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Abstract

THIS thesis explores a variety of topics in two-dimensional arithmetic geometry, in-
cluding the further development of I. Fesenko’s adèlic analysis and its relations with
ramification theory, model-theoretic integration on valued fields, and Grothendieck
duality on arithmetic surfaces.

I. Fesenko’s theories of integration and harmonic analysis for higher dimensional
local fields are extended to an arbitrary valuation field F whose residue field is a local
field; applications to local zeta integrals are considered.

The integral is extended to F n, where a linear change of variables formula is proved,
yielding a translation-invariant integral on GLn(F ).

Non-linear changes of variables and Fubini’s theorem are then examined. An inter-
esting example is presented in which imperfectness of a positive characteristic local
field causes Fubini’s theorem to unexpectedly fail.

It is explained how the motivic integration theory of E. Hrushovski and D. Kazh-
dan can be modified to provide a model-theoretic approach to integration on two-
dimensional local fields. The possible unification of this work with A. Abbes and
T. Saito’s ramification theory is explored.

Relationships between Fubini’s theorem, ramification theory, and Riemann-Hurwitz
formulae are established in the setting of curves and surfaces over an algebraically
closed field.

A theory of residues for arithmetic surfaces is developed, and the reciprocity law
around a point is established. The residue maps are used to explicitly construct the
dualising sheaf of the surface.
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CHAPTER 1

Introduction

1.1 Background, motivation, and brief summary
1.1.1 Zeta and L-functions
Let K be a global field; that is, either a number field with ring of integers OK , or the
function field of a smooth, projective curve C over a finite field. To each point x of C or
prime x of OK , one associates the non-archimedean local field

Kx = Frac Ôx,

and it is now well accepted that one ought to study K via the family of these comple-
tions:

Q2

BB
BB

BB
BB

R

Q3 Q

Q5

||||||||

Q7

Of course, we have included the completion R of Q at infinity in our diagram, and in
general we must consider the archimedean places x of a number field K , from which
we form archimedean local fields Kx.

The ring of adèles of K is the restricted product of these local fields; i.e.

AK := {(ax)x ∈
∏

x

Kx : ax ∈ Ôx for almost all x},

where ‘almost all’ means ‘all but finitely many’, and we ignore this condition at the
infinite places if K is a number field, for then Ox does not exist. The ring of adèles may
be easily topologised to become a locally compact, Hausdorff ring, and one then has
available the powerful tools of the theory of locally compact, abelian groups, including
harmonic analysis and Pontryagin duality. Using these tools, K. Iwasawa [Iwa92] and
J. Tate [Tat67] independently proved in the ’50s that the zeta function of K ,

ζK(s) :=
∏

x

(1 − |k(x)|−s)−1,

(the product does not include archimedean x), or more generally the twist of the zeta
function by a Hecke character, has a meromorphic continuation to the entire complex
plane and satisfies a functional equation which relates ζK(s) to ζK(1 − s) in terms of
arithmetic and geometric data such as the discriminant and genus.

1



CHAPTER 1: INTRODUCTION

Of course, these results on ζK were already known. In the case of curves over
global fields, they are due to E. Artin, F. K. Schmidt, and O. Teichmüller (see [Roq02]
[Roq04] [Roq06] for a historical survey); for number fields, E. Hecke. However, the
Tate-Iwasawa method is notable not only for its elegance, efficiency (Hecke’s original
proof for twisted zeta functions of number fields, using higher dimensional theta func-
tions, and described in [Neu99], is very technical) and unification of the geometric and
arithmetic worlds, but also for essentially providing the foundation of the Langlands
programme: it establishes for the algebraic group GL1 the otherwise conjectural and
mysterious Langlands correspondence.

The Hasse-Weil zeta function ζX may be defined for an arbitrary scheme X of finite
type by

ζX(s) =
∏

x∈X0

(1 − |k(x)|−s)−1,

where x runs over the closed points of X . This infinite product converges for <(s) >
dimX , and thereby defines an analytic function on that half-plane. If X is a curve over
a finite field, or X = SpecOK with K a number field, then we recover the aforemen-
tioned ζK . So long as X is regular, ζX is conjectured to have a meromorphic continu-
ation to the entire complex plane, and to satisfy a precise functional equation, formu-
lated by J.-P. Serre [Ser65], which relates ζX(s) to ζX(dimX − s) in terms of arithmetic
and geometric invariants of X .

Schemes of finite type are either geometric or arithmetic. The first are varieties over
a finite field, while the second are models over OK of a variety over a number field K .
For example, an arithmetic surface X can be obtained by starting with a curve over Q,
removing denominators in the equations defining the curve, and then allowing these
equations to define curves Xp over Fp for all primes p, simply by reducing the coeffi-
cients of the equation; X should be imagined as the family of curves (Xp)p, together
with the original curve over Q.

When X is a smooth, projective variety over a finite field (the geometric case), then
Serre’s conjectures follow from Weil’s conjectures, proved by A. Grothendieck,
P. Deligne, and A. Weil using the beautiful theory of étale cohomology. However, it
is here that the arithmetic and geometric worlds part. The tools of étale cohomology
fail to apply properly to arithmetic varieties, for various mathematical and metamath-
ematical reasons. Establishing Serre’s conjectures for the zeta function of an arithmetic
variety is perhaps the most significant open problem in arithmetic geometry.

The zeta function ζX even of an arithmetic surface X is a mysterious object. In fact,
since

ζX(s) =
∏

p

ζXp(s),

this zeta function encodes not only the geometric data of every reduction Xp, but also
the arithmetic structure of how the reductionsXp vary with p. It is astonishing that each
ζXp satisfies a functional equation relating s to 1 − s, while the conjectural functional
equation for ζ relates s to 2 − s. If the generic fibre of X over the number field K is an
elliptic curve E, then

ζX(s) ∼
ζK(s)ζK(s− 1)

LE(s)
,

where LE(s) is the L-function of E and ∼ means ‘equal up to some less interesting
factors’. The study of the main conjectural properties of LE thus becomes equivalent
to the investigation of ζX .

2



CHAPTER 1: INTRODUCTION

1.1.2 Two-dimensional local fields
I was once asked, in response to a description of my research, “Why two?”, to which
I replied “Because it is smaller than three, but bigger than one.”. My interlocutor re-
ceived this with great delight. Flippancy aside, I ought at least to justify the title of this
thesis. Many new problems appear when passing from one-dimensional arithmetic ge-
ometry, which is the study of number fields, to the case of arithmetic surfaces, which
is dimension two. In climbing then to dimension three, similar, not new, but similar,
problems reoccur. Undoubtedly, if we master arithmetic surfaces then we shall under-
stand how to generalise our techniques to higher dimensional arithmetic varieties. So
we shall often focus on arithmetic surfaces for the sake of concreteness.

A two-dimensional local field is a complete, discrete valuation field F whose residue
field F is a usual local field (which can be a called a one-dimensional local field). The
reader who harbours the slightest doubt toward our arguments in the previous para-
graph should now formulate for himself the definition of an n-dimensional local field.
The simplest example of a two-dimensional local field is Qp((t)) with residue field Qp.

Just as local fields are used to study the local properties of global fields,
two-dimensional local fields may be used to study two-dimensional schemes, as we
now explain. Begin with a two-dimensional, domain A which is finitely generated
over Z, with fields of fractions F . Let 0 C p C m C A be a chain of primes in A and
consider the following sequence of localisations and completions:

A  Am  Âm  

(
Âm

)
p′
 

(̂
Âm

)
p′
 

((̂
Âm

)
p′

)

0

= Frac

((̂
Âm

)
p′

)

‖ ‖
Am,p Fm,p

which we now explain in greater detail. It follows from excellence of A that p ′ := pÂm

is a radical ideal of Âm; we then localise and complete at p′, and again use excellence
to deduce that 0 is a radical ideal in the resulting ring, i.e. Am,p is reduced. The total
field of fractions Fm,p is therefore isomorphic to a finite direct sum of fields, and each is
a two-dimensional local field.

Geometrically then, let X be a two-dimension scheme of finite type (i.e. a surface
over a finite field, or an arithmetic surface). Fix a closed point x ∈ X , and a curve
(= irreducible, one-dimensional subscheme) y containing x. Carrying out the above
procedure, with A = OX,x and p being the local equation for y at x, we obtain a finite
direct sum of two-dimensional local fields Fx,y. Two-dimensional adèlic theory aims to
study X via the family (Fx,y)x,y. Chapter 7 is an adèlic study of Grothendieck duality
of an arithmetic surface over its base; the more familiar methods using cohomology
groups are replaced by explicit calculations involving two-dimensional local fields.

Moreover, just as one-dimensional local fields allowed us to simultaneously study
both number fields and curves over finite fields, we hope that two-dimensional adèlic
theory can give a uniform approach to arithmetic and geometric surfaces.

1.1.3 Integration on two-dimensional local fields
We may now explain the main content of this thesis: integration on two-dimensional
local fields. Since the Tate-Iwasawa method allows us to so rapidly deduce the main
properties of zeta functions in dimension one, but the zeta function of an arithmetic
surface remains so perplexing, it is natural to ask if the Tate-Iwasawa method can be
extended. S. Bloch, K. Kato, A. Parshin, and J. Tate have all dreamt of such a theory;
we quote Parshin:

3



CHAPTER 1: INTRODUCTION

“ For a long time the author has been advocating the following:
Problem. Extend Tate-Iwasawa’s analytic method to higher dimensions.
The higher adèles were introduced exactly for this purpose.
Problem. Develop a measure theory and harmonic analysis onn-dimensional
local fields.
Note that n-dimensional local fields are not locally compact topological
spaces for n > 1 and by Weil’s theorem the existence of the Haar measure
on a topological group implies its locally compactness. ”
– A. Parshin, Higher dimensional local fields and L-functions, in [FK00]:

As Parshin observes, two-dimensional local fields are not locally compact (in any
reasonable topology), and therefore the powerful theory of harmonic analysis which
Tate and Iwasawa used is no longer available. This thesis contributes towards the de-
velopment of a suitable replacement.

I. Fesenko [Fes03] [Fes05] [Fes06] was the first to seriously develop theories of inte-
gration and harmonic analysis on higher-dimensional local fields, and there was later
work by H. Kim and K.-H. Lee [KL04] [KL05]. Chapter 2 first presents my reinterpre-
tation and generalisation of Fesenko’s local theories, and this is then used to study zeta
functions on two-dimensional local fields.

1.1.4 Non-commutative theory
In the study a global field K , it is now understood that a great deal of arithmetic infor-
mation is contained not only in the adèle ring AK and the idèle group A×K , but also in
G(AK), where G is a (suitable) algebraic group over K . In stepping from AK to G(AK)
we will almost always find ourselves in the non-commutative world, and the old tools
of harmonic analysis must be replaced by those of representation theory.

The most immediate non-commutative generalisation of Tate-Iwasasa theory is due
to R. Godement and H. Jacquet [GJ72], who proved that the L-function L(π, s) as-
sociated to an automorphic, cuspidal representation π of GLn(AK) has a meromor-
phic continuation to the whole complex plane and satisfies the functional equation
L(π, s) = ε(π, s)L(π̃, 1 − s). According to Langlands’ conjectures, this L-function is
nothing other than the L-function associated to a Galois representation of K .

To generalise Godement and Jacquet’s work, the representation theory of p-adic
groups, and all other aspects of the Langlands programme to higher dimensions, a
necessary first step is to extend the integration theory on a higher dimensional local
field F to produce a translation invariant integral on G(F ), with G an algebraic group.
This has been previously studied by Kim and Lee [KL04] [KL05] for GLn and SLn, and
is the main motivation of chapters 3 and 4.

In chapter 3, the integration theory of chapter 2 is extended to GLn(F ). This requires
proving a linear change of variables formula for integrals on F n. Chapter 4 then con-
siders certain non-linear changes of variables which might appear when generalising
the theory to other algebraic groups.

1.1.5 Model theory of valued fields: a historical overview
The art of using model theory to study valued fields was initiated by J. Ax and
S. Kochen [AK65a] [AK65b] [AK66] [Ax67] and Y. Ershov. Ax and Kochen used el-
ementary ultraproduct methods to study Artin’s conjecture on solutions to homoge-
neous equations. A field F is said to be C2 if and only if every homogeneous equation

4
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in F of degree d in > d2 variables has a zero in F . The field Fp((t)) is C2, and Artin
conjectured that the same was true for Qp. If (Ap)p∈P is a collection of non-empty sets
indexed by an infinite set P , and U is a non-principal ultrafilter on P , recall that the
ultraproduct of the (Ap)p with respect to U is

∏

p∈I

Ap

/
U =

∏

p∈I

Ap

/
∼,

where ∼ denotes the equivalence relation

(ap)p ∼ (a′p)p ⇔ {p ∈ P : ap = a′p} ∈ U .

If each Ap has some additional structure (e.g is a ring, group, etc. or is equipped with
an order, valuation, etc), then the same will usually be true of the ultraproduct. Ax
and Kochen took an ultraproduct U on the set of rational primes, and proved that the
valued fields

∏

p

Qp

/
U ,

∏

p

Fp((t))

/
U

are isomorphic. One may then appeal to Łoš’ theorem [BS69, 5.§2], which states that
an elementary statement concerning the structuresAp is true in the ultraproduct if and
only it is true for almost all p, where ‘almost all’ means ‘on a set belonging to U ’. Since
the notion of ‘being C2 for a fixed d’ can be expressed by an elementary statement, they
deduce that, for any fixed degree d, there is P (d) > 0 such that for all primes p > P (d),
any homogeneous equation in Qp with > d2 variables has a zero.

The next history of interest to us is the quantifier elimination result of A. Macintyre
[Mac76] for the p-adics. Macintyre studied Qp as a model of the language LMac which
now bears his name, which is the language of rings equipped with additional unary
predicates (Pn)n≥2 denoting the set of nth powers. He proved that this language is
sufficient to eliminate quantifiers in the theory of Qp. The power of Macintyre’s result is
that it provides explicit information about the definable subsets of Qp. J. Denef [Den84]
extended this study by proving a cell decomposition result, giving even further insight
into the structure of such sets, and used it to show that the the Igusa local zeta function

ζIg(f, s) =

∫

Zn
p

|f(x)|s dx

is a rational function of p−s. Here f ∈ Zp[X1, . . . , Xn], | · | denotes the p-adic absolute
value, and dx is a Haar measure on Qn

p .
This rationality had previously been established by J. Igusa (see [Igu00] for the proof)

using the resolution of singularities of p-adic manifolds. The importance of Igusa’s
result lies in the following interpretation. LettingNm denote the number of zeros of f in
(Zp/pmZp)n, it had been conjectured by Z. Borevich and I.Shafarevich [BS66, 1.§5.ex9]
that the associated Poincaré series

P (T ) =

∞∑

m=1

NmT
m

was a rational function of T ; but straightforward manipulations reveal that this is the
case if and only the local zeta function ζIg(f, s) is a rational function of p−s.

A remaining problem with Igusa’s local zeta function was to suppose that f had Z
coefficients and study the behaviour of the zeta functions ζIg,p(f, s) as p varies. The
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first results in this direction were obtained by J. Pas [Pas89], who generalised the quan-
tifier elimination and cell-decomposition results for Qp to the case of a Henselian val-
uation field of residue characteristic zero. Pas applied this cell-decomposition to the
ultraproduct

∏
p Qp/U and used Łoš’ theorem to describe the Denef-type decomposi-

tions required to evaluate ζIg,p(f, s) in a manner independent of p (at least, for p large
enough). The final conclusion was that the degrees of the denominators and numera-
tors of the ζIg,p(f, s) (as rational functions in p−s) were bounded independently of p.

A stronger uniformity result which one might expect to be true would be that the
ζIg,p(f, s) would even be uniformly rational; that is, that there exists a rational function
Q(T ) ∈ Q(T ) such that ζIg,p(f, s) = Q(p−s) for p sufficiently large. This, however, is
false, and we offer the following ‘explanation’. The structure of ζIg,p(f, s) is essentially
encoding ramification information about singularities related to f , or about the action
of Frobenius on certain cohomology groups with varying p; but the arithmetic aspect of
this data means that it is controlled not by polynomials, but rather by congruences. To
give a specific example, take f(X) = X2 + 1; if ζIg,p(f, s) were to be uniformly rational
for large p, then it would follow that there exists Q0(T ) ∈ Q(T ) such that

Q0(p) = #{x ∈ Fp : x2 + 1 = 0}

for p� 0. But the number of solutions to X2 + 1 = 0 in Fp is determined by p mod 4,
so this is absurd.

Motivic integration has rapidly developed since it was introduced by M. Kontsevich
in a lecture at Orsay in 1995, and has been subjected to several reincarnations due first
to R. Cluckers, J. Denef, and F. Loeser [CL08] [DL98] [DL01] [DL02b] [DL02a], and then
by E. Hrushovski and D. Kazhdan [HK06] [HK08]. The Cluckers-Denef-Loeser theory
basically gives a geometric interpretation and unification of integration over different
p-adic fields. Whereas Pas deduced his uniformity result for Igusa zeta functions at
different p via cell-decomposition in residue characteristic zero, the fundamental idea
of motivic integration is that it is not only more efficient, but even more insightful, to
directly integrate in residue characteristic zero.

Hrushovski and Kazhdan developed their theory of motivic integration partly in or-
der to obtain uniformity results for p-adic integrals over towers of ramified extensions
of Qp, which was lacking from the Cluckers-Denef-Loeser theory. Their theory is an
incredible sophistication and formalisation of the Ax-Kochen-Ershov principle, which
states that the entire theory of a valued field of residue characteristic zero reduces to
the theory of the value group and residue field.

Hrushovski and Kazhdan only briefly mention the problem of integration on two-
dimensional local fields [HK06, §9.4], and I have struggled to understand their long
and difficult paper for sometime (in fact, Ivan gave me a copy in my PhD interview!).
The major difficulty is that in usual motivic integration, the values of the integrals are
varieties over the residue field, but in two-dimensional integration we wish to obtain
Haar measurable sets over the residue field. With the kind help of Hrushovksi and
Kazhdan during a trip a Jerusalem and subsequent ponderings while at Harvard, the
main idea has become clear in recent months, and chapter 5 explains in detail how to
apply their model theoretic techniques to two-dimensional integration. These results
are only valid for two-dimensional local fields of residue characteristic zero, such as
Qp((t)); extending this theory, as well as motivic integration, to finite residue charac-
teristic is considered in subsection 6.1.3.

6
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1.1.6 Ramification
One dimensional ramification theory, in which one studies the ramification properties
of extensions of global and (one-dimensional) local fields, is a beautiful and complete
theory (good references are [FV02] [Ser79] [Neu99]). Moreover, the passage from the
local to the global is well understood, with global invariants typically expressed as
products of the corresponding local invariants.

Extending the ramification theory to higher dimensional local fields, or, more gen-
erally, complete discrete valuation fields with imperfect residue field was, for a long
time, a significant open problem. A theory has now been developed by A. Abbes and
T. Saito [AS02] [AS03] using rigid geometry; some alternative approaches are due to
J. Borger [Bor04b] [Bor04a], K. Kato [Kat89] [Kat94], and I. Zhukov [Zhu00] [Zhu03].
Subsection 6.1.2 provides a summary of Abbes and Saito’s theory.

However, the global situation in higher dimensions remains mysterious, even for
algebraic surfaces over a finite field. The Grothendieck-Ogg-Shafarevich formula for
a curve expresses global information (the Euler characteristic of an `-adic sheaf on a
dense open subset of the curve) in terms of the Euler characteristic of the curve and
local ramification data. An open problem which has attracted many of the best arith-
metic geometers including S. Bloch, P. Deligne, and K. Kato is that of finding a higher-
dimensional generalisation. For arithmetic surfaces, partial results have been obtained
by Saito [Sai91] for `-adic sheaves of dimension 1, using abelian ramification theory and
two-dimensional class field theory, and by Abbes [Abb00], using the ramification the-
ory he developed with Saito. Chapter 6 studies the Riemann-Hurwitz formula, which
is a special case of Grothendieck-Ogg-Shafarevich, and investigates to what extent in-
tegration theory can be useful in understanding ramification.

In dimension one, the theories of Tate-Iwasawa and Godement-Jacquet capture ram-
ification data such as the conductor using the properties of local zeta functions, and
this was part of the motivation for studying the two-dimensional local zeta functions
in chapter 2.

1.2 The writing and reading of this thesis
A few words on this thesis’ history may be useful. The majority of my first year as a
PhD student was occupied by the study of class field theory, automorphic represen-
tations, and model theory, the reading of various of Fesenko’s papers, and research
into higher-dimensional integration. This culminated in the writing of three papers
[Mor08d] [Mor08c] [Mor08b], which, with only minor modifications (removal of intro-
ductions and summaries of earlier work, etc.) form chapters 2, 3, and 4.

I spent a significant portion of my second year learning Grothendieck-style algebraic
geometry and motivic integration. Excluding section 6.1 on ramification, I wrote most
of chapter 6 (as the paper [Mor08a]) during this period, while I was wondering about
the importance of integration theory.

In my third year, thanks to the Cecil King Travel Scholarship, I visited the Insti-
tut des Hautes Études Scientifiques, Paris, for one month, the Hebrew University of
Jerusalem for two weeks, and Harvard University, Boston, for six weeks. While at the
IHÉS, C. Soulé suggested, as Fesenko had earlier, that an adèlic interpretation of dual-
ity was an interesting goal; although he had in mind `-adic duality, I was interested in
Grothendieck duality at the time and this work is contained in chapter 7, which was
not written in its final form until May 2009, initially as the article [Mor09].

Chapter 5 on model theoretic integration and most of section 6.1 were written during
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June and July 2009 after, as I have already mentioned, a long personal battle with the
subject.

The chapters were initially written as separate papers, and this will undoubtedly
be clear to the astute reader. However, wishing not to frustrate the reader, I have re-
moved duplicated material as far as is possible while simultaneously leaving the chap-
ters largely independent. I hope that the reader notices a variation of mathematical
maturity between chapters 2, 3, 4, 6 (minus 6.1) and chapters 5, 7, as they were written
at least a year apart.

I would suggest to the reader that he begins with the introduction (where else?),
including the summaries of the chapters and the basics of higher dimensional integra-
tion. Chapters 2, 3 and 4 could then be looked at briefly, to gain some intuition for
two-dimensional integration. Sections 5.1, 6.1, 7.1 are quite discursive and therefore
may be more enjoyable to read. The rest of chapter 5 is then probably only accessible
to model theorists (sorry); the rest of chapters 6 and 7 are independent of the rest of the
thesis (and of each other), and have a flavour closer to ‘normal’ algebraic/arithmetic
geometry.

1.3 Detailed summaries
1.3.1 Chapter 2: Integration on valuation fields over local fields
Let F be a valuation field with value group Γ and ring of integers OF , whose residue
field F is a non-discrete, locally compact field (i.e. a local field: R, C, or
non-archimedean). Given a Haar integrable function f : F → C, we consider the
lift, denoted f 0,0, of f to OF by the residue map, as well as the functions of F obtained
by translating and scaling

x 7→ f0,0(αx+ a)

for a ∈ F , α ∈ F×. We work with the space spanned by these function as f varies.
A simple linear independence result (proposition 2.1.5) is key to proving that an inte-
gral taking values in CΓ (the complex group algebra of Γ), under which f 0,0 has value∫
F f(u) du, is well defined.
The integration yields a translation invariant measure, explained in section 2.2. For

example, in the case of C((t)), the set Stn + tn+1C[[t]] is given measure µ(S)Xn in
R[X,X−1], where S is a Lebesgue measurable subset of C of finite measure µ(S).

In section 2.3, the first elements of a theory of harmonic analysis are presented for
fields which are self-dual in a certain sense. For this we must enlarge our space of
integrable functions by allowing twists by a certain collection of additive characters;
the central result is that the integral has a unique translation-invariant extension to this
larger class of functions. A Fourier transform may then be defined in the usual way; a
double transform formula is proved.

The short section 2.4 explains integration on the multiplicative group of F . Here
we generalise the relationship d

×
x = |x|−1d+x between the multiplicative and additive

Haar measures of a local field.
If F is a higher dimensional local field then the main results of the aforementioned

sections reduce to results of Fesenko in [Fes03] and [Fes06]. However, the results here
are both more general and abstract; in particular, if F is archimedean then we provide
proofs of claims in [Fes03] regarding higher dimensional archimedean local fields, and
whereas those papers work with complete fields, we require no topological conditions.
This more abstract approach to the integration theory appears to be powerful; we will
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use it to deduce the existence of a translation invariant integral on GLn(F ) in chapter 3
and prove Fubini’s theorem for certain repeated integrals over F × F in chapter 4.

In the final sections of the chapter, we consider various zeta integrals. In section 2.5,
parts of the theory of local zeta integrals over F are lifted to F . In doing so we are led
to consider certain divergent integrals related to quantum field theory and we suggest
a method of obtaining epsilon constants from such integrals.

We then consider zeta integrals over the local field F ; a ‘two-dimensional’ Fourier
transform f 7→ f ∗ is defined (following Weil [Wei95] and [Fes03] in the non-archimedean
case) and we prove, following the approaches of Tate and Weil, that it leads to a local
functional equation, with appropriate epsilon factor, with respect to s goes to 2 − s:

Z(g∗, ω−1, 2 − s) = ε∗(ω, s)Z(g, ω, s).

See proposition 2.6.17 for precise statements. After explicitly calculating some
∗-transforms we use this functional equation to calculate the ∗-epsilon factors for all
quasi-characters ω. These results on zeta integrals and epsilon factors are then used to
prove that ∗ is an automorphism of the Schwartz-Bruhat space S(F ), which, though
important, appears not to have been considered before. When F is archimedean we
define a new ∗-transform and consider some examples.

In section 2.7, zeta integrals over the two-dimensional local field F are considered
following [Fes03]. Lacking a measure theory on the topological K-group K top

2 (F ) (the
appropriate object for class field theory of F ; see [Fes91]), a zeta integral over (a sub-
group of) F× × F× is considered:

ζ(f, χ, s) =

∫ F××F×

f(x, y)χ ◦ t(x, y)|t(x, y)|s charT (x, y) d
×
xd

×
y.

Meromorphic continuation and functional equation are established for certain ‘tame
enough’ quasi-characters; in these cases the functional equation, and explicit L-
functions and epsilon factors, follow from properties of the ∗-transform on F . Our
results are compared with [Fes03].

The advantages of our new approach to the integration theory are apparent in these
chapters on local zeta integrals. Our approach is to lift known results up from the local
field F , rather than try to generalise the proof for a local field to the two-dimensional
field. For example, we therefore immediately know that many of our local zeta func-
tions have meromorphic continuation. Apparently complicated integrals on F reduce
to familiar integrals over F where manipulations are easier; for example, we may work
at the level of F even though we are calculating epsilon factors for two-dimensional zeta
integrals. The weakness is that it does not seem to allow much wild ramification infor-
mation to be obtained.

The appendices are used to discuss some results which would otherwise interrupt
the chapter. Firstly, the set-theoretic manipulations in [Fes03] (used to prove that the
measure is well-defined) are reproved here more abstractly. Secondly we discuss what
we mean by a holomorphic function taking values in a complex vector space; this al-
lows us to discuss meromorphic continuation of our zeta functions.

1.3.2 Chapter 3: Integration on product spaces and GLn of a valuation field
over a local field

As discussed above, to generalise the non-commutative theory of local and global
fields to higher dimensions, and particularly to generalise Godement-Jacquet theory,
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one must first develop a translation-invariant integration theory on GLn of higher di-
mensional local fields. That is the subject of this chapter.
F , Γ, etc. continue to be as in chapter 2. In section 3.1, the integral on F developed

in chapter 3 is extended to F n using repeated integration. So that Fubini’s theorem
holds, we consider C(Γ)-valued functions f on F n such that for any permutation σ of
{1, . . . , n} the repeated integral

∫ F

. . .

∫ F

f(x1, . . . , xn) dxσ(1) . . . dxσ(n)

is well defined, and its value does not depend on σ; such a function is called Fubini.
Now suppose that g is a Schwartz-Bruhat function onF n; let f be the complex-valued

function on F n which vanishes off On
F , and satisfies

f(x1, . . . , xn) = g(x1, . . . , xn)

for x1, . . . , xn ∈ OF . f is shown to be Fubini in the second section. In proposition 3.2.12
it is shown that if a ∈ F and τ ∈ GLn(F ), then x 7→ f(a+ τx) is also Fubini and

∫ Fn

f(a+ τx) dx = |det τ |−1

∫ Fn

f(x) dx (∗)

where | · | is an absolute value on F . The main result of the third section, theorem
3.2.4, easily follows: there exists a space of Fubini functions L(F n, GLn) such that
L(F n, GLn) is closed under affine changes of variable, with (∗) holding for
f ∈ L(F n, GLn).

Next, just as in the classical case of a local field, we look at C(Γ)-valued functions
φ on GLn(F ), for which τ 7→ φ(τ)|det τ |−n belongs to L(F n

2

), having identified F n2

with the space of n × n matrices over F . This leads to an integral on GLn(F ) which
is left and right translation invariant, and which lifts the Haar integral on GLn(F ) in a
certain sense.

Finally we discuss extending the theory to the case of an arbitrary algebraic group.

1.3.3 Chapter 4: Fubini’s theorem and non-linear changes of variables over
a two-dimensional local field

This chapter considers the issue of Fubini’s theorem and non-linear polynomial changes
of variables for integration over a two-dimensional local field.

To extend the approach in chapter 3 from GLn to an arbitrary algebraic group it is
necessary to have a theory of integration on finite dimensional vector spaces over F
which behaves well under certain non-linear changes of variable (for the GLn theory,
linear changes of variable sufficed). Moreover, for use in applications, it is essential
that Fubini’s theorem concerning repeated integrals is valid. This chapter considers
the problem of establishing whether the equality

∫ F ∫ F

g(x, y − h(x)) dydx =

∫ F ∫ F

g(x, y − h(x)) dxdy

holds for appropriate functions g and polynomials h. Moreover, the methods used
appear to be suitable for changes of variables much more general than (x, y) 7→ (x, y −
h(x)).

The chapter begins by describing the action of polynomials onF . Given a polynomial
h ∈ OF [X], and a translated fractional ideal b + tAOF ⊆ OF , we show how to write
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{x ∈ OF : h(x) ∈ b + tAOF } as a finite disjoint union of translated fractional ideals;
here t is a local parameter of F as a discrete valuation field. If a + tcOF is one of
these translated fractional ideals, it is also important to understand the behaviour of
the function

h : a+ tcOF → b+ tAOF .

The impetus of this chapter is conjecture 4.2.1, which we rapidly reduce to the fol-
lowing: if f is a Schwartz-Bruhat function on F × F , f 0 = f0,0 is the lift of f to F × F ,
and h ∈ F [X] is a polynomial, then surely

∫ F ∫ F

f0(x, y − h(x)) dydx =

∫ F ∫ F

f0(x, y − h(x)) dxdy.

In section 4.2 the conjecture is shown to be true if h is linear or if all coefficients of h
belong to OF .

The technically difficult case of when h contains coefficients not in OF is taken up
in the next section. Introduce a polynomial q ∈ F [X] and integer R < 0 by the three
conditions h(X) = h(0) + tRq(X), q ∈ OF [X], and q /∈ tOF [X]. We give explicit
expressions for the integral of

∫ F
f0(x, y − h(x)) dx in terms of the decomposition of

sets of the form {x ∈ OF : q(x) ∈ b+ t−ROF }; the conjecture easily follows if R = −1 so
long as q, the image of q in F [X], is not a purely inseparable polynomial. WhenR < −1

calculations become difficult, and the function y 7→
∫ F

f0(x, y − h(x)) dx can fail to be
integrable, meaning that the conjecture fails; however, we present examples suggesting
that the space of integrable functions could be extended so as to remedy this deficit.

We then consider the possibility that F has positive characteristic and q is purely
inseparable. When R = −1 it is shown that

∫ F ∫ F

f0(x, y − h(x)) dydx =

∫

F

∫

F
f(x, y) dydx

but ∫ F ∫ F

f(x, y − h(x)) dxdy = 0.

So if f has non-zero Haar integral overK×K then the conjecture drastically fails. This
fascinating result provides an explicit example to show that the work of Hrushovski
and Kazhdan really can fail in positive characteristic, and we discuss its relationship
with ramification theory.

In the final section we summarise the results obtained and discuss possible future
work in this direction.

1.3.4 Chapter 5: Two-dimensional integration à la Hrushovski-Kazhdan
Here we explain how Hrushovski and Kazhdan’s model theoretic integration theory
can be applied to two-dimensional integration.

The first section describes the main results of the chapter without model theory, for
the reader unversed in the discipline; since it is thoroughly explained there, with moti-
vation, we say no more about it here.

After a section on the possible first order languages which can be used to describe
valued fields, and recalling standard results on which theories admit the elimination
of quantifiers in their languages, the main content of the chapter begins with section
5.3, in which we analyse definable sets in a valued field of residue characteristic zero.
We work in a theory of valued fields which eliminates field quantifiers, and we allow
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arbitrary structure on the residue field so that we can later specialise to the case when
the residue field is Qp or R, say. In particular, we establish that definable sets without
any topological interior are necessarily contained inside a proper Zariski closed set;
this seemingly technical result has many useful consequences. For example, we use it
to deduce that definable functions are smooth away from a proper Zariski closed set.

We then recall the notion of V-minimality for a theory of valued fields, which plays an
important role in [HK06]. Finally, we generalise, from the algebraically closed situation
to the case of a two-dimensional local field, Hrushovski and Kazhdan’s main decom-
position result which states that any definable subset of the valued field is isomorphic
to lifts of sets from the residue field and value group.

1.3.5 Chapter 6: Ramification, Fubini’s theorem, and Riemann-Hurwitz for-
mulae

This chapter grew from the author’s attempt to understand better the role of integra-
tion, particular Fubini’s theorem, in geometry and ramification theory. The first section
is really a continuation of the previous chapter. We first outline a possible methodol-
ogy for using model theory to understand the ramification theory of complete discrete
valuation fields of Abbes and Saito, and then explain why this gives hope that it will be
possible to unify the Hrushovksi-Kazhdan integration theory with ramification theory,
thereby developing a motivic integration theory which is valid in finite characteristic.

The main part of the chapter then begins with a section reviewing the concept of an
Euler characteristic for a first order structure in model theory. The discussion is purely
algebraic for the benefit of readers unfamiliar with model theory, and various examples
are given.

Once an Euler characteristic is interpreted as an integral, it is natural to ask whether
Fubini’s theorem holds; that is, whether the order of integration can be interchanged
in a repeated integral. In the second section we consider finite morphisms between
smooth curves over any algebraically closed field, and show that Fubini’s theorem is
almost equivalent to the Riemann-Hurwitz formula. More precisely, in characteristic
zero the two are equivalent and so Fubini’s theorem is satisfied, whereas in finite char-
acteristic the possible presence of wild ramification implies that, for any Euler charac-
teristic, interchanging the order of integration is not always permitted.

Section 6.4 discusses a notion weaker than the full Fubini property: a so-called strong
Euler characteristic [Kra00] [KS00]. We show that over an algebraically closed field of
characteristic zero, there is exactly one strong Euler characteristic (over the complex
numbers, this is the usual topological Euler characteristic).

We then return to finite morphisms between algebraic varieties, this time considering
surfaces. Again, Fubini’s theorem is related to a Riemann-Hurwitz formula, originally
due to Iversen [Ive70]. Our methods provide a new proof of his result and we discuss
the situation in finite characteristic.

1.3.6 Chapter 7: An explicit approach to residues on and canonical sheaves
of arithmetic surfaces

This chapter studies arithmetic surfaces using two-dimensional local fields associated
to the scheme, and thus further develops the adèlic approach to higher dimensional
algebraic and arithmetic geometry. We study residues of differential forms and give an
explicit construction of the dualising sheaf. While considerable work on these topics
has been done for varieties over perfect fields by Lipman, Lomadze, Parshin, Osipov,
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Yekutieli, et al., the arithmetic case has been largely ignored. The chapter begins with
a discussion of its relation to this earlier work, where we provide extensive references.

In section 7.2 we consider a two-dimensional local field F of characteristic zero and
a fixed local field K ≤ F . We introduce a relative residue map

ResF : Ωcts
F/K → K,

where Ωcts
F/K is a suitable space of ‘continuous’ relative differential forms. In the case

F ∼= K((t)), this is the usual residue map; but if F is of mixed characteristic, then
our residue map is new (though essentially contained in Fesenko’s adèlic analysis and
Osipov’s study of algebraic surfaces - see subsections 7.1.3 and 7.1.6). Functoriality of
the residue map is established with respect to a finite extension F ′/F , i.e.

ResF TrF ′/F = ResF ′ .

In section 7.3 we prove the reciprocity law for two-dimensional local rings, justifying
our definition of the relative residue map for mixed characteristic fields. For example,
suppose A is a characteristic zero, two-dimensional, normal, complete local ring with
finite residue field, and fix the ring of integers of a local field OK ≤ A. To each height
one prime yCA one associates the two-dimensional local field Frac Ây and thus obtains
a residue map Resy : ΩFracA/K → K . We prove

∑

y

Resy ω = 0

for all ω ∈ ΩFracA/K . The subsequent section restates these results in the geometric
language.

Next we turn to the study of the canonical sheaf of an arithmetic surface. In section
7.5 we recall various results about local complete intersection curves from a perspective
suitable for our work. Section 7.6 establishes an important local ramification result,
generalising a classical formula for the different of an extension of local fields. LetB be
a Noetherian, normal ring, and

A = B[T1, . . . , Tm]/〈f1, . . . , fm〉

a normal, complete intersection overB which is a finitely generatedB-module; assume
that the corresponding extension F/M of fraction fields is separable. Letting J ∈ A be
the determinant of the Jacobian matrix of f1, . . . , fm, we prove that

{x ∈ F : TrF/M (xA) ⊆ B} = J−1A.

In other words, the canonical and dualising sheaves of A/B are the same. The proof
reduces to the case when A, B are complete discrete valuation rings with an insepa-
rable residue field extension; for more on the ramification theory of complete discrete
valuation fields with imperfect residue field, see the discussion above and references
therein.

Finally, in section 7.7, we use our local residue maps and results on complete in-
tersections to explicitly construct the dualising sheaf of an arithmetic surface. Let
OK be a Dedekind domain of characteristic zero with finite residue fields; its field
of fractions is K . Let π : X → S = SpecOK be a flat, surjective, local complete
intersection, with smooth, connected, generic fibre of dimension 1. To each closed
point x ∈ X and integral curve y ⊂ X containing x, our local residue maps define
Resx,y : Ω1

K(X)/K → Kπ(x) (= π(x)-adic completion of K), and we prove
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Theorem 1.3.1. The canonical sheaf of X → S is explicitly given by, for open U ⊆ X ,

ωX/S(U) = {ω ∈ ΩK(X)/K : Resx,y(fω) ∈ ÔK,π(x) for all x ∈ y ⊂ U and f ∈ OX,y}

where x runs over all closed points of X inside U and y runs over all curves containing x.

1.4 Precise basics of higher dimensional integration
Having informally discussed the problem of higher dimensional integration, we should
present a precise summary of the basics of the theory so that the reader knows what is
ahead.

Let F be a valuation field with value group Γ and ring of integers OF , whose residue
field F is a (one-dimensional) local field. We assume that the valuation splits, and fix a
splitting t : Γ → F×. C(Γ) denotes the field of fractions of the complex group algebra
CΓ of Γ; the basis element of the group algebra corresponding to γ ∈ Γ shall be written
as Xγ rather than as γ. We fix a choice of Haar measure on F .

1.4.1 Integration on F

Here we summarise the integration theory which will be developed in sections 2.1 and
2.4 of chapter 2.

Definition 1.4.1. For g a function on F taking values in an abelian group A, set

g0 : F → A

x 7→

{
g(x) x ∈ OF

0 otherwise.

More generally, for a ∈ F , γ ∈ Γ, the lift of g at a, γ is the A-valued function on F
defined by

ga,γ(x) =

{
g((x− a)t(−γ)) x ∈ a+ t(γ)OF

0 otherwise

Note that g0,0 = g0 and ga,γ(a+ t(γ)x) = g0(x) for all x ∈ F .

Definition 1.4.2. Let L denote the space of complex-valued Haar integrable functions
on F . A simple function on F is a C(Γ)-valued function of the form

x 7→ ga,γ(x)Xδ

for some g ∈ L, a ∈ F , γ, δ ∈ Γ.
Let L(F ) denote the C(Γ) space of all C(Γ)-valued functions spanned by the simple

functions; such functions are said to be integrable on F .

Remark 1.4.3. Note that the space of integrable functions is the smallest C(Γ) space of
C(Γ)-valued functions on F with the following properties:

(i) If g ∈ L, then g0 ∈ L(F ).

(ii) If f ∈ L(F ) and a ∈ F then L(F ) contains x 7→ f(x+ a).

(iii) If f ∈ L(F ) and α ∈ F× then L(F ) contains x 7→ f(αx).

14



CHAPTER 1: INTRODUCTION

In fact, it is clear that if f is simple then for a ∈ F and α ∈ F×, the functions x 7→
f(x+ a) and x 7→ f(αx) are also simple.

The basic result on existence and properties of an integral will be follows:

Theorem 1.4.4. There is a unique C(Γ)-linear functional
∫ F on L(F ) which satisfies

(i)
∫ F lifts the Haar integral on F : for g ∈ L,

∫ F

(g0) =

∫
g(u) du;

(ii) Translation invariance: for f ∈ L(F ), a ∈ F ,
∫ F

f(x+ a) dx =

∫ F

f(x) dx;

(iii) Compatibility with multiplicative structure: for f ∈ L(F ), α ∈ F×,
∫ F

f(αx) dx = |α|−1

∫ F

f(x) dx.

Here the absolute value of α is defined by |α| = |αt(−ν(α))|X ν(α), and we have adopted the
customary integral notation

∫ F
(f) =

∫ F
f(x) dx.

Proof. See chapter 2, especially proposition 2.1.12 and lemma 2.4.1.

Remark 1.4.5. If ga,γ is the lift of a Haar integrable function, then
∫ F

ga,γ(x) dx =

∫
g(u) duXγ .

1.4.2 Integration on F × F

Now we summarise the integration theory for the product space F × F . Proofs of this
material may be found for the more general case of F n in section 3.1 of chapter 3.

Definition 1.4.6. A C(Γ)-valued function g on F × F is said to be Fubini if and only if
both its repeated integrals exist and are equal. That is, we require:

(i) for all x ∈ F , the function y 7→ g(x, y) is integrable, and then that the function
x 7→

∫ F
g(x, y) dy is also integrable;

(ii) for all y ∈ F , the function x 7→ g(x, y) is integrable, and then that the function
y 7→

∫ F
g(x, y) dx is also integrable;

(iii)
∫ F ∫ F

g(x, y) dxdy =
∫ F ∫ F

g(x, y) dydx.

Similarly, an integrable complex valued function f on K × K will be called Fubini if
and only if both its repeated integrals exist and are equal.

15
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Remark 1.4.7. Recall that the existence and equality of the repeated integrals of a com-
plex valued function on K × K does not imply its integrability on K × K (see e.g.
[Rud87, example 8.9c]) which is why we have separately imposed that condition. How-
ever, in our applications we will restrict to well enough behaved functions for this sub-
tle problem to be irrelevant.

Fubini’s theorem implies that almost all (in the sense of failing off a set of measure
of zero) the horizontal and vertical sections of any integrable function on K × K are
integrable. Therefore any integrable function on K ×K differs off a null set from some
Fubini function. However, there is no satisfactory theory of lifting null sets from K to
F , so we restrict attention to Fubini functions on K ×K .

Any function in the Schwartz-Bruhat space of K × K is Fubini; recall that if K is
archimedean these are the smooth functions of rapid decay at infinity, and if K is non-
archimedean these are the locally constant functions of compact support.

Also see remark 3.1.3.

The main properties of the collection of Fubini functions on F × F are the following:

Proposition 1.4.8. The collection of Fubini functions on F × F is a C(Γ)-space with the
following properties:

(i) If g is Fubini on F × F , then so is (x, y) 7→ g(α1x+ a1, α2y + a2)X
γ for any ai ∈ F ,

αi ∈ F×, γ ∈ Γ, with repeated integral
∫ F ∫ F

g(α1x+ a1,α2y + a2)X
γ dxdy

= |α1|
−1|α2|

−1

∫ F ∫ F

g(x, y) dxdyXγ .

(ii) If f is Fubini on K ×K , then

f0(x, y) :=

{
f(x, y) x, y ∈ OF ,

0 otherwise,

is Fubini on F × F , with repeated integral
∫ F ∫ F

f0(x, y) dxdy =

∫

K

∫

K
f(u, v) dudv.

Proof. See lemma 3.1.5 and proposition 3.1.8.

Remark 1.4.9. The proposition implies that if f is Fubini on K ×K , a1, a2 ∈ F , γ1, γ2 ∈
Γ, then the function g = f (a1,a2),(γ1,γ2) of F × F defined by

f (a1,a2),(γ1 ,γ2)(a1 + t(γ1)x, a2 + t(γ2)y) = f0(x, y)

for all x, y ∈ F is Fubini. The function g is said to be the lift of f at (a1, a2), (γ1, γ2).
Proposition 1.4.8 implies

∫ F ∫ F

g(x, y) dxdy =

∫ F ∫ F

g(x, y) dydx =

∫

K

∫

K
f(u, v) dudv Xγ1+γ2 .

Also see remark 3.1.9.
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1.5 Future directions
To finish the introduction, we mention several areas related to this thesis which de-
mand investigation.

1.5.1 Mathematical physics
The field R(t), and certain subspaces of R((t)), may be identified with spaces of func-
tions. In particular, tR[t] may be identified with a subspace of the space of continuous
paths [0, 1] → R which vanish at 0 i.e. Wiener space. It would be interesting to under-
stand relations between Wiener measure and the two-dimensional measure.

The Feynman integral is a mysterious tool of mathematical physics which can be
used to make very accurate predictions in quantum field theory by computing inte-
grals over certain infinite-dimensional spaces of paths. Finding a rigorous mathemat-
ical definition of these integrals is a major open problem in mathematical physics; see
[JL00] for discussion of the problems. The archimedean two-dimensional local field
C((t)) contains many subspaces, such as C[t], which may be identified with spaces of
continuous paths in the complex plane, and it is expected that two-dimensional inte-
gration will give new mathematical insights into Feynman’s path integral. Evidence
of the relations between quantum field theory and the measure on archimedean two-
dimensional local fields may be found in sections 16, 18 of [Fes06] and example 2.5.6 of
chapter 2.

The values of divergent integrals in quantum field theory, after renormalisation, ap-
pear as epsilon factors in our local zeta integrals (example 2.5.6). The duality provided
by a functional equation would provide arithmetic arguments for the values of such
integrals. It would be very interesting to investigate whether this arithmetic value co-
incides with the physical value.

There are relations between the geometric Langlands programme and conformal
field theory (see e.g. [Fre07]). Hence suitable physical interpretations of this work
and its extensions may provide insight into problems of field theory.

1.5.2 Model-theoretic integration
As discussed in subsection 5.1.4, there are remaining problems with the Hrushovski-
Kazhdan style integration on two-dimensional local fields of residue characteristic zero.
However, it seems that these difficulties are close to being resolved.

A different idea, which I did not manage to explore during the past three years, is
Fesenko’s idea of understanding higher dimensional integration using nonstandard (in
the model-theoretic sense) techniques. The Haar measure on a locally-compact, abelian
group may be interpreted as a hyperfinite counting measure [Gor97], and so perhaps
it is possible to interpret the integral on a two-dimensional local field as a nonstandard
limit of Haar measures in some sense.

1.5.3 Ramified zeta integrals
The proof of the functional equation in section 2.7 can surely be extended to a wider
class of functions and characters. In particular there should be a theory for ramified
characters which encodes interesting ramification data related to the Abbes and Saito
theory.
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1.5.4 Non-linear change of variables and Fubini’s theorem
As discussed above regarding translation invariant integration on algebraic groups
over two-dimensional local fields, it is important to understand the behaviour of the
integral on F n with respect to non-linear changes of variables and to investigate the va-
lidity of Fubini’s theorem. In residue characteristic zero I believe that continued work
using the techniques of chapter 5 will produce all expected results. In finite residue
characteristic the problem is more mysterious, as proposition 4.4.1 shows, and related
to ramification theory; hopefully work on the programme outlined in subsection 6.1.3
on uniting integration theory with ramification theory will provide insight.

1.5.5 Integration on algebraic groups
See section 3.4.

1.5.6 Two-dimensional Langlands
Two-dimensional Langlands, if it exists, is deeply mysterious. Perhaps a study of suit-
able representations of GLn(F ), with F a two-dimensional local field, involving inte-
gration and non-commutative zeta integrals would be useful.

1.5.7 Arithmetic surfaces
See subsection 7.1.7.
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CHAPTER 2

Integration on valuation fields over local fields

This chapter develops the basic higher dimensional integration theory and harmonic
analysis, and contains applications to two-dimensional local zeta functions.

Notation

Let Γ be a totally ordered abelian group and F a field with a valuation ν : F × → Γ
with residue field F , ring of integers OF and residue map ρ : OF → F (also denoted
by an overline). Suppose further that the valuation is split; that is, there exists a homo-
morphism t : Γ → F× such that ν ◦ t = idΓ. The splitting of the valuation induces a
homomorphism η : F× → F

× by x 7→ xt(−ν(x)) (often called the angular component
map). Assume also that Γ contains a minimal positive element, denoted 1 (this is not
essential, but convenient for many examples).

Sets of the form a+ t(γ)OF are translated fractional ideals; γ is referred to as the height
of the set.

C(Γ) denotes the field of fractions of the complex group algebra CΓ of Γ; the basis
element of the group algebra corresponding to γ ∈ Γ shall be written as X γ rather than
as γ. With this notation, XγXδ = Xγ+δ . Note that if Γ is a free abelian group of finite
rank n, then C(Γ) is isomorphic to the rational function field C(X1, . . . , Xn).

The residue field F is assumed to be a non-discrete, locally compact field, i.e. a
local field. We fix a choice of Haar measure on F ; occasionally, for convenience, we
shall assume that OF has measure one. The measure on F

× is chosen to satisfy d×
x =

|x|−1d+x.

These assumptions hold for a higher dimensional local field. For basic definitions
and properties of such fields, see [FK00].

Indeed, suppose that F = Fn is a higher dimensional local field of dimension n ≥ 2:
we allow the case in which F1 is an archimedean local field. If F1 is non-archimedean,
instead of the usual rank n valuation v : F× → Zn, let ν be the n− 1 components of v

corresponding to the fields Fn, . . . , F2; note that v = (νF ◦ η, ν). If F1 is archimedean,
then F may be similarly viewed as a valuation field with value group Zn−1 and residue
field F1.

The residue field of F with respect to ν is the local field F = F1. If F is non-
archimedean, then the ring of integers OF of F with respect to the rank n valuation
is equal to ρ−1(OF ), while the groups of units O×F with respect to the rank n valuation
is equal to ρ−1(O×

F
).
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2.1 Integration on F

In this section we explain the basic theory of integration on F ; a summary of the main
results can be found in subsection 1.4.1. The following definition is fundamental:

Definition 2.1.1. Let f be a function onF taking values in an abelian groupA; let a ∈ F ,
γ ∈ Γ. The lift of f at a, γ is the A-valued function on F defined by

fa,γ(x) =

{
f((x− a)t(−γ)) x ∈ a+ t(γ)OF ,

0 otherwise.

In other words,

f0,0(x) =

{
f(x) x ∈ OF ,

0 otherwise.

and fa,γ(a+ t(γ)x) = f 0,0(x) for all x.

It is useful to understand how lifted functions behave on translated fractional ideals:

Lemma 2.1.2. Let f a,γ be a lifted function as in the definition; let b ∈ F , δ ∈ Γ. Then for all x
in OF ,

case δ > γ:

fa,γ(b+ t(δ)x) =

{
f((b− a)t(−γ)) b ∈ a+ t(γ)OF ,

0 otherwise.

case δ = γ:

fa,γ(b+ t(δ)x) =

{
f((b− a)t(−γ) + x) b ∈ a+ t(γ)OF ,

0 otherwise.

case δ < γ:

fa,γ(b+ t(δ)x) =

{
f((b+ t(δ)x − a)t(−γ)) x ∈ (a− b)t(δ)−1 + t(γ − δ)OF ,

0 otherwise.

In particular, in this final case, if x, y ∈ OF are such that fa,γ(b + t(δ)x) and f a,γ(b +
t(δ)y) are non-zero, then x = y.

Proof. This follows from the definition of a lifted function by direct verification.

Let L denote the space of complex-valued, Haar integrable functions on F .

Remark 2.1.3.

(i) For a ∈ F, γ ∈ Γ, let La,γ denote the space of complex valued functions on F of
the form fa,γ , for f ∈ L. Suppose a1 + t(γ1)OF = a2 + t(γ2)OF . Then γ1 = γ2 and

fa1,γ1(x) = fa2,γ2(x+ a2 − a1) = ga2 ,γ2(x)

where g ∈ L is the function g(y) = f(y + (a2 − a1)t(−γ2)). Hence La1,γ1 = La2,γ2 .

(ii) Given a lifted function f a,γ and τ ∈ F , the translated function x 7→ f a,γ(x+ τ) is
the lift of f at a− τ, γ
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Definition 2.1.4. For J = a + t(γ)OF a translated fractional ideal of F , define L(J) to
be the space of complex-valued functions of F of the form f a,γ , for f ∈ L. Introduce an
integral on L(J) by ∫ J

: L(J) → C, fa,γ 7→

∫

F
f(u) du.

By remarks 2.1.3 and translation invariance of the Haar integral on F , the integral is
well-defined (i.e. independent of a, γ).

Proposition 2.1.5. The sum, inside the space of all complex-valued functions on F , of the
spaces L(J), as J varies over all translated fractional ideals, is a direct sum.

Proof. Let Ji, for i = 1 . . . , n, be distinct translated fractional ideals, of height γi say.
Suppose fi ∈ L(Ji) for each i, with

∑
i fi = 0; we may suppose that γ1 ≤ γ2 ≤ · · · ≤ γn.

Fix a value of i satisfying 1 ≤ i < n. If γi = γn, then Ji and Jn are disjoint translated
fractional ideals, and so fi is constantly zero on Jn. Else γi < γn, and then the first case
of lemma 2.1.2 implies that fi is constant on Jn.

Therefore fn = −
∑n−1

i=1 fi is constant on Jn, implying that fn is the lift of a constant
function, and therefore that it is zero (for L contains no other constant function). The
proof now follows by induction.

This linear independence result clearly allows us to extend the
∫ J , as J varies over

all translated fractional ideals, to a single functional:

Definition 2.1.6. Let L(F )C be the space of complex-valued functions spanned by L(J)

for all translated fractional ideals J . Let
∫ F

: L(F )C → C(Γ) denote the unique linear
map such that if f ∈ L(J) for some J of height γ, then

∫ F
(f) =

∫ J
(f) Xγ .

L(F )C will be referred to as the space of complex-valued, integrable functions on F .

Remarks 2.1.3 imply that L(F )C is closed under translation from F and that
∫ F is

translation invariant. We will of course usually write
∫ F

f(x) dx in place of
∫ F

(f)

Remark 2.1.7. If A were an arbitrary C-algebra and elements cγ ∈ A were given for
each γ ∈ Γ, we could define an A-valued linear translation invariant integral on L(F )
by replacing Xγ by cγ in the previous definition. However, using Xγ ensures compat-
ibility of the integral with the multiplicative group F×, in that it implies the existence
of an absolute value with expected properties; see lemma 2.4.1.

This phenomenon also appears when extending the integration theory to F n,Mn(F ),
and GLn(F ); one must take into account the action of GLn(F ) on F n in order to de-
velop a satisfactory theory; see section 3.4.

