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1. BASIC NOTIONS AND CONSTRUCTIONS

1.1. Notation. The closure, the interior and the boundary of a topological space
X will be denoted by X, int X and 0X, respectively. The letter I will stand for the
interval [0, 1]. R™ and C™ will denote the vector spaces of n-tuples of real and complex
numbers, respectively, with the standard norm ||z|| = Y"1, |2;|*. The sets

D" ={z eR" |z| <1},
S"={x e R" |lz]| = 1}
are the n-dimensional disc and the n-dimensional sphere, respectively.

1.2. Categories of topological spaces. Every category consists of objects and
morphisms between them. Morphisms f: A — B and g : B — C can be composed
into a morphism go f : A — C'and for every object B there is a morphism idg : B — B
such that idgof = f and goidg = g. The composition of morphisms is associative.

The category with topological spaces as objects and continuous maps as morphisms
will be denoted 7OP. Topological spaces with base points (usually denoted by )
are sometimes called based spaces. Together with continuous maps f : (X,*) —
(Y, %) such that f(x) = * they form the category 7OP,. Topological spaces X, A
will be called a pair of topological spaces if A is a subspace of X (notation (X, A)).
The notation f : (X,A) — (Y, B) means that f : X — Y is a continuous map
which preserves subspaces, i. e. f(A) C B. The category 7OP? consists of pairs of
topological spaces as objects and continuous maps f : (X, A) — (Y, B) as morphisms.
Finally, 7OP? will denote the category of pairs of topological spaces with base points
in subspaces and continuous maps preserving both subspaces and base points.

So far on a space will mean a topological space and a map will mean a continuous
map.

1.3. Homotopy. Maps f,g: X — Y are called homotopic, notation f ~ g, if there
is amap h : X x I — Y such that h(z,0) = f(x) and h(z,1) = g(x). This map
is called homotopy between f and g. The relation ~ is an equivalence. Homotopies
in categories 7OP,, TOP? or TOP? have to preserve base points, i. e. h(*,t) = x,
subsets or both subsets and base points, respectively.

Spaces X and Y are called homotopy equivalent if there are maps f : X — Y and
g:Y — X such that fog ~idy and go f ~ idy in the category 7OP. We also say
that they have the same homotopy type.

Example. S™ and R*"™! — {0} are homotopy equivalent. Take inclusion f : S" —
R — {0} and g : R"™ — {0} — S, g(z) = x/||=|| as homotopy equivalences.

A space is called contractible if it is homotopy equivalent to a point.

1.4. Retracts and deformation retracts. Let i : A — X be an inclusion. We say
that A is a retract of X if there is a map r : X — A such that r o7 = id4. The map r
is called a retraction.

We say that A is a deformation retract of X (sometimes also strong deformation
retract) if there is a map h : X x [ — X such that h(—,0) = idx, h(i(—),t) = id4 for
all t € I and h(X,1) = A. The map h is called a deformation retraction.



Exercise. Show that deformation retract of X is homotopy equivalent to X.

1.5. Basic constructions in 7OP. Consider a topological space X with an equiv-
alence ~. Then X/ ~ is the set of equivalence classes with the topology determined
by the projection p : X — X/ ~ in the following way: U C X/ ~ is open iff p~1(U) is
open in X.

We will show this constructions in several special cases. Let A be a subspace of X.
The factorspace X/A is the space X/ ~ where x ~ y iff x = y or both x,y € A. This
space is often considered as a based space with base point determined by the subspace
A Tf A= 0 we put X/0 = X U {x}.

Exercise. Prove that D"/S"! is homeomorphic to S™. For it consider f: D™ — S™

flzy,zo, ... x) = (24/1 — ||2]|22, 2||z)* — 1).

Disjoint union of spaces X and Y will be denoted X LY. Open sets are unions of
open sets in X and in Y. Let A be a subspace of X and let f : A — Y be a map.
Then X Uy Y is the space (X UY')/ o~ where the equivalence is generated by relations

a =~ f(a).
The mapping cylinder of a map f: X — Y is the space

Mf:XXIfoly

which arises from X x I and Y after identification of points (z,1) € X x I and
f(z) eY.

Exercise. We have two inclusions iy : X = X x {0} — M and iy : Y — M/ and a
retraction r : My — Y. How is r defined?

X

VN

Y.—>Mf—T>Y
vy

Prove that
(1) Y is a deformation retract of Mj.
(2) izor=f

(3) dyo f ~ix
The mapping cone of a mapping f : X — Y is the space
Cr=M;/(X x {0}.
A special case of a mapping cone is the cone of a space X
CX =X xI/(X x{0}) =Ciay-
The suspension of a space X is the space
SX =CX/(X x{1}).

Exercise. Show that SS™ is homeomorphic to S"*!. For it consider the map f :

Snox [ — Sl
flx,t) = (/1 — (2t —1)2z,2t — 1).



The join of spaces X and Y is the space
X*xY =XxYxI[/~
where >~ is an equivalence generated by (z,y1,0) ~ (z,y2,0) and (z1,y, 1) ~ (z2,y, 1).

Exercise. Show that the operation of join is associative and compute joins of two
points, two intervals, several points, S°x X, S™ x S™.

1.6. Basic constructions in 7OP, and 7OP?. Let X be a space with a base point
xo. The reduced suspension of X is the space

SX = SX/({xo} x I)

with base point determined by xy x I. In 2.8 we will show that >X is homotopy
equivalent to SX.
The space

(X, 20) V (Y,90) = (X UY)/(X x {20} x Y UX x {yo} = X x {yo} U{zo} x Y

with base point (xg,yo) is called the wedge of X and Y and usually denoted only as
XVY.
The smash product of spaces (X, zg) and (Y, yo) is the space

XANY =X xY/(X x{y}U{zo} xY)=XxY/X VY.
Analogously, the smash product of pairs (X, A) and (Y, B) is the pair
(X XY, AxYUX x B).

Exercise. Show that S™ A S™ = §ntm,

1.7. Homotopy extension property. We say that a pair of topological spaces
(X, A) has the homotopy extension property (abbreviation HEP) if any map f : X — Y
and any homotopy h : A x I — Y such that h(a,0) = f(a) for a € A can be extended
to a homotopy H : X x I — Y such that H(z,0) = f(x) and H(a,t) = h(a,t) for all
reX,ae Aand t € I. (Draw a picture.)

If a pair (X, A) has the homotopy extension property, the inclusion ¢ : A — X is
called a cofibration.

Theorem. A pair (X, A) has HEP if and only if X x {0} UA x I is a retract of X x I.

Exercise. Using this Theorem show that the pair (D", S"!) satisfies HEP. (In fact,
D" x {0} U S™! x I is even a deformation retract of D™ x I.) Many other examples
will be given in the next section.

Proof of Theorem. Let (X, A) has HEP. Put Y = X x {0} UA x I and consider f and
h to be inclusions. Their extension H : X x {0} UA x I — X x [ is a retraction.
Let r: X x{0}UAXI — X xI be aretraction. Let be given a map f and a homotopy
h as in the definition. They together determine a map F' : X x {0} UA x I — Y.
Then H = F or is an extension of f and h. U

Exercise. Let a pair (X, A) satisfy HEP and consider a map g : A — Y. Prove that
(X U, Y,Y) also satisfies HEP.



2. CW-COMPLEXES

2.1. Constructive definition of CW-complexes. C'W-complezxes are all the spaces
which can be obtained by the following construction:
(1) We start with a discrete space X°. Single points of X are called 0-dimensional
cells.

(2) Suppose that we have already constructed X"~!. For every element o of an
index set J,, take a map f, : S"7! = 9D" — X" and put

X" =|J(x"tuy, DY)

Interiors of discs D) are called n-dimensional cells and denoted by €.
(3) We can stop our construction for some n and put X = X" or we can proceed
with n to infinity and put

X = [OJ X"
n=0

In the latter case X is equipped with inductive topology which means that
A C X is closed (open) iff AN X™ is closed (open) in X" for every n.

Example. The sphere S™ is a CW-complex with one cell €° in dimension 0, one cell

e in dimension n and the constant attaching map f: S"1 — Y.

Example. The real projective space RP" is the space of 1-dimensional linear subspaces
in R*™!. It is homeomorhic to
S"/(v e~ —v) 2 D"/ (w~ —w)

for all w € OD™ = S™!. However, S"'/(w ~ —w) = RP""'. So RP" arises from
RP"! by attaching one n-dimensional cell using the projection f : S"~' — RP" !,
Hence RP" is a CW-complex with one cell in every dimension from 0 to n.

We define RP> = | J>2, RP". It is again a CW-complex.

Example. The complex projective space CP" is the space of complex 1-dimensional
linear subspaces in C"*!. It is homeomorhic to

S (v = M) 2 {(w, /1 — [w]?) € C" lw]| < 1}/((w, 0) ~ Mw, 0), [Jw]| = 1)
=~ D /(w ~ Mw; w € OD*")
for all A € C, |[A\| = 1. However, 0D*"/(w ~ \w) = CP"'. So CP" arises from CP"~*
by attaching one 2n-dimensional cell using the projection f : $**~' = 9D** — CP" ',

Hence CP" is a CW-complex with one cell in every even dimension from 0 to 2n.
Define CP> = J;2, CP". It is again a CW-complex.

2.2. Another definition of CW-complexes. Sometimes it is advantageous to be
able to describe CW-complexes by their properties. We carry it out in this paragraph.
Then we show that the both definitions of CW-complexes are equivalent.

Definition. A cell complex is a Hausdorff topological space X such that



(1) X as a set is a disjoint union of cells e,

X:Uea.

acJ

(2) For every cell e, there is a number, called dimension.

X" = U €a
dimeq<n
is the n-skeleton of X.
(3) Cells of dimension 0 are points. For every cell of dimension > 1 there is a
characteristic map

Do (Dn’ Sn—l) N ()(7 Xn—l)
which is a homeomorphism of int D™ onto e,.

The cell subcomplex Y of a cell complex X is a union Y = {J .5 €a , K € J, which
is a cell complex with the same characterictic maps as the complex X.
A CW-complez is a cell complex satisfying the following conditions:

(C) Closure finite property. The closure of every cell belongs to a finite subcomplex,
i. e. subcomplex consisting only from a finite number of cells.

(W) Weak topology property. F'is closed in X if and only if F' N é, is closed for
every a.

Example. Examples of cell complexes which are not CW-complexes:

(1) S? where every point is 0- cell It does not satisfy property (W).

(2) D? with cells € = int B3, 2 = {z} for all z € S2. Tt does not satisfy (C).

(3) X ={1/n; n>1}U{0} C R. Tt does not satisfy (W).

(4) X =2 {z € R? |l&—(1/n,0)|| = 1/n} C R If it were a CW-complex, the
set {1/n; n>1} Would be closed in X and consequently in R2.

2.3. Proposition. The definitions 2.1 and 2.2 of CW-complexes are equivalent.

Proof. We will show that a space X constructed according to 2.1 satisfies definition
2.2. The proof in the opposite direction is left as an exercise to the reader.

The cells of dimension 0 are points of X°. The cells of dimension n are interiors of
discs D" attached to X"~ with charakteristic maps

a1 (D5, Sa™h) — (X1 Up, Do, X7
induced by identity on D!. So X is a cell complex. From the construction 2.1 follows
that X satisfies property (W). It remains to prove property (C). We will carry it out
by induction.
Let n =0. Then €0 = €°.
Let (C) holds for all cells of dimension < n — 1. € is a compact set (since it is an
image of D"). Its boundary de” is compact in X"~ 1. Consider the set of indices

K ={p€J; del Neg #0}.

If we show that K is finite, from the inductive assumption we get that € lies in a
finite subcomplex which is a union of finite subcomplexes for €3, 3 € K.
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Choosing one point from every intersection de! Neg, # € K we form a set A. A is
closed since any intersection with a cell is empty or a onepoint set. Simultaneously, it
is open, since every its element a forms an open subset (for A — {a} is closed). So A
is a discrete subset in the compact set del’, consequently, it is finite. 0

2.4. Lemma. Let X be a CW-complex. Then any compact set A C X lies in a finite
subcomplex, particularly, there is n such that A C X™.

Proof. Consider the set of indices
K={peJ; Anes#0}.

Similarly as in 2.3 we will show that K is a finite set. Then A C | sex €p and every
ég lies in a finite subcomplexes. Hence A itself is a subset of a finite subcomplex. [

2.5. Cellular maps. Let X and Y be CW-complexes. A map f: X — Y is called a
cellular map if f(X™) C Y™ for all n. In 12.5 we will prove that every map g : X — Y
is homotopy equivalent to a cellular map f : X — Y. If moreover, g restricted to a
subcomplex A C X is already cellular, f can be chosen in such a way that f = g on

A.

2.6. Spaces homotopy equivalent to CW-complexes. One can show that every
open subset of R” is a CW-complex. In [Ha|, Theorem A.11, it is proved that every
retract of a CW-complex is homotopy equivalent to a CW-complex. These two facts
imply that every compact manifold with or without boundary is homotopy equivalent
to a CW-complex. (See [Hal, Corollary A.12.)

2.7. Theorem. Let A be a subcomplex of a CW-complex X. Then the pair (X, A)
has the homotopy extension property.

Proof. There is a deformation retraction 7 : D" x I — D™ x {0} U S""! x I. (Draw a
picture.)

Put Y™ = A YY" = X" U A. Using r we can define a deformation retraction
R":Y"xI — Y"x{0}uY" ! xI. Now define the deformation retraction R : X x I —
X x{0}UAXT as R(z,t) = R"(z,2" " (t—1/2"") ifx € Y™ and t € [1/2""!1/2"] and
R(z,0) = (z,0) for all . R is continuous since R™ : Y™ x [ — X x I are continuous
and X x I is a direct limit of Y™ x I. O

2.8. First criterion for homotopy equivalence. Suppose that a pair (X, A) has
the homotopy extension property and that A is contractible (in A). Then the canonical
projection g : X — X/A is a homotopy equivalence.

Proof. Since A is contractible there is a homotopy h : A x I — A between id4 and
constant map. This homotopy together with idy : X — X can be extended to a
homotopy f : X x I — X. Since f(A,t) C A for all t € I, there is a homotopy
f:X/AxI— X/A such that the diagram

X x—1—Xx/4

"l |o
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commutes. Define g : X/A — X by g(z) = f(x,1). Then idx ~ gogq via the homotopy
[ and idx/a ~ qog via the homotopy f. Hence X is homotopy equivalent to X/A. O

Exercise. Using the previous criterion show that S?/S% ~ S? v S1.

Exercise. Using the previous criterion show that the suspension and the reduced
suspension of a CW-complex are homotopy equivalent.

2.9. Second criterion for homotopy equivalence. Let (X, A) be a pair of CW-
complexes and let Y be a space. Suppose that f,g : A — Y are homotopic maps.
Then X Uy Y and X U, Y are homotopy equivalent.

Proof. Let F': AxI —Y be a homotopy between f and g. We will show that X U;Y
and X U, Y are both deformation retracts of (X x I) Up Y. Consequently, they have
to be homotopy equivalent.

We construct a deformation retraction in two steps.

(1) (X x {0})U; Y is a deformation retract of (X x {0} UA x I) UpY.
(2) (X x {0} UA x I)UrY is a deformation retract of (X x I)Up Y.

O

Exercise. Let (X, A) be a pair of CW-complexes. Suppose that A is a contractible
in X, i. e. there is a homotopy F' : A — X between idx and const. Using the first
criterion show that X/A = X UCA/CA ~ X UCA. Using the second criterion prove
that X UCA ~ X V.SA. Then

X/A~ XV SA.
Apply it to compute S"/S*, i < n.

3. SIMPLICIAL AND SINGULAR HOMOLOGY

3.1. Exact sequences. A sequence of homomorphisms of Abelian groups or modules
over a ring

fn+1 fn fnfl fn72
_)An_) n—1 An_g

is called an exact sequence if

Im f, = Ker f,,_;.
Exactness of the following sequences

0-ALB BLC-0, 0-C% D=0

means that f is a monomorphism, ¢ is an epimorphism and h is an isomorphism,
respectively.
A short exact sequence is an exact sequence

0-ASBL oo

In this case C = B/A. We say that the short exact sequence splits if one of the
following three equivalent conditions is satisfied:

(1) There is a homomorphism p : B — A such that pi = id4.

(2) There is a homomorphism ¢ : C' — B such that jq = id¢.

(3) There are homomorphisms p: B — A and ¢ : C'— B such that ip + ¢j = idp.



The last condition means that B = A @ C' with isomorphism (p,q): B — A® C.

3.2. Chain complexes. The chain complex (C,0) is a sequence of Abelian groups
(or modules over a ring) and their homomorphisms indexed by integers

On42 On+1 On On—1
— Oy — C, > Cpy — .

such that

On—10, = 0.
This conditions means that Imd, C Kerd,_;. The homomorphism 0, is called a
boundary operator. A chain homomorphism of chain complexes (C, %) and (D, 9) is
a sequence of homomorphisms of Abelian groups (or modules over aring) f,, : C,, — D,
which commute with the boundary operators

8r?fn = fn—lag'

3.3. Homology of chain complexes. The n-th homology group of the chain complex
(C,0) is the group

Ker 0,
H = .
n(C) Im an+1

The elements of Ker0,, = Z, are called cycles of dimension n and the elements of
Imd,,1 = B, are called boundaries (of dimension n). If a chain complex is exact,
then its homology groups are trivial.

The component f,, of the chain homomorphism f : (C,9°) — (D, ") maps cycles
into cycles and boundaries into boundaries. It enables us to define

Hy(f) : Ha(C) — Hy(D)
by the prescription H,(f)[c] = [f.(c)] where [¢] € H,(C,) and [f.(c)] € H,(D*) are
classes represented by the elements ¢ € Z,(C) and f,(c) € Z,(D), respectively.
3.4. Long exact sequence in homology. A sequence of chain homomorphisms
ALl BL oo
is exact if for every n € Z
~—>Anf$Bng—”> = ...

is an exact sequence of Abelian groups.

Theorem. Let 0 — A - B % C' — 0 be a short exact sequence of chain complexes.
Then there is a connecting homomorphism 0. : H,(C) — H,_1(A) such that the
sequence

Ox

%, g, 4) 0

Hn(B) Hn(]) O« anl(i)

H,(C) = Hp4(A) —— ...
1s exact.

Proof. Define the connecting homomorphism 0,. Let [¢] € H,(C) where ¢ € C, is a
cycle. Since j : B, — C, is an epimorphism, there is b € B, such that j(b) = c.
Further, j(0b) = 0j(b) = Oc = 0. From exactness there is a € A,_; such that
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i(a) = 0b. Since i(Ja) = Ji(a) = J0b = 0 and ¢ is a monomorphism, da = 0 and a is
a cycle in A,,_;. Put

Oic] = [a].
Now we have to show that the definition is correct, i. e. independent of the choice of ¢
and b, and to prove exactness. For this purpose it is advantageous to use an appropriate
diagram. It is not difficult and we leave it as an exercise to the reader. O

3.5. Chain homotopy. Let f,g : C' — D be two chain homomorphisms. We say

that they are chain homotopic if there are homomorphisms s, : C, — D, such that
8D+lsn + sn_lﬁf = fn—gn forall n.

n

The relation to be chain homotopic is an equivalence. The sequence of maps s, is
called a chain homotopy.

Theorem. If two chain homomorphism f,g: C' — D are chain homotopic, then
H,(f) = Hu(g).

Exercise. Prove the previous theorem from the definitions.

3.6. Five Lemma. Consider the diagram

A B C FE
fll% f2

D
lg fal f4J/'=“ fs | =
A B C D E

If the horizontal sequences are exact and fi, fo, fs and f5 are isomorphisms, then f3
is also an isomorphism.

Proof. Left as an exercise. O

3.7. Simplicial homology. We describe two basic ways how to define homology
groups for topological spaces — simplicial homology which is closer to geometric in-
tuition and singular homology which is more general. For the definition of simplicial
homology we need the notion of A-complex, which is a special case of CW-complex.

Let vg, vy, ..., v, be points in R™ such that v; — v, v9 — vy, v, — vy are linearly inde-
pendent. The n-simplex [vg, vy, ..., v,] with the vertices vy, vy, ..., v, is the subspace
of R™

i=0 i=1

with a given ordering of vertices. A face of this simplex is any simplex determined by
a proper subset of vertices in the given ordering.

Let A,, a € J be a collection of simplices. Subdivide all their faces of dimension
i into sets F Z; A A-complez is a quotient space of disjoint union [[ . ; A, obtained
by identifying simplices from every Fé into one single simplex via affine maps which
preserve the ordering of vertices. Thus every A-complex is determined only by com-
binatorial data.

A special case of A-complex is a finite simplicial complex. It is a union of simplices
the vertices of which lie in a given finite set of points {vg, v1,...,v,} in R™ such that
vy — Vg, V2 — Vp, . . ., Uy — Vg are linearly independent.



11

Example. Torus, real projective space of dimension 2 and Klein bottle are A-complexes
as one can see from the following pictures.

b b b

b b b

In all the cases we have two sets F'? whose elements are triangles, three sets I
every with two segments and one set F° containing all six vertices of both triangles.

These surfaces are also homeomorhic to finite simplicial complexes, but their struc-
ture as simplicial complexes is more complicated than their structure as A-complexes.

To every A-complex X we can assign the chain complex (C, 9) where C,,(X) is a free
Abelian group generated by n-simplices of X (i. e. the rank of C,(X) is the number
of the sets F™ and the boundary operator on generators is given by

v, v, -+, va) = Y _(=1)'[vo, -, By, 0
i=0
Here the symbol ©; means that the vertex v; is omitted. Prove that 90 = 0.

The simplicial homology groups of A-complex X are the homology groups of the
chain complex defined above. Later, we will show that these groups are independent
of A-complex structure.

Exercise. Compute simplicial homology of S? (find a A-complex structure), RP?,
torus and Klein bottle (with A-complex structures given in example above).

Let X and Y be two A-complexes and f : X — Y a map which maps every simplex
of X into a simplex of Y and it is affine on all simplexes. Using appropriate sign
conventions we can define the chain homomorphism f, : C,,(X) — C,(Y) induced by
the map f. This chain map enables us to define homomorphism of simplicial homology
groups induced by f.

