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ANALYTIC COMBINATORICS

Analytic combinatorics aims to enable precise quantigagixedictions of the proper-
ties of large combinatorial structures. The theory has gateover recent decades
as essential both for the analysis of algorithms and for tidysof scientific models
in many disciplines, including probability theory, stétial physics, computational
biology and information theory. With a careful combinatiohsymbolic enumera-
tion methods and complex analysis, drawing heavily on geimgy functions, results
of sweeping generality emerge that can be applied in péatito fundamental struc-
tures such as permutations, sequences, strings, walks, pates, graphs and maps.

This account is the definitive treatment of the topic. In ordemake it self-
contained, the authors give full coverage of the underlyirghematics and give a
thorough treatment of both classical and modern applicatid the theory. The text is
complemented with exercises, examples, appendices aasl thobughout the book to
aid understanding. The book can be used as a reference éarcesrs, as a textbook
for an advanced undergraduate or a graduate course on fleetsiob for self-study.

PHILIPPE FLAJOLET is Research Director of the Algorithmsject at INRIA Roc-
quencourt.

ROBERT SEDGEWICK is William O. Baker Professor of ComputeieBce at Prince-
ton University.

(from print version, front)
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Preface

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an apghnobased extensively on
analytic methods. Generating functions are the centraatéjof study of the theory.

Analytic combinatorics starts from an exact enumerativadption of combina-
torial structures by means of generating functions: theseertheir first appearance as
purely formal algebraic objects. Next, generating funtiiare interpreted as analytic
objects, that is, as mappings of the complex plane intdfitSéhgularities determine
a function’s coefficients in asymptotic form and lead to ge@stimates for counting
sequences. This chain of reasoning applies to a large nunfilpeoblems of discrete
mathematics relative to words, compositions, partitidregs, permutations, graphs,
mappings, planar configurations, and so on. A suitable atlaptof the methods also
opens the way to the quantitative analysis of charactepstiameters of large random
structures, via a perturbational approach.

THE APPROACHtO quantitative problems of discrete mathematics provioled
analytic combinatorics can be viewed asa@perational calculugor combinatorics
organized around three components.

Symbolic methoddevelops systematic relations between some of the major
constructions of discrete mathematics and operations oergéng func-
tions that exactly encode counting sequences.

Complex asymptotioslaborates a collection of methods by which one can
extract asymptotic counting information from generatingdtions, once
these are viewed as analytic transformations of the congenain. Singu-
larities then appear to be a key determinant of asymptotieNdeur.

Random structuresoncerns itself with probabilistic properties of large-ran
dom structures. Which properties hold with high probatlityhich laws
govern randomness in large objects? In the context of doalgmbina-
torics, these questions are treated by a deformation (gddiwiliary vari-
ables) and a perturbation (examining the effect of smalbtians of such
auxiliary variables) of the standard enumerative theory.

The present book expounds this view by means of a very largegacof examples
concerning classical objects of discrete mathematics amdbmatorics. The eventual
goal is an effective way of quantifying metric propertiedarfye random structures.

Vii



viii PREFACE

Given its capacity of quantifying properties of large deterstructuresinalytic
Combinatoricss susceptible to many applications, not only within conalbémics it-
self, but, perhaps more importantly, within other areas@rece where discrete prob-
abilistic models recurrently surface, like statisticalypics, computational biology,
electrical engineering, and information theory. Last bott least, the analysis of al-
gorithms and data structures in computer science has sanadtill serves as an
important incentive for the development of the theory.

* Kk Kk ok ok ok

Part A: Symbolic methods. This part specifically develof@ymbolic methodsvhich
constitute a unified algebraic theory dedicated to settmdunctional relations be-
tween counting generating functions. As it turns out, aemibn of general (and
simple) theorems provide a systematic translation meshabetween combinatorial
constructions and operations on generating functionss franslation process is a
purely formal one. In fact, with regard to basic countingotparallel frameworks
coexist—one for unlabelled structures and ordinary geimgrdtinctions, the other
for labelled structures and exponential generating fonesti Furthermore, within the
theory, parameters of combinatorial configurations canas#iyetaken into account
by adding supplementary variables. Three chapters themRart A: Chapter | deals
with unlabelled objects; Chapter Il develops labelled otgjén a parallel way; Chap-
ter 11l treats multivariate aspects of the theory suitablethe analysis of parameters
of combinatorial structures.

* Kk ok ok ok

Part B: Complex asymptotics. This part specifically expound3omplex asymptotics
which is a unified analytic theory dedicated to the procesxtficting asymptotic in-
formation from counting generating functions. A collectiof general (and simple)
theorems now provide a systematic translation mechaniswelea generating func-
tions and asymptotic forms of coefficients. Five chaptermfthis part. Chapter IV
serves as aimtroduction to complex-analytic methoasd proceeds with the treatment
of meromorphic functionsthat is, functions whose singularities are poledional
functionsbeing the simplest case. Chapter V develapglications of rational and
meromorphic asymptotics of generating functiomgh numerous applications related
to words and languages, walks and graphs, as well as pefomstaChapter VI devel-
ops a general theory agingularity analysighat applies to a wide variety of singular-
ity types, such as square-root or logarithmic, and has cpes&es regarding trees as
well as other recursively-defined combinatorial classelsapfer VII presentappli-
cations of singularity analysito 2—regular graphs and polynomials, trees of various
sorts, mappings, context-free languages, walks, and mapsntains in particular a
discussion of the analysis of coefficients of algebraic fioms. Chapter VIII explores
saddle-point methodsvhich are instrumental in analysing functions with a vidle
growth at a singularity, as well as many functions with a slagty only at infinity
(i.e., entire functions).

* &k %k ok k
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Part C: Random structures. This part is comprised of Chapter IX, which is dedi-
cated to the analysis of multivariate generating functigesved as deformation and
perturbation of simple (univariate) functions. Many knolaws of probability theory,
either discrete or continuous, from Poisson to Gaussiarstatile distributions, are
found to arise in combinatorics, by a process combining gfiminethods, complex
asymptotics, and perturbation methods. As a consequerarg, important character-
istics of classical combinatorial structures can be pedgiguantified in distribution.

* Kk ok ok k

Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative yngstotic expansions, lan-
guages, and trees, among others. Appendix B recapitutedesecessary background
in complex analysis. It may be viewed as a self-containedanimse on the subject,
with entries relative to analytic functions, the Gamma fiog the implicit function
theorem, and Mellin transforms. Appendix C recalls somehef lhasic notions of
probability theory that are useful in analytic combinateri

* Kk kK k

THIS BOOK is meant to be reader-friendly. Each major method is abuthdén
lustrated by means of concréxample$ treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offersupgplete treatment of
a specific problem. These are borrowed not only from combiie itself but also
from neighbouring areas of science. With a view to addregssot only mathemati-
cians of varied profiles but also scientists of other disegd,Analytic Combinatorics
is self-contained, including ample appendices that régkpé the necessary back-
ground in combinatorics, complex function theory, and piulity. A rich set of short
Notes—there are more than 450 of them—are inserted in the @xt can provide
exercises meant for self-study or for student practice, @lsag introductions to the
vast body of literature that is available. We have also mageyeeffort to focus on
core ideagsrather than technical details, supposing a certain amdumathematical
maturity but only basic prerequisites on the part of our igerdaders. The book is
also meant to be strongly problem-oriented, and indeedhitogaregarded as a man-
ual, or even a huge algorithm, guiding the reader to the isolaff a very large variety
of problems regarding discrete mathematical models okdaorigins. In this spirit,
many of our developments connect nicely with computer alg@md symbolic ma-
nipulation systems.

CouRrsEscan be (and indeed have been) based on the book in various ways
Chapters I-lll onSymbolic methodserve as a systematic yet accessible introduc-
tion to the formal side of combinatorial enumeration. Astsitcorganizes trans-
parently some of the rich material found in treatfsesich as those of Bergeron—
Labelle—Leroux, Comtet, Goulden—Jackson, and Stanlegptes IV-VIII relative to
Complex asymptotigsrovide a large set of concrete examples illustrating thegpo

1Examples are marked bfExample - - W,
2Notes are indicated by - - - <.
SReferences are to be found in the bibliography section attideof the book.
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of classical complex analysis and of asymptotic analystside of their traditional
range of applications. This material can thus be used insesuof either pure or
applied mathematics, providing a wealth of non-classigah#ples. In addition, the
quiet but ubiquitous presence of symbolic manipulatioriesys provides a number of
illustrations of the power of these systems while makingoigble to test and con-
cretely experiment with a great many combinatorial modgignbolic systems allow
for instance for fast random generation, close examinatimon-asymptotic regimes,
efficient experimentation with analytic expansions angsiarities, and so on.

Our initial motivation when starting this project was to lbdua coherent set of
methods useful in the analysis of algorithms, a domain offaater science now well-
developed and presented in books by Knuth, Hofri, Mahmond, @zpankowski, in
the survey by Vitter—Flajolet, as well as in our earlietroduction to the Analysis of
Algorithmspublished in 1996. This booldnalytic Combinatoricscan then be used
as a systematic presentation of methods that have proveeérnsety useful in this
area; see in particular thert of Computer Programmingy Knuth for background.
Studies in statistical physics (van Rensburg, and othsta)istics (e.g., David and
Barton) and probability theory (e.g., Billingsley, Fellemathematical logic (Burris’
book), analytic number theory (e.g., Tenenbaum), comjaualtbiology (Waterman’s
textbook), as well as information theory (e.g., the book€byer-Thomas, MacKay,
and Szpankowski) point to many startling connections withother areas of science.
The book may thus be useful as a supplementary reference thodseand applica-
tions in courses on statistics, probability theory, st physics, finite model the-
ory, analytic number theory, information theory, computigiebra, complex analysis,
or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less informative
without Neil Sloane’'sEncyclopedia of Integer Sequenc&teve Finch’'sMathematical Con-
stants Eric Weisstein’sMathWorld and theMacTutor History of Mathematicsite hosted at
St Andrews. We have also greatly benefited of the existence of opdéineoarchives such
asNumdam Gallica, GDZ (digitalized mathematical document#);Xiv, as well as thdzuler
Archive All the corresponding sites are (or at least have been at some &glg)available on
the Internet. Bruno Salvy and Paul Zimmermann have developed algarid libraries for
combinatorial structures and generating functions that are based bmihiee system for sym-
bolic computations and that have proven to be extremely useful. We eptydgrateful to the
authors of the free software Unix, Linux, Emacs, X1gXBnd BTEX as well as to the design-
ers of the symbolic manipulation systemaMLE for creating an environment that has proved
invaluable to us. We also thank students in courses at Barcelona, Be{iS&l), Bordeaux,
Caen, Graz, ParisEcole PolytechniqueEcole Normale Sugrieure, University), Princeton,
Santiago de Chile, Udine, and Vienna whose reactions have greatly hedpdpare a better
book. Thanks finally to numerous colleagues for their contributions to tik Iproject. In
particular, we wish to acknowledge the support, help, and interactiondeabwat a high level
by members of thénalysis of Algorithms (AofAJommunity, with a special mention for Nico-
las Broutin, Michael DrmotaEric Fusy, Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy
Louchard, Andrew Odlyzko, Daniel Panario, Carine Pivoteau, HefPnodinger, Bruno Salvy,
Michele Soria, Wojtek Szpankowski, Brigitte Ve#, Mark Daniel Ward, and Mark Wilson. In
addition, Ed Bender, Stan Burris, Philippe Dumas, Svante Janson, Rhitippert, Léc Tur-
ban, and Brigitte Va#e have provided insightful suggestions and generous feedbadiatreat
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led us to revise the presentation of several sections of this book arettorany errors. We
were also extremely lucky to work with David Tranah, the mathematics editGambridge
University Press, who has been an exceptionally supportive (anchpat@mpanion of this
book project, throughout all these years. Finally, support of ouréhimstitutions (INRIA and
Princeton University) as well as various grants (French governfgenvpean Union, and NSF)
have contributed to making our collaboration possible.






An Invitation to Analytic
Combinatorics

010 07 cupueryvoueva abTd Te Teog alTd xal Teog dhhnho ThHY
movahiay Eotly dnetpar fig 61 Oel Vewpole yiyveolo Toug
péhhovtog mepl PUcEWS EiXOTL Aoy

— PLATO, The Timaeu}

ANALYTIC COMBINATORICS is primarily a book aboutombinatorics that is, the
study of finite structures built according to a finite set desu Analyticin the title
means that we concern ourselves with methods from matheahatalysis, in par-
ticular complex and asymptotic analysis. The two fields, loimatorial enumeration
and complex analysis, are organized into a coherent set thfone for the first time
in this book. Our broad objective is to discover how the qwnius may help us to
understand the discrete andgoantifyits properties.

COMBINATORICS is, as told by its name, the science of combinations. Given
basic rules for assembling simple components, what arertdpepies of the resulting
objects? Here, our goal is to develop methods dedicatepiamtitativeproperties
of combinatorial structures. In other words, we want to meaghings. Say that
we haven different items like cards or balls of different colours. Haw many ways
can we lay them on a table, all in one row? You certainly recthis counting
problem—finding the number glermutationf n elements. The answer is of course
the factorial number

n'=1-2-...-n.

This is a good start, and, equipped with patience or a cdtmjlae soon determine
that if n = 31, say, then the number of permutations is the rather largatdy
31! =822283865417792281772556288000Q000

an integer with 34 decimal digits. The factorials solve anreaeration problem, one
that took mankind some time to sort out, because the senke bf-t ” in the formula
for n! is not that easily grasped. In his bodke Art of Computer Programming

1450 their combinations with themselves and with each otlige gse to endless complexities, which
anyone who is to give a likely account of reality must sutv@lato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

1



2 AN INVITATION TO ANALYTIC COMBINATORICS

A N A N

/ ®\
/@\

® ®

Figure 0.1. An example of the correspondence between an alternating permutation
(top) and a decreasing binary tree (bottom): each binary node haseseentants,
which bear smaller labels. Sucbhnstructionswhich give access tgenerating func-
tionsand eventually provide solutions to counting problems, are the main sutbject
Part A.

)

(vol 1I, p. 23), Donald Knuth traces the discovery to the HabbBook of Creation
(c. AD 400) and the Indian classAnuyogadara-sutra(c. AD 500).

Here is another more subtle problem. Assume that you aneste in permuta-
tions such that the first element is smaller than the sechaddcond is larger than the
third, itself smaller than the fourth, and so on. The permiong go up and down and
they are diversely known as up-and-down or zigzag pernautstithe more dignified
name beinglternatingpermutations. Say that= 2m + 1 is odd. An example is for
n=9 8 7 9 3

N /N N SN
4 6 5 1 2

The number of alternating permutations foe= 1, 3,5, ..., 15 turns out to be
1,2,16,272 7936 353792 223682561903757312

What are these numbers and how do they relate to the total mohpermutations of
corresponding size? A glance at the corresponding figurasig, 1! 3!, 5!, ..., 15},
or

1, 6,120 5040 362880 3991680062270208001307674368000

suggests that the factorials grow somewhat faster—just acarthe lengths of the last
two displayed lines. But how and by how much? This is the pgypioal question we
are addressing in this book.

Let us now examine the counting of alternating permutatitm&881, the French
mathematician Bsie Andié made a startling discovery. Look at the first terms of the
Taylor expansion of the trigonometric function @&an

3 5 7 9 11

Z Z z V4 V4
— + 16— 4+ 272— + 7936 + 353792— + --- .
3! + 5! + 7! + 9! + 11! +

The counting sequence for alternating permutationg, 16, . . ., curiously surfaces.
We say that the function on the left isgenerating functiorfor the numerical se-
guence (precisely, a generating function of éx@onentiaktype, due to the presence
of factorials in the denominators).

z
tanz = 1ﬂ +2
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André’s derivation may nowadays be viewed very simply as refigdine con-
struction of permutations by means of certain labelled tyineees (Figure 0.1 and
p. 143): given a permutation a tree can be obtained ongeéhas been decomposed as
atriple (o, max oR), by taking the maximum element as the root, and appending, as
left and right subtrees, the trees recursively construftted o andor. Part A of this
book develops at lengttymbolic methodsy which the construction of the clagsof
all such trees,

T = ® U (T,max,7),
translates into an equation relating generating functions

T@ = z + /ZT(w)Zdw.
0

In this equation;T (z) := >, Taz"/n! is the exponential generating function of the
sequencéT,), whereT, is the number of alternating permutations of (odd) length
There is a compelling formal analogy between the combiretgpecificationand
its generating function: UniongJj give rise to sums-), max-placement gives an
integral ([), forming a pair of trees corresponds to taking a squal® ([

At this stage, we know thdf (z) must solve the differential equation

d _ 2 _
T@=1+T@%  TO=0

which, by classical manipulatiofigyields the explicit form
T(2) =tanz.

The generating function then provides a simaligorithmto compute the coefficients
recurrently. Indeed, the formula,

. 3 5
sinz_ z—5+5—

- zé z
cosz  1-ZyzZ_ ..

tanz =

implies, forn odd, the relation (extract the coefficientz’fin T (z) cosz = sinz)

n n a al
_ = (=112 - <
Th (Z)Tn—z + (4)Tn—4 (-1 , Where (b) bia_b)|

is the conventional notation for binomial coefficients. Ndhe exact enumeration
problem may be regarded as solved since a very simple digoig available for

determining the counting sequence, while the generatingtion admits an explicit
expression in terms of well-known mathematical objects.

ANALYSIS, by which we mean mathematical analysis, is often descrésetthe
art and science ddipproximation How fast do the factorial and the tangent number
sequences grow? What abaatmparingtheir growths? These are typical problems
of analysis.

2We haveT’ /(1 + T2) = 1, hence arctaiT) = zandT = tanz.
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Figure 0.2. Two views of the functiore — tanz. Left: a plot for real values of
[-6, 6]. Right: the modulugtanz] whenz = x + iy (with i = /=1) is assigned
complex values in the square6 + 6i. As developed at length in Part B, it is the
nature ofsingularitiesin thecomplex domaithat matters.

First, consider the number of permutationk, Quantifying its growth, as gets
large, takes us to the realm a$ymptotic analysisThe way to express factorial num-
bers in terms of elementary functions is known as Stirlifigrsnula®

n! ~n"e "v2zn,

where the~ sign means “approximately equal” (in the precise sensetligatatio of
both terms tends to 1 asgets large). This beautiful formula, associated with the
name of the Scottish mathematician James Stirling (16925)1 €uriously involves
both the basi® of natural logarithms and the perimeter ®f the circle. Certainly,
you cannot get such a thing without analysis. As a first stepgtis an estimate

n n n
| I = logj ~ | dx~ nl -
ogn! Eogj /1 ogx dx nog(e),

explaining at least tha"e™" term, but already requiring a certain amount of elemen-
tary calculus. (Stirling’s formula precisely came a few ades after the fundamental
bases of calculus had been laid by Newton and Leibniz.) Nnaeutility of Stirling’s
formula: it tells us almost instantly that 100! has 158 digwhile 1000! borders the
astronomical 1¢°%8

We are now left with estimating the growth of the sequencan§ént numbers,
Th. The analysis leading to the derivation of the generatimgtion tar{z) has been
so far essentially algebraic or “formal”. Well, we can plbetgraph of the tangent
function, for real values of its argument and see that thetfan becomes infinite at
the pointst-%, +3%, and so on (Figure 0.2). Such points where a function ceadess t

3In this book, we shall encounter five different proofs of IBt@’s formula, each of interest for its
own sake:(i) by singularity analysis of the Cayley tree function (p. 40[)) by singularity analysis of
polylogarithms (p. 410){iii ) by the saddle-point method (p. 55%)p) by Laplace’s method (p. 760);
(v) by the Mellin transform method applied to the logarithm of @&mma function (p. 766).
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“smooth” (differentiable) are callesingularities By methods amply developed in this
book, it is the local nature of a generating function at itsrftdnant” singularities (i.e.,
the ones closest to the origin) that determines the asymogtaiwth of the sequence of
coefficients. From this perspective, the basic fact that tees dominant singularities
at+7% enables us to reason as follows: first approximate the gemgfanction tare
near its two dominant singularities, namely,

8z
tan(z ~ =
n )Z—>:|:n/2 72— 472
then extract coefficients of this approximation; finallyt gethis way a valid approx-
imation of coefficients:

n+1
E ~ 2(3) (n odd).

n! n-oco T

With present day technology, we also have availagtabolic manipulatiosys-
tems (also called “computer algebra” systems) and it is ificdt to verify the ac-
curacy of our estimates. Here is a small pyramidrfet 3,5, ..., 21,

211
16 | 15
272 | 271
7936 | 7935
353792| 353791
22368256| 22368251
1903757312 1903757267
209865342976 20986534434
29088885112832 2908888504489
4951498053124096 49514980%2966307
(Tn) | (T5)

comparing the exact values ®f against the approximatioris’, where @ odd)

T = {2. ! (;)MJ ,

and discrepant digits of the approximation are displaydmbid. Forn = 21, the error
is only of the order of one in a billion. Asymptotic analysjs @69) is in this case
wonderfully accurate.

In the foregoing discussion, we have played down a fact—oatishimportant.
When investigating generating functions from an analyandpoint, one should gen-
erally assigrcomplexvalues to arguments not just real ones. It is singularitiegbe
complex plane that matter and complex analysis is neededgimiitly conclusions re-
garding the asymptotic form of coefficients of a generatimgcfion. Thus, a large
portion of this book relies on eomplex analysisechnology, which starts to be de-
veloped in Part B dedicated @omplex asymptotic his approach to combinatorial
enumeration parallels what happened in the nineteentluigenthen Riemann first
recognized the deep relation between complex analytioguti@s of thezetafunction,
¢(s) := > 1/n%, and the distribution of primes, eventually leading to iveg-sought
proof of the Prime Number Theorem by Hadamard and de l&¥dHoussin in 1896.
Fortunately, relatively elementary complex analysis saffifor our purposes, and we
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Figure 0.3. The collection of binary trees with = 0, 1, 2, 3 binary nodes, with
respective cardinalities, 1, 2, 5.

can include in this book a complete treatment of the fragroétite theory needed to
develop the fundamentals of analytic combinatorics.

Here is yet another example illustrating the close intgrflatween combina-
torics and analysis. When discussing alternating pernauistiwe have enumerated
binary trees bearing distinct integer labels that satisfgrestraint—to decrease along
branches. What about the simpler problem of determining thmber of possible
shapesof binary trees? LeC, be the number of binary trees that havevinary
branching nodes, hence+ 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values of(Figure 0.3), from which we determine that

Co=1 Ci1=1 Cp=2 C3=5 ©Cs4=14 Cs=42

These numbers are probably the most famous ones of combasatéhey have come
to be known as th€atalan numberss a tribute to the Franco-Belgian mathemati-
cian Eugne Charles Catalan (1814-1894), but they already appehe iworks of
Euler and Segner in the second half of the eighteenth cefgagyp. 20). In his refer-
ence treatis&numerative CombinatoricStanley, over 20 pages, lists a collection of
some 66 different types of combinatorial structures thategmumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very muchthandtyle of what has
been done earlier, but without labels:

C = 0O U (Ce,0).