Remark 2.1.8. Let us check to what extent L(F )C and
∫ F depend on the choice of the

splitting t.
Let t′ be another splitting of the valuation: that is, t′ is a homomorphism from Γ to

F× with ν ◦ t′ = idΓ. Then there is a homomorphism u : Γ → O×F which satisfies
t(γ) = u(γ)t′(γ) for γ ∈ Γ. Let g ∈ L, a ∈ F , and γ ∈ Γ; let f be the lift of g at a, γ with
respect to t, and f ′ the lift of g at a, γ with respect to t′. Thus, by definition, f and f ′

both vanish off J = a+ t(γ)OF = a+ t′(γ)OF , and for x ∈ OF ,

f(a+ t(γ)x) = g(x), f ′(a+ t′(γ)x) = g(x).

Therefore f ′(a+ t(γ)x) = g(u(γ)
−1
x) and so

∫ J
(f ′) = |u(γ)|

∫
g(y) dy = |u(γ)|

∫ J
(f).
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Let
∫ J,t′ (resp.

∫ F,t′) denote the integral over J (resp. F ) with respect to t′; the
previous paragraph proves that

∫ J
= |u(γ)|

∫ J,t′ . Let σ : C(Γ) → C(Γ) be the C-
linear field automorphism of C(Γ) given by σ(Xγ) = |u(γ)|Xγ , for γ ∈ Γ. Then for all
f ∈ L(F )C, the identity

∫ F

f(x) dx = σ

(∫ F,t′

f(x) dx

)

follows.
So the integral is well-defined up to an automorphism of C(Γ).

Regarding absolute values, we have the following attractive result:

Proposition 2.1.9. If f belongs to L(F )C, then so does x 7→ |f(x)|.

Proof. We may write f =
∑n

i=1 fi; here Ji, for i = 1 . . . , n, are distinct translated frac-
tional ideals, of height γi say, and fi ∈ L(Ji). We may also assume that γ1 ≤ · · · ≤ γn.

The statement with L in place of L(F )C is true by definition of Haar integrability;
hence the statement is true for L(J), where J is any translated fractional ideal. So if
n = 1 we are done, and we now assume n > 1, proving the result by induction.

In the same way as in the proof of proposition 2.1.5, each function fi, for 1 ≤ i < n,
is constant on Jn. Let a be any element of Jn. Then the following identities hold:

|f | = |
n−1∑

i=1

fi| +

(
|f | − |

n−1∑

i=1

fi|

)
charJn

= |
n−1∑

i=1

fi| +

(
|fn +

n−1∑

i=1

fi(a)| − |
n−1∑

i=1

fi(a)|

)
charJn

= |
n−1∑

i=1

fi| + |f +

n−1∑

i=1

fi(a)| − |
n−1∑

i=1

fi(a)|

The proof will be complete if we can show that

|fn +

n−1∑

i=1

fi(a)| − |
n−1∑

i=1

fi(a)| (∗)

belongs to L(F )C. Write fn = ga,γn for some g ∈ L; then the function (∗) is the lift at
a, γn of the Haar integrable function |g +

∑n−1
i=1 fi(a)| − |

∑n−1
i=1 fi(a)|.

Although L(F )C is closed under taking absolute values, the following examples
show that there is some unusual associated behaviour, and that there is no clear defini-
tion of a ‘null function’ on F :

Example 2.1.10. Introduce f1 = char0,0{0}, the characteristic function of t(1)OF , and f2 =

−2 char0,γ
S where S is a Haar measurable subset of F with measure 1 and γ is a positive

element of Γ. Let f = f1 + f2.

(i) Firstly we claim that the following hold:
∫ F

|f(x)| dx = 0,

∫ F

f(x) dx = −2Xγ .
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Indeed, the second identity is immediate from the definition of the integral. For
the first identity, note that as in the proof of the previous proposition (with n = 2),

|f | = |f1| + |f2 + f1(0)| − |f1(0)|.

Further, f1(0) = 1 and the function |f2 + 1| is identically 1. So |f | = char0,0
{0}, from

which the first identity follows.

(ii) Secondly, the considerations above imply
∫ F

|f(x)| dx =

∫ F

|f1(x)| dx = 0,

∫ F

|f(x) − f1(x)| dx = 2Xγ .

(iii) Finally, consider the translated function f ′(x) = f(x− a), where a is any element
of F not in OF . Then f ′ and f have disjoint support and so

∫ F

|f(x) − f ′(x)| dx =

∫ F

|f(x)| + |f ′(x)| dx

=

∫ F

|f(x)| dx+

∫ F

|f ′(x)| dx = 0

by translation invariance of the integral. Also,
∫ F

f(x) − f ′(x) dx = 0. Thus
g = f − f ′ provides an example of a complex-valued integrable function on F

such that
∫ F |g(x)| dx =

∫ F
g(x) dx = 0, but where the components of g in L(J),

for all J , are lifts of non-null functions.

As will become apparent in the study of harmonic analysis, it is more natural to
integrate C(Γ)-valued functions onF than complex-valued ones, so we define our main
class of functions as follows:

Definition 2.1.11. A C(Γ)-valued function on F will be said to be integrable if and only
if it has the form x 7→

∑
i fi(x) pi for finitely many fi ∈ L(F )C and pi ∈ C(Γ). The

integral of such a function is defined to be
∫ F

f(x) dx =
∑

i

∫ F

fi(x) dx pi.

This is well defined. The C(Γ) space of all such functions will be denoted L(F ); the
integral is a C(Γ)-linear functional on this space.

In other words, L(F ) = L(F )C ⊗C C(Γ) and the integral is extended in the natural
way. The integrable functions which are complex-valued are precisely L(F )C ⊂ L(F ),
so there is no ambiguity in the phrase ‘complex-valued, integrable function’.

For the sake of completeness, we summarise this section as follows (also see subsec-
tion 1.4.1):

Proposition 2.1.12. L(F ) is the smallest C(Γ) space of C(Γ)-valued functions on F which
contains ga,γ for all g ∈ L, a ∈ F , γ ∈ Γ. There is a (necessarily unique) C(Γ)-linear
functional

∫ F on L(F ) which satisfies
∫ F

ga,γ(x) dx =

∫

F
g(u) duXγ .

L(F ) is closed under translation and
∫ F is translation invariant.
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Remark 2.1.13. Examination of the proofs in this section leads to the the following
abstraction of the theory:

Let F ′, ν ′, t′,Γ′ satisfy the same conditions as F, ν, t,Γ, except that we do not suppose
F
′ is a local field. Let L be an arbitrary field, and L′ an L space of L-valued functions

on F ′, equipped with an L-linear functional I , with the following properties:

(i) L′ is closed under translation from F
′ and I is translation invariant (i.e. f ∈ L′

and a ∈ F
′ implies y 7→ f(y + a) is in L′ with image under I equal to I(f)).

(ii) L′ contains no non-zero constant functions.

Let L′(F ′) be the smallest L(Γ′) space of L(Γ′)-valued functions on F which contains
fa,γ for f ∈ L′, a ∈ F ′, γ ∈ Γ′. Then there is a (necessarily) unique L(Γ′)-linear func-
tional IF ′ on L′(F ′) which satisfies IF ′

(fa,γ) = I(f)Xγ . Further, the pair L′(F ′), IF
′

satisfy (i) and (ii) with the field L(Γ′) in place of L.
In particular, suppose F is a three dimensional local field, say, with first residue field

F2 (a two-dimensional local field), and F = F1 a local field. Then the integral on F
can be obtained either by lifting the Haar integral to F2 and then (by using this remark)
lifting again to F , or by following the arguments of this section and lifting the Haar
integral directly to F .

This ‘transitivity’ of lifting the integral is also present in E. Hrushovski and D. Kazh-
dan’s motivic integration theory; see [HK06, §12.2]

2.2 Measure theory
We now produce a measure theory from the integration theory; results of [Fes03] are
recovered and extended.

Definition 2.2.1. A distinguished subset of F is a set of the form a + t(γ)ρ−1(S), where
a ∈ F , γ ∈ Γ, and S is a subset of F of finite Haar measure. γ is said to be the level of
the set.

Let D denote the set of all distinguished subsets of F ; let R denote the ring of sets
generated by D (see appendix 2.A for the definition of ‘ring’).

Remark 2.2.2. Note that the characteristic function of a distinguished set a+t(γ)ρ−1(S)
is precisely the lift of the characteristic function of S at a, γ. Proposition 2.1.5 proves
that if a1 + t(γ1)ρ

−1(S1) = a2 + t(γ2)ρ
−1(S2), then γ1 = γ2 and S1 is a translate of S2. In

particular, the level is well defined.

Lemma 2.2.3. Let Ai = ai + t(γi)ρ
−1(Si), i = 1, 2, be distinguished sets with non-empty

intersection.

(i) If γ1 = γ2, then A1 ∩A2 and A1 ∪A2 are distinguished sets of level γ1.

(ii) If γ1 6= γ2, then A1 ⊆ A2 if γ1 > γ2, and A2 ⊆ A1 if γ2 > γ1.

Proof. This is immediate from the definition of a distinguished set.

Referring to appendix 2.A, it has just been shown thatD is a d-class of sets. By propo-
sition 2.A.9, the characteristic function of any set in R may be written as the difference
of two sums, each of characteristic functions of sets in D; therefore the characteristic
function of any set in R belongs to L(F )C.
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Definition 2.2.4. Define the measure µF (W ) of a set W in R by

µF (W ) =

∫ F

charW (x) dx.

By the properties of the integral, µF is a translation-invariant, finitely additive set
function R → RΓ (the real group algebra of Γ). For a distinguished set A = a +
t(γ)ρ−1(S), remark 2.2.2 implies

µF (A) =

∫ F

(charA) =

∫ F

(chara,γS ) = µ(S)Xγ ,

where µ denotes our choice of Haar measure on F . The following examples demon-
strate some unusual behaviour of this measure:
Example 2.2.5.

(i) For γ ∈ Γ, the set t(γ)OF = t(γ− 1)ρ−1({0}) is distinguished, with measure zero.

(ii) Let S be a subset of F of finite measure. The set ρ−1(F \S) = OF \ρ−1(S) belongs
to R and has measure −µ(S). Compare this with example 2.1.10

(iii) µF is not countably additive. Indeed, write F as a countable disjoint union of sets
of finite measure; F =

⊔
i Si say. Then OF =

⊔
i ρ
−1(Si) has measure zero, while∑

i µ
F (ρ−1(Si)) = ∞.

(iv) Suppose that F = R. Set A2n−1 = nt(−1) + ρ−1([0, 1/n]) and A2n = nt(−1) +
ρ−1(R \ [0, 1/n]) for all natural numbers n. Then µF (A2n−1) = 1/n, µF (A2n) =
−1/n, and

⊔
iAi =

⊔
n nt(−1) + OF = t(−1)ρ−1(N) has measure 0.

The series
∑

i µ
F (Ai) is conditionally convergent in R (i.e. convergent, but not

absolutely convergent). By a theorem of Riemann (see e.g. [Apo74, chapter 8.18]),
there exists, for any real q, a permutation σ of N such that

∑
i µ

F (Aσ(i)) converges
to q. But regardless of the permutation, µF (

⊔
iAσ(i)) = 0.

Let us consider a couple of examples in greater detail and give a more explicit de-
scription of the measure:
Example 2.2.6.

(i) Suppose that F is an n-dimensional, non-archimedean, local field, with local pa-
rameters t1, . . . , tn. We view F as a valued field over the local field F = F1, rather
than over the finite field F0. The results of this section prove the existence of a
finitely additive set function µF on the appropriate ring of sets, taking values in
R[X±1

2 , . . . , X±1
n ], which satisfies

µF (a+ tr11 . . . trnn OF ) = q−r1Xr2
2 . . . Xrn

n

for a ∈ F and integers ri. Here OF denotes the ring of integers of F with respect
to the rank n valuation, and q is the cardinality of of F0.
However, we have not made use of any topological property of F ; in partic-
ular, this result holds for an arbitrary field with value group Zn−1 and a non-
archimedean local field as residue field. This measure theory therefore extends
that developed in [Fes03], while also providing proofs of statements in [Fes03]
for the case in which the local field is archimedean.
Fesenko also extends his measure to be countably additive under certain hy-
potheses, a result which we will require in the model theoretic study of two-
dimensional integration in section 5.
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(ii) Suppose that F = F ((t)), the field of formal Laurent series over F , or F = F (t),
the rational function field (here we write t = t(1)). Then a typical distinguished
set has the form

a(t) + Stn + tn+1F [[t]] (Laurent series case)
a(t) + Stn + tn+1F [t] (rational functions case)

for a(t) ∈ F , and S ⊂ F of finite Haar measure. Such a set has measure µ(S)Xn,
where µ denotes our choice of Haar measure on F .

2.3 Harmonic analysis on F

Now we develop elements of a theory of harmonic analysis on F .

Definition 2.3.1. Suppose that ψ : F → S1 is a homomorphism of the additive group
of F into the group of complex numbers of unit modulus. Then ψ is said to be a good
character if it is trivial, or if it satisfies the following two conditions:

(i) There exists f ∈ Γ such that ψ is trivial on t(f)OF , but non-trivial on t(f − 1)OF ; f

is said to be the conductor of ψ.

(ii) The resulting character ψ of the additive group of F defined by ψ(x) = ψ(t(f −
1)x), for x ∈ OF , is continuous.

The conductor of the trivial character may be said to be −∞. The induced character on
F as in (ii) will always be denoted ψ.

The definition of a good character is designed to replace the continuity assumption
which would be imposed if F had a suitable topology.

Example 2.3.2. Suppose that F = F ((t)), the field of formal Laurent series over F (here
t(1) = t). Let ψF be a continuous character of F . Then

∑
i ait

i 7→ ψF (an) is a good
character of F of conductor n+ 1 and induced character ψF .

Recall that η : F× → F
× is the ‘angular component map’, defined by η(α) = αt(−ν(α)).

Lemma 2.3.3. Suppose that ψ is a good character of F of conductor f; let α ∈ F . Then
x 7→ ψ(αx) is a good character of F , with conductor f − ν(α); the character induced on F by
x 7→ ψ(αx) is y 7→ ψ(η(α)y) (assuming α 6= 0).

Proof. This is easily checked.

Given ψ, α as in the previous lemma we will write ψα for the translated character
x 7→ ψ(αx) (and we employ similar notation for characters of F ).

Before proceeding, we must make a simple assumption:

We assume that a non-trivial good character ψ exists on F .

By the previous lemma we may (and do) assume further that ψ has conductor 1, and
we fix such a character for this section. With this choice of conductor, x ∈ OF implies
ψ(x) = ψ(x). We will take Fourier transforms of integrable functions g on F with
respect to the character ψ; that is, ĝ(x) =

∫
g(y)ψ(xy) dy.

26



CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

2.3.1 Extending the integral to twisted functions
Let L(F,ψ) denote the C(Γ) space of C(Γ)-valued functions on F spanned by fψα, for
f ∈ L(F ), α ∈ F ; taking α = 0 we see that L(F ) ⊆ L(F,ψ). Our immediate aim is
proposition 2.3.7, which states that the integral on F has a unique translation invariant
extension to this space of functions.

Remark 2.3.4. Such a character certainly exists on a higher local field. Indeed, such a
field is self-dual: if ψ,ψ1 are good characters with ψ non-trivial then there is α ∈ F×

such that ψ(x) = ψ1(αx) for all x ∈ F . For more details, see [Fes03] section 3.

It is convenient for the following results to write Lγ (where γ ∈ Γ) for the sum of
the spaces L(J) over all translated fractional ideals of height γ; this sum is direct by
proposition 2.1.5. Note that if f ∈ Lγ and a ∈ F with ν(a) > γ then f(x+ a) = f(x) for
all x ∈ F .

Certain products of an integrable function with a good character are still integrable:

Lemma 2.3.5. Let J = a+ t(γ)OF be a translated fractional ideal and α ∈ F . If γ = −ν(α),
then ψα charJ is the lift of ψ(αa)ψη(α) at a, γ; if γ > −ν(α), then ψα is constantly ψ(αa) on
J .

Therefore, if γ ≥ −ν(α) and f is in Lγ then fψα is also in Lγ .

Proof. The identities may be easily verified by evaluating on a + t(γ)OF . The final
statement follows by linearity.

In contrast with the previous lemma we now consider the case γ < −ν(α):

Lemma 2.3.6. Let αi, γi be finitely many (1 ≤ i ≤ m, say) elements of F,Γ respectively, and
let fi ∈ Lγi for each i. Suppose further that ν(αi) < −γi for each i and that

∑
i fiψαi is

integrable on F . Then
∫ F ∑

i fi(x)ψαi(x) dx = 0.

Proof. The result is proved by induction on m. Let y ∈ t(−ν(αm))OF satisfy ψαm(y) 6=
1. The functions

x 7→
∑

i

fi(x+ y)ψαi(x+ y) =
∑

i

ψαi(y)fi(x+ y)ψαi(x)

x 7→
∑

i

ψαm(y)fi(x)ψαi(x)

are integrable on F , the first having integral equal to that of
∑

i fiψαi by translation
invariance of

∫ F . Taking the difference of the two functions, noting that fm(x + y) =
fm(x), and applying the inductive hypothesis, obtains

∫ F∑

i

fi(x)ψαi(x) dx = ψam(y)

∫ F∑

i

fi(x)ψαi(x) dx,

which completes the proof.

The first main result of this section may now be proved:

Proposition 2.3.7.
∫ F has a unique extension to a translation-invariant, C(Γ)-linear func-

tional on L(F,ψ).
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Proof. To prove uniqueness, suppose that I is a translation-invariant C(Γ)-linear func-
tional on L(F,ψ) which vanishes on L(F ). We claim that I is everywhere zero; by
linearity it suffices to check that I vanishes on fψα for f ∈ Lγ (any γ ∈ Γ) and
α ∈ F . If γ > −ν(a), then fψα is integrable by lemma 2.3.5 and so I(fψα) = 0. If
γ ≤ −ν(α), then let y ∈ t(−ν(α))OF satisfy ψα(y) 6= 1; as in lemma 2.3.6 the identity
I(fψα) = ψα(y)I(fψα) follows from translation invariance of I . This completes the
proof of uniqueness.

To prove existence, suppose first that f ∈ L(F,ψ) is complex-valued, and write f =∑
i fiψαi , for finitely many αi ∈ F , and fi ∈ Lγi say. Attempt to define

I(f) =
∑

i : γi≥−ν(αi)

∫ F

fi(x)ψαi(x) dx.

We claim that this is well-defined. Indeed, if f = 0, then function
∑

i : γ<−ν(αi)

fiψαi = −
∑

i : γ≥−ν(αi)

fiψαi

lies in L(F ) by lemma 2.3.5. By lemma 2.3.6, the function has integral equal to zero,
and so

0 =

∫ F ∑

i : γ≥−ν(αi)

fi(x)ψαi(x) dx =
∑

i : γ≥−ν(αi)

∫ F

fi(x)ψαi(x) dx.

This proves that I is well-defined.
I extends toL(F,ψ) by setting I(

∑
j gj X

γj ) =
∑

j I(gj)X
γj for finitely many complex-

valued gj in L(F ) and γj in Γ. Translation invariance of I follows from translation
invariance of

∫ F .

We shall denote the extension of
∫ F to L(F,ψ) by the same notation

∫ F .

Remark 2.3.8. The previous results may be easily modified to prove that there is a
unique extension of

∫ F to a translation-invariant C(Γ)-linear function on the space
spanned by fΨ, for f ∈ L(F ) and Ψ varying over all good characters.

Example 2.3.9. Suppose that F is non-archimedean, with prime π and residue field of
cardinality q. Letw = (νF ◦η, ν) be the valuation on F with value group Z×Γ (ordered
lexicographically from the right), with respect to which F has residue field Fq. Let
a ∈ F , γ ∈ Γ, j ∈ Z; then

∫ F

ψa(x) chart(γ)ρ−1(πjOF )(x) dx =





0 γ < −ν(a)∫
πjOF

ψ(η(a)y) dyXγ γ = −ν(a)
∫ F

chart(γ)ρ−1(πjOF )(x) dx γ > −ν(a)

Suppose further, for simplicity, that ψ is trivial on πOF but not on OF , and that the
Haar measure on F has been chosen such that OF has measure 1; then

∫

πjOF

ψ(η(a)y) dy =

{
0 j ≤ −νF (η(a))

q−j j > −νF (η(a))

Therefore
∫ F

ψa(x) chart(γ)ρ−1(πjOF )(x) =

{
0 w(a) < (−j + 1,−γ)

q−jXγ w(a) ≥ (−j + 1,−γ),
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Finally, as chart(γ)ρ−1(πjO×

F
) = chart(γ)ρ−1(πjOF ) − chart(γ)ρ−1(πj+1OF ), it follows that

∫ F

ψa(x) chart(γ)ρ−1(πjO×

F
)(x) dx =





0 w(a) < (−j,−γ)

−q−j−1Xγ w(a) = (−j,−γ)

q−j(1 − q−1)Xγ w(a) > (−j,−γ)

Compare with the example in [Fes03, §7].

2.3.2 The Fourier transform
Now that we can integrate functions twisted by characters, we may define a Fourier
transform on F :

Definition 2.3.10. Let f be in L(F,ψ). The Fourier transform of f , denoted f̂ , is the
C(Γ)-valued function on F defined by f̂(x) =

∫ F
f(y)ψ(xy) dy.

The Fourier transforms on F and F are related as follows:

Proposition 2.3.11. Let g be Haar integrable on F , and γ ∈ Γ, a, b ∈ F ; set f = ga,γψb, the
product of a lifted function with a good character. Then

f̂ = ψ(ab)ĝ−b,−γψaX
γ

where ĝ is the Fourier transform of g with respect to ψ.

Proof. By definition of the Fourier transform, x ∈ F implies

f̂(x) =

∫ F

ga,γ(y)ψ((b + x)y) dy. (∗)

This is zero if γ < −ν(b + x), i.e. if x /∈ −b + t(−γ)OF . Conversely, suppose that
x = −b+ t(−γ)x0, where x0 ∈ OF ; then the integrand in (∗) is

ga,γψt(−γ)x0
= ψ(t(−γ)ax0)g

a,γψ
a,γ
x0
,

an identity which is easily checked by evaluating on a+ t(γ)OF . So

f̂(x) = ψ(t(−γ)ax0)

∫ F

ga,γ(y)ψ
a,γ
x0

(y) dy

= ψ(t(−γ)ax0)ĝ(x0)X
γ

= ψ(a(x + b))ĝ(x0)X
γ ,

which completes the proof.

Let S(F,ψ) denote the subspace of L(F,ψ) spanned over C(Γ) by functions of the
form ga,γψb, for g a Schwartz-Bruhat function on F , γ ∈ Γ, a, b ∈ F . Recall that the
Schwartz-Bruhat space on F is invariant under the Fourier transform and that there
exists a positive real λ such that for any Schwartz-Bruhat function g, Fourier inversion
holds: ̂̂g(x) = λg(−x) for all x ∈ F . The following proposition extends these results to
F :

Proposition 2.3.12. The space S(F,ψ) is invariant under the Fourier transform. For f in
S(F,ψ), a double transform formula holds: ̂̂f(x) = λf(−x) for all x ∈ F .
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Proof. By linearity it suffices to consider the case f = ga,γψb, for γ ∈ Γ, a, b ∈ F , and g a
Schwartz-Bruhat function on F . Then f̂ = ψ(ab)ĝ−b,−γψaX

γ belongs to S(F,ψ) and so

̂̂
f = ψ(ab)ψ(−ba)̂̂g−a,γψ−bX−γ Xγ = (̂̂g)−a,γψ−b,

by proposition 2.3.11. Apply the inversion formula for g to complete the proof.

Remark 2.3.13. Let us consider the dependence of the theory on the choice of character
ψ; let ψ′ be another good character of F . In the interesting case of a higher local field,
self-duality implies that ψ′ = ψα for some α ∈ F×; so we will restrict to this case and
assume henceforth ψ′ = ψα. Then L(F,ψ) = L(F,ψ′), where L(F,ψ′) is defined in the
same way as L(F,ψ) but replacing ψ by ψ ′; further, the uniqueness of the extension of∫ F given by proposition 2.3.7 shows that this extension does not depend on ψ.

Let f be the conductor of ψ′, and ψ′ the induced character of F ; thus ψ′(x) = ψ′(t(f −
1)x) for x ∈ OF . By lemma 2.3.3, ψ′ = ψη(α), and f = 1 − ν(α).

Let g be Haar integrable on F , and γ ∈ Γ, a, b ∈ F ; set f = ga,γψ′b. Let f̌ denote the
Fourier transform of f with respect to ψ ′; then for y ∈ F ,

f̌(y) =

∫ F

f(x)ψ′(yx) dx

= ̂ga,γψαb(αy)

= ψ(αab)ĝ−αb,−γ (αy)ψa(αy)X
γ ,

by proposition 2.3.11. Further, y 7→ ĝ−αb,−γ(αy) is the lift of v 7→ ĝ(η(α)v) at −b,−γ −
ν(α), an identity easily proved (or see the proof of lemma 2.4.1 below). Also, ĝ(η(α)v) =

ǧ(v), where ǧ is the Fourier transform of g with respect to ψ ′, and so the analogue of
proposition 2.3.11 follows:

f̌ = ψ′(ab)ǧ−b,−γ−ν(α)ψ′aX
γ .

For f in S(F,ψ′) = S(F,ψ), the analogue of proposition 2.3.12 now follows: ˇ̌f =
ˇ̌g−a,γψ′−bX

−ν(α). That is,
ˇ̌f(x) = λ′f(−x)X f−1

for all x ∈ F , where λ′ is the double transform constant associated to ψ ′ (see the para-
graph preceding proposition 2.3.12).

2.4 Integration on F×

In this section, we consider integration over the multiplicative group F×. By analogy
with the case of a local field, we are interested in those functions φ of F× for which
x 7→ φ(x)|x|−1 is integrable on F , where | · | is a certain modulus defined below.

Let |·| = |·|F denote the absolute value onF normalised by the condition
∫
g(αx) dx =

|α|−1
∫
g(x) dx for g ∈ L, α ∈ F×. First we lift this absolute value to F :

Lemma 2.4.1. Let f be a C(Γ)-valued integrable function on F and α ∈ F ×. Then the scaled
function x 7→ f(αx) also belongs to L(F ), and

∫ F

f(αx) dx = |η(α)|−1X−ν(α)

∫ F

f(x) dx

(for the definition of η refer back to the notations introduced at the start of the chapter).
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Proof. By linearity we may assume that f is the lift of a function from L; f = ga,γ say.
Then for all x ∈ α−1(a+ t(γ)OF ),

f(αx) = g((αx − a)t(−γ)) = g(η(α) (x− α−1a)t(ν(α) − γ))

So the function x 7→ f(αx) is the lift of the function y 7→ g(η(α)y) at α−1a, γ − ν(α).
This has integral

∫

F
g(η(α)y) dy Xγ−ν(α) = |η(α)|−1

∫

F
g(y) dy XγX−ν(α)

= |η(α)|−1X−ν(α)

∫ F

f(x) dx,

as required.

Remark 2.4.2. Lemma 2.4.1 remains valid if L(F ) is replaced by L(F,ψ).

The lemma and remark suggest the follows definition:

Definition 2.4.3. Letα be in F×; the absolute value of α is defined to be |α| = |η(α)|X ν(α) .
Let L(F×, ψ) be the set of C(Γ)-valued functions φ on F× for which x 7→ φ(x)|x|−1,

a function of F×, may be extended to F to give a function in L(F,ψ). The integral of
such a function over F× is defined to be

∫ F×

φ(x) d
×
x =

∫ F

φ(x)|x|−1 dx,

where the integrand on the right is really the extension of the function to F .

Remark 2.4.4. There is no ambiguity in the definition of the integral over F×, for x 7→
φ(x)|x|−1 can have at most one extension to L(F,ψ). This follows from the fact that
L(F,ψ) does not contain char{0}.

L(F×, ψ) is a C(Γ)-space of C(Γ)-valued functions, and
∫ F×

is a C(Γ)-linear func-
tional. Moreover, the integral is invariant under multiplication in the following sense:

Proposition 2.4.5. If φ belongs to L(F×, ψ) and α is in F×, then x 7→ φ(αx) belongs to
L(F×, ψ) and

∫ F×

φ(αx) d
×
x =

∫ F×

φ(x) d
×
x.

Proof. Let x 7→ φ(x)|x|−1 be the restriction to F× of f ∈ L(F,ψ), say. Then x 7→
φ(αx)|x|−1 = |α|φ(αx)|αx|−1 is the restriction to F× of x 7→ |α|f(αx), which belongs to
L(F,ψ) by lemma 2.4.1. By the same lemma,

∫ F×

φ(αx) d
×
x =

∫ F

|α|f(αx) dx

= |α||α|−1

∫ F

f(x) dx

=

∫ F×

φ(x) d
×
x,

as required.

Example 2.4.6. We compute a couple of integrals on F×:

31



CHAPTER 2: INTEGRATION ON VALUATION FIELDS OVER LOCAL FIELDS

(i) Let g be Haar integrable on F , a ∈ F , γ ∈ Γ, and assume 0 /∈ a+ t(γ)OF . Let φ be
the restriction of ga,γ to F×. Then φ ∈ L(F×, ψ), and

∫ F×

φ(x) d
×
x = |a|−1

∫ F

ga,γ(x) dx.

Indeed, x ∈ a+t(γ)OF implies η(x) = η(a), and so x 7→ φ(x)|x|−1 is the restriction
of |a|−1ga,γ to F×.

(ii) Let g be Haar integrable on F×, and let φ be the function on F× which vanishes
off O×F and satisfies φ(x) = g(x) for x ∈ O×F . Then φ ∈ L(F×, ψ) and

∫ F×

φ(x) d
×
x =

∫

F
g(x)|x|−1 dx.

Indeed, let h be the extension of x 7→ g(x)|x|−1 to F defined by h(0) = 0. Then h
is Haar integrable on F , and h0,0 ∈ L(F ) restricts to the function of F× given by
x 7→ φ(x)|x|−1.
In this way, the integral on F× lifts the Haar integral on F×, just as integral on F
lifts the Haar integral on F .

2.5 Local zeta integrals
In the remainder of this chapter we will discuss (generalisations of) local zeta integrals.
We begin by summarising the main results of local zeta integrals for the local field F ;
see [Mor05, chapter I.2]. Let g be a Schwartz-Bruhat function on F , ω a quasi-character
of F×, and s complex. The associated local zeta integral on F is

ζF (g, ω, s) =

∫

F
×
g(x)ω(x)|x|s d

×
x;

this is well-defined (i.e. the integrand is integrable) for <(s) sufficiently large. As-
sociated to ω there is a meromorphic function L(ω, s), the local L-function, with the
following properties:
(AC) Analytic continuation, with the poles ‘bounded’ by the L-function: for all

Schwartz-Bruhat functions g, ζF (g, ω, s)/L(ω, s), which initially only defines a
holomorphic function for <(s) sufficiently large, in fact has analytic continuation
to an entire function

ZF (g, ω, s)

of s.

(L) ‘Minimality’ of the L-function: there is a Schwartz-Bruhat function g for which

ZF (g, ω, s) = 1

for all s.

(FE) Functional equation: there is an entire function ε(ω, s), such that for all Schwartz-
Bruhat functions g,

ZF (ĝ, ω−1, 1 − s) = ε(ω, s)ZF (g, ω, s).

Moreover, ε(ω, s) is of exponential type, i.e. ε(ω, s) = aqbs for some complex a
and integer b.
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Having lifted aspects of additive measure, multiplicative measure, and harmonic
analysis from the local field F up to F , we now turn to lifting these results for local
zeta integrals. Later, in section 2.7, we will assume that F is a two-dimensional local
field and consider a different, more arithmetic, local zeta integral. To avoid confusion
between the two we may later refer to those in this section as being one-dimensional;
the terminology is justified by the fact that this section concerns lifting the usual (one-
dimensional) zeta integrals on F up to F .
Definition 2.5.1. For f in S(F,ψ), ω : O×F → C× a homomorphism, and s complex, the
associated (one-dimensional) local zeta integral is

ζ1d
F (f, ω, s) =

∫ F×

f(x)ω(x)|x|s charO×F
(x)d

×
x,

assuming that the integrand is integrable on F×.
Remark 2.5.2. The integral is taken over O×F , instead of the full multiplicative group of
the field, because this will be more natural in the later study of two-dimensional zeta
integrals.

We will focus on the situation where ω is trivial on 1 + t(1)OF ; that is, there is a
homomorphism ω : F

×
→ C× such that ω(x) = ω(x) for all x ∈ O×F . If this induced

homomorphism ω is actually a quasi-character (i.e. if it is continuous), then we will say
that ω is a good (multiplicative) character; just as for additive characters, this imitates a
continuity condition.

Restricting to such tame characters is a definite problem with the current theory. The
difficult of twisting additive characters by ramified multiplicative characters also ap-
pears in motivic integration; for example, the current theories of motivic Igusa zeta
functions [DL98] and motivic exponential sums [Clu08a] [Clu08b] do not apply to ram-
ified characters.

2.5.1 Explicit calculations and analytic continuation
We perform explicit calculations to obtain formulae for local zeta integrals attached to
a good character:
Lemma 2.5.3. Let ω be a good character of O×F ; let f = ga,γψb be the product of a lifted
function and a character, where g is Schwartz-Bruhat on F , a, b ∈ F , γ ∈ Γ. Then we have
explicit formulae for the local zeta integrals in the following cases:

(i) Suppose that ν(a) < min(γ, 0); or that 0 < ν(a) < γ; or that 0 < γ ≤ ν(a). Then
f(x)ω(x)|x|s charO×F

(x) = 0 for all x ∈ F , s ∈ C.

(ii) Suppose 0 = ν(a) < γ. Then f(x)ω(x)|x|s charO×F
(x) = ω(a)|a|sf(x) for all x ∈ F ,

s ∈ C; the local zeta integral is well-defined for all s and is given by

ζ1d
F (f, ω, s) = ω(a)|a|s−1

∫ F

f(x) dx.

(iii) Suppose 0 = γ ≤ ν(a). Then the local zeta integral is well-defined for <(s) sufficiently
large, and is given by

ζ1d
F (f, ω, s) =

{
ζF (g1ψb, ω, s) if ν(b) ≥ 0

0 if ν(b) < 0

where g1 is the Schwartz-Bruhat function on F given by g1(u) = g(u− a).
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Proof. In any of the cases in (i), f vanishes on O×F ; so f(x) charO×F
(x) = 0 for all x ∈ F .

In case (ii), a + t(γ)OF is contained in O×F , and x ∈ a + t(γ)OF implies ω(x)|x|s =
ω(a)|a|s; this implies that f(x)ω(x)|x|s charO×F

(x) = f(x)ω(a)|a|s charO×F
(x) for all x ∈

F , s ∈ C. Moreover, for all x ∈ F , these results again imply f(x)|x|−1 = f(x)|a|−1;
therefore f is integrable over F×, with

∫ F×

f(x) d
×
x =

∫ F
f(x) dx.

Finally we turn to case (iii). First note that ga,γω| · |s−1 charO×F
is the lift of g1ω| ·

|s−1 char
F
× at 0, 0. Now, if <(s) is sufficiently large then the theory of local zeta integrals

for F implies that g1ω| · |
s−1 char

F
× is integrable on F ; thus fω| · |s−1 charO×F

is the
restriction to F× of (g1ω| · |

s−1 char
F
×)0,0ψb, a function which belong to L(F,ψ).

By definition of the integral on F× it follows that (for <(s) sufficiently large) fω| ·
|s−1 charO×F

belongs to L(F×, ψ), and
∫ F×

f(x)ω(x)|x|s charO×F
(x) d

×
x =

∫ F

(g1ω| · |
s−1 char

F
×)0,0(x)ψb(x)dx

=





∫ F
(g1ω| · |

s−1 char
F
×)0,0(x) dx if ν(b) > 0∫ F

(g1ω| · |
s−1 char

F
× ψb)

0,0(x) dx if ν(b) = 0

0 if ν(b) < 0

=





∫
g1(u− a)ω(u)|u|s−1 char

F
×(u) du if ν(b) > 0∫

g1(u− a)ω(u)|u|s−1 char
F
×(u)ψb(u) du if ν(b) = 0

0 if ν(b) < 0

=





ζ(g1, ω, s) if ν(b) > 0

ζ(g1ψb, ω, s) if ν(b) = 0

0 if ν(b) < 0

as required.

Remark 2.5.4. Let ω and f = ga,γψb be as in the statement of the previous lemma. The
lemma treats all possible relations between ν(a), γ, and 0 with the exception of ν(a) ≥
γ < 0. There are interesting complications in this case: since f charO×F

= f(0) charO×F
,

we wish to calculate

ζ1d
F (f, ω, s) = f(0)

∫ F×

ψb(x)ω(x)|x| charO×F
(x) d

×
x.

For example, if ψb has conductor 1 then

ψbω| · |
s charO×F

= (ψbω| · |
s char

F
×)0,0

and so the zeta integral is formally given by

ζ1d
F (f, ω, s) = f(0)

∫

F
×
ψb(x)ω(x)|x|s d

×
x.

If F were finite then this would be a Gauss sum over a finite field, a standard ingredient
of local zeta integrals; with F a local field it is unclear how to interpret this but the
following examples provide insight.

Example 2.5.5. Suppose K = F is non-archimedean and consider the formal integral
∫

F
×
ψK(x)ω(x) d

×
x
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with ψK an additive character and ω a multiplicative quasi-character with <(ω) > 0
(recall that this is defined by |ω(x)| = |x|<(ω) for all x). If n is a sufficiently small
integer, then we have a convergent integral

∫

w−1(n)
ψK(x)ω(x) d

×
x = 0,

wherew is the discrete valuation ofF ; so for n sufficiently small the value of the integral
∫

{x:w(x)≥n}
ψK(x)ω(x) d

×
x

does not depend on n. It seems reasonable to adopt this value as the meaning of the
expression

∫
F
× ψK(x)ω(x) d

×
x.

Example 2.5.6. Suppose F = R and we wish to understand the formal integral
∫ ∞

0
e2πix dx.

Replacing 2πi by some complex λ with <(λ) < 0 gives a true integral with value
∫ ∞

0
eλx dx = −1/λ.

Similarly we have ∫ 0

−∞
eλx dx = 1/λ

for <(λ) > 0. This suggests that, formally,
∫

R

e2πix dx = −

∫ 0

∞
e2πix dx+

∫ ∞

0
e2πix dx = 0

and ∫

R

e2πixsign(x) dx = −

∫ 0

−∞
e2πix dx+

∫ ∞

0
e2πix dx = −i/π

where sign(x) is the sign (±) of x.
The first of these integrals is already taken into account by our measure theory: if

F = R((t)) and ψ is the character defined by ψ(
∑

n ant
n) = e2πia0 (see example 2.3.2),

then ψ charOF
belongs to L(F,ψ) and

∫ F
ψ(x) charOF

(x) dx = 0. But ψ charOF
is also

the lift of x 7→ e2πxi at 0, 0 so formally
∫ F

ψ(x) charOF
(x) dx =

∫
R
e2πix dx.

Such manipulations of integrals are common in quantum field theory (see e.g. [JL00])
and I am grateful to Dr. Jorma Louko for discussions in this subject. That such integrals
appear here further suggests a possible relation between this theory and Feynman path
integrals. More evidence for such relations may be found in sections 16 and 18 of
[Fes06].

Ignoring the complications caused by this difficult case we may now deduce the first
main properties of some local zeta functions. Appendix 2.B explains what is meant by
a C(Γ)-valued holomorphic function.

Proposition 2.5.7. Let ω be a good character of O×F , and let f be in S(F,ψ); assume that f
may be written as a finite sum of terms f =

∑
i g
ai ,γi
i ψbi pi where each gai,γi

i ψbi is treated by
one of the cases of lemma 2.5.3 and pi ∈ C(Γ). Then
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(i) For <(s) sufficiently large, the integrand of the local zeta integral ζ 1d
F (f, ω, s) is inte-

grable over F× and so the local zeta integral is well-defined.

(ii) ζ1d
F (f, ω, s)/L(ω, s) has entire analytic continuation: that is, there is a C(Γ)-valued holo-

morphic function Z1
F (f, ω, s) on C which equals ζ1

F (f, ω, s)/L(ω, s) for <(s) sufficiently
large.

(iii) There is some function g ∈ S(F,ψ) for which Z 1
F (g, ω, s) = 1 for all complex s.

Proof. The results follow by linearity, the previous lemma, and the main properties of
local zeta integrals on F .

It is important to extend this result to all f in S(F,ψ); therefore the complication
discussed in remark 2.5.4 must be resolved.
Remark 2.5.8. We say a few words about functional equations. There is no result as sat-
isfactory as for zeta functions of a one-dimensional local field, and there is no reason
why there should be due to the charO×F

factor appearing in our definition of the local
zeta integrals. The most interesting issue here is making a functional equation com-
patible with the difficulties caused by remark 2.5.4; this should indicate correctness (or
not) of examples 2.5.5 and 2.5.6.

2.6 Local functional equations with respect to s goes to 2 − s

In this section we continue our study of local zeta functions, considering the problem of
modifying the functional equation (FE) on F so that the symmetry is not s goes to 1−s,
but instead s goes to 2−s. This is in anticipation of the next section on two-dimensional
zeta integrals, where such a functional equation is natural.

Since this section is devoted to the residue field F , we write K = F . We fix an non-
trivial additive character ψK of K (until proposition, 2.6.13 where we consider depen-
dence on this choice). Fourier transforms of complex-valued functions are taken with
respect to this character (and the measure which was fixed at the start of the chapter):
ĝ(y) =

∫
g(x)ψK(xy) dx.

The two main proofs of (FE) are Tate’s [Tat67] using Fubini’s theorem, and Weil’s
[Wei95] using distributions. For Weil, a fundamental identity in the non-archimedean
case is

ĝ(α ·) = |α|−1ĝ(α−1 ·) (∗)
for α ∈ K×, where we write g(α ·) for the function x 7→ g(αx), notation which we shall
continue to use.

The aim of this section is to replace the Fourier transform with a new transform so
that (∗) holds with |α|−2 in place of |α|−1. This leads to a modification of the local
functional equation, with | · |2 in place of | · |; see propositions 2.6.1 and 2.6.24.

2.6.1 Non-archimedean case
We assume first that K is a non-archimedean local field, with residue field Fq. The fol-
lowing proposition precisely explains the importance of the identity
ĝ(α ·) = |α|−1ĝ(α−1 ·):
Proposition 2.6.1. Suppose that g 7→ g∗ is a C-linear endomorphism of the Schwartz-Bruhat
space S(K) of K which satisfies, for some fixed integer n,

g(α ·)∗ = |α|−ng∗(α−1 ·)
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for all g ∈ S(K), α ∈ K×. Let ω be a quasi-character of K×. Then there is a unique entire
function ε∗(ω, s) which satisfies

ZK(g∗, ω−1, n− s) = ε∗(ω, s)ZK(g, ω, s)

for all g ∈ S(K), α ∈ K×.

Proof. Let g be a Schwartz-Bruhat function onK , andα ∈ K×. Then for<(s) sufficiently
large to ensure integrability, the identity

ζK(g(α·), ω, s) = ω(α)−1|α|−sζK(g, ω, s)

holds. Conversely, for <(s) sufficiently small, the assumed property of ∗ implies that

ζK(g(α·)∗, ω−1, n− s) = ω(α)−1|α|−sζK(g∗, ω−1, n− s).

Therefore, for all complex s,

ZK(g(α·), ω, s) = ω(α)−1|α|−sZK(g, ω, s)

and
ZK(g(α·)∗, ω−1, n− s) = ω(α)−1|α|−sZK(g∗, ω−1, n− s).

Hence the C-linear functionals Λ on S(K) given by

g 7→ ZK(g, ω, s)

and
g 7→ ZK(g∗, ω−1, n− s)

(for fixed s) each satisfy Λ(g(α·)) = ω(α)−1|α|−sΛ(g) for all g ∈ S(K), α ∈ K×. But the
space of such functionals is one-dimensional (see e.g. [Mor05, I.2]) (for ω 6= | · |−s) and
there is f ∈ S(K) such that ZK(f, ω, s) = 1 for all s (property (L) of local zeta integrals;
see beginning of section 2.5); this implies the existence of an entire function ε∗(ω, s) as
required.

Remark 2.6.2. Suppose that ∗ maps S(K) onto S(K). Then there is g ∈ S(K) such that
ZK(g∗, ω−1, n− s) = 1 for all s and so ε∗(ω, s) is nowhere vanishing.

Our aim now is to investigate the epsilon factors attached to a particular transform ∗

which satisfies g(α ·)∗ = |α|−2g∗(α−1 ·). Let w : K× → Z be the discrete valuation of K
and π ∈ K a fixed prime.

Definition 2.6.3. Define
∇ : K → K, x 7→ πw(x)x

(and ∇(0) = 0).
For g a complex-valued function on K , denote by Wg the function

Wg(x) =

{
g(π−w(x)/2x) if w(x) is even
g(π(−w(x)−1)/2x) if w(x) is odd

(and Wg(0) = g(0)).
Assuming that Wg is integrable on K , define the ∗-transform (with respect to π) of g

by
g∗ = Ŵ g ◦ ∇.
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Remark 2.6.4. Compare this definition with [Wei95] and [Fes03, §15], where Fesenko
defines the transform on two copies of a two-dimensional local field F × F .

The ∗-transform depends on choice of prime π. We may also denote by ∇ the com-
position operator ∇(g) = g ◦ ∇.

The space of Schwartz-Bruhat functions S(K) is closed under the ∗-transform.

It is easy to verify that the ∗-transform has the desired property:

Lemma 2.6.5. Suppose that g is a Schwartz-Bruhat on K and that α ∈ K×. Then

g(α ·)∗ = |α|−2g∗(α−1 ·).

Proof. If x ∈ F×, then W (g(α ·))(x) = W (g)(πw(α)αx). Hence

̂W (g(α·)) = |πw(α)α|−1Ŵ g(π−w(α)α−1 ·).

Evaluating this at ∇(x) yields

g(α ·)∗(x) = |α|−2Ŵ g(π−w(α)α−1πw(x)x) = |α|−2g∗(α−1x).

Remark 2.6.6. More generally, the previous lemma holds for any complex valued g for
which Wg and W (g(α·)) are both integrable.

We now ∗-transform several functions. Let µ be the measure of OK under our chosen
Haar measure and let d be the conductor of ψK .

Example 2.6.7. Suppose g = charπrOK
. Then Wg = charπ2rOK

, which has Fourier
transform µq−2r charπd−2rOK

. So the ∗-transform of g is

g∗ = µq−2r charπdd/2e−rOK
,

where dd/2e denotes the least integer not strictly less than d/2. Compare this with the
Fourier transform

ĝ = µq−r charπd−rOK
.

Example 2.6.8. Suppose h = char1+πrOK
with r ≥ 1. Let x ∈ K×. If w(x) is even, then

Wh(x) = 1 if and only if x ∈ 1 + πrOK ; if w(x) is odd, then Wh(x) = 1 if and only if
π−1x ∈ 1 + πrOK . So

Wh = char1+πrOK
+charπ(1+πrOK),

whence
Ŵh = µq−r charπd−rOK

ψK + µq−r−1 charπd−r−1OK
ψK(π ·).

For the remainder of this example assume µ = 1, d = 0, r = 2; we shall compute the
double ∗-transform h∗∗.

It may be easily checked that if x ∈ K , then

charπ−2OK
(∇(x))ψK(∇(x)) =





0 if x /∈ π−1OK

ψK(π−1x) if x ∈ π−1O×K
1 if x ∈ OK
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and

charπ−3OK
(∇(x))ψK(π∇(x)) =





0 if x /∈ π−1OK

ψK(x) if x ∈ π−1O×K
1 if x ∈ OK .

From the identity for Ŵh it now follows that

h∗ = q−2(ψK(π−1 ·) + q−1ψK) charπ−1O×K
+q−2(1 + q−1) charOK

.

Set h1 = ψK(π−1 ·) charπ−1O×K
, h2 = q−1ψK charπ−1O×K

; it may be checked that

Wh1 = ψK(π−1 ·) charπ−1O×K
+ψK charπ−2O×K

Wh2 = q−1ψK charπ−1O×K
+q−1ψK(π ·) charπ−2O×K

Standard Fourier transform calculations now yield

Ŵh1 = q char−π−1+πOK
− char−π−1+OK

+q2 char−1+π2OK
−q char−1+πOK

Ŵh2 = char−1+πOK
−q−1 charOK

+q char−π−1+π2OK
− charπOK

.

Further, by example 2.6.7, ̂W (charOK
) = charOK

, and so

q2Ŵ (h∗) = q char−π−1+πOK
− char−π−1+OK

+q2 char−1+π2OK
−q char−1+πOK

+ char−1+πOK
+q char−π−1+π2OK

− charπOK
+charOK

.

Now, x ∈ K× implies w(∇x) is even, and so

q2Ŵ (h∗) ◦ ∇ = q2 char−1+π2OK
◦∇ − q char−1+πOK

◦∇

+ char−1+πOK
◦∇ − charπOK

◦∇ + charOK
◦∇

= q2 char−1+π2OK
−q char−1+πOK

+ char−1+πOK
− charπOK

+charOK
.

That is,
h∗∗ = q−2 charO×K

−q−1(1 − q−1) char−1+πOK
+char−1+π2OK

.

Note that although the definition of the ∗-transform depends on choice of prime π,
the double ∗-transform h∗∗ of h does not. This will be proved in general below.

These examples were specifically chosen to allow us to compute explicit formulae for
the epsilon factors ε∗(ω, s):

Example 2.6.9. We calculate the epsilon factor attached to the ∗-transform for the trivial
character 1. Suppose for simplicity that OK has measure 1 under our chosen Haar
measure.

Let f = charOK
. Example 2.6.7 implies f ∗ = charπdd/2e−rOK

; it is a standard calcu-
lation that ZK(f, 1, s) = 1 − q−1 and ZK(f∗, 1, 2 − s) = (1 − q−1)qdd/2e(s−2) for all s.
Therefore

ε∗(1, s) = qdd/2e(s−2)

for all s.
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Example 2.6.10. We now calculate the epsilon factor attached to the ∗-transform for
ramified quasi-characters. Continue to suppose that that OK has measure 1.

Let ω be a quasi-character of K× of conductor r > 0; that is, ω|1+πrOK
= 1 but

ω|1+πr−1OK
6= 1

Let h = char1+πrOK
; so ζK(h, ω, s) is constantly m, the measure of 1 + πrOK under

d
×
x = |x|−1dx. The aim is now to calculate ζK(h∗, ω−1, 2 − s) without calculating h∗. By

example 2.6.8, Wh = h+ h(π−1·), and so Ŵh = ĥ+ q−1ĥ(π·). Therefore

ζK(h∗, ω−1, 2 − s) =

∫

K×

ĥ(πw(x)x)ω(x)−1|x|2−sd
×
x

+ q−1

∫

K×

ĥ(πw(x)+1x)ω(x)−1|x|2−sd
×
x

=
∑

n∈Z

qn(s−2)

∫

w−1(n)
ĥ(πnx)ω(x)−1d

×
x

+ q−1
∑

n∈Z

qn(s−2)

∫

w−1(n)
ĥ(πn+1x)ω(x)−1d

×
x

=
∑

n

qn(s−2)ω(π)−n
∫

O×K

ĥ(π2nx)ω(x)−1d
×
x

+ q−1
∑

n

qn(s−2)ω(π)−n
∫

O×K

ĥ(π2n+1x)ω(x)−1d
×
x

But by Tate’s calculation [Tat67] when calculating the epsilon factor in this same case,
∫

O×K

ĥ(πNx)ω(x)−1d
×
x =

{
q−r/2mρ0(ω

−1) if N = d− r

0 otherwise,

where ρ0(ω
−1) is the root number of absolute value one

ρ0(ω
−1) = q−r/2

∑

θ

ω−1(θ)ψK(πd−rθ),

the sum being taken over coset representatives of 1 + πrOK in O×K .
Therefore

ζK(h∗, ω−1, 2 − s) =

{
q(d−r)(s−2)/2ω(π)(r−d)/2q−r/2mρ0(ω

−1) d− r even
q(d−r−1)(s−2)/2−1ω(π)(1+r−d)/2q−r/2mρ0(ω

−1) d− r odd
= qd(r−d)/2e(2−s)ω(π)d(r−d)/2eq−r/2δd−rmρ0(ω

−1)

where δd−r = 1 if r − d is even and = q−1 if r − d is odd. Finally, as we have already
observed that ζK(h, ω, s) = m for all s, and L(ω, s) = 1 for such a character, we obtain

ε∗(ω, s) = qd(r−d)/2e(2−s)ω(π)d(r−d)/2eq−r/2δd−rρ0(ω
−1).

Remark 2.6.11. More generally, if OK has measure µ under our chosen Haar measure,
then each of the epsilon factors above is multiplied by a factor of µ.

Let us now consider what happens when we take the double transform f ∗∗. If ω is
ramified with conductor r, then

ε∗(ω, s)ε∗(ω
−1, 2 − s) = µ2q2d(r−d)/2eδ2d−rq

−rρ0(ω
−1)ρ0(ω)

= µ2q2d(r−d)/2eδ2d−rq
−rω(−1)ρ0(ω)ρ0(ω)

= µ2qr−dδd−rq
−rω(−1)

= µ2q−dδd−rω(−1).
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If we declare the conductor of an unramified character to be 0 then this formula remains
valid for unramified ω.

Therefore two applications of the functional equation imply that for all f ∈ S(K), all
characters ω of conductor r ≥ 0, and all complex s,

ζK(f∗∗, ω, s) = µ2q−dδd−rω(−1)ζK(f, ω, s). (†)

We will now proceed to use our results on epsilon factors to deduce properties of the
∗-transform; the idea is to use identities between zeta integrals to obtain identities be-
tween the functions. The following result is clearly of great importance in this method:

Lemma 2.6.12. Let f ∈ S(K) and suppose that ζK(f, ω, s) = 0 for all quasi-characters ω and
complex s; then f = 0.

Proof. Let f be in S(K). Then f − f(0) charOK
belongs to S(K×) and so the zeta in-

tegral ζK(f(0) charOK
, ω, s) is well-defined for all s and belongs to C[qs, q−s]. Indeed,

it suffices to observe that S(K×) is spanned by chara+πmOK
where w(a) > m, and

ζK(chara+πmOK
, ω, s) = q−w(a)s

∫
a+πmOK

ω(s) d
×
x.

However, for ω = 1 the trivial character,

ζK(f(0) charOK
, 1, s) = f(0)m(1 − q−s)−1

where m is the multiplicative measure of O×K . So the assumption that ζK(f, 1, s) = 0
implies f(0)(1 − q−s)−1 ∈ C[qs, q−s] as a function of s. This is false unless f(0) = 0;
therefore f(0) = 0 and so f ∈ S(F×).

So now ζK(f, ω, 1) is well-defined for all characters ω of F× and equals f̃(ω), where
˜denotes Fourier transform on the group K×; so f̃ is a function on the dual group of
X(K×) of K×. By the injectivity of the Fourier transform (see e.g. [GRS64, chapter IV])
from L1(K×) to C(X(K×)) our hypothesis implies that f = 0.

We will now use the weak functional equation (†) to prove results about the
∗-transform. Recall that the transform depends on the choice of both non-trivial ad-
ditive character and prime; surprisingly, the double ∗-transform does not depend on
choice of prime:

Proposition 2.6.13. The double ∗-transform does not depend on choice of prime π. If the
character ψK is replaced by some other character, with conductor d′ say, and we assume that
d′ ≡ d mod 2, then the double ∗-transform is multiplied by a constant factor of qd′−d.

Proof. Write more generallyDi for the double ∗-transform with respect to prime πi and
character ψiK for i = 1, 2; let di be the conductor of ψiK and assume d1 ≡ d2 mod 2.
Equation (†) implies that for all f ∈ S(K), all characters ω of conductor r ≥ 0, and all
complex s,

ζK(D1f, ω, s) = µ2q−d1δd1−rω(−1)ζK(f, ω, s)

= qd2−d1ζK(D2f, ω, s).

