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Chapter A

Topological spaces

A1 Review of metric spaces

For the lecture of Thursday, 18 September 2014

Almost everything in this section should have been covered in Honours Analysis,
with the possible exception of some of the examples. For that reason, this lecture
is longer than usual.

Definition A1.1 Let X be a set. A metric on X is a function d : X ×X →
[0,∞) with the following three properties:

• d(x, y) = 0 ⇐⇒ x = y, for x, y ∈ X;

• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X (triangle inequality);

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

A metric space is a set together with a metric on it, or more formally, a pair
(X, d) where X is a set and d is a metric on X.

Examples A1.2 i. The Euclidean metric d2 on Rn is given by

d2(x, y) =

( n∑
i=1

(xi − yi)2

)1/2

for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn. So (Rn, d2) is a metric
space. The same formula defines a metric d2 on X for any X ⊆ Rn.

ii. This is not the only metric on Rn. For example, there is a metric d1 on
Rn given by

d1(x, y) =

n∑
i=1

|xi − yi|

and another, d∞, given by

d∞(x, y) = max
1≤i≤n

|xi − yi|.
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(In fact, there is a metric dp on Rn for each p ≥ 1; perhaps you can guess
what it is from the definitions of d1 and d2. The limit of dp(x, y) as p→∞
is d∞(x, y), hence the name.)

iii. Let a, b ∈ R with a ≤ b, and let C[a, b] denote the set of continuous
functions [a, b]→ R. There are at least three interesting metrics on C[a, b],
which again are denoted by d1, d2 and d∞. They are defined by

d1(f, g) =

∫ b

a

|f(t)− g(t)| dt,

d2(f, g) =

(∫ b

a

(f(t)− g(t))2 dt

)1/2

,

d∞(f, g) = sup
a≤t≤b

|f(t)− g(t)|.

If you do the Linear Analysis or Fourier Analysis course, you’ll get very
used to the idea of spaces whose elements are functions.

iv. Let A be any set, which you might think of as an alphabet. Let n ∈ N.
The Hamming metric d on An is given by

d(x, y) =
∣∣{i ∈ {1, . . . , n} : xi 6= yi

}∣∣
for x = (x1, . . . , xn) and y = (y1, . . . , yn) in An. In other words, the Ham-
ming distance between two strings or ‘words’ (x1, . . . , xn) and (y1, . . . , yn)
is the number of coordinates in which they differ.

The Hamming metric is often used in the theory of information and com-
munication. For instance, if I write the word ‘needle’ on the blackboard
and you mistakenly copy it down as ‘noodle’, the Hamming distance be-
tween the words is 2, which is the number of errors of communication.

v. An informal example: consider any region of space X, such as the area
within the King’s Buildings accessible by foot. (This excludes the space
occupied by trees, walls, etc.) We can certainly use the Euclidean metric
on X, which is the distance as the crow flies. But in practical terms, we
are often more interested in the ‘shortest path metric’, that is, the distance
by foot. This is indeed a metric; you should be able to persuade yourself
that the three axioms hold.

This example is made precise on problem sheet 1.

Strictly speaking, we should write metric spaces as pairs (X, d), where X is
a set and d is a metric on X. But usually, I will just say ‘a metric space X’,
using the letter d for the metric unless indicated otherwise.

Definition A1.3 Let X be a metric space, let x ∈ X, and let ε > 0. The open
ball around x of radius ε, or more briefly the open ε-ball around x, is the
subset

B(x, ε) = {y ∈ X : d(x, y) < ε}

of X. Similarly, the closed ε-ball around x is

B̄(x, ε) = {y ∈ X : d(x, y) ≤ ε}.
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A good exercise is to go through Examples A1.2 and work out what the open
and closed balls are in each of the examples given.

Now comes an extremely important definition.

Definition A1.4 Let X be a metric space.

i. A subset U of X is open in X (or an open subset of X) if for all u ∈ U ,
there exists ε > 0 such that B(u, ε) ⊆ U .

ii. A subset V of X is closed in X if X \ V is open in X.

Thus, U is open if every point of U has some elbow room—it can move a
little bit in each direction without leaving U .

Warning A1.5 Closed does not mean ‘not open’ ! Subsets are not like doors.
A subset of a metric space can be:

• neither open nor closed, such as [0, 1) in R

• both open and closed, such as R in R

• open but not closed, such as (0, 1) in R

• closed but not open, such as [0, 1] in R.

Warning A1.6 Another warning: properly, there’s no such thing as an ‘open
set’, only an open subset. In other words, we should never say ‘U is open’; we
should always say ‘U is open in X’. This can matter. For instance, [0, 1) is not
open in R, but it is open in [0, 2]. (Why?)

In practice, it’s often clear which space X we’re operating inside, and then
it’s generally safe to speak of sets simply being ‘open’ without mentioning which
space they’re open in. (Wade’s book is often casual in this way.) Nevertheless,
it’s important to realize that this is a casual use of language, and can lead to
errors if you’re not careful.
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Remark A1.7 Open balls are open and closed balls are closed. For a proof,
see Remark 10.9 of Wade’s book, or try it as an exercise.

Closed subsets of a metric space can be characterized in terms of convergent
sequences, as follows.

Definition A1.8 Let X be a metric space, let (xn)∞n=1 be a sequence in X,
and let x ∈ X. Then (xn) converges to x if

d(xn, x)→ 0 as n→∞.

Explicitly, then, (xn) converges to x if and only if: for all ε > 0, there exists
N ≥ 1 such that for all n ≥ N , d(xn, x) < ε. This generalizes the definition
you’re familiar with for R.

Lemma A1.9 Let X be a metric space and V ⊆ X. Then V is closed in X if
and only if:

for all sequences (xn) in V and all x in X, if (xn) converges to x
then x ∈ V .

A proof very similar to the following can also be found in Wade (Theo-
rem 10.16).

Proof Suppose that V is closed, and let (xn) be a sequence in V converging to
some point x ∈ X. We must show that x ∈ V . Suppose for a contradiction that
x ∈ X \ V . Since X \ V is open in X, there is some ε > 0 such that B(x, ε) ⊆
X \V . Now (xn) converges to x, so there exists N such that d(xn, x) < ε for all
n ≥ N . In particular, d(xN , x) < ε, that is, xN ∈ B(x, ε); hence xN ∈ X \ V .
This contradicts the hypothesis that (xn) is a sequence in V .

Now suppose that V is not closed. We must show that the given condition
does not hold, in other words, that there exists a sequence (xn) in V converging
to a point of X not in V . Since V is not closed, X \ V is not open. Hence
there is some point x ∈ X \ V with the property that for all ε > 0, the ball
B(x, ε) has nonempty intersection with V . For each n ≥ 1, choose an element
xn ∈ B(x, 1/n) ∩ V . Then (xn) is a sequence in V converging to x ∈ X \ V , as
required. �

Next we state some fundamental properties of open and closed subsets. In
order to do this, we’ll need to recall some basic set theory.

Remark A1.10 Let X be a set. A family (Ai)i∈I of subsets of X is a set I
together with a subset Ai ⊆ X for each i ∈ I. De Morgan’s laws state that

X \
⋃
i∈I

Ai =
⋂
i∈I

(X \Ai), X \
⋂
i∈I

Ai =
⋃
i∈I

(X \Ai).

The family (Ai)i∈I is said to be finite if I is finite. (It has nothing to do with
whether the subsets Ai are finite.)

Lemma A1.11 Let X be a metric space.

i. Let (Ui)i∈I be any family (finite or not) of open subsets of X. Then⋃
i∈I Ui is also open in X.
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ii. Let U1 and U2 be open subsets of X. Then U1 ∩ U2 is also open in X.

iii. ∅ and X are open in X.

Part (i) can be phrased less formally as ‘a union of open sets is open’. Simi-
larly, part (ii) (plus an easy induction) says ‘a finite intersection of open sets is
open’.

Proof For (i), let x ∈
⋃
i∈I Ui. Choose j ∈ I such that x ∈ Uj . Since Uj is

open in X, we can then choose ε > 0 such that B(x, ε) ⊆ Uj . It follows that
B(x, ε) ⊆

⋃
i∈I Ui.

For (ii), let x ∈ U1 ∩ U2. For i = 1, 2, we can choose εi > 0 such that
B(x, εi) ⊆ Ui. Put ε = min{ε1, ε2} > 0. Then B(x, ε) ⊆ U1 ∩ U2.

For (iii): any statement beginning ‘for all x ∈ ∅ . . . ’ is trivially true, so ∅
is open. To see that X is open in X, let x ∈ X. Then B(x, 1) ⊆ X, simply
because all balls in X are by definition subsets of X. �

It is not true that an arbitrary intersection of open subsets is open. For ex-
ample, (−∞, 1/n) is an open subset of R for each n ≥ 1, but

⋂
n≥1(−∞, 1/n) =

(−∞, 0] is not open in R.

Lemma A1.12 Let X be a metric space.

i. Let (Vi)i∈I be any family (finite or not) of closed subsets of X. Then⋂
i∈I Vi is also closed in X.

ii. Let V1 and V2 be closed subsets of X. Then V1 ∪ V2 is also closed in X.

iii. ∅ and X are closed in X.

Proof This follows from Lemma A1.11 by de Morgan’s laws. �

Again, an arbitrary union of closed sets need not be closed. For example,
[1/n,∞) is closed in R for each n ≥ 1, but

⋃
n≥1[1/n,∞) = (0,∞) is not closed

in R.
Lemma A1.11 will be the key to making the leap from metric to topological

spaces. We will see this in the next lecture.
Metric spaces do not live in isolation. We can also talk about functions (also

called maps or mappings) between them. Typically, we are only interested in
the continuous functions.

Definition A1.13 Let X and Y be metric spaces. A function f : X → Y is
continuous if for all x ∈ X, for all ε > 0, there exists δ > 0 such that

x′ ∈ B(x, δ) =⇒ f(x′) ∈ B(f(x), ε).

This generalizes the familiar definition for X = Y = R.
The definition of continuity appears to make essential use of the metrics on

X and Y . However, the following lemma reveals that this is not really so. In
order to decide which functions are continuous, all we actually need is knowledge
of the open (or closed) subsets.

Lemma A1.14 Let X and Y be metric spaces and let f : X → Y be a function.
The following are equivalent:
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i. f is continuous;

ii. for all open U ⊆ Y , the preimage f−1U ⊆ X is open;

iii. for all closed V ⊆ Y , the preimage f−1V ⊆ X is closed.

Recall that the preimage or inverse image f−1U is the subset {x ∈ X :
f(x) ∈ U} of X. It is defined whether or not f is invertible. Part (ii) says,
informally: ‘the preimage of an open set is open’.

Proof For (i)=⇒(ii), suppose that f is continuous and let U be an open subset
of Y . We must show that f−1U is an open subset of X. Let x ∈ f−1U . Then
f(x) ∈ U , so we can choose ε > 0 such that B(f(x), ε) ⊆ U . By continuity, we
can then choose δ > 0 such that

x′ ∈ B(x, δ) =⇒ f(x′) ∈ B(f(x), ε).

But then
x′ ∈ B(x, δ) =⇒ f(x′) ∈ U ⇐⇒ x′ ∈ f−1U,

so B(x, δ) ⊆ f−1U , as required.
For (ii)=⇒(i), suppose that the preimage of every open set is open. We must

prove that f is continuous. Let x ∈ X and ε > 0. By Remark A1.7, the open
ball B(f(x), ε) is open, so f−1B(f(x), ε) is also open. Evidently it contains the
point x, so there is some δ > 0 such that

B(x, δ) ⊆ f−1B(f(x), ε).

But this says exactly that

x′ ∈ B(x, δ) =⇒ f(x′) ∈ B(f(x), ε),

as required.
Finally, (ii)⇐⇒ (iii) follows from the fact that

f−1(Y \W ) = X \ f−1W

for any W ⊆ Y . For instance, if (ii) holds then for any closed V in Y , the set
Y \ V is open in Y , so f−1(Y \ V ) is open in X. But f−1(Y \ V ) = X \ f−1V ,
so f−1V is closed in X, proving (iii). �

What next? We’ve just seen that continuity can be phrased in terms of
open sets alone. We’ve also seen what properties the open sets in a metric
space always have (Lemma A1.11).

Abstracting, we’ll define a topological space to be a set X equipped
with a collection of subsets (called ‘open’) satisfying the three properties in
Lemma A1.11. We’ll define a function between topological spaces to be contin-
uous if the preimage of an open set is open. In that way, we’ll have succeeded
in generalizing the notion of continuity to a context where distance isn’t even
mentioned.

(We could equally well do this with closed sets instead of open sets. But it’s
usually the open sets that are given the upper hand.)

7



A2 The definition of topological space

For the lecture of Monday, 22 September 2014

We saw in Lemma A1.11 that the collection T of open subsets of a metric space
has certain properties. Following the strategy laid out at the end of the last
section, we now turn those properties into a definition.

Definition A2.1 Let X be a set. A topology on X is a collection T of subsets
of X with the following properties.

T1 Whenever (Ui)i∈I is a family (finite or not) of subsets of X such that Ui ∈ T
for all i ∈ I, then

⋃
i∈I Ui ∈ T .

T2 Whenever U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

T3 ∅ ∈ T and X ∈ T .

A topological space (X, T ) is a set X together with a topology T on X.

Remarks A2.2 i. ‘Topology’ is both the name of the subject and the word
for one of the central definitions of the subject! (If you do lots of algebra,
you’ll eventually learn that there is such a thing as ‘an algebra’ too.)

ii. We often write (X, T ) as just X, in situations where there is no ambiguity
about which topology T we could mean. A single set X can carry many
different topologies (as we shall see), but often the context will make clear
which one is intended.

iii. We call the members of T the open subsets of X. Thus, ‘U ∈ T ’ and ‘U
is open in X’ mean the same thing. Again, this is safe terminology when
it is clear from the context which topology on X we are talking about.

iv. Axiom T1 says that an arbitrary union of open subsets is open. Axiom
T2 implies that any finite intersection of open subsets is open (by an easy
induction).

v. Strictly speaking, it is unnecessary to add the condition ‘∅ ∈ T ’ (in T3).
Axiom T1 already implies it. To see this, take (Ui)i∈I to be the empty
family of subsets of X, that is, the unique family with I = ∅. Then

⋃
i∈∅ Ui

is the set of all points x such that x ∈ Ui for some i ∈ ∅; but there are no
such points x, so

⋃
i∈∅ Ui = ∅.

Similarly, the intersection of the empty family of subsets of X is the set
of all x ∈ X such that x ∈ Ui for all i ∈ ∅; but every x has this property,
so
⋂
i∈∅ Ui = X. The definition of topology would therefore be unaffected

if we changed T2 to ‘whenever (Ui)i∈I is a finite family of subsets of X
such that Ui ∈ T for all i ∈ I, then

⋂
i∈I Ui ∈ T ’ and dropped axiom T3.

In summary: as long as you treat trivial cases with care, a topology on X
can be defined as a collection of subsets of X that is closed under arbitrary
unions and finite intersections.
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(X, Td)

Figure A.1: From metric to topological spaces.

Examples A2.3 i. Let (X, d) be a metric space. Put

Td = {open subsets of (X, d)}.

Lemma A1.11 says exactly that Td is a topology on X. Thus, (X, Td) is a
topological space. We call Td the topology induced by the metric d. We
also call (X, Td) the underlying topological space of the metric space
(X, d). See Figure A.1.

It’s worth taking a moment to think about the usage of the word ‘open’.
If (X, d) is a metric space, to say that U ⊆ X is open means that for all
x ∈ U , there exists ε > 0 such that B(x, ε) ⊆ U . If (X, T ) is a topological
space, to say that U ⊆ X is open means simply that U ∈ T . These two
usages are compatible, in the sense that U is open in the metric space
(X, d) if and only if U is open in the topological space (X, Td).

ii. The standard topology on Rn is the topology induced by the Euclidean
metric d2. We will see that this is the same as the topology induced by
the metric d1, and the same as the topology induced by the metric d∞.
(In fact, the metrics dp mentioned in Example A1.2(ii) all induce the same
topology, for 1 ≤ p ≤ ∞.)

iii. Let X be any set. The discrete topology on X is the collection of all
subsets of X. It is induced by a metric, the so-called discrete metric d
on X, which is defined by

d(x, y) =

{
0 if x = y,

1 otherwise.

(Exercise: check this is true!) It is the largest possible topology on X.

iv. Let X be any set. The indiscrete topology on X is the topology {∅, X};
that is, it’s the topology in which only ∅ and X are open. It is the smallest
possible topology on X.

(Note: discreet means able to keep a secret, and indiscreet means gossipy.
The topologies are discrete and indiscrete—there is no gossipy topology.)
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(Z, d)

(Z, ddisc)

({1, 2}, Tindisc)

Figure A.2: The passage from metric to topological spaces is neither injective
nor surjective.

