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Introduction

Ideas from algebraic geometry became useful in coding theory after Goppa’s construction

[8]. He had the beautiful idea of associating to a curve X defined over Fq, the finite

field with q elements, a code C. This code, called Algebraic-Geometric (AG) code, is

constructed from two divisors D and G on X , where one of them, say D, is the sum of n

distinct Fq-rational points of X . It turns out that the minimum distance d of C satisfies

d ≥ n− deg(G) .

This is one of the main features of Goppa’s construction. In general there is no lower

bound available on the minimum distance of a code. This bound is meaningful only if n

is large enough, then it is of considerable interest to do research on curves with “many

rational points”; see e.g. [6].

The purpose of these notes is not to survey the vast body of literature on AG codes but

just to provide a short and possibly plain introduction to this subject. Hence, we will

bypass most of all the underlying Algebraic Geometry. This has two major drawbacks:

firstly we can deal only with a limited class of AG codes, secondly the deep theorems

on which AG codes rely are presented without proof. Nonetheless, we believe that such

presentation is somehow more useful to the beginning student, and we hope that it may

give some motivation to learn the subject in all its depth and beauty.

These notes are based on a series of lectures given in May 2003 at the Mathematical

Department of KTH in Stockholm.

Contents.

(1) Linear codes

(2) Reed-Solomon codes

(3) Algebraic curves

(4) Algebraic-Geometric codes

(5) Bounds on linear codes

(6) One-point AG codes

(7) MDS codes and Almost MDS codes
1



2 M. GIULIETTI

1. Linear codes

In this section we briefly summarize some basic material regarding linear codes on the

alphabet Fq, the finite field of order q; for comprehensive treatises see [17], [15], [16], [18],

[25], [27].

Let n be a positive integer.

Definition 1.1. A code is any non-empty subset of Fn
q . The code is called linear if it is

an Fq-linear subspace of Fn
q . The number n is the length of the code.

Definition 1.2. The Hamming distance d on Fn
q × Fn

q is given by

d(~x, ~y) = #{i : xi 6= yi} ,

where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn). The weight of ~x is defined by

w(~x) := d(~x, ~o) ,

where ~o := (0, . . . , 0).

Remark 1.3. The function d is a metric on Fn
q × Fn

q .

Definition 1.4. The minimum distance of a code C ⊆ Fn
q is given by

d(C) := min{d(~x, ~y) : ~x, ~y ∈ C, ~x 6= ~y} .

Remark 1.5. For C ⊆ Fn
q a linear code we have that

d(C) = min{w(~x) : ~x ∈ C \ {~o}} .

Definition 1.6. Let C ⊆ Fn
q be a linear code of dimension k. A generator matrix of C is

a k × n matrix whose rows form an Fq-base of C.

Definition 1.7. Let C ⊆ Fn
q be a code. The dual code of C is the code C⊥ defined by

C⊥ := {~x ∈ Fn
q : 〈~x, ~y〉 = 0,∀ ~y ∈ C} ,

where for ~x = (x1, . . . , xn), ~y = (y1, . . . , yn), 〈~x, ~y〉 :=
∑n

i=1 xiyi is the usual bilinear form

on Fn
q × Fn

q .

Note that C⊥ is indeed a linear code. For ~x ∈ Fn
q , let ~xt denote its transpose.

Lemma 1.8. Let C ⊆ Fn
q a linear code of dimension k and M a generator matrix of C.

Then

(1) C⊥ = {~x ∈ Fn
q : M~xt = ~o};

(2) C⊥ has dimension n− k.

Proof. (1) Let ~v1, . . . , ~vk be the rows of M . Then (1) is an easy consequence of the

following facts:

• for ~x ∈ Fn
q , M~xt = (〈~v1, ~x〉, . . . , 〈~vk, ~x〉);
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• for ~x ∈ C, there exist a1, . . . , ak ∈ Fq such that ~x =
∑k

i=1 ai~vi.

(2) By (1), C⊥ is the kernel of the linear map ~x 7→ M~xt whose rank is k. So (2) follows

from basic linear algebra. ¤

Corollary 1.9. Let C be a linear code and H a generator matrix of C⊥. Then:

(1) C = (C⊥)⊥;

(2) C = {~x ∈ Fn
q : H~xt = ~o}.

Proof. (1) Clearly C ⊆ (C⊥)⊥ and by Lemma 1.8(2), both codes (C⊥)⊥ and C have the

same dimension. This implies (1).

(2) The assertion follows from (1) and Lemma 1.8(1). ¤

Definition 1.10. The redundancy of a k-dimensional linear code in Fn
q is n− k.

Definition 1.11. A parity check matrix of a linear code is any generator matrix of its

dual.

Lemma 1.12. Let C be a linear code and H a parity check matrix of C.

(1) There exists ~x ∈ C of weight w if and only if there exist w columns of H which

are Fq-linearly dependent.

(2) We have

d(C) = min{w ∈ Z+ : ∃w columns Fq-linearly dependent in H} .

Proof. (1) It follows from Corollary 1.9(2) together with the fact that H~xt =
∑n

i=1 xi
~Hi,

where ~x = (x1, . . . , xn) and ~H1, . . . , ~Hn are the columns of H.

(2) The assertion follows from (1) and the definition of d(C). ¤

Corollary 1.13. (Singleton Bound) For an Fq-linear code of length n, dimension k and

minimum distance d,

d− 1 ≤ n− k .

Proof. By Lemma 1.12(2) any d− 1 columns of H, H being a parity check matrix of C,

are Fq-linearly independent. Since H has rank n− k, the assertion follows. ¤

Definition 1.14. An Fq-linear code of length n, dimension k and minimum distance d is

called maximum distance separable (MDS) if d− 1 = n− k.

Proposition 1.15. The dual code of an MDS code is MDS.

Proof. Let H be a parity check matrix of an MDS code C of length n and dimension k.

The generic element of C⊥ then can be written as

~yH = (〈 ~H1, ~y〉, . . . , 〈 ~Hn, ~y〉)
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where ~y ranges over Fn−k
q and ~Hi is the ith column of H. As C is MDS, any n−k columns

of H are linearly independent. Hence, the maximum number of columns of H which are

solutions of the linear equation 〈~x, ~y〉 = 0 is n − k − 1. This means that the minimum

distance of C⊥ is at least n− (n− k − 1) = n− (n− k) + 1, and hence C⊥ is MDS. ¤

Remark 1.16. For a linear code C, the Singleton bound is independent of q. A restriction

on the parameters n, k and d of C which involves q as well can be obtain as follows.

Let t be the largest integer not exceeding (d− 1)/2. For ~x ∈ Fn
q , let

B(~x, t) := {~y ∈ Fn
q : d(~y, ~x) ≤ t} .

Then it is easy to see that Vq(n, t) := #B(~x, t) =
∑t

i=1

(
n
i

)
(q − 1)i, and that B(~x1, t) ∩

B(~x2, t) = ∅ provided that ~x1, ~x2 are two different elements of C. Then

∪~x∈CB(~x, t) ⊆ Fn
q ,

and we obtain the so-called “Hamming bound”

Vq(n, t)#C ≤ qn .

Notice that this bound is valid for any code C and if C is linear of dimension k, then

#C = qk.

2. Reed-Solomon codes

As a motivation for the construction of AG codes, in the following examples we consider

Reed-Solomon codes over Fq. This important class of codes has been well-known in coding

theory for a long time. AG codes are a very natural generalization of Reed-Solomon codes.

Let q be a prime power, n and k be integers such that 1 ≤ k ≤ n ≤ q. Let Fq[X] be the

ring of polynomials in one variable with coefficients in Fq. Now set

Lk := {f ∈ Fq[X] : deg(f) ≤ k − 1} ∪ {0} ,

and for n distinct elements P1, . . . , Pn of Fq, consider the following Fq-linear map:

e = eP1,...,Pn : Lk → Fn
q

f 7→ (f(P1), . . . , f(Pn)) .

We have that e is injective since a non-zero polynomial in Lk can have at most k − 1

zeros. Then the code C := e(Lk) has dimension k. The code C is called a Reed-Solomon

code (RS code for short). Let ~x = (f(P1), . . . , fn(P )) ∈ C and assume that w(~x) = w.

