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These are informal notes for a course in Descriptive Set Theory given at
the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly
broad survey of the subject we will be concentrating on problems about group
actions, particularly those motivated by Vaught’s conjecture. Kechris’ Classical
Descriptive Set Theory is the main reference for these notes.

Notation: If A is a set, A<¥ is the set of all finite sequences from A. Suppose
o= (ag,...,am) € A<¥ and b € A. Then &b is the sequence (ag, ..., am,b).
We let ) denote the empty sequence. If ¢ € A<, then |o]| is the length of o. If
f:N— A, then f|n is the sequence (f(0),..., f(n —1)).

If X is any set, P(X), the power set of X is the set of all subsets X.

If X is a metric space, x € X and € > 0, then B.(z) = {y € X : d(z,y) < €}
is the open ball of radius € around z.

Part I
Classical Descriptive Set Theory

1 Polish Spaces

Definition 1.1 Let X be a topological space. We say that X is metrizable if
there is a metric d such that the topology is induced by the metric. We say that
X is separable if there is a countable dense subset.

A Polish space is a separable topological space that is metrizable by a com-
plete metric.

There are many classical examples of Polish spaces. Simple examples include
R"™, C", I = [0, 1], the unit circle T, and Q}, where Q,, is the p-adic field.

Example 1.2 Countable discrete sets are Polish Spaces.

Let X be a countable set with the discrete topology. The metric
_JOo ifzx=y

is a complete metric inducing the topology.

If d is a metric on X, then

d(z,y)

g(m’ y) = 1+d(z,y)

is also a metric, d and d induce the same topology and c/l\(z, y) < 1 for all .

Example 1.3 If Xo, X1,... are Polish spaces, then [[ X, is a Polish space.



__ Suppose d,, is a complete metric on X,,, with d,, < 1, forn =0,1,.... Define
don [[ X, by

o0

Af.0) = 3 gy da(Fn), o).

n=0
If fo, f1,... is a Cauchy-sequence, then f1(i), f2(4), ... is a Cauchy-sequence
in X; for each i. Let g(n) = lim f;(n). Then g is the limit of fo, f1,....

Suppose z{, 2}, ... is a dense subset of X;. For o € N<“ let
e | ifi < o]
fo(n) { xy otherwise

The {fy : 0 € N<“} is dense in [] X.

In particular, the Hilbert cube H = IV is Polish. Indeed, it is a universal
Polish space.

Theorem 1.4 FEvery Polish space is homeomorphic to a subspace of H.

Proof Let X be a Polish space. Let d be a compatible metric on X with d < 1
and let zg,x1,... a dense set. Let f: X — H by f(z) = (d(z, x1),d(z, z2),...).
If d(z,y) < €/2, then |d(z,z;) — d(y, ;)| < € and d(f(z), f(y)) < > zrre < €.
Thus f is continuous. If d(z,y) = € choose x; such that d(z,z;) < €¢/2. Then
Ay, 1) > ¢/2, 50 [(z) £ 1),

We need to show that f~! is continuous. Let ¢ > 0. Choose n such that
d(z,xn) < €/3. If |y — x,| > 2€/3, then d(f(x), f(y)) > % Thus if
d(f(x), f(y) < W, then d(z,y) < e. Hence f~! is continuous.

Function spaces provide other classical examples of Polish spaces. Let C/(T)
be the continuous real-valued functions on I, with d(f, g) = sup{|f(z) — g(z)] :
x € T}. Because any Cauchy sequence converges uniformly, d is complete. Any
function in I can be approximated by a piecewise linear function defined over
Q. Thus C(I) is separable.

More generally, if X is a compact metric space and Y is a Polish space
let C(X,Y) be the space of continuous functions from X to Y with metric
d(f,g) = sup{| f(x) — g(a)| : 2 € X},

Other classical examples include the spaces [P, [*° and LP from functional
analysis.

The next two lemmas will be useful in many results. If X is a metric space
and Y C X the diameter of YV is diam (V) = sup{d(x,y) : z,y € Y}

Lemma 1.5 Suppose X is a Polish space and Xg O X1 D X9 O ... are closed
subsets of X such that lim,,_, diam (X,,) = 0. Then there is x € X such that

NXn = {z}.

Proof Choose z,, € X,,. Since diam (X,,) — 0, (z,,) is a Cauchy sequence. Let
x be the limit of (z,,). Since each X, is closed x € () X,,. Since diam (X,,) — 0,
if y € X, then x = y.



Lemma 1.6 If X is a Polish space, U C X is open and € > 0, then there are
open sets Uy, Uy, Us, ... such that U = |JU,, = JU,, and diam (U,,) < € for all

n.

Proof Let D be a countable dense set. Let Uy, Uy, ... list all sets B (d) such

that d € D, L < ¢/2 and Bi(d) C U. Let € U. There is n > 0 such
that 2 < e, Bi(z) C U. There is d € DHB%(x). Then z € B%(d) and
B (d) CU. Thus B (d) is one of the U; and @ € JUs.

Baire Space and Cantor Space

If A is any countable set with the discrete topology and X is any countable set,
then AX is a Polish space. Two very important examples arise this way.

Definition 1.7 Baire space is the Polish space N' = NN and Cantor space is
the Polish space C = 2N,

An equivalent complete metric on N is d(f,g) = 27@% where n is least such

that f(n) # g(n).
Since the two point topological space {0,1} with the discrete topology is

compact. By Tychonoff’s Theorem C is compact.
Exercise 1.8 Show that C is homeomorphic to Cantor’s “middle third” set.

Another subspace of N/ will play a key role later.

Example 1.9 Let Sy be the group of all permutations of N, viewed as a sub-
space of N.

If d is the metric on A/, then d is not complete on S.. For example let

i+1 ifi<n
fn(i) =10 ifi=n
) otherwise

Then f, is a Cauchy sequence in N, but the limit is the function n — n+1 that
is not surjective. Let d(z,y) = d(z,y) + d(z~1,y~1). It is easy to see that if
(fn)isa d-Cauchy sequence in Soo, then (fn) and (f,; 1) are d-Cauchy sequences
that converge in A. One can then check that the elements the converge to must
be inverses of each other and hence both in S.

Exercise 1.10 A metric d on a group G is called left-invariant if d(zy,zz) =
d(y, z) for all z,y, z € G. Show that the original metric d on Sy, is left-invariant,
but that there is no left-invariant complete metric on S..

Exercise 1.11 Define ¢ : N' — C by

¢(f)=00...011...100...01....
S——
f(O)  fFO+1 f(2)+1



Show that ¢ is a continuous and one-to-one. What is the image of ¢?

Exercise 1.12 We say that x € [0,1] is a dyadic-rational is x = & for some
m,n € N. Otherwise, we say z is a dyadic-irrational. Show that A is homeo-
morphic to the dyadic-irrationals (with the subspace topology). [Hint: let ¢ be

as in Exercise 1.11 and map f to the dyadic-irrational with binary expansion
o(f)]
Exercise 1.13 T Show that
1
f

T 10+ L
1+f(1)+m

is a homeomorphism between A and the irrational real numbers in (0,1).

Because N will play a key role in our study of Polish spaces, we will look
more carefully at its topology. First we notice that the topology has a very
combinatorial/computational flavor.

If o e N<“ Let N, = {f € N : 0 C f}. Then N, is an open neighborhood
of f. It is easy to see that {N, : 0 € N<“} is a basis for the topology. Notice
that N'\ N, = U{N; : 7(i) # o(i) for some i € dom ¢} is also open. Thus N,
is clopen. It follows that the Baire Space is totally disconnected (i.e., any open
set is the union of two disjoint open sets).

If U C N is open, there is S C N<“ such that U = U N,. Let T = {0 €

geS
N<“:V¥7r Co 7 ¢ S}. Note that if c € T and 7 C o, then 7 € T. We call a set

of sequences with this property a tree. We say that f € N is a path through T'
if (f(0),...,f(n)) €T forn=0,1,.... We let

[T]={f € N: f is a path through T'}.

Then f € [T] if and only if ¢ ¢ f for all o € S if and only if f ¢ U. We have
proved the following characterizations of open and closed subsets of A/.

Lemma 1.14 i) U C N s open if and only if there is S C N<% such that

U= UNO..

oes
i) F C N is closed if and only if there is a tree T C N<% such that F' = [T).

We can improve the characterization a little.

Definition 1.15 We say that a tree T C N<% is pruned if for all o € T', there
isi e Nwith ot € T.

Equivalently, T is pruned if for all o € T, there is f € [T] with o C f. If
T is a tree, then 7" = {oc € T : 3f € [T] 0 C f}. It is easy to see that T" is a
pruned tree with ' C T”. Thus every closed set F is the set of paths through a
pruned tree.

If f: N — N, then f is continuous if and only if for all z and o C f(z),
there is a 7 C x such that if 7 C y, then ¢ C f(y). In other words, for all n



there is an m, such that the first n values of f(z) are determined by the first m

values of x. In §4 we will show how this brings in ideas from recursion theory.
Another key feature of the Baire space is that powers of the Baire space are

homeomorphic to the Baire space. Thus there is no natural notion of dimension.

Lemma 1.16 i) If k > 0, then N is homeomorphic to N® x N'¥.
ii) N is homeomorphic to N'.

Proof If a = (n1,...,n4, f1,..., fx) € N¢ x N* let

O(f) = (n1,...,na, f1(0), f2(0), ..., f(0), f1(1),..., fu(1),..., fi(n),..., fr(n),...).

Ifﬂ:(fo,fl,...)ENN, let
'@[1(6) = (f0(0)7f0(1)ﬂf1(0)7"')'

It is easy to see that ¢ and v are homeomorphisms.

A third important feature of the Baire space is that every Polish space is a
continuous image of the Baire space. We first prove that every closed subset of
N is a continuous image of N.

Theorem 1.17 If X is a Polish space, then there is a continuous surjective

o: N —X.
Proof Using Lemma 1.6 build a tree of sets (U, : 0 € N<¥) such that:
D) Up = X;
ii) U, is an open subset of X;
iii) diam (Uy) < 1573
iv) U, C U, for o C T;
V) Ug = U Uo’"i-
i=0

If fe Nithen by 1.5 there is ¢(f) such that

o)) = () Usin = () Usm = {6(/)}-
n=0 n=0
Suppose z € X. We build g C 01 C ... with z € U,,. Let o9 = 0. Given oy,
with z € U,,,, there is a j such that z € U,,~;. Let op,p1 =0y j. If f=Jon,
then ¢(f) = x. Thus ¢ is surjective.

Suppose ¢(f) = z. If gln = fln, then ¢(g) € Uy, and d(o(f), ¢(g)) <
Thus ¢ is continuous.

S |-

Indeed we have shown that there is an open, continuous, surjective ¢ : N’ —
X.

We will prove a refinement of this theorem. We need one lemma.

Recall that X is an F,-set if it a countable union of closed sets. If O C X
is open, then, by 1.6 there are open sets Up, Uy, ... such that O = |JU,,. Thus
every open set is and F,-set. The union of countably many F,-sets is an F,-set.
If X =JA; and Y = |JB; are Fy-sets, then X NY = (J(A; N By) is also an
F,-sets.



Lemma 1.18 Suppose X is a Polish space and Y C X is an F,-set and € > 0.
There are disjoint F,-sets Yo, Y1,... with diam (V;) <€, Y; CY and JY; =Y.

Proof Let Y = |JC, where C, is closed. Replacing C, by Co U...UC,
we may assume that Cy € C7; C .... Thus Y is the disjoint union of the sets
Co,C1\ Co,C2\ C,. ... Since C; \ C;11 C C; CY, it suffices to show that each
C;\C;_1 is a disjoint union of F,-sets of diameter less than e. Suppose Y = FNO
where F' is closed and O is open. By Lemma 1.6, we can find Oy, O1, . . . open sets
with diam (O,) < eand O = JO,, = JOy,. Let Y;, = FN(0,\(OpN. .. 0p_1)).
The Y; are disjoint, ¥; CO; C 0,50 Y; CY,and JY; =Y.

Theorem 1.19 If X is Polish, there is F C N closed and a continuous bijection
¢ F— X.

Proof Using the previous lemma, we build a tree (X, : ¢ € N<¥) of F,-sets
such that

i) Xy = X;

i) Xo = UiZo Xomis

i) X, C X, if 7 C o

iv) diam (X,) < 123

V) if ¢ }é j, then XO'Ai N XU’\]‘ = @

If f € N, then (] Xy, contains at most one point. Let

F:{fEN:erXxe ﬁxﬂn}.

n=0

Let ¢ : I' — X such that ¢(f) = [ Xy},. As above ¢ is continuous. By v) ¢
is one-to-one. For any = € X we can build a sequence og C o1 C ... such that
z € (| X5, . We need only show that F is closed.

Suppose (f,) is a Cauchy sequence in F. Suppose f, — f € . We must
show f € F. For any n there is an m such that f;|n = f,,|n for ¢ > m. But then
d(o(f:), (fm)) < L. Thus ¢(fn) is a Cauchy sequence. Suppose ¢(fn) — <.
Then z € (1 Xy, = (1 Xy,, 50 ¢(f) =z and f € F.

Exercise 1.20 Prove that if X and Y are closed subsets of N with X C Y
then there is a continuous f : Y — X such that f|X is the identity (we say that
X is a retraction of Y). Use this to deduce 1.17 from 1.19.

Cantor—Bendixson analysis

We next show that the Continuum Hypothesis is true for Polish spaces, and
closed subsets of Polish spaces.

Definition 1.21 Let X be a Polish space. We say that P C X is perfect if X
is a closed set with no isolated points.

Note that () is perfect. Nonempty perfect sets have size 20,



Lemma 1.22 If P C X is a nonempty perfect set, then there is a continuous
injection f : C — P. Indeed, there is a perfect F C P, homeomorphic to C. In
particular |P| = 2%,

Proof We build a tree (U, : o € 2<¥) of nonempty open subsets of X such
that:

i) Up = X;

ii) U, Cc U, for o C T;

ili) Uy N Uy~ = 0;

iv) diam (Uy) < ﬁ;

v) Uy N P # 0

Suppose we are given U, with U, NP # (). Because P is perfect, we can find
xo and x1 € U, N P with z¢ # x1. We can choose Uy~ and Uy~ disjoint open
neighborhoods of 2y and x1, respectively such that U,~ C U, and diam (U,~;) <
\ngu' This allows us to build the desired tree.

By Lemma 1.5, we can define f : C — P such that

n=0 n=0

n=0

It is easy to check that f is continuous and one-to-one.
Since f is continuous and C is compact, F' = f(C) is closed. By construction
F is perfect. The map f : C — F' is open and hence a homeomorphism.

Exercise 1.23 Suppose f : C — X is continuous and one-to-one. Prove that
f(C) is perfect.

Consider Q as a subspace of R. As a topological space Q is closed and has
no isolated points. Since |Q| = Ny, Q is not a Polish space.

We next analyze arbitrary closed subsets of Polish spaces. Let X be a Polish
space. Let Uy, Uy, ... be a countable basis for the open sets of X. If F' C X is
closed, let Fy be the isolated points of F. For each x € Fy we can find i, such
that U;, N F = {z}. Thus Fy is countable and

F\Fy=F\ |J U,
zeFy

is closed.

Definition 1.24 If FF C X is closed, the Cantor-Bendixson derivative is
I'(F) = {x € F : z is not an isolated point of F'}.

For each countable ordinal o < wy, we define I'*(F') as follows:
i) TO(F) = F;

ii) DoHH(F) = D(0(F));

iii) T*(F) = [ T%(F).

B<a



Lemma 1.25 Suppose X is a Polish space and F C X is closed.
i) T*(F) is closed for all & < wn;
i) [P (F) \ T (F)] < Ro;
iii) if T(F) = F, then F is perfect, and T*(F) = F for all « < w;.
iv) there is an ordinal o < wy such that T%(F) = Tot1(F)

Proof i)-iii) are clear. For iv), let Uy, Uy,... be a countable basis for X. If
Tot1\Ta # 0, we can find n, € N such that U, isolates a point of T'“(F).
By construction U, does not isolate a point of I'*(F) for any 8 < a. Thus
ne # ng for any 8 < a.

If there is no ordinal a with T'*(F) = T'**1(F), then a + n, is a one-to-one
function from w; into N, a contradiction.

The Cantor-Bendixzson rank of F', is the least ordinal « such that I'*(F) =
o+l (F)

Exercise 1.26 T Show that for all @ < wy, there is a closed F C R with
Cantor—Bendixson rank «.

Theorem 1.27 If X is a Polish space and F C X 1is closed, then F = PU A
where P is perfect (possibly empty), A is countable and PN A = 0.

Proof If F C X is a closed set of Cantor-Bendixson rank o < wi, then
F =PnNAwhere P =T%F) and A = g, DAY F)\TA(F). Clearly A is
countable and AN P = 0.

Corollary 1.28 If X is a Polish space. and F' C X is an uncountable closed
set then F contains a nonempty perfect set and |F| = 280, Also, if Y C X is
an uncountable F,-set, then Y contains a perfect set.

In particular every uncountable Polish space has cardinality 2%°.

Exercise 1.29 Show that there is an uncountable A C R such that no subset
of A is perfect. [Hint: Build A be diagonalizing against all perfect sets. You
will need to use a well-ordering of R.]

Polish subspaces

Suppose X is a Polish space and F' C X is closed. If (z,) is a Cauchy sequence
with each z,, € F, then limz,, € F. Thus F is also a Polish space.

If U C X is open, then Cauchy sequences in U, may not converge to elements
of U. For example, (0,1) CR and 2 — 0 ¢ (0,1). The next lemma shows that
when U is open we are able to define a new complete metric on U compatible
with the topology.

Lemma 1.30 If X is a Polish space and U C X s open, then U (with the
subspace topology) is Polish.



Proof Let d be a complete metric on X compatible with the topology, we may
assume d < 1.
Let

~

(z,y) = d(z,y) +

U

’d(z,;\U) d(y,;\U)"

~ ~

It is easy to see that d(x, ) is a metric. Since d(z,y) > d(z,y), every d-open,
set is d-open. Suppose x € U, d(z, X \U) =r > 0 and € > 0. Choose § > 0 such
that if 0 < < 4, then n+ ﬁ <e Ifd(z,y) <9, then d(y, X \U) >r — 6.
Hence

o+ r(r —9)

d| < =
(z,y) <0+ r xS

1 1 ‘
<

‘<e.

Thus the d-ball of radius e around z, contains the d-ball of radius 6. Hence
every d-open subset is open. Thus d is compatible with the subspace topology
on U. We need only show d is complete.

Suppose (z,) is a d-Cauchy sequence. Then (x,,) is also a d-Cauchy sequence,
so there is x € X such that x,, — z. In addition for each n

1 1
li — =0.
g oo |d(x, X\U)  d(z;, X\ U)

Thus there is 7 € R such that
1

lim ———— =1

it d(zs, X\ U)

is bounded away from 0 and d(xz,X \ U) > 0. Thus

x € U. Hence d is a complete metric on U and U is a Polish space.

We can generalize this a bit further. Recall that Y C X is a Gg-set if Y is
a countable intersection of open sets. The Gs-sets are exactly the complements
of F,-sets. Thus every open set is G5 and every closed set is Gs.

In particular, m

o~

Corollary 1.31 If X is a Polish space and Y C X is G5, then Y is a Polish
space.

Proof Let Y =()O, where each O, is open. Let d,, be a complete metric on
O,, compatible with the topology. We may assume that d,, < 1. Let

~ 1
dx,y) = g1 dn(@,y)-
n=0

If (z;) is a d-Cauchy sequence, then (z;) is d,-Cauchy for each n. Thus there
is * € X such that each z; — z in each O,. Since each O, is complete
z € ()0, =Y. Hence d is complete.

Corollary 1.32 If X is a Polish space and Y C X is an uncountable Gs-set,
then Y contains a perfect set.

10



Can we generalize Corollary 1.31 further? We already saw that Q C R is not
a Polish subspace. Since Q is countable it is F,. Thus we can not generalize
this to F,y-sets. Indeed the converse to the corollary is true.

Theorem 1.33 If X is a Polish space, then Y C X is a Polish subspace if and
only if Y is a Gs-set.

Proof Suppose Y is a Polish subspace of X. Let d be a complete metric on
Y compatible with the subspace topology. Let Up, Ui, ... be a basis of open
subsets of X. If x € Y and € > 0, then for any open neighborhood V' of X
there is U,, C V such that = € U,, and diam (Y NU,) < €, where the diameter
is computed with respect to d.
Let
A={z €Y :VYe>03n x € U, Adiam (Y NU,,) < }.

Then
Py 1
ﬂU{U iam ( ﬂU)<m}

m=1
is a Gs-set and Y C A. Suppose z € A. For all m > 0, there is U, such that
z € U, and diam (Y NU,,,) < e. Since Y is dense in A, for each m we can
find y, e YNU,, N...NU,,,. Then yi,ys, ... is a Cauchy sequence converging
tox. Hence x € Y. Thus Y = A is a Gs-set.

Corollary 1.34 Every Polish space is homeomorphic to a Ggs-subset of H.

Proof By 1.4, if X is Polish space, then X is homeomorphic to a subspace Y
of H. By 1.33 Y is a Gs-subset of X.

Spaces of L-structures

We conclude this section with another important example of a Polish space.

Let £ be a countable first-order language. Let Mod(L) be the set of all
L-structures with universe N. We will define two topologies on Mod(L). Let
{co,c1,...} be a set of countably many distinct new constant symbols and let
£* = LUA{co,c1,...}. If M € Mod(L), then we can naturally view M as an
L*-structure by interpreting the constant symbol ¢; as i.

If ¢ is an L*-sentence, let By = {M € Mod(¢) : M = ¢}. Let 7y be the
topology with basic open sets { By : ¢ a quantifier-free £L*-formula} and let 7, be
the topology with basic open sets { By : ¢ an L*-formula}. Clearly the topology
T1-refines 7.

Theorem 1.35 (Mod(£), 7o) and (Mod(L),71) are Polish spaces.

We give one illustrative example to show that (Mod(L), 1) is a Polish space.
Suppose L = {R, f,c} where R is a binary relation symbol, f is a binary function
symbol and c is a constant symbol. Let X be the Polish space 2N 5 NV N,
with the product topology. If M is an L-structure, let RM, fM and ¢M be

11



the interpretation of the symbols of £ in M and let xpm : N> — 2 be the
characteristic function of R*. The function M — (xgm, fM, ™) is a bijection
between Mod(£) and X.

We will prove (Mod(L), 79) is Polish by showing that this map is a homeo-
morphism. Let Yo = {(g9,h,n) € X : g(i,7) = 1}, Y1 = {(g,h,n) : h(i,j) = k},
Ys = {(g,h,n) € X : n = m}. The inverse images of these sets are the ba-
sic clopen sets Br(c,.c;)s Bf(ci,c;)=er and Be,, =, respectively. It follows that
this map is continuous. We need to show that if ¢ is quantifier-free, then the
image of By is clopen. This is an easy induction once we show it for atomic
formulas. For formulas of the form R(c;,¢;) or f(c;, cj) = cg, this is obvious.
A little more care is needed to deal with formulas built up from terms. For
example, let ¢ be the formula f(co, f(c1,¢2)) = cs. Then the image of By is
Y ={(g,h,n): h(0,h(1,2)) = 3}. Then

Y = [J{(g,h,n) : h(1,2) =i A (0,7) = 3}
€N

is open and

=Y = [ J J{(g, hon) - h(1,2) =i A R(0, 1) = j}

iEN j#3
is open. Thus Y is clopen. This idea can be generalized to all atomic ¢.

Exercise 1.36 Give a detailed proof that (Mod(L), 7o) is a Polish space for
any countable first order language L.

Next, we consider (Mod(L),7;). Let S be all £*-sentences. Then 2° with
the product topology is a Polish space homeomorphic to the Cantor space. Let
X be the set of all f € 29 such that

i) {¢p € S: f(¢) = 1} is consistent;

ii) for all ¢ we have f(¢) =0« f(—¢) =1;

iii) f(e; = ¢j) =0 for i # j;

iv) for all ¢, if f(Jvp(v)) =1, then f(é(cm)) =1 for some m € N.

Lemma 1.37 X is Gs-subset of 2.

Proof Let X7 = {f:{¢: &(f) = 1}} is consistent. Let I be the set of finite
subsets of S that are inconsistent. Then

X, = m{f:f(qb):Oforsome(beA}

Ael
and X7 is closed.
Also
Xy = ({f: f(¢) =0 f(=¢) =1}

PeS

and
X3 = ﬂ{f:f(ci:cj):()}

i#j

12



are closed.
Let F' be the set of £L*-formulas with one free-variable. Then

Xa= () ({F: £@uo()) = 0} U J{F : f(0len)) = 13)

pEF neN

is Gs. Since X = X1 N...N Xy, X is Gs.

Thus X is a Polish subspace of 2°.

If M € Mod(L), let fam(d) =1if M ¢ and fpm(9) =0if M |E —¢. Tt is
easy to see that foq € X. If f € X, then Henkin’s proof of G6del’s Completeness
Theorem shows that there is an L-structure M with universe N such that:

i) if R is an n-ary relation symbol, then RM = {(n1,...,nm) : f(R(Cnyy---,Cn,,) =
1};

ii) if g is an m-ary function symbol, then g™ : N™ — N is the function
where g™ (ny,...,n,) =k if and only if f(g(cn,,---,¢Cn,,) = Cn,) = 1;

iii) if ¢ is a constant symbol, then ¢™ = n if and only if f(c = ¢,) = 1.

Thus M — faq is a bijection between Mod(£) and X. The image of By
is {f € X : f(¢) = 1}. Thus this map is a homeomorphism and Mod(L) is a
Polish space.

Spaces of Compact Sets

We describe one more interesting example without giving proofs. For proofs see
Kechris [6] 4.F.

Definition 1.38 Let X be a topological space. Let K(X) be the collection
of all compact subsets of X. The Vietoris topology on K(X) is the smallest
topology such that for each open U C X the sets {4 € K(X): A C U} and
{Ae K(X): ANU # 0} are open.

Exercise 1.39 Suppose X is separable and D C X is a countable dense set.
Show that {A C D : A finite} is a dense subset of K(X). Thus K(X) is
separable.

Definition 1.40 Suppose X is a metric space. We define the Hausdorff metric
on K(X) by
dy (A, B) = max (maj‘( d(a, B), max d(b, A)) .

ac

Exercise 1.41 Show that the Hausdorff metric on K (X) is compatible with
the Vietrois topology.

Theorem 1.42 If d is a complete metric on X, then dg is a complete metric
on K(X). In particular, if X is a Polish space, then so is K(X).

In 2.20 we show that {A C X : A is finite} is an F}, subset of K(X).

13



2 Borel Sets

Definition 2.1 If X is any set, a 0-algebra on X is a collection of subsets of X
that is closed under complement and countable union. A measure space (X, <)
is a set X equipped with a o-algebra ().

If (X, Qx) and (Y, Qy ) are measure spaces, wesay f : X — Y is a measurable
function if f~1(A) € Qx for all A € Qy. We say that (X,Qx) and (Y, Qy)
are isomorphic if and only if there is a measurable bijection with measurable
inverse.

Definition 2.2 If X is a topological space, the class of Borel sets B(X) is the
smallest o-algebra containing the open sets.
If X and Y are topological spaces, we say that f : X — Y is Borel measurable
if it is a measurable map between the measure spaces (X, B(X)) and (Y, B(Y)).
We say that a measure space (X, Q) is a standard Borel space if there is a
Polish space Y such that (X, ) is isomorphic to (Y, B(Y)).

