𝑛𝑖 −𝑋 over 𝔽𝑝𝑛𝑖−1 . Then,
𝔽𝑝𝑛1 ⊂ 𝔽𝑝𝑛2 ⊂ 𝔽𝑝𝑛3 ⊂ ⋯, and we set 𝔽 = ⋃𝔽𝑝𝑛𝑖 . As a union of a chain of fields algebraic
over 𝔽𝑝, it is again a field algebraic over 𝔽𝑝. Moreover, every polynomial in 𝔽𝑝[𝑋] splits
in 𝔽, and so it is an algebraic closure of 𝔽 (by 1.45). □

Remark 4.25 Since the 𝔽𝑝𝑛 are not subsets of a fixed set, forming the union requires
explanation. One can appeal to the Axiom of Union in Zermelo-Fraenkel set theory for
its existence, or, more naively, let 𝑆 be the disjoint union of the 𝔽𝑝𝑛 . For 𝑎, 𝑏 ∈ 𝑆, set
𝑎 ∼ 𝑏 if 𝑎 = 𝑏 in one of the 𝔽𝑝𝑛 . Then ∼ is an equivalence relation, and we let 𝔽 = 𝑆∕ ∼.

Any two fields with 𝑞 elements are isomorphic, but not necessarily canonically
isomorphic. However, once we have chosen an algebraic closure 𝔽 of 𝔽𝑝, there is a
unique subfield of 𝔽 with 𝑞 elements.

PARI factors polynomials modulo 𝑝 very quickly. Recall that the syntax is
factormod(f(X),p). For example, to obtain a list of all monic polynomials of degree
1, 2, or 4 over 𝔽5, ask PARI to factor 𝑋625 − 𝑋 modulo 5 (note that 625 = 54).

2If ℎ(𝑋) = 𝑓(𝑋)2𝑔(𝑋), the ℎ′(𝑋) = 2𝑓(𝑋)𝑓′(𝑋)𝑔(𝑋) + 𝑓(𝑋)2𝑔(𝑋).



Computing Galois groups overℚ 55

Notes In one of the few papers published during his short lifetime, entitled “Sur la theorie des
nombres”, which appeared in the Bulletin des Sciences Mathématiques in June 1830, Galois—at
that time not even nineteen years old—defined finite fields of arbitrary prime power order and
established their basic properties, e.g. the existence of a primitive element. So it is fully justified
when finite fields are called Galois fields and customarily denoted by GF(𝑞). (Letter, Notices
A.M.S., Feb. 2003, p. 198, Péter P. Pálfry.)

Computing Galois groups over ℚ
In this section, I describe a practical method for computing Galois groups over ℚ and
similar fields. Recall that for a separable polynomial 𝑓 ∈ 𝐹[𝑋], 𝐹𝑓 denotes a splitting
field for 𝐹, and 𝐺𝑓 = Gal(𝐹𝑓∕𝐹) denotes the Galois group of 𝑓. Moreover, 𝐺𝑓 permutes
the roots 𝛼1, … , 𝛼𝑚,𝑚 = deg𝑓, of 𝑓 in 𝐹𝑓:

𝐺 ⊂ Sym{𝛼1, … , 𝛼𝑚}.

The first result generalizes Proposition 4.5.

Proposition 4.26 Let 𝑓(𝑋) be a separable polynomial in 𝐹[𝑋], and suppose that the
orbits of 𝐺𝑓 acting on the roots of 𝑓 have𝑚1, … ,𝑚𝑟 elements respectively. Then 𝑓 factors
as 𝑓 = 𝑓1⋯𝑓𝑟 with 𝑓𝑖 irreducible of degree𝑚𝑖 .

Proof. We may suppose that 𝑓 is monic. Let 𝛼1, … , 𝛼𝑚, be the roots of 𝑓(𝑋) in 𝐹𝑓. The
monic factors of 𝑓(𝑋) in 𝐹𝑓[𝑋] are in one-to-one correspondence with the subsets 𝑆 of
{𝛼1, … , 𝛼𝑚},

𝑆 ↔ 𝑓𝑆 =
∏

𝛼∈𝑆
(𝑋 − 𝛼).

Moreover, 𝑓𝑆 is fixed under the action of 𝐺𝑓 (and hence has coefficients in 𝐹) if and
only if 𝑆 is stable under 𝐺𝑓. Therefore the monic irreducible factors of 𝑓 in 𝐹[𝑋] are the
polynomials 𝑓𝑆 corresponding to minimal subsets 𝑆 of {𝛼1, … , 𝛼𝑚} stable under 𝐺𝑓, but
these are precisely the orbits of 𝐺𝑓 in {𝛼1, … , 𝛼𝑚}. □

Remark 4.27 The proof shows the following more precise statement: let {𝛼1, … , 𝛼𝑚} =⋃𝑂𝑖 be the decomposition of {𝛼1, … , 𝛼𝑚} into a disjoint union of orbits for the group 𝐺𝑓;
then 𝑓 = ∏𝑓𝑖, where 𝑓𝑖 =

∏
𝛼𝑗∈𝑂𝑖

(𝑋 − 𝛼𝑗), is the decomposition of 𝑓 into a product of
monic irreducible polynomials in 𝐹[𝑋].

Now suppose that𝐹 is finite, with 𝑞 elements say. Then𝐺𝑓 is a cyclic group generated
by the Frobenius automorphism 𝜎∶ 𝑥 ↦ 𝑥𝑞. When we regard 𝜎 as a permutation of
the roots of 𝑓, then the orbits of 𝜎 correspond to the factors in its cycle decomposition
(GT, 4.26). Hence, if the degrees of the distinct irreducible factors of 𝑓 are𝑚1, 𝑚2, … ,𝑚𝑟,
then 𝜎 has a cycle decomposition of type

𝑚1 +⋯+𝑚𝑟 = deg 𝑓.

Theorem 4.28 (Dedekind) Let 𝑓(𝑋) ∈ ℤ[𝑋] be a monic polynomial of degree𝑚, and
let 𝑝 be a prime number such that 𝑓 mod 𝑝 has simple roots (equivalently, 𝐷(𝑓) is not
divisible by 𝑝). Suppose that 𝑓 = ∏𝑟

𝑖=1 𝑓𝑖 with 𝑓𝑖 irreducible of degree𝑚𝑖 in 𝔽𝑝[𝑋]. Then
𝐺𝑓 contains an element 𝜎𝑓 which, when viewed as a permutation of the roots of 𝑓, has a
cycle decomposition 𝜎1⋯𝜎𝑟 with 𝜎𝑖 of length𝑚𝑖 .
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Proof. Let 𝛼1, … , 𝛼𝑚 be the roots of 𝑓 in some splitting field 𝐸𝑓 of 𝑓, and let 𝐴 =
ℤ[𝛼1, … , 𝛼𝑚]. Clearly 𝐴 is finitely generated as a ℤ-module, and so 𝑝 is not invertible
in 𝐴. Therefore, it is contained in a maximal ideal 𝑃 of 𝐴,3 and 𝑃 ∩ ℤ = 𝑝ℤ. We shall
show that 𝐺𝑓 contains a unique element 𝜎𝑃 such that 𝜎𝑃(𝑎) ≡ 𝑎𝑝 mod 𝑃 for all 𝑎 ∈ 𝐴
(in particular, 𝜎𝑃(𝑃) = 𝑃).

Write 𝑎 ↦ 𝑎̄ for the quotient map 𝐴 → 𝐴∕𝑃, and let 𝑓 = 𝑓 mod 𝑝. The quotient
𝐴∕𝑃 = 𝔽𝑝[𝛼̄1, … , 𝛼̄𝑚] is a splitting field 𝐸𝑓 of 𝑓. The group 𝐺𝑓

def= Gal(𝐸𝑓∕𝔽𝑝) is cyclic
with generator 𝑎̄ ↦ 𝑎̄𝑝 (see 4.20). Let

𝐷𝑃 = {𝜎 ∈ 𝐺𝑓 ∣ 𝜎(𝑃) = 𝑃}.

It is a subgroup of 𝐺𝑓. Each 𝜎 ∈ 𝐷𝑃 defines an automorphism 𝜎̄ of 𝐸𝑓
def= 𝐴∕𝑃. The

homomorphism 𝜙∶ 𝐷𝑃 → 𝐺𝑓, 𝜎 ↦ 𝜎̄, is injective because 𝜎 is determined by its action
on the 𝛼𝑖, and hence by its action on the 𝛼̄𝑖. We now show that it is surjective.

Let 𝑎 ∈ 𝐴 ∖ 𝑃. According to the Chinese remainder theorem (see 8.1 below), there
exists a 𝑏 ∈ 𝐴 such that 𝑏 ≡ 𝑎 mod 𝑃 and 𝑏 ≡ 0mod 𝜎−1(𝑃) for all 𝜎 ∈ 𝐺𝑓 ∖ 𝐷𝑃. Let
𝑔(𝑋) = ∏

𝜎∈𝐺𝑓
(𝑋 − 𝜎(𝑏)). Then 𝑔(𝑋) lies in ℤ[𝑋] and 𝑔̄(𝑋) = 𝑋𝑠∏

𝜎∈𝐷𝑃
(𝑋 − 𝜎̄(𝑎̄)),

where 𝑠 = |𝐺 ∖ 𝐷𝑃|, lies in 𝔽𝑝[𝑋]. The minimal polynomial of 𝑎̄ over 𝔽𝑝 divides 𝑔̄(𝑋).
On choosing 𝑎 so that 𝐸𝑓 = 𝔽𝑝[𝑎̄], we find that 𝐷𝑃 has order [𝐸𝑓 ∶ 𝔽𝑝], and so 𝐷𝑃 ≃ 𝐺𝑓.

Let 𝜎𝑃 be the element of𝐷𝑃 such that 𝜎̄𝑃 = (𝑎̄ ↦ 𝑎̄𝑝). Then 𝜎𝑃 is the unique element
of 𝐺𝑓 such that 𝜎𝑃(𝑎) ≡ 𝑎𝑝 mod 𝑃 for all 𝑎 ∈ 𝐴. Since 𝑎 ↦ 𝑎̄ maps the roots of 𝑓
bijectively onto the roots of 𝑓, we see that 𝐷𝑃 and 𝐺𝑓 are isomorphic when viewed as
permutation groups. Thus the cycle decomposition of 𝜎𝑓 is as described. □

For an alternative proof ofDedekind’s theorem, see van derWaerden,ModernAlgebra,
I, §61 (or v5.00 of these notes).

Aside 4.29 Let 𝐸 be a finite Galois extension ofℚ with Galois group 𝐺, and let 𝒪𝐸 be the ring
integers in 𝐸, i.e., the set of elements of 𝐸 satisfying a monic polynomial in ℤ[𝑋]. Let 𝑃 be a
prime ideal of 𝒪𝐸 such that 𝑃 ∩ ℤ = 𝑝ℤ. As in the above proof, there exists a unique element
𝜎𝑃 ∈ 𝐺 such that 𝜎𝑃𝑃 = 𝑃 and 𝜎𝑃(𝑎) ≡ 𝑎𝑝 mod 𝑃 for all 𝑎 ∈ 𝒪𝐸 . This is called the Frobenius
automorphism at 𝑃. If 𝑄 is a second prime ideal of 𝒪𝐸 such that 𝑄 ∩ ℤ = 𝑝ℤ, then 𝑄 = 𝜏𝑃 for
some 𝜏 ∈ 𝐺, and 𝜎𝑄 = 𝜏◦𝜎𝑃◦𝜏−1. The conjugacy class of 𝜎𝑃 is called the Frobenius class at 𝑝.
When 𝐺 is abelian, it consists of a single element.

Example 4.30 Consider 𝑋5 − 𝑋 − 1. Modulo 2, this factors as

(𝑋2 + 𝑋 + 1)(𝑋3 + 𝑋2 + 1),

and modulo 3 it is irreducible. The theorem shows that 𝐺𝑓 contains permutations
(𝑖𝑘)(𝑙𝑚𝑛) and (12345), and so also ((𝑖𝑘)(𝑙𝑚𝑛))3 = (𝑖𝑘). Therefore 𝐺𝑓 = 𝑆5 by (4.15).

Lemma 4.31 A transitive subgroup of𝐻 ⊂ 𝑆𝑛 containing a transposition and an (𝑛 − 1)-
cycle is equal to 𝑆𝑛.

Proof. After renumbering, we may suppose that the (𝑛 − 1)-cycle is (123…𝑛 − 1).
Because of the transitivity, the transposition can be transformed into (𝑖𝑛), some 1 ≤ 𝑖 ≤
𝑛 − 1. Conjugating (𝑖𝑛) by (123…𝑛 − 1) and its powers will transform it into (1𝑛), (2𝑛),
…, (𝑛 − 1 𝑛), and these elements obviously generate 𝑆𝑛. □

Example 4.32 Select separable monic polynomials of degree 𝑛, 𝑓1, 𝑓2, 𝑓3 with coeffi-
cients in ℤ with the following factorizations:

3Let 𝑃 be the inverse image of any proper ideal of 𝐴∕(𝑝) of highest dimension (as an 𝔽𝑝-vector space).
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(a) 𝑓1 is irreducible modulo 2;
(b) 𝑓2 = (degree 1)(irreducible of degree 𝑛 − 1) mod 3;
(c) 𝑓3 = (irreducible of degree 2)(product of 1 or 2 irreducible polynomials of odd

degree) mod 5.
Take

𝑓 = −15𝑓1 + 10𝑓2 + 6𝑓3.

Then
(i) 𝐺𝑓 is transitive (it contains an 𝑛-cycle because 𝑓 ≡ 𝑓1 mod 2);
(ii) 𝐺𝑓 contains a cycle of length 𝑛 − 1 (because 𝑓 ≡ 𝑓2 mod 3);
(iii) 𝐺𝑓 contains a transposition (because 𝑓 ≡ 𝑓3 mod 5, and so it contains the product

of a transposition with a commuting element of odd order; on raising this to an
appropriate odd power, we are left with the transposition). Hence 𝐺𝑓 is 𝑆𝑛.

The above results give the following strategy for computing the Galois group of an
irreducible polynomial 𝑓 ∈ ℚ[𝑋]. Factor 𝑓 modulo a sequence of primes 𝑝 not dividing
𝐷(𝑓) to determine the cycle types of the elements in 𝐺𝑓 —a difficult theorem in number
theory, the effective Chebotarev density theorem, says that if a cycle type occurs in 𝐺𝑓,
then this will be seen by looking modulo a set of prime numbers of positive density, and
will occur for a prime less than some bound. Now look up a table of transitive subgroups
of 𝑆𝑛 with order divisible by 𝑛 and their cycle types. If this doesn’t suffice to determine
the group, then look at its action on the set of subsets of 𝑟 roots for some 𝑟.

In Butler and McKay, The transitive groups of degree up to eleven, Comm. Algebra 11
(1983), 863–911, there is a list of all transitive subgroups of 𝑆𝑛, 𝑛 ≤ 11, together with the
cycle types of their elements and the orbit lengths of the subgroup acting on the 𝑟-sets of
roots. With few exceptions, these invariants are sufficient to determine the subgroup
up to isomorphism. See also, Soicher and McKay, Computing Galois groups over the
rationals, J. Number Theory, 20 (1985) 273–281.

PARI can compute Galois groups for polynomials of degree ≤ 11 overℚ. The syntax
is polgalois(f), where 𝑓 is an irreducible polynomial of degree ≤ 11, and the output
is (𝑛, 𝑠, 𝑘,name), where 𝑛 is the order of the group, 𝑠 is +1 or −1 according as the group
is a subgroup of the alternating group or not, and “name” is the name of the group.
For example, polgalois(X^5-5*X^3+4*X-1) (see 4.18) returns the symmetric group
𝑆5, which has order 120, polgalois(X^11-5*X^3+4*X-1) returns the symmetric group
𝑆11, which has order 39916800, and polgalois(X^12-5*X^3...) returns an apology.
The reader should use PARI to check the examples 4.10–4.13.

Aside 4.33 For a monic polynomial 𝑓 of degree 𝑛 with bounded integers as coefficients, it is
expected that the Galois group of 𝑓 equals 𝑆𝑛 with probability 1 as 𝑛 → ∞. See Bary-Soroker,
Kozma, and Gady, Duke Math. J. 169 (2020), 579–598, for precise statements.

Aside 4.34 Of the (2𝐻 + 1)𝑛 monic polynomials 𝑓(𝑋) = 𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯+ 𝑎𝑛 ∈ ℤ[𝑋] with
max{|𝑎1|, … , |𝑎𝑛|} = 𝐻, how many have Galois group ≠ 𝑆𝑛? There are clearly≫ 𝐻𝑛−1 such
polynomials, as may be seen by setting 𝑎𝑛 = 0. It was conjectured by van der Waerden in 1936,
and proved by Bhargava in 2021, that 𝑂(𝐻𝑛−1) is in fact be the correct upper bound for the count
of such polynomials.
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Appendix: Computing discriminants using resultants

Let 𝑓, 𝑔 ∈ 𝐹[𝑋], and suppose that

𝑓(𝑋) = 𝑎
∏𝑛

1
(𝑋 − 𝛼𝑖), 𝑔(𝑋) = 𝑏

∏𝑚
1
(𝑋 − 𝛽𝑗), 𝑎𝑏 ≠ 0,

in some splitting field for 𝑓𝑔. The resultant of 𝑓 and 𝑔 is defined by

Res(𝑓, 𝑔) = 𝑎𝑚𝑏𝑛
∏

𝑖,𝑗
(𝛼𝑖 − 𝛽𝑗).

Proposition 4.35 Let 𝑓, 𝑔 ∈ 𝐹[𝑋] as above. Then,
(a) Res(𝑓, 𝑔) = (−1)𝑚𝑛 Res(𝑔, 𝑓);
(b) Res(𝑓, 𝑔) = 𝑎𝑚∏𝑛

𝑖=1 𝑔(𝛼𝑖);
(c) If 𝑔 ≡ 𝑔1 mod 𝑓 in 𝐹[𝑋] with deg(𝑔1) = 𝑚1, then

Res(𝑓, 𝑔) = 𝑎𝑚−𝑚1 Res(𝑓, 𝑔1).

Proof. Statements (a) and (b) are obvious. If 𝑔 ≡ 𝑔1 mod 𝑓, then
∏𝑛

𝑖=1
𝑔(𝛼𝑖) =

∏𝑛
𝑖=1

𝑔1(𝛼𝑖),

and so (c) follows from (b) . □

These formulas make it possible to compute resultants by applying the division
algorithm to reduce the degree of 𝑔, then switching the two polynomials, and continuing
until one polynomial has degree ≤ 1.

Proposition 4.36 Let 𝑓 ∈ 𝐹[𝑋] be a monic polynomial of degee 𝑛, and let 𝑓′ be its
derivative. Then

𝐷(𝑓) = (−1)
𝑛(𝑛−1)

2 Res(𝑓, 𝑓′) = (−1)
𝑛(𝑛−1)

2 Res(𝑓′, 𝑓).

Proof. If 𝑓(𝑋) = ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖), then

𝐷(𝑓) def=
∏

1≤𝑖<𝑗≤𝑛
(𝛼𝑖 − 𝛼𝑗)2 = (−1)

𝑛(𝑛−1)
2

∏

𝑖≠𝑗
(𝛼𝑖 − 𝛼𝑗) = (−1)

𝑛(𝑛−1)
2

𝑛∏

𝑖=1

∏

𝑗≠𝑖
(𝛼𝑖 − 𝛼𝑗).

On the other hand,
𝑓′(𝑋) =

∑𝑛
𝑖=1

∏
𝑗≠𝑖
(𝑋 − 𝛼𝑗),

and so 𝑓′(𝛼𝑖) =
∏

𝑗≠𝑖(𝛼𝑖 −𝛼𝑗) for 𝑖 = 1, … , 𝑛. Now the statement follows from 4.35(b).□

Example 4.37 Let 𝑓 = 𝑋3 + 𝑏𝑋 + 𝑐. Then

𝐷(𝑓) = −Res(3𝑋2 + 𝑏,𝑋3 + 𝑏𝑋 + 𝑐)

= −32 Res(3𝑋2 + 𝑏, 2𝑏3 𝑋 + 𝑐)

because
𝑋3 + 𝑏𝑋 + 𝑐 = 𝑋

3 (3𝑋
2 + 𝑏) + 2𝑏

3 𝑋 + 𝑐.
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Thus

𝐷(𝑓) = −32 Res
(2𝑏
3 (𝑋 + 3𝑐

2𝑏 ), 3𝑋
2 + 𝑏

)
by 4.35(a)

= −32 ⋅
(2𝑏
3
)2
(3
( 3𝑐
2𝑏
)2
+ 𝑏) by 4.35(b)

= −4𝑏3 − 27𝑐2.

Example 4.38 Let 𝑓 = 𝑋5 + 𝑋 + 1. Then

𝐷(𝑓) = Res(5𝑋4 + 1,𝑋5 + 𝑋 + 1)

= 54 Res(5𝑋4 + 1, 45𝑋 + 1)

because
𝑋5 + 𝑋 + 1 = 𝑋

5 (5𝑋
4 + 1) + 4

5𝑋 + 1.

Thus

𝐷(𝑓) = 54 Res
(4
5(𝑋 + 5

4), 5𝑋
4 + 1

)
by 4.35(a)

= 54
(4
5
)4(

5
(5
4
)4
+ 1

)
by 4.35(b)

= 3381.

Example 4.39 Let 𝑓 = 𝑋𝑛 + 𝑎𝑋 + 𝑏. Then

𝐷(𝑓) = (−1)
𝑛(𝑛−1)

2 Res(𝑛𝑋𝑛−1 + 𝑎,𝑋𝑛 + 𝑎𝑋 + 𝑏)

= (−1)
𝑛(𝑛−1)

2 𝑛𝑛−1 Res(𝑛𝑋𝑛−1 + 𝑎, 𝑎𝑛 − 1
𝑛 𝑋 + 𝑏)

because
𝑋𝑛 + 𝑎𝑋 + 𝑏 = 𝑋

𝑛 (𝑛𝑋
𝑛−1 + 𝑎) + 𝑎𝑛 − 1

𝑛 𝑋 + 𝑏.

Thus

𝐷(𝑓) = (−1)
𝑛(𝑛−1)

2 (−𝑛)𝑛−1 Res
(
𝑎𝑛 − 1

𝑛 (𝑋 + 𝑛𝑏
(𝑛 − 1)𝑎

), 𝑛𝑋𝑛−1 + 𝑎
)

by 4.35(a)

= (−1)
𝑛(𝑛−1)

2 (−𝑛)𝑛−1
(
𝑎𝑛 − 1

𝑛
)𝑛−1

(𝑛
( −𝑛𝑏
(𝑛 − 1)𝑎

)𝑛−1
+ 𝑎) by 4.35(b)

= (−1)
𝑛(𝑛−1)

2 (−𝑎(𝑛 − 1))𝑛−1(𝑛
( −𝑛𝑏
(𝑛 − 1)𝑎

)𝑛−1
+ 𝑎)

= (−1)
𝑛(𝑛−1)

2 (𝑛𝑛𝑏𝑛−1 + (−1)𝑛−1(𝑛 − 1)𝑛−1𝑎𝑛).

Notes The appendix is based on a letter of René Schoof.

Exercises

4-1 Find the splitting field of 𝑋𝑚 − 1 ∈ 𝔽𝑝[𝑋].

4-2 Find the Galois group of 𝑋4 − 2𝑋3 − 8𝑋 − 3 over ℚ.
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4-3 Find the degree of the splitting field of 𝑋8 − 2 over ℚ.

4-4 Give an example of a field extension 𝐸∕𝐹 of degree 4 such that there does not exist
a field𝑀 with 𝐹 ⊂ 𝑀 ⊂ 𝐸, [𝑀∶ 𝐹] = 2.

4-5 List all irreducible polynomials of degree 3 over 𝔽7 in 10 seconds or less (there are
112).

4-6 “It is a thought-provoking question that few graduate students would know how to
approach the question of determining the Galois group of, say,

𝑋6 + 2𝑋5 + 3𝑋4 + 4𝑋3 + 5𝑋2 + 6𝑋 + 7.”

[over ℚ].
(a) Can you find it?

(b) Can you find it without using the “polgalois” command in PARI?

4-7 Let 𝑓(𝑋) = 𝑋5 +𝑎𝑋 + 𝑏, 𝑎, 𝑏 ∈ ℚ. Show that 𝐺𝑓 ≈ 𝐷5 (dihedral group) if and only
if
(a) 𝑓(𝑋) is irreducible in ℚ[𝑋], and
(b) the discriminant 𝐷(𝑓) = 44𝑎5 + 55𝑏4 of 𝑓(𝑋) is a square, and
(c) the equation 𝑓(𝑋) = 0 is solvable by radicals.

4-8 Show that a polynomial 𝑓 of degree 𝑛 = ∏𝑘
𝑖=1 𝑝

𝑟𝑖
𝑖 (the 𝑝𝑖 are distinct primes) is

irreducible over 𝔽𝑝 if and only if (a) gcd(𝑓(𝑋), 𝑋𝑝𝑛∕𝑝𝑖 − 𝑋) = 1 for all 1 ≤ 𝑖 ≤ 𝑘 and (b)
𝑓 divides 𝑋𝑝𝑛 − 𝑋 (Rabin irreducibility test4).

4-9 Let 𝑓(𝑋) be an irreducible polynomial in ℚ[𝑋] with both real and nonreal roots.
Show that its Galois group is nonabelian. Can the condition that 𝑓 is irreducible be
dropped?

4-10 Let 𝐹 be a Galois extension ofℚ, and let 𝛼 be an element of 𝐹 such that 𝛼𝐹×2 is not
fixed by the action of Gal(𝐹∕ℚ) on 𝐹×∕𝐹×2. Let 𝛼 = 𝛼1, … , 𝛼𝑛 be the orbit of 𝛼 under
Gal(𝐹∕ℚ). Show:
(a) 𝐹[

√
𝛼1, … ,

√
𝛼𝑛]∕𝐹 is Galoiswith commutativeGalois group contained in (ℤ∕2ℤ)

𝑛.

(b) 𝐹[
√
𝛼1, … ,

√
𝛼𝑛]∕ℚ is Galois with noncommutative Galois group contained in

(ℤ∕2ℤ)𝑛 ⋊Gal(𝐹∕ℚ).
See mo113794.

4Rabin, Probabilistic algorithms in finite fields. SIAM J. Comput. 9 (1980), no. 2, 273–280.

https://mathoverflow.net/questions/113794


Chapter5

Applications of Galois Theory

In this chapter, we apply the fundamental theorem of Galois theory to obtain other
results about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields 𝐸∕𝐹 is simple if 𝐸 = 𝐹[𝛼] for some element 𝛼 of
𝐸. Such an 𝛼 is called a primitive element of 𝐸. We’ll show that (at least) all separable
extensions have primitive elements.

Consider for exampleℚ[
√
2,
√
3]∕ℚ. We know (see Exercise 3-3) that its Galois group

over ℚ is a 4-group ⟨𝜎, 𝜏⟩, where

{ 𝜎
√
2 = −

√
2

𝜎
√
3 =

√
3
, { 𝜏

√
2 =

√
2

𝜏
√
3 = −

√
3
.

Note that
𝜎(
√
2 +

√
3) = −

√
2 +

√
3,

𝜏(
√
2 +

√
3) =

√
2 −

√
3,

(𝜎𝜏)(
√
2 +

√
3) = −

√
2 −

√
3.

These all differ from
√
2 +

√
3, and so only the identity element of Gal(ℚ[

√
2,
√
3]∕ℚ)

fixes the elements ofℚ[
√
2 +

√
3]. According to the fundamental theorem, this implies

that
√
2 +

√
3 is a primitive element:

ℚ[
√
2,
√
3] = ℚ[

√
2 +

√
3].

It is clear that this argument should work much more generally.
Recall that an element 𝛼 algebraic over a field 𝐹 is separable over 𝐹 if its minimal

polynomial over 𝐹 has no multiple roots.

Theorem 5.1 Let 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑟] be a finite extension of 𝐹, and assume that 𝛼2, ..., 𝛼𝑟
are separable over 𝐹 (but not necessarily 𝛼1). Then there exists a 𝛾 ∈ 𝐸 such that 𝐸 = 𝐹[𝛾].

Proof. For finite fields, we proved this in 4.19. Hence we may assume 𝐹 to be infinite.
It suffices to prove the statement for 𝑟 = 2, for then

𝐹[𝛼1, 𝛼2, … , 𝛼𝑟] = 𝐹[𝛼′1, 𝛼3, … , 𝛼𝑟] = 𝐹[𝛼′′1 , 𝛼4, … , 𝛼𝑟] = ⋯ .
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Thus let 𝐸 = 𝐹[𝛼, 𝛽] with 𝛽 separable over 𝐹. Let 𝑓 and 𝑔 be the minimal polynomials
of 𝛼 and 𝛽 over 𝐹, and let 𝐿 be a splitting field for 𝑓𝑔 containing 𝐸. Let 𝛼1 = 𝛼,… , 𝛼𝑠 be
the roots of 𝑓 in 𝐿, and let 𝛽1 = 𝛽, 𝛽2, … , 𝛽𝑡 be the roots of 𝑔. For 𝑗 ≠ 1, 𝛽𝑗 ≠ 𝛽, and so
the the equation

𝛼𝑖 + 𝑋𝛽𝑗 = 𝛼 + 𝑋𝛽,

has exactly one solution, namely, 𝑋 = 𝛼𝑖−𝛼
𝛽−𝛽𝑗

. If we choose a 𝑐 ∈ 𝐹 different from any of

these solutions (using that 𝐹 is infinite), then

𝛼𝑖 + 𝑐𝛽𝑗 ≠ 𝛼 + 𝑐𝛽 unless 𝑖 = 1 = 𝑗.

Let 𝛾 = 𝛼 + 𝑐𝛽. I claim that
𝐹[𝛼, 𝛽] = 𝐹[𝛾].

The polynomials 𝑔(𝑋) and 𝑓(𝛾 − 𝑐𝑋) have coefficients in 𝐹[𝛾], and have 𝛽 as a root:

𝑔(𝛽) = 0, 𝑓(𝛾 − 𝑐𝛽) = 𝑓(𝛼) = 0.

In fact, 𝛽 is their only common root, because we chose 𝑐 so that 𝛾 − 𝑐𝛽𝑗 ≠ 𝛼𝑖 unless
𝑖 = 1 = 𝑗. Therefore

gcd(𝑔(𝑋), 𝑓(𝛾 − 𝑐𝑋)) = 𝑋 − 𝛽.

Here we computed the gcd in 𝐿[𝑋], but this is equal to the gcd computed in 𝐹[𝛾][𝑋]
(Proposition 2.17). Hence 𝛽 ∈ 𝐹[𝛾], and this implies that 𝛼 = 𝛾 − 𝑐𝛽 also lies in 𝐹[𝛾].
This proves the claim. □

Remark 5.2 When 𝐹 is infinite, the proof shows that 𝛾 can be chosen to be of the form

𝛾 = 𝛼1 + 𝑐2𝛼2 +⋯+ 𝑐𝑟𝛼𝑟, 𝑐𝑖 ∈ 𝐹.

If 𝐹[𝛼1, … , 𝛼𝑟] is Galois over 𝐹, then an element of this form will be a primitive element
provided it is moved by every nontrivial element of the Galois group. This remark makes
it very easy to write down primitive elements.

Our hypotheses are minimal: if two of the 𝛼 are not separable, then the extension
need not be simple. Before giving an example to illustrate this, we need another result.

Proposition 5.3 Let 𝐸 = 𝐹[𝛾] be a simple algebraic extension of 𝐹. Then there are only
finitely many intermediate fields𝑀,

𝐹 ⊂ 𝑀 ⊂ 𝐸.

Proof. Let𝑀 be such a field, and let 𝑔(𝑋) be the minimal polynomial of 𝛾 over𝑀. Let
𝑀′ be the subfield of 𝐸 generated over 𝐹 by the coefficients of 𝑔(𝑋). Clearly𝑀′ ⊂ 𝑀,
but (equally clearly) 𝑔(𝑋) is the minimal polynomial of 𝛾 over𝑀′. Hence

[𝐸 ∶ 𝑀′] = deg(𝑔) = [𝐸∶ 𝑀],

and so𝑀 = 𝑀′; we have shown that𝑀 is generated by the coefficients of 𝑔(𝑋).
Let 𝑓(𝑋) be the minimal polynomial of 𝛾 over 𝐹. Then 𝑔(𝑋) divides 𝑓(𝑋) in𝑀[𝑋],

and hence also in 𝐸[𝑋]. Therefore, there are only finitely many possible 𝑔, and conse-
quently only finitely many possible𝑀. □
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Note that the proof in fact gives a description of all the intermediate fields: each is
generated over 𝐹 by the coefficients of a factor 𝑔(𝑋) of 𝑓(𝑋) in 𝐸[𝑋]. The coefficients of
such a 𝑔(𝑋) are partially symmetric polynomials in the roots of 𝑓(𝑋) (that is, fixed by
some, but not necessarily all, of the permutations of the roots).

Remark 5.4 The proposition has a converse: If 𝐸 is a finite extension of 𝐹 and there are
only finitely many intermediate fields𝑀, 𝐹 ⊂ 𝑀 ⊂ 𝐸, then 𝐸 is a simple extension of 𝐹.

In proving this, we may suppose that 𝐹 is infinite, and use that no finite-dimensional
𝐹-vector space is a finite union of proper subspaces.1 Thus there is an element 𝛾 in 𝐸 not
contained in any proper subfield, and so 𝐸 = 𝐹[𝛾]. This gives another proof of Theorem
5.1 in the case that 𝐸 is separable over 𝐹, because Galois theory shows that there are
only finitely many intermediate fields in this case (even the Galois closure of 𝐸 over 𝐹
has only finitely many intermediate fields).

Example 5.5 The simplest nonsimple algebraic extension is 𝑘(𝑋, 𝑌) ⊃ 𝑘(𝑋𝑝, 𝑌𝑝),
where 𝑘 is an algebraically closed field of characteristic 𝑝. Let 𝐹 = 𝑘(𝑋𝑝, 𝑌𝑝). For
all 𝑐 ∈ 𝑘, we have

𝑘(𝑋, 𝑌) = 𝐹[𝑋, 𝑌] ⊃ 𝐹[𝑋 + 𝑐𝑌] ⊃ 𝐹
with the degree of each extension equal to 𝑝. If

𝐹[𝑋 + 𝑐𝑌] = 𝐹[𝑋 + 𝑐′𝑌], 𝑐 ≠ 𝑐′,

then𝐹[𝑋+𝑐𝑌]would contain both𝑋 and𝑌, which is impossible because [𝑘(𝑋, 𝑌)∶ 𝐹] =
𝑝2. Hence there are infinitely many distinct intermediate fields.2

Alternatively, note that the degree of 𝑘(𝑋, 𝑌) over 𝑘(𝑋𝑝, 𝑌𝑝) is 𝑝2, but if 𝛼 ∈ 𝑘(𝑋, 𝑌),
then 𝛼𝑝 ∈ 𝑘(𝑋𝑝, 𝑌𝑝), and so 𝛼 generates a field of degree at most 𝑝 over 𝑘(𝑋𝑝, 𝑌𝑝).

Fundamental Theorem of Algebra

We finally prove the fundamental theorem of algebra.3

Theorem 5.6 The field ℂ of complex numbers is algebraically closed.

Proof. We’ll need to use the following two facts about ℝ:
⋄ positive real numbers have square roots;

⋄ every polynomial of odd degree with real coefficients has a real root.
Both are immediate consequences of the Intermediate Value Theorem, which says that
a continuous function on a closed interval takes every value between its maximum and
minimal values (inclusive).

We define ℂ to be the splitting field of 𝑋2 + 1 over ℝ, and we let 𝑖 denote a root of
𝑋2 + 1 in ℂ. Thus ℂ = ℝ[𝑖]. We have to show (see 1.45) that every 𝑓(𝑋) ∈ ℝ[𝑋] splits
in ℂ. We may suppose that 𝑓 is monic, irreducible, and ≠ 𝑋2 + 1.

1Let𝑈1, … ,𝑈𝑚 be proper subspaces of 𝑉, and let 𝑓1, … , 𝑓𝑚 be nonzero linear forms on 𝑉 such that 𝑓𝑖 is
zero on𝑈𝑖 . If𝑉 = ⋃𝑈𝑖 , then 𝑓

def= 𝑓1 …𝑓𝑚 is zero on𝑉, which implies that it is zero (5.19)— contradiction.
2Zariski showed that there is even an intermediate field𝑀 that is not isomorphic to 𝐹(𝑋, 𝑌), and Piotr

Blass showed, using the methods of algebraic geometry, that there is an infinite sequence of intermediate
fields, no two of which are isomorphic.

3This is not strictly a theorem in algebra: it is a statement aboutℝwhose construction is part of analysis
(or maybe topology). In fact, I prefer the proof based on Liouville’s theorem in complex analysis to the more
algebraic proof given in the text: if 𝑓(𝑧) is a polynomial without a root in ℂ, then 𝑓(𝑧)−1 is bounded and
holomorphic on the whole complex plane, and hence (by Liouville) constant.
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We first show that every element 𝛼 of ℂ has a square root in ℂ. Write 𝛼 = 𝑎 + 𝑏𝑖,
with 𝑎, 𝑏 ∈ ℝ, and let 𝑐, 𝑑 be real numbers such that

𝑐2 = 𝑎 +
√
𝑎2 + 𝑏2
2 , 𝑑2 = −𝑎 +

√
𝑎2 + 𝑏2
2 .

Then 𝑐2 − 𝑑2 = 𝑎 and (2𝑐𝑑)2 = 𝑏2. If we choose the signs of 𝑐 and 𝑑 so that 𝑐𝑑 has the
same sign as 𝑏, then (𝑐 + 𝑑𝑖)2 = 𝛼 and so 𝑐 + 𝑑𝑖 is a square root of 𝛼.

Let 𝑓(𝑋) ∈ ℝ[𝑋], and let 𝐸 be a splitting field for 𝑓(𝑋)(𝑋2 + 1). Then 𝐸 contains ℂ,
and we have to show that it equals ℂ. Since ℝ has characteristic zero, the polynomial is
separable, and so 𝐸 is Galois over ℝ (see 3.10). Let 𝐺 be its Galois group, and let𝐻 be a
Sylow 2-subgroup of 𝐺.

Let𝑀 = 𝐸𝐻 . Then𝑀 has of degree (𝐺 ∶ 𝐻) overℝ, which is odd, and so theminimal
polynomial overℝ of any 𝛼 ∈ 𝑀 has odd degree (by the multiplicativity of degrees, 1.20),
and so has a real root. As it is irreducible, it has degree 1. Hence 𝛼 ∈ ℝ, and so𝑀 = ℝ
and 𝐺 = 𝐻.

We deduce that Gal(𝐸∕ℂ) is a 2-group. If it is ≠ 1, then it has a subgroup 𝑁 of index
2 (GT, 4.17). The field 𝐸𝑁 has degree 2 overℂ, and so it is generated by the square root of
an element of ℂ (see 3.25), but all square roots of elements of ℂ lie in ℂ. Hence 𝐸𝑁 = ℂ,
which is a contradiction. Thus Gal(𝐸∕ℂ) = 1 and 𝐸 = ℂ. □

Corollary 5.7 (a) The field ℂ is the algebraic closure ofℝ.
(b) The set of all algebraic numbers is an algebraic closure ofℚ.

Proof. Part (a) is obvious from the definition of “algebraic closure” (1.44), and (b)
follows from Corollary 1.47. □

Notes The Fundamental Theoremwas quite difficult to prove. Gauss gave a proof in his doctoral
dissertation in 1798 in which he used some geometric arguments which he didn’t justify. He
gave the first rigorous proof in 1816. The elegant argument given here is a simplification by Emil
Artin of earlier proofs (see Emil Artin, Algebraische Konstruction reeller Körper, Hamb. Abh., Bd.
5 (1926), 85-90; translation available in Emil Artin, Exposition by Emil Artin. AMS; LMS 2007).

Cyclotomic extensions

A primitive 𝑛th root of 1 in 𝐹 is an element of order 𝑛 in 𝐹×. Such an element can exist
only if the characteristic of 𝐹 does not divide 𝑛 (so either it is 0 or 𝑝 not dividing 𝑛). We
refer the reader to GT 3.5 for the group (ℤ∕𝑛ℤ)×.

Proposition 5.8 Let 𝐹 be a field of characteristic not dividing 𝑛, and let 𝐸 be the splitting
field of 𝑋𝑛 − 1.
(a) There exists a primitive 𝑛th root of 1 in 𝐸.
(b) If 𝜁 is a primitive 𝑛th root of 1 in 𝐸, then 𝐸 = 𝐹[𝜁].
(c) The field 𝐸 is Galois over 𝐹; for each 𝜎 ∈ Gal(𝐸∕𝐹), there is an 𝑖 ∈ (ℤ∕𝑛ℤ)× such

that 𝜎𝜁 = 𝜁𝑖 for all 𝜁 with 𝜁𝑛 = 1; the map 𝜎 ↦ [𝑖] is an injective homomorphism

Gal(𝐸∕𝐹) → (ℤ∕𝑛ℤ)×.

Proof. (a) The roots of 𝑋𝑛 − 1 are distinct, because its derivative 𝑛𝑋𝑛−1 has only zero
as a root (here we use the condition on the characteristic), and so 𝐸 contains 𝑛 distinct
𝑛th roots of 1. The 𝑛th roots of 1 form a finite subgroup of 𝐸×, and so (see Exercise 3)
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they form a cyclic group. Every generator has order 𝑛, and hence is a primitive 𝑛th root
of 1.