Having a A-subcomplex A of a A-complex X (i. e. subspace of X formed by some of
the simplices of X') we can define simplicial homology groups H,, (X, A). The definition
is the same as for singular homology in paragraph 3.9. These groups fit into the long
exact sequence

-— H,(A) - Hy(X) - Hy (X, A) — Hy, 1(A) — ...
See again 3.9.

3.8. Singular homology. The standard n-simplex is the n-simplex

An = {(t()vtlv e 7tn) c Rn+1; Ztl = 1, tl Z 0}
=0
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The j-th face of this standard simplex is the (n—1)-dimensional simplex [eg, ..., €;, . .., €]
where e; is the vertex with all coordinates 0 with the exception of the j —th one which
is 1. Define

gl AT A
as the affine map &7 (to, t1,...,tn-1) = (to,...,tj-1,0,t;,...,t,—1) which maps
€0 — €0y «vny €j_] —> €1, €j = €jil, ..y En_1 — Ep.
It is not difficult to prove

. — .
Lemma. & ek =l ei71 for k < j.

k=
A singular n-simplex in a space X is a continuous map o : A" — X. Denote the

free Abelian group generated by all the singular n-simplices by C,,(X) and define the
boundary operator 0, : Cy,(X) — C,_1(X) by

n

On(0) = (~1)'oz),

i=0
for n > 0. Put C,,(X) = 0 for n < 0. Using the lemma above one can show that
0n+1(9n = 0

The chain complex (C,,, 9,) is called the singular chain complex of the space X. The
singular homology groups H, (X) of the space X are the homology groups of the chain
complex (C,(X),0,), i. e.

Ker 0,
B Im an-i—l .

Next consider a map f : X — Y. Define the chain homomorhism C,,(f) : C,,(X) —
C,(Y) on singular n-simplices as the composition

Cu(f)(0) = fo.

From definitions it is easy to show that these homomorphisms commute with boundary
operators. Hence this chain homomorphism induces homomorphisms

fe = Hu(f) - Ho(X) — Hu(Y).

Moreover, H,(idx) = idg,(x) and H,(fg) = H,(f)Hn(g). It means that H, is
a functor from the category 7OP to the category AG of Abelian groups and their
homomorphisms. This functor is the composition of the functor C' from 7 OP to chain
complexes and the n-th homology functor from chain complexes to abelian groups.

H,(X)

Exercise. Show directly from the definition that the singular homology groups of a
point are Hy(x) = Z and H,(x) = 0 for n # 0.

3.9. Singular homology groups of a pair. Consider a pair of topological spaces
(X,A). Then the C,(A) is a subgroup of C,(X). Hence we get this short exact
sequence

N

(X)
Cn(A)

— 0.

0 — Co(A) 5 Cp(X) L
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Since the boundary operators in C,,(A) are restrictions of boundary operators in
C(X), we can define boundary operators

Cn(X) N Cn—l(X)
Cn(A) Cn_1(A)’
We will denote this chain complex as (C(X, A), d) and its homology groups as H, (X, A).
Notice that the factor C,(X)/C,(A) is a free Abelian group generated by singular sim-
plices o : A" — X such that o(A") € A. We will need it later.

A map f: (X,A) — (Y, B) induces the chain homomorphism C,(f) : Cp(X) —
C,(Y) which restricts to a chain homomorphism C,,(A) — C,(B) since f(A) C B.
Hence we can define the chain homomorphism

Co(f) : Ca(X, A) — Co(Y, B)

O :

which in homology induces the homomorphism
fe=Hu(f): Hy (X, A) — H,(Y,B).

We can again conclude that H,, is a functor from the category 7 OP? into the category
AG of Abelian groups. This functor extends the functor defined on the category 7OP
since every object X and every morphism f: X — Y in TOP can be considered as
the object (X, () and the morphism f = f : (X,0) — (Y,0) in the category 7 OP?
and

Hn(Xa Q)) = Hn(X)> Hn(f) = Hn(f)

3.10. Long exact sequence for singular homology. Consider inclusions of spaces
i:A— X,7:B—Y and maps j : (X,0) — (X, A4), j: (Y,0) — (Y, B) induced
by idx and idy, respectively. Let f : (X, A) — (Y,B) be a map. Then there are
connecting homomorphisms 9 and 0¥ such that the following diagram

¥ ' j X i

L HL(A) e (XY L Hy (X, A) D Hy oy (A)

l(f/A)* lf* lf* l(f/A)*

8Y 3 j oY i

— Hy(B) —— Ho(Y) —— Hu(Y, B) — H,1(B) —
commutes and its horizontal sequences are exact.

An analogous theorem holds also for simplicial homology.

Remark. Consider the functor I : 7OP? — TOP? which assigns to every pair (X, A)
the pair (A, ()). The commutativity of the last square in the diagram above means that
0, is a natural transformation of functors H,, and H,,_; o I defined on 7 OP?2.

Proof. We have the following commutative diagram of chain complexes

0—(4) 2% ox) - o(x, 4) —= 0
lC f/A)

( lc(f) lc(f)
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with exact horizontal rows. Then Theorem 3.4 and the construction of connecting
homomorphism 0, imply the required statement. O

Remark. It is useful to realize how 0. : H,(X,A) — H,_1(A) is defined. Every
element of H,(X,A) is represented by a chain x € C,(X) with a boundary dx €
Cr—1(A). This is a cycle in C,,(A) and from the definition in 3.4 we have

Oi[x] = [0x].

3.11. Homotopy invariance. If two maps f,g : (X, A) — (Y, B) are homotopic,
then they induce the same homomorphisms

fo =g, Hy(X, A) — H,(Y,B).

Proof. We need to prove that the homotopy between f and g induces a chain homotopy
between C.(f) and C.(g). For the proof see [Ha|, Theorem 2.10 and Proposition 2.19
or [Sp|, Chapter 4, Section 4. O

Corollary. If X and Y are homotopy equivalent spaces, then
Ho(X) = Hy(Y).
3.12. Excision Theorem. There are two equivalent versions of this theorem.

Theorem (Excision Theorem, 1st version). Consider spaces C' C A C X and suppose
moreover that C' C int A. Then the inclusion

i:(X—C/A-C)— (X,A)
induces the isomorphism
in: Ho(X — C,A—C) = Ho(X, A).
Theorem (Excision Theorem, 2nd version). Consider two subspaces A and B of a
space X. Suppose that X = int A Uint B. Then the inclusion
i:(B,ANB)— (X, A)
induces the isomorphism

iyt Hy(B, AN B) = H,(X, A).

The second version of Excision Theorem holds also for simplicial homology if we
suppose that A and B are A-subcomplexes of a A-complex X and X = AU B. In this
case the proof is easy since the inclusion

Cn(i) : Cp(B,ANB) — C,(AUB, A)
is an isomorphism, namely the both chain complexes are generated by the same n-
simplices.
Exercise. Show that the theorems above are equivalent.

The proof of Excision Theorem for singular homology can be found in [Ha], pages
119 — 124, or in [Sp], Chapter 4, Sections 4 and 6. The main step (a little bit technical
for beginners) is to prove the following lemma which we will need later.
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Lemma. Let U = {U,; a € J} be a collection of subsets of X such that X =
Uaesint Us. Denote the free chain complex generated by singular simplices o with
o(A") € U, for some o as CY(X). Then
CH (X)) = Cu(X)
induces isomorphism in homology.
Proof of Ezcision Theorem. Consider U = {A, B}. Then the inclusion
CH(X)
C,(i): Ch(B,ANB o
(i) - Cn( )= @

is an isomorphism and, moreover, according to the previous lemma, the homology of
the second chain complex is H,(X, A). O

3.13. Homology of disjoint union. Let X =[]

acy Xao be a disjoint union. Then

H,(X) =D H.(Xa).
acJ
The proof follows from the definition and connectivity of o(A™) in X for every
singular n-simplex o.

3.14. Reduced homology groups. For every space X # () we define the augmented
chain complex (C(X),0) as follows

6.0) = {;’n(X) ior n ZA 1,
orn=—1.

with 0, = 9, for n # 0 and dy( J_ mio;) = Y21 n;. The reduced homology groups
H,(X) are the homology groups of the augmented chain complex. From the definition
it is clear that

H,(X)=H,(X) forn#0
and B
H,(x) =0 for all n.

For pairs of spaces we define H,, (X, A) = H, (X, A) for all n. Then theorems on long
exact sequence, homotopy invariance and excision hold for reduced homology groups
as well.

Considering a space X with distinguished point * and applying the long exact
sequence for the pair (X, *), we get that for all n

H,(X) = H,(X, %) = Hy(X, %).
Using this equality and the long exact sequence for unreduced homology we get that
Ho(X) = Hy(X,*) @ Ho(%) = Hy(X) © Z.
Lemma. Let (X, A) be a pair of CW-complexes, X # (). Then
H,(X/A) = H,(X,A)
and we have the long exact sequence
o — Hy(A) = Hy(X) — Hy(X/A) — Hy_1(A) — ...



16

Proof. According to example in 2.9
(X,A) - (XUCA,CA) - (XUCA/CA,x) = (X/A, %)

is the composition of an excision and a homotopy equivalence. Hence H,(X/A) =
H,(X,A). The rest folows from the long exact sequence of the pair (X, A). O

Exercise. Prove that H,(\/ Xa) = ®H,(X,).
H, can be considered as a functor from 7OP, to Abelian groups.

3.15. The long exact sequence of a triple. Three spaces (X, B, A) with the
property A C B C X are called a triple. Denote i : (B, A) — (X, A) and j: (X, A) —
(X, B) maps induced by the inclusion B < X and idy, respectively. Analogously as
for pairs one can derive the following long exact sequence:

2 HL (B, A) S H (X, A) 2 Hy(X,B) 25 H, 1(B,A) & .
3.16. Singular homology groups of spheres. Consider the long exact sequence of
the triple (A", JA™ V = JA™ — A"~ 1):

o Hy(A™, V) = H(A", 0A™) 25 H, 1 (0A™, V) — H,_ (A", V) — ...

The pair (A™, V) is homotopy equivalent to (x,x) and hence its homology groups
are zeroes. Next using Excision Theorem and homotopy invariance we get that
H;(A™, V) = H;(A"1, dA™ 1), Consequently, we get an isomorphism

H;(A™ 0A™) = H;_1 (A" 1 0A™ ).
Using induction and computing H;(A',0A") = H,([0,1],{0,1}) = H; 1({0,1},{0})
we get that

Hi(Am, oA =L fori=m,

0 for i # n.

Doing the induction carefully we can find that the generator of the group H, (A", 0A™) =
Z is determined by the singular n-simplex idan.

The pair (D", S"!) is homeomorphic to (A", JA™). Hence it has the same homology
groups. Using the long exact sequence for this pair we obtain

B n e 0 for i ?A n,
H; (Sh—1) = H;(D", S 1) - {Z fori=n

3.17. Mayer-Vietoris exact sequence. Denote inclusions ANB — A, ANB — B,
A— X, B X by i, ig, ja, jB, respectively. Let C — AN B and suppose that
X =int AU int B. Then the following sequence

2 HA (AN B, C) ) A, 0) @ Ha(B, O)
JaTiee, g (X,0) 25 Hy 1(ANB,C) — ...

1S exact.
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Proof. The covering U = {A, B} satisfies conditions of Lemma 3.12. The sequence of
chain complexes
. U
C(ANB) i C(A) o C(B) R C"(X)
c(C) ce) — Clo) c(C)
where i(x) = (z,2) and j(z,y) = o — y is exact. Consequently, it induces a long

exact sequence. Using Lemma 3.12 we get that H,,(CY(X),C(C)) = H,(X, C), which
completes the proof. O

— 0

00—

3.18. Equality of simplicial and singular homology. Let (X, A) be a pair of
A-complexes. Then the natural inclusion of simplicial and singular chain complexes
CA(X,A) — C(X, A) induces the isomorphism of simplicial and singular homology
groups

HA(X,A) = H, (X, A).

Outline of the proof. Consider the long exact sequences for the pair (X*, X*~1) of
skeletons of X. We get

H2 oy (XF, XA —— H (XA —— H(XF) —— H (X" XM —— H2 L, (XM

| | | | |
Hn+1(Xk,Xk_1) - Hn(Xk—l) - Hn(Xk) - Hn(Xk,Xk_l) . n_l(Xk—l)

Using induction by k we have HA(X*~1) = H;(X*!) for all 4. Further, CA(X*, Xk-1)
is according to definition zero if i # k and free Abelian of rank equal the number of i-
simplices A!, if i = k. The homology groups H~(X*, X*~1) have the same description.

Since
[Tk T]oak = x*/x+
we get the isomorphism

HR(XP/XM) — H(] [ AL/ ] oak) = Hi(x* /X",

Applying 5-lemma (see 3.6) in the diagram above, we get that H>(X*) — H,(X*) is
an isomorphism.

If X is finite A-complex, we are ready. If it is not, we have to prove that H2(X)
H,(X). See [Hal, page 130.

o

4. HoMmoLoGYy oF CW-COMPLEXES AND APPLICATIONS

4.1. First applications of homology. Using homology groups we can easily prove
the following statements:

(1) S™ is not a retract of D™,
(2) Every map f : D™ — D™ has a fixed point, i.e. there is x € D" such that

flz) ==
(3) If ) AU CR" and ) # V C R™ are open homeomorphic sets, then n = m.
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Outline of the proof. (1) Suppose that there is a retraction r : D" — S™. Then we
get the commutative diagram

= H,(S") H,(S") =

H,(D"™) =0

which is a contradiction.

(2) Suppose that f : D™ — D" has no fixed point. Then we can define the map
g : D™ — 8" ! where g(z) is the intersection of the ray from f(x) to z with S™~!
However, this map would be a retraction, a contradiction.

(3) The proof of the last statement follows from the isomorphisms:

Hy(U,U~{z}) = Hy(R" R"—{z}) = H,_,(R ”—{fv}>%“Hi—1<5"‘1>={0Z ::Z
]

4.2. Degree of a map. Consider a map f : " — S™. In homology f, : H,(S") —
H, (S™) has the form
fu(z) = ax, a€Z.

The integer a is called the degree of f and denoted by deg f.
The degree has the following properties:
) degid =1

If f ~ g, then deg f = degg.

If f is not surjective, then deg f =0

deg(fg) = deg f - degyg

(1
(2)
(3)
(4)
(5) Let f:S™— 85", f(xo,21,...,2,) = (—x,x1,...,2,). Then deg f = —
(6) The antipodal map f: S™ — 5", f(z) = —x has degf (—1)"+,

(7) If f : S™ — S™ has no fixed point, then deg f = (—1)"*.

Proof. We outline only the proof of (5) and (7). The rest is not difficult and left as an
exercise. R

We show (5) by induction on n. The generator of Hy(S°) is 1 — (—1) and f, maps
it in (—1) — 1. Hence the degree is —1. Suppose that the statement is true for n. To
prove it for n+4 1 we use the diagram with rows coming from a suitable Mayer-Vietoris
exact sequence

R

0 — H, 4y (S") — H,(S") —=0

f*l l(f/S”)*

0 — H,1(S"*") —= H,(5") —=0
If (f/S™), is a multiplication by —1, so is fi.
To prove (7) we show that f is homotopic to the antipodal map through the homo-
topy
tf(x) — (1 —t)x
[tf(x) = (1 =)=

IIZ

H(x,t) =
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Corollary. S™ has a nonzero continuous vector field if and only if n is odd.

Proof. Let S™ has such a field v(z). We can suppose ||v(x)|| = 1. Then the identity is
homotopic to antipodal map through the homotopy

H(z,t) = costm -z +sintm - v(x).
Hence according to properties (2) and (6)
(—1)" = deg(—id) = deg(id) = 1.

Consequently, n is odd.
On the contrary, if n = 2:4 1, we can define the required vector field by prescription

U(Io, T1,T2,X3,...,T2, 1’22‘4_1) = (—Il, Lo, —L3,L2y ..., —TL2%41, LUQZ').

O

4.3. Local degree. Consider a map f : S®™ — S™ and y € S™ such that f~!(y) =
{x1,22,..., 2, }. Let U; be open disjoint neighbourhoods of points z; and V' a neigh-
bourhood of y such that f(U;) C V. Then

— H (V,V —{y}) = Ho (5", 5" —{y}) = Z
is a multiplication by an integer which is called a local degree and denoted by deg f|x;.
Theorem. Let f: 5" — S™ y e S™ and f~'(y) = {z1,79,..., 2 }. Then

deg f =) _deg flz;.
i=1
For the proof see [Ha|, Proposition 2.30, page 136.

The suspension Sf of a map f : X — Y is given by the prescription Sf(x,t) =
(f(2), ).
Theorem. deg Sf = deg f for any map f:S" — S".
Proof. f induces C'f : CS™ — CS™. The long exact sequence for the pair (C'S™, S™)
and the fact that SS™ = CS™/S™ give rise to the diagram

~ ~ Ox ~
Hn+1(5n+1) —=> H, 1 (CS™, S™) —= H,,(5")

1%

st | cr.| |

£

Hyi1 (S™) —= H,11(CS™, S™) — H,(S")

o

o5

which implies the statement. O

Corollary. For any n > 1 and given k € Z there is a map f : S™ — S™ such that
deg f = k.
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Proof. For n = 1 put f(z) = z* where z € S' € C. Using the computation based on
local degree (see 4.3) we get deg f = k. The previous theorem implies that the degree
of S"=1f . S" — S" s also k. O

4.4. Computations of homology of CW-complexes. If we know a CW-structure
of a space X, we can compute its cohomology relatively easily. Consider the sequence
of Abelian groups and its morphisms

(Hn (X", X"7Y), )
where d,, is the composition
Hn(Xn,Xn_l) i Hn(Xn_l) Jn-1 Hn_l(Xn_l,Xn_2).

Theorem. Let X be a CW-complex. (H,(X™, X"') d,) is a chain complex with
homology
HW(X) = Hy(X).

Proof. First we show how the groups Hy(X", X" 1) look like. Put X' = () and
X%/0 = X° U {*}. Then

Hy(X", X"7Y) = Hy(X"/X"7Y) = Hy(\/ S2) = {SBQZ . ; :

Now we show that
Hiy(X") =0 for k> n.
From the long exact sequence of the pair (X", X" 1) we get Hy(X™) = Hp(X"1). By
induction H*(X") = Hy(X™1) = 0.
Next we prove that
Hp(X™) = Hi(X) fork<n-—1.

From the long exact sequence for the pair (X", X™) we obtain Hy(X") = Hy(X").
By induction Hg(X") = H(X"*™) for every m > 1. Since the image of each singular
chain lies in some X" we get Hy(X") = Hp(X).

To prove Theorem we will need the following diagram with parts of exact sequences
for the pairs (X!, X™) (X", X" 1) and (X"1, X"2).

0 Hn(X"“)
]
H(X")
T

dn+1 dn

Hn+1(X"+l,Xn) ey Hn(Xn,Xn_l) ey n_1(X"_1,X"_2)
x jan
Hn_l(Xn—l)

From it we get
dndn+1 = jn—l(ﬁnjn)an—l—l = jn—1(0)8n+1 = 0.
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Further,
Kerd, = Ker 9, =Imj, = H,(X")
and
Imd,,;1 2 Imo,
since j,_1 and j, are monomorphisms. Finally,
Kerd, _ H,(X™)
Imd,., ~ Tm Ont1

HOY(X) = ~ M, (X" = H,(X).

Example. H,(X) = 0 for CW-complexes without cells in dimension n.

Z for k < 2n even,
0 in other cases.

H,(CP") = {

4.5. Computation of d,. Let e} and eg_l be cells in dimension n and n — 1 of a
CW-complex X, respectively. Since

H,(X", X" 1) = @Z H, (X" X" =Pz,

they can be considered as generators of the groups above. Let ¢, : 9D" — X"~! be
the attaching map for the cell €. Then
Z dagefy”

where d,3 is a degree of the following composmon

gn—1 — ODZ $a, -1 Xn—l/Xn—2 _ Xn/(Xn—2 U U 6;1—1) — g1
V#B
For the proof we refer to [Hal, page 140 and 141.

Exercise. Compute homology groups of various 2-dimensional surfaces (torus, Klein
bottle, projective plane) using their CW-structure with only one cell in dimension 2.

4.6. Homology of real projective spaces. The real projective space RP" is formed
by cell €%, e!,...,e", one in each dimension from 0 to n. The attaching map for the
cell ¢! is the projection ¢ : S¥ — RP*. So we have to compute the degree of the
composition
f: 8% % RPF — RPF/RPF = SF,

Every point in S* has two preimages z;, z5. In a neihbourhood U; of z; f is a
homeomorphism, hence its local degree deg f|x; = £1. Since f/Us is the composition
of the antipodal map with f/U;, the local degrees deg f|x; and deg f|z; differs by the
multiple of (—1)¥+1. (See the properties (4) and (6) in 4.2.) According to 4.3

0 for k41 odd,

degf = :l:l(l + (_1)k+1) = {:tQ for k + 1 even
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So we have obtained the chain complex for computation of HEW (RP"). The result is

7 for k =0 and £ = n odd,
Hp(RP") = < Zy for kodd , 0 < k <n,
0 in other cases.

4.7. Euler characteristic Let X be a finite CW-complex. The Fuler characteristic

of X is the number .

X(X) = (~1)* rank Hy(X).

1=0

Theorem. Let X be a finite CW-complex with ¢ cells in dimension k. Then

WX) = Y (ke

k=0
Proof. Realize that ¢, = rank Hk(Xk, Xk_l) = rank Ker dj, + rank Im d;. ;. We get

o e}

X(X) = Z(—l)krank Hy(X) = Z(—l)k(rank Ker dy, — rank Im dj.1)
k=0 k=0
= Z(—l)k rank Ker dj, + Z(—l)k rank Im d, = Z(—l)kck.
k=0 k=0 k=0

O

Example. 2-dimensional oriented surface of genus g (the number of handles attached
to the 2-sphere) has the Euler characteristic x(M,) = 2 — 2g.

2-dimensional nonorientable surface of genus g (the number of M&bius bands which
replace discs cut out from the 2-sphere) has the Euler characteristic x(N,) =2 —g.