Then f has n − w zeros and so n − w ≤ k − 1. In particular, n − d ≤ k − 1, where d is

the minimum distance of C. Therefore n− k ≤ d− 1 and so, by Corollary 1.13, we must



AG CODES 5

have n− k = d− 1, i.e., C is an MDS code. Note that as 1, X, . . . , Xk−1 is a basis of Lk,

a generator matrix of C is the following:



1 1 . . . 1

P1 P2 . . . Pn

P 2
1 P 2

2 . . . P 2
n

...
...

...
...

P k−1
1 P k−1

2 . . . P k−1
n




Let q be a prime power, n and k be integers such that 1 ≤ k ≤ n ≤ q. Also, let P1, . . . , Pn

be distinct elements of Fq, and let ~v = (v1, . . . , vn) where the vi’s are non-zero (not

necessarily distinct) elements of Fq. Then the code consisting of all vetcors

(v1f(P1), . . . , vnf(Pn))

with f ∈ Fq[X] and deg(f) ≤ k−1, is called a Generalized Reed Solomon code (GRS code

for short). Note that in the case where ~v = (1, 1, . . . , 1) such a code is a Reed Solomon

code.

3. Algebraic curves

For comprehensive treatises on algebraic curves we refer to [10], [25], [16], [8], and [23].

According to the purpose of these notes, we will limit ourselves to deal with the simplest

type of algebraic curve, that is with plane smooth curves.

Let K be a field and let F (X, Y ) be a polynomial of two variables over K. A point (a, b)

lying in the plane over K is called root of the polynomial if F (a, b) = 0. All these roots

define an affine curve over K. Actually, one considers all points with coordinates in the

algebraic closure of K. In the case K = Fq, this means that a point of the affine curve

is (a, b) such that a, b ∈ Fqm for some positive integer m, and F (a, b) = 0. Points of the

curve with (a, b) ∈ K are said to be rational over K (or K-rational).

Given a homogenous polynomial F (X,Y, Z) over K, the projective curve defined by F is

the of points P (a : b : c) lying in the projective plane over the algebraic closure of K such

that F (X,Y, Z) = 0. Every such a curve corresponds to three affine curves resulting from

dehomogenization:

F (1, Y, Z) = 0, F (X, 1, Y ) = 0, F (X, Y, 1) = 0.

Conversely, an affine curve converts to a projective one under homogenization:

ZdF (X/Z, Y/Z), where d is the degree of F .

Example 3.1. The affine curve defined by Y 2−X2(X +1) is associated to the projective

curve of equation Y 2Z −X3 −X2Z = 0. The projective curve defined by X5 + Y 5 − Z5

is associated with the affine curve of equation X5 + Y 5 = 1.
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An affine (resp. projective) curve is called irreducible if F (X, Y ) (resp. F (X, Y, Z))

cannot be written as a product of two polynomial of degree bigger than zero. Associ-

ating F (X, Y, Z) to F (X,Y, 1) gives a one-to-one correspondence between the set of all

irreducible projective curves and that of irreducible affine curves.

A point P = (a : b : c) of an irreducible projective curve X defined by F (X, Y, Z) is said to

be singular if all the derivatives FX , FY , FZ are zero at P . Otherwise P is called simple.

If all points are simple, then X is said to be non-singular (or smooth). Calculations

involving singularity depend strongly on the characteristic of the ground field K.

Example 3.2. Let K be any field of characteristic two and let X be the curve defined

over K by F = Y 2Z −X3 + X2Z. Then FX = X2, FY = 0, FZ = Y 2 − Z2 = (Y −X)2.

Hence P = (a : b : c) is singular if and only if a = 0, b = a, that is P = (0 : 0 : 1) is the

only singular point of X .

Example 3.3. Let K be any field, and let X be the curve defined over K by F =

X5 + Y 5 + Z5. Then FX = 5X4, FY = 5Y 4, FZ = 5Z4. If the characteristic p of K is

different from 5, then X is smooth. Otherwise, every point of X is singular. Actually, for

p = 5, X is reducible as F = (X + Y + Z)5.

Example 3.4 (Klein quartic). Let K be any field of characteristic two, and let X be the

curve defined over K by F = X3Y +Y 3Z +Z3X. Then FX = X2Y +Z3, FY = Y 2Z +X3,

FZ = Z2X + Y 3. Assume that P = (a : b : c) is a singular point of X . Then (i) a2b = c3

together with (ii) a3b + b3c + c3a = 0 yield b3c = 0. If b = 0, then (i) gives c = 0 and

hence (iii) FY (P ) = 0 yields a = 0. If c = 0, then b = 0 by (i), and again a = 0 by (iii).

This means that X is smooth.

Example 3.5 (Hermitian curve). Let K be a finite field with q2 elements, with q a prime

power. Let X be the curve defined over K by F = Y qZ + Y Zq −Xq+1. As FX = −Xq,

FY = Zq and FZ = Y q the curve X is smooth.

Given a polynomial F , establishing whether the associated curve is irreducible is not easy

in general. There exist several irreducibility criterions, which we will not deal with here.

We only remind the fact that smooth curves are irreducible.

From now on, by the word curve we will mean a projective smooth curve defined over K.

3.1. Rational functions. Let X be the curve defined by F (X, Y, Z). On the points of

X , any two polynomials that differ by multiples of F have the same value. So, as far as

X is concerned, they are the same. We shall give a definition of function that reflects this

idea. Roughly speaking, a rational function of X is the ratio f = A(X, Y, Z)/B(X,Y, Z)

of two homogenous polynomials of the same degree up to factorization modulo F (X, Y, Z).

A precise definition is the following. Let I be the ideal of K[X, Y, Z] generated by F . As

X is irreducible, I is a prime ideal and then the quotient ring K[X,Y, Z]/I is an integral
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domain. An element g in K[X,Y, Z]/I is said to be a form of degree d if g = G + I,

for some homogenous polynomial G ∈ K[X,Y, Z] with deg(G) = d. The set of rational

functions of X is

K(X ) = {f = g/h | f, g ∈ K[X, Y, Z]/I are forms of the same degree and h 6= 0},
which is a subfield of the field of fractions of K[X, Y, Z]/I.

A rational function f is defined at a point P , if there exists a representation f = A/B

such that B(P ) 6= 0. In this case one can evaluate the function at P , that is f(P ) =

A(P )/B(P ). Note that this evaluation does not depend on the representation of f .

Example 3.6. Let X be the curve defined by F = Y 2Z−Y Z2+X3−X2Z over the field F2.

Consider the rational function f represented by (Y 2 +Y Z)/ZX. Is f defined at the point

P = (0 : 0 : 1) ∈ X ? It does not seem so, but actually f is represented by (X2−XZ)/Z2

as well. In fact, Z2(Y 2+Y Z)−ZX(X2−XZ) ∈ I as Z2(Y 2+Y Z)−ZX(X2−XZ) = ZF .

Therefore f is defined at P and f(P ) = 0.

Given a point P , let OP be the ring of all rational functions defined at P . It is easy to see

that OP is an integral domain, and that K(X ) is the field of fractions of OP . Moreover,

it can be proved that MP := {f ∈ OP | f(P ) = 0} is a principal ideal. Any generator of

MP is called a local parameter at P .

Proposition 3.7. Let P = (a : b : c) be a point of a curve X defined by F (X, Y, Z).

Assume c 6= 0. Let f = L1(X,Y, Z)/L2(X, Y, Z) be a rational function in MP , such that

deg(L1) = deg(L2) = 1, L2(P ) 6= 0, and L1 is not a (constant) multiple of FX(P )X +

FY (P )Y + FZ(P )Z. Then f is a local parameter at P .

Given a point P of X , let t be a local parameter at P . Then for any f ∈ K(X ), f 6= 0

there exists a unique integer m such that f = tmu, where u ∈ OP \MP . Such an integer

m is called the valuation of f at P and it is denoted by vP (f). Note that the elements

in OP are those rational functions f such that vP (f) ≥ 0, whereas MP consists of those

with vP (f) > 0.

