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Preface

The present notes in complex function theory is an English translation of
the notes I have been using for a number of years at the basic course about
holomorphic functions at the University of Copenhagen.

I have used the opportunity to revise the material at various points and
I have added a 9th section about the Riemann sphere and Mdébius transfor-
mations.

Most of the figures have been carried out using the package spline.sty
written by my colleague Anders Thorup. I use this opportunity to thank
him for valuable help during the years.

Copenhagen, January 2007

Copenhagen, January 2009
In the 2009 edition I have made a small change in section 1.4 and I have
corrected some misprints.

Copenhagen, July 2012

In the 2012 edition I have made a small change in Rouché’s Theorem and
I have corrected some misprints.
Christian Berg
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si. Introduction

i.1. Preliminaries.

In these notes the reader is assumed to have a basic knowledge of the
complex numbers, here denoted C, including the basic algebraic operations
with complex numbers as well as the geometric representation of complex
numbers in the euclidean plane.

We will therefore without further explanation view a complex number
x + iy € C as representing a point or a vector (z,y) in R?, and according to
our need we shall speak about a complex number or a point in the complex
plane. A set of complex numbers can be conceived as a set of points in R?.

Let us recall some basic notions:

A complex number z = x + iy € C has a real part z = Re(z) and an ima-
ginary part y = Im(z), and it has an absolute value (also called its modulus)

r = |z| = /22 + y2. We recall the important ¢riangle inequality for z,w € C
[z = |w[| < |z —w]| < [2] + |w].

For a non-zero complex number z we denote by arg(z) the set of its argu-
ments, i.e. the set of real numbers 6 such that

z=r(cosf +isind).

The pair of numbers (r, 0) for § € arg(z) are also called polar coordinates for
the complex number z. More about this will be discussed in Section 5.

Every complex number z = x + iy with z,y € R has a complex conjugate
number z = x — iy, and we recall that |z|? = 22 = 22 + 2.

As distance between two complex numbers z,w we use d(z,w) = |z — w|,
which equals the euclidean distance in R?, when C is interpreted as R2. With
this distance C is organized as a metric space, but as already remarked,
this is the same as the euclidean plane. The concepts of open, closed and
bounded subsets of C are therefore exactly the same as for the corresponding
subsets of R2. In this exposition—with a minor exception in Section 9—
formal knowledge of the theory of metric spaces is not needed, but we need
basic topological notions from euclidean spaces.

To a € C and r > 0 is attached the open (circular) disc with centre a and
radius r > 0, defined as

K(a,r)={z€C|la—z <r}.
As a practical device we introduce K’'(a,r) as the punctured disc
K'(a,r) = K(a,r)\{a} ={2€C|0<|a—2z| <r}.
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1.2

A mapping f: A — C defined on a subset A C C with complex values is
simply called a complex function on A. Such a function is called continuous
at zg € A if

Ve>030>0Vz€ A:|z—2| <0=|f(2) — fz0)| <e.

This definition is completely analogous to continuity of functions with real
values. To a complex function f : A — C is attached two real functions Re f,
Im f defined on A by

(Re f)(2) = Re(f(2)), (Im[f)(z) =Im(f(z)), z€ A
and connected to f by the equation
f(z)=Ref(z)+ilmf(z), z€A.

We claim that f is continuous at zyp € A if and only if Re f and Im f are
both continuous at zg.

This elementary result follows from the basic inequalities for the absolute
value

|Rez| <|z|, |[Imz| < |z|, |2| < |Rez| +|Imz|, zeC.

The complex numbers appear when solving equations of second or higher
degree. The point of view that an equation of second degree has no solutions
if the discriminant is negative, was in the 16’th century slowly replaced by
an understanding of performing calculations with square roots of negative
numbers. Such numbers appear in the famous work of Cardano called Ars
Magna from 1545, and it contains formulas for the solutions to equations of
the third and fourth degree. Descartes rejected complex roots in his book
La Géometrie from 1637 and called them imaginary. The mathematicians of
the 18’th century began to understand the importance of complex numbers
in connection with elementary functions like the trigonometric, the exponen-
tial function and logarithms, expressed e.g. in the formulas now known as
the formulas of De Moivre and Euler. Around 1800 complex numbers were
introduced correctly in several publications, and today Caspar Wessel is re-
cognized as the one having first published a rigorous geometric interpretation
of complex numbers. His work: Om Directionens analytiske Betegning, was
presented at a meeting of The Royal Danish Academy of Sciences and Letters
in 1797 and published two years later. A French translation in 1897 of the
work of Wessel made it internationally recognized, and in 1999 appeared an
English translation in Matematisk-fysiske Meddelelser 46:1 from the Acad-
emy: On the Analytical Representation of Direction, edited by B. Branner
and J. Liitzen. Caspar Wessel was brother of the Danish-Norwegian poet
Johan Herman Wessel, who wrote the following about the brother Caspar:

8



1.3

Han tegner Landkaart og leeser Loven
Han er saa flittig som jeg er Doven
and in English!

He roughs in maps and studies jurisprudence

He labours hard while I am short of diligence

i.2. Short description of the content.

We shall consider functions f : G — C defined in an open subset G of C,
and we shall study differentiability in complete analogy with differentiability
of functions f : I — R, defined on an open interval I C R. Since the
calculation with complex numbers follows the same rules as those for real
numbers, it is natural to examine if the difference quotient

f(2) = f(z0)

zZ — 20

) Z7ZOEG7Z7£207

has a limit for z — zp. If this is the case, we say that f is (complex)
differentiable at zp, and for the limit we use the symbol f’(z) as in the
real case. It turns out, most surprisingly, that if f is differentiable at all
points zp € G, then f is not only continuous as in the real case, but f is
automatically differentiable infinitely often, and is represented by its Taylor
series

for all z in the largest open disc K(zp,p) around zp and contained in G.
Complex differentiability is a much stronger requirement than real differen-
tiability because the difference quotient is required to have one and the same
limit independent of the direction from which 2z approaches zy3. On an inter-
val one can only approach a point zy from left and right, but in the plane we
have infinitely many directions to choose among.

A function, which is complex differentiable at all points of an open set,
is called holomorphic in the set. In the literature one also meets the names
analytic function or differentiable function meaning the same as holomorphic
function.

The theory of holomorphic functions was completely developed in the
19’th century mainly by Cauchy, Riemann and Weierstrass. The theory
consists of a wealth of beautiful and surprising results, and they are often
strikingly different from results about analogous concepts for functions of a
real variable.

1T thank Professor Knud Sgrensen for this translation
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We are also going to study antiderivatives (or primitives) F' of a given
function f, i.e. functions F such that F' = f. It is still “true” that we
find an antiderivative F'(z) satisfying F'(zg) = 0 by integrating f from z; to
z, but we have a lot of freedom in the complex plane integrating from z
to z. We will integrate along a differentiable curve leading to the concept
of a complex path integral. We then have to examine how this integral
depends on the chosen path from one point to another. The fundamental
discovery of Cauchy is roughly speaking that the path integral from zy to z
of a holomorphic function is independent of the path as long as it starts at
zo and ends at z.

It will be too much to introduce all the topics of this treatment. Instead
we let each section start with a small summary.

Here comes a pertinent warning: In the study of certain properties like
continuity or integrability of a function with complex values, the reader has
been accustomed to a rule stating that such properties are dealt with by
considering them separately for the real and imaginary part of the function.

It will be a disaster to believe that this rule holds for holomorphic func-
tions. The real and imaginary part of a holomorphic function are in fact
intimately connected by two partial differential equations called the Cauchy-
Riemann equations. These equations show that a real-valued function defined
on a connected open set is holomorphic if and only if it is constant.

A holomorphic function is extremely rigid: As soon as it is known in a
tiny portion of the plane it is completely determined.

We have collected a few important notions and results from Analysis in
an Appendix for easy reference like A.1,A.2 etc.

Each section ends with exercises. Some of them are easy serving as illu-
strations of the theory. Others require some more work and are occasionally
followed by a hint.

The literature on complex function theory is enormous. The reader can
find more material in the following classics, which are referred to by the name
of the author:

E. Hille, Analytic function theory I,II. New York 1976-77. (First Edition 1959).

A.1. Markushevich, Theory of functions of a complex variable. Three volumes in one. New
York 1985. (First English Edition 1965-67 in 3 volumes).

W. Rudin, Real and complex analysis. Singapore 1987. (First Edition 1966).
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1.1

s1. Holomorphic functions

In this section we shall define holomorphic functions in an open subset of
the complex plane and we shall develop the basic elementary properties of
these functions. Polynomials are holomorphic in the whole complex plane.

Holomorphy can be characterized by two partial differential equations
called the Cauchy-Riemann equations.

The sum function of a convergent power series is holomorphic in the disc
of convergence. This is used to show that the elementary functions sin, cos
and exp are holomorphic in the whole complex plane.

1.1. Simple properties.

Definition 1.1. Let G C C be an open set. A function f : G — C is called
(complez) differentiable at a point zg € G, if the difference quotient

f(zo+ 1) = f(20)
h

has a limit in C for h — 0. This limit is called the derivative of f at zy, and
is denoted f’(zp). If f is (complex) differentiable at all points of G, then f is
called holomorphic in G, and the function f’ : G — C is called the derivative

of f.
For a function denoted w = f(z) we also write
dw df
/ _ w4
I = dz dz

for the derivative at z € G.
The set of holomorphic functions f : G — C is denoted H(G).

Remark 1.2. For zy € G there exists r > 0 such that K(zp,r) C G, and
the difference quotient is then defined at least for h € K'(0,r).

The assertion that f is differentiable at zy with derivative f'(z¢) = a, is
equivalent to an equation of the form

f(z0 +h) = f(z0) + ha+ he(h) for he K'(0,r), (1)

where r > 0 is such that K(z9,7) € G, and ¢ : K'(0,7) — C is a function
satisfying

}llli%e(h) =0.

To see this, note that if f is differentiable at zy with derivative f’(z2¢) = a,
then the equation (1) holds with e(h) defined by
f(z0 + 1) = f(z0)

h -

11
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1.2

Conversely, if (1) holds for a function e satisfying (h) — 0 for h — 0, then a
simple calculation shows that the difference quotient approaches a for h — 0.

From (1) follows, that if f is differentiable at zp, then f is continuous at
zp, because

£ (20 + h) = f(20)| = |h] [a + e(h)]
can be made as small as we wish, if |h| is chosen sufficiently small.

Exactly as for real-valued functions on an interval one can prove that if f
and g are differentiable at zyg € G and A € C, then also \f, f £ ¢, fg and
f/g are differentiable at zo with the derivatives

(Af) (20) = Af'(20) ,
(f £9)'(20) = f'(20) £ ¢'(20)

(f9)'(20) = f(20)9'(20) + f'(20)9(20) ,
(i)’ () = 9L0)S Go) = [ () (20)

(20)? , provided that g(zp) #0.
9 A

It is expected that you, the reader, can provide the complete proof of these
elementary facts.

As an example let us show how the last assertion can be proved when
9(z0) # 0:

As already remarked, g is in particular continuous at zy, so there exists
r > 0 such that g(zo + h) # 0 for |h| < r. For h with this property we get

flzo+h)  f(z) _ flz=o+h)— f(%0) = F(z0)

g(20 + h) — g(20)
g(zo+h)  g(z0) g(z0 +h) '

9(z0 + h)g(20)

Dividing by h # 0 and letting h — 0 leads to the assertion.
Applying the above to functions assumed differentiable at all points in an
open set, we get:

Theorem 1.3. The set H(G) of holomorphic functions in an open set G C C
15 stable under addition, subtraction, multiplication and division provided the
denominator never vanishes.?

