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Preface

These lectures originate with a course MZ taught at UC Berkeley
during the spring semester of 2003, notes for which LCE took in class.

In this presentation we have tried hard to work out the full details
for many proofs only sketched in class. In addition, we have reworked
the order of presentation, added additional topics, and included more
heuristic commentary.

We have as well introduced consistent notation, much of which is
collected into Appendix A. Relevant functional analysis and other facts
have been consolidated into Appendices B–D.

We should mention that two excellent treatments of mathematical
semiclassical analysis have appeared recently. The book by Dimassi
and Sjöstrand [D-S] starts with the WKB-method, develops the general
semiclassical calculus, and then provides “high tech” spectral asymp-
totics. The presentation of Martinez [M] is based on a systematic
development of FBI (Fourier-Bros-Iagolnitzer) transform techniques,
with applications to microlocal exponential estimates and propagation
estimates.

These notes are intended as a more elementary and broader intro-
duction. Except for the general symbol calculus, where we followed
Chapter 7 of [D-S], there is little overlap with these other two texts,
or with the early and influential book of Robert [R]. In his study of
semiclassical calculus MZ has been primarily influenced by his long
collaboration with Johannes Sjöstrand and he acknowledges that with
pleasure and gratitude.

Our thanks to Faye Yeager for typing a first draft and to Hans Chris-
tianson for his careful reading of earlier versions of these notes. And
thanks also to Jonathan Dorfman for TeX advice.

We are quite aware that many errors remain in our exposition, and
so we ask our readers to please send any comments or corrections to us
at

evans@math.berkeley.edu zworski@math.berkeley.edu.

This Version 0.1 represents our first draft, the clarity of which we hope
greatly to improve in later editions. We will periodically post improved
versions these lectures on our websites.

LCE is supported in part by NSF grant DMS-0500452, and MZ by
NSF grant DMS-0200732.
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1. Introduction

1.1 Basic themes
1.2 Classical and quantum mechanics
1.3 Overview

1.1 BASIC THEMES

Our basic theme is understanding the relationships between dynam-
ical systems and the behavior of solutions to various linear PDE con-
taining a small positive parameter h.

Small parameters. Our principal source of motivation is quantum
mechanics, in which case we understand h as denoting Planck’s con-
stant. With this interpretation in mind, we break down our basic task
into these two subquestions:

• How and to what extent does classical dynamics determine the
behavior as h→ 0 of solutions to Schrödinger’s equation

(1.1) ih∂tu = −h2∆u+ V (x)u,

and the related eigenvalue equation

(1.2) −h2∆u+ V (x)u = Eu ?

• Conversely, given various mathematical objects associated with
classical mechanics, for instance symplectic transformations, how can
we profitably “quantize” them?

In fact the techniques of semiclassical analysis apply in many other
settings and for many other sorts of PDE. For example we will later
study the damped wave equation

(1.3) ∂2
t u+ a(x)∂tu−∆u = 0

for large times. A rescaling in time will introduce the requisite small
parameter h.

Basic techniques. We will construct in Chapters 2–4 a wide variety
of mathematical tools to address these issues, among them

• the apparatus of symplectic geometry (to record succintly the be-
havior of classical dynamical systems);
• the Fourier transform (to display dependence upon both the posi-

tion variables x and the momentum variables ξ);
• stationary phase (to describe asymptotics as h → 0 of various

expressions involving rescaled Fourier transforms);
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• pseudodifferential operators (to “microlocalize” estimates in phase
space).

1.2 CLASSICAL AND QUANTUM MECHANICS

In this section we introduce and foreshadow a bit about quantum
and classical correspondences.

•Observables. We can think of a given function a : Rn × Rn → C,
a = a(x, ξ), as a classical observable on phase space, where as above x
denotes position and ξ momentum. We will also call a a symbol.

Now let h > 0 be given. We will associate with the observable a, a
corresponding quantum observable aw(x, hD), an operator defined by
the formula

aw(x, hD)u(x) :=

1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y) dξdy

(1.4)

for appropriate smooth functions u.
This is Weyl’s quantization formula. We will later learn that if we

change variables in a symbol, we preserve the principal symbol up to
lower order terms (that is, terms involving high powers of the small
parameter h.)

• Equations of evolution. We are concerned as well with the evolu-
tion of classical particles and quantum states.

Classical evolution. Our most important example will concern the
symbol

p(x, ξ) := |ξ|2 + V (x),

corresponding to the phase space flow{
ẋ = 2ξ

ξ̇ = −∂V.

We generalize by introducing the arbitrary Hamiltonian p : Rn×Rn →
R, p = p(x, ξ), and the corresponding Hamiltonian dynamics

(1.5)

{
ẋ = ∂ξp(x, ξ)

ξ̇ = −∂xp(x, ξ).

It is instructive to change our viewpoint somewhat, by firstly in-
troducing some more notation. Let us define Φt = exp(tHp) for the
solution of (1.5), where

Hpq := {p, q}



6

is the Poisson bracket. Set

(1.6) at(x, ξ) := a(Φt(x, ξ)).

Then

(1.7)
d

dt
at = {p, at}.

This equation tells us how the symbol a evolves in time.

Quantum evolution: Now put P = pw(x, hD), A = aw(x, uD), and
define

(1.8) At := e
itP
n A e−

itP
n .

Then we have the evolution equation

(1.9)
d

dt
At =

i

h
[P,At],

an obvious analog of (1.7).

Here then is a basic principle: any assertion about Hamiltonian dy-
namics, and so the Poisson bracket {·, ·}, will involve at the quantum
level the commutator [·, ·].

1.3 OVERVIEW

Chapters 2–4 and 8 develop the basic machinery, and the other chap-
ters cover applications to PDE. Here is a quick overview, with some of
the highpoints:

Chapter 2: We start with a quick introduction to symplectic geometry
and its implications for classical Hamiltonian dynamical systems.

Chapter 3: This chapter provides the basics of the Fourier transform
and derives also important stationary phase asymptotic estimates, of
the sort

Ih = (2πh)n/2|det ∂2φ(x0)|−1/2e
iπ
4

sgn ∂2φ(x0)e
iφ(x0)

h a(x0) +O
(
h

n+2
2

)
as h→ 0, for the oscillatory integral

Ih :=

∫
Rn

e
iφ
h a dx.

We assume here that the gradient ∂φ vanishes only at the point x0.

Chapter 4: Next we introduce the Weyl quantization aw(x, hD) of
the symbol a(x, ξ) and work out various properties, among them the
composition formula

aw(x, hD) ◦ bw(x, hD) = cw(x, hD),
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where the symbol c := a#b is computed explictly in terms of a and b.
We will prove as well the sharp G̊arding inequality, stating that if a is
a nonnegative symbol, then

〈aw(x, hD)u, u〉 ≥ −Ch‖u‖2
L2

for all u and sufficiently small h > 0.

Chapter 5: This section introduces semiclassical defect measures, and
uses them to derive decay estimates for the damped wave equation

(∂2
t + a(x)∂t −∆)u = 0,

where a ≥ 0, on the flat torus Tn.

Chapter 6: In Chapter 6 we begin our study of the eigenvalue problem

P (h)u(h) = E(h)u(h),

for the operator
P (h) := −h2∆ + V (x).

We prove Weyl’s Law for the asymptotic distributions of eigenvalues
as h→ 0, stating for all a < b that

#{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(Vol{a ≤ |ξ|2 + V (x) ≤ b}+ o(1)),

(1.10)

where “Vol” means volume.

Chapter 7: Chapter 7 continues the study of eigenfunctions, first
establishing an exponential vanishing theorem in the “classically for-
bidden” region. We derive as well a Carlemann-type inequality

‖u(h)‖L2(E) ≥ e−
C
h ‖u(h)‖L2(Rn)

where E ⊂ Rn. This is a quantitative estimate for quantum mechanical
tunneling.

Chapter 8: We return to the symbol calculus. We introduce the useful
formalism of “half-densities” and use them to illustrate how changing
variables in a symbol affects the Weyl quantization. We introduce the
notion of the semiclassical wave front set and show how a natural lo-
calization in phase space leads to pointwise bounds on approximate
solutions. We also prove a semiclassical version of Beals’s Theorem,
characterizing pseudodifferential operators. As an application we show
how, on the level of order functions, quantization commutes with ex-
ponentiation.

Chapter 9: Chapter 9 concerns the quantum implications of ergod-
icity for our underlying dynamical systems. A key assertion is that if
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the underlying dynamical system satisfies an appropriate ergodic con-
dition, then

(2πh)n
∑

a≤Ej≤b

∣∣∣∣〈Auj, uj〉 − ∫−
{a≤p≤b}

σ(A) dxdξ

∣∣∣∣2 −→ 0

as h → 0, for a wide class of pseudodifferential operators A. In this
expression the classical observable σ(A) denotes the symbol of A.

Chapter 10: The concluding Chapter 10 explains how to quantize
symplectic transformations, with applications including local construc-
tions of propagators, Lp bounds on eigenfuctions, and normal forms of
differential operators.

Appendices: Appendix A records our notation in one convenient lo-
cation, and Appendix B collects various useful functional analysis theo-
rems (with selected proofs). Appendix C is a quick introduction/review
of differential forms.

Appendix D discusses general manifolds and modifications our the
symbol calculus to cover pseudodifferential operators on manifolds.
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2. Symplectic geometry

2.1 Flows
2.2 Symplectic structure on R2n

2.3 Changing variables
2.4 Hamiltonian vector fields

Since our task in these notes is understanding some interrelation-
ships between dynamics and PDE, we provide in this chapter a quick
discussion of the symplectric geometric structure on Rn × Rn = R2n

and its interplay with Hamiltonian dynamics.
The reader may wish to first review our basic notation and also the

theory of differential forms, set forth respectively in Appendices A and
C.

2.1 FLOWS

Let V : RN → RN denote a smooth vector field. Fix a point m ∈ RN

and solve the ODE

(2.1)

{
ṁ(t) = V (m(t)) (t ∈ R)

m(0) = m.

We assume that the solution of (2.1) exists and is unique for all times
t ∈ R.

NOTATION. We define

Φtm := m(t)

and sometimes also write

Φt =: exp(tV ).

We call {Φt}t∈R the exponential map.

The following lemma records some standard assertions from theory
of ordinary differential equations:

LEMMA 2.1 (Properties of flow map).
(i) Φ0m = m.
(ii) Φt+s = Φt ◦ Φs.
(iii) For each time t, Φt : RN → RN is a diffeomorphism.
(iv) (Φt)

−1 = Φ−t.

2.2 SYMPLECTIC STRUCTURE ON R2n
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We henceforth specialize to the even-dimensional space RN = R2n =
Rn × Rn.

NOTATION. We will often write a typical point of R2n as

m = (x, ξ),

and interpret x ∈ Rn as denoting position, ξ ∈ Rn as momentum.
Alternatively, we can think of ξ as belonging to T ∗xRn, the cotangent
space of Rn at x.

We let 〈·, ·〉 denote the usual innner product on Rn, and then define
this new inner product on R2n:

DEFINITION. Given two vectors u = (x, ξ), v = (y, η) on R2n =
Rn × Rn, define their symplectic product

(2.2) σ(u, v) := 〈ξ, y〉 − 〈x, η〉.

Observe that

(2.3) σ(u, v) = 〈u, Jv〉
for the 2n× 2n matrix

(2.4) J :=

(
0 −I
I 0

)
.

LEMMA 2.2 (Properties of σ).
(i) σ is bilinear.
(ii) σ is antisymmetric.
(iii) σ is nondegenerate; that is,

(2.5) if σ(u, v) = 0 for all v, then u = 0.

These assertions are straightforward to check.

NOTATION. Using the terminology of differential forms, reviewed in
Appendix C, we can write

(2.6) σ = dξ ∧ dx =
n∑
j=1

dξj ∧ dxj.

Observe also that

(2.7) σ = dω for ω := ξdx =
n∑
j=1

ξjdxj.

2.3 CHANGING VARIABLES.
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Suppose next that U, V ⊆ R2n are open sets and

κ : U → V

is a smooth mapping. We will write

κ(x, ξ) = (y, η) = (y(x, ξ),η(x, ξ)).

DEFINITION. We call κ a symplectomorphism if

(2.8) κ∗σ = σ.

We will usually write (2.8) as

(2.9) dη ∧ dy = dξ ∧ dx.

NOTATION. Here the pull-back κ∗ of the symplectic product is de-
fined by

(κ∗σ)(u, v) := σ(κ∗(u),κ∗(v)),

κ∗ denoting the push-forward of vectors.

EXAMPLE 1: Lifting diffeomorphisms. Let

(2.10) x 7→ y = y(x)

be a diffeomorphism, with nondegenerate Jacobian matrix

∂y

∂x
:=

(
∂yi

∂xj

)
n×n

.

We propose to extend (2.10) to a symplectomorphism

(x, ξ) 7→ (y, η) = (y(x),η(x, ξ)),

by “lifting“ to the momentum variables. In other words, we want to
find a function η so that

dη ∧ dy = dξ ∧ dx.
Now {

dη = M dx+N dξ,

dy = A dx

for A := ∂y
∂x

, M := ∂η
∂x

, N := ∂η
∂ξ

. Therefore

dη ∧ dy = (M dx+N dξ) ∧ (A dx)

= (N dξ ∧ A dx) + (M dx ∧ A dx)

= (dξ ∧ (NTA)dx) + (dx ∧ (MTA)dx).
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We need to construct η so that both

(2.11) (i) NTA = I and (ii) MTA is symmetric,

the latter condition implying, as we will see, that the term dx∧(MTA)dx
vanishes. To do so, let us define

(2.12) η(x, ξ) :=

[(
∂y

∂x

)−1
]T

ξ.

Then NT =
(
∂η
∂ξ

)T
=
(
∂y
∂x

)−1
and so (i) holds. A direct calculation

confirms (ii). Since MTA is symmetric and dxi ∧ dxj = 0 for all i, j,
we deduce that dη ∧ dy = dξ ∧ dx, as desired. �

INTERPRETATION: This example will be useful later, when we
quantize symbols in Chapter 4 and learn that the operator

(2.13) P (h) = −h2∆

is associated with the symbol p(x, ξ) = |ξ|2. If we change variables
y = y(x), then we can ask how

∆x = 〈∂x, ∂x〉

transforms. Now ∂x =
(
∂y
∂x

)T
∂y and so

∆x = 〈∂x, ∂x〉 =

〈(
∂y

∂x

)T
∂y,

(
∂y

∂x

)T
∂y

〉
.

Hence

−h2∆x = −h2

(
∂y

∂x

)T
∂y

((
∂y

∂x

)T
∂y

)
.

We will see later that this operator is associated with the symbol〈(
∂y

∂x

)T
η,

(
∂y

∂x

)T
η

〉
.

And this is consistent with the transformation (2.12) discovered in
Example 1.

Here is an instance of another general principle: “ if we change vari-
ables in a symbol, we preserve the principal symbol, modulo lower order
terms”. �

EXAMPLE 2: Generating functions. Our next example demon-
strates that we can, locally at least, build a symplectic transformation
from a real-valued generating function.
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So suppose φ : Rn × Rn → R, φ = φ(x, y), is smooth. Assume also
that

det(∂2
xyφ(x0, y0)) 6= 0.

Define

(2.14) ξ = ∂xφ, η = −∂yφ,
and observe that the Implicit Function Theorem implies that (y, η) is
a smooth function of (x, ξ) near (x0, ∂xφ(x0, y0)).

THEOREM 2.3 (Generating functions and symplectic maps).
The mapping κ defined by

(2.15) (x, ∂xφ(x, y)) 7→
(
y,−∂φy(x, y)

)
is a symplectomorphism near (x0, ξ0).

Proof. We compute

dη ∧ dy = d(−∂yφ) ∧ dy
= [(−∂2

yφdy) ∧ dy] + [(−∂2
xyφdx) ∧ dy]

= −(∂2
xyφ)dx ∧ dy,

since ∂2
yS is symmetric. Likewise,

dξ ∧ dx = d(∂xφ) ∧ dx
= [(∂2

xφ dx) ∧ dx] + [(∂2
xyφ dy) ∧ dx]

= −(∂2
xyφ)dx ∧ dy = dη ∧ dy.

�

TERMINOLOGY. The word “symplectic” means “intertwined” in
Greek and this nomenclature is motivated by Example 2. The generat-
ing function φ = φ(x, y) is a function of a mixture of half of the original
variables (x, ξ) and half of the new variables (y, η).

APPLICATION: Lagrangian submanifolds. A Lagrangian sub-
manifold Λ of R2n is defined by the property that

σ|Λ = 0.

Then

dω|Λ = σ|Λ = 0;

and so

ω = dφ



14

according to Poincaré’s Theorem C.3. We will exploit this observation
in Section 10.2. �

2.4 HAMILTONIAN VECTOR FIELDS

DEFINITION. If f ∈ C∞(R2n), we define the corresponding Hamil-
tonian vector field by requiring

(2.16) σ(u,Hf ) = df(u).

This is well defined, since σ is nondegenerate. We can write explicitly
that

(2.17) Hf = 〈∂ξf, ∂x〉 − 〈∂xf, ∂ξ〉 =
n∑
j=1

∂f

∂ξj
∂xj

− ∂f

∂xj
∂ξj .

LEMMA 2.4 (Differentials and Hamiltonian vector fields). We
have the relation

(2.18) df = −(Hf σ),

for the contraction defined in Appendix C.

Proof. We calculate for each vector u that

(Hf σ)(u) = σ(Hf , u) = −σ(u,Hf ) = −df(u).

�

DEFINITION. If f, g ∈ C∞(R2n), we define their Poisson bracket

(2.19) {f, g} := Hfg = σ(Hf , Hg).

That is,

(2.20) {f, g} = 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

LEMMA 2.5 (Brackets and commutators). We have the indentity

(2.21) H{f,g} = [Hf , Hg].

Proof. Calculate. �
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THEOREM 2.6 (Jacobi’s Theorem). If κ is a symplectomor-
phism, then

(2.22) κ∗(Hf ) = Hκ∗f .

In other words, the pull-back of a Hamiltonian vector field generated
by f is the Hamiltonian vector field generated by the pull-back of f .

Proof.

κ∗(Hf ) σ = κ∗(Hf ) κ∗σ

= κ∗(Hf σ)

= −κ∗(df) = −d(κ∗f)

= Hκ∗f σ.

Since σ is nondegenerate, (2.22) follows. �

EXAMPLE. Define κ = J ; so that κ(x, ξ) = (−ξ, x). We will later
in Section 10.2 interpret this transformation as the classical analog of
the Fourier transform.

Observe that κ a symplectomorphism, since

dξ ∧ dx = dx ∧ d(−ξ).
We explicitly compute that

Hf = 〈∂ξf, ∂x〉 − 〈∂xf, ∂ξ〉
= 〈∂xf, ∂−ξ〉 − 〈∂−ξf, ∂x〉 = Hκ∗f .

�

THEOREM 2.7 (Hamiltonian flows and symplectomorphisms).
If f is smooth, then for each time t, the mapping

(x, ξ) 7→ Φt(x, ξ) = exp(tHf (x, ξ))

is a symplectomorphism.

Proof. According to Cartan’s formula (Theorem C.2), we have

d

dt
((Φt)

∗σ) = LHf
σ = d(Hf σ) + (Hf dσ).

Since dσ = 0, it follows that

d

dt
((Φt)

∗σ) = d(−df) = −d2f = 0.

Thus (Φt)
∗σ = σ for all times t. �



16

THEOREM 2.8 (Darboux’s Theorem). Let U be a neighborhood
of (0, 0) and suppose η is a nondegenerate 2-form defined on U , satis-
fying

dη = 0.

Then near (0, 0) there exists a diffeomorphism κ such that

(2.23) κ∗η = σ.

INTERPRETATION. The assertion is that, locally, all symplectic
structures are identical, in the sense that all are equivalent to that
generated by σ. �

Proof. 1. We first find a linear mapping L so that

L∗η(0, 0) = σ(0, 0).

This means that we find a basis {ek, fk}nk=1 of R2n such that
η(fl, ek) = δkl
η(ek, el) = 0

η(fk, fl) = 0

for all 1 ≤ k, l ≤ n. Then if u =
∑n

i=1 xiei + ξifi, v =
∑n

j=1 yjej + ηjfj,
we have

η(u, v)

=
n∑

i,j=1

xiyjη(ei, ej) + ξiηjη(fi, fj) + xiηjσ(ei, fj) + ξiyjσ(fi, ej)

= 〈ξ, y〉 − 〈x, η〉 = σ(u, v).

2. Next, define ηt := tη + (1− t)σ for 0 ≤ t ≤ 1. Our intention is to
find κt so that κ∗

tηt = σ near (0, 0); then κ := κ1 solves our problem.
We will construct κt by solving the flow

(2.24)

{
ṁ(t) = Vt(m(t)) (0 ≤ t ≤ 1)

m(0) = m,

and setting κt := Φt.
For this to work, we must design the vector fields Vt in (2.24) so that

d
dt

(κ∗
tηt) = 0. Let us therefore calculate

d

dt
(κ∗

tηt) = κ∗
t

(
d

dt
ηt

)
+ κ∗

tLVtηt

= κ∗
t [(η − σ) + d(Vt ηt) + Vt dηt],

where we used Cartan’s formula, Theorem C.2.
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Note that dηt = tdη + (1− t)dσ. Hence d
dt

(κ∗
tηt) = 0 provided

(2.25) (η − σ) + d(Vt ηt) = 0.

According to Poincaré’s Lemma, Theorem C.3, we can write

η − σ = dα near (0, 0).

So (2.25) will hold, provided

(2.26) Vt ηt = −α (0 ≤ t ≤ 1).

Using the nondegeneracy of η and σ, we can solve this equation for the
vector field Vt. �
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3. Fourier transform, stationary phase

3.1 Fourier transform on S
3.2 Fourier transform on S ′
3.3 Semiclassical Fourier transform
3.4 Stationary phase in one dimension
3.5 Stationary phase in higher dimensions
3.6 An important example

We discuss in this chapter how to define the Fourier transform F and
its inverse F−1 on various classes of smooth functions and nonsmooth
distributions. We introduce also the rescaled semiclassical transforms
Fh,F−1

h depending on the small parameter h, and develop stationary
phase asymptotics to help us understand various formulas involving Fh
in the limit as h→ 0.

3.1 FOURIER TRANSFORM ON S

We begin by defining and studying the Fourier transform of smooth
functions that decay rapidly as |x| → ∞.

DEFINITIONS (i) The Schwartz space is

S = S(Rn) :=

{φ ∈ C∞(Rn) | sup
Rn

|xα∂βφ| <∞ for all multiindices α, β}.

(ii) We say

φj → φ in S
provided

sup
Rn

|xα∂β(φj − φ)| → 0

for all multiindices α, β.

DEFINITION. If φ ∈ S, define the Fourier transform

(3.1) Fφ(ξ) = φ̂(ξ) :=

∫
Rn

e−i〈x,ξ〉φ(x) dx (ξ ∈ Rn).

The Fourier transform F in effect lets us move from the position
variables x to the momentum variables ξ.

EXAMPLE: Exponential of a real quadratic form.
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LEMMA 3.1 (Transform of a real exponential). Let A be a real,
symmetric, positive definite n× n matrix. Then

(3.2) F(e−〈Ax,x〉) =
πn/2

(det A)1/2
e−

1
4
〈A−1ξ,ξ〉.

We can of course replace A by 1
2
A, to derive the equivalent formula

(3.3) F(e−
1
2
〈Ax,x〉) =

(2π)n/2

(det A)1/2
e−

1
2
〈A−1ξ,ξ〉,

which we will need later.

Proof. Let us calculate

F(e−〈Ax,x〉) =

∫
Rn

e−〈Ax,x〉−i〈x,ξ〉dx

=

∫
Rn

e−〈A(x+ iA−1ξ
2

), x+ iA−1ξ
2

〉e−
1
4
〈A−1ξ,ξ〉dx

= e−
1
4
〈A−1ξ,ξ〉

∫
Rn

e−〈Ay,y〉dy.

We compute the last integral by making an orthogonal change of
variables that converts A into diagonal form diag(λ1, . . . , λn). Then∫

Rn

e−〈Ay,y〉dy =

∫
Rn

e−
Pn

k=1 λkw
2
k dw =

n∏
k=1

∫ ∞

−∞
e−λkw

2

dw

=
n∏
k=1

1

λ
1/2
k

∫ ∞

−∞
e−y

2

dy

=
πn/2

(λ1 · · ·λn)1/2
=

πn/2

(det A)1/2
.

�

THEOREM 3.2 (Properties of Fourier transform).
(i) The mapping F : S → S is an isomorphism.
(ii) We have

(3.4) F−1 =
1

(2π)n
R ◦ F ,

where Rf(x) := f(−x). In other words,

(3.5) F−1ψ(x) =
1

(2π)n

∫
Rn

ei〈x,ξ〉ψ(ξ) dξ;
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and therefore

(3.6) φ(x) =
1

(2π)n

∫
Rn

ei〈x,ξ〉φ̂(ξ) dξ.

(iii) In addition,

(3.7) Dα
ξ (Fφ) = F((−x)αφ)

and

(3.8) F(Dα
xφ) = ξαFφ.

(iv) Furthermore,

(3.9) F(φψ) =
1

(2π)n
F(φ) ∗ F(ψ).

REMARKS. (i) In these formulas we employ the notation from Ap-
pendix A that

(3.10) Dα =
1

i|α|
∂α.

(ii) We will later interpret the Fourier inversion formula (3.5) as saying
that

(3.11) δ{y=x} =
1

(2π)n

∫
Rn

ei〈x−y,ξ〉 dξ in S ′,

δ denoting the Dirac measure. �

Proof. 1. Let us calculate for φ ∈ S that

Dα
ξ (Fφ) = Dα

ξ

∫
Rn

e−i〈x,ξ〉φ(x) dx =
1

iα

∫
Rn

e−i〈x,ξ〉(−ix)αφ(x) dx

=

∫
Rn

e−i〈x,ξ〉(−x)αφ(x) dx = F((−x)αφ).

Likewise,

F(Dα
xφ) =

∫
Rn

e−i〈x,ξ〉Dα
xφ dx = (−1)|α|

∫
Rn

Dα
x (e−i〈x,ξ〉)φ dx

= (−1)|α|
∫

Rn

1

i|α|
(−iξ)αe−i〈x,ξ〉φ dx = ξα(Fφ).

This proves (iii).

2. Recall from Appendix A the notation

〈x〉 = (1 + |x|2)
1
2 .
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Then for all multiindices α, β, we have

sup
ξ
|ξβDα

ξ φ̂| = sup
ξ
|ξβF((−x)αφ)|

= sup
ξ
|F(Dβ

x((−x)αφ)|

= sup
ξ

∣∣∣∣∫
Rn

e−i〈x,ξ〉
1

〈x〉n+1
〈x〉n+1 Dβ

x((−x)αφ) dx

∣∣∣∣
≤ sup

x
|〈x〉n+1Dβ

x((−x)αφ)|
∫

Rn

dx

〈x〉n+1
<∞.

Hence F : S → S, and a similar calculation shows that φi → φ in S
implies F(φj) → F(φ).

3. To show F is invertible, note that

R ◦ F ◦ F ◦Dxj
= R ◦ F ◦Mξj ◦ F
= R ◦ (−Dxj

) ◦ F ◦ F
= Dxj

◦R ◦ F ◦ F ,
where Mξj denotes multiplication by ξj. Thus R ◦ F ◦ F commutes
with Dxj

and it likewise commutes with the multiplication operator
Mλ. According to Lemma 3.3, stated and proved below, R ◦ F ◦ F is
a multiple of the identity operator:

(3.12) R ◦ F ◦ F = cI.

From the example above, we know that

F(e−
|x|2
2 ) = (2π)n/2e−

|ξ|2
2 .

Thus F(e−
|ξ|2
2 ) = (2π)n/2e−

|x|2
2 . Consequently c = (2π)n, and hence

F−1 =
1

(2π)n
R ◦ F .

4. Lastly, since

φ(x) =
1

(2π)n

∫
Rn

ei〈x,ξ〉φ̂(ξ) dξ, ψ(x) =
1

(2π)n

∫
Rn

ei〈x,η〉ψ̂(η) dη,

we have

φψ =
1

(2π)2n

∫
Rn

∫
Rn

ei〈x,ξ+η〉φ̂(ξ)ψ̂(η) dξdη

=
1

(2π)2n

∫
Rn

ei〈x,ρ〉
(∫

Rn

φ̂(ξ)ψ̂(ρ− ξ) dρ

)
dξ

=
1

(2π)n
F−1(φ̂ ∗ ψ̂).



22

But φψ = F−1F(φψ), and so assertion (iv) follows. �

LEMMA 3.3 (Commutativity). Suppose L : S → S is linear, and

(3.13) L ◦Mλ = Mλ ◦ L, L ◦Dxj
= Dxj

◦ L

for λ ∈ R and j = 1, . . . , n. Then

L = cI

for some constant c, where I denotes the identity operator.

Proof. 1. Choose φ ∈ S, fix y ∈ Rn, and write

φ(x)− φ(y) =
n∑
j=1

(xj − yj)ψj(x)

for

ψj(x) :=

∫ 1

0

φxj
(y + t(x− y)) dt.

Since possibly ψj /∈ S, we select a smooth function χ with compact
support such that χ ≡ 1 for x near y. Write

φj(x) := χ(x)ψj(x) +
(xj − yj)

|x− y|2
(1− χ(x))φ(x).

Then

(3.14) φ(x)− φ(y) =
n∑
j=1

(xj − yj)φj(x)

with φj ∈ S.

2. We claim next that if φ(y) = 0, then Lφ(y) = 0. This follows
from (3.14), since

Lφ(x) =
n∑
j=1

(xj − yj)Lφj = 0

at x = y.
Therefore Lφ(x) = c(x)φ(x) for some function c. Taking φ(x) =

e−|x|
2
, we deduce that c ∈ C∞. Finally, since L commutes with differ-

entiation, we conclude that c must be a constant. �
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THEOREM 3.4 (Integral identities). If φ, ψ ∈ S, then

(3.15)

∫
Rn

φ̂ψ dx =

∫
Rn

φψ̂ dy

and

(3.16)

∫
Rn

φψ̄ dx =
1

(2π)n

∫
Rn

φ̂
¯̂
ψ dξ.

In particular,

(3.17) ‖φ‖2
L2 =

1

(2π)n
‖φ̂‖2

L2 .

Proof. Note first that∫
Rn

φ̂ψ dx =

∫
Rn

(∫
Rn

e−i〈x,y〉φ(y) dy

)
ψ(x) dx

=

∫
Rn

(∫
Rn

e−i〈y,x〉ψ(x) dx

)
φ(y) dy =

∫
Rn

ψ̂φ dy.

Replace ψ by
¯̂
ψ in (3.15):∫

Rn

φ̂
¯̂
ψ dξ =

∫
Rn

φ(
¯̂
ψ)∧ dx.

But
¯̂
ψ =

∫
Rn e

i〈x,ξ〉ψ̄(x) dx = (2π)nF−1(ψ̄) and so (
¯̂
ψ)∧ = (2π)nψ̄. �

We record next some elementary estimates that we will need later:

LEMMA 3.5 (Useful estimates).
(i) We have the bounds

(3.18) ‖û‖L∞ ≤ ‖u‖L1

and

(3.19) ‖u‖L∞ ≤ 1

(2π)n
‖û‖L1 .

(ii) There exists a constant C such that

(3.20) ‖û‖L1 ≤ C sup
|α|≤n+1

‖∂αu‖L1 .

Proof. Estimates (3.18) and (3.19) follow easily from (3.1) and (3.6).
Then

‖û‖L1 =

∫
Rn

|û|〈ξ〉n+1〈ξ〉−n−1 dξ ≤ C sup
ξ

(|û|〈ξ〉n+1)

≤ C sup
|α|≤n+1

|ξαû| = C sup
|α|≤n+1

|(∂αu)∧| ≤ C sup
|α|≤n+1

‖∂αu‖L1 .
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This proves (3.20). �

We close this section with an application showing that we can some-
times use the Fourier transform to solve PDE with variable coefficients.

EXAMPLE: Solving a PDE. Consider the initial-value problem{
∂tu = x∂yu+ ∂2

xu on R2 × (0,∞)

u = δ(x0,y0) on R2 × {t = 0}.

Let û := Fu denote the Fourier transform of u in the variables x, y
(but not in t). Then

(∂t + η∂ξ)û = −ξ2û.

This is a linear first-order PDE we can solve by characteristics:

û(t, ξ + tη, η) = û(0, ξ, η)e−
R t
0 (ξ+sη)2ds

= û(0, ξ, η)e−ξ
2t−ξηt2− η2t3

3

= û(0, ξ, η)e−
1
2
〈Bt(ξ,η),(ξ,η)〉

for

Bt :=

(
2t t2

t2 2t3

3

)
.

Furthermore, û(0, ξ, η) = δ̂(x0,y0). Taking F−1, we find

u(t, x, y − tx) = δ(x0,y) ∗ F−1(e−
1
2
〈Bt(ξ,η),(ξ,η)〉)

=

√
3

2πt3
exp(−(x− x0)

2

t
+

3(x− x0)(y − y0)

t2
− 3(y − y0)

2

t3
);

and hence

u(t, x, y)

=

√
3

2πt3
exp(−(x− x0)

2

t
+

3(x− x0)(y + tx− y0)

t2
− 3(y + tx− y0)

2

t3
).

�

3.2 FOURIER TRANSFORM ON S ′

Next we extend the Fourier transform to S ′, the dual space of S. We
will then be able to study the Fourier transforms of various interesting,
but nonsmooth, expressions.

DEFINITIONS.
(i) We write S ′ = S ′(Rn) for the space of tempered distributions,

which is the dual of S. That is, u ∈ S ′ provided u : S → C is linear
and φj → φ in S implies u(φj) → u(φ).
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(ii) We say

uj → u in S ′

if

uj(φ) → u(φ) for all φ ∈ S.

DEFINITION. If u ∈ S ′, we define

Dαu, xαu,Fu ∈ S ′

by the rules

Dαu(φ) := (−1)|α|u(Dαφ)

(xαu)(φ) := u(xαφ)

(Fu)(φ) := u(Fφ)

for φ ∈ S.

EXAMPLE 1: Dirac measure. It follows from the definitions that

δ̂0(φ) = δ0(φ̂) = φ̂(0) =

∫
Rn

φ dx.

We interpret this calculation as saying that

(3.21) δ̂0 ≡ 1 in Rn.

�

EXAMPLE 2: Exponential of an imaginary quadratic form.
The signature of a real, symmetric, nonsingular matrix Q is

sgnQ := number of positive eigenvalues of Q

− number of negative eigenvalues of Q.
(3.22)

LEMMA 3.6 (Transform of an imaginary exponential). Let Q
be a real, symmetric, nonsingular n× n matrix. Then

(3.23) F
(
e

i
2
〈Qx,x〉

)
=

(2π)n/2e
iπ
4

sgn(Q)

|det Q|1/2
e−

i
2
〈Q−1ξ,ξ〉.

Compare this carefully with the earlier formula (3.3). The extra

phase shift term e
iπ
4

sgnQ in (3.23) arises from the complex exponential.
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Proof. 1. Let ε > 0, Qε := Q+ εiI. Then

F
(
e

i
2
〈Qεx,x〉

)
=

∫
Rn

e
i
2
〈Qεx,x〉−i〈x,ξ〉 dx

=

∫
Rn

e
i
2
〈Qε(x−Q−1

ε ξ),x−Q−1
ε ξ〉e−

i
2
〈Q−1

ε ξ,ξ〉 dx

= e−
i
2
〈Q−1

ε ξ,ξ〉
∫

Rn

e
i
2
〈Qεy,y〉 dy.

Now change variables, to write Q in the form diag(λ1, . . . , λn), with
λ1, . . . , λr > 0 and λr+1, . . . , λn < 0. Then∫

Rn

e
i
2
〈Qεy,y〉 dy =

∫
Rn

e
Pn

k=1
1
2
(iλk−ε)w2

k dw =
n∏
k=1

∫ ∞

−∞
e

1
2
(iλk−ε)w2

dw.

2. If 1 ≤ k ≤ r, then λk > 0 and we set z = (ε − iλk)
1/2w, and we

take the branch of the square root so that Im(ε− iλk)
1/2 < 0. Then∫ ∞

−∞
e

1
2
(iλk−ε)w2

dw =
1

(ε− iλk)1/2

∫
Γk

e−
z2

2 dz,

for the contour Γk as drawn.

Since e−
z2

2 = e
y2−x2

2
−ixy and x2 > y2 on Γk, we can deform Γk into

the real axis.

Hence ∫
Γk

e−
z2

2 dz =

∫ ∞

−∞
e−

x2

2 dx =
√

2π.

Thus
r∏

k=1

∫ ∞

−∞
e

1
2
(iλk−ε)w2

dw = (2π)r/2
r∏

k=1

1

(ε− iλk)1/2
.

Also for 1 ≤ k ≤ r:

lim
ε→0+

1

(ε− iλk)1/2
=

1

(−i)1/2λ
1/2
k

=
e

iπ
4

λ
1/2
k

,

since we take the branch of the square root with (−i)1/2 = e−iπ/4.

3. Similarly for r + 1 ≤ k ≤ n, we set z = (ε − iλk)
1/2w, but now

take the branch of square root with Im(ε− iλk)
1/2 > 0. Hence

n∏
k=r+1

∫ ∞

−∞
e

1
2
(iλk−ε)w2

dw = (2π)
n−r

2

n∏
k=r+1

1

(ε− iλk)1/2
;
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and for r + 1 ≤ k ≤ n

lim
ε→0+

1

(ε− iλk)1/2
=

1

(−iλk)1/2
=

e−
iπ
4

|λk|1/2
,

since we take the branch of the square root with i1/2 = e
iπ
4 .

4. Combining the foregoing calculations gives us

F
(
e

i
2
〈Qx,x〉

)
= lim

ε→0
F
(
e

i
2
〈Qεx,x〉

)
= e−

i
2
〈Q−1ξ,ξ〉 (2π)n/2e

iπ
4

(r−(n−r))

|λ1λ2 . . . λn|1/2

= e−
i
2
〈Q−1ξ,ξ〉 (2π)n/2e

iπ
4

sgnQ

|det Q|1/2
.

�

3.3 SEMICLASSICAL FOURIER TRANSFORM

We will later need for h > 0 the semiclassical Fourier transform

(3.24) φ̂(ξ) = Fhφ(ξ) :=

∫
Rn

e−
i
h
〈x,ξ〉φ(x) dx

and its inverse

(3.25) F−1
h ψ(x) :=

1

(2πh)n

∫
Rn

e
i
h
〈x,ξ〉ψ(ξ) dξ.

We record for future reference some formulas involving the parameter
h:

THEOREM 3.7 (Properties of semiclassical Fourier trans-
form). We have

(3.26) (hDξ)
αFhφ = Fh((−x)αφ),

(3.27) Fh((hDx)
αφ) = ξαFhφ,

and

(3.28) ‖φ‖L2 =
1

(2πh)n/2
‖Fhφ‖L2 .

Consequently

(3.29) δ{y=x} =
1

(2πh)n

∫
Rn

e
i
h
〈x−y,ξ〉 dξ in S ′.

The reader should compare this identity with the unscaled form (3.11).
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THEOREM 3.8 (Uncertainty principle). We have

(3.30)
h

2
‖f‖L2 ‖Fhf‖L2 ≤ ‖xjf‖L2 ‖ξjFhf‖L2 (j = 1, · · · , n).

The uncertainty principle in its various guises limits the extent to
which we can simultaneously “localize” our calculations in both the x
and ξ variables.

Proof. To see this, note first that

ξjFhf(ξ) = Fh(hDxj
f).

Also, if A,B are self-adjoint opertors, then

Im〈Af,Bf〉 =
1

2i
〈[B,A]f, f〉.

Let A = hD, B = x. Therefore

[x, hD]f =
h

i
[〈x, ∂f〉 − ∂(xf)] = inhf.

Thus

‖xjf‖L2 ‖ξjFhf‖L2 = ‖xjf‖L2 ‖Fh(hDxj
f)‖L2

= (2πh)n/2‖xjf‖L2 ‖hDxj
f‖L2

≥ (2πh)n/2|〈hDxj
f, xjf〉|

≥ (2πh)n/2| Im〈hDxj
f, xjf〉|

=
(2πh)n/2

2
|〈[xj, hDxj

]f, f〉|

=
(2πh)n/2

2
h‖f‖2

L2

=
h

2
‖f‖L2 ‖Fhf‖L2 .

�

3.4 STATIONARY PHASE IN ONE DIMENSION

Understanding the right hand side of (3.24) in the limit h → 0
requires our studying integral expressions with rapidly oscillating inte-
grands.

We start with one dimensional problems.

DEFINITION. Define for h > 0 the oscillatory integral

(3.31) Ih = Ih(a, φ) :=

∫ ∞

−∞
e

iφ
h a dx,
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where a ∈ C∞
c (R), φ ∈ C∞(R).

LEMMA 3.9 (Rapid decay). If φ′ 6= 0 on K := spt(a), then

(3.32) Ih = O(h∞) as h→ 0.

NOTATION. The identity (3.32) means that for each positive integer
N , there exists a constant CN such that

(3.33) |Ih| ≤ CNh
N for all 0 < h ≤ 1.

Proof. We will in effect integrate by parts N times to achieve (3.33).
For this, observe that the operator

L :=
h

i

1

φ′(x)
∂x

is defined for x ∈ K, since φ′ 6= 0 there. Notice also that

L
(
e

iφ
h

)
= e

iφ
h .

Hence LN(eiφ/h) = eiφ/h, for N = 1, 2, . . . . Consequently

|Ih| =
∣∣∣∣∫ ∞

−∞
LN
(
e

iφ
h

)
a dx

∣∣∣∣ =

∣∣∣∣∫ ∞

−∞
eiφ/h(L∗)Na dx

∣∣∣∣ ,
L∗ denoting the adjoint of L. Since a is smooth, L∗a = −h

i
∂x

(
a
φ′

)
is

of order h. Therefore we deduce that |Ih| ≤ CNh
N . �

THEOREM 3.10 (Stationary phase asymptotics). Let a ∈ C∞
c (R).

Suppose x0 ∈ K = spt(a) and

φ′(x0) = 0, φ′′(x0) 6= 0.

Assume further that φ′(x) 6= 0 on K − {x0}.
(i) Then there exist for k = 0, 1, . . . differential operator A2k(x,D), of
order less than or equal to 2k, such that for each N∣∣∣∣∣Ih −

(
N−1∑
k=0

A2k(x,D)a(x0)h
k+ 1

2

)
e

i
h
φ(x0)

∣∣∣∣∣
≤ CNh

N+ 1
2

∑
0≤m≤2N+2

sup
R
|a(m)|.

(3.34)

(i) In particular, we see that

(3.35) A0 = (2π)1/2|φ′′(x0)|−1/2e
iπ
4

sgnφ′′(x0);
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and consequently

(3.36) Ih = (2πh)1/2|φ′′(x0)|−1/2e
iπ
4

sgnφ′′(x0)e
iφ(x0)

h a(x0) +O(h3/2)

as h→ 0.

We will provide two proofs of this important theorem.

First proof of Theorem 3.10. 1. We may without loss assume x0 = 0,
φ(0) = 0. Then φ(x) = 1

2
Φ(x)x2, for

Φ(x) := 2

∫ 1

0

(1− t)φ′′(tx) dt.

Notice that Φ(0) = φ′′(0) 6= 0. We change variables by writing

y := |Φ(x)|1/2x
for x near 0. Thus

∂x

∂y
= |φ′′(0)|−1/2 at x = y = 0.

