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Preface

Complex variables is one of the grand old ladies of mathematics. Origi-
nally conceived in the pursuit of solutions of polynomial equations, complex
variables blossomed in the hands of Euler, Argand, and others into the free-
standing subject of complex analysis.

Like the negative numbers and zero, complex numbers were at first viewed
with some suspicion. To be sure, they were useful tools for solving certain
types of problems. But what were they precisely and where did they come
from? What did they correspond to in the real world?

Today we have a much more concrete, and more catholic, view of the
matter. First, we now know how to construct the complex numbers us-
ing rigorous mathematical techniques. Second, we understand how complex
eigenvalues arise in the study of mechanical vibrations, how complex func-
tions model incompressible fluid flow, and how complex variables enable the
Fourier transform and the solution of a variety of differential equations that
arise from physics and engineering.

It is essential for the modern undergraduate engineering student, as well
as the math major and the physics major, to understand the basics of complex
variable theory. The need then is for a textbook that presents the elements
of the subject while requiring only a solid background in the calculus of one
and several variables. This is such a text. There are, of course, other solid
books for such a course. The book of Brown and Churchill has stood for
many editions. The book of Saff and Snider, a more recent offering, is well-
written and incisive. The book of Derrick features stimulating applications.
What makes this text distinctive are the following features:

(1) We work in ideas from physics and engineering beginning in Chapter
1, and continuing throughout the book. Applications are an integral
part of the presentation at every stage.

xv
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(2) Every chapter contains exercises that illustrate the applications.

(3) There are both exercises and text examples that illustrate the use of
computer algebra systems in complex analysis.

(4) A very important attribute (and one not well represented in any other
book) is that this text presents the subject of complex analysis as a
natural continuation of the calculus. Most complex analysis texts ex-
hibit the subject as a freestanding collection of ideas, independent of
other parts of mathematical analysis and having its own body of tech-
niques and tricks. This is in fact a misrepresentation of the discipline
and leads to copious misunderstanding and misuse of the ideas. We are
able to present complex analysis as part and parcel of the world view
that the student has developed in his or her earlier course work. The
result is that students can master the material more effectively and use
it with good result in other courses in engineering and physics.

(5) The book has stimulating exercises at the three levels of drill, explo-
ration, and theory. There is a comfortable balance between theory and
applications.

(6) Most sections have examples that illustrate both the theory and the
practice of complex variables.

(7) The book has many illustrations which clarify key concepts from com-
plex variable theory.

(8) We use differential equations to illustrate important concepts through-
out the book.

(9) We integrate MatLab exercises and examples throughout.

The subject of complex variables has many aspects—from the algebraic
features of a complete number field, to the analytic properties imposed by
the Cauchy integral formula, to the geometric qualities coming from the idea
of conformality. The student must be acquainted with all components of
the field. This text speaks all the languages, and shows the student how to
deal with all the different approaches to complex analysis. The examples
illustrate all the key concepts, while the exercises reinforce the basic skills,
and provide practice in all the fundamental ideas.
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As noted, we shall integrate MatLab activities throughout. Computer al-
gebra systems have become an important and central tool in modern math-
ematical science, and MatLab has proved to be of particular utility in the
engineering world. MatLab is particularly well adapted to use in complex
variable theory. Here we show the student, in a natural context, how MatLab

calculations can play a role in complex variables.
There is too much material in this book for a one-semester course. Some

thought must be given as to how to design a course from this book. Any
course should cover Chapters 1 through 5. Finishing off with Sections 7.1
through 7.3 and Chapter 8 will give a very basic grounding in the subject.
Chapters 10 and 11 are great for applications and instructors can dip into
them as time permits.

A more thoroughgoing course would want to cover the remainder of Chap-
ter 7 and at least some of Chapter 6. As noted, Chapters 10 and 11 give
the student a detailed glimpse of how complex variables are used in the real
world. Chapter 9, on harmonic functions, is more advanced material and
should perhaps be saved for a two-term course. Chapter 12 is dessert, for
those who want to explore computer tools that can be used in the study of
complex variables.

Complex variables is a vibrant area of mathematical research, and it
interacts fruitfully with many other parts of mathematics. It is an essential
tool in applications. This text will illustrate and teach all facets of the subject
in a lively manner that will speak to the needs of modern students. It will
give them a powerful toolkit for future work in the mathematical sciences,
and will also point to new directions for additional learning.

MATLABr is a trademark of The MathWorks, Inc. and is used with
permission. The Mathworks does not warrant the accuracy of the text or
exercises in this book. This book’s use or discussion of MATLABr software
or related products does not constitute endorsement or sponsorship by The
Math Works of a particular pedagogical approach or particular use of the
MATLABr software.

I conclude by thanking my editor Bob Stern for encouraging me to write
this book and providing all needed assistance. He engaged some exceptionally
careful and proactive reviewers who provided valuable advice and encourage-
ment. Working with Taylor & Francis is always a pleasure.

— SGK





Chapter 1

Basic Ideas

1.1 Complex Arithmetic

1.1.1 The Real Numbers

The real number system consists of both the rational numbers (numbers with
terminating or repeating decimal expansions) and the irrational numbers
(numbers with infinite, nonrepeating decimal expansions). The real numbers
are denoted by the symbol R. We let R2 = {(x, y) : x ∈ R , y ∈ R} (Figure
1.1).

1.1.2 The Complex Numbers

The complex numbers C consist of R2 equipped with some special algebraic
operations. One defines

(x, y) + (x′, y′) = (x+ x′, y + y′) ,

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′).

These operations of + and · are commutative and associative.

Example 1 We may calculate that

(3, 7) + (2,−4) = (3 + 2, 7 + (−4)) = (5, 3) .

Also

(3, 7) · (2,−4) = (3 · 2 − 7 · (−4), 3 · (−4) + 7 · 2) = (34, 2) .

1



2 CHAPTER 1. BASIC IDEAS

Figure 1.1: A point in the plane.

Of course we sometimes wish to subtract complex numbers. We define

z − w = z + (−w) .

Thus if z = (11,−6) and w = (1, 4) then

z −w = z + (−w) = (11,−6) + (−1,−4) = (10,−10) .

We denote (1, 0) by 1 and (0,1) by i. We also denote (0, 0) by 0. If α ∈ R,
then we identify α with the complex number (α, 0). Using this notation, we
see that

α · (x, y) = (α, 0) · (x, y) = (αx, αy) . (1.1)

In particular,
1 · (x, y) = (1, 0) · (x, y) = (x, y) .

We may calculate that

x · 1 + y · i = (x, 0) · (1, 0) + (y, 0) · (0, 1) = (x, 0) + (0, y) = (x, y) .

Thus every complex number (x, y) can be written in one and only one fashion
in the form x ·1+y · i with x, y ∈ R. We usually write the number even more
succinctly as x+ iy.

Example 2 The complex number (−2, 5) is usually written as

(−2, 5) = −2 + 5i .
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The complex number (4, 9) is usually written as

(4, 9) = 4 + 9i .

The complex number (−3, 0) is usually written as

(−3, 0) = −3 + 0i = −3 .

The complex number (0, 6) is usually written as

(0, 6) = 0 + 6i = 6i .

In this more commonly used notation, laws of addition and multiplication
become

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′),

(x+ iy) · (x′ + iy′) = (xx′ − yy′) + i(xy′ + yx′).

Observe that i · i = −1. Indeed,

i · i = (0, 1) · (0, 1) = (0 · 0 − 1 · 1) + i(0 · 1 + 1 · 0) = −1 + 0i = −1 .

This is historically the single most important fact about the complex numbers—
that they provide negative numbers with square roots. More generally, the
complex numbers provide any polynomial equation with roots. We shall de-
velop these ideas in detail below.

Certainly our multiplication law is consistent with the scalar multiplica-
tion introduced in line (1.1).

Insight: The multiplicative law presented at the beginning of Section 1.1.2
may at first seem strange and counter-intuitive. Why not take the simplest
possible route and define

(x, y) · (x′, y′) = (xx′, yy′) ? (1.2)

This would certainly be easier to remember, and is consistent with what one
might guess. The trouble is that definition (1.2), while simple, has a number
of liabilities. First of all, it would lead to

(1, 0) · (0, 1) = (0, 0) = 0 .
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Thus we would have the product of two nonzero numbers equaling zero—an
eventuality that we want to always avoid in any arithmetic. Second, the
main point of the complex numbers is that we want a negative number to
have a square root. That would not happen if (1.2) were our definition of
multiplication.

The definition at the start of Section 1.1.2 is in fact a very clever idea
that creates a new number system with many marvelous new properties. The
purpose of this text is to acquaint you with this new world.

Example 3 The fact that i · i = −1 means that the number −1 has a
square root. This fact is at first counterintuitive. If we stick to the real
number system, then only nonnegative numbers have square roots. In the
complex number system, any number has a square root—in fact any nonzero
number has two of them.1 For example,

(1 + i)2 = 2i

and

(−1 − i)2 = 2i .

Later in this chapter we will learn how to find both the square roots, and in
fact all the nth roots, of any complex number.

Example 4 The syntax in MatLab for complex number arithmetic is simple
and straightforward. Refer to the basic manual [PRA] for key ideas. A
complex number in MatLab may be written as a + bi or a + b*i.

In order to calculate (3 − 2i) · (1 + 4i) using MatLab, one enters the code

>>(3 - 2i)*(1 + 4i)

Here >> is the standard MatLab prompt. MatLab instantly gives the answer
11 + 10i.

1The number 0 has just one square root. It is the only root of the polynomial equation
z2 = 0. All other complex numbers α have two distinct square roots. They are the roots of
the polynomial equation z2 = α or z2−α = 0. The matter will be treated in greater detail
below. In particular, we shall be able to put these ideas in the context of the Fundamental
Theorem of Algebra.
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The symbols z,w, ζ are frequently used to denote complex numbers. We
usually take z = x+ iy , w = u+ iv , ζ = ξ+ iη. The real number x is called
the real part of z and is written x = Re z. The real number y is called the
imaginary part of z and is written y = Im z.

Example 5 The real part of the complex number z = 4− 8i is 4. We write

Re z = 4 .

The imaginary part of z is −8. We write

Im z = −8 .

Example 6 Addition of complex numbers corresponds exactly to addition
of vectors in the plane. Specifically, if z = x+ iy and w = u+ iv then

z + w = (x+ u) + i(y + v) .

If we make the correspondence

z = x+ iy ↔ z = 〈x, y〉

and
w = u+ iv ↔ w = 〈u, v〉

then we have
z + w = 〈x, y〉 + 〈u, v〉 = 〈x+ u, y + v〉 .

Clearly
(x+ u) + i(y + v) ↔ 〈x+ u, y + v〉 .

But complex multiplication does not correspond to any standard vector
operation. Indeed it cannot. For the standard vector dot product has no
concept of multiplicative inverse; and the standard vector cross product has
no concept of multiplicative inverse. But one of the main points of the
complex number operations is that they turn this number system into a field:
every nonzero number does indeed have a multiplicative inverse. This is a
very special property of two-dimensional space. There is no other Eucliean
space (except of course the real line) that can be equipped with commutative
operations of addition and multiplication so that (i) every number has an
additive inverse and (ii) every nonzero number has a multiplicative inverse.
We shall learn more about these ideas below.
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The complex number x− iy is by definition the complex conjugate of the
complex number x + iy. If z = x + iy, then we denote the conjugate2 of z
with the symbol z; thus z = x− iy.

1.1.3 Complex Conjugate

Note that z + z = 2x, z − z = 2iy. Also

z + w = z + w ,

z · w = z · w .
A complex number is real (has no imaginary part) if and only if z = z. It is
imaginary (has no real part) if and only if z = −z.

Example 7 Let z = −7 + 6i and w = 4 − 9i. Then

z = −7 − 6i

and
w = 4 + 9i .

Notice that
z + w = (−7 − 6i) + (4 + 9i) = −3 + 3i ,

and that number is exactly the conjugate of

z + w = −3 − 3i .

Notice also that

z · w = (−7 − 6i) · (4 + 9i) = 26 − 87i ,

and that number is exactly the conjugate of

z · w = 26 + 87i .

2Rewriting history a bit, we may account for the concept of “conjugate” as follows. If
p(z) = az2 + bz + c is a polynomial with real coefficients, and if z = x + iy is a root of this
polynomial, then z = x− iy will also be a root of that same polynomial. This assertion is
immediate from the quadratic formula, or by direct calculation. Thus x + iy and x − iy
are conjugate roots of the polynomial p.
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Example 8 Conjugation of a complex number is a straightforward opera-
tion. But MatLab can do it for you. The MatLab code

>>conj(8 - 7i)

yields the output

8 + 7i.

Exercises

1. Let z = 13 + 5i, w = 2 − 6i, and ζ = 1 + 9i. Calculate z + w, w − ζ,
z · ζ, w · ζ, and ζ − z.

2. Let z = 4−7i, w = 1+3i, and ζ = 2+2i. Calculate z, ζ, z − w, ζ + z,
ζ · w.

3. If z = 6 − 2i, w = 4 + 3i, and ζ = −5 + i, then calculate z + z, z + 2z,

z − w, z · ζ, and w · ζ2
.

4. If z is a complex number then z has the same distance from the origin
as z. Explain why.

5. If z is a complex number then z and z are situated symmetrically with
respect to the x-axis. Explain why.

6. If z is a complex number then −z and z are situated symmetrically
with respect to the y-axis. Explain why.

7. Explain why addition in the real numbers is a special case of addition
in the complex numbers. Explain why the two operations are logically
consistent.

8. Explain why multiplication in the real numbers is a special case of
multiplication in the complex numbers. Explain why the two operations
are logically consistent.

9. Use MatLab to calculate the conjugates of 9 + 4i, 6 − 3i, and 2 + i.
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Figure 1.2: Distance to the origin or modulus.

10. Let z = 10+2i, w = 4−6i. Use MatLab to calculate z ·w, z ·w, z+w,
and z − w.

11. Let z = a+ ib and w = c+ id be complex numbers. These correspond,
in an obvious way, to points (a, b) and (c, d) in the plane, and these in
turn correspond to vectors Z = 〈a, b〉 and W = 〈c, d〉.
Verify that addition of z and w as complex numbers corresponds in a
natural way to addition of the vectors Z and W . What does multi-
plication of the complex numbers z and w correspond to vis a vis the
vectors?

1.2 Algebraic and Geometric Properties

1.2.1 Modulus of a Complex Number

The ordinary Euclidean distance of (x, y) to (0, 0) is
√
x2 + y2 (Figure 1.2).

We also call this number the modulus of the complex number z = x+ iy and
we write |z| =

√
x2 + y2. Note that

z · z = x2 + y2 = |z|2 . (1.3)

The distance from z to w is |z−w|. We also have the easily verified formulas
|zw| = |z||w| and |Re z| ≤ |z| and |Im z| ≤ |z|.
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The very important triangle inequality says that

|z + w| ≤ |z| + |w| .

We shall discuss this relation in greater detail below. For now, the inter-
ested reader may wish to square both sides, cancel terms, and see what the
inequality reduces to.

Example 9 The complex number z = 7 − 4i has modulus given by

|z| =
√

72 + (−4)2 =
√

65 .

The complex number w = 2 + i has modulus given by

|w| =
√

22 + 12 =
√

5 .

Finally, the complex number z + w = 9 − 3i has modulus given by

|z + w| =
√

92 + (−3)2 =
√

90 .

According to the triangle inequality,

|z + w| ≤ |z| + |w| ,

and we may now confirm this arithmetically as
√

90 ≤
√

65 +
√

5 .

Example 10 MatLab can perform modulus calculations quickly and easily.
The MatLab code

>>abs(6 - 8i)

yields the output

10.

The input

>>abs(2 + 7i)

yields the output

7.2801.
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1.2.2 The Topology of the Complex Plane

If P is a complex number and r > 0, then we set

D(P, r) = {z ∈ C : |z − P | < r}

and

D(P, r) = {z ∈ C : |z − P | ≤ r}.

The first of these is the open disc with center P and radius r; the second
is the closed disc with center P and radius r (Figure 1.3). Notice that the
closed disc includes its boundary (indicated in the figure with a solid line for
the boundary) while the open disc does not (indicated in the figure with a
dashed line for the boundary). We often use the simpler symbols D and D
to denote, respectively, the discs D(0, 1) and D(0, 1).

We say that a set U ⊆ C is open if, for each P ∈ U , there is an r > 0
such that D(P, r) ⊆ U . Thus an open set is one with the property that each
point P of the set is surrounded by neighboring points (that is, the points
of distance less than r from P ) that are still in the set—see Figure 1.4. Of
course the number r will depend on P . As examples, U = {z ∈ C : Re z > 1}
is open, but F = {z ∈ C : Re z ≤ 1} is not (Figure 1.5). Observe that, in
these figures, we use a solid line to indicate that the boundary is included in
the set; we use a dotted line to indicate that the boundary is not included in
the set.

A set E ⊆ C is said to be closed if C \E ≡ {z ∈ C : z 6∈ E} (the comple-
ment of E in C) is open. [Note that when the universal set is understood—in
this case C—we sometimes use the notation cE to denote the complement.]
The set F in the last paragraph is closed.

It is not the case that any given set is either open or closed. For example,
the set W = {z ∈ C : 1 < Re z ≤ 2} is neither open nor closed (Figure 1.6).

We say that a set E ⊂ C is connected if there do not exist nonempty
disjoint open sets U and V such that U ∩ E 6= ∅, V ∩ E 6= ∅, and E =
(U ∩E)∪ (V ∩E). Refer to Figure 1.7 for these ideas. We say that U and V
separate E. It is a useful fact that if E is an open set, then E is connected
if and only if it is path-connected; this means that any two points of E can
be connected by a continuous path or curve that lies entirely in the set. See
Figure 1.8.

In practice we recognize a connected set as follows. If E ⊆ C is a set and
there is a proper subset S ⊆ E (proper means that S is not all of E) such
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Figure 1.3: An open disc and a closed disc.

Figure 1.4: An open set.
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Figure 1.5: An open set and a nonopen set.

that S is both open and closed, then U = S and V = cS are both open and
separate E so that E is disconnected. Thus connectedness of E means that
there is no proper subset of E that is both open and closed.

Much of our analysis in this book will be on domains in the plane. A
domain is a connected open set. We also use the word region alternatively
with “domain.”

1.2.3 The Complex Numbers as a Field

Let 0 denote the complex number 0 + i0. If z ∈ C, then z + 0 = z. Also,
letting −z = −x− iy, we have z + (−z) = 0. So every complex number has
an additive inverse, and that inverse is unique. One may also readily verify
that 0 · z = z · 0 = 0 for any complex number z.

Since 1 = 1+ i0, it follows that 1 · z = z ·1 = z for every complex number
z. If z 6= 0, then |z|2 6= 0 and

z ·
(

z

|z|2

)
=

|z|2

|z|2 = 1 . (1.4)

So every nonzero complex number has a multiplicative inverse, and that
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Figure 1.6: A set that is neither open nor closed.

Figure 1.7: A connected set and a disconnected set.
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Figure 1.8: An open set is connected if and only if it is path-connected.

inverse is unique. It is natural to define 1/z to be the multiplicative inverse
z/|z|2 of z and, more generally, to define

z

w
= z · 1

w
=

zw

|w|2 for w 6= 0 . (1.5)

We also have z/w = z/w.
It must be stressed that 1/z makes good sense as an intuitive object but

not as a complex number. A complex number is, by definition, one that is
written in the form x + iy—which 1/z most definitely is not. But we have
declared

1

z
=

z

|z|2
=
x− iy

|z|2
=

x

|z|2
− i · y

|z|2
,

and this is definitely in the form of a complex number.

Example 11 The idea of multiplicative inverse in the complex numbers is
at first counterintuitive. So let us look at a specific instance.

Let z = 2 + 3i. It is all too easy to say that the multiplicative inverse of
z is

1

z
=

1

2 + 3i
.

The trouble is that, as written, 1/(2 + 3i) is not a complex number. Recall
that a complex number is a number of the form x + iy. But our discussion
preceding this example enables us to clarify the matter.
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Because in fact the multiplicative inverse of 2 + 3i is

z

|z|2 =
2 − 3i

13
.

The advantage of looking at things this way is that the multiplicative inverse
is in fact now a complex number; it is

2

13
− i

3

13
.

And we may check directly that this number does the job:

(2+3i)·
(

2

13
− i

3

13

)
=

(
2 · 2

13
+ 3 · 3

13

)
+i

(
2 ·
(
− 3

13

)
+ 3 · 2

13

)
= 1+0i = 1 .

Multiplication and addition satisfy the usual distributive, associative, and
commutative laws. Therefore C is a field (see [HER]). The field C contains
a copy of the real numbers in an obvious way:

R 3 x 7→ x+ i0 ∈ C . (1.6)

This identification respects addition and multiplication. So we can think of
C as a field extension of R: it is a larger field which contains the field R.

1.2.4 The Fundamental Theorem of Algebra

It is not true that every nonconstant polynomial with real coefficients has a
real root. For instance, p(x) = x2 + 1 has no real roots. The Fundamental
Theorem of Algebra states that every polynomial with complex coefficients
has a complex root (see the treatment in Sections 4.1.4, 6.3.3). The complex
field C is the smallest field that contains R and has this so-called algebraic
closure property.

Exercises

1. Let z = 6 − 9i, w = 4 + 2i, ζ = 1 + 10i. Calculate |z|, |w|, |z + w|,
|ζ − w|, |z · w|, |z + w|, |ζ · z|. Confirm directly that

|z + w| ≤ |z| + |w| ,
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|z · w| = |z||w| ,
|ζ · z| = |ζ||z| .

2. Find complex numbers z, w such that |z| = 5 , |w| = 7, |z + w| = 9.

3. Find complex numbers z, w such that |z| = 1, |w| = 1, and z/w = i3.

4. Let z = 4 − 6i, w = 2 + 7i. Calculate z/w, w/z, and 1/w.

5. Sketch these discs on the same set of axes: D(2 + 3i, 4), D(1 − 2i, 2),
D(i, 5), D(6 − 2i, 5).

6. Which of these sets is open? Which is closed? Why or why not?

(a) {x+ iy ∈ C : x2 + 4y2 ≤ 4}
(b) {x+ iy ∈ C : x < y}
(c) {x+ iy ∈ C : 2 ≤ x+ y < 5}
(d) {x+ iy ∈ C : 4 <

√
x2 + 3y2}

(e) {x+ iy ∈ C : 5 ≤
√
x4 + 2y6}

7. Consider the polynomial p(z) = z3 − z2 + 2z− 2. How many real roots
does p have? How many complex roots? Explain.

8. The polynomial q(z) = z3 − 3z + 2 is of degree three, yet it does not
have three distinct roots. Explain.

9. Use MatLab to calculate |3 + 6i|, |4 − 2i|, and |8 + 7i|.

10. Let z = 2 − 6i and w = 9 + 3i. Use MatLab to calculate z/w, w/z2,
and z · (w + z)/w.

11. Use MatLab to test whether any of −i, i, or 1 + i is a root of the
polynomial p(z) = z3 − 3z + 4i.

12. Use MatLab to find all the complex roots of the polynomial p(z) =
z4 − 3z3 +2z− 1. Call the roots α1, α2, α3, α4. Calculate expicitly the
product

Q(z) = (z − α1) · (z − α2) · (z − α3) · (z − α4) .

Observe that Q(z) = p(z). Is this a coincidence?
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13. Use MatLab if convenient to produce a fourth-degree polynomial that
has roots 2 − 3i, 4 + 7i, 8 − 2i, and 6 + 6i. This polynomial is unique
up to a constant multiple. Explain why.

14. Write a fourth degree polynomial q(z) whose roots are 1, −1, i, and
−i. These four numbers are all the fourth roots of 1. Explain therefore
why q has such a simple form.

15. If z is a nonzero complex number, then it has a reciprocal 1/z that is
also a complex number. Now if Z is the planar vector corresponding
to z, then what vector does 1/z correspond to? [Hint: Think in terms
of reflection in a circle.]

1.3 The Exponential and Applications

1.3.1 The Exponential Function

We define the complex exponential as follows:

(1.7) If z = x is real, then

ez = ex ≡
∞∑

n=0

xn

n!

as in calculus. Here ! denotes the usual “factorial” operation:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1 .

(1.8) If z = iy is pure imaginary, then

ez = eiy ≡ cos y + i sin y.

[This identity, due to Euler, is discussed below.]

(1.9) If z = x+ iy, then

ez = ex+iy ≡ ex · eiy = ex · (cos y + i sin y).

This tri-part definition may seem a bit mysterious. But we may justify it
formally as follows (a detailed discussion of complex power series will come
later). Consider the definition
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ez =
∞∑

n=0

zn

n!
. (1.10)

This is a natural generalization of the familiar definition of the exponential
function from calculus.

We may write this out as

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · . (1.11)

In case z = x is real, this gives the familiar

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · .

In case z = iy is pure imaginary, then (1.11) gives

eiy = 1 + iy − y2

2!
− i

y3

3!
+
y4

4!
+ i

y5

5!
− y6

6!
− i

y7

7!
+ − · · · . (1.12)

Grouping the real terms and the imaginary terms we find that

eiy =

[
1− y2

2!
+
y4

4!
− y6

6!
+− · · ·

]
+i

[
y− y3

3!
+
y5

5!
− y7

7!
+− · · ·

]
= cos y+i sin y .

(1.13)
This is the same as the definition that we gave above in (1.8).

Part (1.9) of the definition is of course justified by the usual rules of
exponentiation.

An immediate consequence of this new definition of the complex expo-
nential is the following complex-analytic definition of the sine and cosine
functions:

cos z =
eiz + e−iz

2
, (1.14)

sin z =
eiz − e−iz

2i
. (1.15)

Note that when z = x+ i0 is real this new definition is consistent3 with the
familiar Euler formula from calculus:

eix = cos x+ i sin x. (1.16)

3The key fact here is that, since eix = cos x + i sin x then e−ix = cos x − i sin x. Thus
also eiz = cos z + i sin z and e−iz = cos z − i sin z.
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It is sometimes useful to rewrite equation (1.14) as

cos z =
eiz + e−iz

2

=
eix−y + e−ix+y

2

=
(cos x+ i sin x)e−y + (cos x− i sinx)ey

2

= cos x · e
y + e−y

2
− i sin x · e

y − e−y

2
= cos x cosh y − i sinx sinh y .

Similarly, one can show that

sin z = sin x cosh y + i cos x sinh y .

1.3.2 Laws of Exponentiation

The complex exponential satisfies familiar rules of exponentiation:4

ez+w = ez · ew and (ez)w = ezw for w an integer . (1.17)

Note that we may rewrite the second of these formulas as

(
ez
)n

= ez · · · ez︸ ︷︷ ︸
n times

= enz. (1.18)

1.3.3 The Polar Form of a Complex Number

A consequence of our first definition of the complex exponential—see (1.8)—
is that if ζ ∈ C, |ζ| = 1, then there is a unique number θ, 0 ≤ θ < 2π,
such that ζ = eiθ (see Figure 1.9). Here θ is the (signed) angle between the

positive x axis and the ray
−→
0ζ .

Now if z is any nonzero complex number, then

z = |z| ·
(
z

|z|

)
≡ |z| · ζ (1.19)

4The formular (ez)w requires further elucidation. The expression does makes sense for
w not an integer, but the complex logarithm function must be used in the process. See
the development below.
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Figure 1.9: Polar coordinates of a point in the plane.

where ζ ≡ z/|z| has modulus 1. Again, letting θ be the angle between the

positive real axis and
−→
0ζ , we see that

z = |z| · ζ
= |z|eiθ

= reiθ , (1.20)

where r = |z|. This form is called the polar representation for the complex
number z. (Note that some classical books write the expression z = reiθ =
r(cos θ + i sin θ) as z = rcis θ. The reader should be aware of this notation,
though we shall not use it in the present book.)

Example 12 Let z = 1 +
√

3i. Then |z| =
√

12 + (
√

3)2 = 2. Hence

z = 2 ·
(

1

2
+ i

√
3

2

)
. (1.21)

The number in parentheses is of unit modulus and subtends an angle of π/3
with the positive x-axis. Therefore

1 +
√

3i = z = 2 · eiπ/3. (1.22)
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It is often convenient to allow angles that are greater than or equal to
2π in the polar representation; when we do so, the polar representation is no
longer unique. For if k is an integer, then

eiθ = cos θ + i sin θ

= cos(θ + 2kπ) + i sin(θ + 2kπ)

= ei(θ+2kπ) . (1.23)

Remark: Of course the inverse of the exponential function is the (complex)
logarithm. This is a rather subtle idea, and will be investigated in Section
2.5.

Exercises

1. Calculate (with your answer in the form a+ib) the values of eπi, e(π/3)i,
5e−i(π/4), 2ei, 7e−3i.

2. Write these complex numbers in polar form: 2 + 2i, 1 +
√

3i,
√

3 − i,√
2 − i

√
2, i, −1 − i.

3. If ez = 2 − 2i then what can you say about z? [Hint: There is more
than one answer.]

4. If w5 = z and |z| = 3 then what can you say about |w|?

5. If w5 = z and z subtends an angle of π/4 with the positive x-axis, then
what can you say about the angle that w subtends with the positive
x-axis? [Hint: There is more than one answer to this question.]

6. Calculate that |ez| = ex. Also | cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y
and | sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y.

7. If w2 = z3 then how are the polar forms of z and w related?

8. Write all the polar forms of the complex number −
√

2 + i
√

6.

9. If z = reıθ and w = seiψ then what can you say about the polar form
of z + w? What about z · w?
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10. Use MatLab to calculate eiπ/3, e1−i, and e−3πi/4. [Hint: The MatLab

symbol for π is pi. The symbol for exponentiation is ^. Be sure to use
* for multiplication when appropriate.]

11. Use MatLab functions to calculate the polar form of the complex num-
bers 2−5i, 3+7i, 6+4i. [Hint: The trignometric functions in MatLab

are given by sin( ), cos( ), tan( ) and the inverse trigonometric
functions by asin( ), acos( ), and atan( ).]

12. Use MatLab to convert these complex numbers in polar form to stan-
dard rectilinear form: 4e5i, −6e−3i, 2eπ

2i.

13. Use MatLab to calculate the rectangular form of the complex numbers√
3eiπ/3,

√
8e−2π/3,

√
5eiπ/6, and

√
2e−π/3.

14. Let w = 3eiπ/3. Calculate w2, w3, 1/w and w + 1. Use MatLab if you
wish.

15. Explain why there is no complex number z such that ez = 0.

16. Suppose that z and w are complex numbers that are related by the
formula z = ew. Each of z and w corresponds to a vector in the plane.
How are these vectors related?

1.3.4 Roots of Complex Numbers

The properties of the exponential operation can be used, together with the
polar representation, to find the nth roots of a complex number.

Example 13 To find all sixth roots of 2, we let reiθ be an arbitrary sixth
root of 2 and solve for r and θ. If

(
reiθ
)6

= 2 = 2 · ei0 (1.24)

or
r6ei6θ = 2 · ei0 , (1.25)

then it follows that r = 21/6 ∈ R and θ = 0 solve this equation. So the real
number 21/6 · ei0 = 21/6 is a sixth root of two. This is not terribly surprising,
but we are not finished.
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We may also solve
r6ei6θ = 2 = 2 · e2πi. (1.26)

Notice that we are taking advantage of the ambiguity built into the polar
representation: The number 2 may be written as 2 · ei0, but it may also be
written as 2 · e2πi or as 2 · e4πi, and so forth.

Hence
r = 21/6 , θ = 2π/6 = π/3. (1.27)

This gives us the number

21/6eiπ/3 = 21/6
(
cos π/3 + i sinπ/3

)
= 21/6

(
1

2
+ i

√
3

2

)
(1.28)

as a sixth root of two. Similarly, we can solve

r6ei6θ = 2 · e4πi

r6ei6θ = 2 · e6πi

r6ei6θ = 2 · e8πi

r6ei6θ = 2 · e10πi

to obtain the other four sixth roots of 2:

21/6

(
−1

2
+ i

√
3

2

)
(1.29)

−21/6 (1.30)

21/6

(
−1

2
− i

√
3

2

)
(1.31)

21/6

(
1

2
− i

√
3

2

)
. (1.32)

These are in fact all the sixth roots of 2.

Remark: Notice that, in the last example, the process must stop after six
roots. For if we solve

r6ei6θ = 2 · e12πi ,
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then we find that r = 21/6 as usual and θ = 2π. This yields the complex root

z = 21/6 · e2πi = 11/6 ,

and that simply repeats the first root that we found. If we were to continue
with 14πi, 16πi, and so forth, we would just repeat the other roots.

Example 14 Let us find all third roots of i. We begin by writing i as

i = eiπ/2. (1.33)

Solving the equation
(reiθ)3 = i = eiπ/2 (1.34)

then yields r = 1 and θ = π/6.
Next, we write i = ei5π/2 and solve

(reiθ)3 = ei5π/2 (1.35)

to obtain that r = 1 and θ = 5π/6.
Finally we write i = ei9π/2 and solve

(reiθ)3 = ei9π/2 (1.36)

to obtain that r = 1 and θ = 9π/6 = 3π/2.
In summary, the three cube roots of i are

eiπ/6 =

√
3

2
+ i

1

2
,

ei5π/6 = −
√

3

2
+ i

1

2
,

ei3π/2 = −i .

It is worth taking the time to sketch the six sixth roots of 2 (from Example
13) on a single set of axes. Also sketch all the third roots of i on a single
set of axes. Observe that the six sixth roots of 2 are equally spaced about a
circle that is centered at the origin and has radius 21/6. Likewise, the three
cube roots of i are equally spaced about a circle that is centered at the origin
and has radius 1.



1.3. THE EXPONENTIAL AND APPLICATIONS 25

1

i

/4

Figure 1.10: The argument of 1 + i.

1.3.5 The Argument of a Complex Number

The (nonunique) angle θ associated to a complex number z 6= 0 is called its
argument, and is written arg z. For instance, arg(1 + i) = π/4. See Figure
1.10. But it is also correct to write arg(1+ i) = 9π/4, 17π/4,−7π/4, etc. We
generally choose the argument θ to satisfy 0 ≤ θ < 2π. This is the principal
branch of the argument—see Sections 2.5, 5.5 where the idea is applied to
good effect.

Under multiplication of complex numbers (in polar form), arguments are
additive and moduli multiply. That is, if z = reiθ and w = seiψ, then

z · w = reiθ · seiψ = (rs) · ei(θ+ψ). (1.37)

1.3.6 Fundamental Inequalities

We next record a few inequalities.

The Triangle Inequality: If z,w ∈ C, then

|z + w| ≤ |z|+ |w|. (1.38)
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More generally, ∣∣∣∣∣
n∑

j=1

zj

∣∣∣∣∣ ≤
n∑

j=1

|zj|. (1.39)

For the verification of (1.38), square both sides. We obtain

|z + w|2 ≤ (|z| + |w|)2

or

(z + w) · (z + w) ≤ (|z| + |w|)2 .

Multiplying this out yields

|z|2 + zw + wz + |w|2 ≤ |z|2 + 2|z||w| + |w|2 .

Cancelling like terms yields

2Re (zw) ≤ 2|z||w|

or

Re (zw) ≤ |z||w| .

It is convenient to rewrite this as

Re (zw) ≤ |zw| . (1.40)

But it is true, for any complex number ζ, that |Re ζ| ≤ |ζ|. Our argument
runs both forward and backward. So (1.40) implies (1.38). This establishes
the basic triangle inequality.

To give an idea of why the more general triangle inequality is true, con-
sider just three terms. We have

|z1 + z2 + z3| = |z1 + (z2 + z3)|
≤ |z1| + |z2 + z3|
≤ |z1| + (|z2| + |z3|) ,

thus establishing the general result for three terms. The full inequality for n
terms is proved similarly.
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The Cauchy-Schwarz Inequality: If z1, . . . , zn and w1, . . . , wn are com-
plex numbers, then

∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣

2

≤
[

n∑

j=1

|zj|2
]
·
[

n∑

j=1

|wj|2
]
. (1.41)

To understand why this inequality is true, let us begin with some special
cases. For just one summand, the inequality says that

|z1w1|2 ≤ |z1|2|w1|2 ,

which is clearly true. For two summands, the inequality asserts that

|z1w1 + z2w2|2 ≤ (|z1|2 + |z2|2) · (|w1|2 + |w2|2) .

Multiplying this out yields

|z1w1|2+2Re (z1w1z2w2)+|z2w2|2 ≤ |z1|2|w1|2+|z1|2|w2|2+|z2|2|w1|2+|z2|2|w2|2 .

Cancelling like terms, we have

2Re (z1w1z2w2) ≤ |z1|2|w2|2 + |z2|2|w1|2 .

But it is always true, for a, b ≥ 0, that 2ab ≤ a2 + b2. Hence

2Re (z1w1z2w2) ≤ 2|z1w2||z2w1| ≤ |z1w2|2 + |z2w1|2 .

The result for n terms is proved similarly.

Exercises

1. Find all the third roots of 3i.

2. Find all the sixth roots of −1.

3. Find all the fourth roots of −5i.

4. Find all the fifth roots of −1 + i.

5. Find all third roots of 3 − 6i.
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6. Find all arguments of each of these complex numbers: i, 1+i, −1+i
√

3,
−2 − 2i,

√
3 − i.

7. If z is any complex number then explain why

|z| ≤ |Re z| + |Im z| .

8. If z is any complex number then explain why

|Re z| ≤ |z| and |Im z| ≤ |z| .

9. If z,w are any complex numbers then explain why

|z + w| ≥ |z| − |w| .

10. If
∑

n |zn|2 <∞ and
∑

n |wn|2 <∞ then explain why
∑

n |znwn| <∞.

11. Use MatLab to find all cube roots of i. Now calculate those roots by
hand. [Hint: Use a fractional power, together with ^, to determine
the roots of any number.] Use MatLab to take suitable third powers
to check your work.

12. Use MatLab to find all the square roots and all the fourth roots of
1+ i. Now perform the same calculation by hand. Use MatLab to take
suitable second and fourth powers to check your work.

13. Use MatLab to calculate
√

1 − 4i + 3
√

3 − i .

It would be quite complicated to calculate this number in the form
a + ib by hand, but you may wish to try. [Hint: There is a compli-
cation lurking in the background here. Any complex number except
0 has multiple roots. This is because of a built-in ambiguity in the
definition of the logarithm—see Section 2.5. You need not worry about
this subtlety now, but it may affect the answer(s) that MatLab gives
you.]

14. Use MatLab to calculate the square root of

z = eiπ/3 + 2e−iπ/4 .
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15. Find the polar form of the complex number z = −1. Find all fourth
roots of −1.

16. The Cauchy-Schwarz inequality has an interpretation in terms of vec-
tors. What is it? What does the inequality say about the cosine of an
angle?





Chapter 2

The Relationship of
Holomorphic and Harmonic
Functions

2.1 Holomorphic Functions

2.1.1 Continuously Differentiable and Ck Functions

Holomorphic functions are a generalization of complex polynomials. But
they are more flexible objects than polynomials. The collection of all poly-
nomials is closed under addition and multiplication. However, the collection
of all holomorphic functions is closed under reciprocals, division, inverses,
exponentiation, logarithms, square roots, and many other operations as well.

There are several different ways to introduce the concept of holomorphic
function. They can be defined by way of power series, or using the complex
derivative, or using partial differential equations. We shall touch on all these
approaches; but our initial definition will be by way of partial differential
equations.

If U ⊆ R2 is a region and f : U → R is a continuous function, then f is
called C1 (or continuously differentiable) on U if ∂f/∂x and ∂f/∂y exist and
are continuous on U. We write f ∈ C1(U) for short.

More generally, if k ∈ {0, 1, 2, ...}, then a real-valued function f on U is
called Ck (k times continuously differentiable) if all partial derivatives of f
up to and including order k exist and are continuous on U. We write in this
case f ∈ Ck(U). In particular, a C0 function is just a continuous function.

31
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We say that a function is C∞ if it is Ck for every k. Such a function is called
infinitely differentiable.

Example 15 Let D ⊆ C be the unit disc, D = {z ∈ C : |z| < 1}. The
function ϕ(z) = |z|2 = x2 + y2 is Ck for every k. This is so just because we
may differentiate ϕ as many times as we please, and the result is continuous.
In this circumstance we sometimes write ϕ ∈ C∞.

By contrast, the function ψ(z) = |z| is not even C1. For the restriction

of ψ to the real axis is ψ̃(x) = |x|, and this function is well known not to be
differentiable at x = 0.

A function f = u+ iv : U → C is called Ck if both u and v are Ck.

2.1.2 The Cauchy-Riemann Equations

If f is any complex-valued function, then we may write f = u+ iv, where u
and v are real-valued functions.

Example 16 Consider

f(z) = z2 = (x2 − y2) + i(2xy); (2.1)

in this example u = x2 − y2 and v = 2xy. We refer to u as the real part of f
and denote it by Re f ; we refer to v as the imaginary part of f and denote it
by Im f .

Now we formulate the notion of “holomorphic function” in terms of the
real and imaginary parts of f :

Let U ⊆ C be a region and f : U → C a C1 function. Write

f(z) = u(x, y) + iv(x, y), (2.2)

with u and v real-valued functions. Of course z = x+ iy as usual. If u and
v satisfy the equations

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
(2.3)
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at every point of U , then the function f is said to be holomorphic (see
Section 2.1.4, where a more formal definition of “holomorphic” is provided).
The first order, linear partial differential equations in (2.3) are called the
Cauchy-Riemann equations. A practical method for checking whether a given
function is holomorphic is to check whether it satisfies the Cauchy-Riemann
equations. Another practical method is to check that the function can be
expressed in terms of z alone, with no z’s present (see Section 2.1.3).

Example 17 Let f(z) = z2 − z. Then we may write

f(z) = (x+ iy)2 − (x+ iy) = (x2 − y2 − x) + i(2xy− y) ≡ u(x, y)+ iv(x, y) .

Then we may check directly that

∂u

∂x
= 2x − 1 =

∂v

∂y

and
∂v

∂x
= 2y = −∂u

∂y
.

We see, then, that f satisfies the Cauchy-Riemann equations so it is
holomorphic. Also observe that f may be expressed in terms of z alone, with
no zs.

Example 18 Define

g(z) = |z|2−4z+2z = z·z−4z+2z = (x2+y2−2x)+i(−6y) ≡ u(x, y)+iv(x, y) .

Then
∂u

∂x
= 2x− 2 6= −6 =

∂v

∂y
.

Also
∂v

∂x
= 0 6= −2y = −∂u

∂y
.

We see that both Cauchy-Riemann equations fail. So g is not holomorphic.
We may also observe that g is expressed both in terms of z and z—another
sure indicator that this function is not holomorphic.
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2.1.3 Derivatives

We define, for f = u+ iv : U → C a C1 function,

∂

∂z
f ≡ 1

2

(
∂

∂x
− i

∂

∂y

)
f =

1

2

(
∂u

∂x
+
∂v

∂y

)
+
i

2

(
∂v

∂x
− ∂u

∂y

)
(2.4)

and

∂

∂z
f ≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
f =

1

2

(
∂u

∂x
− ∂v

∂y

)
+
i

2

(
∂v

∂x
+
∂u

∂y

)
. (2.5)

If z = x+ iy, z = x− iy, then one can check directly that

∂

∂z
z = 1 ,

∂

∂z
z = 0 , (2.6)

∂

∂z
z = 0 ,

∂

∂z
z = 1. (2.7)

In traditional multivariable calculus, the partial derivatives ∂/∂x and
∂/∂y span all directions in the plane: any directional derivative can be ex-
pressed in terms of ∂/∂x and ∂/∂y. Put in other words, if f is a continously
differentiable function in the plane, if ∂f/∂x ≡ 0 and ∂f/∂y ≡ 0, then all
directional derivatives of f are identically 0. Hence f is constant. So it is
with ∂/∂z and ∂/∂z. If ∂f/∂z ≡ 0 and ∂f/∂z ≡ 0 then all directional
derivatives of f are identically 0. Hence f is constant.

The partial derivatives ∂/∂z and ∂/∂z are most convenient for complex
analysis because they interact naturally with the complex coordinate func-
tions z and z (as noted above). And, because of the Cauchy-Riemann equa-
tions, they characterize holomorphic functions. Just as a function that sat-
isfies ∂f/∂x ≡ 0 is a function that is independent of x, so it is the case that
a function that satisfies ∂f/∂z ≡ 0 is independent of z; it only depends on
z. Thus it is holomorphic.

Of course

x =
z + z

2
and y =

z − z

2i
.

We may use this information, together with

∂

∂z
=
∂x

∂z
· ∂
∂x

+
∂y

∂z
· ∂
∂y

,

to derive the formula for ∂/∂z and likewise for ∂/∂z.
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If a C1 function f satisfies ∂f/∂z ≡ 0 on an open set U , then f does
not depend on z (but it can depend on z). If instead f satisfies ∂f/∂z ≡ 0
on an open set U , then f does not depend on z (but it does depend on
z). The condition ∂f/∂z ≡ 0 is just a reformulation of the Cauchy-Riemann
equations—see Section 2.1.2. Thus ∂f/∂z ≡ 0 if and only if f is holomorphic.
We work out the details of this claim in Section 2.1.4. Now we look at some
examples to illustrate the new ideas.

Example 19 Review Example 17. Now let us examine that same function
using our new criterion with the operator ∂/∂z. We have

∂

∂z
f(z) =

∂

∂z

(
z2 − z

)
= 2z

∂z

∂z
− ∂z

∂z
= 0 − 0 = 0 .

We conclude that f is holomorphic.

Example 20 Review Example 18. Now let us examine that same function
using our new criterion with the operator ∂/∂z. We have

∂

∂z
g(z) =

∂

∂z

(
|z|2 − 4z + 2z

)
=

∂

∂z

(
z · z − 4z + 2z

)
= z + 2 6= 0 .

We conclude that g is not holomorphic.

It is sometimes useful to express the derivatives ∂/∂z and ∂/∂z in polar
coordinates. Recall that

r2 = x2 + y2 , x = r cos θ , y = r sin θ .

Now notices that
∂

∂x
=
∂r

∂x
· ∂
∂r

+
∂θ

∂x
· ∂
∂θ

=
x

r
· ∂
∂r

− y

r2
· ∂
∂θ

= cos θ
∂

∂r
− sin θ

r
· ∂
∂θ

.

A similar calculation shows that
∂

∂y
= sin θ · ∂

∂r
+

cos θ

r
· ∂
∂θ

.

As a result, we see that

∂

∂z
=

1

2

(
cos θ · ∂

∂r
− sin θ

r
· ∂
∂θ

)
− i

2

(
sin θ · ∂

∂r
+

cos θ

r
· ∂
∂θ

)

and

∂

∂z
=

1

2

(
cos θ · ∂

∂r
− sin θ

r
· ∂
∂θ

)
+
i

2

(
sin θ · ∂

∂r
+

cos θ

r
· ∂
∂θ

)
.

We invite the reader to write z = reiθ = r cos θ + ir sin θ and check directly
(in polar coordinates) that ∂z/∂z ≡ 1. Likewise verify that ∂z/∂z ≡ 1.
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2.1.4 Definition of a Holomorphic Function

Functions f that satisfy (∂/∂z)f ≡ 0 are the main concern of complex anal-
ysis. A continuously differentiable (C1) function f : U → C defined on an
open subset U of C is said to be holomorphic if

∂f

∂z
= 0 (2.8)

at every point of U. Note that this last equation is just a reformulation of
the Cauchy-Riemann equations (Section 2.1.2). To see this, we calculate:

0 =
∂

∂z
f(z)

=
1

2

(
∂

∂x
+ i

∂

∂y

)
[u(z) + iv(z)]

=

[
∂u

∂x
− ∂v

∂y

]
+ i

[
∂u

∂y
+
∂v

∂x

]
. (2.9)

Of course the far right-hand side cannot be identically zero unless each of its
real and imaginary parts is identically zero. It follows that

∂u

∂x
− ∂v

∂y
= 0 (2.10)

and
∂u

∂y
+
∂v

∂x
= 0. (2.11)

These are the Cauchy-Riemann equations (2.3).

Example 21 The function h(z) = z3 − 4z2 + z is holomorphic because

∂

∂z
h(z) = 3z2∂z

∂z
− 4 · 2z∂z

∂z
+
∂z

∂z
= 0 .

2.1.5 Examples of Holomorphic Functions

Certainly any polynomial in z (without z) is holomorphic. And the reciprocal
of any polynomial is holomorphic, as long as we restrict attention to a region
where the polynomial does not vanish.
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Earlier in this book we have discussed the complex function

ez =
∞∑

n=0

zn

n!
.

One may calculate directly, just differentiating the power series term-by-term,
that

∂

∂z
ez = ez .

In addition,
∂

∂z
ez = 0 ,

so the exponential function is holomorphic.
Of course we know, and we have already noted, that

ex+iy = ex(cos y + i sin y) .

When x = 0 this gives Euler’s famous formula

eiy = cos y + i sin y .

It follows immediately that

cos y =
eiy + e−iy

2

and

sin y =
eiy − e−iy

2i
.

We explore other derivations of Euler’s formula in the exercises.
In analogy with these basic formulas from calculus, we now define complex-

analytic versions of the trigonometric functions:

cos z =
eiz + e−iz

2

and

sin z =
eiy − e−iy

2i
.

The other trigonometric functions are defined in the usual way. For ex-
ample,

tan z =
sin z

cos z
.

We may calculate directly that
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(a)
∂

∂z
sin z = cos z;

(b)
∂

∂z
cos z = − sin z;

(c)
∂

∂z
tan z =

1

cos2 z
≡ sec2 z .

All of the trigonometric functions are holomorphic on their domains of defi-
nition. We invite the reader to verify this assertion.

It is straightforward to check that sums, products, and quotients of holo-
morphic functions are holomorphic (provided that we do not divide by 0).
Any convergent power series—in powers of z only—defines a holomorphic
function (just differentiate under the summation sign). We shall see later
that holomorphic functions may be defined with integrals as well. So we now
have a considerable panorama of holomorphic functions.

2.1.6 The Complex Derivative

Let U ⊆ C be open, P ∈ U, and g : U \ {P} → C a function. We say that

lim
z→P

g(z) = ` , ` ∈ C , (2.12)

if, for any ε > 0 there is a δ > 0 such that when z ∈ U and 0 < |z − P | < δ
then |g(z) − `| < ε. Notice that, in this definition of limit, the point z may
approach P in an arbitrary manner—from any direction. See Figure 2.1. Of
course the function g is continuous at P ∈ U if limz→P g(z) = g(P ).

We say that f possesses the complex derivative at P if

lim
z→P

f(z) − f(P )

z − P
(2.13)

exists. In that case we denote the limit by f ′(P ) or sometimes by

df

dz
(P ) or

∂f

∂z
(P ). (2.14)

This notation is consistent with that introduced in Section 2.1.3: for a holo-
morphic function, the complex derivative calculated according to formula
(2.13) or according to formula (2.4) is just the same. We shall say more
about the complex derivative in Section 2.2.1 and Section 2.2.2.
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Figure 2.1: The point z may approach P arbitrarily.

We repeat that, in calculating the limit in (2.13), z must be allowed
to approach P from any direction (refer to Figure 2.1). As an example,
the function g(x, y) = x − iy—equivalently, g(z) = z—does not possess the
complex derivative at 0. To see this, calculate the limit

lim
z→P

g(z) − g(P )

z − P
(2.15)

with z approaching P = 0 through values z = x+ i0. The answer is

lim
x→0

x− 0

x− 0
= 1. (2.16)

If instead z is allowed to approach P = 0 through values z = iy, then the
value is

lim
z→P

g(z) − g(P )

z − P
= lim

y→0

−iy − 0

iy − 0
= −1. (2.17)

Observe that the two answers do not agree. In order for the complex deriva-
tive to exist, the limit must exist and assume only one value no matter how
z approaches P . Therefore this example g does not possess the complex
derivative at P = 0. In fact a similar calculation shows that this function g
does not possess the complex derivative at any point.

If a function f possesses the complex derivative at every point of its open
domain U , then f is holomorphic. This definition is equivalent to definitions
given in Section 2.1.4. We repeat some of these ideas in Section 2.2. In fact,
from an historical perspective, it is important to recall a theorem of Goursat
(see the Appendix in [GRK]). Goursat’s theorem has great historical and
philosophical significance, though it rarely comes up as a practical matter
in complex function theory. We present it here in order to give the student
some perspective. Goursat’s result says that if a function f possesses the
complex derivative at each point of an open region U ⊆ C then f is in fact



40 CHAPTER 2. HOLOMORPHIC AND HARMONIC FUNCTIONS

continuously differentiable1 on U . One may then verify the Cauchy-Riemann
equations, and it follows that f is holomorphic by any of our definitions thus
far.

2.1.7 Alternative Terminology for Holomorphic

Functions

Some books use the word “analytic” instead of “holomorphic.” Still others
say “differentiable” or “complex differentiable” instead of “holomorphic.”
The use of the term “analytic” derives from the fact that a holomorphic
function has a local power series expansion about each point of its domain
(see Section 4.1.6). In fact this power series property is a complete character-
ization of holomorphic functions; we shall discuss it in detail below. The use
of “differentiable” derives from properties related to the complex derivative.
These pieces of terminology and their significance will all be sorted out as
the book develops. Somewhat archaic terminology for holomorphic functions,
which may be found in older texts, are “regular” and “monogenic.”

Another piece of terminology that is applied to holomorphic functions
is “conformal” or “conformal mapping.” “Conformality” is an important
geometric property of holomorphic functions that make these functions useful
for modeling incompressible fluid flow (Sections 8.2.2 and 8.3.3) and other
physical phenomena. We shall discuss conformality in Section 2.4.1 and
Chapter 7. We shall treat physical applications of conformality in Chapter
8.

Exercises

1. Verify that each of these functions is holomorphic whereever it is de-
fined:

(a) f(z) = sin z − z2

z + 1

1A more classical formulation of the result is this. If f possesses the complex derivative
at each point of the region U , then f satisfies the Cauchy integral theoreom (see Section
3.1.1 below). This is sometimes called the Cauchy-Goursat theorem. That in turn implies
the Cauchy integral formula (Section 3.1.4). And this result allows us to prove that f is
continuously differentiable (indeed infinitely differentiable).
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(b) g(z) = e2z−z3 − z2

(c) h(z) =
cos z

z2 + 1

(d) k(z) = z(tan z + z)

2. Verify that each of these functions is not holomorphic:

(a) f(z) = |z|4 − |z|2

(b) g(z) =
z

z2 + 1

(c) h(z) = z(z2 − z)

(d) k(z) = z · (sin z) · (cos z)

3. For each function f , calculate ∂f/∂z:

(a) 2z(1 − z3)

(b) (cos z) · (1 + sin2 z)

(c) (sin z)(1 + z cos z)

(d) |z|4 − |z|2

4. For each function g, calculate ∂g/∂z:

(a) 2z(1 − z3)

(b) (sin z) · (1 + sin2 z)

(c) (cos z) · (1 + z cos z)

(d) |z|2 − |z|4

5. Verify the equations

∂

∂z
z = 1 ,

∂

∂z
z = 0 ,

∂

∂z
z = 0 ,

∂

∂z
z = 1.

6. Show that, in polar coordinates, the Cauchy-Riemann equations take
the form

r · ur = vθ and rvr = −uθ .
Here, of course, subscripts denote derivatives.
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7. It is known that the solution y of a second order, linear ordinary differ-
ential equation with constant coefficients and satisfying y(0) = 1 and
y′(0) = i is unique. Let the differential equation be y′′ = −y. Verify
that the function f(x) = eix satisfies all three conditions. Also verify
that the function g(x) = cos x+ i sinx satisfies all three conditions. By
uniqueness, f(x) ≡ g(x). That gives another proof of Euler’s formula.

8. Both of the expressions f(x) = eix and g(x) = cos x + i sinx take the
value 1 at 0. Also both expressions are invariant under rotations in a
certain sense. From this it must follow that f ≡ g. This gives another
proof of Euler’s formula. Fill in the details of this argument.

9. Calculate the derivative

∂

∂z
[tan z − e3z] .

10. Calculate the derivative

∂

∂z
[sin z − zz2] .

11. Find a function g such that

∂g

∂z
= zz2 − sin z .

12. Find a function h such that

∂h

∂z
= z2z3 + cos z .

13. Find a function k such that

∂2k

∂z∂z
= |z|2 − sin z + z3 .

14. From the definition (line (2.13)), calculate

d

dz
(z3 − z2) .
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15. From the definition (line (2.13)), calculate

d

dz
(sin z − ez) .

16. The software MatLab does not know the partial differential operators

∂

∂z
and

∂

∂z
.

But you may define MatLab functions (see [PRA, p. 35]) to calculate
them as follows:

function [zderiv] = ddz(f,x,y,z)

syms x y real;

syms z complex;

z = x + i*y;

z_deriv = (diff(f, ’x’))/2 - (diff(f, ’y’))*i/2

and

function [zbarderiv] = ddzbar(f)

syms x y real;

syms z complex;

z = x + i*y;

zbar_deriv = (diff(f, ’x’))/2 + (diff(f, ’y’))*i/2

You must give the first macro file the name ddz.m and the second macro
file the name ddzbar.m. With these macros in place you can proceed
as follows. At the MatLab prompt >>, type these commands (following
each one by <Enter>):
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>> syms x y real

>> syms z complex

>> z = x + i*y

This gives MatLab the information it needs in order to do complex
calculus. Now let us define a function:

>> f = z^2

Finally type ddz(f) and press <Enter> . MatLab will produce an
answer (that is equivalent to) 2*(x + iy). What you have just done
is differentiated z2 with respect to z and obtained the answer 2z. If
instead you type, at the MatLab prompt, ddzbar(f), you will obtain
an answer (that is equivalent to) 0. That is because the macro ddzbar

performs differentiation with respect to z.

For practice, use your new MatLab macros to calculate several other
complex derivatives. [Remember that the MatLab command for z is
conj(z).] For example, try

∂

∂z
z2 · z3 ,

∂

∂z
sin(z · z) , ∂

∂z
cos(z2 · z3) ,

∂

∂z
ez·z

2

.

17. The function f(z) = z2 − z3 is holomorphic. Why? It has real part u
that describes a steady state flow of heat on the unit disc. Calculate
this real part. Verify that u satisfies the partial differential equation

∂

∂z

∂

∂z
u(z) ≡ 0 .

This is the Laplace equation. We shall study it in greater detail as the
book progresses.

18. Do the last exercise with “real part” u replaced by “imaginary part” v.
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2.2 The Relationship of Holomorphic and

Harmonic Functions

2.2.1 Harmonic Functions

A C2 (twice continuously differentiable) function u is said to be harmonic if
it satisfies the equation

(
∂2

∂x2
+

∂2

∂y2

)
u = 0. (2.18)

This partial differential equation is called Laplace’s equation, and is fre-
quently abbreviated as

4u = 0. (2.19)

Example 22 The function u(x, y) = x2 − y2 is harmonic. This assertion
may be verified directly:

4u =

(
∂2

∂x2
+

∂2

∂y2

)
u =

(
∂2

∂x2

)
x2 −

(
∂2

∂y2

)
y2 = 2 − 2 = 0 .

A similar calculation shows that v(x, y) = 2xy is harmonic. For

4v =

(
∂2

∂x2
+

∂2

∂y2

)
2xy = 0 + 0 = 0 .

Example 23 The function ũ(x, y) = x3 is not harmonic. For

4ũ =

(
∂2

∂x2
+

∂2

∂y2

)
u =

(
∂2

∂x2
+

∂2

∂y2

)
x3 = 6x 6= 0 .

Likewise, the function ṽ(x, y) = sinx− cos y is not harmonic. For

4ṽ =

(
∂2

∂x2
+

∂2

∂y2

)
ṽ =

(
∂2

∂x2
+

∂2

∂y2

)
[sinx− cos y] = − sinx+ cos y 6= 0 .
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2.2.2 Holomorphic and Harmonic Functions

If f is a holomorphic function and f = u+ iv is the expression of f in terms
of its real and imaginary parts, then both u and v are harmonic. The easiest
way to see this is to begin with the equation

∂

∂z
f = 0 (2.20)

and to apply ∂/∂z to both sides. The result is

∂

∂z

∂

∂z
f = 0 (2.21)

or (
1

2

[
∂

∂x
− i

∂

∂y

])(
1

2

[
∂

∂x
+ i

∂

∂y

])
[u+ iv] = 0 . (2.22)

Multiplying through by 4, and then multiplying out the derivatives, we find
that (

∂2

∂x2
+

∂2

∂y2

)
[u+ iv] = 0 . (2.23)

We may now distribute the differentiation and write this as
(
∂2

∂x2
+

∂2

∂y2

)
u + i

(
∂2

∂x2
+

∂2

∂y2

)
v = 0 . (2.24)

The only way that the left-hand side can be zero is if its real part is zero and
its imaginary part is zero. We conclude then that

(
∂2

∂x2
+

∂2

∂y2

)
u = 0 (2.25)

and (
∂2

∂x2
+

∂2

∂y2

)
v = 0 . (2.26)

Thus u and v are each harmonic.

Example 24 Let f(z) = (z+z2)2. Then f is certainly holomorphic because
it is defined using only zs, and no zs. Notice that

f(z) = z4 + 2z3 + z2

= [x4 − 6x2y2 + y4 + 2x3 − 6xy2 + x2 − y2]

+i[−4xy3 + 4x3y + 6x2y − 2y3 + 2xy]

≡ u+ iv .
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We may check directly that

4u = 0 and 4 v = 0 .

Hence the real and imaginary parts of f are each harmonic.

A sort of converse to (2.25) and (2.26) is true provided the functions
involved are defined on a domain with no holes:

If R is an open rectangle (or open disc) and if u is a real-valued
harmonic function on R, then there is a holomorphic function F
on R such that ReF = u. In other words, for such a function u
there exists another harmonic function v defined on R such that
F ≡ u+ iv is holomorphic on R. Any two such functions v must
differ by a real constant.

More generally, if U is a region with no holes (a simply con-
nected region—see Section 3.1.4), and if u is harmonic on U , then
there is a holomorphic function F on U with ReF = u. In other
words, for such a function u there exists a harmonic function v
defined on U such that F ≡ u+ iv is holomorphic on U . Any two
such functions v must differ by a constant. We call the function
v a harmonic conjugate for u.

The displayed statement is false on a domain with a hole, such as an
annulus. For example, the harmonic function u = log(x2 + y2), defined on
the annulus U = {z : 1 < |z| < 2}, has no harmonic conjugate on U . See also
Section 2.2.2. Let us give an example to illustrate the notion of harmonic
conjugate, and then we shall discuss why the displayed statement is true.

Example 25 Consider the function u(x, y) = x2 − y2 − x on the square
U = {(x, y) : |x| < 1, |y| < 1}. Certainly U is simply connected. And one
may verify directly that 4u ≡ 0 on U . To solve for v a harmonic conjugate
of u, we use the Cauchy-Riemann equations:

∂v

∂y
=

∂u

∂x
= 2x− 1 ,

∂v

∂x
= −∂u

∂y
= 2y .
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The first of these equations indicates that v(x, y) = 2xy− y+ϕ(x), for some
unknown function ϕ(x). Then

2y =
∂v

∂x
= 2y − ϕ′(x) .

It follows that ϕ′(x) = 0 so that ϕ(x) ≡ C for some real constant C.
In conclusion,

v(x, y) = 2xy − y + C .

In other words, h(x, y) = u(x, y) + iv(x, y) = [x2 − y2 − x] + i[2xy − y + C]
should be holomorphic. We may verify this claim immediately by writing h
as

h(z) = z2 − z + iC .

You may also verify that the function h in the last example is holomorphic
by checking the Cauchy-Riemann equations.

We may verify the displayed statement above just by using multivariable
calculus. Suppose that U is a region with no holes and u is a harmonic
function on U . We wish to solve the system of equations

∂v

∂x
= −∂u

∂y
∂v

∂y
=

∂u

∂x
. (2.27)

These are the Cauchy-Riemann equations.
Now we know from calculus that this system of equations can be solved

on U precisely when
∂

∂y

[
−∂u
∂y

]
=

∂

∂x

[
∂u

∂x

]
,

that is, when
∂2u

∂x2
+
∂2u

∂y2
= 0 .

Thus we see that we can solve the required system of equations (2.27)
provided only that u is harmonic. Of course we are assuming that u is
harmonic. Thus the system (2.27) gives us the needed function v, and (2.27)
also guarantees that F = u+ iv is holomorphic as desired.
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Exercises

1. Verify that each of these functions is harmonic:

(a) f(z) = Re z

(b) g(z) = x3 − 3xy2

(c) h(z) = |z|2 − 2x2

(d) k(z) = ex cos y

2. Verify that each of these functions is not harmonic:

(a) f(z) = |z|2

(b) g(z) = |z|4 − |z|2

(c) h(z) = z sin z

(d) k(z) = ez cos z

3. For each of these (real-valued) harmonic functions u, find a (real-
valued) harmonic function v such that u+ iv is holomorphic.

(a) u(z) = ex sin y

(b) u(z) = 3x2y − y3

(c) u(z) = e2y sinx cos x

(d) u(z) = x− y

4. Use the chain rule to express the Laplace operator 4 in terms of polar
coordinates (r, θ).

5. Let ρ(x, y) be a rotation of the plane. Thus ρ is given by a 2×2 matrix
with each row a unit vector and the two rows orthogonal to each other.
Further, the determinant of the matrix is 1. Prove that, for any C2

function f ,
4(f ◦ ρ) = (4f) ◦ ρ .

6. Let a ∈ R2 and let λa be the operator λa(x, y) = (x, y) + a. This is
translation by a. Verify that, for any C2 function f ,

4(f ◦ λa) = (4f) ◦ λa .
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7. A function u is biharmonic if 42u = 0. Verify that the function x4 −
y4 is biharmonic. Give two distinct other examples of non-constant
biharmonic functions. [Note that biharmonic functions are useful in
the study of charge-transfer reactions in physics.]

8. Calculate the real and imaginary parts of the holomorphic function

f(z) = z2 cos z − ez
3−z

and verify directly that each of these functions is harmonic.

