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MATHS 750 lecture notes

1 Some algebraic preliminaries

Definition 1.1 A group is a set G together with a binary operation (thought of as
multiplication, so we write ab for the result of applying this operation to (a, b)) such
that the following conditions are satisfied:

• ∀a, b, c ∈ G, (ab)c = a(bc);

• ∃1 ∈ G such that ∀a ∈ G, a1 = 1a = a (1 is called the identity);

• ∀a ∈ G,∃a′ ∈ G such that aa′ = a′a = 1 (a′ is called an inverse of a).

If in addition

• ∀a, b ∈ G, ab = ba

then the groups is called abelian.

Of course every group contains at least one element. One can check that the
inverse is unique.

Often the binary operation is thought of as addition, in which case it is more
common to write a + b, and the identity is called 0 and the inverse −a. This is
especially the case when the group is abelian.

Definition 1.2 Given two groups G and H, a homomorphism from G to H is
a function θ : G → H such that ∀a, b ∈ G we have θ(ab) = θ(a)θ(b). Given a
homomorphism θ : G→ H, the sets Ker(θ) and Im(θ) are defined by:

Ker(θ) = {a ∈ G : θ(a) = 1}
Im(θ) = {θ(a) ∈ H : a ∈ G}.

Note that if θ is a homomorphism then θ(a−1) = θ(a)−1.

Example 1.3 The trivial group is {1} with the only possible operation. The trivial
group is abelian.

Example 1.4 The next simplest group is Z2 = {0, 1}.

This group is also abelian. Addition is defined by 1+1=0, all other sums being
already specified by the identity axiom. Note then that −1 = 1.

We can generalise the example above to get a group with n elements for any
positive integer n.
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Example 1.5 The abelian group Zn consists of {0, 1, . . . , n− 1}, with addition de-
fined using ordinary addition modulo n.

Example 1.6 The set of integers, Z, is an abelian group under addition, as are the
sets of rational numbers and real numbers.

Example 1.7 The group of permutations of {1, 2, . . . , n} is the set of all bijections
of the set {1, 2, . . . , n}.

This group has n! elements. When n > 2 this group is not abelian; for example if a
cycles 1 to 2, 2 to 3 and 3 to 1 and b interchanges 1 and 2 and leaves 3 fixed then
ab 6= ba as ab(1) = a(2) = 3 whereas ba(1) = b(2) = 1.

Example 1.8 Other easily visualised groups are the groups of symmetries of geo-
metric figures in which the elements of the group are rigid motions which take the
figure onto itself. For example rotations of an equilateral triangle through 120o and
reflections of the triangle about an angle bisector (this group is the permutation group
when n = 3).

There are many infinite groups, both abelian and non-abelian.

Example 1.9 If θ : G→ H is defined by θ(a) = 1 for each a then θ is a homomor-
phism.

There is no other homomorphism from Zn to Z.

Example 1.10 The function θ : Z → Zn defined by θ(m) = the remainder obtained
when m is divided by n, is a homomorphism.

Example 1.11 Let G be the positive reals with ordinary multiplication as the oper-
ation and H the reals with ordinary addition as the operation. Then the logarithm
functions log : G→ H are homomorphisms.

Theorem 1.12 A homomorphism θ : Z → G, for any group G, is determined by
θ(1). Indeed, if n is any positive integer then θ(n) = (θ(1))n or nθ(1) depending on
whether the operation is multiplication or addition.

This theorem is a bit like the theorem that allows us to specify a linear transfor-
mation of vector spaces by merely specifying what happens to elements of a basis.

Definition 1.13 A homomorphism θ : G → H is called a monomorphism (or a
one-to-one homomorphism) provided that θ(a) = θ(b) =⇒ a = b and an epimor-
phism (or an onto homomorphism) provided that ∀b ∈ H, ∃a ∈ G such that θ(a) = b.
A homomorphism which is both a monomorphism and an epimorphism is called an
isomorphism. If there is an isomorphism θ : G → H then the two groups G and H
are called isomorphic, denoted G ≈ H.

Theorem 1.14 A homomorphism θ : G → H is a monomorphism if and only if
Ker(θ) contains only the identity.
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Definition 1.15 Given two groups G and H, their direct sum is the group G⊕H
defined as follows:

G⊕H = {(a, b) : a ∈ G, b ∈ H}; (a, b)(c, d) = (ac, bd).

Although they both have 4 elements and are abelian, the two groups Z4 and Z2⊕Z2

are not isomorphic. In fact Z2 ⊕ Z2 is isomorphic to the group G = {0, a, b, c} with
a + a = b + b = c + c = 0 and a + b = c, b + c = a, c + a = b, so has no element of
order 4 (ie no element d with d+ d+ d+ d = 0 but d, d+ d, d+ d+ d 6= 0) whereas
Z4 has two such elements, and it may be checked that any isomorphism between
groups takes an element of order n to an element of the same order. In the group
G in the previous sentence the elements a, b and c all have order 2.

Theorem 1.16 If the composition of two homomorphisms θ : G→ H and ϕ : H →
K is an isomorphism then θ is a monomorphism and ϕ is an epimorphism.

Definition 1.17 If we have a sequence of groups and homomorphisms linking them:

· · · → Gn+1
θn+1→ Gn

θn→ Gn−1 → · · ·

then we say that the sequence is exact at Gn provided that Im(θn+1) = Ker(θn). We
say that the sequence is exact provided that it is exact at each group.

The following two theorems, and particularly the corollary, will be used over and
over in the homology lectures.

Theorem 1.18 If we have a sequence of groups and homomorphisms linking them
which contains the following part which is exact at G:

1 → G
θ→ H

then θ is a monomorphism.

Theorem 1.19 If we have a sequence of groups and homomorphisms linking them
which contains the following part which is exact at H:

G
θ→ H → 1

then θ is an epimorphism.

Corollary 1.20 If we have a sequence of groups and homomorphisms linking them
which contains the following part which is exact at G and H:

1 → G
θ→ H → 1

then θ is an isomorphism.

Less can be said when there are 3 intermediate groups. We might hope that if the
sequence

1 → G
θ→ H

ϕ→ K → 1

is exact then H ≈ G⊕K, but this need not be so.
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Example 1.21 Define the exact sequence

0 → Z2
θ→ Z4

ϕ→ Z2 → 0

by θ(1) = 2 and ϕ(1) = 1. As noted above, Z4 6≈ Z2 ⊕ Z2.

Frequently we will be considering diagrams of groups and homomorphisms, for
example maybe something like:

G1

?

θ1

H1

-ϕ G2

?

θ2

H2 .-ψ

Definition 1.22 The diagram is said to commute if ψθ1 = θ2ϕ. A more general
diagram commutes provided that for any pair of groups in the diagram, if there are
two or more paths of homomorphisms leading from the first group to the second then
the compositions of the homomorphisms along such paths are the same.

2 The Fundamental Group

Definition 2.1 Let X be a topological space and a ∈ X. A loop in X based at a is
a continuous function σ : [0, 1] → X such that σ(0) = σ(1) = a. The product of two
loops σ and τ in X based at a is the loop σ ∗ τ defined by σ ∗ τ(s) = σ(2s) if s ≤ 1/2
and σ ∗ τ(s) = τ(2s− 1) if s ≥ 1/2. The reverse of a loop σ is the loop σ̄ defined by
σ̄(s) = σ(1− s). Declare two loops σ and τ to be homotopic, denoted σ ∼ τ if there
exists a homotopy H : [0, 1] × [0, 1] → X such that H(s, 0) = σ(s), H(s, 1) = τ(s)
and H(0, t) = H(1, t) = a for each s, t ∈ [0, 1]. Denote by ä the constant loop based
at a.

Lemma 2.2

1. Let σ1, σ2, τ1, τ2 : [0, 1] → X be four loops based at a such that σ1 ∼ σ2 and
τ1 ∼ τ2. Then σ1 ∗ τ1 ∼ σ2 ∗ τ2.

2. Let σ1, σ2, σ3 : [0, 1] → X be three loops based at a. Then (σ1 ∗ σ2) ∗ σ3 ∼
σ1 ∗ (σ2 ∗ σ3).

3. Let σ : [0, 1] → X be a loop based at a. Then σ ∗ ä ∼ ä ∗ σ ∼ σ.

4. Let σ : [0, 1] → X be a loop based at a. Then σ ∗ σ̄ ∼ ä.

Definition 2.3 The fundamental group of X at a is the set of ∼-equivalence classes
of loops in X based at a together with the group operation determined by the product
∗. This fundamental group is denoted by π(X, a), or sometimes π1(X, a).

