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Chapter 9. L’HÔPITAL’S RULE 53
9.1. Background 53
9.2. Exercises 54
9.3. Problems 56
9.4. Answers to Odd-Numbered Exercises 57

Chapter 10. MONOTONICITY AND CONCAVITY 59
10.1. Background 59
10.2. Exercises 60
10.3. Problems 65
10.4. Answers to Odd-Numbered Exercises 66

Chapter 11. INVERSE FUNCTIONS 69
11.1. Background 69
11.2. Exercises 70
11.3. Problems 72
11.4. Answers to Odd-Numbered Exercises 74

Chapter 12. APPLICATIONS OF THE DERIVATIVE 75
12.1. Background 75
12.2. Exercises 76
12.3. Problems 82
12.4. Answers to Odd-Numbered Exercises 84

Part 4. INTEGRATION OF FUNCTIONS OF A SINGLE VARIABLE 87

Chapter 13. THE RIEMANN INTEGRAL 89
13.1. Background 89
13.2. Exercises 90
13.3. Problems 93
13.4. Answers to Odd-Numbered Exercises 95

Chapter 14. THE FUNDAMENTAL THEOREM OF CALCULUS 97
14.1. Background 97
14.2. Exercises 98
14.3. Problems 102
14.4. Answers to Odd-Numbered Exercises 105

Chapter 15. TECHNIQUES OF INTEGRATION 107
15.1. Background 107
15.2. Exercises 108
15.3. Problems 115
15.4. Answers to Odd-Numbered Exercises 118



CONTENTS v

Chapter 16. APPLICATIONS OF THE INTEGRAL 121
16.1. Background 121
16.2. Exercises 122
16.3. Problems 127
16.4. Answers to Odd-Numbered Exercises 130

Part 5. SEQUENCES AND SERIES 131

Chapter 17. APPROXIMATION BY POLYNOMIALS 133
17.1. Background 133
17.2. Exercises 134
17.3. Problems 136
17.4. Answers to Odd-Numbered Exercises 137

Chapter 18. SEQUENCES OF REAL NUMBERS 139
18.1. Background 139
18.2. Exercises 140
18.3. Problems 143
18.4. Answers to Odd-Numbered Exercises 144

Chapter 19. INFINITE SERIES 145
19.1. Background 145
19.2. Exercises 146
19.3. Problems 148
19.4. Answers to Odd-Numbered Exercises 149

Chapter 20. CONVERGENCE TESTS FOR SERIES 151
20.1. Background 151
20.2. Exercises 152
20.3. Problems 155
20.4. Answers to Odd-Numbered Exercises 156

Chapter 21. POWER SERIES 157
21.1. Background 157
21.2. Exercises 158
21.3. Problems 164
21.4. Answers to Odd-Numbered Exercises 166

Part 6. SCALAR FIELDS AND VECTOR FIELDS 169

Chapter 22. VECTOR AND METRIC PROPERTIES of Rn 171
22.1. Background 171
22.2. Exercises 174
22.3. Problems 177
22.4. Answers to Odd-Numbered Exercises 179

Chapter 23. LIMITS OF SCALAR FIELDS 181
23.1. Background 181
23.2. Exercises 182
23.3. Problems 184
23.4. Answers to Odd-Numbered Exercises 185

Part 7. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES 187



vi CONTENTS

Chapter 24. PARTIAL DERIVATIVES 189
24.1. Background 189
24.2. Exercises 190
24.3. Problems 192
24.4. Answers to Odd-Numbered Exercises 193

Chapter 25. GRADIENTS OF SCALAR FIELDS AND TANGENT PLANES 195
25.1. Background 195
25.2. Exercises 196
25.3. Problems 199
25.4. Answers to Odd-Numbered Exercises 201

Chapter 26. MATRICES AND DETERMINANTS 203
26.1. Background 203
26.2. Exercises 207
26.3. Problems 210
26.4. Answers to Odd-Numbered Exercises 213

Chapter 27. LINEAR MAPS 215
27.1. Background 215
27.2. Exercises 217
27.3. Problems 219
27.4. Answers to Odd-Numbered Exercises 221

Chapter 28. DEFINITION OF DERIVATIVE 223
28.1. Background 223
28.2. Exercises 224
28.3. Problems 226
28.4. Answers to Odd-Numbered Exercises 227

Chapter 29. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLLES 229
29.1. Background 229
29.2. Exercises 232
29.3. Problems 234
29.4. Answers to Odd-Numbered Exercises 237

Chapter 30. MORE APPLICATIONS OF THE DERIVATIVE 239
30.1. Background 239
30.2. Exercises 241
30.3. Problems 243
30.4. Answers to Odd-Numbered Exercises 244

Part 8. PARAMETRIZED CURVES 245

Chapter 31. PARAMETRIZED CURVES 247
31.1. Background 247
31.2. Exercises 248
31.3. Problems 255
31.4. Answers to Odd-Numbered Exercises 256

Chapter 32. ACCELERATION AND CURVATURE 259
32.1. Background 259
32.2. Exercises 260
32.3. Problems 263



CONTENTS vii

32.4. Answers to Odd-Numbered Exercises 265

Part 9. MULTIPLE INTEGRALS 267

Chapter 33. DOUBLE INTEGRALS 269
33.1. Background 269
33.2. Exercises 270
33.3. Problems 274
33.4. Answers to Odd-Numbered Exercises 275

Chapter 34. SURFACES 277
34.1. Background 277
34.2. Exercises 278
34.3. Problems 280
34.4. Answers to Odd-Numbered Exercises 281

Chapter 35. SURFACE AREA 283
35.1. Background 283
35.2. Exercises 284
35.3. Problems 286
35.4. Answers to Odd-Numbered Exercises 287

Chapter 36. TRIPLE INTEGRALS 289
36.1. Background 289
36.2. Exercises 290
36.3. Answers to Odd-Numbered Exercises 293

Chapter 37. CHANGE OF VARIABLES IN AN INTEGRAL 295
37.1. Background 295
37.2. Exercises 296
37.3. Problems 298
37.4. Answers to Odd-Numbered Exercises 299

Chapter 38. VECTOR FIELDS 301
38.1. Background 301
38.2. Exercises 302
38.3. Answers to Odd-Numbered Exercises 304

Part 10. THE CALCULUS OF DIFFERENTIAL FORMS 305

Chapter 39. DIFFERENTIAL FORMS 307
39.1. Background 307
39.2. Exercises 309
39.3. Problems 310
39.4. Answers to Odd-Numbered Exercises 311

Chapter 40. THE EXTERIOR DIFFERENTIAL OPERATOR 313
40.1. Background 313
40.2. Exercises 315
40.3. Problems 316
40.4. Answers to Odd-Numbered Exercises 317

Chapter 41. THE HODGE STAR OPERATOR 319
41.1. Background 319
41.2. Exercises 320



viii CONTENTS

41.3. Problems 321
41.4. Answers to Odd-Numbered Exercises 322

Chapter 42. CLOSED AND EXACT DIFFERENTIAL FORMS 323
42.1. Background 323
42.2. Exercises 324
42.3. Problems 325
42.4. Answers to Odd-Numbered Exercises 326

Part 11. THE FUNDAMENTAL THEOREM OF CALCULUS 327

Chapter 43. MANIFOLDS AND ORIENTATION 329
43.1. Background—The Language of Manifolds 329
Oriented points 330
Oriented curves 330
Oriented surfaces 330
Oriented solids 331
43.2. Exercises 332
43.3. Problems 334
43.4. Answers to Odd-Numbered Exercises 335

Chapter 44. LINE INTEGRALS 337
44.1. Background 337
44.2. Exercises 338
44.3. Problems 342
44.4. Answers to Odd-Numbered Exercises 343

Chapter 45. SURFACE INTEGRALS 345
45.1. Background 345
45.2. Exercises 346
45.3. Problems 348
45.4. Answers to Odd-Numbered Exercises 349

Chapter 46. STOKES’ THEOREM 351
46.1. Background 351
46.2. Exercises 352
46.3. Problems 356
46.4. Answers to Odd-Numbered Exercises 358

Bibliography 359

Index 361



Preface

This is a set of exercises and problems for a (more or less) standard beginning calculus sequence.
While a fair number of the exercises involve only routine computations, many of the exercises and
most of the problems are meant to illuminate points that in my experience students have found
confusing.

Virtually all of the exercises have fill-in-the-blank type answers. Often an exercise will end

with something like, “ . . . so the answer is a
√

3 +
π

b
where a = and b = .” One

advantage of this type of answer is that it makes it possible to provide students with feedback on a
substantial number of homework exercises without a huge investment of time. More importantly,
it gives students a way of checking their work without giving them the answers. When a student

works through the exercise and comes up with an answer that doesn’t look anything like a
√

3 +
π

b
,

he/she has been given an obvious invitation to check his/her work.
The major drawback of this type of answer is that it does nothing to promote good communi-

cation skills, a matter which in my opinion is of great importance even in beginning courses. That
is what the problems are for. They require logically thought through, clearly organized, and clearly
written up reports. In my own classes I usually assign problems for group work outside of class.
This serves the dual purposes of reducing the burden of grading and getting students involved in
the material through discussion and collaborative work.

This collection is divided into parts and chapters roughly by topic. Many chapters begin with
a “background” section. This is most emphatically not intended to serve as an exposition of the
relevant material. It is designed only to fix notation, definitions, and conventions (which vary
widely from text to text) and to clarify what topics one should have studied before tackling the
exercises and problems that follow.

The flood of elementary calculus texts published in the past half century shows, if nothing else,
that the topics discussed in a beginning calculus course can be covered in virtually any order. The
divisions into chapters in these notes, the order of the chapters, and the order of items within a
chapter is in no way intended to reflect opinions I have about the way in which (or even if) calculus
should be taught. For the convenience of those who might wish to make use of these notes I have
simply chosen what seems to me one fairly common ordering of topics. Neither the exercises nor the
problems are ordered by difficulty. Utterly trivial problems sit alongside ones requiring substantial
thought.

Each chapter ends with a list of the solutions to all the odd-numbered exercises.
The great majority of the “applications” that appear here, as in most calculus texts, are best

regarded as jests whose purpose is to demonstrate in the very simplest ways some connections
between physical quantities (area of a field, volume of a silo, speed of a train, etc.) and the
mathematics one is learning. It does not make these “real world” problems. No one seriously
imagines that some Farmer Jones is really interested in maximizing the area of his necessarily
rectangular stream-side pasture with a fixed amount of fencing, or that your friend Sally just
happens to notice that the train passing her is moving at 54.6 mph. To my mind genuinely
interesting “real world” problems require, in general, way too much background to fit comfortably
into an already overstuffed calculus course. You will find in this collection just a very few serious
applications, problem 15 in Chapter 29, for example, where the background is either minimal or
largely irrelevant to the solution of the problem.

ix



x PREFACE

I make no claims of originality. While I have dreamed up many of the items included here,
there are many others which are standard calculus exercises that can be traced back, in one form or
another, through generations of calculus texts, making any serious attempt at proper attribution
quite futile. If anyone feels slighted, please contact me.

There will surely be errors. I will be delighted to receive corrections, suggestions, or criticism
at

erdman@pdx.edu

I have placed the the LATEX source files on my web page so that anyone who wishes can download
the material, edit it, add to it, and use it for any noncommercial purpose.



Part 1

PRELIMINARY MATERIAL





CHAPTER 1

INEQUALITIES AND ABSOLUTE VALUES

1.1. Background

Topics: inequalities, absolute values.

1.1.1. Definition. If x and a are two real numbers the distance between x and a is |x− a|. For
most purposes in calculus it is better to think of an inequality like |x− 5| < 2 geometrically rather
then algebraically. That is, think “The number x is within 2 units of 5,” rather than “The absolute
value of x minus 5 is strictly less than 2.” The first formulation makes it clear that x is in the open
interval (3, 7).

1.1.2. Definition. Let a be a real number. A neighborhood of a is an open interval (c, d)
in R which contains a. An open interval (a − δ, a + δ) which is centered at a is a symmetric
neighborhood (or a δ-neighborhood) of a.

1.1.3. Definition. A deleted (or punctured) neighborhood of a point a ∈ R is an open
interval around a from which a has been deleted. Thus, for example, the deleted δ-neighborhood
about 3 would be (3− δ, 3 + δ) \ {3} or, using different notation, (3− δ, 3) ∪ (3, 3 + δ).

1.1.4. Definition. A point a is an accumulation point of a set B ⊆ R if every deleted neigh-
borhood of a contains at least one point of B.

1.1.5. Notation (For Set Operations). Let A and B be subsets of a set S. Then

(1) x ∈ A ∪B if x ∈ A or x ∈ B (union);
(2) x ∈ A ∩B if x ∈ A and x ∈ B (intersection);
(3) x ∈ A \B if x ∈ A and x /∈ B (set difference); and
(4) x ∈ Ac if x ∈ S \A (complement).

If the set S is not specified, it is usually understood to be the set R of real numbers or, starting in
Part 6, the set Rn, Euclidean n-dimensional space.

3



4 1. INEQUALITIES AND ABSOLUTE VALUES

1.2. Exercises

(1) The inequality |x − 2| < 6 can be expressed in the form a < x < b where a = and
b = .

(2) The inequality −15 ≤ x ≤ 7 can be expressed in the form |x− a| ≤ b where
a = and b = .

(3) Solve the equation |4x+ 23| = |4x− 9|. Answer: x = .

(4) Find all numbers x which satisfy |x2 + 2| = |x2 − 11|.
Answer: x = and x = .

(5) Solve the inequality
3x

x2 + 2
≥ 1

x− 1
. Express your answer in interval notation.

Answer: [ , ) ∪ [ 2 , ) .

(6) Solve the equation |x− 2|2 + 3|x− 2| − 4 = 0.

Answer: x = and x = .

(7) The inequality −4 ≤ x ≤ 10 can be expressed in the form |x− a| ≤ b where a = and
b = .

(8) Sketch the graph of the equation x− 2 = |y − 3|.
(9) The inequality |x + 4| < 7 can be expressed in the form a < x < b where a = and

b = .

(10) Solve the inequality |3x+ 7| < 5. Express your answer in interval notation.

Answer: ( , ).

(11) Find all numbers x which satisfy |x2 − 9| = |x2 − 5|.
Answer: x = and x = .

(12) Solve the inequality

∣∣∣∣2x2 − 3

14

∣∣∣∣ ≤ 1

2
. Express your answer in interval notation.

Answer: [ , ].

(13) Solve the inequality |x− 3| ≥ 6. Express your answer in interval notation.

Answer: ( , ] ∪ [ , ) .

(14) Solve the inequality
x

x+ 2
≥ x+ 3

x− 4
. Express your answer in interval notation.

Answer: ( , ) ∪ [ , ).

(15) In interval notation the solution set for the inequality
x+ 1

x− 2
≤ x+ 2

x+ 3
is (−∞, ) ∪ [ , 2 ).

(16) Solve the inequality
4x2 − x+ 19

x3 + x2 + 4x+ 4
≥ 1. Express your answer in interval notation.

Answer: ( , ].

(17) Solve the equation 2|x+ 3|2 − 15|x+ 3|+ 7 = 0.

Answer: x = , x = , x = , and x = .

(18) Solve the inequality x ≥ 1 +
2

x
. Express your answer in interval notation.

Answer: [ , 0 ) ∪ [ , ).



1.3. PROBLEMS 5

1.3. Problems

(1) Let a, b ∈ R. Show that | |a| − |b| | ≤ |a− b|.
(2) Let a, b ∈ R. Show that |ab| ≤ 1

2(a2 + b2).



6 1. INEQUALITIES AND ABSOLUTE VALUES

1.4. Answers to Odd-Numbered Exercises

(1) −4, 8

(3) −7

4

(5) [−1
2 , 1) ∪ [2,∞)

(7) 3, 7

(9) −11, 3

(11) −
√

7,
√

7

(13) (−∞,−3] ∪ [9,∞)

(15) (−∞,−3) ∪ [−7
4 , 2)

(17) −10, −7

2
, −5

2
, 4



CHAPTER 2

LINES IN THE PLANE

2.1. Background

Topics: equations of lines in the plane, slope, x- and y-intercepts, parallel and perpendicular lines.

2.1.1. Definition. Let (x1, y1) and (x2, y2) be points in the plane such that x1 6= x2. The slope
of the (nonvertical straight) line L which passes through these points is

m
L

:=
y2 − y1
x2 − x1

.

The equation for L is
y − y0 = m

L
(x− x0)

where (x0, y0) is any point lying on L. (If the line L is vertical (that is, parallel to the y-axis) it
is common to say that it has infinite slope and write m

L
= ∞. The equation for a vertical line is

x = x0 where (x0, y0) is any point lying on L.)
Two nonvertical lines L and L ′ are parallel if their respective slopes m

L
and m

L ′
are equal.

(Any two vertical lines are parallel.) They are perpendicular if their respective slopes are negative

reciprocals; that is, if m
L ′

=
1

m
L

. (Vertical lines are always perpendicular to horizontal lines.)

7



8 2. LINES IN THE PLANE

2.2. Exercises

(1) The equation of the line passing through the points (−7,−3) and (8, 2) is ay = x+b where
a = and b =

(2) The equation of the perpendicular bisector of the line segment joining the points (2,−5)
and (4, 3) is ax+ by + 1 = 0 where a = and b = .

(3) Let L be the line passing through the point (4, 9) with slope 3
4 . The x-intercept of L is

and its y-intercept is .

(4) The equation of the line which passes through the point (4, 2) and is perpendicular to the
line x+ 2y = 1 is ax+ by + 1 = 0 where a = and b = .

(5) The equation of the line which is parallel to the line x + 3
2y = 5

2 and passes through the
point (−1,−3) is 2x+ ay + b = 0 where a = and b = .



2.3. PROBLEMS 9

2.3. Problems

(1) The town of Plainfield is 4 miles east and 6 miles north of Burlington. Allentown is 8
miles west and 1 mile north of Plainfield. A straight road passes through Plainfield and
Burlington. A second straight road passes through Allentown and intersects the first road
at a point somewhere south and west of Burlington. The angle at which the roads intersect
is π/4 radians. Explain how to find the location of the point of intersection and carry out
the computation you describe.

(2) Prove that the line segment joining the midpoints of two sides of a triangle is half the
length of the third side and is parallel to it. Hint. Try not to make things any more
complicated than they need to be. A thoughtful choice of a coordinate system may be
helpful. One possibility: orient the triangle so that one side runs along the x-axis and one
vertex is at the origin.



10 2. LINES IN THE PLANE

2.4. Answers to Odd-Numbered Exercises

(1) 3, −2

(3) −8, 6

(1) 3, 11



CHAPTER 3

FUNCTIONS

3.1. Background

Topics: functions, domain, codomain, range, bounded above, bounded below, composition of
functions.

3.1.1. Definition. If S and T are sets we say that f is a function from S to T if for every x
in S there corresponds one and only one element f(x) in T . The set S is called the domain of f
and is denoted by dom f . The set T is called the codomain of f . The range of f is the set of
all f(x) such that x belongs to S. It is denoted by ran f . The words function, map, mapping, and
transformation are synonymous.

A function f : A→ B is said to be real valued if B ⊆ R and is called a function of a real variable
if A ⊆ R.

The notation f : S → T : x 7→ f(x) indicates that f is a function whose domain is S, whose
codomain is T , and whose value at x is f(x). Thus, for example, f : R → R : x 7→ x2 defines the
real valued function whose value at each real number x is given by f(x) = x2. We use dom f to
denote the domain of f and ran f to denote its range.

3.1.2. Definition. A function f : S → R is bounded above by a number M is f(x) ≤ M for
every x ∈ S, It is bounded below by a number K if K ≤ f(x) for every x ∈ S. And it is
bounded if it is bounded both above and below; that is, if there exists N > 0 such that |f(x)| ≤ N
for every x ∈ S.

3.1.3. Definition. Let f and g be real valued functions of a real variable. Define the composite
of g and f , denoted by g ◦ f , by

(g ◦ f)(x) := g(f(x))

for all x ∈ dom f such that f(x) ∈ dom g. The operation ◦ is called composition.

For problem 2, the following fact may be useful.

3.1.4. Theorem. Every nonempty open interval in R contains both rational and irrational numbers.

11



12 3. FUNCTIONS

3.2. Exercises

(1) Let f(x) =
1

1 +
1

1 +
1

x

. Then:

(a) f(12) = .

(b) The domain of f is the set of all real numbers except , , and .

(2) Let f(x) =
7−
√
x2 − 9√

25− x2
. Then dom f = ( , ] ∪ [ , ).

(3) Find the domain and range of the function f(x) = 2
√

4− x2 − 3.

Answer: dom f = [ , ] and ran f = [ , ].

(4) Let f(x) = x3 − 4x2 − 11x− 190. The set of all numbers x such that
|f(x)− 40| < 260 is ( , ) ∪ ( , ).

(5) Let f(x) = x+ 5, g(x) =
√
x, and h(x) = x2. Then (g ◦ (h− (g ◦ f)))(4) = .

(6) Let f(x) =
1

1− 2

1 +
1

1− x

.

(a) Find f(1/2). Answer. .

(b) Find the domain of f . Answer. The domain of f is the set of all real numbers except
, , and .

(7) Let f(x) =

√
x2 − 4

5−
√

36− x2
. Then, in interval notation, that part of the domain of f which

is to the right of the origin is [2, a) ∪ (a, b] where a = and b = .

(8) Let f(x) = (−x2 − 7x− 10)−1/2.

(a) Then f(−3) = .

(b) The domain of f is ( , ) .

(9) Let f(x) = x3 − 4 for all real numbers x. Then for all x 6= 0 define a new function g by
g(x) = (2x)−1(f(1 + x) − f(1 − x)). Then g(x) can be written in the form ax2 + bx + c
where a = , b = , and c = .

(10) The cost of making a widget is 75 cents. If they are sold for $1.95 each, 3000 widgets can
be sold. For every cent the price is lowered, 60 more widgets can be sold.

(a) If x is the price of a widget in cents, then the net profit is p(x) = ax2 + bx+ c where
a = , b = , and c = .

(b) The “best” price (that is, the price that maximizes profit) is x = $ . .

(c) At this best price the profit is $ .

(11) Let f(x) = 3
√

25− x2 + 2. Then dom f = [ , ] and ran f = [ , ].

(12) Find a formula exhibiting the area A of an equilateral triangle as a function of the length
s of one of its sides.

Answer: A(s) = .

(13) Let f(x) = 4x3−18x2−4x+33. Find the largest set S on which the function f is bounded
above by 15 and below by −15.

Answer: S = [ , ] ∪ [ , ] ∪ [ , ] .



3.2. EXERCISES 13

(14) Let f(x) =
√
x, g(x) =

4

5− x
, and h(x) = x2. Find (h ◦ ((h ◦ g ◦ f)− f))(4).

Answer: .

(15) Let f(x) = x+ 7, g(x) =
√
x+ 2, and h(x) = x2. Find (h ◦ ((f ◦ g)− (g ◦ f)))(7).

Answer: .

(16) Let f(x) =
√

5− x, g(x) =
√
x+ 11, h(x) = 2(x− 1)−1, and j(x) = 4x− 1.

Then (f ◦ (g + (h ◦ g)(h ◦ j)))(5) = .

(17) Let f(x) = x2, g(x) =
√

9 + x, and h(x) =
1

x− 2
. Then (h ◦ (f ◦ g− g ◦ f))(4) = .

(18) Let f(x) = x2, g(x) =
√

9 + x, and h(x) = (x− 1)1/3.

Then (h ◦ ((f ◦ g)(g ◦ f)))(4) = .

(19) Let f(x) =
5

x
, g(x) =

√
x, and h(x) = x+ 1. Then (g(f ◦ g) + (g ◦ f ◦ h))(4) = .

(20) Let g(x) = 5− x2, h(x) =
√
x+ 13, and j(x) =

1

x
. Then (j ◦ h ◦ g)(3) = .

(21) Let h(x) =
1√
x+ 6

, j(x) =
1

x
, and g(x) = 5− x2. Then (g ◦ j ◦ h)(3) = .

(22) Let f(x) = x2 +
2

x
, g(x) =

2

2x+ 3
, and h(x) =

√
2x. Then (h ◦ g ◦ f)(4) = .

(23) Let f(x) = 3(x+ 1)3, g(x) =
x5 + x4

x+ 1
, and h(x) =

√
x.

Then (h ◦ (g + (h ◦ f)))(2) = .

(24) Let f(x) = x2, g(x) =
√
x+ 11, h(x) = 2(x− 1)−1, and j(x) = 4x− 1.

Then (f ◦ ((h ◦ g) + (h ◦ j)))(5) = .

(25) Let f(x) = x3−5x2+x−7. Find a function g such that (f ◦g)(x) = 27x3+90x2+78x−2.

Answer: g(x) = .

(26) Let f(x) = cosx and g(x) = x2 for all x. Write each of the following functions in terms of
f and g. Example. If h(x) = cos2 x2, then h = g ◦ f ◦ g.

(a) If h(x) = cosx2, then h = .

(b) If h(x) = cosx4, then h= .

(c) If h(x) = cos4 x2, then h = .

(d) If h(x) = cos(cos2 x), then h = .

(e) If h(x) = cos2(x4 + x2), then h = .

(27) Let f(x) = x3, g(x) = x − 2, and h(x) = sinx for all x. Write each of the following
functions in terms of f , g, and h. Example. If k(x) = sin3(x− 2)3, then k = f ◦ h ◦ f ◦ g.

(a) If k(x) = sin3 x, then k = .

(b) If k(x) = sinx3, then k = .

(c) If k(x) = sin(x3 − 2), then k = .

(d) If k(x) = sin(sinx− 2), then k = .

(e) If k(x) = sin3(sin3(x− 2), then k = .

(f) If k(x) = sin9(x− 2), then k = .

(g) If k(x) = sin(x3 − 8), then k = .

(h) If k(x) = sin(x3 − 6x2 + 12x− 8), then k = .
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(28) Let g(x) = 3x− 2. Find a function f such that (f ◦ g)(x) = 18x2 − 36x+ 19.

Answer: f(x) = .

(29) Let h(x) = arctanx for x ≥ 0, g(x) = cosx, and f(x) = (1−x2)−1. Find a number p such
that (f ◦ g ◦ h)(x) = 1 + xp. Answer: p = .

(30) Let f(x) = 3x2 + 5x+ 1. Find a function g such that (f ◦g)(x) = 3x4 + 6x3−4x2−7x+ 3.

Answer: g(x) = .

(31) Let g(x) = 2x− 1. Find a function f such that (f ◦ g)(x) = 8x3 − 28x2 + 28x− 14.

Answer: f(x) = .

(32) Find two solutions to the equation

8 cos3(π(x2 + 8
3x+ 2)) + 16 cos2(π(x2 + 8

3x+ 2)) + 16 cos(π(x2 + 8
3x+ 2)) = 13.

Answer: and .

(33) Let f(x) = (x+ 4)−1/2, g(x) = x2 + 1, h(x) = (x− 3)1/2, and j(x) = x−1.

Then (j ◦ ((g ◦ h)− (g ◦ f)))(5) = .

(34) Let g(x) = 3x− 2. Find a function f such that (f ◦ g)(x) = 18x2 − 36x+ 19.

Answer: f(x) = .

(35) Let f(x) = x3−5x2+x−7. Find a function g such that (f ◦g)(x) = 27x3+90x2+78x−2.

Answer: g(x) = .

(36) Let f(x) = x2 + 1. Find a function g such that (f ◦ g)(x) = 2 +
2

x
+

1

x2
.

Answer: g(x) = .

(37) Let f(x) = x2 + 3x+ 4. Find two functions g such that (f ◦ g)(x) = 4x2 − 6x+ 4.

Answer: g(x) = and g(x) = .

(38) Let h(x) = x−1 and g(x) =
√
x + 1. Find a function f such that (f ◦ g ◦ h)(x) =

x−3/2 + 4x−1 + 2x−1/2 − 6.

Answer: f(x) = .

(39) Let g(x) = x2 + x− 1. Find a function f such that (f ◦ g)(x) = x4 + 2x3 − 3x2 − 4x+ 6.

Answer: f(x) = .

(40) Let S(x) = x2 and P (x) = 2x.

Then (S ◦ S ◦ S ◦ S ◦ P ◦ P )(−1) = .
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3.3. Problems

(1) Do there exist functions f and g defined on R such that

f(x) + g(y) = xy

for all real numbers x and y? Explain.

(2) Your friend Susan has become interested in functions f : R → R which preserve both the
operation of addition and the operation of multiplication; that is, functions f which satisfy

f(x+ y) = f(x) + f(y) (3.1)

and

f(xy) = f(x)f(y) (3.2)

for all x, y ∈ R. Naturally she started her investigation by looking at some examples. The
trouble is that she was able to find only two very simple examples: f(x) = 0 for all x and
f(x) = x for all x. After expending considerable effort she was unable to find additional
examples. She now conjectures that there are no other functions satisfying (3.1) and (3.2).
Write Susan a letter explaining why she is correct.

Hint. You may choose to pursue the following line of argument. Assume that f is a
function (not identically zero) which satisfies (3.1) and (3.2) above.
(a) Show that f(0) = 0. [In (3.1) let y = 0.]
(b) Show that if a 6= 0 and a = ab, then b = 1.
(c) Show that f(1) = 1. [How do we know that there exists a number c such that

f(c) 6= 0? Let x = c and y = 1 in (3.2).]
(d) Show that f(n) = n for every natural number n.
(e) Show that f(−n) = −n for every natural number n. [Let x = n and y = −n in (3.1).

Use (d).]
(f) Show that f(1/n) = 1/n for every natural number n. [Let x = n and y = 1/n

in (3.2).]
(g) Show that f(r) = r for every rational number r. [If r ≥ 0 write r = m/n where

m and n are natural numbers; then use (3.2), (d), and (e). Next consider the case
r < 0.]

(h) Show that if x ≥ 0, then f(x) ≥ 0. [Write x as
√
x
√
x and use (3.2).]

(i) Show that if x ≤ y, then f(x) ≤ f(y). [Show that f(−x) = −f(x) holds for all real
numbers x. Use (h).]

(j) Now prove that f must be the identity function on R. [Argue by contradiction:
Assume f(x) 6= x for some number x. Then there are two possibilities: either f(x) > x
or f(x) < x. Show that both of these lead to a contradiction. Apply theorem 3.1.4
to the two cases f(x) > x and f(x) < x to obtain the contradiction f(x) < f(x).]

(3) Let f(x) = 1−x and g(x) = 1/x. Taking composites of these two functions in all possible
ways (f ◦ f , g ◦ f , f ◦ g ◦ f ◦ f ◦ f , g ◦ g ◦ f ◦ g ◦ f ◦ f , etc.), how many distinct functions can
be produced? Write each of the resulting functions in terms of f and g. How do you know
there are no more? Show that each function on your list has an inverse which is also on
your list. What is the common domain for these functions? That is, what is the largest
set of real numbers for which all these functions are defined?

(4) Prove or disprove: composition of functions is commutative; that is g ◦ f = f ◦ g when
both sides are defined.

(5) Let f , g, h : R→ R. Prove or disprove: f ◦ (g + h) = f ◦ g + f ◦ h.

(6) Let f , g, h : R→ R. Prove or disprove: (f + g) ◦ h = (f ◦ h) + (g ◦ h).
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(7) Let a ∈ R be a constant and let f(x) = a− x for all x ∈ R. Show that f ◦ f = I (where I
is the identity function on R: I(x) = x for all x).
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3.4. Answers to Odd-Numbered Exercises

(1) (a)
3

4

(b) −1, −1

2
, 0

(3) [−2, 2], [−3, 1]

(5)
√

13

(7)
√

11, 6

(9) 1, 0, 3

(11) [−5, 5], [2, 17]

(13) [−3
2 ,−1] ∪ [1, 2] ∪ [4, 92 ]

(15) 36

(17)
1

6

(19) 6

(21) −4

(23) 5

(25) 3x+ 5

(27) (a) f ◦ h
(b) h ◦ f
(c) h ◦ g ◦ f
(d) h ◦ g ◦ h
(e) f ◦ h ◦ f ◦ h ◦ g
(f) f ◦ f ◦ h ◦ g
(g) h ◦ g ◦ g ◦ g ◦ g ◦ f
(h) h ◦ f ◦ g

(29) −2

(31) x3 − 4x2 + 3x− 6

(33)
9

17

(35) 3x+ 5

(37) −2x, 2x− 3

(39) x2 − 2x+ 3





Part 2

LIMITS AND CONTINUITY





CHAPTER 4

LIMITS

4.1. Background

Topics: limit of f(x) as x approaches a, limit of f(x) as x approaches infinity, left- and right-hand
limits.

4.1.1. Definition. Suppose that f is a real valued function of a real variable, a is an accumulation
point of the domain of f , and ` ∈ R. We say that ` is the limit of f(x) as x approaches a if for
every neighborhood V of ` there exists a corresponding deleted neighborhood U of a which satisfies
the following condition:

for every point x in the domain of f which lies in U the point f(x) lies in V .

Once we have convinced ourselves that in this definition it doesn’t matter if we work only with
symmetric neighborhoods of points, we can rephrase the definition in a more conventional algebraic
fashion: ` is the limit of f(x) as x approaches a provided that for every ε > 0 there exists δ > 0
such that if 0 < |x− a| < δ and x ∈ dom f , then |f(x)− `| < ε.

4.1.2. Notation. To indicate that a number ` is the limit of f(x) as x approaches a, we may write
either

lim
x→a

f(x) = l or f(x)→ ` as x→ a.

(See problem 2.)

21
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4.2. Exercises

(1) lim
x→3

x3 − 13x2 + 51x− 63

x3 − 4x2 − 3x+ 18
=
a

5
where a = .

(2) lim
x→0

√
x2 + 9x+ 9− 3

x
=
a

2
where a = .

(3) lim
x→1

x3 − x2 + 2x− 2

x3 + 3x2 − 4x
=

3

a
where a = .

(4) lim
t→0

t√
4− t− 2

= .

(5) lim
x→0

√
x+ 9− 3

x
=

1

a
where a = .

(6) lim
x→2

x3 − 3x2 + x+ 2

x3 − x− 6
=

1

a
where a = .

(7) lim
x→2

x3 − x2 − 8x+ 12

x3 − 10x2 + 28x− 24
= −a

4
where a = .

(8) lim
x→0

√
x2 − x+ 4− 2

x2 + 3x
= −1

a
where a = .

(9) lim
x→1

x3 + x2 − 5x+ 3

x3 − 4x2 + 5x− 2
= .

(10) lim
x→3

x3 − 4x2 − 3x+ 18

x3 − 8x2 + 21x− 18
= .

(11) lim
x→−1

x3 − x2 − 5x− 3

x3 + 6x2 + 9x+ 4
= −4

a
where a = .

(12) lim
x→0

2x sinx

1− cosx
= .

(13) lim
x→0

1− cosx

3x sinx
=

1

a
where a = .

(14) lim
x→0

tan 3x− sin 3x

x3
=
a

2
where a = .

(15) lim
h→0

sin 2h

5h2 + 7h
= .

(16) lim
h→0

cot 7h

cot 5h
= .

(17) lim
x→0

secx− cosx

3x2
=

1

a
where a = .

(18) lim
x→∞

(9x8 − 6x5 + 4)1/2

(64x12 + 14x7 − 7)1/3
=
a

4
where a = .

(19) lim
x→∞

√
x(
√
x+ 3−

√
x− 2) =

a

2
where a = .

(20) lim
x→∞

7− x+ 2x2 − 3x3 − 5x4

4 + 3x− x2 + x3 + 2x4
=
a

2
where a = .

(21) lim
x→∞

(2x4 − 137)5

(x2 + 429)10
= .
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(22) lim
x→∞

(5x10 + 32)3

(1− 2x6)5
= − a

32
where a = .

(23) lim
x→∞

(√
x2 + x− x

)
=

1

a
where a = .

(24) lim
x→∞

x(256x4 + 81x2 + 49)−1/4 =
1

a
where a = .

(25) lim
x→∞

x

(√
3x2 + 22−

√
3x2 + 4

)
= a
√
a where a = .

(26) lim
x→∞

x
2
3
(
(x+ 1)

1
3 − x

1
3
)

=
1

a
where a = .

(27) lim
x→∞

(√
x+
√
x−

√
x−
√
x

)
= .

(28) Let f(x) =

 2x− 1, if x < 2;

x2 + 1, if x > 2.
Then lim

x→2−
f(x) = and lim

x→2+
f(x) = .

(29) Let f(x) =
|x− 1|
x− 1

. Then lim
x→1−

f(x) = and lim
x→1+

f(x) = .

(30) Let f(x) =

 5x− 3, if x < 1;

x2, if x ≥ 1.
Then lim

x→1−
f(x) = and lim

x→1+
f(x) = .

(31) Let f(x) =

 3x+ 2, if x < −2;

x2 + 3x− 1, if x ≥ −2.
Then lim

x→−2−
f(x) = and lim

x→−2+
f(x) = .

(32) Suppose y = f(x) is the equation of a curve which always lies between the parabola
x2 = y − 1 and the hyperbola yx+ y − 1 = 0. Then lim

x→0
f(x) = .
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4.3. Problems

(1) Find lim
x→0+

(
e−1/x sin(1/x)− (x+ 2)3

)
(if it exists) and give a careful argument showing

that your answer is correct.

(2) The notation limx→a f(x) = ` that we use for limits is somewhat optimistic. It assumes
the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is,
suppose that f is a real valued function of a real variable, a is an accumulation point of
the domain of f , and `, m ∈ R. Prove that if f(x) → ` as x → a and f(x) → m as
x → a, then l = m. (Explain carefully why it was important that we require a to be an
accumulation point of the domain of f .)

(3) Let f(x) =
sinπx

x+ 1
for all x 6= −1. The following information is known about a function g

defined for all real numbers x 6= 1:

(i) g =
p

q
where p(x) = ax2 + bx+ c and q(x) = dx+ e for some constants a, b, c, d, e;

(ii) the only x-intercept of the curve y = g(x) occurs at the origin;
(iii) g(x) ≥ 0 on the interval [0, 1) and is negative elsewhere on its domain;
(iv) g has a vertical asymptote at x = 1; and
(v) g(1/2) = 3.

Either find lim
x→1

g(x)f(x) or else show that this limit does not exist.

Hints. Write an explicit formula for g by determining the constants a . . . e. Use (ii)
to find c; use (ii) and (iii) to find a; use (iv) to find a relationship between d and e;
then use (v) to obtain an explicit form for g. Finally look at f(x)g(x); replace sinπx
by sin(π(x− 1) + π) and use the formula for the sine of the sum of two numbers.

(4) Evaluate lim
x→0

√
|x| cos (π1/x

2
)

2 +
√
x2 + 3

(if it exists). Give a careful proof that your conclusion is

correct.
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4.4. Answers to Odd-Numbered Exercises

(1) −4

(3) 5

(5) 6

(7) 5

(9) −4

(11) 3

(13) 6

(15)
2

7

(17) 3

(19) 5

(21) 32

(23) 2

(25) 3

(27) 1

(29) −1, 1

(31) −4, −3





CHAPTER 5

CONTINUITY

5.1. Background

Topics: continuous functions, intermediate value theorem. extreme value theorem.

There are many ways of stating the intermediate value theorem. The simplest says that con-
tinuous functions take intervals to intervals.

5.1.1. Definition. A subset J of the real line R is an interval if z ∈ J whenever a, b ∈ J and
a < z < b.

5.1.2. Theorem (Intermediate Value Theorem). Let J be an interval in R and f : J → R be
continuous. Then the range of f is an interval.

5.1.3. Definition. A real-valued function f on a set A is said to have a maximum at a point a in
A if f(a) ≥ f(x) for every x in A; the number f(a) is the maximum value of f . The function has
a minimum at a if f(a) ≤ f(x) for every x in A; and in this case f(a) is the minimum value of
f . A number is an extreme value of f if it is either a maximum or a minimum value. It is clear
that a function may fail to have maximum or minimum values. For example, on the open interval
(0, 1) the function f : x 7→ x assumes neither a maximum nor a minimum.

The concepts we have just defined are frequently called global (or absolute) maximum and
global (or absolute) minimum.

5.1.4. Definition. Let f : A → R where A ⊆ R. The function f has a local (or relative)
maximum at a point a ∈ A if there exists a neighborhood J of a such that f(a) ≥ f(x) whenever
x ∈ J and x ∈ dom f . It has a local (or relative) minimum at a point a ∈ A if there exists a
neighborhood J of a such that f(a) ≤ f(x) whenever x ∈ J and x ∈ dom f .

5.1.5. Theorem (Extreme Value Theorem). Every continuous real valued function on a closed
and bounded interval in R achieves its (global) maximum and minimum value at some points in the
interval.

5.1.6. Definition. A number p is a fixed point of a function f : R→ R if f(p) = p.

5.1.7. Example. If f(x) = x2 − 6 for all x ∈ R, then 3 is a fixed point of f .

27
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5.2. Exercises

(1) Let f(x) =
x3 − 2x2 − 2x− 3

x3 − 4x2 + 4x− 3
for x 6= 3. How should f be defined at x = 3 so that it

becomes a continuous function on all of R?

Answer: f(3) =
a

7
where a = .

(2) Let f(x) =


1 if x < 0

x if 0 < x < 1

2− x if 1 < x < 3

x− 4 if x > 3

.

(a) Is it possible to define f at x = 0 in such a way that f becomes continuous at x = 0?
Answer: . If so, then we should set f(0) = .

(b) Is it possible to define f at x = 1 in such a way that f becomes continuous at x = 1?
Answer: . If so, then we should set f(1) = .

(c) Is it possible to define f at x = 3 in such a way that f becomes continuous at x = 3?
Answer: . If so, then we should set f(3) = .

(3) Let f(x) =


x+ 4 if x < −2

−x if −2 < x < 1

x2 − 2x+ 1 if 1 < x < 3

10− 2x if x > 3

.

(a) Is it possible to define f at x = −2 in such a way that f becomes continuous at
x = −2? Answer: . If so, then we should set f(−2) = .

(b) Is it possible to define f at x = 1 in such a way that f becomes continuous at x = 1?
Answer: . If so, then we should set f(1) = .

(c) Is it possible to define f at x = 3 in such a way that f becomes continuous at x = 3?
Answer: . If so, then we should set f(3) = .

(4) The equation x5 + x3 + 2x = 2x4 + 3x2 + 4 has a solution in the open interval (n, n+ 1)
where n is the positive integer .

(5) The equation x4−6x2−53 = 22x−2x3 has a solution in the open interval (n, n+1) where
n is the positive integer .

(6) The equation x4 + x + 1 = 3x3 + x2 has solutions in the open intervals (m,m + 1) and
(n, n+ 1) where m and n are the distinct positive integers and .

(7) The equation x5 + 8x = 2x4 + 6x2 has solutions in the open intervals (m,m + 1) and
(n, n+ 1) where m and n are the distinct positive integers and .
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5.3. Problems

(1) Prove that the equation

x180 +
84

1 + x2 + cos2 x
= 119

has at least two solutions.

(2) (a) Find all the fixed points of the function f defined in example 5.1.7.

Theorem: Every continuous function f : [0, 1]→ [0, 1] has a fixed point.

(b) Prove the preceding theorem. Hint. Let g(x) = x − f(x) for 0 ≤ x ≤ 1. Apply the
intermediate value theorem 5.1.2 to g.

(c) Let g(x) = 0.1x3 + 0.2 for all x ∈ R, and h be the restriction of g to [0, 1]. Show that
h satisfies the hypotheses of the theorem.

(d) For the function h defined in (c) find an approximate value for at least one fixed point
with an error of less than 10−6. Give a careful justification of your answer.

(e) Let g be as in (c). Are there other fixed points (that is, points not in the unit square
where the curve y = g(x) crosses the line y = x)? If so, find an approximation to
each such point with an error of less than 10−6. Again provide careful justification.

(3) Define f on [0, 4] by f(x) = x + 1 for 0 ≤ x < 2 and f(x) = 1 for 2 ≤ x ≤ 4. Use the
extreme value theorem 5.1.5 to show that f is not continuous.

(4) Give an example of a function defined on [0, 1] which has no maximum and no minimum
on the interval. Explain why the existence of such a function does not contradict the
extreme value theorem 5.1.5.

(5) Give an example of a continuous function defined on the interval (1, 2] which does not
achieve a maximum value on the interval. Explain why the existence of such a function
does not contradict the extreme value theorem 5.1.5.

(6) Give an example of a continuous function on the closed interval [3,∞) which does not
achieve a minimum value on the interval. Explain why the existence of such a function
does not contradict the extreme value theorem 5.1.5.

(7) Define f on [−2, 0] by f(x) =
−1

(x+ 1)2
for −2 ≤ x < −1 and −1 < x ≤ 0, and f(−1) = −3.

Use the extreme value theorem 5.1.5 to show that f is not continuous.

(8) Let f(x) =
1

x
for 0 < x ≤ 1 and f(0) = 0. Use the extreme value theorem 5.1.5 to show

that f is not continuous on [0, 1].
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5.4. Answers to Odd-Numbered Exercises

(1) 13

(3) (a) yes, 2
(b) no, —
(c) yes, 4

(5) 3

(7) 1, 2



Part 3

DIFFERENTIATION OF FUNCTIONS OF
A SINGLE VARIABLE





CHAPTER 6

DEFINITION OF THE DERIVATIVE

6.1. Background

Topics: definition of the derivative of a real valued function of a real variable at a point

6.1.1. Notation. Let f be a real valued function of a real variable which is differentiable at a
point a in its domain. When thinking of a function in terms of its graph, we often write y = f(x),
call x the independent variable, and call y the dependent variable. There are many notations for
the derivative of f at a. Among the most common are

Df(a), f ′(a),
df

dx

∣∣∣∣
a

, y′(a), ẏ(a), and
dy

dx

∣∣∣∣
a

.
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6.2. Exercises

(1) Suppose you know that the derivative of
√
x is

1

2
√
x

for every x > 0. Then

lim
x→9

√
x− 3

x− 9
=

1

a
where a = .

(2) Suppose you know that the derivatives of x
1
3 is 1

3x
− 2

3 for every x 6= 0. Then

lim
x→8

(x
8

) 1
3 − 1

x− 8
=

1

a
where a = .

(3) Suppose you know that the derivative of ex is ex for every x. Then

lim
x→2

ex − e2

x− 2
= .

(4) Suppose you know that the derivative of lnx is
1

x
for every x > 0. Then

lim
x→e

lnx3 − 3

x− e
= .

(5) Suppose you know that the derivative of tanx is sec2 x for every x. Then

lim
x→π

4

tanx− 1

4x− π
= .

(6) Suppose you know that the derivative of arctanx is
1

1 + x2
for every x. Then

lim
x→
√
3

3 arctanx− π
x−
√

3
= .

(7) Suppose you know that the derivative of cosx is − sinx for every x. Then

lim
x→π

3

2 cosx− 1

3x− π
= −1

a
where a = .

(8) Suppose you know that the derivative of cosx is − sinx for every x. Then

lim
t→0

cos(π6 + t)−
√
3
2

t
= −1

a
where a = .

(9) Suppose you know that the derivative of sinx is cosx for every x. Then

lim
x→−π/4

√
2 sinx+ 1

4x+ π
=

1

a
where a = .

(10) Suppose you know that the derivative of sinx is cosx for every x. Then

lim
x→ 7π

12

2
√

2 sinx−
√

3− 1

12x− 7π
=

1−
√
a

b
where a = and b = .

(11) Let f(x) =


x2, for x ≤ 1

1, for 1 < x ≤ 3

5− 2x, for x > 3

. Then f ′(0) = , f ′(2) = , and f ′(6) = .



6.2. EXERCISES 35

(12) Suppose that the tangent line to the graph of a function f at x = 1 passes through the
point (4, 9) and that f(1) = 3. Then f ′(1) = .

(13) Suppose that g is a differentiable function and that f(x) = g(x) + 5 for all x. If g′(1) = 3,
then f ′(1) = .

(14) Suppose that g is a differentiable function and that f(x) = g(x+ 5) for all x. If g′(1) = 3,
then f ′(a) = 3 where a = .

(15) Suppose that f is a differentiable function, that f ′(x) = −2 for all x, and that f(−3) = 11.
Find an algebraic expression for f(x). Answer: f(x) = .

(16) Suppose that f is a differentiable function, that f ′(x) = 3 for all x, and that f(3) = 3.
Find an algebraic expression for f(x). Answer: f(x) = .
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6.3. Problems

(1) Let f(x) =
1

x2 − 1
and a = −3. Show how to use the definition of derivative to find

Df(a).

(2) Let f(x) =
1√
x+ 7

. Show how to use the definition of derivative to find f ′(2).

(3) Let f(x) =
1√
x+ 3

. Show how to use the definition of derivative to find f ′(1).

(4) Let f(x) =
√
x2 − 5. Show how to use the definition of derivative to findf ′(3).

(5) Let f(x) =
√

8− x. Show how to use the definition of derivative to find f ′(−1).

(6) Let f(x) =
√
x− 2. Show how to use the definition of derivative to find f ′(6).

(7) Let f(x) =
x

x2 + 2
. Show how to use the definition of derivative to find Df(2).

(8) Let f(x) = (2x2 − 3)−1. Show how to use the definition of derivative to find Df(−2).

(9) Let f(x) = x + 2x2 sin
1

x
for x 6= 0 and f(0) = 0. What is the derivative of f at 0 (if it

exists)? Is the function f ′ continuous at 0?
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6.4. Answers to Odd-Numbered Exercises

(1) 6

(3) e2

(5)
1

2

(7)
√

3

(9) 4

(11) 0, 0, −2

(13) 3

(15) −2x+ 5





CHAPTER 7

TECHNIQUES OF DIFFERENTIATION

7.1. Background

Topics: rule for differentiating products, rule for differentiating quotients, chain rule, tangent lines,
implicit differentiation.

7.1.1. Notation. We use f (n)(a) to denote the nth derivative of f at a.

7.1.2. Definition. A point a in the domain of a function f is a stationary point of f is
f ′(a) = 0. It is a critical point of f if it is either a stationary point of f or if it is a point where
the derivative of f does not exist.

Some authors use the terms stationary point and critical point interchangeably—especially in
higher dimensions.

39
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7.2. Exercises

(1) If f(x) = 5x−1/2 + 6x3/2, then f ′(x) = axp + bxq where a = , p = ,
b = , and q = .

(2) If f(x) = 10
5
√
x3 +

12
6
√
x5

, then f ′(x) = axp + bxq where a = , p = ,

b = , and q = .

(3) If f(x) = 9x4/3 + 25x2/5, then f ′′(x) = axp + bxq where a = , p = ,
b = , and q = .

(4) If f(x) = 18 6
√
x+

8
4
√
x3

, then f ′′(x) = axp + bxq where a = , p = ,

b = , and q = .

(5) Find a point a such that the tangent line to the graph of the curve y =
√
x at x = a has

y-intercept 3. Answer: a = .

(6) Let f(x) = ax2 + bx + c for all x. We know that f(2) = 26, f ′(2) = 23, and f ′′(2) = 14.
Then f(1) = .

(7) Find a number k such that the line y = 6x + 4 is tangent to the parabola y = x2 + k.
Answer: k = .

(8) The equation for the tangent line to the curve y = x3 which passes through the point (0, 2)
is y = mx+ b where m = and b = .

(9) Let f(x) = 1
4x

4 + 1
3x

3− 3x2 + 7
4 . Find all points x0 such that the tangent line to the curve

y = f(x) at the point (x0, f(x0)) is horizontal. Answer: x0 = , , and .

(10) In the land of Oz there is an enormous statue of the Good Witch Glinda. Its base is 20
feet high and, on a surveyor’s chart, covers the region determined by the inequalities

−1 ≤ y ≤ 24− x2 .

(The chart coordinates are measured in feet.) Dorothy is looking for her little dog Toto.
She walks along the curved side of the base of the statue in the direction of increasing x
and Toto is, for a change, sitting quietly. He is at the point on the positive x-axis 7 feet
from the origin. How far from Toto is Dorothy when she is first able to see him?
Answer: 5

√
a ft. where a = .

(11) Let f(x) =
x− 3

2

x2 + 2
and g(x) =

x2 + 1

x2 + 2
. At what values of x do the curves y = f(x) and

y = g(x) have parallel tangent lines? Answer: at x = and x = .

(12) The tangent line to the graph of a function f at the point x = 2 has x-intercept
10

3
and

y-intercept −10. Then f(2) = and f ′(2) = .

(13) The tangent line to the graph of a function f at x = 2 passes through the points (0,−20)
and (5, 40). Then f(2) = and f ′(2) = .

(14) Suppose that the tangent line to the graph of a function f at x = 2 passes through the
point (5, 19) and that f(2) = −2. Then f ′(2) = .

(15) Let f(x) =


x2, for x ≤ 1

1, for 1 < x ≤ 3

5− 2x, for x > 3

. Then f ′(0) = , f ′(2) = , and f ′(6) = .

(16) Suppose that g is a differentiable function and that f(x) = g(x+ 5) for all x. If g′(1) = 3,
then f ′(a) = 3 where a = .
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(17) Let f(x) = |2− |x− 1|| − 1 for every real number x. Then

f ′(−2) = , f ′(0) = , f ′(2) = , and f ′(4) = .

(18) Let f(x) = tan3 x. Then Df(π/3) = .

(19) Let f(x) =
1

x
csc2

1

x
. Then Df(6/π) =

π2

a

(
π√
b
− 1

)
where a = and b = .

(20) Let f(x) = sin2(3x5 + 7). Then f ′(x) = ax4 sin(3x5 + 7)f(x) where a = and
f(x) = .

(21) Let f(x) = (x4 + 7x2 − 5) sin(x2 + 3). Then f ′(x) = f(x) cos(x2 + 3) + g(x) sin(x2 + 3)
where f(x) = and g(x) = .

(22) Let j(x) = sin5(tan(x2+6x−5)1/2). ThenDj(x) = p(x) sinn(g(a(x)))f(g(a(x)))h(a(x))
(
a(x)

)r
where

f(x) = ,

g(x) = ,

h(x) = ,

a(x) = ,

p(x) = ,

n = , and

r = .

(23) Let j(x) = sin4(tan(x3−3x2+6x−11)2/3). Then j ′(x) = 8p(x)f(g(a(x))) cos(g(a(x)))h(a(x))
(
a(x)

)r
where

f(x) = ,

g(x) = ,

h(x) = ,

a(x) = ,

p(x) = ,

r = .

(24) Let j(x) = sin11(sin6(x3 − 7x+ 9)3). Then

Dj(x) = 198(3x2 + b) sinp(g(a(x)))h(g(a(x))) sinq(a(x))h(a(x))
(
a(x)

)r
where

g(x) = ,

h(x) = ,

a(x) = ,

p = ,

q = ,

r = , and

b = ,

(25) Let f(x) = (x2 + sinπx)100. Then f ′(1) = .

(26) Let f(x) = (x2 − 15)9(x2 − 17)10. Then the equation of the tangent line to the curve
y = f(x) at the point on the curve whose x-coordinate is 4 is y = ax+b where a =
and b = .
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(27) Let f(x) = (x2−3)10(x3+9)20. Then the equation of the tangent line to the curve y = f(x)
at the point on the curve whose x-coordinate is −2 is y = ax + b where a =
and b = .

(28) Let f(x) = (x3−9)8(x3−7)10. Then the equation of the tangent line to the curve y = f(x)
at the point on the curve whose x-coordinate is 2 is y = ax + b where a = and
b = .

(29) Let f(x) = (x2 − 10)10(x2 − 8)12. Then the equation of the tangent line to the curve
y = f(x) at the point on the curve whose x-coordinate is 3 is y = ax+b where a =
and b = .

(30) Let h = g ◦ f and j = f ◦ g where f and g are differentiable functions on R. Fill in the
missing entries in the table below.

x f(x) f ′(x) g(x) g′(x) h(x) h′(x) j(x) j ′(x)

0 −3 1 1 −3
2

1 0 3
2 0 1

2

(31) Let f = g ◦ h and j = g · h where g and h are differentiable functions on R. Fill in the
missing entries in the table below.

x g(x) g′(x) h(x) h′(x) f(x) f ′(x) j(x) j ′(x)

0 2 −4 −6 3

1 −2 4 −4 2

2 4 4 13 24 4 19

Also, g(4) = and g′(4) = .

(32) Let h = g ◦ f , j = g · f , and k = g + f where f and g are differentiable functions on R.
Fill in the missing entries in the table below.

x f(x) f ′(x) g(x) g′(x) h(x) h′(x) j(x) j ′(x) k(x) k′(x)

−1 −2 4 4 −2

0 0 0 −1 1

1 2 2 0 6

(33) Let y = log3(x
2 + 1)1/3. Then

dy

dx
=

2x

a(x2 + 1)
where a = .

(34) Let f(x) = ln
(6 + sin2 x)10

(7 + sinx)3
. Then Df(π/6) =

a

5
where a = .

(35) Let f(x) = ln(lnx). What is the domain of f? Answer: ( , ). What is
the equation of the tangent line to the curve y = f(x) at the point on the curve whose

x-coordinate is e2? Answer: y − a =
1

b
(x− e2) where a = and b = .

(36) Find when y = (tanx)sinx for 0 < x < π/2. Then
dy

dx
= (tanx)sinx(f(x) + cosx ln tanx)

where f(x) = .



7.2. EXERCISES 43

(37) Find when y = (sinx)tanx for 0 < x < π/2. Then
dy

dx
= (sinx)tanx(a+ f(x) sec2 x) where

a = and f(x) = .

(38)
d

dx

√
x lnx = xp(1 + g(x)) where p = and g(x) = .

(39) If f(x) = x3ex, then f ′′′(x) = (ax3 + bx2 + cx + d)ex where a = , b = ,
c = , and d = .

(40) Let f(x) = x2 cosx. Then (ax2 + bx+ c) sinx+ (Ax2 +Bx+C) cosx is an antiderivative
of f(x) if a = , b = , c = , A = , B = , and C = .

(41) Let f(x) = (x4 − x3 + x2 − x + 1)(3x3 − 2x2 + x − 1). Use the rule for differentiating
products to find f ′(1). Answer: .

(42) Let f(x) =
x3/2 − x
3x− x1/2

. Then f ′(4) =
9

a
where a = .

(43) Find a point on the curve y =
x2

x3 − 2
where the tangent line is parallel to the line 4x +

6y − 5 = 0. Answer: ( , ).

(44) Let f(x) = 5x cosx − x2 sinx. Then (ax2 + bx + c) sinx + (Ax2 + Bx + C) cosx is an
antiderivative of f(x) if a = , b = , c = , A = , B = , and
C = .

(45) Let f(x) = (2x−3) cscx+(2+ 3x−x2) cotx cscx. Then
ax2 + bx+ c

sinx
is an antiderivative

of f(x) if a = , b = , and c = .

(46) Let f(x) =
x2 − 10

x2 − 8
. Find the equation of the tangent line to the curve y = f(x) at

the point on the curve whose x-coordinate is 3. Answer: y = ax + b where a =
and b = .

(47) Let f(x) = (x4 + x3 + x2 + x + 1)(x5 + x3 + x + 2). Find the equation of the tangent
line to the curve y = f(x) at the point on the curve whose x-coordinate is −1. Answer:
y = ax+ b where a = and b = .

(48) Let y =
x2 − 2x+ 1

x3 + 1
. Then

dy

dx

∣∣∣∣
x=2

=
2

a
where a = .

(49) Let f(x) =
x− 3

2

x2 + 2
and g(x) =

x2 + 1

x2 + 2
. At what values of x do the curves y = f(x) and

y = g(x) have parallel tangent lines? Answer: at x = and .

(50) Let f(x) = x sinx. Find constants a, b, A, and B so that (ax+ b) cosx+ (Ax+B) sinx is
an antiderivative of f(x). Answer: a = , b = , A = , and B = .

(51) Find
d

dx

(
1

x

d2

dx2

(
1

1 + x

))
= a

bx+ 1

x2(1 + x)b
where a = and b = .

(52)
d

dx

(
1

x2
· d

2

dx2

(
1

x2

))
= axp where a = and p = .

(53) Let f(x) =
x+ 3

4− x
. Find f (15)(x). Answer:

7n!

(4− x)p
where n = and p = .

(54) Let f(x) =
x

x+ 1
. Then f (4)(x) = a(x+ 1)p where a = and p = .
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(55) Let f(x) =
x+ 1

2− x
. Then f (4)(x) = a(2− x)p where a = and p = .

(56) Find the equation of the tangent line to the curve 2x6 + y4 = 9xy at the point (1, 2).
Answer: 23y = ax+ b where a = and b = .

(57) For the curve x3 + 2xy + 1
3y

3 = 11
3 , find

dy

dx
and

d2y

dx2
at the point (2,−1).

Answer: y′(2) = and y′′(2) =
a

5
where a = .

(58) Find
dy

dx
and

d2y

dx2
for the devil’s curve y4 + 5y2 = x4 − 5x2 at the point (3, 2).

Answer: y′(3) = and y′′(3) = .

(59) Find
dy

dx
,
d2y

dx2
, and

d3y

dx3
at the point (1, 8) on the astroid x2/3 + y2/3 = 5.

Answer: y′(1) = : y′′(1) =
a

6
where a = ; and y′′′(1) =

b

24
where

b = .