Lemma 2.3 Suppose X and Y are topological spaces and f: X — Y.

i) f is Borel measurable if and only if the inverse image of every open set is
Borel.

it) If Y is separable, then f is Borel measurable if and only if the inverse
image of every basic open set is Borel.

ii1) If Y is separable and f : X — Y is Borel measurable, then the graph of
f is Borel.

Proof If f: X — Y is Borel measurable, then the inverse image of every open
set is Borel.

i)Let Q ={A € B(Y): f~1(A) € B(X)}. Suppose every open set is in Q. If
A€, then f~1(Y\A) = X\ f~1(A) is Borel and X\ A € Q. If Ag, Ay,... € Q,
then f~1(UUA;) = f~1(A;) is Borel and |J(A4;) € Q.

i) Suppose O is open. There are basic open sets Uy, Uy, ... such that O =
UUi. Then f~1(0) = J f~*(U;) is a countable union of Borel sets and hence
Borel.

iii) Let Uy, Uy, . .. be a basis for the topology of Y. Then the graph of f is

oo

N{(@y) :y U0 {(,y) s 2 € £ (UL}

n=0
Since each f~1(U,) is Borel so is the graph of f.

By ii) any continuous f : X — Y is Borel measurable. We will see later that
the converse of iii) is also true.
Since

N4i=x\[Jx\ 4),

any o-algebra is also closed under countable intersections. Thus B(X) contains
all of the open, closed, F,, and Gs sets. We could generalize this further by
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taking F,5, intersections of F,-sets, Gs,, unions of Ggs-sets, Fys5, Gsos - - --
There is a more useful way of describing these classes.

Definition 2.4 Let X be a metrizable space. For each o < wy we define X9 (X)
and II2(X) C P(X) as follows:

39(X) is the collection of all open subsets of X;

ITY (X) is the collection of all sets X \ A where A € £9(X);

For a > 1, ¥2(X) is the collection of all sets X = (JA; where each A; €
ITY, (X) for some f3; < a.

We say that A € AY(X) if A€ X%(X) and A € TI(X).

When we are working in a single space we omit the X and write £% and II

instead of X9 (X) and IT9 (X).
Closed sets are I1Y, F,-sets are X9, Gs-sets are II9,. . ..

Lemma 2.5 Suppose X is metrizable.
i) UL C AYL, for all a < wy.
ii) B(X) = Uqew, Za-
i) If X is infinite, then |B(X)| = 2.

Proof In any metric space every open set is both F, and Gs, thus 9 UTI{ C
A}. i) then follows easily by induction. An easy induction shows that any
o-algebra containing the open sets must contain X0 for each o < wy.

iii) If Uy, Uy,... is a basis for the topology, then every open set is of the
form {J,,c g Uy for some S C N, thus |29| < 2%, Clearly |II| = [£2|. Suppose
o < wp and [TIj| < 2% for all B < a. Then |Uyz ., TI}| < o and if F is the set
of f: N = g, IIY, then |F| < (2%0)% = 2% and for any A € X, there is
f € F such that A =[] f(n). Thus |X9| < 2%, Thus

Bx)=| U =8

a<wi

< Ny x 2R0 = 9No,

If X is infinite, then every countable subset of X is 9. Hence |B(X)| = 2%,
We state the basic properties of these classes.

Lemma 2.6 i) X0 is closed under countable unions and finite intersections.
ii) TIO is closed under countable intersections and finite unions.
iii) AY is closed under finite unions, finite intersections and complement.
iv) X2, TI and AY are closed under continuous inverse images.

Proof We prove i) and ii) simultaneously by induction on a. We know that i)
holds for the open sets. By taking complements, it is easy to see that if X0 is
closed under countable unions and finite intersections, then IT? is closed under
countable intersections and finite unions.

Suppose a > 0. Ag, Ai,... € B Let A; = ;2 Bi; where each B; ; € IIj
for some 8 < . Then

GAZ: fj DBZ'J'GEQ.
1=0

i=0j=0
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Suppose we have proved ii) for all § < a. Then
AO n Al = U U (B()yi N BO,j)
i=0 j=0

and each By ; N By, ; is H% for some 8 < a. Thus Ag N Ay is 9.

ili) is immediate from i) and ii).

iv) Suppose f : X — Y is continuous. We prove that if A C Y is 39
(respectively IT?), then so is f~1(A). If a = 0, this is clear. Since f~1(J 4;) =
UFf YA and f~1 (Y \ A) = X \ f~1(A), this follows easily by induction.

Corollary 2.7 If AC X xY is X9 (respectively II®, or A%) and a € Y, then
{reX:(r,a) €Y} is 0.

Proof The map z — (z,a) is continuous.

Exercise 2.8 Suppose X is a Polish space and Y is a subspace of X. a) Show
that 20(Y)={YNnA4:4eX0(X)}and TIO(Y) ={Y NA:AecX%X)}.

b) This does not necessarily work for A2. Show that AY(Q) # {QNA: A€
A3 (Q)}-

Examples

We give several examples.

Example 2.9 If A C X is countable, then A € X9.

Point are closed, so every countable set is a countable union of closed sets.

Example 2.10 Let A= {x € N : z is eventually constant}. Then A is X9.

x € A if and only if Im¥n > m z(n) = x(n + 1).
If A, ={x:x(n) =x(n+ 1)}, then A, is clopen and

A= N

m=0n>m

is 9.

Example 2.11 Let A= {x € N : z is a bijection}. Then A is IT9.
Let Ag = {x : Vn¥m (n # m — x(n) # x(m))}. Then

A=) N {e:2(n) #2(m)}

n=0n#m
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is closed. Let A; = {z : YnIm z(m) = n}. Then

A = ﬂ U{:c:z(m):n}
n=0m=0
is IT9 and A = Ag N Ay is IIS.

As these examples make clear, existential quantification over N (or Q or any
countable set) corresponds to taking countable union, while universal quantifi-
cation over a countable set corresponds to taking a countable intersection.

Example 2.12 For z € 2N we can view x as coding a binary relation Ry on
N, by (i,7) € Ry if and only if x(i,j) = 1. Then LO = {x : Ry is a linear
order} is a II%-set and DLO = {z € LO : R, is a dense linear order} is I13.

x € LO if and only if the following three conditions hold
Vn¥m (z(n,m) =0V x(m,n) =0)
Vn¥m (n=mV z(n,m) =1V z(m,n) =1)
VYnVYmVk (x(n,m) = x(m,k) =1 — x(n, k) = 1.

Thus LO is IIY. x € DLO if and only if x € LO and

vnvm (z(n,m) =1 — 3k z(n, k) = z(k,m) = 1).
Thus DLO is II9.

Example 2.13 Let A be a countable set. Try = {z € 24 iz isa tree}. Then
Tra is IIS.
The set {x € Try : x has an infinite path} is also I19.

x € Try if and only if VoVr Co (2(0) =1 — z(1) =1).
By Konig’s Lemma, a binary tree T has an infinite path if and only if T is
infinite. Thus z € W F5 if and only if x € Try and
Vndo € 2" z(o) =1

At first this looks IT9, but the existential quantifier is only over a finite set.

Indeed
WF; = ﬂ U {z:2(c) =1}

neNoe2n

and |J,con {7 : 2(0) = 1} is a clopen set.

Example 2.14 We say that x € C is normal if

. |
nh_{r;on—l—lgx(l)za

17



Let N = {z € C : z is normal}.
x is normal if and only if

Vk > 0dmVn (n >m —

1 1 < .
§—n+12x(2)
1=0

< 1
L’

If

Anyk—{iEEC:

1 1 < .
5_ n+12x(z)
1=0

then A,, j is clopen and

N= U N e

k=1m=0n>m
Hence N is a IT3-set.
Example 2.15 Models of a first order theory.

Suppose L is a first order language. Let £*, Mod(L), 79 and 7 be as in 1.35.

Suppose ¢ is an L, -sentence. Let Mod(¢) = {M € Mod(L) : M |= ¢}.
We claim that Mod(¢) is a Borel subsets of Mod(£). It is enough to prove this
for the weaker topology 79. In 79, if ¢ is quantifier-free then Mod(¢) is clopen.
The claim follows by induction since,

Mod(—¢) = Mod(£) \ Mod(¢),

Mod( \ ¢;) = (| Mod(¢;)

i=1 i=0
and

Mod(Tv ¢(v)) = |J Mod(6(cn)).

n=0

If T is a first order £-theory, then
Mod(T) = (7] Mod(¢)
¢eT

is Borel.

Exercise 2.16 Show that if ¢ is a first order £L*-sentence, then Mod(¢) is X9
for some n. (hint: prove that n depends only on the quantifier rank of ¢.)
Conclude that if T is a first order theory, then Mod(T') is IIY.

In the topology 71, Mod(¢) is clopen for all first order ¢. Thus Mod(T) is
closed.

Example 2.17 Isomorphism classes of structures.
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Suppose M € Mod(L). There is ¢ € Lo, w, the Scott sentence of M (see
[11] 2.4.15) such that if M; is a countable L-structure, then M = M, if and
only if M; E ¢aq. Thus

{M1 eEM: M; = M} = MOd((bM)
is a Borel set.

Example 2.18 Let X = C(I) x I and let D = {(f,z) : f is differentiable at
x}. Then D € I1Y.

f is differentiable at x if and only if
Ynam Vp,q € QN [0,1] (Jx —p| < %/\|:c—q| < %)—>
[(f(p) = f(@)(g —2) = (f(a) = f(@))(p —2)| < 3](p—2)(q — 2)].

The inner condition is closed in C(I) x I so this set is I19.
Example 2.19 If X is a Polish space, then {(A,B) € K(X)?: A C B} is I13.

If a € A\ B, then there is a basic open set U such that a € U and U N B = (.
Fix Up, Uy, ... a basis for X. Then A C B if and only if

Vn (U,NB=0—U,NA=0).
This is a ITJ definition.

Example 2.20 Suppose X is a Polish space. Then {A C X : A is finite} is an
F, subset of K(X).

A is finite if and only there are basic open set Uy,...,U, such that A C
Ui U...UU, such that if V; and V; are disjoint basic open subsets of U;, then
AQV():(Z)OI' AﬂVl :Q)

Fix Uy, Uy, ... a basis for the open sets. If F' C N is finite, then

B ={A:AC UVz}

ieF

is open. Let Sp = {(¢,j) € N : U, and U; are disjoint subsets of Uy for some
ke F}. Theset C;; ={A: ANU; =0 or ANU; = 0} is closed. Thus

{Ae K(X): Als finite } = (BF n N cm-)
FCN finite (i,J)€SF
is 329.

Exercise 2.21 Show that {A € K(X): A is perfect} is IT9.
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Changing the Topology

Suppose X is a Polish space, let 7 be the topology of X. We will often prove
interesting results about Borel sets A C X, by refining 7 to a new topology 71
with the same Borel sets such that A is clopen in the new topology.

We start with one preparatory lemma.

Lemma 2.22 Suppose X and Y are disjoint Polish spaces. The disjoint union
X WY is the space X UY where U C X UY s open if and only if UN X and
UNY are both open. Then X WY 1is a Polish space.

Proof Let dx be a compatible metric on X and dy be a compatible metric on
Y with dx <1 and dy < 1. Define d on X WY by

—~ dx(l',y) 1f9€7y€X
d(z,y) = dy (z,y) ifz,yeY
2 otherwise.

It is easy to see that X and Y are clopen in this topology and the open subsets
of X WY are unions of open subsets of X and open subsets of Y. Any Cauchy
sequence must be eventually in either X or Y and converges in the original
topology so this is a complete metric.

Lemma 2.23 Let X be a Polish space with topology 7. Suppose FF C X is
closed. There is a Polish topology 71 on X refining T such that F is clopen in
71, and T and T have the same Borel sets.

Proof We know that X \ F has a Polish topology and F has a Polish topology.
Let 71 be the Polish topology on the disjoint union of X \ F and F. Then F
is open. The open subsets of 7 are either open in 7 or intersections of 7 open
sets with F. In particular they are all Borel in 7. Thus the Borel sets of 7, are
the Borel sets of 7.

Theorem 2.24 Let X be a Polish space with topology 7. Suppose A C X 1is
Borel. There is a Polish topology 7 on X such that A is clopen and T* has the
same Borel sets as T.

Proof Let Q@ = {B € B(X) : there is a Polish topology on X such that B is
clopen. By the previous lemma, if B is open or closed, then B € © and {2 is
closed under complements.

Claim € is closed under countable intersections.

Suppose Ag, A1,... € Q and B = [\ 4;. Let 7; be a Polish topology on X
such that A; is clopen in 7; and 7 and 7; have the same Borel sets. The product
[1(X,7:) is a Polish space. Let j : X — [[(X,7;) be the diagonal embedding
j(z) = (x,z,,...). Let 7* be the topology j~*(U) where U is an open subset
in the product topology. Because j(X) is a closed subset of the product, this is
a Polish topology. A sub-basis for the topology 7* can be obtained by taking
inverse images of set {f : f(¢) € O;} where O; is an open set in 7;. Thus 7* has
a sub-basis of T7-Borel sets and every 7*-Borel set is 7-Borel.
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Since A; is T-clopen, it is also clopen in 7*. Thus () 4; is 7*-closed. One
further application of the previous lemma allows us to refine 7* to 7** keeping
the same Borel sets but making () A; clopen.

Thus Q is a o-algebra, so Q = B(X).

We can use this observation to deduce several important results.

Theorem 2.25 (Perfect Set Theorem for Borel Sets) If X is a Polish space
and B C X is an uncountable Borel set, then B contains a perfect set.

Proof Let 7 be the topology on X. We can refine the topology to 71 such that B
is closed. Since B is uncountable, by 1.27 there is a nonempty 71-perfect P C B
and f : C — P a homeomorphism. Since 7; refines 7, f is also continuous in the
topology 7. Since C is compact, P is 7-closed. Since P has no isolated points
in 71, this is still true in 7, so P is a perfect subsets of B.

Theorem 2.26 If X is a Polish space and B C X 1is Borel,
i) there is f : N — X continuous with f(N) = B;
ii) there is a closed F C N and g : F — X continuous and one-to-one with

g(F) =B;

Proof We refine the topology on X so that B is closed and X is still a Polish
space. Then B with the subspace topology is Polish. By 1.17 we can find a
continuous surjective f : NV — B. f is still continuous with respect to the
original topology of X. ii) is similar using 1.19.

We give one more application of this method.

Theorem 2.27 If (X, 1) is Polish, Y is separable and f : X — Y is Borel
measurable, then we can refine T to T with the same Borel sets such that f is
continuous.

Proof Let Uy, Uq,... be a countable basis for Y. Let 7* be a Polish topology
on X such that f~1(U;) is open for all i and the 7*-Borel sets are exactly the
7-Borel sets.

Exercise 2.28 Suppose X is a Polish space and B C X x X is Borel. Is it
always possible to put a new Polish topology on X such that B is clopen in the
new product topology on X x X7

Borel Isomorphisms

Definition 2.29 If X and Y are Polish spaces, A € B(X) and B € B(Y), we
say that f : X — Y is a Borel isomorphism if is a Borel measurable bijection
with Borel measurable inverse.

Example 2.30 If A C X and B C Y are countable and |A| = |B|, then any
bijection f : A — B is a Borel isomorphism.
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In this case the inverse image of any open set is countable, and hence, F,.

Example 2.31 The Cantor space C is Borel isomorphic to the closed unit in-
terval 1.

Let C = {x € C: z is eventually constant}. Let f:C\ C — I by

Then f is a homeomorphism between C\ C' and the dyadic-irrationals in I. Since
C is countable, we can also find a bijection g between C and the dyadic-rationals.

Then @) ifzgc
hiw) = {g(z) ifreC

is a Borel isomorphism between C and I.

Corollary 2.32 If X is a Polish space, there is a Borel A C C and a Borel
isomorphism f: X — A.

Proof By 1.34 there is a Borel B C H = IN and a homeomorphism ¢ : X — B.
The Borel isomorphism between I and C induces a Borel isomorphism between
H and CY. But CV is homeomorphic to C. Thus there is h : H — C a Borel
isomorphism. Let f = hog.

On the other hand if B is an uncountable Borel set, then B contains a perfect
subset P that is homeomorphic to C.

We will show that the Schroder-Bernstein Theorem holds for Borel isomor-
phisms. This will imply that any two uncountable Borel sets are Borel isomor-
phic.

Lemma 2.33 Suppose X and Y are Polish spaces, f : X — Y is a Borel
isomorphism between X and f(X), and g :' Y — X is a Borel isomorphism
between Y and g(Y'). Then there is a Borel isomorphism between X and Y.

Proof We follow the usual proof of the Schréder-Bernstein Theorem. We define
X:XO 2X1 2 XQ andY:YO 2X1 QXQ by Xn+1 :g(f(Xn)) and
Y11 = f(g(Yy)). Since f~! and g—! are Borel measurable, each X,, and Y,, is
Borel. Also, Xoo = J X, and X, = |J X,, are Borel.

Then f|(X, \ Xn+1) is a bijection between X, \ X,,11 and Y, 41 \ Y;,42 and
9/(Yn \ Yo11) is a bijection between Y, \ Yy,41 and X, 41 \ Xpio. Also f| X is
a bijection between X, and Y.

Let h: X — Y be the function

h(z) = f(x) if x € Xap, \ Xant1 for some n or z € X
T\ g Y(x) ifx € Xoni1\ Xopio for some n.

Then h: X — Y is a Borel isomorphism.
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Corollary 2.34 i) If X is a Polish space and A C X is an uncountable Borel
set, then A is Borel isomorphic to C.

it) Any two uncountable Polish spaces are Borel isomorphic.

ii1) Any two uncountable standard Borel spaces are isomorphic.

Proof

i) If (X, 7) is a Polish space and A C X is Borel, we can refine the topology
of X making A clopen but not changing the Borel sets. Then A is a Polish space
with the new subspace topology. We have shown that A is Borel isomorphic to
a Borel subset of C and, by the Perfect Set Theorem, there is a Borel subset of
A homeomorphic to C. Thus there is a Borel isomorphism f : A — C. Since
the new topology has the same Borel sets as the original topology, this is also a
Borel isomorphism in the original topology.

ii) and iii) are clear from 1i).

Exercise 2.35 T Prove that if X and Y are Polish spaces, A C X is Borel and
f: X — Y is continuous, and f|A is one-to-one, then f(A) is Borel. Conclude
that f|A: A — B is a Borel isomorphism. [This can be proved by the methods
at hand, but we will give a very different proof later.]

The Borel Hierarchy

When constructing the Borel sets, do we really need X9-sets for all a < wy? If
X is countable and Y C X, then Y and X \ Y are countable unions of points.
Thus Y € AY. On the other hand, we will show that if X is an uncountable
Polish space, then 30 # 3 for any a # 3.

HUCYxXandaeVY,welet U, ={be X :(a,b) € U}. In this way we
think of U as a family of subsets of X parameterized by Y.

Definition 2.36 We say that U C Y x X is universal-X0 if U € 0 (Y x X),
and if A € £%(X), then A = U, for some a € A.

We define ITIY universal sets similarly.

Lemma 2.37 If X is a separable metric space, then for all 1 < a < wy there
s a Eg -universal set U, CC x X and a Hg -universal set Vo, CC x X.

Proof Let Wy, W1y,... be a basis of open sets for X.
Let Uy = {(f,z) : Ine N f(n) =1 Az € W,}. Since

U= J{(f0) s f(n) =1 Az e Wy},

neN

U, is open. If A C X is open, define f € C such that f(n) = 1 if and only if
W, C A. Then z € A if and only if (f,z) € Uy. Thus U is X¢-universal.

If U, is X2-universal, then V,, = (C x X) \ U, is I1%-universal.

Suppose Vp is II9-universal for all 3 < a. Choose By < 31 < ... a sequence
of ordinals such that sup{8, +1:n=0,...} = a.
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Let Uy = {(n, f,2) e NXCx X : (f,2) € Vj,}. Then Uy = U, en{n} x Vs,
is 30,

Using the natural homeomorphism between C and CY we can identify every
f € C with (fo, f1, f2,...) € CN. Then U, = {(f,z) : In (n, fn,z) € Uy} is XU.
If AC X is 39, then there are By, By, ... such that B, is H%n and A = By,
Choose f, such that x € B,, if and only if (f,,z) € V3, and choose f coding
(fo, f1, f2,...). Then (f,z) € U, if and only if z € A.

We can now prove that in an uncountable Polish space the Borel hierarchy
is a strict hierarchy of w-levels.

Corollary 2.38 i) 39(C) # X2(C) for any a < wy.
i) If X is an uncountable Polish space, then X%(X) # X9(X) for any
a <wi. In particular, £9(X) is a proper subset of A% (X).

Proof
i) Let U C C x C be X%-universal. Let Y = {x : (x,z) & U,}. Clearly
Y e I% IfY € 29, then there is y € X such that € Y if and only if
(y,z) € Uy. Then
yeY e (yy) elaeoygy,

a contradiction.

ii) Suppose X is an uncountable Polish space. Then X contains a perfect
set P homeomorphic to C. If £9(X) = II%(X), then, by 2.8, £%(P) = X%(P),
contradicting i).

Since 39 (X) # IIY (X), there is A € TI2(X) \ 32 (X).

This gives us the following picture of the Borel Hierarchy.

o IT,
AO

b} IT)
Aj

i} IT}
Af

Definition 2.39 Let X and Y be Polish spaces, with A C X and BCY. We
say that A is Wadge-reducible to B if there is a continuous f : X — Y such that
x € Aif and only if f(x) € B for all x € A.
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We write A <,, B if A is Wadge-reducible to B.
Note that if A <,, B, then X \ A <,, Y\ B.

Example 2.40 If A C N is open, then A <,, {x € N : In z(n) = 1}.
Let A = J,, U, where each U, is a basic clopen set. Let f : N' — N such

that
(f(2))(n) = {0 otherwise. -

If o € 2<%,

f_l(NU): m UnnN ﬂ X\Un

o(n)=1 o(n)=0
a clopen set. Thus f is continuous. Clearly x € A if and only if In f(n) = 1.

Definition 2.41 For I' = X% or IT? we say that A C X is [-complete if
Ael(X) and if BeT'(X), then B <,, A.

Thus {z € N : In x(n) = 1} is Xf-complete.
~ Let T'be 3, or IT),. If A € T and B <,, 4, then, by 2.6 iv), B € T'. Let
I'={X\A:AeT. Note that if A is I'-complete, then X \ A is I-complete.

Lemma 2.42 If A C X is I-complete, then A € T.

Proof Wg know there is B € T'\ I'. Since A is complete B <,, A. If A € f‘,
then B € I', a contradiction.

Example 2.43 The set A= {z € N : In¥m > n x(m) = 0} of eventually zero
sequences in X9-complete.

Suppose B is £9. Suppose B = |J,, F,, where F,, is closed. Let T,, C N<“ be
a tree such that F;, = [T,,]. We give a program to “compute” (f(z))(m) from z
and the sequence of trees run the following program until it outputs (f(x))(m).
1)Letn=4i=s5=0.
2) If z|s € T;, output (f(z))(n) = 0, set s «— s+ 1; otherwise, output
x))(n)=1,set i —i+1
3) Let n=n+1
4) Go to 2)
The sequence f(x) is an infinite sequence of Os and 1s. If x € B, there is a
least m such that z € [T},,] we will eventually see that x & [T),] for j < m, and
increment ¢ until we get to m. Once ¢ reaches m we will always have z|s € T,
so we will only output Os. In this case f(x) € A.

If x ¢ B, then for each i we will at some point realize that = ¢ [T;] and
output a 1. Thus f(x) ¢ A. Thus B <,, A.

It follows that A is X9 but not IT9.

Exercise 2.44 Show that {f € N : f is onto} is II3-complete.
Exercise 2.45 Let D = {x € N : lim z(n) = oo}. Show that D is II$-

complete.

(f(
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The Baire Property
We begin by recalling some basic ideas from analysis. Let X be a Polish space.

Definition 2.46 We say that A C X is nowhere dense set , if whenever U C X
is open and nonempty, there is a nonempty open V C U such that ANU = (.

We say that B C X is meager if X is a countable union of nowhere dense
sets.

Exercise 2.47 Show that Cantor’s “middle third” set is nowhere dense.

Exercise 2.48 We say that I C P(X) is an ideal if i) § € I,ii) if A € I and
B C A, then B € I, and iii) if A,B € I, then AU B € I. We say that an ideal
I is a o-ideal if |J,, Ay, € I, whenever Ag, A,... € 1.

a) Show that the nowhere dense sets form an ideal.

b) Show that the meager sets form a o-ideal.

Exercise 2.49 a) Show that if A is nowhere dense, then A is nowhere dense.
b) Show that every meager set is contained in a meager F,-set.

Exercise 2.50 Show that if U is open, then U \ U is nowhere dense.

Lemma 2.51 If F is closed, then F'\ intr(F') is nowhere dense, where intr(F')
is the interior of F.

Proof Let V be open such that V' N (F \ intr(F)) is nonempty. Since V €
intr(F), V '\ F is nonempty open and (V '\ F) N (F \ intr(F)) = 0.

The next result is a classical fact from analysis.

Theorem 2.52 (Baire Category Theorem) If X is a Polish space, then X
15 nonmeager.

Proof Suppose X = |J,, A, where each A,, is nowhere dense. Choose open sets
Up CUy C Uy C ... such that Uny1 C Uy, diam (Up) < 75 and U, N A4, = 0.
Choose z,, € U,. Then (z,) is a Cauchy sequence. Suppose z,, — x. Then
z € (), Un. Thus z € X \ |J,, An a contradiction.

Definition 2.53 For A, B C X we define A =, B if and only if AA B is meager,
where AAB = (A\ B)U(B\ A).

Exercise 2.54 a) Show that =, is an equivalence relation.
b) Show that if A =, B, then X \ A=, X \ B.
c) Show that if A, =, B, forn=0,1,..., then J, An =« U,, Bn-

Definition 2.55 Let A C X. We say that A has the Baire property if there is
an open set U such that A =, U.

Let BP= {A C X : A has the Baire property}. Clearly every open set has
the Baire property. If F' is closed, then by 2.51 F'\ intr(F') is nowhere dense.
Thus every closed set has the Baire property. In fact BP is closed complements.
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Lemma 2.56 If A has the Baire property, then X \ A has the Baire property.

Proof Thus if U is open and A =, U, then, by 2.54 b)
X\A=,X\U=,intr(X\U).

The later equality holding by 2.51.

By 2.54c¢), BP is closed under countable unions.
Corollary 2.57 BP is a o-algebra containing the Borel sets.

In fact BP can contain many non Borel sets. For example if I C R is
Cantor’s “middle third” set then any A C F'is nowhere dense and in BP. Thus
|BP| = 22" while there are only 280 Borel sets.

Exercise 2.58 Show that if A has the Baire property, then there is a Gs-set
B and an F,-set C such that B C A C F and F \ G is meager

Exercise 2.59 Show that if A has the property of Baire, then either A is
meager or there is o such that N, \ A is meager.

Do all sets have the Baire property?

Exercise 2.60 Use the axiom of choice to construct a subset of R without the
Baire Property.

3 Effective Descriptive Set Theory: The Arith-
metic Hierarchy

Several ideas from logic have has a big impact on descriptive set theory. In this
chapter we will start to study the influence of recursion theory on descriptive set
theory. At first it will look like an interesting but perhaps shallow analogy, but
as we continue to develop these ideas in §and apply them in §8 we will eventually
see that they lead to important new results that do not have classical proofs.
Moschovakis [14], Kechris’ portion of [12] and Mansfield and Weitkamp [10] are
excellent reference for effective descriptive set theory.