Now select a smooth function χ : R → R such that 0 ≤ χ ≤ 1,
χ ≡ 1 near 0, and sgnφ′′(x) = sgnφ′′(0) 6= 0 on the support of χ. Then
Lemma 3.9 implies

Ih =

∫ ∞

−∞
e

iφ(x)
h χ(x)a(x) dx+

∫ ∞

−∞
e

iφ(x)
h (1− χ(x))a(x) dx

=

∫ ∞

−∞
e

iε
2h
y2u(y) dy +O(h∞),

for ε := sgnφ′′(0) = ±1, u(y) := χ(x(y))a(x(y))| det ∂yx|.

2. Note that e
iε
2h
y2 = (e−

iε
2h
y2)−1. Also, the Fourier transform formula

(3.23) tells us that

F
(
e−

iεy2

2h

)
= (2πh)1/2e−

iπε
4 e

iεhξ2

2 .

Applying (3.16), we see that consequently

Ih =

(
h

2π

)1/2

e
iπε
4

∫ ∞

−∞
e−

iεhξ2

2 û(ξ) dξ +O(h∞).

The advantage is that the small parameter h, and not h−1, occurs in
the exponential.

Next, write

J(h, u) :=

∫ ∞

−∞
e−

iεhξ2

2 û(ξ) dξ.
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Then

∂hJ(h, u) =

∫ ∞

−∞
e−

iεhξ2

2

(
−iεξ

2

2
û(ξ)

)
dξ = J(h, Pu)

for P := − iε
2
∂2. Continuing, we discover

∂khJ(h, u) = J(h, P ku).

Therefore

J(h, u) =
N−1∑
k=0

hk

k!
J(0, P ku) +

hN

N !
RN(h, u),

for the remainder term

RN(h, u) := N

∫ 1

0

(1− t)N−1J(th, PNu) dt.

Thus Lemma 3.5 implies

|RN | ≤ CN‖P̂Nu‖L1 ≤ CN
∑

0≤k≤2

sup
x
|∂k(PNu)|.

�

The second proof of stationary phase will employ this

LEMMA 3.11 (More on rapid decay). For each positive integer
k, there exists a constant Ck such that

(3.37)

∣∣∣∣∫ ∞

−∞
e

iφ(x)
h a(x) dx

∣∣∣∣ ≤ Ckh
k
∑

0≤m≤k

sup
R

(|a(m)||φ′|m−2k).

This inequality will be useful at points x where φ′(x) is small, pro-
vided a(m)(x) is also small.

Proof. The proof is an induction on k, the case k = 0 being obvious.
Assume the assertion for k − 1. Then∫ ∞

−∞
e

iφ
h a dx =

h

i

∫ ∞

−∞

(
e

iφ
h

)′ a
φ′
dx

= −h
i

∫ ∞

−∞
e

iφ
h

(
a

φ′

)′
dx = −h

i

∫ ∞

−∞
e

iφ
h ã dx,

for

ã :=

(
a

φ′

)′
.
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By the induction hypothesis,∣∣∣∣∫ ∞

−∞
e

iφ
h a dx

∣∣∣∣ ≤ h

∣∣∣∣∫ ∞

−∞
e

iφ
h ã dx

∣∣∣∣
≤ Ck−1h

k
∑

0≤m≤k−1

sup
R

(|ã(m)||φ′|m−2(k−1))

≤ Ckh
k
∑

0≤m≤k

sup
R

(|a(m)||φ′|m−2k).

�

Second proof of Theorem 3.10. 1. As before, we may assume x0 = 0,
φ(0) = 0. Then

φ′(x) = φ′′(0)x+O(x2).

Therefore

|x| ≤ |φ′′(0)|−1|φ′(x) +O(x2)| ≤ 2|φ′′(0)|−1|φ′(x)|
for sufficiently small x. Consequently,

x

φ′(x)
is bounded near 0.

Hence if |a(m)| ≤ C|x|2N−m for m = 0, . . . , N , Lemma 3.11 implies∣∣∣∣∫ ∞

−∞
e

iφ
h a dx

∣∣∣∣ ≤ ChN
∑

0≤m≤N

sup
x

(|a(m)||φ′|m−2N)(3.38)

≤ ChN
∑

0≤m≤k

∣∣∣∣ xφ′
∣∣∣∣2N−m = O(hN).

2. Return now to our integral

Ih =

∫ ∞

−∞
e

iφ
h a dx.

We write

a =
2N∑
k=0

a(k)(0)

k!
xk + a2N ,

where

(3.39) |a(m)
2N | ≤ C|x|2N−m for m = 0, . . . , N.

Then ∫ ∞

−∞
e

iφ
h a dx =

2N∑
k=0

a(k)(0)

k!

∫ ∞

−∞
e

iφ
h xk dx+

∫ ∞

−∞
e

iφ
h a2N dx.
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Estimates (3.39) and (3.38) demonstrate that the last term is O(hN)
as h→ 0. �

3.5 STATIONARY PHASE IN HIGHER DIMENSIONS

We turn next to n-dimensional oscillatory integrals.

DEFINITION. We call the expression

(3.40) Ih = Ih(a, φ) =

∫
Rn

e
iφ
h a dx

an oscillatory integral, where a ∈ C∞
c (Rn), φ ∈ C∞(Rn).

LEMMA 3.12 (Rapid decay again). If ∂φ 6= 0 on K := spt(a),
then

Ih = O(h∞).

In particular, for each positive integer N

(3.41) |Ih| ≤ ChN
∑
|α|≤N

sup
Rn

|∂αa|,

where C depends on K and n only.

Proof. Define the operator

L :=
h

i

1

|∂φ|2
〈∂φ, ∂〉

for x ∈ K, and observe that

L
(
e

iφ
h

)
= e

iφ
h .

Hence LN
(
e

iφ
h

)
= e

iφ
h . Consequently

|Ih| =
∣∣∣∣∫

Rn

LN
(
e

iφ
h

)
a dx

∣∣∣∣ =

∣∣∣∣∫
Rn

e
iφ
h (L∗)Na dx

∣∣∣∣ ≤ ChN .

�

DEFINITION. We say φ : Rn → R has a nondegenerate critical point
at x0 if

∂φ(x0) = 0, det ∂2φ(x0) 6= 0.

Next we change variables locally to convert the phase function φ into
a quadratic:
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THEOREM 3.13 (Morse Lemma). Let φ : Rn → R be smooth, with
a nondegenerate critical point at x0. Then there exist neighborhoods U
of 0 and V of x0 and a diffeomorphism

κ : V → U

such that

(3.42) (φ ◦ κ−1)(x) = φ(x0) +
1

2
(x2

1 + · · ·+ x2
r − x2

r+1 · · · − x2
r),

where r is the number of positive eigenvalues of ∂2φ(x0).

Proof. 1. As usual, we suppose x0 = 0, φ(0) = 0. After a linear change
of variables, we have

φ(x) =
1

2
(x2

1 + · · ·+ x2
r − x2

r+1 · · · − x2
r) +O(|x|3);

and so the problem is to design a further change of variables that
removes the cubic and higher terms.

2. Now

φ(x) =

∫ 1

0

(1− t)2∂2
t φ(tx) dt =

1

2
〈x,Q(x)x〉,

where

Q(0) = ∂2φ(0) =

(
I O
O −I

)
.

We want to find a smooth mapping A from Rn to Mn×n such that

(3.43) 〈A(x)x,Q(0)A(x)x〉 = 〈x,Q(x)x〉.
Then

κ(x) = A(x)x

is the desired change of variable.

Formula (3.43) will hold provided

(3.44) AT (x)Q(0)A(x) = Q(x).

Let F : Mn×n → Sn×n be defined by

F (A) = ATQ(0)A.

We want to find a right inverse G : Sn×n → Mn×n, so that

F ◦G = I near Q(0).

Then
A(x) := G(Q(x))

will solve (3.44).
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3. We will apply a version of the Implicit Function Theorem (Theo-
rem B.7). To do so, it suffices to find A ∈ L(Sn×n,Mn×n) such that

∂F (I)A = I.

Now

∂F (I)(C) = CTQ(0) +Q(0)C.

Define

A(D) :=
1

2
Q(0)−1D

for D ∈ Sn×n. Then

∂F (I)A(D) =
1

2
∂F (I)(Q−1(0)D)

=
1

2
[(Q(0)−1D)TQ(0) +Q(0)(Q(0)−1D)]

= D.

�

THEOREM 3.14 (Stationary phase asymptotics). Assume that
a ∈ C∞

c (Rn). Suppose x0 ∈ K := spt(a) and

∂φ(x0) = 0, det ∂2φ(x0) 6= 0.

Assume further that ∂φ(x) 6= 0 on K − {x0}.

(i) Then there exist for k = 0, 1, . . . differential operators A2k(x,D) of
order less than or equal to 2k, such that for each N∣∣∣∣∣Ih −

(
N−1∑
k=0

A2k(x,D)a(x0)h
k+n

2

)
e

iφ(x0)
h

∣∣∣∣∣
≤ CNh

N+n
2

∑
|α|≤2N+n+1

sup
Rn

|∂αa|.
(3.45)

(ii) In particular,

(3.46) A0 = (2π)n/2|det∂2φ(x0)|−1/2e
iπ
4

sgn ∂2φ(x0);

and therefore

Ih =

(2πh)n/2|det∂2φ(x0)|−1/2e
iπ
4

sgn ∂2φ(x0)e
iφ(x0)

h a(x0) +O
(
h

n+2
2

)(3.47)

as h→ 0.
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Proof. Without loss x0 = 0, φ(x0) = 0. Introducing a cutoff function χ
and applying the Morse Lemma, Theorem 3.13, and then Lemma 3.12,
we can write

Ih =

∫
Rn

e
iφ
h a dx =

∫
Rn

e
i
h
〈Qx,x〉u dx+O(h∞),

where

Q =

(
I O
O −I

)
and u is smooth. In this expression the upper indentity matrix is
r × r and the lower identity matrix is (n − r) × (n − r). Note that
sgnQ = sgn ∂2φ(x0) and |detQ| = 1. Hence the Fourier transform
formulas (3.23) and (3.16) give

Ih =

(
h

2π

)n/2
e

iπ
4

sgnQ

∫
Rn

e−
ih
2
〈Q−1ξ,ξ〉û(ξ) dξ.

Write

J(h, u) :=

∫
Rn

e−
ih
2
〈Q−1ξ,ξ〉û(ξ) dξ;

then

∂hJ(h, u) =

∫
Rn

e−
ih
2
〈Q−1ξ,ξ〉

(
− i

2
〈Q−1ξ, ξ〉û(ξ)

)
dξ = J(h, Pu)

for

(3.48) P := − i
2
〈Q−1Dx, Dx〉.

Therefore

J(h, u) =
N−1∑
k=0

hk

k!
J(0, P ku) +

hN

N !
RN(h, u),

for the remainder term

RN(h, u) := N

∫ 1

0

(1− t)N−1J(th, P nu) dt.

Then Lemma 3.5 implies

|RN | ≤ CN‖P̂Nu‖L1 ≤ CN sup
|α|≤2N+n+1

|∂αa|.

�

3.6 AN IMPORTANT EXAMPLE.



37

In Chapter 4 we will be primarily interested in the particular phase
function

(3.49) φ(x, y) = 〈x, y〉

on R2n:

THEOREM 3.15 (A simple phase function). Assume that a be-
longs to C∞

c (R2n). Then for each postive integer N , we have∫
R2n

e−
i
h
〈x,y〉a(x, y) dxdy =

(2πh)n/2

(
N−1∑
k=0

hk

k!

(
〈Dx, Dy〉

i

)k
a(0, 0) +O(hN)

)
.

(3.50)

REMARK. It will be convenient later for us to rewrite this identity
in the form ∫

R2n

e−
i
h
〈x,y〉a(x, y) dxdy

∼ (2πh)n/2e−ih〈Dx,Dy〉a(0, 0).

(3.51)

�

Proof. We write (x, y) to denote a typical point of R2n, and let

Q := −
(
O I
I O

)
.

Then Q = Q−1, |detQ| = 1, sgn(Q) = 0 and Q(x, y) = (−y,−x).

Consequently 1
2
〈Q(x, y), (x, y)〉 = −〈x, y〉. Furthermore the operator

P , introduced at (3.48) in the previous proof, becomes

P = − i
2
〈Q−1D(x,y), D(x,y)〉 =

1

i
〈Dx, Dy〉.

Hence

J(0, P ka) =

∫
R2n

e−ih〈ξ,η〉

((
1

i
〈Dx, Dy〉

)k
a

)∧

dξdη

= (2π)n
(

1

i
〈Dx, Dy〉

)k
a(0, 0).

�
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REMARK. We can similarly write∫
Rn

e
i

2h
〈Q−1x,x〉a(x) dx

∼
(
h

2π

)n/2
e

iπ
4

sgnQ|detQ|1/2eih〈QD,D〉a(0),
(3.52)

if Q is nonsingular and symmetric. �
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4. Quantization of symbols

4.1 Quantization formulas
4.2 Composition
4.3 General symbol classes
4.4 Operators on L2

4.5 Inverses
4.6 G̊arding inequalities

The Fourier transform and its inverse allow us move at will between
the position x and momentum ξ variables, but what we really want is
to deal with both sets of variables simultaneously. This chapter there-
fore introduces the quantization of “symbols”, that is, of appropriate
functions of both x and ξ. The resulting operators applied to functions
entail information in the full (x, ξ) phase space, and particular choices
of the symbol will later prove very useful, allowing us for example to
“localize” in phase space.

The plan is to introduce quantization and then to work out the re-
sulting symbol calculus, meaning the systematic rules for manipulating
symbols and their associated operators.

4.1 QUANTIZATION FORMULAS

NOTATION. For this section we take a ∈ S = S(R2n), a = a(x, ξ).
We hereafter call a a symbol.

DEFINITIONS.
(i) We define the Weyl quantization to be the operator aw(x, hD)

acting on u ∈ S(Rn) by the formula

aw(x, hD)u(x) :=

1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y) dydξ.

(4.1)

(ii) We define also the standard quantization

(4.2) a(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a(x, ξ)u(y) dydξ

for u ∈ S.

(iii) More generally, each 0 ≤ t ≤ 1, we set

Opt(a)u(x) :=

1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ)u(y) dydξ

(4.3)

for u ∈ S.



40

NOTATION. We will often for notational simplicity just write “Op(a)”
for Op1/2(a). Therefore

Op(a) = aw(x, hD).

EXAMPLES:

(i) If a(x, ξ) = ξα, then

Opt(a)u = (hD)αu (0 ≤ t ≤ 1).

(ii) If a(x, ξ) = V (x), then

Opt(a)u = V (x)u (0 ≤ t ≤ 1).

(iii) If a(x, ξ) = 〈x, ξ〉, then

Opt(a)u = (1− t)〈hD, xu〉+ t〈x, hDu〉 (0 ≤ t ≤ 1).

(iv) If a(x, ξ) =
∑

|α|≤N aα(x)ξ
α and t = 1, then

a(x, hD) =
∑
|α|≤N

aα(x)(hD)αu.

These formulas follow straightforwardly from the definitions.

THEOREM 4.1 (Schwartz class symbols). If a ∈ S, then Opt(a)
can be defined as an operator mapping S ′ to S; and furthermore

Opt(a) : S ′ → S (0 ≤ t ≤ 1)

is continuous.

Proof. We have

Opt(a)u(x) =

∫
Rn

K(x, y)u(y) dy

for the kernel

K(x, y) :=
1

(2πh)n

∫
Rn

e
i
h
〈x−y,ξ〉a(tx+ (1− t)y, ξ) dξ

= F−1
h (a(tx+ (1− t)y, ·))(x− y).

Thus K ∈ S, and so

Opt(a)u(x) = u(K(x, ·))
maps S ′ continuously into S. �
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THEOREM 4.2 (Adjoints). Assume a ∈ S
(i) We have

Opt(a)
∗ = Op1−t(ā) (0 ≤ t ≤ 1).

(ii) Consequently,

aw(x, hD)∗ = aw(x, hD) if a is real.

In particular, the Weyl quantization of a real symbol is self-adjoint.

Proof. The kernel of Opt(a)
∗ is K∗(x, y) := K(y, x), which is the kernel

of Op1−t(ā). �

We next observe that the formulas (4.1)–(4.3) make sense if a is
merely a distribution:

THEOREM 4.3 (Distributional symbols). If a ∈ S ′, then Opt(a)
can be defined as an operator mapping S to S ′; and furthermore

Opt(a) : S → S ′ (0 ≤ t ≤ 1)

is continuous.

Proof. The formula for the distibutional kernel of Opt(a) shows that
it is an element K of S ′(Rn × Rn). Hence Opt(a) is well defined as an
operator from S to S: if u, v ∈ S then

(Opt(a)u)(v) := K(u⊗ v).

�

4.2 COMPOSITION

We begin now a careful study of the properties of the quantized
operators defined above. Our particular goal in this section is showing
that if a and b are symbols, then there exists a symbol c = a#b such
that

aw(x, hD) ◦ bw(x, hD) = cw(x, hD).

4.2.1 Linear symbols. We begin with linear symbols.

LEMMA 4.4 (Quantizing linear symbols). Fix (x∗, ξ∗) ∈ R2n and
define the linear symbol

(4.4) l(x, ξ) := 〈x∗, x〉+ 〈ξ∗, ξ〉.
Then

(4.5) Opt(l)u = 〈x∗, x〉u+ 〈ξ∗, hD〉u (0 ≤ t ≤ 1).
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NOTATION. In view of this result, we hereafter write l(x, hD) for
lw(x, hD).

Proof. Compute the derivative

d

dt
Opt(l)u =

1

(2πh)n
d

dt

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉(〈x∗, tx+ (1− t)y〉

+〈ξ∗, ξ〉)u(y) dydξ

=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉〈x∗, x− y〉u dydξ

=
h

(2πh)n

∫
Rn

〈
x∗, Dξ

∫
Rn

e
i
h
〈x−y,ξ〉u(y) dy

〉
dξ

=
h

(2πh)n

∫
Rn

〈
x∗, Dξ(e

i
h
〈x,ξ〉û(ξ))

〉
dξ.

Since û(ξ) → 0 rapidly as |ξ| → ∞, the last expression vanishes. There-
fore Opt(l) does not in fact depend upon t; and consequently for all
0 ≤ t ≤ 1, Opt(l)u = Op1(l)u = 〈x∗, x〉u+ 〈ξ∗, hD〉u.

�

THEOREM 4.5 (Composition with a linear symbol). Let b ∈ S.
Then

(4.6) l(x, hD)bw(x, hD) = cw(x, hD),

for

(4.7) c := lb+
h

2i
{l, b}.

NOTATION. Here we use the notation

(4.8) {l, b} = 〈∂ξl, ∂xb〉 − 〈∂xl, ∂ξb〉 = 〈ξ∗, ∂xb〉 − 〈x∗, ∂ξb〉.

Proof. According to Lemma 4.4,

l(x, hD) = 〈x∗, x〉+ 〈ξ∗, hD〉.
Now

〈x∗, x〉bw(x, hD)u

=
1

(2πh)n

∫
Rn

∫
Rn

〈x∗, x〉e
i
h
〈x−y,ξ〉b

(
x+ y

2
, ξ

)
u(y) dydξ.

We write

〈x∗, x〉 = 〈x∗, x+ y

2
〉+ 〈x∗, x− y

2
〉



43

and observe then that

x− y

2
e

i
h
〈x−y,ξ〉 =

h

2i
∂ξ

(
e

i
h
〈x−y,ξ〉

)
.

An integration by parts shows that consequently

〈x∗, x〉bw(x, hD)u =

1

(2πh)n

∫
Rn

∫
Rn

e
i
n
〈x−y,ξ〉

(
〈x∗, x− y

2
〉b− h

2i
〈x∗, ∂ξb〉

)
u dydξ.

Furthermore

〈ξ∗, hDx〉bw(x, hD)u

=
1

(2πh)n

∫
Rn

∫
Rn

〈ξ∗, hDx〉
(
e

i
h
〈x−y,ξ〉b

(
x+ y

2
, ξ

))
u(y) dydξ

=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉

(
〈ξ∗, ξ〉b+

h

2i
〈ξ∗, ∂xb〉

)
u dydξ.

Adding the last two equations shows us that

l(x, hD)bw(x, hD)

= (〈x∗, x〉+ 〈ξ∗, hD〉)bw(x, hD)

=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉((
〈ξ∗, ξ〉+ 〈x∗, x+ y

2
〉
)
b+

h

2i
{l, b}

)
u dydξ,

in view of (4.8). This proves (4.6), (4.7). �

THEOREM 4.6 (Quantizing the exponential of a linear sym-
bol). We have the identity

(4.9) Op
(
e−

i
h
l
)

= e−
i
h
l(x,hD).

Proof. Consider the differential equation

(4.10)

{
ih∂tu = l(x, hD)u (t ∈ R)

u(0) = v;

the solution of which is

u := Op
(
e−

it
h
l
)
v,

since

ih∂tu = Op
(
le−

it
h
l
)
v = Op(la)v
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for a := e−
it
h
l. Observe that then {l, a} = 0, since a is a function of l.

Hence Theorem 4.5 implies

Op(la)v = l(x, hD)Op(a)v = l(x, hD)u.

As the solution of (4.10) is e−
it
h
l(x,hD)v, assertion (4.9) holds. �

LEMMA 4.7 (Translation and quantization). We have

(4.11) Op
(
e−

il
h

)
= e−

i
2h
〈x∗,x〉 ◦ Tξ∗ ◦ e−

i
2h
〈x∗,x〉,

where Tξ∗ is the translation operator.

See Appendix A for the definition of the translation operator. If we
write out (4.11) explicitly, we find

(4.12) e−
i
h
l(x,hD)u(x) = e−

i
h
〈x∗,x〉+ i

2h
〈x∗,ξ∗〉u(x− ξ∗).

Proof. To check this, observe that

Op
(
e−

il
h

)
u =

1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉e−

i
h(〈ξ∗,ξ〉+〈x∗,x+y

2
〉)u(y) dydξ

=
e−

i
2h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y−ξ∗,ξ〉

(
e−

i
2h
〈x∗,y〉u(y)

)
dydξ

=
e−

i
2h
〈x∗,x〉

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉

(
e−

i
2h
〈x∗,y−ξ∗〉u(y − ξ∗)

)
dydξ

=
(
e−

i
2h
〈x∗,x〉 ◦ Tξ∗ ◦ e−

i
2h
〈x∗,x〉

)
u,

since

δ{y=x} =
1

(2πh)n

∫
Rn

e
i
h
〈x−y,ξ〉dξ in S ′,

according to (3.29) �

NOTATION. To simplify calculations later on, we henceforth identify
the linear symbol

l(x, ξ) := 〈x∗, x〉+ 〈ξ∗, ξ〉
with the point (x∗, ξ∗) ∈ R2n.

LEMMA 4.8 (Two linear symbols). Suppose l,m ∈ R2n. Then

(4.13) e−
i
h
l(x,hD)e−

i
h
m(x,hD) = e

i
2h
{l,m}e−

i
h
(l+m)(x,hD).
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Proof. We have l(x, ξ) = 〈x∗1, x〉+〈ξ∗1 , ξ〉, and m(x, ξ) = 〈x∗2, x〉+〈ξ∗2 , ξ〉.
Then

(4.14) {l,m} = 〈∂ξl, ∂xm〉− 〈∂xl, ∂ξm〉 = 〈ξ∗1 , x∗2〉− 〈x∗1, ξ∗2〉 = σ(l,m).

According to (4.12)

e−
i
h
m(x,hD)u(x) = e−

i
h
〈x∗2,x〉+

i
2h
〈x∗2,ξ∗2〉u(x− ξ∗2);

and consequently

e−
i
h
l(x,hD)e−

i
h
m(x,hD)u(x) =(4.15)

e−
i
h
〈x∗1,x〉+

i
2h
〈x∗1,ξ∗1〉e−

i
h
〈x∗2,x−ξ∗1〉+

i
2h
〈x∗2,ξ∗2〉u(x− ξ∗1 − ξ∗2).

On the other hand, (4.12) implies also that

e−
i
h
(l+m)(x,hD)u(x) = e−

i
h
〈x∗1+x∗2,x〉+

i
2h
〈x∗1+x∗2,ξ

∗
1+ξ∗2〉u(x− ξ∗1 − ξ∗2)

= e
i

2h
(〈x∗1,ξ∗2〉−〈x∗2,ξ∗1〉)e−

i
h
l(x,hD)e−

i
h
m(x,hD)u(x),

the last equality following from (4.15). This proves (4.13). �

4.2.2 Fourier decomposition of aw. Suppose now a ∈ S and l ∈
R2n. We define

â(l) :=

∫
R2n

e−
i
h
l(x,ξ)a(x, ξ) dxdξ;

so that by the Fourier inversion formula

a(x, ξ) =
1

(2πh)2n

∫
R2n

e
i
h
l(x,ξ)â(l) dl.

This is a decomposition of the symbol a into linear symbols of the form
treated above. Therefore Theorem 4.6 provides the useful representa-
tion formula

(4.16) aw(x, hD) =
1

(2πh)2n

∫
R2n

â(l)e
i
h
l(x,hD) dl.

4.2.3 Composing symbols. Next we establish the fundamental for-
mula:

(4.17) awbw = (a#b)w,

along with a recipe for computing the new symbol a#b:

THEOREM 4.9 (Composition for Weyl quantization).
(i) Suppose that a, b ∈ S. Then

aw(x, hD) ◦ bw(x, hD) = cw(x, hD)

for the symbol
c = a#b,
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where

(4.18) a#b(x, ξ) := e
ih
2
σ(Dx,Dξ,Dy ,Dη)

(
a(x, ξ)b(y, η)

)∣∣∣ x = y
ξ = η

for

σ(Dx, Dξ, Dy, Dη) := 〈Dξ, Dy〉 − 〈Dx, Dη〉.

(ii) We also have the integral representation formula

a#b(x, ξ) =

1

(πh)2n

∫
Rn

∫
Rn

∫
Rn

∫
Rn

a(x+ z, ξ + ζ)b(x+ y, ξ + η)

e
2i
h
σ(y,η;z,ζ) dydηdzdζ,

(4.19)

for

σ(y, η; z, ζ) = 〈η, z〉 − 〈y, ζ〉.

Proof. 1. Similarly to (4.16), we have

bw(x, hD) =
1

(2πh)2n

∫
R2n

b̂(m)e
i
h
m(x,hD)dm.

Therefore Lemma 4.8 lets us compute

aw(x, hD)bw(x, hD)

=
1

(2πh)4n

∫
R2n

∫
R2n

â(l)b̂(m)e
i
h
l(x,hD)e

i
h
m(x,hD) dmdl

=
1

(2πh)4n

∫
R2n

∫
R2n

â(l)b̂(m)e
i

2h
{l,m}e

i
h
(l+m)(x,hD) dldm

=
1

(2πh)2n

∫
R2n

ĉ(r)e
i
h
r(x,hD)dr

for

(4.20) ĉ(r) :=
1

(2πh)2n

∫
{l+m=r}

â(l)b̂(m)e
i{l,m}

2h dl.

To get this, we changed variables by setting r = m+ l.

2. We will show that ĉ defined by (4.20) is the Fourier transform of
the symbol c defined by the right hand side of (4.18).

To see this, we simplify notation write z = (x, ξ), w = (y, η). Then

c(z) = e
ih
2
σ(Dz ,Dw)a(z)b(w)|z=w = e

i
2h
σ(hDz ,hDw)a(z)b(w)|z=w.
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Now

a(z) =
1

(2πh)2n

∫
R2n

e
i
h
l(z)â(l) dl,

b(w) =
1

(2πh)2n

∫
R2n

e
i
h
m(w)b̂(m) dm.

Furthermore, a direct calculation, the details of which we leave to the
reader, demonstrates that

e
i

2h
σ(hDz ,hDw)e

i
h
(l(z)+m(w)) = e

i
h
(l(z)+m(w))+ i

2h
σ(l,m).

Consequently

c(z) =
1

(2πh)4n

∫
R2n

∫
R2n

e
i

2h
σ(hDz ,hDw)e

i
h
(l(z)+m(w))

∣∣∣∣
z=w

â(l)b̂(m) dldm

=
1

(2πh)4n

∫
R2n

∫
R2n

e
i
h
(l(z)+m(z))+ i

2h
σ(l,m)â(l)b̂(m) dldm.

The semiclassical Fourier transform of c is therefore

1

(2πh)2n

∫
R2n

∫
R2n

(
1

(2πh)2n

∫
Rn

e
i
h
(l+m−r)(z)dz

)
e

i
2h
σ(l,m)â(l)b̂(m) dldm.

According to (3.29), the term inside the parentheses is δ{l+m=r} in
S ′. Thus the foregoing equals

1

(2πh)2n

∫
{l+m=r}

e
i

2h
{l,m}â(l)b̂(m) dl = ĉ(r),

in view of (4.20). We have made use of the rule σ(l,m) = {l,m},
established earlier at (4.14).

3. We begin the proof of (4.19) by first introducing the more con-
venient variables z = (x, ξ), w1 = (y, η), w2 = (z, ζ) ∈ R2n. In these
variables, formula (4.18) says

a#b(z)

=
1

(2πh)4n

∫
R2n

∫
R2n

∫
R2n

∫
R2n

e
i
h
(〈z1,z−w1〉+〈z2,z−w2〉)e

i
2h
σ(z1,z2)

a(w1)b(w2) dz1dz2dw1dw2

=
1

(2πh)4n

∫
R2n

∫
R2n

∫
R2n

∫
R2n

e
i
h
(〈z1,w3〉+〈z2,w4〉)e

i
2h
σ(z1,z2)

a(z − w3)b(z − w4) dz1dz2dw3dw4.
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Next, observe that∫
R2n

∫
R2n

e
i
h
(〈z1,w3〉+〈z2,w4〉)e

i
2h
σ(z1,z2) dz1dz2

=

∫
R2n

∫
R2n

e
i
h
(〈z1,w3〉+〈z2,w4〉+ 1

2
〈z1,Jz2〉) dz1dz2

=

∫
R2n

e
i
h
〈z2,w4〉

(∫
R2n

e
i
h
(〈z1,w3+ 1

2
Jz2〉)dz1

)
dz2

= (2πh)2n

∫
R2n

e
i
h
〈z2,w4〉δ{w3+ 1

2
Jz2}dz2

= (2πh)2n22n

∫
R2n

e
i
h
〈2J(w3−z3),w4〉δ{0} dz3

= (2πh)2n22ne
i
h
〈2Jw3,w4〉 = (2πh)2n22ne−

2i
h
σ(w3,w4).

We changed variables above, by setting z3 = w3 + 1
2
Jz2.

Insert this calculation into the previous formula, to discover

a#b(z) =
1

(πh)2n

∫
R2n

∫
R2n

e−
2i
h
σ(w3,w4)a(z − w3)b(z − w4) dw3dw4

=
1

(πh)2n

∫
R2n

∫
R2n

e
2i
h
σ(w3,w4)a(z + w4)b(z + w3) dw3dw4;

this is (4.19). �

REMARK. For future reference, we record this alternative expression
for (4.19) that we just derived:

a#b(z) =

1

(πh)2n

∫
R2n

∫
R2n

e−
2i
h
σ(w1,w2)a(z − w1)b(z − w2) dw1dw2.

(4.21)

�

4.2.4 Asymptotics. We next apply stationary phase to derive a useful
asymptotic expansion for a#b:

THEOREM 4.10 (Semiclassical expansions). Assume a, b ∈ S.
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(i) We can write for N = 0, 1, . . . ,

a#b(x, ξ) =

N∑
k=0

1

k!

(
ih

2
σ(Dx, Dξ, Dy, Dη)

)k
a(x, ξ)b(y, η)

∣∣∣∣∣ x = ξ
y = η

+O(hN+1),

(4.22)

the error taken in S.

(ii) In particular,

(4.23) a#b = ab+
h

2i
{a, b}+O(h2).

as h→ 0.

(iii) Furthermore, if spt(a) ∩ spt(b) = ∅, then

a#b = O(h∞).

as h→ 0.

Proof. 1. Apply the stationary phase Theorem 3.15 to prove (4.22).

2. We can compute

a#b = ab+
ih

2
σ(Dx, Dξ, Dy, Dη)a(x, ξ)b(y, η)

∣∣∣∣ x = y
ξ = η

+O(h2)

= ab+
ih

2
(〈Dξa,Dyb〉 − 〈Dxa,Dηb〉)

∣∣∣∣ x = y
ξ = η

+O(h2)

= ab+
h

2i
(〈∂ξa, ∂xb〉 − 〈∂xa, ∂ξb〉) +O(h2)

= ab+
h

2i
{a, b}+O(h2).

3. If spt(a)∩ spt(b) = ∅, each term in the expansion (4.22) vanishes.
�

As a quick application, we record

THEOREM 4.11 (Commutators and brackets). Assume that
a, b ∈ S. If A = aw and B = bw, then

(4.24) [A,B] =
h

i
{a, b}w +O(h2),

the error taken in S.
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Proof. We have

[A,B] = awbw − bwaw = (a#b− b#a)w

=

(
ab+

h

2i
{a, b} −

(
ba+

h

2i
{b, a}

)
+O(h2)

)w
=

h

i
{a, b}w +O(h2).

�

Next we replace Weyl (t = 1
2
) by standard (t = 1) quantization in

our composition formulas.

THEOREM 4.12 (Composition for standard quantization). Let
a, b ∈ S. Then

a(x, hD) ◦ b(x, hD) = c(x, hD)

for

c(x, ξ) := eih〈Dξ,Dy〉a(x, ξ)b(y, η)
∣∣
x = y
ξ = η

.

Proof. We have

a(x, hD) ◦ b(x, hD)u(x)

=
1

(2πh)2n

∫
Rn

∫
Rn

∫
Rn

e
i
h
(〈x,η〉+〈y,ξ−η〉)a(x, η)b(y, ξ)û(ξ) dydηdξ

=
1

(2πh)n

∫
Rn

c(x, ξ)e
i
h
〈x,ξ〉û(ξ) dξ,

for

c(x, ξ) :=
1

(2πh)n

∫
Rn

∫
Rn

e−
i
h
〈x−y,ξ−η〉a(x, η)b(y, ξ) dydη.

Then

1

(2πh)n

∫
Rn

∫
Rn

e−
i
h
〈z,w〉u(x,w) dzdw ∼ eih〈Dz ,Dw〉u(0, 0)

by stationary phase. �

4.2.3 Transforming between different quantizations. We lastly
record an interesting conversion formula:
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THEOREM 4.13 (Changing quantizations). If

A = Opt(at) (0 ≤ t ≤ 1),

then

(4.25) at(x, ξ) = ei(t−s)h〈Dx,Dξ〉as(x, ξ).

Proof. The decomposition formula (4.16) demonstrates that

Opt(at) =
1

(2πh)2n

∫
R2n

ât(l)Opt(e
i
h
l) dl.

Denoting the Fourier transform used there by Fh, we have

Fh
(
ei(t−s)h〈Dx,Dξ〉as(x, ξ)

)
(l) = e

i
h
(t−s)〈x∗,ξ∗〉Fhas(l);

and as before we identify l = (x∗, ξ∗) ∈ R2n with the linear function
l(x, ξ) = 〈x∗, x〉+ 〈ξ∗, ξ〉.

The theorem will be a consequence of the identity

(4.26) Opt

(
e

i
h
l(x,ξ)

)
= e

i
h
(s−t)〈x∗,ξ∗〉Ops

(
e

i
h
l(x,ξ)

)
.

Proceeding as in the proof of Lemma 4.7 shows that

Opt

(
e

i
h
l(x,ξ)

)
= e

i
h
t〈x,x∗〉Tξ∗e

i
h
(1−t)〈x,x∗〉,

from which (4.26) follows. �

4.3 GENERAL SYMBOL CLASSES

We propose next to extend our calculus to symbols a = a(x, ξ, h),
depending on the parameter h, which can grow as |x|, |ξ| → ∞.

4.3.1 More definitions.

DEFINITION. A function m : R2n → (0,∞) is called an order func-
tion if there exist constants C,N such that

(4.27) m(z) ≤ C〈z − w〉Nm(w)

for all w, z ∈ Rn.

Observe that if m1,m2 are order functions, so is m1m2.

EXAMPLES. Standard examples are m(z) ≡ 1 and m(z) = 〈z〉 =
(1 + |z|2)1/2. �

DEFINITIONS.
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(i) Given an order function m on R2n, we define the corresponding class
of symbols:

S(m) := {a ∈ C∞ | for each multiindex α

there exists a constant Cα so that |∂αa| ≤ Cαm}.

(ii) We as well define

Sk(m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−km for all multiindices α}

and

Skδ (m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−δ|α|−km for all multiindices α}.

The index k indicates how singular is the symbol a as h→ 0; the index
δ allows for increasing singularity of the higher derivatives. Notice that
the more negative k is, the more rapidly a and its derivatives vanish as
h→ 0.

(iii) Write also

S−∞(m) := {a ∈ C∞ | for each α and N , |∂αa| ≤ Cα,Nh
Nm}.

So if a is a symbol belonging to S−∞(m), then a and all of its derivatives
are O(h∞) as h→ 0.

NOTATION. If the order function is the constant function m ≡ 1,
we will usually not write it:

Sk := Sk(1), Skδ := Skδ (1).

We will also omit zero superscripts. Thus

S := {a ∈ C∞(R2n) | |∂αa| ≤ Cα for all multiindices α}
Sδ := {a ∈ C∞ | |∂αa| ≤ Cαh

−δ|α| for all multiindices α}.

REMARKS: rescaling in h.
(i) We will in the next subsection show that if a ∈ Sδ, then the

quantization formula

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dξdy

makes sense for u ∈ S. It is often convenient to rescale to the case
h = 1, by changing to the new variables

(4.28) x̃ := h−
1
2x, ỹ := h−

1
2y, ξ̃ := h−

1
2 ξ.
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Then

aw(x, hD)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ

)
e

i
h
〈x−y,ξ〉u(y) dydξ

=
1

(2π)n

∫
Rn

∫
Rn

ah

(
x̃+ ỹ

2
, ξ̃

)
ei〈x̃−ỹ,ξ̃〉ũ(ỹ) dỹdξ̃

= awh (x̃, D)ũ(x̃),

for

(4.29) ũ(x̃) := u(x) = u(h
1
2 x̃), ah(x̃, ξ̃) := a(x, ξ) = a(h

1
2 x̃, h

1
2 ξ̃).

Notice that (4.28) is the only homogeneous change of variables that

converts the term e
i
h
〈x−y,ξ〉 into ei〈x̃−ỹ,ξ̃〉.

(ii) Observe also that if a ∈ Sδ, then

(4.30) |∂αah| = h
|α|
2 |∂αa| ≤ Cαh

|α|( 1
2
−δ)

for each multiindex α. If δ > 1
2
, the last term is unbounded as h→ 0;

and consequently we will henceforth always assume

0 ≤ δ ≤ 1

2
.

We see also that the case

δ =
1

2
is critical, in that we then do not get decay as h→ 0 for the terms on
the right hand side of (4.30) when |α| > 0. �

4.3.2 Quantization. Next we discuss the Weyl quantization of sym-
bols in the class Sδ(m):

THEOREM 4.14 (Quantizing general symbols). If a ∈ Sδ(m),
then

Op(a) : S → S.

Proof. 1. We take h = 1 for simplicity, and set

Op(a)u(x) =
1

(2π)n

∫
Rn

∫
Rn

ei〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dξdy.

where u ∈ S.
Observe next that L1e

i〈x−y,ξ〉 = ei〈x−y,ξ〉 for

L1 :=
1 + 〈x− y,Dξ〉
1 + 〈x− y〉2

;
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and L2e
i〈x−y,ξ〉 = ei〈x−y,ξ〉 for

L2 :=
1− 〈ξ,Dy〉
1 + 〈ξ〉2

.

We as usual employ these operators, to show that Op(a) : S → L∞.

2. Also

xjOp(a)u =
1

(2π)n

∫
Rn

∫
Rn

(Dξj + yj)e
i〈x−y,ξ〉au dξdy.

Integrate by parts, to conclude that xαOp(a) : S → L∞.

Furthermore, since

Opt(a)
(
e−i(

1
2
−t)DxDξa

)
= Op(a),

we have

Dxj
Op(a)u = Dxj

Op0

(
e−

i
2
DxDξa

)
u

= Dxj

(
1

(2π)n

∫
Rn

∫
Rn

e−
i
2
DxDξa(y, ξ)ei〈x−yξ〉u(y) dξdy

)
=

1

(2π)n

∫
Rn

∫
Rn

e−
i
2
DxDξa(y, ξ)(−Dyj

ei〈x−y,ξ〉)u(y) dξdy.

Again integrate by parts, to deduce DβOp(a) : S → L∞.

3. The estimates in Step 2 together show thatDβxαOp(a) : S → L∞,
for all multiindices α, β. It follows that Op(a) : S → S. �

4.3.3 Asymptotic series. Next we consider infinite sums of terms in
various symbol classes.

DEFINITION. Let a ∈ Sk0δ (m) and aj ∈ S
kj

δ (m), where kj+1 < kj,
kj → −∞. We say that a is asymptotic to

∑
aj, and write

(4.31) a ∼
∞∑
j=0

aj,

provided for each N = 1, 2, . . .

(4.32) a−
N−1∑
j=0

aj ∈ SkN
δ (m).

INTERPRETATION. Observe that for each h > 0, the series
∑∞

j=0 aj
need not converge in any sense. We are requiring rather in (4.32) that

for each N , the difference a −
∑N−1

j=0 aj, and its derivatives, vanish at
appropriate rates as h→ 0.



55

Perhaps surprisingly, we can always construct such an asymptotic
sum of symbols:

THEOREM 4.15 (Borel’s Theorem).

(i) Assume aj ∈ S
kj

δ (m), where kj+1 < kj, kj → −∞. Then there exists

a symbol a ∈ Sk0δ (m) such that

a ∼
∞∑
j=0

aj.

(ii) If also â ∼
∑∞

j=0 aj, then

a− â ∈ S−∞(m).

Proof. Choose a C∞ function χ such that

0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], χ ≡ 0 on [2,∞).

We define

(4.33) a :=
∞∑
j=0

ajχ(λjh),

where the sequence λj → ∞ must be selected. Since λj → ∞, there
are for each h > 0 at most finitely many nonzero terms in the sum
(4.33).

Now for each multiindex α, with |α| ≤ j, we have

|∂α(ajχ(λjh))| = |(∂αaj)χ(λjh)|
≤ Cj,αh

−kj−δ|α|mχ(λjh)

= Cj,αh
−kj−δ|α|λjh

λjh
mχ(λjh)(4.34)

≤ 2Cj,α
h−kj−1−δ|α|

λj
m

≤ h−kj−1−|α|δ2−jm

if λj is selected sufficiently large. We can accomplish this for all j and
multiindices α with |α| ≤ j. We may assume also λj+1 ≥ λj, for all j.
Now

a−
N∑
j=0

aj =
∞∑

j=N+1

ajχ(λjh) +
N∑
j=0

aj(χ(λjh)− 1).
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Fix any multiindex α. Then taking N ≥ |α|, we have∣∣∣∣∣∂α
(
a−

N∑
j=0

aj

)∣∣∣∣∣ ≤
∞∑

j=N+1

|(∂αaj)|χ(λjh)

+
N∑
j=0

|∂αaj|(1− χ(λjh))

=: A+B.

According to estimate (4.34),

A ≤
∞∑

j=N+1

h−kj−1−δ|α|2−jm ≤ mh−kN+1−1−δ|α|.

Also

B ≤
N∑
j=0

Cα,jh
−kj−δ|α|m(1− χ(λjh)).

Since χ ≡ 1 on [0, 1], B = 0 if 0 < h ≤ λ−1
N . If λ−1

N ≤ h ≤ 1, we have

B ≤ m
N∑
j=0

Cα,j ≤ m
N∑
j=0

Cα,jλ
−kN+1

N h−kN+1−δ|α|

= mCαh
−kN+1−δ|α| ≤ mCαh

−kN .