When one topology T on a set X contains another topology T ′ on X (that
is, every member of T ′ is a member of T ), we could say that T is ‘larger’ than
T ′, as we just did. But in fact, it’s more common to say that T is a stronger
or finer topology than T ′, or that T ′ is a weaker or coarser topology than
T . So, the discrete topology is the strongest or finest topology on X, and the
indiscrete topology is the weakest or coarsest.

Examples A2.3(iii) and (iv) show that the same set can have different topolo-
gies on it.

Is the process illustrated in Figure A.1 injective? In other words, if you
have two different metrics on the same set, do they always give rise to different
topologies?

Is the process illustrated in Figure A.1 surjective? In other words, is every
topology on a set induced by some metric?

The following examples (Figure A.2) show that the answer to both questions
is no.

Examples A2.4 i. Consider Z with its usual metric, d(m,n) = |m − n|.
In this metric, every subset is open. (Proof: consider balls of radius 1/2,
say.) So the topology on Z induced by d is the discrete topology. But this
is also the topology induced by the discrete metric ddisc on Z. So (Z, d)
and (Z, ddisc) induce the same topology on Z.

ii. Let X = {1, 2} and let T be the indiscrete topology on X. We will show
that T is not induced by any metric on X. (The same is true for an
arbitrary set X with two or more elements.) Indeed, let d be a metric on
X. Put r = d(1, 2) > 0. Then B(1, r) = {1}, so in the topology induced
by d, the set {1} is open in X. But {1} is not open in the indiscrete
topology.

Definition A2.5 Let X = (X, T ) be a topological space. A subset V ⊆ X is
closed (for T ) if X \ V ∈ T .

10



Examples A2.6 i. Let (X, d) be a metric space. Let V ⊆ X. Then

V is closed for Td
⇐⇒ X \ V is open for Td
⇐⇒ X \ V is open in the metric space (X, d)

⇐⇒ V is closed in the metric space (X, d).

Conclusion: in the underlying topological space of a metric space, ‘open’
and ‘closed’ mean exactly the same as in the metric space itself.

ii. In particular, this applies to Rn. So in the standard topology on Rn,
closed has its usual meaning.

iii. In the discrete topology, all subsets are closed (as well as open).

iv. In the indiscrete topology on a set X, only ∅ and X are closed.

Here are some basic facts about closed subsets of a topological space, gen-
eralizing Lemma A1.12 for metric spaces.

Lemma A2.7 Let X = (X, T ) be a topological space.

i. Whenever (Vi)i∈I is a family (finite or not) of closed subsets of X, then⋂
i∈I Vi is closed in X.

ii. Whenever V1 and V2 are closed subsets of X, then V1 ∪ V2 is also closed
in X.

iii. ∅ and X are closed subsets of X.

Proof This follows from the definition of topological space by de Morgan’s laws
(Remark A1.10). �

In a general topological space, we cannot speak of balls around a point,
because there is no notion of distance. However, we might still want to speak
of ‘small’ regions around a point. The following terminology helps us do that.

Definition A2.8 Let X be a topological space and x ∈ X. An open neigh-
bourhood of x is an open subset of X containing x. A neighbourhood of x
is a subset of X containing an open neighbourhood of x.

For example, the subsets [−ε, ε], [−ε, ε), and (−ε, ε) of R are all neighbour-
hoods of 0 (for any ε > 0), but only the last is an open neighbourhood of
0.

You should satisfy yourself that a subset of X is an open neighbourhood of
x if and only if it is open (in X) and a neighbourhood of x. (In other words,
check that the expression ‘open neighbourhood’ is unambiguous.)

The following lemma can be useful when you’re trying to show that a subset
is open.

Lemma A2.9 Let X be a topological space and U ⊆ X. Then U is open in X
if and only if for all x ∈ U , there is a neighbourhood of x contained in U .
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The same is true if ‘topological’ is replaced by ‘metric’ and ‘neighbourhood
of x’ by ‘open ball around x’. That’s just the definition of open subset of a
metric space.

Proof If U is open in X then for all x ∈ U , the set U itself is a neighbourhood
of x contained in U .

Conversely, suppose that for each x ∈ U , there is a neighbourhood Nx of x
contained in U . Then for each x, there is an open neighbourhood Ux ⊆ Nx of
x. Since x ∈ Ux ⊆ U for each x ∈ U , we have

⋃
x∈U Ux = U . But the union of

open subsets of X is open, so U is open. �
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A3 Metrics versus topologies

For the lecture of Thursday, 25 September 2014

We saw in Section A2 that the passage from metrics to topologies is neither
injective nor surjective. That is, (i) different metrics on a set can induce the
same topology, and (ii) some topologies are not induced by any metric at all.
In this section, we take a closer look at these two phenomena.

In the first part of this section, we consider the fact that different metrics
can induce the same topology. Some terminology is useful.

Definition A3.1 Let X be a set, and let d and d′ be metrics on X. We say
that d and d′ are topologically equivalent if they induce the same topology
on X.

It is immediate that topological equivalence is an equivalence relation (as
the name suggests!) on the set of all metrics on X.

Example A2.4(i) describes two different but topologically equivalent metrics
on Z.

What tools do we have for showing that two metrics are topologically equiv-
alent? We could use the definition directly (as in the example just mentioned),
or we could try to verify the following useful condition.

Definition A3.2 Let X be a set, and let d and d′ be metrics on X. We say
that d and d′ are Lipschitz equivalent if there exist real numbers c, C > 0
such that for all x, y ∈ X,

cd(x, y) ≤ d′(x, y) ≤ Cd(x, y).

Again, Lipschitz equivalence is an equivalence relation on the set of all met-
rics on X. (Check!)

Lemma A3.3 Lipschitz equivalent metrics are topologically equivalent.

Proof Let d and d′ be Lipschitz equivalent metrics on a set X, and choose
constants c, C as in Definition A3.2. Write Bd and Bd′ for balls with respect to
d and d′, respectively.

First note that for all a ∈ X and r > 0,

Bd(a, r) ⊇ Bd′(a, cr),

since if x ∈ Bd′(a, cr) then

d(a, x) ≤ 1

c
· d′(a, x) <

1

c
· cr = r.

Now let U be a subset of X that is open with respect to d. Let a ∈ U . We
may choose r > 0 such that Bd(a, r) ⊆ U . But Bd′(a, cr) ⊆ Bd(a, r), so
Bd′(a, cr) ⊆ U , with cr > 0. Hence U is open with respect to d′.

We have now shown that any subset of X open with respect to d is open
with respect to d′, using the inequality cd ≤ d′. The converse is proved similarly,
using the inequality 1

C d
′ ≤ d. �
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Examples A3.4 i. Let (X, d) be a metric space and t > 0. Then there is
a metric td on X defined by (td)(x, y) = t · d(x, y), for x, y ∈ X. This is
Lipschitz equivalent to d, and therefore topologically equivalent too.

ii. The metrics d1, d2 and d∞ on Rn are all Lipschitz equivalent, since for all
x, y ∈ Rn,

d∞(x, y) ≤ d1(x, y) ≤ nd∞(x, y), d∞(x, y) ≤ d2(x, y) ≤
√
nd∞(x, y)

(as you are asked to show in Sheet 1).

iii. On the other hand, the metrics d1, d2 and d∞ on C[0, 1] are all topologi-
cally inequivalent. We prove that d1 is not topologically equivalent to d∞
later in this section, and the other cases can be proved by similar means.

iv. The standard metric d on Z is topologically equivalent to the discrete
metric ddisc (Example A2.4(i)). However, it is not Lipschitz equivalent,
since for distinct m,n ∈ Z, the ratio d(m,n)/ddisc(m,n) can be arbitrarily
large. So the converse of Lemma A3.3 is false: Lipschitz equivalence is
strictly stronger than topological equivalence.

In the second (and longer) part of this section, we consider the fact that not
every topology is induced by a metric. Again, some terminology is useful.

Definition A3.5 A topological space (X, T ) is metrizable if T is induced by
some metric on X.

So, for instance, the two-point indiscrete topological space is not metrizable
(Example A2.4(ii)).

Here are some special properties of metrizable spaces.

Definition A3.6 i. A topological space X is said to be T1 if every one-
element subset of X is closed.

ii. A topological space X is Hausdorff (or T2) if for every x, y ∈ X with
x 6= y, there exist disjoint open subsets U,W of X such that x ∈ U and
y ∈W .

As the odd names ‘T1’ and ‘T2’ hint, these definitions are members of a whole
sequence of so-called ‘separation conditions’.

The Hausdorff condition is illustrated in Figure A.3. Recall that for U and
W to be disjoint means that U ∩W = ∅.

Lemma A3.7 i. Every metrizable space is Hausdorff.

ii. Every Hausdorff topological space is T1.

Proof For (i), let (X, d) be a metric space and let x, y be distinct points of X.
Put r = d(x, y)/2 > 0. Then B(x, r) is an open subset of X containing x, and
similarly B(y, r) is an open subset of X containing y, so it suffices to show that
B(x, r) and B(y, r) are disjoint. This follows from the triangle inequality, as if
there exists a point z ∈ B(x, r) ∩B(y, r) then

d(x, y) ≤ d(x, z) + d(z, y) < r + r = d(x, y),

14
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Figure A.3: The Hausdorff condition.

a contradiction.
For (ii), let X be a Hausdorff topological space and let x ∈ X. For each

y ∈ X with y 6= x, we can choose disjoint open neighbourhoods Uy of x and
Wy of y. In particular, every point of X \ {x} has a neighbourhood contained
in X \ {x}. So by Lemma A2.9, X \ {x} is open in X, or equivalently, {x} is
closed. �

The Hausdorff condition is so useful that is was often included in early
formulations of the definition of topological space (around 1910–20). Many ge-
ometrically interesting spaces, not only metrizable ones, are Hausdorff. Indeed,
many modern mathematicians assume silently that ‘space’ means ‘Hausdorff
space’, regarding non-Hausdorff spaces as somehow unhealthy.

However, there are useful and important non-Hausdorff spaces, usually of
the hard-to-visualize type. (Certainly they are not metrizable.) The Zariski
topology (Sheet 1) is an example, central to algebraic geometry. More trivially,
an indiscrete topological space with two or more points is also non-Hausdorff.

Here is one indication of what makes the Hausdorff assumption useful.

Definition A3.8 Let X be a topological space, let (xn)∞n=1 be a sequence in
X, and let x ∈ X. Then (xn) converges to x if for all open sets U containing
x, there exists N such that for all n ≥ N , xn ∈ U .

Example A3.9 i. For metric spaces, this has the usual meaning. (Check!)
So, convergence in a metric space can be expressed in terms of the induced
topology alone.

ii. When X has the discrete topology, a sequence (xn) converges to x if and
only if it is of the form

x1, . . . , xN−1, x, x, x, . . .

(in other words, there exists N such that xn = x for all n ≥ N). To see
this, use the fact that {x} is an open set containing x.

iii. When X has the indiscrete topology, every sequence in X converges to
every point in X. So, a sequence can converge to multiple points simulta-
neously.

The possibility of a sequence having multiple limits is avoided by assuming
that our space is Hausdorff:
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Lemma A3.10 Let X be a Hausdorff topological space. Then each sequence in
X converges to at most one point.

Proof Let (xn) be a sequence in X, and suppose that (xn) converges to both x
and y, with x 6= y. Since X is Hausdorff, we can choose disjoint open neighbour-
hoods U of x and W of y. Since (xn) converges to x, we can choose N such that
xn ∈ U for all n ≥ N . Since (xn) converges to y, we can choose M such that
xn ∈W for all n ≥M . But then xmax{N,M} ∈ U ∩W = ∅, a contradiction. �

The notion of convergence of a sequence in a topological space can also be
used to prove that two metrics are not topologically equivalent:

Example A3.11 The metrics d1 and d∞ on C[0, 1] are not topologically equiv-
alent (and in particular, not Lipschitz equivalent). Define fn ∈ C[0, 1] by
fn(x) = xn (n ≥ 1, x ∈ [0, 1]). Let g ∈ C[0, 1] be the constant function 0.
Then (fn) converges to g with respect to d1, since

d1(fn, g) =

∫ 1

0

|xn| dx = 1/(n+ 1)→ 0

as n→∞. However, (fn) does not converge to g with respect to d∞, since

d∞(fn, g) = sup
x∈[0,1]

|xn| = 1

for all n. Since convergence in a metric space can be expressed in terms of
the induced topology alone, the topologies induced by these two metrics are
different.

For the record, here are two more ‘separation conditions’ on topological
spaces.

Definition A3.12 i. A topological space X is regular if for all closed sets
V ⊆ X and x ∈ X with x 6∈ V , there exist disjoint open sets U,W ⊆ X
such that V ⊆ U and x ∈W .

ii. A topological space X is normal if for all disjoint closed sets V,Z ⊆ X,
there exist disjoint open sets U,W ⊆ X such that V ⊆ U and Z ⊆W .

A normal T1 space is regular (immediately from the definitions). Every
metric space is normal (a not-so-easy exercise: Sheet 1). There are lots of com-
plicated questions that can be asked about T1, Hausdorff, regular and normal
spaces, but we will mostly avoid them.
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A4 Continuous maps

For the lecture of Monday, 29 September 2014

So far, we’ve been considering individual metric and topological spaces. But
if we wish to be able to talk about deforming one space into another (such as
a coffee cup into a doughnut), we need to start considering the relationships
between spaces.

We will do this using the notion of continuous map. We already know what
a continuous map between metric spaces is. To generalize the definition to
topological spaces, we use the plan described at the end of Section A1.

Definition A4.1 Let X and Y be topological spaces. A function f : X → Y is
continuous if for every open subset U of Y , the preimage f−1U is open in X.

Thus, continuity means that the preimage of an open set is open.

Remarks A4.2 i. The words ‘function’, ‘map’ and ‘mapping’ usually all
mean the same thing, but in practice, people tend to talk about ‘continu-
ous maps’ between topological spaces, rather than ‘continuous functions’.
We are seldom interested in non-continuous maps between topological
spaces, so in these notes, the word map can usually be taken to mean
‘continuous map’. I will reserve the word ‘function’ for not-necessarily-
continuous maps.

ii. The definition involves preimages (inverse images), not images. There
is no obvious way to rephrase the definition in terms of images. For
instance, continuity is not equivalent to the condition that if U ⊆ X is
open then so is fU ⊆ Y . (Such functions f are called open; this condition
is occasionally useful, but far less important than continuity.) Nor is it
equivalent to the condition that for U ⊆ X, if fU ⊆ Y is open then so is
U .

Examples A4.3 i. Let (X, d) and (Y, d′) be metric spaces. By
Lemma A1.14, a function f : X → Y is continuous with respect to the
metrics d and d′ if and only if it is continuous with respect to the induced
topologies Td and Td′ . In other words, Definition A4.1 for topological
spaces is compatible with the familiar definition of continuity for metric
spaces.

ii. Let X and Y be topological spaces. If X has the discrete topology then
every function X → Y is continuous. Similarly, if Y has the indiscrete
topology then every function X → Y is continuous.

iii. Let T and T ′ be two different topologies on the same set X. The ‘identity’
map i : (X, T ) → (X, T ′) (defined by i(x) = x) is continuous if and only
if every member of T ′ is also a member of T , in other words, if T is finer
than T ′. For example, the identity map

(R,discrete topology)→ (R, standard topology)

is continuous.
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Lemma A4.4 Let X and Y be topological spaces. A function f : X → Y is
continuous if and only if for every closed subset V of Y , the preimage f−1V is
closed in X.

Proof This is the same as the proof of (ii)⇐⇒ (iii) in Lemma A1.14. �

Some topologies are most naturally defined by specifying the closed sets,
then declaring the open sets to be their complements. This is the case for the
cofinite topology and the Zariski topology (Sheet 1, questions 5 and 6). In
such cases, Lemma A4.4 provides a useful way of showing that a function is
continuous.

Example A4.5 Let k be a field and n ≥ 0. Let f ∈ k[X1, . . . , Xn] be a
polynomial in n variables. Then f defines a function kn → k, which I claim is
continuous with respect to the Zariski topologies on kn and k.

By Lemma A4.4, it suffices to show that the preimage under f of any closed
set is closed. Let V be a Zariski closed subset of k. By definition (Sheet 1,
question 6), there is some S ⊆ k[X] such that V = V (S); that is,

V = {x ∈ k : p(x) = 0 for all p ∈ S}.

Hence

f−1V = {(x1, . . . , xn) ∈ k : p(f(x1, . . . , xn)) = 0 for all p ∈ S}.

Put
R = {p(f(X1, . . . , Xn)) : p ∈ S} ⊆ k[X1, . . . , Xn].

Then f−1V = V (R), which is a closed subset of kn, as required.

Here are some basic properties of continuous maps.