By Lemma 2.2 the group operation is well-defined and the axioms for a group really
are satisfied.

Example 2.4 Suppose X consists of just a single point. Then π(X, a) is trivial.
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Example 2.5 π(R, 0) is trivial.

In fact these two examples can be further generalised as follows.

Definition 2.6 A space X is contractible provided that there is a map C : X ×
[0, 1] → X and a point b ∈ X such that C(x, 0) = x and C(x, 1) = b for each x ∈ X.
The function C is called a contraction.

Proposition 2.7 If X is contractible and a ∈ X then π(X, a) is trivial.

Proof. The obvious thing to do is to apply the contraction to any loop based
at a and in this way shrink the loop down to a. The problem is that during the
contraction a may get moved about so that a shrinking loop may not always be a
loop based at a.

Suppose that C is a contraction as in the definition. Define a new contraction
c : X × [0, 1] → X by setting c(x, t) = C(x, 2t) if t ≤ 1/2 and c(x, t) = b if t ≥ 1/2.
The difference is that c contracts X more quickly then sends all of X to b during
the second half of the contraction. We don’t really need to do this but it makes life
a bit simpler. We now break the square [0, 1] × [0, 1] into 5 closed pieces on each
of which we define part of a function H : [0, 1] × [0, 1] → X so that H exhibits a
homotopy of loops based at a from a given loop to the constant loop.

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

I

II

III

IV V

Suppose that σ : [0, 1] → X is a loop based at a. We must exhibit a homotopy of
loops which is based at a and which begins at σ and ends at the constant loop ä.
Set

H(s, t) =


c(a, 2s) : 0 ≤ s ≤ t ≤ 1

2 ie in region I
c(σ( s−t

1−2t), 2t) : 0 ≤ t ≤ s ≤ 1− t ie in region II
c(a, 2(1− s)) : 1

2 ≤ 1− t ≤ s ≤ 1 ie in region III
c(a, 2s(2− 2t)) : s ≤ 1

2 and t ≥ 1
2 ie in region IV

c(a, 2(1− s)(2− 2t)) : s ≥ 1
2 and t ≥ 1

2 ie in region V

Note that there is a problem with the definition in region II when s = t = 1
2 .

However the function defined in this part is continuous at this point provided that
we set it equal to b because of the fact that c sends all of the region t ≥ 1

2 to b.
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The first thing we must check is that H is well-defined, for on each of the lines
which form part of the boundary of two regions we have two possibly conflicting
ways of defining H (and at (1

2 ,
1
2) we have five!). There are five boundary segments

and we will look at them individually;

• when s = t ≤ 1
2 we have c(a, 2s) = c(a, 2t) = c(σ( s−t

1−2t), 2t);

• when s+ t = 1 and t ≤ 1
2 we have c(a, 2(1− s) = c(a, 2t) = c(σ( s−t

1−2t), 2t);

• when t = 1
2 and s ≤ 1

2 we have c(a, 2s) = c(a, 2s(2− 2t));

• when t = 1
2 and s ≥ 1

2 we have c(a, 2(1− s)) = c(a, 2(1− s)(2− 2t));

• when s = 1
2 and t ≥ 1

2 we have c(a, 2s(2− 2t)) = c(a, 2(1− s)(2− 2t)).

It is easy to see that H is continuous in each of the separate regions. Thus by a
standard theorem from point set topology H is continuous on [0, 1]× [0, 1].

Now H(s, 0) = c(σ(s), 0) = σ(s), so that H0 = σ; H(s, 1) = c(a, 0) = a, so that
H1 = ä; H(0, t) = H(1, t) = c(a, 0) = a, so that each Ht really is a loop based at a.

Question 1 (Reasonable Question!) Are there any spaces which have non-trivial
fundamental group?

Proposition 2.8 Let X be a topological space, a0, a1 ∈ X and ρ : [0, 1] → X be
continuous so that ρ(i) = ai for i = 0, 1. Then ρ induces an isomorphism ρ̃ :
π(X, a0) → π(X, a1).

Proof. Given a loop σ : [0, 1] → X based at a0 we construct a loop ρ̄ ∗ σ ∗ ρ based
at a1 much as in the definition of composition of two loops.

Definition 2.9 If f : X → Y is a map with f(a) = b then there is a natural
homomorphism f∗ : π(X, a) → π(Y, b) defined by setting f∗([σ]) = [fσ]. Here by [σ]
we mean the ∼-equivalence class of the loop σ.

Proposition 2.10

1. If f : X → X is the identity then so is f∗ : π(X, a) → π(X, a).

2. If f : X → Y and g : Y → Z are such that f(a) = b and g(b) = c then
(gf)∗ = g∗f∗ : π(X, a) → π(Z, c).

3. If f, g : (X, a) → (Y, b) are homotopic by a homotopy preserving the base point
then f∗ = g∗ : π(X, a) → π(Y, b).

3 Covering Projections

Definition 3.1 . A covering projection is a continuous function p : E → X such
that for each x ∈ X there is an open subset V of X containing x such that p−1(V )
is a disjoint union of open subsets of E each of which is mapped homeomorphically
by p onto V . The set V is said to be evenly covered.
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Example 3.2 Any homeomorphism is a covering projection.

Example 3.3 Consider S1 as the set of complex numbers of unit modulus and define
e : R → S1 by e(t) = e2πit. Then e is a covering projection.

We may take the two open subsets V+ = S1−{−1} and V− = S1−{1} of S1 so that
p−1(V±) is a disjoint union of open intervals each of which is mapped homeomor-
phically onto V± by e.

Example 3.4 Let Sn be the unit sphere in Rn+1, ie Sn = {(x0, . . . , xn) ∈ Rn :
x2

0 + · · ·+x2
n = 1}, and define ∼ on Sn by x ∼ y if and only if x = ±y. The quotient

space is called projective n-space and denoted Pn and the quotient map Sn → Pn is
a covering projection.

Definition 3.5 . Suppose that p : E → X is a covering projection and f : Y → X
is a map. Then a map f̂ : Y → E is called a lifting of f over p provided that pf̂ = f .

Theorem 3.6 (Unique Lifting Theorem) Let p : E → X be a covering projec-
tion and f : Y → X a map. Suppose that Y is connected and that e0 ∈ E, x0 ∈ X
and y0 ∈ Y satisfy p(e0) = f(y0) = x0. Then there is at most one map g : Y → E
which lifts f over p such that g(y0) = e0.

Proof. Suppose that we have two liftings g1, g2 : Y → E of f such that g1(y0) =
g2(y0) = e0. Let A = {y ∈ Y / g1(y) = g2(y)}. Then A is both open and closed
in Y because p : E → X is a covering projection. Now A 6= ∅ so, because Y is
connected, it follows that A = Y .

Theorem 3.7 (Covering Homotopy Theorem) Let p : E → X be a covering
projection and suppose that e0 ∈ E and x0 ∈ X satisfy p(e0) = x0. Let Y be any
topological space and y0 ∈ Y and suppose that f : Y → X satisfies f(y0) = x0 and
has a lifting f̂ satisfying f̂(y0) = e0. Let F : Y × [a, b] → X be a map so that
F (y, a) = f(y) for each y ∈ Y . Then there is a lifting F̂ : Y × [a, b] → E of F with
F̂ (y, a) = f̂(y) for each y ∈ Y . Furthermore if F (y0, t) = x0 for each t ∈ [a, b] then
F̂ (y0, t) = e0 for each t.

Proof. Case 1 Suppose that X itself is evenly covered. For each y ∈ Y , let Ey

be the sheet containing f̂(y): thus p|Ey : Ey → X is a homeomorphism. Define
F̂ (y, t) = (p|Ey)−1F (y, t). The function F̂ is continuous, for if y ∈ Y then f̂−1(Ey) is
a neighbourhood of y and if z ∈ f̂−1(Ey) then Ez = Ey so throughout f̂−1(Ey)×[a, b],
we have F̂ = (p|Ey)−1F , a composition of continuous functions. Continuity of F̂
now follows.

Case 2 General case. For each y ∈ Y , there is an open neighbourhood Ny of
y in Y and a partition 〈a = t0 < t1 < . . . < tn = b〉 (which may depend on y)
such that F (Ny × [ti−1, ti]) lies in an evenly covered open subset of X. By the first
case, F |Ny × [t0, t1] lifts to F̂ . Inductively assume that F |Ny × [t0, ti−1] lifts to F̂ .
Again by the first case we can lift F |Ny × [t0, ti] to F̂ . Thus F lifts over Ny × [a, b].
Furthermore if y0 ∈ Ny and F (y0, t) = x0 for each t then F̂ (y0, t) = e0 for each t.