Thus ∣∣∣∣∣∂α
(
a−

N∑
j=0

aj

)∣∣∣∣∣ ≤ Cαh
−kN−δ|α|m

if N ≥ |α|, and therefore∣∣∣∣∣∂α
(
a−

N−1∑
j=0

aj

)∣∣∣∣∣ ≤ Cαh
−kN−δ|α|m.

�

4.3.4 Semiclassical expansions in Sδ. Next we need to reexamine
some of our earlier asymptotic expansions, deriving improved estimates
on the error terms:

THEOREM 4.16 (More on semiclassical expansions). Let

A(x) =
1

2
〈Qx, x〉

where Q is symmetric and nonsingular.
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(i) If 0 ≤ δ ≤ 1
2
, then

eihA(D) : Sδ(m) → Sδ(m).

(ii) If 0 ≤ δ < 1
2
, we furthermore have the expansion

(4.35) eihA(D)a ∼
∞∑
k=0

1

k!
(ihA(D))ka in Sδ(m).

REMARK. Since we can for δ = 1/2 always rescale to the case h = 1,
there cannot exist an expansion like (4.35). �

Proof. 1. First, let 0 ≤ δ < 1
2
. Recall from (3.52) in §3.6 the stationary

phase expansion∫
Rn

e
i
h
φ(x)a(x) dx ∼

(
h

2π

)n/2
e

iπ
4

sgnQ|detQ|1/2eihA(D)a(0)

for the quadratic phase

φ(x) :=
1

2
〈Q−1x, x〉.

Let χ : Rn → R be a smooth function with χ ≡ 1 on B(0, 1), χ ≡ 0
on Rn −B(0, 2). Shifting the origin, we have

eihA(D)a(z) ∼ Cn
hn/2

∫
Rn

e
iφ(w)

h a(z − w) dw

=
Cn
hn/2

∫
Rn

e
iφ(w)

h χ(w)a(z − w) dw

+
Cn
hn/2

∫
Rn

e
iφ(w)

h (1− χ(w))a(z − w) dw

=: A+B,

for the constant

Cn :=
(2π)n/2e−

iπ
4

sgnQ

|detQ|1/2
.

2. Estimate of A. Since χ(w)a(z − w) has compact support,

A ∼
∞∑
k=0

1

k!
(ihA(D))ka(z).
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3. Estimate of B. Let L := 〈∂φ,hD〉
|∂φ|2 and note Le

iφ
h = e

iφ
h . Conse-

quently,

|B| =
Cn
hn/2

∣∣∣∣∫
Rn

(
LNe

iφ
h

)
(1− χ(w))a(z − w) dw

∣∣∣∣
=

Cn
hn/2

∣∣∣∣∫
Rn

e
iφ
h (LT )N((1− χ)a) dw

∣∣∣∣
≤ ChN−

n
2 sup
|α|≤N

∫
Rn

|∂αa(z − w)|〈z − w〉−N dw

≤ ChN−
n
2
−δNm(z).

We similarly check also the higher derivatives, to conclude that B ∈
S−Nδ (m) for all N .

4. Now assume δ = 1/2. In this case we can rescale, by setting

w̃ = wh−1/2.

Then

eihA(D)a(z) = Cn

∫
Rn

eiφ(w̃)a(z − w̃h1/2) dw̃.

We use χ to break the integral into two pieces A and B, as above. �

THEOREM 4.17 (Symbol class of a#b).

(i) If a ∈ Sδ(m1) and b ∈ Sδ(m2), then

(4.36) a#b ∈ Sδ(m1m2).

Furthermore,
Op(a) ◦Op(b) = Op(a#b)

in the sense of operators mapping S to S.

(ii) Also

(4.37) a#b− ab ∈ S2δ−1
δ (m1m2).

Proof. 1. Clearly

c(w, z) := a(w)b(z) ∈ Sδ(m1(w)m2(z))

in R4n. If we put

A(Dw,z) := σ(Dx, Dξ;Dy, Dη)/2,

for w = (x, ξ) and z = (y, η), then according to Theorem 4.16, we have

exp(ihA(D))c ∈ Sδ(m1(w)m2(z)).
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Since (4.18) says

a#b(w) = (exp(ihA(D))c) (w,w),

assertion (4.36) follows.

The second statement of assertion (i) follows from the density of S
in Sδ(m).

2.
�

4.4 OPERATORS ON L2

So far our symbol calculus has built operators acting on either the
Schwartz space S of smooth functions or its dual space S ′. But for ap-
plications we would like to handle functions in more convenient spaces,
most notably L2.

Our next goal is therefore showing that if a ∈ S1/2, then Op(a)
extends to become a bounded linear operator acting on L2.

Throughout this section, we always take

h = 1.

Decomposition. We select χ ∈ C∞
c (R2n) such that

0 ≤ χ ≤ 1, χ ≡ 0 on R2n −B(0, 2),

and

(4.38)
∑
α∈Z2n

χα ≡ 1,

where χα := χ(· − α) is χ shifted by the lattice point α ∈ Z2n. Write

aα := χαa;

then
a =

∑
α∈Z2n

aα.

We also define
bαβ := āα#aβ (α, β ∈ Z2n).

LEMMA 4.18 (Decay of mixed terms). For each N and each
multiindex γ, we have the estimate

(4.39) |∂γbαβ(z)| ≤ Cγ,N〈α− β〉−N〈z − α+ β

2
〉−N

for z = (x, ξ) ∈ R2n.



60

Proof. 1. We can rewrite formula (4.21) as

bαβ(z) =
1

π2n

∫
R2n

∫
R2n

eiφ(w1,w2)āα(z − w1)aβ(z − w2) dw1dw2,

for

(4.40) φ(w1, w2) = −2σ(x, ξ, y, η) = 2〈x, η〉 − 2〈ξ, y〉
and

(4.41) w = (w1, w2) for w1 = (x, ξ), w2 = (y, η).

2. Select ζ : R4n → R such that

0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0, 1), ζ ≡ 0 on R4n −B(0, 2).

Then

bαβ(z) = cn

∫
Rn

∫
Rn

eiφζ(w)āα(z − w1)aβ(z − w2) dw1dw2

+cn

∫
Rn

∫
Rn

eiφ(1− ζ(w))āα(z − w1)aβ(z − w2) dw1dw2

=: A+B.

3. Estimate of A. We have

|A| ≤
∫∫

{|w|≤2}
|āα(z − w1)||aβ(z − w2)| dw1dw2.

The integrand equals

χ(z − w1 − α)χ(z − w2 − β)|a(z − w1)||a(z − w2)|
and thus vanishes, unless

|z − w1 − α| ≤ 2 and |z − w2 − β| ≤ 2.

But then

|α− β| ≤ 4 + |w1|+ |w2| ≤ 8

and ∣∣∣∣z − α+ β

2

∣∣∣∣ ≤ 4 + |w1|+ |w2| ≤ 8.

Hence

|A| ≤ CN〈α− β〉−N〈z − α+ β

2
〉−N

for any N . Similarly,

|∂γA| ≤ CN,γ〈α− β〉−N〈z − α+ β

2
〉−N .
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4. Estimate of B. Observe from (4.40) and (4.41) that

∂φ(w1, w2) = 2(η,−y,−ξ, x),

and so

|∂φ(w)| = 2|w|.
Also, Leiφ = eiφ for

L :=
〈∂φ,D〉
|∂φ|2

.

Since the integrand ofB vanishes unless |w| ≥ 1, the usual integration-
by-parts argument shows that

|B| ≤ CM

∫
R2n

∫
Rn2

〈w〉−M Āα(z − w1)Aβ(z − w2) dw1dw2

and sptAα ⊆ B(α, 2), sptAβ ⊆ B(β, 2). Thus the integrand vanishes,
unless

1

c
〈w〉 ≤ 〈α− β〉, 〈z − α+ β

2
〉 ≤ C〈w〉.

Hence

|B| ≤ CM〈α− β〉−N〈z − α+ β

2
〉−N

∫∫
〈w〉2N−M dw1dw2

≤ CM〈α− β〉−N〈z − α+ β

2
〉−N

if M is large enough. Similarly,

|∂γB| ≤ CN,γ〈α− β〉−N〈z − α+ β

2
〉−N .

�

LEMMA 4.19 (Operator norms). For each N ,

‖Op(bαβ)‖L2→L2 ≤ CN〈α− β〉−N .

Proof. Recall that

Op(a) =
1

(2π)2n

∫
R2n

â(l)Op(eil) dl

and that Op(eil) is a unitary operator on L2. Consequently

‖Op(a)‖L2→L2 ≤ C

∫
R2n

|â(l)| dl.
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Therefore for M > 2n we can estimate

‖O(bαβ)‖L2→L2 ≤ C‖b̂αβ‖L1 ≤ C‖〈ξ〉M b̂αβ‖L∞

≤ C max
|γ|≤M

‖D̂γbαβ‖L∞

≤ C max
|γ|≤M

‖Dγbαβ‖L1

≤ C sup
|γ|≤M

‖〈z〉MDγbαβ‖L1

≤ C〈α− β〉−N ,
according to Lemma 4.18. �

THEOREM 4.20 (Boundedness on L2). If 0 ≤ δ ≤ 1/2 and the
symbol a belongs to Sδ, then

Op(a) : L2(Rn) → L2(Rn)

is bounded, with the estimate

(4.42) ‖Op(a)‖L2→L2 ≤ C
∑
|α|≤M

|∂αa|.

REMARK. We again emphasize that the stated estimate is for the
case h = 1. If instead 0 < h < 1, we can rescale, as will be demon-
strated in the proof of Theorem 5.1. �

Proof. We have Op(bαβ) = A∗
αAβ. Thus Lemma 4.19 says

‖A∗
αAβ‖L2→L2 ≤ C〈α− β〉−N .

Therefore

sup
α

∑
β

‖AαA∗
β‖1/2 ≤ C

∑
β

〈α− β〉−N/2 ≤ C;

and similarly

sup
α

∑
β

‖A∗
αAβ‖1/2 ≤ C.

We now apply the Cotlar–Stein Theorem B.6. �

As a first application, we record the useful

THEOREM 4.21 (Composition and multiplication). Suppose
that a, b ∈ Sδ for 0 ≤ δ < 1

2
.

Then

(4.43) ‖awbw − (ab)w‖L2→L2 = O(h1−2δ)

as h→ 0.



63

Proof. 1. In light of (4.22), we see that

a#b− ab ∈ S2δ−1
δ .

Hence Theorem 4.20 impliles

awbw − (ab)w = (a#b− ab)w = O(h1−2δ).

�

For the borderline case δ = 1
2
, we have this assertion:

THEOREM 4.22 (Disjoint supports). Suppose that a, b ∈ S 1
2
.

Assume also that spt(a), spt(b) ⊂ K and

dist(spt(a), spt(b)) ≥ γ > 0,

where the compact set K and the constant γ are independent of h. Then

(4.44) ‖awbw‖L2→L2 = O(h∞).

Proof. Remember from (4.21) that

a#b(z) =
1

(hπ)2n

∫
R2n

∫
R2n

e
i
h
φ(w1,w2)a(z − w1)b(z − w2) dw1dw2,

for for w = (x, ξ), w1 = (y, η), w2 = (z, ζ), and

φ(w1, w2) = −2σ(x, ξ, y, η) = 2〈x, η〉 − 2〈ξ, y〉.

We then proceed as in the proof of Lemma 4.18: |∂φ| = 2|w| and
thus the operator

L :=
〈∂φ,D〉
|∂φ|2

has smooth coefficients on the support of a(w − w1)b(w − w2). From
our assumption that a, b ∈ S 1

2
, we see that

LN(a(w − w1)b(w − w2)) = O(h
N
2 ).

The uniform bound on the support shows that a#b ∈ S−∞. Its Weyl
quantization is therefore bounded on L2, with norm of order O(h∞).

�

4.5 INVERSES

At this stage we have constructed in appropriate generality the quan-
tizations Op(a) of various symbols a. We turn therefore to the practical
problem of understanding how the algebraic and analytic behavior of
the function a dictates properties of the corresponding quantized op-
erators.



64

In this section we suppose that a : R2n → C is nonvanishing; so that
the function a is pointwise invertible. Can we draw the same conclusion
about Op(a)?

DEFINITION. We say the symbol a is elliptic if there exists a con-
stant γ > 0 such that

|a| ≥ γ > 0 on R2n.

THEOREM 4.23 (Inverses for elliptic symbols). Assume that
a ∈ Sδ for 0 ≤ δ < 1

2
and that a is elliptic.

Then for some constant h0 > 0,

Op(a)−1

exists as a bounded linear operator on L2(Rn), provided 0 < h ≤ h0.

Proof. Let b := 1
a
, b ∈ Sδ. Then

a#b = 1 + r1, with r1 ∈ S2δ−1
δ .

Likewise

b#a = 1 + r2, with r2 ∈ S2δ−1
δ .

Hence if A := Op(a), B := Op(b), R1 := Op(r1) and R2 := Op(r2), we
have

A ·B = I +R1

B · A = I +R2,

with

‖R1‖L2→L2 , ‖R2‖L2→L2 = O(h1−2δ) ≤ 1

2
if 0 < h ≤ h0.

Thus A = Op(a) has an approximate left inverse and an approximate
right inverse. Applying then Theorem B.2, we deduce that A−1 exists.

�

4.6 GÅRDING INEQUALITIES

We continue studying how properties of the symbol a translate into
properties of the corresponding quantized operators. In this section
we suppose that a is real-valued and nonnegative, and ask the conse-
quences for A = Op(a).
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THEOREM 4.24 (Easy G̊arding inequality). Assume a = a(x, ξ)
is a real-valued symbol in S and

(4.45) a ≥ γ > 0 on R2n.

Then for each ε > 0 there exists h0 = h0(ε) > 0 such that

(4.46) 〈aw(x, hD)u, u〉 ≥ (γ − ε)‖u‖2
L2

for all 0 < h ≤ h0, u ∈ C∞
c (Rn).

Proof. We will show that

(4.47) (a− λ)−1 ∈ S if λ < γ − ε.

Indeed if b := (a− λ)−1, then

(a− λ)#b = 1 +
h

2i
{a− λ, b}+O(h2) = 1 +O(h2),

the bracket term vanishing since b is a function of a− λ. Therefore

(aw − λ) ◦ bw = I +O(h2)L2→L2 ,

and so bw is an approximate right inverse of aw − λ. Likewise bw is an
approximate left inverse.

Hence Theorem B.2 implies aw − λ is invertible for each λ < γ − ε.
Consequently,

spec(aw) ⊂ [γ − ε,∞).

According then to Theorem B.1,

〈awu, u〉 ≥ (γ − ε)‖u‖2
L2

for all u ∈ C∞
c (Rn). �

We next improve the preceding estimate:

THEOREM 4.25 (Sharp G̊arding inequality). Assume a = a(x, ξ)
is a symbol in S and

(4.48) a ≥ 0 on R2n.

Then there exist constants h0 > 0, C ≥ 0 such that

(4.49) 〈aw(x, hD)u, u〉 ≥ −Ch‖u‖2
L2

for all 0 < h ≤ h0 and u ∈ C∞
c (Rn).
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REMARK. The estimate (4.49) is in fact true for each quantization
Opt(a) (0 ≤ t ≤ 1). And for the Weyl quantization, the stronger
Fefferman–Phong inequality holds:

〈aw(x, hD)u, u〉 ≥ −Ch2‖u‖2
L2

for 0 < h ≤ h0, u ∈ C∞
c (Rn). �

We will need

LEMMA 4.26 (Gradient estimate). Let f : Rn → R be C2, with

|∂2f | ≤ A.

Suppose also f ≥ 0. Then

(4.50) |∂f | ≤ (2Af)1/2 (x ∈ Rn).

Proof. By Taylor’s Theorem,

f(x+ y) = f(x) + 〈∂f(x), y〉+

∫ 1

0

(1− t)〈∂2f(x+ ty)y, y〉 dt.

Let y = −λ∂f(x), λ > 0 to be selected. Then since f ≥ 0, we have

λ|∂f(x)|2 ≤ f(x) + λ2

∫ 1

0

(1− t)〈∂2f(x− λt∂f(x))∂f(x), ∂f(x)〉 dt

≤ f(x) +
λ2

2
A|∂f(x)|2.

Let λ = 1
A
. Then |∂f(x)|2 ≤ 2Af(x). �

Proof of Theorem 4.25 1. The primary goal is to show that if

(4.51) λ = µh

and µ is fixed sufficiently large, then

(4.52) h(a+ λ)−1 ∈ S1/2

(
1

µ

)
,

with estimates independent of µ.

To begin the proof of (4.52) we consider for any multiindex α =
(α1, . . . , α2n) the partial derivative ∂α in the variables x and ξ.

We claim that ∂α(a+ λ)−1 has the form
(4.53)

∂α(a+ λ)−1 = (a+ λ)−1

|α|∑
k=1

∑
α=β1+···+βk|βj |≥1

Cβ1,...,βk

k∏
j=1

(a+ λ)−1∂β
j

a,
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for appropriate constants Cβ1,...,βk . To see this, observe that when
we compute ∂α(a + λ)−1 a typical term involves k differentiations of
(a + λ)−1 with the remaining derivatives falling on a. In obtaining
(4.53) we for each k ≤ |α| partition α into multiindex β1, . . . , βk, each
of which corresponds to one derivative falling on (a + λ)−1 and the
remaining derivatives falling on a.

2. Now Lemma 4.26 implies for |βj| = 1 that

(4.54) |∂βja|(a+ λ)−1 ≤ Cλ1/2

since λ1/2|∂a| ≤ Cλ1/2a1/2 ≤ C(λ+ a). Furthermore,

(4.55) |∂βja|(a+ λ)−1 ≤ Cλ−1

if |βj| ≥ 2, since a ∈ S.
Consequently, for each partition α = β1 + · · ·+ βk and 0 < λ ≤ 1:∣∣∣∣∣
k∏
j=1

(a+ λ)−1∂βja

∣∣∣∣∣ ≤ C
∏
|βj |≥2

λ−1
∏
|βj |=1

λ−1/2 ≤ C
k∏
j=1

λ−
|βj |
2 = Cλ−

|α|
2 .

Therefore

(4.56) |∂α(a+ λ)−1| ≤ Cα(a+ λ)−1λ−
|α|
2 .

But since λ = µh, this implies

(a+ λ)−1 ∈ S1/2

(
1

µh

)
;

that is,

h(a+ λ)−1 ∈ S1/2

(
1

µ

)
,

with estimates independent of µ.

3. Since a + Ch ∈ S ⊆ S 1
2
, we can define (a + Ch)#b, for b =

(a+ Ch)−1. Using Taylor’s formula, we compute

(a+ Ch)#b = e
ih
2
σ(Dx,Dξ,Dy ,Dη)(a+ Ch)(x, ξ)b(y, η))

∣∣∣ x = y
ξ = η

= 1 +
h

2i
{a+ Ch, b}

+

∫ 1

0

(1− t)e
ith
2
σ(... )

(
ih

2
σ(. . . )

)2

(a+ Ch)b dt

=: 1 + r.
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Now according to (4.56), hb ∈ S1/2(1/µ) and so h2∂αb ∈ S1/2(1/µ) for

|α| = 2. The operation e
ith
2
σ(... ) preserves the symbol class. Hence

‖rw(x, hD)‖L2→L2 ≤ C

µ
≤ 1

2

if µ is now fixed large enough. Consequently bw is an approximate right
inverse of (aw + Ch), and is similarly an approximate left inverse.

So (aw +Ch)−1 exists. Likewise (aw +γ+Ch)−1 exists for all γ ≥ 0.
Thus

spec(aw) ⊆ [−Ch,∞).

According then to Theorem B.1,

〈aw(x, hD)u, u〉 ≥ −Ch‖u‖2
L2

for all u ∈ C∞
c (Rn). �
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5. Semiclassical defect measures

5.1 Construction, examples
5.2 Defect measures and PDE
5.3 Application: damped wave equation

One way to understand limits as h → 0 of a collection of functions
{u(h)}0<h≤h0 bounded in L2 is to construct corresponding semiclassical
defect measures µ, which record the limiting behavior of certain qua-
dratic forms acting on u(h). If in addition these functions solve certain
operator equations or PDE, we can deduce various properties of the
measure µ and thereby indirectly recover information about asympto-
toics of the functions u(h).

5.1 CONSTRUCTION, EXAMPLES

In the first two sections of this chapter, we consider a collection of
functions {u(h)}0<h≤h0 that is bounded in L2(Rn):

(5.1) sup
0<h≤h0

‖u(h)‖L2 <∞.

For the time being, we do not assume that u(h) solves any PDE.

THEOREM 5.1 (An operator norm bound). Suppose a ∈ S.
Then

(5.2) ‖aw(x, hD)‖L2→L2 ≤ C sup
R2n

|a|+O(h)

as h→ 0.

Proof. We showed earlier in Theorem 4.20 that if a ∈ S and h = 1,
then

(5.3) ‖aw(x,D)‖L2→L2 ≤ C sup
|α|≤M

|∂αa|

for some M .

Suppose now a ∈ S and u ∈ S. We rescale by taking

x̃ := h−
1
2x, ỹ := h−

1
2y, ξ̃ := h−

1
2 ξ

and
ũ(x̃) := h

n
4 u(x) = h

n
4 u(h

1
2 x̃).

This is a different rescaling of u from that discussed earlier in (4.29),
the advantage being that u 7→ ũ is now a unitary transformation of L2:
‖u‖L2 = ‖ũ‖L2 .
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Then

aw(x, hD)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ

)
e

i
h
〈x−y,ξ〉u(y) dydξ

=
h−

n
4

(2π)n

∫
Rn

∫
Rn

ah

(
x̃+ ỹ

2
, ξ̃

)
ei〈x̃−ỹ,ξ̃〉ũ(ỹ) dỹdξ̃

= h−
n
4 awh (x̃, D)ũ(x̃),

(5.4)

for
ah(x̃, ξ̃) := a(x, ξ) = a(h

1
2 x̃, h

1
2 ξ̃).

Hence, noting that dx = h
n
2 dx̃, we deduce from (5.4) and (5.3) that

‖aw(x, hD)u‖L2 = ‖awh (x̃, D)ũ‖L2

≤ ‖awh ‖L2→L2‖ũ‖L2

≤ C sup
|α|≤M

|∂αah|‖u‖L2

≤ C sup
|α|≤M

h
|α|
2 |∂αa|‖u‖L2 .

This implies (5.2). �

THEOREM 5.2 (Existence of defect measure). There exists a
Radon measure µ on Rn and a sequence hj → 0 such that

(5.5) 〈aw(x, hjD)u(hj), u(hj)〉 →
∫

R2n

a(x, ξ) dµ

for all symbols a ∈ S.

DEFINITION. We call µ a microlocal defect measure associated with
the family {u(h)}0<h≤h0 .

Proof. 1. Let {ak} ⊂ C∞
c (R2n) be dense in C0(R2n). Select a sequence

h1
j → 0 such that

〈aw1 (x, h1
jD)u(h1

j), u(h
1
j)〉 → α1.

Select a subsequence {h2
j} ⊆ {h1

j} such that

〈aw2 (x, h2
jD)u(h2

j), u(h
2
j)〉 → α2.

Continue, at the kth step extracting a subsequence {hkj} ⊆ {hk−1
j } such

that
〈awk (x, hkjD)u(hkj ), u(h

k
j )〉 → αk.
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By a standard diagonal argument, we see that the sequence hj := hjj
converges to 0, with

〈awk (x, hjD)u(hj), u(hj)〉 → αk

for all k = 1, . . . .

2. Define Φ(ak) := αk. Owing to Theorem 5.1, we see for each k
that

|Φ(ak)| = |αk| = lim
hj→∞

|〈awk u(hj), u(hj)〉|

≤ C lim sup
hj→∞

‖awk ‖L2→L2 ≤ C sup
R2n

|ak|.

The mapping Φ is bounded, linear and densely defined, and therefore
uniquely extends to a bounded linear functional on S, with the estimate

|Φ(a)| ≤ C sup
R2n

|a|

for all a ∈ S. The Riesz Representation Theorem therefore implies the
existence of a (possibly complex-valued) Radon measure on R2n such
that

Φ(a) =

∫
R2n

a(x, ξ) dµ.

�

REMARK. Theorem 5.2 is also valid if we replace the Weyl quanti-
zation aw = Op1/2(a) by Opt(a) for any 0 ≤ t ≤ 1, since the error is
then O(h). �

THEOREM 5.3 (Positivity). The measure µ is real and nonnega-
tive:

(5.6) µ ≥ 0.

Proof. We must show that a ≥ 0 implies∫
R2n

a dµ ≥ 0.

Now since a ≥ 0, the sharp G̊arding inequality, Theorem 4.25, implies

aw(x, hD) ≥ −Ch;

that is,

〈aw(x, hD)u(h), u(h)〉 ≥ −Ch‖u(h)‖2
L2
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for sufficiently small h > 0. Let h = hj → 0, to deduce∫
R2n

a dµ = lim
hj→∞

〈aw(x, hjD)u(hj), u(hj)〉 ≥ 0.

�

EXAMPLE 1: Coherent states. Take the coherent state

u(h)(x) := (πh)−
n
4 e

i
h
〈x−x0,ξ0〉− 1

2h
|x−x0|2 ,

and observe that ‖u(h)‖L2 = 1. Then there exists precisely one associ-
ated semiclassical defect measure, namely

µ := δ(x0,ξ0).

To confirm this statement, take t = 1 in the quantization and calculate

〈a(x, hD)u(h), u(h)〉

=
1

(2πh)n

∫
Rn

∫
Rn

∫
Rn

a(x, ξ)e
i
h
〈x−y,ξ〉u(h)(y)u(h)(x) dydξdx

=
2

n
2

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn

a(x, ξ)e
i
h
(〈x−y,ξ〉+〈y−x0,ξ0〉−〈x−x0,ξ0〉)

e−
1
2h

(|y−x0|2+|x−x0|2) dydξdx

=
2

n
2

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn

a(x, ξ)e
i
h
〈x−y,ξ−ξ0〉

e−
1
2h

(|y−x0|2+|x−x0|2) dydξdx.

For each fixed x and ξ, the integral in y is∫
Rn

e
i
h
〈x−y,ξ−ξ0〉e−

1
2h
|y−x0|2 dy = e

i
h
〈x−x0,ξ−ξ0〉

∫
Rn

e−
i
h
〈y,ξ−ξ0〉e−

1
2h
|y|2 dy

= e
i
h
〈x−x0,ξ−ξ0〉F

(
e−

1
2h
|y|2
)(ξ − ξ0

h

)
= (2πh)

n
2 e

i
h
〈x−x0,ξ−ξ0〉e−

1
2h
|ξ−ξ0|2 ,

where we used formula (3.3) for the last equality. Therefore

〈a(x, hD)u(h), u(h)〉

=
2

n
2

(2πh)n

∫
Rn

∫
Rn

a(x, ξ)e
i
h
〈x−x0,ξ−ξ0〉e−

1
2h

(|x−x0|2+|ξ−ξ0|2) dxdξ

= a(x0, ξ0)
2

n
2

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−x0,ξ−ξ0〉e−

1
2h

(|x−x0|2+|ξ−ξ0|2) dxdξ + o(1)

= Ca(x0, ξ0) + o(1),
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for the constant

C :=
2

n
2

(2π)n

∫
Rn

∫
Rn

ei〈x,ξ〉e−
1
2
(|x|2+|ξ|2) dxdξ.

Taking a ≡ 1 and recalling that ‖u(h)‖L2 = 1, we deduce that C =
1. �

EXAMPLE 2: Stationary phase and defect measures. For our
next example, take

u(h)(x) := e
iφ(x)

h b(x),

where φ, b ∈ C∞ and ‖b‖L2 = 1. Then

〈a(x, hD)u(h), u(h)〉

=
1

(2πh)n

∫
Rn

∫
Rn

∫
Rn

a(x, ξ)e
i
h
(〈x−y,ξ〉+φ(y)−φ(x))b(y)b(x) dydξdx.

We assume a ∈ C∞
c (R2n) and apply stationary phase. For a given value

of x, define

Φ(y, ξ) := 〈x− y, ξ〉+ φ(y)− φ(x).

Then

∂yΦ = ∂φ(y)− ξ, ∂ξΦ = x− y.

The Hessian matrix of Φ is

∂2Φ =

(
∂2φ −I
−I 0

)
.

Since sgn

(
0 −I
−I 0

)
= 0, we have sgn

(
t∂2φ −I
−I 0

)
= 0 for 0 ≤ t ≤ 1:

this is so since the signature of a matrix is integer–valued, and conse-
quently is invariant if we move along a curve of nonsingular matrices.
Consequently

sgn(∂2Φ) = 0.

In addition, |det∂2Φ| = 1. Thus as h→ 0 the stationary phase asymp-
totic expression (3.47) implies

〈aw(x, hD)u(h), u(h)〉 →
∫

Rn

a(x, ∂φ(x))|b(x)|2 dx =

∫
R2n

a(x, ξ) dµ

for the semiclassical defect measure

µ := |b(x)|2δ{ξ=∂φ(x)} Ln,
Ln denoting n-dimensional Lebesgue measure in the x-variables. �

5.2 DEFECT MEASURES AND PDE
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We now assume more about the family {u(h)}0<h≤h0 , namely that
each function u(h) is an approximate solution of a equation involving
the operator P (h) = pw(x, hD) for some symbol p.

First, let us suppose P (h)u(h) vanishes up to an o(1) error term and
see what we can conclude about a corresponding semiclassical defect
measure µ.

THEOREM 5.4 (Support of defect measure). Suppose p ∈ S(〈ξ〉m)
is real and

|p| ≥ γ if |ξ| ≥ C

for constants C, γ > 0. Write P (h) = pw.
Suppose that u(h) satisfies

(5.7)

{
‖P (h)u(h)‖L2 = o(1) as h→ 0,

‖u(h)‖L2 = 1.

Then if µ is any microlocal defect measure associated with {u(h)}0<h≤1,

(5.8) sptµ ⊆ p−1(0).

INTERPRETATION. We sometimes call p−1(0) the characteristic
variety or the zero energy surface of the symbol p. We understand (5.8)
as saying that in the semiclassical limit h → 0, all of the mass of the
solutions u(h) coalesces onto this set. �

Proof. Select a ∈ C∞
c (R2n) such that spt(a) ∩ p−1(0) = 0. We must

show ∫
R2n

a dµ = 0.

To do so, first select χ ∈ C∞
c (R2n) such that spt(a) ∩ spt(χ) = ∅ and

|p+ iχ| ≥ γ > 0 on R2n.

Theorem 4.23 ensures us that P (h) + iχw is invertible on L2, for small
enough h. Observe also that

(5.9)
ap

p+ iχ
− a = i

aχ

p+ iχ

Now write A = aw. Since a and χ have disjoint support, (5.9) and
Theorems 4.21, 4.22 imply

‖A(P (h) + iχw)−1P (h)− A‖L2→L2 = O(h).

Therefore (5.7) implies

‖Au(h)‖L2 = o(1);
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and thus

〈Au(h), u(h)〉 → 0.

But also

〈Au(hj), u(hj)〉 →
∫

R2n

a dµ.

�

Now we make the stronger assumption that the error term in (5.7)
is o(h).

THEOREM 5.5 (Flow invariance). Suppose that p satisfies the
assumptions of Theorem 5.4. Assume also

(5.10)

{
‖P (h)u(h)‖L2 = o(h) as h→ 0,

‖u(h)‖L2 = 1.

Then

(5.11)

∫
R2n

{p, a} dµ = 0

for all a ∈ C∞
c (R2n).

INTERPRETATION. Let Φt be the flow generated by the Hamil-
tonian vector field Hp. Then

d

dt

∫
R2n

Φ∗
ta dµ =

∫
R2n

(Hpa)(Φt) dµ =

∫
R2n

{p, a} dµ.

Conseqently (5.11) asserts that the semiclassical defect measure µ is
flow-invariant. �

Proof. Since p is real, P (h) = pw is self-adjoint on L2. Select a as
above and write A = aw, A = A∗. Then

〈[P (h), A]u(h), u(h)〉 = 〈(P (h)A− AP (h))u(h), u(h)〉
= 〈Au(h), P (h)u(h)〉 − 〈P (h)u(h), Au(h)〉
= o(h), as h→ 0.

On the other hand,

[P (h), A] =
h

i
{p, a}w +O(h2)L2→L2 .

Hence

〈[P (h), A]u(h), u(h)〉 =
h

i
〈{p, a}wu(h), u(h)〉+ 〈o(h)u(h), u(h)〉.
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Cancel h and let h = hj → 0:∫
R2n

{p, a} dµ = 0.

Note that even though p may not have compact support, {p, a} does.
�

This proof illustrates one of the basic principles mentioned in Chap-
ter 1, that an assertion about Hamiltonian dynamics involving the
Poisson bracket corresponds to a commutator argument at the quan-
tum level.

REMARK. We have similar statements if we replace Rn × Rn by
Tn×Rn, where Tn denotes the flat torus. We will need this observation
in the following application. �

5.3 APPLICATION: DAMPED WAVE EQUATION

A damped wave equation. In this section Tn denotes the flat n-
dimensional torus.

Consider now the initial-value problem

(5.12)

{
(∂2
t + a(x)∂t −∆)u = 0 on Tn × R
u = 0, ut = f on Tn × {t = 0},

in which the smooth function a is nonnegative, and thus represents a
damping mechanism, as we will see.

DEFINITION. The energy at time t is

E(t) :=
1

2

∫
Tn

(∂tu)
2 + |∂xu|2 dx.

LEMMA 5.6 (Elementary energy estimates).
(i) If a ≡ 0, t 7→ E(t) is constant.
(ii) If a ≥ 0, t 7→ E(t) is nonincreasing.

Proof. These assertions follow easily from this calculation:

E ′(t) =

∫
Tn

∂tu∂
2
t u+ 〈∂xu, ∂2

xtu〉 dx

=

∫
Tn

∂tu(∂
2
t u−∆u) dx

= −
∫

Tn

a(x)(∂tu)
2 dx ≤ 0.
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�

Our eventual goal is showing that if the support of the damping
term a is large enough, then we have exponential energy decay for our
solution of the wave equation (5.12). Here is the key assumption:

DYNAMICAL HYPOTHESIS.

(5.13)


There exists a time T > 0 such that any

trajectory of the Hamiltonian vector field of

p(x, ξ) = |ξ|2, starting at time 0 with |ξ| = 1,

intersects the set {a > 0} by the time T .

Another way to write this is stating that for each initial point m =
(x, ξ) ∈ Tn × Rn, with |ξ| = 1,

〈a〉T :=
1

T

∫ T

0

a(x+ tξ) dt > 0.

Note that 〈a〉T depends upon m = (x, ξ).

MOTIVATION. Since the damping term a in general depends upon
x, we cannot use Fourier transform (or Fourier series) in x to solve
(5.12). Instead we define

u ≡ 0 for t < 0

and, at first formally, take the Fourier transform in t:

û(x, τ) :=

∫ ∞

0

e−itτu(x, t) dt (τ ∈ R).

Then

∆û =

∫ ∞

0

e−itτ∆u dt

=

∫ ∞

0

e−itτ (∂2
t u+ a(x)∂tu) dt

=

∫ ∞

0

((iτ)2 + a(x)iτ)e−itτu dt− f

= (−τ 2 + a(x)iτ)û− f.

Consequently,

(5.14) P (τ)û := (−τ 2 + iτa(x)−∆)û = f.

Now take τ to be complex, with Re τ ≥ 0, and define

(5.15) P (z, h) := (−h2∆ + i
√
zha(x)− z)
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for the rescaled variable

(5.16) z =
τ 2

h2
.

Then (5.14) reads

(5.17) P (z, h)û = h2f ;

and so, if P (z, h) is invertible,

(5.18) û = h2P (z, h)−1f.

We consequently need to study the inverse of P (z, h).

THEOREM 5.7 (Resolvent bounds). Under the dynamical as-
sumption (5.13), there exist constants α,C, h0 > 0 such that

(5.19) ‖P (z, h)−1‖L2→L2 ≤ C

h

for

(5.20) |Im z| ≤ αh, |z − 1| ≤ α, 0 < h ≤ h0.

Proof. 1. We will see in the next chapter that P (z, h) is meromorphic.
Consequently it is enough to show that

‖u‖L2 ≤ C

h
‖P (z, h)u‖L2

for all u ∈ L2 and some constant C, provided z and h satisfy (5.20).

We argue by contradiction. If the assertion were false, then for m =
1, 2, . . . there would exist zm ∈ C, 0 < hm ≤ 1/m and functions um in
L2 such that

‖P (zm, hm)um‖L2 ≤ hm
m
‖um‖L2 , |Im (zm)| ≤ hm

m
, |zm − 1| ≤ 1

m
.

We may assume ‖um‖L2 = 1. Then

(5.21) P (zm, hm)um = o(hm).

Also,

(5.22) zm → 1, Im(zm) = o(hm).

2. Let µ be a microlocal defect measure associated with {um}∞m=1.
Then Theorem 5.4 implies that

spt(µ) ⊆ {|ξ|2 = 1}.
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But 〈um, um〉 = 1, and so

(5.23)

∫
Tn×Rn

dµ = 1.

We will derive a contradiction to this.

3. Hereafter write Pm := P (zm, hm). Then

Pm = −h2
m∆ + i

√
zmhma(x)− zm,

P ∗
m = −h2

m∆− i
√
z̄mhma(x)− z̄m;

and therefore

(5.24) Pm−P ∗
m = i(

√
zm+

√
z̄m)hma(x)−zm+z̄m = 2ihma(x)+o(hm),

since (5.22) implies that −zm + z̄m = −2iIm(zm) = o(hm).

Now select b ∈ C∞
c (Tn × Rn) and set B = bw. Then B = B∗. Using

(5.21) and (5.24), we calculate that

o(hm) = 2i Im〈BPmum, um〉 = 〈BPmum, um〉 − 〈u,BPmum〉
= 〈(BPm − P ∗

mB)um, um〉
= 〈[B,Pm]um, um〉

+〈(Pm − P ∗
m)Bum, um〉

=
hm
i
〈{b, p}wum, um〉

+2hmi〈(ab)wum, um〉+ o(hm).

Divide by hm and let hm → 0 (through a subsequence, if necessary), to
discover that

(5.25)

∫
Tn×Rn

{p, b}+ ab dµ = 0.

We will select b so that {p, b}+ ab > 0 on spt(µ). This will imply

(5.26)

∫
Tn×Rn

dµ = 0,

a contradiction to (5.23)

4. Define for (x, ξ) ∈ Tn × Rn, with |ξ| = 1,

c(x, ξ) :=
1

T

∫ T

0

(T − t)a(x+ ξt) dt,
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where T is the time from the dynamical hypothesis (5.13). Hence

〈ξ, ∂xc〉 =
1

T

∫ T

0

(T − t)〈ξ, ∂a(x+ ξt)〉 dt

=
1

T

∫ T

0

(T − t)
d

dt
a(x+ ξt) dt

=
1

T

∫ T

0

a(x+ ξt) dt− a(x)

= 〈a〉T − a.

Let

b := ec.

Then

〈ξ, ∂xb〉 = ec〈ξ, ∂xc〉 = ec〈a〉T − ab.

Consequently

{p, b}+ ab = 〈ξ, ∂xb〉+ ab = ec〈a〉T > 0,

as desired. �

THEOREM 5.8 (Exponential decay in time). Assume the dy-
namic hypothesis (5.13) and suppose u solves the wave equation with
damping (5.12).

Then there exists constants C, β > 0 such that

(5.27) E(t) ≤ Ce−βt‖f‖L2 for all times t > 0.

REMARK. The following calculations are based upon this idea: to
get decay estimates of g on the positive real axis, we estimate ĝ in a
complex strip |Im z| ≤ α. Indeed if β < α, then

êβtg =

∫ ∞

−∞
eβtg(t)e−itτ dt =

∫ ∞

−∞
g(t)e−it(τ+iβ) dt = ĝ(τ + iβ).

Hence an L2 estimate of ĝ(·+ iβ) will imply exponential decay of g(t)
for t→∞. �

Proof. 1. Recall from (5.15), (5.16) that

P (τ) = h−2P (z, h) for τ 2 = h−2z.

First we assert that if |Im τ | ≤ α, then

(5.28) ‖P (τ)−1‖L2→H1 = O(1).
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To prove (5.28) we note that

‖P (z, h)−1u‖H2
h
≤ C‖h2∆P (z, h)−1u‖L2 + C‖P (z, h)−1u‖L2

≤ C‖(z + i
√
zha)u‖L2 +

C

h
‖u‖L2 ,

the last inequality holding according to Theorem 5.7. Thus

‖P (z, h)−1u‖H2
h
≤ C

h
‖u‖L2 .

Rescaling, we find that

‖P (τ)−1u‖H2 ≤ C|τ |‖u‖L2

if |Im τ | ≤ α. Also

‖P (τ)−1u‖L2 ≤ C

|τ |
‖u‖L2 .

Interpolating between the last two inequalities demonstrates that

‖P (τ)−1u‖H1 ≤ C‖u‖L2 .

This proves (5.28).

2. Next select χ : R → R, χ = χ(t), such that

0 ≤ χ ≤ 1, χ ≡ 1 on [1,∞), χ ≡ 0 on (−∞, 0).

Then if u1 := χu, we have

(5.29) (∂2
t + a(x)∂t −∆)u1 = g1,

for

(5.30) g1 := χ′′u+ 2χ′∂tu+ a(x)χ′u.

Note that u1(t) = 0 for t ≤ 0, and observe also that the support of g1

lies within Tn × [0, 1]. Furthermore, using energy estimates in Lemma
5.6, we see that

‖g1‖L2((0,∞);L2)

≤ C
(
‖u‖L2((0,1);L2) + ‖∂tu‖L2((0,1);L2)

)
≤ C‖f‖L2 .

(5.31)

Now take the Fourier transform of (5.29) in time:

P (τ)û1 = ĝ1.

Then

û1 = P (τ)−1ĝ1.
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Using (5.28) and (5.31), we deduce that

‖u1‖L2((0,∞);H1) = ‖û1‖L2((−∞,∞);H1)

≤ C‖ĝ1‖L2((−∞,∞);L2)

≤ C‖g1‖L2((0,∞);L2) ≤ C‖f‖L2 .

3. We now modify the foregoing argument to obtain some exponen-
tial decay. For this, we recall the Remark above, and compute

‖eβtu1‖L2((0,∞);H1) = ‖û1(·+ iβ)‖L2((−∞,∞);H1)

= ‖P (·+ iβ)−1ĝ(·+ iβ)‖L2((−∞,∞);H1)

≤ C‖ĝ1‖L2((−∞,∞);L2)

≤ C‖g1‖L2((0,∞);L2) ≤ C‖f‖L2 .

Since u1 = χu, we deduce that

(5.32) ‖eβtu‖L2((1,∞),H1) ≤ C‖f‖L2 .

4. Finally, fix T > 2 and select a new function χ : R → R, such that

0 ≤ χ ≤ 1, χ ≡ 0 for t ≤ T − 1, χ ≡ 1 for t ≥ T.

Let u2 = χu. Then

(5.33) (∂2
t + a(x)∂t −∆)u2 = g2,

for

(5.34) g2 := χ′′u+ 2χ′∂tu+ a(x)χ′u.

Therefore sptg ⊆ Tn × (T − 1, T ).
Define

E2(t) :=
1

2

∫
Tn

(∂tu2)
2 + |∂xu2|2 dx.

Modifying the calculations in the proof of Lemma 5.6, we use (5.33)
and(5.34) to compute

E ′
2(t) =

∫
Tn

∂tu2∂
2
t u2 + 〈∂xu2, ∂

2
xtu2〉 dx

=

∫
Tn

∂tu2(∂
2
t u2 −∆u2) dx

= −
∫

Tn

a(x)(∂tu2)
2 dx+

∫
Tn

∂tu2g2 dx

≤ C

∫
Tn

|∂tu2|(|∂tu|+ |u|) dx

≤ CE2(t) + C

∫
Tn

u2 + (∂tu)
2 dx.
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Since E2(T−1) = 0 and E2(T ) = E(T ), Gronwall’s inequality implies
that

(5.35) E(T ) ≤ C
(
‖u‖2

L2((T−1,T );L2) + ‖∂tu‖2
L2((T−1,T );L2)

)
.