9. Create a MatLab function, called lapl, that will calculate the Laplacian
of a given function. [Hint: You will find it useful to know that the
MatLab command diff(f, ’x’, 2) differentiates the function f two
times in the x variable.] Your macro should calculate the Laplacian
of a function whether it is expressed in terms of x, y or z, z. Use your
macro to calculate the Laplacians of these functions

f(x, y) = x2+y2 , f(x, y) = x2−y2 , f(x, y) = ex·cos y , f(x, y) = e−y·sinx ,

g(z) = z · z2 , g(z) =
z

z
, g(z) = z2 − z2 .

10. Consider a unit disc made of some heat-conducting metal like alu-
minum. Imagine an initial heat distribution ϕ on the boundary of
this disc, and let the heat flow to the interior of the disc. The steady
state heat distribution turns out to be a harmonic function u(x, y) with
boundary function ϕ. We shall study this matter in greater detail in
Chapter 8. See also Chapter 9.

Suppose that ϕ(eit) = cos 2t. Determine what u must be. [Hint:
Consider the function Φ(eit) = cos 2t+ i sin 2t = e2it.]

Now answer the same question for ϕ(eit) = sin 3t.

2.3 Real and Complex Line Integrals

In this section we shall recast the line integral from multivariable calculus in
complex notation. The result will be the complex line integral.
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Figure 2.2: Two curves in the plane, one closed.

2.3.1 Curves

It is convenient to think of a curve as a (continuous) function γ from a closed
interval [a, b] ⊆ R into R2 ≈ C. In practice it is useful not to distinguish
between the function γ and the image (or set of points that make up the
curve) given by {γ(t) : t ∈ [a, b]}. In the case that γ(a) = γ(b), then we say
that the curve is closed. Refer to Figure 2.2.

It is often convenient to write

γ(t) = (γ1(t), γ2(t)) or γ(t) = γ1(t) + iγ2(t). (2.28)

For example, γ(t) = (cos t, sin t) = cos t + i sin t, t ∈ [0, 2π], describes the
unit circle in the plane. The circle is traversed in a counterclockwise manner
as t increases from 0 to 2π. This curve is closed. Refer to Figure 2.3.

2.3.2 Closed Curves

We have already noted that the curve γ : [a, b] → C is called closed if
γ(a) = γ(b). It is called simple, closed (or Jordan) if the restriction of γ
to the interval [a, b) (which is commonly written γ

∣∣
[a,b)

) is one-to-one and
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Figure 2.3: A simple, closed curve.

γ(a) = γ(b) (Figures 2.3, 2.4). Intuitively, a simple, closed curve is a curve
with no self-intersections, except of course for the closing up at t = a, b.

In order to work effectively with γ we need to impose on it some differ-
entiability properties.

2.3.3 Differentiable and Ck Curves

A function ϕ : [a, b] → R is called continuously differentiable (or C1), and we
write ϕ ∈ C1([a, b]), if

(2.29) ϕ is continuous on [a, b];
(2.30) ϕ′ exists on (a, b);
(2.31) ϕ′ has a continuous extension to [a, b].

In other words, we require that

lim
t→a+

ϕ′(t) and lim
t→b−

ϕ′(t) (2.32)

both exist.
Note that, under these circumstances,

ϕ(b) − ϕ(a) =

∫ b

a

ϕ′(t) dt, (2.33)
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Figure 2.4: A closed curve that is not simple.

so that the Fundamental Theorem of Calculus holds for ϕ ∈ C1([a, b]).

A curve γ : [a, b] → C, with γ(t) = γ1(t) + iγ2(t) is said to be continuous
on [a, b] if both γ1 and γ2 are. The curve is continuously differentiable (or
C1) on [a, b], and we write

γ ∈ C1([a, b]), (2.34)

if γ1, γ2 are continuously differentiable on [a, b]. Under these circumstances
we will write

dγ

dt
=
dγ1

dt
+ i

dγ2

dt
. (2.35)

We also sometimes write γ′(t) or γ̇(t) for dγ/dt.

2.3.4 Integrals on Curves

Let ψ : [a, b] → C be continuous on [a, b]. Write ψ(t) = ψ1(t) + iψ2(t). Then
we define ∫ b

a

ψ(t) dt ≡
∫ b

a

ψ1(t) dt+ i

∫ b

a

ψ2(t) dt (2.36)

We summarize the ideas presented thus far by noting that, if γ ∈ C1([a, b])
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is complex-valued, then

γ(b) − γ(a) =

∫ b

a

γ′(t) dt. (2.37)

2.3.5 The Fundamental Theorem of Calculus along

Curves

Now we state the Fundamental Theorem of Calculus (see [BLK]) along
curves.

Let U ⊆ C be a domain and let γ : [a, b] → U be a C1 curve. If f ∈ C1(U),
then

f(γ(b)) − f(γ(a)) =

∫ b

a

(
∂f

∂x
(γ(t)) · dγ1

dt
+
∂f

∂y
(γ(t)) · dγ2

dt

)
dt. (2.38)

Note that this formula is a part of calculus, not complex analysis.

2.3.6 The Complex Line Integral

When f is holomorphic, then formula (2.38) may be rewritten (using the
Cauchy-Riemann equations) as

f(γ(b)) − f(γ(a)) =

∫ b

a

∂f

∂z
(γ(t)) · dγ

dt
(t) dt, (2.39)

where, as earlier, we have taken dγ/dt to be dγ1/dt + idγ2/dt. The reader
may write out the right-hand side of (2.39) and see that it agrees with (2.38).

This latter result plays much the same role for holomorphic functions as
does the Fundamental Theorem of Calculus for functions from R to R. The
expression on the right of (2.39) is called the complex line integral of ∂f/∂z
along γ and is denoted ∮

γ

∂f

∂z
(z) dz . (2.40)

The small circle through the integral sign
∫

tells us that this is a complex
line integral, and has the meaning (2.39).

More generally, if g is any continuous function (not neessarily holomor-
phic) whose domain contains the curve γ, then the complex line integral of
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g along γ is defined to be

∮

γ

g(z) dz ≡
∫ b

a

g(γ(t)) · dγ
dt

(t) dt. (2.41)

This is the complex line integral of g along γ. Compare with line (2.39).

Example 26 Let f(z) = z2 − 2z and let γ(t) = (cos t, sin t) = cos t+ i sin t,
0 ≤ t ≤ π. Then γ′(t) = − sin t+i cos t. This curve γ traverses the upper half
of the unit circle from the initial point (1, 0) to the terminal point (−1, 0).
We may calculate that

∮

γ

f(z) dz =

∫ π

0

f(cos t+ i sin t) · (− sin t+ i cos t) dt

=

∫ π

0

[
(cos t+ i sin t)2 − 2(cos t+ i sin t)

]
· (− sin t+ i cos t) dt

=

∫ π

0

4 cos t sin t− 3 sin t cos2 t− 2i cos 2t

−3i sin2 t cos t+ sin3 t+ i cos3 t dt

=

[
2 sin2 t+ cos3 t− i sin 2t− i sin3 t

− cos t+ i sin t+
cos3 t

3
− i

sin3 t

3

]π

0

= −2

3
.

Example 27 If we integrate the holomorphic function f from the last ex-
ample around the closed curve η(t) = (cos t, sin t), 0 ≤ t ≤ 2π, then we
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obtain

∮

η

f(z) dz =

∫ 2π

0

f(cos t+ i sin t) · (− sin t+ i cos t) dt

=

∫ 2π

0

[
(cos t+ i sin t)2 − 2(cos t+ i sin t)

]
· (− sin t+ i cos t) dt

=

∫ 2π

0

4 cos t sin t− 3 sin t cos2 t− 2i cos 2t

−3i sin2 t cos t+ sin3 t+ i cos3 t dt

=

[
2 sin2 t+ cos3 t− i sin 2t− i sin3 t

− cos t+ i sin t+
cos3 t

3
− sin3 t

3

]2π

0

= 0 .

The whole concept of complex line integral is central to our further con-
siderations in later sections. We shall use integrals like the one on the right
of (2.39) or (2.41) even when f is not holomorphic; but we can be sure that
the equality (2.39) holds only when f is holomorphic.

Example 28 Let g(z) = |z|2 and let µ(t) = t + it, 0 ≤ t ≤ 1. Let us
calculate ∮

µ

g(z) dz .

We have

∮

µ

g(z) dz =

∫ 1

0

g(t+ it) ·µ′(t) dt =

∫ 1

0

2t2 · (1+ i)dt =
2t3

3
(1+ i)

∣∣∣∣
1

0

=
2 + 2i

3
.

2.3.7 Properties of Integrals

We conclude this section with some easy but useful facts about integrals.
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(A) If ϕ : [a, b] → C is continuous, then

∣∣∣∣
∫ b

a

ϕ(t) dt

∣∣∣∣ ≤
∫ b

a

|ϕ(t)| dt.

(B) If γ : [a, b] → C is a C1 curve and ϕ is a continuous function on the
curve γ, then ∣∣∣∣

∮

γ

ϕ(z) dz

∣∣∣∣ ≤
[
max
t∈[a,b]

|ϕ(t)|
]
· `(γ) , (2.42)

where

`(γ) ≡
∫ b

a

|ϕ′(t)| dt

is the length of γ.

(C) The calculation of a complex line integral is independent of the way in
which we parametrize the path:

Let U ⊆ C be an open set and F : U → C a continuous
function. Let γ : [a, b] → U be a C1 curve. Suppose that
ϕ : [c, d] → [a, b] is a one-to-one, onto, increasing C1 function
with a C1 inverse. Let γ̃ = γ ◦ ϕ. Then

∮

γ̃

f dz =

∮

γ

f dz.

This last statement implies that one can use the idea of the integral of a
function f along a curve γ when the curve γ is described geometrically but
without reference to a specific parametrization. For instance, “the integral of
z counterclockwise around the unit circle {z ∈ C : |z| = 1}” is now a phrase
that makes sense, even though we have not indicated a specific parametriza-
tion of the unit circle. Note, however, that the direction counts: The integral
of z counterclockwise around the unit circle is 2πi. If the direction is reversed,
then the integral changes sign: The integral of z clockwise around the unit
circle is −2πi.
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Example 29 Let g(z) = z2 − z and γ(t) = t2 − it, 0 ≤ t ≤ 1. Then

∮

γ

g(z) dz =

∫ 1

0

g(t2 − it) · γ′(t) dt

=

∫ 1

0

[(t2 − it)2 − (t2 − it)] · (2t− i) dt

=

∫ 1

0

[t4 − 2it3 − 2t2 + it] · (2t− i) dt

=

∫ 1

0

2t5 − 5it4 − 6t3 + 4it2 + t dt

=

[
2t6

6
− 5it5

5
− 6t4

4
+

4it3

3
+
t2

2

]1

0

=
1

3
− i− 3

2
+

4i

3
+

1

2

= −2

3
+
i

3
.

If instead we replace γ by −γ (which amounts to parametrizing the curve
from 1 to 0 instead of from 0 to 1) then we obtain

∮

−γ
g(z) dz =

∫ 0

1

g(t2 − it) · γ′(t) dt

=

∫ 0

1

[(t2 − it)2 − (t2 − it)] · (2t− i) dt

=

∫ 0

1

[t4 − 2it3 − 2t2 + it] · (2t− i) dt

=

∫ 0

1

2t5 − 5it4 − 6t3 + 4it2 + t dt

=

[
2t6

6
− 5it5

5
− 6t4

4
+

4it3

3
+
t2

2

]0

1

= −
(

1

3
− i− 3

2
+

4i

3
+

1

2

)

=
2

3
− i

3
.
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Exercises

1. In each of the following problems, calculate the complex line integral
of the given function f along the given curve γ:

(a) f(z) = zz2 − cos z , γ(t) = cos 2t+ i sin 2t , 0 ≤ t ≤ π/2

(b) f(z) = z2 − sin z , γ(t) = t+ it2 , 0 ≤ t ≤ 1

(c) f(z) = z3 + z
z+1

, γ(t) = et + ie2t , 1 ≤ t ≤ 2

(d) f(z) = ez − e−z , γ(t) = t− i log t , 1 ≤ t ≤ e

2. Calculate the complex line integral of the holomorphic function f(z) =
z2 along the counterclockwise-oriented square of side 2, with sides par-
allel to the axes, centered at the origin.

3. Calculate the complex line integral of the function g(z) = 1/z along
the counterclockwise-oriented square of side 2, with sides parallel to
the axes, centered at the origin.

4. Calculate the complex line integral of the holomorphic function f(z) =
zk, k = 0, 1, 2, . . . , along the curve γ(t) = cos t + i sin t, 0 ≤ t ≤ π.
Now calculate the complex line integral of the same function along the
curve µ(t) = cos t− i sin t, 0 ≤ t ≤ π. Verify that, for each fixed k, the
two answers are the same.

5. Verify that the conclusion of the last exercise is false if we take k = −1.

6. Verify that the conclusion of Exercise 4 is still true if we take k =
−2,−3,−4, . . . .

7. Suppose that f is a continuous function with complex antiderivative
F . This means that ∂F/∂z = f on the domain of definition. Let γ be
a continuously differentiable, closed curve in the domain of f . Prove
that ∮

γ

f(z) dz = 0 .

8. If f is a function and γ is a curve and
∮
γ
f(z) dz = 0 then does it follow

that
∮
f2(z) dz = 0?

9. Use the script
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function [w] = cplxln(f,g,a,b)

syms t real;

syms z complex;

gd = diff(g, ’t’);

fg = subs(f, z, g);

xyz = fg*gd;

cplxlineint = int(xyz,t,a,b)

to create a function that calculates the complex line integral of the
complex function f over the curve parametrized by g. Notice the fol-
lowing:

• The complex function is called f ;

• The curve is g : [a, b] → C.

• The file must be called cplxln.m.

After you have this code entered and the file installed, test it out by
entering

>> syms t real;

>> syms z complex;

>> f = z^2

>> g = cos(t) + i*sin(t)

>> a = 0

>> b = 2*pi

>> cplxln(f,g,a,b)

Notice that we are entering the function f(z) = z2 and integrating over
the curve g : [0, 2π] → C given by g(t) = cos t + i sin t. You should
obtain the answer 0 because the f that you have entered is holomorphic.

Now try f = conj(z). This time you will obtain the answer 2*pi*i

because f is now the conjugate holomorphic function z. Finally, apply
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the function cplxln to the function f = 1/z on the same curve. What
answer do you obtain? Why?

10. If F is a vector field in the plane and γ a curve then
∮
γ
F dr represents

the work performed while traveling along the curve and resisting the
force F. Interpret the complex line integral in this language.

2.4 Complex Differentiability and

Conformality

2.4.1 Conformality

Now we make some remarks about “conformality.” Stated loosely, a function
is conformal at a point P ∈ C if the function “preserves angles” at P and
“stretches equally in all directions” at P. Both of these statements must be
interpreted infinitesimally; we shall learn to do so in the discussion below.
Holomorphic functions enjoy both properties:

Let f be holomorphic in a neighborhood of P ∈ C. Let w1, w2

be complex numbers of unit modulus. Consider the directional
derivatives

Dw1f(P ) ≡ lim
t→0

f(P + tw1) − f(P )

t
(2.43)

and

Dw2f(P ) ≡ lim
t→0

f(P + tw2) − f(P )

t
. (2.44)

Then

(2.45) |Dw1f(P )| = |Dw2f(P )| .
(2.46) If |f ′(P )| 6= 0, then the directed angle from w1 to w2 equals

the directed angle from Dw1f(P ) to Dw2f(P ).

Statement (2.45) is the analytical formulation of “stretching equally in all
directions.” Statement (2.46) is the analytical formulation of “preserves an-
gles.”

In fact let us now give a discursive description of why conformality works.
Either of these two properties actually characterizes holomorphic functions.
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It is worthwhile to picture the matter in the following manner: Let f be
holomorphic on the open set U ⊆ C. Fix a point P ∈ U . Write f = u+ iv as
usual. Thus we may write the mapping f as (x, y) 7→ (u, v). Then the (real)
Jacobian matrix of the mapping is

J(P ) =

(
ux(P ) uy(P )

vx(P ) vy(P )

)
,

where subscripts denote derivatives. We may use the Cauchy-Riemann equa-
tions to rewrite this matrix as

J(P ) =

(
ux(P ) uy(P )

−uy(P ) ux(P )

)

Factoring out a numerical coefficient, we finally write this two-dimensional
derivative as

J(P ) =
√
ux(P )2 + uy(P )2 ·




ux(P )√
ux(P )2+uy(P )2

uy(P )√
ux(P )2+uy(P )2

−uy(P )√
ux(P )2+uy(P )2

ux(P )√
ux(P )2+uy(P )2




≡ h(P ) · J (P ) .

The matrix J (P ) is of course a special orthogonal matrix (that is, its rows
form an orthonormal basis of R2, and it is oriented positively—so it has
determinant 1). Of course a special orthogonal matrix represents a rotation.
Thus we see that the derivative of our mapping is a rotation J (P ) (which
preserves angles) followed by a positive “stretching factor” h(P ) (which also
preserves angles). Of course a rotation stretches equally in all directions (in
fact it does not stretch at all); and our stretching factor, or dilation, stretches
equally in all directions (it simply multiplies by a positive factor). So we have
established (2.45) and (2.46).

In fact the second characterization of conformality (in terms of preserva-
tion of directed angles) has an important converse: If (2.46) holds at points
near P , then f has a complex derivative at P . If (2.45) holds at points near
P , then either f or f has a complex derivative at P . Thus a function that
is conformal (in either sense) at all points of an open set U must possess the
complex derivative at each point of U . By the discussion in Section 2.1.6,



2.4. COMPLEX DIFFERENTIABILITY 63

the function f is therefore holomorphic if it is C1. Or, by Goursat’s theorem,
it would then follow that the function is holomorphic on U , with the C1

condition being automatic.

Exercises

1. Consider the holomorphic function f(z) = z2. Calculate the derivative
of f at the point P = 1+ i. Write down the Jacobian matrix of f at P ,
thought of as a 2×2 real matrix operator. Verify directly (by imitating
the calculations presented in this section) that this Jacobian matrix is
the composition of a special orthogonal matrix and a dilation.

2. Repeat the first exercise with the function g(z) = sin z and P = π +
(π/2)i.

3. Repeat the first exercise with the function h(z) = ez and P = 2 − i.

4. Discuss, in physical language, why the surface motion of an incom-
pressible fluid flow should be conformal.

5. Verify that the function g(z) = z2 has the property that (at all points
not equal to 0) it stretches equally in all directions, but it reverses
angles. We say that such a function is anticonformal.

6. The function h(z) = z + 2z is not conformal. Explain why.

7. If a continuously differentiable function is conformal then it is holomor-
phic. Explain why.

8. If f is conformal then any positive integer power of f is conformal.
Explain why.

9. If f is conformal then ef is conformal. Explain why.

10. Let Ω ⊆ C is a domain and ϕ : Ω → R is a function. Explain why ϕ,
no matter how smooth or otherwise well behaved, could not possibly
be conformal.

11. Use the following script to create a MatLab function that will detect
whether a given complex function is acting conformally:
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function [conformal_map] = conf(f,v1,v2,P)

syms x y cos1 cos2 real

syms z complex

z = x + i*y;

digits(5)

u = real(f);

v = imag(f);

p = real(P);

q = imag(P);

a11 = diff(u, ’x’);

a12 = diff(u, ’y’);

a21 = diff(v, ’x’);

a22 = diff(v, ’y’);

aa11 = subs(a11, {x,y}, {p,q});
aa12 = subs(a12, {x,y}, {p,q});
aa21 = subs(a21, {x,y}, {p,q});
aa22 = subs(a22, {x,y}, {p,q});

A = [aa11 aa12 ; aa21 aa22];

w1 = A*(v1’);

w2 = A*(v2’);

d1 = dot(v1,w1);

d2 = dot(v2,w2);

n1 = (dot(v1,v1))^(1/2);

n2 = (dot(v2,v2))^(1/2);

m1 = (dot(w1,w1))^(1/2);

m2 = (dot(w2,w2))^(1/2);

ccos1 = d1/(n1 * m1);
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ccos2 = d2/(n2 * m2);

simplify(ccos1)

simplify(ccos2)

disp(’The first number is the cosine of the angle’)

disp(’between the vector v1 and its image under’)

disp(’the Jacobian of the mapping.’)

disp(’ ’)

disp(’The second number is the cosine of the angle’)

disp(’between the vector v2 and its image under’)

disp(’the Jacobian of the mapping.’)

disp(’ ’)

disp(’If these numbers are equal then the mapping’)

disp(’is moving each vector v1 and v2 by the same angle.’)

disp(’Thus the mapping is acting in a conformal manner.’)

disp(’ ’)

disp(’If these numbers are unequal then the mapping’)

disp(’is moving the vectors v1 and v2 by different angles.’)

disp(’Thus the mapping is NOT acting in a conformal manner.’)

This macro file must be called conf.m.

Your input for this function will be as follows:

>> syms x y real

>> syms z complex

>> z = x + i*y

>> f = z^2

>> v1 = [1 1]

>> v2 = [0 1]

>> P = 3 + 2*i

>> conf(f,v1,v2,P)

In this sample input we have used the function f(z) = z2 and vectors
v1 = 〈1, 1〉 and v2 = 〈0, 1〉. The base point is P = 3 + 2i. The MatLab

output will explain to you how conformality is being measured.

Test this new function macro on these data sets:

• f(z) = z3, v1 = 〈2, 1〉, v2 = 〈1, 3〉, P = 2 + 4i;
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• f(z) = z · z, v1 = 〈2, 2〉, v2 = 〈2, 3〉, P = 2 − 3i;

• f(z) = z2, v1 = 〈1, 1〉, v2 = 〈1, 4〉, P = 1 − 5i;

• f(z) = z, v1 = 〈1, 1〉, v2 = 〈−1, 3〉, P = 1 + 4i.

12. Let
Φ(x, y) = (x2 − y2, 2xy) .

Let P be the point (1, 0). Calculate the directional derivatives at P of
Φ in the directions w1 = (1, 0) and w2 = (1/

√
2, 1/

√
2). Confirm that

the magnitudes of these directional derivatives are the same. This is
an instance of conformality. What holomorphic mapping is Φ?

13. Refer to the preceding exercise. The angle between w1 and w2 is π/4.
Calculate the angle between the directional derivative of Φ at P in the
direction w1 and the directional derivative of Φ at P in the direction
w2. It should also be π/4.

14. The surface of an incompressible fluid flow represents conformal motion.
An air flow does not. Explain why.

2.5 The Logarithm

It is convenient to record here the basic properties of the complex logarithm.
LetD = D(0, 1) be the unit disc and let f be a nonvanishing, holomorphic

function on D. We define, for z ∈ D,

F(z) =

∫ z

0

f ′(ζ)

f(ζ)
dζ .

This is understood to be a complex line integral along a path connecting 0
to z. The standard Cauchy theory (see Section 3.1.2) shows that the result
is independent of the choice of path. Notice that F ′(z) = f ′(z)/f(z).

Now fix attention on the case f(z) = z + 1. Let G(z) = ez − 1. And
consider F ◦G. We see that

(F ◦G)′ = F ′(G(z)) ·G′(z) =
1

ez
· ez ≡ 1 .

We conclude from this that

F ◦G = z + C .
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By adding a constant to F (which is easily arranged by moving the base
point from 0 to some other element of the disc), we may arrange that C = 0.
Thus F is the inverse function for G. In other words

F(z) = log(z + 1) .

In sum, we have constructed the logarithm function. It is plainly holomorphic
by design.

Another way to think about the logarithm is as follows: Write

logw = log
[
|w|ei argw

]
= log |w| + iargw .

It follows that

Re logw = log |w|

and

Im logw = argw .

This gives us a concrete way to calculate the logarithm. The circle of ideas
is best illustrated with some examples.

Example 30 Let us find all complex logarithms of the complex number
z = e. We have

Re log e = log |e| = log e = 1

and

Im log e = arg e = 2kπ .

Of course, as we know, the argument function has a built-in ambiguity.
In summary,

log e = 1 + 2kπi .

Example 31 Let us find all complex logarithms of the complex number
z = 1 + i. We note that |z| =

√
2 and arg z = π/4 + 2kπ. As a result,

log z = log(1 + i) = log
√

2 +
[π
4

+ 2kπ
]
i =

1

2
log 2 +

[π
4

+ 2kπ
]
i .
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It is frequently convenient to select a particular logarithm from among
the infinitely many choices provided by the ambiguity in the argument. The
principal branch of the logarithm is that for which the argument θ satisfies
0 ≤ θ < 2π. We often denote the principal branch of the logarithm by Log z.

Example 32 Let us find the principal branch for the logarithm of z = −3.
We note that |z| = 3 and arg z = π. We have selected that value for the
argument that lies between 0 and 2π so that we may obtain the principal
branch. The result is

log z = log(−3) = log 3 + iπ .

Of course the logarithm is a useful device for defining powers. Indeed, if
z,w are complex numbers then

zw ≡ ew log z .

As an example,
ii = ei log i = ei(iπ/2) = e−π/2 .

Note that we have used the principal branch of the logarithm.
We conclude this section by noting that in each of the three examples we

may check our work:
e1+2kπi = e1 · e2kπi = e ;

elog
√

2+i[π/4+2kπ] = elog
√

2 · ei[π/4+2kπ] =
√

2 · eiπ/4 = 1 + i ;

and
elog3+iπ = elog3 · eiπ = 3 · (−1) = −3 .

Exercises

1. Calculate the complex logarithm of each of the following complex num-
bers:

(a) 3 − 3i

(b) −
√

3 + i

(c) −
√

2 −
√

2i
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(d) 1 −
√

3i

(e) −i

(f)
√

3 −
√

3i

(g) −1 + 3i

(h) 2 + 6i

2. Calculate the principal branch of the logarithm of each of the following
complex numbers:

(a) 2 + 2i

(b) 3 − 3
√

3i

(c) −4 + 4i

(d) −1 − i

(e) −i

(f) −1

(g) 1 +
√

3i

(h) −2 − 2
√

2i

3. Calculate (1 + i)1−i, i1−i, (1 − i)i, and (−3)4−i.

4. Write a MatLab routine to find the principle branch of the logarithm of a
given complex number. Use it to evaluate log(2+2

√
3i), log(4−4

√
2i).

5. Explain why there is no well-defined logarithm of the complex number
0.

6. It is not possible to give a succinct, unambiguous definition to the
logarithm function on all of C \ {0}. Explain why. We typically define
the logarithm on C \ {x + i0 : x ≤ 0}. Explain why this restricted
domain removes any ambiguities.

7. Consider the function f(z) = log(log(log z)). For which values of z
is this function well defined and holomorphic. Refer to the preceding
exercise.
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8. Consider the mapping z 7→ log z applied to the annulus A = {z ∈ C :
1 < |z| < e}. What is the image of this mapping? What physical
interpretation can you give to this mapping? [Hint: You may find it
useful to consider the inverse mapping, which is an exponential. You
may take the domain of the inverse mapping to be an entire vertical
strip.]



Chapter 3

The Cauchy Theory

3.1 The Cauchy Integral Theorem and

Formula

3.1.1 The Cauchy Integral Theorem, Basic Form

If f is a holomorphic function on an open disc W in the complex plane, and
if γ : [a, b] →W is a C1 curve in W with γ(a) = γ(b), then

∮

γ

f(z) dz = 0 . (3.1)

This is the Cauchy integral theorem. It is central and fundamental to the
theory of complex functions. All of the principal results about holomorphic
functions stem from this simple integral formula. We shall spend a good deal
of our time in this text studying the Cauchy theorem and its consequences.

We now indicate a proof of this result. In fact it turns out that the Cauchy
integral theorem, properly construed, is little more than a restatement of
Green’s theorem from calculus. Recall (see [BLK]) that Green’s theorem
says that if u, v are continuously differentiable on a bounded region U in the
plane having C2 boundary, then

∫

∂U

u dx+ v dy =

∫∫

U

(
∂v

∂x
− ∂u

∂y

)
dxdy . (3.2)

In the proof that we are about to present, we shall for simplicity assume
that the curve γ is simple, closed. That is, γ does not cross itself, so it

71
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V

Figure 3.1: The curve γ surrounds the region V .

surrounds a region V . See Figure 3.1. Thus γ = ∂V . We take γ to be
oriented counterclockwise. Let us write
∮

γ

f dz =

∮

γ

(u+ iv) [dx+ idy] =

(∮

γ

u dx− v dy

)
+ i

(∮

γ

v dx+ u dy

)
.

Each of these integrals is clearly a candidate for application of Green’s the-
orem (3.2). Thus
∮

γ

f dz =

∮

∂V

f dz =

∫∫

V

(
∂(−v)
∂x

− ∂u

∂y

)
dxdy + i

∫∫

V

(
∂u

∂x
− ∂v

∂y

)
dxdy .

But, according to the Cauchy-Riemann equations, each of the integrands
vanishes. We learn then that

∮

γ

f dz = 0 .

That is Cauchy’s theorem.
An important converse of Cauchy’s theorem is called Morera’s theorem:

Let f be a continuous function on a connected open set U ⊆ C.
If

∮

γ

f(z) dz = 0 (3.3)
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for every simple, closed curve γ in U , then f is holomorphic on
U .

In the statement of Morera’s theorem, the phrase “every simple, closed curve”
may be replaced by “every triangle” or “every square” or “every circle.”

The verification of Morera’s theorem also uses Green’s theorem. Assume
for simplicity that f is continuously differentiable. Then the same calculation
as above shows that if ∮

γ

f(z) dz = 0

for every simple, closed curve γ, then

∫∫

U

(
∂(−v)
∂x

− ∂u

∂y

)
+ i

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

for the region U that γ surrounds. This is true for every possible region U !
It follows that the integrand must be identically zero. But this simply says
that f satisfies the Cauchy-Riemann equations. So it is holomorphic.1

3.1.2 More General Forms of the Cauchy Theorem

Now we present the very useful general statement of the Cauchy integral
theorem. First we need a piece of terminology. A curve γ : [a, b] → C is said
to be piecewise Ck if

[a, b] = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [am−1, am] (3.4)

with a = a0 < a1 < · · · < am = b and the curve γ
∣∣
[aj−1,aj]

is Ck for 1 ≤ j ≤ m.

In other words, γ is piecewise Ck if it consists of finitely many Ck curves
chained end to end. See Figure 3.2.

Piecewise Ck curves will come up both explicitly and implicitly in many
of our ensuing discussions. When we deform, and cut and paste, curves then
the curves created will often by piecewise Ck. We can be confident that we
can integrate along such curves, and that the Cauchy theory is valid for such
curves. They are part of our toolkit in basic complex analysis.

1For convenience, we have provided this simple proof of Morera’s theorem only when the
function is continuously differentiable. But it is of definite interest—and useful later—to
know that Morera’s theorem is true for functions that are only continuous.
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Figure 3.2: A piecewise Ck curve.

Cauchy Integral Theorem: Let f : U → C be holomorphic
with U ⊆ C an open set. Then

∮

γ

f(z) dz = 0 (3.5)

for each piecewise C1 closed curve γ in U that can be deformed
in U through closed curves to a point in U—see Figure 3.3. We
call such a curve homotopic to 0. From the topological point of
view, such a curve is trivial.

Example 33 Let U be the region consisting of the disc {z ∈ C : |z| < 2}
with the closed disc {z ∈ C : |z − i| < 1/3} removed. Let γ : [0, 1] → U be
the curve γ(t) = cos t + [i/4] sin t. See Figure 3.4. If f is any holomorphic
function on U then ∮

γ

f(z) dz = 0 .

Perhaps more interesting is the following fact. Let P , Q be points of
U . Let γ : [0, 1] → U be a curve that begins at P and ends at Q. Let
µ : [0, 1] → U be some other curve that begins at P and ends at Q. The
requirement that we impose on these curves is that they do not surround
any holes in U—in other words, the curve formed with γ followed by (the
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Figure 3.3: A curve γ on which the Cauchy integral theorem is valid.

reverse of) µ is homotopic to 0. Refer to Figure 3.5. If f is any holomorphic
function on U then ∮

γ

f(z) dz =

∮

µ

f(z) dz .

The reason is that the curve τ that consists of γ followed by the reverse of
µ is a closed curve in U . It is homotopic to 0. Thus the Cauchy integral
theorem applies and ∮

τ

f(z) dz = 0 .

Writing this out gives

∮

γ

f(z) dz −
∮

µ

f(z) dz = 0 .

That is our claim.

3.1.3 Deformability of Curves

A central fact about the complex line integral is the deformability of curves.
Let γ : [a, b] → U be a closed, piecewiseC1 curve in a region U of the complex
plane. Let f be a holomorphic function on U . The value of the complex line
integral ∮

γ

f(z) dz (3.6)
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Figure 3.4: A curve γ on which the generalized Cauchy integral theorem is
valid.

P Q

Figure 3.5: Two curves with equal complex line integrals.
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1

2

3

Figure 3.6: Deformation of curves.

does not change if the curve γ is smoothly deformed within the region U .
Note that, in order for this statement to be valid, the curve γ must remain
inside the region of holomorphicity U of f while it is being deformed, and
it must remain a closed curve while it is being deformed. Figure 3.6 shows
curves γ1, γ2 that can be deformed to one another, and a curve γ3 that can
be deformed to neither of the first two (because of the hole inside γ3).

The reasoning behind the deformability principle is simplicity itself. Ex-
amine Figure 3.7. It shows a solid curve γ and a dashed curve γ̃. The latter
should be thought of as a deformation of the former. Now let us examine
the difference of the integrals over the two curves—see Figure 3.8. We see
that this difference is in fact the integral of the holomorphic function f over
a closed curve that can be continuously deformed to a point. Of course, by
the Cauchy integral theorem, that integral is equal to 0. Thus the difference
of the integral over γ and the integral over γ̃ is 0. That is the deformability
principle.

A topological notion that is special to complex analysis is simple con-
nectivity. We say that a domain U ⊆ C is simply connected if any closed
curve in U can be continuously deformed to a point. See Figure 3.9. Simple
connectivity is a mathematically rigorous condition that corresponds to the
intuitive notion that the region U has no holes. Figure 3.10 shows a domain
that is not simply connected. If U is simply connected, and γ is a closed
curve in U , then it follows that γ can be continuously deformed to lie inside
a disc in U . It follows that Cauchy’s theorem applies to γ. To summarize:
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~

Figure 3.7: Deformation of curves.

Figure 3.8: The difference of the integrals.
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Figure 3.9: A simply connected domain.

on a simply connected region, Cauchy’s theorem applies (without any fur-
ther hypotheses) to any closed curve in U . Likewise, on a simply connected
region U , Cauchy’s integral formula (to be developed below) applies to any
simple, closed curve that is oriented counterclockwise and to any point z that
is inside that curve.

3.1.4 Cauchy Integral Formula, Basic Form

The Cauchy integral formula is derived from the Cauchy integral theorem.
It tells us that we can express the value of a holomorphic function f in terms
of a sort of average of its values around the boundary. This assertion is
really quite profound; it turns out that the formula is key to many of the
most important properties of holomorphic functions. We begin with a simple
enunciation of Cauchy’s idea.

Let U ⊆ C be a domain and suppose that D(P, r) ⊆ U. Let γ : [0, 1] → C
be the C1 parametrization γ(t) = P + r cos(2πt)+ ir sin(2πt). Then, for each
z ∈ D(P, r),

f(z) =
1

2πi

∮

γ

f(ζ)

ζ − z
dζ. (3.7)

Before we indicate the proof, we impose some simplifications. First, we may
as well translate coordinates and assume that P = 0. Thus the Cauchy
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Figure 3.10: A domain that is not simply connected.

formula becomes

f(z) =
1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ .

Our strategy is to apply the Cauchy integral theorem to the function

g(ζ) =
f(ζ) − f(z)

ζ − z
.

In fact it can be checked—using Morera’s theorem for example—that g is
still holomorphic.2 Thus we may apply Cauchy’s theorem to see that

∮

∂D(0,r)

g(ζ) dζ = 0

or ∮

∂D(0,r)

f(ζ) − z

ζ − z
dζ = 0 .

But this just says that

1

2πi

∮

∂D(0,r)

f(z)

ζ − z
dζ =

1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ . (3.8)

2First, limζ→z g(ζ) exists because f is holomorphic. So g extends to be a continuous
function on D(0, r). We know that the integral of g over any curve that does not surround
z must be zero—by the Cauchy integral theorem. And the integral over a curve that does
pass through or surround z will therefore also be zero by a simple limiting argument.
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D(0,r)

D(z,   )

Z

Figure 3.11: The deformation principle.

It remains to examine the left-hand side.
Now

1

2πi

∮

∂D(0,r)

f(z)

ζ − z
dζ =

f(z)

2πi

∮

∂D(0,r)

1

ζ − z
dζ (3.9)

and we must evaluate the integral. It is convenient to use deformation of
curves to move the boundary ∂D(0, r) to ∂D(z, ε), where ε > 0 is chosen so
small that D(z, ε) ⊆ D(0, r). See Figure 3.11. Then we have

∮

∂D(0,r)

1

ζ − z
dζ =

∮

∂D(z,ε)

1

ζ − z
dζ =

∮

∂D(0,ε)

1

ζ
dζ . (3.10)

In the last equality we used a simple change of variable.
Introducing the parametrization t 7→ εeit, 0 ≤ t ≤ 2π, for the curve, we

find that our integral is

∫ 2π

0

1

eit
ieit dt =

∫ 2π

0

i dt = 2πi .

Putting this information together with (3.8) and (3.9), we find that

f(z) =
1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ .

That is the Cauchy integral formula when the domain is a disc.
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z

Figure 3.12: A curve that can be deformed to a point.

We shall see in Section 4.1.1 that the Cauchy integral formula gives an
easy proof that a holomorphic function is infinitely differentiable. Thus the
Cauchy-Goursat theorem is swept under the rug: holomorphic functions are
as smooth as can be, and we can differentiate them at will.

3.1.5 More General Versions of the Cauchy Formula

A more general version of the Cauchy formula—the one that is typically used
in practice—is this:

THEOREM 1 Let U ⊆ C be a domain. Let γ : [0, 1] → U be a simple,
closed curve that can be continuously deformed to a point inside U . See
Figure 3.12. If f is holomorphic on U and z lies in the region interior to γ,
then

f(z) =
1

2πi

∮

γ

f(ζ)

ζ − z
dζ .

The proof is nearly identical to the one that we have presented above in the
special case. We omit the details.

Example 34 Let U = {z = x+ iy ∈ C : −2 < x < 2, 0 < y < 3} \D(−1 +
(7/4)i, 1/10). Let γ(t) = cos t + i(3/2 + sin t). Then the curve γ lies in U .
The curve γ can certainly be deformed to a point inside U . Thus if f is any
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Figure 3.13: Illustration of the Cauchy integral formula.

holomorphic function on U then, for z inside the curve (see Figure 3.13),

f(z) =
1

2πi

∮

γ

f(ζ)

ζ − z
dζ .

Exercises

1. Let f(z) = z2 − z and γ(t) = (cos t, sin t), 0 ≤ t ≤ 2π. Confirm
the statement of the Cauchy integral theorem for this f and this γ by
actually calculating the appropriate complex line integral.

2. The points ± 1√
2
±i 1√

2
lie on the unit circle. Let η(t) be the counterclockwise-

oriented, square path for which they are the vertices. Verify the con-
clusion of the Cauchy integral theorem for this path and the function
f(z) = z2 − z. Compare with Exercise 1.

3. The Cauchy integral theorem fails for the function f(z) = cot z on the
annulus {z ∈ C : 1 < |z| < 2}. Calculate the relevant complex line
integral and verify that the value of the integral is not zero. What
hypothesis of the Cauchy integral theorem is lacking?
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4. Let u be a harmonic function in a neighborhood of the closed unit disc

D(0, 1) = {z ∈ C : |z| ≤ 1} .
For each P = (p1, p2) ∈ ∂D(0, 1), let ν(P ) = 〈p1, p2〉 be the unit
outward normal vector. Use Green’s theorem to prove that∫

∂D(0,1)

∂

∂ν
u(z) ds(z) = 0 .

[Hint: Be sure to note that this is not a complex line integral. It is
instead a standard calculus integral with respect to arc length.]

5. It is a fact (Morera’s theorem) that if f is a continuously differentiable
function on a domain Ω and if

∮
γ
f(z) dz = 0 for every continuously

differentiable, closed curve in Ω, then f is holomorphic on Ω. Restrict
attention to curves that bound closed discs that lie in Ω. Apply Green’s
theorem to the hypothesis that we have formulated. Conclude that the
two-dimensional integral of ∂f/∂z is 0 on any disc in Ω. What does
this tell you about ∂f/∂z?

6. Let f be holomorphic on a domain Ω and let P,Q be points of Ω. Let
γ1 and γ2 be continuously differentiable curves in Ω that each begin at
P and end at Q. What conditions on γ1, γ2, and Ω will guarantee that∮
γ1
f(z) dz =

∮
γ2
f(z) dz?

7. Let Ω be a domain and suppose that γ is a simple, closed curve in
Ω that is continuously differentiable. Suppose that

∮
γ
f(z) dz = 0 for

every holomorphic function f on Ω. What can you conclude about the
domain Ω and the curve γ?

8. Let D be the unit disc and suppose that γ : [0, 1] → D is a curve
that circles the origin twice in the counterclockwise direction. Let f be
holomorphic on D. What can you say about the value of

∮

γ

f(ζ)

ζ − 0
dζ ?

9. Suppose that the curve in the last exercise circles the origin twice in
the clockwise direction. Then what can you say about the value of the
integral ∮

γ

f(ζ)

ζ − 0
dζ ?
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10. Let the domain D be the unit disc and let g be a conjugate holomorphic
function on D (that is, g is holomorphic). Then there exists a simple,
closed, continuously differentiable curve γ inD such that

∮
γ
g(ζ) dζ 6= 0.

Prove this assertion.

11. Let U = {z ∈ C : 1 < |z| < 4}. Let γ(t) = 3 cos t + 3i sin t. Let
f(z) = 1/z. Let P = 2 + i0. Verify with a direct calculation that

f(P ) 6= 1

2πi

∮

γ

f(ζ)

ζ − P
dζ .

12. In the preceding exercise, replace f with g(ζ) = ζ2. Now verify that

g(P ) =
1

2πi

∮

γ

g(ζ)

ζ − P
dζ .

Explain why the answer to this exercise is different from the answer to
the earlier exercise.

13. Let U = D(0, 2) and let γ(t) = cos t+ i sin t. Verify by a direct calcu-
lation that, for any z ∈ D(0, 1),

1 =
1

2πi

∮

γ

1

ζ − z
dζ .

Now derive the same identity immediately using the Cauchy integral
formula with the function f(z) ≡ 1.

14. Let U = {z ∈ C : −4 < x < 4,−4 < y < 4}. Let γ(t) = cos t + i sin t.
Let µ(t) = 2 cos t+ 3 sin t. Finally set f(z) = z2. Of course each of the
two curves lies in U . Draw a picture. Let P = 1/2 + i/2. Calculate

1

2πi

∮

γ

f(ζ)

ζ − P
dζ

and
1

2πi

∮

γ

f(ζ)

ζ − P
dζ .

The answers that you obtain should be the same. Explain why.
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15. Use the MatLab utility cplxln.m that you created in Exercise 13 of
Section 1.5.7 to test the Cauchy integral theorem and formula in the
following ways:

(a) Let f(z) = z2, g(z) = z, and h(z) = z · z. Use cplxln.m to
calculate the complex line integral of each of these functions along
the curve γ(t) = eit, 0 ≤ t ≤ 2π. How do you account for the
answers that you obtain?

(b) Let k(z) = z2 and m(z) = 1/z2. Use the curve γ from part
(a). Clearly neither of these functions is holomorphic on D(0, 1).
Nonetheless, you can use the utility cplxln.m to calculate that∮
γ
k(z) dz = 0 and

∮
γ
m(z) dz = 0. How can you account for this?

(c) Let γ be as in part (a). Calculate, using the MatLab utility
cplxln.m, the integrals

•
∮

γ

1

z
dz ,

•
∮

γ

1

z − 1/2
dz ,

•
∮

γ

1

z − (1/3 + i/4)
dz ,

•
∮

γ

1

z − 0.999999
dz .

You should obtain the same answer in all four cases. Explain why.

(d) Let p(z) = ez. Let the curve γ be as in part (a). Use the MatLab

utility cplxln.m to calculate

• 1
2πi

∮

γ

p(z)

z
dz ,

• 1
2πi

∮

γ

p(z)

z − 1/2
dz ,

• 1
2πi

∮

γ

p(z)

z − (1/3 + i/4)
dz .

The answers you get should be, respectively, p(0), p(1/2), and
p(1/3 + i/4). Verify this assertion.
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3.2 Variants of the Cauchy Formula

The Cauchy formula is a remarkably flexible tool that can be applied even
when the domain U in question is not simply connected. Rather than at-
tempting to formulate a general result, we illustrate the ideas here with some
examples.

Example 35 Let U = {z ∈ C : 1 < |z| < 4}. Let γ1(t) = 2 cos t + 2i sin t
and γ2(t) = 3 cos t+3i sin t. See Figure 3.14. If f is any holomorphic function
on U and if the point z satisfies 2 < |z| < 3 (again, see Figure 3.14) then

f(z) =
1

2πi

∮

γ2

f(ζ)

ζ − z
dζ − 1

2πi

∮

γ1

f(ζ)

ζ − z
dζ . (3.11)

The beauty of this result is that it can be established with a simple
diagram. Refer to Figure 3.15. We see that integration over γ2 and −γ1,
as indicated in formula (3.11), is just the same as integrating over a single
contour γ∗. And, with a slight deformation, we see that that contour is
equivalent—for the purposes of integration—with integration over a contour
γ̃∗ that is homotopic to zero. Thus, with a bit of manipulation, we see that
the integrations in (3.11) are equivalent to integration over a curve for which
we know that the Cauchy formula holds.

That establishes formula (3.11).

Example 36 Consider the region

U = D(0, 6) \
[
D(−3 + 0i, 2) ∪ D(3 + 0i, 2)

]
.

It is depicted in Figure 3.16. We also show in the figure three contours of
integration: γ1, γ2, γ3. We deliberately do not give formulas for these curves,
because we want to stress that the reasoning here is geometric and does not
depend on formulas.

Now suppose that f is a holomorphic function on U . We want to write
a Cauchy integral formula—for the function f and the point z—that will be
valid in this situation. It turns out that the correct formula is

f(z) =
1

2πi

∮

γ1

f(ζ)

ζ − z
dζ − 1

2πi

∮

γ2

f(ζ)

ζ − z
dζ − 1

2πi

∮

γ3

f(ζ)

ζ − z
dζ .

The justification, parallel to that in the last example, is shown in Figure 3.17.
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Figure 3.14: A variant of the Cauchy integral formula.

3.3 A Coda on the Limitations of the Cauchy

Integral Formula

If f is any continuous function on the boundary of the unit disc D = D(0, 1),
then the Cauchy integral

F (z) ≡ 1

2πi

∮

∂D

f(ζ)

ζ − z
dζ (3.12)

defines a holomorphic function F (z) on D (use Morera’s theorem, for exam-
ple, to confirm this assertion). What does the new function F have to do
with the original function f? In general, not much.

For example, if f(ζ) = ζ, then F (z) ≡ 0 (exercise). In no sense is
the original function f any kind of “boundary limit” of the new function
F . The question of which functions f are “natural boundary functions” for
holomorphic functions F (in the sense that F is a continuous extension of f
to the closed disc) is rather subtle. Its answer is well understood, but is best
formulated in terms of Fourier series and the so-called Hilbert transform.
The complete story is given in [KRA1].
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Figure 3.15: Turning two contours into one.



90 CHAPTER 3. THE CAUCHY THEORY

1

2
3

z

Figure 3.16: A triply connected domain.

1

2
3

Figure 3.17: Turning three contours into one.
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Contrast this situation for holomorphic functions with the much more
succinct and clean situation for harmonic functions (Section 9.3).

Exercises

1. Let

ϕ(eiθ) =

{
1 if 0 ≤ θ ≤ π
−1 if π < θ ≤ 2π .

Let γ(t) = eit, 0 ≤ t ≤ 2π. Use the MatLab utility cplxln.m to
calculate

Φ(a) =

∮

γ

ϕ(z)

z − a
dz ,

for a = 0, 1/2, i/3. Calculate the value of the integral for (i) a sequence
of a’s tending to 1, (ii) a sequence of a’s tending to i, and (iii) a
sequence of a’s tending to 1/

√
2+ i/

√
2. What can you conclude about

the relationship (if any) between the values of the function Φ in the
interior of the disc with the values of the function ϕ on the boundary
of the disc?

2. Repeat the first exercise with the function ϕ replaced by

ψ(z) = z .

3. Repeat the first exercise with the function ϕ replaced by

η(z) =
1

z
.

4. Repeat the first exercise with the function ϕ replaced by

µ(z) =
1

z2
.

5. Use the MatLab utility cplxln.m to calculate the Cauchy integral
1

2πi

∮
∂D

f(ζ)
ζ−z dζ for these functions f on the boundary ∂D of the unit

disc D:

(a) f(ζ) = 1

ζ
2
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(b) f(ζ) = ζ2

(c) f(ζ) = ζ · ζ
(d) f(ζ) = ζ

3+ζ

(e) f(ζ) = ζ

ζ

(f) f(ζ) = ζ
2

ζ

In each instance, comment on the relationship between the holomorphic
function you have created on the interior D of the disc and the original
function f on the boundary of the disc.

6. Let f be a continuous, complex-valued function on the boundary of the
unit disc D. Let F be its Cauchy integral. Interpret f as a force field.
In the case when F agrees with f at the boundary, what does this say
about the force field? In the case when F does not agree with f at the
boundary, what does that say about the force field?



Chapter 4

Applications of the Cauchy
Theory

4.1 The Derivatives of a Holomorphic

Function

One of the remarkable features of holomorphic function theory is that we
can express the derivative of a holomorphic function in terms of the function
itself. Nothing of the sort is true for real functions. One upshot is that we
can obtain powerful estimates for the derivatives of holomorphic functions.

We shall explore this phenomenon in the present section.

Example 37 On the real line R, let

fk(x) = sin(kx) .

Then of course |fk(x)| ≤ 1 for all k and all x. Yet f ′
k(x) = k cos(kx) and

|f ′
k(0)| = k. So there is no sense, and no hope, of bounding the derivative of

a function by means of the function itself. We will find matters to be quite
different for holomorphic functions.

93
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4.1.1 A Formula for the Derivative

Let U ⊆ C be an open set and let f be holomorphic on U. Then f ∈ C∞(U).
Moreover, if D(P, r) ⊆ U and z ∈ D(P, r), then

(
d

dz

)k
f(z) =

k!

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − z)k+1
dζ, k = 0, 1, 2, . . . . (4.1)

The proof of this new formula is direct. For consider the Cauchy formula:

f(z) =
1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ .

We may differentiate both sides of this equation:

d

dz
f(z) =

d

dz

[
1

2πi

∮

∂D(0,r)

f(ζ)

ζ − z
dζ

]
.

Now we wish to justify passing the derivative on the right under the integral
sign. A justification from first principles may be obtained by examining the
Newton quotients for the derivative. Alternatively, one can cite a suitable
limit theorem as in [RUD1] or [KRA2]. In any event, we obtain

d

dz
f(z) =

1

2πi

∮

∂D(0,r)

d

dz

[
f(ζ)

ζ − z

]
dζ

=
1

2πi

∮

∂D(0,r)

f(ζ) · d
dz

[
1

ζ − z

]
dζ

=
1

2πi

∮

∂D(0,r)

f(ζ) · 1

(ζ − z)2
dζ .

This is in fact the special instance of formula (4.1) when k = 1. The cases of
higher k are obtained through additional differentiations, or by induction.

4.1.2 The Cauchy Estimates

If f is a holomorphic on a region containing the closed disc D(P, r) and if
|f | ≤M on D(P, r), then

∣∣∣∣
∂k

∂zk
f(P )

∣∣∣∣ ≤
M · k!
rk

. (4.2)
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D(0,1)

D(1/2,1/2)

Figure 4.1: The Cauchy estimates.

In fact this formula is a result of direct estimation from (4.1). For we
have

∣∣∣∣
∂k

∂zk
f(P )

∣∣∣∣ =

∣∣∣∣
k!

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − z)k+1
dζ

∣∣∣∣ ≤
k!

2π
· M

rk+1
· 2πr =

Mk!

rk
.

Example 38 Let f(z) = (z3 + 1)ez
2

on the unit disc D(0, 1). Obviously

|f(z)| ≤ 2 · |ez2 | = ex
2−y2 ≤ e for all z ∈ D(0, 1) .

We may then conclude, by the Cauchy estimates applied to f onD(1/2, 1/2) ⊆
D(0, 1) (see Figure 4.1), that

|f ′(1/2)| ≤ e · 1!
1/2

= 2e

and

|f ′′(1/2)| ≤ e · 2!
(1/2)2

= 8e .

Of course one may perform the tedious calculation of these derivatives
and determine that f ′(1/2) ≈ 1.1235 and f ′′(1/2) ≈ 6.2596. But Cauchy’s
estimates allow us to estimate the derivatives by way of soft analysis.
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4.1.3 Entire Functions and Liouville’s Theorem

A function f is said to be entire if it is defined and holomorphic on all of C,
that is, f : C → C is holomorphic. For instance, any holomorphic polynomial
is entire, ez is entire, and sin z, cos z are entire. The function f(z) = 1/z is
not entire because it is undefined at z = 0. [In a sense that we shall make
precise later (Section 5.1), this last function has a “singularity” at 0.] The
question we wish to consider is: “Which entire functions are bounded?” This
question has a very elegant and complete answer as follows:

THEOREM 2 (Liouville’s Theorem) A bounded entire function is con-
stant.

Proof: Let f be entire and assume that |f(z)| ≤ M for all z ∈ C. Fix a
P ∈ C and let r > 0. We apply the Cauchy estimate (4.2) for k = 1 on
D(P, r). So ∣∣∣∣

∂

∂z
f(P )

∣∣∣∣ ≤
M · 1!
r

. (4.3)

Since this inequality is true for every r > 0, we conclude (by letting r → ∞)
that

∂f

∂z
(P ) = 0. (4.4)

Since P was arbitrary, we conclude that

∂f

∂z
≡ 0. (4.5)

Of course we also know, since f is holomorphic, that

∂f

∂z
≡ 0. (4.6)

It follows from linear algebra then that

∂f

∂x
≡ 0 and

∂f

∂y
≡ 0 . (4.7)

Therefore f is constant.

The reasoning that establishes Liouville’s theorem can also be used to
prove this more general fact: If f : C → C is an entire function and if for
some real number C and some positive integer k, it holds that

|f(z)| ≤ C · (1 + |z|)k (4.8)
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for all z, then f is a polynomial in z of degree at most k. We leave the details
for the interested reader.

4.1.4 The Fundamental Theorem of Algebra

One of the most elegant applications of Liouville’s Theorem is a proof of
what is known as the Fundamental Theorem of Algebra (see also Sections
1.2.4 and 6.3.3):

The Fundamental Theorem of Algebra: Let p(z) be a non-
constant (holomorphic) polynomial in z. Then p has a root. That
is, there exists an α ∈ C such that p(α) = 0.

Proof: Suppose not. Then g(z) = 1/p(z) is entire. Also, when |z| → ∞,
then |p(z)| → +∞. Thus 1/|p(z)| → 0 as |z| → ∞; hence g is bounded. By
Liouville’s Theorem, g is constant, hence p is constant. Contradiction.

If, in the theorem, p has degree k ≥ 1, then let α1 denote the root provided
by the Fundamental Theorem. By the Euclidean algorithm (see [HUN]), we
may divide z − α1 into p to obtain

p(z) = (z − α1) · p1(z) + r1(z) . (4.9)

Here p1 is a polynomial of degree k − 1 and r1 is the remainder term of
degree 0 (that is, less than 1). Substituting α1 into this last equation gives
0 = 0 + r1, hence we see that r1 = 0. Thus the Euclidean algorithm has
taught us that

p(z) = (z − α1) · p1(z) .

If k − 1 ≥ 1, then, reasoning as above with the Fundamental Theorem,
p1 has a root α2 . Thus p1 is divisible by (z − α2) and we have

p(z) = (z − α1) · (z − α2) · p2(z) (4.10)

for some polynomial p2(z) of degree k − 2. This process can be continued
until we arrive at a polynomial pk of degree 0; that is, pk is constant. We
have derived the following fact: If p(z) is a holomorphic polynomial of degree
k, then there are k complex numbers α1, . . . αk (not necessarily distinct) and
a nonzero constant C such that

p(z) = C · (z − α1) · · · (z − αk). (4.11)
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If some of the roots of p coincide, then we say that p has multiple roots.
To be specific, if m of the values αn1 , . . . , αnm are equal to some complex
number α, then we say that p has a root of order m at α (or that p has a
root α of multiplicity m). An example will make the idea clear: Let

p(z) = (z − 5)3 · (z + 2)8 · (z − 7) · (z + 6). (4.12)

Thus p is a polynomial of degree 13. We say that p has a root of order 3 at
5, a root of order 8 at −2, and it has roots of order 1 at 7 and at −6. We
also say that p has simple roots at 7 and −6.

4.1.5 Sequences of Holomorphic Functions and
Their Derivatives

A sequence of functions gj defined on a common domain E is said to converge
uniformly to a limit function g if, for each ε > 0, there is a number N > 0
such that, for all j > N , it holds that |gj(x) − g(x)| < ε for every x ∈ E.
The key point is that the degree of closeness of gj(x) to g(x) is independent
of x ∈ E.

Let fj : U → C , n = 1, 2, 3 . . . , be a sequence of holomorphic functions
on a region U in C. Suppose that there is a function f : U → C such that, for
each compact subset E (a compact set is one that is closed and bounded—
see Figure 4.2) of U , the restricted sequence fj|E converges uniformly to f |E.
Then f is holomorphic on U . [In particular, f ∈ C∞(U).]

One may see this last assertion by examining the Cauchy integral formula:

fj(z) =
1

2πi

∮
fj(ζ)

ζ − z
dζ .

Now we may let j → ∞, and invoke the uniform convergence to pass the limit
under the integral sign on the right (see [KRA2] or [RUD1]). The result is

lim
j→∞

fj(z) = lim
j→∞

1

2πi

∮
fj(ζ)

ζ − z
dζ

=
1

2πi

∮
lim
j→∞

fj(ζ)

ζ − z
dζ

=
1

2πi

∮
limj→∞ fj(ζ)

ζ − z
dζ
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Figure 4.2: A compact set is closed and bounded.

or

f(z) =
1

2πi

∮
f(ζ)

ζ − z
dζ .

The right-hand side is plainly a holomorphic function of z (simply differenti-
ate under the integral sign, or apply Morera’s theorem). Thus f is holomor-
phic.

If fj, f, U are as in the preceding paragraph, then, for any k ∈ {0, 1, 2, . . . },
we have (

∂

∂z

)k
fj(z) →

(
∂

∂z

)k
f(z) (4.13)

uniformly on compact sets. This again follows from an examination of the
Cauchy integral formula (or from the Cauchy estimates). We omit the details.

4.1.6 The Power Series Representation of a

Holomorphic Function

The ideas being considered in this section can be used to develop our under-
standing of power series. A power series

∞∑

n=0

an(z − P )n (4.14)
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is defined to be the limit of its partial sums

SN(z) =

N∑

n=0

an(z − P )n. (4.15)

We say that the partial sums converge to the sum of the entire series.

Any given power series has a disc of convergence. More precisely, let

r =
1

lim supj→∞ |aj|1/j
. (4.16)

The power series (4.15) will then certainly converge on the disc D(P, r);
the convergence will be absolute and uniform (by the root test) on any disc
D(P, r′) with r′ < r.

For clarity, we should point out that in many examples the sequence
|aj|1/j actually converges as j → ∞. Then we may take r to be equal to
1/ limj→∞ |aj|1/j. The reader should be aware, however, that in case the
sequence {|aj|1/j} does not converge, then one must use the more formal
definition (4.16) of r. See [KRA2], [RUD1].

Of course the partial sums, being polynomials, are holomorphic on any
disc D(P, r). If the disc of convergence of the power series is D(P, r), then
let f denote the function to which the power series converges. Then, for any
0 < r′ < r, we have that

SN (z) → f(z), (4.17)

uniformly on D(P, r′). We can conclude immediately that f(z) is holomor-
phic on D(P, r). Moreover, we know that

(
∂

∂z

)k
SN (z) →

(
∂

∂z

)k
f(z). (4.18)

This shows that a differentiated power series has a disc of convergence at
least as large as the disc of convergence (with the same center) of the original
series, and that the differentiated power series converges on that disc to the
derivative of the sum of the original series. In fact, the differentiated series
has exactly the same radius of convergence as the original.

The most important fact about power series for complex function theory
is this: If f is a holomorphic function on a domain U ⊆ C, if P ∈ U , and if
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the disc D(P, r) lies in U , then f may be represented as a convergent power
series on D(P, r). Explicitly, we have

f(z) =

∞∑

n=0

an(z − P )n .

The reason that any holomorphic f has a power series expansion again
relies on the Cauchy formula. If f is holomorphic on U and D(P, r) ⊆ U ,
then we write, for z ∈ D(P, r),

f(z) =
1

2πi

∮

∂D(P,r)

f(ζ)

ζ − z
dζ

=
1

2πi

∮

∂D(P,r)

f(ζ)

ζ − P
· 1

1 − z−P
ζ−P

dζ . (4.19)

Observe that |(z − P )/(ζ − P )| < 1. So we may expand the second fraction
in a power series:

1

1 − z−P
ζ−P

=
∞∑

j=0

(
z − P

ζ − P

)j
.

Substituting this information into (4.19) yields

=
1

2πi

∮

∂D(P,r)

f(ζ)

ζ − P
·

∞∑

j=0

(
z − P

ζ − P

)j
dζ

=

∞∑

j=0

(z − P )j ·
[

1

2πi

∮

D(P,r)

f(ζ)

(ζ − P )j+1
dζ

]

=
∞∑

j=0

(z − P )j · f
(j)(P )

j!
. (4.20)

We have used here standard results about switching series and integrals, for
which see [KRA2] or [RUD1].

The last formula gives us an explicit power series expansion for the holo-
morphic function f . It further reveals explicitly that the coefficient of (z−P )j

(that is, the expression in brackets) is f (j)(P )/j!.
Let us now examine the question of calculating the power series expansion

from a slightly different point of view. If we suppose in advance that f has
a convergent power series expansion on the disc D(P, r), then we may write

f(z) = a0 + a1(z − P ) + a2(z − P )2 + a3(z − P )3 + · · · . (4.21)
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Now let us evaluate both sides at z = P . We see immediately that f(P ) = a0.
Next, differentiate both sides of (4.21). The result is

f ′(z) = a1 + 2a2(z − P ) + 3a3(z − P )2 + · · · .

Again, evaluate both sides at z = P . The result is f ′(P ) = a1.
We may differentiate one more time and evaluate at z = P to learn that

f ′′(P ) = 2a2. Continuing in this manner, we discover that f (k)(P ) = k!ak,
where the superscript (k) denotes k derivatives.

We have discovered a convenient and elegant formula for the power series
coefficients:

ak =
f (k)(P )

k!
. (4.22)

This is consistent with what we learned in (4.20).

Example 39 Let us determine the power series for f(z) = z sin z expanded
about the point P = π. We begin by calculating

f ′(z) = sin z + z cos z

f ′′(z) = 2 cos z − z sin z

f ′′′(z) = −3 sin z − z cos z

f (iv) = −4 cos z + z sin z

and, in general,

f (2`+1)(z) = (−1)`(2` + 1) sin z + (−1)`z cos z

and
f (2`)(z) = (−1)`+1(2`) cos z + (−1)`z sin z .

Evaluating at π, and using formula (4.22), we find that

a0 = 0

a1 = −π
a2 = −1

a3 =
π

3!

a4 =
1

3!

a5 = − π

5!

a6 = − 1

5!
,
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and, in general,

a2` =
(−1)`

(2` − 1)!

and
a2`+1 = (−1)`+1 π

2` + 1
.

In conclusion, the power series expansion for f(z) = z sin z, expanded
about the point P = π, is

f(z) = −π(z − π) − (z − π)2 +
π

3!
· (z − π)3 +

1

3!
· (z − π)4

− π

5!
· (z − π)5 − 1

5!
· (z − 5)6 + − · · ·

= π
∞∑

`=0

(−1)`+1 (z − π)2`+1

(2` + 1)!
+

∞∑

`=1

(−1)`
(z − π)2`

(2` − 1)!
.

In summary, we have an explicit way of calculating the power series ex-
pansion of any holomorphic function f about a point P of its domain, and
we have an a priori knowledge of the disc on which the power series repre-
sentation will converge.

Sometimes one can derive a power series expansion by simple algebra and
calculus tricks—thereby avoiding the tedious calculation of coefficents that
we have just illustrated. An example will illustrate the technique:

Example 40 Let us derive a power series expansion about 0 of the function

f(z) =
z2

(1 − z2)2
.

It is a standard fact from calculus that

1

1 − α
= 1 + α + α2 + α3 + · · ·

for any |α| < 1. Letting α = z2 yields

1

1 − z2
= 1 + z2 + z4 + z6 + · · · .
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Now a result from real analysis [KRA2] tells us that power series may be
differentiated term by term. Thus

2z

(1 − z2)2
= 2z + 4z3 + 6z5 + · · · .

Finally, multiplying both sides by z/2, we find that

z2

(1 − z2)2
= 2z2 + 4z4 + 6z6 + · · · =

∞∑

j=1

2j · z2j .

4.1.7 Table of Elementary Power Series

The table below presents a summary of elementary power series expansions.