Now it is claimed that if y, y′ ∈ Y then the two liftings we have just found on
Ny × [a, b] and N ′

y × [a, b] agree on their common domain. Indeed suppose that
z ∈ Ny ∩N ′

y. Then we have two liftings of F |{z}× [a, b] which agree at (z, a). Since
{z}× [a, b] is connected, these two liftings agree by Theorem 3.6. Thus the function
F̂ is continuous.
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Corollary 3.8 (Path Lifting Theorem) Let p : E → X be a covering projection
and suppose that e0 ∈ E and x0 ∈ X satisfy p(e0) = x0. Let σ : [0, 1] → X be a
path with σ(0) = x0. Then there is a unique path τ : [0, 1] → E with τ(0) = e0 and
pτ = σ.

Theorem 3.9 (Map Lifting Criterion) Let p : E → X be a covering projection,
Y a connected space which is also locally path connected, and suppose that e0 ∈ E,
x0 ∈ X and y0 ∈ Y satisfy p(e0) = x0. Let f : Y → X be continuous with
f(y0) = x0. Then there is a lifting f̂ : Y → E with f̂(y0) = e0 if and only if
f∗π(Y, y0) ⊂ p∗π(E, e0).

Proof. ⇒: relatively straightforward.
⇐: Given y ∈ Y , let σ : [0, 1] → Y be a path from y0 to y. Then fσ is a path in X
from x0 to f(y). By the path lifting theorem we can lift fσ to a path f̂σ : [0, 1] → E

from e0 to some point f̂σ(1): declare f̂(y) = f̂σ(1).
We must show that f(y) is well-defined. Suppose that τ : [0, 1] → Y is another

path from y0 to y. Then σ ∗ τ̄ is a loop in Y based at y0, so by the homotopy group
assumption there is a loop in E based at e0 which is mapped by p onto a loop which
is homotopic to the loop f(σ ∗ τ̄) = (fσ) ∗ (fτ). Thus if we lift the path (fσ) ∗ (fτ)
to a path in E starting at e0 the result is a loop in E. Thus if fσ and fτ are
each lifted to paths in E starting at e0 they must have the same terminal point, ie
f̂σ(1) = f̂ τ(1).

Finally we must show that f̂ is continuous. Suppose that y ∈ Y , let f(y) = e
and let N be any open neighbourhood of e. Choose an open set U ⊂ N containing e
so that p takes U homeomorphically onto an open set V ⊂ X. Since V is open and f
is continuous, it follows that f−1(V ) is open. It is also clear that y ∈ f−1(V ). Thus
by local path connectedness of Y there is a path connected open neighbourhood W
of y such that W ⊂ f−1(V ). It is claimed that W is an open set containing y which
is mapped by f̂ into N . Suppose that η ∈W : we will show that f̂(η) ∈ N . Choose
a path in Y from y0 to y; by the path lifting theorem this lifts to a path in E from
e0 to f̂(y). Now use path connectedness of W to choose a path in W from y to
η; this path is carried by f to a path in V and hence by (p|U)−1 to a path in U
beginning at e. Combining these two paths, from e0 to e then from e to wherever
gives a lifting of a path in Y from y0 to η to a path in E from e0 to what must be
f̂(η). Thus f̂(η) ∈ U ⊂ N as required.

4 Running Around in Circles

Throughout this section we are thinking of S1 as the set of complex numbers of unit
modulus and we define e : R → S1 by e(t) = e2πit. The points 0 ∈ R and 1 ∈ S1 serve
as base points and, of course, e(0) = 1. We also denote by B2 the set of complex
numbers of modulus at most 1.

Theorem 4.1 π(S1, 1) ≈ Z.

Proof. We define an isomorphism θ : π(S1, 1) → Z. Let σ : [0, 1] → S1 be a loop
based at 1: thus [σ] represents a typical element of π(S1, 1). Use Corollary 3.8 to
lift σ over e to σ̂ : [0, 1] → R so that σ̂(0) = 0: by Theorem 3.6 this lift is unique.
Because eσ̂(1) = 1 it follows that σ̂(1) ∈ Z: we declare θ([σ]) = σ̂(1).
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We need to verify the following:

1. θ is well-defined, ie if σ ∼ τ then σ̂(1) = τ̂(1).

2. θ is a homomorphism, ie if σ and τ are two loops in S1 based at 1 then
σ̂ ∗ τ(1) = σ̂(1) + τ̂(1).

3. θ is a monomorphism, ie if σ̂(1) = 0 then σ ∼ 1̈.

4. θ is an epimorphism, ie if n ∈ Z then there is a loop σ based at 1 such that
σ̂(1) = n.

1. θ is well-defined. Suppose that σ and τ are two loops in S1 based at 1 such that
σ ∼ τ . Then there is a homotopy H : [0, 1] × [0, 1] → S1 such that H(s, 0) = σ(s),
H(s, 1) = τ(s) and H(0, t) = H(1, t) = 1 for each s, t ∈ [0, 1]. Now apply Theorem
3.7 with f = σ, f̂ = σ̂ and F = H; write the lifting of H as Ĥ. By Theorem 3.7
we conclude that Ĥ(s, 1) = τ̂(s). Because eĤ(1, t) = 1 it follows that Ĥ(1, t) is an
integer which must be the same for all t because [0, 1] is connected. In particular
Ĥ(1, 0) = Ĥ(1, 1), ie σ̂(1) = τ̂(1).

2. θ is a homomorphism. Suppose that σ and τ are two loops in S1 based at 1.
Define σ̂ ∗ τ by:

σ̂ ∗ τ(s) =
{
σ̂(2s) if 0 ≤ s ≤ 1

2
τ̂(2s− 1) + σ̂(1) if 1

2 ≤ s ≤ 1.

Then σ̂ ∗ τ(1) = σ̂(1) + τ̂(1).
3. θ is a monomorphism. Suppose that σ̂(1) = 0. Because R is contractible

there is a homotopy Ĥ : [0, 1] × [0, 1] → R such that Ĥ(s, 0) = σ̂(s) and Ĥ(s, 1) =
Ĥ(0, t) = Ĥ(1, t) = 0 for each s, t ∈ [0, 1]. Then eĤ is a homotopy from σ to 1̈.

4. θ is an epimorphism. Suppose that n ∈ Z. Define σn by σn(s) = e2nπis. Then
σ̂n(1) = n.

Corollary 4.2 Let i : S1 → B2 be the inclusion. Then there is no continuous
function r : B2 → S1 such that ri is the identity on S1.

Proof. Suppose that there were. Consider the two commutative diagrams:

(S1, 1)

(S1, 1)

(B2, 1)
A
A
A
A
A
A
AAU

�
�

�
�

�
�

���

-

1

i

r

π(S1, 1)

π(S1, 1)

π(B2, 1)
A
A
A
A
A
A
AAU

�
�

�
�

�
�

���

-

1

i∗

r∗

Now we know from Example 2.5 and Theorem 4.1 that the groups at the top left
and bottom are Z while that on the top right is trivial. It is not possible for
such a commutative diagram to exist, for example consider the fate of the element
1 ∈ π(S1, 1): under 1 this goes to 1 but under i∗ it must go to 0 and hence under
r∗i∗ must also go to 0.
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Corollary 4.3 (Brouwer’s Fixed Point Theorem) Suppose that f : B2 → B2

is continuous. Then f(z) = z for some z ∈ B2.

Proof. Suppose instead that for each z ∈ B2 we have f(z) 6= z. Define r : B2 → S1

by letting r(z) be that point obtained by drawing the straight line from f(z) through
z and extending as necessary until it reaches S1. If z ∈ S1 then r(z) = z contrary
to Corollary 4.2.

Definition 4.4 By a circle we mean a homeomorph of S1. Two circles J,K ⊂ R3

are unlinked if there is a continuous function f : B2 → R3 −K such that f |S1 is an
embedding with f(S1) = J ; otherwise J and K are linked.

There is a lack of symmetry in the definition of unlinked; it may be proved that the
variant of the definition obtained by interchanging the roles of J and K is equivalent
to that given.

Proposition 4.5 Let J,K ⊂ R3 be the following two circles: J is the circle of
radius 1 in the plane y = 0 with centre (1, 0, 0) and K is the circle of radius 1 in the
plane z = 0 with centre (0, 0, 0). Then J and K are linked.

