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Chapter 1

Complex numbers

1.1 Definitions

By convention, Rn is the vector space of real vector columns (x1, ..., xn)>, where xi ∈ R.
We know few classes of numbers: the set of integers Z = {0,±1,±2, ...}, the set of

rational numbers, the set of real numbers R = (−∞,∞).
Now we have a new class: complex numbers. Let i be some fixed symbol (we shall

call it ”imaginary unit”). Assume that any vector (x, y) ∈ R2 is represented in the form
x + iy. We shall call this form a complex number. We assume that any real number is
also a complex number: x = x + 0 · i.

Let z = x + iy be a complex number, x, y ∈ R. x is said to be the real part Re z of z,
and y is said to be the imaginary part Im z of z. Real numbers are placed on the so-called
real axes, and complex numbers are being placed on the so-cable imaginary axes.

1.2 Module and argument

Let z = x + iy be a complex number, x, y ∈ R.

Definition 1.1 The module |z| of z is

|z| =
√

x2 + y2 =
√

Re z2 + Im z2.

|z| is the distance from z to the zero.

Definition 1.2 The argument arg z of z ∈ C, z 6= 0, is the angle (in radians) between
the arrow directed to z and the real axis.

For instance, if z = z + iy, x > 0, then

arg z = arctan
y

x
+ 2πk, k = 0,±1,±2....

3



4

Note that the angle is not unique, since

cosα = cos(α + 2πk), sinα = sin(α + 2πk), tanα = tan(α + 2πk).

The version of the argument in (−π, π] is said to be the main (or principal) value of arg z,
and it is denoted as Arg z.1

C is the standard notation for the set of complex numbers.

1.3 Addition and multiplication

Definition 1.3 We define addition and multiplication as the following: for zk = xk + iyk,
where xk, yk ∈ R,

z1 + z2 = x1 + x2 + i(y1 + y2),

z1 · z2 = x1x2 − y1y2 + i(x1y2 + x2y1).

In particular, i2 = i · i = −1 + i · 0 = −1. Therefore, we have that the equation z2 = −1
is solvable!

In fact, this means that the set R2 is provided with the standard addition (as in the
vector space R2) and with the special multiplication.

For z = x+iy, we denote −z = (−1)z = (−1−i ·0)z = −x−iy. We denote 0 = 0+i ·0.
We have z · 0 = 0 · z = 0 for all z ∈ C.

In addition, we assume that z1 − z2 = z1 + (−z2).

Inversion

Let z ∈ C, then z−1 is a number such that z · z−1 = 1. In fact, it exists and it is uniquely
defined for all z 6= 0. We assume also that z1/z2 = z1z

−1
2 .

Triangle inequality

Note that |z1 − z2| is the distance between z1 and z2 in R2. Therefore, it is easy to see
that the following triangle inequality holds:

|z1 + z2| ≤ |z1|+ |z2|.

Proof. Let ω
∆= −z2, then |z1 − ω| ≤ |z1|+ | − ω|, by the property of the distance. 2

1In literature, the main or principal value of arg z is sometimes defined differently as a version of the

argument from [0, 2π).
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1.3.1 Conjugate numbers

Let z ∈ C, z = x + iy, where x, y ∈ R. The number z
∆= x − iy is said to be conjugate

(with respect to z). Note that z · z = x2 + y2 = |z|2. It is a real nonnegative number.

1.3.2 How to calculate 1/z

We have
1
z

=
1
z

z

z
=

z

zz
=

z

|z|2 .

For instance,
1

3 + 2i
=

3− 2i

9 + 4
=

3
13
− 2

13
i.

1.4 Polar form form of a complex number

Let x, y, r, ϕ ∈ R, z = x + iy, r = |z|, ϕ = arg z, then

x = r cosϕ, y = r sinϕ,

i.e., z = r(cosϕ + i sinϕ).

1.4.1 Multiplication in the polar form

Let zk = xk + iyk, k = 1, 2, rk = |zk|, ϕk = arg zk. Let z = z1z2. We have

z = x1x2 − y1y2 + i(x1y2 + y1x2)

= r1r2(cos ϕ1 cosϕ2 − sinϕ1 sinϕ2 + i[cosϕ1 sinϕ2 + sin ϕ1 cosϕ2])

= r1r2(cos(ϕ1 + ϕ2)− i sin(ϕ1 + ϕ2)).

It follows that

|z1z2| = |z1||z2|, arg (z1z2) = arg z1 + arg z2.

Corollary 1.4 If r, ϕ ∈ R, r > 0, z = r(cosϕ + i sinϕ), then

zm = rm(cos(mϕ) + i sin(mϕ)), m = 1, 2, 3, ...

Corollary 1.5 If r, ϕ ∈ R, r > 0, z = r(cosϕ + i sinϕ), then

z−1 = r−1(cos(−ϕ) + i sin(−ϕ)).
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1.5 Roots from a complex number

Let ω, z ∈ C be such that ωm = z, m ∈ {2, 3, 4, ...}. We say ω is a root of order m from z.
Let r, ϕ ∈ R, r > 0, z = r(cosϕ + i sinϕ), m ∈ {2, 3, 4, ...}. Let

ωk
∆= r1/m (cos θk + i sin θk) , k = 0, 1, 2, 3, ..., m− 1,

where θk = ϕ+2πk
m . We have that

ωm
k = r(cosϕ + i sinϕ) = z.

Therefore, z has at least m different complex roots of order m (it will be seen later that
there are exactly m roots).

For example, this works for z = 1: in our notations, ω0 = 1, ω1 = −1. Similarly, for
any z ∈ C, we have that if ω2 = z, then (−ω)2 = z.

1.5.1 Quadratic equation

Consider equation z2 + pz + q = 0, where p, q ∈ C. Let ω be any square root from
D

∆= p2/4− q. Let z1 = −p/2− ω, z2 = −p/2 + ω. It can be verified immediately that

(z − z1)(z − z2) = z2 + pz + q.

Hence zk are (the only) roots of this equation.

1.5.2 The Fundamental Theorem of Algebra

Theorem 1.6 Any polynomial of order n ∈ {1, 2, 3...}

P (z) = zn + cn−1z
n−1 + ... + c1z + c0,

where ck ∈ C, has n roots in C, i.e. it can be presented as

P (z) = (z − z1) · (z − z2) · · · (z − zn)

for some zk ∈ C, k = 1, 2, ..., n.

Proof will be given later.
Note that it is a difficult problem to find the roots of a polynomial explicitly if n > 3.



Chapter 2

Elements of analysis

2.1 Limits and convergence

Let {zk} ⊂ C be a sequence, and let z ∈ C.

Definition 2.1 We say that zi → z (in C) as k → +∞ (i.e., z = limk zk) iff |zk−z| → 0.

Lemma 2.2 zi → z (in C) as k → +∞ iff Re zi → Re z and Im zi → Im z.

In other words, this convergence is the same as the convergence in R2 (with Euclidean
norm) for the vector consisting of the real and imaginary parts.

Definition 2.3 We say that zk →∞ as k → +∞, if |zk| → +∞.

Note that ∞ and +∞ have different meaning in the definition above.

2.2 Series

Let {zk} ⊂ C be a sequence. Let {ck} be the sequence of the partial sums:

c1 = z1,

c2 = z1 + z2,

...

cn = z1 + .... + zn,

...

Definition 2.4 We say that series z1 + z2 + z3 + ... converges if the sequence {ck} of the
partial sums has a limit in C. This limit is said to be the summa of the series. In other
words,

+∞∑

k=1

zk = lim
k

ck.

7
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Definition 2.5 We say that series z1 + z2 + z3 + ... absolutely converges if the series
|z1|+ |z2|+ |z3|+ ... converges.

Theorem 2.6 If a series z1 + z2 + z3 + ... absolutely converges then this series converges.

Proof. It follows from the properties of convergence of the series in R (or even in R2).
For instance, it can be seen that the sequences {Re zk} and {Im zk} absolutely converge,
therefore they converge and have limits. 2

2.2.1 Power series

Let {ck} ⊂ C be a sequence, a ∈ C. A series in the form

c0 + c1(z − a) + c2(z − a)2 + c3(z − a)3 + ...

is said to be power series.
Example: we have

1
1− z

= 1 + z + z2 + z3 + ....

This series converge for any z such that |z| < 1 (it follows from the fact that the series
absolutely converges).

Definition 2.7 Given a power series
∑

k ck(z − a)k, the radius of convergence is defined
as

sup{|z − a| :
∑

k

|ck(z − a)k| converges}.

2.3 Exponent

Remind that
et = 1 + t + t2

2! + t3

3! + ...,

es+t = eset,

(et)′ = et, (eat)′ = aeat, t ∈ R

Definition 2.8 Let z ∈ C. We define ez as

ez ∆= 1 + z +
z2

2!
+

z3

3!
+ ...

Note that the series in the definition above converges for all z since this series is absolutely
converges:

1 + |z|+ |z|2
2!

+
|z|3
3!

+ .... = e|z|
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Lemma 2.9 For all a, b ∈ C,

ea+b = eaeb.

Proof.

eaeb =

(
+∞∑

k=0

ak

k!

) (
+∞∑

h=0

bh

h!

)
=

+∞∑

k=0

+∞∑

h=0

akbh

k!h!
=

+∞∑

k=0

k∑

h=0

ak−hbh

(k − h)!h!

=
+∞∑

k=0

1
k!

k∑

h=0

k!ak−hbh

(k − h)!h!
=

+∞∑

k=0

1
k!

(a + b)k = ea+b.

2.3.1 Euler’s formula

Theorem 2.10 (Euler’s formula): If z = x + iy, x, y ∈ R, then

ez = ex(cos y + i sin y).

We have ez = exeiy. To explore the form of ez, it suffices to study eiy for real y. We have

eiy =
+∞∑

k=0

(iy)k

k!
=

∑

k=2m, m=0,1,2,..

(iy)k

k!
+

∑

k=2m+1, m=0,1,2,..

(iy)k

k!

=
∑

m=0,1,2,..

(−1)m y2m

(2m)!
+ i

∑

m=0,1,2,..

(−1)m y2m+1

(2m + 1)!

= cos y + i sin y.

This completes the proof.

2.3.2 Parametrization of a circle

Let ω ∈ [0, 2π), then the values of eiw form the unit circle.

2.3.3 Differentiation with respect to a real variable

Let f : R → C, i.e., f(t) = a(t) + ib(t), where a(·), b(·) are real functions. Similarly to
differentiation of a vector function, we assume that f ′(t) = (a(t))′+ i(b(t))′ = (Re f(t))′+
i(Im f(t))′.

Let y(t) = eat, a = x + iy ∈ C, x, y, t ∈ R. We have that

dy

dt
(t) = (ext cos(yt))′ + i(ext sin(yt)

= xext cos(yt)− yext sin(yt) + i[xext sin(yt) + yext cos(yt)]

= (x + iy)ext[cos(yt) + i sin(yt)] = aeat = ay(t).
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2.3.4 An application: solution of an ordinary differential equation

Let us consider a second order ODE

y′′(t) + py′(t) + qy = 0. (2.1)

Let λ1,2 = −p/2±W , where W is a square root from p2/4− q. We saw that λk are roots
of the equation

λ2 + pλ + q = 0.

Let
yk(t)

∆= eλkt, k = 1, 2.