The derivative of a constant function f(z) = k is f'(z) = 0 and the
derivative of f(z) =z is f'(z) = 1.
More generally, 2™ is holomorphic in C for n € Ny with the derivative

d

E(z”) =nz" 1.

2Using an algebraic language we can say that H(G) is a complex vector space and a
commutative ring.

12



1.3

This can be seen by induction and using the above rule of derivation of a
product:

Dy, d
dz _Zdzz dz

Using the rule of derivation of a sum, we see that a polynomial

(z"Th) (2)2" = z(nz"" N + 2" = (n+ 1)2".
n
p(z) = Zakzk, ar,€C, k=0,1,...,n,
k=0
is holomorphic in C with the “usual” derivative
p(z) = Z kapz""1.
k=1

By the rule of derivation of a fraction it follows that z=™ = 1/2" is holo-
morphic in C \ {0} for n € N with

d

a(z_”) = —nz "L,
Also the composition of two functions is differentiated in the usual way:
(fo9)(20) = f'(9(20))g'(20) - (2)

Here it is assumed that f: G — C is differentiable at g(zp) € G, g: U — C
is assumed differentiable at zo € U, and we have of course to assume that
g(U) C G in order to be able to define f o g. Note also that U can be an
open interval (g is a differentiable function in the ordinary sense) or an open
subset of C (g is complex differentiable).

To see the above we note that

g(z0 +h) = g(20) + hg'(20) + he(h) € G
f(g(z0) +1) = f(g9(20)) +tf'(g(20)) + t3(t) ,
provided h and t are sufficiently small in absolute value. Furthermore
}ILIE%) e(h) = }51(1) d(t) = 0.

Defining t(h) = hg'(z0) + he(h), we get for h sufficiently small in absolute

value:
f(g(z0 + 1)) = f(g(20) + t(h))
= f(9(20)) +t(h)f'(g(20)) + t(R)o(t(h))
= f(9(20)) + nf'(9(20))g (20) + hé(h)
with

&(h) = e(h) f'(9(20)) + 6(t(h))(g'(20) + (h)) -
Since limp_,0 £(h) = 0, formula (2) follows.
Concerning inverse functions we have:

13



1.4

Theorem 1.4. Suppose that f: G — C is holomorphic in an open set G C C
and that f is one-to-one. Then f(G) is open in C and the inverse function?
fo=t: £(G) — G is holomorphic with
1
o—1y\/ . o—1Y\/
(f ) = W e (f ) (f(2)) =

In particular f'(z) # 0 for all z € G.

1
or z € (.
7y 17 E

Remark 1.5. The theorem is difficult to prove, so we skip the proof here.
Look however at exc. 7.15. It is a quite deep topological result that if
only f : G — C is one-to-one and continuous, then f(G) is open in C and
f°=t: f(G) — G is continuous. See Markushevich, vol. T p. 94.

The formula for the derivative of the inverse function is however easy to
obtain, when we know that f°~! is holomorphic: It follows by differentiation
of the composition f°~! o f(z) = 2. Therefore one can immediately derive
the formula for the derivative of the inverse function, and one does not have
to remember it.

If one knows that f'(z9) # 0 and that f°~! is continuous at wy = f(2),
then it is elementary to see that f°~! is differentiable at wq with the quoted
derivative.

In fact, if w, = f(z,) — wop, then we have z, — zy, and

fo_l(wn> _fo_l(w0> o Zn — 20 N 1

wy, — Wy © flza) = f(20)  f'(20)

1.2. The geometric meaning of differentiability when

f'(20) # 0.

For real-valued functions of one or two real variables we can draw the
graph in respectively R? or R3.

For a complex-valued function f defined on a subset G of C the graph
{(2,f(2)) | z € G} is a subset of C?, which can be identified with R*.
Since we cannot visualize four dimensions, the graph does not play any role.
Instead one tries to understand a holomorphic function f : G — C, w = f(2),
in the following way:

Think of two different copies of the complex plane: The plane of definition
or the z-plane and the image plane or the w-plane. One tries to determine

(i) the image under f of certain curves in G, e.g. horizontal or vertical
lines;

3We use the notation f°~! for the inverse function to avoid confusion with the reci-
procal f=1 =1/f.

14



1.5

(ii) the image set f(K) for certain simple subsets K C G; in particu-
lar such K, on which f is one-to-one. In the exercises we shall see
examples of this.

We shall now analyse image properties of a holomorphic function in the
neighbourhood of a point zp, where f’(z9) # 0. In the neighbourhood of a
point zy where f’(zp) = 0, the situation is more complicated, and it will not
be analysed here. See however exc. 7.17.

Let w = f(z) be a holomorphic function defined in an open set G C C,
and assume that zg € G, f(20) = wg. We consider a differentiable curve
z: I — G in G passing through zy. This means that there is a number t; in
the interval I, such that z(f9) = zp. The function f maps the curve z(t) in
a differentiable curve f(z(t)) passing through wy. Assuming z’(¢g) # 0, then
z(t) has a tangent at zy which is parallel to z’(to) considered as the vector
(Re 2/(to), Im 2'(tp)). The tangent can be considered as a velocity vector, if
we think of the variable ¢ as time. The line containing the tangent can be
parameterized by the equation

2o + 82/ (tg), s€R.

Since f'(zo) # 0 we have (foz) (to) = f'(20)2'(to) # 0, which shows that the
image curve f(z(t)) has a tangent at wp, and the tangent line is parameterized
by

wo + sf'(z0)7' (to), s€ER.

A G A
f(E(1))
Z(t)
z(t)
o wo a4 f(2(1))
20
z-plane w-plane
Figure 1.1

Writing f/(z9) = r(cosf + isinf) with » > 0, 6 € [0, 2x[, (modulus and
argument) we see the following: The tangent vector of the image curve is
determined from the tangent vector of the original curve by a multiplication

15



1.6

(dilation, homothetic transformation) with r and a rotation with angle 0.
The tangent line of the image curve is determined from the tangent line of
the original curve by a rotation with angle 6.

We say that f at the point zo has the dilation constant r = |f'(zo)| and
the rotation angle 6.

If we consider another curve Z(t) passing through zy and intersecting z(t)
under the angle o, meaning that the angle between the tangents at zy to
the two curves is «, then the image curves f(Z(t)) and f(z(t)) also intersect
each other under the angle «, simply because the tangent lines to the image
curves are obtained from the original tangent lines by a rotation with the
angle 6. All the rotations discussed are counterclockwise, corresponding to
the positive orientation of the plane.

We say that f is angle preserving or conformal at the point zg. In par-
ticular, two orthogonal curves at zy (i.e. intersecting each other under the
angle 7 /2) are mapped to orthogonal curves at wgy. A function f : G — C,
which is one-to-one and conformal at each point of G, is called a conformal
mapping. We will later meet concrete examples of conformal mappings.

We see also another important feature. Points z close to and to the left of
2o relative to the oriented curve z(t) are mapped to points w = f(z) to the
left of the image curve f(z(t)) relative to its orientation.

In fact, the line segment zo + t(z — 2p), t € [0, 1] from 2y to z intersects
the tangent at zp under a certain angle v € |0,7[ and the image curves
f(zo+t(z — 20)) and f(z(t)) intersect each other under the same angle v.

1.3. The Cauchy-Riemann differential equations.

For a function f: G — C, where G C C is open, we often write f = u-+iv,
where u = Re f and v = Im f are real-valued functions on G, and they
can be considered as functions of two real variables x, y restricted such that
x+iy € G, ie.

flx+iy) =u(z,y) + v(z,y) for xz+iyeqG.

The following theorem characterizes differentiability of f in terms of proper-
ties of u and v.
Theorem 1.6. The function f is complex differentiable at zo = xo+iyg € G,
if and only if u and v are differentiable at (xg,yo) and the partial derivatives
at (zo,yo) satisfy

ou ov ou Ov

%(x()ay()) = a—y(xo,yo)y a—y(«fo,yo) = —%(ﬂﬂo,yo)-

For a differentiable f we have

f'(20) = o1

- Oz

_19¢f

(20) = P9y (20) -

16



1.7

Proof. Determine r > 0 such that K(zp,7) C G. For t = h + ik € K'(0,r)
and ¢ = a + ib there exists a function ¢: K’(0,7) — C such that

f(z0 +1t) = f(20) +tc+te(t) for te K'(0,r), (1)

and we know that f is differentiable at zy with f’(z9) = ¢, if and only if
g(t) — 0 for ¢ — 0. By splitting (1) in its real and imaginary parts and by
writing te(t) = \t\ﬁa(t), we see that (1) is equivalent with the following two
real equations

u((zo,y0) + (h, k) = u(xo,yo) + ha — kb + |t|o(h, k), (2"
v((xo,y0) + (h,k)) = v(xo,y0) + hb + ka + |t|T(h, k), (2")
where
o(h, k) = Re(é—ft(t)) and (h, k) — Im(%a(t)).
Notice that
le(t)| = /o (h, k)24 7(h, k)2. (3)

By (2') we see that u is differentiable at (x,yo) with the partial derivatives

0 0
6—Z($07?J0) =a, a_Z(‘rOvyO) = _b7

if and only if o(h,k) — 0 for (h,k) — (0,0); and by (2”) we see that v is
differentiable at (x,yo) with the partial derivatives

0 0
8_:;(x07y0> = b? a_Z(‘rO?yO) =a,

if and only if 7(h,k) — 0 for (h,k) — (0,0). The theorem is now proved
since equation (3) shows that

lime(t) =0 < limo(h, k) =lim7(h, k) =0.
t=0 (h,k)—(0,0)  (h,k)—(0,0)

O

Remark 1.7. A necessary and sufficient condition for f = u-+iv to be holo-
morphic in an open set G C C is therefore that u and v are differentiable, and
that the partial derivatives of u and v satisfy the combined partial differential
equations

ou_ov ou_ ov
or Oy’ oy = Ox



1.8

These two equations are called the Cauchy-Riemann equations.

If we consider f : G — C as a complex-valued function of two real vari-
ables, then differentiability of f at (zg,yo) is exactly that u and v are both
differentiable at (xg, yo).

The difference between (complex) differentiability at z¢ + iyp and dif-
ferentiability at (xo,yo) is precisely the requirement that the four partial
derivatives of u and v with respect to x and y satisfy the Cauchy-Riemann
equations.

The Jacobi matrix for the mapping (z,y) — (u,v) is given by

ou o

| 0x Oy

Tl o |
or 0Oy

so by using the Cauchy-Riemann equations we find the following expression
for its determinant called the Jacobian

ou\> ov\? ou\ > ov\?
det J = | — — ) == — ) =|f?.
’ ((996) i (395) <3y> i (8y) 7
These equations show that the columns of J have the same length |f’|. The

scalar product of the columns of J is 0 by the Cauchy-Riemann equations,
so the columns are orthogonal.

Up to now we have formulated all results about holomorphic functions
for an arbitrary open set G C C. We need however a special type of open
subsets of C called domains.

Definition 1.8. An open set G C C is called a domain, if any two points
P and ) in G can be connected by a staircase line in G, i.e. it shall be
possible to draw a curve from P to () inside G and consisting of horizontal
and vertical line segments.

Any two different points in an open disc can be connected by a staircase
line consisting of one or two horizontal /vertical line segments, so an open
disc is a domain.

The definition above is preliminary, and we will show later that a domain
is the same as a path connected open subset of C, cf. §5.1. In some books
the word region has the same meaning as domain.