Table of Elementary Power Series

Function Power Series abt. 0 Disc of Convergence

1

1 − z

∞∑

n=0

zn {z : |z| < 1}

1

(1 − z)2

∞∑

n=1

nzn−1 {z : |z| < 1}

cos z
∞∑

n=0

(−1)n
z2n

(2n)!
all z

sin z

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!
all z

ez
∞∑

n=0

zn

n!
all z

log(z + 1)
∞∑

n=0

(−1)n

n + 1
zn+1 {z : |z| < 1}

(z + 1)β
∞∑

n=0

(
β

n

)
zn {z : |z| < 1}
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Exercises

1. Calculate the power series expansion about 0 of f(z) = sin z3. Now
calculate the expansion about π.

2. Calculate the power series expansion about π/2 of g(z) = tan[z/2].
Now calculate the expansion about 0.

3. Calculate the power series expansion about 2 of h(z) = z/(z2 − 1).

4. Suppose that f is an entire function, k is a positive integer, and

|f(z)| ≤ C(1 + |z|k)

for all z ∈ C. Prove that f must be a polynomial of degree at most k.

5. Suppose that f is an entire function, p is a polynomial, and f/p is
bounded. What can you conclude about f?

6. Let 0 < m < k be integers. Give an example of a polynomial of degree
k that has just m distinct roots.

7. Suppose that the polynomial p has a double root at the complex value
z0. Prove that p(z0) = 0 and p′(z0) = 0.

8. Suppose that the polynomial p has a simple zero at z0 and let γ be a
simple closed, continuously differentiable curve that encircles z0 (ori-
ented in the counterclockwise direction). What can you say about the
value of

1

2πi

∮

γ

p′(ζ)

p(ζ)
dζ ?

[Hint: Try this first with the polynomials p(z) = z, p(z) = z2, and
p(z) = z3.]

9. Let Ω ⊆ C be a domain and let {fn} be holomorphic functions on Ω.
Assume that the sequence {fn} converges uniformly on Ω. Prove that,
if K is any closed, bounded set in Ω and m is a positive integer, then
the sequence f

(m)
n will converge uniformly on K.

10. Prove a version of the Cauchy estimates for harmonic functions.
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11. For each k, M , r, give an example to show that the Cauchy estimates
are sharp. That is, Find a function for which the inequality is an
equality.

12. Prove this sharpening of Liouville’s theorem: If f is an entire function
and |f(z)| ≤ C|z|1/2 + D for all z and for some constants C,D then
f is constant. How much can you increase the exponent 1/2 and still
draw the same conclusion?

13. Suppose that p(z) is a polynomial of degree k with leading coefficient
1. Assume that all the zeros of p lie in unit disc. Prove that, for z
sufficiently large, |p(z)| ≥ 9|z|k/10.

14. Let f be a holomorphic function defined on some open region U ⊆ C.
Fix a point P ∈ U . Prove that the power series expansion of f about
P will converge absolutely and uniformly on any disc D(P, r) with
r < dist(P, ∂U).

15. Let 0 ≤ r ≤ ∞. Fix a point P ∈ C. Give an example of a complex
power series, centered at P ∈ C, with radius of convergence precisely
r.

16. We know from the elementary theory of geometric series that

1

1 − z
= 1 + z + z2 + z3 + · · · .

Use this model, together with differentiation of series, to find the power
series expansion about 0 for

1

(1 − w2)2
.

17. Use the idea of the last exercise to find the power series expansion
about 0 of the function

1 − z2

(1 + z2)2
.

18. Write a MatLab routine to calculate the power series expansion of a
given holomorphic function f about a base point P in the complex
plane. Your routine should allow you to specify in advance the order
of the partial sum (or Taylor polynomial) of the power series that you
will generate.
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19. Write a second MatLab routine to calculate the error term when calcu-
lating the Taylor polynomial in the last example. This will necessitate
your specifying a disc of convergence on which to work.

20. A simple harmonic oscillator satisfies the differential equation

f ′′(z) + f(z) = 0 .

Guess a solution f(z) =
∑∞

j=0 ajz
j. Plug this guess into the differential

equation and solve for the aj. What power series results? Can you
recognize this series as a familiar function (or perhaps two functions)
in closed form?

21. Apply the technique of the preceding exercise to the differential equa-
tion

f ′(z) − 2f(z) = 0 .

4.2 The Zeros of a Holomorphic Function

4.2.1 The Zero Set of a Holomorphic Function

Let f be a holomorphic function. If f is not identically zero, then it turns
out that f cannot vanish at too many points. This once again bears out
the dictum that holomorphic functions are a lot like polynomials. To give
this notion a precise formulation, we need to recall the topological notion
of connectedness (Section 1.2.2). An open set W ⊆ C is connected if it is
not possible to find two disjoint, nonempty open sets U , V in C such that
U ∩W 6= ∅, V ∩W 6= ∅, and

W = (U ∩W ) ∪ (V ∩W ) . (4.23)

[In the special context of open sets in the plane, it turns out that connect-
edness is equivalent to the condition that any two points of W may be con-
nected by a curve that lies entirely in W—see the discussion in Section 1.2.3
on path-connectedness.] Now we have:
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Discreteness of the Zeros of a Holomorphic Function

Let U ⊆ C be a connected (Section 1.2.2) open set and let f :
U → C be holomorphic. Let the zero set of f be Z = {z ∈ U :
f(z) = 0}. If there are a z0 ∈ U and {zj}∞j=1 ⊆ Z \{z0} such that
zj → z0, then f ≡ 0 on U .

A full proof of this remarkable result may be found in [AHL] or [GRK].
The justification is as follows. Of course f must vanish at z0—say that it
vanishes to order1 k > 0. This means that f(z) = (z − z0)

k · g(z) and g does
not vanish at z0. But then observe that g(zj) = 0 for j = 1, 2, . . . . It follows
by continuity that g(z0) = 0. That is a contradiction.

Let us formulate the result in topological terms. We recall (see [KRA2],
[RUD1]) that a point z0 is said to be an accumulation point of a set Z if
there is a sequence {zj} ⊆ Z \ {z0} with limj→∞ zj = z0. Then the theorem
is equivalent to the statement: If f : U → C is a holomorphic function on a
connected (Section 1.2.2) open set U and if Z = {z ∈ U : f(z) = 0} has an
accumulation point in U , then f ≡ 0.

4.2.2 Discrete Sets and Zero Sets

There is still more terminology concerning the discussion of the zero set of
a holomorphic function in Section 4.2.1. A set S is said to be discrete if for
each s ∈ S there is an ε > 0 such that D(s, ε) ∩ S = {s}.

People also say, in a slight abuse of language, that a discrete set has points
that are “isolated” or that S contains only “isolated points.” The result in
Section 4.2.1 thus asserts that if f is a nonconstant holomorphic function on
a connected open set, then its zero set is discrete or, less formally, the zeros
of f are isolated.

Example 41 It is important to realize that the result in Section 4.2.1 does
not rule out the possibility that the zero set of f can have accumulation
points in C \ U ; in particular, a nonconstant holomorphic function on an
open set U can indeed have zeros accumulating at a point of ∂U . Consider,
for instance, the function f(z) = sin(1/[1 − z]) on the unit disc. The zeros

1If a holomorphic function vanishes at a point P , then it vanishes to a certain order
(see Section 6.1.3). Thus f(z) = (z−P )k · g(z) for some holomorphic function g that does
not vanish at P . This claim follows from the theory of power series.



4.2. THE ZEROS OF A HOLOMORPHIC FUNCTION 109

Figure 4.3: A discrete set.

of this f include {1 − 1/[nπ]}, and these accumulate at the boundary point
1. Figure 4.3 illustrates a discrete set. Figure 4.4 shows a zero set with a
boundary accumulation point.

Figure 4.4: A zero set with a boundary accumulation point.

Example 42 The function g(z) = sin z has zeros at z = kπ. Since the do-
main of g is the entire plane, these infinitely many zeros have no accumulation
point so there is no contradiction in that g is not identically zero.

By contrast, the domain U = {z = x+ iy ∈ C : −1 < x < 1,−1 < y < 1}
is bounded. If f is holomorphic on U then a holomorphic f can only have
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finitely many zeros in any compact subset of U . If a holomorphic g has
infinitely many zeros, then those zeros can only accumulate at a boundary
point. Examples are

f(z) =

(
z − 1

2

)2

·
(
z +

i

2

)3

,

with zeros at 1/2 and −i/2, and

g(z) = cos

(
i

i− z

)
.

Notice that the zeros of g are at zk = i (2k+1)π−2
(2k+1)π

. There are infinitely many
of these zeros, and they accumulate only at i.

4.2.3 Uniqueness of Analytic Continuation

A consequence of the preceding basic fact (Section 4.2.1) about the zeros
of a holomorphic function is this: Let U ⊆ C be a connected open set and
D(P, r) ⊆ U. If f is holomorphic on U and f

∣∣
D(P,r)

≡ 0, then we may con-

clude that f ≡ 0 on U. This is so because the disc D(P, r) certainly contains
an interior accumulation point (merely take zj = P + r/j and zj → z0 = P )
hence f must be identically equal to 0.

Here are some further corollaries:

1. Let U ⊆ C be a connected open set. Let f, g be holomorphic on
U. If {z ∈ U : f(z) = g(z)} has an accumulation point in U , then
f ≡ g. For simply apply our uniqueness result to the difference function
h(z) = f(z) − g(z).

2. Let U ⊆ C be a connected open set and let f, g be holomorphic on U.
If f · g ≡ 0 on U , then either f ≡ 0 on U or g ≡ 0 on U. To see this, we
notice that if neither f nor g is identically 0 then there is either a point
p at which f(p) 6= 0 or there is a point p′ at which g(p′) 6= 0. Say it is
the former. Then, by continuity, f(p) 6= 0 on an entire disc centered at
p. But then it follows, since f · g ≡ 0, that g ≡ 0 on that disc. Thus
it must be, by the remarks in the first paragraph of this section, that
g ≡ 0.
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3. We have the following powerful result:

Let U ⊆ C be connected and open and let f be holomorphic
on U. If there is a P ∈ U such that

(
∂

∂z

)n
f(P ) = 0

for every n ∈ {0, 1, 2, . . . }, then f ≡ 0.

The reason for this result is simplicity itself: The power series expansion
of f about P will have all zero coefficients. Since the series certainly
converges to f on some small disc centered at P , the function is iden-
tically equal to 0 on that disc. Now, by our uniqueness result for zero
sets, we conclude that f is identically 0.

4. If f and g are entire holomorphic functions and if f(x) = g(x) for all
x ∈ R ⊆ C, then f ≡ g. It also holds that functional identities that are
true for all real values of the variable are also true for complex values
of the variable (Figure 4.5). For instance,

sin2 z + cos2 z = 1 for all z ∈ C (4.24)

because the identity is true for all z = x ∈ R. This is an instance of
the “principle of persistence of functional relations”—see [GRK].

Of course these statements are true because if U is a connected open
set having nontrivial intersection with the x-axis and if f holomorphic
on U vanishes on that intersection, then the zero set certainly has an
interior accumulation point. Again, see Figure 4.5.

Exercises

1. Let f and g be entire functions and suppose that f(x+ix2) = g(x+ix2)
whenever x is real. Prove that f(z) = g(z) for all z.

2. Let pn ∈ D be defined by pn = 1 − 1/n, n = 1, 2, . . . . Suppose that f
and g are holomorphic on the disc D and that f(pn) = g(pn) for every
n. Does it follow that f ≡ g?
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Figure 4.5: The principle of persistence of functional relations.

3. The real axis cannot be the zero set of a not-identically-zero holo-
morphic function on the entire plane. But it can be the zero set of
a not-identically-zero harmonic function on the plane. Prove both of
these statements.

4. Give an example of a holomorphic function on the disc D that vanishes
on an infinite set in D but which is not identically zero.

5. Let f and g be holomorphic functions on the disc D. Let P be the zero
set of f and let Q be the zero set of g. Is P ∪ Q the zero set of some
holomorphic function on D? Is P∩Q the zero set of some holomorphic
function on D? Is P \Q the zero set of some holomorphic function on
D?

6. Give an example of an entire function that vanishes at every point of
the form 0 + ik and every point of the form k + i0, for k ∈ Z.

7. Let c ∈ C satisfy |c| < 1. The function

ϕc(z) ≡
z − c

1 − cz

is called a Blaschke factor at the point c. Verify these properties of ϕc:
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• |ϕc(z)| = 1 whenever |z| = 1;

• |ϕc(z)| < 1 whenever |z| < 1;

• ϕc(c) = 0;

• ϕc ◦ ϕ−c(z) ≡ z.

8. Give an example of a holomorphic function on Ω ≡ D \ {0} such that
f(1/n) = 0 for n = ±1,±2, . . . , yet f is not identically 0.

9. Suppose that f is a holomorphic function on the disc and f(z)/z ≡
1 for z real (with the meaning of this statement for z = 0 suitably
interpreted). What can you conclude about f?

10. Let f, g be holomorphic on the disc D and suppose that [f · g](z) = 0
for z = 1/2, 1/3, 1/4, . . . . Prove that either f ≡ 0 or g ≡ 0.

11. Write a MatLab routine that will implement Newton’s method to find
the zeros of a given holomorphic function (see [BLK] for the basic idea
of Newton’s method). Enumerate the zeros by order of modulus.

12. Refine the MatLab routine from the last exercise to calculate the order
of each zero. You will want to exploit the following simple-minded
observations:

(a) The holomorphic function f has a simple zero at P if and only if
f(P ) = 0 but f ′(P ) 6= 0.

(b) The holomorphic function f has a zero of order two at P if f(P ) =
0, f ′(P ) = 0, yet f ′′(P ) 6= 0.

(c) The holomorphic function f has a zero of order k at P if f(P ) = 0,
f ′(P ) = 0, . . . , f (k−1)(P ) = 0, yet f (k)(P ) 6= 0.

13. The holomorphic function f(z) = u(z) + iv(z) ≈ (u(x, y), v(x, y)), de-
scribes a fluid flow on the unit disc. The function f is of course con-
formal. What do the zeros of f signify from a physical point of view?
According to our uniqueness theorem, the values f(x + i0) uniquely
determine f . What is the physical interpretation of this statement?

14. Interpret the statement that if the zero set of a holomorphic function
has an interior accumulation point then it is identically zero from a
physical point of view. Refer to the preceding exercise.





Chapter 5

Isolated Singularities and
Laurent Series

5.1 The Behavior of a Holomorphic Function

near an Isolated Singularity

5.1.1 Isolated Singularities

It is often important to consider a function that is holomorphic on a punc-
tured open set U \ {P} ⊂ C. Refer to Figure 5.1.

In this chapter we shall obtain a new kind of infinite series expansion
which generalizes the idea of the power series expansion of a holomorphic
function about a (nonsingular) point—see Section 4.1.6. We shall in the
process completely classify the behavior of holomorphic functions near an
isolated singular point (Section 5.1.3).

5.1.2 A Holomorphic Function on a Punctured

Domain

Let U ⊆ C be an open set and P ∈ U. Suppose that f : U \ {P} → C is
holomorphic. In this situation we say that f has an isolated singular point
(or isolated singularity) at P . The implication of the phrase is usually just
that f is defined and holomorphic on some such “deleted neighborhood” of
P . The specification of the set U is of secondary interest; we wish to consider
the behavior of f “near P .”

115
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P

Figure 5.1: A punctured domain.

5.1.3 Classification of Singularities

There are three possibilities for the behavior of f near P that are worth
distinguishing:

(1) |f(z)| is bounded on D(P, r) \ {P} for some r > 0 with D(P, r) ⊆ U ;
that is, there is some r > 0 and some M > 0 such that |f(z)| ≤M for
all z ∈ U ∩D(P, r) \ {P}.

(2) limz→P |f(z)| = +∞.

(3) Neither (1) nor (2).

Clearly these three possibilities cover all conceivable situations. It is our
job now to identify extrinsically what each of these three situations entails.

5.1.4 Removable Singularities, Poles, and Essential

Singularities

We shall see momentarily that, if case (1) holds, then f has a limit at P that
extends f so that it is holomorphic on all of U. It is commonly said in this
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circumstance that f has a removable singularity at P. In case (2), we will
say that f has a pole at P. In case (3), the function f will be said to have
an essential singularity at P. Our goal in this and the next subsection is to
understand (1)–(3) in some further detail.

5.1.5 The Riemann Removable Singularities Theorem

Let f : D(P, r) \ {P} → C be holomorphic and bounded. Then

(a) limz→P f(z) exists.

(b) The function f̂ : D(P, r) → C defined by

f̂(z) =

{
f(z) if z 6= P

lim
ζ→P

f(ζ) if z = P

is holomorphic.

The reason that this theorem is true is the following. We may assume
without loss of generality—by a simple translation of coordinates—that P =
0. Now consider the auxiliary function g(z) = z2 ·f(z). Then one may verify
by direct application of the derivative that g is continuously differentiable at
all points—including the origin. Furthermore, we may calculate with ∂/∂z to
see that g satisfies the Cauchy-Riemann equations. Thus g is holomorphic.
But the very definition of g shows that g vanishes to order 2 at 0. Thus the
power series expansion of g about 0 cannot have a constant term and cannot
have a linear term. It follows that

g(z) = a2z
2 + a3z

3 + a4z
4 + · · · = z2(a2 + a3z + a4z

2 + · · · ) ≡ z2 · h(z) .

Notice that the function h is holomorphic—we have in fact given its power
series expansion explicitly. But now, for z 6= 0, h(z) = g(z)/z2 = f(z). Thus
we see that h is the holomorphic continuation of f (across the singularity at
0) that we seek.

5.1.6 The Casorati-Weierstrass Theorem

If f : D(P, r0) \ {P} → C is holomorphic and P is an essential
singularity of f, then f(D(P, r) \ {P}) is dense in C for any
0 < r < r0.
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The proof of this result is a nice application of the Riemann removable
singularities theorem. For suppose to the contrary that f(D(P, r) \ {P}) is
not dense in C. This means that there is a disc D(Q, s) that is not in the
range of f . So consider the function

g(z) =
1

f(z) −Q
.

We see that the denominator of this function is bounded away from 0 (by s)
hence the function g itself is bounded near P . So we may apply Riemann’s
theorem and conclude that g continues analytically across the point P . And
the value of g near P cannot be 0. But then it follows that

f(z) =
1

g(z)
+Q

extends analytically across P . That contradicts the hypothesis that P is an
essential singularity for f .

5.1.7 Concluding Remarks

Now we have seen that, at a removable singularity P , a holomorphic function
f on D(P, r0) \ {P} can be continued to be holomorphic on all of D(P, r0).
And, near an essential singularity at P , a holomorphic function g onD(P, r0)\
{P} has image that is dense in C. The third possibility, that h has a pole at
P , has yet to be described. Suffice it to say that, at a pole (case (2)), the
limit of modulus the function is +∞ hence the graph of the modulus of the
function looks like a pole! See Figure 5.2. This case will be examined further
in the next section.

We next develop a new type of doubly infinite series that will serve as a
tool for understanding isolated singularities—especially poles.

Exercises

1. Discuss the singularities of these functions at 0:

(a) f(z) =
z2

1 − cos z

(b) g(z) =
sin z

z
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Figure 5.2: A pole.

(c) h(z) =
sec z − 1

sin2 z

(d) f(z) =
log(1 + z)

z2

(e) g(z) =
z2

ez − 1

(f) h(z) =
sin z − z

z2

(g) f(z) = e1/z

2. If f has a pole at P and g has a pole at P does it then follow that f · g
has a pole at P ? How about f + g?

3. If f has a pole at P and g has an essential singularity at P does it then
follow that f · g has an essential singularity at P ? How about f + g?

4. Suppose that f is holomorphic in a deleted neighborhood D(P, r)\{P}
of P and that f is not bounded near P . Assume further that (z−P )2 ·f
is bounded (near P ). Prove that f has a pole at p. What happens if
the exponent 2 is replaced by some other positive integer?

5. Suppose that f is holomorphic in a deleted neighborhood D(P, r)\{P}
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of P and that (z−P )k ·f is unbounded for very choice of positive integer
k. What conclusion can you draw about the singularity of f at P ?

6. Write a MatLab routine to test whether a holomorphic function defined
on a deleted neighborhood D(0, r)\{0} of the origin has a holomorphic
continuation past 0. Of course use the Riemann removable singularities
theorem as a tool.

7. Let f be a holomorphic function defined on a deleted neighborhood
D(0, r) \ {0} of the origin. Devise a MatLab routine to test whether f
has a pole or an essential singularity at 0. [Hint: Bear in mind that a
function blows up at a pole, whereas (by contrast) the function takes a
dense set of values on any neighborhood of 0 when it has an essential
singularity there. Use these facts as the basis for your MatLab testing
routine.]

8. In the Riemann removable singularities theorem, the hypothesis of
boundedness is not essential. Describe a weaker hypothesis that will
give (with the same proof!) the same conclusion.

9. A differential equation describes an incompressible fluid flow in a deleted
neighborhood of the point P in the complex plane. The solution of the
equation exhibits a removable singularity at P . What does this tell you
about the physical nature of the system?

10. A differential equation describes an incompressible fluid flow in a deleted
neighborhood of the point P in the complex plane. The solution of the
equation exhibits an essential pole at P . What does this tell you about
the physical nature of the system?

11. A differential equation describes an incompressible fluid flow in a deleted
neighborhood of the point P in the complex plane. The solution of the
equation exhibits an essential singularity at P . What does this tell you
about the physical nature of the system?

5.2 Expansion around Singular Points

5.2.1 Laurent Series

A Laurent series on D(P, r) is a (formal) expression of the form
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+∞∑

j=−∞

aj(z − P )j . (5.1)

Observe that the sum extends from j = −∞ to j = +∞. Further note that
the individual summands are each defined for all z ∈ D(P, r) \ {P}.

5.2.2 Convergence of a Doubly Infinite Series

To discuss convergence of Laurent series, we must first make a general agree-
ment as to the meaning of the convergence of a “doubly infinite” series∑+∞

j=−∞ αj. We say that such a series converges if
∑+∞

j=0 αj and
∑+∞

j=1 α−j =∑−1
j=−∞ αj converge in the usual sense. In this case, we set

+∞∑

−∞

αj =

(
+∞∑

j=0

αj

)
+

(
+∞∑

j=1

α−j

)
. (5.2)

Thus a doubly infinite series converges precisely when the sum of its “positive
part” (that is., the terms of positive index) converges and the sum of its
“negative part” (that is, the terms of negative index) converges.

We can now present the analogues for Laurent series of our basic results
about power series.

5.2.3 Annulus of Convergence

The set of convergence of a Laurent series is either an open set of the form
{z : 0 ≤ r1 < |z−P | < r2}, together with perhaps some or all of the boundary
points of the set, or a set of the form {z : 0 ≤ r1 < |z−P | < +∞}, together
with perhaps some or all of the boundary points of the set. Such an open set
is called an annulus centered at P. We shall let

D(P,+∞) = {z : |z − P | < +∞} = C , (5.3)

D(P, 0) = {z : |z − P | < 0} = ∅ , (5.4)

and
D(P, 0) = {P} . (5.5)

As a result, all (open) annuli (plural of “annulus”) can be written in the form

D(P, r2) \D(P, r1) , 0 ≤ r1 ≤ r2 ≤ +∞ . (5.6)
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In precise terms, the “domain of convergence” of a Laurent series is given as
follows:

Let
+∞∑

n=−∞

an(z − P )n (5.7)

be a doubly infinite series. There are (see (5.6)) unique nonnegative extended
real numbers r1 and r2 (r1 or r2 may be +∞) such that the series converges
absolutely for all z with r1 < |z−P | < r2 and diverges for z with |z−P | < r1
or |z−P | > r2.Also, if r1 < s1 ≤ s2 < r2, then

∑+∞
n=−∞ |an(z−P )n| converges

uniformly on {z : s1 ≤ |z − P | ≤ s2} and, consequently,
∑+∞

n=−∞ an(z − P )n

converges absolutely and uniformly there.

5.2.4 Uniqueness of the Laurent Expansion

Let 0 ≤ r1 < r2 ≤ ∞. If the Laurent series
∑+∞

n=−∞ an(z − P )n converges on

D(P, r2) \D(P, r1) to a function f , then, for any r satisfying r1 < r < r2,
and each n ∈ Z,

an =
1

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − P )n+1
dζ . (5.8)

In particular, the an’s are uniquely determined by f . We prove this result in
Section 5.6.

We turn now to establishing that convergent Laurent expansions of func-
tions holomorphic on an annulus do in fact exist.

5.2.5 The Cauchy Integral Formula for an Annulus

Suppose that 0 ≤ r1 < r2 ≤ +∞ and that f : D(P, r2) \ D(P, r1) → C is
holomorphic. Then, for each s1, s2 such that r1 < s1 < s2 < r2 and each
z ∈ D(P, s2) \D(P, s1), it holds that

f(z) =
1

2πi

∮

|ζ−P |=s2

f(ζ)

ζ − z
dζ − 1

2πi

∮

|ζ−P |=s1

f(ζ)

ζ − z
dζ. (5.9)

The easiest way to confirm the validity of this formula is to use a little
manipulation of the Cauchy formula that we already know. Examine Figure
5.3. It shows a classical Cauchy contour for a holomorphic function with no
singularity on a neighborhood of the curve and its interior. Now we simply



5.2. EXPANSION AROUND SINGULAR POINTS 123

P

Figure 5.3: The Cauchy integral near an isolated singularity.

let the two vertical edges coalesce to form the Cauchy integral over two circles
as in Figure 5.4.

5.2.6 Existence of Laurent Expansions

Now we have our main result:

If 0 ≤ r1 < r2 ≤ ∞ and f : D(P, r2) \D(P, r1) → C is holomorphic, then
there exist complex numbers aj such that

+∞∑

j=−∞

aj(z − P )j (5.10)

converges on D(P, r2) \ D(P, r1) to f. If r1 < s1 < s2 < r2, then the series
converges absolutely and uniformly on D(P, s2) \D(P, s1).

The series expansion is independent of s1 and s2. In fact, for each fixed
n = 0,±1,±2, . . . , the value of

an =
1

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − P )n+1
dζ (5.11)

is independent of r provided that r1 < r < r2.
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P

Figure 5.4: Annular Cauchy integral for an isolated singularity.

We may justify the Laurent expansion in the following manner.

If 0 ≤ r1 < s1 < |z − P | < s2 < r2, then the two integrals on the right-
hand side of the equation in (5.9) can each be expanded in a series. For the
first integral we have

∮

|ζ−P |=s2

f(ζ)

ζ − z
dζ =

∮

|ζ−P |=s2

f(ζ)

1 − z−P
ζ−P

· 1

ζ − P
dζ

=

∮

|ζ−P |=s2

f(ζ)

ζ − P

+∞∑

j=0

(z − P )j

(ζ − P )j
dζ

=

∮

|ζ−P |=s2

+∞∑

j=0

f(ζ)(z − P )j

(ζ − P )j+1
dζ ,

where the geometric series expansion of

1

1 − (z − P )/(ζ − P )

converges because |z − P |/|ζ − P | = |z − P |/s2 < 1. In fact, since the value
of |(z − P )/(ζ −P )| is independent of ζ, for |ζ − P | = s2, it follows that the
geometric series converges uniformly.
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Thus we may switch the order of summation and integration to obtain

∮

|ζ−P |=s2

f(ζ)

ζ − z
dζ =

+∞∑

j=0

(∮

|ζ−P |=s2

f(ζ)

(ζ − P )j+1
dζ

)
(z − P )j .

For s1 < |z − P |, similar arguments justify the formula

∮

|ζ−P |=s1

f(ζ)

ζ − z
dζ = −

∮

|ζ−P |=s1

f(ζ)

1 − ζ−P
z−P

· 1

z − P
dζ

= −
∮

|ζ−P |=s1

f(ζ)

z − P

+∞∑

j=0

(ζ − P )j

(z − P )j
dζ

= −
+∞∑

j=0

[∮

|ζ−P |=s1
f(ζ) · (ζ − P )j dζ

]
(z − P )−j−1

= −
−1∑

j=−∞

[∮

|ζ−P |=s1

f(ζ)

(ζ − P )j+1
dζ

]
(z − P )j.

Thus

2πif(z) =
−1∑

j=−∞

[∮

|ζ−P |=s1

f(ζ)

(ζ − P )j+1
dζ

]
(z − P )j

+
+∞∑

j=0

[∮

|ζ−P |=s2

f(ζ)

(ζ − P )j+1
dζ

]
(z − P )j ,

as desired.

Certainly one of the important benefits of the proof we have just pre-
sented is that we have an explicit formula for the coefficients of the Laurent
expansion:

aj =
1

2πi

∮

∂D(P,r)

f(ζ)

(ζ − P )j+1
dζ, any r1 < r < r2 .

In Section 5.3.2 we shall give an even more practical means, with examples,
for the calculation of Laurent coefficients.
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5.2.7 Holomorphic Functions with Isolated

Singularities

Now let us specialize what we have learned about Laurent series expansions
to the case of f : D(P, r) \ {P} → C holomorphic, that is, to a holomorphic
function with an isolated singularity. Thus we will be considering the Laurent
expansion on a degenerate annulus of the form D(P, r) \D(P, 0).

Let us review: If f : D(P, r) \ {P} → C is holomorphic, then f has a
unique Laurent series expansion

f(z) =
∞∑

j=−∞

aj(z − P )j (5.12)

that converges absolutely for z ∈ D(P, r) \ {P}. The convergence is uniform
on compact subsets of D(P, r) \ {P}. The coefficients are given by

aj =
1

2πi

∮

∂D(P,s)

f(ζ)

(ζ − P )j+1
dζ, any 0 < s < r. (5.13)

5.2.8 Classification of Singularities in Terms of
Laurent Series

There are three mutually exclusive possibilities for the Laurent series

∞∑

n=−∞

an(z − P )n (5.14)

about an isolated singularity P :

(5.15) an = 0 for all n < 0.
(5.16) For some k ≥ 1, an = 0 for all −∞ < n < −k, but a−k 6= 0.
(5.17) Neither (i) nor (ii) applies.

These three cases correspond exactly to the three types of isolated singu-
larities that we discussed in Section 5.1.3: case (5.15) occurs if and only if
P is a removable singularity; case (5.16) occurs if and only if P is a pole (of
order k); and case (5.17) occurs if and only if P is an essential singularity.
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P

Figure 5.5: A pole at P .

To put this matter in other words: In case (5.15), we have a power series
that converges, of course, to a holomorphic function. In case (5.16), our
Laurent series has the form

∞∑

j=−k

aj(z− P )j = (z− P )−k
∞∑

j=−k

aj(z −P )j+k = (z−P )−k
∞∑

j=0

aj−k(z−P )j .

(5.18)
Since a−k 6= 0, we see that, for z near P , the function defined by the series
behaves like a−k · (z−P )−k. In short, the function (in absolute value) blows
up like |z − P |−k as z → P . A graph in (|z|, |f(z)|)-space would exhibit a
“pole-like” singularity. This is the source of the terminology “pole.” See
Figure 5.5. Case (5.17), corresponding to an essential singularity, is much
more complicated; in this case there are infinitely many negative terms in the
Laurent expansion and, by Casorati-Weierstrass (Section 5.1.6), they interact
in a complicated fashion.

Picard’s Great Theorem (see Glossary of Terms) tells us more about the
behavior of a holomorphic function near an essential singularity.
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Exercises

1. Derive the Laurent expansion for the function g(z) = e1/z about z = 0.
Use your knowledge of the exponential function plus substitution.

2. Derive the Laurent expansion for the function h(z) = sin z
z3

about z = 0.

3. Derive the Laurent expansion for the function f(z) = sin z
cos z

about z =
π/2. Use long division.

4. Verify that the functions

f(z) = e1/z

and

g(z) = cos(1/z)

each have an essential singularity at z = 0. Now determine the nature
of the behavior of f/g at 0.

5. Suppose that the function f has an essential singularity at 0. Does it
then follow that 1/f has an essential singularity at 0?

6. It is impossible to use a computer to determine whether a given function
f has Laurent expansion with infinitely many terms of negative index
at a given point P . Discuss other means for using MatLab to test f for
the various types of singularities at P .

7. Explain using Laurent series why f and g could both have essential
singularities at P yet f − g may not have such a singularity at P . Does
a similar analysis apply to f · g?

8. Explain using Laurent series why f and g could both have poles at P
yet f − g may not have such a singularity at P . Does a similar analysis
apply to f · g?

9. Give an example of functions f and g, each of which has an essential
singularity at 0, yet f + g has a pole of order 1 at 0.

10. An incompressible fluid flow has singularity at the origin having the
form

sin z − z

z5
.



5.3. EXAMPLES OF LAURENT EXPANSIONS 129

Discuss the nature of this singularity. What will be the behavior of the
flow near the origin?

5.3 Examples of Laurent Expansions

5.3.1 Principal Part of a Function

When f has a pole at P, it is customary to call the negative power part of the
Laurent expansion of f around P the principal part of f at P. (Occasionally
we shall also use the terminology “Laurent polynomial.”) That is, if

f(z) =

∞∑

n=−k

an(z − P )n (5.19)

for z near P , then the principal part of f at P is

−1∑

n=−k

an(z − P )n. (5.20)

Example 43 The Laurent expansion about 0 of the function f(z) = (z2 +
1)/ sin(z3) is

f(z) = (z2 + 1) · 1

sin(z3)

= (z2 + 1) · 1

z3 − z9/3! + z15/5! − + · · ·

= (z2 + 1) · 1

z3
· 1

1 − z6/3! + z12/5! − + · · ·

= (z2 + 1) · 1

z3
·
(

1 +
z6

3!
− + · · ·

)

=
1

z3
+

1

z
+ (a holomorphic function).

The principal part of f is 1/z3 + 1/z.

Example 44 For a second example, consider the function f(z) = (z2 +2z+
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2) sin(1/(z + 1)). Its Laurent expansion about the point −1 is

f(z) = ((z + 1)2 + 1) ·
[

1

z + 1
− 1

6(z + 1)3
+

1

120(z + 1)5

− 1

5040(z + 1)7
+ − · · ·

]

= (z + 1) +
5

6

1

(z + 1)
− 19

120

1

(z + 1)3
+

41

5040

1

(z + 1)5
− + · · · .

The principal part of f at the point −1 is

5

6

1

(z + 1)
− 19

120

1

(z + 1)3
+

41

5040

1

(z + 1)5
− + · · · . (5.21)

As with power series (see Section 4.1.6), we can sometimes use calculus
or algebra tricks to derive a Laurent series expansion. An example illustrates
the idea:

Example 45 Let us derive the Laurent series expansion about 0 of the func-
tion

f(z) =
1

z2(z + 1)
.

We use the method of partial fractions (from calculus) to write the function
as

f(z) = −1

z
+

1

z2
+

1

z + 1
= −1

z
+

1

z2
+

1

1 − (−z) .

Thus we see that the Laurent expansion of f about 0 is

f(z) =
1

z2
− 1

z
+ 1 + (−z) + (−z)2 + (−z)3 + · · · .

In particular, the principal part of f at 0 is 1/z2−1/z and the residue is −1.
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5.3.2 Algorithm for Calculating the Coefficients of the

Laurent Expansion

Let f be holomorphic on D(P, r) \ {P} and suppose that f has a pole of
order k at P. Then the Laurent series coefficients an of f expanded about
the point P , for j = −k,−k + 1,−k + 2, . . . , are given by the formula

aj =
1

(k + j)!

(
∂

∂z

)k+j (
(z − P )k · f

)∣∣∣∣
z=P

. (5.22)

We begin by illustrating this formula, and provide the justification a bit later.

Example 46 Let f(z) = cot z. Let us calculate the Laurent coefficients of
negative index for f at the point P = 0.

We first notice that
cot z =

cos z

sin z
.

Since cos z = 1−z2/2!+− · · · and sin z = z−z3/3!+− · · · , we see immediately
that, for |z| small, cot z = cos z/ sin z ≈ 1/z so that f has a pole of order
1 at 0. Thus, in our formula for the Laurent coefficients, k = 1. Also the
only Laurent coefficient of negative index is n = −1. [We anticipate from
this calculation that the coefficient of z−1 will be 1. This perception will be
borne out in our calculation.]

Now we see, by (5.22), that

a−1 =
1

0!

(
∂

∂z

)0 (
z · cos z

sin z

)∣∣∣∣
z=0

=
(
z · cos z

sin z

)∣∣∣∣
z=0

.

It is appropriate to apply l’Hôpital’s Rule to evaluate this last expression.
Thus we have

cos z − z · sin z
cos z

∣∣∣∣
z=0

= 1 .

Not surprisingly, we find that the “pole” term of the Laurent expansion
of this function f about 0 is 1/z. We say “not surprisingly” because cos z =
1 −+ · · · and sin z = z −+ · · · and hence we expect that cot z = 1/z + · · · .

We invite the reader to use the technique of the last example to calculate
a0 for the given function f . Of course you will find l’Hôpital’s rule useful.
You should not be surprised to learn that a0 = 0 (and we say “not surprised”
because you could have anticipated this result using long division).
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Example 47 Let us use formula (5.22) to calculate the negative Laurent
coefficients of the function g(z) = z2/(z − 1)2 at the point P = 1.

It is clear that the pole at P = 1 has order k = 2. Thus we calculate

a−2 =
1

0!

(
∂

∂z

)0(
(z − 1)2 · z2

(z − 1)2

)∣∣∣∣
z=1

= z2

∣∣∣∣
z=1

= 1

and

a−1 =
1

1!

(
∂

∂z

)1(
(z − 1)2 · z2

(z − 1)2

)∣∣∣∣
z=1

=
∂

∂z
z2

∣∣∣∣
z=1

= 2z

∣∣∣∣
z=1

= 2 .

Of course this result may be derived by more elementary means, using
just algebra:

z2

(z − 1)2
=

(z − 1)2

(z − 1)2
+

2z − 1

(z − 1)2
= 1+

2z − 2

(z − 1)2
+

1

(z − 1)2
= 1+

2

z − 1
+

1

(z − 1)2
.

The justification for formula (5.22) is simplicity itself. Suppose that f
has a pole of order k at the point P . We may write

f(z) = (z − P )−k · h(z) ,

where h is holomorphic near P . Writing out the ordinary power series ex-
pansion of h, we find that

f(z) = (z − P )−k ·
(
a0 + a1(z − P ) + a2(z − P )2 + · · ·

)

=
a0

(z − P )k
+

a1

(z − P )k−1
+

a2

(z − P )k−2
+ · · · .

So the −(k − j)th Laurent coefficient of f is just the same as the jth power
series coefficient of h. That is the key to our calculation, because

h(z) = (z − P )k · f(z) ,

and thus formula (5.22) is immediate.
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Exercises

1. Calculate the Laurent series of the function f(z) = z−sin z
z6

at z = π/2.

2. Calculate the Laurent series of the function g(z) = ln z
(z−1)3)

about the
point z = 1.

3. Calculate the Laurent series of the function sin(1/z) about the point
z = 0.

4. Calculate the Laurent series of the function tan z about the points
z = 0, z = π/2 and z = π.

5. Suppose that f has a pole of order 1 at z = 0. What can you say about
the behavior of g(z) = ef(z) at z = 0?

6. Suppose that f has an essential singularity at z = 0. What can you
say about the behavior of h(z) = ef(z) at z = 0.

7. Let U be an open region in the plane. Let M denote the collection of
functions on U that has a discrete set of poles and is holomorphic else-
where (we allow the possibility that the function may have no poles).
Explain why M is closed under addition, subtraction, multiplication,
and division.

8. Consider Exercise 7 with the word “pole” replaced by “essential sin-
gularity.” Does any part of the conclusion of that exercise still hold?
Why or why not?

9. Let P = 0. Classify each of the following as having a removable singu-
larity, a pole, or an essential singularity at P :

(a)
1

z
,

(b) sin
1

z
,

(c)
1

z3
− cos z,

(d) z · e1/z · e−1/z2 ,

(e)
sin z

z
,
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(f)
cos z

z
,

(g)

∑∞
k=2 2kzk

z3
.

10. Prove that
∞∑

n=1

2−(2n) · z−n

converges for z 6= 0 and defines a function which has an essential sin-
gularity at P = 0.

11. A Laurent series converges on an annular region. Give examples to
show that the set of convergence for a Laurent series can include some
of the boundary, all of the boundary, or none of the boundary.

12. Calculate the annulus of convergence (including any boundary points)
for each of the following Laurent series:

(a)
∑∞

n=−∞ 2−nzn,

(b)
∑∞

n=0 4−nzn +
∑−1

n=−∞ 3nzn,

(c)
∑∞

n=1 z
n/n2,

(d)
∑∞

n=−∞,n 6=0 z
n/nn,

(e)
∑10

n=−∞ zn/|n|! (0! = 1),

(f)
∑∞

n=−20 n
2zn.

13. Use formal algebra to calculate the first four terms of the Laurent series
expansion of each of the following functions:

(a) tan z ≡ (sin z/ cos z) about π/2,

(b) ez/ sin z about 0,

(c) ez/(1 − ez) about 0,

(d) sin(1/z) about 0,

(e) z(sin z)−2 about 0,

(f) z2(sin z)−3 about 0.

For each of these functions, identify the type of singularity at the point
about which the function has been expanded.
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14. An incompressible fluid flow has the form f(z) = [cos z− 1]/z3. Calcu-
late the principal part at the origin. What does the principal part tell
us about the flow?

5.4 The Calculus of Residues

5.4.1 Functions with Multiple Singularities

It turns out to be useful, especially in evaluating various types of integrals,
to consider functions that have more than one “singularity.” We want to
consider the following general question:

Suppose that f : U \ {P1, P2, . . . , Pn} → C is a holomorphic
function on an open set U ⊆ C with finitely many distinct points
P1, P2, . . . , Pn removed. Suppose further that

γ : [0, 1] → U \ {P1, P2, . . . , Pn} (5.23)

is a piecewiseC1 closed curve (Section 2.3.3) that (typically) “sur-
rounds” some of the points P1, . . . , Pn (Figure 5.6). Then how is∮
γ
f related to the behavior of f near the points P1, P2, . . . , Pn?

The first step is to restrict our attention to open sets U for which
∮
γ
f is

necessarily 0 if P1, P2, . . . , Pn are removable singularities of f . See the next
section.

5.4.2 The Concept of Residue

Suppose that U is a domain, P ∈ U , and f is a function holomorphic on
U \{P} with a pole at P . Let γ be a simple, closed curve in U that surrounds
P . And let D(P, r) be a small disc, centered at P , that lies inside γ. Then
certainly, by the usual Cauchy theory,

1

2πi

∮

γ

f(z) dz =
1

2πi

∮

∂D(P,r)

f(z) dz .
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But more is true. Let a−1 be the −1 coefficient of the Laurent expansion of
f about P . Then in fact

1

2πi

∮

γ

f(z) dz =
1

2πi

∮

∂D(P,r)

f(z) dz

=
1

2πi

∮

∂D(P,r)

a−1

z − P
dz = a−1 . (5.24)

We call the value a−1 the residue of f at the point P .
The justification for formula (5.24) is the following. Observe that, with

the parametrization µ(t) = P + reit for ∂D(P, r), we see for n 6= −1 that
∮

∂D(P,r)

(z − P )n dz =

∫ 2π

0

(reit)n · rieit dt = rn+1i

∫ 2π

0

ei(n+1)t dt = 0 .

It is important in this last calculation that n 6= −1. If instead n = −1 then
the integral turns out to be

i

∫ 2π

0

1 dt = 2πi .

This information is critical because if we are integrating a meromorphic
function f(z) =

∑∞
n=−∞ an(z − P )n around the contour ∂D(P, r) then the

result is
∮

∂D(P,r)

f(z) dz =

∮

∂D(P,r)

∞∑

n=−∞

an(z − P )n =
∞∑

n=−∞

an

∮

∂D(P,r)

(z − P )n dz

= a−1

∮

∂D(P,r)

(z − P )−1 dz = 2πia−1 .

In other words,

a−1 =
1

2πi

∮

∂D(P,r)

f(z) dz .

We will make incisive use of this information in the succeeding sections.

5.4.3 The Residue Theorem

Suppose that U ⊆ C is a simply connected open set in C, and that P1, . . . , Pn
are distinct points of U . Suppose that f : U \ {P1, . . . , Pn} → C is a holo-
morphic function and γ is a simple, closed, positively oriented, piecewise C1

curve in U \ {P1, . . . , Pn}. Set
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Rj = the coefficient of (z − Pj)
−1

in the Laurent expansion of f about Pj . (5.25)

Then

1

2πi

∮

γ

f =
n∑

j=1

Rj ·
(

1

2πi

∮

γ

1

ζ − Pj
dζ

)
. (5.26)

The rationale behind this residue formula is straightforward from the
picture. Examine Figure 5.6. It shows the curve γ and the poles P1, . . . , Pn.
Figure 5.7 exhibits a small circular contour around each pole. And Figure 5.8
shows our usual trick of connecting up the contours. The integral around the
big, conglomerate contour in Figure 5.8 (including γ, the integrals around
each of the circular arcs, and the integrals along the connecting segments) is
equal to 0. This demonstrates that

The integral of f around γ is equal to the sum of the integrals
around each of the circles around the Pn.

If we let Cj be the circle around Pj, oriented in the counterclockwise direction
as usual, then

1

2πi

∮

γ

f(z) dz =
n∑

j=1

Rj

(
1

2πi

∮

Cj

1

ζ − Pj
dζ

)
. (5.27)

5.4.4 Residues

The result just stated is used so often that some special terminology is com-
monly used to simplify its statement. First, the number Rj is usually called
the residue of f at Pj , written Resf(Pj). Note that this terminology of consid-
ering the number Rj attached to the point Pj makes sense because Resf (Pj)
is completely determined by knowing f in a small neighborhood of Pj. In
particular, the value of the residue does not depend on what the other points
Pk, k 6= j, might be, or on how f behaves near those points.
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P

P

P
P

P

1

2

3

4
n

Figure 5.6: A curve γ with poles inside.

P

P

P
P

P

1

2

3

4
n

Figure 5.7: A small circle about each pole.
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P

P

P
P

P

1

2

3

4
n

Figure 5.8: Stitching together the circles.

5.4.5 The Index or Winding Number of a Curve about

a Point

The second piece of terminology associated to our result deals with the inte-
grals that appear on the right-hand side of equation (5.27).

If γ : [a, b] → C is a piecewise C1 closed curve and if P 6∈ γ̃ ≡ γ([a, b]),
then the index of γ with respect to P , written Indγ(P ), is defined to be the
number

1

2πi

∮

γ

1

ζ − P
dζ . (5.28)

The index is also sometimes called the “winding number of the curve γ about
the point P .” It is a fact that Indγ(P ) is always an integer. Figure 5.9 il-
lustrates the index of various curves γ with respect to different points P .
Intuitively, the index measures the number of times the curve wraps around
P , with counterclockwise being the positive direction of wrapping and clock-
wise being the negative.

The fact that the index is an integer-valued function suggests that the
index counts the topological winding of the curve γ. Note in particular that
a curve that traces a circle about the origin k times in a counterclockwise
direction has index k with respect to the origin; a curve that traces a circle
about the origin k times in a clockwise direction has index −k with respect to
the origin. The general fact that the index is integer valued, and counts the
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Figure 5.9: Examples of the index of a curve.

winding number, follows from these two simple observations by deformation.
The index, or winding number, will prove to be an important geometric
device.

5.4.6 Restatement of the Residue Theorem

Using the notation of residue and index, the Residue Theorem’s formula
becomes ∮

γ

f = 2πi ·
n∑

j=1

Resf (Pj) · Indγ(Pj) . (5.29)

People sometimes state this formula informally as “the integral of f around
γ equals 2πi times the sum of the residues counted according to the index of
γ about the singularities.”

In practice, when we apply the residue theorem, we use a simple, closed,
positively-oriented curve γ. Thus the index of γ about any point in its interior
is just 1. And therefore we use the ideas of Section 5.4.3 and replace γ with
a small circle about each pole of the function (which of course will also have
index equal to 1 with respect to the point at its center).
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5.4.7 Method for Calculating Residues

We need a method for calculating residues.
Let f be a function with a pole of order k at P . Then

Resf(P ) =
1

(k − 1)!

(
∂

∂z

)k−1 (
(z − P )kf(z)

)
∣∣∣∣∣
z=P

. (5.30)

This is just a special case of the formula (5.22).

5.4.8 Summary Charts of Laurent Series and Residues

We provide two charts, the first of which summarizes key ideas about Laurent
coefficients and the second of which contains key ideas about residues.

Poles and Laurent Coefficients

Item Formula

jth Laurent coefficient of f
1

(k + j)!

dk+j

dzk+j
[(z − P )k · f ]

∣∣∣∣
z=P

with pole of order k at P

residue of f with a pole
1

(k − 1)!

dk−1

dzk−1
[(z − P )k · f ]

∣∣∣∣
z=P

of order k at P

order of pole of f at P least integer k ≥ 0 such that
(z − P )k · f is bounded near P

order of pole of f at P lim
z→P

∣∣∣∣
log |f(z)|
log |z − P |

∣∣∣∣
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Techniques for Finding the Residue at P

Function Type of Pole Calculation

f(z) simple limz→P (z − P ) · f(z)

f(z) pole of order k lim
z→P

µ(k−1)(z)

(k − 1)!
k is the least integer such
that limz→P µ(z) exists,

where µ(z) = (z − P )kf(z)

m(z)

n(z)
m(P ) 6= 0, n(z) = 0, n′(P ) 6= 0

m(P )

n′(P )

m(z)

n(z)
m has zero of order k at P (k + 1) · m

(k)(P )

n(k+1)(P )
n has zero of order (k + 1) at P

m(z)

n(z)
m has zero of order r at P lim

z→P

µ(k−1)(z)

(k − 1)!
,

n has zero of order (k + r) at P µ(z) = (z − P )k
m(z)

n(z)

Exercises

1. Calculate the residue of the function f(z) = cot z at z = 0.

2. Calculate the residue of the function h(z) = tan z at z = π/2.

3. Calculate the residue of the function g(z) = e1/z at z = 0.
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4. Calculate the residue of the function f(z) = cot2 z at z = 0.

5. Calculate the residue of the function g(z) = sin(1/z) at z = 0.

6. Calculate the residue of the function h(z) = tan(1/z) at z = 0.

7. If the function f has residue a at z = 0 and the function g has residue
b at z = 0 then what can you say about the residue of f/g at z = 0?
What about the residue of f · g at z = 0?

8. Let f and g be as in Exercise 7. Describe the residues of f + g and
f − g at z = 0.

9. Calculate the residue of fk(z) = zk for k ∈ Z. Explain the different
answers for different ranges of k.

10. Is the residue of a function f at an essential singularity always equal
to 0? Why or why not?

11. Use the calculus of residues to compute each of the following integrals:

(a)
1

2πi

∮

∂D(0,5)

f(z) dz where f(z) = z/[(z + 1)(z + 2i)],

(b)
1

2πi

∮

∂D(0,5)

f(z) dz where f(z) = ez/[(z + 1) sin z],

(c)
1

2πi

∮

∂D(0,8)

f(z) dz where f(z) = cot z/[(z − 6i)2 + 64],

(d)
1

2πi

∮

γ

f(z) dz where f(z) =
ez

z(z + 1)(z + 2)
and γ is the

negatively (clockwise) oriented triangle with vertices 1 ± i and
−3,

(e)
1

2πi

∮

γ

f(z) dz where f(z) =
ez

(z + 3i)2(z + 3)2(z + 4)
and γ is

the negatively oriented rectangle with vertices 2 ± i,−8 ± i,

(f)
1

2πi

∮

γ

f(z) dz where f(z) =
cos z

z2(z + 1)2(z + i)
and γ is as in

Figure 5.10.
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Figure 5.10: The contour in Exercise 11f.

(g)
1

2πi

∮

γ

f(z) dz where f(z) =
sin z

z(z + 2i)3
and γ is as in Figure

5.11.

(h)
1

2πi

∮

γ

f(z) dz where f(z) =
eiz

(sin z)(cos z)
and γ is the positively

(counterclockwise) oriented quadrilateral with vertices ±5i,±10,

(i)
1

2πi

∮

γ

f(z) dz where f(z) = tan z and γ is the curve in Figure

5.12.

12. Let R(z) be a rational function: R(z) = p(z)/q(z) where p and q are
holomorphic polynomials. Let f be holomorphic on C\{P1, P2, . . . , Pk}
and suppose that f has a pole at each of the points P1, P2, . . . , Pk.
Finally assume that

|f(z)| ≤ |R(z)|

for all z at which f(z) and R(z) are defined. Prove that f is a con-
stant multiple of R. In particular, f is rational. [Hint: Think about
f(z)/R(z).]

13. Let f : D(P, r) \ {P} → C be holomorphic. Let U = f(D(P, r) \ {P}).
Assume that U is open (we shall later see that this is always the case if
f is nonconstant). Let g : U → C be holomorphic. If f has a removable



5.4. THE CALCULUS OF RESIDUES 145

Figure 5.11: The contour in Exercise 11g.

-

Figure 5.12: The contour in Exercise 11i.
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singularity at P, does g◦f have one also? What about the case of poles
and essential singularities?

14. A certain incompressible fluid flow has poles at 0, 1, and i. Each pole
is a simple pole, and the respective residues are 3, −5, and 2. Follow
along a counterclockwise path consisting of a square of side 4 with
center 0 and sides parallel to the axes. What can you say about the
flow along that path?

5.5 Applications to the Calculation of

Definite Integrals and Sums

5.5.1 The Evaluation of Definite Integrals

One of the most classical and fascinating applications of the calculus of
residues is the calculation of definite (usually improper) real integrals. It is
an oversimplification to call these calculations, taken together, a “technique”:
it is more like a collection of techniques. We present several instances of the
method.

5.5.2 A Basic Example

To evaluate ∫ ∞

−∞

1

1 + x4
dx , (5.31)

we “complexify” the integrand to f(z) = 1/(1+ z4) and consider the integral
∮

γ
R

1

1 + z4
dx . (5.32)

See Figure 5.13.

Now part of the game here is to choose the right piecewise C1 curve or
“contour” γR. The appropriateness of our choice is justified (after the fact)
by the calculation that we are about to do. Assume that R > 1. Define

γ1
R(t) = t+ i0 if −R ≤ t ≤ R ,

γ2
R(t) = Reit if 0 ≤ t ≤ π.
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Figure 5.13: The curve γR in Section 5.5.2.

Call these two curves, taken together, γ or γR.
Now we set U = C, P1 = 1/

√
2 + i/

√
2, P2 = −1/

√
2 + i/

√
2, P3 =

−1/
√

2− i/
√

2, P4 = 1/
√

2− i/
√

2; the points P1, P2, P3, P4 are the poles of
1/[1 + z4]. Thus f(z) = 1/(1 + z4) is holomorphic on U \ {P1, . . . , P4} and
the Residue Theorem applies.

On the one hand,
∮

γ

1

1 + z4
dz = 2πi

∑

j=1,2

Indγ(Pj) · Resf(Pj) , (5.33)

where we sum only over the poles of f that lie inside γ. These are P1 and P2.
An easy calculation shows that

Resf(P1) =
1

4(1/
√

2 + i/
√

2)3
= −1

4

(
1√
2

+ i
1√
2

)
(5.34)

and

Resf (P2) =
1

4(−1/
√

2 + i/
√

2)3
= −1

4

(
− 1√

2
+ i

1√
2

)
. (5.35)

Of course the index at each point is 1. So
∮

γ

1

1 + z4
dz = 2πi

(
−1

4

)[(
1√
2

+ i
1√
2

)
+

(
− 1√

2
+ i

1√
2

)]

=
π√
2
. (5.36)
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On the other hand,

∮

γ

1

1 + z4
dz =

∮

γ1
R

1

1 + z4
dz +

∮

γ2
R

1

1 + z4
dz . (5.37)

Trivially,

∮

γ1
R

1

1 + z4
dz =

∫ R

−R

1

1 + t4
· 1 · dt→

∫ ∞

−∞

1

1 + t4
dt (5.38)

as R → +∞. That is good, because this last is the integral that we wish to
evaluate. Better still,

∣∣∣∣∣

∮

γ2
R

1

1 + z4
dx

∣∣∣∣∣ ≤ {length(γ2
R)} · max

γ2
R

∣∣∣∣
1

1 + z4

∣∣∣∣ ≤ πR · 1

R4 − 1
. (5.39)

[Here we use the inequality |1 + z4| ≥ |z|4 − 1, as well as (2.41).] Thus

∣∣∣∣∣

∮

γ2
R

1

1 + z4
dz

∣∣∣∣∣→ 0 as R → ∞ . (5.40)

Finally, (5.36), (5.38), (5.40) taken together yield

π√
2

= lim
R→∞

∮

γ

1

1 + z4
dz

= lim
R→∞

∮

γ1
R

1

1 + z4
dz + lim

R→∞

∮

γ2
R

1

1 + z4
dz

=

∫ ∞

−∞

1

1 + t4
dt+ 0.

This solves the problem: the value of the integral is π/
√

2.

In other problems, it will not be so easy to pick the contour so that the
superfluous parts (in the above example, this would be the integral over γ2

R)
tend to zero, nor is it always so easy to prove that they do tend to zero.
Sometimes, it is not even obvious how to complexify the integrand.
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Figure 5.14: The curve γR in Section 5.5.3.

5.5.3 Complexification of the Integrand

We evaluate ∫ ∞

−∞

cos x

1 + x2
dx (5.41)

by using the contour γR as in Figure 5.14 (that is, the same contour as in the
last example). The obvious choice for the complexification of the integrand
is

f(z) =
cos z

1 + z2
=

[eiz + e−iz]/2

1 + z2
=

[eixe−y + e−ixey]/2

1 + z2
. (5.42)

Now |eiz| = |eixe−y| = |e−y| ≤ 1 on γR but |e−iz| = |e−ixey| = |ey|
becomes quite large on γR when R is large and positive. There is no evident
way to alter the contour so that good estimates result. Instead, we alter the
function! Let g(z) = eiz/(1 + z2).

Of course the poles of g are at i and −i. Of these two, only i lies inside
the contour. On the one hand (for R > 1),

∮

γR

g(z) = 2πi · Resg(i) · IndγR
(i)

= 2πi

(
1

2ei

)
· 1 =

π

e
.

On the other hand, with γ1
R(t) = t,−R ≤ t ≤ R, and γ2

R(t) = Reit, 0 ≤ t ≤ π,
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we have ∮

γR

g(z) dz =

∮

γ1
R

g(z) dz +

∮

γ2
R

g(z) dz . (5.43)

Of course ∮

γ1
R

g(z) dz →
∫ ∞

−∞

eix

1 + x2
dx as R→ ∞ . (5.44)

And
∣∣∣∣∣

∮

γ2
R

g(z) dz

∣∣∣∣∣ ≤ length(γ2
R)·max

γ2
R

|g| ≤ πR · 1

R2 − 1
→ 0 as R→ ∞ . (5.45)

Here we have again reasoned as in the last section.
Thus

∫ ∞

−∞

cos x

1 + x2
dx = Re

∫ ∞

−∞

eix

1 + x2
dx = Re

(π
e

)
=
π

e
. (5.46)

5.5.4 An Example with a More Subtle Choice of

Contour

Let us evaluate ∫ ∞

−∞

sinx

x
dx . (5.47)

Before we begin, we remark that sinx/x is bounded near zero; also, the
integral converges at ∞ (as an improper Riemann integral) by integration by
parts. So the problem makes sense. Using the lesson learned from the last
example, we consider the function g(z) = eiz/z. However, the pole of eiz/z is
at z = 0 and that lies on the contour in Figure 5.14. Thus that contour may
not be used. We instead use the contour µ = µR that is depicted in Figure
5.15.

Define

µ1
R(t) = t, −R ≤ t ≤ −1/R,

µ2
R(t) = eit/R, π ≤ t ≤ 2π,

µ3
R(t) = t, 1/R ≤ t ≤ R,

µ4
R(t) = Reit, 0 ≤ t ≤ π.
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R

R- 1/R 1/R

- R R

curve
R

Figure 5.15: The curve µR in Section 5.5.4.

Clearly ∮

µ

g(z) dz =
4∑

j=1

∮

µj
R

g(z) dz . (5.48)

On the one hand, for R > 0,

∮

µ

g(z) dz = 2πiResg(0) · Indµ(0) = 2πi · 1 · 1 = 2πi . (5.49)

On the other hand,

∮

µ1
R

g(z) dz +

∮

µ3
R

g(z) dz →
∫ ∞

−∞

eix

x
dx as R→ ∞ . (5.50)

Furthermore,

∣∣∣∣∣

∮

µ4
R

g(z) dz

∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

∮

µ4
R

Im y <
√

R

g(z) dz

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∮

µ4
R

Im y ≥
√

R

g(z) dz

∣∣∣∣∣∣∣
(5.51)

≡ A+B . (5.52)
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Now

A ≤ length(µ4
R ∩ {z : Im z <

√
R}) · max{|g(z)| : z ∈ µ4

R, y <
√
R}

≤ 4
√
R ·
(

1

R

)
→ 0 as R → ∞.

Also

B ≤ length(µ4
R ∩ {z : Im z ≥

√
R}) · max{|g(z)| : z ∈ µ4

R, y ≥
√
R}

≤ πR ·

(
e−

√
R

R

)
→ 0 as R→ ∞.

So ∣∣∣∣∣

∮

µ4
R

g(z) dz

∣∣∣∣∣→ 0 as R→ ∞ . (5.53)

Finally,
∮

µ2
R

g(z) dz =

∫ 2π

π

ei(e
it/R)

eit/R
·
(
i

R
eit
)
dt

= i

∫ 2π

π

ei(e
it/R)dt.

As R → ∞ this tends to

= i

∫ 2π

π

1 dt

= πi as R→ ∞ . (5.54)

In summary, (5.49) through (5.54) yield

2πi =

∮

µ

g(z) dz =
4∑

n=1

∮

µn
R

g(z) dz (5.55)

→
∫ ∞

−∞

eix

x
dx+ πi as R → ∞ . (5.56)

Taking imaginary parts yields

π =

∫ ∞

−∞

sinx

x
dx . (5.57)
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Figure 5.16: The curve µR in Section 5.5.5.

5.5.5 Making the Spurious Part of the Integral Disap-

pear

Consider the integral
∫ ∞

0

x1/3

1 + x2
dx . (5.58)

We complexify the integrand by setting f(z) = z1/3/(1 + z2). Note that,
on the simply connected set U = C \ {iy : y < 0}, the expression z1/3 is
unambiguously defined as a holomorphic function by setting z1/3 = r1/3eiθ/3

when z = reiθ,−π/2 < θ < 3π/2. We use the contour displayed in Figure
5.16.

We must do this since z1/3 is not a well-defined holomorphic function in
any neighborhood of 0. Let us use the notation from the figure. We refer to
the preceding examples for some of the parametrizations that we now use.

Clearly
∮

µ3
R

f(z) dz →
∫ ∞

0

t1/3

1 + t2
dt . (5.59)

Of course that is good, but what will become of the integral over µ1
R? We
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have
∮

µ1
R

=

∫ −1/R

−R

t1/3

1 + t2
dt

=

∫ R

1/R

(−t)1/3

1 + t2
dt

=

∫ R

1/R

eiπ/3t1/3

1 + t2
dt.

(by our definition of z1/3 !). Thus

∮

µ3
R

f(z) dz+

∮

µ1
R

f(z) dz →
(

1 +

(
1

2
+

√
3

2
i

))∫ ∞

0

t1/3

1 + t2
dt as R → +∞ .

(5.60)
On the other hand,

∣∣∣∣∣

∮

µ4
R

f(z) dz

∣∣∣∣∣ ≤ πR · R1/3

R2 − 1
→ 0 as R→ +∞ (5.61)

and
∮

µ2
R

f(z) dz =

∫ −2π

−π

(eit/R)1/3

1 + e2it/R2
(i)eit/R dt

= R−4/3

∫ −2π

−π

ei4t/3

1 + e2it/R2
dt→ 0 as R→ +∞.

So, altogether then,
∮

µR

f(z) dz →
(

3

2
+

√
3

2
i

)∫ ∞

0

t1/3

1 + t2
dt as R → +∞ . (5.62)

The calculus of residues tells us that, for R > 1,

∮

µR

f(z) dz = 2πiResf (i) · IndµR
(i)

= 2πi

(
eiπ/6

2i

)
· 1

= π

(√
3

2
+
i

2

)
. (5.63)
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Finally, (5.62) and (5.63) taken together yield

∫ ∞

0

t1/3

1 + t2
dt =

π√
3
.

5.5.6 The Use of the Logarithm

While the integral ∫ ∞

0

dx

x2 + 6x+ 8
(5.64)

can be calculated using methods of calculus, it is enlightening to perform
the integration by complex variable methods. Note that if we endeavor to
use the integrand f(z) = 1/(z2 + 6z + 8) together with the idea of the last
example, then there is no “auxiliary radius” that helps. More precisely,
((reiθ)2 + 6reiθ + 8) is a constant multiple of r2 + 6r + 8 only if θ is an
integer multiple of 2π. The following nonobvious device is often of great
utility in problems of this kind. Define log z on U ≡ C \ {x+ i0 : x ≥ 0} by
log(reiθ) = (log r)+iθ when 0 < θ < 2π, r > 0. Here log r is understood to be
the standard real logarithm. Then, on U, log is a well-defined holomorphic
function. [Observe here that there are infinitely many ways to define the
logarithm function on U . One could set log(reiθ) = (log r) + i(θ + 2kπ)
for any integer choice of k. What we have done here is called “choosing a
branch” of the logarithm. See Section 2.5.]

We use the contour ηR displayed in Figure 5.17 and integrate the function
g(z) = log z/(z2 + 6z + 8). Let

η1
R(t) = t+ i/

√
2R, 1/

√
2R ≤ t ≤ R,

η2
R(t) = Reit, θ0 ≤ t ≤ 2π − θ0,

where θ0(R) = tan−1(1/(R
√

2R))

η3
R(t) = R − t− i/

√
2R, 0 ≤ t ≤ R − 1/

√
2R,

η4
R(t) = e−it/

√
R, π/4 ≤ t ≤ 7π/4.