(b) The roots of 𝑋𝑛 − 1 are the powers of 𝜁, and 𝐹[𝜁] contains them all.
(c) The extension 𝐸∕𝐹 is Galois because 𝐸 is the splitting field of a separable poly-

nomial. If 𝜁0 is one primitive 𝑛th root of 1, then the remaining primitive 𝑛th roots of
1 are the elements 𝜁𝑖0 with 𝑖 relatively prime to 𝑛. Since, for any automorphism 𝜎 of
𝐸, 𝜎𝜁0 is again a primitive 𝑛th root of 1, it equals 𝜁𝑖0 for some 𝑖 relatively prime to 𝑛,
and the map 𝜎 ↦ 𝑖 mod 𝑛 is injective because 𝜁0 generates 𝐸 over 𝐹. It is obviously a
homomorphism. Moreover, for any other 𝑛th root of 1, say, 𝜁 = 𝜁𝑚0 , we have

𝜎𝜁 = (𝜎𝜁0)𝑚 = 𝜁𝑖𝑚0 = 𝜁𝑖,

and so the homomorphism does not depend on the choice of 𝜁0. □

The map 𝜎 ↦ [𝑖]∶ Gal(𝐹[𝜁]∕𝐹) → (ℤ∕𝑛ℤ)× need not be surjective. For example, if
𝐹 = ℂ, then its image is {1}, and if 𝐹 = ℝ, it is either {[1]} or {[−1], [1]}. On the other
hand, when 𝑛 = 𝑝 is prime, we showed in Lemma 1.42 that [ℚ[𝜁]∶ ℚ] = 𝑝 − 1, and so
the map is surjective. We now prove that the map is surjective for all 𝑛 when 𝐹 = ℚ.

The polynomial 𝑋𝑛 − 1 has some obvious factors in ℚ[𝑋], namely, the polynomials
𝑋𝑑 − 1 for any 𝑑|𝑛. When we remove all factors of 𝑋𝑛 − 1 of this form with 𝑑 < 𝑛, the
polynomial we are left with is called the 𝑛th cyclotomic polynomial Φ𝑛. Thus

Φ𝑛 =
∏

(𝑋 − 𝜁) (product over the primitive 𝑛th roots of 1).

It has degree 𝜑(𝑛), the order of (ℤ∕𝑛ℤ)×. Since every 𝑛th root of 1 is a primitive 𝑑th root
of 1 for exactly one positive divisor 𝑑 of 𝑛, we see that

𝑋𝑛 − 1 =
∏

𝑑|𝑛
Φ𝑑(𝑋).

For example, Φ1(𝑋) = 𝑋 − 1, Φ2(𝑋) = 𝑋 + 1, Φ3(𝑋) = 𝑋2 + 𝑋 + 1, and

Φ6(𝑋) =
𝑋6 − 1

(𝑋 − 1)(𝑋 + 1)(𝑋2 + 𝑋 + 1)
= 𝑋2 − 𝑋 + 1.

This gives an easy inductive method of computing the cyclotomic polynomials. Alterna-
tively type polcyclo(n,X) in PARI.

Because 𝑋𝑛 − 1 has coefficients in ℤ and is monic, every monic factor of it inℚ[𝑋]
has coefficients in ℤ (see 1.14). In particular, the cyclotomic polynomials lie in ℤ[𝑋].

Lemma 5.9 Let 𝐹 be a field of characteristic not dividing 𝑛, and let 𝜁 be a primitive 𝑛th
root of 1 in some extension of 𝐹. The following are equivalent:
(a) the 𝑛th cyclotomic polynomial Φ𝑛 is irreducible;

(b) the degree [𝐹[𝜁]∶ 𝐹] = 𝜑(𝑛);
(c) the homomorphism

Gal(𝐹[𝜁]∕𝐹) → (ℤ∕𝑛ℤ)×

is an isomorphism.

Proof. Because 𝜁 is a root of Φ𝑛, the minimal polynomial of 𝜁 divides Φ𝑛. It equals it if
and only if [𝐹[𝜁]∶ 𝐹] = 𝜑(𝑛), which is true if and only if the injection Gal(𝐹[𝜁]∕𝐹) ↪
(ℤ∕𝑛ℤ)× is onto. □
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Theorem 5.10 The 𝑛th cyclotomic polynomial Φ𝑛 is irreducible inℚ[𝑋].

Proof. Let 𝑓(𝑋) be a monic irreducible factor of Φ𝑛 inℚ[𝑋]. Its roots will be primitive
𝑛th roots of 1, and we have to show they include all primitive 𝑛th roots of 1. For this it
suffices to show that

𝜁 a root of 𝑓(𝑋) ⟹ 𝜁𝑖 a root of 𝑓(𝑋) for all 𝑖 such that gcd(𝑖, 𝑛) = 1.

Such an 𝑖 is a product of primes not dividing 𝑛, and so it suffices to show that

𝜁 a root of 𝑓(𝑋) ⟹ 𝜁𝑝 a root of 𝑓(𝑋) for all primes 𝑝 not dividing 𝑛.

Write
Φ𝑛(𝑋) = 𝑓(𝑋)𝑔(𝑋).

Proposition 1.14 shows that 𝑓(𝑋) and 𝑔(𝑋) lie in ℤ[𝑋]. Suppose that 𝜁 is a root of 𝑓 but
that, for some prime 𝑝 not dividing 𝑛, 𝜁𝑝 is not a root of 𝑓. Then 𝜁𝑝 is a root of 𝑔(𝑋),
𝑔(𝜁𝑝) = 0, and so 𝜁 is a root of 𝑔(𝑋𝑝). As 𝑓(𝑋) and 𝑔(𝑋𝑝) have a common root, they
have a nontrivial common factor inℚ[𝑋] (2.17), which automatically lies in ℤ[𝑋] (1.14).

Write ℎ(𝑋) ↦ ℎ̄(𝑋) for the quotient map ℤ[𝑋] → 𝔽𝑝[𝑋], and note that, because
𝑓(𝑋) and 𝑔(𝑋𝑝) have a common factor of degree ≥ 1 inℤ[𝑋], so also do 𝑓(𝑋) and 𝑔̄(𝑋𝑝)
in 𝔽𝑝[𝑋]. The mod 𝑝 binomial theorem shows that

𝑔̄(𝑋)𝑝 = 𝑔̄(𝑋𝑝)

(recall that 𝑎𝑝 = 𝑎 for all 𝑎 ∈ 𝔽𝑝), and so 𝑓(𝑋) and 𝑔̄(𝑋) have a common factor of degree
≥ 1 in 𝔽𝑝[𝑋]. Hence 𝑋𝑛 − 1, when regarded as an element of 𝔽𝑝[𝑋], has multiple roots,
but, as 𝑝 ∤ 𝑛, it is separable — contradiction.

Alternative proof. Wehave to show that the homomorphism𝜙∶ Gal(ℚ[𝜁]∕ℚ) →
(ℤ∕𝑛ℤ)× is surjective. Let 𝜎𝑝 ∈ Gal(ℚ[𝜁]∕ℚ) be the Frobenius class at a prime 𝑝 not
dividing 𝑛 (see 4.29). Then 𝜎𝑝(𝜁) = 𝜁𝑝 because this is the only 𝑛th root of 1 congruent
to 𝜁𝑝 modulo a prime ideal lying over 𝑝, and so 𝜙(𝜎𝑝) = [𝑝]. As (ℤ∕𝑛ℤ)× is generated
by the classes of the prime numbers not dividing 𝑛, this shows that 𝜙 is surjective. □

Aside 5.11 The proof of 5.10 is very old — in essence it goes back to Dedekind in 1857 — but
its general scheme has recently become popular: take a statement in characteristic zero, reduce
modulo 𝑝 (where the statement may no longer be true), and exploit the existence of the Frobenius
automorphism 𝑎 ↦ 𝑎𝑝 to obtain a proof of the original statement. For example, commutative
algebraists use this method to prove results about commutative rings, and there are theorems
about complex manifolds that were first proved by reducing things to characteristic 𝑝.

There are some beautiful relations between what happens in characteristic 0 and in charac-
teristic 𝑝. For example, let 𝑓(𝑋1, ..., 𝑋𝑛) ∈ ℤ[𝑋1, ..., 𝑋𝑛]. We can
(a) look at the solutions of 𝑓 = 0 in ℂ, and so get a topological space;
(b) reduce mod 𝑝, and look at the solutions of 𝑓 = 0 in 𝔽𝑝𝑛 .

The Weil conjectures (Weil 1949; proved by Deligne, Grothendieck, . . . ) assert that the Betti
numbers of the space in (a) control the cardinalities of the sets in (b).

Theorem 5.12 The regular 𝑛-gon is constructible if and only if 𝑛 = 2𝑘𝑝1⋯𝑝𝑠 where the
𝑝𝑖 are distinct Fermat primes.
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Proof. The regular 𝑛-gon is constructible if and only if cos 2𝜋
𝑛
(equivalently, 𝜁 = 𝑒2𝜋𝑖∕𝑛)

is constructible. We know thatℚ[𝜁] is Galois overℚ, and so (according to 1.38 and 3.24)
𝜁 is constructible if and only if [ℚ[𝜁]∶ ℚ] is a power of 2. When we write 𝑛 = ∏𝑝𝑛(𝑝),

𝜑(𝑛) =
∏

𝑝|𝑛
(𝑝 − 1)𝑝𝑛(𝑝)−1,

(GT, 3.5), and this is a power of 2 if and only if 𝑛 has the required form. □

Remark 5.13 As mentioned earlier, the Fermat primes are those of the form 22𝑟 + 1.
Because the Fermat primes are not known, the problem of listing the 𝑛 for which the
regular 𝑛-gon is constructible has not yet solved.

Notes The final section of Gauss’s, Disquisitiones Arithmeticae (1801) is titled “Equations
defining sections of a Circle”. In it Gauss proves that the 𝑛th roots of 1 form a cyclic group,
that 𝑋𝑛 − 1 is solvable (this was before the theory of abelian groups had been developed, and
before Galois), and that the regular 𝑛-gon is constructible when 𝑛 is as in the Theorem. He also
claimed to have proved the converse statement. This leads some people to credit him with the
above proof of the irreducibility of Φ𝑛, but in the absence of further evidence, I’m sticking with
Dedekind. For a recent article discussing this, see Anderson, Chahal, and Top, The last chapter
of the Disquisitiones of Gauss. Hardy–Ramanujan J. 44 (2021), 152–159, arXiv:2110.01355.

Dedekind’s theorem on the independence of characters

Theorem 5.14 (Dedekind) Let 𝐹 be a field and 𝐺 a group. Every finite set {𝜒1, … , 𝜒𝑚}
of group homomorphisms 𝐺 → 𝐹× is linearly independent over 𝐹, i.e.,

𝑎1𝜒1 +⋯+ 𝑎𝑚𝜒𝑚 = 0 (as a function 𝐺 → 𝐹) ⟹ 𝑎1 = 0,… , 𝑎𝑚 = 0.

Proof. We use induction on 𝑚. For 𝑚 = 1, the statement is obvious. Assume it for
𝑚 − 1, and suppose that, for some set {𝜒1, … , 𝜒𝑚} of homomorphisms 𝐺 → 𝐹× and
𝑎𝑖 ∈ 𝐹,

𝑎1𝜒1(𝑥) + 𝑎2𝜒2(𝑥) +⋯+ 𝑎𝑚𝜒𝑚(𝑥) = 0 for all 𝑥 ∈ 𝐺.

We have to show that the 𝑎𝑖 are zero. As 𝜒1 and 𝜒2 are distinct, they will take distinct
values on some 𝑔 ∈ 𝐺. On replacing 𝑥 with 𝑔𝑥 in the equation, we find that

𝑎1𝜒1(𝑔)𝜒1(𝑥) + 𝑎2𝜒2(𝑔)𝜒2(𝑥) +⋯+ 𝑎𝑚𝜒𝑚(𝑔)𝜒𝑚(𝑥) = 0 for all 𝑥 ∈ 𝐺.

On multiplying the first equation by 𝜒1(𝑔) and subtracting it from the second, we obtain
the equation

𝑎′2𝜒2 +⋯+ 𝑎′𝑚𝜒𝑚 = 0, 𝑎′𝑖 = 𝑎𝑖(𝜒𝑖(𝑔) − 𝜒1(𝑔)).

The induction hypothesis shows that 𝑎′𝑖 = 0 for 𝑖 = 2, 3, … ,𝑚. As 𝜒2(𝑔) − 𝜒1(𝑔) ≠ 0,
this implies that 𝑎2 = 0, and so

𝑎1𝜒1 + 𝑎3𝜒3 +⋯+ 𝑎𝑚𝜒𝑚 = 0.

The induction hypothesis now shows that the remaining 𝑎𝑖 are also zero. □

Corollary 5.15 Let 𝐹 and 𝐸 be fields, and let 𝜎1, ..., 𝜎𝑚 be distinct homomorphisms
𝐹 → 𝐸. Then 𝜎1, ..., 𝜎𝑚 are linearly independent over 𝐸.

Proof. Apply the theorem to 𝜒𝑖 = 𝜎𝑖|𝐹×. □

https://doi.org/10.48550/arXiv.2110.01355
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Corollary 5.16 Let 𝐸 be a finite separable extension of 𝐹 of degree𝑚. Let 𝛼1, … , 𝛼𝑚 be
a basis for 𝐸 as an 𝐹-vector space, and let 𝜎1, … , 𝜎𝑚 be distinct 𝐹-homomorphisms from 𝐸
into a fieldΩ. Then the matrix whose (𝑖, 𝑗)th-entry is 𝜎𝑖𝛼𝑗 is invertible.

Proof. If not, there exist 𝑐𝑖 ∈ Ω such that
∑𝑚

𝑖=1 𝑐𝑖𝜎𝑖(𝛼𝑗) = 0 for all 𝑗. But the map
∑𝑚

𝑖=1 𝑐𝑖𝜎𝑖 ∶ 𝐸 → Ω is 𝐹-linear, and so this implies that∑𝑚
𝑖=1 𝑐𝑖𝜎𝑖(𝛼) = 0 for all 𝛼 ∈ 𝐸,

which contradicts Corollary 5.15. □

The normal basis theorem

Definition 5.17 Let 𝐸 be a finite Galois extension of 𝐹. A basis for 𝐸 as an 𝐹-vector
space is called a normal basis if it consists of the conjugates of a single element of 𝐸.

In other words, a normal basis is one of the form

{𝜎𝛼 ∣ 𝜎 ∈ Gal(𝐸∕𝐹)}

for some 𝛼 ∈ 𝐸.

Theorem 5.18 (Normal basis theorem) Every Galois extension has a normal basis.

The group algebra 𝐹𝐺 of a group 𝐺 is the 𝐹-vector space with basis the elements
of 𝐺 endowed with the multiplication extending that of 𝐺. Thus an element of 𝐹𝐺 is a
sum

∑
𝜎∈𝐺 𝑎𝜎𝜎, 𝑎𝜎 ∈ 𝐹, and

(∑
𝜎 𝑎𝜎𝜎

) (∑
𝜎 𝑏𝜎𝜎

)
= ∑

𝜎

(∑
𝜎1𝜎2=𝜎

𝑎𝜎1𝑏𝜎2
)
𝜎.

Every 𝐹-linear action of 𝐺 on an 𝐹-vector space 𝑉 extends uniquely to an action of 𝐹𝐺.
Let 𝐸∕𝐹 be a Galois extension with Galois group 𝐺. Then 𝐸 is an 𝐹𝐺-module, and

Theorem 5.18 says that there exists an element 𝛼 ∈ 𝐸 such that the map
∑

𝜎 𝑎𝜎𝜎 ↦
∑

𝜎 𝑎𝜎𝜎𝛼∶ 𝐹𝐺 → 𝐸

is an isomorphism of 𝐹𝐺-modules, i.e., that 𝐸 is a free 𝐹𝐺-module of rank 1.
We give three proofs of Theorem 5.18. The first assumes that 𝐹 is infinite and the

second that 𝐺 is cyclic. Since every Galois extension of a finite field is cyclic (4.20), this
covers all cases. The third proof applies to both finite and infinite fields, but uses the
Krull-Schmidt theorem.

Proof for infinite fields

Lemma 5.19 Let 𝑓 ∈ 𝐹[𝑋1, … , 𝑋𝑚], and let 𝑆 be an infinite subset of 𝐹. If 𝑓(𝑎1, … , 𝑎𝑚) =
0 for all 𝑎1, … , 𝑎𝑚 ∈ 𝑆, then 𝑓 is the zero polynomial (i.e., 𝑓 = 0 in 𝐹[𝑋1, … , 𝑋𝑚]).

Proof. We prove this by induction on𝑚. For𝑚 = 1, the lemma becomes the statement
that a nonzero polynomial in one symbol has only finitely many roots (see 1.7). For
𝑚 > 1, write 𝑓 as a polynomial in 𝑋𝑚 with coefficients in 𝐹[𝑋1, … , 𝑋𝑚−1], say,

𝑓 =
∑

𝑐𝑖(𝑋1, … , 𝑋𝑚−1)𝑋𝑖
𝑚.

For any (𝑚 − 1)-tuple 𝑎1, … , 𝑎𝑚−1 of elements of 𝑆,

𝑓(𝑎1, … , 𝑎𝑚−1, 𝑋𝑚)
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is a polynomial in 𝑋𝑚 having every element of 𝑆 as a root. Therefore, each of its coef-
ficients is zero: 𝑐𝑖(𝑎1, … , 𝑎𝑚−1) = 0 for all 𝑖. Since this holds for all (𝑎1, … , 𝑎𝑚−1), the
induction hypothesis shows that 𝑐𝑖(𝑋1, … , 𝑋𝑚−1) is the zero polynomial. □

We now prove 5.18 in the case that 𝐹 is infinite. Number the elements of 𝐺 as
𝜎1, … , 𝜎𝑚 with 𝜎1 the identity map.

Suppose that 𝑓 ∈ 𝐹[𝑋1, … , 𝑋𝑚] has the property,

𝑓(𝜎1𝛼,… , 𝜎𝑚𝛼) = 0 for all 𝛼 ∈ 𝐸.

Choose a basis 𝛼1, … , 𝛼𝑚 for𝐸 as an𝐹-vector space, and let 𝑔(𝑌1, … , 𝑌𝑚) ∈ 𝐸[𝑌1, … , 𝑌𝑚]
be obtained from 𝑓 by replacing 𝑋𝑗 with

∑𝑚
𝑖=1 𝑌𝑖𝜎𝑗𝛼𝑖. Then, for all 𝑎1, … , 𝑎𝑚 ∈ 𝐹,

𝑔(𝑎1, … , 𝑎𝑚) = 𝑓(∑𝑚
𝑖=1 𝑎𝑖𝜎1𝛼𝑖, … ,

∑𝑚
𝑖=1 𝑎𝑖𝜎𝑚𝛼𝑖)

= 𝑓(𝜎1
∑𝑚

𝑖=1 𝑎𝑖𝛼𝑖, … , 𝜎𝑚
∑𝑚

𝑖=1 𝑎𝑖𝛼𝑖)
= 0,

and so 𝑔 = 0 (here we use that 𝐹 is infinite). But the matrix (𝜎𝑖𝛼𝑗) is invertible (5.16).
Since 𝑔 is obtained from 𝑓 by an invertible linear change of variables, 𝑓 can be obtained
from 𝑔 by the inverse linear change of variables. Therefore it also is zero.

Write 𝑋𝑖 = 𝑋(𝜎𝑖), and let 𝐴 = (𝑋(𝜎𝑖𝜎𝑗)), i.e., 𝐴 is the 𝑚 × 𝑚 matrix having 𝑋𝑘 in
the (𝑖, 𝑗)th place if 𝜎𝑖𝜎𝑗 = 𝜎𝑘. Then det(𝐴) is a polynomial in 𝑋1, … , 𝑋𝑚, say, det(𝐴) =
ℎ(𝑋1, … , 𝑋𝑚). Clearly, ℎ(1, 0, … , 0) is the determinant of a matrix having exactly one 1
in each row and each column and its remaining entries 0. Hence the rows of the matrix
are a permutation of the rows of the identity matrix, and so its determinant is ±1. In
particular, the polynomial ℎ is not identically zero, and so there exists an 𝛼 ∈ 𝐸× such
that ℎ(𝜎1𝛼,… , 𝜎𝑚𝛼) (= det(𝜎𝑖𝜎𝑗𝛼)) is nonzero. We’ll show that {𝜎𝑗𝛼} is a normal basis.
For this, it suffices to show that the 𝜎𝑗𝛼 are linearly independent over 𝐹. Suppose that

∑𝑚
𝑗=1

𝑎𝑗𝜎𝑗𝛼 = 0

for some 𝑎𝑗 ∈ 𝐹. On applying 𝜎1, … , 𝜎𝑚 successively, we obtain a system of𝑚-equations
∑

𝑗
𝑎𝑗𝜎𝑖𝜎𝑗𝛼 = 0

in the 𝑚 “unknowns” 𝑎𝑗. Because this system of equations is nonsingular, the 𝑎𝑗 are
zero. This completes the proof.

Proof when 𝐺 is cyclic.

Assume that 𝐺 is generated by an element 𝜎0 of order 𝑛. Then [𝐸 ∶ 𝐹] = 𝑛. The minimal
polynomial of 𝜎0 regarded as an endomorphism of the 𝐹-vector space 𝐸 is the monic
polynomial in 𝐹[𝑋] of least degree such that 𝑃(𝜎0) = 0 (as an endomorphism of 𝐸). It
has the property that it divides every polynomial 𝑄(𝑋) ∈ 𝐹[𝑋] such that 𝑄(𝜎0) = 0.
Since 𝜎𝑛0 = 1, 𝑃(𝑋) divides 𝑋𝑛 − 1. On the other hand, Dedekind’s theorem on the
independence of characters (5.14) implies that 1, 𝜎0, … , 𝜎𝑛−10 are linearly independent
over 𝐹, and so deg 𝑃(𝑋) > 𝑛 − 1. We conclude that 𝑃(𝑋) = 𝑋𝑛 − 1. Therefore, as an
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𝐹[𝑋]-module with 𝑋 acting as 𝜎0, 𝐸 is isomorphic to 𝐹[𝑋]∕(𝑋𝑛 − 1).4 For any generator
𝛼 of 𝐸 as an 𝐹[𝑋]-module, 𝛼, 𝜎0𝛼,… , 𝜎0𝛼𝑛−1 is an 𝐹-basis for 𝐸.

When 𝐹 is finite, it is possible to replace the use of Dedekind’s theorem (5.14) with a
counting argument.

Uniform proof

Amodule over a ring is indecomposable if it is nonzero and cannot be written as a direct
sum of two nonzero submodules. The Krull-Schmidt theorem says that every nonzero
module𝑀 of finite length over a ring can be written as a direct sum of indecomposable
modules and that the indecomposable modules occurring in a decomposition are unique
up to order and isomorphism. Thus𝑀 = ⨁

𝑖𝑚𝑖𝑀𝑖 where𝑀𝑖 is indecomposable and
𝑚𝑖𝑀𝑖 denotes the direct sum of𝑚𝑖 copies of𝑀𝑖; the set of isomorphism classes of the
𝑀𝑖 is uniquely determined and, when we choose the𝑀𝑖 to be pairwise nonisomorphic,
each 𝑚𝑖 is uniquely determined. From this it follows that two modules𝑀 and𝑀′ of
finite length over a ring are isomorphic if𝑚𝑀 ≈ 𝑚𝑀′ for some𝑚 ≥ 1.

Consider the 𝐹-vector space 𝐸 ⊗𝐹 𝐸. We let 𝐸 act on the first factor, and 𝐺 act on
the second factor (so 𝑎(𝑥 ⊗ 𝑦) = 𝑎𝑥 ⊗ 𝑦, 𝑎 ∈ 𝐸, and 𝜎(𝑥 ⊗ 𝑦) = 𝑥 ⊗ 𝜎𝑦, 𝜎 ∈ 𝐺). We’ll
prove Theorem 5.18 by showing that

𝐹𝐺 ⊕⋯⊕𝐹𝐺⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑛

≈ 𝐸 ⊗𝐹 𝐸 ≈ 𝐸 ⊕⋯⊕𝐸⏟⎴⎴⏟⎴⎴⏟
𝑛

as 𝐹𝐺-modules (𝑛 = [𝐸∶ 𝐹]).
For 𝜎 ∈ 𝐺, let 𝜆𝜎 ∶ 𝐸⊗𝐹 𝐸 → 𝐸 denote the map 𝑥⊗𝑦 ↦ 𝑥 ⋅𝜎𝑦. Then 𝜆𝜎 is obviously

𝐸-linear, and 𝜆𝜎(𝜏𝑧) = 𝜆𝜎𝜏(𝑧) for all 𝜏 ∈ 𝐺 and 𝑧 ∈ 𝐸 ⊗𝐹 𝐸. I claim that {𝜆𝜎 ∣ 𝜎 ∈ 𝐺} is
an 𝐸-basis forHom𝐸-linear(𝐸 ⊗𝐹 𝐸, 𝐸). As this space has dimension 𝑛, it suffices to show
that the set is linearly independent. But if

∑
𝜎 𝑐𝜎𝜆𝜎 = 0, 𝑐𝜎 ∈ 𝐸, then

0 =
∑

𝜎
𝑐𝜎(𝜆𝜎(1 ⊗ 𝑦)) =

∑
𝜎
𝑐𝜎 ⋅ 𝜎𝑦

for all 𝑦 ∈ 𝐸, which implies that all 𝑐𝜎 = 0 by Dedekind’s theorem 5.14.
Consider the map

𝜙∶ 𝐸 ⊗𝐹 𝐸 → 𝐸𝐺, 𝑧 ↦
∑

𝜎
𝜆𝜎(𝑧) ⋅ 𝜎−1.

Then 𝜙 is 𝐸-linear. If 𝜙(𝑧) = 0, then 𝜆𝜎(𝑧) = 0 for all 𝜎 ∈ 𝐺, and so 𝑧 = 0 in 𝐸 ⊗𝐹 𝐸
(because the 𝜆𝜎 span the dual space). Therefore 𝜙 is injective, and as 𝐸 ⊗𝐹 𝐸 and 𝐸𝐺
both have dimension 𝑛 over 𝐸, it is an isomorphism. For 𝜏 ∈ 𝐺,

𝜙(𝜏𝑧) =
∑

𝜎
𝜆𝜎(𝜏𝑧) ⋅ 𝜎−1

=
∑

𝜎
𝜆𝜎𝜏(𝑧) ⋅ 𝜏(𝜎𝜏)−1

= 𝜏𝜙(𝑧),

4This follows from the structure theory of a vector space 𝑉 equipped with an endomorphism 𝛼. As
an 𝐹[𝑋]-module, 𝑉 is a direct sum 𝑉 = 𝑉1 ⊕𝑉2 ⊕⋯ with 𝑉𝑖 isomorphic to 𝐹[𝑋]∕(𝑃𝑖(𝑋)), where 𝑃𝑖 is a
monic polynomial. The minimal polynomial of 𝛼 is the lcm of the 𝑃𝑖 and its characteristic polynomial is∏𝑃𝑖 . In our case, both polynomials are 𝑋𝑛 − 1, and so the 𝑃𝑖 are relatively prime with product 𝑋𝑛 − 1. By
the Chinese remainder theorem, 𝑉 is isomorphic to 𝑘[𝑋]∕(𝑋𝑛 − 1).
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and so 𝜙 is an isomorphism of 𝐸𝐺-modules. Thus

𝐸 ⊗𝐹 𝐸 ≃ 𝐸𝐺 ≈ 𝐹𝐺 ⊕⋯⊕𝐹𝐺

as an 𝐹𝐺-module.
On the other hand, for any basis {𝑒1, … , 𝑒𝑛} for 𝐸 as an 𝐹-vector space,

𝐸 ⊗𝐹 𝐸 = (𝑒1 ⊗𝐸) ⊕⋯⊕ (𝑒𝑛 ⊗𝐸) ≃ 𝐸 ⊕⋯⊕𝐸

as 𝐹𝐺-modules. This completes the proof.
Notes The normal basis theorem was stated for finite fields by Eisenstein in 1850, and proved
for finite fields by Hensel in 1888. Dedekind used normal bases in number fields in his work
on the discriminant in 1880, but he had no general proof. Emmy Noether gave a proof for
some infinite fields (1932) and Deuring gave a uniform proof (also 1932). The above uniform
proof simplifies that of Deuring — see Blessenohl, On the normal basis theorem. Note Mat. 27
(2007), 5–10. According to the Wikipedia, normal bases are frequently used in cryptographic
applications.

Hilbert’s Theorem 90

Let 𝐺 be a group. A 𝐺-module is an abelian group𝑀 together with an action of 𝐺, i.e.,
a map 𝐺 ×𝑀 → 𝑀 such that
(a) 𝜎(𝑚 +𝑚′) = 𝜎𝑚 + 𝜎𝑚′ for all 𝜎 ∈ 𝐺,𝑚,𝑚′ ∈ 𝑀;
(b) (𝜎𝜏)(𝑚) = 𝜎(𝜏𝑚) for all 𝜎, 𝜏 ∈ 𝐺,𝑚 ∈ 𝑀;
(c) 1𝐺𝑚 = 𝑚 for all𝑚 ∈ 𝑀.

Thus, to give an action of 𝐺 on𝑀 is the same as giving a homomorphism 𝐺 → Aut(𝑀).

Example 5.20 Let 𝐸 be a Galois extension of 𝐹 with Galois group 𝐺. Then (𝐸, +) and
(𝐸×, ⋅) are 𝐺-modules.

Let𝑀 be a 𝐺-module. A crossed homomorphism is a map 𝑓∶ 𝐺 → 𝑀 such that

𝑓(𝜎𝜏) = 𝑓(𝜎) + 𝜎𝑓(𝜏) for all 𝜎, 𝜏 ∈ 𝐺.

Note that the condition implies that 𝑓(1) = 𝑓(1 ⋅ 1) = 𝑓(1) + 𝑓(1), and so 𝑓(1) = 0.

Example 5.21 (a) Let 𝑓∶ 𝐺 → 𝑀 be a crossed homomorphism. For any 𝜎 ∈ 𝐺,

𝑓(𝜎2) = 𝑓(𝜎) + 𝜎𝑓(𝜎),
𝑓(𝜎3) = 𝑓(𝜎 ⋅ 𝜎2) = 𝑓(𝜎) + 𝜎𝑓(𝜎) + 𝜎2𝑓(𝜎)

⋯
𝑓(𝜎𝑛) = 𝑓(𝜎) + 𝜎𝑓(𝜎) +⋯+ 𝜎𝑛−1𝑓(𝜎).

Thus, if 𝐺 is a cyclic group of order 𝑛 generated by 𝜎, then a crossed homomorphism
𝑓∶ 𝐺 → 𝑀 is determined by its value, 𝑥 say, on 𝜎, and 𝑥 satisfies the equation

𝑥 + 𝜎𝑥 +⋯+ 𝜎𝑛−1𝑥 = 0, (10)

Moreover, if 𝑥 ∈ 𝑀 satisfies (10), then the formulas 𝑓(𝜎𝑖) = 𝑥 + 𝜎𝑥 +⋯+ 𝜎𝑖−1𝑥 define
a crossed homomorphism 𝑓∶ 𝐺 → 𝑀. Thus, for a finite cyclic group 𝐺 = ⟨𝜎⟩, there is a
one-to-one correspondence

{crossed homomorphisms 𝑓∶ 𝐺 → 𝑀}
𝑓↔𝑓(𝜎)
⟷ {𝑥 ∈ 𝑀 satisfying (10)}.
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(b) For every 𝑥 ∈ 𝑀, we obtain a crossed homomorphism by putting

𝑓(𝜎) = 𝜎𝑥 − 𝑥, all 𝜎 ∈ 𝐺.

Such a crossed homomorphism is said to be principal.
(c) If 𝐺 acts trivially on𝑀, i.e., 𝜎𝑚 = 𝑚 for all 𝜎 ∈ 𝐺 and 𝑚 ∈ 𝑀, then a crossed

homomorphism is simply a homomorphism, and there are no nonzero principal crossed
homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed homomor-
phism, and the sum and difference of two principal crossed homomorphisms is again
principal. Thus we can define

𝐻1(𝐺,𝑀) = {crossed homomorphisms}
{principal crossed homomorphisms}

(quotient abelian group). There are also cohomology groups𝐻𝑛(𝐺,𝑀) for 𝑛 > 1, but we
shall not be concerned with them. An exact sequence of 𝐺-modules

0 → 𝑀′ →𝑀 → 𝑀′′ → 0

gives rise to an exact sequence

0⟶𝑀′𝐺 ⟶𝑀𝐺 ⟶𝑀′′𝐺 𝑑
⟶𝐻1(𝐺,𝑀′)⟶ 𝐻1(𝐺,𝑀)⟶ 𝐻1(𝐺,𝑀′′).

Let𝑚′′ ∈ 𝑀′′𝐺 , and let𝑚 ∈ 𝑀 map to𝑚′′. For all 𝜎 ∈ 𝐺, 𝜎𝑚−𝑚 lies in the submodule
𝑀′ of 𝑀, and 𝜎 ↦ 𝜎𝑚 − 𝑚∶ 𝐺 → 𝑀′ is a crossed homomorphism, whose class we
define to be 𝑑(𝑚′′). We leave it as an exercise for the reader to check the exactness.

Example 5.22 Let 𝜋∶ 𝑋̃ → 𝑋 be the universal covering space of a topological space
𝑋, and let 𝛤 be the group of covering transformations. Under some fairly general
hypotheses, a 𝛤-module 𝑀 will define a sheaf ℳ on 𝑋, and 𝐻1(𝑋,ℳ) ≃ 𝐻1(𝛤,𝑀).
For example, when𝑀 = ℤ with the trivial action of 𝛤, this becomes the isomorphism
𝐻1(𝑋,ℤ) ≃ 𝐻1(𝛤,ℤ) = Hom(𝛤,ℤ).

Theorem 5.23 Let 𝐸 be a Galois extension of 𝐹 with group 𝐺; then 𝐻1(𝐺, 𝐸×) = 0, i.e.,
every crossed homomorphism 𝐺 → 𝐸× is principal.

Proof. Let 𝑓 be a crossed homomorphism 𝐺 → 𝐸×. In multiplicative notation, this
means that

𝑓(𝜎𝜏) = 𝑓(𝜎) ⋅ 𝜎(𝑓(𝜏)), 𝜎, 𝜏 ∈ 𝐺,

and we have to find a 𝛾 ∈ 𝐸× such that 𝑓(𝜎) = 𝜎𝛾
𝛾
for all 𝜎 ∈ 𝐺. Because the 𝑓(𝜏) are

nonzero, Corollary 5.15 implies that
∑

𝜏∈𝐺
𝑓(𝜏)𝜏∶ 𝐸 → 𝐸

is not the zero map, i.e., there exists an 𝛼 ∈ 𝐸 such that

𝛽 def=
∑

𝜏∈𝐺
𝑓(𝜏)𝜏𝛼 ≠ 0.
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But then, for 𝜎 ∈ 𝐺,

𝜎𝛽 =
∑

𝜏∈𝐺
𝜎(𝑓(𝜏)) ⋅ 𝜎𝜏(𝛼)

=
∑

𝜏∈𝐺
𝑓(𝜎)−1 𝑓(𝜎𝜏) ⋅ 𝜎𝜏(𝛼)

= 𝑓(𝜎)−1
∑

𝜏∈𝐺
𝑓(𝜎𝜏)𝜎𝜏(𝛼),

which equals 𝑓(𝜎)−1𝛽 because, as 𝜏 runs over 𝐺, so also does 𝜎𝜏. Therefore,

𝑓(𝜎) = 𝛽
𝜎(𝛽)

= 𝜎(𝛽−1)
𝛽−1 .

□

Let 𝐸 be a Galois extension of 𝐹 with Galois group 𝐺. We define the norm of an
element 𝛼 ∈ 𝐸 to be

Nm𝛼 =
∏

𝜎∈𝐺
𝜎𝛼.

For 𝜏 ∈ 𝐺,
𝜏(Nm𝛼) =

∏
𝜎∈𝐺

𝜏𝜎𝛼 = Nm𝛼,

and so Nm𝛼 ∈ 𝐹. The map

𝛼 ↦ Nm𝛼∶ 𝐸× → 𝐹×

is a obviously a homomorphism.

Example 5.24 The norm map ℂ× → ℝ× is 𝛼 ↦ |𝛼|2 and the norm mapℚ[
√
𝑑]× → ℚ×

is 𝑎 + 𝑏
√
𝑑 ↦ 𝑎2 − 𝑑𝑏2.

We are interested in determining the kernel of the norm map. Clearly an element
of the form 𝛽

𝜏𝛽
has norm 1, and our next result shows that, for cyclic extensions, all

elements with norm 1 are of this form.

Corollary 5.25 (Hilbert’s theorem 90) Let 𝐸 be a finite cyclic extension of 𝐹, and
let 𝜎 generate Gal(𝐸∕𝐹). Let 𝛼 ∈ 𝐸×; if Nm𝐸∕𝐹 𝛼 = 1, then 𝛼 = 𝛽∕𝜎𝛽 for some 𝛽 ∈ 𝐸.

Proof. Let 𝑚 = [𝐸∶ 𝐹]. The condition on 𝛼 is that 𝛼 ⋅ 𝜎𝛼⋯𝜎𝑚−1𝛼 = 1, and so (see
5.21a) there is a crossed homomorphism 𝑓∶ ⟨𝜎⟩ → 𝐸× with 𝑓(𝜎) = 𝛼. Theorem 5.23
now shows that 𝑓 is principal, which means that there is a 𝛽 with 𝑓(𝜎) = 𝛽∕𝜎𝛽. □

Aside 5.26 With the obvious notion of morphism, the 𝐺-modules form a category. This is
essentially the same as the category ofℤ𝐺-modules, whereℤ𝐺 is the group ring of 𝐺 (Wikipedia:
group ring). The category has enough injectives, and the𝐻1 is the first right derived functor of
𝑀 ⇝ 𝑀𝐺 .

Notes The corollary is Satz 90 in Hilbert, Theorie der Algebraischen Zahlkörper, 1897. The
theorem was discovered by Kummer in the special case ofℚ[𝜁𝑝]∕ℚ, and generalized to Theorem
5.23 by Emmy Noether. Theorem 5.23, as well as various vast generalizations of it, are also
referred to as Hilbert’s Theorem 90.
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Cyclic extensions

Let 𝐹 be a field containing a primitive 𝑛th root of 1, some 𝑛 ≥ 2. Then the group 𝜇𝑛 of
𝑛th roots of 1 in 𝐹 is a cyclic subgroup of 𝐹× of order 𝑛, and we let 𝜁 denote a generator
of 𝜇𝑛. In this section, we classify the cyclic extensions of 𝐹 of degree 𝑛.

Consider a field 𝐸 = 𝐹[𝛼] generated by an element 𝛼 whose 𝑛th power, but no
smaller power, lies in 𝐹. Then 𝛼 is a root of 𝑋𝑛 − 𝑎, where 𝑎 = 𝛼𝑛, and the remaining
roots are the elements 𝜁𝑖𝛼, 1 ≤ 𝑖 ≤ 𝑛 − 1. Since these all lie in 𝐸, it is Galois over 𝐹, with
Galois group 𝐺 say. For every 𝜎 ∈ 𝐺, 𝜎𝛼 is also a root of 𝑋𝑛 − 𝑎, and so 𝜎𝛼 = 𝜁𝑖𝛼 for
some 𝑖. Hence 𝜎𝛼∕𝛼 ∈ 𝜇𝑛. The map

𝜎 ↦ 𝜎𝛼∕𝛼∶ 𝐺 → 𝜇𝑛

is unchanged when 𝛼 is replaced by a conjugate 𝛽 = 𝜁𝑖𝛼 (because 𝜁 ∈ 𝐹), and it follows
that it is a homomorphism:

𝜎𝜏𝛼
𝛼 = 𝜎(𝜏𝛼)

𝜏𝛼
𝜏𝛼
𝛼 .

If 𝜎 lies in the kernel of the map 𝐺 → 𝜇𝑛, then 𝜎𝛼 = 𝛼, and so 𝜎 is the identity map.
Thus the homomorphism 𝐺 → 𝜇𝑛 is injective. If it is not surjective, then 𝐺 maps into
a subgroup 𝜇𝑑 of 𝜇𝑛, some 𝑑|𝑛, 𝑑 < 𝑛. In this case, (𝜎𝛼∕𝛼)𝑑 = 1, i.e., 𝜎𝛼𝑑 = 𝛼𝑑, for all
𝜎 ∈ 𝐺, and so 𝛼𝑑 ∈ 𝐹, contradicting the hypothesis on 𝛼. Thus the map is surjective.
We have proved the first part of the following statement.

Proposition 5.27 Let 𝐹 be a field containing a primitive 𝑛th root of 1. Let 𝐸 = 𝐹[𝛼],
where 𝛼𝑛 ∈ 𝐹 and no smaller power of 𝛼 is in 𝐹. Then 𝐸 is a Galois extension of 𝐹 with
cyclic Galois group of order 𝑛. Conversely, if 𝐸 is a cyclic extension of 𝐹 of degree 𝑛, then
𝐸 = 𝐹[𝛼] for some 𝛼 with 𝛼𝑛 ∈ 𝐹.

Proof. It remains to prove the last statement. Let 𝜎 generate 𝐺 and let 𝜁 generate 𝜇𝑛. It
suffices to find an element 𝛼 ∈ 𝐸× such that 𝜎𝛼 = 𝜁−1𝛼, for then 𝛼𝑛 is the smallest power
of 𝛼 lying in 𝐹. As 1, 𝜎, … , 𝜎𝑛−1 are distinct homomorphisms 𝐹× → 𝐹×, Dedekind’s
Theorem 5.14 shows that

∑𝑛−1
𝑖=0 𝜁

𝑖𝜎𝑖 is not the zero function, and so there exists a 𝛾 such
that 𝛼 def= ∑𝜁𝑖𝜎𝑖𝛾 ≠ 0. Now 𝜎𝛼 = 𝜁−1𝛼. □

Let 𝐹 be a field containing a primitive 𝑛th root of 1, and letΩ be a field containing 𝐹.
Let 𝐸 = 𝐹[𝛼], where 𝛼 is an element of Ω such that 𝛼𝑛 ∈ 𝐹. Then 𝐸 (as a subfield of Ω)
depends only on 𝑎 def= 𝛼𝑛, and so we denote it by 𝐹[𝑎

1
𝑛 ].

Proposition 5.28 Let 𝐹 be a field containing a primitive 𝑛th root of 1, and letΩ be a field

containing 𝐹. Two cyclic extensions 𝐹[𝑎
1
𝑛 ] and 𝐹[𝑏

1
𝑛 ] of 𝐹 inΩ of degree 𝑛 are equal if and

only if 𝑎 = 𝑏𝑟𝑐𝑛 for some 𝑟 ∈ ℤ relatively prime to 𝑛 and some 𝑐 ∈ 𝐹×, i.e., if and only if 𝑎
and 𝑏 generate the same subgroup of 𝐹×∕𝐹×𝑛.