Valuations have the three following basic properties, whose proofs are left to the reader

as an easy exercise:

Proposition 3.8. (1) vP (fg) = vP (f) + vP (g) for any P ∈ X , and for any f, g ∈
K(X ) (and hence vP (fm) = mvP (f) for any integer m);

(2) vP (f + g) ≥ min{vP (f), vP (g)} for any P ∈ X , and for any f, g ∈ K(X ); if

vP (f) 6= vP (g) then equality holds;

(3) vP (a) = 0 for any P ∈ X , and for any a ∈ K.

A point P is said to be a zero of multiplicity m if vP (f) = m > 0, a pole of multiplicity

−m if vP (f) = m < 0.
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Example 3.9. Let K be any field and let X be the curve defined by Y (that is, the

X-axis). The points of X are Pa = (a : 0 : 1), with a ranging over the algebraic closure

of K, and P∞ = (1 : 0 : 0). Let f = X2/Z2 ∈ K(X ). Clearly f is defined at Pa for any a,

and f(Pa) = a. Hence, among the Pa’s, the only zero of f is P0. By Proposition 3.7 the

function g = X/Z is a local parameter at P0. As f = g2, we have that vP0(f) = vP0(g
2) =

2vP0(g) = 2, that is P0 is a zero of f of multiplicity two. Now, note that by Proposition

3.7, g−1 is a local parameter at P∞. Hence, vP0(f) = vP0(g
2) = 2vP0(g) = −2, meaning

that P∞ is a pole of f of multiplicity two.

Example 3.10. Let K = R and let X be the curve defined by X2 + Y 2 − Z2 (that is

the unit circle). Let f be the rational function represented by X(X − Z)2/Z(Y − Z)2.

What are the valuation of f at the points P1 = (1 : 0 : 1) and P2 = (0 : 1 : 1)?

Write f = u1u
2
2, where u1 = X/Z and u2 = (X − Z)/(Y − Z). As u1 is defined at

P1 and u1(P1) = 1 we have vP1(u1) = 0. To compute vP1(u2) note that in K(X ) the

following relation holds: (X − Z)(X + Z)/(Y − Z)2 = Y 2/(Y − Z)2, that is u2 = h1h2

where h1 = Y/(Y − Z), h2 = Y/(X + Z). By Proposition 3.7 both h1 and h2 are local

parameters at P1, hence vP1(f) = vP1(u1) + 2vP1(h1h2) = 0 + 2 + 2 = 4, that is P1

is a zero of f of multiplicity 4. On the other hand, by Proposition 3.7 u1 is a local

parameters at P2. In K(X ), (Y − Z)(Y + Z)/(X − Z)2 = −X2/(X − Z)2, that is

u−1
2 = g1g2 where g1 = −X/(X − Z), g2 = X/(Y + Z). We can use Proposition 3.7

again to state that both g1 and g2 are local parameters at P2. To sum up, we have that

vP2(f) = vP2(u1) + vP2(g
−2
1 g−2

2 ) = 1− 2− 2 = −3. Hence P2 is a pole of f of multiplicity

3.

Theorem 3.11. Any non-zero f ∈ K(X ) has the same (finite) number of zeros and poles,

each of them counted with multiplicity.

3.2. Divisors. The free abelian group generated by the points of X is called the divisor

group of X . The elements of this group are called divisors of X . In other words, a divisor

D is a finite formal sum of points of X , that is D =
∑

P∈X npP , where nP is an integer

equal to 0 for all but a finite number of points of X .

The support of D is defined by supp(D) := {P ∈ X | nP 6= 0}. Two divisors D =∑
P∈X npP and D′ =

∑
P∈X n′pP are added in the natural way

D + D′ :=
∑
P∈X

(np + n′P )P .

The zero element of the group divisor is
∑

P∈X nP P with nP = 0 for any P ∈ X . It will

be denoted by 0.

A partial ordering on the group divisor is defined by

D ≤ D′ ⇔ nP ≤ n′P for any P ∈ X .
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If nP ≥ 0 for any P ∈ X we call D positive or effective. The degree of D is the sum of all

integers nP , that is deg(D) =
∑

P∈X np.

We will mainly be concerned with a subgroup of the group divisor. A K-divisor is a

divisor D =
∑

P∈X nP P such that nP = n′P whenever P ′ = α(P ) with α in the Galois

group of K̄ over K, K̄ being the algebraic closure of K. Note that any divisor whose

support is contained in the set of K-rational points of X is a K-divisor. The set of all

K-divisors is a subgroup of the group divisor, and it will be denoted by DX .

Remark 3.12. For the sake of simplicity, from now on by the word divisor we will mean a

K-rational divisor.

Given a rational function f , it is natural to associate a divisor to f , that is (f) :=∑
vP (f)P . Such a divisor is the zero divisor if and only if f ∈ K. For f /∈ K, (f)

can be written as a difference of two effective divisors (f) = (f)0 − (f)∞, where (f)0 =∑
vP (f)>0 vP (f)P is the zero divisor of f , and (f)∞ =

∑
vP (f)<0−vP (f)P is the pole divisor

of f .

Example 3.13. Let X and f be defined as in Example 3.9. Then (f) = 2P0 − 2P∞.

Two divisors D and D′ are called linearly equivalent if D−D′ = (f) for a rational function

f .

To construct linear codes, the following concept will play a fundamental role. Given a

divisor D =
∑

npP , the set of all functions satisfying vP (f) ≥ −nP at every point P ,

together with the zero function, is called the space associated to D and it is denoted by

L(D). For an effective divisor D, L(D) consists of the functions such that all poles lie in

supp(D), and the multiplicity of each of them is not greater than nP . It is straightforward

to check that L(D) is a vector space over K, whose dimension is denoted by l(D). We

will prove the following lemma:

Lemma 3.14. Let D ∈ DX . Then

(1) if D′ is linearly equivalent to D, then L(D) is isomorphic to L(D′) (as a vector

space over K);

(2) if deg(D) < 0 then L(D) = {0};
(3) L(0) = K.

Proof. (1) As D and D′ are equivalent there exists z ∈ K(X ) such that D = D′+(z).

Define the mapping ϕ : L(D) → K(X ), x 7→ xz. Clearly, ϕ is K-linear and its

image is contained in L(D′): vP (xz) = vP (x) + vP (z) ≥ −nP + vP (Z) = −n′P for

every P ∈ X . Moreover, ϕ is bijective as ψ : L(D′) → L(D), x 7→ xz−1, is an

inverse of ϕ.

(2) Assume there exists x ∈ L(D), x 6= 0. Then D′ := D +(x) is effective and linearly

equivalent to D. Hence, 0 ≤ deg(D′) = deg(D), which is a contradiction.
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(3) Clearly K is contained in L(0). On the other hand, each element in L(0) has no

poles, therefore it is a constant.

¤

Example 3.15. Consider the curve X defined over F2 by X3 + Y 3 + Z3. Let D = 2P ,

with P = (0 : 1 : 1) ∈ X . We look for elements in L(D), that is rational functions

having a pole of multiplicity at most 2 at P , and defined elsewhere. Clearly any constant

functions belong to L(D). Let f = X/(Y + Z) = (Y 2 + Y Z + Z2)/X2. By Lemma 3.7

t = X/Z is a local parameter at P . Write f = gt−2 where g = (Y 2 + Y Z + Z2)/Z2. As

g ∈ OP \MP we have vP (f) = −2. Note that as f is defined at every point of X different

from P , f ∈ L(D). As f and 1 are clearly linearly independent over K, the dimension of

L(D) is at least 2. We will see later that actually equality holds.

3.3. The Riemann-Roch Theorem. The Riemann-Roch Theorem is one of the most

famous theorems in Algebraic Geometry. It deals with the computation of l(D), the

dimension of the vector space L(D).

Let X be a curve defined by F (X,Y, Z) and let d be the degree of X . We introduce the

value g = (d − 1)(d − 2)/2, which is called the genus of X 1. We also define a canonical

divisor as any divisor W such that deg(W ) = 2g − 2 and l(W ) = g.

Theorem 3.16 (Riemann-Roch Theorem). Given a divisor D,

l(D) = deg(D) + 1− g + l(W −D)

where W is any canonical divisor.