Theorem 1.9. Let G be a domain in C and assume that the holomorphic
function f: G — C satisfies f'(z) =0 for all z € G. Then f is constant.

Proof. Since

ou ov  Ov ou
r Yo S GRS b
/ _Gx—Hc% Oy Z@y 0,
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we see that the differentiable functions v and v satisfy

8u_8u_8v_8v

= = — = _— =

or Oy Ox Oy
in G. From g—; = 0 we conclude by the mean value theorem that u is
constant on every horizontal line segment in GG. In the same way we deduce

from g—’; = 0 that u is constant on every vertical line segment. Because G is

a domain we see that u is constant in G. The same proof applies to v, and
finally f is constant. O

The theorem above does not hold for arbitrary open sets as the following
example shows.
The function

(1, zeK(0,1)
f(z)_{2, ze K(3,1)

is holomorphic in G = K(0,1) U K(3,1) with f' = 0, but not constant in G.
Notice that G is not a domain because 0 and 3 cannot be connected by a
staircase line inside G.

The following Corollary is important (but much more is proved in Theorem

7.6):

Corollary 1.10. Assume that f: G — C is holomorphic in a domain G C C
and that the values of f are real numbers. Then f is a constant function.

Proof. By assumption v = 0 in G, so by the Cauchy-Riemann equations %
and g—’; are 0 in GG. Therefore u and hence f is constant. O

1.4. Power series.

The reader is assumed to be acquainted with the basic properties of con-
vergence of power series Y . a,2", where a, € C, z € C.

We recall that to any such power series there is associated a number
p € [0,00] called its radius of convergence. For p > 0 the series is abso-
lutely convergent for any z € K(0,p), so we can define the sum function
f: K(0,p) — C of the series by

f(z) = Zanz”, |z < p.
n=0

If p = 0 the power series is convergent only for z = 0 and is of no interest in
complex analysis. The power series is divergent for any z satisfying |z| > p.

19
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One way of proving these statements is to introduce the set
T ={t>0]{|lan|t"} is a bounded sequence},

and to define p = supT. Clearly [0,p[C T. For |z| < p choose t € T
such that |z| < t < p, so by definition there exists a constant M such that
lan|t™ < M, n >0, hence

n n
lan"| = fanler (1) < ar (1)
t t

N EA
Z|anz\§MZ(7 — o <
n=0

n=0

and finally

For |z| > p the sequence {|a,||z|™} is unbounded, but then the series Y " a, 2"
is divergent.

We will show that the sum function f is holomorphic in the disc of absolute
convergence K (0, p), and we begin with an important Lemma.

Lemma 1.11. A power series and its term by term differentiated power
series have the same radius of convergence.

Proof. We shall show that p = sup T defined above equals p’ = supT”’, where
T = {t > 0] {n|a,|t"'} is a bounded sequence} .

If for some t > 0 the sequence {n|a,[t" !} is bounded, then also {|a,|t"} is
bounded, hence 77 C T', so we get p’ < p.
If conversely
lan|ty < M for n>0 (1)

for some ty > 0, we get for 0 <t < tg

nlan|t" "t = nt/te)" Han|th ™ < n(t/te)"H(M/to) -
However, since the sequence {nr"~'} is bounded when r < 1 (it converges to
0), the inequality above shows that also {n|a,[t" "1} is a bounded sequence.

We have now proved that for every to € T\ {0} one has [0, #[C T”, hence
to < p’ for all such tg, and we therefore have p < p’. O

20



1.11

Theorem 1.12. The sum function f of a power series y ;" anz™ is holomor-
phic in the disc of convergence K(0,p) (provided p > 0), and the derivative
1s the sum function of the term by term differentiated power series, i.e.

oo
= Znanz”_l for |z| < p.
n=1

Proof. We show that f is differentiable at zg, where |z9| < p is fixed. We
first choose r such that |z9| < r < p. For h € C satisfying 0 < |h| < r — |2¢]
we have

e(h) := %(f(z(ﬁ—h Znan

:i e e R

and we have to show that (h) — 0 for h — 0.
For given € > 0 we choose N such that

oo

_ €
Z nla,|r" < 1

n=N+1

which is possible since the series Y 7° nja,|r" ! is convergent. By applying
the identity (z" —y™)/(x —y) = > p_; 2" Fy*~1 we get

n

h)" — »n
(0 + }z 20 _ > o+ h) g
k=1

and since |zo + h| < |zo| + |h| < 7, |20| < r we have the estimate

‘ (ZO + h}zn — Zg ‘ S i rn—krk—l — nrn_l .

k=1

We now split e(h) as e(h) = A(h) + B(h) with

N
h —
=Y o {0 ]

n=1

and

B(h) = i an { (0 ¥ hgn — nzg—l}
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and find }llin%) A(h) = 0, since each of the finitely many terms approaches 0.
—

For |h| sufficiently small (|h| < § for a suitable §) we have |A(h)| < 5, and
for the tail we have the estimate

(@) (e e)
_ _ _ 15
B < > anl {nr" +nzg <2 Y ap " 1<§,
n=N+1 n=N+41

valid for |h| < r — |20|. For |h| < min(d,r — |2¢|) this leads to |e(h)| < e,
thereby showing that f is differentiable at zy with the derivative as claimed.
O

Corollary 1.13. The sum function f of a power series Y o anz" is diffe-
rentiable infinitely often in K (0, p) and the following formula holds

(k)
ak:f k'(o),k:(),l,....

The power series is its own Taylor series at 0, i.e.

(n)
=30 ey

n.
n=0

Proof. By applying Theorem 1.12 k times we find

oo

FR (2 Z (n—1)-...-(n—k+Da,2"%, |z|<p

and in particular for z =0

f(k)(()):k;(k—l)-...-lak.

Theorem 1.14. The identity theorem for power series. Assume that
the power series f(z) = > .o anz™ and g(z) = > bp2" have radii of con-
vergence p1 > 0 and py > 0. If there exists a number 0 < p < min(p1, p2)
such that

f(z)=g(z) for |z| <p,
then we have a, = b, for all n.
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Proof. By the assumptions follow that f((z) = ¢(™(2) for all n and all z
satisfying |z| < p. By Corollary 1.13 we get

190 _ g™(0)

n! n!

=b,.

Gn

1.5. The exponential and trigonometric functions.

The reader is assumed to know the power series for the exponential func-
tion (as a function of a real variable)
= 2" 22
exp(z)zzmzl+z+§+~-~,z€R. (1)
n=0
Since this power series converges for all real numbers, its radius of conver-
gence is p = o0.
We therefore take formula (1) as definition of the exponential function for

arbitrary z € C. By Theorem 1.12 we get that exp : C — C is holomorphic,
and since the term by term differentiated series is the series itself, we get

dexp(z)
—_— = , e C, 2
D) exp(), )
i.e. exp satisfies the differential equation f’ = f with the initial condition

F0) = 1.
Another fundamental property of the exponential function is

Theorem 1.15. The exponential function satisfies the functional equation

exp(z1 + 22) = exp(z1) exp(z2), 21,22 € C. (3)

Proof. For ¢ € C we consider the holomorphic function
f(z) =exp(z)exp(c—z), zeC.

If equation (3) is correct, then f(z) has to be a constant function equal to
exp(c). This gives us the idea to try to show somehow that f(z) is constant.
Differentiating f we find using (2)

d

Fl(z) = (diz exp(z)) exp(c— z) + exp(z)a exp(c — 2)

= exp(z) exp(c — z) —exp(z) exp(c — 2) =0,
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so by Theorem 1.9 f is a constant, in particular

f(2) = f(0) = exp(0) exp(c) = exp(c).

Setting z = z7, ¢ = 21 + 29 in this formula we obtain

exp(z1 + 22) = exp(z1) exp(22) -

From the functional equation (3) we deduce that exp(z) # 0 for all z € C
since

1 =exp(0) = exp(z — z) = exp(z) exp(—2) .

From this equation we further get

exp(—z) = (@)’ zeC. (4)
Defining the number
1
e:=exp(l) =) — (=2718...), (5)
n=0

and applying the functional equation n times, yields

exp(nz) = (exp(2))™, n € N,

in particular for z =1 and z = %

exp(n) =¢€", e= (exp(%))”,

showing that
1
exp(L) = {fe=en.

Raising this to the power p € N gives

3=

1 p
Z))P = ) = p
(exp(—))F = exp(™) = (e™)7,
and this expression is usually denoted e?/™. Using (4) we finally arrive at
exp(g): Veb = e4 for peEZ, qeN.
q
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This is the motivation for the use of the symbol e* instead of exp(z), when
z is an arbitrary real or complex number, i.e. we define

e“ :=exp(z), z€C, (6)

but we shall remember that the intuitive meaning of e, i.e. “e multiplied by
itself z times”, is without any sense when z ¢ Q.

For a > 0 we define a® = exp(zlna) for z € C. Here Ina is the natural
logarithm of the positive number a.

It is assumed that the reader knows the power series for the functions sin
and cos for real values of z

. 23 o] > (_1)712,271—‘,—1

smz:z—g-kﬁ__;_...znzzom (7)
22 24 > (_1)n22n

COSZ:1—§+E—+“‘:;W (8)

These series have the radius of convergence oo, and we use them as definition
of the sine and cosine function for arbitrary z € C.
Notice that cos is an even function, i.e. cos(—z) = cosz, and sin is odd,

i.e. sin(—z) = —sinz. Differentiating these power series term by term, we
see that

d . .

—sinz = cosz, — cosz = —sin 2,

dz dz

and these formulas are exactly as the well-known real variable formulas.
Theorem 1.16. Euler’s formulas (1740s). For arbitrary z € C
exp(iz) = cosz + isin z

eiz + e—iz ) 61'2 _ 6—1'2
COSZ = ———— Smz = ———
2 ’ 2i

In particular, the following formulas hold

e =e*(cosy+isiny), z=x+iy, z,y € R

e =cosh +isinf, 0eR,

hence
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Proof. By simply adding the power series of cos z and isin z we get

o 00 (—1)”2:2” .(_1>n22n—|—1 00 (iZ)Zn (i2)2n+1
Cosz-l—zsmz:nzzo( 2n)! +1 2n+ 1) ):n:O( (2n)] + (2n—|—1)!>
= exp(iz) .

Replacing z by —z leads to
exp(—iz) = cos(—z) + isin(—z) = cos z — isin z,

which together with the first equation yield the formulas for cos z and sin z.
By the functional equation for exp we next get

e = exp(x) exp(iy) = €”(cosy +isiny).

O
Remark 1.17 By Euler’s formulas we find
u = Re(e*) = e"cosy, v =Im(e*) = e*siny,
and we can now directly show that the Cauchy-Riemann equations hold:
ou  Ov . ou v v .
— = — = " CcoS — = —— = —€ SIny.
or Oy v Oy Ox Y
Letting n tend to infinity in
R EL
PIE DB
k=0 k=0
we get
exp(z) = exp(z), z€C, 9)
and in particular
|exp(2)|* = exp(z) exp(z) = exp(Z + z) = exp(2Re 2),
hence
|exp(z)| = exp(Rez), 2 €C, (10)
and when z is purely imaginary
lexp(iy)| =1, yeR. (11)
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(Note that this gives a new proof of the well-known fact cos?y + sin®y = 1
for y € R.)