Then
y′′k(t) + py′k(t) + qy = eλkt(λ2

k + pλk + q) = 0.

Therefore, yk(t) are solutions of the ODE. By the linearity, it follows that any process

y(t) = c1y1(t) + c2y2(t) (2.2)

is also a solution, for any c1, c2 ∈ C. (In ODE courses, it is being proved that any solution
of (2.1) can be represented in this form if λ1 6= λ2; we omit this part).

For the most interesting cases, p, q are real, and one is interested in real solutions.

Problem 2.11 Prove that if p, q are real, and Im c1 = −Im c2, Re c1 = Re c2, then the
process (2.2) is real.

If λk = r ± iω, r, ω ∈ R, then the real solutions can be represented in the form

y(t) = ert(C1 cos(ωt) + C2 sin(ωt)), C1, C2 ∈ R.

In that case, y(t) is an oscillating process with decay/growth ert; ω is referred as the
frequency.

2.4 Other elementary functions

We have defined already functions zm, for m = ±1,±2,±3, .... We introduce below few
more elementary functions.

2.4.1 cos and sin

We define

cos z
∆=

∑

m=0,1,2,..

(−1)m z2m

(2m)!
, sin z

∆=
∑

m=0,1,2,..

(−1)m z2m+1

(2m + 1)!
.

It can be seen that cos z = (eiz + e−iz)/2, sin z = (eiz − e−iz)/(2i).
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2.4.2 Logarithm

Let x > 0, then y = ln x is such that ey = x.We require that x > 0 because ey > 0 for all
y ∈ R.

If z ∈ C, then ez is not ”positive”, it is a complex number (for the general case).
However, we are going to define log z for all z 6= 0 as the inverse of the exponent. Set

log z
∆= log |z|+ iarg z.

Note that this value is not unique, since arg z is not unique.
It is easy to see that

elog z = elog |z|(cos arg z + i sin(arg z)) = z.

Convention

Recall that we assume that Arg z ∈ (−π, π]. We denote as Log z the corresponding value
of log z, i.e., Log z = ln |z|+ iArg z.

2.5 Continuity and differentiability. Holomorphic functions

Definition 2.12 We say that D ⊂ C is an open set iff for any point x ∈ D there exists
ε > 0 such that {y ∈ C : |x− y| ≤ ε} ⊂ D}.

Let D ⊂ C be an open set, f : D → C be a function.

Definition 2.13 We say that f is continuous at z ∈ D if, for all z ∈ C, {zk} ⊂ D,

zk → z as k → +∞ ⇒ f(zk) → f(z) as k → +∞.

We say that f is continuous on D if f is continuous at all z ∈ D.

Definition 2.14 We say that f is differentiable at z ∈ D iff there exists a number f ′(z) ∈
C such that, for all {∆k} ⊂ C, such that z + ∆k ∈ D, ∆k 6= 0, we have that

∆k → 0 as k → +∞ ⇒
∣∣∣∣
f(z + ∆k)− f(z)

∆k
− f ′(z)

∣∣∣∣ → 0 as k → +∞.

The value f ′(z) is said to be the (first) derivative of f at z (it is denoted also as df(z)/dz).

It can be written as

f(z + ∆k)− f(z) = f ′(z)∆k + o(∆k),
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or
f(z + ∆k)− f(z)

∆k
= f ′(z) + O(∆k).

Here we use the popular and commonly used notations o(·) and O(·) for the remainders:
o(z) and O(z) are some functions such that o(z)/z → 0 and O(z) → 0 as z → 0; these
terms are used for convenience.

Definition 2.15 We say that f is holomorphic 1 in D if f is differentiable at every point
of D.

Lemma 2.16 If f is differentiabe at z, then f is continuous at z.

Corollary 2.17 If f is holomorphic in D, then f is continuous in D.

2.5.1 Example of non-differentiability

In fact, the definition of differentiability is more restrictive than it looks, since ∆k in this
definition is allowed to converge to zero via any path. For instance, this definition ensures
that the function f(z) = Re z is non-differentiable. Let us show this.

Let ∆k = xk + iyk, where xk, yk ∈ R.
Let z = 0, yk ≡ 0, then

f(z + ∆k)− f(z)
∆k

=
Re (0 + xk)− Re (0)

xk
≡ 1.

On the other hand, if xk ≡ 0, then

f(z + ∆k)− f(z)
∆k

=
Re (0 + iyk)− Re (0)

iyk
≡ 0.

2

Problem 2.18 Show that the functions f(z) = Im z, f(z) = z are non-differentiable.

2.6 Basic derivatives

2.6.1 Power functions

Let m ∈ {1, 2, 3, ...}.

Lemma 2.19 (zm)′ = mzm−1.

1In the literature, the functions from Definition 2.15 are often referred as the analytic functions. We

will define analytic functions differently, and we will show that these definitions are equivalent.
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2.6.2 Exponent

Lemma 2.20 (ez)′ = ez.

Lemma 2.21 Let a ∈ C be given, then (eaz)′z = aeaz.

2.6.3 Inversion

Let z 6= 0, then
(

1
z

)′
= − 1

z2

2.6.4 Derivative of a product

Lemma 2.22 If f(·) is differentiable at z, and g(z) is differentiable at z, then F (z) ∆=
f(z)g(z) is differentiable at z, and F ′(z) = f ′(z)g(z) + f(z))g′(z).

Clearly, (α)′ = 0 for any constant α ∈ C. It follows that (αf(z))′ = αf ′(z), for any α ∈ C.
In addition, it can be proved easily that (f(z) + g(z))′ = f ′(z) + g′(z).

2.6.5 The chain rule

Lemma 2.23 If f(·) is differentiable at z, and g(ζ) is differentiable at ζ = f(z), then
G(z) ∆= g(f(z)) is differentiable at z, and G′(z) = g′(f(z))f ′(z).

Proof.

G(z + ∆)−G(z) = g(f(z + ∆))− g(f(z))

= g(f(z) + f ′(z)∆ + o(∆))− g(f(z))

= g′(f(z))f ′(z)∆ + o(∆),

since

f ′(z)∆ + o(∆) = 0(∆).

These rule help to find many other derivatives explicitly. For instance,

(
1

z − a

)′
= − 1

(z − a)2
.
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2.7 The Cauchy-Riemann equations

Theorem 2.24 (The Cauchy-Riemann equations). Let f(z) be differentiable at z = x+iy,
x, y ∈ R. Let

f(z) = f(x + iy) = u(x, y) + iv(x, y),

where u : R2 → R and v : R2 → R are real differentiable functions. Then

∂u

∂x
(x, y) =

∂v

∂y
(x, y),

∂u

∂y
(x, y) = −∂v

∂x
(x, y).

Proof. Let f ′(z) = A + iB, where A and B are real.
Let ∆ = ∆x + i∆y, where ∆x and ∆y are real. Then

f(z + ∆)− f(z) = f ′(z)∆ + o(∆) = (A∆x−B∆y) + i(B∆x + A∆y) + o(∆).

Further,

u(x + ∆x, y + ∆y)− u(x, y) = A∆x−B∆y + o(∆),

v(x + ∆x, y + ∆y)− v(x, y) = f ′(z)∆ + o(∆) = B∆x + A∆y + o(∆).

On the other hand,

u(x + ∆x, y + ∆y)− u(x, y) =
∂u

∂x
(x, y)∆x +

∂u

∂y
(x, y)∆y + o(∆),

v(x + ∆x, y + ∆y)− v(x, y) =
∂v

∂x
(x, y)∆x +

∂v

∂y
(x, y)∆y + o(∆).

Hence

∂u

∂x
(x, y) = A,

∂u

∂y
(x, y) = −B,

∂v

∂x
(x, y) = B,

∂v

∂y
(x, y) = A.

Then the proof follows.

Corollary 2.25 If u, v are twice differntiable, then

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0,

∂2v

∂x2
(x, y) +

∂2v

∂y2
(x, y) = 0.

It will be shown later that it follows from the differentiability that u, v are also twice
differentiable. Therefore, by Corollary 2.25, both the imaginary and real parts must satisfy
these partial differential equations. These particular equations are elliptic equations; they
are called Laplace equations.
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2.8 Antiderivative

Let D ⊂ C be an open domain, f : D → C and F : D → C. We say that F is an
antiderivative of f is F ′(z) = f(z) in D. Note that antiderivative is not unique (F +const
is also an antiderivative).
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Chapter 3

Complex integration: path

integrals

3.1 Curves

Definition 3.1 Let a, b ∈ R be such that a < b. Let γ : [a, b] → C be a continuous
mapping, and let

Γ ∆= {z ∈ C : z = γ(t), t ∈ [a, b]}.

We say that Γ is a curve in C (with the one-dimensional parametrization given by γ). If
γ(a) = γ(b), then we say that the curve is closed1.

Note that Γ is a connected set. If f : C → C is a continuous function, then

f(Γ) ∆= {z ∈ C : z = f(γ(t)), t ∈ [a, b]}

is also a curve. If Γ is a closed curve, then the curve f(Γ) is also closed.

Note that a set Γ may have many different one-dimensional parametrizations, and it
is possible that z ∈ Γ is such that z = γ(t1) = γ(t2) for some t1 6= t2.

Example 3.2 Let γ(t) = eit.

(a) If [a, b] = [0, 2π], then Γ is the circle, and it is a closed curve.

(b) If [a, b] = [0, 4π], then Γ is the circle repeated twice; this curve is closed.

(b) If [a, b] = [0, 3π], then Γ is the circle such that a half of it is repeated; this curve is
not closed.

1In geometry and topology, there is a different term ”closed set” based on the definition of the limit: a

set A is said to be close iff it contains all its limit points.

17
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3.2 Integral as the limit of Riemann sums

Let Γ be a curve (path) in C given parametrically via γ : [a, b] → C, i.e., Γ = {z =
γ(t), t ∈ [a, b]}, where γ : [a, b] → C is a mapping, a, b ∈ R, a < b. Let f : C → C be a
function. We say that the path integral of f along Γ is

∫

Γ
f(z)dz = lim

N→+∞,δ→0

N−1∑

k=0

f(zk)(zk+1 − zk).

(This integral is also said to be a contour integral around the curve Γ, if Γ is closed.)
Here the limit is taken with respect to a choice of sets {zk}N

k=0 ⊂ Γ such that N → +∞,
δ → 0, where δ

∆= maxk |zk+1 − zk|. We assume that the ponts zk are placed consequently
and z0 = γ(a), zN = γ(b). In other words, the set {zk} is distributed over Γ such that the
corresponding piecewise linear curve connecting zk approximates Γ as N → +∞. In fact,
we require that

zk = γ(tk), a = t0 < t1 < ... < tN = b.

The limit is such that N → +∞, maxk |tk+1 − tk| → 0.
We shall consider these integrals for continuous functions only (at least, continuous in

a neighborhood of Γ), and for piecewise differentiable γ (i.e., for γ with bounded but not
necessary continuous derivative γ′(t)). In this case, the proof of existence of the limit and
its independence from the choice of {zk} is the same as for the standard Riemann sums
in real analysis.

Calculation of the integral using the parametrization

Theorem 3.3 Let γ(t) be differentiable, then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

Proof. Note that

zk+1 − zk = γ(tk+1)− γ(tk) = γ′(tk)(tk+1 − tk) + o(tk+1 − tk).