Calculating l(W −D) is not easy in general. Anyway, as a corollary to the Riemann-Roch

Theorem we get that

Corollary 3.17. For any divisor D such that deg(D) ≥ 2g − 1,

l(D) = deg(D) + 1− g

Proof. By Riemann-Roch Theorem we have l(D) = deg(D)+ 1− g + l(W −D), where W

is a canonical divisor. As deg(D) ≥ 2g−1 and deg(W ) = 2g−2, we have deg(W−A) < 0.

By (2) of Lemma 3.14 l(W − A) = 0, and the claim follows. ¤

Example 3.18. For q a prime power, let X be the curve defined by Y over Fq. We keep

the notation of Example 3.9. For an integer k, 1 ≤ k ≤ q, let D = (k − 1)P∞. We will

prove that L(D) coincides with the vector space

V = {f(X, Z)/Zk−1 | f(X, Z) ∈ Fq[X,Z], homogenous, deg(f) ≤ k − 1}.
1The genus of a curve is the most important birational invariant. In the case of non-smooth algebraic

curves the definition of genus is much more complicated
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First we show that V ⊆ L(D). For f ∈ V , write f = (a0Z
k−1 + a1XZk−2 + . . . +

ak−1X
k−1)/Zk. Then f = a0f0 + a1f1 + . . . + ak−1fk−1, where fi = (X/Z)i. As by

Proposition 3.7 f−1
1 is a local parameter at P∞, Proposition 3.8 yields vP∞(f) = −i0,

where i0 = max{0 ≤ i ≤ k − 1 | i 6= 0}. Taking into account that f is defined at each

point of X different from P∞, we have (f)∞ = −i0P∞, and hence f ∈ L(D). To prove the

assertion it is enough to show that dim(V ) = l(D). Clearly, dim(V ) = k. As the genus g

of X is equal to 0, by Corollary 3.17 l(D) = k as well.

Example 3.19. Let X be as in Example 3.18. Let P1 = (a1 : 0 : 1), . . . , Pn = (an : 0 : 1)

be n distinct points of X . For v1, v2, . . . , v2 non-zero elements of Fq, let U ∈ Fq[X] be

such that deg(U) ≤ n− 1 and U(ai) = vi for all i, 1 ≤ i ≤ n. Write U = u0 +u1X + . . .+

un−1X
n−1, and u be the rational function on X defined by u = (u0Z

n−1 + u1XZn−2 +

. . . + un−1X
n−1)/Zn−1. Now, consider the space L(D), where D = (k − 1)P∞ − (u). We

claim that the set

uf0, uf2, . . . , ufk−1,

is a basis of L(D). where fi = (X/Z)i. From Example 3.18 we know that (fi) = iP0−iP∞.

Hence

(ufi) + D = (u) + (fi) + ((k − 1)P∞ − (u)) = iP0 + (k − 1− i)P∞ ≥ 0

that is ufi ∈ L(D) for all i, 0 ≤ i ≤ k − 1. It is left as an exercise to the reader the

proof that the ufi’s are linearly independent. By Corollary 3.17, the dimension of L(D)

is equal to k, and hence the assertion is proved.

3.4. One-point divisors. In Section 6 we will be concerned with the particular case

when D = mP , with P a K-rational point of X , m > 0. The elements in L(D) are those

functions f such that (f)∞ = lP , l ≤ m. Let H(P ) be the following set of non-negative

integers:

H(P ) := {l| there exists f ∈ K(X ) with (f)∞ = lP}.
Clearly H(P ) is a semigroup, called the Weierstrass semigroup at P . The elements in

H(P ) are called non-gaps at P , whereas any integer s ∈ N \H(P ) is called a gap.

Proposition 3.20. The dimension of L(mP ) is equal to the number of non-gaps at P

which are less than or equal to m.

Proof. Note that s is a gap if and only if L((s − 1)P ) = L(sP ). Consider the chain of

vector spaces L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ . . . ⊆ L(mP ). For any i, 0 ≤ i ≤ m, the difference

l(iP )− l((i−1)P ) is at most 1: any two elements f1, f2 in L(iP )\L((i−1)P ) are linearly

dependent over K as f1/f2 has no poles and therefore is an element of K. Moreover, by

(3) of Lemma 3.14 dimL(0) = 1. Hence the proposition is proved. ¤
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By Riemann-Roch Theorem, L((s − 1)P ) = L(sP ) if and only if l(W − (s − 1)P ) =

l(W − sP ) + 1, where W is a canonical divisor. By (2) of Lemma 3.14 this is impossible

when s ≥ 2g. This proves the following proposition.

Proposition 3.21. Any integer s ≥ 2g is a non-gap at every P ∈ X .

Moreover, we have that

Proposition 3.22. There are exactly g gaps at every P ∈ X .

Proof. Corollary 3.17 yields that dimL(2gP ) = g + 1. By Proposition 3.20 the number of

non-gaps at P which are less than or equal to 2g is g + 1. Hence, by Proposition 3.21 the

number of gaps at P is g. ¤

Corollary 3.23. If g ≥ 1 there is at least one gap at every P ∈ X . As H(P ) is a

semigroup, 1 is a gap at every P ∈ X

The following lemma will be useful in the sequel.

Lemma 3.24. Let f1, . . . fr ∈ L(mP ) be such that vP (fi) 6= vP (fj) for any i 6= j, 1 ≤
i, j ≤ r. Then f1, . . . , fr are linearly independent over K.

Proof. Suppose that there exist α1, . . . , αr ∈ K such that 0 = α1f1 + . . . + αrfr. Without

loss of generality assume that αi 6= 0 for any 1 ≤ j ≤ r. Then by (2) of Proposition 3.8

vP (α1f1 + . . . + αrfr) = min{vP (fi) | 1 ≤ i ≤ r}. Hence α1f1 + . . . + αrfr cannot be the

0 function. ¤

Example 3.25. We keep the notation of example 3.15. As the genus of X is equal to 1,

1 is the only gap at P . By Proposition 3.20 l(2P ) = 2.

Example 3.26. Let X be the Hermitian curve defined over the finite field with q2 elements

(see Example 3.5). Let P = (0 : 1 : 0). We claim that for any m > 0 a basis of L(mP ) is

{(X iY j)/Zi+j | iq + j(q + 1) ≤ m, i ≥ 0, 0 ≤ j ≤ q − 1}.
We first prove that fi,j = (X iY j)/Zi+j belongs to L(mD) when iq + j(q + 1) ≤ m, i ≥
0, 0 ≤ j ≤ q − 1. Note that the upper bound on j ensures that the fi,j’s are pairwise

different. As P is the only point of X with Z-coordinate equal to 0, each fi,j has a pole

divisor of type sP . By Proposition 3.7, the function t = X/Y is a local parameter at P .

As tq+1 = (Z/Y ) + (Z/Y )q we have

q + 1 = vP (tq+1) = vP ((Z/Y ) + (Z/Y )q) = vP (Z/Y )

by (2) of Proposition 3.8. Moreover, as (X/Z)q+1 = (Y/Z)q + (Y/Z) we have

(q + 1)vP (X/Z) = vP ((Y/Z)q + (Y/Z)) = −q(q + 1)

again by (2) of Proposition 3.8. Hence,

vP (fi,j) = −iq − j(q + 1) ≥ −m,
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that is fi,j ∈ L(mP ). By Lemma 3.24 the fi,j’s are linearly independent over K. It is left

as an exercise the proof that H(P ) = {iq + j(q + 1) | 0 ≤ i, j} [Hint: the genus g of X is

equal to q(q− 1)/2]. Hence, the number of non-gaps which are less than or equal to m is

equal to the number of the f ′i,js. By Lemma 3.20 the proof is complete.

Exercise 3.27. Let X be the curve defined over the finite field with 49 elements by

Y 7Z + Y Z7 −X8. Let P = (0 : 1 : 0). Find a basis of L(10P ), L(20P ) and L(30P ).

4. Algebraic-Geometric codes

Throughout this section we fix the following notation.

• X will be a curve defined over Fq.

• Fq(X ) (resp. DX ) denotes the field of rational functions (resp. the group of

Fq-divisors) of X .

• If f ∈ Fq(X )\{0}, (f) denotes the divisor associated with f and (f)0 (resp. (f)∞)

denotes the zero (resp. pole) divisor of f .

• For E ∈ DX , L(E) denotes the Fq-vector space associated with E, i.e.,

L(E) = {f ∈ Fq(X ) \ {0} : E + (f) ≥ 0} ∪ {0} .