Lemma A4.6 Continuous maps preserve convergence of sequences. That is,
let f : X → Y be a continuous map, and let (xn) be a sequence in X converging
to x ∈ X; then the sequence (f(xn)) in Y converges to f(x) ∈ Y .

Proof Let U be an open subset of Y containing f(x). Then f−1U is an open
subset of X containing x, so there exists N such that xn ∈ f−1U for all n ≥ N .
But then f(xn) ∈ U for all n ≥ N , as required. �

Warning A4.7 You may have encountered the fact that for metric spaces, a
map is continuous if and only if it preserves convergence of sequences. For
topological spaces, ‘only if’ is still true, as we have just proved. But ‘if’ is false:
it is possible to construct examples of discontinuous maps of topological spaces
that, nevertheless, preserve convergence of sequences.

Lemma A4.8 i. The identity map on any topological space is continuous.

ii. The composite of continuous maps is continuous.

Proof For (i), let X be a topological space, and write idX : X → X for the
identity map on X. For any open U ⊆ X, the preimage id−1

X U is just U , and is
therefore also open in X.
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Figure A.4: A continuous bijection whose inverse is not continuous.

For (ii), let X
f−→ Y

g−→ Z be continuous maps between topological spaces.

We have to prove that X
g◦f−→ Z is continuous. Let U be an open subset of Z.

Then
(g ◦ f)−1U = f−1g−1U

(check!). But g is continuous, so g−1U is open in Y , and then f is continuous,
so f−1g−1U is open in X, as required. �

You can compare this lemma with the fact that the composite of two group or
ring homomorphisms is again a homomorphism, or the fact that the composite of
two linear maps is linear. However, there is a surprise. The inverse of a bijective
group or ring homomorphism is again a homomorphism, and the inverse of a
bijective linear map is again linear. In contrast:

The inverse of a continuous bijection need not be continuous.

Examples A4.9 i. We already saw in Example A4.3(iii) that the identity
map

(R,discrete topology)→ (R, standard topology)

is continuous. However, its inverse is the identity map

(R, standard topology)→ (R,discrete topology),

which is not continuous: for instance, the subset [0, 1) of R is open in the
discrete topology but not in the standard topology.

ii. Here is a more geometrically intuitive example. Write

S = {z ∈ C : |z| = 1}

(the unit circle). Give S the usual metric inherited from C, that is,
d(w, z) = |w − z|. Define f : [0, 1) → S by f(t) = e2πit (Figure A.4).
Then f is a continuous bijection.

However, the inverse map f−1 : S → [0, 1) is not continuous. For if it
were continuous, then by Lemma A4.6, it would preserve convergence of
sequences. But the sequence (f(1− 1/n))∞n=1 converges to 1 (since

f(1− 1/n) = e2πi(1−1/n) → e2πi = 1
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as n → ∞), whereas the sequence (1 − 1/n)∞n=1 does not converge to
f−1(1) = 0.

Intuitively speaking, f−1 is not continuous because it tears the circle at
the point 1.

Two spaces X and Y are supposed to be ‘topologically the same’ if X can
be deformed into Y without tearing. How can we make this precise? In view of
the last example, asking that there is a continuous bijection from X to Y is not
the right thing to do, since although the bijection itself does not cause tearing
(being continuous), its inverse might. What we should do is demand that not
only the bijection, but also its inverse, is continuous.

Definition A4.10 Let X and Y be topological spaces.

i. A homeomorphism from X to Y is a continuous bijection whose inverse
is also continuous.

ii. The spacesX and Y are homeomorphic (or topologically equivalent),
written X ∼= Y , if there exists a homeomorphism from X to Y .

Note the ‘e’ in the words!
Here are some simple (non-)examples.

Examples A4.11 i. The maps in Examples A4.9 are continuous bijections
but not homeomorphisms.

ii. Let a, b ∈ R with a < b. (In these notes, subsets of Rn are always intended
to be given the Euclidean metric unless otherwise indicated.) Define

f : [0, 1]→ [a, b]

by
f(t) = (1− t)a+ tb

(t ∈ [0, 1]). Then f is a continuous bijection. Its inverse is given by

f−1(u) =
u− a
b− a

(u ∈ [a, b]), which is also continuous. Hence f is a homeomorphism, and
the spaces [0, 1] and [a, b] are homeomorphic.

The terminology ‘X and Y are homeomorphic’ introduced in Defini-
tion A4.10 would be highly misleading if it were not symmetric in X and Y
(in other words, if it were possible that X and Y were homeomorphic but Y
and X were not). Similarly, the notation ∼= would be misleading if ∼= were not
an equivalence relation. We show that this terminology and notation do in fact
behave sensibly.

Lemma A4.12 i. Let X be a topological space. Then the identity map on
X is a homeomorphism.

ii. Let f : X → Y and g : Y → Z be homeomorphisms. Then g ◦ f : X → Z
is a homeomorphism.
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iii. Let f : X → Y be a homeomorphism. Then f−1 : Y → X is a homeomor-
phism.

Proof This follows from Lemma A4.8, using the facts that id−1
X = idX , (g ◦

f)−1 = f−1 ◦ g−1, and (f−1)−1 = f , for bijections f and g. �

Lemma A4.13 Being homeomorphic is an equivalence relation on the class of
all topological spaces.

Proof Follows from Lemma A4.12. �

Put another way, topological equivalence is an equivalence relation. Again,
the terminology would be highly misleading if that were not the case: but that
does not exempt us from the duty of checking that it really is!

Example A4.14 In Example A4.11(ii), we showed that [0, 1] and [a, b] are
homeomorphic for all real a < b. Since ∼= is an equivalence relation, it follows
that [a, b] ∼= [c, d] whenever a < b and c < d.

In the next section, we will see some more substantial examples of homeo-
morphic spaces, and discuss the idea of a ‘topological property’.
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A5 When are two spaces homeomorphic?

For the lecture of Thursday, 2 October 2014

We have defined what it means for two spaces to be homeomorphic, or topolog-
ically equivalent. To a topologist, homeomorphic spaces look the same. The
intuition is roughly that two spaces are homeomorphic if one can be deformed
into the other by bending and reshaping, but without tearing or gluing. We’ll
see, though, that this description has to be taken with a pinch of salt.

Given two spaces, how can we decide whether they are homeomorphic? In
general, there is no easy way. But we can begin to get a feel for it by working
through some examples. This section will be about two different things: how to
show that two spaces are homeomorphic, and how to show that two spaces are
not homeomorphic.

To show that two spaces are homeomorphic, we can simply write down a
homeomorphism between them. We can also take advantage of the fact that
being homeomorphic is an equivalence relation (Lemma A4.13).

Examples A5.1 Here we continue our analysis of homeomorphisms between
intervals in R, begun in Examples A4.11(ii) and A4.14.

i. We showed previously that [a, b] ∼= [c, d] whenever a < b and c < d.
Similarly,

(a, b) ∼= (c, d),

(a,∞) ∼= (b,∞) ∼= (−∞, b) ∼= (−∞, a),

[a, b) ∼= [c, d) ∼= (c, d] ∼= (a, b],

[a,∞) ∼= [b,∞) ∼= (−∞, b] ∼= (−∞, a],

all via simple homeomorphisms of the form x 7→ mx+k for some m, k ∈ R.
(For instance, [0, 1) ∼= (0, 1] via the homeomorphism x 7→ 1− x.)

ii. There are some further, not so obvious, homeomorphisms between inter-
vals. I claim that (a, b) ∼= R whenever a < b. Since (a, b) ∼= (−1, 1), it
is enough to prove that (−1, 1) ∼= R. Indeed, there is a continuous map
f : (−1, 1)→ R given by

f(x) =
x

1− |x|
(x ∈ (−1, 1)), which looks like this:

-10

-5

 0

 5

 10

-1 -0.5  0  0.5  1

x/(1-abs(x))
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It has a continuous inverse given by f−1(y) = y/(1+ |y|). Hence (−1, 1) ∼=
R.

The same function provides a homeomorphism between [0, 1) and [0,∞);
hence [a, b) ∼= [c,∞) for all a, b, c with a < b. Similarly, it provides a
homeomorphism between (0, 1) and (0,∞); hence (a, b) ∼= (c,∞) too.

Bringing this all together: in the four lines of homeomorphisms in (i), all the
intervals in the first two lines are homemorphic to each other (and also home-
omorphic to (−∞,∞) = R), and all the intervals in the last two lines are
homeomorphic to each other.

Example A5.2 Here is a more ambitious example. Consider an annulus and
a cylinder:

21
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The annulus includes its boundaries, and the cylinder is a hollow tube, with no
lid at either end. Intuitively, we can deform the annulus into the cylinder by
keeping the inner circle fixed and pulling the outer circle up towards us. So,
they should be homeomorphic. (Or consider the fact the annulus is the view
you get of the cylinder when you press your eye to one end and look through
it.)

To make this precise, let us say that the annulus has inner radius 1, outer
radius 2, and is centred at the origin. Let us say that the cylinder has unit radius,
that its bottom and top have z-coordinates 1 and 2, and that the central axis of
the cylinder is the z-axis. (These choices make the calculations easier; different
choices would give homeomorphic results.) Then there is a homeomorphism
from the annulus to the cylinder given by

(r cos θ, r sin θ) 7→ (cos θ, sin θ, r)

(1 ≤ r ≤ 2, 0 ≤ θ < 2π).

Example A5.3 Similarly, the closed disk {(x, y) ∈ R2 : x2 + y2 ≤ 1} is home-
omorphic to the closed square [−1, 1] × [−1, 1]. Intuitively, the disk can be
turned into the square by stretching. Writing down an exact formula for a
homeomorphism is unilluminating, but can be done.

Example A5.4 Any knot (in the mathematical sense) is homeomorphic to the
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circle. For example, all these knots are homeomorphic:

To see why, consider, for instance, the second knot (labelled as 31). Suppose that
both the circle and the knot are made from one metre of string. To construct
a homeomorphism between the circle and this knot, let us start by choosing a
point p on the circle and a point q on the knot. Put your left index finger on p
and your right index finger on q. Now slowly move your left finger anticlockwise
around the circle and your right finger anticlockwise around the knot, at the
same rate (and ignoring the fact that you may get tangled up!). Keep going
until you get back to the starting points. This defines a homeomorphism f
between the circle and the knot; for example, f of the point on the circle 10cm
anticlockwise from p is the point on the knot 10cm anticlockwise from q.

The moral here is that we have to be careful when thinking of homeomor-
phism as ‘one space can be deformed into the other’. You might have thought
that a (nontrivial) knot wouldn’t be homeomorphic to the circle, since it cannot
be unknotted. But when deciding what is homeomorphic to what, we are not
confined to R3. Any knot can be deformed into the circle, if we place them both
in R4 and deform them there. In any case, it really is the case that every knot
is homeomorphic to the circle.

Example A5.5 Let Sn denote the n-dimensional sphere, defined by

Sn =

{
x ∈ Rn+1 :

n+1∑
i=1

x2
i = 1

}
.

(You might think this is (n+ 1)-dimensional, because it lives inside Rn+1. But,
for instance, the surface S2 of the earth is best thought of as 2-dimensional, be-
cause any point on it can be specified by 2 coordinates, longitude and latitude.)

Let x be any point of Sn. Then Sn \ {x} ∼= Rn. For instance, the circle with
a point removed is homeomorphic to R (or equivalently (−1, 1)), and the surface
of the earth with the north pole removed is homeomorphic to R2. The most
famous proof of this involves so-called stereographic projection; see Sheet 2.

Now we turn to the challenge of proving that two given spaces are not home-
omorphic.
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Example A5.6 Let us consider real intervals again. I claim that [a, b] is not
homeomorphic to R for any a < b. Suppose for a contradiction that [a, b] ∼= R.
Then we may choose a homeomorphism f : [a, b] → R. By a basic theorem of
analysis, f is bounded; that is, there exist m,M ∈ R such that f [a, b] ⊆ [m,M ].
But f is a homeomorphism, and in particular a surjection, so f [a, b] = R. This
is a contradiction.

A similar argument shows that [a, b] is not homeomorphic to [c, d), for any
a < b and c < d.

Example A5.7 The interval X = [0, 1] is not homeomorphic to the union of
intervals Y = [3, 5] ∪ [10, 13]. (Here Y has the usual metric inherited from
R.) For suppose we have a homeomorphism f : X → Y . Since f is surjective,
there is some c ∈ X such that f(c) = 4, and there is some d ∈ X such that
f(d) = 11. So f is a real-valued continuous function on [0, 1] taking the values
4 and 11. By the intermediate value theorem, f must somewhere take the value
6, a contradiction since f is a map into Y and 6 6∈ Y .

Less formally, the idea here is that X is in one piece and Y is in two.
Homeomorphic spaces always have the same number of pieces, so X and Y are
not homeomorphic.

Example A5.8 The letters T and U are not homeomorphic. Although we do
not have the language to make this completely precise yet, the argument is as
follows. The space T has a point with the property that when it is removed,
what remains falls into three pieces. (This is the point where the vertical meets
the horizontal.) If T and U were homeomorphic then U would have a point with
this property too. But it does not: for when we remove either of the endpoints
of U, what remains is in one piece, and when we remove any other point, what
remains is in two pieces.

Example A5.9 The closed unit disk {(x, y) ∈ R2 : x2 + y2 ≤ 1} is not homeo-
morphic to the open unit disk {(x, y) ∈ R2 : x2+y2 < 1}. One argument for this
would be to observe that the closed disk is compact and the open disk is not; we
will come to compactness later. Another argument is that when we remove any
point from the open disk, what remains has a hole in it; but there are certain
points of the closed disk (the boundary points) which, when removed, leave a
remainder that has no holes in it. If you take the Algebraic Topology course,
you will learn that ‘has a hole in it’ can be made precise by ‘has nontrivial
fundamental group’.

Example A5.10 Consider the spaces R,R2,R3, . . .. Is it conceivable that Rm
could be homeomorphic to Rn for some m 6= n?

It seems impossible that, for instance, R2 could be deformed into R3. But
we should not dismiss the possibility too quickly. For a start, Cantor showed
that for any m,n ≥ 1, there is a bijection between Rm and Rn. The bijection
he constructed is not continuous, but still, this should make us pause.

Also, it is in fact possible to construct a continuous surjection R→ R2. We
will return to this later (when we do compactness), but if you’re interested now,
look up ‘space-filling curves’. Once you know this, it’s easy to build a continuous
surjection Rm → Rn for any m,n ≥ 1.

But actually, our instinct about the original question is right: if Rm ∼= Rn
then m = n. This is surprisingly hard to prove, so much so that we will not
prove it in this course. Algebraic topology provides tools that make it easy.
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A6 Topological properties

For the lecture of Monday, 6 October 2014; part one of two

These are not the natural numbers:

1, 2, 3, 4, . . . .

Nor are these:

1, 2, 3, 4, . . . .

And nor are these:

I, II, III, IV, . . . .

The first are the Arabic numerals, the second are the Arabic numerals in a
different typeface, and the third are the Roman numerals.

Behind this apparently pedantic distinction is an important mathematical
point: isomorphism is just renaming of elements. All three number systems
are isomorphic, which means that they are really the same, just with different
names for their elements.

Many fields of mathematics contain a notion of isomorphism. For sets, an
isomorphism is called a bijection; for groups and rings and vector spaces, an iso-
morphism is called an isomorphism; for metric spaces, an isomorphism is called
an isometry; for topological spaces, an isomorphism is called a homeomorphism.
In all these cases, an isomorphism is a bijection that respects all the structure:
the multiplication in the case of groups, the distance in the case of metric spaces,
and the topology (open sets) in the case of topological spaces. And in all cases,
isomorphism can be viewed as simply renaming of elements.

Let us focus now on topological spaces. Let P be a property defined for
all topological spaces. We say that P is a topological property if whenever
X and Y are homeomorphic topological spaces, X has property P if and only
if Y has property P . No sensible property of topological spaces depends on
what the elements happen to be called. In other words, all sensible properties
of topological spaces are topological properties.

Examples A6.1 Having exactly 7 elements is a topological property. It is a
rather trivial one, as the existence of a bijection between X and Y is all we need
in order to prove that X has the property if and only if Y does.

Being T1 is a topological property, as are being Hausdorff, or discrete, or
indiscrete, or metrizable. Compactness and connectedness (‘being in one piece’)
are topological properties too, which we will study later.

A more complicated topological property: let us say that a topological space
X is ‘purple’ if there exists some x ∈ X such that X \ {x} is connected. Then
purpleness is a topological property.

Example A6.2 Being a subset of R is not a topological property, as it depends
on what the elements happen to be called. For instance, R is homeomorphic to
the subset {(x, y) ∈ R2 : y = 3} of R2; one is a subset of R but the other is not.
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Example A6.3 Being bounded is not a topological property, for two reasons.
First, it is not a property of topological spaces, since it does not make sense

to ask whether a topological space (X, T ) is bounded: you need a metric on X.
Second, it is not even true that if X and Y are homeomorphic metric spaces

then X is bounded if and only if Y is bounded. For instance, the real interval
(0, 1) is a bounded metric space homeomorphic to the unbounded metric space
R, by Example A5.1(ii).