Lemma 2.6.12 implies now that D1f = qd2−d1D2f , revealing the independence from
the prime and claimed dependence on the conductor of the character.

We use (†) again, this time to prove that ∗ is an automorphism of S(K). It is in-
teresting that we are using properties of zeta integrals and epsilon factors to deduce
properties of ∗; one would usually work in the other direction but the author could
find no direct proof and it is very satisfying to apply zeta integrals to such a problem!
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Proposition 2.6.14. The ∗-transform is a linear automorphism of S(K).

Proof. Let D denote the double ∗-transform on S(K) with respect to our chosen char-
acter (we have shown that it does not depend on choice of prime); let D1 denote the
double ∗-transform on S(K) with respect to a character ψ1

K with conductor d1 6≡ d
mod 2. Equation (†) implies that for all f ∈ S(K), all characters ω of conductor r ≥ 0,
and all complex s,

ζK(D1Df, ω, s) = µ2q−d1δd1−rω(−1)ζK(Df, ω, s)

= µ4q−d−d1δd−rδd1−rω(−1)2ζK(f, ω, s)

= µ4q−d−d1q−1ζK(f, ω, s)

as δd−rδd1−r = q−1 for all r.
Lemma 2.6.12 now implies that D1Df = µ4q−d−d1q−1f for all f ∈ S(K). Therefore ∗

is injective. ReplacingD1D byDD1 in the argument similarly shows that ∗ is surjective.

Remark 2.6.15. The key to the previous proof is the identity δd−rδd1−r = q−1, which
removes the dependence on the conductor r of the multiplicative character. There is no
clear way to relate zeta integrals of f ∗∗ with those of f in a manner independent of the
character; so we were forced to transform four times!

The following result shows that if ψK has conductor 0 then the ∗-transform and
Fourier transform agree on functions lifted from the residue field K:

Proposition 2.6.16. Assume that the conductor of ψK is 0. Let h be a complex-valued function
on K and r an integer; let f = h0,r be the lift of h at 0, r (that is, f vanishes off πrOK and
satisfies f(πrx) = h(x) for x ∈ OK ). Then f ∗ = q−r−1f̂ .

Proof. Suppose initially that r = −1; to prove the assertion it suffices to consider func-
tions f = chara+OK

for a ∈ π−1OK . For such an f it is easily checked that W (f) = f

and f∗ = f̂ .
For arbitrary r, note that x 7→ f(πr+1x) satisfies the hypotheses for the r = −1 case;

lemma 2.6.5 and the corresponding result for the Fourier transform, namely f̂(α ·) =

|α|−1f̂(α ·) for α ∈ K×, imply f ∗ = q−r−1f̂ .

Let us summarise the main results of this section concerning local zeta integrals, the
∗-transform, and related epsilon factors.

Proposition 2.6.17. Let ω be a quasi-character of K×. Then

(AC*) Analytic continuation, with the poles ‘bounded’ by the L-function: for all Schwartz-
Bruhat functions g, ζK(g, ω, s)/L(ω, s), which initially only defines a holomorphic func-
tion for <(s) sufficiently large, in fact has analytic continuation to an entire function

ZK(g, ω, s)

of s.

(L*) ‘Minimality’ of the L-function: there is a Schwartz-Bruhat function g for which

ZK(g, ω, s) = 1

for all s.
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(FE*) Functional equation: there is an entire function ε∗(ω, s), such that for all Schwartz-
Bruhat functions g,

ZK(g∗, ω−1, 2 − s) = ε∗(ω, s)ZK(g, ω, s).

Moreover, ε∗(ω, s) is of exponential type; that is, ε∗(ω, s) = aqbs for some complex a and
integer b.

Proof. Properties (AC*) and (L*) are just (AC) and (L) because they are independent of
the chosen transform. (FE*) is proposition 2.6.1 and the epsilon factors were shown to
be of exponential type by explicit calculation in examples 2.6.9 and 2.6.10.

Remark 2.6.18. For applications to zeta-integrals on two-dimensional local fields we
will require the ∗-transform and zeta integrals for functions defined on the product
space K × K . As S(K × K) = S(K) ⊗ S(K), we may just define the ∗-transform on
S(K ×K) by (f ⊗ g)∗ = f∗ ⊗ g∗ and linearity.

Suppose that ω is a quasi-character of K××K×; write ω(x, y) = ω1(x)ω2(y) for quasi-
characters ωi of K×. The decomposition S(K × K) = S(K) ⊗ S(K) and previous
proposition imply

(i) For all f ∈ S(K×K), the integral ζK×K(f, ω, s) =
∫ ∫

f(x, y)ω(x, y)|x|s|y|s d
×
xd

×
y is

well-defined for<(s) large enough. Moreover, s 7→ ζK×K(f, ω, s)/(L(ω1, s)L(ω2, s))
has analytic continuation to an entire function ZK×K(f, ω, s).

(ii) There is f ∈ S(K ×K) such that ZK×K(f, ω, s) = 1 for all s.

(iii) For all f ∈ S(K ×K), there is a functional equation:

ZK×K(f∗, ω−1, 2 − s) = ε∗(ω1, s)ε∗(ω2, s)ZK×K(f, ω, s)

for all s. Note that ε∗(ω1, s)ε∗(ω2, s) is of exponential type.

2.6.2 Archimedean case
Now suppose that K is an archimedean local field. Rather than present a version of
proposition 2.6.1 using tempered distributions, we will just define and investigate an
analogue of the ∗-transform. The existence of an s goes to 2−s functional equation will
be shown as in [Tat67], via Fubini’s theorem.

Definition 2.6.19. Introduce

∇ : K → K, x 7→ |x|x.

Note that this ∇ is a bijection with inverse x 7→ x|x|−
1

2 (for x ∈ K×). Given a complex-
valued function f on K , define its ∗-transform by

f∗ = ̂f ◦ ∇−1 ◦ ∇,

assuming that f ◦ ∇−1 is integrable.

Remark 2.6.20. Note that the archimedean and non-archimedean ∇ maps have the
same form: ∇x = σ(x)x where σ is a splitting of the absolute value.

This archimedean ∗-transform has an integral representation similar to the Fourier
transform:
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Lemma 2.6.21. Let g be a complex-valued function on K such that x 7→ g(x)|x| is integrable.
Then g∗ is well-defined and

g∗(y) = 2

∫

K
g(x)ψK(∇(yx))|x| dx.

Proof. By definition of the ∗-transform,

g∗(y) =

∫
g ◦ ∇−1(u)ψK(u∇(y)) du =

∫
g(u|u|−

1

2 )ψK(uy|y|) du.

To obtain the desired expression, change variables x = u|u|1/2 = ∇−1(u) in the integral.

Remark 2.6.22. The previous lemma is enough to prove that if f is a Schwartz func-
tion on K , then both f ∗ and f∗∗ are well-defined. Unfortunately, it is false that the
∗-transform of a Schwartz function is again a Schwartz function, as the following ex-
ample shows.

Example 2.6.23. We ∗-transform the Schwartz function g(x) = e−πx
2 on R with additive

character e2πix. Firstly, g ◦ ∇−1(x) = e−π sign(x)x, where sign(x) is the sign (±) of x, and
so

̂g ◦ ∇−1(y) =

∫ ∞

0
e−πxe2πixy dx+

∫ ∞

0
e−πxe−2πixy dx.

A standard calculation from the calculus of residues is
∫∞
0 e−αxeibxdx = 1/(α − ib)

for real α, b with α > 0. Therefore ̂g ◦ ∇−1(y) = 2π/(π2 + 4π2y2) and so

g∗(y) =
2π

π2 + 4π2y4

which does not decay rapidly enough to be a Schwartz function. Since g◦∇−1 is not dif-
ferentiable at 0, this is in agreement with the duality provided by the Fourier transform
between smoothness and rapid decrease.

We now prove an s goes to 2 − s functional equation:

Proposition 2.6.24. Suppose that ω is a quasi-character of K×. If f, g are Schwartz functions
on K for which f ∗, g∗ are also Schwartz, then

ζK(f, ω, s)ζK(g∗, ω−1, 2 − s) = ζK(f∗, ω−1, 2 − s)ζK(g, ω, s)

for all complex s. Here we write zeta functions where we strictly mean their meromorphic
continuation.

Proof. One imitates Tate’s method, using the representation of the ∗-transform given by
lemma 2.6.21 to show that

ζK(f, ω, s)ζK(g∗, ω−1, 2− s) = 2

∫ ∫ ∫

K3

f(x)g(z)ψK(∇(xyz))|xyz|ω(y)−1|y|−s dxdydz

for s with <(s) = 1 − <(ω); here <(ω) is the exponent of ω, defined by |ω| = | · |<(ω).
This expression is symmetric in f and g, from which follows

ζK(f, ω, s)ζK(g∗, ω−1, 2 − s) = ζK(f∗, ω−1, 2 − s)ζK(g, ω, s).

Apply the identity theorem to deduce that this holds for all complex s.
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Example 2.6.25. Suppose that K = R; let g(x) = e−πx
2 , f = g ◦ ∇. Assume that

ψR(x) = e2πix, and that the chosen measure is Lebesgue measure; then ĝ = g which
implies here that f ∗ = f . For s complex of positive real part,

ζK(f, 1, s) =
1

2
π−s/4Γ(s/4) =

1

2
ζK(g, 1, s/2).

The previous proposition implies that if h, h∗ are Schwartz on R, then

ζK(h∗, 1, 2 − s) =
π(s−2)/4Γ((2 − s)/4)

π−s/4Γ(s/4)
ζK(h, 1, s)

= 2s/2−1πs/2
(

cos
(πs

4

)
Γ
(s

2

))−1
ζK(h, 1, s),

by the same Gamma function identities used in [Tat67].

Remark 2.6.26. If f is a Schwartz function and ω a quasi-character, then we know that
ζK(f, ω, s)/L(ω, s) analytically continues to an entire function; also, f may be chosen
such that ζK(f, ω, s) = L(ω, s). However, as example 2.6.23 demonstrates, the standard
choice of f may be such that f ∗ is not Schwartz.

The author suspects that if f is a Schwartz function on R for which f ∗ is also Schwartz,
then ζK(f, 1, s)/(π−s/4Γ(s/4)) will analytically continue to an entire function; more-
over, we have seen in the previous example that this denominator satisfies the ‘mini-
mality’ condition (i.e. it occurs as a zeta function). This would justify calling
π−s/4Γ(s/4) the local L-function for ∗.

2.7 Two dimensional zeta integrals
In this, the final section of the chapter, we apply the integration theory to the study of
two-dimensional local zeta integrals.

2.7.1 Non-archimedean case
F is now a non-archimedean, two-dimensional local field. Thus Γ = Z and F is com-
plete with respect to the discrete valuation ν, with residue field F a non-archimedean
(one-dimensional) local field; the residue field of F is Fq. The rank two ring of integers
of F is OF = ρ−1(OF ). Let t1, t2 be local parameters for F which satisfy t2 = t(1) and
t1 = π, where π is the prime of F which was used to define the ∗-transform on K = F
in the previous section.

Let K top
2 (F ) denote the second topological K-group of F (see [Fes00]); recall that

K
top
2 (F ) is the appropriate object for class field theory of F (see [Fes91] for details). We

recall those properties of K top
2 (F ) which we shall use:

(i) A border map of K-theory defines a continuous map ∂ : K
top
2 (F ) → F

× which
satisfies

∂{u, t2} = u, ∂{u, v} = 1 (for u, v ∈ O×F ).

∂ does not depend on choice of t1, t2. Introduce an absolute value

| · | : K
top
2 (F ) → R>0, ξ 7→ |∂(ξ)|F .

(ii) Let U be the subgroup of K top
2 (F ) whose elements have the form {u, t1}+ {v, t2},

for u, v ∈ O×F . K
top
2 (F ) decomposes as a direct sum Z{t1, t2} ⊕ U . Note that

|n{t1, t2} + u| = q−ns for n ∈ Z, u ∈ U .
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(iii) For any quasi-character χ : K
top
2 (F ) → C×, there exist complex s and a character

χ0 : U → S1 such that

χ(n{t1, t2} + u) = χ0(u)q
−ns (for n ∈ Z, u ∈ U).

The real part of s is uniquely determined by χ and is said to be, as in the one-
dimensional case, the exponent of χ (denoted <(χ)).

Definition 2.7.1. Introduce T = O×F ×O×F , T+ = OF ×OF , and a surjective homomor-
phism

t : T → K
top
2 (F ), (α, β) 7→ {α, t2} + {t1, β} +w(β){t1,−t2}

for α, β ∈ O×F .
Note that u, v ∈ O×F and i, j ∈ Z implies t(ti1u, t

j
1v) = (i+ j){t1, t2}+ {t1, v} + {u, t2}.

Remark 2.7.2. Compare with [Fes03]. t depends on the choice of local parameters t1, t2.
T+ is the closure of T in the two-dimensional topology of F ; its relation to T is the same
as F to F× in the one-dimensional local theory, the adèle group A to the idèle group
A× in the one-dimensional global theory, or the matrix algebra Mn to the groupGLn in
R. Godement and H. Jacquet’s generalisation [GJ72] of Tate’s thesis.

Note that (x, y) ∈ T implies |t(x, y)| = |x| |y| ∈ R>0.

Given a C(X) (= C(Γ)) -valued function f on T+, a quasi-character χ of K top
2 (F ),

and complex s, Fesenko suggests in [Fes03] the following definition for the associated
(two-dimensional) local zeta integral:

ζ(f, χ, s) = ζ2d
F (f, χ, s) =

∫ F××F×

f(x, y)χ ◦ t(x, y)|t(x, y)|s charT (x, y) d
×
xd

×
y,

assuming that the integrand is integrable on F× × F×; integration on this space is a
simple union of the integration theory on F× (section 2.4) and the basic theory for
F × F (summarised in subsection 1.4.2).

We now prove analytic continuation, and moreover a functional equation, for a class
of functions f and characters χ; we write f 0 for the lift of f ∈ S(F × F ) at (0, 0), (0, 0)
(see 1.4.2 for the definition).

Proposition 2.7.3. Let χ be a quasi-character ofK top
2 (F ) and suppose that χ◦t factors through

the residue map T → F
×
× F

×. Let ωi be the quasi-characters of F× defined by χ ◦ t(x, y) =
ω1(x)ω2(y). Define LF (χ, s) = L(ω1, s)L(ω2, s), a product of two L-functions for F , and
εF (χ, s) = ε∗(ω1, s)ε∗(ω2, s), a product of two epsilon factors for F . Then

(AC2) For all f ∈ S(F × F ), the zeta function ζ(f 0, χ, s) is well-defined for <(s) sufficiently
large. Moreover,

ζ(f0, χ, s)/LF (χ, s)

has analytic continuation to an entire function, Z(f 0, χ, s).

(L2) There is f ∈ S(F × F ) such that Z(f 0, χ, s) = 1 for all s.

(FE2) For all f ∈ S(F × F ), a functional equation holds:

Z(f∗0, χ−1, 2 − s) = εF (χ, s)Z(f 0, χ, s).

for all s. Moreover, εF (χ, s) is of exponential type; that is εF (χ, s) = aqbs for some
complex a and integer b.
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Proof. By definition of the integral on F××F× and a similar argument to example 2.4.6
(i), we have

ζ(f0, χ, s) =

∫

F
×

∫

F
×
f(u, v)ω1(u)ω2(v)|u|

s|v|s d
×
ud

×
v,

which we denoted ζF×F (f, ω1 ⊗ ω2, s) in remark 2.6.18. That is, since we are only
considering functions f which lift from F × F , the zeta integral over OF ×OF reduces
to a zeta integral over F × F . All required results follow from that remark.

Remark 2.7.4. The previous example highlights the interest of lifting the ∗-transform
up to F in a similar way to how we lifted the Fourier transform. Then it may be possible
to generalise this proposition to more functions on OF × OF than simply those which
lift from F×F . However, it is unclear whether this would produce anything essentially
new.

Remark 2.7.5. Having calculated epsilon factors for the ∗-transformation in section 2.6,
we have formulae for the two-dimensional epsilon factors

εF (χ, s) = ε∗(ω1, s)ε∗(ω2, s).

For example, if ω1 is ramified with conductor r > 0 but ω2 is unramified, then

εF (χ, s) = q(d(r−d)/2e−dd/2e)(2−s)χ(t1, 1)
d(r−d)/2eq−r/2δd−rρ0(ω

−1
1 )

where d is the conductor of the additive character on F used to define the ∗-transform.

There is another relation between zeta integrals on F and F which we now discuss;
first we need a lemma:

Lemma 2.7.6. Let g be a complex-valued function on F and s complex such that g| · |2s is
integrable on F×. Let w : F

×
→ Z be the discrete valuation on F ; introduce

g′ : F
×
× F

×
→ C, (x, y) 7→ g(πmin(w(x),w(y))−w(x)x) |xy|s.

Then g′ is integrable over F× × F
×, with integral

∫ ∫
g′(x, y) d

×
xd

×
y = µ(O×

F
)
1 + q−s

1 − q−s

∫
g(x)|x|2sd

×
x,

where µ is the multiplicative Haar measure on F×.

Proof. The integral of g′ over F× × F
× is

∑

n∈Z

∑

m∈Z

∫

w−1(n)

∫

w−1(m)
g(πmin(n,m)−mx)q−s(n+m)−2 dxdy.

Split the inner summation over m < n and m ≥ n, and then interchange the order of
the double summation

∑
n

∑
m<n; elementary manipulations complete the proof.

Definition 2.7.7. Introduce a ‘generalised residue map’:

ρ2 : T+ −→ F , (ti11 t
i2
2 u, t

j1
1 t

j2
2 v) 7→ t

min(i1,j1)
1 t

min(i2,j2)
2 u

where u, v ∈ O×F and i1, i2, j1, j2 ∈ Z.
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Remark 2.7.8. The map ρ2, when restricted to T , factors through K top
2 (F ):

ρ2(t
i
1u, t

j
1v) = ∂ (min(i, j){t1, t2} + {t1, v} + {u, t2})

where i, j ∈ Z, u, v ∈ O×F .
ρ2 provides a new method for lifting zeta integrals from F to F :

Proposition 2.7.9. Let ω be a quasi-character of F×, s complex, and g a complex-valued func-
tion on F such that g ω2 | · |2s is integrable on F

×; let χ = ω ◦ ∂. Then the zeta integral
ζ(g ◦ ρ2, χ, s) is well-defined and

ζ(g ◦ ρ2, χ, s) = µ(O×
F
)
1 + q−s−c

1 − q−s−c
ζF (g, ω, 2s + c),

where c ∈ C is defined by ω = ω0 | · |
c with ω0 a character of F× trivial on π.

Proof. For (x, y) ∈ T ,

g ◦ ρ2(x, y)χ ◦ t(x, y) |t(x, y)s| |x|−1 |y|−1

= g(πmin(w(x),w(y))−w(x)x)ω(xπw(y)) |xy|s−1

= g(πmin(w(x),w(y))−w(x)x)ω0(x) |xy|
s+c−1

= g(πmin(w(x),w(y))−w(x)x)ω0(π
min(w(x),w(y))−w(x)x) |xy|s+c−1,

so that (x, y) 7→ g ◦ ρ2(x, y)χ ◦ t(x, y) |t(x, y)s| |x|−1 |y|−1 is the lift of

(u, v) 7→ g(πmin(w(u),w(v))−w(v)u)ω0(π
min(w(u),w(v))−w(u)u) |uv|s+c−1

at (0, 0), (0, 0).
The result now follows from the previous lemma.

This is enough to deduce analytic continuation of some more zeta functions:

Corollary 2.7.10. Let ω be a quasi-character of F×, L(ω, s) the associated L-function, and g a
Schwartz-Bruhat function on F ; let χ = ω ◦ ∂. Then

(i) For <(s) sufficiently large, the zeta integral ζ(g ◦ ρ, χ, s) is well-defined.

(ii) The holomorphic function ζ(g◦ρ, χ, s)/(L(ω, s)(1−χ({t1, t2})q
−s)−1), initially defined

for <(s) sufficiently large, has analytic continuation to an entire function.
Proof. This follows from the corresponding results for local zeta functions on F , the
previous proposition, and the identity χ({t1, t2}) = ω(π) = q−c where c is as in the
previous proposition.

It has been useful throughout for χ◦t to factor through the residue map T → F
×
×F
×.

In the next two examples we consider some situations in which this happens. Let L, a
two-dimensional local field, be a finite abelian extension of F and let χ be a character
of K top

2 (F ) which vanishes on NL/FK
top
2 (L). So χ corresponds, via two-dimensional

class field theory, to a character of Gal(L/F ).
Example 2.7.11. SupposeL/F is separable with |L : F | = |L : F |; i.e. L/F is unramified
as an extension of complete discrete valuation fields.

Then ∂ induces a surjection K
top
2 (F )/NL/FK

top
2 (L) → F

×
/NL/FL

×. Further, the
separability assumption implies L/F is an abelian extension of local fields, so that
|F
×
/NL/FL

×
| = |L : F | = |L : F | = |K

top
2 (F )/NL/FK

top
2 (L)|; thus the aforementioned

induced surjection is an isomorphism. Therefore χ factors through ∂.
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Example 2.7.12. Suppose L = F , p - |L : F |, and t2 ∈ NL/FL
× (‘a totally tamely

ramified extension in the second parameter’).
Then (x, y) ∈ T implies t(x, y) ≡ {t1,Θ(y)} mod NL/FK

top
2 (L) (see [Fes91]), where

Θ is the projection
Θ : F× = 〈t1〉 × 〈t2〉 × F×q × VF → F×q .

Here VF is the two-dimensional group of principal units of F .
Therefore there exists a tamely ramified quasi-character ω of F× such that χ◦t(x, y) =

ω(y) for (x, y) ∈ T .

These examples show that our functional equation applies to all ‘sufficiently unram-
ified’ characters; but do observe that in example 2.7.11, the residue extension L/F is
allowed to be as ramified as desired. The proof of the functional equation in [Fes03] is
valid whenever all relevant functions are integrable, and proposition 2.7.3 is certainly a
special case. However, it appears that if χ is ramified then certain interesting functions
fail to be integrable.

The failure of the integral to work in the ramified setting is a serious difficulty, which
may only be overcome through a systematic comparison of the current theory with the
ramification theory of two-dimensional local fields. See section 6.1 for some thoughts
on the subject.

2.7.2 Archimedean case
Now suppose that F is an archimedean, two-dimensional local field; that is, Γ = Z,
F is complete with respect to the discrete valuation ν, and the residue field F is an
archimedean local field. The classification of complete discrete valuation fields (see
e.g. [FV02, II.5]) implies that F is isomorphic to a field of Laurent series C((t)) or
R((t)), where we write t = t(1).

The correct way to use topological K-groups for class field theory and zeta integrals
of such fields is not clear, so we content ourselves with making a few remarks about
generalising the results in the non-archimedean case without appealing to K-groups.

Given Schwartz functions f, g on F for which f ∗, g∗ are also Schwartz, and ω a quasi-
character of O×F which factors through the residue map O×F → F

×, proposition 2.6.24
implies that

∫ F×

f0,0(x) ω(x)|x|s charO×F
(x) d

×
x

∫ F×

(g∗)0,0(x) ω(x)−1|x|2−s charO×F
(x) d

×
x

is invariant under interchanging f and g. There is an analogous result for integrals
over O×F ×O×F .

An extension of F cannot be wildly ramified in any sense, and so by analogy with
examples 2.7.11 and 2.7.12 we expect arithmetic characters on O×F (or O×F × O×F ) to lift
from F

×. Hence this functional equation may be satisfactory in the archimedean case.
Indeed, in the case F = C((t)), the finite abelian extensions of F have the form

C((t1/n)) for natural n. A character attached to such an extension is surely a purely
imaginary power of | · |; this lifts to O×F from F

×.
If F = R((t)), then F has maximal abelian extension C((t1/2)), with subextensions

R((t1/2)) and C((t)). A character attached to the extension C((t1/2)) is O×F → {±1} :

x 7→ sign(x), which again lifts from F
×.

49
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2.A Rings generated by d-classes
This appendix gives a clear exposition of the calculations required to develop the mea-
sure theory of section 2.2 from the integration theory; many of the manipulations here
are inspired by [Fes03] and [Hal50].

Definition 2.A.1. Let A be a collection of subsets of some set Ω.
A is said to be a ring if it is closed under taking differences and finite unions.
A is said to be a d-class if it contains the empty set and satisfies the following: A,B

in A with non-trivial intersection implies A contains A ∩ B and A ∪ B. Elements of a
d-class are called d sets.

Example 2.A.2. The following are examples of d-classes.

(i) The collection of finite intervals of R, open on the right and closed on the left,
together with the empty set.

(ii) The collection of translates of some chain of subgroups of a group, together with
the empty set.

We fix for the remainder of this appendix a d-class on some set.

Lemma 2.A.3. Let Ai be d sets, for i = 1, . . . , n. Then there exist disjoint d sets Bj , j =
1, . . . ,m such that each Bj is a union of some of the Ai and such that

⋃
iAi =

⊔
j Bj

Proof. A simple induction on n.

Informally, the result states that any finite union of d sets may be refined to a disjoint
union.

Definition 2.A.4. A set of the formA\
⊔
iAi for some d setsA,A1, . . . , An, withAi ⊆ A

for each i, is said to be a dd set.

Remark 2.A.5.

(i) Consider a set of the form X = A \
⋃
iAi for d setsA,A1 . . . , Am, where we make

no assumption on disjointness or inclusions. Then X = A \
⋃
iA ∩ Ai; lemma

2.A.3 implies that X is a dd set.

(ii) The identity (A \
⊔
iAi) ∩ (B \

⊔
j Bj) = (A ∩ B) \ (

⊔
iAi ∪

⊔
j Bj) and lemma

2.A.3 imply that dd sets are closed under finite intersection.

Definition 2.A.6. A finite disjoint union of dd sets is said to be a ddd set.

Lemma 2.A.7. The difference of two dd sets is a ddd set.

Proof. For arbitrary sets A,A0, B, (Bj)j with Bj ⊆ B, the identity

(A \ A0) \ (B \
⊔

j

Bj) = (A \ (B ∪A0)) t
⊔

j

((Bj ∩A) \ A0)

is easily verified. Replace A0 by a disjoint union of d sets and use remark 2.A.5 to
complete the proof.

Proposition 2.A.8. The difference of two ddd sets is a ddd set. The union of two ddd sets is a
ddd set.
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Proof. The difference of two ddd sets may be written as a finite disjoint union of sets
of the form

⋂
Ei \ Di, a finite intersection of differences of dd sets; such a set is an

intersection of ddd sets by lemma 2.A.7. By De Morgan’s laws, this may be rewritten
as a disjoint union of intersections of dd sets. Hence the difference of two ddd sets is
again a ddd set.

Let D1, . . . , Dn and E1, . . . , Em be disjoint dd sets. Then
⊔
iDi ∪

⊔
j Ej is the disjoint

union of the following three sets:

W1 =
⊔

i

Di ∩
⊔

j

Ej

W2 =
⊔

i

Di \
⊔

j

Ej

W3 =
⊔

j

Ej \
⊔

i

Di.

W2 and W3 are ddd sets by lemma 2.A.3. Further, W1 =
⊔
i,j(Di ∩ Ej) is a ddd set by

remark 2.A.5.

Proposition 2.A.9. The collection of all ddd sets is a ring; indeed, it is the ring generated by
the d-class.

Proof. This is the content of the previous result.

2.B C(Γ)-valued holomorphic functions
We briefly explain the required theory of holomorphic functions from the complex
plane to C(Γ), though C(Γ) could be replaced with an arbitrary complex vector space.

Definition 2.B.1. Suppose f is a C(Γ)-valued function defined on some open subset of
the complex plane. We shall say that f is holomorphic at a point of U if and only if, in
some neighbourhood U0 of this point,

f(z) =
n∑

i=1

fi(z)pi,

for some f1, . . . , fn, complex-valued holomorphic functions of U0, and p1, . . . , pn, ele-
ments of C(Γ).

Although the definition of holomorphicity is a local one, we can find a global repre-
sentation of any such function on a connected set:

Proposition 2.B.2. Let (pi)i∈I be any basis for C(Γ) over C, and let (πi)i∈I be the associated
coordinate projections to C. Let f be a C(Γ)-valued holomorphic function on some open subset
U of C. Then

(i) πi ◦ f is a complex-valued holomorphic (in the usual sense) function of U .

(ii) If U is connected then there is a finite subset I0 of I and complex-valued holomorphic
functions fi, for i ∈ I0, of U such that

f(x) =
∑

i∈I0

fi(z)pi

for all z ∈ U .
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Proof. Let us suppose that

f(z) =

n∑

j=1

fj(z)qj (∗)

for all z in some open U0 ⊂ U , where the fj are complex valued holomorphic functions
of U0 and q1, . . . , qn ∈ C(Γ). Then each qj is a linear sum (with complex coefficients)
of finitely many pi; therefore there is finite I0 ⊂ I such that f(z) =

∑
i∈I0

fi(z)pi for all
z ∈ U0, where each fi is a sum of finitely many fj . So for any i ∈ I ,

πi ◦ f |U0
=

{
fi i ∈ I0

0 i /∈ I0

therefore πi ◦ f is holomorphic on U0.
But f is holomorphic, so each point of U has an open neighbourhood where f can be

written as in (∗); therefore πi ◦ f is holomorphic on all of U . This proves (i).
(ii) follows from (i) as soon as it is known that there are only finitely many i in I for

which πi ◦ f is not identically zero on U . But the identity theorem of complex analysis
implies that if πi ◦ f is not identically zero on U , then it is not identically zero on any
open set U0 ⊂ U . So choose U0 as at the start of the proof and write f |U0

as in (∗); if
πi ◦ f is not identically zero on U0, then i ∈ I0. So for all z ∈ U ,

f(z) =
∑

i∈I0

πi ◦ f(z) pi.

Although it is very easy to prove, the identity theorem here is fundamental, for else
we would not be assured of the uniqueness of analytic continuations:

Proposition 2.B.3. Suppose that f is a C(Γ)-valued holomorphic function on some connected
open subset U of C. Suppose that the zeros of f have a limit point in U ; then f is identically
zero on U .

Proof. Let (pi)i∈I and (πi)i∈I be as in the previous proposition. By the usual identity
theorem of complex analysis, each πi ◦ f vanishes everywhere; therefore the same is
true of f .

Enough has now been proved to discuss analytic continuation of C(Γ)-valued func-
tions as required in section 2.5.
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Integration on product spaces and GLn of a valuation
field over a local field

We work with the same notation as chapter 2; our aim is to extend the integration
theory to finite dimensional vector spaces and GLn over F .

3.1 Repeated Integration on F n

In this section we extend the integral on F to the product space F n for n a positive
integer. We do this by using the integral over F to define repeated integrals. The idea
is simple, though the notation is not. A summary of the theory for n = 2 was given in
subsection 1.4.2.

Given a sequence x1, . . . , xn of n terms, and r such that 1 ≤ r ≤ n, the notation

x1, . . . , ẋr, . . . , xn = x1, . . . , xr−1, xr+1, . . . , xn

denotes the sequence of n− 1 terms obtained by removing the r th term.
We introduce the largest space of functions for which all repeated integrals exist and

are equal:

Definition 3.1.1. Let f be a C(Γ)-valued function on F n. The inductive definition of f
being Fubini, and the repeated integral of f , are as follows:

If n = 1, then f is Fubini if and only if it is integrable, and the repeated integral of f
is defined to be its integral

∫ F
f(x) dx.

For n > 1, f is Fubini if and only if it satisfies the following conditions:

(i) For each r with 1 ≤ r ≤ n, and all x1, . . . , ẋr, . . . , xn in F , the function

xr 7→ f(x1, . . . , xn)

is required to be integrable on F , and then the function

(x1, . . . , ẋr, . . . , xn) 7→

∫ F

f(x1, . . . , xn) dxr

is required to be Fubini on F n−1.

(ii) Then we require that the repeated integral of

(x1, . . . , ẋr, . . . , xn) 7→

∫ F

f(x1, . . . , xn) dxr

does not depend on r. The repeated integral of f on F n is defined to be the
common value of these n repeated integrals on F n−1.
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The repeated integral of a Fubini function f on F n will be denoted
∫ Fn

f(x) dx.

The repeated integral is a C(Γ)-linear functional on the C(Γ)-space of all Fubini func-
tions on F n.

Remark 3.1.2. Informally, a C(Γ)-valued function f is Fubini if and only if, for each
permutation σ of {1, . . . , n}, the expression

∫ F

. . .

∫ F

f(x1, . . . , xn) dxσ(1) . . . dxσ(n)

is well defined and its value does not depend on σ. The repeated integral of f is of
course the common value of these n! integrals.

Remark 3.1.3. We will also be interested in repeated integrals of complex-valued func-
tions on F n. Since the integration theory on F does not allow for functions on F which
are perhaps only defined off a null set, we must ensure that such functions do not
arise. Therefore we define a complex-valued function g on F n to be Fubini if it is Haar
integrable and satisfies the obvious rewording of definition 3.1.1. Informally, such a
function is Fubini if and only if it is Haar integrable and each partial integral

∫
. . .

∫
g(u1, . . . , un) duσ(1) . . . duσ(r)

is defined for all uσ(r+1), . . . , uσ(n) ∈ F , where σ is any permutation of {1, . . . , n} and
1 ≤ r ≤ n. Fubini’s theorem then implies that the value of the repeated integral

∫ F

. . .

∫ F

g(u1, . . . , un) duσ(1) . . . duσ(n)

is independent of σ.
Fubini’s theorem and induction on n imply that any integrable function on F

n is
almost everywhere equal to a Fubini function.

Any continuous complex-valued function on F with compact support is Fubini, as is
any Schwartz function if F is archimedean. So the class of Fubini functions is still large
enough for applications in representation theory, harmonic analysis, etc.

In fact, most Fubini functions on F n encountered in this paper will be of the follow-
ing form, which is a generalisation of the notion of a simple function (see subsection
1.4.1)on F :

Definition 3.1.4. Let f be a Fubini function on F n; the inductive definition of f being
strongly Fubini is as follows:

If n = 1, then g is strongly Fubini if and only if it is a simple function.
For n > 1, g is strongly Fubini if and only if the following hold: For each r with

1 ≤ r ≤ n, and each x1, . . . , ẋr, . . . , xn in F , we require that

xr 7→ f(x1, . . . , xn)

is a simple function on F , and then that

(x1, . . . , ẋr, . . . , xn) 7→

∫ F

f(x1, . . . , xn) dxr

is strongly Fubini on F n−1.
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The property of being strongly Fubini is preserved under translation and scaling, as
is the weaker property of being Fubini. For α = (α1, . . . , αn) in F×

n (n copies of F×,
not the group of nth powers of F×), write |α| =

∏
i |αi|, where | · | is the absolute value

introduced in theorem 1.4.4; for x ∈ F n write αx to denote the coordinate-wise product
αx = (α1x1, . . . , αnxn).

Lemma 3.1.5. Suppose f is a strongly Fubini (resp. Fubini) function on F n. For a ∈ F n and
α ∈ F×

n, the functions x 7→ f(x+a) and x 7→ f(αx) are strongly Fubini (resp. Fubini), with
repeated integrals

∫ Fn

f(x+ a) dx =

∫ Fn

f(x) dx,

∫ Fn

f(αx) dx = |α|−1

∫ Fn

f(x) dx.

Proof. This is a simple induction on n; the case n = 1 is remark 1.4.3.

A continuing theme of this thesis is showing how integrals constructed at the level
of F lift Haar integrals on F . For the integral on F , this is the identity

∫ F

g0(x) dx =

∫
g(u) du

for Haar integrable g on F .
We will denote by t : Γn → F n the product of n copies of t; the value of nwill be clear

from the context. Similarly, we write ρ or an overline for the the residue map On
F → F

n.
Given a = (a1, . . . , an) ∈ F n and γ = (γ1, . . . , γn) ∈ Γn, there is a product of translated
fractional ideals given by

a+ t(γ)On
F =

n∏

i=1

ai + t(γi)OF .

Now we may generalise the notion of lifting a function:

Definition 3.1.6. For g a function on F n taking values in an abelian group A, set

g0 : F n → A

x 7→

{
g(x) x ∈ On

F

0 otherwise.

Again, more generally, for a ∈ F n, γ ∈ Γn, the lift of g at a, γ is the A-valued function
on F defined by

ga,γ(x) =

{
g((x− a)t(−γ)) x ∈ a+ t(γ)On

F

0 otherwise.

Of course, g0 = g0,0 and ga,γ(a+ t(γ)x) = g0,0(x) for all x ∈ F n.

Remark 3.1.7. It is a straightforward observation that a section of a lifted function is
again a lifted function. To be precise, suppose that f = ga,γ is a lifted function as in the
definition, r is such that 1 ≤ r ≤ n, and x1, . . . , ẋr, . . . , xn ∈ F . Then the function

xr 7→ f(x1, . . . , xn)

of F is identically zero unless xi ∈ ai + t(γi)OF for all i 6= r.
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If in fact xi ∈ ai + t(γi)OF for all i 6= r, then

xr 7→ f(x1, . . . , xn)

is the lift of
ur 7→ g(ξ1, . . . , ξr−1, ur, ξr+1, . . . , ξn)

at ar, γr, where ξi := (xi − ai)t(−γi) ∈ OF for i 6= r.
This generalises to s-dimensional sections of f for any s with 1 ≤ s ≤ n. We shall

frequently employ the cases s = 1 and s = 2.

We may now prove the fundamental result that the repeated integral on F n lifts the
Haar integral on F n:

Proposition 3.1.8. Suppose g is a Fubini function on F n. Then g0 is strongly Fubini on F n,
with repeated integral ∫ Fn

g0(x) dx =

∫

F
n
g(u) du.

Proof. Let r be such that 1 ≤ r ≤ n, and fix x1, . . . , ẋr, . . . , xn ∈ F . The previous remark
and the case n = 1 (contained in theorem 1.4.4) imply that xr 7→ g0(x1, . . . , xn) is simple
and integrable on F with integral

{∫
g(x1, . . . , xr−1, ur, xr+1, . . . , xn) dur xi ∈ OF for all i 6= r

0 otherwise.

That is,

(x1, . . . , ẋr, . . . , xn) 7→

∫ F

g0(x1, . . . , xn) dxr

is the lift of the everywhere defined Haar integrable function

(u1, . . . , u̇r, . . . , un) 7→

∫
g(u1, . . . , un) dur

on F n−1.
The result now follows easily by induction on n.

Remark 3.1.9. More generally, suppose f = ga,γ is the lift of a Fubini function to F n;
here g is Fubini on F n, a ∈ F n and γ ∈ Γn. Then the proposition and the invariance of
being strongly Fubini under translation and scaling (lemma 3.1.5) imply f is strongly
Fubini on F n, with repeated integral

∫ Fn

f(x) dx =

∫

F
n
g(u) duX

Pn
i=1

γi .

Remark 3.1.10. Using a similar inductive argument as in the previous proposition and
the details of the proof in subsection 2.3 on harmonic analysis onF , there is no difficulty
in showing that if g is a Fubini function on F n and ψ : F → S1 is a good character on
F , then

x 7→ ga,γ(x)ψ(b1x1 + . . . bnxn)

is Fubini on F n, for any b ∈ F n (though, of course, one must replace the integrability
condition in the definition of a Fubini function on F n by the condition that it belongs
to the enlarged space L(F,ψ)).

Similarly, it is straightforward to generalise the results of subsection 2.3.2 on Fourier
transforms to F n. Also see remark 3.2.14.
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3.2 Linear changes of variables in repeated integrals
With the basics of repeated integrals in place, we turn to the interaction of the theory
with GLn(F ). We shall write the action of GLn(F ) on F n as a left action, though we
also write elements of F n as row vectors; given τ ∈ GLn(F ) and x = (x1, . . . , xn) ∈ F n,
τx means

τx = τ




x1
...
xn


 .

Given a function f on F n, we write f ◦ τ for the function x 7→ f(τx). SLn(F ) denotes
the determinant 1 subgroup of GLn(F ). These notation also apply to F in place of F .

Definition 3.2.1. A complex-valued function g on F n is said to beGL-Fubini if and only
if g ◦ τ is Fubini for all τ ∈ GLn(F ).

Remark 3.2.2. Any continuous complex-valued function with compact support is GL-
Fubini, as is any Schwartz function when F is archimedean; this follows from remark
3.1.3 and the invariance of these properties underGLn(F ). In the following results this
is the sort of function to have in mind.

Definition 3.2.3. Let L(F n, GLn) be the C(Γ) space of C(Γ)-valued functions spanned
by ga,γ ◦ τ for g GL-Fubini, τ ∈ GLn(F ), a ∈ F n, γ ∈ Γn.

The aim of this section is the following result:

Theorem 3.2.4. Every function in L(F n, GLn) is Fubini on F n. If f ∈ L(F n, GLn), a ∈ F n,
and τ ∈ GLn(F ), then the functions x 7→ f(x + a) and x 7→ f(τx) belong to L(F n, GLn),
with repeated integrals given by

∫ Fn

f(x+ a) dx =

∫ Fn

f(x) dx,

∫ Fn

f(τx) dx = |det τ |−1

∫ Fn

f(x) dx

The theorem will be proved through several smaller results. First we recall the Iwa-
sawa decomposition, where we abbreviate ‘unipotent upper triangular’ to u.u.t.

Lemma 3.2.5. Let τ be in GLn(F ). Then there exist A in GLn(OF ), a u.u.t. U in GLn(F ),
and a diagonal Λ in GLn(F ) such that τ = AUΛ.

Proof. When Γ = Z and F is complete with respect to the discrete valuation ν, this
is the standard Iwasawa decomposition. However, the standard proof is valid in the
generality in which we require it (see e.g. [Bum97, Proposition 4.5.2]).

This decomposition allows us to restrict attention to upper triangular matrices, for
the GLn(OF ) term can be ‘absorbed’ into the function:

Lemma 3.2.6. L(F n, GLn) is spanned over C(Γ) by functions of the form x 7→ g0◦U(αx+a),
for g GL-Fubini on F n, U a u.u.t. matrix, α ∈ F×

n, and a ∈ F n.

Proof. Let g be GL-Fubini on F n, τ ∈ GLn(F ), a ∈ F n and γ ∈ Γn. Let A,U,Λ be the
Iwasawa decomposition of




t(−γ1)
. . .

t(−γn)


 τ,
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as in lemma 3.2.5. For x in F n, the identity ga,γ ◦ τ(x) = g0 ◦AUΛ(x− τ−1a) holds.
Now note that g0 ◦ A = (g ◦ A)0 where A is the image of A in GLn(F ). So x ∈ F n

implies ga,γ ◦ τ(x) = (g ◦ A)0(U(λx+ b)), where λ ∈ F×
n is defined by

Λ =




λ1

. . .
λn


 ,

and b = −λτ−1a. We have written ga,γ ◦ τ in the required form, and this is enough to
complete the proof.

We now prove special cases of the main theorem as well as some technical lemmas.
Particular attention is given to the case n = 2, for it is required several times later in
inductions.

Lemma 3.2.7. Let g be GL-Fubini on F 2 and set f = g0. Let α ∈ F and set e = α−1t(ν(α))
if α 6= 0, and e = 0 otherwise; set δ0 = min(ν(α), 0).

There exists τ ∈ SL2(F ), independent of g, such that, for any x ∈ F , the function y 7→
f(x+ αy, y) equals

{
the lift of v 7→ g ◦ τ(xt(−δ0), v) at −xet(−δ0),−δ0 if x ∈ t(δ0)OF

0 otherwise.

Proof. If α = 0 then we are just considering a section of a Fubini function and so τ = id
suffices by remark 3.1.7. Henceforth assume that α 6= 0.

We first consider the case α = t(δ) for some δ ∈ Γ; so e = 1. Consider, for any x ∈ F ,
the section

Dx : F → C

y 7→ f(x+ t(δ)y, y).

We make the following claim, dependent on the sign of δ, regarding Dx:
case: δ < 0.

Dx =

{
lift of v 7→ g(v,−xt(−δ)) at −xt(−δ),−δ if x ∈ t(δ)OF

0 otherwise.

case: δ = 0.

Dx =

{
lift of v 7→ g(v + x, v) at 0, 0 if x ∈ OF

0 otherwise
case: δ > 0.

Dx =

{
lift of v 7→ g(x, v) at 0, 0 if x ∈ OF

0 otherwise.

We shall prove the case δ = 0. For any x, y ∈ F , f(x + y, y) vanishes unless x + y
and y both belong to OF ; hence Dx is identically zero unless x ∈ OF . Assuming that
x ∈ OF , it remains to verify that

Dx = lift of v 7→ g(v + x, v) at 0, 0.

Both sides vanish off OF and are seen to agree on OF by direct evaluation. This proves
the claim in this case. The other cases are proved by similar arguments and we omit
the details.
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If δ ≥ 0 and x ∈ OF , then Dx is also the lift of a function at −x, 0:
case: δ = 0.

Dx = lift of v 7→ g(v, v − x) at −x, 0

case: δ > 0.
Dx = lift of v 7→ g(x, v − x) at −x, 0

The proof when α ∈ t(Γ) is completed by setting:
case: δ < 0.

τ =

(
0 1
−1 0

)

case: δ = 0.
τ =

(
0 1
−1 1

)

case: δ > 0.
τ =

(
1 0
−1 1

)

In the general case, writeα = e−1t(δ), with δ = ν(α) and e ∈ O×F ; let τ ′ =
(
e−1 0
0 1

)
.

Also introduce f ′(x, y) = f(e−1x, y), which is the lift of (u, v) 7→ g(e−1u, v) = g◦τ ′(u, v)

(a Fubini function on F 2) at 0, 0. By the case above, there exists τ ∈ SL2(F ) such that
x ∈ F implies y 7→ f ′(x+ t(δ)y, y) = f(e−1x+ αy, y) equals

{
the lift of v 7→ g ◦ τ ′τ(xt(−δ0), v) at −xt(−δ0),−δ0 if ν(x) ≥ δ0

0 otherwise.

Hence y 7→ f(x+ αy, y) = f ′(ex+ t(δ)y, y) equals
{

the lift of v 7→ g ◦ τ ′τ(e xt(−δ0), v) at −ext(−δ0),−δ0 if ν(x) ≥ δ0

0 otherwise.

As τ ′τ
(
e 0
0 1

)
has determinant 1, this completes the proof.

Remaining with the case n = 2, we now extend the previous lemma slightly in prepa-
ration for the induction on n:

Lemma 3.2.8. Let g be GL-Fubini on F 2, a ∈ F , γ ∈ Γ; set f = g(0,a),(0,γ) . Let α ∈ F and
set δ = min(ν(α) + γ, 0).

There exist b, c ∈ F (independent of g) and τ ∈ SL2(F ) (independent of g and a) such that
x ∈ F implies that y 7→ f(x+ αy, y) equals

{
the lift of v 7→ g ◦ τ((x− c)t(−δ), v) at b, γ − δ if x ∈ c+ t(δ)OF

0 otherwise

Proof. Let e = α−1t(ν(α)) if α 6= 0, and e = 0 otherwise. For x in F the previous lemma
implies that y 7→ g0(x+ t(γ)αy, y) equals

{
the lift of v 7→ g ◦ τ(xt(−δ), v) at −xet(−δ),−δ if x ∈ t(δ)OF

0 otherwise
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for some τ ∈ SL2(F ) (independent of g by the previous lemma, and clearly indepen-
dent of a).

For x, y ∈ F , the identity

f(x+ αy, y)

= g0(x+ αy, (y − a)t(−γ))

= g0(x+ αa+ t(γ)α(y − a)t(−γ), (y − a)t(−γ))

=

{
g ◦ τ((x+ αa)t(−δ), ((y − a)t(−γ) + xet(−δ))t(δ)) if x+ αa ∈ t(δ)OF

0 otherwise

follows. Set b = a− ext(γ − δ) and c = −αa to complete the proof.

Remark 3.2.9. The proper interpretation of the previous two lemmas is available through
Hrushovski and Kazhdan’s work [HK06]. They prove, in a precise sense which requires
model theory and Grothendieck groups, that any bijection at the valued field level with
Jacobian 1 (such as our (x, y) 7→ (x + αy, y)) descends to a bijection at the residue field
level, also with Jacobian 1 (such as u 7→ τu, with τ as in the statement of our lemmas).
Their deeper result is the converse: bijections at the residue field level may be lifted.

However, our result is not entirely a special case of theirs, since their methods work
only in residue characteristic zero, whereas the lemmas above hold in general.

The following result extends the previous lemma to the case of arbitrary n ≥ 2; it is a
slightly technical proof by induction:

Lemma 3.2.10. Let g be GL-Fubini on F
n, a ∈ F , γ ∈ Γ; set f = g(0,...,0,a),(0,...,0,γ). Let

αi ∈ F for 1 ≤ i ≤ n− 1. Then

(i) For all x1, . . . , xn−1 ∈ F , the function of F

xn 7→ f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn)

is integrable and simple.

(ii) Further, there exist τ ∈ SLn(F ), δ ∈ Γn−1, and c ∈ F n−1 such that the function of
F n−1

(x1, . . . , xn−1) 7→

∫ F

f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−1) 7→

∫
g ◦ τ(u1, . . . , un) dun X

γ−
Pn−1

i=1
δi

at c, δ. Also, τ may be chosen to be independent of g and a.

Proof. The proof is by induction on n.
Let δn−1 = min(ν(αn−1) + γ, 0). Let ξ1, . . . , ξn−2 be in OF ; the function

(xn−1, xn) 7→ f(ξ1, . . . , ξn−2, xn−1, xn)

is the lift of
(un−1, un) 7→ g(ξ1, . . . , ξn−2, un−1, un),
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which is GL-Fubini, at (0, a), (0, γ); this is just a generalisation of remark 3.1.7 to a two
dimensional section. By the previous lemma, there exist b, cn−1 ∈ F and τ ∈ SL2(F ),
all independent of ξ1, . . . , ξn−2, such that for all xn−1 ∈ F ,

xn 7→ f(ξ1, . . . , ξn−2, xn−1 + αn−1xn, xn)

equals the lift of

un 7→ g(ξ1, . . . , ξn−2, τ((xn−1 − cn−1)t(−δn−1), un))

at b, γ − δn−1 if xn−1 ∈ cn−1 + t(δn−1)OF , and equals 0 otherwise.

Also denote by τ the element of SLn(F ) given by
(
In−2 0

0 τ

)
, where In−2 denotes

the n− 2 by n− 2 identity matrix.
Now take ξn−1 ∈ cn−1 + t(δn−1)OF ; so ξn−1 = cn−1 + t(δn−1)ξ

′
n−1, say. We have just

shown that

(x1, . . . , xn−2, xn) 7→ f(x1, . . . , xn−2, ξn−1 + αn−1xn, xn)

is the lift of
(u1, . . . , un−2, un) 7→ g ◦ τ(u1, . . . , un−2, ξ

′
n−1, un),

which isGL-Fubini, at (0, . . . , 0, b), (0, . . . , 0, γ−δn−1). By the inductive hypothesis, the
following hold:

(i) For all x1, . . . , xn−2 ∈ F ,

xn 7→ f(x1 + α1xn, . . . , ξn−1 + αn−1xn, xn)

is a simple, integrable function.

(ii) There exists τ ′ ∈ SLn−1(F ) (independent of ξn−1, g, b) and δi ∈ Γ, ci ∈ F (1 ≤ i ≤
n− 2), such that

(x1, . . . , xn−2) 7→

∫ F

f(x1 + α1xn, . . . , ξn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−2) 7→

∫
g ◦ ττ ′(u1, . . . , un−2, ξ

′
n−1, un) dun X

γ−δn−1−
Pn−2

i=1
δi

at (c1, . . . , cn−2), (δ1, . . . , δn−2).
It follows that
(i) For any x1, . . . , xn−1 in F ,

xn 7→ f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn)

is a simple, integrable function (this function is zero unless xn−1 ∈ cn−1+t(δn−1)OF ,
in which case the statement follows from (i) above).

(ii) The function

(x1, . . . , xn−1) 7→

∫ F

f(x1 + α1xn, . . . , xn−1 + αn−1xn, xn) dxn

is the lift of

(u1, . . . , un−1) 7→

∫
g ◦ ττ ′(u1, . . . , un) dun X

γ−
Pn−1

i=1
δi

at (c1, . . . , cn−1), (δ1, . . . , δn−1).
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This completes the proof.

The previous lemma was concerned with the case of a matrix differing from the iden-
tity only along the left-most column. We now consider an arbitrary u.u.t. matrix:

Proposition 3.2.11. Suppose g is GL-Fubini on F n, a ∈ F n, γ ∈ Γn, δ ∈ Γ; set f = ga,γ Xδ .
Let U be a u.u.t. matrix in GLn(F ). Then f ◦ U is strongly Fubini on F n, with

∫ Fn

f ◦ U(x) dx =

∫ Fn

f(x) dx.

Proof. The proof is by induction on n.
For any n, we claim that it suffices to prove the special case a = 0, γ = 0, δ = 0. We

may clearly assume δ = 0 by linearity. For x ∈ F n the identity

f(Ux) = ga,γ(Ux) = g0,0((Ux− a)t(−γ))

= g0 ◦ U1(t(−γ)(x − U−1a))

holds, where U1 is the u.u.t. matrix

U1 =




t(−γ1)
. . .

t(−γn)


U




t(γ1)
. . .

t(γn)


 .

Assuming the special case, we may conclude that g0 ◦ U1 is strongly Fubini, with re-
peated integral equal to that of g0. Thus f ◦U differs from a strongly Fubini function by
translation and scaling and hence is itself strongly Fubini (lemma 3.1.5), while compat-
ibility between the repeated integral on F n and Haar integral on F n (proposition 3.1.8)
implies

∫ Fn

f ◦ U(x) dx = |t(γ)|

∫ Fn

g0(x) dx

= X
Pn

i=1 γi

∫

F
n
g(u) du

=

∫ Fn

f(x) dx.

This completes the proof of the claim; so now assume a = 0, γ = 0, δ = 0.
For each r with 1 ≤ r ≤ n, we must now prove that

(i) For x1, . . . , ẋr, . . . , xn ∈ F , the function of F , xr 7→ f ◦ U(x1, . . . , xn), is simple
and integrable.

(ii) The function of F n−1

(x1, . . . , ẋr, . . . , xn) 7→

∫ F

f ◦ U(x1, . . . , xn) dxr

is strongly Fubini, with repeated integral equal to that of f .

The inductive step depends on decomposing U in a certain way. Write

U =




1 α1,2 · · · α1,n

. . . . . . ...
. . . αn−1,n

1




62



CHAPTER 3: INTEGRATION ON PRODUCT SPACES AND GLn

and observe that U(x1, . . . , xn) = (x1 +
∑n

i=2 α1,ixi, . . . , xn−1 + αn−1,nxn, xn). Let V be
the u.u.t. matrix obtained by setting to zero all entries in the r th row and rth column of
U , apart from the 1 in the r, r-place. Let V ′ be the n− 1 by n− 1 u.u.t. matrix obtained
by removing the rth row and rth column of U . Then there exist βr+1, . . . , βn ∈ F such
that the u.u.t. matrix P defined by

P (x1, . . . , xn) = (x1 + α1,rxr, . . . , xr−1 + αr−1,rxr, xr +

n∑

i=r+1

βixi, xr+1, . . . , xn)

satisfies U = PV .
We are now equipped to begin the main part of the proof. The previous lemma (if

r > 1; it follows straight from the definition of a strongly Fubini function if r = 1)
implies that for fixed x1, . . . , ẋr, . . . , xn ∈ F , the function

xr 7→ f((x1 − α1,r

n∑

i=r+1

βixi) + α1,rxr, . . .