We set `(E) := dim(L(E)).

Let P1, . . . , Pn be n distinct Fq-rational points of X and let G ∈ DX such that vPi
(G) = 0

for i = 1, . . . , n. Let

e = eP1,...,Pn : L(G) → Fn
q

f 7→ (f(P1), . . . , f(Pn)) ,

which is an Fq-linear map. Set D := P1 + . . . + Pn.

Definition 4.1. The Goppa code associated with D and G is CD,G := e(L(G)).

Exercise 4.2. Prove that the Reed-Solomon code in Section 2 is a Goppa code constructed

from the curve X defined by Y , and associated with divisors of type D = P1 + . . . + Pn

and G = (k − 1)P∞ (cf. Example 3.18).

Exercise 4.3. The Generalized Reed-Solomon code in Section 2 is a Goppa code con-

structed from the curve X defined by Y , and associated with divisors of type D =

P1 + . . . + Pn and G = (k − 1)P∞ + (u) (cf. Example 3.19).

Lemma 4.4. Let k := dim(CD,G) and d be the minimum distance of CD,G. Then

(1) k = `(G)− `(G−D);

(2) d ≥ n− deg(G).
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Proof. (1) The map e is surjective from L(G) to CG,D. Then, by linear algebra, k =

`(G)− dimKer(e). Since Ker(e) = L(G−D), (1) follows.

(2) Let ~x = (f(P1), . . . , f(Pn)) such that w(~x) = d. Then there exist n − d points, say

Pi1 , . . . , Pin−d
, such that f(Pij) = 0, i.e. vPij

(f) ≥ 1. Then f ∈ L(G− (Pi1 + . . . + Pin−d
))

and hence

deg(G)− (n− d) ≥ 0 .

Now the claim follows. ¤

Remark 4.5. Suppose that n−deg(G) > 0. Then d(CD,G) = n−deg(G) if and only if there

exists D′ ∈ DX such that 0 ≤ D′ ≤ D, deg(D′) = deg(G), and dimL(G − D′) > 0. In

fact, if d(CD,G) = n− deg(G) then there exists f ∈ L(G) having exactly deg(G) different

zeros in supp(D), say Pij , j = 1, . . . , deg(G). Then D′ :=
∑deg(G)

j=1 Pij satisfies all the

above conditions. Conversely, supppose there exists D′ ∈ DX such that 0 ≤ D′ ≤ D,

deg(D′) = deg(G), and dimL(G−D′) > 0. Let f ∈ L(G−D′). Then (f) = D′ −G and

so there is an element of CD,G of weight n− deg(G).

Proposition 4.6. Let CD,G be a Goppa code with parameters k and d as above. Let g be

the genus of the underlying curve.

(1) If n > deg(G), then k = `(G). In particular, k ≥ deg(G) + 1− g and so d + k ≥
n + 1− g. Furthermore, a generator matrix of CD,G is given by

M :=




f1(P1) . . . f1(Pn)
...

...
...

fk(P1) . . . fk(Pn)


 ,

where f1, . . . , fk is an Fq-basis of L(G).

(2) If n > deg(G) > 2g − 2, then k = deg(G) + 1− g.

Proof. (1) We have that L(D−G) = 0 and hence the first part of (1) follows from Lemma

4.4(1) and the Riemann-Roch theorem. To see that M is a generator matrix of CD,G

we have to show that the rows ~x1, . . . , ~xk of M are Fq-linearly independent. Suppose

that
∑

i=1 ai~xi = ~o with ai ∈ Fq. Then
∑k

i=1 aifi(Pj) = 0 for j = 1, . . . , n. Then∑k
i=1 aifi ∈ L(G−D) and so ai = 0 for each i. This completes the proof of (1).

(2) The claim follows from (1) and Corollary 3.17. ¤

Remark 4.7. The Singleton bound (Corollary 1.13) together with (1) of Proposition 4.6

for a code C = CD,G with n > deg(G) yield

n + 1− g ≤ d + k ≤ n + 1 .

In particular, if the underlying curve has genus 0, then C is MDS. This proves also that

Generalized Reed-Solomon codes are MDS codes.
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Remark 4.8. It is, in general, a very hard problem to obtain lower bounds for the minimum

distance of a given code (or a given class of codes). One of the reasons for the interest

in AG-codes is that for this large class of codes a good lower bound for the minimum

distance is available (see Proposition 4.6).

We state an important result on Goppa codes, whose proof is beyond the purposes of

these notes.

Proposition 4.9. Let X , D = P1 + . . . + Pn and G be as above. Then there exists a

canonical divisor W such that

C⊥
D,G = CD,D−G+W .

5. Bounds on linear codes

A rough gauge of the quality of a linear code C is provided by two invariants: the

transmission rate R(C) := k/n and the relative distance δ(C) := d/n, where n is the

length of C, k is its dimension and d its minimum distance. In essence, the purpose of

coding theory is to find codes that optimize these invariants.

Let U lin
q ⊂ [0, 1]2 be the set of limit points of all pairs (δ(C), R(C)) coming from linear

codes. The region U lin
q is called the domain of codes. It is bounded in the unit square

by the sides of the unit squares on the axis and by the graph of a continuous function

αlin
q : [0, 1] → [0, 1] defined by

αlin
q (δ) = sup{R : (δ, R) ∈ U lin

q }.
For 0 < δ < (q− 1)/q, the exact value of αlin

q (δ) is unknown. However, several upper and

lower bounds are available.

The q-ary entropy function Hq : [0, (q − 1)/q] → R is defined by Hq(0) = 0 and Hq(x) =

x logq(q − 1)− x logq(x)− (1− x) logq(1− x) for 0 ≤ x ≤ (q − 1)/q.

Proposition 5.1. (a) (Plotkin Bound) For 0 ≤ δ ≤ (q − 1)/q,

αq(δ) ≤ 1− q

q − 1
δ .

(a) (Hamming Bound) For 0 ≤ δ ≤ 1,

αq(δ) ≤ 1−Hq

(
δ

2

)
.

(c) (Gilbert-Varshamov Bound) For 0 ≤ δ ≤ (q − 1)/q,

αq(δ) ≥ 1−Hq(δ) .

Remark 5.2. There exists some others much more complicated to upper bounds on αq(δ).

We mention here the Bassalygo-Elias Bound and the Mc-Eliece-Rodemich-Rumsey-Welch

Bound, which are better than both Hamming and Plotkin bounds.
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For a long time coding theorists were unable to construct explicit sequences of codes with

limit points on or above the Gilbert-Varshamov bound and they were led to suspect that

αq(δ) = 1−Hq(δ) for 0 ≤ δ ≤ (q − 1)/q.

Now we consider AG Codes, keeping the notation of the previous section. If we fix

the ratio deg(G)/n then the transmission rate R(CD,G) increases with the ratio n/g.

Therefore to obtain good codes one has to construct curves with as many rational points

as possible. Given a curve X over Fq, let N(X ) denote the number of Fq-rational points

of X . Note that if Xl is a sequence of curves defined over Fq such that their genera gl tend

to ∞ and such that liml→+∞
N(Xl)

gl
is a positive real number γ, then the part of the line

δ + R = (γ − 1)/γ in the positive quadrant is contained in the domain U lin
q . This follows

by taking divisors Gl of degree rl with 2gl − 1 ≤ rl < N(Xl), and taking as D the set of

all rational points of Xl. Then (1) of Proposition 4.6 tells us that for the code CDl,Gl
we

have

Rl + δl ≥ 1 + (1− gl)/N(Xl)

which tends to (γ − 1)/γ. Hence this sequence of codes has a limit point on or above

the line δ + R = (γ − 1)/γ. The fact that for q a square there exists a sequence of

curves Xl defined over Fq of genus gl with the ratio N(Xl)/gl tending to
√

q − 1 was

observed by Ihara and independently by Tsfasman, Vladut and Zink. For q ≥ 49 the line

δ + R =
√

q−2√
q−1

comes above the Gilbert-Varshamov bound, and this came at that time as

quite as a surprise for coding theorists. Later on, Drinfeld and Vladut generalized the

idea of Ihara and Tsfasman, Vladut and Zink by using all prime powers, not just squares.