I have argued that being Hausdorff, T1, etc., should be topological properties.
But we haven’t actually proved it. We do so now.

First note that for a homeomorphism f : X → Y , a subset U ⊆ X is open if
and only if fU ⊆ Y is open. (This is false for an arbitrary continuous map, as
we saw in Remark A4.2(ii).) You should check this!

Lemma A6.4 Hausdorffness is a topological property.

Proof Let X,Y be homeomorphic topological spaces with X Hausdorff; we
must prove that Y is Hausdorff. Choose a homeomorphism f : X → Y . Let y
and y′ be distinct points of Y . Then f−1(y) and f−1(y′) are distinct points of
X. Since X is Hausdorff, we may choose disjoint open neighbourhoods U of x
and U ′ of x′. Then fU and fU ′ are disjoint open neighbourhoods of f(x) and
f(x′) respectively, since f is a homeomorphism. �

Suppose we have two topological spaces X and Y in front of us, and want
to show that they are not homeomorphic. It may be possible to argue directly
that there is no homeomorphism from X to Y , as we did to show that [0, 1] 6∼= R
(Example A5.6). But more often, we do it by finding some topological property
satisfied by X but not Y (or vice versa).

For instance, it was mentioned in Example A5.9 that the closed unit disk in
R2 is not homeomorphic to the open unit disk because the first is compact but
the second is not. Another example: the space R2 is ‘purple’ in the sense of
Examples A6.1, but the space R is not; hence R2 6∼= R. This strategy also shows
that Rn 6∼= R for all n > 1. But it does not show, for instance, that R3 6∼= R2,
since both are purple; a different strategy is needed.

Related to the idea of topological property is the idea of topological invariant.
A topological invariant is a way of assigning a mathematical object I(X) to
every topological space X, such that if X and Y are homeomorphic then I(X)
and I(Y ) are isomorphic.

For instance, the set of connected-components of a space is a topological
invariant. We will define this properly later, but intuitively, it means the set of
‘pieces’ of a space. (So the set of connected-components of [3, 5] ∪ [10, 13] is a
two-element set.) If there is a homeomorphism between two spaces then there
is a bijection between their sets of connected-components.

A rather trivial example: the cardinality of a space is a topological invariant.
It’s trivial because it’s fundamentally a set-theoretic invariant: you only need
a bijection between X and Y , not a continuous bijection with a continuous
inverse, in order for X and Y to have the same cardinality.

You will meet more examples of topological invariants if you take the Alge-
braic Topology course.

Topological invariants can also be used to tell spaces apart. For example,
[3, 5] ∪ [10, 13] and [1, 2] ∪ [3, 4] ∪ [5, 6] are not homeomorphic, because one has
three connected-compenents and the other has two.
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A7 Bases

For the lecture of Monday, 6 October 2014; part two of two

When we reason about metric spaces, it is often natural and convenient to
use the open balls rather than arbitrary open sets. In an arbitrary topological
space, we do not have balls available to us, but there may sometimes be a special
collection of open sets with similar properties to those possessed by the open
balls in a metric space. Such a collection is called a ‘basis’ (plural: ‘bases’).

Definition A7.1 Let X be a topological space. A basis for X is a collection
B of open subsets of X, such that every open subset of X is a union of sets in
B.

That is, a set B of open sets is a basis if for an arbitrary open U ⊆ X, we
can find some family (Bi)i∈I such that Bi ∈ B for all i ∈ I and

⋃
i∈I Bi = U .

Examples A7.2 i. Let X be a metric space. Let

B = {B(x, r) : x ∈ X, r > 0}.

Then B is a basis for the induced topology on X. Indeed, let U be an
open subset of X. For each x ∈ U , we can choose rx > 0 such that
B(x, rx) ⊆ U . Then

⋃
x∈U B(x, rx) = U . (Compare Sheet 2, q.1.)

ii. The set
B = {(a, b)× (c, d) : a, b, c, d ∈ R, a < b, c < d}

is a basis for the standard topology on R2. First, every element of B is
certainly open. Second, among the elements of B are the open balls for the
metric d∞ on R2, which induces the standard topology (Example A3.4(ii)).
Hence every subset of R2 that is open in the standard topology is a union
of elements of B.

This example shows that a topological space can have several different
bases, since as well as the basis B for the standard topology on R2, we
have the collection of Euclidean open disks (i.e. open balls with respect to
d2). So one should never speak of ‘the’ basis of a topological space, any
more than one should speak of ‘the’ basis of a vector space.

iii. In a discrete metric space, the collection of one-element subsets is a basis,
since first, they are all open, and second, an arbitrary open subset is the
union of its one-element subsets.

Here is a useful fact about bases.

Lemma A7.3 Let f : X → Y be a function, not necessarily continuous, be-
tween topological spaces. Let B be a basis for Y , and suppose that f−1B is open
in X for all B ∈ B. Then f is continuous.

Proof Let U be an open subset of Y . Then U =
⋃
i∈I Bi for some family

(Bi)i∈I of elements of B. Now

f−1U = f−1
(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1Bi,

which is a union of open subsets and therefore open. �
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So, one strategy for proving that a map is continuous is to find a convenient
basis for the topology on the codomain, then prove that the preimage of any
basic open set is open. (Compare (i)=⇒(ii) of Lemma A1.14, where we were
implicitly using the open balls of Y as a basis for its topology.)

There is another way that bases are used, and that is to specify a topology.
For instance, we might want to say something like ‘define a topology on R2 by
declaring every subset (a, b) × (c, d) to be open, then throwing in all the other
open sets you need in order for the axioms for a topology to be satisfied’. (This
should give the standard topology.)

Definition A7.4 Let X be a set. A synthetic basis on X is a collection B of
subsets of X, such that:

• the union of all the sets in B is X;

• whenever B,B′ ∈ B, then B ∩B′ is a union of sets in B.

Warning A7.5 No one actually says ‘synthetic basis’. That’s just terminology
we’ll use for the next few paragraphs. In real life, everyone just says ‘basis’. We
now show how this fits with the meaning of ‘basis’ given in Definition A7.1.

Let X be a set and B a synthetic basis on X. The topology generated by
B is the set of subsets U of X such that U =

⋃
i∈I Bi for some family (Bi)i∈I

of elements of B.

Lemma A7.6 Let X be a set and B a synthetic basis on X. Then the topology
generated by B is indeed a topology. Moreover, it is the unique topology T on
X such that B is a basis for T .

Proof Write TB for the topology generated by B. We prove TB is a topology.

• Certainly ∅ ∈ TB, as it is the union of the empty family of elements of B.
Also, X ∈ TB by the first axiom for synthetic bases.

• Now let (Ui)i∈I be a family of elements of TB. For each i ∈ I, the set Ui
can be expressed as a union of elements of B, so their union

⋃
i∈I Ui is

also a union of elements of B.

• Let U,W ∈ TB. Then U =
⋃
i∈I Bi and W =

⋃
j∈J Cj for some families

(Bi)i∈I and (Cj)j∈J of elements of B. But then

U ∩W =
⋃

i∈I,j∈J
Bi ∩ Cj ,

and each of the sets Bi ∩ Cj is a union of elements of B (by the second
axiom on synthetic bases), so U ∩W is a union of elements of B.

Finally, we must show that TB is the unique topology on X for which B
is a basis. There are two parts to this statement: that B is a basis for the
topology TB, and that TB is the only topology on X with this property. The
first is trivial, since by definition, every element of TB is a union of elements of
B. For the second, let T be a topology on X such that B is a basis for T . Then
every element of B belongs to T , so (by definition of topology) every union of
elements of B belongs to T , or equivalently TB ⊆ T . On the other hand, every
element of T is a union of elements of B, or equivalently T ⊆ TB. So T = TB,
as required. �
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Because of Lemma A7.6, it is safe to say ‘basis’ instead of ‘synthetic basis’.
We will always do this.

The word ‘synthetic’ is inspired by chemistry. In synthetic chemistry, you
start with simple molecules and put them together to build more complex ones.
When you define a topology from a synthetic basis, you start with simple (basic)
open sets and put them together to build more complex open sets.

The bases defined in Definition A7.1 might also have been called ‘analytic
bases’. In analytical chemistry, you are given a complex molecule and try to
decompose it into simpler molecules. Similarly, given a topology, we can try to
decompose its open sets into simpler (basic) open sets.
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A8 Closure and interior

For the lecture of Thursday, 9 October 2014

If I handed you an interval and told you ‘Make it closed!’, you’d know what to
do. Given (a, b), you’d turn it into [a, b]; similarly you’d turn [a, b) into [a, b]
and (a,∞) into [a,∞). In short, you’d add endpoints wherever they’re absent.
Similarly, if I told you to ‘make an interval open’, you’d remove endpoints
wherever they’re present.

One dimension up, if I handed you an open disk {(x, y) ∈ R2 : x2 + y2 <
1} and told you to make it closed (in R2), you’d turn it into the closed disk
{(x, y) ∈ R2 : x2 + y2 ≤ 1}.

The point of this section is that the process of ‘making a subset closed’ is
meaningful not only for intervals in R, but for completely arbitrary subsets of
a completely arbitrary topological space. So, given a topological space X, we
will define for each subset A ⊆ X an associated closed set Cl(X), and also an
associated open set Int(X).

There is more to say about the closure than the interior, so we begin with
that.

Definition A8.1 Let X be a topological space and A ⊆ X. The closure Cl(A)
of A is the intersection of all the closed subsets of X that contain A.

In some texts, the closure of A is written as A instead.

Lemma A8.2 Let X be a topological space and A ⊆ X. Then Cl(A) is a closed
subset of X containing A. Moreover, if V is any closed subset of X containing
A, then Cl(A) ⊆ V .

This result is often phrased (a little informally) as ‘Cl(A) is the smallest
closed set containing A’.

Proof Since Cl(A) is an intersection of closed sets in X, it is itself closed in X,
and since it is an intersection of sets containing A, it itself contains A. On the
other hand, let V be any closed subset of X containing A; then V is one of the
sets in the intersection defining Cl(A), so Cl(A) ⊆ V . �

Here are some further elementary properties of closure.

Lemma A8.3 Let X be a topological space and A,B ⊆ X. Then:

i. Cl(A) = A ⇐⇒ A is closed;

ii. Cl(Cl(A)) = Cl(A);

iii. if A ⊆ B then Cl(A) ⊆ Cl(B).

Proof For (i), =⇒ holds because Cl(A) is closed; ⇐= holds by definition of
Cl(A), because if A is closed then A is a closed subset of X containing A.

Part (ii) follows from part (i), because Cl(A) is closed.
For (iii), suppose that A ⊆ B. Then any closed subset of X containing B

also contains A, so Cl(B) ⊇ Cl(A) by definition of closure. �
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The definition of Cl(A) is in a sense unhelpful: given a specific point x ∈ X,
it does not help us decide whether or not x ∈ Cl(A). The following lemma is
much more useful in that respect.

Lemma A8.4 Let X be a topological space and A ⊆ X. Then

Cl(A) = {x ∈ X : every neighbourhood of x meets A}.

(Given two subsets A and B of a set X, we will say that A meets B if
A ∩B 6= ∅.)

Proof Let K = {x ∈ X : every neighbourhood of x meets A}. We will show
that K = Cl(A) by proving that K is the smallest closed subset of X containing
A.

Certainly K contains A. To show that K is closed in X, we show that X \K
is open. Given y ∈ X \ K, there exists an open neighbourhood U of y that
does not meet A. But then U ⊆ X \ K, since whenever u ∈ U , the set U is
a neighbourhood of u not meeting A. Lemma A2.9 then implies that X \K is
open in X.

Now let V be any closed subset of X containing A; we show that K ⊆ V .
Let x ∈ K. If x 6∈ V then X \ V is a neighbourhood of x not meeting A, so
x 6∈ K, a contradiction. Hence K ⊆ V , as required. �

To beter understand the meaning of this lemma, it is useful to make another
definition.

Definition A8.5 Let X be a topological space and A ⊆ X. A limit point of
A is a point x ∈ X such that every neighbourhood of x contains some point of
A not equal to x.

Lemma A8.6 Let X be a topological space and A ⊆ X. Then

Cl(A) = A ∪ {limit points of A}.

Proof Follows from Lemma A8.4. �

Examples A8.7 i. In a metric space X, a point x ∈ X is a limit point of
A ⊆ X if and only if for all ε > 0, the punctured ball B(x, ε) \ {x} meets
A. Equivalently, x is a limit point of A if and only if x can be expressed
as a limit of some sequence in A \ {x}. The closure of A consists of all
elements of X that can be expressed as a limit of some sequence in A.

ii. For instance, let X = R. Then Cl((0, 1)) = Cl([0, 1)) = Cl([0, 1]) = [0, 1].

iii. Again in R, the set of limit points of {0} ∪ [1, 2) is [1, 2]. So a point of A
may or may not be a limit point of A, and a limit point of A may or may
not be a point of A. The closure of {0} ∪ [1, 2) is {0} ∪ [1, 2].

Before we go any further, we need to recall a little set theory.

Lemma A8.8 Let X and Y be sets and let f : X → Y be a function.

i. For A ⊆ X and B ⊆ Y , fA ⊆ B ⇐⇒ A ⊆ f−1B.
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ii. f−1fA ⊇ A for all A ⊆ X, and ff−1B ⊆ B for all B ⊆ Y .

Proof Part (i) is just the observation that for a ∈ A, we have fA ⊆ B if and
only if f(a) ∈ B for all a ∈ A, if and only if A ⊆ f−1B. Part (ii) follows, first
by putting B = fA and then by putting A = f−1B. �

We can now rephrase continuity in terms of closure (and direct images, not
inverse images!) The rough idea is this. The closure of a set A ⊆ X consists
of A together with the points just outside A. For a function f : X → Y to be
continuous should mean that f maps points only just outside A to points only
just outside fA. And indeed:

Proposition A8.9 Let f : X → Y be a function between topological spaces.
Then f is continuous ⇐⇒ f(Cl(A)) ⊆ Cl(fA) for all A ⊆ X.

Proof Suppose that f is continuous, and let A ⊆ X. Then Cl(fA) is closed
in Y , so by Lemma A4.4, f−1 Cl(fA) is closed in X. Now f−1 Cl(fA) contains
f−1fA (by Lemma A8.2), which in turn contains A (by Lemma A8.8(ii)), so
f−1 Cl(fA) is a closed subset of X containing A. Hence Cl(A) ⊆ f−1 Cl(fA).
Lemma A8.8(i) then gives f Cl(A) ⊆ Cl(fA).

Conversely, suppose that f(Cl(A)) ⊆ Cl(fA) for all A ⊆ X. By
Lemma A4.4, it is enough to show that the preimage under f of a closed set is
closed; so let V ⊆ Y be closed. Then

f Cl(f−1V ) ⊆ Cl(ff−1V ) ⊆ Cl(V ) = V,

using our hypothesis in the first step (taking ‘A’ to be f−1V ) and Lem-
mas A8.8(ii) and A8.3(iii) in the second. Hence Cl(f−1V ) ⊆ f−1V , by
Lemma A8.8(i). But also Cl(f−1V ) contains f−1V , so they are equal. It then
follows from Lemma A8.3(i) that f−1V is closed. �

Some subsets A of a space X are so big that every point of X is either in A
or a limit point of A:

Definition A8.10 Let X be a topological space. A subset A ⊆ X is dense in
X if Cl(A) = X.

For example, Q is dense in R (with the usual topology).

Lemma A8.11 Let f, g : X → Y be continuous maps of topological spaces, with
Y Hausdorff. Then {x ∈ X : f(x) = g(x)} is closed in X.

Proof See Sheet 2. �

Corollary A8.12 Let f, g : X → Y be continuous maps of topological spaces,
with Y Hausdorff. Suppose there exists a dense subset A ⊆ X such that f(a) =
g(a) for all a ∈ A. Then f = g.

Proof The set E = {x ∈ X : f(x) = g(x)} is closed in X and contains A, so
E ⊇ Cl(A). But Cl(A) = X, so E = X. �

For example, two continuous functions R → R that agree on all rational
numbers must in fact be equal.

Finally, we consider the mirror image of the closure operator: the interior
operator. What we have proved about closures enables us to establish the basic
properties of interiors very quickly.
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Definition A8.13 Let X be a topological space and A ⊆ X. The interior
Int(A) of A is the union of all the open subsets of X contained in A.

Lemma A8.14 Let X be a topological space and A ⊆ X. Then

Cl(X \A) = X \ Int(A), Int(X \A) = X \ Cl(A).

Proof We have Int(A) =
⋃

open U⊆X : U⊆A U , so

X \ Int(A) =
⋂

open U⊆X : U⊆A

X \ U =
⋂

closed V⊆X : V⊇X\A

V = Cl(X \A).