(Here, theb—symbol represents an external node.) With symbolic methiods easy
to see that therdinary generating functioof the Catalan numbers, defined as

C(2) := Zan”,
n>0
satisfies an equation that is a direct reflection of the coatbimal definition, namely,
C = 1 + zC@22°
This is a quadratic equation whose solution is

1-V1-4z

€= 2z
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Figure 0.4. Left: the real values of the Catalan generating function, which has a
square-root singularity a = 1 Right: the ratioCn/(4"n_3/2) plotted together
with its asymptote at /7= = 0.56418. The correspondence betwasargularities
andasymptotidorms ofcoefficientds the central theme of Part B.

Then, by means of Newton’s theorem relative to the expansigh + x)*, one finds
easily kK = —4z,a = %) theclosed formexpression

1 /2n
Cn = ( )
n+1\n
Stirling’s asymptotic formula now comes to the rescue: plies
4n

Tn

Ch~C,  where Cj:= =
This last approximation is quite usafilét givesCj = 2.25 (wherea£; = 1), which

is off by a factor of 2, but the error drops to 10% alreadyrfee 10, and it appears to
be less than 1% for any > 100.

A plot of the generating functio@(z) in Figure 0.4 illustrates the fact th&t(z)
has asingularityatz = 711 as it ceases to be differentiable (its derivative becomies in
nite). That singularity is quite different from a pole and fatural reasons it is known
as a square-root singularity. As we shall see repeatedberusuitable conditions
in the complex plane, a square root singularity for a fumctd a pointp invariably
entails an asymptotic form~"n=%/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in otdeleduce an asymptotic
approximation of its coefficients. This correspondencerisagor theme of the book,
one that motivates the five central chapters (Chapters IMit).V

A consequence of the complex analytic vision of combinatois the detection of
universality phenomenia large random structures. (The term is originally borrdwe
from statistical physics and is nowadays finding increasisgin areas of mathema-
tics such as probability theory.) By universality is meaeatehthat many quantitative

4We usex = d to represent a numerical approximation of the wedly the decimat, with the last
digit of d being at mostt1 from its actual value.
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properties of combinatorial structures only depend on adtbal features of their
definitions, not on details. For instance a growth in the tiogrsequence of the form

K- A™=%2,

arising from a square-root singularity, will be shown to bé/arsal acrosall varieties
of trees determined by a finite set of allowed node degreestlsludes unary—
binary trees, ternary trees, 0-11-13 trees, as well as naiations such as non-plane
trees and labelled trees. Even though generating functizas become arbitrarily
complicated—as in an algebraic function of a very high degresen the solution to
an infinite functional equation—it is still possible to exdravith relative easglobal
asymptotic lawgjoverningcounting sequences

RANDOMNESSIs another ingredient in our story. How useful is it to detieren
exactly or approximately, counts that may be so large asdoire hundreds if not
thousands of digits in order to be written down? Take agagnetkample of alter-
nating permutations. When estimating their number, we hagteed quantified the
proportion of these among all permutations. In other wongshave been predicting
the probability that a random permutation of some sizés alternating. Results of
this sort are of interest in all branches of science. Forimst, biologists routinely
deal with genomic sequences of lengt? 1@nd the interpretation of data requires de-
veloping enumerative or probabilistic models where the Ineinof possibilities is of
the order of 4% The language of probability theory then proves of greatvenience
when discussing characteristic parameters of discretetates, since we can interpret
exact or asymptotic enumeration results as saying songetioincrete about the like-
lihood of values that such parameters assume. Equally iaapioof course are results
from several areas of probability theory: as demonstratettie last chapter of this
book, such results merge extremely well with the analyticriinatorial framework.

Say we are now interested in runs in permutations. Theseharwhgest frag-
ments of a permutation that already appear in (increasioged order. Here is a
permutation with 4 runs, separated by vertical bars:

258|39|147|6.

Runs naturally present in a permutation are for instancéodgd by a sorting algo-
rithm called “natural list mergesort”, which builds longand longer runs, starting
from the original ones and merging them until the permutattoeventually sorted.
For our understanding of this algorithm, it is then of ob#anterest to quantify how
many runs a permutation is likely to have.

Let Pk be the number of permutations of sizhavingk runs. Then, the problem
is once more best approached by generating functions arfthoisehat the coefficient
of ukz" inside thebivariate generating function,

72
=14zu+ Eu(u+1)+

—u z2
P(z,U)E1 U +4+H+---,

—ueu 3
gives the desired numbef, k/n!. (A simple way of establishing the last formula

bases itself on the tree decomposition of permutations artti@® symbolic method;
the numbersP, x, whose importance seems to have been first recognized by, Eule
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Figure 0.5. Left: A partial plot of the real values of the Eulerian generating function
z— P(z,u)forz e [0, %], illustrates the presence of a movable pole foasu
varies between 0 an§. Right: A suitable superposition of the histograms of the
distribution of the number of runs, far = 2, ..., 60, reveals the convergence to a
Gaussian distribution (p. 695). Part C relates systematically the analysisbfa
collection of singular behaviours tmnit distributions

are related to th&ulerian numbersp. 210.) From here, we can easily determine
effectively the mean, variance, and even the higher monadrtse number of runs
that a random permutation has: it suffices to expand bliratlgven better with the
help of a computer, the bivariate generating function atzste— 1:

1 1z2-2 122 (6-4z+7)
1—z+2(1_z)2 & 2 (1-2°

1) + u-1>%2+---.

Whenu = 1, we just enumerate all permutations: this is the constant 1/(1 — z)
equal to the exponential generating function of all permionts. The coefficient of
the termu — 1 gives the generating function of theeannumber of runs, the next one
provides the second moment, and so on. In this way, we distheexpectation and
standard deviation of the number of runs in a permutationzefrs

_n+1 . n+1
fn=""%" Ty T

Then, by easy analytic—probabilistic inequalities (Chateyw inequalities) that other-
wise form the basis of what is known as the second moment mettwlearn that the
distribution of the number of runs is concentrated arousdniean: in all likelihood,

if one takes a random permutation, the number of its runsirgggo be very close to
its mean. The effects of such quantitative laws are quitgilde. It suffices to draw a
sample of one elemefudr n = 30 to get, for instance:

13,22, 29|12, 15, 238, 28/18)6, 26/4, 10, 16/1, 5, 27|3, 14, 17, 202, 21, 30|25/11, 19/9|7, 24.

Forn = 30, the mean is 155 and this sample comes rather close as it has 13 runs.
We shall furthermore see in Chapter IX that even for modbrdéege permutations
of size 10000 and beyond, the probability for the number gkobed runs to deviate
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0.5
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Figure 0.6. Left: The bivariate generating functian— C(z, u) enumerating binary
trees by size and number of leaves exhibits consistently a squaredrrgolasity, for
several values aii. Right: a binary tree of size 300 drawn uniformly at random has
69 leaves. As shown in Part €ingularity perturbatiorproperties are at the origin of
many randomness properties of combinatorial structures.

by more than 10% from the mean is less than®0 As witnessed by this example,
much regularity accompanies properties of large combiriatstructures.

More refined methods combine the observation of singudsritiith analytic re-
sults from probability theory (e.g., continuity theorerasdharacteristic functions). In
the case of runs in permutations, the quarfitg, u) viewed as a function af whenu
is fixed appears to have a pole: this fact is suggested by&mybr{left]. Then we are
confronted with a fairly reguladeformationof the generating function of all permu-
tations. A parameterized version (with paramefeof singularity analysis then gives
access to a description of the asymptotic behaviour of therian numberd, k. This
enables us to describe very precisely what goes on: in a napgomutation of large
sizen, once it has been centred by its mean and scaled by its sthddeaiation,the
distribution of the number of runs is asymptotically Gaasssee Figure 0.5 [right].

A somewhat similar type of situation prevails for binaryese Say we are inter-
ested in leaves (also sometimes figuratively known as “@&jrin trees: these are bi-
nary nodes that are attached to two external nodgsl(et C, x be the number of trees
of sizen havingk leaves. The bivariate generating functo(e, u) := >, Cn,kz”u"
encodes all the information relative to leaf statisticsandom binary trees. A mod-
ification of previously seen symbolic arguments shows @&, u) still satisfies a
guadratic equation resulting in the explicit form,

1—/1-4z+422(1—u)
2z '

This reduces taC(z) for u = 1, as it should, and the bivariate generating func-
tion C(z, u) is a deformation ofC(z) asu varies. In fact, the network of curves of
Figure 0.6 for several fixed values ofillustrates the presence of a smoothly varying
square-root singularity (the aspect of each curve is sirtoléhat of Figure 0.4). Itis
possible to analyse theerturbationinduced by varying values af, to the effect that

C(z,u) =
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( Combinatorial structures)

SYMBOLIC METHODS (Part A) Exact
Generating functions, OGF, EGF Multivariate generating functions, MGF counting
Chapters I, Il Chapter IlI
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Saddle-point method
Chapter VIII
[ Asymptotic counting, moments of paramet%rs [ Limit laws, large deviations}

Figure 0.7. The logical structure ofnalytic Combinatorics

C(z,u) is of the global analytic type

[1- %2
p)’

for some analytip (u). The already evoked process of singularity analysis thewsh
that the probability generating function of the number aftes in a tree of sizeis of

the rough form
p(\"
(p (u)) (1+0(1).

This is known as a “quasi-powers” approximation. It resesshlery much the
probability generating function of a sum ofindependent random variables, a sit-
uation that gives rise to the classical Central Limit Theoref probability theory.
Accordingly, one gets thahe limit distribution of the number of leaves in a large
random binary tree is Gaussiarin abstract terms, the deformation induced by the
secondary parameter (here, the number of leaves, preyjghelnumber of runs) is
susceptible to gerturbation analysisto the effect that a singularity gets smoothly
displaced without changing its nature (here, a square ingtukarity, earlier a pole)
and a limit law systematically results. Again some of theatesions can be verified
even by very small samples: the single tree of size 300 drawarglom and dis-
played in Figure 0.6 (right) has 69 leaves, whereas the ¢éggemlue of this number
is = 75.375 and the standard deviation is a little over 4. In a largaler of cases of
which this one is typical, we finthetric lawsof combinatorial structures that govern
large structures with high probability and eventually meiem highly predictable.

Such randomness properties form the subject of Part C obtok dedicated to
random structures As our earlier description implies, there is an extremerele@f
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generality in this analytic approach to combinatorial paeters, and after reading this
book, the reader will be able to recognize by herself dozésaah cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEW of combinatorics emerges from the previous discus-
sion; see Figure 0.7. A combinatorial class, as regardsiitmerative properties, can
be viewed as aurface in four-dimensional real spacthis is the graph of its gener-
ating function, considered as a function from the@ex R? of complex numbers to
itself, and is otherwise known as a Riemann surface. Thfaseihas “cracks”, that s,
singularities which determine the asymptotic behaviour of the countaguence. A
combinatorial construction (such as those freely formiaguences, sets, and so on)
can then be examined through the effect it has on sing@arith this way, seemingly
different types of combinatorial structures appear to b@est tocommon lawgov-
erning not only counting but also finer characteristics ahbmmatorial structures. For
the already discussed case of universality in tree enuioesatadditional universal
laws valid across many tree varieties constrain for ingdmeight (which, with high
probability, is proportional to the square root of size) #melnumber of leaves (which
is invariably normal in the asymptotic limit).

What happens regarding probabilistic properties of conibied parameters is
this. A parameter of a combinatorial class is fully deterediiby a bivariate generating
function, which is a deformation of the basic counting gatiag function of the class
(in the sense that setting the secondary variatite 1 erases the information relative
to the parameter and leads back to the univariate countimgrgeng function). Then,
the asymptotic distributiorof a parameter of interest is characterized by a collection
of surfaces, each having its own singularities. The way thgutarities’ locations
move or their nature changes under deformation encodeleali¢cessary informa-
tion regarding the distribution of the parameter under waration. Limit laws for
combinatorial parameters can then be obtained and thespomding phenomena can
be organized into broad categories, calelemaslt would be inconceivable to attain
such a far-reaching classification of metric propertiesarhbinatorial structures by
elementary real analysis alone.

Objects on which we are going to inflict the treatments jusicdbed include
many of the most important ones of discrete mathematicselisa/the ones that sur-
face recurrently in several branches of the applied scgendé shall thus encounter
words and sequences, trees and lattice paths, graphs ofisadrts, mappings, al-
locations, permutations, integer partitions and compm®t{ polyominoes and pla-
nar maps, to name but a few. In most cases, their principabctexistics will be
finely quantified by the methods of analytic combinatorichisTbook indeed devel-
ops a coherent theory of random combinatorial structuresdan a powerful analytic
methodology. Literally dozens of quite diverse combinaidypes can then be treated
by a logically transparent chain. You will not find ready-reathswers to all questions
in this book, but, hopefullynethodghat can be successfully used to address a great
many of them.

Bienvenue! Welcome!
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SYMBOLIC METHODS






Combinatorial Structures and
Ordinary Generating Functions

Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series
and put it to great use to solve a variety of combinatorial problems.

— GIAN—CARLO RoOTA [518]
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l. 6. Additional constructions 83
1.7. Perspective 92

This chapter and the next are devoted to enumeration, whengroblem is to deter-
mine the number of combinatorial configurations describgéiriite rules, and do so
for all possible sizes. For instance, how many differentdsare there of length 177?
Of lengthn, for generaln? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? Thatisns are exactly
encoded bygenerating functionsand, as we shall segenerating functions are the
central mathematical objectf combinatorial analysis. We examine here a framework
that, contrary to traditional treatments based on recaagnexplains the surprising
efficiency of generating functions in the solution of condiorial enumeration prob-
lems.

This chapter serves to introduce thembolicapproach to combinatorial enumer-
ations. The principle is that many general set-theomatitstructionsadmit a direct
translation as operations over generating functions. fiigiple is made concrete by
means of a dictionary that includes a collection of core trotions, namely the op-
erations of union, cartesian product, sequence, set,saetléind cycle. Supplementary
operations such as pointing and substitution can also bikagiyntranslated. In this
way, alanguagedescribing elementary combinatorial classes is defined.pfbblem
of enumerating a class of combinatorial structures themlsimeduces to finding a
properspecification a sort of computer program for the class expressed in tefms o
the basic constructions. The translation into generatingtfons becomes, after this,
a purely mechanical symbolic process.

We show here how to describe in such a context integer pansitand compo-
sitions, as well as many word and tree enumeration problbynseans obrdinary

15



16 |I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

generating functionsA parallel approach, developed in Chapter I, applies bhelled
objects—in contrast the plain structures considered indhapter are callednla-
belled The methodology is susceptible to multivariate extersioith which many
characteristic parameters of combinatorial objects caa bé analysed in a unified
manner: this is to be examined in Chapter Ill. The symbolithoe also has the great
merit of connecting nicely with complex asymptotic methdlst exploit analyticity
properties and singularities, to the effect that precigenasotic estimates are usually
available whenever the symbolic method applies—a systenratitment of these as-
pects forms the basis of Part B of this baddkmplex asymptotiq€hapters IV-VIII).

I.1. Symbolic enumeration methods

First and foremost, combinatorics deals wdikcrete objectsthat is, objects that
can be finitely described by construction rules. Examplesvaords, trees, graphs,
permutations, allocations, functions from a finite set iitgelf, topological configu-
rations, and so on. A major question isapumeratesuch objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial classor simply aclass is a finite or denumerable set
on which asizefunction is defined, satisfying the following conditions:

(i) the size of an element is a non-negative integer;
(ii) the number of elements of any given size is finite.

If Ais aclass, the size of an element A is denoted by« |, or |a| 4 in the few cases
where the underlying class needs to be made explicit. GiwdgsaA, we consistently
denote byA, the set of objects i that have size and use the same group of letters
for the countsA, = card Ay) (alternatively, als@a, = card.A,)). An axiomatic
presentation is then as follows: a combinatorial class igia(pl, | - |) where A is at
most denumerable and the mapping € (A — Zxo) is such that the inverse image
of any integer is finite.

Definition 1.2. The counting sequencef a combinatorial class is the sequence of
integers(An)n>0 Where A = card.An) is the number of objects in claséthat have
size n.

Examplel.1. Binary words.Consider first the sét) of binary words, which are sequences of
elements taken from the binary alphabet= {0,1},

Ww:={e 0, 1, 00, 01, 10, 11, 000, 001, 010, ..., 1001101, ...},

with ¢ the empty word. Define size to be the number of letters that a word corapfikere are
two possibilities for each letter and possibilities multiply, so that the countingeseg@\\n,)
satisfies

Wh = 2"
(This sequence has a well-known legend associated with the inventiongdieof chess: the
inventor was promised by his king one grain of rice for the first squiitkeochessboard, two
for the second, four for the third, and so on. The king naturally coutdialiver the promised
204 L graNS!) L [
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Figure I.1. The collectionZ of all triangulations of regular polygons (with size de-
fined as the number of triangles) is a combinatorial class, whose colsgingence
startsadligp=1, T1 =1, To=2, T3 =5, Ty =14, T5=42.

Examplel.2. PermutationsA permutation of siza is by definition a bijective mapping of the
integer interval 7, := [1..n]. Itis thus representable by an array,

(o & o on )

or equivalently by the sequenegoy - - - o of its distinct elements. The sét of permutations
is

P={...,12,21,123, 132, 213, 231, 312, 321, 1234,, 532614 ...},
For a permutation written as a sequenca dfstinct numbers, there areplaces where one can
accommodata, thenn — 1 remaining places fan — 1, and so on. Therefore, the numb®y
of permutations of siza satisfies

Ph=nl=1.-2-....n.

As indicated in ounnvitation chapter (p. 2), this formula has been known for at least fifteen
[0 (01 |

Examplel.3. Triangulations.The class7 of triangulations comprises triangulations of con-
vex polygonal domains which are decompositions into non-overlappiggles (taken up to
smooth deformations of the plane). We define the size of a triangulationtte meimber of tri-
angles it is composed of. For instance, a convex quadrilafeBal D can be decomposed into
two triangles in two ways (by means of either the diagoh@lor the diagonaB D); similarly,
there are five different ways to dissect a convex pentagon into thregleg see Figure 1.1.
Agreeing thafTg = 1, we then find

To=1, Ty =1, To =2, T3 =5, Tq =14, Ts =42

Itis a non-trivial combinatorial result due to Euler and Segner [186, 197] around 1750 that
the numbeiTy, of triangulations is

1 (2n 2n)!
) T, = __@emt
n+1\n (n+1!'n!
a central quantity of combinatorial analysis known aSaalan number see ournvitation,
p. 7, the historical synopsis on p. 20, the discussion on p. 35, an@&&idis!. 5.3, p. 73.

e borrow from computer science the convenient practice wbtileg an integer interval by.1n or
[1..n], whereas [On] represents a real interval.
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Following Euler [196], the counting of triangulations is best approacheddmerating
functions: see again Figure 1.2, p. 20 for historical context. .. ..o ..vvvvvee. ... B

Although the previous three examples are simple enough,génerally a good
idea, when confronted with a combinatorial enumeratiorblanm, to determine the
initial values of counting sequences, either by hand oebeitth the help of a com-
puter, somehow. Here, we find:

n 01 2 3 4 5 6 7 8 9 10
@) Wh 1 2 4 8 16 32 64 128 256 512 1024

Pn 1 1 2 6 24 120 720 5040 40320 362880 3628800

Th 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identifyeeces. For instance,
had we not known the formula (1) for triangulations, obsgguinusual factorizations
such as

Tio=2%2.5.72.11.23.43-47-53.59.61-67-71-73-79,

which contains all prime numbers from 43 to 79 and no primgdathan 80, would
quickly put us on the track of the right formula. There eversexnowadays a huge
On-line Encyclopedia of Integer Sequences (El$ to Sloane that is available in
electronic form [543] (see also an earlier book by SloaneRindffe [544]) and con-
tains more than 100 000 sequences. Indeed, the three seq@éig, (P,), and(T,)
are respectively identifiéhsEIS A000079 EISA000142 andEISA000108

> 1.1. Necklaces. How many different types of necklace designs can you form witieads,
each having one of two colours,ande, where it is postulated that orientation matters? Here
are the possibilities fon = 1, 2, 3,

2+ QOO OO0

This is equivalent to enumerating circular arrangements of two letterarapghaustive listing
program can be based on the smallest lexicographical representatiachovord, as suggested
by (20), p. 26. The counting sequence starts,& 2 6, 8, 14, 20, 36, 60, 108 188 352 and
constitutesElS AO00031 [An explicit formula appears later in this chapter (p. 64).] What if
two necklace designs that are mirror images of one another are idehtified <

> 1.2. Unimodal permutationsSuch a permutation has exactly one local maximum. In other
words itis of the formyy - - - op Witho1 < 02 < --- <o =nandox =n > og41 > -+ > on,
for somek > 1. How many such permutations are there of si2zd-orn = 5, the number is 16:
the permutations are 12345, 12354, 12453, 12543, 13452, 138832 and 15432 and their
reversals. [Due to Jon Perry, SEES A000079] <

Itis also of interest to note that words and permutations beegnumerated using
the most elementary counting principles, namely, for finé&s5 andC

cardBUC) = cardB)+ cardC) (providedB N C = @)
cardB x C) cardB) - cardC).

®3)

2Throughout this book, a reference suchES Axxx points to Sloane’€ncyclopedia of Integer
Sequencefs43]. The database contains more than 100 000 entries.
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We shall see soon that these principles, which lie at theslzdour very concept of
number, admit a powerful generalization (Equation (1923 .below).

Next, for combinatorial enumeration purposes, it provesveaient to identify
combinatorial classes that are merely variants of one anoth

Definition 1.3. Two combinatorial classed and B are said to be (combinatorially)
isomorphic which is written A = B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection frdrto B that preserves size,
and one also says that and B are bijectively equivalent

We normally identify isomorphic classes and accordinglykay a plain equality
sign (A = B). We then confine the notatiod = B to stress cases where combinato-
rial isomorphism results from some non-trivial transfotioa

Definition 1.4. Theordinary generating functioOGF) of a sequencéA,) is the
formal power series

@ A@) =D A"
n=0

Theordinary generating functiofOGF) of a combinatorial classl is the generating
function of the numbers A= card A,). Equivalently, the OGF of clasd4 admits the
combinatorial form

(8) A@) =D 2.

acA

It is also said that the variable markssize in the generating function.