(60) Find the point of intersection of the tangent lines to the curve x2 + y3− 3x+ 3y−xy = 18
at the points where the curve crosses the x-axis. Answer: ( , ).

(61) Find the equation of the tangent line to the curve x sin y + x3 = arctan ey + x− π
4 at the

point (1, 0). Answer: y = ax+ b where a = and b = .

(62) The equation of the tangent line to the lemniscate 3(x2 + y2)2 = 25(x2 − y2) at the point
(2, 1) is y − 1 = m(x− 2) where m = .

(63) The points on the ovals of Cassini (x2+y2)2−4(x2−y2)+3 = 0 where there is a horizontal

tangent line are

(
±
√
a

b
√
b
,± 1

b
√
b

)
where a = and b = .

(64) The points on the ovals of Cassini (x2 + y2)2− 4(x2− y2) + 3 = 0 where there is a vertical
tangent line are (±

√
a, b) and (±c, b) where a = , b = , and c = .

(65) At the point (1, 2) on the curve 4x2 + 2xy + y2 = 12,
dy

dx
= and

d2y

dx2
= .

(66) Let f and g be differentiable real valued functions on R. We know that the points (−4, 1)
and (3, 4) lie on the graph of the curve y = f(x) and the points (−4, 3) and (3,−2) lie on
the graph of y = g(x). We know also that f ′(−4) = 3, f ′(3) = −4, g′(−4) = −2, and
g′(3) = 6.
(a) If h = f · g , then h′(−4) = .

(b) If j = (2f + 3g)4, then j ′(3) = .

(c) If k = f ◦ g , then k ′(−4) = .

(d) If ` =
f

g
, then ` ′(3) = .

(67) Let f(x) = 5 sinx+ 3 cosx. Then f (117)(π) = .

(68) Let f(x) = 4 cosx− 7 sinx. Then f (87)(0) = .
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7.3. Problems

(1) Let (x0, y0) be a point in R2. How many tangent lines to the curve y = x2 pass through
the point (x0, y0)? What are the equations of these lines? Hint. Consider the three cases:
y0 > x0

2, y0 = x0
2, and y0 < x0

2.

(2) For the purposes of this problem you may assume that the differential equation

y′′ + y = 0 (∗)

has at least one nontrivial solution on the real line. (That is, there exists at least one twice
differentiable function y, not identically zero, such that y′′(x) + y(x) = 0 for all x ∈ R.)
(a) Show that if u and v are solutions of (∗) and a, b ∈ R, then w = au+ bv and u′ are

also solutions of (∗).
(b) Show that if y is a solution of (∗) then y2 + (y′)2 is constant.
(c) Show that if y is a nontrivial solution of (∗), then either y(0) 6= 0 or y′(0) 6= 0. Hint.

Argue by contradiction. Show that if y is a solution of (∗) such that both y(0) = 0
and y′(0) = 0, then y(x) = 0 for all x.

(d) Show that there exists a solution s of (∗) such that s(0) = 0 and s′(0) = 1. Hint.
Let y be a nontrivial solution of (∗). Look for a solution s of the form a y +
b y′ (with a, b ∈ R) satisfying the desired conditions.

(e) Show that if y is a solution of (∗) such that y(0) = a and y′(0) = b, then y = b s+a s′.
Hint. Let u(x) = y(x)− b s(x)−a s′(x) and show that u is a solution of (∗) such that
u(0) = u′(0) = 0. Use (c).

(f) Define c(x) = s′(x) for all x. Show that (s(x))2 + (c(x))2 = 1 for all x.
(g) Show that s is an odd function and that c is even. Hint. To see that s is odd let

u(x) = s(−x) for all x. Show that u is a solution of (∗). Use (e). Once you know
that s is odd, differentiate to see that c is even.

(h) Show that s(a + b) = s(a)c(b) + c(a)s(b) for all real numbers a and b. Hint. Let
y(x) = s(x+ b) for all x. Show that y is a solution of (∗). Use (e).

(i) Show that c(a+b) = c(a)c(b)−s(a)s(b) for all real numbers a and b. Hint. Differentiate
the formula for s(x+ b) that you derived in (h).

(j) Define t(x) =
s(x)

c(x)
and σ(x) =

1

c(x)
for all x such that c(x) 6= 0. Show that

t′(x) = (σ(x))2 and σ′(x) = t(x)σ(x) wherever c(x) 6= 0.
(k) Show that 1 + (t(x))2 = (σ(x))2 wherever c(x) 6= 0.
(l) Explain carefully what the (mathematical) point of this problem is.

(3) Suppose that f is a differentiable function such that f ′(x) ≥ 3

2
for all x and that f(1) = 2.

Prove that f(5) ≥ 8.

(4) Suppose that f is a differentiable function such that f ′(x) ≥ 3 for all x and that f(0) = −4.
Prove that f(3) ≥ 5.

(5) Suppose that f is a differentiable function such that f ′(x) ≤ −2 for all x ∈ [0, 4] and that
f(1) = 6.
(a) Prove that f(4) ≤ 0.
(b) Prove that f(0) ≥ 8.

(6) Give a careful proof that sinx ≤ x for all x ≥ 0.

(7) Give a careful proof that 1− cosx ≤ x for all x ≥ 0.

(8) Prove that if x2 =
1− y2

1 + y2
, then

(
dx

dy

)2

=
1− x4

1− y4
at points where y 6= ±1.
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(9) For the circle x2 + y2 − 1 = 0 use implicit differentiation to show that y′′ = − 1

y3
and

y′′′ = −3x

y5
.

(10) Explain how to calculate
d2y

dx2
at the point on the folium of Déscartes

x3 + y3 = 9xy

where the tangent line is parallel to the asymptote of the folium.

(11) Explain carefully how to find the curve passing through the point (2, 3) which has the
following property: the segment of any tangent line to the curve contained between the
(positive) coordinate axes is bisected at the point of tangency. Carry out the computation
you have described.
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7.4. Answers to Odd-Numbered Exercises

(1) −5

2
, −3

2
, 9,

1

2

(3) 4, −2

3
, −6, −8

5

(5) 36

(7) 13

(9) −3, 0, 2

(11) −1, 2

(13) 4, 12

(15) 0, 0, −2

(17) −1, 1, −1, 1

(19) 9, 3

(21) 2x5 + 14x3 − 10x, 4x3 + 14x

(23) sin3 x, tanx, sec2 x,
(
x3 − 3x2 + 6x− 11

) 2
3 , x2 − 2x+ 2, −1

2

(25) 100(2− π)

(27) 200, 401

(29) 12, −35

(31) −3, 0, −1, 1 (first row)
2, 2, 1, 1 (second row)
1, 3 (third row)
13, 8

(33) 3 ln 3

(35) 1, ∞, ln 2, 2e2

(37) 1, ln sinx

(39) 1, 9, 18, 6

(41) 8

(43) 2,
2

3

(45) 1, −3, −2

(47) 11, 10

(49) −1, 2

(51) −2, 4

(53) 15, 16

(55) 72, −5

(57) −2, 4

(59) −2, 5, −25

(61) −4, 4

(63) 15, 2
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(65) −2, −4

3

(67) −5



CHAPTER 8

THE MEAN VALUE THEOREM

8.1. Background

Topics: Rolle’s theorem, the mean value theorem, the intermediate value theorem.

8.1.1. Definition. A real valued function f defined on an interval J is increasing on J if f(a) ≤
f(b) whenever a, b ∈ J and a ≤ b. It is strictly increasing on J if f(a) < f(b) whenever a,
b ∈ J and a < b. The function f is decreasing on J if f(a) ≥ f(b) whenever a, b ∈ J and a ≤ b.
It is strictly decreasing on J if f(a) > f(b) whenever a, b ∈ J and a < b.
NOTE: In many texts the word “nondecreasing” is used where “increasing” in these notes; and
“increasing” is used for “strictly increasing”.
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8.2. Exercises

(1) Let M > 0 and f(x) = x3 for 0 ≤ x ≤M . Find a value of c which satisfies the conclusion

of the mean value theorem for the function f over the interval [0,M ]. Answer: c =
M

a
where a = .

(2) Let f(x) = x4 + x+ 3 for 0 ≤ x ≤ 2. Find a point c whose existence is guaranteed by the
mean value theorem. Answer: c = 2p where p = .

(3) Let f(x) =
√
x for 4 ≤ x ≤ 16. Find a point c whose existence is guaranteed by the mean

value theorem. Answer: c = .

(4) Let f(x) =
x

x+ 1
for −1

2 ≤ x ≤ 1
2 . Find a point c whose existence is guaranteed by the

mean value theorem. Answer: c =
a

2
− 1 where a = .



8.3. PROBLEMS 51

8.3. Problems

(1) Use Rolle’s theorem to derive the mean value theorem.

(2) Use the mean value theorem to derive Rolle’s theorem.

(3) Use the mean value theorem to prove that if a function f has a positive derivative at every
point in an interval, then it is increasing on that interval.

(4) Let a ∈ R. Prove that if f and g are differentiable functions with f ′(x) ≤ g′(x) for every
x in some interval containing a and if f(a) = g(a), then f(x) ≤ g(x) for every x in the
interval such that x ≥ a.

(5) Suppose that f is a differentiable function such that f ′(x) ≤ −2 for all x ∈ [0, 4] and that
f(1) = 6.
(a) Prove that f(4) ≤ 0.
(b) Prove that f(0) ≥ 8.

(6) Your friend Fred is confused. The function f : x 7→ x
2
3 takes on the same values at x = −1

and at x = 1. So, he concludes, according to Rolle’s theorem there should be a point c in
the open interval (−1, 1) where f ′(c) = 0. But he cannot find such a point. Help your
friend out.

(7) Consider the equation cosx = 2x.
(a) Use the intermediate value theorem to show that the equation has at least one solution.
(b) Use the mean value theorem to show that the equation has at most one solution.

(8) Let m ∈ R. Use Rolle’s theorem to show that the function f defined by f(x) = x3−3x+m
can not have two zeros in the interval [−1, 1].

(9) Use the mean value theorem to show that if 0 < x ≤ π/3, then 1
2x ≤ sinx ≤ x.

(10) Use the mean value theorem to show that on the interval [0, π/4] the graph of the curve
y = tanx lies between the lines y = x and y = 2x.

(11) Let x > 0. Use the mean value theorem to show that
x

x2 + 1
< arctanx < x.

(12) Use the mean value theorem to show that

x+ 1 < ex < 2x+ 1

whenever 0 < x ≤ ln 2.

(13) Show that the equation ex + x = 0 has exactly one solution. Locate this solution between
consecutive integers.

(14) Prove that the equation sinx = 1 − 2x has exactly one solution. Explain how the inter-
mediate value theorem can be used to produce an approximation to the solution which is
correct to two decimal places.

(15) Give a careful proof that at one time your height (in inches) was exactly equal to your
weight (in pounds). Be explicit about any physical assumptions you make.
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8.4. Answers to Odd-Numbered Exercises

(1)
√

3

(3) 9



CHAPTER 9

L’HÔPITAL’S RULE

9.1. Background

Topics: l’Hôpital’s rule.
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9.2. Exercises

(1) lim
x→0

1
3x

3 + 2x− 2 sinx

4x3
=

1

a
where a = .

(2) lim
x→0

(
1

sinx
− 1

x

)
= .

(3) lim
t→1

ntn+1 − (n+ 1)tn + 1

(t− 1)2
= when n ≥ 2.

(4) lim
x→0

tanx− x
x− sinx

= .

(5) lim
x→2

x4 − 4x3 + 5x2 − 4x+ 4

x4 − 4x3 + 6x2 − 8x+ 8
=
a

6
where a = .

(6) Let n be a fixed integer. Then the function f given by f(x) =
sin(n+ 1

2)x

sin 1
2x

is not defined

at points x = 2mπ where m is an integer. The function f can be extended to a function
continuous on all of R by defining

f(2mπ) = for every integer m.

(7) lim
x→1

x5 − 1

6x5 − 4x3 + x− 3
=

5

a
where a = .

(8) Suppose that g has derivatives of all orders, that g(0) = g′(0) = g′′(0) = 0, that g′′′(0) = 27,

and that there is a deleted neighborhood U of 0 such that g(n)(x) 6= 0 whenever x ∈ U
and n ≥ 0. Define f(x) = x−4g(x)(1 − cosx) for x 6= 0 and f(0) = 0. Then f ′(0) =

a

4
where a = .

(9) Suppose that g has derivatives of all orders, that g(0) = g′(0) = 0, that g′′(0) = 10,
that g′′′(0) = 12, and that there is a deleted neighborhood of 0 in which g(x), g′(x),

xg′(x) − g(x) − 5x2, and g′′(x) − 10 are never zero. Let f(x) =
g(x)

x
for x 6= 0 and

f(0) = 0. Then f ′′(0) = .

(10) Suppose that g has derivatives of all orders, that g(0) = g′(0) = g′′(0) = g′′′(0) = 0, and

that g(4)(0) = 5. Define f(x) =
x g(x)

2 cosx+ x2 − 2
for x 6= 0 and f(0) = 0. Then f ′(0) =

a

2
where a = .

(11) lim
x→0

x2 + 2 cosx− 2

x4
=

1

a
where a = .

(12) lim
x→0

cosx+ 1
2x

2 − 1

5x4
=

1

a
where a = .

(13) lim
x→0

x2 + 2 ln(cosx)

x4
= −1

a
where a = .

(14) lim
x→∞

(
1− 5

2x

)4x

= .

(15) lim
x→∞

(
lnx

x

)1/ lnx

= .

(16) lim
x→0

(
sinx

x3
− 1

x2

)
= −1

a
where a = .
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(17) lim
x→1

[
1

x− 1
− lnx

(x− 1)2

]
=

1

a
where a = .

(18) lim
x→1

[
1

2(x− 1)
− 1

(x− 1)2
+

lnx

(x− 1)3

]
=

1

a
where a = .

(19) lim
x→0+

(√
1

x2
+

1

x
−
√

1

x2
− 1

x

)
= .

(20) lim
x→0

x− sinx

x− arctanx
= .

(21) Let f(x) = x2e1/x for all x 6= 0. Then lim
x→0−

f(x) = and lim
x→0+

f(x) = .

(22) lim
x→∞

(x ln(5x))3/ lnx = .

(23) lim
x→0

[
1

x2
+

2

x4
ln cosx

]
= .

(24) limx→0+(sinx)tanx = .

(25) lim
x→π

2
−

(secx− tanx) = .

(26) lim
x→π

2
−

(sec2 x− tan2 x) = .

(27) lim
x→π

2
−

(sec3 x− tan3 x) = .

(28) lim
x→∞

(lnx)25

x
= .

(29) lim
x→∞

(
1− 5

7x

)2x

= e−a/7 where a = .

(30) lim
x→∞

(
3x

e2x + 7x2

)1/x

= ea where a = .

(31) lim
x→∞

(
lnx

x

)1/ lnx

= ea where a = .
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9.3. Problems

(1) Is the following a correct application of l’Hôpital’s rule? Explain.

lim
x→1

2x3 − 3x+ 1

x4 − 1
= lim

x→1

6x2 − 3

4x3
= lim

x→1

12x

12x2
= lim

x→1

1

x
= 1.

(2) Let t be the measure of a central angle ∠AOB of a circle. The segments AC and BC
are tangent to the circle at points A and B, respectively. The triangular region 4ABC is
divided into the region outside the circle whose area is g(t) and the region inside the circle

with area f(t). Find lim
t→0

f(t)

g(t)
.

t

O

A B

C

g(t)

f(t)

(3) Let f(x) = x(x−1)
−1

for x > 0, x 6= 1. How should f(1) be defined so that f is continuous
on (0,∞)? Explain your reasoning carefully.

(4) Show that the curve y = x(lnx)2 does not have a vertical asymptote at x = 0.

(5) Define f(x) = (x2)x for all x 6= 0. Define f(0) in such a way as to make f a continuous
function on R. Find all critical points of f . Determine the intervals on which f is increas-
ing, decreasing, concave up, concave down. Take special care to describe what happens at
x = 0. Use Newton’s method to find to 4 decimal place accuracy any points of inflection
which may occur.

(6) Let f(x) =
x lnx

x− 1
for x > 0 and x 6= 1.

(a) How should f be defined at x = 1 so that f will be continuous on (0,∞)? Explain
how you know your answer is correct.

(b) Suppose f(1) has the value you found in (a). Then find f ′(1) (and explain what you
are doing).

(c) Suppose f(1) has the value you found in (a). Find f ′′(1) (and explain what you are
doing).

(d) Suppose f(1) has the value you found in (a). Give a careful proof that f ′′ is continuous
at x = 1.

(7) Your good friend Fred is confused again. He is trying to find ` = lim
x→0+

(1+x)1/x. It is clear

him that for x > 0 the quantity in parentheses, 1 + x, is always strictly greater than 1.

Further more the power
1

x
is going to infinity as x approaches 0 from the right. So ` is

the result of taking a number strictly greater than 1 to higher and higher powers and,
therefore, l =∞. On the other hand he sees that 1+x is approaching 1 as x approaches 0,
and 1 taken to any power whatever is 1. So ` = 1. Help Fred by pointing out to him the
error of his ways.
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9.4. Answers to Odd-Numbered Exercises

(1) 6

(3)
1

2
n(n+ 1)

(5) 5

(7) 19

(9) 4

(11) 12

(13) 6

(15)
1

e

(17) 2

(19) 1

(21) 0, ∞

(23) −1

6

(25) 0

(27) ∞
(29) 10

(31) −1





CHAPTER 10

MONOTONICITY AND CONCAVITY

10.1. Background

Topics: increasing, decreasing, monotone, concave up, concave down.

10.1.1. Definition. A real valued function f defined on an interval J is increasing on J if
f(a) ≤ f(b) whenever a, b ∈ J and a ≤ b. It is strictly increasing on J if f(a) < f(b) whenever
a, b ∈ J and a < b. The function f is decreasing on J if f(a) ≥ f(b) whenever a, b ∈ J and
a ≤ b. It is strictly decreasing on J if f(a) > f(b) whenever a, b ∈ J and a < b.

10.1.2. Definition. Let f : A → R where A ⊆ R. The function f has a local (or relative)
maximum at a point a ∈ A if there exists r > 0 such that f(a) ≥ f(x) whenever |x − a| < r and
x ∈ dom f . It has a local (or relative) minimum at a point a ∈ A if there exists r > 0 such
that f(a) ≤ f(x) whenever |x − a| < r and x ∈ dom f . The point a is a relative extremum of
f if it is either a relative maximum or a relatives minimum.

The function f : A→ R is said to attain a maximum at a if f(a) ≥ f(x) for all x ∈ dom f . This
is often called a global (or absolute) maximum to help distinguish it from the local version
defined above. It is clear that every global maximum is also a local maximum but not vice versa.
(Of course, similar definitions hold for global or absolute minima and global or absolute extrema.)

10.1.3. Definition. A real valued function f defined on an interval J is concave up on J if the
chord line connecting any two points (a, f(a)) and (b, f(b)) on the curve (where a, b ∈ J) always
lies on or above the curve. It is concave down if the chord line always lies on or below the curve.
A point on the curve where the concavity changes is a point of inflection.

When f is twice differentiable it is concave up on J if and only if f ′′(c) ≥ 0 for all c ∈ J and
is concave down on J if and only if f ′′(c) ≤ 0 for all c ∈ J .
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10.2. Exercises

(1) Suppose that the derivative of a function f is given by f ′(x) =
x

x+ 2
− x+ 3

x− 4
. Then the

intervals on which f is increasing are ( , ) and ( , ).

(2) Suppose that the derivative of a function f is given by f ′(x) =
−x

(x2 + 1)2
.

(a) The interval on which the function f is increasing is ( , ).

(b) Estimate to two decimal places the location of a point x > 0 where f has a point of
inflection. Answer: . .

(3) A function f is defined on the interval [0, π]. Its derivative is given by f ′(x) = cosx−sin 2x.

(a) The intervals on which f is increasing are
(
a ,
π

b

)
and

(
π

c
,
dπ

b

)
where a = ,

b = , c = , and d = .

(b) Estimate to two decimal places the location of points of inflection.
Answer: 1. and 2. .

(4) Suppose that the derivative of a function f is given by f ′(x) = (x− 2)2(x+ 4).

(a) The interval on which f is increasing is ( , ) .

(b) f has no local .

(c) f has a local at x = .

(5) Suppose that the derivative of a function f is given by f ′(x) =
x+ 1√
x2 + 1

.

(a) The interval on which f is increasing is ( , ) .

(b) f has no local .

(c) f has a local at x = .

(6) Suppose that the derivative of a function f is given by f ′(x) = ln(1 + x2).

(a) The interval on which f is increasing is ( , ) .

(b) At how many points does f have a local maximum? Answer: .

(c) At how many points does f have a local minimum? Answer: .

(d) The interval on which f is concave up is ( , ) .

(e) f has a point of inflection at x = .

(7) Suppose that the derivative of a function f is given by f ′(x) =
1

x2 + 1
.

(a) The interval on which f is increasing is ( , ) .

(b) At how many points does f have a local maximum? Answer: .

(c) At how many points does f have a local minimum? Answer: .

(d) The interval on which f is concave up is ( , ) .

(e) f has a point of inflection at x = .

(8) Suppose that the derivative of a function f is given by f ′(x) =
x

x2 + 1
.

(a) The interval on which f is increasing is ( , ) .

(b) At how many points does f have a local maximum? Answer: .

(c) At how many points does f have a local minimum? Answer: .

(d) The interval on which f is concave up is ( , ) .

(e) f has points of inflection at x = and x = .
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(9) The domain of a function f is [a, g]. Below is a sketch of the graph of the derivative of f .

x
a b c d e g

(a) The largest intervals on which f is increasing are ( , ) and ( , ) .

(b) f has local minima at x = and x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = and x = .

(10) The domain of a function f is [a, e]. Below is a sketch of the graph of the derivative of f .

x
a b c d e

(a) The largest interval on which f is increasing is ( , ) .

(b) f has local maxima at x = and x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = and x = .

(11) The domain of a function f is [a, d]. Below is a sketch of the graph of the derivative of f .

x
a c d

b

(a) The largest interval on which f is decreasing is ( , ) .

(b) f has a local maximum at x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = and x = .
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(12) The domain of a function f is [a, e]. Below is a sketch of the graph of the derivative of f .

x
a b c d e

(a) The largest interval on which f is increasing is ( , ) .

(b) f has local minimum at x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = , x = , and x = .

(13) The domain of a function f is [a, k]. Below is a sketch of the graph of the derivative of f .

x
a b c d e g h j k

(a) The largest intervals on which f is decreasing are ( , ) and ( , ) .

(b) f has local minima at x = , x = , and x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = , x = , and x = .

(14) The domain of a function f is [a, j]. Below is a sketch of the graph of the derivative of f .

x
a b c d e g h j

(a) The largest intervals on which f is increasing are ( , ) and ( , ) .

(b) f has local maxima at x = , x = , and x = .

(c) The largest intervals on which f is concave up are ( , ) and ( , ) .

(d) f has points of inflection at: x = , x = , and x = .

(15) Consider the function f : x 7→ x2e−x.
(a) The interval on which f is increasing is ( , ) .

(b) f has a local minimum at x = .

(c) The interval on which f is concave down is (a−
√
a, a+

√
a) where a = .
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(16) The intervals on which the function f(x) = x2 +
16

x2
is increasing are ( , ) and

( , ) .

(17) Consider the function f : x 7→ 1

x
ex.

(a) The intervals on which f is decreasing are ( , ) and ( , ) .

(b) How many local maxima does f have? Answer: .

(c) The interval on which f is concave up is ( , ) .

(18) Consider the function f : x 7→ x exp
(
−1

2x
2
)
.

(a) The intervals on which f is decreasing are ( , ) and ( , ) .

(b) The intervals on which f is concave up are (−a, 0) and (a , ∞ ) where a = .

(c) f has how many points of inflection? Answer: .

(19) Consider the function f : x 7→ ln(4− x2).
(a) The domain of f is the interval ( , ) .
(b) The interval on which f is increasing is ( , ) .

(c) f is concave .

(20) Consider the function f : x 7→ x lnx.
(a) The domain of f is the interval ( , ) .

(b) lim
x→0+

f(x) = .

(c) The interval on which f is positive is ( , ) .

(d) The interval on which f is increasing is ( , ) .

(e) The function f attains its minimum value of −1

a
at x =

1

b
where a = and

b = .

(f) f is concave .

(21) Consider the function f : x 7→ x2 lnx.
(a) The domain of f is the interval ( , ) .

(b) lim
x→0+

f(x) = .

(c) The interval on which f is positive is ( , ) .

(d) The interval on which f is increasing is ( , ) .

(e) The function f attains its minimum value of −1

a
at x =

1

b
where a = and

b = .

(f) f has a point of inflection at x = ep where p = .

(22) Consider the function f : x 7→ x(lnx)2.
(a) The domain of f is the interval ( , ) .

(b) lim
x→0+

f(x) = .

(c) The intervals on which f is increasing are

(
0 ,

1

a

)
, where a = , and

( , ) .

(d) The function f attains its minimum value of at x = .

(e) f has a point of inflection at x = ep where p = .
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(23) Consider the function f : x 7→ 1

x
lnx.

(a) The domain of f is the interval ( , ) .

(b) lim
x→0+

f(x) = .

(c) The interval on which f is increasing is ( , ) .

(d) The function f attains its maximum value of at x = .

(e) f has a point of inflection at x = ep where p = .

(24) Let f(x) = ex sinx for 0 ≤ x ≤ π. Then f has its global maximum at x = ; it
has its global minimum at x = ; and it has a point of inflection at x = .

(25) Find real numbers a and b such that x = 1 is a critical point of the function f where

f(x) = ax+
b

x2
for all x 6= 0 and f(1) = 3. Answer: a = and b = . Then the

point (1, 3) a local .

(26) Let f(x) =
x2 − 5

x2 + 3
for all x ≥ −1. The function f has a global minimum at x = and

a local maximum at x = .

(27) Consider the function f : x 7→ x2 − 2x

(x+ 1)2
.

(a) The intervals on which f is increasing are ( , ) and ( , ) .

(b) f has a global minimum at x = .

(c) The intervals on which f is concave up are ( , ) and ( , ) .

(d) f has a point of inflection at: x = .

(28) Consider the function f : x 7→ 2x2

x2 + 2
.

(a) The interval on which f is increasing is ( , ) .

(b) f has global minimum at x = .

(c) The interval on which f is concave up is (−
√
a,
√
a) where a = .

(29) Consider the function f : x 7→ 6

x2
− 6

x
.

(a) The intervals on which f is increasing are ( , ) and ( , ) .

(b) f has a global minimum at x = .

(c) The intervals on which f is concave up are ( , ) and ( , ) .

(30) Consider the function f : x 7→ |x− 1|
|x| − 1

.

(a) The intervals on which f is strictly increasing are ( , ) and ( , ) .

(b) f is constant on the intervals [ , ) and ( , ) .

(c) f has a vertical asymptote at x = and a horizontal asymptote at y = .

(d) The only point in the domain of f at which f is not differentiable is x = .

(e) f has how many points of inflection? Answer: .

(31) Let f(x) = 1
4x

3 − 3x + 7 for −4 ≤ x ≤ 3. Then f has (local) maxima at x = and
x = . The global maximum of f occurs at x = . The maximum value of f
is .

(32) Let f(x) =
√
x +

4

x
for 1

4 ≤ x ≤ 100. The maximum value attained by f(x) is
a

2
where

a = .
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10.3. Problems

(1) Suppose that a function f is increasing on the interval (−∞,−5) and is also increasing
on the interval (−5,∞). Is it necessarily the case that f must be increasing on the set
(−∞,−5) ∪ (−5,∞)? Explain.

(2) An equation of state of a substance is an equation expressing a relationship between
the pressure P , the volume V , and the temperature T of the substance. A van der
Waals gas is a gas for which there exist positive constants a and b (depending on the
particular gas) such that the following equation of state holds:(

P +
a

V 2

)
(V − b) = RT. (∗)

(Here R is a universal constant, not depending on the particular gas.) For each fixed
value of T the equation of state (∗) can be used to express P as a function of V , say
P = f(V ). A critical temperature, which we denote by Tc, is a value of T for which
the corresponding function f possesses a critical point which is also a point of inflection.
The V and P coordinates of this critical point are denoted by Vc and Pc and are called
the critical volume and the critical pressure.

Show that every van der Waals gas has a critical temperature. Compute the critical
values RTc, Vc, and Pc (in terms of the gas constants a and b). Explain how you know
that the point (Vc, Pc) is a point of inflection.

(3) A water storage tank consists of two parts: the bottom portion is a cylinder with radius
10 feet and height 50 feet; the top portion is a sphere of radius 25 feet. (A small bottom
portion of the sphere is missing where it connects to the cylinder.) The tank is being filled
from the bottom of the cylindrical portion with water flowing in at a constant rate of 100
cubic feet per minute. Let h(t) be the height of the water in the tank at time t. Sketch a
graph of the function h from the time the filling starts to the time the tank is full. Explain
carefully the reasoning behind all properties of your graph—paying particular attention
to its concavity properties.

(4) For what values of k > 0 does the function f defined by

f(x) =
lnx

k
− kx

x+ 1

have local extrema? For each such k locate and classify the extrema. Explain the reasons
for your conclusions carefully.
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10.4. Answers to Odd-Numbered Exercises

(1) −∞, −2, −2

3
, 4

(3) (a) 0, 6, 2, 5
(b) 0, 0, 1, 4

(5) (a) −1, ∞
(b) maximum
(c) minimum. −1

(7) (a) −∞, ∞
(b) 0
(c) 0
(d) −∞, 0
(e) 0

(9) (a) a, c, e, g
(b) a, e
(c) a, b, d, g
(d) b, d

(11) (a) a, d
(b) a
(c) a, b, c, d
(d) b, c

(13) (a) b, d, g, j
(b) a, d, j
(c) c, e, h, k
(d) c, e, h

(15) (a) 0, 2
(b) 0
(c) 2

(17) (a) −∞, 0, 0, 1
(b) 0
(c) 0, ∞

(19) (a) −2, 2
(b) −2, 0
(c) down

(21) (a) 0, ∞
(b) 0
(c) 1, ∞
(d)

1√
e

, ∞

(e) 2e,
√
e

(f) −3

2

(23) (a) 0, ∞
(b) −∞
(c) 0, e

(d)
1

e
, e

(e)
3

2
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(25) 2, 1, minimum

(27) (a) −∞, −1,
1

2
, ∞

(b)
1

2

(c) −∞, −1, −1,
5

4

(d)
5

4

(29) (a) −∞, 0, 2, ∞
(b) 2
(c) −∞, 0, 0, 3

(31) −2, 3, −2, 11





CHAPTER 11

INVERSE FUNCTIONS

11.1. Background

Topics: inverse functions and their derivatives, logarithmic functions, the natural logarithm, ex-
ponential functions, trigonometric and inverse trigonometric functions, implicit differentiation.

The following two facts may be helpful in solving problem 1

11.1.1. Proposition. Every real number is the limit of a sequence of rational numbers. That is,
if a is a real number, then there are rational numbers x1, x2, x3, . . . such that limn→∞ xn = a.

11.1.2. Proposition. If g is a continuous function and x1, x2, x3, . . . are real numbers such that
limn→∞ xn = a, then limn→∞ g(xn) = g(a).

69
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11.2. Exercises

(1) Let f(x) = x5 + 3x3 + x− 10. Then Df−1(48) =
1

a
where a = .

(2) Let f(x) =
3

(x− 1)4
for x ≥ 1. Then f−1(243) = −a 3p where a = and p = .

(3) Let f(x) = ln(x− 2) + ex
2

for x > 2. Then Df−1(e9) = (1 + aeb)−1 where a = and
b = .

(4) Let f(x) = ln
1 + x

1− x
for −1 < x < 1. Then Df−1(ln 5) =

5

a
where a = .

(5) Let f(x) =
2 + x

5− x
. Then f−1(x) =

ax+ b

x+ 1
where a = and b = .

(6) Let f(x) = exp

(
1

1− x

)
. Then f−1(x) = 1 −

(
g(x)

)p
where g(x) = and

p = .

(7) Let f(x) = arctan
(
8x3 + 2). Then f−1(x) =

1

a
(tanx+ b)p where a = , b = ,

and p = .

(8) Let f(x) = sin3 2x for −π4 ≤ x ≤ π
4 . Then Df−1(18) =

a

b
√
b

where a = and where

b = .

(9) Let f(x) = 4
3x

4−8x3+18x2−18x+ 27
4 for x < 3

2 . Then Df−1(274 ) = −1

a
where a = .

(10) Let f(x) = x3 + ln(x− 1) for x > 1. Then Df−1(8) =
1

a
where a = .

(11) Let f(x) = ln
x2 + 1

x2 − 1
for x > 1. Then Df−1(ln 5− ln 3) = −a

8
where a = .

(12) What is the area of the largest rectangle that has one corner at the origin, one corner
on the negative y-axis, one corner on the positive x-axis, and one corner on the curve
y = lnx?

Answer: the area is .

(13) What is the area of the largest rectangle that has one corner at the origin, one corner on
the negative x-axis, one corner on the positive y-axis, and one corner on the curve y = ex?

Answer: the area is .

(14) Solve the equation: 1 + log10(x− 4) = log10(x+ 5). Answer: x = .

(15) Let f(x) = log3(log2 x). Then Df(e) =
1

ae
where a = .

(16) Suppose p, q > 0 and log9(p) = log12(q) = log16(p + q). Find
q

p
. Express your answer in

a form that involves neither exponentials nor logarithms.

Answer:
q

p
=

1 + a

2
where a = .

(17) A triangle is bounded by the x-axis, the y-axis, and the tangent line to the curve y = 2x

at x = 0. The area of this triangle is
1

a ln a
where a = .

(18) lim
x→0

34+x − 34

x
= a ln b where a = and b = .
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(19) lim
t→0

log5(t+ 0.04) + 2

t
=

a

ln b
where a = and b = .

(20) If y = arcsin

(
x2

3

)
, then

dy

dx
=

ax√
b− x4

where a = and b = .

(21) A tapestry 30 feet high is hung so that its lower edge is 24 feet above the eye of an observer.
How far from the tapestry should the observer stand in order to maximize the visual angle
subtended by the tapestry? Answer: ft.

(22) Let f(x) = arctan

(
x2

1 + x

)
. Then Df(1) =

a

5
where a = .

(23) Let f(x) = arctan

(
1

x

)
. Then f

(
1√
3

)
=
π

a
and f ′

(
1√
3

)
= −a

b
where a = and

b = .

(24) Let f(x) = xarcsinx. Then f(1) = and f ′(1) = .

(25) A solution to the equation arcsinx− arccosx = 0 is x =
1

a
where a = .

(26) Let f(x) = arctan 2x− arctanx for x ≥ 0.

(a) The function f is increasing on the interval ( , ).

(b) The function f has a local maximum at x = .

(c) The function f has a local minimum at x = .

(27) Let f(x) = ln(arctan
√
x2 − 1). Then f ′(2) =

√
a

bπ
where a = and b = .

(28) The expression e−
3
4
ln 81 is a complicated way of writing the integer .

(29) The expression
ln 81

(ln 27)2
ln 3
√

3 is a complicated way of writing the fraction
a

3
where

a = .

(30) The solution to the differential equation y ′ = (2x−1)y which satisfies the initial condition

y(0) = 3 is y = aef(x) where a = and f(x) = .

(31) The solution to the differential equation y ′ = 4x3y which satisfies the initial condition

y(0) = 7 is y = aef(x) where a = and f(x) = .

(32) Let f(x) = ex
2+lnx for x > 0. Then Df−1(e) =

1

ae
where a = .

(33) The equation of the tangent line at the point (1, 0) to the curve whose equation is

x sin y + x3 = arctan(ey) + x− π

4
is y = −ax+ a where a = .
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11.3. Problems

(1) Show that the natural logarithm is the only continuous function f defined on the interval
(0,∞) which satisfies

f(xy) = f(x) + f(y) for all x, y > 0

and
f(e) = 1.

Hint. Assume that you are given a function f : (0,∞) → R about which you know
only three things:
(i) f is continuous;

(ii) f(xy) = f(x) + f(y) for all x, y > 0; and
(iii) f(e) = 1.

What you must prove is that

f(x) = lnx for every x > 0. (11.1)

The crucial result that you will need to prove is that

f(ur) = r f(u) (11.2)

holds for every real number u > 0 and every rational number r. Once you have this, then
you can use propositions 11.1.1 and 11.1.2 to conclude that

f(ey) = y for every real number y.

Then substituting lnx for y will give you the desired result (11.1).
Prove (11.2) first for the case r = n where n is a natural number. Then prove it for

the case r = 1/n where n is a natural number. Use these results to show that (11.2) holds
for every positive rational number. Next deal with the case r = 0. Finally verify (11.2)
for the case where r is a negative rational number. (To do this prove that f(1/v) = −f(v)
for all v > 0 by substituting v for x and 1/v for y in (ii).)

(2) Prove that

arctanx+ arctan y = arctan
x+ y

1− xy
whenever xy 6= 1. Hint. Let y be an arbitrary, but fixed, real number. Define f(x) =

arctanx+ arctan y and g(x) = arctan
x+ y

1− xy
. Compare the derivatives of f and g.

(3) Prove that arctanx and arctan
1 + x

1− x
differ by constants on the intervals (−∞, 1) and

(1,∞). Find the appropriate constants. Show how to use this information to find

lim
x→1−

arctan
1 + x

1− x
and lim

x→1+
arctan

1 + x

1− x
.

(4) Give a careful proof that
x

x2 + 1
≤ arctanx ≤ x

for all x ≥ 0.

(5) Define f(x) = (x2)x for all x 6= 0. Define f(0) in such a way as to make f a continuous
function on R. Sketch the function f . Locate all critical points and identify the intervals
on which f is increasing, is decreasing, is concave up, and is concave down. Take special
care to describe what happens at x = 0. Use Newton’s method to find to 4 decimal place
accuracy any points of inflection which may occur.
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(6) Let f(x) = 2x+ cosx+ sin2 x for −10 ≤ x ≤ 10. Show that f has an inverse.

(7) Let f(x) =
4x+ 3

x+ 2
.

(a) Show that f is one-to-one.
(b) Find f−1(−2).
(c) Find dom f−1.

(8) Let f(x) = e3x + lnx for x > 0. Prove that f has an inverse and calculate Df−1(e3).

(9) Let f(x) = ln(1 + x) − ln(1 − x) for −1 < x < 1. Prove that f has an inverse and find
f−1(x).

(10) Show that there is exactly one number x such that e−x = x3 − 9. Locate the number
between consecutive integers.

(11) Show that there is exactly one number x such that e2x = 10 − x3. Locate the number
between consecutive integers.

(12) Show that there is exactly one number x such that lnx+ x = 0.

(13) Use the mean value theorem to show that x+ 1 < ex < 2x+ 1 whenever 0 < x ≤ ln 2.

(14) (a) Find lim
x→1

1

x− 1
.

(b) Find lim
x→1

lnx

(x− 1)2
.

(c) Find lim
x→1

(
1

x− 1
− lnx

(x− 1)2

)
.

(15) Suppose that f : (0,∞) → R is a continuous function on (0,∞) such that f(x) =
x lnx

x− 1
for every x > 0 except x = 1. Prove that f ′′(x) (exists and) is continuous at x = 1.

(16) Let 0 < a < b. Use the mean value theorem to show that

1− a

b
< ln

b

a
<
b

a
− 1.
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11.4. Answers to Odd-Numbered Exercises

(1) 117

(3) 6, 9

(5) 5, −2

(7) 2, −2,
1

3

(9) 18

(11) 15

(13)
1

e

(15) ln 3

(17) 2

(19) 25, 5

(21) 36

(23) 3, 4

(25)
√

2

(27) 3, 2

(29) 2

(31) 7, x4

(33) 4



CHAPTER 12

APPLICATIONS OF THE DERIVATIVE

12.1. Background

Topics: antiderivatives, related rates, optimization, Newton’s method.

This chapter makes no pretense of presenting interesting “real-world” applications of the dif-
ferential calculus. Its purpose is simply to make some elementary connections between the mathe-
matical concept of derivative and various instances of rates of change of physical quantities.

Newton’s Law of Cooling: the rate of cooling of a hot body is proportional to the difference
between its temperature and that of the surrounding medium.

75
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12.2. Exercises

(1) One leg of a right triangle decreases at 1 in./min. and the other leg increases at 2 in./min.
At what rate is the area changing when the first leg is 8 inches and the second leg is 6
inches? Answer: in2/min.

(2) The volume of a sphere is increasing at the rate of 3 cubic feet per minute. At what rate

is the radius increasing when the radius is 8 feet? Answer:
a

bπ
ft/minẇhere a = and

b = .

(3) A beacon on a lighthouse 1 mile from shore revolves at the rate of 10π radians per minute.
Assuming that the shoreline is straight, calculate the speed at which the spotlight is
sweeping across the shoreline as it lights up the sand 2 miles from the lighthouse. An-
swer: miles/min.

(4) Two boats are moving with constant speed toward a marker, boat A sailing from the south
at 8 mph and boat B approaching from the east. When equidistant from the marker the
boats are 4

√
2 miles apart and the distance between them is decreasing by 7

√
2 mph. How

fast is boat B going? Answer: mph.

(5) A (right circular) cylinder is expanding in such a way that its height is increasing three
times as rapidly as the radius of its base. At the moment when its height is 5 inches and
the radius of its base is 3 inches its height is increasing at a rate of 12 inches per minute.
At that moment its volume is increasing at a rate of cubic inches per minute.

(6) A cube is expanding in such a way that its edge is increasing at a rate of 4 inches per
second. When its edge is 5 inches long, what is the rate of change of its volume? An-
swer: in3/sec.

(7) A kite 100 feet above the ground is being blown away from the person holding its string
in a direction parallel to the ground and at a rate of 10 feet per second. At what rate
must the string be let out when the length of string already let out is 200 feet? An-
swer: ft/sec.

(8) A plane flying 4000 feet above the ground at a speed of 16,000 feet per minute is followed
by a searchlight. It is flying in a straight line and passes directly over the light. When
the angle between the beam and the ground is π/3 radians, what is the angular velocity
of the beam? Answer: radians/min.

(9) A lighthouse is 3 miles from (a straight) shore. The light makes 4 revolutions per minute.
How fast does the light move along the shoreline when it makes an angle of π/4 radians
with the shoreline? Answer: mi/min.

(10) Water leaking onto a floor creates a circular pool with an area that increases at the rate of
3 square inches per minute. How fast is the radius of the pool increasing when the radius

is 10 inches? Answer:
a

bπ
in/minẇhere a = and b = .

(11) A cube is expanding in such a way that the length of its diagonal is increasing at a rate
of 5 inches per second. When its edge is 4 inches long, the rate at which its volume is
increasing is in3/sec.

(12) You are standing on a road, which intersects a railroad track at right angles, one quarter
of a mile from the intersection. You observe that the distance between you and the
approaching train is decreasing at a constant rate of 25 miles per hour. How far from

the intersection is the train when its speed is 40 miles per hour? Answer:
5

4
√
a

mi where
a = .
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(13) A light shines on top of a lamppost 30 feet above the ground. A woman 5 feet tall walks
away from the light. Find the rate at which her shadow is increasing if she is walking at
3 ft./sec. Answer: ft/sec.

(14) A balloon is going up, starting at a point on the ground. An observer 300 feet away
looks at the balloon. The angle θ which a line to the balloon makes with the horizontal
is observed to increase at 1

10 rad./sec. How rapidly is the balloon rising when θ = π/6?
Answer: ft/sec.

(15) A man is walking along a sidewalk at 6 ft./sec. A searchlight on the ground 24 feet from
the walk is kept trained on him. At what rate is the searchlight revolving when the man
is 18 feet from the point on the walk nearest the light? Answer: rad/sec.

(16) A 20 foot long ramp has one end on the ground and the other end at a loading dock 5 feet
off the ground. A person is pushing a box up the ramp at the rate of 3 feet per second.
How fast is the box rising? Answer: ft/sec.

(17) What is the area of the largest rectangle (with sides parallel to the coordinate axes) which
lies above the x-axis and below the parabola y = 48− x2? Answer: Area is .

(18) A piece of cardboard is to be made into an open box by cutting out the corners and
folding up the sides. Given a piece of cardboard 12 in. × 12 in. what size should the
corner notches be so that the resulting box has maximum volume? Answer: they should
be squares inches on each side.

(19) Express 20 as the sum of two positive numbers x and y such that x3 + y2 is as small as
possible. Answer: x = and y = .

(20) The combined resistance R of two resistors R1 and R2 is given by
1

R
=

1

R1
+

1

R2
(where

R1, R2 > 0). Suppose R1 + R2 is a constant. How does one obtain maximum combined
resistance? Answer: .

(21) Find the point on the curve y2 = 5
2(x+1) which is nearest the origin. Answer: ( , ).

(22) Find the point on the curve y = x2 which is closest to the point (3, 0). Answer: ( , ).

(23) Find the lengths of the sides of the rectangle of largest area which can be inscribed in
a semicircle of radius 8. (The lower base of the rectangle lies along the diameter of the
semicircle.) Answer: the sides should have lengths and .

(24) Consider triangles in the first quadrant bounded by the x-axis, the y-axis, and a tangent
line to the curve y = e−x. The largest possible area for such a triangle is .

(25) An open cylindrical tank of volume 192π cubic feet is to be constructed. If the material
for the sides costs $3 per square foot, and the material for the bottom costs $9 per square
foot, find the radius and height of the tank which will be most economical.

Answer: radius = ft; height = ft.

(26) Find the dimensions of the cylinder with the greatest volume which can be inscribed in a
sphere of radius 1.

Answer: radius = ; height = .

(27) A farmer has 100 pigs each weighing 300 pounds. It costs $.50 a day to keep one pig. The
pigs gain weight at 10 pounds a day. They sell today for $.75 a pound, but the price is
falling by $.01 a day. How many days should the farmer wait to sell his pigs in order to
maximize his profit? Answer: days.

(28) Consider a parallelogram inscribed in a triangle ABC in such a way that one vertex
coincides with A while the others fall one on each side of the triangle. The maximum
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possible area for such a parallelogram is what fraction of the area of the original triangle?
Hint. Orient the triangle so that its vertices are A = (0, 0), B = (a, 0), and C = (b, c).
Let (t, 0) be the vertex of the parallelogram lying on AB and (x, y) be the vertex lying on
BC. Use t as the independent variable. Find x and y in terms of t (and the constants a,

b, and c). Answer:
r

s
where r = and s = .

(29) Two men carry a 14
√

7 ft. ladder down a 10
√

5 ft. wide corridor. They turn into a second
corridor, perpendicular to the first one, while keeping the ladder horizontal. Find the
minimum possible width of the second corridor. Answer: feet.

(30) At each point a > 0 the tangent line to the parabola y = 1−x2 and the positive coordinate

axes form a triangle. The minimum possible area of such a triangle is
a

b
√
b

where a =

and b = .

(31) A window is in the shape of a rectangle surmounted by a semicircle. If the perimeter is to
be 18 feet, find the dimensions which maximize the area.

Answer: the radius of the semicircle should be
a

4 + π
ft and the height of the rectangle

should be
b

4 + π
ft where a = and b = .

(32) What is the distance from the point (8, 4) to the tangent line to the curve f(x) = 3x2−4x+6
at x = 1? Answer: .

(33) What are the dimensions of a rectangular box—with no top—of greatest volume that can
be constructed from 120 sq. in. of material if the base of the box is to be twice as long as

it is wide? Answer: width of base = 2
√
a and height of box =

4

b

√
a where a = in.

and b = in.

(34) Consider all rectangles which have two sides on the positive coordinate axes and which lie
under the curve y = 2 cosx. The one with the largest perimeter has width and
height .

(35) Consider all rectangles which have one side on the positive x-axis and which lie under the
curve y = 4 sinx with 0 ≤ x ≤ π. The one with the largest perimeter has width
and height .

(36) Suppose that f(−1) = −6 and that f ′(x) = 6x2 − 2x + 7 for all real numbers x. Then
f(1) = .

(37) Suppose that f ′′(x) = 18x−14, that f ′(−1) = 8, and that f(−1) = 9. Then f(1) = .

(38) Suppose f ′′(x) = 12x− 10, f(2) = −6, and f(−1) = −18. Then f(1) = .

(39) Suppose that f ′′′(x) = 6x + 6, f(0) = −7, f(1) = 1
4 , and f(2) = 19. Then f(x) =

ax4 + x3 + bx2 + cx+ d where a = , b = , c = , and d = .

(40) A pan of warm water (109◦F) was put in a refrigerator. Fifteen minutes later, the water’s
temperature was 97◦ F; fifteen minutes after that, it was 87◦F. Using Newton’s law of
cooling we can conclude that the temperature of the refrigerator was o F.

(41) An object is heated to 838◦ and then allowed to cool in air that is 70◦. Suppose that it
takes 2 hours to cool the object to 313◦. Then it takes minutes to cool the object
to 646◦. Hint. Use Newton’s law of cooling.

(42) A quantity y varies with time. The rate of increase of y is proportional to cos2 y. The
initial value of y is π/6, while its value at t = 1 is π/3.

(a) For what value of t does y = π/4? Answer: t = .
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(b) What is the long-run value of y? Answer: limt //∞ y(t) = .

(43) A point is moving along the x-axis in such a way that its acceleration at each time t is
3
4π

2 sin π
2 t. Initially the point is located 4 units to the left of the origin. One second later

it is at the origin. Where is it at time t = 5?

Answer: units to the of the origin.

(44) A cylindrical water tank standing on end has diameter 9 ft and height 16 ft. The tank
is emptied through a valve at the bottom of the tank. The rate at which the water level
decreases when the valve is open is proportional to the square root of the depth of the
water in the tank. Initially the tank is full of water. Three minutes after the valve is
opened the tank is only 1/4 full. How long does it take from the time the valve is opened
to empty the tank? Answer: minutes.

(45) A function f satisfies the following conditions:
(i) f ′′(x) = 6x− 12 for all x, and

(ii) the graph of the curve y = f(x) passes through the point (2, 5) and has a horizontal
tangent at that point.

Then f(x) = x3 + ax2 + bx+ c where a = , b = , and c = .

(46) A physical quantity y, which takes on only positive values, varies with time t. It is known

that the rate of change of y is proportional to y3(t + 1)−1/2, that initially y = 1/3, and
that after 8 minutes y = 1/5.
(a) What is the value of y after 35 minutes? Answer: y(35) = .

(b) Approximately how many hours must one wait for y to become less than 1/15? An-
swer: hours.

(47) The solution to the differential equation
dy

dx
= 3x1/3 subject to the condition y = 25 when

x = 8 is y(x) = a
4x

p/3 + b where a = , p = , and b = .

(48) The solution to the differential equation
d2y

dx2
=

6

x4
which satisfies the conditions

dy

dx
= 3

and y = 2 when x = 1 is y(x) = axp + bx + c where a = , p = , b = ,
and c = .

(49) The solution to the differential equation y′(x) = sinxecosx which satisfies the condition

y = 2 when x =
π

2
is y(x) = .

(50) The decay equation for (radioactive) radon gas is y = y0e
−0.18 t with t in days. About how

long will it take the radon in a sealed sample of air to fall to 80% of its original value?
(Give an approximate answer to two decimal places.)

Answer: .2 days.

(51) If the half-life of carbon 14 is approximately 5730 years, how old is a wooden axe handle

that is found to contain only
1

2
√

2
times the atmospheric proportion of carbon 14? Answer:

years.

(52) The half-life of a radioactive substance is 10 years. If we start with 20 grams of this

substance, then the amount remaining after 5 years is a
√
b where a = and b = .

(53) If we assume exponential growth, what was the population of a city in 1930 if its population
in 1940 was 750,000 and in 1970 was 1,296,000? Answer: .

(54) In 1920 the population of a city was 135,000 and in 1950 it was 320,000. Assuming
exponential growth, the population in 1940 was approximately .
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(55) An electric condenser discharges through a resistance, losing voltage at a rate proportional
to the voltage remaining. If the initial voltage of 100 volts decreases to 50 volts in 3 seconds,
then the function representing the voltage on the condenser at any time t is 100af(t) where
a = and f(t) = .

(56) Find a function φ such that y(x) = sin
1

x
is a solution to the differential equation

(
φ(x) y′(x)

)′
+
y(x)

x2
= 0 .

Answer: φ(x) = will work.
(57) Use Newton’s method to find the first three estimates to

√
5 starting at x = 2.

Answer: x1 =
a

4
where a = .

x2 =
a

72
where a = .

x3 =
a

23184
where a = .

(58) Use Newton’s method to find the first four estimates to
√

3 starting at x = 1.
Answer: x1 = .

x2 =
a

4
where a = .

x3 =
a

56
where a = .

x4 =
a

10864
where a = .

(59) Find the first 6 approximations given by Newton’s method to the root of the polynomial
x3 − x− 1 starting with x0 = 1. Carry out your answers to 9 decimal places.

Answer: x0 = 1.000 000 000; x1 = 1. 0 000 000;

x2 = 1.347 8 6 0 7; x3 = 1.325 2 0 3 9;

x4 = 1.324 71 1 4; x5 = 1.324 717 9 7.

(60) Use Newton’s method to find six successive approximations to each root of the polynomial
x4 − 2x3 − x2 − 2x+ 2. Carry out your work to nine decimal places. In each case use the
starting value of the form n or n.5 (where n is an integer) which is closest to the root your
are trying to approximate.

Answer: For the first root: x0 = 0. 00 000 000; x1 = 0.640 25 00;

x2 = 0.630 1 1 5 1; x3 = 0.630 115 3 8;

x4 = 0.630 115 39 ; x5 = 0.630 115 39 .

For the second root: x0 = . 00 000 000; x1 = 2.57 86 111;

x2 = 2.573 1 023; x3 = 2.573 271 9 5;

x4 = 2.573 271 96 ; x5 = 2.573 271 96 .

(61) A ball is thrown upward from the edge of the roof of a building 176 feet high with an
initial velocity of 56 ft/sec. (Assume that the acceleration due to gravity is 32 ft/sec2.)

(a) How high does the ball go? Answer: ft.

(b) When does it reach the ground? Answer: after sec.

(62) A ball is thrown upward from the edge of the roof of a building with a velocity of 40
ft./sec. The ball hits the ground at 120 ft./sec. (Assume that the acceleration due to
gravity is 32 ft/sec2.)

(a) How long does it take the ball to reach the ground? Answer: sec.
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(b) How tall is the building? Answer: ft.

(c) What is the maximum height reached by the ball? Answer: ft.

(63) A ball is thrown upward from the edge of the roof of a building at 72 ft./sec. It hits the
ground 10 seconds later. (Use 32 ft./sec.2 as the magnitude of the acceleration due to
gravity.)

(a) How tall is the building? Answer: 8 ft.

(b) What is the maximum height reached by the ball? Answer: 6 ft.

(64) A ball is thrown upward from the edge of the roof of a building 160 feet tall at a velocity
of 48 ft./sec. At what velocity does the ball hit the ground? (Use 32 ft./sec.2 as the
magnitude of the acceleration due to gravity.) Answer: ft/sec.

(65) A falling stone is observed to be at a height of 171 feet. Two seconds later it is observed
to be at a height of 75 feet. From what height was it dropped? (Use 32 ft./sec.2 as the
magnitude of the acceleration due to gravity.) Answer: ft.

(66) A falling stone is observed to be at a height of 154 feet. Two seconds later it is observed
to be at a height of 14 feet. If the stone was initially thrown upwards with a speed of
10 ft./sec., from what height was it thrown? (Use 32 ft./sec.2 as the magnitude of the
acceleration due to gravity.) Answer: ft.

(67) Two seconds after being thrown upward an object is rising at 176 ft./sec. How far does it
travel before returning to the position from which it was thrown? Answer: ft.

(68) A predator-prey system is modeled by the equations

dx

dt
= 4x− 5y

√
x

dy

dt
= 7y

√
x

where the variable y represents the predator population while the variable x represents the
prey population. Explain briefly how we know that the predator must have an alternate
source of food.

Answer: .
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12.3. Problems

(1) A piston P moves within a cylinder. A connecting rod of length 7 inches connects the
piston with a point Q on a crankshaft, which is constrained to move in a circle with center
C and radius 2 inches. Assuming that the angular velocity of Q is 5π radians per second,
find the speed of the piston at the moment when the line segment CQ makes an angle of
π/4 radians with the horizontal.

(2) Part of the northern boundary of a body of water is a straight shoreline running east and
west. A lighthouse with a beacon rotating at a constant angular velocity is situated 600
yards offshore. An observer in a boat 200 yards east of the lighthouse watches the light
from the beacon move along the shore. At the moment t1 when the observer is looking
directly northeast the angular velocity of his line of sight is 2.5 radians per second.

(a) How many revolutions per minute does the beacon make?

(b) How fast (in miles per hour) is the light moving along the shore at time t1?

(c) Although the beacon rotates with constant angular velocity, the observer’s line of
sight does not. Locate the points on the shoreline where the angular velocity of the
line of sight is greatest and where it is least. What is the limiting angular velocity of
the line of sight as the light disappears down the shoreline?

(3) A wire 24 inches long is cut in two parts. One part is bent into the shape of a circle and
the other into the shape of a square. How should it be cut if the sum of the areas of the
circle and the square is to be (a) minimum, (b) maximum?

12.3.1. Theorem. Let f be a function such that f(x) ≥ 0 for every x in its domain. Then f has
a local maximum at a point a if and only if the function f2 has a local maximum there. Similarly,
f has a local minimum at a if and only if f2 does.

(4) (a) Prove the preceding theorem.

(b) Suppose that 0 < k < l. Let f(x) = |k cosx− l sinx| for −π
2 ≤ x ≤

π
2 . Without using

the theorem above find all local maxima and minima of f .

(c) Let f be as in (b). Use the theorem above to find all local maxima and minima of f .

(d) Show (if you have not already done so) that the answers you got in parts (b) and (c)
are in agreement.

(5) When a sector is removed from a thin circular disk of metal, the portion of the disk which
remains can be formed into a cone. Explain how the sector should be chosen so that the
resulting cone has the greatest capacity.

(6) Your good friend George, who is working for the Acme Widget Corporation, has a problem.
He knows that you are studying calculus and writes a letter asking for your help. His
problem concerns solutions to a system of two differential equations:

dx

dt
= x(t)

dy

dt
= x(t) + y(t)

(1)

subject to the initial conditions

x(0) = a and y(0) = b, (2)

where a and b are arbitrary constants. He has already found one set of solutions:{
x(t) = aet

y(t) = (b+ at)et
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What Fred is unable to discover is whether or not there are other solutions. Write a letter
to Fred helping him out.

Hint. Suppose {
x(t) = u(t)

y(t) = v(t)

is a solution to the system (1) which satisfies the initial conditions (2). Consider the
functions p(t) = e−tu(t) and q(t) = e−tv(t).

(7) Use Newton’s method to approximate the solutions to the equation

sinx = x2 − x+ 0.5

to eight decimal places. Use starting approximations of 0.3 and 1.3.
Explain carefully how we know that there are exactly two solutions. Explain how one

might reasonably have chosen the numbers 0.3 and 1.3 as initial approximations. Discuss
fully the problem of deciding when to stop.

(8) Explain carefully and fully how to use Newton’s method to find the first point of intersection
of the curves y = sinx and y = e−x. Give your answer correct to 8 decimal places.

(9) Suppose we are given a > 0. Explain why it is that if x1 is arbitrary and for each n ∈ N we
let xn+1 = 1

2(xn+axn
−1), then (xn) converges to the square root of a. Hint. Use Newton’s

method. Use this sequence to compute the square root of 107 to ten decimal places.

(10) Explain carefully and fully how to use Newton’s method to find, correct to eight decimal
places, an approximate value for the reciprocal of 2.74369.

(11) A chord subtends an arc of a circle. The length of the chord is 4 inches; the length of the
arc is 5 inches. Find the central angle θ of the circle subtended by the chord (and the arc).
The law of cosines yields an equation involving the angle θ. Explain carefully and fully
how to use Newton’s method to solve the equation (in radians) to four decimal places.

(12) Explain carefully and fully how to use Newton’s method to find, correct to six decimal
places, the slope of the tangent line to the curve y = − sinx (π/2 ≤ x ≤ 3π/2) which
passes through the origin.
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12.4. Answers to Odd-Numbered Exercises

(1) 5

(3) 40π

(5) 228π

(7) 5
√

3

(9) 48π

(11) 80
√

3

(13)
3

5

(15)
4

25

(17) 256

(19)
10

3
,

50

3

(21) −1, 0

(23) 4
√

2, 8
√

2

(25) 4, 12

(27) 20

(29) 4
√

2

(31) 18, 18

(33) 5, 3

(35)
π

3
, 2
√

3

(37) −15

(39)
1

4
, 1, 5, −7

(41) 30

(43) 28, right

(45) −6, 12, −3

(47) 9, 4, −11

(49) 3− exp(cosx)

(51) 8595

(53) 625, 000

(55)
1

2
,
t

3

(57) 9, 161, 51841

(59) 5, 0, 2, 8, 0, 9, 8, 7, 5

(61) (a) 225

(b)
11

2

(63) (a) 8, 0
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(b) 9, 1

(65) 175

(67) 1800





Part 4

INTEGRATION OF FUNCTIONS OF A
SINGLE VARIABLE





CHAPTER 13

THE RIEMANN INTEGRAL

13.1. Background

Topics: summation notation, Riemann sums, Riemann integral, upper and lower Darboux sums,
definite and indefinite integrals.