Recursion Theory Review

We recall some of the basic ideas we will need from recursion theory. We assume
that the reader has some intuitive idea what a “computer program” is. This
could be a very precise notion like a Turing machine or an informal notion like
Pascal program.

Definition 3.1 A partial function f : N — N is partial recursive if there is a
computer program P such that P halts on input n if and only if n € dom (f)
and if P halts on input n, then the output is f(n). We say that a set A C N is
recursive if and only if its characteristic function is recursive.
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We can code computer programs by integers so that each integer codes a
program. Let P, be the machine coded by e. Let ¢. be the partial recursive
function computed by e. We write ¢.(n) |s if P. halts on input n by stage s
and ¢.(n) | if P. halts on input n at some stage. Our enumeration has the
following features.

Fact 3.2 i) [universal function] The function (e,n) — ¢.(n) is partial recursive.
ii) The set {(e,n,s) : pe(n) |s} is recursive.
iii) [halting problem| The set {(e,n) : ¢.(n) [} is not recursive.
iv) [parameterization lemma)] If F' : N*> — N is partial recursive, there is a
total recursive d : N — N such that

ba(x)(y) = F(x,y)

for all x,y.

Definition 3.3 We say that A C N is recursively enumerable if there is a partial
recursive function f : N — N such that A is the image of f.

Fact 3.4 The following are equivalent
a) A is recursively enumerable
b) A is the domain of a partial recursive function.
c) A= 0 or A is the image of a total recursive function.
d) there is a recursive B such that A= {n:3m (n,m) € B}.

Fact 3.5 a) If A and B are recursively enumerable, then so are AU B and
ANB.

b) If A CN x N is recursively enumerable so is {n : Im (n,m) € A}.

c) If A is recursively enumerable and f : N — N is total recursive, then
f7L(A) is recursively enumerable.

Exercise 3.6 If you haven’t seen them before prove the statements in the last
Fact.

A program with oracle x € N is a computer program which, in addition to
the usual steps, is allowed at any stage to ask the value of z(n).

We say that f is partial recursive in x if there is a program with oracle x
computing f and say that A C N is recursive in z if the characteristic function of
A is recursive in z. The facts above relativize to oracle computations. We write
@Z(n) for the value of the partial recursive function in = with oracle program
P, on input n. One additional fact is useful.

Fact 3.7 (Use Principle) If ¢Z(n) |, then there is m such that if x|m = y|m,
then ¢1(n) = 6% (n).
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Proof The computation of P, with oracle x on input n makes only finitely
many queries about x. Choose m greater than all of the queries made.

We may also consider programs with finitely many oracles.

For z,y € N we say x is Turing-reducible to y and write x <7 y if x is
recursive in y. There is another useful reducibility that is the analog of Wadge-
reducibility for N.

Definition 3.8 We say A is many-one reducible to B if there is a total recursive
f such that n € A if and only if f(n) € B for all n € N. We write A <,,, Bif A
is many-one reducible to B.

Clearly if A <,, B, then A <r B.
There is one subtle fact that will eventually play a key role.

Theorem 3.9 (Recursion Theorem) If f : N x N — N is total recursive,
there is an e such that ¢.(n) = ¢4(y) for all n.

Proof Let 5 W) i bula) |
_ 2 (2)\Y) 1L Pz (T
F(z’y)‘{fm if 6, () 1°

By the Parameterization Lemma, there is a total recursive d such that

Let o = f od. There is m such that ¢ = ¢,,. Since ¢ is total ¢g(m) = P4, (m)-
Let e = d(m). Then

Pe = Pd(m) = Ppn(m) = Py(m) = Pf(d(m)) = Pf(e)-

For those of you who haven’t seen this before here is a sample of the many
applications of the Recursion Theorem. Let

1 ife=n
gle,n) =40 ife#n

By the Parameterization Lemma, there is a total recursive f such that ¢ ¢(.)(n) =
g(e,n). By the Recursion Theorem there is an e such that ¢.(n) = 1 if n = e and
¢e(n) = 0if n # e. So this function “recognizes” its own code. The Recursion
Theorem will be very useful in §7.

Computable Functions on N

There is also a notion of computable function f : N — A

Definition 3.10 We say that f : N' — N is computable if there is an oracle
program P such that if x € N and P is run with oracle x on input n, then P
halts and outputs (f(z))(n).
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We say that f : N'— N is computable from z if there is a two oracle program
P such that if z € A and P is run with oracles z and x on input n, then M
halts and outputs (f(z))(n).

Lemma 3.11 f: N — N is continuous if and only if there is = € N such that
f is computable from z.

Proof

(<) Let P be the oracle program computing f from z. Suppose f(x) = y.
By the Use Principle, for any m there is an n such that if z|n = z|n, then
f(z)|m = y|lm. Thus Ny, € f~'Ny,, and f is continuous.

(=) Let X = {(r,0) : f~(N,) C N, }. Since f is continuous, for all x € N
if f(z) =y, then for all n there is an m such that (z|m,y[n) € X.

We claim that f is computable from X. Suppose we given oracles X and z

and input n. We start searching X until we find (7,0) € X such that 7 C «
and |o| > n. Then (f(x))(n) = o(n).

The Arithmetic Hierarchy

For the next few sections we will restrict our attention to Polish spaces X =
N* x M where k,1 > 0.1 Of course if £ > 0 and [ = 0, X is homeomorphic to
N while if [ > 0, then X is homeomorphic to A. (In [14] this theory is worked
out for “recursively presented Polish spaces”.)

Let X = N¥ x N, Let Sx = {(m1,...,mp,01,...,00) : M4, ...,my €
N,o1,...,00 € N<¥}. For o = (my,...,my,01,...,07) € Sx, let

Ny, ={(n1,...,nk, f1,.-, i) EX :nj=m; ifi<kand f; Doy if i =1<1}.

Then {N, : 0 € Sx} is a clopen basis for the topology on X. Of course Sx is a
countable set and there is a recursive bijection i — o; between N and Sx. Thus
we can identify Sx with N and talk about things like recursive subsets of Sx
and partial recursive functions f: N — Sx.

Definition 3.12 We say that A C X is X{ if there is a partial recursive
f N — Sx such that A =J,, Ny(n)-

Note that here we are using a “lightface” XY rather than the “boldface”
39 that denotes the open subsets of X. Of course every ©{ set is open, but
there are only countably many partial recursive f : N — Sx thus there are only
countably many ¢ sets. Thus 39 C XY. Relativizing these notions we get all
open sets.

Definition 3.13 If z € A we say that A C X is X9(z) if there is f : N — Sx
partial recursive in x such that A =], N¢(n)-

Lemma 3.14 X! = U Y(z).
zeN
LAt times we might also consider spaces N¥ x N! x C™ but everything is similar
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We will tend to prove things only for X0 sets. The relativization to X9 (z)
sets is usually straightforward.

For the two interesting examples X = N and X = A we get slightly more
informative characterizations.

Lemma 3.15 i) A C X is X9 if and only if there is a recursively enumerable
W C Sx such that A = UneW N,. In particular A C N is X9 if and only if A
18 recursively enumerable.

ii) A C N is XV if and only if there is a recursive S C N<¥ such that

A=UyesNo.

Proof

i) This is clear since the recursively enumerable sets are exactly the images
of partial recursive functions.

ii) In this case Sx = N<¢. Clearly if S C N<¢ is recursive, there is f : N —
N<¢ partial recursive with image S and (J, cy<w No is X9.

Suppose A = U, Nyny where f is partial recursive let S = {0 : there is
n < |o|, the computation of f(n) halts by stage |o| and f(n) C o. It is easy to
see that S is recursive. If o € S, then there is an n such that f(n) C o, then
Ny € Nyny € A. On the hand if f halts on input n, there is m > n, |f(n)| such
that f halts by stage m. If 7 D ¢ and |7| > m, then 7 € S. Thus

LJN;z U N, = N,.

oes 7D f(n),|T|=m

It follows that A = J, .g No-
We have natural analogs of the finite levels of the Borel hierarchy.

Definition 3.16 Let X = N¥ x A'l. We say that A C X is IIY if and only if
X\ Ais 20,
We say that A C X is X0, if and only if there is B C N x X in II? such
that
x € Aif and only if In (n,z) € B.

We say that A is A? if it is both X9 and T19.
We say that A C X is arithmetic if A € Ag for some n.

Lemma 3.17 A C N is I1Y if and only if there is a recursive tree T C N<v
such that A = [T.

Proof If S is a recursive tree such that X \ A =J_.o No, let

oes
T ={0c e N :Vm <|o| olm ¢ S}.

Then T is recursive and, as in 1.14 A = [T.

The next exercises shows that it is not always possible to find a recursive
pruned tree T with A = [T].

31



Exercise 3.18 a) Show that if T is a recursive pruned tree, then the left-most
path through T is recursive.

b) Let T = {o € N<¥ : if e < |o| and ¢¢(e) halts by stage |o|, then ¢.(e)
halts by stage o(e)}. Show that T is a recursive tree. Suppose f € [T]. Show
that ¢.(e) halts if and only if it halts by stage f(e). Conclude that there are
no recursive paths through 7' and, using a), that there is no recursive pruned
subtree of T'.

We show that X9 and IT? have closure properties analogous to those proved

in 2.6. The definition of computable function made in 3.10 makes sense for maps
f: X — Y where both X and Y are of the form N* x N

Lemma 3.19 i) X0 is closed under finite unions, finite intersections, and com-
putable inverse images.

i) fACNxX X € X2, then {z € X : In (n,z) € A} € XV.

i) If f+ X — N is computable and A C N x X is X9 then {x € X : Vm <
f(z) (m,z) € A} € 30,

iv) Similarly 112 is closed under union, intersection, computable inverse im-
ages, Vn and In < f(x).

v) B CAQ L1

Proof We prove this for ¢ and leave the induction as an exercise.

i) Suppose Wy and W; are recursively enumerable subsets of Sy and A; =
U, ew,; Ny- Replacing W; by the recursively enumerable set {v : 3n € W; n C v}
if necessary we may assume that if v € W; and n D v, then n € W;. Then

Apud = | N,

neEWoUWs
and
AgNA; = U Nn
neWonWiy
and WoUW; and WyNW; are recursively enumerable. Thus AgUA; and AgNA;
are 0.

If f: X —Y is computable with program P,, let
G={(nv)eSx xSy :x €N, = f(z) € N}

Then (n,v) € G if and only if for all m < |v| the program P, using oracle
n halts on input m and outputs v(m).? Thus G is recursively enumerable.
Suppose A = |, ¢y N where W is recursively enumerable, let V = {n: 3v (v €

W A (n,v) € G}. Then V is recursively enumerable and f~1(A4) = Uyev No-

ii) Suppose A C N x X is E?. There is a recursively enumerable W C Syx x
such that A = J, .y Ny Let V = {v € Sx : In (n,v) € W} Then V is

2We assume that if the computation makes any queries about numbers i > |n|, then the
computation does not halt.
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recursively enumerable and

{z:3n (n,z) € A} = U N,.

veV

iii) Suppose A and W are as in ii) and f : X — N is computable by program
P.. Let V = {v € Sx : 3k P, with oracle v halts outputting k£ and (m,v) € W
for all m < k}. Then V is recursively enumerable and

{z:Vm < f(z) (m,x) € A} = U N,}.

veV

Exercise 3.20 Give the inductive steps to complete the proof of 3.19

We can make two interesting observations about universal sets. We state
these results for 2, but the analogous results hold for II2.

Proposition 3.21 i) There is U C N x X a $2-set that is X2 -universal.
ii) There is V C N x X a X9-set that is X0 -universal.

Proof

i) Indeed the universal sets produced in 2.37 are X9, Fix f : N — Sx a
recursive bijection. The set Uy = {(z,y) : In (z(n) = 1Ay € Ny())} is Y and
30 _universal.

If U CN x Nx X is 2 and X0-universal for N x X, then

Un+1 = {(m,y) = (x7n7y) ¢ U;}
is ¥9 ., and X0-universal.

ii) Let Vi = {(n,2) : 3m (¢n(m) | Az € Ny, (m))}. Let g: N XN — Syxx
be partial recursive such that g(n,m) = (n, ¢,(m)), then

Vi= U No(n,m)

is ¢ and XY-universal.
An induction as in i) extends this to all levels of the arithmetic hierarchy.

Corollary 3.22 For any X there is A C X such that A is X0 but not AY.

Proof For X = NF x ! where [ > 0 this follows as in §2 using 3.21 i). Suppose
U C Nx Nis X% and universal 9. Let A = {m : (m,m) g U}. f U € AV,
then A € X9 and A= {m: (i,m) € U} for some i. Then

icAs (i,))gU S i ¢ A,
a contradiction. Thus U € X9 \ AY. Using a recursive bijection f : N> — N/,
shows that for all X = N’ there is a X9-set that is not AY.

Let T'be 1Y, X9 or A% fori=0or 1. f ABCN, BeTl and 4 <,, B,
then A eT.
We say that A C N is I'-complete if A € I' and B <,, A for all BC N inI.

Here are some well known examples from recursion theory.

33



Fact 3.23 i) {e:dom (¢.) # 0} is X9-complete.
ii) {e : ¢ is total} is II3-complete.
iii) {e : dom (¢.) is infinite} is I13-complete.
i) If U C N x N is T-universal, then U is T'-complete.

Exercise 3.24 Prove the statements in the last fact.

4 Analytic Sets

When studying the Borel sets, it is often useful to consider a larger class of sets.

Definition 4.1 Let X be a Polish space. We say that A C X is analytic if there
is a Polish space Y, f : Y — X continuous and B € B(Y') such that A = f(B)
the image of B. We let $1(X) denote the collection of all analytic subsets of
X.

If no confusion arises we write 31 rather than X1(X). The following lemma
gives several alternative characterizations of analytic sets. In general if X x Y
is a product space, we let mx and my denote the projections onto X and Y.

Lemma 4.2 Let X be a Polish space. The following are equivalent:
i) AeXi;
ii) either A =10 or there is f : N — X continuous such that f(N) = X;
iii) there is B C N x X closed, such that A = wx(B)
iv) there is a Polish space Y and B CY x X Borel such that A = wx(B).

Proof

i)= ii) Since A € X}, there is a Polish space Y, f : Y — X continuous, and
B C Y Borel such that f(B) = A. By 2.26 there is a continuous g : N' — Y,
such that g(N) = B. Then fog is a continuous map from N to X whose image
is A.

ii)= iii) Suppose f : N'— X is continuous and f(N) = A. Let G(f) C
N x X be the graph of f. Then G(f) is closed and 7x (G(f)) = A.

ili)= iv) and iv) = i) are clear.

Exercise 4.3 a) Show that if A € 3{(X), then there is B € II(C x X) such
that w(B) = A.
b) Show that this cannot be improved to £9(C x X).

Definition 4.4 Let X be a Polish space. We say that A C X is I} (X) if X\ A
is 31, II}(X)-sets are also called coanalytic.
We say A C X is in Aj(X) if A € IIH(X) N E1(X).

By 2.26 every Borel set is analytic. Since the complement of a Borel set
is analytic, every Borel set is Al. We will show below that there are analytic
sets that are not Borel. First we prove some of the basic closure properties of
analytic and coanalytic sets.
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Lemma 4.5 i) X1 and I1} are closed under countable unions and intersections.
i) If f : X —Y is Borel measurable, and A € £1(X), then f(A) € T1(Y).

i) 1 and II1 are closed under Borel measurable inverse images.

Proof

i) Suppose Ag, A1,... € H(X). Let C; € IIY(N x X) such that 7(C;) = A;.
Then J 4; = (U ;) € 1.

Using the homeomorphism between N and NN we can view f € N as coding

(fo, f1,.-.) € NN, Let
C={(f,x) e N x X :Yn (fn,z) € Ci}.

Then C is a closed subset of N' x X and | 4; = n(C) € 1.
Since X1 is closed under countable unions and intersections, so is IT].

ii) If f: X — Y is Borel measurable, then, by 2.3 iii), G(f), the graph of f,
is a Borel subset of X x Y. Suppose A € £1(X), there is a closed C C N x X
such that A = 7x(C). Let

D={(z,y,2) e N XX XY :(z,9) € C and (y,2) € G(f)}.
Then D is Borel and f(A) = 7y (D) € Z1(Y).
ili) Suppose f : X — Y is Borel measurable, and G(f) is the graph of X. If
A € XH(Y), then
FHA) ={z:Fyye An(z,y) € G(f)}.
If C CN xY is closed such that 7y (X) = A, then
FHA) =mx({(2,y,2) EN XX XY : (2,2) € C and (y,2) € G(f)}) € Z1(X).

If AeTI(Y), then f~1(A) = X \ f~1(Y \ A), so f~1(A) e TI}(X).

Intuitively, 31(X) is closed under A, V, 3n € N, ¥n € N and 3z € X. While
IT1(X) is closed under A, V, In € N, Vn € N and Vr € X.

Examples

Example 4.6 Let LO be as in 2.12 and let WO = {x € LO : x is a well order}.
Then WO is I1}.

A linear order is a well order if and only if there are no infinite descending
chains. Thus

WO ={zxe€ LO:Vf:N—N3nz(f(n), f(n+1)) =0}.

Example 4.7 Let Tr be T'ry as in 2.13, codes for subsets of N<“ that are trees.
We say that T € Tr is well-founded if [T] = 0. Let WF = {z € T'r : z is well
founded}. Then WF is II3.
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Let s: (N<¥)2 — 2 be such that s(o,7) = 1 if and only if o C 7. Then
WF ={xeTr:Vf (Ynz(f(n)) =1— 3In s(f(n), f(n+1)) =0}.

Example 4.8 Ism(£) = {(Mo, M;) € Mod(L) : Mo = M} is a X} -equivalence

relation.

For notational simplicity, we consider only the case £ = { R} where R is a binary
relation symbol, the general case is similar. Then

Mo =My < 3f :N—=NVi,j € NRM(,5) « RM(f(i), £(5)).

Thus Ism(L) is a Xi-equivalence relation.
By 2.17 every Ism(L£) equivalence class is Borel.

Example 4.9 D(I) = {f € C() : f is differentiable} is TI1(C(I)).

We saw in 2.18 that E = {(f,z) € C(I) x L : f is differentiable at x} is IT9.
Thus D = {f:Vz €I (f,z) € E} is II.

Example 4.10 If X is a Polish space, then {A € K(X): A is uncountable} is
>

An uncountable closed set contains a perfect set. In 2.19 and 2.21 we saw
that {(4,B) : A C B} and {P € K(X) : P is perfect} are Borel. But A is
uncountable if and only if

dP € K(X) (P is perfect and P C A).

Thus the set of uncountable closed sets is 1.

Universal X}-sets

We now start to prove there is an analytic set that is not Borel.
Lemma 4.11 There is U € 1(C x X) that is 31 -universal.

Proof By 2.37 there is a closed set V C C x N x X such that if A C N x X is
closed then A =V, for some a € C. Let U = {(a,z) e NxN:3f € N (a, f,x) €
V'}. Since U is the projection of a closed set, U € £1(X). If A € £1(X), there
is a closed B C N x X such that 7(B) = A. There is a € C such that V, = B.
Then U, = A.

Corollary 4.12 If X is an uncountable Polish space, then there is A € $1(X)
that is not TI} and hence not Borel.
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Proof We first prove this for X =C. Let A = {a € N : (a,a) ¢ U}. If U € I1},
then A € 1 and A = U, for some a € C. But then

a€AsaelU, & (a,0)elU S ad A,

a contradiction.

If X is an uncountable Polish space, there is f : C — X be a Borel isomor-
phism. Let A C C be X1 but not IT}. By 4.5 ii) f(A4) € £1(X). By 4.5 iii), if
f(A) € II}(X), then A = f~1(f(A)) € IIi, a contradiction.

The last proof illustrates an important point. Since any two uncountable
Polish spaces are Borel isomorphic, if we are trying to prove something about
Borel and analytic sets, it is often enough to prove it for one particular Polish
space (like N or C) and then deduce it for all Polish spaces.

The Separation Theorem

We noticed that every Borel set is A}. We will show that the converse is true,
proving Souslin’s Theorem that B(X) = A}(X).

Theorem 4.13 (X}-Separation Theorem) Suppose X is a Polish space and
A, B C X are disjoint analytic sets. There is a Borel set C C X such that A C C
and BNC = .

Proof Let f,g : NN — X be continuous functions such that f(N) = A and
g(N) = B. For 0 € N<“ let A, = f(N,) and B, = g(Ny).

Let 0 € N<“. Suppose for all 4, j, there is C; ; Borel such that A,~ C C; ;
and By~; N C;; = 0. Then C = J;N; C;,; is a Borel set separating A, and B,.

Suppose A and B can not be separated by a Borel set. Using the observation
above, we can inductively define ) = 09 C oy C...and ) =79 C 71 C ... in
N<¢ such that |o;| = |7;| =i and A,, and B, can not be separated by a Borel
set. Let ¢ = Jo; and y = 7. Then f(z) € A and g(z) € B. Let U and V
be disjoint open sets such that f(x) € U and g(z) € V. By continuity, there
is an n such that f(N,,) € U and g(Ny,) €V, but z[n = on, yln = 7, so,
Ay, = f(Ngn) and By, = g(Ny,) are Borel separable, a contradiction.

Corollary 4.14 If A € A{(X), then A is Borel. Thus B(X) = A1(X).

Proof Since A and X \ A are disjoint X1-sets. They are separated by a Borel
set. The only set separating A and X \ A is A.

We can now prove the converse to 2.3 iii).

Corollary 4.15 Suppose X and Y are Polish spaces and f : X — Y. The
following are equivalent:

i) [ is Borel measurable;

it) the graph of f is a Borel subset of X xY;

iii) the graph of f is an analytic subset of X x Y.
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Proof i) = ii) is 2.3 iii), and ii) = iii) is obvious.
Suppose the graph of f is analytic and A € B(Y), then
zef(A) & FylyeArfl)=y)
& VY (flz)=y—yed).

These are X1 and I}, definitions of f~1(A), so f~1(A) is Borel.

The Perfect Set Theorem

Next we will show that the Perfect Set Theorem is still true for analytic sets.
We need one preparatory lemma.

Lemma 4.16 Let X be a Polish space. If A C X s uncountable, then there
are disjoint open sets Uy and Uy such that U; N A is uncountable for i =0, 1.

Proof Suppose not. For each n > 1 let U, 0,Up 1,... be an open cover of X
by open balls of radius % Choose x(n) such that U, ;) N A is uncountable.
Let A, = A \U,W(n). If A,, is uncountable we can find an open set V' disjoint
from U, ,(n) such that V' N A is uncountable, thus A, is uncountable. But

A =N7T.

since diam (U,,) — 0, there is at most one element in A\ (|J,, An) and hence A
is countable, a contradiction.

Theorem 4.17 (Perfect Set Theorem of Xi-sets) If X is a Polish space
and A C X is analytic and uncountable, then X contains a perfect set.

Proof Let f: N — X be a continuous function with f(N) = X. We build a
function o — 7, from 2<% to N<% such that:

i) 79 = 0;

il) if o9 C o1, then 75, C 74,3

iii) f(Ny,) is uncountable for all o € 2<%.

iv) f(Ny-) N (N, ~,) =0 for all o.

Let 79 = 0. Suppose we have 7, such that f(N; ) is uncountable.

Claim Suppose V C N is open and f(V) is uncountable. There are W; and
W, disjoint open subsets of V' such that f(W;) is uncountable for ¢ = 0, 1.

By the preceeding lemma there are Uy and U; disjoint open subsets of X
such that f(V)NU; is uncountable for i = 0,1. Let W; = f~Y(U;) N V. Clearly
WonN Wy =0 and f(W;) is uncountable.

Thus given 7, with f(N,, ) uncountable, there are T,~,7,~1 D T such that
N, NN, . =0and f(N, -,) is uncountable.

Let g : C — N by g(z) = U, Tejn- Then g is continuous and fog:C — X
is one-to-one. Since C is compact, f o g(C) is closed and uncountable and hence
contains a perfect set.
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A little extra care would allow us to conclude that f o g(C) is perfect. We
will give a second proof of this theorem in §6.

The Perfect Set Theorem for Xi-sets is the best result of this kind that we can
prove in ZFC. The next natural question is whether the Perfect Set Theorem is
true for ITi-sets. Unfortunately, this depends on set theoretic assumptions. Let
L be Godel’s constructible universe. If 2z C N, let L.(z) be the sets constructible
from .

Theorem 4.18 (Mansfield, Solovay) The following are equivalent:
i) every uncountable I1}-set contains a perfect subset;
it) for all v C N, N%'(w) is countable;
i) VY is an inaccessible cardinal in L.

In particular if V = L, then there is ITi-set with no perfect subset. For
proofs see [9] §41.

Baire Property

We will show that analytic sets have the Baire Property.
We begin by giving another normal form for ¥1-sets. Let X be a Polish
space.

Definition 4.19 Suppose B, C X for all 0 € N<%, We define

A{B.H = J ) B~

fEN neN

We call A the Souslin operation..

Exercise 4.20 a) Suppose B, is closed for all o € N<“. Show that A({B,})
is 31.

b) Suppose A is analytic and f : A/ — X is continuous such that f(N) = A.
Let By = f(No). Show that f(z) =), Byn and A = A({Bo}).

Thus A is analytic if and only if A = A({Bs}) for some family of closed
sets.

We will assume that X is a topological space with a countable basis. Al-
though we are primarily interested in Polish spaces. We will use the next two
lemmas in a more general setting in §8.

Lemma 4.21 Suppose A C X. There is B 2 A such that B has the Baire
Property and if B’ O A has the Baire Property, then B\ B’ is meager.

Proof Let Uy, Uy, ... be a basis for the topology on X. Let

Ay ={x € X :Viif x € U;, then U; N A is not meager}.
If x & Ay, there is an ¢ such that x € U; and U; N A is meager. If y € U;, then,
since U; N A is meager, y &€ A;. Thus U; N A1 = () and A; is closed.
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Then
A\ A = U{A NU; : ANU; is meager},

a meager set. Let B = AU A;. Since B = A3 U (A\ 4;) is the union of a closed
set and a meager set, B has the Baire Property.

Suppose B’ O A has Baire Property, then C' = B\ B’ has the Baire Property.
We must show that C' is meager. If not then U; \ C' is meager for some i. Then
U; N A is meager. Since U; N C # () and C C Ay, there is © € U; such that
x € A;. Thus U; N A is not meager, a contradiction.

Theorem 4.22 Suppose A, has the Baire Property for all o € N<*. Then
A= A({As}) has the Baire Property.

Proof We may assume that A, C A, for 7 C o; otherwise replace A, by
Nyco Ar. For o € N<¢ let

A° = U m Ax|ngA‘7

Do neN

By 4.21 there is B O A° with the Baire Property such that if B O A% has the
Baire Property, then B?\ B is meager. We may assume that B° C A, and that
B? C B” for 7 C o, replacing B? by (.-, B if necessary.

Let C, = B\ |J, B ™. Since A° C |J, B ™, our choice of B7s insures
that C, is meager. Let C' = UUeN@ Cy. Clearly C is meager.

Claim B”\C C A.

Let b € B\ C. Since b ¢ Cy, there is 2(0), such that b € B*(®). Suppose we
have x(0),...,z(n) such that b € B*(©)»=(") Since b ¢ Ca(0),...,z(n), there is
z(n +1) such that b € B*(0)»=(+1) " Continuing this way we construct = € N/
such that

be (B C()Aen C A

Thus b € A.