The combinatorial form of an OGF in (8) results straightfardly from observing
that the ternz" occurs as many times as there are object4$ having sizen. We stress
the fact that, at this stage and throughout Part A, generétimctions are manipulated
algebraically as formal sums; that is, they are considesdédrenal power seriegsee
the framework of Appendix A.5Formal power serigsp. 730)

Naming convention. We adhere to a systematiaming conventiarclasses, their
counting sequences, and their generating functions ateragsically denoted by the
same groups of letters: for instancé,for a class,{ Ay} (or {a,}) for the counting
sequence, and(z) (or a(2)) for its OGF.

Coefficient extraction.We let generally#"] f (z) denote the operation of extract-
ing the coefficient of" in the formal power serie$(z) = > f,2", so that

(9) [Zn] Z fn Zn = fn .

n>0

(The coefficient extractorz['] f (2) reads as “coefficient of" in f (2)".)
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1. On September 4, 1751, Euler writes to his friend Goldbach [196]:

Ich bin neulich auf eine Betrachtung gefallen, have recently encountered a question, which
welche mir nicht wenig merkimdig vorkam. appears to me rather noteworthy. It concerns
Dieselbe betrifft, auf wie vielerley Arten eirthe number of ways in which a given [convex]
gegebenes polygonum durch Diagonallinien ipolygon can be decomposed into triangles by
triangula zerchnitten werderdkine. diagonal lines.

Euler then describes the problem (formrgon, i.e.(n — 2) triangles) and concludes:

Setze ich nun die Anzahl dieser verschiedeneet me now denote by this number of ways
Arten = x [...]. Hieraus habe ich nun den[...]. | have then reached the conclusion that

Schluss gemacht, dass generaliter sey in all generality
_ 261014..(4n - 10) «— 2.6.10.14....(4n — 10)
T 2345..(n-1) T 2345..(n-1)

[...]1 Ueber die Progression der Zahlen[...] Regarding the progression of the numbers
1,2,5,14,42 132 etc. habe ich auch diesel, 2,5, 14, 42, 132, and so on, | have also ob-
Eigenschaft angemerket, daksg- 2a + 5a2 + served the following property: + 2a + 5a2 +
1483 4 42a% + 13225 + etc. = 172228148 1453 1 4294 1 1325 1 etc, =122 V1Z4
Thus, as early as 1751, Euler knew the solution as well as the assagéstehting function.

From his writing, it is however unclear whether he had found completefpro

2. In the course of the 1750s, Euler communicated the problem, togetheinitigh elements
of the counting sequence, to Segner, who writes in his publication [146HdEr58: “The
great Euler has benevolently communicated these numbers to me; tha which he found
them, and the law of their progression having remained hidden to ‘ged$ numeros mecu
beneuolus communicauit summus Eulerus; modo, quo eos reperig, pitogressionis ordine,
celatis”]. Segner develops a recurrence approach to Catalan numbersoBlydecomposition
analogous to ours, on p. 35, he proves (in our notation, for decatigmssinton triangles)
n-1
4 Th = Z Tk Th—1—k> To=1,
k=0
a recurrence by which the Catalan numbers can be computed to angddesder. (Segner
work was to be reviewed in [197], anonymously, but most probalyl¥ ider.)
3. During the 1830s, Liouville circulated the problem and wrote to Eamho answered the
next day(!) with a proof [399] based on recurrences similar to (4hefexplicit expression:

®) Tn = n i 1 (Znn)'

Interestingly enough, Laé’s three-page note [399] appeared in the 1838 issue odhe
nal de matlématiques pures et appligas(“Journal de Liouville”), immediately followed by
a longer study by Catalan [106], who also observed thatTthétervene in the number ¢f
ways of multiplyingn numbers (this book, §l.5.3, p. 73). Catalan would then return to these
problems [107, 108], and the numbersl]12, 5, 14, 42, ... eventually became known as the

Catalan numbers In [107], Catalan finallyprovesthe validity of Euler’s generating function:

(6) T(2) = Zn:Tnz" _l-vi-4& ;_42.

=

7]

4. Nowadayssymbolic methoddirectly yield the generating function (6), from which both the
recurrence (4) and the explicit form (5) follow easily; see pp. 6 and 35

Figure 1.2. The prehistory of Catalan numbers.
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HC CH CH3s

HC c
26
= CyoHusN2 ~ z
CH
CH,

H,C CH3

Figure 1.3. A molecule, methylpyrrolidinyl-pyridine (nicotine), is a complex as-
sembly whose description can be reduced to a single formula coridiggdrere to a
total of 26 atoms.

The OGFs corresponding to our three exampdésP, 7 are then

— 1
W) = 2" =
@ nz_;) z 1-2z
50
(10) P = > n7
n=0
— 1 (2n\_, 1-VI-4z
T@ = Z})Hl(n)z =

The first expression relative %/(z) is immediate as it is the sum of a geometric
progression. The second generating functi®z) is not clearly related to simple
functions of analysis. (Note that the expression still nsakense within the strict
framework of formal power series.) The third expressioatied toT (z) is equivalent

to the explicit form ofT,, via Newton’s expansion dfl + x)¥/2 (pp. 7 and 35 as well
as Figure 1.2). The OGP#/(z) andT (z) can then be interpreted as standard analytic
objects, upon assigning values in the complex dondito the formal variablez.

In effect, the serie¥®V(z) and T (z) converge in a neighbourhood of 0 and represent
complex functions that are well defined near the origin, Hgnvben|z| < %for W(2)
and|z] < ‘—11 for T(z). The OGFP(2) is a purely formal power series (its radius of
convergence is 0) that can nonetheless be subjected todhakalgebraic operations
of power series. (Permutation enumeration is most conaégiapproached by the
exponential generating functions developed in Chaptgr II.

Combinatorial form of generating functions (GFs)The combinatorial form (8)
shows that generating functions are nothing but a redugeésentation of the com-
binatorial class, where internal structures are destrayeblelements contributing to
size (atoms) are replaced by the variableIn a sense, this is analogous to what
chemists do by writing linear reduced (“molecular”) forrmelfor complex molecules
(Figure 1.3). Great use of this observation was made byi&emberger as early as the
1950s and 1960s. It explains the many formal similaritied #re observed between
combinatorial structures and generating functions.
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T VA (U S

27227 Y4 2727 727227 Z 27227 2727
+ 7 +22 +78 + 7 +z +7 + 73
H(z) = 7+ 72+ 222+ 32

Figure 1.4. A finite family of graphs and its eventual reduction to a generating function.

Figure 1.4 provides a combinatorial illustration: startttwa (finite) family of
graphsH, with size taken as the number of vertices. Each vertex ih gaaph is
replaced by the variableand the graph structure is “forgotten”; then the monomials
corresponding to each graph are formed and the generatiotidn is finally obtained
by gathering all the monomials.

For instance, there are 3 graphs of size 44inin agreement with the fact that
[2*]H (2) = 3. If size had been instead defined by number of edges, arg#therating
function would have resulted, namely, wighmarking the new size: 4 y+y2+2y3+
y*+y8. If both number of vertices and number of edges are of intette=n a bivariate
generating function is obtaineth (z, y) = z+22y+23y?+ 28y3+ 2y3 + ZAy* + 46,
such multivariate generating functions are developedegyatically in Chapter 111

A path often taken in the literature is to decompose the ttras to be enumer-
ated into smaller structures either of the same type or gfleintypes, and then extract
from such a decompositiarecurrence relationshat are satisfied by thigA,}. In this
context, the recurrence relations are either solved djreathenever they are simple
enough—or by means @fd hocgenerating functions, introduced as mere technical
artifices.

By contrast, in the framework of this book, classes of comtarial structures
are builtdirectly in terms of simpler classes by means of a collection of el¢amgn
combinatorialconstructions This closely resembles the description of formal lan-
guages by means of grammars, as well as the constructioruofigied data types in
programming languages. The approach developed here hasdseeedsymbolic as
it relies on a formal specification language for combinatistructures. Specifically,
it is based on so—calleadmissible constructionthat permit direct translations into
generating functions.

Definition I.5. Let ® be an m—ary construction that associates to any collection o
classes3®, ... B™M a new class

A=0o[BD,. . . BM].

The constructiond is admissibléff the counting sequend&\,) of A only depends on
the counting sequencéBY), ..., (BI™) of BD), ..., BM.
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For such an admissible construction, there then exists de&hed operatoW
acting on the corresponding ordinary generating functions
A) =¥[BY@),...,BM],
and it is this basic fact about admissibility that will be d$broughout the book.

As an introductory example, take the construction of c&ateproduct, which is
the usual one enriched with a natural notion of size.
Definition 1.6. The cartesian product constructi@pplied to two classe and C
forms ordered pairs,

(11) A=BxC iff A={a=(B,7)|BeB,yeCl}
with the size of a paix = (f, y) being defined by
(12) lala =18l +17lc.

By considering all possibilities, it is immediately seeattthe counting sequences
corresponding to4, 3, C are related by the convolution relation

n
(13) An = Z BkCn—x,
k=0
which means admissibility. Furthermore, we recognize teedormula for a product
of two power series:

(14) A®Z) = B(2) - C(2).

In summary: the cartesian product is admissible and it translates as @dpct of
OGFs
Similarly, let A, B, C be combinatorial classes satisfying

(15) A=BUC, with BNC =4,
with size defined in a consistent manner: éoe A,

lwlg ifweB

(16) lwlg = _

lwle  ifweC.
One has
a7) An=Bn+Cy,
which, at generating function level, means
(18) A(z) = B(2) + C(2).

Thus,the union of disjoint sets is admissible and it translates asim of generating
functions.(A more formal version of this statement is given in the nedt®n.)
The correspondences provided by (11)-(14) and (15)-(&3wnmarized by the
strikingly simple dictionary
A=BUC = A2 =B +C( (providedB N C = 0)

A=BxC = A2 =B(®- C(2,

(19)
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to be compared with the plain arithmetic case of (3), p. 18e frterit of such rela-
tions is that they can be stated as general purpose tramskaties that only need to
be established once and for all. As soon as the problem ofticgualements of a
union of disjoint sets or a cartesian product is recognitdgtecomes possible to dis-
pense altogether with the intermediate stages of writiqdiei’y coefficient relations
or recurrences as in (13) or (17). This is the spirit of sigenbolic methodor com-
binatorial enumerations. Its interest lies in the fact g8®teral powerful set-theoretic
constructions are amenable to such a treatment, as we deeriext section.

> 1.3. Continuity, Lipschitz and Blder conditions.An admissible construction is said to be
continuousf it is a continuous function on the space of formal power series eqdipgi its
standard ultrametric distance (Appendix AFermal power serieg. 730). Continuity captures
the desirable property that constructions depend on their argumentsnitegyfivay. For all
the constructions of this book, there furthermore exists a funetigr), such that(An) only

depends on the first(n) elements of the{Blgl)), cee (Blgm)), with 9(n) < Kn + L (Holder

condition) ord (n) < n 4+ L (Lipschitz condition). For instance, the functionixz) — f(zz)
is Holder; the functionalf (z) — 0z f (2) is Lipschitz. <

I.2. Admissible constructions and specifications

The main goal of this section is to introduce formally theibasnstructionghat
constitute the core of a specification language for combiradtstructures. This core
is based on disjoint unions, also known as combinatoriaksamd on cartesian prod-
ucts that we have just discussed. We shall augment it by th&tire@tions of sequence,
cycle, multiset, and powerset. A classciznstructibleor specifiableif it can be de-
fined from primal elements by means of these constructiohe.generating function
of any such class satisfies functional equations that carabedribed systematically
from a specification; see Theorems 1.1 (p. 27) and 1.2 (p. 88)yell as Figure 1.18
(p- 93) at the end of this chapter for a summary.

I.2.1. Basic constructions.First, we assume we are given a cld&ssalled the
neutral classthat consists of a single object of size 0; any such objecizaf 8 is
called aneutral objectand is usually denoted by symbols sucheas 1. The reason
for this terminology becomes clear if one considers the doatbrial isomorphism

AZEX A= AXE.

We also assume as givenatomic classZ comprising a single element of size 1;
any such element is called an atom; an atom may be used tdleaageneric node
in a tree or graph, in which case it may be represented by ke ¢wor o), but also a
generic letter in a word, in which case it may be instantiaed, b, c, .... Distinct
copies of the neutral or atomic class may also be subscriptaddices in various
ways. Thus, for instance, we may use the clasges= {a}, Zp = {b} (with a,b
of size 1) to build up binary words over the alphaketb}, or Z, = {e}, Z, = {o}
(with e, o taken to be of size 1) to build trees with nodes of two coloBsnilarly,
we may introduc€n, &1, £2 to denote a class comprising the neutral objetts;, €2
respectively.

Clearly, the generating functions of a neutral clésnd an atomic clasg are

E(2) =1, Z(2) = z,
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corresponding to the unit 1, and the variabl®f generating functions.

Combinatorial sum (disjoint union). The intent ofcombinatorial sunalso known
asdisjoint unionis to capture the idea of a union of disjoint sets, but withenut ex-
traneous condition (disjointness) being imposed on theraemts of the construction.
To do so, we formalize the (combinatorial) sum of two clagsemnd( as the union
(in the standard set-theoretic sense) of tligjoint copies, say3” andC®, of B and
C. A picturesque way to view the construction is as followsstfahoose two distinct
colours and repaint the elements®fvith the first colour and the elements®fvith
the second colour. This is made precise by introducing twbrdit “markers”, sayD
and<, each a neutral object (i.e., of size zero); the disjoinboii + C of B, C is then
defined as a standard set-theoretic union:

B+C:=({0} x B) U ({0} xC).

The size of an object in a disjoint uniof = B + C is by definition inherited from its
size in its class of origin, as in Equation (16). One goodardshind the definition
adopted here is that the combinatorial sum of two classakwiayswell defined, no
matter whether or not the classes intersect. Furthermdjejrd union is equivalent
to a standard union whenever it is applied to disjoint sets.

Because of disjointness of the copies, one has the impitati

A=B+C = Ay=B,+C, and A(2) = B(z) +C(2),

so that disjoint union is admissible. Note that, in contratstndard set-theoretic union
is not an admissible construction since

card B, U Cp) = cardBn) + cardCp) — card B, N Cp),

and information on the internal structure®fandC (i.e., the nature of their intersec-
tion) is needed in order to be able to enumerate the elemétitsiounion.

Cartesian product. This constructiond = B x C forms all possible ordered pairs
in accordance with Definition 1.6. The size of a pair is obtgiradditively from the
size of components in accordance with (12).

Next, we introduce a few fundamental constructions thdthiypon set-theoretic
union and product, and form sequences, sets, and cyclese Tosverful construc-
tions suffice to define a broad variety of combinatorial gtrees.

Sequence constructionlf B is a class then theequencelass £Q(B) is defined
as the infinite sum

SEQB) ={e}+ B+ BxB)+(BxBxB)+---
with e being a neutral structure (of size 0). In other words, we have

A={(r.....80) | €0, pj e B},

which matches our intuition as to what sequences shouldlte rfeutral structure in
this context corresponds to= 0; it plays a ble similar to that of the “empty” word in
formal language theory.) It is then readily checked thativestruction4d = SEQ(B)
defines a proper class satisfying the finiteness conditiorsifes if and only if3
contains no object of siz@. From the definition of size for sums and products, it
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follows that the size of an objeat € A is to be taken as the sum of the sizes of its
components:
a=(f1,...,PBo) = la] = Bl + -+ |Bel.
Cycle construction.Sequences taken up to a circular shift of their components
define cycles, the notation beingr€(B). In precise terms, one has
Cyc(B) := (SEQ(B) \ {e}) /S,
whereS s the equivalence relation between sequences defined by

(ﬂls?ﬂl’)s(ﬁi”ﬁ;)

iff there exists someircular shift z of [1..r] such that for allj, ﬁjf = f:(j), in other
words, for somel, one hasb’j = f1+(j—1+d) modr. Here is, for instance, a depiction
of the cycles formed from the 8 and 16 sequences of lengthd & amer two types of

objects @, b): the number of cycles is 4 (far = 3) and 6 (fom = 4). Sequences are
grouped into equivalence classes according to the rel&tion

aaaa
aaa aaab aaba abaa baaa
babab bb abba bbaa b b
(20) 3—cyc|es{ %bg}bg bgg, 4—cycles : aa :bagb §a aa

abbb bbba bbab babb
bbbb

According to the definition, this construction correspotalthe formation of directed
cycles (see also the necklaces of Note 1.1, p. 18). We makealiited use of it
for unlabelled objects; however, its counterpart playstheraimportant dle in the
context of labelled structures and exponential generdtingtions of Chapter .

Multiset construction. Following common mathematical terminologyultisets
are like finite sets (that is the order between elements doesaunt), but arbitrary
repetitions of elements are allowed. The notationdis= MSET(5) when A is ob-
tained by forming alfinite multisets of elements fror. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being definddfy .., o) R (f1, ..., fr) iff
there exists somarbitrary permutations of [1..r] such that for allj, fj = asj).

Powerset constructionThe powersetclass (or set classi = PSET(B) is de-
fined as the class consisting of fillite subsets of clas8, or equivalently, as the class
PST(B) ¢ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function iddfivhen such
constructions are performed: as for products and sequetieesize of a composite
object—set, multiset, or cycle—is defined to be the sum of thessif its components.

> 1.4. The semi-ring of combinatorial classeklnder the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebraic propedmbinatorial sums and
cartesian products become commutative and associative operatgns, e

A+B)+C=A+(B+0), Ax(BxC)=AUxB)xC,
while distributivity holds,(A + B) x C = (A x C) + (B x C). <

3By convention, there are no “empty” cycles.
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> I.5. Natural numbers.Let Z := {e} with e an atom (of size 1). Thefl = SEQ(Z) \
{e} is a way of describing positive integers in unary notati@dn= {e, ee, eee, ...}. The
corresponding OGF is(z) = z/(1—2) = z+ 22+ 23 + - - -. <

> 1.6. Interval coverings.Let Z := {e} be as before. Thed = Z + (£ x Z) is a set of two
elementse and(e, o), Which we choose to draw 4s, e—e}. ThenC = SEQ(A) contains

o, 00 00 0090 000 0009 0000 ..

With the notion of size adopted, the objects of sidza C = SEQ(Z + (£ x Z)) are (isomorphic

to) thecoveringsof [0, n] by intervals (matches) of length either 1 or 2. The OGF
C(2)=1+2+222+322+54+822+138+ 212" +348 +552° + ...,

is, as we shall see shortly (p. 42), the OGF of Fibonacci numbers. <

I.2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for thenstructions that we have
introduced. The final implication is that any specificatidnaoconstructible class
translates directly into generating function equation$e Translation of the cycle
construction involves the Euler totient functipik) defined as the number of integers
in [1, K] that are relatively prime t& (Appendix A.1:Arithmetical functionsp. 721).

Theorem I.1 (Basic admissibility, unlabelled universeyhe constructions of union,
cartesian product, sequence, powerset, multiset, ance @ all admissible. The
associated operators are as follows.

Sum: A=B+C = A(2=B(@+C(2

Cartesian product: A =B x C = A2 =B(2 -C(2

Sequence: A=SEQB) = A@2)= 1——18(2)
H(1+ Zn)Bn
Powerset: A=PETB) = A@=1{ "?
0 (_1)k—1 ‘
exp( Z K B(z ))
k=1
[Ja-z»""
Multiset: A=MSET(B) = A@2) = n>1
exp(z % B(zk))
k=1
) — ¢(K) 1
Cycle: A=Cvc(B) = A@®)= é » log et

For the sequence, powerset, multiset, and cycle transistivis assumed th#y = ¢.
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The class€ = {¢} consisting of the neutral object only, and the cl&sonsisting of
a single “atomic” object (node, letter) of size 1 have OGFs

Ez=1 and Z(z) =z

Proof. The proof proceeds case by case, building upon what we bav/egen regard-
ing unions and products.

Combinatorial sum (disjoint union).Let A = B+C. Since the union idisjoint,
and the size of anl—element coincides with its size Bor C, one hasA, = B, +Cp,
andA(z) = B(2) + C(2), as discussed earlier. The rule also follows directly from t
combinatorial form of generating functions as expresse(Bhyp. 19:

A@ =D 2"=>"724+>"7=B@2)+C@.
acA aeB aeC

Cartesian product. The admissibility result fotA = B x C was considered as
an example for Definition 1.6, the convolution equation (1&3ding to the relation
A(2) = B(2) - C(2). We can also offer a direct derivation based on the comhiizto
form of generating functions (8), p. 19,

A =S 2= 3 o (Z ZI/)’I) x <Z Zlyl) — B(2)-C(2),

acA (B,7)e(BxC) peB yeC
as follows from distributing products over sums. This dation readily extends to an
arbitrary number of factors.
Sequence constructionAdmissibility for A = SEQ(B) (with By = ) follows
from the union and product relations. One has
A={}+B+BxB)+BxBxB)+---,
so that

A@ =1+B@+B@°+B@ + = g,

where the geometric sum converges in the sense of formalrsasies sinced’] B(z) =
0, by assumption.

Powerset constructionLet .4 = PSET(5) and first take5 to be finite. Then, the
classA of all the finite subsets df is isomorphic to a product,

(21) PET(B) = [ (e} + 18D,
peB

with € a neutral structure of size 0. Indeed, distributing the potslin all possible
ways forms all the possible combinations (sets with no igpetallowed) of elements
of BB; the reasoning is the same as what leads to an identity such as

1+a)@+b@A+c)=1+[a+b+c]+[ab+ bc+ ac + abc
where all combinations of variables appear in monomialsenTtdirectly from the
combinatorial form of generating functions and the sum anodlpct rules, we find

(22) A@ = [Ta+2) =@+
peB n
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Theexp—log transformation &) = exp(log A(z)) then yields

o
A = exp(z Bnlog(1 + z“))
n=1
23 ST YR,
23) G IS
n=1 k=12 ( 3)
B(zz B(z®) B(z
= exp( 1 > + 3 ),
where the second line results from expanding the logarithm,
u u>
logl+uy =75 +5 -,

and the third line results from exchanging the order of sutionas.

The proof finally extends to the case Bfbeing infinite by noting that eac,
depends only on thog®; for which j < n, to which the relations given above for the
finite case apply. Precisely, I8(=™ = > | B; and A=™ = PSET(BEM). Then,
with O(z™1) denoting any series that has no term of degra®, one has

A@) = AEM(z) + O™  and  B(2) = BEM(2) + O™,

On the other handA=™ (z) and B(=™(z) are connected by the fundamental expo-
nential relation (23) , sincB=™ is finite. Lettingm tend to infinity, there follows in
the limit

B(zz B B@)
A(2) = — —...).
2 exp( 1 > + 3
(See Appendix A.5:Formal power seriesp. 730 for the notion of formal conver-
gence.)