Proof. Suppose instead that J and K are unlinked, say p : B2 → R3 − K is a
continuous function such that p|S1 is an embedding with p(S1) = J . Let

A = {(x, 0, z) ∈ R3 / x ≥ 0}

and let t : A − {(1, 0, 0)} → J be radial projection from (1, 0, 0): if (x, y, z) ∈ J
then t(x, y, z) = (x, y, z). Next define o : R3 → R3 by o(x, y, z) = (

√
x2 + y2, 0, z).

Note that if (x, y, z) ∈ A then o(x, y, z) = (x, y, z), and o(R3 −K) ⊂ A− {(1, 0, 0)}.
Finally define s : J → S1 by s(x, y, z) = p−1(x, y, z): as p|S1 is a homeomorphism
onto S1, it follows that s is continuous.

Now consider
stop : B2 → S1.

Then stop(x, y) = (x, y) for all (x, y) ∈ S1, contradicting Corollary 4.2.

Definition 4.6 Suppose that f : (S1, 1) → (S1, 1) is continuous. Then the integer
f∗(1) is called the degree of f , denoted d(f).

Example 4.7 The degree of any constant map is 0. The degree of the map z → zn

is n.

Note that if f, g : S1 → S1 are homotopic then they have the same degree.

Lemma 4.8 Suppose that f : (S1, 1) → (S1, 1) is continuous. Let f̂ e be a lifting of
fe : [0, 1] → S1 given by Theorem 3.8. Then d(f) = f̂ e(1)− f̂ e(0).

Proposition 4.9 Suppose that f : B2 → R2 is such that f(S1) ⊂ S1 and f |S1 has
degree k 6= 0. Then B2 ⊂ f(B2).
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Proof. Suppose not, say a ∈ B2− f(B2). As f |S1 has non-zero degree it follows that
f(S1) = S1, so that a is in the interior of B2. Define ρ : R2 − {a} → S1 by letting ρ
project points outside S1 radially towards the origin and points inside S1 away from
a. Let i : S1 → B2 denote the inclusion.

Consider the composition S1 i−→ B2 f−→ R2 − {a} ρ−→ S1. This composition is
just f |S1 so it has degree k. Now apply the fundamental group operator to get:

π(S1) i∗−→ π(B2)
f∗−→ π(R2 − {a}) ρ∗−→ π(S1).

The composition is multiplication by k. However this is impossible as the composi-
tion factors through the trivial group π(B2).

Theorem 4.10 (Fundamental theorem of algebra) Let P (z) be a polynomial
of positive degree with complex coefficients. Then there is a complex number ζ with
P (ζ) = 0.

Proof. Let k > 0 be the degree of the polynomial P (z). We may assume that the
coefficient of zk in P (z) is 1, so that

P (z) = a0 + a1z + · · ·+ ak−1z
k−1 + zk.

Define Fk : C → C by Fk(z) = zk, and define h : C× [0, 1] → C by

h(z, t) = tFk(z) + (1− t)P (z) = zk + (1− t)
k−1∑
i=0

aiz
i ∀z ∈ C.

Then h0 = P, h1 = Fk and zk = h(z, t)− (1− t)
∑k−1

i=0 aiz
i,

so that |zk| ≤ |h(z, t)|+
∑k−1

i=0 |ai| × |z|i,
and hence |h(z, t)| ≥ |z|k −

∑k−1
i=0 |ai| × |z|i.

Let M = 1 +
∑k−1

i=0 |ai|. Now ∀t ∈ [0, 1] and ∀z ∈ C, if |z| ≥ M then |z| ≥ 1 so
|z|i ≤ |z|k−1 for i < k, and hence

|h(z, t)| ≥ |z|k −
k−1∑
i=0

|ai| × |z|k−1 = |z|k−1[|z| −
k−1∑
i=0

|ai|] ≥ |z| −
k−1∑
i=0

|ai| ≥ 1.

Thus we may define H : S1× [0, 1] → S1 by H(z, t) = h(Mz,t)
|h(Mz,t)| . Note that H1(z) = zk

so H1, and hence (by Proposition 2.10) H0, has degree k.
We now show that P has a root in the disc MB2. Indeed, suppose that there is

no z ∈ MB2 such that P (z) = 0. Then the degree k function H0 : S1 → S1 of the
last paragraph extends over all of B2 by defining Ĥ0(z) = P (Mz)

|P (Mz)| . Furthermore this
extended function maps all of B2 into S1, contrary to Proposition 4.9.

It follows that the polynomial function defined by P (z) = a0 + a1z + · · · +
ak−1z

k−1 + zk has at least one root within 1 +
∑k−1

i=0 |ai| of 0.

For the following we need the (n − 1)-sphere. This is defined to be the set
Sn−1 = {(x1, . . . , xn) ∈ Rn / x2

1 + . . . x2
n = 1}.

11



Definition 4.11 A vector field on the (n − 1)-sphere is a continuous function v :
Sn−1 → Rn such that for each x ∈ Sn−1, we have x•v(x) = 0 (here the dot, •, denotes
the usual scalar product). The vector field v is non-zero provided that v(x) 6= 0 for
each x.

The condition x • v(x) = 0 ensures that v(x) is tangent to Sn−1 when located at x.
Using this one can formulate the notion of a vector field on any smooth manifold in
euclidean space.

Definition 4.12 A collection {v1, . . . , vm} of vector fields on Sn−1 is called linearly
independent provided that for each x, the vectors {v1(x), . . . , vm(x)} are linearly
independent.

Example 4.13 On an odd dimensional sphere we can define a non-zero vector field
by

v(x1, . . . , x2k) = (−x2, x1,−x4, x3, . . . ,−x2k, x2k−1).

Note that this vector field when applied to S1 may be expressed in terms of complex
numbers by v(z) = iz. This same expression is valid in quaternions and Cayley
numbers. Furthermore, we may obtain other, linearly independent, vector fields on
S3 and S7 by replacing i by j or k etc. In this way we obtain 3 linearly independent
vector fields on S3 and 7 on S7. Note that this is the maximum number; more
generally, we cannot find more than n−1 linearly independent vector fields on Sn−1.

Theorem 4.14 There is no non-zero vector field on S2.

Proof. Suppose v : S2 → R3 is a vector field which is non-zero. We will obtain a
contradiction. We may assume that |v(x)| = 1 for each x, for if not then we may
replace v by the field which takes x to v(x)/|v(x)|.

Next suppose that f : S1 → S2 is differentiable with f ′(z) 6= 0 for each z. We
will only need the case where f carries S1 diffeomorphically onto a line of constant
latitude but will consider the more general case initially. Define f̄ : S1 → S1 as
follows: given z ∈ S1, let Tz : R3 → R3 be the orientation-preserving orthogonal
transformation which carries f(z) to (0, 0, 1) and f ′(z) to (a, 0, 0) (for some a > 0).
Since vf(z) is orthogonal to f(z) then Tzvf(z) is orthogonal to (0, 0, 1) so lies in
R2. Moreover, since vf(z) has unit length so has Tzvf(z), so Tzvf(z) ∈ S1: set
f̄(z) = Tzvf(z). The function f̄ is continuous so its degree d(f̄) is defined.

Consider now the particular case fr : S1 → S2, for r ∈ (−1, 1), defined by
fr(x, y) = (x

√
1− r2, y

√
1− r2, r). It is easily checked that the parameter r provides

a homotopy between any two of the corresponding functions f̄r and hence all of the
degrees d(f̄r) are the same.

By continuity of v, there is an r near 1 and there is an s near −1 so that for each
z ∈ S1, vfr(z) is within 1 of v(0, 0, 1) and vfs(z) is within 1 of v(0, 0,−1): all of the
vectors vfr(z) point about in the same direction as v(0, 0, 1) and all of the vectors
vfs(z) point about in the same direction as v(0, 0,−1). Looking at the sphere from
the outside, fr wraps S1 around a line of latitude in the anticlockwise direction so
d(f̄r) = −1, and fs wraps S1 around a line of latitude in the clockwise direction so
d(f̄s) = 1. This contradicts d(f̄r) = d(f̄s).

Theorem 4.14 also holds for any even-dimensional sphere, ie any vector field on
S2k is zero. A natural question to ask is how many linearly independent vector fields
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are supported by an odd-dimensional sphere. We have already seen that there is
at least 1, and there cannot possibly be more than 2k − 1 on S2k−1. The question
was settled in 1962. In fact only on S1, S3 and S7 (and S0!!) is the maximum
number the dimension of the sphere. If we write n = 24α+β(2γ + 1), with α, β and
γ integers and 0 ≤ β < 4, then the maximum number of linearly independent vector
fields supported by Sn−1 is 2β + 8α− 1. Just as we used the complex, quaternionic
and Cayley structures giving R2, R4 and R8 as (not necessarily commutative, not
necessarily associative) algebras over R to obtain the maximum number of linearly
independent vector fields over S1, S3 and S7, so can we deduce that there are no
such algebras in other dimensions (except 1!).