Example 3.4 Let Γ be a curve being the image of [a, b] for the mapping γ(t) = Reit,
where R > 0 is given. Let [a, b] = [0, π], f(z) = z. Then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ π

0
γ(t)γ′(t)dt =

∫ π

0
ReitiReitdt = iR2

∫ π

0
e2itdt

= iR2 1
2i

e2ti

∣∣∣∣
π

0
= R2 1

2
e2ti

∣∣∣∣
π

0
= 0.

Note that this integral does not depend on R.
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Example 3.5 In the previous example, take [a, b] = [0, π/2]. Then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ π/2

0
γ(t)γ′(t)dt =

∫ π/2

0
ReitiReitdt = iR2

∫ π/2

0
e2itdt

= iR2 1
2i

e2ti

∣∣∣∣
π/2

0
= R2 1

2
e2ti

∣∣∣∣
π/2

0
= R2 1

2
(−1− 1) = −R2.

Example 3.6 Consider previous examples with [a, b] = [0, 2π], f(z) = 1/z. Then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ 2π

0
γ(t)−1γ′(t)dt =

∫ 2π

0
R−1e−itiReitdt = i

∫ 2π

0
dt

= it|2π
0 = 2πi.

This integral does not depend on R.

Example 3.7 Let Γ be a curve being the image of [a, b] for the mapping γ(t) = a + Reit,
where R > 0 is given. Let [a, b] = [0, 2π], f(z) = 1/(z − a). Then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ 2π

0
γ(t)−1γ′(t)dt =

∫ 2π

0
R−1e−itiReitdt = i

∫ 2π

0
dt

= it|2π
0 = 2πi.

Note that this integral does not depend on a and R.

Example 3.8 Let Γ be a curve being the image of [a, b] for the mapping γ(t) = Reit,
where R > 0 is given. Let [a, b] = [0, p], p > 0 f(z) = z−2. Then

∫

Γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ p

0
γ(t)−2γ′(t)dt =

∫ p

0
R−2e−2itiReitdt = iR−1

∫ p

0
e−itdt

= −R−1e−it|p0 = R−1[1− e−ip].

Note that this integral does depend on R. In addition, it follows that

∫

Γ
f(z)dz = −

(
1
zp
− 1

z0

)
,

where z0 = γ(0), zp = γ(p).

The results in these examples are very significant, we shall return to them later.

Definition 3.9 We say that a closed curve is tracing out in a positive direction, if it is
anti-clockwise.
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3.3 Properties of integrals

Lemma 3.10 (a) Let Γ be a curve given parametrically as γ : [a, b] → C. Let Γ1 be
a curve given parametrically as γ : [a, c] → C, a < c < b. Led Γ2 be a curve given
parametrically as γ : [c, b] → C. Then

∫

Γ
f(z)dz =

∫

Γ1

f(z)dz +
∫

Γ2

f(z)dz.

(b) Let f, g be two functions, α ∈ C. Then
∫

Γ
(f(z) + g(z))dz =

∫

Γ
f(z)dz +

∫

Γ
g(z)dz,

∫

Γ
αf(z)dz = α

∫

Γ
f(z)dz.

(c) Let Γ− be a curve given parametrically as γ− : [a, b] → C, where γ−(t) = γ(−t+a+b)).
Then ∫

Γ−
f(z)dz = −

∫

Γ
f(z)dz.

Lemma 3.11 Let Γi be a curve given parametrically as γi : [ai, bi] → C, i = 1, 2, where
γ1(t) = γ2(h(t))), h : [a1, b1] → [a2, b2] is a continuous strictly monotonic bijection. Then

∫

Γ1

f(z)dz =
∫

Γ2

f(z)dz.

In other words, the integral does not depend on the parametrization (in class of the
parametrizations that produce the same curve considered as a set, when it is taken into
account the direction and how many time a point is passed). Examples 3.4-3.8 confirm
that.

Lemma 3.12 Let Γ be a curve given parametrically as γ : [a, b] → C, where [a, b] is a
finite interval. Then ∣∣∣∣

∫

Γ
f(z)dz

∣∣∣∣ ≤ max |f(z)|L,

where L is the length of the curve (it is taken into account how many time a point is
passed).

Proof Note that
∣∣∣∣
∫

Γ
f(z)dz

∣∣∣∣ ∼
∣∣∣∣∣
∑

k

f(zk)(zk+1 − zk)

∣∣∣∣∣ ≤ |
∑

k

f(zk)||(zk+1 − zk)|

≤ |max
k

f(zk)|
∑

k

|(zk+1 − zk)| ∼ |max
k

f(zk)|L.

Definition 3.13 A curve Γ given parametrically as γ : [a, b] → C, is said to be Ck-
smooth, if the derivatives dmγ/dtm exist for m = 0, 1, ..k, and they are continuous. A
curve is said to be piecewise Ck-smooth, if it can be represented as the union of Ck-smooth
curves (as in Lemma 3.10).
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Starting from now and up to the end of these lecture notes, we consider only piecewise
C1-smooth curves.

Lemma 3.14 Assume that curves Γ and Γε are given parametrically as γ : [a, b] → C
and γε : [a, b] → C such that

max
t∈[a,b]

(|γε(t)− γ(t)|+ |γ′ε(t)− γ′(t)|) ≤ ε.

Let f be a continuous function. Then
∣∣∣∣
∫

Γ
f(z)dz −

∫

Γε

f(z)dz

∣∣∣∣ ≤ C max |f(z)|ε,

where C > 0 does not depend on ε.

It follows from approximation results for real functions that one can approximate a integral
along a piecewise C1-continuous curve

∫
Γ f(z)dz by

∫
Γε

f(z)dz for some C2-smooth curves
Γε.

On interchange of summation and integration

Lemma 3.15 Let Γ be a path of finite length L, and let U , uk be continuous functions
on L. Assume that

∑n
k=0 uk(z) → U(z) as n → +∞, and |uk(z)| ≤ Mk for all z ∈ Γ, and

∑∞
k=1 Mk < +∞. Then ∫

Γ

∞∑

k=0

uk(z)dz =
∞∑

k=0

∫

Γ
uk(z)dz.

Proof can be found in Priestley (2006), Chapter 14.

3.4 Integral for the case when f(z) has an antiderivative

Theorem 3.16 (The Fundamental Theorem of Calculus). Let D ⊂ C be an open set.
Let Γ be a curve given parametrically by γ : [a, b] → D. Let f : D → R be a function such
that there exist a holomorphic function F (z) : D → C such that F ′(z) ≡ f(z). Then

∫

Γ
f(z)dz = F (γ(b))− F (γ(a)).

In particular, if Γ is a closed curve, then
∫
Γ f(z)dz = 0.

By The Fundamental Theorem of Calculus for real variables, we have that

F (γ(b))− F (γ(a)) =
∫ b

a

d

dt
(F (γ(t)))dt =

∫ b

a

dF

dt
(γ(t))γ′(t)dt =

∫ b

a
f(γ(t))γ′(t)dt.

Hence
F (γ(b))− F (γ(a)) =

∫

Γ
f(z)dz.
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Problem 3.17 Verify that the last theorem does not contradict to Examples 3.4-3.8.

Corollary 3.18 (Cauchy Theorem: the case when atiderivative exists). Let D ⊂ C be an
open set. Let f : D → R be a function such that there exist a holomorphic function F (z) :
D → C such that F ′(z) ≡ f(z). Let Γk be curves given parametrically by γk : [a, b] → D

for k = 0, 1, such that

γ0(a) = γ1(a), γ0(b) = γ1(b).

Then ∫

Γ1

f(z)dz =
∫

Γ2

f(z)dz.

Proof. It suffices to see that
∫

Γk

f(z)dz = F (γ(b))− F (γ(a)).

2

The question arises when a function has an antiderivative.

3.5 Independence from the paths for integrals

Note that any mapping given parametrically by γ̂ : [a, b] → D can be also given paramet-
rically by γ : [0, 1] → D if γ̂(t) = γ((t− a)/(b− a)).

Definition 3.19 Let Γk be closed curves given parametrically by γk : [0, 1] → D for
k = 0, 1. We say that the paths are homotopic in D if there exists a continuous function
G : [0, 1]× [0, 1] → D such that for each s G(, s) is a closed path with G(t, 0) ≡ γ0(t), and
G(t, 1) ≡ γ1(t).

This is an equivalence relation, written Γ0 ∼ Γ1 in D.
We do not exclude the case when G(t, 1) ≡ z0 ∈ D. In that case, we say that Γ0 is

homotopic to 0.

Definition 3.20 A domain G is simply-connected if every closed path in G is homotopic
to 0.

Theorem 3.21 (Cauchy Theorem). Let D ⊂ C be an open set. Let f : D → R be a
holomorphic function on D. Let Γk be two closed homotopic curves given parametrically
by γk : [0, 1] → D, where γk are piecewise C1-smooth functions, k = 0, 1. Then

∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz.
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Proof. For simplicity, we give the proof only for the case when homotopy is defined
by a function G(t, s) : [0, 1] × [0, 1] → ∆ that is twice differentiable in (t, s). Let J(s) =∫ 1
0 f(G(t, s))G′

t(t, s)dt. We have that J(0) =
∫
Γ0

f(z)dz, J(1) =
∫
Γ1

f(z)dz. Note that

d

ds
[f(G(t, s))G′

t(t, s)] = f ′(G(s, t))G′
s(t, s)G

′
t(s, t) + f(G(s, t))G′′

st(s, t)

=
d

dt
[f(G(t, s))G′

s(t, s)].

It follows that

J ′(s) =
∫ 1

0

d

ds
[f(G(t, s))G′

t(t, s)]dt =
∫ 1

0

d

dt
[f(G(t, s))G′

s(t, s)]dt = f(G(t, s))G′
s(t, s)

∣∣∣∣
1

0

= f(G(1, s))G′
s(1, s)− f(G(0, s))G′

s(0, s).

Note that G(1, s) ≡ G(0, s), hence G′
s(1, s) ≡ G′

s(0, s). Hence J ′(s) ≡ 0, i.e., J(0) = J(1).
2

Corollary 3.22 (Cauchy Theorem). Let D ⊂ C be an open set. Let f : D → R be a
holomorphic function. Let Γk be curves given parametrically by γk : [a, b] → D for k = 0, 1,
such that

γ0(a) = γ1(a), γ0(b) = γ1(b),

and the closed curve Γ∪ is homotopic to 0, where Γ∪ is obtained as the union of Γ0 with
the curve with papametrization γ−1 (t) = γ1(b + a− t). Then

∫

Γ0

f(z)dz =
∫

Γ1

f(z)dz.

Proof is straightforward.

Corollary 3.23 Let D ⊂ C be an open set. Let f : D → R be a holomorphic function.
Let Γ be a closed curve homotopic to 0. Then

∫

Γ
f(z)dz = 0.