Multiset construction. First for finite 5 (with By = @), the multiset classA =
MSET(B) is definable by

(24) MSET(B) = [ | SEQU(A)).
peB

In words, any multiset can be sorted, in which case it can b&ed as formed of a
sequence of repeated elemefits followed by a sequence of repeated elemegits
wherep1, 2, ... is a canonical listing of the elements Bf The relation translates
into generating functions by the product and sequence,rules

A(z) = H(l — Zlﬂl)—l — H(l _ Zn)—Bn
peB n=1
n=1

2 3
oo 224 B B, Y,
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where the exponential form results from the exp—log trams&tion. The case of an
infinite classB3 follows by a limit argument analogous the one used for poeters

Cycle construction.The translation of the cycle relatioh = Cyc(B) turns out
to be

o (K 1
A(2) = log )
g k 1— B(Z¥)

where ¢ (k) is the Euler totient function. The first terms, with(z) := log(1 —
B(Z)) L are

1 1 2 2 4 2
A(Z) = il—l(z) + ELZ(Z) + §|—3(Z) + ZL4(Z) + ELS(Z) + éL6(Z) +ee

We reserve the proof to Appendix A.€ycle constructionp. 729, since it relies in
part on multivariate generating functions to be officialyroduced in Chapter || 1

The results for sets, multisets, and cycles are particalses of the well-known
Polya theorythat deals more generally with the enumeration of objectieugroup
symmetry actions; for #lya’s original and its edited version, see [488, 491]. This
theory is described in many textbooks, for instance, thé&omtet [129] and Harary
and Palmer [129, 319]; Notes 1.58-1.60, pp. 85-86, distihiiost basic aspects. The
approach adopted here amounts to considering simultalyeslupossible values of
the number of components by means of bivariate generatmgifitns. Powerful gen-
eralizations within Joyal’'s elegant theory of species [3@ presented in the book
by Bergeron, Labelle, and Leroux [50].
> 1.7. Vallée's identityLet M = MSET(C), P = PSET(C). One has combinatorially:

M(2) = P(2)M(Z2).
(Hint: a multiset contains elements of either odd or even multiplicity.) Accaigirone can
deduce the translation of powersets from the formula for multisets. Itgréterelation above
yields M (z) = P(2)P(z2)P(Z*)P(8) - - - : this is closely related to the binary representation
of numbers and to Euler’s identity (p. 49). It is used for instance in Né&p. 91. <

Restricted constructionsin order to increase the descriptive power of the frame-
work of constructions, we ought to be able to allow restics on the number of
components in sequences, sets, multisets, and cyclesf beta metasymbol rep-
resenting any of 8Q, Cvc, MSET, PSET and letQ be a predicate over the integers;
then Ko (A) will represent the class of objects constructedfywith a number of
components constrained to satisty For instance, the notation

(26) SEQ_k (or simply Ek), SEQ.k, SEQ1. k
refers to sequences whose number of components are ekatdhger thark, or in
the interval 1 . k respectively. In particular,
k times
e Re. on k i ~ 1k
SEQ(B) =B x --- x B =B, SEQ:k(B) = > B! = B x SEQ(B),

j>k
MSETk(B) := SEQ(B)/R.

Similarly, SEQydg, SEQevenWill denote sequences with an odd or even number of com-
ponents, and so on.
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Translations for such restricted constructions are dvig]aas shown generally
in Subsection I.6.1, p. 83. Suffice it to note for the momeat tihe construction
A = SEQ(B) is really an abbreviation for &-fold product, hence it admits the
translation into OGFs

(27) A = SEq(B) = Az) = B(2).

I.2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (spetifins) of a broad variety of
combinatorial classes. Since we restrict attentioadmissibleconstructions, we can
immediately derive OGFs for these classes. Put differgtité/task of enumerating a
combinatorial class is reducedpogramminga specification for it in the language of
admissible constructions. In this subsection, we firstuidisthe expressive power of
the language of constructions, then summarize the symbwdittod (for unlabelled
classes and OGFs) by Theorem I1.2.

First, in the framework just introduced, the class of alldrinwords is described

by
W = SEQ(A), where A={a,b}=Z+ Z,

the ground alphabet, comprises two elements (letterskefki The size of a binary
word then coincides with its length (the number of lettexoittains). In other terms,
we start from basic atomic elements and build up words by ifogrfreely all the ob-
jects determined by the sequence construction. Such a patobial description of a
class that only involves a composition of basic construatiapplied to initial classes
£, Z is said to be aiiterative (or non-recursive specification Other examples al-
ready encountered include binary necklaces (Note 1.1, pai8 the positive integers
(Note 1.5, p. 27) respectively defined by

N =Cyc(Z+ 2) and 7 =SEQ.1(2).
From this, one can construct ever more complicated objEctsinstance,
P = MSET(Z) = MSET(SEQ>1(2))

means the class of multisets of positive integers, whickasiorphic to the class of
integer partitions (see Section I. 3 below for a detaileduision). As such examples
demonstrate, a specification that is iterative can be repted as a single term built on
£, Z and the constructions, x, SEQ, Cyc, MSET, PSET. An iterative specification
can be equivalently listed by naming some of the subtermisrifance, partitions in
terms of natural integers, themselves defined as sequences of at&ns

Semantics of recursionWe next turn our attention to recursive specifications,
starting with trees (cf also Appendix A.9ree concepty. 737, for basic definitions).
In graph theory, a tree is classically defined as an unddegteph that is connected
and acyclic. Additionally, a tree i@otedif a particular vertex is specified (this vertex
is then kown as the root). Computer scientists commonly mesieeof trees called
plané* that are rooted but also embedded in the plane, so that teeimgof subtrees

4The alternative terminology “planar tree” is also often yskdt it is frowned upon by some as
incorrect (all trees are planar graphs). We have thus opiethé expression “plane tree”, which parallels
the phrase “plane curve”.



32 |I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

attached to any node matters. Here, we will give the nangenéral plane treet
such rooted plane trees and c@ltheir class, where size is the number of vertices;
see, e.g., reference [538]. (The term “general” referseddlot that all nodes degrees
are allowed.) For instance, a general tree of size 16, draimtiae root on top, is:

As a consequence of the definition, if one interchangestisaygecond and third root
subtrees, then a different tree results—the original trekitanvariant are not equiva-
lent under a smooth deformation of the plane. (General ee¢hus comparable to
graphical renderings of genealogies where children arerectby age.). Although we
have introduced plane trees as two-dimensional diagrdrsspbvious that any tree
also admits a linear representation: a trewith root and root subtrees, ..., 7
(in that order) can be seen as the ob, where the box encloses similar
representations of subtrees. Typographically, a[bpmay be reduced to a matching
pair of parentheses(-)”, and one gets in this way a linear description that illustsa
the correspondence between trees viewed as plane diagnahfigrectional terms of
mathematical logic and computer science.

Trees are best described recursively. A plane tree is a coohich is attached
a (possibly empty) sequence of trees. In other words, thes Glaf general trees is
definable by the recursive equation

(28) G = Z x SEQ(Q),

whereZ comprises a single atom writtem™that represents a generic node.
Although such recursive definitions are familiar to compstEentists, the speci-
fication (28) may look dangerously circular to some. One wiaypaking good sense
of it is via an adaptation of the numerical technique of iiera Start withGl% = g,
the empty set, and define successively the classes
g+l — z x SEQ(Q“]).

For instancegll = Z x SEQ(#) = {(e, €)} = {o} describes the tree of size 1, and

gl — {o, QE], OE], .E], }
g[3] = {o, .E], .E], .E], R

o[o]]. fo[ee]]. o[00]e .@@]

First, eachgli] is well defined since it corresponds to a purely iterativecEjpation.
Next, we have the inclusiogil!! ¢ Gli+1 (a simple interpretation afl!! is the class
of all trees of heighk j). We can therefore regard the complete class defined by
the limit of theGlIl; that is,G := (J; glIJ.

> 1.8. Lim-sup of classed.et (Al pe any increasing sequence of combinatorial classes, in
the sense thatl}] ¢ Al+1], and the notions of size are compatible APl = |J; AUl is a

> > , @
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combinatorial class (there are finitely many elements ofisjZer eachn), then the correspond-
ing OGFs satisf}A[OO] @ =limj_ A[J](z) in the formal topology (Appendix A.5Formal

power seriesp. 730). <
Definition 1.7. A specificatiorfor an r—tuple. A = (A®, ..., AD) of classes is a
collection of r equations,
AD = 04D, AD)
@ _ @ G
AD = @ADL, AD)

where each®; denotes a term built from thd using the constructions of disjoint
union, cartesian product, sequence, powerset, multisetcscle, as well as the initial
classe< (neutral) andZ (atomic).

We also say that the system is a specificatiol&. A specification for a com-
binatorial class is thus a sort of formal grammar defining thess. Formally, the sys-
tem (29) is ariterative or non-recursivespecification if it is strictly upper-triangular,
that is, A" is defined solely in terms of initial classés &; the definition of A"~
only involves A, and so on; in that case, by back substitutions, it is appénatfor
an iterative specification4® can be equivalently described by a single term involv-
ing only the initial classes and the basic construct@sherwise, the system is said to
berecursive In the latter case, the semantics of recursion is idertticéhe one intro-
duced in the case of trees: start with the “empty” vector agses A% := (g, .. ., 9),
iterate AL+ = [ AlI]], and finally take the limit.

There is an alternative and convenient way to visualizeetimegions. Given a
specification of the form (29), we can associatedépendency (di)graph to it as
follows. The set of vertices of is the set of indice$l, ..., r}; for each equation
AD = 54D, ..., AD) and for eachj such that4)) appears explicitly on the
right-hand side of the equation, place a directed g@dge> j) in T'. It is then eas-
ily recognized that a class is iterative if the dependenaplgrof its specification is
acyclic; it is recursive is the dependency graph has a didecycle. (This notion will
serve to define irreducible linear systems, p. 341, andugibie polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition 1.8. A class of combinatorial structures is said todmnstructibleor speci-
fiable iff it admits a (possibly recursive) specification in ternfssam, product, se-
guence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specificatinguage for combina-
torial structures which is some fragment of set theory wibursion added. Each
constructible class has by virtue of Theorem |.1 an ordimgayerating function for
which functional equations can be produced systematigdtiyact, it is even possible
to use computer algebra systems in order to compuatetdmatically See the article
by Flajolet, Salvy, and Zimmermann [255] for the descriptad such a system.)

Theorem 1.2 (Symbolic method, unlabelled universejhe generating function of a
constructible class is a component of a systenfuoictional equationsvhose terms
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are built from
1,z +,x,Q, Exp, Exp, Log,

where
_ 1 o~ e® 1
Afl = = Log[f] = kgl 9T T
% ¢k 00 k
Exp[f] = exp(Z%), Exp[f] = exp(Z(—l)kA%).
k=1 k=1

Polya operators.The operatoR translating sequencesg®) is classically known
as thequasi-inverseThe operator Exp (multisets, M=) is called thePblya exponen-
tial® andExp (powersets, Ps) is themodified Plya exponential The operator Log
is the Pblya logarithm They are named afterol/a who first developed the general
enumerative theory of objects under permutation groupsgp{86).

The statement of Theorem 1.2 signifies that iterative ckse explicit gen-
erating functions involving compositions of the basic @ters only, while recursive
structures have OGFs that are accessible indirectly vieesysof functional equa-
tions. As we shall see at various places in this chapter,dit@nfing classes are con-
structible: binary words, binary trees, general treegget partitions, integer com-
positions, non-plane trees, polynomials over finite fietdsklaces, and wheels. We
conclude this section with a few simple illustrations of syenbolic method expressed
by Theorem 1.2.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W=SEQZ+ Z W@ = ———,
AZ+2) = @ =15
whence the expected reslt), = 2". (Note: in our framework, ifa, b are letters,
thenZ + Z = {a, b}.)
General trees.The recursive specification of general trees leads to anidginpl
definition of their OGF,

z

From this point on, basic algelSidoes the rest. First the original equation is equivalent
(in the ring of formal power series) 8 — G2 — z = 0. Next, the quadratic equation

Sit is a notable fact that, although théllpa operators look algebraically “difficult” to compute it
their treatment by complex asymptotic methods, as regardsaeetfasymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV=VII (e.g., pp. 25%).47

6Methodological note: for simplicity, our computation is diaged using the usual language of math-
ematics. Howevernalysisis not needed in this derivation, and operations such aggpiiuadratic equa-
tions and expanding fractional powers can all be cast witiérpurely algebraic framework @drmal power
series(p. 730).
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is solvable by radicals, and one finds

G = 1(1-Vi-42

= 242242224+ 5724+142°+ 4275 + 13227 + 42928 + . ..
1 (Zn — 2) n
- > ()
n\n-1
n>1
(The conjugate root is to be discarded since it involvesma &t as well as negative
coefficients.) The expansion then results from Newton'siiial expansion,

“« a a(a—1) 5
Q+x*=1+ 1X+—2! X

+ ey
applied witha = 3 andx = —4z.

The numbers

1 /2 2n)! 1-J1—4
- M _ @V ihoGE cg= 1o Vi=#

n+1\n (n+1!'n! 2z

are known as the Catalan numbeEsg A000109 in the honour of Eugne Catalan,
the mathematician who first studied their properties in geath (pp. 6 and 20). In
summarygeneral trees are enumerated by Catalan numbers:

1/2n-2
GnZCn_lz—( )

(30) GCa

n\n-1
For this reason the ter@atalan treeis often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n 4+ 2 points arranged in anticlockwise order on a circle and
conventionally numbered from O to+ 1 (for instance thén + 2)th roots of unity).
A triangulation is defined as a (maximal) decomposition &f tonvex(n + 2)-gon
defined by the points into triangles (Figure 1.1, p. 17). Triangulations are takereher
as abstract topological configurations defined up to coantisudeformations of the
plane. The size of the triangulation is the number of triaegkhat is,n. Given a
triangulation, we define its “root” as a triangle chosen imscconventional and un-
ambiguous manner (e.g., at the start, the triangle thatewnthe two smallest labels).
Then, a triangulation decomposes into its root triangletamdsubtriangulations (that
may well be “empty”) appearing on the left and right sidesh# toot triangle; the
decomposition is illustrated by the following diagram:

Q

The class7 of all triangulations can be specified recursively as
T = {e + (T xVxT),
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provided that we agree to consider a 2-gon (a segment) awmgige to an “empty”

triangulation of size 0. (The subtriangulations are togaally and combinatorially

equivalent to standard ones, with vertices regularly spacea circle.) Consequently,
the OGFT (2) satisfies the equation

@) T@=1+2T@% sothat T(2) = Ziz (1-vi—%).

As a result of (30) and (31jriangulations are enumerated by Catalan numbers

1 (/2n
Th=Ch = .
" : n+1(n)

This particular result goes back to Euler and Segner, a pebefore Catalan; see
Figure 1.1 on p. 17 for first values and p. 73 below for relatgeidtions.

> 1.9. A bijection. Since both general trees and triangulations are enumerated by Catalan
numbers, there must exist a size-preserving bijection between the teseslaFind one such
bijection. [Hint: the construction of triangulations is evocative of binarydyeehile binary

trees are themselves in bijective correspondence with general tré&3).(p

> 1.10. A variant specification of triangulation€onsider the cladg of “non-empty” triangu-
lations of then-gon, that is, we exclude the 2-gon and the corresponding “empty’guiation
of size 0. Therid = 7 \ {¢} admits the specification

U=V+(VxU)+UXxV)+UXxV xU)
which also leads to the Catalan numbers Mia= z(1 + U)z, sothatU(z) = (1 -2z —

V1—-42)/(22) =T (2) — 1.

I.2.4. Exploiting generating functions and counting sequeces. In this book
we are going to see altogether more than a hundred applisatibthe symbolic
method. Before engaging in technical developments, it idwioserting a few com-
ments on the way generating functions and counting seqaeacebe put to good use
in order to solve combinatorial problems.

Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that expligitditae result for their
coefficients. A prime example is the counting of generaldraed of triangulations
above, where the quadratic equation satisfied by an OGF isarteeto an explicit
solution—the resulting OGF could then be expanded by meaNswfon’s binomial
theorem. Similarly, we derive later in this chapter an ecipfiorm for the number
of integer compositions by means of the symbolic method éh@ver turns out to
be simply 2-1) and obtain in this way, through OGFs, many related enurograt
results. In this book, we assume as known the elementaryitpeds from basic
calculus by which the Taylor expansion of an explicitly gifanction can be obtained.
(Elementary references on such aspects are WaEseratingfunctionology608],
Graham, Knuth, and PatashnilC®oncrete Mathematid807], and our book [538].)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense exphaittheir form is such that
their coefficients are not clearly reducible to a closed foltnis then still possible to
obtain initial values of the corresponding counting segedny means of a symbolic
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manipulation system. Furthermore, from generating fomgj it is possible systemat-
ically to derive recurrences that lead to a procedure foqmaimg an arbitrary number
of terms of the counting sequence in a reasonably efficientiera A typical example
of this situation is the OGF of integer partitions,

= 1

[l

m=1
for which recurrences obtained from the OGF and associatdast algorithms are
given in Note 1.13 (p. 42) and Note 1.19 (p. 49). An even morecspcular example
is the OGF of non-plane trees, which is proved below (p. 719atisfy the infinite
functional equation

H(Z)=ZeXp(H(Z)+%H(ZZ)+%H(z3)+...)’

and for which coefficients are computable in low complexige Note 1.43, p. 72.
(The references [255, 264, 456] develop a systematic apprimasuch problems.)
The corresponding asymptotic analysis constitutes the thaime of Section VII. 5,
p. 475.

Asymptotic formulae.Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. Fraquick glance at the
table of initial values of\, (words), P, (permutations)T, (triangulations), as given
in (2), p. 18, itis apparent th&Y, grows more slowly thaii,, which itself grows more
slowly thanP,. The classification of growth rates of counting sequenckmigs prop-
erly to the asymptotic theory of combinatorial structurdsich neatly relates to the
symbolic method via complex analysis. A thorough treatnodrthis part of the the-
ory is presented in Chapters IV-VIII. Given the methods expted there, it becomes
possible to estimate asymptotically the coefficients dfualy any generating func-
tion, however complicated, that is provided by the symbuoigthod; that is, implicit
enumerations in the sense above are well covered by comgyexmotic methods.

Here, we content ourselves with a few remarks based on etanyeral analysis.
(The basic notations are described in Appendix AA&ymptotic notationp. 722.)
The sequence/, = 2" grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequéRg¢e= n! must grow
faster. But how fast? The answer is provided by Stirling'srfola, an important
approximation originally due to James Stirlirig\{itation, p. 4):

32) nt = (2)” J2rn (1+ 0 (%)) (N = +00).

(Several proofs are given in this book, based on the methbdmfce, p. 760, Mellin
transforms, p. 766, singularity analysis, p. 407, and thigllgapoint method, p 555.)
The ratios of the exact values to Stirling’s approximations

n 1 2 5 10 100 1000

T
L 1.084437 1.042207 1.016783 1.008365 1.000833 1.000083
ne "y/2zn
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Figure 1.5. The growth
regimes of three sequences
f(ny = 2", Th,n! (from
bottom to top) rendered by a
plot of log; g f (n) versusn.

show anexcellent qualityof the asymptotic estimate: the error is only 8% ifoe= 1,
less than 1% fon = 10, and less than 1 per thousand for argreater than 100.

Stirling’s formula provides in turn the asymptotic form et Catalan numbers,
by means of a simple calculation:

1 @2 12n)2eV4zn

Ch =
"“n+1(H2 n n2e22rn

which simplifies to
4n

zn3

Thus, the growth of Catalan numbers is roughly comparabEntexponential, 4
modulated by a subexponential factor, heye/xn3. A surprising consequence of
this asymptotic estimate in the area of boolean functiongierity appears in Exam-
ple 1.17 below (p. 77).

Altogether, the asymptotic number of general trees andgrtikations is well sum-
marized by a simple formula. Approximations become morerante accurate as
becomes large. Figure 1.5 illustrates the different grovethimes of our three ref-
erence sequences while Figure 1.6 exemplifies the qualithefpproximation with
subtler phenomena also apparent on the figures and welliegglhy asymptotic the-
ory. Such asymptotic formulae then make comparison betileeigrowth rates of
seguences easy.

The interplay between combinatorial structure and asytigastructure is indeed
the principal theme of this book. We shall see in Part B thatghnerating func-
tions provided by the symbolic method typically admit seniiy simple asymptotic
coefficient estimates.
> 1.11. The complexity of codingA company specializing in computer-aided design has sold
to you a scheme that (they claim) can encode any triangulation ofsizel00 using at most

1.5n bits of storage. After reading these pages, what do you do? [Hint: snelttfSee also
Note [.24 (p. 53) for related coding arguments. <
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n Cn o C}/Cn

1 1 2.25 2.256758334191025 14779 23178
10 16796 18707.89 1.11383 05127 5228537 89064
100 089651 10°7 0.90661- 10°7 1.01126 32841 24540 52257 13957
1000 020461- 10°%8 0.20484. 10°98 1.00112 51328 15424 16470 12827

10000 022453- 10°015  0.22456. 10°015  1.00011 2501328127 92913 51406
100000 0178051080199 (17805 1060199  1.00001 12500 13281 25292 96322
1000000 (065303 10%02051 (55303. 10502051 1 00000 1125000132 8125029296

Figure 1.6. The Catalan numbefGp, their Stirling approximatioiy; = 4"/~ z n3,
and the raticC}/Cn.

> 1.12. Experimental asymptoticErom the data of Figure 1.6, guess the vaVmesCIO7/C107
and Ofcg.loe/cs-loﬁ to 25D. (See, Figure VI.3, p. 384, as well as, e.g., [385] for rdlate
asymptotic expansions and [80] for similar properties.) <

I. 3. Integer compositions and partitions

This section and the next few provide examples of countiagspiecifications in
classical areas of combinatorial theory. They illustréiee benefits of the symbolic
method: generating functions are obtained with hardly amputation, and at the
same time, many counting refinements follow from a basic éoatbrial construc-
tion. The most direct applications described here relateeé@dditive decomposition
of integers into summands with the classical combinateaidhmetic structures of
partitions and compositions. The specifications are fi&and simply combine two
levels of constructions of typee®, MSET, Cyc, P&ET.