Proof. Only the “only if” part requires proof. We are given that 𝐹[𝛼] = 𝐹[𝛽] with
𝛼𝑛 = 𝑎 and 𝛽𝑛 = 𝑏. Let 𝜎 be the generator of the Galois group. Then 𝜎𝛼 = 𝜁𝛼 and
𝜎𝛽 = 𝜁𝑖𝛽 for some primitive 𝑛th root of 1, 𝜁, and integer 𝑖 prime to 𝑛. We can write

𝛽 =
𝑛−1∑

𝑗=0
𝑐𝑗𝛼𝑗, 𝑐𝑗 ∈ 𝐹,
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and then

𝜎𝛽 =
𝑛−1∑

𝑗=0
𝑐𝑗𝜁𝑗𝛼𝑗.

On comparing this with 𝜎𝛽 = 𝜁𝑖𝛽, we find that 𝜁𝑖𝑐𝑗 = 𝜁𝑗𝑐𝑗 for all 𝑗. Hence 𝑐𝑗 = 0 for
𝑗 ≠ 𝑖, and therefore 𝛽 = 𝑐𝑖𝛼𝑖. □

Let Ω be an algebraically closed field containing 𝐹. The propositions show that the
cyclic extensions of 𝐹 in Ω of degree 𝑛 are classified by the cyclic subgroups of 𝐹×∕𝐹×𝑛
of order 𝑛.

Aside 5.29 (a) It is not difficult to show that the polynomial 𝑋𝑛 − 𝑎 is irreducible in 𝐹[𝑋] if 𝑎
is not a 𝑝th power for any prime 𝑝 dividing 𝑛. When we drop the hypothesis that 𝐹 contains
a primitive 𝑛th root of 1, this is still true except that, if 4|𝑛, we need to add the condition that
𝑎 ∉ −4𝐹4. See Lang, Algebra, Springer, 2002, VI, §9, Theorem 9.1, p. 297.

(b) If 𝐹 has characteristic 𝑝 (hence has no 𝑝th roots of 1 other than 1), then 𝑋𝑝 − 𝑋 − 𝑎 is
irreducible in 𝐹[𝑋] unless 𝑎 = 𝑏𝑝 −𝑏 for some 𝑏 ∈ 𝐹, and when it is irreducible, its Galois group
is cyclic of order 𝑝 (generated by 𝛼 ↦ 𝛼 + 1 where 𝛼 is a root). Moreover, every cyclic extension
of 𝐹 of degree 𝑝 is the splitting field of such a polynomial.

Kummer theory

Throughout this section, 𝐹 is a field and 𝜁 is a primitive 𝑛th root of 1 in 𝐹. In this section,
we classify the extensions of 𝐹 whose Galois group is abelian of exponent 𝑛.

Recall that the exponent of a finite group 𝐺 is the smallest integer 𝑛 ≥ 1 such that
𝜎𝑛 = 1 for all 𝜎 ∈ 𝐺. A finite abelian group of exponent 𝑛 is isomorphic to a subgroup
of (ℤ∕𝑛ℤ)𝑟 for some 𝑟.

Let 𝐸∕𝐹 be a finite Galois extension with Galois group 𝐺. From the exact sequence

1 𝜇𝑛 𝐸× 𝐸×𝑛 1←→ ←→ ←→𝑥↦𝑥𝑛 ←→

we obtain a cohomology sequence

1 𝜇𝑛 𝐹× 𝐹× ∩ 𝐸×𝑛 𝐻1(𝐺, 𝜇𝑛) 1.←→ ←→ ←→𝑥↦𝑥𝑛 ←→ ←→

The sequence ends with 1 because of Hilbert’s Theorem 90. Thus we obtain an isomor-
phism

𝐹× ∩ 𝐸×𝑛∕𝐹×𝑛 → Hom(𝐺, 𝜇𝑛).

This map can be described as follows: let 𝑎 be an element of 𝐹× that becomes an 𝑛th
power in 𝐸, say 𝑎 = 𝛼𝑛; then 𝑎 maps to the homomorphism 𝜎 ↦ 𝜎𝛼

𝛼
. If 𝐺 is abelian of

exponent 𝑛, then
|||Hom(𝐺, 𝜇𝑛)||| = (𝐺∶ 1).

Theorem 5.30 The map
𝐸 ↦ 𝐹× ∩ 𝐸×𝑛

defines a one-to-one correspondence between the sets of
(a) finite abelian extensions of 𝐹 of exponent 𝑛 contained in some fixed algebraic closure

Ω of 𝐹, and
(b) subgroups 𝐵 of 𝐹× containing 𝐹×𝑛 as a subgroup of finite index.
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The extension corresponding to 𝐵 is 𝐹[𝐵
1
𝑛 ], the smallest subfield ofΩ containing 𝐹 and an

𝑛th root of every element of 𝐵. If 𝐸 ↔ 𝐵, then [𝐸 ∶ 𝐹] = (𝐵∶ 𝐹×𝑛).

Proof. For any finite Galois extension 𝐸 of 𝐹, define 𝐵(𝐸) = 𝐹× ∩ 𝐸×𝑛. Then 𝐸 ⊃
𝐹[𝐵(𝐸)

1
𝑛 ], and for any group 𝐵 containing 𝐹×𝑛 as a subgroup of finite index, 𝐵(𝐹[𝐵

1
𝑛 ]) ⊃

𝐵. Therefore,

[𝐸 ∶ 𝐹] ≥ [𝐹[𝐵(𝐸)
1
𝑛 ]∶ 𝐹] = (𝐵(𝐹[𝐵(𝐸)

1
𝑛 ])∶ 𝐹×𝑛) ≥ (𝐵(𝐸)∶ 𝐹×𝑛).

If 𝐸∕𝐹 is abelian of exponent 𝑛, then [𝐸 ∶ 𝐹] = (𝐵(𝐸)∶ 𝐹×𝑛), and so equalities hold
throughout: 𝐸 = 𝐹[𝐵(𝐸)

1
𝑛 ].

Next consider a group 𝐵 containing 𝐹×𝑛 as a subgroup of finite index, and let 𝐸 =
𝐹[𝐵

1
𝑛 ]. Then 𝐸 is a composite of the extensions 𝐹[𝑎

1
𝑛 ] for 𝑎 running through a set of

generators for 𝐵∕𝐹×𝑛, and so it is a finite abelian extension of exponent 𝑛. Therefore

𝑎 ↦ (𝜎 ↦ 𝜎𝑎1∕𝑛

𝑎1∕𝑛
)∶ 𝐵(𝐸)∕𝐹×𝑛 → Hom(𝐺, 𝜇𝑛), 𝐺 = Gal(𝐸∕𝐹),

is an isomorphism. Thismap sends𝐵∕𝐹×𝑛 isomorphically onto the subgroupHom(𝐺∕𝐻, 𝜇𝑛)
of Hom(𝐺, 𝜇𝑛) where 𝐻 consists of the 𝜎 ∈ 𝐺 such that 𝜎𝑎1∕𝑛∕𝑎1∕𝑛 = 1 for all 𝑎 ∈ 𝐵.
But such a 𝜎 fixes all 𝑎1∕𝑛 for 𝑎 ∈ 𝐵, and therefore is the identity automorphism on

𝐸 = 𝐹[𝐵
1
𝑛 ]. This shows that 𝐵(𝐸) = 𝐵, and hence 𝐸 ↦ 𝐵(𝐸) and 𝐵 ↦ 𝐹[𝐵

1
𝑛 ] are inverse

bijections. □

Example 5.31 (a) The theorem says that the abelian extensions of ℝ of exponent 2 are
indexed by the subgroups of ℝ×∕ℝ×2 = {±1}. This is certainly true.

(b) The theorem says that the finite abelian extensions ofℚ of exponent 2 are indexed
by the finite subgroups ofℚ×∕ℚ×2. Modulo squares, every nonzero rational number has
a unique representative of the form ±𝑝1⋯𝑝𝑟 with the 𝑝𝑖 prime numbers. Therefore
ℚ×∕ℚ×2 is a direct sum of cyclic groups of order 2 indexed by the prime numbers plus
∞. The extension corresponding to the subgroup generated by the primes 𝑝1, … , 𝑝𝑟 (and
−1) is obtained by adjoining the square roots of 𝑝1, … , 𝑝𝑟 (and −1) to ℚ.

Remark 5.32 Let 𝐸 be an abelian extension of 𝐹 of exponent 𝑛, and let

𝐵(𝐸) = {𝑎 ∈ 𝐹× ∣ 𝑎 becomes an 𝑛th power in 𝐸}.

There is a perfect pairing

(𝑎, 𝜎) ↦ 𝜎𝑎1∕𝑛

𝑎1∕𝑛
∶ 𝐵(𝐸)
𝐹×𝑛 × Gal(𝐸∕𝐹) → 𝜇𝑛.

Cf. Exercise 2-1 for the case 𝑛 = 2.

Proof of Galois’s solvability theorem

Lemma 5.33 Let 𝑓 ∈ 𝐹[𝑋] be separable, and let 𝐹′ be a field containing 𝐹. Then the
Galois group of 𝑓 as an element of 𝐹′[𝑋] is a subgroup of the Galois group of 𝑓 as an
element of 𝐹[𝑋].
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Proof. Let 𝐸′ be a splitting field for 𝑓 over 𝐹′, and let 𝛼1, … , 𝛼𝑚 be the roots of 𝑓(𝑋) in
𝐸′. Then 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑚] is a splitting field of 𝑓 over 𝐹. Every element of Gal(𝐸′∕𝐹′)
permutes the𝛼𝑖 and somaps𝐸 into itself. Themap𝜎 ↦ 𝜎|𝐸 is an injectionGal(𝐸′∕𝐹′) →
Gal(𝐸∕𝐹). □

Theorem 5.34 Let 𝐹 be a field of characteristic 0. A polynomial in 𝐹[𝑋] is solvable in
radicals if and only if its Galois group is solvable.

Proof. ⟸: Let 𝑓 ∈ 𝐹[𝑋] have solvable Galois group 𝐺𝑓. Let 𝐹′ = 𝐹[𝜁] where 𝜁 is a
primitive 𝑛th root of 1 for some large 𝑛— for example, 𝑛 = (deg 𝑓)! will do. The lemma
shows that the Galois group𝐺 of 𝑓 as an element of 𝐹′[𝑋] is a subgroup of𝐺𝑓, and hence
is also solvable (GT, 6.6a). This means that there is a sequence of subgroups

𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺𝑚 = {1}

such that each 𝐺𝑖 is normal in 𝐺𝑖−1 and 𝐺𝑖−1∕𝐺𝑖 is cyclic. Let 𝐸 be a splitting field of
𝑓(𝑋) over 𝐹′, and let 𝐹𝑖 = 𝐸𝐺𝑖 . We have a sequence of fields

𝐹 ⊂ 𝐹[𝜁] = 𝐹′ = 𝐹0 ⊂ 𝐹1 ⊂ ⋯ ⊂ 𝐹𝑚 = 𝐸

with 𝐹𝑖 cyclic over 𝐹𝑖−1. Theorem 5.27 shows that 𝐹𝑖 = 𝐹𝑖−1[𝛼𝑖] with 𝛼
[𝐹𝑖 ∶ 𝐹𝑖−1]
𝑖 ∈ 𝐹𝑖−1,

each 𝑖, and this shows that 𝑓 = 0 is solvable in radicals.
⟹: It suffices to show that 𝐺𝑓 is a quotient of a solvable group (GT, 6.6a). Hence it

suffices to find a solvable extension 𝐸̃ of 𝐹 such that 𝑓(𝑋) splits in 𝐸̃[𝑋].
We are given that there exists a tower of fields

𝐹 = 𝐹0 ⊂ 𝐹1 ⊂ ⋯ ⊂ 𝐹𝑚
such that
(a) 𝐹𝑖 = 𝐹𝑖−1[𝛼𝑖], 𝛼

𝑟𝑖
𝑖 ∈ 𝐹𝑖−1;

(b) 𝐹𝑚 contains a splitting field for 𝑓.
Let 𝑛 = 𝑟1⋯𝑟𝑚, and let Ω be a field Galois over 𝐹 and containing (a copy of) 𝐹𝑚

and a primitive 𝑛th root 𝜁 of 1. For example, choose a primitive element 𝛾 for 𝐹𝑚 over 𝐹
(see 5.1), and take Ω to be a splitting field of 𝑔(𝑋)(𝑋𝑛 − 1) where 𝑔(𝑋) is the minimal
polynomial of 𝛾 over 𝐹. Alternatively, apply 2.15.

Let 𝐺 be the Galois group of Ω∕𝐹, and let 𝐸̃ be the Galois closure of 𝐹𝑚[𝜁] in Ω.
According to (3.18a), 𝐸̃ is the composite of the fields 𝜎𝐹𝑚[𝜁], 𝜎 ∈ 𝐺, and so it is generated
over 𝐹 by the elements

𝜁, 𝛼1, 𝛼2, … , 𝛼𝑚, 𝜎𝛼1, … , 𝜎𝛼𝑚, 𝜎′𝛼1, … .

We adjoin these elements to 𝐹 one by one to get a sequence of fields

𝐹 ⊂ 𝐹[𝜁] ⊂ 𝐹[𝜁, 𝛼1] ⊂ ⋯ ⊂ 𝐹′ ⊂ 𝐹′′ ⊂ ⋯ ⊂ 𝐸̃

in which each field 𝐹′′ is obtained from its predecessor 𝐹′ by adjoining an 𝑟th root of an
element of 𝐹′ (𝑟 = 𝑟1, … , 𝑟𝑚, or 𝑛). According to (5.8) and (5.27), each of these extensions
is abelian (and even cyclic after the first), and so 𝐸̃∕𝐹 is a solvable extension. □

Aside 5.35 One of Galois’s major achievements was to show that an irreducible polynomial of
prime degree inℚ[𝑋] is solvable by radicals if and only if its splitting field is generated by any
two roots of the polynomial.5 This theorem of Galois answered a question on mathoverflow in
2010 (mo24081). For a partial generalization of Galois’s theorem, see mo110727.

5Pour qu’une équation de degré premier soit résoluble par radicaux, il faut et il suffit que deux quelcon-
ques de ces racines étant connues, les autres s’en déduisent rationnellement (Évariste Galois, Bulletin de M.
Férussac, XIII (avril 1830), p. 271).

https://mathoverflow.net/questions/24081
https://mathoverflow.net/questions/110727
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Symmetric polynomials

Let 𝑅 be a commutative ring (with 1). A polynomial 𝑃(𝑋1, ..., 𝑋𝑛) ∈ 𝑅[𝑋1, … , 𝑋𝑛] is said
to be symmetric if it is unchanged when the 𝑋𝑖 are permuted, i.e., if

𝑃(𝑋𝜎(1), … , 𝑋𝜎(𝑛)) = 𝑃(𝑋1, … , 𝑋𝑛) for all 𝜎 ∈ 𝑆𝑛.

For example

𝑝1 = ∑
𝑖 𝑋𝑖 = 𝑋1 + 𝑋2 +⋯+𝑋𝑛,

𝑝2 = ∑
𝑖<𝑗 𝑋𝑖𝑋𝑗 = 𝑋1𝑋2 + 𝑋1𝑋3 +⋯+𝑋1𝑋𝑛 + 𝑋2𝑋3 +⋯+𝑋𝑛−1𝑋𝑛,

𝑝3 = ∑
𝑖<𝑗<𝑘 𝑋𝑖𝑋𝑗𝑋𝑘, = 𝑋1𝑋2𝑋3 +⋯

⋯
𝑝𝑟 =

∑
𝑖1<⋯<𝑖𝑟

𝑋𝑖1 ...𝑋𝑖𝑟
⋯

𝑝𝑛 = 𝑋1𝑋2⋯𝑋𝑛

are all symmetric because 𝑝𝑟 is the sum of allmonomials of degree 𝑟 that are products
of distinct 𝑋𝑖. These particular polynomials are called the elementary symmetric
polynomials.

Theorem 5.36 (Symmetric polynomials theorem) Every symmetric polynomial 𝑃
in 𝑅[𝑋1, ..., 𝑋𝑛] is a polynomial in the elementary symmetric polynomials with coefficients
in 𝑅, i.e., 𝑃 ∈ 𝑅[𝑝1, ..., 𝑝𝑛].

Proof. We define an ordering on the monomials in the 𝑋𝑖 by requiring that

𝑋𝑖1
1 𝑋

𝑖2
2 ⋯𝑋𝑖𝑛

𝑛 > 𝑋𝑗1
1 𝑋

𝑗2
2 ⋯𝑋𝑗𝑛

𝑛

if either
𝑖1 + 𝑖2 +⋯+ 𝑖𝑛 > 𝑗1 + 𝑗2 +⋯+ 𝑗𝑛

or equality holds and, for some 𝑠,

(𝑖1, … , 𝑖𝑠) = (𝑗1, … , 𝑗𝑠) but 𝑖𝑠+1 > 𝑗𝑠+1.

For example,
𝑋1𝑋2𝑋3

3 > 𝑋1𝑋2
2𝑋3 > 𝑋1𝑋2𝑋2

3 .

Let 𝑃(𝑋1, … , 𝑋𝑛) be a symmetric polynomial, and let 𝑋
𝑖1
1 ⋯𝑋𝑖𝑛

𝑛 be the highest mono-
mial occurring in 𝑃 with a nonzero coefficient, so

𝑃 = 𝑐𝑋𝑖1
1 ⋯𝑋𝑖𝑛

𝑛 + lower terms, 𝑐 ≠ 0.

Because 𝑃 is symmetric, it contains all monomials obtained from𝑋𝑖1
1 ⋯𝑋𝑖𝑛

𝑛 by permuting
the 𝑋. Hence 𝑖1 ≥ 𝑖2 ≥ ⋯ ≥ 𝑖𝑛.

The highest monomial in 𝑝𝑖 is 𝑋1⋯𝑋𝑖, and it follows that the highest monomial in
𝑝𝑑11 ⋯𝑝𝑑𝑛𝑛 is

𝑋𝑑1+𝑑2+⋯+𝑑𝑛
1 𝑋𝑑2+⋯+𝑑𝑛

2 ⋯𝑋𝑑𝑛
𝑛 . (11)
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Therefore the highest monomial of

𝑃(𝑋1, … , 𝑋𝑛) − 𝑐𝑝𝑖1−𝑖21 𝑝𝑖2−𝑖32 ⋯𝑝𝑖𝑛𝑛 (12)

is strictly less than the highest monomial in 𝑃(𝑋1, … , 𝑋𝑛). We can repeat this argu-
ment with the polynomial (12), and after a finite number of steps, we will arrive at a
representation of 𝑃 as a polynomial in 𝑝1, … , 𝑝𝑛. □

Remark 5.37 (a) The proof is algorithmic. Consider, for example,

𝑃(𝑋1, 𝑋2) = (𝑋1 + 7𝑋1𝑋2 + 𝑋2)2

= 𝑋2
1 + 2𝑋1𝑋2 + 14𝑋2

1𝑋2 + 𝑋2
2 + 14𝑋1𝑋2

2 + 49𝑋2
1𝑋

2
2 .

The highest monomial is 49𝑋2
1𝑋

2
2 , and so we subtract 49𝑝

2
2, to get

𝑃 − 49𝑝22 = 𝑋2
1 + 2𝑋1𝑋2 + 14𝑋2

1𝑋2 + 𝑋2
2 + 14𝑋1𝑋2

2 .

Continuing, we get

𝑃 − 49𝑝22 − 14𝑝1𝑝2 = 𝑋2
1 + 2𝑋1𝑋2 + 𝑋2

2

and finally,
𝑃 − 49𝑝22 − 14𝑝1𝑝2 − 𝑝21 = 0.

(Wikipedia: elementary symmetric polynomials).
(b) The expression of 𝑃 as a polynomial in the 𝑝𝑖 in 5.36 is unique. Otherwise,

by subtracting, we would get a nontrivial polynomial 𝑄(𝑝1, … , 𝑝𝑛) in the 𝑝𝑖 which is
zero when expressed as a polynomial in the 𝑋𝑖. But the highest monomials (11) in
the polynomials 𝑝𝑑11 ⋯𝑝𝑑𝑛𝑛 are distinct (the map (𝑑1, … , 𝑑𝑛) ↦ (𝑑1 +⋯+ 𝑑𝑛, … , 𝑑𝑛) is
injective), and so they can’t cancel.

Let
𝑓(𝑋) = 𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯+ 𝑎𝑛 ∈ 𝑅[𝑋],

and suppose that 𝑓 splits over some ring 𝑆 containing 𝑅:

𝑓(𝑋) = ∏𝑛
𝑖=1(𝑋 − 𝛼𝑖), 𝛼𝑖 ∈ 𝑆.

Then

𝑎1 = −𝑝1(𝛼1, … , 𝛼𝑛), 𝑎2 = 𝑝2(𝛼1, … , 𝛼𝑛), … , 𝑎𝑛 = (−1)𝑛𝑝𝑛(𝛼1, … , 𝛼𝑛).

Thus the elementary symmetric polynomials in the roots of 𝑓(𝑋) lie in 𝑅, and so the
theorem shows that every symmetric polynomial in the roots of 𝑓(𝑋) lies in 𝑅. For
example, the discriminant

𝐷(𝑓) def=
∏

𝑖<𝑗
(𝛼𝑖 − 𝛼𝑗)2

of 𝑓 lies in 𝑅.

Theorem 5.38 (Symmetric functions theorem) Let 𝐹 be a field. When 𝑆𝑛 acts on
𝐹(𝑋1, ..., 𝑋𝑛) by permuting the 𝑋𝑖 , the field of invariants is 𝐹(𝑝1, ..., 𝑝𝑛).

Proof. Let 𝑓 ∈ 𝐹(𝑋1, … , 𝑋𝑛) be symmetric (i.e., fixed by 𝑆𝑛). Set 𝑓 = 𝑔∕ℎ, 𝑔, ℎ ∈
𝐹[𝑋1, … , 𝑋𝑛]. The polynomials𝐻 =∏

𝜎∈𝑆𝑛
𝜎ℎ and𝐻𝑓 are symmetric, and therefore lie

in 𝐹[𝑝1, … , 𝑝𝑛] by Theorem 5.36. Hence their quotient 𝑓 = 𝐻𝑓∕𝐻 lies in 𝐹(𝑝1, … , 𝑝𝑛).□
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Corollary 5.39 The field 𝐹(𝑋1, ..., 𝑋𝑛) is Galois over 𝐹(𝑝1, ..., 𝑝𝑛) with Galois group 𝑆𝑛
(acting by permuting the 𝑋𝑖).

Proof. We have shown that 𝐹(𝑝1, … , 𝑝𝑛) = 𝐹(𝑋1, … , 𝑋𝑛)𝑆𝑛 , and so this follows from
(3.10). □

The field 𝐹(𝑋1, … , 𝑋𝑛) is the splitting field over 𝐹(𝑝1, … , 𝑝𝑛) of

𝑔(𝑇) = (𝑇 − 𝑋1)⋯ (𝑇 − 𝑋𝑛) = 𝑋𝑛 − 𝑝1𝑋𝑛−1 +⋯+ (−1)𝑛𝑝𝑛.

Therefore, the Galois group of 𝑔(𝑇) ∈ 𝐹(𝑝1, … , 𝑝𝑛)[𝑇] is 𝑆𝑛.

Notes Symmetric polynomials played an important role in the work of Galois. In hisMémoire
sur les conditions de résolubilité des équations par radicaux, he prove the following proposition:

Let 𝑓 be a polynomial with coefficients 𝜎1, … , 𝜎𝑛. Let 𝑥1, … , 𝑥𝑛 be its roots, and let
𝑈,𝑉,… be certain numbers that are rational functions in the 𝑥𝑖 . Then there exists a
group 𝐺 of permutations of the 𝑥𝑖 such that the rational functions in the 𝑥𝑖 that are
fixed under all permutations in 𝐺 are exactly those that are rationally expressible in
terms of 𝜎1, … , 𝜎𝑛 and 𝑈,𝑉,…

Whenwe take𝑈,𝑉,… to be the elements of a field 𝐸 intermediate between the field of coefficients
of 𝑓 and the splitting field of 𝑓, this says that the exists a group 𝐺 of permutations of the 𝑥𝑖 whose
fixed field (when 𝐺 acts on the splitting field) is exactly 𝐸.

The general polynomial of degree 𝑛
When we say that the roots of

𝑎𝑋2 + 𝑏𝑋 + 𝑐

are
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

we are thinking of 𝑎, 𝑏, 𝑐 as symbols: for any particular values of 𝑎, 𝑏, 𝑐, the formula
gives the roots of the particular equation. We’ll prove in this section that there is no
similar formula for the roots of the “general polynomial” of degree ≥ 5.

We define the general polynomial of degree 𝑛 to be

𝑓(𝑋) = 𝑋𝑛 − 𝑡1𝑋𝑛−1 +⋯+ (−1)𝑛𝑡𝑛 ∈ 𝐹[𝑡1, ..., 𝑡𝑛][𝑋]

where the 𝑡𝑖 are symbols. We’ll show that, when we regard 𝑓 as a polynomial in 𝑋 with
coefficients in the field 𝐹(𝑡1, … , 𝑡𝑛), its Galois group is 𝑆𝑛. Then Theorem 5.34 proves
the above remark (at least in characteristic zero).

Theorem 5.40 The Galois group of the general polynomial of degree 𝑛 is 𝑆𝑛.

Proof. Let 𝑓(𝑋) be the general polynomial of degree 𝑛,

𝑓(𝑋) = 𝑋𝑛 − 𝑡1𝑋𝑛−1 +⋯+ (−1)𝑛𝑡𝑛 ∈ 𝐹[𝑡1, ..., 𝑡𝑛][𝑋].

If we can show that the homomorphism

𝑡𝑖 ↦ 𝑝𝑖 ∶ 𝐹[𝑡1, … , 𝑡𝑛] → 𝐹[𝑝1, … , 𝑝𝑛]
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is injective, then it will extend to an isomorphism

𝐹(𝑡1, … , 𝑡𝑛) → 𝐹(𝑝1, … , 𝑝𝑛)

sending 𝑓(𝑋) to

𝑔(𝑋) = 𝑋𝑛 − 𝑝1𝑋𝑛−1 +⋯+ (−1)𝑛𝑝𝑛 ∈ 𝐹(𝑝1, … , 𝑝𝑛)[𝑋].

Then the statement will follow from Corollary 5.39.
We now prove that the homomorphism is injective.6 Suppose on the contrary that

there exists a 𝑃(𝑡1, … , 𝑡𝑛) such that 𝑃(𝑝1, … , 𝑝𝑛) = 0. Equation (11), p. 78, shows
that if 𝑚1(𝑡1, … , 𝑡𝑛) and 𝑚2(𝑡1, … , 𝑡𝑛) are distinct monomials, then 𝑚1(𝑝1, … , 𝑝𝑛) and
𝑚2(𝑝1, … , 𝑝𝑛) have distinct highest monomials. Therefore, cancellation can’t occur, and
so 𝑃(𝑡1, … , 𝑡𝑛)must be the zero polynomial. □

Aside 5.41 Since 𝑆𝑛 occurs as a Galois group overℚ, and every finite group occurs as a subgroup
of some 𝑆𝑛, it follows that every finite group occurs as a Galois group over some finite extension
ofℚ, but does every finite group occur as a Galois group overℚ itself? In other words, does every
finite group occur as the Galois group of some 𝑓 ∈ ℚ[𝑋]? This is known as the inverse Galois
problem, which is still open.

The Hilbert-Noether program for proving this was the following. Hilbert proved that if
𝐺 occurs as the Galois group of an extension 𝐸 ⊃ ℚ(𝑡1, ..., 𝑡𝑛) (the 𝑡𝑖 are symbols), then it
occurs infinitely often as a Galois group over ℚ. For the proof, realize 𝐸 as the splitting field
of a polynomial 𝑓(𝑋) ∈ 𝑘[𝑡1, … , 𝑡𝑛][𝑋] and prove that for infinitely many values of the 𝑡𝑖, the
polynomial you obtain in ℚ[𝑋] has Galois group 𝐺. Emmy Noether conjectured the following:
Let 𝐺 ⊂ 𝑆𝑛 act on 𝐹(𝑋1, ..., 𝑋𝑛) by permuting the 𝑋𝑖; then 𝐹(𝑋1, … , 𝑋𝑛)𝐺 ≈ 𝐹(𝑡1, ..., 𝑡𝑛) (for
symbols 𝑡𝑖). However, Swan proved in 1969 that the conjecture is false for 𝐺 the cyclic group of
order 47. Hence this approach cannot lead to a proof that all finite groups occur as Galois groups
overℚ, but it doesn’t exclude other approaches. For more information on the problem, see Serre,
Lectures on the Mordell-Weil Theorem, 1989, Chapters 9, 10; Serre, Topics in Galois Theory, 1992;
and Wikipedia: inverse Galois problem.

Aside 5.42 Take 𝐹 = ℂ, and consider the subset of ℂ𝑛+1 defined by the equation

𝑋𝑛 − 𝑇1𝑋𝑛−1 +⋯+ (−1)𝑛𝑇𝑛 = 0.

It is a beautiful complex manifold 𝑆 of dimension 𝑛. Consider the projection

𝜋∶ 𝑆 → ℂ𝑛, (𝑥, 𝑡1, … , 𝑡𝑛) ↦ (𝑡1, … , 𝑡𝑛).

Its fibre over a point (𝑎1, … , 𝑎𝑛) is the set of roots of the polynomial

𝑋𝑛 − 𝑎1𝑋𝑛−1 +⋯+ (−1)𝑛𝑎𝑛.

The discriminant 𝐷(𝑓) of 𝑓(𝑋) = 𝑋𝑛 − 𝑇1𝑋𝑛−1 +⋯+ (−1)𝑛𝑇𝑛 is a polynomial in ℂ[𝑇1, … , 𝑇𝑛].
Let ∆ be the zero set of 𝐷(𝑓) in ℂ𝑛. Then over each point of ℂ𝑛 ∖ ∆, there are exactly 𝑛 points of
𝑆, and 𝑆 ∖ 𝜋−1(∆) is a covering space over ℂ𝑛 ∖ ∆.

Notes As far back as 1500 BCE, the Babylonians (at least) knew a general formula for the
roots of a quadratic polynomial. Cardan (about 1515 CE) found a general formula for the roots
of a cubic polynomial. Ferrari (about 1545) found a general formula for the roots of a quartic
polynomial (he introduced the resolvent cubic, and used Cardan’s result). Over the next 275 years
there were many fruitless attempts to obtain similar formulas for higher degree polynomials
until (about 1820) Ruffini and Abel proved that there are none.

6To say that the homomorphism is injective means that the 𝑝𝑖 are algebraically independent over 𝐹 (see
p. 113). This can be proved by noting that, because 𝐹(𝑋1, … , 𝑋𝑛) is algebraic over 𝐹(𝑝1, … , 𝑝𝑛), the latter
must have transcendence degree 𝑛 (see §8).
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Norms and traces

Recall that, for an 𝑛 × 𝑛matrix 𝐴 = (𝑎𝑖𝑗)

Tr(𝐴) = ∑
𝑖 𝑎𝑖𝑖 (trace of 𝐴)

det(𝐴) = ∑
𝜎∈𝑆𝑛

sign(𝜎)𝑎1𝜎(1)⋯𝑎𝑛𝜎(𝑛), (determinant of 𝐴)
𝑐𝐴(𝑋) = det(𝑋𝐼𝑛 − 𝐴) (characteristic polynomial of 𝐴).

Moreover,
𝑐𝐴(𝑋) = 𝑋𝑛 − Tr(𝐴)𝑋𝑛−1 +⋯+ (−1)𝑛 det(𝐴).

None of these is changed when 𝐴 is replaced by its conjugate 𝑈𝐴𝑈−1 by an invertible
matrix 𝑈. Therefore, for any endomorphism 𝛼 of a finite-dimensional vector space 𝑉,
we can define

Tr(𝛼) = Tr(𝐴), det(𝛼) = det(𝐴), 𝑐𝛼(𝑋) = 𝑐𝐴(𝑋),

where 𝐴 is the matrix of 𝛼 with respect to a basis of 𝑉. If 𝛽 is a second endomorphism of
𝑉,

Tr(𝛼 + 𝛽) = Tr(𝛼) + Tr(𝛽);
det(𝛼𝛽) = det(𝛼) det(𝛽).

The coefficients of the characteristic polynomial, 𝑐𝛼(𝑋) = 𝑋𝑛 + 𝑐1𝑋𝑛−1 + ⋯ + 𝑐𝑛, of
𝛼 have the following description: 𝑐𝑖 = (−1)𝑖 Tr(𝛼|⋀𝑖 𝑉) (Bourbaki, Algèbre, Chap. III,
§8.11).

Now let 𝐸 be a finite field extension of 𝐹 of degree 𝑛. An element 𝛼 of 𝐸 defines an
𝐹-linear map

𝛼𝐿 ∶ 𝐸 → 𝐸, 𝑥 ↦ 𝛼𝑥,

and we define

Tr𝐸∕𝐹(𝛼) = Tr(𝛼𝐿) (trace of 𝛼)
Nm𝐸∕𝐹(𝛼) = det(𝛼𝐿) (norm of 𝛼)
𝑐𝛼,𝐸∕𝐹(𝑋) = 𝑐𝛼𝐿(𝑋) (characteristic polynomial of 𝛼).

Thus, Tr𝐸∕𝐹 is a homomorphism (𝐸, +) → (𝐹,+), and Nm𝐸∕𝐹 is a homomorphism
(𝐸×, ⋅) → (𝐹×, ⋅).

Example 5.43 (a) Consider the field extension ℂ ⊃ ℝ. For 𝛼 = 𝑎 + 𝑏𝑖, the matrix of 𝛼𝐿
with respect to the basis {1, 𝑖} is

( 𝑎 −𝑏
𝑏 𝑎

)
, and so

Trℂ∕ℝ(𝛼) = 2𝑎 = 2ℜ(𝛼),
Nmℂ∕ℝ(𝛼) = 𝑎2 + 𝑏2 = |𝛼|2.

(b) For 𝑎 ∈ 𝐹, 𝑎𝐿 is multiplication by the scalar 𝑎. Therefore

Tr𝐸∕𝐹(𝑎) = 𝑛𝑎 Nm𝐸∕𝐹(𝑎) = 𝑎𝑛 𝑐𝑎,𝐸∕𝐹(𝑋) = (𝑋 − 𝑎)𝑛

where 𝑛 = [𝐸∶ 𝐹].
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Let 𝐸 = ℚ[𝛼, 𝑖] be the splitting field of 𝑋8 − 2 (see Exercise 4-3). Then 𝐸 has degree
16 overℚ, and so to compute the trace and norm an element of 𝐸, the definition requires
us to compute the trace and norm of a 16 × 16matrix. The next proposition gives us a
quicker method.

Proposition 5.44 Let 𝐸∕𝐹 be a finite extension of fields, and let 𝑓(𝑋) be the minimal
polynomial of 𝛼 ∈ 𝐸. Then

𝑐𝛼,𝐸∕𝐹(𝑋) = 𝑓(𝑋)[𝐸 ∶ 𝐹[𝛼]].

Proof. Suppose first that 𝐸 = 𝐹[𝛼]. In this case, we have to show that 𝑐𝛼(𝑋) = 𝑓(𝑋).
Note that 𝛼 ↦ 𝛼𝐿 is an injective homomorphism from 𝐸 into the ring of endomorphisms
of 𝐸 as a vector space over 𝐹. The Cayley-Hamilton theorem shows that 𝑐𝛼(𝛼𝐿) = 0, and
therefore 𝑐𝛼(𝛼) = 0. Hence 𝑓|𝑐𝛼, but they are monic of the same degree, and so they are
equal.

For the general case, let 𝛽1, ..., 𝛽𝑛 be a basis for 𝐹[𝛼] over 𝐹, and let 𝛾1, ..., 𝛾𝑚 be a
basis for 𝐸 over 𝐹[𝛼]. As we saw in the proof of (1.20), {𝛽𝑖𝛾𝑘} is a basis for 𝐸 over 𝐹. Write
𝛼𝛽𝑖 =

∑𝑎𝑗𝑖𝛽𝑗. Then, according to the first case proved, 𝐴
def= (𝑎𝑖𝑗) has characteristic

polynomial 𝑓(𝑋). But 𝛼𝛽𝑖𝛾𝑘 =
∑𝑎𝑗𝑖𝛽𝑗𝛾𝑘, and so the matrix of 𝛼𝐿 with respect to {𝛽𝑖𝛾𝑘}

breaks up into 𝑛 × 𝑛 blocks with copies of 𝐴 down the diagonal and zero matrices
elsewhere, from which it follows that 𝑐𝛼𝐿(𝑋) = 𝑐𝐴(𝑋)𝑚 = 𝑓(𝑋)𝑚. □

Corollary 5.45 Suppose that the roots of the minimal polynomial of 𝛼 are 𝛼1, … , 𝛼𝑛 (in
some splitting field containing 𝐸), and that [𝐸 ∶ 𝐹[𝛼]] = 𝑚. Then

Tr(𝛼) = 𝑚∑𝑛
𝑖=1 𝛼𝑖, Nm𝐸∕𝐹 𝛼 =

(∏𝑛
𝑖=1 𝛼𝑖

)𝑚
.

Proof. Write the minimal polynomial of 𝛼 as

𝑓(𝑋) = 𝑋𝑛 + 𝑎1𝑋𝑛−1 +⋯+ 𝑎𝑛 =
∏(𝑋 − 𝛼𝑖),

so that

𝑎1 = −∑𝛼𝑖, and
𝑎𝑛 = (−1)𝑛∏𝛼𝑖.

Then
𝑐𝛼(𝑋) = (𝑓(𝑋))𝑚 = 𝑋𝑚𝑛 +𝑚𝑎1𝑋𝑚𝑛−1 +⋯+ 𝑎𝑚𝑛 ,

so that

Tr𝐸∕𝐹(𝛼) = −𝑚𝑎1 = 𝑚∑𝛼𝑖, and
Nm𝐸∕𝐹(𝛼) = (−1)𝑚𝑛𝑎𝑚𝑛 = (∏𝛼𝑖)𝑚. □

Example 5.46 (a) Consider the extension ℂ ⊃ ℝ. If 𝛼 ∈ ℂ ∖ ℝ, then

𝑐𝛼(𝑋) = 𝑓(𝑋) = 𝑋2 − 2ℜ(𝛼)𝑋 + |𝛼|2.

If 𝛼 ∈ ℝ, then 𝑐𝛼(𝑋) = (𝑋 − 𝑎)2.
(b) Let 𝐸 be the splitting field of𝑋8−2. Then 𝐸 has degree 16 overℚ and is generated

by 𝛼 = 8
√
2 and 𝑖 =

√
−1 (see Exercise 4-3). The minimal polynomial of 𝛼 is 𝑋8 − 2, and

so
𝑐𝛼,ℚ[𝛼]∕ℚ(𝑋) = 𝑋8 − 2, 𝑐𝛼,𝐸∕ℚ(𝑋) = (𝑋8 − 2)2

Trℚ[𝛼]∕ℚ 𝛼 = 0, Tr𝐸∕ℚ 𝛼 = 0
Nmℚ[𝛼]∕ℚ 𝛼 = −2, Nm𝐸∕ℚ 𝛼 = 4
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Remark 5.47 Let 𝐸 be a finite extension of 𝐹, letΩ be an algebraic closure of 𝐹, and let
𝛴 be the set of 𝐹-homomorphisms of 𝐸 into Ω.

When 𝐸∕𝐹 is separable,

Tr𝐸∕𝐹 𝛼 =
∑

𝜎∈𝛴 𝜎𝛼
Nm𝐸∕𝐹 𝛼 =

∏
𝜎∈𝛴 𝜎𝛼.

When 𝐸 = 𝐹[𝛼], this follows from 5.45 and the observation (cf. 2.1b) that the 𝜎𝛼 are
the roots of the minimal polynomial 𝑓(𝑋) of 𝛼 over 𝐹. In the general case, the 𝜎𝛼 are
still roots of 𝑓(𝑋) inΩ, but now each root of 𝑓(𝑋) occurs [𝐸 ∶ 𝐹[𝛼]] times (because each
𝐹-homomorphism 𝐹[𝛼] → Ω has [𝐸 ∶ 𝐹[𝛼]] extensions to 𝐸). For example, if 𝐸 is Galois
over 𝐹 with Galois group 𝐺, then

Tr𝐸∕𝐹 𝛼 =
∑

𝜎∈𝐺 𝜎𝛼
Nm𝐸∕𝐹 𝛼 =

∏
𝜎∈𝐺 𝜎𝛼

(in agreement with the previous definition for Galois extensions, p. 73).
In the general case,

Tr𝐸∕𝐹 𝛼 = 𝑝𝑒 ⋅ ∑𝜎∈𝛴 𝜎𝛼

Nm𝐸∕𝐹 𝛼 =
(∏

𝜎∈𝛴 𝜎𝛼
)𝑝𝑒 ,

where 𝑝 is the characteristic exponent of 𝐹 and 𝑝𝑒 is the degree of 𝐸 over the separable
closure (3.15)(p. 91) of 𝐹 in 𝐸 (Bourbaki, Algèbre, Chap. V, §8).

Proposition 5.48 For finite extensions 𝐸 ⊃ 𝑀 ⊃ 𝐹, we have

Tr𝑀∕𝐹 ◦Tr𝐸∕𝑀 = Tr𝐸∕𝐹 ,
Nm𝑀∕𝐹 ◦Nm𝐸∕𝑀 = Nm𝐸∕𝐹 .

Proof. When 𝐸 is separable over 𝐹, this follows easily from the descriptions in the
above remark. We leave the general case as an exercise. □

Proposition 5.49 Let 𝑓(𝑋) be a monic irreducible polynomial with coefficients in 𝐹, and
let 𝛼 be a root of 𝑓 in some splitting field of 𝑓. Then

disc 𝑓(𝑋) = (−1)𝑚(𝑚−1)∕2Nm𝐹[𝛼]∕𝐹 𝑓′(𝛼)

where 𝑓′ is the formal derivative 𝑑𝑓
𝑑𝑋

of 𝑓.