Now
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Figure 5.17: The curve µR in Section 5.5.6.
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∮

ηR

g(z) dz = 2πi(ResηR
(−2) · 1 + ResηR

(−4) · 1)

= 2πi

(
log(−2)

2
+

log(−4)

−2

)

= 2πi

(
log 2 + πi

2
+

log 4 + πi

−2

)

= −πi log 2 . (5.65)

Also, it is straightforward to check that

∣∣∣∣∣

∮

η2
R

g(z) dz

∣∣∣∣∣→ 0 , (5.66)

∣∣∣∣∣

∮

η4
R

g(z) dz

∣∣∣∣∣→ 0 , (5.67)

as R→ +∞. The device that makes this technique work is that, as R → +∞,

log(x+ i/
√

2R) − log(x− i/
√

2R) → −2πi . (5.68)

So ∮

η1
R

g(z) dz +

∮

η3
R

g(z) dz → −2πi

∫ ∞

0

dt

t2 + 6t+ 8
. (5.69)

Now (5.65) through (5.69) taken together yield

∫ ∞

0

dt

t2 + 6t+ 8
=

1

2
log 2 . (5.70)

5.5.7 Summary Chart of Some Integration Techniques

In what follows we present, in chart form, just a few of the key methods of
using residues to evaluate definite integrals.
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Use of Residues to Evaluate Integrals

Integral Properties of Value of Integral

I = No poles of f(z) I = 2πi ×
on real axis.

∫ ∞

−∞
f(x) dx Finite number of




sum of residues
of f in upper

half-plane




poles of f(z)
in plane.

|f(z)| ≤ C
|z|2

for z large.

I = f(z) may have I = 2πi ×
simple poles on∫ ∞

−∞
f(x) dx real axis. Finite




sum of residues
of f in upper
half-plane




number of poles of
f(z) in plane. + πi ×
|f(z)| ≤ C

|z|2

for z large.




sum of residues
of f(z)
on real axis




I = p, q polynomials. I = 2πi ×
∫ ∞

−∞

p(x)
q(x)

dx
[deg p] + 2 ≤ deg q.




sum of residues
of p(z)/q(z)
in upper half
plane


q has no real zeros.
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Use of Residues to Evaluate Integrals, Continued

Integral Properties of Value of Integral

I = p, q polynomials. I = 2πi ×
[deg p] + 2 ≤ deg q.

p(z)/q(z) may
∫ ∞

−∞

p(x)
q(x)

dx

have simple poles




sum of residues
of p(z)/q(z)
in upper half
plane




on real axis.
+ πi ×


sum of residues
of p(z)/q(z)
on real axis




I = α > 0, z large I = 2πi ×
|f(z)| ≤ C

|z|
∫ ∞

−∞
eiαx · f(x) dx

No poles of f




sum of residues
of eiαzf(z)
in upper half
plane




on real axis.

I = α > 0, z large I = 2πi ×
∫ ∞

−∞
eiαx · f(x) dx

|f(z)| ≤ C
|z|

f(z) may have
simple poles on




sum of residues
of eiαzf(z)
in upper half
plane




real axis
+ πi ×


sum of residues
of eiαzf(z)
on real axis



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Exercises

Use the calculus of residues to calculate the integrals in Exercises 1 through
13:

1.

∫ +∞

0

1

1 + x4
dx

2.

∫ +∞

−∞

cos x

1 + x4
dx

3.

∫ +∞

0

x1/3

1 + x2
dx

4.

∫ +∞

0

1

x3 + x+ 1
dx

5.

∫ +∞

0

1

1 + x3
dx

6.

∫ +∞

0

x sinx

1 + x2
dx

7.

∫ ∞

−∞

x2

1 + x4
dx

8.

∫ +∞

−∞

x

sinhx
dx

9.

∫ +∞

−∞

x2

1 + x6
dx

10.

∫ ∞

−∞

x1/3

−1 + x5
dx

11.

∫ +∞

−∞

sin2 x

x2
dx

12. Interpret the first two examples in this section in terms of incompress-
ible fluid flow.
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5.6 Meromorphic Functions

and Singularities at Infinity

5.6.1 Meromorphic Functions

We have considered carefully those functions that are holomorphic on sets
of the form D(P, r) \ {P} or, more generally, of the form U \ {P}, where
U is an open set in C and P ∈ U. As we have seen in our discussion of the
calculus of residues, sometimes it is important to consider the possibility that
a function could be “singular” at more than just one point. The appropriate
precise definition requires a little preliminary consideration of what kinds of
sets might be appropriate as “sets of singularities.”

5.6.2 Discrete Sets and Isolated Points

We review the concept of discrete. A set S in C is discrete if and only if for
each z ∈ S there is a positive number r (depending on z) such that

S ∩D(z, r) = {z} . (5.71)

We also say in this circumstance that S consists of isolated points.

5.6.3 Definition of a Meromorphic Function

Now fix an open set U ; we next define the central concept of meromorphic
function on U.

A meromorphic function f on U with singular set S is a function f :
U \ S → C such that

(5.72) S is discrete;
(5.73) f is holomorphic on U \ S (note that U \ S is necessarily

open in C);
(5.74) for each P ∈ S and r > 0 such that D(P, r) ⊆ U and
S∩D(P, r) = {P}, the function f

∣∣
D(P,r)\{P} has a (finite order) pole at P .

For convenience, one often suppresses explicit consideration of the set S
and just says that f is a meromorphic function on U. Sometimes we say,
informally, that a meromorphic function on U is a function on U that is
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holomorphic “except for poles.” Implicit in this description is the idea that
a pole is an “isolated singularity.” In other words, a point P is a pole of f
if and only if there is a disc D(P, r) around P such that f is holomorphic
on D(P, r) \ {P} and has a pole at P. Back on the level of precise language,
we see that our definition of a meromorphic function on U implies that, for
each P ∈ U, either there is a disc D(P, r) ⊆ U such that f is holomorphic
on D(P, r) or there is a disc D(P, r) ⊆ U such that f is holomorphic on
D(P, r) \ {P} and has a pole at P.

5.6.4 Examples of Meromorphic Functions

Meromorphic functions are very natural objects to consider, primarily be-
cause they result from considering the (algebraic) reciprocals of holomorphic
functions:

If U is a connected open set in C and if f : U → C is a holomorphic
function with f 6≡ 0, then the function

F : U \ {z : f(z) = 0} → C (5.75)

defined by F (z) = 1/f(z) is a meromorphic function on U with singular set
(or pole set) equal to {z ∈ U : f(z) = 0}. In a sense that can be made precise,
all meromorphic functions arise as quotients of holomorphic functions.

5.6.5 Meromorphic Functions with Infinitely Many
Poles

It is quite possible for a meromorphic function on an open set U to have in-
finitely many poles in U. The function 1/ sin(1/(1−z)) is an obvious example
on U = D. Notice, however, that the poles do not accumulate anywhere in
D.

5.6.6 Singularities at Infinity

Our discussion so far of singularities of holomorphic functions can be gener-
alized to include the limit behavior of holomorphic functions as |z| → +∞.
This is a powerful method with many important consequences. Suppose for
example that f : C → C is an entire function. We can associate to f a
new function G : C \ {0} → C by setting G(z) = f(1/z). The behavior
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of the function G near 0 reflects, in an obvious sense, the behavior of f as
|z| → +∞. For instance

lim
|z|→+∞

|f(z)| = +∞ (5.76)

if and only if G has a pole at 0.
Suppose that f : U → C is a holomorphic function on an open set U ⊆ C

and that, for some R > 0, U ⊇ {z : |z| > R}. Define G : {z : 0 < |z| <
1/R} → C by G(z) = f(1/z). Then we say that

(5.77) f has a removable singularity at ∞ if G has a removable singularity
at 0.
(5.78) f has a pole at ∞ if G has a pole at 0.
(5.79) f has an essential singularity at ∞ if G has an essential singularity

at 0.

5.6.7 The Laurent Expansion at Infinity

The Laurent expansion of G around 0, G(z) =
∑+∞

−∞ ajz
j , yields immediately

a series expansion for f which converges for |z| > R, namely,

f(z) ≡ G(1/z) =
+∞∑

−∞

ajz
−j =

+∞∑

−∞

a−jz
j . (5.80)

The series
∑+∞

−∞ a−nz
n is called the Laurent expansion of f around ∞.

It follows from our definitions and from our earlier discussions that f has a
removable singularity at ∞ if and only if the Laurent series of f at ∞ has
no positive powers of z with nonzero coefficients. Also f has a pole at ∞ if
and only if the series has only a finite number of positive powers of z with
nonzero coefficients. Finally, f has an essential singularity at ∞ if and only
if the series has infinitely many positive powers.

5.6.8 Meromorphic at Infinity

Let f be an entire function with a removable singularity at infinity. This
means, in particular, that f is bounded near infinity. But then f is a bounded,
entire function so it is constant.
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Now suppose that f is entire and has a pole at infinity. Then G(z) =
f(1/z) has a pole (of some order k) at the origin. Hence zkG(z) has a
removable singularity at the origin. We conclude then that z−k · f(z) has a
removable singularity at ∞.

Thus z−k · f(z) is bounded near infinity. Certainly f is bounded on any
compact subset of the plane. All told, then,

|f(z)| ≤ C(1 + |z|)k .

Now examine the Cauchy estimates at the origin, on a disc D(0, R), for the
(k + 1)st derivative of f . We find that

∣∣∣∣
∂k+1

∂zk+1
f(0)

∣∣∣∣ ≤
(k + 1)!C(1 +R)k

Rk+1
.

As R → +∞ we find that the (k + 1)st derivative of f at 0 is 0. In fact the
same estimate can be proved at any point P in the plane. We conclude that
f (k+1) ≡ 0. Thus f must be a polynomial of degree at most k.

We have treated the cases of an entire function f having a removable
singularity or a pole at infinity. The only remaining possibility is an essential
singularity at infinity. The function f(z) = ez is an example of such a
function. Any transcendental entire function has an essential singularity at
infinity.

Suppose that f is a meromorphic function defined on an open set U ⊆ C
such that, for some R > 0, we have U ⊇ {z : |z| > R}. We say that f
is meromorphic at ∞ if the function G(z) ≡ f(1/z) is meromorphic in the
usual sense on {z : |z| < 1/R}.

5.6.9 Meromorphic Functions in the Extended
Plane

The definition of “meromorphic at ∞” as given is equivalent to requiring
that, for some R′ > R, f has no poles in {z ∈ C : R′ < |z| <∞} and that f
has a pole at ∞.

A meromorphic function f on C which is also meromorphic at ∞ must
be a rational function (that is, a quotient of polynomials in z). Conversely,
every rational function is meromorphic on C and at ∞.



5.6. MEROMORPHIC FUNCTIONS 165

Remark: It is conventional to rephrase the ideas just presented by saying
that the only functions that are meromorphic in the “extended plane” are
rational functions. We will say more about the extended plane in Sections
7.3.1 through 7.3.3.

Exercises

1. A holomorphic function f on a set of the form {z : |z| > R}, some
R > 0, is said to have a zero at ∞ of order k if f(1/z) has a zero of
order k at 0. Using this definition as motivation, give a definition of
pole of order k at ∞. If g has a pole of order k at ∞, what property
does 1/g have at ∞? What property does 1/g(1/z) have at 0?

2. This exercise develops a notion of residue at ∞.

First, note that if f is holomorphic on a set D(0, r)\{0} and if 0 < s <
r, then “the residue at 0” = 1

2πi

∮
∂D(0,s)

g(z) dz picks out one particular

coefficient of the Laurent expansion of f about 0, namely it equals a−1.
If g is defined and holomorphic on {z : |z| > R}, then the residue at ∞
of g is defined to be the negative of the residue at 0 ofH(z) = z−2·g(1/z)
(Because a positively oriented circle about ∞ is negatively oriented with
respect to the origin and vice versa, we defined the residue of g at ∞ to
be the negative of the residue of H at 0.) Prove that the residue at ∞ of
g is the coefficient of z in the Laurent expansion of g on {z : |z| > R}.
Prove also that the definition of residue of g at ∞ remains unchanged
if the origin is replaced by some other point in the finite plane.

3. Refer to Exercise 2 for terminology. Let R(z) be a rational function
(quotient of polynomials). Prove that the sum of all the residues (in-
cluding the residue at ∞) of R is zero. Is this true for a more general
class of functions than rational functions?

4. Refer to Exercise 2 for terminology. Calculate the residue of the given
function at ∞.

(a) f(z) = z3 − 7z2 + 8

(b) f(z) = z2ez

(c) f(z) = (z + 5)2ez
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(d) f(z) = p(z)ez, for p a polynomial

(e) f(z) =
p(z)

q(z)
, where p and q are polynomials

(f) f(z) = sin z

(g) f(z) = cot z

(h) f(z) =
ez

p(z)
, where p is a polynomial

5. Give an example of a nontrivial holomorphic function on the upper
half-plane that has infinitely many poles.

6. Give an example of an incompressible fluid flow with two poles of order
1. Consider the case where the residues add to zero, and the case where
they do not add to zero. How do these situations differ in physical
terms?

7. Let f be a meromorphic function on a region U ⊆ C. Prove that the
set of poles of f cannot have an interior accumulation point. [Hint:
Consider the function g = 1/f . If the pole set of f has an interior
accumulation point then the zero set of g has an interior accumulation
point.]



Chapter 6

The Argument Principle

6.1 Counting Zeros and Poles

6.1.1 Local Geometric Behavior of a Holomorphic

Function

In this chapter, we shall be concerned with questions that have a geometric,
qualitative nature rather than an analytical, quantitative one. These ques-
tions center around the issue of the local geometric behavior of a holomorphic
function.

6.1.2 Locating the Zeros of a Holomorphic Function

Suppose that f : U → C is a holomorphic function on a connected, open set
U ⊆ C and that D(P, r) ⊆ U. We know from the Cauchy integral formula
that the values of f on D(P, r) are completely determined by the values of f
on ∂D(P, r). In particular, the number and even the location of the zeros of f
in D(P, r) are determined in principle by f on ∂D(P, r). But it is nonetheless
a pleasant surprise that there is a simple formula for the number of zeros of
f in D(P, r) in terms of f (and f ′) on ∂D(P, r). In order to obtain a precise
formula, we shall have to agree to count zeros according to multiplicity (see
Section 4.1.4). We now explain the precise idea.

Let f : U → C be holomorphic as before, and assume that f has some
zeros in U but that f is not identically zero. Fix z0 ∈ U such that f(z0) = 0.
Since the zeros of f are isolated, there is an r > 0 such that D(z0, r) ⊆ U
and such that f does not vanish on D(z0, r) \ {z0}.

167
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Now the power series expansion of f about z0 has a first nonzero term
determined by the least positive integer n such that f (n)(z0) 6= 0. (Note that
n ≥ 1 since f(z0) = 0 by hypothesis.) Thus the power series expansion of f
about z0 begins with the nth term:

f(z) =
∞∑

j=n

1

j!

∂jf

∂zj
(z0)(z − z0)

j . (6.1)

Under these circumstances we say that f has a zero of order n (or multiplicity
n) at z0. When n = 1, then we also say that z0 is a simple zero of f.

The important point to see here is that, near z0,

f ′(z)

f(z)
≈ [n/n!] · (∂nf/∂zn)(z0)(z − z0)

n−1

[1/n!] · (∂nf/∂zn)(z0)(z − z0)n
=

n

z − z0
.

It follows then that

1

2πi

∮

∂D(z0,r)

f ′(z)

f(z)
dz ≈ 1

2πi

∮

∂D(z0,r)

n

z − z0
dz = n .

On the one hand, this is an approximation. On the other hand, the approx-
imation becomes more and more accurate as r shrinks to 0. And the value
of the integral—which is a fixed integer!—is independent of r. Thus we may
conclude that we have equality. We repeat that the value of the integral is
an integer.

In short, the complex line integral of f ′/f around the boundary of the
disc gives the order of the zero at the center. If there are several zeros of f
inside the disc D(z0, r) then we may break the complex line integral up into
individual integrals around each of the zeros (see Figure 6.1), so we have the
more general result that the integral of f ′/f counts all the zeros inside the
disc, together with their multiplicities. We shall consider this idea further in
the discussion that follows.

6.1.3 Zero of Order n

The concept of zero of “order n,” or “multiplicity n,” for a function f is so
important that a variety of terminology has grown up around it (see also
Section 4.1.4). It has already been noted that, when the multiplicity n = 1,
then the zero is sometimes called simple. For arbitrary n, we sometimes say
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Figure 6.1: Dividing up the complex line integral to count the zeros.

that “n is the order of z0 as a zero of f” or “f has a zero of order n at z0.”
More generally, if f(z0) = β in such a way that, for some n ≥ 1, the function
f( · ) − β has a zero of order n at z0, then we say either that “f assumes
the value β at z0 to order n” or that “the order of the value β at z0 is n.”
When n > 1, then we call z0 a multiple point of the function f and we call β
a multiple value.

Example 48 The function f(z) = (z−3)4 has a zero of order 4 at the point
z0 = 3. This is evident by inspection, because the power series for f about
the point z0 = 3 begins with the fourth-order term. But we may also note
that f(3) = 0, f ′(3) = 0, f ′′(3) = 0, f ′′′(3) = 0 while f (iv)(3) = 4! 6= 0.
According to our definition, then, f has a zero of order 4 at z0 = 3.

The function g(z) = 7 + (z − 5)3 takes the value 7 at the point z0 = 5
with multiplicity 3. This is so because g(z) − 7 = (z − 5)3 vanishes to order
3 at the point z0 = 5.

The next result summarizes our preceding discussion. It provides a method
for computing the multiplicity n of the zero at z0 from the values of f, f ′ on
the boundary of a disc centered at z0.
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6.1.4 Counting the Zeros of a Holomorphic Function

THEOREM 3 If f is holomorphic on a neighborhood of a disc D(P, r) and
has a zero of order n at P and no other zeros in the closed disc, then

1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ = n. (6.2)

More generally, we consider the case that f has several zeros—with dif-
ferent locations and different multiplicities—inside a disc: Suppose that
f : U → C is holomorphic on an open set U ⊆ C and that D(P, r) ⊆ U.
Suppose further that f is nonvanishing on ∂D(P, r) and that z1, z2, . . . , zk
are the zeros of f in the interior of the disc. Let n` be the order of the zero
of f at z`, ` = 1, . . . , k. Then

1

2πi

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ =

k∑

`=1

n`. (6.3)

Refer to Figure 6.2 for illustrations of both these situations.
It is worth noting that the particular features of a circle play no special

role in these considerations. We could as well consider the zeros of a function
f that lie inside a simple, closed curve γ. Then it still holds that

(number of zeros inside γ, counting multiplicity) =
1

2πi

∮

γ

f ′(z)

f(z)
dz . (6.4)

Example 49 Use the idea of formula (6.4) to calculate the number of zeros
of the function f(z) = z2 + z inside the disc D(0, 2).

Solution: Of course we may see by inspection that the function f has pre-
cisely two zeros inside the disc (and no zeros on the boundary of the disc).
But the point of the exercise is to get some practice with formula (6.4).

We calculate

1

2πi

∮

∂D(0,2)

f ′(z)

f(z)
dz =

1

2πi

∮

∂D(0,2)

2z + 1

z2 + z
dz

=
1

2πi

∮

∂D(0,2)

2

z + 1
dz +

1

2πi

∮

∂D(0,2)

1

z(z + 1)
dz .
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Figure 6.2: Locating the zeros of a holomorphic function.

Now the first integral is a simple Cauchy integral of the function φ(z) ≡ 2,
evaluating it at the point z = −1. This gives the value 2. The second
integral is a double Cauchy integral; here we are integrating the function
ψ(z) ≡ 1/(z + 1) and evaluating it at the point 0 and then integrating the
function 1/z and evaluating it at the point −1. The result is 1 − 1 = 0.
Altogether then, the value of our original Cauchy integral is 2 + 0 = 2. And,
indeed, that is the number of zeros of the function f inside the discD(0, 2).

Exercise for the Reader: Use formula (6.4) to determine the number of
zeros of the function g(z) = cos z inside the disc D(0, 4).

6.1.5 The Idea of the Argument Principle

This last formula, which is often called the argument principle, is both useful
and important. For one thing, there is no obvious reason why the integral
in the formula should be an integer, much less the crucial integer that it is.
Since it is an integer, it is a counting function; and we need to learn more
about it.
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Figure 6.3: The argument principle: counting the zeros.

The integral

1

2πi

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ (6.5)

can be reinterpreted as follows: Consider the C1 closed curve

γ(t) = f(P + reit) , t ∈ [0, 2π]. (6.6)

Then

1

2πi

∮

|ζ−P |=r

f ′(ζ)

f(ζ)
dζ =

1

2πi

∫ 2π

0

γ′(t)

γ(t)
dt, (6.7)

as you can check by direct calculation. The expression on the right is just
the index of the curve γ with respect to 0 (with the notion of index that we
defined earlier—Section 5.4.5). See Figure 6.3. Thus the number of zeros of
f (counting multiplicity) inside the circle {ζ : |ζ − P | = r} is equal to the
index of γ with respect to the origin. This, intuitively speaking, is equal to
the number of times that the f -image of the boundary circle winds around
0 in C. So we have another way of seeing that the value of the integral must
be an integer.

The argument principle can be extended to yield information about mero-
morphic functions, too. We can see that there is hope for this notion by
investigating the analog of the argument principle for a pole.
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6.1.6 Location of Poles

If f : U \ {Q} → C is a nowhere-zero holomorphic function on U \ {Q} with
a pole of order n at Q and if D(Q, r) ⊆ U, then

1

2πi

∮

∂D(Q,r)

f ′(ζ)

f(ζ)
dζ = −n. (6.8)

The argument is just the same as the calculations we did right after
formula (6.1). [Or else think about the fact that if f has a pole of order n at Q
then 1/f has a zero of order n at Q. In fact notice that (1/f)′/(1/f) = −f ′/f .
That accounts for the minus sign that arises for a pole.] We shall not repeat
the details, but we invite the reader to do so.

6.1.7 The Argument Principle for Meromorphic

Functions

Just as with the argument principle for holomorphic functions, this new argu-
ment principle gives a counting principle for zeros and poles of meromorphic
functions:

Suppose that f is a meromorphic function on an open set U ⊆ C, that
D(P, r) ⊆ U, and that f has neither poles nor zeros on ∂D(P, r). Then

1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ =

p∑

n=1

nn −
q∑

k=1

mk, (6.9)

where n1, n2, . . . , np are the multiplicities of the zeros z1, z2, . . . , zp of f in
D(P, r) and m1,m2, . . . ,mq are the multiplicities of the poles w1, w2, . . . , wq
of f in D(P, r).

Of course the reasoning here is by now familiar. We can break up the
complex line integral around the boundary of the disc D(P, r) into integrals
around smaller regions, each of which contains just one zero or one pole and
no other. Refer again to Figure 6.1. Thus the integral around the disc just
sums up +r for each zero of order r and −s for each pole of order s.

Exercises

1. Use the argument principle to give another proof of the Fundamental
Theorem of Algebra. [Hint: Think about the integral of p′(z)/p(z)
over circles centered at the origin of larger and larger radius.]
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2. Suppose that f is holomorphic and has n zeros, counting multiplicities,
inside U. Can you conclude that f ′ has (n−1) zeros inside U? Can you
conclude anything about the zeros of f ′?

3. Prove: If f is a polynomial on C, then the zeros of f ′ are contained
in the closed convex hull of the zeros of f. (Here the closed convex hull
of a set S is the intersection of all closed convex sets that contain S.)
[Hint: If the zeros of f are contained in a half-plane V , then so are
the zeros of f ′.]

4. Let Pt(z) be a polynomial in z for each fixed value of t, 0 ≤ t ≤ 1.
Suppose that Pt(z) is continuous in t in the sense that

Pt(z) =
N∑

n=0

an(t)z
n

and each an(t) is continuous. Let Z = {(z, t) : Pt(z) = 0}. By continu-

ity, Z is closed in C × [0, 1]. If Pt0(z0) = 0 and (∂/∂z)Pt0(z)

∣∣∣∣
z=z0

6= 0,

then show, using the argument principle, that there is an ε > 0 such
that for t sufficiently near t0 there is a unique z ∈ D(z0, ε) with
Pt(z) = 0. What can you say if Pt0(·) vanishes to order k at z0?

5. Prove that if f : U → C is holomorphic, P ∈ U, and f ′(P ) = 0, then f
is not one-to-one in any neighborhood of P.

6. Prove: If f is holomorphic on a neighborhood of the closed unit disc
D and if f is one-to-one on ∂D, then f is one-to-one on D. [Note: Here
you may assume any topological notions you need that seem intuitively
plausible. Remark on each one as you use it.]

7. Let pt(z) = a0(t) + a1(t)z+ · · ·+ an(t)z
n be a polynomial in which the

coefficients depend continuously on a parameter t ∈ (−1, 1). Prove that
if the roots of pt0 are distinct (no multiple roots), for some fixed value
of the parameter, then the same is true for pt when t is sufficiently close
to t0—provided that the degree of pt remains the same as the degree of
pt0 .

8. Imitate the proof of the argument principle to prove the following for-
mula: If f : U → C is holomorphic in U and invertible as a function,
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P ∈ U, and if D(P, r) is a sufficiently small disc about P, then

f−1(w) =
1

2πi

∮

∂D(P,r)

ζf ′(ζ)

f(ζ) − w
dζ

for all w in some disc D(f(P ), r1), r1 > 0 sufficiently small. Derive
from this the formula

(f−1)′(w) =
1

2πi

∮

∂D(P,r)

ζf ′(ζ)

(f(ζ) − w)2
dζ.

Set Q = f(P ). Integrate by parts and use some algebra to obtain

(f−1)′(w) =
1

2πi

∮

∂D(P,r)

(
1

f(ζ) −Q

)
·
(

1 − w −Q

f(ζ) −Q

)−1

dζ. (6.10)

Let ak be the kth coefficient of the power series expansion of f−1 about
the point Q :

f−1(w) =

∞∑

k=0

ak(w −Q)k.

Then formula (6.10) may be expanded and integrated term by term
(prove this!) to obtain

nan =
1

2πi

∮

∂D(P,r)

1

[f(ζ) −Q]n
dζ

=
1

(n − 1)!

(
∂

∂ζ

)n−1
(ζ − P )n

[f(ζ) −Q]n

∣∣∣∣
ζ=P

.

This is called Lagrange’s formula.

9. Write a MatLab routine to calculate the winding number of any given
closed curve about a point not on that curve. What can you do to
guarantee that your answer will be an integer? [Hint: Think about
roundoff error.]

10. Let D(P, r) be a disc in the complex plane and let p(z) be a polynomial.
Assume that p has no zeros on the boundary of the disc. Write a MatLab
routine to calculate the complex line integral that will give the number
of zeros of p inside the disc.
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11. With reference to the last exercise, suppose that m(z) is a quotient
of polynomials. Write a MatLab routine that will calculate the num-
ber of zeros (counting multiplicity) less the number of poles (counting
multiplicity).

12. Give a physical interpretation of the argument principle for an incom-
pressible fluid flow. What does a vanishing point of the flow mean?
Why should it be true that the vanishing points (together with their
multiplicities) can be detected by the behavior of the flow on the bound-
ary of a disc containing the vanishing points?

6.2 The Local Geometry of Holomorphic

Functions

6.2.1 The Open Mapping Theorem

The argument principle for holomorphic functions has a consequence that is
one of the most important facts about holomorphic functions considered as
geometric mappings:

THEOREM 4 If f : U → C is a nonconstant holomorphic function on a
connected open set U, then f(U) is an open set in C.

See Figure 6.4. The result says, in particular, that if U ⊆ C is connected
and open and if f : U → C is holomorphic, then either f(U) is a connected
open set (the nonconstant case) or f(U) is a single point.

The open mapping principle has some interesting and important conse-
quences. Among them are:

(a) If U is a domain in C and f : U → R is a holomorphic function then
f must be constant. For the theorem says that the image of f must
be open (as a subset of the plane), and the real line contains no planar
open sets.

(b) Let U be a domain in C and f : U → C a holomorphic function.
Suppose that the set E lies in the image of f . Then the image of f
must in fact contain a neighborhood of E.
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Figure 6.4: The open mapping principle.

(c) Let U be a domain in C and f : U → C a holomorphic function. Let
P ∈ U and set k = |f(P )|. Then k cannot be the maximum value of
|f |. For in fact (by part (b)) the image of f must contain an entire
neighborhood of f(P ). So (see Figure 6.5), it will certainly contain
points with modulus larger than k. This is a version of the important
maximum principle which we shall discuss in some detail below.

In fact the open mapping principle is an immediate consequence of the
argument principle. For suppose that f : U → C is holomorphic and that
P ∈ U . Write f(P ) = Q. We may select an r > 0 so that D(P, r) ⊆ U . Let
g(z) = f(z) −Q. Then g has a zero at P .

The argument principle now tells us that

1

2πi

∮

∂D(P,r)

g′(z)

g(z)
dz ≥ 1 .

[We do not write = 1 because we do not know the order of vanishing of
g—but it is at least 1.] In other words,

1

2πi

∮

∂D(P,r)

f ′(z)

f(z) −Q
dz ≥ 1 .

But now the continuity of the integral tells us that, if we perturb Q by a small
amount, then the value of the integral—which still must be an integer!—will
not change. So it is still ≥ 1. This says that f assumes all values that are



178 CHAPTER 6. THE ARGUMENT PRINCIPLE

f

P

f (P)

Figure 6.5: The image of f contains a neighborhood of f(P ).

near to Q. Which says that the image of f contains a neighborhood of Q; so
it is open. That is the assertion of the open mapping principle.

In the subject of topology, a function f is defined to be continuous if the
inverse image of any open set under f is also open. In contexts where the
ε− δ definition makes sense, the ε− δ definition (Section 2.1.6) is equivalent
to the inverse-image-of-open-sets definition. By contrast, functions for which
the direct image of any open set is open are called “open mappings.”

Here is a quantitative, or counting, statement that comes from the proof
of the open mapping principle: Suppose that f : U → C is a nonconstant
holomorphic function on a connected open set U such that P ∈ U and
f(P ) = Q with order k ≥ 1. Then there are numbers δ, ε > 0 such that
each q ∈ D(Q, ε) \ {Q} has exactly k distinct preimages in D(P, δ) and
each preimage is a simple point of f. This is a striking statement; but all
we are saying is that the set of points where f ′ vanishes cannot have an
interior accumulation point. An immediate corollary is that if f(P ) = Q
and f ′(P ) = 0 then f cannot be one-to-one in any neighborhood of P . For
g(z) ≡ f(z) − Q vanishes to order at least 2 at P . More generally, if f
vanishes to order k ≥ 2 at P then f is k-to-1 in a deleted neighborhood of
P .

The considerations that establish the open mapping principle can also
be used to establish the fact that if f : U → V is a one-to-one and onto
holomorphic function, then f−1 : V → U is also holomorphic.
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Exercises

1. Let f be holomorphic on a neighborhood of D(P, r). Suppose that f is
not identically zero on D(P, r). Prove that f has at most finitely many
zeros in D(P, r).

2. Let f, g be holomorphic on a neighborhood D(0, 1). Assume that f has
zeros at P1, P2, . . . , Pk ∈ D(0, 1) and no zero in ∂D(0, 1). Let γ be the
boundary circle of D(0, 1), traversed counterclockwise. Compute

1

2πi

∮

γ

f ′(z)

f(z)
· g(z)dz.

3. Without supposing that you have any prior knowledge of the calculus
function ex, prove that

ez ≡
∞∑

k=0

zk

k!

never vanishes by computing (ez)′/ez, and so forth.

4. Let fn : D(0, 1) → C be holomorphic and suppose that each fn has at
least k roots in D(0, 1), counting multiplicities. Suppose that fn → f
uniformly on compact sets. Show by example that it does not follow
that f has at least k roots counting multiplicities. In particular, con-
struct examples, for each fixed k and each `, 0 ≤ ` ≤ k, where f
has exactly ` roots. What simple hypothesis can you add that will
guarantee that f does have at least k roots? (Cf. Exercise 8.)

5. Let f : D(0, 1) → C be holomorphic and nonvanishing. Prove that f
has a well-defined holomorphic logarithm on D(0, 1) by showing that
the differential equation

∂

∂z
g(z) =

f ′(z)

f(z)

has a suitable solution and checking that this solution g does the job.

6. Let U and V be open subsets of C. Suppose that f : U → V is holomor-
phic, one-to-one, and onto. Prove that f−1 is a holomorphic function
on V.
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7. Let f : U → C be holomorphic. Assume that D(P, r) ⊆ U and that
f is nowhere zero on ∂D(P, r). Show that if g is holomorphic on U
and g is sufficiently uniformly close to f on ∂D(P, r), then the number
of zeros of f in D(P, r) equals the number of zeros of g in D(P, r).
(Remember to count zeros according to multiplicity.)

8. What does the open mapping principle say about an incompressible
fluid flow? Why does this make good physical sense? Why is it clear
that the flow applied to an open region will never have a “boundary?”

9. Suppose that U is a simply connected domain in C. Let f be a non-
vanishing holomorphic function on U . Then f will have a holomorphic
logarithm. That logarithm may be defined using a complex line inte-
gral [Hint: Integrate f ′/f .] Write a MatLab routine to carry out this
procedure in the case that f is a holomorphic polynomial.

6.3 Further Results on the Zeros

of Holomorphic Functions

6.3.1 Rouché’s Theorem

Now we consider global aspects of the argument principle.
Suppose that f, g : U → C are holomorphic functions on an open set

U ⊆ C. Suppose also that D(P, r) ⊆ U and that, for each ζ ∈ ∂D(P, r),

|f(ζ) − g(ζ)| < |f(ζ)| + |g(ζ)|. (6.11)

Then
1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ =

1

2πi

∮

∂D(P,r)

g′(ζ)

g(ζ)
dζ. (6.12)

That is, the number of zeros of f in D(P, r) counting multiplicities equals
the number of zeros of g in D(P, r) counting multiplicities. See [GRK] for a
more complete discussion and proof of Rouché’s theorem.

Remark: Rouché’s theorem is often stated with the stronger hypothesis that

|f(ζ) − g(ζ)| < |g(ζ)| (6.13)
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Figure 6.6: Rouché’s theorem.

for ζ ∈ ∂D(P, r). Rewriting this hypothesis as

∣∣∣∣
f(ζ)

g(ζ)
− 1

∣∣∣∣ < 1, (6.14)

we see that it says that the image γ under f/g of the circle ∂D(P, r) lies in
the disc D(1, 1). See Figure 6.6. Our weaker hypothesis that |f(ζ)− g(ζ)| <
|f(ζ)|+ |g(ζ)| has the geometric interpretation that f(ζ)/g(ζ) lies in the set
C \ {x + i0 : x ≤ 0}. Either hypothesis implies that the image of the circle
∂D(P, r) under f has the same “winding number” around 0 as does the image
under g of that circle. And that is the proof of Rouché’s theorem.

6.3.2 Typical Application of Rouché’s Theorem

Example 50 Let us determine the number of roots of the polynomial f(z) =
z7 + 5z3 − z − 2 in the unit disc. We do so by comparing the function f to
the holomorphic function g(z) = 5z3 on the unit circle. For |z| = 1 we have

|f(z) − g(z)| = |z7 − z − 2| ≤ 4 < 5 = |g(z)| ≤ |f(z)| + |g(z)|. (6.15)

By Rouché’s theorem, f and g have the same number of zeros, counting
multiplicity, in the unit disc. Since g has three zeros, so does f.
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6.3.3 Rouché’s Theorem and the Fundamental

Theorem of Algebra

Rouché’s theorem provides a useful way to locate approximately the zeros
of a holomorphic function that is too complicated for the zeros to be ob-
tained explicitly. As an illustration, we analyze the zeros of a nonconstant
polynomial

p(z) = zn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0. (6.16)

If R is sufficiently large (say R > max
{
1, n · max0≤n≤n−1 |an|

}
) and |z| = R,

then
|an−1z

n−1 + an−2z
n−2 + · · · + a0|

|zn| < 1. (6.17)

Thus Rouché’s theorem applies on D(0, R) with f(z) = zn and g(z) = p(z).
We conclude that the number of zeros of p(z) inside D(0, R), counting mul-
tiplicities, is the same as the number of zeros of zn inside D(0, R), counting
multiplicities—namely n. Thus we recover the Fundamental Theorem of Al-
gebra. Incidentally, this example underlines the importance of counting zeros
with multiplicities: the function zn has only one root in the näıve sense of
counting the number of points where it is zero; but it has n roots when
they are counted with multiplicity. So Rouché’s theorem teaches us that a
polynomial of degree n has n zeros—just as it should.

6.3.4 Hurwitz’s Theorem

A second useful consequence of the argument principle is the following result
about the limit of a sequence of zero-free holomorphic functions:

THEOREM 5 (Hurwitz’s Theorem) Suppose that U ⊆ C is a con-
nected open set and that {fj} is a sequence of nowhere-vanishing holomor-
phic functions on U. If the sequence {fj} converges uniformly on compact
subsets of U to a (necessarily holomorphic) limit function f0, then either f0

is nowhere-vanishing or f0 ≡ 0.

The justification for Hurwitz’s theorem is again the argument principle.
For we know that if D(P, r) is a closed disc on which all the fj are zero-free
then

1

2πi

∮

∂D(P,r)

f ′
j(z)

fj(z)
dz = 0
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for every j. The limit function f is surely holomorphic. If it is not identically
zero, then suppose seeking a contradiction that it has a zero—which is of
course isolated—at some point P . Choose r > 0 small so that f has no
other zeros on D(P, r). Since the fj (and hence the f ′

j) converge uniformly

on D(P, r), we can be sure that as j → +∞ the expression on the left then
converges to

1

2πi

∮

∂D(P,r)

f ′(z)

f(z)
dz .

And the value of the integral must be zero. We conclude that f has no zeros
in the disc, which is clearly a contradiction. Thus f is either identically zero
or zero free.

Exercises

1. How many zeros does the function f(z) = z3 + z/2 have in the unit
disc?

2. Consider the sequence of functions fj(z) = ez/j. Discuss this sequence
in view of Hurwitz’s theorem.

3. Consider the sequence of functions fj(z) = sin(jz). Discuss in view of
Hurwitz’s theorem.

4. Consider the sequence of functions fj(z) = cos(z/j). Discuss in view
of Hurwitz’s theorem.

5. Apply Rouché’s theorem to see that ez cannot vanish on the unit disc.

6. Use Rouché’s theorem to give yet another proof of the Fundamental
Theorem of Algebra. [Hint: If the polynomial has degree n, then
compare the polynomial with zn on a large disc.]

7. Estimate the number of zeros of the given function in the given region
U.

(a) f(z) = z8 + 5z7 − 20, U = D(0, 6)
(b) f(z) = z3 − 3z2 + 2, U = D(0, 1)
(c) f(z) = z10 + 10z + 9, U = D(0, 1)
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(d) f(z) = z10 + 10zez+1 − 9, U = D(0, 1)
(e) f(z) = z4e− z3 + z2/6 − 10, U = D(0, 2)
(f) f(z) = z2ez − z, U = D(0, 2)

8. Each of the partial sums of the power series for the function ez is a
polynomial. Hence it has zeros. But the exponential function has no
zeros. Discuss in view of Hurwitz’s theorem and the argument principle.

9. Each of the partial sums of the power series for the function sin z is a
polynomial, hence it has finitely many zeros. Yet sin z has infinitely
many zeros. Discuss in view of Hurwitz’s theorem and the argument
principle.

10. How many zeros does f(z) = sin z + cos z have in the unit disc?

11. Let D(P, r) be a disc in the complex plane. Let f and g be holomorphic
polynomials. Write a MatLab routine to test whether Rouché’s theorem
applies to f and g. Write the routine so that it declares an appropriate
conclusion.

6.4 The Maximum Principle

6.4.1 The Maximum Modulus Principle

A domain in C is a connected open set (Section 2.1.1). A bounded domain
is a connected open set U such that there is an R > 0 with |z| < R for all
z ∈ U—or U ⊆ D(0, R).

The Maximum Modulus Principle

Let U ⊆ C be a domain. Let f be a holomorphic function on U.
If there is a point P ∈ U such that |f(P )| ≥ |f(z)| for all z ∈ U ,
then f is constant.

Here is a sharper variant of the theorem:

Let U ⊆ C be a domain and let f be a holomorphic function on
U. If there is a point P ∈ U at which |f | has a local maximum,
then f is constant.
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We have already indicated why this result is true; the geometric insight
is an important one. Let k = |f(P )|. Since f(P ) is an interior point of the
image of f , there will certainly be points—and the proof of the open mapping
principle shows that these are nearby points—where f takes values of greater
modulus. Hence P cannot be a local maximum.

6.4.2 Boundary Maximum Modulus Theorem

The following version of the maximum principle is intuitively appealing, and
is frequently useful.

Let U ⊆ C be a bounded domain. Let f be a continuous function
on U that is holomorphic on U . Then the maximum value of
|f | on U (which must occur, since U is closed and bounded—see
[RUD1], [KRA2]) must in fact occur on ∂U.

In other words,

max
U

|f | = max
∂U

|f | . (6.18)

And the reason for this new assertion is obvious. The maximum must
occur somewhere; and it cannot occur in the interior by the previous formu-
lation of the maximum principle. So it must be in the boundary.

6.4.3 The Minimum Modulus Principle

Holomorphic functions (or, more precisely, their moduli) can have interior
minima. The function f(z) = z2 on D(0, 1) has the property that z = 0 is
a global minimum for |f |. However, it is not accidental that this minimum
value is 0:

Let f be holomorphic on a domain U ⊆ C. Assume that f never
vanishes. If there is a point P ∈ U such that |f(P )| ≤ |f(z)| for
all z ∈ U , then f is constant.

This result is proved by applying the maximum principle to the function 1/f .
There is also a boundary minimum modulus principle:
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Let U ⊆ C be a bounded domain. Let f be a continuous function
on U that is holomorphic on U . Assume that f never vanishes
on U . Then the minimum value of |f | on U (which must occur,
since U is closed and bounded—see [RUD1], [KRA2]) must occur
on ∂U.

In other words,

min
U

|f | = min
∂U

|f | . (6.19)

Exercises

1. Let U ⊆ C be a bounded domain. If f , g are continuous functions on
U , holomorphic on U , and if |f(z)| ≤ |g(z)| for z ∈ ∂U , then what
conclusion can you draw about f and g in the interior of U?

2. Let f : D(0, 1) → D(0, 1) be continuous and holomorphic on the inte-
rior. Further assume that f is one-to-one and onto. Explain why the
maximum principle guarantees that f(∂D(0, 1)) ⊆ ∂D(0, 1).

3. Give an example of a holomorphic function f on D(0, 1) so that |f | has
three local minima.

4. Give an example of a holomorphic function f on D(0, 1), continuous
on D(0, 1), that has precisely three global maxima on ∂D(0, 1).

5. The function

f(z) = i · 1 − z

1 + z

maps the disc D(0, 1) to the upper half-plane U = {z ∈ C : Im z >
0} (the upper half-plane) in a one-to-one, onto fashion. Verify this
assertion in the following manner:

(a) Use elementary algebra to check that f is one-to-one.

(b) Use just algebra to check that ∂D(0, 1) is mapped to ∂U .

(c) Check that 0 is mapped to i.

(d) Invoke the maximum principle to conclude that D(0, 1) is mapped
to U .
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6. Let f be meromorphic on a region U ⊆ C. A version of the maximum
principle is still valid for such an f . Explain why.

7. Let U ⊆ C be a domain and let f : U → C be holomorphic. Consider
the function g(z) = ef(z). Explain why the maxima of |g| occur precisely
at the maxima of Ref . Conclude that a version of the maximum
principle holds for Re f . Draw a similar conclusion for Imf .

8. Let U, V ⊆ C be bounded domains with continuously differentiable
boundary. So U and V are open and connected. Let ϕ : U → V be
continuous, one-to-one, and onto. And suppose that ϕ is holomorphic
on U (and of course ϕ−1 is holomorphic on V ). Show that ϕ(∂U) ⊆ ∂V .

9. Let f be holomorphic on the entire plane C. Suppose that

|f(z)| ≤ C · (1 + |z|k)

for all z ∈ C, some positive constant C and some integer k > 0. Prove
that f is a polynomial of degree at most k.

10. Let U be a domain in the complex plane. Let f be a holomorphic
polynomial. Write a MatLab routine that will find the location of the
maximum value of |f |2 in U . Apply this routine to various polynomials
to confirm that the maximum never occurs on the boundary.

11. Modify the routine from the last exercise so that it applies to the min-
imum value of |f |2—in the case that f is nonvanishing on U .

12. Suppose that two incompressible fluid flows are very close together on
the boundary of a disc—just as in Rouché’s theorem. What might we
expect that this will tell us about the two fluid flows inside the disc?
Why?

6.5 The Schwarz Lemma

This section treats certain estimates that must be satisfied by bounded holo-
morphic functions on the unit disc. We present the classical, analytic view-
point in the subject (instead of the geometric viewpoint—see [KRA3]).
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6.5.1 Schwarz’s Lemma

THEOREM 6 Let f be holomorphic on the unit disc. Assume that

(6.20) |f(z)| ≤ 1 for all z.
(6.21) f(0) = 0.

Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1.
If either |f(z)| = |z| for some z 6= 0 or if |f ′(0)| = 1, then f is a rotation:

f(z) ≡ αz for some complex constant α of unit modulus.

Proof: Consider the function g(z) = f(z)/z. Since g has a removable sin-
gularity at the origin, we see that g is holomorphic on the entire unit disc.
On the circle with center 0 and radius 1 − ε, we see that

|g(z)| ≤ 1

1 − ε
.

By the maximum modulus principle, it follows that |g(z)| ≤ 1/(1 − ε) on all
of D(0, 1 − ε). Since the conclusion is true for all ε > 0, we conclude that
|g| ≤ 1 on D(0, 1).

For the uniqueness, assume that |f(z)| = |z| for some z 6= 0. Then
|g(z)| = 1. Since |g| ≤ 1 globally, the maximum modulus principle tells us
that g is a constant of modulus 1. Thus f(z) = αz for some unimodular
constant α. If instead |f ′(0)| = 1 then |[g(0) + g′(0) · 0| = 1 or |g(0)| = 1.
Again, the maximum principle tells us that g is a unimodular constant so f
is a rotation.

Schwarz’s lemma enables one to classify the invertible holomorphic self-
maps of the unit disc (see [GRK]). (Here a self-map of a domain U is a
mapping F : U → U of the domain to itself.) These are commonly referred
to as the “conformal self-maps” of the disc. The classification is as follows:
If 0 ≤ θ < 2π, then define the rotation through angle θ to be the function
ρθ(z) = eiθz; if a is a complex number of modulus less than one, then define
the associated Möbius transformation to be ϕa(z) = [z − a]/[1 − az]. Any
conformal self-map of the disc is the composition of some rotation ρθ with
some Möbius transformation ϕa. This topic is treated in detail in Sections
7.2.1 and 7.2.2.
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We conclude this section by presenting a generalization of the Schwarz
lemma, in which we consider holomorphic mappings f : D → D, but we
discard the hypothesis that f(0) = 0. This result is known as the Schwarz-
Pick lemma.

6.5.2 The Schwarz-Pick Lemma

Let f be holomorphic on the unit disc. Assume that

(6.22) |f(z)| ≤ 1 for all z.

(6.23) f(a) = b for some a, b ∈ D(0, 1).

Then

|f ′(a)| ≤ 1 − |b|2

1 − |a|2 . (6.24)

Moreover, if f(a1) = b1 and f(a2) = b2, then

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ ≤
∣∣∣∣
a2 − a1

1 − a1a2

∣∣∣∣ . (6.25)

There is a “uniqueness” result in the Schwarz-Pick Lemma. If either

|f ′(a)| =
1 − |b|2

1 − |a|2 or

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ =
∣∣∣∣
a2 − a1

1 − a1a2

∣∣∣∣ with a1 6= a2 , (6.26)

then the function f is a conformal self-mapping (one-to-one, onto holomor-
phic function) of D(0, 1) to itself.

We cannot discuss the proof of the Schwarz-Pick lemma right now. It
depends on knowing the conformal self-maps of the disc—a topic we shall
treat later. The reader should at least observe at this time that, in (6.24), if
a = b = 0 then the result reduces to the classical Schwarz lemma. Further,
in (6.25), if a1 = b1 = 0 and a2 = z, b2 = f(z), then the result reduces to the
Schwarz lemma.
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Exercises

1. Let U = {z ∈ C : Im z > 0} (the upper half-plane). Formulate and
prove a version of the Schwarz lemma for holomorphic functions f :
U → U . [Hint: It is useful to note that the mapping ψ(z) = i(1 −
z)/(1 + z) maps the unit disc to U in a holomorphic, one-to-one, and
onto fashion.]

2. Let U be as in Exercise 1. Formulate and prove a version of the Schwarz
lemma for holomorphic functions f : D(0, 1) → U .

3. There is no Schwarz lemma for holomorphic functions f : C → C.
Give a detailed justification for this statement. Can you suggest why
the Schwarz lemma fails in this new context?

4. Give a detailed justification for the formula

(f−1)′(w) =
1

f ′(z)
.

Here f(z) = w and f is a holomorphic function. Part of your job here
is to provide suitable hypotheses about the function f .

5. Provide the details of the proof of the Schwarz-Pick lemma. [Hint: If
f(a) = b, then consider g(z) = ϕb ◦ f ◦ ϕ−a and apply the Schwarz
lemma.]

6. The expression

ρ(z,w) =
|z −w|
|1 − zw|

for z,w in the unit disc is called the pseudohyperbolic metric. Prove
that ρ is actually a metric, or a sense of distance, on the disc. This
means that you should verify these properties:

(i) ρ(z,w) ≥ 0 for all z,w ∈ D(0, 1);

(ii) ρ(z,w) = 0 if and only if z = w;

(iii) ρ(z,w) = ρ(w, z);

(iv) ρ(z,w) ≤ ρ(z, u) + ρ(u,w) for all u, z, w ∈ D(0, 1).
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7. Suppose that f is a holomorphic function on a domain U ⊆ C. Assume
that |f(z)| ≤ M for all z ∈ U and some M > 0. Let P ∈ U . Use
the Schwarz lemma to provide an estimate for |f ′(P )|. [Hint: Your
estimate will be in terms of M and the distance of P to the boundary
of U .]

8. Write a MatLab routine that will calculate the pseudohyperbolic metric
on the disc. You should be able to input two points from the disc
and the routine should output a nonnegative real number that is the
distance between them. Use this routine to amass numerical evidence
that the distance from any fixed point in the disc to the boundary is
infinite.

9. Suppose that f : D → D is a holomorphic function, that f(0) = 0, and
that limz→∂D |f(z)| = 1. Then of course Schwarz’s lemma guarantees
that |f(z)| ≤ |z| for all z ∈ D. Write a MatLab routine to measure the
deviation of |f(z)| from |z|. Apply it to various specific examples.

10. What does Schwarz’s lemma tell us about the geometric characteristics
of a fluid flow? How does this differ from an air flow? Why?





Chapter 7

The Geometric Theory of
Holomorphic Functions

7.1 The Idea of a Conformal Mapping

7.1.1 Conformal Mappings

The main objects of study in this chapter are holomorphic functions h : U →
V, with U and V open domains in C, that are one-to-one and onto. Such
a holomorphic function is called a conformal (or biholomorphic) mapping.
The fact that h is supposed to be one-to-one implies that h′ is nowhere zero
on U [remember that if h′ vanishes to order k ≥ 1 at a point P ∈ U , then
h is (k + 1)-to-1 in a small neighborhood of P—see Section 6.2.1]. As a
result, h−1 : V → U is also holomorphic—as we discussed in Section 6.2.1.
A conformal map h : U → V from one open set to another can be used to
transfer holomorphic functions on U to V and vice versa: that is, f : V → C
is holomorphic if and only if f ◦ h is holomorphic on U ; and g : U → C is
holomorphic if and only if g ◦ h−1 is holomorphic on V.

In fact the word “conformal” has a specific geometric meaning—in terms
of infinitesimal preservation of length and infinitesimal preservation of angles.
These properties in turn have particularly interesting interpretations in the
context of incompressible fluid flow (see Section 8.2). In fact we discussed
this way of thinking about conformality in Section 2.4.1. We shall explore
other aspects of conformal mappings in the material that follows.

Thus, if there is a conformal mapping from U to V, then U and V are
essentially indistinguishable from the viewpoint of complex function theory.

193
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On a practical level, one can often study holomorphic functions on a rather
complicated open set by first mapping that open set to some simpler open
set, then transferring the holomorphic functions as indicated.

The main point now is that we are going to think of our holomorphic
function f : U → V not as a function but as a mapping. That means that
the function is a geometric transformation from the domain U to the domain
V . And of course f−1 is a geometric transformation from the domain V to
the domain U .

7.1.2 Conformal Self-Maps of the Plane

The simplest open subset of C is C itself. Thus it is natural to begin our
study of conformal mappings by considering the conformal mappings of C to
itself. In fact the conformal mappings from C to C can be explicitly described
as follows:

A function f : C → C is a conformal mapping if and only if there
are complex numbers a, b with a 6= 0 such that

f(z) = az + b , z ∈ C. (7.1)

One aspect of the result is fairly obvious: If a, b ∈ C and a 6= 0, then
the map z 7→ az + b is certainly a conformal mapping of C to C. In fact one
checks easily that z 7→ (z− b)/a is the inverse mapping. The interesting part
of the assertion is that these are in fact the only conformal maps of C to C.

A generalization of this result about conformal maps of the plane is the
following (consult Section 4.1.3 as well as the detailed explanation in [GRK]):

If h : C → C is a holomorphic function such that

lim
|z|→+∞

|h(z)| = +∞ , (7.2)

then h is a polynomial.

In fact this last assertion is simply a restatement of the fact that if an
entire function has a pole at infinity then it is a polynomial. We proved that
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fact in Section 5.6. Now if f : C → C is conformal then it is easy to see that
lim|z|→+∞ |f(z)| = +∞—for both f and f−1 take bounded sets to bounded
sets. So f will be a polynomial. But if f has degree k > 1 then it will not
be one-to-one: the equation f(z) = α will always have k roots. Thus f is a
first-degree polynomial, which is what has been claimed.

Exercises

1. How many points in the plane uniquely determine a conformal self-map
of the plane? That is to say, what is the least k such that if f(p1) = p1,
f(p2) = p2, . . . , f(pk) = pk (with p1, . . . , pk distinct) then f(z) ≡ z?

2. Let U = C \ {0}. What are all the conformal self-maps of U to U?

3. Let U = C \ {0, 1}. What are all the conformal self-maps of U to U?

4. The function f(z) = ez is an onto mapping from C to C \ {0}. Prove
this statement. The function is certainly not one-to-one. But it is
locally one-to-one. Explain these assertions.

5. Refer to Exercise 4. The point i is in the image of f . Give an explicit
description of the inverse of f near i.

6. The function g(z) = z2 is an onto mapping from C \ {0} to C \ {0}. It
is certainly not one-to-one. But it is locally one-to-one. Explain these
assertions.

7. The function f(z) = ez maps the strip S = {x + iy : 0 < x < 1}
conformally onto an annulus. Describe in detail this image annulus.
Explain why the mapping is onto but not one-to-one. Explain why it
is locally one-to-one.

8. The function f(z) = z2 maps the quarter-disc Q = {x + iy : x >
0, y > 0, x2 + y2 < 1} conformally onto the half-disc H = {x+ iy : y >
0, x2 + y2 < 1}. Explain why this is a one-to-one, onto mapping.

9. Use what you have learned from the preceding exercises to construct a
conformal map of the upper half-plane U = {x + iy : y > 0} onto the
upper half-disc H = {x+ iy : y > 0, x2 + y2 < 1}.
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10. A conformal mapping should map a fluid flow to another fluid flow.
Discuss why this should be true. Referring to Section 2.4, consider
specifically the property of conformality and why that should be pre-
served.

11. Use MatLab to write a utility that will test a given function for con-
formality. That is, you should input the function itself, a base point,
and two directions; the utility will test whether the function stretches
equally in each direction. Or you can input the function, a base point,
a direction, and an angle; the utility will test whether that angle is
preserved.

7.2 Conformal Mappings of the Unit Disc

7.2.1 Conformal Self-Maps of the Disc

In this section we describe the set of all conformal maps of the unit disc to
itself. Our first step is to determine those conformal maps of the disc to the
disc that fix the origin. Let D denote the unit disc.

Let us begin by examining a conformal mapping f : D → D of the unit
disc to itself such that f(0) = 0. We are assuming that f is one-to-one and
onto. Then, by Schwarz’s lemma (Section 6.5), |f ′(0)| ≤ 1. This reasoning
applies to f−1 as well, so that |(f−1)′(0)| ≤ 1 or |f ′(0)| ≥ 1. We conclude
that |f ′(0)| = 1. By the uniqueness part of the Schwarz lemma, f must be a
rotation. So there is a complex number ω with |ω| = 1 such that

f(z) ≡ ωz ∀z ∈ D . (7.3)

It is often convenient to write a rotation as

ρθ(z) ≡ eiθz , (7.4)

where we have set ω = eiθ with 0 ≤ θ < 2π.
We will next generalize this result to conformal self-maps of the disc that

do not necessarily fix the origin.

7.2.2 Möbius Transformations

For a ∈ C, |a| < 1, we define

ϕa(z) =
z − a

1 − az
. (7.5)
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Then each ϕa is a conformal self-map of the unit disc.
To see this assertion, note that if |z| = 1, then

|ϕa(z)| =

∣∣∣∣
z − a

1 − az

∣∣∣∣ =
∣∣∣∣
z(z − a)

1 − az

∣∣∣∣ =
∣∣∣∣
1 − az

1 − az

∣∣∣∣ = 1 . (7.6)

Thus ϕa takes the boundary of the unit disc to itself. Since ϕa(0) = −a ∈ D,
we conclude that ϕa maps the unit disc to itself. The same reasoning applies
to (ϕa)

−1 = ϕ−a, hence ϕa is a one-to-one conformal map of the disc to the
disc.

The biholomorphic self-mappings of D can now be completely character-
ized.

7.2.3 Self-Maps of the Disc

Let f : D → D be a holomorphic function. Then f is a conformal self-map
of D if and only if there are complex numbers a, ω with |ω| = 1, |a| < 1 such
that

f(z) = ω · ϕa(z) ∀z ∈ D . (7.7)

In other words, any conformal self-map of the unit disc to itself is the
composition of a Möbius transformation with a rotation.

It can also be shown that any conformal self-map f of the unit disc can
be written in the form

f(z) = ϕb(η · z) , (7.8)

for some Möbius transformation ϕb and some complex number η with |η| = 1.
The reasoning is as follows: Let f : D → D be a conformal self-map of

the disc and suppose that f(0) = a ∈ D. Consider the new holomorphic
mapping g = ϕa ◦ f . Then g : D → D is conformal and g(0) = 0. By what
we learned in Section 7.2.1, g(z) = ω · z for some unimodular ω. But this
says that f(z) = (ϕa)

−1(ω · z) or

f(z) = ϕ−a(ωz) .

That is formulation (7.8) of our result. We invite the reader to find a proof
of (7.7).

Example 51 Let us find a conformal map of the disc to the disc that takes
i/2 to 2/3 − i/4.
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We know that ϕi/2 takes i/2 to 0. And we know that ϕ−2/3+i/4 takes 0 to
2/3 − i/4. Thus

ψ = ϕ−2/3+i/4 ◦ ϕi/2
has the desired property.

Exercises

1. Use the definition of the Möbius transformations in line (7.5) to prove
directly that if |z| < 1 then |ϕa(z)| < 1.

2. Give a conformal self-map of the disc that sends i/4 − 1/2 to i/3.

3. Let a1, a2, b1, b2 be arbitrary points of the unit disc. Explain why
there does not necessarily exists a holomorphic function from D(0, 1)
to D(0, 1) such that f(a1) = b1 and f(a2) = b2.

4. Let U = {z ∈ C : Im z > 0} (the upper half-plane). Calculate all
the conformal self-mappings of U to U . [Hint: The function ψ(z) =
i(1 − z)/(1 + z) maps the unit disc D to U conformally.]

5. Let U be as in Exercise 4. Calculate all the conformal maps of D(0, 1)
to U .

6. Let P ∈ C and r > 0. Calculate all the conformal self-maps of D(P, r)
to D(P, r).

7. Let U = D(0, 1) \ {0}. Calculate all the conformal self-maps of U to
U .

8. Use MatLab to write a utility that will construct a conformal self-map
of the unit disc that maps a given input point a to another specified
point b. Can you refine this utility so that it allows you to make some
specifications about the derivative of the function at a?

9. It is a fact that there is a holomorphic function from the disc to the disc
that maps two points a1 and a2 to two other specified points b1 and b2 if
and only if the pseudohyperbolic distance of b1 to b2 is less than or equal
to the pseudohyperbolic distance of a1 to a2 (see Exercise 6 in Section
6.5). Write a MatLab utility that will test for this condition. Write a
more sophisticated utility that will actually produce the function.
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10. Describe in the language of Euclidean geometry (that is, using words)
what the Möbius transformation ϕ1/2 does to the unit disc. What about
iterates ϕ ◦ ϕ, ϕ ◦ ϕ ◦ ϕ, etc.? Can you interpret this geometric action
in terms of flows?

7.3 Linear Fractional Transformations

7.3.1 Linear Fractional Mappings

The automorphisms (that is, conformal self-mappings) of the unit disc D are
special cases of functions of the form

z 7→ az + b

cz + d
, a, b, c, d ∈ C . (7.9)

It is worthwhile to consider functions of this form in generality. One restric-
tion on this generality needs to be imposed, however; if ad − bc = 0, then
the numerator is a constant multiple of the denominator provided that the
denominator is not identically zero. So if ad − bc = 0, then the function is
either constant or has zero denominator and is nowhere defined. Thus only
the case ad− bc 6= 0 is worth considering in detail.

A function of the form

z 7→ az + b

cz + d
, ad− bc 6= 0 , (7.10)

is called a linear fractional transformation.
Note that (az + b)/(cz + d) is not necessarily defined for all z ∈ C.

Specifically, if c 6= 0, then it is undefined at z = −d/c. In case c 6= 0,

lim
z→−d/c

∣∣∣∣
az + b

cz + d

∣∣∣∣ = lim
z→−d/c

∣∣∣∣
az/c+ b/c

z + d/c

∣∣∣∣ = +∞ . (7.11)

This observation suggests that one might well, for linguistic convenience,
adjoin formally a “point at ∞” to C and consider the value of (az+b)/(cz+d)
to be ∞ when z = −d/c (c 6= 0). Thus we will think of both the domain and
the range of our linear fractional transformation to be C∪{∞} (we sometimes

also use the notation Ĉ instead of C ∪ {∞}). Specifically, we are led to the
following alternative method for describing a linear fractional transformation.

A function f : C ∪ {∞} → C ∪ {∞} is a linear fractional transformation
if there exists a, b, c, d ∈ C, ad− bc 6= 0, such that either
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(a) c = 0, d 6= 0, f(∞) = ∞, and f(z) = (a/d)z + (b/d) for all z ∈ C;

or

(b) c 6= 0, f(∞) = a/c, f(−d/c) = ∞, and f(z) = (az + b)/(cz + d) for all
z ∈ C, z 6= −d/c.

It is important to realize that, as before, the status of the point ∞ is
entirely formal: we are just using it as a linguistic convenience, to keep track
of the behavior of f(z) both where it is not defined as a map on C and to
keep track of its behavior when |z| → +∞. The justification for the particular
devices used is the fact that

(c) lim|z|→+∞ f(z) = f(∞) [c = 0; case (a) of the definition];

(d) limz→−d/c |f(z)| = +∞ [c 6= 0; case (b) of the definition].

7.3.2 The Topology of the Extended Plane

The limit properties of f that we described in Section 7.3.1 can be considered
as continuity properties of f from C ∪ {∞} to C ∪ {∞} using the definition
of continuity that comes from the topology on C∪{∞} (which we are about
to define). It is easy to formulate that topology in terms of open sets. But
it is also convenient to formulate that same topological structure in terms of
convergence of sequences:

A sequence {j} in C∪{∞} converges to p0 ∈ C∪{∞} (notation limj→∞ pj =
p0) if either

(e) p0 = ∞ and limj→+∞ |pj| = +∞ where the limit is taken for all j such
that pj ∈ C (the limit here means that the |pj| are getting ever larger
as j → +∞);

or

(f) p0 ∈ C, all but a finite number of the pj are in C, and limj→∞ pj = p0

in the usual sense of convergence in C.
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P

N

(P)

Figure 7.1: Stereographic projection.

7.3.3 The Riemann Sphere

Stereographic projection puts Ĉ = C ∪ {∞} into one-to-one correspondence
with the two-dimensional sphere S in R3, S = {(x, y, z) ∈ R3 : x2 + y2 + z2 =
1}, in such a way that the topology is preserved in both directions of the
correspondence.

In detail, begin by imagining the unit sphere bisected by the complex
plane with the center of the sphere (0, 0, 0) coinciding with the origin in the
plane—see Figure 7.1. We define the stereographic projection as follows: If
P = (x, y) ∈ C, then connect P to the “north pole” N of the sphere with a
line segment. The point π(P ) of intersection of this segment with the sphere
is called the stereographic projection of P . Note that, under stereographic
projection, the “point at infinity” in the plane corresponds to the north pole
N of the sphere. For this reason, C ∪ {∞} is often thought of as “being” a
sphere, and is then called, for historical reasons, the Riemann sphere.

The construction we have just described is another way to think about
the “extended complex plane”—see Section 7.3.2. In these terms, linear frac-
tional transformations become homeomorphisms of C∪{∞} to itself. (Recall
that a homeomorphism is, by definition, a one-to-one, onto, continuous map-
ping with a continuous inverse.)

If f : C∪{∞} → C∪{∞} is a linear fractional transformation,
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then f is a one-to-one, onto, continuous function. Also, f−1 :
C∪ {∞} → C∪ {∞} is a linear fractional transformation, and is
thus a one-to-one, onto, continuous function.