I.3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

Definition 1.9. Acompositiorof an integer n is a sequen¢ey, Xz, . . ., Xk) of integers
(for some k) such that

Nn=X1+Xp4+ -+ Xk, Xj > 1L
A partitionof an integer n is a sequenggy, X2, .. ., Xk) of integers (for some k) such
that

N=X1+X+---+X and x>Xp>--->x>1
In both cases, thejare called thesummand®r the partsand the quantity n is called
thesize
By representing summands in unary using small dis€y,(ive can render graph-
ically a composition by drawing bars between some of thespdlive arrange sum-
mands vertically, compositions appear as ragged landscapecontrast, partitions
appear as staircases, also known as Ferrers diagrams [1Z®W)]psee Figure 1.7. We

7In this book, we abbreviate a phrase such2&decimal placesby “25D”.
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Figure I.7. Graphical representations of compositions and partitions: (left) the com-
position 1+ 3+ 14+ 44 2+ 3 = 14 with its “ragged landscape” and “balls-and-bars”
models; (right) the partiton & 8 +6+5+4+4+4+2+ 1+ 1= 43 with its
staircase (Ferrers diagram) model.

let C andP denote the class of all compositions and all partitiongyeesvely. Since
a set can always be presented in sorted order, the diffebetagen compositions and
partitions lies in the fact that the order of summaddssor does notmatter. This is
reflected by the use of a sequence constructiondf@gainst a multiset construction
(for P). From this perspective, it proves convenient to regard 6tdained by the
empty sequence of summands=£ 0), and we shall do so from now on.

Integers, as a combinatorial clasd.etZ = {1, 2, ...} denote the combinatorial
class of all integers at least 1 (the summands), and let #eeafieach integer be its
value. Then, the OGF (f is

(34) )= 2"= 2

1-27
n>1
sincel, = 1 forn > 1, corresponding to the fact that there is exactly one olije€t
for each sizen > 1. If integers are represented in unary, say by small balls has
(35) T={1,23 ...}={e, 00, 000, ...} =SEQ.1fe},
which constitutes a direct way to visualize the equdlity) = z/(1 — 2).

Compositions.First, the specification of compositions as sequences adhjt
Theorem |.1, a direct translation into OGF:

1
= 7 =—.
(36) C = SEQ(Z) = C® 1@
The collection of equations (34), (36) thus fully deternsiGgz):
C = 1 1-2z

1-i5 1-2z

z

= 1472+27224+423+824+162°+325+-...

From here, the counting problem for compositions is solved Btraightforward ex-
pansion of the OGF: one has

C= (D 2" |- (D 2"

n>0 n>0
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1

10 024 42

20 048576 627

30 073741824 5604

40 0995116277 37338

50 12589990684 204226

60 152921504601 646

70 1805916207174 408796

80 208925819614629174706176 15796476

90 23794003928538027489912 56634173

100 267650600228229401496703205376 190569292

110 298074214633706907132624082305024 607163746

120 1329227995784915872903807060280344576 1844349560

130 361129467683753853853498429727072845824 5371315400

140 3937965749081639463459823920405. 15065878135

150 427247692705959881058285969449495136382 4 353

160 46150163733090291820368483271628301965593264297 107438159466
170 49657767662684458824057326870147381212767492200 274768617130
180 5324955408658888583583470271503091836187393@Q2876 684957390936
190  15692754338466701909589473558019166040255888608628224 1667727404093
200  16069380442589902755419620923411626025222029937835301376 3972999029388
210  164550455732120604215496918255735050498273586%8863348609024 9275102575355
220 684996666696914987166688442938726917102321&25508006897 6 0 76 21248279009367
230 7254365866976409468586889655692563631127772836@38790631055949824 4782623
240 7668470647783843295832975007429l85158274833958958121606201292619776 105882246722733
250 80925139433306555349329664076074856020734366488813116524750123642650624  230793554364681

Figure 1.8. Forn =0, 10, 20, .. ., 250 (left), the number of compositio%, (mid-
dle) and the number of partitior®, (right). The figure illustrates the difference in
growth betweerC = 2"~1 and P, = ePW).

implying Co = 1 andC, = 2" — 2"-1for n > 1; that is,
(37) Ch=2"1 n>1

This agrees with basic combinatorics since a compositiam c€n be viewed as the
placement of separation bars at a subset ofrthe 1 existing places in betwean
aligned balls (the “balls-and-bars” model of Figure I.7) which there are clearly
2"-1 possibilities.

Partitions. For partitions specified as multisets, the general traoslabhechan-
ism of Theorem 1.1, p. 27, provides

(38) P =MSET(Z) = P(z):exp(l(z)+%l(22)+%I(z3)+~-~),

together with the product form corresponding to (25), p. 29,
ﬁ 1
1-zm

m=1
= (1+z_|_22+...)(1_|_22_|_z4_|_...)(1_|_z3_|_26_|_...)...
=1472+222+383+54+ 725+ 115 + 1527 + 228 +

P2
(39)

(the counting sequence E4S A00004]). Contrary to compositions that are counted
by the explicit formula 2-1, no simple form exists foP,. Asymptotic analysis of
the OGF (38) based on the saddle-point method (Chapter plI574) shows that
P, = €2, In fact an extremely famous theorem of Hardy and Ramanuajear |
improved by Rademacher (see Andrews’ book [14] and Chagiérprovides a full
expansion of which the asymptotically dominant term is

1 ox /2n
N — 71' J—
4n/3 P 3

(40) Pn
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There are consequently appreciably fewer partitions tlampositions (Figure 1.8).
> 1.13. A recurrence for the partition numberd.ogarithmic differentiation gives

P2 <& nZ o noo
z P((Z)) =D 15 implying nPy= Za(J)Pn_j,
n=1 j=1
whereg (n) is the sum of the divisors afl (e.9.,6(6) = 1+ 2+ 3+ 6 = 12). Conse-
quently,Py, ..., Py can be computed iD(N2) integer-arithmetic operations. (The technique
is generally applicable to powersets and multisets; see Note 1.43 (p.ri@)dther application.
Note 1.19 (p. 49) further lowers the bound@(N+/N), in the case of partitions.) <

By varying (36) and (38), we can use the symbolic method tvedernumber of
counting results in a straightforward manner. First, weedtae following proposition.

Proposition I1.1. Let7 C Z be a subset of the positive integers. The OGFs of the
classe? := SEQ(SEQ7 (2)) andP7? = MSET(SEQ7(Z)) of compositions and
partitions having summands restrictedZoc Zs1 are given by

1 1 1
cT» = = . PTp= _
1-> et 1-T( nelll—zn

Proof. A direct consequence of the specifications and Theorerp.l 7. ]

This proposition permits us to enumerate compositions arttipns with re-
stricted summands, as well as with a fixed number of parts.

Examplel.4. Compositions with restricted summands.order to enumerate the clag§l-2!
of compositions ofi whose parts are only allowed to be taken from the{$€2}, simply write

2 = seqrt?)y  with 7112 = (1, 2).

Thus, in terms of generating functions, one has

1
ctBzp=— > with 1L28@)=z+7
This formula implies
1
C{l’Z}(z) == 142422438 +54+8°5+138+ ... R

l-z-z
and the number of compositionsin this class is expressed by a Fibonacci number,

1 [(1+v5)" (1-v5Y
cé1’2’=Fn+1whefeﬁ=¢g[( 2 )_( 2 )}

of daisy—artichoke—rabbit fame In particular, the rate of growth is okttEonential typey",

1 5. .
wherep = + is the golden ratio.

Similarly, compositions all of whose summands lie in the{4¢P, . .., r} have generating
function

1 1 1-z

41 clltl(z) = = = ,
“1) @ 1-z-22—...7 1_211—_22' 1-2z47+1
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and the corresponding counts are generalized Fibonacci numbdmibde combinatorial sum
expresses these counts

Lot} ron z(1-72)\! k(I (n—-rk-1
“ay _[Z]Zj:(a—z)) ‘%2(_1) (k)( -1 )
This result is perhaps not too useful for grasping the rate of growitnecssequence whangets
large, so that asymptotic analysis is called for. Asymptotically, for angfixe 2, there is a
unique rootp, of the denominator + 2z + 211 in (%, 1), this root dominates all the other
roots and is simple. Methods amply developed in Chapter IV and ExamgléV308) imply
that, for some constawt > 0,

(43) C,ﬂl""’r} ~crp, " forfixedr asn — oo.
The quantitypy plays a dle similar to that of the golden ratiowhen=2. ..............\ |

> 1.14. Compositions into primesThe additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether ewerg aumber is the sum
of two primes (Goldbach’s conjecture). However, the number of asitipns ofn into prime
summandsgny number of summands is permitted)Bg = [2"] B(z) where

-1

-1
1- > 2P = (1—22—23—25—27—211—-~-)
p prime

= 14+224+83+2+3°2+28+62"+68+10°9+16210+...

B(2)

(EIS A023360, and complex asymptotic methods makedsyto determine the asymptotic
form By ~ 0.30365- 1.47622"; see Example V.2, p. 297. <

Examplel.5. Partitions with restricted summands (denumerantd)/henever summands are
restricted to a finite set, the special partitions that result are called deantnieA denumerant
problem popularized bydtya [493, §3] consists in finding the number of ways of giving change
of 99 cents using coins that are pennies (1 cent), nickels (5 centsk @ldeents) and quarters
(25 cents). (The order in which the coins are taken does not matteepetitions are allowed.)
For the case of a finitd", we predict from Proposition 1.1 thaF?T(z) is always arational
function with poles that are at roots of unity; also m% satisfy a linear recurrence related to
the structure off . The solution to the original coin change problem is found to be
9 1
2% 1-21-251-2291-225 213
In the same vein, one proves that

1,2 2n+3 1,2,3 (n+3)?
Pr{1’}=’774 J P }={ ;

12

here[x| = [x + %j denotes the integer closest to the real numbeuch results are typically
obtained by the two-step process$) decompose the rational generating function into simple
fractions; (ii ) compute the coefficients of each simple fraction and combine them to get the
final result [129, p. 108].
The general argument also gives the generating function of partitibosexssummands lie
inthesef{1,2,...,r}as
r

(44) Ptz = ]

1
1—zm"
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In other words, we are enumerating partitions according to the value ¢duttpest summand.
One then finds by looking at the poles (Theorem IV.9, p. 256):

1

{L...r} r—1 :
45 P ~ th ¢ = ——.
(45) n crn with ¢ T D)

A similar argument provides the asymptotic forml?;? when7 is an arbitrary finite set:

-1
r_ 1 T .
Py ~——— with 7 := | | n, r:=card?7).
— 1!
T (r—1)! T
This last estimate, originally due to Schur, is proved in Proposition IV.258. .......... |

We next examine compositions and partitions with a fixed remalb summands.

Examplel.6. Compositions with a fixed number of parts.Let CK) denote the class of
compositions made &f summandsk a fixed integer> 1. One has

c® —SEQUZ) =T x T x --- x I,

where the number of terms in the cartesian produkt Erom here, the corresponding generat-
ing function is found to be

C(k)(Z)z(l(z))" with I(z):i_

The number of compositions afhavingk parts is thus
k
z n—1
c — 1 =
. [Z](l—z)k k—1)

a result which constitutes a combinatorial refinemen€gf= 2"~1. (Note that the formula
Cr(,k) = (Ej) also results easily from the balls-and-bars model of compositions @ Igi).

In such a case, the asymptotic estim@ﬁé) ~ nk—l/(k — 1! results immediately from the
polynomial form of the binomial coefficier(ﬂj). ................................... [ |

Examplel.7. Partitions with a fixed number of parts. Let P(=K) pe the class of integer
partitions with at mosk summands. With our notation for restricted constructions (p. 30), this
class is specified as

PER = MSET((D).
It would be possible to appeal to the admissibility of such restricted compusii® developed
in Subsection I. 6.1 below, but the following direct argument sufficeakéncase at hand. Geo-
metrically, partitions, are represented as collections of points: this is theastaimodel of
Figure 1.7, p. 40. A symmetry around the main diagonal (also knowreisplecialized literature
as conjugation) exchanges number of summands and value of latgestand; one then has
(with earlier notations)

(k) ~ pil,. .k} — Pk (z) = piL-Kl(z),
so that, by (44),

(46) PR (z) = pllk = TT
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As a consequence, the OGF of partitions wattactly ksummandsp ® (2) = p(=k) (2) —
p(=k=1)(z), evaluates to

7K
1-21-2%)---(1-2K"
Given the equivalence between number of parts and largest parttitiops, the asymptotic
estimate (45) applies verbatim here. ........... i e e |

PR (z) =

> 1.15. Compositions with summands bounded in number and $ize.number of composi-
tions of sizen with k summands each at masts expressible as

1-7\X
" (z ,
) (2525
which reduces to a simple binomial convolution (the calculation is similar tg 42)3). <

> 1.16. Partitions with summands bounded in number and sidge number of partitions of
sizen with at mostk summands each at madsis

[2"] 1-2)1=2%)--- (L= ZKt0)
(1-2(1-22)---A-2Z)- (1-2A-23)---(1-2))

(Verifying this by recurrence is easy.) The GF reduces to the binomizfficient (kf('f) as

z — 1; itis known as a Gaussian binomial coefficient, denc(f‘qz:f)z, or a “‘g—analogue” of
the binomial coefficient [14, 129]. <

The last example of this section illustrates the close jigr between combi-
natorial decompositions and special function identitvesich constitutes a recurrent
theme of classical combinatorial analysis.

Examplel.8. The Durfee square of partitions and stack polyominoEse diagram of any
partition contains a uniquely determined square (known as the Durfeeegdbat is maximal,
as exemplified by the following diagram:

Ed

This decomposition is expressed in terms of partition GFs as
PéLJ@MxP&mxﬂng,
h>0

It gives automatically, via (44) and (46), a non-trivial identity, which @hing but a formal
rewriting of the geometric decomposition:

l°—°[ 1 5 2
n=11_Zn _hzo ((1—z)...(1_zh))2

(h is the size of the Durfee square, known to manic bibliometricians as thedékin

Stack polyominoesHere is a similar case illustrating the direct correspondence between
geometric diagrams and generating functions, as afforded by theodignmethod. Astack
polyominois the diagram of a composition such that for somé, one has 1< x; < Xo <
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© < Xj 2 Xjp1 > - 2 X > 1 (see [552, §2.5] for further properties). The diagram
representation of stack polyominoes

translates immediately into the OGF

s=> A 1
k>1 1-2 (1-21-2%---(1- Zk—l))Z’

once use is made of the partition GPREL--k) (2) of (44). This last relation providestna fide
algorithm for computing the initial values of the number of stack polyomirfB&SA001523:

S(z)=z+222+4z3+824+1525+2726+47z7+7928+~- .

The book of van Rensburg [592] describes many such construetiwhtheir relation to models
of statistical physics, especially polyominoes. For instance, relateBeéssel” functions appear
in the enumeration of parallelogram polyominoes (Example 1X.14, p.66Q ........... |

> 1.17. Systems of linear diophantine inequalitieSonsider the clasg of compositions of
integers into four summandgy, X2, X3, X4) such that

X120, X2>2x3, X3>=2X2, Xq2=2X3,
where thexj are inZxo. The OGF is

1

FO =1 a-Aa-Ha-a9

Generalize to > 4 summands (ifZxo) and a similar system of inequalities. (Related GFs
appear on p. 200.) Work out elementarily the OGFs corresponding foltbeing systems of
inequalities:

{x1+x2<x3}, {X1+X22x3}, {X1+x2<xX3+Xx4}, {X1 <X, X2 > X3, X3 < Xg}.
More generally, the OGF of compositions intdiged number of summands (i q), con-

strained to satisfy a linear system of equations and inequalities with coe§ianes, is ration-

al; its denominator is a product of factors of the fo¢in— z!). (Caution: this generalization is
non-trivial: see Stanley’s treatment in [552, §4.6].) <

Figure 1.9 summarizes what has been learned regarding itigns and parti-
tions. The way several combinatorial problems are solvisdtéfssly by the symbolic
method is worth noting.

I.3.2. Related constructions.ltis also natural to consider the two constructions
of cycle and powerset when these are applied to the set gfardeé.
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Specification OGF coefficients
Compositions:
1-—
all SEQ(SEQ»1(2)) = 222 on-1 (p. 40)
1-z _n
parts<r SEQ(SEQ1. .1 (2)) 1_osi7+2 ~ Cr pr (pp. 42, 308)
k k-1
z n
k parts F(SE Z P E— ~ .44
P xK(SEQ-1(2)) a—2F G- (p. 44)
cyclic Cyc(SEQ>1(2)) Eq. (48) ~ (p- 48)
Partitions:
I SET(S ] my—-1 L oJ%
a MSET(SE Z 1-z2")y" ~——e . 41,574
(SEQ-1(2)) H( ) T (pp )
_ nr—l
parts<t  MSET(SEQ; [(2)) H @a-zm"1~ adeTe— (pp. 43, 258)
k nk—1
<kparts = MSET(SEQ; k(2)) n!i[l(l— M1~ RE=Dl (Pp. 44, 258)
o0 33 /A3
isti m ~ n/
distinct parts PBT(SEQ>1(2)) [Ta+zm 3 3C & (pp. 48, 579)

Figure 1.9. Partitions and compositions: specifications, generating functions, and
coefficients (in exact or asymptotic form).

Cyclic compositions (wheels)The classD = Cyc(Z) comprises compositions
defined up to circular shift of the summands; so, for instahge3 + 1 + 2 + 5,
3+ 1+2+5+ 2, etc, are identified. Alternatively, we may view elemerft9oas
“wheels” composed of circular arrangements of rows of bh@diken up to rotation):

a “wheel” (cyclic composition) ©® ® e e e o ¢ o o o

By the translation of the cycle construction, the OGF is

00 o (k 2
(47) D@ :1T log (1_ 1—Zk)

= 724222 +4+38+524+72°+1328+1972" + 3528 +

-1
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The coefficients are thu&(SA008965

1 1 2
48 Dn == KyEVKk 1) = -1+ = k)2k ~ =
(48) n ”k§|n¢( )( ) nk§|n¢() -

where the conditionK | n” indicates a sum over the integeeslividing n. Notice that
Dy, is of the same asymptotic order ﬁ@n, which is suggested by circular symmetry
of wheels, but there is a factoR, ~ 2Cy,/n.

Partitions into distinct summandsThe classQ = PSET(Z) is the subclass
of P = MSET(Z) corresponding to partitions determined as in Definition bat
with the strict inequalitiegy > - -- > X1, so that the OGF is

49) Q@ =JJa+)=1+z2+2+22+2+3°+4°+52" +---.
n>1

The coefficients EIS AO0O0009 are not expressible in closed form. However, the
saddle-point method (Section VIII. 6, p. 574) yields therappmation;

33/4 n
(50) Qn ~ 134 eXp(ﬂ\/;) )

which has a shape similar to that Bf in (40), p. 41.

> 1.18. Odd versus distinct summandBhe partitions o into odd summandé&?p) and the
ones into distinct summand€),) are equinumerous. Indeed, one has

Qo= [Ja+z". o@=[]a-2A*H"t
m=1 j=0

Equality results from substitutind. + a) = (1 — a2) /(1 — a) with a = z™,

Q(Z)_l—zzl—z41—261—281—210 111
Cl1-z1-21-B1-A1-5  1-z1-B1-5
and simplification of the numerators with half of the denominators (in bodjfac <

Partitions into powers.LetZPOW = {1, 2, 4, 8, ...} be the set of powers of 2. The
corresponding® and Q partitions have OGFs

PPOW(z) = H%

2i
j=0- 72

= 147422428 +4+42°+6°+62" +108 + - --
OO .
QY2 = [Ja+7)
j=0

= 14+ z2+224+8+24+22+---.

The first sequence 1, 2, 2, . .. is the “binary partition sequenceE(SA018819; the
difficult asymptotic analysis was performed by de BruijnI1#ho obtained an esti-

mate that involves subtle fluctuations and is of the glol:nlathfeo('ogz M. The function
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QPO%(2) reduces t@1—z) ! since every number has a unique additive decomposition
into powers of 2. Accordingly, the identity

1 i 1 5
1-5- H( +2z7),
J:O
first observed by Euler is sometimes nicknamed the “compdiientist’s identity” as
it reflects the property that every number admits a uniquarlgirepresentation.
There exists a rich set of identities satisfied by partitiengyating functions—
this fact is down to deep connections with elliptic funcgpmodular forms, and
g—analogues of special functions on the one hand, basic c@tuics and number
theory on the other hand. See [14, 129] for introductioni®fiascinating subject.

> 1.19. Euler’s pentagonal number theoreffhis famous identity expressegR(z) as
n>1 keZ

It is proved formally and combinatorially in Comtet’s reference [1291Qb] and it serves to
illustrate “proofs from THE BOOK” in the splendid exposition of Aigner anédler [7, §29].

Consequently, the numbefB; }E\‘ZO can be determined i®(N+/N) integer operations. <]

> 1.20. A digital surprise Define the constant
9 99 999 9999
= 10100100010000
Is it a surprise that it evaluates numerically to
» = 0.89001009999899900000010000999999998999990000000000,1

that is, its decimal representation involves only the digits @, 97 [This is suggested by a note
of S. Ramanujan, “Some definite integralsfessenger of MathXLIV, 1915, pp. 10-18.] <

> 1.21. Lattice points.The number of lattice points with integer coordinates that belong to the
closed ball of radius in d-dimensional Euclidean space is

o
n2, 1 d _ n2
[z ]E(G)(Z)) where ®(Z)_1+2n_212 .
Estimates may be obtained via the saddle-point method (Note VII1.389). 5 <

I.4. Words and regular languages

Fix a finitealphabetA whose elements are callégtters Each letter is taken to
have size 1; i.e., itis an atom. word®is any finite sequence of letters, usually written
without separators. So, for us, with the choice of the Laljpnabet 4 = {a,... z}),
sequences such ggololihp , philology , zgrmblglps are words. We denote
the set of all words (often written ad* in formal linguistics) byyV. Following a
well-established tradition in theoretical computer sceeand formal linguistics, any
subset obV is called danguaggor formal language, when the distinction with natural
languages has to be made).

8An alternative to the term “word” sometimes preferred by corapstientists isstring” ; biologists
often refer to words a%sequences’
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OGF coefficients
1
Words: n .50
ords -z m (p- 50)
a-runs< k 12 opr " (pp. 51, 308)
1-mz+ (m— 1)Z<+L kPk PP 5%
exclude subseq. Eq. (55) ~ (m=1"nPI=1  (p.54)
cp(2) -n
exclude facto ~ C .61, 271
P ZPl + (1= m2cp(2) PPp (pp )
circular Eq. (64) ~m"/n (p. 64)
regular language [rational] ~ C- A'nk (pp. 56, 302, 342)
context-free lang. [algebraic] ~ C- A'nP/a (pp. 80, 501)

Figure 1.10. Words over amm—ary alphabet: generating functions and coefficients.

From the definition of the set of word4’, one has
1
1-mZ
wherem is the cardinality of the alphabet, i.e., the number of lstt& he generating
function gives us the counting result

Wn = mn.