4.8. Lefschetz Fixed Point Theorem Let G be a finitely generated Abelian group
and h : G — G a homomorphism. The trace tr h is the trace of the homomorphism
Z" = G/ Torsion G — G/ Torsion G = Z"

induced by h.
Let X be a finite CW-complex. The Lefschetz number of a map f: X — X is

o0

L(f) =S (1) tr By f.

i=0
Notice that L(idy) = x(X). Similarly as for the Euler characteristic we can prove

Lemma. Let f, : (C,,d,) — (C,,d,) be a chain homomorphism. Then

S (=1t Hif =) (=)' tr f;
=0 =0

whenever the right hand side is defined.

Theorem (Lefschetz Fixed Point Theorem). If X is a finite simplicial complex or its
retract and f: X — X a map with L(f) # 0, then f has a fixed point.
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For the proof see [Ha], Chapter 2C. Theorem has many consequences.

Corollary A (Brouwer Fixed Point Theorem). (See also 4.1 (2).) Every continuous
map f: D" — D" has a fixed point.

Proof. The Lefschetz number of f is 1. U

In the same way we can prove

Corollary B. If n is even, then every continuous map f : RP" — RP" has a fixed
point.

Corollary C. Let M be a smooth compact manifold in R™ with nonzero vector field.
Then x(M) = 0.

The converse of this statement is also true.
Outline of the proof. If M has a nonzero vector field, there is a continuous map f :
M — M which is a ”small shift in the direction of the vector field”. Since such a map

has no fixed point, its Lefschetz number has to be zero. Moreover, f is homotopic to
identity and hence

x(M) = L(idx) = L(f) = 0.
0J

4.9. Homology with coefficients. Let G be an Abelian group. From the singular
chain complex (C,(X), d,) of a space X we make the new chain complex

Co(X;G)=Ch(X)® G, 0,(G)=0,®idg.
The homology groups of X with coefficients G are
Ho(X;G) = Hy(Cu(X; G), 0.(G)).
The homology groups defined before are in fact the homology groups with coefficients

Z. The homology groups with coefficients G satisfy all the basic general properties as
the homology groups with integer coefficients with the exception that

0 for n # 0,
H,(;G) =
(G) {G for n = 0.

If coefficient group G is a field (for instance G = Q or Z, for p a prime), then homology
groups with coefficients G are vector spaces over this field. It often brings advantages.

The computation of homology with coefficients G' can be carried out again using a
CW-complex structure. For instance we get

Ly <k<
Hy (RP": Z,) = 2' or 0 <k <n,
0 in other cases.
For an application of Zs-coefficients see the proof of the following theorem in [Hal,
pages 174-176.
Theorem (Borsuk-Ulam Theorem). Every map f : S™ — S™ satisfying
f(=z) = —f(x)

has an odd degree.
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5. SINGULAR COHOMOLOGY

Cohomology forms a dual notion to homology. It enables us to define product
U: H(X)x H/(X) — H"(X). In this section we give basic definitions and properties
of singular cohomology groups which are very similar to those in the section on singular
homology.

5.1. Cochain complexes. A cochain complex (C, ) is a sequence of Abelian groups
(or modules over a ring) and their homomorphisms indexed by integers

6n+1

n
i cr 2 omit 2,

n—2 Cn_l

on— 1
_—

such that
§nemt = 0.
0™ is called a coboundary operator. A cochain homomorphism of cochain complexes

(C,é¢c) and (D, dp) is a sequence of homomorphisms of Abelian groups (or modules
over a ring) f": C™ — D™ which commute with the coboundary operators

B = 175,
5.2. Cohomology of cochain complexes. The n-th cohomology group of a cochain
complex (C,¢) is the group
Ker o™
HA(C) = er

~ Imon-t’
The elements of Ker " = Z™ are called cocycles of dimension n and the elements of
Im 6"t = B™ are called coboundaries (of dimension n). If a cochain complex is exact,
then its cohomology groups are trivial.
The component f" of the cochain homomorphism f : (C,dc) — (D,dp) maps
cocycles into cocycles and coboundaries into coboundaries. It enables us to define
H*(f) - H*(C) — H"(D)
by the prescription H"(f)[c] = [f"(c)] where [¢] € H"(C) and [f"(c)] € H"(D) are
classes represented by the elements ¢ € Z"(C') and f"(c) € Z"(D), respectively.
5.3. Long exact sequence in cohomology. A sequence of cochain homomorphisms
sAalpLto ..
is exact if for every n € Z
~—>A"£>Bn£0"—>...

is an exact sequence of Abelian groups. Similarly as for homology groups we can prove

Theorem. Let 0 — A - B 2 C' — 0 be a short exact sequence of cochain complexes.
Then there is a so called connecting homomorphism 6* : H*(C) — H"1(A) such that
the sequence

5 ) B sy 2 ey S Hm(a)

H"+l(i)
_—

1S exact.
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5.4. Cochain homotopy. Let f,g : C' — D be two cochain homomorphisms. We
say that they are cochain homotopic if there are homomorphisms s : C"* — D"}
such that

St 4 "G = f — g™ for all n.
The relation to be cochain homotopic is an equivalence. The sequence of maps s,, is
called a cochain homotopy. Similarly as for homology we have

Theorem. If two cochain homomorphism f,g: C' — D are cochain homotopic, then
H"(f) = H"(g).
5.5. Singular cohomology groups of a pair. Consider a pair of topological spaces
(X, A), an inclusion i : A — X and an Abelian group G. Let
C(X, A) = (Co(X)/Cn(A), On)
be the singular chain complex of the pair (X, A). The singular cochain complex
(C(X, A;G),9) for the pair (X, A) is defined as
C"(X,A;G) =Hom (C,,(X,A),G) = {h € Hom(C,(X),G); h|C,(A) =0}
= Keri* : Hom(C,(X),G) — Hom(C,(A), G).
and
0"(h) =ho0,11 for h € Hom(C,(X, A),G).
The n-th cohomology group of the pair (X, A) with coefficients in the group G is the
n-th cohomology group of this cochain complex

H"(X,A;G) = H"(C(X, A;G),9).
We write H"(X; G) for H"(X,0; G). A map f : (X, A) — (Y, B) induces the cochain
homomorphism C™(f): C*"(Y;G) — C™(X;G) by
C"(f)(h) = ho Cu(f)
which restricts to a cochain homomorphism C™(Y, B; G) — C™(X, A; G) since f(A) C
B. In cohomology it induces the homomorphism
f*=H"(f): HY(Y,B) — H"(X, A).
Moreover, H"(id(x,4y) = idgn(x,a,¢) and H"(fg) = H"(g)H"(f). We can conclude

that H™ is a contravariant functor (cofunctor) from the category 7 OP? into the cat-
egory AG of Abelian groups.

5.6. Long exact sequence for singular cohomology. Consider inclusions of spaces
i:A— X,i:B—Y and maps j: (X,0) — (X,A), j/: (Y,0) — (Y, B) induced
by idy and idy, respectively. Let f : (X, A) — (Y,B) be a map. Then there are
connecting homomorphisms d% and d;- such that the following diagram

L X A Q) e B Q) e HY(AG) - (X A G s

I I o |

o n . i niy . i n(n. o n+1 J
. HY(X, B:G) L~ H"(Y;G) -2~ H"(B; G) —~ H"*\(Y, B; G) L~ - --

commutes and its horizontal sequences are exact.
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The proof follows from Theorem 5.3 using the fact that
0— (X, A;0) D onix;q) S ona:6q) — 0
is a short exact sequence of cochain complexes as it follows directly from the definition
of C"(X, A; G).

Remark. Consider the functor I : 7OP? — T OP? which assigns to every pair (X, A)
the pair (A, (). The commutativity of the last square in the diagram above means that
d* is a natural transformation of contravariant functors H" o I and H™*! defined on

TOP2.

Remark. It is useful to realize how §* : H"(A; G) — H,+1(X, A; G) looks like. Every
element of H"(A;G) is represented by a cochain ¢ € Hom(C,(A); G) with a zero
coboundary d¢ € Hom(C,+1(A);G). Extend ¢q to @ € Hom(C,(X);G) in arbitrary
way. Then Q) € Hom(C,,11(X), G) restricted to C,11(A) is equal to d¢ = 0. Hence it
lies in Hom(C,,41(X, A); G) and from the definition in 5.3 we have

0*[q] = [0@Q)-

5.7. Homotopy invariance. If two maps f,¢: (X, A) — (Y, B) are homotopic, then
they induce the same homomorphisms

ff=9g":H"(Y,B;G) — H,(X, A; G).
Proof. We already know that the homotopy between f and ¢ induces a chain homotopy
s. between C,(f) and C4(g). Then we can define a cochain homotopy between C*( f)
and C*(g) as

s"(h) =hos,_1 for h € Hom(C,(Y);G)
and use Theorem 5.4. O
Corollary. If X and Y are homotopy equivalent spaces, then
H"(X)= H"(Y).

5.8. Excision Theorem. Similarly as for singular homology groups there are two
equivalent versions of this theorem.

Theorem (Excision Theorem, 1st version). Consider spaces C C A C X and suppose
that C' C int A. Then the inclusion

i (X—-—C/A-C)— (X, A)
induces the isomorphism
i HY(X,A;G) S H' (X —C,A—C; Q).
Theorem (Excision Theorem, 2nd version). Consider two subspaces A and B of a
space X. Suppose that X =int AU int B. Then the inclusion
i:(B,ANB)— (X, A)
induces the isomorphism

i H"(X,A;G) = H"(B, AN B; Q).
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The proof of Excision Theorem for singular cohomology follows from the proof of
the homology version.

5.9. Cohomology of finite disjoint union. Let X = ]_[Zzl X, be a disjoint union.
Then

k
H"(X;G) =P H"(X.).
a=1
The statement is not generally true for infinite unions.

5.10. Reduced cohomology groups. For every space X # () we define the aug-
mented cochain complex (C*(X;G),d) as follows

C"(X;G) = Hom(C,,(X); G)
with 6"h = hod,4; for h € Hom(C,(X); G). See 3.14. The reduced cohomology groups

H,(X;G) with coefficients in G are the cohomology groups of the augmented cochain
complex. From the definition it is clear that

H"(X;G) = H"(X:G) forn#0
and
H"(x;G) =0 for all n.

For pairs of spaces we define H*(X, A; G) = H"(X, A;G) for all n. Then theorems
on long exact sequence, homotopy invariance and excision hold for reduced cohomology
groups as well.

Considering a space X with base point * and applying the long exact sequence for
the pair (X, *), we get that for all n

H"(X;G) = H'(X, % G) = H'(X, % G).
Using this equality and the long exact sequence for unreduced cohomology we get that
H(X;G)= H' (X, G)® H'(x;G) = H'(X) ®G.
Analogously as for homology groups we have
Lemma. Let (X, A) be a pair of CW-complexes. Then
H"(X/A;G) = H"(X, A; G)
and we have the long exact sequence
. — HY(X/A;G) - H*(X;G) — HY(A;G) — H"HX/A,G) — ...

5.11. The long exact sequence of a triple. Consider a triple (X, B, A), A C
B C X. Denote i: (B,A) — (X,A) and j : (X, A) — (X, B) maps induced by the
inclusion B — X and idy, respectively. Analogously as for homology one can derive
the long exact sequence of the triple (X, B, A)

2 HMX B G) D HYX, A G) D BB, AG) S HY (X, B G) L
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5.12. Singular cohomology groups of spheres. Considering the long exact se-
quence of the triple (A", 6A™, V = §A™ — A"1): we get that

G for i = n,

HI(A", 08" G) = {O fori #n

The pair (D", S"!) is homeomorphic to (A", dA™). Hence it has the same coho-
mology groups. Using the long exact sequence for this pair we obtain

0 for ¢ # n,

ﬁz(5n7G) — Hi+1<Dn+1,Sn) _ {G . .
or1=mn.

5.13. Mayer-Vietoris exact sequence. Denote inclusions ANB — A, ANB — B,
A — X, B— X byigu, ip, ja, JB, respectively. Let C'— A, D — B and suppose
that X =int AU int B, Y = int C'Uint D. Then there is the long exact sequence

(GA-J5)

5 HM(X,Y;G) 22 HM(A,C;G) & H'(B, D;G)
AT g (ANB,CND:G) S HYYX, Y Q) —

Proof. The coverings U = {A, B} and V = {C, D} satisfy conditions of Lemma 3.12.
The sequence of chain complexes

0— Co(ANB,CND) - Cu(A,C) @ Cu(B; D) -2 CUV(X,Y) — 0
where i(z) = (x,x) and j(z,y) = x — y is exact. Applying Hom(—, G) we get a new
short exact sequence of cochain complexes

0= Ciy(X,Y5G) L5 C™(A,C;G) @ C™(B, D; G) = C™(AN B,C N D;G) — 0

and it induces a long exact sequence. Using Lemma 3.12 we get that H"(Cyy (X, Y;G)) =
H™(X,Y;G), which completes the proof. O

5.14. Computations of cohomology of CW-complexes. If we know a CW-
structure of a space X, we can compute its cohomology in the same way as homology.
Consider the chain complex from Section 4

(H,(X™, X"Y),d,).

Theorem. Let X be a CW-complex. The n-th cohomology group of the cochain
complex

(Hom(H, (X", X" % G),d") d*(h)=hod,
is isomorphic to the n-th singular cohomology group H"(X; G).

Exercise. Try to prove the theorem above after reading the next section using the
results and proofs from 4.4.

Exercise. Compute singular cohomology of real and complex projective spaces with
coefficients Z and Z,.
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6. MORE HOMOLOGICAL ALGEBRA

In this section we will deal with algebraic constructions leading to the definitions
of homology and cohomology groups with coefficients given in the previous sections.
At the end we use introduced notions to state and prove so called universal coefficient
theorems for singular homology and cohomology groups.

6.1. Functors and cofunctors. Let A and B be two categories. A functort: A — B
assigns to every object x in A an object t(x) in B and to every morphism f :z — vy
in A a morphism ¢(f) : t(x) — t(y) such that ¢(id,) = idy,) and t(fg) = t(f)t(g).

A contravariant functor or briefly cofunctor t : A — B assigns to every object
xz in A an object t(x) in B and to every morphism f : z — y in A a morphism
t(f) : t(y) — t(x) such that ¢(id,) = idyy) and t(fg) = t(g)t(f).

Let R be a commutative ring with a unit element. The category of R-modules and
their homomorphisms will be denoted by R-MOD. R-GMOD will be used for the
category of graded R-modules, R-CH and R-COCH will stand for the categories of
chain complexes and the category of cochain complexes of R-modules, respectively.
For R = 7Z the previous categories are Abelian groups AG, graded Abelian groups
GAG, chain complexes of Abelian groups Z-CH and cochain complexes of Abelian
groups Z-COCH, respectively.

Homology H is a functor from the category R-CH to the category R-GMOD. Let
t be a functor from R-MOD to R-MOD which induces a functor ¢ : CH — CH, and
let s be a cofunctor from R-MOD to R-MQOD, which induces a cofunctor from CH
to COCH. The aim of this section is to say something about the functor H ot and
the cofunctor H o s. Model examples of such functors will be t(—) = — ®zx M and
s(—) = Hompg(—, M) for a fixed R-module M. We have already used these functors
when we have defined homology and cohomology groups with coefficients.

6.2. Tensor product. The tensor product A ®r B of two R-modules A and B is the
factor of the free R-module over A x B and the ideal generated by the elements of the
form

r(a,b)—(ra,b), r(a,b)—(a,rb), (a1+aq,b)—(ar,b)—(as,b), (a,bi+bs)—(a,b1)—(a,bs)

where a,ay,a9 € A, b,by,by € B, 7 € R. The class of equivalence of the element (a, b)
in A®pg B is denoted by a ® b. The map ¢ : A X B — A®gr B, ¢(a,b) = a®bis
bilinear and has the following universal property:

Whenever an R-module C' and a bilinear map ¢ : A x B — C' are given, there is
just one R-modul homomorphism ¥ : A ®g B — C such that the diagram

AxB—i+C

P A
A®grB
commutes. This property determines the tensor product uniquely up to isomorphism.

If f:A— Cand g: B — D are homomorphisms of R-modules then (a,b) —
f(a) ® g(b) is a bilinear map and the universal property above ensures the existence
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and uniqueness of an R-homomorphism f® g: A®r B — C' ®r D with the property
(f @ g)(a®b) = fla) @ g(b).

Homomorphisms between R-modules form an R-module denoted by Hompg(A, B).
If R = 7Z, we will denote the tensor product of Abelian groups A and B without the
subindex Z, i.e. A ® B, and similarly, the group of homomorfisms from A to B will
be denoted by Hom(A, B).

Exercise. Prove from the definition that
LRL=1, LQLy="Ln Ln®Ln="Linmy ZLn®@Q=0
where d(m,n) is the greatest common divisor of n and m. Further compute
Hom(Z,7), Hom(Z,Z,), Hom(Z,,Z), Hom(Zy,Zy,).
6.3. Additive functors and cofunctors. A functor (or a cofunctor) t : MOD —
MOPD is called additive if
tla+8) =t(a) +1(9)

for all a, 8 € Hompg(A, B). Additive functors and cofunctors have the following prop-
erties.

(1) t(0) = 0 for any zero homomorphism.

(2) t(A® B) =t(A) @ t(B)

(3) Every additive functor (cofunctor) converts short exact sequences which split
into short exact sequences which again split.

(4) Every additive functor (cofunctor) can be extended to a functor CH — CH
(cofunctor CH — COCH) which preserves chain homotopies (converts chain
homotopies to cochain homotopies).

Proof of (2) and (3). Consider a short exact sequence
0-A5BLC—0

which splits, i. e. there are homomorphisms p: B — A, ¢ : C' — B such that pi = id4,
jq = idg, ip + qj = idg. See 3.1. Applying an additive functor ¢ we get a splitting
short exact sequence described by homomorphisms ¢(4), t(j), t(p), t(q). O

6.4. Exact functors and cofunctors. An additive functor (or an additive cofunctor)
t: MOD — MOPD is called exact if it preserves short exact sequences.

Example. The functor t(—) = — ® Zy and the cofunctor s(—) = Hom(—,Z) are
additive but not exact. To show it apply them on the short exact sequence

07227 Zis — Q.
The functor t(—) = — ® Q from AG to AG is exact.

Lemma. Let (C,0) be a chain complex and let ¢t : MOD — MOD be an exact
functor. Then

H,(tC,19) = tH,(C, ).

Consequently, ¢t converts all exact sequences into exact sequences.
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Proof. Since t preserves short exact sequences, it preserves kernels, images and factors.
So we get

H,,(t0) = Kertd,  t(Kerd,) <Ker8n

C ImtO,yy  t(ImO,y1) ) =t(H,(C)).

Im an-i—l
O

6.5. Right exact functors. An additive functor ¢t : MOD — MQOD is called right
ezact if it converts any exact sequence
ALBL oS0
in to an exact sequence
tA ), tB ), tC — 0.

Theorem. Consider an R-module M. The functor ¢(—) = — ®z M from MOD to
AG is right exact.

Proof. The exact sequence A % B 0 — 0 s converted into the sequence
A M 29, Bey M D Cop M — 0.

It is clear that j ®idy, is an epimorphism. According to the lemma below Ker(j®id )
is generated by elements b ® m where b € Kerj = Imi. Hence, Ker(j ® idy) =
Im(7 ® idps). OJ

Lemma. If « : A — A" and § : B — B’ are epimorphisms, then Ker(a ® () is
generated by elements a ® b where a € Kera or b € Ker .

For the proof see [Sp], Chapter 5, Lemma 1.5.

6.6. Left exact cofunctors. An additive cofunctor t : MOD — MQOD is called left
ezact if it converts any exact sequence

ALBLC—0
in to an exact sequence
0 — 1093 1, 4,

Theorem. Consider an R-module M. The cofunctor ¢(—) = Hompg(—, M) from
MOD to MOD is left exact.

The proof is not difficult and is left as an exercise.

6.7. Projective modules. An R-modul is called projective if for any epimorphism
p: A — B and any homomorphism f : P — B there is F' : P — A such that the

diagram
A
g
P
0

P—f>B
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commutes. Every free R-module is projective.

6.8. Projective resolution. A projective resolution of an R-module A is a chain
complex (P,e), P, = 0 for i < 0 and a homomorphism « : Py, — A such that the
sequence
—>PZ€—Z> i_1—>---—>P1€—1>POi>A—>O
is exact. It means that
0 for i # 0
Hi(P,e) = o7 0
Py/Ime; = By/Kera= A fori=0.

If all P; are free modules, the resolution is called free.
Lemma. To every module there is a free resolution.

Proof. For module A denote F'(A) a free module over A and 7 : F/(A) — A a canonical
projection. Then the free resolution of A is constructed in the following way

€2 €1
—_— T

/\
Py =FKere; —=Kerey —= P = F(Kerm) —= Kerm — Py = F(A) — A

O
Lemma. Every Abelian group A has the projective resolution
0 — Kerm — F(A) 5 A —0.
Proof. Kerm as a subgroup of free Abelian group F'(A) is free. O

Theorem. Consider a homomorphism of R-modules ¢ : A — A’. Let (P,,¢,) and
(P!,el) be projective resolutions of A and A’, respectively. Then there is a chain

n’-n

homomorphism ¢, : (P,e) — (P’,€’) such that the diagram

€3 €2 €1

P, P Py—-> A 0

lw l@l lsoo lw
! 5, EJ /

53 P2/ 2 Pl/ 1 PO/ [e}% A/ 0

commutes. Moreover, any two such chain homomorphism (P,e) — (P’,¢’) are chain
homotopic.

Proof of the first part. o/ is an epimorphism and P, is projective. Hence there is g :
Py — Fj such that the first square on the right side commutes.
Since o/ (ppe1) = @(aey) = po 0 =0, we get that

Im(pge) € Kera/ = Imej.

g} Pl — Im¢] is an epimorhism and P, is projective. Hence there is ¢; : P, — P
such that the second square in the diagram commutes.
The proof of the rest of the first part proceeds in the same way by induction. [
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Proof of the second part. Let ¢, and ¢, be two chain homomorphisms making the
diagram above commutative. Since o/(pg — ¢}) = a(p — ) = 0, we have

Im(pg — ¢p) € Kero = Ime].

Therefore there exists sg : Py — Pj such that €]so = vo — ¢j.