Proof. Let 𝑓(𝑋) = ∏𝑚
𝑖=1(𝑋 − 𝛼𝑖) be the factorization of 𝑓 in the given splitting field,

and number the roots so that 𝛼 = 𝛼1. Compute that

disc 𝑓(𝑋) def=
∏

𝑖<𝑗
(𝛼𝑖 − 𝛼𝑗)2

= (−1)𝑚(𝑚−1)∕2 ⋅
∏

𝑖
(
∏

𝑗≠𝑖
(𝛼𝑖 − 𝛼𝑗))

= (−1)𝑚(𝑚−1)∕2 ⋅
∏

𝑖
𝑓′(𝛼𝑖)

= (−1)𝑚(𝑚−1)∕2Nm𝐹[𝛼]∕𝐹(𝑓′(𝛼)) (by 5.47). □
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Example 5.50 We compute the discriminant of

𝑓(𝑋) = 𝑋𝑛 + 𝑎𝑋 + 𝑏, 𝑎, 𝑏 ∈ 𝐹,

assumed to be irreducible and separable, by computing the norm of

𝛾 def= 𝑓′(𝛼) = 𝑛𝛼𝑛−1 + 𝑎, 𝑓(𝛼) = 0.

On multiplying the equation
𝛼𝑛 + 𝑎𝛼 + 𝑏 = 0

by 𝑛𝛼−1 and rearranging, we obtain the equation

𝑛𝛼𝑛−1 = −𝑛𝑎 − 𝑛𝑏𝛼−1.

Hence
𝛾 = 𝑛𝛼𝑛−1 + 𝑎 = −(𝑛 − 1)𝑎 − 𝑛𝑏𝛼−1.

Solving for 𝛼 gives
𝛼 = −𝑛𝑏

𝛾 + (𝑛 − 1)𝑎
.

From the last two equations, it is clear that 𝐹[𝛼] = 𝐹[𝛾], and so the minimal polynomial
of 𝛾 over 𝐹 has degree 𝑛 also. If we write

𝑓 ( −𝑛𝑏
𝑋 + (𝑛 − 1)𝑎

) = 𝑃(𝑋)
𝑄(𝑋)

𝑃(𝑋) = (𝑋 + (𝑛 − 1)𝑎)𝑛 − 𝑛𝑎(𝑋 + (𝑛 − 1)𝑎)𝑛−1 + (−1)𝑛𝑛𝑛𝑏𝑛−1

𝑄(𝑋) = (𝑋 + (𝑛 − 1)𝑎)𝑛∕𝑏,

then
𝑃(𝛾) = 𝑓(𝛼) ⋅ 𝑄(𝛾) = 0.

As
𝑄(𝛾) = (𝛾 + (𝑛 − 1)𝑎)𝑛

𝑏 = (−𝑛𝑏)𝑛
𝛼𝑛𝑏 ≠ 0

and 𝑃(𝑋) is monic of degree 𝑛, it must be the minimal polynomial of 𝛾. Therefore Nm𝛾
is (−1)𝑛 times the constant term of 𝑃(𝑋), namely,

Nm𝛾 = 𝑛𝑛𝑏𝑛−1 + (−1)𝑛−1(𝑛 − 1)𝑛−1𝑎𝑛.

Therefore,

disc(𝑋𝑛 + 𝑎𝑋 + 𝑏) = (−1)𝑛(𝑛−1)∕2(𝑛𝑛𝑏𝑛−1 + (−1)𝑛−1(𝑛 − 1)𝑛−1𝑎𝑛),

in agreement with 4.39. For example,

disc(𝑋5 + 𝑎𝑋 + 𝑏) = 55𝑏4 + 44𝑎5.

This is something PARI doesn’t know how to do (because it doesn’t understand
symbols as exponents).
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Exercises

5-1 For 𝑎 ∈ ℚ, let 𝐺𝑎 be the Galois group of 𝑋4 + 𝑋3 + 𝑋2 + 𝑋 + 𝑎. Find integers
𝑎1, 𝑎2, 𝑎3, 𝑎4 such that 𝑖 ≠ 𝑗 ⟹ 𝐺𝑎𝑖 is not isomorphic to 𝐺𝑎𝑗 .

5-2 Prove that the rational solutions 𝑎, 𝑏 ∈ ℚ of Pythagoras’s equation 𝑎2 + 𝑏2 = 1 are
of the form

𝑎 = 𝑠2 − 𝑡2
𝑠2 + 𝑡2 , 𝑏 = 2𝑠𝑡

𝑠2 + 𝑡2 , 𝑠, 𝑡 ∈ ℚ,

and deduce that every right triangle with integer sides has sides of length

𝑑(𝑚2 − 𝑛2, 2𝑚𝑛,𝑚2 + 𝑛2)

for some integers 𝑑, 𝑚, and 𝑛 (Hint: Apply Hilbert’s Theorem 90 to the extension
ℚ[𝑖]∕ℚ.)

5-3 Prove that a finite extension of ℚ can contain only finitely many roots of 1.

5-4 Let 𝐸 be the splitting field of an irreducible separable polynomial 𝑓 ∈ 𝐹[𝑋]. If no
root of 𝑓 generates 𝐸, show that Gal(𝐸∕𝐹) contains a nonnormal subgroup. (Weintraub,
Amer. Math. Monthly 128 (2021), no. 8, 753–754.)



Chapter6

Algebraic Closures

In this chapter, we use Zorn’s lemma to show that every field 𝐹 has an algebraic closure
Ω. Recall that if 𝐹 is a subfield ℂ, then the algebraic closure of 𝐹 in ℂ is an algebraic
closure of 𝐹 (1.47). If 𝐹 is countable, then the existence ofΩ can be proved as in the finite
field case (4.24), namely, the set of monic irreducible polynomials in 𝐹[𝑋] is countable,
and so we can list them 𝑓1, 𝑓2, …; define 𝐸𝑖 inductively by, 𝐸0 = 𝐹, 𝐸𝑖 = a splitting field
of 𝑓𝑖 over 𝐸𝑖−1; then Ω = ⋃𝐸𝑖 is an algebraic closure of 𝐹.

The difficulty in showing the existence of an algebraic closure of an arbitrary field
𝐹 is in the set theory. Roughly speaking, we would like to take a union of a family of
splitting fields indexed by the monic irreducible polynomials in 𝐹[𝑋], but we need to
find a way of doing this that is allowed by the axioms of set theory. After reviewing the
statement of Zorn’s lemma, we sketch three solutions to the problem.1

Zorn’s lemma

Definition 6.1 (a) A relation≤ on a set 𝑆 is a partial ordering if it reflexive, transitive,
and anti-symmetric (𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 ⟹ 𝑎 = 𝑏).

(b) A partial ordering is a total ordering if, for all 𝑠, 𝑡 ∈ 𝑇, either 𝑠 ≤ 𝑡 or 𝑡 ≤ 𝑠.
(c) An upper bound for a subset 𝑇 of a partially ordered set (𝑆, ≤) is an element

𝑠 ∈ 𝑆 such that 𝑡 ≤ 𝑠 for all 𝑡 ∈ 𝑇.
(d) Amaximal element of a partially ordered set 𝑆 is an element 𝑠 such that 𝑠 ≤

𝑠′ ⟹ 𝑠 = 𝑠′.

A partially ordered set need not have any maximal elements, for example, the set of
finite subsets of an infinite set is partially ordered by inclusion, but it has no maximal
element.

Lemma 6.2 (Zorn) Let (𝑆, ≤) be a nonempty partially ordered set for which every totally
ordered subset has an upper bound in 𝑆. Then 𝑆 has a maximal element.

Zorn’s lemma is equivalent to the Axiom of Choice, and hence is independent of the
axioms of Zermelo-Fraenkel set theory.

The next proposition is a typical application of Zorn’s lemma.
1There do exist naturally occurring uncountable fields not contained in ℂ. For example, the field of

formal Laurent series 𝐹((𝑇)) over a field 𝐹 is uncountable even when 𝐹 is finite.
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Proposition 6.3 Every nonzero commutative ring 𝐴 has a maximal ideal (meaning,
maximal among proper ideals).

Proof. Let 𝑆 be the set of all proper ideals in 𝐴, partially ordered by inclusion. If 𝑇 is a
totally ordered set of ideals, then 𝐽 = ⋃

𝐼∈𝑇 𝐼 is again an ideal because every finite set of
elements of it is contained in a common 𝐼 ∈ 𝑇. It is proper because if 1 ∈ 𝐽 then 1 ∈ 𝐼
for some 𝐼 in 𝑇, and 𝐼 would not be proper. Thus 𝐽 is an upper bound for 𝑇. Now Zorn’s
lemma implies that 𝑆 has a maximal element, which is a maximal ideal in 𝐴. □

Remark 6.4 Zorn’s lemma is, in fact, equivalent to the existence of maximal ideals in
commutative rings. A weaker axiom, namely, the ultrafilter principle (every filter is con-
tained in a maximal filter) is equivalent to the existence of prime ideals in commutative
rings2 and to the compactness of products of compact spaces,3 and it implies the axiom
of choice for finite sets. This is all we shall need in this chapter.

A condition to be an algebraic closure

Proposition 6.5 Let Ω∕𝐹 be an extension of fields. If Ω is algebraic over 𝐹 and every
nonconstant polynomial in 𝐹[𝑋] has a root inΩ, thenΩ is algebraically closed (hence an
algebraic closure of 𝐹).

Proof. It suffices to show that every monic irreducible polynomial 𝑓 in 𝐹[𝑋] splits
in Ω[𝑋] (see 1.45). Suppose first that 𝑓 is separable, and let 𝐸 be a splitting field for 𝑓.
According to Theorem5.1,𝐸 = 𝐹[𝛾] for some 𝛾 ∈ 𝐸. Let 𝑔(𝑋) be theminimal polynomial
of 𝛾 over 𝐹. Then 𝑔(𝑋) has coefficients in 𝐹, and so it has a root 𝛽 in Ω. Both of 𝐹[𝛾]
and 𝐹[𝛽] are stem fields for 𝑔, and so there is an 𝐹-isomorphism 𝐹[𝛾] → 𝐹[𝛽] ⊂ Ω. As
𝑓 splits over 𝐹[𝛾], it splits over Ω.

This completes the proof when 𝐹 is perfect. Otherwise, 𝐹 has characteristic 𝑝 ≠ 0,
and we let 𝐹′ denote the set of elements 𝑥 of Ω such that 𝑥𝑝𝑚 ∈ 𝐹 for some𝑚 ≥ 1. It
is easy to check that 𝐹′ is a field, and we’ll complete the proof of the proposition by
showing (a) that 𝐹′ is perfect, and (b) that every polynomial in 𝐹′[𝑋] has a root in Ω.

Proof of (a). Let 𝑎 ∈ 𝐹′, so that 𝑏 def= 𝑎𝑝𝑚 ∈ 𝐹 for some 𝑚. The polynomial
𝑋𝑝𝑚+1 −𝑏 has coefficients in 𝐹, and so it has a root 𝛼 ∈ Ω, which automatically lies in 𝐹′.
Now 𝛼𝑝𝑚+1 = 𝑎𝑝𝑚 , which implies that 𝛼𝑝 = 𝑎, because the 𝑝th power map is injective
on fields of characteristic 𝑝. We have shown that 𝐹′ is perfect.

Proof of (b). We first show thatΩ is perfect. Suppose that 𝑎 ∈ Ω is not a 𝑝th power,
and form Ω[𝛼], where 𝛼𝑝 = 𝑎. Consider 𝐹′[𝛼]

𝑝
⊃ 𝐹′[𝑎] ⊃ 𝐹′. If 𝑔(𝑋) is the minimal

polynomial of 𝑎 over 𝐹′, then 𝑔(𝑋𝑝) is the minimal polynomial of 𝛼 over 𝐹′ (it is monic
of least degree having 𝛼 as a zero). In particular it is irreducible, but it is not separable,
which contradicts the perfectness of 𝐹′.

Let 𝑓(𝑋) ∈ 𝐹′[𝑋], say, 𝑓(𝑋) = ∑
𝑖 𝑎𝑖𝑋

𝑖, 𝑎𝑖 ∈ 𝐹′. For some 𝑚, the polynomial
∑

𝑖 𝑎
𝑝𝑚
𝑖 𝑋𝑖 has coefficients in 𝐹, and therefore has a root 𝛼 ∈ Ω. As Ω is perfect, we can

write 𝛼 = 𝛽𝑝𝑚 with 𝛽 ∈ Ω. Now

(𝑓(𝛽))𝑝
𝑚
=
(∑

𝑖
𝑎𝑖𝛽𝑖

)𝑝𝑚
=
∑

𝑖
𝑎𝑝

𝑚

𝑖 𝛼𝑖 = 0,

and so 𝛽 is a root of 𝑓. □
2Rav, Math. Nachr. 79 (1977), 145–165, Cor. 4.4.
3Wikipedia: Tychonoff’s theorem. Recall that we require compact spaces to be Hausdorff.
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First proof of the existence of algebraic closures

(Bourbaki, Algèbre, Chap. V, §4.) Let (𝐴𝑖)𝑖∈𝐼 be a family of commutative algebras over a
field 𝐹. Define⨂𝐹 𝐴𝑖 to be the quotient of the 𝐹-vector space with basis

∏
𝑖∈𝐼 𝐴𝑖 by the

subspace generated by elements of the form:
(𝑥𝑖) + (𝑦𝑖) − (𝑧𝑖) with 𝑥𝑗 + 𝑦𝑗 = 𝑧𝑗 for one 𝑗 ∈ 𝐼 and 𝑥𝑖 = 𝑦𝑖 = 𝑧𝑖 for all 𝑖 ≠ 𝑗;
(𝑥𝑖) − 𝑎(𝑦𝑖) with 𝑥𝑗 = 𝑎𝑦𝑗 for one 𝑗 ∈ 𝐼 and 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ≠ 𝑗,

(ibid., Chap. II, 3.9). It can be made into a commutative 𝐹-algebra in an obvious fashion,
and there are canonical homomorphisms 𝐴𝑖 →

⨂
𝐹 𝐴𝑖 of 𝐹-algebras.

For each monic irreducible polynomial 𝑓 ∈ 𝐹[𝑋], let 𝐸𝑓 be the stem field 𝐹[𝑥𝑓] =
𝐹[𝑋𝑓]∕(𝑓), and letΩ = (⨂𝐹 𝐸𝑓)∕𝑃, where 𝑃 is a prime ideal in

⨂
𝐹 𝐸𝑓 (whose existence

is ensured by the ultrafilter principle). Then Ω is an integral domain generated as an
𝐹-algebra by elements algebraic over 𝐹, and so it is a field algebraic over 𝐹 (1.32). The
composite of the 𝐹-homomorphisms 𝐸𝑓 →

⨂
𝐹 𝐸𝑓 → Ω, being a homomorphism of

fields, is injective. As 𝑓 has a root in 𝐸𝑓, it has a root in Ω. Hence Ω is an algebraic
closure of 𝐹 by Proposition 6.5.

Second proof of the existence of algebraic closures

(Jacobson 1964, p. 144.) After 4.24 we may assume 𝐹 to be infinite. This implies that
the cardinality of every field algebraic over 𝐹 is the same as that of 𝐹 (cf. the proof of
1.33). Choose an uncountable set Ξ of cardinality greater than that of 𝐹, and identify
𝐹 with a subset of Ξ. Let 𝑆 be the set of triples (𝐸, +, ⋅) with 𝐸 ⊂ Ξ and (+, ⋅) a field
structure on 𝐸 such that (𝐸, +, ⋅) contains 𝐹 as a subfield and is algebraic over it. Write
(𝐸, +, ⋅) ≤ (𝐸′, +′, ⋅′) if the first is a subfield of the second. Apply Zorn’s lemma to show
that 𝑆 has maximal elements, and then show that a maximal element is algebraically
closed.

Third proof of the existence of algebraic closures

(Emil Artin.) Consider the polynomial ring 𝐹[… ,𝑋𝑓, …] in a family of symbols 𝑋𝑓
indexed by themonic irreducible polynomials𝑓 ∈ 𝐹[𝑋]. Let 𝐼 be the ideal of𝐹[… ,𝑋𝑓, …]
generated by the polynomials 𝑓(𝑋𝑓). If 1 ∈ 𝐼, then

𝑔1𝑓1(𝑋𝑓1) +⋯+ 𝑔𝑛𝑓𝑛(𝑋𝑓𝑛) = 1 (in 𝐹[… ,𝑋𝑓, …])

for some 𝑔𝑖 ∈ 𝐹[… ,𝑋𝑓, …] and some monic irreducible 𝑓𝑖 ∈ 𝐹[𝑋]. Let 𝐸 be an exten-
sion of 𝐹 such that each 𝑓𝑖 has a root 𝛼𝑖 in 𝐸. Under the 𝐹-algebra homomorphism
𝐹[… ,𝑋𝑓, …] → 𝐸 sending

{ 𝑋𝑓𝑖 ↦ 𝛼𝑖, 𝑖 = 1, … , 𝑛,
𝑋𝑓 ↦ 0, 𝑓 ∉ {𝑓1, … , 𝑓𝑛}

the above relation becomes 0 = 1. From this contradiction, we deduce that 1 ∉ 𝐼. Let
Ω = 𝐹[… ,𝑋𝑓, …]∕𝑃, where 𝑃 is a prime ideal containing 𝐼 (whose existence is ensured
by the ultrafilter principle). Then Ω is an integral domain generated as an 𝐹-algebra
by elements algebraic over 𝐹, and so it is a field algebraic over 𝐹 (1.32). Every monic
irreducible 𝑓 ∈ 𝐹[𝑋] has a root inΩ, and soΩ is an algebraic closure of 𝐹 by Proposition
6.5.
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Any two algebraic closures are isomorphic

Theorem 6.6 LetΩ be an algebraic closure of 𝐹 and 𝐸 an algebraic extension of 𝐹. There
exists an 𝐹-homomorphism 𝐸 → Ω, and, if 𝐸 is also an algebraic closure of 𝐹, then every
such homomorphism is an isomorphism.

Proof. Suppose first that 𝐸 is countably generated over 𝐹, i.e., 𝐸 = 𝐹[𝛼1, ..., 𝛼𝑛, …].
Then we can extend the inclusion map 𝐹 → Ω to 𝐹[𝛼1] (map 𝛼1 to any root of its
minimal polynomial in Ω), then to 𝐹[𝛼1, 𝛼2], and so on (see 2.4).

In the uncountable case, we use Zorn’s lemma. Let 𝑆 be the set of pairs (𝑀, 𝜑𝑀)with
𝑀 a field 𝐹 ⊂ 𝑀 ⊂ 𝐸 and 𝜑𝑀 an 𝐹-homomorphism𝑀 → Ω. Write (𝑀, 𝜑𝑀) ≤ (𝑁, 𝜑𝑁)
if 𝑀 ⊂ 𝑁 and 𝜑𝑁|𝑀 = 𝜑𝑀 . This makes 𝑆 into a partially ordered set. Let 𝑇 be a
totally ordered subset of 𝑆. Then𝑀′ = ⋃

𝑀∈𝑇𝑀 is a subfield of 𝐸, and we can define
a homomorphism 𝜑′∶ 𝑀′ → Ω by requiring that 𝜑′(𝑥) = 𝜑𝑀(𝑥) if 𝑥 ∈ 𝑀. The pair
(𝑀′, 𝜑′) is an upper bound for 𝑇 in 𝑆. Hence Zorn’s lemma provides us with a maximal
element (𝑀, 𝜑) in 𝑆. Suppose that𝑀 ≠ 𝐸. Then there exists an element 𝛼 ∈ 𝐸, 𝛼 ∉ 𝑀.
Since 𝛼 is algebraic over𝑀, we can apply (2.4) to extend 𝜑 to𝑀[𝛼], contradicting the
maximality of𝑀. Hence𝑀 = 𝐸, and the proof of the first statement is complete.

If 𝐸 is algebraically closed, then every polynomial 𝑓 ∈ 𝐹[𝑋] splits in 𝐸[𝑋] and hence
in 𝜑(𝐸)[𝑋]. Let 𝛼 ∈ Ω, and let 𝑓(𝑋) be the minimal polynomial of 𝛼. Then 𝑋 − 𝛼 is
a factor of 𝑓(𝑋) in Ω[𝑋], but, as we just observed, 𝑓(𝑋) splits in 𝜑(𝐸)[𝑋]. Because of
unique factorization, this implies that 𝛼 ∈ 𝜑(𝐸). □

The above proof is a typical application of Zorn’s lemma: once we know how to do
something in a finite (or countable) situation, Zorn’s lemma allows us to do it in general.

Remark 6.7 The above proof used Zorn’s lemma. Here is a proof using only the ultra-
filter principle. Let Ω and Ω′ be algebraic closures of 𝐹. For each monic 𝑓 ∈ 𝐹[𝑋], let
𝐻𝑓 be the set of 𝐹-isomorphisms from the splitting field of 𝑓 in Ω to the splitting field of
𝑓 in Ω′. Then𝐻𝑓 is finite and nonempty, and if 𝑓|𝑔, then the restriction map𝐻𝑔 → 𝐻𝑓
is surjective.

Let𝐻 =∏𝐻𝑓, and, for each pair (𝑔, ℎ) with 𝑔|ℎ, let𝐻𝑔,ℎ = {(ℎ𝑓) ∈ 𝐻 ∣ ℎℎ restricts
toℎ𝑔}. Whenwe give𝐻 the product topology (discrete topology on each𝐻𝑓), it is compact
and nonempty (ultrafilter principle). Each subset𝐻𝑔,ℎ is closed because it is the subset
of𝐻 on which the two obvious maps𝐻 → 𝐻𝑔 agree (one map is the projection to𝐻𝑔 and
the other passes through the projection to𝐻ℎ). The sets𝐻𝑔,ℎ have the finite intersection
property, and so

⋂𝐻𝑔,ℎ is nonempty, but any element of
⋂𝐻𝑔,ℎ defines an isomorphism

Ω → Ω′.

Warning 6.8 Even for a finite field 𝐹, there will exist uncountably many isomorphisms
from one algebraic closure to a second, none of which is to be preferred over any other.
Thus it is (uncountably) sloppy to say that the algebraic closure of 𝐹 is unique. All one
can say is that, given two algebraic closures Ω, Ω′ of 𝐹, then, assuming the ultrafilter
principle, there exists an 𝐹-isomorphism Ω → Ω′.

Separable closures

Let Ω be a field containing 𝐹, and let ℰ be a set of intermediate fields 𝐹 ⊂ 𝐸 ⊂ Ω with
the following property:

(*) for all 𝐸1, 𝐸2 ∈ ℰ, there exists an 𝐸 ∈ ℰ such that 𝐸1, 𝐸2 ⊂ 𝐸.
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Then 𝐸(ℰ) = ⋃
𝐸∈ℰ 𝐸 is a subfield of Ω (and we call

⋃
𝐸∈ℰ 𝐸 a directed union), because

(*) implies that every finite set of elements of 𝐸(ℰ) is contained in a common 𝐸 ∈ ℰ, and
therefore their product, sum, etc., also lie in 𝐸(ℰ).

We apply this remark to the set of subfields 𝐸 of Ω that are finite and separable over
𝐹. As the composite of any two such subfields is again finite and separable over 𝐹 (3.15),
we see that the union 𝐿 of all such 𝐸 is a subfield of Ω. Then 𝐿 is separable over 𝐹 and
every element of Ω separable over 𝐹 lies in 𝐿. Moreover, because a separable extension
of a separable extension is separable, Ω is purely inseparable over 𝐿.

Definition 6.9 (a) A field Ω is separably closed if every nonconstant separable poly-
nomial in Ω[𝑋] splits in Ω.

(b) A field Ω is a separable closure of a subfield 𝐹 if it is separable and algebraic
over 𝐹 and it is separably closed.

Theorem 6.10 (a) Every field has a separable closure.
(b) Let 𝐸 be a separable algebraic extension of 𝐹, and let Ω be a separable algebraic

closure of 𝐹. There exists an 𝐹-homomorphism 𝐸 → Ω, and, if 𝐸 is also a separable closure
of 𝐹, then every such homomorphism is an isomorphism.

Proof. Replace “polynomial” with “separable polynomial” in the proofs of the corre-
sponding theorems for algebraic closures. Alternatively, define Ω to be the separable
closure of 𝐹 in an algebraic closure, and apply the preceding theorems. □





Chapter7

In�nite Galois Extensions

An algebraic extension Ω, possibly infinite, of a field 𝐹 is said to be Galois if it is normal
and separable. For each finite Galois subextension𝑀∕𝐹 of Ω, we have a restriction map
Aut(Ω∕𝐹) → Gal(𝑀∕𝐹), and hence a homomorphism Aut(Ω∕𝐹) → ∏

𝑀 Gal(𝑀∕𝐹),
where the product is over all such subextensions. Clearly every element ofΩ lies in some
𝑀, and so this homomorphism is injective. When we endow each group Gal(𝑀∕𝐹)with
the discrete topology, the product acquires a topology for which it is compact. The image
of the homomorphism is closed, and so Aut(Ω∕𝐹) also acquires a compact topology —
we write Gal(Ω∕𝐹) for Aut(Ω∕𝐹) endowed with this topology. Now, all of the Galois
theory of finite extensions holds for infinite extensions1 provided “subgroup” is replaced
everywhere with “closed subgroup”. The reader prepared to accept this, can skip to the
examples and exercises.

In this chapter, we make free use of the axiom of choice.2 We also assume the reader
is familiar with infinite topological products, including Tychonoff’s theorem.

Topological groups

Definition 7.1 A set 𝐺 together with a group structure and a topology is a topological
group if the maps

(𝑔, ℎ) ↦ 𝑔ℎ∶ 𝐺 × 𝐺 → 𝐺,
𝑔 ↦ 𝑔−1∶ 𝐺 → 𝐺

are both continuous.

Let 𝑎 be an element of a topological group 𝐺. Then 𝑎𝐿 ∶ 𝐺
𝑔↦𝑎𝑔
,,,,,→ 𝐺 is continuous

because it is the composite of

𝐺
𝑔↦(𝑎,𝑔)
,,,,,,,→ 𝐺 × 𝐺

(𝑔,ℎ)↦𝑔ℎ
,,,,,,,,→ 𝐺.

1An exception: it need no longer be true that the cardinality of Gal(Ω∕𝐹) equals the degree [Ω∶ 𝐹].
Certainly, Gal(Ω∕𝐹) is infinite if and only if [Ω∶ 𝐹] is infinite, but Gal(Ω∕𝐹) is always uncountable when
infinite whereas [Ω∶ 𝐹] need not be.

2It is necessary to assume some choice axiom in order to have a sensible Galois theory of infinite
extensions. For example, it is consistent with Zermelo-Fraenkel set theory that there exist an algebraic
closure of ℚ with no nontrivial automorphisms. See: Hodges, Läuchli’s algebraic closure ofℚ. Math. Proc.
Cambridge Philos. Soc. 79 (1976), no. 2, 289–297.
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In fact, it is a homeomorphism with inverse (𝑎−1)𝐿. Similarly 𝑎𝑅 ∶ 𝑔 ↦ 𝑔𝑎 and 𝑔 ↦ 𝑔−1
are both homeomorphisms. In particular, for any subgroup𝐻 of 𝐺, the coset 𝑎𝐻 of 𝐻 is
open or closed according as𝐻 is open or closed. Because the complement of𝐻 in 𝐺 is a
union of such cosets, this shows that𝐻 is closed if it is open, and it is open if it is closed
and of finite index.

Recall that a neighbourhood base for a point 𝑥 of a topological space 𝑋 is a set of
neighbourhoods𝒩 such that every open subset𝑈 of 𝑋 containing 𝑥 contains an𝑁 from
𝒩.

Proposition 7.2 Let 𝐺 be a topological group, and let𝒩 be a neighbourhood base for the
identity element 𝑒 of 𝐺. Then3

(a) for all𝑁1, 𝑁2 ∈ 𝒩, there exists an𝑁′ ∈ 𝒩 such that 𝑒 ∈ 𝑁′ ⊂ 𝑁1 ∩ 𝑁2;

(b) for all𝑁 ∈ 𝒩, there exists an𝑁′ ∈ 𝒩 such that𝑁′𝑁′ ⊂ 𝑁;
(c) for all𝑁 ∈ 𝒩, there exists an𝑁′ ∈ 𝒩 such that𝑁′ ⊂ 𝑁−1;

(d) for all𝑁 ∈ 𝒩 and all 𝑔 ∈ 𝐺, there exists an𝑁′ ∈ 𝒩 such that𝑁′ ⊂ 𝑔𝑁𝑔−1;
(e) for all 𝑔 ∈ 𝐺, {𝑔𝑁 ∣ 𝑁 ∈ 𝒩} is a neighbourhood base for 𝑔.

Conversely, if 𝐺 is a group and𝒩 is a nonempty set of subsets of 𝐺 satisfying (a,b,c,d), then
there is a (unique) topology on 𝐺 for which (e) holds.

Proof. If𝒩 is a neighbourhood base at 𝑒 in a topological group 𝐺, then (b), (c), and
(d) are consequences of the continuity of (𝑔, ℎ) ↦ 𝑔ℎ, 𝑔 ↦ 𝑔−1, and ℎ ↦ 𝑔ℎ𝑔−1
respectively. Moreover, (a) is a consequence of the definitions and (e) of the fact that 𝑔𝐿
is a homeomorphism.

Conversely, let𝒩 be a nonempty collection of subsets of a group 𝐺 satisfying the
conditions (a)–(d). Note that (a) implies that 𝑒 lies in all the 𝑁 in𝒩. Define 𝒰 to be
the collection of subsets 𝑈 of 𝐺 such that, for every 𝑔 ∈ 𝑈, there exists an 𝑁 ∈ 𝒩
with 𝑔𝑁 ⊂ 𝑈. Clearly, the empty set and 𝐺 are in 𝒰, and unions of sets in 𝒰 are in
𝒰. Let 𝑈1, 𝑈2 ∈ 𝒰, and let 𝑔 ∈ 𝑈1 ∩ 𝑈2; by definition there exist 𝑁1, 𝑁2 ∈ 𝒩 with
𝑔𝑁1, 𝑔𝑁2 ⊂ 𝑈; on applying (a) we obtain an 𝑁′ ∈ 𝒩 such that 𝑔𝑁′ ⊂ 𝑈1 ∩ 𝑈2, which
shows that𝑈1 ∩𝑈2 ∈ 𝒰. It follows that the elements of𝒰 are the open sets of a topology
on 𝐺. In fact, it is the unique topology for which (e) holds.

We next use (b) and (d) to show that (𝑔, 𝑔′) ↦ 𝑔𝑔′ is continuous. Note that the
sets 𝑔1𝑁1 × 𝑔2𝑁2 form a neighbourhood base for (𝑔1, 𝑔2) in 𝐺 × 𝐺. Therefore, given
an open 𝑈 ⊂ 𝐺 and a pair (𝑔1, 𝑔2) such that 𝑔1𝑔2 ∈ 𝑈, we have to find 𝑁1, 𝑁2 ∈ 𝒩
such that 𝑔1𝑁1𝑔2𝑁2 ⊂ 𝑈. As 𝑈 is open, there exists an 𝑁 ∈ 𝒩 such that 𝑔1𝑔2𝑁 ⊂ 𝑈.
Apply (b) to obtain an 𝑁′ such that 𝑁′𝑁′ ⊂ 𝑁; then 𝑔1𝑔2𝑁′𝑁′ ⊂ 𝑈. But 𝑔1𝑔2𝑁′𝑁′ =
𝑔1(𝑔2𝑁′𝑔−12 )𝑔2𝑁′, and it remains to apply (d) to obtain an 𝑁1 ∈ 𝒩 such that 𝑁1 ⊂
𝑔2𝑁′𝑔−12 .

Finally, we use (c) and (d) to show that 𝑔 ↦ 𝑔−1 is continuous. Given an open𝑈 ⊂ 𝐺
and a 𝑔 ∈ 𝐺 such that 𝑔−1 ∈ 𝑈, we have to find an 𝑁 ∈ 𝒩 such that 𝑔𝑁 ⊂ 𝑈−1. By
definition, there exists an 𝑁 ∈ 𝒩 such that 𝑔−1𝑁 ⊂ 𝑈. Now 𝑁−1𝑔 ⊂ 𝑈−1, and we use
(c) to obtain an 𝑁′ ∈ 𝒩 such that 𝑁′𝑔 ⊂ 𝑈−1, and (d) to obtain an 𝑁′′ ∈ 𝒩 such that
𝑔𝑁′′ ⊂ 𝑔(𝑔−1𝑁′𝑔) ⊂ 𝑈−1. □

3For subsets 𝑆 and 𝑆′ of 𝐺, we let 𝑆𝑆′ = {𝑠𝑠′ ∣ 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′} and 𝑆−1 = {𝑠−1 ∣ 𝑠 ∈ 𝑆}.
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The Krull topology on the Galois group

Recall (3.9) that a finite extension Ω of 𝐹 is Galois over 𝐹 if it is normal and separable,
i.e., if every irreducible polynomial 𝑓 ∈ 𝐹[𝑋] having a root in Ω has deg 𝑓 distinct roots
inΩ. Similarly, we define an algebraic extensionΩ of 𝐹 to beGalois over 𝐹 if it is normal
and separable. For example, 𝐹sep is a Galois extension of 𝐹. Clearly,Ω is Galois over 𝐹 if
and only if it is a directed union of finite Galois extensions.

Proposition 7.3 IfΩ is Galois over 𝐹, then it is Galois over every intermediate field𝑀.

Proof. Let 𝑓(𝑋) be an irreducible polynomial in 𝑀[𝑋] having a root 𝑎 in Ω. The
minimal polynomial 𝑔(𝑋) of 𝑎 over 𝐹 splits into distinct factors of degree one in Ω[𝑋].
As 𝑓 divides 𝑔 (in𝑀[𝑋]), it also must split into distinct factors of degree one in Ω[𝑋].□

Proposition 7.4 LetΩ be a Galois extension of 𝐹 and let 𝐸 be a subfield ofΩ containing
𝐹. Then every 𝐹-homomorphism 𝐸 → Ω extends to an 𝐹-isomorphismΩ → Ω.

Proof. The same Zorn’s lemma argument as in the proof of Theorem 6.6 shows that
every 𝐹-homomorphism 𝐸 → Ω extends to an 𝐹-homomorphism 𝛼∶ Ω → Ω. Let 𝑎 ∈ Ω,
and let 𝑓 be its minimal polynomial over 𝐹. Then Ω contains exactly deg(𝑓) roots of 𝑓,
and so therefore does 𝛼(Ω). Hence 𝑎 ∈ 𝛼(Ω), which shows that 𝛼 is surjective. □

Corollary 7.5 Let Ω ⊃ 𝐸 ⊃ 𝐹 be as in the proposition. If 𝐸 is stable under Aut(Ω∕𝐹),
then 𝐸 is Galois over 𝐹.

Proof. Let 𝑓(𝑋) be an irreducible polynomial in 𝐹[𝑋] having a root 𝑎 in 𝐸. Because
Ω is Galois over 𝐹, 𝑓(𝑋) has 𝑛 = deg(𝑓) distinct roots 𝑎1, … , 𝑎𝑛 in Ω. There is an 𝐹-
isomorphism 𝐹[𝑎] → 𝐹[𝑎𝑖] ⊂ Ω sending 𝑎 to 𝑎𝑖 (they are both stem fields for 𝑓), which
extends to an 𝐹-isomorphism Ω → Ω. As 𝐸 is stable under Aut(Ω∕𝐹), this shows that
𝑎𝑖 ∈ 𝐸. □

Let Ω be a Galois extension of 𝐹, and let 𝐺 = Aut(Ω∕𝐹). For any finite subset 𝑆 of
Ω, let

𝐺(𝑆) = {𝜎 ∈ 𝐺 ∣ 𝜎𝑠 = 𝑠 for all 𝑠 ∈ 𝑆}.

Proposition 7.6 There is a unique structure of a topological group on 𝐺 for which the
sets 𝐺(𝑆) form an open neighbourhood base of 1. For this topology, the sets 𝐺(𝑆) with 𝑆
𝐺-stable form a neighbourhood base of 1 consisting of open normal subgroups.

Proof. We show that the collection of sets 𝐺(𝑆) satisfies (a,b,c,d) of (7.2). It satisfies (a)
because 𝐺(𝑆1) ∩ 𝐺(𝑆2) = 𝐺(𝑆1 ∪ 𝑆2). It satisfies (b) and (c) because each set 𝐺(𝑆) is a
group. Let 𝑆 be a finite subset of Ω. Then 𝐹(𝑆) is a finite extension of 𝐹, and so there
are only finitely many 𝐹-homomorphisms 𝐹(𝑆) → Ω. Since 𝜎𝑆 = 𝜏𝑆 if 𝜎|𝐹(𝑆) = 𝜏|𝐹(𝑆),
this shows that 𝑆̄ = ⋃

𝜎∈𝐺 𝜎𝑆 is finite. Now 𝜎𝑆̄ = 𝑆̄ for all 𝜎 ∈ 𝐺, and it follows that
𝐺(𝑆̄) is normal in 𝐺. Therefore, 𝜎𝐺(𝑆̄)𝜎−1 = 𝐺(𝑆̄) ⊂ 𝐺(𝑆), which proves (d). It also
proves the second statement. □

The topology on Aut(Ω∕𝐹) defined in the proposition is called the Krull topology.
WewriteGal(Ω∕𝐹) forAut(Ω∕𝐹) endowedwith the Krull topology, and call it theGalois
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group of Ω∕𝐹. The Galois group of 𝐹sep over 𝐹 is called the absolute Galois group4 of
𝐹.

If 𝑆 is a finite set stable under 𝐺, then 𝐹(𝑆) is a finite extension of 𝐹 stable under 𝐺,
and hence Galois over 𝐹 (7.5). Therefore,

{Gal(Ω∕𝐸) ∣ 𝐸 finite and Galois over 𝐹}

is a neighbourhood base of 1 consisting of open normal subgroups.

Proposition 7.7 LetΩ be Galois over 𝐹. For every intermediate field 𝐸 finite and Galois
over 𝐹, the map

𝜎 ↦ 𝜎|𝐸∶ Gal(Ω∕𝐹) → Gal(𝐸∕𝐹)
is a continuous surjection (discrete topology on Gal(𝐸∕𝐹)).

Proof. Let 𝜎 ∈ Gal(𝐸∕𝐹), and regard it as an 𝐹-homomorphism 𝐸 → Ω. Then 𝜎
extends to an 𝐹-isomorphism Ω → Ω (see 7.4), which shows that the map is surjective.
For every finite set 𝑆 of generators of 𝐸 over 𝐹, Gal(Ω∕𝐸) = 𝐺(𝑆), which shows that
the inverse image of 1Gal(𝐸∕𝐹) is open in 𝐺. By homogeneity, the same is true for every
element of Gal(𝐸∕𝐹). □

Proposition 7.8 The Galois group 𝐺 of a Galois extensionΩ∕𝐹 is compact and totally
disconnected.5

Proof. We first show that 𝐺 is Hausdorff. If 𝜎 ≠ 𝜏, then 𝜎−1𝜏 ≠ 1𝐺 , and so it moves
some element ofΩ, i.e., there exists an 𝑎 ∈ Ω such that 𝜎(𝑎) ≠ 𝜏(𝑎). For any 𝑆 containing
𝑎, 𝜎𝐺(𝑆) and 𝜏𝐺(𝑆) are disjoint because their elements act differently on 𝑎. Hence they
are disjoint open subsets of 𝐺 containing 𝜎 and 𝜏 respectively.

We next show that 𝐺 is compact. As we noted above, if 𝑆 is a finite set stable under
𝐺, then 𝐺(𝑆) is a normal subgroup of 𝐺, and it has finite index because it is the kernel of

𝐺 → Sym(𝑆).

Since every finite set is contained in a stable finite set,6 the argument in the last paragraph
shows that the map

𝐺 →
∏

𝑆 finite stable under 𝐺
𝐺∕𝐺(𝑆)

is injective. When we endow
∏

𝑆 𝐺∕𝐺(𝑆) with the product topology, the induced topol-
ogy on 𝐺 is that for which the 𝐺(𝑆) form an open neighbourhood base of 𝑒, i.e., it is
the Krull topology. According to the Tychonoff theorem,

∏
𝑆 𝐺∕𝐺(𝑆) is compact, and

so it remains to show that 𝐺 is closed in the product. For each 𝑆1 ⊂ 𝑆2, there are
two continuous maps

∏
𝑆 𝐺∕𝐺(𝑆) → 𝐺∕𝐺(𝑆1), namely, the projection onto 𝐺∕𝐺(𝑆1)

and the projection onto 𝐺∕𝐺(𝑆2) followed by the quotient map 𝐺∕𝐺(𝑆2) → 𝐺∕𝐺(𝑆1).
Let 𝐸(𝑆1, 𝑆2) be the closed subset of

∏𝐺∕𝐺(𝑆) on which the two maps agree. Then⋂
𝑆1⊂𝑆2

𝐸(𝑆1, 𝑆2) is closed, and equals the image of 𝐺.
4But note that the absolute Galois group of 𝐹 is only defined up to an inner automorphism: let 𝐹′

be a second separable algebraic closure of 𝐹; the choice of an isomorphism 𝐹′ → 𝐹sep determines an
isomorphism Gal(𝐹′∕𝐹) → Gal(𝐹sep∕𝐹); a second isomorphism 𝐹′ → 𝐹sep will differ from the first by an
element 𝜎 of Gal(𝐹sep∕𝐹), and the isomorphism Gal(𝐹′∕𝐹) → Gal(𝐹sep∕𝐹) it defines differs from the first
by inn(𝜎).

5A topological space is totally disconnected if its connected components are the one-point sets.
6Each element of Ω is algebraic over 𝐹, and its orbit is the set of its conjugates (roots of its minimal

polynomial over 𝐹), which is finite.
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Finally, for each finite set 𝑆 stable under𝐺, 𝐺(𝑆) is a subgroup that is open and hence
closed. Since

⋂𝐺(𝑆) = {1𝐺}, this shows that the connected component of 𝐺 containing
1𝐺 is just {1𝐺}. By homogeneity, a similar statement is true for every element of 𝐺. □

Proposition 7.9 For every Galois extensionΩ∕𝐹,ΩGal(Ω∕𝐹) = 𝐹.

Proof. Every element of Ω ∖ 𝐹 lies in a finite Galois extension of 𝐹, and so this follows
from the surjectivity in Proposition 7.7. □

The next result is an infinite version of Emil Artin’s fundamental result 3.11.