Then B?\ A C C. Hence B?\ A is meager. In particular B \ A, and hence
A, have the Baire Property.

Corollary 4.23 If X is a Polish space, then every Xi-set has the Baire Prop-
erty.

In §8 it will be useful to notice that our proof that the collection of sets with
the Baire Property is closed under the Souslin operator works in any topological
space with a countable basis (not just Polish spaces).

Exercise 4.24 a) Prove that if A C R™, then there is B O A such that if B’ C A
is Lebesgue measurable, then B\ B’ has measure zero. [Hint: If u*(A4) < oo,
choose B D A measurable with p(B) = p*(A4), where p* is Lebesgue outer
measure. Otherwise write A as a union of sets with finite outer measure.]

b) Modify the proof of 4.22, using a), to prove the following theorem.
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Theorem 4.25 The collection of Lebesgue measurable subsets of R™ is closed
under the Souslin operator. In particular every X1-set is Lebesgue measurable.

We give another restatement.

Definition 4.26 Let C be the smallest o-algebra containing the Borel sets and
closed under the Souslin operator A.

We have proved that every C-measurable set is Lebesgue measurable.

The Projective Hierarchy

The analytic and coanalytic sets form the first level of another hierarchy of
subsets of a Polish space.

Definition 4.27 Let X be a Polish space. We say that A C X is 3}, (X) if
there is B € IT} (X x X) such that A = 7mx(B). We say that A C X is I} (X)
if X CAisXl. Welet AL(X) =XL(X)NIIL(X).

We say that A C X is projective if it is X! for some n.
Exercise 4.28 a) Prove that X! is closed under countable unions, countable
intersections, Borel measurable inverse images, and Borel measurable inverse
images.

b) Show that for each n there is U,, € X1 (C x C) that is X! -universal.

c¢) Show that if X is an uncountable Polish space, then for all n there is a
31 set that is not IT}.

Thus we have the following picture of the projective hierarchy.

%) IT;

A

We give several examples of higher level projective sets.

Example 4.29 Let MV = {f € C(I) : f satisfies the mean value theorem}.
Then MV is I13.

f € MV if and only if
f(w)—f(y)))

VaVy (x <y— 3z (f is differentiable at z and f'(z) =
r—y

Two interesting example arise when studying L. See [9] §41.
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Example 4.30 The set {vr € N : z € L} is 1.

The idea of the proof is that there is a sentence © such that ZF - © and LL
is absolute for transitive models of ©. Using the Mostowski collapse

x € L if and only if there is M a countable well-founded model of ©4+V =1L
with z € M.

This is a 31 definition of "N L.

Example 4.31 IfV =L, then there is a A} well-order of N of order type ws .

Indeed the canonical well-ordering of L is AJ.

These example can be used to show that projective sets need not have nice
regularity properties. We will use Fubini’s Theorem, that a measurable A C R?
has positive measure if and only if {a : {b: (a,b) € A} has positive measure}
has positive measure.

Lemma 4.32 If R is a well-ordering of R of order type wi, then R is not
Lebesgue measurable.

Proof Suppose R is Lebesgue measurable. We consider For each z € [0,1],
R, = {y : yRz} is countable and hence measure zero. By Fubini’s Theorem,
R has measure zero. We now exchange the order of integration. For each z,
R* = {y : xRy} has a measure zero complement. Thus, by Fubini’s Theorem,
R has a measure zero complement, a contradiction.

Corollary 4.33 If V =L, then there is a nonmeasurable Al-set.

Fubini’s Theorem has a category analog.
Let X be a Polish space and suppose A C X x X. Forx € X let A, = {y €
X : (z,y) € A}.

Theorem 4.34 (Kuratowski-Ulam Theorem) If A has the Baire property,
then A is nonmeager if and only if {a € X : A, is nonmeager} is nonmeager.

For a proof see [6] 8.41.

Exercise 4.35 Show that if V = L, then there is a Al-set that does not have
the Baire property.

On the other hand we (probably) can’t prove in ZFC that there is a projective
set where any of the regularity properties above fail.

Theorem 4.36 (Solovay) If ZFC + 3k k inaccessible is consistent then so
is ZFC + every uncountable projective set contains a perfect subset + every
projective set is Lebesgue measurable and has the property of Baire.

See [9] §42 for Solovay’s proof. The same arguments also show that if ZFC
+ Jk k inaccessible is consistent, then so is ZF-+every set of reals is Lebesgue
measurable and has the Baire property.

By 4.18 the consistency of an inaccessible is needed to prove the consistency
of every uncountable IT}-set containing a perfect subset. Shelah has shown that
it is also needed to prove the consistency of all projective sets being measurable,
but not to prove the consistency of all projective sets having the Baire property.
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The Effective Projective Hierarchy

We also have effective analogs of the projective point classes. Let X = N¥ x A/!
for some k,l € N.

Definition 4.37 We say that A C X is Z} if there is a B C A x X such that
Bellf and A= {z:3y (y,x) € B}.

We say A C X is II! if X \ Ais X} and we say that A C X is X}, if there
isa B CN x X with B € I}, such that A = {z: Jy (y,z) € B}.

We say A is Al if it is both X! and IIL.

The next theorem summarizes a number of important properties of the
classes ¥1 and ITL. We leave the proofs as exercises.

Theorem 4.38 i) The classes X1 and I1% are closed under union, intersection,
dn e N, Vn € N and computable inverse images.

i) If A C X x N is arithmetic, then {x : Jy(x,y) € A} is BL.

iti) There is U C N x X a X -set that is X} -universal.

iv) There is V. C N x X a X1 -set that is B} -universal.

v) XL C AL, but B} # AL

vi) The set WF of wellfounded trees is 11}.

Exercise 4.39 Prove 4.38.

5 Coanalytic Sets

In this section we will study the structure of IT}-sets. Because any two un-
countable Polish spaces are Borel isomorphic, it will be no loss of generality to
restrict our attention to the Baire space.

We begin by giving a normal form for ¥} and ITi-sets.

Definition 5.1 We say that T C N<“ x N<% is a tree if:

i) |o| = |7| for all (o,7) € T}

ii) if (o,7) € T and n < |o|, then (o|n,7|n) € T.

If f,g € N we say that (f,g) is a path through T if (f|n,g|n) € T for all
n € N. We let [T] be the set of all paths through T

Exercise 5.2 Show that F' C N x N is closed if and only if there is a tree
T C N<¢ x N<¥ guch that F = [T.

If A C N is i, then there is C C N x N closed such that A = {z :
Jy (z,y) € A}. Let T be a tree such that [T] = C. For each x € N, let

T(z) = {0 € N<“: (z|n,0) € T for some n}.

Then T'(z) is a tree and = € A if and only if there is f € [T'(z)]. Let Tr be as
in 2.13.3 Then x — T(x) is a continuous map from N to Tr and z € A if and
only if T'(x) is ill-founded (i.e., not well-founded).

3 Although T'r was defined to be a subset of 2N<w, we will (by suitable coding) view it as
a subset of C or N.
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Let IF be the set of ill-founded trees. We saw in §3 that WF the set of well-
founded trees is I}, thus IF is 1. We have just argued that IF is 3}-complete.
In particular, IF is 31 but not Borel.

If Ais IT}, then (N '\ A) <, IF, so A <, WF. We summarize these results
in the following theorem.

Theorem 5.3 (Normal form for I1}) If A C N is I}, then there is a tree
T C N<¥ x N<¥ such that x € A if and only if T(x) € WF.

Corollary 5.4 If A € II3, then there is f : N — Tr continuous such that
A = f7Y(WF). In otherwords, WF is IIi-complete. In particular WF is not
1.

Ranks of Trees
Our analysis of IT}-sets starts with an analysis of trees.

Definition 5.5 If T'is a tree, let 7" ={oc € T : 37 € T 0 C 7} be the subtree
of nonterminal nodes of T'. For a < w; define T'% as follows:

i) T0 = T

i) 7o+ = (T

i) 7% = Np<n TP for a a limit.

Lemma 5.6 For any tree T there is an o < wy, such that T* = T? for all
0> a.

Proof Clearly if T® = T°*! then T = T7 for all 3 > a. If T # T there
is 0o € T\ T If a # 3, then o, # 0. Thus, since N<“ is countable, there
is o < wy such that T® = To+1,

Definition 5.7 If T C N<% is a tree, we define a rank pp : T — wy U {oco}, by
i) if 0 € T\ T*"L, then pr(o) = a.
i) if 0 € ey, T then pr(o) = oco.

If T=01et p(T) = —1, otherwise let p(T) = sup{pr(c):0 € T}.

In general, p(T) is the least a such that 79! = (), if there is such an a.
When no confusion arises we drop the subscript 7.

Lemma 5.8 Let T'C N<¥ be a tree and let p be the rank of T.
i) Suppose o,7 € T and o C 7. If p(T) = 00, then p(c) = oo. If p(1) < o0,
then p(o) > p(T).
it) If o € T and p(T) < 00 for all T € T with o C T, then
plo) =sup{p(ci)+1:071 € T}.

iii) If p(o) = oo, then there is f € [T] N Ny;
i) T is well-founded if and only if p(T) < co.
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Proof

i)If o C7and 7 € T%, then o € T*H.

ii) By i) p(o) > sup{p(ci) + 1 : 0% € T}. On the other hand if o =
sup{p(c7i) + 1: 07i € T}, then o has no extensions in 7% so o &€ T**!. Thus
plo) =sup{p(ci)+1:07% €T}

iii) If p(0) = oo, then by ii) there is 0% € T with p(c7i) = co. This allows
us to inductively build f € [T] with f D o.

iv) Clear from i)-iii).

Exercise 5.9 a) Show that if T # (), then p(T") = pr(0).

b) Show that for all & < wy there is a tree T with p(T) = «.

c) If Tis a tree and 0 € N<¥ let T, = {r € N<¥ : ¢"r € T'}. Show that T,
is a tree and if T' # 0, then p(T) = sup,,en(p(Tiny) + 1).

Definition 5.10 If S and T are trees we say that f : S — T is order-preserving
if f(o) C f(7) for all 0,7 € T with o C 7.

Lemma 5.11 3) If S,T C N<% are trees, then p(S) < p(T) if and only if there
is an order preserving f : S — T.

ii) If T is a well-founded tree, then p(S) < p(T) if and only if S = O and
T #0 or there isn € N and f : S — T,y order preserving.

Proof

i) If f:S — T is order preserving, then an easy induction on rank shows
that ps(o) < pr(f(o)) for all o € S. Thus p(S) < p(T'). For the converse, we
build f by induction such that ps(c) < pr(f(o)) for all o € S. Let f(0) = 0.
Suppose we have defined f(o) with ps(c) < pr(f(o)) and 677 € T. By 5.8 ii)
and iii) there is j € N such that f(o)j € T and pr(f(o)j) > ps(c7i). Let
#(71) = (o7,

ii) If f : S — T, is order preserving. Then

p(S) < p(Tiy) = pr((n)) < pr(0) = p(T).

Conversely, if p(S) < p(T) and S # 0, then there is n € N such that p(S) <
p(T(ny) and by i) there is an order-preserving f : .S — Tipy.

If @« < wy,let WF, = {T € WF : p(T) < a}. We will show that WF,, is
Borel.

Lemma 5.12 WF,, is Borel.

Proof We prove this by induction on a. WFo = {0}. For all «

WFaq1 = [){T: (n) ¢ T or Ty € WFq}.
neN

Since T' +— Ty, is continuous, by induction, WF,, is Borel. If «v is a limit ordinal,
then WF,, = Uﬁ<a WFg3. Thus WF,, is Borel.
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Ranks of IT! sets

We can now see how IT}-sets are built up from Borel sets.
Theorem 5.13 If A € I}, then A is the union of N1-Borel sets.

Proof Suppose f: N — Tr such that x € A if and only if f(z) € WF. Then
A= U f~H(WF,,) and each f~'(WF,) is Borel.

a<wi

This allows us to say something about the cardinality of IT}-sets.

Corollary 5.14 If A € II1 and |A| > Ny, then A contains a perfect set. In
particular, |A] < Xy or |A| = 2%,

Proof Let A = Uoz<w1 A, where A, is Borel. If any A, is uncountable, then
A contains a perfect set. Otherwise |A| < Vy.

It is consistent with ZFC that there is a II}-set that has cardinality Ry < 2%o.
For example, this is true in any model of ZFC where R} = R} < 2%0,

We next examine the complexity of comparing ranks.

Lemma 5.15 i) The set {(S,T) : p(S) < p(T)} is ©1.
ii) There is R € S1(N x N) such that if T € WF, then {S: (S,T) € R} =
{S:p(S) < p(T)}.

Proof

i)
p(S) < p(T) if and only 3f : S — T order-preserving.

ii) For T € WF,
p(S) < p(T) if and only if S =0 and T # () or In € NIf : S — T, order-preserving.
Both of these definitions are 1.

Corollary 5.16 (Z}-Bounding) Suppose A C WF is X1. Then there is a <
w1 such that A C WF,,.

Proof Suppose not. Then
TeWF <35 (Se Anp(T) <p(S)}

and WF is 31, a contradiction.

> 1-Bounding gives us a different proof that Al-sets are Borel. Suppose A
is Al. Since A is IT! there is a tree T C N<¢ x N<¢ such that z € A if and
only if T'(x) € WF. Since A is 1, the set {T'(z) : x € A} is a X1 subset of WF.
By ¥{-Bounding there is @ < w; such that T'(z) € WF, for all z € A. Thus
A <, WF, is Borel.
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We will recast the work we just did in more modern language introduced by
Moschovakis. This point of view is useful when one attempts to extend these
ideas to higher levels of the projective hierarchy.

Definition 5.17 A normon a set A is a function ¢ : A — On where On is the
class of ordinals.
Suppose A € IIi. We say that ¢ : A — On is a IIi-norm if there are

relations Sgie I} (N x N) and gfie 1N x N) such that if y € A, then

xeANP(x) <oPly) < xggiy

1
& :cgfl Y.

If Ais II} and f: NV — Tr is continuous, let ¢ = po f.
Exercise 5.18 a) Show that ¢ is a IT}-norm on A.

For all o < wy, let A, = {x: p(x) < a}.
b) Suppose B C A, is 2%. Show that B C A, for some «.
c¢) Show that A is Borel if and only if A = A, for all suitably large a.

Reduction and Separation
The following structural property of IT}-sets is a strong form of the X{-separation
property.

Definition 5.19 A class of sets I has the reduction property if whenever A, B €
I' there are A4g C A and By C B such that Ayg,By € ', 49N By = 0 and
AgUBy = AUB.

Theorem 5.20 IIi has the reduction property.

Proof Suppose A,B € IIl. Let f,g : N — Tr be continuous such that
A= f"Y(WF) and B= g Y(WF).

Let Ag = {x € A : p(f(z)) < p(g(z))} and let By = {z € B : p(g9(z)) <
p(f(z))}. Tt is easy to see that Ag C A, By C B, Ay N By =0, and Ay U By =
AU B. Notice that

x € Ap if and only if z € AA = (p(g(z)) < p(f(x)))

and
z € By if and only if ~(p(f(2)) < p(g(x))).
By 5.15 Ag and By are II}.

Definition 5.21 We say that I' has the separation property if whenever A, B €
I'and AN B =0 thereis C € I' N I" such that A C C and CN B = .

Lemma 5.22 If ' has the reduction property, then T’ has the separation prop-
erty.
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Proof Suppose 4,B € T'and ANB = . Then X \ 4, X \ B € T and
X\AUX\B=X.Let CCX\B,DC X\ Asuchthat C,DeT,CND =
and CUD =X. Then C =X\DsoC eT. Ifx € A, thenz € (X\B)\(X\A4).
Thus x € C. Similarly if z € B, then 2 € D = X \ C. Thus C separates A and
B.

This gives a different proof that X1 has the separation property. We next
show that it is harder to separate IT}-sets.

Proposition 5.23 I} does not have the separation property.

Proof Let U C N x N be a universal IT}-set. If z € N we think of = as coding
(wo,71) € N2 Let P = {x: (zg,z) € U} and let Q = {z : (x1,2) € U}. By
reduction we can find Py and Qg € II} such that PyNQo = 0 and PyUQy = PUQ.
Suppose, for contradiction, that C' is a Borel set with Py C C' and Py N C = ().
Suppose C = U, and N'\ C = U,. Let z = (b, a).

Suppose x € C, then (a,z) € U and, by the definition of @, € Q. The only
elements of () that are in C' are also in P. Thus = € P. Using the definition of
P, (bx) eU. Thusz ¢ C.

Similarly

22€C=ba)eU=>axeP=>2e@Q = (a,x)eU=ael

a contradiction.

Uniformization

Definition 5.24 Suppose A C X x Y. We say that B C A uniformizes A if
and only if

1) Wx(A) = Wx(B), and

ii) for all z € mx (A) there is a unique b € Y such that (x,b) € B.

In other words, B is the graph of a function f : 7x(A) — Y such that
(z, f(z)) € Afor all z € mx (A).

The Axiom of Choice tells us that for every A C X x Y, thereis B C A
uniformizing A. We will be interested in trying to understand how complicated
B is relative to A.

Definition 5.25 We say that ' has the uniformization property if for all A €
I'(WV x N), there is B € ' a uniformization of A.

We first show that uniformization can be difficult.

Proposition 5.26 There is a closed set C C N XN that can not be uniformized
by a X1-set.
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Proof By 5.23 there are ITi-sets Ag, A1 C N such that Ag N A; = 0 but there
is no Borel set B with Ag C B and A; N B = (.
There are closed sets Cy, C1 C N such that

X\ A ={z:3y (z,y) € Ci}.

Without loss of generality we can take C; C N x Nyy. Let €' = CoUC. Suppose
B € X1 uniformizes C. Then B is the graph of a function f : ' — C, and,
by 4.15 f is Borel measurable. Let B; = f~1(N x Ny). Then each B; is a
Borel set and BN By = 0. If x € A;, then v € B;_;. Thus B is a Borel set
separating Ay and A;, a contradiction.

While Borel sets can not be uniformized by Borel sets, or even X{-sets, we
will prove that any IT{-set can be uniformized by a IT{-set. As a warm-up we
first prove a uniformization theorem for IT}-subsets of A/ x N.

Theorem 5.27 (Kriesel’s Uniformization Theorem) Every IIi subset of
N x N can be uniformized by a II3-set.

Proof Let A C X xN be H% and let f: X x N — Tr be continuous such that
x € Aif and only if f(z) € WF. Let

B ={(x,n) € A:Vm €N p(f((z,m)) £ p(f(z,n)) and

Vm <n p(f(z,m)) £ p(f(z,n))}.

Then B is IT and (x,n) € B if and only if (z,n) € A, p(z,n) = inf,, p(z,m)
and for all m < n, p(z,m) > p(xz,n). Clearly for all x € w(A) there is a unique
n such that (z,n) € B. Thus B uniformizes A.

We can do even better if w(A) is Borel.

Corollary 5.28 (Selection) Suppose A C X x N is II} and w(A) is Borel.
Then A has a Borel-uniformization.

Proof Let B be a IT}-uniformization of A. Then
(z,n) ¢ B 3ImeN (m #nA(z,m) € B).
This is a IT{-definition of X \ B. Thus B is Borel.
Theorem 5.29 (Kondo’s Theorem) IIj has the uniformization property.

Proof Let A C N x N by IT{. There is a tree T on N<* x N<¥ x N<* such
that A = {(z,y) : T(x,y) € WF}. Fix 09,01,... an enumeration of N<¥. We
may assume that such that o9 = 0, |o;| <4, and if 0; C 0, then ¢ < j.

We build a sequence of IT}-sets A = Ag 2 A; D Ay D ... such that (z,y) €
Ap41 if and only if

i) (z,y) € An;

ii) if (z,2) € Ay, then y(n) < z(n);
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i) if (z,2) € A, and z(n) = y(n), then p(T(x,y)s, ) < p(T(z,2)s,)-

In other words, we first find m,, ,, minimal such that there is a z with (x, z) €
A, and z(n) = my p, we then find «,, minimal such that there is (z,2) € A,
with z(n) = my, and p(T(z,2)s,) = @z n. Then (z,y) € Aptq if and only if
(2,y) € An, y(n) = mgen and p(T'(z,y)s,) = Can.

Let B =), A,. We will show that B is a IT{-uniformization of A. Let 7
be the projection (z,y) — =z. If x € 7(A), then, by induction, z € w(A,,) for all
n. Define y, € N by y,(n) = my .

Claim 1 If (z,y) € B, then y = y,.

If (%y) € An, y(n) = Mg,n, thus y = y,.

We need to show that (z,y,) € B for all z € w(A). Fix z € w(A).
Claim 2 Suppose 0;,0; € T(x,y,) and 0; C 0. Then o, j < g ;.

Choose (x,z) € Ajq1. Since ¢ < j, (z,2) € Aj41. Since z|j+1=y|j+1 and
loj| <j, 05 € T(z,z). Thus

Ui = p(T(JC, Z)m) > p(T(.T, Z)U]‘) = Qg,j,
as desired.
Claim 3 (z,y,) € A.

If 0,, C 04, C ... s an infinite path through T'(x,y.), then, by claim 2,
Qp1 > Qg2 > ... acontradiction. Thus T'(x,y,) is well founded and (x, y,) € A.
Claim 4 (z,y.) € B.

An induction on T'(x,y,) shows that if o,, € T'(z,yy), then p(T(z,yz)0,) <
0zn- By choice of ay p, we have p(T(2,yz)o, ) = @z n and (x,y,) € Ay, for all
n.

Thus B is the graph of a function uniformizing A.
Claim 5 B is IT}.

Define R(x,y,n) by

T (9K < 1 (y(k) = () A p(T(,9)) = T, 2)r A

(2(n) < y(1) V (2(n) = y(n) A p(T (2, 2)o) < AT Y)or)

By 5.15 Ris X1. Suppose (z,y) € A,. If (z,y) € Ani1, then either y(n) # my ,
or p(T(z,9)s,) # Qun. In either case R(x,y,n) holds. On the other hand,
suppose R(x,y,n) and z witnesses the existential quantifier. Since (x,y) € A,,
(x,2) € Ap. Tt is easy to see that either y(n) # myn or p(T(2,Y)s,) # Qun.
Thus (z,y) € Ap+1. Thus

(z,y) € B < (x,y) € ANVn =R(z,y,n)
and B is IT}.
Corollary 5.30 X1 has the uniformization property.

Proof Suppose A C N x N is B}. There is a ITj-set B C N3 such that
A ={(x,y) : Iz (x,y,2) € B}. By Kondo’s Theorem, there is a II}-set B C B
such that

7(A) = {z: I3z (z,y,2) € B} = {z : I3z (z,y,2) € B}
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and for all € m(A) there is a unique pair (y, z) such that (x,y,z) € B. Let
A={(x,y): 3z (x,y,2z) € B}. Then 7(A) = 7(A) and for all z € m(A) there is
a unique y such that (x,y) € B.

Exercise 5.31 a) Show that 3} has the reduction property.

b) Show that IT} does not have the uniformization property.

c¢) Suppose there is a A} well-order of M. Show that X}-uniformization
holds for all n > 2. (In particular this is true if V =1L).

While 31 does not have the uniformizaton property, the next two exercises
show that we can get close.

Exercise 5.32 Let <jx be the lexicographic order on N. Suppose ' C N
is closed and nonempty. Show that there is x € F such that x <j.x y for all
ye k.

Exercise 5.33 [Von Neumann Uniformization] Suppose A C N x A is 1. Let
C be the smallest o-algebra with 31 C C. There is B € C uniformizing A. [Hint:
There is a continuous f : NV — N x N with f(N) = A. Let n(x,y) = z. For
a€ Alet F, ={z € N :7(f(z)) = x}. Let g: n(A) — N by g(z) is the
lexicographic least element of F,. Show that g is an C-measurable function. Let
B = {(z, f(g9(x))) : ® € m(A)}. Show that B € C and B uniformizes A.]

Conclude from 4.23 that every Xi-set has a C-measurable uniformization,
and hence a Lebesgue measurable uniformization.

[I}-sets

Many of the proofs in this section work just as well for II}-sets. Here are
statements of the effective versions.

Theorem 5.34 i) If A C X is I3, there is a computable f : X — Tr such that
x € A if and only if f(x) € WF for all z € X.

ii) 11} has the reduction property.

iii) Any two disjoint X1 sets can be separated by a Al-set.

iv) Any i-subset of N' x N can be uniformized by a 113 -set.

v) If ACN x N is I} and n(A) = N, then A has a Al-uniformization.

Further analysis of IIj-sets will require looking at an effective version of
“ordinals”.

Recursive Ordinals

The set WF is I, If A C A is I}, we know that A <,, WF. We will show that
the reduction f can be chosen computable. There is a recursive tree T', such
that

reAeVy (z,y) € [T] < T(x) € WE.

The function = — T'(z) is computable.
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A similar construction gives rise to a II}-complete (for <,,) subset of N.

Let O = {e € N : ¢, is the characteristic function of a Well-founded tree
T. C N<®}. Then e € O if and only if

i) Vo (o) |

i) Vo e NS Vr e N<¥ ((6 ST A Pe(T) =1) = ¢e(0) =1).

iii) Vf : N = N<¥3In (¢e(f(n)) =0V ¢e(f(n+1)) =0V f(n) & f(n+1)).
Conditions i) and ii) are II$ while iii) is IT}. Thus O is II}.

Proposition 5.35 O is II{-complete.

Proof We will argue that N\ O is Y1-complete. Suppose A € ¥1. There is
B C N x N in IIY such that n € A if and only if 3z (n,z) € B. There is a
recursive tree T C N x N<“ guch that (n,x) € A if and only if (n,x|m) € T for
all m € N. There is a recursive f : N — N such that ¢;(n) is the characteristic
function of {o : (n,0) € T'}. Then ¢f(n) is the characteristic function of a tree
T,, and

ne A& T, g WF< f(n)€O.

O will play a very important role in effective descriptive set theory. As a
first example, we will show how once we know the complexity of a set, we can
say find relatively simple elements of the set.

Lemma 5.36 Suppose T C N<% is a recursive tree. If [T] # 0, there is x € [T
with x <1 O.

Proof There is a recursive function f such that ¢y is the characteristic
function of T, for all o € N<%. We build # = oy C o1 ... with o; € T such that
[T5,] # 0. Given o;. Let n € N be least such that o, n € T and f(0;) € O.

Corollary 5.37 (Kleene Basis Theorem) If A C N is ¥} and nonempty,
there is x € A with x <t O.

Proof There is a I19-set B C N xN such that x € A if and only if Jy (x,y) € B.
By the previous lemma there is (z,y) € B with (x,y) <r O. Clearly = <r O.

Using the Uniformization Theorem, we can find definable elements of II}-
sets.

Proposition 5.38 If A C N is I3, there is x € A such that x € A}.

Proof Uniformizing {0} x A, we find z € N such that B = {(0,z)} is II].
Then

a(n)=m &3y ((0,y) € BAy(n)
&y ((0,y) ¢ BVy(n)
The first definition is X3, while the second is II3.

m)

m)

We next need to understand the possible heights of recursive trees.