Next, €] (¢1 — @] — s0e1) = €1(p1 — 1) — €150e1 = (o — wp)er — (o — wp)er = 0,
hence

Im(po — ¢ — soe1) C Kere) = Ime,
and consequently, there is s; : P, — Pj such that
6,281 = Y1 — QOll — Sp€1-
The rest proceeds by induction in the same way. 0

6.9. Derived functors. Consider a right exact functor t : MOD — MOD and a
homomorphism of R-modules ¢ : A — A’. Let (P,¢) and (P’,&’) be projective resolu-
tions of A and A’, respectively, and let ¢, : (P,e) — (P’, &) be a chain homomorphism
induced by ¢. The derived functors t; : MOD — MQOD of the functor ¢ are defined
The functor ty is equal to t since

toA = tP(]/Il'Iltéfl = tP(]/ Kerta = tA.

Using the previous theorem we can easily show that the definition does not depend on
the choice of projective resolutions and a chain homomorphism ¢,.

Definition. The i-th derived functors of the functor t(—) = — ®z M is denoted
Torf(—, M).
If R =7, the index Z in the notation will be omitted.
Example. Let R = Z. Any Abelian group A has a free resolution with P; = 0 for
1 > 2. Hence
Tor;(A,B) =0 fori>2.
Hence we will omit the index 1 in Tor;(A, B). We have

(1) Tor(A, B) = 0 for any free Abelian group A.

(2) Tor(A, B) = 0 for any free Abelian group B.

(3) Tor(Zmp, Zn) = Zdgm,n where d(m,n) is the greatest common divisor of m and
n.

(4) Tor(—, B) is an additive functor.

The proof based on the definition is not difficult and left to the reader.

6.10. Derived cofunctors. Consider a left exact cofunctor ¢ : MOD — MOD
and a homomorphism of R-modules ¢ : A — A’. Let (P,¢) and (FP’,¢’) be projective
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resolutions of A and A’, respectively, and let ¢, : (P,e) — (P’,&’) be a chain homo-
morphism induced by . The derived cofunctors t' : MOD — MQOD of the functor ¢
are defined

t'A= H'(tP,te)
t'o = H'(ty).
The functor t° is equal to ¢ since
toA = Kerteg = tA.

Using Theorem 6.8 we can easily show that the definition does not depend on the
choice of projective resolutions and a chain homomorphism ¢,.

Definition. The i-th derived functors of the functor ¢(—) = Homg(—, M) is denoted
Ext’y(—, M).
If R =7, the index Z in the notation will be omitted.
Example. Let R = Z. Since every Abelian group A has a free resolution with P, =0
for i > 2, '
Ext'(A,B) =0 fori> 2.
Hence we will write Ext(A, B) for Ext'(A, B). We have

(1) Ext(A, B) = 0 for any free Abelian group A.

(2) Ext(Zn,Z) = Zy,.

(3) Ext(Zp,, Zyn) = Zgmny where d(m,n) is the greatest common divisor of m and
n.

(4) Ext(—, B) is an additive cofunctor.

The proof is the application of the definition and it is left to the reader.

6.11. Universal coefficient theorem. The aim of this paragraph is to express the
cohomology group of a space H"(X;G) with the aid of functors Hom and Ext using
the homology groups H,(X).

Theorem. If a free chain complex C' of Abelian groups has homology groups H,(C),
then the cohomology groups H"(C'; G) of the cochain complex C" = Hom(C,,, G) are
determined by split short exact sequence

0 — Ext(H,_1(C),G) — H™(C;G) X Hom(H,(C),G) — 0
where h[f]([c]) = f(c) for ¢ € C,, f € Hom(C,,; G).

Remark. The exact sequence is natural but the splitting not. In this case the nat-
urality means that for every chain homomorphism f : C' — D we have commutative
diagram

0 —— Ext(H,_1(C),G) —— H™(C; G) 2%~ Hom(H,,(C),G) — 0
lExt(Hnl f.idg) l Hrf l Hom(Hy, f,id¢)
0 — Ext(H,_(D), G) —= H"(D; G) —2> Hom(H,(D),G) —= 0
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Proof. The free chain complex (C,,, 9) determines two other chain complexes, the chain
complex of cycles (Z,,0) and the chain complex of boundaries (B,,0). We have the
short exact sequence of chain complexes

02, 5c 2B, ,—0.

Since B,,_; is a subgroup of the free Abelian group C,,_1, it is also free and the exact
sequence splits. Since the functor Hom(—, G) is additive, it converts this sequence into
the short exact sequence of cochain complexes

0 — Hom(B,-1,G) 2, Hom(C,, G) AN Hom(Z,,G) — 0.

As in the proof of Theorem 5.6 we obtain the long exact sequence of cohomology
groups of the given cochain complexes

— Hom(Z,_1,G) — Hom(B,_1,G) — H"(C;G) > Hom(Z,, @) = Hom(B,, G) —

Next, one has to realize how the connecting homomorphism §¢* in this exact sequence
look like using its definition and the special form of the short exact sequence. The
conclusion is that 0* = j* where j : B, — Z,, is an iclusion. Now we can reduce the
long exact sequence to the short one

Hom(B,_1,G)
ﬁ
Im j*

— H"(C; Q) s Ker j* — 0.
We determine Ker j* and Hom(B,,_1, G)/ Im j*. Consider the short exact sequence

0— B, L Z, — H,(C) — 0.
It is a free resolution of H,(C). Applying the cofunctor Hom(—, G) we get the cochain
complex
0 — Hom(Z,, G) EAN Hom(B,,G) - 0—0— ...
from which we can easily compute that

Hom(Hn(C)7 G) = Kerj*, EXt(Hn(C)’ G) — Hom<Bn—17 G) .

Im j*
This completes the proof of exactness.
We will find a splitting r : Hom(H,,(C); G) — H"(C*; G). Let g € Hom(H,(C), G).
We can define f € Hom(C,,, G) such that on cycles ¢ € Z,
f(e) =g(ld)
where [c] € H,(C). f is a cocycle, hence [f] € H"(C;G) and h[f|([c]) = f(c)
g([c]).

In a very similar way one can prove

o

6.12. Universal coefficient theorem for homology. If a free chain complex C' has
homology groups H,(C'), then the homology groups H,(C,;G) of the chain complex
C,, ® G are determined by split short exact sequence

0— H,(C)® G L H,(C;G) — Tor(H,_1(C),G) — 0
where {([c] ® g) = [c® g| for c € Z,(C), g € G.



36

6.13. Exercise. Compute cohomology of real projective spaces with Z and Z, coef-
ficients using the universal coefficient theorem for cohomology.

Exercise. Using again the universal coefficient theorem for cohomology and Theorem
4.4 prove that that for a given CW-complex X the cohomology of the cochain complex

(H"(X", X"1G),d")
where d" is the composition
(X", X" Q) 2 B (X" G) S (XL X7 G)
is isomorphic to H*(X; G). See also Theorem 5.14.

7. PRODUCTS IN COHOMOLOGY

An internal product in cohomology brings a further algebraic structure. The con-
travariant functor H* becomes a cofunctor into graded rings. It enables us to obtain
more information on topological spaces and homotopy classes of maps. In this sec-
tion we will define an internal product — called the cup product and a closely related
external product — called the cross product.

7.1. Cup product. Let R be a commutative ring and X a space. For two cochains

0 € C*(X; R) and ¢ € CY(X; R) we define their cup product ¢ U € C*(X; R)
(pUY)(o) = @(o/[vo, v1, -, vk]) - (o) [k, Uk, - 5 Vkes])

for any singular simplex o : A¥*! — X The notation o /[vg, v1, ..., v] and o /[vk, Vi1,

..., Up41] stands for o composed with inclusions of the standard simplices A* and A!

into the indicated faces of the standard simplex A**! respectively. The coboundary

operator 0 behaves on the cup products of cochains as graded derivation as shown in
the following

Lemma.
3(pU) =dp Uy +(=1)"pUdy.
Proof. For 0 € Cyy141(X) we get
(b U) (o) + (=1)*(p U dp)(a) = p(a/[vo, v1, - - ks )P(0/ [Ukt1s - - 5 Vkaa])
+ (=1)*(cfve, v1, . . ., k)8 (0 /[Vk; - - ., V1))

= Z(—l)igo(a/[vo, oy Diy o U ) (0 [Vr41s - - -5 Vkgaga]))
k+I1+1
+(~1) ( N (=10 [vos . o)l [0k, - By D)
j=k
= Z (=D U)o /[vo, -+, Diy - - Vrpiga]) = 6 Un) ().

O

Lemma implies that
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(1) If ¢ and v are cocycles, then ¢ U1 is cocycle.
(2) If one of the cochains ¢ and v is a coboundary, then ¢ U is a coboundary.

It enable us to define the cup product
U: H*X;R) x H'(X;R) — H*"(X; R)
by the prescription
[l U Y] =[p U]

for cocycles ¢ and 9. Since U is an R-bilinear map on H*(X; R) x H'(X; R), it can be
considered as an R-linear map on the tensor product H*(X; R) @z H'(X; R). Given
a pair of spaces (X, A) we can define the cup product as a linear map

U:H*(X,A;R) ®r H'(X; R) — H*(X, A; R),

U:H*(X;R)®r H(X,A;R) — H*(X, A; R),

U:HY(X,A;R) ®r H(X, A; R) — H"(X, A; R).
Moreover, if A and B are open in X or A and B are subcomplexes of CW-complex
X, one can define

U: H*X,A; R) @ H(X, B; R) — H"(X,AUB; R).

Exercise. Prove that the previous definitions of cup product for pairs of spaces are
correct. For the last case you need Lemma in 3.12.

Remark. In the same way as the singular cohomology groups and the cup product
have been defined using the singular chain complexes, we can introduce simplicial
cohomology groups for A-complexes and a cup product in these groups.

7.2. Properties of the cup product are following:
(1) The cup product is associative.
(2) If X # 0, there is an element 1 € H°(X; R) such that for all o« € H*(X, A; R)
lUa=aUl =aqa.
(3) For all « € H*(X, A; R) and 3 € H(X, A; R)
aUf=(-1)"guUa,
i. e. the cup product is graded commutative.
(4) Naturality of the cup product. For every map f : (X, A) — (Y, B) and any
a € H¥Y,B; R), 8 € H\(Y, B; R) we have
faUB) = f"(a)Uf(B).

Remark. Properties (1) — (3) mean that H*(X, A; R) = @;°, H'(X, A; R) with the
cup product is not only a graded group but also a graded ring and that H*(X; R) is
even a graded ring with a unit if X # (). Property (4) says that f : (X, A) — (Y, B)
induces a ring homomorphism f*: H*(Y, B; R) — H*(X, A; R).

Proof. To prove properties (1), (2) and (4) is easy and left to the reader as an exercise.
To prove property (3) is more difficult. We refer to [Ha] Theorem 3.14, pages 215 —
217 for geometrically motivated proof. Another approach is outlined later in 7.8. [
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7.3. Cross product. Consider spaces X and Y and projections p; : X xY — X and
Py X XY — Y. We will define the cross product or external product. The absolute
and relative forms are the linear maps

p: HYX,R)® H'(Y; R) — H*"(X x Y; R),
p: HYX, A;R)® H'(Y,B; R) — H""(X xY,AxY UX x B;R)
given by
(e ®@ B) = pi(a) Ups(B).
For the relative form of the cross product we suppose that A and B are open in X and
Y, or that A and B are subcomplexes of X and Y, respectively. (See the definition

of the cup product.) The name cross product comes from notation since u(a ® f3) is
often written as o x (3.

Exercise. Let A : X — X x X be the diagonal A(x) = (x,z). Show that for
a, € H*(X; R)

aU B = A (u(a® B)).

7.4. Tensor product of graded rings. Let A* = @ 7 A" and B* = @, , B"
be graded rings. Then the tensor product of graded rings A* ® B* is the graded ring
C* =@, ,C" where

C"=@P Aep
i+j=n
with the multiplication given by
(a1 ®by) - (az ® by) = (1)1l (ay - az) @ (by - by).
Here |by| is the degree of by € B*,i.e. by € Bl If A* and B* are graded commutative,
so is A* @ B*.
Lemma. The cross product
p: HYX, A;R)® H'(Y,B; R) — H""(X xY,AxY UX x B;R)
is a homomorphism of graded rings.

Proof. Using the definitions of the cup and cross products and their properties we have
p((axb)- (e x d) = (~1)"u((aUe) ® (bUd)) = (~1)"*Fpi(aUc) Upy(bUd)
= (=1)I"Mlpi (@) U pi(e) U p5(b) U p3(d)
= pi(a) Upy(b) Upi(c) Upy(d) = pla @b) U p(c® d).
O

7.5. Kiinneth Formula tells us how to compute the graded R-modules H,(X xY’; R)
or H*(X xY; R) out of the graded modules H,(X; R) and H.(Y; R) or H*(X; R) and
H*(Y; R), respectively. Under certain conditions it even determines the ring structure
of H*(X x Y; R).
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Theorem (Kiinneth Formula). Let (X, A) and (Y, B) be pairs of CW-complexes.
Suppose that H*(Y, B; R) are free finitely generated R-modules for all k. Then
w:H (X, A;R)@ H(Y,B; R) - H' (X xY,Ax Y UX x B;R)
is an isomorphism of graded rings.

Example. H*(S* x S') = 7Z/T where T is the ideal generated by elements o?, 32,
af = (—=1)¥Ba and dega = k, deg 3 = 1.

Proof. Consider the diagram
H*(X,A) ®g H*

H*(X) @r H*(Y)

(Y)
‘w}[* . /

u ®r H*(Y) u
H* (X XY, AxY)H*(X xY) l H*(X xY)
\ /
H*(AXY)

where the the upper and the lower triangles come from the long exact sequences
for pairs (X, A) and (X x Y, A x Y), respectively. The right rhomb commutes as a
consequence of the naturality of the cross product. We prove that the left rhomb also
commutes.

Let ¢ and v be cocycles in C*(A) and C*(Y'), respectively. Let ® be a cocycle in
C*(X) extending ¢. Then pj® U pip € C*(X x Y) extends pio Upsp € C*(A xY).
Using the definition of the connecting homomorphism in cohomology (see Remark 5.3)
we get

p((0" ®@id)([¢] ® [Y])) = ulé® @ ] = pi[o®] U ps[v],
0" (u(le] @ [¥])) = 0" [pie Upse] = [0(p1® U p3e)] = pi[6®] U p3[4].
First, we prove the statement of Theorem for the case A = B = () using the induction
by the dimension of X and Five Lemma. If dim X = 0, X is a finite discrete set and

the statement of Theorem is true. Suppose that Theorem holds for spaces of dimension
n — 1 or less. Let dim X = n. It suffices to show that

pr H( X" X" Do H(Y) - H(X"x Y, X" xY)

is an isomorphism and than to use Five Lemma in the diagram above with A = X"~}
to prove the statement for X = X". X"/X""! is homeomorphic to | |, DI'/| ], 0D
So it is sufficient to carry out the proof by induction using our diagram for X = | |, D"
and A=, 0D}.

So we have proved the theorem for X a finite dimensional CW-complex and A =
B = (). Using once more our diagram and Five Lemma, we can easily prove Theorem
for any pairs (X, A), (Y,0) with X of finite dimension. For X of infinite dimension,
we have to prove H'(X) = H(X™) for ¢ < n which is equivalent to H'(X/X™) = 0.
We omit the details and refer the reader to to [Ha], pages 220 — 221. O
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7.6. Application of the cup product. In this paragraph we show how to use the
cup product to prove that S?* is not an H-space. A space X is called an H-space if
there is a map m : X X X — X called a multiplication and an element e € X called
a unit such that m(e,x) = m(x,e) =z for all z € X.

Suppose that there is a multiplication m : S%¥ x S?* — S?! with a unit e. According
to Example after Theorem 7.5

H*(S* x S?%.7) = Z]a, B])T
where Z is the ideal generated by relations a? = 0, 52 = 0 and a3 = Ba. The

last relation is due to the fact that the dimension of the sphere is even. Moreover,
a=v®1and 3 =1®~v where v € H?*(S?,7Z) is a generator. Let us compute
m* . H*(S?*;7) — H*(S* x H?*,7Z). We have

m*(y) =ax+ 05, a,beZ.
Since the composition

G2k id xe G2k o G2k ™, g2k

is the identity, we get that a = 1. Similarly, b = 1. Now compute m*(7?):

* * * 2
0=m*(0) =m*(+*) = (m*(7))” = (a + )’ =208 #0,
a contradiction. Does this proof go through for odd dimensional spheres?

7.7. Kiinneth Formula in homological algebra. Consider two chain complexes
(C.,0c), (Dy,dp) of R-modules. Suppose there is an integer N such that C,, = D,, =0
for all n < N. Then their tensor product is the chain complex (C, ® D,, ) with

i+j=n
and the boundary operator on C; ® D;
Ic®d)=0cc@d+ (—1)'c® dpd.

It is easy to make sure that 90 = 0.
Next we can define the graded R-module C, x D, as

(Cyx D,), = @ Torf(C;, D).
i+j=n

A ring R is called hereditary if any submodule of a free R-module is free. Examples
of hereditary rings are Z and all fields.

Theorem (Algebraic Kiinneth Formula). Let R be a hereditary ring and let C, and
D, be chain complexes of R-modules. If C, is free, then the homology groups of
C, ® D, are determined by the splitting short exact sequence

0= (H.(C) ® Ho(D))y = Hy(C.. @ D.) = (H.(C) % H(D))y1 =0
where [([c] ® [d]) = [¢c ® d]. This sequence is natural but the splitting is not.
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Notice that for the chain complex

D, — 0 for n # 0,
G forn=0

the Kiineth Formula gives the universal coefficient theorem for homology groups 6.12.
The proof of the Kiinneth Formula is similar to the proof of the universal coefficient
theorem and we omit it.

7.8. Eilenberg-Zilbert Theorem. To be able to apply the previous Kiinneth For-
mula in topology we have to show that the singular chain complex C,(X X Y) of a

product X x Y is chain homotopy equivalent to the tensor product of the singular
chain complexes C,(X) @ C.(Y).

Theorem (Eilenberg-Zilbert). Up to chain homotopy there are unique natural chain
homomorphisms

O :CL(X)RCL(Y) = Cu(X xY),
U:C(X xY)— CuX)® C.(Y)
such that for O-simplices o and 7
So®71)=(0,7), V(0,7)=0RT.
Moreover, such chain homomorphisms are chain homotopy equivances: there are
natural chain homotopies such that
VP ~ide, xeo,v), P¥ ~ide, (xxy) -

For the proof of this theorem see [Do], IV.12.1. The chain homomorphism ¥ is
called the Eilenberg-Zilbert homomorphism and denoted EZ. It enables a different
and more abstract approach to the definitions of the cross and cup products. The
cross product is

p(le] @ [6]) = (e ® B) o EZ]
for cocycles v € C*(X; R) and € C*(Y; R) and the cup product is

(Llo]) =(¢®@¢)o EZoA,]

for cocycles ¢, 1 € C*(X; R) and the diagonal A : X — X x X. In our definition in
7.1 we have used for EZ o A, the homomorphism

o — a/[ve,v1, ..., 0 @ T/[Vk, ..., ]

The properties of EZ can be used for a different proof of the graded commutativity
of the cup product.

7.9. Kiinneth Formulas in topology. The following statement is an immediate
consequence of the previous paragraph.

Theorem (Kiinneth formula for homology). Let R be a hereditary ring. The homology
groups of the product of two spaces X and Y are determined by the following splitting
short exact sequence

0 — (H(X;R) ® H.(Y; R))n = Ho(X X Y3 R) — (Ho(X; R) % H(Y; R))uoy — 0
where [([c] ® [d]) = [¢c ® d]. This sequence is natural but the splitting is not.
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For cohomology groups one can prove

Theorem (Kiinneth formula for cohomology groups). Let R be a hereditary ring.
The cohomology groups of the product of two spaces X and Y are determined by the
following splitting short exact sequence

0 — (H*(X; R) @ H'(Y; B)) 2 H'(X x Y R) — (H'(X; R) + H'(Y; R))s1 — 0.
This sequence is natural but the splitting is not.

For the proof and other forms of Kiinneth formulas see [Do|, Chapter VI, Theorem
12.16 or [Sp|, Chapter 5, Theorem 5.11. and 5.12.

8. VECTOR BUNDLES AND THOM ISOMORPHISM

In this section we introduce the notion of vector bundle and define its important
algebraic invariants Thom and Euler classes. The Thom class is involved in so called
Thom isomorphism. Using this isomorphism we derive the Gysin exact sequence which
is an important tool for computing cup product structure in cohomology.

8.1. Fibre bundles. A fibre bundle structure on a space E, with fiber F', consists
of a projection map p : E — B such that each point of B has a neighbourhood U for
which there is a homeomorphism h : p~}(U) — U x F such that the diagram

py Y U)—L>UxF

|
pri
U

commutes. Here pry is the projection on the first factor. A is called a local trivialization,
the space E is called the total space of the bundle and B is the base space.

A subbundle (E', B,p') of a fibre bundle (E, B,p) has the total space E' C E,
the fibre F" C F, p’ = p/E’ and local trivializations in E’ are restrictions of local
trivializations of E.

A wvector bundle is a fibre bundle (F, B, p) whose fiber is a vector space (real or
complex). Moreover, we suppose that for each b € B the fiber p~1(b) over b is a vector
space and all local trivializations restricted to p~!(b) are linear isomorphisms. The
dimension of a vector bundle is the dimension of its fiber. For p~'(U) where U C B

we will use notation Ey. Further, EY will stand for Fy; without zeroes in vector spaces
E,=p ' (z) forz e U.

8.2. Orientation of vector spaces. Let V' be a real vector space of dimension n.
The orientation of V' is the choice of a generator in H"(V,V — {0};Z) = Z. If R is
a commutative ring with a unit, the R-orientation of V' is the choice of a generator
in H*(V,V —{0}; R) = R. For R = Z we have two possible orientations, for R = Z,
only one.

8.3. Orientation of vector bundles. Consider a vector bundle (E, B, p) with fiber
R™. The R-orientation of the vector bundle E is a choice of orientation in each vector
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space p~1(b), b € B, i. e. a choice of generators t, € H"(Ey, EY; R) = R such that for
each b € B there is a neighbourhood U and an element

tv € H(Ey, EU; R)
with the property
ir(ty) =t
for each x € U and i, : E, — Ey an inclusion.
If a vector bundle has an R-orientation, we say that it is R-orientable. An R-oriented

vector bundle is a vector bundle with a chosen R-orientation. Talking on orientation
we will mean Z-orientation.