5 The Homology Axioms

Definition 5.1 A topological pair is a pair (X,A) consisting of a topological space
X and a subspace A. A map of pairs f : (X,A) → (Y,B) is a continuous function
f : X → Y such that f(A) ⊂ B.

The topological pair (X,∅) will be abbreviated to X. The identity map is the
map 1X : (X,A) → (X,A) given by 1X(x) = x; where no confusion will arise we
will denote 1X by 1 . We use i : A→ X and j : X → (X,A) to denote the inclusion
maps.

We will consider a class of topological pairs and maps of these pairs (technically
a category of topological pairs).

Definition 5.2 A homology theory assigns

• an abelian group Hq(X,A) to each topological pair (X,A) and each q ∈ Z;

• a homomorphism f∗ : Hq(X,A) → Hq(Y,B) to each map f : (X,A) → (Y,B)
of pairs and each q ∈ Z; and

• a homomorphism ∂ : Hq(X,A) → Hq−1(A), called the boundary, to each
topological pair (X,A) and each q ∈ Z

such that the following seven axioms are satisfied:

Axiom 1 (Identity) 1∗ = 1;

Axiom 2 (Composition) (gf)∗ = g∗f∗ whenever gf is defined;

Axiom 3 (Commutativity) ∂f∗ = (f |A)∗∂ when f : (X,A) → (Y,B);

Axiom 4 (Exactness) The sequence

· · · → Hq(A) i∗→ Hq(X)
j∗→ Hq(X,A) ∂→ Hq−1(A) → · · ·

of homomorphisms is exact, that is, the image of any one homomorphism is the
kernel of the next;

Axiom 5 (Homotopy) If f is homotopic to g then f∗ = g∗;
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Axiom 6 (Excision) If U ⊂ X is open with U ⊂ Å and e : (X − U,A − U) →
(X,A) is the inclusion then e∗ : Hq(X − U,A− U) → Hq(X,A) is an isomorphism
for each q (the map e is called an excision);

Axiom 7 (Dimension) The group Hq({0}) is trivial for each q 6= 0.

The group H0({0}) is called the coefficient group and will be denoted by G.
Much of the time we may take G = Z.

Example 5.3 Let Hq(X,A) be the trivial group for each (X,A). Then all of the
axioms are satisfied. Of course there is little profit in studying this homology theory!

Example 5.4 . If we restrict our attention to topological pairs consisting of sim-
plicial complexes and let Hq(X,A) be the simplicial homology group for each (X,A)
and define the homomorphisms appropriately, then all of the axioms are satisfied.

There are other examples of non-trivial homology theories, for example singular
homology theory which is defined on the category of all topological pairs and maps,
but we will not have time to describe any of them. Instead we will assume that such
theories exist and draw some conclusions.

6 Immediate Consequences of the Homology Axioms

Theorem 6.1 For each space X and each q ∈ Z the group Hq(X,X) is trivial.

Proof: Apply Axiom 4 to the pair (X,X), noting that Axiom 1 tells us that the
homomorphisms 1∗ : Hq(X) → Hq(X) are always the identity.

Theorem 6.2 If f : (X,A) → (Y,B) is a homotopy equivalence then
f∗ : Hq(X,A) → Hq(Y,B) is an isomorphism.

Proof: Let g : (Y,B) → (X,A) be a homotopy inverse of f . Then by Axiom 5, gf
is homotopic to 1X and fg is homotopic to 1Y , hence by Axioms 1 and 2 we have
that g∗f∗ and f∗g∗ are the respective identities. It follows that f∗ and g∗ are both
isomorphisms.

Corollary 6.3 If X is homotopy equivalent to Y then the groups Hq(X) and Hq(Y )
are isomorphic.

Corollary 6.4 If X is contractible then H0(X) is isomorphic to G and Hq(X) is
trivial for q 6= 0.

Definition 6.5 A subspace A of a space X is called a retract of X provided that
there is a map r : X → A such that ri = 1A.

Theorem 6.6 If A is a retract of X then i∗ is a monomorphism, j∗ is an epimor-
phism and ∂ is trivial. Moreover,

Hq(X) ≈ Hq(A)⊕Hq(X,A).
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Corollary 6.7 If x0 is any point of X then

H0(X) ≈ G⊕H0(X,x0) and Hq(X) ≈ Hq(X,x0) if q 6= 0.

Theorem 6.8 If N is a finite discrete space with n points then Hq(N) is trivial if
q 6= 0 and H0(N) is a direct sum of n copies of G.

Proof: We use induction on n, the result being true for n = 1 by Corollary 6.3 and
Axiom 7.

Now suppose the result true for n− 1 and let N = {x1, . . . , xn}. Set A = {xn}.
Then by Corollary 6.7, H0(N) ≈ G ⊕ H0(N,A) and Hq(N) ≈ Hq(N,A) if q 6= 0.
Thus it suffices to show that Hq(N,A) ≈ Hq(N −A). As A ⊂ N is open and A ⊂ Å,
by Axiom 6, Hq(N − A,A − A) → Hq(N,A) is an isomorphism, ie Hq(N,A) ≈
Hq(N −A).

Definition 6.9 A space X is deformable into a subspace A provided that there is a
homotopy ht : X → X such that h0 = 1 and h1(X) ⊂ A.

Theorem 6.10 If X is deformable into A then i∗ is an epimorphism, j∗ is trivial
and ∂ is a monomorphism. Moreover,

Hq(A) ≈ Hq(X)⊕Hq+1(X,A).

Corollary 6.11 If X is contractible and A ⊂ X then H0(A) ≈ G ⊕H1(X,A) and
Hq(A) ≈ Hq+1(X,A) if q 6= 0.

Theorem 6.12 If U ⊂ X is open with U ⊂ A, and V ⊂ X is open with V ⊂ U
and the inclusion (X −U,A−U) → (X − V,A− V ) is a homotopy equivalence then
e∗ : Hq(X − U,A− U) → Hq(X,A) is an isomorphism.

7 Reduced Homology Groups

Except as noted at the end, throughout this section we assume that A,B 6= ∅. We
will simplify notation by writing 0 and (0,0) for {0} and ({0},{0}) respectively.

Definition 7.1 Let f : (X,A) → (0, 0), g : X → 0 and h : A → 0 denote the
unique maps. Then the reduced homology groups H̃q(X,A), H̃q(X) and H̃q(A) are,
respectively, the kernels of

f∗ : Hq(X,A) → Hq(0, 0), g∗ : Hq(X) → Hq(0) and h∗ : Hq(A) → Hq(0).

We have the following commutative diagram in which the homomorphisms in
the top row are restrictions of those directly below:

. . . -H̃q(A) -
ı̃∗

H̃q(X) -
̃∗

H̃q(X,A) -
∂̃

H̃q−1(A) - . . .

. . . -Hq(A) -i∗ Hq(X) -j∗ Hq(X,A) -∂ Hq−1(A) - . . .

. . . -Hq(0) -Hq(0) -Hq(0, 0) - Hq−1(0) - . . .

? ? ? ?

?
h∗

?
g∗

?
f∗

?
h∗
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Proposition 7.2 In the diagram above the images of ı̃∗, ̃∗ and ∂̃ lie in H̃q(X),
H̃q(X,A) and H̃q−1(A) respectively.

Theorem 7.3 For all q we have H̃q(X,A) = Hq(X,A); for all q 6= 0 we have
H̃q(X) = Hq(X) and H̃q(A) = Hq(A) and we have H0(X) ≈ G ⊕ H̃0(X) and
H0(A) ≈ G⊕ H̃0(A).

Proof: As Hq(0, 0) is trivial for all q and Hq(0) is trivial for all q 6= 0, it follows that
H̃q(X,A) for all q and H̃q(X) and H̃q(A) for q 6= 0 are as claimed.

Let k : 0 → X be any map. Then gk : 0 → 0 is the identity so g∗k∗ = 1. Define
θ :Im(k∗)⊕Ker(g∗) → H0(X) by θ(a, b) = a− b.

θ is a monomorphism, for if θ(a, b) = 0 then a = b so g∗(a) = g∗(b) = 0 as
b ∈Ker(g∗). As a ∈Im(k∗) and g∗k∗ = 1, it follows that a = 0 and hence b = 0.

θ is an epimorphism, for if x ∈ H0(X) then g∗(k∗g∗(x)− x) = 0 so

(k∗g∗(x), k∗g∗(x)− x) ∈ Im(k∗)⊕Ker(g∗).