Proposition 7.10 Let 𝐺 be a group of automorphisms of a field 𝐸, and let 𝐹 = 𝐸𝐺 . If 𝐺
is compact and the stabilizer of each element of 𝐸 is open in 𝐺, then 𝐸 is a Galois extension
of 𝐹 with Galois group 𝐺.

Proof. Let 𝑥1, … , 𝑥𝑛 be a finite set of elements of 𝐸, and let𝐻𝑖 be the open subgroup of
𝐺 fixing 𝑥𝑖. Because 𝐺 is compact, the orbit 𝐺𝑥𝑖 of 𝑥𝑖 is finite, and the subgroups of 𝐺
fixing its elements are the conjugates of𝐻. Let𝑁 be the intersection of all the conjugates
of the𝐻𝑖. It is an open normal subgroup of 𝐺, and its fixed field𝑀 is that generated over
𝐹 by the elements of the orbits of the 𝑥𝑖. Thus, 𝐺∕𝑁 is a (finite) group of automorphisms
of𝑀 with fixed field 𝐹. According to 3.11,𝑀 is a finite Galois extension of 𝐹 with Galois
group 𝐺∕𝑁.

As𝐸 is a directed union of such fields𝑀, it is a Galois extension of𝐹. Thus,Gal(𝐸∕𝐹)
is defined and, by assumption, 𝐺 maps continuously and injectively into it. As 𝐺 is
compact, its image is closed, and it is also dense because it maps onto all the group
Gal(𝑀∕𝐹). Thus, 𝐺 → Gal(𝐸∕𝐹) is an isomorphism. □

Aside 7.11 Not all compact totally disconnected group arise as the absolute Galois group of a
field. In fact, absolute Galois groups of fields of characteristic zero, if finite, must have order
1 or 2. More precisely, there is the following theorem of Artin and Schreier (1927): let 𝐹 be a
field, not algebraically closed, but of finite index in its algebraic closure; then 𝐹 is real-closed
and 𝐸 = 𝐹[

√
−1] (Jacobson 1964, Chap. VI, Theorem 17).

The fundamental theorem of infinite Galois theory

Proposition 7.12 LetΩ be Galois over 𝐹, with Galois group 𝐺.
(a) Let𝑀 be a subfield of Ω containing 𝐹. Then Ω is Galois over𝑀, the Galois group

Gal(Ω∕𝑀) is closed in 𝐺, andΩGal(Ω∕𝑀) = 𝑀.

(b) For every subgroup𝐻 of 𝐺, Gal(Ω∕Ω𝐻) is the closure of𝐻.

Proof. (a) The first assertion was proved in (7.3). For each finite subset 𝑆 ⊂ 𝑀, 𝐺(𝑆) is
an open subgroup of 𝐺, and hence it is closed. But Gal(Ω∕𝑀) = ⋂

𝑆⊂𝑀 𝐺(𝑆), and so it
also is closed. The final statement now follows from (7.9).

(b) Since Gal(Ω∕Ω𝐻) contains𝐻 and is closed, it certainly contains the closure 𝐻̄ of
𝐻. On the other hand, let 𝜎 ∈ 𝐺 ∖ 𝐻̄; we have to show that 𝜎 moves some element of
Ω𝐻 . Because 𝜎 is not in the closure of𝐻,

𝜎Gal(Ω∕𝐸) ∩ 𝐻 = ∅

for some finite Galois extension 𝐸 of 𝐹 in Ω (because the sets Gal(Ω∕𝐸) form a neigh-
bourhood base of 1; see above). Let 𝜙 denote the surjective map Gal(Ω∕𝐹) → Gal(𝐸∕𝐹).
Then 𝜎|𝐸 ∉ 𝜙𝐻, and so 𝜎 moves some element of 𝐸𝜙𝐻 ⊂ Ω𝐻 (apply 3.11). □
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Theorem 7.13 LetΩ be a Galois extension of 𝐹 with Galois group 𝐺. The maps

𝐻 ↦ Ω𝐻 , 𝑀 ↦ Gal(Ω∕𝑀)

are inverse bijections between the set of closed subgroups of 𝐺 and the set of intermediate
fields betweenΩ and 𝐹:

{closed subgroups of 𝐺}
1∶1
⟷{intermediate fields 𝐹 ⊂ 𝑀 ⊂ Ω}.

Moreover,
(a) 𝐻1 ⊃ 𝐻2 ⟺ Ω𝐻1 ⊂ Ω𝐻2 (the correspondence is order reversing);

(b) a closed subgroup𝐻 of 𝐺 is open if and only ifΩ𝐻 has finite degree over 𝐹, in which
case (𝐺 ∶ 𝐻) = [Ω𝐻 ∶ 𝐹];

(c) 𝜎𝐻𝜎−1 ↔ 𝜎𝑀, i.e.,

Ω𝜎𝐻𝜎−1 = 𝜎(Ω𝐻);
Gal(Ω∕𝜎𝑀) = 𝜎Gal(Ω∕𝑀)𝜎−1;

(d) a closed subgroup𝐻 of 𝐺 is normal if and only ifΩ𝐻 is Galois over 𝐹, in which case

Gal(Ω𝐻∕𝐹) ≃ 𝐺∕𝐻.

Proof. For the first statement, we have to show that𝐻 ↦ Ω𝐻 and𝑀 ↦ Gal(Ω∕𝑀) are
inverse maps.

Let 𝐻 be a closed subgroup of 𝐺. Then Ω is Galois over Ω𝐻 and Gal(Ω∕Ω𝐻) = 𝐻
(see 7.12).

Let 𝑀 be an intermediate field. Then Gal(Ω∕𝑀) is a closed subgroup of 𝐺 and
ΩGal(Ω∕𝑀) = 𝑀 (see 7.12).

(a) We have the obvious implications:

𝐻1 ⊃ 𝐻2 ⟹ Ω𝐻1 ⊂ Ω𝐻2 ⟹ Gal(Ω∕Ω𝐻1) ⊃ Gal(Ω∕Ω𝐻2).

But Gal(Ω∕Ω𝐻𝑖 ) = 𝐻𝑖 (see 7.12).
(b) As we noted earlier, a closed subgroup of finite index in a topological group is

always open. Because 𝐺 is compact, conversely an open subgroup of 𝐺 is always of finite
index. Let𝐻 be such a subgroup. The map 𝜎 ↦ 𝜎|Ω𝐻 defines a bijection

𝐺∕𝐻 → Hom𝐹(Ω𝐻 , Ω)

(apply 7.4) from which the statement follows.
(c) For 𝜏 ∈ 𝐺 and 𝛼 ∈ Ω, 𝜏𝛼 = 𝛼 ⟺ 𝜎𝜏𝜎−1(𝜎𝛼) = 𝜎𝛼. Therefore, Gal(Ω∕𝜎𝑀) =

𝜎Gal(Ω∕𝑀)𝜎−1 , and so 𝜎Gal(Ω∕𝑀)𝜎−1 ↔ 𝜎𝑀.
(d) Let𝐻 ↔ 𝑀. It follows from (c) that𝐻 is normal if and only if𝑀 is stable under

the action of 𝐺. But𝑀 is stable under the action of 𝐺 if and only it is a union of finite
extensions of 𝐹 stable under 𝐺, i.e., of finite Galois extensions of 𝐺. We have already
observed that an extension is Galois if and only if it is a union of finite Galois extensions.□

Remark 7.14 As in the finite case (3.18), we can deduce the following statements.
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(a) Let (𝑀𝑖)𝑖∈𝐼 be a (possibly infinite) family of intermediate fields, and let 𝐻𝑖 ↔ 𝑀𝑖.
Let𝑀 be the smallest field containing all the𝑀𝑖 (the composite of the𝑀𝑖); then because⋂

𝑖∈𝐼 𝐻𝑖 is the largest (closed) subgroup contained in all the𝐻𝑖,

Gal(Ω∕𝑀) =
⋂

𝑖∈𝐼
𝐻𝑖.

(b) Let 𝑀 ↔ 𝐻. The largest (closed) normal subgroup contained in 𝐻 is 𝑁 =⋂
𝜎 𝜎𝐻𝜎

−1 (cf. GT, 4.10), and so Ω𝑁 , which is the composite of the fields 𝜎𝑀, is the
smallest normal extension of 𝐹 containing𝑀.

Proposition 7.15 Let 𝐸 and 𝐿 be field extensions of 𝐹 contained
in some common field. If 𝐸∕𝐹 is Galois, then 𝐸𝐿∕𝐿 and 𝐸∕𝐸 ∩ 𝐿
are Galois, and the map

𝜎 ↦ 𝜎|𝐸∶ Gal(𝐸𝐿∕𝐿) → Gal(𝐸∕𝐸 ∩ 𝐿)

is an isomorphism of topological groups.

𝐸𝐿

𝐸 𝐿

𝐸 ∩ 𝐿

𝐹

=

=

Proof. We first prove that the map is continuous. Let 𝐺1 = Gal(𝐸𝐿∕𝐿) and let 𝐺2 =
Gal(𝐸∕𝐸 ∩ 𝐿). For any finite set 𝑆 of elements of 𝐸, the inverse image of 𝐺2(𝑆) in 𝐺1 is
𝐺1(𝑆).

We next show that the map is an isomorphism of groups (neglecting the topology).
As in the finite case, it is an injective homomorphism (3.19). Let𝐻 be the image of the
map. Then the fixed field of𝐻 is 𝐸 ∩ 𝐿, which implies that𝐻 is dense in Gal(𝐸∕𝐸 ∩ 𝐿).
But 𝐻 is closed because it is the continuous image of a compact space in a Hausdorff
space, and so𝐻 = Gal(𝐸∕𝐸 ∩ 𝐿).

Finally, we prove that it is open. An open subgroup of Gal(𝐸𝐿∕𝐿) is closed (hence
compact) of finite index; therefore its image in Gal(𝐸∕𝐸 ∩ 𝐿) is compact (hence closed)
of finite index, and hence open. □

Corollary 7.16 LetΩ be an algebraically closed field containing 𝐹, and let 𝐸 and 𝐿 be
as in the proposition. If 𝜌∶ 𝐸 → Ω and 𝜎∶ 𝐿 → Ω are 𝐹-homomorphisms such that
𝜌|𝐸 ∩ 𝐿 = 𝜎|𝐸 ∩ 𝐿, then there exists an 𝐹-homomorphism 𝜏∶ 𝐸𝐿 → Ω such that 𝜏|𝐸 = 𝜌
and 𝜏|𝐿 = 𝜎.

Proof. According to (7.4), 𝜎 extends to an 𝐹-homomorphism 𝑠 ∶ 𝐸𝐿 → Ω. As 𝑠|𝐸 ∩𝐿 =
𝜌|𝐸∩𝐿, we canwrite 𝑠|𝐸 = 𝜌◦𝜀 for some 𝜀 ∈ Gal(𝐸∕𝐸∩𝐿). According to the proposition,
there exists a unique 𝑒 ∈ Gal(𝐸𝐿∕𝐿) such that 𝑒|𝐸 = 𝜀. Define 𝜏 = 𝑠◦𝑒−1. □

Example 7.17 LetΩ be an algebraic closure of the finite field 𝔽𝑝. Then 𝐺 = Gal(Ω∕𝔽𝑝)
contains a canonical Frobenius element, 𝜎 = (𝑎 ↦ 𝑎𝑝), and it is generated by it as a
topological group, i.e., 𝐺 is the closure of ⟨𝜎⟩. We now determine the structure of 𝐺.

Endow ℤ with the topology for which the groups 𝑛ℤ, 𝑛 ≥ 1, form a fundamental
system of neighbourhoods of 0. Thus two integers are close if their difference is divisible
by a large integer.

As for any topological group, we can completeℤ for this topology. ACauchy sequence
in ℤ is a sequence (𝑎𝑖)𝑖≥1, 𝑎𝑖 ∈ ℤ, satisfying the following condition: for all 𝑛 ≥ 1, there
exists an 𝑁 such that 𝑎𝑖 ≡ 𝑎𝑗 mod 𝑛 for 𝑖, 𝑗 > 𝑁. Call a Cauchy sequence in ℤ trivial
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if 𝑎𝑖 → 0 as 𝑖 → ∞, i.e., if for all 𝑛 ≥ 1, there exists an 𝑁 such that 𝑎𝑖 ≡ 0 mod 𝑛 for
all 𝑖 > 𝑁. The Cauchy sequences form a commutative group, and the trivial Cauchy
sequences form a subgroup. We define ℤ̂ to be the quotient of the first group by the
second. It has a ring structure, and the map sending𝑚 ∈ ℤ to the constant sequence
𝑚,𝑚,𝑚,… identifies ℤ with a subgroup of ℤ̂.

Let 𝛼 ∈ ℤ̂ be represented by the Cauchy sequence (𝑎𝑖). The restriction of the
Frobenius element 𝜎 to 𝔽𝑝𝑛 has order 𝑛. Therefore (𝜎|𝔽𝑝𝑛)𝑎𝑖 is independent of 𝑖 provided
it is sufficiently large, and we can define 𝜎𝛼 ∈ Gal(Ω∕𝔽𝑝) to be such that, for each 𝑛,
𝜎𝛼|𝔽𝑝𝑛 = (𝜎|𝔽𝑝𝑛)𝑎𝑖 for all 𝑖 sufficiently large (depending on 𝑛). The map 𝛼 ↦ 𝜎𝛼 ∶ ℤ̂ →
Gal(Ω∕𝔽𝑝) is an isomorphism.

The group ℤ̂ is uncountable. To most analysts, it is a little weird—its connected
components are one-point sets. To number theorists it will seem quite natural — the
Chinese remainder theorem implies that it is isomorphic to

∏
𝑝 primeℤ𝑝 whereℤ𝑝 is the

ring of 𝑝-adic integers.

Example 7.18 Let ℚal be the algebraic closure of ℚ in ℂ. Then Gal(ℚal∕ℚ) is one of
the most basic, and intractable, objects in mathematics. It is expected that every finite
group occurs as a quotient of it. This is known, for example, for 𝑆𝑛 and for every sporadic
simple group except possibly𝑀23. See (5.41) and mo80359.

On the other hand, we do understandGal(𝐹ab∕𝐹), where𝐹 ⊂ ℚal is a finite extension
of ℚ and 𝐹ab is the union of all finite abelian extensions of 𝐹 contained in ℚal. For
example,Gal(ℚab∕ℚ) ≃ ℤ̂×. This is abelian class field theory— see my notes Class Field
Theory.

Aside 7.19 A simple Galois correspondence is a system consisting of two partially ordered
sets 𝑃 and 𝑄 and order reversing maps 𝑓∶ 𝑃 → 𝑄 and 𝑔∶ 𝑄 → 𝑃 such that 𝑔𝑓(𝑝) ≥ 𝑝 for all
𝑝 ∈ 𝑃 and 𝑓𝑔(𝑞) ≥ 𝑞 for all 𝑞 ∈ 𝑄. Then 𝑓𝑔𝑓 = 𝑓, because 𝑓𝑔(𝑓𝑝) ≥ 𝑓𝑝 and 𝑔𝑓(𝑝) ≥ 𝑝 implies
𝑓(𝑔𝑓𝑝) ≤ 𝑓(𝑝) for all 𝑝 ∈ 𝑃. Similarly, 𝑔𝑓𝑔 = 𝑔, and it follows that 𝑓 and 𝑔 define a one-to-one
correspondence between the sets 𝑔(𝑄) and 𝑓(𝑃).

From a Galois extension Ω of 𝐹 we get a simple Galois correspondence by taking 𝑃 to be
the set of subgroups of Gal(Ω∕𝐹) and 𝑄 to be the set of subsets of Ω, and by setting 𝑓(𝐻) = Ω𝐻

and 𝑔(𝑆) = 𝐺(𝑆). Thus, to prove the one-to-one correspondence in the fundamental theorem, it
suffices to identify the closed subgroups as exactly those in the image of 𝑔 and the intermediate
fields as exactly those in the image of 𝑓. This is accomplished by (7.12).

Galois groups as inverse limits

Definition 7.20 A partial ordering ≤ on a set 𝐼 is directed, and the pair (𝐼, ≤) is a
directed set, if for all 𝑖, 𝑗 ∈ 𝐼 there exists a 𝑘 ∈ 𝐼 such that 𝑖, 𝑗 ≤ 𝑘.

Definition 7.21 Let (𝐼, ≤) be a directed set, and let 𝖢 be a category (for example, the
category of groups and homomorphisms, or the category of topological groups and
continuous homomorphisms).
(a) An inverse system in 𝖢 indexed by (𝐼, ≤) is a family (𝐴𝑖)𝑖∈𝐼 of objects of 𝖢 together

with a family (𝑝𝑗𝑖 ∶ 𝐴𝑗 → 𝐴𝑖)𝑖≤𝑗 of morphisms such that 𝑝𝑖𝑖 = id𝐴𝑖 and 𝑝
𝑗
𝑖 ◦𝑝

𝑘
𝑗 = 𝑝𝑘𝑖

all 𝑖 ≤ 𝑗 ≤ 𝑘.
(b) An object 𝐴 of 𝖢 together with a family (𝑝𝑗 ∶ 𝐴 → 𝐴𝑗)𝑗∈𝐼 of morphisms satisfying

𝑝𝑗𝑖 ◦𝑝𝑗 = 𝑝𝑖 all 𝑖 ≤ 𝑗 is an inverse limit of the system in (a) if it has the following
universal property: for any other object 𝐵 and family (𝑞𝑗 ∶ 𝐵 → 𝐴𝑗) of morphisms

https://mathoverflow.net/questions/80359
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such 𝑝𝑗𝑖 ◦𝑞𝑗 = 𝑞𝑖 all 𝑖 ≤ 𝑗, there exists a unique morphism 𝑟∶ 𝐵 → 𝐴 such that
𝑝𝑗◦𝑟 = 𝑞𝑗 for 𝑗,

𝐵 𝐴

𝐴𝑗

𝐴𝑖

𝑞𝑗

𝑞𝑖 𝑝𝑖

𝑝𝑗

𝑝𝑗𝑖

𝑟

Clearly, the inverse limit (if it exists), is uniquely determined by this condition up to a
unique isomorphism. We denote it by lim←,,(𝐴𝑖, 𝑝

𝑗
𝑖 ), or just lim←,,𝐴𝑖.

Example 7.22 Let (𝐺𝑖, 𝑝
𝑗
𝑖 ∶ 𝐺𝑗 → 𝐺𝑖) be an inverse system of groups. Let

𝐺 = {(𝑔𝑖) ∈
∏

𝐺𝑖 ∣ 𝑝
𝑗
𝑖 (𝑔𝑗) = 𝑔𝑖 all 𝑖 ≤ 𝑗},

and let 𝑝𝑖 ∶ 𝐺 → 𝐺𝑖 be the projection map. Then 𝑝𝑗𝑖 ◦𝑝𝑗 = 𝑝𝑖 is just the equation
𝑝𝑗𝑖 (𝑔𝑗) = 𝑔𝑖. Let (𝐻, 𝑞𝑖) be a second family such that 𝑝

𝑗
𝑖 ◦𝑞𝑗 = 𝑞𝑖. The image of the

homomorphism
ℎ ↦ (𝑞𝑖(ℎ))∶ 𝐻 →

∏
𝐺𝑖

is contained in𝐺, and this is the unique homomorphism𝐻 → 𝐺 carrying 𝑞𝑖 to 𝑝𝑖. Hence
(𝐺, 𝑝𝑖) = lim←,,(𝐺𝑖, 𝑝

𝑗
𝑖 ).

Example 7.23 Let (𝐺𝑖, 𝑝
𝑗
𝑖 ∶ 𝐺𝑗 → 𝐺𝑖) be an inverse system of topological groups and

continuous homomorphisms. When endowed with the product topology,
∏𝐺𝑖 becomes

a topological group, and 𝐺 becomes a topological subgroup with the subspace topology,

𝐺 = {(𝑔𝑖) ∈
∏

𝐺𝑖 ∣ 𝑝
𝑗
𝑖 (𝑔𝑗) = 𝑔𝑖 all 𝑖 ≤ 𝑗}.

The projection maps 𝑝𝑖 are continuous. Let 𝐻 be (𝐻, 𝑞𝑖) be a second family such that
𝑝𝑗𝑖 ◦𝑞𝑗 = 𝑞𝑖. The homomorphism

ℎ ↦ (𝑞𝑖(ℎ))∶ 𝐻 →
∏

𝐺𝑖

is continuous because its composites with projection maps are continuous (universal
property of the product). Therefore𝐻 → 𝐺 is continuous, and this shows that (𝐺, 𝑝𝑖) =
lim←,,(𝐺𝑖, 𝑝

𝑗
𝑖 ).

An inverse system of finite groups can be regarded as an inverse system of topological
groups by giving each finite group the discrete topology.

Definition 7.24 A profinite group is topological group that is an inverse limit of finite
groups (each equipped with the discrete topology).

Inverse limits are also called projective limits. Thus “profinite group” is short for
“projective limit of finite groups”.
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Proposition 7.25 A topological group is profinite if and only if it is compact and totally
disconnected.

Proof. Let (𝐺𝑖, 𝑝
𝑗
𝑖 ∶ 𝐺𝑗 → 𝐺𝑖) be an inverse system of finite groups, and let 𝐺 = lim←,,𝐺𝑖.Thus,

𝐺 = {(𝑔𝑖) ∈
∏

𝐺𝑖 ∣ 𝑝
𝑗
𝑖 (𝑔𝑗) = 𝑔𝑖 all 𝑖 ≤ 𝑗}.

If (𝑥𝑖) ∉ 𝐺, say 𝑝𝑗0𝑖0 (𝑥𝑗0) ≠ 𝑥𝑖0 , then

𝐺 ∩ {(𝑔𝑗) ∣ 𝑔𝑗0 = 𝑥𝑗0 , 𝑔𝑖0 = 𝑥𝑖0} = ∅.

As the second set is an open neighbourhood of (𝑥𝑖), this shows that 𝐺 is closed in∏𝐺𝑖. By Tychonoff’s theorem,
∏𝐺𝑖 is compact, and so 𝐺 is also compact. The map

𝑝𝑖 ∶ 𝐺 → 𝐺𝑖 is continuous, and its kernel 𝑈𝑖 is an open subgroup of finite index in 𝐺
(hence also closed). As

⋂𝑈𝑖 = {𝑒}, the connected component of 𝐺 containing 𝑒 is just
{𝑒}. By homogeneity, the same is true for every point of 𝐺: the connected components of
𝐺 are the one-point sets — 𝐺 is totally disconnected.

Conversely, let𝐺 be compact and totally disconnected. In a locally compact group, the
connected component containing the identity is the intersection of the open subgroups
(Bourbaki, Topologie Générale, Chap. III, §4.6). Therefore,

⋂𝑈 = {𝑒} in 𝐺 (intersection
over the open subgroups). As 𝐺 is compact, each 𝑈 has finite index; therefore its
conjugates are finite in number, and their intersection is a normal open subgroup of 𝐺.
Hence

⋂𝑉 = {1} in 𝐺 (intersection over the open normal subgroups). The canonical
map 𝐺 → lim←,,𝐺∕𝑉 is injective, continuous, with dense image. As 𝐺 is compact, it is an
isomorphism. □

Example 7.26 Let Ω be a Galois extension of 𝐹. The composite of two finite Galois
extensions of in Ω is again a finite Galois extension (3.21), and so the finite Galois
subextensions ofΩ form a directed set 𝐼. For each 𝐸 in 𝐼 we have a finite groupGal(𝐸∕𝐹),
and for each𝐸 ⊂ 𝐸′ we have a restriction homomorphism 𝑝𝐸′𝐸 ∶ Gal(𝐸′∕𝐹) → Gal(𝐸∕𝐹).
In this way, we get an inverse system of finite groups (Gal(𝐸∕𝐹), 𝑝𝐸′𝐸 ) indexed by 𝐼.

For each 𝐸, there is a restriction homomorphism 𝑝𝐸 ∶ Gal(Ω∕𝐹) → Gal(𝐸∕𝐹) and,
because of the universal property of inverse limits, these maps define a homomorphism

Gal(Ω∕𝐹) → lim←,,Gal(𝐸∕𝐹).

This map is an isomorphism of topological groups. This is a restatement of what we
showed in the proof of (7.8).

Proposition 7.27 (Tate) Every profinite group 𝐺 is the Galois group of some Galois
extension of fields.

Proof. Let 𝑆 be the disjoint union of the sets 𝐺∕𝐻 for𝐻 an open subgroup of 𝐺. Then
𝐺 acts faithfully on 𝑆 and the stabilizer of each element of 𝑆 is open in 𝐺. Let 𝑘 be a
field, let 𝑘[𝑆] be the polynomial ring over 𝑘 in the elements of 𝑆, and let 𝐸 = 𝑘(𝑆) be
the field of fractions of 𝑘[𝑆]. Then 𝐺 acts faithfully on 𝐸 through its action on 𝑆 and the
stabilizer of each element of 𝐸 is open in 𝐺. According to Proposition 7.10, 𝐸 is Galois
over 𝐹 def= 𝐸𝐺 with Galois group 𝐺. □
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Nonopen subgroups of finite index

We apply Zorn’s lemma to construct a nonopen subgroup of finite index in Gal(ℚal∕ℚ).

Lemma 7.28 Let 𝑉 be an infinite-dimensional vector space. For all 𝑛 ≥ 1, there exists a
subspace 𝑉𝑛 of 𝑉 such that 𝑉∕𝑉𝑛 has dimension 𝑛.

Proof. A Zorn’s lemma argument shows that𝑉 contains maximal linearly independent
subsets, and then the usual argument shows that such a subset spans 𝑉, i.e., is a basis.
Choose a basis, and take 𝑉𝑛 to be the subspace spanned by the set obtained by omitting
𝑛 elements from the basis. □

Proposition 7.29 The group Gal(ℚal∕ℚ) has nonopen normal subgroups of index 2𝑛 for
all 𝑛 > 1.

Proof. Let 𝐸 be the subfield of ℂ generated over ℂ by
√
−1 and the square roots of the

prime numbers — it is Galois over ℚ. For each 𝑝,

Gal(ℚ[
√
−1,

√
2,… ,

√
𝑝]∕ℚ)

is a product of copies of ℤ∕2ℤ indexed by the set {primes ≤ 𝑝} ∪ {∞} (see 5.31b). As

Gal(𝐸∕ℚ) = lim←,,Gal(ℚ[
√
−1,

√
2,… ,

√
𝑝]∕ℚ),

it is a direct product of copies of ℤ∕2ℤ indexed by the primes 𝑙 ofℚ (including 𝑙 = ∞)
endowed with the product topology. Let 𝐺 = Gal(𝐸∕ℚ), and let

𝐻 = {(𝑎𝑙) ∈ 𝐺 ∣ 𝑎𝑙 = 0 for all but finitely many 𝑙}.

This is a subgroup of 𝐺 (in fact, it is a direct sum of copies ofℤ∕2ℤ indexed by the primes
of ℚ), and it is dense in 𝐺: let (𝑎𝑙) ∈ 𝐺; then the sequence

(𝑎∞, 0, 0, 0, …), (𝑎∞, 𝑎2, 0, 0, …), (𝑎∞, 𝑎2, 𝑎3, 0, …), …

in𝐻 converges to (𝑎𝑙). We can regard 𝐺∕𝐻 as vector space over 𝔽2 and apply the lemma
to obtain subgroups𝐺𝑛 of index 2𝑛 in𝐺 containing𝐻. If𝐺𝑛 is open in𝐺, then it is closed,
which contradicts the fact that 𝐻 is dense. Therefore, 𝐺𝑛 is not open, and its inverse
image in Gal(ℚal∕ℚ) is the desired subgroup (if it were open, it would be closed of finite
index, and so would its image 𝐺𝑛). □

Remark 7.30 Let 𝐺 = Gal(ℚal∕ℚ). We showed in the above proof that there is a closed
normal subgroup 𝑁 = Gal(ℚal∕𝐸) of 𝐺 such that 𝐺∕𝑁 is an uncountable vector space
over 𝔽2. Let (𝐺∕𝑁)∨ be the dual of this vector space (also uncountable). Every nonzero
𝑓 ∈ (𝐺∕𝑁)∨ defines a surjective map 𝐺 → 𝔽2 whose kernel is a subgroup of index 2 in
𝐺. These subgroups are distinct, and so 𝐺 has uncountably many subgroups of index 2.
Only countably many of them are open becauseℚ has only countably many quadratic
extensions in a fixed algebraic closure.

Aside 7.31 Zorn’s lemma is needed for 7.29 — it is consistent with ZF+DC (dependent choice)
that every homomorphism froma second countable profinite group to a finite group be continuous
(see mo106216).

Aside 7.32 Let 𝐺 be a profinite group that is finitely generated as a topological group. It is a
difficult theorem, only proved this century, that every subgroup of finite index in 𝐺 is open
(Nikolov, Segal, On finitely generated profinite groups. I., Ann. of Math. (2) 165 (2007), no. 1,
171–238.)

https://mathoverflow.net/questions/106216
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Exercises

7-1 Let 𝑝 be a prime number, and letΩ be the subfield ofℂ generated overℚ by all 𝑝𝑚th
roots of 1 for𝑚 ∈ ℕ. Show thatΩ is Galois overℚwithGalois groupℤ×

𝑝 = lim←,,(ℤ∕𝑝
𝑚ℤ)×.

Hint: Use that Ω is the union of a tower of subfields

ℚ ⊂ ℚ[𝜁𝑝] ⊂ ⋯ ⊂ ℚ[𝜁𝑝𝑚] ⊂ ℚ[𝜁𝑝𝑚+1] ⊂ ⋯ .

For 𝑝 odd, show that Gal(ℚ(𝜁𝑝∞)∕ℚ(𝜁𝑝)) ≃ ℤ𝑝. Hint: Let 𝑎 ∈ ℤ𝑝 correspond to

𝜁𝑝𝑘 ↦ 𝜁(1+𝑝)
𝑎 mod 𝑝𝑘−1

𝑝𝑘 .

7-2 Let 𝔽 be an algebraic closure of 𝔽𝑝, and let 𝔽𝑝𝑚 be the subfield of 𝔽with 𝑝𝑚 elements.
Show that

lim←,,
𝑚≥1

Gal(𝔽𝑝𝑚∕𝔽𝑝) ≃ lim←,,
𝑚≥1

ℤ∕𝑚ℤ

and deduce that Gal(𝔽∕𝔽𝑝) ≃ ℤ̂.

7-3 For a profinite group 𝐺, define 𝐺ab to be the quotient of 𝐺 by the closure of its
commutator subgroup. Is 𝐺ab = lim←,,𝐺

ab
𝑖 where the 𝐺𝑖 range over the finite quotients of

𝐺.



Chapter8

The Galois theory of étale

algebras

For Grothendieck, the classification of field extensions by Galois groups, and the classifi-
cation of covering spaces by fundamental groups, are two aspects of the same theory.
In this chapter, we re-interprete classical Galois theory from Grothendieck’s point of
view. We assume the reader is familiar with the language of category theory (Wikipedia:
category theory; equivalence of categories).

Throughout, 𝐹 is a field, all rings and 𝐹-algebras are commutative, and unadorned
tensor products are over 𝐹. Recall that an 𝐹-algebra 𝐴 is finite if it is finite-dimensional
as an 𝐹-vector space — the dimension is called the degree [𝐴∶ 𝐹] of 𝐴.

Review of commutative algebra

We’ll need some results from commutative algebra. The first is a special case of the
Chinese Remainder Theorem.

Theorem 8.1 Let𝑀1, …𝑀𝑛 be maximal ideals in a ring 𝐴. Then the map

𝑎 ↦ (… , 𝑎 +𝑀𝑗, …)∶ 𝐴 → 𝐴∕𝑀1 ×⋯ × 𝐴∕𝑀𝑛 (13)

is surjective with kernel
⋂

𝑖𝑀𝑖 .

Proof. Fix a 𝑗 and, for 𝑖 ≠ 𝑗, let 𝑎𝑖𝑗 ∈ 𝑀𝑖 ∖ 𝑀𝑗. After scaling, we may suppose that
𝑎𝑖𝑗 ≡ 1 mod 𝑀𝑗. Let 𝑏𝑗 =

∏
𝑖≠𝑗 𝑎𝑖𝑗. Then 𝑏𝑗 maps to (0, … , 0, 1, 0, … , 0) in

∏
𝑖 𝐴∕𝑀𝑖,

and so every element of
∏

𝑖 𝐴∕𝑀𝑖 is the image of an element
∑

𝑗 𝑎𝑗𝑏𝑗 of 𝐴. We have
shown that the map is surjective, and its kernel is obviously

⋂
𝑖𝑀𝑖. □

The radical of an ideal 𝐼 in a ring 𝐴 is the set of 𝑓 ∈ 𝐴 such that 𝑓𝑛 ∈ 𝐼 for some
𝑛 ∈ ℕ. It is again an ideal, and it is equal to its own radical. The nilradical 𝑁 of 𝐴 is
the radical of the ideal (0). It consists of the nilpotents in 𝐴. If 𝑁 = 0, then 𝐴 is said to
be reduced.

Theorem 8.2 Let 𝐴 be a finitely generated 𝐹-algebra, and let 𝐼 be an ideal in 𝐴. The
radical of 𝐼 is equal to the intersection of the maximal ideals containing it,

rad(𝐼) =
⋂

{𝑀 ∣ 𝑀 ⊃ 𝐼,𝑀 maximal}.

In particular, 𝐴 is reduced if and only if
⋂{𝑀 ∣ 𝑀 maximal} = 0.

105



106 8. The Galois theory of étale algebras

We prove this for finite 𝐹-algebras, which is the only case we’ll need. Let Ω be an
algebraic closure of 𝐹. For an ideal 𝐼 of 𝑘[𝑋1, … , 𝑋𝑛], we let 𝑍(𝐼) denote the zero set,

𝑍(𝐼) = {(𝑎1, … , 𝑎𝑛) ∈ Ω𝑛 ∣ 𝑓(𝑎1, … , 𝑎𝑛) = 0 for all 𝑓 ∈ 𝐼}.

Lemma 8.3 Let 𝐼 be a proper ideal of 𝐹[𝑋1, … , 𝑋𝑛] such that 𝐹[𝑋1, … , 𝑋𝑛]∕𝐼 is a finite
𝐹-algebra. Then 𝑍(𝐼) ≠ ∅.

Proof. Let𝑀 be a maximal ideal containing 𝐼 (any proper ideal of largest dimension
will do). Then 𝐹[𝑋1, … , 𝑋𝑛]∕𝑀 is field, finite over 𝐹, and so it admits a homomorphism
into Ω. Let 𝑎𝑖 denote the image of 𝑋𝑖 in Ω. Then (𝑎1, … , 𝑎𝑛) ∈ 𝑍(𝐼). □

Lemma 8.4 Let 𝐼 be a proper ideal of 𝐹[𝑋1, … , 𝑋𝑛] such that 𝐹[𝑋1, … , 𝑋𝑛]∕𝐼 is a finite
𝐹-algebra. If ℎ ∈ 𝐹[𝑋1, … , 𝑋𝑛] is zero on 𝑍(𝐼), then some power of ℎ lies in 𝐼.

Proof. We may suppose ℎ ≠ 0. Then 8.4 can be deduced from 8.3 by using Rabinow-
itsch’s trick (CA 13.10). □

We now prove Theorem 8.2 in the case that 𝐴 is a finite 𝐹-algebra. Because of the
correspondence between ideals in a ring and in a quotient of the ring, we may suppose
that 𝐼 is an ideal in 𝐹[𝑋1, … , 𝑋𝑛]. The inclusion

rad(𝐼) ⊂
⋂

{𝑀 ∣ 𝑀 ⊃ 𝐼,𝑀 maximal}

holds in any ring because maximal ideals are radical and rad(𝐼) is the smallest radical
ideal containing 𝐼. For the reverse inclusion, let ℎ lie in all maximal ideals containing 𝐼,
and let (𝑎1, … , 𝑎𝑛) ∈ 𝑍(𝐼). The image of the evaluation map

𝑓 ↦ 𝑓(𝑎1, … , 𝑎𝑛)∶ 𝐹[𝑋1, … , 𝑋𝑛] → Ω

is a subring ofΩ, finite over 𝐹, and so a field (1.23). Therefore, the kernel of the map is a
maximal ideal, which contains 𝐼, and hence also ℎ. This shows that ℎ(𝑎1, … , 𝑎𝑛) = 0,
and we conclude from 8.4 that ℎ ∈ rad(𝐼).

Étale algebras over a field

Let 𝐹𝑛 = 𝐹 ×⋯× 𝐹 (𝑛-copies) regarded as an 𝐹-algebra by the diagonal map.

Definition 8.5 An 𝐹-algebra 𝐴 is diagonalizable if it is isomorphic to 𝐹𝑛 for some 𝑛,
and it is étale if 𝐿 ⊗ 𝐴 is diagonalizable for some field 𝐿 containing 𝐹.1

Let 𝐴 be a finite 𝐹-algebra. For any finite set 𝑆 of maximal ideals in 𝐴, the Chinese
remainder theorem (8.1) shows that the map 𝐴 →∏

𝑀∈𝑆 𝐴∕𝑀 is surjective with kernel⋂
𝑀∈𝑆𝑀. In particular, |𝑆| ≤ [𝐴∶ 𝐹], and so 𝐴 has only finitely many maximal ideals.

If 𝑆 is the set of all maximal ideals in 𝐴, then⋂𝑀∈𝑆𝑀 is the nilradical 𝑁 of 𝐴 (8.2), and
so 𝐴∕𝑁 is a finite product of fields.

Proposition 8.6 The following conditions on a finite 𝐹-algebra 𝐴 are equivalent:
(a) 𝐴 is étale;

(b) 𝐿 ⊗ 𝐴 is reduced for all fields 𝐿 containing 𝐹;
1This is Bourbaki’s definition
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(c) 𝐴 is a product of separable field extensions of 𝐹.

Proof. (a)⇒(b). Let 𝐿 be a field containing 𝐹. By hypothesis, there exists a field 𝐿′
containing 𝐹 such that 𝐿′ ⊗ 𝐴 is diagonalizable. Let 𝐿′′ be a field containing (copies
of) both 𝐿 and 𝐿′ (e.g., take 𝐿′′ to be a quotient of 𝐿 ⊗ 𝐿′ by a maximal ideal). Then
𝐿′′ ⊗𝐴 = 𝐿′′ ⊗𝐿′ 𝐿′ ⊗𝐴 is diagonalizable, and the map 𝐿 ⊗ 𝐴 → 𝐿′′ ⊗𝐴 defined by
the inclusion 𝐿 → 𝐿′′ is injective, and so 𝐿 ⊗ 𝐴 is reduced.

(b)⇒(c). In particular, 𝐴 = 𝐴 ⊗ 𝐹 is reduced, and so it is a finite product of fields
(see the above discussion). Suppose that one of the factor fields 𝐹′ of 𝐴 is not separable
over 𝐹. Then 𝐹 has characteristic 𝑝 ≠ 0 and there exists an element 𝑢 of 𝐹′ whose
minimal polynomial is of the form 𝑔(𝑋𝑝) with 𝑔 ∈ 𝐹[𝑋] (see 3.6 et seq.). Let 𝐿 be a field
containing 𝐹. Then

𝐿 ⊗ 𝐹[𝑢] ≃ 𝐿 ⊗ (𝐹[𝑋]∕(𝑔(𝑋𝑝)) ≃ 𝐿[𝑋]∕(𝑔(𝑋𝑝)).

If 𝐿 is chosen so that the coefficients of 𝑔(𝑋) become 𝑝th powers in it, then 𝑔(𝑋𝑝) is a 𝑝th
power in𝐿[𝑋] (see the proof of 2.24), and so𝐿⊗𝐹[𝑢] is not reduced. But𝐿⊗𝐹[𝑢] ⊂ 𝐿⊗𝐴,
and so this contradicts the hypothesis.

(c)⇒(a). We may suppose that 𝐴 itself is a separable field extension of 𝐹. From the
primitive element theorem (5.1), we know that 𝐴 = 𝐹[𝑢] for some 𝑢. Because 𝐹[𝑢] is
separable over 𝐹, the minimal polynomial 𝑓(𝑋) of 𝑢 is separable, which means that, in
any splitting field 𝐿 for 𝑓,

𝑓(𝑋) =
∏

(𝑋 − 𝑢𝑖), 𝑢𝑖 ≠ 𝑢𝑗 for 𝑖 ≠ 𝑗.

Now
𝐿 ⊗ 𝐴 ≃ 𝐿 ⊗ 𝐹[𝑋]∕(𝑓) ≃ 𝐿[𝑋]∕(𝑓),

and, according to the Chinese remainder theorem (8.1),

𝐿[𝑋]∕(𝑓) ≃
∏

𝑖
𝐿[𝑋]∕(𝑋 − 𝑢𝑖) ≃ 𝐿 ×⋯ × 𝐿. □

Corollary 8.7 An 𝐹-algebra 𝐴 is étale if and only if 𝐹sep ⊗𝐴 is diagonalizable.

Proof. The proof that (c) implies (a) in (8.6) shows that 𝐿 ⊗ 𝐴 is diagonalizable if
certain separable polynomials split in 𝐿. By definition, all separable polynomials split in
𝐹sep. □

Corollary 8.8 Let 𝑓 ∈ 𝐹[𝑋]. Then 𝐴 = 𝐹[𝑋]∕(𝑓) is an étale 𝐹-algebra if and only if 𝑓
is separable.

Proof. Let 𝑓 = ∏𝑓𝑚𝑖
𝑖 with the 𝑓𝑖 irreducible and distinct. According to the Chinese

remainder theorem (CA 2.13)

𝐴 ≃
∏

𝑖
𝐹[𝑋]∕(𝑓𝑚𝑖

𝑖 ).

The 𝐹-algebra 𝐹[𝑋]∕(𝑓𝑚𝑖
𝑖 ) is a field if and only if𝑚𝑖 = 1, in which case it is a separable

extension of 𝐹 if and only if 𝑓𝑖 is separable. This completes the proof. □

Not all étale 𝐹-algebras are of the form 𝐹[𝑋]∕(𝑓); for example, 𝐹[𝑋]∕(𝑓)×𝐹[𝑋]∕(𝑓)
is not.
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Proposition 8.9 Finite products, tensor products, and quotients of diagonalizable (resp.
étale) 𝐹-algebras are diagonalizable (resp. étale).