Example. Every vector bundle (E, B, p) is Zy-orientable. After we have some knowl-
edge of fundamental group, we will be able to prove that vector bundles with H,(B) =
0 are orientable.

8.4. Thom class and Thom isomorphism. A Thom class of a vector bundle
(E, B, p) of dimension n is an element t € H"(E, E°; R) such that i} () is a generator
in H"(Ey, EY; R) = R for each b € B where i, : E;, — E is an inclusion.

It is clear that any Thom class determines a unique orientation. The reverse state-
ment is also true.

Theorem (Thom Isomorphism Theorem). Let (E, B, p) be an R-oriented vector bun-
dle of real dimension n. Then there is just one Thom class t € H"(E, E°; R) which
determines a given R-orientation. Moreover, the homomorphism

7:H*B;R) — H*""(E,E% R), 7(a) =p"(a)Ut
is an isomorphism (so called Thom isomorphism).

Remark. Notice that Thom Isomorphism Theorem is a generalization of the Kiinneth
Formula 7.5 for (Y, A) = (R",R" — {0}). We use it in the proof.

Proof. (1) First suppose that E = B x R™. Then according to Theorem 7.5
H*(E,E% R) = H'(B x R", B x (R" — {0}); R) = H*(B; R) @ H*(R",R" — {0}); R)
= H"(B; R)[e]/(¢?)

where e € H"(R™",R™ — {0}); R) is the generator given by the orientation of E. Now,
there is just one Thom class t =1 X e and

T(a) =p*(a) Ut =a x e
is an isomorphism.

(2) If U is open subset of B, then the orientation of (E, B, p) induces an orientation of
the vector bundle (Ey, U, p). Suppose that U and V are two open subsets in B such
that the statement of Theorem is true for £y, Ey and Eyny with induced orientations.
Denote the corresponding Thom classes by ty, ty and tyny. The uniqueness of tyny
implies that the restrictions of both classes ¢y and ty on H"(Eynay, Edqy; R) are tyay-.
We will show that Theorem holds for Ep .

Consider the Mayer-Vietoris exact sequence 5.13 for A = Ey, B = Ey, C = Ep,
D = EY. together with the Mayer-Vietoris exact sequence for A =U, B=V and C' =
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D = (). Omitting coefficients these exact sequences together with Thom isomorphisms
77, Tv and Tyay yield the following diagram where PFEy stands for the pair (Ey, EY)

i) Hk—l—n(PEUUv) (MQ H]H'”(PEU) D Hk+n(PEV) ﬂ Hk+n(PEUnV) - .
A
TUUV | TU@TVT TUmvT
| Sk gk i ¥
gk uv) 2 gy e mEv) — 2 gAY

(At the moment we do not need commutativity.) From the first row of this diagram
we get that .
H'(Eyuy, Ejuy) =0 fori<n

and that there is just one class tyuy € H*(Eyuy, EY ) such that

(i Jv ) (towv) = (tu, tv).
This is the Thom class for Eyy and we can define the homomorphism 7y : H*(U U
V) — Hk+n(EUUV> EZOJUV) by

Tyuv (@) = p«(a) Utpuy.

Complete the diagram by this homomorphism. When we check the commutativity
of the completed diagram, it suffices to apply Five Lemma to show that 7y is an
isomorphism.

To prove the commutativity we have to go into the cochain level from which the
Mayer-Vietoris sequences are derived in natural way. Let ¢, and ¢{, be cocycles repre-
senting the Thom classes ty and ty,. We can choose them in such a way that

O T

igty = tyty = tyay
where t;,, represents the Thom class tyny. Consider the diagram where the rows are
the short exact sequences inducing the Mayer-Vietoris exact sequences above.

( - \ o ) i g
0 — Cs(By + By) " Cy (By) & C§(By) “—+ C*(Byry) —= 0
A
Ouv : T&@T{/T Tl/mVT
0——CU+V) 2 oy e o (v) LS oru a V) —— 0

Here we use the following notation: C.(U + V) is the free Abelian group generated
by simplices lying in U and V, C*(U + V) = Homg(C.(U + V), R). C;(Ey + Ev)
are the cochains from C*(Ey + Ey ) which are zeroes on simplices from C,(Ep + EY,).
7,(a) = p*(a) Uty. (According to Lemma in 3.12 the cohomology of Cj(Ey + Ev) is
H*(Eyov, Ejuyi R).)

There is just one cocycle t, ;, representing the Thom class ¢y such that

If we show that 7{;, 7, 7/, and 7/, are cochain homomorphisms which make the
diagram commutative, then the diagram with the Mayer-Vietoris exact sequences will
be also commutative. To prove the commutativity of the cochain diagram above is

not difficult and left to the reader. Here we prove that 7/, is a cochain homomorhism.
(The proof for the other 7’ is the same.)
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Let a € C¥(U). Since t{; is cocycle we get

dryy(a) = 6(p*(a) Uty) = 6(p"(a)) Uty + (=1)*p"(a) U d(ty) = p™(8(a)) Uty = 70(a).
(3) Let B be compact (particullary a finite CW-complex). Then there is a finite open
covering Uy, Us, ..., Uy, such that Ey, is homeomorphic to U; x R". So according to
(1) the statement of Theorem holds for all Ey,. Using (2) and induction we can show
that Theorem holds for E = (J;*, Ey, as well.

(4) The proof for the other base spaces B needs a limit transitions in cohomology and
the fact that for any B there is always a CW-complex X and a map f : B — X
inducing isomorphism in cohomology. Here we omit this part. 0

8.5. Euler class. Let £ = (F, B, p) be oriented vector bundle of dimension n with
the Thom class t € H"(E, E°;Z). Consider the standard inclusion j : E — (E, E°).
Since p : E — B is a homotopy equivalence, there is just one class e(§) € H"(B;Z),
called the Fuler class of &, such that

p(e(€)) = J" (L)
For R-oriented vector bundles we can define the Euler class e¢(¢) € H"(B; R) in the

same way. Particulary, for any vector bundle ¢ = (E, B, p) has an Euler class with
Zs-coefficients called the n-th Stiefel-Whitney class w,(§) € H"(B; Zs).

8.6. Gysin exact sequence. The following theorem gives us a useful tool for com-
putation of the ring structure of singular cohomology of various spaces.

Theorem (Gysin exact sequence). Let £ = (F, B, p) be an R-oriented vector bundle
of dimension n with the Euler class e(§) € H"(B; R). Then there is a homomorphism
A*: H*(E°; R) — H*(B; R) of modules over H*(B; R) such that the sequence

2 gy (g0 R) AL 54y R) X g By R) D HM (B R) A

1s exact.

Proof. The definition of A* and the exactness follows from the following cummutative
diagram where we have used the long exact sequence for the pair (F, E°) and the
Thom isomorphism 7:

Hk+n—1(E0) 5*; H’H_n(E, EO) j*; Hk+n(E) i 5 Hk+n(E0)

~
~
~ ~ ~ *
A*\ - —TT —Tp /
A

Hk(B) - :JE(_§)> Hk+n(B)

The right action of b € H*(B) on H*(E") is given by
r-b=xUi*p*(h), =€ H*(E").

Using the definition of the connecting homomorphism and the properties of cup prod-
uct one can show that

A*(x-b) = A*(z) Ub.
The details are left to the reader. O
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Example. Consider the canonical one dimensional vector bundle v = (E,RP",p)
where
E={(l,v) € RP" x R*"*!: v €},

the elements of RP" are identified with lines in R™™! and p(l,v) = I. The space Ej is
equal to R™™! — {0} and homotopy equivalent to S™.

Using the Gysin exact sequence with Zy-coefficients and the fact that H*(RP"; Z,) =
Zs for 0 < k < n, we get successively that the first Stiefel-Whitney class wy () €
H'(RP"; Z) is different from zero and that

H*(RP"); Z2) = Zowi (7)) {wi()").
Exercise. Using the Gysin exact sequence show that
H*(CP™ Z) = Zlz]/ (=)
where z € H*(CP"; Z).

9. POINCARE DUALITY

Many interesting spaces used in geometry are closed oriented manifolds. Poincaré
duality expresses a remarkable symmetry between their homology and cohomology.

9.1. Manifolds. A manifold of dimension n is a Hausdorff space M in which each
point has an open neighbourhood U homeomorphic to R™. The dimension of M is
characterized by the fact that for each x € M, the local homology group H;(M, M —
{z};7Z) is nonzero only for i = n since by excision and homotopy equivalence

Hi(M, M —A{z};Z) = Hi(U,U — {z}; Z) = H;(R",R" — {0}; Z)
= ~i—1(Sn_1; Z).
A compact manifold is called closed.

Example. Examples of closed manifolds are spheres, real and complex projective
spaces, the orthogonal groups O(n) and SO(n), the unitary groups U(n) and SU(n),
real and complex Stiefel and Grassmann manifolds. The real Stiefel manifold V,, ; is
the space of k-tuples of orthonormal vectors in R™. The real Grassmann manifolds
G, i, is the space of k-dimensional vector subspaces of R".

9.2. Orientation of manifolds. Consider a manifold M of dimension n. A local
orientation of M in a point = € M is a choice of a generator p, € H,(M, M —{z};Z) =
Z.

If AC M, we will use H;(M|A) and H'(M|A) for H;(M, M — A;Z) and H'(M; M —
A; Z), respectively, to shorten our notation.

An orientation of M is a function assigning to each point x € M a local orientation
ty € Hy(M|x) such that each point has an open neighbourhood B with the property
that all local orientations p, for y € B are images of an element up € H,(M|B) under
the map p,, : H,(M|B) — H,(M|z) where p, : (M, M — {z}) — (M, M — B) is the
natural inclusion.

If an orientation exists on M, the manifold is called orientable. A manifold with
chosen orientation is called oriented.
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Proposition. A connected manifold M is orientable if it is simply connected, i. e.
every map S' — M is homotopic to a constant map.

For the proof one has to know more about covering spaces and fundamental group.
See [Ha], Proposition 3.25, pages 234 — 235.

In the same way we can define an R-orientation of a manifold for any commutative
ring R. Every manifold is Zy-oriented.

9.3. Fundamental class. A fundamental class of a manifold M with coefficients in
R is an element p € H,(M; R) such that p,, (i) is a generator of H,(M|x; R) = R for
each x € M where p, : (M,()) — (M, M — {z}) is the obvious inclusion. It is usual to
denote the fundamental class of the manifold M by [M]. We will keep this notation.

If a fundamental class of M exists, it determines uniquely the orientation u, =
pa.([M]) of M.

Theorem. Let M be a closed manifold of dimension n. Then:

(a) If M is R-orientable, the natural map H,(M;R) — H,(M|z;R) = R is an
isomorphism for all z € M.

(b) If M is not R-orientable, the natural map H,(M; R) — H,(M|x;R) = R is
injective with the image {r € R; 2r = 0} for all z € M.

(¢) Hi(M;R) =0 for all i > n.

(a) implies immediately that very oriented closed manifold has just one fundamental
class. It is a suitable generator of H,(M; R).
The theorem will follow from a more technical statement:

Lemma. Let M be n-manifold and let A C M be compact. Then:
(a) H;(M|A;R) =0 for i > n and a € H,(M|A; R) is zero iff its image p,,(a) €
H,(M|x; R) is zero for all z € M.
(b) If x — p, is an R-orientation of M, then there is us € H,(M|A; R) whose
image in H,,(M|z; R) is u, for all z € A.

To prove the theorem put A = M. We get immediately (c) of the theorem. Further,
the lemma implies that an oriented manifold M has a fundamental class [M] = uy
and any other element in H,(M; R) has to be its multiple in R. So we obtain (a) of
the theorem. For the proof of (b) we refer to [Hal, pages 234 — 236.

Proof of Lemma. Since R does not play any substantial role in our considerations, we
will omit it from our notation. We will omit also stars in notation of maps induced in
homology. The proof will be divided into several steps.

(1) Suppose that the statements are true for compact subsets A, B and AN B of M.
We will prove them for A U B using the Mayer-Vietoris exact sequence:

0— H,(M|AUB) 2 H,(M|A) & H,(M|B) % H,(M|AN B)

where () = (paa, ppar), V(a, B) = pans — pansf-

H;(M|AU B) = 0 for ¢ > n is immediate from the exact sequence. Suppose o €
H,(M|AU B) restricted to H,(M|x) is zero for all x € AU B. Then psa and ppa are
zeroes. Since ® is a monomorphism, « has to be also zero.
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Take pa and pp such that their restrictions to H,(M|x) are orientations. Then the
restrictions to points © € AN B are the same. Hence also the restrictions to A N B
coincide. Tt means W(u4, pup) = 0 and the Mayer-Vietoris exact sequence yields the
existence of a in H,(M|A U B) such that ®(a) = (pa, up). Therefore a reduces to a
generator of H,(M|z) for all z € AU B, and consequently, & = piaup.

(2) If M = R™ and A is a compact convex set, the lemma is true since H;(R"|A) =
H;(R™|0).

(3) If M = R™ and A is finite simplicial complex in R", then A = |J]*, A; where A;
are convex compact sets. Using (1) and induction by m we can prove that the lemma
holds in this case as well.

(4) Let M = R™ and A is an arbitrary compact subset. Let o € H;(R"|A) be repre-
sented by relative cycle z and let C' C R™ — A be the union of images of the singular
simplices in 0z. Since C' is compact, dist(C, A) > 0, and consequenly, there is a finite
simplicial complex K D A such that C C R"—K. z defines an element ax € H;(R"|K)
which reduces to a € H;(R™"A). If i > n, then by (3) ax = 0 and consequently also
a=0.

Suppose ¢ = n and « reduces to zero in each point x € A. K can be chosen in
such a way that every its point lies in a simplex of K together with a point of A.
Consequently, ax reduces to zero not only for all z € A but for all x € K. (Use the
case (2) to prove it.) By (3) ax = 0, therefore also av = 0.

The proof of existence of us € H,(R™A) in the statement (b) is easy. Take up €
H,(R"|B) for a ball B D A and its reduction is p4.

(5) Let M be a general manifold and A a compact subset in open U homeomorphic
to R™. Now by excision

Hy(M|A) = Hy(U|A) = Hy(R"| )
and we can use (4).
(6) Let M be a manifold and A an arbitrary compact set. Then A can be covered by

open sets Vi, Vs, ..., Vi, such that the closure of V; lies in an open set U; homeomorphic
to R™. Then by (5) the lemma holds for A; = ANV;. By (1) and induction it holds
also for (J*, A; = A. O

9.4. Cap product. Let X be a space. On the level of chains and cochains the cap
product

N:Cy(X;R)®C*"(X;R) — Cn_1(X;R)
is given by
oNe=@(a/[ve,v1, ..., 0])0/[Vk, Vg1 - - -, Vs
where o is a singular n-simplex, ¢ : Cy(X; R) — R is a cochain and o/[vg, v1, . . ., Ug]
is the composition of the inclusion of A* into the indicated face of A" with o.

The proof of the following statement is similar as in the case of cup product and
therefore it is left to the reader.

Lemma. For o € C,,(X; R) and ¢ € C*(X; R)
Ao Ng)=(=1)FoNp—0ondyp)
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This enables us to define
N: Hy(X;R)® H*(X;R) — H,_1(X;R)
by
o] N lel =lonel

for all cycles o and cocycles ¢. In the same way one can define

N: H,(X,A;R)® H*(X; R) — H,_1(X, A; R)

N: H,(X,A;R)® H*(X, A;R) — H,_(X; R)
for any pair (X, A) and

N:Hy(X,AUB;R)® H*(X,A;R) — H,_(X, B; R)

for A, B open in X or subcomplexes of CW-complex X.
Exercise. Show the correctness of all definitions and prove the following lemma.

Lemma (Naturality of cup product). Let f: (X, A) — (Y, B). Then

flan f1(9)) = fula) N 3
for all « € H, (X, A; R) and 3 € H*(Y; R).

9.5. Poincaré duality. Now we have all the tools needed to state the Poincaré
duality for closed manifolds.

Theorem (Poincaré duality). If M is a closed R-orientable manifold of dimension n
with fundamental class [M] € H,,(M; R), then the map D : H*(M; R) — H,_(M; R)
defined by

is an isomorphism.

Exercise. Use Poincaré duality to show that the real projective spaces of even dimen-
sion are not orientable.

This theorem is a consequence of a more general version of Poincaré duality. To
state it we introduce the notion of direct limit and cohomology with compact support.

9.6. Direct limits. A direct set is a partially ordered set I such that for each pair
t,k € I there is A € I such that : < X and k < \.

Let G, be a system od Abelian groups (or R-modules) indexed by elements of a
directed set I. Suppose that for each pair « < x of indices there is a homomorphism
fue + G, — G, such that f, = id and f.\f.. = fin. Then such a system is called
directed.

Having a directed system of Abelian groups (or R-modules) we will say that a € G,
and b € G, are equivalent (a ~ b) if fx(a) = fr(b) for some X € I. The direct limit
of the system {G,} s is the Abelian group (R-module) of classes of this equivalence

limG, = PG/~

el
Moreover, we have natural homomorphism 7, : G, — limG,.
—
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The direct limit is characterized by the following universal property: Having a
system of homomorphism h, : G, — A such that h, = h,f,. whenever + < k, there is
just one homomorphism

H:limG, — A
-

such that h, = Hj,.
It is not difficult to prove that direct limits preserve exact sequences.
In a system of sets the ordering is usually given by inclusions.

Lemma. If a space X is the union of a directed set of subspaces X, with the property
that each compact set in X is contained in some X,, the natural map

lim H,(X,; R) — H,(X; R)
H
is an isomorphism.
The proof is not difficult, we refer to [Ha|, Proposition 3.33, page 244.

9.7. Cohomology groups with compact support. Consider a space X with a
directed system of compact subsets. For each pair (L, K), K C L, the inclusion
(X, X — L) — (X, X — K) induces homomorphism H*(X|K;R) — H*(X|L; R). We
define the cohomology groups with compact support as

HY(X;R) =lim H*(X|K;R).

If X is compact, then H*(X; R) = H*(X; R).
For cohomology with compact support we get the following lemma which does not
hold for ordinary cohomology groups.

Lemma. If a space X is the union of a directed set of open subspaces X, with the
property that each compact set in X is contained in some X,, the natural map

lim Hf(XL; R) — Hf(X; R)
—
is an isomorphism.

Proof. The definition of natural homomorphism in the lemma is based on the following
fact: Let U be an open subset in V. For any K C U compact the inclusion (U, U —
K) — (V,V — K) induces by excision an isomorphism

H*(V|K;R) — H*(U|K; R).

Its inverse can be composed with natural homomorphism H*(V|K; R) — H*(V; R).
By the universal property of direct sum there is just one homomorphism

HMU;R) — H*(V;R).
So on inclusions of open sets H* behaves as covariant functor on inclusions of open

sets and this makes the definition of the natural homomorphism in the lemma possible.
The proof that it is an isomorphism is left to the reader. O

9.8. Generalized Poincaré duality. Let M be an R-orientable manifold of dimen-
sion n. Let K C M be compact. Let ux € H,(M|K;R) be such a class that its
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reduction to H,(M|xz; R) gives a generator for each z € M. The existence of such a
class is ensured by Lemma in 9.3. Define

D : HY(M|K) — H,_(M;R) :  Dg(p) = g Nep.

If K C L are two compact subsets of M we can easily prove using naturality of cap
product that

Dr(p*¢) = Dk ()
for p € H*(M|K; R) and p: (M, M — L) — (M, M — K). Tt enables us to define the
generalized duality map

Dz HX(M; R) — Hy o (M;R) 1 Du(p) = px N

since each element ¢ € H¥(M; R) is contained in H*(M|K; R) for some compact set
K CM.

Theorem (Duality for all orientable manifolds). If M is an R-orientable manifold of
dimension n, then the duality map Dy, : H¥(M; R) — H,_4(M; R) is an isomorphism.

The proof is based on the following

Lemma. If a manifolds M be a union of two open subsets U and V', the following
diagram of Mayer-Vietoris sequences

Hf(UﬁV) Hf(U)EBHf(V) Hf(M)—>Hf+1(UﬂV)
lDUmV lDUEBDV lDM lDUﬁV

Hn—k(U N V) - n—k(U) D Hn—k(v) - n—k(M) - n—k—l(U N V)

commutes up to signs.

The proof of this lemma is analogous as the proof of commutativity of the diagram
in the proof of Theorem 8.4 on Thom isomorphism. So we omit it referring the reader
to [Ha], Lemma 3.36, pages 246 — 247 or to [Br], Chapter VI, Lemma 8.2, pages 350
— 351.

Proof of Poincaré Duality Theorem. We will use the following two statements

(A) If M = U UV where U and V are open subsets such that Dy, Dy and Dyny
are isomorphisms, then D), is also an isomorphism.

(B) If M = J;2, U; where U; are open subsets such that Uy C Uy C Us C ... and
all Dy, are isomorphisms, then D), is also an isomorphism.

The former is an immediate consequence of the previous lemma and Five Lemma. To
obtain the latter apply the direct limit to the short exact sequences

U,

0 — HE(UL) 2% Ho i (Us) — 0

and use the lemmas in 9.6 and 9.7. The proof of Duality Theorem will be carried out
in four steps.

(1) For M = R™ we have
HF(R™) = HF(A", 0A™), H,(R"|A™) = H, (A" 0A™).
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Take the generator p € H,(A™ 0A™) represented by the singular simplex given by
identity. The only nontriavial case is k = n. In this case for a generator

¢ € H"((A"0A™)) = Hom(H,((A"0A"), R)
we get N = (u) = +£1. So the duality map is an isomorphism.

(2) Let M C R™ be open. Then M is a countable union of open convex sets V; which
are homeomorphic to R". Using the previous step and induction in the statement (A)
we show that the duality map is an isomorphism for every finite union of V;. Now
application of the statement (B) yields that the duality map Dy, is an isomorphism
as well.

(3) Let M be a manifold which is a countable union of open sets U; which are homeo-
morphic to R™. Now we can proceed in the same way as in (2) using its result instead
of the result in (1).