(51) WXSEQUA) = W)=

This result is elementary, but, as is usual with symbolichods, many enumerative
consequences result from a given construction. It is pedcithe purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each kaeat expressive
power for describing languages. The first one is iterative,(inon-recursive) and
it bases itself on “regular specifications” that only inwlthe constructions of sum,
product, and sequence; the other one, which is recursive(tauvery simple form),
is best conceived of in terms of finite automata and is eqeintab linear systems of
equations. Both frameworks turn out to be logically equewmdlin the sense that they
determine the same family of languages, tbgular languagesthough the equiva-
lence is non-trivial (Appendix A.7Regular languages. 733), and each particular
problem usually admits a preferred representation. Thdtieg OGFs are invariably
rational functions, a fact to be systematically exploitezhf an asymptotic standpoint
in Chapter V. Figure 1.10 recapitulates some of the majordymoblems studied in
this chapter, together with corresponding approximafions

9n this book, we reserve~" for the technical sense of “asymptotically equivalent” defi in Ap-
pendix A.2: Asymptotic notationg. 722; we reserve the symbak" to mean “approximately equal” in
a vaguer sense, where formulae have been simplified by omittingtant factors or terms of secondary
importance (in context).
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I.4.1. Regular specifications.Consider words (or strings) over the binary al-
phabetd = {a, b}. There is an alternative way to construct binary strings tiased
on the observation that, with a minor adjustment at the bexgin a string decomposes
into a succession of “blocks” each formed with a singléollowed by an arbitrary
(possibly empty) sequence a$. For instancaaabaababaabbabbaadecomposes
as

[aad) baa| ba|baa|b|ba|b|baaa
Omitting redundartf symbols, we have the alternative decomposition:
1 1

2oz

(52) W = SEQ(@) x SEQ(b SEQ(a)) =— W(2) =

This last expression reduces(tb— 2z)~* as it should.

Longest runs. The interest of the construction just seen is to take int@aict
various meaningful properties, for example longest runsbraviate bya<k :=
SEQ_(a) the collection of all words formed with the letteionly and whose length is
between 0 an#l — 1; the corresponding OGF isfz+- - - +ZK~1 = (1—-Z) /(1 - 2).
The collection®) of words which do not havk consecutiveas is described by an
amended form of (52):

1- 2 1 1- 2
1-z 1_211%2; 1= 2z4 K+
The OGF is in principle amenable to expansion, but the resuttoefficients expres-
sions are complicated and, in such a case, asymptotic eesinegnd to be more usable.
From the analysis developed in Example V.4 (p. 308), it caleéd be deduced that
the longest run oé’s in a random binary string of lengthis on average asymptotic
to log, n.
> 1.22. Runs in arbitrary alphabetdzor an alphabet of cardinality, the quantity
1-—2Z

1—mz+ (m—1)zk+1
is the OGF of words without consecutive occurrences of a designated letter. <

The case of longest runs exemplifies the utility of nestedtrantions involving
sequences. We set:

Definition 1.10. An iterative specification that only involves atoms (egfters of a
finite alphabetA) together with combinatorial sums, cartesian productsl sequence
constructions is said to ber@gular specification

A language’ is said to be Sregular(“specification—regular”) if there exists a
classM described by a regular specification such tifaand M are combinatorially
isomorphic: £ = M.

An equivalent way of expressing the definition is as followastanguage iS-
regular if it can be describaghambiguouslyy a regular expression (Appendix A.7:

Wk =a<kseqba™) = W (z) =

10hen dealing with words, especially, we freely omit redundaates {, }” and cartesian products
“x", for readability. For instance,)(a + b) anda b are shorthand for &({a} + {b}) and{a} x {b}.
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Regular languagesp. 733). The definition of a regular specification and thedas
admissibility theorem (p. 27) imply immediately:

Proposition 1.2. Any S—regular language has an OGF that igaional function
This OGF is obtained from a regular specification of the laagel by translating each
letter into the variable z, disjoint unions into sums, caié® products into products,
and sequences into quasi-inversgs;- -) 1.

This result is technically shallow but its importance desifrom the fact that
regular languages have great expressive power devohongtheir rich closure prop-
erties (Appendix A.7:Regular languagesp. 733) as well as their relation to finite
automata discussed in the next subsection. Examples |.2Hhbelow make use of
Proposition 1.2 and treat two problems closely related tmést runs.

Examplel.9. Combinations and spacingé.regular specification describes the gabf words
that contain exactli occurrences of the lettdé; from which the OGF automatically follows:

(53) L = SEQ(@) (bSEQ@)K = L(2) = /(1 — 2)k1.
Hence the number of words in the language satidfigs= (E) This is otherwise combinat-
orially evident, since each word of lengthis characterized by the positions of its lettbrshat
is, the choice ok positions amongy possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let (E)<d be the number of combinations kfelements among [h] with constrained
spacings: no element can be at distad@@ more from its successor. The refinement of (53)

b K@ -2kt

£ — seo@ (bSeog@)tbseo@) — X (1) =il

n>0

s

leads to a binomial convolution expression,

(= Z (5)057)

(This problem is analogous to compositions with bounded summands inp4£3.) What we
have just analysed is tHargestspacing (constrained to be at maBtin subsets. A parallel
analysis yields information regarding temallestspacing. ........................... |

Examplel.10. Double run statistics By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W = SEQ(b) SEQ(a SEQ(a) b SEQ(b)) SEQ(a).

Let W(®-£) be the class of all words that have at mestonsecutives andp consecutiveos.
The specification o¥V induces a specification onviah), upon replacing 8Q(a), SEQ(b) by
SEQ.q (@), SEQ.4(b) internally, and by §Q<,(a), SEQ<s(b) externally. In particular, the
OGF of binary words that never have more thiaconsecutive identical letters is found to be
(seta =p =r)
(54) W 1-7+1 :1+z+--~+zr,

1-2z42+1 1—-z—...-7
after simplification. (This result can be extended to an arbitrary alphgteeans of “Smirnov
words”, Example [11.24, p. 204.)

Révész in [508] tells the following amusing story attributed to T. Varga: “A cladsigh
school children is divided into two sections. In one of the sections, daitthis given a coin
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which he throws two hundred times, recording the resulting head and ¢aiésee on a piece
of paper. In the other section, the children do not receive coins,rbubll instead that they
should try to write down a ‘random’ head and tail sequence of length twdreal. Collecting

these slips of paper, [a statistician] then tries to subdivide them into their arigioups. Most

of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the mamilength
of runs of consecutive letters in a random binary word of lemgtheren = 200). The prob-
ability that this parameter equaiss

3 (v
and is fully determined by (54). The probabilities are then easily compuied any symbolic
package: fon = 200, the values found are

k—l,k—l))

k 3 4 5 6 7 8 9 10 11 12
P(k) | 6.5410°8 7.07107* 0.0339 01660 02574 02235 01459 00829 Q0440 00226

Thus, in a randomly produced sequence of length 200, there aréyusires of length 6 or
more: the probability of the event turns out to be close to 97% (and thetil é&sprobability of
about 8% to have a run of length 11 or more). On the other hand mosterhiland adults) are
usually afraid of writing down runs longer than 4 or 5 as this is felt as stydimgpn-random”.
The statistician simply selects the slips that contain runs of length 6 or more ais¢frandom
ONES. VIl . |

> 1.23. Alice, Bob, and coding bound#lice wants to communicate bits of information to
Bob over a channel (a wire, an optic fibre) that transfisbits but is such that any occurrence
of 11 terminates the transmission. Thus, she can only send on the chanmelcaied version
of her message (where the code is of some lefigthn) that does not contain the pattet.

Here is a first coding scheme: given the message mym; - - - mp, wherem; € {0, 1},
apply the substitution® — 00 and1 — 10; terminate the transmission by sendihy This
scheme hag = 2n + O(1), and we say that iteate is 2. Can one design codes with better
rates? with rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of length code of length. =

L(n) is achievable only if there exists a one-to-one mapping ffon}" into U'J-:O Cj, ie.,
2N < Z'j-:OC]- . Working out the OGF of, one finds that necessarily

1 1 5
L > intOM). = > =1440420 o= TY5
logy ¢ 2
Thus no code can achieve a rate better thdd;li.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [427, Ch. 17].)

> 1.24. Coding without long runsBecause of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than faecotineOs or more than
four consecutivels. We seek a coding scheme that transforms an arbitrary binary stting in
string obeying this constraint.

From the OGF, one finds})W(44 (z) = 1546 > 210 = 1024. Consequently, a substi-
tution can be built that translates an original 10-bit word into an 11-bit biloakdoes not have
five consecutive equal letters. When 11-bit blocks are concatertatedhay however give rise
to forbidden sequences of identical consecutive letters at the junctitwioolblocks. It then
suffices to use “separators” and replace a substituted block of thesfors- g by the longer
block@a - X - 5B, whereQ = 1 and1 = 0. The resulting code has ra%%.

Extensions of this method show that the rate 1.057 is achievable (thebygtican the
other hand, by the principles of the previous note, any acceptable asgteise asymptotically
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at least 1.056 bits to encode strings afbits. (Hint: leta be the root neaizl of 1—2a+a® = 0,
which is a pole ofW(44. One has 1log,(1/a) = 1.05621.) <

Patterns. There are many situations in the sciences where it is oféstdo de-
termine whether the appearance of a cenaitternin long sequences of observations
is significant. In a genomic sequence of length 100 000 (fhiesdlet isA,G,C,T ), is
it or is it not meaningful to detect three occurrences of tagggnTAGATAAwhere
the letters appear consecutively and in the prescribed®rdie computer network
security, certain attacks can be detected by some wellatbfitarming sequences of
events, although these events may be separated by peiffgiti;mate actions. On
another register, data mining aims at broadly categorielagtronic documents in an
automatic way, and in this context the observation of welisen patterns can provide
highly discriminating criteria. These various applicasaequire determining which
patterns are, with high probability, bound to occur (theseat significant) and which
are very unlikely to arise, so that actually observing themies useful information.
Quantifying the corresponding probabilistic phenomerduces to an enumerative
problem—the case of double runs in Example 1.10 (p. 52) isisw#spect typical.

The notion of pattern can be formalized in several ways. is Itook, we shall
principally consider two of them.

(a) Subsequence patterrsuch a pattern is defined by the fact that its letters
must appear in the right order, but not necessarily contiglyd263]. Sub-
sequence patterns are also known as “hidden patterns”.

(b) Factor pattern such a pattern is defined by the fact that its letter mustappe
in the right ordeendcontiguously [312, 564]. Factor patterns are also called
“block patterns” or simply “patterns” when the context isai.

For a given notion of pattern, there are then two relatedjcaies of problems. First,
one may aim at determining the probability that a random veanatains (or dually,
excludes) a pattern; this problem is equivalently formedads an existence problem—
enumerate all words in which the pattern exists (i.e., acindependently of the
number of occurrences. Second, one may aim at determiningxiectation (or even
the distribution) of the number of occurrences of a patteta iandom text; this prob-
lem involves enumerating enriched words, each with oneroenoe of the pattern
distinguished.

Such questions are amenable to methods of analytic corobicegaind in partic-
ular to the theory of regular specifications and automata:Eseample 1.11 below for
a first attempt at analysing hidden patterns (to be continué&tapter V, p. 315) and
Example 1.12 for an analysis of factor patterns (to be furtheéended in Chapters I,
p. 211, IV, p. 271, and IX, p. 659).

Examplel.11. Subsequence (hidden) patterns in a texf sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to bedalén pattern”.
For instance the pattercémbinatoric8is to be found hidden in Shakespeare’s Hamlet (Act I,

Scene 1)
Dared to that; which our \E]Iian Hamlet—
so t@s side of our known world esteem’d him—
Did slay this Fortinbras; who by a seaompact,
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Well ratified by law and heraldry,
Did forfeit, with hi life, all those his lands [...]

Take a fixed finite alphabetl comprisingm letters (m = 26 for English). First, let
us examine the language of all words, also called “texts”, that contain a given ward=
p1p2--- Pk of lengthk as a subsequence. These words can be described unambiguously as
starting with a sequence of letters not containmgfollowed by the letterp; followed by a
sequence not containingp, and so on:

L = SEQ(A\ p1)P1 SEQ(A\ P2) P2 - - - SEQ(A\ Pk) Pk SEQ(A).

This is in a sense equivalent to parsing words unambiguously accdadihg left-most occur-
rence ofp as a subsequence. The OGF is accordingly

P 1
1L-—(MmM-12k1-—mz
An easy analysis of the dominant simple pole at 1/m shows that

(55) L(2) =

n

L(2 sothat Lp n_~>oom .

z>1/m1l—mZ

Thus, a proportion tending to 1 of all the words of lengtldo contain a fixed patterp as a
subsequence. (Note 1.25 below refines this estimate.)

Mean number of occurrencedA census (Note 1.26, p. 56) shows that there are in fact
1.63- 1039 occurrences of¢ombinatorics " as a subsequence hidden somewhere in the
text of Hamlet, whose length is 120 057 (this is the number of letters thatizdashe text). Is
this the sign of a secret encouragement passed to us by the authant#tRla

To answer this somewhat frivolous question, here is an analysis okpeetd number
of occurrences of a hidden pattern. It is based on enumerating ednbrds, where an en-
riched word is a word together with a distinguished occurrence of the pat$ea subsequence.
Consider the regular specification

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) - - - SEQ(A) Pr—1 SEQ(A) Pk SEQ(A).

An element ofO is a(2k + 1)—tuple whose first component is an arbitrary word, whose second
component is the lettgn;, and so on, with letters of the pattern and free blocks alternating. In
other terms, anw € O represents precisely one possible occurrence of the hidden pattern

a text built over the alphabet. The associated OGF is simply

X
0= ———.
The ratio between the number of occurrences and the number of wolietggthn then equals
_[@M0®@ g (n
(56) Qn = T m k)

and this quantity represents the expectation of the number of occusrefici a random word

of lengthn, assuming all such words to be equally likely. For the parameters pomdig to

the text of Hamletrf = 120057) and the patterrcémbinatorics (k = 13), the quantity

Qn evaluates to 86 - 1037, The number of hidden occurrences observed is thus 23 times
higher than what the uniform model predicts! However, similar methoalkenit possible to
take into account non-uniform letter probabilities (Subsection IIl. 6.1.89): based on the
frequencies of letters in the English text itself, the expected number afrecces is found to

be 171 103°—this is now only within 5% of what is observed. Thus, Shakespeare did no
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(probably) conceal any message relative to combinatorics—seexafy, p. 315, for more
ON thIS TOPIC. ..ttt |

> 1.25. A refined analysisFurther consideration of the subdominant pole at 1/(m — 1)
yields, by the methods of Theorem IV.9 (p. 256), the refined estimate:

n
1-Ln_ o(n"—l(l— i) )
mn m
Thus, the probability ofiot containing a given subsequence pattern is exponentially sradll.

> 1.26. Dynamic programmingThe number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right andtaiaing a running
count of the number of occurrences of the pattern as well as all itxgsefi

I.4.2. Finite automata. We begin with a simple device, tHaite automaton
that is widely used in the study of models of computation [I8#1 has wide descrip-
tive power with regard to structural properties of words. sifstematic treatment of
automata and paths in graphs, combining both algebraic symotic aspects, is
given in Part B, Section V.5, p. 336.)

Definition 1.11. Afinite automatoris a directed multigraph whose edges are labelled
by letters of the alphabed. It is customary to refer to vertices atatesand to denote
by Q the set of states. One designates an initial state @ and a set of final states
QcCQ.

The automaton is said to lweterministidf for each pair(q, «) with g € Q and
o € Athere exists at most one edge (one also sayareitior) starting from q, which
is labelled by the lettes.

A finite automaton (Figure 1.11) is able to process words, asnaw explain.
A word w = wi...wn is acceptedby the automaton if there exists a path in the
multigraph connecting the initial statg to one of the final states d@ and whose
sequence of edge labels is precisely . . . , wy. For a deterministic finite automaton,
it suffices to start from the initial statp, scan the letters of the word from left to right,
and follow at each stage the only transition permitted; thedvis accepted if the state
reached in this way after scanning the last lettewa$ a final state. Schematically:

La[o] a] o] o] 4

i

A finite automaton thus keeps only a finite memory of the pasn¢b its name) and
is in a sense a combinatorial counterpart of the notion ofdgdachain in probability
theory. In this book, we shall only consider deterministitcanata.

As an illustration, consider the clagsof all words w that contain the pattern
abbas a factor (the letters of the pattern should appear canigjy). Such words are
recognized by a finite automaton with four statgs,q:, gz, 3. The construction is
classical: statq; is interpreted as meaningfte first j characters of the pattern have
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bga a, b
a b b
=050

12 )

Figure 1.11. Words that contain the patteabb are recognized by a four-state au-
tomaton with initial statejg and final stateys.

just been scannédand the corresponding automaton appears in Figure 1.1ie T
initial state isqo, and there is a unique final staje

Definition 1.12. Alanguage is said to be-4egularautomaton regular) if it coincides
with the set of words accepted by a deterministic finite aatom A classM is A—
regular if for some regular languagg, one hasM = L.

> 1.27. Congruence languagesThe language of binary representations of numbers that are
congruent to 2 modulo 7 id—regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions.

> 1.28. Binary representation of prime3he language of binary representations of prime num-
bers is neitheA-regular norS-regular. [Hint: use the Prime Number Theorem and asymptotic
methods of Chapter IV.] <

The following equivalence theorem is briefly discussed ipéqdix A.7:Regular
languagesp. 733.

Equivalence theorem (Kleene—Rabin—Scott) A language is S—regular (specifica-
tion regular) if and only if it is A—regular (automaton regu).

These two equivalent notions also coincide with the notibregularity in for-
mal language theory, where the latter is defined by meansass{ply ambiguous)
regular expressions and (possibly non-deterministiciefiautomata [6, 189]. As al-
ready pointed out, the equivalences are non-trivial: threygéven by algorithms that
transform one formalism into the other, but do not transpifyyegpreserve combina-
torial structure (in some cases, an exponential blow-uénsize of descriptions is
involved). For this reason, we have opted to develop inddgethy the notions of
S-regularity andA—regularity.

We next examine the way generating functions can be obtdinada determin-
istic automaton. The process was first discovered in thell@b®s by Chomsky and
Schitzenberger [119].

Proposition 1.3. Suppose that G is a deterministic finite automaton with state
Q = {qo, ..., Qs}, initial state @, and set of final state® = {Giy,..-,Gi¢}. The
generating function of the languagé of all words accepted by the automaton is a
rational function that is determined under matrix form as

L(z) = u(l —zT)"tv.
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Here the transition matrix T is defined by
Tjk = card{a e A such that an edgé;, g) is labelled byn} ;

the row vectow is the vector(1,0,0,...,0) and the column vector = (oo, . . ., vs)!
is such that'vj = [q; € Q].

In particular, by Cramer’s rule, the OGF of a regular languigthe quotient of two
(sparse) determinants whose structure directly refleetagitomaton transitions.

Proof. The proof we present is based on a “first-letter decompuwsitiwhich is
conceptually analogous to the Kolmogorov backward-equatof Markov chain the-
ory [93, p. 153]. (Note .29 provides an alternative apptop€orj € {0, ..., s}, in-
troduce the class (languag€) of all wordsw such that the automaton, when started
in stateg;, terminates in one of the final states@f after having read. The follow-

ing relation holds for anyj:

(57) Li= A+ (Z{a}ﬁ(qjoa));
acA

there A is the clasqe} formed of the word of length 0 ifj; is final and the empty
set @) otherwise; the notatiof;j o a) designates the state reached in one step from
stateq|j upon reading lettest. The justification is simple: a languagg contains the
word of length 0 only if the corresponding stafgis final; a word of length> 1 that
is accepted starting from stadg has a first letten followed by a word that must lead
to an accepting state, when starting from stgte a.

The translation of (57) is then immediate:

(58) Li@ =10 € Ql+2 D Lgjon -
aeA

The collection of all the equations gsvaries forms a linear system: with(z) the
column vector(Lg(2), .. ., Ls(2)), one has

Lz =v+2zTL(2),

wherev andT are as described in the statement. The result follows byixnaversion

upon observing that the OGF of the languales Lo(z). |

> 1.29. The forward equationds_et My be the set of words, which lead to stajg when the

automaton is started in stagg. By a “last-letter decomposition”, th&1y satisfy a system that

is a transposed version of (58). <
The patternabb. Consider the automaton recognizing the patesob as given

in Figure 1.11. The language®; (whereL; is the set of accepted words when starting

from stateq;) are connected by the system of equations

Lo = ali1 +Dblg
L1 = a1 +blr
Lo = al1 +bls
L3 = alz +bL3z +e,

1Ly proves convenient at this stage to introduce Iversoregket notation: for a predicate, the
quantity [P] has value 1 ifP is true and 0 otherwise.
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which directly reflects the graph structure of the automatdnis gives rise to a set of
equations for the associated OGFs

Lo = zL1 +2zlg
L, = zL1 +2zbLy
L, = zL1 +2zLs3
L3 = zlL3 +zlLs +1

Solving the system, we find the OGF of all words containingghtternabb: it is
Lo(2) since the initial state of the automatorgis and

73

1-2(1-221-2z-12%)°
The partial fraction decomposition

Lo@) = 1 242 n 1
=1 T 1—z—2 17

(59) Lo(@ =

then yields
LO,n = 2n - Fn+3 +15

with Fy a Fibonacci number (p. 42). In particular the number of wafdengthn that
donotcontainabbis F,;3 —1, a quantity that grows at an exponential rate'&fwith

¢ = (1++/5)/2 the golden ratio. Thus, all but an exponentially vanishirgportion
of the strings of lengtim contain the given patterabb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, frmteN32, p. 61, a random
word contains a large number, abeuin/8, of occurrences of the patteatb.)

> 1.30. Regular specification for pattern abfhe patterrabbis simple enough that one can
come up with an equivalent regular expression descrilliggwhose existence is otherwise
granted by the Kleene—Rabin—-Scott Theorem. An accepting path in theatoio of Fig-
ure 1.11 loops around state 0 with a sequench,dhen reads aa, loops around state 1 with
a sequence ad’'s and moves to state 2 upon reading;ahen there should be letters making
the automaton passs through states 1-2-1-21-2 and finally ab followed by an arbitrary

sequence oés andbs at state 3. This corresponds to the specification (Xithabbreviating
SEQ(X))

]
1-2201-Z)1-22)

which gives back a form equivalent to (59). <

Lo= (b)*a@*b@@*b)*bla+b)* = Lo®@=

Examplel.12.  Words containing or excluding a patternFix an arbitrary patterrp =
p1p2--- Pk and let£ be the language of words containiag leastone occurrence of as
a factor. Automata theory implies that the set of words containing a patsesrfactor iSA—
regular, hence admits a rational generating function. Indeed, th&goiisn given forp = abb
generalizes in an easy manner: there exists a deterministic finite automigtidn-w1 states
that recognize€, the states memorizing the largest prefix of the patpgust seen. As a con-
sequencethe OGF of the language of words containing a given factor pattern of lengtlak
rational function of degree at mostk 1. (The corresponding automaton is in fact known as a
Knuth—Morris—Pratt automaton [382].) The automaton constructioreienprovides the OGF
L (2) in determinantal form, so that the relation between this rational form anstitheture of
the pattern is not transparent.
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Autocorrelations. An explicit construction due to Guibas and Odlyzko [313] nicely cir-
cumvents this problem. It is based on an “equational” specification thitsyén alternative
linear system. The fundamental notion is that ofaamocorrelation vectar For a givenp, this
vector of bitsc = (cp, .. ., Ck—1) iS most conveniently defined in terms of Iverson’s bracket as

G =[Pir1Piso - Pk = P1P2--- Pk—il-

In other words, the bit; is determined by shifting right by i positions and putting a 1 if
the remaining letters match the original Graphically,c; = 1 if the two framed factors of
coincide in

p= P1- B |Pit1 - Pk

Poist P =,

For instance, witlp = aabbag one has

RPOOORr

For the example pattern, this giveg) = 1+ 2% + 2°.