5. We need to control the right hand term in (5.35). For this select
χ : R → R, such that

0 ≤ χ ≤ 1,

χ ≡ 0 for t ≤ T − 2 and t ≥ T + 1,

χ ≡ 1 for T − 1 ≤ t ≤ T.

We multiply the wave equation (5.12) by χ2u and integrate by parts,
to find

0 =

∫ T+1

T−2

∫
Tn

χ2u(∂2
t u+ a(x)∂tu−∆u) dxdt

=

∫ T+1

T−2

∫
Tn

−χ2(∂tu)
2 − 2χχ′u∂tu+ χ2a(x)u∂tu+ χ2|∂xu|2 dxdt.

From this identity we derive the estimate

‖∂tu‖L2((T−1,T );L2) ≤ C‖u‖L2((T−2,T+1);H1).

This, (5.35) and (5.32) therefore imply

E(T ) ≤ C‖u‖2
L2((T−2,T+1);H1) ≤ Ce−βT‖f‖L2 ,

as asserted. �

REMARK. Our methods extend with no difficulty if Tn is replaced
by a general compact Riemannian manifold: see Appendix D. �
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6. Eigenvalues and eigenfunctions

6.1 The harmonic oscillator
6.2 Symbols and eigenfunctions
6.3 Weyl’s Law

In this chapter we are given the potential V : Rn → R, and investi-
gate how the symbol

p(x, ξ) = |ξ|2 + V (x)

provides interesting information about the corresponding operator

P (h) = −h2∆ + V (x).

We will focus mostly upon learning how p controls the aysmptotic
distribution of the eigenvalues of P (h) in the semiclassical limit h→ 0.

6.1 THE HARMONIC OSCILLATOR

Our plan is to consider first the simplest case, when the potential is
quadratic; and to simplify even more, we begin in one dimension. So
suppose that n = 1, h = 1 and V (x) = x2. Thus we start with the
one-dimensional quantum harmonic oscillator, meaning the operator

P0u := (−∂2 + x2)u.

6.1.1 Eigenvalues and eigenfunctions of P0. We can as follows
employ certain auxillary first-order differential operators to compute
explicitly the eigenvalues and eigenfunctions for P0.

NOTATION. Let us write

(6.1) A+ := Dx + ix, A− := Dx − ix,

where Dx = 1
i
∂x, and call A+ the creation operator and A− the anni-

hilation operator. (This terminology is from particle physics.)

LEMMA 6.1 (Properties of A±). The creation and annihilation
operators satisfy these identities:

(6.2) A∗
+ = A−, A

∗
− = A+,

(6.3) P0 = A+A− + 1 = A−A+ − 1.
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Proof. 1. It is easy to check that D∗
x = Dx and (ix)∗ = −ix.

2. Calculate

A+A−u = (Dx + ix)(Dx − ix)u

=

(
1

i
∂x + ix

)(
1

i
ux − ixu

)
= −uxx − (xu)x + xux + x2u

= −uxx − u− xux + xux + x2u

= P0u− u.

Similarly,

A−A+u = (Dx − ix)(Dx + ix)u

=

(
1

i
∂x − ix

)(
1

i
ux + ixu

)
= −uxx + (xu)x − xux + x2u

= P0u+ u.

�

We can now use A± to find all the eigenvalues and eigenfunctions of
P0:

THEOREM 6.2 (Eigenvalues and eigenfunctions).

(i) We have

〈P0u, u〉 ≥ ‖u‖2
L2

for all u ∈ C∞
c (Rn). That is, P0 ≥ 1.

(ii) The function

v0 =: e−
x2

2

is an eigenfunction corresponding to the smallest eigenvalue 1.

(iii) Set

vn := An+v0

for n = 1, 2, . . . . Then

(6.4) P0vn = (2n+ 1)vn.

(iv) Define the normalized eigenfunctions

un :=
vn

‖vn‖L2

.



86

Then

(6.5) un(x) = Hn(x)e
−x2

2

where Hn(x) = cnx
n + · · ·+ c0 (cn 6= 0) is a polynomial of degree n.

(v) We have

〈un, um〉 = δnm.

(vi) Furthermore, the collection of eigenfunctions {un}∞n=0 is com-
plete in L2(Rn).

Proof. 1. We note that

[Dx, x]u =
1

i
(xu)x −

x

i
ux =

u

i
,

and consequently

i[Dx, x] = 1.

Therefore

‖u‖2
L2 = 〈i[Dx, x]u, u〉

≤ 2‖xu‖L2‖Dxu‖L2

≤ ‖xu‖2
L2 + ‖Dxu‖2

L2 = 〈P0u, u〉.

2. Next, observe

A−v0 =
1

i

(
e−

x2

2

)
x
− ixe−

x2

2 = 0;

and so P0v0 = (A+A− + 1)v0 = v0.

3. We can further calculate that

P0vn = (A+A− + 1)A+vn−1

= A+(A−A+ − 1)vn−1 + 2A+vn−1

= A+P0vn−1 + 2A+vn−1

= (2n− 1)A+vn−1 + 2A+vn−1 (by induction)

= (2n+ 1)vn.

4. The form (6.5) of vn, un follows by induction.

5. Note also that

[A−, A+] = A−A+ − A+A−

= (P0 + 1)− (P0 − 1) = 2.
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Hence if m > n,

〈vn, vm〉 = 〈An+v0, A
m
+v0〉

= 〈Am−An+v0, v0〉 (since A− = A∗
+)

= 〈Am−1
− (A+A− + 2)An−1

+ v0, v0〉.

After finitely many steps, the foregoing equals

〈(. . . )A−v0, v0〉 = 0,

since A−v0 = 0.

6. Suppose 〈un, g〉 = 0 for n = 0, 1, 2, . . . ; we must show g ≡ 0.
Now since Hn(x) = cnx

n + . . . , with cn 6= 0, we have∫ ∞

−∞
g(x)e−

x2

2 p(x) dx = 0

for each polynomial p. Hence∫ ∞

−∞
g(x)e−

x2

2 e−ixξ dx =

∫ ∞

−∞
g(x)e−

x2

2

∞∑
k=0

(−ixξ)k

k!
dx;

and so F
(
ge−

x2

2

)
≡ 0. This implies ge−

x2

2 ≡ 0 and consequently

g ≡ 0. �

6.1.2 Higher dimensions, rescaling. Suppose now n > 1, and write

P0 := −∆ + |x|2;

this is the n-dimensional quantum harmonic oscillator. We define also

uα(x) :=
n∏
j=1

uαj
(xj) =

n∏
j=1

Hαj
(xj)e

− |x|2
2

for each multiindex α = (α1, . . . , αn). Then

P0uα = (−∆ + |x|2)uα = (2|α|+ n)uα,

for |α| = α1+· · ·+αn. Hence uα is an eigenfunction of P0 corresponding
to the eigenvalue 2|α|+ n.

We next restore the parameter h > 0 by setting

(6.6) P0(h) := −h2∆ + |x|2,

(6.7) uα(h)(x) := h−
n
4

n∏
j=1

Hαj

(
xj√
h

)
e−

|x|2
2h
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and

(6.8) Eα(h) := (2|α|+ n)h.

Then

P0(h)uα(h) = Eα(h)uα(h).

Upon reindexing, we can write these eigenfunction equations as

(6.9) P0(h)uj(h) = Ej(h)uj(h) (j = 1, . . . ).

6.1.3 Asymptotic distribution of eigenvalues. With these explicit
formulas in hand, we can study the behavior of the eigenvalues E(h)
in the semiclassical limit:

THEOREM 6.3 (Weyl’s law for harmonic oscillator). Assume
that 0 ≤ a < b <∞. Then

#{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(Vol{a ≤ |ξ|2 + |x|2 ≤ b}+ o(1)).

(6.10)

as h→ 0.

In this formula and hereafter, “Vol” means volume, that is, Lebesgue
measure.

Proof. We may assume that a = 0. Since E(h) = (2|α|+ n)h for some
multiindex α, we have

#{E(h) | 0 ≤ E(h) ≤ b} = #

{
α | 0 ≤ 2|α|+ n ≤ b

h

}
= # {α | α1 + · · ·+ αn ≤ R} ,

for R := b−nh
2h

. Therefore

#{E(h) | 0 ≤ E(h) ≤ b}
= Vol {x | xi ≥ 0, x1 + · · ·+ xn ≤ R}+ o(Rn)

=
1

n!
Rn + o(Rn) as R→∞

=
1

n!

(
b

2h

)n
+ o(

1

hn
) as h→ 0.

Recall that the volume of the simplex {x | xi ≥ 0, x1 + · · ·+ xn ≤ 1}
is (n!)−1.
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Next we note that Vol{|ξ|2 + |x|2 ≤ b} = α(2n)bn, where α(k) :=

π
k
2 (Γ(k

2
+ 1))−1 is the volume of the unit ball in Rk. Setting k = 2n,

we compute that α(2n) = πn(n!)−1. Hence

#{E(h) | 0 ≤ E(h) ≤ b} =
1

n!

(
b

2h

)n
+ o(

1

hn
)

=
1

(2πh)n
(Vol{|ξ|2 + |x|2 ≤ b}) + o(

1

hn
).

�

6.2 SYMBOLS AND EIGENFUNCTIONS

For this section, we take the symbol

(6.11) p(x, ξ) = |ξ|2 + V (x),

corresponding to the operator

(6.12) P (h) = −h2∆ + V (x).

We assume that the potential V : Rn → R is smooth, and satisfies the
growth conditions:

(6.13) |∂αV (x)| ≤ Cα〈x〉k, V (x) ≥ C〈x〉k for |x| ≥ R,

for appropriate constants k, C, Cα, R > 0.

Our plan in the next section is to employ our detailed knowledge
about the eigenvalues of the harmonic oscillator

P0(h) = −h2∆ + |x|2

to estimate the asymptotics of the eigenvalues of P (h). This section
develops some useful techniques that will aid us in this task.

6.2.1 Concentration in phase space. First, we make the important
observation that in the semiclassical limit eigenfunctions u(h) “are con-
centrated in phase space” on appropriate energy surface {|ξ|2 +V (x) =
E} of the symbol. The proof of this assertion illustrates well the power
of the pseudodifferential operator techniques.

THEOREM 6.4 (h∞-estimates). Suppose that u(h) ∈ L2(Rn) solves

(6.14) P (h)u(h) = E(h)u(h).

Assume as well that a ∈ S is a symbol satisfying

{|ξ|2 + V (x) = E} ∩ spt(a) = ∅.
Then if

|E(h)− E| < δ



90

for some sufficiently small δ > 0, we have the estimate

(6.15) ‖aw(x, hD)u(h)‖L2 = O(h∞)‖u(h)‖L2 .

Proof. 1. The set K := {|ξ|2 + V (x) = E} ⊂ R2n is compact. Hence
there exists a compactly supported C∞ function χ on R2n such that

0 ≤ χ ≤ 1, χ ≡ 1 on K, χ ≡ 0 on spt(a).

Define the symbol

b := |ξ|2 + V (x)− E(h) + iχ = p(x, ξ)− E(h) + iχ

and the order function

m := 〈ξ〉2 + 〈x〉k.

2. Then if |E(h)− E| is small enough,

|b| ≥ 1

C
m on R2n

for some constant C > 0. Consequently b ∈ S(m), with b−1 ∈ S(m−1).
Thus there exist c ∈ S(m−1), r1, r2 ∈ S such that{

bw ◦ cw = I + rw1
cw ◦ bw = I + rw2 .

where rw1 , r
w
2 are O(h∞).

Then

(6.16) aw(x, hD) ◦ cw(x, hD) ◦ bw(x, hD) = aw(x, hD) +O(h∞),

and

(6.17) bw(x, hD) = P (h)− E(h) + iχw

Furthermore

(6.18) aw(x, hD) ◦ cw(x, hD) ◦ χw(x, hD) = O(h∞),

since spt(a) ∩ spt(χ) = ∅. Since P (h)u(h) = E(h)u(h), (6.16) and
(6.17) imply that

aw(x, hD)u(h) = aw ◦ cw ◦ (P (h)−E(h)+ iχw)u(h)+O(h∞) = O(h∞).

�

For the next result, we temporarily return to the case of the quantum
harmonic oscillator, developing some sharper estimates:



91

THEOREM 6.5 (Improved estimates for the harmonic oscil-
lator). Suppose that u(h) ∈ L2(Rn) is an eigenfuction of the harmonic
oscillator:

(6.19) P0(h)u(h) = E(h)u(h).

If the symbol a belongs to S, then

(6.20) ‖aw(x, hD)u(h)‖L2 = O

((
h

E(h)

)∞)
‖u(h)‖L2 .

REMARK. The precise form of the right hand side of (6.20) will later
let us handle eigenvalues E(h) →∞. �

Proof. 1. We as follows rescale the harmonic oscillator, in order that
we may work near a fixed energy level E.

Set

y :=
x√
E
, h̃ :=

h

E
, E(h̃) :=

E(h)

E
;

so that |E(h)− E| ≤ δE. Then put

P0(h) := −h2∆x + |x|2, P0(h̃) := −h̃2∆y + |y|2;
whence

P0(h)− E(h) = E(P (h̃)− Ẽ(h̃)).

We next introduce the unitary transformation

UEu(y) := E
n
2 u(E

1
2y).

Then
UEP0(h)U

−1
E = EP0(h̃);

and more generally

UEb
w(x, hD)U−1

E = b̃w(y, h̃D), b̃(y, η) := b(E
1
2y, E

1
2η).

We will denote the symbol classes defined using h̃ by the symbol S̃δ.

2. Theorem 6.4, applied now to eigenfuctions of P0(h̃), shows that if

|E(h̃)− 1| < δ and (P0(h̃)− E(h̃))ũ(h̃) = 0, then

‖b̃w(y, h̃D)ũ(h̃)‖L2 = O(h̃∞)‖ũ(h̃)‖L2 ,

where b̃(y, η) ∈ S̃ is assumed to have support contained, say, in |y|2 +
|η|2 ≤ 1/2.

Translated to the original h and x as above, this assertion provides
us with the bound

(6.21) ‖bw(x, hD)u(h)‖L2 = O((h/E)∞)‖u(h)‖L2 ,
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for
b(x, ξ) = b̃(E−1/2x,E−1/2ξ) ∈ S.

Note that spt(b) ⊂ {|x|2 + |ξ|2 ≤ E/2}.
3. In view of (6.21), we only need to show that for a in the statement

of the theorem, we have

‖(aw(x, hD)(1− bw(x, hD))‖L2→L2 = O((h/E)∞),

where b is as in (6.21). That is the same as showing

(6.22) ‖ãw(y, D̃)(1− b̃w(y, h̃D))‖L2→L2 = O(h̃∞),

for
ã(y, η) = a(E

1
2y, E

1
2η) ∈ S̃ 1

2
,

with
dist(spt(ã), spt(1− b̃)) ≥ 1/C > 0,

uniformly in h̃. And estimate (6.22) is a consequence of Theorem 4.22.
�

6.2.2 Projections. We next study how projections onto the span of
various eigenfunctions of the harmonic oscillator P0(h) are related to
our symbol calculus.

THEOREM 6.6 (Projections and symbols). Suppose that a is a
symbol such that

spt(a) ⊂ {|ξ|2 + |x|2 < R}.
Let

Π := projection in L2 onto

span{u(h) | P0(h)u(h) = E(h)u(h) for E(h) ≤ R + 1},
Then

(6.23) ‖aw ◦ (I − Π)‖L2→L2 = O(h∞)

and

(6.24) ‖(I − Π) ◦ aw‖L2→L2 = O(h∞).

Proof. First of all observe that we can write

(I − Π) =
∑

Ej(h)>R+1

uj(h)⊗ uj(h),

meaning that

(I − Π)u =
∑

Ej(h)>R+1

〈uj(h), u〉uj(h).
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Therefore

aw ◦ (I − Π) =
∑

Ej(h)>R+1

(awuj(h))⊗ uj(h);

and so

(6.25) ‖aw ◦ (I − Π)‖L2→L2 ≤

 ∑
Ej(h)>R+1

‖awuj(h)‖2
L2

 1
2

.

Next, observe that Weyl’s Law for the harmonic oscillator, Theorem
6.3, implies that

Ej(h) ≥ cj
1
nh

for some constant c > 0. According then to Theorem 6.5, for each
M < N we have

‖awuj(h)‖L2 ≤ CN

(
h

Ej(h)

)N
≤ ChM

(
h

Ej(h)

)N−M
≤ ChMj−

N−M
n .

Consequently, if we fix N −M > n, the sum on the right hand side of
(6.25) is less than or equal to ChM . This proves (6.23) �

6.3 WEYL’S LAW

6.3.1 Spectrum and resolvents. We next show that the spectrum
of P (h) consists entirely of eigenvalues.

THEOREM 6.7 (Resolvents and spectrum). There exists a con-
stant h0 > 0 such that if 0 < h ≤ h0, then the resolvent

(P (h)− z)−1 : L2(Rn) → L2(Rn)

is a meromorphic function with only simple, real poles.

In particular, the spectrum of P (h) is discrete.

Proof. 1. Let |z| ≤ E, where E is fixed; and as before let P0(h) =
−h2∆ + |x|2 be the harmonic oscillator. As in Theorem 6.6 define

Π := projection in L2 onto

span{u | P0(h)u = E(h)u for E(h) ≤ R + 1}.
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Suppose now spt(a) ⊂ {|x|2 + |ξ|2 ≤ R}. Owing to Theorem 6.6, we
have

(6.26) ‖aw − awΠ‖L2→L2 = ‖aw − Πaw‖L2→L2 = O(h∞).

2. Fix R > 0 so large that

{|ξ|2 + V (x) ≤ E} ⊂ {|x|2 + |ξ|2 < R}.
Select χ ∈ C∞(R2n) with spt(χ) ⊂ {|x|2 + |ξ|2 ≤ R} so that

|ξ|2 + V (x)− z + χ ≥ 1

C
m

for m = 〈ξ〉2+〈x〉k and all |z| ≤ E. From (6.26) we see that χ = ΠχΠ+
O(h∞). Recall that the symbolic calculus guarantees that P − z+χ is
invertible, if h is small enough. Consequently, so is P − z+ΠχΠ, since
the two operators differ by an O(h∞) term.

3. Now write

P − z = P − z + ΠχΠ− ΠχΠ

Consequently

P − z = (P − z + ΠχΠ)(I − (P − z + ΠχΠ)−1χ)

Note that ΠχΠ is an operator of finite rank. So Lemma 6.8, stated and
proved below, asserts that the family of operators

(I − (P − z + ΠχΠ)−1ΠχΠ)−1

is meromorphic in z. It follows that (P − z)−1 is meromorphic on L2.
The poles are the eigenvalues, and the self-adjointness of P implies that
they are real and simple. �

LEMMA 6.8 (Inverses). Suppose that z 7→ M(z) is an analytic
mapping of a connected open set Ω ⊂ C into the space of finite rank
operators on a Hilbert space H.

If (I +M(z0))
−1 exists at some point z0 ∈ Ω, then (I +M(z))−1 is

a meromorphic family of operators on Ω.

Proof.1 1. If H is finite dimensional, we observe that the function
det(I +M(z)) is analytic and not identically zero in Ω, in view of our
assumption that (I +M(z0))

−1 exists. Thus

(I +M(z))−1 =
cof (I +M(z))

det(I +M(z))
(Cramer’s rule)

1Omit this proof on first reading.
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is meromorphic. Here “cof A” means the cofactor matrix of A.

2. For the general case that H is infinite dimensional, let z1 be an
arbitrary point in Ω. We can choose two finite rank operators

R− : Cn− → H, R+ : H → Cn+

such that

R−(Cn−) ∩ Range (I +M(z1)) = {0},
Ker (R+|Ker)(I +M(z1)) = {0}.

We can choose R± to be of maximal rank, in which case

n+ = dim Ker (I +M(z))

n− = dim Ker (I +M(z)∗).

An argument from linear algebra shows that

P(z) :=

(
I +M(z) R−
R+ 0

)
: H⊗ Cn− −→ H⊗ Cn+ ,

is invertible at z = z1 and hence for z in a neighbourhood of z1. We
can write the inverse as

P(z)−1 =

(
E(z) E+(z)
E−(z) E−+(z)

)
: H⊗ Cn+ −→ H⊗ Cn− .

Next, the simple and celebrated Schur complement formulas

(I +M(z))−1 = E(z)− E+(z)E−+(z)−1E−(z) ,

E−+(z)−1 = −R−(I +M(z))−1R+

(6.27)

show that (I+M(z))−1 is invertible if and only if n+ = n− and E−+(z)
is invertible.

3. The foregoing argument shows that there exists a locally finite
covering {Ωj} of Ω, such that for z ∈ Ωj, I+M(z) is invertible precisely
when E−+(z), defined for z ∈ Ωj, is invertible.

Since Ω is connected and since I + M(z0) is invertible, we deduce
that n− = n+ for all points in Ω and that detE−+(z) is not identically
zero in Ωj. The finite dimensional argument shows that E−+(z)−1 is
meromorphic and then (6.27) gives the meromorphy of (I +M(z))−1.

�

REMARK: Theorem 6.7 can be obtained more directly by using the
Spectral Theorem and compactness of (P + i)−1. We will demonstrate
this in our later discussion Schrödinger operators on manifolds in Ap-
pendix D. The approach using the Schur formulas is Grushin’s method:
see [S-Z2]. �
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6.3.2 Spectral asymptotics. We are now ready for the main result
of this section:

THEOREM 6.9 (Weyl’s Law). Suppose that V satisfies the condi-
tions (6.13) and that E(h) are the eigenvalues of P (h) = −h2∆+V (x).

Then for each a < b, we have

#{E(h) | a ≤ E(h) ≤ b}

=
1

(2πh)n
(Vol{a ≤ |ξ|2 + V (x) ≤ b}+ o(1)).

(6.28)

as h→ 0.

Proof. 1. Let

N(λ) = #{E(h) | E(h) ≤ λ}.
Select χ ∈ C∞

c (R2n) so that

χ ≡ 1 on {p ≤ λ+ ε}, χ ≡ 0 on {p ≥ λ+ 2ε}.
Then

a := p+ (λ+ ε)χ− λ ≥ 1

Cε
m,

for m = 〈ξ〉2 + 〈x〉m, is elliptic. Consequently for small h, aw is invert-
ible.

2. Claim #1: We have

(6.29) 〈(P (h) + (λ+ ε)χw − λ)u, u〉 ≥ γ‖u‖2
L2

for some γ > 0.
To see this, take b ∈ S(m1/2) so that b2 = a. Then b2 = b#b + r,

where r = O(h); and thus

Op(a) = Op(b2) = Op(b)Op(b) + Op(r) = BB +O(h)L2→L2

for B = Op(b). Hence for sufficiently small h > 0,

〈(P (h) + (λ+ ε)χw − λ)u, u〉 = 〈Op(a)u, u〉
= ‖Bu‖L2 + 〈O(h)u, u〉
≥ ‖Bu‖2 −O(h)‖u‖2

L2 ≥ γ‖u‖2
L2 ,

for some γ > 0, since B−1 exists. This proves (6.29).

3. Claim #2: For each δ > 0, there exists a bounded linear operator
Q such that

(6.30) χw = Q+O(h∞)L2→L2
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and

(6.31) rank(Q) ≤ 1

(2πh)n
(Vol{p ≤ λ+ 2ε}+ δ).

To prove this, cover the set {p ≤ λ+2ε} with ballsBj = B((xj, ξj), rj)
(j = 1, . . . , N) such that

N∑
j=1

Vol Bj ≤ Vol{p ≤ λ+ 2ε}+
δ

2
.

Define the “shifted” harmonic oscillator

Pj(h) := (hDx − ξj)
2 + (x− xj)

2;

and set

Π := projection in L2 onto V , the span of

{u | Pj(h)u = Ej(h)u, Ej(h) ≤ rj, j = 1, . . . , N}.

Then

χw = Πχw + (I − Π)χw

= Πχw +O(h∞) by Theorem 6.6

= Q+O(h∞)

for

Q := Πχw.

Clearly Q has finite rank, since

rankQ = dim(image of Q)

≤ dim(image of Π)

=
N∑
j=1

#{Ej(h) | Ej(h) ≤ rj}

=
1

(2πh)n

(
N∑
j=1

Vol Bj + o(1)

)
,

according to Weyl’s law for the harmonic oscillator, Theorem 6.3. Con-
sequently

rankQ ≤ 1

(2πh)n

(
Vol{p ≤ λ+ 2ε}+

δ

2
+ o(1)

)
.

This proves Claim #2.
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4. We next employ Claims #1,2 and Theorem B.4. We have

〈P (h)u, u〉 ≥ (λ+ γ)‖u‖2
L2 − (λ+ ε)〈Qu, u〉+ 〈O(h∞)u, u〉

≥ λ‖u‖2
L2 − (λ+ ε)〈Qu, u〉,

where rank Q ≤ 1
(2πh)n (Vol{p ≤ λ + 2ε} + δ). Theorem B.4,(i) implies

then that

N(λ) ≤ 1

(2πh)n
(Vol{p ≤ λ+ 2ε}+ δ + o(1)).

This holds for all ε, δ > 0, and so

(6.32) N(λ) ≤ 1

(2πh)n
(Vol{p ≤ λ}+ o(1))

as h→ 0.

5. We must prove the opposite inequality.
Claim #3: Suppose Bj = B((xj, ξj), rj) ⊂ {p < λ}. Then if

Pj(h)u = Ej(h)u

and E(h) ≤ rj, we have

(6.33) 〈Pj(h)u, u〉 ≤ (λ+ ε+O(h∞))‖u‖2
L2

To prove this claim, select a symbol a ∈ C∞
c (R2n), with

a ≡ 1 on {p ≤ λ}, spt(a) ⊂ {p ≤ λ+ ε}.
Let c := 1 − a. Then u − awu = cwu = O(h∞) according to Theorem
6.6, since spt(1− a) ∩Bj = ∅.

Define bw := P (h)aw. Now p ∈ S(m) and a ∈ S(m−1). Thus bw is
bounded in L2, since b = pa+O(h) ∈ S. Observe also that b ≤ λ+ ε

2
,

and so

bw = Op(h) ≤ λ+
3ε

4
.

Therefore

〈P (h)awu, u〉 = 〈bwu, u〉 ≤
(
λ+

3ε

4

)
‖u‖2

L2 .

Since awu = u+O(h∞), we deduce

〈P (h)u, u〉 ≤ (λ+ ε+O(h∞))‖u‖2
L2 .

This proves Claim #3.

6. Now find disjoint balls Bj ⊂ {p < λ} such that

Vol{p < λ} ≤
N∑
j=1

Vol Bj + δ.
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Let V := span{u | Pj(h)u = Ej(h)u, Ej(h) ≤ rj, j = 1, . . . , N}.
Owing to Claim #3,

〈Pu, u〉 ≤ (λ+ δ)‖u‖2
L2

for all u ∈ V . Also, Theorem 6.3 implies

dimV ≥
N∑
j=1

#{Ej(h) ≤ rj}

=
1

(2πh)n

(
N∑
j=1

Vol Bj + o(1)

)

≥ 1

(2πh)n
(Vol{p < λ} − δ + o(1)).

According then to Theorem B.4,(ii),

N(λ) ≥ 1

(2πh)n
(Vol(p < λ} − δ + o(1)).

�
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7. Exponential estimates for eigenfunctions

7.1 Estimates in classically forbidden regions
7.2 Tunneling
7.3 Order of vanishing

This chapter continues our study of semiclassical behavior of eigen-
functions:

P (h)u(h) = E(h)u(h)

for
P (h) = −h2∆ + V (x).

We first demonstrate that if E(h) is close to the energy level E, then
u(h) exponentially small in the physically forbidden region V −1((E,∞)).
Then we show, conversely, that in any open set the L2 norm of u(h) is
bounded from below by a quantity exponentially small in h.

We conclude with a discussion of the order of vanishing of eigenfunc-
tions in the semiclassical limit.

7.1 ESTIMATES IN CLASSICALLY FORBIDDEN REGIONS

For the classical Hamiltonian

p = |ξ|2 + V (x)

the classically forbidden region at energy level E is the open set

V −1((E,∞)).

We will show in this section that an eigenfunction of P (h) = −h2∆ +
V (x), for V satisfying the assumptions of §6.3, is exponentially small
within the classically forbidden region.

We begin with some general facts and definitions.

DEFINITION. Let V ⊂ Rn be an open set. The semiclassical Sobolev
norms are defined as

‖u‖Hk
h(V ) :=

∑
|α|≤k

∫
V

|(hD)αu|2dx

1/2

for u ∈ C∞(V ).

LEMMA 7.1 (Semiclassical elliptic estimates). Let V ⊂⊂ U be
open sets. Then there exists a constant C such that

(7.1) ‖u‖H2
h(V ) ≤ C(‖P (h)u‖L2(U) + ‖u‖L2(U))

for all u ∈ C∞(U).
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Proof. 1. Let χ ∈ C∞
c (U), χ ≡ 1 on V . We multiply P (h)u by χ2ū

and integrate by parts:∫
U

h2〈∂(χ2ū), ∂u〉+ (V − E)|u|2χ2 dx =

∫
U

P (h)uūχ2 dx.

Therefore

h2

∫
U

χ2|∂u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx;

and so

h2

∫
V

|∂u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx

2. Similarly, multiply P (h)u by χ2∆ū and integrate by parts, to
show

h4

∫
V

|∂2u|2 dx ≤ C

∫
U

|P (h)u|2 + |u|2 dx.

�

Before turning again to eigenfunctions, we present the following gen-
eral estimates for the operator P (h) = −h2∆ + V (x) where V ∈
C∞(Rn).

THEOREM 7.2 (Exponential estimate from above). Suppose
that U is an open set such that

U ⊂⊂ V −1(E,∞).

Then for each open set W ⊃⊃ U and for each λ in a small neigh-
borhood of E, there exist constants δ, C > 0, such that

(7.2) ‖u‖L2(U) ≤ Ce−δ/h‖u‖L2(W ) + C‖(P (h)− λ)u‖L2(W )

for all u ∈ C∞
c (Rn).

We call (7.2) an Agmon-type estimate.

Proof. 1. Select ψ, φ ∈ C∞
0 (W ) such that 0 ≤ ψ, φ ≤ 1, ψ ≡ 1 on U ,

and φ ≡ 1 on spt ψ.
We may as well assume that W ⊂⊂ V −1((E,∞)) and require also

that
spt φ ⊂ W ⊂⊂ V −1((E,∞)).

2. Observe that the symbol of

eδψ/h(P (h)− λ)e−δψ/h = P (h)− λ− δ2|∂ψ|2 − hδ∆ψ + iδ〈∂ψ, hD〉
is

(ξ + iδ∂ψ)2 + V (x)− λ+O(h).



102

Now for λ close to E, x ∈ W and δ sufficiently small, we have

|(ξ + iδ∂ψ)2 + V (x)− λ)|2 ≥ c0 > 0

for some positive constant c0. Then according to the easy G̊arding
inequality, Theorem 4.24, we see that provided δ > 0 is sufficiently
small, then

(7.3) A(h)∗A(h) ≥ c2φ2

for some constant c > 0 in the sense of operators, for

A(h) := eδψ/h(P (h)− λ)e−δψ/hφ.

3. Estimate (7.3) implies that

‖φeδψ/hu‖L2 ≤ c−1‖A(h)u‖L2

≤ c−1‖eδψ/hφ(P (h)− λ)u‖L2 + c−1‖eδψ/h[P (h), φ]u‖L2 ,

for u ∈ C∞
c (Rn). Since ψ ≡ 0 on spt [P (h), φ]u, Lemma 7.1 gives

‖eδψ/h[P (h), φ]u‖L2 ≤ C
(
‖hDxu‖L2(V ) + ‖u‖L2(V )

)
≤ C‖u‖L2(V ) + C‖(P (h)− λ)u‖L2(V ) .

Combining these estimates, we conclude that

eδ/h‖u‖L2(Ω) ≤ C‖u‖L2(V ) + C(eδ/h + C)‖(P (h)− z)u‖L2(V );

and the theorem follows. �

Specializing to eigenfunctions, we obtain

THEOREM 7.3 (Exponential decay estimates). Suppose that
U ⊂⊂ V −1((E,∞)), and that u(h) ∈ L2(Rn) solves

P (h)u(h) = E(h)u(h),

where
E(h) → E as h→ 0.

Then there exists a constant δ > 0 such that

(7.4) ‖u(h)‖L2(U) ≤ e−δ/h‖u(h)‖L2(Rn).

7.2 TUNNELING

In the previous section we showed that an eigenfunction is expo-
nentially small in the physically forbidden region. In this section we
will show that it can never be “smaller” than that: in any open set
the L2 norm of an eigenfuction is bounded from below by a quantity
exponentially small in h. This is a mathematical version of quantum
mechanical “tunneling into the physically forbidden region”.
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We will assume in this that section u = u(h) solves

P (h)u = E(h)u in Rn,

where

P = P (h) = −h2∆ + V (x) = Op(p)

for the symbol

p(x, ξ) = |ξ|2 + V (x).

Our goal is deriving for small h > 0 the lower bound

‖u‖L2(U) ≥ e−
C
h ‖u‖L2(Rn)

where U is a bounded, open subset of Rn.

NOTATION. We will also use conjugation by an exponential and to
make it more systematic we now introduce some notation. Assume
that φ : Rn → R and define

(7.5) Pφ = Pφ(h) := eφ/hPe−φ/h = Op(pφ +O(h))

for

pφ(x, ξ) := (ξ + i∂φ(x))2 + V (x).

We call Pφ the conjugation of P by the term eφ/h. By carefully select-
ing the weight φ we can ensure that Pφ has some desirable properties.

DEFINITION. Hörmander’s hypoellipticity condition is the require-
ment that:

(7.6) if pφ = 0, then i{pφ, pφ} > 0.

REMARK. Observe that for any complex function q = q(x, ξ),

i{q, q̄} = i{Re q + i Im q, Re q − i Im q} = 2{Re q, Im q}.

Hence the expression i{pφ, pφ} is real. �

LEMMA 7.4 (L2-estimate). If Hörmander’s condition (7.6) is valid
for all x in V̄ ⊂⊂ Rn, then

(7.7) h1/2‖u‖L2(V ) ≤ C‖Pφu‖L2(V )

for all u ∈ C∞
c (V ), provided h0 > 0 is sufficiently small and 0 < h ≤

h0.
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Proof. We calculate that

‖Pφu‖2
L2 = 〈Pφu, Pφu〉 = 〈P ∗

φPφu, u〉
= 〈PφP ∗

φu, u〉+ 〈[P ∗
φ , Pφ]u, u〉

= ‖P ∗
φu‖L2 + 〈[P ∗

φ , Pφ]u, u〉.

The symbol of PφP
∗
φ + [P ∗

φ , Pφ] is

a = pφp̄φ +
h

i
{pφ, pφ}+O(h2) = |pφ|2 + ih{pφ, pφ}+O(h2).

Owing to Hörmander’s condition (7.6), we have

a ≥ Ch+O(h2) ≥ C

2
h

if 0 < h ≤ h0. We apply the easy G̊arding inequality, Theorem 4.24,
to deduce for small h that

(7.8) ‖Pφu‖2
L2 = 〈PφP ∗

φ + [P ∗
φ , Pφ]u, u〉 ≥ Ch‖u‖2

L2 .

�

LEMMA 7.5 (Constructing a weight). Let 0 < r < R. There ex-
ists a C∞, bounded, radial function φ : Rn → R such that Hörmander’s
condition (7.6) holds on B(0, R)−B(0, r).

Proof. 1. We will take p = |ξ|2 + V (x)− E, and then compute

pφ = (ξ + i∂φ(x))2 + V (x)− E(7.9)

= |ξ|2 − |∂φ(x)|2 + V (x)− E + 2i〈ξ, ∂φ(x)〉.
So pφ = 0 implies

(7.10) |ξ|2 − |∂φ(x)|2 + V (x)− E = 0

and

(7.11) 〈ξ, ∂φ(x)〉 = 0.

Furthermore,

i

2
{pφ, pφ} = {Re pφ, Im pφ}(7.12)

= 〈∂ξ(|ξ|2 − |∂φ|2 + V − E), ∂x〈2ξ, ∂φ〉〉
−〈∂x(|ξ|2 − |∂φ|2 + V − E), ∂ξ〈2ξ, ∂φ〉〉

= 4〈∂2φξ, ξ〉 − 〈−2∂φ∂2φ+ ∂V, ∂φ〉
= 4〈∂2φξ, ξ〉+ 2〈∂2φ∂φ, ∂φ〉 − 〈∂V, ∂φ〉.
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2. Assume now
φ = eλψ,

where λ > 0 will be selected and ψ : Rn → R is positive and radial;
that is, ψ = ψ(|x|). Then

∂φ = λeλψ∂ψ

and
∂2φ = eλψ(λ2∂ψ ⊗ ∂ψ + λ∂2ψ).

Hence

(7.13) 〈∂2φξ, ξ〉 = eλψ(λ2〈∂ψ, ξ〉2 + λ〈∂2ψξ, ξ〉) = eλψλ〈∂2ψξ, ξ〉,
since pφ = 0 implies 〈∂φ, ξ〉 = 0 and so 〈∂ψ, ξ〉 = 0. Also

〈∂2φ∂φ, ∂φ〉 = λ4|∂ψ|4e4λψ + λ3〈∂2ψ∂ψ, ∂ψ〉e3λψ,
and

〈∂V, ∂φ〉 = λeλψ〈∂V, ∂ψ〉.
According to (7.12), we have

i

2
{pφ, pφ} = 4λeλψ〈∂2ψξ, ξ〉+ 2λ4|∂ψ|4e4λψ

+ 2λ3〈∂2ψ∂ψ, ∂ψ〉e3λψ − λ〈∂V, ∂ψ〉eλψ.
(7.14)

Now take
ψ := C − |x|,

for a constant C so large that ψ ≥ 1 on B(0, R). Then

|∂ψ| = 1, |∂2ψ| ≤ C on B(0, R)−B(0, r).

Furthermore according to (7.10) we have

(7.15) |ξ|2 ≤ C + |∂φ|2 ≤ C + Cλ2e2λψ on B(0, R)−B(0, r).

Plugging these estimates into (7.14), we compute

i

2
{pφ, pφ} = 2λ4e4λψ − Cλ3e3λψ − C ≥ 1,

if λ is selected large enough. We can now modify ψ in B(0, r) to obtain
a smooth fuction on B(0, R). �

THEOREM 7.6 (Exponential estimate from below). Let U ⊂
Rn be an open set. There exist constants C, h0 > 0 such that if u(h)
solves

P (h)u = E(h)u(h) in Rn

for E(h) ∈ [a, b], then

(7.16) ‖u(h)‖L2(U) ≥ e−
C
h ‖u(h)‖L2(Rn)
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for all 0 < h ≤ h0.

We call (7.16) a Carleman-type estimate.

Proof. 1. Without loss U = B(0, 2r) for some (possibly small) r > 0.
Select R > 0 so large that

p(x, ξ) = |ξ|2 + V (x) ≥ |ξ|2 + 〈x〉k

for |x| ≥ R. That is, the symbol p is elliptic in Rn −B(0, R).
Select two radial functions χ1, χ2 : R2n → R such that 0 ≤ χ1 ≤ 1,

χ1 ≡ 0 on B(0, r),

χ1 ≡ 1 on B(0, R + 2)−B(0, 2r),

χ1 ≡ 0 on R2n −B(0, R + 3)

and 0 ≤ χ2 ≤ 1, {
χ2 ≡ 0 on B(0, R)

χ2 ≡ 1 on R2n −B(0, R + 1).

2. Since p is semiclassically elliptic on Rn − B(0, R), we have the
estimate

‖u‖L2(Rn−B(0,R)) ≤ C‖P (h)u‖L2(Rn−B(0,R))

for all u ∈ C∞
c (Rn −B(0, R)).

Hence

‖χ2u‖L2 ≤ C‖P (h)(χ2u)‖L2 = C‖[P (h), χ2]u‖L2 .

Now [P (h), χ2]u = −h2u∆χ2 − 2h2〈∂χ2, ∂u〉. Thus [P (h), χ2]u is sup-
ported in B(0, R + 1)−B(0, R). Hence, according to Lemma 7.1,

(7.17) ‖χ2u‖L2 ≤ Ch‖χ1u‖L2(B(0,R+1)−B(0,R)).

3. Next apply Lemma 7.4:

h1/2
∥∥∥eφ

hχ1u
∥∥∥
L2
≤ C

∥∥∥eφ
hP (h)(χ1u)

∥∥∥
L2

= C
∥∥∥eφ

h [P (h), χ1]u
∥∥∥
L2
.

Now [P (h), χ1] is supported in the union of B(0, 2r) − B(0, r) and
B(0, R + 3)−B(0, R + 2). Thus

h1/2
∥∥∥eφ

hχ1u
∥∥∥
L2
≤ Ch

∥∥∥eφ
hχ2u

∥∥∥
L2(B(0,R+3)−B(0,R+2))

+ C‖u‖L2(U).

4. Select a positive constant φ0 so that{
φ > φ0 on B(0, R + 1)−B(0, R)

φ < φ0 on B(0, R + 3)−B(0, R + 2).
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Multiply (7.17) by eφ0/h and add to (7.17):∥∥∥eφ0
h χ2u

∥∥∥
L2

+
∥∥∥eφ

hχ1u
∥∥∥
L2

≤ Ch
∥∥∥eφ1

h χ1u
∥∥∥
L2(B(0,R+1)−B(0,R))

+Ch1/2
∥∥∥eφ

hχ2u
∥∥∥
L2(B(0,R+3)−B(0,R+2))

+ Ch−1/2‖u‖L2(U)

≤ Ch
∥∥∥eφ

hχ1u
∥∥∥
L2

+ Ch1/2
∥∥∥eφ0

h χ2u
∥∥∥
L2

+ Ch−1/2‖u‖L2(U).

Take 0 < h ≤ h0, for h0 sufficiently small, to deduce∥∥∥eφ0
h χ2u

∥∥∥
L2

+
∥∥∥eφ

hχ1u
∥∥∥
L2
≤ Ch−1/2‖u‖L2(U).

Since χ1 +χ2 ≥ 1 on Rn−B(0, 2r) = Rn−U , the theorem follows. �

7.3 ORDER OF VANISHING

Assume, as usual, that

(7.18) P (h)u(h) = E(h)u(h),

where E(h) ∈ [a, b]. To simplify notation, we will in this subsection
write u for u(h).

We propose now to give an estimate for the order of vanishing of u,
following a suggestion of N. Burq.

DEFINITION. We say u vanishes to order N at the point x0 if

u(x) = O(|x− x0|N) as x→ x0.

We will consider potentials which are analytic in x and, to avoid tech-
nical difficulties, make a strong assumption on the growth of deriva-
tives:

(7.19) V (x) ≥ 〈x〉m/C0 − C0, |∂αV (x)| ≤ C
1+|α|
0 |α||α|〈x〉m

for some m > 0 and all multiindices α.

We note that the second condition holds when V has a holomorphic
extension bounded by |z|m into a conic neighbourhood of Rn in Cn.

THEOREM 7.7 (Semiclassical estimate on vanishing order).
Suppose that u ∈ L2 solves (7.18) for a ≤ E(h) ≤ b and that V a real
analytic potential satisfying (7.19). Let K be compact subset of Rn.

Then there exists a constant C such that if u vanishes to order N at
a point x0 ∈ K, we have the estimate

(7.20) N ≤ Ch−1.
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We need the following lemma to establish analyticity of the solution
in a semiclassically quantitative way:

LEMMA 7.8 (Semiclassical derivative estimates). If u satisfies
the assumptions of Theorem 7.7, then there exists a constant C1 such
that for any positive integer k:

(7.21) ‖u‖Hk
h(Rn) ≤ Ck

1 (1 + kh)k‖u‖L2(Rn).