(4) For general M we have to use Zorn lemma. See [Ha|, page 248. O

Consequence. The Euler characteristic of a closed manifold of odd dimension is zero.

Proof. For M orientable we get from Poincaré duality and the universal coefficient
theorem that

rank H,,_(M;Z) = rank H*(M;Z) = rank Hom Hy(M; Z)
= rank Hy(M;Z)
Hence x(M) =>"" ,(—1)'rank H;(M;Z) = 0 for n odd.

If M is not orientable, we get from the Poincaré duality with Zs coefficients that

> (=1) dim Hy(M; Z,) = 0.

=0
Here the dimension is considered over Zs. Applying the universal coefficient theorem
one can show that the expression on the left hand side equals to x(M). 0J

Remark. Consider an oriented closed smooth manifold M. The orientation of the
manifold induces an orientation of the tangent bundle 75, and we get the following
relation between the Euler class of 1), the fundamental class of M and the Euler
characteristic of M:

X(M) = e(mar) N [M].
Particulary, for spheres of even dimension we get that the FEuler class of their tangent
bundle is twice a generator of H™"(S™;Z). For the proof see [MS], Corollary 11.12.

9.9. Duality and cup product. One can easily show that for a € C,(X;R),
¢ € C*(X;R) and v € C"*(X; R) we have

Ylang) = (pUp)(a).
For a closed R-orientable manifold M we define bilinear form
(*) H*(M;R) x H" *(M;R) — R: (¢,¢) — (p U)[M].

A bilinear form A x B — R is called regular if induced linear maps A — Hom(B, R)
and B — Hom(A, R) are isomorphisms.
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Theorem. Let M be a closed R-orientable manifold. If R is a field, then the bilinear
form (%) is regular.
If R = Z, then the bilinar form induced form
H*(M:;7Z)/ Torsion H*(M;Z) x H"*(M;Z)/ Torsion H" *(M;Z) — Z
induced by (x) is regular.
Proof. Consider the homomorphism
H™ (M3 R) &5 Hom(H,_(M; R); R) 25 Hom(H*(M: R), R).

Here h(v)(8) = ¢(B) for 3 € H,_x(M; R) and ¢» € H"*(M; R) and D* is the dual
map to duality. The homomorphism A is an isomorphism by the universal coefficient
theorem and D* is an isomorphism since so is . Now it suffices to prove that the

composition D*h is the homomorphism induced from the bilinear form (x). For ¢ €
H"*(M; R) and ¢ € H*(M; R) we get

(D*h()) (¢) = (M(y)) D(p) = (h()) ([M] M) = ([M] N p) = (¢ U)[M].
O

This theorem gives us a further tool for computing the cup product structure in
cohomology of closed manifolds.

Consequence. Let M be a closed orientable manifold of dimension n. Then for every
¢ € H¥(M;Z) of infinite order which is not of the form ¢ = mq; for m > 1, there is
Y € H"*(M;Z) such that ¢ U is a generator of H"(M;Z) = Z.

Example. We will prove by induction that H*(CP™";Z) = Z[w]/{w™"!) where w €
H?(CP"™;Z) is a generator. For n = 1 the statement is clear. Suppose it holds for
n — 1. From the long exact sequence for the pair (CP", CP""') we get that

HY(CP",Z) = H'(CP"*, 7Z)

for © < 2n — 1. Now, using the consequence above for ¢ = w we obtain that w™ is a
generator of H*"(CP";Z).

9.10. Manifolds with boundary. A manifold with boundary of dimension n is a
Hausdorff space M in which each point has an open neighbourhood homeomorphic
either to R™ or to the half-space

R:L- = {<x17x27 cee 7'rn) S Rn, Ty Z 0}

The boundary OM of the manifold M is formed by points which have all neighbour-
hoods of the second type. The boundary of a manifold of dimension n is a manifold
of dimension n — 1. In a similar way as for a manifold we can define orientation of a
manifold with boundary and its fundamental class [M]| € H,,(M;0M; R).

Theorem. Suppose that M is a compact R-orientable n-dimensional manifold whose
boundary OM is decomposed as a union of two compact (n—1)-dimensional manifolds
A and B with common boundary 0A = 9B = AN B. Then the cap product with the
fundamental class [M] € H,,(M,0M; R) gives the isomorphism

Dy H¥(M, A; R) — H,_(M, B; R).
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For the proof and many other applications of Poincaré duality we refer to [Hal,
Theorem 3.43 and pages 250 — 254, and [Br|, Chapter VI, Sections 9 and 10, pages
355 — 366.

9.11. Alexander duality. In this paragraph we introduce another version of duality.

Theorem (Alexander duality). If K is a proper compact subset of S™ which is a
deformation retract of an open neighbourhood, then

H(S" - K;Z) =~ H"""Y(K;Z).
Proof. For i # 0 and U a neighbourhood of K we have

H;(S" - K)~ H'"(S" - K) by Poincaré duality
= lim vH"'(S" — K,U — K) by definition
= lim yH" (5", U) by excision
= lim v H™ Y1) connecting homomorphism
~ A" Y(K) K is a def. retract of some U

First three isomorphisms are natural and exist also for ¢ = 0. So using these facts
we have

Hy(S" — K) = Kel"( o(S" = K) — Ho(Sn))
<hm H"(S",U) — H"(S”))

Ker (H"(5",U) — H"(5"))

H" Y U) = H"YK).

lE 15

O

Consequence. A closed nonorientable manifold of dimension n cannot be embedded
as a subspace into R" 1.

Proof. Suppose that M can be embedded into R"*!. Then it can be embedded also
in S"*1. By Alexander duality

H, (M;7) = H'(S"" — M; 7).
According to the universal coefficient theorem
HY(S" — M;Z) = Hom(H,(S™™ — M;Z),7Z) ® Ext(Ho(S"" — M; 7))
is a free Abelian group. On the other hand
Lo = H,,(M;Zy) = H,(M;Z) ® Zy & Tor(H,,_1(M,Z), Zs).

According to (b) of Theorem 9.3 the tensor product has to be zero, and since H,,_1(M;7Z)
is free, the second summand has to be also zero, which is a contradiction. O]
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10. HoMOTOPY GROUPS

In this section we will define homotopy groups and derive their basic properties.
While the definition of homotopy groups is relatively simple, their computation is
complicated in general.

10.1. Homotopy groups. Let I"™ be the n-dimensional unit cube and 91" its bound-
ary. For n = 0 we take I° to be one point and 9I° to be empty. Consider a space
X with a basepoint zy. Maps (I",01") — (X, zg) are the same as the maps of the
quotient (S™ = I"/01", sqg = OI"/OI™) — (X, o). We define the n-th homotopy group
of the space X with the basepoint z; as

(X, 20) = [(S™, 50), (X, x0)] = [(I", OI"), (X, 0)].

mo(X, o) is the set of path connected components of X with the component containing
xo as a distinguished element. For n > 1 we can introduce a sum operation on 7, (X, o)

f(2t1,ta, ... 1) t1 €0, 3],
f(2t1_17t27"'7tn) tle[%vl]
This operation is well defined on homotopy classes. It is easy to show that 7, (X, o)

is a group with identity element represented by the constant map to zy and with the
inverse represented by

(f +9)(t1,ta, ... 1) = {

—f(t1,to, .. ty) = f(1 —ty,te, ..., tn).
For n > 2 the groups 7,(X, ) are commutative. The proof is indicated by the
following pictures.

In the interpretation m, (X, xq) as [(S™, so), (X, zo)] the sum f+ g is the composition
SR CURVECLIEALAD '
where ¢ collapses the equator S"~! of S™ to a point, s € S*~1 C S™.

Any map F : (X,z9) — (Y,y) induces the homomorphism F, : m,(X,z) —
(Y, y0) by composition

E(lf]) = [Ff]-
Hence m, is a functor from 7 OP, to the category of Abelian groups AG for n > 2,
to the category of groups G for n = 1 and to the category of sets with distiguished
element SET, for n = 0.

10.2. Relative homotopy groups. Consider 1" as a face of I"™ with the last
coordinate ¢, = 0. Denote J"! the closure of 91" — I"~!. Let (X, A) be a pair with
basepoint o € A. For n > 1 we define the n-th relative homotopy group of the pair
(X,A) as

(X, A, 20) = [(D", 8L, 50), (X, A, 20)] = [(I", D™, TV, (X, A, z)].
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A sum operation on 7,(X, A, z¢) is defined by the same formula as for 7,(X, zo) only
for n > 2. (Explain why this definition does not work for n = 1.) Similarly as in the
case of absolute homotopy groups one can show that m, (X, A, z¢) is a group for n > 2
which is commutative if n > 3.

Sometimes it is useful to know how the representatives of zero (neutral element)
in m,(X, A, zg) look like. We say that two maps f,g : (D", S" % s9) — (X, A,z
are homotopic rel S"! if there is a homotopy h between f and g such that h(z,t) =
f(z) =g(z) forall z € S" P and all t € I.

Proposition. A map f : (D", S"1, s50) — (X, A, x¢) represents zero in m,(X, A, zo)
iff it is homotopic rel S*~! to a map with image in A.

Proof. Suppose that f ~ g rel S" ! and g(D") C A. Then g is homotopic to the
constant map into zg € A. Hence [f] = [g] = 0.

Let f be homotopic to the constant map via homotopy h : D" x I — X. Let
r: D" — D" x {1} US™! x I be a a homeomorphism shown in the picture below.
Then g = hr : D™ — A and g ~ f rel S"71.

O

Amap F: (X, A, xy) — (Y, B, yo) induces again the homomorphism F, : 7, (X, A, zo)
— (Y, B,yo). Since m,(X, xg, z9) = m,(X, x¢) the functor m, on 7OP, can be ex-
tended to a functor from 7OP? to Abelian groups AG for n > 3, to the category of
groups G for n = 2 and to the category SET, of sets with distinguished element for
n=1.

From definitions it is clear that homotopic maps induce the same homomorphisms
between homotopy groups. Hence homotopy equivalent spaces have the same homo-
topy groups. Particularly, contractible spaces have trivial homotopy groups.

10.3. Long exact sequence of a pair. Relative homotopy groups fit into long exact
sequence of a pair.

Theorem. Let (X, A) be a pair of spaces with a distinguished point zo € A. Then
the sequence

- — (A, ) o, T (X, o) ELN (X, A, o) s, Tn_1(A, x9) — ...

where i : A — X, j: (X, 29) — (X, A) and 0 comes from restriction, is exact.
More generally, any triple B C A C X induces the long exact sequence

- — (A, B, ) Iy (X, B, x0) I, (X, A, o) S, Tn_1(A, B,zg) — ...
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Proof. We will prove only the version for the pair (X, A). § is defined on [f] €
(X, A, xg) by
Sf) = [£/171).

Ezactness in m,(X,z9). According to the previous proposition j,i, = 0, hence
Imi, C Kerj,. Let [f] € Kerj, for f: (I",0I") — (X, zy). Using again Proposition
10.2 f ~ g rel 0I™ where g : I — A. Hence [f] = i.[g].

Ezactness in m,(X, A, x9). dj. = 0, hence Imj, C Kerd. Let [f] € Kerd, i. e.
for, g — (X,A,x) and f/I"' ~ const. Then according to HEP there
is fi : (I™,0I",J") — (X, z0,20) homotopic to f. Therefore [f] € m,(X,xp) and

Ezactness in m,(A, xg). Let [F] € mp11(X, A, x0). Then io F/I™ : I" — X is a map
homotopic to the constant map to xy through the homotopy F. (Draw a picture.)

Let f: (I",0I") — (A, x9) and f ~ 0 through the homotopy F': I" x I — X such
that F(z,0) = f(z) € A, F/J" = xy. Hence [F] € m,41(X, A, z0) and 0[F] = [f]. O

Remark. The boundary operator for a triple (X, A, B) is a composition

(X, A) “55 7, (A) 25 7m0y (A, B).
10.4. Changing basepoints. Let X be a space and v : [ — X a path connecting
points zo and x;. This path associates to f : (I",0I") — (X,z1) a map v - f :
(I",01™) — (X, xo) by shrinking the domain of f to a smaller concentric cube in I™
and inserting the path + on each radial segment in the shell between OI" and the
smaller cube.

/

It is not difficult to prove that this assigment has the following properties:

(D) v (f+g) ~v-f+vy-gfor fg:(I"0[") — (X, 1),
(2) (“H;H)'f’w“y'(%'f) for f: (I".0I") — (X, 22), 7(0) = 2o, ¥(1) = 21 = K(0),
(3) If 71,;2 :2.1 — X are homotopic rel 9 = {0, 1}, then vy - f ~ v - f.

Hence, every path ~ defines an isomorphism

7 (X7 (1) = mn (X, 7(0)).

Particulary, we have a left action of the group m (X, xo) on 7, (X, x¢).

10.5. Fibrations. Fibration is a dual notion to cofibration. (See 1.7.) It plays an
important role in homotopy theory.

A map p : E — B has the homotopy lifting property, shortly HLP, with respect
to a pair (X, A) if the following commutative diagram can be completed by a map



58

XxI—FE
Xx{0tUAXI—=FE

Zl /// lp
X x I

A map p : E — B is called a fibration (sometimes also Serre fibration or weak
fibration), if it has the homotopy lifting property with respect to all disks (D, ().

Theorem. If p : E — B is a fibration, then it has homotopy lifting property with
respect to all pairs of CW-complexes (X, A).

Proof. The proof can be carried out by induction from (k — 1)-skeleton to k-skeleton
similarly as in the proof of Theorem 2.7 if we show that p : £ — B has the homotopy
lifting property with respect to the pair (D*, dD* = S*=1). It follows from the fact that
the pair (D* x I, D* x {0} US*~! x I) is homeomorphic to the pair (D* x I, D* x {0}),
see the picture below and the fact that p has homotopy lifting property with respect
to the pair (D*, 0

p=]=]e

Proposition. Every fibre bundle (E, B, p) is a fibration.

Proof. For the definition of a fibre bundle see 8.1. Let U, be an open covering of
B with trivializations h, : p~1(U,) — U, x F. We would like to define a lift of a
homotopy G : I* x I — B. (We have replaced D* by I*.) From compactness of I* x [
there is a division

O=to<ti <--- <ty =1, Ij:[tj—latj];
such that G(I;, x - - - x I, . ) lies in some U,. Now we make a lift H : [*x I — E of G,

Jk+1
first on (I;)**! and then we add successively the other small cubes. We need retractions
r of cubes C' x I, = [T I, to a suitable part of the boundary C' x {0} U A x L.,

where H is already defined. A is a CW-subcomplex of the cube C' and we are in the
following situation

Cx{0UAxT—2>U,xF

_7
. ~
zl ///H lpl

Cxl1 U,
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Now, we can define

H(z,t) = (G(x,t),ppogor)(z,t)
where ps : U, X F — F'is a projection. 0
Example. Here you are several examples of fibre bundles.
(1) The projection p : S™ — RP™ determines a fibre bundle with the fibre S°.
(2) The projection p : S*"*1 — RC" determines a fibre bundle with the fibre S*.
(3) The special case is so called Hopf fibration

St — 5% 5L CP' = S2

(4) Similarly, as complex projective space we can define quaternionic projective space
HP". The definition determines the fibre bundle

5% — S — HP".
(5) The special case of the previous fibre bundle is the second Hopf fibration
S3 — ST — HP' = 5%
(6) Similarly, the Cayley numbers enable to define another Hopf fibration
ST — SY - S8,

(7) Let H be a Lie subgroup of G. Then we get a fibre bundle with the projection
p: G — G/H with fibre H.
(8) Let n > k > 1 > 1. Then the projection

P Ve = Vay, p(on,va,. . 08) = (v, 02, ..., 1)
determines a fibre bundle with fibre V,,_; ;_;.
(9) Natural projection p : V,,, — G, is a fibre bundle with the fibre O(k).

10.6. Long exact sequence of a fibration. Consider a fibration p : F — B. Take
a basepoint by € B, put F = p~!(by) and choose zy € F.

Lemma. Foralln >1
Dx - ﬂ-n(Ea F7 .]}'0) - 7TTL<B7 bO)

is an isomorphism.

Proof. First, we show that p, is an epimorphism. Consider f : (I",0I") — (B, by).
Let k : J"~! — E be the constant map into zy. Since p is a fibration the commutative
diagram

Jrt =i x (1uaIt x [ B

l -9 lp

1 xI ; B

can be completed by g : (I",0I", J"™') — (E, F, xq). Hence p.[g] = [f].
Now we prove that p, is a monomorphism. Consider f : (I", 01", J" ') — (E, F, )
such that p.[f] = 0. Then there is a homotopy G : (I" x I,01" x I) — (B, by) between
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pf and the constant map into by. Denote the constant map into zy by k. Since p is a
fibration, we complete the following commutative diagram:

kU fUE

JEXTUT x {0y Ul x {1} —% E

I"x 1 e B
by H: (I" x I,0I" x I,J"* x I) — (E, B, 1) which is a homotopy between f and
the constant map k. O

The notion of exact sequence can be enlarged to groups and also to the category
SET, of sets with distinquished elements. Here we have to define Ker f = f~!(b) for
f (A, a0) = (B, bo).

Theorem. If p : E — B be a fibration with a fibre F' = p_1(by), o € F and B is
path connected, then the sequence

- — m,(F, ) LN T (E, o) LA (B, bo) LR Tn1(F,xg) — ...
c o mo(F) 2 10(E) 25 mo(B).
1S exact.

Proof. Substitute the isomorphism p, : m,(F, F,z9) — m,(B,by) into the exact se-
quence for the pair (F, F). In this way we get the required exact sequence ending
with
- — 7T()(F, [L’()) — 7T()(E,[L’0).
We can prolong it by one term to the right. The exactness in my(E, zg) follows from
the fact that every path in B ending in by can be lifted to a path in F ending in F. [
The direct definition of § : 7, (B, by) — m,_1(F, o) is given by

o[f] = [g/1"7]
where ¢ is the lift
Jn—l T E

7
s
p
s

I"——B

f

Some applications of this long exact sequence to computations of homotopy groups
will be given in Section 14.

11. FUNDAMENTAL GROUP

The fundamental group of a space is the first homotopy group. In this section we
describe two basic methods how to compute it.
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11.1. Covering space. A covering space of a space X is a space X together with a
map p : X — X such that (X, X, p) is a fibre bundle with a discrete fibre.

In the previous section we have proved that every fibre bundle has homotopy lifting
property with respect to CW-complexes. In the case of covering spaces the lifts of
homotopies are unique:

Proposition. Let p: X — X be a covering space and let Y be a space. If a homotopy
F:Y xI— X and a map f:Y x {0} — X such that F(—,0) = pf are given, there
is a unique homotopy F : Y x I — X making the following diagram commutative:

Y x {0} L= %

| Ak

Y xI——X

Proof. Since the proof follows the same lines as the proof of the analogous proposition
in 10.5 we outline only the main steps.
(1) Using compactness of I we show that for each y € Y there is a neighbourhood
U such that F can be defined on U x I.
(2) F is uniquely determined on {y} x I for each y € Y.
(3) The lifts of F' defined on U; x I and Uy x I concide on (U; NUsy) X I.

O

From the uniquiness of lifts of loops and their homotopies starting at a fixed point
we get immediately the following

Consequence. The group homomorphism p : (X, %) — m (X, xp) induced by a
covering space (X, X, p) is injective. The image subgroup p.(m (X, Zg)) in m (X, o)
consists of loops in X based at xy whose lifts in X starting at &, are loops.

11.2. Group actions. A left action of a discrete group GG on a space Y is a map
GxY =Y, (gy)—g-y

such that 1.y = y and (¢192) -y = ¢1 - (92 - y). We will call this action properly
discontinuous if each point y € Y has an open neighbourhood U such that g;UNgU #
() implies g1 = g¢».

An action of a group GG on a space Y induces the equivalence = ~ y if y = ¢ - = for
some g € G. The orbit space Y/G is the factor space Y/ ~.

A space is called Y simply connected if it is path connected and (Y, 1) is trivial
for some (and hence all) base point yj.

The following theorem provides a useful method for computation of fundamental
groups.

Theorem. Let Y be a path connected space with a properly discontinuous action of
a group GG. Then
(1) The natural projection p: Y — Y/G is a covering space.
(2) G =2 m(Y/G,p(yo))/psm1(Y,y0). Particularly, if Y is simply connected, then
1 (Y/G) = G
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Proof. Let y € Y and let U be a neighbourhood of y from the definition of prop-
erly discontinuous action. Then p~!(p(U)) is a disjoint union of gU, g € G. Hence

(Y,Y/G,p) is a fibre bundle with the fibre G.
Applying the long exact sequence of homotopy groups of this fibration we obtain

0=m(G,1) — m(Y,y0) 2 m(Y/G;plyo)) = m0(G) = G — mo(Y) = 0.

In general m of a fibre is only the set with distinguished point. However, here it has
the group structure given by G. Using the definition of ¢ from 10.3 one can check that
0 is a group homomorphism. Consequently, the exact sequence implies that

G =m(Y/G,p(yo))/p-mi (Y, yo)-
0J

Example. Z acts on real numbers R by addition. The orbit space is R/Z = Si.
According to the previous theorem

7T1(Sl, 8) = 7.

The fundamental group of the sphere S™ with n > 2 is trivial. The reason is that any
loop 7 : S' — S™ is homotopic to a loop which is not a map onto S™ and S™ without
a point is contractible.
Next the group Zs = {1,—1} has an action on S, n > 2 given by (—1) -z = —=z.
Hence
T (RPH) = Zg.

Example. The abelian group Z @ Z acts on R?

(m,n) - (z,y) = (x +m,y +n).
The factor R?/(Z & Z) is two dimensional torus S' x S'. Tts fundamental group is
YASY A

Example. The group G given by two generators a, 3 and the relation 3~ 'af = a~!

acts on R? by

The factor R?/@G is the Klein bottle. Hence its fundamental group is G.

11.3. Free product of groups. As a set the free product x,G,, of groups G, a € I
is the set of finite sequences ¢19s ... g, such that 1 # ¢; € G,., a; # «a;41, called
words. The elements g; are called letters. The group operation is given by

(9192 .. -gm) ) (h1h2 cos hn) = (9192 oo Gmhihe .. hn)

where we take g,,h; as a single letter g,, - hy if both elements belong to the same group
G,. It is easy to show that x,G, is a group with the empty word as the identity
element. Moreover, for each 3 € I there is the natural inclusion ig : Gg — *,G4.