Here are two formulas which may prove helpful.

13.1.1. Proposition. For every natural number n
n∑
k=1

k =
n(n+ 1)

2
.

13.1.2. Proposition. For every natural number n
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

13.1.3. Definition. Let J = [a, b] be a fixed interval in the real line and P = (x0, x1, . . . , xn) be
n+ 1 points of J . Then P is a partition of the interval J if:

(1) x0 = a,
(2) xn = b, and
(3) xk−1 < xk for k = 1, 2, . . . , n.

We denote the length of the kth subinterval by ∆xk; that is, ∆xk = xk − xk−1. A partition
P = (x0, x1, . . . , xn) is regular if all the subintervals [xk−1, xk] have the same length. In this case

∆x1 = ∆x2 = · · · = ∆xn

and we write ∆x for their common value.

13.1.4. Notation. Let f be a bounded function defined on the interval [a, b] and P = (x0, x1, . . . , xn)
be a partition of [a, b]. Then we define

R(P ) :=
n∑
k=1

f(xk) ∆xk (13.1)

L(P ) :=

n∑
k=1

f(xk−1) ∆xk (13.2)

M(P ) :=
n∑
k=1

f
(
(12(xk−1 + xk)

)
∆xk. (13.3)

These are, respectively, the right, left, and midpoint sums of f associated with the par-
tition P . If P is a regular partition of [a, b] consisting of n subintervals, then we may write Rn

for R(P ), Ln for L(P ), and Mn for M(P ).

13.1.5. Definition. The average value of a function f over an interval [a, b] is
1

b− a

∫ b

a
f .

89
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13.2. Exercises

(1)

5∑
k=1

k2 = .

(2)

10∑
k=3

4 = .

(3)
100∑
k=1

k(k − 3) = .

(4)
200∑
m=1

m3 −
199∑
m=1

m3 = .

(5)

4∑
k=1

(−1)kkk = .

(6) Let ak = 2k for each k. Then
8∑

k=3

(ak − ak−1) = .

(7)
50∑
k=3

1

k2 − k
=

12

a
where a = . Hint. Find numbers p and q such that

1

k2 − k
=

p

k − 1
− q

k
.

(8) Express 1 +
1

3
+

1

9
+

1

27
+

1

81
+

1

243
in summation notation. Answer:

a∑
k=0

bk where

a = and b = .

(9)
4∑

k=1

(k − 1) k (k + 1) = .

(10)
5∑

k=0

3k+4 =
b∑

j=a

3j where a = and b = .

(11)
60∑
k=7

1

3k−2
=

a∑
j=−2

1

3j+b
where a = and b = .

(12)
70∑

j=−3

1

5j−7
=

61∑
i=a

1

5i+b
where a = and b = .

(13)

18∑
j=−4

1

2j+3
=

7∑
k=a

2k−b where a = and b = .

(14)
60∑
k=4

1

k2 − 1
=

a

3660
where a = . Hint. Write

1

k2 − 1
as the difference of two

simpler fractions.
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(15)
34∑
k=2

1

k2 + 2k
=

a

2520
where a = . Hint. Write

1

k2 + 2k
as the difference of two

simpler fractions.

(16) Let f(x) = x2 on the interval [0, 4] and let P = (0, 1, 2, 4). Find the right,,left, and
midpoint sums of f associated with the partition P .

Answer: R(P ) = ; L(P ) = ; and M(P ) =
a

2
where a = .

(17) Let f(x) = x3−x on the interval [−2, 3] and let P = (−2, 0, 1, 3). Find the right, left, and
midpoint sums of f associated with the partition P .

Answer: R(P ) = ; L(P ) = ; and M(P ) =
a

8
where a = .

(18) Let f(x) = 3 − x on the interval [0, 2] and let Pn be the regular partition of [0, 2] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 2
0 f = .

(19) Let f(x) = 2x− 3 on the interval [0, 4] and let Pn be the regular partition of [0, 4] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 4
0 f = .

(20) Let f(x) = x − 2 on the interval [1, 7] and let Pn be the regular partition of [1, 7] into n
subintervals. Then

(a) Rn = a+
b

n
where a = and b = .

(b) Ln = c+
d

n
where c = and d = .

(c)
∫ 7
1 f = .

(21) If

∫ e

1
lnx dx = 1 and

∫ e2

1
lnx dx = 1 + e2, then

∫ e2

e
lnx dx = .

(22) Suppose that

∫ 17

−10
f = 3,

∫ 8

−7
f = 7,

∫ 1

−3
f = −1,

∫ 8

−3
f = 4,

∫ 2

−1
f = 5,

∫ 17

−1
f = 6, and∫ 2

1
f = 1. Then

∫ −7
−10

f = .

(23) For what value of x is

∫ √x
4

f(t) dt sure to be 0? Answer: .

(24) Suppose

∫ 3

−2
f(x) dx = 8. Then

∫ −2
3

f(Ξ) dΞ = .
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(25) Find the value of the integral

∫ 3

−3

√
9− x2 dx by regarding it as the area under the graph

of an appropriately chosen function and using an area formula from plane geometry.
Answer: .

(26) Find the value of the integral

∫ 2

−2
(4− |x|) dx by regarding it as the area under the graph

of an appropriately chosen function and using area formulas from plane geometry.
Answer: .

(27) Let a > 0. Then

∫ a

0
(
√
a2 − x2 − a + x) dx =

1

b
ap(c − 2) where b = , p = ,

and c = . Hint. Interpret the integral as an area.

(28) If the average value of a continuous function f over the interval [0, 2] is 3 and the average

value of f over [2, 7] is 4, then the average value of f over [0, 7] is
a

7
where a = .

(29) Let f(x) = |2− |x− 3| |. Then

∫ 8

0
f(x) dx = .

(30) Let f(x) =

{
2 +
√

2x− x2, for 0 ≤ x ≤ 2

4− x, for x > 2
. Then∫ 2

0
f(x) dx = a+

π

b
where a = and b = ;∫ 4

0
f(x) dx = c+

π

d
where c = and d = ; and∫ 6

1
f(x) dx = p+

π

q
where p = and q = .

(31) Suppose

∫ 3

0
f(x) dx = 4,

∫ 5

2
f(x) dx = 5, and

∫ 3

2
f(x) dx = −1. Then

∫ 2

0
f(x) dx= ,∫ 1

0
f(x + 2) dx = ,

∫ 2

0

(
f(x) + 2

)
dx = ,

∫ 5

2
f(x − 2) dx = ,∫ 5

0
f(x) dx = ,

∫ 7

5
5f(x− 2) dx = , and

∫ 3

−2
f(x+ 2) dx = .

(32)

∫ 4

−1
(|x|+ |x− 2|) dx = .

(33)

∫ 3

0
(|x− 1|+ |x− 2|) dx = .
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13.3. Problems

(1) Prove proposition 13.1.1.

(2) Prove proposition 13.1.2.

(3) Show that

n∑
k=1

2−k = 1−2−n for each n. Hint. Let sn =

n∑
k=1

2−k and consider the quantity

sn − 1
2sn.

(4) Let f(x) = x3 + x for 0 ≤ x ≤ 2. Approximate
∫ 2
0 f(x) dx using the midpoint sum. That

is, compute, and simplify, the Riemann sum Mn for arbitrary n. Take the limit as n→∞
of Mn to find the value of

∫ 2
0 f(x) dx. Determine the smallest number of subintervals that

must be used so that the error in the approximation Mn is less than 10−5.

(5) Without evaluating the integral show that

7

4
≤
∫ 2

1/4

(
4

3
x3 − 4x2 + 3x+ 1

)
dx ≤ 3.

(6) Let f(x) = x2 sin
1

x
if 0 < x ≤ 1 and f(0) = 0. Show that

∣∣∣∣∫ 1

0
f

∣∣∣∣ ≤ 1

3
.

(7) Suppose that a < b. Prove that

∫ b

a

(
f(x)− c

)2
dx is smallest when c is the average value

of f over the interval [a, b].

(8) Show that if f is a continuous function on [a, b], then∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Hint. Suppose that d is a positive number and we wish to prove that |c| < d. All we need
to do is establish two things: that c < d and that −c < d.

(9) Show that 1 ≤
∫ 1

0
ex

2
dx ≤ e+ 1

2
. Hint. Examine the concavity properties of the curve

y = ex
2
.

(10) Let 0 ≤ x ≤ 1. Apply the mean value theorem to the function f(x) = ex over the interval
[0, x] to show that the curve y = ex lies between the lines y = 1 + x and y = 1 + 3x
whenever x is between 0 and 1. Use this result to find useful upper and lower bounds for

the value of
∫ 1
0 e

x dx (that is, numbers m and M such that m ≤
∫ 1
0 e

x dx ≤M).

(11) Show that

∫ b

a

(∫ d

c
f(x) g(y) dy

)
dx =

(∫ b

a
f

)(∫ d

c
g

)
.

(12) Without evaluating the integral show that

π

3
≤
∫ π

0
sinx dx ≤ 5π

6
.

(13) Consider the function f(x) = x2 + 1 defined on the closed interval [0, 2]. For each natural
number n let Pn = (x0, x1, . . . , xn) be a regular partition of the interval [0, 2] into n
subintervals. Denote the length of the kth subinterval by ∆xk. (Thus for a regular partition
∆x1 = ∆x2 = · · · = ∆xn.)

Definition. Let Pn be a regular partition of [0, 2] as above. For each k between 1 and n
let ak be the point in the kth subinterval [xk−1, xk] where f has its smallest value and bk
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be the point in [xk−1, xk] where f has its largest value. Then let

L(n) =
n∑
k=1

f(ak)∆xk and U(n) =
n∑
k=1

f(bk)∆xk.

The number L(n) is the lower sum associated with the partition P and U(n) is the
upper sum associated with P .

(a) Let n = 1. (That is, we do not subdivide [0, 2].) Find P1, ∆x1, a1, b1, L(1), and

U(1). How good is L(1) as an approximation to
∫ 2
0 f?

(b) Let n = 2. Find P2. For k = 1, 2 find ∆xk, ak, and bk. Find L(2) and U(2). How

good is L(2) as an approximation to
∫ 2
0 f?

(c) Let n = 3. Find P3. For k = 1, 2, 3 find ∆xk, ak, and bk. Find L(3) and U(3). How

good is L(3) as an approximation to
∫ 2
0 f?

(d) Let n = 4. Find P4. For k = 1, 2, 3, 4 find ∆xk, ak, and bk. Find L(4) and U(4). How

good is L(4) as an approximation to
∫ 2
0 f?

(e) Let n = 8. Find P8. For k = 1, 2, . . . , 8 find ∆xk, ak, and bk. Find L(8) and U(8).

How good is L(8) as an approximation to
∫ 2
0 f?

(f) Let n = 20. Find P20. For k = 1, 2, . . . , 20 find ∆xk, ak, and bk. Find L(20) and

U(20). How good is L(20) as an approximation to
∫ 2
0 f?

(g) Now let n be an arbitrary natural number. (Note: “arbitrary” means “unspecified”.)
For k = 1, 2, . . . , n find ∆xk, ak, and bk. Find L(n) and U(n). Explain carefully why

L(n) ≤
∫ 2
0 f ≤ U(n). How good is L(n) as an approximation to

∫ 2
0 f?

(h) Suppose we wish to approximate
∫ 2
0 f by L(n) for some n and have an error no greater

than 10−5. What is the smallest value of n that our previous calculations guarantee
will do the job?

(i) Use the preceding to calculate
∫ 2
0 f with an error of less than 10−5.
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13.4. Answers to Odd-Numbered Exercises

(1) 55

(3) 323, 200

(5) 232

(7) 25

(9) 90

(11) 51, 7

(13) −15, 6

(15) 979

(17) 48, −12, 93

(19) (a) 4, 16
(b) 4, −16
(c) 4

(21) e2

(23) 16

(25)
9π

2

(27) 4, 2, π

(29) 9

(31) 5, −1, 9, 4, 10, 30, 10

(33) 5





CHAPTER 14

THE FUNDAMENTAL THEOREM OF CALCULUS

14.1. Background

Topics: Fundamental theorem of Calculus, differentiation of indefinite integrals, evaluation of
definite integrals using antiderivatives.

The next two results are versions of the most elementary form of the fundamental theorem of
calculus. (For a much more sophisticated version see theorem 46.1.1.)

14.1.1. Theorem (Fundamental Theorem Of Calculus - Version I). Let a belong to an open interval
J in the real line and f : J → R be a continuous function. Define F (x) =

∫ x
a f for all x ∈ J . Then

for each x ∈ J the function F is differentiable at x and DF (x) = f(x).

14.1.2. Theorem (Fundamental Theorem of Calculus - Version II). Let a and b be points in an
open interval J ⊆ R with a < b. If f : J → R is continuous and g is an antiderivative of f on J ,
then ∫ b

a
f = g(b)− g(a) .

The next proposition is useful in problem 5. It says that the only circumstance in which a
differentiable function F can fail to be continuously differentiable at a point a is when either the
right- or left-hand limit of F ′(x) fails to exist at a.

14.1.3. Proposition. Let F be a differentiable real valued function in some open interval contain-
ing the point a. If l := limx→a− F

′(x) and r := limx→a+ F
′(x) both exist, then

F ′(a) = r = l = lim
x→a

F ′(x).

Proof. Suppose that F is differentiable on the interval (a − δ, a + δ). For x ∈ (a, a + δ) the
mean value theorem guarantees the existence of a point c ∈ (a, x) such that

F (x)− F (a)

x− a
= F ′(c).

Taking the limit as x approaches a from the right we get F ′(a) = r. A nearly identical argument
yields F ′(a) = l. This shows that F is continuously differentiable at a. �
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14.2. Exercises

(1) Evaluate lim
n→∞

n∑
k=1

(n+ 2k)4

n5
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where a = ,

b = , c = , and p = . The value of the integral is
q

r
where q =

and r = .

(2) Evaluate lim
n→∞

n∑
k=1

1

n+ 3k
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where a = ,

b = , c = , and p = . The value of the integral is
u

v
lnu where u =

and v = .

(3) Evaluate lim
n→∞

n∑
k=1

n

n2 + k2
by expressing it as an integral and then using the fundamental

theorem of calculus to evaluate the integral. The integral is

∫ b

a
f(x) dx where a = ,

b = , and f(x) = . The value of the integral is .

(4) Evaluate lim
n→∞

n∑
k=1

n

(2n+ 7k)2
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
1

r
where

r = .

(5) Evaluate lim
n→∞

n∑
k=1

(2n+ 5k)2

n3
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
r

3
where

r = .

(6) Evaluate lim
n→∞

n∑
k=1

(2n+ 4k)2

n3
by expressing it as an integral and then using the funda-

mental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
xp dx where

a = , b = , c = , and p = . The value of the integral is
r

3
where

r = .

(7) Let J =
∫ 5
0

√
3x dx and let P be the regular partition of [0, 5] into n subintervals. Find

the left, right and midpoint approximations to J determined by P .

Answer: Ln =
5

n

q∑
k=p

√
15k

n
where p = and q = .

Rn =
5

n

s∑
k=r

√
15k

n
where r = and s = .

Mn =
5

n

n∑
k=1

√
tk − u
vn

where t = , u = , and v = .
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(8) Evaluate lim
n→∞

n∑
k=1

ln(5k + n)− lnn

n
by expressing it as an integral and then using the

fundamental theorem of calculus to evaluate the integral. The integral is
1

c

∫ b

a
f(x) dx

where a = , b = , c = , and f(x) = . The value of the

integral is
r

s
f(r)− 1 where r = and s = .

(9) Let g(x) =

∫ 1
2
x

3

t3 + 4t+ 4

1 + t2
dt. Then Dg(2) =

a

4
where a = .

(10) Let g(x) = (5 + 7 cos2(2πx) − sin(4πx))−1 and f(x) =

∫ 2

x3
g(t) dt. Then Df(12) = −1

a
where a = .

(11) Let g(x) = (1 + (x4 + 7)1/3)−1/2 and f(x) =

∫ x3

x
g(t) dt. Then Df(1) =

2√
a

where

a = .

(12) Let f(x) =

∫ sinπx

x2

dt

1 + t4
. Then Df(2) = a− 4

b
where a = and b = .

(13) Let g(x) =

∫ x

0

u− 1

u− 2
du. Then

(a) the domain of g is ( , );

(b) g is increasing on ( , ); and

(c) g is concave down on ( , ).

(14) Solve for x:

∫ x

0
(2u− 1)2 du =

14

3
. Answer: x = .

(15) Solve for x:

∫ x+2

x
u du = 0. Answer: x = .

(16) Find a number x > 0 such that

∫ x

1
(u−1) du = 4. Answer: x = 1+a

√
a where a = .

(17) Find

∫ 6

3
f ′(x) dx given that the graph of f includes the points (0, 4), (3, 5), (6,−2), and

(8,−9). Answer: .

(18) Let g(x) =

∫ x

0
xf(t) dt where f is a continuous function. Then

Dg(x) = .

(19) Let f(x) =

∫ x

0

1− t2

3 + t4
dt. Then f is increasing on the interval ( , ) and is

concave up on the intervals ( , ) and ( , ) .

(20) If y =

∫ s

0

√
2 + u3 du, then

dy

ds
= .

(21) If y =

∫ t2

2
cos
√
x dx and t ≥ 0, then

dy

dt
= .

(22) If

∫ x

−2
f(t) dt = x2 sin(πx) for every x, then f(1/3) =

π

a
+

1

b
where a = and b = .
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(23) Let f(x) =

∫ x3

x lnx

dt

3 + ln t
for x ≥ 1. Then Df(e) =

1

a
(b2 − 1) where a = and

b = .

(24) Let f(x) =

∫ ln(x2+1)

ln(x+1)4

dt

4 + et
for x > 0. Then Df(1) =

1

a
where a = .

(25) Let f(x) =

∫ 1
2
x2ex−1

−2

t2

(4 + sinπt)2
dt. Then Df(1) =

3

a
where a = .

(26) Let f(x) =

∫ xex
2

0

dt

5 + (ln t)2
. Then Df(1) =

a

b
where a = and b = .

(27) Let f(x) =

∫ ex
3

0

dt

6 + (ln t)2
. Then Df(2) =

6ea

b
where a = and b = .

(28) Let f(x) =

∫ ln(x2+3)

lnx

dt

3 + et
for x ≥ 1. Then Df(2) = −3

a
where a = .

(29) Let f(x) = (x2+2x+2)−1 for all x ∈ R. Then the interval on which the curve y =
∫ x
0 f(t) dt

is concave up is ( , ).

(30) lim
h→0

1

h

∫ 2+h

2

√
1 + x2 dx = .

(31) lim
λ→0+

∫ 2λ

λ
e−xx−1 dx = . Hint:

e−x

x
=
e−x − 1

x
+

1

x
.

(32) lim
x→0

1

x

∫ 1+5x

1
(4− cos 2πt)3 dt = .

(33) lim
r→0

1

r

∫ e4r

1

√
3 +

1

x
dx = .

(34) lim
u→0

1

u

∫ ln(e2+3u)

2

√
1 + 2t+ 5t2 dt = aeb where a = and b = .

(35)

∫ 9

1

1

x3/2
=
a

3
where a = .

(36)

∫
12e4x dx = aebx + c where a = , b = , and c is an arbitrary constant.

(37)

∫
40 cos 5x dx = a sin bx+ c where a = , b = , and c is an arbitrary constant.

(38)

∫ 1

0

4√
4− x2

dx =
a

3
where a = .

(39)

∫ √3
0

6

9 + x2
dx = .

(40)

∫ π/2

0
cosxesinx dx = a− b where a = and b = .

(41)

∫ π

0
sec2 1

4x dx = .
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(42) If a = 0 and b = 1
5(e− 1), then

∫ b

a

15

5x+ 1
dx = .

(43) Let f(x) = |x| + |cosx| for all x. Then

∫ π

−π/2
f = a +

b

8
πp where a = , b = ,

and p = .

(44)

∫ 2

−1

∣∣x3 − x∣∣ dx =
a

4
where a = .

(45)

∫ 2π

0
(|sinx|+ cosx) dx = .

(46)

∫ π/4

0
sin5 x cosx dx =

1

a
where a = .

(47)

∫ 3

1
(x3 − 6x2 + 2x− 7) dx = .

(48)

∫ 4

0
(x3 + 3

√
x) dx = .

(49)

∫ 3

0
(5− 2x2) dx = .

(50)

∫ 5

1

(√
x+

1√
x

)2

dx = a+ ln b where a = and b = .

(51)

∫ π/2

π/6
csc2 x dx = .

(52)

∫ 5

0

dx

25 + x2
=
π

a
where a = .

(53)

∫ 1

0
(x3 + x)ex

4+2x2 dx =
1

a
(ep − 1) where a = and p = .

(54) Let f(x) =

∫ x

3π
(7 + cos(sin t)) dt. Then Df−1(0) =

1

a
where a = .

(55) Let f(x) =

∫ x1/3

π/3
arctan(2 + 2 sin t) dt for x ≥ 0. Then Df−1(0) =

4π

a
where a = .

Hint. What is tan 5π
12 ?

(56) If log2 x =

∫ x

2

1

t
dt, then x = exp

(
a2

a− 1

)
where a = .
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14.3. Problems

(1) Estimate
104∑
k=1

√
k by interpreting it as a Riemann sum for an appropriate integral.

(2) Let f(x) = x3 + x, let n be an arbitrary natural number, and let P = (x0, x1, . . . xn)
be a regular partition of the interval [0, 2] into n subintervals. (Note: “arbitrary” means
“unspecified”.) For each k between 1 and n let ck be the midpoint of the kth subinterval
[xk−1, xk].
(a) Find the width ∆xk of each subinterval.
(b) Find xk for each k = 0, . . . , n.
(c) Find ck for each k = 1, . . . , n.
(d) Find the corresponding Riemann midpoint sum

∑n
k=1f(ck)∆xk. Simplify the expres-

sion and put it in the form a+ b/n+ c/n2 + . . . .
(e) Find the limit of the Riemann sums in part (d) as n→∞.

(f) Compute
∫ 2
0 f using the fundamental theorem of calculus

(g) What is the smallest number of subintervals we can use so that the Riemann sum
found in (d) approximates the true value of the integral found in (f) with an error of
less than 10−5?

(3) Let f(x) = −1
2x + 3

2 for −1 ≤ x ≤ 3. Partition the interval [−1, 3] into n subintervals of
equal length. Write down the corresponding right approximating sum Rn. Show how this
expression can be simplified to the form a+ b

n for appropriate numbers a and b. Take the

limit of this expression as n gets large to find the value of
∫ 3
−1 f(x) dx. Check your answer

in two different ways: using a geometrical argument and using the fundamental theorem
of calculus.

(4) Let f(x) = x2 + 1 for 0 ≤ x ≤ 3. Partition the interval [0, 3] into n subintervals of
equal length. Write down the corresponding right approximating sum Rn. Show how this
expression can be simplified to the form a + b

cn + d
cn2 for appropriate numbers a, b, c,

and d. Take the limit of this expression as n gets large to find the value of
∫ 3
0 f(x) dx.

Check your answer using the fundamental theorem of calculus.

(5) Define functions f , g, and h as follows:

h(x) =

{
1, for 0 ≤ x ≤ 2

x, for 2 < x ≤ 4.

g(x) =

∫ x2

x
h(t) dt for 0 ≤ x ≤ 2

f(x) =

∫ x

0
g(t) dt for 0 ≤ x ≤ 2.

(a) For each of the functions h, g, and f answer the following questions:
(i) Where is the function continuous? differentiable? twice differentiable?
(ii) Where is the function positive? negative? increasing? decreasing? concave up?

concave down?
(iii) Where are the x-intercepts? maxima? minima? points of inflection?

(b) Make a careful sketch of the graph of each of the functions.
(c) What is the moral of this problem? That is, what do these examples suggest about

the process of integration in general?
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Hints for solution. When working with the first function h it is possible to get the
“right answers” to questions (i)—(iii) but at the same time fail to give coherent reasons
for the assertions made. This part of the problem is meant to encourage paying attention
to the precise definitions of some of the terms. Indeed, the correct answers will vary from
text to text. Some texts, for instance, distinguish between functions that are increasing
and those that are strictly increasing. Other texts replace these terms by nondecreasing
and increasing, respectively. Some texts define concavity only for functions which are
twice differentiable; others define it in terms of the first derivative; still others define it
geometrically.

This first part of the problem also provides an opportunity to review a few basic facts:
differentiability implies continuity; continuity can be characterized (or defined) in terms
of limits; and so on.

Unraveling the properties of the second function g is rather harder. Try not to be put
off by the odd looking definition of g. The crucial insight here is that by carrying out
the indicated integration it is possible to express g, at least piecewise, as a polynomial.
From a polynomial expression it is a simple matter to extract the required information.
Impatience at this stage is not a reliable friend. It is not a good idea to try to carry out
the integration before you have thought through the problem and discovered the necessity
of dividing the interval into two pieces. It may be helpful to compute the values of g at
x = 1.0, 1.1, 1.2, . . . , 1.9, 2.0. Notice that about midway in these computations something
odd happens. What is the precise point p where things change? Eventually one sees that
g too is expressible as one polynomial on [0, p] and as another polynomial on (p , 2]. Once
g has been expressed piecewise by polynomials it is possible to proceed with questions
(i)–(iii). To determine whether g is continuous at p, compute the right- and left-hand
limits of g there.

The question of the differentiability of g is subtle and deserves some serious thought.
It may be tempting to carry over the format of continuity argument to decide about the
differentiability of g at p. Suppose we compute the right- and left-hand limits of the
derivative of g at p and find that they are not equal. Can we then conclude that g is not
differentiable at p? At first one is inclined to say no, that all we have shown is that the
derivative of g is not continuous at p, which does not address the issue of the existence
of g′(p). Interestingly enough, it turns out that the only way in which a differentiable
function F can fail to be continuously differentiable at a point a is for either the right-
or left-hand limit of F ′(x) to fail to exist at a. The crucial result, which is a bit hard
to find in beginning calculus texts, is proposition 14.1.3. Thus when we discover that a
function F is differentiable at all points other than a, and that the limits limx→a− F

′(x)
and limx→a+ F

′(x) both exist but fail to be equal, there is only one possible explanation:
F fails to be differentiable at a.

After finding a piecewise polynomial expression for g, another difficulty arises in deter-
mining whether g is concave up. It is easy to see that g is concave up on the intervals (0, p)
and (p , 2). But this isn’t enough to establish the property for the entire interval (0, 2).
In fact, according to the definition of concavity given in many texts g is not concave up.
Why? Because, according to Finney and Thomas (see [2], page 237), for example, concav-
ity is defined only for differentiable functions. A function is concave up on an interval only
if its derivative is increasing on the interval. So if our function g fails to be differentiable at
some point it can not be concave up. On the other hand, under any reasonable geometric
definition of concavity g certainly is concave up on (0, 2)—although it is a bit hard to
show. The solution to this dilemma is straightforward: pick a definition and stick to it.

Analysis of the last function f proceeds pretty much as for g. One new wrinkle is the
difficulty in determining where f is positive. The point at which f changes sign is a root
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of a fifth degree polynomial. An approximation based either on the intermediate value
theorem or Newton’s method goes smoothly.

As with g, conclusions concerning the concavity of f may differ depending on the defi-
nitions used. This time both a geometrical definition and one based on the first derivative
lead to one conclusion while a definition based on the second derivative leads to another.

Finally, for part (c) does it make any sense to regard integration as a “smoothing”
operation? In what way?

(6) Show that if f is continuous, then∫ x

0
f(u)(x− u) du =

∫ x

0

∫ u

0
f(t) dt du.

Hint. What can you say about functions F and G if you know that F ′(x) = G′(x) for
all x and that F (x0) = G(x0) at some point x0?

(7) Let f be a continuous function and a < b. Show that

∫ b

a
f(−x) dx =

∫ −a
−b

f(x) dx.

Hint. Show that if F is an antiderivative of f , then the function G : x 7→ −F (−x) is an
antiderivative of the function g : x 7→ f(−x).

(8) Let a < b, f be a continuous function defined on the interval [a, b], and g be the function

defined by g(t) =

∫ b

a
(f(x) − t)2 dx for t in R. Find the value for t at which g assumes a

minimum. How do you know that this point is the location of a minimum (rather than a
maximum)?

(9) Let λ be a positive constant. Define F (x) =

∫ λx

x

1

t
dt for all x > 0. Without mentioning

logarithms show that F is a constant function.

(10) Without computing the integrals give a simple geometric argument that shows that the

sum of
∫ 1
0

√
x dx and

∫ 1
0 x

2 dx is 1. Then carry out the integrations.
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14.4. Answers to Odd-Numbered Exercises

(1) 1, 3, 2, 4, 121, 5

(3) 0, 1,
1

1 + x2
,
π

4

(5) 2, 7, 5, 2, 67

(7) 0, n− 1, 1, n, 30, 15, 2

(9) 9

(11) 3

(13) (a) −∞, 2
(b) −∞, 1
(c) −∞, 2

(15) −1

(17) −7

(19) −1, 1, −
√

3, 0,
√

3. ∞
(21) 2t cos t

(23) 2, e

(25) 200

(27) 8, 35

(29) −∞, −1

(31) ln 2

(33) 8

(35) 4

(37) 8, 5

(39)
π

3

(41) 4

(43) 3, 5, 2

(45) 4

(47) −38

(49) −3

(51)
√

3

(53) 4, 3

(55) 5





CHAPTER 15

TECHNIQUES OF INTEGRATION

15.1. Background

Topics: antiderivatives, change of variables, trigonometric integrals, trigonometric substitutions,
integration by parts, partial fractions, improper Riemann integrals.

107
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15.2. Exercises

(1)

∫ 1

0

x
1
2

1 + x
3
4

dx =
a

3
(1− ln b) where a = and b = .

(2)

∫ 9

0

√
x

1 +
√
x
dx = a+ 4 ln b where a = and b = .

(3)

∫ 3
√
3

1
3
√

3

1

x
4
3 + x

2
3

dx = .

(4)

∫ 1/2

0

arctan 2x

1 + 4x2
dx =

π2

a
where a = .

(5)

∫ √2
0

x 101+x
2
dx =

a

ln 10
where a = .

(6)

∫ 16

1

x− 1

x+
√
x
dx = .

(7)

∫ 9

1

dx

(x+ 1)
√
x+ 2x

=
1

a
where a = .

(8)

∫ 8

27/8

2 dx

x5/3 − 3x4/3 + 3x− x2/3
= .

(9)

∫ π/2

π/6

cos3 x√
sinx

dx =
a

5
− b

10
√

2
where a = and b = .

(10)

∫ π/8

0
tan 2x sec2 2x dx =

1

a
where a = .

(11)

∫ 4/3

1

1

x2

√
1− 1

x
dx =

1

a
where a = .

(12)

∫ 4

1

4x− 1

2x+
√
x
dx = .

(13)

∫ 1/
√
2

0
x sin3(πx2) cos(πx2) dx =

1

a
where a = .

(14)

∫ π/4

0

sec2 x

(5 + tanx)2
dx =

1

a
where a = .

(15)

∫ 2

0

x2√
x3 + 1

dx =
a

3
where a = .

(16)

∫ 2

0

x dx√
4x2 + 9

=
1

a
where a = .

(17)

∫ 2

1

2x2 dx

(x3 + 1)2
=

a

27
where a = .

(18)

∫ √10
1

x
√
x2 − 1 dx = .

(19)

∫ 9

4

x− 9

3
√
x+ x

dx = .
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(20)

∫
r5 dr√
4− r6

= −1

a

√
4− r6 + c where a = and c is an arbitrary constant.

(21)

∫ π/4

0

tan3 x sec2 x(
1 + tan4 x

)3 dx =
3

a
where a = .

(22)

∫ √3
0

x dx

x2 − 4
= − ln a where a = .

(23)

∫ 3

1

dx

x1/2 + x3/2
=
π

a
where a = .

(24)

∫ ee

e

1

x lnx(1 + (ln lnx)2)
dx =

π

a
where a = .

(25)

∫ 1
2
√
2

1/8

dx√
x4/3 − x2

=
a

4
where a = .

(26)

∫ √3−5
−5

dx√
−x2 − 10x− 21

=
π

a
where a = .

(27)

∫ 0

−3/2

dx

4x2 + 12x+ 18
=
π

a
where a = .

(28)

∫ arctan e3

arctan e

csc 2x

ln(tanx)
dx =

1

2
ln a where a = .

(29)

∫ 1

0

(arctanx)2

1 + x2
dx =

πp

a
where p = and a = .

(30)

∫ ln 3

0

ex/2

1 + ex
dx =

π

a
where a = .

(31)

∫ 1/2

0

3 arcsinx√
1− x2

dx =
πp

a
where p = and a = .

(32)

∫ 1/2

1/4

dx√
x− x2

=
π

a
where a = .

(33)

∫ 1

0
(x+ 2)ex

2+4x dx =
1

a

(
ep − 1

)
where a = and p = .

(34)

∫ √lnπ
√

ln π
2

xex
2

cos(3ex
2
) dx =

1

a
where a = .

(35)

∫ ln 8

ln 2

1− ex

1 + ex
dx = a ln

a

b
where a = and b = .

(36)

∫ 1

0
x 5−x

2
dx =

a

b ln b
where a = and b = .

(37)

∫ e4

e

log7 x

x
dx =

a

2 ln 7
where a = .

(38)

∫ e3

e2
x−1(log3 x)2 dx =

a

b(ln b)2
where a = and b = .
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(39)

∫ π/2

0
sin7 u du =

16

a
where a = .

(40)

∫ π/3

0
sec5 x tanx dx =

a

5
where a = .

(41)

∫ π/4

0
sec3x dx = a+ 1

2 ln b where a = and b = .

(42)

∫ π/3

0
tan3 x sec3 x dx =

a

15
where a = .

(43)

∫ π/2

0
sin4 x dx =

3π

a
where a = .

(44)

∫ π/2

0
cos3 x sin5 x dx =

1

a
where a = .

(45)

∫ π/2

0
sin4x cos5x dx =

8

a
where a = .

(46)

∫ π/3

0
tan3x dx = a− ln b where a = and b = .

(47)

∫ π

0
sin6 x dx =

aπ

16
where a = .

(48)

∫ π/3

0
sec6 x dx =

a

5

√
3 where a = .

(49)

∫ 3/4

0

dx√
9− 4x2

= .

(50)

∫ 1

1/
√
2

dx

x
√

4x2 − 1
=
π

a
where a = .

(51)

∫
dx√

8− 4x− 4x2
= a arcsin

(
1
3f(x)

)
+ c where a = , f(x) = , and c is

an arbitrary constant.

(52)

∫
dx

x2 + 2x+ 5
= a arctan(a f(x)) + c where a = , f(x) = , and c is an

arbitrary constant.

(53)

∫ 2

1

dx

x(1 + x4)
=

1

4
ln

32

a
where a = .

(54)

∫ √13
1

dx

x2
√

3 + x2
= a

(
1− b√

13

)
where a = and b = .

(55)

∫ 6

3

√
x2 − 9

x
dx = a

√
3− b where a = and b = .

(56)

∫ 6

3
√
2

dx√
x2 − 9

= ln(a+
√
b)− ln(1 +

√
2) where a = and b = .

(57)

∫ 3

0

dw√
9 + w2

= ln(a+
√
b) where a = and b = .
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(58)

∫
x2(

4− x2
)3/2 dx =

x

f(x)
−g(x/2)+c where f(x) = , g(x) = ,

and c is an arbitrary constant.

(59)

∫ √3
0

arctanx dx =
a√
3
− ln b where a = and b = .

(60)

∫ √3
0

x arctanx dx =
aπ

b
− 1

a

√
b where a = and b = .

(61)

∫ 2

1
x3 lnx dx = a ln 2− b

16
where a = and b = .

(62)

∫ e

1
x2 lnx dx =

1

a
(bep + 1) where a = , b = , and p = .

(63)

∫
x2ex dx = p(x)ex + c where p(x) = and c is an arbitrary constant.

(64)

∫ 1

0
arctanx dx =

π

a
− 1

b
ln b where a = and b = .

(65)

∫ 1

0
arccotx dx =

a

4
+

1

b
ln b where a = and b = .

(66)

∫ π/6

0
x sinx dx =

a−
√
b π

12
where a = and b = .

(67)

∫
x2 cosx dx = f(x) sinx+ g(x) cosx+ c where f(x) = , g(x) = ,

and c is an arbitrary constant.

(68) Expand
x2 + 2x− 2

x3(x− 1)
by partial fractions.

Answer:
a

x
+

b

x2
+

c

x3
+

d

x− 1
where a = , b = , c = , and d = .

(69) Expand
x3 + x2 + 7

x2 + x− 2
by partial fractions.

Answer: f(x) +
a

x− 1
+

b

x+ 2
where f(x) = , a = and b = .

(70)

∫ 2

1

2

w3 + 2w
dw =

1

a
ln a where a = .

(71)

∫ 0

−3

−2w3 + w2 + 2w + 13

w2 + 2w + 3
dw = a + ln b where a = and b = .

(72)

∫
3x2 + x+ 6

x4 + 3x2 + 2
dx = −a ln(x2 + 2) + a ln(g(x)) + 3 arctanx+ c where a = ,

g(x) = , and c is an arbitrary constant.

(73)

∫
1− 4x− 3x2 − 3x3

x4 + x3 + x2
dx =

a

x
−5 lnx+ln(g(x))+c where a = , g(x) = ,

and c is an arbitrary constant.

(74)

∫
4x3 − 2x2 + x

x4 − x3 − x+ 1
dx = f(x) + 2g(x) + ln(x2 + x+ 1) + c where f(x) = ,

g(x) = , and c is an arbitrary constant.
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(75)

∫
x2 + 3

x3 + x
dx = a lnx − ln(g(x)) + c where a = , g(x) = , and c is an

arbitrary constant.

(76)

∫
2x2 − 3x+ 9

x3 − 3x2 + 7x− 5
dx = a ln(x− 1) +

1

a
arctan

(
1

a
g(x)

)
+ c where a = ,

g(x) = , and c is an arbitrary constant.

(77)

∫
2x3 + x2 + 2x− 1

x4 − 1
dx = ln(x − 1) + ln(x + 1) + f(x) + c where f(x) =

and c is an arbitrary constant.

(78)

∫
x5 − 2x4 + x3 − 3x2 + 2x− 5

x3 − 2x2 + x− 2
dx = g(x)+a ln(x−2)+b arctanx+c where a = ,

b = , g(x) = , and c is an arbitrary constant.

(79)

∫
x7 + 9x5 + 2x3 + 4x2 + 9

x4 + 9x2
dx = f(x)− 1

x
+ ln(g(x)) + arctan(h(x)) + c where

f(x) = , g(x) = , h(x) = , and c is an arbitrary constant.

(80)

∫ π/2

0

dx

8 + 4 sinx+ 7 cosx
= ln

(a
9

)
where a = . Hint. Try substituting u = tan x

2 .

(81)

∫ π/2

0

cosx

cosx+ sinx
dx =

π

a
where a = . Hint. Try substituting u = tan x

2 .

(82)

∫
2x2 + 9x+ 9

(x− 1)(x2 + 4x+ 5)
dx = a ln(x−1)+f(x)+c where a= , f(x) = ,

and c is an arbitrary constant.

(83)

∫
2x4 + x3 + 4x2 + 2

x5 + 2x3 + x
dx = a f(x) +

1

a
arctanx− 1

a
g(x) + c where a = ,

f(x) = , g(x) = , and c is an arbitrary constant.

(84)

∫
5u2 + 11u− 4

u3 + u2 − 2u
du = a ln|u|+ b ln|u− 1| − ln|u+ 2|+ c where a = , b = , and

c is an arbitrary constant.

(85)

∫ π/2

0
(cotx− x csc2 x) dx = .

(86)

∫ e

0
x2 lnx dx = aep where a = and p = .

(87)

∫ 4

2

x dx√
|9− x2|

=
√

5 +
√
a where a = .

(88)

∫ ∞
0

e−x sinx dx =
1

a
where a = .

(89) If we choose k = , then the improper integral

∫ ∞
0

(
k

3x+ 1
− 2x

x2 + 1

)
dx converges.

In this case the value of the integral is 2 ln a where a = .

(90)

∫ 4

2

1√
2x− 4

dx = .

(91)

∫ ∞
e2

dx

x(lnx)2
=

1

a
where a = .
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(92) Does the improper integral

∫ 8

0
x−1/3 dx converge? Answer: . If it converges,

its value is .

(93) Does the improper integral

∫ 1

1
2

1√
2x− 1

dx converge? Answer: . If it converges,

its value is .

(94) Does the improper integral

∫ 1

−1

1

x2
dx converge? Answer: . If it converges, its

value is .

(95) Does the improper integral

∫ 1

2
3

1

3x− 2
dx converges? Answer: . If it converges,

its value is .

(96) Does the improper integral

∫ ∞
0

1

1 + 9x2
dx converge? Answer: . If it converges,

its value is .

(97) Does the improper integral

∫ ∞
0

x4e−x
5
dx converge? Answer: . If it converges,

its value is .

(98)

∫ 1

−1

dx√
|x|

= .

(99)

∫ ∞
3
1/4

x dx

1 + x4
=
π

a
where a = .

(100)

∫ ∞
0

x dx

(1 + x2)4
=

1

a
where a = .

(101)

∫ √3
0

x√
9− x4

dx =
π

a
where a = .

(102)

∫ ∞
√
3

1

1 + x2
dx =

a

6
where a = .

(103)

∫ ∞
1

xe−x dx =
2

a
where a = .

(104)

∫ ∞
0

x12e−x dx = n! where n = .

(105)

∫ 1

1/2

x√
1− x2

dx =
a

2
where a = .

(106) lim
λ→0+

1

lnλ

∫ a

λ

cosx

x
dx = . Hint. Problem 10 may help.

(107) Let f(x) =

∫ x

3π
(7 + cos(sin t)) dt. Then Df−1(0) =

1

a
where a = .

(108) Let f(x) =

∫ x1/3

π/3
arctan(2 + 2 sin t) dt for x ≥ 0. Then Df−1(0) =

4π

a
where a = .

Hint. What is tan 5π
12 ?

(109) Let f(x) =

∫ x

1

3t2 + t+ 1

5t4 + t2 + 2
dt. Then Df−1(0) =

a

5
where a = .
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(110) Let f(x) =

∫ x

0
t3
√
t4 + 9 dt for x ≥ 0. Then Df−1

(
49
3

)
=

1

a
where a = .

(111) lim
λ→0+

∫ 2λ

λ

e−x

x
dx = ln a where a = . Hint:

e−x

x
=
e−x − 1

x
+

1

x
.
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15.3. Problems

(1) Your brother Al, who works for the Acme Widget Corporation, has a problem. He knows
that you are studying calculus and writes a letter asking for your help. His problem
concerns solutions to a system of two differential equations:

dx

dt
= x(t)

dy

dt
= x(t) + y(t)

(15.1)

subject to the initial conditions

x(0) = a and y(0) = b, (15.2)

where a and b are arbitrary constants. He has already found one set of solutions:{
x(t) = aet

y(t) = (b+ at)et

What Fred is unable to discover is whether or not there are other solutions. Write a letter
to Fred helping him out.

Hint. Suppose {
x(t) = u(t)

y(t) = v(t)

is a solution to the system (15.1) which satisfies the initial conditions (15.2). Consider the
functions p(t) = e−tu(t) and q(t) = e−tv(t).

(2) Your friend Fred is trying to find the value of I =

∫ 1

−1

1

1 + x2
dx, but he has forgotten that

arctanx is an antiderivative of
1

1 + x2
. He reasons as follows:

If I multiply both numerator and denominator of the integrand
by x−2 I will get

I =

∫ 1

−1

x−2

x−2 + 1
dx.

Then I make the substitution u =
1

x
to obtain

I = −
∫ 1

−1

1

1 + u2
du.

Since the last expression is the negative of the original integral, I
have shown that I = −I. The only way this can be true is if the
integral I is zero.

Explain to Fred what he did wrong.

(3) Explain carefully how to use integration by parts to evaluate
∫
ex cos 2x dx.

(4) Show that the improper integral I =

∫ ∞
2

(1 + x3)−1/2 dx converges and that 0 ≤ I ≤
√

2.

(5) Show that the improper integral I =

∫ ∞
1

2x+ 1

5x3 + 7x2 − 2x− 1
dx converges and that

0 ≤ I ≤ 3/5.
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(6) Show that the improper integral

∫ ∞
1

sinx2 dx converges and that its value lies between

−1 and +1. Hint. sinx2 =
1

2x
· 2x sinx2.

(7) Show that the improper integral

∫ 2

0

cosx

x2
dx does not converge. Hint. Consider dividing

the interval [0,2] into two pieces, say [0, π/3] and [π/3, 2].

(8) Show that the improper integral

∫ ∞
2

dx

(1 + x5)1/6
does not converge. Hint. Show that

1 + x5 ≤ x6 whenever x ≥ 2.

(9) Discuss the convergence of the improper integral

∫ ∞
e

1

(lnx)2
dx. Hint. First prove that

lnx is smaller than
√
x for all positive x.

(10) Let a > 0. Show that the improper integral

∫ a

0

cosx

x
dx diverges.

(11) Show that the improper integral

∫ ∞
1

cosx2

x2
dx converges and that the value of the integral

lies between −1 and +1.

(12) Show that the improper integral

∫ ∞
e

1

(lnx)2
dx diverges. Hint. Show that lnx ≤

√
x for

every positive number x.

(13) For this problem assume no prior knowledge of the natural logarithm, the exponential
function, or the number e. For every x > 0 define

lnx :=

∫ x

0

1

t
dt.

(a) Show that ln is strictly increasing and concave down.

(b) Show that ln 1 = 0 and that ln 4 > 1.

(c) Conclude from part (b) that there exists a number, call it e, such that 1 < e < 4 and
ln e = 1.

(d) Show that if a, b > 0, then ln(ab) = ln a+ ln b.

(e) Show that if a > 0 and n is a natural number, then ln(an) = n ln a.

(f) Show that if a, b > 0, then ln

(
a

b

)
= ln a− ln b.

(g) Prove that limx→∞ lnx =∞ and that limx→0+ lnx = −∞.

(h) Conclude from part (g) that the range of ln is all of R.

(i) Conclude from parts (a) and (h) that the function ln has an inverse. Let exp = ln−1.
Then the domain of exp is all of R and its range is the interval (0,∞).

(j) Prove that D exp(x) = exp(x).

(k) Show that exp is strictly increasing and concave up.

(l) Prove that if x, y ∈ R, then exp(x+ y) = expx · exp y.

(m) For every a > 0 and x ∈ R define ax := exp(x ln a). Prove that ex = expx for every x.

(n) Prove that if a > 0 and x, y ∈ R, then ax+y = ax · ay.
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(14) For this problem assume no prior knowledge of the trigonometric functions, the inverse
trigonometric functions, or the number π. For every x ∈ R define

arctanx :=

∫ x

0

1

1 + t2
dt.

(a) Show that arctan is strictly increasing. Where is it concave up? down?

(b) Show that the improper integral

∫ ∞
−∞

1

1 + t2
dt converges. Hint. Why is it sufficient

to show that the integral from 1 to ∞ converges?

(c) Define π :=

∫ ∞
−∞

1

1 + t2
dt. Show that 2 < π < 4. Hint. Why does it suffice to show

that 1 <

∫ ∞
0

1

1 + t2
dt < 2?

(d) Show that arctan 1 =
π

4
. Hint. Show that arctan 1 =

∫ ∞
1

1

1 + t2
dt by making the

change of variables u = 1/t.

(e) Show that arctan has an inverse. Identify the domain and range of arctan−1. (From
now on let tan := arctan−1.)

For all x in the domain of the function tan define secx :=
√

1 + tan2 x, cosx :=
1

secx
, and

sinx := −D cosx. (Notation: tan2 x means (tanx)2, etc.)

(f) Show that D tanx = sec2 x.

(g) Show that D secx = tanx secx.

(h) Show that tanx =
sinx

cosx
.

(i) Show that sin2 x+ cos2 x = 1.

(j) Show that D sinx = cosx. Hint. Try writing sinx as tanx cosx.

(k) How can the function sin be extended to a differentiable function on all of R?

(15) Let a > 0.

(a) Show that lim
λ→0+

∫ a

λ

cosx

x
dx =∞.

(b) Find lim
λ→0+

1

lnλ

∫ a

λ

cosx

x
dx.
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15.4. Answers to Odd-Numbered Exercises

(1) 4, 2

(3)
π

2

(5) 495

(7) 2

(9) 8, 19

(11) 12

(13) 8π

(15) 4

(17) 7

(19) −1

(21) 32

(23) 6

(25) π

(27) 24

(29) 3, 192

(31) 2, 24

(33) 2, 5

(35) 2, 3

(37) 15

(39) 35

(41)
1√
2

, 1 +
√

2

(43) 16

(45) 315

(47) 5

(49)
π

12

(51)
1

2
, 1 + 2x

(53) 17

(55) 3, π

(57) 1, 2

(59) π, 2

(61) 4, 15

(63) x2 − 2x+ 2

(65) π, 2

(67) x2 − 2, 2x
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(69) x, 3, −1

(71) 24, 2

(73) −1, x2 + x+ 1

(75) 3, x2 + 1

(77) arctanx

(79) 1
4x

4, x2 + 9, 1
3x

(81) 4

(83) 2, lnx,
x

x2 + 1

(85) −1

(87) 7

(89) 6, 3

(91) 2

(93) yes, 1

(95) no, -

(97) yes,
1

5

(99) 12

(101) 4

(103) e

(105)
√

3

(107) 8

(109) 8

(111) 2





CHAPTER 16

APPLICATIONS OF THE INTEGRAL

16.1. Background

Topics: area under a curve, long-run value of a physical quantity, half-life of a radioactive sub-
stance, area of a region in the plane, arc length of a curve, volume of a solid using the method of
cross-sections, volume of a solid using the shell method, work, centroid of a plane region, moment
of a plane region about a line.

As with the chapter 12 on applications of the derivative there are few interesting “real-world”
problems here. The purpose of the material is to establish a few elementary links between some
mathematical concepts and corresponding physical quantities.

Newton’s law of cooling says that the rate of cooling of a hot body is proportional to the
difference between its temperature and that of the surrounding medium.

If the position of an object is given as a twice differentiable function x of time t, the velocity
v of the object is the derivative of position; that is, v(t) = Dx(t). The acceleration a of the
object is the second derivative of position; that is a(t) = D2x(t) = Dv(t).

16.1.1. Definition. Let R be a region in the plane of area A with nonempty interior, Mx(R) be
the moment of R about the x-axis, and My(R) be the moment of R about the y-axis. Then the
centroid of R is the point (x, y) where

x =
My(R)

A
and y =

Mx(R)

A
.

16.1.2. Theorem (Pappus’s Theorem). Let R be a region in the plane and L be a line which passes
through no point in the interior of R. When R is revolved once about L the volume of the resulting
solid is the product of the area of R and the distance traveled by its centroid.

121
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16.2. Exercises

(1) The area of the (bounded) region between the curves y = x3 − x + 3 and y = x2 + x + 3

is
a

12
where a = .

(2) The area of the region between the curves y =
1

x
and y =

x

4
for 1 ≤ x ≤ 3 is

1

a
+ ln

a

b
where a = and b = .

(3) The total area of the region between the curve y = x3 − x and the x-axis for 0 ≤ x ≤ 2 is
a

2
where a = .

(4) The area of the region enclosed by the curves x = y2 and 3x = −y2 + 4 is
a

9
where

a = .

(5) The area between the curves y = x3 + x2 − 3x + 4 and y = x2 − 2x + 4 from x = −1 to

x = 2 is
a

4
where a = .

(6) The area of the region between the curves y = x2 and y =
√
x over the interval 0 ≤ x ≤ 4

is
a

3
where a = .

(7) The length of the curve y =
1

2
(ex + e−x) from x = 0 to x = ln 3 is .

(8) Find the equation for a curve through the point (0, 3) whose length from x = 0 to x = 2 is∫ 2

0

√
1 +

1

(2x+ 1)2
dx. Answer: y = a+1

2f(x) where a= and f(x) = .

(9) The length of the curve y = 8 ln
2 +
√
x

2−
√
x
− 8
√
x for 0 ≤ x ≤ 2 is a ln b− b where a =

and b = .

(10) The length of the curve y =
x3

3
+

1

4x
from x = 1 to x = 2 is

a

24
where a = .

(11) The length of the curve y = 1
3(x2 + 2)3/2 from x = 0 to x = 3 is .

(12) The arclength of the curve y = ln secx for −π
4 ≤ x ≤ π

4 is ln(a + b
√
b) where a =

and b = .

(13) The length of the curve y = coshx between x = −1 and x = 1 is a− 1

a
where a = .

(14) The length of the curve y = 2 ln
4

4− x2
between x = 0 and x = 1 is a ln b − 1 where

a = and b = .

(15) The length of the curve y = x3/2 from x = 0 to x = 5
9 is

a

27
where a = .

(16) The length of the curve y = 1
2x

2− 1
4 lnx from x = 1 to x = 2 is

a

b
+

1

4
ln b where a =

and b = .

(17) The length of the curve y = x2 between the origin and the point (1, 1) is
1

a

√
b+

1

4
ln(a+

√
b)

where a = and b = .

(18) A train is moving along a straight track in Africa at a steady rate of 60 mph. The engineer
suddenly sees on the tracks ahead a large rhinoceros. He slams on the brakes and the train
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decelerates as a constant rate stopping in exactly two minutes just an inch from the angry
rhinoceros’s horn. While stopping the train traveled mi.

(19) If the work done in stretching a spring from a length of 3 ft to a length of 4 ft is one-half
the work done in stretching it from 4 ft to 5 ft, then the natural length of the spring is

ft.

(20) A spring exerts a force of 1/2 pound when stretched 4 inches beyond its natural length.
The work done in stretching the spring from its unstretched position to 8 inches beyond
its natural length is inch-pounds.

(21) The left end of a spring is attached to the origin of the x-axis. Its natural length is l. The
work required to stretch the right end of the spring from x = 6 to x = 8 is 11/7 times
the work required to stretch it from x = 4 to x = 6. Then the spring’s natural length l is

.

(22) It takes a 20 pound force to stretch a particular spring 5 feet beyond its natural length.
A 12 foot chain of uniform linear density weighs 48 pounds. One end of the spring is
attached to the ceiling. When the chain is hung from the other end of the spring, the
chain just touches the floor. The amount of work done in pulling the chain down three
feet is foot-pounds.

(23) A horizontal cylindrical tank of radius 3 ft and length 8 ft is half full of oil weighing 60
lb/ft3. The work done in pumping out the oil to the top of the tank is aπ + b where
a = and b = .

(24) A horizontal cylindrical tank of radius 4 feet and length 10 feet is half full of a liquid whose
density is 60 pounds per cubic foot. What is the work done in pumping the liquid to the
top of the tank? Answer: a+ bπ where a = and b = .

(25) A conical tank is 20 ft. tall and the diameter of the tank at the top is 20 ft. It is filled
with a liquid whose density is 12 lb./ft.3. What is the work done in lifting the liquid to a
trough 5 ft above the top of the tank? Answer: π ft-lbs.

(26) A hemispherical tank of water of radius 10 feet is being pumped out. The pump is
placed 3 feet above the top of the tank. The work done in lowering the water level
from 2 feet below the top to 4 feet below the top of the tank is (to five decimal places)

foot-pounds.

(27) An oil tank in the shape of a horizontal elliptic cylinder is 25 feet long. The major axis
of the elliptical cross-section is horizontal and 12 feet long. The (vertical) minor axis
is 6 feet long. The work done in emptying the contents of the tank through an outlet
at the top of the tank when it is half full of oil weighing 60 pounds per cubic foot is

000 + 0 00π foot-pounds.

(28) A horizontal tank of length 25 feet has parabolic cross-sections (vertex down) 8 feet across
at the top and 4 feet deep. The work done in pumping out the tank from an outlet 2
feet above the top of the tank if it is filled with oil weighing 60 pounds per cubic foot is
11 00 foot-pounds.

(29) A bag of sand originally weighing 100 lb. is lifted at a constant rate. The sand leaks out
uniformly at such a rate that the bag is just empty when it reaches a height of 35 ft. How
much work is done in lifting the bag of sand that distance? Answer: ft-lbs.

(30) One electron is fixed on the x-axis at x = −2 and a second at x = −1. The force
exerted by one electron on another is inversely proportional to the square of the distance
between them. Use k as the constant of proportionality. Then the work done in moving
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a third electron along the x-axis from x = 3 to x = 0 is (in appropriate units)
a

20
k where

a = .

(31) Assume that two particles repel each other with a force inversely proportional to the cube
of the distance between them. Suppose that one particle is fixed and you know that the
work done in moving the second particle from a distance of 10 inches to a distance of 5
inches from the first is 48 inch-pounds. Then the work done in moving the second particle
from a distance of 10 inches to a distance of 1 inch from the first is inch-
pounds.

(32) Let R be the region between the curve y = sinx and the x-axis for 0 ≤ x ≤ π. Use
Pappus’s theorem to find the volume of the solid generated by revolving R about the
y-axis. Answer: the volume is aπa where a = .

(33) Let R be the region between the curve y = cosx and the x-axis for 3π
2 ≤ x ≤ 5π

2 . Use
Pappus’s theorem to find the volume of the solid generated by revolving R about the
y-axis. Answer: the volume is aπp where a = and p = .

(34) Let R be the region bounded by the parabola y = −4x2+12x and the x-axis. Use Pappus’s
theorem to find the volume of the solid which results when R is revolved about the y-axis.
Answer: the volume is aπp where a = and p = .

(35) The centroid of the triangle whose vertices are (0, 0), (1, 0), and (0, 1) is the point
( , ).

(36) The centroid of the region bounded by the parabola y = 1−x2 and the x-axis is the point
( , ).

(37) The coordinates of the centroid of the region lying between the curves y =
√

1− x2 and

y = −1 − x with 0 ≤ x ≤ 1 are x =
a

b(π + c)
and y =

d

b(π + c)
where a = ,

b = , c = , and d = .

(38) The centroid of the region {(x, y) : x2 + y2 ≤ r2 and x ≥ 0} is
( a

3π
, b
)

where a =

and b = .

(39) The base of a solid is the region bounded by the parabolas x = y2 and x = 3 − 2y2.
Find the volume of the solid if the cross-sections perpendicular to the x-axis are squares.
Answer: .

(40) The volume of the solid obtained by revolving the curve y = tanx (0 ≤ x ≤ π
4 ) about the

x-axis is a
(

1− a

b

)
where a = and b = .

(41) Let R be the region between the curve y = cosx and the x-axis for 3π
2 ≤ x ≤ 5π

2 . The
volume of the solid generated by revolving R about the x-axis is .

(42) Let R be the region which lies above the x-axis and below the curve y = 2x − x2. The

volume of the solid obtained when R is revolved about the x-axis is
a

b
π where a =

and b = .

(43) The base of a solid is the region bounded by the parabola y = 1 − x2 and the x-axis.
Suppose the cross-sections perpendicular to the x-axis are squares. Then the volume of

the solid is
a

b
where a = and b = .
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(44) Let f(x) =

{
x if 0 ≤ x ≤ 1

2− x if 1 < x ≤ 2
and A be the region which lies above the x-axis and

under the curve y = f(x). Then the volume of the solid generated by revolving A about

the x-axis is
aπ

b
where a = and b = .

(45) A hemispherical basin of radius 10 feet is being used to store water. To what percent of
capacity is the basin filled when the water is 5 feet deep?

Answer: . %.

(46) The volume of the solid generated by revolving the region bounded by y2 = 8x and x = 2

about the line x = 2 is
a

b
π where a = and b = .

(47) The base of a solid is the region bounded by the parabolas x = y2 and x = 3− 2y2. Find
the volume of the solid if the cross-sections perpendicular to the x-axis are equilateral

triangles. Answer:
a

b

√
a where a = and b = .

(48) If R is the region bounded by x =
3√
y + 1

, x = 0, y = 0, and y = 8, then the volume of

the solid generated by revolving R about the y-axis is aπ ln 3 where a = .

(49) If R is the region bounded by y = x2 + 1 and y = −x + 3, then the volume of the solid

generated by revolving R about the x-axis is
aπ

5
where a = .

(50) The arch y = 2x− x2, 0 ≤ x ≤ 2, is revolved about the line y = c to generate a solid. The

value of c that minimizes this volume is
a

b
where a = and b = .

(51) Let R be the region between the curve y = cosx and the x-axis for 3π
2 ≤ x ≤ 5π

2 . The
volume of the solid generated by revolving R about the y-axis is .

(52) Let R be the region bounded by the parabola y = −4x2 + 12x and the x-axis. Use the
shell method to find the volume of the solid which results when R is revolved about the
y-axis. Answer: a π where a = .

(53) Let R be the region under the curve y = x3/2 for 0 ≤ x ≤ 4. The volume of the solid

generated by revolving R about the y-axis is
a

7
π where a = .