3.6 Cauchy Theorem: representation of holomorphic func-

tions

Lemma 3.24 Let D ⊂ C be an open simply connected set. Let f : D → R be a holo-
morphic function, and let a ∈ D . Let ΓR be the circle curves given parametrically by
γ : [0, 2π] → C with γR(t) = a + Reit for some R > 0 such that {z : |z− a| ≤ R} ⊂ D (in
particular, γR(t) ∈ D for all t). Then

f(a) =
1

2πi

∫

ΓR

f(z)
z − a

dz.
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Proof. Consider the open domain D0
∆= D\{a}. Note that the function f(z)

z−a is holo-
morphic in D0, and that all curves Γr for small r < R are mutually homotopic in D0.
Therefore,

J(r) ∆=
∫

Γr

f(z)
z − a

dz

does not depend on r. Further, note that

J(r) =
∫ 2π

0

f(a + reit)
reit

rieitdt = i

∫ 2π

0
f(a+reit)dt → i

∫ 2π

0
f(a)dt = 2πif(a) as r → 0.

We have used here the fact that the function f |Γr is bounded (since f is continuous and
Γr ⊂ D is a closed bounded set). We have used also The Lebesgue Dominates Convergence
Theorem: if gk(t) → g(t) for all t, and |gk(t)| ≤ const , then

∫ b
a gk(t)dt → ∫ b

a g(t)dt. Then
the proof follows. 2

Problem 3.25 Constract explicitely a homotopy between Γr with different r in the previ-
ous proof (i.e., find explicitly the function G described in Definition 3.19).

Theorem 3.26 (Cauchy Formula for representation of holomorphic functions via the
value on boundary). Let D ⊂ C be an open simply connected set. Let f : D → R be
a holomorphic function, and let a ∈ D. Let Γ be a closed curve in the domain D. Let
D0

∆= D\{a}. Let ΓR be the circle curves given parametrically by γR : [0, 2π] → C with
γR(t) = a + Reit for some R > 0 such that γR(t) ∈ D for all t. Assume that ΓR is
homotopic to the curve Γ in the domain D0. Then

f(a) =
1

2πi

∫

Γ

f(z)
z − a

dz.

Proof is straightforward; it follows immediately from Lemma 3.24 and Theorem 3.21.

Remark 3.27 The interior part of a domain surrounded by Γ can be considered as a do-
main with boundary Γ, the last corollary says that the value inside domain of a holomorphic
function is uniquely defined by its values on the domain boundary.

Theorem 3.28 (Liouville’s Theorem). If a function f is holomorphic and bounded in the
complex plain C, then it is constant.

Proof. Suppose |f | ≤ M , M > 0. Let R > 0 be such that |z − b| > R/2 and
|z − a| > R/2 for all z = Reit, t ∈ R. Let Γ be the circle γ(t) = Reit, t ∈ [0, 2π]. We have

f(a)− f(b) =
1

2πi

∫

Γ

f(z)
z − a

dz − 1
2πi

∫

Γ

f(z)
z − b

dz =
1

2πi

∫

Γ

f(z)(a− b)
(z − a)(z − b)

dz.

Hence
|f(a)− f(b)| ≤ 1

2π
2πRM

|a− b|
R2/4

.

For R → +∞, |f(a)− f(b)| → 0.
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Theorem 3.29 Under the asssumptions of Theorem 3.26, f has derivatives of any order
n > 0 at a, and

dnf

dan
(a) =

n!
2πi

∫

Γ

f(z)
(z − a)n+1

dz.

Theorem 3.30 If a function f is holomorphic in a open domain D, then it has derivatives
of any order.

Proof will be given in the classroom.

The Fundamental Theorem of Algebra: a partial proof

Theorem Any polynomial of order n ∈ {1, 2, 3...}

P (z) = zn + cn−1z
n−1 + ... + c1z + c0

has at least one root in C.
Proof. Suppose that the theorem statement is not true, i.e, P (z) 6= 0. We have that

|P (z)| → +∞ as |z| → +∞. There exist R > 0 such that |P (z)| > 1 if |z| > R. Let
p(z) ∆= 1/P (Z). This function is bounded and holomorphic, i.e. it is constant. 2

3.7 Taylor series

Definition 3.31 A function f(z) is said to be analytic at a point a ∈ C if it has derivatives
of all orders at this point and there exists R = R(a) > 0 such that

f(z) =
∞∑

k=0

ck(z − a)k, where ck =
1
k!

dkf

dzk
(a), (3.1)

for all z ∈ DR = {z : |z − a| < R}, and this series absolutely converges in DR.

Clearly, any analytic in a domain function is holomorphic. The following theorem shows
if a function is holomorphic in a domain than it is analytic in the same domain.

Theorem 3.32 Let D̂ ⊂ C be an open simply connected set. Let f : D̂ → R be a
holomorphic function, and let a ∈ D̂. Let ΓR be a closed curve in the domain D̂ described
as γ(t) = a + Reit, where R > 0. Let DR be the open disc with the boundary ΓR. Then
(3.1) holds, and this series absolutely converges in DR.

Proof. Let z ∈ DR. Let r be such that |z − a| < r < R. For the circle Dr, we have

f(z) =
1

2πi

∫

Γr

f(w)
w − z

dw.
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Let α = α(w, z, a) ∆= z−a
w−a . Note that |α| =

∣∣∣ z−a
w−a

∣∣∣ < 1, and 1− α = w−z
w−a . Hence

1
w − z

=
1

w − a
· 1

1− α
=

1
w − a

(1 + α + α2 + α3 + ...).

Hence

f(z) =
1

2πi

∫

Γr

f(w)
w − a

dw
∞∑

k=0

(z − a)k

(w − a)k
=

∞∑

k=0

(z − a)k 1
2πi

∫

Γr

f(w)
w − a

dw
1

(w − a)k

=
∞∑

k=0

(z − a)k 1
2πi

∫

Γr

f(w)
(w − a)k+1

dw =
∞∑

k=0

(z − a)k 1
k!

dkf

dzk
(a).

Uniqueness of power series representation

Theorem 3.33 Let D̂ ⊂ C be an open simply connected set. Let f : D̂ → R be a
holomorphic function, and let a ∈ D̂. Let ΓR be a closed curve in the domain D̂ described
as γ(t) = a + Reit, where R > 0. Let DR be the open disc with the boundary ΓR. Let

f(z) =
∞∑

k=0

ck(z − a)k,

for all z ∈ DR = {z : |z − a| < R}, where ck ∈ C are such that this series absolutely
converges in DR. Then ck = 1

k!
dkf
dzk (a).

Proof. We have that

1
n!

dnf

dzn
(a) =

1
2πi

∫

ΓR

f(w)
(w − a)n+1

dw =
1

2πi

∫

ΓR

1
(w − a)n+1

dw
∞∑

k=0

ck(w − a)k

=
∞∑

k=0

ck
1

2πi

∫

ΓR

1
(w − a)n+1−k

dw = cn,

since
∫

ΓR

1
(w − a)n+1−k

dw =
∫ 2π

0
Rk−n−1e−it(n+1−k)iReitdt = i

∫ 2π

0
Rk−ne−it(n−k)tdt = 2πiδkn,

where we use the Kronecker symbol: δkk = 1 and δkn = 0 for k 6= n.

Corollary 3.34 The coefficients of the power series representation for an analytic func-
tion are uniquely defined.

Corollary 3.35 Let ΓR be a closed curve in the domain D̂ described as γ(t) = a + Reit,
where R > 0. Let DR be the open disc with the boundary ΓR. Let f : DR → R and
g : DR → R be holomorphic (i.e., analytic) functions. Let L be the line segment connecting
α, β ∈ DR such that a ∈ L. If f |L ≡ g|L, then f |ΓR

≡ g|ΓR
.
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Proof follows from the fact that all the derivatives of f and g are uniquely defined by
their values on L, and the values of these functions on DR are uniquely defined by the
coefficients of the corresponding power series.

Corollary 3.36 Let ΓR be a closed curve in the domain D̂ described as γ(t) = a + Reit,
where R > 0. Let DR be the open disc with the boundary ΓR. Let f : DR → R and
g : DR → R be holomorphic (i.e., analytic) functions. Let L be any one-dimensional
curve segment connecting α, β ∈ DR such that a ∈ L. If f |L ≡ g|L, then f |ΓR

≡ g|ΓR
.

Proof follows again from the fact that all the derivatives of f and g are uniquely defined
by their values on L.

3.8 Zeros of holomorphic functions

The point a is said to be a zero of a function f(z), if f(a) = 0. The zero a is said to
be isolated if there exists an ε-neighborhood of a such that does not contains zeros of f

except a.

Theorem 3.37 (Identity theorem). Let D be a connected domain, and let f be holomor-
phic in D. Let Z(f) be the set of zeros of f in D. Let Z(f) has a limit point in D. Then
f is identically zero in D.

Proof of Identity Theorem. Let a ∈ D be such that f(a) = 0, let D = DR be the disc
of radius R with the center a such that DR ⊂ D. We have

f(z) =
∑

k≥0

ck(z − a)k, z ∈ DR.

There are two possibilities:

(i) All the coefficients ck = 0; in that case, f |DR
≡ 0.

(ii) ∃m > 0: ck = 0, k < m, cm 6= 0. Set g(z) = (z − a)−mf(z) =
∑

k≥0 ck(z − a)k−m.
This series converges, g(z) is analytic in DR and hence it is holomorphic and continuous
in DR. In addition, g(a) = cm 6= 0, hence there exists an neighborhood of a that does not
contains zeros of g except a. Hence a is an isolated zero of f . Then the proof follows for
the case when D = DR. (The proof for the general case will be explained on some intuitive
level; the idea is that a domain where the holomorphic function is identically zero can be
extended from a small disk to the entire connected domain).

Corollary 3.38 For two analytic functions, the points where they are equal are isolated
unless these functions are identical.
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Corollary 3.39 Supppose D is a connected domain, and a holomorphic in D function f

is zero in some disc in D. Then f is zero in D.

Example 3.40 (i) Since (sinx)2 + (cosx)2 = 1 for all real x, it follows that (sin z)2 +
(cos z)2 = 1 for all z ∈ C.

(ii) Suppose f is holomorphic in C and such that f(1/n) = sin(1/n), then f ≡ sin z

(iii) Suppose f is holomorphic in C\{0} and such that f(z) = sin(1/z) for z = 1/πn,
n = 1, 2, .... It does not follow that necessary f ≡ sin(1/z) for z 6= 0. Indeed, f ≡ 0 would
also fit the given conditions. It does not contradict to Identity Theorem, since 0 is not in
the region of holomorphy of this function.

3.9 Maximum principle

Lemma 3.41 Let f be a holomorphic function in some domain such that |f | ≡ const .
Then f is constant in this domain.

Proof. Let f(z) = u(x, y) + iv(x, y), u, v are real functions, z = x + iy. We have that
u2 + v2 ≡ const , i.e., uu′x + vv′x = 0, uu′y + vv′y = 0, It follows that uu′x − vu′y = 0, i.e.,
u′y = u′xu/v. It follows that (u2 + v2)ux = 0. So either u2 + v2 ≡ 0 or u′x ≡ v′y ≡ 0.
Similarly, u′y ≡ −v′x ≡ 0.

Lemma 3.42 (Local Maximum-Modulsus Principle) Let ΓR be a closed curve in the do-
main D̂ described as γ(t) = a + Reit, where R > 0. Let DR be the open disc with the
boundary ΓR. Let f : D̂ → R be holomorphic (i.e., analytic). Let a ∈ DR, and let
|f(z)| ≤ |f(a)| for all z ∈ DR. Then |f(z)| ≡ |f(a)| for all z ∈ DR.