Further θ(k∗g∗(x), k∗g∗(x)− x) = x.
Thus θ is an isomorphism, so H0(X) ≈Im(k∗)⊕Ker(g∗).
As k∗ is a monomorphism, Im(k∗) ≈ G. By definition, Ker(g∗) = H̃0(X). Thus

H0(X) ≈ G⊕ H̃0(X). Similarly for A.

Theorem 7.4 The sequence

...→ H̃q(A) ı̃∗→ H̃q(X)
̃∗→ H̃q(X,A) ∂→ H̃q−1(A) → ...

is exact.

Proof. As the only places where the reduced sequence differs from the original exact
sequence is from H̃1(X,A) to H̃0(X,A), it suffices to verify the exactness at these
four groups.

At H̃1(X,A): Im(̃∗) =Im(j∗) =Ker(∂) =Ker(∂̃).
At H̃0(A): Clearly Im(∂̃) ⊂Ker(̃ı∗). Conversely if a ∈Ker(̃ı∗) then i∗(a) = 0

so there is y ∈ H1(X,A) with ∂(y) = a. As H̃1(X,A) = H1(X,A) it follows that
y ∈ H̃1(X,A) and ∂̃(y) = a.

At H̃0(X): Clearly Im(̃ı∗) ⊂Ker(̃∗). Conversely if x ∈Ker(̃∗) then there is
a ∈ H0(A) such that i∗(a) = x. Now h∗(a) = g∗(i∗(a)) = g∗(x) = 0 as x ∈Ker(g∗).
Thus a ∈Ker(h∗) = H̃0(A) so ı̃∗(a) = x.

At H̃0(X,A): Clearly Im(̃∗) ⊂Ker(∂̃). Conversely if y ∈Ker(∂̃) =Ker(∂) =Im(j∗)
then there is x ∈ H0(X) with j∗(x) = y. Choose any map k : 0 → A. Note that
g∗i∗k∗g∗(x) = g∗(x) as gik = 1, so x − i∗k∗g∗(x) ∈Ker(g∗) = H̃0(X). Furthermore,
̃∗(x− i∗k∗g∗(x)) = j∗(x)− j∗i∗k∗g∗(x) = j∗(x) = y as j∗i∗ = 0.

Proposition 7.5 If f : (X,A) → (Y,B) is a map then f naturally induces homo-
morphisms

f∗ : H̃q(X,A) → H̃q(Y,B), g∗ : H̃q(X) → H̃q(Y ) and h∗ : H̃q(A) → H̃q(B).

Proof. The only cases needing consideration are g∗ : H̃0(X) → H̃0(Y ) and h∗ :
H̃0(A) → H̃0(B), and only the first of these is treated.

If x ∈ H̃0(X) then g∗(x) ∈ H̃0(Y ) by commutativity of the diagram
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H0(X)

H0(Y )

H0(0),?

Z
Z~

�
�>

g∗

so g∗ : H̃0(X) → H̃0(Y ) is merely the restriction of g∗ : H0(X) → H0(Y ).
In the following propositions we relax the condition that A,B 6= ∅.

Proposition 7.6 1 : (X,A) → (X,A) induces 1 : H̃q(X,A) → H̃q(X,A).

Proposition 7.7 If f : (X,A) → (Y,B) and g : (Y,B) → (Z,C) are maps then
(gf)∗ = g∗f∗ : H̃q(X,A) → H̃q(Z,C).

Proposition 7.8 If f is homotopic to g then f∗ = g∗ : H̃q(X,A) → H̃q(Y,B)

Proposition 7.9 If X is homotopy equivalent to Y then H̃q(X) ≈ H̃q(Y ).

Proposition 7.10 If X is contractible then for each q ∈ Z, H̃q(X) is trivial.

8 Homology Groups of Spheres

Let
Sn = {(x0, . . . , xn) ∈ Rn+1 :

∑
x2

i = 1},
Sn

+ = {(x0, . . . , xn) ∈ Sn : xn ≥ 0},
Sn
− = {(x0, . . . , xn) ∈ Sn : xn ≤ 0},

We can consider Rn ⊂ Rn+1 by identifying (x1, . . . , xn) with (x1, . . . , xn, 0). Then
Sn−1 = Sn

+ ∩ Sn
−.

For x = (x1, . . . , xn) ∈ Rn we denote
∑
x2

i by ‖x‖.

Theorem 8.1 The excision map (Sn
−,Sn−1) → (Sn,Sn

+) induces isomorphisms

Hq(Sn
−,Sn−1) ≈ Hq(Sn,Sn

+) and H̃q(Sn
−,Sn−1) ≈ H̃q(Sn,Sn

+).

Proof. The two isomorphisms are the same. To get them apply Theorem 6.12 with
X = Sn, A = Sn

+, U = Sn − Sn
− and V = {(x0, ...xn) ∈ Sn : xn > 0.5}.

Theorem 8.2 For each n ≥ 0 we have H̃q(Sn) ≈ G if q = n and H̃q(Sn) is trivial
if q 6= n.

Proof. Consider the following diagram consisting of parts of the reduced exact
sequences of (Sn,Sn

+) and (Sn
−,Sn−1), and the excision of Theorem 8.1:

H̃q(Sn
+) -H̃q(Sn) -H̃q(Sn,Sn

+) - H̃q−1(Sn
+)

H̃q(Sn
−) -H̃q(Sn

−,Sn−1) -H̃q−1(Sn−1) -H̃q−1(Sn
−)

6
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In the top row, as Sn
+ is contractible, by Proposition 7.10, H̃q(Sn

+) and H̃q−1(Sn
+)

are trivial so H̃q(Sn) ≈ H̃q(Sn,Sn
+). By contractibility of Sn

− the bottom row gives
H̃q(Sn

−,Sn−1) ≈ H̃q−1(Sn−1). Thus H̃q(Sn) ≈ H̃q−1(Sn−1), and hence by induction,
H̃q(Sn) ≈ H̃q−n(S0).

By Theorems 6.8 and 7.3, we obtain the claimed result.

Corollary 8.3 For each n, Hq(Sn) is trivial if n 6= q 6= 0, is isomorphic to G if
n 6= q = 0 or n = q 6= 0 and is isomorphic to G⊕G if n = q = 0.

For the first time we need to assume that there is a non-trivial homol-
ogy theory. This assumption will remain in place from now on, though
it is not essential for every result described.

Theorem 8.4 There is no continuous r : Bn → Sn−1 with r|Sn−1 = 1, where
Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

Proof. Suppose there were. Then ri = 1, where i : Sn−1 → Bn is the inclusion.
Thus (ri)∗ = 1. However this gives a commutative diagram:

H̃n−1(Sn−1) - H̃n−1(Bn)

H̃n−1(Sn−1)

@
@R

�
�	

i∗

1 r∗

ie G - 0

G

@
@R

�
�	1

by Theorem 8.2 and Proposition 7.10. Provided that G is non-trivial, the last dia-
gram is impossible. Hence if there is a homology theory with non-trivial coefficient
group, such a map r cannot exist.

Theorem 8.5 (Brouwer’s Fixed Point Theorem) Let f : Bn → Bn be a map.
Then there is x ∈ Bn with f(x) = x.

Proof. Suppose instead that for each x ∈ Bn we have f(x) 6= x. Then r : Bn → Sn−1

may be defined as follows: given x ∈ Bn, let r(x) be that point of Sn−1 obtained
by extending the line segment from f(x) through x until it meets Sn−1. Then r is
continuous and r|Sn−1 = 1, contrary to Theorem 8.4.

Definition 8.6 Suppose that X is a topological space. If f : X → X is a map for
which there is a point x ∈ X such that f(x) = x then x is called a fixed point of f .
If every continuous function f : X → X has a fixed point then X is said to have the
fixed point property.

Example 8.7 Theorem 8.5 tells us that Bn has the fixed point property. On the
other hand neither Sn nor Rn has the fixed point property, the antipodal map α :
Sn → Sn defined by α(x) = −x and any nontrivial translation of Rn both not having
a fixed point.

It is clear that if two topological spaces are homeomorphic and one of them has
the fixed point property then so has the other.