Proof. 1. By adding C0 to V we can assume without loss that V (x) ≥
〈x〉m/C0. The Lemma will follow from the following stronger estimate,
which we will prove by induction:

‖〈x〉m/2(hD)αu‖L2 + ‖(h∂)(hD)αu‖L2

≤ Ck+2
2 (1 + kh)k+1‖u‖L2 .

(7.22)

for |α| = k.

2. To prove this inequality, we observe first that our multiplying
(7.18) by ū and integrating by parts shows that estimate (7.22) holds
for |α| = 0

Next, note that

‖V
1
2 (hD)αu‖2

L2 + ‖(h∂)(hD)αu‖2
L2

= 〈(−h2∆ + V − E(h))(hD)αu, (hD)αu〉+ E(h)‖(hD)αu‖2
L2

= 〈V − 1
2 [V, (hD)α]u, V

1
2 (hD)αu〉+ E(h)‖(hD)αu‖2

L2

≤ 2‖V − 1
2 [V, (hD)α]u‖2

L2 +
1

2
‖V

1
2 (hD)αu‖2

L2 + E(h)‖(hD)αu‖2
L2 .

Hence

1

2
‖V

1
2 (hD)αu‖2

L2 + ‖(h∂)(hD)αu‖2
L2

≤ 2‖V − 1
2 [V, (hD)α]u‖2

L2 + E(h)‖(hD)αu‖2
L2 .

(7.23)

3. We can now expand the commutator, to deduce from (7.19) (with
V replaced by V + C0) the inequality:

‖V − 1
2 [V, (hD)α]u‖L2 ≤

k−1∑
l=0

(
k

l

)
Ck−l+1

0 (h(k − l))k−l sup
|β|=l

‖〈x〉m/2(hD)βu‖L2 .
(7.24)
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We proceed by induction, and so now assume that (7.22) is valid for
|α| < k. Now Stirling’s formula implies(

k

l

)
≤ C

kk

ll(k − l)k−l
.

Hence, in view of (7.23) and (7.24), it is enough to show that there
exists a constant C2 such that

k−1∑
l=0

hk−l
kk

ll
Ck−l+1

0 C l+2
2 (1 + lh)l+1 + Ck+1

2 (1 + hk)k ≤ Ck+2
2 (1 + hk)k+1.

This estimate we can rewrite as

C0

k−1∑
l=1

(
C0

C2

)k−l
(hl)−l(1 + hl)l(1 + hl) + C−1

2 (hk)−k(1 + hk)k

≤ (hk)−k(1 + hk)k(1 + hk).

Since we can choose C2 to be large and since we can estimate the (1+hl)
factor in the sum by (1 + hk), this will follow once we show that for ε
small enough,

k−1∑
l=0

εk−lal ≤ ak for al := (1 + (hl)−1)l.

This is true by induction if ak−1/ak is bounded:

k−1∑
l=0

εk−lal ≤ 2εak−1.

In our case,

ak−1

ak
=

(
1 + (h(k − 1))−1

1 + (hk)−1

)k−1

(1 + (hk)−1)−1

=

(
1 +

1

(k − 1)(1 + hk)

)k−1

(1 + (hk)−1)−1

≤ exp

(
1

1 + hk

)
hk

1 + hk
< 1.

�

Proof of Theorem 7.7: Assume now that ‖u‖L2 = 1 and that u vanishes
to order N at a point x0 ∈ K.
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Then Dαu(x0) = 0 for |α| < N and Taylor’s formula shows that

(7.25) |u(x)| ≤ εN

N !
sup
|α|=N

sup
y∈Rn

|Dαu(y)| for |x− x0| < ε.

The Sobolev inequality (Lemma 3.5) and Lemma 7.8 allow us to
estimate the derivatives. If say M = N + n and |α| = N , then

sup
y∈Rn

|Dαu(y)| ≤ ‖u‖HM ≤ h−M‖u‖HM
h
≤ h−MCM

1 (1 + hM)M .

Inserting this into (7.25) and using Stirling’s formula, we deduce that
if for |x− x0| < ε, then

|u(x)| ≤
(eε
N

)N (C
h

)M
(1 + hM)M ≤

(
N

eε

)n(
eεC

Nh

)M
(1 + hM)M .

If we put A := Mh, then for ε small enough we have, with K = Cε−1

large,

|u(x)| ≤ (KAh−1)n
(

1

KA

)Ah−1

(1 + A)Ah
−1

= (KAh−1)n(1 + 1/A)Ah
−1

exp(−Ah−1 logK).

We can assume that A is large, as otherwise there is nothing to prove.
Hence

|u(x)| ≤ exp(−αAh−1),

for α > 0 and |x− x0| < ε. It follows that∫
{|x−x0|<ε}

|u(x)|2 dx ≤ C1e
−2αA/h,

uniformly in h. But according to Theorem 7.6,∫
{|x−x0|<ε}

|u(x)|2 dx > e−C2/h.

Consequently A = Mh = (N + n)h is bounded, and this means that
N ≤ Ch−1, as claimed. �

EXAMPLE : Optimal order of vanishing. Theorem 7.7 is optimal
in the semiclassical limit, meaning as regards the dependence on h in
estimate (7.20).

We can see this by considering the harmonic oscillator in dimension
n = 2. In polar coordinates (r, θ) the harmonic oscillator for h = 1
takes the form

P0 = r−2((rDr)
2 +D2

θ + r4).
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The eigenspace corresponding to the eigenvalue 2k + 2 has dimension
k + 1, corresponding to the number of multiindicies α = (α1, α2), with
|α| = α1 + α2 = k. Separating variables, we look for eigenfunctions of
the form

u = ukm(r)eimθ.

Then
r−2((rDr)

2 +m2 + r4 − (2n+ 1)r2)ukm(r) = 0.

Since the number of linearly independent eigenfunctions is k+1, there
must be solution for some integer m > k/2. Near r = 0, we have the
asymptotics ukm ' r±m, and the case ukm ' r−m is impossible since
u ∈ L2. Therefore u ' rm has to vanish to order m.

Rescaling to the semiclassical case, we see that for the eigenvalue
E(h) = (2k + 1)h ' 1 we have an eigenfunction vanishing to order
' 1/h. �
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8. More on the symbol calculus

8.1 Invariance, half-densities
8.2 Changing variables
8.3 Essential support, wavefront sets
8.4 Wave front sets and pointwise bounds
8.5 Beals’s Theorem
8.6 Application: exponentiation of operators

This chapter collects together various more advanced topics concern-
ing the symbol calculus, discussing in particular invariance properties
under changes of variable, a semiclassical version of Beals’s charac-
terization of pseudodifferential operators, extensions to manifolds, etc.
Chapters 9 and 10 will provide applications.

8.1 INVARIANCE, HALF-DENSITIES

Invariance. We begin with a general discussion concerning the
invariance of various quantities under the change of variables

(8.1) x̃ = κ(x),

where κ : Rn → Rn is a diffeomorphism.

• Functions. We note first that functions transform under (8.1) by
pull-back. This means that we transform u into a function of the new
variables x̃ by the rule

(8.2) ũ(x̃) = ũ(κ(x)) := u(x),

for x ∈ Rn. Observe however that in general the integral of u over a
set E is not then invariant:∫

κ(E)

ũ(x̃) dx̃ 6=
∫
E

u(x) dx.

•Densities. One way to repair this defect is to change our definition
(8.2) to include the Jacobian of the transformation κ. We elegantly
accomplish this by turning our attention to densities, which we denote
symbolically as

u(x)|dx|.
We therefore modify our earlier definition (8.2), now to read

(8.3) ũ(x̃) = ũ(κ(x)) := u(x)| det(∂κ(x))|−1.

Then we have the invariance assertion

“ ũ(x̃)|dx̃| = u(x)|dx|, ”
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meaning that ∫
κ(E)

ũ(x̃) dx̃ =

∫
E

u(x) dx

for all Borel sets E ⊆ Rn.

• Half-densities. Next recall our general motivation coming from
quantum mechanics. The eigenfunctions u we study are then inter-
preted as wave functions and the squares of their moduli are the prob-
ability densities in the position representation: the probability of “find-
ing our state in the set E” is given by∫

E

|u(x)|2dx.

This probability should be invariantly defined, and so should not de-
pend on the choice of coordinates x. As above, this means that it is
not the function u(x) which should be defined invariantly but rather
the density |u(x)|2dx, or equivalently the half-density

u(x)|dx|
1
2 .

For half-densities we therefore demand that

“ ũ(x̃)|dx̃|
1
2 = u(x)|dx|

1
2 ”,

which means that integrals of the squares should be invariantly defined.
To accomplish this, we once again modify our original definition (8.2),
this time to become

(8.4) ũ(x̃) = ũ(κ(x)) := u(x)| det(∂κ(x))|−
1
2 .

Then ∫
κ(E)

|ũ(x̃)|2 dx̃ =

∫
E

|u(x)|2 dx.

for all Borel subsets E ⊆ Rn.

DISCUSSION. The foregoing formalism is at first rather unintuitive,
but turns out later to play a crucial role in the rigorous semiclassi-
cal calculus, in particular in the theory of Fourier integral operators,
which we will touch upon later. Section 8.2 below will demonstrate
how the half-density viewpoint fits naturally within the Weyl calculus,
and Section 10.2 will explain how half-densities simplify some related
calculations for a propagator.

Our Appendix D provides a more careful foundation of these concepts
in terms of the s-density line bundles over Rn, denoted Ωs(Rn). In this
notation, a density is a smooth section of Ω1(Rn) and a half-density is

a smooth section of Ω
1
2 (Rn). �
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NOTATION. We write

u|dx| ∈ C∞(Rn,Ω1(Rn))

for densities, and

u|dx|
1
2 ∈ C∞(Rn,Ω

1
2 (Rn))

for half-densities.

REMARK: Operator kernels. Another nice aspect of half-densities
appears when we use operator kernels. Suppose that

K ∈ C∞(Rn × Rn; Ω
1
2 (Rn × Rn)).

Then K, acting as an integral kernel, defines a map

K : C∞
c (Rn,Ω

1
2 (Rn)) → C∞(Rn,Ω

1
2 (Rn)),

in an invariant way, independently of the choice of densities:

Ku(x)|dx|
1
2 =

∫
Rn

K(x, y)|dx|
1
2 |dy|

1
2u(y)|dy|

1
2

:=

(∫
Rn

K(x, y)u(y)dy

)
|dx|

1
2 .

(8.5)

�

8.2 CHANGING VARIABLES

In this section we illustrate the usefulness of half-densities in charter-
izing invariance properties of quantization under changes of variables.

We observe that the half-density sections over R2n = Rn × Rn are
identified with functions if we consider symplectic changes of variables,
in particular

(8.6) (x, ξ) 7−→ (x̃, ξ̃) = (κ(x), (∂κ(x)T )−1ξ).

(Recall the derivation of this formula in Example 1 of Section 2.3.)

We will consider the Weyl quantization of a ∈ C∞
c (R2n) as an oper-

ator acting on half-densities. That is done as in (8.5) by defining

Ka(x, y)|dx|
1
2 |dy|

1
2

:=
1

(2πh)n

∫
Rn

a

(
x+ y

2
, ξ

)
ei

〈x−y,ξ〉
h dξ|dx|

1
2 |dy|

1
2 .

(8.7)

Then

(8.8) Op(a)(u(y)|dy|
1
2 )|dx|

1
2 :=

∫
Rn

Ka(x, y)u(y) dy|dx|
1
2 .
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The arguments of Chapter 4 show that for a ∈ S we obtain a bounded
operator that quantizes a:

Op(a) : L2(Rn,Ω
1
2 (Rn)) → L2(Rn,Ω

1
2 (Rn)).

Next, let κ : Rn → Rn be a smooth diffeomorphism and a ∈ S. We
write A = Op(a) for the operator acting on half-densities. As above, if
we write x̃ = κ(x), we define ũ by

(8.9) ũ(x̃)|dx̃|
1
2 = u(x)|dx|

1
2 .

Then Ã = (κ−1)∗Aκ∗, acting on half-densities, is given by the rule

(8.10) Ãũ(x̃) = Au(x),

when acting on functions.

THEOREM 8.1 (Operators and half-densities).
(i) Consider A acting on half-densities. Then

(8.11) (κ−1)∗Aκ∗ = Op(ã)

for

(8.12) ã(x, ξ) := a(κ−1(x), ∂κ(x)T ξ) +O(h2).

That is,

(8.13) a(x, ξ) = ã(κ(x), (∂κ(x)T )−1ξ) +O(h2).

(ii) When we consider A acting on functions and define

A1 = (κ−1)∗Aκ∗,

then
A1 = Op(a1),

for

(8.14) a1(x, ξ) := a(κ−1(x), ∂κ(x)T ξ) +O(h).

That is,

(8.15) a(x, ξ) = a1(κ(x), (∂κ(x)T )−1ξ) +O(h).

INTERPRETATION. The point is that assertion (i) for half-densities
(with error term of order O(h2)) is more precise than the assertion (ii)
for functions (with error term O(h)). �

Proof. 1. Remember that

Au(x)|dx|
1
2 =

∫
Rn

Ka(x, y)|dx|
1
2 |dy|

1
2u(y)|dy|

1
2
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for

Ka(x, y) :=
1

(2πh)n

∫
Rn

a

(
x+ y

2
, ξ

)
e

i〈x−y,ξ〉
h dξ.

Likewise

Ãũ(x̃) =

∫
Rn

Kã(x̃, ỹ)|dx̃|
1
2 |dỹ|

1
2 ũ(ỹ) |dỹ|

1
2

for

Kã(x̃, ỹ) :=
1

(2πh)n

∫
Rn

ã

(
x̃+ ỹ

2
, ξ̃

)
e

i〈x̃−ỹ,ξ̃〉
h dξ̃.

Since ũ(ỹ)|dỹ| 12 = u(y)|dy| 12 and dỹ = |det ∂κ(y)|dy, it follows that

Ãũ(x) =

∫
Rn

Kã(x̃, ỹ)|det ∂κ(y)|
1
2 |det ∂κ(x)|

1
2u(y) dy.

Hence we must show

(8.16) Ka(x, y) = Kã(x̃, ỹ)|det ∂κ(y)|
1
2 |det ∂κ(x)|

1
2 +O(h2).

2. Now

Kã(x̃, ỹ) =
1

(2πh)n

∫
Rn

ã

(
x̃+ ỹ

2
, ξ̃

)
e

i
h
〈x̃−ỹ,ξ̃〉 dξ̃

=
1

(2πh)n

∫
Rn

ã

(
κ(x) + κ(y)

2
, ξ̃

)
e

i
h
〈κ(x)−κ(y),ξ̃〉 dξ̃.

We have

(8.17) κ(x)− κ(y) = 〈k(x, y), x− y〉,
where

(8.18) k(x, y) = ∂κ

(
x+ y

2

)
+O(|x− y|2).

Also

(8.19) κ(x) + κ(y) = 2κ

(
x+ y

2

)
+O(|x− y|2).

Let us also write

(8.20) ξ̃ = (k(x, y)T )−1ξ.

Substituting above, we deduce that

Kã(x̃, ỹ)

=
1

(2πh)n

∫
Rn

[
ã

(
κ

(
x+ y

2

)
, (k(x, y)T )−1ξ

)
+O(|x− y|2)

]
e

i
h
〈κ(x)−κ(y),(k(x,y)T )−1ξ〉 dξ̃.
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Now, we apply the “Kuranishi trick” to rewrite this expression as a
pseudodifferential operator. First,

〈κ(x)−κ(y), (k(x, y)T )−1ξ〉 = 〈k(x, y)−1(κ(x)−κ(y)), ξ〉 = 〈x− y, ξ〉,
according to (8.17). Remembering also (8.18), we compute

Kã(x̃, ỹ) =

1
(2πh)n

∫
Rn

[
ã

(
κ
(
x+y

2

)
,
(
∂κ
(
x+y

2

)T)−1

ξ

)
+O(|x− y|2)

]
e

i
h
〈x−y,ξ〉dξ̃

= 1
(2πh)n

∫
Rn

[
a
(
x+y

2
, ξ
)

+O(|x− y|2)
]
e

i
h
〈x−y,h〉dξ̃.

Furthermore dξ̃ = |det k(x, y)|−1dξ and

det k(x, y) = det ∂κ

(
x+ y

2

)
+O(|x− y|2).

Also ∣∣∣∣det ∂κ

(
x+ y

2

)∣∣∣∣2 = |det ∂κ(x)||det ∂κ(y)|+O(|x− y|2).

3. Finally we observe that

(8.21) (x− y)αe
i
h
〈x−y,ξ〉 = (hDξ)

αe
i
h
〈x−y,ξ〉.

Hence integrating by parts in the terms with O(|x−y|2) gives us terms
of order O(h2). So

Kã(x̃, ỹ) =

1

(2πh)n

∫
Rn

(
a

(
x+ y

2
, ξ

)
+O(h2)

)
e

i
h
〈x−y,ξ〉dξ

|det ∂κ(x)|−1/2|det ∂κ(y)|−1/2.

This proves (8.16).

4. When A acts on functions, then Ka has to transform as a density.
In other words, we need to show

(8.22) Ka(x, y) = Ka1(x̃, ỹ)|det ∂κ(y)|+O(h),

instead of (8.16). Since

|det ∂κ(y)| = |det ∂κ(y)|1/2|det ∂κ(x)|1/2 +O(|x− y|),
we see from (8.21) that (8.22) follows from (8.16) with a1 = ã+O(h).

�
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8.3 ESSENTIAL SUPPORT, WAVEFRONT SETS

We devote this section to a few definitions built around the notion
of the essential support of a symbol.

Let m denote some order function.

DEFINITION. Let a = a(x, ξ, h) be a symbol in S(m). We define
the essential support of a, denoted

ess-spt(a),

to be the complement of the set of points with neighbourhoods in which

(8.23) |∂αa| ≤ Cα,Nmh
N ,

for each N .

REMARK. The proof of Theorem 8.1 shows that this notion does
not depend on the choice of coordinates, in the sense that if κ is a
diffeomorphism and Op(aκ) = Op((κ−1)∗Op(a)κ∗), then

(8.24) ess-spt(aκ) = {(κ(x), (∂κ(x)T )−1ξ) | (x, ξ) ∈ ess-spt(a)}.

�

DEFINITION. A family of smooth functions {u(h)}0<h≤h0 is called
h-tempered on Rn if for each multiindex α there exist N = Nα and
C = Cα such that

‖〈x〉−N∂αu(h)‖L2(Rn) ≤ Ch−N

for 0 < h ≤ h0.

DEFINITION. For a tempered family we define the semiclassical
wavefront set

WFh(u)

to the complement of the set of points (x, ξ) ∈ R2n for which there
exists a symbol a ∈ S such that:

a(x, ξ) 6= 0

and

(8.25) ‖aw(x, hD)u(h)‖L2 ≤ Cαh
k

for all integers k. We note that this a local property of the family u(h)
in phase space – see Theorem 8.3 below.
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Thus

WFh(u) = {(x, ξ) | there exists a ∈ S such that

a(x, ξ) 6= 0 and aw(x, hD)u(h) = OL2(h∞)}c.

(8.26)

The superscript “c” means the complement.
The meaning of the wavefront set is illucidated by the following

LEMMA 8.2 (Localization and wavefront sets). Suppose that
(x0, ξ0) /∈ WFh(u) then for any b ∈ C∞

c (Rn) with support sufficiently
close to (x0, ξ0) we have

bw(x, hD)u = OS(h∞) ,

where the notation means that we have decay in any seminorm in the
Schwartz class S.

Proof: 1. Suppose a ∈ S has the property that a(x0, ξ0) 6= 0. Then
there exists χ ∈ C∞(R2n) supported near (x0, ξ0) such that

|χ(x, ξ)(a(x, ξ)− a(x0, ξ0)) + 1| > 1/C , (x, ξ) ∈ R2n .

By Theorem 4.23 there exists c ∈ S such that

cw(x, hD)(χw(x, hD)aw(x, hD) + a(x0, ξ0)(I − χw(x, hD))) = I .

2. Now consider

bw(x, hD)u(h) =bw(x, hD)cw(x, hD)χw(x, hD)aw(x, hD)u(h)

+ bw(x, hD)a(x0, ξ0)(I − χw(x, hD)))u(h) .

If we choose a to be the symbol appearing in (8.25) then the first term
on the right hand side is bounded by O(h∞) in b(x, hD)L2 ⊂ S. If
support of b is sufficiently close to (x0, ξ0) then spt(b)∩ spt(1− χ) = ∅
and the second term has the same property. This proves the lemma. �

Much can be said about the properties of semiclassical wave front
sets and we refer to [A] for a recent discussion. Here we will only
present the following general result:

THEOREM 8.3 (Wavefront sets and pseudodifferential oper-
ators). Suppose that a ∈ S(m) for some order function m, and that
u(h) is an h-tempered family of functions. Then

WFh(a
w(x, hD)u) ⊂ WFh(u) ∩ ess-spt(a) .
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Proof: 1. We need to show that if (x, ξ) /∈ WFh(u) or (x, ξ) /∈ ess-spt(a)
then (x, ξ) /∈ WFh(a

w(x, hD)u).

2. Suppose that (x, ξ) is not in WFh(u). Choose b ∈ C∞
0 (R2n), with

b(x, ξ) 6= 0 a and such that bw(x, hD)u = OL2(h∞). The existence of
such b’s is clear from Lemma 8.2. Now the pseudodifferential calculus
shows that

bw(x, hD)aw(x, hD) = cw(x, hD) + rw(x, hD) ,

spt c ⊂ spt b , r ∈ S−∞(1) .

Lemma 8.2 implies that

‖bw(x, hD)aw(x, hD)u(h)‖L2 = O(h∞) ,

showing (x, ξ) /∈ WFh(a
w(x, hD)).

3. Now suppose that (x, ξ) /∈ ess-spt(a) and use the same b as above.
Then, if the support of b is sufficiently close to (x, ξ), (8.23) implies
that bw(x, hD)aw(x, hD) = cw(x, hD) where c = OS(h∞), and that
shows that for any h-tempered family

‖bw(x, hD)aw(x, hD)u(h)‖L2 = O(h∞) .

�

Motivated by Theorem 8.3 we give the following

DEFINITION. Let A be an h-dependent family of operators. We
define the wavefront set of A to be

(8.27) WFh(A) :=
⋃

WFh(u) ∩WFh(Au),

the union taken over all h-tempered families {u(h)}.
It is not hard to check that if A = Op(a), then

WFh(A) = ess-spt(a)

and hence is a closed set. �

REMARK. The definitions of wavefront sets do not depend on the
choice of coordinates. We can use it to give an alternative definition of
ess-spt(a) which can then be adapted to the case of manifolds:

(8.28)


if A = Op(a), then (x, ξ) /∈ ess-spt(a) if and only if

for any tempered family {u(h)}0<h≤h0 ,

we have (x, ξ) /∈ WFh(Au).

�
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8.4 WAVEFRONT SETS AND L∞ BOUNDS

Here we will show how a natural frequency localization condition
on approximate solutions to (pseudo)-differential equations implies h-
dependent L∞ bounds. As an application we will give well known
bounds on eigenfuction clusters for compact Riemannian manifolds.

We start with the following semiclassical version of the Sobolev in-
equality (Lemma 3.5):

LEMMA 8.4 (Basic L∞ bounds). Suppose that u(h) ∈ L2(Rk) is
an h-tempered family of functions, and that there exists ψ ∈ C∞

c (Rn)
such that

(8.29) ‖(1− ψ(hD))u(h)‖L2 = O(h∞)‖u‖L2 .

Then
‖u(h)‖L∞ ≤ Ch−k/2‖u(h)‖L2 .

Proof: 1. We can assume that ‖u(h)‖L2 = 1. We can also assume that
u(h) is compactly supported since for φ ∈ C∞

c (Rn), (1 − ψ(hD))φ =
ψ(1− ψ(hD)) + r(x, hD) with r ∈ S and ess-spt(r) compact. We can
choose ψ1 ∈ C∞

c for which

(1− ψ1)(1− ψ) = (1− ψ1) , (1− ψ1)|ess-spt(r) = 0 .

Then
(1− ψ1(hD))φu(h) = (1− ψ1(hD))ψ(1− ψ(hD))u(h)

+ (1− ψ1(hD))r(x, hD)u(h)

= OL2(h∞) .

2. For u(h) compactly supported (uniformly in h) the h-temperance
assumption implies that ‖〈hD〉ku(h)‖ ≤ h−Nk for every k. Hence, by
the Cauchy-Schwartz inequality,

‖〈hD〉k(1− ψ(hD))u(h)‖ ≤ ‖〈hD〉2ku(h)‖
1
2‖(1− ψ(hD))2u(h)‖

1
2

= O(h∞) ,

and by Lemma 3.5

‖(1− ψ(hD))u(h)‖L∞ = O(h∞) .

3. It remains to estimate ‖ψ(hD)u‖L∞ and we simply use the semi-
classical inverse Fourier transform (3.25):

‖ψ(hD)u‖L∞ ≤ 1

(2πh)k
‖ψ‖L2‖Fhu‖L2

=
1

(2πh)k/2
‖ψ‖L2‖u‖L2 ,
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proving the lemma. �

THEOREM 8.5 (L∞ bounds for approximate solutions). Let
m = m(x, ξ) an order function. Suppose that p ∈ S(T ∗Rn,m) is real
valued, and for some fixed K ⊂ T ∗Rn,

(8.30) p(x, ξ) = 0 , (x, ξ) ∈ K =⇒ ∂ξp(x, ξ) 6= 0 .

If an h-tempered family u(h) satisfies the frequency localization condi-
tion (8.29), and

(8.31) ‖pw(x, hD)u(h)‖L2 = O(h)‖u(h)‖L2 , WFh(u) ⊂ K ,

then

(8.32) ‖u(h)‖L∞ ≤ Ch−(n−1)/2‖u(h)‖L2 .

REMARK. The bound given in Theorem 8.5 is already optimal in
the simplest case in which the assumptions are satisfied: p(x, ξ) = ξ1.
Indeed, write x = (x1, x

′) and let χ1 ∈ C∞
c (R), and χ ∈ C∞

c (Rn−1).
Then

u(h) := h−(n−1)/2χ1(x1)χ(x′/h)

satisfies

P (h)u(h) = hDx1u(h) = OL2(h) , ‖u(h)‖L2 = O(1) ,

and for any non-trivial choices of χ1 and χ,

‖u(h)‖L∞ ' h−(n−1)/2 .

The condition (8.30) is in general necessary as shown by another simple
example. Let p(x, ξ) = x1, and

u(h) = h−n/2χ1(x1/h)χ(x′/h) .

Then

P (h)u(h) = hh−n/2(tχ1(t))|t=x1/hχ(x′/h) = OL2(h) , ‖u(h)‖L2 = O(1) ,

and
‖u(h)‖L∞ ' h−n/2 ,

which is the general bound of Lemma 8.4.

Proof of Theorem 8.5: 1. First we observe that, as in Lemma 8.4 we
can assume that u(h) is compactly supported. We also note that the
hypothesis on u(h) is local in phase space: if χ ∈ C∞

c (T ∗Rn) then,
normalizing to ‖u(h)‖L2 = 1,

P (h)χw(x, hD)u(h) = χw(x, hD)P (h)u(h) + [P (h), χw(x, hD)]u(h)

= OL2(h) ,
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and, by Theorem 8.3, WFh(χ
wu) ⊂ K.

2. Hence it is enough to prove the theorem for u(h) replaced by
χwu(h), where χ is supported near a given point in K as a partition of
unity argument will then give the bound on u(h). A partition of unity,
in this case, means a set of functions,,

{χj}Nj=0 ⊂ C∞
c (T ∗Rn) ,

such that
N∑
j=1

χj(x, ξ) = χ0(x, ξ) ,

sptχj ⊂ Uj , sptχ0 ⊂ U0 :=
N⋃
j=1

Uj ,

(8.33)

where U0 is a neighbourhood of WFh(u), a compact set, in which (8.30)
holds.

3. Suppose that p 6= 0 on the support of χ. Then we can use Theorem
4.23 as in part 1 of the proof of Lemma 8.2 to see that P (h)χwu(h) =
OL2(h) implies that χwu(h) = OL2(h). Lemma 8.4 then shows that

‖χwu(h)‖L∞ ≤ Chh−n/2 ≤ Ch−(n−1)/2 .

4. Now suppose that p vanishes in the support of χ. By applying
a linear change of variables we can assume that pξ1 6= 0 there. The
implicit function theorem shows that

(8.34) p(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)) , ξ = (ξ1, ξ
′) , e(x, ξ) > 0 ,

holds in a neighbourhood of sptχ. We extend e arbitrarily to e ∈ S, e ≥
1/C, and a(x, ξ′) to a real valued a(x, ξ′) ∈ S. The pseudodifferential
calculus shows that

ew(x, hD)(hDx1 − a(x, hDx′))(χ
wu(h)) = P (h)(χwu(h)) +OL2(h)

= OL2(h) ,

and since ew is elliptic,

(8.35) (hDx1 − a(x, hDx′))(χ
wu(h)) = OL2(h) .

5. The proof will be completed if we show that

(8.36) ‖(χwu)(x1, •)‖L2(Rn−1) = O(1) ,

and for that we need another elementary lemma:
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LEMMA 8.6 (A simple energy estimate). Suppose that a ∈ S(R×
T ∗Rk) is real valued, and that

(hDt + aw(t, x, hDx))u(t, x) = f(t, x) , u(0, x) = u0(x) ,

f ∈ L2(R× Rk) , u0 ∈ L2(Rk) .

Then

(8.37) ‖u(t, •)‖L2(Rk) ≤
√
t

h
‖f‖L2(R×Rk) + ‖u0‖L2(Rk) .

Proof: Since aw(t, x, hD) is family of bounded operators on L2(Rk)
existence of solutions follows from existence theory for (linear) ordinary
differential equations in t. Suppose first that f ≡ 0. Then

1

2

d

dt
‖u(t)‖2

L2(Rk) = Re〈∂tu(t), u(t)〉L2(Rk)

=
1

h
Re〈iaw(x, hD)u(t), u(t)〉 = 0 .

Thus, if we put E(t)u0 := u(t),

‖E(t)u0‖L2(Rk) = ‖u0‖L2(Rk) .

If f 6= 0, Duhamel’s formula gives

u(t) = E(t)u0 +
i

h

∫ t

0

E(t− s)f(s)ds ,

and hence

‖u(t)‖L2(Rk) ≤ ‖u0‖L2(Rk) +

∫ t

0

‖f(s)‖L2(Rk) .

The estimate (8.37) is an immediate consequence. �
The estimate (8.36) is immediate from the lemma and (8.35). We

now apply Lemma 8.4 in x′ variables only, that is with k = n−1. That
is allowed since we clearly have

‖(1− ψ(hD′))χwu(h)(x1, •)‖L2(Rn−1) = O(h∞) ,

uniformly in x1. �
As an application we give a well known L∞ bound on spectral clus-

ters. The statement requires the material presented in Appendix D.3.

THEOREM 8.7 (Bounds on eigenfuctions). Suppose that M is an
n-dimensional compact Riemannian manifold and let ∆g be its Laplace-
Beltrami operator. If

0 = λ0 < λ1 ≤ · · ·λj →∞
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is the complete set of eigenvalues of −∆g, and

−∆gφj = λjφj

are the corresponding eigenfunctions, then for any cj ∈ C, j = 0, 1, · · · ,

(8.38) ‖
∑

µ≤
√
λj≤µ+1

cjφj‖L∞ ≤ Cµ(n−1)/2‖
∑

µ≤
√
λj≤µ+1

cjφj‖L2 .

In particular

(8.39) ‖φj‖L∞ ≤ Cλ
(n−1)/4
j ‖φj‖L2 .

Proof: We put P (h) := −h2∆g − 1. Then the assumption (8.30) holds
everywhere. If

u(h) :=
∑

µ≤
√
λj≤µ+1

cjφj , µ = 1/h .

then

‖P (h)u(h)‖L2 = ‖
∑

µ≤
√
λj≤µ+1

cj(h
2λj − 1)φj‖L2

=

 ∑
µ≤
√
λj≤µ+1

|cj|2(h2λj − 1)2‖φj‖2
L2


1
2

≤ 2h‖
∑

µ≤
√
λj≤µ+1

cjφj‖L2 ,

which means that the assumption (8.31) holds. On a compact manifold
the frequency localization (8.29) follows from

‖(1− ϕ(−h2∆g))u(h)‖ = O(h∞)‖u(h)‖2
L ,

ϕ ∈ C∞
c (R) , ϕ(t) ≡ 1 , |t| ≤ 2 ,

and that follows from the spectral theorem. �

The estimate (8.38) is essentially optimal. On the other hand the
optimality of (8.39) is very rare – see [S-Z] for a recent discussion.

8.5 BEALS’S THEOREM

We next present a semiclassical version of Beals’s Theorem, a char-
acterization of pseudodifferential operators in terms of h-dependent
bounds on commutators.
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EXAMPLE: Resolvents. As motivation, take the following simple
example. Suppose a ∈ S is real-valued. Consequently A = Op(a) is
a self-adjoint operator on L2(Rn), and so the resolvent (A + i)−1 is a
bounded operator on L2(Rn).

But we are then confronted with a basic question:

Is (A+ i)−1 = Op(b) for some symbol b ∈ S?

Theorem 8.9 below provides a simple criterion from which this conclu-
sion easily follows. We will return to this example later. �

We start with

THEOREM 8.8 (Estimating a symbol by operator norms).
Take h = 1. Then there exist constants C,M > 0 such that

(8.40) ‖b‖L∞ ≤ C
∑
|α|≤M

‖Op(∂αb)‖L2→L2 ,

for all b ∈ S ′(R2n).

Proof. 1. We will first consider the classical quantization

b(x,D)u(x) =
1

(2π)n

∫
Rn

b(x, ξ)ei〈x,ξ〉û(ξ) dξ,

where by the integration we mean the Fourier transform in S ′.
Then if φ = φ(x), ψ = ψ(ξ) are functions in the Schwartz space S, we

can regard F(bφ̄ψ̂ei〈x,ξ〉) as a function of the dual variables (x∗, ξ∗) ∈
R2n. We have

1

(2π)n
|F(bφ̄ψ̂ei〈x,ξ〉)(0, 0)| =

1

(2π)n

∣∣∣∣∫
Rn

∫
Rn

b(x, ξ)φ̄(x)ψ̂(ξ)ei〈x,ξ〉dxdξ

∣∣∣∣
= |〈b(x,D)ψ, φ〉| ≤ ‖b‖L2→L2‖φ‖L2‖ψ‖L2 .

Fix (x∗, ξ∗) ∈ R2n and rewrite the foregoing inequality with φ(x)ei〈x
∗,x〉

replacing φ(x) and ψ(ξ)e−i〈ξ
∗,ξ〉 replacing ψ(ξ), a procedure which does

not change the L2 norms. It follows that

(8.41)
1

(2π)n
|F(bφ̄ψ̂ei〈x,ξ〉)(x∗, ξ∗)| ≤ ‖b‖L2→L2‖φ‖L2‖ψ‖L2 .

2. Now take χ ∈ C∞
c (R2n). Select φ, ψ ∈ S so that{
φ(x) = 1 if (x, ξ) ∈ sptχ

ψ̂(ξ) = 1 if (x, ξ) ∈ sptχ.
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Write

(8.42) Φ = χe−i〈x,ξ〉.

Then
χ(x, ξ) = Φ(x, ξ)φ(x)ψ̂(ξ)ei〈x,ξ〉.

According to (3.20),

‖Fχ‖L1 ≤ C
∑

|α|≤2n+1

‖∂αχ‖L1 ;

and so (8.42) implies

(8.43) ‖FΦ‖L1 ≤ C
∑

|α|≤2n+1

‖∂αχ‖L1 .

Thus (8.41) shows that for any (x∗, ξ∗) ∈ R2n we have

|F(χb)(x∗, ξ∗)| ≤ ‖F(Φbφ̄ψ̂ei〈x,ξ〉)‖L∞

=
1

(2π)n
‖F(Φ) ∗ F(bφ̄ψ̂ei〈x,ξ〉)‖L∞

≤ 1

(2π)n
‖F(bφ̄ψ̂ei〈x,ξ〉)‖L∞‖F(Φ)‖L1

≤ C‖b‖L2→L2 ,

the constant C depending on φ, ψ and χ, but not (x∗, ξ∗). Hence

(8.44) ‖F(χb)‖L∞ ≤ C‖b‖L2→L2

with the same constant for any translate of χ.

3. Next, we assert that

(8.45) |F(χb)(x∗, ξ∗)| ≤ C〈(x∗, ξ∗)〉−2n−1
∑

|α|≤2n+1

‖Op(∂αb)‖L2→L2 .

To see this, compute

(x∗)α(ξ∗)βF(χb)(x∗, ξ∗) =

∫
R2n

(x∗)α(ξ∗)βe−i(〈x
∗, x〉+〈ξ∗, ξ〉)χb(x, ξ) dxdξ

=

∫
R2n

e−i(〈x
∗, x〉+〈ξ∗, ξ〉)Dα

xD
β
ξ (χb) dxdξ.

Summing absolute values of the left hand side over all (α, β) with |α|+
|β| ≤ 2n+ 1 and using the estimate (8.44), we obtain the bound

‖〈(x∗, ξ∗)〉2n+1F(χb)‖L∞ ≤ C1

∑
|α|+|β|≤2n+1

‖F(Dα
xD

β
ξ (χb))‖L∞

≤ C2

∑
|α|≤2n+1

‖Op(∂αb)‖L2→L2 .
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This gives (8.45).

Consequently,

‖χb‖L∞ ≤ C‖F(χb)‖L1 ≤ C
∑

|α|≤2n+1

‖Op(∂αb)‖L2→L2 .

4. This implies the desired inequality (8.40), except that we used the
classical (t = 1), and not the Weyl (t = 1/2) quantization. To remedy
this, recall from Theorem 4.13 that if

b = e
i
2
〈Dx,Dξ〉b̃,

then {
bw(x,D) = b̃(x,D)

(∂αb)w(x,D) = (∂αb̃)(x,D).

The continuity statement in Theorem 4.16 shows that

‖b‖L∞ ≤ C
∑
|α|≤K

‖∂αb̃‖L∞ ,

and reduces the argument to the classical quantization.
�

NOTATION. We henceforth write

adBA := [B,A];

“ad” is called the adjoint action.

Recall also that we identify a pair (x∗, ξ∗) ∈ R2n with the linear
operator l(x, ξ) = 〈x∗, x〉+ 〈ξ∗, ξ〉.

THEOREM 8.9 (Semiclassical form of Beals’s Theorem). Let
A : S → S ′ be a continuous linear operator. Then

(i) A = Op(a) for a symbol a ∈ S

if and only if

(ii) for all N = 0, 1, 2, . . . and all linear functions l1, . . . , lN , we have

(8.46) ‖adl1(x,hD) ◦ · · · ◦ adlN (x,hD)A‖L2→L2 = O(hN).

Proof. 1. That (i) implies (ii) follows from the symbol calculus devel-
oped in Chapter 4. Indeed, ‖A‖L2→L2 = O(1) and each commutator
with an operator lj(x, hD) yields a term of order h.
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2. That (ii) implies (i) is harder. First of all, the Schwartz Kernel
Theorem (Theorem B.8) asserts that we can write

(8.47) Au(x) =

∫
Rn

KA(x, y)u(y) dy

for KA ∈ S ′(Rn × Rn). We call KA the kernel of A.

3. We now claim that if we define a ∈ S ′(R2n) by

(8.48) a(x, ξ) :=

∫
Rn

e−
i
h
〈w,ξ〉KA

(
x+

w

2
, x− w

2

)
dw,

then

(8.49) KA(x, y) =
1

(2πh)n

∫
Rn

a

(
x+ y

2
, ξ

)
e

i
h
〈x−y,ξ〉 dξ,

where the integrals are a shorthand for the Fourier transforms defined
on S ′.

To confirm this, we calculate that

1

(2πh)n

∫
Rn

a

(
x+ y

2
, ξ

)
e

i
h
〈x−y,ξ〉dξ

=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
〈x−y−w,ξ〉KA

(
x+ y

2
+
w

2
,
x+ y

2
− w

2

)
dwdξ

= KA(x, y),

since

1

(2πh)n

∫
Rn

e
i
h
〈x−y−w,ξ〉dξ = δx−y(w) in S ′.

In view of (8.47) and (8.49), we see that A = Op(a), for a defined by
(8.48).

4. Now we must show that a belongs to the symbol class S; that is,

(8.50) sup
R2n

|∂αa| ≤ Cα

for each multiindex α.
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To do so we will make use of our hypothesis (8.46) with l = xj, ξj,
that is, with l(x, hD) = xj, hDj. We compute

Op(hDξja)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn

hDξj

(
a

(
x+ y

2
, ξ

))
ei

〈x−y,ξ〉
h u(y) dξdy

= − 1

(2πh)

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ

)
hDξj

(
e

i〈x−y,ξ〉
h

)
u(y) dξdy

= − 1

(2πh)

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ

)
e

i〈x−y,ξ〉
h (xj − yj)u(y) dξdy

= −[xj, A]u = −adxj
Au(x).

Likewise,

Op(hDxj
a)u(x)

=
1

(2πh)n

∫
Rn

∫
Rn

axj

(
x+ y

2
, ξ

)
e

i〈x−y,ξ〉
h u(y) dξdy

=
1

(2πh)n

∫
Rn

∫
Rn

h(Dxj
+Dyj

)

(
a

(
x+ y

2
, ξ

))
e

i〈x−y,ξ〉
h u(y) dξdy

=
1

(2πh)n

∫
Rn

∫
Rn

hDxj

(
a

(
x+ y

2
, ξ

))
e

i〈x−y,ξ〉
h u(y) dξdy

+
1

(2πh)n

∫
Rn

∫
Rn

a

(
x+ y

2
, ξ

)
e

i〈x−y,ξ〉
h (ξj −Dyj

u(y)) dξdy

= hDxj
(Au)− A(hDxj

u)

= [hDxj
, A]u = adhDxj

Au(x).

In summary, for j = 1, . . . , n,

(8.51)

{
adxj

A = −Op(hDξja)

adhDxj
A = Op(hDxj

a).

5. Next we convert to the case h = 1 by rescaling. For this, define

Uhu(x) := hn/4u(h1/2x)

and check that Uh : L2 → L2 is unitary. Then

Uha
w(x, hD)U−1

h = aw(h1/2x, h1/2D) = Op(ah)

for

(8.52) ah(x, ξ) := a(h1/2x, h1/2ξ).
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Our hypothesis (8.46) is invariant under conjugation by Uh, and is
consequently equivalent to

(8.53) adl1(h1/2x,h1/2D) ◦ · · · ◦ alN (h1/2x,h1/2D)Op(ah) = O(hN).

But since lj is linear, lj(h
1/2x, h1/2D) = h1/2l(x,D). Thus (8.53) is

equivalent to

(8.54) adl1(x,D) ◦ · · · ◦ alN (x,D) ◦Op(ah) = O(hN/2).

Taking lk(x, ξ) = xj or ξj, it follows from (8.54) that

(8.55) ‖Op(∂βah)‖ ≤ Ch
|β|
2

for all multiindices β.

6. Finally, we claim that

(8.56) |∂αah| ≤ Cαh
|α|/2 for each multiindex α.

But this follows from Theorem 8.8, owing to estimate (8.55):

‖aαh‖L∞ ≤ C
∑

|β|≤n+1

‖Op(∂α+βah)‖L2→L2 ≤ Cαh
|α|.