Proof. Let r ∈ (0, R). We have

f(a) =
1

2πi

∫

Γr

f(z)
z − a

dz =
1

2πi

∫ 2π

0

f(γ(t))
γ(t)− a

γ′(t)dt =
1

2πi

∫ 2π

0

f(γ(t))
reit

ireitdt

=
1
2π

∫ 2π

0
f(γ(t))dt.

Hence

|f(a)| ≤ 1
2π

∫ 2π

0
|f(γ(t))|dt ≤ |f(a)|.

Hence
0 ≤

∫ 2π

0
(|f(γ(t))| − |f(a)|)dt ≤ 0.

Hence |f(z)| ≡ |f(a)| for z ∈ Γr. Since r can be any, it follows that |f(z)| is constant.
Hence f is constant.
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Theorem 3.43 (Maximum-Modulsus Principle). Let D be a bounded simply connected
domain. Let f : D → R be holomorphic (i.e., analytic) function, such that f is continuous
on the closed domain D = D ∪ ∂D (where ∂D is the boundary of D). Then |f | attains its
maximum on ∂D. If |f | attains its supremum on D, then f is constant on D.

Proof. |f | attains its maximum M on D. Let it is attained on a ∈ D, then |f |
is constant on some neighborhood of a, by Lemma 3.42. Hence f is constant on this
neighborhood, by Lemma 3.41. Hence it is constant on D and on D.

Corollary 3.44 Under assumptions of Theorem 3.43, Re f attains its maximum on ∂D.
If Re f attains its supremum on D, then Re f is constant on D.

Proof. Apply Theorem 3.43 for ef(z).
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Chapter 4

Laurent series

We saw that the functions 1/(z−a) are important for analysis. In fact, they are also very
important for applications. They are not continuous at a and cannot be decomposed to
Taylor series in neighborhoods of a, so we need different approach for them.

4.1 Laurent series

Definition 4.1 A function f(z) defined is some neighborhood of a ∈ C (but not necessary
in a) is said to be represented as a Laurent series (or Laurent expansion) if there exist
r,R ∈ R, ck ∈ C such that 0 ≤ r < R,

f(z) =
∞∑

k=−∞
ck(z − a)k, (4.1)

for all z ∈ DR = {z : r < |z − a| < R}, and this series absolutely converges.

Theorem 4.2 Let D̂ ⊂ C be an open simply connected set, D0 ⊂ D̂ be a closed disk
with radius r0 (the case of r0 = 0 is not excluded). Let f : D̂\D0 → C be a holomorphic
function. Let ΓR be a closed curve in the domain D̂\D0 described as γ(t) = a + Reit,
where R > 0. Let DR be the open disc with the boundary ΓR, such that D0 ⊂ DR ⊂ D̂.
Then (4.1) holds with

ck =
1

2πi

∫

Γ

f(w)
(w − a)k+1

dw, (4.2)

where Γ is any closed curve homotopic to ΓR in D̂\D0, and this series absolutely converges
in DR\D0.

Proof. Without a loss of generality, we shall assume that a = 0 (otherwise, we may
change variables from z to z − a). Let z ∈ DR\D0. Let r > 0 be such that r0 < r < R

31
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and z ∈ DR\Dr. We have (explanation to be given in the classroom) that

f(z) =
1

2πi

∫

ΓR

f(w)
w − z

dw − 1
2πi

∫

Γr

f(w)
w − z

dw.

Let α = α(w, z) ∆= z
w , β = β(w, z) ∆= w

z . Note that |α| < 1 for z ∈ ΓR, and |β| < 1 for
z ∈ Γr,

1
w − z

=
1
w
· 1

1− α
=

1
w

(1 + α + α2 + α3 + ...), z ∈ ΓR,

− 1
w − z

=
1
z
· 1

1− β
=

1
z
(1 + β + β2 + β3 + ...), z ∈ Γr.

Hence

1
2πi

∫

ΓR

f(w)
z − w

dw =
1

2πi

∫

ΓR

f(w)
w

dw
∞∑

k=0

zk

wk
=

∞∑

k=0

zk 1
2πi

∫

ΓR

f(w)
w

dw
1

wk

=
∞∑

k=0

zk 1
2πi

∫

ΓR

f(w)
wk+1

dw.

Similarly,

− 1
2πi

∫

Γr

f(w)
z − w

dw =
1

2πi

∫

Γr

f(w)
z

dw
∞∑

k=0

wk

zk
=

∞∑

k=0

z−k−1 1
2πi

∫

Γr

f(w)
w−k

dw

=
−∞∑

m=−1

zm 1
2πi

∫

Γr

f(w)
wm+1

dw.

In addition, note that the curves Γr and ΓR are homotopic in D̂\D0.

Uniqueness of Laurent series representation

Theorem 4.3 Let D̂ ⊂ C be an open simply connected set, D0 ⊂ D̂ be a closed disk with
radius r0 (case of r0 = 0 is not excluded). Let f : D̂\D0 → C be a holomorphic function.
Let ΓR be a closed curve in the domain D̂\D0 described as γ(t) = a + Reit, where R > 0.
Let DR be the open disc with the boundary ΓR, such that D0 ⊂ DR ⊂ D̂. Let

f(z) =
∞∑

k=−∞
ck(z − a)k,

for all z ∈ DR\D0, where ck ∈ C are such that this series absolutely converges in DR.
Then (4.2) holds for all k.

Proof. We have that

1
2πi

∫

ΓR

f(w)
(w − a)n+1

dw =
1

2πi

∫

ΓR

1
(w − a)n+1

dw
∞∑

k=−∞
ck(w − a)k

=
∞∑

k=−∞
ck

1
2πi

∫

ΓR

1
(w − a)n+1−k

dw = cn,
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since
∫

ΓR

1
(w − a)n+1−k

dw =
∫ 2π

0
R−(n+1−k)e−it(n+1−k)iReitdt = i

∫ 2π

0
R−n+ke−it(n−k)tdt = 2πiδkn,

where we use the Kronecker symbol: δkk = 1 and δkn = 0 for k 6= n.

Corollary 4.4 The coefficients of the Laurent series representation are uniquely defined
(given f and a).

4.2 Examples of Laurent expansion

Remark 4.5 Remind that

1
1− z

= 1 + z + z2 + z3 + ...., |z| < 1. (4.3)

It will be useful to note that

1
1− z

= − z−1

1− z−1
= −z−1(1 + z−1 + z−2 + ....) = −(z−1 + z−2 + z−3 + ....), |z| > 1.

Example 4.6 Let A = {0 < |z| < 1}, f(z) = 1/[z(1− z)]. Note that f is holomorphic in
A, and f(z) = z−1 + (1− z)−1, hence f(z) =

∑∞
n=−1 zn for z ∈ A.

Example 4.7 Let A = {1 < |z| < 106}, f(z) = 1/[z(1− z)]. Note that f is holomorphic
in A, and f(z) = z−1 + (1 − z)−1 = z−1 − z−1 − z−2 − z−3 − ...., z ∈ A, hence f(z) =
−∑−2

n=−∞ zn for z ∈ A.

Example 4.8 Let A = {0 < |z| < 2}, f(z) = 1/[z(1− z/2)]. Note that f is holomorphic
in A, and f(z) = z−1 + (1− z/2)−1/2, hence f(z) = z−1 +

∑∞
n=0(z/2)n/2 for z ∈ A.

Example 4.9 Let A = {2 < |z| < 5}, f(z) = 1/[z(1− z/2)]. We have that f is holomor-
phic in A, and

f(z) = z−1 + (1− z/2)−1/2 = z−1 − [(z/2)−1 + [(z/2)−2 + (z/2)−3 + ....]/2,

hence f(z) = −1
2

∑−2
n=−∞(z/2)n for z ∈ A.

Example 4.10 Let A = {0 < |z − 1| < 1}, f(z) = 1/[z(1 − z)2]. We have that f is
holomorphic in A, and

f(z) =
1

(1− z)2(1 + (z − 1))
=

1
(1− z)2

[1− (z − 1) + (z − 1)2 + (z − 1)3 + ....],

so f(z) =
∑∞

n=−2(−1)n(z − 1)n for z ∈ A.
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Example 4.11 Let A = {0 < |z| < π}, f(z) = cosec z = 1/ sin z. We have that f is
holomorphic in A, and

f(z) = (z − z3/3! + z5/5!− ...)−1 = z−1(1− z2/3! + h(z))−1,

where h(z) = O(z4) (we use the conventional O-notation). By (4.3),

z−1(1− z2/3! + O(z4))−1 = z−1(1 + z2/3! + O(z4))

for small z. Then f(z) =
∑∞

k=−∞ ckz
k, where ck = 0 for k < −1, c−1 = 1, c1 = 1/6. By

taking more terms in the above expansion, we could compute c2, c3, etc.

4.3 Classification for poles and singularities

Definition 4.12 a is said to be a regular point if f is holomorpic at a. a is said to be
a singularity of f if a is a limit of regular point and a is not itself regular. a is said
to be a isolated singularity of f if a is there exist r > 0 such that f is holomorphic in
{0 < |z − a| < r}.

Definition 4.13 Let a be an isolated singularity, then f can be represented as Laurant
series f(z) =

∑∞
k=−∞ ck(z − a)k, for z : 0 < |z − a| < r for some r > 0.

(a) The function
∑−1

k=−∞ ck(z− a)k is called the principal part of the Laurent expansion
for f .

(b) If ck = 0 (∀k < 0), then a is said to be a removable singularity.

(c) If there exists m < 0 such that cm 6= 0 and cn = 0 for all n < m, then a is said to be
a pole of order m (we call it a simple pole if m = 1, a double pole if m = 2, a triple
pole if m = 3, etc).

(d) If there exist infinitely many k < 0 such that ck 6= 0, then a is said to be an essential
isolated singularity.

Example 4.14 1/(z−1)2 has double pole at 1. 1/(z2 +1) has simple pole at i. 1/(z4 + i)
has four simple poles.

Note that these definitions are meaningful since uniqueness of the coefficient for Laurant
expansions.

Problem 4.15 Describe points a in the previous examples for Laurant expansion about
a.
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4.4 Cauchy’s residue theorem

Lemma 4.16 Let D̂ ⊂ C be an open simply connected set. Let f be a function being
holomorphic in D̂ except a, where f has a pole, and let

f(z) =
∞∑

k=−∞
ck(z − a)k,

for all z ∈ D̂, where ck ∈ C are such that this series absolutely converges. Let Γ be a
closed positively oriented curve homotopic in D̂\{a} to a circle Γr with the center at a

such that ΓR ⊂ D̂. Then ∫

Γ
f(z)dz = 2πic−1.

Proof. We have that

1
2πi

∫

Γ
f(w)dw =

1
2πi

∫

ΓR

f(w)dw =
1

2πi

∫

ΓR

∞∑

k=−∞
ck(w − a)kdw = c−1,

since
∫

ΓR

(w − a)kdw =
∫ 2π

0
RkeitkiReitdt = i

∫ 2π

0
Rk+1eit(k+1)tdt = 2πiδk,−1,

where we use the Kronecker symbol: δkk = 1 and δkn = 0 for k 6= n.

Definition 4.17 In (4.4), c−1 is said to be the residue of f at a. We denote it as c−1 =
Res(f, a).