If g : C∪ {∞} → C∪ {∞} is also a linear fractional transfor-
mation, then f ◦ g is a linear fractional transformation.

The simplicity of language obtained by adjoining ∞ to C (so that the
composition and inverse properties of linear fractional transformations obvi-
ously hold) is well worth the trouble. Certainly one does not wish to consider
the multiplicity of special possibilities when composing (Az +B)/(Cz +D)
with (az+ b)/(cz+ d) (namely c = 0, c 6= 0, aC + cD 6= 0, aC + cD = 0, etc.)
that arise every time composition is considered.

In fact, it is worth summarizing what we have learned in a theorem (see
Section 7.3.4). First note that it makes sense now to talk about a homeomor-
phism from C ∪ {∞} to C ∪ {∞} being conformal: this just means that it,
and hence its inverse, are holomorphic in our extended sense. More precisely,
a function g is holomorphic at the point ∞ if g(1/z) is holomorphic at the
origin. A function h which takes the value ∞ at p is holomorphic at p if 1/h
is holomorphic at p.

If ϕ is a conformal map of C ∪ {∞} to itself, then, after composing with
a linear fractional transformation, we may suppose that ϕ maps ∞ to itself.
Thus ϕ, after composition with a linear fraction transformation, is linear.
It follows that the original ϕ itself is linear fractional. The following result
summarizes the situation:

7.3.4 Conformal Self-Maps of the Riemann Sphere

THEOREM 7 A function ϕ is a conformal self-mapping of Ĉ = C ∪ {∞}
to itself if and only if ϕ is linear fractional.

We turn now to the actual utility of linear fractional transformations
(beyond their having been the form of automorphisms of D—see Sections
7.2.1 through 7.2.3—and the form of all conformal self maps of C ∪ {∞} to
itself in the present section). One of the most frequently occurring uses is
the following:



7.3. LINEAR FRACTIONAL TRANSFORMATIONS 203

7.3.5 The Cayley Transform

The Cayley Transform The linear fractional transformation c : z 7→ (i −
z)/(i + z) maps the upper half-plane U = {z : Imz > 0} conformally onto
the unit disc D = {z : |z| < 1}.

In fact we may verify this assertion in detail. For c(0) = 1, c(1) = i,
and c(−1) = −i. So point of ∂U get mapped to points of ∂D(0, 1). More
generally, if z ∈ ∂U then z = x is a real number and

c(x) =
i− x

i+ x
=

1 − x2

1 + x2
+ i · 2x

1 + x2
.

Notice that [
1 − x2

1 + x2

]2

+

[
2x

1 + x2

]2

= 1 ,

so c(x) is a point of the unit circle. Of course the map c is invertible, so c
is a one-to-one correspondence between the real line (which is the boundary
of the upper half-plane U) with the unit circle (which is the boundary of the
unit disc D(0, 1)). Since c(i) = 0, we may conclude that c maps the upper
half-plane conformally to the unit disc.

7.3.6 Generalized Circles and Lines

Calculations of the type that we have been discussing are straightforward
but tedious. It is thus worthwhile to seek a simpler way to understand what
the image under a linear fractional transformation of a given region is. For
regions bounded by line segments and arcs of circles the following result gives
a method for addressing this issue:

Let C be the set of subsets of C∪{∞} consisting of (i) circles and (ii) sets of
the form L∪{∞} where L is a line in C.We call the elements of C “generalized
circles.” Then every linear fractional transformation ϕ takes elements of C
to elements of C. One verifies this last assertion by noting that any linear
fractional transformation is the composition of dilations, translations, and
the inversion map z 7→ 1/z; and each of these component maps clearly sends
generalized circles to generalized circles.

7.3.7 The Cayley Transform Revisited

To illustrate the utility of this last result, we return to the Cayley transfor-
mation
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z 7→ i− z

i+ z
. (7.12)

Under this mapping the point ∞ is sent to −1, the point 1 is sent to
(i−1)/(i+1) = i, and the point −1 is sent to (i−(−1))/(i+(−1)) = −i. Thus
the image under the Cayley transform (a linear fractional transformation) of
three points on R∪{∞} contains three points on the unit circle. Since three
points determine a (generalized) circle, and since linear fractional transfor-
mations send generalized circles to generalized circles, we may conclude that
the Cayley transform sends the real line to the unit circle. Now the Cayley
transform is one-to-one and onto from C ∪ {∞} to C ∪ {∞}. By continuity,
it either sends the upper half-plane to the (open) unit disc or to the com-
plement of the closed unit disc. The image of i is 0, so in fact the Cayley
transform sends the upper half-plane to the unit disc.

7.3.8 Summary Chart of Linear Fractional

Transformations

The next chart summarizes the properties of some important linear fractional
transformations. Note that U = {z ∈ C : Im z > 0} is the upper half-plane
and D = {z ∈ C : |z| < 1} is the unit disc; the domain variable is z and the
range variable is w.

Linear Fractional Transformations

Domain Image Conditions Formula

z ∈ Ĉ w ∈ Ĉ w = az + b
cz + d

z ∈ D w ∈ U w = i · 1 − z
1 + z

z ∈ U w ∈ D w = i− z
i+ z

z ∈ D w ∈ D w = z − a
1 − az

z ∈ C w ∈ C L(z1) = w1 L(z) = S−1 ◦ T

L(z2) = w2 T (z) = z − z1
z − z3

· z2 − z3
z2 − z1

L(z3) = w3 S(w) = w − w1
w − w3

· w2 − w3
w2 − w1
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Exercises

1. Calculate the inverse of the Cayley transform.

2. Calculate all the conformal mappings of the unit disc to the upper
half-plane.

3. Calculate all the conformal mappings from U = {z ∈ C : Re ((3 − i) ·
z) > 0} to V = {z ∈ C : Re ((4 + 2i) · z > 0}.

4. Calculate all the conformal mappings from the disc D(p, r) to the disc
D(P,R).

5. How many points in the Riemann sphere uniquely determine a linear
fractional transformation?

6. Prove that a linear fractional transformation

ϕ(z) =
az + b

cz + d

preserves the upper half-plane if and only if ad− bc > 0.

7. Which linear fractional transformations preserve the real line? Which
preserve the unit circle?

8. Let ` be a linear fractional transformation and C a circle in the plane.
What is a quick test to determine whether ` maps C to another circle
(rather than a line)?

9. Let ` be a linear fractional transformation and L a line in the plane.
What is a quick test to determine whether ` maps L to another line
(rather than a circle)?

10. Write a MatLab utility that will apply a given linear fractional trans-
formation to a given line and produce this information: (i) Whether
the image of the line under the linear fractional transformation another
line or a circle; (ii) What is the formula for the image, whether it is a
line or a circle. Now write a second utility for circles.

11. Every linear fractional transformation can be written as the composi-
tion of a translation, a dilation, and an inversion (z 7→ 1/z). Write a
MatLab utility that will perform this decomposition explicitly.
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12. Construe the idea of the “point at infinity” and the Riemann sphere in
terms of fluid flow. Think of infinity as being either a sink or a source.
How does the mapping z 7→ 1/z help you to interpret this concept?

7.4 The Riemann Mapping Theorem

7.4.1 The Concept of Homeomorphism

Two open sets U and V in C are homeomorphic if there is a one-to-one, onto,
continuous function f : U → V with f−1 : V → U also continuous. Such a
function f is called a homeomorphism from U to V (see also Section 7.3.3).

7.4.2 The Riemann Mapping Theorem

The Riemann mapping theorem, sometimes called the greatest theorem of
the nineteenth century, asserts in effect that any planar domain (other than C
itself) that has the topology of the unit disc also has the conformal structure
of the unit disc. Even though this theorem has been subsumed by the great
uniformization theorem of Köbe (see [FAK]), it is still striking in its elegance
and simplicity:

If U is an open subset of C, U 6= C, and if U is homeomorphic
to D, then U is conformally equivalent to D. That is, there is a
holomorphic mapping ψ : U → D which is one-to-one and onto.

7.4.3 The Riemann Mapping Theorem: Second

Formulation

An alternative formulation of this theorem uses the concept of “simply con-
nected” (see also Section 3.1.2). We say that a connected open set U in the
complex plane is simply connected if any closed curve in U can be continu-
ously deformed to a point. (This is just a precise way of saying that U has
no holes. Yet another formulation of the notion is that the complement of U
has only one connected component—refer to [GRK].) See Figure 7.2.

Theorem: If U is an open subset of C, U 6= C, and if U is simply
connected, then U is conformally equivalent to D.
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simply connected not simply connected

Figure 7.2: Simple connectivity.

Exercises

1. Explain why the Riemann mapping theorem must exclude the entire
plane as a candidate for being conformally equivalent to the unit disc.

2. The Riemann mapping theorem is an astonishing result. One corollary
is that any simply connected open set in the plane is homeomorphic
to the disc, which is in turn homeomorphic to the plane. Explain,
remembering that the Riemann mapping theorem does not apply to
the case when the domain in question is the entire plane.

3. Let U ⊆ C be a proper subset that is simply connected. Let a ∈ U .
Show that there is a unique conformal mapping ϕ of the unit disc
D(0, 1) to U with the property that ϕ(0) = a and ϕ′(0) > 0.

4. Let U ⊆ C be a proper subset that is simply connected. Let a, b ∈ U be
arbitrary elements. Explain why there is not necessarily a conformal
mapping ϕ : D(0, 1) → U such that ϕ(0) = a and ϕ(1/2) = b. Give an
explicit example where there is no mapping.

5. Let A = {z ∈ C : 1/2 < |z| < 2}. Define a holomorphic function ϕ
on A by ϕ(z) = z + 1/z. Explain why this is a mapping of A onto the
interior of an ellipse. What ellipse is it? Why does this example not
contradict the dictum that linear fractional transformations take lines
and circles to lines and circles?

6. The Riemann mapping theorem guarantees (abstractly) that there is
a conformal map of the strip {z ∈ C : |Im z| < 1} onto the unit disc.
Write down this mapping explicitly.
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7. The Riemann mapping theorem guarantees (abstractly) that there is a
conformal map of the quarter-plane {z = x+ iy ∈ C : x > 0, y > 0} to
the unit disc. Write down this mapping explicitly.

8. What does the Riemann mapping theorem say about flows? How is
the flow on a disc related to the flow on a long, thin strip?

9. Calculate all the conformal self-mappings of the strip {z ∈ C : |Im z| <
1}.

7.5 Conformal Mappings of Annuli

7.5.1 A Mapping Theorem for Annuli

The Riemann mapping theorem tells us that, from the point of view of com-
plex analysis, there are only two simply connected planar domains: the disc
and the plane. Any other simply connected region is biholomorphic to one
of these. It is natural then to ask about domains with holes. Take, for ex-
ample, a domain U with precisely one hole. Is it conformally equivalent to
an annulus?

Note that, if c > 0 is a constant, then for any R1 < R2 the annuli

A1 ≡ {z : R1 < |z| < R2} and A2 ≡ {z : cR1 < |z| < cR2} (7.13)

are biholomorphically equivalent under the mapping z 7→ cz. The surprising
fact that we shall learn is that these are the only circumstances under which
two annuli are equivalent:

7.5.2 Conformal Equivalence of Annuli

Let

A1 = {z ∈ C : 1 < |z| < R1} (7.14)

and

A2 = {z ∈ C : 1 < |z| < R2}. (7.15)

Then A1 is conformally equivalent to A2 if and only if R1 = R2.
A perhaps more striking result, and more difficult to prove, is this:
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Figure 7.3: Representation of a domain on the disc with circular arcs re-
moved.

Let U ⊆ C be any bounded domain with one hole—this means
that the complement of U has two connected components, one
bounded and one not. Then U is conformally equivalent to some
annulus.

The proofs of these results are rather deep and difficult. We cannot
discuss them in any detail here, but include their statements for completeness.
See [AHL], [GRK], and [KRA4] for discursive discussions of these theorems.

7.5.3 Classification of Planar Domains

The classification of planar domains up to biholomorphic equivalence is a part
of the theory of Riemann surfaces. For now, we comment that one of the
startling classification theorems (a generalization of the Riemann mapping
theorem) is that any bounded planar domain with finitely many “holes” is
conformally equivalent to the unit disc with finitely many closed circular arcs,
coming from circles centered at the origin, removed. See Figure 7.3. (Here
a “hole” in the present context means a bounded, connected component of
the complement of the domain in C, a concept which coincides with the
intuitive idea of a hole.) An alternative equivalent statement is that any
bounded planar domain with finitely many holes is conformally equivalent to
the plane with finitely many vertical slits centered on the x-axis removed (see
[AHL] or [KRA4]). Refer to Figure 7.4. The analogous result for domains
with infinitely many holes is known to be true when the number of holes is
countable (see [HES]).
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Figure 7.4: Representation of a domain on the plane with vertical slits re-
moved.

Exercises

1. How much data is needed to uniquely determine a conformal mapping
of annuli? Suppose that A1 = {z ∈ C : 1/2 < |z| < 2} and A2 = {z ∈
C : 1 < |z| < 4}. Say that f is a conformal mapping of A1 to A2 such
that f(1) = 2. Is there only one such mapping?

2. Define the annulusA = {z ∈ C : 1/2 < |z| < 2}. Certainly any rotation
is a conformal self-mapping of A. Also the inversion ψ : z 7→ 1/z is
a conformal mapping of A to itself. Verify these assertions. Can you
think of any other conformal mappings of A to A?

3. Let A be an annulus and ` a linear fractional transformation. What
can the image of A under ` be? Describe all the possibilities.

4. What is the image of the half-plane {z ∈ C : Re z < 0} under the
mapping z 7→ ez? Is the mapping one-to-one?

5. What is the image of the strip {z ∈ C : 1 < Re z < 2} under the
mapping z 7→ ez? Is the mapping one-to-one?

6. Consider the region U = Ĉ \ {z ∈ C : Im z = 0, 0 < Re z < 1}. The
image of U under the mapping z 7→ 1/z is the slit plane V = C \ {z ∈
C : Im z = 0, 0 < Re z < 1}. Verify this assertion. Draw a picture of
the domain and range of this function. Now apply the mapping z 7→

√
z
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to V . The result is a half-plane. Finally, a suitable Cayley transform
will take that last half-plane to the unit disc. Thus the original region
U ⊆ Ĉ is conformally equivalent to the unit disc.

7. It is a fact that a conformal self-mapping f of any planar domain that
has three fixed points (a fixed point is a point z such that f(z) = z) is
the identity mapping (see [FIF], [LES], [MAS]). Show that there is a
nontrivial conformal self-map of the annulus A = {z ∈ C : 1/2 < |z| <
2} having two distinct fixed points.

8. Refer to the last exercise for background. Show that any conformal self-
map of the disc having two distinct fixed points is in fact the identity.
Show that if we consider conformal self-mappings of the disc and ask
how many boundary fixed points force the mapping to be the identity
then the answer is “three.”

9. Write a MatLab utility that will calculate the composition of two given
linear fractional transformations. Write another that will calculate the
inverse of a given linear fractional transformation.

10. It is very natural to consider fluid flow on an annulus. We may consider
clockwise flow and counterclockwise flow. Give a physical interpreta-
tion for the statement embodied in lines (7.14) and (7.15).

7.6 A Compendium of Useful Conformal

Mappings

Here we present a graphical compendium of commonly used conformal map-
pings. Most of the mappings that we present here are given by explicit
formulas, and are also represented in figures. Wherever possible, we also
provide the inverse of the mapping.

In each case, the domain of the mapping is the z-plane, with x + iy =
z ∈ C. And the range of the mapping is the w-plane, with u+ iv = w ∈ C.
In some examples, it is appropriate to label special points a, b, c, . . . in the
domain of the mapping and then to specify their image points A,B,C, . . .
in the range. In other words, if the mapping is called f , then f(a) = A,
f(b) = B, f(c) = C, etc.
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All of the mappings presented here map the shaded region in the z-plane
onto the shaded region in the w-plane. Most of the mappings are one-to-one
(that is, they do not map two distinct points in the domain of the mapping
to the same point in the range of the mapping). In a few exceptional cases
the mapping is not one-to-one; these examples will be clear from context.
Figure 7.5 shows conformal mappings of the unit disc.

In the majority of these examples, the mapping is given by an explicit for-
mula. In some cases, such as the Schwarz-Christoffel mapping, the mapping
is given by a semi-explicit integral. Such integrals cannot be evaluated

Figure 7.5: (top) Map of the disc to its complement; (middle) map of the
disc to the disc; (bottom) map of the disc to the first quadrant.

in closed form. But they can be calculated to any degree of accuracy using
methods of numerical integration. Section 8.4 will also provide some infor-
mation about numerical techniques of conformal mapping. The book [KOB]
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gives an extensive listing of explicit conformal mappings; see also [CCP]. The
book [NEH] is a classic treatise on the theory of conformal mappings.

Figure 7.6: (top) The Cayley transform: A map of the disc to the upper
half-plane; (middle) map of a wedge to a half-strip; (bottom) map of a

wedge to the upper half-plane.

Figure 7.6 gives maps of the disc and the quarter-plane.
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Figure 7.7: (top) Map of a strip to the disc; (middle) map of a half-strip
to the disc; (bottom) map of a half-strip to the upper half-plane.

Figure 7.7 gives mappings of strips and half-strips.
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Figure 7.8: (top) Map of the disc to a strip; (middle) map of an annular
sector to the interior of a rectangle; (bottom) map of a half-annulus to the

interior of a half-ellipse.

Figure 7.8 gives maps of the disc and of certain annular regions.



216 CHAPTER 7. THE GEOMETRIC THEORY

Figure 7.9: (top) Map of the upper half-plane to a 3/4-plane; (middle)
map of a strip to an annulus; (bottom) map of a strip to the upper

half-plane.

Figure 7.9 exhibits mappings of the upper half-plane and of certain strips.
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Figure 7.10: (top) Map of a disc to a quadrant; (middle) map of the
complement of two discs to an annulus; (bottom) map of the interior of a

rectangle to a half-annulus.

Figure 7.10 shows conformal maps of a disc, the complement of two discs,
and a rectangle.
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Figure 7.11: (top) Map of a half-disc to a strip; (middle) map of a disc to
a strip; (bottom) map of the inside of a parabola to a disc.

Figure 7.11 gives maps of the half-disc, the disc, and the inside of a
parabola.
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Figure 7.12: (top) Map of a half-disc to a disc; (middle) map of the
slotted upper half-plane to upper half-plane; (bottom) map of the

double-sliced plane to the upper half-plane.

Figure 7.12 shows maps of the half-disc, the slotted upper half-plane, and
the double-slotted plane.
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Figure 7.13: (top) Map of a strip to the double-sliced plane; (middle)
map of the disc to a wedge; (bottom) map of a disc to the complement of

a disc.

Figure 7.13 exhibits maps of the strip and the disc.
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Figure 7.14: (top) Map of a half-strip to a half-quadrant; (middle) map of
the upper half-plane to a right-angle region; (bottom) map of the upper

half-plane to the plane less a half-strip.

Figure 7.14 gives maps of the half-strip and the half-plane.
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Figure 7.15: (top) Map of a disc to the complement of an ellipse;
(middle) map of a disc to the interior of a cardioid; (bottom) map of a

disc to the region outside a parabola.

Figure 7.15 shows maps of the disc.
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Figure 7.16: (top) Map of the disc to the slotted plane; (middle) map of
the upper half-plane to the interior of a triangle; (bottom) map of the

upper half-plane to the interior of a rectangle.

Figure 7.16 exihibits maps of the disc and the half-plane.
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Figure 7.17: The Schwarz-Christoffel formula.

Figure 7.17 illustrates the Schwarz-Christoffel formula.



Chapter 8

Applications that Depend on
Conformal Mapping

8.1 Conformal Mapping

8.1.1 The Utility of Conformal Mappings

Part of the utility of conformal mappings is that they can be used to trans-
form a problem on a given domain V to another domain U (see also Sections
7.1.1). Often we take U to be a standard domain such as the disc

D = {z ∈ C : |z| < 1} (8.1)

or the upper half-plane

U = {z ∈ C : Im z > 0}. (8.2)

Particularly in the study of partial differential equations, it is important to
have an explicit conformal mapping between the two domains.

Section 7.6 presented a concordance of commonly used conformal map-
pings. The reader will find that, even in cases where the precise mapping
that he/she seeks has not been listed, he/she can (much as with a table of
integrals) combine several of the given mappings to produce the results that
are sought. It is also the case that the techniques presented here can be
modified to suit a variety of different situations.

The references [KOB], [CCP], and [NEH] give more comprehensive lists
of conformal mappings.

225
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8.2 Application of Conformal Mapping to the

Dirichlet Problem

8.2.1 The Dirichlet Problem

Let Ω ⊆ C be a domain whose boundary consists of finitely many smooth
curves. The Dirichlet problem (see Sections 8.2, 9.3, and 11.1), which is a
mathematical problem of interest in its own right, is the boundary value
problem

4u = 0 on Ω

u = f on ∂Ω. (8.3)

Here 4 is the Laplace operator which we studied in Section 2.2.1.
The way to think about this problem is as follows: a data function f on

the boundary of the domain is given. To solve the corresponding Dirichlet
problem, one seeks a continuous function u on the closure of U (that is, the
union of U and its boundary) such that u is harmonic on Ω and agrees with
f on the boundary. We shall now describe three distinct physical situations
that are mathematically modeled by the Dirichlet problem.

8.2.2 Physical Motivation for the Dirichlet Problem

I. Heat Diffusion: Imagine that Ω is a thin plate of heat-conducting metal.
The shape of Ω is arbitrary (not necessarily a rectangle). See Figure 8.1. A
function u(x, y) describes the temperature at each point (x, y) in Ω. It is a
standard situation in engineering or physics to consider idealized heat sources
or sinks that maintain specified (fixed) values of u on certain parts of the
boundary; other parts of the boundary are to be thermally insulated. One
wants to find the steady state heat distribution on Ω (that is, as t → +∞)
that is determined by the given boundary conditions. If we let f denote the
temperature specified on the boundary, then it turns out that the solution
of the Dirichlet problem (8.3) is the function that describes the steady state
heat distribution (see [COH], [KRA1], [KRA4], [BRC, p. 300], and references
therein for a derivation of this mathematical model for heat distribution).

We will present below some specific examples of heat diffusion problems
that illustrate the mathematical model that we have discussed here, and we
will show how conformal mapping can be used in aid of the solutions of the
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Figure 8.1: Heat distribution on the edge of a metal plate.

problems.

II. Electrostatic Potential: Now we describe a situation in electrostatics
that is modeled by the boundary value problem (8.3).

Imagine a long, hollow cylinder made of a thin sheet of some conduct-
ing material, such as copper. Split the cylinder lengthwise into two equal
pieces (Figure 8.2). Separate the two pieces with strips of insulating mate-
rial (Figure 8.3). Now ground the upper of the two semi-cylindrical pieces to
potential zero, and keep the lower piece at some nonzero fixed potential. For
simplicity in the present discussion, let us say that this last fixed potential
is 1. In the present situation, x, y, and z are real coordinates in Euclidean
three-dimensional space—just as in calculus. In particular, z is not a complex
variable.

Note that, in the figures, the axis of the cylinder is the z-axis. Consider
a slice of this cylindrical picture which is taken by setting z equal to a small
constant (we want to stay away from the ends of the cylinder, where the
analysis will be a bit different).

Once we have fixed a value of z, then we may study the electrostatic
potential V (x, y), x2 + y2 < 1, at a point inside the cylinder. Observe that
V = 0 on the “upper” half of the circle (y > 0) and V = 1 on the “lower”
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Figure 8.2: Electrostatic potential illustrated with a split cylinder.

O

+1

Figure 8.3: The cylindrical halves separated with insulating material.
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Figure 8.4: Distribution of the electrical potential.

half of the circle (y < 0)—see Figure 8.4. Physical analysis (see [BCH, p.
310]) shows that this is another Dirichlet problem, as in (8.3). We wish to
find a harmonic function V on the disc {(x, y) : x2 + y2 ≤ 1} which agrees
with the given potentials on the boundary.

Conformal mapping can be used as an aid in solving the problem posed
here, and we shall discuss its solution below.

III. Incompressible Fluid Flow: For the mathematical model considered
here, we consider a two-dimensional flow of a fluid that is

• incompressible

• irrotational

• free from viscosity

The first of these stipulations means that the fluid is of constant density, the
second means that the curl is zero, and the third means that the fluid flows
freely.

Identifying a point (a, b) in the x - y plane with the complex number
a+ ib as usual, we let

V (x, y) = p(x, y) + iq(x, y) (8.4)
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represent the velocity vector of our fluid flow at a point (x, y). We assume
that the fluid flow has no sources or sinks; and we hypothesize that p and q
are C1, or once continuously differentiable (see Section 2.1.1).

The circulation of the fluid along any curve γ is the line integral
∫

γ

VT (x, y) dr. (8.5)

Here VT represents the tangential component of the velocity along the curve
γ and σ denotes arc length. We know from advanced calculus that the
circulation can be written as

∫

γ

p(x, y) dx+

∫

γ

q(x, y) dy. (8.6)

We assume here that γ is a positively (counterclockwise) oriented simple,
closed curve that lies in a simply connected region D of the flow.

Now Green’s theorem allows us to rewrite this last expression for the
circulation as ∫∫

R

[qx(x, y)− py(x, y)] dA. (8.7)

Here the subscripts x and y represent partial derivatives, R is the region
surrounded by γ, and dA is the element of area. In summary,

∫

γ

VT (x, y) dr =

∫∫

R

[qx(x, y)− py(x, y)] dA. (8.8)

Let us specialize to the case that γ is a circle of radius r with center
p0 = (x0, y0). Call the disc-shaped region inside the circle R. Then the mean
angular speed of the flow along γ is

1

πr2

∫∫

R

1

2
[qx(x, y)− py(x, y)] dA. (8.9)

This expression also happens to represent the average of the function

ω(x, y) =
1

2
[qx(x, y)− py(x, y)] (8.10)

over R. Since ω is continuous, the limit as r → 0 of (8.9) is just ω(p0). It
is appropriate to call ω the rotation of the fluid, since it is the limit at the
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point p0 of the angular speed of a circular element of the fluid at the point
p0. Since our fluid is irrotational, we set ω = 0. Thus we know that

py = qx (8.11)

in the region D where the flow takes place. Multidimensional calculus then
tells us that the flow is path-independent: If X = (x, y) is any point in the
region and γ is any path joining p0 to X, then the integral

∫

γ

p(s, t) ds+

∫

γ

q(s, t) dt (8.12)

is independent of the choice of γ. As a result, the function

ϕ(x, y) =

∫ X

p0

p(s, t) ds+ q(s, t) dt (8.13)

is well-defined on D, where the integral is understood to take place along
any curve connecting p0 to X. Differentiating the equation that defines ϕ,
we find that

∂

∂x
ϕ(x, y) = p(x, y) and

∂

∂y
ϕ(x, y) = q(x, y). (8.14)

We call ϕ a potential function for the flow. To summarize, we know that
∇ϕ = (p, q).

The natural physical requirement that the incompressible fluid enter or
leave an element of volume only by flowing through the boundary of that
element (no sources or sinks) entails the mathematical condition that ϕ be
harmonic. Thus

ϕxx + ϕyy = 0 (8.15)

on D. In conclusion, studying a fluid flow with specified boundary data will
entail solving the boundary value problem (8.3).

Note that Exercise 13 gives a detailed mathematical model, due to Daniel
Bernoulli, for fluid flow.

8.3 Physical Examples Solved by Means of

Conformal Mapping

In this section we give a concrete illustration of the solution of each of the
physical problems described in the last section.
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Figure 8.5: A lens-shaped piece of heat-conducting metal.

8.3.1 Steady State Heat Distribution on a Lens-Shaped

Region

Example 52 Imagine a lens-shaped sheet of heat-conducting metal as in
Figure 8.5. Suppose that the initial distribution of heat is specified to be 1
on the lower boundary of the lens and 0 on the upper boundary of the lens
(as illustrated in the figure). Determine the steady state heat distribution.

Solution: Our strategy is to use a conformal mapping to transfer the
problem to a new domain on which it is easier to work. We let z = x + iy
denote the variable in the lens-shaped region and w = u + iv denote the
variable in the new region (which will be an angular region).

In fact let us construct the conformal mapping with our bare hands. If
we arrange for the mapping to be linear fractional and to send the origin
to the origin and the point −1 + i to infinity, then (since linear fractional
transformations send lines and circles to lines and circles), the images of the
two circular arcs will both be lines. Let us in fact examine the mapping

w = f(z) =
−z

z − (−1 + i)
. (8.16)

(The minus sign in the numerator is introduced for convenience.)
We see that f(0) = 0, f(2i) = −1 − i, and f(−2) = −1 + i. And of

course f(−1 + i) = ∞. Using conformality (preservation of right angles),
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Figure 8.6: The angular region in the w-plane that is the image of the lens-
shaped region in the z-plane.

we conclude that the image of the lens-shaped region in the z-plane is the
angular region in the w-plane depicted in Figure 8.6. The figure also shows
on which part of the boundary the function we seek is to have value 0 and on
which part it is to have value 1. It is easy to write down a harmonic function
ϕ of the w variable that satisfies the required boundary conditions:

ϕ(w) =
2

π

(
argw +

π

4

)
(8.17)

will certainly do the job if we demand that −π < argw < π. But then the
function

u(z) = ϕ ◦ f(z) (8.18)

is a harmonic function on the lens-shaped domain in the z-plane that has the
requisite boundary values (we use of course the fact that the composition of
a harmonic function with a holomorphic function is still harmonic).

In other words, the solution to the problem originally posed on the lens-
shaped domain in the z-plane is

u(z) =
2

π
· arg

(
−z

z − (−1 + i)

)
+

1

2
. (8.19)
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This can also be written as

u(z) =
2

π
· tan−1

[
−y − x

−x(x+ 1) − y(y − 1)

]
+

1

2
. (8.20)

Exercise for the Reader: Verify in detail that formulas (8.19) and (8.20)
are equivalent.

8.3.2 Electrostatics on a Disc

Example 53 We now analyze the problem that was set up in part II of
Section 8.2. We do so by conformally mapping the unit disc (in the z plane)
to the upper half-plane (in the w plane) by way of the mapping

w = f(z) = i · 1 − z

1 + z
. (8.21)

See Figure 8.7. Observe that this conformal mapping takes the upper half of
the unit circle to the positive real axis, the lower half of the unit circle to the
negative real axis, and the point 1 to the origin (and the point −1 to ∞).

Thus we are led to consider the following boundary value problem on the
upper half-plane in the w variable: we seek a harmonic function on the upper
half-plane with boundary value 0 on the positive real axis and boundary value
1 on the negative real axis. Certainly the function

ϕ(w) =
1

π
argw (8.22)

does the job, if we assume that 0 ≤ argw < 2π. We pull this solution back
to the disc by way of the mapping f :

u = ϕ ◦ f. (8.23)

This function u is harmonic on the unit disc, has boundary value 0 on the
upper half of the circle, and boundary value 1 on the lower half of the circle.

Our solution may be written more explicitly as

u(z) =
1

π
arg

[
i · 1 − z

1 + z

]
(8.24)
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f

Figure 8.7: Conformal map of the disc to the upper half-plane.

or as

u(z) =
1

π
tan−1

[
1 − x2 − y2

2y

]
. (8.25)

Of course for this last form of the solution to make sense, we must take
0 ≤ arctan t ≤ π and we must note that

lim
t→0
t>0

arctan t = 0 and lim
t→0
t<0

arctan t = π. (8.26)

8.3.3 Incompressible Fluid Flow around a Post

Example 54 We study the classic problem of the flow of an incompressible
fluid around a cylindrical post.

Recall the potential function ϕ from the end of the discussion in III of
Section 8.2. If

V = p + iq (8.27)

is the velocity vector, then we may write

V = ϕx + iϕy = gradϕ. (8.28)
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Since ϕ is harmonic, we may select a conjugate harmonic function ψ (see
Section 2.2.2) for ϕ. Because of the Cauchy-Riemann equations, the velocity
vector will be tangent to any curve ψ(x, y) = constant. The function ψ is
called the stream function for the flow. The curves ψ(x, y) = constant are
called streamlines of the fluid flow. We call the holomorphic function

H(x+ iy) = ϕ(x, y) + iψ(x, y) (8.29)

the complex potential of the fluid flow.
Using the Cauchy-Riemann equations twice, we can write H ′(z) as

H ′(z) = ϕx(x, y) + iψx(x, y) (8.30)

or

H ′(z) = ϕx(x, y)− iϕy(x, y). (8.31)

Thus formula (8.28) for the velocity becomes

V = H ′(z). (8.32)

As a result,

speed = |V | = |H ′(z)| = |H ′(z)|. (8.33)

The analysis we have just described means that, in order to solve an incom-
pressible fluid flow problem, we need to find the complex potential function
H.

Now consider an incompressible fluid flow with a circular obstacle as
depicted in Figure 8.8. The flow is from left to right. Far away from the
obstacle, the flow is very nearly along horizontal lines parallel to the x-axis.
But near to the obstacle the flow will be diverted. Our job is to determine
analytically just how that diversion takes place.

We consider the circular obstacle to be given by the equation x2 +y2 = 1.
Elementary symmetry considerations allow us to restrict attention to the flow
in the upper half-plane. See Figure 8.9.

The boundary of the region W of the flow (Figure 8.9) is mapped to the
boundary of the upper half-plane U in the w variable (this boundary is just
the u-axis) by the conformal mapping

w = f(z) = z +
1

z
. (8.34)



8.3. PHYSICAL EXAMPLES 237

Figure 8.8: Incompressible fluid flow with a circular obstacle.

Figure 8.9: Restriction of attention to the flow in the upper half-plane.
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Figure 8.10: Conformal mapping of the region of the flow to the upper half-
plane.

In fact, notice that

−1 7→ −2

1 7→ 2

i 7→ 0 ,

so it follows that the circular arc goes to the segment [−2, 2]. Of course the
ray [1,∞) is mapped to the ray [2,∞) and the ray (−∞,−1] is mapped to
the ray (−∞,−2]. In sum, the boundary goes to the boundary.

And the region itself (shaded in Figure 8.9) is mapped to the upper half-
plane in the w variable. The mapping is exhibited in Figure 8.10.

The complex potential for a uniform flow in the upper half-plane of the
w variable is

G(w) = Aw, (8.35)

where A is a positive constant. Composing this potential with the mapping
f , we find that the corresponding potential on W is

H(z) = G ◦ f(z) = A ·
(
z +

1

z

)
. (8.36)
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The velocity (referring to equation (8.32)) is then

V = H ′(z) = A

(
1 − 1

z2

)
. (8.37)

Note that V approaches A as |z| increases monotonically to infinity. We
conclude that the flow is almost uniform, and parallel to the x-axis, at points
that are far from the circular obstacle. Finally, observe that V (z) = V (z),
so that, by symmetry, formula (8.37) also represents the velocity of the flow
in the lower half-plane.

According to equation (8.29), the stream function for our problem, writ-
ten in polar coordinates, is just the imaginary part of H, or

ψ = A

(
r − 1

r

)
sin θ. (8.38)

The streamlines

A

(
r − 1

r

)
sin θ = C (8.39)

are symmetric with respect to the y-axis and have asymptotes parallel to the
x-axis. When C = 0, then the streamline consists of the circle r = 1 and the
parts of the x axis that lie outside the unit circle.

8.4 Numerical Techniques of Conformal

Mapping

In practical applications, computer techniques for calculating conformal map-
pings have proved to be decisive. For instance, it is a standard technique to
conformally map the complement of an airfoil (Figure 8.11) to the comple-
ment of a circle in order to study a boundary value problem on the comple-
ment. Of course the boundary of the airfoil is not given by any standard
geometric curve (circle, parabola, ellipse, etc.), and the only hope of getting
accurate information about the conformal mapping is by means of numerical
analysis.

The literature on numerical techniques of conformal mapping is extensive.
The reference [KYT] is a gateway to some of the standard references. Here
we present only a brief sketch of some of the ideas.
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Figure 8.11: An airfoil.

8.4.1 Numerical Approximation of the

Schwarz-Christoffel Mapping

Of course it is not very realistic or practical to think that we could come up
with an explicit algorithm for mapping the disc or the upper half-plane to
any simply connected region. A perhaps more realistic goal is to map the disc
or upper half-plane to any polygon. The theory of Schwarz and Christoffel
is a great aid in studying polygonal regions.

Most any region can be exhausted by polygons, so this gives a fairly broad
class of regions that we can handle. Section 8.4.2 also discusses a method of
treating an arbitrary smoothly bounded region by thinking of it as a polygon
with infinitely many sides.

Let P be a polygon in the complex plane with vertices w1, . . . , wn. We
wish to conformally map, by way of a mapping g, the upper half-plane U to
the interior of P—see Figure 8.12. The vertices w1, . . . , wn−1 in the boundary
of P will have preimages x1, . . . , xn−1 under g in ∂U . These latter points are
called prevertices. It is standard to take ±∞ ∈ ∂U to be the preimages of
the last vertex wn. Observe that, associated to each corner wj, we have a
“right-turn angle” θj. See Figure 8.13.

A conformal self-map of the unit disc is completely determined once the
images of three boundary points are known. This fact is easily seen from
the explicit formula for a conformal self-map of the disc that we derived in
Section 7.2—there are clearly three degrees of freedom in the formula. Since
the disc and the upper half-plane are conformally equivalent by way of the
Cayley transform (Section 7.3.5), it follows that, in specifying the Schwarz-
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Figure 8.12: Mapping the upper half-plane to a polygonal region.

Figure 8.13: Vertices, prevertices, and right-turn angles.
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Christoffel map, we may select three of the xj’s arbitrarily.
We will take x1 = −1, x2 = 0, and xn = +∞. It remains to determine the

other n−3 vertices (which may not be freely chosen). The Schwarz-Christoffel
map has the form

A

∮
dζ +B (8.40)

(see Figure 8.14). The choice of A will determine the size of the image and the
choice of B will determine the position. Thus we need to choose x3, . . . , xn−1

so that the image mapping has the right shape.
Specifying that the image of the Schwarz-Christoffel map g has the pre-

specified shape (that is, the shape of P ) is equivalent to demanding that

|g(xj) − g(xj−1)|
|g(x2) − g(x1)|

=
|wj − wj−1|
|w2 − w1|

, j = 3, 4, . . . , n− 1. (8.41)

The theory of Schwarz-Christoffel guarantees that the angles in the image
will be correct, and the n − 3 equations exhibited force n − 2 of the side
lengths to have the correct proportions. With a little planar geometry, one
sees that this information in turn completely determines the shape of the
image of the mapping g.

Finding the correct prevertices for a Schwarz-Christoffel mapping problem
is called the Schwarz-Christoffel parameter problem. The problem is resolved
by solving the constrained system (as indicated in Figure 8.14) of n − 3
nonlinear equations. The constraint is that 0 < x3 < x4 < · · · < xn−1 < ∞.
Unfortunately, standard numerical solution techniques (such as Newton’s
method and its variants) do not allow for constraints such as these. We can
eliminate the constraints with a change of variable: Set

x̃j = log(xj − xj−1) , j = 3, 4, . . . , n− 1.

The x̃js are arbitrary real numbers, with no constraints. The new system,
expressed in terms of the variables x̃3, x̃4, . . . , x̃n−1, can be solved using a
suitable version of Newton’s method. The necessary algorithm is available
as part of MatLab, Mathematica, Maple, and also on most large scientific
computer installations.

Once we have solved the Schwarz-Christoffel parameter problem, then
we wish to calculate the actual conformal map. This entails calculating the
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Figure 8.14: Details of the Schwarz-Christoffel mapping.
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Schwarz-Christoffel integral

∮ z

0

(ζ − x1)
θ1/π(ζ − x2)

θ2/π · · · (ζ − xn−1)
θn−1/π dζ. (8.42)

Even when P is a very simple polygon such as a triangle, we cannot expect to
evaluate the integral (8.42) by hand. There are well-known numerical tech-

niques for evaluating an integral
∫ b
a
ϕ(t) dt. Let us describe three of them:

Fix a partition a = t0 ≤ t1 ≤ · · · ≤ tk = b of the interval of integration,
which is such that each interval in the partition has the same length. Let
∆t = (b− a)/k denote that common length.

I. The Midpoint Rule Set pn = a+ (n− 1/2)∆t, n = 1, . . . , k. Then

∫ b

a

ϕ(t) dt ≈
k∑

n=1

ϕ(pn)∆t. (8.43)

If ϕ is smooth, then the error in this calculation is of size k−2.

II. The Trapezoid Rule In this methodology we take the points pn at
which ϕ is evaluated to be the interval endpoints. We have

∫ b

a

ϕ(t) dt ≈ ∆t

2
[ϕ(t0) + 2ϕ(t1) + 2ϕ(t2) + · · · + 2ϕ(tk−1) + ϕ(tk)] . (8.44)

If ϕ is smooth, then the error in this calculation is of size k−3.

III. Simpson’s Rule In this methodology we use both the interval end-
points and the midpoints. We have

∫ b

a

ϕ(t) dt ≈ ∆t

6

{
ϕ(t0) + ϕ(tk) + 2

[
ϕ(t1) + · · ·ϕ(tk−1)

]

+4

[
ϕ
(t0 + t1

2

)
+ · · · + ϕ

(tk−1 + tk
2

)]}
. (8.45)

If ϕ is smooth, then the error in this calculation is of size k−4.
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More sophisticated techniques, such as the Newton-Cotes formulas and
Gaussian quadrature give even more accurate approximations.

Unfortunately, the integrand in the Schwarz-Christoffel integral has sin-
gularities at the prevertices xj. Thus we must use a variant of the above-
described numerical integration techniques with the partition points and with
weights chosen so as to compensate for the singularities. These ideas are en-
capsulated in the method of Gauss-Jacobi quadrature.

Finally, it is often the case that the prevertices are very close together.
This extreme proximity can work against the compensating properties of
Gauss-Jacobi quadrature. The method of compound Gauss-Jacobi quadrature
mandates that difficult intervals be heavily subdivided near the endpoints.
This method results in a successful calculation of the Schwarz-Christoffel
mapping.

8.4.2 Numerical Approximation to a Mapping onto a

Smooth Domain

One can construct a numerical approximation to a conformal mapping of the
upper half-plane U onto a smoothly bounded domain Ω with boundary curve
C by thinking of C as a polygon with infinitely many corners wn, each with
infinitesimal turning angle θn.

From the Schwarz-Christoffel formula for the mapping g that we discussed
in Section 8.4.1, we know that

g′(z) = A(z − x1)
θ1/π(z − x2)

θ2/π(z − xn−1)
θn−1/π

= A exp

[
1

π

n−1∑

j=1

θj log(z − xj)

]
. (8.46)

As n → +∞, it is natural to think of the sum as converging to an integral.
So we have derived the formula

g′(z) = A exp

[
1

π

∫ ∞

−∞
θ(x) log(z − x) dx

]
. (8.47)

Here θ is a function that describes the turning of the curve C per unit length
along the x-axis. Integrating, we find that

g(z) = A

∫ z

0

exp

[
1

π

∫ ∞

−∞
θ(x) log(z − x) dx

]
+B. (8.48)
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Of course the discussion here has only been a sketch of some of the key
ideas associated with numerical conformal mapping. The reference [SASN,
pp. 430–443] gives a more discursive discussion, with detailed examples. The
reference [SASN] also offers a further guide to the literature.

Exercises

1. Find a conformal map from the first quadrant Q = {x+ iy : x > 0, y >
0} to the unit disc.

2. Consider the fluid flow around a round post as discussed in the text.
What happens to the flow when the radius of the post gets larger?
What happens to the flow when the radius of the post gets smaller?
Discuss.

3. Explain why, if the initial heat distribution on the boundary of the
unit disc is not identically zero, then the steady-state heat distribution
across the disc cannot be identically zero. Give an explanation in terms
of physical principles and an explanation in terms of mathematical
ideas.

4. Use the Schwarz-Christoffel transformation to say something about the
solution of the Dirichlet problem on a square of side 1 with sides parallel
to the coordinate axes and with data equal to 1 on the horizontal sides
and equal to 0 on the vertical sides.

5. Imagine heat diffusion on the unit disc with initial data equal to sin θ
at the point eiθ on the boundary of the disc. What can you say about
the steady state heat distribution?

6. Answer Exercise 5 with sin θ replaced by θ.

7. Answer Exercise 5 with sin θ replaced by cos 5θ.

8. Discuss how the electrostatics problem in the text changes as the radius
of the cylinder changes.

9. Suppose that the initial heat distribution given on the boundary of
the unit disc is a smooth function—infinitely differentiable. Then we
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might hope that the resulting heat distribution across the disc will
extend smoothly to the boundary. Explain this idea in physical terms.

10. Explain why, if the initial heat distribution on the boundary of the unit
disc is positive, then we would expect the steady-state temperature at
every point of the disc to be positive. Your answer may be in either
physical terms or mathematical terms.

11. Let f be a given continuous function on the boundary of the unit
disc. Write a MatLab utility that will find the value of the solution of
the Dirichlet problem with boundary data f at a given interior point
z = x+ iy.

12. Refer to Exercise 11. Write a MatLab utility that will find the location
of the absolute maximum and the absolute minimum of the function
that is the solution of the Dirichlet problem with boundary data f .

13. There are a number of different mathematical models for fluid flow.
One of the classic ones is known as Bernoulli’s law (Daniel Bernoulli
(1700–1782)). It states that

P +
1

2
ρv2 + ρgh = C ,

where C is a physical constant. In this equation, P is the static pressure
of the fluid (measured in Newtons per square meter), ρ is the fluid
density (measured in kilograms per square meter), v is the velocity of
the fluid flow (measured in meters per second), and h is the height above
a reference surface. Of course g is the usual gravitational constant.
The second term on the left is sometimes referred to as the dynamic
pressure. It may be noted that Bernoulli’s equation describes the flow
of many different types of fluids. As an example, it can be used to
analyze why an airfoil works.

Complete the following outline to derive Bernoulli’s law:

Picture an ideal fluid flowing down a pipe at a steady rate. Let W
denote the work done by applying a pressure P over an area A pro-
ducing an offset of ∆` (or a volume change of ∆V ). Imagine that, at
some initial point in the pipe, the fluid attributes are denoted with a
subscript 1. And at some later point in the flow the fluid attributes are
denoted with a subscript 2.
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(a) The work done by pressure force

dW = P dV

at points 1 and 2 is

∆W1 = P1A1∆`1 = P1∆V

and
∆W2 = P2A2∆`2 = P2∆V, .

(b) The difference of the equations in part (a) is

∆W ≡ ∆W1 − ∆W2 = P1∆V − P2∆V .

(c) Equating the last quantities with the change in total energy (writ-
ten in the form kinetic energy plus potential energy) yields

∆W = ∆K + ∆U

=
1

2
∆mv2

2 −
1

2
∆mv2

1 + ∆mgz2 −∆mgz1 .

(d) Identifying the last two equations gives

1

2
∆mv2

2 −
1

2
∆mv2

1 + ∆mgz2 − ∆mgz1 = P1∆V − P2∆V .

(d) Rearranging this last identity yields

∆mv2
1

2∆V
+

∆mgz1

∆V
+ P1 =

∆mv2
2

2∆V
+

∆mgz2

∆V
+ P2 .

(e) Now writing the density as ρ = m/V gives

1

2
ρv2 + ρgz + P = C ,

where C is a constant. This is Bernoulli’s law.



Chapter 9

Harmonic Functions

9.1 Basic Properties of Harmonic Functions

9.1.1 The Laplace Equation

Let F be a holomorphic function on an open set U ⊆ C. Write F = u+ iv,
where u and v are real-valued. The real part u satisfies a certain partial
differential equation known as Laplace’s equation:

(
∂2

∂x2
+

∂2

∂y2

)
u = 0. (9.1)

(Of course the imaginary part v satisfies the same equation.) The verification
is immediate: We know that

∂

∂z
F = 0

hence
∂

∂z

∂

∂z
F = 0 .

Writing out this last equation and multiplying through by 4 gives
(
∂2

∂x2
+

∂2

∂y2

)
F = 0 .

Finally, breaking up this last identity into real and imaginary parts, we
see that (

∂2

∂x2
+

∂2

∂y2

)
u+ i

(
∂2

∂x2
+

∂2

∂y2

)
v = 0 .

249
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The only possible conclusion is that

(
∂2

∂x2
+

∂2

∂y2

)
u ≡ 0 and

(
∂2

∂x2
+

∂2

∂y2

)
v ≡ 0 .

In this chapter we shall study systematically those C2 functions that
satisfy this equation. They are called harmonic functions. (Note that we
encountered some of these ideas already in Section 2.2.1)

9.1.2 Definition of Harmonic Function

Recall the precise definition of harmonic function:
A real-valued function u : U → R on an open set U ⊆ C is harmonic if it

is C2 on U and

∆u ≡ 0, (9.2)

where the Laplacian ∆u is defined by

∆u =

(
∂2

∂x2
+

∂2

∂y2

)
u. (9.3)

9.1.3 Real- and Complex-Valued Harmonic Functions

The definition of harmonic function just given applies as well to complex-
valued functions. A complex-valued function is harmonic if and only if its
real and imaginary parts are each harmonic.

The first thing that we need to check is that real-valued harmonic func-
tions are just those functions that arise as the real parts of holomorphic
functions—at least locally.

9.1.4 Harmonic Functions as the Real Parts of
Holomorphic Functions

If u : D(P, r) → R is a harmonic function on a disc D(P, r), then there is
a holomorphic function F : D(P, r) → C such that ReF ≡ u on D(P, r).
Let us write F = u + iv. We treated this matter in some detail in Section
2.2.2, and shall not repeat the details here. We summarize the key idea with
a theorem:
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THEOREM 8 If U is a simply connected open set (see Section 3.1.2) and
if u : U → R is a real-valued, harmonic function, then there is a C2 (in-
deed a C∞) real-valued, harmonic function v such that u + iv : U → C is
holomorphic.

Another important relationship between harmonic and holomorphic func-
tions is this:

If u : U → R is harmonic on U and if H : V → U is holomorphic,
then u ◦H is harmonic on V .

This statement is of course proved by direct differentiation. We supply the
details in a moment.

One verifies this last assertion by simply differentiating u ◦H—using the
chain rule. In detail:

∂2

∂z∂z
[u ◦H] =

∂

∂z

[
∂u

∂z
· ∂H
∂z

+
∂u

∂z
· ∂H
∂z

]
=

∂

∂z

[
∂u

∂z
· ∂H
∂z

]
.

Now we apply the second derivative to obtain (after a little calculation)

∂2u

∂z∂z
· ∂H
∂z

· ∂H
∂z

= 0

because u is harmonic.

9.1.5 Smoothness of Harmonic Functions

If u : U → R is a harmonic function on an open set U ⊆ C, then u ∈
C∞. In fact a harmonic function is always real analytic (has a local power
series expansion in powers of x and y). This follows, for instance, because
a harmonic function is locally the real part of a holomorphic function (see
Sections 2.2.2 and 9.1.4). And of course a holomorphic function has a local
power series expansion about each point. So, in particular, it is infinitely
differentiable.

Exercises

1. Suppose that u1 and u2 have the same harmonic conjugate. Prove that
u1 and u2 differ by a constant.



252 CHAPTER 9. HARMONIC FUNCTIONS

2. Suppose that h is a holomorphic function on a domain U and that the
real part of h is constant. What does that tell you about h?

3. Let u be a harmonic function on a domain U and u ≡ 0 on a nonempty
open subset V ⊆ U . What does that tell you about u?

4. Let u(x, y) = x2 − y2. Verify that u is harmonic. Now find a harmonic
function v on the unit disc so that u+ iv is holomorphic.

5. Let u(x, y) = ex cos y. Verify that u is harmonic. Now find a harmonic
function v on the unit disc so that u+ iv is holomorphic.

6. Let U be a domain in C and let E ⊆ U be a nontrivial line segment. If h

is a holomorphic function on U and h

∣∣∣∣
E

= 0 then it follows that h ≡ 0.

Why? But the same assertion is not true for a harmonic function. Give
an example to explain why not.

7. If u is harmonic and real-valued on a domain U and u2 is harmonic on
U then prove that u is constant.

8. Let u be harmonic on a domain U and suppose that u · v is harmonic
for every harmonic function v on U . Then prove that u is constant.

9. Let u be harmonic and real-valued and nonvanishing on a domain U .
Let p ≥ 1. Show that 4|u|p = p(p − 1)|u|p−2|∇u|2.

10. Prove that if u is real-valued and harmonic on a domain U ⊆ C then,
about each point P ∈ U , u has a power series expansion. This will not
be simply a power series expansion in z alone, but rather in z and z
or, equivalently, in x and y.

11. If f is a nonvanishing holomorphic function on a domain U then prove
that log |u| is harmonic on U .

12. Prove that if u is a real-valued, harmonic polynomial then its harmonic
conjugate is also a polynomial.

13. Refer to the last exercise. Write a MatLab routine to find the harmonic
conjugate polynomial of a given real-valued harmonic polynomial.
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14. We think of a holomorphic function as representing an incompressible
fluid flow by identifying the holomorphic function h(z) = h(x + iy) =
u(x+ iy) + iv(x+ iy) with (u(x, y), v(x, y)). Passing to the real part
u of course yields a harmonic function. What does passing to u mean
in terms of the fluid flow? What does its harmonicity mean in physical
terms?

9.2 The Mean Value Property and

the Maximum Principle

9.2.1 The Mean Value Property

Suppose that u : U → R is a harmonic function on an open set U ⊆ C and
that D(P, r) ⊆ U for some r > 0. Then

u(P ) =
1

2π

∫ 2π

0

u(P + reiθ) dθ. (9.4)

To understand why this result is true, let us simplify matters by assuming
(with a simple translation of coordinates) that P = 0. Notice that if k > 0
and u(z) = zk then

1

2π

∫ 2π

0

u(P + reiθ) dθ =
1

2π

∫ 2π

0

(reiθ)k dθ = rk
1

2π

∫ 2π

0

eikθ dθ = 0 = u(0) .

The same holds when k = 0 by a similar calculation. So that is the mean
value property for powers of z. But any holomorphic function is a sum of
powers of z, so it follows that the mean value property will hold for any
holomorphic function.

Finally, any harmonic function is the real part of a holomorphic function
(at least locally on a disc) so that the result for harmonic functions follows
by taking real parts.

We conclude this section with two alternative formulations of the mean
value property (MVP). In both, u,U, P, r are as above.

First Alternative Formulation of MVP

u(P ) =
1

πr2

∫∫

D(P,r)

u(x, y) dxdy. (9.5)
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Second Alternative Formulation of MVP

u(P ) =
1

2πr

∫

∂D(P,r)

u(ζ) dσ(ζ), (9.6)

where dσ is arc-length measure on ∂D(P, r).
The proof of either of these results is a simple exercise with calculus.

9.2.2 The Maximum Principle for Harmonic Functions

If u : U → R is a real-valued, harmonic function on a connected
open set U and if there is a point P0 ∈ U with the property that
u(P0) = maxz∈U u(z), then u is constant on U.

Compare the maximum modulus principle for holomorphic functions in Sec-
tion 6.4.1. We also considered this phenomenon in Exercise 8 of Section 6.4.
We shall learn another way to understand this maximum principle when we
study its relation to the mean value property below.

9.2.3 The Minimum Principle for Harmonic Functions

If u : U → R is a real-valued, harmonic function on a connected
open set U ⊆ C and if there is a point P0 ∈ U such that u(P0) =
minQ∈U u(Q), then u is constant on U.

Compare the minimum principle for holomorphic functions in Section
6.4.3. The reader may note that the minimum principle for holomorphic
functions requires an extra hypothesis (that is, nonvanishing of the function)
while that for harmonic functions does not. The difference may be explained
by noting that with harmonic functions we are considering the real-valued
function u, while with holomorphic functions we must restrict attention to
the modulus function |f | (since the complex numbers do not form an ordered
field).

9.2.4 Why the Mean Value Property Implies the
Maximum Principle

Let u be a real-valued harmonic function on a domain U and suppose that
u(P ) ≥ u(z) for some fixed P ∈ U and every z ∈ U . We will use the mean
value property to show that u must be constant.
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Let
S = {z ∈ U : u(z) = u(P )} .

Of course S is nonempty since P ∈ S. Also S is closed because u is a
continuous function. To see that S is open let r > 0 be small. Let z ∈ S.
Set λ = u(P ). Then, by the mean value property,

λ = u(z) =
1

2π

∫ 2π

0

u(z + reiθ) dθ ≤ 1

2π

∫ 2π

0

λ dθ = λ .

Since the integral is trapped between λ and λ, we can only conclude that it
equals λ. Since u ≤ λ at all points, we can only conclude that u(z+reiθ) = λ
for all θ. This equality also holds for all small r. We conclude that there is
an entire disc about z that lies in S. So S is open.

We have proved that S is open, closed, and nonempty. It follows that cS
is also open. So S and cS are two disjoint open sets that disconnect U , and
that is impossible. The only conclusion is that S = U , so that u is constant,
indeed is constantly equal to λ.

9.2.5 The Boundary Maximum and Minimum

Principles

An important and intuitively appealing consequence of the maximum princi-
ple is the following result (which is sometimes called the “boundary maximum
principle”). Recall that a continuous function on a compact set assumes a
maximum value (and also a minimum value)—see [KRA2], [RUD1]. When
the function is harmonic, the maximum occurs at the boundary in the fol-
lowing precise sense:

Let U ⊆ C be a bounded domain. Let u be a continuous, real-
valued function on the closure U of U that is harmonic on U.
Then

max
U

u = max
∂U

u. (9.7)

The analogous result for the minimum is:

Let U ⊆ C be a bounded domain. Let u be a continuous, real-
valued function on the closure U of U that is harmonic on U.
Then

min
U
u = min

∂U
u. (9.8)
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Compare the analogous results for holomorphic functions in Sections 6.4.1
and 6.4.3.

9.2.6 Boundary Uniqueness for Harmonic Functions

If u1 : D(0, 1) → R and u2 : D(0, 1) → R are two continuous functions, each
of which is harmonic on D(0, 1) and if u1 = u2 on ∂D(0, 1) = {z : |z| = 1},
then u1 ≡ u2. This assertion follows from the boundary maximum principle
(9.7) applied to u1 − u2. Thus, in effect, a harmonic function u on D(0, 1)
that extends continuously to D(0, 1) is completely determined by its values
on D(0, 1) \D(0, 1) = ∂D(0, 1).

Exercises

1. Let u be any harmonic function on a domain U ⊆ C. In general it will
not be the case that |u| is harmonic (give an example). But it will be
true that, for any D(P, r) ⊆ U , we have the submean value property

|u(P )| ≤ 1

2π

∫ 2π

0

|u(P + reit)| dt .

Prove this last inequality.

2. Verify directly, with a calculation, that the mean value property holds
for the harmonic function u(x, y) = x2 − y2.

3. Verify directly, with a calculation, that the mean value property holds
for the harmonic function u(x, y) = ey sinx.

4. Do you find it curious that the mean value property is formulated in
terms of the average over circles? Could there be a mean value property
over squares? The answer is no. Provide an example to show that the
mean value property does not hold over the unit square.

5. Refer to Exercise 1. If u is harmonic and real-valued then it will satisfy
the mean value property. In general we cannot expect that u2 will
satisfy the mean value property—after all, in general, u2 will not be
harmonic. But u2 will satisfy a submean value property. Verify this
claim.
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6. Use calculus to give a proof of the First Alternative Formulation of the
MVP.

7. Use calculus to give a proof of the Second Alternative Formulation of
the MVP.

8. Show directly that if h is holomorphic and nonvanishing then log |h|
satisfies the mean value property.

9. Write a MatLab routine that will calculate the Laplacian of any given
function.

10. What does the boundary maximum principle tell us about fluid flows?
What does it say about electrostatics?

11. Refer to the last exercise. Write a MatLab routine that will calculate
the Laplacian of a given function and then test whether that Laplacian
is nonnegative at every point.

9.3 The Poisson Integral Formula

9.3.1 The Poisson Integral

The next result shows how to calculate a harmonic function on the disc from
its “boundary values,” that is, its values on the circle that bounds the disc.

Let u : U → R be a harmonic function on a neighborhood of D(0, 1).
Then, for any point a ∈ D(0, 1),

u(a) =
1

2π

∫ 2π

0

u(eiψ) · 1 − |a|2

|a− eiψ|2 dψ. (9.9)

9.3.2 The Poisson Kernel

The expression
1

2π

1 − |a|2

|a− eiψ|2 (9.10)

is called the Poisson kernel for the unit disc. It is often convenient to rewrite
the formula we have just enunciated by setting a = |a|eiθ = reiθ. Then the
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result says that

u(reiθ) =
1

2π

∫ 2π

0

u(eiψ)
1 − r2

1 − 2r cos(θ − ψ) + r2
dψ. (9.11)

In other words

u(reiθ) =

∫ 2π

0

u(eiψ)Pr(θ − ψ) dψ, (9.12)

where

Pr(θ − ψ) =
1

2π

1 − r2

1 − 2r cos(θ − ψ) + r2
. (9.13)

In fact this new integral formula follows rather naturally from results that
we already know—if we simply remember to think of a harmonic function
as the real part of a holomorphic function. Details of these assertions are
provided below.

We begin our discussion by noting that if we let z = reiθ and ζ = eiψ

then we may rewrite

Pr(θ − ψ) =
1

2π

1 − r2

1 − 2r cos(θ − ψ) + r2
=

1

2π

1 − r2

|reiθ − eiψ|2 =
1

2π

1 − |z|2

|z − ζ|2 .

This shows explicitly how the two expressions for the Poisson kernel are
related.

9.3.3 The Dirichlet Problem

The Poisson integral formula both reproduces and creates harmonic func-
tions. In contrast to the holomorphic case, there is a simple connection
between a continuous function f on ∂D(0, 1) and the created harmonic func-
tion u on D. The following theorem states this connection precisely. The
theorem is usually called “the solution of the Dirichlet problem on the disc”:

9.3.4 The Solution of the Dirichlet Problem on the

Disc

Let f be a continuous function on ∂D(0, 1). Define

u(z) =





1

2π

∫ 2π

0

f(eiψ) · 1 − |z|2

|z − eiψ|2 dψ if z ∈ D(0, 1)

f(z) if z ∈ ∂D(0, 1).

(9.14)
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Then u is continuous on D(0, 1) and harmonic on D(0, 1).

Closely related to this result is the reproducing property of the Poisson
kernel:

Let u be continuous on D(0, 1) and harmonic on D(0, 1). Then, for
z ∈ D(0, 1),

u(z) =
1

2π

∫ 2π

0

u(eiψ) · 1 − |z|2

|z − eiψ|2 dψ. (9.15)

See (9.9).

Let us begin by verifying formula (9.15). We assume for simplicity that
the function u is harmonic on a neighborhood of D(0, 1). Let z ∈ D(0, 1) be
a fixed point. Consider the function u ◦ ϕ−z, where

φa(ζ) =
ζ − a

1 − aζ

for any complex number a with |a| < 1. It is still harmonic, so it satisfies
the mean value property. We calculate

u ◦ ϕ−z(0) =
1

2π

∫ 2π

0

u ◦ ϕ−z(e
it) dt

=
1

2πi

∮

∂D(0,1)

u ◦ ϕ−z(ζ)

ζ
dζ

Notice that we have transformed the real integral, which is what is usually
used to express the mean value property, to a complex line integral. In doing
so, we have kept in mind that ζ = eit and dζ = ieit dt. This will facilitate
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the change of variable that we must perform. Now we have that this last

=
1

2πi

∮

∂D(0,1)

u(ξ)

ϕz(ξ)
ϕ′
z(ξ) dξ

=
1

2πi

∮

∂D(0,1)

u(ξ)
ξ−z
1−zξ

· 1 − |z|2

(1 − zξ)2
dξ

=
1

2πi

∮

∂D(0,1)

u(ξ) · 1 − |z|2

(ξ − z)(1 − zξ)
dξ

=
1

2πi

∮

∂D(0,1)

u(ξ) · 1 − |z|2

(ξ − z)(ξ − z)
· ξ dξ

=
1

2πi

∮

∂D(0,1)

u(ξ) · 1 − |z|2

|ξ − z|2 · ξ dξ

=
1

2π

∫ 2π

0

u(eit) · 1 − |z|2

|z − eit|2 dψ .

Here again we have interpreted the complex line integral as a real integral,
using ξ = eit, dξ = ieit. This is formula (9.15).

9.3.5 The Dirichlet Problem on a General Disc

A change of variables shows that the results of Section 9.3.4 remain true on
a general disc. To wit, let f be a continuous function on ∂D(P, r). Define

u(z) =





1

2π

∫ 2π

0

f(P + reiψ) · r2 − |z − P |2

|(z − P ) − reiψ|2 dψ if z ∈ D(P, r)

f(z) if z ∈ ∂D(P, r).
(9.16)

Then u is continuous on D(P, r) and harmonic on D(P, r).

If instead u is continuous on D(P, r) and harmonic on D(P, r), then, for
z ∈ D(P, r),

u(z) =
1

2π

∫ 2π

0

u(P + reiψ) · r2 − |z − P |2

|(z − P ) − reiψ|2 dψ. (9.17)
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Exercises

1. Explicitly calculate the Poisson integral on the unit disc of the function

f(eit) =

{
1 if 0 ≤ t ≤ π
−1 if π < t ≤ 2π .

2. Verify by direct calculation that the Poisson kernel

1 − |z|2

|z − eit|2

is harmonic as a function of z.

3. Refer to Exercise 2. The Cauchy integral formula on the unit disc says
that, for a holomorphic function f ,

f(z) =
1

2πi

∮

∂D(0,1)

f(ζ)

ζ − z
dζ .

Of course, for ζ ∈ ∂D(0, 1) fixed, the Cauchy kernel

C(z, ζ) =
1

ζ − z

is holomorphic as a function of z. It turns out that the real part of

1

2πi
· 1

ζ − z
dζ − 1

4π

equals half of the Poisson kernel. Prove this last statement. This gives
another way to see that the Poisson kernel is harmonic as a function of
z.