We further have:

The function f(f) = €% defines a continuous group homomorphism of
the additive group of real numbers (R, +) onto the circle group (T, -), where
T = {z € C| |z| = 1}. The equation stating that f is a homomorphism, i.e.

f(01+62) = f(01)f(02) (12)

is a special case of (3) with z; = i1, zo = if,. Taking the real and imaginary
part of this equation, leads to the addition formulas for cosine and sine:

cos(f1 + 62) = cos 01 cos Oy — sin 01 sin Oy (13)
sin(0y + 03) = sin 6y cos 02 + cos 0y sin b . (14)

The formula of De Moivre
(cosf +isinf)"” = cosnf +isinnf, R, neN

is just the equation (exp(if))™ = exp(ind) or f(n#) = f(6)", which is a
consequence of (12).
By the functional equation we also get

exp(z + 2mi) = exp(z) exp(27i) = exp(z), z € C

which can be expressed like this: The exponential function is periodic with
the purely imaginary period 2mi.

Theorem 1.18. The equation exp(z) = 1 has the solutions z = 2mip, p € Z.
The trigonometric functions sin and cos have no other zeros in C than the
ordinary real zeros:

sinz=0&z2=pr,pel.

Cosz:()(:)z:g—l—pﬁ,peZ.

Proof. Writing z = x+iy, the equation exp(z) = 1 implies | exp(z)| = e* = 1,
hence x = 0. This reduces the equation to

exp(iy) = cosy + isiny = 1

which has the solutions y = 2pm, p € Z.
Assuming sin z = 0, we get by Euler’s formulas that e** = e™**. We then
get €?”* = 1, hence 2iz = 2wip, p € Z, which shows that z = pm, p € Z.
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Assuming cos z = 0, we get €2 = —1 = '™, hence €*(**~™) = 1, which
gives i(2z — m) = 2mip, p € Z, showing that z = § + p. O

By Theorem 1.18 follows that

sin z COS 2
tan z = , cotz = —
CoS 2 sin z

are holomorphic in respectively C\ {3 + 7Z} and C\ 7Z.

1.6. Hyperbolic functions.

In many situations the functions

. e —e % e +e %
sinh z = — coshz = ——

play an important role. They are holomorphic in C and are called sine
hyperbolic and cosine hyperbolic respectively.

Inserting the power series for e* and e™~
series with infinite radius of convergence

, we obtain the following power

3 5 © 2+l
h e JR— J— e — [, 2
sinhz =z + = + 7 + 2 Gar i)l (2)
2 4 > ~2n
coshz:1+§—|—ﬂ—|—-~-:nz:%(2n)!. (3)

Notice that they have the “same form” as the series for sin and cos, but
without the variation in sign. We observe that sinh is odd and cosh is even
and that the following formulas hold:

— sinh z = cosh z, di cosh z = sinh . (4)
z

dz

The functions are closely related to the corresponding trigonometric functions
sinh(iz) =isinz, cosh(iz) =cosz, ze¢€C. (5)

This is a simple consequence of Fuler’s formulas or the power series.
These formulas are equivalent with

sin(iz) =isinhz, cos(iz) = coshz, (6)
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and from these we see that
sinhz =0 < z=ipr, peZ

coshz =0 <— z:i(g—l-pw),pEZ.

Using Euler’s formulas for cos z and sin z and a small calculation (cf. exc.
1.10), we see that the classical formula cos? z + sin® z = 1 (assuming z € R)
holds for all z € C. Replacing z by iz transforms the equation to

(cosh 2)? + (isinh 2)* = 1

or equivalently
cosh?z —sinh?z=1, zeC. (7)

This shows in particular that the points (cosht,sinht) for ¢ € R lie on the
branch of the hyperbola

This is the reason behind the names of the functions.
The functions tangent hyperbolic and cotangent hyperbolic are defined by

sinh z
tanh z =

cosh z

cosh z
cothz = — ,

sinh 2

and they are holomorphic in respectively C\ {iF + iwZ} and C\ irZ.
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Exercises for §1.

1
z2(1 — z)
in C\ {0,1}. Find an expression for f((z) for all n > 0.

Hint. Write f(z) =1 + 1.

z

1.1. Prove that f(z) = is (complex) differentiable infinitely often

1.2. Describe the image curves under f(z) = 22 from C to C of the following
plane curves

a) Half-lines starting at 0.

b) The circles |z| = 7.

c¢) The horizontal line = + 1.

d) The vertical lines a + iy, where a > 0 is fixed.

Explain that all image curves from d) intersect the image curve from c)
orthogonally, i.e. under right angles.

1.3. Describe the image of horizontal and vertical lines in C under exp z =
e*e", z = x + iy, and explain that the image curves are orthogonal.

1.4. Consider the functions

1 1

f&) ==, 9() = (:2—22+4— 42

Explain that f is holomorphic in C\ {£1, 44} and find f’. Explain that g
is holomorphic in C\ {—2¢,2 + 2i} and find ¢'.

1.5. Prove that the functions z — Re z and z +— Z are not differentiable at
any point in C.

1.6. Prove that

xz

m, for (z,y) € R*\ {(0,0)},

u(z,y) = v(z,y) =

24 y2’
satisfy the Cauchy-Riemann equations without doing any differentiations.

1.7. Let f : G — C be holomorphic in a domain G and assume that |f| is
constant. Prove that f is constant.

Hint. a) Write f = u + iv and notice that by assumption u? + v? is
constant, i.e. u?2+v% =k > 0in G. We can also assume that & > 0, because
if kK =0 then clearly u =v = f =0.

b) Use 2 (u? +v?) = a%(u2 +v?) = 0 and the Cauchy-Riemann-equations
to obtain the linear system of equations

W20, g 0 0y, (%)

ox oy ox uﬁ_y N
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c) The linear system (%) with g—;‘;, g—z as unknown has the determinant
2 4 .2 du _ du _
u” +v*. Conclude that 3= = B_Z =0.

1.8. Prove that if f : C — C is holomorphic and of the form f(z + iy) =
u(z)+iv(y), where u and v are real functions, then f(z) = Az+c with A € R,
ceC.

1.9. Prove the following formulas for n € N, 0 € R:

[n/2]
cos(nf) = Z (—1)* (272) cos" ¥ 9 sin®* ¢
k=0

[(n—1)/2] "
sin(nf) = ) (—1)k(2k o

) cos” 21 ggin?ktl g
k=0

([a] denotes the integer part of a, i.e. [a] is the unique integer p € Z satisfying
a—1<p<a.)

1.10. Prove the addition formulas

sin(zy + z2) = sin 27 cos 29 + €os 21 sin 29

cos(z1 + 2z2) = €o0s 21 COS 22 — sin z1 sin 29

and the formula
(sinz)? + (cos2)? =1

for all z1, 29,2 € C.
Hint. Euler’s formulas.

1.11. Determine the set of solutions z € C to the equations sinz = 1 and

sin z = v/10.

1.12. Assuming x and y € R, prove that
sin(x 4 iy) = sinz coshy + i cosx sinh y .

Use this formula and the Cauchy-Riemann equations to prove that sin is
holomorphic with d% sin 2z = cos z.

Describe the image of horizontal and vertical lines in C under the sine

2 2
function. (Recall that the equation r_¥ describes a hyperbola, and

a’> b2
2 42
the equation o + 7= 1 describes an ellipse.)
Prove that sine maps the strip

. T T
{griy] -5 <w<3 ver]
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bijectively onto C \ (]—oo, —1] U [1, c0]).

1.13. Prove that the Cauchy-Riemann equations for f = w + iv can be
written as one equation:
of  of

It is customary in advanced complex analysis to introduce the differential

expressions
1/0 .0 - 1/0 e,

Prove that 0f = 0 and f’(z) = 0f(z) for a holomorphic function f.

1.14. Prove the following formula for z = z + iy € C\ {3 + nZ}:

in(2 inh (2
2tan(z + iy) = sin x) 5 i— ( y) 3
cos?x +sinh“y  cos?x + sinh” y
1 e |
tanz = - — .
i e?z 41

1.15. Prove that a power series Y - a,,2" has radius of convergence p = 0o
if and only if lim,, ,~ {/|an| = 0.

1.16. Assume that f,g: G — C are n times differentiable in the open subset
G of C. Prove Leibniz’ formula for the n’th derivative of a product:

(fg)t™ = i (Z) FR gn=h),

k=0

1.17. Prove that the function tan z satisfies tan’ z = 1 + tan?z, tan” z =
2tan z + 2tan? 2z and generally

n+1
tan(™ z = E A,k tan*z, n=0,1,...,
k=0

where a,, ; are non-negative integers.

Prove that a,, = 0 when n, k are both even or both odd.

Conclude that the Taylor series for tan around 0 has the form Y7 | ¢, 22",
where ¢, = azn—1,0/(2n — 1)\

Prove that the Taylor series starts

1 2
t = 23 Ty
an(z) z+3z —1—152 +
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(It can be proved that

B n n n
A2p—1,0 = %(22 - 1)22 ;

where Bs,, are the Bernoulli numbers studied in exc. 6.12.)

1.18. Prove that for any z € C

lim (1 + i)n = exp(2).
n

n—oo

Hint. Prove that for n > 2

n k k—1 . o k
2\" z J z
exp(z) — <1+E> _Zﬁ l—H(l—E) + Z R
k=2 j=1 k=n+1
and use that the tail
k!
E=N+1

can be made as small as we like, if N is chosen big enough.

1.19. Prove that the radius of convergence p for a power series Y a,2" is
given by Cauchy-Hadamard’s formula

—1
p= (lim sup v/ \an|) .

n—oo

(In particular, if lim,,_,oo {/|ay| exists, then p is the reciprocal of this limit.)
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s2. Contour integrals and primitives

In this section we introduce complex contour integrals. This makes it pos-
sible to define the inverse operation of differentiation leading from a function
f to a new one F' called the antiderivative or the primitive such that F’ = f.
We first define oriented continuous curves and a path is such a curve which
is piecewise C'.

The estimation lemma 2.8 about contour integrals is very important: It is
used repeatedly in these notes.

Theorem 2.13 gives a complete characterization of continuous functions
having a primitive.

2.1. Integration of functions with complex values.
For a continuous function f : [a,b] — C we define
b b b
/ F(t)dt :/ Ref(t)dt—l—i/ Tm f(t)dt . (1)

Therefore f; f(t)dt is the unique complex number such that

Re (/abf(t)dt> _ /ab Re f()dt, Tm (/jf(t)dt) _ /abImf(t)dt.

The usual rules of operations with integrals of real-valued functions carry
over to complex-valued functions. We have for example

b b b
/ (F() + g(t))dt = / F(t)dt + / g(t)dt 2)
a b a b a
/ cf(t)dt:c/ fidt, ceC (3)
b
/ F(8)dt = F(b) — F(a) if F' = f. (4)

The following estimate, which is exactly as the real version, is somewhat
tricky to prove.

Theorem 2.1. Let f : [a,b] — C be a continuous function. Then

[ rwa] < [ 1w
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Proof. The complex number z = f: f(t)dt can be written in the form re?,

where r = |z] and 0 is an argument for z. By formula (3) we then have

r=ze ¥ = /b e f(t)dt = /b Re (e " f(t)) dt,

a a

because

/b Im (e_wf(t)) dt =0,

since the integral of e =% f(¢) is the real number r > 0. We therefore have

)/abf(t)dt) :/abRe (e—”f(t))dté/ab
< /ab e f(t)|dt = /ab |f(t)|dt = /ablf(t)|dt,

where we used that Rew < | Rew| < |w| for every w € C and that |e=%| = 1.
O

Re (e~ f(¢)) |at

8—19

2.2. Complex contour integrals.

A continuous mapping v : [a,b] — C is called a continuous curve in C
with parameter interval [a,b], but it is in fact more correct to say that -y
is a parameterization of an oriented continuous curve in C. If we look at
d :[0,1] — C defined by 6(t) = v(a + t(b — a)), then v and 0 are different
parameterizations of the same oriented continuous curve because when ¢
moves from 0 to 1 then a 4 ¢(b — a) moves from a to b and by assumption
3(t) =v(a+t(b—a)).