(54) Let R be the region bounded by the curves
√
x +
√
y = 1 and x + y = 1. Then the

volume of the solid generated by revolving R about the y-axis is
aπ

b
where a = and

b = .

(55) Let R be the region above the x-axis and below y = 2x−x2. The volume generated when

R is revolved about the y-axis is
aπ

b
where a = and b = .

(56) Use the shell method to find the volume generated by revolving the curve y2 = 8x about

the line x = 2. Answer:
a

15
π where a = .

(57) Let R be the region bounded by the parabola y = −x2 + 6x − 8 and the x-axis. The
volume of the solid generated by revolving R about the y-axis is aπ where a = .

(58) Let R be the region bounded by the curves x =
y4

4
− y2

2
and x =

y2

2
. The volume of the

solid obtained by revolving R about the x-axis is
a

3
π where a = .
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(59) Let R be the region bounded by the curves y =
1

2x
, y = 0, x = 1, and x = 5. The volume

of the solid generated by revolving R about the y-axis is aπ where a = .

(60) Let R be the region bounded by the curves y = |x| and y = 2. Use the shell method to

find the volume of the solid generated by revolving R about the x-axis. Answer:
a

3
π where

a = .
(61) Let R be the region in the first quadrant bounded by the curves y = x2 and y = 2x. Use

the shell method to find the volume of the solid generated by revolving R about the line
x = 3. Answer: .
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16.3. Problems

The first problem below is a slight variant of the famous “snowplow” problem, which I first
came across in Ralph Palmer Agnew’s classic text [1] on Differential Equations. This wonderful
problem is much more like a “real-world” problem than most of the others included here in that it
requires one to make a number of rather strong assumptions (simplifications) even to get started.

(1) One morning it started snowing in Portland. A snowplow was dispatched at noon to clear
a highway. It had plowed 2 miles by 1 pm and 3 miles by 2 pm. At what time did it
begin snowing? Hint. Suppose w is the width of the plow blade, y(t) is the depth of the
snow at time t, and x(t) is the distance the plow has traveled by time t. What reasonable
assumptions might you make that would justify taking wy(t)x′(t) to be constant?

(2) You are considering the problem of calculating the surface area of a solid of revolution.
The curve y = f(x) (for a ≤ x ≤ b) has been rotated about the x-axis. You set up a
partition (x0, x1, . . . , xn) of [a, b] and approximate the surface area of the resulting solid by
connecting consecutive points

(
xk−1, f(xk−1)

)
and

(
xk, f(xk)

)
by a straight line segment,

which, when rotated about the x-axis, produces a portion of a cone. Taking the limit of
these conical approximations you end up with the integral∫ b

a
2πf(x)

√
1 +

(
f ′(x)

)2
dx

which you claim represents the surface area of the solid.
Your friend Fred has chosen to make cylindrical approximations rather than conical

ones and produces the integral ∫ b

a
2πf(x) dx

which he claims represents the surface area. So you and Fred argue.
He says your formula is too complicated. You say his is too simple to work. Unable

to convince him, you look up the formula in a well known calculus text and find that the
author agrees with you. Fred is unimpressed; he says the author probably made the same
mistake you did. You find several more references to support your work. Fred thinks they
all probably copied from the person who made the original mistake.

Find a completely convincing argument that even skeptical Fred will accept that his
formula can’t be correct and that yours is better.

(3) The sides of a square are initially 4 inches in length and increase at a constant rate of 3
inches per second. One corner of the square moves along a line L at a speed of 2 inches
per second for 5 seconds. During this time the square makes one complete revolution
about L, revolving at a constant rate and remaining always perpendicular to L. Explain
carefully how to compute the volume of the solid generated by the square. Carry out the
computation you describe.

(4) Consider a cable of uniform linear density hanging between two smooth pegs (of negligible
diameter) at the same height. The two free ends of the cable hang straight down and are
12 feet in length. Place the origin of the coordinate system at the point where the sag
of the cable is greatest. Between the two pegs the cable hangs in a curve y = f(x) for
−M ≤ x ≤ M (where 2M is the distance between the pegs). Let θ(x) be the angle the
(tangent to the) cable makes with the horizontal at each x between −M and M . The
value of θ just to the left of M is π/3. What is the total length of the cable? How far does
it sag? How far apart are the pegs?

Hint. Suppose the cable’s linear density is δ pounds per foot. Let T (x) be the tension
in the cable at the point (x, f(x)). Try the following steps.
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(a) Start by considering the horizontal and vertical components of the forces acting on
a small piece of cable lying between x and x + ∆x. Show that T (x) cos(θ(x)) is a
constant, say K.

(b) Find an expression for the derivative of T (x) sin(θ(x)). (It should involve the deriva-
tive of the arclength of f .)

(c) Use the results of (a) and (b) to calculate the derivative of tan(θ(x)).
(d) Express K in terms of δ.
(e) Substitute this in the result of (c).
(f) Use (e) to calculate the length of that portion of the cable lying between the pegs.

Write down the total length of the cable.

(g) In (e) make the substitution u = tan(θ(x)). Treat the derivative
du

dx
as a fraction.

Move all terms containing x to one side of the equation and all terms containing u to
the other. Integrate both sides. Solve for u. Then evaluate the constant of integration
by examining the relationship between u(−M) and u(M).

(h) Since u is
dy

dx
a second integration will produce a formula for y and a second constant

of integration. Evaluate this second constant by looking at what happens at the
origin.

(i) Evaluate M by setting the integral representing the arclength of the function you
found in (h) equal to the value you computed in (f). Give the exact answer in terms
of natural logarithms and a decimal approximation.

(j) Find the sag in the cable and the distance between the pegs.

(5) A rope of length ` feet that weighs σ lbs/ft is lying on the ground. What is the work done
in lifting the rope so that it hangs from a beam 2` feet high? Explain clearly how to solve
this problem in two different ways.

(6) Let R be a bounded region in the plane and L a line which does not pass through any
interior point of R. For the purposes of this problem assume the following facts about
ML(R), the moment of R about L, to be known.

(1) If R is a rectangular region, then ML(R) is the product of the area of R and the
distance between the center of R and L. (Of course, the center of a rectangle is the
point at which the diagonals intersect.)

(2) If R is divided into nonoverlapping subregions R1, . . . , Rn, then the moment of R
about L is the sum of the moments of the subregions Rk about L. That is,

ML(R) =

n∑
k=1

ML(Rk).

Now suppose that f and g are continuous functions on the interval [a, b] and that
0 ≤ g(x) ≤ f(x) for a ≤ x ≤ b. Let R be the region between the curves y = f(x) and
y = g(x) for a ≤ x ≤ b.

Set up appropriate Riemann sums to approximate the moment Mx(R) of R about the
x-axis and the moment My(R) of R about the y-axis. Take limits of these sums to find
integral formulas for Mx(R) and My(R).

(7) A right circular cylinder of radius 3 is standing on end. It is cut by two planes; one of
these is horizontal and the other makes an angle of 60◦ with the first and passes through
a diameter of the cross section of the cylinder made by the first plane. This creates two
wedges. Find the volume of (either) one of them.
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(8) [This problem is suitable only for those with access to a decent Computer
Algebra System (CAS)] We are given two ellipses

(x− 5)2

32
+

(y − 5)2

22
= 1 and

(x− 5)2

12
+

(y − 5)2

42
= 1.

Write a program in a CAS designed to approximate the area of the region R common to
the two ellipses. The program should do the following.
(i) Choose points at random in the square [0, 10] × [0, 10].

(ii) Test each point that is chosen to see whether or not it falls inside the region R.
(iii) Count the number of points which pass this test and the number that fail.
(iv) Use the results of (iii) and the area of the original square to estimate the area of R.

Document your program carefully. Try running the program using different num-
bers of points. What do the results indicate to you about the accuracy of your best answer?
Suggest alternative methods (that is, other than using more points) for improving the ac-
curacy.

(9) Show how to use the method of cross-sections to derive the formula for the volume of a
right circular cone with base radius r and height h.

(10) Show how to use the shell method to derive the formula for the volume of a right circular
cone with base radius r and height h.

(11) Show how to use the method of cross-sections to derive the formula for the volume of a
sphere with radius r.

(12) Show how to use the shell method to derive the formula for the volume of a sphere with
radius r.

(13) Find the centroid of the region in the plane lying between the x-axis and the curve y =
1

x2
on the interval [1,∞). Discuss as thoroughly as you can the problem of applying this
result to actual physical laminae of uniform density.

(14) For all x > 0 define

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

(a) Show that this definition makes sense. That is, show that the improper integral

converges. Hint. Prove first that limt //∞ t
pe−

1
2
t = 0 for all real numbers p. Use this

to show that there exists a number M > 0 (depending on p) such that 0 ≤ tpe−
1
2
t ≤M

whenever t ≥ 1. And then conclude that
∫∞
1 tx−1e−t dt exists for all x > 0.

(b) Show that Γ(x+ 1) = xΓ(x) for all x > 0.
(c) Show that Γ(n+ 1) = n! for each natural number n.

(d) Using double integrals in polar coordinates one can show that
∫∞
0 e−u

2
du = 1

2

√
π

(see problem 7 in chapter 33). Use this fact to calculate Γ(12) and Γ(32).
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16.4. Answers to Odd-Numbered Exercises

(1) 37

(3) 5

(5) 11

(7)
4

3

(9) 8, 2

(11) 12

(13) e

(15) 19

(17) 2, 5

(19)
5

2

(21)
3

2

(23) 6480, 8640

(25) 80, 000

(27) 5, 4, 4, 5

(29) 1750

(31) 1584

(33) 8, 2

(35)
1

3
,

1

3

(37) 14, 3, 6, −10

(39) 6

(41) 1
2π

2

(43) 16, 15

(45) 3, 1, 2, 5

(47) 3, 2

(49) 117

(51) 8π2

(53) 512

(55) 8, 3

(57) 8

(59) 4

(61)
16π

3
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CHAPTER 17

APPROXIMATION BY POLYNOMIALS

17.1. Background

Topics: Taylor polynomials, Maclaurin polynomials, Lagrange form for the remainder (error term).

133
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17.2. Exercises

(1) The Maclaurin polynomial of degree three for f(x) = arcsinx is a+ bx+ cx2 + dx3 where
a = , b = , c = , and d = .

(2) The Taylor polynomial of degree 4 for secx is a+bx2 +cx4 where a = , b = ,
and c = .

(3) The Taylor polynomial of degree 4 for f(x) = 2(x−1)3+2(x+1)1/2 is 7x−ax2+ 17
8 x

3−bx4
where a = and b = .

(4) The Taylor polynomial of degree 3 for f(x) = (x+4)3/2−(x+1)3/2 is 7+ a
2x+ b

16x
2+ c

128x
3

where a = , b = , and c = .

(5) The Taylor polynomial of degree 4 for f(x) =
1− cos 2x

x2
is a+bx2 +cx4 where a = ,

b = , and c = .

(6) Express the polynomial p(x) = x3−x2+3x−5 as a polynomial in powers of x−2. Answer:
a+ b(x− 2) + c(x− 2)2 + (x− 2)3 where a = , b = , and c = .

(7) Find an approximate value of

∫ 1

0
cosx2 dx by replacing the integrand with an appropriate

polynomial of degree 8. Answer: 1− 1

a
+

1

b
where a = and b = .

(8) The Taylor polynomial of degree 4 for f(x) = e2x sinx is a + x + bx2 + cx3 + x4 where
a = , b = , and c = .

(9) The Taylor polynomial of degree 5 for f(x) = sin 3x is ax+ b
2x

3 + c
40x

5 where a = ,
b = , and c = .

(10) Write p(x) = x4 − 2x3 + 4x2 − 7x+ 6 as a polynomial in powers of x− 1.

Answer: a+ b(x− 1) + c(x− 1)2 + d(x− 1)3 + (x− 1)4 where

a = , b = , c = , and d = .

(11) Write x4 + x3 + x2 + 3x+ 5 as a polynomial in powers of x+ 2.

Answer: a+ b(x+ 2) + c(x+ 2)2 + d(x+ 2)3 + (x+ 2)4 where

a = , b = , c = , and d = .

(12) Write p(x) = x4 + 3x3 + 4x2 + 5x + 7 as a polynomial in powers of x + 1. Answer:
a+ b(x+ 1) + c(x+ 1)2 + d(x+ 1)3 + (x+ 1)4 where a = , b = , c = ,
and d = .

(13) Write p(x) = x4 + x3 − x2 − x+ 4 as a polynomial in powers of x− 1.

Answer: a+ b(x− 1) + c(x− 1)2 + d(x− 1)3 + (x− 1)4 where

a = , b = , and c = , and d .

(14) Write x4 − x3 + 3x2 − 5x− 6 as a polynomial in powers of x− 2.

Answer: a+ b(x− 2) + c(x− 2)2 + d(x− 2)3 + (x− 2)4 where

a = , b = , and c = , and d

(15) Find the Maclaurin polynomial of degree 4 for the function f(x) = (x+ 1)3/2 + (x+ 1)1/2.
Answer: A + Bx + Cx2 + Dx3 + Ex4 where A = , B = , C = ,

D = , and E = .

(16) Find the Maclaurin polynomial of degree 4 for the function f(x) =
x− 1

x+ 1
.
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Answer: A + Bx + Cx2 + Dx3 + Ex4 where A = , B = , C = ,
D = , and E = .

(17) Find the Maclaurin polynomial of degree 4 for f(x) = ln cosx.

Answer: A + Bx + Cx2 + Dx3 + Ex4 where A = , B = , C = ,
D = , and E = .

(18) Approximate cos 1 making use of an appropriate polynomial of degree 4. Express your

answer as a single fraction in lowest terms. Answer:
a

24
where a = .

(19) Find an approximate value for

∫ 1

0
sinx3 dx by replacing the integrand with an appropriate

polynomial of degree 15. Answer:
a

1920
where a = .

(20) Using the Lagrange form for the remainder, determine the smallest number of non-zero
terms a Taylor polynomial for sinx must have to guarantee an approximation of sin 0.1
which is accurate to within 10−10. Answer: .

(21) Find e1/5 with an error of less than 10−5. Express your answer as a sum of fractions in

lowest terms. Answer: 1+
1

5
+

1

a
+

1

b
+

1

c
where a = , b = , and c = .

(22) Let f(x) =
1− cos 2x

x2
. Then f (10)(0) = −2p

a
where p = and a = .

(23) Let f(x) = x3 sinx. Then f (8)(0) = .
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17.3. Problems

(1) Let f(x) = sinx. Use an appropriate polynomial of degree 3 to approximate sin(0.3).
Show that the error in this approximation is less than 2.1 · 10−5.

(2) Use an appropriate polynomial to approximate ln 1.5 with an error of < 10−2. (Express
your answer as the quotient of two natural numbers.) Give a careful proof that the error
in this approximation is less than 10−2.

(3) Find an approximate value for

∫ 1/2

0
ex

2
dx by replacing the integrand with an appropriate

polynomial of degree 4. (Express your answer as the quotient in lowest form of two natural
numbers.) Give a careful argument to show that the error in this approximation is less
than 4 · 10−4.

(4) Find an approximate value of

∫ 1/2

0
exp(x3) dx by replacing the integrand with an ap-

propriate polynomial of degree 6. (Express your answer as the quotient of two natural
numbers.) Give a careful argument to show that the error in this approximation is less
than 1

152−11.
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17.4. Answers to Odd-Numbered Exercises

(1) 0, 1, 0,
1

6

(3)
25

4
,

5

64

(5) 2, −2

3
,

4

45

(7) 10, 216

(9) 3, −9

2
,

81

40

(11) 11, −21, 19, −7

(13) 4, 4, 8, 5

(15) 2, 2,
1

4
, 0, − 1

64

(17) 0, 0, −1

2
, 0, − 1

12

(19) 449

(21) 50, 750, 15000

(23) 336





CHAPTER 18

SEQUENCES OF REAL NUMBERS

18.1. Background

Topics: sequences, monotone (increasing and decreasing) sequences, bounded sequences, conver-
gence of sequences.

18.1.1. Notation. Technically a sequence of real numbers is a function from the set N of natural
numbers (or, occasionally, from the set Z+ of positive integers) into R. In the following material
we will denote sequences by whichever of the following four notations

a =
(
an
)∞
n=1

= (an) = (a1, a2, a3, . . . )

seems most convenient at the moment.
In elementary algebra texts authors go to a great deal of trouble to distinguish between the

notation for finite sets and for n-tuples. For example, the set containing the numbers 3 and 5
is denoted by {3, 5} while the ordered pair whose first entry is 3 and whose second entry is 5 is
denoted by (3, 5). The principal difference is that {3, 5} = {5, 3} while (3, 5) 6= (5, 3). Sequences
have an order just as ordered pairs, ordered triples, and so on have. So it is somewhat surprising
that many authors of calculus texts choose the notation {a1, a2, a3, . . . } for sequences.

18.1.2. Definition. A sequence (an) of real numbers is increasing if an+1 ≥ an for every n ∈ N;
it is strictly increasing if an+1 > an for every n. A sequence is decreasing if an+1 ≤ an for
every n, and is strictly decreasing if an+1 < an for every n. A sequence is monotone if it is
either increasing or decreasing.

Here are three useful facts about convergence of sequences of real numbers.

18.1.3. Theorem (Monotone sequence theorem). Every bounded monotone sequence of real num-
bers converges.

18.1.4. Theorem. If (an) is a convergent sequence with an → l as n → ∞ and f is a function
which is continuous at l, then the sequence

(
f(an)

)
converges and

lim
n→∞

f(an) = f(l).

18.1.5. Theorem. If
(
an
)

is a sequence of real numbers, then

lim
n→∞

an
1/n = lim

n→∞

an+1

an
if the limit on the right exists.
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18.2. Exercises

(1) Let
(
ak
)∞
k=1

be the sequence whose first few terms are 1
2 ,

1
5 ,

1
8 ,

1
11 ,

1
14 ,

1
17 , . . . . Then an ex-

plicit formula for ak which works for all values of k is ak = (b(k))−1 where b(k) = .

(2) Find the nth term of the sequence (12 ,
1
4 ,

1
6 ,

1
8 , . . . ). Answer: an = .

(3) Find the nth term of the sequence (13 ,
1
5 ,

1
7 ,

1
9 , . . . ). Answer: an = .

(4) Let
(
ak
)∞
k=1

be the sequence whose first few terms are 1
2 ,

1
5 ,

1
10 ,

1
17 ,

1
26 ,

1
37 , . . . . Then an ex-

plicit formula for ak which works for all values of k is ak = (b(k))−1 where b(k) = .

(5) Find the nth term of the sequence (1, 5, 1, 5, 1, . . . ). Answer: a2n = and a2n−1 = .

(6) Let
(
ak
)∞
k=1

be the sequence whose first few terms are 1
2 ,

1
6 ,

1
12 ,

1
20 ,

1
30 ,

1
42 ,

1
56 ,

1
72 ,

1
90 , . . . .

Then an explicit formula for ak which works for all values of k is ak = (b(k))−1 where
b(k) = .

(7) Let an =
2

3n+ 1
for every n ∈ N. Then the sequence (an)

is (increasing/decreasing/not monotone)

and (is/is not) bounded.

(8) Let an =
2n

n+ 1
for every n ∈ N. Then the sequence (an)

is (increasing/decreasing/not monotone)

and (is/is not) bounded.

(9) Let an =
n2 + 2

n2 + 1
for every n ∈ N. Then the sequence (an)

is (increasing/decreasing/not monotone)

and (is/is not) bounded.

(10) Let an = ln
n2 + 2

n+ 1
for every n ∈ N. Then the sequence (an)

is (increasing/decreasing/not monotone)

and (is/is not) bounded.

(11) Let an =

√
n+ 1

5n+ 3
for every n ∈ N. Then the sequence (an)

is (increasing/decreasing/not monotone)

and (is/is not) bounded.

(12) lim
n→∞

(
√
n2 − 7n− n) = −a

2
where a = .

(13) lim
n→∞

(
1 +

1

5n

)10n

= ep where p = .

(14) lim
n→∞

∫ n+4

n−3

x2 + 5

x2 + 1
dx = .

(15) lim
n→∞

∫ 3n

2n

x+ 3

x2 + 1
dx = ln

a

2
where a = .
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(16) lim
n→∞

n(
√
n2 + 8−

√
n2 + 3) =

a

2
where a = .

(17) lim
n→∞

n2/3((n+ 2)1/3 − n1/3) =
a

3
where a = .

(18) lim
n→∞

(
(n!)2

(2n)!

)1/n

=
1

a
where a = .

(19) lim
n→∞

(
1 +

2

3n

)4n

= ea/3 where a = .

(20) lim
n→∞

n2
(√

n4 + 11−
√
n4 + 1

)
= .

(21) lim
n→∞

(
(3n)!

(n!)3

)1/n

= .

(22) lim
n→∞

n3(n−1)
−1

= .

(23) Find lim
n→∞

∫ n+5

n+3

x5/2 − 1

x3 + 4
dx = .

(24) lim
n→∞

2n
4
√

256n4 + 81n2 + 49
=

1

a
where a = .

(25) lim
n→∞

(
1 + 2 + · · ·+ n

n+ 2
− n

2

)
= −1

a
where a = .

(26) lim
n→∞

∫ 1/n

2/n

x+ 1

x2 + 1
dx = .

(27) lim
n→∞

∫ n+1

n

x+ 1

x2 + 1
dx = .

(28) lim
n→∞

∫ 2n

n

x+ 1

x2 + 1
dx = .

(29) lim
n→∞

∫ n2

n

x+ 1

x2 + 1
dx = .

(30) lim
n→∞

2n + 3n

3n − 2n
= .

(31) lim
n→∞

n

(n!)1/n
= .

(32) lim
n→∞

[
(3n)!

(n!)3

]1/n
= .

(33) lim
n→∞

[
1

2

(
2

3

)2(3

4

)3

· · ·
(

n

n+ 1

)n]1/n
=

1

a
where a = .

(34) Let an =
3n2 − 4

5− 6n2
for all n ∈ N. Then the sequence (an) converges to −1

a
where a = .

(35) Let an =
3n2 − 4

5− 6n3
for all n ∈ N. Then the sequence (an) converges to .

(36) Let an = arctan 3n for all n ∈ N. Then lim
n→∞

an =
π

a
where a = .
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(37) Let an = ln (4n+ 5)− ln 2n for all n ∈ N. Then lim
n→∞

an = .

(38) Let an =
(−4)n

n!
for each n ∈ N. Then the sequence (an) converges to .

(39) Let an =
sin3(3n2 − 4)

5n− 2
for all n ∈ N. Then the sequence (an) converges to .

(40) lim
n→∞

∫ n+5

n−3

x2 + 4

x2 + 1
dx = .

(41) For each natural number k let ak = (lnx)k. Then the sequence (ak) converges if and only
if a < x ≤ b where a = and b = .

(42) For each natural number k let ak =
ln(1 + k2)

ln(4 + 3k)
. Then, to four decimal places,

a100 = 1. 11, a100,000 = 1. 58, and lim
k→∞

ak = .

(43) lim
n→∞

n∑
k=1

(n+ 2k)4

n5
=
a

5
where a = .

(44) lim
n→∞

n∑
k=1

1

n+ 3k
=

1

a
ln b where a = and b = .

(45) Let an =
12

n3
+

22

n3
+ · · ·+ n2

n3
for each n. Then lim

n→∞
an =

1

a
where a = .

(46) lim
n→∞

n∑
k=1

k2 + n2

kn2 + n3
= a ln a− 1

a
where a = .

(47) lim
n→∞

n∑
k=1

15

60k + 4n
= ln a where a = .

(48) lim
n→∞

n∑
k=1

n

(2n+ 7k)2
=

1

a
where a = .

(49) lim
n→∞

n∑
k=1

ln(5k + n)− lnn

n
=
a

b
ln a− 1 where a = and b = .

(50) Let an =

n∑
k=1

k2

n3
for all n. Then lim

n→∞
an =

1

a
where a = .



18.3. PROBLEMS 143

18.3. Problems

(1) Let x1 = −7 and xn+1 = 1
5(3xn + 4) for all integers n ≥ 1.

(a) Show that xn ≤ 2 for all n.
(b) Show that (xn) is increasing.
(c) Show that (xn) converges.
(d) Find lim

n→∞
xn.

(2) Let

a1 =
√

2

a2 =

√
2 +
√

2

a3 =

√
2 +

√
2 +
√

2

...

(a) Express an+1 in terms of an.
(b) Prove that (an) has a limit, say r. Hint. Show first that

√
2 ≤ an < 2 for all n.

(c) Find r.

(3) Let an =

(
n∑
k=1

1

k

)
− lnn for n ≥ 1.

(a) Show that ln(n+ 1)− lnn ≥ 1

n+ 1
for n ≥ 1.

(b) Show that (an) is a decreasing sequence.

(c) Show that lnn ≤
n∑
k=2

1

k − 1
. Hint. For any integrable function

∫ n

1
f =

n∑
k=2

∫ k

k−1
f.

(d) Show that (an) converges.

(4) Let x1 = 1 and xn+1 = 1
3(x3n − 2) for every n ≥ 1.

(a) Show that (xn) is bounded. Hint. Show −1 < xn < 2 for every n.)
(b) Show that (xn) is decreasing.
(c) Show that (xn) converges.
(d) Find lim

n→∞
xn.

(5) Let x1 = −10 and xn+1 = 1−
√

1− xn for every n ≥ 1.
(a) Show that xn < 0 for every n.
(b) Show that (xn) is increasing.
(c) Show that (xn) converges.
(d) Find lim

n→∞
xn.

(e) Find lim
n→∞

xn+1

xn
(if this limit exists.)

(6) Suppose that a sequence (xn) satisfies (7 +xn)xn+1 = 7(1 +xn) for all n ≥ 1, and suppose
that x1 = 109.
(a) Show that xn >

√
7 for every n.

(b) Show that (xn) is decreasing.
(c) Show that (xn) converges.
(d) Find lim

n→∞
xn.
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18.4. Answers to Odd-Numbered Exercises

(1) 3k − 1

(3)
1

2n+ 1

(5) 5, 1

(7) decreasing, is

(9) decreasing, is

(11) decreasing, is

(13) 2

(15) 3

(17) 2

(19) 8

(21) 27

(23) 0

(25) 2

(27) 0

(29) ∞
(31) e

(33) e

(35) 0

(37) ln 2

(39) 0

(41)
1

e
, e

(43) 121

(45) 3

(47) 2

(49) 6, 5



CHAPTER 19

INFINITE SERIES

19.1. Background

Topics: infinite series, sum of an infinite series, geometric series, Taylor series.

19.1.1. Remark. Are sequences and series the same thing? In ordinary discourse the words
“sequence” and “series” are ordinarily used interchangeably. There seems to be no distinction
between saying that a sequence of events led to an outcome and saying that a series of events led
to an outcome. So naturally the first thing a conscientious calculus textbook writer has to do is
make sure that students understand the difference. Sequences are ordered; they are lists; they
are functions whose domain is the set of natural numbers. Series are sums, albeit infinite sums.
[Digression: it is unfortunate that in many texts the distinction is immediately muddied by using
the notation {ak} for sequences. Beginners expend much effort in learning that {a, b} is a set (an
unordered pair) whereas (a, b) is an ordered pair. This leads rational students to expect {ak} to
denote a set and (ak) a sequence. It is a cruel trick to switch and use {ak} for a sequence.]

Once it is agreed that sequences are lists, what exactly are series? One approach is to think of
them as being (infinite) sums of numbers. The (finite) series 2+4+8 is just another way of writing
the number 14. So when we write

∑∞
k=1 2−k = 1, isn’t it clear that what we are saying is that the

infinite series
∑∞

k=1 2−k is just the number 1? But this can’t be right. If an infinite series is just
a number, how could we possibly make sense of the assertion that the harmonic series

∑∞
k=1 k

−1

diverges? A single number can’t diverge.
The usual way around this is to distinguish between an infinite series and its sum. Given a

sequence (a1, a2, . . . ) define a new sequence (s1, s2, . . . ) by setting sn =
∑n

k=1 ak for each natural
number n. Then define the infinite series

∑∞
k=1 ak to be this sequence (sn) of partial sums. So saying

that the sequence (sn) converges is the same thing as saying that the series
∑∞

k=1 ak converges. If
sn → L as n→∞ we say that L is the sum of the series. Now what would be a reasonable notation
for the sum of a series? It’s hard to think of a worse choice than the one that history has conferred
on us: if a series

∑∞
k=1 converges, we use the name of the series

∑∞
k=1 to denote its sum. And so∑∞

k=1 2−k equals the number 1 while
∑∞

k=1(−1k) doesn’t equal any number at all.
Thus it happens that every series is a sequence. It is the sequence of its partial sums. Is every

sequence a series? In other words, is every sequence the sequence of partial sums of some other
sequence? Certainly. Suppose we start with a sequence (s1, s2, . . . ). Construct a new sequence
by letting a1 = s1 and for n > 1 let an = sn − sn−1. Then it is clear that our original sequence
(s1, s2, . . . ) is the sequence of partial sums of the sequence (a1, a2, . . . ), that is to say, an infinite
series. So every sequence is an infinite series. This leads to a nice puzzle. Since every sequence is
a series and every series is a sequence, can the two concepts really be distinguished?
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19.2. Exercises

(1) Let an = (5 + 8−n)−1 for each n ≥ 3. We know that the series

∞∑
3

an does not converge

since an → 6= 0 as n→∞.

(2) Let an = n−1/n for each n ≥ 1. We know that the series

∞∑
n=1

an does not converge since

an → 6= 0 as n→∞.

(3) Let an =

(
1 +

1

n

)n
for each natural number n. Then the series

∞∑
n=1

an diverges because

an → 6= 0 as n→∞.

(4) The series
∞∑
1

ln k

ln(3 + k2)
diverges because the terms of the series approach ,

which is not zero.

(5)
∞∑
k=5

1

k(k − 1)
=

1

a
where a = .

(6)
∞∑
1

1

25k2 + 15k − 4
=

1

a
where a = .

(7)
∞∑
n=2

4n

(n2 − 2n+ 1)(n2 + 2n+ 1)
=
a

4
where a = .

(8)
∞∑
0

k!

(k + 5)!
=

1

a
where a = . Hint. Suppose that ak :=

k!

(k + 4)!
. Then what can

you say about

n∑
0

(
ak − ak+1

)
?

(9)

∞∑
0

k!

(k + 6)!
=

1

a
where a = . Hint. Suppose that ak :=

k!

(k + 5)!
Then what

can you say about

n∑
0

(ak − ak+1)?

(10)
∞∑
n=0

arctan(n2 + n+ 1)−1 =
π

a
where a = . Hint.

1

n2 + n+ 1
=

(n+ 1)− n
1 + (n+ 1)n

.

(11) Let Sn =
n∑
k=1

(
1√
k
− 1√

k + 2

)
for each natural number n. Then lim

n→∞
Sn = a+b

√
2 where

a = and b = .

(12)

∞∑
n=0

(arctan(n+ 1)− arctann) =
π

a
where a = .

(13)
∞∑
n=1

2n2 + 4n+ 1

(n2 + n)2
= . Hint. Partial fractions.

(14) Suppose the nth partial sum of the series
∑∞

k=1 ak is 4 − n3−n. Then ak =
b

c
where

b = and c = ; and
∑∞

k=1 ak = .
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(15) Suppose the nth partial sum of the series
∑∞

k=1 ak is 5 − 7n2−n. Then ak =
b

c
where

b = and c = ; and
∑∞

k=1 ak = .

(16)
∞∑
3

(−1)k3k+1

22k−4
= −a

7
where a = .

(17)
∞∑
6

(−1)n2n−3

3n−2
=

8

a
where a = .

(18)
∞∑
2

(−1)n−133n−5

72n−2
= −3

a
where a = .

(19)
∞∑
7

5n−4

33n−17
=

125

a
where a = .

(20) The repeating decimal 0.3636 =
4

a
where a = .

(21) The repeating decimal 0.108108 =
4

a
where a = .

(22) Let Sn =
n∑
k=0

1

2k+4
for each n ∈ N. Then lim

n→∞
Sn =

1

a
where a = .

(23) Let Sn =

n∑
k=5

(
−1

2

)k
for each natural number n. Then lim

n→∞
Sn = −1

a
where a= .

(24) The series

∞∑
k=1

(
3x+ 1

2

)k
converges for those x which satisfy < x < and

for no others.

(25) The series
∞∑
k=5

(2x− 3)k converges for those x which satisfy < x < and for no

others.

(26)
∞∑
k=0

e−k =
e

a
where a = .

(27) A ball is dropped from a height of 15 feet. Each time it bounces it rises four-fifths the
distance it previously fell. The total distance traveled by the ball is feet.
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19.3. Problems

(1) Criticize the following argument.
Claim: 0 = 1.
Proof:

0 = 0 + 0 + 0 + · · ·
= (1− 1) + (1− 1) + (1− 1) + · · ·
= 1 + (−1) + 1 + (−1) + 1 + (−1) + · · ·
= 1 + ((−1) + 1) + ((−1) + 1) + ((−1) + 1) + · · ·
= 1 + 0 + 0 + 0 + · · ·
= 1 .

(2) Criticize the following argument.

Claim: 1 + (−1) + 1 + (−1) + 1 + (−1) + · · · =
1

2
.

Proof: Let S = 1 + (−1) + 1 + (−1) + 1 + (−1) + · · · . Then it follows that

1− S = 1− (1 + (−1) + 1 + (−1) + 1 + (−1) + · · · )
= 1 + (−1) + 1 + (−1) + 1 + (−1) + 1 + · · ·
= S .

Thus 2S = 1 and S =
1

2
.

(3) Explain carefully what point (if any) is being made in the two preceding problems.

(4) On the interval [0, 1], use the graphs of the functions fn(x) = xn to give a geometric
argument that the sum of the series

∑∞
n=1 n

−1(n+1)−1 is 1. Hint. What is the area under
the curve y = fn(x)?

(5) Prove that the series
∞∑
n=1

n

(n+ 1)!
converges and find its sum.

(6) Let P be the set of all the natural numbers which have no prime factors other than 2
and 3. (In particular,1 belongs to P .) Find the sum of the reciprocals of the members
of P .
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19.4. Answers to Odd-Numbered Exercises

(1)
1

5

(3) e

(5) 4

(7) 5

(9) 600

(11) 1,
1

2

(13) 3

(15) 7k − 14, 2k, 5

(17) 135

(19) 66

(21) 37

(23) 48

(25) 1, 2

(27) 135





CHAPTER 20

CONVERGENCE TESTS FOR SERIES

20.1. Background

Topics: integral test, p-test, comparison test, limit comparison test, ratio test, root test.

The integral test for the convergence of a series has multiple formulations. Here is the one most
useful for some of the following exercises.

20.1.1. Theorem (Integral Test). If a is a continuous, positive, decreasing function on the interval
[1,∞) and either

∑∞
k=1 ak or

∫∞
1 a(x) dx converges, then so does the other and∫ ∞

1
a(x) dx ≤

∞∑
k=1

ak ≤ a1 +

∫ ∞
1

a(x) dx .

(In the preceding statement ak is just another way of writing a(k).) A very readable discussion,
and proof, of this result can be found on pages 577–580 of [3].

20.1.2. Theorem (p-test). For p > 0 the p-series
∞∑
k=1

1

kp
converges if p > 1 and diverges if p ≤ 1.
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20.2. Exercises

(1) The infinite series

∞∑
k=1

ke−k
2

(converges/diverges) because the integral∫ ∞
1

xe−x
2
dx = .

(2) The infinite series
∞∑
3

1

n(lnn)(ln lnn)2
(converges/diverges) because the

integral

∫ ∞
3

1

x(lnx)(ln lnx)2
dx = .

(3) The infinite series
∞∑
2

1

n
√

lnn
(converges/diverges) because the integral∫ ∞

2

1

x
√

lnx
dx = .

(4) Let n ≥ 2 and f be a continuous, positive, decreasing function defined on the interval [1, n].
For k = 1, 2, . . . , n let ak = f(k). Put the numbers x, y, and z in increasing order, where

x =
∫ n
1 f(t) dt, y =

∑n−1
k=1 ak, and z =

∑n
k=2 ak. Answer: ≤ ≤ .

(5) By the integral test the sum S of the series
∞∑
n=0

1

n2 + 1
satisfies

a

2
< S <

b

2
where a =

and b = .

(6) By the integral test the sum S of the series

∞∑
n=1

ne−n satisfies
a

e
< S <

b

e
where a =

and b = .

(7) The series

∞∑
n=2

1

n(lnn)p
converges for a < p < b where a = and b = , and

nowhere else.

(8) By the integral test the sum S of the series

∞∑
n=1

arctann

n2 + 1
satisfies S ≤ aπ + bπ2 where

a = and b = .

(9) By the integral test the sum S of the series
∞∑
n=2

lnn

n2
satisfies S ≤ a+ b ln 2

c
where

a = , b = , and c = .

(10) Let ak = (k2 − k − 1)−1/2 for k ≥ 5. To show that the series
∑∞

k=5 ak diverges we choose

bk = for each k ≥ 5 and notice that ak ≥ bk for each k ≥ 5 and that
∞∑
k=5

bk diverges.

(11) Let ak =
3k2 − 2k − 1

k4 + 3k2 + 5
for k ≥ 2. To show that the series

∑∞
k=2 ak converges we choose

bk = for each k ≥ 2 and notice that ak ≤ bk for each k ≥ 2 and that
∞∑
k=2

bk

converges.
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(12) Let ak =
1√

k4 + 7k2 + 20
for k ≥ 2. To show that the series

∑∞
k=2 ak converges we choose

bk = for each k ≥ 2 and notice that ak ≤ bk for each k ≥ 2 and that
∞∑
k=2

bk

converges.

(13) Let ak =
1√

5k3 − 20k2 + 7k − 3
for k ≥ 4. To show that the series

∑∞
k=4 ak converges we

choose bk = k−3/2 for k ≥ 4 and use the test. The series∑∞
k=4 bk converges and lim

k→∞

ak
bk

=
1

a
where a = .

(14) Let

∞∑
1

2k3/2 + 5k1/2 − 1

7k5/2 − 6k3/2 + 3k − 2
for k ≥ 1. To show that the series

∑∞
k=1 ak diverges we

choose bk = 1/k for k ≥ 1 and use the test. The series∑∞
k=1 bk diverges and lim

k→∞

ak
bk

=
2

a
where a = .

(15) Let ak =
1

5k2 − 3k + 5
for k ≥ 1. To show that the series

∑∞
k=1 ak converges we choose

bk = k−2 for k ≥ 1 and use the test. The series
∑∞

k=1 bk converges

and lim
k→∞

ak
bk

=
1

a
where a = .

(16) Let an =
n! 3n

nn
for n ≥ 1. Then the series

∑∞
n=1 an (converges/diverges)

because lim
n→∞

an+1

an
= .

(17) Let an =
3100n

3 · 6 · · · (3n)
for n ≥ 1. Then the series

∑∞
n=1 an (con-

verges/diverges) because lim
n→∞

an+1

an
= .

(18) Let ak =
(k!)2

(2k)!
for k ≥ 1. Then the series

∑∞
k=1 ak (converges/diverges)

because lim
k→∞

ak+1

ak
=

1

a
where a = .

(19) Let an =
(2n− 1)!

42n−1
for n ≥ 1. Then the series

∑∞
n=1 an (converges/diverges)

because lim
n→∞

an+1

an
= .

(20) Let ak =

(
2k

3k + 1

)k
for k ≥ 4. Then the series

∑∞
k=4 ak (con-

verges/diverges) because limk→∞(ak)
1/k = .

(21) Let an =

(
1 +

1

n

)−n2

for n ≥ 1. Then the series
∑∞

n=1 an (con-

verges/diverges) because limn→∞(an)1/n =
1

a
where a = .

(22) Let an =
(lnn)n

n!
for n ≥ 2. Then the series

∑∞
n=2 an (converges/diverges)

because limn→∞(an)1/n = .
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(23) The series
∞∑
2

(−1)k

k ln k
converges . By computing the partial sums

S6 and S7 we know that the sum S of the series satisfies

0.4 60 < S < 0.5 03.

(24) The series
∞∑
n=1

(−1)n+1

√
n

converges . By computing the partial sums

S24 and S25 we know that the sum S of the series satisfies

0. 38 < S < 0. 39.

If we want the error in approximating the sum S by a partial sum Sn to be less than 10−2

the smallest n that the alternating series test assures us will work is n = .

(25) The series
∞∑
k=0

(−1)k(k!)2

(2k)!
converges . By computing the partial sums S5

and S6 we know that the sum S of the series satisfies
a

126
< S <

b

2772
where a =

and b = .

(26) The series

∞∑
k=1

(−1)k

k2 + 2k
converges . To achieve an accuracy of 0.005 the

alternating series test tells us to take at least n = . For that value of n the partial
sum Sn is approximately −0.2 10 .
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20.3. Problems

(1) Use the integral test to find upper and lower bounds for the series

∞∑
k=1

(arctan k)3

1 + k2
. Explain

your reasoning carefully.

(2) Use the comparison test and the p-test to discuss the convergence of the series

∞∑
k=1

√
n

n2 + 3
.

(3) Discuss the convergence of the series
∞∑

n=37

n4 − 105n2 + 70n− 5

n5 + 317n3 − 150n− 3
.

(4) Discuss the convergence of the series
∑ (3n)nn!

(2n)!22n
.

(5) Discuss the convergence of the series

∞∑
n=1

3 · 5 · 7 · · · (2n+ 1)

n4n
(3n)!. Hint. ln 54 ≈ 3.988984.

(6) Discuss the convergence of the series

∞∑
1

kk

2kk!
.

(7) Discuss the convergence of the series

∞∑
n=1

an where an =

{(
3
4

)n
if n is odd

2
(
3
4

)n
if n is even.

(8) Discuss the convergence of the series

∞∑
1

(−1)k

1 + 3−k
.

(9) Discuss the convergence of the series

∞∑
2

(−1)k
ln k

k
.

(10) Discuss the convergence of the series

∞∑
2

(−1)k

k2 ln k
.

(11) Discuss the convergence of the series

∞∑
1

(−1)n
n+ 2

n2 + 3n− 1
.

(12) Discuss the convergence of the series
∞∑
n=1

(−1)nnn

n!
.

(13) Discuss the convergence of the series
∞∑
n=1

(−1)nn!

nn
.
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20.4. Answers to Odd-Numbered Exercises

(1) converges,
1

2e

(3) diverges, ∞
(5) π, π + 2

(7) 1, ∞
(9) 2, 3, 4

(11)
3

k2

(13) limit comparison,
√

5

(15) limit comparison, 5

(17) converges, 0

(19) diverges, ∞
(21) converges, e

(23) conditionally, 9, 3, 6, 7

(25) absolutely, 79, 1741



CHAPTER 21

POWER SERIES

21.1. Background

Topics: power series, Maclaurin series, Taylor series, Lagrange form of the remainder, binomial
series, radius of convergence, interval of convergence, use of power series to solve differential equa-
tions.

Despite the impression given my many beginning calculus texts the natural habitat of power
series is the field of complex numbers—not the real number line. Here is an example to illustrate
this point.

Consider two functions: the sine and the arctangent. They are both bounded and infinitely
differentiable. The arctangent is extraordinarily well behaved: it is strictly increasing and changes
concavity only once. The sine function, on the other hand, not only changes from increasing to
decreasing infinitely often, but also changes concavity infinitely often. Why then should it turn
out that the sine function has an infinite radius of convergence while the apparently much nicer
arctangent function has radius of convergence of only one? When we think of these functions as
being defined only on the real line this behavior seems totally inexplicable. But if we regard them
as functions on the complex plane, everything seems quite natural. The arctangent function and its

derivative, the function z 7→
(
1 + z2

)−1
must have the same radius of convergence, and the latter

function clearly blows up at z = i.
One calculus text that discusses complex power series is Spivak’s beautiful classic [4].

157
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21.2. Exercises

(1) The radius of convergence of the power series

∞∑
1

nn

n!
(x− 1)n is

1

a
where a = .

(2) The radius of convergence of the power series

∞∑
n=1

(
xn

n2

)
1

2n
is .

(3) The radius of convergence of the power series
∑[

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)

]4 (x
3

)n
is .

(4) The radius of convergence of the power series

∞∑
1

3k(2k)!

k3(k!)2
(x+1)k is

1

a
where a = .

(5) The radius of convergence of the power series
∑ n2n

(2n)!
(x− 1)n is

a

ep
where a = and

p = .

(6) The interval of convergence of the power series
∞∑
n=1

(−1)nnxn is ( , ) .

(7) The interval of convergence of the power series

∞∑
n=0

xn

n!
is ( , ) .

(8) The interval of convergence of the power series

∞∑
2

2k

ln k
(x+3)k is

[
a

2
,
b

2

)
where a =

and b = .

(9) The interval of convergence of the power series
∑ (−1)n+1

(n+ 1)2
(x+ 1)2n

5n
is [a−

√
b , a+

√
b ]

where a = and b = .

(10) The interval of convergence of the power series 1 +x+x2 + 2x3 +x4 + 3x5 +x6 + 4x7 + · · ·
is ( , ) .

(11) The interval of convergence of the power series
∞∑
n=1

xn

n
is − 1 , 1 .

(12) The interval of convergence of the power series
∞∑
n=1

xn

n22n
is − 2 , 2 .

(13) The interval of convergence of the power series 1 + 1
3x+ x2 + 1

3x
3 + x4 + 1

3x
5 + x6 + · · ·

is − 1 , 1 .

(14) The interval of convergence of the power series
∞∑

n=27

(−1)n(x+ 3)n√
n

is − 4 , −2 .

(15) The interval of convergence of the power series
∑ 1

k2k
xk is , .

(16) The interval of convergence of the power series
∞∑
1

(−1)n
(x+ 2)n

n2n
is , .

(17) The interval of convergence of the power series
∞∑
1

(x− 5)n√
n 3n

is , .
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(18) The sum of the series
∞∑
n=3

n− 1

3n
is

5

a
where a = .

(19) Express
∞∑
1

(n+ 1)xn as the value at x of an elementary function f .

Answer: f(x) =
g(x)

(1− x)2
where g(x) = .

(20) Express

∞∑
1

nxn as the value at x of an elementary function f .

Answer: f(x) =
g(x)

(1− x)2
where g(x) = .

(21) Express
∞∑
1

n2xn as the value at x of an elementary function f .

Answer: f(x) =
g(x)

(1− x)p
where g(x) = and p = .

(22) The sum of the series

∞∑
n=1

n2

5n
is

15

a
where a = .

(23) The sum of the series
∞∑
k=1

2k − 1

4k
is
a

9
where a = . Hint. 4k = 22k.

(24) Express

∞∑
1

n(n+ 1)xn as the value at x of an elementary function f .

Answer: f(x) =
g(x)

(1− x)p
where g(x) = and p = .

(25) The sum of the series
1 · 2

2
+

2 · 3
4

+
3 · 4

8
+

4 · 5
16

+ · · · is .

(26) The sum of the series 1− 1

3 · 3
+

1

5 · 32
− 1

7 · 33
+

1

9 · 34
− . . . is

a

2
√
b

where

a = and b = .

(27) Express 1+x+x2 +3x3 +x4 +5x5 +x6 +7x7 +x8 + · · · as the value at x of an elementary
function f .

Answer: f(x) =
a

1− x2
+

b(x)

(1− x2)2
where a = and b(x) = .

(28) A power series expansion of

∫
x− arctanx

x2
dx is

∞∑
1

(−1)k+1

a(k)
x2k+c where a(k) =

and c is an arbitrary constant.

(29) x ln(1 +x) =

∞∑
k=2

(−1)k

ak
xk where (for each k) ak = . The radius of convergence

of the series is R = .

(30)
1

1 + 4x2
=

∞∑
k=0

akx
2k where (for each k) ak = . The radius of convergence

of the series is R =
1

a
where a = .
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(31)
1

(1 + x)2
=
∞∑
k=0

(−1)kakx
k where (for each k) ak = . The radius of convergence

of the series is R = .

(32) Let f(x) =
arctanx

x
. A power series expansion for f ′′(x) is

∞∑
0

(−1)n+1a(n)

2n+ 3
x2n where

a(n) = .

(33) A power series expansion for

∫ 1
2x

2 − x+ ln(1 + x)

x3
dx is

∞∑
1

(−1)n−1

a(n)
xn + c where

a(n) = and c is an arbitrary constant.

(34)
x2

(1− 2x)2
=
∞∑
k=2

akx
k where (for each k) ak = . The radius of conver-

gence of the series is R = .

(35) ln

(
1 + x

1− x

)
=

∞∑
k=0

2

ak
x2k+1 where (for each k) ak = . The interval of conver-

gence of the series is (−b, b) where b = .

(36)

∫
x

1 + x5
dx = c+

∞∑
k=0

(−1)k

ak
xak where (for each k) ak = and c is an arbitrary

constant. The radius of convergence of the series is .

(37) A power series expansion of

∫ x

0

ln(1 + t)

t
dt is c+

∞∑
n=1

(−1)n+1

a(n)
xn where a(n) =

and c is an arbitrary constant.

(38) To six decimal places

∫ 1/2

0
arctanx2 dx = 0. 1 3.

(39) To six decimal places

∫ 1/2

0

1

1 + x6
dx = 0. 8 3 .

(40) A power series expansion of

∫
(1− t) ln(1− t)

t
dt is −t +

∞∑
k=2

1

a(k)
tk + c where c is an

arbitrary constant and (for each k) a(k) = .

(41)
∞∑
k=1

k

2k
= .

(42)

∞∑
k=2

k2 − k
2k

= .

(43)
∞∑
k=1

k2

2k
= .

(44) Define f(x) =

∞∑
k=1

xk

k2
. Then

the interval of convergence for f(x) is − 1 , 1 ;

the interval of convergence for f ′(x) is − 1 , 1 ; and

the interval of convergence for f ′′(x) is − 1 , 1 .
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(45) Express
∞∑
k=0

1
2(n+ 1)(n+ 2)xn as an elementary function.

Answer: f(x) = (1− x)p where p = .

(46) The Taylor polynomial of degree 4 for secx is a+bx2 +cx4 where a = , b = ,
and c = .

(47) The Taylor polynomial of degree 4 for f(x) = 2(x−1)3+2(x+1)1/2 is 7x− a
4x

2+ 17
8 x

3− 5
bx

4

where a = and b = .

(48) The Taylor polynomial of degree 5 for f(x) = sin 3x is ax+ b
2x

3 + c
40x

5 where a = ,
b = , and c = .

(49) The Taylor polynomial of degree 3 for f(x) = (x+4)3/2−(x+1)3/2 is 7+ a
2x+ b

16x
2+ c

128x
3

where a = , b = , and c = .

(50) Write x4 + x3 + x2 + 3x + 5 as a polynomial in powers of x + 2. Answer: a + b(x + 2) +
c(x+ 2)2 + d(x+ 2)3 + (x+ 2)4 where a = , b = , c = , and
d = .

(51) Write p(x) = x4 − 2x3 + 4x2 − 7x + 6 as a polynomial in powers of x − 1. Answer:
a+ b(x− 1) + c(x− 1)2 + d(x− 1)3 + (x− 1)4 where a = , b = , c = ,
and d = .

(52) Write p(x) = x4 + 3x3 + 4x2 + 5x + 7 as a polynomial in powers of x + 1. Answer:
a+ b(x+ 1) + c(x+ 1)2 + d(x+ 1)3 + (x+ 1)4 where a = , b = , c = ,
and d = .

(53) Express the polynomial p(x) = x3−x2+3x−5 as a polynomial in powers of x−2. Answer:
a+ b(x− 2) + c(x− 2)2 + (x− 2)3 where a = , b = , and c = .

(54) Approximate cos 1 making use of an appropriate polynomial of degree 4. Express your

answer as a single fraction in lowest terms. Answer:
a

b
where a = and

b = .

(55) Find an approximate value for

∫ 1

0
sinx3 dx by replacing the integrand with an appropriate

polynomial of degree 15. Answer:
a

1920
where a = .

(56) Using the Lagrange form for the remainder, determine the smallest number of non-zero
terms a Taylor polynomial for sinx must have to guarantee an approximation of sin 0.1
which is accurate to within 10−10. Answer: .

(57) Let f(x) =
1

x
ex − 1

x2
ex +

1

x2
for x 6= 0.

(a) If we define f(0) = , then f becomes a continuous function on the whole
real line.

(b) The function f , extended as in (a), has derivatives of all orders at x = 0 and f (n)(0) =
1

a(n)
where a(n) = .

(58) Find an approximate value of

∫ 1

0
cosx2 dx by replacing the integrand with an appropriate

polynomial of degree 8. Answer: 1− 1

a
+

1

b
where a = and b = .
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(59) Find e1/5 with an error of less than 10−5. Express your answer as a sum of fractions in

lowest terms. Answer: 1 +
1

5
+

1

a
+

1

b
+

1

c
where a = , b = , and

c = .

(60) Let f(x) =
1− cos 2x

x2
. Then f (10)(0) = −2p

a
where p = and a = .

(61) Let f(x) = x3 sinx. Then f (8)(0) = .

(62) Let f(x) = x3 cosx. Then f (11)(0) = .

(63) Express
∞∑
1

n

(n+ 1)!
xn+1 as the value at x of an elementary function f .

Answer: f(x) = .

(64) Express
∞∑
0

(n+ 1)xn

(n+ 2)!
as the value at x of an elementary function f .

Answer: f(x) =
g(x)

x2
where g(x) = .

(65) Express

∞∑
0

(−1)n
(2n+ 2)x2n+1

(2n)!
as the value at x of an elementary function f .

Answer: f(x) = a(x) sinx+ b(x) cosx where a(x) = and b(x) = .

(66) The sum of the series

∞∑
1

(−1)n+1 2n+ 1

2nn!
is .

(67) Express

∞∑
0

(−1)n+1(2n+ 2)x2n+1

(2n+ 3)!
as the value at x of an elementary function f .

Answer: f(x) =
g(x)

x2
where g(x) = .

(68) Express

∞∑
0

(−1)n
(2n+ 2)2

(2n+ 1)!
x2n+1 as the value at x of an elementary function f .

Answer: f(x) = a(x) sinx+ b(x) cosx where a(x) = and b(x) = .

(69) Let f(x) =

∞∑
0

k + 1

k!
xk. Then the domain of f is the interval ( , ) and

f(ln 3) = a ln 3 + b where a = and b = .

(70) The sum of the series
∞∑
0

(−1)k+1 (2k + 1)2

(2k)!
is a sin b where a = and b = .

(71) The sum of the series
1

3!
+

2

5!
+

3

7!
+

4

9!
+ . . . is

a

be
where a = and b = .

(72) Let f(x) =
sinx

x
for all x 6= 0. We can extend f to a function continuous on the whole real

line by defining f(0) = 1. Find f (n)(0) for all n ∈ N. Answer: If n is odd, say n = 2k+ 1,

then f (2k+1)(0) = ; and if n is even, say n = 2k, then f (2k)(0) =
(−1)k

ak + b
where

a = and b = .

(73) The sum of the series

∞∑
1

k(k + 1)

k!
3k is aep where a = and p = .
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(74) The sum of the series
∞∑
k=2

k4

k!
is ae+ b where a = and b = .

(75) The sum of the series
π2

422!
− π4

444!
+

π6

466!
− π8

488!
+ · · · is 1− 1

a
where a = .

(76) The coefficient of the term containing x12 in the power series expansion of (1 + x3)3/5

is − a

625
where a = .

(77) The coefficient of the term containing x9 in the power series expansion of (1 − x3)2/3 is

− a

81
where a = .

(78) The sum of the series

∞∑
0

(
1/2

n

)
(−1)n

2n+ 1
is
a

b
where a = and b = . Hint.

Integrate the power series expansion of (1− x2)
1
2 over the interval [0, 1].

(79) The sum of the series

1− 1

22
− 1

2! 24
− 1 · 3

3! 26
− 1 · 3 · 5

4! 28
− 1 · 3 · 5 · 7

5! 210
− . . .

is
1√
a

where a = .

(80) Use power series to solve the differential equation f ′(x) = xf(x) subject to the initial
condition f(0) = 1.
Answer: f(x) = .

(81) Use power series to solve the differential equation f ′(x) = x2f(x) subject to the initial
condition f(0) = 5.
Answer: f(x) = .

(82) Use power series to solve the differential equation f ′′(x) = f(x) subject to the initial
conditions f(0) = 3 and f ′(0) = 1.
Answer: f(x) = 2f(x) + e−x where f(x) = .

(83) Use power series to solve the differential equation y′′ − xy′ = y subject to the initial
conditions y(0) = 1 and y′(0) = 0.
Answer: y(x) = exp(f(x)) where f(x) = .

(84) Use power series to solve the differential equation y′′+ x2y′+ xy = 0 subject to the initial
conditions y(0) = 0 and y′(0) = 1.

Answer: y(x) = x+
∞∑
k=1

(−1)k
a(k)

(3k + 1)!
x3k+1 where a(k) = .

(85) Use series to solve the differential equation (1+x2)y′′+2xy′−2y = 0 subject to the initial
conditions y(0) = 1 and y′(0) = 3.
Answer: y(x) = 1 + 3x+ f(x) where f(x) = .
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21.3. Problems

(1) Find the power series expansion of
1 + 2x

1− x− x2
.

(2) Suppose you have never heard of exponential or logarithmic functions. Define exp, the
exponential function, by

exp(x) :=
∞∑
k=0

1

k!
xk.

On the basis of this definition develop the properties of the exponential function. Include
at least the following:
(a) The series

∑∞
k=0

1
k!x

k converges absolutely for all x in R; so exp(x) is defined for every
real number x.

(b) The exponential function is differentiable and satisfies the differential equation

y′ − y = 0.

(c) The exponential function is positive, increasing, and concave up on R.
(d) If x, y ∈ R, then

exp(x) · exp(y) = exp(x+ y).

(e) If x ∈ R, then (
exp(x)

)−1
= exp(−x).

In this problem you may use without proof the following result: If the series
∑∞

k=0 ak and∑∞
k=0 bk are both absolutely convergent then their product is given by

∞∑
k=0

ak ·
∞∑
k=0

bk =

∞∑
n=0

n∑
k=0

akbn−k.

(3) Let f(x) = sinx. Use an appropriate polynomial of degree 3 to approximate sin(0.3).
Show that the error in this approximation is less than 2.1 · 10−5.

(4) Use an appropriate polynomial to approximate ln 1.5 with an error of less than 10−2.
(Express your answer as the quotient in lowest terms of two natural numbers.) Give a
careful proof that the error in this approximation is less than 10−2.

(5) Find an approximate value for

∫ 1/2

0
ex

2
dx by replacing the integrand with an appropriate

polynomial of degree 4. (Express your answer as the quotient in lowest form of two natural
numbers.) Give a careful argument to show that the error in this approximation is less
than 4 · 10−4.

(6) Use the alternating series test to show that 1− x2

6 < sinx
x < 1 whenever 0 < |x| < 1.

(7) Use the alternating series test to show that
1

2
− x

2

24
<

1− cosx

x2
<

1

2
whenever 0 < |x| < 1.

(8) Prove that the number e is irrational. Hint. Argue by contradiction. Suppose that e is a

rational number; that is, suppose e =
p

q
where p and q are natural numbers. Fix a natural

number n > q and define

α = n!

(
e−

n∑
k=0

1

k!

)
.

Prove that α is a natural number and that α <
1

n
.
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(9) Make use of the relation secx cosx = 1 to find the first four nonzero terms of the Maclaurin
expansion of secx.

(10) Suppose one uses the first two terms of the binomial series to approximate (627)1/4 as
follows:

(627)1/4 = 5

(
1 +

2

625

)1/4

≈ 5

(
1 +

1

4
· 2

625

)
= 5.004.

Show that the error in this approximation is less than 10−5.

(11) Explain in detail how to use power series to solve the differential equation

y′′ + y = sinx

subject to the initial conditions

y′(0) = y(0) = 0.
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21.4. Answers to Odd-Numbered Exercises

(1) e

(3) 3

(5) 4, 2

(7) −∞, ∞
(9) −1, 5

(11) [ , )

(13) ( , )

(15) [ , −2, 2, )

(17) [ , 2, 8, )

(19) 2x− x2

(21) x+ x2, 3

(23) 5

(25) 8

(27) 1, x+ x3

(29) k − 1, 1

(31) k + 1, 1

(33) n(n+ 2)

(35) 2k + 1, 1

(37) n2

(39) 4, 9, 8, 9

(41) 2

(43) 6

(45) −3

(47) 25, 64

(49) 3, −3, 7

(51) 2, −1, 4, 2

(53) 5, 11, 5

(55) 449

(57) (a)
1

2
(b) n+ 2

(59) 50, 750, 15, 000

(61) 336

(63) xex − ex + 1

(65) −x2, 2x

(67) x cosx− sinx

(69) −∞, ∞, 3, 3
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(71) 1, 2

(73) 15, 3

(75)
√

2

(77) 4

(79) 2

(81) 5 exp
(
1
3x

3
)

(83) 1
2x

2

(85) x arctanx
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CHAPTER 22

VECTOR AND METRIC PROPERTIES of Rn

22.1. Background

Topics: Rn, vectors in Rn, addition of vectors, scalars, scalar multiplication, inner product,
Schwarz inequality, perpendicularity (orthogonality), norm of a vector, unit vector, cross prod-
ucts, neighborhood of a point, deleted neighborhood, distance, open set, closed set, scalar fields,
vector fields, standard basis vectors, equations of a line in R3, equation of a plane in R3.