. . . , (xr−1 − αr−1,r

n∑

i=r+1

βixi) + αr−1,rxr, xr, . . . , xn)

is simple and integrable on F . Therefore

xr 7→f(x1 + α1,rxr, . . . , xr−1 + αr−1,rxr, xr +

n∑

i=r+1

βixi, xr+1 . . . , xn)

= f ◦ P (x1, . . . , xn)

is a translate of a simple, integrable function and hence is itself simple and integrable
by remark 1.4.3. Replacing x1, . . . , ẋr, . . . , xn by V ′(x1, . . . , ẋr, . . . , xn) implies that the
function

xr 7→f ◦ PV (x1, . . . , xn)

= f ◦ U(x1, . . . , xn)

is simple and integrable, proving (i).
The previous lemma (if r > 1) and translation invariance (any r) of the integral also

imply that

f ′ : F n−1 → C(Γ), (x1, . . . , ẋr, . . . , xn) 7→

∫ F

f ◦ P (x1, . . . , xn) dxr

is the lift of

(u1, . . . , u̇r, . . . , un) 7→

∫
g ◦ τ(u1, . . . , un) dur X

−
Pn−1

i=1
δi

at b, δ for some b ∈ F n−1, δ = (δi) ∈ Γn−1, τ ∈ SLn(F ).
The inductive hypothesis with function f ′ and matrix V ′ implies that f ′◦V ′ is strongly

Fubini with repeated integral equal to that of f ′. But the repeated integral of f ′ is
∫

F
n
g ◦ τ(u) du X−

Pn−1

i=1
δi X

Pn−1

i=1
δi =

∫

F
n
g(u) du

=

∫ Fn

f(x) dx
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by remark 3.1.9, and

f ′ ◦ V ′(x1, . . . , ẋr, . . . , xn) =

∫ F

f ◦ PV (x1, . . . , xn) dxr

=

∫ F

f ◦ U(x1, . . . , xn) dxr,

which proves (ii).

Proposition 3.2.12. Let g be GL-Fubini on F n, a ∈ F n, γ ∈ Γn, δ ∈ Γ; set f = ga,γ Xδ . Let
τ ∈ GLn(F ); then f ◦ τ is strongly Fubini on F n, with

∫ Fn

f ◦ τ(x) dx = |det τ |−1

∫ Fn

f(x) dx.

Proof. We claim that it suffices to prove the special case a = 0, γ = 0, δ = 0. This claim
follows in the same way as the beginning of proposition 3.2.11. Now assume a = 0,
γ = 0, δ = 0.

Write τ = AUΛ as in lemma 3.2.5. Then f ◦A = (g ◦A)0 where A is the image of A in
GLn(F ); proposition 3.1.8 implies

∫ Fn

f ◦A(x) dx =

∫

F
n
g ◦A(u) du

= |detA|−1

∫

F
n
g(u) du

= |detA|−1

∫ Fn

f(x) dx.

Proposition 3.2.11 implies that f ◦ AU is strongly Fubini, with
∫ Fn

f ◦ AU(x) dx =

∫ Fn

f ◦ A(x) dx.

Finally, lemma 3.1.5 implies that f ◦ AUΛ is strongly Fubini, with
∫ Fn

f ◦AUΛ(x) dx = |det Λ|−1

∫ Fn

f ◦ AU(x) dx.

Since det τ = detAdet Λ, the proof is complete.

The previous proposition extends by linearity to all of L(F n, GLn) and so the main
theorem 3.2.4 is proved!

Remark 3.2.13. Suppose F is a two-dimensional local field, with OF = ρ−1(OF ) the
rank two ring of integers. Assume that our chosen Haar measure on F assigns OF

measure 1. Then for any τ ∈ GLn(F ) and a ∈ F n, the characteristic function of a +
τ(On

F ) belongs to L(F n, GLn), and
∫ Fn

chara+τ(On
F )(x) dx = |det τ | ∈ C(X) = C(Γ).

Kim and Lee [KL05] have also developed a measure theory on F n. Their measurable
sets are the algebra of sets generated by ∅, F n and a+ τ(On

F ) for a ∈ F n, τ ∈ GLn(F );
the measure assigned to a+ τ(On

F ) is |det τ |, as in the approach of this chapter.
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However, the measure of Kim and Lee does not take values in C(X), but rather in an
additive monoid consisting of elements 0 and λX i, λ ∈ R>0, i ∈ Z; addition is defined
by

λXi + λ′Xj =





λXi if i < j

(λ+ λ′)Xi if i = j

λ′Xj if i > j.

If S is a measurable set in the approach of Kim and Lee, then charS will belong to
L(F n, GLn); expanding the value of the integral in R((X)) we may write

∫ Fn

charS(x) dx =
∑

i≥I

λiX
i,

where λi ∈ R and λI 6= 0. Kim and Lee assign S measure λIXI ; this truncation of the
measure is suitable for defining a convolution of functions onGLn(F ) and for ensuring
σ-additivity.

Remark 3.2.14. Whether the extension of the integral to L(F n, GLn) is compatible with
harmonic analysis on F n (remark 3.1.10) is indisputable; the integral surely extends to
the C(Γ) space of functions on F n generated by

x 7→ ga,γ ◦ τ(x)ψ(b1x1 + · · · + bnxn)

with g Schwartz-Bruhat on F n, a, b ∈ F , and τ ∈ GLn(F ).
Unfortunately, the author can see no easy way of proving this, except by simply

modifying all the proofs of this section to include twisted functions.

3.3 Invariant integral on GLN(F )

We will now consider integration on the space of matrices MN (F ) and its unit group
GLN (F ).

Let n = N 2 and identify MN (F ) with F n via an isomorphism T : F n →MN (F ) of F
vector spaces. Let L(MN (F )) be the C(Γ) space of C(Γ)-valued functions f on MN (F )
for which fT belongs to L(F n, GLn); set

∫ MN (F )

f(x) dx =

∫ Fn

fT (x) dx.

Remark 3.3.1. The space L(MN (F )) does not depend on the choice of the isomorphism
T since L(F n, GLn) is invariant under the action ofGLn(F ), and the functional

∫MN (F )

depends on T only up to a scalar multiple from |F×| = {λXγ : λ ∈ |F
×
|, γ ∈ Γ}.

L(MN (F )) is closed under translation, and
∫MN (F ) is a translation invariant C(Γ)-

linear functional on the space.

Of course, integrating on MN (F ) is no harder than integrating on F n. We are really
interested in GLN (F ), for which we proceed by analogy with subsection 2.4

Definition 3.3.2. LetL(GLN (F )) denote the space of C(Γ)-valued functionsφ onGLN (F )
such that τ 7→ φ(τ)|det τ |−n may be extended to all of MN (F ) to give a function in
L(MN (F )).
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The integral of φ over GLN (F ) is defined by
∫ GLN (F )

φ(τ) dτ =

∫ MN (F )

φ(x)|det x|−n dx,

where the integrand on the right is really the extension of the function to MN (F ).

Remark 3.3.3. For the previous definition of the integral to be well defined, we must
show that if f1, f2 ∈ L(MN (F )) are equal when restricted to GLN (F ) then f1 = f2.

It suffices to prove that if f ∈ L(F n, GLn) vanishes off some Zariski closed set (other
than F n), then f is identically zero. By a locally constant function g on F n, we mean
a function such that for each a ∈ F n, there exists γ ∈ Γ such that, if ε1, . . . , εn ∈ F
have valuation greater than γ, then f(a1 + ε1, . . . , an + εn) = f(a1, . . . , an). If g1, g2
are locally constant, then so are g1 + g2 and g1 ◦ A for any affine transformation of F n.
But a lifted function is locally constant and so any function in L(F n, GLn) is locally
constant. It is now enough to show that if p is a polynomial in F [X1, . . . , Xn], such that
p(ε1, . . . , εn) = 0 whenever ε1, . . . , εn ∈ F have large enough valuation, then p is the
zero polynomial. This is easily proved by induction on n.

This calculation even means that we may enlarge the space L(F n, GLn) by adjoining
the characteristic functions of all proper Zariski closed sets, and extend the integral by
insisting that such sets have zero measure. Ignoring proper Zariski closed sets is an
essential part of the model-theoretic approach to integration in chapter 5.

The integral is translation invariant, as desired:

Proposition 3.3.4. Suppose φ belongs to L(GLN (F )) and σ ∈ GLN (F ). Then the functions
τ 7→ φ(στ) and τ 7→ φ(τσ) also belong to L(GLN (F )), with

∫ GLN (F )

φ(στ) dτ =

∫ GLN (F )

φ(τ) dτ =

∫ GLN (F )

φ(τσ) dτ.

Proof. Let rσ (resp. lσ) denote the element of GLn(F ) (identified with GL(MN (F ))
via. T ) defined by right (resp. left) multiplication by σ. Let τ 7→ φ(τ)|det τ |−n be the
restriction of f ∈ L(MN (F )) to GLN (F ), say. The function

τ 7→φ(τσ)|det τ |−n

=|det σ|nφ(τσ)|det τσ|−n

=|det σ|nφ ◦ rσ(τ)|det(rστ)|
−n

is the restriction of |det σ|nf ◦ rσ ∈ L(MN (F )) to GLN (F ).
Theorem 3.2.4 therefore implies that

∫ GLN (F )

φ(τσ) dτ =

∫ MN (F )

|detσ|nf ◦ rσ(x) dx

= |detσ|n|det rσ|
−1

∫ MN (F )

f(x) dx

= |detσ|n|det rσ|
−1

∫ GLN (F )

φ(τ) dτ.

Note that det σ is the determinant of σ as anN×N matrix, and det rσ is the determinant
of rσ as an automorphism of the N 2-dimensional space MN (F ).
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To complete the proof for rσ it suffices to show that det rσ = det σn. Let ei,j denote
the N ×N matrix with a 1 in the i, j position and zeros elsewhere. With respect to the
ordered basis

e1,1, e1,2, . . . , e1,N , e2,1, . . . , e2,N , . . . , eN,1, . . . , eN,N ,

rσ acts as the block matrix 


σt

. . .
σt




( t denotes transpose), which has determinant detσn, as required.
The proof with lσ in place of rσ differs only in notation, except that one should use

the ordered basis
e1,1, e2,1, . . . , eN,1, e1,2, . . . , eN,2, . . . , e1,N , . . . , eN,N

instead.

So we have obtained a translation invariant integral on the algebraic group GLN (F ).
Just as the integrals on F and F n lift the usual Haar integral on F and F

n, so too
does this integral incorporate the Haar integral on GLN (F ). To demonstrate this most
clearly, it is prudent to now assume that the chosen isomorphism T restricts to an OF -
linear isomorphism On

F → MN (OF ). Thus T descends to a F -linear isomorphism T :
F
n
→MN (F ) which makes the diagram commute:

On
F

T
−−−−→ MN (OF )

y
y

F
n

−−−−→
T

MN (F ),

where the vertical arrows are coordinate-wise residue homomorphisms. This will en-
sure a functoriality between our algebraic groups at the level of F and at the level of
F .
Remark 3.3.5. This assumption holds if we identify MN (F ) with F n2 in the most nat-
ural way, via the standard basis of F n2 and the basis of MN (F ) used in proposition
3.3.4.

Further, we now normalise the Haar measures on MN (F ) and GLN (F ) in the fol-
lowing way: give MN (F ) the Haar measure obtained by pushing forward the product
measure on F

n via T , and then give GLN (F ) the standard Haar measure dGLN
u =

|det u|−ndMN
u. Such normalisations are not essential, but otherwise extraneous con-

stants would appear in formulae below. It will be useful to call a complex-valued func-
tion on MN (F ) GL-Fubini if its pull back to F n via T is GL-Fubini in the sense already
defined. Again, note that a Schwartz-Bruhat function onMN (F ) is certainlyGL-Fubini.

We have already defined what is meant by the lift of a Haar integrable from F or F n.
The following is a trivial generalisation:
Definition 3.3.6. Let G denote either of the algebraic groups MN , GLN . Given a com-
plex valued function g onG(F ), let g0 be the complex valued function onG(F ) defined
by

g0 : G(F ) → C

x 7→

{
g(x) x ∈ G(OF )

0 otherwise.
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Then the compatibility between the integrals on MN at the level of F and F is the
following:
Proposition 3.3.7. Suppose that g is a complex-valued, GL-Fubini function on MN (F ) (e.g.
a Schwartz-Bruhat function on MN (F )). Then g0 belongs to L(MN (F )), and

∫ MN (F )

g0(x) dx =

∫

MN (F )
g(u) du.

Proof. By the existence of T and its compatibility with T we have an equality of func-
tions on MN (F ):

(gT
−1

)0T = g0.

The definition of the integral on MN (F ) therefore implies
∫ MN (F )

g0(x) dx =

∫ Fn

(gT
−1

)0(x) dx.

Taking G to be n copies of the additive group, we showed in proposition 3.1.8 that the
result corresponding to this one holds; so

∫ Fn

(gT
−1

)0(x) dx =

∫

F
n
gT
−1

(u) du.

Finally, our normalisation of the Haar measure on MN (F ) implies
∫

F
n
gT
−1

(u) du =

∫

MN (F )
g(u) du,

which completes the proof.

And now we prove the same result for GLN :
Proposition 3.3.8. Suppose that g is a complex-valued, Schwartz-Bruhat function onGLN (F )
such that

f(u) :=

{
g(u)|det u|−n u ∈ GLN (F ),

0 detu = 0

is GL-Fubini on MN (F ). Then g0 belongs to L(GLN (F )), and
∫ GLN (F )

g0(τ) dτ =

∫

GLN (F )
g(u) du.

Proof. The assumption on f and the previous proposition imply that f 0 belongs to
L(MN (F )). Moreover, τ ∈ GLN (OF ) implies

f0(τ) = g(τ )|det τ |−n = g0(τ)|det τ |−n,

so that f 0 is an extension of τ 7→ g0(τ)|det τ |−n fromGLN (F ) to a function in L(MN (F )).
Therefore g0 belongs to L(GLN (F )), and

∫ GLN (F )

g0(τ) dτ =

∫ MN (F )

f0(x) dx

=

∫

MN (F )
f(u) du

=

∫

GLN (F )
g(u) du

where the second equality follows from the previous proposition.
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Remark 3.3.9. If g decreases sufficiently rapidly towards the boundary of GLN (F ) in
MN (F ) then the hypothesis in the previous proposition will hold, i.e. f will be GL-
Fubini on MN (F ). In particular, if g is the restriction to GLN (F ) of a Schwartz-Bruhat
function on MN (F ) then (replacing g by g|det ·|s) the function

f(u) :=

{
g(u)|det u|s−n u ∈ GLN (F ),

0 det u = 0

is GL-Fubini on MN (F ), for s ∈ C and <(s) sufficiently large. The previous result now
implies ∫ GLN (F )

g0(τ)|det τ |s dτ =

∫

GLN (F )
g(u)|det u|s du

(note that for any τ ∈ GLN (F ) in the support of g0, one has |det τ |s = |det τ |s ∈ C×).
Thus we can lift Godement-Jacquet zeta functions [GJ72] to GLN (F ) in the same

way as we lifted zeta integrals from F
× to F× in section 2.5, though more work in this

direction is required.

3.4 Other algebraic groups and related problems
3.4.1 Integration over an arbitrary algebraic group
Having established an integral on GLN (F ), it would be useful also to be able to inte-
grate on algebraic subgroups such as SLN (F ) or BN (F ), the group of invertible upper
triangular matrices. Arguments similar to those above will surely provide such an in-
tegral, but to establish such results for an arbitrary reductive algebraic group G we
require a more general abstract approach.

The author suspects that to each reductive, algebraic groupG there is a space of C(Γ)-
valued functions L(G(F )) on G(F ) and a linear functional

∫ G(F ) on these functions
with the following properties:

(i) Compatibility between F and F : if g is a ‘nice’ (e.g. Schwartz-Bruhat) Haar in-
tegrable function on G(F ), then g0 (an obvious generalisation of definition 3.3.6)
belongs to L(G(F )) and

∫ G(F )

g0(x) dx =

∫

G(F )
g(u) du.

(ii) Translation invariance: if f ∈ L(G(F )) and τ ∈ G(F ), then x 7→ g(xτ) is in
L(G(F )), and ∫ G(F )

f(xτ) dx =

∫ G(F )

f(x) dx.

There should also be a left translation-invariant integral on G(F ), and this would
coincide with the right-invariant integral if G(F ) is unimodular.

Even in the simplest case G =‘additive group’ these conditions are not enough to
make the integral unique in a reasonable way; this is discussed in remark 2.1.7 of
chapter 2. However, if we assume the existence of an absolute value which relates
the integrals on F× and F , the uniqueness does follow. We have observed a similar
phenomenon in this paper where we constructed the integral on F n to be compatible
with change of variables from GLn(F ). So to ensure uniqueness we should add to the
list the informal statement
(iii) Compatibility between the integrals over different algebraic groups.
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3.4.2 Subgroups of GLN

Once integration over algebraic subgroups of GLN (F ) has been established, there are
certain formulae which are expected to hold by analogy with the case of a local field.
We quote two examples from [Car79]; for f a complex-valued, integrable function on
GLN (F ) (resp. on BN (F )),

∫

GLN (F )
f(g) dg =

∫

GLN (OF )

∫

BN (F )
f(kb) dk dRb

∫

BN (F )
f(b) dRb =

∫

∆N (F )

∫

UN (F )
f(uλ) du dλ,

where UN denotes the u.u.t. matrices, ∆N the diagonal matrices, and dR right Haar
measure (apart from BN , these groups are unimodular).

Writing these identities explicitly, one sees that these formulae require the class of
integrable functions on GLN (F ) to be invariant under certain polynomial changes of
variables. It is therefore also important to extend the class of functions L(F n, GLn) so
that it is closed under the required changes of variables.

This is also precisely the sort of compatibility which may be important in (iii).

3.4.3 Non-linear change of variables
To develop integration on arbitrary algebraic groups and prove compatibility between
them we are lead to investigate non-linear change of variables on F n. Steps in this
direction are taken in chapter 4 in the case of a two-dimensional local field (that is, F is
a complete discrete valuation field whose residue field is a local field). It is proved that
if f = ga,γ is the lift to F 2 of a Schwartz-Bruhat function on F 2 and h is a polynomial
over F then, assuming certain conditions, (x, y) 7→ f(x, y − h(x)) is Fubini on F 2, and
so ∫ F 2

f(x, y − h(x)) dxdy =

∫ F 2

f(x, y − h(x)) dydx =

∫ F 2

f(x, y) dydx.

Note that the second equality follows simply from translation invariance of the integral.
However, it is essential to make some assumptions on the singularities of h, for we

will also see in proposition 4.4.1 that:

Proposition 3.4.1. Suppose F is a two-dimensional local field and F has finite characteristic
p. Let h(X) = t−1Xp, where t is a uniformiser of F , and let g be any Schwartz-Bruhat
function on F × F . Then for all y ∈ F , the function x 7→ g0(x, y − h(x)) is integrable, with∫ F

g0(x, y − h(x)) dx = 0. Therefore
∫ F ∫ F

g0(x, y − h(x)) dxdy = 0,

whereas ∫ F ∫ F

g0(x, y − h(x)) dydx =

∫ ∫
g(u, v) dvdu,

which need not be zero.

Whether this failure of Fubini’s theorem will cause a problem in verifying existence
of integrals on algebraic groups is unclear. If such “wild” changes of variable do not
appear when changing charts on one’s algebraic group, then this may not be too serious
(preliminary work on SL2(F ) suggests something interesting does happen in residue
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characteristic 2...). However, it is certainly an unexpected result; it appears to be a
measure-theoretic consequence of the characteristic p local field F being imperfect. See
remark 4.4.2 and subsection 6.1.3 for further discussion.

3.4.4 Godement-Jacquet theory
To generalise Godement-Jacquet theory to a higher local field F , the immediate ques-
tion to ask is “What is a smooth representation of GLn(F )?”, and the second is “Are
the matrix coefficients of a smooth representation integrable?”.

Whatever the answer to the first question, the answer to the second is surely “No,
the space of integrable functions on GLn(F ) is too small.”. In the residue characteristic
zero case (e.g. Qp((t))), the methods of chapter 5 should produce a more extensive inte-
gration theory, and hopefully this will help to answer the first question. Unfortunately,
developing a Godement-Jacquet theory in this case may not produce any significant
new insights into two-dimensional Langlands, because all the representations will be
tame and the theory will reduce entirely to GLn(F ).
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CHAPTER 4

Fubini’s theorem and non-linear changes of
variables over a two-dimensional local field

We consider non-linear changes of variables and Fubini’s theorem for certain integrals
over a two-dimensional local field. An interesting example is presented in which im-
perfectness of a positive characteristic local field causes Fubini’s theorem to unexpect-
edly fail.

Notation
In this chapter F is a two-dimensional local field, i.e. a complete discrete valuation field
whose residue field K = F is a local field (R, C, or non-archimedean). We fix a prime t
of F and denote its ring of integers by OF . The residue map OF → K is denoted x 7→ x;
the discrete valuation is denoted ν : F → Z ∪ {∞}. We fix a Haar measure on K .

The reason we work with a discrete valuation in this chapter, rather than the arbi-
trary valuation in chapters 2 and 3, is that several arguments proceed by induction on
the value group. By modifying the arguments it is likely that this restriction can be
eliminated.

The fixed prime t induces a splitting of the valuation given by

Z → F×, n 7→ t(n) = tn,

and therefore the integration theory developed in chapters 2 and 3 can be applied with
respect to this splitting. We recommend that the reader consult the summary of the
integration theories on F and F × F found in subsections 1.4.1 and 1.4.2 respectively,
everywhere replacing “γ ∈ Γ” and “t(γ)” by “n ∈ Z” and “tn”.

4.1 Decomposition results
We begin by examining the action of polynomials onF ; the results hold for any Henselian
discrete valuation field F with infinite residue field.
Lemma 4.1.1. Suppose h(X) is a polynomial over F , that a+ tcOF , b+ tAOF are two trans-
lated fractional ideals, and that h(a + tcOF ) ⊆ b + tAOF . Then there is a unique polynomial
ψ ∈ K[X] which gives a commutative diagram

a+ tcOF
h

−−−−→ b+ tAOF

a+tcx7→x

y
yb+tAx7→x

K −−−−→
ψ

K.

Moreover, degψ ≤ deg h.

72



CHAPTER 4: FUBINI’S THEOREM OVER A TWO-DIMENSIONAL LOCAL FIELD

Proof. There is certainly at most one function ψ making the diagram commute; but K
is an infinite field so if two polynomials are equal as functions then they are equal as
polynomials. So there can be at most one polynomial ψ.

We may write h(a + tcX) = h(a) + tRH(X) where H ∈ OF [X] is a polynomial with
integer coefficients, no constant term, and with non-zero image in K[X] (i.e. not all
coefficients of H are in tOF ). We clearly have a commutative diagram

a+ tcOF
h

−−−−→ h(a) + tROF

a+tcx7→x

y
yh(a)+tRx7→x

K −−−−→
H

K,

where H denotes the image of H in K[X].
If A > R then the inclusion h(a + tcOF ) ⊆ b + tAOF implies H is everywhere equal

to (b− h(a))t−R; but K infinite then implies H is a constant polynomial and hence is
zero (since H has no constant term), which is a contradiction. Hence A ≤ R, and we
may easily complete the proof:

If A = R then the desired commutative diagram is

a+ tcOF
h

−−−−→ b+ tAOF

a+tcx7→x

y
yb+tAx7→x

K −−−−−−−−−−→
H+(h(a)−b)t−A

K,

where the lower horizontal map is the function u 7→ H(u) + (h(a) − b)t−A. If A < R
then the desired diagram is

a+ tcOF
h

−−−−→ b+ tAOF

a+tcx7→x

y
yb+tAx7→x

K −−−−−−−−→
(h(a)−b)t−A

K,

where the lower horizontal map is the constant function u 7→ (h(a) − b)t−A.

Definition 4.1.2. Suppose h(X) is a polynomial over F , that a+ tcOF , b+ tAOF are two
translated fractional ideals, and that h(a + tcOF ) ⊆ b+ tAOF . The unique polynomial
ψ ∈ K[X] which gives a commutative diagram

a+ tcOF
h

−−−−→ b+ tAOF

a+tcx7→x

y
yb+tAx7→x

K −−−−→
ψ

K.

is said to be the residue field approximation of h with respect to the translated fractional
ideals.

Remark 4.1.3. Regarding the previous definition, the translated fractional ideals will
usually be clear from the context. The constant term of ψ depends not only on the sets
a+ tcOF and b+ tAOF , but on the representatives a, b we choose.
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When drawing the diagram above, we will henceforth omit the vertical maps, even
though they do depend on the choice of a, b. We will also follow the habit used in the
previous lemma of denoting a constant function on K by the value it assumes.

Much of this chapter is concerned with the problem of explicitly decomposing the
preimage of a set under a polynomial and describing the resulting residue field ap-
proximations. Here is a example to illustrate the ideas:

Example 4.1.4. Set q(X) = X3 + X2 + t2 and assume charK 6= 2. The aim of this
example is to give explicit descriptions of the sets {x ∈ OF : q(x) ∈ tAOF } for A = 2, 3,
as well as all associated residue field approximations.

Direct calculations easily show that if x ∈ OF , then q(x) ∈ t2OF if and only if x ∈ tOF

or x ∈ −1 + t2OF . Further, the residue field approximations are

tOF
q

−−−−→ t2OFy
y

K −−−−→
X2+1

K

−1 + t2OF
q

−−−−→ t2OFy
y

K −−−−→
X+1

K

Similarly, if we suppose x ∈ OF then q(tx) ∈ t3OF if and only if x2 + 1 ∈ tOF ; and
q(−1 + t2x) ∈ t3OF if and only if x ∈ −1 + tOF .

If K contains a square root of −1, let i denote a lift of it to OF ; then

{x ∈ OF : q(x) ∈ t3OF } = it+ t2OF t −it+ t2OF t −1 − t2 + t3OF ,

with residue field approximations

it+ t2OF
q

−−−−→ t3OFy
y

K −−−−−−−−−−−→
2iX+(i2+1)t−1−i

K

−it+ t2OF
q

−−−−→ t3OFy
y

K −−−−−−−−−−−−→
−2iX+(i2+1)t−1+i

K

−1 − t2 + t3OF
q

−−−−→ t3OFy
y

K −−−−→
X

K

If K does not contain a square root of −1, then {x ∈ OF : q(x) ∈ t3OF } = −1 − t2 +
t2OF , with the residue field approximation given by the third diagram above.

We now turn to generalising the example to an arbitrary polynomial; for later appli-
cations to integration the following results will allow us to reduce calculations to the
residue field, where we change variable according to the residue field approximation
polynomials for example, and then return to F .

The first decomposition result treats the non-singular part of the polynomial, and is
really just a rephrasing of Hensel’s lemma:

Proposition 4.1.5. Let q(X) be a polynomial with coefficients in OF , of degree ≥ 1 and with
non-zero image in K[X]; let b ∈ F .

(i) Suppose that q(a) = b for some a ∈ OF and that q′(a) 6= 0. Then for any A ≥ 1,

{x ∈ OF : x = a and q(x) ∈ b+ tAOF } = a+ tAOF ,
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and the residue field approximation is ‘multiplication by q ′(a)’:

a+ tAOF
q

−−−−→ b+ tAOFy
y

K −−−−→
q′(a)X

K

(ii) Let ω1, . . . , ωr be the simple (i.e. q′(ωi) 6= 0) solutions in K to q(X) = b; let ω̌i be a lift
by Hensel of ωi to OF ; that is, q(ωi) = b. Then for any A ≥ 1,

{x ∈ OF : q′(x) 6= 0 and q(x) ∈ b+ tAOF } =
r⊔

i=1

ω̌i + tAOF .

Proof. (i) is essentially contained in the proof of Hensel’s lemma and so we omit it. (ii)
easily follows.

We now consider the singular part, which is much more interesting and will be the
root of future difficulties:

Proposition 4.1.6. Let q(X) be a polynomial with coefficients in OF , of degree ≥ 1 and with
non-zero image in K[X]; let b ∈ F . For A ≥ 1 there is a decomposition

{x ∈ OF : q′(x) = 0 and q(x) ∈ b+ tAOF } =

N⊔

j=1

aj + tcjOF

(assuming this set is non-empty i.e. that q(X)−b has a repeated root inK), where a1, . . . , aN ∈
OF , and c1, . . . , cN ≥ 1 are positive integers.

Proof. First supposeA = 1. Let a1, . . . , aN be lifts to OF of the distinct solutions in K to
q(X) = b and q′(X) = 0, and set cj = 1 for each j. Then the required decomposition is

N⊔

j=1

aj + tcjOF .

We now determine the residue field approximation of q on each aj + tcjOF as it will be
used later in corollary 4.3.5. So, for each j, consider the Taylor expansion

q(aj + tX) = q(aj) + q′(aj)tX + q2(aj)t
2X2 + · · · + qd(aj)t

dXd

where d = deg q. But q′(aj) ∈ tOF implies q(aj + tx) ∈ q(aj) + t2OF for all x in OF ,
which is to say that

aj + tcjOF
q

−−−−→ b+ tOFy
y

K −−−−−−−−→
(q(aj )−b)t−1

K

commutes, where the lower horizontal map is constant i.e. each residue field approxi-
mation associated to the decomposition is constant.

We now suppose A > 1 and proceed by induction on A. Let u1, . . . , uN ∈ K be the
distinct solutions to q(X) = b and q′(X) = 0, and write

Wj = {x ∈ OF : x = uj and q(x) ∈ b+ tAOF }
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for j = 1, . . . , N . Since

{x ∈ OF : q′(x) = 0 and q(x) ∈ b+ tAOF } =

N⊔

j=1

Wj,

it is enough to decompose each Wj in the required manner, so we now fix a value of j,
writing W = Wj and u = uj .

If W is empty then we are done; else u has a lift to a ∈ OF such that q(a) ∈ b+ tAOF ,
and we now fix such an a. Using the same Taylor expansion as above, there exist ρ ≥ 1
and Q ∈ OF [X] such that q(a+ tX) = q(a)+ tρQ(X) andQ(X) 6= 0; in fact, q′(a) ∈ tOF

implies ρ ≥ 2, though we will not use this. Therefore

W = a+ t{x ∈ OF : Q(x) ∈ (b− q(a))t−ρ + tA−ρOF },

but also note that

(b− q(a))t−ρ + tA−ρOF = tA−ρ((b− q(a))t−A + OF ) = tA−ρOF

by choice of a. Therefore W = a + t{x ∈ OF : Q(x) ∈ tA−ρOF }, and it becomes clear
how the induction should proceed.

In fact, we must consider three cases, depending on the relative magnitudes of ρ and
A:

(i) A− ρ < 0. Then {x ∈ OF : Q(x) ∈ tA−ρOF } = OF and Q(OF ) ⊆ OF ⊂ tA−ρOF ;
therefore the residue field approximation is constant, given by the diagram

OF
Q

−−−−→ tA−ρOFy
y

K −−−−→
0

K

This implies W = a+ tOF with a constant residue field approximation:

a+ tOF
q

−−−−→ b+ tAOFy
y

K −−−−−−−−→
(q(a)−b)t−A

K.

(ii) A − ρ = 0. Again, {x ∈ OF : Q(x) ∈ tA−ρOF } = OF ; the residue field approxi-
mation is clearly

OF
Q

−−−−→ OFy
y

K −−−−→
Q

K

Therefore W = a+ tOF , with residue field approximation

a+ tOF
q

−−−−→ b+ tAOFy
y

K −−−−−−−−−−−−→
Q(X)+(q(a)−b)t−A

K.
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(iii) A − ρ > 0. Here we may use the inductive hypothesis and proposition 4.1.5 to
write

{x ∈ OF : Q(x) ∈ tA−ρOF } =
⊔

i

di + teiOF ,

with residue field approximations ψi(X), say:

di + teiOF
Q

−−−−→ tA−ρOFy
y

K −−−−→
ψi

K

Therefore W =
⊔
i a+ dit+ tei+1OF , with residue field approximations

a+ dit+ tei+1OF
q

−−−−→ b+ tAOFy
y

K −−−−−−−−−−−−→
ψi(X)+(q(a)−b)t−A

K.

For q(X) as in the previous two propositions, these two decomposition results com-
pletely describe {x ∈ OF : q(x) ∈ b+ tAOF } in terms of ≤ (deg q)A translated fractional
ideals equipped with polynomial residue field approximations. Moreover, the proof of
the second result gives some insight into how structure of the polynomial q effects the
resulting residue field approximations. For applications beyond those described in this
chapter, it will be necessary to better understand how the decomposition varies with b
and A. For small A we have the following result:

Lemma 4.1.7. Let q(X) be a polynomial with coefficients in OF , of degree ≥ 1 and such that
q′ has non-zero image in K[X]; let A = 1 or 2. There are finitely many b1, . . . , bm ∈ OF such
that if b ∈ OF and {x ∈ OF : q(x) ∈ b + tAOF , q

′(x) = 0} is non-empty, then b ≡ bi
mod tAOF for some i ∈ {1, . . . ,m}.

Proof. First suppose A = 1. Then {x ∈ OF : q(x) ∈ b + tAOF , q
′(x) = 0} being non-

empty implies that b is the image under q of one of the finitely many roots of q ′.
Now suppose thatA = 2. Then the argument is just the same as forA = 1, except it is

important to observe the following: if a1, a2 ∈ OF are equal modulo tOF , and q′(ai) = 0
for i = 1, 2, then q(a1) = q(a2) mod t2OF . This follows from the Taylor expansion and
the fact that q′(ai) ∈ tOF .

Remark 4.1.8. Decomposition results similar to the previous ones are common in model
theory; for example, in the theory of algebraically closed valued fields [Rob77], every
definable subset of the field is a finite disjoint union of points and ‘Swiss cheeses’.
Further, these decompositions are related to ramification theory and rigid geometry
through the Abbes-Saito theory; see subsection 6.1.2.

4.2 Non-linear changes of variables
In this section we investigate the behaviour of Fubini functions on F ×F under certain
non-linear changes of variables. More precisely, we consider the following:
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Conjecture 4.2.1. Let a1, a2 ∈ F , n1, n2 ∈ Z, and let h(X) be a polynomial over F . Then
for any Schwartz-Bruhat function f on K ×K , letting g = f (a1,a2),(n1,n2) be the lift of f
at (a1, a2), (n1, n2), the function

Φ(x, y) = g(x, y − h(x))

is Fubini on F × F , with repeated integral equal to that of f .

The conjecture is false in the generality in which we have stated it, though an impor-
tant special case has already been treated in chapter 3:

Theorem 4.2.2. With notation as in the conjecture, if deg h ≤ 1 then the conjecture is true.

Proof. According to theorem 3.2.4, with n = 2, the function (x, y) 7→ g(τ(x, y)) is Fubini
on F × F for any τ ∈ GL2(F ). If deg h = 1 then the conjecture is a special case of that
result; in fact, it essentially follows from lemma 3.2.7.

If deg h = 0 then the conjecture follows from translation invariance of the integral;
see proposition 1.4.8 and remark 1.4.9.

Because of the previous theorem, we will have in mind polynomials h(X) of degree
at least 2, though our results are equally valid for lower degree. We will be interested in
conditions on the data a1, a2, n1, n2, h such that the conjecture is true for all Schwartz-
Bruhat functions f . We assign to the data two invariants as follows:

Definition 4.2.3. Let a1, a2, n1, n2, h be data for the conjecture, and write h(a1+tn1X) =
h(a1) + tRq(X), whereR ∈ Z, q ∈ OF [X], and the image of q in K[X] is non-zero. Note
that q(0) = 0.

The depth and normalised polynomial associated to the data are defined to be R − n2

and q(X) respectively.

A summary of what we know about the validity of the conjecture, classified by the
depth and normalised polynomial, may be found in section 4.5. The sense in which the
depth and normalised polynomial are invariants, and why they are useful, is given by
the following lemma in which we reduce the conjecture to a special case:

Lemma 4.2.4. Fix a polynomial q ∈ OF [X] with nonzero image in K[X] and no constant
term, and an integer R ∈ Z. Then the following are equivalent:

(i) the conjecture is true for all data a1, a2, n1, n2, h with depth R and normalised polyno-
mial q;

(ii) the conjecture is true for all data of the form 0, 0, 0, 0, h with depth R, normalised poly-
nomial q, and such that h(0) = 0;

(iii) for all Schwartz-Bruhat functions f on K ×K , the function

(x, y) 7→ f 0(x, y − tRq(x))

is Fubini;

(iv) for all Schwartz-Bruhat functions f on K ×K , the following hold: for each y ∈ F , the
function x 7→ f 0(x, y − tRq(x)) is integrable, then that y 7→

∫ F
f0(x, y − tRq(x)) dx

is integrable, and finally that
∫ F ∫ F

f0(x, y − tRq(x)) dxdy =

∫

K

∫

K
f(u, v) dudv.
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Proof. Clearly (i)⇒(ii). The only data satisfying the conditions of (ii) are 0, 0, 0, 0, tRq,
and so (ii)⇔(iii).

(iii)⇒(i): So assume (iii), letting a1, a2, n1, n2, h be data for the conjecture with depth
R and normalised polynomial q. Let f be Schwartz-Bruhat on K × K and write g =
f (a1,a2),(n1,n2). Note that h(a1 + tn1X) = h(a1) + tR+n2q(X), and that therefore for all
x, y ∈ F ,

g(a1 + tn2x, a2 + tn2y − h(a1 + tn1x)) = f0(x, y − t−n2h(a1 + tn1x))

= f0(x, (y − t−n2h(a1)) − tRq(x)).

By (iii), this final function of (x, y) differs from a Fubini function by translation. So
(x, y) 7→ g(x, y − h(x)) differs from a Fubini function only by translation and scaling,
and hence is itself Fubini, by proposition 1.4.8. Therefore we have proved (i).

(iii)⇔(iv): First note that for any x ∈ F , the function y 7→ f 0(x, y − tRq(x)) is just
the translation of y 7→ f 0(x, y) by tRq(x); since f 0 is Fubini this is integrable, and
translation invariance of the integral implies

∫ F

f0(x, y − tRq(x)) dy =

∫ F

f0(x, y) dy.

But as a function of x this is integrable, again since f 0 is Fubini, and
∫ F ∫ F

f0(x, y − tRq(x)) dydx =

∫ F ∫ F

f0(x, y) dydx.

Now by remark 1.4.9 and Fubini’s theorem for K ×K ,
∫ F ∫ F

f0(x, y) dydx =

∫

K

∫

K
f(u, v) dudv.

By the definition of a Fubini function, it now follows that (x, y) 7→ f 0(x, y− tRq(x)) is
Fubini if and only if the dxdy repeated integral is well-defined and equals∫
K

∫
K f(u, v)dudv, which is precisely what is stated in (iv).

With these reductions at hand it is straightforward to establish the conjecture in the
case of non-negative depth:

Theorem 4.2.5. Let a1, a2, n1, n2, h be data for the conjecture, and suppose that the associated
depth is non-negative. Then the conjecture is true.

Proof. By the reductions, we suppose that q ∈ OF [X] is a polynomial with no constant
term and non-zero image inK[X], thatR ≥ 0 is an integer, and we will prove condition
(iv) of the lemma above. Write h(X) = tRq(X), and let f be Schwartz-Bruhat onK×K .

The assumption on R implies that all coefficients of h are integral, and for y ∈ F we
have

{x ∈ OF : y − h(x) ∈ OF } =

{
OF y ∈ OF ,

∅ y /∈ OF .

Hence if y ∈ OF , we see that x 7→ f 0(x, y − h(x)) is the lift of

u 7→ f(u, y − h(u))

at 0, 0, where h is the image of h in K[X]. If y /∈ OF , then f 0(x, y−h(x)) = 0 for all x in
F .
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Integrating with respect to x therefore obtains
∫ F

f0(x, y − h(x)) dx =

{∫
K f(u, y − h(u)) du y ∈ OF ,

0 y /∈ OF ,

which simply says that y 7→
∫ F

f0(x, y − h(x)) dx is the lift of

v 7→

∫

K
f(u, v − h(u)) du

at 0, 0.
Hence we may integrate with respect to y to get

∫ F ∫ F

f0(x, y − h(x)) dxdy =
∫
K

∫
K f(u, v − h(u)) dudv

=
∫
K

∫
K f(u, v − h(u)) dvdu

where the second line follows from the first by Fubini’s theorem on K ×K . The result
now follows by translation invariance of the measure on K and lemma 4.2.4.

4.3 Negative depth
Having reduced the problem as far as possible and treated the relatively easy case, we
discuss the case of negative depth in this section and the following section 4.4.

For this section and the next we fix the following notation: R < 0 a negative integer
as the depth; a polynomial q ∈ OF [X] without constant term and with non-zero image
in K[X] as the normalised polynomial; and a Schwartz-Bruhat function f on K ×K .
Write Φ for the function of F ×F given by Φ(x, y) = f 0(x, y−h(x)), and q for the image
of q in K[X].

In this section, we also assume that q does not have everywhere vanishing derivative;
since q is non-zero and without constant term, this condition can only fail to be satisfied
if K has positive characteristic p and q(X) is a purely inseparable polynomial i.e. a
polynomial in Xp. We shall drop this assumption in section 4.4 and see that conjecture
4.2.1 fails for such highly singular q.

We will study the conjecture for data of depthR and normalised polynomial q through
condition (iv) of lemma 4.2.4. We will establish various conditions under which the
conjecture holds.

Introduce two sets: the non-singular part of q

Wns = {x ∈ OF : q′(x) 6= 0} = {x ∈ OF : q′(x) ∈ O×F },

and the singular part

Wsing = {x ∈ OF : q′(x) = 0} = {x ∈ OF : q′(x) ∈ tOF }.

By our assumption on q, the non-singular part Wns is non-empty. The corresponding
singular and non-singular parts of Φ are the restriction of Φ to these sets extended by
zero elsewhere:

Φns = Φ charWns×F

Φsing = Φ charWsing×F .

Note that Φ = Φns + Φsing.
The singular and non-singular parts are treated separately. Using the decomposition

result 4.1.5, we will now explicitly evaluate x 7→ Φns(x, y) for any y ∈ F :
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Proposition 4.3.1. For all y ∈ F , the function x 7→ Φns(x, y) is integrable, and y 7→∫ F
Φns(x, y) dx is the lift of

v 7→
∑

ω∈K
q(ω)=v
q′(ω)6=0

∫

K
f(ω,−q′(ω)u) duX−R

at 0, R; the sum is taken over all simple solutions ω to q(ω) = v.
Moreover, this function y 7→

∫ F
Φns(x, y) dx is integrable on F , with

∫ F ∫ F

Φns(x, y) dxdy =

∫

K

∫

K
f(ω, u) dωdu.

Proof. Firstly, for y /∈ tROF , we have Φ(x, y) = 0 for all x ∈ F . Now fix y = tRy0 ∈
tROF .

Then for Φns(x, y) to be non-zero, x must belong to

{x ∈Wns : y − tRq(x) ∈ OF } = {x ∈Wns : q(x) ∈ y0 + t−ROF }

= {x ∈ OF : q(x) ∈ y0 + t−ROF , q
′(x) 6= 0}

=

r⊔

i=1

ω̌i + t−ROF ,

where ω̌i are lifts by Hensel of the simple solutions ωi inK to q(ω) = y0 and the decom-
position is provided by the decomposition result 4.1.5; that proposition also implies
that there are commutative diagrams

ω̌i + t−ROF
q

−−−−→ y0 + t−ROFy
y

K −−−−−→
q′(ωi)X

K.

So we write Φns(x, y) =
∑r

i=1 gi(x), where gi is the restriction of x 7→ Φns(x, y) to
ω̌i + t−ROF , extended by zero elsewhere; if x = ω̌i + t−Rx0 belongs to ω̌i + t−ROF then
the commutative diagram implies

Φns(x, y) = gi(x) = f(ωi,−q
′(ωi)x0).

Therefore gi is the lift of the Haar integrable function

u 7→ f(ωi,−q
′(ωi)u)

at ω̌i,−R, the integral of which is
∫ F

gi(x) dx =

∫

K
f(ωi,−q

′(ωi)u) duX
−R

by remark 1.4.5. By linearity, x 7→ Φns(x, y) is integrable, with
∫ F

Φns(x, y) dx =

r∑

i=1

∫

K
f(ωi,−q

′(ωi)u) duX
−R. (∗)
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The previous paragraph considered a fixed value of y = tRy0 in tROF . We now
consider the integral (∗) as a function of y; that is,

y 7→

∫ F

Φns(x, y) dx.

Recall that ω1, . . . , ωr are the simple solutions in K to q(ω) = y0. So we may rewrite the
integral as ∫ F

Φns(x, y) dx =
∑

ω

∫

K
f(ω,−q′(ω)u) duX−R,

where the sum is over the finitely many ω in K which satisfy q(ω) = y0 and q′(ω) 6= 0.
Finally, by appendix 4.A, the function v 7→

∑
ω: q(ω)=v
q′(ω)6=0

∫
K f(ω,−q′(ω)u) du is in fact

Haar integrable on K with integral
∫

K

∑

ω: q(ω)=v
q′(ω)6=0

∫

K
f(ω,−q′(ω)u) dudv =

∫

K

∫

K
f(ω, u) dωdu.

Therefore y 7→
∫ F

Φns(x, y) dx is integrable on F , with
∫ F ∫ F

Φns(x, y) dxdy =

∫

K

∫

K
f(ω, u) dωdu.

The proposition has an immediate corollary:

Corollary 4.3.2. If q′(X) is no-where vanishing on K , then Φ is Fubini.

Proof. If q′(X) has no roots in K , then Φ = Φns, so the previous proposition and lemma
4.2.4 imply Φ is Fubini.

More generally, the proposition reduces the problem to showing that the singularities
of q give no contribution to the integrals:

Corollary 4.3.3. The function Φ is Fubini if and only if the following hold: for each y ∈ F ,
the function x 7→ Φsing(x, y) is integrable, then that y 7→

∫ F
Φsing(x, y) dx is integrable, and

finally that ∫ F ∫ F

Φsing(x, y) dxdy = 0.

Proof. This follows immediately from the identity Φ = Φns +Φsing, the previous propo-
sition, lemma 4.2.4, and linearity.

We may verify the first requirement of corollary 4.3.3 using the decomposition result
4.1.6:

Proposition 4.3.4. For each y ∈ F , the function x 7→ Φsing(x, y) is integrable, and we have
the following explicit descriptions of its integral:

If y /∈ tROF , or if y ∈ tROF but {x ∈ OF : q(x) ∈ t−Ry + t−ROF , q
′(x) = 0} is empty,

then
∫ F

Φsing(x, y) dx = 0.
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Otherwise we have y ∈ tROF and write

{x ∈ OF : q(x) ∈ t−Ry + t−ROF , q
′(x) = 0} =

N⊔

j=1

aj + tcjOF ,

where the decomposition (which depends on y) is provided by the decomposition result 4.1.6; let
ψj ∈ K[X] for j = 1, . . . , N denote the corresponding residue field actions i.e.

aj + tcjOF
q

−−−−→ t−Ry + t−ROFy
y

K −−−−→
ψj

K.

commutes. Then
∫ F

Φsing(x, y) dx =
∑

j

′ ∫

K
f(aj,−ψj(u)) duX

cj ,

where the summation
∑′ is over those j ∈ {1, . . . , N} for which ψj is not a constant polyno-

mial.

Proof. By the definition of a lifted function, f 0 vanishes off OF × OF . So if {x ∈ OF :
q(x) ∈ t−Ry+t−ROF , q

′(x) = 0} is empty for some y then x 7→ Φsing(x, y) is everywhere
zero and hence integrable; note that this set is certainly empty if y /∈ tROF .

Now fix y = tRy0 ∈ tROF for the remainder of the proof. Then for x ∈ F , Φsing(x, y)
vanishes unless x belongs to

{x ∈Wsing : y − tRq(x) ∈ OF } = {x ∈Wsing : q(x) ∈ y0 + t−ROF }

= {x ∈ OF : q(x) ∈ y0 + t−ROF , q
′(x) = 0}

=
N⊔

j=1

aj + tcjOF ,

where the decomposition is as in the statement of the proposition; let ψj be the corre-
sponding residue field approximations. Denote by gj the restriction of x 7→ Φsing(x, y)
to aj + tcjOF , extended by zero elsewhere. We shall now prove that each gj is an inte-
grable function. Indeed, gj vanishes off aj + tcjOF , and if x = aj + tcjx0 ∈ aj + tcjOF ,
then

gj(x) = f0(aj + tcjx0, t
Ry0 − tRq(aj + tcjx0))

= f0(aj + tcjx0, t
R(y0 − q(aj + tcjx0))

= f(aj + tcjx0, tR(y0 − q(aj + tcjx0)))

= f(aj,−ψj(x0))

by definition of the residue field approximation ψj . Therefore gj is a lifted function: it is
the lift of u 7→ f(aj ,−ψj(u)) at aj , cj . Further, since we assumed f is Schwartz-Bruhat,
this function of u is Haar integrable on K so long as ψj is not constant, and therefore gj
is integrable on F , with

∫ F

gj(x) dx =

∫

K
f(aj,−ψj(u)) duX

cj .
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However, if ψj is a constant polynomial, then gj = gj(aj) charaj+t
cjOF

, which is inte-
grable with zero integral by example 2.1.10.

By linearity, x 7→ Φsing(x, y) is integrable, with
∫ F

Φsing(x, y) dx =
∑

j

′ ∫

K
f(aj ,−ψj(u)) duX

cj ,

as required. We emphasise again that the decomposition aj, cj , ψj which we have used
to express the integral depends on y.

Corollary 4.3.5. If R = −1 then Φ is Fubini.

Proof. Looking at the proof of decomposition result 4.1.6, we see that if R = −1 (i.e.
A = 1 in the notation of that result), then all the residue field approximations are
constant. So by the previous proposition,

∫ F
Φsing(x, y) dx = 0 for all y ∈ F . Corollary

4.3.3 implies Φ is Fubini.

By proposition 4.3.4 we now have a well defined function y 7→
∫ F

Φsing(x, y) dx; to
establish the validity of the conditions of corollary 4.3.3 the next step is to prove that
this function of y is integrable. The complication in establishing its integrability is that
we lack explicit information on the variation of the sets

{x ∈ OF : q(x) ∈ y0 + t−ROF , q
′(x) = 0}

as y0 runs though OF .
We now present some results and calculations which reveal considerable insight into

why y 7→
∫ F

Φsing(x, y) dx can in fact fail to be integrable. We shall also give evidence
that this phenomenon is merely a result of the integration theory not yet being suffi-
ciently developed.

Proposition 4.3.6. Assume that there exist b1, . . . , bm ∈ OF such that if b ∈ OF and {x ∈
OF : q(x) ∈ b + t−ROF , q

′(x) = 0} is non-empty, then b ≡ bi mod t−ROF for some
i ∈ {1, . . . ,m}. Note that this is satisfied if R = −1 or −2, by corollary 4.1.7.

Then y 7→
∫ F

Φsing(x, y) dx is a finite sum of lifts of functions of the form

v 7→

∫

K
f(a,−ψ(u) − v) duXc

for ψ ∈ K[X] non-constant, a ∈ K , and c ≥ 1.

Proof. Let b1, . . . , bm be as in the statement of the proposition; we also assume that
b1, . . . , bm are distinct modulo t−ROF .

By proposition 4.3.4, if y ∈ F is not in bitR+OF for some i, then
∫ F

Φsing(x, y) dx = 0.
So letting Gi be the restriction of y 7→

∫ F
Φsing(x, y) dx to bitR + OF , extended by zero

elsewhere, we have an equality of functions of y:
∫ F

Φsing(x, y) dx =

m∑

i=1

Gi(y).

For convenience of notation, we now fix some i and write G = Gi, b = bi. Write

{x ∈ OF : q(x) ∈ b+ t−ROF , q
′(x) = 0} =

N⊔

j=1

aj + tcjOF ,
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with residue field approximations ψj . We claim that G is the lift of

v 7→

N∑

j=1

′
∫

K
f(aj ,−ψj(u) − v) duXcj

at b−R, 0 (the sum
∑′ is restricted to those j such that ψj is not constant). So suppose

y = btR + y0 ∈ btR + OF . Then of course yt−R + t−ROF = b+ t−ROF , and so

{x ∈ OF : q(x) ∈ yt−R + t−ROF , q
′(x) = 0} =

N⊔

j=1

aj + tcjOF ,

with the residue field approximations of this decomposition given by

aj + tcjOF
q

−−−−→ t−Ry + t−ROFy
y

K −−−−−−→
ψj(X)−y0

K.

Proposition 4.3.4 implies

G(y) =

∫ F

Φsing(x, y) dx =

N∑

j=1

′
∫

K
f(aj,−ψj(u) − y0) duX

cj ,

proving the claim, and completing the proof.

Remark 4.3.7. Suppose that the assumption of the previous proposition is satisfied.
Then to establish integrability of y 7→

∫ F
Φsing(x, y) dx and prove it has zero integral, it

is enough to prove that for any a ∈ K , non-constant ψ ∈ K[X], and g Schwartz-Bruhat
on K , the lift of v 7→

∫
K g(−ψ(u) − v) du at 0, 0 is integrable and has zero integral; let G

denote this function of F , that is,

G : F → C

y 7→

{∫
K g(−ψ(u) − y) du y ∈ OF ,

0 otherwise.

Then G may not be integrable on F . Indeed, it is not hard to show that if G were to
belong to L(F ), the space of integrable functions, then G would be the lift at 0, 0 of a
Haar integrable function on K ; this Haar integrable function would then have to be
v 7→

∫
K g(−ψ(u) − v) du, but the arguments to follow reveal that this function is Haar

integrable if and only if g = 0.
We now offer the following nonsense argument for why G should be integrable, and

why
∫ F

G(y) dy should be zero. As a lifted function, we evaluate the integral of G by
theorem 1.4.4 to give

∫ F

G(y) dy =

∫

K

∫

K
g(−ψ(u) − v) dudv
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and then apply Fubini’s theorem for K and translation invariance of the integral to
deduce

∫ F

G(y) dy =

∫

K

∫

K
g(−ψ(u) − v) dvdu

=

∫

K

∫

K
g(−v) dvdu

=

∫

K
du

∫

K
g(v)dv.

At this point it is clear why our arguments are not valid: the function v 7→
∫
K g(−ψ(u)−

v) du is not integrable on K . However, we may apply similar nonsense to the function
charOF

, which is the lift of charK , to deduce
∫ F

charOF
(x) dx =

∫

K
du.

Finally, example 2.1.10(i) implies
∫ F

charOF
(x) dx = 0 and so

∫ F

G(y) dy =

∫

K
du

∫

K
g(v)dv

=

∫ F

charOF
(x) dx

∫

K
g(v)dv

= 0.

It should be possible to extend the measure theory on F so that these manipulations
become rigorous. The key idea is that from the vantage point of F , the residue field
K truly has zero measure, as used above; so one expects Fubini’s theorem on K to
hold for certain functions which, though not Haar integrable, are integrable in some
sense after imposing the condition

∫
K du = 0. Once this is properly incorporated into

the measure, the theory should become considerably richer. It should also yield new
methods to treat divergent integrals onK by lifting them toF , applying Fubini theorem
there, and then pulling the results back down to K ; this would be a refreshing contrast
to the main techniques so far, which have centred around reducing integrals on F down
to K .

Example 4.3.8. Now we treat an example of depth −3 in which the assumption of
proposition 4.3.6 is not satisfied. We assume R = −3, q(X) = X2, and charK 6= 2. The
decompositions required for the proposition are given by

{x ∈ OF : q(x) ∈ b+ t−ROF , q
′(x) = 0}

= {x ∈ OF : x2 ∈ b+ t3OF , x = 0}

=





∅ b /∈ t2OF ,

∅ b ∈ t2OF but t−2b /∈ K2,

b1/2 + t2OF t −b1/2 + t2OF b ∈ t2OF and t−2b ∈ K×
2
,

t2OF b ∈ t3OF ,

where we use Hensel’s lemma to take a square root in the third case. The associated
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residue field approximations in the final two cases are given by

b1/2 + t2OF
X2

−−−−→ b+ t3OFy
y

K −−−−−−→
2b1/2t−1X

K

−b1/2 + t2OF
X2

−−−−→ b+ t3OFy
y

K −−−−−−−−→
−2b1/2t−1X

K

t2OF
X2

−−−−→ b+ t3OFy
y

K −−−−→
−bt−3

K.