The second identity follows by changing A to X \A in the first. �

Lemma A8.15 Let X be a topological space and A ⊆ X. Then Int(A) is an
open subset of X contained in A. Moreoever, if U is any open subset of X
contained in A, then U ⊆ Int(A).

Less formally, Int(A) is the largest open subset of X contained in A.

Proof This is proved just as for Lemma A8.2. �

Lemma A8.16 Let X be a topological space and A ⊆ X. Then

Int(A) = {x ∈ X : some neighbourhood of x is contained in A}.

Proof This follows from Lemma A8.4, using Lemma A8.14. Explicitly,

Int(A) = X \ Cl(X \A)

= {x ∈ X : not every neighbourhood of x meets X \A}
= {x ∈ X : some neighbourhood of x is contained in A}. �

Warning A8.17 Closure and interior are not opposite processes. For example,
Cl(Int(A)) is not in general equal to A, even if A is closed. Consider X = R
and A = {0}; then Int(A) = ∅, so Cl(Int(A)) = ∅ 6= A.
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A9 Subspaces (new spaces from old, 1)

For the lecture of Monday, 13 October 2014

The next three lectures are about three ways of constructing new topological
spaces. We begin with subspaces.

Given a topological space X and a subset A of X, is there a sensible way of
putting a topology on A? Questions like this are hard to answer in the abstract.
It will help if we start by examining a more familiar, related situation: that of
metric spaces.

Given a metric space X, every subset A of X can be viewed as a metric
space in its own right. For example, once we’ve defined a metric on Rn, we
automatically get a metric on any subset A ⊆ Rn, simply by defining the dis-
tance between two points of A to be the same as the distance between them
in Rn. This process is so obvious and trivial that we hardly think about it.
Nevertheless, it will be useful to give it a name.

Definition A9.1 Let (X, d) be a metric space. Let A ⊆ X. The subspace
metric on A is the function dA : A × A → [0,∞) defined by dA(a, b) = d(a, b)
for all a, b ∈ A. The metric space (A, dA) is a subspace of the metric space
(X, d).

It is very easy to check that the subspace metric is indeed a metric! It is
really the same as the metric d, but defined on only those pairs (x, y) where
x, y ∈ A.

Trivial as this definition may seem, it has some consequences that may not
be entirely obvious. To explain them, it will help to use a refined notation for
balls. For a metric space X = (X, d), a point x ∈ X, and r > 0, let us write

BX(x, r) = {y ∈ X : d(x, y) < r}

(which we would normally write as just B(x, r)).

Lemma A9.2 Let X be a metric space and let A be a subspace of X. Then for
all a ∈ A and r > 0,

BA(a, r) = BX(a, r) ∩A.

Proof Write the metric on X as d and the subspace metric on A as dA. Then

BA(a, r) = {b ∈ A : dA(a, b) < r}
= {b ∈ A : d(a, b) < r}
= BX(a, r) ∩A. �

Now consider, for instance, the metric space X = R. Let A = [0,∞) ⊆ R,
and give A the subspace metric. Then

BA(0, 1) = BR(0, 1) ∩A = (−1, 1) ∩ [0,∞) = [0, 1).

So [0, 1) is an open ball in the metric space [0,∞). In particular, it is an open
subset of the metric space [0,∞), even though it is not an open subset of R.

This shows that when A is a subspace of a metric space X,
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the open subsets of the metric space A are not simply the subsets of
A that are open in X.

In fact, the situation is as follows.

Lemma A9.3 Let X be a metric space and A ⊆ X, and give A the subspace
metric. Let U ⊆ A. Then U is open in the metric space A if and only if
U = W ∩A for some open subset W of X.

Proof Suppose that U is open in the metric space A. For each u ∈ U , we may
choose ru > 0 such that BA(u, ru) ⊆ U . Put W =

⋃
u∈U BX(u, ru). Then W is

open in X, and

W ∩A =

(⋃
u∈U

BX(u, ru)

)
∩A =

⋃
u∈U

(
BX(u, ru) ∩A

)
=
⋃
u∈U

BA(u, ru) = U,

using Lemma A9.2.
Conversely, suppose that U = W ∩ A for some open W ⊆ X. Let u ∈ U .

Since u ∈W and W is open in X, we may choose r > 0 such that BX(u, r) ⊆W .
But then

BA(u, r) = BX(u, r) ∩A ⊆W ∩A = U

(using Lemma A9.2 again). Hence U is open in A. �

Now imagine we are given a topological space X and a subset A. Lemma A9.3
strongly suggests how we should define a topology on A. Thus:

Definition A9.4 Let X = (X, T ) be a topological space and A ⊆ X. The
subspace topology TA on A is defined by

TA = {U ⊆ A : U = W ∩A for some W ∈ T }.

(In words: a subset U of A is defined to be open in the subspace topology on A
if and only if U = W ∩A for some open subset W of X.)

The subspace topology really is a topology. (Check!) In the situation of
the definition, we call (A, TA) a subspace of (X, T ). So when we say ‘A is
a subspace of X’, this means that A has the subspace topology. Also, given
U ⊆ A, we say ‘U is open in A’ to mean ‘U is open in the subspace topology on
A’.

Lemma A9.5 Let X be a topological space and U ⊆ A ⊆ X. Suppose that U
is open in A and A is open in X. Then U is open in X.

Proof We have U = W ∩ A for some open subset W of X; but then U is the
intersection of two open subsets of X, and therefore open in X itself. �

Warning A9.6 When U ⊆ A ⊆ X, it is not true that if U is open in A then
U is open in X. Consider, for instance, the case [0, 1) ⊆ [0,∞) ⊆ R described
above.

As usual, we have been thinking mostly about open rather than closed sets.
But the situation for closed sets is, in fact, similar:
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Lemma A9.7 Let X be a topological space and let A be a subspace of X. Let
V ⊆ A. Then V is closed in A if and only if V = S ∩A for some closed subset
S of X.

Proof

V is closed in A ⇐⇒ A \ V is open in A

⇐⇒ A \ V = W ∩A for some open subset W of X

(by definition of the subspace topology)

⇐⇒ A \ V = (X \ S) ∩A for some closed subset S of X

⇐⇒ A \ V = A \ S for some closed subset S of X

⇐⇒ V = A \ (A \ S) for some closed subset S of X

⇐⇒ V = S ∩A for some closed subset S of X. �

We justified the definition of topological subspace by considering metric
spaces. There is another kind of justification, too. Roughly speaking, it says
that the subspace topology behaves as we would wish with respect to the notion
of continuity.

Remark A9.8 We recall a little more set theory. Given any set X and subset
A ⊆ X, there is an inclusion function i : A → X defined by i(a) = a for all
a ∈ A. For W ⊆ X, we have

i−1W = {a ∈ A : i(a) ∈W} = {a ∈ A : a ∈W} = W ∩A.

Lemma A9.9 Let X be a topological space and let A be a subspace of X. Then
the inclusion function i : A→ X is continuous.

Proof Let W be an open subset of X. Then i−1W = W ∩A is an open subset
of A, by definition of subspace topology. �

The subspace topology is defined in such a way that all the preimages i−1W
of open sets are open, but nothing else is open. In other words, the subspace
topology is the smallest (coarsest) topology on A such that i is continuous.

But that is not the only good continuity property of the subspace topology.
Consider, for instance, the map f : R → [−1, 1] defined by f(x) = sinx.

Is it continuous? Of course, the answer depends on which topologies on R and
[−1, 1] we have in mind, but let’s say we give R its usual topology and [−1, 1] its
subspace topology from R. It would be nice if we could say ‘yes, f is continuous,
because we know that the map sin: R→ R is continuous’.

The function sin : R→ R is the composite i ◦ f of the functions

R f−→ [−1, 1]
i−→ R.

So, the principle we would like to use is that if i ◦ f is continuous then so is f
itself (with respect to the subspace topology). That is the main content of the
following proposition.

Proposition A9.10 Let X be a topological space and let A be a subspace of X.
Then for any topological space Y and any function f : Y → A,

f : Y → A is continuous ⇐⇒ i ◦ f : Y → X is continuous.
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The maps involved can be illustrated in a triangle:

Y
f //

i◦f   @
@@

@@
@@

A

i

��
X

Proof =⇒ follows from Lemma A9.9 and the fact that the composite of con-
tinuous functions is continuous (Lemma A4.8(ii)). For ⇐= , suppose that i ◦ f
is continuous. Let U be an open subset of A. Then U = W ∩ A for some open
subset W of X. Now

f−1U = f−1(W ∩A) = f−1i−1W = (i ◦ f)−1W,

which is open as i ◦ f is continuous. �

Informally, Proposition A9.10 says that whether or not a map is continuous
is unaffected by shrinking or enlarging the codomain, as long as you use the
subspace topology. For instance, a map into [−1, 1] is continuous (with respect
to the subspace topology on it) if and only if the corresponding map into R is
continuous.

In fact, it can be shown that the subspace topology is the only topology on
A for which Proposition A9.10 holds. This is a good reason for it to be defined
the way it is.
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A10 Products (new spaces from old, 2)

For the lecture of Thursday, 16 October 2014

What does it mean to say that the function

[0, 1] → R2

t 7→ (t cos t, t sin t)

is continuous?
You probably know at least two ways to interpret that statement. Perhaps

you first of all learned that a function

[0, 1]
f−→ R2

t 7→ (f1(t), f2(t))

is continuous if the maps f1, f2 : [0, 1] → R are both continuous. (Here, for
instance, f1(t) = t cos t and f2(t) = t sin t, so f1 and f2 are indeed both con-
tinuous.) But later, you learned the definition of continuity for maps between
metric spaces. Since [0, 1] and R2 are both metric spaces, this gives another
definition of continuity for maps [0, 1]→ R2.

Although you might not have noticed it before, there is a potential conflict
here. What if it were possible to construct a function [0, 1] → R2 that was
continuous in one sense but not in another? Do these definitions of continuity
ever disagree?

Fortunately, they don’t. A function f : [0, 1]→ R2 is continuous as a map of
metric spaces if and only if both its components f1, f2 : [0, 1]→ R are continuous.
That’s a relief!

Now let’s consider the situation for topological spaces. Take two topological
spaces, X1 and X2. We can form the cartesian product X1×X2 of the two sets.
(Recall what this means: an element of X1×X2 is a pair (x1, x2) with x1 ∈ X1

and x2 ∈ X2.) Is there a sensible topology to put on X1 × X2? Given what
we just said about metric spaces, ‘sensible’ should mean that whenever Z is a
topological space and

Z
f−→ X1 ×X2

t 7→ (f1(t), f2(t))

is a function, f should be continuous if and only if f1 : Z → X1 and f2 : Z → X2

are continuous.
It turns out that there’s exactly one topology on X1×X2 with this property.

We will discover what it is.
First let’s have a guess. Perhaps the open subsets of X1 × X2 should be

the subsets of the form U1 × U2 where U1 is an open subset of X1 and U2 is
an open subset of X2. But there is an immediate problem: this doesn’t define
a topology, because the union of two sets of this form is not necessarily of this
form. (Draw a picture in R2 if you don’t see why not.)

So let’s refine our guess. Put

B = {U1 × U2 : U1 is an open subset of X1 and U2 is an open subset of X2}.

We have just seen that B is not necessarily a topology on X1 × X2. But it
is a (synthetic) basis for a topology. The first axiom of Definition A7.4 holds
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because X1 × X2 itself belongs to B. The second holds because if U1 and W1

are open in X1 and U2 and W2 are open in X2 then

(U1 × U2) ∩ (W1 ×W2) = (U1 ∩W1)× (U2 ∩W2)

is itself an element of B, and is therefore (trivially!) a union of elements of B.

Definition A10.1 Let X1 and X2 be topological spaces. The product topol-
ogy on the set X1 ×X2 is the topology generated by the basis

{U1 × U2 : U1 is an open subset of X1 and U2 is an open subset of X2}.

The set X1 ×X2 equipped with the product topology is called the product of
the spaces X1 and X2 (and the set X1 ×X2 is always assumed to be given the
product topology unless otherwise mentioned).

The following lemma rephrases the definition of the product topology in two
very mild ways.

Lemma A10.2 Let X1 and X2 be topological spaces, and let U ⊆ X1 × X2.
The following are equivalent:

i. U is open in X1 ×X2;

ii. U =
⋃
i∈I U

i
1 × U i2 for some families (U i1)i∈I of open subsets of X1 and

(U i2)i∈I of open subsets of X2;

iii. for all (x1, x2) ∈ U , there exist open neighbourhoods U1 of x1 and U2 of
x2 such that U1 × U2 ⊆ U .

Proof (i) ⇐⇒ (ii) is just the definition of the topology generated by a basis.
Also (ii)=⇒(iii) immediately. Finally, suppose that (iii) holds. For each x =
(x1, x2) ∈ U , choose open neighbourhoods Ux1 of x1 and Ux2 of x2 such that
Ux1 × Ux2 ⊆ U ; then U =

⋃
x∈U U

x
1 × Ux2 . �

Warning A10.3 A common mistake is to think that in the product topology
on X1 ×X2, the only open subsets are those of the form U1 × U2 with Ui open
in Xi. These are indeed open, but they’re not the only ones.

This is clear if you think about the case X1 = X2 = R: e.g. any open disk
in R2 is an open subset, but it’s not equal to U1 × U2 for any U1, U2 ⊆ R.

Our mission is to find a topology onX1×X2 such that a map f : Z → X1×X2

is continuous if and only if its components f1 : Z → X1 and f2 : Z → X2 are both
continuous. We’ll show that the product topology does have this property—but
we won’t show it just yet. First, we do another kind of check that the product
topology is something sensible.

We defined the product X1 ×X2 of any two topological spaces. Exactly the
same thing can be done for any finite collection of topological spaces, resulting
in a product space X1 × · · · ×Xn. (The product of infinitely many spaces can
also be defined, but requires a little more care; see Sheet 3.)

Proposition A10.4 Let n ≥ 0. The product topology on Rn = R × · · · × R is
the same as the standard topology.
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Proof Let U ⊆ Rn. We will show that U is open in the product topology if
and only if it is open in the standard topology, using the fact that the standard
topology is induced by the metric d∞ (Examples A2.3(ii) and A3.4(ii)).

First suppose that U is open in the product topology. Let x = (x1, . . . , xn) ∈
U . By definition of the product topology, there are open subsets U1, . . . , Un of
R such that

x ∈ U1 × · · · × Un ⊆ U.
For each i, we have xi ∈ Ui and Ui is open in R, so there exists ri > 0 such that
(xi − ri, xi + ri) ⊆ Ui. Put r = min{r1, . . . , rn} > 0; then for each i, we have
(xi − r, xi + r) ⊆ Ui. Hence

(x1 − r, x1 + r)× · · · × (xn − r, xn + r) ⊆ U, (A:1)

that is, Bd∞(x, r) ⊆ U . So U is open in the topology induced by d∞, which is
the standard topology.

Conversely, suppose that U is open in the standard topology. Let x ∈ U .
We may choose r > 0 such that Bd∞(x, r) ⊆ U , or equivalently, (A:1) holds.
Put Ui = (xi − r, xi + r): then Ui is an open subset of R and

x ∈ U1 × · · · × Un ⊆ U.

So by Lemma A10.2, U is open in the product topology. �

Remark A10.5 We have seen that there are many interesting metrics on Rn,
such as d1, d2 and d∞ (and more generally, dp whenever 1 ≤ p ≤ ∞). So there
isn’t a single ‘product metric’. But there is a single product topology, and it’s
the topology induced by all the metrics just named.

Remark A10.6 We need to recall a little set theory. Let X1 and X2 be sets.
There are projection maps

pr1 : X1 ×X2 → X1,
(x1, x2) 7→ x1

pr2 : X1 ×X2 → X2,
(x1, x2) 7→ x2.

A function f : Z → X1 ×X2 can be written as z 7→ (f1(z), f2(z)). (E.g. a curve
f : [0, 1]→ R2 can be written as t 7→ (f1(t), f2(t)).) So a function f : Z → X1×
X2 amounts to a function f1 : Z → X1 together with a function f2 : Z → X2.
The ‘components’ f1 and f2 of f can be expressed as follows:

f1 = pr1 ◦ f, f2 = pr2 ◦ f,

since, for instance, (pr1 ◦ f)(z) = pr1(f(z)) = pr1((f1(z), f2(z))) = f1(z).

Lemma A10.7 Let X1 and X2 be topological spaces. Then the projection maps

X1
pr1←− X1 ×X2

pr2−→ X2

are continuous.

Proof By symmetry, it is enough to prove this for pr1. Let U1 be an open
subset of X1. Then

pr−1
1 U1 = {(x1, x2) ∈ X1 ×X2 : x1 ∈ U1} = U1 ×X2,

which is open in X1 ×X2 since U1 is open in X1 and X2 is open in X2. �
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The product topology is the smallest (coarsest) topology on X1 ×X2 such
that the projections are continuous. Compare the remark on the subspace topol-
ogy after Lemma A9.9.