22.1.1. Definition. The set Rn of all n-tuples of real numbers is Euclidean n-dimensional space—
or more briefly, just n-space. We make a standard notational convention. If x belongs to Rn, then
x is the n-tuple whose coordinates are x1, x2, . . . , xn; that is,

x = (x1, x2, . . . , xn) .

It must be confessed that we do not always use this convention. For example, the temptation to
denote a member of R3 by (x, y, z), rather than by (x1, x2, x3), is usually just too strong to resist.

We will often refer to the elements of Rn as vectors and real numbers as scalars. We give Rn
the structure of a vector space by defining operations of addition and scalar multiplication. For
n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn define

x + y := (x1 + y1, x2 + y2, . . . , xn + yn) .

Thus we say that addition in Rn is defined coordinatewise. Scalar multiplication is also defined in
a coordinatewise fashion. That is, if x = (x1, x2, . . . , xn) ∈ Rn and α ∈ R, then we define

αx := (αx1, αx2, . . . , αxn) .

It is convenient to define the distance between two points in Rn in terms of a scalar valued
function defined on pairs of vectors called an inner product. If x = (x1, . . . , xn) and y = (y1, . . . , yn)
are vectors in Rn, then the inner product (or dot product) of x and y, denoted by 〈x,y〉, is
defined by

〈x,y〉 :=

n∑
k=1

xkyk .

(For the fundamental facts about the inner product see problem 1.)
We define the angle between two nonzero vectors x and y by

](x,y) := arccos

(
〈x,y〉
‖x‖ ‖y‖

)
;

and we define two vectors x and y to be perpendicular (or orthogonal) if 〈x,y〉 = 0.
The norm of a vector is defined using the inner product. If x = (x1, . . . , xn) ∈ Rn define

‖x‖ =

(
n∑
k=1

xk
2

)1/2

.

This is the (Euclidean) norm on Rn. The expression ‖x‖ may be read as “the norm of x” or
“the length of x”. A vector in Rn which has norm 1 is a unit vector.

171
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22.1.2. Theorem (Schwarz inequality). If x, y ∈ Rn, then

|〈x,y〉| ≤ ‖x‖ ‖y‖.

The distance between two vectors in Rn is the length of their difference. If x and y are vectors
in Rn define

d(x,y) = ‖x− y‖.
This is the distance between x and y. (Here, as in real arithmetic, x− y means x + (−1)y.)

We generalize the notion of δ-neighborhood (see definition 1.1.2) in R to open balls of radius δ
in Rn. Let a be a vector in Rn and δ > 0. The open ball about a of radius δ is defined by

Bδ(a) := {x ∈ Rn : d(x,a) < δ}.
We will also refer to this set as the

δ-neighborhood of a. The deleted δ-neighborhood of the point a ∈ Rn is the open ball
around a of radius δ from which the point a has been deleted. More generally, we will refer to any
open set containing the point a as a neighborhood of a.

A subset of Rn is open if it is a union of open balls in Rn. A set is closed if its complement
is open.

22.1.3. Definition. If x = (x1, x2, x3) and y = (y1, y2, y3) are vectors in R3, then their cross
product, denoted by x× y, is the vector (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

22.1.4. Notation. Define vectors e1, . . . , en in Rn by

e1 := (1, 0, 0, . . . , 0)

e2 := (0, 1, 0, . . . , 0)

...

en := (0, 0, . . . , 0, 1).

In other words, for 1 ≤ j ≤ n and 1 ≤ k ≤ n, the kth coordinate of the vector ej (denote it by (ej)k
or ejk) is 1 if j = k and 0 if j 6= k. The vectors e1, . . . , en are the standard basis vectors in Rn.
(Note that the superscripts here have nothing to do with powers.) In R3 the three standard basis
vectors are often denoted by i, j, and k rather than e1, e2, and e3, respectively.

Every vector in Rn is a linear combination of the standard basis vectors in that space: that is,
if x = (x1, . . . , xn) ∈ Rn, then

x =
n∑
k=1

xke
k .

22.1.5. Definition. In these exercise/problem sets we restrict our attention to functions F which
map one Euclidean space, say Rn, to another, say Rm. In the first twenty chapters the emphasis has
been on the case where n = m = 1, real valued functions of a real variable. Curves are mappings
f : R → Rm (where m ≥ 2). Thus curves are vector valued functions of a real variable. Much of
the subsequent material in calculus is devoted to the study of scalar fields. These are real valued
(that is, scalar valued) functions of a vector variable; that is, mappings f : Rn → R (where n ≥ 2).
As we will see shortly, scalar fields are also called 0-forms.

Also of importance are vector fields These are mappings of Rn into Rm (where n, m ≥ 2).
Thus a vector field is a vector valued function of a vector variable. Such a mapping F : Rn → Rm
comprises m coordinate functions F = (F 1, F 2, . . . , Fm), where each F k is itself a scalar field. Thus
for each vector x = (x1, x2, . . . , xn) in the domain of F we have

F(x) =
(
F 1(x), F 2(x), . . . , Fm(x)

)
.
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As an example consider the function F which gives rectangular coordinates in terms of spherical
coordinates. Then F : R3 // R3 and

F(ρ, φ, θ) =
(
F 1(ρ, φ, θ), F 2(ρ, φ, θ), F 3(ρ, φ, θ)

)
where

F 1(ρ, φ, θ) = ρ sinφ cos θ,

F 2(ρ, φ, θ) = ρ sinφ sin θ, and

F 3(ρ, φ, θ) = ρ cosφ.

22.1.6. Definition. Let x, y, and z be vectors in the plane. We say that z is a linear combi-
nation of x and y if there exist scalars α and β such that

z = αx + βy.



174 22. VECTOR AND METRIC PROPERTIES OF Rn

22.2. Exercises

(1) Three vertices of a parallelogram are P = (1, 3, 2), Q = (4, 5, 3), and R = (2,−1, 0). What
are the possible locations of the fourth vertex?
Answer: ( -1 , , ), or ( 3 , , ), or ( 5 , , ).

(2) Given the points A = (1,−2) and B = (4,−6), the unit vector in the direction of AB is
ai + bj where a = and b = .

(3) Find a vector parallel to the line 8x+ 6y = 7. Answer: 9i + bj where b = .

(4) Find a vector of length 26 which is parallel to the line 24x− 10y = 13.
Answer: ai + bj where a = and b = .

(5) In R2, x+ y = 4 is the equation of a . In R3, x+ y = 4 is the equation of
a .

(6) In R2, y = 3x2 is the equation of a . In R3, y = 3z2 is the
equation of a .

(7) In R2, x2+y2 = 25 is the equation of a . In R3, x2+y2 = 25
is the equation of a .

(8) The orthogonal projection of the point (2, 3, 5) on the xy-plane is ( , , ); on the
yz-plane is ( , , ); and on the xz-plane is ( , , ).

(9) Let x = (3, 2), y = (2,−1) and z = (7, 1) be vectors in the plane. We know that z is a
linear combination of x and y because z = αx + βy where α = and β = .

(10) Let a = (5, 0, 2) and b = (1,−3,−2). Then

‖a‖ = .

a + b = i + j + k .

a− b = i + j + k .

3a = i + j + k .

3a− 2b = i + j + k .

(11) Let x = (1, 0, 1), y = (0, 1, 1), and z = (1, 2, 3). The only number α such that αx + 2y is
perpendicular to z is α = .

(12) Find all numbers α such that the angle between the vectors 2i + 2j + (α− 2)k and
2i + (α− 2)j + 2k is π

3 . Answer: α = and .

(13) Find all numbers α such that the vectors 2α i−2 j−k and 2αi+3αj−2k are perpendicular.
Answer: α = and .

(14) Find all numbers α such that the vectors 2α i−j+12 k and α i+2α j−k are perpendicular.
Answer: α = and .

(15) The angle in R3 between the vectors (−3, 1, 2) and (1, 2,−3) is aπ where a = .

(16) The angle in R4 between the vectors (1, 0,−1, 3) and (1,
√

3, 3,−3) is aπ where a= .

(17) Let x = (1, 1,−1) and y = (2, 0, 3) . Find a scalar α such that x + αy ⊥ x .
Answer: α = .

(18) In R3 which of the angles of triangle ABC, with vertices A = (1,−2, 0), B = (2, 1,−2),
and C = (6,−1,−3), is a right angle? Answer: the right angle is at vertex .

(19) Suppose that the hydrogen atoms of a methane molecule CH4 are located at (0, 0, 0),
(1, 1, 0), (0, 1, 1), and (1, 0, 1) while the carbon atom is at (12 ,

1
2 ,

1
2). Find the cosine of
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the angle θ between two rays starting at the carbon atom and going to different hydrogen
atoms. Answer: cos θ = .

(20) The length of the vector (1, 2,−1,−3, 1) in R5 is .

(21) The length of the vector (2,−2, 0, 3,−2, 2) in R6 is .

(22) Find the angle θ between the vectors x = (3,−1, 1, 0, 2, 1) and y = (2,−1, 0,
√

2, 2, 1) in R6.
Answer: θ = .

(23) If a, b, c, d, e, f ∈ R, then

|ad+ be+ cf | ≤
√
a2 + b2 + c2

√
d2 + e2 + f2.

The proof of this inequality is obvious since this is just the Schwarz inequality where
x = ( , , ) and y = ( , , ).

(24) If a1, . . . , an > 0, then ( n∑
j=1

aj

)( n∑
k=1

1

ak

)
≥ n2.

The proof of this is obvious from the Schwarz inequality 22.1.2 when we choose

x = and y = .

(25) The volume of the parallelepiped generated by the three vectors i + 2j − k, j + k, and
3i− j + 2k is .

(26) The equations of the line containing the points (3,−1, 4) and (7, 9, 10) are

x− 3

2
=
y − j
b

=
z − k
c

where b = , c = , j = , and k = .

(27) The equations of the line containing the points (5, 2,−1) and (9,−4, 1) are

x− h
a

=
y − 2

−3
=
z − k
c

where a = , c = , h = , and k = .

(28) Find the equations of the line containing the point (1, 0,−1) which is parallel to the line
x− 4

2
=

2y − 3

5
=

3z − 7

6
.

Answer:
x− h
a

=
y − j
b

=
z + 1

4
where a = , b = , h = , and j = .

(29) The equation of the plane containing the points (0,−1, 1), (1, 0, 2), and (3, 0, 1) is x+ by+
cz = d where b = , c = , and d = .

(30) The equation of the plane which passes through the points (0,−1,−1), (5, 0, 1), and
(4,−1, 0) is ax+ by + cz = 1 where a = , b = , and c = .

(31) The angle between the planes 4x + 4z − 16 = 0 and −2x + 2y − 13 = 0 is
a

b
π where

a = and b = .

(32) Suppose that u ∈ R3 is a vector which lies in the first quadrant of the xy-plane and has
length 3 and that v ∈ R3 is a vector that lies along the positive z-axis and has length 5.
Then
(a) ‖u× v‖ = ;
(b) the x-coordinate of u× v is 0 (choose <, >, or =);
(c) the y-coordinate of u× v is 0 (choose <, >, or =); and
(d) the z-coordinate of u× v is 0 (choose <, >, or =).
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(33) Suppose that u and v are vectors in R7 both of length 2
√

2 and that the length of u− v
is also 2

√
2. Then ‖u + v‖ = and the angle between u and v is .
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22.3. Problems

(1) Verify the following properties of the inner product on Rn: If x, y, and z are vectors in
Rn and α is a scalar. Then
(a) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉;
(b) 〈αx,y〉 = α〈x,y〉;
(c) 〈x,y〉 = 〈y,x〉;
(d) 〈x,x〉 ≥ 0;
(e) 〈x,x〉 = 0 only if x = 0; and

(f) ‖x‖ =
√
〈x,x〉.

Items (a) and (b) say that the inner product is linear in its first variable; (c) says it is
symmetric; and (d) and (e) say that it is positive definite. It is virtually obvious that the
inner product on Rn is also linear in its second variable. Thus an inner product may be
characterized as a positive definite, symmetric, bilinear functional on Rn.

(2) Verify the fundamental facts about the norm on Rn: if x and y are vectors in Rn and α
is a scalar, then
(a) ‖x + y‖ ≤ ‖x‖+ ‖y‖;
(b) ‖αx‖ = |α| ‖x‖; and
(c) if ‖x‖ = 0, then x = 0.

(3) Prove that if (a1, a2, . . . ) is a sequence of real numbers such that the series
∞∑
k=1

ak
2 con-

verges, then the series

∞∑
k=1

1

k
ak converges absolutely.

Hint for proof . You may find the following steps helpful in organizing your solution.

(i) The key to this problem is Monotonic Sequence Theorem (MST)—see 18.1.3.

(ii) The hypothesis of the result we are trying to prove is that the series
∞∑
k=1

ak
2 converges.

What, exactly, does this mean?

(iii) For each natural number n let bn =

n∑
k=1

ak
2. Rephrase (ii) in terms of the sequence (bn).

(iv) Is the sequence (bn) increasing?

(v) What, then, does the MST say about the sequence (bn)?

(vi) For each natural number n let cn =

n∑
k=1

1

k2
. What do we know about the se-

quence (cn)? (If in doubt consult the p-test 20.1.2). What does the MST say about
the sequence (cn)?

(vii) The conclusion we are trying to prove is that the series
∞∑
k=1

1

k
ak converges absolutely.

What does this mean?

(viii) For each natural number n let sn =

n∑
k=1

1

k
|ak|. Rephrase (vii) in terms of the se-

quence (sn).
(ix) Explain how for each n we may regard the number sn as the dot product of two

vectors in Rn.
(x) Apply the Schwarz inequality 22.1.2 to the dot product in (ix). Use (v) and (vi) to

establish that the sequence (sn) is bounded above.
(xi) Use the MST one last time—keeping in mind what you said in (viii).
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(4) Explain how to use the Schwarz inequality to show that if a, b, c > 0, then(
1

2
a+

1

3
b+

1

6
c

)2

≤ 1

2
a2 +

1

3
b2 +

1

6
c2.

(5) Show that for all real numbers a, b, and θ

|a cos θ + b sin θ| ≤
√
a2 + b2 .

(6) Explain carefully how to use the Schwarz inequality to prove that

(a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
≥ 16

for all numbers a, b, c, d > 0.

(7) Suppose that a1, . . . , an > 0. Use the Schwarz inequality to show that( n∑
j=1

aj

)( n∑
k=1

1

ak

)
≥ n2.

(8) Show that the parallelogram law holds in Rn. That is, prove that if x, y ∈ Rn, then

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

(9) Prove that if a and b are vectors in R3, then

‖a× b‖2 = ‖a‖2 ‖b‖2 − 〈a,b〉2 .
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22.4. Answers to Odd-Numbered Exercises

(1) −3, −1, 9, 5, 1, 1

(3) −12

(5) line, plane

(7) circle, right circular cylinder

(9)
9

7
,

11

7

(11) −5

2

(13)
1

2
, 1

(15)
3

4

(17) −2, 3

(19) −1

3

(21) 5

(23) a, b, c, d, e, f

(25) 12

(27) 2, 1, 5, −1

(29) −3, 2, 5

(31) 1 (or 2), 3

(33) 2
√

6,
π

3





CHAPTER 23

LIMITS OF SCALAR FIELDS

23.1. Background

Topics: scalar fields, limits of scalar fields.

An important, if rather obvious, theorem says that a scalar field has zero limit at a point in Rn
if and only if its absolute value does.

23.1.1. Theorem. Let f be a scalar field defined in a neighborhood of a point a in Rn but not
necessarily at a. Then

lim
x // a

f(x) = 0 if and only if lim
x // a

|f(x)| = 0 .

The next theorem, also very useful, is sometimes referred to as the sandwich theorem for scalar
fields.

23.1.2. Theorem. Let f , g, and h be scalar fields defined in a deleted neighborhood U of a point
a in Rn. If f(x) ≤ g(x) ≤ h(x) for all x ∈ U , lim

x // a
f(x) = `, and lim

x // a
h(x) = `, then

lim
x // a

g(x) = `.

181
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23.2. Exercises

(1) Let f(x, y) =
x2y

x3 + y3
for all (x, y) 6= (0, 0).

(a) lim
x // 0

f(x, 0) = .

(b) lim
x // 0

f(x, x) = .

(c) Together what do (a) and (b) tell us about lim
(x,y) // (0,0)

f(x, y)?

Answer: .

(2) Let f be the scalar field defined by f(x, y) = x3y3(2x12 + 3y4)−1 for all (x, y) 6= (0, 0).

(a) lim
x // 0

f(x, 0) = .

(b) lim
x // 0

f(x, x3) = .

(c) Together what do (a) and (b) tell us about lim
(x,y) // (0,0)

f(x, y)?

Answer: .

(3) Let f be the scalar field defined by f(x, y) =
sin(x2 + y2)

x2 + y2
. Then f is defined at every

point of R2 except the origin. If we further define f(0, 0) = , then f is continuous
on all of R2.

(4) The limit of e
√
x+3y as (x, y) approaches (4, 4) is .

(5) The limit of
2xy

x2 + y2
as (x, y) approaches (0, 0) is .

(6) The limit of
2x2y

x4 + 3y2
as (x, y) approaches (0, 0) is .

(7) The limit of
x3 + xy2

x2 + y2
as (x, y) approaches (0, 0) is .

(8) The limit of
x2 + y2√

x2 + y2 + 4− 2
as (x, y) approaches (0, 0) is .

(9) The limit of
3xy + (cos y)z2 + xy2z3√

x4 + 4y4 + 7z8
as (x, y, z) approaches (0, 0, 0) is .

(10) The limit of
3xy + 4yz + xz√
x2 + 4y2 + 7z4

as (x, y, z) approaches (0, 0, 0) is .

(11) The limit of
xy + yz + zx

x2 + y2 + z2
as (x, y, z) approaches (0, 0, 0) is .

(12) The limit of
xy + yz + zx√
x2 + y2 + z2

as (x, y, z) approaches (0, 0, 0) is .

(13) The limit of
xyz

(x2 + y2 + z2)1/2
as (x, y, z) approaches (0, 0, 0) is .

Hint. Spherical coordinates.

(14) The limit of
xyz

(x2 + y2 + z2)3/2
as (x, y, z) approaches (0, 0, 0) is .

(15) Let g(t) = et +
√
t, f(x, y) = x − 2y − 8, and h be the composite function g ◦ f . (That

is, h(x, y) = g(f(x, y)) whenever this is defined.) Then the domain of h is the set of all
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points (x, y) in the plane R2 which lie (above/below) the line y = ax + b
where a = and b = .
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23.3. Problems

(1) Prove or disprove: lim
(x,y) // (0,0)

xy√
x2 + y2

exists.

Hint. Use problem 2 of chapter 1.

(2) Prove or disprove: lim
(x,y) // (0,0)

x2y2

x2 + y2
exists.

(3) Prove or disprove: lim
(x,y)→(0,0)

xy

x2 + y2
exists.

(4) Prove or disprove: lim
(x,y) // (0,0)

x2y

x3 + y3
exists.

(5) Prove or disprove: lim
(x,y) // (0,0)

3x2y2

7x6 + 4y3
exists.

(6) Prove or disprove: lim
(x,y) // (0,0)

x2y3

x5 + y5
exists.

(7) Let f(x, y) =
sinxy

x2 + y2
if (x, y) 6= (0, 0) and f(0, 0) = 1. Prove or disprove: f is continuous.

(8) Your friend Fred R. Dimm conjectures that whenever the double limit lim
(x,y) // (a,b)

f(x, y)

exists then the iterated limits lim
x // a

(
lim

y // b
f(x, y)

)
and lim

y // b

(
lim

x // a
f(x, y)

)
exist. Write

a note to him explaining why his conjecture is not correct.
Hint. Consider the function f defined by f(x, y) = y sin 1

x whenever x 6= 0 and
f(0, y) = 0 for all y.

(9) Prove or disprove: lim
(x,y) // (0,0)

x2

x2 + y2
exists.

(10) Prove or disprove: lim
(x,y) // (0,0)

x4 + y4

xy
exists.

(11) Prove or disprove: lim
(x,y) // (0,0)

x4 + y8

x2y2
exists.

(12) Use the Schwarz inequality to show that if a, b ∈ Rn, then

lim
x // a

〈x,b〉 = 〈a,b〉.

(13) Let x = (x1, x2, . . . , xn) ∈ Rn. Prove that lim
x // 0

xjxk
‖x‖

= 0 for j, k = 1, . . . , n with j 6= k.

Show also that lim
x // 0

xk
2

‖x‖
= 0 for k = 1, . . . , n.

(14) Let f be a real valued function defined in a deleted neighborhood of the origin in R2. Prove
or disprove: if f(x, y) approaches 0 as (x, y) approaches the origin along any straight line,
then lim

(x,y) // (0,0)
f(x, y) = 0.

Hint. Consider the function f defined by f(x, y) =
xy3

x2 + y6
.
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23.4. Answers to Odd-Numbered Exercises

(1) (a) 0

(b)
1

2
(c) It does not exist.

(3) 1

(5) not defined

(7) 0

(9) not defined

(11) not defined

(13) 0

(15) below,
1

2
, −4





Part 7

DIFFERENTIATION OF FUNCTIONS OF
SEVERAL VARIABLES





CHAPTER 24

PARTIAL DERIVATIVES

24.1. Background

Topics: partial derivatives, tangent planes.

24.1.1. Definition. If U is an open subset of Rn and f : U → R is a scalar field on U , its kth

partial derivative fk (for 1 ≤ k ≤ n) is defined by

fk(a) = lim
t→0

f(a + t ek)− f(a)

t

for every a ∈ U for which this limit exists.
A vector field F = (F 1, F 2, . . . , Fn) defined on an open subset of Rm may also have partial

derivatives. Let Fk = (F 1
k , F

2
k , . . . , F

n
k ) whenever the partial derivatives of all the coordinate

functions F k exist.

24.1.2. Notation. Among the notations for the kth partial derivative of a scalar field f are fk,
∂f

∂xk
,

and Dkf . When we work in R3 and use coordinates (x, y, z)—instead of (x1, x2, x3)—alternative

notations for f1 are fx,
∂f

∂x
, and Dxf . Similar notations are used for f2 and f3.

If the kth partial derivative fk of f has a jth partial derivative, this second order partial

derivative
(
fk
)
j

is denoted by fkj or Dkjf or
∂2f

∂xj∂xk
. If j = k the last of these becomes

∂2f

∂xk2
.

Higher order partial derivatives are treated in a similar fashion.

For a vector field F the notation F jk is unambiguous since it can be proved, at least for smooth

vector fields (see definition 28.1.6), that
(
F j
)
k

=
(
Fk

)j
for all appropriate indices j and k.

189
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24.2. Exercises

(1) Let φ(x, y) = ex ln y. Then φx(0, e) = and φy(0, e) = .

(2) Let f(x, y, z) = 3xy3 + z2ex and a = (ln 2, 1,−2). Then
∂f

∂x
(a) = ,

∂f

∂y
(a) = , and

∂f

∂z
(a) = .

(3) Let f(x, y) =

∫ x3 sin y

10

dt

1 + cos2( π16 t)
. Then

∂f

∂x
(2, π6 ) = .

(4) Let f(x, y, z) = xy arctan z. Then
∂2f

∂z∂y
(2, 3, 1) = a ln 2 where a = .

(5) Let φ(u, v) =
u

u+ v
. Then φu(1, 2) = and φv(1, 2) = .

(6) Let ψ(x, y) = e−x sin(x+ 2y). Then
∂ψ

∂x
(0, π4 ) = and

∂ψ

∂y
(0, π4 ) = .

(7) Let g(x, y) = e1−6x sin(4x + 2y). Then
∂g

∂x
(0, π6 ) = (a − b

√
b)e where a = and

b = .

(8) Let f(x, y, z) = arctan(xyz). Then
∂2f

∂x∂z
(1, 2,−1) = −a

b
where a= and b= .

(9) Let f(u, v, w) = ln(u2 + 2uv) + sin3(u+ w). Then
∂f

∂u
(1, 72 ,

π
3 − 1) =

a

4
where a = .

(10) Let z = xce−y/x. If the constant c = , then z satisfies the partial differential
equation

∂z

∂x
= y

∂2z

∂y2
+
∂z

∂y
.

(11) Let φ(w, x, y, z) = wxy + x2 tan z and a = (1,−2, 3, π4 ). Then φw(a) = ,
φx(a) = , φy(a) = , and φz(a) = .

(12) Let f(x, y) =

∫ ex
2+5x sin y

−7

dt

8 + cos4(2πt)
. Then

∂f

∂x
(0, π6 ) =

5

a
where a = .

(13) Let f(x, y) =

∫ √xy2
3

2t

8 + t2 + t4
dt. Then

∂f

∂x
(4,
√

2) =
1

a
where a = and

∂f

∂y
(4,
√

2) =
b
√

2

35
where b = .

(14) Let f(x, y, z) = xy
z
. Then

∂f

∂x
= yzxk(y,z) where k(y, z) = ,

∂f

∂y
= xy

z
g(x, y, z) where g(x, y, z) = , and

∂f

∂z
= xy

z
yzh(x, y) where h(x, y) = .

(15) Let f(x, y, z) =

∫ z3 tan y

x2 sin y

dt

1 + t2 + t4
. Then

∂f

∂y
(−1, π4 , 1) =

a

b
− a

c

√
a where a = ,

b = , and c = .

(16) Let f(x, y) = xy(x2 − y2)(x2 + y2)−1 if (x, y) 6= (0, 0) and f(0, 0) = 0. Then

fxy(0, 0) = and fyx(0, 0) = .
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(17) Let f(x, y) = 5xe2y + 2x2(y + 3) sin 1
x cos y for x 6= 0 and f(0, y) = 0. Then

∂f

∂x
(0, 0) = .

(18) Let g(x, y) =

∫ x3y2

1

1

1 +
√
t+ t2

dt. Then
∂g

∂x
(1, 2) =

a

19
where a = .
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24.3. Problems

(1) Show that u =
x2y2

x+ y
satisfies the partial differential equation

xux + y uy = 3u.

(2) Show that for any constants a, b, and c the function u = ax4 + 2bx2y2 + cy4 is a solution
to the partial differential equation

x
∂u

∂x
+ y

∂u

∂y
= 4u.

(3) Show that u = x2y + y2z + z2x is a solution to the partial differential equation

ux + uy + uz = (x+ y + z)2.
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24.4. Answers to Odd-Numbered Exercises

(1) 1,
1

e

(3) 4

(5)
2

9
, −1

9

(7) 2, 3

(9) 9

(11) −6, −1, −2, 8

(13) 70, 4

(15) 2, 3, 7

(17) 5





CHAPTER 25

GRADIENTS OF SCALAR FIELDS AND TANGENT PLANES

25.1. Background

Topics: gradient, tangent plane, directional derivative, path of steepest descent

For the following definition and theorem suppose that f is a real valued function whose domain
is an open subset V of Rn. Suppose also that a is a vector in the domain of f and that u is a unit
vector in Rn.

25.1.1. Definition. The directional derivative of f at a in the direction u, denoted by
Duf(a), is defined to be

lim
λ // 0

f(a + λu)− f(a)

λ
if this limit exists.

25.1.2. Theorem. If f is differentiable at a, then the directional derivative Duf(a) exists and

Duf(a) = 〈∇f(a),u〉.

195
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25.2. Exercises

(1) Find a function (if one exists) whose gradient is(
y2

x
+ 2xy3 − 1

1 + x2
, 2y lnx+ 3x2y2 − sin y

)
.

Answer: .

(2) Find a function (if one exists) whose gradient is(
4x3y − 1

1 + x2
+ ey

)
i + (x4 + xey + x) j.

Answer: .

(3) Find a function (if one exists) whose gradient is

(y3 + 2xy + 3x2 + 2xy2) i + (4y3 + x2 + 2x2y + 3xy2) j.

Answer: .

(4) Find a function (if one exists) whose gradient is(
x2 arcsin y,

x3

3
√

1− y2
− ln y

)
.

Answer: .

(5) Find a function (if one exists) whose gradient is(
lnx+ 2xyey +

x√
1− x2

+ 1 , x2ey +
1√

1− y2
+ x2yey

)
.

Answer: .

(6) Find a function (if one exists) whose gradient is(
arctan y√

1− x2
+
x

y
,

arcsinx

1 + y2
− x2

2y2
+ 1

)
.

Answer: .

(7) Find a function (if one exists) whose gradient is

(2xy + z2) i + (x2 + ey + 2yz3) j + (2xz + π cosπz + 3y2z2) k.

Answer: .

(8) At what angle θ do the sphere x2 + y2 + z2 = 8 and the plane y = 2 intersect?

Answer: θ = .

(9) The equation of the tangent plane to the surface x3 + y3 = 3xyz at the point (1, 2, 32) is
ax+ by + 4z = 0 where a = and b = .

(10) Let f(x, y) = x2 − y2 − 2x+ 3y − 4 and p = (2, 1). The equation of the tangent plane to
the surface z = f(x, y) at p is z = ax+by+c where a = , b = , and c = .
The value of ∆fp at (x, y) is x2+ay2+bx+cy+d where a = , b = , c = ,
and d = . The equation of the tangent plane to the surface z = ∆fp(x, y) at (0, 0)
is z = ax+ by + c where a = , b = , and c = .
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(11) Let f(x, y) = x2 +2y2−4x−4y+6 and p = (1,−1). The equation of the tangent plane to
the surface z = f(x, y) at p is z = ax+by+c where a = , b = , and c = .
The value of ∆fp at (x, y) is x2+ay2+bx+cy+d where a = , b = , c = ,
and d = . The equation of the tangent plane to the surface z = ∆fp(x, y) at (0, 0)
is z = ax+ by + c where a = , b = , and c = .

(12) The equation of the tangent plane to the surface x3 + y3 + z3 = 8 at the point (1, 2,−1)
is x+ ay + z = b where a = and b = .

(13) The sum of the intercepts of a plane tangent to the surface
√
x +
√
y +
√
z =

√
a is

.

(14) The sum of the squares of the intercepts of a plane tangent to the surface x2/3+y2/3+z2/3 =

a2/3 is .

(15) The equation of the tangent plane to the surface x4 + y4 + z4 = 18 at the point (1,−2, 1)
is ax+ by + cz = 18 where a = , b = , and c = .

(16) The equation of the tangent plane to the surface x3z+xyz+y2z2 = 1 at the point (1, 2,−1)
is 5x+ ay + bz = c where a = , b = , and c = .

(17) The equation of the tangent plane to the surface yexy + z2 = 0 at the point (0,−1, 1) is
ax+ by + cz = 1 where a = , b = , and c = .

(18) The equation of the tangent plane to the cylinder xz = 4 at the point (1, 0, 4) is ax+ by+
cz = 8 where a = , b = , and c = .

(19) The equation of the tangent plane to the ellipsoid 2x2+y2+z2 = 12 at the point (1,−3, 1)
is ax+ by + cz = 12 where a = , b = , and c = .

(20) The equation of the tangent plane to the surface z = x2y − xy3 + 7 at the point (1, 2, 1)
is ax+ by + cz = 27 where a = , b = , and c = .

(21) Let f(x, y, z) = x2y − y2z. The directional derivative of f at the point (2, 1, 1) in the

direction of the curve r(t) = (2 cos(t− 1), t, exp(t4 − t)) is − 1√
a

where a = .

(22) Let f(x, y, z) = xy + 2xz − y2 + z2 and P = (1,−2, 1).
(a) The directional derivative of f at P in the direction of the curve r(t) = (t, t− 3, t2) is

a√
6

where a = .

(b) A vector pointing in the direction of the greatest increase of f at P is i+ j+4 k.

(c) A vector normal to the surface f(x, y, z) = −3 at P is i + j + 4 k.

(23) Let f(x, y) =
x2

16
+
y2

9
and P = (−2, 32

√
3).

(a) A vector pointing in the direction of greatest increase of f at P is i + 4j.

(b) A vector normal to the level curve f(x, y) = 1 at the point P is i + 4j.

(c) A vector tangent to the level curve f(x, y) = 1 at the point P is 4i + j.

(24) Let f(x, y, z) = xy+ yz + xz. The directional derivative of f at (1,−1, 1) in the direction

of i + 2j + k is
a

3

√
6 where a = .

(25) Let f(x, y, z) = xy+ yz + xz. The directional derivative of f at (3, 4,−1) in the direction

of i + 2j + k is
a

3

√
6 where a = .

(26) Let f(x, y) = x2y. Then the directional derivative of f at a = (2, 4) in the direction of the

curve r(t) = (t3 + 1) i + (t2 + 2t+ 1) j is
a

5
where a = .
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(27) The directional derivative of φ(x, y) = x2 ln y at the point (2, 4) in the direction of the

curve r(t) = (t3 + 1, 2t+ 2) is
1√
a

(b+ 24 ln b) where a = and b = .

(28) Find the derivatives of v = xy2 sin z at the point (1, 1, π/6) in the (two) directions of the
line x = y, z = 0.

Answer: and .

(29) If f(x, y, z) = xy + y2z and r(t) = (12 t
2, t− 4, 12e

t2−4), then (f ◦ r)′(2) = .

(30) The directional derivative of the function f : (x, y, z) 7→ x exp(y2 − z2) at (1, 2,−2) in the

direction of the curve r : t 7→ (t, 2 cos(t− 1),−2 exp(t− 1)) is
a√
5

where a = .
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25.3. Problems

(1) Let φ(x, y) = 2x2 + 6y2 and a = (2,−1). Find the steepest downhill path on the surface
z = φ(x, y) starting at the point a and ending at the minimum point on the surface.

Hints.
(a) It is enough to find the equation of the projection of the curve onto the xy-plane;

every curve t 7→ (x(t), y(t)) in the xy-plane is the projection along the z-axis of a
unique curve t 7→

(
x(t), y(t), φ(x(t), y(t))

)
on the surface z = φ(x, y).

(b) If c : t 7→ (x(t), y(t)) is the desired curve and we set c(0) = a, then the unit vector
u which minimizes the directional derivative Du(b) at a point b in R2 is the one
obtained by choosing u to point in the direction of −∇φ(b). Thus in order for the
curve to point in the direction of the most rapid decrease of φ at each point c(t), the
tangent vector to the curve at c(t) must be some positive multiple p(t) of −∇φ(c(t)).
The function p will govern the speed of descent; since this is irrelevant in the present
problem, set p(t) = 1 for all t.

(c) Recall that on an interval the only nonzero solution to an equation of the formDx(t) =
kx(t) has the form x(t) = x(0) ekt.

(d) The parameter t which we have introduced is artificial. Eliminate it to obtain an
equation of the form y = f(x).

(2) This, like the preceding problem, is a steepest descent problem. However, we now suppose
(probably contrary to fact) that for some reason we are unable to solve explicitly the
resulting differential equations. Instead we invoke an approximation technique. Let

φ(x) = 13x1
2 − 42x1 + 13x2

2 + 6x2 + 10x1x2 + 9

for all x in R2. The goal is to approximate the path of steepest descent. Start at an
arbitrary point x0 in R2 and choose a number h > 0. At x0 compute the gradient of φ,
take u0 to be the unit vector pointing in the direction of −∇φ(x0), and then move h units
in the direction of u0 arriving at a point x1. Repeat the procedure: find the unit vector u1

in the direction of −∇φ(x1), then from x1 move h units along u1 to a point x2. Continue
in this fashion. In other words, x0 ∈ R2 and h > 0 are arbitrary, and for n ≥ 0

xn+1 = xn + hun

where un = −‖∇φ(xn)‖−1∇φ(xn) .
(a) Start at the origin x0 = (0, 0) and choose h = 1. Compute 25 or 30 values of xn.

Explain geometrically what is happening here. Why is h “too large”? Hint. Don’t
attempt to do this by hand. Write a program for a computer or a programmable
calculator. In writing your program don’t ignore the possibility that ∇φ(xn) may be
zero for some n. Also don’t forget when you write up your report that the reader
probably has no idea how to read the language in which you write your program. It
must be well enough documented so that the reader can easily understand what you
are doing at each step.

(b) Describe what happens when h is “too small”. Again start at the origin, take h =
0.001 and compute 25 or 30 values of xn.

(c) By altering the values of h at appropriate times, find a succession of points x0, . . . ,xn

(starting with x0 = (0, 0) ) such that the distance between xn and the point where φ
assumes its minimum value is less than 0.001. (By examining the points x0, . . . ,xn

you should be able to guess, for this particular function, the exact location of the
minimum.)

(d) Alter the program in part (a) to eliminate division by ‖∇φ(xn)‖. (That is, let
xn+1 = xn−h∇φ(xn).) Explain what happens in this case when h is “too large” (say
h = 1). Explain why the altered program works better (provided that h is chosen
appropriately) than the program in (a) for the present function φ.
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(3) Let P (x, y) = 3x2 arctan y+ yexy + y2 and Q(x, y) =
x3

1 + y2
+ xexy + x2y. Explain clearly

how you know that the vector field F(x, y) = P (x, y) i + Q(x, y) j is not the gradient of
any scalar field φ defined on R2.

(4) Use the definition of directional derivative to find Duf(a) when f(x, y) = ln
√
xy, u =

( 1√
2
, 1√

2
), and a = (2, 3).

(5) Use the definition of directional derivative to find Duf(a) when f(x, y) = ln
√
x2 + y2,

u =
(
3
5 ,

4
5

)
, and a = (1, 1).

(6) Let f(x, y) = exp(x + y), u be the unit vector in the direction of (1, 1), and a = (5,−3).
Use the definition of directional derivative to find Duf(a).

(7) Let f(x, y, z) = xy + cos z, u be the unit vector in the direction of (4,−2, 2) and a =
(1, 1,−π

3 ). Use the definition of directional derivative to find Duf(a).

(8) Use the definition of directional derivative to find Duf(a) when f(x, y) = ln(x + y2)5,
u = (35 ,

4
5), and a = (2, 1).

(9) A force field F : R3 //R3 is conservative if there exists a scalar field V : R3 //R such
that F = −∇V ; such a scalar field is a potential function for F. Let the position of a
particle P at time t be denoted by r(t). Suppose that P is acted upon by a conservative
force field F. Assume Newton’s second law :

F ◦ r = ma

where a is the acceleration of P and m is its mass. The kinetic energy of P is defined
by

KE :=
1

2
m‖v‖2

where v is the velocity of P ; its potential energy is defined by

PE := V ◦ r

where V is a potential function for F. The total energy of P is the sum of its kinetic
and potential energies. Prove for this situation the law of conservation of energy ; that is,
show that the total energy of P is constant.

(10) Suppose that the temperature φ at a point (x, y) on a flat surface is given by the formula
φ(x, y) = x2 − y2. A heat-seeking bug is placed at a point (a, b) on the surface. What
path should the bug follow to get warm as quickly as possible?

(11) Let P (x, y) = 3x2 arctan y+ yexy + y2 and Q(x, y) =
x3

1 + y2
+ xexy + x2y. Explain clearly

how you know that the vector field F(x, y) = P (x, y) i + Q(x, y) j is not the gradient of
any scalar field φ defined on R2.

(12) Determine in non-parametric form the path of steepest descent (projected onto the xy–
plane) along the surface z = 9x2 + 3y2 starting from the point (2, 2).
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25.4. Answers to Odd-Numbered Exercises

(1) y2 lnx+ x2y3 − arctanx+ cos y

(3) xy3 + x2y + x3 + x2y2 + y4

(5) x2yey + arcsin y + x lnx−
√

1− x2

(7) x2y + ey + xz2 + sinπz + y2z3

(9) 4, −5

(11) −2, −8, 3, 2, −2, −8, 0, −2, −8, 0

(13) a

(15) 1, −8, 1

(17) 1, 1, 2

(19) 2, −3, 1

(21) 10

(23) (a) −
√

3
(b) −

√
3

(c)
√

3

(25) 7

(27) 13, 2

(29) 4





CHAPTER 26

MATRICES AND DETERMINANTS

26.1. Background

Topics: matrix, transpose, symmetric, determinant, minor, cofactor.

The Arithmetic of Matrices. Let m and n be natural numbers. An m×n (read “m by n”)
matrix is a rectangular array of numbers with m rows and n columns. If A is a matrix, the entry
in the ith row and jth column is denoted by Aij . (Occasionally we use the notation Aij instead.)

The matrix A itself may be denoted by
[
Aij
]m
i=1

n

j=1
, by [Aij ], or by a rectangular array

A1
1 A1

2 . . . A1
n

A2
1 A2

2 . . . A2
n

...
...

. . .
...

Am1 Am2 . . . Amn

 .

In light of this notation it is reasonable to refer to the index i in the expression Aij as the row

index and to call j the column index. When we speak of the “value of a matrix A at (i, j),” we
mean the entry in the ith row and jth column of A. Thus, for example,

A =


1 4

3 −2

7 0

5 −1


is a 4× 2 matrix and A3

1 = 7.
Two matrices of the same size can be added. Addition of matrices is done pointwise. The sum

A+B of two m× n matrices is the m× n matrix whose value at (i, j) is Aij +Bi
j , That is,

(A+B)ij = Aij +Bi
j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. So, for example,1 2 7

3 0 −4

+

1 3 −1

2 4 −1

 =

1 + 1 2 + 3 7 + (−1)

3 + 2 0 + 4 (−4) + (−1)

 =

2 5 6

5 4 −5

 .
Scalar multiplication is also defined pointwise. If A is an m× n matrix and α ∈ R, then αA is

the m× n matrix whose value at (i, j) is αAij . That is,

(αA)ij = αAij

203
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for 1 ≤ i ≤ m and 1 ≤ j ≤ n. For example,

(−3) ·

 1 3 −2

−1 4 −5

 =

−3 −9 6

3 −12 15

 .
We may also subtract two matrices of the same size. By −B we mean (−1)B, and by A − B

we mean A+ (−B). So, 
6 4

5 −2

3 7

−


4 −1

3 −1

−4 2

 =


2 5

2 −1

7 5

 .
If A is an m× n matrix and B is an n× p matrix, the product of A and B is the m× p matrix

whose value at (i, j) is
∑n

k=1A
i
kB

k
j . That is,

(AB)ij =

n∑
k=1

AikB
k
j

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. Notice that in order for the product AB to be defined the number
of columns of A must be the same as the number of rows of B. Here is a slightly different way of
thinking of the product of A and B. Define (as usual) the inner product (or dot product) of
two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) to be

∑n
k=1 xkyk. Regard the rows of the matrix

A as n-tuples (read from left to right) and the columns of B as n-tuples (read from top to bottom).
Then the entry in the ith row and jth column of the product AB is the dot product of the ith row
of A and the jth column of B.

26.1.1. Example. Let A be the 3×4 matrix


1 2 0 1

1 3 −4 5

0 1 8 2

 and B be the 4×2 matrix


2 3

−4 7

1 −1

5 6

.

Then the product AB is the 3× 2 matrix


−1 23

11 58

14 11

.

Matrix multiplication is not commutative. If A is a 2× 3 matrix and B is a 3× 4 matrix, then
AB is defined but BA is not.

Even in situations where both products AB and BA are defined, they need not be equal. For

example, if A =

1 2

1 0

 and B =

−1 1

2 3

, then AB =

 3 7

−1 1

 whereas BA =

0 −2

5 4

.

We now define the action of a matrix on a vector. If A is an m× n matrix and x ∈ Rn, then
Ax, the result of A acting on x, is defined to be the vector in Rm whose jth coordinate is∑n

k=1A
j
kxk (this is just the dot product of the jth row of A with x). That is,

(Ax)j :=
n∑
k=1

Ajkxk
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for 1 ≤ j ≤ m. Here is another way of saying the same thing: Regard x as an n× 1 matrix
x1

x2
...

xn


(sometimes called a column vector). Now multiply the m× n matrix A by the n× 1 matrix x.
The result will be an m× 1 matrix (another column vector), say

y1

y2
...

ym

 .

Then Ax is the m-tuple (y1, . . . , ym). Thus an m × n matrix A may be thought of as a mapping
from Rn into Rm.

26.1.2. Example. Let A =


3 0 −1 −4

2 1 −1 −2

1 −3 0 2

 and x = (2, 1,−1, 1). Then

Ax =


3 0 −1 −4

2 1 −1 −2

1 −3 0 2




2

1

−1

1

 =


3

4

1

 = (3, 4, 1).

One matrix for which we have a special name is In, the n× n identity matrix. It has 1’s on
the main diagonal (from upper left to lower right) and 0’s everywhere else. Thus, for example,

I3 =


1 0 0

0 1 0

0 0 1

 .
Notice that it acts as the identity function on any vector (that is, Inx = x for every x ∈ Rn) and
that InA = AIn = A for every n× n matrix A. (When it will cause no confusion, we often write I
for In.)

26.1.3. Definition. Let A be an m×n matrix. The transpose of A, denoted by At, is the n×m
matrix obtained by interchanging the rows and columns of A. That is, if B = At, then Bi

j = Aji

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. For example, if A =


2 3

4 −5

6 11

, then At =

2 4 6

3 −5 11

.

A square matrix A is symmetric if At = A.
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Some Facts about Determinants. Determinants are a useful tool for dealing with matrices
(and the linear transformations they represent).
Fact 1. Let n ∈ N and Mn×n be the collection of all n×n matrices. There is exactly one function

det : Mn×n // R : A 7→ detA

which satisfies

(a) det In = 1.
(b) If A ∈Mn×n and A′ is the matrix obtained by interchanging two rows of A, then detA′ =
−detA.

(c) If A ∈ Mn×n, c ∈ R, and A′ is the matrix obtained by multiplying each element in one
row of A by the number c, then detA′ = cdetA.

(d) If A ∈Mn×n, c ∈ R, and A′ is the matrix obtained from A by multiplying one row of A
by c and adding it to another row of A (that is, choose i and j between 1 and n with i 6= j

and replace Ajk by Ajk + cAik for 1 ≤ k ≤ n), then detA′ = detA.

26.1.4. Definition. The unique function det : Mn×n // R described above is the n × n deter-
minant function.

Fact 2. If A ∈ R ( = M1×1), then detA = A; if A ∈M2×2, then detA = A1
1A

2
2 −A1

2A
2
1.

Fact 3. If A,B ∈Mn×n, then det(AB) = (detA)(detB).

Fact 4. If A ∈ Mn×n, then detAt = detA. (An obvious corollary of this: in conditions (b), (c),
and (d) of fact 1 the word “columns” may be substituted for the word “rows”.)

26.1.5. Definition. Let A be an n× n matrix. The minor of the element Ajk, denoted by M j
k , is

the determinant of the (n− 1)× (n− 1) matrix which results from the deletion of the jth row and

kth column of A. The cofactor of the element Ajk, denoted by Cjk is defined by

Cjk := (−1)j+kM j
k .

Fact 5. If A ∈Mn×n and 1 ≤ j ≤ n, then

detA =
n∑
k=1

AjkC
j
k.

This is the (Laplace) expansion of the determinant along the jth row.

In light of fact 4, it is clear that expansion along columns works as well as expansion along
rows. That is,

detA =
n∑
j=1

AjkC
j
k

for any k between 1 and n. This is the (Laplace) expansion of the determinant along the kth

column.
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26.2. Exercises

(1) Let A =

 4 2 0 −1

−1 −3 1 5

 and B =

1 −5 3 −1

3 0 1 −1

 . Then

A+B =


, 3A =


, and

A− 2B =


.

(2) Let A =


4 3 1 2

0 −1 −1 1

2 0 1 3

 and B =


2 −1

0 1

1 0

−3 2

 . Then

AB =




and BA =




.

(3) Let A =


2 0

1 −3

5 1

 and x = i− 2 j. Then Ax = i + j + k.

(4) Let A =

1
2

1
2

1
2

1
2

, B =

1 0

0 −1

, and C = AB. Evaluate the following.

(a) A37 =



 (b) B63 =





(c) B138 =



 (d) C42 =




Note: If M is a matrix Mp is the product of p copies of M .
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(5) Let A =

1 1/3

c d

. Find numbers c and d such that A2 = 0.

Answer: c = and d = .

(6) Let A =


1 0 −1 2

0 3 1 −1

2 4 0 3

−3 1 −1 2

, B =


1 2

3 −1

0 −2

4 1

, and C =

3 −2 0 5

1 0 −3 4

.

(a) Does the matrix D = ABC exist? If so, then d34 = .
(b) Does the matrix E = BAC exist? If so, then e22 = .
(c) Does the matrix F = BCA exist? If so, then f43 = .
(d) Does the matrix G = ACB exist? If so, then g31 = .
(e) Does the matrix H = CAB exist? If so, then h21 = .
(f) Does the matrix J = CBA exist? If so, then j13 = .

(7) Let A =


1 0 −1 2

0 3 1 −1

2 4 0 3

−3 1 −1 2

, B =


1 2

3 −1

0 −2

4 1

, C =

3 −2 0 5

1 0 −3 4

, and

M = 3A3 − 5(BC)2. Then M14 = and M41 = .

(8) Evaluate each of the following determinants.

(a) det


6 9 39 49

5 7 32 37

3 4 4 4

1 1 1 1

 = .

(b) det


1 0 1 1

1 −1 2 0

2 −1 3 1

4 17 0 −5

 = .

(c) det


13 3 −8 6

0 0 −4 0

1 0 7 −2

3 0 2 0

 = .

(9) Find the determinants of the following matrices.

A =


−73 78 24

92 66 25

−80 37 10

 and B =


−73 78 24

92 66 25

−80 37 10.01

 .
Hint. Use a calculator. Answer: detA = and detB = .
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(10) Find the determinant of the following matrix.
283 5 π 347.86× 1015

83

3136 56 5 cos(2.7402)

6776 121 11 5

2464 44 4 2

 .
Hint. Do not use a calculator. Answer: .

(11) Find the determinant of the matrix


4 5 16 30

4 8 29 55

4 5 18 48

4 5 16 36

. Answer: .

(12) det


1 t t2 t3

t 1 t t2

t2 t 1 t

t3 t2 t 1

 = (1− a(t))p where a(t) = and p = .

(13) Find the determinant of the following matrix.
3 3 3.95× 1043

119
P 53

3 5 5 4.73× 273681

3 5 6 6

3 5 6 9


where P is the smallest prime number greater than 1010

10
. Answer: .

(14) Solve the following equation for x:

det



3 4
√

2 3 −6 8

2 −6 4 −1 9 17

17 x π 11 −15 4

2 0 37 −4 0 −7

−4 8 −6 8 −12 6

6 −2 2 −1 3 1


= 0.

Answer: x = .
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26.3. Problems

(1) Show that the matrix A =


1 3 −1

0 2 1

1 −2 1

 satisfies the equation

A3 − 4A2 + 8A− 9I3 = 0.

(2) Let A =


0 a a2 a3

0 0 a a2

0 0 0 a

0 0 0 0

 and B =

∞∑
k=1

(−1)k+1

k
Ak.

(a) Explain why, for this matrix A, there are no convergence difficulties in the definition
of B. Express B as a single matrix.

(b) Compute
∞∑
k=1

1

k!
Bk.

(3) (a) Give an example of two symmetric matrices whose product is not symmetric. Hint.
Matrices containing only 0’s and 1’s will suffice.

(b) Now suppose that A and B are symmetric n×n matrices. Prove that AB is symmetric
if and only if A commutes with B.

Hint. To prove that A statement P holds if and only if a statement Q holds you must
first show that P implies Q and then show that Q implies P. In the current problem, there
are 4 conditions to be considered:
(i) At = A (A is symmetric),

(ii) Bt = B (B is symmetric),

(iii) (AB)t = AB (AB is symmetric), and

(iv) AB = BA (A commutes with B).

One important additional fact about transposes will be helpful here. If C and D are any
two matrices whose product is defined, then

(v) (CD)t = DtCt.

The first task is to derive (iv) from (i), (ii), (iii), and (v). Then try to derive (iii) from (i),
(ii), (iv), and (v).

(4) Let M be the matrix


3 3 3 3

3 5 5 5

3 5 6 6

3 5 6 9

.

(a) Explain how to express the determinant of M as a constant times the determinant of
a single 3× 3 matrix. (What is the constant and what is the resulting matrix?)
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(b) Explain how to express the determinant of the 3 × 3 matrix you found in (a) as a
constant times the determinant of a single 2 × 2 matrix. (What is the constant and
what is the resulting matrix?)

(c) Explain how to use (a) and (b) to find the determinant of M . (What is detM?)



212 26. MATRICES AND DETERMINANTS

(5) Let A and B be n× n-matrices. Your good friend Fred R. Dimm believes that

det

A B

B A

 = det(A+B) det(A−B).

He offers the following argument to support this claim:

det

A B

B A

 = det(A2 −B2)

= det[(A+B)(A−B)]

= det(A+B) det(A−B) .

(a) Comment (helpfully) on his “proof”. In particular, explain carefully why each of
the three steps in his “proof” is correct or incorrect. (That is, provide a proof or a
counterexample to each step.)

(b) Is the result he is trying to prove actually true?

Hint: Consider the product

I B

0 A−B

A+B 0

0 I

.
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26.4. Answers to Odd-Numbered Exercises

(1) A+B =

5 −3 3 −2

2 −3 2 4

, 3A =

12 6 0 −3

−3 −9 3 15

, A− 2B =

 2 12 −6 1

−7 −3 −1 7

.

(3) 2, 7, 3

(5) −3, −1

(7) −2060, −1562

(9) 1, −118.94

(11) 144

(13) 18





CHAPTER 27

LINEAR MAPS

27.1. Background

Topics: vector spaces, linear maps (transformations),

27.1.1. Definition. Let V be a set. Suppose there is an operation (called addition) which
associates with each pair x and y of elements of V an element x + y of V . And suppose there is a
second operation (called scalar multiplication) which associates with each real number α and
each member x of V an element α · x (or just αx) in V . Then V is said to be a vector space if
the following conditions are satisfied:

(I) Addition is associative. That is,

x + (y + z) = (x + y) + z for all x,y, z ∈ V .

(II) In V there is an element 0 (called the zero vector) such that

x + 0 = x for all x ∈ V .

(III) For each x in V there is a corresponding element −x (the additive inverse of x) such
that

x + (−x) = 0.

(IV) Addition is commutative. That is,

x + y = y + x for all x,y ∈ V .

(V) If α ∈ R and x,y ∈ V , then

α(x + y) = (αx) + (αy).

(VI) If α, β ∈ R and x ∈ V , then

(α+ β)x = (αx) + (βx).

(VII) If α, β ∈ R and x ∈ V , then

α(βx) = (αβ)x.

(VIII) If x ∈ V , then

1 · x = x.

An element of V is a vector; an element of R is, in this context, often called a scalar. Concern-
ing the order of performing operations, we agree that scalar multiplication takes precedence over
addition. Thus, for example, condition (V) above may be unambiguously written as

α(x + y) = αx + αy.

(Notice that the parentheses on the left may not be omitted.) If x and y are vectors, we define
x− y to be x + (−y).

215
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27.1.2. Definition. A function T : V //W between vector spaces is linear if

T (x + y) = T (x) + T (y)

for all x, y ∈ V and
T (αx) = αT (x)

for all x ∈ V and α ∈ R. A linear function is often called a linear transformation, a linear
map, or a linear operator. There are two notational oddities associated with linear maps:

(i) The value of a linear map T at a vector x in V , is usually written Tx rather than T (x).
Of course, sometimes parentheses are necessary for clarity as in the expression T (x + y).

(ii) The composite of two linear maps S : U //V and T : V //W is usually written TS rather
than T ◦ S.

27.1.3. Definition. If T : Rn //Rm is a linear map, we define [T ] to be the m× n matrix whose
entry in the jth row and kth column is (Tek)j , the jth component of the vector Tek in Rm. That

is, [T ]jk = (Tek)j . The matrix [T ] is the matrix representation of T

27.1.4. Example. Let T : R4 //R3 : (w, x, y, z) 7→ (w+2x+3y, 5w+6x+7y+8z,−2x−3y−4z).
Then T is linear and

Te1 = T (1, 0, 0, 0) = (1, 5, 0)

Te2 = T (0, 1, 0, 0) = (2, 6,−2)

Te3 = T (0, 0, 1, 0) = (3, 7,−3)

Te4 = T (0, 0, 0, 1) = (0, 8,−4).

Having computed Te1, . . . , Te4, we use these as the successive columns of [T ]. Thus

T =


1 2 3 0

5 6 7 8

0 −2 −3 −4

 .
27.1.5. Example. If I : Rn //Rn is the identity map on Rn, then its matrix representation [I] is
just the n× n identity matrix In.

27.1.6. Theorem. Let T , U : Rn // Rm be linear maps and α ∈ R. Then

(a) [T + U ] = [T ] + [U ], and
(b) [αT ] = α[T ].

If, in addition, S : Rp // Rn, then [TS] = [T ][S].

27.1.7. Definition. Let T : V //W be a linear map between vector spaces. The kernel of T ,
denoted by kerT , is the set of all x ∈ V such that Tx = 0.
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27.2. Exercises

(1) If T : R2 // R2 is a linear map satisfying

T i = 3i− 5j

T j = 2i− j

then,

T (4i− 5j) = i + j.

(2) Define T : R3 // R4 by

Tx = (x1 − x3, x1 + x2, x3 − x2, x1 − 2x2)

for all x = (x1, x2, x3) in R3.
(a) Then T (1,−2, 3) = ( , , , ) .
(b) Find a vector x ∈ R3 such that Tx = (8, 9,−5, 0).

Answer: x = ( , , ).

(3) If T : R3 // R3 is a linear map satisfying

T i = 2i + 4j

T j = i + j + k

Tk = 3i− j− 2k

then,

T (2i− j− k) = i + j + k.

(4) Your friend Fred R. Dimm took an exam in which he made the following incorrect
calculations. Each error can be explained by supposing that Fred believes (wrongly) that
some particular function f is linear. Specify the function.√

32 + 42 =
√

32 +
√

42 = 7 Ans.f(x) = .√
32 + 42 =

√
(3 + 4)2 = 7 Ans.f(x) = .

sin 75◦ =
1

2
+

1√
2

Ans.f(x) = .∫ 2

1

1

x2 + x
dx =

1

2
+ ln 2 Ans.f(x) = .

eln 4+ln 7 = eln 4 + eln 7 = 11 Ans.f(x) = .

eln 4+ln 7 = eln(11) = 11 Ans.f(x) = .

arctan
1

2
=
π

8
Ans.f(x) = .

(5) Let T : R3 // R4 be defined by

Tx = (x1 − 3x3 , x1 + x2 − 6x3 , x2 − 3x3 , x1 − 3x3)

for every x = (x1, x2, x3) ∈ R3. (The map T is linear, but you need not prove this.) Then
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(a) [T ] =




.

(b) T (3,−2, 4) = .

(6) Let T : R4 // R3 be defined by

Tx = (x1 − 3x3 + x4 , 2x1 + x2 + x3 + x4 , 3x2 − 4x3 + 7x4)

for every x = (x1, x2, x3, x4) ∈ R4. (The map T is linear, but you need not prove this.)

(a) Find [T ]. Answer:



.

(b) Find T (1,−2, 1, 3). Answer: .
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27.3. Problems

(1) Consider an interval [a, b] in R. Let C([a, b]) be the family of all continuous real valued
functions defined on [a, b]. For functions f ,g ∈ C([a, b]) define the function f + g by

(f + g)(x) := f(x) + g(x) for all x ∈ [a, b].

(It should be clear that the two “+” signs in the preceding equation denote operations in
different spaces. The one on the left (which is being defined) represents addition in the
space C([a, b]); the one on the right is ordinary addition in R.) Because we specify the
value of f + g at each point x by adding the values of f and g at that point, we say that
we add f and g pointwise.

We also define scalar multiplication to be a pointwise operation. That is, if f ∈ C([a, b])
and α ∈ R, then we define the function αf by

(αf)(x) := α(f(x)) for every x ∈ [a, b].

We know from first term calculus that according to the definitions above, both f +g and αf
belong to C([a, b]). (Sums of continuous functions are continuous, and constant multiples
of continuous functions are continuous.)

Prove that under these pointwise operations C([a, b]) is a vector space.

(2) Show that a vector space has at most one zero vector. That is, if 0 and 0′ are members
of a vector space V which satisfy x + 0 = x and x + 0′ = x for all x ∈ V , then 0 = 0′.

(3) Show that for every vector x in a vector space V there exists only one vector −x such that

x + (−x) = 0 .

(4) Show that if x is a vector (in some vector space) and x + x = x, then x = 0. Hint. Add
0 to x; then write 0 as x + (−x).

(5) Let x be a vector in a vector space V and let α be a real number. Prove that αx = 0 if
and only if x = 0 or α = 0.

Hint. You need to show three things:
(a) α0 = 0,
(b) 0 x = 0, and
(c) If α 6= 0 and αx = 0, then x = 0.

To prove (a) write 0 + 0 = 0, multiply both sides by α, and use a previous problem. For
(c) use the fact that if α ∈ R is not zero, it has a reciprocal. What happens if we multiply
the vector αx by the scalar 1/α?

(6) Suppose that S : U // V and T : V //W are linear maps between vector spaces. Show
that their composite (usually denoted by TS rather than T ◦ S) is also linear.

(7) Prove that the map T : R3 // R2 defined by

T (x, y, z) = (x+ y − z, x− 2y + 3z)

is linear.