Proposition 4.3.4 therefore implies that for y ∈ F ,
∫ F

Φsing(x, y) dx

=





0 y /∈ t−1OF ,

0 y ∈ t−1OF but ty /∈ K2,∫
K f(0,−2(yt)1/2u) duX2 +

∫
K f(0, 2(yt)1/2u) duX2 y ∈ t−1OF and ty ∈ K×

2
,

0 y ∈ OF .

Therefore y 7→
∫ F

Φsing(x, y) dx is the lift of

v 7→

∫

K
f(0,−2v1/2u) + f(0, 2v1/2u) duX2 charK×2(v)

at 0,−1.
This function of F need not be integrable, but as in the previous remark, there is a

good argument to suggest that it should be, and why its integral should be zero:
Indeed, the function on the residue field has the form

J(v) =
∑

ω∈K
q(ω)=v
q′(ω)6=0

∫

K
g(−q′(ω)u) du

where g is a Schwartz-Bruhat function on K . Now replace the integrand by
g(−q′(ω)u) charK(ω) and appeal to appendix 4.A to deduce

∫

K
J(v)dv =

∫

K

∫

K
g(u) charK(ω) dωdu.

But arguing as in the proceeding remark,
∫
K dω = 0, and so

∫
K J(v) dv = 0. Of course,

the argument is nonsense because J is not integrable, but it should be after a suitable
extension of the measure.

4.4 Negative depth with q purely inseparably
We maintain all notation introduced at the beginning of the previous section but drop
the additional hypothesis that q′ is not everywhere zero. Instead, we now assume K
has positive characteristic p and that q(X) is purely inseparable.
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Whereas in the previous section conjecture 4.2.1 could fail to hold because the inte-
gration theory is not yet sufficiently developed, causing functions not to be integrable,
we will present a result now to show that if q is purely inseparable then all required
functions are integrable, but the conjecture is simply false!

First note that, in the notation of the previous section, q ′ being everywhere zero im-
plies Φ = Φsing. Secondly, proposition 4.3.4 remains valid, so that x 7→ Φ(x, y) is inte-
grable for any y ∈ F and we have an explicit description of its integral.

Proposition 4.4.1. Suppose R = −1. Then both repeated integrals of Φ are well-defined, but
f may be chosen so that

∫ F ∫ F

Φ(x, y) dxdy 6=

∫ F ∫ F

Φ(x, y) dydx.

Proof. Arguing exactly as in corollary 4.3.5 it follows that
∫ F

Φsing(x, y) dx = 0 for all
y ∈ F , and therefore y 7→

∫ F
Φsing(x, y) dx = 0 is certainly integrable, with integral 0.

That is, ∫ F ∫ F

Φ(x, y) dxdy = 0.

The dydx integral of Φ was showed to make sense in lemma 4.2.4 and have value
∫ F ∫ F

Φ(x, y) dxdy =

∫

K

∫

K
f(u, v) dudv.

To complete the proof simply choose f to be any Schwartz-Bruhat function on K ×K
such that

∫
K

∫
K f(u, v)dudv is non-zero.

Remark 4.4.2. The integration theory of chapter 2 is easily modified to allow integra-
tion on a complete discrete valuation field whose residue field is any infinite field
equipped with discrete counting measure; this is an elementary form of motivic in-
tegration. In that situation one may ask similar questions about changes of variables
and Fubini’s theorem; results are generally easier to prove and closer to the analo-
gous results for a usual local field. In particular, if the residue field is perfect, then the
pathologies exhibited in this section no longer exist.

The failure of Fubini’s theorem appears therefore to be a measure-theoretic conse-
quence of the local field K being imperfect. Note that the set of pth powers of K have
zero measure, in stark contrast with in a perfect field. The approach to ramification
theory for complete discrete valuation fields with imperfect residue fields by A. Abbes
and T. Saito [AS02] [AS03] is based on rigid algebraic geometry and uses decomposi-
tion results similar to 4.1.6 and 4.1.5; see subsection 6.1.2 for a more detailed discussion.
A deeper understanding of this failure of Fubini’s theorem will undoubtedly lead to
progress in the ramification theory of two-dimensional local fields.

4.5 Summary and future work
Let us summarise our main results on conjecture 4.2.1. Given data a1, a2, n1, n2, h for
the conjecture, let q be the associated normalised polynomial and R the depth; then:

(i) If deg h (= deg q) ≤ 1 then the conjecture is true (theorem 4.2.2).

(ii) If R ≥ 0 then the conjecture is true (theorem 4.2.5)
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(iii) If q′ is no-where vanishing on K then the conjecture is true (corollary 4.3.2).

(iv) If R = −1 and q is not purely inseparable, then the conjecture is true (lemma 4.2.4
+ corollary 4.3.5).

(v) If R < −1 and q is not purely inseparable, then y 7→
∫ F

Φ(x, y) dx may fail to be
integrable and so the conjecture may fail; it appears that it is possible to increase
the space of integrable functions so that the conjecture becomes true (remark 4.3.7
+ example 4.3.8).

(vi) If R = −1 but q is purely inseparable, then the conjecture fails and would con-
tinue to fail even if we increased the scope of the integral (section 4.4).

(vii) If R < −1 but q is purely inseparable, then similarly to case (v) calculations be-
come difficult. We have not included examples, but in all cases which the author
can explicitly evaluate,

∫ F ∫ F
Φ(x, y) dxdy = 0, Thus the conjecture seems to fail

as in (vi).

The immediate task is evident: the integral must be extended to a wider class of
functions so that the nonsense manipulations in remark 4.3.7 and example 4.3.8 become
valid.

Secondly, we should consider more general changes of coordinates on F × F than
(x, y) 7→ (x, y − h(x)). Similar methods to those in this chapter will be required: firstly
one needs to approximate the transformation at the level of K ×K and find a suitable
decomposition. This will lead to integrals over K which can be explicitly evaluated as
well as some functions on F ; these functions on F will perhaps be within the scope of
the integral, or instead will provide further impetus for extending the integral.

4.A Evaluation of an important integral on K

Let K be a local field, f a Fubini function of K ×K , and ψ ∈ K[X] a polynomial with
ψ′ not everywhere zero. We discuss the function of K given by

J(v) =
∑

ω∈K
ψ(ω)=v
ψ′(ω)6=0

∫

K
f(ω,−ψ′(ω)u) du.

Note that the assumption that f is Fubini implies that J is defined (i.e. not infinite) for
all v. We will prove the following:

Proposition 4.A.1. The function J is integrable on K , with
∫

K
J(v) dv =

∫

K

∫

K
f(ω, u) dωdu.

Proof. The proof is an exercise in analysis over a local field. Let Σ = {x : ψ ′(x) = 0} be
the finite set of singular points of ψ.

Let v0 ∈ K and assume that there is a non-singular solution toψ(Y ) = v0. The inverse
function theorem for complete fields (see e.g. [Igu00]) implies that there exists an open
disc V 3 v0, open discs Ω1, . . . ,Ωn, and K-analytic maps λi : V → Ωi, i = 1, . . . , n (that
is, representable in V by a convergent power series) with the following properties:

(i) Ω1, . . . ,Ωn are pairwise disjoint;
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(ii) ψ(Ωi) = V for each i; moreover, ψ|Ωi and λi are inverse diffeomorphisms between
Ωi and V ;

(iii) the non-singular solutions in K to ψ(Y ) = v0 are Y = λ1(v0), . . . , λn(v0).
Moreover, we claim that, possibly after shrinking the sets Ωi, V , we may further assume
(iv) for any v ∈ V , the non-singular solutions inK toψ(Y ) = v are Y = λ1(v), . . . , λn(v).

For if not, then there would exist a sequence (xn)n in K such that xn /∈
⋃
i Ωi for all

n and ψ(xn) → v0; the relative compactness of ψ−1(V ) now allows us to pass to a
convergent subsequence of (xn), giving an element x ∈ K\

⋃
iΩi which satisfies ψ(x) =

v0. But this contradicts (iii) and so proves our claim. Informally, the λi parametrise the
non-singular solutions of ψ(Y ) = v, for v ∈ V .

For v ∈ V , we deduce that

J(v) =

∫ n∑

i=1

f(λi(v),−ψ
′(λi(v))u) du

and so
∫

V
J(v) dv =

n∑

i=1

∫

K

∫

V
f(λi(v),−ψ

′(λi(v))u) dvdu

=
∑

i

∫

K

∫

V
|ψ′(λi(v))|

−1f(λi(v), u) dvdu

=
∑

i

∫

K

∫

Ωi

f(ω, u) dωdu

=

∫

K

∫

ψ−1(V )
f(ω, u) dωdu

by Fubini’s theorem and an analytic change of variables v = ψ(ω). An elementary
introduction to change of variables in integrals over non-archimedean fields may be
found in [VVZ94].

If J is replaced by J charA for any measurable subset A ⊆ V then this working is
easily modified to show

∫

A
J(v) dv =

∫

K

∫

ψ−1(A)
f(ω, u) dωdu. (∗)

It is now easy to see that ψ(K \ Σ) admits a partition into countably many Borel sets
(Aj)

∞
j=1 where (∗) holds with Aj in place of A for each A. Therefore

∫

K
J(v) dv =

∑

j

∫

Aj

J(v) dv

=
∑

j

∫

K

∫

ψ−1(Aj)
f(ω, u) dωdu

=

∫

K

∫

Ω
f(ω, u) dωdu

where Ω = ψ−1(ψ(K \ Σ)) = K \ ψ−1(ψ(Σ)) differs from K only by a finite set. So we
have reached the desired result:∫

K
J(v) dv =

∫

K

∫

K
f(ω, u) dωdu.
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CHAPTER 5

Two-dimensional integration à la
Hrushovski-Kazhdan

We explain how the results of Hrushovski and Kazhdan apply to integration on two-
dimensional local fields of residue characteristic zero.

5.1 Summary, without model theory
We now explain rigorously exactly how the model theoretic approach to integration
developed by E. Hrushovski and D. Kazhdan in [HK06] applies to the problem of in-
tegration on two-dimensional local fields. We focus on the case of dimension two, but
there would be no essential difference caused by considering higher dimensional local
fields.

The results here are based on the model theoretic calculations of the subsequent sec-
tions, but we are going to begin by presenting our main results avoiding model theory
as far as possible, so that this section remains accessible to the reader unversed in that
theory. As a result, a few technical issues are omitted. The model theoretically inclined
reader will have no difficulty in remoulding this discussion to his preferred shape, and
will hopefully feel nothing worse than slight satisfaction if he notices one of the omis-
sions.

For the remainder of this section we fix a two-dimensional local field F , and a uni-
formiser t ∈ F . We set

RV(F ) = F×/1 + pF t {∞},

where pF is the prime ideal of OF . The natural map F → RV(F ), sending 0 to ∞, is
denoted rv. Our choice of t induces an isomorphism

RV(F )× := F×/1 + pF ∼= F
×
× Z, utr 7→ (u, r),

which will be essential.

5.1.1 Motivation
A recurring idea in the development of the integration theory on a two-dimensional
local field F has been that the integral ought to reduce to Haar integration on the local
field F . Explicit phenomena of this appeared in the original definition in chapter 2,
the reduction in section 4.3 of an integral on F to one of F which was then calculated
in appendix 4.A, and the way in which the invariant integral on GLn(F ) lifted the
Haar integral on GLn(F ) (proposition 3.3.8). We saw in remark 4.3.7 that there seem
not to be enough integrable functions, and a major component of chapter 3 involved
proving that linear changes of variables of determinant 1 preserve the two-dimensional
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measure. We will mainly address the first two-problems here: reducing the integral to
the residue field and increasing the scope of the integral. Understanding its behaviour
under changes of variables is covered by one of the difficulties discussed in subsection
5.1.4 below.

A subset of F (or of F n) will be called bounded if and only if it is bounded with
respect to the discrete valuation on F . A more subtle notion of boundedness is the
following:

Definition 5.1.1. Firstly, call a subset Y ⊆ RV(F ) bounded if and only if rv−1(Y ) ⊆ F
is bounded. Now, Y is two-dimensionally bounded if and only if it is not only bounded,
but also each section

Yk := {y ∈ F : (y, k) ∈ Y }

is bounded in the local field F .
Here we have identified F×/1 + pF with F× × Z, but the notion of two-dimensional

boundedness is easily seen to be independent of the choice of uniformiser t.
The two notions of boundedness for Y ⊆ RV(F )n are defined similarly.

Let µF denote the measure on F introduced in section 2.2. As a reminder, µF is
characterised by

µF (a+ tk{x ∈ OF : x ∈ S}) = µ(S)T k ∈ R(T )

for a ∈ F , k ∈ Z, and S ⊆ F of finite Haar measure. Here µ is a fixed Haar measure
on F , and we have replaced the X variable used in earlier chapters by T , to avoid
confusion as X is always used to denote certain sets in this chapter.

Suppose Y ⊆ RV(F )×; then it is easy to see that

rv−1(Y ) =
⊔

k∈Z

tk{x ∈ OF : x ∈ Yk},

where Yk is the section of Y which appeared in the previous definition. If Y is bounded,
then Yk = ∅ for k � 0, and if Y is moreover two-dimensionally bounded, then

µF (tk{x ∈ OF : x ∈ Yk}) = µ(Yk)T
k.

Although we mentioned in section 2.2 that µF is not always countably additive, Fes-
enko has shown in [Fes03, §6] that it can be consistently extended to certain countable
disjoint unions; if Y is two-dimensionally bounded, then

⊔
k∈Z t

k{x ∈ OF : x ∈ Yk}
will be such a union, and so

µF (rv−1(Y )) =
∑

k∈Z

µ(Yk)T
k ∈ R((T )).

This all easily extends to two-dimensionally bounded Y ⊆ (RV(F )×)n, with

µF (rv−1(Y )) =
∑

k∈Zn

µ(Yk)X
k1+···+kn ∈ R((T )).

However, the class of subsets of F of the form rv−1(Y ) for Y ⊆ RV(F )× is very small;
it is not even closed under translations. But if we also allow ‘measure-preserving’
maps, then we shall soon see in theorem 5.1.5 that the situation is much better.
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5.1.2 Semi-algebraic sets
The reader should look forward at the notion of ‘structure’ which will be used in section
6.2; indeed, it would be profitable to skim that entire section before proceeding. We
assume here for simplicity that F is a non-archimedean local field; for the archimedean
case, see remark 5.1.6.

Definition 5.1.2. Let A be the smallest structure on F satisfying the following proper-
ties:

(i) A(F n) contains any Zariski closed set;

(ii) A(F ) contains both OF and OF := {x ∈ OF : x ∈ OF }.

A subset of F n belonging to A(F n) will be called semi-algebraic; a function between
subsets of F n and Fm will be called semi-algebraic if and only if its graph Γ ⊆ F n+m is
semi-algebraic.

In other words, the semi-algebraic sets are those which are definable with respect to
the structure A.

We define semi-algebraic subsets of F n in a similar way as for F n, by taking the
smallest structure which contains all Zariski closed sets and OF .

Example 5.1.3. Hopefully a few examples will convince the reader that semi-algebraic
sets are not too daunting:

(i) Any single point a ∈ F n is semi-algebraic, because it is the image of a constant
polynomial.

(ii) If f ∈ F [x1, . . . , xn], then f−1(OF ) ⊆ F n is semi-algebraic. Indeed, it is the preim-
age of a semi-algebraic set under a semi-algebraic function (the function f is semi-
algebraic because its graph is Zariski closed, hence is semi-algebraic).

(iii) If S is a compact open subset of F n, then X := a + τ{x ∈ On
F : x ∈ S} is semi-

algebraic, for any a ∈ F n, τ ∈ GLn(F ). Indeed, decomposing S into a finite,
disjoint union of products of translated fractional ideals, we see that X is a finite,
disjoint union of sets of the form a′ + τ ′OnF , with a′ ∈ F n, τ ′ ∈ GLn(F ); but such
sets are the image under a semi-algebraic map of a semi-algebraic set, hence are
semi-algebraic.

Example 5.1.4. As well as polynomial maps, semi-algebraic functions can include the
inverse of polynomial maps. For example, the group of principal units U 1

F = 1 + pF is
uniquely l-divisible for any l not divisible by charF , so that the map

f : U1
F → U1

F , x 7→ x1/l

is well-defined. Moreover, f is semi-algebraic, for the following reasons:

(i) by the previous example p1
F , hence U 1

F , is semi-algebraic;

(ii) the polynomial xl is a semi-algebraic function, meaning that

Γ = {(x, y) ∈ F 2 : xl = y}

is semi-algebraic;
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(iii) by permuting coordinates and intersection with U 1
F × U1

F , we see that

Γ′ = {(y, x) ∈ U 1
F × U1

F : xl = y}

is semi-algebraic; but Γ′ is exactly the graph of f , and therefore f is semi-algebraic.

The advantage of working with the class of semi-algebraic objects is that it is large
enough to include all interesting sets and functions, while not so large that pathologies
appear. Here are several particularly attractive limitations, which are true in the case
charF = 0:

(i) Call a subset of F n null if and only if it is contained in a proper Zariski closed sub-
set of F n. Then a semi-algebraic setX ⊆ F n is null if and only if it has no interior
in the valuation topology on F . Hence the boundary ∂X of any semi-algebraic
set X ⊆ F n is null. See proposition 5.3.12 and the subsequent corollaries.

(ii) Let X ⊆ F n be semi-algebraic, and f : X → F n a semi-algebraic function. Then
f is almost everywhere smooth; here ‘smooth’ means infinitely differentiable in
the usual sense for valued fields, and ‘almost everywhere’ means that we are
permitted to ignore a semi-algebraic null set. See subsection 5.3.2.

So if X ⊆ F n and f : X → F n are semi-algebraic, then there is a proper Zariski closed
set V ⊆ X such that X \ V is open and f |X\V is smooth!

In fact, the class of semi-algebraic sets is slightly too large for integration theory,
because one rarely computes the measure of something like the set of squares (which
is semi-algebraic). Therefore we say that X ⊆ F n is quantifier-free semi-algebraic if and
only if it belongs to the algebra of subsets of F n generated by f−1(OF ) and f−1(OF ),
where f varies over F [x1, . . . , xn]. In fact, the examples of semi-algebraic sets presented
above are all quantifier-free semi-algebraic.

Finally, we call a subset Y of (RV(F )×)n semi-algebraic if and only if each section
Yk ⊆ (F

×
)n is semi-algebraic, for all k ∈ Zn. This is easily seen not to depend on the

choice of t which induces the splitting RV(F )× ∼= F
×
× Z.

5.1.3 Descent to RV
We may now precisely state the main result:

Theorem 5.1.5. Assume charF = 0. LetX ⊆ F n be a bounded, quantifier-free semi-algebraic
set. Then X may be written as a disjoint union of semi-algebraic sets X =

⊔s
i=0Xi such that

X0 is null, and the remaining Xi are of the following form: there are a semi-algebraic subset
Yi ⊆ (RV (F )×)n, an integer Ni ≥ 1, and a semi-algebraic Ni-to-1 map fi : Xi → rv−1(Yi)
which is almost everywhere smooth with Jacobian = 1.

Proof. This result is obtained by modifying a similar result for algebraically closed val-
ued fields due to Hrushovski and Kazhdan. The precise argument, for the model theo-
rists, is as follows:

Let L be the RV-expansion of the language LRV obtained by adjoining a unary pred-
icate to the RV-sort to denote a valuation subring of the residue field. Then F is an
L structure and we set T+ = T (F ) and L+ = LF . This theory is an RV-expansion
of H(0, 0)F , the parameter-extension of the theory of Henselian fields. Hence we may
apply corollary 5.5.10, and the result immediately follows (since semi-algebraic really
means T+-definable).
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If each Yi in the previous lemma is actually two-dimensionally bounded, then, as
explained in subsection 5.1.1, we know exactly what the two-dimensional measure of
rv−1(Yi) is:

µF (rv−1(Yi)) =
∑

k∈Zn

µ({y ∈ (F
×
)n : (y, k) ∈ Yi})T

|k| ∈ R((T )).

Therefore, assuming that µF extends to a finitely additive measure which ignores proper
Zariski closed sets and which is preserved under Jacobian 1 smooth maps, we deduce

µF (X) =

s∑

i=1

Ni µ
F (rv−1(Yi)) ∈ R((T )). (†)

Conversely, we would like to use the theorem to extend µF by using (†) as a definition.
That is, the theorem not only proves that the two-dimensional measure can be ex-

tended in at most one reasonable way, it also offers a definition of the measure for a
wide class of sets. Of course, the reader will already have noticed various difficulties,
which we are compelled to discuss next.

Remark 5.1.6. There is no difficulty in extending these results to archimedean two-
dimensional local fields, i.e. R((t)) or C((t)). One must modify the definitions of semi-
algebraic sets for both F and F , and in the proof of theorem 5.1.5 one must use a dif-
ferent first order language.

5.1.4 The remaining problems
There are two problems which prevent us from immediately offering (†) as a definition
of µF (X):

(i) the sets Yi may not be two-dimensionally bounded, and therefore the definition
of µF (rv−1(Yi)) does not make sense;

(ii) even if the Yi are two-dimensionally bounded, perhaps there is a different decom-
position of X , as

⊔
j X
′
j say, with the corresponding Y ′j also two-dimensionally

bounded; then we need to show that
∑

iNiµ
F (rv−1(Yi)) =

∑
j N
′
jµ

F (rv−1(Y ′j )).

Example 5.1.7. This example is fundamental in Hrushovski and Kazhdan’s theory. Set
X = pF ; we will offer two decompositions of X .

Firstly, let Y = {(y, n) ∈ RV(F ) : n > 0}. Then rv−1(Y ) = pF \ {0}, so we have

X = {0} t rv−1(Y ),

which is a valid decomposition since {0} is Zariski closed.
Secondly, let Y ′ = {(1, 0)} ⊆ RV(F ), so that rv−1(Y ′) = 1 + pF . Let f be the Jacobian

1 bijection x 7→ x+ 1. Then X = f−1(rv−1(Y ′)) is also a valid decomposition for X .
In a sense which we will not make precise, Hrushovski and Kazhdan explain that,

in their setting of an algebraically closed valued field, this is the only ambiguity which
can arise in the decomposition of any set into RV lifts.

Now consider how the previous example interacts with the two-dimensional mea-
sure. In the first decomposition, Y is not two-dimensionally bounded (indeed, each
section Yn for n > 0 is all of F×), and so we cannot use this decomposition to de-
fine µF (X). But in the second decomposition, Y ′ is two-dimensionally bounded, with
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µF (rv−1(Y ′)) = 0; hence we expect µF (X) = 0, which is indeed true according to
example 2.2.5(i).

In this way, the non-uniqueness of a decomposition appears to be ‘orthogonal’ to the
condition that the Yi appearing in the decomposition are two-dimensionally bounded.
The author is confident that further examination of Hrushovski and Kazhdan’s proof
of their corresponding result will lead to the elimination of problem (ii).

Problem (i) is more subtle; it is unclear how to provide an intrinsic characterisation of
which semi-algebraic sets X admit a decomposition with all the Yi two-dimensionally
bounded. It is not even clear if the class of such sets is closed under unions (it is cer-
tainly closed under disjoint unions) and intersections. Hopefully resolving problem (ii)
will lead to further insights.

5.2 Languages and known results
The remainder of this chapter is essentially a proof of theorem 5.5.9 below, from which
corollary 5.5.10 and the aforementioned theorem 5.1.5 then follow. The remainder of
this chapter is presented in the language of model theory; we begin by collecting to-
gether some basic results pertaining to the model theory of valued fields.

Fields
Let Tring,Lring denote the theory and language of rings. This language has binary op-
erations +,−,× and constants 0, 1; the theory contains the obvious sentences such as
∀x∀y (x+ y = y + x) so that the models of Tring are precisely commutative, associative
rings with unit. Adjoining to Tring the sentence ∀x∃y (x 6= 0 → xy = 1) obtains the
theory of fields Tfield, formulated in the language of rings.

For algebraically closed fields, one adds to Tfield a countable collection of sentences
∀a0 . . . ∀an−1 ∃x (xn + an−1x

n−1 · · · + a0 = 0) (all n ≥ 2)
to obtain the theory ACF. This can be further augmented by

1 + · · · + 1︸ ︷︷ ︸
p times

= 0

to give ACF(p), the theory of algebraically closed fields of characteristic p, for some
rational prime p > 0; alternatively, adding the negation of all these sentences gives
ACF(0), the theory of algebraically closed fields of characteristic zero.

A. Tarski established that ACF admits elimination of quantifiers in the languageLring.
Moreover, each theory ACF(p) (p ≥ 0) is complete and model complete.

Ordered groups
Let Toag,Loag denote the theory and language of ordered abelian groups. This language
has binary operations +,−, a binary relation ≤, and a constant 0; the models of Toag are
precisely abelian groups equipped with a total ordering which is compatible with the
group operation.

Adding to Toag the collection of sentences
∀x∃y (x+ · · · + x︸ ︷︷ ︸

n times
= y) (all n ≥ 2)

yields Tdoag, the theory of divisible ordered abelian groups. This is complete and ad-
mits elimination of quantifiers [Rob77].
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Valued fields
There are many different languages for valued fields, and although they are all essen-
tially the same, some are more convenient. The most basic language is obtained by
adding to Lring a single unary predicate O and to Tfield an additional sentence

∀x (x /∈ O → x−1 ∈ O),

so that O is interpreted as a (possibly trivial) valuation subring of the field. One can
add further sentences such as

1 + · · · + 1︸ ︷︷ ︸
p times

6= 0 ∧ (1 + · · · + 1︸ ︷︷ ︸
p times

)−1 /∈ O

to obtain the theory of valued fields of characteristic 0 and residue characteristic p.
Even using the simple language Lring∪{O}, one can interpret the residue field F and

value group Γ(F ) of any valued field F . Indeed,

Γ(F ) ∼= F×/O×

and
F = O/m,

where m = {X ∈ F : X = 0 ∨X−1 /∈ O} is the maximal ideal of O. Therefore there is
little change to the model theoretic nature of the situation if we add an extra sort or two
to be interpreted as the residue field or value group, together with additional function
symbols to represent the residue map and valuation.

However, the main theme of the model theory of valued fields is understanding how
properties of the field F reduce to properties of the value group and residue field. The
convenient object which suits this purpose is

F×/1 + m.

Indeed, there is a natural exact sequence

1 → F
×
→ F×/1 + m → Γ(F ) → 0,

so that F×/1 + m wraps together the value group and residue field; in particular, if
the valuation is discrete, then a choice of a uniformiser will induce an isomorphism
F×/1 + m ∼= F × Z. Following Hrushovski and Kazhdan, we shall therefore work
in the two-sorted RV-language LRV, which we now describe. The first sort, denoted
VF, uses the language Lring. The second sort, denoted RV, uses the language obtained
by augmenting Loag with a unary predicate k×, a constant ∞, and a binary operation
+ : k × k → k, where k is the union of k× and an imaginary constant 0. There is also
a function symbol rv : VF → RV. The theory TRV contains all required sentences to
ensure that if F = (VF(F ),RV(F )) is a model of TRV, then VF(F ) is a valued field,
RV(F ) = F×/1+mt{∞}, and rv is the natural quotient map, extended to all of VF(F )
by setting rv(0) = ∞; the ordering ≤ on RV(F ) is the partial ordering x ≤ y ⇔ yx−1 ∈
OF , with ∞ being maximal. We write RV(F )× = F×/1+m. One can of course augment
the theory TRV to ensure that the models have appropriate characteristic, are Henselian,
are algebraically closed, etc. We shall be particularly interested in RV-expansions, in
which one adds additional structure only to the RV sort.

Formulated in any of these languages, the theory of algebraically closed valued fields
ACVF admits elimination of quantifiers (essentially follows from A. Robinson’s work
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[Rob77]), and the theories ACVF(p, p), ACVF(0, p), ACVF(0, 0) of algebraically closed
valued fields with specified characteristic and residue characteristic are complete. Fur-
ther, the theory H(0, 0) of Henselian valued fields of residue characteristic zero admits
elimination of field quantifiers (see e.g. [Pas89], [HK06, Prop. 12.9]).

5.3 Structure results for definable sets in a valued field
In this section we establish a variety of results describing the structure of definable sets
and maps in valued fields. Our main tool is explicit, syntactical analysis of formulae,
similarly to Y. Yin’s reworking of the Hrushovski-Kazhdan theory for ACVF(0, 0) in
[Yin08].

Let (T,L) be a theory of valued fields formulated in an extension-by-parameters of
the language LRV; assume (T,L) admits the elimination of VF quantifiers. The exam-
ples to have in mind are when T is an extension of ACVF(0, 0) or H(0, 0) by parameters.
Let (T+,L+) be an RV-expansion of (T,L); we shall see later that (T +,L+) also admits
the elimination of VF-quantifiers (lemma 5.3.9).

These languages have two types of terms: the VF terms, i.e those terms interpreted
in each model as an element of the VF sort, and the RV terms, defined analogously. The
VF terms of L+ which do not include any variables are the same as those of L, namely
terms of the form

g(c1, . . . , cn), (†)

with g ∈ Z[x1, . . . , xn] and c1, . . . , cn VF constants of L. The VF terms of L+ which
do include variables (also the same as those of L) are of the form f(x), where x are
VF variables and f is a polynomial whose coefficients are all of the form (†). Since they
will appear often, we shall call polynomials like f(x) L-polynomials (it would be equally
correct to call them L+-polynomials, but we wish to emphasise that they are already
definable in the weaker language L).

Expressions such as ‘definable’, ‘equivalent’, etc. mean ‘T +-definable’,
‘T+-equivalent’, etc. unless a prefix is included to indicate otherwise.

Remark 5.3.1. Although we are only really interested in subsets of VFn for all n, it is
more convenient to work with subsets of VFn×RVm for all n,m, not least so that we
can follow Hrushovski and Kazhdan as closely as possible.

From the perspective of measure theory, proper Zariski closed sets are negligible, and
so the following definition is convenient:

Definition 5.3.2. A definable subset X ⊆ VFn×RVm will be said to be T+-null (or
simply null) if and only if there is a non-zero L-polynomial g(x) such thatX ⊆ g−1(0)×
RVm, i.e.

T+ ` (x, y) ∈ X → g(x) = 0.

Note that this notion depends on the ambient space VFn×RVm. Definable subsets
of RVm are not null, unless empty, either by convention or degeneracy of the definition.
We will sometimes say ‘almost everywhere’ to mean ‘away from a null set’. We will see
in proposition 5.3.12 that a set is null if and only if it has no interior.

Lemma 5.3.3. Any definable subset of a null set is null, and a finite union of null sets is null.

Proof. Obvious.
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5.3.1 Syntactical analysis of T +

We begin our syntactical analysis of formulae of (T +,L+) with some simple results:

Lemma 5.3.4. Let τ = τ(x, y) be an RV term of L+, where x are VF variables and y are RV
variables. Then we can write

τ = τ ′(rv(f1(x)), . . . , rv(fs(x)), y)

where τ ′ is an RV term of L+ all of whose variables are of the RV sort, and the fi are non-zero
L-polynomials (more precisely, τ is equivalent to a term of the given form).

Proof. If τ is atomic, then τ is either a single RV variable or an RV constant; such ex-
pressions are certainly of the required form. Now assume that τ is not atomic. Then
we may write τ = g(τ1, . . . , τm) for a function symbol g and terms τ1, . . . , τm; note that
either g is a function symbol RVl → RV for some l ≥ 0, or g = rv, because there are no
other function symbols with values in RV.

It now follows by induction on the length of τ that τ = τ ′(rv(τ1(x)), . . . , rv(τs(x)), y),
where each τi is a VF term and τ ′ is an RV term all of whose variables are of the RV sort.
But we observed above that any VF term τi(x) is an L-polynomial fi(x). Moreover, if
any of the fi are identically zero, then T+ ` rv(fi(x)) = ∞, so we may replace rv(fi(x))
by the constant ∞ and absorb it into τ ′.

Corollary 5.3.5. Let τ = τ(x, y) be an RV term of L+, where x are VF variables and y are
RV variables. Then there is a null set N ⊂ VFn such that for any model F |= T+ and
a ∈ VF(F )n \N(F ), there is an open neighbourhood U of a such that for all b ∈ RV(F )m and
all ε ∈ U ,

τ(a, b) = τ(a+ ε, b).

i.e. away from a null set, the term τ(x, y) is locally constant in x, independently of y.

Proof. We write τ = τ ′(rv(f1(x)), . . . , rv(fs(x)), y) satisfying the conditions of the pre-
vious lemma, set f = f1 . . . fs, and put N = f−1(0), which is a null set of VFn. Let
F |= T+ and a ∈ VF(F )n \ N(F ). Since rv : VF(F )× → RV(F )× is continuous with
respect to the valuation topology on VF(F )× and discrete topology on RV(F )×, there
is an open neighbourhood U of a on which f does not vanish and on which rv fi is
constant for all i. This is exactly what is required.

The following classification of atomic formulae is absolutely fundamental for the sub-
sequent results:

Lemma 5.3.6. Let φ(x, y) be an atomic formula of L+, or the negation of an atomic formula;
assume φ is not a tautology or a contradiction. Then either

(i) φ is T -equivalent to a formula ‘g(x) = 0’ for some non-constant, L-polynomial g; or

(ii) φ is T -equivalent to a formula ‘g(x) 6= 0’ for some non-constant, L-polynomial g; or

(iii) φ is T+-equivalent to a formula of the form

φ′(rv(f1(x)), . . . , rv(fs(x)), y),

where φ′(w1, . . . , ws, y) is an atomic formula of L+ (or the negation of an atomic for-
mula), all of whose variables are of the RV sort, and fi are non-constant, L-polynomials.
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Proof. By the very definition of an atomic formula, φ is equal to R(τ1, . . . , τr) for some
relation symbol R and terms τi (or the negation of such an expression).

Case: At least one τi is a VF term. Well, the only relation symbol of L+ accepting any
VF terms is the binary relation of equality =, and so φ is ‘τ1(x) = τ2(x)’ with VF-terms
τ1, τ2 (or it is the negation of this formula). So τ1 and τ2 are both L-polynomials, and
we set g(x) = τ1(x) − τ1(x). Then φ is T -equivalent to ‘g(x) = 0’ (in which case φ is of
type (i)) or to ‘g(x) 6= 0’ (in which case φ is of type (ii)).

Case: All the τi are RV terms. Then according to lemma 5.3.4, each τi is T+-equivalent
to a term of the form

τ ′i(rv(f
(1)
i (x)), . . . , rv(f

s(i)
i (x)), y)

where the fki are non-zero L-polynomials and τ ′i is an RV term all of whose variables
are of the RV sort. It easily follows that φ is of type (iii), with

φ′ = R(τ ′1(w
(1)
1 , . . . , w

s(i)
1 , y), . . . , τ ′r(w

(1)
r , . . . , ws(r)r , y)).

Definition 5.3.7. Let φ(x, y) be an atomic formula of L+, or the negation of an atomic
formula; assume φ is not a tautology or a contradiction. We will say that φ is of type (i),
(ii), (iii) according as which of the three cases φ satisfies in the previous lemma.

Corollary 5.3.8. Let φ(x, y) be an atomic formula of L+, or the negation of an atomic formula;
assume φ is not a tautology or a contradiction. If φ is of type (ii) or (iii) then there is a null set
N such that for any model F |= T+ and a ∈ VF(F )n \N(F ), there is an open neighbourhood
U of a such that for all b ∈ RV(F )m and all ε ∈ U ,

F |= φ(a, b) ⇐⇒ F |= φ(a+ ε, b).

Proof. If φ is T -equivalent to ‘g(x) 6= 0’ then we may take N = g−1(0). Else φ is of type
(iii), and we proceed exactly as in corollary 5.3.5.

The following result seems to be well-known among model theorists, but a reference
is hard to find, and so for the sake of completeness we present a proof in the same
style as our other results. Recall that we are assuming (T,L) has elimination of VF
quantifiers.

Lemma 5.3.9. T+ has elimination of VF quantifiers in the language L+.

Proof. Letting v denote a single VF variable; it is enough to take a formula φ(v, x, y) of
L+ with no VF quantifiers and to rewrite

∃v φ(v, x, y)

without any VF quantifiers.
By (the proof of) prenex normal form, φ is T+-equivalent to a formula of the form

Q1z1 · · ·Qmzs
∨

i

∧

j

φi,j(v, x, y, z)

where z are RV variables, each Qi is ∀ or ∃, and each φi,j is an atomic formula of L+ or
the negation of an atomic formula (and we may clearly assume that each φi,j is neither
a tautology nor a contradiction, unless φ itself is one, in which case we are done). Let
I denote the set of those (i, j) for which φi,j is of type (i) or (ii), and I ′ those (i, j) for
which φi,j is of type (iii).
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For each (i, j) ∈ I , lemma 5.3.6 implies that φi,j is T -equivalent to a formula
‘gi,j(v, x) �i,j 0’, where �i,j is either = or 6=, and gi,j is an L-polynomial. We will use
? to denote either ‘no symbol’ or ‘negation’, so that ?φi,j is either φi,j or ¬φi,j ; in fact,
for each (i, j) ∈ I , choose conditions ? = (?i,j)(i,j)∈I (2|I| such possibilities), and set

ψ?(v, x) =
∧

(i,j)∈I

?i,jφi,j.

So the sentence ∨

?

ψ?(v, x)

is a tautology; here ? varies over the 2|I| combinations of ‘no symbol’ or ‘negation’.
Now, ∃v φ(v, x, y) is T+-equivalent to the sentence

∨

?

∃v (ψ?(v, x) ∧ φ(v, x, y)),

and it is therefore enough to eliminate the v quantifier from φ? := ‘∃v (ψ?(v, x) ∧
φ(v, x, y))’ for some fixed ? (now fixed for the remainder of the proof); further, since
ψ? is independent of the variables z, we have

φ?(x, y) ≡ ∃v Q1z1 · · ·Qmzs
∨

i

∧

j

(ψ?(v, x) ∧ φi,j(v, x, y, z)). (†)

Momentarily fix (i, j) ∈ I . If ?i,j is ‘negation’, then the formula ψ? ∧ φi,j is a contra-
diction. On the other hand, if ?i,j is ‘no symbol’, then ψ? ∧ φi,j ≡ ψ?. Introducing

I ′′ = {(i, j) ∈ I ′ : for all j0 such that (i, j0) ∈ I , ?i,j0 is ‘no symbol’},
it follows that

∨

i

∧

j

(ψ?(v, x) ∧ φi,j(v, x, y, z)) ≡
∨∧

(i,j)∈I′′

(ψ?(v, x) ∧ φi,j(v, x, y, z))

≡ ψ?(v, x) ∧
∨∧

(i,j)∈I′′

φi,j(v, x, y, z).

Therefore φ? is T+-equivalent to

∃v


ψ?(v, x) ∧Q1z1 · · ·Qmzs

∨∧

(i,j)∈I′′

φi,j(v, x, y, z)


 .

But now recall that for each (i, j) ∈ I ′′, φi,j is of type (iii) and hence is T+-equivalent
to a formula

φi,j ≡ φ′i,j(rv(f
(1)
i,j (v, x)), . . . , rv(f

(s(i,j))
i,j (v, x)), y, z),

where φ′(w(1)
i,j , . . . , w

(s(i,j))
i,j , y) is an atomic formula of L+ (or the negation of an atomic

formula), all of whose variables are of the RV sort, and the f ki,j are non-constant L-
polynomials. It is clear that φ? is T+-equivalent to

∃
(i,j)∈I′′

1≤k≤s(i,j)

wki,j


∃v

∧

(i,j)∈I′′

1≤k≤s(i,j)

wki,j = rv(f
(k)
i,j (v, x))

∧ Q1z1 . . . Qszs
∨∧

(i,j)∈I′′

φ′i,j(w
(1)
i,j , . . . , w

(s(i,j))
i,j , y, z)


 .
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Finally,
∃v

∧

(i,j)∈I′′

1≤k≤s(i,j)

wki,j = rv(f
(k)
i,j (v, x))

is a formula in L, and therefore is T -equivalent to a formula without VF-quantifiers,
which completes the proof.

Remark 5.3.10. Now that we know T+ has elimination of VF-quantifiers in L+, the
usual proof of prenex normal form implies that any formula φ(x, y) of L+ is equivalent
to one of the form

Q1z1, · · ·Qmzs
∨

i

∧

j

φi,j(x, y, z)

where z are RV variables, each Qi is ∀ or ∃, and each φi,j is an atomic formula of L+ or
the negation of an atomic formula (and we may clearly assume that each φi,j is neither
a tautology nor a contradiction, unless φ itself is one).

Applying lemma 5.3.6 on the structure of atomic formulae to the φi,j appearing in
the remark, we will now begin to derive the promised structural results for definable
sets and functions.

Proposition 5.3.11. LetX ⊆ VFn×RVm be a T+-definable set; then there exists a quantifier-
free, T -definable function h : VFn×RVm → RVl (some l ≥ 0) such that X consists of fibres
of h, i.e. T+ ` h(x, y) = h(x′, y′) → ((x, y) ∈ X ↔ (x′, y′) ∈ X).

Proof. We write

X =



(x, y) ∈ VFn×RVm : Q1z1, · · ·Qmzs

∨

i

∧

j

φi,j(x, y, z)





according to the previous remark. Let I denote the set of pairs (i, j) for which φi,j is of
type (i) or (ii), and I ′ those (i, j) for which φi,j is of type (iii).

For (i, j) ∈ I ′, φi,j is T+-equivalent to a formula

φ′i,j(rv(f
(1)
i,j (x)), . . . , rv(f

s(i,j)
i,j (x)), y, z),

where φ′(w(1)
i,j , . . . , w

(s(i,j))
i,j , y) is an atomic formula of L+ (or the negation of an atomic

formula), all of whose variables are of the RV sort, and the f ki,j are non-constant L-
polynomials. Introduce

hi,j : VFn×RVm → RVs(i,j) ×RVm, (x, y) 7→ (rv(f
(1)
i,j (x)), . . . , rv(f

s(i,j)
i,j (x)), y).

Then hi,j is quantifier-free, T -definable since the same is true of each polynomial f ki,j ,
and further

T+ ` hi,j(x, y) = hi,j(x
′, y′) → (φi,j(x, y, z) ↔ φi,j(x

′, y′, z))

Secondly, for (i, j) ∈ I , φi,j is T -equivalent to a formula gi,j(x)�i,j0, where �i,j is either
= or 6=, and gi,j is an L-polynomial. For each such (i, j), introduce a ‘test function’

δi,j : VFn×RVm → RV, x 7→

{
1 if gi,j(x) �i,j 0

∞ if gi,j(x) 6 �i,j0.
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Then δi,j is quantifier-free T -definable, and the formula φi,j(x, y, z) is T -equivalent to
‘δi,j(x) = 1’.

Finally, set

h =
∏

(i,j)∈I′

hi,j ×
∏

(i,j)∈I

δi,j : VFn×RVm →
∏

(i,j)∈I

(RVs(i,j) ×RVm) ×
∏

(i,j)∈I′

RV .

Then h is quantifier-free, T -definable and evidently satisfies

T+ ` h(x, y) = h(x′, y′) → (φi,j(x, y, z) ↔ φi,j(x
′, y′, z))

for all i, j. This completes the proof

We now reach the topological characterisation of nullity (note that RV carries the
discrete topology):

Proposition 5.3.12. Let X ⊆ VFn×RVm be definable. Then X is null if and only if it has
empty interior.

Proof. The interior of the X is the definable set

Xo = {(x, y) ∈ X : ∃γ ∈ RV× ∀ε1, . . . , εn ∈ VF ((
∧

i

rv(εi) > γ) → (x+ ε, y) ∈ X}.

The interior of a null set is certainly empty, so we need only consider the converse
assertion. SupposeXo = ∅; we may assume that X 6= ∅.

Write X in prenex normal form

X =



(x, y) ∈ VFn×RVm : Q1z1, · · ·Qmzm

∨

i

∧

j

φi,j(x, y, z)





as in remark 5.3.10. Suppose for a contradiction that every φi,j is of type (ii) or (iii).
Then corollary 5.3.8 implies that there is a null set N with the following property: for
any F |= T+ and a ∈ VF(F )n \N(F ) there is an open neighbourhood U of a such that
for all b ∈ RV(F )m, all c ∈ RV(F )s, and all ε ∈ U ,

F |= φi,j(a, b, c) ⇔ F |= φi,j(a+ ε, b, c)

for all i, j, and so
(a, b) ∈ X(F ) ⇔ (a+ ε, b) ∈ X(F ).

But this implies X(F ) is open, contradicting X o = ∅. We conclude that at least one φi,j
is of type (i), i.e. φi0,j0 ≡ ‘g(x) = 0’, say, for some non-zero L-polynomial g.

Now set X ′ = X \ g−1(0); if X ′ = ∅ then we are done, so suppose not. Since we have
equivalent formulae

g(x) 6= 0 ∧
∨

i

∧

j

φi,j(x, y, z) ≡
∨

i6=i0


g(x) 6= 0 ∧

∧

j

φi,j(x, y, z)


 ,

we see that X ′ is defined by

X ′ =



(x, y) ∈ VFn×RVm : Q1z1, · · ·Qmzm

∨

i6=i0


g(x) 6= 0 ∧

∧

j

φi,j(x, y, z)





 .
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So, by shrinking X to X ′ we have decreased the number of disjunctions appearing in
the prenex normal form, and inserted a new formula of type (ii) into each conjunction.
X ′ also has empty interior and so by an induction on the number of disjunctions in

the prenex formal form, we may assume that it is a null set. Hence X is contained in
the null set X ′ ∪ g−1(0) and therefore is itself null.

Many useful results follow:

Corollary 5.3.13. Let X ⊆ VFn×RVm be a definable set. Then the boundary of X , namely
∂X := X \ Ao, is null. Hence X is the disjoint union of an open set and a null set.

Proof. Since ∂X has no interior, this is an immediate consequence of the previous
proposition.

Corollary 5.3.14. LetX ⊆ VFn×RVm be definable and let f : X → VFn
′
×RVm′ be a defin-

able function, with n′ > 0. Then there are non-zero VF-polynomials g1(x, x
′
1), . . . , gn′(x, x′n′)

such that
T+ ` f(x, y) = (x′, y′) → gi(x, x

′
i) = 0

for all i = 1, . . . , n′.

Proof. The graph of the function f cannot have any interior (since n′ > 0) and hence
the graph is null by the previous proposition; this implies the existence of a non-zero
L-polynomial g such that

T+ ` f(x, y) = (x′, y′) → g(x, x′) = 0.

Now just apply this result to each function X → VFn
′
×RVm′ proj

→ VF×RVm′
, where

the second arrow varies over the n′ projection maps.

Corollary 5.3.15. The sorts VF and RV are ‘orthogonal’ in the following ways:

(i) Let Y ⊆ RVm be definable and let f : Y → VFn be a definable function. Then f(Y ) is a
finite set.

(ii) Suppose that a definable setX ⊆ VFn admits a finite-to-one, definable map f : X → RVl

for some l ≥ 0. Then X is finite.

Proof. (i): By the previous corollary, there are non-zeroL-polynomials g1(x1), . . . , gn(xn)
such that f(Y ) ⊆ {x ∈ VFn : gi(xi) = 0 for all i}; this is enough.

(ii): Let Γ be the graph of f . Then Γ cannot have any interior, for else there would
be an open ball B ⊆ X and y ∈ f(X) such that B × {y} ⊆ Γ, contradicting that f has
finite fibres. By the previous proposition, there is a non-zero L-polynomial g such that
x ∈ X implies g(x) = 0.

In fact, for each i = 1, . . . , n, let Γi be the image of Γ under the projection

(projection to ith VF-coordinate) : VFn×RVl → VF×RVl .

Although Γi is not necessarily the graph of a function, each section

{x ∈ VF : (x, y) ∈ Γi},

for y ∈ RVl, is still finite and therefore has no interior. So, just as in the previous
paragraph, there is a non-zero, one variable, L-polynomial gi such that x ∈ X implies
gi(xi) = 0. As this holds for all i, we deduce that X is a finite set.
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Corollary 5.3.16. Let X ⊆ VFn×RVm, Y ⊆ VFn
′
×RVm′ , and f : X → Y be definable.

Then

(i) the set of y ∈ Y for which the fibre Xy is null is a definable set;

(ii) if n′ = 0, i.e. Y ⊆ RVm′ , then X is null if and only if every fibre Xy, for y ∈ Y , is null.

Proof. (i): The set of y ∈ Y for which the fibre Xy has non-empty interior is clearly
definable; by the previous proposition we are done.

(ii): The implication ⇒ follows at once from the fact that a subset of a null set is null.
Conversely, suppose that every fibre is null. Then, arguing similarly to the proof of (ii)
in the previous corollary, we see that the graph Γ of f contains no interior, and hence
is null. So there is a non-zero VF-polynomial g(x) such that f(x) = y implies g(x) = 0;
i.e. X ⊆ g−1(0), as required.

5.3.2 Structure of definable functions
We now turn our attention to definable functions. Our aim is to show that the class of
definable functions is not too large, and that any such function, at least off a null set, is
essentially of the following form:

Definition 5.3.17. LetU ⊆ VFn be a definable, non-empty open set, and f : U → VFm a
definable function. Then we shall say that f is an implicit polynomial function if and only
if there are non-zero VF-polynomials g1(x, y), . . . , gm(x, y) and an open set V ⊆ VFn

′

with the following properties:

(i) for all x ∈ U , gi(x, f(x)) = 0 for all i;

(ii) for all x ∈ U , f(x) is the unique y ∈ V satisfying gi(x, y) for all i;

(iii) the determinant of the Jacobian matrix
(
∂gi
∂yj

)

1≤i,j≤m

is non-zero at (x, f(x)), for all x ∈ U .

In other words, f is the implicit function defined by the polynomials (gi)i on U × V .

Before we can prove our desired classification, we must discuss some ideas of clas-
sical elimination theory which are closely related to elimination of quantifiers. See
[Lan02, IV, §8].

Let k be a field of characteristic zero, and g(y) a polynomial in k[y]. The discriminant
Dg ∈ k of g is obtained by evaluating a certain polynomial with integer coefficients on
the coefficients of g; also Dg vanishes if and only if g and g′ have a common zero in kalg.

Now replace k by k(x1, . . . , xn) and suppose that g ∈ k[x, y]. Then the discriminant
Dg belongs to k[x]. We may factor g into a product of non-associated, irreducible poly-
nomials in k[x, y] as

g = gn1

1 . . . gns
s

and we henceforth assume that

(i) none of the irreducible factors of g belong to k[x];

(ii) g has no multiple factors, i.e. ni = 1 for all i.
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The first assumption implies that each gi remains irreducible when viewed as a polyno-
mial in k(x)[y], and therefore g1 . . . gs is the decomposition of g into irreducible factors
in k(x)[y]. By assumption (ii), g therefore has no repeated roots in k(x)alg (this is where
we use the characteristic zero assumption), and so Dg(x) is not the zero polynomial.
Further, the zeros ξ of Dg(x) are exactly those ξ for which g(ξ, y) and ∂g

∂y (ξ, y) have a
common zero in kalg. In other words,

{x : ∃y such that g(x, y) =
∂g

∂y
(x, y) = 0} = {x : Dg(x) = 0},

and our assumptions imply that this is a proper Zariski closed set.

Proposition 5.3.18. LetX ⊆ VFn be definable, and f : X → VFm a definable function. Then
there exist finitely many disjoint open sets Xr ⊆ X such that f |Xr is an implicit polynomial
function for each r, and such that X \

⊔
rXr is null.

Proof. According to corollary 5.3.14, there are non-zero VF-polynomials g1(x, y1), . . . ,
gm(x, ym) such that

gi(x, f(x)i) = 0 for all x ∈ X (†)

for all i. We may decompose each gi into a product of irreducible VF-polynomials in
k[x, yi], where k is the field of fractions of the constant VF-terms; i.e.

gi = g
n(i,1)
i,1 . . . g

n(i,s(i))
i,s(i) .

If any gi is divisible by a non-zero polynomial in k[x], then (†) implies that gi(x) = 0 for
all x ∈ X , so that X is a null set and there is nothing more to show. Further, we may
replace each exponent n(i, j) by 1 without affecting (†).

In conclusion, we may now suppose that the VF-polynomials g1, . . . , gm satisfying (†)
also satisfy (i) and (ii) above.

The associated Jacobian matrix

(
∂gi
∂yj

)

1≤i,j≤m

=




∂g1
∂y1

. . .
∂gm

∂ym




is diagonal, and each ∂gi
∂yi

is not the zero polynomial, for else gi would be a polynomial
in x. Let J(x, y) =

∏n′

i=1
∂gi

∂yi
be the determinant of the Jacobian.

Set
Ni =

{
x ∈ VFn : ∃y ∈ VF such that gi(x, y) =

∂gi
∂yi

(x, y) = 0

}
.

By the elimination theory discussed above, Ni is a null set; set N =
⋃m
i=1Ni. The

importance of N is that if F |= T and a ∈ X(F ) \ N(F ), then each gi(a, yi) is not the
zero polynomial in yi, and hence it has only finitely many solutions; therefore there are
only finitely many y for which

g1(a, y1) = · · · = gm(x, ym) = 0.

Continuing with this fixed model F and a ∈ X(F ) \ N(F ), the usual arguments
used in the implicit function theorem for a (usually complete) valued field imply the
following: there is an open neighbourhood U of a, and disjoint open V1, . . . , Vl, such
that if x ∈ U then, for each r = 1, . . . , l, there is at most one y ∈ Vr which satisfies
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gi(x, yi) = 0 for all i. U and each Vr are defined in terms of a and the coefficients of
each gi; hence they are T+

a -definable. However, since the conditions we wish for them
to satisfy are expressible without a, we may, possibly after shrinking them, assume they
are T+-definable.

For each r = 1, . . . , l introduce Ur = {x ∈ U : f(x) ∈ Vr}; the (Ur)r are T+-definable
and form a disjoint cover of the open set U . By construction, the restriction of f to
the restriction of the interior of each Ur is an implicit polynomial function (even on
all of Ur, but we have only defined implicit polynomial functions on open sets). Thus
we obtain a definable decomposition of U into a disjoint union of null sets (since the
boundary of each Ur is null by corollary 5.3.13) and open sets, such that the restriction
of f to each of the opens is an implicit polynomial function.

Apply compactness to complete the proof.

Corollary 5.3.19. Let X ⊆ VFn be definable, and f : X → VFm a definable function. Then,
away from a null set, f is smooth (i.e. infinity differentiable).
Proof. This follows from the previous proposition, since the usual calculations from
analysis show that an implicit polynomial function is smooth.

Corollary 5.3.20. Suppose that X ⊆ VFn×RVm and Y ⊆ VFn×RVm′ are definably iso-
morphic sets. Then X is null if and only if Y is null.
Proof. Using similar arguments to those found in corollary 5.3.16, this may be reduced
to the case of X ⊆ VFn, Y ⊆ VFn

′ . If X is not null then the previous corollary implies
that f is a smooth injection on some non-empty, open ball B ⊆ VFn. Familiar estimates
from analysis imply that f(B) is open in VFn

′ and therefore Y has interior; so Y is not
null.