Proof. This is obvious for diagonalizable algebras, and it follows for étale algebras. □

Corollary 8.10 The composite of any finite set of étale 𝐹-subalgebras of an 𝐹-algebra is
étale.

Proof. Let 𝐴 be an 𝐹-algebra, and, for 𝑖 = 1, … , 𝑛, let 𝐴𝑖 be an étale subalgebra of 𝐴.
The composite 𝐴1⋯𝐴𝑛 of the 𝐴𝑖 (i.e., the smallest 𝐹-subalgebra containing the 𝐴𝑖) is
the image of the map

𝑎1 ⊗⋯⊗ 𝑎𝑛 ↦ 𝑎1⋯𝑎𝑛 ∶ 𝐴1 ⊗⋯⊗𝐴𝑛 → 𝐴,

which is a quotient of 𝐴1 ⊗⋯⊗𝐴𝑛. □

Proposition 8.11 If 𝐴 is an étale 𝐹-algebra, then 𝐹′ ⊗𝐴 is an étale 𝐹′-algebra for any
extension 𝐹′ of 𝐹.

Proof. Let 𝐿 be an extension of 𝐹 such that 𝐿⊗𝐴 ≈ 𝐿𝑚, and let 𝐿′ be a field containing
(copies of) both 𝐿 and 𝐹′. Then

𝐿′ ⊗𝐹′
(
𝐹′ ⊗𝐴

)
≃ 𝐿′ ⊗𝐴 ≃ 𝐿′ ⊗𝐿 (𝐿 ⊗ 𝐴) ≈ 𝐿′ ⊗𝐿 𝐿𝑚 ≃

(
𝐿′
)𝑚

. □

Remark 8.12 Let 𝐴 be an étale algebra over 𝐹, and write 𝐴 as a product of fields,
𝐴 =∏

𝑖 𝐴𝑖. A generator 𝛼 for 𝐴 as an 𝐹-algebra is a tuple (𝛼𝑖) with each 𝛼𝑖 a generator
for 𝐴𝑖 as an 𝐹-algebra. Because each 𝐴𝑖 is separable over 𝐹, such an 𝛼 exists (primitive
element theorem 5.1). Choose an 𝛼, and let 𝑓 = ∏

𝑖 𝑓𝑖 be the product of the minimal
polynomials of the 𝛼𝑖. Then 𝑓 is a monic polynomial whose irreducible factors are
separable.

Conversely, let 𝑓 be a monic polynomial whose irreducible factors (𝑓𝑖)𝑖 are separable.
Then 𝐴 def= ∏

𝑖 𝐹[𝑋]∕(𝑓𝑖) is an étale algebra over 𝐹 with a canonical generator.
In this way, we get a one-to-one correspondence between the set of isomorphism

classes of pairs (𝐴, 𝛼) consisting of an étale 𝐹-algebra and a generator and the set of
monic polynomials whose irreducible factors are separable.

8.13 In preparation for the next section, we review a little linear algebra. Let Ω be a
Galois extension of 𝐹 (possibly infinite) with Galois group 𝐺. Let 𝑉 be a vector space
over 𝐹, and let 𝑉Ω = Ω⊗𝐹 𝑉. Then 𝐺 acts on 𝑉Ω through its action on Ω, and the map

𝑣 ↦ 1 ⊗ 𝑣∶ 𝑉 → (𝑉Ω)𝐺
def= {𝑣 ∈ 𝑉Ω ∣ 𝜎𝑣 = 𝑣 for all 𝜎 ∈ 𝐺}

is an isomorphism. To see this, choose an 𝐹-basis {𝑒1, … , 𝑒𝑛} for 𝑉. Then {𝑒1, … , 𝑒𝑛} is
also an Ω-basis for 𝑉Ω, and

𝜎(𝑎1𝑒1 +⋯+ 𝑎𝑛𝑒𝑛) = (𝜎𝑎1)𝑒1 +⋯+ (𝜎𝑎𝑛)𝑒𝑛, 𝑎𝑖 ∈ Ω.

Therefore 𝑎1𝑒1 +⋯+ 𝑎𝑛𝑒𝑛 is fixed by all 𝜎 ∈ 𝐺 if and only if 𝑎1, … , 𝑎𝑛 ∈ 𝐹.
Similarly, if𝑊 is a second vector space over 𝐹, then 𝐺 acts on HomΩ-linear(𝑉Ω,𝑊Ω)

by 𝜎𝛼 = 𝜎◦𝛼◦𝜎−1, and

Hom𝐹-linear(𝑉,𝑊) ≃ HomΩ-linear(𝑉Ω,𝑊Ω)𝐺 .

Again, this can be proved by choosing bases.
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Classification of étale algebras over a field

We fix a separable closure Ω of 𝐹, and let 𝐺 = Gal(Ω∕𝐹). Recall (Chapter 7) that for
every subfield 𝐸 of Ω finite and Galois over 𝐹, the homomorphism

𝜎 ↦ 𝜎|𝐸∶ 𝐺 → Gal(𝐸∕𝐹)

is surjective, and its kernel is an open normal subgroup of 𝐺. Every open normal
subgroup of 𝐺 is of this form, and 𝐺 = lim←,,Gal(𝐸∕𝐹).By a 𝐺-set we mean a set 𝑆 equipped with an action of 𝐺 such that the map

𝐺 × 𝑆 → 𝑆

is continuous with respect to the Krull topology on 𝐺 and the discrete topology on 𝑆.
This is equivalent to saying that the stabilizer of every point of 𝑆 is an open subgroup of𝐺.
When 𝑆 is finite, it is equivalent to saying that the action factors through 𝐺 → Gal(𝐸∕𝐹)
for some subfield 𝐸 of Ω finite and Galois over 𝐹.

The functor ℱ
For an étale 𝐹-algebra 𝐴, letℱ(𝐴) denote the set of 𝐹-algebra homomorphisms 𝑓∶ 𝐴 →
Ω. We let 𝐺 act on ℱ(𝐴) through its action on Ω,

(𝜎𝑓)(𝑎) = 𝜎(𝑓(𝑎)), 𝜎 ∈ 𝐺, 𝑓 ∈ ℱ(𝐴), 𝑎 ∈ 𝐴,

For some finite Galois extension 𝐸 of 𝐹 in Ω, the images of all homomorphism 𝐴 → Ω
are contained in 𝐸,2 and so the action of𝐺 onℱ(𝐴) factors throughGal(𝐸∕𝐹). Therefore
ℱ(𝐴) is a 𝐺-set.

8.14 Let 𝐴 = 𝐹[𝑋]∕(𝑓) where 𝑓 is a separable polynomial in 𝐹[𝑋], and let 𝐹[𝑋]∕(𝑓) =
𝐹[𝑥]. For every homomorphism 𝜑∶ 𝐴 → Ω of 𝐹-algebras, 𝜑(𝑥) is a root of 𝑓(𝑋) in Ω,
and the map 𝜑 ↦ 𝜑(𝑥) defines a one-to-one correspondence

ℱ(𝐴)
1∶1
⟷{roots of 𝑓(𝑋) in Ω}

commuting with the actions of 𝐺. This is obvious from 2.1.

8.15 Let 𝐴 = 𝐴1 ×⋯ × 𝐴𝑛 with each 𝐴𝑖 an étale 𝐹-algebra. Because Ω is an integral
domain, every homomorphism 𝑓∶ 𝐴 → Ω is zero on all but one 𝐴𝑖, and so, to give a
homomorphism 𝐴 → Ω amounts to giving a homomorphism 𝐴𝑖 → Ω for some 𝑖. In
other words,

ℱ(∏𝑖 𝐴𝑖) ≃
⨆

𝑖 ℱ(𝐴𝑖) (disjoint sum).

In particular, for an étale 𝐹-algebra 𝐴 =∏
𝑖 𝐹𝑖, 𝐹𝑖 a field,

ℱ(𝐴) ≃
⨆

𝑖
Hom𝐹(𝐹𝑖, Ω).

From Proposition 2.12, we deduce that ℱ(𝐴) is finite of order [𝐴∶ 𝐹].

Thus, ℱ is a functor from étale 𝐹-algebras to finite 𝐺-sets.
2Write 𝐴 = 𝐹1 ×⋯×𝐹𝑛 with each 𝐹𝑖 a field; embed each 𝐹𝑖 inΩ, take its Galois closure, and then take

the composite of the fields obtained.
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The functor 𝒜
For a 𝐺-set 𝑆, we let 𝐺 act on the 𝐹-algebra Hom(𝑆,Ω) of maps 𝑆 → Ω through its
actions on 𝑆 and Ω,

(𝜎𝑓)(𝑠) = 𝜎(𝑓(𝜎−1𝑠)), 𝜎 ∈ 𝐺, 𝑓 ∈ Hom(𝑆,Ω), 𝑠 ∈ 𝑆.

We define 𝒜(𝑆) to be the set of elements of Hom(𝑆,Ω) fixed by 𝐺. Thus 𝒜(𝑆) is the
𝐹-subalgebra of Hom(𝑆,Ω) consisting of the maps 𝑓∶ 𝑆 → Ω such that 𝑓(𝜎𝑠) = 𝜎𝑓(𝑠)
for all 𝜎 ∈ 𝐺, 𝑠 ∈ 𝑆.

8.16 Suppose that 𝐺 acts transitively on 𝑆. Choose an 𝑠 ∈ 𝑆, and let 𝐻 ⊂ 𝐺 be its
stabilizer. Then 𝐻 is an open subgroup of 𝐺, and so 𝐸 = Ω𝐻 is a finite extension of 𝐹
(7.13). An element 𝑓 of𝒜(𝑆) is determined by its value on 𝑠, which can be any element
of Ω fixed by𝐻. It follows that the map

𝑓 ↦ 𝑓(𝑠)∶ 𝒜(𝑆) → 𝐸

is an isomorphism of 𝐹-algebras.
Every element of 𝑆 is of the form 𝜎𝑠with 𝜎 ∈ 𝐺, and 𝜎𝑠 = 𝜎′𝑠 if and only if 𝜎𝐻 = 𝜎′𝐻.

Similarly, every element of ℱ(𝐸) is of the form 𝜎|𝐸 with 𝜎 ∈ 𝐺, and 𝜎|𝐸 = 𝜎|𝐸′ if and
only if 𝜎𝐻 = 𝜎′𝐻. It follows that the map

𝜎𝑠 ↦ 𝜎|𝐸∶ 𝑆 → ℱ(𝐸)

is an isomorphism of 𝐺-sets.
Let 𝐸 be a finite separable extension 𝐸 of 𝐹. Let 𝑆 = ℱ(𝐸) and choose an 𝑠 ∈ 𝑆, i.e.,

an embedding 𝑠 ∶ 𝐸 ↪ Ω. The above calculation shows that 𝒜(𝑆) = 𝑠𝐸. In particular, 𝑠
defines an isomorphism 𝐸 → 𝒜(ℱ(𝐸)).

Proposition 8.17 Let 𝑆 be a finite 𝐺-set, and let 𝑆 = 𝑆1 ⊔…⊔ 𝑆𝑛 be the decomposition of
𝑆 into its 𝐺-orbits. For each 𝑖, choose an 𝑠𝑖 ∈ 𝑆𝑖 , and let 𝐹𝑖 be the subfield ofΩ fixed by the
stabilizer of 𝑠𝑖 .
(a) Each 𝐹𝑖 is a finite separable extension of 𝐹.
(b) The map

𝑓 ↦ (𝑓(𝑠1), … , 𝑓(𝑠𝑛))∶ 𝒜(𝑆) → 𝐹1 ×⋯ × 𝐹𝑛
is an isomorphism of 𝐹-algebras.

(c) Themap sending 𝜎𝑠𝑖 ∈ 𝑆𝑖 ⊂ 𝑆 to 𝜎|𝐹𝑖 ∈ ℱ(𝐹𝑖) ⊂ ℱ(𝐹1×⋯×𝐹𝑛) is an isomorphism
of 𝐺-sets

𝑆 → ℱ (𝐹1 ×⋯ × 𝐹𝑛) .

Proof. This follows directly from the special case considered in 8.16. □

Proposition 8.18 For every finite𝐺-set 𝑆, the 𝐹-algebra𝒜(𝑆) is étale with degree equal to
|𝑆|. Moreover, every étale 𝐹-algebra 𝐴 is of the form𝒜(𝑆) for some 𝐺-set 𝑆. More precisely,

𝐴 ≃ 𝒜(ℱ(𝐴)).

Proof. The first statement follows from (8.6) and (8.17). We prove the third statement.
There is a canonical isomorphism of Ω-algebras

𝑎 ⊗ 𝑐 ↦ (𝜎𝑎 ⋅ 𝑐)𝜎∈ℱ(𝐴)∶ Ω⊗ 𝐴 →
∏

𝜎∈ℱ(𝐴)
Ω.
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When we let 𝐺 act on Ω⊗𝐴 through Ω, and pass to the fixed elements, we obtain an
isomorphism

𝐴 8.13= (Ω⊗𝐴)𝐺 ≃ 𝒜(ℱ(𝐴)).

This implies the second statement of the proposition (which can also be deduced from
8.17). □

Proposition 8.19 Let 𝑆 be a finite 𝐺-set. An element 𝑠 ∈ 𝑆 defines a homomorphism of
𝐹-algebras 𝑓 ↦ 𝑓(𝑠)∶ 𝒜(𝑆) → Ω, and every homomorphism of 𝐹-algebras𝒜(𝑆) → Ω is
of this form for a unique 𝑠. Thus 𝑆 ≃ ℱ(𝒜(𝑆)).

Proof. We leave this as an exercise. □

Proposition 8.20 For all étale 𝐹-algebras 𝐴 and 𝐵, the map

Hom𝐹-algebras(𝐴, 𝐵) → Hom𝐺-sets(ℱ(𝐵), ℱ(𝐴))

defined byℱ is bijective.

Proof. Let 𝐴 and 𝐵 be étale 𝐹-algebras. Under the isomorphism

Hom𝐹-linear(𝐴, 𝐵)
8.13
≃ HomΩ-linear(𝐴Ω, 𝐵Ω)𝐺 ,

𝐹-algebra homomorphisms correspond to Ω-algebra homomorphisms, and so

Hom𝐹-algebra(𝐴, 𝐵) ≃ HomΩ-algebra(𝐴Ω, 𝐵Ω)𝐺 .

From Corollary 8.7, we know that 𝐴Ω (resp. 𝐵Ω) is a product of copies of Ω indexed by
the elements of ℱ(𝐴) (resp. ℱ(𝐵)). Let 𝑡 be a map of sets ℱ(𝐵) → ℱ(𝐴). Then

(𝑎𝑖)𝑖∈ℱ(𝐴) ↦ (𝑏𝑗)𝑗∈ℱ(𝐵), 𝑏𝑗 = 𝑎𝑡(𝑗),

is a homomorphism of Ω-algebras 𝐴Ω → 𝐵Ω, and every homomorphism of Ω-algebras
𝐴Ω → 𝐵Ω is of this form for a unique 𝑡. Thus

HomΩ-algebra(𝐴Ω, 𝐵Ω) ≃ HomSets(ℱ(𝐵), ℱ(𝐴)).

This isomorphism is compatible with the actions of 𝐺, and so

HomΩ-algebra(𝐴Ω, 𝐵Ω)𝐺 ≃ HomSets(ℱ(𝐵), ℱ(𝐴))𝐺 .

In other words,
Hom𝐹-algebra(𝐴, 𝐵) ≃ Hom𝐺-sets(ℱ(𝐵), ℱ(𝐴)). □

Theorem 8.21 The functor 𝐴 ⇝ ℱ(𝐴) is a contravariant equivalence from the category
of étale 𝐹-algebras to the category of finite 𝐺-sets with quasi-inverse𝒜.

Proof. This summarizes the results in the last three propositions. □

It is possible to prove Theorem 8.21 directly, without using Galois theory, and then
deduce Galois theory from it. Perhaps I’ll explain this sometime.
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Generalization of Theorem 8.21

Let Ω be a Galois extension of 𝐹 (finite or infinite), and let 𝐺 = Gal(Ω∕𝐹). An étale
𝐹-algebra 𝐴 is split byΩ ifΩ⊗𝐴 is isomorphic to a product of copies ofΩ. For such an
𝐹-algebra, we let ℱ(𝐴) = Hom𝑘-algebra(𝐴,Ω).

Theorem 8.22 The functor 𝐴 ⇝ ℱ(𝐴) is a contravariant equivalence from the category
of étale 𝐹-algebras split byΩ to the category of finite 𝐺-sets.

When Ω is a finite extension of 𝐹, the continuity condition for 𝐺-sets can be omitted.
The proof of Theorem 8.22 is the same as that of Theorem 8.21. Alternatively, deduce

it from 8.21 by noting that the categories in question are the full subcategories of the
categories in 8.21 whose objects are those on which Gal(𝐹sep∕Ω acts trivially.

Geometric re-statement of Theorem 8.21

In this subsection, we assume that the reader is familiar with the notion of an algebraic
variety over a field 𝐹 (geometrically reduced separated scheme of finite type over 𝐹). The
functor 𝐴 ⇝ Spec(𝐴) is a contravariant equivalence from the category of étale algebras
over 𝐹 to the category of zero-dimensional algebraic varieties over 𝐹. In particular, all
zero-dimensional algebraic varieties are affine. If 𝑉 = Spec(𝐴), then

Hom𝐹-algebra(𝐴,Ω) ≃ HomSpec(𝐹)(Spec(Ω), 𝑉)
def= 𝑉(Ω)

(set of points of 𝑉 with coordinates in Ω).

Theorem 8.23 The functor 𝑉 ⇝ 𝑉(Ω) is an equivalence from the category of zero-
dimensional algebraic varieties over 𝐹 to the category of finite continuous 𝐺-sets. Under
this equivalence, connected varieties correspond to sets with a transitive action.

Proof. Combine Theorem 8.21 with the equivalence 𝐴 ⇝ Spec(𝐴). □

Comparison with the theory of covering spaces.

The reader should compare (8.21) and (8.23) with the following statement:
Let 𝑋 be a connected and locally simply connected topological space. Let
𝑥 ∈ 𝑋, and let 𝜋1(𝑋, 𝑥) be the fundament group (homotopy classes of loops
based at 𝑥). Let 𝑌 → 𝑋 be a covering space, and let ℱ(𝑌) denote the
preimage of 𝑥 in 𝑌. There is a natural action of 𝜋1(𝑋, 𝑥) on ℱ(𝑌): let 𝛾
be a (small) loop based at 𝑥 regarded as a function 𝛾∶ [0, 1] → 𝑋, and let
𝑦 ∈ ℱ(𝑌); then 𝛾 it lifts to a function 𝛾𝑦 ∶ [0, 1] → 𝑌 such that 𝛾𝑦(0) = 𝑦,
and we define 𝛾 ⋅ 𝑦 = 𝛾𝑦(1). The functor 𝐸 ⇝ ℱ(𝐸) is an equivalence from
the category of covering spaces of 𝐹 to the category of finite 𝜋1(𝑋, 𝑥)-sets.

For more on this, see the section on the étale fundamental group in my notes Lectures
on Étale Cohomology or Szamuely, Galois groups and fundamental groups, CUP, 2009.

Aside 8.24 (for the experts) It is possible to define the “absolute Galois group” of a field 𝐹
canonically and without assuming the axiom of choice. Let 𝒮 denote the category of sheaves of
ℚ-vector spaces on Spec(𝐹)et having the property that 𝑆(𝐴) is a finite-dimensional vector space
for all 𝐴 and the dimension of 𝑆(𝐾), 𝐾 a field, is bounded. This is a tannakian category, and we
define the absolute Galois group 𝜋 of 𝐹 to be the fundamental group of this category. This is an
affine group scheme in the category 𝒮. For any choice of a separable closure 𝐹sep of 𝐹, we get a
fibre functor 𝜔 on 𝒮, and 𝜔(𝜋) = Gal(𝐹sep∕𝐹). See Julian Rosen, A choice-free absolute Galois
group and Artin motives, arXiv:1706.06573.

https://doi.org/10.48550/arXiv.1706.06573


Chapter9

Transcendental Extensions

In this chapter we consider fields Ω ⊃ 𝐹 with Ωmuch bigger than 𝐹. For example, we
could have ℂ ⊃ ℚ.

Algebraic independence

Elements 𝛼1, ..., 𝛼𝑛 of Ω give rise to an 𝐹-homomorphism

𝑓 ↦ 𝑓(𝛼1, ..., 𝛼𝑛)∶ 𝐹[𝑋1, … , 𝑋𝑛] → Ω.

If the kernel of this homomorphism is zero, then the 𝛼𝑖 are said to be algebraically
independent over𝐹, and otherwise, they are algebraically dependent over𝐹. Thus, the
𝛼𝑖 are algebraically dependent over 𝐹 if there exists a nonzero polynomial 𝑓(𝑋1, ..., 𝑋𝑛) ∈
𝐹[𝑋1, ..., 𝑋𝑛] such that 𝑓(𝛼1, ..., 𝛼𝑛) = 0, and they are algebraically independent if

𝑎𝑖1,...,𝑖𝑛 ∈ 𝐹,
∑

𝑎𝑖1,...,𝑖𝑛𝛼
𝑖1
1 ...𝛼

𝑖𝑛
𝑛 = 0 ⟹ 𝑎𝑖1,...,𝑖𝑛 = 0 all 𝑖1, ..., 𝑖𝑛.

Note the similarity with linear independence. In fact, if 𝑓 is required to be homogeneous
of degree 1, then the definition becomes that of linear independence.

Example 9.1 (a) A single element 𝛼 is algebraically independent over 𝐹 if and only if it
is transcendental over 𝐹.

(b) The complex numbers 𝜋 and 𝑒 are certainly expected to be algebraically indepen-
dent over ℚ, but this has not been proved.

An infinite set 𝐴 is algebraically independent over 𝐹 if every finite subset of 𝐴 is
algebraically independent; otherwise, it is algebraically dependent over 𝐹.

Remark 9.2 If 𝛼1, ..., 𝛼𝑛 are algebraically independent over 𝐹, then the map

𝑓(𝑋1, ..., 𝑋𝑛) ↦ 𝑓(𝛼1, ..., 𝛼𝑛)∶ 𝐹[𝑋1, ..., 𝑋𝑛] → 𝐹[𝛼1, ..., 𝛼𝑛]

is injective, and hence an isomorphism. This isomorphism then extends to the fields of
fractions,

𝑋𝑖 ↦ 𝛼𝑖 ∶ 𝐹(𝑋1, ..., 𝑋𝑛) → 𝐹(𝛼1, ..., 𝛼𝑛)
In this case, 𝐹(𝛼1, ..., 𝛼𝑛) is called a pure transcendental extension of 𝐹. The polyno-
mial

𝑓(𝑋) = 𝑋𝑛 − 𝛼1𝑋𝑛−1 +⋯+ (−1)𝑛𝛼𝑛
has Galois group 𝑆𝑛 over 𝐹(𝛼1, ..., 𝛼𝑛) (see 5.40).
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Lemma 9.3 Let 𝛾 ∈ Ω and let 𝐴 ⊂ Ω. The following conditions are equivalent:
(a) 𝛾 is algebraic over 𝐹(𝐴);
(b) there exist 𝛽1, … , 𝛽𝑛 ∈ 𝐹(𝐴) such that 𝛾𝑛 + 𝛽1𝛾𝑛−1 +⋯+ 𝛽𝑛 = 0;
(c) there exist 𝛽0, 𝛽1, … , 𝛽𝑛 ∈ 𝐹[𝐴], not all 0, such that 𝛽0𝛾𝑛 + 𝛽1𝛾𝑛−1 +⋯+ 𝛽𝑛 = 0;
(d) there exists an 𝑓(𝑋1, … , 𝑋𝑚, 𝑌) ∈ 𝐹[𝑋1… ,𝑋𝑚, 𝑌] and 𝛼1, … , 𝛼𝑚 ∈ 𝐴 such that

𝑓(𝛼1, … , 𝛼𝑚, 𝑌) ≠ 0 but 𝑓(𝛼1, … , 𝛼𝑚, 𝛾) = 0.

Proof. (a)⟹ (b)⟹ (c)⟹ (a) are obvious.
(d)⟹ (c). Write 𝑓(𝑋1, … , 𝑋𝑚, 𝑌) as a polynomial in 𝑌 with coefficients in the ring

𝐹[𝑋1, … , 𝑋𝑚],
𝑓(𝑋1, … , 𝑋𝑚, 𝑌) =

∑
𝑓𝑖(𝑋1, … , 𝑋𝑚)𝑌𝑛−𝑖.

Then (c) holds with 𝛽𝑖 = 𝑓𝑖(𝛼1, … , 𝛼𝑚).
(c) ⟹ (d). The 𝛽𝑖 in (c) can be expressed as polynomials in a finite number of

elements 𝛼1, … , 𝛼𝑚 of𝐴, say, 𝛽𝑖 = 𝑓𝑖(𝛼1, … , 𝛼𝑚)with 𝑓𝑖 ∈ 𝐹[𝑋1, … , 𝑋𝑚]. Then (d) holds
with 𝑓 = ∑𝑓𝑖(𝑋1, … , 𝑋𝑚)𝑌𝑛−𝑖. □

Definition 9.4 When 𝛾 satisfies the equivalent conditions of Lemma 9.3, it is said to
be algebraically dependent on 𝐴 (over 𝐹). A set 𝐵 is algebraically dependent on 𝐴 if
every element of 𝐵 is algebraically dependent on 𝐴.

The theory in the remainder of this chapter is logically very similar to a part of linear
algebra. It is useful to keep the following correspondences in mind:

Linear algebra Transcendence
linearly independent algebraically independent

𝐴 ⊂ span(𝐵) 𝐴 algebraically dependent on 𝐵
basis transcendence basis

dimension transcendence degree

Transcendence bases

Theorem 9.5 (Fundamental result) Let𝐴 = {𝛼1, ..., 𝛼𝑚} and 𝐵 = {𝛽1, ..., 𝛽𝑛} be two
subsets ofΩ. Assume
(a) 𝐴 is algebraically independent (over 𝐹);
(b) 𝐴 is algebraically dependent on 𝐵 (over 𝐹).

Then𝑚 ≤ 𝑛.

We first prove two lemmas.

Lemma 9.6 (The exchange property) Let {𝛼1, ..., 𝛼𝑚} be a subset of Ω; if 𝛽 is alge-
braically dependent on {𝛼1, ..., 𝛼𝑚} but not on {𝛼1, ..., 𝛼𝑚−1}, then 𝛼𝑚 is algebraically de-
pendent on {𝛼1, ..., 𝛼𝑚−1, 𝛽}.

Proof. Because 𝛽 is algebraically dependent on {𝛼1, … , 𝛼𝑚}, there exists a polynomial
𝑓(𝑋1, ..., 𝑋𝑚, 𝑌) with coefficients in 𝐹 such that

𝑓(𝛼1, ..., 𝛼𝑚, 𝑌) ≠ 0, 𝑓(𝛼1, ..., 𝛼𝑚, 𝛽) = 0.
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Write 𝑓 as a polynomial in 𝑋𝑚,

𝑓(𝑋1, ..., 𝑋𝑚, 𝑌) =
∑

𝑖
𝑎𝑖(𝑋1, ..., 𝑋𝑚−1, 𝑌)𝑋𝑛−𝑖

𝑚 ,

and observe that, because 𝑓(𝛼1, … , 𝛼𝑚, 𝑌) ≠ 0, at least one of the polynomials

𝑎𝑖(𝛼1, ..., 𝛼𝑚−1, 𝑌),

say 𝑎𝑖0 , is not the zero polynomial. Because 𝛽 is not algebraically dependent on

{𝛼1, ..., 𝛼𝑚−1},

𝑎𝑖0(𝛼1, ..., 𝛼𝑚−1, 𝛽) ≠ 0. Therefore, 𝑓(𝛼1, ..., 𝛼𝑚−1, 𝑋𝑚, 𝛽) ≠ 0. Since 𝑓(𝛼1, ..., 𝛼𝑚, 𝛽) = 0,
this shows that 𝛼𝑚 is algebraically dependent on {𝛼1, ..., 𝛼𝑚−1, 𝛽}. □

Lemma 9.7 (Transitivity of algebraic dependence) If 𝐶 is algebraically depen-
dent on 𝐵, and 𝐵 is algebraically dependent on 𝐴, then 𝐶 is algebraically dependent on
𝐴.

Proof. The argument in the proof of Proposition 1.45 shows that if 𝛾 is algebraic over a
field 𝐸 which is algebraic over a field 𝐹, then 𝛾 is algebraic over 𝐹 (if 𝑎1, … , 𝑎𝑛 are the
coefficients of the minimal polynomial of 𝛾 over 𝐸, then the field 𝐹[𝑎1, … , 𝑎𝑛, 𝛾] has
finite degree over 𝐹). Apply this with 𝐸 = 𝐹(𝐴 ∪ 𝐵) and 𝐹 = 𝐹(𝐴). □

Proof (of Theorem 9.5) Let 𝑘 be the number of elements that 𝐴 and 𝐵 have in com-
mon. If 𝑘 = 𝑚, then 𝐴 ⊂ 𝐵, and certainly𝑚 ≤ 𝑛. Suppose that 𝑘 < 𝑚, and write 𝐵 =
{𝛼1, ..., 𝛼𝑘, 𝛽𝑘+1, ..., 𝛽𝑛}. Since 𝛼𝑘+1 is algebraically dependent on {𝛼1, ..., 𝛼𝑘, 𝛽𝑘+1, ..., 𝛽𝑛}
but not on {𝛼1, ..., 𝛼𝑘}, there will be a 𝛽𝑗, 𝑘 + 1 ≤ 𝑗 ≤ 𝑛, such that 𝛼𝑘+1 is algebraically
dependent on {𝛼1, ..., 𝛼𝑘, 𝛽𝑘+1, ..., 𝛽𝑗} but not

{𝛼1, ..., 𝛼𝑘, 𝛽𝑘+1, ..., 𝛽𝑗−1}.

The exchange lemma then shows that 𝛽𝑗 is algebraically dependent on

𝐵1
def= 𝐵 ∪ {𝛼𝑘+1} ∖ {𝛽𝑗}.

Therefore 𝐵 is algebraically dependent on 𝐵1, and so 𝐴 is algebraically dependent on
𝐵1 (by 9.7). If 𝑘 + 1 < 𝑚, repeat the argument with 𝐴 and 𝐵1. Eventually we’ll achieve
𝑘 = 𝑚, and𝑚 ≤ 𝑛. □

Definition 9.8 A transcendence basis for Ω over 𝐹 is an algebraically independent
set 𝐴 such that Ω is algebraic over 𝐹(𝐴).

Lemma 9.9 If Ω is algebraic over 𝐹(𝐴), and 𝐴 is minimal among subsets of Ω with this
property, then it is a transcendence basis forΩ over 𝐹.

Proof. If𝐴 is not algebraically independent, then there is an 𝛼 ∈ 𝐴 that is algebraically
dependent on 𝐴 ∖ {𝛼}. It follows from Lemma 9.7 that Ω is algebraic over 𝐹(𝐴 ∖ {𝛼}). □

Theorem 9.10 If there is a finite subset 𝐴 ⊂ Ω such thatΩ is algebraic over 𝐹(𝐴), thenΩ
has a finite transcendence basis over 𝐹. Moreover, every transcendence basis is finite, and
they all have the same number of elements.
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Proof. In fact, every minimal subset 𝐴′ of 𝐴 such thatΩ is algebraic over 𝐹(𝐴′) will be
a transcendence basis. The second statement follows from Theorem 9.5. □

Lemma 9.11 Suppose that𝐴 is algebraically independent, but that𝐴∪ {𝛽} is algebraically
dependent. Then 𝛽 is algebraic over 𝐹(𝐴).

Proof. The hypothesis is that there exists a nonzero polynomial

𝑓(𝑋1, ..., 𝑋𝑛, 𝑌) ∈ 𝐹[𝑋1, ..., 𝑋𝑛, 𝑌]

such that 𝑓(𝛼1, ..., 𝛼𝑛, 𝛽) = 0, some distinct 𝛼1, ..., 𝛼𝑛 ∈ 𝐴. Because 𝐴 is algebraically
independent, 𝑌 does occur in 𝑓. Therefore

𝑓 = 𝑔0𝑌𝑚 + 𝑔1𝑌𝑚−1 +⋯+ 𝑔𝑚, 𝑔𝑖 ∈ 𝐹[𝑋1, ..., 𝑋𝑛], 𝑔0 ≠ 0, 𝑚 ≥ 1.

As 𝑔0 ≠ 0 and the 𝛼𝑖 are algebraically independent, 𝑔0(𝛼1, ..., 𝛼𝑛) ≠ 0. Because 𝛽 is a
root of

𝑓 = 𝑔0(𝛼1, ..., 𝛼𝑛)𝑋𝑚 + 𝑔1(𝛼1, ..., 𝛼𝑛)𝑋𝑚−1 +⋯+ 𝑔𝑚(𝛼1, ..., 𝛼𝑛),

it is algebraic over 𝐹(𝛼1, ..., 𝛼𝑛) ⊂ 𝐹(𝐴). □

Proposition 9.12 Every maximal algebraically independent subset of Ω is a transcen-
dence basis forΩ over 𝐹.

Proof. We have to prove that Ω is algebraic over 𝐹(𝐴) if 𝐴 is maximal among alge-
braically independent subsets. But the maximality implies that, for every 𝛽 ∈ Ω ∖ 𝐴,
𝐴 ∪ {𝛽} is algebraically dependent, and so the lemma shows that 𝛽 is algebraic over
𝐹(𝐴). □

We now need to assume Zorn’s lemma.

Theorem 9.13 Every algebraically independent subset 𝑆 ofΩ is contained in a transcen-
dence basis forΩ over 𝐹; in particular, transcendence bases exist.

Proof. Let 𝒮 be the set of algebraically independent subsets ofΩ containing 𝑆, partially
ordered by inclusion. Let 𝑇 be a totally ordered subset of 𝒮, and let 𝐵 = ⋃{𝐴 ∣ 𝐴 ∈ 𝑇}.
I claim that 𝐵 ∈ 𝒮, i.e., that 𝐵 is algebraically independent. If not, there exists a finite
subset 𝐵′ of 𝐵 that is not algebraically independent. But such a subset will be contained
in one of the sets in 𝑇, which is a contradiction. Now Zorn’s lemma shows that there
exists a maximal algebraically independent set containing 𝑆, which Proposition 9.12
shows to be a transcendence basis for Ω over 𝐹. □

It is possible to show that any two (possibly infinite) transcendence bases for Ω over
𝐹 have the same cardinality. The cardinality of a transcendence basis for Ω over 𝐹 is
called the transcendence degree of Ω over 𝐹. For example, the pure transcendental
extension 𝐹(𝑋1, … , 𝑋𝑛) has transcendence degree 𝑛 over 𝐹.

Example 9.14 Let 𝑝1, … , 𝑝𝑛 be the elementary symmetric polynomials in 𝑋1, … , 𝑋𝑛.
The field 𝐹(𝑋1, … , 𝑋𝑛) is algebraic over 𝐹(𝑝1, … , 𝑝𝑛), and so {𝑝1, 𝑝2, … , 𝑝𝑛} contains a
transcendence basis for 𝐹(𝑋1, … , 𝑋𝑛). Because 𝐹(𝑋1, … , 𝑋𝑛) has transcendence degree
𝑛, the 𝑝𝑖’s must themselves be a transcendence basis.
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Example 9.15 Let Ω be the field of meromorphic functions on a compact complex
manifold𝑀.

(a) The onlymeromorphic functions on theRiemann sphere are the rational functions
in 𝑧. Hence, in this case, Ω is a pure transcendental extension of ℂ of transcendence
degree 1.

(b) If𝑀 is a Riemann surface, then the transcendence degree ofΩ over ℂ is 1, andΩ
is a pure transcendental extension of ℂ ⟺ 𝑀 is isomorphic to the Riemann sphere

(c) If 𝑀 has complex dimension 𝑛, then the transcendence degree is ≤ 𝑛, with
equality holding if𝑀 is embeddable in some projective space.

Proposition 9.16 Any two algebraically closed fields with the same transcendence degree
over 𝐹 are 𝐹-isomorphic.

Proof. Choose transcendence bases 𝐴 and 𝐴′ for the two fields. By assumption, there
exists a bijection 𝐴 → 𝐴′, which defines an 𝐹-isomorphism 𝐹[𝐴] → 𝐹[𝐴′], and hence
an 𝐹-isomorphism of the fields of fractions 𝐹(𝐴) → 𝐹(𝐴′). Use this isomorphism to
identify 𝐹(𝐴) with 𝐹(𝐴′). Then the two fields in question are algebraic closures of the
same field, and hence are isomorphic (Theorem 6.6). □

Remark 9.17 Any two algebraically closed fields with the same uncountable cardinality
and the same characteristic are isomorphic. The idea of the proof is as follows. Let 𝐹 and
𝐹′ be the prime subfields of Ω and Ω′; we can identify 𝐹 with 𝐹′. Then show that when
Ω is uncountable, the cardinality of Ω is the same as the cardinality of a transcendence
basis over 𝐹. Finally, apply the proposition.

Remark 9.18 What are the automorphisms of ℂ? There are only two continuous auto-
morphisms (cf. Exercise A-8 and solution). When we assume Zorn’s lemma, it is easy to
construct many: choose a transcendence basis𝐴 forℂ overℚ, and choose a permutation
𝛼 of 𝐴; then 𝛼 defines an isomorphism ℚ(𝐴) → ℚ(𝐴), which can be extended to an
automorphism of ℂ. Without Zorn’s lemma, there are only two, because the noncon-
tinuous automorphisms are nonmeasurable,1 and it is known that the Zorn’s lemma is
required to construct nonmeasurable functions.2

Lüroth’s theorem

Theorem 9.19 (Lüroth) Let 𝐿 = 𝐹(𝑋) with 𝑋 transcendental over 𝐹. Every subfield 𝐸
of 𝐿 properly containing 𝐹 is of the form 𝐸 = 𝐹(𝑢) for some 𝑢 ∈ 𝐿 transcendental over 𝐹.

We first sketch a geometric proof of Lüroth’s theorem. The inclusion of 𝐸 into 𝐿
corresponds to a map from the projective line ℙ1 onto a complete regular curve 𝐶. The
Riemann-Hurwitz formula shows that 𝐶 has genus 0. Since it has an 𝐹-rational point
(the image of any 𝐹-rational point of ℙ1), it is isomorphic to ℙ1. Therefore 𝐸 = 𝐹(𝑢) for
some 𝑢 ∈ 𝐿 transcendental over 𝐹.

Before giving the elementary proof, we review Gauss’s lemma and its consequences.
1A fairly elementary theorem of G. Mackey says that every measurable homomorphism from a locally

compact group to a topological group is continuous if both groups are second countable. See Theorem B.3,
p. 198 of Zimmer, Ergodic theory and semisimple groups, 1984.

2Solovay, Amodel of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92
(1970), 1–56.
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Gauss’s lemma

Let 𝑅 be a unique factorization domain, and let 𝑄 be its field of fractions, for example,
𝑅 = 𝐹[𝑋] and 𝑄 = 𝐹(𝑋). A polynomial 𝑓(𝑇) = ∑𝑎𝑖𝑇𝑖 in 𝑅[𝑇] is said to be primitive if
its coefficients 𝑎𝑖 have no common factor other than units. Every polynomial 𝑓 in 𝑄[𝑋]
can be written 𝑓 = 𝑐(𝑓) ⋅ 𝑓1 with 𝑐(𝑓) ∈ 𝑄 and 𝑓1 primitive (write 𝑓 = 𝑎𝑓∕𝑎 with 𝑎
a common denominator for the coefficients of 𝑓, and then write 𝑓 = (𝑏∕𝑎)𝑓1 with 𝑏
the greatest common divisor of the coefficients of 𝑎𝑓). The element 𝑐(𝑓) is uniquely
determined up to a unit, and 𝑓 ∈ 𝑅[𝑋] if and only if 𝑐(𝑓) ∈ 𝑅.

9.20 If 𝑓, 𝑔 ∈ 𝑅[𝑇] are primitive, so also is 𝑓𝑔.

Let 𝑓 = ∑𝑎𝑖𝑇𝑖 and 𝑔 =
∑𝑏𝑖𝑇𝑖, and let 𝑝 be a prime element of 𝑅. Because 𝑓 is primitive,

there exists a coefficient 𝑎𝑖 not divisible by 𝑝 — let 𝑎𝑖1 be the first such coefficient.
Similarly, let 𝑏𝑖2 be the first coefficient of 𝑔 not divisible by 𝑝. Then the coefficient of
𝑇𝑖1+𝑖2 in 𝑓𝑔 is not divisible by 𝑝. This shows that 𝑓𝑔 is primitive.

9.21 For any 𝑓, 𝑔 ∈ 𝑅[𝑇], 𝑐(𝑓𝑔) = 𝑐(𝑓)𝑐(𝑔) and (𝑓𝑔)1 = 𝑓1𝑔1.

Let 𝑓 = 𝑐(𝑓)𝑓1 and 𝑔 = 𝑐(𝑔)𝑔1 with 𝑓1 and 𝑔1 primitive. Then 𝑓𝑔 = 𝑐(𝑓)𝑐(𝑔)𝑓1𝑔1 with
𝑓1𝑔1 primitive, and so 𝑐(𝑓𝑔) = 𝑐(𝑓)𝑐(𝑔) and (𝑓𝑔)1 = 𝑓1𝑔1.

9.22 Let 𝑓 be a polynomial in 𝑅[𝑇]. If 𝑓 factors into the product of two nonconstant
polynomials in 𝑄[𝑇], then it factors into the product of two nonconstant polynomials in
𝑅[𝑇].

Suppose that 𝑓 = 𝑔ℎ in 𝑄[𝑇]. Then 𝑓1 = 𝑔1ℎ1 in 𝑅[𝑇], and 𝑓 = 𝑐(𝑓) ⋅ 𝑓1 = (𝑐(𝑓) ⋅ 𝑔1)ℎ1
is a factorization of 𝑓 in 𝑅[𝑇].

9.23 Let 𝑓, 𝑔 ∈ 𝑅[𝑇]. If 𝑓 divides 𝑔 in 𝑄[𝑇] and 𝑓 is primitive, then it divides 𝑔 in 𝑅[𝑇].

Let 𝑓𝑞 = 𝑔 with 𝑞 ∈ 𝑄[𝑇]. Then 𝑐(𝑞) = 𝑐(𝑔) ∈ 𝑅, and so 𝑞 ∈ 𝑅[𝑇].