4. Derive formula (9.17) from formula (9.15).

5. It can be proved from the second law of thermodynamics (see [KRA1])
that if f is an initial distribution of heat on the boundary of a unit
aluminum disc, then the solution of the Dirichlet problem on that disc
(given by the Poisson integral) is the steady state heat distribution on
the disc induced by f . Use physical reasoning to draw some conclusions
about the steady state heat distribution for the f given in Exercise 1.
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What will be the value of the heat distribution at the origin? What
will be the nature of the heat distribution in the upper half of the disc?
What will be the nature of the heat distribution in the lower half of
the disc?

6. If fk(e
it) = eikt for k a nonnegative integer then the solution of the

Dirichlet problem on the unit disc with boundary data fk is zk. Prove
this result. If instead fk(e

it) = eikt for k a negative integer then the
solution of the Dirichlet problem on the unit disc with boundary data
fk is z−k. Prove this result.

7. Refer to Exercise 6. If we use the theory of Fourier series (Section 11.1)
then we can express an arbitrary f(eit) as

f(eit) =
∞∑

n=−∞

ane
int .

This suggests that the corresponding solution of the Dirichlet problem
will be

u(z) =
∞∑

n=0

anz
n +

−1∑

n=−∞

anz
−n ,

where z = reiθ. Apply this philosophy to the boundary function
f(eit) = sin 2t. Apply this philosophy to the boundary function f(eit) =
cos2 t.

8. Write a MatLab routine that will calculate the Poisson integral on the
disc of any given function (on the boundary of the disc).



Chapter 10

Transform Theory

10.0 Introductory Remarks

This chapter will sketch some connections of Fourier series, the Fourier trans-
form, and the Laplace transform with the theory of complex variables. This
will not be a tutorial in any of these three techniques. The reader who desires
background should consult the delightful texts [DYM] or [KAT].

The idea of Fourier series or Fourier transforms is to take a function f
that one wishes to analyze and to assign to f a new function f̂ that contains
information about the frequencies that are built into the function f . As such,
the Fourier theory is a real variable theory. But complex variables can come
to our aid in the calculation of, and also in the analysis of, f̂ . It is that circle
of ideas that will be explained in the present chapter.

10.1 Fourier Series

10.1.1 Basic Definitions

Fourier series takes place on the interval [0, 2π). We think of the endpoints
of this interval as being identified with each other, so that geometrically our
analysis is taking place on a circle (Figure 10.1). It may be noted that the
function φ(θ) = eiθ takes the interval [0, 2π) in a one-to-one, onto fashion to
the circle (or the boundary of the unit disc). If f is an integrable function

263
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Figure 10.1: Identification of the interval with the circle.

on [0, 2π), then we define1

f̂(n) =
1

2π

∫ 2π

0

f(t)e−int dt for n ∈ Z . (10.1)

The Fourier series of f is the formal expression

Sf(t) ∼
∞∑

n=−∞

f̂ (n)eint. (10.2)

We call this a “formal expression” because we do not know a priori whether
this series converges in any sense, and if it does converge, whether its limit
is the original function f .

There is a highly developed theory of the convergence of Fourier series,
but this is not the proper context in which to describe those results. Let us
simply formulate one of the most transparent and useful theorems.

The partial sums of the Fourier series Sf are defined to be

SNf(t) ≡
N∑

n=−N

f̂(n)eint. (10.3)

We say that the Fourier series converges to the function f at the point t if

lim
N→∞

SNf(t) = f(t). (10.4)

1Already, in this particular version of the definition of the Fourier coefficients, we
see complex variables coming into play. We should note that many treatments (see, for
example, [SIK]) define coefficients a0 = [1/(2π)]

∫ π

−π
f(t) dt, an = [1/π]

∫ π

−π
f(t) cos nt dt,

bn = [1/π]
∫ π

−π
f(t) sin nt dt for n ≥ 1. This is an equivalent formulation, but avoids the

use of complex variables.
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Figure 10.2: A piecewise differentiable function.

Theorem: Let f be an integrable function on [0, 2π). If t0 is a
point of differentiability of f , then the Fourier series Sf converges
to f at t0.

Many functions that we encounter in practice are piecewise differentiable (see
Figure 10.2), so this is a theorem that is straightforward to apply. In fact,
if f is continuously differentiable on a compact interval I, then the Fourier
series converges absolutely and uniformly to the original function f . In this
respect Fourier series are much more attractive than Taylor series; for the
Taylor series of even a C∞ function f typically does not converge, and even
when it does converge, it typically does not converge2 to f .

10.1.2 A Remark on Intervals of Arbitrary Length

It is frequently convenient to let the interval [−π, π) be the setting for our
study of Fourier series. Since we think of the function f as being 2π-periodic,
this results in no change in the notation or in the theory.

In applications, one often wants to do Fourier series analysis on an interval
[−L/2, L/2). In this setting the notation is adjusted as follows: For a function

2This is really a very subtle point, and we cannot dwell on it here. The book [KRP]
discusses the matter in considerable detail. See also [KRA2].
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f that is integrable on [−L/2, L/2], we define

f̂ (n) =
1

L

∫ L/2

−L/2
f(t)e−in2π/L dt (10.5)

and set the Fourier series of f equal to

Sf(t) ∼
∞∑

n=−∞

f̂(n)ein2πt/L. (10.6)

We shall say no more about Fourier analysis on [−L/2, L/2) at this time.

10.1.3 Calculating Fourier Coefficients

The key to using complex analysis for the purpose of computing Fourier
series is to note that, when n ≥ 0, the function ϕn(t) = eint is the “boundary
function” of the holomorphic function zn. What does this mean?

We identify the interval [0, 2π) with the unit circle S in the complex plane
by way of the map

M : [0, 2π) −→ S

t 7−→ eit . (10.7)

Of course the circle S is the boundary of the unit disc D. If we let z be a
complex variable, then, when |z| = 1, we know that z has the form z = eit

for some real number t between 0 and 2π. Thus the holomorphic (analytic)
function zn, n ≥ 0, takes the value (eit)n = eint on the circle. By the
same token, when n < 0, then the meromorphic function zn takes the value
(eit)n = eint on the circle. In this way we associate, in a formal fashion, the
meromorphic function

F (z) =
∞∑

n=−∞

f̂(n)zn (10.8)

with the Fourier series

Sf(t) ∼
∞∑

n=−∞

f̂ (n)eint. (10.9)

This association is computationally useful, as the next example shows.
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10.1.4 Calculating Fourier Coefficients Using

Complex Analysis

Let us calculate the Fourier coefficients of the function f(t) = e2i sin t using
complex variable theory. We first recall that

sin t =
1

2i

[
eit − e−it

]
(10.10)

so that

2i sin t = eit − 1

eit
.

Thus, using the ideas from Section 10.1.3, we associate to 2i sin t the analytic
function

z − 1

z
. (10.11)

As a result, we associate to f the analytic function

F (z) = ez−1/z = ez · e−z−1

. (10.12)

But the function on the right is easy to expand in a series:

F (z) = ez · e−z−1

=

[
∞∑

k=0

zk

k!

]
·
[

∞∑

`=0

(−1)`z−`

`!

]
. (10.13)

By the theory of the Cauchy product of series (see [KRA2]), two con-
vergent power series may be multiplied together in just the same way as
two polynomials: we multiply term by term and then gather together the
resulting terms with the same power of z. We therefore find that

F (z) =
∞∑

n=−∞

zn

[
∞∑

m=n

1

m!

(−1)n

(m− n)!

]
. (10.14)

In conclusion, we see that the Fourier series of our original function f is

Sf(x) ∼
∞∑

−∞

f̂(n)einx (10.15)
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1

i
10

0

Figure 10.3: Mathematical model of the disc.

with

f̂(n) =
∞∑

m=n

1

m!

(−1)n

(m− n)!
. (10.16)

10.1.5 Steady State Heat Distribution

The next example will harken back to our discussion of heat diffusion in
Section 8.2.2. But we will now use some ideas from Fourier series and from
Laurent series.

Example 55 Suppose that a thin metal heat-conducting plate is in the
shape of a round disc and has radius 1. Imagine that the upper half of
the circular boundary of the plate is held at constant temperature 10◦ and
the lower half of the circular boundary is held at constant temperature 0◦.
Describe the steady state heat distribution on the entire plate.



10.1. FOURIER SERIES 269

Solution: Model the disc with the interior of the unit circle in the complex
plane (Figure 10.3). Identifying [0, 2π) with the unit circle as in Section
10.1.3, we are led to consider the function

f(t) =

{
10 if 0 ≤ t ≤ π
0 if π ≤ t < 2π.

(10.17)

Then

f̂(0) =
1

2π

∫ π

0

10 dt +
1

2π

∫ 2π

π

0 dt = 5 (10.18)

and, for n 6= 0,

f̂ (n) =
1

2π

∫ π

0

10 · e−int dt+ 1

2π

∫ 2π

π

0 · e−int dt =
1

2π

10

in

[
1 − e−inπ

]
. (10.19)

As a result,

Sf ∼ 5 +
−1∑

−∞

1

2π
· 10

in

[
1 − e−inπ

]
eint +

∞∑

n=1

1

2π
· 10

in

[
1 − e−inπ

]
eint

= 5 +
∞∑

n=1

1

2π
· 10

−in
[
1 − einπ

]
e−int +

∞∑

n=1

1

2π
· 10

in

[
1 − e−inπ

]
eint

= 5 + 2Re

(
∞∑

n=1

1

2π
· 10

in

[
1 − e−inπ

]
eint

)
(10.20)

Of course the expression in brackets is 0 when n is even. So we can rewrite
our formula for the Fourier series as

Sf ∼ 5 +
20

π
Re

(
1

i

∞∑

k=0

1

2k + 1
ei(2k+1)t

)
. (10.21)

This series is associated, just as we discussed in Section 10.1.3, with the
analytic function

F (z) = 5 +
20

π
Re

(
1

i

∞∑

k=0

1

2k + 1
z(2k+1)

)
. (10.22)
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To sum the series
∞∑

k=0

1

2k + 1
z2k+1, (10.23)

we write it as
∞∑

k=0

∫ z

0

ζ2k dζ =

∫ z

0

[
∞∑

k=0

ζ2k

]
dζ, (10.24)

where we have used the fact that integrals and convergent power series com-
mute. But

1

1 − α
= 1 + α+ α2 + · · · (10.25)

is a familiar power series expansion. Using this series with α = z2 we find
that

∞∑

k=0

1

2k + 1
z2k+1 =

∫ z

0

1

1 − ζ2
dζ =

1

2
log

(
1 + z

1 − z

)
. (10.26)

Putting this information into (10.22) yields

F (z) = 5 +
10

π
Re

[
1

i
log

(
1 + z

1 − z

)]

= 5 +
10

π
arg

(
1 + z

1 − z

)
. (10.27)

This function F (z) = F (reiθ) is the harmonic function on the disc with
boundary function f . It is therefore the solution to our heat diffusion prob-
lem.

10.1.6 The Derivative and Fourier Series

Now we show how complex variables can be used to discover important for-
mulas about Fourier coefficients. In this subsection we concentrate on the
derivative.

Let f be a C1 function on [0, 2π). Assume that f(0) = limt→2π− f(t) and
that f ′(0) = limt→2π− f

′(t), so that the values of f and its derivative match
up at the endpoints. We want to consider how the Fourier series of f relates
to the Fourier series of f ′. We proceed formally.
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We write

f(t) ∼
∞∑

n=−∞

f̂(n)eint (10.28)

and hence we have the associated analytic function (on the punctured disc)

F (z) =
∞∑

n=−∞

f̂ (n)zn. (10.29)

A convergent power series may be differentiated term-wise, so we have

F ′(z) =
dF

dz
(z) =

∞∑

n=−∞

nf̂(n)zn−1. (10.30)

But, with z = eit, we have

dz

dt
=

d

dt
eit = ieit = iz, (10.31)

so the chain rule tells us that

dF

dt
=

dF

dz
· dz
dt

=
∞∑

n=−∞

nf̂ (n)zn−1 · (iz)

=
∞∑

n=−∞

inf̂(n)zn

=
∞∑

n=−∞

inf̂(n)eint.

We conclude that the Fourier series for f ′(t) is

∞∑

n=−∞

inf̂(n)eint, (10.32)

and that the Fourier coefficients for f ′(t) are

[f ′]̂= inf̂(n). (10.33)
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Example 56 Let us illustrate the utility of our formula for the Fourier co-
efficients of the derivative by solving a differential equation. Consider the
equation

f ′ + f = cos t . (10.34)

Working formally, we set

f(t) ∼
∞∑

n=−∞

f̂(n)eint .

Then, as we have just learned, we have

f ′(t) ∼
∞∑

n=−∞

inf̂(n)eint .

Putting this information into the differential equation (10.34) yields

∞∑

n=−∞

inf̂(n)eint +
∞∑

n=−∞

f̂ (n)eint = cos t

or
∞∑

n=−∞

(1 + in)f̂(n)eint =
1

2
e−it +

1

2
eit .

An essential fact about Fourier series is that any given function has one and
only one Fourier series expansion. In other words, if two Fourier series are
equal then their Fourier coefficients must be equal. We conclude therefore
that

• f̂ (n) = 0 when |n| ≥ 2,

• (1 − i)f̂(−1) =
1

2
,

• (1 + i)f̂(1) =
1

2
,

• f̂ (0) = 0 .
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Thus the upshot of our calculation is that

f̂(−1) =
1

4
+ i

1

4
and f̂(1) =

1

4
− i

1

4
.

So we see that a solution3 of the original differential equation (10.34) is

f(t) =

(
1

4
+ i

1

4

)
e−it +

(
1

4
− i

1

4

)
eit =

1

2
cos t+

1

2
sin t .

We invite the reader to substitute this formula for f into (10.34) and
verify that it is indeed a solution.

Exercises

1. Calculate the Fourier coefficients f̂(j) for each of the following functions
on [0, 2π).

(a) f(t) = t2

(b) f(t) = cos 2t

(c) f(t) = 3 sin 4t

(d) f(t) = et

(e) f(t) = sin t cos t

(f) f(t) = cos2 t

(g) f(t) = sin3 t

(h) f(t) = t sin t

2. Use complex variable techniques to calculate the Fourier series of the
function f(t) = ei cos t.

3. Calculate the Fourier series of the function f(t) = t2 on the interval
[−2, 2].

4. Calculate the Fourier series of the function f(t) = cos t on the interval
[−3, 3].

3The most general solution of the differential equation is f(t) = [1/2] cos t+[1/2] sin t+
C · e−t. It requires additional techniques to find this solution, and we shall not treat them
at this time.
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5. Suppose that a thin metal heat-conducting plate is in the shape of
a round disc and has radius 1. Imagine that the upper half of the
circular boundary of the plate is held at constant temperature 5◦ and
the lower half of the circular boundary is held at constant temperature
−3◦. Describe the steady state heat distribution on the entire plate.

6. Suppose that a thin metal heat-conducting plate is in the shape of
a round disc and has radius 1. Imagine that the upper half of the
circular boundary of the plate is held at constant temperature 8◦ and
the lower half of the circular boundary is held at constant temperature
0◦. Describe the steady state heat distribution on the entire plate.

7. Use Fourier series to solve the differential equation

f ′ − f = sin t .

10.2 The Fourier Transform

The Fourier transform is the analogue on the real line of Fourier series co-
efficients for a function on [0, 2π). For deep reasons (which are explained in
[FOL]), the Fourier series on the bounded interval [0, 2π) must be replaced by
the continuous analogue of a sum, which is an integral. In this section we will
learn what the Fourier transform is, and what the basic convergence ques-
tion about the Fourier transform is. Then we will see how complex variable
techniques may be used in the study of the Fourier transform.

10.2.1 Basic Definitions

The Fourier transform takes place on the real line R. If f is an integrable
function on R, then we define

f̂ (ξ) =

∫
f(t)e−2πit·ξ dt. (10.35)

The variable t is called the “space variable” and the variable ξ is called the
“Fourier transform variable” (or sometimes the “phase variable”). There
are many variants of this definition. Some tracts replace −2πit · ξ in the
exponential with +2πit · ξ. Others omit the factor of 2π. We have chosen
this particular definition because it simplifies certain basic formulas in the
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subject. The reader should be well aware of these possible discrepancies,
for different tables of Fourier transforms will use different definitions of the
transform. Those who want to learn the full story of the theory of the Fourier
transform should consult [FOL] or [KRA1] or [STW].

The Fourier transform f̂ of an integrable function f enjoys the property
that f̂ is continuous and vanishes at infinity. However, f̂ need not be in-
tegrable. In fact, f̂ can die arbitrarily slowly at infinity. This fact of life
necessitates extra care in formulating results about the Fourier transform
and its inverse.

Recall that we recover a function on [0, 2π) from its sequence of Fourier
coefficients by calculating a sum. In the theory of the Fourier transform, we
recover f from f̂ by calculating an integral. Namely, if g is any integrable
function on the real line R, then we define

g
∨

(t) =

∫
g(ξ)e2πiξ·t dξ. (10.36)

The operation
∨

is called the inverse Fourier transform.
It turns out that, whenever the integrals in question make sense, the

Fourier operations
∨

and ̂ are inverse to each other. More precisely, if f
is a function on the real line such that

• f is integrable,

• f̂ is integrable,

then

f̂
∨

= f. (10.37)

An easily verified hypothesis that will guarantee that both f and f̂ are inte-
grable is that f ∈ C2 and f, f ′, f ′′ are integrable.

10.2.2 Some Fourier Transform Examples That Use

Complex Variables

Example 57 Let us calculate the Fourier transform of the function

f(t) =
1

1 + t2
. (10.38)
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Solution: The Fourier integral is

f̂(ξ) =

∫ ∞

−∞

1

1 + t2
e−2πit·ξ dt. (10.39)

We will evaluate the integral using the calculus of residues.
For fixed ξ in R, we thus consider the meromorphic function

m(z) =
e−2πiz·ξ

1 + z2
, (10.40)

which has poles at ±i.
For the case ξ ≥ 0 it is convenient to use as contour of integration the

positively oriented semicircle γR of radius R > 1 in the lower half-plane that
is shown in Figure 10.4. Of course this contour only contains the pole at −i.
We find that

2πiResm(−i) =

∫

γ
R

m(z) dz

=

∫

γ1
R

m(z) dz +

∫

γ2
R

m(z) dz. (10.41)

The integral over γ1

R
vanishes as R → +∞ and the integral over γ2

R
tends to

−
∫ ∞

−∞

1

1 + t2
e−2πit·ξ dt. (10.42)

It is straightforward to calculate that

Resm(−i) = lim
z→−i

(z − (−i)) · e
−2πiξz

z2 + 1

=
e−2πiξz

z − i

∣∣∣∣
z=−i

=
e−2πiξ(−i)

−2i

=
e−2πξ

−2i
. (10.43)
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R

R

1

R

2

Figure 10.4: A positively oriented semicircle γR in the lower half-plane.

Thus

2πiResm(−i) = −πe−2πξ. (10.44)

We conclude that

f̂ (ξ) =

∫ ∞

−∞

1

1 + t2
e−2πit·ξ dt = πe−2πξ. (10.45)

A similar calculation, using the contour ν
R

shown in Figure 10.5, shows
that, when ξ < 0, then

f̂(ξ) = πe2πξ. (10.46)

In summary, for any ξ ∈ R,

f̂ (ξ) = πe−2π|ξ|. (10.47)

We can now check our work using the inverse Fourier transform: We
observe that both f and f̂ are integrable, so we calculate that
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R

R

Figure 10.5: A positively oriented semicircle in the upper half-plane.

f̂
∨

(t) =

∫ ∞

−∞
f̂ e2πiξ·t dξ

=

∫ ∞

0

πe−2πξe2πiξt dξ +

∫ 0

−∞
πe2πξe2πiξt dξ

=

∫ ∞

0

πe−2πξe2πiξt dξ +

∫ ∞

0

πe−2πξe−2πiξt dξ

= 2Re

[∫ ∞

0

πe−2πξe2πiξt dξ

]

= 2Re

[∫ ∞

0

πeξ(−2π+2πit) dξ

]

= Re

[
2π

−2π + 2πit
· eξ(−2π+2πit)

]ξ=∞

ξ=0

= Re

[
1

−1 + it
· (0 − 1)

]

=
1

1 + t2
. (10.48)

Observe that our calculations confirm the correctness of our Fourier trans-
form determination. In addition, they demonstrate the validity of the Fourier
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inversion formula in a particular instance.

Example 58 Physicists call a function of the form

f(t) =

{
cos 2πt if −7/4 ≤ t ≤ 7/4
0 if t < −7/4 or t > 7/4

(10.49)

a finite wave train. Let us calculate the Fourier transform of this function.

Solution: The Fourier integral is

f̂ (ξ) =

∫ ∞

−∞
f(t)e−2πiξ·t dt

=

∫ 7/4

−7/4

(cos 2πt)e−2πiξ·t dt

=
1

2

[∫ 7/4π

−7/4π

e2πite−2πiξ·t dt+

∫ 7/4π

−7/4π

e−2πite−2πiξ·t dt

]

=
1

2

[∫ 7/4π

−7/4π

e(2πi−2πiξ)t dt+

∫ 7/4π

−7/4π

e(−2πi−2πiξ)t dt

]

=
1

2

([
1

2πi− 2πiξ
e(2πi−2πiξ)t

]t=7/4

t=−7/4

+

[
1

−2πi− 2πiξ
e(−2πi−2πiξ)t

]t=7/4

t=−7/4

)

=
1

2

{
1

2πi(1 − ξ)

[
e2πi(1−ξ)[7/4] − e2πi(1−ξ)[−7/4]

]

+
1

2πi(−1 − ξ)

[
e−2πi(1+ξ)[7/4] − e−2πi(1+ξ)[−7/4]

]}
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=
1

2

{
1

2πi(1 − ξ)
2i sin

(
7π

2
(1 − ξ)

)

− 1

2πi(−1− ξ)
2i sin

(
7π

2
(1 + ξ)

)}

=
1

2π(1 − ξ)

[
sin

7π

2
cos

7π

2
ξ − cos

7π

2
sin

7π

2
ξ

]

− 1

2π(−1 − ξ)

[
sin

7π

2
cos

7π

2
ξ + cos

7π

2
sin

7π

2
ξ

]

=
1

2π(1 − ξ)

(
− cos

7π

2
ξ

)
+

1

2π(1 + ξ)

(
− cos

7π

2
ξ

)

=
1

2π
cos

7π

2
ξ

{
−1

1 + ξ
− 1

1 − ξ

}

= − 1

π

(
cos

7π

2
ξ

)
1

1 − ξ2
. (10.50)

In summary,

f̂(ξ) = − 1

π
cos

(
7π

2
ξ

)
1

1 − ξ2
. (10.51)

We may now perform a calculation to confirm the Fourier inversion for-
mula in this example. The calculus of residues will prove to be a useful tool
in the process.

Now

f̂
∨

(t) = − 1

π

∫ ∞

−∞

1

1 − ξ2
cos

7π

2
ξ · e2πiξt dξ

= − 1

2π

∫ ∞

−∞

1

1 − ξ2

[
e(7π/2)ξi + e−(7π/2)ξi

]
e2πiξt dξ

= − 1

2π

∫ ∞

−∞

1

1 − ξ2
eiξ[(7π/2)+2πt] dξ

− 1

2π

∫ ∞

−∞

1

1 − ξ2
eiξ[(−7π/2)+2πt] dξ

≡ I + II. (10.52)
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First we analyze expression I. For t ≥ −7/4 fixed, the expression (7π/2)+
2πt is nonnegative. Thus the exponential expression will be bounded (that
is, the real part of the exponent will be nonpositive), if we integrate the
meromorphic function

1

1 − z2
eiz[(7π/2)+2πt] (10.53)

on the curve γr,R exhibited in Figure 10.2.2. It is easy to see that the integral
over γ1

r,R tends to zero as R → +∞. And the integrals over γ2
r,R, γ

4
r,R, γ

6
r,R

tend to the integral that is I as r → 0. It remains to evaluate the integrals
over γ3

r,R and γ5
r,R. We do the first and leave the second for the reader.

The curve γr,R.
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Now

− 1

2π

∮

γ3
r,R

1

1 − z2
eiz[(7π/2)+2πt] dz

= − 1

2π

∫ 0

π

1

1 − (−1 + reiθ)2
ei(−1+reiθ)[(7π/2)+2πt]ireiθ dθ

= − 1

2π

∫ 0

π

ireiθ

2reiθ − r2e2iθ
ei(−1+reiθ)[(7π/2)+2πt] dθ

= − i

2π

∫ 0

π

1

2 − reiθ
ei(−1+reiθ)[(7π/2)+2πt] dθ

(r→0)−→ − i

2π

∫ 0

π

1

2
e−i[(7π/2)+2πt] dθ

= −1

4
e−2πit . (10.54)

A similar calculation shows that

− 1

2π

∮

γ5
r,R

1

1 − z2
eiz[(7π/2)+2πt] dz = −1

4
e2πit. (10.55)

In sum,

I =
1

2π

∮

γ3
r,R

+
1

2π

∮

γ5
r,R

= −1

2
cos 2πt. (10.56)

To analyze the integral II, we begin by fixing t > 7/4. Then we will have
(−7π/2) + 2πt > 0. If we again use the contour in Figure 10.2.2, then the
exponential in the meromorphic function

1

1 − z2
eiz[(−7π/2)+2πt] (10.57)

will be bounded on the curve γ1
r,R. Of course the integral over γ1

r,R tends
to zero as R → +∞. The integrals over γ2

r,R, γ
4
r,R, γ

6
r,R in sum tend to the

integral that defines II. Finally, a calculation that is nearly identical to the
one that we just performed for I shows that

− 1

2π

∮

γ3
r,R

1

1 − z2
eiz[(−7π/2)+2πt] dz =

1

4
e−2πit. (10.58)
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Figure 10.6: The curve νr,R.

Similarly,

− 1

2π

∮

γ5
r,R

1

1 − z2
eiz[(−7π/2)+2πt] dz =

1

4
e−2πit. (10.59)

Therefore

II =
1

2
cos 2πt. (10.60)

In summary, we see that on the common domain t > 7/4 we have

I + II = −1

2
cos 2πt+

1

2
cos 2πt = 0. (10.61)

This value agrees with f(t) when t > 7/4.
Similar calculations for t < −7/4 (but using the contour shown in Figure

10.6) show that

f̂
∨

(t) = 0. (10.62)

The remaining, and most interesting, calculation is for −7/4 ≤ t ≤ 7/4.
We have already calculated I for that range of t. To calculate II, we use the
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contour in Figure 10.6. The result is that

II = −1

2
cos 2πt. (10.63)

Therefore

f̂
∨

(t) = −(I + II) =
1

2
cos 2πt+

1

2
cos 2πt = cos 2πt. (10.64)

This confirms Fourier inversion for the finite wave train.

10.2.3 Solving a Differential Equation Using the Fourier

Transform

Suppose that f ∈ C1(R) and that both f and f ′ are integrable. Then

f̂ ′(ξ) =

∫ ∞

−∞
f ′(t)e−2πitξ dt

= f(t)e−2πit

∣∣∣∣
∞

−∞
+ 2πiξ

∫ ∞

−∞
f(t)e−2πitξ dt .

The fact that f , f ′ are integrable guarantees that the boundary term van-
ishes. We conclude that

f̂ ′(ξ) = 2πiξf̂ (ξ) . (10.65)

This formula is elementary but important. It is analogous to formula
(10.33) for Fourier series coefficients. We can use it to solve a differential
equation:

Example 59 Use the Fourier transform to solve the differential equation

f ′′(t) − f(t) = ϕ(t), (10.66)

where

ϕ(t) =

{
e−t if t > 0
0 if t ≤ 0.

(10.67)
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Solution: We begin by applying the Fourier transform to both sides of
equation (10.66). The result is

−4π2ξ2f̂(ξ) − f̂(ξ) = ϕ̂. (10.68)

An easy calculation shows that

ϕ̂(ξ) = − 1

1 + 2πiξ
. (10.69)

Thus, under the Fourier transform, our ordinary differential equation has
become

−4π2ξ2f̂(ξ) − f̂(ξ) = − 1

1 + 2πiξ
(10.70)

or

f̂(ξ) =
1

(4π2ξ2 + 1)(1 + 2πiξ)
. (10.71)

Of course the expression on the right-hand side of (10.71) has no singu-
larities on the real line (thanks to complex variables) and is integrable. So
we may apply the Fourier inversion formula to both sides of (10.71) to obtain

f(t) = f̂
∨

(t) =

(
1

(4π2ξ2 + 1)(1 + 2πiξ)

)
∨
. (10.72)

We can find the function f if we can evaluate the expression on the right-hand
side of (10.72). This amounts to calculating the integral

∫ ∞

−∞

1

(4π2ξ2 + 1)(1 + 2πiξ)
e2πiξt dξ. (10.73)

We will do so for t > 0 (the most interesting set of values for t, given the
data function ϕ in the differential equation) and let the reader worry about
t ≤ 0.

It is helpful to use the calculus of residues to evaluate the integral in
(10.73). We use the contour in Figure 10.6, chosen (with R >> 1) so that
the exponential in the integrand will be bounded when the variable is on the
curve and t > 0. The pole of

m(z) =
1

(4π2z2 + 1)(1 + 2πiz)
e2πizt =

1

(1 − 2πiz)(1 + 2πiz)2
e2πizt (10.74)
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that lies inside of γR is at P = i/[2π]. This is a pole of order two. We use
the formula in Section 4.4. The result is that

Resm(P ) =
−i
4π

[
1

2
e−t + te−t

]
. (10.75)

As usual, the value of the integral

∫ ∞

−∞

1

(4π2ξ2 + 1)(1 + 2πiξ)
e2πiξt dξ (10.76)

is

(−2πi) · −i
4π

[
1

2
e−t + te−t

]
= −1

2

[
1

2
e−t + te−t

]
. (10.77)

This is the solution f (at least when t > 0) of our differential equation
(10.66).

Exercises

1. Use complex analysis to calculate the Fourier transform of the function
f(t) = 1/[1 − it2].

2. Calculate the Fourier transform of the function

f(t) =

{
sinπt if −2 ≤ t ≤ 2
0 if t < −2 or t > 2

3. Use the Fourier transform to solve the differential equation

f ′′(t) + f(t) = ψ(t) ,

where

ψ(t) =

{
1 if −1 ≤ t ≤ 0
0 if t > 0 .

4. Let F denote the Fourier transform. Verify that F4 is the identity oper-
ator. What can you say about the eigenvalues of the Fourier transform?
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10.3 The Laplace Transform

10.3.1 Prologue

Let f be an integrable function on the half-line {t ∈ R : t ≥ 0}. [We
implicitly assume that f(t) = 0 when t < 0.]

In many contexts, it is convenient to think of the Fourier transform

f̂ (ξ) =

∫
f(t)e−2πiξ·t dt (10.78)

as a function of the complex variable ξ. In fact when Im ξ < 0 and t > 0
the exponent in the integrand has negative real part so the exponential is
bounded and the integral converges. For suitable f one can verify, using
Morera’s theorem (Section 3.1.1) for instance, that f̂(ξ) is a holomorphic
function of ξ. It is particularly convenient to let ξ be pure imaginary: the
customary notation is ξ = −is/(2π) for s ≥ 0. Then we have defined a new
function

F (s) =

∫
f(t)e−st dt. (10.79)

We call F the Laplace transform of f . Sometimes, instead of writing F , we
write L(f).

The Laplace transform is a useful tool because

• It has formal similarities to the Fourier transform.

• It can be applied to a larger class of functions than the Fourier trans-
form (since e−st decays rapidly at infinity).

• It is often straightforward to compute.

The lesson here is that it is sometimes useful to modify a familiar mathe-
matical operation (in this case the Fourier transform) by letting the variable
be complex (in this case producing the Laplace transform).

We now provide just one example to illustrate the utility of the Laplace
transform.
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10.3.2 Solving a Differential Equation Using the

Laplace Transform

Example 60 Use the Laplace transform to solve the ordinary differential
equation

f ′′(t) + 3f ′(t) + 2f(t) = sin t (10.80)

subject to the initial conditions f(0) = 1, f ′(0) = 0.

Solution: Working by analogy with Example 59, we calculate the Laplace
transform of both sides of the equation. Integrating by parts (as we did when
studying the Fourier transform—Section 10.2.2), we can see that

L(f ′)(s) = s · Lf(s) − 1 (10.81)

and

L(f ′′)(s) = s2Lf(s) − s. (10.82)

(These formulas are correct when all the relevant integrals converge. See also
the Table of Laplace Transforms on page 290.)

Thus equation (10.80) is transformed to

[s2Lf(s) − s] + 3[s · Lf(s) − 1] + 2Lf(s) =
(
L[sin t]

)
(s). (10.83)

A straightforward calculation (using either integration by parts or complex
variable methods—or see the Table) shows that

L[sin t](s) =
1

s2 + 1
. (10.84)

So equation (10.83) becomes

[s2Lf(s) − s] + 3[s · Lf(s) − 1] + 2Lf(s) =
1

s2 + 1
. (10.85)

Just as with the Fourier transform, the Laplace transform has transformed
the differential equation to an algebraic equation. We find that

Lf(s) =
1

s2 + 3s+ 2
·
[

1

s2 + 1
+ s+ 3

]
. (10.86)
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We use the method of partial fractions to break up the right-hand side
into simpler components. The result is

Lf(s) =
5/2

s+ 1
+

−6/5

s+ 2
+

−3s/10 + 1/10

s2 + 1
. (10.87)

Now our job is to find the inverse Laplace transform of each expression on
the right. One way to do this is by using the Laplace inversion formula

f(t) =

∫ ∞

−i∞
F (s)est ds. (10.88)

However, the most common method is to use a Table of Laplace Transforms,
as in [SASN, p. 402] or [ZWI, pp. 559–564] or the Table of Laplace transforms
on page 290 of this book. From such a table, we find that

f(t) =
5

2
e−t − 6

5
e−2t − 3

10
cos t+

1

10
sin t. (10.89)

The reader may check that this is indeed a solution to the differential equa-
tion (10.80) .

10.4 A Table of Laplace Transforms

On the next page we record some useful Laplace transforms. Each of these
may be calculated with elementary techniques of integration.

Exercises

1. Calculate the Laplace transform of each of these functions.

(a) f(t) = t2

(b) g(t) = sin 2t

(c) h(t) = cos 3t

(d) f(t) = ε4t

(e) g(t) = t cos 4t

(f) h(t) = e−t sin t
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Table of Laplace Transforms

Function Laplace Transform Domain of Convergence

eat 1
s−a {s : Re s > Re a}

1 1
s

{s : Re s > 0}

cosωt s
s2+ω2 w real, {s : Re s > 0}

sinωt ω
s2+ω2 w real, {s : Re s > 0}

coshωt s
s2−ω2 w real, {s : Re s > |ω|}

sinh ωt ω
s2−ω2 ω real, {s : Re s > |ω|}

e−λt cosωt s+λ
(s+λ)2+ω2 ω, λ real, {s : Re s > −λ}

e−λt sinωt ω
(s+λ)2+ω2 ω, λ real, {s : Re s > −λ}

tneat n!
(s−a)n+1 {s : Re s > Re a}

tn n!
sn+1 {s : Re s > 0}

t cosωt s2−ω2

(s2+ω2)2
ω real, {s : Re s > 0}

t sinωt 2ωs
(s2+ω2)2

ω real, {s : Re s > 0}

f ′(t) sLf(s) − f(0) {s : Re s > 0}

f ′′(t) s2Lf(s) − sf(0) − f ′(0) {s : Re s > 0}

tf(t) −(Lf)′(s) {s : Re s > 0}

eatf(t) Lf(s − a) {s : Re s > 0}
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2. Use the Laplace transform to solve the differential equation

f ′′ − 2f ′ + f = cos t .

3. Solve the differential equation

f ′′ + 3f = et .

4. Solve the differential equation

f ′′ − f ′ = sin t .

10.5 The z -Transform

The z-transform, under that particular name, is more familiar in the engineer-
ing community than in the mathematics community. Mathematicians group
this circle of ideas with the notion of generating function and with allied
ideas from finite and combinatorial mathematics (see, for instance [STA]).
Here we give a quick introduction to the z-transform and its uses.

10.5.1 Basic Definitions

Let {an}+∞
n=−∞ be a doubly infinite sequence. The z-transform of this sequence

is defined to be the series

A(z) =
∞∑

n=−∞

anz
−n. (10.90)

If this series converges on some annulus centered at the origin, then of course
it defines a holomorphic function on that annulus. Often the properties of
the original sequence {an}+∞

n=−∞ can be studied by way of the holomorphic
function A.

The reference [ZWI, pp. 231, 543] explains the relationship between the
z-transform and other transforms that we have discussed. The reference
[HEN, v. 2, pp. 322, 327, 332, 334, 335, 336, 350] gives further instances of
the technique of the z-transform.
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10.5.2 Population Growth by Means of the

z -Transform

We present a typical example of the use of the z-transform.

Example 61 During a period of growth, a population of salmon has the
following two properties:

(10.91) The population, on average, reproduces at the rate of 3%
per month.

(10.92) One hundred new salmon swim upstream and join the population
each month.

If a(n) is the population in month n, then find a formula for a(n).

Solution: Let P denote the initial population. Then we may describe the
sequence in this recursive manner:

a(0) = P

a(1) = a(0) · (1 + .03) + 100

a(2) = a(1) · (1 + .03) + 100

etc. (10.93)

Because we are going to use the theory of the z-transform, it is convenient
to postulate that a(n) = 0 for n < 0.

Let us assume that {a(n)} has a z-transform A(z)—at least when z is
sufficiently large. It is also convenient to think of each part of the recursion
as depending on n. So let us set

P (n) =

{
P if n = −1
0 if n 6= −1

(10.94)

and

s(n) =

{
100 if n ≥ 0
0 if n < 0.

(10.95)

Then our recursion can be expressed as

a(n+ 1) = 1.03a(n) + P (n) + s(n). (10.96)
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We multiply both sides of this equation by z−n and sum over n to obtain

∑

n

a(n+ 1)z−n = 1.03
∑

n

a(n)z−n +
∑

n

P (n)z−n +
∑

n

s(n)z−n (10.97)

or

z ·A(z) = 1.03A(z) + Pz +
100z

z − 1
. (10.98)

Here, for the last term, we have used the elementary fact that

∞∑

n=0

z−n =
∞∑

n=0

(1/z)n =
1

1 − 1/z
=

z

z − 1
, (10.99)

valid for |z| > 1.
Rearranging equation (10.98), we find that

A(z) =
Pz2 + (100 − P )z

(z − 1)(z − 1.03)
= z · Pz + (100 − P )

(z − 1)(z − 1.03)
, (10.100)

valid for |z| sufficiently large.
Of course we may decompose this last expression for A(z) into a partial

fractions decomposition:

A(z) = z ·
[
P + 100/.03

z − 1.03
− 100/.03

z − 1

]
. (10.101)

We rewrite the terms in preparation of making a Laurent expansion:

A(z) =

(
P +

100

.03

)
·
[

1

1 − 1.03/z

]
− 100

.03
· 1

1 − 1/z
. (10.102)

For |z| > 1.03, we may use the standard expansion

1

1 − α
=

∞∑

n=0

αn , |α| < 1 (10.103)

to obtain

A(z) =

(
P +

100

.03

) ∞∑

n=0

(1.03)nz−n − 100

.03

∞∑

n=0

z−n. (10.104)
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Note that we have obtained the expansion of A(z) as a z-series! Its
coefficients must therefore be the a(n). We conclude that

a(n) =

{ (
P + 100

.03

)
(1.03)n − 100

.03
if n ≥ 0

0 if n < 0.
(10.105)

It is easy to see that this problem could have been solved without the
aid of the z-transform. But the z-transform was a useful device for keeping
track of information.

Exercises

1. A population of drosophila melanogaster reproduces at the rate of 5%
per month. Also 50 new flies join the population from other areas each
month. If b(n) is the population in month n, then find a formula for
b(n).

2. A population of dodo birds dies off at the rate of 3% per month. In
addition, twenty birds leave the population each month out of sheer
disgust. Use the z-transform to model this population.



Chapter 11

Partial Differential Equations
(PDEs) and Boundary Value
Problems

11.1 Fourier Methods in the Theory of

Differential Equations

In fact an entire separate book could be written about the applications of
Fourier analysis to differential equations and to other parts of mathematical
analysis. The subject of Fourier series grew up hand in hand with the an-
alytical areas to which it is applied. In the present brief section we merely
indicate a couple of examples.

11.1.1 Remarks on Different Fourier Notations

In Section 10.1, we found it convenient to define the Fourier coefficients of
an integrable function on the interval [0, 2π) to be

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inx dx .

From the point of view of pure mathematics, this complex notation has
proved to be useful, and it has become standardized.

But, in applications, there are other Fourier paradigms. They are easily
seen to be equivalent to the one we have already introduced. The reader

295
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who wants to be conversant in this subject should be aware of these different
ways of writing the basic ideas of Fourier series. We will introduce one of
them now, and use it in the ensuing discussion.

If f is integrable on the interval [−π, π) (note that, by 2π-periodicity, this
is not essentially different from [0, 2π)), then we define the Fourier coefficients

a0 =
1

2π

∫ π

−π
f(x) dx ,

an =
1

π

∫ π

−π
f(x) cos nxdx for n ≥ 1 ,

bn =
1

π

∫ π

−π
f(x) sin nxdx for n ≥ 1 .

This new notation is not essentially different from the old, for

f̂(n) =
1

2

[
an + ibn

]

for n 6= 0 and f̂ (0) = a0. The change in normalization (that is, whether the
constant before the integral is 1/π or 1/2π) is dictated by the observation
that we want to exploit the fact (so that our formulas come out in a neat
and elegant fashion) that

1

2π

∫ 2π

0

|e−int|2 dt = 1 ,

in the theory from Section 11.2 and that

1

2π

∫ π

−π
12 dx = 1 ,

1

π

∫ π

−π
| cos nt|2 dt = 1 for n ≥ 1 ,

1

π

∫ π

−π
| sinnt|2 dt = 1 for n ≥ 1

in the theory that we are about to develop.
It is clear that any statement (as in Section 10.1) that is formulated in

the language of f̂(n) is easily translated into the language of an and bn and
vice versa. In the present discussion we shall use an and bn just because that
is the custom in applied mathematics, and because it is convenient for the
points that we want to make.
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11.1.2 The Dirichlet Problem on the Disc

We now repeat some of the ideas from Chapter 9 in our new context. We
shall study the two-dimensional Laplace equation, which is

4 =
∂2u

∂x2
+
∂2u

∂y2
= 0 . (11.1)

This is probably the most important differential equation of mathematical
physics. It describes a steady state heat distribution, electrical fields, and
many other important phenomena of nature.

It will be useful for us to write this equation in polar coordinates. To do
so, recall that

r2 = x2 + y2 , x = r cos θ , y = r sin θ .

Thus

∂

∂r
=

∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
= cos θ

∂

∂x
+ sin θ

∂

∂y
∂

∂θ
=

∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y

We may solve these two equations for the unknowns ∂/∂x and ∂/∂y. The
result is

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

∂

∂y
= sin θ

∂

∂r
− cos θ

r

∂

∂θ
.

A tedious calculation now reveals that

4 =
∂2

∂x2
+

∂2

∂y2
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)

+

(
sin θ

∂

∂r
− cos θ

r

∂

∂θ

)(
sin θ

∂

∂r
− cos θ

r

∂

∂θ

)

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Let us use the so-called separation of variables method to analyze our
partial differential equation (11.1). We will seek a solution w = w(r, θ) =
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u(r) · v(θ) of the Laplace equation. Using the polar form, we find that this
leads to the equation

u′′(r) · v(θ) +
1

r
u′(r) · v(θ) +

1

r2
u(r) · v′′(θ) = 0 .

Thus
r2u′′(r) + ru′(r)

u(r)
= −v

′′(θ)

v(θ)
.

Since the left-hand side depends only on r, and the right-hand side only on
θ, both sides must be constant. Denote the common constant value by λ.

Then we have
v′′(θ) + λv(θ) = 0 (11.2)

and
r2u′′(r) + ru′(r) − λu(r) = 0 . (11.3)

In equation (11.2), if we demand that v be continuous and periodic, then we
must insist that λ > 0 and in fact that λ = n2 for some nonnegative integer
n.1 For n = 0 the only suitable solution of (11.2) is v ≡ constant and for
n > 0 the general solution (with λ = n2) is

v(θ) = A cosnθ +B sinnθ ,

as you can verify directly.
Now we turn to equation (11.3). We set λ = n2 and obtain

r2u′′ + ru′ − n2u = 0 , (11.4)

which is Euler’s equidimensional equation. The change of variables r = ez

transforms this equation to a linear equation with constant coefficients, and
that can in turn be solved with standard techniques. To wit, the equation
that we have after the transformation is

u′′ − n2u = 0 . (11.5)

The variable is now z. We guess a solution of the form u(z) = eαz. Thus

α2eαz − n2eαz = 0 (11.6)

1More explicitly, λ = 0 gives a linear function for a solution and λ < 0 gives an
exponential function for a solution.
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so that
α2 = ±n .

Hence the solutions of (11.5) are

u(z) = enz and u(z) = e−nz

provided that n 6= 0. It follows that the solutions of the original Euler
equation (11.4) are

u(r) = rn and u(r) = r−n for n 6= 0 .

In case n = 0 the solution is readily seen to be u = 1 or u = ln r.
The result is

u = A+B ln r if n = 0 ;

u = Arn +Br−n if n = 1, 2, 3, . . . .

We are most interested in solutions u that are continuous at the origin; so
we take B = 0 in all cases. The resulting solutions are

n = 0 , w = a0/2 (a0 a constant) ;

n = 1 , w = r(a1 cos θ + b1 sin θ) ;

n = 2 , w = r2(a2 cos 2θ + b2 sin 2θ) ;

n = 3 , w = r3(a3 cos 3θ + b3 sin 3θ) ;

. . .

Of course any finite sum of solutions of Laplace’s equation is also a solu-
tion. The same is true for infinite sums. Thus we are led to consider

w = w(r, θ) =
1

2
a0 +

∞∑

n=0

rn(an cosnθ + bn sinnθ) .

On a formal level, letting r → 1− in this last expression gives

1

2
a0 +

∞∑

n=1

(an cos nθ + bn sinnθ) .

We draw all these ideas together with the following physical rubric. Con-
sider a thin aluminum disc of radius 1, and imagine applying a heat distri-
bution to the boundary of that disc. In polar coordinates, this distribution
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f(  )

w(r,  )

Figure 11.1: Steady state heat distribution on the unit disc.

is specified by a function f(θ). We seek to understand the steady-state heat
distribution on the entire disc. See Figure 11.1. So we seek a function w(r, θ),
continuous on the closure of the disc, which agrees with f on the boundary
and which represents the steady-state distribution of heat inside. Some phys-
ical analysis shows that such a function w is the solution of the boundary
value problem

4w = 0 ,

u
∣∣
∂D

= f .

According to the calculations we performed prior to this last paragraph,
a natural approach to this problem is to expand the given function f in its
sine/cosine series:

f(θ) =
1

2
a0 +

∞∑

n=1

(an cos nθ + bn sinnθ)
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+1

-1

Figure 11.2: Data for the Dirichlet problem.

and then posit that the w we seek is

w(r, θ) =
1

2
a0 +

∞∑

n=1

rn(an cos nθ + bn sin nθ) .

This process is known as solving the Dirichlet problem on the disc with bound-
ary data f .

Example 62 Let us follow the paradigm just sketched to solve the Dirichlet
problem on the disc with f(θ) = 1 on the top half of the boundary and
f(θ) = −1 on the bottom half of the boundary. See Figure 11.2.

It is straightforward to calculate that the Fourier series (sine series) ex-
pansion for this f is

f(θ) =
4

π

(
sin θ +

sin 3θ

3
+ +

sin 5θ

5
+ · · ·

)
.

The solution of the Dirichlet problem is therefore

w(r, θ) = w(reiθ) =
4

π

(
r sin θ +

r3 sin 3θ

3
+ +

r5 sin 5θ

5
+ · · ·

)
.
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11.1.3 The Poisson Integral

In the last section we have presented a formal procedure with series for solving
the Dirichlet problem. But in fact it is possible to produce a closed formula
for this solution. We already saw these ideas, presented in a different way,
in Chapter 9. Now we can provide a “Fourier” point of view.

Referring back to our sine/cosine series expansion for f , and the resulting
expansion for the solution of the Dirichlet problem, we recall for n ≥ 1 that

an =
1

π

∫ π

−π
f(φ) cos nφdφ and bn =

1

π

∫ π

−π
f(φ) sinnφdφ .

Thus

w(r, θ) =
1

2
a0 +

∞∑

n=1

rn
(

1

π

∫ π

−π
f(φ) cos nφdφ cos nθ

+
1

π

∫ π

−π
f(φ) sinnφdφ sin nθ

)
.

This, in turn, equals

1

2
a0 +

1

π

∞∑

n=1

rn
∫ π

−π
f(φ)

[
cos nφ cos nθ + sinnφ sinnθdφ

]

=
1

2
a0 +

1

π

∞∑

n=1

rn
∫ π

−π
f(φ)

[
cos n(θ − φ)dφ

]
.

Note that what we have done here is simply to exploit our explicit formulas
for an and bn.

We finally simplify our expression to

w(r, θ) =
1

π

∫ π

−π
f(φ)

[
1

2
+

∞∑

n=1

rn cosn(θ − φ)

]
dφ .

It behooves us, therefore, to calculate the sum inside the brackets. For sim-
plicity, we let α = θ − φ and then we let

z = reiα = r(cosα+ i sinα) .

Likewise
zn = rneinα = rn(cos nα+ i sinnα) .
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Let Re z denote the real part of the complex number z. Then

1

2
+

∞∑

n=1

rn cosnα = Re

[
1

2
+

∞∑

n=1

zn

]

= Re

[
−1

2
+

∞∑

n=0

zn

]

= Re

[
−1

2
+

1

1 − z

]

= Re

[
1 + z

2(1 − z)

]

= Re

[
(1 + z)(1 − z)

2|1 − z|2

]

=
1 − |z|2

2|1 − z|2

=
1 − r2

2(1 − 2r cosα+ r2)
.

Putting the result of this calculation into our original formula for w we
finally obtain the Poisson integral formula:

w(r, θ) =
1

2π

∫ π

−π

1 − r2

1 − 2r cosα+ r2
f(φ) dφ .

Observe what this formula does for us: It expresses the solution of the Dirich-
let problem with boundary data f as an explicit integral of a universal ex-
pression (called a kernel) against that data function f .

There is a great deal of information about w and its relation to f contained
in this formula. As just one simple instance, we note that when r is set equal
to 0 then we obtain

w(0, θ) =
1

2π

∫ π

−π
f(φ) dφ .

This says that the value of the steady-state heat distribution at the origin
is just the average value of f around the circular boundary. We have just
used the Poisson integral formula, derived using partial differential equations
and Fourier analysis, to rediscover the mean value property of harmonic
functions.
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Example 63 Let us use the Poisson integral formula to solve the Dirichlet
problem for the boundary data f(φ) = e2iφ. We know that the solution is
given by

w(r, θ) =
1

2π

∫ π

−π

1 − r2

1 − 2r cosα+ r2
f(φ) dφ

=
1

2π

∫ π

−π

1 − r2

1 − 2r cosα+ r2
e2iφ dφ .

With some effort, one can evaluate this integral to find that

w(r, θ) = r2e2iθ .

In complex notation, w is the function z 7→ z2.

11.1.4 The Wave Equation

We consider the wave equation

a2yxx = ytt (11.7)

on the interval [0, π] with the boundary conditions

y(0, t) = 0

and
y(π, t) = 0 .

This equation, with boundary conditions, is a mathematical model for a
vibrating string with the ends (at x = 0 and x = π) pinned down. The
function y(x, t) describes the ordinate of the point x on the string at time t.
See Figure 11.3.

Physical considerations dictate that we also impose the initial velocity
and displacement of the string. Thus

∂y

∂t

∣∣∣∣
t=0

= 0 (11.8)

(indicating that the initial velocity of the string is 0) and

y(x, 0) = f(x) (11.9)
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x

y

Figure 11.3: The vibrating string.

(indicating that the initial configuration of the string is the graph of the
function f).

We solve the wave equation using a version of separation of variables. For
convenience, we assume that the constant a = 1. We guess a solution of the
form u(x, t) = u(x) · v(t). Putting this guess into the differential equation

uxx = utt

gives
u′′(x)v(t) = u(x)v′′(t) .

We may obviously separate variables, in the sense that we may write

u′′(x)

u(x)
=
v′′(t)

v(t)
.

The left-hand side depends only on x while the right-hand side depends
only on t. The only way this can be true is if

u′′(x)

u(x)
= λ =

v′′(t)

v(t)

for some constant λ. But this gives rise to two second-order linear, ordinary
differential equations that we can solve explicitly:

u′′(x) = λ · u(x) (11.10)
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v′′ = λ · v . (11.11)

Observe that this is the same constant λ in both of these equations. Now,
as we have already discussed, we want the initial configuration of the string
to pass through the points (0, 0) and (π, 0). We can achieve these conditions
by solving (11.10) with u(0) = 0 and u(π) = 0.

This problem (with these particular boundary conditions) has a nontrivial
solution if and only if λ = n2 for some positive integer n, and the correspond-
ing function is

un(x) = sinnx .

For this same λ, the general solution of (11.11) is

v(t) = A sinnt+B cosnt .

If we impose the requirement that v′(0) = 0, so that (11.8) is satisfied, then
A = 0 and we find the solution

v(t) = B cos nt .

This means that the solution we have found of our differential equation
with the given boundary and initial conditions is

yn(x, t) = sinnx cos nt . (11.12)

And in fact any finite sum with constant coefficients (or linear combination)
of these solutions will also be a solution:

y = α1 sin x cos t+ α2 sin 2x cos 2t+ · · ·αk sin kx cos kt .

In physics, this is called the “principle of superposition.”
Ignoring the rather delicate issue of convergence, we may claim that any

infinite linear combination of the solutions (11.12) will also be a solution:

y =
∞∑

j=1

bj sin jx cos jt . (11.13)

Now we must examine the final condition (11.9). The mandate y(x, 0) = f(x)
translates to

∞∑

j=1

bj sin jx = y(x, 0) = f(x) (11.14)
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or
∞∑

j=1

bjuj(x) = y(x, 0) = f(x) , (11.15)

where uj(x) = sin jx. Thus we demand that f have a valid Fourier series
expansion. We know from our studies earlier in this chapter that such an
expansion is valid for a rather broad class of functions f . Thus the wave
equation is in principle solvable in considerable generality.

Remark: An important point about Fourier expansions needs to be devel-
oped at this point. When we are doing Fourier analysis on the interval [0, 2π),
we need all the functions cos jx and all the functions sin jx. If any of these
were omitted, we would not be able to expand “any” integrable function in
a Fourier series. But on the interval [0, π) things are different. Let f be a
given function on [0, π). Now define

f̃(x) =

{
f(x) if 0 ≤ x < π
−f(−x) if −π < x < 0 .

We call f̃ the “odd extension” of f to the full interval [−π, π). Now look

what happens when we go to calculate the aj for f̃ :

aj =
1

π

∫ π

−π
f̃(x) cos jt dt .

The integrand, being the product of an odd function and an even function,
is odd. Thus it integrates to 0! Thus the Fourier series for f̃ does not have
any cosine terms. It only has sine terms.

The upshot of the discussion in the last paragraph is that when we are
working on the interval [0, π), as in our study of the wave equation, we can
expand any data function f in terms of sine functions only. And that is what
the situation calls for.

Exercise for the Reader: Emulate the argument in the preceding remark
to see that one can expand a function on [0, π) in terms of cosine functions
only.

We know that our eigenfunctions uj satisfy

u′′m = −m2um and u′′n = −n2un .



308 CHAPTER 11. PDES AND BOUNDARY VALUE PROBLEMS

Multiply the first equation by un and the second by un and subtract. The
result is

unu
′′
m − umu

′′
n = (n2 −m2)unum

or

[unu
′
m − umu

′
n]

′ = (n2 −m2)unum .

We integrate both sides of this last equation from 0 to π and use the fact
that uj(0) = uj(π) = 0 for every j. The result is

0 = [unu
′
m − umu

′
n]

∣∣∣∣
π

0

= (n2 −m2)

∫ π

0

um(x)un(x) dx .

Thus ∫ π

0

sinmx sinnxdx = 0 for n 6= m (11.16)

or ∫ π

0

um(x)un(x) dx = 0 for n 6= m. (11.17)

Of course this is a standard fact from calculus. It played an important
(tacit) role in Section 11.2, when we first learned about Fourier series. It is
commonly referred to as an “orthogonality condition,” and is fundamental
to the Fourier theory and the more general Sturm-Liouville theory. We now
see how the condition arises naturally from the differential equation.

In view of the orthogonality condition (11.17), it is natural to integrate
both sides of (11.15) against uk(x). The result is

∫ π

0

f(x) · uk(x) dx =

∫ π

0

[ ∞∑

j=0

bjuj(x)

]
· uk(x) dx

=

∞∑

j=0

bj

∫ π

0

uj(x)uk(x) dx

= bk

∫ π

0

uk(x)uk(x) dx

=
π

2
bk .

The bk are the Fourier coefficients that we studied in Section 11.1.1.
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Certainly Fourier analysis has been one of the driving forces in the de-
velopment of modern analysis. Questions of sets of convergence for Fourier
series led to Cantor’s set theory. Other convergence questions led to Dirich-
let’s original definition of convergent series. Riemann’s theory of the integral
first occurs in his classic paper on Fourier series. In turn, the tools of analysis
shed much light on the fundamental questions of Fourier theory.

In more modern times, Fourier analysis was an impetus to the develop-
ment of functional analysis, pseudodifferential operators, and many of the
other key ideas in the subject. It continues to enjoy a symbiotic relationship
with many of the newest and most incisive ideas in mathematical analysis.

One of the modern vectors in harmonic analysis is the development of
wavelet theory. This is a “designer” version of harmonic analysis that al-
lows the user to customize the building blocks. That is to say: classically,
harmonic analysis taught us to build up functions from sines and cosines;
wavelet theory allows us to build up functions from units that are tailored
to the problem at hand. This has proved to be a powerful tool for signal
processing, signal compression, and many other contexts in which a fine and
rapidly converging analysis is desirable.

Exercises

1. Find the Fourier series of the function

f(x) =





π if −π ≤ x ≤ π

2
0 if

π

2
< x ≤ π .

2. Find the Fourier series for the function

f(x) =





0 if −π ≤ x < 0
1 if 0 ≤ x ≤ π

2

0 if
π

2
< x ≤ π .

3. Find the Fourier series of the function

f(x) =

{
0 if −π ≤ x < 0
sinx if 0 ≤ x ≤ π .
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4. Solve Exercise 3 with sin x replaced by cosx.

5. Find the Fourier series for each of these functions. Pay special attention
to the reasoning used to establish your conclusions; consider alternative
lines of thought.

(a) f(x) = π , −π ≤ x ≤ π

(b) f(x) = sinx , −π ≤ x ≤ π

(c) f(x) = cos x , −π ≤ x ≤ π

(d) f(x) = π + sinx+ cosx , −π ≤ x ≤ π

6. Find the Fourier series for the function given by

(a)

f(x) =

{
−a if −π ≤ x < 0
a if 0 ≤ x ≤ π

for a a positive real number.

(b)

f(x) =

{
−1 if −π ≤ x < 0
1 if 0 ≤ x ≤ π

(c)

f(x) =

{
−π

4
if −π ≤ x < 0

π
4

if 0 ≤ x ≤ π

(d)

f(x) =

{
−1 if −π ≤ x < 0
2 if 0 ≤ x ≤ π

(e)

f(x) =

{
1 if −π ≤ x < 0
2 if 0 ≤ x ≤ π

7. Find the Fourier series for the periodic function defined by

f(x) =

{
−π if −π ≤ x < 0
x if 0 ≤ x < π

What can you say about the behavior of this series at the endpoints
−π, π of the interval?
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8. (a) Find the Fourier series for the periodic function defined by f(x) =
ex, −π ≤ x ≤ π. [Hint: Recall that sinhx = (ex − e−x)/2.]

(b) Sketch the graph of the sum of this series on the interval −5π ≤
x ≤ 5π.

(c) Use the series in (a) to establish the sums

∞∑

n=1

1

n2 + 1
=

1

2

( π

tanh π
− 1
)

and
∞∑

n=1

(−1)n

n2 + 1
=

1

2

( π

sinh π
− 1
)
.

9. (a) Show that the Fourier series for the periodic function

f(x) =

{
0 if −π ≤ x < 0
x2 if 0 ≤ x < π

is

f(x) =
π2

6
+ 2

∞∑

n=1

(−1)n
cos nx

n2

+π
∞∑

n=1

(−1)n+1 sinnx

n
− 4

π

∞∑

n=1

sin(2n − 1)x

(2n − 1)3
.

(b) Use the series in part (a) with x = 0 and x = π to obtain the two
sums

1 − 1

22
+

1

32
− 1

42
+ − · · · =

π2

12
and

1 +
1

22
+

1

32
+

1

42
+ · · · =

π2

6
.

(c) Derive the second sum in (b) from the first. [Hint: Add 2
∑

n(1/[2n])2

to both sides.]

10. Find the Fourier series for the 2π-periodic function defined on its fun-
damental period [−π, π] by

f(x) =

{
x+ π

2
if −π ≤ x < 0

−x+ π
2

if 0 ≤ x ≤ π
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(a) by computing the Fourier coefficients directly;

(b) using the formula

|x| =
π

2
− 4

π

(
cos x+

cos 3x

32
+

cos 5x

52
+ · · ·

)
.

Sketch the graph of the sum of this series (a triangular wave) on the
interval −5π ≤ x ≤ 5π.

11. Find the Fourier series for the function of period 2π defined by f(x) =
cos x/2, −π ≤ x ≤ π.

12. If w = F (x, y) = F(r, θ), with x = r cos θ and y = r sin θ, then show
that

∂2w

∂x2
+
∂2w

∂y2
=

1

r

{
∂

∂r

(
r
∂w

∂r

)
+

1

r

∂2w

∂θ2

}

=
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
.

[Hint: We can calculate that

∂w

∂r
=
∂w

∂x
cos θ+

∂w

∂y
sin θ and

∂w

∂θ
=
∂w

∂x
(−r sin θ) +

∂w

∂y
(r cos θ) .]

Similarly, compute
∂

∂r

(
r
∂w

∂r

)
and

∂2w

∂θ2
.

13. Prove the trigonometric identities

sin3 x =
3

4
sinx− 1

4
sin 3x and cos3 x =

3

4
cosx+

1

4
cos 3x

and show briefly, without calculation, that these are the Fourier series
expansions of the functions sin3 x and cos3 x.

14. Solve the Dirichlet problem for the unit disc when the boundary func-
tion f(θ) is defined by

(a) f(θ) = cos θ/2 , −π ≤ θ ≤ π

(b) f(θ) = θ , −π < θ < θ
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x

y

= F(x)y

x

y

y = F(x + at)

Figure 11.4: A moving wave.

(c) f(θ) =

{
0 if −π ≤ θ < 0
sin θ if 0 ≤ θ ≤ π

(d) f(θ) =

{
0 if −π ≤ θ < 0
1 if 0 ≤ θ ≤ π

(e) f(θ) = θ2/4 , −π ≤ θ ≤ π

15. Show that

L

2
− x =

L

π

∞∑

n=1

1

n
sin

2nπx

L
, −L < x < L .

16. If y = F (x) is an arbitrary function, then y = F (x+ at) represents a
wave of fixed shape that moves to the left along the x-axis with velocity
a (Figure 11.4).

Similarly, if y = G(x) is another arbitrary function, then y = G(x−at)
is a wave moving to the right, and the most general one-dimensional
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wave with velocity a is

y(x, t) = F (x+ at) +G(x− at) . (∗)

(a) Show that (∗) satisfies the wave equation.

(b) It is easy to see that the constant a in the wave equation has
the dimensions of velocity. Also, it is intuitively clear that if a
stretched string is disturbed, then the waves will move in both
directions away from the source of the disturbance. These con-
siderations suggest introducing the new variables α = x + at,
β = x−at. Show that with these independent variables, equation
(6) becomes

∂2y

∂α∂β
= 0 .

From this derive (∗) by integration. Formula (∗) is called d’Alembert’s
solution of the wave equation. It was also obtained, slightly later
and independently, by Euler.

17. Let w be a harmonic function in a planar region, and let C be any
circle entirely contained (along with its interior) in this region. Prove
that the value of w at the center of C is the average of its values on
the circumference.

18. Consider an infinite string stretched taut on the x-axis from −∞ to
+∞. Let the string be drawn aside into a curve y = f(x) and released,
and assume that its subsequent motion is described by the wave equa-
tion.

(a) Use (∗) in Exercise 16 to show that the string’s displacement is
given by d’Alembert’s formula

y(x, t) =
1

2
[f(x+ at) + f(x − at)] . (∗∗)

[Hint: Remember the initial conditions (7) and (8).]

(b) Assume further that the string remains motionless at the points
x = 0 and x = π (such points are called nodes), so that y(0, t) =
y(π, t) = 0, and use (∗∗) to show that f is an odd function that is
periodic with period 2π (that is, f(−x) = f(x) and f(x + 2π) =
f(x)).
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(c) Show that since f is odd and periodic with period 2π then f
necessarily vanishes at 0 and π.

19. Show that the Dirichlet problem for the disc {(x, y) : x2 + y2 ≤ R2},
where f(θ) is the boundary function, has the solution

w(r, θ) =
1

2
a0 +

∞∑

n=1

( r
R

)n
(an cosnθ + bn sinnθ)

where an and bn are the Fourier coefficients of f . Show also that the
Poisson integral formula for this more general disc setting is

w(r, θ) =
1

2π

∫ π

−π

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
f(φ) dφ .

20. Solve the vibrating string problem in the text if the initial shape y(x, 0) =
f(x) is specified by the given function. In each case, sketch the initial
shape of the string on a set of axes.