Remark A10.8 A short digression: given a set A and functions fi : A → Xi

(i ∈ I) into topological spaces Xi, we can give A the smallest (or coarsest or
weakest) topology such that every fi is continuous. This is called the weak
topology generated by the family of maps (fi)i∈I . For instance, the subspace
topology on A ⊆ X is the weak topology generated by the inclusion A → X,
and the product topology on X1 × X2 is the weak topology generated by the
two projections.

We now fulfil the mission described above: to show that continuity of a map
into a product space is equivalent to continuity of each of its components.

Proposition A10.9 Let X1 and X2 be topological spaces. Let Z also be a
topological space, and let

f : Z → X1 ×X2

z 7→ (f1(z), f2(z))

be a function. Then

f is continuous ⇐⇒ f1 and f2 are continuous.

Proof For =⇒, suppose that f is continuous. We have f1 = pr1 ◦ f (Re-
mark A10.6). But pr1 is continuous (Lemma A10.7) and a composite of contin-
uous functions is continuous (Lemma A4.8(ii)), so f1 is continuous. The same
goes for f2.

For ⇐= , suppose that f1 and f2 are continuous. We want to show that
f : Z → X1×X2 is continuous. Since the product topology was defined in terms
of a basis, Lemma A7.3 implies that we need only show that f−1(U1 × U2) is
open for each open U1 ⊆ X1 and U2 ⊆ X2. So, let U1 ⊆ X1 and U2 ⊆ X2 be
open sets. Then

f−1(U1 × U2) = {z ∈ Z : (f1(z), f2(z)) ∈ U1 × U2}
= {z ∈ Z : f1(z) ∈ U1 and f2(z) ∈ U2}
= f−1

1 U1 ∩ f−1
2 U2,

which is open in Z since f1 and f2 are continuous. �

Example A10.10 Consider a function

f : [0, 1] → R2

t 7→ (f1(t), f2(t))

where R2 has the standard topology. Is it continuous? By Proposition A10.9,
f is continuous with respect to the product topology on R2 if and only if
f1, f2 : [0, 1] → R are both continuous. By Proposition A10.4, the product
topology on R2 is the same as the standard topology. So, f is continuous with
respect to the standard topology if and only if both f1 and f2 are continuous.
Mission accomplished!
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A11 Quotients (new spaces from old, 3)

For the lecture of Monday, 20 October 2014

This lecture is longer than usual. The next one will be correspondingly shorter.

Someone hands you a pack of cards. You decide to ignore the suits and only
pay attention to the numbers on the cards.

Someone hands you a straight line segment. You decide to glue the ends
together to make a circle.

Someone hands you the integers. You decide that you only care what an
integer is mod 10.

Someone hands you a group G. You pick a normal subgroup N and form
the quotient group G/N .

Someone hands you a rectangle of paper. You twist opposite ends and glue
them together to make a Möbius band.

These are all examples of ‘quotient objects’. The common feature is that in
each case, we take the object that we are handed and glue parts of it to itself,
thus forming a new object. For instance, when we work mod 10, we are ‘gluing
together’, or viewing as the same, all the integers with the same last digit. When
we form a quotient group G/N , we glue g to g′ whenever g−1g′ ∈ N .

In this section, we will learn how to form quotients of topological spaces. To
do this, we first need to remember how set-theoretic quotients work.

Remark A11.1 Recall the notion of an equivalence relation on a set. For
example, every function f : X → Y between sets induces an equivalence relation
∼f on the domain X, where x ∼f x′ ⇐⇒ f(x) = f(x′) (x, x′ ∈ X).

In fact, every equivalence relation arises in this way. (Better still, every
equivalence relation is of the form ∼f for some surjection f .) For given an
equivalence relation ∼ on a set X, we can form the set X/∼ of equivalence
classes, and there is a natural surjection p : X → X/∼ defined by taking p(x)
to be the equivalence class of x. Then p(x) = p(x′) ⇐⇒ x ∼ x′, so ∼ = ∼p.

Examples A11.2 i. Think again about gluing together the two ends of a
line segment [0, 1] to make a circle. The gluing instruction amounts to an
equivalence relation ∼ on [0, 1]; here x ∼ x′ iff {x, x′} = {0, 1} or x = x′.
Then X/∼ is the circle, at least as a set.

ii. The instruction to glue together the ends of a twisted rectangle of paper to
make a Möbius band amounts to an equivalence relation on the rectangle.

The arrows on the diagram mean: glue together the edges marked by
arrows in such a way that the arrows point in the same direction. Formally,
this instruction amounts to the equivalence relation ∼ on [0, 1] × [0, 1]
defined by (x, y) ∼ (x′, y′) iff either {x, x′} = {0, 1} and y + y′ = 1 or
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(x, y) = (x′, y′). Then we can reasonably define the Möbius band to be
the set X/∼:

But this only defines it as a set, not as a topological space.

In both these examples, what we are missing is a topology on X/∼. We
define one now.

Definition A11.3 Let X = (X, T ) be a topological space and let ∼ be an
equivalence relation on the set X. Write p for the natural surjection X → X/∼.
The quotient topology T ′ on X/∼ is defined by

T ′ = {W ⊆ X/∼ : p−1W ∈ T }.

The topological space (X/∼, T ′) is called the quotient space of X by ∼ (and
the set X/∼ is always assumed to be given the quotient topology, unless other-
wise mentioned).

Of course, one should check that the quotient topology really is a topology.
This is left to you!

Like the definition of continuity, the definition of the quotient topology in-
volves preimages, not images. There is no easy way to rephrase it in terms of
images. For instance, it is not equivalent to say that the open subsets of X/∼
are those of the form pU where U is an open subset of X.

Examples A11.4 i. Take the equivalence relation ∼ on [0, 1] defined in Ex-
ample A11.2(i). Then [0, 1]/∼ is homeomorphic to the circle S1 (with its
subspace topology from R2). It is not obvious that the quotient topology
is the same as the standard topology, but it is; we will come back to this.

ii. Take the equivalence relation ∼ on R defined by x ∼ x′ ⇐⇒ x− x′ ∈ Z.
Then R/∼ is again homeomorphic to S1. (Again, we omit the proof that
the quotient topology is the same as the standard topology.)

iii. We have an intuitive sense of what it means for two lines through the
origin in three-dimensional space to be ‘close’ to one another, or of what
it would mean for a line through the origin to move continuously through
time. So, there ought to be a topological space of such lines. Here’s how
we define it.

First, what is a line through the origin in R3? Any such line is determined
by choosing some point x on it other than the origin (since then, that line
is the unique line passing through the origin and x). Two points x, x′ 6= 0
determine the same line if and only if x = λx′ for some scalar λ. So the
set of all lines through the origin in R3 is

(R3 \ {0})/∼

where ∼ is the equivalence relation on R3 \ {0} defined by

x ∼ x′ ⇐⇒ x = λx′ for some λ ∈ R
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(x, x′ ∈ R3 \ {0}). But R3 \ {0} carries a topology (the subspace topology
from R3). So we can give (R3\{0})/∼ the quotient topology. This quotient
space is called the real projective plane.

The next few examples all involve gluing together edges of the square D =
[0, 1]× [0, 1], using the arrow notation explained above.

Examples A11.5 i. The diagram

indicates the equivalence relation ∼ on D defined by (x, y) ∼ (x′, y′) if
and only if either {x, x′} = {0, 1} and y = y′ or (x, y) = (x′, y′). The
quotient space D/∼ is a cylinder.

ii. Define ∼ as in Example A11.2(ii). The Möbius band is by definition the
quotient space D/∼.

iii. The diagram

shows a more complicated equivalence relation on D: glue together the
left- and right-hand edges, and glue together the top and bottom edges.
The resulting quotient space is the torus:

This can also be described as the product space S1 × S1. We will prove
this later, when we have the right tools.

iv. Suppose that we reverse one of the arrows in this diagram:

The resulting quotient space D/∼ is called the Klein bottle. It cannot
be embedded into R3; the best effort to do so looks something like this:
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(The problem is where the neck crosses through the wall of the bottle.
Really, it should pass through unobstructed, but there is no way to make
this happen within the confines of R3.)

The Klein bottle is a ‘non-orientable surface’. You’ll learn more about sur-
faces if you take the Algebraic Topology course. Non-orientability means
that it has no inside or outside. If you choose any spot on what you might
think of as the ‘outside’ of the bottle, start painting, and keep painting the
areas next to those you’ve already painted, then you’ll eventually discover
that you’re painting the opposite side of where you started.

v. Finally, suppose that we reverse another arrow:

The resulting quotient space is, in fact, the real projective plane. (Again,
this is not obvious; you can treat it as a non-examinable exercise.) It is
also a non-orientable surface.

So far, we have not seen any justification for defining the quotient topology
the way we did. In the examples above, we omitted all checks that actually used
the definition. But now we give some justification of a theoretical rather than
examples-based type. The next two results should remind you of both results
we proved for subspaces and results we proved for product spaces.

Lemma A11.6 Let X be a topological space and ∼ an equivalence relation on
X. Then the natural surjection X → X/∼ is continuous.

Proof This is immediate from the definition of the quotient topology. �

In fact, the quotient topology is the largest (or strongest, or finest) topology
on X/∼ that makes Lemma A11.6 true. This is immediate from the defini-
tion. Compare and contrast the remarks after Lemmas A9.9 (for subspaces)
and A10.7 (for products). Also compare and contrast our next result with
Propositions A9.10 (for subspaces) and A10.9 (for products).

Proposition A11.7 Let X be a topological space and ∼ an equivalence relation;
write p for the natural surjection X → X/∼. Let Z also be a topological space,
and let f : X/∼ → Z be a function. Then

f : X/∼ → Z is continuous ⇐⇒ f ◦ p : X → Z is continuous.

Proof By definition of the quotient topology,

f is continuous ⇐⇒ f−1U is open in X/∼ for all open U ⊆ Z
⇐⇒ p−1f−1U is open in X for all open U ⊆ Z
⇐⇒ (f ◦ p)−1U is open in X for all open U ⊆ Z
⇐⇒ f ◦ p is continuous. �

46



Example A11.8 View the circle as the quotient space R/∼ where ∼ is defined
as in Example A11.4(ii). If x, x′ ∈ R with x−x′ ∈ Z then cos(2πx) = cos(2πx′).
Hence there is a function f : R/∼ → C defined by f([x]) = cos(2πx) for all
x ∈ R, where [x] denotes the equivalence class of x. Then (f ◦ p)(x) = f([x]) =
cos(2πx) for all x ∈ R, so f ◦ p is continuous, so f is continuous.

(The moral here is that continuous 1-periodic functions on R are essentially
the same thing as continuous functions on S1. This point of view is useful in
the theory of Fourier series.)

We still have the problem that it is hard for us to recognize the quotient
topology when we see it. For example, I claimed in Example A11.4(i) that when
we glue together the ends of the interval [0, 1], the resulting quotient topology
on the circle is the same as its standard topology. The following lemma will
help us prove statements like this.

Lemma A11.9 Let q : X → Y be a continuous map of topological spaces. Sup-
pose that q is surjective and that for W ⊆ Y ,

W is open in Y ⇐⇒ q−1W is open in X.

Then Y is homeomorphic to X/∼q, where ∼q is the equivalence relation on X
induced by q.

Proof There is a function f : X/∼q → Y defined by f([x]) = q(x) (x ∈ X),
where [x] denotes the ∼q-equivalence class of x. It is well-defined and injective
because

[x] = [x′] ⇐⇒ x ∼q x′ ⇐⇒ q(x) = q(x′).

It is surjective because q is surjective. Writing p : X → X/∼q for the natural
surjection, we have f ◦ p = q. (Think to yourself: p and q are essentially the
same, via the bijection f , at least at the set-theoretic level.)

In fact, f : X/∼q → Y is a homeomorphism, as for W ⊆ Y ,

W is open in Y ⇐⇒ q−1W is open in X

⇐⇒ (f ◦ p)−1W is open in X

⇐⇒ p−1f−1W is open in X

⇐⇒ f−1W is open in X/∼. �

We could now use this lemma to show that the quotient space [0, 1]/∼ (where
∼ glues the ends together) is homeomorphic to the circle with the standard
topology. Indeed, the circle with the standard topology is the subspace S1 =
{z ∈ C : |z| = 1} of C ∼= R2, we have a continuous surjection q : [0, 1] → S1

given by q(x) = e2πix, and the induced equivalence relation ∼q on [0, 1] is
exactly the one in Example A11.2(i). So if we can verify the main hypothesis
of Lemma A11.9, we will have proved that [0, 1]/∼ ∼= S1. This can be done
directly. However, it will become much easier once we have learned some facts
about compactness, so we defer it until then.
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A12 Review of Chapter A

For the lecture of Thursday, 23 October 2014

From metric to topological spaces We started this course knowing about
metric but not topological spaces. Topological spaces are more general than
metric spaces, in the following sense: every metric space gives rise to a topo-
logical space, but not every topological space comes from a metric space. But
as well as topological spaces generalizing metric spaces, they also blur detail :
different metrics on a set can give rise to the same topology (for instance, if
they are Lipschitz equivalent).

Topologists are less discriminating people than metric geometers—they only
care about continuity, not distances.

A more subtle difference between metric and topological spaces is the status
of the adjective ‘open’. In a metric space, one defines a subset to be open if
and only if it satisfies a certain condition involving the metric, and one proves
the lemma that a finite intersection or arbitrary union of open sets is open
(Lemma A1.11.) But in order to even specify a topological space, one needs to
declare which sets are to be called ‘open’, and the conditions in the lemma just
mentioned becomes part of the definition.

Different kinds of space In the introductory lecture for this course, I showed
you a large variety of different kinds of space, many of which we’ve now looked
at rigorously.

Among metrizable spaces, the most obvious are the subsets of Rn with the
standard topology (which is induced by each of the metrics d1, d2 and d∞,
among others). But we have met other metrics and metrizable spaces too: the
discrete metric, the Hamming metric, the b-adic metric (Sheet 1, q.1), and,
informally, shortest-path metrics. We have also met some non-metrizable topo-
logical spaces, such as indiscrete spaces, spaces with the cofinite topology, spaces
with the Zariski topology, and topological spaces with only finitely many points
(e.g. you know all the topologies on the two-point set).

The anatomy of an individual topological space Part of what we’ve
done is to fix a single topological space and consider basic questions about its
anatomy. For instance, are one-elements subsets always closed? In other words,
is it T1? Is it Hausdorff, or regular, or normal? Aside from these separation
conditions, one can also ask: is it metrizable? And given any subset A of our
space, what’s the minimal way to expand A to a closed set or shrink it to an
open set? These are the notions of closure and interior.

The point of topology: continuous maps between spaces The whole
point of defining ‘topological space’ was to be able to define ‘continuous map’.
Topological spaces are a good general context for studying continuity. The def-
inition of continuous map between topological spaces generalizes the definition
for metric spaces, but it also works well for spaces that aren’t metrizable. And
the notion of continuous maps leads seamlessly into the notion of . . .
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Topological equivalence Topological equivalence—or homeomorphism, as
we usually call it—is the right notion of ‘sameness’ for topological spaces. (Re-
member the introduction to Section A6.) Two topological spaces are homeo-
morphic if they are the same in every way that we should care about. Home-
omorphism preserves every conceivable topological feature. The only thing it
doesn’t preserve is the names of the elements.

Homeomorphism is the precise formulation of the intuitive (but sometimes
misleading) idea of ‘deformability’, in the doughnut/coffee cup sense. There
are some obvious pairs of homeomorphic spaces, such as (0, 1) ∼= (12, 15), and
some less obvious ones, such as (0, 1) ∼= (0,∞) ∼= R and Sn \ {x} ∼= Rn for
any x ∈ Sn. There is also the fact that every knot is homeomorphic to the
circle (Example A5.4). This reveals that homeomorphism does not, in fact,
quite capture the idea of being able to deform one space continuously into the
other within R3. (Indeed, it’s clear from the definition that homeomorphism
has nothing to do with R3.) So while the conception of topology as ‘rubber
geometry’ is sometimes helpful, it has to be taken with a pinch of salt.

Sometimes it’s hard to decide whether two given spaces are homeomorphic.
For instance, it’s really surprisingly difficult to prove that Rm and Rn are not
homeomorphic unless m = n. Example A5.10 gives some clues as to why this is
harder than it sounds.

Constructing topological spaces Look back at the slides from the opening
lecture of this course. (They’re on the website.) Choose a page at random, then
choose one of the spaces shown on that page. How would you actually define it,
in a rigorous mathematical way?

For some of those spaces (such as the space of possible strains of a virus),
that’s not a question with a clear answer, although it’s still worth your while
to contemplate the possibilities. But for others, we now have exactly the tools
necessary in order to give a definition that’s both rigorous and intuitive.