5.3.3 Dimension theory
There is a very satisfactory dimension theory for T +; as we shall not require it, we
content ourselves with a summary. For more information see [HK06, §3.8] and [vdD89].
Definition 5.3.21. Let X be a T+-definable subset of VFn×RVm. The T+-dimension
(or simply dimension) of X , denoted dimT+ X , is the smallest integer d such that for
some l ≥ 0 there is a finite-to-one, definable map X → VFd×RVm′ .
Remark 5.3.22. Hrushovski and Kazhdan call this the VF-dimension, since they also
introduce an RV-dimension; we have no need of the latter.
Lemma 5.3.23. Let f : X → Y be a definable surjection between definable sets
X ⊆ VFn×RVm, Y ⊆ VFn

′
×RVm′ . Suppose that for each F |= T+ and b ∈ Y (F ),

the fibre Xb = f−1(b) has T+
b -dimension ≤ d; then dimT+ X ≤ d+ dimT+ Y .

If dimT+ Y = 0, then dimT+ X = maxF,b dimT+

b
Xb, where F ranges over all models of T+

and b ∈ Y (F ).
Proof. A ‘fibre and compactness’ argument lets us construct a T +-definable map g :
X → VFd×RVl (for some l ≥ 0) such that the restriction of g to each fibre of f is
finite-to-one. Hence f × g is finite-to-one and the first claim follows.

The second claim is now immediate, since each fibre certainly has dimension no
greater than that of X .

According to corollary 5.3.15, a subset of VFn with zero dimension is necessarily
finite. Using this, and the previous lemma for an induction using fibrations, one can
prove that the dimension of a definable set X ⊆ VFn is equal to the Zariski dimension
of its Zariski closure. Moreover, X is null if and only if its dimension is < n.
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5.4 V-minimality
Hrushovski and Kazhdan introduce a condition called V-minimality, which a theory
of valued fields may or may not satisfy. This notion only concerns us in that we must
ensure that our theories of interest possess it; for much more information, see [HK06,
§3].
Definition 5.4.1. Let (T,L) be an extension of (ACVF,LRV). Then T is said to be C-
minimal if and only if for every F |= T and every TF -definable set X ⊆ VF, the set
X(F ) is a finite Boolean combination of open balls, closed balls, and points.

Further, T is said to be V-minimal if and only if it is C-minimal and satisfies the fol-
lowing conditions:

(i) T extends ACVF(0, 0) and every parametrically T -definable relation on RV is al-
ready parametrically definable in ACVF(0, 0);

(ii) if F |= T then VF(F ) is ‘definably complete’;

(iii) if F |= T , A ⊆ VF(F ), and B is an almost TA-definable closed ball, then B con-
tains a TA-algebraic point.

Finally, T is said to be effective if and only if every finite, disjoint union of balls con-
tains a definable set which has exactly one point in each ball.

The following summarises everything we need to know:
Proposition 5.4.2. (ACVF(0, 0),LRV) is V-minimal and effective. If T is V-minimal (resp.
V-minimal and effective), F |= T , and A ⊆ VF(F )tRV(F ), then TA is also V-minimal (resp.
V-minimal and effective).
Proof. V-minimality of ACVF(0, 0) essentially follows from well-known properties of
the theory; see [HK06, Lemma 3.33] and also [Hol97]. The preservation of V-minimality
and effectivity under base change is discussed in [HK06, 6.0.1].

5.5 Descent to RV
Now we describe the main result of [HK06, §4] and then extend it to a wider class of
valued fields. We work with a theory (T,L) of valued fields formulated in a parameter-
and RV-expansion of the language LRV, and we assume that it has elimination of VF-
quantifiers; so both of the theories T and T+ which appeared in section 5.3 are valid,
and the results we derived for T+ in that section apply to T in this section. There are
three possibilities for (T,L) which interest us:

(i) parameter-expansions of (ACVF(0, 0),LRV);

(ii) parameter-expansions of (H(0, 0),LRV), the theory of Henselian valued fields of
residue characteristic zero;

(iii) RV-expansions of (ii).
We will treat each case in turn; ‘definable’, etc. means ‘T -definable’.
Definition 5.5.1. Suppose that Y is a definable subset of RVm and that π : Y → RVn is
a definable map; to this data we associate the definable subset of VFn×RVm

L(Y, π) = {(x, y) ∈ VFn×Y : rv(x) = π(y)},

and call it the lift of Y, f .
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Definition 5.5.2. Fix n ≥ 0. A (T -) elementary admissible transformation is, for any m ≥ 0
a definable map VFn×RVm → VFn×RVm of the form

(x, y) 7→ (x1, . . . , xi−1, xi + a(x1, . . . , xi−1, y), xi+1, . . . , xn, y),

where a : VFi−1 ×RVm → VF is some definable map. We also call the map

VFn×RVm → VFn×RVm+1, (x, y) 7→ (x, y, rv(xi))

for any m ≥ 0 and 1 ≤ i ≤ n an elementary admissible map.
A (T -) admissible transformation is any composition of elementary admissible transfor-

mations
VFn×RVm → VFn×RVm′

(necessarily m′ ≥ m); note that such a map is injective.

Admissible transformations are also ‘measure-preserving’, in the following sense:

Remark 5.5.3. Before the lemma we should say a word about differentiation. Suppose
that X ⊆ VFn and f : X → VFn

′ are definable. Then the partial derivatives of f , if
they exist, are definable (and the set on which they exist is definable). Since they will
typically only exist away from a null set anyway, it is sensible only to consider their
existence on the interior of X (recall that the boundary is null by corollary 5.3.13) so
that there are no issues with forming f(a + ε) for small ε. If all the partial derivatives
exist, then we say that the Jacobian matrix exists. Corollary 5.3.19 implies that the
Jacobian does exist away from a a null set.

Lemma 5.5.4. Let f : VFn → VFn be the composition of an admissible transformation
VFn → VFn×RVm′ followed by the projection map VFn×RVm′ proj

→ VFn. Then, away
from a null set of VFn, the Jacobian matrix of f exists and has determinant = 1.

Proof. By adding extra variables and arguing by induction, it is essentially enough to
suppose that f is given by

f : VF2 → VF2, (x1, x2) 7→ (x1, x2 + a(x1, rv(x2))),

for some definable function a : VF×RV → VF; write f = (f1, f2). Firstly, ∂f1∂x1
≡ 1 and

∂f1
∂x2

≡ 0. Further, away from x2 = 0, the function x2 7→ a(x1, rv(x2)) is locally constant
and so ∂f2

∂x2
(x1, x2) = 1. It remains only to consider ∂f2

∂x1
.

Let F |= T and take b ∈ RV(F ). According to corollary 5.3.19, there is a Tb-definable
null set Nb ⊆ VF such that x 7→ a(x, b) is differentiable for x /∈ Nb. Then Nb is the zero
set of a polynomial with coefficients which are Tb-definable, constant VF terms; but
adding b to the language does not increase the constant VF terms, and so Nb is already
T -definable. It follows that there is a T -definable set A ⊆ RV such that b ∈ A(F ) and

rv(x2) /∈ A =⇒ x1 7→ a(x1, rv(x2)) is differentiable for x1 /∈ Nb.

It follows by compactness that there is a null set N ⊆ VF such that, for any x2 ∈
VF, x1 7→ a(x1, rv(x2)) is differentiable for x1 /∈ N ; but then ∂f2

∂x1
(x1, x2) exists. This

completes the proof that the Jacobian exists off a null set.
Finally, off this null set, the Jacobian is a triangular matrix with 1s on the diagonal;

hence its determinant is 1.

Hrushovski and Kazhdan’s main decomposition result is as follows; recall that any
parameter extension of (ACVF(0, 0),LRV) is V-minimal, by proposition 5.4.2.
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Proposition 5.5.5. Suppose that (T,L) is V-minimal, and fix n ≥ 0. Let X be a definable
subset of VFn×RVm. Then X is a finite disjoint union of definable sets, X =

⊔s
i=1Xi,

each of the following form: there are a definable set Yi ⊆ RVmi (some mi ≥ 0), a generalised
projection (see below) πi : Yi → RVn, and an admissible transformation τi : VFn×RVm →
VFn×RVmi such that

τi(Xi) = L(Yi, πi).

Moreover, if the projection map X → VFn is finite-to-one, then each πi is finite-to-one; if X
is bounded, then each Yi is bounded.

Proof. This is the content of [HK06, §4].

By ‘generalised projection’ in the statement of the previous proposition, we mean the
restriction to Yi of a map RVmi → RVn of the form y 7→ (yσ(1), . . . , yσ(n)), for some
σ : {1, . . . , n} → {1, . . . ,mi}, e.g. (y1, y2, y3, y4) 7→ (y3, y1, y1).

Following ideas found in [HK06, §12.4], our immediate aim now is to extend their
decomposition result from algebraically closed valued fields to Henselian ones.

Lemma 5.5.6. Suppose that F |= ACVF(0, 0) (in the language LRV), and that F0 is a subfield
of VF(F ) which is Henselian under the restriction of the valuation. Then the LRV structure
(F0,RV(F0)) is definably closed in F . In particular, any ACVF(0, 0)F0

-definable function
preserves F0-points.

Proof. We follow [HK06, Example 12.8]. Since F alg
0 is an elementary submodel of F , we

may replace F by F alg
0 . Let Aut(F/F0) denote the automorphisms of the LRV structure

F which fix the substructure (F0,RV(F0)). By the Henselian property of F0, any field
automorphism of VF(F )/VF(F0) automatically preserves the valuation and therefore
belongs to Aut(F/F0). By Galois theory, VF(F0) is therefore the VF sort of the fixed sub-
structure of Aut(F/F0), and so VF(F0) ⊇ VF(dcl(F0)); hence VF(F0) = VF(dcl(F0)).

Secondly, suppose that y ∈ RV(dcl(F0)). Then rv−1(y) is an ACVF(0, 0)F0
-definable

closed ball of F ; but since ACVF(0, 0)F0
is V-minimal (by proposition 5.4.2), this ball

contains a ACVF(0, 0)F0
-definable point x. We have just proved that this means x ∈

VF(F0), and therefore y = rv(x) ∈ RV(F0), as required.

This is enough to pass from the V-minimal case to the Henselian case:

Proposition 5.5.7. Suppose that (T,L) is a parameter-expansion of (H(0, 0),LRV). Then
proposition 5.5.5 continues to hold if the V-minimal theory is replaced by T , so long as X is
quantifier-free definable; further, each Xi, Yi, τi may be assumed to be quantifier-free definable.

Proof. We begin a few general remarks on the relation between the theories H(0, 0) and
ACVF(0, 0).

By the hypothesis, there is a Henselian field F and A ⊆ VF(F )
⊔

RV(F ) such that
T = H(0, 0)A. The valuation on F extends uniquely to F alg, making F alg into a model
of ACVF(0, 0), since H(0, 0) and ACVF(0, 0) are formulated in the same language. Thus
we may add the parameters A to ACVF(0, 0) to obtain the theory ACVF(0, 0)A, so that
if L |= T then Lalg |= ACVF(0, 0)A .

If X ⊆ VFn×RVm is a T -definable set, then let Xalg denote the ACVF(0, 0)A-
definable set given by the same formula. Assuming that X is defined without quanti-
fiers, then

Xalg(Lalg) ∩ (VF(L)n × RV(L)m) = X(L)

for any L |= T . Conversely, if S ⊆ VFn×RVm is an ACVF(0, 0)A-definable set, then
we may assume that S is defined by a formula in LRV,A without quantifiers and let
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SHens be the T -definable set defined by the same formula; then SHens is defined without
quantifiers and (SHens)

alg = S.
We now begin the proof. By proposition 5.5.5, we may decompose Xalg as Xalg =⊔s
i=1X

alg
i , with Yi, πi, τi as described in that proposition. By the previous lemma, the τi

restrict to T -definable admissible transformations, and by the previous paragraph the
Yi may be restricted to give the required T -definable sets (Yi)Hens. In short, everything
restricts from Lalg to L.

Remark 5.5.8. Since our main aim is to develop a theory of integration, it is quite rea-
sonable to restrict to quantifier-free definable sets. Indeed, the projection (i.e. insertion
of a existential quantifier) of a Lebesgue measurable (resp. Borel) subset of R × R to
R can be extremely unpleasant, and certainly need not be Lebesgue measurable (resp.
Borel); though, in fact, the projection of a Borel will be Lebesgue measurable. The study
of such problems leads to the theory of analytic sets and Polish spaces; see e.g. [Chr74].

Having restricted to the case of a Henselian field, a standard ‘fibre and compact-
ness’ argument lets us add additional structure at the RV level, following an outline in
[HK06, §12.1]. We abuse notation slightly by talking of the Jacobian of maps VFn →

VFn×RVm; this really means the Jacobian of the composition VFn → VFn×RVm proj
→

VFn.

Theorem 5.5.9. Let (T,L) be as in the previous proposition, and let (T +,L+) be an RV-
expansion of (T,L). Then proposition 5.5.5 holds for T+ in place of the V-minimal theory, as
long as X is quantifier-free T+-definable.

Proof. For simplicity, we are actually going to prove the following slightly weaker re-
sult (the full result can be proved using similar arguments):

Let X ⊆ VFn be T+-definable; then X can be written as a disjoint union, X =
⊔s
i=1Xi of

T+-definable sets, each of the following form: there are a T +-definable Yi ⊆ RVmi , a generalised
projection πi : RVmi → RVn, and a T+-definable bijection τi : Xi → L(Yi, πi) with Jacobian
= 1 off a null set.

First recall proposition 5.3.11: there is a quantifier-free, T -definable map h : VFn →
RVl for some l ≥ 0 such that X consists of fibres of h.

Let F |= T+ and b ∈ h(X)(F ). Then the fibre Xb = h−1(b) is quantifier-free, Tb-
definable, and so, by the previous proposition, it is a disjoint union, Xb =

⊔s
i=1Xi of

Tb-definable sets, each of the following form: there are a Tb-definable set Yi ⊆ RVmi , a
generalised projection πi : Yi → RVn, and a Tb-definable bijection τi : Xi → L(Yi, πi)

such that the Jacobian of the composition Xi
τi→ L(Yi, πi)

proj
→ VFn equals 1 away from a

null set (because we saw in lemma 5.5.4 that this is true for any admissible transforma-
tion).

Fix some i. In the usual way, τi extends to a T+-definable map τ̌i : U → VFn×RVmi ,
where U is some T+-definable subset of X which contains Xi. Possibly after shrinking
U , we may also suppose, for each y ∈ h(U), that the following hold:

(i) the restriction of τ̌i to the fibre h−1(y) ∩ U is injective and has Jacobian equal to 1
off a null set;

(ii) the image τ̌i(h−1(y)∩U) is of the form L(Y, πi) for some T+-definable Y ⊆ RVmi ;
here πi is the generalised projection associated to Yi, but we view it as defined
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on all of RVmi ; note that this condition is definable because necessarily Y is the
image of τ̌i(h−1(y) ∩ U) under VFn×RVmi

proj
→ RVmi .

We now consider
τ̃i := τ̌i × h : U → VFn×RVmi ×RVl,

which is certainly T+-definable and injective; moreover, using corollary 5.3.16, we see
that the Jacobian equalling 1 off a null set on any fixed fibre h−1(y) ∩ U is enough
to imply that it = 1 off a null set on all of U . Let Y be the image of τ̃i(U) under
VFn×RVmi+l

proj
→ RVmi+l, and let π̃ denote the generalised projection given by the

composition
RVmi+l

proj
→ RVmi

πi→ RVn .

Since each τ̌i(h−1(y) ∩ U) is a lift, it is easy to check that

τ̃(h−1(U)) = L(Y, π̃).

In fact, even more is true:

(†) If V is any definable subset of h(U), then τ̃(h−1(V ) ∩ U) = L(Y ′, π̃), where Y ′ is
the image of τ̃i(h−1(V ) ∩ U) under VFn×RVmi+l

proj
→ RVmi+l.

Now vary i over 1, . . . , s, writing Ui = U , Ỹi = Y , π̃i = π̃. Using (†) we may shrink
the (Ui)i to ensure both that they are disjoint and that

⊔s
i=1 Ui is a family of fibres of h

which contains h−1(b); set V = h(
⊔s
i=1 Ui). To summarise:

(‡) There is a T+-definable set V ⊆ h(X) containing b, such that h−1(V ) is a dis-
joint union of definable sets U1, . . . , Us, each of the following form: there are a
T+-definable Ỹi ⊆ RVmi+l, a generalised projection π̃i : Yi → RVn, and a T+-
definable bijection τ̃i : Ui → L(Ỹi, τ̃i) with Jacobian = 1 away from a null set.

By compactness, there are finitely many {V } as in (‡) which cover h(X). If V and
V ′, say, overlap then (†) allows us to replace V ′ by V ′ \ V without affecting (‡). The
required decomposition follows.

These decomposition results in terms of lifts of the form L(Y, π) are, as we have
just seen, extremely convenient for model-theoretic manipulations, but for the concrete
applications there is a more aesthetic reinterpretation:

Corollary 5.5.10. Let (T+,L+) be as in the previous proposition, but assume further that T +

is a complete theory. Let X ⊆ VFn be T+-definable. Then X is a disjoint union of definable
sets, X =

⊔s
i=0Xi, with X0 null and the remaining Xi of the following form: there are a

definable Yi ⊆ (RV×)n, an integer Ni ≥ 1, and a definable map fi : Xi → rv−1(Yi) which is
everywhere Ni-to-1 and has Jacobian = 1 away from a null set.

Proof. By first decomposingX as proved in the previous proposition, we may suppose
that there are a definable Y ⊆ RVm, a generalised projection π : Y → RVn, and a
definable bijection τ : X → L(Y, π) with Jacobian = 1 off a null set.

We claim first that π is finite-to-one on Y . Let x ∈ VFn; then

L(Y, π) ∩ {x} × RVm = {x} × π−1(rv(x)).

Hence π−1(rv(x)) is T+
x -isomorphic, via the restriction of τ−1, to a subset of X ; but

according to corollary 5.3.15, this forces π−1(rv(x)) to be finite. This completes the
proof of the claim.
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Set Y0 = Y \ π−1((RV×)n). If x ∈ L(Y0, π), then at least one coordinate of x is zero;
hence L(Y0, π) is a null set, and therefore X0 := τ−1(L(Y0, π)) is also null by corollary
5.3.20. Since

L(Y, π) = L(Y0, π) t L(Y \ Y0, π),

we may now replace X , Y by X \X0, Y \ Y0 to assume that π(Y ) ⊆ (RV×)n.
Let N ≥ 0 be big enough so that all fibres of π have cardinality ≤ N , and for j =

1, . . . , N , put
Yi = {y ∈ RVn : |Yy| = j}.

The fact that Y1, . . . , YN form a disjoint, definable cover of π(Y ) requires the complete-
ness of T+. So

L(Yj, π) =

N⊔

j=1

L(π−1(Yj), π)

and we set Xj = τ−1(Yj); clearly X =
⊔
j Xj .

Let ρ : VFn×RVm → VFn be the projection map. Its restriction induces a surjection

L(π−1(Yj), π)) → rv−1(Yj)

with fibres of cardinality j. Hence

fj := ρ ◦ τ : Xj → L(π−1(Yj), π)) → rv−1(Yj)

is everywhere j-to-1 and has Jacobian = 1 off a null set. We have produced the required
decomposition.

Remark 5.5.11. It appears to be possible to assume further in the statement of the pre-
vious corollary that each Xi (apart from X0) is open and that fi is a smooth cover
Xi → rv−1(Yi). The proof of this does not seem to easily follow from the decomposi-
tion results which we have stated, but rather from Hrushovski and Kazhdan’s proof of
their result. The idea is basically, at each stage of the construction of the decomposition,
to throw out the sets on which certain maps fail to be differentiable, continuous, etc.;
such sets will all be null, and these will form X0.

The previous theorem and corollary were the essential results required to complete
our proof of theorem 5.1.5; for the concrete applications to two-dimensional integra-
tion, refer back to section 5.1.
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CHAPTER 6

Ramification, Fubini’s theorem, and
Riemann-Hurwitz formulae

We consider various relations between integration and ramification theories.

6.1 Ramification of local fields
From section 6.2 onwards, we will be considering ramification theory for geometric ob-
jects. The analogous problems in the local setting are closely related with the previous
chapter and can be discussed independently from the remaining material, so this initial
section focuses on local ramification theory. We begin with a reminder of the theory in
the perfect residue field case:

6.1.1 Perfect residue field
Fix a complete discrete valuation field F with perfect residue field F , and let F alg de-
note its algebraic closure. Fix a finite Galois extension L/F with Galois group G, and
define the usual ramification objects as follows:

iL/F (σ) = min{νF (σ(x) − x) : x ∈ OF },

Ga = {σ ∈ G : iL/F (σ) ≥ a+ 1} (a ≥ −1),

ηL/F (a) = e−1
L/F

∫ a

0
|Gx| dx (a ≥ −1)

= −1 + e−1
L/F

∑

σ∈G

min{iL/F (σ), a+ 1}.

One proves that ηL/F is a strictly increasing, piecewise linear, function [−1,∞) →
[−1,∞), and defines the Hasse-Herbrand function ψL/F : [−1,∞) → [−1,∞) to be its in-
verse. The upper ramification filtration on the Galois group is defined by Ga = GψL/F (a),
for a ≥ −1.

The central results of the theory are the following (see e.g. [FV02, Chapter III] or
[Ser79, Part 2]):

Theorem 6.1.1 (Herbrand). Let M/F be a Galois subextension of L/F . Then, for any a ≥
−1, the image of Gal(L/F )a under the restriction map Gal(L/F ) → Gal(M/F ) is exactly
Gal(M/F )a.

Let k be an algebraically closed field of characteristic 0; in arithmetic applications this
will be Q

alg
l or C.
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Theorem 6.1.2 (Artin). The Artin character

aL/F : G→ k, σ 7→

{
−fL/F iL/F (σ) σ 6= id
fL/K

∑
σ∈G\{id} iL/F (σ) σ = id

is the character of a finite-dimensional, k representation of G.

Theorem 6.1.3 (Non-commutative Hasse-Arf). Let (V, π) be a finite-dimensional, k repre-
sentation of G. Then the conductor of π,

f(π) :=

∞∑

i=0

|G0 : Gi|
−1 dimV/V Gi ,

is a positive integer.

The non-commutative Hasse-Arf theorem and Artin’s theorem can be easily deduced
from one another, because f(π) = 〈χπ, aL/F 〉, where 〈· , ·〉 is the inner product on the
space of class functions on G, and χπ is the character of π. Using R. Brauer’s theorem
on characters, one reduces the Hasse-Arf theorem to the case dimV = 1; Herbrand’s
theorem then implies that it is enough to show that the upper ramification breaks of an
abelian extension L/F occur at integers. This is proved by explicit, local calculations.

6.1.2 Arbitrary residue field
Until the work of A. Abbes and T. Saito [AS02] [AS03] it was a significant open prob-
lem to generalise the ramification theory above to the case of non-perfect residue field.
Geometrically, the importance of this lies in the following situation. If φ : S1 → S2 is
a finite morphism between smooth, projective surfaces, over a field k which is allowed
to be perfect, then according to section 6.5, the ramification of φ occurs along curves.
Let B ⊂ S1 be an irreducible curve with generic point y, and set

K(S1)y = Frac ÔS1,y ;

this is a complete discrete valuation field whose residue field is k(B). Moreover, we
have a finite extension

K(S1)y/K(S2)φ(y),

whose ramification properties reflect the local ramification of φ along B. But k(B) will
be imperfect and K(S1)y/K(S2)φ(y) may have an inseparable residue field extension.

We now give a summary of the basics of Abbes and Saito’s theory. There is a more
extensive overview by L. Xiao [Xia07]. LetL/F be a finite, Galois extension of complete
discrete valuation fields with arbitrary residue fields. Then OL is a complete intersec-
tion algebra over OF (since they are both regular local rings) and we may therefore
write

OL = OF [T1, . . . , Tn]/〈f1, . . . , fn〉

for a regular sequence f1, . . . , fn.
Now, for any real a ≥ 1, one introduces the rigid space

Xa
L/F = {x ∈ (F alg)n : νF (xi) ≥ 0 all i, νF (fi(x)) ≥ a all i},

where νF : F alg → Q ∪ {∞} is the extension of the discrete valuation on F . By some
rigid geometry, model theory, or explicit calculations, it is known that X a

L/F may be
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written in a unique way as a disjoint union of closed balls (if n = 1, which one may
assume if L/F is separable, this follows from our decomposition results 4.1.5 and 4.1.6);
let π0(X

a
L/F ) denote this set of balls. As a→ ∞, Xa

L/F will consist of |L : F | small balls;
conversely, X0

L/F is a single large ball. A central idea of Abbes and Saito’s theory is
to analyse the behaviour of Xa

L/F as a varies; in particular, when it breaks into |L : F |

balls. This will soon be made precise.
The natural action of the absolute Galois group Gal(F alg/F ) on Xa

L/F induces an
action on π0(X

a
L/F ), which then factors transitively through G = Gal(L/F ).

Remark 6.1.4. To motivate what follows, let us briefly suppose that F has perfect
residue field. Then it is not hard to prove:

For a ≥ −1, σ ∈ G acts trivially on π0(X
ηL/F (a)+1

L/F
) if and only if σ ∈ Ga.

(A nice sketch is given in [Xia07]). So, for any a ≥ −1, the kernel of the action of G on
π0(X

a+1
L/F ) is Ga.

Abbes and Saito take the final observation in this remark as the definition of the
upper filtration in their theory:

Definition 6.1.5. Let L/F be a finite, Galois extension of complete discrete valuation
fields. The upper ramification filtration on G = Gal(L/F ), is defined, for a ≥ −1, by

Ga = Ker(G→ Aut(Xa+1
L/F )).

Starting from this definition of the upper ramification filtration, Abbes and Saito de-
velop fully a ramification theory for F . Xiao has extended their work by establishing
the Hasse-Arf integrality theorem for certain conductors [Xia08a] [Xia08b].

Remark 6.1.6. Again suppose that F is perfect. The definition of the Hasse-Herbrand
function implies that

dψL/F

da
(a) = e−1

L/F |G
a|−1,

at least away from the ramification breaks, and therefore that

ψL/F (a) = e−1
L/F

∫ a

−1
|Gx|−1 dx− 1,

since both sides are = −1 at a = −1. But |G : Gx| = |π0(X
x+1
L/F )|, and so

ψL/F (a) = f−1
L/F

∫ a+1

0
|π0(X

x
L/F )| dx − 1 (∗)

for all a ≥ −1.
If we think of ‘the number of connected components’ as a measure, then (∗) is a

repeated integral taken over certain fibres, and it is exactly the variation of the fi-
bres which contributes to the interesting structure of the Hasse-Herbrand function.
Whether this repeated integral interpretation of ramification can be more systemati-
cally exploited in the local setting is an interesting question.
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6.1.3 Model-theoretic integration in finite residue characteristic
We finish this discussion on ramification theory with some conjectural remarks on how
the Abbes-Saito approach to ramification may be compatible with the Hrushovski-
Kazhdan integration theory. We work in a model theoretic setting, as in chapter 5:
T is a theory of algebraically closed valued fields in a language L obtained by adding
parameters to LRV.

If T is a theory of residue characteristic zero, then we saw in 5.5 that every definable
subset of VFn was isomorphic, by ‘measure-preserving’ bijections, to a disjoint union
of sets lifted from the RV-level (=the Residue field and Value group.) In finite residue
characteristic this is known to fail. For example. suppose that T = ACVF(0, p) for
some prime p > 0; so Q

alg
p is a model of T , and we consider

X0 = {x ∈ Q
alg
p : νp(x

p − x− p−1) ≥ 0}.

It is easy to check that X0 contains no rational points (i.e. X0 ∩ Qp = ∅), and it is
essentially this which prevents it from being realised as a lift from RV.

Note that the roots of T p−T −p−1 generate a wild, totally ramified extensionL of Qp

of degree p and conductor 1. Moreover, if ξ is a root of T p−T − p−1 then ξ−1 is a prime
of L, with minimal polynomial T p+pXp−1T −p; hence OL = Zp[T ]/〈T p+pXp−1T −p〉.
Now consider the family of sets

Xa
L/Qp

= {x ∈ Q
alg
p : νp(x

p + pxp−1 − p) ≥ a}

which arise in the Abbes-Saito theory; then X0
L/F contains rational points, while X1

L/F

does not, because when a passes from 0 to 1 the rigid space splits into separable balls.
Hence we may detect the conductor of L/Qp by examining existence of rational

points in families of definable sets. Although we worked with a specific example, the
ideas appear to generalise to arbitrary extensions of valued fields. The following there-
fore seems to be an important programme of study, which the author intends to pursue:

Develop a model theoretic approach to ramification theory

Perhaps Abbes and Saito’s theory, currently based on rigid geometry, can be redevel-
oped using the model theory of algebraically closed valued fields. The existence of
definable points and numbers of definable components will replace their arguments
using rigid spaces, and model theory provides an ideal tool for the many fibration ar-
guments which appear in their work.

Moreover, model theory may give a more refined ramification theory for higher di-
mensional local fields, because it is often straightforward to ‘add additional structure’
to the residue field (e.g. insist the residue field is a local field), as we saw in section 5.5.

Unify the ramification theory with Hrushovski-Kazhdan integration theory

According to theorem 5.1.5, definable subsets of a valued field of residue characteristic
zero all ‘come from’ the RV-level. As we just discussed, this fails in characteristic p,
with the main problem being the appearance of definable sets related to ramification
theory. Perhaps a theory can be developed in which objects associated with the valued
field can be split apart, with one component coming from RV and the other encoding
ramification data. This ramification component will allow ramification invariants to
be associated to the original object, which can provide ‘correction factors’ for integrals
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over the RV component. This may lead to the proper understanding of proposition
4.4.1, a more powerful theory of local zeta integrals, and a theory of motivic integration
in residue characteristic p.

6.2 Structures and Euler characteristics
Before we can tackle the main problems of this chapter, we must present some elemen-
tary objects from model theory from a perspective suitable for this work. We must
understand what sort of sets we can measure and what it means to measure them.
This material is well-known but hopefully this explicit exposition will appeal to those
unfamiliar with model theory.

6.2.1 Structures
Given a set Ω, a ring of subsets of Ω is defined to be a non-empty collection of subsets
R of Ω such that

A,B ∈ Ω =⇒ A \B, A ∪B, A ∩B ∈ Ω.

It is enough to assume that R is closed under differences and unions for this implies
it is closed under intersections. A ring of sets is said to be an algebra if and only if it
contains Ω.

Following van den Dries [vdD98] we define a structure A = (A(Ωn))∞n=0 on Ω to be
an algebra A(Ωn) of subsets of Ωn for each n ≥ 0 such that

(i) if A ∈ A(Ωn) then A× Ω,Ω ×A ∈ A(Ωn+1);

(ii) {(x1, . . . , xn) ∈ Ωn : x1 = xn} ∈ A(Ωn);

(iii) if π : Ωn+1 → Ωn is the projection map to the first n coordinates, then A ∈
A(Ωn+1) implies π(A) ∈ A(Ωn).

Given a structure, one refers to the sets in A(Ωn) as being the definable subsets of Ωn. If
A ⊆ Ωn and f : A → Ωm then f is said to be definable if and only if its graph belongs
to A(Ωn+m).

Proposition 6.2.1. Let A be a structure on a set Ω. Then

(i) if A ∈ A(Ωn), B ∈ A(Ωm) then A×B ∈ A(Ωn+m);

(ii) if 1 ≤ i < j ≤ n, then {(x1, . . . , xn) ∈ Ωn : xi = xj} is in A(Ωn);

(iii) if σ is a permutation of {1, . . . , n}, then the function Ωn → Ωn given by permuting the
indices of the coordinates by σ is definable.

Moreover, if A ⊆ Ωn and f : A→ Ωm is definable, then

(i) A is definable;

(ii) if B ⊆ A is definable, then f(B) is definable, and the function given by restricting f to
B is definable;

(iii) if B ∈ A(Ωm), then f−1(B) ∈ A(Ωn);

(iv) if f is injective, then its inverse is definable;

(v) if B ⊇ f(A) and g : B → Ωl is definable, then g ◦ f : A→ Ωl is definable.
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Proof. These are straightforward to check; proofs may be found in [vdD98].

Remark 6.2.2. If L is a first order language of logic, and Ω is an L-structure, then there
is a structure on Ω in which A(Ωn) consists of precisely those sets of the form

{x ∈ Ωn : Ω |= φ(x, b)}

where φ(x, y) is a formula of L in variables x1, . . . , xn, y1, . . . , ym and b ∈ Ωm; that is,
those sets which are definable with parameters in the sense of model theory.

Realistically, any structure in which we will be interested will arise in this way as the
parameter-definable sets of some language. But for the reader less familiar with logic,
the axiomatic approach above is more immediately appealing, though ultimately less
satisfying.

Example 6.2.3. We present some examples to explain what we can and cannot study
using structures. All are well-known.

(i) If Ω is an arbitrary set, we may take A(Ωn) to be the collection of all subsets of
Ωn; that is, every set is definable.

(ii) If k is an algebraically closed field, let A(kn) be the ring of sets generated by the
Zariski closed subsets of kn; such sets are called constructible. It is known that
(A(kn))n forms a structure on k. The difficulty is establishing that such sets are
closed under projection; this may either be proved in a model theoretic setting,
where it is equivalent to establishing that the theory of algebraically closed fields
admits quantifier elimination, or it may be seen as a special case of a result of
algebraic geometry concerning constructible subsets of Noetherian schemes (see
e.g. [Har77] exercises 3.17-3.19).

(iii) If k is an arbitrary field, then an affine subset of kn is a set of the form a+X where
a ∈ kn and X is a k-subspace of kn. Letting A(kn) be the ring of sets generated
by affine subsets of kn gives a structure on k.

(iv) If R is the real line, then letA(Rn) be the ring of sets generated by {x ∈ Rn : p(x) ≥
0} for p ∈ R[X1, . . . , Xn]; the sets in A(Rn) are called semi-algebraic subsets of Rn.
This gives a structure for R. Again, the difficulty is verifying that such sets are
closed under projection.

(v) None of the following give structures on the real line: the Borel sets, the Lebesgue
measurable sets, the Suslin sets.

So structures are typically quite coarse from the point of view of classical analysis and
measure theory.

6.2.2 Euler characteristics and the Grothendieck ring of a structure
Having introduced the sets of interest we now discuss what it means to take the mea-
sure of such a set.

Definition 6.2.4. Let Ω be a set with a structure A. An Euler characteristic is a map χ
from the definable sets to some commutative ring R, i.e.

χ :

∞⊔

n=0

A(Ωn) → R,

which satisfies
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(i) if A,B ∈ A(Ωn) are disjoint, then χ(A tB) = χ(A) + χ(B);

(ii) if A ∈ A(Ωn), B ∈ A(Ωm), then χ(A×B) = χ(A)χ(B);

(iii) if A ∈ A(Ωn), B ∈ A(Ωm) and there is a definable bijection f : A → B, then
χ(A) = χ(B).

Remark 6.2.5. From the additivity of χ, one might think that an Euler characteristic is
similar to a measure in the classical sense. The vast difference between the two is the
invariance of χ under definable bijections. For example, if Ω is a field k, α ∈ k×, and
multiplication by α is a definable map from k to itself, then χ(A) = χ(αA) for definable
A ⊆ k; in other words, scaling a set does not affect its size. Or if Ω is the real line and
x 7→ x2 is definable, then for any definable A of the positive reals, χ({x2 : x ∈ A}) =
χ(A).

Some authors prefer the term generalised Euler characteristic or additive invariant, to
avoid possible confusion with the topological Euler characteristic χtop for complex projec-
tive manifolds, defined as the alternating sum of the Betti numbers.

Example 6.2.6. The easiest example of an Euler characteristic is counting measure: let
Ω be a finite set, A(Ωn) the algebra of all subsets of Ωn, and set χ(A) = |A| to define a
Z-valued Euler characteristic.

Explicitly exhibiting more interesting Euler characteristics requires some work, so
we present here without proof some known examples using the structures of example
6.2.3.

(i) Let k be a field, equipped with the structure generated by the affine subsets. If k
is infinite then there is a unique Z[t]-valued Euler characteristic χ which satisfies

χ(a+X) = tdimk X

where a ∈ kn and X is a k-subspace of kn.

(ii) Give R the structure of semi-algebraic sets. Then there is a unique Z-valued Euler
characteristic χ which satisfies

χ((0, 1)) = −1,

sometimes called the combinatorial Euler characteristic.

(iii) Give C the structure of constructible sets; then there is a unique Euler character-
istic χtop which agrees with the topological Euler characteristic for any projective
manifold.

Definition 6.2.7. Let Ω be a set with structure A. The associated Grothendieck ring,
denoted K0(Ω) (though it does of course depend on the structure, not just the set Ω),
is defined to be the free commutative unital ring generated by symbols [A] for A a
definable subset of Ωn, any n ≥ 0, modulo the following relations

(i) if A,B ∈ A(Ωn) are disjoint, then [A tB] = [A] + [B];

(ii) if A ∈ A(Ωn), B ∈ A(Ωm), then [A×B] = [A][B];

(iii) if A ∈ A(Ωn), B ∈ A(Ωm) and there is a definable bijection f : A → B, then
[A] = [B].
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Remark 6.2.8. The map A 7→ [A] defines a K0(Ω)-valued Euler characteristic on Ω,
which is universal in the sense that if χ :

⊔∞
n=0 A(Ωn) → R is an Euler characteristic,

then there is a unique ring homomorphismχ′ : K0(Ω) → R such that χ(A) = χ′([A]) for
any definable A. Thus A 7→ [A] is the most general Euler characteristic of a structure.

Note that if {x} ⊆ Ωn is a single point, and A ⊆ Ωm is definable, then projection
induces a definable isomorphism {x} × A → A. So [{x}][A] = [A] for all definable A
and therefore [{x}]=1; more generally, [B] = |B| for any finite definable set B.

Remark 6.2.9. Extending the Euler characteristic to varieties. Assume that Ω = k is an
algebraically-closed field with the structure A of constructible subsets. Let V be a sep-
arated algebraic variety over k (our varieties in this chapter usually consist only of the
closed points of the corresponding scheme) and let A(V ) be the ring generated by the
Zariski closed subsets of V , i.e. the algebra of constructible subsets of V .

It is straightforward to prove that χ uniquely extends to A(V ) in such a way that if
U ⊆ V is an affine open or closed subset, C ⊆ U is constructible, and i : U → Ad

k is an
open or closed embedding for some d, then χ(C) = χ(i(C)).

Remark 6.2.10. Extending the measure to an integral. If Ω is a set equipped with a struc-
ture and Euler characteristic χ, then there is a uniqueR-linear map

∫
dχ from the space

of functions spanned by characteristic functions of definable sets to R which satisfies∫
charAdχ = χ(A) for any definable A. We will allow ourselves to use typical notation

for integrals, writing
∫
f(x) dχ(x).

6.3 Riemann-Hurwitz and Fubini’s theorem for curves
Here we relate Fubini’s theorem for Euler characteristics to the Riemann-Hurwitz for-
mula for morphisms between curves; then we produce a startling result implying that
in finite characteristic it is always possible for Fubini’s theorem to fail.

Throughout this section k is an algebraically closed field of arbitrary characteristic, A
is the structure of constructible sets, and χ is a fixedR-valued Euler characteristic on A.
By a curve C over k, in this section, we mean a smooth, one-dimensional, irreducible
algebraic variety over k; we only consider the closed points of C . Following remarks
6.2.9 and 6.2.10, the space of integrable functions on C is the R-module generated by
characteristic functions of constructible sets; the integral on this space will be denoted∫
C · dχ.
Let φ : C1 → C2 be a non-constant morphism of curves. We will study whether

Fubini’s theorem holds for the morphism φ, which is to say that for each y ∈ C2, the
fibre φ−1(y) is constructible, that y 7→ χ(φ−1(y)) is integrable, and finally that χ(C1) =∫
C2
χ(φ−1(y)) dχ(y). The problem immediately simplifies:

Lemma 6.3.1. Fubini’s theorem holds for a separable morphism φ : C1 → C2 of projective
curves if and only if the following formula relating the Euler characteristics of C1 and C2 is
satisfied:

χ(C1) = χ(C2) deg φ−
∑

x∈C1

(ex(φ) − 1),

where ex(φ) is the ramification degree of φ at x.

Proof. Let Σ ⊆ C1 be the finite set of points at which φ is ramified. Let y be a point of
C2. The fibre φ−1(y) is finite; moreover, it contains exactly deg φ points when y /∈ φ(Σ).
So each fibre is certainly constructible and χ(φ−1(y)) = |φ−1(y)|. Thus y 7→ χ(φ−1(y))
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is constant off the finite set φ(Σ) and hence is integrable on C2; integrating obtains
∫

C2

χ(φ−1(y)) dχ(y) = χ(C2 \ φ(Σ)) deg φ+
∑

y∈φ(Σ)

|φ−1(y)|.

The fundamental ramification equality
∑

x∈φ−1(y) ex(φ) = degφ transforms this into

χ(C2) deg φ−
∑

y∈φ(Σ)

∑

x∈φ−1(y)

(ex(φ) − 1),

which completes the proof.

Remark 6.3.2. More generally, if char k = p > 0 and φ : C1 → C2 is a morphism
of projective curves which is not necessarily separable, then we decompose φ as φ =
φsep ◦ Fm; here F is the Frobenius morphism of C1, φsep : C1 → C2 is a separable
morphism, and m is a non-negative integer. The previous proof shows that Fubini
holds for φ if and only if

χ(C1) = χ(C2) deg φsep −
∑

x∈C1

(ex(φsep) − 1).

So Fubini holds for φ if and only if it holds for the separable part φsep; in particular,
Fubini holds for any purely inseparable morphism of projective curves

For this reason we are justified in focusing our attention on separable morphisms.

Remark 6.3.3. More usually Fubini’s theorem is concerned with measuring subsets of
product space via repeated integrals; let us show that this is the same as our current
activity considering fibres of morphisms between projective curves.

Suppose φ : C1 → C2 is a separable morphism of projective curves over k. Then φ
is a finite morphism, so that if U2 ⊆ C2 is a non-empty, affine, open subset then the
same is true of U1 = φ−1(U2). Choose closed embeddings U1 ↪→ An

k , U2 ↪→ Am
k and let

Γ = {(x, φ(x)) ∈ An+m
k : x ∈ U1} be the graph of φ|U1

.
It is immediate that the integral

∫
kn

∫
km charΓ(x, y) dχ(y)dχ(x) is well-defined and

equal to χ(U1). Conversely, if we fix y ∈ U2 then
∫
kn charΓ(x, y) dχ(x) = χ(φ−1(y));

arguing as in the previous lemma now obtains
∫

km

∫

kn

charΓ(x, y) dχ(x)dχ(y) = χ(U2) deg φ−
∑

x∈U1

(ex(φ) − 1).

So interchanging the order of integration preserves the value of the integral if and only
if

χ(U1) = χ(U2) deg φ−
∑

x∈U1

(ex(φ) − 1).

Further, C2 \U2 and φ−1(C2 \U2) = C1 \U1 are finite sets and it is straightforward to
verify, similarly to the previous lemma, that

|C1 \ U1| = |C2 \ U2|deg φ−
∑

x∈C1\U1

(ex(φ) − 1).

Taking the sum of the previous two formulae shows that Fubini’s theorem holds for
φ : C1 → C2 if and only if the repeated integrals of charΓ are equal.
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Recall that the Riemann-Hurwitz formula states that if φ : C1 → C2 is a non-constant
morphism of projective curves, then there are integers ẽx(φ) for each x ∈ C1 (which
we shall call the Riemann-Hurwitz ramification degrees) such that ẽx(φ) ≥ ex(φ), with
equality if and only if φ is tamely ramified at x, and such that

2(1 − g2) = 2(1 − g1) deg φ−
∑

x∈C1

(ẽx(φ) − 1),

where gi is the genus of Ci. It is apparent that Fubini’s theorem and the Riemann-
Hurwitz formula are related.

Remark 6.3.4. The non-negative integer ẽx(φ) − 1 is equal to the different of the exten-
sion OC1 ,x/OC2 ,φ(x) of discrete valuation rings, though we will not use this fact.

Remark 6.3.5. It is useful to have some explicit examples of morphisms between pro-
jective curves. Let f(t) be a polynomial over k and let Γf be the algebraic variety over
k which is the graph of f , i.e.

Γf = {(x, y) ∈ A2
k : y = f(x)}.

Let F : A1
k → Γf be the morphism F (x) = (x, f(x)) and let π : Γf → A1

k be the
projection map π(x, y) = y. Note that F is an isomorphism of algebraic varieties and
that π ◦F = f ; here we abuse notation and write f for the morphism A1

k → A1
k induced

by the polynomial f(t). Let Γ∗f denote the projective closure of Γf , obtained by adding
a single point at infinity. The morphisms F, π, f extend to morphisms F : P1

k

∼=
→ Γ∗f ,

π : Γ∗f → P1
k, f : P1

k → P1
k.

Remark 6.3.3 implies that the following are all equivalent:

(i) Fubini holds for f : P1
k → P1

k;

(ii) Fubini holds for f : A1
k → A1

k;

(iii) The repeated integrals of charΓf
are equal.

To make use of the examples afforded by the previous remark we now calculate the
ramification degrees:

Lemma 6.3.6. We retain the notation of the previous remark. The ramification degrees of
f : P1

k → P1
k are

ea(f) =

{
νt−a(f(t) − f(a)) a ∈ k = A1

k

deg f a = ∞,

and the Riemann-Hurwitz ramification degrees are

ẽa(f) =

{
1 + νt−a(f

′(t)) a ∈ k = A1
k

deg f + (deg f − deg f ′ − 1) a = ∞.

Here νt−a denotes the t− a-adic valuation on k(t).

Proof. The ramification degrees are clear so we only consider the Riemann-Hurwitz
degrees.

Write s = f(t) so that f : P1
k → P1

k corresponds to the extension of function fields
K(s) ≤ K(t). A local coordinate ta ∈ K(t) at a ∈ k is t− a; a local coordinate sb ∈ K(s)
at b = f(a) is s− b. By definition of the Riemann-Hurwitz ramification degree,

ẽa(f) − 1 = νt−a

(
d

dta
sb

)
;
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writing f(t) − b = g(t− a) for some polynomial g gives

νt−a

(
d

dta
sb

)
= νt−a(g

′(t− a)) = νt−a(f
′(t)).

Secondly, f(∞) = ∞ and local parameters there are given by t−1, s−1; therefore the
Riemann-Hurwitz ramification degree at infinity is given by

ẽ∞(f) = νt−1

(
1

f(t)

)
+ 1 = deg f + (deg f − deg f ′ − 1).

Example 6.3.7. For any integer m > 1 not divisible by char k, let f(t) = tm in remark
6.3.5. Then f : P1

k → P1
k is unramified away from 0 and infinity, with e0(f) = e∞(f) =

m. Thus Fubini’s theorem holds for f (or, equivalently, for the set Γf ⊆ k × k) if and
only if χ(P1

k) = mχ(P1
k) − 2(m− 1); that is, if and only if (χ(P1

k) − 2)(m − 1) = 0.
However, now assume char k = p > 0 and set f(t) = tp − t. Then f : P1

k → P1
k

is unramified outside infinity, where it is wildly ramified of degree p. Thus Fubini’s
theorem holds for f (or, equivalently, for the set Γf ⊆ k × k) if and only if χ(P1

k) =
pχ(P1

k) − (p− 1); that is, if and only if (χ(P1
k) − 1)(p− 1) = 0.

Taking m = p + 1 in the previous two paragraphs shows that Fubini fails for one of
the sets Γtp−t, Γtp or that p is an idempotent in R.

The example shows that Fubini’s theorem can fail when in finite characteristic:

Theorem 6.3.8. Assume char k = p > 2 and that p 6= 1 in R. Then there exists a subset of
k × k for which Fubini’s theorem does not hold.

Proof. If Fubini does hold for the sets Γtp+1 and Γtp+2 of the previous example then it
follows that χ(P1

k) = 2. But then Fubini does not hold for Γtp−X , unless p − 1 = 0 in
R.

Now we prove the next main result, namely that Fubini’s theorem forces χ, our ar-
bitrary Euler characteristic on the algebra of constructible sets, to be the usual Euler
characteristic of a curve:

Theorem 6.3.9. Suppose that char k 6= 2 and that Fubini’s theorem is true for any non-
constant, separable, tame morphism φ : C → P1

k from a projective curve to the projective
line. Then for any projective curve C we have χ(C) = 2(1 − g), where g is the genus of C .

Proof. For any integerm > 1 not divisible by char k, the morphism f : P1
k → P1

k induced
by f(t) = tm is separable and tame; therefore we may apply Fubini’s theorem to deduce
(χ(P1

k) − 2)(m − 1) = 0. Therefore χ(P1
k) = 2, which agrees with the desired genus

formula.
Now let C be a projective curve over k. By a classical result of algebraic geometry

[Ful69, prop 8.1] there is, for any n sufficiently large (depending on the genus g of
C), a non-constant morphism φ : C → P1

k of degree n with the property that any fibre
contains at least n−1 points. For n not divisible by char k such a morphism is separable
and tame; therefore we are permitted to apply Fubini’s theorem, deducing

χ(C) = 2 deg φ−
∑

x∈C

(ex(φ) − 1).

But this is nothing other than the Riemann-Hurwitz formula for the morphism φ; so
we obtain χ(C) = 2(1 − g) as claimed.
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This allows us to strengthen the observation that Fubini fails in finite characteristic:

Theorem 6.3.10. Suppose that char k 6= 2 and that Fubini’s theorem is true for any non-
constant, separable, tame morphism between projective curves. Then Fubini’s theorem holds for
a separable morphism between projective curves if and only if the morphism is tame.

Proof. The previous result implies that χ(C) = 2(1− g) is the usual Euler characteristic
of any projective curve C . Suppose that φ : C1 → C2 is a separable morphism of
projective curves which is not everywhere tame. Then the Riemann-Hurwitz formula
tells us that

χ(C1) = χ(C2) deg φ−
∑

x∈C1

(ẽx(φ) − 1),

which is incompatible with Fubini’s theorem for φ as ẽx(φ) ≥ ex(φ) for all x ∈ C1 with
at least one value of x for which we do not have equality.

Remark 6.3.11. More precisely, in the situation of the previous result, we have

χ(C1) −

∫

C2

χ(φ−1(y)) dχ(y) =
∑

x∈C1

dx(φ),

where dx(φ) is defined by Dx(φ) = ex(φ) − 1 + dx(φ); here Dx(φ) denotes the different
of the extension OC1,x/OC2 ,φ(x) of discrete valuation rings (see also remark 6.3.4). dx(φ)
measures the wild ramification at x.

An Euler characteristic is typically considered an object of ’tame’ mathematics [vdD98],
and so this formula is slightly surprising in that it expresses wild information purely
in terms of tame.

Remark 6.3.12. In proposition 4.4.1 we saw that if F is a two-dimensional local field,
then the characteristic function of

Γ = {(x, y) ∈ F : (x, y − t−1xp) ∈ OF ×OF }

fails to satisfy Fubini’s theorem with respect to the two-dimensional integral; in fact,
∫

F

∫

F
charΓ(x, y) dxdy = 0

and ∫

F

∫

F
charΓ(x, y) dxdy = 1.

This is similar phenomenon to what we have just observed for the Euler characteristic
χ.

These results suggest interpreting the Riemann-Hurwitz formula as a modified ‘re-
peated integral’, adjusted in a suitable way to ensure that Fubini’s theorem holds. Per-
haps it is possible to modify the two-dimensional integration theory in a similar way
by taking into account additional ramification data as suggested in section 6.1.3 above.

6.4 Strong Euler characteristics
In the previous section, we in fact only considered interchanging the order of integra-
tion in morphisms all of whose fibres were finite. This brief section is a study of the
possible Euler characteristics which do satisfy this restricted version of Fubini’s theo-
rem.
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Definition 6.4.1. Let Ω be a set with structure A. An Euler characteristic χ is said to be
strong if and only if whenever f : A→ B is a definable function between two definable
sets such that there exists a positive integer n, with |χ(f−1(b))| = n for all b ∈ B, then
χ(A) = nχ(B).

Remark 6.4.2. A strong Euler characteristic satisfies Fubini’s theorem in a very weak
sense. For suppose χ is an Euler characteristic, A ⊆ Ωn, B ⊆ Ωm are definable, and f :
A→ B is an n-to-1 mapping as in the definition; set Γ = {(x, y) ∈ Ωn×Ωm : x ∈ A, y ∈
B, f(x) = y}. Then Fubini’s theorem holds for charΓ if and only if χ(A) = nχ(B).

It is straightforward to establish non-existence in certain cases and uniqueness in
others:

Theorem 6.4.3. Suppose k is an algebraically closed field, of finite characteristic > 2, with the
structure of constructible sets; then no strong Euler characteristic exists.

Proof. This is just a restatement of theorem 6.3.8, where the counterexample did not
require χ to satisfy the full Fubini property, but merely be strong.

Theorem 6.4.4. Suppose k is an algebraically closed field, of characteristic zero, with the struc-
ture of constructible sets; then at most one strong Euler characteristic exists, and it is Z valued.

Proof. Let χi be strong Euler characteristics, for i = 1, 2. The algebra of constructible
subsets of kn is generated by the irreducible closed subsets, and therefore it is enough
to establish χ1(V ) = χ2(V ) for any irreducible closed V ⊆ kn; this we do by induction
on the dimension d of V . Let V ′ be the closure of V in Pnk ; then V ′ \ V has dimension
strictly less than that of V , and so, by the inductive hypothesis, it is enough to establish
χ1(V

′) = χ2(V
′).

Let f : V ′ → Pdk be a finite projective morphism; this always exists (see e.g. [Liu02,
Lem. 6.4.27]). Let Σ ⊂ V ′ denote the points at which V ′ is non-singular or at which f
is not étale; this is closed in V ′ by [Liu02, Prop. 4.2.24, Cor. 4.4.12]. Since morphisms
of finite type are closed, U := Pdk \ f(Σ) is an open subset of Pdk, and it is non-empty
because it contains the generic point (here it is important to observe that K(V ′)/K(P1

k)
is a separable extension of fields).

Hence the restriction of f to f−1(U) is a finite étale morphism to P1
k, i.e. an étale

cover, of degree m = |K(V ′) : K(P1
k)|; the assumption that each χi is strong implies

χi(f
−1(U)) = mχi(U)

for i = 1, 2. Moreover, dim(V ′ \ f−1(U)) and dim(f(Σ)) are both < d, and therefore the
inductive hypothesis lets us deduce

χ1(V
′) = χ1(f

−1(U)) + χ1(V
′ \ f−1(U))

= m(χ1(P
d
k) − χ1(f(Σ))) + χ2(V

′ \ f−1(U))

= m(χ1(P
d
k) − χ2(f(Σ))) + χ2(V

′ \ f−1(U))

= m(χ1(P
d
k) − χ2(P

d
k)) + χ2(V

′).

It remains only to prove that our two Euler characteristics agree on Pdk. Decomposing
projective space into a disjoint union of constructible sets Pdk =

⊔d
i=0 Ai

k and using
multiplicativity of each χi on products, we have finally reduced the problem to proving
that χ1(A1

k) = χ2(A1
k).

But the argument of the first paragraph of theorem 6.3.9, which is valid for any strong
Euler characteristic, establishes that χi(A1

k) = 1 for i = 1, 2.
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Remark 6.4.5. If k = C then a strong Euler characteristic does exist on the structure
of constructible sets, namely the topological Euler characteristic. This follows from
the classical result that if X̃ → X is an n-sheeted covering of a CW-complex X , then
χtop(X̃) = nχtop(X).

The Lefschetz principle (i.e. that the first order theory of algebraically closed fields of
characteristic zero is complete; see [Che76] for a classical discussion of this principle)
now implies that a strong Euler characteristic exists for any algebraically closed field
of characteristic zero.

Remark 6.4.6. The inclusion of this material is inspired by [Kra00] and [KS00], where
strong Euler characteristics (in fact, the definition of ‘strong’ in these papers is slightly
stronger than the definition we have used) are discussed from the perspective of model
theory. In [KS00], it is proved that a universal strong Euler characteristic

⊔∞
n=0 A(Ωn) →

Ks
0(Ω) exists, and so our previous theorem and remark prove that if k is an algebraically

closed field of characteristic zero, with the structure of constructible sets, then K s
0(k) =

Z.