Up to isomorhism the free product of groups is characterized by the following uni-
versal property: Having a system of group homomorphism h, : G, — G there is just
one group homomorphism h : x,G, — G such that h, = hi,.

Exercise. Describe Zg * Zs.
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11.4. Van Kampen Theorem. Suppose that a space X is a union of path connected
open subsets U, each of which contains a base point xq € X. The inclusions U, — X
induce homomorphisms j, : m(U,) — m1(X) which determine a unique homomorhism
@ xqm1 (Uy) — m(X).

Next the inclusions U, N Ug — U, induce the homomorphisms i,s : 71 (U, NUs) —
m(Us). We have juins = Jjpige. Consequently, the kernel of ¢ contains elements of
the form in5(w)iga(w™!) for any w € m (U, N Up).

Van Kampen Theorem provides the full description of the homomorphism ¢ which
enables us to compute (X ) using groups m (U, ) and 7 (U, N Up).

Theorem (Van Kampen Theorem). If X is a union of path connected open sets
U, each containing a base point xy € X and if each intersection U, N U is path
connected, then the homomorhism ¢ : x,m (U,) — m(X) is surjective. If in addition
each intersection U, N Ug N U, is path connected, then the kernel of p is the normal
subgroup N in *,m (U,) generated by elements i,5(w)ig, (w™!) for any w € 71 (UyNUsp).
So ¢ induces an isomorphism

m(X) & x,m (Uy)/N.

Example. If X, are path connected spaces, then

T\ Xa) = #am (Xa).

Outline of the proof. For simplicity we suppose that X is a union of only two open
subsets U; and U,.

Surjectivity of p. Let f : I — X be a loop starting at xy € U; U U,. This loop
is up to homotopy a composition of several paths, for simplicity suppose there are
three such that f, : I — Uy, fo: I — Uy and f3 : [ — U; with end points succesively
Xo, T1, Lo, Tog € UNUsy. Since Uy NUs is path connected there are paths g, : I — U;NU;
and go : I — Uy NU; from xg to x; and x5, respectively. Then the loop f is up to
homotopy a composition of loops f1 — g1 : I — Uy, g1+ fo — g2 : I — Uy and
g2+ f3: I — Uy. Consequently, [f] € m1(X) lies in the image of ¢.

Kernel of . Suppose that the p-image of a word with m letters [f1][g1][f2] - . ., where
[fi] € m(Uy), [9:] € m1(Us), is zero in m1(X). Then there is a homotopy F : I x I — X
such that

F(s,0)= fi+ g+ fot ..., F(s,1) =g, F(0,8) = F(1,) =z

2i—1
m

where we suppose that f; is defined on [%, %] and g; is defined on | ,%] Since

I x I is compact, there is an integer n, a multiple of m, such that
v 1+1 J J+1
F(|—, X [=, ——
(S < 2,12
is a subset in U; or U,. Using homotopy extension property, we can construct a

homotopy from F to F rel J* such that again

-1 i+1 7 7+1
F([— X [=, —
(1 2y x 12,150
is a subset in U; or Us, and moreover,
- i
P2y = a.

n'n
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Further, F(s,0) = f', + ¢'; + f's + ... where f'; ~ fi, ¢'; ~ g; in Uy and Us, respec-
tively, rel the boundary of the domain of definition. We want to show that the word
[f'1]ilg'1)2[f o)1 - - - belongs to N. Here | ]; stands for an element in m (U;).

We can decompose

IxI:UMi

where M; is a maximal subset with the properties:

(1) M; is a union of several squares [£, 1] x [Z ZH],
(2) int M; is path connected.
(3) F(M;) is a subset in Uy or Us.

For simplicity suppose that we have four sets M; as indicated in the picture.

Xo

fy g, fa

In this situation there are three loops k, [ and p starting at xo and lying in Uy N Us.
They are defined by F' on common boundary of M; and Ms, My and M3, M3 and My,
respectively. Now, we get

il DalF el = [k [k + Ual—L+ Pl = K [—kla [~ 11 [Pl
= [k|i[=Fkl2[l]2[-1]1 € N.

O

Consequence. Let X be a union of two open subsets U and V where V is simply
connected and U NV is path connected. Then

m(X) =m(U)/N
where N is the normal subgroup in m;(U) generated by the image of m (U NV).

Exercise. Use the previous statement to compute the fundamental group of the Klein
bottle and other 2-dimensional closed surfaces.
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11.5. Fundamental group and homology. Here we compare the fundamental
group of a space with the first homology group. We obtain a special case of Hurewitz
theorem, see 13.6.

Theorem. By regarding loops as 1-cycles, we obtain a homomorphism h : w1 (X, z¢) —
H,(X). If X is path connected, then h is surjective and its kernel is the commutator
subgroup of 71(X). So h induces isomorphism from the abelization of (X, zg) to
Hy(X).

For the proof we refer to [Ha], Theorem 2A.1, pages 166-167.

12. HomoTOPY AND CW-COMPLEXES

This section demonstrates the importance of CW-complexes in homotopy theory.
The main results derived here are Whitehead theorem and theorems on approximation
of maps by cellular maps and spaces by CW-complexes.

12.1. n-connectivity. A space X is n-connected if m;(X,z9) =0 for all 0 < i <n
and some base point xy € X (and consequently, for all base points).

A pair (X, A) is called n-connected if each component of path connectivity of X
contains a point from A and m;(X, A, zq) =0 forall zp € Aand all 1 <i<n

We say that a map f : X — Y is an n-equivalence if f, : (X, xo) — m(Y, f(20)) is
an isomorphism for all g € X if 0 < i < n and an epimorphism for all xq if 1 = n.

Exercise. Prove that a pair (X, A) is n-connected if and only if the inclusion i : A —
X is an n-equivalence.

12.2. Compression lemma. Let (X, A) be a pair of CW-complexes and (Y, B) a
pair with B # (). Suppose that 7, (Y, B,yo) = 0 for all yo € B whenever there is a cell
in X — A of dimension n. Then every f : (X, A) — (Y, B) is homotopic rel A with a

map g : X — B.

If n = 0, the condition m(Y, B, yo) = 0 means that (Y, B) is O-connected.

Proof. By induction we will define maps f,, : X — Y such that f,,(X"UA) C B, and f,
is homotopic to f,_; rel AUX""1. Put f_; = f. Suppose we have f,,_; and there is a
cell e”in X —A. Let ¢ : D™ — X be its characteristic map. Then f, 14 : (D", dD") —
(Y, B) represents zero element in m,(Y, B). According to Proposition 10.2 it means
fno1p (D™, 0D™) — (Y, B) is rel 9D™ homotopic to a map h,, : (D", 0D") — (B, B).
Doing it for all cells of dimension n in X — A we obtain a map f, : X" UA — B
homotopic rel A with f,,_; restricted to X"UA. Using the homotopy extension property
of the pair (X, X" UA) we can conclude that f, can be extended to amap f, : X — Y
which is homotopic rel A to f,_1. Now for z € X" define g(z) = f.(z). By the same
trick as in the proof of Theorem 2.7 we can construct homotopy rel A between f and
qg. ([
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Similar to the previous lemma is the following extension lemma the proof of which
is easier and left to the reader.

Lemma. Consider a pair (X, A) of CW-complexes and a map f: A — Y. If YV is
path connected and m,_1(Y, o) = 0 whenever there is a cell in X — A of dimension n,
then f can be extended to a map X — Y.

12.3. Whitehead Theorem. The compression lemma has two important conse-
quences.

Corollary. Let h : Z — Y be an n-equivalence and let X be a finite dimensional
CW-complex. Then the induced map h, : [X,Z] — [X,Y] is

(1) a surjection if dim X < mn,

(2) a bijection if dim X <n — 1.

Proof. First, suppose that h : Z — Y is an inclusion. Put B = Z, A = () and consider
amap f: X — Y. If dim X < n then all the assumptions of the compression lemma
are satisfied. Consequently there is a map g : X — Z such that hg ~ f. Hence
hy : [X, Z] — [X,Y] is surjection.

Let dim X <n —1 and let ¢g;,9, : X — Z be two maps such that hg; ~ hg, via a
homotopy F': X x I — Y. Then we can apply the compression lemma in the situation

of the diagram
1Ug2

X x{0,1} 2= 7

-
-
l 7 H h
-

X x1 Y

to get a homotopy H : X X I — Z between ¢, and gs.

If A is not an inclusion, we use the mapping cylinder M. (See 1.5 for definition and
basic properties.) Let f: X — Y be a map. Apply the result of the previous part of
the proof to the inclusion iy : Z <— M, and to the map iy f : X — Y — M, to get
g: X — Z such that 1,9 ~ iy f.

XY == My —>Y

Since the middle and the right triangle commutes up to homotopy and iy and p are
homotopy inverses, we get

hg ~ pizg ~ piy f ~ [.
The statement (2) can be proved in a similar way. O

A map f: X — Y is called a weak homotopy equivalence if f, : m, (X, z9) —
(Y, f(20)) is an isomorphism for all n and all base points .

Theorem (Whitehead Theorem). If a map h: Z — Y between two CW-complexes is
a weak homotopy equivalence, then h is a homotopy equivalence.

Moreover, if Z is a subcomplex of Y and h is an inclusion, then Z is even deformation
retract of Y.
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Proof. Let h be an inclusion. We apply the compression lemma in the following situ-
ation:
id

Z—7
hl g/4 h
s
Then gh ~ idy rel Z and consequently hg = idz. So Z is a deformation retract of Y.
The proof in a general case again uses mapping cylinder M},. OJ

12.4. Simplicial approximation lemma. The following rather technical statement
will play important role in proofs of approximation theorems in this section and in the
proof of homotopy excision theorem in the next section. Under convex polyhedron we
mean an intersection of finite number of halfspaces in R with nonempty interior.

Lemma (Simplicial approximation lemma). Consider a map f : I[" — Z. Let Z be a
space obtained from a space W by attaching a cell e¥. Then f is rel f~(W) homotopic
to f for which there is a simplex AF C ef with f;'(AF) a union (possibly empty)
of finitely many convex polyhedra such that f; is the restriction of a linear surjection
R"™ — R* on each of them.

The proof is elementary but rather technical and we omit it. See [Ha], Lemma 4.10,
pages 350-351.

12.5. Cellular approximation. We recall that a map g : X — Y between two
CW-complexes is called cellular, if g(X") C Y™ for all n.

Theorem (Cellular approximation theorem). If f : X — Y is a map between CW-
complexes, then it is homotopic to a cellular map. If f is already cellular on a sub-
complex A, then f is homotopic to a cellular map rel A.

Consequence. 7, (S") =0 for k < n.

Consequence. Let (X, A) be a pair of CW-complexes such that X — A contains only
cells of dimension greater then n. Then (X, A) is n-connected.

Proof of the cellular approximation theorem. By induction we will construct maps f, :
X — Y such that f_; = f, f, is cellular on X™ and f, ~ f,—1 rel X" "' U A. Then we
can define g(x) = f,(z) for x € X™ and by the same trick as in the proof of Theorem
2.7 we can construct homotopy rel A between f and g.

Suppose we have already f,_1 and there is a cell e” such that f,_1(e") does not
lie in Y. Then f(e") meets a cell e in Y of dimension k > n. According to the
simplicial approximation lemma f,_;/e” is homotopic rel de™ to h : e — Y with the
property that there is a simplex A¥ C ¥ and h(e") C Y — A¥. (Since n < k, there
is no linear surjection R™ — RF.) 9e” is a deformation retract of e¥ — AF and that is
why h is homotopic rel de™ to a map g : " — Y — e*. Since f(e") meets only a finite
number of cells, repeating the previous step we get a map f,, defined on e” such that
fa(e™) € Y™ and homotopic rel de™ to f,_1/e™. In the same way we can define f,
on AU X™ homotopic to f,_1/AU X" rel AU X" 1. Then using homotopy extension
property we obtain f,, : X — Y homotopic to f,_; rel AU X""1. U
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12.6. Approximation by CW-complexes. Consider a pair (X, A) where A is a
CW-complex. An n-connected CW model for (X, A) is an n-connected pair of CW-
complexes (Z, A) together with a map f : Z — X such that f/A = ids and f. :
mi(Z,20) — mi(X, f(20)) is an isomorphism for ¢ > n and a monomorphism for i = n
and all base points zy € Z.

If we take A a set containing one point from every path component of X, then
0-connected CW model gives a CW-complex Z and a map Z — X which is a weak
homotopy equivalence.

Theorem (CW approximation theorem). For every n > 0 and for every pair (X, A)
where A is a CW-complex there exists n-connected CW-model (Z, A) with the addi-
tional property that Z can be obtained from A by attaching cells of dimensions greater
than n.

Proof. We proceed by induction constructing 7, = A C Z,.1 C Z,42 C ... with Z;
obtained from Z;_; by attaching cells of dimension k, and a map f : Z;, — X such
that f/A =ida and f. : m;(Z;) — m(X) is an injection for n < ¢ < k and a surjection
for n < ¢ < k. For simplicity we will consider X and A path connected with a fixed
base point zy € A.

Suppose we have already f : Z, — X. Let ¢, : S¥ — Z, be maps representing
generators in Ker f, : mp(Z;) — mp(X). Put

Yipr = Z Uy, | DA

Since the map f : Z, — X restricted to the boundaries of new cells is trivial, it can
be extended to a map f: Vi1 — X.

By the cellular approximation theorem m;(Yyy1) = m;(Zy) for all i« < k — 1. Hence
the new f, has the same properties as the old f, on homotopy groups m; with i <
k —1. Since the composion 7,(Zy) — 7 (Y1) — me(X) is surjective according to the
induction assumptions, f. : mx(Yii1) — m(X) has to be surjective as well.

We prove that it is injective. Let [p] € mp(Yii1) and let fo ~ 0. By cellular
approximation ¢ : S¥ — Y,., is homotopic to ¢ : S*¥ — YkkJrl = Zr C Yy and
[fo] =0 in 7, (X). Hence [¢] € Ker f, is a sum of [¢,], and consequenly, it is zero in
T (Yit1)-

Next let 1), : S¥*1 — X represent generators of . (X). Put

Zit1 =Y V \/ Sffl

and define f =1, on new (k + 1)-cells. It is clear that f, : mp11(Zki1) — mre1(X) is
a surjection. Using cellular approximations it can be shown that m;(Zx11) = m(Yis1)
for 7 < k. O

Corollary. If (X, A) is an n-connected pair of CW-complexes, then there is a pair
(Z, A) homotopy equivalent to (X, A) rel A such that the cells in Z — A have dimension
greater than n.

Proof. Let f : (Z,A) — (X, A) be an n-connected model for (X, A) obtained by
attaching cells of dimension > n to A. Then f, : 7;(Z) — 7;(X) is a monomorphism
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for j = n and an isomorphism for j > n. We will show that f, is an isomorphism also

for j > n. Consider the diagram:
iz

Z—f>X

The inclusions ix and iy are n-equivalences. Consequently, f.iz, = ix, : mj(4) —
7;(X) is an epimorphism for j = n. Hence so is f.. Next, ix, and iz, are isomorphisms
for 7 < n, hence so is f,.

Finally, according to Whitehead Theorem, the weak homotopy equivalence f be-
tween two CW-complexes is a homotopy equivalence. O]

Theorem. Let f: (Z,A) — (X,A) and f': (Z',A") — (X', Z') be two n-connected
CW-models. Given a map g : (X, A) — (X', A") there is a map h : (Z,A) — (Z', A")
such that the following diagram commutes up to homotopy rel A:

71> x
hl lg
(N v
Z 7 X
The map A is unique up to homotopy rel A.

Proof. By the previous corollary we can suppose that Z — A has only cells of dimension
>n+ 1. We can define h/A as g/A.

h/A
A—/>Z’

|k

/
Z—>gf X

Replace X' by the mapping cylinder My which is homotopy equivalent to X’. Since
'+ Z" — X' is an n-connected model, we get m;(My, Z’") = 0 for i > n+ 1. According
to Compression lemma 12.2 there exists h : Z — Z’ such that the diagram

h/A
A—/>Z/

7
]
Z—>Mf’

commutes up to homotopy rel A. This h has required properties. The proof that it is
unique up to homotopy follows the same lines. O

13. HOMOTOPY EXCISION AND HUREWITZ THEOREM

One of the reasons why the computation of homotopy groups is so difficult is the
fact that we have no general excision theorem at our disposal. Nevertheless, there is
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a restricted version of such a theorem. It has many consequences, one of them is the
Freudenthal suspension theorem which enables us to compute 7, (S™). At the end of
this section we define the Hurewitz homomomorphism which under certain conditions
compares homotopy and homology groups.

13.1. Homotopy excision theorem (Blakers-Massey theorem). Let A and B be
subcomplexes of CW-complex X = AU B. Suppose that C' = AN B is connected,
(A, C) is m-connected and (B, C')is n-connected. Then the inclusion

j: (A C)— (X,B)

is (m + n)-equivalence, i. e. j, : m;(A, C') — m;(X, B) is an isomorphism for i < m+n
and an epimorphism for i = m + n.

Proof. We distinguish several cases.

1. Suppose that A = C U, em™ and B = C U e"™'. First we prove that j, :
mi(A,C) — m(X, B) is surjective for i < m + n.

Consider f : (I*,0I',J"1) — (X, B,xy). Using simplicial approximation lemma
12.4 we can suppose that there are simplices A"+ C e+ and A" C "' such that
their inverse images f~'(A™*!), f~1(A"*!) are union of convex polyhedra on each of
which f is a linear surjection R® onto R™*! and R"*!, respectively. We will need the
following statement.

Lemma. If i < m + n then there exist points p, € A™!, ¢ € A" and a continuous
function ¢ : I'"! — [0, 1) such that

(a) f~1(pa) lies above the graph of ¢,

(b) f~%(q) lies below the graph of ¢,

(c) ¢ =0o0n oIt

f(p)

-1
f ()

Let us postpone the proof of the lemma for a moment. The subspace M = {(s,t) €
I''' x I t > ¢(s)} is a deformation retract of I with deformation retraction h :
I x I — I, h(z,0) = z, h(z,1) € M. Then

H=fh:I'xI—X
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provides a homotopy between f and
g: (Ii’a[ia Ji_l) - (X - {Q}>X - {Q} - U{pa}axo)'

Obviously, g is homotopic to g : (I*,dI°, J*=') — (A, C, x¢). Hence j.[g] = [f].

The fact that j. : m(A,C) — m(X, B) is monomorphism for i < m +mn — 1 can
be proved by the same way as above replacing f by homotopy h : I' x I — (X, B).
(Notice that i + 1 < m + n now.)

To prove the lemma choose arbitrary ¢ € A", Then f~!(q) is a union of convex
simplices of dimension < ¢ —n — 1. Denote m : I° — I*~! the projection given
by omitting the last coordinate. 7=*(w(f'(¢q))) is the union of convex simplices of
dimension <4 —n. On the set 7= (7 (f~'(q))) N f~'(A™*1) is f linear, hence

FaH(m(f (@) n Ay

is the union of simplices of dimension at most i—n < m+1 for i < m+n. Consequently,
there is p, € A™T! such that

o) N7 f ) = 0.

Since Im f meets only finite number of cells ¢! the set | Jm(f1(pa)) is compact and
disjoint from 7(f~1(q)). Hence there is continuous function ¢, ¢ = 0 on |J7(f~(pa))
and ¢ = 1 — ¢ on 7(f~!(q)) with required properties.

2. Suppose that A is obtained from C' by attaching cells €™ and B is obtained
by attaching cells egﬁ of dimensions > n + 1. Consider a map f : (I*,0I', J"™!) —
(X, B,xp). f meets only finite number of cells egﬁ . According to the case 1 we can
show that f is homotopic to

fi:(I',0I') — (X —e™, B —e™),
fo:(I',0I') — (X —e™ —e™ B —e™ — ™),

fr (11, 0I') — (A, C).

3. Suppose that A is obtained from C by attaching cells of dimensions > m + 1
and B is obtained by attaching cells of dimensions > n + 1. We may assume that
the dimensions of new cells in A is < m + n + 1 since higher dimensional ones have
no effect on 7; for i < m + n by cellular approximation theorem 12.5. Let Aj be a
CW-subcomplex of A obtained from C' by attaching cells of dimension < k, similarly
let Xj be a CW-subcomplex of X obtained from B by attaching cells of dimension
< k. Using the long exact sequences for triples (Ay, Ax_1,C) and (X, X_1, B), the
previous step, the induction and the 5-lemma for the diagram

7Ti+1<Ak7 Ak—l) - Wi(Ak—h C) — Wi(Ak, C) - Wi(Ak, Ak—l) - 7Ti—1(Ak—1, C)

T

i1 (X, Xpp—1) — m(Xp—1, B) — mi( Xy, B) — 1 ( Xy, Xj—1) — mi-1(Xg—1, B)

we can complete the proof also in this case.
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4. Consider a general case. Then according to Corrolary 12.6 there is a CW-pair
(A’,C) homotopy equivalent to (A,C) and a CW-pair (B’,C') homotopy equivalent
to (B,C) such that A’ — C' contains only cells of dimension > m + 1 and B’ — C
contains only cells of dimension > n + 1. Then X’ = A’ U B’ is homotopy equivalent
to X = AU B. According to the previous case j' : (A,C') — (X', B’) is an (m + n)-
equivalence, consequently j : (A, C) — (X, B) is an (m + n)-equivalence as well. [

Corollary. If a CW-pair (X, A) is r-connected and A is s-connected with r, s > 0,
then the homomorphism

mi(X, A) — m(X/A)
induced by the quotient map X — X/A is an isomorphism for ¢ < r + s and an
epimorhism for i < r + s+ 1.

Proof. Consider the diagram:
m(X, A) —> m(X UCA, CA) —> m(X UCA/CA) — my(X/A)

e

WZ(X U CA)

The first homomorphism is (r+s+1)-equivalence by the homotopy excision theorem for
(s+1)-connected pair (C'A, A) and r-connected pair (X, A). The vertical isomorphism
comes from the long exact sequence for the pair (X U CA,CA) and the remaining
isomorphisms are induced by a homotopy equivalence and the identity X UCA/CA =
X/A. O

13.2. Freudenthal suspension theorem. Let X be (n—1)-connected CW-complex,
n > 1. Then the suspension map m;(X) — m11(SX), f+— Sf is an isomorphism for
1 < 2n — 2 and an epimorphism for ¢ < 2n — 1.