Consider, for instance, the Möbius band. You could describe it as a subset
of R3, via some complicated equations and inequalities describing how it twists
in space. But you wouldn’t really want to, and anyway, the complicated answer
you’d end up with would conceal rather than reveal the way you actually think
about a Möbius band: take a rectangle of paper, twist it, and stick its ends
together.

Using the tools we’ve built, we can define the Möbius band, starting from
scratch—not even knowing the standard topology on R. Here goes.

• Give R the topology generated by the basis {(a, b) : a, b ∈ R, a < b}.

• Give [0, 1] ⊆ R the subspace topology.

• Give [0, 1]× [0, 1] the product topology.

• Define the Möbius band to be ([0, 1]× [0, 1])/∼ with the quotient topology,
where ∼ is defined as in Example A11.2(ii).

The italicized terms show how many of our constructions we’ve called upon to
make this definition. It’s a demonstration of just how useful they are.
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What really matters Our approach to defining topological spaces was based
on the concept of open set: we recorded some of the properties of open sets in
a metric space, and used those properties to make the definition of topological
space. So you’d be forgiven for thinking that open sets are the most important
aspect of topology.

They’re not. Really, they’re just a means to an end—namely, setting up a
good general notion of continuous map.

In fact, there are several equivalent ways of defining ‘topological space’ with-
out mentioning open sets. One (different, but not very different) is to use closed
sets instead: a topological space could be defined as a set together with a col-
lection K of subsets (the ‘closed sets’) such that every finite union or arbitrary
intersection of sets in K is also in K. More radically, a topological space can
be defined as a set X together with a function C : P(X) → P(X) satisfying
various properties (such as C(C(A)) = C(A) for all A ⊆ X); here we think of
C as the closure operator. There’s a similar definition involving interiors. Or,
you can axiomatize the neighbourhoods: a topological space is a set X together
with a collection Nx of subsets of X for each x ∈ X, satisfying some axioms.

All the concepts mentioned in the previous paragraph (open sets, closed sets,
closure, interior, neighbourhoods) are important. We phrased the definition of
topological space in terms of open sets purely because it’s technically convenient;
the axioms are pretty simple. But you can find introductory topology books
that use one of the other approaches. They’re all equivalent, and in all of them,
we can frame the definition of continuous map. That’s what matters.

When we defined subspaces, product spaces and quotient spaces, we proved
that each of these constructions behaves as we’d want it to with respect to
continuous maps (Propositions A9.10, A10.9 and A11.7). This may have seemed
somewhat abstract, but actually it’s getting right to the heart of the matter:
continuity is what we fundamentally care about, not open sets.

What’s next? Most of the rest of the course is about two topological prop-
erties: compactness and connectedness. You’ve met both before in the context
of metric spaces, but we’ll generalize to topological spaces and dig deeper into
their properties.

Compactness is to topological spaces as finiteness is to sets, or as finite-
dimensionality is to vector spaces. It’s probably the most important concept of
this course, but it can take some effort to fully digest.

Connectedness is the intuitive idea of being all in one piece. If you do the
Algebraic Topology course, you’ll see that much of that subject can be seen
as the study of ‘higher-dimensional connectedness’. I’ll leave that remark as a
mystery, to whet your appetite for things to come.
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Chapter B

Compactness

Compactness is one of the most important concepts in this course. The role
played by compactness in the world of topological spaces is similar to the role
played by finiteness in the world of sets. General topological spaces can be rather
wild; compact topological spaces are much more tame (and compact Hausdorff
ones even more so).

B1 The definition of compactness

For the lecture of Monday, 27 October 2014

You have already met the definition of compactness for metric spaces, and per-
haps you can therefore guess the definition for topological spaces. But for the
moment, forget what you know. We will work up to the definition by asking:

What would we have to assume about a topological space X in order
to prove that every continuous map f : X → R is bounded?

Recall that a function f : X → R is bounded if and only if its image fX
is bounded, or equivalently, if there exists M ≥ 0 such that for all x ∈ X,
|f(x)| ≤ M . For a general space X, continuous maps X → R need not be
bounded. For example, the map f : (0, 1) → R defined by f(x) = 1/x is not
bounded.

Observation 1 If X is finite then any function f : X → R (continuous or not)
is bounded, since we can take M = maxx∈X |f(x)|. This M is a well-defined
real number (not ∞) as X is finite.

Observation 2 More generally, suppose we know that X can be expressed as
a finite union of subsets Aj (j ∈ J) such that f is bounded on each individual
Aj . Then f itself is bounded. Why? Well, we can choose for each j ∈ J some
Mj ≥ 0 such that for all x ∈ Aj , |f(x)| ≤ Mj . Put M = maxj∈JMj (which
is a well-defined real number, not ∞, as J is finite). Then |f(x)| ≤ M for all
x ∈ X.
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Observation 3 A continuous function need not be bounded, but it is ‘locally
bounded’ in the following sense. Let x ∈ X. If X is a metric space then there is
some δx > 0 such that fB(x, δx) ⊆ (f(x)−1, f(x)+1). For a general topological
space, the set Ux = f−1(f(x)− 1, f(x) + 1) is an open neighbourhood of x, and
satisfies fUx ⊆ (f(x) − 1, f(x) + 1). Hence, writing Mx = |f(x)| + 1, we have
|f(u)| ≤ Mx for all u ∈ Ux. In particular, f is bounded on Ux (that is, fUx is
bounded). So each point of X has a neighbourhood on which f is bounded.

Observation 4 We could attempt to use this to prove that any continuous
function f : X → R on any topological space X is bounded. This is destined to
fail, since we know that the statement we’re trying to prove is false (e.g. by the
1/x example above). But let us try, and see what goes wrong.

For each x ∈ X, the function f is bounded on Ux, with |f(u)| ≤ Mx for
all u ∈ Ux. Now put M = maxx∈XMx. The sets Ux (x ∈ X) cover X, so
|f(x)| ≤M for all x ∈ X.

The trouble is that this maximum might not be a well-defined real number,
since X is infinite. So this proves nothing.

Observation 5 On the other hand, suppose we somehow knew that it was
possible to cover X with only finitely many of the sets Ux. In other words,
suppose we knew that there was some finite Z ⊆ X such that

⋃
z∈Z Uz = X.

Then we could legitimately put M = maxz∈ZMz ∈ R. Since the sets Uz cover
X, we have |f(x)| ≤M for all x ∈ X, proving that f is bounded.

To make this work, we needed to assume that it was possible to cover X with
only finitely many of the sets Ux. What would make that assumption valid? All
we really know about the sets Ux is that they are open and that they themselves
cover X. We want to be able to deduce that under those circumstances, it is
possible to select finitely many of them that still cover X. Compactness is
exactly what enables us to do this.

Definition B1.1 Let X be a topological space. A cover of X is a family
(Ui)i∈I of subsets of X such that

⋃
i∈I Ui = X. It is finite if the indexing set

I is finite, and open if Ui is open for each i ∈ I.
Given a cover (Ui)i∈I and J ⊆ I, we say that (Uj)j∈J is a subcover of

(Ui)i∈I if it is itself a cover of X.

Definition B1.2 A topological space X is compact if every open cover of X
has a finite subcover.

So, we have sketched a proof that every continuous map from a compact
space to R is bounded. Later, we will redo this more formally.

Warning B1.3 Compactness is not equivalent to any of the following:

i. there exists a finite open cover;

ii. every open cover is finite;

iii. for every open cover (Ui)i∈I , every finite subfamily (Uj)j∈J is a subcover;

iv. every subcover of an open cover is finite;

v. some open cover has a finite subcover.
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It is a good exercise to go through each of these conditions and find an example
of a space that satisfies the condition but is not compact, or vice versa.

Examples B1.4 i. The sets (n − 1, n + 1) (n ∈ Z) form an open cover
of R. Thiscover has no finite subcover, since if J is a finite subset of Z
then we many choose N ∈ N such that |n| ≤ N for all n ∈ J , and then
N + 1 6∈

⋃
n∈J(n− 1, n+ 1). So R is not compact.

ii. For n = 0, 1, 2, . . ., define Un ⊆ [0, 1] by U0 = [0, 1/2) and Un = (2−n, 1]
(n ≥ 1). Then (Un)n≥0 is an open cover of [0, 1]. (Why open?) It has
many finite subcovers, such as (Un)n∈J where J is {0, 1, 2} or {0, 2} or
{0, 10}. But this does not prove that [0, 1] is compact, since compactness
says that every open cover has a finite subcover, and we have only shown
that this particular open cover has a finite subcover.

iii. In fact, the compact subspaces of Rn are precisely the closed bounded
subsets. We will prove this later.

iv. Any indiscrete space is compact. For let (Ui)i∈I be an open cover of
an indiscrete space X. Each Ui is either ∅ or X. Assuming that X is
nonempty, we must have Uj = X for some j ∈ I. Then the one-member
family consisting of Uj alone is a finite subcover. (And if X is empty then
the empty family (Ui)i∈∅ is a finite subcover.)

v. Any finite space is compact. For given an open cover (Ui)i∈I of a finite
space X, we can choose for each x ∈ X an element ix ∈ I such that x ∈
Uix . Put J = {ix : x ∈ X}, a finite set. Then

⋃
j∈J Uj =

⋃
x∈X Uix = X,

so (Uj)j∈J is a finite subcover.

vi. A discrete space is compact if and only if it is finite. We have just proved
‘if’. For ‘only if’, let X be a compact discrete space. Then ({x})x∈X is
an open cover, so has a finite subcover; that is, there exists a finite subset
Z ⊆ X such that

⋃
z∈Z{z} = X. But the left-hand side is just Z, which

is finite, so X is finite.

vii. This example may only make sense to those of you doing Linear Analysis;
others can safely ignore it. In a normed vector space V , the closed unit
ball is compact if and only if V is finite-dimensional. (The proof of ‘only
if’ appears to need the Hahn–Banach theorem.)

Remark B1.5 The last two examples are evidence for the idea that compact-
ness is a kind of finiteness condition. Here’s a table of analogies:

sets finite sets
vector spaces finite-dimensional vector spaces
topological spaces compact topological spaces.

If you ask a mathematician a hard question about topological spaces, they will
probably be relieved if you tell them they’re allowed to assume that the spaces
are compact. It often makes things easier, as we will see.

Many of the topological spaces we are interested in, such as subspaces of Rn,
come presented as subspaces of some larger space. The definition of compactness
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Figure B.1: Illustration of the proof of Lemma B1.7. The shaded region is Ui.

applied to a subspace (with the subspace topology, as always!) refers to the
open sets of the subspace, which in turn are defined in terms of the open sets
of the larger space. This is a little cumbersome. It is therefore convenient to
reformulate the definition of compactness of a subspace directly in terms of the
open sets of the larger space.

Definition B1.6 Let X be a set and A ⊆ X. A cover of A by subsets of X is
a family (Wi)i∈I of subsets of X such that A⊆

⋃
i∈IWi. For J ⊆ I, we say that

(Wj)j∈J is a subcover of (Wi)i∈I if it is itself a cover of A by subsets of X.

In the special case A = X, a cover of X by subsets of X is simply a cover of
X, and ‘subcover’ also has the same meaning as before.

Lemma B1.7 Let X be a topological space and A a subspace. Then A is com-
pact (as a topological space with the subspace topology) if and only if every cover
of A by open subsets of X has a finite subcover.

Proof Suppose that A is compact. Let (Wi)i∈I be a cover of A by open subsets
of X (Figure B.1). For each i ∈ I, put Ui = Wi ∩A. Then Ui is an open subset
of A by definition of the subspace topology (Definition A9.4). Also,

A =

(⋃
i∈I

Wi

)
∩A =

⋃
i∈I

(Wi ∩A) =
⋃
i∈I

Ui.

Hence (Ui)i∈I is an open cover of A. Since A is compact, we can choose a finite
J ⊆ I such that A =

⋃
j∈J Uj . But Uj ⊆Wj for all j, so A ⊆

⋃
j∈JWj .

Conversely, suppose that every cover of A by open subsets of X has a finite
subcover. Let (Ui)i∈I be an open cover of A (that is, a cover of A by open
subsets of A). For each i ∈ I, the set Ui is open in the subspace A, so by
definition of subspace topology, we may choose an open subset Wi of X such
that Ui = Wi ∩A. Then Wi ⊇ Ui for each i ∈ I, so⋃

i∈I
Wi ⊇

⋃
i∈I

Ui = A.

By hypothesis, we may choose a finite subset J ⊆ I such that
⋃
j∈JWj ⊇ A.

Then

A =

(⋃
j∈J

Wj

)
∩A =

⋃
j∈J

(Wj ∩A) =
⋃
j∈J

Uj .

Hence (Uj)j∈J is a finite subcover of (Ui)i∈I , as required. �
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B2 Closed bounded intervals are compact

For the lecture of Thursday, 30 October 2014; part one of three

We will soon prove that the compact subsets of Rn are exactly the closed
bounded subsets. Some people call that result the Heine–Borel theorem; others
use the same name for the following important special case.

Theorem B2.1 (Heine–Borel, weak version) For any a, b ∈ R with a < b,
the interval [a, b] is compact.

Proof Since [a, b] ∼= [0, 1], we might as well assume that a = 0 and b = 1.
We use Lemma B1.7. Let (Ui)i∈I be a cover of [0, 1] by open subsets of R.

For the purposes of this proof, let us say that a point c ∈ [0, 1] is good if [0, c] is
covered by (Uj)j∈J for some finite J ⊆ I. We must show that 1 is good.

Write G = {c ∈ [0, 1] : c is good}. Certainly 0 is good, since we can choose
i ∈ I such that 0 ∈ Ui, and then [0, 0] = {0} is covered by the family consisting
of Ui alone. So G 6= ∅. Also, G ⊆ [0, 1], so G is bounded above. Hence s = supG
exists, with s ∈ [0, 1].

(Pause for thought: we want to prove that s = 1. But on its own, that
doesn’t imply that 1 is good, since conceivably supG 6∈ G.)

Since s ∈ [0, 1], we can choose k ∈ I such that s ∈ Uk. Since Uk is open in
R, we can choose ε > 0 such that (s− ε, s + ε) ⊆ Uk. Since s = supG, we can
choose a good c ∈ (s − ε, s]. And since c is good, we can choose a finite J ⊆ I
such that [0, c] ⊆

⋃
j∈J Uj . Now

⋃
j∈J∪{k}

Uj =

(⋃
j∈J

Uj

)
∪ Uk ⊇ [0, c] ∪ (s− ε, s+ ε) ⊇ [0, s+ ε).

So every point t ∈ [0, 1] satisfying t < s+ ε is good.
In particular, s is good. Suppose for a contradiction that s < 1. Then we

can choose t ∈ [0, 1] satisfying s < t < s+ ε (e.g. take t = min{1, s+ ε/2}). But
then t ∈ G with supG = s < t, a contradiction. So s = 1; but s is good, so 1 is
good. �

We will use this result to prove the stronger theorem that every closed
bounded subset of Rn is compact. In order to do this, we will need to know
about compactness of subspaces and product spaces.
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B3 Compactness and subspaces

For the lecture of Thursday, 30 October 2014; part two of three

In Chapter A, we met three ways of constructing new topological spaces from
old: subspaces, products and quotients. We can ask how these constructions
behave with respect to compactness. For instance, is every subspace of a com-
pact space compact? Is every product of compact spaces compact? Is every
quotient of a compact space compact?

Here we look at subspaces.

Example B3.1 We have just seen that [0, 1] is compact. However, (0, 1) is not
compact. (One way to see this: the cover

(
(ε, 1)

)
ε>0

has no finite subcover.

Another: we saw in Example A5.1(ii) that (0, 1) is homeomorphic to R, and in
Example B1.4(i) that R is not compact.) Hence a subspace of a compact space
need not be compact.

This might seem disappointing. It also shows the limitations of the analogy
between compact spaces, finite sets and finite-dimensional vector spaces (Re-
mark B1.5), since every subset of a finite set is finite and every subspace of a
finite-dimensional vector space is finite-dimensional. However, there is a result
that comes close.

Lemma B3.2 Every closed subspace of a compact space is compact.

Proof Let X be a compact space and V a closed subset. We show that V
is compact (with the subspace topology) using Lemma B1.7. Let (Ui)i∈I be a
cover of V by open subsets of X. Then (Ui)i∈I together with X \ V is an open
cover of X. Since X is compact, it has some finite subcover; thus, there is some
finite J ⊆ I such that (⋃

j∈J
Uj

)
∪ (X \ V ) = X.

Then
⋃
j∈J Uj ⊇ V , as required. �

Is the converse true—that every compact subspace of a compact space is
closed? For trivial reasons, no:

Example B3.3 Recall from Example B1.4(iv) that every indiscrete space is
compact. Let X be any set with two or more elements, and choose a nonempty
proper subset Y (as we may). The subspace topology on Y is indiscrete, so Y
is compact, as is X. But Y is not closed in X, since it is neither ∅ nor X.