(a)

f(x) =

{
2cx/π if 0 ≤ x ≤ π/2
2c(π − x)/π if π/2 ≤ x ≤ π

(b)

f(x) =
1

π
x(π − x)

(c)

f(x) =





x if 0 ≤ x ≤ π/4
π/4 if π/4 < x < 3π/4
π − x if 3π/4 ≤ x ≤ π

21. It would be quite difficult to calculate the relevant integrals for this
problem by hand. Instead use MatLab to calculate the Poisson integral
of the given function on [−π, π].

(a) f(θ) = ln2 θ

(b) f(θ) = θ3 · cos θ
(c) f(θ) = eθ · sin θ
(d) f(θ) = eθ · ln θ
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22. Solve the vibrating string problem in the text if the initial shape y(x, 0) =
f(x) is that of a single arch of the sine curve f(x) = c sin x. Show that
the moving string always has the same general shape, regardless of the
value of c. Do the same for functions of the form f(x) = c sin nx. Show
in particular that there are n − 1 points between x = 0 and x = π at
which the string remains motionless; these points are called nodes, and
these solutions are called standing waves. Draw sketches to illustrate
the movement of the standing waves.

23. If f, g are integrable functions on R then define their convolution to be

h(x) = f ∗ g(x) =

∫

R
f(x− t)g(t) dt .

Prove that
ĥ(ξ) = f̂(ξ) · ĝ(ξ) .

24. The problem of the struck string is that of solving the wave equation
with the boundary conditions

y(0, t) = 0 , y(π, t) = 0

and the initial conditions

∂y

∂t

∣∣∣∣
t=0

= g(x) and y(x, 0) = 0 .

[These initial conditions reflect the fact that the string is initially in
the equilibrium position, and has an initial velocity g(x) at the point
x as a result of being struck.] By separating variables and proceeding
formally, obtain the solution

y(x, t) =
∞∑

n=1

cn sinnx sinnat ,

where

cn =
2

πna

∫ π

0

g(x) sin nxdx .

25. Write a MatLab routine that will calculate the jth Fourier coefficient of
any given function on the interval [0, 2π).
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26. Solve the boundary value problem

a2∂
2w

∂x2
=

∂w

∂t
w(x, 0) = f(x)

w(0, t) = 0

w(π, t) = 0

if the last three conditions—the boundary conditions—are changed to

w(x, 0) = f(x)

w(0, t) = w1

w(π, t) = w2 .

[Hint: Write w(x, t) = W (x, t) + g(x).]

27. Write a MatLab routine that will calculate the N th partial sum of the
Fourier series of any given function on the interval [0, 2π). [Hint: You
will have to think about how to format the answer to this question.]

28. Suppose that the lateral surface of the thin rod that we analyzed in the
text is not insulated, but in fact radiates heat into the surrounding air.
If Newton’s law of cooling (that a body cools at a rate proportional
to the difference of its temperature with the temperature of the sur-
rounding air) is assumed to apply, then show that the 1-dimensional
heat equation becomes

a2∂
2w

∂x2
=
∂w

∂t
+ c(w − w0)

where c is a positive constant and w0 is the temperature of the sur-
rounding air.

29. The functions sin2 x and cos2 x are both even. Show, without using any
calculations, that the identities

sin2 x =
1

2
(1 − cos 2x) =

1

2
− 1

2
cos 2x

and

cos2 x =
1

2
(1 + cos 2x) =

1

2
+

1

2
cos 2x

are actually the Fourier series expansions of these functions.



318 CHAPTER 11. PDES AND BOUNDARY VALUE PROBLEMS

30. In Exercise 22, find w(x, t) if the ends of the rod are kept at 0◦C,
w0 = 0◦C, and the initial temperature distribution on the rod is f(x).

31. Derive the three-dimensional heat equation

a2

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
=
∂w

∂t

by adapting the reasoning in the text to the case of a small box with
edges ∆x, ∆y, ∆z contained in a region R in x-y-z space where the
temperature function w(x, y, z, t) is sought. [Hint: Consider the flow
of heat through two opposite faces of the box, first perpendicular to
the x-axis, then perpendicular to the y-axis, and finally perpendicular
to the z-axis.]

32. In the solution of the heat equation, suppose that the ends of the rod
are insulated instead of being kept fixed at 0◦C. What are the new
boundary conditions? Find the temperature w(x, t) in this case by
using just common sense.



Chapter 12

Computer Packages for
Studying Complex Variables

12.0 Introductory Remarks

In the past two decades or so, there has been a wide proliferation of high speed
digital computing equipment. Concomitant with that growth has been the
development of ever more sophisticated analytic tools for doing mathematics.
Gone are the days of using the computer simply as a “number cruncher.”
Now there are sophisticated computer algebra software and two- and three-
dimensional graphing software. In the present chapter we shall give brief
descriptions of the manor packages that are useful in doing complex analysis.

We note that the producers of computer algebra systems in general have
been slow to respond to the need for complex-analytic computing capabilities.
The engineering-oriented package MatLab has been a leader in providing ease-
of-use for those wishing to do complex analysis. It is only the latest releases
of Mathematica and Maple that have serious power in complex arithmetic.
The specialized software f(z) does only complex analysis, but its capabilities
are very particular. It has many graphing features, but it has limited ability
to do calculations.

319
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12.1 The Software Packages

12.1.1 The Software f(z)r

The software f(z) by Lascaux Software, available for both the PC and Mac-
intosh platforms, was one of the first to accept complex-analytic input and to
be able to produce graphs of holomorphic functions. The most recent release
for the Windows platform, available on CD-ROM, is particularly attractive.

The primary purpose of f(z) is to graph holomorphic functions. Of
course the graph actually lives in C×C, which is four-dimensional Euclidean
space. We may only view a rendition of the graph on a two-dimensional
screen. The software f(z) offers the user the option of viewing the graph in
a great variety of configurations. Among these are

(12.1) As a collection of images (in the plane) of circular level curves.

(12.2) As a collection of images (in the plane) of rectilinear level curves.

(12.3) Either (12.1) or (12.2) with the images lying in the Riemann sphere.

(12.4) As a graph in three dimensions (where attention is restricted to either
the real part or the imaginary part of the image).

(12.5) As a graph in four-dimensional space.

Of course (12.5) can only be suggested through a variety of graphical
tricks. In particular, animations are used in a compelling manner to suggest
how various three-dimensional cross-sections fit together to compose the four-
dimensional “graph.” The commands in f(z) enable easy redefinition of the
function, zooming, repositioning, and rotation.

Functions may be defined by direct entry of the function name or by com-
position or by iteration. It is possible to draw Julia sets, fractals, Mandelbrot
sets, and the various states generated by the complex Newton’s method.

Beautiful printouts are straightforward to produce; resolution, colors, and
other attributes may be adjusted to suit. The software is transparent to use;
resort to the documentation is rarely necessary.

Although the strength of this software has traditionally been graphics,
the newest Windows release also features numerical computation of complex
line integrals. One can calculate winding numbers and verify the Cauchy
integral formula and theorem in particular instances.
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Figures 12.1 through 12.12 exhibit some representative f(z) output. They
depict the following:

[The function f(z) = exp(z)] Figure 12.1 shows the image in the plane
of circular level curves under exp(z) = ez; Figure 12.2 shows the image
in the Riemann sphere of circular level curves under ez; Figure 12.3
shows the graph in 3-space of circular level curves under ez.

[The function f(z) = z2] Figure 12.4 shows the image in the plane of cir-
cular level curves under z2; Figure 12.5 shows the image in the Riemann
sphere of circular level curves under z2; Figure 12.6 shows the graph in
four-space of circular level curves acted on by z2.

[Image of a rectangular grid under exp(z)] Figure 12.7 shows the im-
age in the plane of a rectangular grid under exp(z) = ez; Figure 12.8
shows the image in the Riemann sphere of a rectangular grid under
z2; Figure 12.9 the graph in four-space of a rectangular grid under
z3 − 3z2 + z − 2.

[The image of a rectangular grid under f(z) = log z] Figure 12.10 shows
the image in the plane of a rectangular grid under log z; Figure 12.11
shows the image in the Riemann sphere of a rectangular grid under
log z; Figure 12.12 shows the graph in four-space of a rectangular grid
under log z.

12.1.2 Mathematicar

Mathematica by Wolfram Research is a powerful all-around mathematics
utility. It can perform computer algebra operations and numerical calcu-
lations, and has stunning graphing utilities. Version 5 is particularly well-
equipped with complex analysis capabilities. See [WOL] for details of the
Mathematica syntax.

A complex number is denoted a + bI. Mathematica can convert such a
complex number to polar form, expressed either with trigonometric functions
or in exponential notation. All complex arithmetic operations are performed
with straightforward commands. For example, the input

(4 + 3I)/(2 - I)
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Figure 12.1: The image in the plane of circular level curves under ez.

Figure 12.2: The image in the Riemann sphere of circular level curves under
ez.
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Figure 12.3: The graph in three-space of circular level curves acted on by ez.

Figure 12.4: The image in the plane of circular level curves under z2.
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Figure 12.5: The image in the Riemann sphere of circular level curves under
z2.

Figure 12.6: The graph in four-space of circular level curves acted on by z2.
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Figure 12.7: The image in the plane of a rectangular grid under ez.

Figure 12.8: The image in the Riemann sphere of a rectangular grid under
z2.
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Figure 12.9: The graph in four-space of a rectangular grid acted on by z3 −
3z2 + z − 2.

Figure 12.10: The image in the plane of a rectangular grid under log z.
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Figure 12.11: The image in the Riemann sphere of a rectangular grid under
log z.

Figure 12.12: The graph in four-space of a rectangular grid acted on by log z.
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yields the output 1 + 2I, which is the correct quotient in the complex field.
The commands Re[z], Im[z], conjugate[z], Abs[z], Arg[z] compute
real part, imaginary part, conjugate, modulus, and argument, respectively.

Mathematica can factor a polynomial over the Gaussian integers:1 for
example, the command

Factor[1 + x2, GaussianIntegers -> True]

yields the output (-I + x)(I + x).
Mathematica can calculate residues. The input

Residue[1/z, {z,0}]

yields the output 1, while the input

Residue[1/z2, {z,0}]

yields the output 0.
Mathematica has a number of specialized commands for converting a

(complex) mathematical expression from one scientific form to another.

12.1.3 Mapler

Maple by Waterloo Maple is another all-around mathematics utility. Like
Mathematica, it can perform computer algebra operations and run numerical
analysis routines; it also has powerful graphics capabilities.

In general, Maple’s capabilities are similar to those of Mathematica. Of
course the syntax is different. Details of Maple syntax may be found in
[CHA].

Maple has a command evalc that “oversees” a number of basic complex
arithmetic operations.

1A Gaussian integer is a number of the from m + in where m, n ∈ Z.
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Examples of Mathematica Commands

Input Output

Exp[2 + 9I]//N -6.73239 + 3.04517 I

ComplexExpand[Sin[x + Iy]] Cosh[y] Sin [x] + I Cos[x] Sinh [y]

TrigToExp[Tan[x]] [I(E−Ix - EIx)]/[E−Ix + EIx]

ExpToTrig[Exp[x] - Exp[-x]] 2 Sinh[x]

N[Sqrt[-2I]] 1. - 1.I

Examples of Maple Commands

Input Output

evalc((3 + 5*I)*(7 + 4*I)); 1 + 47 I

evalc(Re((1 + 2*I)*(3 - 4*I))); 11

evalc((-5 + 7*I)/(2 + 3*I)); 1 + 2*I

evalc(sin(I)); sinh(1) I

evalc(exp(I)); cos(1) + sin(1) I

evalc(conjugate(exp(2*I))); cos(2) - sin(2) I

evalc(polar(r,theta)); r cos(theta) + r sin(theta) I

A feature of many of the most popular computer algebra systems is that
the user must tell the software when complex arithmetic is desired. The
command evalc is an illustration of that concept.
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Maple can convert a complex number from Cartesian form to polar form,
expressed either with exponentials or with trigonometric functions.

Using the command fsolve with the complex option, Maple can find all
the roots of any polynomial with complex coefficients; the roots are expressed
as floating point complex numbers.

Maple can compute the signum of a complex number where sgn z is defined
to be z/|z| when z 6= 0. The command is signum z.

Maple also has advanced capabilities, such as being able to handle the
syntax of the Newman-Penrose conjugation operator. It can treat Hermitian
tensors and spinors.

12.1.4 MatLabr

The package MatLab has the Maple kernel imbedded in it. But it has MatLab’s
powerful front end. Therefore, with MatLab, one can perform any complex
arithmetic operation that can be performed in Maple. See [HAL], [MAT],
[MOC] for details of the MatLab syntax.

An attractive feature of MatLab is that complex numbers do not require
special treatment or special formatting. They can be entered (using either i
or j for

√
−1) just as one would enter a real number.

12.1.5 Riccir

Ricci is a Mathematica package created by John M. Lee. It is available,
together with descriptive material, add-ons, and documentation, from the
Web site

http://www.math.washington.edu/~lee/Ricci/

Ricci is designed to do tensor calculations in differential geometry. As
such, it is tangential to the main thrust of the present book. For those who
know the formalism of differential geometry, it may be of interest to know that
Ricci can calculate covariant derivatives, exterior derivatives, Riemannian
metrics and curvatures, can manipulate vector bundles, can handle complex
bundles and tensors, and conforms to the Einstein summation convention.
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When performed by hand, the calculations described in the preceding
paragraph are massive—and easily prone to error. Ricci is a powerful device
for accuracy checking and for performing “what if” experiments in differential
geometry. We note that it is not a commercial product.
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Solutions to Odd-Numbered
Exercises

Chapter 1

Section 1.1
1. z + w = 15 − i, w − z = 1 − 15i, zζ = −32 + 123i, wζ = 56 + 24i,
ζ − z = −12 + 4i
3. z+z = 12, z+2z = 18+2i, z−w = 2+i, zζ = −32+4i, wζ2 = 66+112i 5.
Identify C with R2 and z = (x, y), then z = (x,−y) = reflection about x-axis.
7. R = R×{0} 9. 9−4i, 6+3i, 2− i 11. z+w = (a+ c, b+d) = Z+W ,
z ·w = reiθseit = rsei(θ+t)

Section 1.2
1. |z| = 3

√
13, |w| = 2

√
5, |z + w| =

√
149, |ζw| =

√
73, |zw| = 6

√
65,

|ζz| = 3
√

1313 |z + w| =
√

149 ≤
√

117 +
√

20 = |z| + |w| |zw| = 6
√

65 =
(3
√

13)(2
√

5) = |z| |w|
3. z = 1, w = i 5. All discs are shown in Figure 1A.

Figure 1A

335
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7. Roots: 1,
√

2i,−
√

2i and by fundamental theorem of algebra these are all
of them.
9.

√
45 ≈ 6.708,

√
20 ≈ 4.472,

√
113 ≈ 10.6301 11. Evaluate the polyno-

mial at the given points. Only i is a root. 13. p(z) = z4 + z3(−20 − 8i) +
z2(157 + 118i) + z(−614 − 600i) + (1668 + 1164i). Every polynomial with
these roots has the same four linear factors, and no others. 15. If z = reiθ,
then 1

z
= 1

r
e−iθ, so 1

z
is a radial reflection about the circle {z : |z| = 1} then

reflection about the x-axis.

Section 1.3.3
1. eiπ = −1, e

iπ
3 = 1

2
+ i

√
3

2
, 5e−i

π
4 = 5√

2
− i 5√

2
, 2ei = 2 cos(1) + 2i sin(1),

7e−3i = 7 cos(3) + 7i sin(3) 3. z = log(2
√

2) − iπ
4

5. Possible angles
for w are: π

20
+ 2πk

5
for k = 0, 1, 2, 3, 4. 7. If w = reiθ, z = ”‘seiα, then,

r2 = s3 and 2θ = 3α. 9. z + w has modulus
√
r2 + s2 + 2rs cos(θ − ψ)

and subtends an angle of arctan
(
r sin(θ)+s sin(ψ)
r cos(θ)+s sin(ψ)

)

11.
√

29e−1.19i,
√

58e1.166i,
√

50e.588i 13.
√

3
2

+i3
2
≈ .866+1.5i, −

√
2+i

√
6 ≈

−1.414 + 2.449i,
√

15
2

+ i
√

5
2

≈ 1.936 + 1.118i,
√

2
2
− i

√
6

2
≈ .707 − .225i 15.

Suppose ez = 0, with |z| = r ≥ 0. Then, 0 = |ez| = er a contradiction.

Section 1.3.6
1. 3

1
3 exp

(
iπ
3

+ 2πik
3

)
for k = 0, 1, 2. 3. −i = e

3πi
2 5.

√
45 exp(i arctan(−2))

7. If z = a + ib, then |z| =
√
a2 + b2 ≤ |a| + |b| using the fact that

a2 + b2 ≤ (|a|+ |b|)2.
9. Apply the triangle inequality. 11. Cube roots are eiπ/6 ≈ e.524i,
ei5π/6 ≈ e2.618i, and ei9π/6 ≈ e4.712i. The cubes of these numbers are, re-
spectively, e1.572i ≈ −0.0001+ i, e7.854i ≈ i, and 0.001+ i. 13. 2.197−0.02i
15. exp i(π

4
+ 2πk

4
) for k = 0, 1, 2, 3.

Chapter 2

Section 2.1
1. (a) cos(z)− z2+2z

(z+1)2
, z 6= −1 (b) e2z−z3 (2−3z2)−2z (c) (z2+1)(− sin z)−2z cos(z)

(z2+1)2

(d) tan z + z + z(sec2 z + 1) 3. (a) 2 − 8z3 (b) − sin z(1 + sin2 z) +

cos(z)(sin 2z) (c) −z sin(z) sin(z) (d) 2|z|2z−z 5. ∂z
∂z

= 1
2

[
∂
∂x

− i ∂
∂y

]
(x+

iy) = 1
2

+ 1
2

= 1, ∂z
∂z

= 1
2

[
∂
∂x

− i ∂
∂y

]
(x − iy) = 1

2
− 1

2
= 0, ∂z

∂z
=
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1
2

[
∂
∂x

+ i ∂
∂y

]
(x+ iy) = 1

2
− 1

2
= 0, ∂z

∂z
= 1

2

[
∂
∂x

+ i ∂
∂y

]
(x− iy) = 1

2
+ 1

2
= 1.

7. f ′′(x) = −eix = −f(x) and g′′(x) = −(cos(x) + sin(x)) = −g(x). 9.
sec2(z)−3e3z. 11. g(z) = z2z2/2+cos z 13. k(z) = |z|4/4+z cos z+zz4/4
15. cos z − ez 17. ∂

∂z
f(z) = 2z · ∂z

∂z
− 3z2 ∂z

∂z
= 0. The real part of f is

u(z) = u(x, y) = x2−y2−x3+3xy2. Finally, ∂2

∂z∂z
u = 1

2
∂2

∂z∂z
[z2+z2−z3−z3] =

1
2
∂
∂z

[2z − 3z2] = 0.

Section 2.2
1. (a) ∆f(z) = ( ∂2

∂x2 + ∂2

∂y2
)(x) = ∂2

∂x2x = 0 (b) ∆g(z) = ( ∂2

∂x2 + ∂2

∂y2
)(x3 −

3xy2) = 6x− 6x = 0 (c) ∆h(z) = ( ∂2

∂x2 + ∂2

∂y2
)(x2 + y2 − 2x2) = 2 − 2 = 0

(d) ∆k(z) = ( ∂2

∂x2 + ∂2

∂y2
)(ex cos(y)) = ex cos(y) − ex cos(y) = 0 3. (a)

v(z) = −ex cos(y) (b) v(z) = 3xy2 − x3 (c) v(z) = 1
2
e2y cos(2x) (d)

v(z) = x+ y.
5. The matrix has the form

A =

(
a b
−b a

)
,

with 〈a, b〉 a unit vector. Now one may calculate each side directly. 7. Not
unique: x2y2, x4y2 − y4x2 9. MatLab exercise.

Section 2.3
1. (a) iπ+ sin(1)− sin(−1) (b) 14

15
− i

3
+ cos(1 + i) (c) (e2+ie4)4−(e+ie2)4

4
+

e(−1 + e(1 − i) + ie3)) + ln
(
e+ie2+1
e2+ie4+1

)
3. 2πi 5.

∮
γ

1
z
dz = iπ and∮

µ
1
z
dz = −iπ 7. Suppose that γ : [0, 1] → C is the parametrization,

γ(0) = γ(1). Then,
∮
γ
f(z)dz =

∫ 1

0
f(γ(t))γ′(t)dt = F (γ(t))|10 = 0. 9.

Section 2.4
1.

J(P ) =

(
2 −2
2 2

)
=

(
2
√

(2) 0

0 2
√

(2)

)


1√
(2)

− 1√
(2)

1√
(2)

1√
(2)




3. Let α = cos(−1) + i sin(−1). Then, |α| = 1 and

J(P ) =

(
e2 cos(−1) −e2 sin(−1)
e2 sin(−1) e2 cos(−1)

)
=

(
e2 0
0 e2

)(
cos(−1) − sin(−1)
sin(−1) cos(−1)

)
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5. The Jacobian at P = (x, y) is

J(x, y) =

(
2x −2y
−2y −2x

)

=

(
4x2 + 4y2 0

0 4x2 + 4y2

)( 2x
4x2+4y2

− 2y
4x2+4y2

− 2y
4x2+4y2

− 2x
4x2+4y2

)

:= S(x, y)R(x, y) .

Observe S is a dilation matrix and R is a rotaion matrix with determinant
-1. 7. Let f be conformal. Let z(t) be a curve in the complex plane and
consider its image w(t) = f ◦ z(t). Calculate that

w′(t) =
1

2

(
∂f

∂x
− i

∂f

∂y

)
z′(t) +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
z′(t) .

If angles are preserved (as conformality dictates), then arg[w′(t)/z′(t)] must
be independent of argz′(t). Thus

1

2

(
∂f

∂x
− i

∂f

∂y

)
+

1

2

(
∂f

∂x
+ i

∂f

∂y

)
z′(t)

z′(t)
(∗)

has constant argument. As arg z′(t) varies, the point represented bgy (∗)
describes a circle with radius 1

2
[(∂f/∂x) + i(∂f/∂y)]. The argument cannot

be constant on this circle unless the radius vanishes. Thus we have

∂f

∂x
= −i∂f

∂y
.

This is the Cauchy-Riemann equations. So f is holomorphic. 9. By
Exercise 7, f is holomorphic. Thus ef is holomorphic using differentiation
by ∂/∂z. 11. MatLab exercise. 13. We calculate that

∂

∂w1
Φ = (2x, 2y)

and
∂

∂w1
Φ = (

√
2x−

√
2y,

√
2x+

√
2y) .

These two vectors, evaluated at the point (1, 0), are (2, 0) and (
√

2,
√

2). The
angle between these vectors is π/4.
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Section 2.5
1. (a) log(3

√
(2))− iπ

4
(b) log(2) + i5π

6
(c) log(2) + iπ

4
(d) log(2)− iπ

3

(e)−iπ
2

(f) log(3
√

(2))−iπ
4

(g) log(
√

(10))+i arctan(−3) (h) log(2
√

(10))+

i arctan(3) 3. (1 + i)1−i = (1 + i)e
π
4 e−i log(

√
(2)), i1−i = ie

π
2 , (1 − i)i =

e
π
4 ei log

√
(2), (−3)4−i = 34eπe−i log(3) 5. log |z| not well defined at 0 and

Arg(z) ambiguous. 7. C \ {x+ i0 : x ≤ e}

Chapter 3

Section 3.1
1. 1

2πi

∮
γ
z2−zdz = (γ(t))3

3
− (γ(t))2

2
|2π0 = 0 3. Let γ(t) = (3/2)eit, 0 ≤ t ≤ 2π.

Then

1

2πi

∮

γ

cot z dz =
1

2πi

∮

γ

1 − z + · · ·
z − z3/3! + · · · dz =

1

2πi

∮

γ

1

z
dz = 1 .

5. For any disc D ⊆ Ω, 0 =
∮
∂D
f(z)dz = i

∫ ∫
D
∂f
∂z
dxdy so ∂f

∂z
= 0 any disc

in Ω. Thus, f holomorphic in Ω. 7. γ deformable to a point in Ω. 9.
−2f(0).
11. 1

2πi

∮
γ

1
(ζ)(ζ−P )

dζ = 1
2

1
2πi

∮
γ

1
ζ−P dζ −

1
2

1
2πi

∮
γ

1
ζ
dζ = 1

2
− 1

2
= 0 6= f(P ) = 1

2

13. By deforming γ in U to γ̃(t) = z+cos(t)+i sin(t), we have 1
2πi

∮
γ

1
ζ−zdζ =

1
2πi

∮
γ̃

1
ζ−zdζ = 1

2πi

∮ 2π

0
i(cos(t)+i sin(t))

z+cos(t)+i sin(t)−zdt = i
2πi

∮ 2π

0
dt = 1

15. MatLab exercise. 17. Same as Exercise 16. The aggregate force across
the boundary is zero—flow into the region balances flow out of the region.

Section 3.2

Section 3.3
1. MatLab exercise. 3. MatLab exercise. 5. MatLab exercise.
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Chapter 4

Section 4.1
1.
∑∞

k=0
(−1)kz3(2k+1)

(2k+1)!
,
∑∞

k=0
(−1)k(z−π)3(2k+1)

(2k+1)!
3. We calculate that

h(z) =
z

z2 − 1

h′(z) =
−1 − z2

(z2 − 1)2

h′′(z) =
2z5 + 4z3 − 6z

(z2 − 1)4

h′′′(z) =
−6z4 − 36z2 − 6

(z2 − 1)4
.

Thus

h(2) =
2

3

h′(2) =
−5

9

h′′(2) =
28

27

h′′′(2) =
−246

81
.

It follows that

h(z) =
z

z2 − 1
=

2

3
− 5

9
(z − 2) +

14

27
(z − 2)2 − 41

81
(z − 2)3 + − · · · .

5. f = cp where c is some constant 7. Write p(z) = (z − z0)
2q(z) some

polyonomial q(z). 9. Let f be the uniform limit of fn’s Using the Cauchy

integral formula, z ∈ K, Γ the boundary of K, we have
∣∣∣f (m)
n (z)− f (m)(z)

∣∣∣ ≤
m!
2π

∮
Γ

∣∣∣fn(ζ)−f(ζ)
(ζ−z)m+1

∣∣∣ dζ Now, use the uniform convergence of fn to f to estimate

the numerator of the integrand. 11. By translating, assume p = 0 and by
scaling, we will assume r = 1. Consider f(z) = zM . 13. Write p(z) =
zk + ak−1z

k−1 + ak−2z
k−2 + · · · a1z + a0. Then

p(z) = zk
(

1 + ak−1
1

z
+ ak−2

1

z2
+ · · · + a1

1

zk−1
+ a0

1

zk

)
.
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If z is so large that
∣∣∣∣
1

z

∣∣∣∣ <
1

max0≤j≤k−1{|aj| + 1} · 1

10k
,

then the desired inequality is immediate. 15.
∑∞

k=0

(
z−p
r

)k
for r 6= 0,∞.

If r = 0,
∑∞

k=0 k!(z − p)k, r = ∞,
∑∞

k=0
(z−p)k

k!
17. We know that

1

1 − α
= 1 + α+ α2 + α3 + α4 + · · · .

Thus
1

1 + α
= 1 − α+ α2 − α3 + α4 −+ · · · .

Taking the derivative in α gives

1

(1 + α)2
= 1 − 2α + 3α2 − 4α3 · · · + − .

Now multiply both sides by (1 − α) to obtain

1 − α

(1 + α)2
= 1 − 3α + 5α2 − 7α3 + 9α4 − + · · · .

For the last step, we make the substitution α = z3. The end result is

1 − z2

(1 + z2)2
= 1 − 3z2 + 5z4 − 7z6 + 9z8 −+ · · · .

19. MatLab exercise. 21. f(z) = Ce2z any constant C.

Section 4.2
1. Apply 1 of 4.2.3 3. If R is the zero set of an entire function, there
exists an accumulation point hence f(z) ≡ 0 contradicting f not identically
zero. For the second part, take, e.g., f(x, y) = y. 5. Z(fg) = P ∪ Q.
But we can’t say anything about P ∩ Q or P \ Q. 7. Fix z = eiθ,
then multiplying the denominator by a unimodular constant |z|, |ϕc(z)| =∣∣∣ eiθ−c1−ceiθ

∣∣∣ =
∣∣∣ eiθ−c
eiθ−c

∣∣∣ = 1 If |z| < 1, then using ϕc(c) = c−c
1−|c|2 = 0. Lastly,

ϕc(ϕ−c(z)) =
z+c
1+cz

−c
1−c z+c

1+cz

= z−|c|2z
1−|c|2 = z 9. f(z) = z on the disc. 11. 13. Ze-

ros are the points of stationary flow. The uniqueness theorem is saying that
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if we know the flow through the real axis, then we know the flow everywhere.

Chapter 5

Section 5.1
1. (a) Pole (b) Removable Singularity (c) Pole. (d) Pole (e)Essential Singu-
larity (f) Removable Singularity (g) Essential Singularity. 3. Yes to both.
5. f has an essential singularity. 7. 9. The removable singularity sig-
nifies that the fluid flows smoothly across the point. There is no irregular
behavior of the fluid. 11. The essential singularity signifies that the fluid
is turbulent near the indicated point.

Section 5.2
1.
∑∞

n=0
z−n

n!
3. − 1

z−π
2

+ 1
3
(z − π

2
) + 24

3!5!
(z − π

2
)3 + 3·27

3!3!7!
(z − π

2
)5 + . . . 5.

The function f has infinitely many terms of negative index in its Laurent ex-
pansion. It follows, by a calculation, that 1/f will also have infinitely many
terms of negative index. An alternative point of view is this: (i) If f has a
pole at 0 then 1/f will have a zero at 0. If f has a removable singularity
at 0 then 1/f will have either a removable singularity or a pole. Thus the
reciprocal of an essential singularity is an essential singularity. 7. Can-
cellation of terms z−k for all k ≤ −M some M ∈ N. Check second part 9.
f(z) = 1

z
+ e

1
z , g(z) = −e 1

z

Section 5.3
1. We calculate

z − sin z

z6
=
z − [z − z3/3! + z5/5! − z7/7! + − · · · ]

z6
=

1

3!
z−3− 1

5!
z−1+

1

7!
z−+ · · · .

3.
∑∞

n=0
(−1)nz−(2n+1)

(2n+1)!
5. ef(z) has an essential singularity at 0. 7.

If N(f) = number of poles of f , Z(f) = number of zeroes of f , then
N(f ± g) ≤ N(f)+N(g), and N(fg) ≤ N(f)+N(g). N(f

g
) ≤ N(f)+Z(g).

9. (a) Pole (b) Essential singularity (c) Pole (d) Essential singularity (e)
Removable singularity (f) Pole (g) Pole 11. Let A = {z ∈ C : 1 < |z| < 2}.
The series

∑∞
j=−∞ zj/j! converges on all of the boundary of A. The series∑1

j=−∞ zj converges on A but on none of the inner boundary of A. The

series
∑∞

1 (z/2)j converges on all of A but on none of the outer boundary.
The series

∑∞
1 2−2jz2j +

∑−1
j=−∞ z2j+1 converges on all of A but on none of
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the boundary. 13.− 1
z−π

2
+ 1

3
(z − π

2
) + 24

3!5!
(z − π

2
)3 + 3·27

3!3!7!
(z − π

2
)5 + . . ..

Section 5.4
1. 1 3. 1 5. 1 7. No conclusion is possible. Let f(z) = z + 1/z
and g(z) = z2 + 2/z. 9. If k 6= −1 then the residue is 0, if k =
−1 then the residue is 1. 11. (a) 1 (b) 1 + e−1

sin(−1)
− eπ

1+π
− e−π

1−π (c)

− cot(2i)
16i

+ 1
28

+ 1
(π−6i)2+64

+ 1
(−π−6i)2+64

+ 1
(2π−6i)2+64

+ 1
(−2π−6i)2+64

(d) 1
e
+ 1

2e2
− 1

2

(e) 2e−3

−3+3i
− e−4

(−4+3i)2
13. If f is bounded in a deleted neighborhood of P

then (since g is continuous) g ◦f will be bounded in a neighborhood of P . So
g ◦ f will have a removable singularity. If f has a pole at P , then it does not
follow that g ◦ f has a pole. Take, for example f(z) = 1/z and g(z) = 1/z.
If f has an essential singularity at P , then (by examining Laurent series) we
can see that g ◦ f will have an essential singularity at P .

Section 5.5
1. Use the contour consisting of γ1(t) = Reit, 0 ≤ t ≤ π and γ2(t) =
−R+R(t− π)/π, π < t ≤ 2π. Then the poles of 1/(1 + z4) inside the curve
are at eiπ/4 and e3iπ/4. The respective residues are e−3πi/4/4 and e−pii/4/4.
The integral over γ1 vanishes as R→ ∞ and the integral over γ2 tends to the
value that we seek. It is π/

√
2. 3. Use the four-part contour consisting of

γ1(t) = t, 1/R ≤ t ≤ R, γ2(t) = Reit, 0 ≤ t ≤ π, γ3(t) = t, −R ≤ t ≤ −1/R,
and γ4(t) = (1/R)e−it, π ≤ t ≤ 2π. The integrals over γ1 and γ4 are easily
seen to tend to 0 as R→ +∞. The integral over γ1 tend to the value I that
we seek. The integral over γ3 is calculated to be

∮

γ3

z1/3

1 + z2
dz =

∫ −1/R

−R

t1/3

1 + t2
dt =

∫ 1/R

R

(−t)1/3

1 + t2
(−1) dt =

∫ R

1/R

t1/4eiπ/3

1 + t2
dt .

The only pole inside the contour is at i, and the residue there is e−πi/3/2.
We conclude that

(1 + eiπ/3)I = 2πi(e−iπ/3/2) .

Solving, we find that I = π/
√

3. 5. Use the contour consisting of γ1(t) =
Reit, 0 ≤ t ≤ 2π/3, γ2(t) = (R + 2π/3 − t)e2πi/3, 2π/3 < t ≤ 2π/3 +R, and
γ3(t) = t− 2π/3−R, 2π/3 +R < t ≤ 2π/3 + 2R. The integral over γ1 tends
to 0. The integral over γ3 tends to I, the value that we seek. The integral
over γ2 is, after a change of variable, equal to e−2πi/3 times I. There is a
single pole inside the contour at eiπ/3 and the residue there is e−2πi/3/3. In
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sum,

(1 − e2πi/3)I = 2πi · e
−2πi/3

3
.

Solving, we find that I = 2π/(3
√

3). 7. We use the same contour as in
Exercise 1. As before, the integral over the upper part of the contour tends
to 0. The integral over the lower part of the contour tends to the desired real
integral value I. The poles of z2/(1 + z4 inside the contour are at eiπ/4 and
e3πi/4 and the respective residues are e−iπ/4/4 and e−3πi/4/4. In sum,

I = 2πi

(
e−iπ/4

4
+
e−3πi/4

4

)
=
π
√

2

2
.

9. Use the contour consisting of γ1(t) = Reit, 0 ≤ t ≤ π and γ2(t) =
−R + R(t − π)/π, π < t ≤ 2π. Then the poles of z2/(1 + z6) inside the
curve are at eiπ/6, eiπ/2, and e5πi/6. The respective residues are −i/6, i/6,
and −i/6. The integral over γ1 vanishes as R → ∞ and the integral over γ2

tends to the value that we seek. It is π/3. 11. Similar to Example 5.5.4 in
the text.

Section 5.6
1. The function f has a pole of order k at ∞ if f(1/z) has a pole of order k
at 0. If g has a pole of order k at ∞ then 1/g has a zero of order k at ∞. The
function 1/g(1/z) then has a zero of order k at 0. 3. Using the method
of partial fractions, and some simple changes of variable, one is reduced to
considering the two particular rational functions

r1(z) =
1

z
and r2(z) =

1

1 + z2
.

The assertion in these two cases may be calculated directly. 5. The func-
tion f(z) = 1/ sin(iz) satisfies this condition. 7. Let {pj} be the collection
of poles of f . Then these are the zeros of the function g = 1/f . If there is
an interior accumulation point then the function g must be identically zero.
That is a contradiction.



SOLUTIONS TO ODD-NUMBERED EXERCISES 345

Chapter 6

Section 6.1
1. Say p(z) = zn + an−1z

n−1 + · · · + a0. Then, for R large for |z| = R,∣∣∣p′(z)p(z)

∣∣∣ ≤ n

3. Use the hint and the fact that the convex hull of the zeroes is the intersec-
tion of the half-planes containing the zeroes. 5. Set g(z) = f(z) − f(P ),
then g is not one to one on any neighborhood of P thus the same is true of f .
7. If zi are the roots of pt0 there is an r st D(zi, r) ∩ D(zj , r) = ∅ if i 6= j.

Then, 1 = 1
2πi

∫
D(zi,r)

p′t(z)
pt(z)

dz if |t− t0| < εi, taking ε = mini εi if |t − t0| < ε,

then pt has the same number of zeros of pt0 . 9. MatLab exercise. 11.
MatLab exercise.

Section 6.2
1. Let f : U → C with D(P, r) ⊂ U . Suppose f has infinitely z in D(P, r)
with f(z) = 0,then these zeros have an accumulation point z0 ∈ D(P, r). The
f ≡ 0 on some neighborhood of z0 so, f identically 0 on D(P, r) a contradic-

tion. 3. (ez)′

ez
= 1 giving 1

2πi

∫
D(0,r)

(ez)′

ez
dz = 0 5. f(D) open connected

with 0 6∈ f(D) so f ′

f
holomorphic. Setting g(z) = log(f(0)) +

∫ z
0
f ′(z)
f(z)

dz sat-

isfies the differential equation and it’s easy to verify that g(z) = log(f(z))
for z ∈ D. 7. Since f and g uniformly close on ∂D(P, r), we can pick
0 < ε << 1 with | g

f
− 1| < ε

2πrmax∂D(P,r)(
f
g
)′

on ∂D(P, r). Now 1
2πi

∫
∂D(P,r)

f ′

f
−

g′

g
= 1

2πi

∫
∂D(P,r)

(
f
g

)′
g
f

= number zeros g - number zeroes f in D(P, r) but

the absolute value of the above expression is less than ε << 1 hence it must
be zero. 9. Fix a point z0 in U and, for any z ∈ U , define

log f(z) =

∫

γ

f ′(z)

f(z)
dz .

Here γ is any curve connecting z0 to z. The definition is unambiguous, and
independent of the choice of γ, by the Cauchy integral theorem.

Section 6.3
1. 3 zeros 3. If f is the limit, then if U open, U ∩ R 6= ∅, then f ≡ 0 on U
hence, f ≡ 0. 5. Set g(z) = 1 + z, |ez − g(z)| ≤ e− 2 < 1 ≤ |g(z)| on ∂D,
apply Rouche’s theorem. 7. (a) 8 (b) 1 (c) 9. Note that the convergence
of the power series for sin z is only guaranteed to be uniform on compact sets
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where the partial sums are non-zero. Also, the partial sums are not nowhere
vanishing. 11. MatLab exercise.

Section 6.4
1. |f(z)| ≤ |g(z)| on U 3. z(z − 1

2
)(z + 1

2
) 5. (a) 1−z

1+z
= 1−w

1+w
iff

(1− z)(1 +w) = (1 + z)(1−w) iff 2z = 2w. 7. |g(z)| = |eRef(z)eiImf(z)| =
eRef(z) hence max of |g(z)| occurs when max occurs for Ref(z) since the real
value function ex is increasing. Apply the maximum principle to g(z). For
Im f(z) consider g(z) = e−if(z) 9. By subtracting off a polynomial of degree
k, we may suppose that f vanishes to order k at the origin. Now examine the
function g(z) = f(z)/zk and use the hypothesis to apply Liouville’s theorem.
11. MatLab exercise.

Section 6.5
1. Let f : U → U satisfy f(i) = 0. Then ψ ◦ fψ−1 satisfies the hypotheses
of the Schwarz lemma as stated in the text. The desired conclusions on U
then follow. 3. The function f(z) = zk satisfies f : C → C, f is surjective,
and f(0) = 0. Yet no estimate in the vein of the Schwarz lemma is satisfied.
The reason for this failure is that the plane C is not conformally equivalent
to any bounded domain. A nearly equivalent reason is that the plane does
not support a conformally invariant metric. 5. Certainly |g′(0)| ≤ 1 by
the classical Schwarz lemma in the text. Now make a substitution for the
independent variable to obtain the desired result. 7. Let δ > 0 be the
distance of P to the boundary of U . Then the disc D(P, δ) ⊆ U . Define
g(ζ) = (1/M)f(P + δζ). Then g : D(0, 1) → D(0, 1). Hence Schwarz applies
and |g′(0)| ≤ 1. Unraveling the notation we find that |f ′(P )| ≤ M/δ. 9.
MatLab exercise.

Chapter 7

Section 7.1
1. A conformal self-map of the plane has the form ϕ(z) = az + b. So
two points will determine a and b. 3. First assume that the mapping is
bounded near 0 and 1. By the Riemann removable singularities theorem, any
conformal self-map of this region will extend holomorphically across 0 and
1. So this is a conformal self-map of the plane that takes {0, 1} to {0, 1}. If
it takes 0 to 0 then it must be the identity. If it takes 0 to 1 then it must be
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ϕ(z) = 1 − z. So there are two such conformal mappings. If the mapping is
unbounded near 0 then it must have a simple pole at 0. Hence the mapping
is z 7→ 1/z. If the mapping is unbounded near 1 then it must have a simple
pole at 1. So the mapping is z 7→ 1/(1− z). 5. We know that f(iπ/2) = i.
If w is near i then we may write w = reiθ with θ between π/3 and 2π/3 and
1/2 < r < 2. Thus log r is well defined as a real number and log r + iθ is
f−1(i). Of course there are other inverse images of the form log r+ i(θ+2π).
7. The image is the set of points of the form ex+iy = ex · eiy for 0 < x < 1.
Thus the image annulus is A = {w ∈ C : 1 < |w| < e}. The function is not
onto because x+ iy and x+ i(y + 2kπ) have the same image. The function
is locally one-to-one because it has nonvanishing derivative. 9. The map
ϕ(z) = (i− z)/(i+ z) maps the upper half-plane to the unit disc. One may
then calculate that it maps the first quadrant to the upper half disc. Finally,
the upper half-plane is conformally equivalent to the first quadrant by way
of a square root and a rotation. 11. MatLab exercise.

Section 7.2
1. We calculate: ∣∣∣∣

z − a

1 − az

∣∣∣∣
2

< 1

iff
|z − a|2 < |1 − az|2

iff
|z|2 − 2Reaz + |a|2 < 1 − 2Reaz + |az|2

iff
|z|2(1 − |a|2) < (1 − |a|2)

iff
|z|2 < 1 .

3. We may as well assume, after composition with suitable Möbius transfor-
mations, that a1 = 0 and b1 = 0. But then Schwarz’s lemma tells us that
the function must be a rotation. If |a2| 6= |b2| then a rotation cannot take
a2 to b2. 5. These will be all maps of the form ψ ◦ ϕ, for ϕ a conformal
self-map of the disc. 7. By the Riemann removable singularities theorem,
such a conformal map will continue analytically across the origin. So the
map is a conformal self-map of the disc that fixes the origin. Thus it must
be a rotation.
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9. MatLab exercise.

Section 7.3
1. We solve

w =
i− z

i+ z
w(i+ z) = i− z

z(w + 1) = i− iw

z = i
1 − w

1 + w
.

3. Map V to the upper half-plane by way of translation and a rotation. Thus
reduce the question to classifying all the conformal self-maps of the upper
half-plane. 5. A linear fractional transformation can be written as

z 7−→ αz + β

γz + 1
.

Thus there are three free parameters. It takes three points to uniquely de-
termine such a transformation. 7. The linear fractional transformations
that preserve the unit circle are of course the Möbius transformations

z 7−→ z − a

1 − az
,

the rotations
z 7−→ eiθ · z ,

and inversion

z 7−→ 1

z
.

And of course we must include compositions of these. The linear fractional
transformations that preserve the real line can now be obtained by compo-
sition with the Cayley transform. 9. If ` maps ∞ to a finite point in the
plane and ` maps every point of L to a finite point in the plane then the
image is a circle. But if some point gets mapped to ∞ then the image is a
line. 11. MatLab exercise.

Section 7.4
1. There are many reasons. One is that Liouville’s theorem rules out the
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possibility of a bounded entire function (that is, a map from the plane to
the disc). There are also elegant answers in terms of invariant metrics. 3.
If there were two such maps, say ϕ and ϕ̃, then ψ ≡ ϕ−1 ◦ ϕ̃ would be a
conformal self-map of the disc that takes 0 to 0. Thus ψ must be a rotation.
If the derivative at the origin is positive it is then the identity. 5. Look at
the image of the inner circle:

1

2
eiθ 7−→ 1

2
eiθ + 2e−iθ =

5

2
cos θ − 3

2
sin θ .

This is plainly an ellipse. A similar calculation shows that the outer circle
is mapped to the same ellipse. The answer to the remainder of the question
is straightforward. 7. Map the quarter-plane to the half-plane by squar-
ing. Then map the half-plane to the disc with the Cayley map. 9. Map
the strip to an annulus with an exponential. The conformal self-maps of an
annulus are well known (that is, rotations and inversion).

Section 7.5
1. The mappings z 7→ 2z and z 7→ 2/z both map A1 to A−2 and take 1 to 2.
They also both take −1 to −2. It takes three points to uniquely determine
a conformal mapping of these domains. 3. Since circles and lines go to
circles and lines, the image could be another (conformal) annulus or it could
be a disc. But the mapping to a disc could not be one-to-one, so it must
be an annulus. 5. It is an annulus with radii e and e2. It will not be
one-to-one; in fact it is infintely many to one. 7. Refer to the answer to
Exercise 1.
9. MatLab exercise.

Section 7.6

Chapter 8

Section 8.1 No exercises.

Section 8.2 No exercises.

Section 8.3 No exercises.

Section 8.4
1. Map the first quadrant to the upper half-plane by squaring. Map the
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upper half-plane to the disc with the Cayley map. 3. If the initial heat
distribution on the boundary is not identically zero then let P ∈ ∂D be
a point where the initial temperature is positive. By the solution of the
Dirichlet problem, points in the disc near P will have positive temperature.
That is a mathematical reason for the assertion. A physical reason is that
the system will have nonzero potential energy. 5. The steady state heat
distribution is Φ(reiθ) = r sin θ. This can also be expressed as Φ(z) = z−z

2
.

7. The steady state heat distribution is Φ(reiθ) = r5 cos 5θ. This can also
be expressed as Φ(z) = z5+z5

2
. 9. The fact that the initial data is smooth

means that there are no jumps or abrupt changes in the data. Since heat
at a given point is an average of nearby temperatures, we would expect this
property to propagate to the interior. 11. MatLab exercise. 13. Reader
should supply details.

Chapter 9

Section 9.1
1. u1 + iv = u2 + iv = f holomorphic. By the Cauchy Riemann equations,
∂u1

∂x
= ∂v

∂y
= ∂u2

∂x
so u1 = u2 + c(y), c(y) a function of y. Applying the Cauchy

Riemann equations again gies us that ∂c
∂y

= 0 so c is constant. 3. u ≡ 0
on each connected component with non-empty intersection with V . 5.
∆u = ex(cos y − cos y) = 0. v = ex sin y.

7. ∆u2 = 2

[(
∂u
∂x

)2
+
(
∂u
∂y

)2
]

+ u∆u = 2

[(
∂u
∂x

)2
+
(
∂u
∂y

)2
]
, since u harmonic.

Since u2 harmonic,
(
∂u
∂x

)2
= −

(
∂u
∂y

)2

, hence
(
∂u
∂x

)2
= 0 and

(
∂u
∂y

)2

= 0, so
∂u
∂x

= 0 = ∂u
∂y

which means u constant. 9. ∆|u|p = p(p−1)|u|p−2(ux+uy)+

p|u|p−1∆u = p(p − 1)|u|p−2∇u
11. If f holomorphic, then using ∆f = 0 and ∂f

∂z
0: ∆ log |f | = − 1

|f |2 [4
∂f
∂z

∂f
∂z

]+
1
|f |∆f = 0
13. MatLab exercise.

Section 9.2

1. u(x, y) = x+ iy on D(0, 1). Since u harmonic, |u(P )| =

∣∣∣∣ 1
2π

∫ 2π

0
u(P+

reit)dt

∣∣∣∣ ≤ 1
2π

∫ 2π

0

∣∣∣∣u(P + reit)

∣∣∣∣dt 3. 0 = u(0) = 1
2π

∫ 2π

0
ei sin t cos(t)dt =
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1
2πi
ei sin t

∣∣2π
0

= 0 5. Since u harmonic, |u(P )|2 ≤
(∫ 2π

0
u(P + reit) dt

2π

)2

≤
∫ 2π

0
|u(P + reit)|2 dt

2π
by Jensen’s inequality. 7. Differentiate the first alter-

native formulation with respect to r. 9. MatLab exercise. 11. MatLab

exercise.

Section 9.3
1. This is an elementary calculus exercise and we omit the details. 3. Let
z = reiθ ∈ D and ζ = eiψ ∈ ∂D. We have

Re

[
1

2πi

1

ζ − z
dζ − 1

4π

]
= Re

[
1

2πi

1

eiψ − reiθ
ieiψ dψ

]

=
1

2π
Re

1 − re−i(θ−ψ)

|1 − rei(θ−ψ)|2 − 1

4π
.

Applying some algebraic simplifications we find that this last equals

1

4π

[
1 − r2

|1 − rei(θ−ψ)|2

]
=

1

2
Pr(e

i(θ−ψ)) .

5. The heat value at the origin will be the average of the boundary values,
or zero. On the upper half of the disc, the positive boundary values will
exert the greatest influence and the temperatures will be positive. On the
lower half of the disc, the the negative boundary values will exert the greatest
influence and the temperatures will be negative. 7. Now sin 2t = 1

2i
[e2it −

e−2it]. Hence the solution of the Dirichlet problem for this boundary data
is Φ(z) = 1

2i
[z2 − z2]. We write cos2 t = [1 + cos 2t]/2 = 1

2
+ 1

4
[e2it + e−2it].

Hence the solution of the Dirichlet problem for this boundary data is Φ(z) =
1
2

+ 1
4
[z2 + z2].

Chapter 10

Section 10.1
1.

(a)

f̂ (j) =

{
−2π

ij
+ 2

j2
j 6= 0

4π2

3
j = 0

(b)

f̂(j) =

{
1
2

j = 2,−2
0 else
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(c) The coefficient b4 = 3. All other aj and bj are 0.

(d) f̂(j) = 1
2π(1−ij)[e

1−2πij − 1]

(e)

f̂(j) =





1
4i

j = 2
− 1

4i
j = −2

0 else

(f)

f̂(j) =





−
(
π
2

+ 1
4

)
j = −1

−1 j = 0
−
(
−π

2
+ 1

4

)
j = 1

1
j2−1

else

(g)

f̂(j) =





1
2i

j = 1
− 1

2i
j = −1

− 1
4i

j = 3
1
4i

j = −3
0 else

3. 4
3

+
∑

n 6=0
32
π2n2 e

πin
2 5. 1 + 16

i
Im(ln[(1 + ζ)(1 − ζ)]) 7. − cos(t)

2
+ sin(t)

2

Section 10.2
1. −2π√

2−i
√

2
exp

(
ξπ

√
2(1 + i)

)
3. Imitate Example 59 in the text.

Section 10.3 No exercises.

Section 10.4
1. (a) 2

s3
(b) 2

s2+4
(c) s

s2+9
(d) 1

s−4 log(ε)
(e) s2−16

(s2+16)2
(f) 1

(s+1)2+1
3. (f(0) +

1
2
) cos(

√
3t) +

(
f ′(0)√

3
+ 1

2
√

3

)
sin(

√
3t) + 1

2
et

Chapter 11

Section 11.1
1. We have

an =
1

π

∫ π

−π
π cos nxdx =

{
(−1)j if n = 2j − 1
0 if ∗ n = 2j ,
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bn =
1

π

∫ π

−π
π sinnxdx =

{ − 1
n

if n = 2j − 1
(−1)j+1

n
+ 1

n
if n = 2j ,

a0 =
1

2π

∫ π

−π
π dx =

3

4
.

3. We have

an =
1

π

∫ π

0

sinx cos nxdx = · · · =
1

1 − n2

1

π
[(−1)n+1 + 1] ,

bn =
1

π

∫ π

0

sinx sinnxdx = · · · = 0 ,

a0
1

2π

∫ π

0

sinx dx = · · · =
1

π
.

5. (a) a0 = π, an = 0, bn = 0 (b) a0 = 0, an = 0, bn = 0 for n 6= 1, b1 = 1
(c) a0 = 0, an = 0 for n 6= 1, a1 = 1, bn = 0 (d) a0 = 1 a1 = 1, b1 = 1, all
other coefficients are 0 7. We calculate

a0 =
1

2π

[∫ 0

−π
−π dx+

∫ π

0

x dx

]
= · · · = −π

4
,

an =
1

π

[∫ 0

−π
−π cos nxdx+

∫ π

0

x cosnxdx

]
= · · · =

1

π

[
(−1)n

n2
− 1

n2

]
,

bn =
1

π

[∫ 0

−π
−π sinnxdx+

∫ π

0

x sinnxdx

]
= · · · =

1

n
+

2(−1)n+1

n
.

Thus the Fourier series is

f(x) ≈ −π
4

+

∞∑

n=1

(
1

π

[
(−1)n

n2
− 1

n2

])
cosnx+

∞∑

n=1

(
1

n
+

2(−1)n+1

n

)
sin nx .

At x = −π, the cosine series is

∞∑

n=1

1

π

[
1

n2
− (−1)n

n2

]
.

This series converges. The sine series is

∞∑

n=1

[
1

n
+

2(−1)n+1

n

]
· 0 = 0 .
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At x = π the result is the same. It may be proved that at both these
endpoints the series converges to a number which is not equal to the actual
value of the function. 9. Straightforward calculation. 11. We calculate

a0 =
1

2π

∫ π

−π
cos

x

2
dx = · · · =

2

π
,

an =
1

π

∫ π

−π
cos

x

2
cosnxdx = · · · =

4

π
· (−1)n

1 − 8n2
,

bn =
1

π

∫ π

−π
cos

x

2
sinnxdx = 0 .

This last is true because sinnx is odd while cosx/2 is even hence their prod-
uct is even. In summary

f(x) ≈ 2

π
+

∞∑

n=1

4

π
· (−1)n

1 − 8n2
cos nx .

13. We have

sin 3x = sinx cos 2x+cos x sin 2x = sinx(cos2 x− sin2 x)+cos x(2 sin x cos x)

= sin x(cos2 x− sin2 x) + cosx(2 sin x cos x) = 3 sin x− 3 sin3 x− sin3 x .

Hence sin3 x = 3
4
sinx − 1

4
sin 3x. The proof of cos3 x = 3

4
cos x + 1

4
cos 3x is

nearly identical. The statement about Fourier series follows from the unique-
ness of the Fourier series expansion. 15. For Fourier series on the interval
[−L,L], a simple change of variables shows that

a0 =
1

2L

∫ L

−L
f(x) dx ,

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx ,

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx .

Then the given formula is a direct calculation. 17. After a change of
variables, we may as well suppose that the given circle is the circle of center
0 and radius 1. But then any harmonic function as described is spanned
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by the functions 1, zn, zn. Each of these functions satisfies the stated “mean
value property,” hence so does the harmonic function. 19. The mapping
z 7→ Rz sends the disc D(0, 1) to the disc D(0, R). Thus the given assertions
are a simple change of variable. 21. MatLab exercise. 23. We have

(f ∗ g)̂ (n) =
1

2π

∫ π

−π

1

2π

∫ π

−π
f(x− t)g(t) dt e−inx dx

=
1

2π

∫ π

−π

1

2π

∫ π

−π
f(x− t)g(t) dt e−in(x−t)ξe−int dx

=
1

2π

∫ π

−π

1

2π

∫ π

−π
f(x− t)e−in(x−t) dx g(t)e−int dt

=
1

2π

∫ π

−π

1

2π

∫ π

−π
f(x)e−inx dx g(t)e−int dt

=
1

2π

∫ π

−π
f(x)e−inx dx

1

2π

∫ π

−π
g(t)e−int dt

= f̂ (n) · ĝ(n) .

25. MatLab exercise. 27. MatLab exercise. 29. These results follow
from the uniqueness of Fourier series. 31. Imitate the text.

Chapter 12 No exercises.





Glossary of Terms from
Complex Variable Theory and
Analysis

This glossary contains all the terms from complex variable theory
that are introduced in this text. But it contains a number of
other common terms from the subject as well. We hope that the
comprehensive nature of this collection of terms will make it more
useful.

accumulation point Let a1, a2, . . . be points in the complex plane. A point
b is an accumulation point of the an if the an get arbitrarily close to b. More
formally, we require that for each ε > 0 there exists an N > 0 such that when
n > N then |an − b| < ε.

analytic continuation The procedure for enlarging the domain of a holo-
morphic function.

analytic continuation of a function If (f1, U1), . . . , (fk, Uk) are function
elements and if each (fn, Un) is a direct analytic continuation of (fn−1, Un−1),
n = 2, . . . , k, then we say that (fk, Uk) is an analytic continuation of (f1, U1).

analytic continuation of a function element along a curve An analytic
continuation of (f, U) along the curve γ is a collection of function elements
(ft, Ut), t ∈ [0, 1], such that

1) (f0, U0) = (f, U);

357
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2) For each t ∈ [0, 1], the center of the disc Ut is γ(t), 0 ≤ t ≤ 1;

3) For each t ∈ [0, 1], there is an ε > 0 such that, for each t′ ∈ [0, 1]
with |t′ − t| < ε, it holds that

(a) γ(t′) ∈ Ut and hence Ut′ ∩ Ut 6= ∅;

(b) ft ≡ ft′ on Ut′ ∩ Ut (so that (ft, Ut) is a direct analytic
continuation of (ft′, Ut′)).

annulus A set of one of the forms {z ∈ C : 0 < |z| < R} or {z ∈ C : r <
|z| < R} or {z ∈ C : r < |z| <∞}.

area principle If f is schlicht and if

h(z) =
1

f(z)
=

1

z
+

∞∑

n=0

bnz
n

then
∞∑

n=1

n|bn|2 ≤ 1.

argument If z = reiθ is a complex number written in polar form then θ is
the argument of z.

argument principle Let f be a function that is holomorphic on a domain
that contains the closed disc D(P, r). Assume that no zeros of f lie on
∂D(P, r). Then, counting the zeros of f according to multiplicity,

1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ = # zeros of f inside D(P, r).

argument principle for meromorphic functions Let f be a holomorphic
function on a domain U ⊆ C. Assume that D(P, r) ⊆ U , and that f has
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neither zeros nor poles on ∂D(P, r). Then

1

2πi

∮

∂D(P,r)

f ′(ζ)

f(ζ)
dζ =

p∑

n=1

nn −
q∑

k=1

mk,

where n1, n2, . . . , np are the multiplicities of the zeros z1, z2, . . . , zp of f in
D(P, r) and m1,m2, . . . ,mq are the orders of the poles w1, w2, . . . , wq of f in
D(P, r).

associative law If a, b, c are complex numbers then

(a+ b) + c = a+ (b+ c) (Associativity of Addition)

and
(a · b) · c = a · (b · c). (Associativity of Multiplication)

assumes the value β to order n A holomorphic function assumes the value
β to order n at the point P if the function f(z)−β vanishes to order n at P .

barrier Let U ⊆ C be an open set and P ∈ ∂U. We call a function b : U → R
a barrier for U at P if

(a) b is continuous;

(b) b is subharmonic on U ;

(c) b
∣∣
∂U

≤ 0;

(d) {z ∈ ∂U : b(z) = 0} = {P}.

beta function If Re z > 0,Rew > 0, then the beta function of z and w is

B(z,w) =

∫ 1

0

tz−1(1 − t)w−1 dt.

Bieberbach conjecture This is the problem of showing that each coeffi-
cient an of the power series expansion of a Schlicht function satisfies |an| ≤ n.
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In addition, the Köbe functions are the only ones for which equality holds.

biholomorphic mapping See conformal mapping.

Blaschke condition A sequence of complex numbers {an} satisfying

∞∑

n=1

(1 − |an|) <∞

is said to satisfy the Blaschke condition.

Blaschke factor This is a function of the form

Ba(z) =
z − a

1 − az

for some complex constant a of modulus less than one. See also Möbius
transformation.

Blaschke factorization If f is a bounded holomorphic function or, more
generally, a Hardy space function on the unit disc then we may write

f(z) = zm ·
{ ∞∏

n=1

−an
|an|

Ban(z)

}
· F (z).

Here m is the order of the zero of f at z = 0, the points an are the zeros
of f (counting multiplicities), and F is a nonvanishing Hardy space function.

Blaschke product If {an} satisfies the Blaschke condition then the infinite
product

∞∏

n=1

−an
|an|

Ban(z)

converges uniformly on compact subsets of the unit disc to define a holomor-
phic function B on D(0, 1). The function B is called a Blaschke product.

Bohr-Mollerup theorem Suppose that φ : (0,∞) → (0,∞) satisfies

(a) log φ(x) is convex;
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(b) φ(x+ 1) = x · φ(x), all x > 0;

(c) φ(1) = 1.

Then φ(x) ≡ Γ(x). Thus Γ is the only meromorphic function on C satisfying
the functional equation zΓ(z) = Γ(z + 1),Γ(1) = 1, and which is logarithmi-
cally convex on the positive real axis.

boundary maximum principle for harmonic functions Let U ⊆ C be
a bounded domain. Let u be a continuous function on U that is harmonic on
U . Then the maximum value of u on U (which must occur, since U is closed
and bounded—see [RUD1], [KRA2]) must occur on ∂U.

boundary maximum principle for holomorphic functions Let U ⊆ C
be a bounded domain. Let f be a continuous function on U that is holomor-
phic on U . Then the maximum value of |f | on U (which must occur, since
U is closed and bounded—see [RUD1], [KRA2]) must occur on ∂U.

boundary minimum principle for harmonic functions Let U ⊆ C be a
bounded domain. Let u be a continuous function on U that is harmonic on
U . Then the minimum value of u on U (which must occur, since U is closed
and bounded—see [RUD1], [KRA2]) must occur on ∂U.

boundary uniqueness for harmonic functions Let U ⊆ C be a bounded
domain. Let u1 and u2 be continuous functions on U which are harmonic on
U . If u1 = u2 on ∂U then u1 = u2 on all of U .

bounded on compact sets Let F be a family of functions on an open set
U ⊆ C. We say that F is bounded on compact sets if for each compact set
K ⊆ U there is a constant M = MK such that for all f ∈ F and all z ∈ K
we have

|f(z)| ≤M.

bounded holomorphic function A holomorphic function f on a domain
U is said to be bounded if there is a positive constant M such that

|f(z)| ≤M
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for all z ∈ U .

Carathéodory’s theorem Let ϕ : Ω1 → Ω2 be a conformal mapping. If
∂Ω1, ∂Ω2 are Jordan curves (simple, closed curves) then ϕ (resp. ϕ−1) ex-
tends one-to-one and continuously to ∂Ω1 (resp. ∂Ω2).

Casorati-Weierstrass theorem Let f be holomorphic on a deleted neigh-
borhood of P and supposed that f has an essential singularity at P . Then
the set of values of f is dense in the complex plane.

Cauchy estimates If f is holomorphic on a region containing the closed
disc D(P, r) and if |f | ≤M on D(P, r), then

∣∣∣∣
∂k

∂zk
f(P )

∣∣∣∣ ≤
M · k!
rk

.

Cauchy-Goursat theorem Any function that has the complex derivative
at each point of a domain U is in fact holomorphic. In particular, it is
continuously differentiable and satisfies the Cauchy-Riemann equations.
Cauchy integral formula Let f be holomorphic on an open set U that
contains the closed disc D(P, r). Let γ(t) = P + reit. Then, for each z ∈
D(P, r),

f(z) =
1

2πi

∮

γ

f(ζ)

ζ − z
dζ.

The formula is also true for more general curves.

Cauchy integral formula for an annulus Let f be holomorphic on an
annulus {z ∈ C : r < |z − P | < R}. Let r < s < S < R. Then for each
z ∈ D(P, S) \D(P, s) we have

f(z) =
1

2πi

∮

|ζ−P |=S

f(ζ)

ζ − P
dζ − 1

2πi

∮

|ζ−P |=s

f(ζ)

ζ − P
dζ.

Cauchy integral theorem If f is holomorphic on a disc U and if γ : [a, b] →
U is a closed curve then ∮

γ

f(z) dz = 0.
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The formula is also true for more general curves.

Cauchy-Riemann equations If u and v are real-valued, continuously dif-
ferentiable functions on the domain U then u and v are said to satisfy the
Cauchy-Riemann equations on U if

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

Cauchy-Schwarz Inequality The statement that if z1, . . . zn and w1, . . . , wn
are complex numbers then

∣∣∣∣∣
n∑

n=1

znwn

∣∣∣∣∣

2

≤
n∑

n=1

|zn|2
n∑

n=1

|wn|2 .

Cayley transform This is the function

f(z) =
i− z

i+ z

that conformally maps the upper half-plane to the unit disc.

classification of singularities in terms of Laurent series Let the holo-
morphic function f have an isolated singularity at P , and let

∞∑

n=−∞

an(z − P )n

be its Laurent expansion. Then

• If an = 0 for all n < 0 then f has a removable singularity at P .

• If, for some k < 0, ak 6= 0 and an = 0 for n < k then f has a pole of
order k at P .