Definition 5.39 We say that an ordinal « is recursive if there is a recursive
set A C N and < a recursive linear order of A such that (4, <) & (a, <).
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Lemma 5.40 a) If a is a recursive ordinal and [ < «, then [ is a recursive
ordinal.

b) If a is a recursive ordinal, then oo+ 1 is a recursive ordinal.

c) Suppose f: N — N, g: N — N are recursive functions such that Py is
a program to compute the characteristic function of Ay, Py, is a program that
computes the characterisitic function of <, a well-order of A,, and (A,, <) has
order-type a.,. Then sup au, is a recursive ordinal.

Proof a) and b) are routine. For ¢) we show that > A, is a recursive well-
order. Let A = {(n,m) : My,y(m) = 1} and let (n,m) < (n’,m') if and only
if n <n' orn=n'"and m <, m’. Then (A, <) is a recursive well-order. Let «
be the order type of A. Then a,, < « for all n. Since sup«a,, < «, supa,, is a
recursive ordinal.

There are only countably many recursive well-orders. Thus there are only
countably many recursive ordinals.

Definition 5.41 Let w{* be the least non-recursive ordinal. We call this ordinal
the Church—Kleene ordinal.
More generally for any « we let w{ be the least ordinal not recursive in x.

We need to be able to compare ordinals with trees.

Definition 5.42 For 0,7 € N<¥ we say o< if 7 C o or there is an n such that
o(n) # 7(n), but o(m) = 7(m) for all m < n. We call < the Kleene-Brower
order.

Exercise 5.43 a) < is a linear order of N<¥.

b) If T C N<¥ is a tree, then T is well-founded if and only if (7,<) is a
well-order.[Hint: If og, o1, ... is an infinite descending sequence in (T, <), define
x inductively by x(n) = least m such that (z(0),...,z(n —1),m) <o, for some
i. Prove that x € [T].]

¢) Prove that w$* = sup{p(T) : T C N<¥ a recursive well founded tree}.

The proof of 5.15 actually shows the following.
Theorem 5.44 i) The set {(S,T) : p(S) < p(T)} is X1.

ii) There is R € S1(N x N) such that if T € WF, then {S: (S,T) € R} =
{S:p(S) < p(T)}.

Corollary 5.45 (Effective X1-Bounding) i) If A C O is 31, then there is
a < wk such that p(T) < a for all T € A.
i) If AC WF and A € 3}, Then p(T) < w$* for all T € A.

Proof If either i) or ii) fails, then O = {e : ¢, is the characteristic function of
a recursive tree 37 Vo € N<¥((0 € T « ¢.(0) = 1) and IS € A p(T) < p(9))}
is X1, a contradiction.

Exercise 5.46 Prove that if A C N is Al, then A4 is £9 for some o < w§*.
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6 Determinacy

In this section we will introduce another logical tool that sheds new light on
Borel, analytic, and coanalytic sets, and is indispensable in the study of higher
levels of the projective hierarchy.

Let X be any nonempty set and let A C X~. We define an infinite two
player game G(A). Players I and II alternate playing elements of X. Player I
plays xg, Player II replies with z1, Player I then plays z3.... A full play of the
game looks like this.

Player I Player II

Zo

T
T2

r3
T4

Ts5

Together they play @ = (xq,x1,2,...) € X". Player I wins this play of the
game if z € A. Otherwise Player II wins.

Definition 6.1 A strategy for Player I is a function 7 : X <N — X.

Player I uses the strategy by opening with 7((). If Player II responds with
xo, then Player I replies 7(z¢). If Player II next plays, x1, then Player II replies
T(Z’Q,LL‘l). .

The full play looks like:

Player 1 Player 11

7(0)
Zo
7(0)
T(Io, Il)

T(an Iy, 552)

Definition 6.2 We say that 7 is a winning strategy for Player I if Player I
wins any game played using the strategy , i.e., for any zg,x1,z2,... € X, the
sequence
T(@), Zo, 7'(1'0), Z1, T(xo, Il)a T2, 7'(1'0, Z1, 'rQ)a s
is in A.
There are analogous definitions of strategies and winning strategies for Player
II.
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Definition 6.3 We say that the game G(A) is determined if either Player I or
Player II has a winning strategy.

We first show that if A is not too complicated, then G(A) is determined. We
consider X with the discrete topology and X with the product topology.

Theorem 6.4 (Gale-Stewart Theorem) If A C XV is closed, then G(A) is
determined.

Proof Let T be a tree such that A = [T]. Suppose Player II has no winning
strategy. We will show that Player I has a winning strategy. Suppose o € N<¢
and |o| is even. We consider the game G, (A) where Players I and II alternate
playing elements of N to build z € N and Player I wins if 0"z € A.

Let P = {o : |o| is even and Player II has a winning strategy in G,(A4)}. If
o ¢ T, then Player II has already won G,(A). In particular, always playing 0
is a winning strategy for Player II. Thus N<* \ T C P.

Claim Suppose that for all n € N there is m € N such that o"n"m € P. Then
o€ P.

Player II has a winning strategy in G,(A); namely if Player I plays n and
Player II plays the least m such that Player II has a winning strategy in G s~;~m,
and then uses the strategy in this game.

We describe a winning strategy for Player I. This strategy can be sumarized
as “avoid losing postions”.

Since Player II does not have a winning strategy () € P. Player I’s strategy
is to avoid P. If we are in position o where o € P and |o]| is even, then by the
claim there is a least n such that o n"m ¢ P for all m. Player I plays n. No
matter what m Player II now plays the new position is not in P. If Player I
continues Playing playing this way they will play z € N such that z|2n ¢ P
for all n. In particular z|2n € T for all n. Thus z € [T] and this is a winning
strategy for Player I.

Exercise 6.5 Show that if A C X" is open, then G(A) is determined

Exercise 6.6 Show that if A, B C X", Ais open and B is closed, then G(ANB)
is determined.

Exercise 6.7 Suppose Xg, X1, ... are discrete topological spaces. If A C []X;
we can consider a modified game where Player I plays x¢ € Xg, Player II plays
x1 € X5, Player I plays 9 € Xo,.... Player I wins if (zg,z1,...) € A. Show
that if A is closed this game is determined.

What other games are determined? Under the axiom of choice there are
undetermined games.

Exercise 6.8 Use the axiom of choice to construct A C N such that no
player has a winning strategy in G(A). [Hint: Use AC to give a well-ordered
enumeration of all strategies and diagonalize against them.|

Martin proved the determinacy of Borel games.
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Theorem 6.9 (Borel Determinacy) If A C N is Borel, then G(A) is deter-
maned.

For a proof see [6] IT §20.

This is the best result provable in ZFC. The results of the next subsection, for
example, show that if all analytic games are determined, then every uncountable
31-set contains a perfect subset and this is false if V = L.

For I' = 3! or IT} we let Det(T") be the assertion that if A € T', then G(A)
is determined. Projective determinacy PD is the assertion that all projective
games are determined.

Exercise 6.10 Show that Det(X}) if and only if Det(TL}).

The determinacy of projective games is intimately tied to the existence of
large cardinals.

Theorem 6.11 (Martin/Harrington) i) If there is a measurable cardinal,
then Det(21) holds.
ii) Det(X1) holds if and only if ¥ exists for all x € N.

For a proof see [9] Theorem 105.

More recently Martin and Steel [13] have found reasonable large cardinal
hypotheses that imply PD.
Perfect Set Theorems

We first show how games can be used to prove perfect set theorems. Suppose
A C C. We define a game G*(A) where at stage i Player I plays o; € 2<% and
Player II plays j; € {0,1}. Together they play

xr = O'OAjOAO'lAjlo'QAjQ ...€C.
Player I wins if z € A and Player II wins if x ¢ A.

Proposition 6.12 If Player I has a winning strategy in G*(A), then A contains
a perfect set.

Proof Let 7 be a winning strategy for Player I. Define f : C — A by f(x) is
the play of the game where Player I uses 7 and Player II plays z(0), z(1),....
In other words

f(x) = 70207 (20) 21 7(2(0), 2(1)) 22 7(x(0), (1), 2(2),2(3)) . ...

Clearly if z|n = y|n, then f(x)ln = f(y)|n. Thus f is continuous. Suppose
x # y and n is least such that z(n) # y(n). Let

w=T(0)z(0)7(z(0))zy ... 7(x(0),...z(n —1)).
Then f(x) D pz(n) and f(y) D py(n). Thus f(z) # f(y). Thus f is continu-

ous and one-to-one. Hence f(C) is an uncountable closed subset of A.
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Proposition 6.13 If Player II has a winning strategy in G*(A), then A is
countable.

Proof Let 7 be a winning strategy for Player II. Consider a position p =
(60,705 -« - On,yjn) where Player IT has played using 7 and it is Player I's turn
to play. Suppose x € A and x D = 0¢ jo,---,0n jn- We say that x is rejected
at p if for all o141, if @ D popt1, then © B wo,i1 7(00,...,0n4+1). In other
words, up to stage p, it looks like it is possible that we will eventually play =z,
but in fact no matter what Player I does at this stage, Player II will immediately
make a play which ensures that we will not eventually play z.

Claim If z € A, there is a position p such that x is rejected at p.

Suppose not. Consider the following play of the game. Since x is not rejected
at the empty position. There is 0 C « such that z D o¢ 7(09). Player I plays oy.
Let p,, denote the position after Player II’s nth move and let u,, be the sequence
oo 7(c(0))"...7(00,...,0n). We assume by induction that z O p,. Since z is
not rejected at py,, there is o1 € 2<% such that x D p, ont1 7(00,- - Tnt1)-
Player I plays o,41. But then the final play of the game is Ju, = z € A,
contradicting the fact that 7 is a winning strategy for Player II.

Claim There is at most one = € A rejected at p.

Suppose z is rejected at p = (00, 7(00),...,0n,7(00,...,0n)). Let p = x|k
be the portion of x we have decided by position p. We claim that knowing only
p we can inductively determine the remaining values of x. Suppose we have
determined x(k),...,x(m — 1). If Player I plays z(k),...,z(m — 1), the Player
IT must play 1 — a(m + 1). Thus

z(m)=1—7(00,...,0n, {x(k),...,x(m —1))).

Thus there is a unique element of A rejected at p.

Since every element of A is rejected at one of the countably many possible
positions, A must be countable.

Corollary 6.14 If A is uncountable and G*(A) is determined, then A contains
a perfect set.

Exercise 6.15 Let A C X. Prove the following without using determinacy.
a) If |[A] < Ny, then Player II has a winning strategy in G*(A).
b) If A contains a perfect set, then Player I has a winning strategy in G*(A).

We have only proved this for A C C, but using the fact that any two un-
countable standard Borel spaces are Borel isomorphic we see that it is true for
any uncountable Polish space.

Corollary 6.16 If PD holds, the any uncountable projective set contains a per-
fect subset.
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There is a technique of “unfolding” games, that allows us to show that if
Det(X}) holds, then every uncountable X} | set contains a perfect subset. We
will illustrate this idea by giving another proof of the perfect set theorem for
31 sets using only the determinacy of closed games.

Suppose A C C is B1. Let B C C x N such that A = {x : Jy (x,y) € B}.
Consider the game G* (A) where at stage ¢ Player I plays o; € 2<% and y(i) € N
and Player II responds with j; € 2. Together they play

Xr = O'OAjO/\O'lAle. ..
and

y = (y(0),y(1),...).
Player I wins if (z,y) € A. By closed determinacy (or more correctly by 6.7),
G (A) is determined.

Lemma 6.17 If Player I has a winning strategy in G%(A), then A contains a
perfect subset.

Proof Asin 6.12 if 7 is a winning strategy for Player I, there are continuous
functions f : C — C and g : C — N such that if Player II plays z(0), z(1), 2(2), . ..
and Player I uses 7, then together they play x = f(2) € C and y = g(2) € N
with (x,y) € B. Asin 6.12 f is one-to-one and f(C) is an uncountable closed
subset of A.

Lemma 6.18 If Player II has a winning strategy in G (A), then A is countable.

Proof Suppose 2z € A. Choose y such that (z,y) € B. As in 6.13 there is a
position p at which (z,y) is rejected. Let u = (2(0),...,2(k—1)) be the portion
of x forced by p. If Player I now play (z(k),...,z(m — 1)) and y(n), then

z(m) =1—-17(00,y(0),...,0n-1,y(n —1),(x(0),...,z(m —1)),y(n)).

Indeed for each possible value of y(n), there is at most one x rejected at p. Thus
the set of x rejected at p is countable and A is countable.

Lemmas 6.17 and 6.18 together with the determinacy of closed games gives
a second proof of the Perfect Set Theorem for X}.

In §7 we will examine this game again. At that time it will be useful to note
that if x is rejected at p, then x is recursive in 7.

Banach-Mazur Games

We will show that, assuming Projective Determinacy, all projective sets have
the Baire property. Unfolding this argument will prove in ZFC that all 31 sets
have the Baire property (and hence all II}-sets have the Baire property).

Let A C N. Counsider the Banach—-Mazur game G**(A) where at stage i,
Player I plays o2; € N<* and Player II plays 02,11 € N<“ such that og C 01 C
o9 C .... The final play of the game is = |J o, and Player I wins if x € A.
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Lemma 6.19 Player II has a winning strategy in G**(A) if and only if A is
meager.

Proof

(<) Suppose A = |J,, An where each A; is nowhere dense. We informally
describe a winning strategy for Player II. If, at stage i, Player I plays 0o; € N<¢,
then Player II plays 02,41 D 02; such that N, ., N A; = (). Since each A; is
nowhere dense this is always possible. If = | J o, is the final play of the game,
then, for each i,

xEN02i+1 gN\A

Thus this is a winning strategy for Player II.

(=) Suppose T is a winning strategy for Player II. Suppose z € A. Let
p = (00,...,02m—1) be a position in the game where Player II has used 7. We
say that = is rejected at p if and only if x D 09,,—1 but for all o9y, D 09p—1 if
x D Oam—1, then x 2 7(00, 09, ..., 02m).
Claim If z € A, then there is a position p = (o9,...,09m—1) such that D
02m—1 and x is rejected at p.

Suppose not. Because z is not rejected at (), there is o such that z D 7(o9).
Inductively we build g, 02, ... such that

x D 7(00,02,...,09m)

for all m. But then if Player I plays o, 02, ... and Player II uses 7, then the
eventually play z € A contradicting the claim that 7 is a winning strategy for
Player II.

Let R, = {x € A : x is rejected at position p}.
Claim R, is nowhere dense.

Note that R, C Ny,,, ,. For all o D o1 let n, = 7(00,...,02m-1,0).
Then 7, D o and R, NN, = (. Thus R, is nowhere dense.

Thus A =, R, is meager.

Lemma 6.20 If Player I has a winning strategy in G**(A), then there is n €
N<“ such that N, \ A is meager.

Proof Let 7 be Player I's winning strategy for G**(A). Suppose Player I’s
first move in G**(A) is . We will show that N, \ A is meager, by showing that
Player IT has a winning strategy 7 in G**(N,, \ A).

Let

T(00,02,...,02m) = 7(00,02,...,09m)-

In other words Player II plays G** (N, \ A), by pretending to be Player I using
7 in a game of G**(A).

If Player’s I first move in G**(N,, \ A) is o, Player II checks to see how
Player I would reply if Player II played o¢ in G**(A). The following picture
describes the play of the games.

99



G (N, \ A) G (4)

Player I Player 11 Player 1 Player 1T
] n
T(O’()) a0
o1 7(00)
7(00,01) o1
2 7(00,01)
7(00,01,02) op)

If z is a play of G**(N,, \ A) where Player II uses the strategy 7, then z is
also a play of G**(A) where Player I uses 7. Thus € N, N A and Player II
wins the play of G**(N, \ A). Thus 7 is a winning strategy for Player II and
N, \ A is meager.

Theorem 6.21 Assuming Projective Determinacy all projective sets have the
Baire property.

Proof Let A C N. If Player II has a winning strategy in G**(A), then by 6.20
A is meager.

Suppose Player I has a winning strategy, let S = {0 € N<¥ : N, \ A is
meager}. By 6.19, S is nonempty. Let U = |J,cg No \ A. Then
U\A= ] N,

ceS

is meager. It suffices to show that A\ U is also meager.

Suppose A \ U is nonmeager. Since the game G**(A \ U) is determined
and, by 6.20, Player II does not have a winning strategy, Player I must have a
winning strategy and, by 6.19, there is n such that N, \ (A\ U) is meager. But
then N, \ A is meager and n € S. But then N, CU and N, \ (A\U) =N,, a
contradiction.

Exercise 6.22 Give another proof that analytic sets have the Baire property
using the determinacy of closed games and “unfolding” a Banach—-Mazur game.

Further Results

Projective Determinacy can also be used to prove that all projective sets are
Lebesgue measurable (see [6] §21 or [9] §43).

Can every projective set be uniformized by a projective set? If V =L, then
we can use the A} well-ordering of N to show that they can. Moschovakis
showed that Projective Determinacy also leads to an interesting answer.

Theorem 6.23 (Periodicity Theorems) Assume Projective Determinacy.
a) The classes with the reduction property are ezactly 13, | and 33, 5.
b) The classes with the uniformization property are exactly H%n+l and E%n-{-Q'
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One key idea is to use determinacy to build II3, 41 prewellorderings. For
proofs see [6] §39.

Another interesting class of games are the Wadge games. Suppose A, B C N.
Consider the game G, (A, B) where Player I plays x(0), z(1),..., and Player II
plays y(0),y(1) with x(¢),y(i) € N. Player II wins if z € A if and only if z € B.

Lemma 6.24 a) If A and B are Borel, then G, (A, B) is determined.

b) Assuming Projective Determinacy if A and B are Projective, then G, (A, B)
15 determined.

¢) If Player II has a winning strategy in G, (A, B), then A <,, B.

d) If Player I has a winning strategy in G, (A, B), then B <,, (N '\ A).

Proof b) is clear. a) follows from Borel Determinacy.

c¢) Suppose Player II has a winning strategy. Let f(x) = y, where y € N is
Player II’s plays using this strategy if Player I plays 2(0), z(1),.... Clearly f is
continuous and x € A if and only if f(x) € B. Thus A <,, B.

d) Suppose Player I has a winning strategy and ¢g(y) = x where z is Player
I’s play if Player II plays y and Player I uses the winning strategy. Then y € B
if and only if g(y) € A. Thus B <,, A.

Corollary 6.25 If A€ X0\ A2 then A is 3 -complete.

Proof Suppose B € X9 and B %,, A. Then Player II does not have a winning
strategy in G, (B, A). By Borel Determinacy, Player I has a winning strategy.
Thus A <,, (N'\ B) and A € IT?, a contradiction.

Exercise 6.26 Show that under Projective Determinacy and non-Borel X1-set
is 3{-complete.

We write A <, Bif A <,, B but B £, A.

Theorem 6.27 (Wadge, Martin) There is no infinite sequence of Borel sets
Ao, Aq ... with Ai+1 <w A; fOT all 1.

Similarly under Projective Determinacy, there is no infinite descending Wadge-
chain of projective sets.

See [6] 21.15 for a proof.
We give one more application of determinacy as an Exercise.

Exercise 6.28 Let <p be Turing reducibility and z =7 yif z <p yand z <p y.
We say that A C N is Turing-invariant if whenever x € A and y =r z, then
ye A If z€ N, the cone C, = {xr e N : z <p z}.

a) Show that if A is Turing-invariant and C, C A, then there is no y with
CyNA=0.

b) Show that if A is Borel and Turing-invariant, then either A contains a
cone or there is a cone disjoint from A. [Hint: Consider the game G(A) where
Player I plays x(0),z(2), ..., Player II plays (1), z(2),... and Player I wins if
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x € A. Show that if 7 is a winning strategy for Player I, then C; C A, while if
T is a winning strategy for Player II, then C> N A = ()]

c) Let Q be the collection of Turing-invariant Borel subsets of A”. Show that
Q) is o-algebra.

d) Let p: Q2 — 2 be u(A) =1 if and only if A contains a cone. Show that u
is a o-additive measure on 2. p is called the Martin-measure.

Assuming Projective Determinacy we can consider projective sets instead of
Borel sets.

The axiom of choice tells us there are undetermined games. It is interesting
to abandon the axiom of choice and consider ZF with the Axiom of Determinacy
AD which asserts that all games are determined. While AD is refutable from
ZFC, it is consistent with large cardinals that ZFC + L(R) = AD. ZF+AD has
wild consequences. For example:

Theorem 6.29 (Solovay) If ZF + AD then Ry and Ry are measurable cardi-
nals, while N, is singular of cofinality w for 3 <n < w.

For a proof of the first assertion see [9] Theorem 103.

7 Hyperarithmetic Sets

Our first goal is to try to characterize the Al-sets. In particular we will try to
formulate the “light-faced” version of

Al = Borel.

We begin by studying a method of coding Borel sets.

Borel Codes
Let X = N* x N!. Let Sy be as in §3.

Definition 7.1 A Borel code for a subset of X is a pair (T',1) where T' C N<¥
is a well-founded tree and I : T'— ({0} x {0,1}) U ({1} x Sx) such that:

i) if 1(0) = (0,0), then 60 € T and o n € T for all n > 1;

ii) if I(0) = (1,n), then o n ¢ T for all n € N.

Let BC be the set of all Borel codes. It is easy to see that BC is II1.

If £ = (T,1) is a Borel code, we can define B(x) the Borel set coded by x. If
oe€T,recall that T, = {r: 07 €T} Weletl, : T, — {0} x2U {1} x Sx by
lo(T) =1l(0"7). Tt is easy to see that (T,,l,) is also a Borel code.

Definition 7.2 We define B((T,!)) inductively on the height of T'.

i) B((0,0)) = 0.
i) If 1(0) = (1,7), then B((T,1)) = N,,.
111) Ifl((b) < s > then B(<T,l>) = X\B(<T<0>,l<0>>)
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iv) If 1(0) = (0,1), then

BT, D) = |J B((Tpy,lim))-

(n)eT
Exercise 7.3 a) Show that if x € BC, then B(x) is a Borel set.
b) Show that if A C X is Borel, then there is x € BC with B(z) = A.
Lemma 7.4 There are R € X1 and S € I} such that if x € BC then
y € B(z) & (x,y) € R< (z,y) € S.

In particular B(z) € A}(z).
Proof We define a set A such that (z,y, f) € A if and only if z is a pair (T',1)
where T C N<% is a tree, [ : T — {0} x 2U {1} x Sx and f : T — 2 such that

), then f(o) =1if and only if y € Ny;

for all o € T

i) if 1(0) = (1,9

ii) if 1(®) = (0,0), then f(o) =1 if and only if f(c70) = 0;

iii) if (@) = (0,1), then f(o) =1 if and only if f(c"n) = 1 for some n.

An easy induction shows that if x = (T,1) is a Borel code then (z,y, f) € A
if and only if f is the function

flo)=1eye B(1,,1y))
It is easy to see that A is arithmetic and if x € BC, then

y€B(x) <3f ((zy,f) e ANf0)=1)
S Vf (. f) g AV f(0)=1)

Corollary 7.5 If z € BC is recursive, then B(x) is A}.
Proof Let R and S be as in the previous lemma. Let ¢, = x. Then

y € B(z) < 3z ((Vn ¢e(n) |=z(n)) A R(z,y))
& Vz ((Vn de(n) |=2(n)) — S(z,y)).

The first condition is ] and the second is I1}.

Recursively Coded Borel Sets

Our goal is to show that A} is exactly the collection of Borel sets with recursive
codes. That will follow from the following two results and ¥}-Bounding.

Theorem 7.6 If A C Y is a recursively coded Borel set and f : X — Y is
computable, then f~1(A) is a recursively coded Borel set.
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Proposition 7.7 If a < w$¥, then WF,, is a recursively coded Borel set.

Corollary 7.8 Suppose A C X. The following are equivalent:
i) A is Al;
it) A is a recursively coded Borel set.

Proof We have already shown that every recursively coded Borel set is Al.
Suppose A is Al. Since A is I1}, there is a computable f : X — Tr such that
xz € Aif and only if f(x) € WF. The set

fA) ={y:Fwx e ANf(z) =y}

is a Y1-subset of WF. By X1-Bounding, there is a < w$k such that f(A) C WF,,.
By 7.7 WF,, is recusively coded, and by 7.6 A = f~1(WF,,) is recursively coded.

For notational simplicity we will assume X = N, but all our arguments
generalize easily.
Let BCrec = {(e, ) : ¢F is a total function and ¢? € BC'}. Then

(e,2) € BCrec < ¢ is total AVz (Vn ¢ (n) = z(n)) — z € BC).

Thus BCle is II}.
If e € BC\ec, then Byec(e, ) is the Borel set coded by ¢%. A similar argument
shows that there are Rycc € X1 and Spec € I1} such that if (e,2) € BCyec then

Y € Brec(e,7) & Rrec(e,y) & Srec(e, )

We say € € BCyoc and x € Bec(e) if (e,0) € BCree and z € Byec(e, 0).

The proofs of both 7.6 and 7.7 will use the Recursion Theorem to do a
transfinite induction.

We begin with the base case of the induction

Lemma 7.9 There is a recursive function F : N x Sy — N such that if
f: X — Y is computable and e is a code for the program computing f , then

Brcc(F(€7i)) = fﬁl(Nn)'

Proof For notational simplicity we assume X = Y = N, this is no loss of
generality. Let

W= {v e N< :Vm < |n] 3s < |v| ¢/(m) .= n(m)}.

Then W is recursive and f~'(N,) = U, e No- Let g, 01, ... be a recursive
enumeration of N<“. Let T' = {0} U {(n) : 0, € W} and let I(0) = (0,1),
I({n)) = (1,v). Then & = (T,1) is a recusive code. Given e and 7 we can easily
compute F(e,n) =i such that ¢; = x.

Lemma 7.10 i) There is a total recursive function H. : N — N such that if
e € BC, then Byec(Hc(€)) = N \ Brec(e).

it) There is a total recursive function H, : N — N such that if ¢.(n) € BClec
for all n, then Biec(Hyu(€)) = UU,, Brec(de(n)).
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Proof i) ¢. is a code for a pair (T,l). Let
T ={0}u{0n:neT}

and I'(0) = (0,0), I'(0"y) = I(n). It is easy to find H, such that H.(e) codes
(T",1') and that if e € BClec, then H.(e) is a code for the complement.
ii) Suppose ¢.(n) code a pair (Ty,1,). Let

T={0}u{no:0€eT,}

and let 1(P) = (0,1) and {(n"o) = I,,(0). Tt is easy to find H, such that H,(e)
codes (T,1). If each (T},,1,) is a Borel code, then (T,l) codes their union.

Theorem 7.6 follows from the next lemma.

Lemma 7.11 If z = (T,1) is a recursive Borel code, there is a recursive func-
tion G : Nx T — N such that if f: N — N is a computed by program P., then
G(e,0) € BCyec is a Borel code for f~Y(B({(T,,l,)) for allo € T.

Proof

We define a recursive function g : N x N x 7' — N as follows:

i) If (o) = (1,7n), then g(i,e,0) = F(e,n);

ii) If (o) = (0,0), then g(i,e,0) = H.(¢p;(e,00));

iii) Suppose I(o) = (0,1). Choose j such that ¢;(n) = ¢;(e,c n). Then
g(i,e,0) = Hu(j).

By the Recursion Theorem, there is i such that ¢r(e,0) = g(i,e, o) for all
e,0. Let G(e,0) = ¢z(e, 0).

We prove by induction on T, that G(e, o) is a code for f~1(B((T,,l,)). By
i) this is clear if I(o) = (1,7). We assume the claim is true for all 7 D 0.