Theorem 4.18 Let D̂ ⊂ C be an open simply connected set. Let f be a function being
holomorphic in D̂ except a finite set {ak}m

k=1, where f has poles. Let Γ be a closed positively
oriented curve that have the set {ak}m

k=1 inside. Then

∫

Γ
f(z)dz = 2πi

m∑

k=1

Res(f, ak).

Proof to be given in the classroom.

Proposition 4.19 (i) Let f(z) = g(z)/(z − a), where g(z) is holomorphic at a. Then
Res(f, a) = g(a).
(ii) Let f(z) = g(z)/(z − a)2, where g(z) is holomorphic at a. Then Res(f, a) = g′(a).

Proof. Note that g(z) has Taylor expansion g(z) = g(a) + g′(a)(z − a) + .... Then the
proof follows. 2

Remark 4.20 Note that Cauchy formula (Theorem 3.26) follows from Theorem 4.18 and
Proposition 4.19.
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4.5 Application to real integrals

By the definition,
∫∞
−∞ f(x)dx = limR→+∞

∫ R
−R f(x)dx (if the limit exists).

For R > 0, let AR be the upper half of circle |z| = R (i.e., it is an arc), and let IR ⊂ R
and be the interval [−R, R]. Let Γ(R) be the closed curve consisting of AR and IR. We
assume that Γ(R) is positively oriented.

We shall use the trivial inequality |z| − |α| ≤ |z + α|.

Example 4.21 Calculate
∫∞
−∞

dx
1+x2 .

Solution. Let f(z) = 1/(z2 + 1).
(A) Let us calculate first the integral J

∆=
∫
Γ(R)

dz
1+z2 .

We have z2 + 1 = (z + i)(z − i). Hence z = i is the only singularity point inside Γ(R)
for R > 1, and J = 2πiRes(f, i). We have f(z) = (z − i)−1g(z), where g(z) = (z + i)−1

is holomorphic at z = i, hence it has Taylor expansion g(z) = g(i) + g′(i)(z − i) + .... It
follows that Res(f, i) = g(i), i.e., Res(f, i) = 1/(2i). It follows that J = π.

(B) Note that

J = JA + JI , JA
∆=

∫

AR

dz

1 + z2
, JI

∆=
∫

IR

dz

1 + z2
.

Let us show that JA → 0 as R → +∞. We have that

JA =
∫ π

0

1
1 + R2e2it

iReitdt.

Hence

|JA| ≤
∫ π

0

R

|1 + R2e2it| |ie
it|dt ≤

∫ π

0

R

|1 + R2e2it|dt ≤
∫ π

0

R

R2 − 1
dt =

πR

R2 − 1
,

since R2 − 1 ≤ |R2e2it + 1|. Then JA → 0.
We have that JA + JI = π for any large enough R, and JA → 0 as R → +∞. Hence

JI =
∫ R

−R

dx

1 + x2
→ π as R → +∞, i.e.

∫ ∞

−∞
dx

1 + x2
= π.

Example 4.22 Calculate
∫∞
−∞

cos xdx
1+x2 .

Solution. Let f(z) = eiz/(z2 + 1).
(A) Let us calculate first the integral J

∆=
∫
Γ(R)

eizdz
1+z2 .

We have z2 + 1 = (z + i)(z − i). Hence z = i is the only singularity point inside Γ(R)
for R > 1, and J = 2πiRes(f, i). We have f(z) = (z − i)−1g(z), where g(z) = eiz(z + i)−1

is holomorphic at z = i, hence it has Taylor expansion g(z) = g(i) + g′(i)(z − i) + .... It
follows that Res(f, i) = g(i), i.e., Res(f, i) = ei2/(2i) = e−1/(2i). It follows that J = e−1π.
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(B) Note that

J = JA + JI , JA
∆=

∫

AR

eizdz

1 + z2
, JI

∆=
∫

IR

eizdz

1 + z2
.

Let us show that JA → 0 as R → +∞. We have that

JA =
∫ π

0

eiReit

1 + R2e2it
iReitdt.

Hence

|JA| ≤
∫ π

0

R|eiReit |
|1 + R2e2it| |ie

it|dt ≤
∫ π

0

R

|1 + R2e2it|dt ≤
∫ π

0

R

R2 − 1
dt =

πR

R2 − 1
,

since R2−1 ≤ |R2e2it +1| and |eiReit | ≤ 1 (remind that Im z < 0 for z = Rit ∈ AR). Then
JA → 0 as R → +∞.

We have that JA +JI = e−1π for any large enough R, and JA → 0 as R → +∞. Hence
∫ R

−R

cosxdx

1 + x2
= Re

∫ R

−R

eixdx

1 + x2
= ReJI → e−1π as R → +∞, i.e.

∫ ∞

−∞
cosxdx

1 + x2
= e−1π.

2

A question: is it possible to take
∫
Γ(R)

cos zdz
1+z2 instead of

∫
Γ(R)

eizdz
1+z2 in the previous

solution?

Example 4.23 Given h > 0, calculate
∫∞
−∞

cos(x+h)dx
1+x2 .

Solution. Let f(z) = ei(z+h)/(z2 + 1).
(A) Let us calculate first the integral J

∆=
∫
Γ(R)

ei(z+h)dz
1+z2 .

We have z2+1 = (z+i)(z−i). Hence z = i is the only singularity point inside Γ(R) for
R > 1, and J = 2πiRes(f, i). We have f(z) = (z− i)−1g(z), where g(z) = ei(z+h)(z + i)−1

is holomorphic at z = i, hence it has Taylor expansion g(z) = g(i) + g′(i)(z − i) + .... It
follows that Res(f, i) = g(i), i.e., Res(f, i) = ei(i+h)/(2i) = e−1+ih/(2i). It follows that
J = e−1+ihπ.

(B) Note that

J = JA + JI , JA
∆=

∫

AR

ei(z+h)dz

1 + z2
, JI

∆=
∫

IR

ei(z+h)dz

1 + z2
.

Let us show that JA → 0 as R → +∞. We have that

JA =
∫ π

0

eiReit+ih

1 + R2e2it
iReitdt.

Remind that Im z < 0 for z = Rit ∈ AR. Hence
∣∣∣∣∣
∫

AR

ei(z+h)dz

1 + z2

∣∣∣∣∣ ≤
∫ π

0

R|eiReit+ih|
|1 + R2e2it| |ie

it|dt ≤
∫ π

0

R

|1 + R2e2it|dt ≤
∫ π

0

R

R2 − 1
dt =

πR

R2 − 1
,
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since R2 − 1 ≤ |R2e2it + 1| and |eiReit+ih| = |eiReit | ≤ 1. Then JA → 0 as R → +∞.
We have that JA + JI = e−1+ihπ for any large enough R, and JA → 0 as R → +∞.

Hence
∫ R

−R

cos(x + h)dx

1 + x2
= Re

∫ R

−R

ei(x+h)dx

1 + x2
= ReJI → e−1π cosh as R → +∞,

i.e.
∫ ∞

−∞
cos(x + h)dx

1 + x2
= e−1π cosh.

2

Example 4.24 Calculate
∫∞
−∞

sin xdx
x(1+x2)

.

Solution. Let f(z) = eiz/(z(z2 + 1)). Let 0 < r < R. Let Γ′ = Γ′(R, r) be the positively
oriented closed curve that includes the arcs Ar and AR and the linear segments connecting
them.

(A) Let us calculate first the integral J
∆=

∫
Γ′

eizdz
x(1+z2)

.
We have z2 + 1 = (z + i)(z − i). Hence z = i is the only singularity point inside

Γ′ for R > 1 and r < 1, and J = 2πiRes(f, i). We have f(z) = (z − i)−1g(z), where
g(z) = eizz−1(z + i)−1 is holomorphic at z = i, hence it has Taylor expansion g(z) =
g(i)+g′(i)(z−i)+ .... It follows that Res(f, i) = g(i), i.e., Res(f, i) = ei2/(i ·2i) = −e−1/2.
It follows that J = −e−1π · i.

(B) Note that

J = JA + Ja + JI , JA
∆=

∫

AR

eizdz

z(1 + z2)
, Ja

∆=
∫

Ar

eizdz

z(1 + z2)
, JI

∆=
∫

IR,r

eizdz

z(1 + z2)
.

Let us show that JA → 0 as R → +∞. We have that

JA =
∫ π

0

eiReit

Reit(1 + R2e2it)
iReitdt.

Hence

|JA| ≤
∫ π

0

|eiReit |
R|1 + R2e2it| |Rieit|dt ≤

∫ π

0

1
|1 + R2e2it|dt ≤

∫ π

0

1
1(R2 − 1)

dt =
π

R2 − 1
,

since R2 − 1 ≤ |R2e2it + 1| and |eiReit | ≤ 1 (remind that Im z < 0 for z ∈ AR). Then
JA → 0 as R → +∞.

(C) We have that

Ja =
∫

Ar

eizdz

z(1 + z2)
= −

∫ π

0

eireit

reit(1 + r2e2it)
ireitdt → −i

∫ π

0
dt = −iπ

as r → 0.
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(D) Remind that J = JA +Ja +JI = −ie−1π for any large enough R and small enough
r > 0, and JA → 0 as R → +∞. Hence

∫

I(R,r)

sinxdx

1 + x2
= Im

∫

I(R,r)

eixdx

1 + x2
= Im (J − JA − Ja) → −e−1π − (−π) = π(1− e−1)

as R → +∞, i.e.
∫ ∞

−∞
sinxdx

x(1 + x2)
= (1− e−1)π.

2
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Chapter 5

Winding numbers

5.1 Winding number: definitions

Definition 5.1 Let a closed curve Γ be given. The winding number of Γ about the original
0 is the net number of revolutions of the directions of z as it traces out Γ once.

Definition 5.2 We say that a point is tracing out a closed curve in a positive direction,
if it is anti-clockwise.

Clearly, the argument of z is increasing on 2πν(Γ, 0), if the curve is traced out in the
positive direction.

Definition 5.3 Let p ∈ C and a closed curve Γ be given. The winding number ν(Γ, p) of
Γ about the original p is the net number of revolutions as it traces out Γ once.

Clearly, the winding number is not changing if one moves the curve slightly. The following
topological result is a very strong generalization of this fact.

Theorem 5.4 If Γ is piecewise smooth and such that a /∈ Γ, then

ν(Γ, a) =
1

2πi

∫

Γ

1
z − a

dz.

Proof. If Γ is a circle with the center at a repeated a number of times, the theorem
statement can be obtained by direct calculation of the integral: if Γ = a+eit, t ∈ [0, 2πm],
then

1
2πi

∫

Γ

1
z − a

dz =
1

2πi

∫ 2πm

0

1
eit

ieitdt =
1

2πi
2πim = m.

For all other cases the proof follow from the fact that the integral does not change if the
curve is transformed to a homotopic curve. 2
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Theorem 5.5 (Hopf’s degree theorem) A closed curve can be deformed to another closed
curve without crossing p iff the winding number (about p) is the same for the both curves.

Theorem 5.6 (Cauchy Theorem). Let D ⊂ C be an open set. Let f : D → R be a
holomorphic function, and let a ∈ D. Let Γ be a closed curve in the domain D such as
described in Theorem 3.26. Then

ν(Γ, a)f(a) =
1

2πi

∫

Γ

f(z)
z − a

dz.