(8) Let A be a 2× 2 matrix. Show that the action of A on vectors in R2 is linear. Conversely,
show that every linear map from R2 to R2 can be represented by the action of a 2 × 2
matrix.

Note: A more general statement is also true. (You need not prove this.) Every m × n
matrix acts as a linear map from Rn to Rm; and every linear map from Rn to Rm can be
represented by an m× n matrix.

(9) If T : V // W is a linear transformation between vector spaces, then it takes the zero
vector of V to the zero vector of W .
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(10) Denote by C the family of all continuous functions on the real line R and by C1 the
family of all continuously differentiable functions on R. (A function f is continuously
differentiable if it is differentiable and its derivative f ′ is continuous.) Show that the
differentiation operator D : C1 // C defined by D(f) = f ′ is linear.

(11) Denote by C([a, b]) the family of all continuous functions on the interval [a, b]. Show
that integration is linear: that is, show that the function φ : C([a, b]) // R defined by

φ(f) =
∫ b
a f(x) dx is linear.

(12) Let a be a fixed point in R. As in problem 10, let C be the family of all continuous
functions on R and C1 be the family of all continuously differentiable functions on R.
Define an operator J : C // C1 as follows: for every f ∈ C let Jf be the function whose
value at each x is the integral of f from a to x. That is,

(Jf)(x) =

∫ x

a
f(t) dt

for each x ∈ R. Show that the operator J is linear. Also show that DJ is the identity
operator on C. Is JD the identity operator on C1? Why or why not?

(13) Identify all the linear transformations mapping R into R. Hint. What does the graph of
such a function look like?

(14) Suppose that T : Rn // Rm is a linear map. Prove that if we compute the action of its
matrix representation [T ] on a vector x in Rn, what we get is the value of the function T
at x. That is, show that for every x ∈ Rn

Tx = [T ]x.

Show, moreover, the representation is unique; that is, two distinct matrices cannot repre-
sent the same linear map.

Hint. For the last assertion show that if A is any m× n matrix which satisfies

Tx = Ax for all x ∈ Rn,
then A = [T ].

(15) Let T : V //W be a linear map between vector spaces. Show that T is one-to-one if and
only if the kernel of T is {0}.
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27.4. Answers to Odd-Numbered Exercises

(1) 2, −15

(3) 0, 8, 1

(5) (a)


1 0 −3

1 1 −6

0 1 −3

1 0 −3


(b) (−9,−23,−14,−9)





CHAPTER 28

DEFINITION OF DERIVATIVE

28.1. Background

Topics: differential = derivative = total derivative, differentiable at a point, differentiable function,
tangent plane to a surface, Jacobian matrix, smooth function.

28.1.1. Definition. Let F : Rn //Rm be a vector field and p be a point in Rn. Define a function
∆Fp : Rn // Rm by

∆Fp(h) = F(p + h)− F(p)

for every h ∈ Rn.

28.1.2. Definition. A function F : Rn //Rm is differentiable at a point p ∈ Rn if there exists
a linear transformation (equivalently, an m× n matrix) dFp taking Rn to Rm such that

lim
h // 0

∆Fp(h)− dFp (h)

‖h‖
= 0 .

When this happens we say that the linear transformation (or matrix) dFp is tangent to the
function ∆Fp. We call dFp the differential (or derivative, or total derivative) of F at p.

A function F is differentiable if it is differentiable at each point in its domain.

28.1.3. Theorem. If a function F : Rn // Rm is differentiable at a point p ∈ Rn, then

dFp =
[
F ij (p)

]
=

[
∂F i

∂xj
(p)

]m
i=1

n

j=1

.

28.1.4. Definition. The matrix in the preceding theorem is the Jacobian matrix of F at p.

28.1.5. Definition. A function F : Rn // Rm is twice differentiable at a point p ∈ Rn if it
is differentiable there and the function dF is also differentiable at p. Higher order differentiability
is defined similarly.

28.1.6. Definition. A function F : U → Rn, where U is an open subset of Rm, is smooth (or
infinitely differentiable) if it has derivatives of all orders.

28.1.7. Convention. When we say that a function f is differentiable (or smooth) on some region
in Rn, we will mean that it is differentiable (or smooth) on some open set in Rn which contains the
region.

223
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28.2. Exercises

(1) Let f(x) = sinx and p = π/6. The slope of the tangent line to the curve y = f(x) at
x = p is . The value of ∆fp at x is 1

2(a sinx+ b cosx− b) where a = and
b = . The slope of the tangent line to the curve y = ∆fp(x) at x = 0 is .

(2) Let f(x) = −x4 + 5x3 − 7x2 + 3x + 1 and p = 2. The slope of the tangent line to the
curve y = f(x) at x = p is . The value of ∆fp at x is −x4 + ax3 − x2 + bx + c
where a = , b = , and c = . The slope of the tangent line to the curve
y = ∆fp(x) at x = 0 is .

(3) Let f(x) = tanx and p = π/4. The slope of the tangent line to the curve y = f(x) at

x = p is . The value of ∆fp at x is
g(x)

1− tanx
where g(x) = . The

slope of the tangent line to the curve y = ∆fp(x) at x = 0 is .

(4) Let f(x) = e2x and p = ln 3. The slope of the tangent line to the curve y = f(x) at x = p
is . The value of ∆fp at x is ae2x − b where a = and b = . The slope of
the tangent line to the curve y = ∆fp(x) at x = 0 is .

(5) Let f(x, y) = xy2 and p = (1,−1). Then
∂f

∂x
(p) = and

∂f

∂y
(p) = . The

function ∆fp(x, y) = a(x)b(y)− c where a(x) = , b(y) = , and c = .

The partial derivatives of this function at 0 = (0, 0) are given by
∂(∆fp)

∂x
(0) = and

∂(∆fp)

∂y
(0) = .

(6) Let f(x, y, z) = xy + yz and p = (1,−1, 2). Then
∂f

∂x
(p) = ,

∂f

∂y
(p) = , and

∂f

∂z
(p) = . The function ∆fp(x, y, z) = xy + yz + ax+ by + cz where a = ,

b = , and c = . The partial derivatives of this function at 0 = (0, 0, 0) are

given by
∂(∆fp)

∂x
(0) = ,

∂(∆fp)

∂y
(0) = , and

∂(∆fp)

∂z
(0) = .

(7) Let f(x, y) = x2 + y2 and p = (1, 1). If we choose dfp to be the 1× 2-matrix [a b], where
a = and b = , then ∆fp is tangent to dfp.

(8) Let F(x, y) = (2x, 3y2) and p = (1, 1). If we choose dFp to be the 2 × 2-matrix

a b

c d

,

where a = , b = , c = , and d = , then ∆Fp is tangent to dFp.

(9) Let F : R3 // R2 be defined by F(x, y, z) = x2yez i + (x3 + y3 + z3) j and p = (1, 2, 0).
Then the derivative of F at p is given by

dFp =



 .
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(10) Let F(x, y) = (x2 − 1
2xy

3, 4xy) and p = (5, 2). Then the differential of F at p is given by

dFp =



 .

(11) Let F : R2 // R3 be defined by F(x, y) = (x2, 2x − 3y, 5xy) and p = (1,−1). Then the
Jacobian matrix of F at p is given by

dFp =




.

(12) Let F : R2 //R3 be defined by F(x, y) = xy i+(x2y+xy2) j+y2 sinπxk and p = (3,−1).
Then the Jacobian matrix of F at p is given by

dFp =




.

(13) Let T be a linear map from Rn to Rm and p ∈ Rn. Then dTp = .
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+

28.3. Problems

(1) Let f(x) = x2 − 4x + 6 and p = 3. On the same set of axes make a careful sketch of the
curves y = f(x) and y = ∆fp(x). Draw the tangent line to the first curve at x = p and
the tangent line to the second curve at x = 0.

(2) Let f(x) = 1
6x

2 − 5
6x+ 11

6 and p = −1. On the same set of axes make a careful sketch of
the curves y = f(x) and y = ∆fp(x). Draw the tangent line to the first curve at x = p
and the tangent line to the second curve at x = 0.

(3) Let F : R2 // R2 be defined by F(x, y) = (3xy, x2 + y2), and let p = (1, 2).
(a) Compute the derivative dFp.
(b) Use the definition of “differentiable” to show that F is differentiable at p.

(4) Let F : R2 //R2 be defined by F(x, y) = (3x− y + 7, x+ 4y), and let p = (1, 2). Use the
definition of “differentiable” to show that F is differentiable at p.

(5) Let F : R3 //R2 be defined by F(x, y, z) = (3x+ z2) i + 5yz j, and let p = (3,−2, 1). Use
the definition of “differentiable” to show that F is differentiable at p.

(6) Let F : R3 //R2 be defined by F(x, y, z) = (xy− 3) i + (y+ 2z2) j, and let p = (1,−1, 2).
Use the definition of “differentiable” to show that F is differentiable at p.

(7) Let F : R3 // R4 be defined by F(x, y, z) = (x + 2yz, y3 − z, 3y2, 2xy − 5z), and let
p = (1, 2,−5). Use the definition of “differentiable” to show that F is differentiable at p.

(8) Let T be a symmetric n × n matrix and let p ∈ Rn. Define a function f : Rn // R by
f(x) = 〈Tx,x〉. Show that

dfp(h) = 〈Tp,h〉
for every h ∈ Rn.
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28.4. Answers to Odd-Numbered Exercises

(1)

√
3

2
,
√

3, 1,

√
3

2

(3) 2, 2 tanx, 2

(5) 1, −2, x+ 1, (y − 1)2, 1, 1, −2

(7) 2, 2

(9)

4 1 2

3 12 0



(11)


2 0

2 −3

−5 5


(13) T





CHAPTER 29

DIFFERENTIATION OF FUNCTIONS OF SEVERAL
VARIABLLES

29.1. Background

Topics: chain rule

Differentiation is about approximating (a suitable translation of) a smooth function by a linear
one. What the chain rule says (although it may be difficult to see this from what you are told
in many texts) is that the best linear approximation to the composite of two smooth functions is
the composite of their best linear approximations. That is, the differential of the composite is the
composite of the differentials. Here is the formal statement.

29.1.1. Theorem (The Chain Rule). If F : Rm //Rn is differentiable at a ∈ Rm and G : Rn //Rp
is differentiable at F (a) ∈ Rn, then G ◦ F is differentiable at a and

d(G ◦ F )a = (dG)F (a) dFa.

For computational purposes it is convenient to rephrase this theorem in terms of partial deriva-
tives.

29.1.2. Theorem (The Chain Rule). If F : Rm //Rn is differentiable at a ∈ Rm and G : Rn //Rp
is differentiable at F (a) ∈ Rn, then G ◦ F is differentiable at a and

(G ◦ F )ki (a) =
n∑
j=1

Gkj (F (a))F ji (a)

for i = 1, . . . ,m and k = 1, . . . , p.

29.1.3. Notation. Scientists like to work with variables. And frequently they use the name of a
function for its corresponding dependent variable. As a consequence of this highly dubious notation
one variable may depend explicitly and/or implicitly on another variable. For example, suppose
that w = w(x, y, t) where x = x(s, t) and y = y(s, t) and that all the functions mentioned are
differentiable. In this case we say that w depends explicitly on the variables x and y; it depends
implicitly on s; and it depends both explicitly and implicitly on t. This can lead to notational
confusion. For example, it is perhaps tempting to write

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t

∂t

∂t

=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t

(29.1)

(since ∂t
∂t = 1). The trouble with this is that the ∂w

∂t on the left is not the same as the one on

the right. The ∂w
∂t on the right refers only to the rate of change of w with respect to t insofar as

t appears explicitly in the formula for w; the one on the left takes into account the fact that in
addition w depends implicitly on t via the variables x and y.

229
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One way of dealing with the resulting ambiguity is to give the functions involved names of their
own. Relate the variables by functions as follows.

s

t

f−−−−→
x

y

t

g−−−−→ w (29.2)

Also let h = g ◦ f . Notice that f3(s, t) = t. Then according to the chain rule 29.1.2

h2 =
3∑

k=1

(gk ◦ f) fk2 .

But f32 = 1 (that is, ∂t
∂t = 1). So

h2 = (g1 ◦ f)f12 + (g2 ◦ f)f22 + g3 ◦ f. (29.3)

The ambiguity of (29.1) has been eliminated in (29.3). The ∂w
∂t on the left is seen to be the derivative

with respect to t of the composite h = g ◦ f , whereas the ∂w
∂t on the right is just the derivative with

respect to t of the function g.
But what does one do if, as is often the case in scientific work, one refuses to give names to

functions? Here is one standard procedure. Look back at diagram (29.2) and remove the names of
the functions.

s

t
−−−−→

x

y

t

−−−−→ w (29.4)

The problem now is that the symbol “t” occurs twice. To specify differentiation of the composite
function (our h) with respect to t, indicate that the “t” you are interested in is the one in the
left column of (29.4). This may be done by listing everything else that appears in that column.
That is, specify which variables are held constant. This specification conventionally appears as a
subscript outside parentheses. Thus the ∂w

∂t on the left of (29.1) (our h2) is written as
(
∂w
∂t

)
s

(and

is read, “ ∂w
∂t with s held constant”). Similarly, the ∂w

∂t on the right of (29.1)) (our g3) involves

differentiation with respect to t while x and y are fixed. So it is written
(
∂w
∂t

)
x,y

(and is read, “ ∂w
∂t

with x and y held constant”). Thus (29.1) becomes(
∂w

∂t

)
s

=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+

(
∂w

∂t

)
x,y

(29.5)

It is not necessary to write, for example, an expression such as
(
∂w
∂x

)
t,y

because there is no

ambiguity; the symbol “x” occurs only once in (29.4). If you choose to use the convention just
presented, it is best to use it only to avoid confusion; use it because you must, not because you can.

29.1.4. CAUTION. Be careful not to mix the notational convention using subscripts described
above with the one introduced in 24.1.2.

29.1.5. Definition. A smooth function F mapping from a subset of Rn into Rn is said to be
locally invertible at a point a in its domain if there exists a neighborhood U of a such that
the restriction of F to U is a bijection between U and F(U) and such that the inverse function
F−1 : F(U) // U is smooth.

29.1.6. Example. The function x 7→ x2 is locally invertible at every point a ∈ R except for a = 0.

Here is a special case of the inverse function theorem. .
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29.1.7. Theorem. Let F be a smooth function from an open subset of Rn into Rn. If its differential
dFa is an invertible linear map at a point a, then F is locally invertible at a and

d
(
F−1

)
F(x)

=
[
dFx

]−1
for all x in some neighborhood of a.
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29.2. Exercises

(1) Suppose that f(u, v) = g(x, y) where u = x2 − y2 and v = 2xy. Then

y
∂g

∂x
− x∂g

∂y
=

∂f

∂u
− ∂f

∂v
.

(2) Suppose w = 1
4ux

2y where x = u2 − v2 and y = 2uv. At the point where u = −1 and
v = −2 (

∂w

∂u

)
x,y

= and

(
∂w

∂u

)
v

= .

(3) Suppose w = 1
12 t

2x3− 5y2 ln t where x = t2−u2 and y =
t

u
. At the point where t = 2 and

u = 1 (
∂w

∂t

)
x,y

= and

(
∂w

∂t

)
u

= a− b ln c

where a = , b = , and c = .

(4) Suppose w = 1
16x

4y + y2 arctanu where x = t2 + u3 and y = t3 − 5u. At the point where
t = u = 1 (

∂w

∂u

)
x,y

= and

(
∂w

∂u

)
t

= aπ − b

where a = and b = .

(5) Suppose w = 1
2x

2y+ arctan(tx) where x = t2−3u2 and y = 2tu. At the point where t = 2
and u = −1 (

∂w

∂t

)
x,y

=
a

5
and

(
∂w

∂t

)
u

= − b
5

where a = and b = .

(6) Let w = ux2 + arctan yz, where x = u+ v, y = u2− v, and z = uv− 3. At the point where
u = 2 and v = 3(

∂w

∂u

)
x,y,z

= and

(
∂w

∂u

)
v

=
a

2

where a = .

(7) Suppose that w = f(x, y) = g(u, v) where x = u2 − v2 and y = 2uv, and that f and g are
twice continuously differentiable functions. Then

∂2g

∂u2
− ∂2g

∂v2
=

∂2f

∂x2
+

∂2f

∂x∂y
− ∂2f

∂y2
+

∂f

∂x
+

∂f

∂y
.

(8) Suppose that z = f(x, y) = g(r, θ) where x = r cos θ, y = r sin θ, and f and g are twice
continuously differentiable functions. Then

r
∂2g

∂r∂θ
=

(
∂2f

∂y2
− ∂2f

∂x2

)
+

∂2f

∂x∂y
+

∂f

∂y
− ∂f

∂x
.

(9) Let f(x, y) =
x2 − y2√
x2 + y2

. Then at the point where x = 1 and y = 1

xy

(
∂2f

∂y2
− ∂2f

∂x2

)
+ (x2 − y2) ∂

2f

∂x∂y
+ x

∂f

∂y
− y∂f

∂x
= −a

√
a

where a = . Hint. Use the preceding exercise.
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(10) (Conversion of the Laplacian to polar coordinates) If f(x, y) = g(r, θ), then

∂2g

∂r2
+

1

r

∂g

∂r
+

1

r2
∂2g

∂θ2
=

∂2f

∂x2
+

∂2f

∂x∂y
+

∂2f

∂y2
+

∂f

∂x
+

∂f

∂y
.

(11) Let f(x, y) =
x2 − y2√
x2 + y2

. Then
∂2f

∂x2
+
∂2f

∂y2
= .

Hint. Use the preceding exercise.

(12) Let w = f(x, y) = g(u, v) where x = u2 + v2 and y = 2uv. Then

∂2g

∂u∂v
=

∂2f

∂x2
+

∂2f

∂x∂y
+

∂2f

∂y2
+

∂f

∂x
+

∂f

∂y
.

(13) Let f(x, y) =

√
x+ y +

√
x− y√

x+ y −
√
x− y

+
√√

x+ y −
√
x− y. Then the value of the expression

2y
∂2f

∂x2
+ 4x

∂2f

∂x∂y
+ 2y

∂2f

∂y2
+ 2

∂f

∂y
at the point where x = 5 and y = 4 is .

Hint. Use the preceding exercise.

(14) Suppose that w = G(x, y, z) = F (x, xz, xy) where F and G are differentiable functions.

Find x
∂G

∂x
−y∂G

∂y
−z ∂G

∂z
in terms of the partial derivatives of F . Answer: .

(15) At the point (1, π) the vector field F defined by F(x, y) = (x2y3, x tan y) is locally invert-

ible. Then d
(
F−1

)
(π3,0)

=




.

(16) The vector field G defined by G(x, y) = (ln y, xy2) for all y > 0 is locally invertible at

each point in its domain. Then d
(
G−1

)
(− ln 2,1)

=




.
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29.3. Problems

(1) Derive theorem 29.1.2 from theorem 29.1.1.

(2) Your good friend Fred R. Dimm is hopelessly confused. He knows the formulas for changing
polar to rectangular coordinates (x = r cos θ and y = r sin θ), and wants to find the partial
derivative of the variable r with respect to the variable x. Fred likes to check his answers
by doing problems two different ways. So he calculates

∂r

∂x
=

∂

∂x

√
x2 + y2 =

x√
x2 + y2

=
x

r
= cos θ.

But when he rewrites the formula for x as r =
x

cos θ
and differentiates he gets

∂r

∂x
=

1

cos θ
= sec θ.

Even Fred knows that cos θ and sec θ are not always equal, but he just can’t seem to find
the error in his work. Write a note to your friend helping him out. Make sure that you
explain with exemplary clarity exactly what he did that was right and exactly what was
wrong.

(3) Show that if z = f

(
x− y
y

)
, then xzx + yzy = 0.

(4) Show that if z = xy + xf
(y
x

)
, then xzx + yzy = xy + z.

(5) Show that if w = f(x−y, y−z, z−x) where f is a differentiable function, then wx+wy+wz =
0.

(6) Let z = f(x + ct) + g(x − ct), u = x + ct, and v = x − ct (where c is a constant). Show

that
∂2z

∂t2
= c2

∂2z

∂x2
= c2(f ′′(u) + g′′(v)).

(7) Let w = f

(
y − x
xy

,
z − x
xz

)
. Show that x2

∂w

∂x
+ y2

∂w

∂y
+ z2

∂w

∂z
= 0.

(8) Let z = f(u, v) where u = x+ y and v = x− y. Show that
∂2z

∂x∂y
=
∂2z

∂u2
− ∂2z

∂v2
.

(9) Let w = f(u2 − t2, t2 − u2). Show that twu + uwt = 0.

(10) Let n be a fixed positive integer. Prove that if a function f : R2 → R satisfies f(tx, ty) =
tnf(x, y) for all t, x, y ∈ R, then xfx + yfy = nf .

(11) Let n be a fixed positive integer. Give a coherent proof that if a function f : R2 → R
satisfies the relation f(tx, ty) = tnf(x, y) for all t, x, y ∈ R, then x2fxx+2xyfxy +y2fyy =
n(n− 1)f .

(12) Suppose that a variable y is defined implicitly in terms of x by an equation of the form
G(x, y(x)) = 0, where G is a smooth real valued function of two variables. Derive a formula

for
dy

dx
in terms of the partial derivatives G1(x, y) and G2(x, y). Hint. Let h(x) = (x, y(x))

and consider D(G ◦ h)(x).
Illustrate your result by showing how it can be used to find the slope of the tangent

line to the curve
x2y ln y + xy2exy + x3y2 = 1

at the point (e, 1e ).
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(13) Here is a problem from a thermodynamics text:

Show that if f(x, y, z) = 0, then(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 .

Your old pal, Fred Dimm, is in trouble again. He is taking a class in thermodynamics
and is baffled by the statement of the problem. Among other things he notices that there
is a mysterious f in the hypothesis that does not appear in the conclusion. He wonders,
not unreasonably, how assuming something about f is going to help him prove something
that makes no reference whatever to that quantity. He is also convinced that the answer
is wrong: he thinks that the product of the partial derivatives should be +1. He claims

it should be just like the single variable case: the chain rule says
dy

dt
=
dy

dx

dx

dt
because we

can cancel the dx’s.
Help Fred by explaining the exercise to him. And comment on his “correction” of the

problem.
Unfortunately, once you have explained all this to him, he still can’t do the problem.

So also show him how to solve it.

Hint. Let w = f(x, y, z). By considering the mappings

y

z
−−−−→

x

y

z

f−−−−→ w

see if you can find a simple expression for −

(
∂f

∂y

)
x,z(

∂f

∂x

)
y,z

.

(14) What, precisely, do people mean when they write the formula

(
∂y

∂x

)
z

= −

(
∂y

∂z

)
x(

∂x

∂z

)
y

?

Give a careful proof that (under appropriate conditions) this formula is correct.

(15) Regard thermodynamics as having 5 fundamental variables: T (temperature), V (volume),
U (internal energy), P (pressure), and S (entropy). Any two of these may be regarded as
“independent”. If we take T and V to be our independent variables, then two basic laws
of thermodynamics may be stated as follows:

T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

(I)

T

(
∂S

∂V

)
T

=

(
∂U

∂V

)
T

+ P (II)



236 29. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLLES

Using (I) and (II) derive the following “Maxwell relations”:(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

(III)(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(IV)(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

. (V)

Hints: You may wish to develop some tools. For example, you may be able to derive
(and use) the following formulas. (Keep in mind that “formulas” are typically conclusions
of theorems: and theorems have hypotheses as well as conclusions.)(

∂y

∂t

)
z

(
∂t

∂x

)
z

=

(
∂y

∂x

)
z

(A)(
∂y

∂x

)
z

=
1(
∂x

∂y

)
z

(B)

(
∂y

∂x

)
z

= −

(
∂z

∂x

)
y(

∂z

∂y

)
x

(C)

Once you have succeeded in deriving (A)–(C), you may choose to proceed as follows.
For (III) differentiate (I) with respect to V and (II) with respect to T . For (IV) use (C)
to write the left side of (IV) in terms of the variables T and V ; use (A) to write the left

side of (III) as a product of two terms one of which is

(
∂P

∂S

)
V

then apply (III). For (V)

write

(
∂P

∂T

)
S

as a product of two terms one of which is

(
∂P

∂V

)
S

, using (A). Apply (C)

to both terms of the product. In the denominator of the resulting expression there will be
a term with subscript V ; apply (B) to it. Use (A) once more, and then (III).

(16) Define a function F by F(x, y, z) =
x

y2z2
i+yz j+ln y k for x, y, z > 0. For this vector field

verify the equation in the conclusion of the inverse function theorem 29.1.7 by computing
each side separately.



29.4. ANSWERS TO ODD-NUMBERED EXERCISES 237

29.4. Answers to Odd-Numbered Exercises

(1) 2v, 2u

(3) −1, 35, 20, 2

(5) 1, 76

(7) 4x, 8y, 4x, 4, 0

(9) 2

(11) −3
x2 − y2(
x2 + y2

) 3
2

(13) −1

(15)


1

2π3
− 3

2π

0 1







CHAPTER 30

MORE APPLICATIONS OF THE DERIVATIVE

30.1. Background

Topics: optimization of functions of several variables, global extrema, local extrema, saddle points,
Lagrange multipliers.

Classification of Critical Points. The second derivative test as stated in many texts works
only for functions of two (or three) variables. Here is a procedure for classifying critical points of
functions of any (finite) number of variables.

30.1.1. Definition. Let f : Rn → R be a smooth scalar field and p ∈ Rn. The Hessian matrix
(or second derivative matrix) of f at p, denoted by Hf (p), is the n× n matrix

Hf (p) =

[
∂2f

∂xi∂xj
(p)

]n
i=1

n

j=1

=
[
fij(p)

]
.

30.1.2. Definition. An n × n matrix M is positive definite if 〈Mx,x〉 > 0 for every x 6= 0
in Rn. It is negative definite if 〈Mx,x〉 < 0 for every x 6= 0 in Rn. It is indefinite if there are
vectors x and y in Rn such that 〈Mx,x〉 > 0 and 〈My,y〉 < 0.

30.1.3. Theorem (Second Derivative Test). Let p be a critical point of a smooth scalar field f . If
the Hessian matrix Hf is positive definite at p, then f has a local minimum there. If Hf is negative
definite at p, then f has a local maximum there. If Hf is indefinite at p, then f has a saddle point
there.

Is there some simple way of telling whether a matrix is positive definite?

Yes. It is positive definite if all its eigenvalues are strictly positive.
It is negative definite if all its eigenvalues are strictly negative. It
is indefinite if it has at least one strictly positive and at least one
strictly negative eigenvalue.

What’s an eigenvalue?

An eigenvalue of a square matrix M is a root of its characteristic
polynomial.

OK. What’s a characteristic polynomial then?

Notice that if M is an n×n matrix, then det(M−λIn) is a polynomial
in λ of degree n. This is the characteristic polynomial of M .
Incidentally, it turns out that if the matrix is symmetric (the Hessian
matrix of a smooth scalar field, for example, is symmetric), then all
the roots of the characteristic polynomial are real.

239
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Summary: To classify the critical points of a scalar field f : Rn // R
(A) Compute ∇f .
(B) Solve ∇f = 0 to find the critical points.
(C) Compute the Hessian matrix Hf .
(D) For each critical point p find the roots of the polynomial det(Hf − λIn).
(E) If all these roots are strictly positive, f has a local minimum at p. If they are all strictly

negative, f has a local maximum at p. And if there is at least one strictly positive and
one strictly negative root, then f has a saddle point at p.

Some definitions relevant to Problem 1.

30.1.4. Definition. A ray from the origin in R2 is a parametrized constant speed curve r : [0,∞) //R2

such that r(0) = (0, 0) and the range of r lies in some straight line.

30.1.5. Definition. A function f : R2 → R is locally increasing at the origin on a ray r if the
real valued function f ◦ r is increasing on some interval of the form [0, t0] (t0 > 0). The term locally
decreasing is defined similarly.

30.1.6. Definition. Two collections of distinct rays (r1, . . . rn) and (R1, . . .Rn) are separating
if it is not possible to move between any two members of the first collection (in either the clockwise
or counterclockwise direction) without encountering a member of the second.
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30.2. Exercises

In the first 7 exercises below you are asked to classify critical points as local minima, local
maxima, or saddle points.

(1) Let f(x, y, z) = x2y − yez + 2x+ z. The only critical point of the function f is located at
( , , ) and it is a .

(2) Let f(x, y) = x3 − 3xy + y3 − 2. Then f has two critical points. One is located at
( 0 , ) and is a . The other is located at ( , ) and
is a .

(3) Let f(x, y, z) = x2y+ 2xy+ y− yez−1 + 2x+ z+ 7. The only critical point of f is located
at ( , , ) and it is a .

(4) Let f(x, y) = −1
2xy+

2

x
− 1

y
. The only critical point of f is located at ( , ) and

it is a .

(5) Let f(x, y) = sinx + sin y + sin(x + y) for 0 < x < π, 0 < y < π. The only critical point
of f is located at ( , ) and it is a .

(6) Let f(x, y, z) = x3y + z2 − 3x − y + 4z + 5. The only critical point of the function f is
located at ( , , ) and it is a .

(7) Let f(x, y, z) = x2y− 4x− y sin z for 0 < z < π. Then f has two critical points located at
(a, b, c) and at (-a,-b,c) where a = , b = , and c = . Both of these
critical points are .

(8) Suppose that f : R2 → R, f(2, 1) = −3, ∇f(2, 1) = (2, 0) and the Hessian matrix of f at

(a, b) is

 2 −3

−3 4

 for all (a, b). Then f(x, y, z) = .

(9) Let f(x, y) = x2−xy+2y2−x−3y+1 be defined over the region bounded by the triangle
whose vertices are (0,0), (2,0), and (0,2). The global minimum of f is and occurs
at the point ( , ). The global maximum of f is and occurs at two points
( 0 , ) and ( , ).

(10) Let f(x, y) = xy− x2 + 10 be defined over the rectangular region [0, 5]× [0, 4]. The global
minimum of f is and occurs at the point ( , ). The global maximum of
f is and occurs at the point ( , ).

(11) Let f(x, y) = x3 − 3xy + y3 − 2 be defined over the rectangular region [0, 3] × [0, 2].
The global minimum of f is and occurs at the point ( , ). The global
maximum of f is and occurs at the point ( , ).

(12) Let f(x, y) = 3x2−2xy+3y2−10x+6y+8 be defined on the square region [0, 2]× [−1, 1].
The global minimum of f is and occurs at the point ( , ). The
global maximum of f is and occurs at the point ( , ).

(13) Let f(x, y) = x4 + y2 − 2x2 − 4y be defined on the rectangular region [0, 3] × [0, 5]. The
global minimum of f is and occurs at the point ( , ). The global maximum
of f is and occurs at the point ( , ).

(14) Let f(x, y) = x2 + 2xy + 4x − y2 − 8y − 6 be defined on the triangular region whose
vertices are (0, 0), (0,−8), and (4,−4). The global minimum of f is and occurs at
the point ( , ). The global maximum of f is and occurs at the point
( , ).
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(15) Let f(x, y) =
6 + 2xy − y

3 + x2
be defined over the rectangular region [0, 3]× [0, 6]. The global

minimum of f is and occurs at the point ( , ). The global maximum of f
is and occurs at the point ( , ).

(16) Let D =
{

(x, y) : x2 + y2 ≤ 1
}

be the closed unit disk in R2. At each point (x, y) in D

the temperature T is given by T (x, y) = x2 + 2y2 − y + 3. The coldest point on the disk

is ( , ); at that point the temperature is
a

8
where a = . The hottest

point on the disk is ( , ); at that point the temperature is .

(17) The maximum value achieved by xy2z3 on the unit sphere x2 + y2 + z2 = 1 is
1

a
√

3
where

a = .

(18) The maximum value achieved by x+ 3y+ 4z on the sphere x2 +y2 + z2 = 13 is a
√

2 where
a = .

(19) The maximum value achieved by x+ 2y+ 4z on the sphere x2 + y2 + z2 = 7 is a
√

3 where
a = .

(20) A rectangular box without a top is to be made from 18 ft2 of a given material. The largest
possible volume of such a box is a

√
2a ft3 where a = .

(21) Locate the maximum value of xy2z3 on the plane x+ y + z = 1.

Answer: .

(22) The largest value achieved by xyz on the curve of intersection of the circular cylinder
x2 + y2 = 3 and the plane y = 2z is . One point where this maximum occurs is(
a, b, b−1

)
where a = and b = .

(23) The largest value achieved by x+y+ z on the curve of intersection of the circular cylinder

x2 + y2 = 2 and the plane x+ z = 1 is a+
√
b where a = and b = . One point

where this maximum occurs is (c,
√
b, a) where c = .

(24) The (right circular) cylinder whose axis is the z-axis and whose radius is 2 intersects
the plane y + 3z = 9 in an ellipse C. Let f : R3 → R be the scalar field defined by
f(x, y, z) = −x + 2y + 6z. Then the maximum value attained by f on C is and
the minimum value of f on C is .
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30.3. Problems

(1) Following are three plausible conjectures. In each case if the conjecture is true, prove it;
and if it is false, give an example to show that it can fail. (In the latter case, don’t forget
to prove that your example really does what you claim.)

Conjecture 1. If on every parametrized ray from the origin a function f of two variables
is locally increasing at the origin, then f has a local minimum at the origin.

Conjecture 2. If a function f of two variables has a saddle point at the origin, then there
are at least two separating pairs of rays from the origin such that f is locally increasing
at the origin on one pair and locally decreasing at the origin on the other.

Conjecture 3. It is possible to find a function f of two variables for which there exist
two separating triples of rays from the origin such that on one of the triples f is locally
increasing at the origin and on the other f is locally decreasing at the origin.

Hint. A careful analysis of the behavior of the following surfaces may provide some
insight into a couple of the conjectures.

f(x, y) = x3 − 3xy2,

g(x, y) = y2 − 3x2y + 2x4.

(2) Let f(w, x, y, z) =

(
w +

1

w

)2

+

(
x+

1

x

)2

+

(
y +

1

y

)2

+

(
z +

1

z

)2

for w, x, y, z > 0.

Prove that on the hyperplane w + x+ y + z = 16 in R4 the function f is bounded below

by
289

4
.

(3) Explain carefully how to use Lagrange multipliers to find the distance from (0, 1) to the
parabola x2 = 4y.

(4) Use Lagrange multipliers to show that of all triangles inscribed in a circle, the equilateral
triangle has the largest product of the lengths of the sides. Hint. As the constraint use the
fact that the sum of the central angles of the circle determined by the sides of the triangle
is 2π. Use the law of cosines.

(5) Use the theorem concerning Lagrange multipliers to argue that the function f(x, y, z) =
x + y + z does not achieve either a maximum or a minimum on the curve of intersection
of the hyperbolic cylinder x2 − y2 = 1 and the plane 2x+ z = 1.

(6) Find the point on the plane 2x− 3y − 4z = 25 which is nearest the point (3, 2, 1) using
(a) a geometric method;
(b) the second derivative test ; and
(c) Lagrange multipliers.
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30.4. Answers to Odd-Numbered Exercises

(1) −1, 1, 0, saddle point

(3) −2, 1, 1, saddle point

(5)
π

3
,
π

3
, local maximum

(7) 1, 2,
π

2
, saddle points

(9) −1, 1, 1, 3, 2, 2, 0

(11) −3, 1, 1, 25, 3, 0

(13) −5, 1, 2, 68, 3, 5

(15) 0, 0, 6, 2
√

3,
√

3, 6

(17) 12

(19) 7

(21) no maximum exists

(23) 1, 2, 0
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CHAPTER 31

PARAMETRIZED CURVES

31.1. Background

Topics: parametrized curves, arclength of parametrized curves and of curves specified in polar
coordinates, areas of regions bounded by closed curves, tangent lines to curves.

247
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31.2. Exercises

(1) Express the curve

{
x = sin t

y = 1− cos2 t
(t ∈ R) in nonparametric form.

Answer: y = f(x) where f(x) = and ≤ x ≤ .

(2) Express the curve

{
x = 3 cos t

y = 4 sin t
in nonparametric form.

Answer:
x2

a
+
y2

b
= 1 where a = and b = .

(3) Express the curve

{
x = sin t

y = cos 2t
in nonparametric form.

Answer: y = f(x) where f(x) = .

(4) Express the curve

{
x = et

y = t e2t
in nonparametric form.

Answer: y = f(x) where f(x) = .

(5) Express the curve

{
x = et

y = et
2 in nonparametric form.

Answer: y = xf(x) where f(x) = .

(6) Express the curve


x =

t

1 + t

y =
1− t
1 + t

in nonparametric form.

Answer: y = f(x) where f(x) = .

(7) Let L be the line segment connecting the points (2,−2) and (10, 2). Find a parametrization
of L starting at (10, 2) and ending at (2,−2) with parameter interval [0, 1].

Answer: x = a+ bt and y = c+ dt where a = , b = , c = ,
d = , and t ∈ [0, 1].

(8) Let T be the triangle with vertices (0, 0), (1, 0), and (0, 1). Find a counterclockwise
parametrization of T with parameter interval [0, 1].

Answer: Let f(t) = ( , 0) for 0 ≤ t ≤ 1
3 , f(t) = ( , ) for

1
3 < t ≤ 2

3 , and f(t) = ( 0 , ) for 2
3 < t ≤ 1.

(9) Let C be the circle of radius 1 whose center is at (0, 1). Find a parametrization of C with
parameter interval [0, 2π] which traverses the curve once in a counterclockwise direction
starting at (1, 1).

Answer: Let x(t) = a+b sin t+c cos t and y(t) = A+B sin t+C cos t where a = ,
b = , c = , A = , B = , and C = .

(10) Express the curve

x =

√
t

1 + t

y =
1− t
1 + t

in nonparametric form.

Answer: The curve lies on the ellipse ax2 + by2 = 1 where a = and b = ;
but it contains only those points (x, y) such that p ≤ x ≤ q and r < y ≤ s, where
p = , q = , r = , and s = .
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(11) Express the curve


x =

2t+ 1

(t+ 1)2

y =
t

t+ 1

in nonparametric form.

Answer: x = f(y) where f(y) = .

(12) Let C be the circle of radius 1 whose center is at (0, 1). Find a parametrization of C which
traverses the curve once in a clockwise direction starting at (1, 1) and has parameter
interval [0, 1].

Answer: Let x(t) = a + b sin kt + c cos kt and y(t) = A + B sin kt + C cos kt where
a = , b = , c = , A = , B = , C = , and k = .

(13) Let S be the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Find a counterclockwise
parametrization of S with parameter interval [0, 1].

Answer: Let f(t) = ( , 0) for 0 ≤ t ≤ 1
4 , f(t) = (1 , ) for 1

4 < t ≤ 1
2 ,

f(t) = ( , 1) for 1
2 < t ≤ 3

4 , and f(t) = (0, ) for 3
4 < t ≤ 1.

(14) Let D be the region in the plane satisfying

x2 + y2 ≤ 4, x ≥ 0, and y ≥ 0.

Find a counterclockwise parametrization of the curve which bounds D, has parameter
interval [0, 1], and starts at (0, 0).

Answer: Let

f(t) =


( , 0) for 0 ≤ t ≤ 1

3 ,

( , ) for 1
3 < t ≤ 2

3 , and

( 0 , ) for 2
3 < t ≤ 1.

(15) The positions of two particles A and B at time t are given by{
r(t) = (2 sin t,−2 cos t)

R(t) = (2t3, 2(t3 − 1))
for −2π ≤ t ≤ 2π.

(a) The paths intersect at ( , ) and ( , ) .

(b) The particles collide at ( , ) at time t = .

(16) The positions of two particles A and B at time t are given by{
r(t) = (t2 − 5, t2 − 3)

R(t) = (2t− 5, 4t2 − 20t+ 25)
for t ≥ 0 .

(a) The paths intersect at ( , ) and ( , ) .

(b) The particles collide at ( , ) at time t = .

(17) The positions of two particles A and B at time t are given by{
r(t) = (16 cos2 t− 12, 4 sin t)

R(t) = (4− 2t3, t3).

(a) The paths intersect at ( , ) and ( , ) .

(b) The particles collide at ( , ) at time t = .

(18) The positions of two particles A and B at time t are given by{
r(t) = (

√
1 + t2, t)

R(t) =
(

4− 1
8 t

2,
√

1
4 t

2 + 6
)



250 31. PARAMETRIZED CURVES

(a) The only point at which the paths intersect is ( , ) .

(b) The particles collide at this point when t = .

(19) The positions of two particles A and B at time t are given by{
r(t) =

(
1− 2 cos t

2 , 4 cos2 t
2 − 4 cos t

2

)
R(t) =

(
9
4 t− 1, 94 t

)
(a) The paths intersect at ( , ) and ( , ) .

(b) The particles collide at ( , ) at time t = .

(20) The positions of two particles A and B at time t are given byr(t) =

(
2 sin

[
πt

2(t+ 1)

]
, 2 sin

[
π

2(t+ 1)

])
R(t) =

(
1
2

√
8 + t2, 1

12(8 + t2)
) for 0 ≤ t ≤ 4.

(a) The only point at which the paths intersect is ( , ) .

(b) The particles collide at this point when t = .

(21) The positions of two particles A and B at time t are given by{
r(t) = (sin3 t, cos3 t)

R(t) =
(
tan2 t

4 , 2− sec2 t
4

) for − π < t < π.

(a) The paths intersect at ( , ) and ( , ) .

(b) The particles collide at ( , ) at time t = .

(22) The positions of two particles A and B at time t are given by{
r(t) = (sin3 t, cos3 t)

R(t) =
(
tan2 t

2 , 2− sec2 t
2

) for − π

2
≤ t ≤ π

2
.

The particles collide at the point ( , ) when t = and at the point
( , ) when t = .

(23) Let L be the line segment connecting the points (−2, 4) and (1, 0).

(a) Find a parametrization of L starting at (−2, 4) and ending at (1, 0) with parameter
interval [−2, 1].

Answer: x = r and y = c+ dr where c = , d = , and r ∈ [−2, 1].

(b) Find a parametrization of L starting at (1, 0) and ending at (−2, 4) with parameter
interval [−1, 2]. Hint. Let s = −r in (a).

Answer: x = −s and y = c+ ds where c = , d = , and s ∈ [−1, 2].

(c) Find a parametrization of L starting at (1, 0) and ending at (−2, 4) with parameter
interval [0, 3]. Hint. Let t = s+ 1 in (b).

Answer: x = a+bt and y = c+dt where a = , b = , c = ,
d = , and t ∈ [0, 1].

(d) Find a parametrization of L starting at (1, 0) and ending at (−2, 4) with parameter
interval [0, 1]. Hint. Let u = 1

3 t in (c).

Answer: x = a+bu and y = c+du where a = , b = , c = ,
d = , and u ∈ [0, 1].
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(24) The equation of a cycloid is given by

{
x = t− sin t

y = 1− cos t
. At the point t = π

6 ,
dy

dx
= a+

√
b

and
d2y

dx2
= −4(c+ d

√
b) where a = , b = , c = , and d = .

(25) Find the tangent lines to the curve whose parametric equations are

{
x = t2 − 2t+ 1

y = t4 − 4t2 + 4

at the point (1, 4). Answer: y = ax + b and y = c where a = , b = , and
c = .

(26) Consider the curve r = 3θ. At the point where θ = π,
dy

dx
= aπ + b and

d2y

dx2
= −1

3(c+ πd)

where a = , b = , c = , and d = .

(27) The slope of the tangent line to the cardioid r = 2−2 cos θ at the point on the curve where

θ = π
4 is a +

√
b where a = and b = .

(28) At the point on the limaçon r = 1 + 2 sin θ where θ = π
4 ,
dy

dx
= a− 2

√
b and

d2y

dx2
= −c(d

√
b+ 2) where a = , b = , c = , and d = .

(29) Consider the curve given by the parametric equations

{
x = cos t+ t sin t

y = sin t− t cos t
. At the point

where t = π
3 ,
dy

dx
=
√
a and

d2y

dx2
=
b

c
where a = , b = , and c = .

(30) Consider the curve given by the parametric equations


x =

1− t2

1 + t2

y =
2t

1 + t2

. At the point where

t = 3, the slope of the tangent line to the curve is
a

3
where a = .

(31) Let C be the curve whose parametric equations are

{
x = tan t

y = sec t
. At the point

(
1√
3
, 2√

3

)
,

dy

dx
=

1

a
where a = and

d2y

dx2
=
b

c

√
b where b = and c = .

(32) The length of that portion of the curve

{
x = 6t2

y = 4
3 t

3 − 9t
which lies between the origin and

the point (54,9) is .

(33) Let a > 0. The arc length of the cycloid

{
x = a(t− sin t)

y = a(1− cos t)
for 0 ≤ t ≤ 4π is .

(34) The length of the curve

{
x = sin3 t

y = cos3 t
for 0 ≤ t ≤ π is .

(35) The length of the curve

{
x = 3 + arctan t

y = 2− ln
√

1 + t2
from t = 0 to t = 1 is ln(a +

√
b) where

a = and b = .
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(36) The length of the curve

{
x = et cos t

y = et sin t
from t = 0 to t = ln 8 is a

√
b where a = and

b = .

(37) Estimate the length of the curve

{
x = t

y = 1
3 t

3
from t = 0 to t = 1

2 .

Answer: with an error of less than 10−4 the length is
161

a
where a = . Hint: Use the

binomial theorem to approximate an intractable integrand.

(38) The area of the region that lies outside the circle r = a but inside the lemniscate r2 =

2a2 cos 2θ is a2(
√
b+ cπ) where b = and c = .

(39) The area enclosed by the curve r = 6 sin 3θ is .

(40) The area of the region common to the circles (x− 1)2 + y2 = 1 and x2 + (y − 1)2 = 1
is a+ bπ where a = and b = .

(41) The area enclosed by the curve r = 1 + cos 2θ is .

(42) Use integration in polar coordinates to find the area of the region which lies inside the
circle x2 + y2 = 2 and to the right of the line x = 1.

Answer: aπ + b where a = and b = .

(43) The area between the two loops of the limaçon r = 1 +
√

2 cos θ is a+ bπ where a =
and b = .

(44) The area of the region bounded by the astroid x2/3 + y2/3 = 1 is
a

8
where a = .

(45) The length of the curve r = 1− cos θ for 0 ≤ θ ≤ 2π
3 is .

(46) The length of the curve r = sin2 θ

2
for 0 ≤ θ ≤ π

2 is a−
√
a where a = .

(47) The arclength of the spiral of Archimedes, r = 3θ, where 0 ≤ θ ≤
√

3 is a
√
a+

a

b
ln(b+

√
a)

where a = and b = .

(48) The length of the hyperbolic spiral r =
1

θ
for 1 ≤ θ ≤

√
3 is
√
a− a√

b
+ ln

a+
√
b

1 +
√
a

where

a = and b = .

(49) The length of the curve r(t) = (2t, t2, 43
√

2 t3/2) between the points where t = 0 and t = 3
is .

(50) The length of the curve r(t) = et i + e−t j +
√

2 tk between the points where t = 0 and

t = 1 is a− 1

a
where a = .

(51) The length of the curve r(t) = (arctan t, 12 ln(1 + t2),−5) between the points where t = 0

and t = 1 is ln(a+
√
b) where a = and b = .

(52) The length of the logarithmic spiral r(t) = eθ between θ = 0 and θ = 4π is a(eb−1) where
a = and b = .

(53) A particle follows the path r(t) = (t, 23
√

2 t
3
2 , 12 t

2). The distance the particle travels be-
tween t = 0 and t = 4 is .

(54) The length of the curve forming the intersection of the surfaces 2x3 = 3y and x2 = z
between the origin and the point (3, 18, 9) is .
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(55) The length of the curve r(t) = 1
3(1 + t)

3
2 i + 1

3(1 − t)
3
2 j + 1

2 tk between the points where
t = −1 and t = 1 is .

(56) The length of the curve r(t) = (8t, 6t2, 3t3) between the points where t = 0 and t = 2 is
.

(57) The length of the curve forming the intersection of the surfaces y = 2
√

2x and z = lnx
between the points (1, 2

√
2, 0) and (2, 4, ln 2) is a+ ln b where a = and b = .

(58) The curves r(t) = (3t2 − 1, t− 1, ln t− 3t) and R(u) = (u2 + 1,−u− 1, eu+1 − u2 + u− 2)
intersect at the point ( , , ) . The cosine of their angle of intersection is

−
√

a

41
where a = .

(59) The curves r(t) = (et − 1, 2 sin t, ln(t+ 1)) and R(u) = (u+ 1, u2 − 1, u3 + 1) intersect at
the origin. The angle (in radians) at which the curves intersect is .

(60) The curves r(t) = (t2 − 1, t+ 3,−(t+ 4)) and R(u) = (u− 3, 2u− 4, u3 − 4u2 − 4u+ 18)
intersect at the point ( , , ). The cosine of their angle of intersection is
1

a
where a = .

(61) The curves r(t) = (t2−2, t2−2t−1, 2 ln(t−1)) and R(u) = (u2+3u+4, u2+2u, eu+1−2u−3)
intersect at the point ( , , ). The cosine of their angle of intersection

is
1

2
√
a

where a = .

(62) The curves r(t) = t i + (t2 + t− 4) j + (3 + ln t) k and R(u) = (u2− 8) i + (u2 − 2u− 5) j +
(u3− 3u2− 3u+ 12) k intersect at the point ( , , ). The cosine of their

angle of intersection is
6

a

√
2 where a = .

(63) The curves r(t) = et i + 2 sin(t+ π
2 ) j + (t2− 2) k and R(u) = u i + 2 j + (u2− 3) k intersect

at the point ( , , ). The cosine of their angle of intersection is
1√
a

where a = .

(64) Let f(t) = (t3 + t + 1, t2 − 4, t + cosπt) and g(t) = (et
2

+ 2t + 5, 3, t3 + t − 4). Then the
derivative of f × g at t = 0 is ( , , ) .

(65) Let f(t) = (t4 − 2t3 + t2 + t + 1, t4 − t3 + t2 − t + 1, 2t3 − t2 − t + 2) and g(t) = ‖ f(t)‖2.
Then Dg(1) = .

(66) Let f(t) = 2t2 i +−3 j and g(t) = i + t j + t2 k). Then

D(f × g)(−1) = ( , , ) .

(67) Let f(t) = (f1(t), f2(t), f3(t)), where f1(t) = t2 + t−1 + t−1, f2(t) = t3− t2 + 3− t−2, and
f3(t) = t4 − t3 + t2 − t+ 3. Also let g(t) = (g1(t), g2(t), g3(t)), where g1(t) = 2t(1 + t)−1,
g2(t) = (1− t)(1 + t2)−1, and g3(t) = t−1 + t−2 + ln t.

(a) If p = 〈f ,g〉, then Dp(1) = .

(b) If u = f × g, then Du(1) = ( , , ) .

(c) If n = ‖ f‖2, then Dn(1) = .

(68) Let f(t) = (et, ln(t+ 1), arctan t). Then Df(2) = ( , , ) and∫ 1

0
f(t) dt = ( , , ) .
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(69) Let f(t) = (t2 + t + 1) i + (t3 − 4) j + cosπtk and g(t) = (et
2

+ 5) i + 3 j + (t3 + t + 5) k.
Then D(f × g)(0) = ( , , ) .

(70) Let f(t) = (t3 + 2t2− 4t+ 1) i + (t4− 2t3 + t2 + 3) j + (t3− t2 + t− 2) k and g(t) = ‖ f(t)‖2.
Then Dg(1) = .

(71) Let f(t) = (t2 sin t+ cos t, et
2

+ et − 1, t3 − t2) and g(t) = (et sin t+ et cos t, arctan t2,
t4 − t2 + 3t− 2). Then D(f × g)(0) = ( , , ) .

(72) Let G(t) =

∫ t2

0
(cosu, e−u

2
, tanu) du. Then

G′(t) = ( , , ) .

(73) Let f(t) = f1(t) i+f2(t) j+f3(t) k where f1(t) = sin t+cos t+ t2−3t, f2(t) = t+2+tan t,
and f3(t) = t3 − t2 + arctan t. Also let g(t) = g1(t) i + g2(t) j + g3(t) k where

g1(t) = t+ et + e−t, g2(t) = t2 + et − e−t, and g3(t) = arctan t2 + et
2 − 3.

(a) If h = f + g, then Dh(0) = ( , , ) .

(b) If p = 〈f ,g〉, then Dp(0) = .

(c) If r = f × g, then Dr(0) = ( , , ) .

(d) If u = g × f , then Du(0) = ( , , ) .

(74) Let f(t) = f1(t) i+f2(t) j+f3(t) k where f1(t) = t3 +2t2−4t+1, f2(t) = t4−2t3 + t2 +3,
and f3(t) = t3 − t2 + t− 2. Let g(t) = ‖ f(t)‖2. Then Dg(1) = .

(75) lim
t // 0

(
tet

1− et
i +

et−1

cos t
j

)
= ( , ) .

(76) lim
t // 0

(
sin 3t

sin 2t
i +

ln(sin t)

ln(tan t)
j + tt k

)
= ( , , ) .

(77) Let G(t) =
t2 + 3t− 10

t2 − t− 2
i+sin

πt

2
j+

sin(t− 2)

t− 2
k. Then lim

t // 2
G(t) = ( , , ) .

(78) lim
t // 0

(
1− e3t2

t2
,
4 arctan (1 + t2)− π

t2
, (1 + t)3/t

)
= ( , , ).

(79) Let f(t) =


(t2 + t+ 1)i +

sin t

t
j + et

2
k if t < 0

cos(πt)i + (t+ 1)j + etk if 0 ≤ t < 1

(2t− 3)i + (t2 − 2)j + e
√
tk if t ≥ 1

. The function f is continuous at

every real number except t = .

(80) If r(t) =

(
1

t− 1
, ln(t+ 1),

√
5− t

)
, then the domain of r is ( , ) ∪ ( , ] .

(81) Let F(t) = 3t j + t−1 k and G(t) = 5t i +
√

10− t j. Then the domain of F + G is
( , ) ∪ ( , ] .

(82) Let F(t) = t2 i + t j + 2tk and G(t) =
1

t+ 2
i + (t + 4) j −

√
−tk. Then the domain of

F×G is ( , ) ∪ ( , ] .
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31.3. Problems

(1) Show that the equations 
x =

1− t2

1 + t2

y =
2t

1 + t2

parametrize the entire unit circle except for the point (−1, 0). (It is quite easy to show
that for any number t these equations produce a point lying on the unit circle. What is
not so easy is to show that if (a, b) is a point on the unit circle other than (−1, 0), then
there exists a number t such that x(t) = a and y(t) = b.)

(2) Show that if an object moves with constant velocity, then its angular momentum (with
respect to the origin) is constant. (The angular momentum L about the origin is defined
by L(t) = r(t) × mv(t), where m is the mass of the object, r is its position, and v its
velocity.)

(3) Explain why the curve r(t) = (2 cos 2t) i + (3 cos t) j for 0 ≤ t ≤ 4π is not a smooth curve.
Include a sketch of the curve, and on your sketch identify the points at which the tangent
vector vanishes.

(4) Fred is riding a ferris wheel at an amusement park. The radius of the wheel is 20 feet. His
friends Sally and Leslie are on the ground. Leslie sees that Sally is standing in the plane
of the ferris wheel 75 feet to the right of the bottom of the wheel. Leslie also notices that
the wheel is making 5 counterclockwise revolutions each minute. Sally throws a baseball
to Fred as he moves upwards. At the instant Fred is halfway up Sally throws the ball with
a speed of 60 ft/sec at an angle of 60◦ above the horizontal. The point at which the ball
leaves Sally’s hand is the same distance from the ground as the bottom of the wheel. How
close to Fred does the ball get? Give your answer to the nearest inch.

(5) Let f be a differentiable curve. Show that ‖ f(t)‖ is constant if and only if f(t) ⊥ Df(t)
for all t.

(6) The position of a particle at time t is given by r(t) =
1− 2t2

1 + 4t2
i +

4t

1 + 4t2
j +

2t
√

3t2 − 1

1 + 4t2
k

for all t > 1. Without actually calculating the velocity vector v(t) explain how you know
that it must be perpendicular to the position vector r(t) for every t > 1.
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31.4. Answers to Odd-Numbered Exercises

(1) x2, −1, 1

(3) 1− 2x2

(5) lnx

(7) 10, −8, 2, −4

(9) 0, 0, 1, 1, 1, 0

(11) 1− y2

(13) 4t, 4t− 1, 3− 4t, 4− 4t

(15) (a) 0, −2, 2, 0
(b) 0, −2, 0

(17) (a) 4, 0, 0, 2
(b) 4, 0, 0

(19) (a) −1, 0, 2, 3
(b) −1, 0, 0

(21) (a) 0, 1, 1, 0
(b) 0, 1, 0

(23) (a)
4

3
, −4

3

(b)
4

3
,

4

3

(c) 1, −1, 0,
4

3
(d) 1, −3, 0, 4

(25) 8, −4, 4

(27) 1, 2

(29) 3, 24, π

(31) 2, 3, 8

(33) 16a

(35) 1, 2

(37) 320

(39) 9π

(41)
3π

2

(43) 3, 1

(45) 2

(47) 3, 2

(49) 15

(51) 1, 2

(53) 12

(55)
√

3

(57) 1, 2
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(59)
π

2

(61) 2, −1, 0, 3

(63) 1, 2, −2, 5

(65) 20

(67) (a) 0

(b)
7

2
,

7

2
, −5

(c) 32

(69) −4, −6, 3

(71) 1, −3, −3

(73) (a) −1, 4, 1
(b) −1
(c) −4, −2, −4
(d) 4, 2, 4

(75) −1,
1

e

(77)
7

3
, 0, 1

(79) 1

(81) −∞, 0, 0, 10





CHAPTER 32

ACCELERATION AND CURVATURE

32.1. Background

Topics: velocity, speed, acceleration, tangential component of the acceleration (denoted by a
T

),
normal component of the acceleration of a curve (denoted by a

N
), arclength, parametrization by

arclength, curvature.

32.1.1. Definition. Let C be a curve parametrized by arclength. The curvature κ of C is the

rate of change of the unit tangent vector with respect to arclength; that is, κ(s) =

∥∥∥∥dTds
∥∥∥∥ where T

is the unit tangent vector and s is arclength.

259
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32.2. Exercises

(1) A particle P moves along a curve C. The position of P at time t is given by r(t) =
6t i +

√
2 t2 j + 5 k.

(a) When t = 6 the tangential component of the acceleration of P is
a

3
where a = .

(b) When t = 6 the normal component of the acceleration of P is
a
√
a

b
where a =

and b = .

(c) At the point r(6) the curvature of C is

√
2

a
where a = .

(2) A particle P moves along a curve C. The position of P at time t is given by r(t) =
3t i + 1

2 t
2 j− 7 k.

(a) At the point r(3) the equation of the tangent line to the curve C is R(u) = (a +
3u) i+(92 + bu) j+(c+du) k where a = , b = , c = , and d = .

(b) When t = 3 the tangential component of acceleration of P is
1√
a

where a = .

(c) When t = 3 the normal component of acceleration of P is
1√
a

where a = .

(d) At the point r(3) the curvature of C is
1

a
√

2
where a = .

(3) The motion of a particle is given by r(t) = 6t2 i + (43 t
3 − 9t) j. Then at time t its

(a) velocity is a(t) i + b(t) j where a(t) = and b(t) = .
(b) speed is .
(c) acceleration is a(t) i + b(t) j where a(t) = and b(t) = .
(d) tangential component of acceleration is .
(e) normal component of acceleration is .

(f) curvature is
12

(a(t))2
where a(t) = .

(4) A particle P moves along a curve C. Its position at time t is given by
r(t) = 2t i + t2 j + 1

3 t
3 k. Then

(a) the velocity of P at time t is i + j + k;
(b) the speed of P at time t is a+ btp where a = , b = , and p = ;
(c) the tangential component of the acceleration of P at time t is ;
(d) the normal component of the acceleration of P at time t is ;

(e) the unit tangent vector to C at time t is
2

a(t)
i+
b(t)

a(t)
j+
c(t)

a(t)
k where a(t) = ,

b(t) = , and c(t) = ;

(f) the unit normal vector to C at time t is
−2t

a(t)
i+
b(t)

a(t)
j+
c(t)

a(t)
k where a(t) = ,

b(t) = , and c(t) = ; and

(g) the curvature of C at time t is
2

a(t)
where a(t) = .

(5) A particle P moves along a curve C. Its position at time t is given by

r(t) =
4

5
cos t i + (1− sin t) j− 3

5
cos tk.

Then

(a) the velocity of P at time t is −4

5
a(t) i + b(t) j + c a(t) k where a(t) = ,

b(t) = , and c = ;
(b) the speed of P at time t is ;
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(c) the tangential component of the acceleration of P at time t is ;
(d) the normal component of the acceleration of P at time t is ;

(e) the unit tangent vector to C at time t is−4

5
a(t) i+b(t) j+c a(t) k where a(t) = ,

b(t) = , and c = ; and

(f) the unit normal vector to C at time t is−4

5
a(t) i+b(t) j+c a(t) k where a(t) = ,

b(t) = , and c = .