If I(c) = (0,0), then

Gle,0) = g(iye,0) = H.(d:(e,0)) = H.(G(e,a D).
By inducition, H.(G(e,o ™ n) is a code for
fﬁl(B(<Tch ld>) =X \ fﬁl(B«TaAOv laA0>)'

If [(o) = (0,1), then G(e, 0" n) is a Borel code for A,, = f~Y(B{T, n,lo~n)).
We choose j such that ¢;(n) is a code for A,, and G(e,o) = H,(j) is a code for
UA,.

Theorem 7.7 follows from the next lemma.

Lemma 7.12 If T is a recursive well founded tree, then there is a recursive

function G : T — BClec, such that Brec(G(0)) = {S € Tr: p(S) < p(T,)}.

Proof For o € N<¥ let f, : Tr — Tr be the computable function S — S,.
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Note that p(S) < p(T) if and only if for all n € N there is m € N such that
p(Stny) < p(Timy). Thus

{serrp(8) < Ty = () U 73S € Tr i plS) < p(Tomm)})

neNmeN

Fix ¢ such that Byec(c) = 0. We define a recursive function g : N x T'— N
as follows.

i)If o ¢ T, then g(i,0) = c.

ii) Otherwise g(i,0) is a Borel code for

ﬂ U f@; (Brec(¢i(07m))).

We can do this using the functions F, H, and H. above. Of course for some ¢,
this may well be undefined.

By the Recursion Theorem there is 7 such that ¢r(o) = g(i, o) for all o.
An easy induction shows that G = ¢; is the desired function.

Hyperarithmetic Sets

Definition 7.13 We say x € N is hyperarithmetic if x € A}. We say that z is
hyperarithmetic in y, and write x <pyp y if z € Al(y).
We sometimes let HY P denote the hyperarithmetic elements of A

Exercise 7.14 i) Show that if  <pyp y <nyp 2, then & <pyp, 2.
ii) Show that if x <7 y, then x <pyp y.

Lemma 7.15 i) {(z,y) : © <nyp y} is II}. In particular, {z : x € Al} is II}.

Proof z <jyp y if and only if Je (BCiec(e,y) A VnVm (z(n) = m < (n,m) €
BChec(e, y).
This definition is ITj.

Theorem 7.16 Suppose A CN x N is IIi. Then B = {x: Iy <pyp = (z,y) €
A} is TI3.

Proof z € B if and only if
Je e NVz € N(¢e = z — (2 € BCA (YnVm ((y(n) = m — S((n,m),z)) A

(y(n) #m — =R((n,m), 2)))) A (z,y) € A)
This definition is I1}.

We next give a refinement of Kleene’s Basis Theorem.

Lemma 7.17 If w® < w?, then O <pyp .
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Proof Clearly O is II1(z). There is T recursive in z such that 7 € WF and
p(T) > w§. Then

O = {e: e codes a recursive tree S and p(S) < p(T)}
is X1(z). Thus O <pyp .

Theorem 7.18 (Gandy’s Basis Theorem) If A C N is ¥} and nonempty,
there is x € A such that ¥ <7 O, & <pyp O and W = w¥.

Proof Let B = {(z,y) : * € ANy Znyp }. By 7.15 B is ¥{. By Kleene’s
Basis Theorem, there is (z,y) € B with (z,y) <r O. If O <jyp z, then

Y <7 O <pyp T, 50 Y <pyp &, a contradiction. Thus y <y, x, a contradiction.

By the previous lemma w$* = w¥.

The Effective Perfect Set Theorem

The following theorem is very important.

Theorem 7.19 (Harrison) Let A C N be 1. If A is countable, then every
element of A is hyperarithmetic. In particular, if A contains a nonhyperarith-
metic element, then A contains a perfect set.

We delay the proof to the end of the section and look at some important
corallaries.

Corollary 7.20 Suppose A C N x N is Al and {y : (x,y) € A} is countable
for allz € N. Then

i) the projection w(A) = {x : Jy (x,y) € A} is Al and

i) A has a A}-uniformization

Proof
i) Clearly 7(A) is ¥1, but by Harrison’s Theorem

Jy (z,y) € A= Jy <pyp = (2,9) € A

The later condition is I1}.
ii) Let

A* ={(z,e) : e € BCrec(x) ANVY(y = Brec(e, ) — (x,y) € A}
Then A* is I} and has a I} uniformization B. But
(x,e) g Bexgn(A)VIi#e (z,i) €B.
Thus B is Al. Let
C ={(x,y) : Je (x,€) € BAy = Byec(e, )}
Then C is a Al-uniformization of A.

Relativizing these corollaries lead to interesting results about Borel sets.
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Corollary 7.21 Suppose A C N x N is a Borel set such that every section is
countable. Then X the projection of X is Borel and X can be uniformized by a
Borel set.

Corollary 7.22 Suppose f : N — N s continuous, A is Borel and f|A is
one-to-one. Then f(A) is Borel.

Proof f(A) is the projection of {(x,y) : x € AN f(z) = y} and sections are
singletons.

These results all have classical proofs, but in §8 we will give an example of
an effective proof of a result where no classical proof is known.

Suppose A C N is I19. We consider the game G(A) where Player I and II
alternate playing x(i) € N and Player I wins if 2 € A.

Theorem 7.23 If Player II has a winning strategy in G(A), then Player II has
a hyperarithmetic winning strategy.

Proof Let T be a recursive tree such that A = [T]. Suppose Player II does
not have a hyperarithmetic winning strategy. We will show that Player I has
a winning strategy. Suppose o € N<“ and |o| is even. We consider the game
G, (A) where Players I and II alternate playing elements of N to build x € N/
and Player I wins if oz € A.

Let P = {0 : |o] is even and Player IT has a hyperarithmetic winning strategy
in G,(A)}. If 0 ¢ T, then Player II has already won. In particular, always
playing 0 is a hyperarithmetic winning strategy for Player II. Thus N<“\T C P.

Claim Suppose that for all n € N there is m € N such that o n"m € P. Then
oe€P.

Let B = {(n,m,e) : e is a hyperarithmetic code for 7 and Vy if we play
Go~n~m(A) where Player I plays y and Player II plays using o, then the result
is in A}. The set B is II}. and Vn3mJe(n,m,e) € B. By selection there is a
Ail-function f : N — N2 such that (n, f(n)) € B for all n € N. Player II has
a hyperarithmetic winning strategy in G,(A); namely if Player I plays n and
f(n) = (m,e), then Player II plays m, and then uses the strategy coded by e.

We describe a winning strategy for Player I.

Since Player II does not have a hyperarithmetic winning strategy 0 ¢ P.
Player I’s strategy is to avoid P. If we are in position o where o € P and |o] is
even, then by the claim there is a least n such that o n"m ¢ P forall m. Player
I plays n. No matter what m Player II now plays the new postion is not in P.
If Player I continues Playing playing this way they will play = € N such that
z|2n ¢ P for all n. In particular z|2n € T for all n. Thus x € [T] and this is a
winning strategy for Player I.

Exercise 7.24 Suppose A is 119 and Player I has a winning strategy in G(A).
Then Player I has a winning strategy hyperaritmetic in O.

Proof of 7.19 Suppose A is 1. We consider the unfolded game G7(A) from
§5. This is a closed game and an argument similar to the one above shows
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that if Player II has a winning strategy, then there is a hyperarithmetic winning
strategy 7. Then A is countable. The proof of 6.18 shows that every z € A is
rejected at some position and x <p 7. Thus z is hyperarithmetic and A C HYP.

Exercise 7.25 Show that if A is £} and uncountable, then there is a continuous
injection f:C — A with f computable in x for some x <y, O.

Further Unifomization Results

We will use hyperarithmetic theory to prove several other classical unifomization
results. We begin with a variant of Corollary 7.21.

Theorem 7.26 Suppose A C N x N is a Borel set with countable sections.
Then there are Borel measurable functions fo, f1,... with disjoint graphs such
that A is the union of the graphs.

2Before proving this we need one lemma about hyperarithmetic sets. If x €
NY" we identify = with (zg,21,...) in NN where z,,(m) = z(n, m).

Lemma 7.27 Suppose A is a Al-subset of HYP. There is a hyperarithmetic
e NY such that A C {xo,x1,...}.

Proof Let
B ={(z,i) e NxN:z € ANi € BCrec AYRYm (2(n) = m < (n,m) € Brec(i))}.

Then B is II} and 7(B) = A. By selection, there is a Af function s : A — N,
uniformizing B.

Let C = {i: 3z € A s(x) = i}. Clearly C is X1. Since
1€C < Iz € HYP (z € AN s(x) = 1),

Cis Al. Let

(o itigc
-:C(Zan)_ m ifieD/\(n,m)eBrcc(i)'

Then A C {zg,21,...}.

Exercise 7.28 Show that the same is true if A is X1. [Hint: First show that
any Y1 subset of HYP is contained in an A} subset of HYP.]

Proof of Theorem 7.26 By relativizing, we assume that A is Al. Suppose
A C N x N has countable sections. By the Effective Perfect Set Theorem,
for any z the set A, = {y : (z,y) € X} is a Aj(z) subset of {y : y <pyp }.
By relativising the lemma, there is y € N¥ such that Y <nyp © and A, C
(o, v1,-

Let B = {(x,j) € N xN : j € BCrec(z) NVz ((z,2) € A —
InvVmvk (2(m) = k) < (n,m, k) € Byec(z,5)}. Then B is I} and 7(B) = 7(A).
By 7.21 w(A) is Af. Thus, by selection, there is a A} function ¢ : 7(A) — N
uniformizing B.
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Let g, : m(A) — N be such that g,(z) = y if and only if

y(Z) =] (n7i7j) € Brcc(xvt(‘r))'

Since g, has a Al-graph, it is Borel measurable and A is contained in the union
of the graphs of the g,.
Let

n—1
Cp = {x em(A): (x,gn(x)) € AN /\ gn(z) # 91(95)}
i=0
and let f, = ¢,|C,. Each g, is Borel measurable and A is the disjoint union of
the graphs of the g,.

We next uniformize Borel sets with compact sections. We begin with a
lemma that compares two different measures of the complexity of a set. Suppose
a set A is A} and open. There is no reason to believe A is ¥Y. For example if
W C Nis any Af set, then A = {z € N': z(0) € W} is A{ and open, but need
not be X{. The next lemma shows while A is not X¢, A will be ¥¢(z) for some
x € HYP.

Lemma 7.29 Suppose A C N is Al and open. Then there is a hyperarithmetic
S C N<“ such that A =], cg No-

Proof Let S={o:Vxa Do — x € A}. Then Sis II} and A = |J,.q No.
There is a computable f : N<“ — T'r such that

z € S if and only if f(z) € WF.

Let
B={r:Vz e Ado p(f(1)) £ p(f(0)) No C z}.

Note that B is II} and N<¢\ S C B. If B=N<%\ S, then S is A}, as desired.
If not, there is 7 € SN B. Then Sy = {0 : f(o) < f(7)} is Al and

A= |J N, c N, =4

ocSo geS

If Ais A} and closed, then there is a Aj-set S € N< with N\ A = J, g No-
Let T ={c e N<¥ : V7 C o 7 ¢ S}. Then T is a hyperarithmetic tree and
A =[T]. If A is compact, we can go a bit further.

Lemma 7.30 If A is Al and compact, then there is a finite branching hyper-
arithmetic tree T such that A = [T]. More generally, if A is a compact $1-set, F
is a closed Ai-set, and A C F, then there is a finite branching hyperarithmetic
tree T such that A C[T] C F.
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Proof By the remarks above, there is a hyperarithmetic tree T" such that
F =[T].
Let B={(0,C):0 e N AC C N finite AVz ((zr € ANo Cz) —
(Nicc @i €T AN\ ;ce D 00).
Then B is I1}. If N,NA = (), then (0, C) € B for all finite C C N. If N,NA # (),
then, by compactness, there is a finite set C' C N such that

ANN, = U AN Ny~
icC
Clearly (0,C) € B. By 5.28 there is a Al-function f such that if o € N<“, then
(0, f(0)) € B. Let

Ty={oeT: |\ oli)€ f(oli)}.

i<|o|

Clearly Ty C T is Al and finite branching. By choice of B, if z € A, then
S [Tl]

Corollary 7.31 If A C N is Al, compact and nonempty, then there is x € A
such that x € HYP.

Proof There is a hyperarithmetic finite branching tree T such that A = [T].
By Konig’s Lemma, if {r € T : ¢ C 7} is infinite, then there is z € N, N A. Let

Th={oceT:VYn>|o|IroCTATETA|T| =n}.

Then T is hyperarithmetic (indeed T is arithmetic in T') and T% is pruned.
Inductively define x € A such z(n) is least such that (z(0), z(1),...,z(n)) € Th.
Then x is recursive in T5 and hence, hyperarithmetic.

Corollary 7.32 (Novikov) If A C N x N is A{ and all sections A, = {y :
(z,y) € A} are compact, then w(A) is Al and there is a A} uniformization of
X.

In particular, any Borel A C N x N with compact sections has a Borel
uniformization.

Proof Clearly 7(A) is 1. By relativizing the previous corollary, we see that
z €m(A) & Jy <nyp 7 (z,y) € A

Hence 7(A) is Al

Let B ={(z,e): x &€ m(A) V (e,x) € BCyec and if y € N is coded by (e, z)
then (z,y) € A}. Then B is [T} and by 5.28 there is a Al function f unifomizing
B. The set C = {(x,y) : z € 7(A) A (z, f(x)) codes y} is a Aj-uniformization
of A.

We will prove one further generalization. We first need one topological result.
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Exercise 7.33 Suppose A C N is closed, f : N — N is continuous and
f(A) C UF, where each F, is closed. There is 0 € N<“ and n € N such that
ANN, # 0 and f(ANN,) C F,. [Hint: Suppose not. Build o9 C o1 C ...
such that AN N,, # 0 and f(N,, , N F;) = 0. Consider z = (Jo; to obtain a
contradiction.

Definition 7.34 We say that A is a K, set if it is a countable union of compact
sets.

Since R™ is locally compact, in R™ every F,-set is a K,-set.
Lemma 7.35 Suppose A is Al and a K,-set. Then there is x € ANHYP.

Proof There is a I1-set B C N x N such that A is the projection of B. By
the previous exercise, there is a basic open set N such

Ay ={z:3y (z,y) € N x B}
is 31 and contained in a closed subset of F' of A. Then
Ai={z:Vo(cCx—Ty (yec AiAoCy))}

the closure of A; is also ¥} and contained in A.

Let B={(z,0) ;2 ¢ ANoc CxAVy (y Do —y¢gA}. Then B is Il and
for all ¢ A there is a o such that (z,0) € B. By 5.28 there is a A} function
f such that (z, f(z)) € B for all z &€ A.

Let Wo = {f(z) : « € A}, let Wy, = {0 : Yy Doy & A1}. Then Wy is
Y1, Wy is I} and Wy € Wy. By Xi-separation, there is a A}-set W such that
WQ Q W Q Wl. Let

T={o:VTCo:7¢W}

Then T is a Al tree. Since W C Wy, Ay C [T]. Since Wy C W, [T] C A.
By 7.30 there is a finite branching tree 77 € A% such that 77 C T and

A Cc[h]CT]C A
As in 7.31 there is z € [T1] NHYP.

Corollary 7.36 (Aresenin, Kunugui) If A C N x N is Borel and every
section if K, then w(A) is Borel and A has a Borel uniformization.

These proofs are a little unsatisfactory as we have only proved the uniform-
results for A/ x N or more generally recursively presented Polish spaces (like
R™). Since “compact” and “F,” are not preserced by Borel isomorphisms we
can not immediately transfer these results to arbitrary Polish spaces. In fact
these results are true in general (see [6] 35.46).

Exercise 7.37 a) Modify the proof of the Effective Perfect Set Theorem, using
the Banach-Mazur game, to prove that if A C A is a nonmeager Ai-set, then
there is a hyperarithmetic z € A.

b) Prove that any Borel set with nonmeager sections can be uniformized by
a Borel set.
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Part 11
Borel Equivalence Relations

The second half of these notes will be concerned with the descriptive set theory
of equivalence relations.

Part of our interest in Descriptive Set Theory is motivated by Vaught’s
Conjecture. Suppose L is a countable language and T is an L-theory. Let
I(T,%g) be the number of isomorphism classes of countable models of T'.

Vaught’s Conjecture If I(T,Rg) > R, then I(T,Rg) = 2%,

Of course if the Continuum Hypothesis is true, Vaught’s Conjecture is true.
But perhaps it is provable in ZFC (though at the moment there is a manuscript
with a plausible counterexample due to Robin Knight).

We have seen before that Mod(T') is a Polish space and 22 is a 31-equivalence
relation on Mod(7'). A first hope would be to deduce Vaught’s Conjecture from a
perfect set theorem for ¥ 1-equivalence relations. This won’t work. For example,
consider the following equivalence relation on T'r.

T~ 8« p(S)=pT)

Then ~ is ¥}. There is one equivalence class for all the ill-founded trees
and then one for each possible value of p. Thus ~ has exactly Ni-equivalence
classes.

We will see in §8, that while there is a perfect set theorem for I (and hence
Borel) equivalence relations and a weaker perfect set theorem for31-equivalence
relations.

The rest of the notes will be concerned with two special cases of X 1-equivalence
relations:

i) Borel Equivalence relations

ii) Orbit Equivalence realations, suppose G is a Polish group, X is a Borel
set in a Polish space and p : G x X — X is a continuous action of G on A.
Let E¢g be the equivalence relation xzF¢y if and only if there is g € G such that
gr =y.

It is easy to see that the orbit equivalence relations Eg are Xi. Of par-
ticular interest is the case where So acts on Mod(T"). In this case Eg is the
isomorphism equivalence relation on Mod(T).

The study of these equivalence relations is also tied up with the study of the
dynamics of group actions and these ideas will also play a key role.

8 IIi-Equivalence Relations
Vaught’s Conjecture would be true if it were true that every 1i-equivalence re-

lation with uncountably many classes has a perfect set of inequivalent elements.
But the example above shows this is false. On the other hand, Silver proved
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that IT}-equivalence relations, and in particular Borel equivalence relations, are
better behaved.

Theorem 8.1 (Silver’s Theorem) If X is a Polish space and E is a I1}-
equivalence relation with uncountably many classes, then there is a nonempty
perfect set P of inequivalent elements. In particular, if there are uncountably
many classes, then there are 2% classes.

Silver’s original proof used heavy set-theoretic machinery. We will describe a
proof given by Harrington that uses the effective descriptive set theory developed
in §7.

To warm up we prove the following result that illustrates a key idea of
Harrington’s proof.

Proposition 8.2 Suppose E is an equivalence relation on N and there is a
nonempty open set U such that EN(U xU) is meager. Then there is a nonempty
perfect set P of E-inequivalent elements.

Proof

Let ENU x U = |J A,, where each A,, is nowhere dense.

We build (U, : o € 2<“) nonempty basic clopen sets such that:

i) Uy CU;

i) U, C U, for o C ;

iii) diam Uy < 4y;

iv)if o] =|r|=nand o # 7, then EN(U, NU;) N (AgU...UA,_1) =0.

For f € C, let x5 = ((Uy|,. By contstruction if f # g, then 2y I’ z,. Thus
there is a perfect set of E-inequivalent elements.

We choose Uy an nonempty basic clopen subset of U.

Suppose we have constructed U, for all o with |o| = n satisfying i)-iv). Let
{(04,7) : i = 1,...k} list all pairs of distinct sequences of length n + 1. If
|o| = n + 1 we inductively define UZ for i =0, ... k.

Let Ug = Ua‘n.

If 0 # 0; and ¢ # 74, then UiTt = UZ. Otherwise, since AgU...U A, +1is
nowhere dense in U x U. We can find basic clopen U2t C U: and UL C UL
such that

En (U <UL = 0.

Choose U, a basic closed subset of U, 5 of diameter less that ﬁ

While the argument above will be the model for our proof of Silver’s theorem,
there are some significant obstacles. First and foremost, if E is a IT}-equivalence
relation, there is no reason to believe that there is an open set U such that
EN(U x U) is meager. Harrington’s insight was to change the topology so that
that this is true.
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Gandy Topology

Definition 8.3 The Gandy topology on N is the smallest topology in which
every Y1-set is open.

We let 7¢ denote the Gandy topology on N.

Since there are only countably many Yi-sets, the Gandy topology has a
countable basis. As we will be considering meager and comeager sets in the
Gandy topology, we first note that the Baire Category Theorem is still true for

TG -
Proposition 8.4 IfU C N is nonempty ant Tg-open, then U is not Tg-meager.

Proof

Suppose Ag, Ay, . .. are Tg-nowhere dense subsets of U. It is easy to construct
U=Uy2U; DU D...asequence of nonempty ©1-sets such that U,NA,, = 0.
To prove the Lemma we need only do this in such a way that (U, # §. This
will require a bit more work.

At stage s of the construction we will have:

i) nonempty Li-sets U = Uy D Uy D Us... D Uy such that U; N A; = (0 for
all 7 < s;

ii) recursive trees Ty, T4, ... Ts such that U; = {z : Jy (x,y) € [Ti]};

iii) sequences oy C 01 ... C 0, such that U; C N, for all 4;

iv) sequences 17§- for i < j < s such that n! C n’,; C 1} and there is (z,y)
such that o5 C x, nt C y and (z,y) € [T for all i < s .

Suppose we have done this. Let = (J,oyon and y; = U,~,; 7. Then
(w,y;) € [T3] for all . Hence z € (U, and z & |J A,,.

At stage 0 we let Uy = U and o9 = 1) = 0.

At stage s+ 1 let

S

W=A{zxeUs:xDosANJyo...ys /\(z,yi)E[Ti]/\/\yiDni}.

i=0 i<s

Then W is a nonempty Y1-subset of U,. Since A1 is 7g-nowhere dense, there

is V . C W a nonempty ¥i-set such that V N Ag 1 = 0. Let v € V. Choose

0sy1 D 0, such that v D s. Let Ugy1 = VN Ny, ,. Let Tiy1 be a recursive

tree such that Ug41 is the projection of Tsy1. For ¢ < s+ 1 choose z; such that
s+1

(v, 2;) € [T3] and . C z; and let 57} = 0. These choices satisfy 1)-iv).

We will use the fact proved in §3 that in any topological space with a count-
able basis, the Baire Property is preserved by the Souslin operation.

Let 7% denote the Gandy topology on N™. Since there is a computable bijec-
tion between N™ and N, (N, 7g) and (N™,75%) are homeomorphic topological
spaces. We have to be a little bit careful here since, for example, 73 is not the
Ta-product topology. We let Té’l denote the product of (N*,7£) and (M, 7).

The topology Téﬁl refines the topology Té’l.
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Exercise 8.5 Modify the proof of 8.4 to show each topology Tg’l also satisfies
the Baire category theorem.

We will need the following technical lemma. Let A C N2 and let A* =
{(z,y,2) e N3 : (x,2) € A}.
Lemma 8.6 If A is Tcl;’l—nowhere dense, then A* is Té’l—nowhere dense.

Proof Suppose B C N'? and C C N\ are Y1-sets. Let By = {z : Jy (z,y) € B}.
Then B is ¥1. Since A4 is Té;’l—nowhere dense, there are B, C By and Cy C C
nonempty such that AN (By x C3) = 0. Let B’ = {(z,y) € B:x € By}. Then
B’ is nonempty and (B’ x C2) N A* = (.

Harrington’s Proof

We will prove Silver’s Theorem for IIi-equivalence relations. The proof will
easily relativize to IT}-equivalence relations.

Suppose E is a [Ti-equivalence relation on A/ with uncountably many equiv-
alence classes. We say that A C N is E-small if xEy whenever z,y € A. Let

U = {z: there is no E-small Xi-set A with z € A}.
Since there are only countably many Yi-sets, U is non-empty.
Lemma 8.7 If z ¢ U, then there is an E-small Al-set A with x € A.
Proof There is an E-small ¥i-set B such that x € B and
yEx & Vz (2 € B — zEBy).
Thus the E-class of z is II{. By Xi-separation there is a A{ set A such that
BCAC{y:yEx}.
Hence A is an E-small Al-set containing x.
Corollary 8.8 U is ¥i.
Proof z € U if and only if
Ve ((e € BCree A @ € Brec(€)) = FyFz (Y, 2 € Brec(e) Az Fy).

This is a II}-definition of U.

We now show the connection to our “warm up” argument.

Lemma 8.9 EN(U xU) is Tcl;’l—meager.
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Proof
We first argue that E has the Baire property in the Tcl;’l-topology.

Claim If A C N is i, then there are basic open sets (B, : 0 € N<¥) such
that A = A(B,).

Let T C N<¥ x N<¥ be a tree such that A = {z : Jy (z,y) € [T]}. Let
B, ={x: (z||o|,0) € T}. Then

A= |J () Bypn = AB,).

yeEN neN

The basic open sets of A x A are open in the topology Té’l, and hence
have the Baire Property, in this topology. Since the Souslin operator preserves
the Baire Property, every 31 subset of N' x A has the Baire Property in the
Té;’ 1-topology.

Suppose for purposes of contradiction that £ N (U x U) is Tcl;’l-nonmeager.
Since E has the Baire property there are nonempty $1-sets A, B C U, such that
Eis Té’l—comeager in Ax B.

Let Ay = {(z0,71) € Ax A: 29 K 21}. Since A C U is a nonempty X.1-set,
A is not E-small. Thus A; is a nonempty Y1i-set.

Let C; = {(zo,x1,y) : (xo,21) € A1,y € B,x; By}, for i = 0, 1.

Claim C; is Té’l-meager.

Since F is Té’l-comeager in A x B, there are Dy, D1, ... Té’l-nowhere dense,

such that

UDn:{(Ly) € AX B:zxEy}.

By Lemma 8.6, D), = {(zo,21,y) : (zo,y) € Dy} is Té’l—nowhere dense, and
C; CUD, is Té’l—meager.

Since Té’l satisfies the Baire Category Theorem, There is
(xo,xl,y) S (Al X B) \ (CQ U Cl)
But then zoFEy, x1 Fy and xo Ex1, a contradiction.

We now proceed as in our “warm up” to construct a perfect set of E-
inequivalent elements. We need to exercise a little care—as in the proof of
the Baire Category Theorem—to ensure that (1, Uy, are nonempty.

Let Ao, Aq,... be Té’l—nowhere dense such that |JA; = EN(U x U). Let
T C N<¢ x N<¥ be a tree such that U = {z : Ty (x,y) € [T]}.

We construct a family (U, : 0 € 2<%) of nonempty ¥1-sets such that:

i) Up CU;

ii) U, C U, for o C ;

iii) if |o| = |7| = n and o # 7, then (U, x U;) N (AgU...UA,_1) =0.

As in the proof of the Baire Category Theorem for 74, we also need to
take extra measures to insure that (Uy,, # 0. We construct (77 : o € 2<%),
(po : 0 €2<¥), and (92 : 0 C 7 € 2<¥) such that:
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iv) each T7 C N<¥ x N<¥ ig a recursive tree such U, = {x : Ty (z,y) € [T°]}
and 779 D T7 for o C T;

V) po € N<¥, py C pr for o C 7, and U, C N5

vi) n7 € NS, n?2 Cn? if o C 79 C 71, and

3y @ D pr Ay D7 A(x,y) € [T7].

Exercise 8.10 Finish the proof of Silver’s Theorem by showing:

a) if F is a II-equivalence relation with uncountably many classes, then,
taking U as above we can find (U, : 0 € 2<¢), (T : 0 € 2<%), (uy : 0 € 2<¥),
and (n2 : 0 C 7 € 2<¥) satisfying i)-vi).

b) if we let x5 = Jpigjn, then P = {x; : f € C} is a perfect set of E-
inequivalent elements.