Let Nq(g) be the maximum value of N(X ) where X runs through all curves of genus g

defined over Fq. Moreover, we define

A(q) := lim sup
g→+∞

Nq(g)

g
.

By repeating the argument above, it can be proved that the part of the line δ + R =

(A(q) − 1)/A(q) in the positive quadrant is contained in the domain U lin
q . The results

of Drinfeld and Vladut says that A(q) ≤ √
q − 1. Unfortunately this bound is an upper

bound for A(q). At present times, a large amount of research is being performed on the

problem of determining bounds on Nq(g) and A(q).

6. One-point Goppa Codes

In this section we deal with a lower bound on the minimum distance of the duals of Goppa

codes CD,G where G = γP , and P is an Fq-rational point of the underlying curve (see

[13, Sec. 4]). Note that L(G) = L(γ̃P ), where γ̃ is the biggest non-gap at P less than or

equal to γ. Hence, we assume that γ is a non-gap at P .

We set

H(P ) = {ρ1 = 0 < ρ2 < . . .} ,
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and

E` := CD,ρ`P , C` := E⊥
` .

Let ν` := #{(i, j) ∈ N2 : ρi + ρj = ρ`+1} .

Definition 6.1. The number

dORD(`) := min{νm : m ≥ `}
is called the order bound or the Feng-Rao designed minimum distance of C`.

Let c be the conductor of H(P ), i.e. c is the largest element m ∈ H(P ) such that

m− 1 6∈ H(P ).

Theorem 6.2. d(C`) ≥ dORD(`).

Proof. Let fi ∈ Fq(X) such that (fi)∞ = ρiP . Then {f1, . . . , f`} is an Fq-basis of L(ρ`P ).

Let ~hi := e(fi) = (fi(P1), . . . , fi(Pn)). Then E` is generated by ~h1, . . . ,~h` and so

C` = {~x ∈ Fn
q : 〈~x,~hi〉 = 0 for i = 1, . . . , `} .

Note that there exists N such that for ` ≥ N , E` = Fn
q . For ~y ∈ Fn

q , and for i, j = 1, . . . , N ,

set

si(~y) := 〈~y,~hi〉 and sij(~y) := 〈~y,~hi ∗ ~hj〉 ,
where for ~z = (z1, . . . , zn) and ~w = (w1, . . . , wn), ~z ∗ ~w := (z1w1, . . . , znwn). We have the

following N ×N matrix

S(~y) := (sij(~y)) .

Claim 6.3. ([13, Lemma 4.7]) For ~y ∈ Fn
q , w(~y) = rank(S(~y)).

Proof. (Claim 6.3) It is easy to see that S(~y) = HD(~y)H t, where H is the N × n matrix

with ~hi as its ith, and D(~y) is the n × n diagonal matrix with ~y on the diagonal. Since

EN = Fn
q , both H and H t have rank n and so rank(S(~y)) = rank(D(~y)) = w(~y). ¤

Claim 6.4. ([13, Lemma 4.9])

(1) If ~y ∈ C` and ρi + ρj ≤ ρ`, then sij(~y) = 0;

(2) If ~y ∈ C` \ C`+1 and ρi + ρj = ρ`+1, then sij(~y) 6= 0.

Proof. (Claim 6.4) (1) From ρi + ρj ≤ ρ` we have that fifj ∈ L(ρ`P ), and thus ~hi ∗ ~hj ∈
E` = C⊥

` . Then (1) follows.

(2) From ρi + ρj = ρ`+1 it follows that fifj ∈ L(ρ`+1P ) \ L(ρ`P ). Then fifj =
∑`+1

k=1 akfk

with ak ∈ Fq and a`+1 6= 0. Thus, ~hi ∗~hj =
∑`+1

k=1 ak
~hk and so sij(~y) = a`+1〈~y,~h`+1〉 which

is not zero as ~y 6∈ C`+1. ¤

Claim 6.5. ([13, Lemma 4.10]) Let (i1, j1), . . . , (iν`
, jν`

) be an enumeration of the elements

of {(i, j) ∈ N2 : ρi + ρj = ρ`+1} in increasing order with respect to the lexicographic order

on N2. Then
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(1) i1 < . . . < iν`
and j1 > . . . > jν`

;

(2) For ~y ∈ C` \ C`+1, sih,jh
(~y) 6= 0 for h = 1, . . . , ν`.

Proof. (Claim 6.5) (1) Suppose that iu = iu+1. Then ju < ju+1 and so ρ`+1 = ρiu+1 +

ρju+1 > ρiu + ρju = ρ`+1, a contradiction. Now suppose that ju+1 ≥ ju. Then ρ`+1 =

ρiu+1 + ρju+1 > ρiu + ρju = ρ`+1, which is again a contradiction.

(2) It follows from Claim 6.4(2) since ρih + ρjh
= ρ`+1. ¤

Now, by using the notations above, for ~y ∈ C`, h = 1, . . . , ν` and 1 ≤ j < jh we have that

sih,j(~y) = 0. Then for ~y 6∈ C`+1 the i1th, ...,iν`
th rows of S(~y) are Fq-linearly independent.

Therefore, rank(S(~y)) ≥ ν` and from Claim 6.3 we have that

d(C`) ≥ min{νm : m ≥ `, Cm ) Cm+1}
and the assertion follows.

Theorem 6.6. dORD(`) ≥ ` + 1− g and equality holds if ` ≥ 2c− g − 1.

¤

Proof. First we prove a claim.

Claim 6.7. ([13, Thm 5.24], [22, Lemma 3.4(1)]) Let µ` := #{i | 1 ≤ i ≤
ρ`+1 and i, ρ`+1 − i 6∈ H(P )}. Then

ν` = 2` + 1− ρ`+1 + µ` .

Proof. (Claim 6.7) We have that

{(i, j) ∈ N2 : ρi + ρj = ρ`} = {(a, b) ∈ N2
0 : a + b = ρ`+1} \ (A ∪ B) ,

where A := {(a, b) ∈ N2
0 : a + b = ρ`+1, a 6∈ H(P )} and B = {(a, b) ∈ N2

0 : a +

b = ρ`+1, b 6∈ H(P )}. Clearly #A = #B and this number is equal to ρ`+1 − `. Then

ν` = (ρ`+1 + 1)− 2(ρ`+1 − `) + #A ∩ B. Since

(i, j) ∈ A ∩ B ⇔ 0 < i < ρ`+1, i, j = ρ` − i 6∈ H(P ) ,

the statement follows. ¤

Then we have that ν` ≥ 2` + 1− ρ`+1. Since g ≥ ρ`+1 − `, we have ν` ≥ ` + 1− g and so

dORD(`) ≥ ` + 1 − g. On the other hand, ρ`+1 = g + ` for ` ≥ c − g and if a, b 6∈ H(P ),

a + b ≤ 2c− 2. Hence, for ` ≥ 2c− g − 1, µ` = 0 and ν` = ` + 1− g. This completes the

proof of Theorem 6.6. ¤
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7. MDS codes and Almost MDS codes

In this section a linear code C over Fq with length n, dimension k and minimum distance

k will be called an [n, k, d]-code. In Section 1 we defined MDS codes as those linear codes

which meet the Singleton bound (see Corollary 1.13). That is, MDS codes have have

the best error-correcting capability, for given length and dimension. The following is a

natural definition in this context.

Definition 7.1. The Singleton defect of an [n, k, d]-code C is s(C) = n− k + 1− d.

An MDS code is a code with Singleton defect equal to 0. When s(C) = 1, C is said to be

an Almost MDS code (AMDS code for short).

Remark 7.2. By Remark 4.7 for an AG-code C = CD,G with n > deg(G) the Singleton

defect s(C) is less than or equal to the genus g of the underlying curve.

As a corollary to Lemma 1.12 we can state a very simple but useful connection between

coding theory and finite geometry. Let PG(r, q) be the projective space of r dimensions

over Fq. A set of m points in PG(r, q) are said to be in general position if they are not

contained in a subspace of dimension m− 2.

Definition 7.3. A subset K of n points in PG(r, q) is said to be an n-set of kind e if

e + 1 points in K are always in general position, but some e + 2 of them are not.

Proposition 7.4. The following are equivalent:

(1) C is an [n, k, d]-code.