We say that two continuous mappings v : [a,b] — C and 7 : [¢,d] — C
parameterize the same oriented continuous curve, if there exists a continuous
and strictly increasing function ¢ of [a, b] onto [c,d] such that 70 = ~. If
we consider the variable ¢ as time, different parameterizations just reflect the
fact that we can move along the curve with different speed.

The points y(a) and v(b) are independent of the parameterization of the
curve and are called the starting point and the end point respectively. The
curve is called closedif v(a) = ~v(b). The point set y([a, b]) is also independent
of the parameterization and is denoted ~*. This is intuitively the “set of
points on the curve”, where we do not focus on the orientation and the speed
of moving along the curve.

36



2.3

A -
>

non-simple curve simple curve
Figure 2.1

If v: [a,b] — Cis a parameterization of an oriented continuous curve, then
t — v(a+b—1t) is a parameterization of the oppositely oriented curve called
the reverse curve.

An oriented continuous curve v: [a,b] — C is called simple, if it does not
intersect itself, i.e. if the restriction of v to [a, b[ is one-to-one. For a simple
closed curve 7 as above we have of course vy(a) = (b), but z = a,y = b is
the only pair of different parameter values (z,y) for which v(z) = v(y).

A simple closed oriented continuous curve - is called a Jordan curve be-
cause of Jordan’s theorem:

A Jordan curve divides the plane C in two domains: An “interior” bounded
domain and an “exterior” unbounded domain. The curve is the common
boundary of these two domains.

The result is intuitively obvious but surprisingly difficult to prove, so we
will not give a proof. The result was given by C. Jordan in 1887. The first
complete proof was given by O. Veblen in 1905.

A Jordan curve will normally be positively oriented, i.e. counterclockwise.
This means that the interior domain is always to the left of the curve following
the orientation.

The concept of an oriented continuous curve is the right one for topological
questions, but it is too general for integration along the curve. For that
we need the tangent vector of the curve, so we have to assume that the
parameterization 7 : [a,b] — C is C!, i.e. continuously differentiable. We
then speak about an oriented C'-curve or an oriented smooth curve. The
derivative /() represents the velocity-vector, which is parallel to the tangent
at the point y(t). The number |7/(t)| is the speed at the point ~(t).

Definition 2.2. Let v: [a,b] — C be an oriented C'-curve and let f: v* —
C be continuous. By the contour (or path) integral of f along v we under-

37



24

stand the complex number

Af:Af@Mﬁa[}w@wwmt

Remark 2.3.
(i). The value of fw f is not changed if the parameterization + is replaced by

v o @, where p: [c,d] — [a,b] is a bijective C*-function satisfying ¢’(t) > 0
for all t. This follows from the formula for substitution in an integral.

(ii). Let —v denote the reverse curve of 7. Then

o

(iii). Writing f(z) = u(z,y) + iv(z,y), where z = z + iy and v(t) = z(t) +
iy(t), we see that

b
[ 1= [ o)+ ivte(o), ) @0+ i ()t
b

:/mmmmmﬂwﬂM@w@M@W

a

+i/]W@@%y@Df@)+UW@%y@DVUNﬁ-

This shows that the real and imaginary part of the path integral are two
ordinary tangential curve integrals, and the formula above can be rewritten

:/udx—vdy—l—i/vdx+udy:/(u,—v)-ds—l—i/(v,u)~ds.
v gl gl gl

Given two oriented continuous curves 7 : [a,b] — C, ¢ : [¢,d] — C such
that v(b) = d(c), we can join the curves such that we first move along ~ from
P =~(a) to @ = 7(b) and then along § from Q = d(c) to R = §(d).

We denote this curve by v U J, but in other treatments one can meet the
notation v 4+ 6. None of these notations matches the ordinary sense of the
symbols U and +.

A parameterization of v U § defined on [a, b+ (d — ¢)] is given by

(@), t € [a,b]
T“y_{5@+c—w, teb,b+(d—c).
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Assume now that v, § above are C'-parameterizations. Then 7 is a piecewise
Cl-parameterization, because 7 | [a,b] is C! and
7| [b,b+d—c]is C!, but the tangent vectors 7/(b) and ¢’(c) can be different.

It is natural to extend Definition 2.2 to the following

/Tf:/ftsz+/5f~

YUS

Example 2.4. Let f(z) = 2% and let v : [0,1] — C, ¢ : [1,2] — C be the
Cl-curves v(t) = t? +it, 6(t) = t +1i. Notice that v passes from 0 to 1 + i
along the parabola y = /x and § passes from 1+ to 2+ along a horizontal
line, see Figure 2.2.

10 1+ 2+i
0.75
0.5
0.25
{200 s s s e B B D Y B B B |
0.0 0.5 1.0 15 2.0
t
Figure 2.2

The composed curve v U ¢ is given by the parameterization 7 : [0,2] — C
defined by

{t2+it, t€0,1] ,(t):{fy’(t):%—i-i, te[0,1]

() = P tell,2] 5(t) =1, t e, 2.

Notice that /(1) = 2+ 4 # 6’(1) = 1, hence 7’ is not defined for t = 1. We

find
/sz /f:/01(t2+it)2(2t+i)dt+/12(t+i)2dt

yUS

1 2
= / (2% + Bith — 413 — it?)dt + / (t* + 2it — 1)dt
0 1

1 i 01 2
= |20 Fit® —tr — — 3| + |3 +it? —t
3 3 ], I3 )

2+2, n 4+3_ 2+11,
= —_— —1 - 7 = = —1.
3 3 3 3 3
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We will now formalize the above as the following extension of Definition
2.2.

Definition 2.5. By a path we understand a continuous parameterization
7y : [a,b] — C which is piecewise C1, i.e. there exists a partition a = ¢y <
t1 <---<tp_1 <t, =bsuch that

Vi =7 [tj—lvtj]v j:]-v"'vn
are C''-parameterizations, but there can be kinks at the points y(;), because
the derivative from the right of ;4 at ¢; can be different from the derivative
from the left of v; at t;. A contouris a Closed path.
By the integral of f along the path v we understand the complex number

/7f= / f:é/f Z/f (1)

AU Uy, g=1 ¢

Remark 2.6. The function f(y(t))v/(t), t € [a,b] is piecewise continuous,
since it is continuous on each interval |¢;_1,¢;[ with limits at the end points.
Therefore the function is Riemann integrable in the sense that its real and
imaginary parts are Riemann integrable and (1) can be considered as a defi-

nition of the integral
b
| romp

Definition 2.7. By the length of a path ~ : [a,b] — C, v(t) = =(t) + iy(¢)
as in Definition 2.5 we understand the number

- / Iy (t)]dt = / VIR Ty (0t

using that the piecewise continuous function |y/(¢)| is Riemann integrable.

In estimating the size of path integrals the following result is important:

The estimation lemma 2.8. Let v : [a,b] — C be a parameterization of a
path as above. For a continuous function f :~* — C

[ o=

where L(7y) is the length of the path.

2)|L() (2)
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Proof. It is enough to prove the result for a C''-parameterization, since it is
easy to deduce the general result from there. By Theorem 2.1 we have

\/vf\Z\/bW (t)dt| < /|f DI (@)t

< s 1700 [ /@l = max L),

t€la,b]

Remark 2.9. In practice it is not necessary to determine

max [f(z)| = max [f((2))],

ZEY* t€[a,b]
because very often there is an easy estimate
f(Z) <K Vzenq,

and hence max.~ |f| < K. By (2) we then get

[ 1]k 2o

which in practice is just as useful as (2).

2.3. Primitives.

The concept of primitive or antiderivative as inverse operation of diffe-
rentiation is known for functions on an interval. We shall now study the
analogous concept for functions of a complex variable.

Definition 2.10. Let f: G — C be defined in a domain G C C. A function
F: G — C is called a primitive of f if F' is holomorphic in G and F' = f.

If F is a primitive of f then so is F' 4 k for arbitrary k& € C, and in this
way we find all the primitives of f. In fact, if ® is another primitive of f
then (& — F)' = f — f =0, and therefore ® — F is constant by Theorem 1.9.

A polynomial
p(z) =ap+arz+---+ay2", 2€C

has primitives in C namely the polynomials

ar o An n+1
P(z) =k it
(2) +agz+ o2+ +n+1z ,
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where k € C is arbitrary. More generally, the sum of the power series

1) =Y an(z = 20)", =€ K(z0,p)
n=0

with radius of convergence p has the primitives

%) a, .
F(z):k+zn+1(z—z0) +1
n=0

in K(zg,p). This follows by Lemma 1.11 because F' and f have the same
radius of convergence.
Path integrals are easy to calculate if we know a primitive of the integrand.

Theorem 2.11. Suppose that the continuous function f: G — C in the
domain G C C has a primitive F': G — C. Then

/ﬂawszwwwo

for every path v in G from zy to zo. In particular f,y f =20 for every closed
path .

Proof. For a path v: [a,b] — G such that v(a) = z1, v(b) = 22 we find
b
[#@ra= [ saoned
¥ a
b
d

:/;ﬁﬂwmﬁszw»—mw@»
|

For a continuous function f on an interval I we can determine a primitive
by choosing xg € I and defining

F(x) :/ fdt, xel.
o
Looking for a primitive of f : G — C, we fix 2y € G and try to define
F() = / ft)dt, zeq. (1)
z0

This integral shall be understood as an integral along a path from zy to z.
As a first choice of path one would probably take the straight line from zy to
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z, but then there is a risk of leaving the domain. There are infinitely many
possibilities for drawing paths in G from zy to z, staircase lines and more
complicated curves, see Figure 2.3.

Figure 2.3

The question arises if the expression (1) is independent of the path from
2o to z, because otherwise F'(z) is not well-defined by (1).
We shall now see how the above can be realized.

Lemma 2.12. Let f: G — C be a continuous function in a domain G C C,
and assume fvf = 0 for every closed staircase line in G. Then f has a
primitive in G.

Proof. We choose zp € G. For z € G we define F(z) = f7 f, where ~,

is chosen as a staircase line in G from zy to z. Such a choice is possible
because G is a domain, and we claim that the path integral is independent
of the choice of 7v,. In fact, if §, is another staircase line from zy to z then
v =6, U(—7,) is a closed staircase line and hence

o= fr=f ]

In order to prove the differentiability of F' at z; € G with F'(z1) = f(z1),
we fix € > 0. Since f is continuous at z; there exists r > 0 such that
K(z1,7) C G and

|f(2) = f(z1)| <eforz € K(z,r). (2)

To h = hy + ihg such that 0 < |h| < r we consider the staircase line ¢ from
z1 to z1 + h, first moving horizontally from z; to z; + hy, and then moving
vertically from z; + hy to 21 + hy + the = 21 + h. This path belongs to
K (z1,7), hence to G. By joining ¢ to +,,, we have a staircase line 7,, U ¢
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from zg to 21 + h, and we therefore get

F(z1 +h) — / /f /f

Yzq UL

Figure 2.4

Since a constant ¢ has the primitive cz, we have by Theorem 2.11

/c:c(zl—l—h)—czl:ch.
J4

Putting ¢ = f(z1) we get

F PG+ h) = F)) = £ = 3 [ £= e =5 [ (#G) = ez,

hence by the estimation Lemma 2.8, Remark 2.9 and (2)

%(F(Zlﬁ—h)—F(Zl)) F(21) |h| ]/ 2))d

|hi| + |he|

< —6L(€) ]

e < 2e.
A

O

Necessary and sufficient conditions for a continuous function to have a
primitive are given next:

Theorem 2.13. For a continuous function f: G — C on a domain G C C
the following conditions are equivalent:
(i) f has a primitive.
(ii) For arbitrary z1,zo € G the path integral f“y f is independent of the
path v in G from z1 to zo.
(iii) fv f =0 for every closed path v in G.
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If the conditions are satisfied, we get a primitive F' of f by choosing a
point zg € G and by defining

e = [ 1. Q
¥z
where 7, 1s an arbitrary path in G from zg to z.