Harrington’s original proof used forcing rather than the category argument
given above. We sketch the main idea.

Exercise 8.11 Let P ={A: A e X}, A+#0}.
a) If G C P is sufficiently generic, then there is z € A such that

{z} =({A: AeG}.

[Hint: This just the Baire Category Theorem for 7¢.]

b) For x € N let & = (wg, 1) € N2. If b is sufficiently generic, the so are by
and by.

c) Let U be as in the proof above. If (a,b) are sufficiently P x P generic
below (U,U), then a Eb.

d) There is a perfect set of mutually sufficiently P x P-generic elements
below (U, U).

e) Conclude Silver’s Theorem.

3 {-Equivalence Relations

While Silver’s Theorem can not be generalized to Xi-equivalence relations,
Burgess showed that it can be used to prove the following result.

Theorem 8.12 (Burgess’ Theorem) If X is a Polish space and E is a X1-
equivalence relation with at least No equivalence classes, then there is a perfect
set of inequivalent elements.

Suppose E is a Xi-equivalence relation. There is a continuous function
f: X x X — Tr such that zEy if and only if f(z,y) ¢ WF.
For a < w1, let Ey = {(z,y) : p(f(z,y) > a}. Then E, is Borel, E, D E3
fora< g, E, = ﬂﬁ<a Eg for a a limit ordinal, and E = ﬂ E,.
a<wiy
Let A ={a < w; : E, is an equivalence relation}.
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Lemma 8.13 A is a closed unbounded subset of wy.

Proof Suppose g < a1 < ..., a; € A and a = supay. Since each E,, is
reflexive, symmetric and transitive so is E,. Thus A is closed.

Claim 1 For all o < wy, there is 8 < w1, such that if x Z,y, then y Kgx for all
x,y € X.

Since E is an equivalence relation and E, 2 FE, if x F,y, then y Fx. Let
B ={f(y,7) : 2 Boy}. Then B is a X1 subset of WF. Thus by Xi-bounding,
there is 8 < wy, such that if T' € B, then p(T) < 8. Thus if x E,y, then y Fax.

Claim 2 For all o < wq, there is 8 < w1, such that if xE,y, yE,z and z Kz,
then = Fgy or y Kjz.
Let C ={T :3x,y,z tEqyANyEoz Az BozNp(T) < f(a,y)Ap(T) < f(y,2)}.
Then C is a X}-set of well-founded trees. Thus there is 8 < w; such that
p(T) < Bforall T € C. If xE,y, yEoz and x F,z, then either f(z,y) € C or
f(y,z) € C. Thus either z gy or y Esz.

Let g, h : w1 — w such that g(«) is the least 8 < wy such claim 1 holds and
h(a) is the least 5 < wy such that claim 2 holds.

Given a < wi, build ag < a3 < ... < w; such that ag = a and a1 >
h(a;), g(c). Let = sup a;.

Clearly xEgx for all x (since this is true of E).

If x Zgy, then = ¥,y for some i, thus y ¥q,,,z. Thus y Fgz.

Suppose xEgy and yEgz. We claim xEgz. Suppose not. Then = F,,z for
some i. But then x [,y or y Ko, , 2. Hence x Hgy or y ¥gz, a contradiction.

Thus for all a < wy, there is 8 > « with 8 € A. Thus A is unbounded.

We can inductively define ¢ : w3 — A such that:

i) 6(0) € A;

ii) p(a+1) > ¢(a) for all a < wy;

iii) ¢(a) = supg., #(B) for @ < wi a limit ordinal.

Corollary 8.14 If E is a Xi-equivalence relation, there is a sequence (Eq :
a < wy) of Borel equivalence relations such that:

i) Eq D Eg for a < ;

i) Eo = (\s<o Es, for a a limit ordinal;

ii1) £ =gy, Fa-

Proof Let E;, = E4(,). Then the sequence Ej, has the desired properties.

We are now ready to prove Burgess’ Theorem. Suppose E is a £1-equivalence
relation with at least Ny equivalence classes. Let F, be a sequence of Borel
equivalence relations such that Eg C E, for a < § and E = (| E,. By Silver’s
Theorem, if any F, has uncountably many classes, then there is a perfect set of
FE-inequivalent elements. Thus we will assume that each E, has only countably
many classes.
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Lemma 8.15 Suppose A C N contains at least Ro E-classes. Then there is
a < wy and a € A such that {x € A : zEya} and {x € A : z E, a} each
contain at least Ny elements. In particular there is b € A such that b Fa and
{z € A:x Ey b} also contains at least Ry E-classes

Proof Since each E, has only countably many equivalence classes. For each
a < wy we can find a, € A such that {x € A : xE,a,} represents at least
Ny E-inequivalent elements. If the lemma is false, then {x € A : & F, aa}
represents at most Ni-inequivalent elements. Thus

B= U {reA:zFqaa}

a<wi

represents at most Nq-equivalence classes. But if z,y € A\ B, then xE,y for all
a < wip and zFy. Thus A represents at most Xy F-classes, a contradiction.

To finish the proof of Burgess’ Theorem we use 8.15 to build (U, : o € 2<%)
such that:

i) U, is a nonempty E%—set with U, C U, for ¢ C 7 such that U, represents
at least Ny E-classes;

ii) if z € Uy~ and y € Uy~ , then = By;

If f,g € C,z € Uy, and y € (Uy)p, and m is least such that f(m) # g(m)
then x K, y and x I y. This would suffice if we knew that the (Uy),, # 0 for
f € C. We can insure this as in the proof of Silver’s Theorem.

We also build (77 : 0 € 2<¢), (uy : 0 € 2<¥), and (n? : 0 C 7 € 2<¥) such
that:

iii) each 77 C N<¢ x N<¥ is a tree such U, = {z : Jy (z,y) € [T°]} and
T° O T7 for o C 13

iv) po € N, iy C pr for o C 7, and U, C N,,_;

v)n? e N<9, n2 Cn? if o C10 C 715

vi) for each T

VT:{zEUT:xD,uT/\/\ElyDng (x,y) € [T7]}

oCt

represents at least No E-clases. In particular (p,,n7) € T°.

Suppose we have done this. For f € C let zy = |J, ptf;,- We claim that
xy €, Upn- Let 0 = fIn. Then (ur,n?) € T forall 7 D o. If y = U, 5,7,
then (xf,y) € [T°]. Thus z5 € U,. Thus {zy : f € C} is a perfect set of
FE-inequivalent elements.

We next sketch how to do the construction. Suppose we have defined U, u,
and (n2 : ¢ C 7) such that i)—vi) hold.

Since V. represents at least Ny E-classes, by Lemma 8.15 there is @ < w and
ag,a1 € V; such that ag Fna; and W; = {x € V; : E,a;} represents at least
Ny E-classes for ¢ = 0, 1.
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If j e Nand £ = (ks : 0 C 7) where each k, € N let

W/ ={zeW;:22u"jA /\ Jy DTk, (z,y) € [T7]}.

oCTt

Since ‘
w;i = Jwi*
5§
some le < must represent at least Ny F-classes.

Let U~ = ngg Since U,~ is X1 conditions i) and ii) are satisfied. Let
Wi = e J, let n%, = nZk, for 0 C 7. Let T7¢ C T7 be a tree such that
U = {z: 3y (x,9) € T™*} and let n7 = (. Our choice of j, & insures that
i)—vi) hold.

Burgess’ Theorem has an important model theoretic corollary.

Corollary 8.16 (Morley’s Theorem) If L is a countable language and T is
an L-theory such that I(T,No) > Ny, then I(T,Rg) = 2%°. Indeed if ¢ is an
Lo, w-sentence and I(¢,Ng) > Ny, then I(¢p,Rg) = 2%,

Morley’s original proof uses the Perfect Set Theorem for X1-sets, but does
not use Silver’s Theorem. His proof is given in [11] §4.4.

Using Scott’s analysis of countable models (see [11] §2.4) it is easy to see
that isomorphism is an intersection of X; Borel equivalence relations.

If M and N are countable L-structures @ € M™ and b € N™ we define
(M, @) ~o (N, D) as follows:

(M, @) ~¢ (N,b) if and only if M |= ¢(a) if and only if N = ¢(b) for all
quantifier free formulas;

(M,@) ~at1 (N,b) if and only if for all ¢ € M there is d € N such that
(M,@,c) ~q (NV,b,d) and for all d € N there is ¢ € M such that (M, @, c) ~,
(N, b, d);

if o is a limit ordinal, then (M, @) ~, (N, b) if and only if (M, @) ~5 (N, b)
for all 8 < a.

Exercise 8.17 Prove that ~, is a Borel equivalence relation on Mod(L).

Proposition 8.18 If M a countable L-structure, there is o < wy such that if
N is countable and M ~qo N, then M and N are isomorphic.

For a proof see [11] 2.4.15. Tt follows that (,_,, ~a is the isomorphism
equivalence relation. This proposition makes isomophism easier to analyze than
general Xl-equivalence relations. In particular for any M there is an a such
that the ~,-class of M is the isomorphism class. This makes the counting
argument much easier.

Exercise 8.19 Give an example of a Xi-equivalance relation E on a Polish
space X and x € FE such that if £ = ﬂa<w1 FE,. where each E, is a Borel
equivalence relation, then for all @ < wy there is y € X such that xE,y and
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9 Tame Borel Equivalence Relations

In this section we will look at some general results about Borel equivalence
relations. Let X be a Polish space and let F be a Borel equivalence relation on
X. If x € X we let [z] denote the equivalence class of X.

We start by looking at some of the simpler Borel equivalence relations.

Definition 9.1 T C X is a transversal for E if
ITN[z]] =1

for all z € X.
We say that s : X — X is a selector for E if s(z)Ex for all x € X and
s(x) = s(y) if xEy.

For example, let X be the set of all f: N — R such that f is Cauchy and
let E be the equivalence relation

fEg < ¥YnamVk > m |f(k) — g(k)| < %

Then the set T of constant sequences is a Borel transversal.

Lemma 9.2 Let E be a Borel equivalence relation on a Polish space X. Then
E has a Borel transversal if and only if E has a Borel-measurable selector.

Proof
(=) If T is a Borel transversal, let

s(z) =y < yeT and zEy.

Since the graph of s is Borel, s is Borel measurable by Lemma 2.3.
(<) If s is a Borel measurable selector, then

T=A{z:s(x)=xa}
is a Borel selector.

Exercise 9.3 Suppose FE is a Borel equivalence relation on X and € is a o-
algebra on X containing the Borel sets. Show that more generally E has a
transversal in  if and only if E has an (2-measurable selector.

Definition 9.4 Let E be an equivalence relation on X. We say that (A4, : n €
N) is a separating family for E if

zEy < Vn (z€ A, —yeA,).

We say that E is tame if there is a separating family (A4, : n € N) where
each A, is Borel. More generally, if €2 is a og-algebra on X containing the Borel
sets, we say that E is Q2-tame if there is a separating family (A,, : n € N) where
each A, € Q.

Note that if E is tame, then F is Q-tame for any o-algebra containing the
Borel sets.
We can give another characterization of tameness.
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Proposition 9.5 If E is a Borel equivalence relation on X, then E is tame if
and only if there is a Borel measurable f : X — C such that xEy if and only if

f(@) = f(y).

Proof

(=) If (A, : n € N) is a Borel separating family, let (f(z))(n) = 1 if and
only if z € A,. Then zFy if and only if f(x) = f(y).

(<) Let A, = {x: (f(z))(n) = 1}. Then A, is Borel and (4,, : n € N) is a
separating family.

Proposition 9.5 leads us to the following key idea for comparing the com-
plexity of Borel equivalence relations.

Definition 9.6 Suppose F is a Borel equivalence relation on X and E* is a
Borel equivalence relation on Y. We say that E is Borel reducible to E* if there
is Borel measurable f : X — Y such that

wEy < f(z)E" f(y).

In this case we write £ <p E*. As usual, we write £ <g E* if E <g E* but
E*Lp Eand F =g F*if E <g E* and E* <p E.

We say that E is continuously reducible to E* if we can choose f continuous.
In this case we write £ <, E*.

If X is a Polish space we let A(X) be the equivalence relation of equality on
X.

Exercise 9.7 Let n = {0,...,n —1}. We view n and N as Polish spaces with
the discrete topology.
a) Prove that

A1) <p A(2) <p...<p A(n) <p...<p A(N) <g A(C).

b) Suppose X is an uncountable Polish space. Show that A(X) =g A(C).

c) If E is a Borel equivalence relation, then £ <g A(N) or A(C) <p E.
[Hint: This is an easy consequence of Silver’s Theorem.]

d) Show that a Borel equivalence relation F is tame if and only if there is a
Polish space X such that F <p A(X).

d) Says that an equivalence relation is tame if and only if there is a Borel
way to assign invariants in a Polish space.

We next show how tameness is related to the existence of selectors. If E is
a Borel equivalence relation with a Borel selector, then the selector shows that

E <p AX) <p A(C).

Thus E is tame.

In general tame equivalence relations need not have Borel transversals. Sup-
pose C' C N x N is a closed set such that 7(C) is not Borel. Let E be the
equivalence relation (z,y)E(u,v) if and only if z = w on C. Clearly = shows
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FE is tame. If T is a transversal for F is a Borel uniformization of C. If T is
Borel, then, since 7|7 is one-to-one, by Corollary 7.22, 7(C) = «(T) is Borel, a
contradiction.

In some important cases these notions are equivalent.

Proposition 9.8 Suppose E is a Borel equivalence relation on a Polish space
X such that every E-class is K. Then E is tame if and only if E has a Borel
transversal.

In particular this is true if every E-class is countable.

Proof We know that if ¥ has a Borel transversal, then F is tame.
Suppose E is tame. There is a Borel measurable f : X — C such that
xEy < f(x) = f(y). Let A={(z,y): f(y) = «}. By 2.3, A is Borel and

Ar ={y: fy) = =}

is K, for all x € C. By 7.36, A has a Borel uniformization B.
Let
T={y:3z (z,y) € B}.

Then T is a transversal of E and since 7" is the continuous injective image of
B, T is Borel.

For general F we can use uniformization ideas to say something about
transversals. Recall that C is the smallest o-algebra containing the Borel sets
and closed under the Souslin operator A. We have shown that every C set is
Lebesgue measurable and every analytic subset of X x X can be uniformized
by a C-set (Theorem 4.25 and Exercise 5.33).

Proposition 9.9 If E is a tame Borel equivalence relation on X, then E has
a C'-measurable transversal.

Proof Let f : X — C be Borel measurable such that xFy if and only if
f(x) = f(y). Let A={(z,2) e C x X : f(x) = z}. Let B € C uniformize A
and let

T={zeX:(f(x),z) € B}.

Then T is a C-measurable transversal of F.
What equivalence relations are not tame? There is a very natural example.

Definition 9.10 Let Ej be the equivalence relation on C defined by
xFEpy if and only if InVm > n z(n) = y(n).

We call Ey the Vitali equivalence relation.
The proof that Ejy is not tame detours through a bit of ergodic theory.

Definition 9.11 We say that u is a Borel probability measure on X if there
is a o-algebra Q on X containing the Borel sets, and a measure p : Q — [0, 1]
with p(X) = 1.
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Definition 9.12 We say that A C X is F-invariant if whenever x € A and
yFEx, then y € A. If u is a Borel probability measure, we say that p is E-ergodic,
if u(A) =0 or u(A) = 1 whenever A is p-measurable and E-invariant.

Definition 9.13 We say that A C X is E-atomic if there is x € X with
p([z]) > 0.

If the equivalence relation is clear from the context we will refer to F as
“atomic” rather than E-atomic.

Lemma 9.14 If E is a tame Borel equivalence relation, then there is no E-
ergodic, nonatomic Borel probability measure on X . Indeed, if 1 is an E-ergodic,
nonatomic Borel probability measure on X, then E is not p-tame.

Proof Suppose p is an E-ergodic, nonatomic Borel probability measure on X
and E is p-tame. Suppose (A, : n € N) is a p-measurable separating family.
If zFy and =z € A,, then y € A,,. Thus each A, is E-invariant. Since p is
E-ergodic pu(A,) =0 or pu(A,) = 1.
Let
B = {An: u(4,) =130 {X\ 4, : p(A,) =0}

Each of the sets in the intersection has measure 1, thus u(B) = 1. Let z € B.
Since A, is a separating family, [#] = B. Thus p is atomic, a contradiction.

We need one basic lemma from probability theory.

Lemma 9.15 (Zero-one law for tail events) Let p be the usual Lebesgue
measure on C. If A C C is Eg-invariant, then pu(A) =0 or u(A) = 1.

Proof Since A is Lebesgue measurable, for any € > 0, there is an open set U
such that U 2 A and p(U \ A4) <e.
If U C C is open, there is a tree T on 2<% such that C \ U = [T]. Let

S={c¢T: VT CoTeT}

Note that U = (J,cg No and Ny NN, = ) for 0,7 distinct elements of S.

Thus .
p(U) = p(Ny) =Y o

oes o€es
But N, and A are independent events. Thus u(Ny N A) = u(Ny)u(A) and

p(A) = > (N M A) = > p(No)p(A) = p(U)p(A).

oeS oeS

It follows that either u(A) = 0 or u(U) = 1. Thus either pu(A) = 0 or A has
outer measure 1. In the later case p(A) = 1 since A is measurable.

Corollary 9.16 Ej is not tame.
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Proof Let u be Lebesgue measure on C. By the zero-one law for tail events p
is Ep-ergodic. If x € C, then [z] is countable and hence measure zero. Thus u
is nonatomic. Thus FEj is not tame.

Indeed if €2 is the o-algebra of Lebesgue measurable subsets of C, our proof
shows that Ejy is not Q-tame. In particular Ey is not C-tame.

The first major result on Borel equivalence relations is the next theorem of
Harrington, Kechris and Louveau.? It says that Ey is the simplest nontame
Borel equivalence relation.

Theorem 9.17 (Glimm—Effros Dichotomy) Suppose E is a Borel equiva-
lence relation on a Polish space X. Then either

i) E is tame or

ii) Bo <p E.

The proof of Theorem 9.17 heavily uses effective descriptive set theory. We
postpone the proof. For now we will be content giving the following corollary.

Corollary 9.18 Let E be a Borel equivalence relation on a Polish space X.
The following are equivalent:
i) E is tame;
it) E has a C-measurable transversal;
iii) There is no Borel probability measure p that is E-ergodic and nonatomic.
iv) EO ﬁB E.

Proof We have already shown i)= ii), i)=- iii) and are assuming i) < iv).

ii) = i) Suppose E in not tame. Then Fy <p F. Let f :C — X be a Borel
reduction of Eg to E. If T is a C-measurable transversal for E, then f~1(T) is
a C-measurable transversal for Fy. But then Fy is C-tame, a contradiction.

ili)= i) If E is not tame, there is f : C — X a Borel reduction of Ey to E.
Let o be Lebesgue measure on C. We define a measure v on X by

Claim v is a Borel probability measure on X.
We will only argue o-additivity. If Ag, A1,... € X are pairwise disjoint,
then f=1(Ag),f*(A1),... are disjoint and

v((JA) = p(F 7 (JAD) = Do n(F M (A) = D w(4)
i=0 =0
as desired.
If AC X is E-invariant, then f~!(A) is Egp-invariant. Thus

v(A) = p(f~(A) =0 or 1

4Glimm proved this when E is the orbit equivalence relation for a second countable locally
compact group. Effros extended this to the case where E is an F, orbit equivalence relation
for a Polish group. The general case is due to Harrington, Kechris and Louveau [3].
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so v.. For any x € X, eltherf Y[z]g) = 0 and v([z]g = 0, or there is y € C
with f(y) = . Then f~!([z])r = [y]g, and v([z]g) = 0. Thus v is an E-ergodic
nonatomic probability measure on X.

10 Countable Borel Equivalence Relations

Definition 10.1 Suppose G is a group. A map «a : G X X — X is an action. If
a(g,a(h,x)) = a(gh, z) for all g,h € G and a(e, x) = x for the identity element
x.

If G and X are Borel subsets of Polish spaces and the action « is Borel
measurable, we say that « is a Borel action.

When no confusion arises we write gz for a(g, ).

Definition 10.2 If a : G x X — X is a Borel action, the orbit equivalence
relation E¢ is given by
zFy & dge G gr=y.

For arbitrary Borel actions, the orbit equivalence relation is X1, but if G is
countable
rEy & \/ gxr =1y.
geG

So E¢ is a Borel equivalence relation.

Definition 10.3 A Borel equivalence relation F is countable if and only if every
FE-class is countable.

If G is a countable group, then the orbit equivalence relation is a countable
Borel equivalence relation. Of course, there are also countable Borel equivalence
relations like =7 and =y, Turing equivalence and hyperarithmetic equivalence,
that seem to have nothing to do with group actions. Remarkably, every count-
able Borel equivalence relation arises as an orbit equivalence relation.

Theorem 10.4 (Feldman—Moore) If E is a countable Borel equivalence re-
lation on a Borel set X, then there is a countable group G and a Borel action
of E on X such that E is the orbit equivalence relation.

Proof Consider F C X x X. Since each section is countable, by 7.26 we can
find Borel measurable functions fg, f1,... such that f; : A; — X, the f; have
disjoint graphs and E = (J; Graph f;.
For i,5 € N let
zRjyere A ny e AN fi(z) =y A fy(x) ==

Note that £ =, ; R; ;-
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For each 4,7 let E; ; be the equivalence relation generated by R; ;. Then
Ej;j is Borel and E = |, ; Ejj. We claim that there is a Borel measurable
gi,j + X — X such that F; j-classes are the orbits of g; ;.

For each z there is at most one y such that xR, ;y and at most one z such
that zR; jz. Thus every E; j-class is of one of the following forms:

1) {z; : i € Z};

2) {z; : i € N}
3) {x_;:i €N} or
4) {z; :i=0,...,n} for some n € N, where xR, ;Tr41.

Let B; = {x : [z] is of type i)}. Then B; is a Borel set.
We define g; ; as follows.

1) On classes of type 1) g; j(zx) = Tk+1-

2) On classes of type 2)

X1 ifk=0
gij(wk) = { Tip_o if k> 0is even .
Tl+2 if k is odd.
3) On classes of type 3)
r_q ifk=0
gij(wk) = { T_gqo if k> 01is even.
T_p_o if kis odd.

4) On classes of type 4)

x ifk<n
9ii (Tk) = {ISH ifk=n "~

Let G be the countable group of Borel permutations of X generated by
{9ij : 1,7 < n}. We give G the discrete topology. The natural action of G on
X is Borel and the orbit equivalence relation is F.

Universal Equivalence Relations

Definition 10.5 We say that a countable Borel equivalence relation F is uni-
versal if E* <p FE for all countable Borel equivalence relations FE.

We will show how to use the Feldman-Moore Theorem to find natural uni-
versal equivalence relations Let X be a set and let G be a group if f € X¢ and
g € G define gf € X€ by

gf(h) = f(g~"'h).

Note that

91(g21)(R)) = (921) (g1 "h) = (g5 "91 "h) = (g192) f ().

Thus (g, f) — gf is an action of G on X¢.
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Our main goal is to show that if F5 is the free group on two generators, then
the orbit equivalence relation for the natural action of F» on 2% is universal.

If G is a countable group and X is a standard Borel set, then (g, f) — gf is
a Borel action of G on X¢. We let E(G, X) denote this action.

We first show that there is a universal G-action.

Lemma 10.6 Suppose G is a countable group acting on a Borel set X. Let Eg
be the orbit equivalence relation. Then Eq <p E(G,C).

Proof Let Uy, Uy,... be Borel subsets of X such that if x # y there is U; such
that only one of z and y are in U; (we say U; separates points of X).
We view elements of C¢ as functions from G x N to {0,1}. Let ¢ : X — C¢
be the function
(z)(g,i) =1 g e cU,.

Since ¢(z)(e,i) = 1 < x € U; and the U; separate points, we see that ¢ is
one-to-one.
Note that

(hé(2))(9)(1) = 1 & ¢(x)(h'g)(i) = 1 & g~ ha € Ui & ¢(ha)(g)(i) = 1.

Thus he(z) = ¢(hx).

Suppose xEgy. Then there is g € G such that y = hz and ¢(y) = go(z).
Thus ¢(x)E(G,C)¢(y). Moreover, if ¢(x)E(G,C)p(y), there is g € G such that
o(y) = gop(z) = ¢(gz). Since ¢ is one-to-one y = gz and zEqgy. Thus ¢ is a
Borel reduction of Eg to E(G,C).

Lemma 10.7 Suppose G and H are countable groups and p : G — H is a
surjective homomorphism then E(H,X) <p E(G,X) for any Borel X.

Proof Let ¢: X — X% be the function

Clearly, ¢ is one-to-one.
If h € H and p(hs) = h, then

¢(hf)(g) = (hf)(p(g)) = F(h™"p(9)) = f(p(hi'g))
and
he(F)(9) = o(f)(hg) = fp(hitg)).
Thus ¢(hf) = hed(f). Moreover, if there is g € G such that gé(f1) = ¢(f2),

then fo = g&(f1) = ¢(p(g)f1). Since ¢ is one to one p(g)f1 = fo. Thus fLEqf2
if and only if 6(f1)E(G, X)6(fz).

For any cardinal k let F}; be the free group with x generators.

Corollary 10.8 If E is a countable Borel equivalence relation, then E <p
E(Fy,,C).
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Proof By the Feldman-Moore Theorem there is a countable group G and a
Borel action of £ on X such that E is the orbit equivalence relation for the
action. By Lemma 10.6 E <p F(G,C). There is a surjective homomorphism
p: Iy, — G. Thus by Lemma 10.7

E <p E(G,C) <p E(Fy,,C).

We will simplify this example a bit more after a couple of simple lemmas.

Lemma 10.9 IfG is a countable group and H C G, then E(H,X) <p F(G, X)
for any Borel X .

Proof Fixa € X. Let ¢ : X — G be the function

Mﬂ@)z{ﬂm ifge H

a otherwise.

Clearly ¢ is one-to-one.
Let h € H. If g € H, then

o(hf)(g) = (hf)(9) = F(h"g) = (ho(f))(9)-
If g¢ H, then h~'g & H so

P(hf)(g) = a = (he(f))(9)-

Since ¢ is one-to-one, we may argue as above that fi E(H, X)f if and only if
o(f1)E(G, X)o(f2).

Suppose a,b are free generators of F5. Then {a"ba™ : n = 1,2,...} freely
generate a subgroup of F» isomorphic to Fy,. Thus E(F3,C) is also a universal
countable Borel equivalence relation.

Lemma 10.10 If G is a countable group, then E(G,C) <p E(G x Z,2).
Proof We identify C¢ with 26*N. Let ¢ : C¢ — 29%% be the function
{f(g,i) ifi<0

1 ifi=-1
0 ifi < —1.

o(f)(g,1) =

Clearly ¢ is one-to-one.

Suppose f € C% and h € G. Then ¢(hf) = (h,0)¢(f). Suppose ¢(f1) =
(h,m)¢(f). Then

¢(fl)(gﬂ Z) = qb(f)(h_lgvi - m)
for all g € G, i € Z. We claim that m = 0. Let ¢ = —1, Then ¢(f1)(g, —1) = 1.
Thus —1 —m > —1 and m < 0. On the other hand, let # = m — 1. Then
é(f1)(g,m —1) = ¢(f)(h~tg,—1) = 1. Thus m —1 > —1 and m > 0. Thus
m = 0. Thus
o(f1) = (h,0)6(f) = ¢(hf).
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Since ¢ is one-to-one, f; = hf. Thus

HE(G,C)f2 < ¢(f1)E(G X Z,2).