Theorem 8.8 Suppose that A is a real n×n matrix all of whose entries are positive.
Then A has a positive real eigenvalue.
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Proof. We will also denote by A : Rn → Rn the linear transformation deter-
mined by A using the usual basis of Rn. The function A is continuous. Let
Rn

+ = {(x1, . . . , xn) : x1, . . . xn ≥ 0} and B = Sn−1 ∩ Rn
+. As B is homeomorphic

to Bn−1 it has the fixed point property. Since all of the entries of A are positive,
we have A(Rn

+) ⊂ Rn
+. Moreover if x ∈ Rn

+ − {0} then A(x) 6= 0 so we may define
f : B → B by f(x) = A(x)/‖A(x)‖. Then f is well-defined and continuous. Let
u ∈ B be a fixed point of f . Then f(u) = u so A(u) = ‖A(u)‖u, ie A(u) is a real
multiple of u, so u is an eigenvector of A and, since u 6= 0, ‖A(u)‖ is an eigenvalue
of A.

Corollary 8.9 If m 6= n then Sm and Sn are not homotopy equivalent.

Theorem 8.10 If m 6= n then Rm and Rn are not homeomorphic.

Proof. Suppose that m 6= n yet Rm is homeomorphic to Rn; say h : Rm → Rn is
a homeomorphism. We may assume that h(0) = 0. Define f : Sm−1 → Sn−1 by
f(x) = h(x)/‖h(x)‖. Then f is a homotopy equivalence, contrary to Corollary 8.9.

9 Degrees of Spherical Maps again

We will now assume that there is a homology theory in which the coef-
ficient group is the additive group of integers, Z. Note that in that case by
Theorem 8.2 we have H̃n(Sn) ≈ Z.

Definition 9.1 Suppose that f : Sn → Sn is continuous. Then f∗ : H̃n(Sn) →
H̃n(Sn) is multiplication by some integer: this integer is called the degree of f and
is denoted degf .

It is clear that if f is homotopic to g then degf=degg. The converse also holds
but we will not prove it.

For n = 1, this alternative definition of degree is equivalent to that given earlier
for a map S1 → S1.

Proposition 9.2 Suppose that f, g : Sn → Sn are two maps. Then

deg(fg) = deg(gf) = degfdegg.

Proposition 9.3 Let ρ : Sn → Sn be the reflection defined by

ρ(x0, . . . , xn) = (−x0, x1, . . . , xn).

Then ρ has degree −1.

Proof. The following diagram, which includes isomorphisms used in the proof of
Theorem 8.2, commutes:

H̃n(Sn) -H̃n(Sn,Sn
+) � H̃n(Sn

−,Sn−1) -H̃n−1(Sn−1)

H̃n(Sn) -H̃n(Sn,Sn
+) � H̃n(Sn

−,Sn−1) -H̃n−1(Sn−1)
? ? ? ?

ρ∗ ρ∗ ρ∗ ρ∗
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Thus ρ∗ : H̃n(Sn) → H̃n(Sn) is multiplication by −1 if and only if
ρ∗ : H̃n−1(Sn−1) → H̃n−1(Sn−1) is multiplication by −1. Thus by induction it
suffices to prove the result for n = 0.

Let i+ : {1} → S0, j+ : S0 → (S0, {1}), i− : {−1} → S0 and e : {−1} → (S0, {1})
be the inclusions, and r : S0 → {1} the retraction.

Note that e induces an isomorphism e∗ : H0({−1}) → H0(S0, {1}). As ri+ = 1, it
follows that i+∗ : H0({1}) → H0(S0) is a monomorphism. Furthermore, ρi+ri− = i−

and ρi− = i+ri−. By definition, H̃0(S0) =Ker(r∗) ⊂ H0(S0).
Define θ : H0({1})⊕H0({−1}) → H0(S0) by θ(a, b) = i+∗ (a)+i−∗ (b). Then θ is an

isomorphism. Indeed, θ is a monomorphism because if θ(a, b) = 0 then j+∗ θ(a, b) = 0,
from which e∗(b) = j+∗ i

−
∗ (b) = 0 so b = 0 and hence, since i+∗ is a monomorphism,

a = 0. Also θ is an epimorphism for if x ∈ H0(S0) then b = e−1
∗ j+∗ (x) ∈ H0({−1})

and j+∗ (x − i−∗ (b)) = 0 so there is a ∈ H0({1}) with i+∗ (a) = x − i−∗ (b): then
θ(a, b) = x.

Note that θ(a, b) ∈Ker(r∗) if and only if r∗θ(a, b) = 0 if and only if r∗i+∗ (a) +
r∗i

−
∗ (b) = 0. As ri+ = 1, it follows that θ(a, b) ∈ H̃0(S0) if and only if a = −r∗i−∗ (b).

Now
ρ∗θ(−r∗i−∗ (b), b) = ρ∗i

+
∗ (−r∗i−∗ (b)) + ρ∗i

−
∗ (b) = −(ρi+ri−)∗(b) + (ρi−)∗(b)

= −i−∗ (b) + i+∗ r∗i
−
∗ (b) = −θ(−r∗i−∗ (b), b).

Thus ρ∗ is multiplication by −1.

Theorem 9.4 Let g : Sn → Sn be an orthogonal transformation. Then g has degree
detg.

Proof. Either detg = 1 or detg = −1.
Case I. Suppose that detg = 1. It is claimed that g ' 1, so that g∗ = 1∗ = 1, which
is multiplication by 1.

If n = 0 then g = 1 so the claim is true in this case.
Assume the claim is true for n − 1 ≥ 0. Let P be a plane in Rn+1 containing

N = (0, . . . , 0, 1), g(N) and (0, . . . , 0): P is unique if these points are not collinear.
Let P⊥ be the orthogonal complement of P in Rn+1. Let h : Sn → Sn be the rotation
leaving P⊥ pointwise fixed and sending g(N) to N . Then h is homotopic to 1 and
deth = 1. Consider hg: now hg(N) = N , and Rn is the hyperplane in Rn+1 through
the origin perpendicular to N so hg(Rn) = Rn, and hence hg(Sn−1) = Sn−1. Note
that f = hg|Sn−1 is an orthogonal transformation, with determinant 1. Thus by
inductive assumption f ' 1 so g ' hg ' 1.
Case II. Suppose that detg = −1. Let ρ be as in Proposition 9.3. Then ρ is an
orthogonal transformation and detρ = −1, so det(ρg) = 1. Thus by Case I ρg ' 1,
so ρ∗g∗ = 1 and so by Proposition 9.3, g∗ is multiplication by −1.

Corollary 9.5 Let α : Sn → Sn be the antipodal map. Then α has degree (−1)n+1.

Definition 9.6 A vector field on Sn is a continuous function v : Sn → Rn+1 such
that for each x ∈ Sn, v(x) 6= 0 and v(x) is orthogonal to x.

Theorem 9.7 Sn has a vector field if and only if n is odd.

Proof. If Sn has a vector field, say v : Sn → Rn+1, then we may assume that ‖v(x)‖ =
1, dividing v(x) by ‖v(x)‖ if necessary to achieve this. Define F : Sn× [0, 1] → Sn by
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F (x, t) = xcosπt+v(x)sinπt. Then F is a homotopy from 1 to α. Thus by Corollary
9.5, (−1)n+1 = 1 and hence n is odd.

Conversely if n is odd, say n = 2k − 1, define the vector field v : S2k−1 → R2k

by v(x1, x2, . . . , x2k) = (x2,−x1, . . . , x2k,−x2k−1).

Definition 9.8 Let f : Sn−1 → Sn−1 be a continuous function. The suspension of
f , denoted f̄ : Sn → Sn, is defined by

f̄(x0, . . . , xn) = ((1− ‖xn‖2)f(x0, . . . , xn−1), xn).

Note that f̄ is continuous.

Proposition 9.9 Let f : Sn−1 → Sn−1 be continuous. Then degf̄ = degf .

Proof. This follows from commutativity of the following diagram, where the hori-
zontal arrows are isomorphisms obtained in Theorem 8.2:

H̃q(Sn−1)

?

f∗

H̃q(Sn−1)

- H̃q+1(Sn)

?

f̄∗

H̃q+1(Sn) .-

Theorem 9.10 For each n, k ∈ Z with n > 0 there is a map f : Sn → Sn of degree
k.

Proof. Given k, the map fk of Example 4.7 has degree k. Then fk : S2 → S2 and
by Proposition 9.9, degfk = degfk = k. Note then that fk : S3 → S3 has degree k
and so on.

Theorem 9.11 If f : Sn → Sn is a map with non-zero degree then f is surjective.

Proof. Suppose that there is y ∈ Sn− f(Sn). Since Sn−{y} is homeomorphic to Rn

it is contractible. Thus f is homotopic to a constant map and hence has degree 0.