Proof. (i) = (ii) follows from Theorem 2.11.

(ii) = (iii): Let 7 be a closed path in G from zy to zp and let §(t) = 2o,
t € [0, 1] denote the constant path. By (ii) we have

Af:Af=Amewmﬁ:0

(iii) = (i): We have in particular f,y f =0 for every closed staircase line in
G, so by Lemma 2.12 we know that f has a primitive F(z) = f% f, where
v, is chosen as a staircase line from a fixed point zy to z.

Finally using that the conditions (i) — (iii) are equivalent, we see that the
expression (3) for F' is independent of the choice of path (staircase line or
not) from zp to z. O

Example 2.14. Let C, denote the circle |z| = r traversed once following
the positive orientation, i.e. C,.(t) = re', t € [0,2n]. For n € Z we find

27 . it 27
/ & :/ iy - dt = irl_”/ =gy = { 0 . n7l,
c, 2" o Trtew 0 27, n=1,

itk

where we have used that e** /ik is an ordinary primitive of e®®* when k is a
non-zero integer.

For n # 1 the result also follows because 2 =" has the primitive 2!~ /(1—n)
in C for n <0, and in C\ {0} for n > 2. Since the value of the integral is

# 0 for n = 1, we conclude that z~! does not have a primitive in C\ {0}.
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Exercises for §2.

2.1. Find the value of the path integrals

i 2i in
/ LQ ,/ cos z dz and / e*dz.
0o (1—2) i 0

(You are supposed to integrate along the line segment from the lower limit
to the upper limit of the integral.)

Find next the value of the three integrals by determining primitives and
using Theorem 2.11.

d
2.2. Find the value of / —Z, where 7, : [0,27] — C is a parameterization
z

n .
itn

of the unit circle traversed n times, n € Z \ {0} and given by ~v,(t) = e

2.3. Prove that

z
S
/7(22+1>2
if v is a closed path in C\ {£:}.

2.4. Prove that

/ P(2)dz = 0

for every polynomial P and every closed path ~ in C.

2.5. Prove that A(vy) = 2% N Zdz is a real number for every closed path 7 in
C.
Hint. Writing ~(t) = z(t) + iy(t), t € [a, b], prove that
L ("] a(t)  w()
Aly) = = dt.
=3 170 o

Determine A(vy,) for v,(t) = e, t € [0,27], n = 1. For a simple closed
path v, explain that A() can be interpreted as the area bounded by ~
counted positively or negatively in accordance with the orientation of ~.

2.6. Assume that f and g are holomorphic functions in a domain G and
assume for convenience also that f’ and ¢’ are continuous (these assumptions
will later be shown to be superfluous, see Theorem 4.8). Prove for any closed
path v in G:

Aﬂ&M@M=—Af@d@M-
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s3. The theorems of Cauchy

The main result of this section is Cauchy’s integral theorem: The integral
of a holomorphic function along a closed path is zero provided the domain
of definition is without holes.

From this result we deduce Cauchy’s integral formula, expressing the value
of a holomorphic function at an interior point of a disc in terms of the values
on the circumference. The result is very surprising: Knowing just a tiny bit
of a holomorphic function is enough to determine it in a much bigger set.

These two results are fundamental for the rest of the notes.

3.1. Cauchy’s integral theorem.

We know that f : G — C has a primitive provided the integral of f along
every closed path is zero. We also know that continuity of f : G — C is
not enough (unlike real analysis) to secure the existence of a primitive. Even
such a nice and elementary function as f(z) = 1/z defined on G = C \ {0}
does not have a primitive according to Example 2.14.

It turns out that for f : G — C to have a primitive, we have to impose
conditions on f as well as on the domain G. This is the fundamental discovery
of Cauchy around 1825.

The requirement for G is roughly speaking that it does not contain holes.
The domain C\ {0} has a hole at {0}. We will now make this intuitive way
of speaking precise.

A domain G C Cis called simply connected if for any two continuous curves
0,71 in G having the same starting point a and the same end point b, it is
possible to deform =y continuously into v; within G. Assuming that the two
curves have [0, 1] as common parameter interval, a continuous deformation
means precisely that there exists a continuous function H : [0, 1] x [0, 1] — G,
such that

H(O7t) = 'YO(t)v H(Lt) = '71(t) for t € [07 1] )

and
H(s,0)=a, H(s,1)=10 for se€|0,1].

For every s € [0, 1] the parameterization ¢ — H (s, t) determines a contin-
uous curve v, from a to b, and when s varies from 0 to 1 this curve varies
from 7y to 1. The function H is called a homotopy.

Intuitively, a simply connected domain is a domain without holes.

A subset G of C is called star-shaped if there exists a point a € G such
that for each z € G the line segment from a to z is contained in G. In a
colourful way we can say that a light source at a is visible from each point z
of G. We also say that GG is star-shaped with respect to such a point a.

47



3.2

We mention without proof that a star-shaped domain is simply connected,
cf. exc. 3.4.

A subset G of C is called converif for all a, b € G the line segment between
a and b belongs to G, i.e. if

y#t)=(1—-t)a+the G for t€[0,1].

A convex set is clearly star-shaped with respect to any of its points. Therefore
a convex domain is simply connected.

Removing a half-line from C leaves a domain which is star-shaped with
respect to any point on the opposite half-line, see Example A of Figure 3.1.

An angular domain, i.e. the domain between two half-lines starting at
the same point, is star-shaped. It is even convex if the angle is at most 180
degrees, but not convex if the angle is more than 180 degrees as in Example
B (the grey part). The domain outside a parabola (Example C) is simply
connected but not star-shaped. Removing one point from a domain (Example
D) or removing one or more closed discs (Example E) leaves a domain which
is not simply connected.

A B C

Figure 3.1
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Theorem 3.1 (Cauchy’s integral theorem). Let f : G — C be a holo-
morphic function in a simply connected domain G C C and let v be a closed

path in G. Then
/ f(z)dz=0.
y

Cauchy gave the result in 1825. Cauchy worked with continuously differen-
tiable functions f, i.e. f is assumed to be holomorphic and f’ to be contin-
uous.

For a differentiable function f : I — R on an interval it can happen that
f’ has discontinuities. Here is an example with I = R and

{xQSin% , x#0
0 , =0

o1 1
2rsin o — cos ¢ , x#0

J(z) = 0 z=0.

Fa ={

For a complex differentiable (holomorphic) function f : G — C defined on
an open set, it turns out most surprisingly that f’ is continuous. This was
discovered by the French mathematician E. Goursat in 1899. He gave a
proof of Cauchy’s integral theorem without assuming f’ to be continuous.
The main point in the proof is Goursat’s Lemma below, but the proof that
f" is continuous will first be given in Theorem 4.8.

Lemma 3.2 (Goursat’s Lemma). Let G C C be open and let f € H(G).
Then
f(z)dz=0
BTN
for every solid triangle A C G (meaning that all points bounded by the sides
are contained in G).

Proof. The contour integral along the boundary 0A of a triangle A shall be
understood in the following sense: We move along the sides of the triangle
following the positive orientation. Once we have proved that this integral is
zero, the path integral using the negative orientation will of course also be
Zero.

We draw the segments between the midpoints of the sides of the triangle A,
see Figure 3.2.% Now A is divided in four triangles A™M ..., A® as shown on
the figure, and we use the indicated orientations of the sides of the triangles.
Using e.g. that the pair of triangles (AM, A®) (AG) AMW) (AW AR)
have a common side with opposite orientations, we get

I:/aaf:é/emmﬁ

41t is only for simplicity of drawing that the triangle is isosceles.
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We claim that at least one of the four numbers [, ) f must have an abso-

lute value > 1|I|, because otherwise we would get |I| < |I| by the triangle
inequality. Let one of the triangles with this property be denoted A\, hence

11| < 4| f]-
1S JAN]

Figure 3.2

We now apply the same procedure to /\;. Therefore, there exists a triangle
Ao, which is one of the four triangles in which A is divided, such that

|I|s4}LA1f}§42}[9A2f!.

Continuing in this way we get a decreasing sequence of closed triangles A D
A1 D Ag D ... such that

|I|§4”}/ f’ for n=1,2,.... (1)
oA,

We now have

() &n = {20}

for a uniquely determined point zy € C.

In fact, choosing z, € A, for each n, the sequence (z,) has a convergent
subsequence with limit point zy by the Bolzano-Weierstrass theorem. It is
easy to see that zp € N A, and since the sidelength of the triangles is
divided by two in each step, there is only one number in the intersection.

If L denotes the length of A, then the length of 0A,, equals 27" L. We now
use that f is differentiable at zg. If € > 0 is fixed we can find r > 0 such that

F(2) = f(20) = f'(20)(z = 20)| < elz — 2] for z € K(z0,7) CG.  (2)
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For z € 0A\,, an elementary geometric consideration shows that |z — z| is
at most as large as half of the length of 9A,, (look at Figure 3.3), hence

9L, (3)

_ < 1
2 e wels s

and the right-hand side is < r for n > N for a suitable natural number N.
Therefore A,, € K(zp,7) for n > N.

K (zp,r)

Figure 3.3

The function z — f(20) + f/(20)(z — 20) is a polynomial, hence possesses
a primitive, so by Theorem 2.11 we have for any n

/ (f(zo)—I—f'(zO)(z—zo))dz:0,
oA,
and hence
[ r@de= [ (56 - o) - o)z - ) e
oN, OYAH
By (2) and the estimation lemma we then get for n > N
| n f(z)dz| <e- Jnax. |z — 2| -27"L,

hence by (1) and (3)

1] <ans (277L)° = feL?.

Since € > 0 is arbitrary we get I = 0. O

Cauchy’s integral theorem claims that the integral along any closed path
is zero. We notice that it suffices to prove that fv f(2)dz = 0 for all closed
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staircase lines in GG, because then f has a primitive in G by Lemma 2.12,
and Theorem 2.11 next shows that fv f(z)dz = 0 for arbitrary closed paths.

Goursat’s Lemma tells us that fBA f(2)dz = 0 for all solid triangles in G.
Given an arbitrary closed staircase line in G, it is now quite obvious to try
to draw extra line segments in order to split the staircase line in triangles
and then use Goursat’s Lemma for each of these triangles.

The problem is then to secure that all these extra line segments remain
within GG, and it is here we need the assumption that the domain is simply
connected.

For an arbitrary simply connected domain this becomes quite technical,
and we skip this proof.

We will give the complete proof for a star-shaped domain and this will
suffice for all our applications in this course.

Theorem 3.3 (Cauchy’s integral theorem for a star-shaped do-
main). Let G be a star-shaped domain and assume that f € H(G). Then

/Wf(z)dz =0

for every closed path ~v in G.