Proof. The suspension SX is a union of two cones C'; X and C_X with intersection
X. Now, we get

mi(X) E i (C4 X, X) — i1 (SX, C_X) & mi1(SX)
where the first and the last isomorphisms come from the long exact sequences for pairs
(C+ X, X) and (SX,C_X), respectively, and the middle homomorphism comes from
homotopy excision theorem for n-connected pairs (C; X, X) and (C_X, X). What

remains is to show that the induced map on the level of homotopy groups is the same
as suspension map. O

13.3. Stable homotopy groups. The Freudenthal suspension enables us to define
stable homotopy groups. Given a based space X and an integer j choose n > j + 2.
Then S™X is at least (n—1)-connected. Applying the Freudenthal suspension theorem
fori=74+n<2n— 2 we get

Tojp2( 772X ) 22 7oy 5(S77°X) 22 oy (S7HIX) 2L
We define the i-th stable homotopy group of the space X as
(X)) = lim m,(S"X).

(2
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We will write 7§ for the i-th stable homotopy group of S°.

13.4. Computations. In this paragraph we compute n-th homotopy groups of (n—1)-
connected CW-complexes.

Theorem. 7,(S") = Z generated by the identity map for all n > 1. Moreover, this
isomorphism is given by the degree map 7,(S") — Z.

Proof. Consider the diagram

o

(1)~ 1 (52) — = y(S3) —> - -
7

where the horizontal homomorphisms are suspension homomorphisms and the vertical
isomorphism is known from Section 11 and determined by degree. The statement
follows now from the fact that deg f = deg S'f. U

Exercise. Prove that m,([[,c4 Xa) = [[oeca ™ (Xa)-
Example. m,(\/ c458) = @ cs Z for n > 2.

acAMa

Suppose first that A is finite. Then CW-complex \/

complex [] .. 4 S~ The pair
(11 52V s2)

acA a€A

wen Shis a subcomplex of CW-

a€A

is (2n — 1)-connected since [] ., S& is obtained from \/
dimension > 2n. Hence

Wn(\/ Sa) = 71'n(]‘_[ Sa) = H Tn(Sa) = @WN(SZ) = @Z'

acA acA acA acA acA

aca Sa by attaching cells of

If A is infinite, consider homomorphism ¢ : @ae AT (%) = T(Vaea Sa) induced
by inclusions 7,(S%) — V,ca Sa. ¢ is surjective since any f : S™ — \/ ., St has a
compact image and meets only ﬁnltely many S”’s. Similarly, if A : S" x I — \/aE A Sh
is homotopy between f and the constant map, it meets only finitely many S”’s, so

o1 ([f]) is zero.

Example. Suppose n > 2. If X is obtained from \/ " by attaching cells e’”rl via

acA a
base point preserving maps ¢g : S — \/ ., Sk, then
0 if 1 <
mi(X) = Lo
DBcam(SH)/N ifi=n.

where N is a subgroup of @, 7 (S%) generated by [ps].

Proof. The first equality is clear from the cellular approximation theorem. Consider
the long exact sequence for the pair (X, X™ =\/ ., S%)

Tt (X, X™) 2 Tn(X") = m(X) — 0.
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The pair (X, X™) is n-connected, X™ is (n — 1)-connected, hence
7Tn+1(Xa Xn) - 7Tn+1(X/Xn) = 7T"+1( \/ Sg+l) - @Z
BeB B€B
is an isomorphism. Hence
T(X) = m(X™)/Imd = m,,(\/ S2)/N
acA

since Im 0 is generated by [¢g]. O

13.5. Hurewitz homomorphism. The Hurewitz map h : m,(X, A, x9) — H, (X, A)
assigns to every element in m, (X, A, x9) represented by f : (D", 0D", sq) — (X, A, o)
the element f,(:) € H,(X, A) where v € H,(D",0D") = H, (A", 0A™) is the generator
induced by the identity map A™ — A"™. In the same way we can define the Hurewitz
map h : m,(X) — H,(X).

Proposition. The Hurewitz map is a homomorphism.

Proof. Let ¢ : D™ — D™V D" be the map collapsing equatorial D"~! into a point,
q1,q2 : D"V D™ — D" quotient maps and i1,i5 : D™ — D™V D" inclusions. We have
the diagram

H,(D",8D™) — H,(D" v D", dD" v dD") —2

H,(X,A)
i1*+i2*T lqu@%*
H,(D™,0D™) & H,(D",0D™)
Since i1, + 19, is an inverse to q1, ® ¢a,, we get
hIf1+1g]) = (f +9)(e) = (f V 9)xci(t)
= ((f \% g)*(zl* + 22*)) ((Cﬂ* S Q2*)C*)(L) = (.f* + g*)(L ¥ L)
= fu(t) + g.(¢) = R([f]) + h([g])-

O

We leave the reader to prove the following properties of the Hurewitz homomorphism
directly from the definition:

Proposition. The Hurewitz homomorphism is natural, i. e. the diagram

commutes for any f : (X, A) — (Y, B).
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The Hurewitz homomorphisms make commutative also the following diagram with
long exact sequences of a pair (X, A):

Tn(A) — 1, (X) — 7 (X, A) —2= 1,1 (A)

lhA %hx lf%x,A) lhA

X) —= Ho(X, A) —2~ H,_1(A)

13.6. Hurewitz theorem. The previous calculations of m,(\/ ., S4) enable us to
compare homotopy and homology groups of (n — 1)-connected CW-complexes via the

Hurewitz homomorphism.

Theorem (Absolute version of the Hurewitz theorem). Let n > 2. If X is a (n — 1)-
connected, then H;(X) =0 for i <n and h : 7,(X) — H,(X) is an isomorphism.

For the case n = 1 see Theorem 11.5.

Proof. We will carry out the proof only for CW-complexes X. For general method
which enables us to enlarge the result to all spaces see [Ha], Proposition 4.21.

First realize that h : 7,(S") — H,(S™) is an isomorphism. It follows from the
characterization of 7,(S™) by degree in Theorem 13.4.

According to Corollary 12.6 every CW-complex X is homotopy equivalent to a CW-
complex obtained by attaching cells of dimension > n to a point. Moreover cells of
dimension > n + 2 do not play any role in computing m; and H; for ¢ < n. Hence we

may suppose that
— n n+1l __ n+1
X=\Siu, e =X
acA peB
where @g are base point preserving maps. Then Hi(X) =0 fori<n.
Using the long exact sequences for the pair (X, X™) and the Hurewitz homomor-
phisms between them we get

Tar (X, X™) =25 71, (X)) —— 1 (X) —— 0

| ok
o (X, X7) % Ho(X") — Hy(X) —0
Since mp41(X, X™) is isomorphic to m,41(X/X") = @Wn+1(Sg+l) and m,(X") =
P 7.(S?), the first and the second Hurewitz homomorphisms are isomorphisms. Ac-
cording to the 5-lemma so is h : m,(X) — H,(X). O

Let [v] € m (A, x0), [f] € mn(X, A, 20). Then v - f and f are homotopic (although
the homotopy does not keep the base point x( fixed), and consequently,

(v f):() = fu(v)
for v € H,(D",0D™). Hence h([y] - [f]) = h([f])
Let 7/ (X, A, zo) be the factor of 7, (X, A, zo) by the normal subgroup generated by
(v - [f] = [f]- Let ' : 7wl (X, A, x9) — H,(X,A) be the map induced by the Hurewitz
homomorphism h.
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Theorem (Relative version of the Hurewitz theorem). Let n > 2. If a pair (X,A)
of the path connected spaces is (n — 1)-connected, then H;(X, A) = 0 for i < n and
B owl (X, A ) — Hp(X, A) is an isomorphism.

Proof. We will prove the theorem for a pair (X, A) of CW-complexes where A is
supposed to be simply connected. In this case 7/, (X, A, x¢) = m,(X, A, x9) and b’ = h.
For general proof see [Ha|, Theorem 4.37, pages 371-373.

Since (X, A) is (n — 1)-connected and A is 1-connected, Corollary 13.1 implies that
the quotient map m, (X, A) — m,(X/A) is an isomorhism and X /A is (n—1)-connected.
The absolute version of the Hurewitz theorem and the commutativity of the diagram

(X, A) — m,(X/A)

‘| =|n

o

H, (X, A) —= H,(X/A)
imply immediately the required statement. 0

13.7. Homology version of Whitehead theorem. Since computations in homol-
ogy are much easier that in homotopy, the following homology version of the Whitehead
theorem gives a method how to prove that two spaces are homotopy equivalent.

Theorem (Whitehead theorem). A map f : X — Y between two simply connected
CW-complexes is homotopy equivalence if f, : H,(X) — H,(Y) is an isomorphism for
all n.

Proof. Replacing Y by the mapping cylinder M; we can consider f to be an inclusion
X — Y. Since X and Y are simply connected, we have 7 (Y, X) = 0. Using the
relative version of the Hurewitz theorem and induction we get successively that

(Y, X) = Ho(Y, X) = 0.

Hence f, : m,(X) — m,(Y) is an isomorphism for all n. Applying now the Whitehead
theorem 12.3 we get that f is a homotopy equivalence. 0

14. SHORT OVERVIEW OF SOME FURTHER METHODS IN HOMOTOPY THEORY

We start this sections with two examples of computations of homotopy groups.
These computations demonstrate the fact that the possibilities of methods we have
learnt so far are very restricted. Hence we outline some further (still very classical)
methods which enable us to prove and compute more.

14.1. Homotopy groups of Stiefel manifolds. Let n > 3 and n > k > 1. The
Stiefel manifold V,, is (n — k — 1)-connected and

Z  for k=1,
Tn-k(Var) = Z for k#1 and n — k even,
Zo for k# 1 and n — k odd.
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Proof. The statement about connectivity follows from the long exact sequence for the
fibration
Vn—l,k—l - Vn,k - Vn,l = Sn_l
by induction.
As for the second statement, it is sufficient to prove that

Tn—2 (Vn,2) = {

and to use the induction in the long exact sequence for the fibration above.
We have the fibration

_ P —
S 2= Vn—l,l - Vn,z - Vn,l =5" !

which corresponds to the tangent vector bundle of the sphere S™~!. If n is even,
there is a nonzero vector field on S® ! and hence a map s : S"~! — .2 such that
ps = idgn-1. Such a map is called a section and its existence ensures that the map
Pi : Tno1(Vi2) — m,—1(S™ 1) is an epimorphism. Hence we get the following part of
the long exact sequence

Z  for n even,
Zo for n odd

Tt (Via) B 1 1(S™™) S 1 1(S™72) S 11 (Vi) — 0.

Consequently, m,_2(V,,2) = Z.

The case n odd is more complicated. We need the fact that the Euler class of tangent
bundle of S"7! is twice a generator « € H"*(S"!). We obtain the following part of
the Gysin exact sequence for cohomology groups with integer coefficients

0 — H" (Vo) = HO(S"Y) 25 H™1(S"1) = H"Y(V,5) — 0.
Next from the Hurewitz theorem and the universal coefficient theorem we get that
0= H""*V,2;Z) = Hom(H, 5(V,2),Z)
Zy = H" 1 (V,5) = Hom(H,_1(Vn2),Z) ® Ext(H, _2(Vns),Z)

which implies that H,,_5(V}, 2; Z) = Zy. The Hurewitz theorem now yields 7,1 (V},2)
Lo,

14.2. Hopf fibration. Consider the Hopf fibration
gl _, g3, g2
defined in 10.5. From the long exact sequence for this fibration we get
mi(S?) =2 m;(S?) fori > 2.

IR

Particularly,
3 (S2> =7
epi

with [] as a generator. By the Freudenthal theorem Z 2 m3(S52%) <5 1,(S%) = 7.
The methods we have learnt so far give us only that m,(S®) & 7§ is a factor of Z with
the generator Xn.

14.3. Exercise. Try to compute as much as possible from the long exact sequences
for the other two Hopf fibrations in 10.5.
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14.4. Composition methods were developed in works of I. James and the Japanese
school of H. Toda in the 1950-ies and are described in the monograph [To]. They enable
us to find maps which determine the generators of homotopy groups m,,x(S™) for k
not very big (approximately k& < 20). For these purposes various types of compositions
and products are used.

Having two maps f : S* — S™ and ¢ : S® — S™ their composition gf : S* — S™
determines an element [gf] € m;(S™) which depends only on [f] and [g]. If the target
of f is different from the source of g, we can use suitable multiple suspensions to be
able to make compositions. For instance, if f : S® — S% and g : ST — 5% we can make
composition g o (X*f) : S — S®. In this way we get bilinear map 75 X 7§ — 75,

More complicated tool is the Toda bracket. Consider three maps

wthxsyhy

such that gf ~ 0 and hg ~ 0. Then ¢gf can be extended to a map F : CW — Y and
hg can be extended to amap G : CX — Z. Define (f,g,h) : SW = C,WUC_W — Z
as GoCfon C W and ho F on C_W. (Draw a picture.) This definition depends on
homotopies gf ~ 0 and hg ~ 0. So it defines a map from 7} x 77 X 7} to cosets of
7Tf+j+k—1-

The Whitehead product | , | : mi(X) X mj(X) — mipj_1(X) is defined as follows:
f:I'— X and g : I’ — X define the map f x g : I'¥7 = I' x I’ — X and we put
[f, 9] = f x g/oT"*.

Having a map f : S ' — S" n > 2, we can construct a CW-complex C; =
S™ Uy e*™ with just one cell in the dimensions 0, n and 2n. Denote the generators of
H"(C};Z) and H**(C};Z) by « and 3, respectively. Then the Hopf invariant of f is
the number H(f) such that

o = H(f)B.

The Hopf invariant determines a homomorphism H : my,_1(S™) — Z.
For the Hopf map 7 : S% — S? we have C,, & CP?, consequently

H(n)=1.

For id : S? — S? we can make the Whitehead product [id,id] : S* — S? and compute
(see [Ha], page 474) that
H([id,id]) = 42.

Since 73(5?%) = Z, we get [id,id] = £2n. One can show (see [Ha], page 474 and
Corollary 4J.4) that the kernel of the suspension X : 73(S?) — 74(S?) is generated
just by [id,id]. By the Freudental theorem ¥ is an epimorphism which implies that

7T4(53) = Zg.
Consequently, 7§ = Z,.

Remark. J. F. Adams proved in [A1] that the only maps with the odd Hopf invariant
are the maps coming from the Hopf fibrations S* — S2, 87 — S* and S — S8.
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Another important tool for composition methods is the EHP exact sequence for the
homotopy groups of S, S"*! and S*":

7T3n—2(5n) ﬂ 7T3n—1(Sn+1) i 7T3n—2(52n> i 7Tsn—3(5m) ..

o (S D (5 (87 Doy (S —

Here E stands for suspension X, H refers to a generalized Hopf invariant and P is
defined with connection to the Whitehead product. See [Wh], Chapter XII or [Hal,
page 474.

For n = 2 the EHP exact sequence yields

m1(5?) 5 m5(8%) I (8 D m3(5%) B 1y (S3) — 0.

Since m4(S?) & Zy, 73(5?) 2 Z and m4(S*) & Z, we obtain that P is a multiplication
by 2 and H = 0. From 14.2 we have m4(5?) = 74(S%) & Z, with generator n(Xn). So
75(S3) is either Z, or 0. By a different methods one can show that

71'5(53) = ZQ
with the generator (Xn)(3%n).

14.5. Cohomological methods have been playing an important role in homotopy
theory since they were introduced in the 1950-ies.

By the methods used in proofs in Section 12 we can construct so called FEilenberg-
McLane spaces K(G,n) for any n > 1 and any group G, Abelian if n > 2. These spaces
are up to homotopy equivalence uniquely determined by their homotopy groups

(K (Gon)) = {0 for i # n,

G fori=n.
Moreover, these spaces provide the following homotopy description of singular coho-
mology groups

(X, %), (K(G,n),%)] = H"(X;G).
To each [f] € [(X, %), (K(G,n), x)] we assign
['() € H'(X;G)
where ¢ is the generator of
H"(K(G,n);G) = Hom(H,(K(G,n);Z),G) = Hom(G, G)

corresponding to idg.

A system of homomorphisms 0x : H"(X;G;) — H™(X;G) which is natural, i. e.
ffOy =0xf* forall f: X — Y, is called a cohomology operation. A system of coho-
mology operations 6; : H""/ — H™" is called stable if it commutes with suspensions
29] - 9j+12'

The most important stable cohomology operations for singular cohomology are the
Steenrod squares and the Steenrod powers:

Sq' H"(X;Zs) — H"(X; Zo)
P H"(X;Z,) — H20=1(X:7,) for p # 2 a prime.
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For their definition and properties see [SE] or [Ha|, Section 4.L. These operations can
be also interpreted as homotopy classes of maps between Eilenber-McLane spaces, for
instance

Sq': K(Zg,n) — K(Zy,n +1).

Example. We show how the Steenrod squares can be used to prove that some maps
are not homotopic to a trivial one. Consider the Hopf map 7 : S* — S%. C, = CP? and
H?*(CP?* Zy) and H*(CP*; Zy) have generators o and a?. Since one of the properties
of the Steenrod squares is

Sq"r = 2? for x € H"(X;7Zy),

we get Sq?a = a? # 0. We show that [Xn] € m4(S?) is nontrivial.
One can show that
Cy, = ¥C, = ©CP*.

Then Ya and Yo? are generators in H3(XCP?; Zy) and H®(XCP?; Zs), respectively.
Now

S¢*(La) = (S¢a) = Xa® #£ 0.
If 31 were homotopic to a constant map, we would have Cs,, = S$3 v 8%, and conse-
quently, S¢*(Xa) = 0.

Example. We outline how to compute 7,.1(S™) using cohomological methods. A
generator o € H™(S™) induces up to homotopy a map S™ = K(Z,n). Further,

H"(K(Z,n);Z) = Z with a generator «, H"™(K(Z,n); G) = 0 and H"™(K(Z,n); Z,)
~ 7, with the generator Sq¢’pt where p : H"(X;Z) — H"(X;Zy) is induced by
reduction mod 2. Sq¢?pt induces up to homotopy a map
K(Z,n) 222 K (Za,n +2).
Consider the fibration

where PX is the space of all maps p: I — X, p(1) = o and QX is the space of all
maps w : I — X, w(0) = w(1) = zg. (These maps are called loops in X.) One can
show that QK (Zy,n + 2) has a homotopy type of K(Zs,n + 1). The pullback of the
fibration above by the map Sq¢?pt : K(Z,n) — K(Za,n + 2) is the fibration

K(Zy,n+1) - E L K(Z,n).
Since S¢?pa = 0 in H""2(S™;Z), one can show that the map a : S® — K(Z,n) can

be lifted to a map f : 5" — E.
]
p

S o K(Z,TL)

One can compute f* in cohomology (using the long Serre exact sequence) and then
also f,. in homology. A modified version of the homology Whitehead theorem implies
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that f is an (n + 2)-equivalence. Hence f, : m,41(S™) — m,41(E) is an isomorphism.
Using the long exact sequence for the fibration (E, K(Z,n),p) we get

Tn41(S") = M1 (E) — Zs.
For more details see [MT].

The Steenrod operations form a beginning for the second course in algebraic topology
which should contain spectral sequences, other homology and cohomology theories,
spectra. We refer the reader to [A2], [Ko|, [MT], [Sw]|, [Wh] or to the last sections of
[Ha].
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A-complex, 10
n-simplex, 10
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augmented cochain complex, 27

base space, 42
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cap product, 48
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cell complex, 5

cell subcomplex, 6

cellular map, 7

chain complex, 9

chain homomorphism, 9
chain homotopic, 10

chain homotopy, 10

closed manifold, 46
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cochain homotopy, 25
cocycle, 24

cofibration, 4

cofunctor, 29
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cohomology operation, 79
cone, 3

connecting homomorphism, 9, 24
contractible, 2
contravariant functor, 29
covering space, 61

cross product, 38

cup product, 36
CW-complex, 5, 6

cycle, 9

deformation retract, 2
deformation retraction, 2
derived cofunctor, 34
derived functor, 33
dgree of a map, 18
direct set, 49

disjoint union, 3

Eilenberg-McLane space, 79
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Euler characteristic, 22
Euler class, 45

exact cofunctor, 30
exact functor, 30

exact sequence, 8

Ext, 34

external product, 38

factorspace, 3

fibration, 58

fibre bundle, 42

finite simplicial complex, 10
free product of groups, 62
free resolution, 32

functor, 29

fundamental class, 47
fundamental group, 60

H-space, 40

HEP, 4

hereditary ring, 40

homology group of a chain complex, 9
homotopic, 2

homotopy, 2

homotopy equivalent, 2
homotopy extension property, 4
homotopy group, 55

homotopy lifting property, 57
homotopy rel, 56

homotopy type, 2

Hurewitz homomorphism, 74

join, 4

Lefschetz number, 22
left exact functor, 31
left group action, 61
local degree, 19

local orientation, 46
local trivialization, 42

manifold, 46
mapping cone, 3
Mayer-Vietoris exact sequence, 16, 28

n-connected CW model, 68
n-connected pair, 65
n-connected space, 65
n-equivalence, 65

orbit space, 61
orientation of manifold, 46



orientation of vector bundle, 42
oriented manifold, 46

pair of topological spaces, 2
projective module, 31

projective resolution, 32
properly discontinuous action, 61

reduced cohomology groups, 27
reduced homology groups, 15
reduced suspension, 4

regular bilinear form, 52
relative homotopy group, 55
retract, 2

retraction, 2

right exact functor, 31

short exact sequence, 8
simplicial complex, 10
simplicial homology, 11
simply connected space, 61
singular n-simplex, 12
singular cochain complex, 25
singular homology groups, 12
smash product, 4

stable cohomology operation, 79
stable homotopy group, 72
standard n-simplex, 11
Stiefel-Whitney class, 45
subbundle, 42

suspension, 3

tensor product, 29

tensor product of graded rings, 38
Toda bracket, 78

Tor, 33

total space, 42

triple, 16

vector bundle, 42

weak homotopy equivalence, 66
wedge, 4
Whitehead product, 78
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