Let S be the language of words witio occurrence of and7 the language of words that
end withp but have no other occurrence jof First, by appending a letter to a word 8f one
finds a non-empty word either i or 7, so that

(60) S+T ={e)+S x A

Next, appending a copy of the wopdto a word inS may only give words that containat or
“near” the end. In precise terms, the decomposition based on the Isftanourrence of in
Spis

(61) Sx{p}=T x D {Peit+1Pk—it2 " Pkl
¢ #0
corresponding to the configurations
| S [/1111119111111]
\ /1011 | i i
T

The translation of the system (60), (61) into OGFs then gives a systenoafquations in the
two unknownsS, T,

S+T=14+mzS S ZX=Tc@o),

which is then readily solved.
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Proposition I.4. The OGF of wordsiot containing the patterp as a factor is
c(z
X4+ (1—m2c(2)
where m is the alphabet cardinality, & |p| the pattern length, and(g) the autocorrelation
polynomial ofp.

A bivariate generating function based on the autocorrelation polynomié¢rised in
Chapter lll, p. 212, from which is deduced, in Proposition 1X.10, §0,6the existence of a
limiting Gaussian law for the number of occurrences of any pattern.. ................ |

> 1.31. At least once.The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

K X
, T =077,
(1 —m2(ZK+ (1 - m2c(2) X+ (1—m2c(2)
respectively. <

L(z) =

> 1.32. Expected number of occurrences of a patteFor themeannumber of occurrences
of a factor pattern, calculations similar to those employed for the numbecafrrences of
a subsequence (even simpler) can be based on regular specificatidiishe occurrences
(contexts) ofp = p1p2 - - - pk as a factor are described by

k
Py ~ z
O =SEQ(A) (p1P2- - PK) SEQ(A), = 0@ = —5.
1-m2
Consequently, the expected number of such contiguous occurremitsges
63) On =mK(n—k+1) ~ .
m

Thus, the mean number of occurrences is proportional to <

> 1.33. Waiting times in stringsLet £ ¢ SEQ{a, b} be a language anfi= {a, b}*° be the set
of infinite strings with the product probability induced Bya) = P(b) = % The probability
that a random string e S starts with a word ofC is L(1/2), whereL (z) is the OGF of the
“prefix language” ofZ, that is, the set of words e L that have no strict prefix belonging tb
The GFf(z) serves to express the expected time at which a wortigfirst encountered: this
is %f’(%). For a regular language, this quantity must be a rational number. <

> 1.34. A probabilistic paradox on stringdn a random infinite sequence, a pattgiof lengthk
first occurs on average at timé(Zl/Z), wherec(z) is the autocorrelation polynomial. For
instance, the pattem= abbtends to occur “sooner” (at average position 8) thas- aaa (at
average position 14). See [313] for a thorough discussion. Her@iaiestance the epochs at
whichp andp’ are first found in a sample of 20 runs:

p: 3,4,5,56,6,7,8,8,8,8,9,9,10, 11, 14,15, 15,16, 21
p 3,4,8,8,9,10,11, 11, 11,12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expectest nfiomccurrences,
which is puzzling.Is analytic combinatorics contradictory§Hint. The catch is that, due to
overlaps ofy’ with itself, occurrences gf’ tend to occur in clusters, but, then, clusters tend to
be separated by wider gaps thangoeventually, there is no contradiction.) <

> 1.35. Borges'’s TheoremTake any fixed finite sefll of patterns. A random text of length
contains all the patterns of the dat(as factors) with probability tending to 1 exponentially
fast asn — oo. Reason: the rational functiorf¥z/2) with S(z) as in (62) have no pole
in |z < 1; see also Chapters Il (p. 213), IV(p. 271), V(p. 308). Thispemty is sometimes
called ‘Borges’s Theoretas a tribute to the famous Argentinian writer Jorge Luis Borges
(1899-1986) who, in his essajhe Library of Babel”, describes a library so huge as to contain:
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“Everything: the minutely detailed history of the future, the archangelsitdagra-
phies, the faithful catalogues of the Library, thousands and thousdrfdise cat-
alogues, the demonstration of the fallacy of those catalogues, the deatiamsof
the fallacy of the true catalogue, the Gnostic gospel of Basilides, the cotarye
on that gospel, the commentary on the commentary on that gospel, tretdryef
your death, the translation of every book in all languages, the interpcdaticevery
book in all books.”

Strong versions of Borges's Theorem, including the existence of limits&an laws, hold for
many random combinatorial structures, including trees, permutatiosplanar maps (see
Chapter IX, p. 659 and pp. 680-684).

> 1.36. Variable length codesA finite set7 ¢ W, whereW = SEQ(A) is called ecodeif any
word of WW decomposes in at most one manner into factors that belofg(teith repetitions
allowed). For instance® = {a, ab, bb} is a code andhaabbb = alajablbb has a unique
decomposition” = {a, aa, b} is not a code sinceaa = alaa = aaja = alala. The OGF of
the setS £ of all words that admit a decomposition into factors allfiris a computable rational
function, irrespective of whethef is a code. (Hint: use an “Aho—Corasick” automaton [5].) A

finite setF is a code iffSr(z) = (1 — F(2))~1. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by BarstePerrin [55]
develops systematically the theory of such variable-length codes. <

In general, automata are useful in establishangriori the rational character of
generating functions. They are also surrounded by infegeahalytic properties (e.g.,
Perron—Frobenius theory, Section V.5, p. 336, that charizes the dominant poles)
and by asymptotic probability distributions of associgtadameters that are normally
Gaussian. They are most conveniently used for provingenxist theorems, then sup-
plemented when possible by regular specifications, whietlileely to lead to more
tractable expressions.

I.4.3. Related constructions.Words can, at least in principle, encode any com-
binatorial structure. We detail here one situation that alestrates the utility of such
encodings: itis relative to set partitions and Stirling aars. The point to be made is
that some amount of “combinatorial preprocessing” is somest necessary in order
to bring combinatorial structures into the orbit of symbatiethods.

Set partitions and Stirling partition numbersA set partitionis a partition of a
finite domain into a certain number of non-empty sets, alfeathlocks. For instance,
if the domain isD = {a, £, y, 6}, there are 15 ways to partition it (Figure 1.12). Let
S denote the collection of all partitions of the set [h] into r non-empty blocks
and S({) = carc{Sr(f)) the corresponding cardinality. The basic object underidens
eration here is @et partition(not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions&]ﬁr) of ann-set intor blocks by
words over & letter alphabet3 = {bs, by, ..., by} as follows. Consider a set partition
w that is formed of blocks. Identify each block by its smallest element calleel t
block leader, then sort the block leaders into increasing order. Defieiidex of
a block as the rank of its leader among all theeaders, with ranks conventionally
starting at 1. Scan the elements htm order and produce sequentiatiyetters from
the alphabeB: for an element belonging to the block of indgxproduce the lettel; .
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Figure 1.12. The 15 ways of partitioning a four-element domain into blocks corres-
pond toSfll) =1, Sflz) =7, 8513) — 6, 554) -1

For instance fon = 6,r = 3, the set partitiono = {{6, 4}, {5, 1, 2}, {3, 7, 8}},
is reorganized by putting leaders in first position of theckiand sorting them,

by by b3
—— —— ——
w ={{1,2,5},{3,7,8}, {4,6}},

so that the encoding is
( 1234567 8)

b1 by bz by by bz b by /-
In this way, a partition is encoded as a word of lengtbver 5 with the additional
properties that(i) all r letters occur{ii) the first occurrence df; precedes the first
occurrence oby, which itself precedes the first occurrencebaf etc. Graphically,
this correspondence can be rendered by an “irregular atafaepresentation, such
as
4 6 — -—
- - 7 8

3 _
1 2 - 5
where the staircase has lengtland height, each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

From the foregoing discussioﬁ,ﬁr) is mapped into words of lengthin the lan-
guage
b1 SEQ(b1)-by SEQ(by+by) -bs SEQ(b1 +bz+b3) --- by SEQ(by+bo+---+by).

The language specification immediately gives the OGF

r _ z'
@ = 1-2(1-221-32)---1—r2)

The partial fraction expansion &' (z) is then readily computed,

1< —1) - 1< TAY
() - ()
j=
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In particular, one has

1 1
s =1, sga:E(z”—z), 5123):5(3"—3-2%3).

These numbers are known as the Stirling numbers of the sddonddor better, as
the Stirling partition numbers, and ti&) are nowadays usually denoted [
see Appendix A.8Stirling numbersp. 735.

The counting of set partitions could eventually be done ssgftilly thanks to an
encoding into words, and the corresponding language foromnatructible class of
combinatorial structures (indeed, a regular languageXhénnext chapter, we shall
examine a flexible approach to the counting of set partittbasis based on labelled
structures and exponential generating functions (Suioseldt 3.1, p. 106).

Circular words (necklaces)Let A be a binary alphabet, viewed as comprised

of beads of two distinct colours. The classaifcular wordsor necklacegNote 1.1,
p. 18, and Equation (20), p. 26) is defined by adomposition:

1

(4
(64) N =Cvyc(A) = N(2) = Z &k) log Tk
k=1

The series starts a&S A000037)
N(z) = 2z + 322 + 42° + 62" + 82° + 142° + 202" + 3628+ 602° + - - - ,
and the OGF can be expanded:

1 n/k

(65) No == > o2V~
k|n

It turns out thatN,, = Dy, + 1 whereDy, is the wheel count, p. 47. [The connection is
easily explained combinatorially: start from a wheel arghiat in white all the nodes
that are not on the basic circle; then fold them onto the €ifcThe same argument
proves that the number of necklaces overasary alphabet is obtained by replacing 2
by min (65).
> 1.37. Finite languages.Viewed as a combinatorial object,fmite language is a set of

distinct words, with size being the total number of letters of all words iFor a binary alphabet,
the class of all finite languages is thus

k>1
The series isEISA102866 1 + 2z + 572 + 1623 + 427* + 1162° + 3108 + - - - . <

(Dt 22
FL=PET(SEQ:1(A) =  FL@=exp| | k  1-2&]"

I.5. Tree structures

This section is concerned with bagiee enumerations Trees are, as we saw
already, the prototypical recursive structure. The c@woesging specifications nor-
mally lead tononlinearequations (and systems of such) over generating functioas,
Lagrange inversion theorem being exactly suited to soltiiregsimplest category of
problems. The functional equations furnished by the symboéthod can then con-
veniently be exploited by the asymptotic theory of ChaptBr(pp. 452—-482). As we
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Specification OGF coefficient
Trees:
1 1(2n-2\ 41
plane general G = Z x SEQ(G) E(1—\/1—42) ﬁ(n—l) ~ N
1 1 (2n 4n
— bi =1+2Z —1-v1-4 — ~—
inary B +ZxBxB 22( Z) n+1<n) —
— simple T=Z2xSEQa(T) T@=26(T(@2)) ~cp "n=3/2
non-plane gen.’H = Z x MSET(H) H(2) = zExp(H(2)) ~ 4 - p"/n%/2
— binary U= Z+MSET2(U) Eq. (76),p. 72 ~Jg- pY/n3/2

— simple V=ZMSETo(V) Eq.(73),p.71 ~¢p"n=3/2

Figure 1.13. Rooted trees of type either plane or non-plane and asymptotic forms.
There,. = 0.43992,5 = 2.95576;1, = 0.31877,8, = 2.48325. References for
asymptotics are pp. 452—-482 of Chapter VII.

shall see there, a certain type of analytic behaviour agpedre ‘Universal in trees,
namely the occurrence of  -singularity; accordingly, most tree families arising in
the combinatorial world have counting sequences obeyimi@rsal asymptotic form
C A'n~%2, which widely extends what we obtained elementarily foralat numbers
on p. 38. A synopsis of what awaits us in this section is giveRigure 1.13.

I.5.1. Plane trees.Trees are commonly defined as undirected acyclic connected
graphs. In addition, the trees considered in this book aress otherwise specified,
rooted (Appendix A.9: Tree concepty. 737 and [377, §2.3]). In this subsection, we
focus attention orplane treesalso sometimes called ordered trees, where subtrees
dangling from a node are ordered between themselves. Alteely, these trees may
be viewed as abstract graph structures accompanied by agdeimg into the plane.
They are precisely described in terms of a sequence cotistiuc

First, consider the clagg of general plane trees where all node degrees are al-
lowed (this repeats material on p. 35): we have

z
(66) G =Z x SEQ(9) == G(2) = 1260’
1-J1-4
and, accordingly(z) = TZ so that the number of general trees of size
is a shifted Catalan number:
1/2n-2

7 =Ch1=— .

(6 ) Gn Cn 1 n ( n— 1)

Many classes of trees defined by all sorts of constraints opegties of nodes
appear to be of interest in combinatorics and in relatedsssaah as formal logic and
computer science. L& be a subset of the integers that contains 0. Define the class
T9 of Q-restricted treesas formed of trees such that the outdegrees of nodes are
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constrained to lie if2. In what follows, an essentiable is played by a characteristic
function that encapsulat€s,
p(u) = > u”.

we)
Thus,Q = {0, 2} determines binary trees, where each node has either 0 oc2rdes
dants, so thap(u) = 1+ u?; the choicex2 = {0, 1, 2} andQ = {0, 3} determine,
respectively, unary—binary trees(() = 14+u+u?) and ternary treegy(u) = 1+u®);
the case of general trees correspond@te Z-o andg(u) = (1 — u)~L.
Proposition 1.5. The ordinary generating function 4(z) of the class7< of Q-
restricted trees is determined implicitly by the equation

T%(2) = 2¢(T9(2)),

whereg¢ is the characteristic of2, namelyg(u) = >, o u®. The tree counts are
given by

(69 8= [T = T W e

A class of trees whose generating function satisfies an iequat the formy =
z¢(y(2)) is also called asimple variety of treesThe study of such families (in the
unlabelled and labelled cases alike) is one of the recuthemes of this book.

Proof. Clearly, forQ-restricted sequences, we have
A = SEQq(B) = A(2) = ¢(B(2)),
S0
T = Z x SEQ(T) = T9(2) = 24(T9(2)).
This shows thal = T is related taz by functional inversion:
T

“Teay
The Lagrange Inversion Theorem precisely provides exjmes$or such a case (see Ap-
pendix A.6:Lagrange Inversionp. 732 for an analytic proof and Note 1.47, p. 75, for
combinatorial aspects):

Lagrange Inversion Theorem. The coefficients of an inverse function and of all its
powers are determined by coefficients of powers of the dinection: if z= T /¢ (T),
then one has (with any & Z-o):

1 Kk
69)  [IT@ =", [T = [0 pw)"
The theorem immediately implies (68). ]

The form relative to power3 K in (69) is known as “Birmannn’s form” of La-
grange inversion; it yields the counting of (order&djorests, which ark—sequences
of trees. Furthermore, the statement of Proposition |.8redg trivially to the case
whereQ is a multiset; that is, a set of integers with repetitionswa#d. For instance,
Q = {0, 1, 1, 3} corresponds to unary—ternary trees with two types of unades,
say, having one of two colours; in this case, the charatieissp (u) = u®+2ul+us.
The theorem gives back the enumeration of general treesewlie) = (1—u)~1, by
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s S

Figure 1.14. A general tree ofjs; (left) and a binary tree df’ 0.2} = By (right)

drawn uniformly at random among ti@ andCog possible trees respectively, with

Ch = nil( "), thenth Catalan number.

way of the binomial theorem applied @ — u)~". In general, it implies that, when-
everQ comprises elementsQ = {w;, ..., o}, the tree counts are expressed as an
(r — 1)-fold summation of binomial coefficients (use the multinah@xpansion). An
important special case detailed in the next two examplesabia whenQ has only
two elements.

Examplel.13. Binary trees and Catalan numbersA binary treeis a rooted plane tree, in
which every node has either 0 or 2 successors (Figure 1.14). Indsis, 6t is customary to
considersizeto be the number of internal “branching” nodes, and we shall do so 8t afdhe
analyses to come. (By elementary combinatorics, if such a treeinéernal nodes, it has+ 1
external nodes, hence it comprises2 1 nodes in total.) The specification and OGF of the
classB of binary trees are then

B=1+(EZxBxB) = B2 =1+2zB2)>2
(observe the structural analogy with triangulations in (31), p. 36), 4o tha

1-V1-4z 1 2n
B(z) = ——F7-— and Bh =
@ 22 n n+1( )

again a Catalan number (with a shift of index when compared to (6 7¥uriimary:

The number B of plane binary trees having n internal nodes, i.@,+ 1) external nodes

and(2n + 1) nodes in total, is the Catalan numbep B= C,, = Wll(znn)

If one considers all nodes, internal and external alike, as contribtdgisge, the corres-
ponding specification and OGF become

B=2z+(ZxBxB) =>§(z)=z(1+§(z)2),

and the Lagrangean form is recovered (as weﬁ@@rl = Bp), with¢(u) = (1 + u2).

Alternatively, consider the clads of pruned binary tregswhich are binary trees stripped
of their external nodes (Appendix A.9ree conceptsp. 737), where only trees i \ By are
taken. The corresponding claBsatisfies (upon distinguishing left- and right-branching unary
nodes of the pruned tree)

B=2+(ExB)+(ExB)+(ExBxB) = B@=z(1+B@®)°

which is now Lagrangean with(u) = (1 + u)2. These calculations, all with a strongly similar
flavour, are explained by natural bijections in Subsection 1.5.3,p. 73................ | |
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> 1.38. Forests. Consider orderei—forests of trees defined b§ = SEQk(7"). The general
form of Lagrange inversion implies

IF @ = 21T @ = S g
In particular, one has for forests of general treggij = (1 — u)_l):

k
1-JV1-4z kK(2n—k—-1\
V“(;z) ="

the coefficients are also known as “ballot numbers”. <

Examplel.14. “Regular” (t—ary) trees. A tree is said to bé—regular ort—ary if Q consists
only of the element$0, t} (the casd = 2 gives back binary trees). In other words, all internal
nodes have degreeexactly. LetA := 710t} In this case, the characteristicfgu) = 1 + u'
and the binomial theorem combined with the Lagrange inversion formuée gi

1
An = U@+
1

= ﬁ(nfl) providedn = 1 modt.

i
As the formula shows, only trees of total size of the farra: tv + 1 exist (a well-known fact
otherwise easily checked by induction), and

1 (tv+1 1 ty
70 Apyp1 = —— =— (7).
(70) v+l tv+l( v ) G-—Dv+l(u)

As in the binary case, there is a variant of the determination of (70) tb&dswgongruence
restrictions. Define the clasd of “pruned” trees as trees ofl \ Ag deprived of all their
external nodes. The trees. i now have nodes that are of degree at mogh order to make
A bijectively equivalent toA4 , it suffices to regard trees of as having(}) possible types of

nodes of degreg, for anyj e [0, t]: each node type id plainly encodes which of the original
t — j subtrees have been pruned. Wimow being a multiset, we find(u) = (1 + u)! and
A(2) = z9(A(2)), so that, by Lagrange inversion,

— 1/ tv 1 tv
A\)Zf = T AN >
viv—1 t—Dv+1\v

yet another form of (70), SINCAY = Ayl e vrneennee e |
> 1.39. Unary-binary trees and Motzkin numbetst M be the class of unary—binary trees:
1-z—+1-22-322
M = Z x SEQ<2(M) = M(2) = 5% .

One hasM(z) = z+ 22+228+47%+92° 42128 + 51727 + ---. The coefficientM, =
[Z'IM (2), known as Motzkin number&E(SA0010086, are given by

=25 ()0

as a consequence of the Lagrange Inversion Theorem. <

[> 1.40. Yet another variant of t—ary treeket A be the class of-ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

A= 2+ SEq(A).
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The binomial form ofA,, follows from Lagrange inversion, sinoe = z/(1 — A~1). Can this
last relation be interpreted combinatorially? <

Examplel.15. Hipparchus of Rhodes and Séider. In 1870, the German mathematician Ernst
Schidder (1841-1902) published a paper entitiéer combinatorische Problemelhe paper
had to do with the number of terms that can be built ouh efriables using non-associative
operations. In particular, the second of his four problems asks farth#er of ways a string
of nidentical letters, say, can be “bracketed”. The rule is best stated recursivelyself is a
bracketing and i1, o2, ..., ok with k > 2 are bracketed expressions, thenkhkary product
(o102 - - - oK) is @ bracketing. For instancé((x X)X(Xx xX))((X X)(X X)X)).

Let S denote the class of all bracketings, wheizeis taken to be the number of variable
instances. Then, the recursive definition is readily translated into thefepecification (with
Z representing) and the OGF equation:

S2)?
Indeed, to each bracketing of simeés associated a tree whose external nodes contain the vari-
ablex (and determine size), with internal nodes corresponding to bracketimbisaving degree
at least 2 (while not contributing to size).

The functional equation satisfied by the OGF is mopriori of the type correspond-
ing to Proposition 1.5, becaus®t all nodes contribute to size in this particular application.
Note 1.41 provides a reduction to Lagrangean form; however, in alsicgse like this, the
quadratic equation induced by (71) is readily solved, giving

1

@ = ; (1+2-Vi-62+7)

2+ 22 + 323 + 1124 + 4575 + 19728 + 9037 + 427%8 + 207930
+10304910 + 5188511 + ...,

where the coefficients allSA001003 (These numbers also count series—parallel networks of
a specified type (e.qg., serial in Figure 1.15, bottom), where placeiméme plane matters.)

In an instructive paper, Stanley [553] discusses a page of Plutdvitralia where there
appears the following statement:

“Chrysippus says that the number of compound propositions thateamade from
only ten simple propositions exceeds a million. (Hipparchus, to be sdiutedethis
by showing that on the affirmative side there are 103€@28@pound statements, and
on the negative side 310 952

It is notable that the tenth number of Hipparchus of Rhéée{s. 190-12®cC) is precisely
S10 = 103 049. This is, for instance, the number of logical formulae that ediofmed from
ten boolean variables, . . ., X1g (used once each and in this order) using and—or connectives in
alternation (no “negation”), upon starting from the top in some converitfashion'3 e.g, with

12This was first observed by David Hough in 1994; see [553]. Ir’b]3Habsiegeet al. further note
that%(810+ S11) = 310954, and suggest a related interpretation (based otenlegariables) for the other
count given by Hipparchus.