Proof. Assume G to be star shaped with respect to a € G and let v be a
closed staircase line with vertices at ag,a1,...,an_1, a, = ag. As explained
above it suffices to prove the assertion for this special path.

a;—1 X a; a;
X
a;—1
a
a
Figure 3.4

An arbitrary point x on the path belongs to one of the line segments from
a;—1 toa;,i=1,...,n, and since G is star shaped with respect to a the line
segment from a to x belongs to G. Therefore the solid triangle with vertices
{a,a;_1,a;} belongs to G. We now claim that the integral of f is 0 along the
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path consisting of the following 3 segments: From a to a;_1, from a;_1 to a;
and from a; to a. In fact, either the 3 points form a non-degenerate triangle
and the result follows from Goursat’s lemma, or the 3 points lie on a line,
and in this case the claim is elementary.

Summing these n vanishing integrals yields

=0.
Z L{a,ai_l,ai} f

i=1
Each line segment from a to a;, i = 1,...,n, gives two contributions with
opposite sign, so they cancel each other and what remains is f7 f, which
consequently is 0. U

Remark 3.4. Even if GG is not simply connected, it may happen that f,y f=0
for certain f € H(G) and certain closed paths v in G, e.g. in the following
cases

(a): f has a primitive in G

(b): « is a path in a simply connected sub-domain Gy of G.

Notice that

/ %:0for a#0,0<r<|al
0K (a,r) #

Important notation Here and in the following we always use the short
notation 0K (a,r) to indicate the path which traverses the circle counter-
clockwise. The function 1/z is holomorphic in G = C\ {0}, which is a non
simply connected domain, but the path is contained in a half-plane G; (make
a drawing), and therefore the integral is 0.

Combining the Cauchy integral theorem (Theorem 3.1) and Theorem 2.13
we get:

Theorem 3.5. FEvery holomorphic function in a simply connected domain
has a primitive there.

3.2. Cauchy’s integral formula.

Let G be a domain, let zp € G and assume that f € H(G\ {z}). Suppose
that we want to calculate the integral of f along a simple closed path C,
traversed counterclockwise around the point zj.

As an application of Cauchy’s integral theorem we shall see that it will be
possible in many cases to replace C' by another simple closed path K in G,
likewise traversed counterclockwise around zg, i.e.

/C f(2)dz = /K f(2)dz. (1)
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The idea to prove such a result is to insert a number of cuts (line segments)
from C to K (four at the figure), thereby creating a finite number of “small”
closed paths 7;, each of them consisting of 1) a part of C, 2) a cut, 3) a part
of K with the opposite orientation, 4) a cut. We assume that it is possible to
make the cuts in such a way that each ~; is a closed path within a star-shaped
sub-domain of G \ {zp}, thereby proving that fw f = 0. Since each cut will
contribute with two integrals of opposite sign, we finally get

0= [ r= [+ 1

Figure 3.5

[

Before giving a concrete example of this principle, we need:

which shows the claim

Lemma 3.6. Let G C C be open and assume that K(a,r) C G. Then there
exists R > r such that K(a,R) C G. (“There is always room for a larger
disc”).

Proof. If G = C every R > r can be used. Assume next that G # C, hence
CG +# @, and define

R =inf{|z —a|| z € CG}.

Then K(a,R) C G, and since K(a,r) C G by assumption we have r < R.
We have to exclude the possibility r = R.

By Lemma A.1 in the Appendix with K = {a}, F = CG there exists
y' € CG such that |a — 3’| = R. Assuming » = R we get y' € K(a,r), hence
y' € G, but this is a contradiction. O
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Example 3.7. Assume that f € H(G \ {20}) and that the paths C and K
are the boundary circles of two discs K (a,r) and K (2, s) satisfying

K(z9,8) C K(a,7), K(a,7)C K(a,R)CG,

see Figure 3.6. We then have

Jion® ™
0K (a,r) 0K (zo,s)

To prove this we insert 4 cuts between the circles using 2 orthogonal lines
passing through zy. We observe that each of the 4 “small” closed paths
belongs to a segment of K(a,R). On figure 3.6 two of these segments are
bounded by the dashed circle K(a, R) and the dashed chord passing through
zp. The northwestern and southeastern “small paths” are contained in these
two segments. By rotating the dashed chord 90° around zy, we get segments
containing the two remaining “small paths”. Each of the four segments is
convex, and we have obtained what we wanted.

Figure 3.6

Theorem 3.8 (Cauchy’s integral formula). Let f: G — C be holomor-
phic in an open set G and assume that K(a,r) C G. For all zy € K(a,r)

f(z0) = L Mdz

2m JoKk (ar) 2 — 20

b

the circle being traversed once counter-clockwise.
Proof. Fix zyg € K(a,r). By Example 3.7 applied to the holomorphic function
f(z)

zZ— 20

Z =
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in G\ {z0}, we see that

/ f(2) dz:/ f(z) ’
0K (a,r) # 7 20 8K (20,5) 2 — %0

for 0 < s < r — |a — z|. Inserting the parameterization  ~ 2o + se'’
0 € [0, 27], of 0K (20, s) we find

dz 2T giet? .
/ = - df =271,
0K (z0,s) # — 0 0 s€

_ PG )= fo) .
- [ iz~ 2mi f(ao) = [ d.

K(aaT) 20 8K(2075) T 20

hence

By the estimation lemma we then get

1] gsup{‘%ﬁm‘ | |2 — 20| = s} - 27s

= 2msup{|f(2) — f(20)| | |z — 20| = s},

but since f is continuous at zg, the given supremum approaches 0 for s — 0,
and we conclude that I = 0. O

Corollary 3.9. Let f : G — C be holomorphic in an open set G and assume
that K (a,r) C G. Then

1 27

f(a) fla+re)dd.

:%0

Proof. We apply the theorem for zy = a and insert the parameterization
O a+re?, 0cl0,2n].
O

Cauchy’s integral formula shows that knowledge of the values of a holo-
morphic function on a circle 9K (a,r) determines the values of the function
in the disc. The Corollary tells us that the value at the centre of the circle
is the mean value along the boundary.

Example 3.10. Cauchy’s integral formula can be used to find the value of
certain contour integrals:

sin z 1 sin z 1 sin z
oK (0,2) 1 +2 2t Jok(0,2) # — 1 2t Jok(o,2) 2+

= 7sin(i) — wsin(—i) = 27sin(i) = wi(e — %) .
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Example 3.11. Using Cauchy’s integral theorem, we will prove the formula

1 > — 142 b — 12
— e 2" ePdt=e2", beR,
\/27r/_oo

expressing that e~ 3t equals its Fourier transform up to a constant factor.

For b = 0 the formula reads

L G
— e =1.
V2T J oo

This we will not prove but consider as a well-known fact from probability
theory about the normal or Gaussian density. Using that cos is an even
function and that sin is odd, we find from Euler’s formulas

> 142 > 1.2
/ ezt e“bdt:/ e 2" cos(tb) dt ,

— o0 — 00
showing that it is enough to prove the formula for b > 0.

Fixing b > 0, we integrate f(z) = exp(—%zQ) along the boundary of the
rectangle of Figure 3.7. This integral is 0 by the Cauchy integral theorem
because f is holomorphic in C.

Parameterizations of the four sides of the rectangle are given as

nt) =t, tel-a,a],
yo(t) = a + it te0,b],
v3(t) = —t + b, t € [—a,al,
Ya(t) = —a+i(b—1t), te€]0,b];

A
(-CL, b) 3 (CL, b)
Y
V4 72
A
(—a,0) 2t (a,0)
Figure 3.7

and we get

a a
/ f :/ e_%tzdt, / f= —e%bZ/ e_%th”bdt,
Y1 —a Y3 —a
b b
/ f= ie_%GQ/ e%tze_wtdt, / f= —ie_%a2/ e%(b_t)2eia(b_t)dt,
Y2 0 Ya 0
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hence
142, 132
‘/ fl, / f‘ge 29p 2 -0 for a — .
Y2 Y4
Moreover,
112 o0 1.2 b

lim f=—e2? / e 2t et

a—o0 3 o
and

lim / f:/ e gt = V2m,
71 —00

a—r 00
so letting a — oo in Zj‘zl fv f =0, we get
1b2 o0 1t2 ith
V2r+0—e2 / e 2 e"™dt+0=0,
—o0

showing the formula.
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Exercises for §3.

3.1. Determine the value of

/ dz
0K (0,1) (z—a)(z—b)’
when (i) |a|, [b] <1, (ii) |a| <1, |b] > 1, (iii) |al, [b] > 1.

3.2. Calculate the contour integrals

/ ¢ dz, / 'e dz .
0K (0,2) # — 1 0K (0,2) Tt — 2z

3.3. Prove that a convex domain G C C is simply connected.

3.4. Prove that a star-shaped domain G C C is simply connected.

Hint. Reduce the assertion to a domain G which is star-shaped with
respect to 0.

For such a domain G let g be a continuous curve in G froma € Gtob € G
with parameter interval [0, 1]. Prove that the expression H (s, t) defined by

(1—2t)a, for t €[0,3s],
H(S,t) = (1 _ 5)70 (tl—_%ss) , for t € [%S, 1-— %S[,
(2t — 1)b, for te[l—%s,l],

is a homotopy, deforming g continuously to the curve

(1-2t)a, for ¢ €[0,3],
’71<t) = 1
(2t — 1)b, for t e [1—3,1];

and use this to finish the proof.

3.5. Let GG be a domain which is star-shaped with respect to zy € G. For
every z € G let [z, z] denote the line segment from z; to z with the param-
eterization y(t) = (1 — t)zo + t2.

Prove directly from Goursat’s lemma that if f € H(G) then F : G — C

defined by
Fe) = [ 1
[ZO,Z]

is a primitive of f satisfying F'(z9) = 0.
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3.6. The domain G = C\] — o0, 0] is star-shaped with respect to 1. By exc.
3.5 the formula

dt
L(z) = / —, z€eG
[,z 1

defines a primitive of 1/z in G.
Writing z = re?, 6 €] — «, [, r > 0, show that

L(re®®) =logr +1i6.

Hint. Use the path from 1 to r followed by the arc of circle from r til re®.
(We prove in section 5 that L(z) = Log z, the principal logarithm of z.)

3.7. Let GG be an open disc, let a € G and let b, ¢ be different points on the
boundary of the disc. Let U be the domain bounded by the line segments
[a, b], [a, c] and one of the two arcs between b and c¢. Show that U is convex
if the angle at a is < w. Show that U is star-shaped but not convex if the
angle at a is > m. (U is a piece of tart).

Use such a domain U to show that 2 “small paths” are sufficient in Ex-
ample 3.7.

3.8. Consider the domain
G=C\{iylyeR, |yl >1}

and prove that it is star-shaped with respect to 0. Define the function
Arctan : G — C by

d b zdt
Arctanz:/ 710:/ Zi, z € G.
[0,2] 1+ w2 0 1+ 1222

In accordance with exc. 3.5 Arctan is holomorphic on G with the derivative

d
E ArCtanZ = m .

[—R.
strip

Prove that Arctan R is the inverse function of tan: |-, %
(One can show that Arctan maps G bijectively onto the

{ +iy| -2 <z < W}
z=c+iy| —z <z <3
Y 9 9 f
and is the inverse function of tan restricted to that strip.)
Prove that

23 20

Arctanz:z—g—i—g——i—--- for |z| <1.
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3.9. (Fresnel’s integrals). Calculate the integrals

/OOO sin(z?)dx = /OOO cos(z?)dx = VT

which are to be understood as lim for.
rT—00

Hint. a) Use that f% exp(iz?)dz = 0, where «,. for r > 0 denotes the path
along the boundary of the sector enclosed by the x-axis, the line y = x and
the arc re’, ¢ € [0, T].

b) Let r — oo and use (example 3.11),

,
1
lim e~ dy = 3 N3

r—00 0

as well as sin2t > ¢ for t € [O, ﬂ (cf. ¢)) in order to prove the result.
c¢) Show that min{s‘hi—% |t e }07 ﬂ} = % > 1.