• If there are infinitely many nonzero an with negative index n then f
has an essential singularity at P .
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clockwise The direction of traversal of a curve γ such that the region inte-
rior to the curve is always on the right.

closed curve A curve γ : [a, b] → C such that γ(a) = γ(b).

closed disc of radius r and center P A disc in the plane having radius r
and center P and including the boundary of the disc.

closed set A set E in the plane with the property that the complement of
E is open.

commutative law If a, b, c are complex numbers then

a+ b = b+ a (Commutativity of Addition)

and
a · b = b · a (Commutativity of Multiplication)

compact A set K ⊆ C is compact if it is both closed and bounded.

complex derivative If f is a function on a domain U then the complex
derivative of f at a point P in U is the limit

lim
z→P

f(z) − f(P )

z − P
.

complex differentiable A function f is differentiable on a domain U if it
possesses the complex derivative at each point of U .

complex line integral Let U be a domain, g a continuous function on U ,
and γ : [a, b] → U a curve. The complex line integral of g along γ is

∮

γ

g(z) dz ≡
∫ b

a

g(γ(t)) · dγ
dt

(t) dt.
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complex numbers Any number of the form x+ iy with x and y real.

condition for the convergence of an infinite product of numbers If

∞∑

n=1

|an| <∞

then both
∞∏

n=1

(1 + |an|)

and
∞∏

n=1

(1 + an)

converge.

condition for the uniform convergence of an infinite product of
functions Let U ⊆ C be a domain and let fn be holomorphic functions on
U . Assume that

∞∑

n=1

|fn|

converges uniformly on compact subsets of U . Then the sequence of partial
products

FN(z) ≡
N∏

n=1

(1 + fn(z))

converges uniformly on compact sets to a holomorphic limit F (z). We write

F (z) =
∞∏

n=1

(1 + fn(z)).

conformal A function f on a domain U is conformal if it preserves angles
and dilates equally in all directions. A holomorphic function is conformal,
and conversely.
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conformal mapping Let U , V be domains in C. A function f : U → V
that is holomorphic, one-to-one, and onto is called a conformal mapping or
conformal map.

conformal self-map Let U ⊆ C be a domain. A function f : U → U that is
holomorphic, one-to-one, and onto is called a conformal (or biholomorphic)
self-map of U .

conjugate If z = x+iy is a complex number then z = x−iy is its conjugate.

connected A set S in the plane is connected if there do not exist disjoint
and nonempty open sets U and V such that S = (S ∩ U) ∪ (S ∩ V ).

continuing a function element Finding additional function elements that
are analytic continuations of the given function element.

continuous A function f with domain S is continuous at a point P in S if
the limit of f(x) as x approaches P is f(P ). An equivalent definition, coming
from topology, is that f is continuous provide that whenever V is an open
set in the range of f then f−1(V ) is open in the domain of f .

continuously differentiable A function f with domain S is continuously
differentiable if the first derivative(s) of f exist at every point of S and if
each of those first derivative functions is continuous on S.

continuously differentiable, k times A function f with domain S such
that all derivatives of f up to and including order k exist and each of those
derivative functions is continuous on S.

convergence of a Laurent series The Laurent series
∞∑

n=−∞

an(z − P )n

is said to converge if each of the power series

0∑

n=−∞

an(z − P )n and
∞∑

1

an(z − P )n



GLOSSARY 367

converges.

convergence of an infinite product An infinite product

∞∏

n=1

(1 + an)

is said to converge if

• Only a finite number an1, . . . , ank
of the an’s are equal to −1;

• If N0 > 0 is so large that an 6= −1 for n > N0, then

lim
N→+∞

N∏

n=N0+1

(1 + an)

exists and is nonzero.

convergence of a power series The power series

∞∑

n=0

an(z − P )n

is said to converge at z if the partial sums SN(z) converge as a sequence of
numbers.

converges uniformly See uniform convergence.

countable set A set S is countable if there is a one-to-one, onto function
f : S → N.

countably infinite set See countable set.

counterclockwise The direction of traversal of a curve γ such that the re-
gion interior to the curve is always on the left.

counting function This is a function from classical number theory that aids
in counting the prime numbers.
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curve A continuous function γ : [a, b] → C.

deformability Let U be a domain. Let γ : [a, b] → U and µ : [a, b] → U be
curves in U . We say that γ is deformable to µ in U if there is a continuous
function H(s, t), 0 ≤ s ≤ 1 such that H(0, t) = γ(t), H(1, t) = µ(t), and
H(s, t) ∈ U for all (s, t).

deleted neighborhood Let P ∈ C. A set of the form D(P, r)\{P} is called
a deleted neighborhood of P .

denumerable set A set that is either finite or countably infinite.

derivative with respect to z If f is a function on a domain U then the
derivative of f with respect to z on U is

∂f

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
f .

derivative with respect to z If f is a function on a domain U then the
derivative of f with respect to z on U is

∂f

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
f .

differentiable See complex differentiable.

direct analytic continuation Let (f, U) and (g, V ) be function elements.
We say that (g, V ) is a direct analytic continuation of (f, U) if U ∩ V 6= ∅
and f = g on U ∩ V .

Dirichlet problem on the disc Given a continuous function f on ∂D(0, 1),
find a continuous function u on D(0, 1) whose restriction to ∂D(0, 1) equals
f .
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Dirichlet problem on a general domain Let U ⊆ C be a domain. Let
f be a continuous function on ∂U . Find a continuous function u on U such
that u agrees with f on ∂U .

disc of convergence A power series

∞∑

n=0

an(z − P )n

converges on a disc D(P, r), where

r =
1

lim supn→∞ |an|1/n
.

The disc D(P, r) is the disc of convergence of the power series.

discrete set A set S ⊂ C is discrete if for each s ∈ S there is an δ > 0 such
that D(s, δ) ∩ S = {s}. See also isolated point.

distributive law If a, b, c are complex numbers then the distributive laws
are

a · (b+ c) = ab+ ac

and
(b+ c) · a = ba+ ca.

domain A set U in the plane that is both open and connected.

domain of a function The domain of a function f is the set of numbers or
points to which f can be applied.

entire function A holomorphic function whose domain is all of C.

equivalence class If R is an equivalence relation on a set S then the sets
Es ≡ {s′ ∈ S : (s, s′) ∈ R} are called equivalence classes. See [KRA3] for
more on equivalence classes and equivalence relations.
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equivalence relation Let R be a relation on a set S. We call R an equiv-
alence relation if R is

• reflexive: For each s ∈ S, (s, s) ∈ R;

• symmetric: If s, s′ ∈ S and (s, s′) ∈ R then (s′, s) ∈ R;

• transitive: If (s, s′) ∈ R and (s′, s′′) ∈ R then (s, s′′) ∈ R.

essential singularity If the point P is a singularity of the holomorphic
function f , and if P is neither a removable singularity nor a pole, then P is
called an essential singularity.

Euclidean algorithm The algorithm for long division in the theory of arith-
metic.

Euler-Mascheroni constant The limit

lim
n→∞

{(
1 +

1

2
+

1

3
+ · · · + 1

n

)
− log n

}

exists. The limit is a positive constant denoted by γ and called the Euler-
Mascheroni constant.

Euler product formula For Re z > 1, the infinite product
∏

p∈P (1− 1/pz)
converges and

1

ζ(z)
=
∏

p∈P

(
1 − 1

pz

)
.

Here P = {2, 3, 5, 7, 11, . . . } is the set of prime numbers.

exponential, complex The function ez.

extended line The real line (lying in the complex plane) with the point at
infinity adjoined.

extended plane The complex plane with the point at infinity adjoined. See
stereographic projection.
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extended real numbers The real numbers with the points +∞ and −∞
adjoined.

field A number system that is closed under addition, multiplication, and di-
vision by nonzero numbers and in which these operations are commutative.

formula for the derivative Let U ⊆ C be an open set and let f be holomor-
phic on U. Then f is infinitely differentiable on U . Moreover, if D(P, r) ⊆ U
and z ∈ D(P, r) then

(
∂

∂z

)k
f(z) =

k!

2πi

∮

|ζ−P |=r

f(ζ)

(ζ − z)k+1
dζ, k = 0, 1, 2, . . . .

functional equation for the zeta function This is the relation

ζ(1 − z) = 2ζ(z)Γ(z) cos
(π

2
z
)
· (2π)−z,

which holds for all z ∈ C.

function element An ordered pair (f, U) where U is an open disc and f is
a holomorphic function defined on U .

Fundamental Theorem of Algebra The statement that every noncon-
stant polynomial has a root.

Fundamental Theorem of Calculus along Curves Let U ⊂ C be a
domain and γ = (γ1, γ2) : [a, b] → U a C1 curve. If f ∈ C1(U) then

f(γ(b)) − f(γ(b)) =

∫ b

a

(
∂f

∂x
(γ(t)) · dγ1

dt
+
∂f

∂y
(γ(t)) · dγ2

dt

)
dt.

gamma function If Re z > 0 then define

Γ(z) =

∫ ∞

0

tz−1e−t dt.
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generalized circles and lines In the extended plane Ĉ = C∪{∞}, a gener-
alized line (generalized circle) is an ordinary line union the point at infinity.
Topologically, an extended line is a circle.

genus of an entire function The maximum of the rank of f and of the de-
gree of the polynomial g in the exponential in the Weierstrass factorization.

global analytic function We have an equivalence relation by way of ana-
lytic continuation on the set of function elements. The equivalence classes
([KRA3, p. 53]) induced by this relation are called global analytic functions.

greatest lower bound See infimum.

Hankel contour The contour of integration Cε used in the definition of the
Hankel function.

Hankel function The function

Hε(z) =

∫

Cε

u(w) dw,

where Cε = Cε(δ) is the Hankel contour.

Hardy space If 0 < p < ∞ then we define Hp(D) to be the class of those
functions holomorphic on the disc and satisfying the growth condition

sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

<∞.

In this circumstance we write f ∈ Hp(D). It is convenient to use the nota-
tion ‖f‖Hp to denote the displayed quantity.

We also let H∞(D) denote the class of bounded holomorphic functions
on D, and we let ‖f‖H∞ denote the supremum of f on D.
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harmonic A function u on a domain U is said to be harmonic of 4u = 0 on
U , that is, if u satisfies the Laplace equation.

harmonic conjugate If u is a real-valued harmonic function on a domain
u then a real-valued harmonic function v on U is said to be conjugate to u
if h = u+ iv is holomorphic.

Harnack inequality Let u be a nonnegative, harmonic function on a neigh-
borhood of D(0, R). Then, for any z ∈ D(0, R),

R− |z|
R + |z| · u(0) ≤ u(z) ≤ R + |z|

R − |z| · u(0).

More generally, let u be a nonnegative, harmonic function on a neighbor-
hood of D(P,R). Then, for any z ∈ D(P,R),

R− |z − P |
R + |z − P |

· u(P ) ≤ u(z) ≤ R + |z − P |
R − |z − P |

· u(P ).

Harnack principle Let u1 ≤ u2 ≤ . . . be harmonic functions on a con-
nected open set U ⊆ C. Then either un → ∞ uniformly on compact sets or
there is a harmonic function u on U such that un → u uniformly on compact
sets.

holomorphic A continuously differentiable function on a domain U is holo-
morphic if it satisfies the Cauchy-Riemann equations on U or (equivalently)
if ∂f/∂z = 0 on U .

holomorphic function on a Riemann surface A function F is holomor-
phic on the Riemann surface R if F ◦ π−1 : π(U) → C is holomorphic for
each open set U in R with π one-to-one on U .

homeomorphic Two open sets U and V in C are homeomorphic if there is
a one-to-one, onto, continuous function f : U → V with f−1 : V → U also
continuous.
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homeomorphism A homeomorphism of two sets A,B ⊆ C is a one-to-one,
onto continuous mapping F : A→ B with a continuous inverse.

homotopic See deformability, homotopy.

homotopy Let W be a domain in C. Let γ0 : [0, 1] → W and γ1 : [0, 1] →W
be curves. Assume that γ0(0) = γ1(0) = P and that γ0(1) = γ1(1) = Q. We
say that γ0 and γ1 are homotopic in W (with fixed endpoints) if there is a
continuous function

H : [0, 1] × [0, 1] → W

such that

1) H(0, t) = γ0(t) for all t ∈ [0, 1];

2) H(1, t) = γ1(t) for all t ∈ [0, 1];

3) H(s, 0) = P for all s ∈ [0, 1];

4) H(s, 1) = Q for all s ∈ [0, 1].

Then H is called a homotopy (with fixed endpoints) of the curve γ0 to the
curve γ1. The two curves γ0, γ1 are said to be homotopic.

Hurwitz’s theorem Suppose that U ⊆ C is a domain and that {fn} is a
sequence of nowhere-vanishing holomorphic functions on U. If the sequence
{fn} converges uniformly on compact subsets of U to a (necessarily holomor-
phic) limit function f0 then either f0 is nowhere-vanishing or f0 ≡ 0.

image of a function The set of values taken by the function.

imaginary part If z = x+ iy is a complex number then its imaginary part
is y.

imaginary part of a function f If f = u+iv is a complex-valued function,
with u and v real-valued functions, then v is its imaginary part.

index Let U be a domain and γ : [0, 1] → U a piecewise C1 curve in U . Let
P ∈ U be a point that does not lie on γ. Then the index of γ with respect
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to P is defined to be

Indγ(P ) ≡ 1

2πi

∮

γ

1

ζ − P
dζ.

The index is always an integer.

infimum Let S ⊆ R be a set of numbers. We say that a number m is an
infimum for S if m ≤ s for all s ∈ S and there is no number greater than m
that has the same property. Every set of real numbers that is bounded below
has an infimum. The term “greatest lower bound” has the same meaning.

infinite product An expression of the form
∏∞

n=1(1 + an).

integer A whole number, or one of · · · − 3,−2,−1, 0, 1, 2, 3, . . . .

integral representation of the beta function, alternate form For
z,w 6∈ {0,−1,−2, . . . },

B(z,w) = 2

∫ π/2

0

(sin θ)2z−1(cos θ)2w−1 dθ.

irrational numbers Those numbers with nonterminating, nonrepeating
decimal expansions.

isolated point A point P of a set S ⊆ C is said to be isolated if there is an
δ > 0 such that D(P, δ) ∩ S = {P}.

isolated singularity See singularity.

isolated singular point See singularity.

Jensen’s formula Let f be holomorphic on a neighborhood of D(0, r) and
suppose that f(0) 6= 0. Let a1, . . . , ak be the zeros of f in D(0, r), counted
according to their multiplicities. Assume that f does not vanish on ∂D(0, r).
Then

log |f(0)| +
k∑

n=1

log

∣∣∣∣
r

an

∣∣∣∣ =
1

2π

∫ 2π

0

log |f(reiθ)|dθ.



376 GLOSSARY

Jensen’s inequality Let f as in Jensen’s formula. Observing that |r/an| ≥ 1
hence log |r/an| ≥ 0, we conclude that

log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(reiθ)| dθ.

Köbe function Let 0 ≤ θ < 2π. The Köbe function

fθ(z) ≡
z

(1 + eiθz)2

is a schlicht function which satisfies |an| = n for all n.

Köbe 1/4 theorem If f is schlicht then

f(D(0, 1)) ⊇ D(0, 1/4).

k times continuously differentiable A function f with domain S such
that all derivatives of f up to and including order k exist and each of those
derivatives is continuous on S.

Lambda function Define the function

Λ : {n ∈ Z : n > 0} → R

by the condition

Λ(m) =

{
log p if m = pk , p ∈ P , 0 < k ∈ Z
0 otherwise.

[Here P is the collection of prime numbers.]

Laplace equation The partial differential equation

4u = 0.
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Laplace operator or Laplacian This is the partial differential operator

4 =
∂2

∂x2
+

∂2

∂x2
.

Laurent series A series of the form

∞∑

n=−∞

an(z − P )n.

See also power series.

Laurent series expansion about ∞ Fix a positive number R. Let f be
holomorphic on a set of the form {z ∈ C : |z| > R}. Define G(z) = f(1/z)
for |z| < 1/R. If the Laurent series expansion of G about 0 is

∞∑

n=−∞

anz
n

then the Laurent series expansion of f about ∞ is

∞∑

n=−∞

anz
−n.

least upper bound See supremum.

limit of the function f at the point P Let f be a function on a domain
U . The complex number ` is the limit of the f at P if for each ε > 0 there
is a δ > 0 such that whenever z ∈ U and 0 < |z−P | < δ then |f(z)−P | < ε.

linear fractional transformation A function of the form

z 7→ az + b

cz + d
,

for a, b, c, d complex constants with ac− bd 6= 0.
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Liouville’s theorem If f is an entire function that is bounded then f is
constant.

locally A property is true locally if it is true on compact sets.

Lusin area integral Let Ω ⊆ C be a domain and φ : Ω → C a one-to-one
holomorphic function. Then φ(Ω) is a domain and

area(φ(Ω)) =

∫

Ω

|φ′(z)|2 dxdy.

maximum principle for harmonic functions If u is a harmonic function
on a domain U and if P in U is a local maximum for u then u is identically
constant.

maximum principle for holomorphic functions If f is a holomorphic
function on a domain U and if P in U is a local maximum for |f | then f is
identically constant.

maximum principle for subharmonic functions If u is subharmonic on
U and if there is a P ∈ U such that u(P ) ≥ u(z) for all z ∈ U then u is
identically constant.

mean value property for harmonic functions Let u be harmonic on an
open set containing the closed disc D(P, r). Then

u(P ) =
1

2π

∫ 2π

0

u(P + reiθ) dθ .

This identity also holds for holomorphic functions.

Mergelyan’s theorem Let K ⊆ C be compact and suppose that Ĉ \K has

only finitely many connected components. If f ∈ C(K) is holomorphic on
◦
K

and if ε > 0 then there is a rational function r(z) with poles in Ĉ \K such
that

max
z∈K

|f(z) − r(z)| < ε.
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Mergelyan’s theorem for polynomials Let K ⊆ C be compact and as-

sume that Ĉ \K is connected. Let f ∈ C(K) be holomorphic on
◦
K . Then

for any ε > 0 there is a holomorphic polynomial p(z) such that

max
z∈K

|p(z) − f(z)| < ε .

meromorphic at ∞ Fix a positive number R. Let f be holomorphic on
a set of the form {z ∈ C : |z| > R}. Define G(z) = f(1/z) for |z| < 1/R.
We say that f is meromorphic at ∞ provided that G is meromorphic in the
usual sense on {z ∈ C : |z| < 1/R}.

meromorphic function Let U be a domain and {Pn} a discrete set in U .
If f is holomorphic on U \ {Pn} and f has a pole at each of the {Pn} then f
is said to be meromorphic on U .

minimum principle for harmonic functions If u is a harmonic function
on a domain U and if P in U is a local minimum for u then u is identically
constant.

minimum principle for holomorphic functions If f is a holomorphic
function on a domain U , if f does not vanish on U , and if P in U is a local
minimum for |f | then f is identically constant.

Mittag-Leffler theorem Let U ⊆ C be any open set. Let α1, α2, . . . be a
finite or countably infinite set of distinct elements of U with no accumulation
point in U. Suppose, for each n, that Un is a neighborhood of αn. Further
assume, for each n, that mn is a meromorphic function defined on Un with
a pole at αn and no other poles. Then there exists a meromorphic m on U
such that m−mn is holomorphic on Un for every n.

Mittag-Leffler theorem, alternative formulation Let U ⊆ C be any
open set. Let α1, α2, . . . be a finite or countably infinite set of distinct el-
ements of U , having no accumulation point in U . Let sn be a sequence of



380 GLOSSARY

Laurent polynomials (or “principal parts”),

sn(z) =
−1∑

`=−p(n)

an` · (z − αn)
`.

Then there is a meromorphic function on U whose principal part at each αn
is sn.

Möbius transformation This is a function of the form

φa(z) =
z − a

1 − az

for a fixed complex constant a with modulus less than 1. Such a function φa
is a conformal self-map of the unit disc.

modulus If z = x + iy is a complex number then |z| =
√
x2 + y2 is its

modulus.

monodromy theorem Let W ⊆ C be a domain. Let (f, U) be a function
element, with U ⊆ W. Let P denote the center of the disc U. Assume that
(f, U) admits unrestricted continuation in W . If γ0, γ1 are each curves that
begin at P , terminate at some point Q, and are homotopic in W , then the
analytic continuation of (f, U) to Q along γ0 equals the analytic continuation
of (f, U) to Q along γ1.

monogenic See holomorphic.

monotonicity of the Hardy space norm Let f be holomorphic on D. If
0 < r1 < r2 < 1 then

∫ 2π

0

|f(r1e
iθ)|p dθ ≤

∫ 2π

0

|f(r2e
iθ)|p dθ.

Montel’s theorem Let F = {fα}α∈A be a family of holomorphic functions
on an open set U ⊆ C. If there is a constant M > 0 such that

|f(z)| ≤M , for all z ∈ U , f ∈ F
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then there is a sequence {fn} ⊆ F such that fn converges normally on U to
a limit (holomorphic) function f0.

Montel’s theorem, second version Let U ⊆ C be an open set and let F
be a family of holomorphic functions on U that is bounded on compact sets.
Then there is a sequence {fn} ⊆ F that converges normally on U to a limit
(necessarily holomorphic) function f0.

Morera’s theorem Let f be a continuous function on a connected open set
U ⊆ C. If ∮

γ

f(z) dz = 0

for every simple closed curve γ in U then f is holomorphic on U . The result
is true if it is only assumed that the integral is zero when γ is a rectangle, or
when γ is a triangle.

multiple root Let f be either a polynomial or a holomorphic function on
an open set U . Let k be a positive integer. If P ∈ U and f(P ) = 0, f ′(P ) =
0, . . . , f (k−1)(P ) = 0 then f is said to have a multiple root at P . The root is
said to be of order k.

multiple singularities Let U ⊆ C be a domain and P1, P2, . . . be a discrete
set in U . If f is holomorphic on U \ {Pn} and has a singularity at each Pn
then f is said to have multiple singularities in U .

multiplicity of a zero or root The number k in the definition of multiple
root.

neighborhood of a point in a Riemann surface We define neighbor-
hoods of a “point” (f, U) in R by

{(fp, Up) : p ∈ U and (fp, Up) is a direct

analytic continuation of (f, U) to p}.

normal convergence of a sequence A sequence of functions gn on a do-
main U is said to converge normally to a limit function g if the fn converge
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uniformly on compact subsets of U to g.

normal convergence of a series A series of functions
∑∞

n=1 gn on a do-
main U is said to converge normally to a limit function g if the partial sums
SN =

∑N
n=1 gn converge uniformly on compact subsets of U to g.

normal family Let F be a family of (holomorphic) functions with common
domain U . We say that F is a normal family if every sequence in F has a
subsequence that converges uniformly on compact subsets U , that is, con-
verges normally on U . See Montel’s theorem.

one-to-one A function f : S → T is said to be one-to-one if whenever
s1 6= s2 then f(s1) 6= f(s2).

onto A function f : S → T is said to be onto if whenever t ∈ T then there
is an s ∈ S such that f(s) = t.

open disc of radius r and center P A disc D(P, r) in the plane having
radius r and center P and not including the boundary of the disc.

open mapping A function f : S → T is said to be open if whenever U ⊆ S
is open then f(U) ⊆ T is open.

open mapping theorem If f : U → C is a holomorphic function on a
domain U , then f(U) will also be open.

open set A set U in the plane with the property that each point P ∈ U has
a disc D(P, r) such that D(P, r) ⊆ U .

order of an entire function An entire function f is said to be of finite
order if there exist numbers a, r > 0 such that

|f(z)| ≤ exp(|z|a) for all |z| > r.

The infimum of all numbers a for which such an inequality holds is called the
order of f and is denoted by λ = λ(f).
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order of a pole See pole.

order of a root See multiplicity of a root.

Ostrowski-Hadamard gap theorem Let 0 < p1 < p2 < · · · be integers
and suppose that there is a λ > 1 such that

pn+1

pn
> λ for n = 1, 2, . . . .

Suppose that, for some sequence of complex numbers {an}, the power series

f(z) =

∞∑

n=1

anz
pn

has radius of convergence 1. Then no point of ∂D is regular for f .

partial fractions A method for decomposing a rational function into a sum
of simpler rational components. Useful in integration theory, as well as in
various algebraic contexts. See [BLK] for details.

partial product For an infinite product
∏∞

n=1(1 + an), the partial product
is

PN =
N∏

n=1

(1 + an).

partial sums of a power series If

∞∑

n=0

an(z − P )n

is a power series then its partial sums are the expressions

SN (z) ≡
N∑

n=0

an(z − P )n

for N = 0, 1, 2, . . . .
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path See curve.

path-connected Let E ⊆ C be a set. If, for any two points A and B in E
there is a curve γ : [0, 1] → E such that γ(0) = A and γ(1) = B then we say
that E is path-connected.

Picard’s Great Theorem Let U be a region in the plane, P ∈ U, and
suppose that f is holomorphic on U \ {P} and has an essential singularity
at P. If ε > 0 then the restriction of f to U ∩ [D(P, ε) \ {P}] assumes all
complex values except possibly one.

Picard’s Little Theorem If the range of an entire function f omits two
points of C then f is constant.

piecewise Ck A curve γ : [a, b] → C is said to be piecewise Ck if

[a, b] = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [am−1, am]

with a = a0 < a1 < · · · am = b and γ
∣∣
[an−1,an]

is Ck for 1 ≤ n ≤ m.

π function For x > 0, this is the function

π(x) = the number of prime numbers not exceeding x.

point at ∞ A point which is adjoined to the complex plane to make it
topologically a sphere.

Poisson integral formula Let u : U → R be a harmonic function on a
neighborhood of D(0, 1). Then, for any point a ∈ D(0, 1),

u(a) =
1

2π

∫ 2π

0

u(eiψ) · 1 − |a|2

|a− eiψ|2
dψ.

Poisson kernel for the unit disc This is the function

1

2π

1 − |a|2

|a− eiψ|2
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that occurs in the Poisson integral formula.

polar form of a complex number A complex number z written in the
form z = reiθ with r ≥ 0 and θ ∈ R. The number r is the modulus of z and
θ is its argument.

polar representation of a complex number See polar form.

pole Let P be an isolated singularity of the holomorphic function f . If P is
not a removable singularity for f but there exists a k > 0 such that (z−P )k ·f
is a removable singularity, then P is called a pole of f . The least k for which
this condition holds is called the order of the pole.

polynomial A polynomial is a function p(z) (resp. p(x)) of the form

p(z) = a0 + a1z + · · · ak−1z
k−1 + akz

k,

(resp. p(x) = a0 + a1x + · · · ak−1x
k−1 + akx

k) where a0, . . . , ak are complex
constants.
power series A series of the form

∞∑

n=0

an(z − P )n.

More generally, the series can have any limits on the indices:

∞∑

n=m

an(z − P )n or
n∑

n=m

an(z − P )n .

prevertices The inverse images of the corners of the polygon under study
with the Schwarz-Christoffel mapping.

prime number This is an integer (whole number) that has no integer divi-
sors except 1 and itself. The first few positive prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23.
By convention, 1 is not prime.
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prime number theorem This is the statement that

lim
x→∞

π(x)

(x/ log x)
= 1 .

principal branch Usually that branch of a holomorphic function that fo-
cuses on values of the argument 0 ≤ θ < 2π. The precise definition of
“principal branch” depends on the particular function being studied.

principle of persistence of functional relations If two holomorphic func-
tions defined in a domain containing the real axis agree for real values of the
argument then they agree at all points.

principal part Let f have a pole of order k at P . The negative power part

−1∑

n=−k

an(z − P )n

of the Laurent series of f about P is called the principal part of f at P .

range of a function Any set containing the image of the function.

rank of an entire function If f is an entire function and {an} its zeros
counting multiplicity, then the rank of f to be the least positive integer such
that ∑

an 6=0

|an|−(p+1) <∞.

We denote the rank of f by p = p(f).

rational function A rational function is a quotient of polynomials.

rational number system Those numbers that are quotients of integers or
whole numbers. These numbers have either terminating or repeating decimal
expansions.
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real analytic A function f of one or several real variables is called real an-
alytic if it can locally be expressed as a convergent power series.

real number system Those numbers consisting of either terminating or
nonterminating decimal expansions.

real part If z = x+ iy is a complex number then its real part is x.

real part of a function f If f = u+ iv, with u, v real-valued functions, is
a complex-valued function then u is its real part.

recursive identity for the gamma function If Re z > 0 then

Γ(z + 1) = z · Γ(z).

region See domain.

regular See holomorphic.

regular boundary point Let f be holomorphic on a domain U . A point P
of ∂U is called regular if f extends to be a holomorphic function on an open
set containing U and also the point P .

relation Let S be a set. A relation on S is a collection of some (but not nec-
essarily all) of the ordered pairs (s, s′) of elements of S. See also equivalence
relation.

removable singularity Let P be an isolated singularity of the holomorphic
function f . If f can be defined at P so as to be holomorphic in a neighbor-
hood of P then P is called a removable singularity for f .

residue If f has Laurent series

∞∑

n=−∞

an(z − P )n
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about P , then the number a−1 is called the residue of f at P . We denote the
residue by Resf (P ).

residue, formula for Let f have a pole of order k at P . Then the residue
of f at P is given by

Resf(P ) =
1

(k − 1)!

(
∂

∂z

)k−1 (
(z − P )kf(z)

)
∣∣∣∣∣
z=P

.

residue theorem Let U be a domain and let the holomorphic function f
have isolated singularities at P1, P2, . . . , Pm ∈ U . Let Resf (Pn) be the residue
of f at Pn. Also let γ : [0, 1] → U \{P1, P2, . . . , Pm} be a piecewise C1 curve.
Let Indγ(Pn) be the winding number of γ about Pn. Then

∮

γ

f(z) dz = 2πi
m∑

n=1

Resf (Pn) · Indγ(Pn).

Riemann hypothesis The celebrated Riemann hypothesis is the conjec-
ture that all the zeros of the zeta function ζ in the critical strip {z ∈ C : 0 <
Re z < 1} actually lie on the line {z : Re z = 1/2}.

Riemann mapping theorem Let U ⊆ C be a simply connected domain,
and assume that U 6= C. Then there is a conformal mapping ϕ : U → D(0, 1).

Riemann removable singularities theorem If P is an isolated singularity
of the holomorphic function f and if f is bounded in a deleted neighborhood
of P then f has a removable singularity at P .

Riemann sphere See extended plane.

Riemann surface The idea of a Riemann surface is that one can visualize
geometrically the behavior of function elements and their analytic continua-
tion. A global analytic function is the set of all function elements obtained
by analytic continuation along curves (from a base point P ∈ C) of a function
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element (f, U) at P . Such a set, which amounts to a collection of convergent
power series at different points of the plane C, can be given the structure of
a surface, in the intuitive sense of that word.

right turn angle The oriented angle of turning when traversing the bound-
ary of a polygon that is under study with the Schwarz-Christoffel mapping.

ring A number system that is closed under addition and multiplication. See
also field.

root of a function or polynomial A value in the domain at which the
function or polynomial vanishes. See also zero.

rotation A function z 7→ eiαz for some fixed real number α. We sometimes
say that the function represents “rotation through an angle α.”

Rouché’s theorem Let f, g be holomorphic functions on a domain U ⊆ C.
Suppose that D(P, r) ⊆ U and that, for each ζ ∈ ∂D(P, r),

|f(ζ) − g(ζ)| < |f(ζ)| + |g(ζ)|. (∗)

Then the number of zeros of f inside D(P, r) equals the number of zeros of
g inside D(P, r). The hypothesis (∗) is sometimes replaced in practice with

|f(ζ) − g(ζ)| < |g(ζ)|

for ζ ∈ ∂D(P, r).

Runge’s theorem Let K ⊆ C be compact. Let f be holomorphic on a
neighborhood of K. Let P ⊆ Ĉ \ K contain one point from each connected
component of Ĉ\K. Then for any ε > 0 there is a rational function r(z) with
poles in P such that

max
z∈K

|f(z) − r(z)| < ε.

Runge’s theorem, corollary for polynomials LetK ⊆ C be compact and
assume that Ĉ \K is connected. Let f be holomorphic on a neighborhood of
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K. Then for any ε > 0 there is a holomorphic polynomial p(z) such that

max
K

|p(z) − f(z)| < ε .

Schlicht function A holomorphic function f on the unit disc D is called
schlicht if

• f is one-to-one

• f(0) = 0

• f ′(0) = 1.

In this circumstance we write f ∈ S.

Schwarz-Christoffel mapping A conformal mapping from the upper half-
plane to a polygon.

Schwarz-Christoffel parameter problem The problem of determining
the prevertices of a Schwarz-Christoffel mapping.

Schwarz lemma Let f be holomorphic on the unit disc. Assume that

• |f(z)| ≤ 1 for all z.

• f(0) = 0.

Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1.

If either |f(z)| = |z| for some z 6= 0 or if |f ′(0)| = 1 then f is a rotation:
f(z) ≡ αz for some complex constant α of unit modulus.

Schwarz-Pick lemma Let f be holomorphic on the unit disc. Assume that

• |f(z)| ≤ 1 for all z.

• f(a) = b for some a, b ∈ D(0, 1).
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Then

|f ′(a)| ≤ 1 − |b|2

1 − |a|2 .

Moreover, if f(a1) = b1 and f(a2) = b2 then

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ ≤
∣∣∣∣
a2 − a1

1 − a1a2

∣∣∣∣ .

There is a “uniqueness” result in the Schwarz-Pick Lemma. If either

|f ′(a)| =
1 − |b|2

1 − |a|2 or

∣∣∣∣
b2 − b1

1 − b1b2

∣∣∣∣ =

∣∣∣∣
a2 − a1

1 − a1a2

∣∣∣∣

then the function f is a conformal self-mapping (one-to-one, onto holomor-
phic function) of D(0, 1) to itself.

Schwarz reflection principle for harmonic functions Let V be a con-
nected open set in C. Suppose that V ∩ (real axis) = {x ∈ R : a < x < b}.
Set U = {z ∈ V : Im z > 0}. Assume v : U → R is harmonic and that, for
each ζ ∈ V ∩ (real axis),

lim
U3z→ζ

v(z) = 0.

Set Ũ = {z : z ∈ U}. Define

v̂(z) =





v(z) if z ∈ U
0 if z ∈ V ∩ (real axis)

−v(z) if z ∈ Ũ .

Then v̂ is harmonic on U ∪ Ũ ∪ {x ∈ R : a < x < b}.

Schwarz reflection principle for holomorphic functions Let V be a
connected open set in C such that V ∩ (the real axis) = {x ∈ R : a < x < b}
for some a, b ∈ R. Set U = {z ∈ V : Im z > 0}. Suppose that F : U → C is
holomorphic and that

lim
U3z→x

ImF (z) = 0

for each x ∈ R with a < x < b. Define Û = {z ∈ C : z ∈ U}. Then there is a

holomorphic function G on U ∪ Û ∪ {x ∈ R : a < x < b} such that G
∣∣
U

= F.
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In fact φ(x) ≡ limU3z→x ReF (z) exists for each x = x+ i0 ∈ (a, b) and

G(z) =





F (z) if z ∈ U
φ(x) + i0 if z ∈ {x ∈ R : a < x < b}
F (z) if z ∈ Û .

simple closed curve A curve γ : [a, b] → C such that γ(a) = γ(b) but the
curve crosses itself nowhere else.

simple root Let f be either a polynomial or a holomorphic function on an
open set U . If f(P ) = 0 but f ′(P ) 6= 0 then f is said to have a simple root
at P . See also multiple root.

simply connected A domain U in the plane is simply connected if one of
the following three equivalent conditions holds: it has no holes, or if its com-
plement has only one connected component, or if each closed curve in U is
homotopic to zero.

singularity Let f be a holomorphic function on D(P, r) \ {P} (that is, on
the disc minus its center). Then the point P is said to be a singularity of f .

singularity at ∞ Fix a positive number R. Let f be holomorphic on the
set {z ∈ C : |z| > R}. Define G(z) = f(1/z) for |z| < 1/R. Then

• If G has a removable singularity at 0 then we say that f has a removable
singularity at ∞.

• If G has a pole at 0 then we say that f has a pole at ∞.

• If G has an essential singularity at 0 then we say that f has an essential
singularity at ∞.

small circle mean value property A continuous function h on a domain
U ⊆ C is said to have this property if, for each point P ∈ U , there is a
number εP > 0 such that D(P, εP ) ⊆ U and, for every 0 < ε < εP ,

h(P ) =
1

2π

∫ 2π

0

h(P + εeiθ) dθ.
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A function with the small circle mean value property on U must be harmonic
on U .

smooth curve A curve γ : [a, b] → C is smooth if γ is a Ck function (where
k suits the problem at hand, and may be ∞) and γ′ never vanishes.

smooth deformability Deformability in which the functionH(s, t) is smooth.
See deformability.

solution of the Dirichlet problem on the disc Let f be a continuous
function on ∂D(0, 1). Define

u(z) =





1

2π

∫ 2π

0

f(eiψ) · 1 − |z|2

|z − eiψ|2 dψ if z ∈ D(0, 1)

f(z) if z ∈ ∂D(0, 1).

Then u is continuous on D(0, 1) and harmonic on D(0, 1).

special function These are particular functions that arise in theoretical
physics, partial differential equations, and mathematical analysis. See gamma
function, beta function.

stereographic projection A geometric method for mapping the plane to a
sphere.

subharmonic Let U ⊆ C be an open set and f a real-valued continuous
function on U. Suppose that for each D(P, r) ⊆ U and every real-valued
harmonic function h defined on a neighborhood of D(P, r) which satisfies
f ≤ h on ∂D(P, r), it holds that f ≤ h on D(P, r). Then f is said to be
subharmonic on U.

submean value property Let f : U → R be continuous. Then f satisfies
the submean value property if, for each D(P, r) ⊆ U ,

f(P ) ≤ 1

2π

∫ 2π

0

f(P + reiθ)dθ.
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supremum Let S ⊆ R be a set of numbers. We say that a number M is a
supremum for S if s ≤M for all s ∈ S and there is no number less than M
that has the same property. Every set of real numbers that is bounded above
has a supremum. The term “least upper bound” has the same meaning.

topology A mathematical structure specifying open and closed sets and a
notion of convergence.

triangle inequality The statement that if z,w are complex numbers then

|z + w| ≤ |z| + |w| .

uniform convergence for a sequence Let fn be a sequence of functions
on a set S. The fn are said to converge uniformly to a function g on S if for
each ε > 0 there is a N > 0 such that if n > N then |fn(s) − g(s)| < ε for
all s ∈ S. In other words, fn(s) converges to g(s) at the same rate at each
point of S.

uniform convergence for a series The series

∞∑

n=1

fn(z)

on a set S is said to converge uniformly to a limit function F (z) if its sequence
of partial sums converges uniformly to F . Equivalently, the series converges
uniformly to F if for each ε > 0 there is a number N > 0 such that if n > N
then ∣∣∣∣∣

n∑

n=1

fn(z) − F (z)

∣∣∣∣∣ < ε

for all z ∈ S.

uniform convergence on compact subsets for a sequence Let fn be a
sequence of functions on a domain U . The fn are said to converge uniformly
on compact subsets of U to a function g on U if, for each compactK ⊆ U and
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for each ε > 0, there is a N > 0 such that if n > N then |fn(k) − g(k)| < ε
for all k ∈ K. In other words, fn(k) converges to g(k) at the same rate at
each point of K.

uniform convergence on compact subsets for a series The series

∞∑

n=1

fn(z)

on a domain U is said to be uniformly convergent on compact sets to a limit
function F (z) if, for each ε > 0 and each compact K ⊆ U , there is an N > 0
such that if n > N then

∣∣∣∣∣
N∑

n=1

f(z) − F (z)

∣∣∣∣∣ < ε

for every z ∈ K.

uniformly Cauchy for a sequence Let gn be a sequence of functions on
a domain U . The sequence is uniformly Cauchy if, for each ε > 0, there is
an N > 0 such that for all n, k > N and all z ∈ U we have |gn(z)−gk(z)| < ε.

uniformly Cauchy for a series Let
∑∞

n=1 gn be a series of functions on a
domain U . The series is uniformly Cauchy if, for each ε > 0, there is an N > 0
such that: for all L ≥M > N and all z ∈ U we have |

∑L
n=M gn(z)| < ε.

uniformly Cauchy on compact subsets for a sequence Let gn be a
sequence of functions on a domain U . The sequence is uniformly Cauchy on
compact subsets of U if, for each K compact in U and each ε > 0, there is an
N > 0 such that for all `,m > N and all k ∈ K we have |g`(k)− gm(k)| < ε.

uniformly Cauchy on compact subsets for a series Let
∑∞

n=1 gn be a
series of functions on a domain U . The series is uniformly Cauchy on com-
pact subsets if, for each K compact in U and each ε > 0, there is an N > 0
such that for all L ≥M > N and all k ∈ K we have |

∑L
n=M gn(k)| < ε.

uniqueness of analytic continuation Let f and g be holomorphic func-
tions on a domain U . If there is a disc D(P, r) ⊆ U such that f and g agree
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on D(P, r) then f and g agree on all of U . More generally, if f and g agree
on a set with an accumulation point in U then they agree at all points of U .

unrestricted continuation Let W be a domain and let (f, U) be a function
element in W. We say (f, U) admits unrestricted continuation in W if there
is an analytic continuation (ft, Ut) of (f, U) along every curve γ that begins
at P and lies in W .

value of an infinite product If
∏∞

n=1(1+ an) converges, then we define its
value to be [

N0∏

n=1

(1 + an)

]
· lim
N→+∞

N∏

N0+1

(1 + an).

See convergence of an infinite product.

vanishing of an infinite product of functions The function f defined
on a domain U by the infinite product

f(z) =
∞∏

n=1

(1 + fn(z))

vanishes at a point z0 ∈ U if and only if fn(z0) = −1 for some n. The mul-
tiplicity of the zero at z0 is the sum of the multiplicities of the zeros of the
functions 1 + fn at z0.

Weierstrass factor These are the functions

E0(z) = 1 − z

and, for 1 ≤ p ∈ Z,

Ep(z) = (1 − z) exp

(
z +

z2

2
+ · · · + zp

p

)
.

Weierstrass factors are used in the factorization of entire functions. See
Weierstrass factorization theorem.
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Weierstrass factorization theorem Let f be an entire function. Suppose
that f vanishes to order m at 0, m ≥ 0. Let {an} be the other zeros of f,
listed with multiplicities. Then there is an entire function g such that

f(z) = zm · eg(z)
∞∏

n=1

En−1

(
z

an

)
.

Here, for each n, En is a Weierstrass factor.

Weierstrass (canonical) product Let {an}∞n=1 be a sequence of nonzero
complex numbers with no accumulation point in the complex plane (note,
however, that the an’s need not be distinct). If {pn} are positive integers
that satisfy

∞∑

n=1

(
r

|an|

)pn+1

<∞

for every r > 0 then the infinite product

∞∏

n=1

Epn

(
z

an

)

(called a Weierstrass product) converges uniformly on compact subsets of C
to an entire function F. The zeros of F are precisely the points {an}, counted
with multiplicity.

Weierstrass theorem Let U ⊆ C be any open set. Let a1, a2, . . . be a finite
or infinite sequence in U (possibly with repetitions) which has no accumula-
tion point in U. Then there exists a holomorphic function f on U whose zero
set is precisely {an}.

whole number See integer.

winding number See index.

zero If f is a polynomial or a holomorphic function on an open set U then
P ∈ U is a zero of f if f(P ) = 0. See root of a function or polynomial.
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zero set If f is a polynomial or a holomorphic function on an open set U
then the zero set of f is {z ∈ U : f(z) = 0}.

zeta function For Re z > 1, define

ζ(z) =
∞∑

n=1

1

nz
=

∞∑

n=1

e−z logn.



List of Notation

Notation Meaning Section

R real number system 1.1.1
R2 Cartesian plane 1.1.1
C complex number system 1.1.2

z,w, ζ complex numbers 1.1.2
z = x+ iy complex numbers 1.1.2
w = u+ iv complex numbers 1.1.2
ζ = ξ + iη complex numbers 1.1.2

Re z real part of z 1.1.2
Im z imaginary part of z 1.1.2
z conjugate of z 1.1.2
|z| modulus of z 1.2.1

D(P, r) open disc 1.2.2
D(P, r) closed disc 1.2.2
D open unit disc 1.2.2
D closed unit disc 1.2.2

A \B the complement of B in A 1.1.5
ez complex exponential 1.3.1
! factorial 1.3.1

cos z eiz+e−iz

2
1.3.1

sin z eiz−e−iz

2i
1.3.1

arg z argument of z 1.3.5
Ck k times continuously

differentiable 2.1.1, 2.3.3
f = u+ iv real and imaginary

parts of f 2.1.2
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Notation Meaning Section

Re f real part of
the function f 2.1.2

Imf imaginary part of
the function f 2.1.2

∂f/∂z derivative with
respect to z 2.1.3

∂f/∂z derivative with
respect to z 2.1.3

limz→P f(z) limit of f at
the point P 2.1.5

df/dz complex derivative 2.1.5
f ′(z) complex derivative 2.1.5
4 the Laplace operator 2.1.6, 2.2.1,

8.2.1
γ a curve 2.3.1

γ
∣∣
[c,d]

restriction of γ

to [c, d] 2.3.2∮
γ
g(z) dz complex line integral

of g along γ 2.3.6
SN (z) partial sum of a

power series 4.1.6∑∞
j=0 aj(z − P )j complex power series 4.1.6

Resf(P ) residue of f at P 5.4.3
Indγ(P ) index of γ with

respect to P 5.4.4
Ĉ the extended complex

plane 7.3.2, 7.3.3
C ∪ {∞} the extended complex

plane 7.3.1
L ∪ {∞} generalized circle 7.3.7
R ∪ {∞} extended real

line 7.3.7
θn right-turn angle 8.4.1

f̂ (n) Fourier coefficient of f 10.1.1
Sf(t) Fourier series of f 10.1.1
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Notation Meaning Section

SNf(t) partial sum of Fourier
series of f 10.1.1

f̂(ξ) Fourier transform of f 10.2.1

g
∨

inverse Fourier
transform of g 10.2.1

F (s) Laplace transform of f 10.3.1
L(f) Laplace transform of f 10.3.1
A(z) z-transform of {an} 10.4.1





A Guide to the Literature

Complex analysis is an old subject, and the associated literature is large.
Here we give the reader a representative sampling of some of the resources
that are available. Of course no list of this kind can be complete.

Traditional Texts

• L. V. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill, New York,
1966.

• L. V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.

• C. Carathéodory, Theory of Functions of a Complex Variable, Chelsea,
New York, 1954.

• H. P. Cartan, Elementary Theory of Analytic Functions of One and
Several Complex Variables, Addison-Wesley, Reading, 1963.

• E. T. Copson, An Introduction to the Theory of Functions of One Com-
plex Variable, The Clarendon Press, Oxford, 1972.

• R. Courant, The Theory of Functions of a Complex Variable, New York
University, New York, 1949.

• P. Franklin, Functions of Complex Variables, Prentice-Hall, Englewood
Cliffs, 1959.

• W. H. Fuchs, Topics in the Theory of Functions of One Complex Vari-
able, Van Nostrand, Princeton, 1967.
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• B. A. Fuks, Functions of a Complex Variable and Some of Their Ap-
plications, Addison-Wesley, Reading, 1961.

• G. M. Goluzin, Geometric Theory of Functions of a Complex Variable,
American Mathematical Society, Providence, 1969.

• K. Knopp, Theory of Functions, Dover, New York, 1945-1947.

• Z. Nehari, Introduction to Complex Analysis, Allyn & Bacon, Boston,
1961.

• R. Nevanlinna, Introduction to Complex Analysis, Chelsea, New York,
1982.

• W. F. Osgood, Functions of a Complex Variable, G. E. Stechert, New
York, 1942.

• G. Polya and G. Latta, Complex Variables, John Wiley & Sons, New
York, 1974.

• n. Pierpont, Functions of a Complex Variable, Ginn & Co., Boston,
1912.

• S. Saks and A. Zygmund, Analytic Functions, Nakl. Polskiego Tow.
Matematycznego, Warsaw, 1952.

• G. Sansone, Lectures on the Theory of Functions of a Complex Variable,
P. Noordhoff, Groningen, 1960.

• V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable;
Constructive Theory, MIT Press, Cambridge, 1969.

Modern Texts

• A. Beardon, Complex Analysis: The Argument Principle in Analysis
and Topology, John Wiley & Sons, New York, 1979.

• C. Berenstein and R. Gay, Complex Variables: An Introduction, Spring-
er, New York, 1991.

• R. P. Boas, An Invitation to Complex Analysis, Random House, New
York, 1987.
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• R. Burckel, Introduction to Classical Complex Analysis, Academic Press,
New York, 1979.

• n. B. Conway, Functions of One Complex Variable, 2nd ed., Springer-
Verlag, New York, 1979.

• n. Duncan, The Elements of Complex Analysis, John Wiley & Sons,
New York, 1969.

• S. D. Fisher, Complex Variables, 2nd ed., Brooks/Cole, Pacific Grove,
1990.

• A. R. Forsyth, Theory of Functions of a Complex Variable, 3rd ed.,
Dover, New York, 1965.

• A. O. Gel’fond, Residues and their Applications, Mir Publishers, Moscow,
1971.

• R. E. Greene and S. G. Krantz, Function Theory of One Complex Vari-
able, John Wiley and Sons, New York, 1997.

• M. Heins, Complex Function Theory, Academic Press, New York, 1969.

• E. Hille, Analytic Function Theory, 2nd ed., Chelsea, New York, 1973.

• W. Kaplan, A First Course in Functions of a Complex Variable, Addison-
Wesley, Cambridge, 1953.

• S. G. Krantz, Complex Analysis: The Geometric Viewpoint, Mathe-
matical Association of America, Washington, D.C., 1990.

• S. Lang, Complex Analysis, 3rd ed., Springer-Verlag, New York, 1993.

• N. Levinson and R. M. Redheffer, Complex Variables, Holden-Day, San
Francisco, 1970.

• A. I. Markushevich, Theory of Functions of a Complex Variable, Prentice-
Hall, Englewood Cliffs, 1965.

• Jerrold Marsden, Basic Complex Analysis, Freeman, San Francisco,
1973.
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• G. Mikhailovich, Geometric Theory of Functions of a Complex Vari-
able, American Mathematical Society, Providence, 1969.

• R. Narasimhan, Complex Analysis in One Variable, Birkhäuser, Boston,
1985.

• T. Needham, Visual Complex Analysis, Oxford University Press, New
York, 1997.

• n. Noguchi, Introduction to Complex Analysis, American Mathematical
Society, Providence, 1999.

• B. Palka, An Introduction to Complex Function Theory, Springer, New
York, 1991.

• R. Remmert, Theory of Complex Functions, Springer-Verlag, New York,
1991.

• W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

• B. V. Shabat, Introduction to Complex Analysis, American Mathemat-
ical Society, Providence, 1992.

• M. R. Spiegel, Schaum’s Outline of the Theory and Problems of Com-
plex Variables, McGraw-Hill, New York, 1964.

Applied Texts

• M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
Dover, New York, 1965.

• n. W. Brown and R. V. Churchill, Complex Variables and Applications,
6th ed., McGraw-Hill, New York, 1996.

• G. F. Carrier, M. Crook, and C. E. Pearson, Functions of a Complex
Variable: Theory and Technique, McGraw-Hill, New York, 1966.

• W. Derrick, Complex Analysis and Applications, 2nd ed., Wadsworth,
Belmont, 1984.

• A. Erdelyi, The Bateman Manuscript Project, McGraw-Hill, New York,
1954.
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• P. Henrici, Applied and Computational Complex Analysis, John Wiley
& Sons, New York, 1974–1986.

• A. Kyrala, Applied Functions of a Complex Variable, John Wiley and
Sons, 1972.

• W. R. Le Page, Complex Variables and the Laplace Transform for En-
gineers, McGraw-Hill, New York, 1961.

• E. B. Saff and E. D. Snider, Fundamentals of Complex Analysis for
Mathematics, Science, and Engineering, 2nd ed., Prentice-Hall, Engle-
wood Cliffs, 1993.

• D. Zwillinger, et al, CRC Standard Mathematical Tables and Formulas,
CRC Press, Boca Raton, 1996.
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[HOR] L. Hörmander, Notions of Convexity, Birkhäuser, Boston, MA, 1994.
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Index

accumulation point, 108
algorithm for calculating Laurent

coefficients, 131
alternative formulations of mean value

property, 254
analytic function, 40
angles in complex analysis, 21
annuli,

conformal equivalence of, 208
conformal mapping of, 208

annulus of convergence, 121
of a Laurent series, 121

annulus, Cauchy integral formula
for, 122

argument, 21
of a complex number, 25
principle, 168, 170–172
principle for meromorphic func-

tions, 172, 173
arguments and multiplication, 25
associative law, 15
associativity

of addition, 1
of multiplication, 1

behavior near an isolated singular-
ity, 116

biholomorphic, 193
mappings of the plane, 194

boundary

maximum and minimum
principles for harmonic
functions, 255

maximum modulus
theorem, 185

minimum modulus
principle, 186

minimum principle, 255
uniqueness for harmonic

functions, 256

Cantor’s set theory, 309
Casorati-Weierstrass theorem, 117,

127
Cauchy

estimates, 94
integral defining a holomorphic

function, 88
integral formula, 79
integral formula for an annu-

lus, 122
integral formula, general form,

82
integral formula on a disc, 81
integral formula, variants of, 87
integral theorem, 71, 74, 79
integral theorem, general form,

73
integral theorem, proof of, 71
product of series, 267
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Cauchy-Riemann equations, 32, 33,
36

in terms of complex derivatives,
35

Cauchy-Schwarz inequality, 27
Cayley

map and generalized circles, 204
transform, 203

C∞ functions, 32
circulation of a fluid flow, 230
cis notation, 20
Ck functions, 32
closed set, 10
coefficients of a Laurent expansion

calculating, 131
formula for, 125

commutative law, 15
commutativity

of addition, 1
multiplication, 1

compact set, 98
complex

conjugate, 6
derivative, 34, 38, 62
derivative and holomorphic func-

tions, 40
derivatives and complex coor-

dinates, 34
derivatives in polar coordinates,

35
differentiability, 61
line integral, 54
line integral of any continuous

function, 54
line integral, parametrizations

for, 57
logarithm, 66
number system, 1

number, additive inverse for, 12
number, argument, 25
number, conjugate, 6
number, imaginary part, 5
number, modulus, 8
number, polar form of, 19
number, polar representation,

20
number, real part, 5
number, roots of, 4, 22
numbers, addition, 3
numbers, algebraic operations,

1
numbers as a field, 12
numbers, distance in, 8
numbers, multiplication, 3
numbers, multiplicative inverse

for, 12
numbers, notation for, 5
numbers, standard form, 3
numbers, standard notation for,

2
numbers, topology of, 10
numbers, vector operations on,

5
potential, 236
roots, sketch of, 24

compound Gauss-Jacobi quadrature,
245

computer algebra systems, 319
conformal, 40, 61, 62, 193

mapping, 40, 62, 193
mapping and partial differen-

tial equations, 225
mapping, determination of by

boundary points, 240
mapping, numerical techniques,

239
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mapping of annuli, 208
mappings, applications of, 225
mappings, compendium of, 211
mappings, explicit examples, 212
mappings, list of, 225
mappings of the plane, 194
mapping to a polygon, 240
self-mappings of the extended

plane, 200
self-maps of the disc, 196, 197
self-maps of the plane, 194

conformality, 61–62
characterization of holomorphic-

ity in terms of, 62
conjugate holomorphic function, 85
connected set, 10, 107
continuity

definitions of, 178
topological definition of, 178

continuously differentiable function,
31, 52

convergence of a power series, 100
convex hull, 174
cosine function, 18
counterclockwise orientation, 51
curve, 51

closed, 51
continuously differentiable, 53
image of, 51
parametrized, 51
simple, closed, 51

deformability
of curves, 75
principle, 77

deleted neighborhood, 115
derivatives of a holomorphic func-

tion, 93

differential equation
and the Fourier transform, 284
and the Laplace transform, 288
solution using Fourier series, 273

differentiated power series, conver-
gence of, 100

directional derivatives, 34
Dirichlet

problem, 226, 258
problem and conformal mapping,

226
problem on a general disc, 260
problem on a general disc, so-

lution of, 260
problem on the disc, 258, 297,

301
problem on the disc, solution

of, 259, 260
problem, physical motivation for,

226
Dirichlet’s definition of convergence

of series, 309
disc

biholomorphic self-mappings of,
197

closed, 10
conformal self-maps of, 196
Möbius transformations of, 197
of convergence of a power se-

ries, 100, 103
open, 10
rotations of, 196

discrete set, 108, 161
distributive law, 15
domain, 12, 184

of convergence of a Laurent se-
ries, 122

indistinguishable from the point



416 INDEX

of view of complex analy-
sis, 193

with one hole, 208, 209
doubly

connected domains, character-
ization of, 209

infinite series, convergence of,
121

infinite series, negative part, 121
infinite series, positive part, 121

eigenfunction, 307, 308
electrostatic

potential and the Dirichlet prob-
lem, 227

electrostatics
and conformal mapping, 234
on a disc, 234

entire function, 96
essential singularities in terms of

Laurent series, 126
essential singularity, 117, 163

at infinity, 163, 164
Euclidean algorithm, 97
Euler

equidimensional equation, 298
formula, 17, 18, 37, 42

exponential function, 18
definition of, 17

exponentiation, laws of, 19
extended complex plane, 201
extended plane, 164, 201

topology of, 200

factorial notation, 17
field, 15
finite wave train, 279

Fourier analysis of, 279

fluid flow around a post, 235
Fourier coefficients, 264

calculation of, 266
calculation of using complex anal-

ysis, 266, 267
Fourier

cosine series, 307
inversion formula, 275
methods in the theory of differ-

ential equations, 295
notation, applied math version,

296
notations, various, 295
series, 263, 264
series and heat diffusion, 270
series and steady state heat dis-

tribution, 268, 274
series and the derivative of a

function, 270
series, convergence of, 264, 265
series of the derivative function,

272
series on intervals of arbitrary

length, 265
series, partial sums, 264
series, pointwise convergence of,

264
series, uniqueness of, 272
sine series, 307
transform, 274
transform and complex variables,

275
transform, definition of, 274
transform variable, 274

function that can be expressed in
terms of z only, 33

functional analysis, 309
functions with multiple singulari-
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ties, 135
Fundamental Theorem

of Algebra, 3, 4, 15, 97, 182
of Calculus, 53
of Calculus along curves, 54

f(z), 320

Gauss-Jacobi quadrature, 245
Gaussian quadrature, 245
generalized circles, 203
Green’s theorem, 72, 73, 230

harmonic conjugate, 47
and Cauchy-Riemann equations,

48
nonexistence of, 47

harmonic function, 45, 250
as the real part of a holomor-

phic function, 250, 251
definition of, 250
real- and complex-valued, 250
smoothness of, 251

harmonicity of real and imaginary
parts, 46

heat diffusion, 226
and the Dirichlet problem, 226

heat distribution, 226, 300
and conformal mapping, 232
on the disc, 300

holomorphic function, 33, 31, 36,
38

alternative terminology for, 40
and polynomials, 31
and the complex derivative, 39
by way of partial differential equa-

tions, 31
counting the zeros of, 167
definition of, 36

derivatives of, 94
examples of, 36
is infinitely differentiable, 82
preimages of, 178
in terms of derivatives, 34
local geometric behavior of, 167
local geometry of, 176
on a punctured domain, 115
vs. harmonic functions, 91
with isolated singularities, 126

homeomorphism, 201, 206
homotopic to zero, 87
Hurwitz’s theorem, 182

i, definition of, 2
image of curve, 51
imaginary part of a complex-valued

function, 32
incompressible fluid flow

and conformal mapping, 235
and the Dirichlet problem, 229
with a circular obstacle, 236

indefinite integrals
calculation of, 146, 149, 150,

153, 155
summary chart of, 157

independence of parametrization, 57
index, 139

as an integer-valued function,
139

notation for, 139
of a curve with respect to a point,

139
inequalities, fundamental, 25
infinitely differentiable functions, 32
integrals

calculation of using residues, 146
inequalities for, 57
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on curves, 53
properties of, 56

inverse Fourier transform operator,
275

isolated
point, 161
singular point, 115
singularities, 115
singularity, three types of, 116

Jacobian matrix, 62

Lagrange’s formula, 175
Laplace

equation, 45, 249, 297, 299
operator, 45, 226
transform, 287
transform, definition of, 287
transform, key properties of, 287
transform, usefulness of, 287

Laplacian, 45, 250
Laurent expansion

about ∞, 163
existence of, 122, 123
uniqueness of, 122

Laurent
polynomial, 129
series, 120
series, convergence of, 121
series, summary chart of, 141

lens-shaped region, 232
limit of a sequence of holomorphic

functions, 98
linear fractional transformation, 199,

202
and the point at infinity, 200
summary chart of, 204
utility of, 202

lines as generalized circles, 203
Liouville’s theorem, 96

generalization of, 97
location of

poles, 173
zeros, 170

logarithm, 21, 66
and argument, 67
and powers, 68
as inverse to exponential, 67

many-to-one holomorphic function,
178

Maple, 319, 328
MatLab, 4, 319, 330
Mathematica, 319, 321
maximum modulus principle, 184

for harmonic functions, 254
mean value property, 303

for harmonic functions, 253
implies maximum principle, 254

meromorphic
at ∞, 163, 164
function, 161
functions as quotients of holo-

morphic functions, 162
functions, examples of, 162
functions in the extended plane,

164
functions with infinitely many

poles, 162
midpoint rule for numerical inte-

gration, 244
minimum

modulus principle, 185
principle for harmonic functions,

254
Möbius transformation, 188, 197
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monogenic function, 40
Morera’s theorem, 72
multiple singularities, 161
multiplicative identity, 2
multiplicity of a root, 98

Newton
-Cotes formula, 245
method, 242

nonrepeating decimal expansions, 1
north pole, 201
numerical

approximation of a conformal
mapping onto a smoothly
bounded domain, 245

integration techniques, 244
techniques, 239
techniques in conformal map-

ping, 239

odd extension of a function, 307
open mapping, 178

principle, 177
principle and argument princi-

ple, 177
theorem, 176

open set, 10
orthogonal matrix, 62
orthogonality condition, 308

path-connected set, 10
path independence, 231
phase variable, 274
Picard’s Great Theorem, 127
piecewise

Ck curve, 73
differentiable function, 265

planar domains, classification of, 209
plane, conformal self-maps of, 195

point at infinity, 202
Poisson

integral formula, 257, 302, 303
integral kernel, 257, 258, 303

polar form of a complex number,
19

pole, 117, 163
at infinity, 163
graph of, 118
in terms of Laurent series, 126
location of, 173
of order k, 141
source of terminology, 127

polynomial
characterization of, 97, 194
factorization of, 97

population growth and the z-transform,
292

potential function, 231, 239
power series, 40, 100

and holomorphic functions, 101
differentiation of, 100
partial sums of, 100
representation, coefficients of,

101
representation of a holomorphic

function, 99
table of, 104

prevertices, 240
preserving angles, 61
principal

branch of the logarithm, 68
part of a function, 129

principle
of persistence of functional re-

lations, 111
of superposition, 306

pseudodifferential operators, 309
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punctured domain, 115

radius of convergence, 100
of a power series, 100

rational
functions, characterization of,

164
number system, 1

real
analyticity of harmonic functions,

251
numbers as a subfield of the com-

plex numbers, 15
number system, 1
part of a complex-valued func-

tion, 32
region, 12
regular function, 40
removable singularity, 163

at infinity, 163, 164
in terms of Laurent series, 126

repeating decimal expansions, 1
residue, 135, 137

calculus of, 135
concept of, 135
formula, 136, 137
method for calculating, 141
notation for, 137
summary chart of, 141
theorem, 136, 137, 140

Ricci, 330
Riemann

definition of the integral, 309
hypothesis, 388
mapping theorem, 206
mapping theorem, second for-

mulation of, 206

removable singularities theorem,
116–118

sphere, 201
sphere, action of linear fractional

transformation on, 202
sphere, conformal self-mappings

of, 202
right-turn angle, 240
rotations, 196, 197
Rouché’s theorem, 180

and the Fundamental Theorem
of Algebra, 182

and the winding number, 181
applications of, 181
variant of, 181

scalar multiplication, 3
Schwarz

-Christoffel map, 212, 240, 242
-Christoffel parameter problem,

242
lemma, 188
lemma, uniqueness in, 188
-Pick lemma, 189
-Pick lemma, uniqueness in, 189

self-maps of the disc, 188
separation of variables, 297, 298,

305
set theory, 309
simple

root, 98
zero, 168

simply connected, 77, 206
Simpson’s rule for numerical inte-

gration, 244
sine function, 18
singular set, 161
singularities
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at infinity, 162
classification of, 116
classification of in terms of Lau-

rent series, 126
sinks of fluid flow, 230
sources and sinks for a fluid flow,

231
sources of fluid flow, 230
space variable, 274
special orthogonal matrix, 62
split cylinder, 227
square root of −1, 4
steady state heat distribution, 232,

268, 300
stereographic projection, 201
stream function, 236, 239
streamlines of a fluid flow, 236
stretching equally in all directions,

61, 62
Sturm-Liouville theory, 308
symbol manipulation software, 319

Table of
Laplace transforms, 289
Maple Commands, 329
Mathematica Commands, 329

transform theory, 263
trapezoid rule for numerical inte-

gration, 244
triangle inequality, 9, 25
trigonometric functions, 37

uniform
convergence, 98
limit of holomorphic functions,

98
unique continuation for holomorphic

functions, 108

uniqueness of analytic continuation,
110

value β to order n, 169
vibrating string, 304

wave equation, 304
initial conditions for, 305

wavelets, 309
winding number, 139

as an integer-valued function,
139

of image curve, 172

zero
location of, 167
multiplicity of, 168
of order n, 168
of a holomorphic function, 108
of a holomorphic function, count-

ing, 170
of a holomorphic function, lo-

cating, 167
order of, 168
simple, 168

zero set, 108
accumulating at boundary, 108
of a holomorphic function, 107,

108
discreteness of, 108

z-transform, 291
and population growth, 292
definition of, 291