Here ν(Γ, a) is the winding number of Γ about the point a.

5.2 Argument principle and counting of roots

Definition 5.7 We say that a is a root of multiplicity m of a function f(z) if f(z) =
(z − a)mg(z), where g(z) is a function such that g(a) 6= 0.

Theorem 5.8 (Argument Principle) Let f be a holomorphic function. Let Γ be a closed
curve in D such as described in Theorem 3.26. Let f has exactly n roots a1, ..., an inside
Γ (counted with their multiplicity), and let ν(Γ, ak) = 1 for any k. Then ν(f(Γ), 0) = n.

Proof. Without a loss of generality, we can assume that f(z) has roots a1, ..., an in D,
then f(z) = g(z)

∏b
k=1(z− ak), where g(z) is a holomorphic function being nonzero on D.

Then
f ′(z)
f(z)

=
1

z − a1
+

1
z − a2

+ ... +
1

z − an
+

g′(z)
g(z)

.

By Corollary 3.23, it follows that

1
2πi

∫

Γ

g′(z)
g(z)

dz = 0.

By Theorem 5.4, it follows that

1
2πi

∫

Γ

f ′(z)
f(z)

dz =
n∑

k=1

ν(Γ, ak) = n.

Let γ(t) : [a, b] → C be a parametrization of Γ. The integral here can be rewritten as

1
2πi

∫ b

a

f ′(γ(t))
f(γ(t))

γ′(t)dt =
1

2πi

∫

f(Γ)

dw

w
= ν(f(Γ), 0) = n,

where f(Γ) is the curve with the parametrization f(γ(t)). This completes the proof. 2

Theorem 5.9 (Rouche’s theorem). Let D be a simply connected domain, and let functions
f, g be holomorphic in D. Let Γ be a closed curve in D being the image of [0, 2π] for the
mapping γ(t) = Reit, where R > 0 is given. Let |g(z)| < |f(z)| for all z ∈ Γ. Then f and
f + g have the same number of roots inside Γ (counted with their multiplicity).



43

Proof. First, it can be seen that

ν(f(Γ), 0) = ν((f + g)(Γ), 0).

To see this, one may think about a person walking around 0 along the trail f(Γ) with a
dog on the leash that is being kept shorter than the distance between the person and 0.
The man’s position is f(z), the dog’s position is f(z) + g(z), z ∈ Γ. Clearly, the dog on
the leash will makes the same number of revolutions around 0 as the person holding the
leash. By Argument Principle, the required statement follows. 2

5.3 The Fundamental Theorem of Algebra: the proof

Theorem Any polynomial of order n ∈ {1, 2, 3...}

P (z) = zn + cn−1z
n−1 + ... + c1z + c0

has n roots in C.
Proof. We have that P (z) = f(z) + g(z), where f(z) = zn, g(z) = cn−1z

n−1 + ... +
c1z + c0. Let Γ be a closed curve being the image of [0, 2π] for the mapping γ(t) = Reit,
where R > 0 is such that

Rn > |cn−1|Rn−1 + ... + |c1|R + |c0|.

Clearly, it holds for large enough R > 0, say, for

R > n max
k
|ck|.

We have that
|f(Reit)| = |Rneitn| = Rn,

|g(Reit)| = |cn−1(Reit)n−1 + ... + c1Reit + c0|
≤ |cn−1|Rn−1 + ... + |c1|R + |c0|.

It follows that |g(z)| < |f(z)| for all z ∈ Γ. By Rouchet’s Theorem, it follows that f

and P = f + g have the same number of roots inside Γ (counted with their multiplicity).
Remind that f(z) = zn has n zero roots. Then the proof follows. 2
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Chapter 6

Transforms for representation of

processes in frequency domain

A transform, in general, is a formula that converts one function into another function by
some rule. (For example, the derivative is a kind of transform in that f ′(t) transforms
a function, f(x), into its derivative). Transforms are in fact mappings defined on classes
of functions. We shall consider four important transforms that are being used widely for
so-called spectral representation of time depending processes, or for representation of the
processes in so-called frequency domain. In this form, a function of time is represented as
a summa of oscillating processes. For instance, let ω ∈ R be given. Then the processes
f0(t) = cos(ωt), f1(t) = sin(ωt), and f0(t) = exp(iωt), have the same frequency ω; they
spectrum is the singleton {ω}. If we observe a process f(t) and found from measurements
that f(t) = 5 sin(ω1t) − 2 cos(ω2t) for some ωk ∈ R, then we may say that the process
f(t) has spectrum {ω1, ω3}. This kind of analysis in one of the basic tools in mathematics,
engineering, physics, system theory.

Define class M(r) of all functions f(·) : [0, +∞) → C such that there exists a constant
C > o such that

|f(t)| ≤ Cert, ∀t > 0.

Let I ⊂ R, p ≥ 1. We denote Lp(I,R) the class of all functions f : I → R such that∫
I |f(t)|pdt < +∞. Similarly, we denote Lp(I,C) the class of all functions f : I → C such

that
∫
I |f(t)|pdt < +∞. We denote by Lp(I,R) the class of classes of equivalency from

Lp(I,C). In other words, if mes (f1 6= f2) = 0, then f1 = f2, meaning that they represents
the same element of Lp(I,C), i.e., they are in the same class of equivalency.

Sometime we denote both these classes as Lp(I) and Lp(I).
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6.1 Laplace Transform

Let f(·) ∈ M(r). Then the Laplace transform F = Lf is

F (s) =
∫ +∞

0
e−stf(t)dt,

where s ∈ C is such that Re s > r.

Proposition 6.1 In the definition above, the integral exists.

Theorem 6.2 A function from M(r) is uniquely defined by its Laplace transform. (i.e.
if two functions have the same Laplace transform then they are same).

Theorem 6.3 Let f(·) ∈ M(r). Then F (s) is holomorphic in{z : Re z > r}.

It follows that Laplace transform is uniquely defined by its values for real s only.
Clearly, the Laplace transform is a linear transform. Thus the transform may be split

up, if a function is defined over a split domain.
Since the transform maps a function f(t) into some function F (s), it is reasonable to

ask if there is an inverse function L−1 that takes F (s) back to f(t). In many cases the
answer is yes. There are tables of such inverses and partial fractions are often used to
break up rational functions.

Some important transforms:

1. For f(t) ≡ c, where c is a constant, the Laplace transform is c/s; Re s > 0.
2. For f(t) ≡ eat, where a ∈ C is a constant, the Laplace transform is 1

s−a ; Re s > Re a.
3. For f(t) ≡ sin at, where a ∈ R is a constant, the Laplace transform is a

s2+a2 ; Re s > 0.
4. For f(t) ≡ cos at, where a ∈ R is a constant, the Laplace transform is s

s2+a2 ; Re s > 0.
5. If f(t) has the Laplace transform F (s), then eztf(t) has the Laplace transform F (s−z).
6. For f(t) ≡ ezt sin at, where a ∈ R, z ∈ C, the Laplace transform is a

(s−z)2+a2 ; Re s >

Re z.
7. For f(t) ≡ ezt cos at, where a ∈ R, z ∈ C, the Laplace transform is s−z

(s−z)2+a2 ; Re s >

Re z.
8. For f(t) ≡ tneat, where a ∈ R, n ∈ N, the Laplace transform is n!

(s−a)n+1 ; Re s > a.

6.1.1 Laplace transform and differentiation

Denote M ∆= ∪r∈RM(r).
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Theorem 6.4 Let f(·) and df
dt (·) belongs to M. Then the Laplace transform for df

dt (·) is
sF (s)− f(0), where F (s) is the Laplace transform for f .

Proof. We have that f(·) and df
dt (·) belongs to M(r) for some r. Let s ∈ C be such

that Re s > r. Then
∫ +∞

0
e−st df

dt
(t) = e−stf(t)|+∞0 −

∫ +∞

0
(−s)e−stf(t)dt = sF (s)− f(0).

2

Corollary 6.5 Let f(·) and
∫ t
0 f(s)ds belongs to M. Then the Laplace transform for∫ t

0 f(s)ds is F (s)
s , where F (s) is the Laplace transform for f .

Proof. The Laplace transform for f is sG(s), where G(s) is the Laplace transform for
g(t) ∆=

∫ t
0 f(s)ds. 2

Example of application

Consider a scalar ODE (ordinary differential equation)
{

y′(t) = ay(t) + f(t),
y(0) = x.

Let Y (s), F (s) be the Laplace transforms for y, f correspondingly. We have sY (s)− x =
aY (s) + F (s), i.e.

Y (s) =
x

s− a
+

F (s)
s− a

Thus, y(t) can be found as inverse transform of Y (s), or as eatx plus inverse transform of
F (s)
s−a .

6.1.2 Convolution and the Laplace transform

Convolution of functions f(t) : [0, +∞) → C and g(t) : [0,+∞) → C is a function
f ∗ g : [0, +∞) → R defined as

(f ∗ g)(t) ∆=
∫ t

0
f(τ)g(t− τ)dτ.

Theorem 6.6 (Convolution Theorem) Let f ∈ M, g ∈ M, then the Laplace transform
of the convolution of f ∗ g is F (s)G(s), where F (s) and G(s) are the Laplace transforms
for f and g correspondingly.

Proof. Let f(·), g(·) ∈ M(r) for some r ∈ R. We have for s ∈ C such that Re s > r
∫ +∞

0
e−stdt

∫ t

0
f(τ)g(t− τ)dτ =

∫ +∞

0
dτf(τ)

∫ +∞

τ
e−stg(t− τ)dt

=
∫ +∞

0
dτf(τ)

∫ +∞

0
e−s(r+τ)g(r)dr =

∫ +∞

0
e−sτf(τ)dτ

∫ +∞

0
e−srg(r)dr = F (s)G(s).
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Application for ODEs

For y(0) = 0, we have

y(t) = exp(at) ∗ f(t), Y (s) = F (s)/(s− a). (6.1)

Application for inverse transform

Sometimes convolution can help to find inverse transform. Let us find the inverse transform
of a fraction 1

s2+3s−10
. We can inverse it using partial fractions:

1
s2 + 3s− 10

= − 1
7(s + 5)

+
1

7(s− 2)
.

Instead, we can use Convolution Theorem:

1
s2 + 3s− 10

=
1

s + 5
· 1
s− 2

.

The inverse of the Laplace transform is the convolution of e−5t and e2t and can be calcu-
lated is

e−5t ∗ e2t =
∫ t

0
e−5τe2(t−τ)dτ =

1
7
(e2t − e−5t).

6.1.3 Heaviside step function and shift

Heaviside function

H(t) ∆=
{ 0, t < 0

1, t ≥ 0.

A piecewise constant function can be expressed via combination of Heaviside functions
with shifts such as H(t− a)−H(t− b).

We shall call f̂(t) ∆= H(t−a)f(t−a) a time-delayed function; its graph is same as that
for f(t) but shifted to the right by a and ”turned off” for all t < a.

Proposition 6.7 If f ∈M then H(t− a)f(t− a) ∈M.

Proposition 6.8 The Laplace transform for H(t− a) is e−as/s.

Lemma 6.9 Let f ∈ M and the Laplace for f(t) is F (s). Then the Laplace transform
for H(t− a)f(t− a) is e−asF (s).