Recalling (8.52), we rescale to derive the desired inequality (8.50). �

REMARK. In Beals’s Theorem we can replace linear symbols by sym-
bols in the class S, since for any linear l, we can find a ∈ S so that
Hl = Ha locally. We will need this observation in Chapter 10. �

EXAMPLE. We can now go back to the example in the beginning of
this section, in which A = Op(a) for a real-valued symbol a ∈ S(1),
and B = (A+ i)−1. Since

adlB = −B(adlA)B,

we see that the assumptions of Beals’s Theorem are satisfied and hence

B = Op(b) for b ∈ S(1).

�

8.5 APPLICATION: EXPONENTIATION OF OPERATORS

As we have see in Theorem 4.6. quantization of exponetiation com-
mutes with quantization for linear symbols. That is of course not true
for non-linear symbols – see Section 10.2 below for an example for the
subtleties involved in exponention of skew-adjoint pseudodifferential
operators, that is in the study of propagation.

In this section we will consider one parameter families of operators
which give exponentials of self-adjoint pseudodifferential operators. We
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will show that on the level of order functions exponentiation commutes
with quantization. This is a special of a general result [B-C, Théoreme
6.4].

THEOREM 8.10. Let m(x, ξ) be an order function and suppose that
G = G(x, ξ, h) satisfies

G(x, ξ)− logm(x, ξ) = O(1) ,

∂αG ∈ Sδ(1) , |α| = 1 , 0 ≤ δ ≤ 1

2
.

(8.57)

Then the equation

d

dt
B(t) = Gw(x, hD)B(t) , B(0) = Id ,

has a unique solution B(t) : S → S, and

(8.58) B(t) = Bw
t (x, hD) , Bt ∈ S(mt) .

Theorem 8.10 gives a construction of exp(tGw(x,D)) and describes
it as a quantization of an element of Sδ(m

t). Since m may grow in
some directions and decay in other directions that is far from obvious.
In Chapter 7 we saw advantages of conjugation by exp(φ(x)) where φ
was real valued. In many problems one may want to do it in phase
space and then operators of the form

Pt := e−tG
w(x,hD)PetG

w(x,hD)

are useful – see [D-S-Z], [S-Z3] for examples of such techniques, and [M]
for a slightly different perspective. Here we only note one application
of Theorem 8.10: if G is as above and P is bounded on L2, then Pt is
bounded on L2. In fact, we simply apply Theorems 4.17 and 4.20. It
would be difficult to obtain this basic result without Theorem 8.10.

To prove Theorem 8.10 we start with

LEMMA 8.11. Let U(t)
def
= (exp tG)w(x,D) : S(Rn) −→ S(Rn).

For |t| < ε0(G), the operator U(t) is invertible, and

U(t)−1 = Bw
t (x,D) , Bt ∈ S(m−t) .

Proof: 1. We apply the composition formula given in Theorem 4.17 to
obtain

U(−t)U(t) = Id+ Ew
t (x,D) , Et ∈ S(1) .
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2. More explicitely we write

Et(x1, ξ) =

∫ s

0

esA(D)A(D)(e−tG(x1,ξ1)+tG(x2,ξ2))|x2=x1=x,ξ2=ξ1=ξds

=

∫ s

0

itesA(D)Fe−tG(x1,ξ1)+tG(x2,ξ2)|x2=x1=x,ξ2=ξ1=ξds/2 ,

where

A(D) = iσ(Dx1 , Dξ1 ;Dx2 , Dξ2)/2 ,

F = ∂x1G(x1, ξ1) · ∂ξ2G(x2, ξ2)− ∂ξ1G(x1, ξ1) · ∂x2G(x2, ξ2) .

3. We conclude that Et = tẼt where Ẽt ∈ S(1), and thus

Ew
t (x,D) = O(t) : L2(Rn) → L2(Rn) .

This shows that for |t| small enough Id + Ew
t (x,D) is invertible, and

Theorem 8.9 gives

(Id+ Ew
t (x,D))−1 = Cw

t (x,D) , Ct ∈ S(1) .

Hence Bt = Ct# exp(−tG(x, ξ)) ∈ S(m−t). �

Proof of Therem 8.10: 1. We first note that we only need to prove the
result in the case h = 1 by using the rescaling given in (4.28). Also,
Gw(x, hD) : S → S shows that Bt : S → S is unique.

2. The hypotheses on G in (8.57) are equivalent to the statement
that exp(tG) ∈ S(mt), for all t ∈ R. We now observe that

d

dt
(U(−t) exp(tGw(x,D))) = V (t) exp(tGw(x,D)) ,

V (t) = Awt (x,D) , At ∈ S(m−t) .
(8.59)

In fact, we see that

d

dt
U(−t) = −(G exp(−tG))w(x,D) ,

U(−t)Gw(x,D) = (exp(tG)#G)w(x,D) .

As before, the composition formula (4.22) gives

exp(−tG)#G−G exp(−tG) =∫ 1

0

exp(sA(D))A(D) exp(−tG(x1, ξ1)G(x2, ξ2)|x1=x2=x,ξ1=ξ2=ξ ,

A(D) = iσ(Dx1 , Dξ1 ;Dx2 , Dξ2)/2 .

From the hypothesis on G we see that A(D) exp(tG(x1, ξ1))G(x2, ξ2)
is a sum of terms of the form a(x1, ξ1)b(x2, ξ2) where a ∈ S(m−t) and
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b ∈ S(1). The continuity of exp(A(D)) on the spaces of symbols in
Theorem 4.16 gives (8.59).

3. If we put

C(t)
def
= −V (t)U(−t)−1 ,

then by Lemma 8.11, C(t) = cwt where ct ∈ S(1). Symbolic calculus
shows that ct depends smoothly on t and

(∂t + C(t))(U(−t) exp(tGw(x,D))) = 0 .

4. The proof of Theorem 8.10 is now reduced to showing

LEMMA 8.12. Suppose that C(t) = cwt (x,D), where ct ∈ S(1), de-
pends continuously on t ∈ (−ε0, ε0). Then the solution of

(8.60) (∂t + C(t))Q(t) = 0 , Q(0) = qw(x,D) , q ∈ S(1) ,

is given by Q(t) = qt(x,D), where qt ∈ S(1) depends continuously on
t ∈ (−ε0, ε0).

Proof: The Picard existence theorem for ODEs shows that Q(t) is
bounded on L2. If `j(x, ξ) are linear functions on T ∗Rn then

d

dt
ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t)+

ad`1(x,D) ◦ · · · ◦ ad`N (x,D)(C(t)Q(t)) = 0 ,

ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(0) : L2(Rn) −→ L2(Rn) .

If we show that for any choice of `′js and any N

(8.61) ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) : L2(Rn) −→ L2(Rn) ,

then Beals’s Theorem concludes the proof. We proceed by induction
on N :

ad`1(x,D) ◦ · · · ◦ ad`N (x,D)(C(t)Q(t)) =

C(t)ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) +R(t) ,

where R(t) is the sum of terms of the form

Ak(t)ad`1(x,D) ◦ ad`k(x,D)Q(t) , k < N , Ak(t) = ak(t)
w ,

where ak(t) ∈ S(1) depend continuously on t. This also follows by an
inductive based on the derivation property of ad`:

ad`(CD) = (ad`C)D + C(ad`D) .

Hence by the induction hypothesis R(t) is bounded on L2, and depends
continuously on t. Thus

(∂t + C(t)) ad`1(x,D) ◦ · · · ◦ ad`N (x,D)Q(t) = R(t)
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is bounded on L2. Since (8.61) is valid at t = 0 we obtain it for all
t ∈ (−ε0, ε0). �
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9. Quantum ergodicity

9.1 Classical ergodicity
9.2 Egorov’s Theorem
9.3 Weyl’s Theorem generalized
9.4 A quantum ergodic theorem

In this chapter we are given a smooth potential V on a compact
Riemannian manifold (M, g) and write

(9.1) p(x, ξ) = |ξ|2g + V (x)

for (x, ξ) ∈ T ∗M , the cotangent space of M . As explained in Appendix
D, the associated quantum operator is

(9.2) P (h) = −h2∆g + V,

and the Hamiltonian flow generated by p is denoted

Φt = exp(tHp) (t ∈ R).

We address in this chapter quantum implications of ergodicity for the
classical evolution {Φt}t∈R. The proofs will rely on various advanced
material presented in Appendix D.

9.1 CLASSICAL ERGODICITY

We hereafter select a < b, and assume that

(9.3) |∂p| ≥ γ > 0 on {a ≤ p ≤ b}.
According then to the Implicit Function Theorem, for each a ≤ c ≤ b,
the set

Σc := p−1(c)

is a smooth, 2n − 1 dimensional hypersurface in the cotangent space
T ∗M . We can interpret Σc as an energy surface.

NOTATION. For each c ∈ [a, b], we denote by µ Liouville measure
on the hypersurface Σc = p−1(c) corresponding to p. This measure is
characterized by the formula∫∫

p−1[a,b]

f dxdξ =

∫ b

a

∫
Σc

f dµ dc

for all a < b and each continuous function f : T ∗M → Rn.

DEFINITION. Let m ∈ Σc and f : T ∗M → C. For T > 0 we define
the time average

(9.4) 〈f〉T :=
1

T

∫ T

0

f ◦ Φt(m) dt =

∫
−
T

0

f ◦ Φt(m) dt,
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the slash through the second integral denoting an average. Note care-
fully that 〈f〉T = 〈f〉T (m) depends upon the starting point m.

DEFINITION. We say the flow Φt is ergodic on p−1[a, b] if for each
c ∈ [a, b],

(9.5)

{
if E ⊆ Σc is flow invariant, then

either µ(E) = 0 or else µ(E) = µ(Σc).

In other words, we are requiring that each flow invariant subset of the
energy level Σc have either zero measure or full measure.

THEOREM 9.1 (Mean Ergodic Theorem). Suppose the flow is
ergodic on Σc := p−1(c). Then for each f ∈ L2(Σc, µ) we have

(9.6) lim
T→∞

∫
Σc

(
〈f〉T −

∫
Σc

f dµ

)2

dµ = 0.

REMARK. According to Birkhoff’s Ergodic Theorem, for µ–a.e. point
m belonging to Σc,

〈f〉T →
∫

Σc

f dµ as T →∞.

But we will only need the weaker statement of Theorem 8.1. �

Proof. 1. Define

A := {f ∈ L2(Σc, µ) | Φ∗
tf = f for all times t},

B0 := {Hpg | g ∈ C∞(Σc)}, B := B̄0.

We claim that

(9.7) h ∈ B⊥
0 if and only if h ∈ A.

To see this, first let h ∈ A and f = Hpg ∈ B0. Then∫
Σc

hf̄ dµ =

∫
Σc

hHpg dµ =
d

dt

∫
Σc

hΦ∗
tg dµ|t=0

=
d

dt

∫
Σc

Φ∗
−thg dµ|t=0 =

d

dt

∫
Σc

hg dµ|t=0 = 0;

and consequently h ∈ B⊥
0 .

Conversely, suppose h ∈ B⊥
0 . Then for any g ∈ C∞, we have

0 =

∫
Σc

hHpΦ∗
−tg dµ =

d

dt

∫
Σc

hΦ∗
−tg dµ =

d

dt

∫
Σc

Φ∗
th g dµ.



138

Therefore for all times t and all functions g,∫
Σc

Φ∗
th g dµ =

∫
Σc

h g dµ.

Hence Φ∗
th ≡ h, and so h ∈ A.

2. It follows from (9.7) that we have the orthogonal decomposition

L2(Σc, µ) = A⊕B.

Thus if we write f = fA + fB, for fA ∈ A, fB ∈ B, then

〈fA〉T ≡ fA

for all T .
Now suppose fB = Hpg ∈ B0. We can then compute∫

Σc

|〈fB〉T |2 dµ =
1

T 2

∫
Σc

∣∣∣∣∫ T

0

(d/dt)Φ∗
tgdt

∣∣∣∣2 dµ
=

1

T 2

∫
Σc

|Φ∗
Tg − g|2 dµ

≤ 4

T 2

∫
Σc

|g|2dµ−→ 0,

as T →∞. Since fB ∈ B := B0, we have 〈fB〉T → 0 in L2(Σc, dµ).

3. The ergodicity hypothesis is equivalent to saying that A consists
of constant functions. Indeed, for any h ∈ A, the set h−1([α,∞)) is
invariant under the flow, and hence has either full measure or measure
zero. Since the functions in L2(Σc, dµ) are defined up to sets of measure
zero, h is equivalent to a constant function.

Lastly, observe that the orthogonal projection f 7→ fA is just the
space average with respect to µ. This proves (9.6). �

9.2 EGOROV’S THEOREM

We next estimate the difference between the classical and quantum
evolutions governed by our symbol p(x, ξ) = |ξ|2 + V (x).

NOTATION. (i) We write

(9.8) e−
itP (h)

h (t ∈ R)

for the unitary group on L2(M) generated by the self-adjoint operator
P (h).

Note that since P (h)uj(h) = Ej(h)uj(h), we have

(9.9) e−
itP (h)

h uj(h) = e−
itEj

h uj(h) (t ∈ R).
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(ii) If A is a symbol in Ψ−∞, we also write

(9.10) At := e
itP (h)

h Ae−
itP (h)

h (t ∈ R).

THEOREM 9.2 (Weak form of Egorov’s Theorem). Fix a time
T > 0 and define for 0 ≤ t ≤ T

(9.11) Ãt := Op(at),

where

(9.12) at(x, ξ) := a(Φt(x, ξ)).

Then

(9.13) ‖At − Ãt‖L2→L2 = O(h) uniformly for 0 ≤ t ≤ T.

Proof. We have
d

dt
at = {p, at}.

Recall from Appendix D that σ denotes the symbol of an operator.
Then, since σ

(
i
h
[P (h), B]

)
= {p, σ(B)}, it follows that

(9.14)
d

dt
Ãt =

i

h
[P (h), Ãt] + Et,

with an error term ‖Et‖L2→L2 = O(h). Hence

d

dt

(
e−

itP (h)
h Ãte

itP (h)
h

)
= e−

itP (h)
h

(
d

dt
Ãt −

i

h
[P (h), Ãt]

)
e

itP (h)
h

= e−
itP (h)

h

(
i

h
[P (h), Ãt] + Et −

i

h
[P (h), Ãt]

)
e

itP (h)
h

= e−
itP (h)

h Ete
itP (h)

h = O(h).

Integrating, we deduce

‖e−
itP (h)

h Ãte
itP (h)

h − A‖L2→L2 = O(h);

and so

‖Ãt − At‖L2→L2 = ‖Ãt − e
itP (h)

h Ae−
itP (h)

h ‖L2→L2 = O(h),

uniformly for 0 ≤ t ≤ T . �
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9.3 WEYL’S THEOREM GENERALIZED

NOTATION. We hereafter consider the eigenvalue problems

P (h)uj(h) = Ej(h)uj(h) (j = 1, . . . ).

To simplify notation a bit, we write uj = uj(h) and Ej = Ej(h). We
assume as well the normalization

(9.15) ‖uj‖L2(M) = 1.

The following result generalizes Theorem 6.9, showing that we can
localize the asymptotics using a quantum observable:

THEOREM 9.3 (Weyl’s Theorem generalized). Let B ∈ Ψ(M).
Then

(9.16) (2πh)n
∑

a≤Ej≤b

〈Buj, uj〉 →
∫∫

{a≤p≤b}
σ(B) dxdξ.

REMARK. If B = I, whence σ(B) ≡ 1, (9.16) reads

(2πh)n#{a ≤ Ej ≤ b} → Vol({a ≤ p ≤ b}).
This is the usual form of Weyl’s Law, Theorem D.7. �

Proof. 1. We first assume that B ∈ Ψ−∞; so that the operator B :
L2(M) → L2(M) is of trace class. According to Lidskii’s Theorem B.9
from Appendix B, we have

(9.17) tr(B) =
1

(2πh)n

(∫
M

∫
Rn

σ(B) dxdξ +O(h)

)
.

2. Fix a small munber ε > 0 and write Ωε := p−1(a − ε, a + ε) ∪
p−1(b− ε, b+ ε). Select ψε ∈ C∞

c , φε ∈ C∞ so that
WFh(ψε) ⊂ {a < p < b}
WFh(φε) ⊂ {p < a} ∪ {p > b}
WFh(I − φε + ψε) ⊂ Ωε.

Define

Π := projection onto the span of {uj | a ≤ Ej ≤ b}.
We claim that

(9.18)

{
ψεΠ = ψε +O(h∞)

φεΠ = O(h∞).
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The second assertion follows by an adaptation of the proof of Theorem
D.7.

To establish the first part, we need to show that ψε(I−Π) = O(h∞).
We can find f satisfying the assumptions of Theorem 7.6 and such
that ψε(x, ξ)/f(p(x, ξ)) is smooth. Using a symbolic construction we
can find Tε ∈ Ψ−∞ with WFh(Tε) = WFh(ψε), for which

ψε(I − Π) = Tεf(P )(I − Π) +O(h).

The first term on the right hand side can be rewritten as∑
Ej(h)<a,Ej(h)>b

f(Ej(h))Tεuj ⊗ ūj.

The rough estimate (D.31) and the rapid decay of f show that for
all M we have the bound

f(Ej(h)) ≤ CM(hj)−M .

The proof of Theorem 6.4 shows also that Tεuj = O(h∞), uniformly in
j. Hence

‖Tεf(P )(I − Π)‖L2→L2 = O(h∞).

3. We now write∑
a≤Ej≤b

〈Buj, uj〉 = tr(ΠBΠ)

= tr(ΠB(ψε + φε + (1− φε − ψε)Π).

Using (9.18) we see that

(2πh)ntr(ΠBφεΠ) = O(h).

The Weyl Law given in Theorem D.7 implies

(2πh)ntr(ΠB(1− φε − ψε)Π) = O(ε),

since 1− φε − ψε 6= 0 only on Ωε. Furthermore,

(2πh)ntr(ΠBψεΠ)

= (2πh)ntr(ΠBψε) +O(h∞)

= (2πh)ntr(((ψε + φε

+ (1− φε − ψε)ΠBψε) +O(h∞)

= (2πh)ntr(ψεBψε) +O(h∞) +O(ε).
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Combining these calculations gives

(2πh)n
∑

a≤Ej≤b

〈Buj, uj〉 = (2πh)ntr(ψεBψε) +O(h) +O(ε)

=

∫∫
σ(ψε)

2σ(B) dxdξ +O(h) +O(ε)

→
∫∫

{a≤p≤b}
σ(B) dxdξ

as h→ 0, ε→ 0.

4. Finally, to pass from B ∈ Ψ−∞ to an arbitrary B ∈ Ψ, we
decompose the latter as

B = B0 +B1,

with B0 ∈ Ψ−∞ and

WFh(B0) ⊂ {a− 2 < p < b+ 2},
WFh(B1) ∩ {a− 1 < p < b+ 1} = ∅.

We have B1uj = O(h∞) for a ≤ Ej(h) ≤ b; and hence only the B0 part
contributes to the limit. �

9.4 A QUANTUM ERGODIC THEOREM

Assume now that A ∈ Ψ(M) has the symbol σ(A) with the property
that

(9.19) α :=

∫
−

Σc

σ(A) dµ is the same for all c ∈ [a, b],

where the slash through the integral denotes the average. In other
words, we are requiring that the averages of the symbol of A over each
level surface p−1(c) are equal.

THEOREM 9.4 (Quantum ergodicity). Assume the ergodic con-
dition (9.5) and that A ∈ Ψ(M) satisfies the condition (9.19).

(i) Then

(9.20) (2πh)n
∑

a≤Ej≤b

∣∣∣∣〈Auj, uj〉 − ∫−
{a≤p≤b}

σ(A) dxdξ

∣∣∣∣2 −→ 0.

(ii) In addition, there exists a family of subsets Λ(h) ⊆ {a ≤ Ej ≤ b}
such that

(9.21) lim
h→0

#Λ(h)

#{a ≤ Ej ≤ b}
= 1;
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and for each A ∈ Ψ(M) satisfying (9.19), we have

(9.22) 〈Auj, uj〉 →
∫
−
{a≤p≤b}

σ(A) dxdξ as h→ 0

for Ej ∈ Λ(h).

Proof. 1. We first show that assertion (i) implies (ii). For this, let

(9.23) B := A− αI,

α defined by (9.19). Then
∫
{a≤p≤b} σ(B) dxdξ = 0. According to (9.20),

(2πh)n
∑

a≤Ej≤b

〈Buj, uj〉2 =: ε(h) → 0.

Define
Γ(h) := {a ≤ Ej ≤ b | 〈Buj, uj〉2 ≥ ε1/2(h)};

so that
(2πh)n#Γ(h) ≤ ε(h)1/2.

Next, write
Λ(h) := {a ≤ Ej ≤ b} − Γ(h).

Then if Ej ∈ Λ(h),

|〈Buj, uj〉| ≤ ε1/4(h);

and so
|〈Auj, uj〉 − α| ≤ ε1/4(h).

Also,
#Λ(h)

#{a ≤ Ej ≤ b}
= 1− #Γ(h)

#{a ≤ Ej < b}
.

But according to Weyl’s law,

#Γ(h)

#{a ≤ Ej ≤ b}
=

(2πh)n#Γ(h)

Vol({a ≤ p ≤ b}) + o(1)
≤ Cε(h)1/2 → 0.

This proves (ii).

2. Next we establish assertion (i). Let B be again given by (9.23);
so that in view of our hypothesis (9.19)

(9.24)

∫
Σc

σ(B) dµ = 0 for each c ∈ [a, b].

Define
ε(h) := (2πh)n

∑
a≤Ej≤b

〈Buj, uj〉2;

we must show ε(h) → 0.
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Now

〈Buj, uj〉 = 〈Be−
itEj

h uj, e
−

itEj
h uj〉 = 〈Be−

itP (h)
h uj, e

− itP (h)
h uj〉

according to (9.9). Consequently

(9.25) 〈Buj, uj〉 = 〈e
itP (h)

h Be−
itP (h)

h uj, uj〉 = 〈Btuj, uj〉
in the notation of (9.10). This identity is valid for each time t ∈ R.
We can therefore average:

(9.26) 〈Buj, uj〉 = 〈
∫
−
T

0

Bt dt uj, uj〉 = 〈〈B〉Tuj, uj〉,

for

〈B〉T :=
1

T

∫ T

0

Bt dt =

∫
−
T

0

Bt dt.

Now since ‖uj‖2 = 1, (9.26) implies

〈Buj, uj〉2 = 〈〈B〉Tuj, uj〉2 ≤ ‖〈B〉Tuj‖2 = 〈〈B∗〉T 〈B〉Tuj, uj〉.
Hence

(9.27) ε(h) ≤ (2πh)n
∑

a≤Ej≤b

〈〈B∗〉T 〈B〉Tuj, uj〉

3. Theorem 9.2 tells us that

〈B〉T = 〈B̃〉T +OT (h), 〈B̃〉T :=

∫
−
T

0

B̃t dt,

where B̃t ∈ Ψ(M) and σ(B̃t) = Φ∗
tσ(B). Hence

σ(〈B̃〉T ) =

∫
−
T

0

σ(B) ◦ Φt dt+OT (h) = 〈σ(B)〉T +OT (h).

as h→ 0.

Since modulo O(h) errors we can replace eitP (h)/hBe−itP (h)/h by B̃t,
Theorem 9.1 shows that

lim sup
h→0

ε(h) ≤
∫∫

{a≤p≤b}
σ(〈(B̃∗〉T 〈B̃〉T ) dxdξ

=

∫∫
{a≤p≤b}

|σ(〈B〉T ))|2 dxdξ,
(9.28)

as the symbol map is multiplicative and the symbol of an adjoint is
given by the complex conjugate.

4. We can now apply Theorem 9.3 with a = σ(B), to conclude that∫
p−1[a,b]

|〈σ(B)〉T |2dxdξ → 0,
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as T →∞. Since the left hand side of (9.28) is independent of T , this
calculation shows that the limit must in fact be zero. �

APPLICATION. The simplest and most striking application con-
cerns the complete set of eigenfuctions of the Laplacian on a compact
Riemannian manifold:

−∆guj = λjuj (j = 1, . . . ),

normalized so that
‖uj‖L2(M) = 1.

THEOREM 9.5 (Equidistribution of eigenfunctions). There ex-
ists a sequence jk →∞ of density one,

lim
m→∞

#{k : jk ≤ m}
m

= 1,

such that for any f ∈ C∞(M),

(9.29)

∫
M

|ujk |2f dvolg →
∫
M

f dvolg.
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10.Quantizing symplectic transformations

10.1 Deformation and quantization
10.2 Semiclassical analysis of propagators
10.3 Application: semiclassical Strichartz estimates and Lp bounds for
approximate solutions
10.4 More symplectic geometry
10.5 Normal forms for operators with real symbols
10.6 Normal forms for operators with complex symbols
10.7 Application: semiclassical pseudospectra

This final chapter presents some more advanced topics, mostly con-
cerning how (and why) to quantize symplectic transformations.

10.1 DEFORMATION AND QUANTIZATION

Throughout this chapter, we identify R2n = Rn×Rn. In this section
κ : R2n → R2n denotes a symplectomorphism:

κ∗σ = σ for σ =
n∑
j=1

dξj ∧ dxj,

normalized so that κ(0, 0) = (0, 0). Our goal is to quantize κ locally,
meaning to find a unitary operator F : L2(Rn) → L2(Rn) such that

F−1AF = B near (0, 0)

for A = Op(a), where a ∈ S and B = Op(b) for

b = κ∗a+O(h).

This can be useful in practice, since sometimes we can design κ so
that κ∗a is more tractable than a.

The basic strategy will be (i) finding a family {κt}0≤t≤1 of symplec-
tomorphisms so that κ0 = I and κ1 = κ; (ii) quantizing the functions
qt generating this flow of mappings; and then (iii) solving an associated
operator ODE (10.7).

10.1.1 Deformations. We begin by deforming κ to the identity map-
ping. So assume U0 and U1 are simply connected neighborhoods of
(0, 0) and κ : U0 → U1 is a symplectomorphism such that κ(0, 0) =
(0, 0).
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THEOREM 10.1 (Deforming symplectomorphisms). There ex-
ists a continuous, piecewise smooth family

{κt}0≤t≤1

of local symplectomorphisms κt : U0 → Ut =: κt(U0) such that
(i) κt(0, 0) = 0 (0 ≤ t ≤ 1)
(ii) κ1 = κ, κ0 = I.
(iii) Also,

(10.1)
d

dt
κt = (κt)∗Hqt (0 ≤ t ≤ 1)

for a smooth family of functions {qt}0≤t≤1.

REMARK. The statement (10.1) means that for each function a ∈
C∞(U1), we have

(10.2)
d

dt
κ∗
ta = Hqtκ

∗
ta.

In fact,

d

dt
κ∗
ta = 〈da, dκt/dt〉 = 〈da, (κt)∗Hqt〉 = Hqtκ

∗
ta ,

where 〈·, ·〉 is the pairing of differential 1-forms and vectorfields on
Ut. �

Proof. 1. We first consider the case that κ is given by a linear sym-
plectomorphism K : R2n → R2n:

(10.3) K∗JK = J

for

J :=

(
0 I
−I 0

)
.

Since K is an invertible matrix, we have the unique polar decompo-
sition

K = QP,

where Q is orthogonal and P is positive definite. From (10.3) we deduce
that

Q∗−1P ∗−1 = K∗−1 = JQJ−1JPJ−1;

whence the uniqueness of Q and P implies

Q∗−1 = JQJ−1, P ∗−1 = JPJ−1.

That is, both Q and P are symplectic. Furthermore, we can write

P = expA,
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where A = A∗ and JA+ AJ = 0.

2. We identify R2n = Rn × Rn with Cn, under the relation (x, y) ↔
x+ iy. Since

〈x+ iy, x′ + iy′〉Cn = 〈(x, y), (x′, y′)〉Rn + iσ((x, y), (x′, y′)),

the fact that Q is orthogonal and symplectic implies it is unitary:

Q = Q∗−1 = −JQJ.
(Similarly, any unitary transformation on Cn gives an orthogonal sym-
plectic transformation in Rn × Rn.)

We can now write
Q = exp iB,

where B∗ = B is Hermitian on Cn. A smooth deformation to the
identity is now clear:

Kt := exp(itB) exp(tA) (0 ≤ t ≤ 1).

3. For the general case that κ is nonlinear, set K := ∂κ(0, 0). Then
for 1/2 ≤ t ≤ 1,

κt := K−1
2−2t ◦ κ

is a piecewise smooth family of symplectomorphisms satisfying

κ1 = κ, ∂κ1/2(0, 0) = I.

For 0 ≤ t ≤ 1/2, we set

κt(m) :=
1

2t
κ1/2+t(2tm).

4. Define Vt := d
dt

κt; we must show

Vt = (κt)∗Hqt

for some function qt. According to Cartan’s formula (Theorem C.2):

LVtσ = dσ Vt + d(σ Vt).

But LVtσ = d
dt

κ∗
tσ = d

dt
σ = 0, since κ∗

tσ = σ. Furthermore, dσ = 0,
and consequently d(σ Vt) = 0. Owing to Poincaré’s Lemma (Theorem
C.3), we have

κ∗
t (σ Vt) = dqt

for a function qt; and this means that Vt = (κt)∗Hqt . �

To define our symbol classes, we hereafter consider the order function

m := (1 + |x|2 + |ξ|2)
k
2

for some positive integer k.
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THEOREM 10.2 (Quantizing families of symplectomorphisms).
Let {κt}0≤t≤1 be a smooth family of symplectomorphisms of R2n, such
that

κ0 = I,
d

dt
κt = (κt)∗Hqt ,

where qt ∈ S(m) is a smooth family of real valued symbols.
Then there exists a family of unitary operators

F (t) : L2(Rn) → L2(Rn)

such that
F (0) = I,

and for all A = Op(a) with a ∈ S, we have

(10.4) F (t)−1 ◦ A ◦ F (t) = B(t) (0 ≤ t ≤ 1)

for

(10.5) B(t) = Op(bt),

where

(10.6) bt = κ∗
ta+ hct

for ct ∈ S ∩ S.

Proof. 1. We define

Q(t) := Op(qt) : S → S (0 ≤ t ≤ 1),

and recall that
Q(t)∗ = Q(t).

Since Q(t) depends smoothly on t as an operator on S, we can solve
the operator ODE

(10.7)

{
hDtF (t) + F (t)Q(t) = 0 (0 ≤ t ≤ 1)

F (0) = I

for F (t) : S → S. Then

(10.8)

{
hDtF (t)∗ −Q(t)F (t)∗ = 0 (0 ≤ t ≤ 1)

F (0)∗ = I.

2. We claim that

F (t) is unitary on L2(Rn).

To confirm this, let us calculate using (10.7) and (10.8):

hDt(F (t)F (t)∗) = hDtF (t)F (t)∗ + F (t)hDtF (t)∗

= −F (t)Q(t)F (t)∗ + F (t)Q(t)F (t)∗ = 0.
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Hence F (t)F (t)∗ ≡ I. On the other hand,

hDt(F (t)∗F (t)− I) = Q(t)F (t)∗F (t)− F (t)∗F (t)Q(t)

= [Q(t), F (t)∗F (t)− I].

with F (0)∗F (0) − I = 0. Since this equation for F (t)∗F (t) − I is
homogeneous, it follows that F (t)∗F (t) ≡ I.

3. Now define

(10.9) B(t) := F (t)−1AF (t).

We assert that

(10.10) B(t) = Op(bt)

for

(10.11) bt = κ∗
ta+O(h)L2→L2 .

To prove this, define the family of pseudodifferential operators

B̃(t) := Op(κ∗
ta).

We calculate

hDtB̃(t) =
h

i
Op

(
d

dt
κ∗
ta

)
=
h

i
Op(Hqtκ

∗
ta)

=
h

i
Op({qt,κ∗

ta}) = [Q(t), B̃(t)] + E(t),

and the pseudodifferential calculus implies that

‖E(t)‖L2→L2 = O(h2)

where E(t) = Op(et) for a symbol et ∈ S−2.

Therefore

hDt(F (t)B̃(t)F (t)−1) = (hDtF (t))B̃(t)F (t)−1 + F (t)(hDtB̃(t))F (t)−1

+ F (t)B̃(t)hDt(F (t)−1)

= −F (t)Q(t)B̃(t)F (t)−1 + F (t)([Q(t), B̃(t)]

+ E(t))F (t)−1 + F (t)B̃(t)Q(t)F (t)−1

= F (t)E(t)F (t)−1 = O(h2).

Integrating and dividing by h, we deduce

F (t)B̃(t)F (t)−1 = F (0)B̃(0)F (0)−1 +O(h) = A+O(h);

and so

B̃(t) = F (t)−1AF (t) +O(h).
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Hence

(10.12) ‖B̃(t)−B(t)‖L2→L2 = O(h).

4. We now look at the remainder E(t) = Op(et), the symbol et
belonging to S−2. Introduce

E1(t) := Op((κ−1
t )∗et).

Noting that hDtet ∈ S−3(1), we see by the same argument as in Step
3 above that

F (t)E(t)F (t)−1 = E1(t) +O(h3).

Since

B(t) = B̃(t) + F (t)−1

(
i

h

∫ t

0

E1(s) ds

)
F (t) +O(h2),

we can apply the same argument again, to obtain

B(t) = B̃(t) + hB1(t) +O(h2),

where B1(t) = Op(b1t ) for b1t ∈ S.

Iterating this procedure, we deduce that

B(t) = B̃(t) + hB1(t) + · · ·hNBN(t) +O(hN+1)L2→L2 ,

where Bk(t) = Op(bkt ), b
k
t ∈ S.

5. It remains to show that B̃(t) − B(t), and hence B(t) is a pseu-
dodifferential operator. To do so, we invoke Beals’s Theorem 8.9 (and
the Remark after it), by showing that for any choices a1, · · · , aN ∈ S,
we have the estimate

(10.13) adaN
· · · ada1(B̃(t)−B(t)) = O(hN+1).

But this statement is clear from Step 3: for any N we can find a
pseudodifferential operator Op(bNt ), with bNt ∈ S−1, such that

B̃(t)−B(t) = Op(bNt ) +O(hN+1).

Since
adaN

· · · ada1Op(bNt ) = O(hN+1),

and each aj is bounded on L2, estimate (10.13) follows. �

REMARK. The argument used in Step 2 of the proof shows that if
in Theorem 10.2 we have

a(x, ξ;h) ∼ a0(x, ξ) + ha1(x, ξ) + · · ·+ hNaN(x, ξ) + · · · ,
for aj ∈ S, then

bt(x, ξ;h) ∼ κ∗
ta0(x, ξ) + hb1t (x, ξ) + · · ·hNbNt (x, ξ) + · · · .
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However, the higher order terms are difficult to compute. �

10.1.2 Locally defined symplectomorphisms. The requirement
that the family of symplectomorphism be global on R2n is very strong
and often invalid in interesting situations. So we now discuss quantiza-
tion of locally defined symplectomorphisms, for which the quantization
formula (10.4) holds only locally.

THEOREM 10.3 (Local quantization). Let κ : U0 → U1 be a
symplectomorphism fixing (0, 0) and defined in a neighbourhood of U0.

Then there exists a unitary operator

F : L2(Rn) → L2(Rn)

such that for all A = Op(a) with a ∈ S, we have

(10.14) F−1AF = B,

where B = Op(b) for a symbol b ∈ S satisfying

(10.15) b|U0 := κ∗(a|U1)|U0 +O(h).

Proof. 1. According to Theorem 10.1, there exists a piecewise smooth
family of symplectomorphisms κt : U0 → Ut, (0 ≤ t ≤ 1) such that
κ = κ1, κ0 = I, and

d

dt
κt = (κt)∗Hqt (0 ≤ t ≤ 1)

within U , for a smooth family {qt}0≤t≤1.
We extend qt smoothly to be equal to 0 in R2n−U0 and then define a

family of global symplectomorphisms κ̃t using the now globally defined
functions qt. Observe that

κ̃t|U0 = κt : U0 → Ut;

and hence

(10.16) κ̃∗
t (a)|U0 = κ∗

t (a|Ut)|U0 .

2. We now apply Theorem 10.2, to obtain the family of operators
{F (t)}0≤t≤1. We observe that since the supports of the functions qt lie
in a fixed compact set, the proof of Theorem 10.2 shows that (10.4)
holds for a ∈ S. That is,

F (t)−1AF (t) = Op(b(t)) = B(t)

for
b(t) = κ̃∗

ta+O(h).
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We now put

F := F (1), B := B(1).

Then (10.16) shows that formula (10.14) is valid. �

10.1.3 Microlocality. It will prove useful to formulate the theorems
above without reference to the global properties of the operator F .

DEFINITIONS. (i) Let U, V be open, bounded subsets of R2n, and
assume

T : S(Rn) → S(Rn)

is linear.
We say that T is tempered if for each seminorm ‖ ·‖1 on S(Rn), there

exists another seminorm ‖ · ‖2 and a constant N ∈ R such that

(10.17) ‖Tu‖1 = O(h−N)‖u‖2

for all u ∈ S.

(ii) Given two tempered operators T and S, we say that

(10.18) T ≡ S microlocally on U × V

if there exist open sets Ũ ⊇ U and Ṽ ⊇ V such that

A(T − S)B = O(h∞)

as a mapping S → S, for all A,B such that

WFh(A) ⊂ Ṽ , WFh(B) ⊂ Ũ .

(iii) In particular, we say

T ≡ I microlocally near U × U

if there exists an open set Ũ ⊇ U such that

A− TA = A− AT = O(h∞)

as mappings S → S, for all A with WFh(A) ⊂ Ũ .

(iv) We will say that T is microlocally invertible near U ×U if there
exists an operator S such that TS ≡ I and ST ≡ I microlocally near
U × U .

When no confusion is likely, we write

S = T−1

and call S a microlocal inverse of T .
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LEMMA 10.4 (Wavefront sets and composition). If

WFh(A) ∩ U = ∅
and B = Op(b) for b ∈ S, then

(10.19) WFh(BA) ∩ U = ∅.

Proof. The symbol of BA is b#a = O(h∞) in U . �

LEMMA 10.5 (Tempered unitary transformations). The uni-
tary transformations F (t) given by Theorem 10.2 are tempered.

Proof. Up to powers of h, each seminorm on S is bounded from above
and below by these specific seminorms:

u 7→ ‖ANu‖ for AN := (1 + |x|2 + |hD|2)N .
We observe that the operators AN are invertible and selfadjoint and
that, in the notation of the proof of Theorem 10.2,

ANQ(t)A−1
N = QN(t) = Op(qNt ),

for qNt ∈ S(m) such that qNt − qt ∈ S−1(m).
We then have

hDtANF (t)A−1
N = ANF (t)A−1

N QN(t);

and hence the same arguments as before show that

‖ANF (t)u‖2 = ‖ANu‖2.

Consequently for any seminorm ‖ · ‖1 on S, there exists a seminorm
‖ · ‖2 and N such that

‖F (t)u‖1 ≤ O(h−N)‖u‖2.

�
The previous two lemmas and Theorem 10.3 give

THEOREM 10.6 (More on local quantization). Let κ : U0 → U1

be a symplectomorphism fixing (0, 0) and defined in a neighbourhood of
U0. Suppose U is open, U ⊂⊂ U0 ∩ U1.

Then there exists a tempered operator

F : L2(Rn) → L2(Rn)

such that F is microlocally invertible near U×U and for all A = Op(a),
with a ∈ S,

(10.20) F−1AF = B microlocally near U × U ,
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where B = Op(b) for a symbol b ∈ S satisfying

(10.21) b := κ∗a+O(h).

In (10.21) we do not specify the neighbourhoods, as we did in (10.16),
since the statement needs to make sense only locally near U × U .

The last theorem has the following converse which we include for
completeness:

THEOREM 10.7 (Converse). Suppose that F : L2(Rn) → L2(Rn)
is a tempered operator such that for every A = Op(a) with a ∈ S, we
have

AF ≡ FB

microlocally near (0, 0), for

B = Op(b), b = κ∗a+O(h),

where κ : R2n → R2n is a symplectomorphism, defined locally near U ,
with κ(0, 0) = (0, 0).

Then there exists a pseudodifferential operator F0, elliptic near U ,
and a family of self-adjoint pseudodifferential operators Q(t), such that

F = F (1) microlocally near U × U ,

where {
hDtF (t) + F (t)Q(t) = 0 (0 ≤ t ≤ 1)

F (0) = F0.

Proof. 1. From Theorem 10.1 we know that there exists a family of
local symplectomorphisms, κt, satisfying κt(0, 0) = (0, 0), κ1 = κ and
κ0 = I. Since we are working locally, there exists a function qt so that
κt is generated by its Hamiltonian vectorfield Hqt .

As in the proof of Theorem 10.3 we extend this function to be zero
outside a compact set. Let us now consider the dynamics{

hDtF (t) = Q(t)F (t) (0 ≤ t ≤ 1)

F (1) = CFC,

where C is a pseudodifferential operator with WFh(I − C) ∩ U = ∅.

2. We claim that F (0) satisfies

(10.22) Op(a)F (0) = F (0)Op(a+ hã)
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for a, ã ∈ S ∩ S0(1). To establish this, let us introduce V (t) satisfying{
hDtV (t) + V (t)Q(t) = 0 (0 ≤ t ≤ 1)

V (0) = I.

Then using Theorem 10.3 and the assumption that b = κ∗a+ 0(h), we
deduce that

Op(a)F (t)V (t) = F (t)Op(b)V (t)

= F (t)V (t)(V (t)−1Op(b)V (t))

= F (t)V (t)Op(a+ hã).

Putting t = 0 gives (10.22).

3. We now use Beals’s Theorem to conclude that F (0) ∈ Ψ0. We
verify the hypothesis by induction: suppose we know that

adOp(b1) · · · adOp(bN )F (0) = O(hN),

for any bj ∈ S0(1). Then by (10.22)

Op(bN+1)F (0)− F (0)Op(bN+1) = hOp(b̃N+1)F (0);

and hence

‖adOp(b1) · · · adOp(bN )adOp(bN+1)F (0)‖L2→L2 =

‖hadOp(b1) · · · adOp(bN )(Op(b̃N+1)F (0))‖L2→L2 = O(hN+1),

according to the induction hypothesis and the derivation property

adA(BC) = B(adAC) + (adAB)C.

Hence Beals’s Theorem applies and shows that F (0) is a pseudodiffer-
ential operator. By construction, F (1) = CFC ≡ F near (0, 0). �

10.1.4. Quantization of linear symplectic maps.

Consider first the simple linear symplectic transformation κ = J ;
that is,

(10.23) κ(x, ξ) = (−ξ, x)
on R2n = Rn × Rn.

Then we can take for 0 ≤ t ≤ 1,

κt(x, ξ) =

(
cos

(
tπ

2

)
x− sin

(
tπ

2

)
ξ, sin

(
tπ

2

)
x+ cos

(
tπ

2

)
ξ

)
;

so that
dκt

dt
= (κt)∗Hq,
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for
q :=

π

4
(|x|2 + |ξ|2).

THEOREM 10.8 (J quantized). The operator F associated with
the transformation (10.23) as in Theorem 10.3 is

(10.24) Fu(x) :=
e−

π
4
i

(2πh)
n
2

∫
Rn

e−
i〈x,y〉

h u(y) dy =
e−

π
4
i

(2πh)
n
2

Fhu.

Proof. 1. To verify this, we first show that for a ∈ S ′ we have

(10.25) aw(x, hD) ◦ F = F ◦ aw(−hD, x);
that is, the conclusion of Theorem 10.2 holds without any error terms.
As in the proof of that theorem, we see that

hDtAt =
π

4
[−h2∆ + |x|2, At]

for
At := F (t)−1aw(x, hD)F (t).

Let l(x, ξ) be a linear function on R2n and consider the exponential
symbol

at(x, ξ) := exp(κ∗
t l(x, ξ)/h)

and its Weyl quantization

awt (x, hD) = exp(κ∗
t l(x, hD)/h).