13any functional term admits a unique tree representation.eHas soon as the root type has been
fixed (e.g., am connective), the others are determined by level parity. Tmstraint of node degrees 2
in the tree means that no superfluous connectives are usallyFamy monotone boolean expression can
be represented by a series—parallel network:xthare viewed as switches with titieie andfalsevalues
being associated with closed and open circuits, respéctive
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(X)) A (X2 V (X3 A X4 A X5) V Xg) A (X7 A Xg) V (X9 A X10))

A
X{ Y Y
X2 A X6 A A
AN /N /N
X3 X4 Xg X7 Xg X9 X10
1 %2 | LX7 —1%8 ]
a6 {5 —
(%6 | (%o }—{ 0]

Figure 1.15. An and-or positive proposition of the conjunctive type (top), its associ-
ated tree (middle), and an equivalent planar series—parallel netitrk serial type
(bottom).

an and-clause; see Figure 1.15. Hipparchus was naturally not @gmikzgenerating functions,
but with the technology of the time (and a rather remarkable mind!), hddnstili be able to
discover a recurrence equivalent to (71),

(72) S=[n>2] > SySy S| +In=1l

Ny+--+nNk=n

where the sum has only 42 essentially different termafer 10 (see [553] for a discussion),

and finally determingS . ... ..o e |
> 1.41. The Lagrangean form of Sdabder’'s GF.The generating functio8(z) admits the form
1-y
= h -
S2) = 26(S@) where ¢(y) = 7
is the OGF of compositions. Consequently, one has
1o (1-u)"
= = n[u ] (1—2u)
_ -2
(-pn-1 k(N \(n+k-1 1T on—k—2\(n-2
n Z( ) k+1 k n Z n-1 k
k k=0
Is there a direct combinatorial relation to compositions? <

D> 1.42. Faster determination of Sctider numbersBy forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

N+2S42 -3+ DS+ -D$H =0, n>1,

that entails a fast determination, in linear time, of e (This technique, which originates
with Euler [199], is applicable to any algebraic function; see Appendix B@dlonomic func-
tions p. 748.) In contrast, Hipparchus’s recurrence (72) implies arrighgo of complexity
exp(0(4/n)) in the number of arithmetic operations involved. <
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I.5.2. Non-plane trees.An unordered tregalso callednon-planetree, is just
a tree in the general graph-theoretic sense, so that thapeasder between subtrees
emanating from a common node. The unordered trees condidere are furthermore
rooted, meaning that one of the nodes is distinguished astiteAccordingly, in the
language of constructions, a rootedorderedtree is a root node linked toraultiset
of trees. Thus, the clagg of all unordered trees, admits the recursive specification:

H@ =z[J@a-zm"n
(73) H=Zx MSET(H) = m=1

:zexp(H(z)+%H(zZ)+...).

The first form of the OGF was given by Cayley in 1857 [67, p. 43jioes not admit
a closed form solution, although the equation permits ondetermine all theH,
recursively EISA000081):

H(z) = 2+ 2% + 22° + 42* + 92° 4+ 2028 + 482" + 1158 + 2862° + - - - .
The enumeration of the class of trees defined by an arbitetr@2 ®f node degrees
immediately results from the translation of sets of fixedlgzality.

Proposition 1.6. LetQ c N be a finite set of integers containi®g The OGF Uz) of
non-plane trees with degrees constrained to liisatisfies a functional equation of
the form

(74) U@ =20U@),U@),UE@)...),
for some computable polynomidl
Proof. The class of trees satisfies the combinatorial equation,

U =2 x MSETqUA) (MSETQ(M) = Z MSETw(U)),

weQ

where the multiset construction reflects non-planaritycasisubtrees stemming from
a node can be freely rearranged between themselves and mpegrappeated. An-

ticipating on what we shall see later, we note that Theorénfd. 84) provides the

translation of M& Tk (UA):

2
PU(@2),U@).U@),..) =D [u’] exp(;U(z) + U?U(Zz) 4. )

we)
The statement then follows immediately. |

In the area of non-plane tree enumerations, there are niwitkptmulae but only
functional equations implicitly determining the genemgtfunctions. However, as we
shall see in Section VII. 5 (p. 475), the equations may be tsadalyse the dominant
singularity ofU (z). We shall find that a “universal” law governs the singulastof
simple tree generating functions, either plane or nonel@igure 1.13): the singu-
larities are of the general typgl — z/p, which, by singularity analysis, translates
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into

Ba)"
75 Ul ~ 1 .
( ) n Q \/@

Many of these questions have their origin in enumerativehlinatorial chemistry, a

subject started by Cayley in the nineteenth century [67,4FhPblya re-examined

these questions, and, in his important paper [488] puldishel937, he developed
at the same time a general theory of combinatorial enunesistinder group actions
and systematic methods giving rise to estimates such as$%é&)the book by Harary
and Palmer [319] for more on this topic or Read’s edition olyR's paper [491].

> 1.43. Fast determination of the Cayleyéa numbersLogarithmic differentiation oH (2)
provides for theHp a recurrence by which one computdg in time polynomial inn. (Note: a
similar technique applies to the partition numbE¥s see p. 42.) <

> 1.44. Binary non-plane treesUnordered binary treeB, with size measured by the number
of external nodes, are described by the equatiea Z + MSET, (V). The functional equation
determiningV (2) is

1 1
(76) V@ =z+ éV(z)2 + EV(zZ); V@) =2+ +84+22+3°+---.

The asymptotic analysis of the coefficienEd$ A00119Q was carried out by Otter [466] who
established an estimate of type (75). The quanitys also the number of structurally distinct
products ofh elements under a commutative non-associative binary operation. <

> 1.45. Hierarchies.Define the clas& of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. We have (Ca88&y see [67, p.43])

K=2+MSETo(K) — K@= %z+ % [exp(K(z)+ %K(ZZ)—}—...) _1],

from which the first values are foun&iS A000669
K(2) = z+ 2% + 225 + 52* + 122° 4+ 332° + 907" + 2618 + 7662° + 231220+ .. . .

These numbers also enumerate hierarchies in statistical classification[5®%)]. They are the
non-planar analogues of the Hipparchus—8der numbers on p. 69. <

> 1.46. Non-plane series—parallel networkS8onsider the clasSP of series—parallel networks
as previously considered in relation to the Hipparchus example, p. 6®rinring planar em-

beddings: all parallel arrangements of the (serial) netwstks. ., s¢ are considered equiva-
lent, while the linear arrangement in each serial network matters. Fonagstéorn = 2, 3:

oo [ 000 [o] %P1 oL [So
Thus,SB = 2 andSPR; = 5. This is modelled by the grammar:
S=Z+SEQ:2(P), P =Z+MSET:52(S),
and, avoiding to count networks of one element twice,
SP(2) = S(2) + P(2) — 2= 2+ 222 + 52° + 152* + 487° + 16728 + 60227 + 22568 + - . . ,

(EISA003430Q. These objects are usually described as networks of electric resistors <]



I.5. TREE STRUCTURES 73

I.5.3. Related constructions.Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalaminers,C, = Wll(zr?) count
general treesd) of sizen + 1, binary trees§) of sizen (if size is defined as the
number of internal nodes), as well as triangulatiodd ¢comprised ofn triangles.
The combinatorialist John Riordan even coined the n&atalan domairfor the area
within combinatorics that deals with objects enumeratedClayalan numbers, and
Stanley’s book contains an exercise [554, Ex. 6.19] whasestent alone spans ten
full pages, with a list of 66 types of object(!) belonging tetCatalan domain. We
shall illustrate the importance of Catalan numbers by dleisgy a few fundamental
correspondences (combinatorial isomorphisms, bijesjitivat explain the occurrence
of Catalan numbers in several areas of combinatorics.

Rotation of trees.The combinatorial isomorphism relatighand B (albeit with
a shift in size) coincides with a classical technique of catapscience [377, §2.3.2].
To wit, a general tree can be represented in such a way thiat eede has two types
of links, one pointing to the left-most child, the other te thext sibling in left-to-right
order. Under this representation, if the root of the genteeal is put aside, then every
node is linked to two other (possibly empty) subtrees. Irepthords, general trees
with n nodes are equinumerous with pruned binary trees withl nodes:

gn = Bn—1~
Graphically, this is illustrated as follows:

The right-most tree is a binary tree drawn in a conventiorahmner, following a 45
tilt. This justifies the name of “rotation correspondencé®no given to this transfor-
mation.

Tree decomposition of triangulationsThe relation between binary tregsand
triangulations? is equally simple: draw a triangulation; define the rootrigke as
the one that contains the edge connecting two designatéidese(for instance, the
vertices numbered 0 and 1); associate to the root triangledbt of a binary tree;
next, associate recursively to the subtriangulation ondfief the root triangle a left
subtree; do similarly for the right subtriangulation gigirise to a right subtree.
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Under this correspondence, tree nodes correspond to leifages, while edges con-
nect adjacent triangles. What this correspondence provies ombinatorial isomor-
phism
Th = Bn.
We turn next to another type of objects that are in correspooel with trees.

These can be interpreted as words encoding tree traverghlgeometrically, as paths
in the discrete plang& x Z.

Tree codes and tukasiewicz wordé\ny plane tree can be traversed starting from
the root, proceeding depth-first and left-to-right, andkecking upwards once a
subtree has been completely traversed. For instance, trethe

77 ¢ =

the first visits to nodes take place in the following order

a’ b! d’ h’ e’ f! C? g! i’ J .
(Note: the tags, b, . . ., added for convenience in order to distinguish betweensiode
have no special meaning; only the abstract tree shape méaitee.) This order is
known aspreorder or prefix ordersince a node is preferentially visited before its
children.

Given a tree, the listing of the outdegrees of nodes in prefienis called the
preorder degree sequendeor the tree of (77), this is

o =(23,10,0,0,1,2,0,0).

It is a fact that the degree sequence determines the treebimaoasly. Indeed, given
the degree sequence, the tree is reconstructed step bydtipg nodes one after the
other at the left-most available place. Farthe first steps are then

Next, if one represents degrg¢dy a “symbol” f;, then the degree sequence becomes
aword over the infinite alphabet = { fo, f1, ...}, for instance,

o ~ fofafy fofofofyfafpfo.

This can be interpreted in the language of logic as a dewotédr a functional term
built out of symbols fromF, where f; represents a function of degree (or “arity”)
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j. The correspondence even becomes obvious if superfluoesthases are added at
appropriate places to delimit scope:
o ~ fa(f3(f1(fo), fo, fo), f1(f2(fo, f0))).

Such codes are known as tukasiewicz cdfjés recognition of the work of the Polish
logician with that name. Jan tukasiewicz (1878-1956) uhticed them in order to
completely specify theyntaxof terms in various logical calculi; they prove nowadays
basic in the development of parsers and compilers in compaience.

Finally, a tree code can be rendered as a walk over the distagiceZ x Z.

Associate to anyf; (i.e., any node of outdegrgg the displacemer(, j —1) € Zx Z,
and plot the sequence of moves starting from the origin. lregample we find:

fop f3 f1 fo fo fo f1 f2 fo fo
12 0 -1-1-10 1 -1 -1.

There, the last line represents the vertical displacemenitg resulting paths are
known as tukasiewicz paths. Such a walk is then charactbbyewo conditions:
the vertical displacements are in the sefl, 0, 1, 2, . . .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Lukasiewicz pathb wisteps is the
shifted Catalan numbef,(3'—?).

> 1.47. Conjugacy principle and cycle lemmalet £ be the class of all Lukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at {el/ddut is otherwise allowed

to include arbitrary negative points; latt be the corresponding class. Then, each relaxed path
can be cut-and-pasted uniquely after its left-most minimum as descréved h

This associates to every relaxed path of lengéhunique standard path. A bit of combinatorial
reasoning shows that correspondence is i-{each element of hasexactlyv preimages.)

One thus hasv, = vL,. This correspondence preserves the number of steps of each type
(fo, f1,...), so that the number of tukasiewicz paths withsteps of typef; is

1 v 1
—[x_lugou‘il~-~](x_1u0+ul+xu2+XZU3+~~~) =7( Y )
v v \vo, V1, ...

14 less dignified name is “Polish prefix notation”. The “reveRamlish notation” is a variant based
on postorder that has been used in some calculators sinc870s.1
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under the necessary conditior1)vg + Ovq + 1vp + 2v3 + - - - = —1. This combinatorial way
of obtaining refined Catalan statistics is known asdbsjugacy principlg503] or thecycle
lemma[129, 155, 184]. Itis logically equivalent to the Lagrange Inversibiedrem, as shown
by Raney [503]. Dvoretzky & Motzkin [184] have employed this techeit solve a number
of counting problems related to circular arrangements. <

Examplel.16. Binary tree codes and Dyck path®Valks associated with binary trees have
a very special form since the vertical displacements can oni+ber —1. The paths result-
ing from the Lukasiewicz correspondence are then equivalently ciesized as sequences of
numbersx = (Xp, X1, . . ., Xon, Xon4-1) Satisfying the conditions

(78) x9=0; Xj >0 forl<j <2n; Xj+1—Xj| =1 Xongp1 = —1L.

These coincide with “gambler ruin sequences”, a familiar object froabgbility theory: a
player plays head and tails. He starts with no capitgl=t 0) at time 0; his total gain i%; at
time j; he is allowed no credit(j > 0) and loses at the very end of the garag, 1 = —1; his
gains aret1 depending on the outcome of the coin tos$re§+(1 = Xj | =1).

Itis customary to drop the final step and consider “excursions’ thatpédce in the upper
half-plane. The resulting objects defined as sequefigs= 0, X1, ..., Xon—1, Xon = 0)
satisfying the first three conditions of (78) are known in combinatoricd®yak pathd>. By
construction, Dyck paths of lengtmZorrespond bijectively to binary trees withinternal
nodes and are consequently enumerated by Catalan numbef3.becthe combinatorial class
of Dyck paths, with size defined as length. This property can also b&ketiatirectly: the
guadratic decomposition

2000 a0 Q. MBS o0

(79)
D = {fe} + (D) xD
= D(2 = 1 + (zD(2)z) D(2).
From this OGF, the Catalan numbers are found (as expecieg):= %(Zr?) The decom-

position (79) is known as the “first passage” decomposition as it is basélae first time the
accumulated gain in the coin-tossing game passes through the value zero.

Dyck paths also arise in connection will well-parenthesized expressitiese are recog-
nized by keeping a counter that records at each stage the excessrfntiber of opening
brackets {” over closing brackets)”. Finally, one of the origins of the Dyck path is the famous
ballot problem which goes back to the nineteenth century [423]: there are two canslidlate
and B that stand for election,r2voters, and the election eventually results in a tie; what is the
probability thatA is always ahead of or tied witB when the ballots are counted? The answer is

D2n 1

&) n+t
since there ar(azn”) possibilities in total, of which the number of favourable casé3is, a Cata-
lan number. The centrable of Dyck paths and Catalan numbers in problems coming from such
diverse areas is quite remarkable. Section V. 4, p. 318 presentedefinnting results regarding
lattice paths (e.g., the analysis of height) and Subsection VII. 8.1 gink®@duces exact and as-
ymptotic results in the harder case of an arbitrary finite collection of stejs {yyo justt1). B

15Dyck paths are closely associated with free groups on onergtar and are named after the German
mathematician Walther (von) Dyck (1856—1934) who introduited groups around 1880.
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> 1.48. Dyck paths, parenthesis systems, and general tréée class of Dyck paths admits an
alternative sequence decomposition

o 2000 a0 488 2 A

D = SEQZxDx2Z2),

which again leads to the Catalan GF. The decomposition (80) is known asuitte decom-
position” (see Subsection V. 4.1, p. 319, for more). It can also textljr related to traversal
sequences of general trees, but with the directioresigétraversals being recorded (instead of
traversals based on node degrees): for a generat tidefine its encoding(z) over the binary
alphabef ~, \u} recursively by the rules:

k(t) =€, k(o(t1,...,7r)) ="k(t1) - k(tr) v .

This is the classical representation of trees by a parenthesis systemrénter” and “\,” as
“("and “)”, respectively), which associates to a treenagfodes a path of lengtm2- 2. <

> 1.49. Random generation of Dyck pathi3yck paths of length 2 can be generated uniformly
at random in time linear in. (Hint: By Note 1.47, it suffices to generate uniformly a sequence
of n as and(n + 1) bs, then reorganize it according to the conjugacy principle.) <

> 1.50. Excursions, bridges, and meanderAdapting a terminology from probability theory,
one sets the following definitiongi) a meander( M) is a word over{—1, +1}, such that the
sum of the values of any of its prefixes is always a non-negative intéggr bridge (B) is a
word whose values of letters sum to 0. Thus a meander represents thaialkanders in the
first quadrant; a bridge, regarded as a walk, may wander abovbedot the horizontal line,
but its final altitude is constrained to be 0; an excursion is both a meandertaidge. Simple
decompositions provide

T 1-z2D@®’ T 1-222D(2)’
implying Mp = (Lnr/‘zj) [EISA001408 and By, = (2;1”) [EISA000984. <

> 1.51. Motzkin paths and unary—binary treesMotzkin paths are defined by changing the
third condition of (78) defining Dyck paths intoj .1 — xj| < 1. They appear as codes for
unary-binary trees and are enumerated by the Motzkin numbers ol R8te. 68. <

Examplel.17. The complexity of boolean functions.Complexity theory provides many
surprising applications of enumerative combinatorics and asymptotic assm In general,
one starts with a finite set of abstract mathematical obj@ctnd a combinatorial clas®

of concretedescriptions By assumption, to every element &fe D is associated an object
w(0) € Q, its “meaning”; conversely any object €& admits at least one description T
(that is, the functioru is surjective). It is then of interest to quantify properties of the shortest
description function defined fes € Q as

o (@) =min{lolp | u(©) = o},

and called theomplexityof the elementy € Q (with respect tdD).

We take here to be the class of all boolean functions wrnvariables. Their number is
Q] = 22" As descriptions, we adopt the class of logical expressions involvingpthieal
connectivesv, A and pure or negated variables. Equivalerilyjs the class of binary trees,
where internal nodes are tagged by a logical disjunctieri)(br a conjunction (A”), and each
external node is tagged by either a boolean variablgcpf. . ., xm} or a negated variable of
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{—X1, ..., —Xm}. Define the size of a tree description as the number of internal nod¢ss,tha
the number of logical operators. Then, one has
1 (2n
81 Dp=(— 22N (2mytt
(81) = (731(5)) 2@

as seen by counting tree shapes and possibilities for internal as wetkasaxode tags.
The crux of the matter is that if the inequality

v
(82) > Dj <lQl,
j=0

holds, then there are not enough descriptions of sizeio exhaust. (This is analogous to the
coding argument of Note 1.23, p. 53.) In other terms, there must akisast one object i
whose complexity exceeds If the left side of (82) is much smaller than the right side, then it
must even be the case that “moS&t=objects have a complexity that exceeds

In the case of boolean functions and tree descriptions, the asymptoti¢38) is available.
From (81) it can be seen that, forv getting large, one has

v
Dn=0@6'm"'n=%23), > Dj =o@ae'm’v=¥?)
j=0
Choosev such that the second expression(Q|), which is ensured for instance by taking for

v the value
m

With this choice, one has the following suggestive statement:

A fraction tending tdl (as m— oo) of boolean functions in m variables have tree complexity
at least2™/(4 + log, m).

Regarding upper bounds on boolean function complexity, a functionyaikas a tree
complexity that is at most®+1 — 3. To see this, note that fon = 1, the four functions are

O=(XpA—X), l=0(av—x1), X1, —Xi.

Next, a function ofm variables is representable by a technique known as the binary decision
tree BDT),

f(XL - Xme1, Xm) = (=Xm A (X1, .., Xm=1, 0) V (Xm A f(X1, ..., Xm-1, D)),

which provides the basis of the induction as it reduces the representétionne-ary func-
tion to the representation of tw@n — 1)—ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boole@tidns have a
tree-complexity (2'/logm) that is fairly close to the maximum possible, name(2™). A
similar result has been established by Shannon for the measure catleitl @mplexity: cir-
cuits are more powerful than trees, but Shannon'’s result stateslthast all boolean functions
of m variables have circuit complexity (@"/m). See the chapter by Li and ¥dityi in [591]
and Gardy’s survey [283] on random boolean expressions foraugion of such counting
techniques within the framework of complexity theory and logic. We resiinsehread in Ex-
ample VI1.17, p. 487, where we quantify the probability that a largesamboolean expression
computes a fixed fuNCtioN. ........ ... e |
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I.5.4. Context-free specifications and languagedMany of the combinatorial
examples encountered so far in this section can be orgammifed common frame-
work, which is fundamental in formal linguistics and theal computer science.

Definition 1.13. A classC is said to becontext-fredf it coincides with the first com-
ponent(7 = Sp) of a system of equations

Sl = 8’1(29819""Sr)
83) .. .

Sr = ‘Sr(zasla‘--asr),

where eacl§j is a constructor that only involves the operations of coratminial sum
(+) and cartesian productx), as well as the neutral clas§,= {¢}.

A languagel is said to be arunambiguous context-frdanguage if it is combi-
natorially isomorphic to a context-free class of tre€s= 7 .

The classes of general tre€) @nd binary treesi) are context-free, since they
are specifiable as

g
F

Zx F
{e} + (G x F), B=Z+ (B x B);

here 7 designates ordered forests of general trees. Contexsfreeifications may
be used to describe all sorts of combinatorial objects. Rstance, the clagg =
T \ 7o of non-empty triangulations of convex polygons (Note 103@) is specified
symbolically by

(84) U=V +(V xU) +UxV)+UxV xU),

whereV = Z represents a generic triangle. The Lukasiewicz languadehenset of
Dyck paths are context-free classes since they are bighgtquivalent taj andid.

The term “context-free” comes from linguistics: it stresske fact that objects
can be “freely” generated by the rules of (83), this withowy aonstraints imposed
by an outside conte}®. There, one classically defines a context-free language as
the language formed with words that are obtained as seqsi@fdeaf tags (read in
left-to-right order) of a context-free variety of trees.ftmmal linguistics, the one-to-
one mapping between trees and words is not generally impoagdesh it is satisfied,
the context-free language is said to tnmeambiguousin such cases, words and trees
determine each other uniquely, cf Note 1.54 below.

An immediate consequence of the admissibility theoremseddllowing propo-
sition first encountered by Chomsky and St#enberger [119] in the course of their
research relating formal languages and formal power series

18Eormal language theory also defines context-sensitive grasmwizare each rule (called a produc-
tion) is applied only if it is enabled by some external conteRbntext-sensitive grammars have greater
expressive power than context-fr