(6) The motion of a particle is given by r(t) = et i + e−t j +
√

2tk. Then at time t its
(a) velocity is a(t) i + b(t) j + c(t) k where a(t) = , b(t) = , and

c(t) = .
(b) speed is .
(c) acceleration is a(t) i+b(t) j+c(t) k where a(t) = , b(t) = , and c(t) = .
(d) tangential component of acceleration is .
(e) normal component of acceleration is .

(7) A particle P moves along a curve C in a plane. Its position at time t is given by

r(t) = (cos t+ t sin t) i + (sin t− t cos t) j

for all t ≥ 0.
(a) The unit tangent to C at time t is T(t) = a(t) i + b(t) j where a(t) = and

b(t) = .
(b) The unit normal to C at time t is N(t) = a(t) i + b(t) j where a(t) = and

b(t) = .
(c) The tangential component of the acceleration of P at time t is aT(t) = .
(d) The normal component of the acceleration of P at time t is aN(t) = .

(e) The curvature of C at time t is κ(t) =
1

a(t)
where a(t) = .

(8) The curvature of the curve x2 + 4xy−2y2 = 10 at the point (2, 1) is
a

2
√
b

where a =

and b = .

(9) The curvature of the ellipse x2 + 4y2 = 8 at the point (2, 1) is
a

b
√
b

where a = and

b = .

(10) The curvature of the spiral of Archimedes r = θ at the point where θ = 2
√

2 is
a

b
where

a = and b = .

(11) The curvature of the curve x3 − xy + y2 = 7 at the point (1, 3) is
a

b
where a = and

b = .

(12) The curvature of the curve r(t) = (t− sin t) i + (1− cos t) j at the point
(
π
3 −

√
3
2

)
i + 1

2 j is
1

a
where a = .

(13) The curvature of the logarithmic spiral r = eaθ at an arbitrary point is
(
eb
√
c
)−1

where
b = and c = .

(14) The curvature of the curve r(t) = t2 i + (t4 − t5) j at the point r(0) is .

(15) The curvature of the curve 2x2 + 2xy − y2 = 2 at the point (1, 0) is
a

b
√
b

where a =

and b = .
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(16) The curvature of the curve y = lnx is greatest at the point x =
a√
b

where a = and

b = . At that point the curvature is
b

c
√
c

where c = .

(17) At the point where the curve y = 3x−x3 attains a local maximum its curvature is .

(18) The curvature of the cardioid r = 2(1 − cos θ) is
a

b
rp where a = , b = , and

p = .
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32.3. Problems

(1) Explain carefully why the principal unit normal vector N to a curve is perpendicular to
the unit tangent vector T.

(2) Consider a parametrized curve in R3 with velocity v and acceleration a. Give a careful
and informative derivation of the formula for its curvature

κ =
‖v × a‖
‖v‖3

from the definition of curvature (see 32.1.1). Hint. Derive the formulas

v =
ds

dt
T and a =

d2s

dt2
T + κ

(
ds

dt

)2

N.

From these conclude that

‖v × a‖ = κ

(
ds

dt

)3

.

(3) Let r(t) = t i + 2
3(t2 + 1) j and P = r(1).

(a) Make a careful sketch of the graph of the range of r for 0 ≤ t ≤ 2.
(b) Add to your sketch the vector a(1), with its initial point at r(1). (Include an expla-

nation of how you found this vector.)
(c) Add to your sketch the vectors a

T
(1)T(1) and a

N
(1)N(1) with initial point r(1).

(Include an explanation of how you found these vectors.)
(d) Compute the arc length along the curve from 0 to an arbitrary point t. (Include an

explanation but not the details of the calculation that produced your answer.)
(e) Compute the curvature of the curve at t = 1. (Include an explanation but not the

details of the calculation that produced your answer.)

(4) A parametrized curve r in R3 is a unit speed curve if its speed ‖v(t)‖ is 1 for each t.
Recall that the length of arc between the points r(0) and r(t) on such a curve is s =∫ t
0‖v(τ)‖ dτ = t; thus we may say that a unit speed curve has been parametrized by
arclength.

In this problem we wish to attach a moving orthonormal frame of coordinates to a curve
in such a way that one of the axes always points in the direction of the unit tangent vector
T and a second axis points in the direction of the unit normal N. (The third axis is called
B, for unit binormal.) When a geometric curve (as opposed to a parametrized one) has
been parametrized by arclength (or when a parametrized curve has been reparametrized
by arclength), the business of deriving properties of the moving T−N−B frame is fairly
straightforward. That is the task here. The idea is to write up a coherent introduction
to moving frames. Include the material in items (a)–(i) below, but do not break up your
exposition into chunks called (a), (b), (c), etc.

(a) Let a, b > 0. Find a constant c with the property that the helix r defined by

r(t) =
(
a cos(ct), a sin(ct), bct

)
is a unit speed curve.

(b) For an arbitrary (unspecified) unit speed curve define for each t

T(t) = v(t),

N(t) =
a(t)

‖a(t)‖
, and

B(t) = T(t)×N(t).
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Show that for each t the vectors T(t), N(t), and B(t) are mutually perpendicular
unit vectors.

(c) Make a careful sketch of the unit speed helix in part (a) showing the vectors T(t),
N(t), and B(t) at several different points.

(d) If r is a unit speed curve define its curvature κ(t) at t by κ(t) = ‖a(t)‖. Show that
T′(t) = κ(t)N(t) for each t.

(e) Let r be a unit speed curve. Show that for each t there exists a number τ(t) (which
we call the torsion of r at t) such that B′(t) = −τ(t)N(t). (Don’t worry about the
sign; it’s just a convention. Many people use the opposite one.)

(f) Let r be a unit speed curve. Show that

N′(t) = −κ(t)T(t) + τ(t)B(t)

for every t.

(g) Let A(t) be the matrix


0 κ(t) 0

−κ(t) 0 τ(t)

0 −τ(t) 0

. What vector do we obtain by letting

the matrix A(t) act on the vector
(
T(t),N(t),B(t)

)
?

(h) For a unit speed curve derive the formula

τ(t) =
[r′(t), r′′(t), r′′′(t)]

(κ(t))2

where [x,y, z] is the scalar triple (or box) product of x, y, and z.
(i) Compute the curvature and the torsion of the unit speed helix in part (a). Use these

computations to illustrate the following two assertions. (i) Curvature measures how
far a curve is from being a straight line.
(ii) Torsion measures how far a curve is from being a plane curve.

(5) For the path traversed by a particle discuss the appropriate units for curvature (in either
the English or metric system).
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32.4. Answers to Odd-Numbered Exercises

(1) (a) 8
(b) 2, 3
(c) 486

(3) (a) 12t, 4t2 − 9
(b) 4t2 + 9
(c) 12, 8t
(d) 8t
(e) 12
(f) 4t2 + 9

(5) (a) sin t, − cos t,
3

5
(b) 1
(c) 0
(d) 1

(e) sin t, − cos t,
3

5

(f) cos t, sin t,
3

5

(7) (a) cos t, sin t
(b) − sin t, cos t
(c) 1
(d) t
(e) t

(9) 4, 5

(11) 6, 5

(13) aθ, 1 + a2

(15) 6, 5

(17) 6
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MULTIPLE INTEGRALS





CHAPTER 33

DOUBLE INTEGRALS

33.1. Background

Topics: Riemann sums, double integrals, iterated integrals, double integrals in polar coordinates,
improper double integrals, moment of a plane region about a line, density and mass of a plane
lamina, center of gravity (or mass).

33.1.1. Theorem (Fubini’s theorem for double integrals). If a real valued function f is continuous
on the rectangle R = [a, b]× [c, d], then∫∫

R
f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx .

269
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33.2. Exercises

(1) Let f(x, y) = 2y−x2 and R be the region in the xy-plane bounded by the coordinate axes

and the line x+ y = 1. Then
∫
R f dA =

1

a
where a = .

(2) Let f(x, y) = x2 + y2. Then the integral of f over the region bounded by the straight line

y = x and the parabola y = x2 is
3

a
where a = .

(3) Let f be a continuous function of two variables. Then∫ 2

0

∫ √8−y2

y
f(x, y) dx dy =

∫ a

0

∫ g(x)

b
f(x, y) dy dx+

∫ c

a

∫ h(x)

b
f(x, y) dy dx

where a = , b = , c = , g(x) = , and h(x) = .

(4) The volume of the region in the first octant bounded by the surfaces z = x2y, y2 = x, and
y = x2 is given by the double integral∫ b

a

∫ h(x)

g(x)
j(x, y) dy dx

where a = , b = , g(x) = , h(x) = , and j(x, y) = .

(5) The volume of the region satisfying x2 + y2 ≤ 4 and 0 ≤ z ≤ 2x can be expressed as the
iterated integral ∫ b

a

∫ g(y)

f(y)
2x dx dy

where a = , b = , f(y) = , and g(y) = or as the iterated
integral ∫ d

c

∫ l(x)

k(x)
2x dy dx

where c = , d = , k(x) = , and l(x) = .

(6) Let f be a continuous function of two variables. Then∫ 4

0

∫ 2x

1
3
x
f(x, y) dy dx+

∫ 6

4

∫ −3x+20

1
3
x

f(x, y) dy dx

=

∫ a

0

∫ h(y)

g(y)
f(x, y) dx dy +

∫ b

a

∫ j(y)

g(y)
f(x, y) dx dy

where a = , b = , g(y) = , h(y) = , and

j(y) = .

(7) Let f be a continuous function of two variables. Then∫ 2

0

∫ √3 y
0

f(y, z) dz dy +

∫ 4

2

∫ √16−y2

0
f(y, z) dz dy =

∫ a

0

∫ h(z)

g(z)
f(y, z) dy dz

where a = , g(z) = , and h(z) = .

(8) Let f be a continuous function of two variables. Then∫ 3

0

∫ 1
2
x

1
6
x2
f(x, y) dy dx =

∫ b

a

∫ h(y)

g(y)
f(x, y) dx dy

where a = , b = , g(y) = , and h(y) = .
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(9)

∫ 1

0

∫ 1

√
y

cosx3 dx dy =
a

b
sin a where a = and b = .

(10) 1
100

∫ 10

0

∫ 10

0
min{x, y} dx dy =

a

b
where a = and b = . [Note: min{x, y}

denotes the smaller of the numbers x and y.]

(11)

∫ 2

0

∫ 1

0
emax{x2,4y2} dy dx =

a

b
(ep − a) where a = , b = , and p = .

[Note: max{u, v} denotes the larger of the numbers u and v.]

(12)

∫ 1

0

∫ π/4

arctan y
sec5 x dx dy =

1

a
(b
√

2− 1) where a = and b = .

(13)

∫ 1

0

∫ 2

2y

x

1 + x3
dx dy =

a

b
ln b where a = and b = .

(14)

∫ 1

−1

∫ 1

|y|
(x+ y)2 dx dy =

a

b
where a = and b = .

(15)

∫ 1

0

∫ 2

−1/2
(x+ y)ex

2+2xy dy dx =
1

a
ep +

b

2
where a = , p = , and b = .

(16) Let R be the rectangle [0, 3] × [0, 2] in the xy-plane and let P be the partition of this
rectangle into squares induced by partitioning both [0, 3] and [0, 2] into subintervals of
length one. Estimate the volume of the solid lying above R and below the surface z =
x2y + 2x by calculating the Riemann sum associated with the partition P and choosing
the upper right corner of each square as a sample point.

Answer: .

(17)

∫ 1

0

∫ π

0
x2 cosxy dx dy = .

(18) If R = [0, 3]× [4, 5], then

∫∫
R

xy√
x2 + y2 − 16

dx dy = a(
√
b− 1) where a = and

b = .

(19) Express

∫ 2

0

∫ √8−y2

2
xy dx dy as an integral in polar coordinates.

Answer:

∫ b

a

∫ c

f(θ)
rp sin θ cos θ dr dθ where a = , b = , c = ,

f(θ) = , and p = .

(20) The integral of g(x, y) = cos(x2 + y2) over the unit disk is a sin b where a = and
b = . Hint. Polar coordinates.

(21) Let R be the region defined by 1 ≤ x2 + y2 ≤ 2, and x ≥ 0. The integral of f(x, y) = x2

over this region is
a

8
π where a = .

(22) Let D be the closed unit disk in the plane. Then

∫∫
D

e−(x
2+y2) dx dy =

(
1− 1

a

)
b where

a = and b = .
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(23) In polar coordinates

∫ 3

0

∫ √45−y2

2y

(
x4 + x2y2

)
dx dy can be written as∫ a

0

∫ b

0
rm sinn θ cosp θ dr dθ where a = , b = , m = ,

n = , and p = .

(24) The volume of the solid bounded below by the xy-plane, above by the cone x2 + y2 = z2,

and on the sides by the cylinder x2 + y2 = 2y is
a

9
where a = .

(25) The area of the region bounded by the lemniscate
(
x2+y2

)2
= 2a2(x2−y2) is .

(26)

∫ 1

0

∫ 1

y

1

(1 + x2 + y2)3/2
dx dy =

π

a
where a = .

(27) The volume of the solid bounded below by the xy−plane, above by the ellipsoid
x2

a2
+
y2

a2
+
z2

b2
= 1, and on the sides by the cylinder x2 + y2 − ay = 0 is 2

9a
2b(mπ − n)

where m = and n = .

(28) Let R be the region bounded by the limaçon r = 2 + cos θ. Then

∫∫
R

(x2 + y2)
1
2 dA =

a

3
π

where a = .

(29) Let α > 0 and 0 < β < π
2 . Then

∫ α sinβ

0

∫ √α2−y2

y cotβ
ln(x2 + y2) dxdy = αpβq(ln r− s) where

p = , q = , r = , and s = .

(30) Rotate that portion of the curve y =
1

x
where x ≥ 1 about the x-axis. Then the volume

of the resulting solid is and its surface area is .

(31)

∫ ∞
0

sin t

t
dt = a where a = .

Hint. Consider the iterated integral

∫ ∞
0

∫ ∞
0

e−st sin t ds dt. You may use the fact that in

this problem the order of integration of the improper integrals may be reversed.

(32) Let f(x, y) =
x2 − y2

(x2 + y2)2
. Then

∫ 1

0

∫ 1

0
f(x, y) dx dy = and∫ 1

0

∫ 1

0
f(x, y) dy dx = . This result does not violate Fubini’s theorem because

. Hint. Although these integrals can be
evaluated by hand, they take some effort. Use a CAS.

(33) Let D be the region in the xy-plane lying above the line y = x and below the parabola
y = −x2 + 2. Then the moments of D about the x-axis and the y-axis are given by

Mx =
a

5
where a = and My =

b

4
where b = . The centroid is at

(
−1

c
,

2

d

)
where c = and d = .

(34) A plane lamina L is bounded by the lines y = x, y = 2 − x, and the x-axis; its density
function ρ is given by ρ(x, y) = 2x + y + 1 grams per square centimeter. Then the mass

of L is grams and its center of mass is located at the point
( a

10
,
b

20

)
where

a = and b = .

(35) Let L be a plane lamina in the shape of the upper half of a circular disk of radius 3 centered
at the origin. The density of the lamina at any point is proportional to the square of the
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distance of the point from the center of the circle. Then the center of mass of L is located

at the point

(
a,

b

5π

)
where a = and b = .

(36) Let E be the solid region determined by the surfaces x = 0, x = 1, y = 0, y = 1, z = 0,
and z = 2−x2−y2. The base of this region is the square S = [0, 1]× [0, 1] in the xy-plane.
Estimate the volume of E by using the midpoint rule for double integrals to approximate
the integral

∫∫
S

f(x, y) dxdy where f(x, y) = 2− x2 − y2. For this approximation divide S

into nine squares each having side 1
3 . Calculate the corresponding Riemann sum evaluating

f at the center of each square. According to this estimate the volume of E is approximately
a

54
where a = . The error made in this approximation (that is, the absolute value

of the difference between the approximate volume and the true volume) is
b

54
where b =

.

(37) Let E be the solid region determined by the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
0 ≤ z ≤ 2− x− y. The base of this region is the square S = [0, 1]× [0, 1] in the xy-plane.
Estimate the volume of E by using the midpoint rule for double integrals to approximate
the integral

∫∫
S

f(x, y) dxdy where f(x, y) = 2−x−y. For this approximation divide S into

nine squares each having side 1
3 . Calculate the corresponding Riemann sum evaluating f

at the center of each square.According to this estimate the volume of E is approximately
. The error made in this approximation (that is, the absolute value of the difference

between the approximate volume and the true volume) is .

(38) If R = [0, 4]× [0, π6 ], then

∫∫
R

x cos y dx dy = .

(39) If R = [0, 4]× [0, π6 ], then

∫∫
R

x cos(xy) dx dy =
a

π
where a = .
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33.3. Problems

(1) Let f(x, y) =
1

2x− y
over the region R where 0 ≤ y ≤ 2x and x ≤ 3. Determine whether

the function f is integrable over R. Find
∫∫
R

f(x, y) dA if it exists.

(2) Let f(x, y) =
1
√
xy

over the region R = [0, 4] × [0, 4]. Show that f is integrable over R

and find
∫∫
R

f(x, y) dA.

(3) Let f(x, y) =
1

(2x− y)2
over the region R where 0 ≤ y ≤ 2x and x ≤ 3. Determine

whether the function f is integrable over R. Find
∫∫
R

f(x, y) dA if it exists.

(4) Let f(x, y) =
1√

2x− y
over the region R where 0 ≤ y ≤ 2x and x ≤ 3. Determine whether

the function f is integrable over R. Find
∫∫
R

f(x, y) dA if it exists.

(5) Let f(x, y) =
1√
|x| · |y|

over the region R = [−1, 4] × [−1, 4]. Explain carefully why∫∫
R

f(x, y) dA is improper. Show that f is integrable over R and find
∫∫
R

f(x, y) dA.

(6) Let f(x, y) =
1√
|x2 − y|

over the region R = [0, 1] × [0, 1]. Explain carefully why∫∫
R

f(x, y) dA is improper. Show that f is integrable over R and find
∫∫
R

f(x, y) dA.

(7) Derive the formula

∫ ∞
0

e−x
2
dx =

1

2

√
π. Hint. Do exercise 22.
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33.4. Answers to Odd-Numbered Exercises

(1) 4

(3) 2, 0, 2
√

2, x,
√

8− x2

(5) −2, 2, 0,
√

4− y2, 0, 2, −
√

4− x2,
√

4− x2

(7) 2
√

3,
z√
3

,
√

16− z2

(9) 1, 3

(11) 1, 2, 4

(13) 1, 3

(15) 4, 5, −3

(17) π

(19) 0,
π

4
, 2
√

2, 2 sec θ, 3

(21) 3

(23) arctan 1
2 , 3
√

5, 5, 0, 2

(25) 2a2

(27) 3, 4

(29) 2, 1, α,
1

2

(31)
π

2

(33) 9, −9, 2, 5

(35) 0, 24

(37) 1, 0

(39) 9





CHAPTER 34

SURFACES

34.1. Background

Topics: quadric surfaces, spheres, ellipsoids, elliptic paraboloids, hyperboloids of 1 and 2 sheets,
parametrized surface, level surface.
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34.2. Exercises

(1) The surface z = 1
3

√
36(x2 − 1) + 4y2 is the upper half of which quadric surface?

Answer.

The curve obtained when the surface is cut by the plane z = 2
√

3 is an ellipse whose major
axis is of length and whose minor axis is of length .

(2) The surface z = 2
√

1
2(x2 + 2) + 1

3y
2 is the upper half of which quadric surface?

Answer. .

The curve obtained when the surface is cut by the plane z = 2
√

3 is an ellipse whose major
axis is of length and whose minor axis is of length .

(3) Let w = f(x, y, z) =

[(
y√
x

)2

+

(
2z√
x

)2
]1/2

. The level surface which results when the

value of w is set to 4 is a(n)

which opens along the positive -axis.

(4) Let w = f(x, y, z) = 3− 6z +
√

9x2 + 4y2. The level surface at w = 3 is the upper half of
a(n) which opens along the positive -axis.

(5) Consider the surface in R3 defined by f(x, y) =
2xy

x2 + y2
if (x, y) 6= (0, 0) and f(0, 0) = 0.

Then the plane z = c intersects the surface for all values of c in the interval [a, b] where
a = and b = .

(6) Let f(x, y) =
1 +

√
y2 − 4

3 +
√

25− x2
. The domain of f is the set of all (x, y) in R2 such that

x ∈ [ , ] and y ∈ ( , ] ∪ [ , ). The range of f is [ , ).

(7) The surface whose parametrization is given by r(u, v) = (u, v, u − 3) with u, v ∈ R is a
plane whose equation is ax+ by− z+ c = 0 where a = , b = , and c = .

(8) The surface whose parametrization is given by

r(u, v) = (u, 2u cos v, 3u sin v)

with u ≥ 0 and 0 ≤ v ≤ 2π is the upper half of an elliptic opening along
the -axis.

(9) The surface whose parametrization is given by

r(u, v) = (u, u cos v, u sin v)

with u ≥ 0 and 0 ≤ v ≤ 2π is the upper half of a(n) cone opening along
the -axis.

(10) The surface whose parametrization is given by

r(u, v) = (cosu, v, sinu)

with 0 ≤ u ≤ 2π and v ∈ R is a circular whose axis lies along the -axis.

(11) The surface whose parametrization is given by

r(u, v) = (cosu, sinu, v)

with 0 ≤ u ≤ 2π and v ∈ R is a cylinder whose axis lies along the -axis.
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(12) Let S be the portion of the cylinder x2 + z2 = 1 in R3 that lies between the planes y = 0
and x+ y = 2. A parametric representation of S is

r(u, v) = ( cosu , , )

where 0 ≤ u ≤ 2π and ≤ v ≤ .

(13) Let S be that portion of the hyperboloid x2 + y2 − z2 = −1 that lies above the rectangle
[−1, 1]× [−2, 2] in the xy-plane. A parametric representation of S is

r(u, v) = (u , v , )

where −1 ≤ u ≤ 1 and −2 ≤ v ≤ 2.

(14) Let S be that portion of the elliptic paraboloid x + y2 + 2z2 = 4 for which x ≥ 0. A
parametric representation of S is

r(u, v) = ( , u , )

where −2 ≤ u ≤ 2 and −
√
a(u) ≤ v ≤

√
a(u) with a(u) = .
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34.3. Problems

(1) Suppose 0 < a < b. In R3 let C0 be the circle in the xz-plane of radius a centered at the
point (b, 0, 0). Let T be the surface of revolution formed by revolving C0 about the z-axis.
Find a (reasonably simple) parametrization of the torus T.

Hint. Let P be a point on T. Then there exists a circular cross-section C of T which
contains the point P and which is coplanar with the z-axis. This circle can be specified by
a single parameter θ: the angle between the positive x-axis and the vector from the origin
to the center of C. The location of P on C can also be specified by a single parameter φ:
the angle between the vector in the xy-plane from the center of C to the outer portion of
the surface T and the vector from the center of C to the point P .
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34.4. Answers to Odd-Numbered Exercises

(1) hyperboloid of one sheet, 12, 4

(3) elliptic paraboloid, x

(5) −1, 1

(7) 1, 0, −3

(9) circular, x

(11) circular, z

(13)
√

1 + u2 + v2

(15) 0, 2π, 0, sinu, 2− cosu





CHAPTER 35

SURFACE AREA

35.1. Background

Topics: surfaces of revolution, surface area.
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35.2. Exercises

(1) The area of the surface which is formed when the curve

2x = y
√
y2 − 1 + ln

(
y −

√
y2 − 1

)
for 2 ≤ y ≤ 5 is revolved about the x-axis is .

(2) The area of the surface generated when the curve

y2 − 2 ln y = 4x

from y = 1 to y = 2 is revolved about the x-axis is
a

3
π where a = .

(3) The area of the surface obtained by revolving that portion of the astroid{
x = sin3 t

y = cos3 t

for which 0 ≤ t ≤ π

2
about the x-axis is

aπ

5
where a = .

(4) A zone of a sphere is the portion of its surface which lies between two parallel planes
which intersect the sphere. The altitude of the zone is the distance between the planes.
The surface area of a zone of height h of a sphere of radius a is .

(5) The surface area of the solid which results from revolving the curve 3x2 + 4y2 = 12 about

the x-axis is
a√
3
πp + bπ where a = , p = , and b = .

(6) A surface is defined parametrically by

R(u, v) = u cos v i + u sin v j + uk

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(a) The equation of the tangent plane to the surface at the point (−1
2 , 0,

1
2) is ax+by+z =

c where a = , b = , and c = .

(b) The area of the surface is .

(7) A surface is defined parametrically by

R(u, v) = u cos v i + u sin v j + v k

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

(a) The equation of the tangent plane to the surface at the point (−1
2 , 0, π) is ax+by+z =

c where a = , b = , and c = .

(b) The area of the surface is a(b+ ln(1 + b)) where a = and b = .

(8) The surface area in the first octant cut from the cylindrical surface x2 + y2 = a2 by the
plane z = x is .

(9) Rotate the portion of the parabola y = x2 where 0 ≤ x ≤ 1 about the y-axis. The area of

the surface thus obtained is
π

a
(b
√
b− 1) where a = and b = .

(10) Let R(u, v) = (u − v, u + v, uv) and D be the unit disk in the plane. Then the area of

R(D) is
π

a
(b
√
b− 8) where a = and b = .

(11) The surface area of that portion of the sphere x2 + y2 + z2 = 14z that is inside the
paraboloid x2 + y2 = 5z is aπ where a = .
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(12) The surface area of that portion of the parabolic cylinder x2 = 1 − z bounded by the

planes y = 0, z = 0, and y = x with x, y, z ≥ 0 is
1

a
(b
√
b − 1) where a = and

b = .

(13) The circular cylinder x2 + y2 = x divides the unit sphere into 2 pieces. Let U be the piece
inside the cylinder and V be the one outside. Then the ratio of the surface area of V to

the surface area of U is
a+ b

a− b
where a = and b = .

(14) The area of that portion of the plane x + y + z = 1 lying inside the elliptic cylinder
x2 + 2y2 ≤ 1 is

√
aπ where a = .

(15) The surface area of that portion of the cone z2 = x2 + y2 lying between the planes z = 0
and z = 1 is .

(16) Represent the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1 (where a, b, and c are positive constants)

parametrically using the spherical coordinates φ and θ. Then the surface are of the ellipse

is

∫ 2π

0

∫ π

0

√
f(φ, θ) dφdθ where

f(φ, θ) = .
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35.3. Problems

(1) You are considering the problem of calculating the surface area of a solid of revolution.
The curve y = f(x) (for a ≤ x ≤ b) has been rotated about the x-axis. You set up a
partition (x0, x1, . . . , xn) of [a, b] and approximate the surface area of the resulting solid by
connecting consecutive points

(
xk−1, f(xk−1)

)
and

(
xk, f(xk)

)
by a straight line segment,

which, when rotated about the x-axis, produces a portion of a cone. Taking the limit of
these conical approximations you end up with the integral

2π

∫ b

a
f(x)

√
1 +

(
f ′(x)

)2
dx

which you claim represents the surface area of the solid.
Your friend Fred has chosen to make cylindrical approximations rather than conical

ones and produces the integral

2π

∫ b

a
f(x) dx

which he claims represents the surface area. So you and Fred argue.
He says your formula is too complicated to compute. You say his is too simple to

work. Unable to convince him, you look up the formula in a well known calculus text and
find that the author agrees with you. Fred is unimpressed; he says the author probably
made the same mistake you did. You find several more references to support your work.
Fred thinks they all probably copied from the person who made the original mistake.

Find a completely convincing argument that even skeptical Fred will accept that his
formula can’t be correct and that yours is better.

(2) In many calculus texts the authors derive the formula for the arc length of a smooth
curve by taking the limit of sums of lengths of polygonal paths inscribed in the curve.
The purpose of this problem is to inquire into the possibility of doing the “same thing”
to find the surface area of a smooth surface. In particular, consider a (vertical) right
circular cylinder with height h and base radius r. Partition the surface of this cylinder by
m+ 1 equally spaced horizontal circles, thus creating m sub-cylinders of height h/m (and
radius r). Then partition each circle into n circular arcs by means of n equally spaced
points. (The points on one circle need not necessarily be directly above those on the circle
below.) Now approximate the surface area of each sub-cylinder by the area of triangles
inscribed in the sub-cylinder using these points as vertices. In each sub-cylinder there will
be 2n such triangles—n having two vertices on the upper circle and n having two vertices
on the lower circle. Thus, altogether, there will be 2mn triangles the sum of whose areas
approximates the surface area of the original cylinder.

Now, of course, the question is: what can we say about the limit of the sum of the
areas of these triangles as m and n get large? Does it give us the correct expression for
the area of a cylinder? (How, incidentally, can we be sure what the surface area of a
right circular cylinder really ought to be?) Thinking about the problem in more precise
terms, we need to ask whether this double limit even exists. If not, can we make the
corresponding iterated limits exist by restricting m and n in some way? Does the answer
depend on the relative rates of growth of m and n? What happens if we require m and n
to be in some fixed ratio? That is, will the limit depend on the shape of the triangles?

After considering these matters, what do you think of the prospects of generalizing
the derivation of the formula for arc length to one for surface area?

(3) Let the curve y = f(x) (where a ≤ x ≤ b) be rotated about the y-axis. Show that the

surface area swept out is 2π

∫ b

a
|x|
√

1 + (f ′(x))2 dx. Hint. Parametrize the surface.



35.4. ANSWERS TO ODD-NUMBERED EXERCISES 287

35.4. Answers to Odd-Numbered Exercises

(1) 78π

(3) 6

(5) 4, 2, 6

(7) (a) 0, 2, π
(b) π,

√
2

(9) 6, 5

(11) 70

(13) π, 2

(15)
√

2π





CHAPTER 36

TRIPLE INTEGRALS

36.1. Background

Topics: triple integrals, iterated integrals, cylindrical coordinates, spherical coordinates, density,
mass, center of gravity, moment of inertia of a solid about a line.
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36.2. Exercises

(1)

∫ 3

0

∫ y

0

∫ y

0
z dx dz dy =

a

8
where a = .

(2) Sketch the region over which the function f is being integrated in the integral∫ 1

0

∫ 2−2z

0

∫ 1−z

0
f(x, y, z) dx dy dz.

(3) Choose functions g and h so that the expression∫ 1

0

∫ h(y)

0

∫ g(x,y)

0
dz dx dy

gives the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and 2x+y+3z = 1.
(Do not integrate.)

Answer: g(x, y) = and h(y) = .

(4) Sketch the region over which the function f is being integrated in the integral∫ 2

0

∫ 4−y2

0

∫ 2−y

0
f(x, y, z) dz dx dy.

(5) Use a triple integral to find the volume of the tetrahedron whose vertices are the points
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Answer: the volume is
1

a
where a = .

(6) The volume of the region bounded by the planes z = y, z = 0, x = 1, and the surface
y = x2 can be computed using any one of the following iterated triple integrals:∫ 1

0

∫ d

c

∫ b

a
dx dy dz

where a = , b = , c = , and d = ;

or

∫ 1

0

∫ d

c

∫ b

a
dy dx dz

where a = , b = , c = , and d = ;

or

∫ 1

0

∫ d

c

∫ b

a
dx dz dy

where a = , b = , c = , and d = ;

or

∫ 1

0

∫ d

c

∫ b

a
dz dx dy

where a = , b = , c = , and d = ;

or

∫ 1

0

∫ d

c

∫ b

a
dy dz dx

where a = , b = , c = , and d = ;

or

∫ 1

0

∫ d

c

∫ b

a
dz dy dx

where a = , b = , c = , and d = .



36.2. EXERCISES 291

(7) The volume of the solid in the first octant bounded by the planes x = y, x = 1, z = 0,

and z = y is
1

a
where a = .

(8) The volume of the solid bounded by y = 2x, y = 2, z = 0, x = 0, and z = 5 − x2 − y2 is
a

6
where a = .

(9) The integral of the function f(x, y, z) = x3 cosxz over the solid bounded by the planes
x = y, z = y, x = 1, and z = 0 is 1

2(a− sin a) where a = .

(10) Let E be the solid bounded above by the cylinder y2+z = 4, below by the plane y+z = 2,
and on the sides by the planes x = 0 and x = 2. If its density is y2 at each point (x, y, z)

in E, then its volume is and its mass is
a

10
where a = .

(11) Consider a block in the shape of a cube with edges of length a. Its density at each point
P is proportional to the distance between P and one fixed face of the cube. (Let k be the
constant of proportionality.) Then its mass is .

(12) Consider a block in the shape of a cube with edges of length a. Suppose that the block’s
density at each point is proportional to the square of the distance between the point and
one fixed vertex. (Let k be the constant of proportionality.) Then the mass of the block
is .

(13) The volume of the region in the first octant lying under the plane 3x+2y+6z = 6 is .

(14) Sketch the region over which the function f is being integrated in the integral∫ 1

0

∫ 1−x

0

∫ cos(πx/2)

0
f(x, y, z) dz dy dx.

(15) The volume of the region you sketched in the preceding exercise is aπp where a =
and p = .

(16) The volume of the solid bounded by the torus ρ = 3 sinφ is
a

4
πp where a = and

p = .

(17) A homogeneous solid sphere of radius a is centered at the origin. The center of gravity of
the hemisphere lying above the xy-plane is at the point (0 , 0 , ) .

(18) Let a > 0. A solid is bounded below by the xy-plane, above by the sphere x2+y2+z2 = 4a2,
and on the sides by the cylinder r = 2a cos θ. Then the moment of inertia of the solid

about the z-axis is
b

15
ap
(
π − c

15

)
where b = , p = , and c = .

(19) Let R be the solid region which lies above the cone x2 + y2 = 3z2 and inside the sphere

x2 + y2 + z2 = 1. The moment of inertia of R about the z-axis is
π

a
where a = .

(20) Suppose the density of a spherical object of radius a at a point p is proportional to
exp(−d3/a3) where d is the distance between p and the center of the sphere. Then the
mass of the object is .

(21) The solid R is bounded below by the paraboloid z = x2+y2 and above by the plane z = 4.
The density at each point of R is the distance from the point to the z-axis (in kilograms

per cubic meter). Then the mass of R is
a

15
π kilograms where a = .

(22) The volume of the solid bounded above by the plane z = y and below by the paraboloid

z = x2 + y2 is
π

a
where a = .
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(23) The volume of the solid bounded by z = 2r (r ≥ 0), r = 1− cos θ, and z = 0 is
aπ

3
where

a = .

(24) Let S be the solid bounded above by the plane z = y and below by the paraboloid
z = x2 + y2. If the density at each point of S is 20 times its distance from the z-axis, then

the mass of S is
a

15
where a = .

(25) The triple integral in cylindrical coordinates giving the volume of the solid bounded above
by the (lower of the two) surfaces x2 + y2 + z2 = 4 (z ≥ 0) and 3z = x2 + y2 and bounded
below by the plane z = 0 can be written either as∫ 2π

0

∫ b

0

∫ a

0
r dz dr dθ +

∫ 2π

0

∫ d

b

∫ c

0
r dz dr dθ

where a = , b = , c = , and d = ; or as∫ 2π

0

∫ c

0

∫ b

a
r dr dz dθ

where a = , b = , and c = .

(26) The volume of the solid which lies above the plane z =
√

3 and within the sphere x2 +

y2 + z2 = 4 is
(a
b
− b
√
b
)
π where a = and b = .

(27) The equation of the sphere centered at (0, 0, b) with radius b in spherical coordinates is ρ
= .

(28) Let C be a circular cone of base radius 1 and height 1. If the density at each point of C

is 5 times its distance from the base, then the mass of C is
5π

a
where a = .

(29) Let C be a circular cone of base radius 1 and height 1. If the density at each point of C
is 5 times the square of its distance from the vertex then the mass of C is .

(30) A hole of radius 1 millimeter is drilled through the center of a ball bearing of radius
2 millimeters. The volume of the solid which remains is aπ cubic millimeters where
a = .

(31) The value of
∫∫∫
R

f where f(x, y, z) =
√
z and R is the solid region determined by the

inequalities (1/
√

3)x ≤ y ≤ x, z ≥ 0, and x2 + y2 + z2 ≤ 16 is
a

63
π where a = .

(32) Find numbers a, b, c, and d and a function f such that the integral (in spherical coordi-
nates) ∫ d

0

∫ c

arctan
√
b

∫ √a
f(φ)

ρ2 sinφdρ dφ dθ

gives the volume of the solid bounded above by the (lower of the two) surfaces x2+y2+z2 =
15 (z ≥ 0) and 2z = x2 + y2 and below by the plane z = 0. Answer: a = ,

b = , c = , d = , and f(φ) = .
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36.3. Answers to Odd-Numbered Exercises

(1) 81

(3) 1
3(1− 2x− y), 1

2(1− y)

(5) 6

(7) 6

(9) 1

(11) 1
2ka

4

(13) 1

(15) 4, −2

(17)
3a

8

(19) 12

(21) 128

(23) 10

(25)
r2

3
,
√

3,
√

4− r2, 2,
√

3z,
√

4− z2, 1

(27) 2b cosφ

(29)
3π

2

(31) 128





CHAPTER 37

CHANGE OF VARIABLES IN AN INTEGRAL

37.1. Background

Topics: change of coordinates, one-to-one (= injective), onto (= surjective), Jacobian matrix,
Jacobian

37.1.1. Theorem (Abel’s theorem). Let
∑∞

k=0 ckx
k be a power series with radius of convergence

R > 0. If the series converges at x = R, then it converges uniformly on the closed interval [0, R]
and the function f defined by

f(x) =

∞∑
k=0

ckx
k

is continuous on [0, R].

(A proof of this theorem may be found on page 644 of Advanced Calculus, 3rd ed,̇ by A. E. Taylor
and W. R. Mann.)
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37.2. Exercises

(1) Let C be the circle of radius 4 in the uv-plane. A transformation T : R2 //R2 is defined
by T(u, v) = (u2 − v2, 2uv). Then the image of C under T is a of

.

(2) Consider the transformation T : R2 //R2 defined by T(u, v) = (4u+ 13v, 2u+ 7v). Then
the image under T of the square [0, 1]×[0, 1] is a parallelogram whose vertices are (0, ),
(4, ), ( , 7), and ( , ). The area of the image is .
Hint. Recall properties of the cross product.

(3) Let T : R2 // R2 be the transformation defined by T(u, v) = (u + v, v − u2). Let D be
the region bounded by the curves y = x (0 ≤ x ≤ 1), y = −x2 + 2x (1 ≤ x ≤ 2), y = x− 2
(1 ≤ x ≤ 2), and y = −x2 (0 ≤ x ≤ 1). There are two regions D∗1 and D∗2 in the uv-plane
which T maps onto D. The region D∗1 is a parallelogram whose vertices are ( -1 , ),
( , 4 ), ( -2 , ), and ( , 2 ); and D∗2 is a whose vertices
are ( 0 , 0 ), ( , 0 ), ( , ), and ( 0 , ).

(4) Let T be the triangular region whose vertices are (1, 0), (0, 1), and (0, 0). Then∫∫
T

sin(x+ y) cos(x− y) dx dy =
1

a
− 1

b
sin a where a = and b = .

(5) The area of that portion of the plane x + y + z = 1 which lies inside the elliptic cylinder
x2 + 2y2 = 1 is 1

2

√
aπ where a = .

(6) The volume of the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
≤ 1 is .

(7) Let D be the region bounded by the lines x + y = 0, x + y = 5, 3x − 2y = 0, and

3x − 2y = 5. Let f(x, y) = xy − y. Then

∫∫
D

f(x, y) dx dy =
a

12
where a = .

Hint. Try x = 2r + s, y = 3r − s.

(8) The value of

∫∫
D

exp

(
2x− y
2x+ y

)
dx dy where D is the triangular region (0, 0), (1, 0), and

(12 , 1) is 1
a(b− 1) where a = and b = .

(9) The area of that portion of the plane 4x+6y−z = 1 which lies inside the elliptic paraboloid

z = 4x2 + 9y2 is

√
a π

6
where a = .

(10) Let E be the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
≤ 1. Then

∫∫∫
E

(
x2

a2
+
y2

b2
+
z2

c2

)
dx dy dz = .

(11) Let D be the square with vertices (±1, 0) and (0,±1). Then∫∫
D

e−(x+y)(x− y)2 dx dy =
1

a

(
b− 1

b

)

where a = and b = .

(12)

∫ 2

0

∫ 1
2
x

2x−3
exp

(
x+ y

2x− y

)
dy dx =

a

2

(
b− 1

b

)
where a = and b = .



37.2. EXERCISES 297

(13) The integral of f(x, y) = cos

(
π(2x− y)

3x+ y

)
over the region bounded by the lines y = 2x,

y = −3x+ 20, and y = 1
3x is

a

π
where a = .

(14) Let D be the triangular region in the xy-plane with vertices (0, 1), (1, 0), and
(
3
2 ,

1
2

)
. Then∫∫

D

(x + y − 1) cos
( π

16
(x − y + 1)3

)
dx dy =

1

a
where a = . Hint. Try the change

of variables u = x+ y − 1 and v = x− y + 1.
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37.3. Problems

(1) Consider the transformation T : R2 // R2 defined by T(u, v) = (3u − 4v, u + 5v). Prove
or disprove:
(a) T is one-to-one.
(b) T is onto.

(2) Prove or disprove: the mapping T : R2 // R2 defined by T(u, v) = (u2 − v2, 2uv) is
one-to-one.

(3) Consider the transformation T : R2 //R2 defined by T(u, v) = (4u+ 13v, 2u+ 7v). Prove
or disprove:
(a) T is one-to-one.
(b) T is onto.

(4) Consider the transformation T : R2 //R2 defined by T(u, v) = (8u+ 12v, 6u+ 9v). Prove
or disprove:
(a) T is one-to-one.
(b) T is onto.

(5) Let D be the region bounded by the lines x + y = 0, x + y = 6, x = 2y, and x = 2y − 3,

and let F (x, y) = x + 2y. Explain in detail how to find

∫∫
D

F (x, y) dx dy by making use

of the change of variables T

{
x = 2r − s
y = r + s

. Carry out the computation.

(6) Let D be the region bounded by y = x (0 ≤ x ≤ 1), y = −x2 + 2x (1 ≤ x ≤ 2), y = x− 2

(1 ≤ x ≤ 2), and y = −x2 (0 ≤ x ≤ 1). Explain in detail how to compute

∫∫
D

(x−y) dx dy

in three different ways. (Carry out the computations to check that you get the same
answer each time.) Hint. For two of the ways try the change of variables x = u + v and
y = v − u2.

(7) Give an argument showing that
∞∑
n=1

1

n2
=
π2

6
.

Hint. Start by showing that
∞∑
n=1

1

n2
=

∫ 1

0

∫ 1

0

dx dy

1− xy
.

To evaluate the integral change variables: obtain u and v axes by rotating the x and y
axes counterclockwise by π/4 radians. Then make use of Abel’s theorem 37.1.1.
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37.4. Answers to Odd-Numbered Exercises

(1) circle, radius 16

(3) 1, −2, 3, −1, square, 1, 1, 1, 1

(5) 6

(7) 55

(9) 53

(11) 3, e

(13) 40





CHAPTER 38

VECTOR FIELDS

38.1. Background

Topics: vector fields, flow lines, divergence, curl, conservative fields, potential functions, open sets,
connected sets, simply connected sets.

38.1.1. Definition. A vector field is incompressible (or solenoidal) if its divergence is zero.
It is irrotational if its curl is zero.
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38.2. Exercises

(1) The (nonparametric) equation of the flow line of the vector field F(x, y) = x i− y j which
passes through the point (4, 3) is .

(2) The (nonparametric) equation of the flow line of the vector field F(x, y) = y i− x j which
passes through the point (4, 3) is .

(3) The (nonparametric) equation of the flow line of the vector field F(x, y) = x i +x3 j which
passes through the point (1, 1) is 3y = f(x) where f(x) = .

(4) Let f(x, y) =
√
x2 + y2 for all (x, y) 6= (0, 0). Then ∇f(x, y) = P (x, y) i +Q(x, y) j where:

P (x, y) = and Q(x, y) = .

Sketch the gradient field of f .

(5) The (parametric) equation of the flow line of the vector field F(x, y, z) = 2x i + z j− z2 k
which passes through the point (e2, 0, 1) at time t = 1 is r(t) = a(t) i+ b(t) j+ c(t) k where
a(t) = , b(t) = , and c(t) = .

(6) The (parametric) equation of the flow line of the vector field F(x, y, z) = (y + 1) i + 2 j +
(2z)−1 k which passes through the point (1, 1, 1) at time t = 1 is r(t) = a(t) i+b(t) j+c(t) k
where a(t) = , b(t) = , and c(t) = .

(7) A (parametric) equation of the flow line of the vector field F(x, y) = 3t2x i + y j which
passes through the point (2, 1) is r(t) = a(t) i + b(t) j where a(t) = and
b(t) = .

(8) An example of a potential function f for the vector field F(x, y) = (y cosx − cos y) i +
(sinx+ x sin y) j is f(x, y) = .

(9) Consider the set S = {(x, y) : x 6= 0}. The set S (is/is not) open; it
(is/is not) connected; it (is/is not) simply connected.

(10) Consider the set S = {(x, y) : x2 + y2 ≤ 1 or 4 < x2 + y2 < 9}. The set S (is/is
not) open; it (is/is not) connected; it (is/is not) simply connected.

(11) Consider the set S = {(x, y) : 1 < x2 + y2 < 25}. The set S (is/is not) open; it
(is/is not) connected; it (is/is not) simply connected.

(12) Let f(x, y) = (x2 + y2 + 4x − 6y + 13)−1. Then the domain of f (is/is not)
open; it (is/is not) connected; it (is/is not) simply connected.

(13) Let f(x, y, z) = x2y3ez. Find each of the following (if they make sense):

(a) grad f = ;

(b) div f = ;

(c) curl f = .

(14) Let F(x, y, z) = yz2 i + x2y3 j + (x2 + y2 + z2) k. Find each of the following (if they make
sense):

(a) grad F = ;

(b) div F = ;

(c) curl F = .

(15) Let F(x, y, z) = 2xyez i + x2ez j + (x2yez + z2) k. Then

(a) ∇ · F = ;

(b) ∇× F = ; and

(c) a function f such that F = ∇f is given by f(x, y, z) = .
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(16) Let F(x, y, z) = x i + x2y2 j + x3y3z3 k. Then

(a) the divergence of F is

(b) and the curl of F is i + j + k.

(17) Let F(x, y, z) =
x

x2 + y2
i +

y

x2 + y2
j. Then the divergence of F is and the curl of

F is i + j + k.

(18) Let F(x, y, z) = x2 i + y2 j + z2 k. Then

(a) the divergence of F is

(b) and the curl of F is i + j + k.

(19) Consider the following vector fields:
(a) x i + y j + z k;
(b) (x2 + y2) i + (y2 + z2) j + (z2 + x2) k; and
(c) yz i + xz j + xy k.

The ones that are incompressible (solenoidal) are .

The ones that are irrotational are .

(20) Let r = x i + y j + z k and F =
r

‖ r‖p
. Then the divergence of F is zero when p = .

(21) Let F(x, y) = xy2 i + (x+ y) j and let D be the region bounded by the curves y = x2 and
y = x. Then ∫∫

D

(∇× F) · k dA = .
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38.3. Answers to Odd-Numbered Exercises

(1) xy = 12

(3) x3 + 2

(5) e2t, ln t,
1

t

(7) 2et
3
, et

(9) is, is not, is not

(11) is, is, is not

(13) (a) (2xy3ez, 3x2y2ez, x2y3ez)
(b) does not make sense
(c) does not make sense

(15) (a) 2yez + x2yez + 2z
(b) (0, 0, 0)
(c) x2yez + 1

3z
3

(17) 0, 0, 0, 0

(19) c, a and c

(21)
1

12
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CHAPTER 39

DIFFERENTIAL FORMS

39.1. Background

Topics: differential forms, wedge product.

Although differential forms can be defined in spaces of any dimension, in this course we will
work only with forms defined on subsets of R3. In the following take U to be a subset of R3.

39.1.1. Definition. A 0-form on U is a smooth scalar field defined on U .

Example: ω = x2y + sin(xz) is a 0-form on R3.

39.1.2. Definition. A 1-form on U is an expression of the form

ω = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz (1)

where P , Q, and R are smooth scalar fields (0-forms) defined on U . We usually write just

ω = P dx+Qdy +Rdz.

Example: ω = x2y dx+ xyz dy + eyz3 dz is a 1-form on R3.

Example: ω = x sinx dx+ y lnx dy is a 1-form on the right half plane.

Example: ω = y2 arctan y dy is a 1-form on the real line.

39.1.3. Definition. A 2-form on U is an expression of the form

ω = P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy (2)

where P , Q, and R are smooth scalar fields (0-forms) defined on U . We usually write

ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Example: ω = xyz dy ∧ dz + yz dz ∧ dx+ z dx ∧ dy is a 2-form on R3.

Example: ω =
xy

x2 + y2
dx ∧ dy is a 2-form on R2 with the origin excluded.

39.1.4. Definition. A 3-form on U is an expression of the form

ω = P (x, y, z) dx ∧ dy ∧ dz (3)

where P is a smooth scalar field (0-form) defined on U . We usually write

ω = P dx ∧ dy ∧ dz.

Example: ω = (x2 + y2 + z2) dx ∧ dy ∧ dz is a 3-form on R3.

The n-forms above (for n = 0, 1, 2, 3) are examples of differential forms. It will be conve-
nient (for the purposes of this course) to regard a p-form for p > 3 as identically 0. We denote by
Gp(U) the family of p-forms on the region U . Thus (in this course), G4(U) = G5(U) = · · · = 0.

Terms of differential forms which are multiplied by 0 are omitted. For example, the 1-form
P dx is understood to be P dx + 0 dy + 0 dz and the 2-form Qdz ∧ dx is understood to be 0 dy ∧
dz +Qdz ∧ dx+ 0 dx ∧ dy.

Let P , Q, and R be scalar fields on U . We say that ω = P dx + Qdy + Rdz is the 1-form
associated with the vector field F = P i + Q j + Rk. (And, of course, F is the vector field
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associated with ω.) Notice that a vector field is identically zero if and only if its associated 1-form
is.

Example: If F(x, y, z) = x2y i + y sin z j + exz k, then its associated 1-form is x2y dx+ y sin z dy+
exz dz.

Differential forms can be added. Addition of 0-forms (scalar fields) is familiar. We add 1-forms
by adding “coefficients”. If ω = P dx+Qdy +Rdz and µ = S dx+ T dy + U dz, then

ω + µ = (P + S) dx+ (Q+ T ) dy + (R+ U) dz.

Addition of 2-forms and 3-forms is similar.
Differential forms can be multiplied. The (wedge) product of a p-form ω and a q-form µ is

a (p+ q)-form denoted by ω ∧ µ. The wedge product has the following properties:

(1) The operation ∧ is associative. That is, if ω, µ, and ν are differential forms, then

(ω ∧ µ) ∧ ν = ω ∧ (µ ∧ ν);

(2) The distributive laws hold: if ω ∈ Gp and µ,ν ∈ Gq, then

ω ∧ (µ+ ν) = ω ∧ µ+ ω ∧ ν
and

(µ+ ν) ∧ ω = µ ∧ ω + ν ∧ ω;

(3) If ω is a 1-form, then ω ∧ ω = 0.

Note: The wedge symbol is usually not written when taking the product of a 0-form with another
differential form. For example, if we multiply the 0-form 3x2z by the 2-form dx∧dy we would write
3x2z dx∧ dy instead of 3x2z ∧ dx∧ dy. Furthermore, 0-forms are usually written on the left. Thus,
for example, if ω = 3x dx and µ = 2xz dy, then ω ∧ µ = 6x2z dx∧ dy. Note also that the number 0
acts as an annihilator on differential forms; that is, if ω is a k-form, then 0 · ω is the zero k-form.

39.1.5. Theorem. If ω and µ are 1-forms, then

ω ∧ µ = −µ ∧ ω.

Proof. You are asked to prove this fact as problem 1 below.

39.1.6. Example. If ω = x dx+ y dy and µ = y dx+ x dy, then

ω ∧ µ = (x dx+ y dy) ∧ (y dx+ x dy)

= xy dx ∧ dx+ x2 dx ∧ dy + y2 dy ∧ dx+ xy dy ∧ dy [by (2) above]

= x2 dx ∧ dy + y2 dy ∧ dx [by (3) above]

= (x2 − y2) dx ∧ dy [ by the preceding theorem]

39.1.7. Example. If ω = 2xy dx+ x2 dy and µ = x dx+ y dy + z dz, then

ω ∧ µ = (2xy dx+ x2 dy) ∧ (x dx+ y dy + z dz)

= 2x2y dx ∧ dx+ 2xy2 dx ∧ dy + 2xyz dx ∧ dz + x3 dy ∧ dx+ x2y dy ∧ dy + x2z dy ∧ dz
= (2xy2 − x3) dx ∧ dy − 2xyz dz ∧ dx+ x2z dy ∧ dz.



39.2. EXERCISES 309

39.2. Exercises

(1) Let ω = (3x+ yz) dx+ cos(xz) dy + (x2 + y) dz and µ = (x+ x2) dx+ ey dy + (y + z) dz.

Then ω + µ = dx+ dy + dz.

(2) Let ω = exy dz ∧ dx and µ = e−xy dy. Then ω ∧ µ = .

(3) Let ω = 3x dx+ y dy and µ = x3 dx+ z5 dz.

Then ω ∧ µ = dy ∧ dz + dz ∧ dx+ dx ∧ dy.
(4) Let ω = 3xy dx+ y2z dy + xy dz and µ = xz dy ∧ dz + 2y dz ∧ dx− dx ∧ dy.

Then ω ∧ µ = .

(5) Let ω = P dx+Qdy +Rdz and µ = S dx+ T dy + U dz be 1-forms.

Then ω ∧ µ = dy ∧ dz + dz ∧ dx+ dx ∧ dy.
(6) Let ω = 3yz dy ∧ dz − 5xy dx ∧ dy and µ = x2 dy ∧ dz + xyz dz ∧ dx+ z2 dx ∧ dy.

Then ω ∧ µ = .

(7) Let ω = x2y dy ∧ dz + xyz dz ∧ dx and µ = dx+ dy. Then

ω ∧ µ = .

(8) Let F = x i − y j + z k and G = yz i + xz j + xy k. Then the 1-form associated with the
vector field F×G is dx+ dy + dz.
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39.3. Problems

(1) Prove that if ω and µ are 1-forms, then

ω ∧ µ = −µ ∧ ω.
Hint. Consider (ω + µ)2.

(2) Let f be a scalar field (that is, a 0-form) on a region in R3. Show that df is the 1-form
associated with ∇f .
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39.4. Answers to Odd-Numbered Exercises

(1) 4x+ yz + x2, cos(xz) + ey, x2 + 2y + z

(3) yz5, −3xz5, −x3y
(5) QU −RT , RS − PU , PT −QS
(7) (x2y + xyz) dx ∧ dy ∧ dz





CHAPTER 40

THE EXTERIOR DIFFERENTIAL OPERATOR

40.1. Background

Topics: exterior differential operator.

40.1.1. Definition. The exterior differentiation operator d is a mapping which takes
k-forms to (k + 1)-forms. That is d : Gk //Gk+1. It has the following properties:

(i) If f is a 0-form on R3, then d(f) is just the differential (or total derivative) df of f . That
is,

d(f) = df = fx dx+ fy dy + fz dz;

(ii) d is linear (that is, if ω and µ are k-forms and c is a constant, then d(ω + µ) = dω + dµ
and d(cω) = c dω);

(iii) d2 = 0 (that is, d(dω) = 0 for every k-form ω);
(iv) If ω is a k-form and µ is any differential form

d(ω ∧ µ) = (dω) ∧ µ+ (−1)kω ∧ dµ.

Example: If ω = xy2 sin z, then

dω = y2 sin z dx+ 2xy sin z dy + xy2 cos z dz [by (i)]

Example: If ω = x2ez, then

dω = 2xez dx+ x2ez dz [by (i)]

Example: If ω = xy2z3 dy, then

dω = d(xy2z3) ∧ dy + xy2z3 d(dy) [by (iv)]

= d(xy2z3) ∧ dy [by (iii)]

= (y2z3 dx+ 2xyz3 dy + 3xy2z2 dz) ∧ dy [by (i)]

= y2z3 dx ∧ dy + 2xyz3 dy ∧ dy + 3xy2z2 dz ∧ dy
= y2z3 dx ∧ dy − 3xy2z2 dy ∧ dz

Example: If ω = xy dx+ x2yz dy + z3 dz, then

dω = d(xy dx) + d(x2yz dy) + d(z3 dz) [by (ii)]

= d(xy) ∧ dx+ xy d(dx) + d(x2yz) ∧ dy + x2yz d(dy)

+ d(z3) ∧ dz + z3 d(dz) [by (iv)]

= d(xy) ∧ dx+ d(x2yz) ∧ dy + d(z3) ∧ dz [by (iii)]

= (y dx+ x dy) ∧ dx+ (2xyz dx+ x2z dy + x2y dz) ∧ dy
+ (3z2 dz) ∧ dz [by (i)]

= x dy ∧ dx+ 2xyz dx ∧ dy + x2y dz ∧ dy
= x(2yz − 1) dx ∧ dy − x2y dy ∧ dz.
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Remark: It simplifies computations to notice that d(dx ∧ dy) = d(dx) ∧ dy − dx ∧ d(dy) =
0 ∧ dy − dx ∧ 0 = 0.

Example: If ω = xz2 dx ∧ dy + xyz dz ∧ dx, then

dω = d(xz2 dx ∧ dy) + d(xyz dz ∧ dx) [by (ii)]

= d(xz2) ∧ (dx ∧ dy) + xz2 d(dx ∧ dy) + d(xyz) ∧ (dz ∧ dx)

+ xyz d(dz ∧ dx) [by (iv)]

= d(xz2) ∧ (dx ∧ dy)

+ d(xyz) ∧ (dz ∧ dx) [by the Remark above]

= (z2 dx+ 2xz dz) ∧ dx ∧ dy
+ (yz dx+ xz dy + xy dz) ∧ dz ∧ dx [by (i)]

= 2xz dz ∧ dx ∧ dy + xz dy ∧ dz ∧ dx
= −2xz dx ∧ dz ∧ dy − xz dy ∧ dx ∧ dz
= 2xz dx ∧ dy ∧ dz + xz dx ∧ dy ∧ dz
= 3xz dx ∧ dy ∧ dz

Example: If ω = xy2z3 dx ∧ dy ∧ dz, then dω = 0. [Proof: The differentiation operator takes
3-forms to 4-forms and (in this course) all 4-forms are zero. Or, you can give essentially the same
argument as in the Remark above.]
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40.2. Exercises

(1) Let f(x, y, z) = x3 + y2 + 2x sin z. Then

df = dx+ dy + dz .

(2) If ω = x3y2z5 dy, then

dω = dy ∧ dz + dz ∧ dx+ dx ∧ dy.

(3) Let ω = cos(xy2) dx ∧ dz. Then (in simplified form)

dω = .

(4) If ω = xy2z3 dx+ sin(xy) dy + eyz dz, then

dω = dy ∧ dz + dz ∧ dx+ dx ∧ dy.

(5) Let ω = x2y dy − xy2 dx. Then (in simplified form)

dω = .

(6) Let ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy. Then (in simplified form)

dω = .

(7) Let f be a 0-form. Then (in simplified form)

d(f dx) = dy ∧ dz + dz ∧ dx+ dx ∧ dy.

(8) Let ω = 3xz dx+ xy2 dy and µ = x2y dx− 6xy dz. Then (in simplified form)

d(ω ∧ µ) = .

(9) Let ω = yz dx+ xz dy + xy dz. Then

dω = dy ∧ dz + dz ∧ dx+ dx ∧ dy.

(10) Let ω = 2x5ez dx+ y3 sin z dy + (x2 + y) dz. Then

dω = dy ∧ dz + dz ∧ dx+ dx ∧ dy.

(11) Let ω = x dx+ xy dy + xyz dz. Then

dω = dy ∧ dz + dz ∧ dx+ dx ∧ dy.
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40.3. Problems

(1) Let U be a region in R2 and F : U // R2 be a smooth vector field. Consider the change
of coordinates in the plane given by

(x, y) = F(u, v).

(a) Show that
dx ∧ dy = det[dF] du ∧ dv.

(b) Apply (a) to the transformation taking polar to rectangular coordinates:{
x = r cos θ

y = r sin θ

(2) Let U be a region in R3 and F : U // R3 be a smooth vector field. Consider the change
of coordinates in R3 given by

(x, y, z) = F(u, v, w).

(a) Show that
dx ∧ dy ∧ dz = det[dF] du ∧ dv ∧ dw.

(b) Apply (a) to the transformation taking cylindrical to rectangular coordinates.
(c) Apply (a) to the transformation taking spherical to rectangular coordinates.
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40.4. Answers to Odd-Numbered Exercises

(1) 3x2 + 2 sin z, 2y, 2x cos z

(3) 2xy sin(xy2) dx ∧ dy ∧ dz
(5) 4xy dx ∧ dy
(7) 0, f3, −f2
(9) 0, 0, 0

(11) xz, −yz, y





CHAPTER 41

THE HODGE STAR OPERATOR

41.1. Background

Topics: Hodge star operator.