An explicit computation reveals that

hDtat(x, hD) =
π

4
[−h2∆ + |x|2, at(x, hD)].

Since any Weyl operator is a superposition of exponentials of l’s (recall
(4.16)), assertion (10.25) follows.

2. Suppose now that F̃ is another unitary operator for which (10.25)
holds. Then F̃ = cF for c ∈ C, |c| = 1, as follows from applying

Lemma 3.3 to L = F ∗F̃ . Since the Fourier transform satisfies (10.25)
and (2πh)−n/2Fh is unitary, we deduce that

F =
c

(2πh)
n
2

Fh.

3. Thus it remains to compute the constant c. For this, let us put
u0 = exp(−|x|2/2) and consider the ODE{

hDtu(t) = π
4
(−h2∆ + |x|2)u(t),

u(0) = u0.
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Recalling (10.7), we see that u(t) = F (t)∗u0. Since u0 is the ground
state of the harmonic oscillator with eigenvalue h, we learn that u(t) =
a(t)u0, where a(t) solves the ODE{

d
dt
a(t) = πi

4
a(t)

a(0) = 1;

that is, a(t) = exp(πit/4). Finally, we note that

eπi/4u0 = F (1)∗u0 = c̄(2πh)−n/2Fhu0 = c̄u0;

whence

c = exp(−πi/4).

�

REMARK. The family of canonical transformations κt (0 ≤ t ≤ 1),
used here can be extended to a periodic family of canonical transfor-
mations: κt+4 = κt (t ∈ R). Extending F (t) using (10.7), we see that
the argument above gives

F (4k) = (−1)kI, κ4k = I.

Consequently on the quantum level the deformation produces an ad-
ditional shift in the phase. This shift has an important geometric and
physical interpretation and is related to the Maslov index. For a brief
discussion and references see [S-Z1, Sect.7]. �

REMARK: Quantizing linear symplectic mappings.

Using Step 1 in the proof of Theorem 10.1, we can in fact quantize
any linear symplectic transformation. So given

K : R2n → R2n, K =

(
A B
C D

)
,

where

C∗A = A∗C, D∗B = B∗D, D∗A−B∗C = I,

we can construct FK : L2(Rn) → L2(Rn) satisfying

F ∗
KFK = FKF

∗
K = I, aw(x, hD) ◦ FK = FK ◦ (K∗a)w(x, hD).

The operator FK is unique up to a multiplicative factor; and hence

FK1 ◦ FK2 = cFK1◦K2 , |c| = 1.

The associationK 7→ FK can in fact be chosen so that c = ±1; therefore
it is almost a representation of the group of symplectic transformations.
To make it a representation, one has to move to the double cover of
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the symplectic group, the so-called the metaplectic group. Unitary op-
erators quantizing linear symplectic transformations are consequently
called metaplectic operators: see Dimassi–Sjöstrand [D-S, Appendix to
Chapter 7] for a self-contained presentation in the semiclassical spirit,
and Folland [F, Chapter 4] for more and for references. �

EXAMPLE: A invertible. For reasons already apparent in the dis-
cussion of the Fourier transform, there cannot be a general formula for
the kernel FK in terms of the entries A,B,C,D of K.

But if detA 6= 0, we have for u ∈ S the formula

(10.26) FKu(x) =
(detA)−

1
2

(2πh)n

∫
Rn

∫
Rn

e
i
h
(φ(x,η)−〈y,η〉)u(y) dydξ,

where

(10.27) φ(x, η) := −1

2
〈CA−1x, x〉+ 〈A−1x, η〉+

1

2
〈A−1Bη, η〉.

We will refer to this formula in our next example. �

10.2 SEMICLASSICAL ANALYSIS OF PROPAGATORS

In this section we consider the flow of symplectic transformations

(10.28) κt = exp(tHp),

generated by the real-valued symbol p ∈ S(m).
Let P = Op(p). Then in the notation of Theorem 10.2, F (t) =

e−itP/h solves {
(hDt + P )F (t)u = 0

F (0)u = u

for u ∈ S. In this case, Theorem 10.2 reproduces Egorov’s Theorem
9.2: if a ∈ S, then

eitP/hOp(a)e−itP/h = Op(bt),

for

bt = (exp tHp)
∗a+O(h).

A Fourier integral representation formula. Our goal now is to
find for small times t0 > 0 a microlocal representation of F (t) as an
oscillatory integral. In other words, we would like to find an operator
U(t) so that for each h dependent family, u ∈ S with WFh(u) ⊂⊂ R2n,
we have

(10.29)

{
hDtU(t)u+ PU(t)u = O(h∞) (−t0 ≤ t ≤ t0)

U(0)u = u.
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Using Duhamel’s formula, we can then deduce that

F (t)− U(t) = O(h∞).

THEOREM 10.9 (Oscillatory integral representation). We have
the representation
(10.30)

U(t)u(x) =
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
(ϕ(t,x,η)−〈y,η〉)b(t, x, η;h)u(y) dydη,

for the phase ϕ and amplitude b as defined below.

The proof will appear after the following constructions of the phase
and amplitude.

Construction of the phase function. We start by finding the phase
function ϕ as a local generating function associated with the symplec-
tomorphisms (10.28). (Recall the discussion in §2.3 of generating func-
tions.)

Let U denote a bounded open set containing (0, 0).

LEMMA 10.10 (Hamilton–Jacobi equation). If t0 > 0 is small
enough, there exists a smooth function

ϕ = ϕ(t, x, η)

defined in (−t0, t0)× U × U , such that

κt(y, η) = (x, ξ)

locally if and only if

(10.31) ξ = ∂xϕ(t, x, η), y = ∂ηϕ(t, x, η).

Furthermore, ϕ solves the Hamilton–Jacobi equation

(10.32)

{
∂tϕ(t, x, η) + p(x, ∂xϕ(t, x, η)) = 0

ϕ(0, x, η) = 〈x, η〉.

Proof. 1. We know that for points (y, η) lying in a compact subset of
R2n, the flow

(10.33) (y, η) 7→ κt(y, η)

is surjective near (0, 0) for times 0 ≤ t ≤ t0, provided t0 is small enough.
This is so since κ0(y, η) = (y, η).

2. To show the existence of ϕ, consider

Λ := {(t, p(y, η); κt(y, η); y, η) : t ∈ R, (y, η) ∈ R2n},
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This is a surface in R2 × R2n × R2n, a typical point of which we will
write as (t, τ, x, ξ, y, η). Introduce the one-form

V := −τdt+
n∑
j=1

ξjdxj +
n∑
j=1

yjdηj.

That κt is a symplectic implies dV |Λ = 0. By Poincaré’s Lemma
(Theorem C.3), there exists a smooth function ϕ such that

dϕ = V.

In view of (10.33) we can use (t, x, η) as coordinates on Λ∩ ((−t0, t0)×
U × U); and hence

−τdt+
n∑
j=1

ξjdxj +
n∑
j=1

yjdηj = ∂tϕdt+
n∑
j=1

∂xj
ϕdxj +

n∑
j=1

∂ηj
ϕdηj.

Comparing the terms on the two sides gives (10.31) and (10.32). �

Construction of the amplitude. The amplitude b in (10.30) must
satisfy

(hDt + pw(x, hD))(eiϕ(t,x,η)/hb(t, x, η;h)) = O(h∞);

and so

(10.34) (∂tϕ+ hDt + e−iϕ/hpw(x, hD)eiϕ/h)b(t, x, η;h) = O(h∞),

for (x, η) in a neighbourhood of U × U , 0 ≤ t ≤ t0.

We will build b as an expansion in powers of h:

(10.35) b(t, x, η;h) ∼ b0(t, x, η) + hb1(t, x, η) + h2b2(t, x, η) + · · · .

Once all the terms bj are computed, Borel’s Theorem 4.15 produces
the amplitude b.

LEMMA 10.11 (Calculation of b0). We have

(10.36) b0(t, x, η) = (det ∂2
ηxϕ(t, x, η))

1
2 .

Note that det ∂2
ηxϕ > 0 for 0 ≤ t ≤ t0, if t0 is sufficiently small.

Proof. 1. We first observe that

e−iϕ/hpw(x, hD)eiϕ/h = qt(x, hD;h),

where

(10.37) qt(x, ξ;h) = p(x, ∂xϕ+ ξ) +O(h2).
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In fact, writing ϕ(x)− ϕ(y) = F (x, y)(x− y), we easily check that

e−iϕ/hpw(x, hD)eiϕ/hu =∫∫
a

(
x+ y

2
, ξ + F (x, y)

)
ei〈x−y,ξ〉/hu(y)dydξ ,

where

F (x, y) = ∂xϕ

(
x+ y

2

)
+O((x− y)2) .

Hence,

e−iϕ/hpw(x, hD)eiϕ/hu =

∫∫
(a((x+ y)/2, ξ + ∂xϕ((x+ y)/2))

+〈e(x, y, ξ)(x− y), (x− y)〉)ei〈x−y,ξ〉/hu(y)dydξ ,
where the entries of the matrix valued function e are in S. Integration
by parts based on (8.21) gives (10.37).

2. Recalling from Lemma 10.10 that ∂tϕ = −p(x, ∂xϕ), we then
deduce from (10.34) that

(10.38) (hDt + fwt (x, hD, η))b(t, x, η) = O(h2),

where

ft(x, ξ) := p(x, ∂xϕ(t, x, η) + ξ)− p(x, ∂xϕ(t, x, η)) ,

and where η considered as a parameter. So

ft(x, ξ, η) =
n∑
j=1

ξj∂ξjp(x, ∂xϕ(t, x, η)) +O(|ξ|2).

Hence for g = g(t, x, η) ∈ S,

fwt (x, hD, η)g =
1

2

n∑
j=1

(
(∂ξjp)hDxj

g + hDxj

(
∂ξjp g

))
+O(h2),

in which expression the derivatives of p are evaluated at (x, ∂xϕ(t, x, η)).
Consequently b0 satisfies:

hDtb0 +
1

2

n∑
j=1

(∂ξjp)hDxj
b0 + hDxj

(∂ξjp b0) = 0.

This we rewrite as

(10.39) (∂t + Vt +
1

2
div Vt)b0 = 0

with
Vt :=

∑
(∂ξjp)∂xj

.
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3. To understand this equation geometrically, we consider b0(t, ·, η)
as a function on

Λt,η := {(x, ∂xϕ(t, x, η))}.
Then

κs,t : Λt−s,η → Λt,η,

d

ds
κ∗
s,tu|s=0 = Hp|Λt,ηu = Vtu,

for u ∈ C∞. But equation (10.39) can be further rewritten as

(10.40)
d

dt
κ∗
t b0(t, ·, η) = −1

2
κ∗
t (div Vt b0(t, ·, η)).

We claim next that

(10.41) κ∗
t b0(t, x, η) = |∂κt|−

1
2 ,

is the solution of (10.40) satisfying b0(0, x, η) = 1. Here κt is considered
as a function Λ0,η → Λt,η. In fact,

d

dt
|∂κt|−

1
2 =

d

ds
|∂κt ◦ κs,t|

− 1
2

s=0

=
d

ds
|∂κt|−

1
2 κ∗

t |∂κs,t|
− 1

2
s=0

= −1

2
κ∗
tdiv Vt |∂κt|−

1
2 .

4. To obtain an explicit formula for b0, we recall that

κ−1
t : (x, ∂xϕ(t, x, η)) → (∂ηϕ(t, x, η), η).

Hence
∂(κ−1

t |Λt,η) = ∂2
ηxϕ(t, x, η),

and consequently, from (10.41), we see that (10.36) holds. �

Proof of Theorem 10.9 Using the same argument for the higher order
terms in b, we can find its full expansion with all the equations valid in
(−t0, t0)× U . That shows that U(t) given by (10.30) satisfies (10.29),
and thereby completes the proof of Theorem 10.9. �

EXAMPLE. Revisiting example (10.26), we see that for the phase
(10.27) the corresponding amplitude is

b0 = (det ∂2
xηϕ(x, η))1/2 = (detA)−1/2.

�

REMARK: Amplitudes as half-densities. The somewhat cumber-
some derivation of the formula for b0, the leading term of the amplitude
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b in (10.30), becomes much more natural when we use half-densities,
introduced earlier in Section 8.1.

We first make a general observation. If a := u|dx| 12 is a half-density,
and κt is a family of diffeomorphisms generated by a family of vector-
fields:

d

dt
κt = (κt)∗Vt,

then

(10.42) LVta :=
d

dt
κ∗
ta = (Vtu+ (div Vt/2)u)|dx|

1
2 .

Indeed,

κ∗
ta = κ∗

tu|∂κt|
1
2 |dx|

1
2 ;

and if we define

κs,t(x) := κt+s(κ
−1
t (x)),

d

ds
κs,t(x)|s=0 = Vt(x),

then
d

dt
|∂κt|

1
2 =

d

ds
|∂κt ◦ κs,t|

1
2 =

1

2
|∂κt|

1
2 κ∗

tdiv Vt.

This means that if we consider b0(t, x, η)|dx|
1
2 as a half-density on Λt,η

then (10.39) becomes

(d/dt)κ∗
t (b0|dx|

1
2 ) = (∂t + LVt)(b0(t, x, η)|dx|

1
2 ) = 0.

This is the same as

κ∗
t (b0(t, x, η)|dx|

1
2 |Λϕt,η

) = |dx|
1
2 |Λϕ0,η

.

It follows that κ∗
t b0 = |∂κt|−1/2, the same conclusion as before.

It is appealing that the amplitude, interpreted as a half-density, is
invariant under the flow. When coordinates change, and in particular
when we move to larger times at which (10.31) and (10.32) are no longer
valid, the statement about the amplitude as a half-density remains
simple. �

REMARK: A more general version of oscillatory integral rep-
resentation.

If we examine the proof of Theorem 10.9 we notice that we did not
use the fact that P = pw(x, hD) is t independent. That means that we
can consider the solution of a more general problem,

(10.43)

{
(hDt + P (t))F (t)u = 0

F (0)u = u
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where

P (t) = pw(t, x, hD) , p(t, x, ξ) ∈ C∞(Rt, S(R2n
x,ξ,m)) .

For the approximate solution of this problem we still have the same
oscillatory integral representation as the one give in Theorem 10.9. In
particular that means that we have an oscillatory integral representa-
tion of the family of operators defined in Theorem 10.3 for small values
of t there.

For the yet more general problem of p depending on h we refer to
[S-Z1, Section 7] and references given there. Here we note that the
proof works for P (t) = pw(t, x, hD) + h2pw2 (t, x, hD) and that form of
operators acting on half-densities is invariant (see Theorem 8.1).

10.3 APPLICATION: SEMICLASSICAL STRICHARTZ ES-
TIMATES AND Lp BOUNDS ON APPROXIMATE SOLU-
TIONS

In this section we will use Theorem 10.9 to obtain Lp bounds on
approximate solutions to

Let p = p(t, x, ξ) ∈ C∞(R, S(T ∗Rk,m)). We introduce the following
nondegeneracy condition at (t, x, ξ):

(10.44) ∂2
ξp(t, x, ξ) is non-degenerate .

REMARK. The Hessian, ∂2
ξf(ξ0), of a smooth function f(ξ) is not

invariantly defined unless ∂ξf(ξ0) = 0. However the statement (10.44)
is invariant if only linear transformations in ξ are allowed. That is the
case for symbol transformation induced by changes of variables in x,
see Theorem 8.1.

We consider the problem which essentially the same as (10.43):

(10.45)

{
(hDt + P (t))F (t, r)u = 0

F (t, r)u = u

where r ∈ R. As discussed in the remark at the end of Section 10.2,
Theorem 10.9 gives a description of F (t, r) for small values of t.

THEOREM 10.12 (Semiclassical Strichartz estimates). Sup-
pose that p(t) ∈ C∞(Rt, S(T ∗Rk,m)), is real valued, χ ∈ C∞

c (T ∗Rk),
and that (10.44) holds in spt(χ), t ∈ R. With P (t) := pw(t, x, hD), let
F (t, r) be the solution of (10.45). Then for ψ ∈ C∞

c (R) with support
sufficiently close to 0, any I ⊂⊂ R, and

U(t, r) := ψ(t)F (t, r)χw(x, hD) or U(t, r) := ψ(t)χw(x, hD)F (t, r)
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we have

sup
r∈I

(∫
R
‖U(t, r)f‖p

Lq(Rk)
dt

) 1
p

≤ Bh−
1
p‖f‖L2(Rk) ,

2

p
+
k

q
=
k

2
, 2 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ , (p, q) 6= (2,∞) .

(10.46)

Proof: 1. In view of Theorem B.10 we need to show that

(10.47) ‖U(t, r)U(s, r)∗f‖L∞(X,µ) ≤ Ah−k/2|t− s|−k/2 , t, s ∈ R ,

with constants independent of r ∈ I. We can put r = 0 in the argument
and drop the dependence on r in U and F .

2. We use Theorem 10.9. The construction there and the assumption
that χ ∈ C∞

c show that

U(t) = Ũ(t) + E(t) ,

where
E(t) = O(h∞) : S ′ → S ,

and the Schwartz kernel of Ũ(t) is

Ũ(t, x, y) =
1

(2πh)k

∫
Rk

e
i
h
(ϕ(t,x,η)−〈y,η〉)b̃(t, y, x, η;h)dη ,

b̃ ∈ S ∩ C∞
c (R1+3k) , ϕ(0, x, η) = 〈x, η〉 ,

∂tϕ(t, x, η) + p(t, x, ∂xϕ(t, x, η)) = 0 .

(10.48)

3. Hence we only need to prove (10.47) with U replaced by Ũ
and that means that we need an L∞ bound on the Schwartz kernel
of W (t, s) := Ũ(t)Ũ(s)∗:

W (t, s, x, y) =
1

(2πh)2k

∫
R3k

e
i
h
(ϕ(t,x,η)−ϕ(s,y,ζ)−〈z,η−ζ〉) B dzdζdη ,

where
B = B(t, s, x, y, z, η, ζ;h) ∈ S ∩ C∞

c (R2+6k) .

4. The phase is nondegenerate in (z, ζ) variables and stationary for
ζ = η, z = ∂ζϕ(s, y, ζ). Hence we can apply Theorem 3.14 to obtain

W (t, s, x, y) =
1

(2πh)k

∫
Rk

e
i
h
(ϕ(t,x,η)−ϕ(s,y,η)) B1(t, s, x, y, η;h) dη ,

where B1 ∈ S ∩ C∞
c (R2+3k). We now rewrite the phase as follows:

ϕ̃ := ϕ(t, x, η)− ϕ(s, y, η) = (t− s)p(0, x, η)

+〈x− y, η + sF (s, x, y, η)〉+O(t− s)2 , F ∈ C∞(R1+3k) ,
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where using (10.48) we wrote

ϕ(s, x, η)− ϕ(s, y, η) = 〈x− y, η〉+ 〈x− y, sF (s, x, y, η)〉 .

5. The phase is stationary when

∂ηϕ̃ = (I + s∂ηF )(x− y) + (t− s)(∂ηp+O(t− s)) = 0 ,

and in particular, for s small, having a stationary point implies

x− y = O(t− s) ,

as then (I + s∂ηF ) is invertible. The Hessian is given by

∂2
ηϕ̃ = s∂2

ηF (x− y) + (t− s)(∂2
ηp+O(t− s))

= (t− s)(∂2
ηp+O(|t|+ |s|)) ,

where ∂2
ηp = ∂2

ηp(0, x, η).

6. Hence, for t and s sufficiently small, that is for a suitable choice
of the support of ψ in the definition of U(•), the nondegeneracy as-
sumption (10.44) implies that at the critical point

∂2
ηϕ̃ = (t− s)ψ(x, y) .

Hence for |t−s| > Mh for a large constant M we can use the stationary
phase estimate in Theorem 3.14 to see that

|W (t, s, x, y)| ≤ Ch−k/2|t− s|−k/2 .

When |t−s| < Mh we see that the trivial estimate of the integral gives

|W (t, s, x, y)| ≤ Ch−k ≤ C ′h−k/2|t− s|−k/2 ,

which is what we need to apply Theorem B.10. �

We formulate the following microhyperbolicity assumption at (x0, ξ0) ∈
T ∗Rn, where p(x0, ξ0) = 0, and ∂ξp(x0, ξ0) 6= 0. By a linear change of
variables assume that ∂ξp(x0, ξ0) = (ρ, 0, · · · , 0), ρ 6= 0. Then near
(x0, ξ0),

p(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ′)) ,

and our assumptions reads

∂2
ξ′a(x0, ξ

′
0) is nondegenerate.(10.49)

As in the remark following (10.44) we note that this assumption is
invariant under linear changes of coordinates in ξ. In particular (10.49)
is invariant under changes of variables.
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THEOREM 10.13 (Lp bounds on approximate solutions). Sup-
pose that u(h), ‖u(h)‖L2 = 1, is an h-tempered family of functions sat-
isfying the frequency localization condition (8.29). Suppose also that
(10.49) is satisfied in WFh(u), and that

(10.50) pw(x, hD)u(h) = OL2(h) .

Then for p = 2(n+ 1)/(n− 1), and any K ⊂⊂ Rn,

(10.51) ‖u(h)‖Lp(K) = O(h−1/p) .

REMARK. The first example in the remark after Theorem 8.5 shows
that the microhyperbolicity condition (10.49) is in general necessary.
In fact, if P (h) = hDx1 and u(h) = h−(n−1)/2χ(x1)χ(x′/h) then for
p = 2(n+ 1)/(n− 1),

‖u‖Lp ' h(n−1)(1/p−1/2) = h−(n−1)/(n+1) 6= O(h−1/p) .

However for the simplest case in which (10.49) holds,

p(x, ξ) = ξ1 − ξ2
2 − · · · − ξ2

n ,

the estimate (10.51) is optimal. To see that put

u(h) := h−(n−1)/4χ0(x1) exp(−|x′|2/2h) ,

where x = (x1, x
′), χ0 ∈ C∞

c (R). Then

(−h2∆x′ + |x′|2)u(h) = (n− 1)h u(h) ,

‖u(h)‖L2 ' 1, |x′|2ku(h) = OL2(hk). Hence,

pw(x, hD)u(h) = OL2(h) ,

and

‖u(h)‖Lp(Rn) ' h(n−1)(2/p−1)/4 = h−1/p , p = 2(n+ 1)/(n− 1) .

Before proving Theorem 10.13 we prove a lemma which is a conse-
quence of Theorem 10.12

LEMMA 10.14. In the notation of Theorem 10.13 we have
(10.52)

‖
∫ t

0

U(t, s)1I(s)f(s, x)ds‖Lp(Rt×Rk
x) ≤ C

∫
R
‖f(s, x)‖L2(Rk

x)ds .
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Proof: We apply the integral version of Minkowski’s inequality and
estimate (10.46):

‖
∫ t

0

U(t, s)1I(s)f(s, x)ds‖Lp(Rt×Rk
x)

≤ C

∫
I∩R+

‖1[s,∞)(t)U(t, s)f(s, x)‖Lp(Rt×Rk
x)ds

≤ C

∫
I∩R+

‖U(t, s)f(s, x)‖Lp(Rt×Rk
x)ds

≤ C ′
∫
I

‖f(s, x)‖L2(Rk
x)ds .

�

Proof of Theorem 10.13: 1. We follow the same procedure as in the
proof of Theorem 8.5. As in that case the condition (10.50) is local in
phase space, that is, it implies that for any χ ∈ C∞

c (T ∗Rn),

pw(x, hDχw(x, hD)u(h)) = O(h) .

2. We factorize p(x, ξ) as in (8.34) and we easily conclude that for χ
with sufficiently small support,

(hDx1 − a(x, hDx′))(χ
wu(h)) = OL2(h) .

Let

f(x1, x
′, h) = (hDx1 − a(x, hDx′))(χ

wu(h)) .

Since ‖f‖L2 = O(h), we see

(10.53)

∫
R
‖f(x1, •)‖L2(Rn−1)dt ≤ C‖f‖L2(Rn) = O(h) .

3. We now apply Theorem 10.12 with t = x1 and x replaced by
x′ ∈ Rn−1, that is k = n− 1. The assumption (10.49) shows that ∂2

ξ′a
is nondegenerate in the support of χ. We can choose ψ and χ in the
definition of U(t) in the statement of Theorem 10.12 so that

χw(x, hD)u(x1, x
′, h) =

i

h

∫ x1

0

U(t, s)f(s, x′)ds+OS(h∞) .

Let us choose p = q in (10.46) (now with n replaced by n− 1, that is,

p = q =
2(n+ 1)

n− 1
.
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Then, using (10.46), (10.53), and (10.52),

‖χw(x, hD)u‖Lp ≤ 1

h
h−1/p

∫
R
‖f(s, •, h)‖L2(Rn−1)ds+O(h∞)

= O(h−1/p) .

A partition of unity argument used in the proof of Theorem 8.5 con-
cludes the proof. �

As a corollary we obtain Sogge’s bounds on spectral clusters on Rie-
mannian manifolds:

THEOREM 10.15 (Lp bounds on eigenfuctions). Suppose that
M is an n-dimensional compact Riemannian manifold and let ∆g be
its Laplace-Beltrami operator. If

0 = λ0 < λ1 ≤ · · ·λj →∞
is the complete set of eigenvalues of −∆g, and

−∆gϕj = λjϕj

are the corresponding eigenfunctions, then for any cj ∈ C, j = 0, 1, · · · ,

‖
∑

µ≤
√
λj≤µ+1

cjϕj‖Lp ≤ Cµσ(p)‖
∑

µ≤
√
λj≤µ+1

cjϕj‖L2 ,

σ(p) =


n−1

2

(
1
2
− 1

p

)
for 2 ≤ p ≤ 2(n+1)

n−1
,

n−1
2
− n

p
for 2(n+1)

n−1
≤ p ≤ ∞ .

(10.54)

In particular

(10.55) ‖ϕj‖Lp ≤ Cλ
σ(p)/2
j ‖ϕj‖L2 .

Proof: We argue as in the proof of Theorem 8.7. All we need to check
is (10.49) but that is clear since at any point (x0, ξ0) and for suitable
coordinates

p(x0, ξ) = |ξ|2 − 1 , ξ0 = (1, 0, · · · , 0) .

Complex interpolation [H1, Theorem 7.1.12] between the estimate in
Theorem 8.7, the trivial L2 estimate and the estimate in Theorem 10.13
gives the full result. �

10.4 MORE SYMPLECTIC GEOMETRY

To further apply the local theory of quantized symplectic transfor-
mations to the study of semiclassical operators we will need two results
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from symplectic geometry. The first is a stronger form of Darboux’s
Theorem 2.8, which we state without proof.

THEOREM 10.16 (Variant of Darboux’s Theorem). Let A and
B be two subsets of {1, · · · , n}, and suppose that

pj(x, ξ) (j ∈ A), qk(x, ξ) (k ∈ B)

are smooth, real-valued functions defined in a neighbourhood of (0, 0) ∈
R2n, with linearly independent gradients at (0, 0).

If

{qi, qj} = 0 (i, j ∈ A), {pk, pl} = 0 (k, l ∈ B),

{pk, qj} = δkj (j ∈ A, k ∈ B),
(10.56)

then there exists a symplectomorphism κ, locally defined near (0, 0),
such that κ(0, 0) = (0, 0) and

(10.57) κ∗qj = xj (j ∈ A), κ∗pk = ξj (k ∈ B).

See Hörmander [H2, Theorem 21.1.6] for an elegant exposition.

The next result is less standard and comes from the work of Duis-
termaat and Sjöstrand: consult Hörmander [H2, Lemma 21.3.4] for the
proof.

THEOREM 10.17 (Symplectic integrating factor). Let p and q
be smooth, real-valued functions defined near (0, 0) ∈ R2n, satisfying

(10.58) p(0, 0) = q(0, 0) = 0, {p, q}(0, 0) > 0.

Then there exists a smooth, positive function u for which

(10.59) {up, uq} ≡ 1

in a neighborhood of (0, 0).

10.5 NORMAL FORMS FOR OPERATORS WITH REAL
SYMBOLS

Operators of real principal type. Recall that we are taking our
order function to be

m := (1 + |x|2 + |ξ|2)
k
2 .

Set P = pw(x, hD;h), where

p(x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + · · ·+ hNpN(x, ξ) + · · · ,
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for pj ∈ S(m). We assume that the real-valued principal symbol p0

satisfies

(10.60) p0(0, 0) = 0, ∂p0(0, 0) 6= 0;

and then say that P is an operator of real principal type at (0, 0).

THEOREM 10.18 (Normal form for real principal type oper-
ators). Suppose that P = pw(x, hD;h) is a semiclassical real principal
type operator at (0, 0).

Then there exist
(i) a local canonical transformation κ defined near (0, 0), such that
κ(0, 0) = (0, 0) and

(10.61) κ∗ξ1 = p0;

and
(ii) an operator T , quantizing κ in the sense of Theorem 10.6, such
that

(10.62) T−1 exists microlocally near ((0, 0), (0, 0))

and

(10.63) TPT−1 = hDx1 microlocally near ((0, 0), (0, 0)).

INTERPRETATION. The point is that using this theorem, we can
transplant various mathematical objects related to P to others related
to hDx1 , which are much easier to study. A simple example is given by
the following estimate:

‖u‖ ≤ C

h
‖Pu‖ ,

when u = u(h) ∈ S has WFh(u) in a small neighbourhood of (0, 0). �

Proof. 1. Theorem 10.16 applied with A = ∅ and B = {1}, provides κ
satisfying (10.61) near (0, 0). Then Theorem 10.1 gives us a family of
symplectic transfomations κt for 0 ≤ t ≤ 1.

Let F (t) be defined using the family κt in Theorem 10.6, and put
T0 = F (1). Then

T0P − hDx1 = E microlocally near (0, 0). ,

for E = Op(e), e ∈ S−1.

2. We now look for a symbol a ∈ S so that a is elliptic at (0, 0) and

hDx1 + E = AhDx1A
−1 microlocally near (0, 0)
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for A := Op(a). This is the same as solving

[hDx1 , A] + EA = 0.

Since P = pw0 +hpw1 +h2pw2 +· · · , the Remark after the proof of Theorem
10.2 shows that

e(x, ξ;h) = he0(x, ξ) + h2e1(x, ξ) + · · · .
Hence we can find a0 ∈ S such that a0(0, 0) 6= 0 and

1

i
{ξ1, a0}+ e0a0 = 0

near (0, 0).
Define A0 := Op(a0); then

[hDx1 , A0] + EA0 = Op(r0)

for a symbol r0 ∈ S−2.

3. We now inductively find Aj = Op(aj), for aj ∈ S−j, satisfying

[hDx1 , A0 + A1 + · · ·+ AN ] + E(A0 + A1 + · · ·AN) = Op(rN),

for rN ∈ S−N−2(1). We then put

A ∼ A1 + A2 + · · ·+ AN + · · · ,
which is elliptic near (0, 0). Finally, define

T := A−1T0.

This operator quantizes κ in the sense of Theorem 10.6. �

10.6 NORMAL FORMS FOR OPERATORS WITH COM-
PLEX SYMBOLS

Operators of complex principal type. Assume as before that P =
pw(x, hD;h) has the symbol

p(x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + · · ·+ hNpN(x, ξ) + · · ·
with pj ∈ S(m). We now allow p(x, ξ) to be complex-valued, and still
say that P is principal type at (0, 0) if

p0(0, 0) = 0, ∂p0(0, 0) 6= 0.

Discussion. If ∂(Re p0) and ∂(Im p0) are linearly independent, then
the submanifold of R2n where P is not elliptic has codimension two –
as opposed to codimension one in the real-valued case. The symplectic
form restricted to that submanifold is non-degenerate if {Re p0, Im p0} 6=
0.
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Under this assumption a combination of Theorems 10.16 and 10.17
shows that there exists a canonical transformation κ, defined near
(0, 0), and a smooth positive function u such that

κ∗(ξ1 ± ix1) = up0.

That is, after a multiplication by a function we obtain the symbol of
the creation or annihilation operator for the harmonic oscillator in the
(x1, ξ1) variables. (Recall the discussion of the harmonic oscillator in
Section 6.1.)

THEOREM 10.19 (Normal form for the complex symplectic
case). Suppose that P = pw(x, hD;h) is a semiclassical principal type
operator at (0, 0), with principal symbol p0 satisfying

(10.64) p0(0, 0) = 0, ±{Re p0, Im p0}(0, 0) > 0.

Then there exist
(i) a local canonical transformation κ defined near (0, 0) and a smooth
function u such that κ(0, 0) = (0, 0), u(0, 0) > 0, and

κ∗(ξ1 ± ix1) = up0;

and (ii) an operator T , quantizing κ in the sense of Theorem 10.6, and
a pseudodifferential operator A, elliptic at (0, 0), such that

(10.65) T−1 exists microlocally near ((0, 0), (0, 0))

and

(10.66) TPT−1 = A(hDx1 ± ix1) microlocally near ((0, 0), (0, 0)).

INTERPRETATION. We can transplant mathematical objects re-
lated to P to others related to A(hDx1 ± ix1), which are clearly much
easier to study. �

Proof. 1. We start as in the proof of Theorem 10.18. To simplify the
notation, let us assume

{Re p0, Im p0} > 0.

As noted above, using Theorems 10.16 and 10.17 we can find a smooth
function u, with u(0, 0) > 0, and a local canonical transformation κ
such that κ(0, 0) = (0, 0) and κ∗(ξ1 + ix1) = up0.

Quantizing as before, we obtain an operator T0 satisfying

(10.67) T0P = Q(hDx1 + ix1 + E)T0,
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where Q = Op(q) for a function q satisfying

κ∗q = 1/u

and E = Op(e) for some e ∈ S−1.

2. We now need to find pseudodifferential operators B and C, elliptic
at (0, 0), and such that

(10.68) (hDx1 + ix1 + E)B ≡ C(hDx1 + ix1),

microlocally near (0, 0). As in the proof of Theorem 10.18, we have

E = Op(e), e = he0(x, ξ) + h2e1(x, ξ) + · · · .
We will find the symbols of B and C by computing successive terms in
their expansions:

b ∼ b0 + hb1 + · · ·+ hNbN + · · · ,
c ∼ c0 + hc1 + · · ·+ hNcN + · · · .

3. Let us rewrite (10.68) as

(hDx1 + ix1 + E)B − C(hDx1 + ix1) = Op(r),

for
r(x, ξ) = r0(x, ξ) + hr1(x, ξ) + · · ·+ hNrN(x, ξ) + · · · ,

with

r0 = (ξ1 + ix1)(b0 − c0),

r1 = (ξ1 + ix1)(b1 − c1) + e0b0 + {ξ1 + ix1, b0}/2i− {c0, ξ1 + ix1}/2i.
Here we used composition formula in Weyl calculus (see Theorem 4.9).

We want to choose b and c so that rj ≡ 0 for all j. For r0 = 0 we
simply need b0 = c0. Then to obtain r1 = 0 we have to solve

−i(∂x1 − i∂ξ1)b0 + e0b0 + (ξ1 + ix1)(b1 − c1) = 0.

4. We first find b0 such that{
−i(∂x1 − i∂ξ1)b0 + e0b0 = O(x∞1 )

b0|x1=0 = 1;

that is, the left hand side vanishes to infinite order at x1 = 0, and b0 = 1
there. The derivatives ∂kx1

e0|x1=0 determine ∂kx1
b0|x1=0. Then Borel’s

Theorem 4.15 produces a smooth function b0 with these prescribed
derivatives.

5. With b0 = c0 chosen that way we see that

t1 := (−i(∂x1 − i∂ξ1)b0 + e0b0)/(ξ1 + ix1)
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is a smooth function: the numerator vanishes to infinite order on the
zero set of the denominator. If we put

(10.69) c1 = b1 + t1

then r1 = 0.

6. Now, using (10.69) the same calculation as before, we see that

r3 = (ξ1 + ix1)(b2 − c2) + e0b1 − i{ξ1 + ix1, b1}+ r̃3,

where r̃3 depends only on b0 = c0, t1, and e. Hence r̃3 is already
determined. We proceed as in Step 4 and first solve{

−i(∂x1 − i∂ξ1)b1 + e0b1 + r̃3 = O(x∞1 )

b1|x=1 = 0.

This determines b1 (and hence c1). We continue in the same way to
determine b2 (and hence c2). An iteration of the argument completes
the construction of b and c, for which (10.68) holds microlocally near
(0, 0).

7. Finally, we put T = B−1T0, where B−1 is the microlocal inverse
of B near (0, 0), and A = B−1QC, to obtain the statement of the
theorem. �

10.7 APPLICATION: SEMICLASSICAL PSEUDOSPECTRA

We present in this last section an application to the so-called semi-
classical pseudospectrum. Recall from Chapter 6 that if P = P (h) =
−h2∆ + V (x) and V is real-valued, satisfying

(10.70) V ∈ S(〈x〉m), |ξ2 + V (x)| ≥ (1 + |ξ|2 + |x|m)/C for |x| ≥ C,

then the spectrum of P is discrete. (We deduced this from the mero-
morphy of the resolvent of P , R(z) = (P − z)−1.)

Quasimodes. Because of the Spectral Theorem, which is applicable
as V is real, we also know that approximate location of eigenvalues is
implied by the existence of approximate eigenfunctions, called quasi-
modes. Indeed suppose that

(10.71) ‖(P − z(h))u(h)‖ = O(h∞), ‖u(h)‖ = 1.

Then there exist E(h) and v(h) such that

(10.72) (P − E(h))v(h) = 0, ‖v(h)‖ = 1, |E(h)− z(h)| = O(h∞).

In other words, if we can solve (10.71), then the approximate eigenvalue
z(h) is in fact close to a true eigenvalue E(h) (although u(h) need not
be close to a true eigenfunction v(h).)
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Nonnormal operators. But it is well known that this is not the case
for nonnormal operators P , for which the commutator [P ∗, P ] does not
vanish. Now if If p = |ξ|2 + V (x), then the symbol of this commutator
is

(10.73)
1

i
{p̄, p} = 2{Re p, Im p};

and when this is nonzero we are in the situation discussed in Theorem
10.19. This discussion leads us to

THEOREM 10.20 (Quasimodes). Suppose that P = −h2∆+V (x)
and that

(10.74) z0 = ξ2
0 + V (x0), Im〈ξ0, ∂V (x0)〉 6= 0.

Then there exists a family of functions u(h) ∈ C∞
c (Rn) such that

(10.75) ‖(P − z0)u(h)‖L2 = O(h∞), ‖u(h)‖L2 = 1.

Moreover, we can choose u(h) so that

(10.76) WFh(u(h)) = {(x0, ξ0)}, Im〈ξ0, ∂V (x0)〉 < 0.

Proof. We first replace V by a compactly supported potential agreeing
with V near x0. Our function u(h) will be constructed with support
near x0.

By changing the sign of ξ0 if necessary, but without changing z0, we
can assume that

{Re p, Im p}(x0, ξ0) = 2Im〈ξ0, ∂V (x0)〉 < 0.

According Theorem 10.19, P−z0 is microlocally conjugate toA(hDx1−
ix1) near ((x0, ξ0), (0, 0)). Let

u0(x, h) := exp(−|x|2/2h);
so that

(hDx1 − ix1)u0(h) = 0, WFh(u0(h)) = {(0, 0)}.
Following the notation of Theorem 10.19, we define u(h) := T−1u0(h).
Then WFh(u(h)) = {(x0, ξ0)} and

(P − z0)u(h) ≡ T−1A(hDx1 − ix1)T (T−1u0) ≡ 0.

�

REMARK. If p(x, ξ) = |ξ|2 + V (x), the potential V satisfies (10.70),
and

{p(x, ξ) : (x, ξ) ∈ R2n} 6= C,
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then the operator P still has a discrete spectrum. This follows from the
proof of Theorem 6.7, once we have a point at which P − z is elliptic.
Such a point is produced if there exists z not in the set of values of
p(x, ξ). However, the hypothesis of Theorem 10.20 holds in a dense
open subset of the interior of the closure of the range of p. �

EXAMPLE. It is also clear that more general operators can be con-
sidered. As a simple one-dimensional example, take

P = (hDx)
2 + ihDx + x2

with
p(x, ξ) = ξ2 + iξ + x2, {Re p, Im p} = −2x.

Hence there is a quasimode corresponding to any point in the interior
of the range of p, namely {z : Re z ≥ (Im z)2}. On the other hand,
since

ex/2hPe−x/2h = (hD)2 + x2 +
1

4
,

P has the discrete spectrum {1/4 + nh : n ∈ N}. Since the spectrum
lies inside an open set of quasimodes, it is unlikely to have any true
physical meaning. �



179

Appendix A. Notation

A.1 BASIC NOTATION.

Rn = n-dimensional Euclidean space

R2n = Rn × Rn

m = (x, ξ) = typical point in Rn × Rn

C = complex plane

Cn = n-dimensional complex space

Tn = n-dimensional flat torus = [0, 1]n, with opposite faces identified

〈x, y〉 :=
∑n

i=1 xiȳi = inner product

|x| = 〈x, x〉1/2

〈x〉 := (1 + |x|2)1/2

Mm×n = m× n-matrices

Sn = n× n real symmetric matrices

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

J :=

(
0 −I
I 0

)
σ(u, v) = 〈u, Jv〉 = symplectic inner product

A.2 ELEMENTARY OPERATORS.

Multiplication operator: Mλf(x) = λf(x)

Translation operator: Tξf(x) = f(x− ξ)

Reflection operator: Rf(x) := f(−x)

A.3 FUNCTIONS, DIFFERENTIATION.

The support of a function is denoted “spt”, and a subscript “c” on
a space of functions means those with compact support.

• Partial derivatives:

(A.1) ∂xj
:=

∂

∂xj
, Dxj

:=
1

i

∂

∂xj

• Multiindex notation: A multiindex is a vector α = (α1, . . . , αn),
the entries of which are nonnegative integers. The size of α is

|α| = α1 + · · ·+ αn.
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We then write for x ∈ Rn:

xα := x1
α1 . . . xn

αn

Also
∂α := ∂α1

x1
. . . ∂αn

xn

and

Dα :=
1

i|α|
∂α1
x1
. . . ∂αn

xn
.

(WARNING: Our use of the symbols “D” and “Dα” differs from that
in the PDE textbook [E].)

If ϕ : Rn → R, then we write

∂ϕ := (ϕx1 , . . . , ϕxn) = gradient,

and

∂2ϕ :=

ϕx1x1 . . . ϕx1xn

. . .
ϕxnx1 . . . ϕxnxn

 = Hessian matrix

Also

Dϕ :=
1

i
∂ϕ.

If ϕ depends on both the variables x, y ∈ Rn, we put

∂2
xϕ :=

ϕx1x1 . . . ϕx1xn

. . .
ϕxnx1 . . . ϕxnxn


and

∂2
x,yϕ :=

ϕx1y1 . . . ϕx1yn

. . .
ϕxny1 . . . ϕxnyn

 .

• Jacobians: Let
x 7→ y = y(x)

be a diffeomorphism. The Jacobian matrix is

(A.2)
∂y

∂x
:=

(
∂yi

∂xj

)
n×n

.

• Poisson bracket: If f, g : Rn → R are C1 functions,

(A.3) {f, g} := 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.
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• The Schwartz space is

S = S(Rn) :=

{ϕ ∈ C∞(Rn) | sup
Rn

|xα∂βϕ| <∞ for all multiindices α, β}.

We say
ϕj → ϕ in S

provided
sup
Rn

|xαDβ(ϕj − ϕ)| → 0

for all multiindices α, β

We write S ′ = S ′(Rn) for the space of tempered distributions, which
is the dual of S = S(Rn). That is, u ∈ S ′ provided u : S → C is linear
and ϕj → ϕ in S implies u(ϕj) → u(ϕ).

We say
uj → u in S ′

provided
uj(ϕ) → u(ϕ) for all ϕ ∈ S.

A.4 OPERATORS.

A∗ = adjoint of the operator A

Commutator: [A,B] = AB −BA

σ(A) = symbol of the pseudodifferential operator A

spec(A) = spectrum of A.

tr(A) = trace of the A.