Proof of Lüroth’s theorem

We define the degree deg(𝑢) of an element 𝑢 of 𝐹(𝑋) to be the larger of the degrees of
the numerator and denominator of 𝑢 when it is expressed in its simplest form.

Lemma 9.24 Let 𝑢 ∈ 𝐹(𝑋) ∖ 𝐹. Then 𝑢 is transcendental over 𝐹, 𝑋 is algebraic over 𝐹(𝑢),
and [𝐹(𝑋)∶ 𝐹(𝑢)] = deg(𝑢).

Proof. Let 𝑢(𝑋) = 𝑎(𝑋)∕𝑏(𝑋) with 𝑎(𝑋) and 𝑏(𝑋) relatively prime polynomials. Then
𝑎(𝑇) − 𝑏(𝑇)𝑢 is a polynomial in 𝐹(𝑢)[𝑇] having 𝑋 as a root, and so 𝑋 is algebraic over
𝐹(𝑢). It follows that 𝑢 is transcendental over 𝐹 (else 𝑋 would be algebraic over 𝐹; 1.31).

The polynomial 𝑎(𝑇)−𝑏(𝑇)𝑍 ∈ 𝐹[𝑍, 𝑇] is clearly irreducible. As 𝑢 is transcendental
over 𝐹,

𝐹[𝑍, 𝑇] ≃ 𝐹[𝑢, 𝑇], 𝑍 ↔ 𝑢, 𝑇 ↔ 𝑇,

and so 𝑎(𝑇) − 𝑏(𝑇)𝑢 is irreducible in 𝐹[𝑢, 𝑇], and hence also in 𝐹(𝑢)[𝑇] by Gauss’s
lemma (9.22). It has 𝑋 as a root, and so, up to a constant, it is the minimal polynomial
of 𝑋 over 𝐹(𝑢), and its degree is deg(𝑢), which proves the lemma. □
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Example 9.25 We have 𝐹(𝑋) = 𝐹(𝑢) if and only if

𝑢 = 𝑎𝑋 + 𝑏
𝑐𝑋 + 𝑑

with 𝑎𝑑 − 𝑏𝑐 ≠ 0.

We now prove Theorem 9.19. For any 𝑢 ∈ 𝐸 ∖ 𝐹,

[𝐹(𝑋)∶ 𝐸] ≤ [𝐹(𝑋)∶ 𝐹(𝑢)] = deg(𝑢),

and so 𝑋 is algebraic over 𝐸. Let

𝑓(𝑇) = 𝑇𝑛 + 𝑎1𝑇𝑛−1 +⋯+ 𝑎𝑛, 𝑎𝑖 ∈ 𝐸, 𝑛 = [𝐹(𝑋)∶ 𝐸],

be its minimal polynomial. As 𝑋 is transcendental over 𝐹, some 𝑎𝑗 ∉ 𝐹, and we’ll show
that 𝐸 = 𝐹(𝑎𝑗) for such an 𝑎𝑗.

Let 𝑑(𝑋) ∈ 𝐹[𝑋] be a polynomial of least degree such that 𝑑(𝑋)𝑎𝑖(𝑋) ∈ 𝐹[𝑋] for all
𝑖, and let

𝑓1(𝑋, 𝑇) = 𝑑𝑓(𝑇) = 𝑑𝑇𝑛 + 𝑑𝑎1𝑇𝑛−1 +⋯+ 𝑑𝑎𝑛 ∈ 𝐹[𝑋, 𝑇].

Then 𝑓1 is primitive as a polynomial in 𝑇, i.e., gcd(𝑑, 𝑑𝑎1, … , 𝑑𝑎𝑛) = 1 in 𝐹[𝑋]. The
degree𝑚 of 𝑓1 in 𝑋 is the largest degree of one of the polynomials 𝑑𝑎1, 𝑑𝑎2, …, say,

𝑚 = deg(𝑑𝑎𝑖).

Write 𝑎𝑖 = 𝑏∕𝑐 with 𝑏, 𝑐 relatively prime polynomials in 𝐹[𝑋]. Now 𝑏(𝑇) − 𝑐(𝑇)𝑎𝑖(𝑋) is
a polynomial in 𝐸[𝑇] having 𝑋 as a root, and so it is divisible by 𝑓, say

𝑓(𝑇) ⋅ 𝑞(𝑇) = 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑎𝑖(𝑋), 𝑞(𝑇) ∈ 𝐸[𝑇].

On multiplying through by 𝑐(𝑋), we find that

𝑐(𝑋) ⋅ 𝑓(𝑇) ⋅ 𝑞(𝑇) = 𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋).

As 𝑓1 differs from 𝑓 by a nonzero element of 𝐹(𝑋), the equation shows that 𝑓1 divides
𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋) in 𝐹(𝑋)[𝑇], but 𝑓1 is primitive in 𝐹[𝑋][𝑇], and so it divides the
polynomial in 𝐹[𝑋][𝑇] = 𝐹[𝑋, 𝑇] (by 9.23), i.e., there exists a polynomial ℎ ∈ 𝐹[𝑋, 𝑇]
such that

𝑓1(𝑋, 𝑇) ⋅ ℎ(𝑋, 𝑇) = 𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋). (14)

In (14), the polynomial 𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋) has degree at most𝑚 in 𝑋, and𝑚
is the degree of 𝑓1(𝑋, 𝑇) in 𝑋. Therefore, 𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋) has degree exactly
𝑚 in 𝑋, and ℎ(𝑋, 𝑇) has degree 0 in 𝑋, i.e., ℎ ∈ 𝐹[𝑇]. It now follows from (14) that
𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋) is not divisible by a nonconstant polynomial in 𝐹[𝑋].

The polynomial 𝑐(𝑋) ⋅𝑏(𝑇)−𝑐(𝑇) ⋅𝑏(𝑋) is symmetric in𝑋 and 𝑇, i.e., it is unchanged
when they are swapped. Therefore, it has degree 𝑚 in 𝑇 and it is not divisible by a
nonconstant polynomial in 𝐹[𝑇]. It now follows from (14) that ℎ is not divisible by a
nonconstant polynomial in 𝐹[𝑇], and so it lies in 𝐹×. We conclude that 𝑓1(𝑋, 𝑇) is a
constant multiple of 𝑐(𝑋) ⋅ 𝑏(𝑇) − 𝑐(𝑇) ⋅ 𝑏(𝑋).

On comparing degrees in 𝑇 in (14), we see that 𝑛 = 𝑚. Thus

[𝐹(𝑋)∶ 𝐹(𝑎𝑖)]
9.24= deg(𝑎𝑖) ≤ deg(𝑑𝑎𝑖) = 𝑚 = 𝑛 = [𝐹(𝑋)∶ 𝐸] ≤ [𝐹(𝑋)∶ 𝐹(𝑎𝑖)].
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Hence, equality holds throughout, and so 𝐸 = 𝐹[𝑎𝑖].
Finally, if 𝑎𝑗 ∉ 𝐹, then

[𝐹(𝑋)∶ 𝐸] ≤ [𝐹(𝑋)∶ 𝐹(𝑎𝑗)]
9.24= deg(𝑎𝑗) ≤ deg(𝑑𝑎𝑗) ≤ deg(𝑑𝑎𝑖) = 𝑚 = [𝐹(𝑋)∶ 𝐸],

and so 𝐸 = 𝐹(𝑎𝑗) as claimed.

Remark 9.26 Lüroth’s theorem fails when there is more than one variable — see
Zariski’s example (footnote to 5.5) and Swan’s example (Remark 5.41). However, the
following is true: if [𝐹(𝑋, 𝑌)∶ 𝐸] < ∞ and 𝐹 is algebraically closed of characteristic
zero, then 𝐸 is a pure transcendental extension of 𝐹 (Theorem of Zariski, 1958).

Notes Lüroth proved his theorem over ℂ in 1876. For general fields, it was proved by Steinitz
in 1910 by the above argument.

Separating transcendence bases

Let 𝐸 ⊃ 𝐹 be fields with 𝐸 finitely generated over 𝐹. A subset {𝑥1, … , 𝑥𝑑} of 𝐸 is a
separating transcendence basis for 𝐸∕𝐹 if it is algebraically independent over 𝐹 and 𝐸
is a finite separable extension of 𝐹(𝑥1, … , 𝑥𝑑).

Theorem 9.27 If 𝐹 is perfect, then every finitely generated extension 𝐸 of 𝐹 admits a
separating transcendence basis over 𝐹.

Proof. If 𝐹 has characteristic zero, then every transcendence basis is separating, and so
the statement becomes that of Theorem 9.10. Thus, we may assume 𝐹 has characteristic
𝑝 ≠ 0. Because 𝐹 is perfect, every polynomial in 𝑋𝑝

1 , … , 𝑋
𝑝
𝑛 with coefficients in 𝐹 is a

𝑝th power in 𝐹[𝑋1, … , 𝑋𝑛]:

∑
𝑎𝑖1⋯𝑖𝑛𝑋

𝑖1𝑝
1 …𝑋𝑖𝑛𝑝

𝑛 = (
∑

𝑎
1
𝑝
𝑖1⋯𝑖𝑛

𝑋𝑖1
1 …𝑋

𝑖𝑛
𝑛 )

𝑝

.

Let 𝐸 = 𝐹(𝑥1, … , 𝑥𝑛), and assume that 𝑛 > 𝑑 + 1, where 𝑑 is the transcendence
degree of 𝐸 over 𝐹. After renumbering, we may suppose that 𝑥1, … , 𝑥𝑑 are algebraically
independent (9.9). Then 𝑓(𝑥1, … , 𝑥𝑑+1) = 0 for some nonzero irreducible polynomial
𝑓(𝑋1, … , 𝑋𝑑+1) with coefficients in 𝐹. Not all 𝜕𝑓∕𝜕𝑋𝑖 are zero, for otherwise 𝑓 would be
a polynomial in 𝑋𝑝

1 , … , 𝑋
𝑝
𝑑+1, which implies that it is a 𝑝th power. After renumbering

𝑥1, … , 𝑥𝑑+1, we may suppose that 𝜕𝑓∕𝜕𝑋𝑑+1 ≠ 0. Then 𝑥𝑑+1 is separably algebraic
over 𝐹(𝑥1, … , 𝑥𝑑) and 𝐹(𝑥1, … , 𝑥𝑑+1, 𝑥𝑑+2) is algebraic over 𝐹(𝑥1, … , 𝑥𝑑+1), hence over
𝐹(𝑥1, … , 𝑥𝑑) (1.31), and so, by the primitive element theorem (5.1), there is an element
𝑦 such that 𝐹(𝑥1, … , 𝑥𝑑+2) = 𝐹(𝑥1, … , 𝑥𝑑, 𝑦). Thus 𝐸 is generated by 𝑛 − 1 elements (as
a field containing 𝐹). After repeating the process, possibly several times, we will have
𝐸 = 𝐹(𝑧1, … , 𝑧𝑑+1) with 𝑧𝑑+1 separable over 𝐹(𝑧1, … , 𝑧𝑑). □

Aside 9.28 In fact, we showed that𝐸 admits a separating transcendence basiswith𝑑+1 elements
where 𝑑 is the transcendence degree. This has the following geometric interpretation: every
irreducible algebraic variety of dimension 𝑑 over a perfect field 𝐹 is birationally equivalent with
a hypersurface𝐻 in 𝔸𝑑+1 for which the projection (𝑎1, … , 𝑎𝑑+1) ↦ (𝑎1, … , 𝑎𝑑) realizes 𝐹(𝐻) as
a finite separable extension of 𝐹(𝔸𝑑) (see my notes Algebraic Geometry).
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Transcendental Galois theory

Theorem 9.29 LetΩ be an algebraically closed field and let 𝐹 be a perfect subfield ofΩ.
If 𝛼 ∈ Ω is fixed by all 𝐹-automorphisms ofΩ, then 𝛼 ∈ 𝐹, i.e.,ΩAut(Ω∕𝐹) = 𝐹.

Proof. Let 𝛼 ∈ Ω ∖ 𝐹. If 𝛼 is algebraic over 𝐹, then there is an 𝐹-homomorphism
𝐹[𝛼] → Ω sending 𝛼 to a conjugate of 𝛼 in Ω different from 𝛼. This homomorphism
extends to an isomorphism 𝐹al → 𝐹al ⊂ Ω, where 𝐹al is the algebraic closure of 𝐹 in
Ω (by 6.6). Now choose a transcendence basis 𝐴 for Ω over 𝐹al. We can extend our
isomorphism to an isomorphism 𝐹al(𝐴) → 𝐹al(𝐴) ⊂ Ω by mapping each element of 𝐴
to itself. Finally, we can extend this isomorphism to an isomorphism from the algebraic
closure Ω of 𝐹al(𝐴) to Ω.

If 𝛼 is transcendental over 𝐹, then it is part of a transcendence basis 𝐴 for Ω over
𝐹 (see 9.13). If 𝐴 ≠ {𝛼}, then there exists an automorphism 𝜎 of 𝐴 such that 𝜎(𝛼) ≠ 𝛼.
Now 𝜎 defines an 𝐹-homomorphism 𝐹(𝐴) → Ω, which extends to an isomorphism
Ω → Ω as before. If 𝐴 = {𝛼}, then we let 𝐹(𝛼) → Ω be the 𝐹-homomorphism sending 𝛼
to 𝛼 + 1. Again, this extends to an isomorphism Ω → Ω. □

Let Ω ⊃ 𝐹 be fields and let 𝐺 = Aut(Ω∕𝐹). For any finite subset 𝑆 of Ω, let

𝐺(𝑆) = {𝜎 ∈ 𝐺 ∣ 𝜎𝑠 = 𝑠 for all 𝑠 ∈ 𝑆}.

Then, as in §7, the subgroups 𝐺(𝑆) of 𝐺 form a neighbourhood base at the identity for a
topology on the group 𝐺, which we again call the Krull topology. The same argument
as in §7 shows that this topology is Hausdorff (but it is not necessarily compact).

Theorem 9.31 LetΩ ⊃ 𝐹 be fields such thatΩ𝐺 = 𝐹, where 𝐺 = Aut(Ω∕𝐹).
(a) For every finite extension 𝐸 of 𝐹 inΩ,ΩAut(Ω∕𝐸) = 𝐸.
(b) The maps

𝐻 ↦ Ω𝐻 , 𝑀 ↦ Aut(Ω∕𝑀) (15)

are inverse bijections between the set of compact subgroups of 𝐺 and the set of intermediate
fields over whichΩ is Galois (possibly infinite):

{compact subgroups of 𝐺} ↔ {fields𝑀 such that 𝐹 ⊂ 𝑀
Galois
⊂ Ω}.

(c) If there exists an𝑀 finitely generated over 𝐹 such thatΩ is Galois over𝑀, then 𝐺 is
locally compact, and under (15):

{open compact subgroups of 𝐺}
1∶ 1
↔ {fields𝑀 such that 𝐹

finitely generated
⊂ 𝑀

Galois
⊂ Ω}.

(d) Let 𝐻 be a subgroup of 𝐺, and let𝑀 = Ω𝐻 . Then the algebraic closure𝑀1 of𝑀
is Galois over𝑀. If moreover 𝐻 = Aut(Ω∕𝑀), then Aut(Ω∕𝑀1) is a normal subgroup
of 𝐻, and 𝜎 ↦ 𝜎|𝑀1 maps 𝐻∕Aut(Ω∕𝑀1) isomorphically onto a dense subgroup of
Aut(𝑀1∕𝑀).

Proof. See 6.3 of Shimura, Introduction to the arithmetic theory of automorphic functions.
Princeton, 1971. □

Exercises

9-1 Find the centralizer of complex conjugation in Aut(ℂ∕ℚ).





AppendixA

Review Exercises

A-1 Let 𝑝 be a prime number, and let𝑚 and 𝑛 be positive integers.
(a) Give necessary and sufficient conditions on 𝑚 and 𝑛 for 𝔽𝑝𝑛 to have a subfield

isomorphic with 𝔽𝑝𝑚 . Prove your answer.
(b) If there is such a subfield, how many subfields isomorphic with 𝔽𝑝𝑚 are there, and

why?

A-2 Show that the Galois group of the splitting field 𝐹 of 𝑋3 − 7 overℚ is isomorphic
to 𝑆3, and exhibit the fields between ℚ and 𝐹. Which of the fields between ℚ and 𝐹 are
normal over ℚ?

A-3 Prove that the two fields ℚ[
√
7] and ℚ[

√
11] are not isomorphic.

A-4 (a) Prove that the multiplicative group of all nonzero elements in a finite field is
cyclic.

(b) Construct explicitly a field of order 9, and exhibit a generator for its multiplicative
group.

A-5 Let 𝑋 be transcendental over a field 𝐹, and let 𝐸 be a subfield of 𝐹(𝑋) properly
containing 𝐹. Prove that 𝑋 is algebraic over 𝐸.

A-6 Prove as directly as you can that if 𝜁 is a primitive 𝑝th root of 1, 𝑝 prime, then the
Galois group of ℚ[𝜁] over ℚ is cyclic of order 𝑝 − 1.

A-7 Let 𝐺 be the Galois group of the polynomial 𝑋5 − 2 over ℚ.
(a) Determine the order of 𝐺.
(b) Determine whether 𝐺 is abelian.

(c) Determine whether 𝐺 is solvable.

A-8 (a) Show that every field homomorphism from ℝ to ℝ is bijective.

(b) Prove that ℂ is isomorphic to infinitely many different subfields of itself.

A-9 Let 𝐹 be a field with 16 elements. How many roots in 𝐹 does each of the following
polynomials have? 𝑋3 − 1; 𝑋4 − 1; 𝑋15 − 1; 𝑋17 − 1.

A-10 Find the degree of a splitting field of the polynomial (𝑋3 − 5)(𝑋3 − 7) over ℚ.

A-11 Find the Galois group of the polynomial 𝑋6 − 5 over each of the fields ℚ and ℝ.

123
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A-12 The coefficients of a polynomial 𝑓(𝑋) are algebraic over a field 𝐹. Show that 𝑓(𝑋)
divides some nonzero polynomial 𝑔(𝑋) with coefficients in 𝐹.

A-13 Let 𝑓(𝑋) be a polynomial in 𝐹[𝑋] of degree 𝑛, and let 𝐸 be a splitting field of 𝑓.
Show that [𝐸 ∶ 𝐹] divides 𝑛!.

A-14 Find a primitive element for the field ℚ[
√
3,
√
7] over ℚ, i.e., an element such

that ℚ[
√
3,
√
7] = ℚ[𝛼].

A-15 Let 𝐺 be the Galois group of (𝑋4 − 2)(𝑋3 − 5) over ℚ.
(a) Give a set of generators for 𝐺, as well as a set of defining relations.
(b) What is the structure of 𝐺 as an abstract group (is it cyclic, dihedral, alternating,

symmetric, etc.)?

A-16 Let 𝐹 be a finite field of characteristic ≠ 2. Prove that 𝑋2 = −1 has a solution in
𝐹 if and only if |𝐹| ≡ 1 mod 4.

A-17 Let 𝐸 be the splitting field overℚ of (𝑋2 − 2)(𝑋2 − 5)(𝑋2 − 7). Find an element 𝛼
in 𝐸 such that 𝐸 = ℚ[𝛼]. (You must prove that 𝐸 = ℚ[𝛼].)

A-18 Let 𝐸 be a Galois extension of 𝐹 with Galois group 𝑆𝑛, 𝑛 > 1 not prime. Let 𝐻1
be the subgroup of 𝑆𝑛 of elements fixing 1, and let 𝐻2 be the subgroup generated by the
cycle (123…𝑛). Let 𝐸𝑖 = 𝐸𝐻𝑖 , 𝑖 = 1, 2. Find the degrees of 𝐸1, 𝐸2, 𝐸1 ∩𝐸2, and 𝐸1𝐸2 over
𝐹. Show that there exists a field𝑀 such that 𝐹 ⊂ 𝑀 ⊂ 𝐸2,𝑀 ≠ 𝐹,𝑀 ≠ 𝐸2, but that no
such field exists for 𝐸1.

A-19 Let 𝜁 be a primitive 12th root of 1 over ℚ. How many fields are there strictly
between ℚ[𝜁3] and ℚ[𝜁].

A-20 For the polynomial 𝑋3 − 3, find explicitly its splitting field overℚ and elements
that generate its Galois group.

A-21 Let 𝐸 = ℚ[𝜁], 𝜁5 = 1, 𝜁 ≠ 1. Show that 𝑖 ∉ 𝐸, and that if 𝐿 = 𝐸[𝑖], then −1 is a
norm from 𝐿 to 𝐸. Here 𝑖 =

√
−1.

A-22 Let 𝐸 be an extension of 𝐹, and let Ω be an algebraic closure of 𝐸. Let 𝜎1, … , 𝜎𝑛
be distinct 𝐹-isomorphisms 𝐸 → Ω.
(a) Show that 𝜎1, … , 𝜎𝑛 are linearly dependent over Ω.
(b) Show that [𝐸 ∶ 𝐹] ≥ 𝑚.
(c) Let 𝐹 have characteristic 𝑝 > 0, and let 𝐿 be a subfield of Ω containing 𝐸 and

such that 𝑎𝑝 ∈ 𝐸 for all 𝑎 ∈ 𝐿. Show that each 𝜎𝑖 has a unique extension to a
homomorphism 𝜎′𝑖 ∶ 𝐿 → Ω.

A-23 Identify the Galois group of the splitting field 𝐹 of 𝑋4 − 3 overℚ. Determine the
number of quadratic subfields.

A-24 Let 𝐹 be a subfield of a finite field 𝐸. Prove that the trace map 𝑇 = Tr𝐸∕𝐹 and the
norm map 𝑁 = Nm𝐸∕𝐹 of 𝐸 over 𝐹 both map 𝐸 onto 𝐹. (You may quote basic properties
of finite fields and the trace and norm.)

A-25 Prove or disprove by counterexample.
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(a) If 𝐿∕𝐹 is an extension of fields of degree 2, then there is an automorphism 𝜎 of 𝐿
such that 𝐹 is the fixed field of 𝜎.

(b) The same as (a) except that 𝐿 is also given to be finite.

A-26 A finite Galois extension 𝐿 of a field 𝐾 has degree 8100. Show that there is a field
𝐹 with 𝐾 ⊂ 𝐹 ⊂ 𝐿 such that [𝐹 ∶ 𝐾] = 100.

A-27 An algebraic extension 𝐿 of a field 𝐾 of characteristic 0 is generated by an element
𝜃 that is a root of both of the polynomials 𝑋3 − 1 and 𝑋4 + 𝑋2 + 1. Given that 𝐿 ≠ 𝐾,
find the minimal polynomial of 𝜃.

A-28 Let 𝐹∕ℚ be a Galois extension of degree 3𝑛, 𝑛 ≥ 1. Prove that there is a chain of
fields

ℚ = 𝐹0 ⊂ 𝐹1 ⊂ ⋯𝐹𝑛 = 𝐹
such that for every 𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1, [𝐹𝑖+1∶ 𝐹𝑖] = 3.

A-29 Let 𝐿 be the splitting field over ℚ of an equation of degree 5 with distinct roots.
Suppose that 𝐿 has an automorphism that fixes three of these roots while interchanging
the other two and also an automorphism 𝛼 ≠ 1 of order 5.
(a) Prove that the group of automorphisms of 𝐿 is the symmetric group on 5 elements.
(b) How many proper subfields of 𝐿 are normal extensions of ℚ? For each such field

𝐹, what is [𝐹 ∶ ℚ]?

A-30 If 𝐿∕𝐾 is a separable algebraic field extension of finite degree 𝑑, show that the
number of fields between 𝐾 and 𝐿 is at most 2𝑑!. [This is far from best possible. See
math.stackexchange.com, question 522976.]

A-31 Let𝐾 be the splitting field overℚ of𝑋5−1. Describe the Galois groupGal(𝐾∕ℚ) of
𝐾 overℚ, and show that𝐾 has exactly one subfield of degree 2 overℚ, namely,ℚ[𝜁+𝜁4],
𝜁 ≠ 1 a root of 𝑋5 − 1. Find the minimal polynomial of 𝜁 + 𝜁4 over ℚ. Find Gal(𝐿∕ℚ)
when 𝐿 is the splitting field over ℚ of
(a) (𝑋2 − 5)(𝑋5 − 1);
(b) (𝑋2 + 3)(𝑋5 − 1).

A-32 Let Ω1 and Ω2 be algebraically closed fields of transcendence degree 5 over ℚ,
and let 𝛼∶ Ω1 → Ω2 be a homomorphism (in particular, 𝛼(1) = 1). Show that 𝛼 is a
bijection. (State carefully all theorems you use.)

A-33 Find the group of ℚ-automorphisms of the field 𝑘 = ℚ[
√
−3,

√
−2].

A-34 Prove that the polynomial 𝑓(𝑋) = 𝑋3 − 5 is irreducible over the field ℚ[
√
7]. If

𝐿 is the splitting field of 𝑓(𝑋) over ℚ[
√
7], prove that the Galois group of 𝐿∕ℚ[

√
7] is

isomorphic to 𝑆3. Prove that there must exist a subfield𝐾 of 𝐿 such that the Galois group
of 𝐿∕𝐾 is cyclic of order 3.

A-35 Identify the Galois group 𝐺 of the polynomial 𝑓(𝑋) = 𝑋5 − 6𝑋4 + 3 over 𝐹, when
(a) 𝐹 = ℚ and when (b) 𝐹 = 𝔽2. In each case, if 𝐸 is the splitting field of 𝑓(𝑋) over 𝐹,
determine how many fields 𝐾 there are such that 𝐸 ⊃ 𝐾 ⊃ 𝐹 with [𝐾∶ 𝐹] = 2.

A-36 Let 𝐾 be a field of characteristic 𝑝, say with 𝑝𝑛 elements, and let 𝜃 be the auto-
morphism of 𝐾 that maps every element to its 𝑝th power. Show that there exists an
automorphism 𝛼 of 𝐾 such that 𝜃𝛼2 = 1 if and only if 𝑛 is odd.
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A-37 Describe the splitting field and Galois group, over ℚ, of the polynomial 𝑋5 − 9.

A-38 Suppose that 𝐸 is a Galois field extension of a field 𝐹 such that [𝐸 ∶ 𝐹] = 53 ⋅ (43)2.
Prove that there exist fields 𝐾1 and 𝐾2 lying strictly between 𝐹 and 𝐸 with the following
properties: (i) each 𝐾𝑖 is a Galois extension of 𝐹; (ii) 𝐾1 ∩ 𝐾2 = 𝐹; and (iii) 𝐾1𝐾2 = 𝐸.

A-39 Let 𝐹 = 𝔽𝑝 for some prime 𝑝. Let𝑚 be a positive integer not divisible by 𝑝, and
let 𝐾 be the splitting field of 𝑋𝑚 − 1. Find [𝐾∶ 𝐹] and prove that your answer is correct.

A-40 Let 𝐹 be a field of 81 elements. For each of the following polynomials 𝑔(𝑋),
determine the number of roots of 𝑔(𝑋) that lie in 𝐹: 𝑋80 − 1, 𝑋81 − 1, 𝑋88 − 1.

A-41 Describe the Galois group of the polynomial 𝑋6 − 7 over ℚ.

A-42 Let 𝐾 be a field of characteristic 𝑝 > 0 and let 𝐹 = 𝐾(𝑢, 𝑣) be a field extension of
degree 𝑝2 such that 𝑢𝑝 ∈ 𝐾 and 𝑣𝑝 ∈ 𝐾. Prove that 𝐾 is not finite, that 𝐹 is not a simple
extension of 𝐾, and that there exist infinitely many intermediate fields 𝐹 ⊃ 𝐿 ⊃ 𝐾.

A-43 Find the splitting field and Galois group of the polynomial 𝑋3 − 5 over the field
ℚ[
√
2].

A-44 For every prime 𝑝, find the Galois group overℚ of the polynomial 𝑋5 −5𝑝4𝑋 +𝑝.

A-45 Factorize 𝑋4 + 1 over each of the finite fields (a) 𝔽5; (b) 𝔽25; and (c) 𝔽125. Find its
splitting field in each case.

A-46 Let ℚ[𝛼] be a field of finite degree over ℚ. Assume that there is a 𝑞 ∈ ℚ, 𝑞 ≠ 0,
such that |𝜌(𝛼)| = 𝑞 for all homomorphisms 𝜌∶ ℚ[𝛼] → ℂ. Show that the set of roots
of the minimal polynomial of 𝛼 is the same as that of 𝑞2∕𝛼. Deduce that there exists an
automorphism 𝜎 of ℚ[𝛼] such that
(a) 𝜎2 = 1 and
(b) 𝜌(𝜎𝛾) = 𝜌(𝛾) for all 𝛾 ∈ ℚ[𝛼] and 𝜌∶ ℚ[𝛼] → ℂ.

A-47 Let 𝐹 be a field of characteristic zero, and let 𝑝 be a prime number. Suppose that
𝐹 has the property that all irreducible polynomials 𝑓(𝑋) ∈ 𝐹[𝑋] have degree a power
of 𝑝 (1 = 𝑝0 is allowed). Show that every equation 𝑔(𝑋) = 0, 𝑔 ∈ 𝐹[𝑋], is solvable by
extracting radicals.

A-48 Let 𝐾 = ℚ[
√
5,
√
−7] and let 𝐿 be the splitting field over ℚ of 𝑓(𝑋) = 𝑋3 − 10.

(a) Determine the Galois groups of 𝐾 and 𝐿 over ℚ.
(b) Decide whether 𝐾 contains a root of 𝑓.
(c) Determine the degree of the field 𝐾 ∩ 𝐿 over ℚ.
[Assume all fields are subfields of ℂ.]

A-49 Find the splitting field (over 𝔽𝑝) of 𝑋𝑝𝑟 − 𝑋 ∈ 𝔽𝑝[𝑋], and deduce that 𝑋𝑝𝑟 − 𝑋
has an irreducible factor 𝑓 ∈ 𝔽𝑝[𝑋] of degree 𝑟. Let 𝑔(𝑋) ∈ ℤ[𝑋] be a monic polynomial
that becomes equal to 𝑓(𝑋) when its coefficients are read modulo 𝑝. Show that 𝑔(𝑋) is
irreducible in ℚ[𝑋].

A-50 Let 𝐸 be the splitting field of 𝑋3 − 51 over ℚ. List all the subfields of 𝐸, and find
an element 𝛾 of 𝐸 such that 𝐸 = ℚ[𝛾].
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A-51 Let 𝑘 = 𝔽1024 be the field with 1024 elements, and let 𝐾 be an extension of 𝑘 of
degree 2. Prove that there is a unique automorphism 𝜎 of 𝐾 of order 2 which leaves 𝑘
elementwise fixed and determine the number of elements of 𝐾× such that 𝜎(𝑥) = 𝑥−1.

A-52 Let 𝐹 and 𝐸 be finite fields of the same characteristic. Prove or disprove these
statements:
(a) There is a ring homomorphism of 𝐹 into 𝐸 if and only if |𝐸| is a power of |𝐹|.
(b) There is an injective group homomorphism of the multiplicative group of 𝐹 into

the multiplicative group of 𝐸 if and only if |𝐸| is a power of |𝐹|.

A-53 Let 𝐿∕𝐾 be an algebraic extension of fields. Prove that 𝐿 is algebraically closed if
every polynomial over 𝐾 factors completely over 𝐿.

A-54 Let 𝐾 be a field, and let𝑀 = 𝐾(𝑋), 𝑋 an indeterminate. Let 𝐿 be an intermediate
field different from 𝐾. Prove that𝑀 is finite-dimensional over 𝐿.

A-55 Let 𝜃1, 𝜃2, 𝜃3 be the roots of the polynomial 𝑓(𝑋) = 𝑋3 + 𝑋2 − 9𝑋 + 1.
(a) Show that the 𝜃𝑖 are real, nonrational, and distinct.
(b) Explain why the Galois group of 𝑓(𝑋) over ℚmust be either 𝐴3 or 𝑆3. Without

carrying it out, give a brief description of a method for deciding which it is.
(c) Show that the rows of the matrix

⎛
⎜
⎜
⎝

3 9 9 9
3 𝜃1 𝜃2 𝜃3
3 𝜃2 𝜃3 𝜃1
3 𝜃3 𝜃1 𝜃2

⎞
⎟
⎟
⎠

are pairwise orthogonal; compute their lengths, and compute the determinant of
the matrix.

A-56 Let 𝐸∕𝐾 be a Galois extension of degree 𝑝2𝑞 where 𝑝 and 𝑞 are primes, 𝑞 < 𝑝 and
𝑞 not dividing 𝑝2 − 1. Prove that:
(a) there exist intermediate fields 𝐿 and𝑀 such that [𝐿∶ 𝐾] = 𝑝2 and [𝑀∶ 𝐾] = 𝑞;
(b) such fields 𝐿 and𝑀 must be Galois over 𝐾; and
(c) the Galois group of 𝐸∕𝐾 must be abelian.

A-57 Let 𝜁 be a primitive 7th root of 1 (in ℂ).
(a) Prove that 1+𝑋 +𝑋2 +𝑋3 +𝑋4 +𝑋5 +𝑋6 is the minimal polynomial of 𝜁 overℚ.
(b) Find the minimal polynomial of 𝜁 + 1

𝜁
over ℚ.

A-58 Find the degree over ℚ of the Galois closure 𝐾 of ℚ[2
1
4 ] and determine the iso-

morphism class of Gal(𝐾∕ℚ).

A-59 Let 𝑝, 𝑞 be distinct positive prime numbers, and consider the extension 𝐾 =
ℚ[
√
𝑝,
√
𝑞] ⊃ ℚ.

(a) Prove that the Galois group is isomorphic to 𝐶2 × 𝐶2.
(b) Prove that every subfield of 𝐾 of degree 2 over ℚ is of the form ℚ[

√
𝑚] where

𝑚 ∈ {𝑝, 𝑞, 𝑝𝑞}.
(c) Show that there is an element 𝛾 ∈ 𝐾 such that 𝐾 = ℚ[𝛾].





AppendixB

Two-hour Examination

1. (a) Let 𝜎 be an automorphism of a field 𝐸. If 𝜎4 = 1 and

𝜎(𝛼) + 𝜎3(𝛼) = 𝛼 + 𝜎2(𝛼) all 𝛼 ∈ 𝐸,

show that 𝜎2 = 1.
(b) Let 𝑝 be a prime number and let 𝑎, 𝑏 be rational numbers such that 𝑎2 + 𝑝𝑏2 = 1.
Show that there exist rational numbers 𝑐, 𝑑 such that 𝑎 = 𝑐2−𝑝𝑑2

𝑐2+𝑝𝑑2
and 𝑏 = 2𝑐𝑑

𝑐2+𝑝𝑑2
.

2. Let 𝑓(𝑋) be an irreducible polynomial of degree 4 in ℚ[𝑋], and let 𝑔(𝑋) be the
resolvent cubic of 𝑓. What is the relation between the Galois group of 𝑓 and that of 𝑔?
Find the Galois group of 𝑓 if
(a) 𝑔(𝑋) = 𝑋3 − 3𝑋 + 1;
(b) 𝑔(𝑋) = 𝑋3 + 3𝑋 + 1.

3. (a) How many monic irreducible factors does 𝑋255 − 1 ∈ 𝔽2[𝑋] have, and what are
their degrees.
(b) How many monic irreducible factors does 𝑋255 − 1 ∈ ℚ[𝑋] have, and what are their
degrees?

4. Let 𝐸 be the splitting field of (𝑋5 − 3)(𝑋5 − 7) ∈ ℚ[𝑋]. What is the degree of 𝐸 over
ℚ? How many proper subfields of 𝐸 are there that are not contained in the splitting
fields of both 𝑋5 − 3 and 𝑋5 − 7?
[You may assume that 7 is not a 5th power in the splitting field of 𝑋5 − 3.]
5. Consider an extension Ω ⊃ 𝐹 of fields. Define 𝑎 ∈ Ω to be 𝐹-constructible if it is
contained in a field of the form

𝐹[
√
𝑎1, … ,

√
𝑎𝑛], 𝑎𝑖 ∈ 𝐹[

√
𝑎1, … ,

√
𝑎𝑖−1].

Assume Ω is a finite Galois extension of 𝐹 and construct a field 𝐸, 𝐹 ⊂ 𝐸 ⊂ Ω, such that
every 𝑎 ∈ Ω is 𝐸-constructible and 𝐸 is minimal with this property.
6. Let Ω be an extension field of a field 𝐹. Show that every 𝐹-homomorphism Ω → Ω is
an isomorphism provided:
(a) Ω is algebraically closed, and

(b) Ω has finite transcendence degree over 𝐹.
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Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

You should prove all answers. You may use results proved in class or in the notes, but you
should indicate clearly what you are using.

Possibly useful facts: The discriminant of 𝑋3+𝑎𝑋+𝑏 is−4𝑎3−27𝑏2 and 28−1 = 255 =
3 × 5 × 17.



AppendixC

Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions.
1-1. Similar to Example 1.28.

1-2. Verify that 3 is not a square in ℚ[
√
2], and so [ℚ[

√
2,
√
3]∶ ℚ] = 4.

1-3. (a) Apply the division algorithm, to get 𝑓(𝑋) = 𝑞(𝑋)(𝑋 − 𝑎) + 𝑟(𝑋) with 𝑟(𝑋)
constant, and put 𝑋 = 𝑎 to find 𝑟 = 𝑓(𝑎).
(c) Use that factorization in 𝐹[𝑋] is unique (or use induction on the degree of 𝑓).
(d) If 𝐺 had two cyclic factors 𝐶 and 𝐶′ whose orders were divisible by a prime 𝑝, then
𝐺 would have (at least) 𝑝2 elements of order dividing 𝑝. This doesn’t happen, and it
follows that 𝐺 is cyclic.
(e) The elements of order𝑚 in 𝐹× are the roots of the polynomial 𝑋𝑚 − 1, and so there
are at most𝑚 of them. Hence every finite subgroup 𝐺 of 𝐹× satisfies the condition in (d).

1-4. Note that it suffices to construct 𝛼 = cos 2𝜋
7
, and that [ℚ[𝛼]∶ ℚ] = 7−1

2
= 3, and so

its minimal polynomial has degree 3 (see Example 3.22). There is a standard method
(once taught in high schools) for solving cubics using the equation

cos 3𝜃 = 4 cos3 𝜃 − 3 cos 𝜃.

By “completing the cube”, reduce the cubic to the form 𝑋3 − 𝑝𝑋 − 𝑞. Then construct
a square root 𝑎 of 4𝑝

3
, so that 𝑎2 = 4𝑝

3
. Let 3𝜃 be the angle such that cos 3𝜃 = 4𝑞

𝑎3
, and

use the angle trisector to construct cos 𝜃. From the displayed equation, we find that
𝛼 = 𝑎 cos 𝜃 is a root of 𝑋3 − 𝑝𝑋 − 𝑞. For a geometric construction, see sx93476.
1-5. Let 𝑓1 be an irreducible factor of 𝑓 in 𝐸[𝑋], and let (𝐿, 𝛼) be a stem field for 𝑓1 over
𝐸. Then𝑚|[𝐿∶ 𝐹] because 𝐿 ⊃ 𝐸 (1.20). But 𝑓(𝛼) = 0, and so (𝐹[𝛼], 𝛼) is a stem field
for 𝑓 over 𝐹, which implies that [𝐹[𝛼]∶ 𝐹] = 𝑛. Now 𝑛|[𝐿∶ 𝐹] because 𝐿 ⊃ 𝐹[𝛼]. We
deduce that [𝐿∶ 𝐹] = 𝑚𝑛 and [𝐿∶ 𝐸] = 𝑛. But [𝐿∶ 𝐸] = deg(𝑓1), and so 𝑓1 = 𝑓.
1-6. The polynomials 𝑓(𝑋) − 1 and 𝑓(𝑋) + 1 have only finitely many roots, and so there
exists an 𝑛 ∈ ℤ such that 𝑓(𝑛) ≠ ±1. Let 𝑝 be a prime dividing 𝑓(𝑛). Then 𝑓(𝑛) = 0
modulo 𝑝, and so 𝑓 has a root in 𝔽𝑝. Thus it is not irreducible in 𝔽𝑝[𝑋].
1-7. It is easy to see that 𝑅 is ring, and so it remains to show that every nonzero element
𝑎+𝑏𝛼+𝑐𝛼2 has an inverse in 𝑅. Let 𝑓(𝑋) = 𝑋3−2 and 𝑔(𝑋) = 𝑐𝑋2+𝑏𝑋+𝑎. As 𝑓 is irre-
ducible and deg(𝑔) < deg(𝑓), 𝑓 and 𝑔 are relatively prime. Therefore Euclid’s algorithm
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gives polynomials 𝑢(𝑋) and 𝑣(𝑋) with deg 𝑣 < 3 such that 𝑢(𝑋)𝑓(𝑋) + 𝑣(𝑋)𝑔(𝑋) = 1.
On putting 𝑋 = 𝛼 in this equation, we find that 𝑣(𝛼)𝑔(𝛼) = 1, i.e., 𝑣(𝛼) is inverse to
𝑔(𝛼) = 𝑎 + 𝑏𝛼 + 𝑐𝛼2. Alternatively, 𝑅 is an integral domain (being a subring of ℂ), and
so (1.23) shows that 𝑅 is a field.
1-8. This is Problem 4, p. 3, in Borevich and Shafarevich. Number theory. Academic
Press, 1966.

2-1. (a) is obvious, as is the “only if” in (b). For the “if” note that for any 𝑎 ∈ 𝑆(𝐸),
𝑎 ∉ 𝐹2, 𝐸 ≈ 𝐹[𝑋]∕(𝑋2 − 𝑎).

(c) Take 𝐸𝑖 = ℚ[
√
𝑝𝑖] with 𝑝𝑖 the 𝑖th prime. Check that 𝑝𝑖 is the only prime that

becomes a square in 𝐸𝑖. For this use that (𝑎 + 𝑏
√
𝑝)2 ∈ ℚ ⟹ 2𝑎𝑏 = 0.