6.5 Riemann-Hurwitz and Fubini’s theorem for surfaces
Now we generalise the results of section 6.3 from curves to surfaces. k continues to be
an algebraically closed field, and χ is a fixedR-valued Euler characteristic on the struc-
ture of constructible sets. In this section, ’surface’ means a smooth, two-dimensional,
irreducible algebraic variety over k, whereas a ’curve’ is merely a one-dimensional,
reduced, algebraic variety over k.

If φ : S1 → S2 is a finite, separable morphism between projective surfaces of degreen,
then letB ⊆ S2 be the set of y ∈ S2 such that φ−1(y) does not contain n points. Zariski’s
purity theorem (see e.g. [Liu02, ex. 8.2.15] or [Zar58]) states that B is equidimensional
of dimension one; let B1, . . . , Br be its irreducible components, and let ni be the degree
of the morphism φ|φ−1(Bi) : φ−1(Bi) → Bi (note that the degree is well-defined, as the
base curve is irreducible, though the covering curve φ−1(Bi) may be reducible). Using
this data we may prove an analogue of lemma 6.3.1:

Theorem 6.5.1. Let φ : S1 → S2 be a finite, separable morphism between projective surfaces,
with notation as in the previous paragraph. Then Fubini holds for φ (in the same sense as
section 6.3) if and only if the following formula relating χ(S1) and χ(S2) is satisfied:

χ(S1) = χ(S2) deg φ−
r∑

i=1

(n− ni)χ(Bi) +
∑

y∈B

(
|φ−1(y)| − n+

r∑

i=1

(n− ni)mi(y)

)
,

where mi(y) denotes the number of local branches ofBi at y. If χ is a strong Euler characteristic
then this formula holds.

Proof. We must show that the right hand side of the formula is equal to the fibre integral∫
S2

|φ−1(y)| dχ(y).
The normalisation of B is by definition πB : B̃ =

⊔r
i=1 B̃i → B, where πi : B̃i → Bi is

the normalisation of the irreducible curve Bi. Write D = φ−1(B), and let πD : D̃ → D
be its normalisation in the same way as B; the functoriality of normalising implies that
there is an induced morphism φ̃ : D̃ → B̃ such that πBφ̃ = φ|DπD.

Let Z ⊂ B be a large enough finite set of points such that Z includes all singular
points of the curve B, φ−1(Z) includes all singular points of the curve φ−1(B), and
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φ̃−1(π−1
B (Z)) includes all points of ramification of φ̃. Then πD and πB induce isomor-

phisms D̃ \ φ̃−1(π−1
B (Z) ∼= D \ φ−1(Z) and B̃ \ π−1

B (Z) ∼= B \ Z ; therefore
∫

B\Z
|φ−1(y)| dχ(y) =

∫

eB\π−1

B (Z)
|φ̃−1(y)| dχ(y)

=

∫

eB
|φ̃−1(y)| dχ(y) −

∫

π−1

B (Z)
|φ̃−1(y)| dχ(y)

=
r∑

i=1

∫

eBi

|φ̃−1(y)| dχ(y) −
∑

y∈π−1

B (Z)

|φ̃−1(y)|.

Further, as we saw in the proof of lemma 6.3.1,
∫

eBi

|φ̃−1(y)| dχ(y) = niχ(B̃i) +
∑

y∈ eBi∩π
−1

B (Z)

(|φ̃−1(y)| − ni).

Since B̃i \ π−1
B (Z) ∩ B̃i ∼= Bi \ Z ∩ Bi, we have χ(B̃i) = χ(Bi) +

∑
y∈Z∩Bi

(mi(y) − 1);
combining the last few identities therefore gives

∫

B
|φ−1(y)| dχ(y) =

∑

i

niχ(Bi) +
∑

i

ni
∑

y∈Bi∩Z

mi(y) −
∑

i

|Bi ∩ Z|

−
∑

i

∑

y∈ eBi∩π
−1

B (Z)

ni +
∑

y∈Z

|φ−1(y)|.

To complete the proof, combine this formula with
∫

S2

|φ−1(y)| dχ(y) = nχ(S2 \ B) +

∫

B
|φ−1(y)| dχ(y)

= nχ(S2) − n(
∑

i

χ(Bi) −
∑

y∈Z

(c(y) − 1)) +

∫

B
|φ−1(y)| dχ(y),

where c(y) denotes the number of irreducible components of B which pass through y
(note that

∑
y∈Z c(y) =

∑
i |Bi ∩ Z|).

Remark 6.5.2. When k = C and χ = χtop is the topological Euler characteristic, which
we have remarked earlier (remark 6.4.5) is a strong Euler characteristic, then the theo-
rem proves that

χtop(S1) = χtop(S2) deg φ−
r∑

i=1

(n−ni)χ(Bi)+
∑

y∈B

(
|φ−1(y)| − n+

r∑

i=1

(n− ni)mi(y)

)
.

The Lefschetz principle now implies that the formula remains true if we replace k by
any algebraically closed field of characteristic zero, and χtop(Si) by the l-adic Euler
characteristic (=alternating sum of Betti numbers of l-adic étale cohomology of Si, =de-
gree of the second Chern class of Si).

This generalisation of the Riemann-Hurwitz formula to surfaces is due to B. Iversen
[Ive70], who established it with purely algebraic techniques by studying pencils of
curves on the surfaces. Iversen remarks in his paper that a more topological proof
should be possible when k = C, and our approach provides that.
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Remark 6.5.3. A natural question now to ask is whether an analogue of the theorem
holds in higher dimensions. If X1 → X2 is a finite morphism between d-dimensional
smooth projective varieties over k, then the branch locus will be pure of dimension
d − 1, so one can hope to obtain results by induction on dimension. The difficulty
which appears when the branch locus has dimension > 1 is that there is no functorial
way to desingularise. It is unclear to the author at present how significant a problem
this is. The resulting formulae may even be too elaborate to be useful.

Remark 6.5.4. Another interesting question concerns the situation in characteristic p.
We noted in remark 6.3.11 that, for curves, the difference between the Euler charac-
teristic and the integral over the fibres was a measure of the wild ramification. For
surfaces, the situation is more complex, since the wild ramification of surfaces is not
fully understood. However, assuming that there is no ferocious ramification present
(this is when inseparable morphisms between curves appear), I. Zhukov [Zhu05] has
successfully generalised Iversen’s formula by defining appropriate ramification invari-
ants; this provides an explicit formula for

χ(S1) −

∫

S2

|φ−1(y)| dy

in terms of the wild ramification of the cover.
The Riemann-Hurwitz formula for curves is a special case of the Grothendieck-Ogg-

Shafarevich formula for `-adic shaves, and the problem of understanding Riemann-
Hurwitz for surfaces is a special case of extending Grothendieck-Ogg-Shavarevich to
higher dimensional varieties. Assuming that a two-dimensional integration theory can
be developed which encodes local ramification data, as suggested in subsection 6.1.3,
then it may be possible to reproduce the arguments of theorem 6.5.1 with a similarly
refined Euler characterstic, in such a way as to prove Riemann-Hurwitz for surfaces
without any restrictions on the ramification.
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An explicit approach to residues on and canonical
sheaves of arithmetic surfaces

We develop a theory of residues for arithmetic surfaces, establish the reciprocity law
around a point and use the residue maps to explicitly construct the dualising sheaf of
our surface. These are generalisations of known results for surfaces over a perfect field.

7.1 Introduction
As much for author’s benefit as that of the reader, we say a few words about the relation
of this work to previous results of others:

7.1.1 An introduction to the higher adèlic method
We begin with a reminder of some material already contained in the introduction to
the thesis. A two-dimensional local field is a compete discrete valuation field whose
residue field is a local field (e.g. Qp((t))); for an introduction to such fields, see [FK00].
If A is a two-dimensional domain, finitely generated over Z, with fields of fractions F
and 0 C p C m C A is a chain of primes in A, then consider the following sequence of
localisations and completions:

A  Am  Âm  

(
Âm

)
p′
 

(̂
Âm

)
p′
 

((̂
Âm

)
p′

)

0

= Frac

((̂
Âm

)
p′

)

‖ ‖
Am,p Fm,p

which we now explain in greater detail. It follows from excellence of A that p ′ := pÂm

is a radical ideal of Âm; we may localise and complete at p′ and again use excellence to
deduce that 0 is a radical ideal in the resulting ring i.e. Am,p is reduced. The total field
of fractions Fm,p is therefore isomorphic to a finite direct sum of fields, and each is a
two-dimensional local field.

Geometrically, if X is a two-dimensional, integral scheme of finite type over SpecZ
with function field F , then to each closed point x ∈ X and integral curve y ⊂ X which
contains x, one obtains a finite direct sum of two-dimensional local fields Fx,y. Two-
dimensional adèlic theory aims to study X via the family (Fx,y)x,y, in the same way as
one studies a curve or number field via its completions. Analogous constructions exist
in higher dimensions. Useful references are [HY96] [Par83, §1].
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7.1.2 The classical case of a curve over a perfect field
This chapter is based closely on similar classical results for curves and it will be useful
to give a detailed account of that theory.

Smooth curves

Firstly, let C be a smooth, connected, projective curve over a perfect field k (of finite
characteristic, to avoid complications with differential forms). We follow the discussion
in [Har77, III.7.14]. For each closed point x ∈ C one defines the residue map Resx :
Ω1
K(C)/k → k, and one then proves the reciprocity law

∑

x∈C0

Resx(ω) = 0,

for all ω ∈ Ω1
K(C)/k. Consider Ω1

K(C)/k as a constant sheaf on C ; then

0 → Ω1
C/k → Ω1

K(C)/k → Ω1
K(C)/k/Ω

1
C/k → 0

is a flasque resolution of Ω1
C/k, and the corresponding long exact sequence of Čech

cohomology is

0 → Ω1
C/k(C) → Ω1

K(C)/k →
⊕

x∈C0

Ω1
K(C)/k

Ω1
OC,x/k

→ H1(C,Ω1
C/k) → 0. (†)

Now, the map
∑

xResx :
⊕

x∈C0
Ω1
K(C)/k/Ω

1
OC,x/k

→ k vanishes on the image of Ω1
K(C)/k

(by the reciprocity law), and so induces

trC/k : H1(C,Ω1
C/k) → k,

which is the trace map of C/k with respect to the dualising sheaf Ω1
C/k.

Moreover, duality of C may be interpreted (and proved) adèlically as follows; see
[Ser88, II.§8]. For each x ∈ C0, let K(C)x be the completion of K(C) at the discrete
valuation νx associated to x, and let

AC = {(fx) ∈
∏

x∈C0

K(C)x : νx(fx) ≥ 0 for all but finitely many x}

be the adèlic space of C . Also, let

A(Ω1
C/k) = {(ωx) ∈

∏

x∈C0

Ω1
K(C)x/k

: νx(ωx) ≥ 0 for all but finitely many x}

be the differential adèlic space of C . Then, under the pairing

AC × A(Ω1
C/k) → k, ((fx), (ωx)) 7→

∑

x∈C0

Resx(fxωx),

the orthogonal complement of A(Ω1
C/k(D)) is

A(Ω1
C/k(D))⊥ = AC(D).
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Here D is a divisor on C , and AC(D) (resp. A(Ω1
C/k(D))) is the subgroup of AC (resp.

A(Ω1
C/k) for which νx(fx) ≥ −νx(D) (resp. νx(ωx) ≥ νx(D)) for all x. Moreover, the

global elements, embedded diagonally, are self-dual:

K(C)⊥ = Ω1
K(C)/k.

The exact sequence (†) generalises to the twisted sheaf Ω1
C/k(D), and thereby provides

an isomorphism A(Ω1
C/k)/(Ω

1
K(C)/k + A(Ω1

C/k(D))) ∼= H1(C,Ω1
C/k(D)); combining this

with the aforementioned adèlic dualities yields the non-degenerate pairing

L(D) ×H1(C,Ω1
C/k(D)) → k,

where

L(D) := K(C) ∩ AC(D) = {f ∈ K(C) : νx(f) ≥ −νx(D) for all x ∈ C0}.

This is exactly duality of C/k.

Singular curves
Secondly, suppose that C is allowed to have singularities; we now follow [Ser88, IV.§3].
One may still define a residue map at each closed point x; in fact, if π : C̃ → C is the
normalisation of C , then

Resx =
∑

x′∈π−1(x)

Resx′ .

The sheaf of regular differentials Ω′C/k is defined, for open U ⊆ X , by

Ω′C/k(U) = {ω ∈ Ω1
K(C)/k : Resx(fω) = 0 for all closed points x ∈ U and all f ∈ OC,x}.

If U contains no singular points of C , then Ω′C/k|U = Ω1
U/k. By establishing a Riemann-

Roch type result, it follows that Ω′C/k is the dualising sheaf of C/k. Analogously to the
smooth case, one explicitly constructs the trace map

trC/k : H1(C,Ω′C/k) → k,

and, as in [Gre88], uses it and adèlic spaces to prove duality. See [Stö93] for more on
the theory of regular differentials on curves.

7.1.3 The case of a surface over a perfect field
There is also a theory of residues on algebraic surfaces, developed by A. Parshin [Par83]
[Par00], the founder of the higher dimensional adèlic approach to algebraic geometry.
Let X be a connected, smooth, projective surface over a perfect field k. To each closed
point x ∈ X and curve y ⊂ X containing x, he defined a two-dimensional residue map

Resx,y : Ω2
K(X)/k → k

and proved the reciprocity laws both around a point
∑

y⊂X
y3x

Resx,y ω = 0
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(for fixed x ∈ X0 and ω ∈ Ω2
K(X)/k) and along a curve

∑

x∈X0
x∈y

Resx,y ω = 0

(for fixed y ⊂ X and ω ∈ Ω2
K(X)/k). By interpreting the Čech cohomology of X adèli-

cally and proceeding analogously to the case of a curve, these residue maps may be
used to explicitly construct the trace map

trX/k : H2(X,Ω2
X/k) → k

and, using two-dimensional adèlic spaces, prove duality.
D. Osipov [Osi00] considers the algebraic analogue of our setting, with a smooth,

projective surface X over a perfect field k and a projective morphism f : X → S to a
smooth curve. To each closed point x ∈ X and curve y ⊂ X containing x, he constructs
a ‘direct image map’

fx,y∗ : Ω2
K(X)/k → Ω1

K(S)s/k
,

where s = f(x) and K(S)s is the s-adic completion of K(S). He establishes the reci-
procity law around a point, analogous to our theorem 7.4.1, and the reciprocity law
along a fibre. He uses the (f x,y∗ )x,y to construct f∗ : H2(X,Ω2

X/k) → H1(S,Ω1
S/k), which

he proves is the trace map.
Osipov then considers multiplicative theory. Let K2(X) denote the sheafification

of X ⊇ U 7→ K2(OX(U)); then H2(X,K2(X)) ∼= CH2(X). Osipov defines, for each
x ∈ y ⊂ X , homomorphisms

f∗( , )x,y : K2(K(X)) → K(S)×s ,

and establishes the reciprocity laws around a point and along a fibre. At least when
char k = 0, these are then used to construct a map

CH2(X) = H2(X,K2(X)) → H1(C,O×C ) = Pic(C),

which is proved to be the usual push-forward of cycles [Ful98, §1].

7.1.4 Higher dimensions
The theory of residues for surfaces was extended to higher dimensional varieties by
V. G. Lomadze [Lom81]. Let X be a d-dimensional, integral scheme of finite type over
a field k. To each complete flag of integral subvarieties

x = 〈x0 ⊂ · · · ⊂ xd〉,

Lomadze associates a residue map Resx : Ωd
K(X)/k → K and proves the reciprocity law

∑

xi

Resx ω = 0.

Here we have fixed a flag x0 ⊂ · · · ⊂ xi−1 ⊂ xi+1 ⊂ · · · ⊂ xn and vary the sum over all
i-dimensional integral subvarieties xi sitting between xi−1 and xi+1 (if i = n then we
must assume X is projective).

Lomadze also develops a higher dimensional relative theory, analogous to Osipov’s
study of a surface over a curve.
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7.1.5 Explicit Grothendieck duality
It is an interesting problem whether Grothendieck duality [AK70] [Har66] can be made
more explicit. The guiding example is that of a curve over a finite field which we
discussed above, where the trace map may be constructed via residues. The duality
theorem is even equivalent to Poisson summation on the ring of adèles of the curve; the
simplest exposition of duality is probably that of [Mor91]. Using the Parshin-Lomadze
theory of residues, A. Yekutieli [Yek92] has explicitly constructed the Grothendieck
residue complex of an arbitrary reduced scheme of finite type over a field.

For a far better summary of this problem than the author can provide, the reader
should consult the introduction to [Yek92] and others of Yekutieli’s papers, e.g. [HY96]
[SY95].

7.1.6 Adèlic analysis
This chapter has many connections to I. Fesenko’s programme of two-dimensional
adèlic analysis [Fes06] [Fes03] [Fes08b] [Fes08a], and is part of the author’s attempt
to understand the connection between adèlic analysis and more familiar methods in
algebraic geometry.

Two-dimensional adèlic analysis aims to generalise the current rich theories of topol-
ogy, measure, and harmonic analysis which exist for local fields, by which mathemati-
cians study curves and number fields, to dimension two. In particular, Fesenko gen-
eralises the Tate-Iwasawa [Iwa92] [Tat67] method of studying the zeta function of a
global field to dimension two, giving a new approach to the study of the L-function
of an elliptic curve over a global field. The author hopes that the reader is satisfied to
hear only the most immediate relations between this fascinating subject and the current
chapter.

Let E be an elliptic curve over a number field K , with function field F = K(E), and
let E be a regular, proper model of E over the ring of integers OK . Then E satisfies the
same assumptions of X in our main theorem 7.7.5 below. Let ψ = ⊗s∈Sψs : AK → S1

be an additive character on the adèle group ofK , and let ω ∈ Ω1
F/K be a fixed, non-zero

differential form. For x ∈ y ⊂ E a point contained in a curve as usual, with x sitting
over s ∈ S, introduce an additive character

ψx,y : Fx,y → S1, a 7→ ψs(Resx,y(aω)),

where Resx,y is the relative residue map which we will construct in section 7.4. If x is a
fixed point, then our reciprocity law will imply

∑

y⊂X
y3x

ψx,y(a) = 0

for any a ∈ F .
Moreover, suppose that ψ is trivial on global elements and that y is a fixed horizontal

curve; then Fesenko also proves [Fes08b, §27 Proposition]
∑

x∈X0

x∈y∪{arch}

ψx,y(a) = 0.

We are deliberately vague here. Let us just say that we must adjoin archimedean points
to y, consider two-dimensional archimedean local fields such as R((t)), and define suit-
able additive characters at these places; once these have been suitably introduced, this
reciprocity law follows from adèlic reciprocity for the number field k(y).
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7.1.7 Future work
The author is thinking about several topics related to this chapter which may interest
the reader. Let X → OK be an arithmetic surface.

Reciprocity along vertical curves

There is surely a reciprocity law for the residue maps (Resx,y)x along any fixed vertical
curve y ⊂ X . The author can currently only prove it for certain special cases, such as
when y is an entire irreducible vertical fibre.

Grothendieck duality

The canonical sheaf ωX/S is the dualising sheaf. It should be possible to use our residue
maps (Resx,y)x,y to construct the relative trace map

trX/S : H1(X,ωX/S) → OK ,

and give an explicit adèlic proof of Grothendieck duality, similar to the existing work
of Yekutieli for varieties. This should follow relatively easily from the contents of this
chapter.

Horizontal reciprocity

If y is horizontal then such a reciprocity law does not make sense naively, since the
residues Resx,y ω belong to different fields as x varies across y. Of course, this is the
familiar problem that SpecOK is not a relative curve. As explained in the discussion of
Fesenko’s work above, this is fixed by taking into account the archimedean data. Such
results live outside the realm of algebraic geometry, and need to be better understood.

Two-dimensional Poisson summation

Perhaps it is possible to find a global duality result on X which incorporates not only
Grothendieck duality of X relative to S, but also the arithmetic duality on the base i.e.
Poisson summation. Such a duality would necessarily incorporate archimedean data
and perhaps be most easily expressed adèlically. In the case of a regular, proper model
of an elliptic curve, this may already be provided by one of Fesenko’s additive dualities
[Fes08b, §32, Proposition].

Multiplicative theory

We have focused on additive theory, but as we mentioned while discussing Osipov’s
work, there are natural multiplicative analogues. In fact, the ‘multiplicative residue
map’ for mixed characteristic two-dimensional local fields has been defined by K. Kato
[Kat83]. Fesenko’s work includes an adèlic interpretation of the conductors of the spe-
cial fibres of E , but only under the assumption that the reduced part of each fibre is
semi-stable [Fes08b, §40, Remark 2]; similar results surely hold in greater generality
and are related to ‘conductor = discriminant’ formulae [KS04] [LS00] [Sai88].

Moreover, Fesenko’s two-dimensional theta formula [Fes08b, 3.6] is an adèlic duality
which takes into account the interplay between the additive and multiplicative struc-
tures. It is important to understand better its geometric interpretation, at least in the
case of an algebraic surface.

Perhaps it is also possible to study vanishing cycles [Sai87] using similar techniques.
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7.1.8 Notation
If A is a (always commutative) ring, then we write p C A to denote that p is an ideal
of A; this notation seems to be common to those educated in Oxford, and less familiar
to others. We write p C 1A to indicate that the height of p is 1. If p is prime, then
k(p) = FracA/p is the residue field at p. If A is a local ring, then the maximal ideal is
mA.

If F is a complete discrete valuation field, then its ring of integers is OF , with max-
imal ideal pF . The residue field k(pF ) will be denoted F ; this notation seems to be
common among those affected by the Russian school of arithmetic geometry. Discrete
valuations are denoted ν, usually with an appropriate subscript to avoid confusion.

If A is a B-algebra, the the space of relative Kahler differentials is ΩA/B = Ω1
A/B .

Injective maps are often denoted by ↪→, and surjective maps by →→.

7.2 Local relative residues
Here we develop a theory of residues of differential forms on two-dimensional local
fields. Recall that a two-dimensional local field is a complete discrete valuation field
F whose residue field F is a (non-archimedean, in this chapter) local field. We will
be interested in such fields F of characteristic zero; when the local field F also has
characteristic zero then we say that F has equal characteristic zero; when F has finite
characteristic, then F is said to be of mixed characteristic.

7.2.1 Continuous differential forms
We begin by explaining how to construct suitable spaces of ‘continuous’ differential
forms.

For any Noetherian, local ring A and A-module N , we will denote by N sep the maxi-
mal Hausdorff (=separated) quotient for the mA-adic topology, i.e.

N sep = N

/
∞⋂

n=1

mn
AN .

Remark 7.2.1. Suppose that A/B is a finite extension of Noetherian, local domains.
Then mA ∩ B = mB . Also, the fibre A ⊗B k(mB) is a finite dimensional k(mB)-vector
space, and is therefore Artinian; hence mBA contains mn

A for n � 0. So for any B-
module N ,

N sep ⊗B A = (N ⊗B A)sep.

Lemma 7.2.2. Let A/B be a finite extension of Noetherian, local domains, which are R al-
gebras, where R is a Noetherian domain. Assume that Ω

sep
B/R is a free B-module, and that

FracA/FracB is a separable extension. Then there is an exact sequence

0 → Ω
sep
B/R ⊗B A→ Ω

sep
A/R → ΩA/B → 0

of A-modules.

Proof. The standard exact sequence of differential forms is

ΩB/R ⊗B A→ ΩA/R → ΩA/B → 0.
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Since A is a finite B-module, the space of differentials ΩA/B is a finitely generated,
torsion A-module. Apply sep to the sequence to obtain, using remark 7.2.1,

Ω
sep
B/R ⊗B R

j
→ Ω

sep
B/R → ΩA/B → 0,

which is exact. It remains to prove that j is injective.
Let F , M , K be the fields of fractions of A, B, R respectively, and let ω ∈ Ω

sep
B/R be an

element of some chosen B-basis for this free module. Let Dω : Ω
sep
B/R → B send ω to 1

and vanish on all other elements of the chosen basis. This homomorphism extends first
to an M -linear map DM : ΩM/K → M , and then to an F -linear map DF : ΩF/K → F ;
this follows from the identifications ΩB/R ⊗B M ∼= ΩM/K and ΩM/K ⊗M F ∼= ΩF/K .
Finally, it induces an R-linear derivation D : A → F by D(a) = DF (d(a)), where
d : F → ΩF/K is the universal derivation.

Let N ⊆ F be the A-module spanned by D(a), for a ∈ A. This is a finitely generated
A-module, for if a1, . . . , an generate A as a B-module, then N is contained in the A-
module spanned by a1, . . . , an, D(a1), . . . , D(an). Thus the non-zero homomorphism
D̃ : ΩA/R → N induced by D factors through Ω

sep
A/R (by Nakayama’s lemma). Fur-

ther, D̃ sends j(ω) ∈ Ω
sep
A/R to 1 and vanishes on the images under j of the other basis

elements. It follows that j is injective.

Remark 7.2.3. Whether Ω
sep
B/R is free is closely related to whetherB is a formally smooth

algebra over R; see [Gro64, Théorème 20.5.7]. M. Kurihara uses such relations more
systematically in his study of complete discrete valuation fields of mixed characteristic
[Kur87].

Remark 7.2.4. Suppose that R is a Noetherian ring and A is a finitely generated R-
algebra. Let p C A be a prime ideal. Then ΩAp/R = ΩA/R ⊗A Ap is a finitely generated
Ap-module, and the natural map ΩAp/R ⊗Ap Âp → ΩcAp/R

gives rise to an isomorphism

ΩAp/R ⊗Ap Âp
∼= lim
←−
n

ΩcAp/R
/pnΩcAp/R

= Ω̂cAp/R

(see e.g. [Liu02, exercise 6.1.13]).
Therefore Ω

sep
cAp/R

is a finitely generated Âp-module (since it embeds into Ω̂cAp/R
), and

it is therefore complete; so the embedding Ω
sep
cAp/R

↪→ Ω̂cAp/R
is actually an isomorphism.

Thus we have a natural isomorphism

ΩA/R ⊗A Âp
∼= Ω

sep
cAp/R

.

We will occasionally give explicit proofs of results which could otherwise be deduced
from this remark.

Definition 7.2.5. Let F be a complete discrete valuation field, and let K be a subfield
of F such that Frac(K ∩OF ) = K . The space of continuous relative differentials is

Ωcts
F/K := Ω

sep
OF /K∩OF

⊗OF
F.

It is vector space over F and there is a natural surjection ΩF/K →→ Ωcts
F/K .

Remark 7.2.6. Suppose that F , K are as in the previous definition, and that F ′ is a
finite, separable extension of F . Using remark 7.2.1, one shows Ωcts

F ′/K = Ωcts
F/K ⊗F F

′,
and therefore there is a well-defined trace map TrF ′/F : Ωcts

F ′/K → Ωcts
F/K .
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7.2.2 Equal characteristic
We begin with residues in the equal characteristic case; this material is well-known
(see e.g. [Ser88]) so we are brief. Let F be a two-dimensional local field of equal-
characteristic zero. We assume that an embedding of a local field K (necessarily of
characteristic zero) into F is given; such an embedding will be natural in our applica-
tions. The valuation νF |K must be trivial, for else it would be a multiple of νK (a com-
plete discrete valuation field has a unique normalised discrete valuation) which would
imply K ↪→ F , contradicting our hypothesis on the characteristic of F ; so K ⊆ OF and
K ↪→ F , making F into a finite extension of K .

Lemma 7.2.7. F has a unique coefficient field which contains K .

Proof. Set n = |F : K|. Suppose first thatK ′/K is any finite subextension of F/K . Then
K ′ ⊆ OF and so the residue map restricts to a K-linear injection K ′ ↪→ F , proving that
|K ′ : K| ≤ n. This establishes thatK has at most one extension of degree n inside F (for
if there were two extensions then we could take their composite), and that if such an
extension exists then it is the desired coefficient field (for then the residue mapK ′ ↪→ F
must be an isomorphism).

SinceK is perfect, apply Hensel’s lemma to lift toOF a generator for F/K ; the subex-
tension of F/K generated by this element has degree n, completing the proof.

This unique coefficient field will be denoted kF ; it depends on the image of the em-
bedding K ↪→ OF , though the notation does not reflect that. kF is a finite extension
of K ; moreover, it is simply the algebraic closure of K inside F . When the local field
K ⊆ F has been fixed, we will refer to kF as the coefficient field of F (with respect to
K , if we want to be more precise). Standard structure theory implies that choosing a
uniformiser t ∈ F induces a kF -isomorphism F ∼= kF ((t)).

Lemma 7.2.8. Ω
sep
OF /OK

is a free OF -module of rank 1, with basis dt, where t is any uniformiser
of F . Hence Ωcts

F/K is a one-dimensional vector space over F with basis dt.

Proof. Any derivation on OF which vanishes on OK also vanishes on K , and it even
vanishes on kF since kF /K is a finite, separable extension. Hence ΩOF /OK

= ΩOF /K =
ΩOF /kF

.
Fix a uniformiser t ∈ F , to induce an isomorphism OF

∼= kF [[t]]. Then for any f ∈ OF

and n ≥ 0, we may write f =
∑n

i=0 ait
i + gtn+1, with a0, . . . , an ∈ kF and g ∈ OF ; let

d : OF → ΩOF /OK
be the universal derivation and apply d to obtain

d(f) =

n∑

i=0

aiit
i−1d(t) + g(n+ 1)tnd(t) + tn+1d(g).

It follows that d(f)− df
dtd(t) ∈

⋂∞
n=1 t

nΩOF /kF
. Taking the separated quotient shows that

dt generates Ω
sep
OF /kF

; the existence of the derivation d
dt implies that dt is not torsion.

The residue map of F , relative to K is defined by

resF : Ωcts
F/K → kF , ω = fdt 7→ coeftt−1(f),

where the notation means that we take the coefficient of t−1 in the expansion of f .
Implicit in the definition is the choice of a kF -isomorphism F ∼= kF ((t)).

It is well-known that the residue map does not depend on the choice of uniformiser t.
Since the proof is straightforward in residue characteristic zero, we recall it. Any other
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uniformiser T has the form T =
∑∞

i=1 ait
i with ai ∈ kF and a1 6= 0; for j ∈ Z \ {−1},

we have
coeftt−1

(
T j
dT

dt

)
= coeftt−1

(
1

j + 1

dT j+1

dt

)
= 0.

When j = −1, we instead calculate as follows:

coeftt−1

(
T−1dT

dt

)
= coeftt−1((a−1

1 t−1 − a−2
1 a2 + . . . )(a1 + 2a2t+ . . . )) = 1.

Finally, since the residue is continuous with respect to the discrete valuation topology
on Ωcts

F/K = Fdt and the discrete topology on kF , we have

coeftt−1


 ∑

j�−∞

bjT
j dT

dt


 = b−1,

and it follows that the residue map may also be defined with respect to the isomor-
phism F ∼= kF ((T )).

Now we prove functoriality of the residue map. Note that if F ′ is a finite extension
of F , then there is a corresponding finite extension kF ′/kF of the coefficient fields.

Proposition 7.2.9. Let F ′ be a finite extension of F . Then the following diagram commutes:

Ωcts
F ′/K

resF ′
−−−−→ kF ′

TrF ′/F

y
yTrk

F ′/kF

Ωcts
F/K

resF−−−−→ kF

Proof. This is another well-known result, whose proof we give since it is easy in the
characteristic zero case. It suffices to consider two separate cases: when F ′/F is unram-
ified, and when F ′/F is totally ramified (as extensions of complete discrete valuation
fields).

In the unramified case, |kF ′ : kF | = |F ′ : F | and we may choose compatible isomor-
phisms F ∼= kF ((t)), F ′ ∼= kF ′((t)); the result easily follows in this case.

In the totally ramified case, F ′/F is only tamely ramified, kF ′ = kF , and we may
choose compatible isomorphisms F ∼= kF ((t)), F ′ ∼= kF ′((T )), where T e = t. We may
now follow the argument of [Ser88, II.13].

7.2.3 Mixed characteristic
Now we introduce relative residue maps for two-dimensional local fields of mixed
characteristic. We take a local, explicit approach, with possible future applications to
higher local class field theory and ramification theory in mind. This residue map is
used by Fesenko [Fes03, §3] to define additive characters in his two-dimensional har-
monic analysis.

Two-dimensional local fields of mixed characteristic

We begin with a review of this class of fields.
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Example 7.2.10. Let K be a complete discrete valuation field. Let K{{t}} be the follow-
ing collection of formal series

K{{t}} =

{
∞∑

i=−∞

ait
i : ai ∈ K for all i, inf

i
νK(ai) > −∞, and ai → 0 as i→ −∞

}
.

Define addition, multiplication, and a discrete valuation by
∞∑

i=−∞

ait
i +

∞∑

j=−∞

ajt
j =

∞∑

i=−∞

(ai + bi)t
i

∞∑

i=−∞

ait
i ·

∞∑

j=−∞

ajt
j =

∞∑

i=−∞

(
∞∑

r=−∞

arbi−r

)
ti

ν

(
∞∑

i=−∞

ait
i

)
= inf

i
νK(ai)

Note that there is nothing formal about the sum over r in the definition of multiplica-
tion; rather it is a convergent double series in the complete discrete valuation field K .
These operations are well-defined, make K{{t}} into a field, and ν is a discrete valua-
tion under which K{{t}} is complete. Note that K{{t}} is an extension of K , and that
ν|K = νK , i.e. e(K{{t}}/K) = 1.

The ring of integers of K{{t}} and its maximal ideal are given by

OK{{t}} =

{∑

i

ait
i : ai ∈ OK for all i and ai → ∞ as i→ −∞

}
,

pK{{t}} =

{∑

i

ait
i : ai ∈ pK for all i and ai → ∞ as i→ −∞

}
.

The surjective homomorphism

OK{{t}} → K((t)),
∑

i

ait
i 7→

∑

i

ait
i

identifies the residue field of K{{t}} with K((t)).
The alternative description ofK{{t}} is as follows. It is the completion of Frac(OK [[t]])

with respect to the discrete valuation associated to the height one prime πKOK [[t]].

We will be interested in the previous example whenK is a local field of characteristic
0. In this case, K{{t}} is a two-dimensional local field of mixed characteristic.

Now suppose L is any two-dimensional local field of mixed characteristic of residue
characteristic p. Then L contains Q, and the restriction of νL to Q is a valuation which
is equivalent to νp, since νL(p) > 0; since L is complete, we may topologically close
Q to see that L contains a copy of Qp. It is not hard to see that this is the unique
embedding of Qp into L, and that L/Qp is an (infinite) extension of discrete valuation
fields. The corresponding extension of residue fields is L/Fp, where L is a local field of
characteristic p.

The analogue of the coefficient field in the equal characteristic case is the following:

Definition 7.2.11. The constant subfield of L, denoted kL, is the algebraic closure of Qp

inside L.
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Lemma 7.2.12. If K is an arbitrary field then K is relatively algebraically closed in K((t)). If
K is a complete discrete valuation field then K is relatively algebraically closed in K{{t}}; so if
K is a local field of characteristic zero, then the constant subfield of K{{t}} is K .

Proof. Suppose that there is an intermediate extension K((t)) ≥ L ≥ K with L finite
over K . Then each element of L is integral over K[[t]], hence belongs to K[[t]]. The
residue map K[[t]] → K is non-zero on L, hence restricts to a K-algebra injection L ↪→
K . This implies L = K .

Now suppose K is a complete discrete valuation field and that we have an interme-
diate extension K{{t}} ≥M ≥ K with M finite over K . Then M is a complete discrete
valuation field with e(M/K) = 1, since e(K{{T}}/K) = 1. Passing to the residue
fields and applying the first part of the proof to K((t)) implies f(M/K) = 1. Therefore
|M : K| = 1, as required.

Let L be a two-dimensional local field of mixed characteristic. The algebraic closure
of Fp inside L is finite over Fp (it is the coefficient subfield of L); so, if k is any finite ex-
tension of Qp inside L, then f(k/Fp) is bounded above. But also e(k/Qp) < e(L/Qp) <
∞ is bounded above. It follows that kL is a finite extension of Qp.

Thus the process of taking constant subfields canonically associates to any
two-dimensional local field L of mixed characteristic a finite extension kL of Qp.

Lemma 7.2.13. Suppose K is a complete discrete valuation field and Ω/K is a field extension
with subextensions F,K ′ such that K ′/K is finite and separable, and F is K-isomorphic to
K{{T}}. Then the composite extension FK ′ is K-isomorphic to K ′{{T}}.

Proof. LetK ′′ be the Galois closure ofK ′ overK (enlarging Ω if necessary); then the pre-
vious lemma implies that K ′′ ∩ F = K and therefore the extensions K ′′, F are linearly
disjoint over K (here it is essential that K ′′/K is Galois). This implies that FK ′′ is K-
isomorphic toF⊗KK

′′, which is easily seen to beK-isomorphic toK ′′{{T}}. The result-
ing isomorphism σ : FK ′′ → K ′′{{T}} restricts to an isomorphism FK ′ → σ(K ′){{T}},
and this final field is isomorphic to K ′{{T}}.

Lemma 7.2.14. Suppose L is a two-dimensional local field of mixed characteristic. Then there
is a two-dimensional local field M contained inside L, such that L/M is a finite extension and

(i) M = L;

(ii) kM = kL;

(iii) M is kM -isomorphic to kM{{T}}.

Proof. The residue field of L is a local field of characteristic p, and therefore there is an
isomorphism L ∼= Fq((t)); using this we may define an embedding Fp((t)) ↪→ L, such
that L/Fp((t)) is an unramified, separable extension. Since Qp{{t}} is an absolutely
unramified discrete valuation field with residue field Fp((t)), a standard structure the-
orem of complete discrete valuation fields [FV02, Proposition 5.6] implies that there is
an embedding of complete discrete valuation fields j : Qp{{t}} ↪→ L which lifts the
chosen embedding of residue fields. Set F = j(Qp{{t}}), and note that f(L/F ) = |L :
Fp((t))| = logp(q) and e(L/F ) = νL(p) <∞; so L/F is a finite extension.

Now apply the previous lemma with K = Qp and K ′ = kL to obtain M = FK ′ ∼=
kL{{t}}. Moreover, Hensel’s lemma implies that L, and therefore kL, contains the q − 1
roots of unity; so kLF = Fq · Fp((t)) = L, and therefore M = L.

We will frequently use arguments similar to those of the previous lemma in order to
obtain suitable subfields of L.
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Definition 7.2.15. A two-dimensional local field L of mixed characteristic is said to be
standard if and only if e(L/kL) = 1.

The purpose of the definition is to provide a ‘co-ordinate’-free definition of the class
of fields we have already considered:

Corollary 7.2.16. L is standard if and only if there is a kL-isomorphism L ∼= kL{{t}}. If L is
standard and k′ is a finite extension of kL, then Lk′ is also standard, with constant subfield k ′.

Proof. Since e(kL{{t}}/kL) = 1, the field L is standard if it is isomorphic to kL{{t}}.
Conversely, by the previous lemma, there is a standard subfield M ≤ L with kM = kL
andM = L; then e(M/kM ) = 1 and e(L/kL) = 1 (since we are assuming L is standard),
so that e(L/M) = 1) and therefore L = M .

The second claim follows from lemma 7.2.13.

Remark 7.2.17. A first local parameter of a two-dimensional local field L is an element
t ∈ OL such that t is a uniformiser for the local field L. For example, t is a first lo-
cal parameter of K{{t}}. More importantly, if L is standard, then any isomorphism
kL{{t}}

'
→ L is determined by the image of t, and conversely, t may be sent to any first

local parameter of L. This follows from similar arguments to those found in lemma
7.2.14 above and 7.2.18 below; see e.g. [FV02, Proposition 5.6] and [MZ95]. We will
abuse notation in a standard way, by choosing a first local parameter t ∈ L and then
identifying L with kL{{t}}.

The residue map for standard fields.

Here we define a residue map for standard two-dimensional fields and investigate its
main properties. As in the equal characteristic case, we work in the relative situation,
with a fixed standard two-dimensional local field L of mixed characteristic and a cho-
sen (one-dimensional) local field K ≤ L. It follows that K is intermediate between Qp

and the constant subfield kL.
We start by studying spaces of differential forms. Note that if we choose a first local

parameter t ∈ L to induce an isomorphism L ∼= kL{{t}}, then the derivative d
dt : L→ L

is well-defined.

Lemma 7.2.18. Let t be any first local parameter of L. Then Ω
sep
OL/OK

decomposes as a direct
sum

Ω
sep
OL/OK

= OLdt⊕ Tors(Ω
sep
OL/OK

)

with OLdt free, and Tors(Ω
sep
OL/OK

) ∼= ΩOkL
/OK

⊗OkL
OL. Hence Ωcts

L/K is a one-dimensional
vector space over L with basis dt.

Proof. First suppose that K = kL is the constant subfield of L. Then we claim that for
any f ∈ OL, one has df = df

dtdt in Ω
sep
OL/OK

.
Standard theory of complete discrete valuation fields (see e.g. [MZ95]) implies that

there exists a map H : L→ O×L ∪ {0} with the following properties:

(i) H is a lifting, i.e. H(a) = a for all a ∈ L;

(ii) H(t) = t;

(iii) for any a0, . . . , ap−1 ∈ F , one has H(
∑p−1

i=0 a
p
i t
i
) =

∑p−1
i=0 H(ai)

pti.
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The final condition replaces the Teichmuller identity H(ap) = ap which ones sees in
the perfect residue field case. We will first prove our claim for elements of the form
f = H(a). Indeed, for any n > 0, we expand a using the p-basis t to write

a =

pn−1∑

i=0

ap
n
t
i

for some a0, . . . , apn−1 ∈ L. Lifting, and using the Teichmuller-type property of H n
times, obtains

f =

pn−1∑

i=0

H(ai)
pn
ti.

Now apply the universal derivative to reveal that

df =

pn−1∑

i=0

H(ai)
pn
iti−1dt+ pnH(ai)

pn−1tid(H(ai)).

We may apply d
dt in a similar way, and it follows that df − df

dtdt ∈ pnΩOL/OK
. Letting

n→ ∞ gives us df = df
dtdt in Ω

sep
OL/OK

.
Now suppose that f ∈ OL is not necessarily in the image of H . For any n, we may

expand f as a sum

f =

n∑

i=0

fiπ
i + gπn+1

where π is a uniformiser of K (also a uniformiser of L), f0, . . . , fn belong to the image
of H , and g ∈ OL. Applying the universal derivative obtains

df =

n∑

i=0

dfi
dt
πidt+ πn+1dg,

and computing df
dt gives something similar. We again let n → ∞ to deduce that df =

df
dtdt in Ω

sep
OL/OK

. This completes the proof of our claim.
This proves that dt generates Ω

sep
OL/OK

, so we must now prove that it is not torsion.
But the derivative d

dt induces an OL-linear map ΩOL/OK
→ OL which descends to the

maximal separated quotient and send dt to 1; this is enough. This completes the proof
in the case kL = K .

Now consider the general case kL ≥ K . Using the isomorphism L ∼= kL{{t}}, we set
M = K{{t}}. The inclusions OK ≤ OM ≤ OL, lemma 7.2.2, and the first case of this
proof applied to K = kM , give an exact sequence of differential forms

0 → Ω
sep
OM/OK

⊗OM
OL → Ω

sep
OL/OK

→ ΩOL/OM
→ 0. (∗)

Furthermore, the isomorphismL ∼= M⊗KkL restricts to an isomorphismOL
∼= OM⊗OK

OkL
, and base change for differential forms gives ΩOL/OM

∼= ΩOkL
/OK

⊗OkL
OL; this

isomorphism is given by the composition

ΩOkL
/OK

⊗OkL
OL → ΩOL/OK

→ ΩOL/OM
.

But this factors through Ω
sep
OL/OK

, which splits (∗) and completes the proof.
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We may now define the relative residue map for L/K similarly to the equal character-
istic case:

resL : Ωcts
L/K → kL, ω = fdt 7→ −coeftt−1(f)

where the notation means that we expand f in kL{{t}} and take the coefficient of t−1.
Implicit in the definition is the choice of an isomorphism L ∼= kL{{t}} fixing kL. The
twist by −1 is necessary for the future reciprocity laws.

Proposition 7.2.19. resL is well-defined, i.e. it does not depend on the chosen isomorphism
L ∼= kL{{t}}.

Proof. As we noted in remark 7.2.17, the chosen isomorphism is determined uniquely
by the choice of first local parameter. Let T ∈ OL be another local parameter. Using
a similar lifting argument (which simulates continuity) to that in the first half of the
previous lemma, it is enough to prove

coeftt−1

(
T i
dT

dt

)
=

{
1 i = −1

0 i 6= −1.

Well, when i 6= −1, then T i dTdt = d
dt (i
−1T i+1), which has t−1 coefficient 0, since this is

true for the derivative of any element.
Now, the image of T in L has the form T =

∑∞
i=1 θit

i, with θi ∈ kL and θ1 6= 0. Hence
T ≡

∑∞
i=1 ait

i mod pL, where each ai ∈ kL is a lift of θi. Expanding the difference, a
principal unit, as an infinite product obtains

T =

(
∞∑

i=1

ait
i

)
∞∏

j=1

(1 + bjπ
j),

for some bj ∈ OL, with π a uniformiser of kL (also a uniformiser of L); we should
remark that the above summation is a formal sum in L ∼= kL{{t}}, while the product is
a genuinely convergent product in the valuation topology on L.

The map

L× → kL, α 7→ coeftt−1

(
α−1 dα

dt

)

is a continuous (with respect to the valuation topologies) homomorphism, so to com-
plete the proof it is enough to verify the identities

coeftt−1

(
α−1 dα

dt

)
=

{
1 α =

∑∞
i=1 ait

i,

0 α = 1 + bjπ
j .

The first of these identities follows exactly as in the equal characteristic case of subsec-
tion 7.2.2. For the second case, we compute

(1 + bjπ
j)−1 d

dt
(1 + bjπ

j) = (1 − bjπ
j + b2jπ

2j + . . . )
dbj
dt
πj

=
dbj
dt
πj −

d(2−1b2j )

dt
π2j +

d(3−1b3j)

dt
π3j + . . .

This is a convergent sum, each term of which has no t−1 coefficient; the proof is com-
plete.

We now establish the functoriality of residues with respect to the trace map:
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Proposition 7.2.20. Suppose that L′ is a finite extension of L, and that L′ is also standard.
Then the following diagram commutes:

Ωcts
L′/K

resL′
−−−−→ kL′

TrL′/L

y
yTrk

L′/kL

Ωcts
L/K

resL′
−−−−→ kL

Proof. Using the intermediate extension LkL′ , we may reduce this to two cases: when
we have compatible isomorphisms L ∼= kL{{t}}, L ∼= kL′{{t}}, or when kL = kL′ . The
first case is straightforward, so we only treat the second.

By the usual ‘principle of prolongation of algebraic identities’ trick [Ser88, II.13] we
may reduce to the case L ∼= kL{{t}}, L ∼= kL{{T}} with t = T e. The same argument as
in the equal characteristic case [loc. cit.] is then easily modified.

Extending the residue map to non-standard fields.

Now suppose that L is a two-dimensional local field of mixed characteristic which is
not necessarily standard, and as usual fix a local field K ≤ L. Choose a standard
subfield M of L with the same constant field as L and of which L is a finite extension;
this is possible by lemma 7.2.14. Attempt to define the relative residue map for L/K to be
composition

resL : Ωcts
L/K

TrL/M
→ Ωcts

M/K
resM→ kM = kL.

Lemma 7.2.21. resL is independent of choice of M .
Proof. Suppose that M ′ is another field with the same properties as M , and let ω ∈
Ωcts
L/K . By an important structure result for two-dimensional local fields of mixed char-

acteristic [Zhu95, Theorem 2.1] there is a finite extensionL′ ofL such thatL′ is standard.
Using functoriality for standard fields, we have

resM (TrL/M ω) = |L′ : L|−1 resM (TrL′/M ω) = |L′ : L|−1 TrkL′/kL
(resL′(ω))

(here we have identified ω with its image in Ωcts
L′/K ). Since this expression is equally

valid for M ′ in place of M , we are done.

The definition of the residue in the general case is chosen to ensure that functoriality
still holds:
Proposition 7.2.22. Let L′/L be a finite extension of two-dimensional local fields of mixed
characteristic; then the following diagram commutes

Ωcts
L′/K

resL′
−−−−→ kL′

TrL′/L

y
yTrk

L′/kL

Ωcts
L/K −−−−→

resL

kL

Proof. Let M be a standard subfield of L used to define resL; then M ′ = MkL′ may be
used to define resL′ . For ω ∈ Ωcts

L′/K , we have

resL(TrL′/L ω) = resM (TrL/M TrL′/L ω) = resM (TrM ′/M TrL′/M ′ ω).

Apply functoriality for standard fields to see that this equals
TrkL′/kL

(resM ′(TrL′/M ′ ω)) = TrkL′/kL
resL′(ω),

as required.
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Relation of the residue map to that of the residue fields.

We finish this study of residues by proving that the residue map on a mixed character-
istic, two-dimensional local field L lifts the residue map of the residue field L. More
precisely, we claim that the following diagram commutes

Ω
sep
OL/OK

resL−−−−→ OkLy
y

ΩL/K −−−−−−−−→
e(L/kL) resL

kL

where some of the arrows deserve further explanation. The lower horizontal arrow is
e(L/kL) times the usual residue map forL (a local field of finite characteristic); note that
K is a finite subfield of L, and that kL is the constant subfield of L, which we identify
with the residue field of L. Also, the top horizontal arrow is really the composition
Ω

sep
OL/OK

j
→ Ωcts

L/K

resL→ kL; part of our claim is that resL ◦j has image in OkL
.

Combining the identifications ΩL/K = ΩL/kL
and Ωcts

L/K = Ωcts
L/kL

with the natural
surjection Ω

sep
OL/OK

→→ Ω
sep
OL/OkL

, the problem is easily reduced to the case K = kL,
which we now assume to be true.

Let us first suppose that L is a standard field (so that e(L/K) = 1); write L = M for
later clarity, and let t ∈M be a first local parameter. Then Ω

sep
OM/OK

= OM dt by lemma
7.2.18 and so the image of Ω

sep
OM/OK

inside Ωcts
M/K = M dt is OM dt. We need to show

that resM (f dt) = resM (f dt) for all f ∈ OM ; this is clear from the explicit definition of
the residue map for M = K{{t}}.

Now suppose L is arbitrary, choose a first local parameter t ∈ OL, and then choose
a standard subfield M such that M = L, kM = K , and t ∈ M (see lemma 7.2.14). To
continue the proof, we must better understand the structure of Ω

sep
OL/OK

. Let πL denote
a uniformiser of L, so that OL = OM [πL]; let f(X) ∈ OM [X] be the minimal polynomial
of πL, and write f(X) =

∑n
i=0 biX

i. We have our usual exact sequence

0 → Ω
sep
OM/OK

⊗OM
OL → Ω

sep
OL/OK

→ ΩOL/OM
→ 0,

so that Ω
sep
OL/OK

is generated by dt and dπL. Moreover,

0 = d(f(πL)) = f ′(πL) dπL + c dt, (†)

where c =
∑n

i=0
dbi
dt π

i
L. Further, using our exact sequence to see that dt is not torsion,

and from the fact that ΩOL/OM
∼= OL/〈f

′(πL)〉 (using the generator dπL), it is easy to
check that (†) is the only relation between the generators dt and dπL.

We now define a trace map TrOL/OM
: Ω

sep
OL/OK

→ Ω
sep
OM/OK

as follows:

TrOL/OM
(a dπL) = TrL/M (−acf ′(πL)−1) dt

TrOL/OM
(b dt) = TrL/M (b) dt

for a, b ∈ OL. It is important to recall the classical different formula ([Neu99, III.2]; also
see section 7.6)

f ′(π)−1OL = C(OL/OM ) (={x ∈ L : TrL/M (xOL) ⊆ OF }),

to see that this is well-defined. Furthermore, if we base change −⊗OL
L, then we obtain

the usual trace map TrL/M : Ωcts
L/K → Ωcts

M/K .
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By definition of the residue map on L, it is now enough to show that the diagram

Ω
sep
OL/OK

TrOL/OM−−−−−−→ Ω
sep
OM/OKy
y

ΩL/K −−−−−→
×|L:M |

ΩM/K

commutes. Well, for an element of the form b dt ∈ Ω
sep
OL/OK

with b ∈ OL, commutativity
is clear. Now consider an element a dπL ∈ Ω

sep
OL/OK

; the image of this in ΩL/K is zero, so
we must show that TrOL/OM

(a dπL) = 0 in ΩM/K . For this we recall another formula
relating the trace map and different, namely

TrL/M (πiLf
′(πL)−1OL) = π

b i
e
c

M OM ,

where i ∈ Z, e = |L : M |, and b c denotes the greatest integer below (see e.g. [FV02,
Proposition III.1.4]). Since f is an Eisenstein polynomial, νL(dai

dt ) ≥ e for all i, and so
νL(c) ≥ e; by the aforementioned formula, TrL/M (cf ′(πL)−1OL) ⊆ πMOM . This is
what we needed to show, and completes the proof of compatibility between resL and
resL.

Corollary 7.2.23. Let L be a two-dimensional local field of mixed characteristic, and K ≤ L a
local field. Then the following diagram commutes:

Ω
sep
OL/OK

TrkL/K ◦ resL

−−−−−−−−→ OKy
y

ΩL/K −−−−−−−−−−−−−→
e(L/K) TrkL/K ◦ resL

K

Proof. It is enough to combine what we have just proved with the commutativity of

OkL

TrkL/K
−−−−−→ OKy

y
kL −−−−−−−−−−→

e(kL/K) TrkL/K

K

7.3 Reciprocity for two-dimensional, normal, local rings
Now we consider a semi-local situation and prove the promised reciprocity law.

Let A be a two-dimensional, normal, complete, local ring of characteristic zero, with
finite residue field of characteristic p; for the remainder of this section, we will refer to
these collective conditions as (†). Denote by F the field of fractions of A and by mA the
maximal ideal. For each height one prime y C A (we will sometimes write y C 1A), the
localisation Ay is a discrete valuation ring, and we denote by Fy = Frac Ây the corre-
sponding complete discrete valuation field. The residue field of Fy is F y = FracA/y.
Moreover, A/y is a one-dimensional, complete, local domain, and so its field of frac-
tions is a complete discrete valuation field whose residue field is a finite extension of
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the residue field of A/y, which is the same as the residue field of A. Therefore Fy is a
two-dimensional local field of characteristic zero.

SinceA is already complete, there is no confusion caused by writing Ây instead of Ây
(note the different sized hats).

Lemma 7.3.1. There is a unique ring homomorphism Zp → A, and it is a closed embedding.

Proof. The natural embedding j : Z ↪→ A is continuous with respect to the p-adic
topology on Z and the mA-adic topology on A since pnZp ⊆ j−1(mn

A) for all n ≥ 0.
Therefore j extends to a continuous injection j : Zp ↪→ A, which is a closed embedding
since Zp is compact and A is Hausdorff.

Now suppose that φ : Zp → A is an arbitrary ring homomorphism. Then φ−1(mn
A)

is an ideal of Zp which contains pnZ; but every ideal of Zp is closed, and so it contains
pnZp. Therefore φ is continuous; since φ agrees with j on Z, they are equal.

We fix a finite extension OK of Zp inside A, where OK is the ring of integers of a
finite extension K of Qp. For each height one prime y C A, we have K ≤ Fy , and the
constant/coefficient field ky = kFy of Fy is a finite extension of K . There is a natural
map ΩF/K → Ωcts

Fy/K
, so we may define the residue map at y by

resy : ΩF/K → ky, ω 7→ resFy(ω).