We say that the operator B is of trace class if

tr(B) :=
∑

µj <∞,

where the µ2
j are the eigenvalues of B∗B.

• If A : X → Y is a bounded linear operator, we define the operator
norm

‖A‖ := sup{‖Au‖Y | ‖u‖X ≤ 1}.
We will often write this norm as

‖A‖X→Y

when we want to emphasize the spaces between which A maps.
The space of bounded operators is denoted by B(X, Y ), and when

X = Y , by B(X).
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A.5 ESTIMATES.

• We write

f = O(h∞) as h→ 0

if for each positive integer N there exists a constant CN such that

|f | ≤ CNh
N for all 0 < h ≤ 1.

• If A is a bounded linear operator between the spaces X, Y , we will
often write

A = O(hN)X→Y

to mean

‖A‖X→Y = O(hN).

A.6. SYMBOL CLASSES.

We record from Chapter 4 the various definitions of classes for sym-
bols a = a(x, ξ, h).

• Given an order function m on R2n, we define the corresponding
class of symbols:

S(m) := {a ∈ C∞ | for each multiindex α

there exists a constant Cα so that |∂αa| ≤ Cαm}.

• We as well define

Sk(m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−km for all multiindices α}

and

Skδ (m) := {a ∈ C∞ | |∂αa| ≤ Cαh
−δ|α|−km for all multiindices α}.

The index k indicates how singular is the symbol a as h → 0; the
index δ allows for increasing singularity of the derivatives of a.

• Write also

S−∞(m) := {a ∈ C∞ | for each α and N , |∂αa| ≤ Cα,Nh
Nm}.

So if a is a symbol in S−∞(m), then a and all of its derivatives are
O(h∞) as h→ 0.

• If the order function is the constant function m ≡ 1, we will usually
not write it:

Sk := Sk(1), Skδ = Skδ (1).
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• We will also omit zero superscripts:

S := S0 = S0(1)

= {a ∈ C∞(R2n) | |∂αa| ≤ Cα for all multiindices α}.

A.7 PSEUDODIFFERENTIAL OPERATORS.
The following terminology is from Appendix D.

• A linear operator A : C∞(M) → C∞(M) is called a pseudodiffer-
ential operator if there exist integers m, k such that for each coordinate
patch Uκ, and there exists a symbol aκ ∈ Sk(〈ξ〉m) such that for any
ϕ, ψ ∈ C∞

c (Uκ)

ϕA(ψu) = ϕκ∗awκ(x, hD)(κ−1)∗(ψu)

for each u ∈ C∞(M).
• We write

A ∈ Ψm,k(M)

and also put

Ψk(M) := Ψ0,k(M), Ψ(M) := Ψ0,0(M).
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Appendix B. Functional analysis

Henceforth H denotes a complex Hilbert space, with inner product
〈·, ·〉.

THEOREM B.1 (Spectrum of self-adjoint operators). Suppose
A : H → H is a bounded self-adjoint operator. Then

(i) (A − λ)−1 exists and is a bounded linear operator on H for λ ∈
C− spec(A), where spec(A) ⊂ R is the spectrum of A.

(ii) If spec(A) ⊆ [a,∞), then

(B.1) 〈Au, u〉 ≥ a‖u‖2 (u ∈ A).

THEOREM B.2 (Approximate inverses). Let X,Y be Banach
spaces and suppose A : X → Y is a bounded linear operator. Suppose
there exist bounded linear operators B1, B2 : Y → X such that

(B.2)

{
AB1 = I +R1 on Y

B2A = I +R2 on X,

where

‖R1‖ < 1, ‖R2‖ < 1.

Then A is invertible.

Proof. The operator I +R1 is invertible, with

(I +R1)
−1 =

∞∑
k=0

(−1)kRk
1 ,

this series converging since ‖R1‖ < 1. Hence

AC1 = I for C1 := B1(I +R1)
−1.

Likewise,

(I +R2)
−1 =

∞∑
k=0

(−1)kRk
2 ;

and

C2A = I for C2 := (I +R2)
−1B2.

So A has a left and a right inverse, and is consequently invertible, with
A−1 = C1 = C2. �
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THEOREM B.3 (Minimax and maximin principles). Suppose
A : H → H is bounded linear and is self-adjoint: A = A∗. Denote by
λ1 ≤ λ2 ≤ λ3 . . . be the (real) eigenvalues of A. Then

(B.3) λj = min
V⊆H

dim V≤j

max
v∈V
v 6=0

〈Av, v〉
‖v‖2

.

and

(B.4) λj = max
V⊆H

codim V≤j

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

.

In these formulas, V denotes a linear subspace of H.

DEFINITIONS. (i) Let Q : H → H be a bounded linear operator.
We define the rank of Q to be the dimension of the range Q(H).

(ii)If A is an operator with real and discrete specrum, we set

N(λ) := #{λj | λj ≤ λ}

THEOREM B.4 (Estimating N(λ)). (i) If

(B.5)


for each δ > 0, there exists an operator Q,

with rank Q ≤ k, such that

〈Au, u〉 ≥ (λ− δ)‖u‖2 − 〈Qu, u〉 for u ∈ H,

then

N(λ) ≤ k.

(ii) If

(B.6)


for each δ > 0, there exists a subspace V

with dimV ≥ k, such that

〈Au, u〉 ≤ (λ+ δ)‖u‖2 for u ∈ V,

then

N(λ) ≥ k.
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Proof. 1. Set W := Q(H)T . Thus codim W = rank Q ≤ k. Therefore
the maximin formula (B.3) implies

λk = max
V⊆H

codim V≤k

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

≥ min
v∈W
v 6=0

〈Av, v〉
‖v‖2

= min
v∈W
v 6=0

(
λ− δ − 〈Qv, v〉

‖v‖2

)
= λ− δ,

since 〈Qv, v〉 = 0 if v ∈ Q(H)T . Hence λ ≤ λk + δ. This is valid for all
δ > 0, and so

N(λ) = max{j | λj ≤ λ} ≤ k.

This proves assertion (i).

2. The minimax formula (B.2) directly implies that

λk ≤ max
v∈V
v 6=0

〈Av, v〉
‖v‖2

≤ λ+ δ.

Hence λk ≤ λ+ δ. This is valid for all δ > 0, and so

N(λ) = max{j | λj ≤ λ} ≥ k.

This is assertion (ii).
�

LEMMA B.5 (Norms of powers of operators). Let A ∈ L(E,F ).
Then

‖A‖2m = ‖(A∗A)m‖.

THEOREM B.6 (Cotlar–Stein Theorem). Let E,F be Hilbert
spaces and Aj ∈ L(E,F ) for j = 1, . . . . Assume

sup
j

∞∑
k=1

‖A∗
jAk‖1/2 ≤ C, sup

j

∞∑
k=1

‖AjA∗
k‖1/2 ≤ C.

Then the series

A :=
∞∑
j=1

Aj converges in L(E,F ).

and

‖A‖ ≤ C.
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Proof. 1. According to the previous lemma,

‖A‖2m = ‖(A∗A)m‖.
Also

(A∗A)m =
∞∑

j1,...,j2m=1

A∗
j1
Aj2 . . . A

∗
j2m−1

Aj2m

=:
∑

j1,...,j2m

aj1,...,j2m .

Now

‖aj1,...,j2m‖ ≤ ‖A∗
j1
Aj2‖‖A∗

j3
Aj4‖ . . . ‖A∗

j2m−1
Aj2m‖,

and also

‖aj1,...,j2m‖ ≤ ‖Aj1‖‖Aj2A∗
j3
‖ . . . ‖Aj2m−2A

∗
j2m−1

‖‖Aj2m‖.
Multiply these estimates and take square roots:

‖aj1,...,j2m‖ ≤ C‖A∗
j1
Aj2‖1/2‖Aj2A∗

jm‖
1/2 . . . ‖A∗

j2m−1
Aj2m‖1/2.

Consequently,

‖A‖2m = ‖(A∗A)m‖ ≤
∞∑

j1,...,j2m=1

‖aj1,...,j2m‖

≤ C
∞∑

j1,...,j2m=1

‖Aj1A∗
j2
‖1/2 . . . ‖A∗

j2m−1
Aj2m‖1/2

≤ CC2m.

Hence

‖A‖ ≤ C
2m+1
2m → C as m→∞.

2. Now take u ∈ E, and suppose u = A∗
kv for some k. Then∥∥∥∥∥

∞∑
j=1

Aju

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
j=1

AjA
∗
kv

∥∥∥∥∥
≤

∞∑
j=1

‖AjA∗
k‖1/2‖AjA∗

k‖1/2‖v‖

≤ C2‖v‖.
Thus

∑∞
j=1Aju converges for u ∈ Σ := span{A∗

k(E) | k = 1, . . . , n}
and so also for u ∈ Σ̄. If u is orthogonal to Σ̄, then u ∈ ker(Ak) for all
k; in which case

∑∞
j=1Aju = 0. �
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THEOREM B.7 (Inverse Function Theorem). Let X, Y denote
Banach spaces and assume

f : X → Y

is C1. Select a point x0 ∈ X and write y0 := f(x0).
(i) (Right inverse) If there exists A ∈ L(Y,X) such that

∂f(x0)A = I,

then there exists g ∈ C1(Y,X) such that

f ◦ g = I near y0.

(ii) (Left inverse) If there exists B ∈ L(Y,X) such that

B∂f(x0) = I,

then there exists g ∈ C1(Y,X) such that

g ◦ f = I near x0.

THEOREM B.8 (Schwartz Kernel Theorem). Let A : S → S ′
be a continuous linear operator.

Then there exists a distribution KA ∈ S ′(Rn × Rn) such that

(B.7) Au(x) =

∫
Rn

KA(x, y)u(y) dy

for all u ∈ S.

We call KA the kernel of A.

THEOREM B.9 (Lidskii’s Theorem). Suppose that B is an oper-

ator of trace class on L2(M,Ω
1
2 (M)), given by the integral kernel

K ∈ C∞(M ×M ; Ω
1
2 (M ×M)).

Then K∆, the restriction to the diagonal ∆ := {(m,m) : m ∈ M},
has a well-defined density; and

(B.8) tr B =

∫
∆

K∆.

We will also use the following general result of Keel-Tao [K-T]:
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THEOREM B.10 (Abstract Strichartz estimates). Let (X,M, µ)
be a σ-finite measure space, and let U ∈ L∞(R,B(L2(X,µ)) satisfy

‖U(t)‖B(L2(X)) ≤ A , t ∈ R ,

‖U(t)U(s)∗f‖L∞(X,µ) ≤ Ah−µ|t− s|−σ‖f‖L1(X,µ) , t, s ∈ R ,
(B.9)

where A, σ, µ > 0 are fixed.
The for every pair p, q satisfying

2

p
+

2σ

q
= σ , 2 ≤ p ≤ ∞ , 1 ≤ q ≤ ∞ , (p, q) 6= (2,∞) ,

we have

(B.10)

(∫
R
‖U(t)f‖pLq(X,µ)dt

) 1
p

≤ Bh−
µ
pσ ‖f‖L2(X,µ) .

We should stress that in the application to bounds on approximate
solution (Section 10.3) we only use the “interior” exponent p = q which
does not require the full power of [K-T] – see [S]. For the reader’s
convenience we present the proof of that case.

Proof of the case p = q: 1. A rescaling in time easily reduces the
estimate to the case h = 1.

2. The estimate we want reads

(B.11) ‖U(t)f‖Lp(Rt×X) ≤ B‖f‖L2(X) ,
1

p
=

σ

2(1 + σ)
.

Let p′ denote the exponent dual to p: 1/p+ 1/p′ = 1. Then, since Lp
′

is dual to Lp, (B.11) is equivalent to∫
R×X

U(t)f(x) G(t, x) dµ(x)dt ≤ ‖f‖L2(X)‖G‖Lp′ (R×X) ,

for all G ∈ Lp′(R×X), and that in turn means that

‖
∫

R
U(t)∗G(t)dt‖L2(X) ≤ C‖G‖Lp′ (R×X) ,

or in other words that

(B.12) T : Lp
′
(R×X) −→ L2(X) , TG(x) :=

∫
R
U(t)∗G(t, x)dt .

3. We note that T ∗f(s, x) := U(s)f(x), and that the mapping prop-
erty (B.12) is equivalent to

〈T ∗TG, F 〉L2(R×X) ≤ C‖G‖Lp′ (R×X)‖F‖Lp′ (R×X) ,
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which is the same as∣∣∣∣∫
R

∫
R
〈U(t)∗G(t), U(s)∗F (s)〉 dtds

∣∣∣∣
≤ C‖G‖Lp′ (R×X)‖F‖Lp′ (R×X) .

(B.13)

4. The two fixed time estimates provided by the hypothesis (B.9)
give:

|〈U(t)∗G(t), U(s)∗F (s)〉|L2(X) ≤ A2‖G(t)‖L2(X)‖F (s)‖L2(X) ,

〈U(t)∗G(t), U(s)∗F (s)〉L2(X) ≤ A|t− s|−σ‖G(t)‖L1(X)‖F (s)‖L1(X) .

(B.14)

Real interpolation between the estimates (B.14) gives

|〈U(t)∗G(t), U(s)∗F (s)〉|
≤ A3−2/p′|t− s|−σ(2/p′−1)‖G(t)‖Lp′ (X)‖F (s)‖Lp′ (X) ,

(B.15)

1 ≤ p′ ≤ 2.

5. We now need to use the Hardy-Littlewood-Sobolev inequality
which says that if Ka(t) = |t|−1/a and 1 < a <∞ then

‖Ka ∗ u‖Lr(R) ≤ C‖u‖Lp′ (R) ,

1

p
+

1

r
=

1

a
, 1 < p′ < r ,

(B.16)

see [H1, Theorem 4.5.3]. To obtain (B.13) from (B.15) we apply (B.16)
with

1

a
= σ

(
2

p′
− 1

)
,

1

p
+

1

r
=

1

a
, p = r ,

which has a unique solution

p =
2(1 + σ)

σ
,

completing the proof. �
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Appendix C. Differential forms

NOTATION.
(i) If x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), then dxj, dξj ∈ (R2n)∗ satisfy

dxj(u) = dxj(x, ξ) = xj

dξj(u) = dξj(x, ξ) = ξj.

(ii) If α, β ∈ (R2n)∗, then

(α ∧ β)(u, v) := α(u)β(v)− α(v)β(u)

for u, v ∈ R2n.

(iii) If f : Rn → R, the differential of f , is the 1-form

df =
n∑
j=1

∂f

∂xi
dxi.

DEFINITION. If η is a 2-form and V a vector field, then the con-
traction of η by V , denoted

V η,

is the 1-form defined by

(V η)(u) = η(V, u).

DEFINITIONS. Let κ : Rn → Rn be a smooth mapping.
(i) If V is a vector field on Rn, the push-forward is

κ∗V = ∂κ(V ).

(ii) If η is a 1-form on Rn, the pull-back is

(κ∗η)(u) = η(κ∗u).

THEOREM C.1 (Differentials and pull-backs). We have

(C.1) d(κ∗f) = κ∗(df).

Proof. First of all, d(κ∗f) = d(κ(f)) =
∑n

j=1
∂yi

∂xj

∂f
∂yi
dxj. Furthermore,

κ∗(df) = κ∗

(
n∑
i=1

∂f

∂yi
dyi

)
=

n∑
i=1

∂f

∂yi
κ∗(dyi).

�
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DEFINITION. If V is a vector field generating the flow ϕt, then the
Lie derivative of w is

LVw :=
d

dt
((ϕt)

∗w)|t=0.

Here w denotes a function, a vector field or a form.

EXAMPLE S. (i) If f is a function,

LV f = V (f).

(ii) If W is a vector field

LVW = [V,W ].

THEOREM C.2 (Cartan’s formula). If w is a differential form,

(C.2) LVw = d(V w) + (V dw).

THEOREM C.3 (Poincaré’s Lemma). If α is a k-form defined in
the open ball U = B0(0, R) and if

dα = 0,

then there exists a (k − 1) form ω in U such that

dω = α.

Proof. 1. Let Ωk(U) denote the space of k-forms on U . We will build
a linear mapping

H : Ωk(U) → Ωk−1(U)

such that

(C.3) d ◦H +H ◦ d = I.

Then
d(Hα) +Hdα = α

and so dω = α for ω := Hα.

2. Define A : Ωk(U) → Ωk(U) by

A(fdxi1 ∧ · · · ∧ dxik) =

(∫ 1

0

tk−1f(tp) dt

)
dxi1 ∧ · · · ∧ dxik .

Set

X := 〈x, ∂x〉 =
n∑
j=1

xj
∂

∂xj
.
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We claim

(C.4) ALX = I on Ωk(U).

and

(C.5) d ◦ A = A ◦ d.

Assuming these assertions, define

H := A ◦X .

By Cartan’s formula, Theorem C.2,

LX = d ◦ (X ) +X ◦d.

Thus

I = ALX = A ◦ d ◦ (X ) + A ◦X ◦d
= d(A ◦X ) + (A ◦X ) ◦ d
= d ◦H +H ◦ d;

and this proves (C.3).

3. To prove (C.4), we compute

ALX(fdxi1 ∧ · · · ∧ dxi2)

= A

[(
kf +

n∑
j=1

xj
∂f

∂xj

)
(dxi1 ∧ · · · ∧ dxik)

]

=

∫ 1

0

ktk−1f(tp) +
n∑
j=1

tk−1xj
∂f

∂xj
(tp)

dtdxi1 ∧ · · · ∧ dxik

=

∫ 1

0

d

dt
(tkf(tp)) dtdxi1 ∧ · · · ∧ dxik

= fdxi1 ∧ · · · ∧ dxik .
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4. To verify (C.5), note

A ◦ d(fdxi1 ∧ · · · ∧ dxik)

= A

(
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

)

=

(∫ 1

0

tk−1

n∑
j=1

∂f

∂xj
(tp)dxjdt

)
dxi1 ∧ · · · ∧ dxik

= d

((∫ 1

0

tk−1f(tp)dt

)
dxi1 ∧ · · · ∧ dxik

)
= d ◦ A(fdxi1 ∧ · · · ∧ dxik).

�
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Appendix D. Symbol calculus on manifolds

D.1 Definitions. For reader’s convenience we provide here some basic
definitions.

DEFINITION. An n-dimensional manifold M is a Hausdorff topo-
logical space with a countable basis, each point of which has a neigh-
bourhood homeomorphic to some open set in Rn.

We say that M is a smooth (or C∞) manifold if there exists a family
F of homeomorphisms between open sets:

κ : Uκ −→ Vκ, Uκ ⊂M, Vκ ⊂ Rn,

satisfying the following properties:

(i)(Smooth overlaps) If κ1,κ2 ∈ F then

κ2 ◦ κ−1
1 ∈ C∞(Vκ2 ∩ Vκ1 ;Vκ1 ∩ Vκ2).

(ii)(Covering) The open sets Uκ cover M :⋃
κ∈F

Uκ = M.

(iii) (Maximality) Let λ be a homeomorphism of an open set Uλ ⊂M
onto an open set Vλ ⊂ Rn. If for all κ ∈ F ,

κ ◦ λ−1 ∈ C∞(Vλ ∩ Vκ;Vλ ∩ Vκ),

then λ ∈ F .

We call {(κ, Uκ) | κ ∈ F} an atlas for M . The open set Uκ ⊂ M is
a coordinate patch.

DEFINITION. A C∞ complex vector bundle over M with fiber di-
mension N consists of

(i) a C∞ manifold V ,

(ii) a C∞ map π : V → M , defining the fibers Vx := π−1({x}) for
x ∈M , and

(iii) local isomorphisms

V ⊃ π−1(Y )
ψ−→ Y × CN ,

ψ(Vx) = {x} × CN , ψ|Vx ∈ GL(N,C),
(D.1)

where GL(N,C) is the group of invertible linear transformations on
CN .



196

REMARKS. (i) We can choose a covering {Xi}i∈I of M such that for
each index i there exists

ψi : π−1(Xi) → Xi × CN

with the properties listed in (iii) in the definition of a vector bundle.
Then

gij := ψi ◦ ψ−1
j ∈ C∞(Xi ∩Xj;GL(N,C)) .

These maps are the transition matrices.

(ii) It is important to observe that we can recover the vector bundle
V from the transition matrices. To see this, suppose that we are given
functions gij satisfying the identities{

gij(x) ◦ gji(x) = I for x ∈ Xi ∩Xj,

gij(x) ◦ gjk(x) ◦ gkj(x) = I, for x ∈ Xi ∩Xj ∩Xk.

Now form the set V ′ ⊂ I × M × CN , with the equivalence relation
(i, x, t) ∼ (i′, x′, t′) if and only if x = x′ and t′ = gi′i(x)t. Then

V = V ′/ ∼ .

�

DEFINITION. A section of the vector bundle V is a smooth map

u : M → V

such that
π ◦ u(x) = x (x ∈M).

We write
u ∈ C∞(M,V ).

EXAMPLE 1: Tangent bundle. Let M be a C∞ manifold and let
N be the dimension of M . We define the tangent bundle of M , denoted

T (M),

by defining the transition functions

gκiκj
(x) := ∂(κi ◦ κ−1

j )(x) ∈ GL(n,R).

for x ∈ Uκi
∩Uκj

. Its sections C∞(M,T (M)) are the smooth vectorfields
on M . �

EXAMPLE 2: Cotangent bundle. For any vector bundle we can
define its dual,

V ∗ :=
⋃
x∈X

(Vx)
∗,
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since we can take

gκiκj
= (g∗κiκj

)−1.

If V = T (M), we obtain the cotangent bundle, denoted

T ∗(M).

Its sections C∞(M,T ∗(M)) are the differential one-forms on M . �

EXAMPLE 3: S-density bundles. Let M be an n-dimensional
manifold and let (Uκ,κα) form a set of coordinate patches of X.

We define the s-density bundle over X, denoted

Ωs(M),

by choosing the following transition functions:

gκiκj
(x) := | det ∂(κi ◦ κ−1

j )|s ◦ κj(x),

for x ∈ Uκi
∩ Uκj

.
This is a line bundle over M , that is, a bundle with with fibers of

complex dimension one. �

D.2 Pseudodifferential operators on manifolds.

Pseudodifferential operators. In this section M denotes a smooth,
n-dimensional compact Riemannian manifold without boundary. As
above, we have {(κ, Uκ) | κ ∈ F} for the atlas of M , where each κ is a
smooth diffeomorphism of the coordinate patch Uκ ⊂M onto an open
subset Vκ ⊂ Rn.

NOTATION. Recall that

Sk(〈ξ〉m) = {a ∈ C∞(R2n) | sup
R2n

|∂αa| ≤ Cαh
−k〈ξ〉m}.

The index k records how singular the symbol a is as h → 0, and m
controls the growth rate as |ξ| → ∞.

DEFINITION. A linear operator

A : C∞(M) → C∞(M)

is called a pseudodifferential operator if there exist integers m, k such
that for each coordinate patch Uκ, there exists a symbol aκ ∈ Sk(〈ξ〉m)
such that for any ϕ, ψ ∈ C∞

c (Uκ) and for each u ∈ C∞(M)

(D.2) ϕA(ψu) = ϕκ∗awκ(x, hD)(κ−1)∗(ψu).
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NOTATION. (i) In this case, we write

A ∈ Ψm,k(M),

and sometimes call A a quantum observable.

(ii) To simplify notation, we also put

Ψk(M) := Ψ0,k(M), Ψ(M) := Ψ0,0(M).

The symbol of a pseudodifferential operator. Our goal is to
associate with a pseudodifferential operator A a symbol a defined on
T ∗M , the cotangent space of M .

LEMMA D.1 (More on disjoint support). Let b ∈ Sk(〈ξ〉m) and
suppose ϕ, ψ ∈ C∞

c (Rn). If

(D.3) spt(ϕ) ∩ spt(ψ) = ∅,

then

(D.4) ‖ϕbw(x, hD)ψ‖H−m→Hm = O(h∞)

for each m.

Proof. We have

ϕbw(x, hD)ψ(x)

=
1

(2πh)n

∫
Rn

∫
Rn

b

(
x+ y

2
, ξ

)
ψ(y)ϕ(x)e

i〈x−y,ξ〉
h dxdξ

=
1

(2πh)n

∫
Rn

∫
Rn

b

(
x+ y

2
, ξ

)
ψ(y)ϕ(x)

|x− y|m
|x− y|me

i〈x−y,ξ〉
h dydξ.

Since sptϕ ∩ sptψ = ∅, we see that |x − y| ≥ d > 0 for x ∈ sptϕ,
y ∈ sptψ. Furthermore

(x− y)αe
i〈x−y,ξ〉

h = h|α|Dα
ξ e

i〈x−y,ξ〉
h .

Integrating by parts, we deduce that

|ϕbwψ| ≤ Chm−n

for all m. �
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THEOREM D.2 (Symbol of a pseudodifferential operator).
There exist linear maps

(D.5) σ : Ψm,k(M) → Sm,k/Sm,k−1(T ∗M)

and

(D.6) Op : Sm,k(T ∗M) → Ψm,k(M)

such that

(D.7) σ(A1A2) = σ(A1)σ(A2)

and

(D.8) σ(Op(a)) = [a] ∈ Sm,k/Sm,k−1(T ∗M).

We call a = σ(A) the symbol of the pseudodifferential operator A.

REMARK. In the identity (D.8) “[a]” denotes the equivalence class
of a in Sm,k/Sm,k−1(T ∗M). This means that

[a] = [â] if and only if a− â ∈ Sm,k−1(T ∗M).

The symbol is therefore uniquely defined in Sm,k, up to a lower order
term which is less singular as h→ 0. �

Proof. 1. Let U be an open subset of R. Suppose that B : C∞
c (U) →

C∞(U) and that for all ϕ, ψ ∈ C∞ the mapping u 7−→ ϕBψu belongs
to Ψm,k(Rn), for all u ∈ S.

We claim that there then exists a symbol a ∈ Skloc(U, 〈ξ〉m) such that

(D.9) B = a(x,D) +B0,

where for all m

(D.10) B0 : H−m
c (U) → Hm

loc(U) is O(h∞).

To see this, first choose a locally finite partition of unity {ψj}j∈J ⊂
C∞

c (U): ∑
j∈J

ψj(x) ≡ 1 (x ∈ U).

Then
ψjBψk = awjk(x, hD),

where ajk ∈ Sk(〈ξ〉) and ajk(x, ξ) = 0 if x /∈ sptψj. Now put

a :=
∑
j,k

′
ajk(x, ξ) ∈ Skloc(〈ξ〉m),

where we are sum over those indices j, k’s for which sptψj ∩ sptψk 6= ∅.
This sum is consequently locally finite.
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2. We must next verify (D.10) for

B0 := B − a(x, hD) =
∑
j,k

′′
ψjBψk,

the sum over j, k’s for which

sptψj ∩ sptψk = ∅.

Let KB(x, y) be the Schwartz kernel of B. Then the Schwartz kernel
of B0 is

(D.11) KB0(x, y) =
∑
j,k

′′
ψj(x)KB(x, y)ψk(y),

with the sum locally finite in U × U . The operators ψjBψk satisfy
the assumptions of Lemma 7.4, and hence have the desired mapping
property. Because of the local finiteness of (D.11) we get the global
mapping property from H−m

loc to Hm
loc.

3. For each coordinate chart (κ, Uκ), where κ : Uκ → Vκ, we can now
use (D.9) with X = Vκ and B = (κ−1)∗Aκ∗, to define aκ ∈ T ∗(Uκ).

The second part of Theorem 8.1 shows that if Uκ1 ∩ Uκ2 6= ∅, then

(D.12) (aκ1 − aκ2)|Uκ1∩Uκ2
∈ Sk−1(T ∗(Uκ1 ∩ Uκ2), 〈ξ〉m).

Suppose now that we choose a covering of M by coordinate charts,
{Uα}α∈J , and a locally finite partition of unity {ϕα}α∈J :

sptϕα ⊂ Uκ,
∑
α∈J

ϕj(x) ≡ 1,

and define

a :=
∑
α∈J

ϕαaα.

We see from (D.12) that a ∈ Sk(T ∗M, 〈ξ〉m) is invariantly defined up
to terms in Sk−1(T ∗M, 〈ξ〉m). We consequently can define

σ(A) := [a] ∈ Sk(T ∗M, 〈ξ〉m)/Sk−1(T ∗M, 〈ξ〉m).

4. It remains to show the existence of

Op : Sk(T ∗M, 〈ξ〉m) −→ Ψm,k(M), σ(Op(a)) = [a].

Suppose that for our covering of M by coordinate charts, {Uα}α∈J , we
choose {ψα}α∈J such that

sptψα ⊂ Uκ,
∑
α∈J

ψ2
j (x) ≡ 1,
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a sum which is locally finite. Define

A :=
∑
α∈J

ψακ
∗
αOp(ãα)(κ

−1
α )∗ψα,

where ãα(x, ξ) := a(κ−1
α (x), (∂κ(x)T )−1ξ). Theorem 8.1 demonstrates

that σ(A) equals [a]. �

Pseudodifferential operators acting on half-densities. We now
apply the full strength of Theorem 8.1 by making the pseudodifferential
operators act on half-densities.

DEFINITION. A linear operator

A : C∞(M,Ω
1
2 (M)) → C∞(M,Ω

1
2 (M))

is called a pseudodifferential operator on half-densities if there exist
integers m, k such that for each coordinate patch Uα, and there exists
a symbol aα ∈ Sk(〈ξ〉m) such that for any ϕ, ψ ∈ C∞

c (Uκ)

(D.13) ϕA(ψu) = ϕκ∗
αa

w
α(x, hD)(κ−1

α )∗(ψu)

for each u ∈ C∞(M,Ω
1
2 (M)).

NOTATION. In this case, we write

A ∈ Ψm,k(M,Ω
1
2 (M)).

By adapting the proof of Theorem D.2 to the case of half-densities
using the first part of Theorem 8.1 we obtain

THEOREM D.3 (Symbol on half-densities). There exist linear
maps

(D.14) σ : Ψm,k(M,Ω1/2(M)) → Sm,k/Sm,k−2(T ∗M)

and

(D.15) Op : Sm,k(T ∗M) → Ψm,k(M,Ω1/2(M)))

such that

(D.16) σ(A1A2) = σ(A1)σ(A2)

and

(D.17) σ(Op(a)) = [a] ∈ Sm,k/Sm,k−2(T ∗M) .
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D.3 PDE on manifolds.

We revisit in this last section some of our theory from Chapters 5–7,
replacing the flat spaces Rn and Tn by an arbitrary compact Riemann-
ian manifold (M, g), for the metric

g :=
n∑

i,j=1

gijdxidxj.

Write
((gij)) := ((gij))

−1, ḡ := det((gij)).

D.3.1 Notation.

Tangent, cotangent bundles. We can use the metric to build an
identification of the tangent and cotangent bundles of M . We identify

ξ ∈ T ∗xM with X ∈ TxM,

written ξ ∼ X, provided

ξ(Y ) = gx(Y,X)

for all Y ∈ TxM .

Flows. Under the identification X ∼ ξ, the flow of Hp on T ∗M ,
generated by the symbol

(D.18) p := |ξ|2g =
n∑

i,j=1

gijξiξj =
n∑

i,j=1

gijXiXj = g(X,X),

is the geodesic flow on TM .

Laplace-Beltrami operator. The Laplace-Beltrami operator ∆g on
M is defined in local coordinates by

(D.19) ∆g :=
1√
ḡ

n∑
i,j=1

∂

∂xj

(
gij
√
ḡ
∂

∂xj

)
.

The function p defined by (D.18) is the symbol of the Laplace-
Beltrami operator −h2∆g.

PDE on manifolds. Given then a potential V ∈ C∞(M), we can
define the Schrödinger operator

(D.20) P (h) := −h2∆g + V (x).

The flat wave equation from Chapter 5 is replaced by an equation
involving the Laplace-Beltrami operator:

(D.21) (∂2
t + a(x)∂t −∆g)u = 0.



203

The unknown u is a function of x ∈M and t ∈ R.

Half-densities. Half-densities on M can be identified with functions
using the Riemannian density:

u = u(x)|dx|
1
2 = ũ(x)

(
ḡ

1
2dx
) 1

2
.

D.3.2 Damped wave equation on manifolds. We consider this
initial-value problem for the wave equation:

(D.22)

{
(∂2
t + a(x)∂t −∆)u = 0 on M × R
u = 0, ut = f on M × {t = 0},

where a ≥ 0; and, as in Chapter 6, define the energy of a solution at
time t to be

E(t) :=
1

2

∫
M

(∂tu)
2 + |∂xu|2 dx.

It is then straightforward to adapt the proofs in §5.3 to establish

THEOREM D.4 (Exponential decay on manifold). Suppose u
solves the wave equation with damping (D.21), with the initial condi-
tions

Assume also that there exists a time T > 0 such that each geodesic
of length greater than or equal to T intersects the set {a > 0}.

Then there exist constants C, β > 0 such that

(D.23) E(t) ≤ Ce−βt‖f‖L2

for all times t ≥ 0.

D.3.3 Weyl’s Law for compact manifolds. More work is needed
to generalize Weyl’s Law from Chapter 6 to manifolds. We will prove
it using a different approach, based on the Spectral Theorem.

First, we need to check that the spectrum is discrete and that follows
from the compactness of the resolvent:

LEMMA D.5 (Resolvent on manifold). If P is defined by (D.20),
then

(P + i)−1 = O(1) : L2(M) → H2
h(M) ,

where the semiclassical Sobolev spaces are defined as in §7.1.
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We prove this by the same method as that for Lemma 7.1.

Eigenvalues and eigenfunctions. According to Riesz’s Theorem on
the discreteness of the spectrum of a compact operator, we conclude
that the spectrum of (P + i)−1 is discrete, with an accumulation point
at 0.

Hence we can write

(D.24) P (h) =
∞∑
j=1

Ej(h)uj(h)⊗ uj(h),

where {uj(h)}∞j=1 is an orthonormal set of all eigenfunctions of P (h):

P (h)uj(h) = Ej(h)uj(h), 〈uk(h), ul(h)〉 = δlk,

and

Ej(h) →∞.

THEOREM D.6 (Functional calculus). Suppose that f is a holo-
morphic function, such that for |Imz| ≤ 2 and any N :

f(z) = O(〈z〉−N).

Define

f(P ) :=

1

2πi

∫
R
(t− i− P )−1f(t− i)− (t+ i− P )−1f(t+ i) dt.

(D.25)

Then f(P ) ∈ Ψ−∞(M), with

σ(f(P )) = f(|ξ|2g + V (x)).

Furthermore,

(D.26) f(P ) =
∞∑
j=1

f(Ej(h))uj(h)⊗ uj(h)

in L2.

Proof. 1. The statement (D.26) follows from (D.24), which shows that

(P − z)−1 =
∞∑
j=1

uj ⊗ uj
Ej(h)− z

.
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Since f decays rapidly as t → ∞, we can compute residues in (D.25)
to conclude that

f(Ej(h)) =

1

2πi

∫
R

(
(t− i− Ej(h))

−1f(t− i)− (t+ i− Ej(h))
−1f(t+ i)

)
dt.

2. We now use Beals’s Theorem 8.9, to deduce that f(P ) is a pseu-
dodifferential operator. As discussed in Appendix E all we need to
show is that for ϕ, ψ ∈ C∞

0 (M), with supports in arbitrary coordinate
patches, ϕf(P )ψ is a pseudodifferential operator. As described there it
can be considered as an operator on Rn and, by Theorem 8.9, it suffices
to check that for any linear `j(x, ξ) we have

‖ad`1(x,hD) ◦ · ◦ ad`N (x,hD)f(P )‖L2→L2 = O(hN) .

To show this, note that according to Lemma D.5,

‖(P − t± i)−1(adL1 ◦ · · · ◦ adLk
P (P − t± i)−1‖L2→L2 = O(hk) ,

where Lj ∈ Ψ0,0(M). Now for a linear function ` on R2n,

ad`(x,hD)(ϕ(P−t±i)−1ψ) = −(P−t±i)−1(adLP )(P−t±i)−1+OL2→L2(h) ,

where L ∈ Ψ0,0(M). The rapid decay of f gives

‖adL

∫
R
f(t)(t± i− P )−1dt‖ ≤∫

R
|f(t)|‖(P − t± i)−1adLP (P − t± i)−1‖L2→L2dt = O(h) ,

and this argument can be easily iterated.

3. Since

Op(|ξ|2g + V (x)− t± i)−1)(P − t± i) = I +OL2→L2(h),

it follows that

Op(|ξ|2g + V (x)− t± i)−1) = (P − t± i)−1 +OL2→L2(h).

Hence the symbol of (P + t ± i)−1 (which we already know is a
pseudodifferential operator) is given by (|ξ|2g + V (x)− t± i)−1.

A residue calculation now shows us that

f(P ) = Op(f(|ξ|2g + V (x)− t± i)) +OL2→L2(h);

that is, the symbol of f(P ) is f(|ξ|2g + V (x)). �



206

THEOREM D.7 (Weyl’s asymptotics on compact manifolds).
For any a < b, we have

#{E(h) | a ≤ E(h) ≤ b} =

1

(2πh)n
(VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b}+ o(1))

(D.27)

as h→ 0.

Proof. 1. Let f1, f2 be two functions satisfying the assumptions of
Theorem D.6 such that for real x

(D.28) f1(x) ≤ 1[a,b](x) ≤ f2(x),

where 1[a,b](x) is the characteristic function of the interval [a, b].
It follows that

trf1(P ) ≤ #{E(h) | a ≤ E(h) ≤ b} ≤ trf2(P ) .

2. Theorem B.9 now shows that for j = 1, 2

trfj(P ) =
1

(2πh)n

(∫
T ∗M

fj(|ξ|2g + V (x))dxdξ +O(h)

)
.

We note that since fj(P ) ∈ Ψ−∞(M), the errors in the symbolic com-
putations are all O(h〈ξ〉−∞), and hence can be integrated.

3. The final step is to construct f ε1 and f ε2 satisfying the hypotheses of
Theorem D.6 and (D.28), and such that for j = 1, 2, we have∫

T ∗M

f εj (|ξ|2g + V (x))dxdξ → VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b},

as ε→ 0. This is done as follows. Define

χε1 := (1− ε)1[a+ε,b−ε]− ε(1[a−ε,a+ε] + 1[b−ε,b+ε]) , χε2 := (1 + ε)1[a−ε,b+ε] ,

and then put

f εj (z) :=
1

2πε

∫
R
χεj(x) exp

(
−(x− z)2

2ε2

)
dx.

We easily check that all the assumptions are satisfied. �

REMARKS. (i) If V ≡ 0, we recover the leading term in the usual
Weyl asymptotics of the Laplacian on a compact manifold: let 0 =
λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ be the complete set of eigenvalues of
−∆g on M . Then

(D.29) #{j : λj ≤ r} ∼ Vol(BRn(0, 1))

(2π)n
Vol(M)rn/2 , r →∞ .
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In fact, we can take a = 0, b = 1, and h = 1/
√
r, and apply Theorem

D.7: the eigenvalues −∆g are just rescaled eigenvalues of −h2∆g and
the Vol(BRn(0, 1)) term comes from integrating out the ξ variables.

We note also that (D.29) implies that

(D.30) j2/n/CM ≤ λj ≤ CMj
2/n.

(ii) Also, upon rescaling and applying Theorem B.4, we obtain esti-
mates for counting all the eigenvalues of P (h) = −h2∆g + V (x). Let
E0(h) < E1(h) ≤ · · · ≤ Ej(h) → ∞ be all the eigenvalues of the
self-ajoint operator P (h). Then for r > 1,

(D.31) #{j : Ej(h) ≤ r} ≤ CM,V h
−nrn/2 .

This crude estimate will be useful in §9.3. �
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Sources and further reading

Chapter 1: Griffiths [G] is a nice elementary introduction to quan-
tum mechanics. For a modern physical perspective one may consult
Heller-Tomsovic [H-T] and Stöckmann [St].

Chapter 2: The proof of Theorem 2.8 is due to Moser [M]. A
PDE oriented introduction to symplectic geometry is contained in [H2,
Chapter 21].

Chapter 3: Good references are Friedlander–Joshi [F-J] and Hör-
mander [H1]. The PDE example in §3.1 is from Hörmander [H1, Section
7.6].

Chapter 4: The presentation of semiclassical calculus is based upon
Dimassi-Sjöstrand [D-S, Chapter 7]. See also Martinez [M], in partic-
ular for the Fefferman-Cordoba proof of the sharp G̊arding inequality.
The argument presented here followed the proof of [D-S, Theorem 7.12].

Chapter 5: Theorem 5.8 is due to Rauch–Taylor [R-T], but the
proof here follows Lebeau [L] and uses also some ideas of Morawetz.

Chapter 6: The proof of Weyl asymptotics is a semiclassical version
of the classical Dirichlet-Neumann bracketting proof for the bounded
domains.

Chapter 7: Estimates in the classically forbidden region in §7.1 are
known as Agmon or Lithner-Agmon estimates. They play a crucial role
in the analysis of spectra of multiple well potential and of the Witten
complex: see [D-S, Chapter 6] for an introduction and references. Here
we followed an argument of [N], but see also [N-S-Z, Proposition 3.2].
The presentation of Carleman estimates in §7.2 is based on discussions
with N. Burq and D. Tataru.

Chapter 8: The proof of symbol invariance is from [S-Z1, Appen-
dix]. The semiclassical wavefront set is an analogue of the usual wave-
front set in microlocal analysis – see [H2] and is closely related to
the frequency set introduced in [G-S]. The discussion of semiclassical
pointwise bounds is inspired by a recent article of Koch and Tataru
[Ko-T].

Our presentation of Beals’s Theorem follows Dimassi–Sjöstrand [D-S],
where it was based on [H-S]. Theorem 8.10, in a much greater gener-
ality, was proved by Bony–Chemin in [B-C]. The self-contained proof
in the simple case considered here comes from [S-Z3, Appendix].

Chapter 9: The Quantum Ergodicity Theorem 9.4 is from a 1974
paper of Shnirelman, and it is sometimes referred to as Shnirelman’s
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Theorem. The first complete proof, in a different setting, was provided
by Zelditch. We have followed his more recent proof, as presented in
[Z-Z]. The same proof applied with finer spectral asymptotics gives a
stronger semiclassical version, first presented in [H-M-R].

Chapter 10: The construction of U(t) borrows from the essentially
standard presentation in [S-Z1, Section 7]. For the discussion of the
Maslov index see [G-S] and [L-V]. Fourier Integral Operators which
are closely related to our discussion of quantization and of propagators
are discussed in detail in [D] and [H2, Chapeter 25].

Semiclassical Strichartz estimates for P = −h2∆g − 1 appeared ex-
plicitely in the work of Burq-Gérard-Tzvetkov [B-G-T] who used them
to prove existence results for non-linear Schrödinger equations on two
and three dimensional compact manifolds. We refer to that paper for
pointers to the vast literature on Strichartz estimates and their appli-
cations. The adaptation of Sogge’s Lp estimates to the semiclassical
setting was inspired by discussions with N. Burq, H. Koch, C.D. Sogge,
and D. Tataru, see [Ko-T] and [S].

The proofs for the theorems cited in §10.4 are in Hörmander [H2,
Theorem 21.1.6] and [H2, Theorem 21.1.6]. Theorem 10.18 is a semi-
classical analog of the standard C∞ result of Duistermaat-Hörmander
[H2, Proposition 26.1.3′]. Theorem 10.19 is a semiclassical adapta-
tion of a microlocal result of Duistermaat-Sjöstrand [H2, Proposition
26.3.1].

Theorem 10.20 was proved in one dimension by Davies [D]. See
[D-S-Z] for more on quasimodes and pseudospectra and for further
references.



210

References

[A] I. Alexandrova, Semi-classical wavefront set and Fourier integral opera-
tors, Can. J. Math., to appear.

[B-C] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de
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[H-S] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ
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