(2) The columns of the parity check matrix of C are the homogenous coordinates of

the points of an n-set of kind d− 1 in PG(n− k − 1, q).

Proof. The claim follows from Lemma 1.12. ¤

An n-arc in PG(r, q) is an n-set of kind r. An n-track in PG(r, q) is an n-set of kind

r − 1. By the above proposition, MDS (resp. AMDS) [n, k, d]-codes over Fq, and n-arcs

(resp. n-tracks) in PG(n− k − 1, q) are equivalent objects.

7.1. MDS codes. Two of the main problems on MDS codes are the following: (a) finding

the maximum length of an MDS code of a given dimension, (b) characterizing the codes

having this maximum length. In this section, these problems will be approached from a

geometric point of view, i.e. in terms of arcs in projective spaces.

By Propositions 1.15 and 7.4, the maximum lenght of an MDS code over Fq of dimension

s + 1 is equal to the maximum size of an n-arc in PG(s, q), denoted by m(s, q). The

following conjecture is known as the main conjecture on MDS codes:
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Conjecture 7.5.

m(s, q) =





s + 2 if s ≥ q − 1,

q + 2 if q is even and s ∈ {2, q − 2},
q + 1 in all other cases.

7.1.1. MDS codes of dimension 3. The main conjecture on MDS codes has been proved for

s = 2, that is for MDS codes of dimension 3. This is a classical result in finite geometry,

going back to the 50’s.

An m(2, q)-arc in PG(2, q), q odd, is called an oval and an m(2, q)-arc in PG(2, q), q even,

is called a hyperoval.

Theorem 7.6 (Segre). For q odd, an oval is the set of rational points of a conic.

Bose showed that, for q even, a conic plus its nucleus (the intersection point of its tangents)

is a hyperoval. A hyperoval of this type is called regular. As shown by Segre, for q = 2, 4, 8,

every hyperoval is regular. For q = 2h, h ≥ 4, there exist irregular hyperovals, that is,

hyperovals which are not the union of a conic and its nucleus. Several infinite classes of

irregular hyperovals are known. The problem of classifying hyperovals would appear to

be difficult.

Finding the values of n for which an n-arc is always contained in an oval, for q odd, or

hyperoval, for q even, is relevant for solving problems in higher-dimensional spaces.

Let m′(2, q) denote the second largest size that a complete arc in PG(2, q) can have. Segre

showed that

(7.1) m′(2, q) ≤
{

q − 1
4

√
q + 7

4
if q is odd,

q −√q + 1 otherwise.

Besides small q, namely q ≤ 29, the only case where m′(2, q) has been determined is for q

an even square. Indeed, for q square, examples of complete (q −√q + 1)-arcs show that

(7.2) m′(2, q) ≥ q −√q + 1 ,

and so the bound (7.1) for an even q square is sharp. This result has been recently

extended by Hirschfeld and Korchmáros who showed that the third largest size that a

complete arc can have is upper bounded by q − 2
√

q + 6.

If q is not a square, Segre’s bounds were notably improved by Voloch.

If q is odd, Segre’s bound was slightly improved to m′(2, q) ≤ q−√q/4 + 25/16 by Thas.

If q is an odd square and large enough, Hirschfeld and Korchmáros significantly improved

the bound to

(7.3) m′(2, q) ≤ q − 1

2

√
q +

5

2
.

The two last bounds suggest the following problem, which seems to be difficult and has

remained open since the 60’s.
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Problem 7.7. For q an odd square, is it true that m′(2, q) = q −√q + 1?

The answer is negative for q = 9 and affirmative for q = 25. So Problem 7.7 is indeed

open for q ≥ 49.

All cited bounds on m′(2, q) are proved in a similar way. Segre associates to an n-arc in

PG(2, q) a plane curve C in the dual plane of PG(2, F̄q), where F̄q denotes the algebraic

closure of Fq. This curve is defined over Fq and it is called the envelope of the arc. For

P ∈ PG(2, F̄q), let `P denote the corresponding line in the dual plane. The following

result summarizes the main properties of C for the odd case.

Theorem 7.8. Let K be an n-arc in PG(2, q). If q is odd, then the following statements

hold:

(1) The degree of C is 2t, with t = q − n + 2 being the number of 1-secants through a

point of K.

(2) All nt of the 1-secants of K belong to C.
(3) Each 1-secant ` of K through a point P ∈ K is counted twice in the intersection

of C with `P .

(4) The curve C contains no 2-secant of K.

(5) The irreducible components of C have multiplicity at most two, and C has at least

one component of multiplicity one.

(6) For n > (2q + 4)/3, the arc K is incomplete if and only if C admits a linear

component over Fq. For n > (3q + 5)/4, the arc K is a conic if and only it is

complete and C admits a quadratic component over Fq.

Proof. The proof of this theorem can be found in [11], and is based on the classical

Theorem of Menelaus. ¤

The common idea of the proofs of the bounds on m′(2, q) is that C has a lot of points,

namely at least nt, is defined over Fq, and its degree 2t is not too big. Then a good upper

bound on the number of Fq-rational points of a curve, for example Hasse-Weil Theorem,

or the theorem of Stöhr and Voloch, is used to show that for n big enough C is a union of

pencils. The vertices of these pencils are points which extend the original arc to an oval.

7.1.2. MDS codes of dimension greater than 3. Again, the main question is to find an

upper bound for the size of an n-arc in PG(s, q), with s ≥ 3. The situation is essentially

different if s is small or large compared to q. Let us first consider the case s small in

detail.

Definition 7.9. A normal rational curve of PG(s, q) is a subset of points which is pro-

jectively equivalent to

{(1, t, t2, . . . , ts) | t ∈ Fq} ∪ {(0, 0, . . . , 0, 1)}.
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Note that a normal rational curve of PG(2, q) is a conic. It is very easy to see that a

normal rational curve of PG(s, q) is indeed a (q + 1)-arc. Let m′(s, q) denote the size of

the second largest complete arc in PG(s, q).

Theorem 7.10 (Kaneta-Maruta). If every (q + 1)-arc of PG(s, q) is a normal rational

curve, then q + 1 is the maximum value of n for which n-arcs exist in PG(s + 1, q). If in

addition m′(s, q) < q, then any (q + 1)-arc in PG(s + 1, q) is a normal rational curve.

Outline of the proof. Take a (q + 2)-arc K in PG(s + 1, q) and project it from its points

ri ∈ K onto hyperplanes αi such that ri /∈ αi. Then we get a normal rational curve Ki in

each hyperplane αi, and K is contained in the intersection of the cones with vertex ri and

base Ki. As the intersection of these cones is a normal rational curve, we have that K has

at most q+1 points, a contradiction. Hence m(s+1, q) = q+1. The second assertion can

be proved similarly. In fact, each projection Ki of a (q + 1)-arc is contained in a normal

rational curve, as the size of Ki is q and m′(s, q) < q. ¤

For q odd, Segre’s Theorem 7.6 is a good starting point for the application of Theorem

7.10. More precisely, it gives m(s, q) = q + 1 for s = 3. Taking into account (7.1),

we have that any (q + 1)-arc in PG(3, q) is a normal rational curve. These results can

be extended to higher dimensions by induction. Roughly speaking, from the projection

argument one can suspect that we lose one when the dimension is increased by one, hence

the importance of improving on the difference between q and m′(2, q). More precisely, the

following result holds true.

Theorem 7.11. Let q be odd.

(a) m(s, q) = q + 1, if s < q + 4−m′(2, q),
(b) any (q + 1)-arc in PG(s, q) is a normal rational curve if s < q + 3−m′(2, q).

The theorem was first proved by Thas, the improvement between the bounds in (b) and

(a) is due to Kaneta and Maruta.

It is worthwhile to mention that in PG(4, 9) there are two different types of (q + 1)-arcs.

Of course we have the normal rational curves and the second type is the set

{(1, x, x2 + σx6, x3, x4)} ∪ {(0, 0, 0, 0, 1)}
where σ is a non-square of F9.

The case q even is more complicated as we cannot start from 3 dimensions. However,

already in three dimensions, Casse and Glynn could characterize (q + 1)-arcs.