3.10. Consider the set G = C\ Z.
1) Show that G is a domain, i.e. that G is open and that any two points
of G can be joined by a staircase line.
2) Is G convex?, star-shaped?, simply connected?
3) Show that
f(z) =1/sin(nz), z € G

is holomorphic in G.
4) Define vr(t) = § +it, or(t) = 2 +it,t € [-T,T].
Show that

o dt o dt
I de=i | —2 - =
750 /VT f(z) dz Z/OO cosh(rt)’ 750 P 1(z)dz 2/00 cosh(7t)

5) Define yr,4(t) = a +it,t € [-T,T], where a € R\ Z. Show that

p(a) := lim f(z)dz

T—o00 VToa
is constant in each of the intervals |n,n+1[, n € Z. (Notice that ¢(a) changes
sign when a jumps from ]0, 1] to |1, 2[.)
Hint. For n < a < b < n+ 1 use the Cauchy integral theorem for the
rectangle with corners a £¢7T,b £ T and let T" — oo.
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Bernhard Riemann (1826-1866), German
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4.1

s4. Applications of Cauchy’s integral
formula

In section 4.2 we shall apply the Cauchy integral formula to prove that a
holomorphic function is differentiable infinitely often and is equal to the sum
of its Taylor series. In the proof we need the concept of uniform convergence,
which is treated in section 4.1. The set of holomorphic functions is stable
with respect to local uniform convergence. This clearly makes it an important
concept, which will be developed in section 4.4.

Liouville’s theorem and the fundamental theorem of algebra appear unex-
pectedly.

4.1. Sequences of functions.

Let M be an arbitrary non-empty set. In the applications M will typically
be a subset of C.

A sequence of functions f, : M — C is said to converge pointwise to the
function f: M — Cif for all z € M

lim f,(z) = f(z).

n—oo

Using quantifiers this can be expressed:

Vee M Ve >03IN eNVneN (n>N=|f(x)— fulx)|<e). (1)

Examples: 1) Let M =R and f,(z) = |sinz|?, n =1,2,.... Then

lim f, (x) {1 for z=5+pr,pe’l
im f,(z) =
0 for zeR\{%Z+2Zr},

ie. fn, : R — C converges pointwise to the indicator function f = 1z iz
for the set § + Zm, meaning the function which is 1 on the set and 0 on the
complement of the set.

2) Let M =C and f,(2) =2"/n!,n=1,2,.... Then
lim f,(z) =0 forall ze€C,
n—oo

hence f, converges pointwise to the zero function. In fact, the power series
for exp being convergent for all z € C, the n’th term will converge to 0.

In both examples the functions f,, are continuous, but the limit function
is not continuous in the first example.
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What makes the limit function continuous in Example 2 but discontinuous
i Fxample 17

Fix e € ]0,1] and z € R\ {g + Zﬂ'} and let us determine the smallest
N such that |sinz| < e and hence |sinz|® < ¢ for n > N. We see that
N = N(z) is the smallest natural number > Ine/In |sin x| provided z ¢ 7Z,
and for x € 7Z we have N(x) = 1. The graph of the function Ine/In |sin z|
for € |0, 7[ is shown in Figure 4.1.

Y

0 7r'/2 T
Figure 4.1
The graph approaches infinity when x approaches 7, hence N(z) — oo for

x — 5. This means that we can not use the same N in (1) for all z € M.
These observations motivate the following:

Definition 4.1. A sequence f,, : M — C of functions is said to converge
uniformly to the function f: M — C if

Ve>0dN eNVneN((n>N=|f(z)— fo(zx)| <cforalze M). (2)

Using that

|f(x) = fu(z)| <e forall z € M < sup{|f(x) — fu(x)||z€ M} <e,
the uniform convergence is equivalent to

lim sup{|f(x) ~ ful)] |z € M} =0,
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The functions f,(z) = 2™ /n! converge uniformly to the zero function for z
belonging to a bounded set M C C. The boundedness of M just means that
there exists a constant K such that |z| < K for z € M, and hence

n

K
Sup{|fn(z)—0||z€M}§F—>0.

On the other hand, f,, does not converge to the zero function uniformly for
z € C because

sup{|fn(z) — 0| | z € C} = o0 for all n.

The relevance of uniform convergence for our discussion is proved in the
next theorem.

Theorem 4.2. Let M C C and let f,, : M — C be uniformly convergent to
the function f : M — C.
If all the functions f, are continuous at zy € M, then so is f.

Proof. Fix € > 0. We shall determine 6 > 0 such that
Vze M (|z— 20| <d=|f(2) = fz0)| <e).

Since sup{|f(z) — fu(2)| | 2 € M} — 0 for n — oo, there exists N such that
sup{|f(z) — fu(2)| | z€ M} <¢e/3 for n> N

in particular

VzeM:|f(z) — fn(2)] <eg/3. (3)
By the continuity of fy at zp there exists § > 0 such that

vzeM(|z—zO| < 0= |fn(2) = fn(z)| < g) (4)

For z € M such that |z — 2| < 0 we then get

1£(2) = f(20)| = [(f(2) = fn(2)) + (Fn(2) = [ (20)) + (v (20) — f(20))]
< |f(z) = In()| + [N (2) = fn(z0)| + [ v (20) — £(20)]
<e/3 +¢/3 +e/3=¢.

O

(In Theorem 4.2 M could just as well be a subset of R™ or a metric space.)
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Definition 4.3. An infinite series > ;" fn(z) of functions f, : M — C is
said to converge uniformly to the sum function s : M — C if the sequence of
partial sums

su() =) falz), €M
k=0

converges uniformly to s.

Theorem 4.4. Weierstrass’ M-test. Let > o~ fn(z) be an infinite series
of functions f, : M — C and assume that there exists a convergent series
Zgo an having positive terms a, such that

VneNogVe e M :|f,(x) <ap,

i.e. ay, is a majorant for f, on M for each n. Then the series Y o fn(x)
converges uniformly on M.

Proof. The comparison test shows that the series Y fn(z) is absolutely
convergent for every x € M. Denoting the sum function s : M — C, the n’th
partial sum s,, satisfies

s(0) = sale) = Y fula),
k=n+1
hence
5@ =sa@=| Y h@|< D @I Y w
k=n-+1 k=n-+1 k=n-+1

showing that

sup{|s(z) — sp(z)| |z € M} < Z ay .

k=n-+1

Since ) ;" ar < 0o, the tail lemma asserts that Y . ap — 0 for n — oo,
hence s, (x) — s(z) uniformly on M. O

Theorem 4.5. A power series Y o anz" having positive radius of conver-
gence p and sum function

f(z) = Zanz”, z € K(0,p)
n=0

converges uniformly to f on every closed disc K(0,7), where r < p.

66



4.5

(The convergence need not be uniform on K (0, p). The reader is supposed
to be able to distinguish between the two assertions mentioned).

Proof. The result is an immediate consequence of Theorem 4.4 because
S0 lan|r™ is a convergent series, th 1t f which majori n
0 lan gent series, the general term of which majorizes a, 2

on K(0,7). O

We can now add a simple rule about path integrals to the rules of §2.2.

Theorem 4.6. Let ~y : [a,b] — C be a path in C and let f, : v* — C be a
sequence of continuous functions.

(i) If fn — f uniformly on ~v*, then

s = [ (= [ )

(i) If D07 fn converges uniformly on~* to the sum function s : v* — C,
then
oo o0
S [n=fs (-[S5)
n=0"" v Y n=0

Proof. (i): Notice that f is continuous on 7* because of Theorem 4.2. Fix
€ > 0. By assumption there exists N € N such that for n > N and z € v*

£ (2) = fu(2)] <,

hence by the estimation lemma 2.8

)Af—ﬁh

proving the assertion.

=| [ =5l <220,

(ii): Since s, = Y ,_, fr converges to s uniformly on v*, we get by (i) that

fv 8”_>fv s, but since
n
/Sn:Z/fka
Y k=0""

the assertion follows. O

Remark 4.7. Here are two simple observations about uniform convergence.

(i) If a sequence of functions f,, : M — C converges uniformly to f : M —
C, then the sequence of restrictions f,|A to an arbitrary subset A C M
converges uniformly to f|A.
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(ii) Assume that f,, : M — C converges pointwise to f : M — C and
assume that A, B C M.

If f,|A converges uniformly to f|A and f,|B converges uniformly to f|B,
then f,|AU B converges uniformly to f|AU B.

Only the proof for (ii) requires a comment. Fixing ¢ > 0, the assumptions
about uniform convergence on A and on B makes it possible to find N4 € N,
Np € N such that for n € N

n>Na= |f(x)— fu(z)| <e foral z€ A

and
n> Np = |f(x) — fu(z)| <€ foral z € B.

For n > max(N 4, Np) we then have
|f(x) = fu(x)| <e forall z€ AUB,

proving the uniform convergence on AU B.

4.2. Expansion of holomorphic functions in power se-
ries.

Let G C C be an open set. If G # C and a € G is arbitrary, there exists
a largest open disc K (a, p) contained in G. Its radius is given by

p=1inf{la —z|| z € C\ G}.

If G = C we define K(a,00) = C, and also in this case we speak about the
largest open disc contained in G.

Using the Cauchy integral formula we shall now show that f € H(G) is
differentiable infinitely often. For a € G the power series Y - %(z—a)”
is called the Taylor series of f with centre a.

Theorem 4.8. Let f € H(G). Then f is differentiable infinitely often and
the Taylor series with centre a € G is convergent with sum f in the largest
open disc K(a,p) C G:

= ) (g .
1= T80 0y jor ze k). 0
n=0 ’
Assume that K(a,r) C G. For arbitrary zy € K(a,r) we have
!
() = L G o 5
/ (ZO) 2mi /8K(a,r) (Z - 20>n+1 2o =0 ( )
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which is called Cauchy’s integral formula for the n’th derivative.

Proof. The function z — f(z)/(z — a)" ™! being holomorphic in G \ {a}, it
follows by Example 3.7 that the numbers

1 f(z)dz
CLTL(T) a % /8K(a,r) (Z - a)n—|—1

are independent of r for 0 < r < p. We therefore denote them briefly a,,,
n=0,1,....

Fixing z € K(a, p) and next choosing r > 0 such that |z — a| <7 < p, we
get by Cauchy’s integral formula

1 f(w)

271 0K (a,r) w—z

f(2) dw .

We will prove the series expansion (1) by writing ﬁ as a sum of a conver-
gent series, insert this in the above integral formula and finally interchange
summation and integration.

First notice that for w € 0K (a,r)

1 1 1 1

w—z w—at+a—2z w—al—(z—a)/(w—a)’

and moreover |(z —a)/(w —a)| = |z — a|/r < 1, which makes it possible to
write the last fraction as the sum of a geometric series, hence

1 - 1 i z—a\"
w—z_w—an_ w—a

=0

This shows that

W) _ 5™ gaw) 3)
n=0

w —
where

_fwe—ar

gn(w) = (w — )"t

Using that 0K (a,r) is closed and bounded, we have M = sup{|f(w)| |
w € 0K (a,r) } < co. The infinite series > ° g, (w) converges uniformly for
w € 0K (a,r) by Weierstrass’ M-test because of the majorization

D e D S e

0
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By Theorem 4.6 (ii) it is allowed to integrate term by term in (3), hence

! de

271 0K (a,r) w—z

= — gn(w) dw = an(z —a)™.
;27” o) (w) > an(z—a)

n=0

flz) =

This shows that the pow