It is a nuisance having the residue maps associated to different primes taking values in
different finite extensions of K , so we also introduce

Resy = Trky/K resy : ΩF/K → K.

Our immediate aim, to be deduced in several stages, is the following reciprocity law:

Theorem 7.3.2. Let ω ∈ ΩF/K ; then for all but finitely many height one primes y C A the
residue resy(ω) is zero, and ∑

yC1A

Resy(ω) = 0

in K .

We will also prove an analogous result without the assumption that A is complete;
see theorem 7.3.13.

7.3.1 Reciprocity for OK[[T ]]

We begin by establishing reciprocity forB = OK [[T ]]. More precisely, we shall consider
B ∼= OK [[T ]]; although this may seem to be a insignificant difference, it is important to
understand the intrinsic role of T , especially for the proof of proposition 7.2.19.

Lemma 7.3.3. Let B satisfy conditions (†) and also be regular; let OK ≤ B be the ring of
integers of a local field, and assume thatK = k(mB) and thatB/OK is unramified (i.e. pKB =
mB). Let πK be any prime of K .

Then there exists t ∈ mB such that mB = 〈πK , t〉. If t is any such element, then each f ∈ B
may be uniquely written as a convergent series f =

∑∞
i=0 ait

i, with ai ∈ OK , and this defines
an OK-isomorphism B ∼= OK [[T ]], with t 7→ T .
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Proof. Since πK is non-zero in the k(mB)-vector space mB/m
2
B , which has dimension

two by regularity, there is t ∈ B such that (the images of) πK , t are a basis for this space;
hence mA = 〈πK , t〉.

Now, B/tB is a one-dimensional, complete, regular, local ring, i.e. a complete dis-
crete valuation ring, in which πK is prime. Since tB is prime, tB ∩ OK = {0} and so
OK ↪→ B/tB; but these two complete discrete valuation fields have the same prime
and same residue field, hence are equal.

Any series of the given form converges inB becauseB is complete and aiti belongs to
mi
B . Conversely, for any f ∈ B we may write f ≡ a0 mod tB for some a0 ∈ OK (since

B/tB = OK); then replace f by t−1(f −a0) and repeat the process to obtain the desired
expansion for f . If a series

∑
i≥I ait

i is zero, with aI 6= 0, then we get aItI ∈ tI+1B,
which contradicts the identity tB ∩ OK = {0}.

Now let B, OK , πK , t satisfy the conditions of the previous lemma; set M = FracB.
Using the isomorphism B ∼= OK [[T ]], we may describe the height one primes y of B
(see e.g. [NSW00, Lemma 5.3.7]):

(i) p ∈ y. Then y = πKB, and My is a two-dimensional local field of mixed charac-
teristic which is K-isomorphic to K{{t}} and has constant field ky = K .

(ii) p /∈ y. Then y = hB, where h ∈ OK [t] is an irreducible, Weierstrass polynomials
(i.e. h = td + ad−1t

d−1 + · · · + a0, with ai ∈ pK), and My is a two-dimensional
local field of equal characteristic. The coefficient field ky is the finite extension of
K generated by a root of h. Finally, My is ky-isomorphic to ky((ty)), where ty is a
uniformiser at y, e.g. ty = h.

We need a convenient set of additive generators of M :
Lemma 7.3.4. Each element of M is a finite sum of elements of the form

πnKg

hr
,

with h ∈ OK [t] an irreducible, Weierstass polynomial, r > 0, n ∈ Z, and g ∈ B.
Proof. We begin with an element of M of the form 1/(πr11 π

r2
2 ), with π1, π2 distinct ir-

reducible elements of A, and r1, r2 ≥ 1. Set I = πr11 A + πr22 A; a standard lemma of
intersection theory is that mm

A ⊆ I for m � 0. Thus we may write πmK = g1π
r1
1 + g2π

r2
2

for some g1, g2 ∈ B, and we deduce
1

πr11 π
r2
2

=
πmKg1
πr22

+
πmKg2
πr11

.

Now, a typical element of M has the form a/b, with a, b ∈ A. Since B is a unique
factorisation domain whose prime ideals are as described above, we may write b =
uπrKh

r1
1 · · · hrss where u ∈ B×, the hi are irreducible Weierstass polynomials, and all the

exponents are > 0. Replacing a with u−1a, we may suppose u = 1. Applying the first
part of the proof repeatedly decomposes a/b into a sum of the required form.

We also need to understand the space of relative differential forms:
Lemma 7.3.5. Ω

sep
B/OK

is a free B-module of rank one, with basis dt. For each height one prime
y CB, the natural map ΩB/OK

⊗B B̂y → Ω bBy/OK
descends to an isomorphism

Ω
sep
B/OK

⊗B B̂y
'
→ Ω

sep
bBy/OK

.

Hence there is an induced isomorphism Ω
sep
B/OK

⊗B My
'
→ Ωcts

My/K
.
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Proof. The first claim may be proved in an identical way to lemma 7.2.8. Alternatively,
use remark 7.2.4 to deduce that Ω

sep
B/OK

= ΩOK [t]/OK
⊗OK [t] B.

If y is a height one prime of B then there is a natural map

φ : Ω
sep
B/OK

⊗BB̂y = (ΩOK [t]/OK
⊗OK [t]B)⊗BB̂y = ΩOK [t]/OK

⊗OK [t]B̂y → Ω bBy/OK
→→ Ω

sep
bBy/OK

,

and we shall now construct the inverse of φ. Define an OK -derivation of By by

d1 : By → Ω
sep
B/OK

⊗B B̂y b/s 7→ db⊗ s−1 − b ds⊗ s−2

where b ∈ B, s ∈ B \ y (this is well-defined). Moreover, the right hand side is a finite
B̂y-module, hence is complete and separated for the y-adic topology; so d1 (which is
easily seen to be y-adically continuous) extends from By to B̂y . This derivation then
induces a homomorphism of B̂y-modules Ω bBy/OK

→ Ω
sep
B/OK

⊗B B̂y, and this descends
to

ψ : Ω
sep
bBy/OK

→ Ω
sep
B/OK

⊗B B̂y

since Ω
sep
B/OK

⊗B B̂y is a finitely generated B̂y-module.
It is immediate that ψφ = id. It is also easy to see that φψ(db) = db for any b ∈ By;

since such elements are dense in the Hausdorff space Ω
sep
bBy/OK

, we deduce φψ = id.

In particular, we now know that the residue map at y, initially defined on ΩM/K ,
factors through its quotient Ω

sep
B/OK

⊗B M . We may now prove reciprocity for B:

Theorem 7.3.6. For each ω ∈ Ω
sep
B/OK

⊗BM , the local residue resy ω is zero for all but finitely
many y C1B, and ∑

yC1B

Resy ω = 0

in K .

Proof. By lemmas 7.3.4 and 7.3.5, it is enough to consider the case ω = f dt with

f =
πnKg

hr
,

where h, r, n, g are as in lemma 7.3.4.
Let y = tyB be a prime with ty an irreducible, Weierstrass polynomial. If ty 6= h, then

πnKg/h
r and t both belong to By, and so

coeftt−1
y

(
πnKg

hr
dt

dty

)
= 0

by a basic property of the residue map; i.e. resy(ω) = 0. This establishes our first
assertion. For the remainder of the proof, set y = hA; we must prove that

Resy(ω) + ResπKB(ω) = 0. (∗)

Suppose for a moment that g belongs to OK [t], and consider the rational function
field K(t) ≤M . For any point x of P1

K , let K(t)x be the completion of K(t) at the place
x; then K(t)x is a two-dimensional local field of equal characteristic. Let kx denote its
unique coefficient field containing K , and let resx : Ωcts

Lx/K
→ kx denote the residue
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map. By the assumption on g we have ω ∈ ΩK(t)/K , and global reciprocity for P1
K

implies that
∑

x∈P1
K

Trkx/K resx(ω) = 0.
Further, an argument as at the start of this proof proves that resx(ω) = 0 unless x

corresponds to the irreducible polynomial h, or x = ∞. Moreover, in the first case,
K(t)x = My , kx = ky , and resx(ω) = resy(ω). Therefore to complete the proof (with g
still a polynomial) it is necessary and sufficient to show that

resπKB(ω) = res∞(ω). (∗∗)

Note that the residue map on the left is for a two-dimensional local field of mixed
characteristic, while that on the right is for one of equal characteristic. This passage
between different characteristics is the key to the proof.

To prove (∗∗), write t∞ = t−1, which is a local parameter at ∞, and expand h−r in
K(t)∞ = K((t∞)) as h−r =

∑
i≥I ait

i
∞, say. Since hr is a Weierstrass polynomial, it is

easily checked that ai → 0 in K as i → ∞; therefore the series
∑

i≤−I a−it
i is a well-

defined element of MπkB = K{{t}}. Moreover, since multiplication in both K{{t}} and
K((t∞)) are given by formal multiplication of series, we deduce

hr
∑

i≤−I

a−it
i = 1,

i.e.
∑

i≤−I a−it
i is the series expansion of h−r in MπkB = K{{t}}. Now let

∑
i bit

i
∞ be

the expansion of πnKg/hr of K(t)∞; then
∑

i b−it
i is the formal expansion of πnKg/hr in

MπkB , and so

res∞

(
πnKg

hr
dt

)
= coeftt−1

∞

(
πnKg

hr
dt

dt∞

)

= coeftt−1
∞

(
−t−2
∞

∑

i

bit
i
∞

)

= −b1

= −coeftt−1

∑

i

b−it
i

= resπKB

(
πnKg

hr
dt

)
.

This completes the proof of identity (∗) for g ∈ OK [t]; to prove it in general and
complete the proof, it is enough to check that both sides of (∗) are continuous functions
of g, with respect to the mB-adic topology on B and the discrete valuation topology on
K . This is straightforward, though tedious, and so we omit it.

7.3.2 Reciprocity for complete rings
Now we extend the reciprocity law to the general case. Fix both a ring A satisfying
conditions (†) and the ring of integers of a local field OK ≤ A. Reciprocity for A will
follows in the usual way by realising A as a finite extension of OK [[T ]]:

Lemma 7.3.7. There is a ring B between OK and A which is OK -isomorphic to OK [[T ]], and
such that A is a finite B-module.

Proof. By [Coh46, Theorem 16], A contains a subring B0, over which it is a finitely
generated module, and such that B0 is a two-dimensional, p-adic ring with residue
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field equal to that of A. Supposing that this residue field is Fq, we therefore have an
isomorphism i : Zq[[T ]]

'
→ B0. By the uniqueness of the embedding Zp ↪→ A, it follows

that i(Zp) ⊆ OK . Define

j : OK [[T ]] = Zp[[T ]] ⊗Zp OK → A, f ⊗ α 7→ i(f)α.

The kernel of j is a prime ideal of OK [[T ]] whose contraction to OK is zero. If the
kernel is non-zero then there is an Eisenstein polynomial h ∈ OK [T ] such that that
h(i(T )) = 0 (this follows from the classification of prime ideals in OK [[T ]] discussed
earlier), suggesting that i(T ) is algebraic over OK and hence over Zp; this contradicts
the injectivity of i. Hence j is an isomorphism onto its image, as desired.

Let B be as given by the previous lemma, and write M = FracB, F = FracA. We
now generalise lemma 7.3.5. However, note that if A can be written as the completion
of a localisation of a finitely generated OK -algebra, then the following proof can be
significantly simplified, simply by imitating the proof of lemma 7.3.5; see also lemma
7.3.11.

Lemma 7.3.8. Ω
sep
A/OK

is a finitely generated A-module of rank 1. For each height one prime
y CA, the natural map ΩA/OK

⊗A Ây → Ω bAy/OK
descends to an isomorphism

Ω
sep
A/OK

⊗A Ây
'
→ Ω

sep
bAy/OK

.

Hence there is an induced isomorphism Ω
sep
A/OK

⊗A Fy
'
→ Ωcts

Fy/K
.

Proof. Lemmas 7.3.5 and 7.2.2 imply that there is a natural exact sequence

0 → Ω
sep
B/OK

⊗B A→ Ω
sep
A/OK

→ ΩA/B → 0, (∗)

which proves the first claim since ΩA/B is a finitely generated, torsion A-module.
Now we are going to construct a commutative diagram with exact rows:

0 −−−−→ Ω
sep
B/OK

⊗B Ây −−−−→ Ω
sep
A/OK

⊗A Ây −−−−→ ΩA/B ⊗A Ây −−−−→ 0

ψ′
B

x∼= ψA

x
x∼=

0 −−−−→ Ω
sep
By′/OK

⊗ bBy′
Ây −−−−→ Ω

sep
bAy/OK

−−−−→ Ω bAy/ bBy
−−−−→ 0

The top line is obtained by tensoring (∗) with Ây. For the bottom row, set y′ = y∩B, use
lemma 7.3.5 to see that Ω

sep
By′/OK

is free and that we may therefore apply lemma 7.2.2 to
the tower of rings Ây ≥ B̂y′ ≥ OK . In lemma 7.3.5 we also constructed a natural map

ψB = ψ : Ω
sep
bBy/OK

→ Ω
sep
B/OK

⊗B B̂y;

its definition did not use any special properties ofB and so we may similarly defineψA.
Base change ψB by Ây to obtain the isomorphism ψ′B in the diagram. Finally, one may
see in a number of different ways that there is an isomorphism ΩA/B ⊗A Ây ∼= Ω bAy/ bBy

which is natural enough so that the diagram will commute.
It follows that ψA is an isomorphism, as required.
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The previous lemma implies that Ω
sep
B/OK

⊗BF ∼= Ω
sep
A/OK

⊗AF , and so we have natural
trace maps

TrF/M : Ω
sep
A/OK

⊗A F → Ω
sep
B/OK

⊗B M

TrFY /My
: Ω

sep
B/OK

⊗B FY → Ω
sep
A/OK

⊗AMy,

where Y is a height one prime of A and y = Y ∩ B. Using these we establish the
expected functoriality for our residue maps:

Proposition 7.3.9. Let y be a fixed height one prime of B. Then for all ω ∈ Ω
sep
A/OK

⊗A F , we
have

Resy TrF/M (ω) =
∑

Y |y

ResY (ω),

where Y ranges over the (finitely many) height one primes of A sitting over y.

Proof. Set Ay = A ⊗B By = (B \ y)−1A ⊆ F . Then Ay/By′ is a finite extension of
Dedekind domains, with the maximal ideals of Ay corresponding to the primes Y of A
(necessarily of height one) sitting over y. Therefore, for any x ∈ L, one has the usual
local-global trace formula TrF/M(x) =

∑
Y |y TrFY /My

(x). In terms of differential forms,

TrF/M ω =
∑

Y |y

TrFY /My
ω

for all ω ∈ Ω
sep
A/OK

⊗A F . Applying resy to each side of this expression and using propo-
sitions 7.2.9 and 7.2.22 obtains

resy TrF/M (ω) =
∑

Y |y

TrkY /ky
resY (ω).

Apply Trky/K to complete the proof.

Our desired reciprocity for A follows:

Theorem 7.3.10. For each ω ∈ Ω
sep
A/OK

⊗AF , the local residue resy ω is zero for all but finitely
many y C1A, and ∑

yC1A

Resy ω = 0.

Proof. Standard divisor theory implies that any f ∈ F× belongs toAy for all but finitely
many y C1A. If fdg is a nonzero element of Ω

sep
A/OK

⊗A F , then resY fdg = 0 for any
Y C 1A which satisfies the following conditions: p /∈ Y and f, g ∈ AY . Since all but
finitely many Y satisfy these conditions, we have proved the first claim.

We may now complete the proof with the usual calculation, by reducing reciprocity
via the previous proposition to the already-proved reciprocity for B:

∑

YC1A

Resy ω =
∑

yC1B

∑

Y |y

ResY ω

=
∑

yC1B

Resy(TrF/M ω)

= 0.
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7.3.3 Reciprocity for incomplete rings
We have thus far restricted out attention to complete local rings; we will now remove
the completeness hypothesis. We do not prove reciprocity in the fullest generality, but
restrict to those rings which will later arise from an arithmetic surface. Let OK be a
discrete valuation ring of characteristic zero and with finite residue field, andA ≥ OK a
two-dimensional, normal, local ring with finite residue field of characteristic p; assume
further that A is the localisation of a finitely generated OK -algebra.

Since A is excellent, its completion Â is also normal; therefore Â satisfies conditions
(†), and ÔK ≤ Â is the ring of integers of a local field, as has appeared in the previous
subsections. Write F = Frac Â and K̂ = Frac ÔK .

The following global-to-local isomorphism is extremely useful for explicit calcula-
tions. Since the notation can look confusing, let us mention that if Y is a height one
prime of Â, then the completion of the discrete valuation ring (Â)Y is denoted ̂̂

AY .

Lemma 7.3.11. Let Y be a height one prime of Â; then the natural map

ΩA/OK
⊗A

̂̂
AY → Ω

sep
dbAY / bOK

is an isomorphism.

Proof. One follows the proof of lemma 7.3.5 almost exactly, replacing B by Â and OK [t]
by A. The only additional observation which needs to be made is that the universal
derivation d : Â→ Ω

sep
bA/OK

must be trivial on ÔK , and therefore Ω
sep
bA/OK

= Ω
sep
bA/ bOK

.

For Y C1Â, the previous lemma gives us a natural isomorphism

ΩA/OK
⊗A FY

'
→ Ωcts

FY / bK ,

and we thus pull back the relative residue map of FY /K̂ to get

resY : ΩFracA/K = ΩA/OK
⊗A FracA→ kY ,

where, as usual, kY denote the coefficient/constant field of FY .
More importantly, if y is instead a height one prime of A, then set

Resy =
∑

Y |y

Tr
kY / bK resY : ΩFracA/K → K̂

where Y ranges over the finitely many height one primes of Â sitting over y.
We need a small lemma. We shall say that a prime of Â is transcendental if and only

if its contraction to A is zero; such a prime has height one and does not contain p. The
transcendental primes are artificial in a sense; they have pathological properties (e.g.
if Y is transcendental then FracA ≤ ÂY ) and do not contain interesting information
about A.

Lemma 7.3.12. Let Y be a height one prime of Â. If Y is not transcendental then it is a
prime minimal over yÂ, where y = A ∩ Y . On the other hand, if Y is transcendental, then
resY (ω) = 0 for all ω ∈ ΩFracA/K .
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Proof. Since y = A ∩ Y is non-zero by assumption, so is yÂ. Since yÂ is contained in Y
there is a prime P C Â which is minimal over yÂ and which is contained in Y . But then
P 6= 0 and we have a chain of primes 0C P E Y ; since Y has height 1 in Â, we deduce
Y = P , i.e. Y is minimal over yÂ.

If fdg is a element of ΩFracA/K , then as we remarked above, f and g belong to ÂY ;
therefore resY (fdg) = 0, just as in the proof of theorem 7.3.10.

The reciprocity law for A follows:

Theorem 7.3.13. For any ω ∈ ΩFracA/K , the residue Resy(ω) is non-zero for only finitely
many y C1A, and ∑

yC1A

Resy(ω) = 0

in K̂.

Proof. Immediate from theorem 7.3.10 and the previous lemma.

7.4 Reciprocity laws for arithmetic surfaces
Let OK be a Dedekind domain of characteristic zero and with finite residue fields; de-
note byK its field of fractions. LetX be a curve over OK ; more precisely,X is a normal
scheme, flat and projective over S = SpecOK , whose generic fibre is one dimensional
and irreducible. These assumptions are enough to imply that each special fibre of X is
equidimensional of dimension one. Let η be the generic point of SpecOK ; closed points
will be denoted by s, and we set Ks = Frac ÔK,s, which is a local field of characteristic
zero. Let ΩX/S denote the coherent sheaf of relative differential (one-)forms.

Let x ∈ X be a closed point, and y ⊂ X a curve containing x; let s be the closed
point of S under x. Then A := OX,x satisfies the conditions at the start of subsection
7.3.3, and contains the discrete valuation ring OK,s. Also denote by y C OX,x the local
equation for y at x; then y is a height one prime of A, and we denote by

Resx,y : ΩK(X)/K → Ks

the residue map Resy : ΩFracA/K → Ks.

Theorem 7.4.1. Let ω ∈ ΩK(X)/K , and let x ∈ X be a closed point sitting over s ∈ S. Then
for all but finitely many curves y ⊂ X containing x, the residue Resx,y(ω) is zero, and

∑

y⊂X
y3x

Resx,y(ω) = 0

in the local field Ks.

Proof. This is the simply the geometric statement of theorem 7.3.13.

7.5 Local complete intersection curves
The second part of the chapter now begins, in which we study the relative canonical
sheaf of an arithmetic surface. First we collect together several results about complete
intersections and relative canonical sheaves for relative curves, many of which I learnt
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from Q. Liu’s wonderful book [Liu02]. Let π : X → S be a flat, surjective, local com-
plete intersection, between irreducible, Noetherian, excellent schemes; assume that π
is smooth at the generic point of X . These assumptions are enough to imply that each
fibre Xs is equidimensional of dimension

dimXs = dimX − dimS

and we assume that these fibre are 1 dimensional, i.e. X is a relative curve over S. The
main example to have in mind is an arithmetic surface X over SpecOK , with OK a
Dedekind domain.

Locally, X → S is given by

R ↪→ A = R[T1, . . . , Tr]/I

where R, A are excellent domains, and I is an ideal generated by a regular sequence
f1, . . . , fr−1. There are essentially two different ways to study the behaviour of SpecA→
SpecR, either by embeddingX into r-dimensional affine space over SpecR, or by view-
ing SpecA as a finite cover of the affine line over SpecR. These will both be important
to us, and will give different explicit information about the canonical sheaf.

Set F = K(X) = FracA, K = K(S) = FracR.

7.5.1 Embedding the canonical sheaf into ΩK(X)/K

TheA-module I/I2 is free of rank r− 1, with basis f1, . . . , fr−1 (or rather, the images of
these mod I2), and there is a natural exact sequence of A-modules

I/I2 δ
→ ΩR[T ]/R ⊗R[T ] A→ ΩA/R → 0

(in fact, the leftmost arrow is also injective, as we shall see below in corollary 7.5.2).
The relative canonical module ωA/R is

ωA/R = HomA(det I/I2, A) ⊗A det(ΩR[T ]/R ⊗R[T ] A)

= HomA(det I/I2,det(ΩR[T ]/R ⊗R[T ] A))

where det I/I2 =
∧r−1
A I/I2 and det(ΩR[T ]/R ⊗R[T ] A) =

∧r
A(ΩR[T ]/R ⊗R[T ] A).

Since the generality elucidates the situation, suppose that P1
j
→ P2 → P → 0 is an

exact sequence of A-modules, where P1, P2 are free of ranks r − 1, r respectively. Then
there is a natural map

P → HomR

(∧r−1
A P1,

∧r
A P2

)
, p 7→ 〈n1 ∧ · · · ∧ nr−1 7→ j(n1) ∧ · · · ∧ j(nr−1) ∧ p̌〉

where p̌ ∈ P2 denotes any lift of p. The fact that
∧r
A P1 = 0 implies that this is well-

defined.
Applying this to our situation gives a map of A-modules

cA/R : ΩA/R → ωA/R

which we will now examine in greater detail. Denote by tl the image of Tl in A; the
differentials dt1, . . . , dtr generate ΩA/R as a A-module, so it is enough to understand
cA/R(dtl) for each l. Further, since det I/I2 is an invertible A-module with basis f1 ∧
· · · ∧ fr−1 (we still identify the fl with their images mod I2), it is enough to compute

cA/R(dtl)(f1 ∧ · · · ∧ fr−1) ∈ det(ΩR[T ]/R ⊗R[T ] A).
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Well, chasing the definitions,

cA/R(dtl)(f1 ∧ · · · ∧ fr−1) = δ(f1) ∧ · · · ∧ δ(fr−1) ∧ dTl

= df1 ∧ · · · ∧ dfr−1 ∧ dTl

= det(Dl) dT1 ∧ · · · ∧ dTr,

where

Dl =




∂f1
∂T1

. . . . . . . . . ∂f1
∂Tr...

...
∂fr−1

∂T1
. . . . . . . . . ∂fr−1

∂Tr

0 . . . 1 . . . 0




(the single 1 in the final row occurs in the lth column). Elementary matrix theory implies
that (−1)r+l detDl is equal to the determinant of the matrix obtained from Dl after
removing the final row and the lth column; denote this matrix by ∆l. We have proved
that

cA/R(dtl)(f1 ∧ · · · ∧ fr−1) = (−1)r+l det(∆l) dT1 ∧ · · · ∧ dTr,

where ∆l is the r− 1 by r− 1 matrix obtained by discarding the lth column (i.e. the ∂
∂Tl

terms) from the Jacobian matrix ( ∂fi

∂Tj
)i,j .

The following fact about the matrices ∆l, l = 1, . . . , r − 1 is very important to us:

Lemma 7.5.1. There exists l in the range 1 ≤ l ≤ r − 1 such that det ∆l is non-zero in A.

Proof. We have assumed that the algebraic variety Spec(A⊗RK) is generically smooth
overK , and therefore it contains a smooth closed point x ∈ Spec(A⊗RK). The Jacobian
condition for smoothness asserts that

rank J = r − dimOX,x = r − 1,

where J = ( ∂fi
∂Tj

)i,j is the Jacobian matrix inside k(x) (a finite extension of K). This
means that there is l such that the matrix obtained by removing the l th column from J
is non-singular in k(x); that is, det ∆l /∈ mX,x, which is enough.

Corollary 7.5.2. The map δ : I/I2 → ΩR[T ]/R ⊗R[T ] A is injective.

Proof. Let l be as provided by the previous lemma. It significantly simplifies the nota-
tion with matrices if we assume l = r, without making any essential difference to the
proof. Recall that δ is given by

δ : I/I2 → ΩA[T ]/A ⊗A[T ] B, b modI 7→ db.

Since δ(fi) =
∑r

j=1
∂fi

∂Tj
dTj , the matrix of δ with respect to the bases f1, . . . , fr−1 and

dT1, . . . , dTr is
(
∂fi
∂tj

)

1≤i≤r−1
1≤j≤r

=




∂f1
∂Tr

∆r
...

∂fr−1

∂Tr




(our matrices act on row vectors on the right, rather than column vectors on the left).
If v =

∑r−1
i=1 aif

i is a typical element of I/I2, then we see that the identity δ(v) = 0
implies (a1, . . . , ar−1)∆r = 0, implying that v = 0 by assumption on ∆r.
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More generally, if x is any smooth, closed point of a fibre of SpecA → SpecR, then
the argument of the previous lemma shows that one can find l (depending on x) such
that det ∆l is non-zero in k(x), i.e. det∆l is a unit inAx = OX,x. The explicit description
of cA/R then implies that

cA/R,x : ΩA/R ⊗A Ax → ωA/R ⊗A Ax

is surjective. Further, since π is smooth at x, it is well-known that ΩA/R ⊗A Ax is an
invertible Ax-module. It follows that cA/R,x is an isomorphism. Localising further at
the generic point η of X reveals that

cA/R,η : ΩA/R ⊗A F → ωA/R ⊗A F

is an isomorphism. Since ωA/R is an invertible A-module, it embeds into ωA/R ⊗A F
and we thus obtain a canonical embedding

ωA/R ↪→ ωA/R ⊗A F ∼= ΩA/R ⊗A F

of ωA/R into the one-dimensional F -vector space ΩA/R ⊗A F = ΩF/K .
Conversely, if l satisfies det∆l 6= 0, then since A ⊗R K is reduced, there is a closed

point x of Spec(A ⊗R K) for which det∆l /∈ mX,x, and so x is a smooth point of the
variety Spec(A⊗R K) and the previous argument applies. We summarise:

Proposition 7.5.3. There is a canonical embedding of ωA/R into ΩF/K induced by cA/R. If l
satisfies det∆l 6= 0, then the embedding is explicitly given by

ωA/R ↪→ ΩF/K , 〈f1 ∧ · · · ∧ fr−1 7→ dT1 ∧ · · · ∧ dTr〉 7→ (−1)r+l det(∆l)
−1dtl.

Proof. This follows from the previous discussion and explicit description of cA/F . Note
that 〈f1 ∧ · · · ∧ fr−1 7→ dT1 ∧ · · · ∧ dTr〉 is a basis for the invertible A-module ωA/F and
that ΩF/K is a one-dimensional F -space with basis dtl.

7.5.2 Realising Spec A as a finite cover of A1
R

From the perspective of ramification theory, it is useful to realise X , at least locally, as
a finite cover of the projective line over S. We now explain how this is done. Let l, in
the range 1 ≤ l ≤ r − 1, satisfy det ∆l 6= 0 (this exists by lemma 7.5.1).

Lemma 7.5.4. With l as above, I ∩R[Tl] = 0, and so the surjection R[T ] →→ A restricts to an
embedding R[Tl] ↪→ A; this makes A into a finitely generated, flat R[Tl]-module.

Proof. Denote by tl the image of Tl in A. Just as above, we have an exact sequence of
A-modules

I/I2 δ
→ ΩR[T ]/R[Tl] ⊗R[T ] A→ ΩA/R[Tl] → 0,

where δ is the A-linear map with matrix ∆l, with respect to the bases f1, . . . , fr−1 and
dT1, . . . , dTl−1, dTl+1, . . . , dTr . By assumption, this matrix is non-singular over F , and
so δ is injective. Localising obtains an exact sequence

0 → I/I2 ⊗A F
δF→ ΩR[T ]/R[Tl] ⊗R[T ] F → ΩA/R[Tl] ⊗A F → 0,

and then counting dimensions reveals that δF is an isomorphism and ΩA/R[Tl] ⊗A F =
0. But ΩA/R[Tl] ⊗A F = ΩF/FracR[tl], and so F is a separable, algebraic extension of
FracR[tr]. Since F is finitely generated over FracR, we now see that F/FracR[tl] is a
finite, separable extension.
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LetC ′ denote the integral closure ofR[tl] inside F ; sinceR is excellent,R[tl] is Nagata
and therefore C ′ is a finitely generated R[tl]-module. Since C ′ is integrally closed in
F , we have FracC ′ = F . For any height one prime p of C ′, the localisation C ′p is
a discrete valuation ring. Let C ′pA be the C ′p subalgebra of F generated by A; it is
easy to see, simply because C ′p is a discrete valuation ring, that it is impossible to have
proper inclusions F ⊃ C ′pB ⊃ C ′p. Therefore A ⊆ C ′p; but C ′ is integrally closed, so⋂

pC1C′ C ′p = C ′ and therefore A ⊆ C ′. Hence A is a finitely generatedR[tl]-module.
As remarked in proposition 7.5.3, dtl is notA-torsion in ΩA/R; using the natural maps

(ΩR[Tl]/R ⊗R[Tl] R[tl]) ⊗R[tl] A→ ΩR[tl]/R ⊗R[tl] A→ ΩA/R,

we see that dtl is not R[tl]-torsion in ΩR[Tl]/R ⊗R[Tl] R[tl]. Explicitly, this means that if
g is a polynomial with coefficients in R such that g(tl) = 0, then g′(tl) = 0. Now sup-
pose for a contradiction that R[Tl] → R[tl] is not injective. Then tl is algebraic over K ;
further, ΩF/K is a one-dimensional F -vector space, and so F is a finite, separable exten-
sion of a degree 1 purely transcendental extension of K . This means that the minimal
polynomial g of tl over K is separable. Now take a ∈ R so that ag has coefficients in R.
Then ag is nonzero, ag(tl) vanishes, but ag′(tl) 6= 0, giving the required contradiction.

Flatness of R[tl] → A is proved below; see lemma 7.6.4, taking B = R[tl].

We continue this study of finite morphisms in the next section.

7.6 Finite morphisms, differents and Jacobians
Suppose thatA/B is a finite extension of rings, with corresponding fraction fields F/M
(assumed to be separable). The associated codifferent is the A-module

C(A/B) = {x ∈ F : TrF/M (xA) ⊆ B}.

The aim of this section is to prove that if A is a complete intersection over B, then
the codifferent is a free A-module generated by the determinant of a certain Jacobian
matrix.

I am grateful to L. Xiao for some interesting discussions related to this section.

7.6.1 The case of complete discrete valuation rings
We begin by treating the case of complete discrete valuation rings. Let F/M be a fi-
nite, separable extension of complete discrete valuation fields, with rings of integers
OF /OM . In place of the codifferent, one usually considers the different D(OF /OM ),
which is the OF -fractional ideal defined by

C(OF /OM )D(OF /OM ) = OF

i.e. the complement of the codifferent. Since OF /OM is a finite extension of regular,
local rings, it is a complete intersection

OF = OM [T1, . . . , Tm]/〈f1, . . . , fm〉,

and we set
J(OF /OM ) = det

(
∂fi
∂Tj

)

i,j

OF ,
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which we may as well call the Jacobian ideal. The fact that F/M is separable implies that
the Jacobian ideal is non-zero, and as argued several times in the previous section, we
have an exact sequence

0 → 〈f1, . . . , fm〉/〈f1, . . . , fm〉
2 δ
→ ΩOM [T ]/OM

⊗OM [T ] OF → ΩOF /OM
→ 0.

The matrix of δ with respect to the bases f1, . . . , fm and dT1, . . . , dTm is the Jacobian ma-
trix, and it easily follows (using the Iwasawa decomposition of GLm(F )) that
J(OF /OM ) = plF , where l = lengthOF

ΩOF /OM
; in particular, the Jacobian ideal does

not depend on how we write OF as a complete intersection over OM .
We are going to prove that

J(OF /OM ) = D(OF /OM ). (J = D)

When F/M is monogenic (i.e. we may write OF = OM [α] for some α ∈ OF ), which is
the case whenever the residue field extension of F/M is separable, the equality J = D is
well-known; it states that D(OF /OM ) = g′(α), where g is the minimal polynomial of α
overM . A proof may be found in [Neu99, III.2] (this reference assumes throughout that
the residue field extensions are separable, but the proof remains valid in the general
case).

Several easy lemmas are required, firstly a product formula:

Lemma 7.6.1. Let F ′ be a finite, separable extension of F ; then

D(OF ′/OM ) = D(OF /OM )D(OF ′/OF )

and
J(OF ′/OM ) = J(OF /OM )J(OF ′/OF ).

Proof. The different result is well-known; see e.g. [Neu99, III.2]. We will prove the
Jacobian result. Write OF ′ as a complete intersection over OF

OF ′ = OF [Tm+1, . . . , Tm+n]/〈fm+1, . . . , fm+n〉,

and denote by f̃i a lift of the OF polynomials fi to OM [T1, . . . , Tm+n], for i = m +
1, . . . ,m+ n. Then

OF ′ = OM [T1, . . . , Tm+n]/〈f1, . . . , fm, f̃m+1, . . . , f̃m+n〉

represents OF ′ as a complete intersection over OM , and the Jacobian matrix in OF ′

associated to this complete intersection is



(
∂fi
∂Tj

)
i,j=1,...,m

0
(
∂fi
∂Tj

)
i=m+1,...,m+n

j=1,...,m

(
∂fi
∂Tj

)
i,j=m+1,...,m+n


 .

Since the determinant of this is the product of the determinants of the two square ma-
trices, we are done.

Lemma 7.6.2. Suppose further that F/M is Galois. Then there exists a sequence of intermedi-
ate extensions F = Fs > · · · > F−1 = M such that each extension Fi/Fi−1 is monogenic.
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Proof. Let F0 denote the maximal unramified subextension of M inside F , and F1 the
maximal tamely ramified subextension (and set F−1 = M ). Then F/F1 is an extension
whose residue field extension is purely inseparable, and whose ramification degree is
a power of p (= the residue characteristic, which we assume is > 0, for else we are
done); therefore Gal(F/F1) is a p-group, hence nilpotent, and so there is a sequence of
intermediate fields F = Fm > · · · > F1 such that each Fi is a normal extension of F1

and such that each step is a degree p extension.
Then OF0

= OF−1
[θ] where θ ∈ OF0

is a lift of a generator of F 0/M . Also, OF1
=

OF0
[π] where π is a uniformiser of F1. It remains to observe that any extension of

prime degree Fi/Fi−1 is monogenic. Indeed, it is either totally ramified in which case
OFi = OFi−1

[π′] where π′ is a uniformiser of Fi; or else the ramification degree is 1 and
OFi = OFi−1

[θ′] where θ′ ∈ OFi is a lift of a generator of the degree p extension F i/F i−1

(which may be inseparable).

Combining the previous two lemmas with the validity of J = D in the monogenic
case, we have proved that J = D for any finite, Galois extension F/M . Now suppose
that F/M is finite and separable, but not necessarily normal, and let F ′ be the normal
closure of F over M . The product formula gives us

νF ′(D(OF ′/OM )) = eF ′/F νF (D(OF /OM )) + νF ′(D(OF ′/OF )),

and similarly for J. But the Galois case implies that J = D for F ′/M and F ′/F . We
deduce J(OF /OM ) = D(OF /OM ), which establishes our desired result. To summarise:

Theorem 7.6.3. Let F/M be a finite, separable extension of complete discrete valuation fields.
Write OF as a complete intersection over OM as above, and let J ∈ OF be the determinant of
the Jacobian matrix. Then J 6= 0 and

C(OF /OM ) = J−1OF .

Proof. Replacing C(OF /OM ) by its complementary ideal D(OF /OM ), this is what we
have just proved.

The previous theorem is really an elementary result concerning the ramification the-
ory of complete discrete valuation fields with imperfect residue fields.

7.6.2 The higher dimensional case
We now generalise from complete discrete valuation rings to the general case. LetB be
a Noetherian, normal ring, and

A = B[T1, . . . , Tm]/〈f1, . . . , fm〉

a complete intersection over B which is a finitely generated B-module; assume that A
is normal (this is automatic if B is regular by Serre’s criterion [Liu02, Corollary 8.2.24]).
Set F = FracA, M = FracB, and assume that F/M is separable. For a height one
prime y C B, the localisation By is a discrete valuation ring, and we set My = Frac B̂y;
use similar notation for A.

For any yC1B, it is clear that C(Ay/By) = C(A/B)Ay whereAy = (B\y)−1A, which is
a Dedekind domain. A standard formula for extensions of Dedekind domains [Neu99]
states

C(Ay/By) =
∏

06=YCAy

Y −dY/y ,
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where dY/y = νY (D(ÂY /B̂y)) (here νY denotes the discrete valuation on FY ). But by
theorem 7.6.3, dY/y = νY (J), where J ∈ A is the determinant of the Jacobian matrix(
∂fi

∂Tj

)
i,j

. Therefore

C(Ay/By) = J−1Ay.

To proceed further, we need the following result, which I learned from [Liu02, exercise
6.3.5]:

Lemma 7.6.4. A is flat over B.

Proof. Let q C A be a maximal ideal of A, and let p, Q denote its pullbacks to A,
k(p)[T1, . . . , Tm] respectively; we will first prove that (the images of) f1, . . . , fm form
a regular sequence in k(p)[T1, . . . , Tm]Q. Well, if they do not, then pick s minimally
so that fs is a zero divisor in k(p)[T1, . . . , Tm]Q/〈f1, . . . , fs−1〉. This latter ring (call it
R) is the quotient of a regular, local ring by a regular sequence (by minimality of s),
and hence is Cohen-Macaulay [Mat89, §21]. Any Cohen-Macaulay local ring contains
no embedded primes (and so the zero-divisor fs belongs to a minimal prime of R)
and is equi-dimensional [Eis95, Corollaries 18.10 and 18.11]; together these imply that
dimR = dimR/〈fs〉. Quotienting out by any other fi drops the dimension by at most
one (by Krull’s principal ideal theorem), so we deduce

dim k(p)[T1, . . . , Tm]Q/〈f1, . . . , fm〉 ≥ dimk(p)[T1, . . . , Tm]Q − (m− 1).

But the ring on the left is a localisation of the fibre A ⊗B k(p), which is a finite dimen-
sional k(p)-algebra, and so is zero-dimensional. Hence dimk(p)[T1, . . . , Tm]Q ≤ m− 1,
contradicting the fact that Q is a maximal ideal of k(p)[T1, . . . , Tm].

Secondly, since Bp → B[T1, . . . , Tm]Q is a flat map of local rings, and f1 is not a zero-
divisor in k(p)[T1, . . . , Tm]Q, a standard criterion implies thatBp → B[T1, . . . , Tm]Q/〈f1〉
is flat. Applying this criterion another m− 1 times, we deduce that

Bp → B[T1, . . . , Tm]Q/〈f1, . . . , fm〉 = Aq

is flat.
It is enough to check flatness at the maximal ideals of A, so we are done.

There is a natural map

C(A/B) → HomB(A,B), x 7→ TrF/M (x ·)

and non-degeneracy of the trace map for F/M implies that this is an isomorphism
of A-modules, where A acts on HomB(A,B) by aφ := φ(a ·). For any maximal ideal
m C B, the localisation Am is a flat (by the previous lemma), hence free, Bm-module
of rank n = |F : M |; the importance of this is that it implies that C(A/B)Am is a free
Bm-module of rank n. Using this, we will deduce our main ‘different=Jacobian’ result:

Theorem 7.6.5. The codifferent is an invertible A module, with basis J−1, i.e.

C(A/B) = J−1A.

Proof. It is enough to prove C(A/B)Am = J−1Am for each maximal ideal m C B, and
therefore we will simply assume that B is a local ring; as remarked above, this implies
that C(A/B) is free of rank n. Moreover, J−1A is also free of rank n, and so, by picking
a basis of F ∼= Mn and identifying our two free submodules with submodules of M n,
there is τ ∈ GLn(M) such that τC(A/B) = J−1A.
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Further, for any height one-prime yCB, theorem 7.6.3 implies that (B\y)−1C(A/B) =
(B \ y)−1J−1A, implying that τ ∈ GLn(By). Since B was assumed to be normal, B =⋂
yC1B By and so τ ∈ GLn(B); therefore τC(A/B) = C(A/B), which completes the

proof.

Remark 7.6.6. If P is any A-module, then the natural pairing

HomA(P,C(A/B)) × P → C(A/B)
TrF/M
→ B

induces a B-linear map

HomA(P,C(A/B)) → HomB(P,B),

which is easily checked to be an isomorphism (using non-degeneracy of TrF/M ). Thus
C(A/B) is exactly the Grothendieck dualising module of SpecA → SpecB (which is
projective since it is finite, and flat by lemma 7.6.4).

One also has the relative canonical module

ωA/B = HomA

(
m∧

A

〈f1, . . . , fm〉/〈f1, . . . , fm〉
2,

m∧

A

(ΩB[T ]/B ⊗B[T ] A)

)
,

and a natural map
A→ ωA/B , b 7→ b δ∧m (∗)

where δ is the map in the exact sequence

0 → 〈f1, . . . , fm〉/〈f1, . . . , fm〉
2 δ
→ ΩB[T ]/B ⊗B[T ] A→ ΩA/B → 0.

Moreover, (∗) is an isomorphism at any point x ∈ SpecA at which SpecA → SpecB
is smooth, such as the generic point since F/M is separable. This therefore defines a
natural embedding of A-modules ωA/B ↪→ F given by

〈f1 ∧ · · · ∧ fm 7→ dT1, · · · ∧ dTm〉 7→ J−1

i.e. ωA/B ∼= J−1A. This is the generalisation of subsection 7.5.1 to the case of a finite
extension, rather than one of relative dimension one.

In conjunction with theorem 7.6.5, we have produced a reasonably natural (though it
depends on how we write A as a complete intersection over B) isomorphism between
the dualising and canonical sheaves.

This material is surely known to experts, and there are similar results in [Kle80]; a
comprehensive discussion must be buried somewhere in SGA or EGA1.

7.7 Explicit construction of the canonical sheaf for arithmetic
surfaces

Now we turn to the main global content of this chapter, namely using the residue maps
to construct the canonical sheaf of an arithmetic surface. We begin with the affine case.

1J.-P. Serre gave a talk at Harvard’s ‘Basic Notions’ seminar, 10 November 2003, entitled “Writing
Mathematics?”, in which he explains how to write mathematics badly. He explains that if you wish to
give a reference which can not be checked by the reader, then you should ideally refer, without any page
references, to the complete works of Euler, but “if you refer to SGA or EGA, you have a good chance
also”. The reader interested in verifying this reference should consult timeframe 4.11–4.20 of the video at
http://modular.fas.harvard.edu/edu/basic/serre/.
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Let OK be a Dedekind domain of characteristic zero with finite residue fields; its field
of fractions is K . We suppose that we are given a finitely generated, flat OK -algebra
A, which is normal and two-dimensional. Assume further that there is an intermediate
ring B

OK ≤ B ≤ A

such that B ∼= OK [T ] and such that A is a finitely generated, flat B-module. Finally, set
F = FracA, M = FracB, and assume that F/M is separable. It follows that ΩF/K is a
one-dimensional F -vector space, with basis dT .

If 0C yCx is a chain of primes in A, thenAx is a two-dimensional, normal, local ring
containing the discrete valuation ring OK,s(x), where s(x) = OK ∩ x. Therefore, as in
section 7.4, we have the residue map Resx,y : ΩF/K → Ks(x) whereKs(x) = Frac ÔK,s(x).
The situation is similar with B in place of A.

We begin by establishing a functoriality result which we could have proved in section
7.3:

Proposition 7.7.1. Let ω ∈ ΩF/K , and let 0C y C xCB be a chain of primes in B. Then

Resx,y TrF/M(ω) =
∑

x′,y′

Resx′,y′(ω)

where the sum is taken over all chains 0C y ′Cx′CA such that x′ sits over x and y′ sits over y.

Proof. Let x be a fixed maximal ideal of B; then A ⊗B B̂x =
⊕

x′|x Âx′ where x′ ranges
over the finitely many maximal ideals of A sitting over x. The B̂x-modules Âx′ are flat,
hence free, and so by choosing bases for them we may define trace maps TrdAx′/

cBx
in

the usual way. Passing to the fields of fractions obtains

TrF/M =
∑

x′|x

Tr
Frac dAx′/Frac cBx

,

a result which is of course very well known for Dedekind domains.
Let Y be a height one prime of B̂x. Then, for ω ∈ ΩF/K ,

ResY TrF/M ω =
∑

x′|x

ResY Tr
Frac dAx′/Frac cBx

ω

(∗)
=
∑

x′|x

∑

Y ′|Y

ResY ′ ω

where Y ′ ranges over the height one primes of Âx′ sitting over Y , and equality (∗)
follows from proposition 7.3.9. Now fix a height one prime y of B contained inside x;
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then

Resx,y TrF/M ω =
∑

YC cBx
Y |y

ResY TrF/M ω

=
∑

YC cBx
Y |y

∑

x′|x

∑

Y ′|Y

ResY ′ ω

=
∑

x′|x

∑

y′CAx′

y′|y

∑

Y ′
CdAx′

Y ′|y′

∑

Y ′|Y

ResY ′ ω

=
∑

x′|x

∑

y′CAx′

y′|y

Resy′ ω,

which is the required result.

We now introduce the following A-submodule of ΩF/K defined in terms of residues

WA/OK
= {ω ∈ ΩF/K : Resx,y(fω) ∈ ÔK,s(x) for all 0C y C xCA and f ∈ Ay}.

Similarly define WB/OK
.

Suppose that ω ∈ WA/OK
and y C x is a chain in A. We remarked at the end of the

proof of theorem 7.3.6 that each residue map on a two-dimensional, complete, normal
local ring is continuous with respect to the adic topology on the ring and the discrete
valuation topology on the local field (this is easy to prove for OK [[T ]] and follows in
the general case using functoriality). Therefore Resx,y(fω) ∈ ÔK,s(x) for all f ∈ Âx.
Another continuity argument even implies that this remains true for f ∈ (Âx)y.

Now, yÂx is a radical ideal of Âx; localising and completing with respect to this ideal
obtains

((̂Âx)y =
⊕

Y |y

(̂Âx)Y

where Y ranges over the height one primes of Âx sitting over y. Each Ox,Y := (̂Âx)Y is
a complete discrete valuation ring whose field of fractions is a two-dimensional local
field, which we will denote Fx,Y . Note that Resx,y =

∑
Y ResFx,Y

by definition.
Fix a particular height one prime Y0 of Âx over y. Since (Âx)y is dense in

⊕
Y |yOx,Y

with respect to the discrete valuation topologies, there is h ∈ (Âx)y which is Y0-adically
close to 1 and Y -adically close to 0 for Y 6= Y0. More precisely, since each residue
map ResFx,Y

is continuous with respect to the discrete valuation topologies on Fx,Y
and Ks(x), we may take h to satisfy

(i) ResFx,Y
(hOx,Y ω) ⊆ ÔK,s(x) for Y 6= Y0;

(ii) ResFx,Y0
((h− 1)Ox,Y0

)ω) ⊆ ÔK,s(x).

Replacing f by hf , it follows that ResFx,Y0
(fω) ∈ ÔK,s(x) for all f ∈ (Âx)y , and therefore

for all f ∈ Ox,Y0
by continuity. To summarise:

Lemma 7.7.2. Let ω ∈ ΩF/K ; then ω ∈ WA/OK
if and only if ResFx,Y

(fω) ∈ ÔK,s(x) for all
maximal ideals xCA, all height one primes Y C Âx, and all f ∈ Ox,Y .
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Proof. The implication ⇐ is trivial, and we have just proved ⇒.

Next we reduce the calculation of WA/OK
to that of WB/OK

:

Lemma 7.7.3. Let ω ∈ ΩF/K ; then ω ∈ WA/OK
if and only if TrF/M (gω) ∈ WB/OK

for all
g ∈ A.

Proof. The implication ⇐ follows from proposition 7.7.1. Let us fix a chain y C x in B
and suppose that Resx,y(f TrF/M (gω)) ∈ ÔK,s(x) for all g ∈ A, f ∈ By; so

∑

x′,y′

Resx′,y′(gω) ∈ ÔK,s(x) (∗)

for all g ∈ Ay by proposition 7.7.1. Since we have Âx = ⊕x′|xÂx′ , it follows that if ξ
is a fixed maximal ideal of A over x, then there is h ∈ A which is close to 1 ξ-adically
and close to 0 x′-adically for any other maximal ideal x′ 6= ξ over x. More precisely,
as we remarked at the end of the proof of theorem 7.3.6, each residue map on a two-
dimensional, complete, normal local ring is continuous with respect to the adic topol-
ogy on the ring and the discrete valuation topology on the local field (this is easy to
prove for OK [[T ]] and follows in the general case using functoriality); we may find h
such that

(i) Resx′,y′(hAx′ω) ⊆ OK,s(x) for x′ 6= ξ and y′ C x′ over y;

(ii) Resξ,y′((h − 1)Aξω) ⊆ OK,s(x) for y′ C ξ over y.

Replacing g by gh in (∗) obtains
∑

y′Cξ
y′|y

Resξ,y′(gω) ∈ ÔK,s(x)

for all g ∈ A. This sum is equal to
∑

y′C1 cAξ

y′|y

Resy′(gω),

and we may now repeat the argument, similarly to how we proved the previous lemma,
by completing at y instead of x, and using the fact that the residue map on a two-
dimensional local field is continuous with respect to the valuation topology. This gives
Resξ,y′(gω) ∈ ÔK,s(x) for all g ∈ Ay′ , for any y′C ξ over y. This completes the proof.

We may now establish our main result in the affine case, relating WA/OK
to the cod-

ifferent of A/B. The proof requires explicit arguments using residues, and uses the
results and notation of sections 7.2 and 7.3.

Theorem 7.7.4. We have WA/OK
= C(A/B)dT .

Proof. Since ΩF/K = F dT it is enough, by the previous lemma, to prove that WB/OK
=

B dT . Let ω = h dT ∈ ΩM/K , where h ∈ M ; we wish to prove h ∈ B. As it makes the
argument slightly more conceptual, we shall prove this merely under the assumption
that B is smooth over OK (which is certainly true for B = OK [T ]). Fix a maximal
ideal x C B and write s = s(x), C = B̂x, N = FracC for simplicity; let π ∈ OK,s be a
uniformiser at s.
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If y is a height one prime of C which does not contain π, then π−1 ∈ Cy and so

Resy(fω) ∈ ÔK,s for all f ∈ Ĉy ⇐⇒ Resy(fω) = 0 for all f ∈ Ĉy.

Note that in the notation earlier in this section, Ĉy = Ox,y. Further, non-degeneracy of
the trace map from the coefficient field ky to Ks implies

Resy(fω) = 0 for all f ∈ Ĉy ⇐⇒ resy(fω) = 0 for all f ∈ Ĉy.

Let t ∈ Cy be a uniformiser at y; then ω = h dTdt dt and it easily follows from the defini-
tion of the residue map on the equi-characteristic two-dimensional field Ny bC = Mx,y

∼=

ky((t)) that
resy(fω) = 0 for all f ∈ Ĉy ⇐⇒ h

dT

dt
∈ Ĉy.

Finally, we have identifications

Ĉy dT = ΩB/OK
⊗B Ĉy ∼= Ω

sep
cCy/ bOK,s

= Ĉy dt,

with the isomorphism coming from lemma 7.3.11, and dT corresponding to dT
dt dt.

Hence dT
dt is a unit in Ĉy , and so

resy(fω) = 0 for all f ∈ Ĉy ⇐⇒ h ∈ Cy.

Now we consider the prime(s) containing π. The special fibre B/πB is smooth, and
so C/πC is a complete, regular, one-dimensional local ring, i.e. a complete discrete
valuation ring, and πC is prime in C . Therefore πC is the only height one prime of C
which contains π. Further, π is a uniformiser in the two-dimensional local field NπA =
Mx,πA, and therefore by corollary 7.2.16 there is an isomorphism FπC ∼= kπC{{t}}, and
moreover kπC is an unramified extension of Ks. It easily follows from the definition of
the residue map in this case that

resπC(fω) ∈ Ok
π bC

for all f ∈ ĈπC ⇐⇒ h ∈ CπC .

The fact that the extension kπC/K of local fields is unramified now implies

ResπC(fω) ∈ Ok
π bC

for all f ∈ ĈπC ⇐⇒ h ∈ CπC .

Hence,

ResMx,y(fω) ∈ ÔK,s for all y C1B̂x and f ∈ Ox,y ⇐⇒ h ∈ (B̂x)y for all y C1B̂x.

But B̂x is normal, so
⋂
yC1 cBx

(B̂x)y = B̂x. We deduce that ω belongs to WB/OK
if and

only if h ∈ Bx for all x, which holds if and only if h ∈ B. This completes the proof.

7.7.1 The main global result
All the required results have been established, and we now may now present the proof
of our main theorem. Let OK be a Dedekind domain of characteristic zero with finite
residue fields; its field of fractions is K . Let π : X → S = SpecOK be a flat, surjective,
local complete intersection, with smooth, connected, generic fibre of dimension 1.
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Theorem 7.7.5. The canonical sheaf ωX/S of X → S is explicitly given by, for open U ⊆ X ,

ωX/S(U) = {ω ∈ ΩK(X)/K : Resx,y(fω) ∈ ÔK,π(x) for all x ∈ y ⊂ U and f ∈ OX,y}

where x runs over all closed points of X inside U and y runs over all curves containing x.

Proof. This reduces to the affine situation of U = SpecA, with

A = OK [T1, . . . , Tr]/I

where I is an ideal generated by a regular sequence f1, . . . , fr−1 (we may also need to
localise OK away from finitely many primes, but we will continue to write OK ).

By subsection 7.5.1, we can choose l so that, setting B = OK [tl], the extensionA/B is
a finite complete intersection with a separable fraction field extension. Further, ωA/OK

was identified with det ∆l dtl ⊆ ΩK(X)/K , where ∆l is the matrix obtained by discard-
ing the lth column (i.e. the ∂

∂Tl
terms) from the Jacobian matrix ( ∂fi

∂Tj
)i,j . Therefore ∆l is

exactly the Jacobian of the complete intersectionA/B, and so det∆l = J in the notation
of section 7.6; moreover, by theorem 7.6.5, we have J−1A = C(A/B). Combining this
with theorem 7.7.4 completes the proof.
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