10 Constructing Singular Homology Theory

Let ∆q = {(x0, . . . , xn) ∈ Rq+1 /
∑q

i=0 xi = 1 and xi ≥ 0 for each i}. ∆q is called
the q-simplex. Consider the points v0, . . . , vq ∈ Rq+1, where all coordinates of vi are
0 except the i+ 1st, which is 1. Then ∆q is the convex hull of v0, . . . , vq, so we may
write ∆q = {

∑q
i=0 tivi / ti ≥ 0 for each i and

∑q
i=0 ti = 1}.

The ith face of ∆q is the (q − 1)-simplex ∆q−1
i = {

∑q
i=0 tjvj ∈ ∆q / ti = 0}.

Define the face map F q
i : ∆q−1 → ∆q by

F q
i (vj) =

{
vj if j < i
vj+1 if j ≥ i

,

21



and extend F q
i linearly. Observe that for i < j we have FjFi = FiFj−1 : ∆q−1 →

∆q+1.
Let X be a topological space. For each q ≥ 0 denote by Sq(X) the free abelian

group generated by {σ : ∆q → X / σ is continuous}. A continuous function
σ : ∆q → X is called a singular q-simplex. A typical element of Sq(X) may be
thought of as a formal sum

∑n
i=1 aiσi, where ai ∈ Z and σi is a singular q-simplex:

such a sum is called a q-chain. Note that when q < 0 there are no singular q-
simplexes so Sq(X) is the trivial group in that case.

Define the face homomorphism V q
i : Sq(X) → Sq−1(X) by V q

i (σ) = σF q
i . For

this to have meaning when q = 0 we require V q
i to be the trivial homomorphism.

Observe that V q
i V

q+1
j = V q

j−1V
q+1
i : Sq+1(X) → Sq−1(X), again with i < j. The

boundary homomorphism ∂q : Sq(X) → Sq−1(X) is defined by ∂q =
∑q

i=0(−1)iV q
i .

Lemma 10.1 For each q ∈ Z we have ∂q∂q+1 = 0.

Let Zq(X) = Ker(∂q) and Bq(X) = Im(∂q+1). The elements of Zq(X) are
called cycles while those of Bq(X) are called boundaries. From the Lemma we
have Bq(X) ⊂ Zq(X). As each is an abelian group we may take the quotient
Hq(X) = Zq(X)/Bq(X). The abelian group Hq(X) is called the qth homology group
of X.

If X and Y are two spaces and f : X → Y is continuous then there is induced a
homomorphism f] : Sq(X) → Sq(Y ) defined by f](σ) = σf . This homomorphism in
turn induces a homomorphism f∗ : Hq(X) → Hq(Y ).

Now suppose that (X,A) is a topological pair. Then the homomorphism
i] : Sq(A) → Sq(X) induced by the inclusion i : A → X is a monomorphism.
Declare Sq(X,A) = Sq(X)/i](Sq(A)). When A = ∅ this reduces to Sq(X). We
may define a homomorphism ∂q : Sq(X,A) → Sq−1(X,A) by ∂q([c]) = [∂q(c)].
As ∂q∂q+1 = 0, we may define Zq(X,A) = Ker(∂q), Bq(X,A) = Im(∂q+1) and
Hq(X,A) = Zq(X,A)/Bq(X,A), much as before.

If f : (X,A) → (Y,B) is a map of pairs then f induces a homomorphism
f∗ : Hq(X,A) → Hq(Y,B).

In the next diagram we have two interlocking sequences of groups forming an
infinite sequence of short exact sequences. Beginning with a chain c ∈ Zq+1(X,A) we
can pull this back to a chain b ∈ Sq+1(X), map it to ∂(b) ∈ Sq(X), and use exactness
of that row to find a ∈ Sq(A). One can show that this a is a cycle so determines
a homology class [a] ∈ Hq(A). Furthermore if c′ ∈ Zq+1(X,A) and [c] = [c′] then
[a] = [a′] too. Linearity is guaranteed so that the assignment of [a] to [c] gives a
homomorphism ∂∗ : Hq+1(X,A) → Hq(A).
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0 - Sq−1(A) - Sq−1(X) - Sq−1(X,A) - 0

0 - Sq(A) - Sq(X) - Sq(X,A) - 0

0 - Sq+1(A) - Sq+1(X) - Sq+1(X,A) - 0

? ? ?

? ? ?

? ? ?

? ? ?

Now we have an exact sequence

. . .→ Hq(A) i∗→ Hq(X)
j∗→ Hq(X,A) ∂∗→ Hq−1(A) → . . . .

Exactness of this sequence involves quite a lot of diagram chasing using the
double sequence above.

The proofs that the Homotopy and Excision Axioms are satisfied is quite com-
plicated. The essential idea for the latter involves subdivision of a singular simplex.
For a given singular simplex we chop the standard simplex into small enough pieces,
each affinely homeomorphic to the standard simplex, in such a way that the image of
each small simplex meeting U lies in A: this comes from the open cover {Å,X−U}.
We are then able to drop off those small singular simplices which meet U because
they lie inside the subgroup i](Sq(A)).

The proof that the Dimension Axiom is satisfied is simple. Let 0 denote the
one-point space. For each q ≥ 0 there is only one singular simplex σq : ∆q → 0, the
constant map. Thus Sq(0) ≈ Z. Further V q

i = V q
j , so we have ∂q = 0 when q is odd

(because there are q + 1 summands) while ∂q is the identity when q > 0 is even. Of
course for q ≤ 0 we must have ∂q = 0 too. So we get:

. . . - Z - Z - Z - Z - Z - 0 - . . .

. . . - S4(0) - S3(0) - S2(0) - S1(0) - S0(0) - S−1(0) - . . .

0 1 0 1 0 0 0

Inspecting this sequence we see that for q > 0 and odd Bq(0) = Zq(0) ≈ Z, for
q < 0 or for q > 0 and even Bq(0) = Zq(0) = 0, while for q = 0 we have Z0(0) ≈ Z
but B0(0) = 0.

Exercises

1. Suppose that the sequence 0 → G
θ→ H

ϕ→ K → 0 of abelian groups and
homomorphisms is exact and that there is a homomorphism α : H → G such
that αθ : G→ G is the identity. Prove that H ≈ G⊕K.

2. Suppose that the sequence 0 → G
θ→ H

ϕ→ K → 0 of abelian groups and
homomorphisms is exact and that there is a homomorphism β : K → H such
that ϕβ : K → K is the identity. Prove that H ≈ G⊕K.
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3. Prove Lemma 2.2.

4. Prove Proposition 2.10.

5. Suppose that p : E → X and q : X → Y are both covering projections and
that for each y ∈ Y the set q−1(y) is finite. Prove that qp : E → Y is also a
covering projection. Can the assumption that q−1(y) is finite be omitted?

6. Suppose that X is a path connected space. Then X is called simply connected
provided that π(X, a) is trivial for any choice of a ∈ X. Suppose that X =
U ∪ V where

• each of U and V is open;

• each of U and V is simply connected;

• U ∩ V is non-empty and path connected.

Prove that X is simply connected.

[Hint: Let σ : [0, 1] → X be a loop based at a ∈ U ∩ V : it needs to be shown
that σ is homotopic to the constant loop based at a though loops based at a.
Show that there is a partition {0 = t0 < t1 < . . . < tn = 1} of [0, 1] such that
for each i = 1, . . . , n the short path σ([ti−1, ti] is a subset of either U or V . For
each such i choose a path τi in U∩V from a to σ(ti). Use simple connectedness
of U and V to show that each loop τi−1 ∗ σ|[ti−1, ti] ∗ τi is homotopic to the
constant loop based at a.]

7. Prove that Sn is simply connected if n > 1.

8. Let Sn be the unit sphere in Rn+1 and define ∼ on Sn by x ∼ y if and
only if x = ±y. Then the quotient space is Pn; denote the quotient map by
q : Sn → Pn. Prove that q is a covering projection.

9. By following the ideas of the proof of Theorem 4.1 prove that π(Pn) ≈ Z2

when n > 1.

10. Prove Theorem 6.6.

11. Prove Theorem 6.10.

12. Prove Theorem 6.12.

13. Let Rn be the n petalled rose, which is the following quotient space. Take the
subspace Cn of R2 consisting of the n disjoint circles

{(x, y) ∈ R2 / (x− 3i)2 + (y − 1)2 = 1 for some i = 1, . . . , n},

define ∼ on Cn by (x, y) ∼ (ξ, η) if either (x, y) = (ξ, η) or y = η = 0, and
declare Rn to be the quotient space Cn/ ∼. For example R3 is homeomorphic
to the subspace {(r, θ) / r = sin 3θ} (using polar coordinates).

Prove that

Hq(Rn) ≈


Z if q = 0
Z⊕ Z⊕ . . .⊕ Z if q = 1
0 if q > 1.
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