Theorem 7.12. In PG(3, q) with q = 2h every (q + 1)-arc is projectively equivalent to

the set

{1, t, t2r

, t2
r+1} ∪ {(0, 0, 0, 1)}

for some r with (r, h) = 1.
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Then in four dimensions the same authors proved even more.

Theorem 7.13. Any (q + 1)-arc of PG(4, q), q ≥ 8 even, is a normal rational curve.

The difficulty in extending the result s in higher dimensions was that there was no rea-

sonable estimate available on m′(3, q) at that time. This very important step was first

done in a paper by Bruen, Thas and Blokhuis in 1988. However, this is not yet enough to

apply induction. Currently, the best bounds for m(s, q) and m′(s, q) are due to Storme

and Thas (1993).

Theorem 7.14. Let q be even.

(a) In PG(s, q), s ≥ 4 and q > (2s− 11
2
)2, we have m(s, q) = q + 1.

(b) In PG(s, q), s ≥ 4 and q > (2s− 7
2
)2, every (q +1)-arc is a normal rational curve.

(c) In PG(s, q), s ≥ 4 and q > (2s− 7
2
)2, we have m′(n, q) ≤ q −

√
q

2
+ s− 3

4
.

Finally, there is a relatively easy case, when the dimension os bigger than q. Of course,

we always have an arc consisting of (s+1) points (the points of the fundamental simplex),

and it is not too difficult to see that other points cannot be added to this set.

7.2. Almost MDS codes. The interest in AMDS codes comes from the possibility to

construct AMDS codes with length bigger than q +1. Let µ(s, q) be the maximum length

n for which there exists an [n, n− s− 1, s + 1]-code over Fq, that is the maximum size of

an n-track in PG(s, q).

AMDS codes over Fq of length bigger than q + 1 arise from elliptic curves (i.e. curves of

genus g = 1) via Goppa construction. In particular, An AMDS code over Fq of length n

and dimension k exists for every n and k = 2, 3, . . . , n, provided that some elliptic curve

over Fq has exactly n+1 Fq-rational points. Roughly speaking, this follows from Remark

7.2.

However, we describe in detail AMDS codes arising from elliptic curves, in order to study

their extendibility.

Let E be an elliptic plane curve defined over Fq with affine equation

f(X, Y ) := Y 2Z + a1XY Z + a2Y Z2 −X3 − a3X
2Z − a4XZ2 − a5Z

3 = 0 ,

where ai ∈ Fq for i = 1, . . . , 5.

Remark 7.15. It can be proved that any plane elliptic curve defined over Fq and with at

least one Fq-rational point of inflection is projectively equivalent to a curve of the above

form.

Let n + 1 := #E(Fq), the number of Fq-rational points of E . Then E(Fq) consists of n

affine points, say P1, . . . , Pn, together with the infinite point Pn+1 = P∞ = (0 : 0 : 1).
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Let Σ = K(E) be the rational function field of E . Let also x be the rational function

represented by X/Z, and y the one represented by Y/Z. It is easy to see that the number

of zeros of x is 2, whereas the number of zeros of y is 3. By Theorem 3.11 we have

vP∞(x) = −2 and vP∞(y) = −3.

For any integer i > 1, let

ψi(X, Y ) :=





Y s if i = 3s, s ≥ 1 ,

XY s if i = 3s + 2, s ≥ 0 ,

X2Y s if i = 3s + 4, s ≥ 0 .

Note that vP∞(ψi(x, y)) = −i and that ψi(x, y) is defined at every point of E different

from P∞. Let us fix an integer k ∈ {3, 4, . . . , n}. For any i ∈ {2, . . . , k}, the rational

function ψi(x, y) belongs to L(kP∞). By Corollary 3.17, 1, ψ2(x, y), . . . , ψk(x, y) is a basis

of L(kP∞).

Then by Proposition 4.6 the AG code Ck := CD,G with G := kP∞, D := P1 + . . . + Pn

has length n, dimension k, and by Lemma 4.4 its minimum distance is at least n− k.

For every prime power q, the above codes Ck provides AMDS codes of length up to

Nq(1) − 1, where Nq(1) denotes the maximum number of Fq-rational points that an

elliptic curve defined over Fq can have. From work by Waterhouse (see e.g. [27, Thm.

2.3.17]), we know that for every q = pr, p prime,

Nq(1) =

{
q + d2√qe, for p | d2√qe and odd r ≥ 3,

q + d2√qe+ 1, otherwise,

where dxe is the integer part of x.

Actually, a little bit more can be done to obtain longer AMDS codes. Let Gk(E) be

the (k × n) matrix whose jth-column is the k-tuple (1, ψ2(Pj), ψ3(Pj), . . . ψk(Pj)) for j =

1, . . . , n. Of course, Gk(E) is a generator matrix for Ck. It can be proved that if the

column (0, 0, 0, . . . , 0, 1) is added, then the resulting matrix is a generator matrix of an

AMDS code of length n + 1 and dimension k. This code we will referred to as a k-elliptic

code. Constructing [n, k, d] NMDS codes over Fq of length bigger than Nq(1) appears to

be hard for q ≥ 17 and k > 3.

In this context the following definition turns out to be useful.

Definition 7.16. An [n, k, d] code C over Fq is h-extendable if there exists an [n+h, k, d+

h] code over Fq C ′ such that πn,h(C
′) = C, where πn,h : Fn+h

q → Fn
q , πn(a1, . . . , an+h) =

(a1, . . . , an). A 1-extendable code is simply referred to as extendable code.

The following is a very recent result [7].

Theorem 7.17. Let q ≥ 121 be an odd prime power. Let E be an elliptic curve defined

over Fq whose j-invariant j(E) is different from 0. Then,
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(1) for k = 3, 6, the k-elliptic code associated to E is non-extendable;

(2) for k = 4, any k-elliptic code associated to E the not 2-extendable;

(3) for k = 5, any k-elliptic code associated to E the not 3-extendable.

7.3. Near MDS codes. Unlike the MDS case, the dual of an AMDS code need not to

be AMDS. To distinguish this property we define an AMDS code such that its dual is

AMDS to be a Near MDS code (NMDS for short). Actually, the k-elliptic codes defined

in Section 7.2 are Near MDS.

It can be easily proved that an [n, k, d] NMDS code can be viewed as an n-track K in

PG(k − 1, q), with the additional property that every k + 1 points from K are in general

position. If k = 3, these properties reduce to (a) there exists three collinear points in

K, (b) no four points from K lie on a line. In the notation of finite geometry an n-set

in PG(2, q) satisfying (a) and (b) is said to be an (n, 3)-arc. Hence, the maximum size

of an (n, 3)-arc in PG(2, q), denoted by m(3, q), is equal to the maximum length of an

NMDS code of dimension 3 over Fq. Computing the exact value of m(3, q) seems to be

very difficult. Some results have been obtained for small values of q by Ball ([1]) and very

recently by Marcugini, Milani and Pambianco ([20], [21]).

q 4 5 7 8 9 11 13

m(3, q) 9 11 15 15 17 21 23

For k > 3, let m(k, q) denote the maximum length of an NMDS code of dimension k over

Fq. For some small values of q and n either the exact value of m(k, q) or some strict

bounds on m(k, q) are known (see [20], [21] and the references therein).

q

k 2 3 4 5 7 8 9 11 13

2 61 81 101 121 161 181 201 241 281

3 71 91 93 112 151 1519 174 212 237

4 81 101 102 121 143 162 1619 20 21− 24

5 111 111 1160 13988 153 161 18− 21 21− 25

6 121 121 1231 13 14 16 18− 22 21− 26

7 93 116 14 15 17 18− 23 21− 27

8 101 121 13988 16 18 18− 24 21− 28

9 112 13294 1458 19 19− 25 21− 29

10 121 143 153 20 20− 26 21− 30

11 144 154 161 18− 27 21− 31

12 151 162 1619 18− 28 21− 32

13 15 15 16382 18− 29 21− 33

14 161 16 174 18− 30 21− 34

15 17 17 18− 31 21− 35

16 181 18 20− 32 21− 36
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It should be noted the results obtained so far suggest that m(k, q) is bigger than Nq(1).

That is, that unlike the MDS case, there exists NMDS codes which are longer than NMDS

codes arising from algebraic curves.
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