This lemma helps to find the Laplace transforms for shifted functions, but it helps also
find the inverse for Laplace transforms with exponents.
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Derivative of Heaviside function

Let a > 0. Consider a mapping δ(t− a) : C(0, +∞) → R such that

〈δ(t− a), f(t)〉 ∆= lim
ε→0

∫ +∞

0
δε(t− a)f(t)dt = f(a) ∀f(·) ∈ C(0, +∞),

where

δε(t− a) =

{
0, |t− a| > ε
1
2ε , |t− a| ≤ ε.

δ(t) is the so-called delta-function. The limit here is denoted usually as∫ +∞
0 δ(t− a)f(t)dt. 1 Apply formally the Laplace transform:

∫ +∞

0
δ(t− a)e−stdt = e−as.

The Laplace transform for H(t− a) is e−as/s. Thus, the Laplace transform for the delta-
function is the same as the Laplace transform for the ”derivative” of Heaviside function;
this fact can be presented formally as δ(t − a) = ∂H(t−a)

∂t : it is a so-called generalized
derivative.

Corollary 6.10 We have that inverse of Laplace transorm for e−as gives delta-function
δ(t−s), which is not a function (it is a ”generalized function”). This means that the inverse
of Laplace transform may be not defined in the class of functions even for holomorphic
functions F (s).

Applications to control and system theory

In many cases, continuous time dynamic systems are described by ODEs. Consider a
simple exam:

dx(t)
dt

= ax(t) + f(t),

x(0) = 0

In control and system theory and its applications in engineering, physics, in signal pro-
cesses), the process f(t) (or F (s) = Lf) is interpreted as an input of a linear continuous
time time system with transfer function χ(s) = 1

s−a , i.e., X(s) = χ(s)F (s) for X = Lx.
The solution process x(t) = eat ∗ f(t) =

∫ t
0 ea(t−s)f(s)ds (or X(p)) is interpreted as an

output of this system. The same model is used for more general dynamic systems. The
transfer function describes completely the properties of input-output system. It is why
the methods of complex analysis are very common in system theory. For instance, the

1Hint: remember that δ(t) is not a function of t, and the integral of δ(t − a)f(t) is not an integral at

all, it is just a symbol!
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system from our example is ”stable”2 iff Re a < 0. In a case of more general χ, the system
is stable iff the transfer function does not have singularities in {z : Re ≥ 0}.

-
Input f(t)

χ -
Output x(t)

Figure 6.1: The block diagram for the system dx(t)/dt = ax(t) + f(t).

Note that the Laplace transform is targeting process evolving in time on (0,+∞). For
processes defined on (−∞, +∞), we use Fourier transform.

6.2 Fourier Transforms

Let Lp(R) = Lp(R,C).
For f ∈ L2(R), the Fourier transform f̂ = Ff is3

f̂(ω) =
1√
2π

∫

R
e−iωtf(t)dt,

where ω ∈ R.

Proposition 6.11 If f(·) ∈ L1(R), then the integral exists for all ω ∈ R. For f(·) ∈
L2(R), the integral exists as an element of L2(R) (i.e., not necessary for all ω).

Clearly, the Fourier transform is a linear transform.

Theorem 6.12 (Plancherel’s-Parseval’s Theorem) Let f̂ = Ff , ĝ = Fg, where f, g ∈
L2(R). Then ∫

R
f(t)g(t)dt =

∫

R
f̂(ω)ĝ(ω)dω.

Theorem 6.13 The mapping F : L2(R) → L2(R) is a bijection.

By this theorem, there exists inverse mapping F−1 : L2(R) → L2(R) that takes f̂ back
to f . There are tables for Fourier transforms and their inverses.

Theorem 6.14 The inverse of a Fourier transform f = F−1f̂ exists for f̂ ∈ L2(R)

(F−1f̂)(t) =
1√
2π

∫

R
eiωtf̂(ω)dω.

2Stability is a very important concept in theory of dynamic systems. One of many possible definitions

is that a system is stable if any bounded input produces a bounded output on infinite horizon.
3In literature, the multiplier 1√

2π
is being replaced sometimes by a different one; sometimes (but rarely

enough) e−iωt is being replaced by eiωt.
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In literature, f̂ is said to be a representation of f in the frequency domain; ω is
frequency.

Remark 6.15 Let f be such that f(t) = 0 for t < 0 and that Lapalce transform F (s) = Lf

is defined for all s = iω, where ω ∈ R. In that case, f̂(ω) = (2π)−1/2F (iω). In other
words, the trace of the Laplace transform on the imaginary axe (i.e., for s = iω, ω ∈ R)
is a Fourier transform (assuming that the function f(t) is extended as zero on (−∞, 0).

Because of this connection between Laplace and Fourier transforms, F = Lf is also
said to be a representation of f in the frequency domain; for F (s), Im s is the frequency.

6.2.1 Fourier transform and differentiation

Theorem 6.16 Let f(·) and df
dt (·) belongs to L2(R). Then the Laplace transform for df

dt (·)
is iωf(iω), where f̂(s) is the Laplace transform for f .

Proof. We have that
∫

R
e−iωt df

dt
(t) = e−iωtf(t)|+∞−∞ −

∫

R
(−iωt)e−iωtf(t)dt = iωF (iω).

2

6.2.2 Convolution and the Fourier transform

Convolution of functions f(t) : R → C and g(t) : R → C is a function f ∗g : [0, +∞) → R
defined as

(f ∗ g)(t) ∆=
∫

R
f(τ)g(t− τ)dτ.

Theorem 6.17 (Convolution Theorem) Let f, g ∈ L2(R), then the Fourier transform of
the convolution of f ∗ g is

√
2πf̂(ω)ĝ(ω), where f̂(ω) and ĝ(ω) are the Fourier transforms

for f and g correspondingly.

Proof. We have for s ∈ C such that Re s > r
∫

R
e−iωtdt

∫

R
f(τ)g(t− τ)dτ =

∫

R
dτf(τ)

∫

R
e−iωtg(t− τ)dt

=
∫

R
dτf(τ)

∫

R
e−iω(r+τ)g(r)dr =

∫

R
e−iωτf(τ)dτ

∫

R
e−iωrg(r)dr = 2πf̂(ω)ĝ(ω).

Applications for dynamic systems: energy equality

Consider a dynamic system with transfer function χ(s). Let f(t), t > 0, be the input
process, and x(t) be the output process. For X = Lx, x̂ = Fx, F = Lf ,
∫ +∞

0
|x(t)|2dt =

∫ +∞

−∞
|x̂(ω)|2dω =

1
2π

∫ +∞

−∞
|X(iω)|2dω =

1
2π

∫ +∞

−∞
|χ(iω)|2|F (iω)|2dω.
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For instance, let a < 0, then this result can be applied to for the system

dx(t)
dt

= ax(t) + f(t), t > 0,

x(0) = 0

with χ(s) = 1/(s− a), |χ(iω)|2 = 1/(ω2 + a2).

6.3 Fourier Series

Let lp denotes the set of al sequences {ck}∞k=−∞ ⊂ C such that
∑∞

k=−∞ |ck|p < +∞.
Let Lp(−π, π) = Lp([−π, π],C).
Fourier series is representation of a function f : [−π, π] → C

f(t) =
+∞∑

k=−∞
cke

ikt,

where ck ∈ C are said to be the Fourier coefficients. 4

Proposition 6.18 (i) If {ck} ∈ l1, then the series converges.

(ii) If {ck} ∈ l2, then the series converges in the space L2(−π, π)5 (i.e., not necessary
for all t), and f(·) ∈ L2(−π, π).

(iii) If f(·) ∈ L2(−π, π), then {ck} ∈ l2, the series converges as an element of L2(−π, π)
(i.e., not necessary for all t).

Theorem 6.19 (Plancherel’s-Parseval’s Theorem) Let f, g ∈ L2(−π, π). Let ck, dk be
the Fourier coefficients for f and g correspondingly. Then

∞∑

k=−∞
ckdk =

1
2π

∫ π

−π
f(t)g(t)dt.

In particular,
∞∑

k=−∞
|ck|2 =

1
2π

∫ π

−π
|f(t)|2dt.

Corollary 6.20 In the notations of the last theorem,

ck =
1
2π

∫ π

−π
f(t)e−iktdt.

In literature, {ck} is said to be a representation of f in the frequency domain; k is the
frequency.

4In literature, the interval [0, 2π] can be replaced by some other interval, and the multiplier 1√
2π

can

be replaced by a different one.
5meaning that

∫ π

−π
|f(t)−∑N

k=−N
ckeikt|2dt → 0 as N → +∞
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Theorem 6.21 Let {ck} ∈ l1 and {kck} ∈ l1. Let f(t) =
∑∞

k=0 cke
ikt for some integer N .

Then df
dt (t) =

∑∞
k=−∞ ikcke

ikt. If {k2ck} ∈ l1, then d2f
dt2

(t) = −∑∞
k=−∞ k2cke

ikt.

6.4 Z-transform

The Z-transform is based on a modification of Fourier series: it represents dynamic discrete
time processes x0, x1, x2, .... as the Fourier coefficients of some function Y (r) : [0, 2π] → C,
such that

Y (r) =
∞∑

t=0

e−irtxt.

Let T = {z ∈ C : |z| = 1}. Let z
∆= eir ∈ T , then e−irk = z−k. Let X(z) ∆= Y (r) for

z = eir. We have that X : T → C is such that

X(z) =
∞∑

t=0

z−txt.

This transform is convenient for dynamic discrete time systems. In the terms of signal
processing theory, the Z-transform converts a discrete time-domain signal, which is a
sequence of real numbers, into a complex frequency-domain representation.

Let Z-transform of {xt} be X(z), let x0 = 0, and let S1(x0, x1, ...) = (x1, x2, x3, ...),
then z-transform of S1{xt} is zX(z).

It can be applied for discrete-time linear equations. For instance, let us consider the
following discrete time dynamic system, i.e., the equation for a scalar dynamic discrete
time process:

xt+1 = axt + ft, t = 0, 1, 2, ...,

x0 = 0.

Let (y0, y1, ...) = (x1, x2, ...). Then yt = axt + ft,

Y (z) =
+∞∑

t=0

z−tyt =
+∞∑

t=0

z−txt+1 = z
+∞∑

t=0

z−(t+1)xt+1 = z
+∞∑

s=1

z−sxs = zX(z),

where X(z) =
∑+∞

t=0 z−txt. Therefore, zX(z) = aX(z) + F (z), where X(z), F (z) are
Z-transforms of {xt} and {ft} respectively, i.e.,

X(z) =
F (z)
z − a

.
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Similarly to the case of continous time processes, in control and system theory, the process
{ft} (or F (z)) is interpreted as an input of a linear discrete time system with transfer
function χ(z) = 1

z−a , i.e., X(z) = χ(z)F (z). The process {xt} (or X(z)) is interpreted
as an output of this system. The same model is used for more general dynamic systems.
The transfer function describes completely the properties of input-output system. It is
why the methods of complex analysis are very common in system theory. For instance the
system from our example is ”stable”6 iff |a| < 1. In a case of more general χ, the system
is stable iff the transfer function does not have singularities outside the unit circle T .

-
Input ft

χ -
Output xt

Figure 6.2: The block diagram for the system xt+1 = axt + ft.

6Repeat that one of many possible definitions is that a system is stable if any bounded input produces

a bounded output on infinite horizon.