41.1.1. Definition. In R3 the Hodge star operator ∗ maps k-forms to (3 − k)-forms for
0 ≤ k ≤ 3. That is, if ω is a k-form then ∗ω is a (3 − k)-form. The operator has the following
properties:

(i) ∗ (ω + µ) = ∗ω + ∗µ if ω and µ are k-forms;
(ii) ∗ (fω) = f(∗ω) if f is a 0-form and ω is a k-form;
(iii) ∗ 1 = dx ∧ dy ∧ dz;
(iv) ∗ dx = dy ∧ dz; ∗ dy = dz ∧ dx; ∗ dz = dx ∧ dy; and
(v) ∗ ∗ ω = ω for every k-form ω.

Note: In even dimensional spaces Rn (n an even integer) condition (v) must be replaced by

∗ ∗ ω = (−1)k(n−k)ω when ω is a k-form.

41.1.2. Example. Let ω = x2yz dy ∧ dz + y sin z dx ∧ dy + exy dx ∧ dz. Then

∗ω = x2yz dx− exy dy + y sin z dz.
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41.2. Exercises

(1) If ω is the 3-form (x2y + 3y2z5) dx ∧ dy ∧ dz then ∗ω = .

(2) If ω is the 2-form z dx∧dy+yz dx∧dz+xy2 dy∧dz, then ∗ω = .

(3) Let ω = 3xz dx+ y2z dy + x2y3 dz. Then ∗ d ∗ ω = .

(4) Let ω = 3xz dx+ y2z dy + x2y3 dz. Then ∗ dω = P dx+Qdy +Rdz where
P = , Q = , and R = .

(5) Suppose we wish to define the inner product (or dot product) of two 1-forms ω =
P dx+Qdy+Rdz and µ = S dx+T dy+U dz to be the 0-form PS+QT +RU . Rephrase
this definition without mentioning the components of ω and µ.

Answer: 〈ω, µ〉 = ω · µ = .

(6) Let ω = sin(yz) dy ∧ dz + xyz dz ∧ dx + exz dx ∧ dy. Then ∗ d ∗ ω = P dx + Qdy + Rdz
where P = , Q = , and R = .

(7) Let ω = sin(yz) dy ∧ dz + xyz dz ∧ dx + exz dx ∧ dy. Then d ∗ dω = P dx + Qdy + Rdz
where P = , Q = , and R = .

(8) Let f be a scalar field. Write Laplace’s equation φxx + φyy + φzz = 0 in terms of d, ∗, and
f only.

Answer: = 0.

(9) Suppose we wish to define the scalar triple product [ω, µ, η] of three 1-forms ω =
P dx+Qdy+Rdz, µ = S dx+T dy+U dz, and η = V dx+W dy+X dz to be the 0-form

det


P Q R

S T U

V W X

. Rephrase this definition without mentioning the components of ω, µ,

and η.

Answer: [ω, µ, η] = .
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41.3. Problems

(1) Let F and G be vector fields on a region in R3. Show that if ω and µ are, respectively,
their associated 1-forms, then ∗ (ω ∧ µ) is the 1-form associated with F×G.
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41.4. Answers to Odd-Numbered Exercises

(1) x2y + 3y2z5

(3) 3z + 2yz

(5) ∗(ω ∧ (∗µ) ) (or ∗( (∗ω) ∧ µ))

(7) (xz + 1)exz + z, 0, x(1 + xexz)

(9) ∗(ω ∧ µ ∧ η)



CHAPTER 42

CLOSED AND EXACT DIFFERENTIAL FORMS

42.1. Background

Topics: closed differential forms, exact differential forms.

42.1.1. Definition. A k-form ω is closed if dω = 0. It is exact if there exists a (k − 1)-form η
such that ω = dη.
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42.2. Exercises

(1) The 1-form ω = yexy dx + xexy dy (is/is not) exact. If it is then ω = df
where f(x, y, z) = .

(2) The 1-form ω = x sin y dx+ y cosx dy (is/is not) exact. If it is then ω = df
where f(x, y, z) = .

(3) The 1-form ω =

(
arctan y√

1− x2
+
x

y
+ 3x2

)
dx +

(
arcsinx

1 + y2
− x2

2y2
+ ey

)
dy (is/is

not) exact. If it is then ω = df where

f(x, y, z) = .

(4) The 1-form ω =

(
2x3y + 2xy + 1

1 + x2

)
dx+ (x2 + ez) dy + (yez + 2z) dz (is/is not)

exact. If it is then ω = df where

f(x, y, z) = .

(5) The 1-form ω = (yzexyz+2xy3) dx+(xzexyz+3x2y2+sin z) dy+(xyexyz+y cos z+4z3) dz
(is/is not) exact. If it is, then ω = df where

f(x, y, z) = .

(6) Solve the initial value problem

ex cos y + 2x− ex(sin y)y′ = 0, y(0) = π/3.

Hint. Why is the 1-form (ex cos y + 2x) dx− ex(sin y) dy exact?

Answer: y(x) = .

(7) Solve the differential equation 2x3y2 + x4y y′ = 0 on the interval 1 ≤ x ≤ 10 subject to
the condition y(2) = 1

2 . Hint. Is 2x3y2 dx+ x4y dy exact?

Answer: y(x) = .
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42.3. Problems

(1) Show that every exact k-form is closed.

(2) Show that if ω and µ are closed differential forms, then so is ω ∧ µ.

(3) Show that if ω is exact and µ is closed, then ω ∧ µ is exact.

(4) Show that if the 1-form ω = P dx + Qdy + Rdz is exact, then Py = Qx, Pz = Rx, and
Qz = Ry.

(5) Suppose that F is a smooth vector field in R3 and that ω is its associated 1-form. Show
that ∗ dω is the 1-form associated with curl F.

(6) Let F be a vector field on R3 and ω be its associated 1-form. Show that ∗ d ∗ ω = div F.

(7) Let f be a smooth scalar field (that is, a 0-form) in R3. Use differential forms (but not
partial derivatives) to show that curl grad f = 0.

(8) Let F be a vector field on an open subset of R3. Use differential forms (but not partial
derivatives) to show that div curl F = 0.

(9) Use differential forms to show that the cross product of two irrotational vector fields
is incompressible (solenoidal). Hint. Show (without using partial derivatives) that
div(ω × µ) = curlω · µ− ω · curlµ.

(10) Explain how you know that there does not exist a vector field defined on R3 whose curl is
yz2 i + x4yz j + y2z k.
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42.4. Answers to Odd-Numbered Exercises

(1) is, exp(xy)

(3) is, arcsinx arctan y +
x2

2y
+ x3 + ey

(5) is, exp(xyz) + x2y3 + y sin z + z4

(7)
2

x2
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CHAPTER 43

MANIFOLDS AND ORIENTATION

43.1. Background—The Language of Manifolds

Topics: manifolds, parametrization, orientation, unit normal vector

In these notes, for simplicity, we consider only manifolds contained in R3. For more serious
applications manifolds in Euclidean spaces Rn of arbitrary dimensions must be considered.

A 0-manifold is a point (or finite collection of points).

A function is smooth if it is infinitely differentiable (that is, if it has derivatives of all orders).

A curve is a continuous image of a closed line segment in R.
Let C be a curve. The choice of an interval [a, b] and a continuous function f such that

C = f([a, b]) is a parametrization of C. If the function f is smooth, we say that C is a smooth
curve.

A 1-manifold is a curve (or finite collection of curves). A 1-manifold is flat if it is contained
in some line in R3. For example, the line segment connecting two points in R3 is a flat 1-manifold.

A surface is a continuous image of a closed rectangular region in R2.
Let S be a surface. The choice of an interval R = [a1, b1]× [a2, b2] and a continuous function f

such that S = f(R) is a parametrization of S. If the function f is smooth, we say that S is a
smooth surface.

A 2-manifold is a surface (or finite collection of surfaces). A 2-manifold is flat if it is
contained in some plane in R3. For example, the triangular region connecting the points (1, 0, 0),
(0, 1, 0), and (0, 0, 1) is a flat 2-manifold.

A solid is a continuous image of the 3-dimensional region determined by a closed rectangular
parallelepiped (to avoid a ten-syllable name many people say rectangular solid or even just box )
in R3.

Let E be a solid. The choice of a rectangular parallelepiped P = [a1, b1]× [a2, b2]× [a3, b3] and
a continuous function f such that E = f(P ) is a parametrization of E. If the function f is
smooth, we say that E is a smooth solid.

A 3-manifold is a solid (or finite collection of solids).

43.1.1. Notation. Let P , Q, and R be points in R3. We denote by 〈P,Q〉 the oriented line segment
starting at P and ending at Q. (It should be clear from context when this notation indicates a
line segment and when it indicates an inner product.) Also we denote by 〈P,Q,R〉 the oriented
triangular region whose vertices are P , Q, and R and whose orientation is P first, then Q, then R.

Notice that ∂〈P,Q〉 = Q− P and that ∂〈P,Q,R〉 = 〈P,Q〉+ 〈Q,R〉+ 〈R,P 〉.
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330 43. MANIFOLDS AND ORIENTATION

In the following paragraphs we will lay out some conventions for assigning orientations to the
manifolds we are considering. It should be noted that not every manifold admits an orientation.
When, for example, there is no way of assigning in a continuous fashion a unit tangent vector to
each point of a smooth 2-manifold, as is the case for a Möbius strip, we say that the manifold is
nonorientable.

Each of the manifolds we consider can be given two orientations, which we call, somewhat
arbitrarily, positive and negative. If M is an oriented manifold (that is, a manifold together with
an orientation), we denote by −M the same manifold with the opposite orientation. Furthermore,
if M1 and M2 are oriented k-manifolds, we denote by M1 +M2 the union of M1 and M2 where each
part keeps its original orientation.

Is there any point to defining −M and M1 +M2? For our purposes there is exactly one reason:
it has to do with integration. Shortly we will discuss (for k = 0, 1, 2, and 3) what it means to
integrate a differential form over an oriented manifold. We will adopt the following very important
conventions:

(1) Whenever M is an oriented k-manifold and ω is a k-form defined on some open set con-
taining M , we define ∫

−M
ω := −

∫
M
ω .

(2) Whenever M1 and M2 are oriented k-manifolds and ω is a k-form defined on some open
set containing M1 ∪M2, we define∫

M1+M2

ω :=

∫
M1

ω +

∫
M2

ω, .

Oriented points

A point P can be assigned one of two orientations: +1 or −1. There is no geometrical signifi-
cance in this assignment.

Oriented curves

An example of a flat 1-manifold is an interval in R. Its positive orientation is taken to be in
the direction of increasing values. That is, if you think of the interval as a subset of the x-axis; its
positive orientation is from left to right.

The orientations of an orientable 1-manifold are induced by its parametrization. If
r(t) = (r1(t), r2(t), r3(t)) (where a ≤ t ≤ b) is the parametrization of a smooth curve C in R3, the
positive orientation of C is in the direction from its “starting point” r(a) to its “ending point” r(b).

The orientation of a 1-manifold induces an orientation on its boundary. If r(t) =
(r1(t), r2(t), r3(t)) (a ≤ t ≤ b) is the parametrization of the curve C, then the boundary of C
consists of its positively oriented ending point together with its negatively oriented starting point;
that is,

∂C = r(b) + (−r(a)) .

43.1.2. CAUTION. If P and Q are points most people write Q − P for Q + (−P ). Do not
interpret this or the right side of the preceding formula in terms of the ordinary vector arithmetic
on coordinates of points in R3.

Oriented surfaces

An example of a flat 2-manifold is a rectangle in R2. Let R be the rectangle [a1, b1] × [a2, b2]
in the xy-plane. Its positive orientation is the one determined by the unit vector k = i × j. This
is often described as the “counterclockwise” orientation. Of course, the connection between these
two descriptions is given by the familiar “right-hand rule”.
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An orientation of a 2-manifold is induced by its parametrization. Suppose that
r(u, v) = (r1(u, v), r2(u, v), r3(u, v)) (where a1 ≤ u ≤ b1 and a2 ≤ v ≤ b2) is the parametriza-
tion of a surface S. Then we take the positive orientation of S to be in the direction of its normal
vector ru × rv.

An orientation of a 2-manifold induces an orientation on its boundary. Suppose that
r(u, v) = (r1(u, v), r2(u, v), r3(u, v)) (a1 ≤ u ≤ b1 and a2 ≤ v ≤ b2) is the parametrization of a
surface S and that S is bounded by a finite collection of simple closed piecewise smooth curves C1,
. . . , Cp. We write

∂S =

p∑
k=1

Ck

where we have chosen the orientation on each Ck by selecting a parametrization of Ck in such a
way that at each point p where the parametrization is differentiable the binormal vector B(p) =
T(p)×N(p) points away from the surface. (Here, T (p) is the unit tangent vector to the curve Ck
at p and N(p) is the usual unit normal which results from normalizing ru× rv.) A somewhat more
informal way of saying the same thing is, “if you walk around each of the curves Ck in a positive
direction with your head pointing in the direction of N, then the surface will always be on your
left.”

Oriented solids

An example of a flat 3-manifold is a rectangular parallelepiped in R3. Let R = [a, b]×[c, d]×[e, f ]
in R3. Just as we think of the positive (counterclockwise) orientation in R2 as “going from the
x-axis to the y-axis” we specify the positive orientation in R3 by selecting first the x-axis, then the
y-axis, and finally the z-axis. Any cyclic permutation of this choice (first y then z then x—or—
first z then x then y) is also regarded as positive. Other permutations (first y then x then z, for
example) produce negative orientations.

An orientation of a 3-manifold is induced by its parametrization. If r(u, v, w) =
(r1(u, v, w), r2(u, v, w), r3(u, v, w)) (where a1 ≤ u ≤ b1 and a2 ≤ v ≤ b2 and a3 ≤ w ≤ b3) is the
parametrization of a solid E, the orientation of E is positive if the Jacobian of r is everywhere
positive.

An orientation of a 3-manifold induces an orientation on its boundary. Suppose
that r(u, v, w) = (r1(u, v, w), r2(u, v, w), r3(u, v, w)) (where a1 ≤ u ≤ b1 and a2 ≤ v ≤ b2 and
a3 ≤ w ≤ b3) is a positive parametrization of a solid E and that E is bounded by a finite collection
of simple closed piecewise smooth surfaces S1, . . . , Sp. We write

∂E =

p∑
k=1

Sk

where we have chosen the orientation on each Sk by selecting a parametrization of Sk in such a
way that at each point p where the parametrization is differentiable the normal vector N(p) points
away from the solid. That is, the positive orientation induced by a solid on its boundary is the
“outward directed normal”.
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43.2. Exercises

(1) Let R be the surface parametrized by

r : [0, 2]× [0, 1] // R3 : (u, v) 7→ (u, v, 0) .

Then the (positive) orientation induced by r is determined by the unit normal vector,
which is given by

N(u, v) = ( , , ) .

We can write the boundary of R as the sum of four simple smooth curves

∂R = C1 + C2 + C3 + C4

whose induced orientations are given by
(a) r1(t) = ( , 0 , 0 ) where 0 ≤ t ≤ 1,

(b) r2(t) = ( 2 , , 0 ) where 0 ≤ t ≤ 1,

(c) r3(t) = ( , 1 , 0 ) where 0 ≤ t ≤ 1, and

(d) r4(t) = ( 0 , , 0 ) where 0 ≤ t ≤ 1.

(2) Let R be the surface parametrized by

r : [0, 2]× [0, 1] // R3 : (u, v) 7→ (v, u, 0) .

Then the (positive) orientation induced by r is determined by the unit normal vector,
which is given by

N(u, v) = ( , , ) .

We can write the boundary of R as the sum of four simple smooth curves

∂R = C1 + C2 + C3 + C4

whose induced orientations are given by
(a) r1(t) = ( 0 , , 0 ) where 0 ≤ t ≤ 1

(b) r2(t) = ( , 1 , 0 ) where 0 ≤ t ≤ 1,

(c) r3(t) = ( 2 , , 0 ) where 0 ≤ t ≤ 1, and

(d) r4(t) = ( , 0 , 0 ) where 0 ≤ t ≤ 1.

(3) Let C be the curve parametrized by

r(t) = (cos t, sin t, 2t) where −π ≤ t ≤ 9
2π.

Then ∂C = Q−P where P is the point whose coordinates are ( , , )
and Q is the point whose coordinates are ( , , ).

(4) Let D = {(u, v) : 0 ≤ v ≤ 20 and 0 ≤ u ≤ 2v} and T be the region in the xy-plane given
by the parametrization

r(u, v) : D // R2 : (u, v) 7→
(
1
5u+ 1

5v,−
3
5u+ 2

5v
)
.

Then ∂T = 〈O,P 〉+ 〈P,Q〉+ 〈Q,O〉 where O is the origin, P is the point with coordinates
( , ), and Q is the point with coordinates ( , ).

(5) Let A be the rectangular solid [0, 1]× [0, π]× [0, 2π] and E be the solid parametrized by

R(u, v, w) = (u sin v cosw, u sin v sinw, u cos v)

where (u, v, w) ∈ A. List four geometric/topological properties which characterize the
solid E:
(a) ;

(b) ;

(c) ; and

(d) .
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We know that E is positively parametrized by R because the Jacobian of R is given by

JR(u, v, w) = det[dR(u,v,w)] = ,

which is positive for all (u, v, w) ∈ A.

Parametrize the boundary of E by setting

r : [0, π]× [0, 2π] // R3 : (v, w) 7→ R(1, v, w) .

The unit normal vector N to ∂E is given by

N(v, w) = ( , , ).

We know that r is the parametrization of ∂E induced by the parametrization R of E
because

.

(6) Let E be the unit cube [0, 1]× [0, 1]× [0, 1]. Also let
S1 be the face of the cube lying in the xy-plane,
S2 be the face of the cube lying in the xz-plane,
S3 be the face of the cube lying in the plane x = 1,
S4 be the face of the cube lying in the plane y = 1,
S5 be the face of the cube lying in the yz-plane, and
S6 be the face of the cube lying in the plane z = 1.

In the following D denotes the unit square [0, 1]× [0, 1]. By an “appropriate” parametriza-
tion we mean one that produces the usual positive (outwards directed) orientation.
(a) An appropriate parametrization for S1 is

r : D // R3 : (u, v) 7→ ( , , ).

(b) An appropriate parametrization for S2 is

r : D // R3 : (u, v) 7→ ( , , ).

(c) An appropriate parametrization for S3 is

r : D // R3 : (u, v) 7→ ( , , ).

(d) An appropriate parametrization for S4 is

r : D // R3 : (u, v) 7→ ( , , ).

(e) An appropriate parametrization for S5 is

r : D // R3 : (u, v) 7→ ( , , ).

(f) An appropriate parametrization for S6 is

r : D // R3 : (u, v) 7→ ( , , ).
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43.3. Problems

(1) Let T be the triangular region consisting of all those points (x, y) in R2 such that x, y ≥ 0
and x+ y ≤ 1. Show by direct calculation that ∂2T = 0.

(2) Let T be the tetrahedron consisting of all those points (x, y, z) in R3 such that x, y, z ≥ 0
and x+ y + z ≤ 1. Show by direct calculation that ∂2T = 0.

(3) Sketch the boundaries of the following parametrized surfaces and use arrows to indicate
the direction of orientation.
(a) r(u, v) = sinu cos v i + sinu sin v j + cosuk with 0 ≤ u ≤ π

2 and 0 ≤ v ≤ 2π.
(b) R(u, v) = sinu sin v i + sinu cos v j + cosuk with 0 ≤ u ≤ π

2 and 0 ≤ v ≤ 2π.

(4) Sketch the boundaries of the following parametrized surfaces and use arrows to indicate
the direction of orientation.
(a) r(u, v) = u i + v j + (1− u− v) k with u, v ≥ 0 and u+ v ≤ 1.
(b) R(u, v) = v i + u j + (1− u− v) k with u, v ≥ 0 and u+ v ≤ 1.

(5) Sketch the boundaries of the following parametrized surfaces and use arrows to indicate
the direction of orientation.
(a) r(u, v) = u i + v j + (1− v2) k with 0 ≤ u ≤ 1 and −1 ≤ v ≤ 1.
(b) R(u, v) = v i + u j + (1− u2) k with −1 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
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43.4. Answers to Odd-Numbered Exercises

(1) 0, 0, 1, 2t, t, 2− 2t, 1− t
(3) −1, 0, −2π, 0, 1, 9π

(5) closed, ball, centered at the origin, has radius 1 (the preceding in any order), u sin v,
sin v cosw, sin v sinw, cos v, the normal N is directed outwards





CHAPTER 44

LINE INTEGRALS

44.1. Background

Topics: line integrals, Green’s theorem.

44.1.1. Definition. Let r : [a, b] // R3 be a parametrization of a curve C:

r(t) = x(t) i + y(t) j + z(t) k

If f is a scalar field in R3 whose domain is an open set containing C, we define∫
C

f ds :=

∫ b

a
f(r(t)) ‖ r′(t)‖ dt.

It would seem appropriate to call this integral a curve integral ; it is usually called a line integral.
Suppose next that F(x, y, z) = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k is a vector field in R3

whose domain is an open set containing C. Then we define the
integral of (the tangential component of) F over C by:∫

C

F · dr :=

∫ b

a
〈F(r(t)), r′(t) 〉 dt.

(Some people remember this formula by pretending that the equation dr = dx i + dy j + dz k

actually makes sense, and then substituting
dx

dt
dt for dx, and so on.) Another notation for this

integral is

∫
C

F ·T ds (where T is the unit tangent vector dr/ds).

Suppose finally that ω is the 1-form

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz.

Then we define ∫
C

ω :=

∫
C

F · dr

where F is the vector field associated with the 1-form ω.
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44.2. Exercises

(1) Let C be the curve given by r(t) = i + 2 j + t2 k for 0 ≤ t ≤ 1. Then

∫
C

e
√
z ds = .

(2) Let C be the curve x = y2 starting at (1, 1) and ending at (9, 3). Then∫
C

(−y dx+ 5x dy) = .

(3) Let F(x, y, z) = x i+y j+z k and C be the curve given by r(t) = t i+ t j+ tk for 0 ≤ t ≤ 1.

Then

∫
C

F · dr = .

(4) Let ω be the 1-form associated with the vector field F(x, y, z) = x i + y j + z k and let C

be the curve given by r(t) = t i + t j + tk for 0 ≤ t ≤ 1. Then

∫
C

ω = .

(5) Let C1 be the shortest path along the unit circle x2 + y2 = 1 from (1, 0) to (0, 1) and C2

be the line segment from (0, 1) to (4, 3). Also let ω = y dx− x dy. Then

∫
C1+C2

ω = a− 1
2b

where a = and b = .

(6) Let C be the curve given by r(t) = t i + 2t j + 3tk for 0 ≤ t ≤ 1. Then

∫
C

yz ds = a
√
b

where a = and b = .

(7) Let C be the curve given by r(t) = t i + 2
3 t

3/2 j + tk for 2 ≤ t ≤ 7. Then

∫
C

x+ y

y + z
ds =

a

3

where a = .

(8) The value of the line integral of the vector field x i + y j around the astroid x2/3 + y2/3 = 1
is .

(9) A thin wire has the shape of a quarter of the circle x2 + y2 = 64 with x ≥ 0 and y ≥ 0.
Suppose that its density function is ρ(x, y) = x+y. Then the mass of the wire is
and its center of mass is ( , ) .

(10) A wire lies along the intersection of the sphere x2+y2+z2 = 1 and the plane x+y+z = 0.
Its linear density at each point (x, y, z) is x2 grams per unit length. The mass of the wire
is grams.

(11) Let C be the curve y2 = x3 starting at (1,−1) and ending at (1, 1) and ω be the differential

form (5y − x) dx+ x2y dy. Then

∫
C

ω = .

(12) Let ω be the 1-form associated with the vector field F(x, y, z) = x i + y j + z k and let C

be the curve given by r(t) = (cos t) i + (sin t) j for 0 ≤ t ≤ 2π. Then

∫
C

ω = .

(13) Let ω = x dx + y dy + z dz and C be the curve given by r(t) = t2 i + 3t j + 2t3 k for

−1 ≤ t ≤ 2. Then

∫
C

ω = .
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(14) A particle moves in a force field given by F(x, y, z) = x i + y j + z k. The work done in
moving the particle along the parabola y = x2 in the xy-plane from x = −1 to x = 2 is

.

(15) Let C be the curve given by r(t) = (20 cos3 t, 20 sin3 t) for 0 ≤ t ≤ π/2 and let f(x, y, z) =
1 + 1

2y. Then
∫
C

f(x, y) ds = .

(16) If the curve C is given by r(t) = t i + tn j where 0 ≤ t ≤ 1 and n is a natural number, then∫
C

y dx+ (3y3 − x) dy + z dz =
a− n
b+ bn

where a = and b = .

(17) If C is the portion of the parabola y = x2 lying between (−2, 4) and (1, 1) and ω =

(x− 2y2) dy, then

∫
C

ω = .

(18) Let C be the path consisting of the straight lines segments connecting (in order) the points
(0, 0, 0), (2, 0, 0), (1, 3,−1), and (1, 3, 0). Let ω be the 1-form yz dx+ xz dy+ xy dz. Then∫
C

ω = .

(19) A thin wire has the shape of a portion of the helix x = t, y = cos t, z = sin t where
0 ≤ t ≤ 2π. Suppose that its density at any point is the square of its distance from

the origin. Then the mass of the wire is a
√
ab

(
a2b2

c
+ 1

)
and its center of mass is(

bc
ab2 + 1

a2b2 + c
, 0, 0

)
where a = , b = , and c = .

(20) Let F(x, y, z) = 2xy3ez i + 3x2y2ez j + x2y3ez k and C be the curve given by r(t) =
4tet i + t2 j + ln(1 + 2t) k for 0 ≤ t ≤ 1. Then

∫
C

F · dr = a eb where a = and

b = .

(21) Let F(x, y) = ex cos y i− ex sin y j and C be the curve given by r(t) = (cos t) i + (sin t) j for
0 ≤ t ≤ π

2 . Then
∫
C

F · dr = (cos a)− b where a = and b = .

(22) Let F(x, y, z) =
y + yz + x2y3z

1 + x2y2
i +

x+ xz + x3y2z

1 + x2y2
j + xy k and C be the curve given by

r(t) = (sin π
2 t, 1− cos π2 t, t

3) for 0 ≤ t ≤ 1. Then
∫
C

F · dr =
π + a

a
where a = .

(23) If C is the path given parametrically by r(t) = (t8 sin5 π
2 t) i+t10(1−cos9 π2 t) j for 0 ≤ t ≤ 1,

then
∫
C

(x5 − 2xy3) dx− 3x2y2 dy = −a
6

where a = .

(24) Let C be the curve given by r(t) = t i + t2 j + t3 k for 0 ≤ t ≤ 2 and let F(x, y, z) =
2xy3z4 i+3x2y2z4 j+4x2y3z3 k. The vector field F is conservative because F = ∇f where

f is the scalar field f(x, y, z) = . Thus

∫
C

F · dr = 2p where p = .

(25) Let C be the curve given by r(t) = t i + t2 j + t3 k for 0 ≤ t ≤ 2 and let ω = 2xy3z4 dx+
3x2y2z4 dy + 4x2y3z3 dz. The 1-form ω is exact because ω = df where f is the 0-form

f(x, y, z) = . Thus

∫
C

ω = 2p where p = .
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(26) If C is the path given parametrically by r(t) = t7/3 i + 1
3 arcsin 1

2(t + 1) j for 0 ≤ t ≤ 1,

then
∫
C

(xy cosxy + sinxy) dx+ (x2 cosxy) dy =
1

a
where a = .

(27) Let C be the path given parametrically by r(t) = (t− 1)et
2−t i + (4t2 − 1) j for 0 ≤ t ≤ 1,

then
∫
C

(y − x2) dx+ (x+ y2) dy = .

(28) Let F(x, y, z) = (x2+y2+z2)(x i+y j+z k) and C be the curve given by r(t) = t2 i+t5 j+t8 k

for 0 ≤ t ≤ 1. Then
∫
C

F · dr =
9

a
where a = .

(29) A force field in the plane is given by F(x, y) =
y2

x2
i − 2y

x
j. The work done in moving a

particle from the point (2, 4) to the point (1, 2) is .

(30) Let F(x, y) = (x2 sinx− y, 2x+ y3ey), R be the rectangular region [0, 2]× [0, 1], and C be
the counterclockwise path around the boundary of R. Then∫

C

F · dr = .

(31) Let F(x, y) = (2x− x2y, 3y + xy2) and let Ca and Cb be the circles centered at the origin
with radii a and b, respectively, where a < b. Suppose that Ca is oriented clockwise and
Cb is oriented counterclockwise. Then∫

Ca

F · dr +

∫
Cb

F · dr = .

(32) Let C be the positively oriented path bounding the rectangle [0, 2]× [0, 3]. Then∫
C

(x3 − xy2) dx+ 2xy dy = .

(33) The integral of the differential form ω = (y2 − arctanx) dx + (3x + sin y) dy along the

curve which forms the boundary of the region {(x, y) : y ≥ x2 and y ≤ 4} is −a
5

where
a = .

(34) The area of the region bounded by the curve r(t) = cos t i + sin3 t j (where 0 ≤ t ≤ 2π) is
a

4
where a = .

(35) Let F(x, y) = (2xy−x lnx) i + (x2y+ y2ey) j, let R be the rectangular region [1, 7]× [2, 5],
and let C be the counterclockwise path bordering R. Then∫

C

F · dr = .

(36) Let C be the (positively oriented) triangle whose vertices are (0, 0), (1, 1), and (0, 1). Then∫
C

(x2 + y2) dx+ (x2 − y2) dy = −1

a

where a = .

(37) Let F(x, y) = (−y, x) and let Ca and Cb be the circles centered at the origin with radii a
and b, respectively, where a < b. Suppose that Ca is oriented clockwise and Cb is oriented
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counterclockwise. Then∫
Ca

F · dr +

∫
Cb

F · dr = .

(38) The area inside the astroid x2/3 + y2/3 = a2/3 is bπa2 where b = .
Hint. r(t) = (a cos3 t) i+(a sin3 t) j (where 0 ≤ t ≤ 2π) is a parametrization of the astroid.

(39) Evaluate

∮
∂S
x2y dx+ xy5 dy where S is the square {(x, y) : |x| ≤ 1 and |y| ≤ 1}.

Answer: −a
3

where a = .

(40) Let D be the unit disk {(x, y) : x2 + y2 ≤ 1}. Then

∮
∂D

x2y dx − 3y2 dy = −a
4

where

a = .

(41) Evaluate

∮
∂R

(x3−y3) dx+(x3+y3) dy whereR is the annular region {(x, y) : 1 ≤ x2 + y2 ≤ 9}.
Answer: aπ where a = .

(42) Let D be the upper half of the disk of radius 2 centered at the origin of the plane and F
be a force field given by F(x, y) = x i + (x3 + 3xy2) j. Then the work done by the field in
moving a particle counterclockwise around the boundary of D starting at the point (−2, 0)
is aπ where a = .
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44.3. Problems

(1) Suppose that the smoothly parametrized curve C has length ` and that the vector field
F is bounded (that is, there is a constant M > 0 such that ‖F(x, y, z)‖ ≤ M for all
(x, y, z) ∈ R3). Show that ∣∣∣∣∫

C
F · dr

∣∣∣∣ ≤ `M .

(2) Let F(x, y) = F 1(x, y) i +F 2(x, y) j =
−y

x2 + y2
i +

x

x2 + y2
j and C be the unit circle given

its usual parametrization r(t) = (cos t) i + (sin t) j for 0 ≤ t ≤ 2π.
(a) Check that F 1

2 (x, y) = F 2
1 (x, y) for all (x, y) in the domain of f .

(b) Calculate
∫
C

F · dr.

(c) Either prove that F is conservative or prove that it is not.

(3) Let ω =
−y

x2 + y2
dx+

x

x2 + y2
dy. Show that ω is a closed 1-form but that it is not exact.

(4) Let R be a region in the xy-plane bounded by a simple closed curve C. Use Green’s
theorem to show that the area A of R is given by the following expressions

A =

∮
C
x dy = −

∮
C
y dx = 1

2

∮
C
x dy − y dx .

(5) Explain how to use problem 4 above to compute the area under one loop of the cycloid
r(t) = a(t− sin t) i + a(1− cos t) j (where 0 ≤ t ≤ 2π).

(6) Explain how to use problem 4 above to compute the area inside the ellipse
x2

a2
+
y2

b2
= 1.

(7) Use Green’s theorem to show that the coordinates of the centroid of a plane region bounded
by a simple closed curve C are given by

x =
1

2A

∮
C
x2 dy and y = − 1

2A

∮
C
y2dx

where A is the area of the region.

(8) Explain how to use problem 7 to find the centroid of the upper half of the disk of radius
a centered at the origin in R2. Carry out the computation you describe.
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44.4. Answers to Odd-Numbered Exercises

(1) 2

(3)
3

2

(5) 4, π

(7) 38

(9) 128, π + 2, π + 2

(11) 4

(13) 147

(15) 150

(17) 48

(19) 2, π, 3

(21) 1, e

(23) 5

(25) x2y3z4, 20

(27) 8

(29) 0

(31)
π

2
(b4 − a4)

(33) 96

(35) 360

(37) 2π(b2 − a2)
(39) 4

(41) 120





CHAPTER 45

SURFACE INTEGRALS

45.1. Background

Topics: surface integrals.

45.1.1. Definition. Let r : D // R3 be a parametrization of a surface S:

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k

If f is a scalar field in R3 whose domain is an open set containing S, we define∫∫
S

f dS :=

∫∫
D

f(r(u, v)) ‖ ru × rv‖ du dv.

Suppose next that F(x, y, z) = P (x, y, z) i + Q(x, y, z) j + R(x, y, z) k is a vector field in R3

whose domain is an open set containing S. Then we define∫∫
S

F · dS :=

∫∫
D

F · (ru × rv) dA

Thus ∫∫
S

F · dS =

∫∫
D

[
P
(
x(u, v), y(u, v), z(u, v)

)∂(y, z)

∂(u, v)

+Q
(
x(u, v), y(u, v), z(u, v)

)∂(z, x)

∂(u, v)

+R
(
x(u, v), y(u, v), z(u, v)

)∂(x, y)

∂(u, v)

]
du dv.

Some people remember this formula by pretending that the equation

dS = (dy ∧ dz) i + (dz ∧ dx) j + (dx ∧ dy) k

actually makes sense, and then substituting
∂(y, z)

∂(u, v)
du∧ dv for dy ∧ dz (see problem 2), and so on.

Another notation for this integral is

∫∫
S

F ·N dS where N(u, v) =
ru × rv
‖ ru × rv‖

.

Suppose finally that ω is the 2-form

P (x, y, z) dy ∧ dz +Q(x, y, z) dz ∧ dx+R(x, y, z) dx ∧ dy.
Then we define ∫

S

ω :=

∫∫
S

F · dS

where F is the vector field associated with the 1-form ∗ω.

345
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45.2. Exercises

(1) Let f : R3 // R : (x, y, z) 7→ xz. Then the surface integral of the scalar field f over the

triangle whose vertices are i, j, and k is

√
3

a
where a = .

(2) Let F(x, y, z) = x i + y j + z k and S be the triangular region whose vertices are (2, 0, 0),

(0,−4, 0), and (0, 0, 3). Then

∫∫
S

F · dS = .

(3) Let F(x, y, z) = −x i−y j+z2 k and S be that portion of the cone z =
√
x2 + y2 which lies

between the planes z = 1 and z = 2. Then the surface integral of (the normal component

of) the vector field F over the surface S is
a

6
π where a = .

(4) Let ω = x dy ∧ dz + y dz ∧ dx + 2z dx ∧ dy and S be the portion of the paraboloid
z = 5− x2 − y2 that lies above the xy-plane. Then the surface integral of ω over S is aπ
where a = .

(5) If S is that portion of the unit sphere which lies in the first octant (that is, where x, y,

z ≥ 0), then

∫∫
S

x dy dz + y dz dx+ z dx dy = .

(6) Let f : R3 // R : (x, y, z) 7→
√

1 + x2 + y2. Then the surface integral of the scalar field f
over the helicoid given parametrically by r : [0, 1]× [0, π] : (u, v) 7→ u cos v i + u sin v j + v k

is
a

3
π where a = .

(7) Find the surface integral of the scalar field f(x, y, z) = xyz over that portion of the unit

sphere centered at the origin which lies inside the cone z =
√
x2 + y2. Answer: .

(8) Let f : R3 //R be a smooth scalar field. Suppose we know that the the value f(p) of f at
each point p depends only on the distance of p from the origin and that f(1, 0,

√
3) = 7.

Then the surface integral of f over the sphere of radius 2 centered at the origin is aπ where
a = .

(9) Let V be the solid region bounded by the cylinder x2 + z2 = 1 and the planes y = 0 and
x+ y = 2, and let f : R3 //R : (x, y, z) 7→ xy. Then the surface integral of the scalar field

f over the boundary of V is −
(
a+

1

a
√
a

)
π where a = .

(10) Let C be the solid cylinder {(x, y, z) : x2 + y2 ≤ 9 and 0 ≤ z ≤ 2}. Then∫∫
∂C

(x2 + y2 + z2) dS = aπ where a = .

(11) Let F(x, y, z) = x2y i − 3xy2 j + 4y3 k and S be that portion of the elliptic paraboloid
z = x2 + y2 − 9 which lies below the rectangle [0, 2] × [0, 1] in the xy-plane. Then the
surface integral of (the normal component of) the vector field F over the surface S is

.

(12) Let F(x, y, z) = −y i+x j+3z k and S be the upper half of the sphere of radius 4 centered
at the origin. Then the surface integral of (the normal component of) the vector field F
over the surface S is aπ where a = .

(13) Let F(x, y, z) = x i + y j + 5 k and V be that portion of the solid cylinder x2 + z2 = 1
which lies between the xz-plane and the plane x+y = 2. Then the surface integral of (the
normal component of) the vector field F over the surface ∂V is aπ where a = .
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(14) Let ω = x dy ∧ dz + xy dz ∧ dx + xz dx ∧ dy and S be the (upward oriented) triangular
region whose vertices are (2, 0, 0), (0, 3, 0), and (0, 0, 6). Then the integral of the 2-form ω
over S is .

(15) Let ω = xz dx+ yz dy and H be the upper half of the (solid) ball of radius 2 centered at

the origin. Then

∫
H

d ∗ ω = and

∫
∂H

∗ω = .

(16) If S is the surface z = x2 + y2 (where x2 + y2 ≤ 1), then

∫∫
S

zdS =
π

a
(b
√

5 + 1) where

a = and b = .
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45.3. Problems

(1) Let r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k where u, v ∈ D be a parametrization of a
surface S. Define n(u, v) := ru × rv. Show that

n =
∂(y, z)

∂(u, v)
i +

∂(z, x)

∂(u, v)
j +

∂(x, y)

∂(u, v)
k

and that consequently ∫∫
S

F · dS =

∫∫
D

F · n du dv.

(2) Let r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k where u, v ∈ D be a parametrization of a
surface S. Let F = P i +Q j +Rk be a vector field on some open set containing S and µ
be its associated 1-form.

(a) Show that dx ∧ dy =
∂(x, y)

∂(u, v)
du ∧ dv.

(b) Show that if n = ru × rv and FN = F · n, then FN du ∧ dv = ∗µ, so that∫∫
S

F · dS =

∫
S

∗µ.
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45.4. Answers to Odd-Numbered Exercises

(1) 24

(3) 73

(5)
π

2

(7) 0

(9) 2

(11) −1

(13) 4

(15) 8π, 8π





CHAPTER 46

STOKES’ THEOREM

46.1. Background

Topics: Stokes’ theorem, divergence theorem, Green’s theorem, generalized Stokes’ theorem.

Here is perhaps the most important theorem in calculus. This is certainly the result that
deserves to be called the fundamental theorem of calculus.

46.1.1. Theorem (generalized Stokes’ theorem). Let M be a bounded smooth oriented k-manifold
and ω be a smooth (k − 1)-form on an open set containing M . If M has a nonempty piecewise
smooth boundary ∂M given the induced orientation , then∫

M
dω =

∫
∂M

ω .

If ∂M is empty, then ∫
M
dω = 0 .

351
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46.2. Exercises

(1) Let F(x, y, z) = y2z i + xz j + x2y2 k and S be that portion of the paraboloid z = x2 + y2

which lies inside the cylinder x2 + y2 = 1. Take S to be oriented inward. Then the surface
integral of (the normal component of) the vector field ∇×F over the surface S is .

(2) Let F(x, y, z) = x2 i+ey j+(x2+y2) k and let P be the solid in the first quadrant bounded
by the paraboloid z = 1− x2 − y2 and the coordinate planes. Use Stokes’ theorem to find
the integral of (the tangential component of) the vector field F over the boundary of P .

Answer:

∫
∂P

F · dr = .

(3) Let F(x, y, z) = z i + x j + y k and H be the upper half of the unit sphere centered at the
origin in R3.
(a) Without using any form of Stokes’ theorem evaluate the integral of the normal com-

ponent of the curl of F over H. Answer: .

(b) Repeat part (a), this time making use of Stokes’ theorem. Answer: .

(4) (a) Let F(x, y, z) = (x + y) i + (y − x) j + z3 k. Then the surface integral of the normal
component of the curl of F over the upper half of the unit sphere centered at the
origin is .

(b) Let ω = (x + y) dx + (y − x) dy + z3 dz and S be the upper half of the unit sphere
centered at the origin. Then

∫
S

dω = .

(5) Let ω = x2 dx + (2xy + x) dy + z dz and S be the closed unit disk centered at the origin

in the plane z = 0. Then, using the generalized Stokes’ theorem, we get

∫
S

dω = .

(6) Let F(x, y, z) = (ex+ arctan(y2z3)) i+y2z j+ z k and S be that portion of the hemisphere

x =
√

9− y2 − z2 which lies inside the cylinder y2 + z2 = 4. Use Stokes’ theorem to find
the surface integral of (the normal component of) the curl of F over the surface S. Answer:∫∫
S

curl F · dS = −aπ where a = .

(7) Let F(x, y, z) = 4x3z i + arctan(xyz) j − 3xez k and P be the pyramid whose base is the
square S0 = [0, 1] × [0, 1] in the xy-plane and whose vertex is (0, 0, 1). The pyramid has
four slanting sides S1, S2, S3, and S4 (whose orientation in each case is induced by the

outward unit normal). Then

∫∫
S1+S2+S3+S4

(∇× F) · dS = .

(8) Let F(x, y, z) = z2 i+y2 j+xy k and T be the triangular region whose vertices are (1, 0, 0),

(0, 1, 0), and (0, 0, 2). Then

∫
∂T

F · dr =
a

3
where a = .

(9) Let ω = x2 dx+ xy2 dy + z2 dz and S be the surface parametrized by

r(u, v) =
(
2(u+ v), 3(u− v), 4uv

)
for (u, v) ∈ [−1, 1]× [−1, 1]. Then

∫
∂S

ω = .

(10) Let ω = (x2 + y − 4) dx+ 3xy dy + (2xz + z2) dz and S be the surface x2 + y2 + z2 = 16,

z ≥ 0. Then, using the generalized Stokes’ theorem, we get

∫
S

dω = .
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(11) Let ω be the 2-form (ax3− 9xz2) dy∧ dz+ (3x2y+ by3) dz ∧ dx+ cz3 dx∧ dy and C be the
curve parametrized by r(t) = cos t i + sin t j + cos 2tk for 0 ≤ t ≤ 2π. Find numbers a, b,

and c so that

∫
S

ω has the same value for every surface S whose boundary is C. Answers:

a = , b = , and c = .

(12) Let ω = 3y dx − xz dy + yz2 dz and S be that portion of the surface 2z = x2 + y2 which
lies below the plane z = 2.

(a) Using the generalized Stokes’ theorem, we find that

∫
S

dω = .

(b) Without using any form of Stokes’ theorem, we find that

∫
S

dω = .

(13) Let ω be the 1-form (y + sinx) dx + (z2 + cos y) dy + x3 dz and C be the curve whose

parametrization is r(t) = sin t i + cos t j + sin 2tk for 0 ≤ t ≤ 2π. Then

∫
C

ω = .
Hint. sin 2t = 2 sin t cos t.

(14) Let ω =
x2 + y2

y
dx +

y

x2 + y2
dy + xy2 dz and S be the surface x2 + y2 + z2 = 1, z ≥ 0.

Then

∫
S

dω = .

(15) Let F(x, y, z) = 3x2y2ez
2
i + 2x3yez

2
j + arctan(1 + xy3z4) k. The following argument

explains how we know that the integral of the tangential component of F around the unit
circle C in the xy-plane is zero.

Since F 1
2 = , the of the of F over

the , call it D, in the is zero. Since C is the
of D, we know by that

∫
C

F · dr = 0.

(16) Let F(x, y, z) = x3 i+2xz2 j+3y2z k and V be the solid region bounded by the paraboloid
z = 4− x2 − y2 and the xy-plane. Use the divergence theorem to find the surface integral

of (the normal component of) the vector field F over ∂V . Answer:

∫∫
∂V

F · dS = aπ where
a = .

(17) Let F(x, y, z) = xz i + yz j and H be the upper hemisphere of radius 2 centered at the

origin. Use the divergence theorem to calculate

∫∫
H

F ·dS. (What do we do about the fact

that by itself H isn’t the boundary of anything?) Answer: aπ where a = .

(18) Let F(x, y, z) = y i + z j + xz k and V be the solid region consisting of the set of all points

(x, y, z) such that x2 + y2 ≤ z ≤ 1 and x ≥ 0. Then

∫∫
∂V

F · dS =
a

15
where a = .

(19) Let ω = 3xy2 dy ∧ dz + 3x2y dz ∧ dx + z3 dx ∧ dy and S be the unit sphere in R3. Then∫
S

ω =
a

5
π where a = .
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(20) Let F(x, y, z) = x2y i − x2z j + yz2 k and R be the rectangular box [0, 3] × [0, 2] × [0, 1].
Use the divergence theorem to find the surface integral of (the normal component of) the

vector field F over the boundary of the box. Answer:

∫∫
∂R

F · dS = .

(21) Let F be the vector field on R3 defined by F(x, y, z) = x2i + zj + yzk and E be the unit
cube [0, 1]× [0, 1]× [0, 1]. Also let

S1 be the face of the cube lying in the xy-plane,
S2 be the face of the cube lying in the xz-plane,
S3 be the face of the cube lying in the plane x = 1,
S4 be the face of the cube lying in the plane y = 1,
S5 be the face of the cube lying in the yz-plane, and
S6 be the face of the cube lying in the plane z = 1.

Then ∂E = S1 + S2 + S3 + S4 + S5 + S6. Giving each Sk its positive (outwards directed)
orientation compute the following integrals.

(a)

∫∫
S1

F · dS = .

(b)

∫∫
S2

F · dS = .

(c)

∫∫
S3

F · dS = .

(d)

∫∫
S4

F · dS = .

(e)

∫∫
S5

F · dS = .

(f)

∫∫
S6

F · dS = .

(g)

∫∫
∂E

F · dS = .

(h)
∫∫∫
E

div F dV = .

(22) Let F(x, y, z) = 3xy i + y2 j − x6y5 k and T be the tetrahedron whose vertices are i,
j, k, and the origin. Use the divergence theorem to find the surface integral of (the
normal component of) the vector field F over the boundary of the tetrahedron. Answer:∫∫
∂T

F · dS =
a

24
where a = .

(23) Let F(x, y, z) = ez arctan y4 i + z6 ln (x4 + 5) j + z k. Find the (outward) flux of F across
that portion S of the paraboloid z = 2− x2 − y2 that lies above the plane z = 1. Answer:

the flux of F across S is
a

2
π where a = .

(24) Let S be the unit sphere in R3 centered at the origin. Use the divergence theorem to find∫∫
S

(3x+ 7y + 5z2) dS. Answer:
a

3
π where a = .
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(25) Let F(x, y, z) = x3 i + y3 j + z3 k and S be the unit sphere in R3. Then

∫∫
S

F · dS =
a

5
π

where a = .

(26) Let F(x, y, z) = y i+z j+xz k and S be the set of points (x, y, z) such that x2+y2 ≤ z ≤ 1.

Then

∫∫
S

F · dS = .

(27) Let E be the cylinder given by x2 + y2 ≤ 1 and −1 ≤ z ≤ 1. Then∫∫
∂E

xy2 dy ∧ dz + x2y dz ∧ dx+ y dx ∧ dy = .

(28) Let F(x, y, z) = 2x i + y2 j + z2 k and S be the unit sphere in R3. Then

∫∫
S

F · dS =
a

3
π

where a = .

(29) Let E be the solid region bounded above by the paraboloid z = 5− x2 − y2 and below by

the plane z = −7 and F(x, y, z) = (x2yz3 , sin(yz) , x3ez). Then

∫∫
∂E

∇× F · dS = .
Hint. Think. Don’t write anything down.

(30) Let ω = x dy∧ dz+ y dz ∧ dx+ z dx∧ dy and E be the rectangular box [0, 2]× [0, 3]× [0, 4]

from which the cube [0, 1]× [0, 1]× [0, 1] has been removed. Then

∫
∂E

ω = . Hint.
You should not have to write anything down to solve this.
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46.3. Problems

(1) Let M be a closed bounded interval in R and let f be a 0-form on M (that is, a smooth real
valued function on M). What classical theorem do we get when we apply the generalized
Stokes’ theorem to the 1-manifold M and the differential 0-form f? Explain.

(2) Let M be a smoothly parametrized curve in R3 and let f be a 0-form on some open subset
U of R3 containing M (that is, a smooth real valued function on U). What classical
theorem do we get when we apply the generalized Stokes’ theorem to the 1-manifold M
and the differential 0-form f? Explain.

(3) Let R be a simple region in the plane R2 whose boundary is a positively oriented simple
closed curve, let F be a vector field on a region in R2 containing R, and let ω be the 1-
form associated with F. What classical theorem do we get when we apply the generalized
Stokes’ theorem to the 2-manifold R and the differential 1-form ω? Explain.

(4) Let S be a smoothly parametrized surface in R3 whose boundary is a positively oriented
simple closed curve, let F be a vector field on a region in R3 containing S, and let ω
be the 1-form associated with F. What classical theorem do we get when we apply the
generalized Stokes’ theorem to the 2-manifold S and the differential 1-form ω? Explain.

(5) Let E be a simple solid region whose boundary has positive (outward) orientation, let F
be a vector field on a region in R3 containing E, and let ω be the 1-form associated with F.
What classical theorem do we get when we apply the generalized Stokes’ theorem to the
3-manifold E and the differential 2-form ∗ω? Explain.

(6) By direct computation verify Stokes’ theorem for the case of the vector field F(x, y, z) =
xy i+yz j+x2 k and the surface S which is the boundary of the unit cube [0, 1]×[0, 1]×[0, 1]
with the face in the xy-plane missing.

(7) By direct computation verify Stokes’ theorem for the case of the vector field F(x, y, z) =
z i + x j + y k and the helicoid S whose parametrization is r(u, v) = (u cos v, u sin v, v) for
(u, v) ∈ [0, 1]× [0, 12π].

(8) Suppose that C is a closed curve which is the boundary of a surface S and that f and g
are smooth scalar fields. Derive the following formulas:

(a)

∫
C

f ∇g · dr =

∫∫
S

(∇f ×∇g) · dS; and

(b)

∫
C

(f ∇g + g∇f) · dr = 0.

(9) Let ω = (z − y) dx + (x − z) dy + (y − x) dz and E be the tetrahedron whose vertices
are (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Also let T be the face of E lying in the plane
x + y + z = 1, C be the boundary of T , and T1, T2, and T3 be the faces of E lying,
respectively, in the yz-, xz-, and xy-planes. Compute separately and without using any

version of Stokes’ theorem

∫
T

dω,

∫
T1+T2+T3

dω, and

∫
C

ω. Explain any variations in sign
which occur.

(10) Verify the divergence theorem directly for the special case where the simple solid region
is the tetrahedron consisting of all those points (x, y, z) in R3 such that x, y, z ≥ 0 and
x+ y + z ≤ 1 and the vector field is x i + y j + z k.

(11) Verify the divergence theorem directly for the special case where the simple solid region is
the unit cube [0, 1]× [0, 1]× [0, 1] and the vector field is x i + y j + z k.
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(12) Explain how to use the divergence theorem (or the generalized Stokes’ theorem) to evaluate∫∫
S

(x2 + y+ z) dS where S is the unit sphere in R3. Hint. To make use of the divergence

theorem the integral

∫∫
S

(x2 + y + z) dS must be expressed in the form

∫∫
S

F · dS (equiv-

alently,

∫∫
S

F ·N dS) where F is an appropriate vector field and N is the unit normal

to S.

(13) Verify the divergence theorem directly for the special case where the simple solid region
is the upper half of the solid ball of radius a centered at the origin and the vector field is
F(x, y, z) = a(x+ y) i + a(y − x) j + z2 k.
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46.4. Answers to Odd-Numbered Exercises

(1) π

(3) (a) π
(b) π

(5) π

(7) 4

(9) −288

(11) −1, 0, 3

(13) −π
(15) F 2

1 , normal component, curl, unit disk, xy-plane, boundary, Stokes’ theorem

(17) 8

(19) 12

(21) (a) 0
(b) −1

2
(c) 1
(d) 1

2
(e) 0
(f) 1

2

(g) 3
2

(h) 3
2

(23) 3

(25) 12

(27) π

(29) 0
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Index

〈x,y〉 (dot product, inner product), 171
0-manifold, 329
1-manifold, 329
2-manifold, 329
3-manifold, 329
f : S → T : x 7→ f(x) (functional notation), 11∫
C

F · dr,

∫
C

F ·T ds (line integral of a vector field), 337∫∫
S

F · dS,
∫∫
S

F ·N dS (surface integral of a vector

field), 345∫∫
S

f dS (surface integral of a scalar field), 345∫
C

ω (line integral of a differential form, 337∫
C

f ds (line integral of a scalar field), 337∫
S

ω (surface integral of a differential form), 345

A ∩B (intersection of sets), 3
A ∪B (union of sets), 3
A \B (set difference), 3
AcB (complement of a set), 3

0-form, 307
1-form, 307

associated with a vector field, 307
2-form, 307
3-form, 307

absolute
maximum, 27, 59
minimum, 27, 59

acceleration, 121
accumulation point, 3
action of a matrix, 204
addition

coordinatewise, 171
in a vector space, 215
of differential forms, 308
of vectors in Rn, 171
pointwise, 219

additive inverse, 215
angle, 171
angular momentum, 255
arclength

parametrization by, 263
association between 1-forms and vector fields, 307
average value, 89

B (unit binormal vector), 263
ball, 172
basis

standard, 172
binormal, 263
bounded, 11

above, 11
below, 11

centroid, 121
chain rule, 229
characteristic polynomial, 239
closed, 172

differential form, 323
codomain, 11
cofactor, 206
column index, 203
combination

linear, 173
complement, 3
composite function, 11
concave

down, 59
up, 59

conservation of energy, 200
conservative, 200
continuous

differentiability, 220
cooling, 75

Vewton’s law of, 121
coordinate functions, 172
coordinates

spherical, 173
coordinatewise

addition, 171
critical point, 39
cross product, 172
curvature, 259
curve, 172, 329

parametrization of a, 329
smooth, 329
unit speed, 263

curves
orientation of, 330

dFp (differential of F at p), 223
decreasing

function, 49, 59
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locally, 240
sequence, 139
strictly, 49, 59

definite
negative, 239
positive, 239

deleted neighborhood, 3, 172
∆Fp (translate of F ), 223
∆xk (length of a subinterval), 89
δ-neighborhood, 3, 172
dependent

variable, 33
derivative, 223

directional, 195
partial, 189

determinant, 206
difference (of sets), 3
differentiable

at a point, 223
continuously, 220
function, 223
infinitely, 223
on a region, 223

differential, 223
form, 307

addition of, 308
closed, 323
exact, 323
wedge product of, 308

differentiation
exterior, 313

directional derivative, 195
distance, 172

between two real numbers, 3
domain, 11
dom f (the domain of f), 11
dot product, 171, 320

e1, . . . , en (standard basis vectors), 172
eigenvalue, 239
energy

conservation of, 200
kinetic, 200
potential, 200
total, 200

equation
of a line in the plane, 7

Euclidean
norm, 171

Euclidean space, 171
exact differential form, 323
expansion of a determinant, 206
exterior differentiation operator, 313
extreme

value, 27
extremum

global, 59
relative, 59

field
vector, 172

fields
scalar, 172

fixed point, 27
flat

1-manifold, 329
2-manifold, 329

form
differential, 307

function, 11
coordinate, 172
locally invertible, 230
of a real variable, 11
real valued, 11
smooth, 223, 329

fundamental theorem of calculus, 97, 351

generalized Stokes’ theorem, 351
global

extremum, 59
maximum, 27, 59
minimum, 27, 59

Hessian matrix, 239
Hodge star operator, 319

i, j, k (basis vectors in R3), 172
identity matrix, 205
incompressible, 301
increasing

function, 49, 59
locally, 240
sequence, 139
strictly, 49, 59

indefinite, 239
independent

variable, 33
index

column, 203
row, 203

inequality
Schwarz, 172

infinitely differentiable, 223
inflection point, 59
inner product, 171, 320
integral

line, 337
surface, 345

intersection, 3
interval, 27
inverse

additive, 215
inverse function theorem, 230
invertible

locally, 230
irrotational, 301

Jacobian
matrix, 223

kernel, 216
kinetic energy, 200
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Laplace
equation, 320
expansion, 206

law of cooling, 75, 121
length, 171
limit, 21
line

integral, 337
linear

function, map, transformation, operator, 216
map

kernel of, 216
matrix representation of a, 216

linear combination, 173
linearity

of the inner product, 177
local

maximum, 27, 59
minimum, 27, 59

locally
invertible, 230

lower sum, 94

manifold
of dimension 0, 329
of dimension 1, 329
of dimension 2, 329
of dimension 3, 329

map, mapping, 11
matrix, 203

action of a, 204
addition, 203
determinant of a, 206
Hessian, 239
identity, 205
Jacobian, 223
multiplication, 204
multiplication by scalars, 203
representation of a linear map, 216
subtraction, 204
symmetric, 205
transpose of a, 205

maximum, 27, 59
absolute, 27, 59
global, 27, 59
local, 27, 59
relative, 27, 59
value, 27

minimum, 27
absolute, 27, 59
global, 27, 59
local, 27, 59
relative, 27, 59
value, 27

minor, 206
momentum

angular, 255
monotone

sequence, 139
multiplication

of differential forms, 308

multiplication by scalars in Rn, 171

negative
definite, 239

neighborhood, 3, 172
deleted, 3, 172
symmetric, 3

Newton’s law of cooling, 75, 121
Newton’s second law, 200
norm

Euclidean, 171
on Rn, 171

n-space, 171

open, 172
ball, 172

operator
exterior differentiation, 313
Hodge star, 319

orientation
of curves, 330
of points, 330
of solids, 331
of surfaces, 330

orthogonal, 171

p-series, 151
p-test, 151
parallel

lines in the plane, 7
parametrization

by arclength, 263
of a curve, 329
of a solid, 329
of a surface, 329

partial derivative, 189
partition, 89

regular, 89
perpendicular, 171

lines in the plane, 7
point

accumulation, 3
point of inflection, 59
points

orientation of, 330
pointwise

addition of functions, 219
scalar multiplication of functions, 219

polynomial
characteristic, 239

positive
definite, 239

positive definite, 177
potential

function, 200
potential energy, 200
product

cross, 172
dot, 171, 320
inner, 171, 320
scalar triple, 320
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wedge, 308

ran f (the range of f), 11
range, 11
ray, 240
real valued function, 11
regular partition, 89
relative

extremum, 59
maximum, 27, 59
minimum, 27, 59

representation
of a linear map, 216

row index, 203

sandwich theorem, 181
scalar, 171, 215

fields, 172
multiplication

in a vector space, 215
pointwise, 219

multiplication in Rn, 171
triple product, 320

Schwarz inequality, 172
second derivative matrix, 239
second derivative test, 239
separating, 240
sequence, 139
set difference, 3
slope, 7
smooth, 223

curve, 329
function, 223, 329
on a region, 223
solid, 329
surface, 329

solenoidal, 301
solid, 329

parametrization of a, 329
smooth, 329

solids
orientation of, 331

spherical coordinates, 173
standard basis vectors in Rn, 172
star operator, 319
stationary point, 39
Stokes’ theorem

generalized, 351
strictly

decreasing, 49, 59
increasing, 49, 59

strictly decreasing
sequence, 139

strictly increasing
sequence, 139

subtraction
in a vector space, 215

surface, 329
integral, 345
parametrization of a, 329
smooth, 329

surfaces
orientation of, 330

symmetric, 177
matrix, 205
neighborhood, 3

tangent, 223
τ (torsion), 264
torsion, 264
total derivative, 223
total energy, 200
transformation, 11
transpose, 205

union, 3
unit

speed curve, 263
vector, 171

upper sum, 94

variable
dependent, 33
independent, 33

vector, 171, 215
addition of, 171
field, 172

associated with a 1-form, 307
incompressible, 301
irrotational, 301
solenoidal, 301

space, 215
addition in, 215
scalar multiplication in, 215
subtraction in, 215

standard basis, 172
unit, 171
zero, 215

velocity, 121

wedge product, 308

zero vector, 215