(d) Every field of characteristic 𝑝 contains (an isomorphic copy of) 𝔽𝑝, and so we are
looking at the quadratic extensions of 𝔽𝑝. The homomorphism 𝑎 ↦ 𝑎2∶ 𝔽×𝑝 → 𝔽×𝑝 has
kernel {±1}, and so its image has index 2 in 𝔽×𝑝 . Thus the only possibility for 𝑆(𝐸) is 𝔽×𝑝 ,
and so there is atmost one𝐸 (up to𝔽𝑝-isomorphism). To get one, take𝐸 = 𝐹[𝑋]∕(𝑋2−𝑎),
𝑎 ∉ 𝔽2𝑝.
2-2. (a) If 𝛼 is a root of 𝑓(𝑋) = 𝑋𝑝 − 𝑋 − 𝑎 (in some splitting field), then the remaining
roots are 𝛼+1,… , 𝛼+𝑝−1, which obviously lie in whichever field contains 𝛼. Moreover,
they are distinct. Suppose that, in 𝐹[𝑋],

𝑓(𝑋) = (𝑋𝑟 + 𝑎1𝑋𝑟−1 +⋯+ 𝑎𝑟)(𝑋𝑝−𝑟 +⋯), 0 < 𝑟 < 𝑝.

Then −𝑎1 is a sum of 𝑟 of the roots of 𝑓, −𝑎1 = 𝑟𝛼 + 𝑑 some 𝑑 ∈ ℤ ⋅ 1𝐹 , and it follows
that 𝛼 ∈ 𝐹.

(b) As 0 and 1 are not roots of 𝑋𝑝 − 𝑋 − 1 in 𝔽𝑝 it can’t have 𝑝 distinct roots in 𝔽𝑝,
and so (a) implies that 𝑋𝑝 − 𝑋 − 1 is irreducible in 𝔽𝑝[𝑋] and hence also in ℤ[𝑋] and
ℚ[𝑋] (see 1.18, 1.13).
2-3. Let 𝛼 be the real 5th root of 2. Eisenstein’s criterion shows that 𝑋5 − 2 is irre-
ducible in ℚ[𝑋], and so ℚ[ 5

√
2] has degree 5 over ℚ. The remaining roots of 𝑋5 − 2 are

𝜁𝛼, 𝜁2𝛼, 𝜁3𝛼, 𝜁4𝛼, where 𝜁 is a primitive 5th root of 1. It follows that the subfield of ℂ
generated by the roots of 𝑋5 − 2 is ℚ[𝜁, 𝛼]. The degree of ℚ[𝜁, 𝛼] is 20, since it must be
divisible by [ℚ[𝜁]∶ ℚ] = 4 and [ℚ[𝛼]∶ ℚ] = 5.
2-4. It’s 𝔽𝑝 because 𝑋𝑝𝑚 − 1 = (𝑋 − 1)𝑝𝑚 . (Perhaps I meant 𝑋𝑝𝑚 −𝑋— that would have
been more interesting.)

2-5. If 𝑓(𝑋) = ∏(𝑋 − 𝛼𝑖)𝑚𝑖 , 𝛼𝑖 ≠ 𝛼𝑗, then

𝑓′(𝑋) =
∑

𝑚𝑖
𝑓(𝑋)
𝑋 − 𝛼𝑖

and so 𝑑(𝑋) = ∏
𝑚𝑖>1

(𝑋 − 𝛼𝑖)𝑚𝑖−1. Therefore 𝑔(𝑋) = ∏(𝑋 − 𝛼𝑖).

2-6. From (2.20) we know that either 𝑓 is separable or 𝑓(𝑋) = 𝑓1(𝑋𝑝) for some polyno-
mial 𝑓1. Clearly 𝑓1 is also irreducible. If 𝑓1 is not separable, it can be written 𝑓1(𝑋) =
𝑓2(𝑋𝑝). Continue in the way until you arrive at a separable polynomial. For the final
statement, note that 𝑔(𝑋) = ∏(𝑋 − 𝑎𝑖), 𝑎𝑖 ≠ 𝑎𝑗, and so 𝑓(𝑋) = 𝑔(𝑋𝑝𝑒) = ∏(𝑋 − 𝛼𝑖)𝑝

𝑒

with 𝛼𝑝
𝑒

𝑖 = 𝑎𝑖.
3-1. Let 𝜎 and 𝜏 be automorphisms of 𝐹(𝑋) given by 𝜎(𝑋) = −𝑋 and 𝜏(𝑋) = 1 − 𝑋.
Then 𝜎 and 𝜏 fix 𝑋2 and 𝑋2 − 𝑋 respectively, and so 𝜎𝜏 fixes 𝐸 def= 𝐹(𝑋) ∩ 𝐹(𝑋2 − 𝑋).
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But 𝛼𝜏𝑋 = 1 + 𝑋, and so (𝜎𝜏)𝑚(𝑋) = 𝑚 + 𝑋. Thus Aut(𝐹(𝑋)∕𝐸) is infinite, which
implies that [𝐹(𝑋)∶ 𝐸] is infinite (otherwise 𝐹(𝑋) = 𝐸[𝛼1, … , 𝛼𝑛]; an 𝐸-automorphism
of 𝐹(𝑋) is determined by its values on the 𝛼𝑖, and its value on 𝛼𝑖 is a root of the minimal
polynomial of 𝛼𝑖). If 𝐸 contains a polynomial 𝑓(𝑋) of degree𝑚 > 0, then [𝐹(𝑋)∶ 𝐸] ≤
[𝐹(𝑋)∶ 𝐹(𝑓(𝑋))] = 𝑚— contradiction.

3-2. Since 1 + 𝜁 + ⋯ + 𝜁𝑝−1 = 0, we have 𝛼 + 𝛽 = −1. If 𝑖 ∈ 𝐻, then 𝑖𝐻 = 𝐻 and
𝑖(𝐺 ∖ 𝐻) = 𝐺 ∖ 𝐻, and so 𝛼 and 𝛽 are fixed by 𝐻. If 𝑗 ∈ 𝐺 ∖ 𝐻, then 𝑗𝐻 = 𝐺 ∖ 𝐻 and
𝑗(𝐺 ∖ 𝐻) = 𝐻, and so 𝑗𝛼 = 𝛽 and 𝑗𝛽 = 𝛼. Hence 𝛼𝛽 ∈ ℚ, and 𝛼 and 𝛽 are the roots of
𝑋2 + 𝑋 + 𝛼𝛽.

Note that
𝛼𝛽 =

∑

𝑖,𝑗
𝜁𝑖+𝑗, 𝑖 ∈ 𝐻, 𝑗 ∈ 𝐺 ∖ 𝐻.

Howmany times do we have 𝑖+𝑗 = 0? If 𝑖+𝑗 = 0, then−1 = 𝑖−1𝑗, which is a nonsquare;
conversely, if −1 is a nonsquare, take 𝑖 = 1 and 𝑗 = −1 to get 𝑖 + 𝑗 = 0. Hence

𝑖 + 𝑗 = 0 some 𝑖 ∈ 𝐻, 𝑗 ∈ 𝐺 ∖ 𝐻 ⟺ −1 is a square mod 𝑝 ⟺ 𝑝 ≡ −1 mod 4.

If we do have a solution to 𝑖 + 𝑗 = 0, we get all solutions by multiplying it through by the
𝑝−1
2

squares. So in the sum for 𝛼𝛽 we see 1 a total of 𝑝−1
2

times when 𝑝 ≡ 3 mod 4 and
not at all if 𝑝 ≡ 1 mod 4. In either case, the remaining terms add to a rational number,
which implies that each power of 𝜁 occurs the same number of times.

Thus for 𝑝 ≡ 1 mod 4, 𝛼𝛽 = −(𝑝−1
2
)2∕(𝑝 − 1) = −𝑝−1

4
; the polynomial satisfied by

𝛼 and 𝛽 is 𝑋2 + 𝑋 − 𝑝−1
4
, whose roots are (−1 ±

√
1 + 𝑝 − 1)∕2; the fixed field of 𝐻 is

ℚ[
√
𝑝].
For 𝑝 ≡ −1 mod 4, 𝛼𝛽 = 𝑝−1

2
+ (−1)

(
(𝑝−1

2
)2 − 𝑝−1

2

)
∕(𝑝 − 1) = 𝑝−1

2
− 𝑝−3

4
= 𝑝+1

4
;

the polynomial is 𝑋2 + 𝑋 + 𝑝+1
4
, with roots (−1 ±

√
1 − 𝑝 − 1)∕2; the fixed field of𝐻 is

ℚ[
√
−𝑝].
See also sx984457.

3-3. (a) It is easy to see that𝑀 is Galois over ℚ with Galois group ⟨𝜎, 𝜏⟩:

{ 𝜎
√
2 = −

√
2

𝜎
√
3 =

√
3

{ 𝜏
√
2 =

√
2

𝜏
√
3 = −

√
3

.

(b) We have

𝜎𝛼2
𝛼2 = 2 −

√
2

2 +
√
2
= (2 −

√
2)2

4 − 2 = (2 −
√
2

√
2

)
2

= (
√
2 − 1)2,

i.e., 𝜎𝛼2 = ((
√
2 − 1)𝛼)2. Thus, if 𝛼 ∈ 𝑀, then 𝜎𝛼 = ±(

√
2 − 1)𝛼, and

𝜎2𝛼 = (−
√
2 − 1)(

√
2 − 1)𝛼 = −𝛼;

as 𝜎2𝛼 = 𝛼 ≠ 0, this is impossible. Hence 𝛼 ∉ 𝑀, and so [𝐸 ∶ ℚ] = 8.
Extend 𝜎 to an automorphism (also denoted 𝜎) of 𝐸. Again 𝜎𝛼 = ±(

√
2 − 1)𝛼 and

𝜎2𝛼 = −𝛼, and so 𝜎2 ≠ 1. Now 𝜎4𝛼 = 𝛼, 𝜎4|𝑀 = 1, and so we can conclude that 𝜎 has
order 4. After possibly replacing 𝜎 with its inverse, we may suppose that 𝜎𝛼 = (

√
2−1)𝛼.

https://math.stackexchange.com/questions/984457/
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Repeat the above argument with 𝜏: 𝜏𝛼
2

𝛼2
= 3−

√
3

3+
√
3
= ( 3−

√
3

√
6
)
2
, and so we can extend 𝜏 to an

automorphism of 𝐿 (also denoted 𝜏) with 𝜏𝛼 = 3−
√
3

√
6
𝛼. The order of 𝜏 is 4.

Finally compute that

𝜎𝜏𝛼 = 3 −
√
3

−
√
6
(
√
2 − 1)𝛼; 𝜏𝜎𝛼 = (

√
2 − 1)3 −

√
3

√
6

𝛼.

Hence 𝜎𝜏 ≠ 𝜏𝜎, and Gal(𝐸∕ℚ) has two noncommuting elements of order 4. Since it has
order 8, it must be the quaternion group.

See also sx983458.

3-5. Let 𝐺 = Aut(𝐸∕𝐹). Then 𝐸 is Galois over 𝐸𝐺 with Galois group 𝐺, and so |𝐺| =
[𝐸∶ 𝐸𝐺]. Now [𝐸 ∶ 𝐹] = [𝐸∶ 𝐸𝐺][𝐸𝐺 ∶ 𝐹] = |𝐺|[𝐸𝐺 ∶ 𝐹].
4-1. The splitting field is the smallest field containing all 𝑚th roots of 1. Hence it is
𝔽𝑝𝑛 where 𝑛 is the smallest positive integer such that𝑚0|𝑝𝑛 − 1,𝑚 = 𝑚0𝑝𝑟, where 𝑝 is
prime and does not divide𝑚0.

4-2. Wehave𝑋4−2𝑋3−8𝑋−3 = (𝑋3+𝑋2+3𝑋+1)(𝑋−3), and 𝑔(𝑋) = 𝑋3+𝑋2+3𝑋+1
is irreducible overℚ (use 1.11), and so its Galois group is either 𝐴3 or 𝑆3. Either check
that its discriminant is not a square or, more simply, show by examining its graph that
𝑔(𝑋) has only one real root, and hence its Galois group contains a transposition (cf. the
proof of 4.16).

4-3. Eisenstein’s criterion shows that 𝑋8−2 is irreducible overℚ, and so [ℚ[𝛼]∶ ℚ] = 8
where 𝛼 is a positive 8th root of 2. As usual for polynomials of this type, the splitting field
is ℚ[𝛼, 𝜁] where 𝜁 is any primitive 8th root of 1. For example, 𝜁 can be taken to be 1+𝑖

√
2
,

which lies in ℚ[𝛼, 𝑖]. It follows that the splitting field is ℚ[𝛼, 𝑖]. Clearly ℚ[𝛼, 𝑖] ≠ ℚ[𝛼],
because ℚ[𝛼], unlike 𝑖, is contained in ℝ, and so [ℚ[𝛼, 𝑖]∶ ℚ[𝛼]] = 2. Therefore the
degree is 2 × 8 = 16.
4-4. Find an extension 𝐿∕𝐹 with Galois group 𝑆4, and let 𝐸 be the fixed field of 𝑆3 ⊂ 𝑆4.
There is no subgroup strictly between 𝑆𝑛 and 𝑆𝑛−1, because such a subgroup would be
transitive and contain an (𝑛 − 1)-cycle and a transposition, and so would equal 𝑆𝑛. We
can take 𝐸 = 𝐿𝑆3 . More specifically, we can take 𝐿 to be the splitting field of 𝑋4 − 𝑋 + 2
over ℚ and 𝐸 to be the subfield generated by a root of the polynomial (see 3.27).
4-5. Type: “Factor(𝑋343 − 𝑋)mod 7;” and discard the 7 factors of degree 1.
4-6. Type “galois(𝑋6 + 2𝑋5 + 3𝑋4 + 4𝑋3 + 5𝑋2 + 6𝑋 + 7);”. It is the group PGL2(𝔽5)
(group of invertible 2 × 2matrices over 𝔽5 modulo scalar matrices) which has order 120.
Alternatively, note that there are the following factorizations: mod 3, irreducible; mod 5
(deg 3)(deg 3); mod 13 (deg 1)(deg 5); mod 19, (deg 1)2(deg 4); mod 61 (deg 1)2(deg 2)2;
mod 79, (deg 2)3. Thus the Galois group has elements of type:

6, 3 + 3, 1 + 5, 1 + 1 + 4, 1 + 1 + 2 + 2, 2 + 2 + 2.

No element of type 2, 3, 3 + 2, or 4 + 2 turns up by factoring modulo any of the first 400
primes (or, so I have been told). This suggests it is the group 𝑇14 in the tables in Butler
and McKay, which is indeed PGL2(𝔽5).
4-7. ⟸ : Condition (a) implies that 𝐺𝑓 contains a 5-cycle, condition (b) implies that
𝐺𝑓 ⊂ 𝐴5, and condition (c) excludes 𝐴5. That leaves 𝐷5 and 𝐶5 as the only possibilities

https://math.stackexchange.com/questions/983458/
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(see, for example, Jacobson, Basic Algebra I, p305, Ex 6). The derivative of 𝑓 is 5𝑋4 + 𝑎,
which has at most 2 real zeros, and so (from its graph) we see that 𝑓 can have at most 3
real zeros. Thus complex conjugation acts as an element of order 2 on the splitting field
of 𝑓, and this shows that we must have 𝐺𝑓 = 𝐷5.
⟹ : Regard𝐷5 as a subgroup of 𝑆5 by letting it act on the vertices of a regular pentagon—
all subgroups of 𝑆5 isomorphic to𝐷5 look like this one. If𝐺𝑓 = 𝐷5, then (a) holds because
𝐷5 is transitive, (b) holds because 𝐷5 ⊂ 𝐴5, and (c) holds because 𝐷5 is solvable.
4-8. Suppose that 𝑓 is irreducible of degree 𝑛. Then 𝑓 has no root in a field 𝔽𝑝𝑚 with
𝑚 < 𝑛, which implies (a). However, every root 𝛼 of 𝑓 lies in 𝔽𝑝𝑛 , and so 𝛼𝑝

𝑛 − 𝛼 = 0.
Hence (𝑋 − 𝛼)|(𝑋𝑝𝑛 − 𝑋), which implies (b) because 𝑓 has no multiple roots.

Conversely, suppose that (a) and (b) hold. It follows from (b) that all roots of 𝑓 lie in
𝔽𝑝𝑛 . Suppose that 𝑓 had an irreducible factor 𝑔 of degree𝑚 < 𝑛. Then every root of 𝑔
generates 𝔽𝑝𝑚 , and so 𝔽𝑝𝑚 ⊂ 𝔽𝑝𝑛 . Consequently,𝑚 divides 𝑛, and so𝑚 divides 𝑛∕𝑝𝑖 for
some 𝑖. But then 𝑔 divides both 𝑓 and 𝑋𝑝𝑛∕𝑝𝑖 −𝑋, contradicting (a). Thus 𝑓 is irreducible.
4-9. Let 𝑎1, 𝑎2 be conjugate nonreal roots, and let 𝑎3 be a real root. Complex conjugation
defines an element 𝜎 of the Galois group of 𝑓 switching 𝑎1 and 𝑎2 and fixing 𝑎3. On the
other hand, because 𝑓 is irreducible, its Galois group acts transitively on its roots, and
so there is a 𝜏 such that 𝜏(𝑎3) = 𝑎1. Now

𝑎3
𝜏
↦ 𝑎1

𝜎
↦ 𝑎2

𝑎3
𝜎
↦ 𝑎3

𝜏
↦ 𝑎1.

This statement is false for reducible polynomials — consider for example 𝑓(𝑋) = (𝑋2 +
1)(𝑋 − 1).
5-1. For 𝑎 = 1, this is the polynomial Φ5(𝑋), whose Galois group is cyclic of order 4.
For 𝑎 = 0, 𝑓(𝑋) = 𝑋(𝑋3+𝑋2+𝑋+1) = 𝑋(𝑋 +1)(𝑋2+1), whose Galois group is cyclic
of order 2.
For 𝑎 = 12, 𝑓(𝑋) = (𝑋2 − 2𝑋 + 3)(𝑋2 + 3𝑋 + 4), whose Galois group is 𝑉4 (the one not
sitting inside 𝐴4).
For 𝑎 = −4, 𝑓(𝑋) = (𝑋 − 1)(𝑋3 + 2𝑋2 + 3𝑋 + 4). The cubic does not have ±1,±2, or
±4 as roots, and so it is irreducible in ℚ[𝑋]. Hence its Galois group is 𝑆3 or 𝐴3. Modulo
13, 𝑓(𝑋) = (𝑋 − 1)(𝑋 − 2)(𝑋2 + 4𝑋 − 2), and so the Galois group contains a 2-cycle by
Dedekind’s theorem. Therefore, it is 𝑆3. Alternatively, use that the discriminant of the
cubic is −200, which is not a square. Note that, because 2 divides the discriminant, we
can’t use Dedekind’s theorem with 𝑝 = 2.
For a general 𝑎, the resolvent cubic is

𝑔(𝑋) = 𝑋3 − 𝑋2 + (1 − 4𝑎)𝑋 + 3𝑎 − 1.

For 𝑎 = −1, 𝑓 = 𝑋4 + 𝑋3 + 𝑋2 + 𝑋 − 1 is irreducible modulo 2, and so it is irreducible
over ℚ. The resolvant cubic is 𝑔 = 𝑋3 − 𝑋2 + 5𝑋 − 4, which is irreducible. Moreover

𝑔′(𝑥) = 3𝑥2 − 2𝑥 + 5 = 3(𝑥 − 1
3
)2 + 4 2

3
> 0, all 𝑥,

and so 𝑔 has exactly one real root. Hence the Galois group of 𝑔 is 𝑆3, and it follows that
the Galois group of 𝑓 is 𝑆4.

Thus we have found the following Galois groups (in 𝑆4): 𝐶2, 𝐶4, 𝑉4 (⊈ 𝐴4), 𝑆3, 𝑆4.
This seems to be all. The discriminant of 𝑓 is 256𝑎3 − 203𝑎2 + 88𝑎 − 16. If 𝑎 is odd, this
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is odd, and we can apply Dedekind’s theorem with 𝑝 = 2 to show that the Galois group
contains a 2-cycle or a 4-cycle, and so 1, 𝐴3, 𝐴4, 𝑉4 are not possible. In the general case,
the discriminant is not a square, and so the Galois group is not contained in 𝐴4.

Showing that the discriminant is not a square is equivalent to solving for integral
points on the elliptic curve𝑌2 = 256𝑋3−203𝑋2+88𝑋−16. The substitution𝑋 ↦ 𝑋∕216,
𝑌 ↦ 𝑌∕220 turns this into the equation

𝑌2 = 𝑋3 − 51968𝑋2 + 1476395008𝑋 − 17592186044416.

According to PARI this has no nonzero rational points, and so the discriminant can’t be
a square. (I thank Ivan Ip for his help with this solution.)

5-2. We have Nm(𝑎 + 𝑖𝑏) = 𝑎2 + 𝑏2. Hence 𝑎2 + 𝑏2 = 1 if and only 𝑎 + 𝑖𝑏 = 𝑠+𝑖𝑡
𝑠−𝑖𝑡

for
some 𝑠, 𝑡 ∈ ℚ (Hilbert’s Theorem 90). The rest is easy.

5-3. The degree [ℚ[𝜁𝑛]∶ ℚ] = 𝜑(𝑛), 𝜁𝑛 a primitive 𝑛th root of 1, and 𝜑(𝑛) → ∞ as
𝑛 → ∞.

5-4. Let 𝛼1, … , 𝛼𝑛 be the roots of 𝑓 in 𝐸, and let 𝐻𝑖 be the subgroup of Gal(𝐸∕𝐹) fixing
𝐹[𝛼𝑖]. As𝐸 ≠ 𝐹[𝛼𝑖],𝐻𝑖 ≠ 1. As𝑓 is irreducible,Gal(𝐸∕𝐹) acts transitively on {𝛼1, … , 𝛼𝑛},
and hence on {𝐹[𝛼1], … , 𝐹[𝛼𝑛]}, which is a set with more than one element. The 𝐻𝑖 are
all conjugate, and so none is normal.

9-1. If some element centralizes complex conjugation, then it must preserve the real
numbers as a set. Now, since any automorphism of the real numbers preserves the
set of squares, it must preserve the order; and hence be continuous. Since ℚ is fixed,
this implies that the real numbers are fixed pointwise. It follows that any element that
centralizes complex conjugation must be the identity or the complex conjugation itself.
See mo121083, Andreas Thom.

A-1. (a) Need that𝑚|𝑛, because

𝑛 = [𝔽𝑝𝑛 ∶ 𝔽𝑝] = [𝔽𝑝𝑛 ∶ 𝔽𝑝𝑚] ⋅ [𝔽𝑝𝑚 ∶ 𝔽𝑝] = [𝔽𝑝𝑛 ∶ 𝔽𝑝𝑚] ⋅ 𝑚.

Use Galois theory to show there exists one, for example. (b) Only one; it consists of all
the solutions of 𝑋𝑝𝑚 − 𝑋 = 0.
A-2. The polynomial is irreducible by Eisenstein’s criterion. The polynomial has only one
real root, and therefore complex conjugation is a transposition in 𝐺𝑓. This proves that
𝐺𝑓 ≈ 𝑆3. The discriminant is −1323 = −3372. Only the subfield ℚ[

√
−3] is normal over

ℚ. The subfieldsℚ[ 3
√
7], ℚ[𝜁 3

√
7] ℚ[𝜁2 3

√
7] are not normal over ℚ. [The discriminant of

𝑋3 − 𝑎 is −27𝑎2 = −3(3𝑎)2.]
A-3. The prime 7 becomes a square in the first field, but 11 does not: (𝑎 + 𝑏

√
7)2 =

𝑎2 + 7𝑏2 + 2𝑎𝑏
√
7, which lies in ℚ only if 𝑎𝑏 = 0. Hence the rational numbers that

become squares in ℚ[
√
7] are those that are already squares or lie in 7ℚ×2.

A-4.(a) See Exercise 3.
(b) Let 𝐹 = 𝔽3[𝑋]∕(𝑋2 + 1). Modulo 3

𝑋8 − 1 = (𝑋 − 1)(𝑋 + 1)(𝑋2 + 1)(𝑋2 + 𝑋 + 2)(𝑋2 + 2𝑋 + 2).

Take 𝛼 to be a root of 𝑋2 + 𝑋 + 2.

https://mathoverflow.net/questions/121083
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A-5. Since 𝐸 ≠ 𝐹, 𝐸 contains an element 𝑓
𝑔
with the degree of 𝑓 or 𝑔 > 0. Now

𝑓(𝑇) − 𝑓(𝑋)
𝑔(𝑋)

𝑔(𝑇)

is a nonzero polynomial having 𝑋 as a root.

A-6. Use Eisenstein to show that 𝑋𝑝−1 +⋯+ 1 is irreducible, etc. Done in class.
A-7. The splitting field isℚ[𝜁, 𝛼]where 𝜁5 = 1 and 𝛼5 = 2. It is generated by 𝜎 = (12345)
and 𝜏 = (2354), where 𝜎𝛼 = 𝜁𝛼 and 𝜏𝜁 = 𝜁2. The group has order 20. It is not abelian
(because ℚ[𝛼] is not Galois over ℚ), but it is solvable (its order is < 60).
A-8. (a) A homomorphism 𝛼∶ ℝ → ℝ acts as the identity map on ℤ, hence onℚ, and it
maps positive real numbers to positive real numbers, and therefore preserves the order.
Hence, for each real number 𝑎,

{𝑟 ∈ ℚ ∣ 𝑎 < 𝑟} = {𝑟 ∈ ℚ ∣ 𝛼(𝑎) < 𝑟},

which implies that 𝛼(𝑎) = 𝑎.
(b) Choose a transcendence basis 𝐴 for ℂ over ℚ. Because it is infinite, there is

a bijection 𝛼∶ 𝐴 → 𝐴′ from 𝐴 onto a proper subset. Extend 𝛼 to an isomorphism
ℚ(𝐴) → ℚ(𝐴′), and then extend it to an isomorphism ℂ → ℂ′ where ℂ′ is the algebraic
closure of ℚ(𝐴′) in ℂ.
A-9. The group 𝐹× is cyclic of order 15. It has 3 elements of order dividing 3, 1 element
of order dividing 4, 15 elements of order dividing 15, and 1 element of order dividing 17.
A-10. If 𝐸1 and 𝐸2 are Galois extensions of 𝐹, then 𝐸1𝐸2 and 𝐸1 ∩ 𝐸2 are Galois over 𝐹,
andGal(𝐸1𝐸2∕𝐹) is the fibred product ofGal(𝐸1∕𝐹) andGal(𝐸2∕𝐹) overGal(𝐸1∩𝐸2∕𝐹):

Gal(𝐸1𝐸2∕𝐹) Gal(𝐸1∕𝐹)

Gal(𝐸2∕𝐹) Gal(𝐸1 ∩ 𝐸2∕𝐹).

← →

←→ ←→

←→

In this case, 𝐸1 ∩ 𝐸2 = ℚ[𝜁] where 𝜁 is a primitive cube root of 1. The degree is 18.
A-11. Over ℚ, the splitting field is ℚ[𝛼, 𝜁] where 𝛼6 = 5 and 𝜁3 = 1 (because −𝜁 is
then a primitive 6th root of 1). The degree is 12, and the Galois group is 𝐷6 (generators
(26)(35) and (123456)).

Over ℝ, the Galois group is 𝐶2.
A-12. Let the coefficients of 𝑓 be 𝑎1, … , 𝑎𝑛 — they lie in the algebraic closureΩ of 𝐹. Let
𝑔(𝑋) be the product of the minimal polynomials over 𝐹 of the roots of 𝑓 in Ω.

Alternatively, the coefficients will lie in some finite extension 𝐸 of 𝐹, and we can
take the norm of 𝑓(𝑋) from 𝐸[𝑋] to 𝐹[𝑋].
A-13. If 𝑓 is separable, [𝐸 ∶ 𝐹] = (𝐺𝑓 ∶ 1), which is a subgroup of 𝑆𝑛. Etc..

A-14.
√
3 +

√
7 will do.

A-15. The splitting field of 𝑋4 − 2 is 𝐸1 = ℚ[𝑖, 𝛼] where 𝛼4 = 2; it has degree 8, and
Galois group 𝐷4. The splitting field of 𝑋3 − 5 is 𝐸2 = ℚ[𝜁, 𝛽]; it has degree 6, and Galois
group 𝐷3. The Galois group is the product (they could only intersect in ℚ[

√
3], but

√
3

does not become a square in 𝐸1).
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A-16. The multiplicative group of 𝐹 is cyclic of order 𝑞−1. Hence it contains an element
of order 4 if and only if 4|𝑞 − 1.

A-17. Take 𝛼 =
√
2 +

√
5 +

√
7.

A-18. We have 𝐸1 = 𝐸𝐻1 , which has degree 𝑛 over 𝐹, and 𝐸2 = 𝐸<1⋯𝑛>, which has
degree (𝑛 − 1)! over 𝐹, etc.. This is really a problem in group theory posing as a problem
in field theory.

A-19. We have ℚ[𝜁] = ℚ[𝑖, 𝜁′] where 𝜁′ is a primitive cube root of 1 and ±𝑖 = 𝜁3 etc..

A-20. The splitting field is ℚ[𝜁, 3
√
3], and the Galois group is 𝑆3.

A-21. Use that
(𝜁 + 𝜁4)(1 + 𝜁2) = 𝜁 + 𝜁4 + 𝜁3 + 𝜁

A-22. (a) is Dedekind’s theorem. (b) is Artin’s theorem 3.4. (c) is O.K. because 𝑋𝑝 − 𝑎𝑝
has a unique root in Ω.
A-23. The splitting field is ℚ[𝑖, 𝛼] where 𝛼4 = 3, and the Galois group is 𝐷4 with
generators (1234) and (13) etc..
A-24. From Hilbert’s theorem 90, we know that the kernel of the map 𝑁∶ 𝐸× → 𝐹×
consists of elements of the form 𝜎𝛼

𝛼
. The map 𝐸× → 𝐸×, 𝛼 ↦ 𝜎𝛼

𝛼
, has kernel 𝐹×.

Therefore the kernel of 𝑁 has order 𝑞𝑚−1
𝑞−1

, and hence its image has order 𝑞 − 1. There is
a similar proof for the trace — I don’t know how the examiners expected you to prove it.

A-25. (a) is false—could be inseparable. (b) is true—couldn’t be inseparable.

A-26. Apply the Sylow theorem to see that the Galois group has a subgroup of order 81.
Now the Fundamental Theorem of Galois theory shows that 𝐹 exists.
A-27. The greatest common divisor of the two polynomials overℚ is 𝑋2 + 𝑋 + 1, which
must therefore be the minimal polynomial for 𝜃.
A-28. Theorem on 𝑝-groups plus the Fundamental Theorem of Galois Theory.

A-29. It was proved in class that 𝑆𝑝 is generated by an element of order 𝑝 and a transpo-
sition (4.15). There is only one 𝐹, and it is quadratic over ℚ.
A-30. Let 𝐿 = 𝐾[𝛼]. The splitting field of the minimal polynomial of 𝛼 has degree at
most 𝑑!, and a set with 𝑑! elements has at most 2𝑑! subsets. [Of course, this bound is
much too high: the subgroups are very special subsets. For example, they all contain 1
and they are invariant under 𝑎 ↦ 𝑎−1.]
A-31. The Galois group is (ℤ∕5ℤ)×, which cyclic of order 4, generated by 2.

(𝜁 + 𝜁4) + (𝜁2 + 𝜁3) = −1, (𝜁 + 𝜁4)(𝜁2 + 𝜁3) = −1.

(a) Omit.
(b) Certainly, the Galois group is a product 𝐶2 × 𝐶4.

A-32. Let 𝑎1, … , 𝑎5 be a transcendence basis for Ω1∕ℚ. Their images are algebraically
independent, therefore they are a maximal algebraically independent subset of Ω2, and
therefore they form a transcendence basis, etc..

A-33. 𝐶2 × 𝐶2.



139

A-34. If 𝑓(𝑋) were reducible over ℚ[
√
7], it would have a root in it, but it is irreducible

over ℚ by Eisenstein’s criterion. The discriminant is −675, which is not a square in ℝ,
much less ℚ[

√
7].

A-35. (a) Should be 𝑋5 − 6𝑋4 + 3. The Galois group is 𝑆5, with generators (12) and
(12345)— it is irreducible (Eisenstein) and (presumably) has exactly 2 nonreal roots.
(b) It factors as (𝑋 + 1)(𝑋4 + 𝑋3 + 𝑋2 + 𝑋 + 1). Hence the splitting field has degree 4
over 𝔽2, and the Galois group is cyclic.
A-36. This is really a theorem in group theory, since the Galois group is a cyclic group of
order 𝑛 generated by 𝜃. If 𝑛 is odd, say 𝑛 = 2𝑚 + 1, then 𝛼 = 𝜃𝑚 does.

A-37. It has order 20, generators (12345) and (2354).
A-38. Take 𝐾1 and 𝐾2 to be the fields corresponding to the Sylow 5 and Sylow 43
subgroups. Note that of the possible numbers 1, 6, 11, 16, 21, ... of Sylow 5-subgroups,
only 1 divides 43. There are 1, 44, 87, ... subgroups of ....
A-39. See Exercise 14.

A-40. The group 𝐹× is cyclic of order 80; hence 80, 1, 8.
A-41. It’s 𝐷6, with generators (26)(35) and (123456). The polynomial is irreducible by
Eisenstein’s criterion, and its splitting field is ℚ[𝛼, 𝜁] where 𝜁 ≠ 1 is a cube root of 1.
A-42. Example 5.5.

A-43. Omit.

A-44. It’s irreducible by Eisenstein. Its derivative is 5𝑋4 − 5𝑝4, which has the roots
𝑋 = ±𝑝. These are the max and mins, 𝑋 = 𝑝 gives negative; 𝑋 = −𝑝 gives positive.
Hence the graph crosses the 𝑥-axis 3 times and so there are 2 imaginary roots. Hence
the Galois group is 𝑆5.
A-45. Its roots are primitive 8th roots of 1. It splits completely in 𝔽25. (a) (𝑋2+2)(𝑋2+3).

A-46. 𝜌(𝛼)𝜌(𝛼) = 𝑞2, and 𝜌(𝛼)𝜌(𝑞
2

𝛼
) = 𝑞2. Hence 𝜌(𝑞

2

𝛼
) is the complex conjugate of

𝜌(𝛼). Hence the automorphism induced by complex conjugation is independent of the
embedding of ℚ[𝛼] into ℂ.
A-47. The argument that proves the Fundamental Theorem of Algebra, shows that its
Galois group is a 𝑝-group. Let 𝐸 be the splitting field of 𝑔(𝑋), and let 𝐻 be the Sylow
𝑝-subgroup. Then 𝐸𝐻 = 𝐹, and so the Galois group is a 𝑝-group.
A-48. (a) 𝐶2 × 𝐶2 and 𝑆3. (b) No. (c). 1
A-49. Omit.

A-50. Omit.

A-51. 1024 = 210. Want 𝜎𝑥 ⋅ 𝑥 = 1, i.e., 𝑁𝑥 = 1. They are the elements of the form 𝜎𝑥
𝑥
;

have

1 ,,,,,→ 𝑘× ,,,,,→ 𝐾×
𝑥↦ 𝜎𝑥

𝑥,,,,,→ 𝐾×.

Hence the number is 211∕210 = 2.
A-52. Pretty standard. False; true.

A-53. Omit.
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A-54. Similar to a previous problem.

A-55. Omit.

A-56. This is really a group theory problem disguised as a field theory problem.

A-57. (a) Prove it’s irreducible by apply Eisenstein to 𝑓(𝑋 + 1). (b) See example worked
out in class.

A-58. It’s 𝐷4, with generators (1234) and (12).
A-59. Omit.

Solutions for the exam.

1. (a) Let 𝜎 be an automorphism of a field 𝐸. If 𝜎4 = 1 and

𝜎(𝛼) + 𝜎3(𝛼) = 𝛼 + 𝜎2(𝛼) all 𝛼 ∈ 𝐸,

show that 𝜎2 = 1.
If 𝜎2 ≠ 1, then 1, 𝜎, 𝜎2, 𝜎3 are distinct automorphisms of 𝐸, and hence are linearly

independent (Dedekind 5.14) — contradiction. [If 𝜎2 = 1, then the condition becomes
2𝜎 = 2, so either 𝜎 = 1 or the characteristic is 2 (or both).]
(b) Let 𝑝 be a prime number and let 𝑎, 𝑏 be rational numbers such that 𝑎2 + 𝑝𝑏2 = 1.
Show that there exist rational numbers 𝑐, 𝑑 such that 𝑎 = 𝑐2−𝑝𝑑2

𝑐2+𝑝𝑑2
and 𝑏 = 2𝑐𝑑

𝑐2+𝑝𝑑2
.

Apply Hilbert’s Theorem 90 to ℚ[
√
−𝑝].

2. Let 𝑓(𝑋) be an irreducible polynomial of degree 4 in ℚ[𝑋], and let 𝑔(𝑋) be the
resolvent cubic of 𝑓. What is the relation between the Galois group of 𝑓 and that of 𝑔?
Find the Galois group of 𝑓 if
(a) 𝑔(𝑋) = 𝑋3 − 3𝑋 + 1;
(b) 𝑔(𝑋) = 𝑋3 + 3𝑋 + 1.
We have 𝐺𝑔 = 𝐺𝑓∕𝐺𝑓 ∩ 𝑉, where 𝑉 = {1, (12)(34), …}. The two cubic polynomials

are irreducible, because their only possible roots are ±1. From their discriminants, one
finds that the first has Galois group 𝐴3 and the second 𝑆3. Because 𝑓(𝑋) is irreducible,
4|(𝐺𝑓 ∶ 1) and it follows that 𝐺𝑓 = 𝐴4 and 𝑆4 in the two cases.
3. (a) How many monic irreducible factors does 𝑋255 − 1 ∈ 𝔽2[𝑋] have, and what are
their degrees?

Its roots are the nonzero elements of 𝔽28 , which has subfields 𝔽24⊃ 𝔽22⊃ 𝔽2. There
are 256−16 elements not in 𝔽16, and their minimal polynomials all have degree 8. Hence
there are 30 factors of degree 8, 3 of degree 4, and 1 each of degrees 2 and 1.
(b) How many monic irreducible factors does 𝑋255 − 1 ∈ ℚ[𝑋] have, and what are their
degrees?

Obviously, 𝑋255−1 = ∏
𝑑|255Φ𝑑 = Φ1Φ3Φ5Φ15⋯Φ255, and we showed in class that

the Φ𝑑 are irreducible. They have degrees 1, 2, 4, 8, 16, 32, 64, 128.
4. Let 𝐸 be the splitting field of (𝑋5 − 3)(𝑋5 − 7) ∈ ℚ[𝑋]. What is the degree of 𝐸 over
ℚ? How many proper subfields of 𝐸 are there that are not contained in the splitting
fields of both 𝑋5 − 3 and 𝑋5 − 7?

The splitting field of 𝑋5 − 3 is ℚ[𝜁, 𝛼], which has degree 5 over ℚ[𝜁] and 20 over ℚ.
The Galois group of 𝑋5 − 7 over ℚ[𝜁, 𝛼] is (by ...) a subgroup of a cyclic group of order
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5, and hence has order 1 or 5. Since 7 is not a 5th power in ℚ[𝜁, 𝛼], it must be 5. Thus
[𝐸 ∶ ℚ] = 100, and

𝐺 = Gal(𝐸∕ℚ) = (𝐶5 × 𝐶5) ⋊ 𝐶4.

We want the nontrivial subgroups of 𝐺 not containing 𝐶5 × 𝐶5. The subgroups of order
5 of 𝐶5 × 𝐶5 are lines in (𝔽5)2, and hence 𝐶5 × 𝐶5 has 6 + 1 = 7 proper subgroups. All
are normal in 𝐺. Each subgroup of 𝐶5 × 𝐶5 is of the form 𝐻 ∩ (𝐶5 × 𝐶5) for exactly
3 subgroups 𝐻 of 𝐺 corresponding to the three possible images in 𝐺∕(𝐶5 × 𝐶5) = 𝐶4.
Hence we have 21 subgroups of𝐺 not containing 𝐶5×𝐶5, and 20 nontrivial ones. Typical
fields: ℚ[𝛼], ℚ[𝛼, cos 2𝜋

5
], ℚ[𝛼, 𝜁].

[You may assume that 7 is not a 5th power in the splitting field of 𝑋5 − 3.]
5. Consider an extension Ω ⊃ 𝐹 of fields. Define 𝛼 ∈ Ω to be 𝐹-constructible if it is
contained in a field of the form

𝐹[
√
𝑎1, … ,

√
𝑎𝑛], 𝑎𝑖 ∈ 𝐹[

√
𝑎1, … ,

√
𝑎𝑖−1].

Assume Ω is a finite Galois extension of 𝐹 and construct a field 𝐸, 𝐹 ⊂ 𝐸 ⊂ Ω, such that
every 𝑎 ∈ Ω is 𝐸-constructible and 𝐸 is minimal with this property.

Suppose 𝐸 has the required property. From the primitive element theorem, we know
Ω = 𝐸[𝑎] for some 𝑎. Now 𝑎 𝐸-constructible ⟹ [Ω∶ 𝐸] is a power of 2. Take 𝐸 = Ω𝐻 ,
where𝐻 is the Sylow 2-subgroup of Gal(Ω∕𝐹).
6. Let Ω be an extension field of a field 𝐹. Show that every 𝐹-homomorphism Ω → Ω is
an isomorphism provided:
(a) Ω is algebraically closed, and

(b) Ω has finite transcendence degree over 𝐹.
Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-

ample.)
Let 𝐴 be a transcendence basis for Ω∕𝐹. Because 𝜎∶ Ω → Ω is injective, 𝜎(𝐴)

is algebraically independent over 𝐹, and hence (because it has the right number of
elements) is a transcendence basis for Ω∕𝐹. Now 𝐹[𝜎𝐴] ⊂ 𝜎Ω ⊂ Ω. Because Ω
is algebraic over 𝐹[𝜎𝐴] and 𝜎Ω is algebraically closed, the two are equal. Neither
condition can be dropped. E.g., ℂ(𝑋)→ ℂ(𝑋), 𝑋 ↦ 𝑋2. E.g., Ω = the algebraic closure
of ℂ(𝑋1, 𝑋2, 𝑋3, …), and consider an extension of the map 𝑋1 ↦ 𝑋2, 𝑋2 ↦ 𝑋3, ….
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