Theorem 10.11 If E is a countable Borel equivalence relation, then
E <p E(F,2).

Proof

(

<p E(Fy, xZ,2) by10.10
< (
(

<p FE
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11 Hyperfinite Equivalence Relations

Definition 11.1 We say that a Borel equivalence relation E is finite if every
equivalence class is finite. We say that E is hyperfinite if there are finite Borel
equivalence relations Ey C Ey C ... such that E = | E,,.

The equivalence relation Fy is hyperfinite. Let F}, be the equivalence relation
on C
zFhy < ¥Ym > n z(m) = y(m).

Then Ey = |J F), and each F, is finite.
The main goal of this section will be to give the following characterizations
of hyperfinite equivalence relations.

Theorem 11.2 Let E be a countable Borel equivalence relation. The following
are equivalent:

i) E is hyperfinite;

it) E is the orbit equivalence relation for a Borel action of Z;

iii) E <p Eo.

We first show that, for countable Borel equivalence relations, finite = tame
= hyperfinite.

Proposition 11.3 If F is a finite Borel equivalence relation, then E is tame.

Proof There is a Borel action of a countable group G on X such that E is
the orbit equivalence relation. Without loss of generality we may assume that
X =R so we can linearly order X. Then

T={zeX:VgeGuz<gzx}
is a Borel transversal for E.

Proposition 11.4 If E is tame countable Borel equivalence relation, then E is
hyperfinite.

Proof There is a countable group G such that E is the orbit equivalence
relation on X. Suppose G = {go, g1, ...} where go = e. Since E is tame, there
is a Borel measurable selector s : X — X. Let

xE,y < xFy and <:v =yV </\ x=g;s(z) A /\ Y= ng(CE))) .
=0 i=0

Then zE,s(z) if and only if € {g;s(z) : ¢ =0,...,n} and if x F,s(z) then
|[#]g, | = 1. Thus E, is a finite equivalence relation and | E,, = E.

Since Fy is hyperfinite, the converse is false. There is a partial converse.
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Theorem 11.5 Let E be a countable Borel equivalence relation, then E is hy-
perfinite if and only if there are tame Borel equivalence relations Eg C Fy C
E, C...with E=J, En.

For a proof see [2] Theorem 5.1.
We mention a few important closure properties for hyperfinite equivalence
relations.

Definition 11.6 If E is an equivalence relation on X we say that A C X is
full for E if for all x € X there is y € A such that zFEy.

Proposition 11.7 i) If E C F and F is hyperfinite, then E is hyperfinite.

it) If E is hyperfinite and A C X is Borel, then E|A is hyperfinite.

iii) If E is a countable Borel equivalence relation, A C X is Borel and full
for E, and E|A is hyperfinite, then A is hyperfinite.

w) If E is a countable Borel equivalence relation, E <p E* and E* is
hyperfinite, then E is hyperfinite.

Proof i) and ii) are obvious.

iii) Suppose Ey C Fy C Ey C ... are finite Borel equivalence relations on A
such that E|A = |J E;. There is a countable group G = {go, g1, - ., } such that
FE is the orbit equivalence relation for a Borel action of G on X. For z € X, let
ng be least such that g, = € A.

Let xF,y if and only if

cEy ANz =yV @<nAny <nAgn,2Fugn,y))-

Then F, is a finite equivalence relation and |J F,, = E.

iv) Let f : X — Y be a Borel reduction E to a hyperfinite E*. Since E is
countable, the map f has countable fibers. Thus by 7.21, B = f(X) is Borel and
there is a Borel measurable s : B — X such that f(s(y)) =y for all y € f(X).
Let A =s(B) ={x € X : s(f(z)) = }. Then A is Borel and full in E. By
ii) E*|B is hyperfinite. But E|A is Borel isomorphic to E*|B. By iii) F is
hyperfinite.

Z~actions

Suppose E is a Borel equivalence relation on X and <[, is a linear order of [z].
We say that [z] <[, is Borel if there is a Borel R € X x X x X such that

i) R(z,y,2) = (xEy A zEz);

i) R(z,y,2) =y <[ 2

iii) if zFzy then R(x,y,z2) < R(z1,y, 2).

Theorem 11.8 Let E be a Borel equivalence relation on X. The following are
equivalent:

i) E is hyperfinite;

i4) There is a Borel [x] — <[ such that each infinite E-class has order type
Z, w or w*.
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i41) There is a Borel [x] — <[y such that each infinite E-class has order type
Z.

iv) There is a Borel action of Z on X such that E is the orbit equivalence
relation.

v) There is a Borel automorphism T : X — X such that E-equivalence
classes are T-orbits.

Proof

It is clear that iv) < v)

i) = ii) Let Eg C E; C Ey C ... be finite Borel equivalence relations such
that £ = |J E,,. We may assume that Ej is equality. We may also assume that
there is an ordering < of X.

We inductively define <[}, as follows.

1) <(g]p, Is trivial, since [z]g, = {z}.

2) Suppose y, zE,x and yE, 1z, then y < z if and only if y <| z.

ylE,
l—least element of

=B,

3) Suppose y,zE,x and y JE,_1z. Let § be the <
[y]n—1 and Z be the <
Otherwise 2 <[y, V-

YlE, _

Z]Enil—least element of [z]g,_,. f § < Z, then y <la]p, Z-

In other words: we order [z]g, be breaking it into finitely many F,,_1 classes
Ci,...,Ch. We then order the classes C; by letting y; be the <[yi]En71—least
element and saying that C; < C; if y; < y;.

Let <[2)p= U <ja]p, - f vEny and @ <[3) 2 <[y y, then 2E,z. It follows
that <[, is a discrete union of finite orders. Thus <[,) is either a finite order or
has order type w, w* or Z.

We need only argue that the assignments [x] <[, 5, 18 Borel. The only
difficulty is picking 7 the <[, -least element of [z]g,. There is a countable

groups G and a Borel actions of G on X such that E,, is the orbit equivalence
relation of GG,,. Then

y=7¢ (Yo AVg € G y <), 97).

This is easily seen to be Borel.

ii) = iii) We may assume that E is the orbit equivalence relation for the
action of a countable group G. Since

{z: 39 € GVh € G hx <jy) g}

and
{x:3g € GVh € G gx <) ha}

are Borel we can determine the order type of each class. If a class has order
type w of w* we can reorder it so that it has order type Z. For example if [z] is
7o <[] T1 <[4]< ... we define a new order <* so that

... X5 <*£L'3 <*$1 <*$0<*JJ2 <*£L'4<...

The w* case is similar. This can clearly be done in a Borel way.
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ili) = iv) We define a Borel automorphism ¢ : X — X such that F is the
orbits of g. If z is the <[;-maximal element of [z], then [z] is the <|;-least
element of [z]. Otherwise let g(z) be the <[;-successor of x. Arguing as above
g is Borel. We let Z act on X by nz = g™ z. Clearly E is the orbit equivalence
relation.

iv) = iii) Let g : X — X be a Borel automorphism such that E-classes are
g-orbits. Then Xo = {x : 3n # 0 : ¢"™az = 2} is Borel. On X, we can define
<[¢] Using < is a fixed linear order of X. Thus, without loss of generality, we
may assume that every FE-class is infinite. But then we can define z <[, y if
and only if there is an n > 0 such that ¢z = y. Clearly this is a Z-ordering
of [x].

ili) = i) We may assume that E is an equivalence relation on C. For each
equivalence class C' we define a tree Te C 2<% by

Tec={ce€2¥:JxeCz Do}
There is a Borel automorphism g such that E-classes are g-orbits. Since
Ty ={oc:3IneZ: g™z > o},

the function x + TJ,) is Borel measurable. Clearly T¢ is infinite. Let z¢ € [Te]
be the leftmost path in T¢.

Claim The functions x — z|,) is Borel measurable.

We define off C of C ... such that {7 € T}, : 7 2 of} is infinite. Let 0§ = 0
and of,; = 07 j where j is least such that {7 € Tj;) : 7 2 o j} is infinite.
Then z[,) = Jof. It is easy to see that (Tj,), 2[y) is I1Y. Thus z — 2[z) is Borel
measurable.

There are several cases to consider. It will be clear that deciding which case
we are in is Borel.
case 1: z¢ € C.

For 2 € C we define 2 E,,y if and only if # = y or there are 4, j with |é|, |j| < n
such that 2 = ¢z, and y = g0z,

For m € Nlet C,, = {z € C: z|m = z¢|m}.
case 2: There is an m such that C,, has a <c-least element.

Let m be least such that C), has a least element we. For z € C| we define
xE,y if and only if x = y or there are ¢, j with |i],|j|] < n such that x = g(i)wm
and y = g(j)wm.
case 3: There is an m such that C,, has a <c-maximal element.

Similar.
case 4: Otherwise.

We have Cyp D C; 2 Cy D .... Since we are not in case 1, [|C; = 0. Since
we are not in case 2 or 3, C; has no smallest or largest element.

We define F,, on C by: xE,y if and only if (x € C), and x = y) or and there
1sz>Osuchthatg(Z)x*yandg HxT & Cp for j=0,.
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Clearly each E,, class is finite and if xFy, then xF,y for all sufficiently large

The i)« iii) is due to Slaman and Steel. The direction iv) = i) is due to
Weiss.
It follows immediately that there is a universal hyperfinite Borel equivalence.

Corollary 11.9 If E s a hyperfinite Borel equivalence relation, then
E <p E(Z,C).

Recall that an action of G on X is a free action if gx # hx for any x € X
and g # h. Our proof shows the following.

Corollary 11.10 If E is a hyperfinite equivalence relation on a standard Borel
space X and every E class if infinite, then E is the orbit equivalence relation
for a free Borel action of Z on X.

Reducibility to E

Theorem 11.11 (Doughrety-Jackson-Kechris) If E is a hyperfinite Borel
equivalence relation, then E <p Ej.

Corollary 11.12 If E is a nontame hyperfinite Borel equivalence relation then
E =B Eo.

Proof By Theorem 9.17 Ey <p E and by Theorem 11.11 E <p Ej.

By Theorem 11.8 and Lemma 10.6 every hyperfinite Borel equivalence rela-
tion is Borel-reducible to E(Z,C). Thus we may assume that F = E(Z,C).
We say that X C C% is tame if X is E-invaraint and E|X is tame.

Lemma 11.13 Suppose X C CZ is tame, and f : C2\ X — C is a Borel
reduction of E|Y to Ey. Then E <p Ej.

Proof Let g: X — C be a Borel measurable function such that

rEy < g(z) = g(y)

for z,y € X. Since there is a perfect set of Ey-inequivalent elements, there is a
continuous p : C — C such that p(z) Kop(y) for x # y. Let (,) : C?2 — C be the
ususal bijection

<x,y) = (x(0),5(0),z(1),y(1),...).

Finally let 0,1 € C denote the infinte sequences that are constantly 0 and
constantly 1, respectively.
Define f : C? — C by



If z € X and y € X, then f(x) £of(y), since the even part of f(x) is 0 and
the even part of f(y) is 1.
If x,y € X, then

-~ -~

f(@)Eof(y) < plg(x))Eop(g(y)) & g9(z) = g(y) < xEBy.

If z,y ¢ X, then

~ ~

f(@)Eof(y) < f(x)Eof(y) & xEy.
Thus fis the desired reduction.
Lemma 11.14 If Xo, X1,...,C C% are tame, then |J X, is tame.

Proof Since each X; is invariant we may assume that the X; are disjoint. If f; :
X; — C is a Borel reduction and f : |J X; — C is the function f(z) = 0'17f;(x)
for z € X;, then f is a Borel reducition of E|X to A(C).

The two lemmas allow us to work “modulo tame sets”, i.e. if X is tame we
may ignore it and assume we are just working with E[(CZ\ X).

Proof of Theorem 11.11 We will view each z € C? as a Z x N array of

zeros and ones. The columns are ...,z_s,2_1,x9,%1,T2,... where x; € C. If
o € (2™)", we view o as (0p,...,0n_1) Where each o; € 2". We say that o
occurs in x at k if 0; = xgq4|n for i =0,... n.

Fix o € (2")". Let Y be the set of all z € C% such that there is a largest k
such that o occurs in x at k. We will argue that Y is tame. Suppose x € X and
k is maximal such that o occurs in x at k. If n € Z, then (nx);(j) = xi—n(j).
Thus k —n is the largest ¢ such that ¢ occurs in nx at ¢. Thus Y is Z-invariant.
Let s : X — X be the function s(z) = kx where k is maximal such that o
occurs in x at k. Then s(x) is the unique element of [z] where 0 is the largest 4
such that o occurs at i. Thus s is E-invariant and Y is tame.

Similarly, the set of x such that there is a least k such that o occurs in x at
k is tame. By throwing out these tame Borel sets, we may restrict attention to
a Borel set X that for all ¢ and z € X, the set of k such that ¢ occurs in x at
k is unbounded in both directions.

If o € (2™)" and m < n we let olm = (og|m,...,om-1|m). Fix <, a linear
order of (2™)™ such that if o,7 € (2")" and o|m <,, T|m for some m < n, then
o<nT.

For x € X let fn(x) be the <,-least element of (2")" occuring in x. Our
assumptions on <,, insure that f,(z)|m = f(x) for m < n. Define f : X — CN
by

F(@) = (o1, )
where f,(z) = (yo|n,y1|n,...,yn—1|n) for all n. Note that each f,, and f are
FE-invariant.

We say that g € CY occurs in x at k if zp; = g(i) for all i € N. Let Y be

the set of x € X such that f(x) occurs in = and there is a least k such that
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f(z) occurs in x at k. Then Y is Borel, E-invariant and the function s(x) = kz
where k is least f(z) occurs at k is a Borel selector. Thus Y is tame. Let W be
the set of all x € X such that f(z) occurs in x at k for arbitrarily small k. If
x € W, then the action of Z on [z] is periodic. Thus [z] is finite and W is tame.
Throwing out Y and W we may assume that f(z) does not occur in z for all
zeX.

For x € X and n € N define

ki = 0
k3,1 = theleast k such that k > k3, and fon11(z) occurs in  at k.
k3,.o = the largest k such that k < k3, and fon42(x) occurs in x at k.
Then

Sk <KE<KE<KE<KE< ...

Since f(x) does not occur in z, k3, — oo and k3, ,, — —o0.
We make the usual identification between C and P(N) by identifying sets
with their characteristic functions. Under this identification

AEyB <& AAB is finite .

Fix a bijection
p:Nx (259)<¥ - N.

For x € X and n € N let
tn = lknyr —kp| +1

and let 72 € (2<¥)% be (0, ...,0 —1) where

0 = fmin{kg,kn+1}+1|n-

This looks more confusing then it is. Suppose n is even. Then k¥ < kF
and 77 is just the block of the matrix x where we look take rows 0,...,n —1
and columns kj; to k7, .

Let G(z) = {p(n,r:) :€ N}. From G(z), and knowing k& = 0, we can
reconstruct the sequence (k¥ : ¢ € N) and z. Thus G is one-to-one.

Suppose G(z)AG(y) is finite. Then there is an m such that % = r¥ for all
n > m. It follows that y is obtained by shifting z. Thus zFy.

Suppose xFEy. There is m € Z such that x,,,+; = y; for all i € N. Without
loss of generality assume m > 0. Let ng be least such that k3, ,; > m. Since
f(@) = f(y),

x _ Y
Kopot1 =m+ k3o q-

Thus k¥ = m + kY for all n > ng. It follows that G(x)AG(y) is finite.
Thus G reduces E to Ey.
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Growth Properties

Our next goal is to show that there are countable groups G # Z such that every
G-action is hyperfinite.

Definition 11.15 Suppose G is a finitely generated group. We say that G
has polynomial growth if there is a finite X C G closed under inverse such that
G = U X™ and there are C,d € Z such that

| X"| € O(n?)

for all n > 0.

For example Z? has polynomial growth. Suppose X = {0,+eq,...,+eq}

where e
ei(j)z{l 1fz:j.
0 otherwise.

Then (my,...,mq) € X™ if and only if 3 |m;| < n. Clearly, |X,| < (2n+1)¢ €
O(n?).

Since every finitely generated Abelian group is a quotient of Z? for some d,
every finitely generated Abelian group has polynomial growth.

The free group F> does not have polynomial growth. Let a,b generate Fh
and let X = {a,b,a"1,b71}. Then X" is the number of words of length at most
n and

n—1
X" = 43" =4(3" —1) € O(3").
i=0

Theorem 11.16 (Gromov) Suppose G is a finitely generated group. Then G
is of polynomial growth if and only if G is nilpotent-by-finite.

We will prove that all Borel actions of finitely generated groups of polynomial
growth induce hyperfinite orbit equivalence relations. In fact we will work in
a more general context which will also allow us to understand actions of some
nonfinitely generated groups like Q9.

Definition 11.17 Let G be a countable group. We say that G has the mild
growth property of order c, if there is a sequence of finite sets Ko C K1 C K>...
such that:

ii) 1 € Ko;

i) i; = K; ' for all 4;

iv) K? C K41 for all i

V) | Kit4| < c|K;| infinitely many .

Lemma 11.18 If G is a finitely generated group of polynomial growth O(n?),
then G has the mild growth property of order 16% + 1.
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Proof Let X be a set of generators closed under inverse such that | X"| < Cn?
for all n > 0. Let K, = X2". Clearly i)—iii) hold. Since X2" X2" = X2""" iv)
holds. We need only argue v). Suppose not. Then there is ng such that

|Kpyal > (167 +1)| Ky
for all n > ng. Then
| Koo | > (167 + 1)%| K, |
for all k. But

|K4k+n0| _ |X24k+n0| < 02n0d24kd _ 02nod(16d)k

and

(169 + 1)k|K,,, | < C2m0d(16)k
for all k. But this is clearly impossible.

Lemma 11.19 Suppose Gy C G1 C Go C ... are finitely generated groups with
the mild growth property of order c. Then |JG; has the mild growth property of
order c.

Proof Let K;o C K;1 C ... witness that G; has the mild growth property of
order c. Let 0 : N — N x N be a bijection such that if (i) = (4, k), then j <.
We will build Ko € K7 C ... C GG. For notational convenience let K_1 =
{1}.
Suppose we have K; C G; for i < 5k. We will show how to define Ky, for
1=0,...,4. Let
K = K23, UKy C Gy

We can find an n such that
K C Kspp and |Ksp pya| < ¢|Kspn|-
Let Kspyi = Ksgnyi for i =0,...,4. It is easy to see that i)-iv) hold and

|K5k| S C|K5k+4| for all k.

Since Q¢ = (i %Zd, Q4 has the mild growth property.
Theorem 11.20 (Jackson-Kechris-Louveau) Let G be a countable group
with the mild growth property. If E is the orbit equivalence relation for a Borel
action of G on a Borel space X, then E is hyperfinite.

In particular the orbit equivalence relation for any Borel action of a finitely
generated Abelian group is hyperfinite and the orbit equivalence relation for any
Borel action of Q7 is hyperfinite. It is still an open question if any action of a
countable Abelian group is hyperfinite.
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The theorem will follow from several lemmas.

Definition 11.21 Let F' be a symmetric, reflexive Borel binary relation on a
Borel space X. We say that F is locally finite if {y : yFz} is finite for all z. We
say that Y C X is F-discrete if ~(xFy) for all distinct z,y € Y and we say that
Y is mazximal F-discrete if it is discrete and for all x € X there is y € Y with
zFy.

Lemma 11.22 Let F be a locally finite, symmetric, reflexive Borel binary re-
lation on X . Then there is a mazimal F'-discrete Y C X.

Proof Let (X, : n € N) be a family of Borel subsets of X that separates points
and is closed under finite interesections. For x € X let ¢(x) be the least n such
that B, N{y: yFx} = {z}. For each n, ¢~1(n) is F-discrete. Let Y5 = ¢~1(0)
and
Yot :YnUgb*l(n—l—l)\Uj <n U {z:xFy}.
yEYn

Each Y; is Borel and |JY; is maximal F-discrete.

Definition 11.23 Let Fy C F} C F5 be a sequence of locally finite, symmet-
ric,reflexive Borel binary relations on X. We say that the sequences satisfies
the Weiss condition if F2 C F, .1 for all n and there is a integer ¢ such that for
all x € X there are infinitely many n such that any F),-discrete set contained
in {y : yF,122} has cardinality at most c.

Note that |J F; is an equivalence relation.

Lemma 11.24 If G is a group with the mild growth property and E is the
orbit equivalence relation for a Borel action of G, then there are locally finite,
symmetric, reflexive Borel binary relations Fy C Fy C ... satisfying the Weiss
condition such that E = |J F;.

Proof Let Ky C K; C ... witness that G has the mild growth property of
order c. Let xF,y if and only if there is g € K,, with gz = y. Since 1 € Ky and
g € K, if and only if g~! € K,,, F,, are locally finite, reflexive and symmetric.
Clearly |JF,, = E.

We need only show it satisfies the Wiess condition. Since K2 C K, 1,
F? C Fy1. Let 2 € X. Given m € N there is a n > m such that |K, 4| <
¢|K,|. Suppose z1,...,xxN is an Fj,;i-discrete set and x;F,132. There are
g1,y 9N € Ky such that g;x =o; fori=1,...  N.

Claim K,g,NK,g; =0 fori<j <N.

Suppose a,b € K,, and ag; = bg;. Then

gjgi_l =blac Knq1.

Thus
xm;l = gig;1 € Knt1

and z; F, 17, a contradiction.
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If h € K,,, then hg; € K;,44. Thus
N|Kn| < [Kna| < o/ Kn|

and N < c. Hence there are infinitely many n such that any Fj,i-discrete
subset of {y : yF,, 132} has cardinality at most ¢ and (F,, : n € N) has the Weiss
condition.

Lemma 11.25 Suppose E C E* are countable Borel equivalence relations. If
E is hyperfinite and every E*-class contains finitely many E-classes, then E*
1s hyperfinite.

Proof Since E* is the orbit equivlance relation for a Borel action of some
countable group G. Then |[z]g+/E| = k if and only if there are ¢1,...,g9xr € G
such that g;x Fg;x for ¢ # j and for all ¢ € G gzEg;x for some i = 1,... k.
Thus {z : |[z]g~/E| = k} is Borel and, without loss of generality we may assume
that there is a fixed k such that each E* class contains exactly k F-classes.
Let G = {go,91,-..}. We inductively define functions fi(x),..., fx(z) by
fi(z) = z. Let Nyy1(z) be the least n such that g,z £f;(z) for all j < i and

fit1(z) = gn,,, (). Then

(2] = U[fz‘(k)]E

Suppose E = |JFE, where Ey C E; C ... are finite Borel equivalence rela-
tions. Let xE}y if and only if there is o a permutaion on {1,...,k} such that
fi(x)En foei(y) for all 4.

Clearly E; is an equivalence relation and E; C E.,. If xE}y, then
xF, fi(y) for some i. Thus each E class is finite. If xE*y, then there is a
permutation o such that f;(x)Ef,) (y) for all i. There is an m such that
fi(x)En foeiy(y) for all i and all m > n. Thus E* = | E}; is hyperfinite.

Proof of Theorem 11.20 By Lemma 11.24 we can find Fy C F; C ... a
sequence of locally finite, symmetric, reflexive Borel binary relations with the
Weiss condition such that |JF, = E. Let Y;, be a Borel maximal F,-disjoint
set. Let s, : X — Y, be a Borel measurable function such that s, (z)F,z. Let
7n: X — X be s,08,-10...0580 and let E,y if and only if 7, (z) = 7, (y).

Clearly E,, is an equivalence relation and FE, C FE,;;. Since each s, is
finite-to-one, , is finite-to-one and F,, is a finite equivalence relation. An easy
induction shows that if zFE,y, then «Fy. Thus E* = |JE, is a hyperfinite
equivalence relation and £ C E*. By Lemma 11.25 it suffices to show that
every E-class contains at most finitely many FE*-classes.

Suppose (F,, : n € N) satisifies the Weiss condition with constant c¢. Sup-
pose x1,...,xN are E-equivalent but E*-inequivalent. We can find arbitrarily
large n such that x1,...,xyF,z1 and any F,-discrete subset of {y : yF, 021}
has cardinality at most ¢. Then m,(x1),...,m,(xy) are distinct elements of
Y,, and hence are F),-discrete. Since Ff C Fi+1, we see, by induction, that
T (x;)Fry1xi. Since x; Fna1, 7p(2;)Fhpox1. Thus N < ¢. Thus every E-class
contains at most ¢, E*-classes and E is hyperfinite.
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Ammenability

Throughout this section I' will be a countable group.

Theorem 11.26 Suppose I' acts freely on a standard Borel space X and p is
a I'-invariant probability measure on X. If the orbit equivalence relation E is
hyperfinite, then I' is ammenable.

The proof we give was pointed out to me by Greg Hjorth. It uses one of the
many useful characterizations of ammenability.

Suppose K is a compact metric space. Let P(K) be the space of all Borel
probability measures on K. We topologize P(K) with the weakest topology

such the maps
p— / fdu

are continuous for all bounded continuous f : K — R. The space P(K) is also
a compact metric space and if K is a Polish space so is P(K) (see [6] 17.E).
A continuous action of I on K induces an action of I on P(K) by

gi(A) = u(g™" A).
We say that p is I'-invariant if g = p for all g € T'.

Theorem 11.27 A countable group T' is ammenable if and only if for every
compact metric space K and every continuous action of I' on K, there is a
T-invariant measure in p(K).

Definition 11.28 Let G and H be countable groups acting on a standard Borel
space X. We say that a Borel measurable a : G x X — H is a Borel cocycle if

a(gh, x) = a(g, hx)a(h, x)

for all g,h € G and z € X.
If a: Gx H— X is a Borel cocyle and H acts on Y, we say that f : X — Y
is a-invariant if and only if

a(g,z)f(x) = f(gz)
forall g e G, z € X.

Proof of Theorem 11.26

Suppose I' acts freely on X, u is a ['-invariant probability measure and the
orbit equivalence relation F is hyperfinite. Since FE is hyperfinite and every class
is infinite it is also the orbit equivalence relation for a Borel action of Z on X.

We define a Borel cocyle o : Z x X — T such that a(n,z) = g if and only if
nz = gx. Since the action of I' is free this is a well-defined cocycle. Note that
there is also a Borel cocycle 8 : I' x X — Z such that a(n,z) = g if and only if
B(g,z) =n.

Suppose I' acts continuously on a compact metric space K. We need the
following theorem of Zimmer. This is a special case of Theorem B3.1 of [5].

103



Theorem 11.29 (Zimmer) There is an a-invariant, p-measurable T +— vy
from X to P(K).

Assuming Zimmer’s result we will complete the proof. We claim that there

is a I'-invariant Borel probability measure on K.
For A C K Borel let

v(A) = /Xl/m(A) dp.

Since p and each v, are probability measures, v is a probability measure, we
need only show that it is [-invariant.

v(gA) = /X v, (gA) dy
/ 9~ e (A) dp
X

= / Vﬁ(gfl,z)z(A) d:u’
X

- /X Vy-1o(A) dp.

| F@ = [ oP@) du= [ P dn

for any p-measurable F': X — R and g € I". Thus

/va(gA) du=/xvg—lm(z4) du=/XVm(A) dp

and v(gA) = v(A).
Thus v is a I'-invariant Borel probability measure on K. It follows that I' is
ammenable.

We sketch the proof of Zimmer’s result. Let I$°(X, P(K)).
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