On the other hand, it is only this sort of example that prevents the converse
from being true:

Lemma B3.4 Every compact subspace of a Hausdorff space is closed.

(Note that the larger space need not be compact.)

Proof Let X be a Hausdorff space and A a compact subspace of X. To prove
that A is closed, it is enough to prove that each point of X not in A has a
neighbourhood that does not meet A (by Lemma A2.9). Let x ∈ X \A.
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Since X is Hausdorff and x 6∈ A, for each a ∈ A we can choose disjoint open
neighbourhoods Ua of a and Wa of x. Then (Ua)a∈A is a cover of A by open
subsets of X. But the subspace A is compact, so by Lemma B1.7 (again!), there
is a finite subset B ⊆ A such that (Ub)b∈B covers A. Put W =

⋂
b∈BWb. Then

W is a neighbourhood of x.
I claim that W does not meet A. Indeed, let a ∈ A; then a ∈ Ub for

some b ∈ B, and then a 6∈ Wb, so a 6∈ W , proving the claim. Hence W is a
neighbourhood of x not meeting A, as required. �

Together, these two lemmas imply that when X is a compact Hausdorff
space, a subspace of X is compact if and only if it is closed. For example, this
is true when X = [0, 1] or (as we shall see) X = [0, 1]n.
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Y

x

Ux,b ×Wx,b

Ux,b′ ×Wx,b′

Figure B.2: Proof of Theorem B4.1. The shaded part indicates Ux × Y .

B4 Compactness and products

For the lecture of Thursday, 30 October 2014; part three of three

We show now that the product of two compact spaces is compact. This is one
of the trickier proofs so far (Figure B.2).

Theorem B4.1 Let X and Y be compact topological spaces. Then X × Y is
also compact.

Proof Let (Si)i∈I be an open cover of X × Y . For each (x, y) ∈ X × Y , we
can choose some i ∈ I such that (x, y) ∈ Si, and then we can choose some open
neighbourhoods Ux,y of x and Wx,y of y such that Ux,y×Wx,y ⊆ Si. The family(

Ux,y ×Wx,y

)
x∈X,y∈Y (B:1)

is an open cover of X × Y , and it suffices to show that it has a finite subcover.
(For if (Ux1,y1×Wx1,y1)∪· · ·∪(Uxn,yn×Wxn,yn) = X, then for each k ∈ {1, . . . , n}
there is some ik ∈ I such that Uxk,yk×Wxk,yk ⊆ Sik , and then Si1∪· · ·∪Sin = X
too.)

First, fix x ∈ X. Then y ∈ Wx,y for each y ∈ Y , so (Wx,y)y∈Y is an open
cover of Y ; but Y is compact, so this has a finite subcover (Wx,b)b∈Bx

. Put
Ux =

⋂
b∈Bx

Ux,b, which is an open neighbourhood of x. Then

Ux × Y ⊆
⋃
b∈Bx

Ux,b ×Wx,b, (B:2)

since whenever (u, y) ∈ Ux × Y , we have y ∈ Wx,b for some b ∈ Bx, which
implies that (u, y) ∈ Ux,b ×Wx,b.

Now (Ux)x∈X is an open cover of the compact space X, and therefore has a
finite subcover (Ua)a∈A. I claim that(

Ua,b ×Wa,b

)
a∈A,b∈Ba

is a finite cover of X × Y . It is finite since A is finite and Ba is finite for each
a ∈ A. To see that it is a cover, let (x, y) ∈ X × Y . Then x ∈ Ua for some
a ∈ A, so (x, y) ∈ Ua × Y , so by (B:2) above, (x, y) ∈ Ua,b ×Wa,b for some
b ∈ Ba. Hence the cover (B:1) has a finite subcover, as required. �

We now have everything we need to prove that closed bounded subsets of
Rn are compact. It’s just a matter of assembling results we’ve already proved.
We’ll do that next time, but a good exercise would be to try it yourself.
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B5 The compact subsets of Rn

For the lecture of Monday, 3 November 2014; part one of two

Our earlier work makes it easy to prove now that every closed bounded subset
of Rn is compact. We can also prove the converse, with the aid of one further
lemma:

Lemma B5.1 Every compact metric space is bounded.

Proof Let X be a compact metric space. If X = ∅ then certainly X is bounded.
Otherwise, we can choose a ∈ X. There is an open cover (B(a, r))r>0 of X,
which has a finite subcover, say

B(a, r1), . . . , B(a, rn).

Let R = max{r1, . . . , rn}. Then X =
⋃n
j=1B(a, rj) = B(a,R), so X is

bounded. �

Theorem B5.2 (Heine–Borel, strong version) A subspace of Rn is com-
pact if and only if it is closed and bounded.

Proof Let A ⊆ Rn. If A is compact then A is closed in Rn by Lemma B3.4, and
bounded by Lemma B5.1. Conversely, suppose that A is closed and bounded.
By boundedness, A ⊆ [−M,M ]n for some M > 0. By Theorem B2.1, [−M,M ]
is compact. By Theorem B4.1 and induction, [−M,M ]n is compact. Since A is
closed in Rn, it is also closed in [−M,M ]n, so by Lemma B3.2, A is compact.�

Warning B5.3 This result is specific to Rn, and fails for many other metric
spaces. For instance, let X be an infinite set with the discrete metric. Then X
is closed in itself (of course!) and bounded, but by Example B1.4(vi), it is not
compact.

Examples B5.4 i. Let f1, . . . , fk : Rn → R be continuous functions. Then
the set

S = {x ∈ Rn : f1(x) = · · · = fk(x) = 0}

is closed in Rn, being the intersection of the closed sets f−1
i {0} (1 ≤ i ≤ k).

Hence S is compact if and only if S is bounded. Whether S is bounded
depends on the equations. For instance, the plane

{(x, y, z) ∈ R3 : x+ 2y − 5z = 0}

is unbounded and therefore not compact, but the ellipse

{(x, y, z) ∈ R3 : x+ 2y − 5z = 2x2 + 3y2 + 4z2 − 1 = 0}

is bounded and therefore compact.

ii. Similar statements can be made about subsets of Rn defined by non-strict
inequalities. For example, the unit ball {x ∈ Rn : x2

1 + · · · + x2
n ≤ 1} in

Rn is compact.
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iii. The Cantor set (or more properly Cantor space) C is the set of all
x ∈ [0, 1] such that x =

∑∞
n=1 an3−n for some a1, a2, . . . ∈ {0, 2}. In

other words, it consists of those numbers in [0, 1] that can be expressed
in ternary without using the digit 1. (One has to be careful how one says
this, as some numbers have more than one ternary expansion.)

As you may know from previous courses, C can also be described as the
intersection of the sets

[0, 1], [0, 1/3] ∪ [2/3, 1], [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], . . .

where at each stage we remove the open middle third from each of the
intervals remaining. These sets are all closed in R, so C is an intersection
of closed sets, hence closed. It is also bounded. Hence the Cantor set is
compact.
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B6 Compactness and quotients (and images)

For the lecture of Monday, 3 November 2014; part two of two

We turn to the last of our three ways of building new spaces from old: quotient
spaces.

Lemma B6.1 Let f : X → Y be a continuous map of topological spaces, with
X compact. Then fX is compact.

Less formally: the continuous image of a compact space is compact.

Proof We use Lemma B1.7 (as we invariably do when dealing with compactness
of a subspace). Let (Wi)i∈I be a cover of fX by open subsets of Y . Then⋃

i∈I
f−1Wi = f−1

⋃
i∈I

Wi ⊇ f−1fX = X,

so (f−1Wi)i∈I is an open cover of X. But X is compact, so there is some finite
subcover (f−1Wj)j∈J . We show that (Wj)j∈J covers fX. For let y ∈ fX:
then y = f(x) for some x ∈ X, and x ∈ f−1Wj for some j ∈ J , so that
y = f(x) ∈Wj . �

Corollary B6.2 Let X be a compact space and f : X → R a continuous func-
tion. Then f is bounded and (if X is nonempty) attains its bounds.

Proof Since X is compact, Lemma B6.1 implies that fX is compact, and
therefore closed and bounded by Theorem B5.2. Assume that X is nonempty.
Then fX is nonempty and bounded above, so has a supremum. Now supA ∈
Cl(A) whenever A ⊆ R is nonempty and bounded above (by Lemma A8.4), and
fX is closed, so sup fX ∈ fX. Hence f attains its upper bound, and similarly
its lower bound. �

Corollary B6.2 fulfils the promise made after Definition B1.2. By Theo-
rem B2.1, it has as a special case that any continuous function [a, b] → R is
bounded and attains its bounds.

Corollary B6.3 Every quotient of a compact space is compact.

Proof For any space X and equivalence relation ∼ on X, the natural surjection
X → X/∼ is continuous (Lemma A11.6), so this follows from Lemma B6.1. �

Examples B6.4 All the quotients of the square listed in Section A11 are com-
pact: the cylinder, the Möbius band, the torus, the Klein bottle, and the projec-
tive plane. The compactness of some of these can also be established by other
means. For example, the cylinder can alternatively be described as the prod-
uct S1 × [0, 1], and so is compact because it is the product of compact spaces
(Theorem B4.1). The same goes for the torus S1 × S1.

Secretly, compactness and Hausdorffness are ‘mirror-image’ or ‘dual’ or ‘com-
plementary’ conditions, in a way that I won’t be able to explain properly in this
course. But we will catch a few glimpses of their complementary nature. For
instance, we have seen that Hausdorffness guarantees that every sequence has
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at most one limit (Lemma A3.10), while compactness says—well, not quite that
every sequence has at least one limit, but something similar involving subse-
quences (in metric spaces, anyway). Another glimpse: you should be able to
persuade yourself that if you add more open sets to a Hausdorff topology, then
the result is still Hausdorff, while if you remove some open sets from a compact
topology, then the result is still compact.

The next few results give further hints of the interaction between compact-
ness and Hausdorffness.

Definition B6.5 Let X and Y be topological spaces. A function f : X → Y is
closed if for all closed V ⊆ X, the image fV ⊆ Y is also closed.

Lemma B6.6 Every continuous map from a compact space to a Hausdorff
space is closed.

Proof Let f : X → Y be a continuous map from a compact space X to a
Hausdorff space Y . Let V be a closed subset of X. By Lemma B3.2, V is
compact. So by Lemma B6.1, fV is compact. Then by Lemma B3.4, fV ⊆ Y
is closed. �

I made a big deal of the fact that a continuous bijection need not be a
homeomorphism. This is indeed important. But actually, there’s a common
situation where continuous bijections are automatically homeomorphisms:

Lemma B6.7 A continuous bijection from a compact space to a Hausdorff
space is a homeomorphism.

Proof Let f : X → Y be such a bijection. For each closed V ⊆ X, the preimage
(f−1)−1V of V under f−1 is fV , which is closed in Y by Lemma B6.6. So by
Lemma A4.4, f−1 is continuous. �

For example, any continuous bijection between compact Hausdorff spaces is
a homeomorphism. Since compact Hausdorff spaces are quite widespread, this
is a useful result.

Lemma B6.6 has a further useful consequence: it can help us to recognize
quotient spaces.

Proposition B6.8 Let f : X → Y be a continuous surjection from a compact
space X to a Hausdorff space Y . Then Y is homeomorphic to the quotient space
X/∼, where ∼ is the equivalence relation on X induced by f .

Corollary B6.3 also tells us that Y is compact.

Proof By Lemma A11.9, it suffices to show that for all W ⊆ Y , if f−1W is
open in X then W is open in Y . Since f−1(Y \W ) = X \ f−1W for all W ⊆ Y ,
an equivalent statement is that for all V ⊆ Y , if f−1V is closed in X then V is
closed in Y .

So, let V ⊆ Y with f−1V closed in X. By Lemma B6.6, ff−1V is closed in
Y . But f is surjective, so ff−1V = V , so V is closed in Y , as required. �

Examples B6.9 i. In Section A11, I claimed that the circle S1 is the quo-
tient of [0, 1] by the equivalence relation ∼ defined by x ∼ y if and only if
{x, y} = {0, 1} or x = y. Before and after Lemma A11.9, I discussed the
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difficulty of proving that the topology on S1 that it gets as a subspace of
R2 is the same as the topology that it gets as a quotient of [0, 1].

We can now prove it. Give S1 the subspace topology from R2 ∼= C.
Define f : [0, 1]→ S1 by f(x) = e2πix (x ∈ [0, 1]). Then f is a continuous
surjection from a compact space to a Hausdorff space, and the equivalence
relation ∼ on [0, 1] that it induces is the one described in the previous
paragraph. Hence by Proposition B6.8, S1 is the quotient space [0, 1]/∼.

ii. Similarly, the map

[0, 1]× [0, 1]
f×f−→ S1 × S1

(where f is as in (i)) is a continuous surjection from a compact space to a
Hausdorff space, so S1×S1 is homeomorphic to the quotient space ([0, 1]×
[0, 1])/∼, where ∼ is the equivalence relation induced by f × f . That
equivalence relation is exactly the one described in Example A11.5(iii).
So our two descriptions of the torus, as a quotient of the square and as
S1 × S1, are equivalent.
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B7 Compact metric spaces

For the lecture of Thursday, 6 November 2014

You already know quite a few results about compactness for metric spaces. Here,
we’ll reprove most or all of the results you’ve seen before. But perhaps we’ll
prove some theorems that are new to you, and perhaps you’ll meet here some
new proofs of familiar theorems.

Definition B7.1 A topological space X is sequentially compact if every
sequence in X has a convergent subsequence.

Warning B7.2 As we’ll prove, sequential compactness is equivalent to com-
pactness for metric spaces. However, there are examples of topological spaces
that are compact but not sequentially compact, and also topological spaces that
are sequentially compact but not compact. Sequences aren’t very effective tools
for probing an arbitrary topological space, as Example A3.9(iii) suggests.

Lemma B7.3 Let X be a metric space, let (xn)∞n=1 be a sequence in X, and
let x ∈ X. Then (xn) has a subsequence converging to x ⇐⇒ for every
neighbourhood W of x, there are infinitely many n such that xn ∈W .

Proof =⇒ is clear. For ⇐= , define integers n1 < n2 < · · · by putting n1 = 1
and, inductively, choosing nk+1 > nk such that d(xnk+1

, x) < 1/(k + 1) (which
the hypothesis guarantees we can do). Then (xnk

)∞k=1 converges to x. �

Proposition B7.4 A compact metric space is sequentially compact.

Proof Let X be a compact metric space and let (xn)∞n=1 be a sequence in X.
Suppose for a contradiction that (xn) has no convergent subsequence. Then by
Lemma B7.3, every x ∈ X has an open neighbourhood Ux such that {n ≥ 1 :
xn ∈ Ux} is finite. The open cover (Ux)x∈X of X has a finite subcover (Uz)z∈Z .
But then

Z+ = {n ∈ Z+ : xn ∈ X} =
⋃
z∈Z
{n ∈ Z+ : xn ∈ Uz},

which is a finite union of finite sets and therefore finite, a contradiction. �

Corollary B7.5 (Bolzano–Weierstrass) Every bounded sequence in Rn has
a convergent subsequence.

Proof Any bounded sequence in Rn is contained in [−M,M ]n for some M > 0,
which is compact by Theorem B5.2, and therefore sequentially compact. �

To prove that any sequentially compact metric space is compact, we intro-
duce a further concept.

Definition B7.6 Let (Ui)i∈I be a cover of a metric space X. A Lebesgue
number for the cover is a real number ε > 0 with the following property: for
all x ∈ X, there exists i ∈ I such that B(x, ε) ⊆ Ui.

Simply by definition of open set and cover, for each x ∈ X there exists ε > 0
such that for some i ∈ I, B(x, ε) ⊆ Ui. Here ε depends on x. A Lebesgue
number for the cover is an ε that works for all x at once.
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Example B7.7 Consider the cover
(
(n− 1, n+ 1)

)
n∈Z of R. This has 1/2 (or

indeed any positive real smaller than 1/2) as a Lebesgue number, since for any
real x, we can find some integer n such that (x− 1/2, x+ 1/2) ⊆ (n− 1, n+ 1).

However, not every cover, or even every open cover, has any Lebesgue num-
ber at all. Can you think of an example?

Lemma B7.8 Let X be a sequentially compact metric space. Then every open
cover of X has a Lebesgue number.

Proof Let (Ui)i∈I be an open cover of X. Suppose for a contradiction that it
has no Lebesgue number. Then for each n ≥ 1, we can choose xn ∈ X such
that B(xn, 1/n) is not a subset of any Ui. We can then choose a subsequence
(xnk

) of (xn) convergent to x, say. Since (Ui) is an open cover, we can next
choose i ∈ I and ε > 0 such that B(x, ε) ⊆ Ui. Then we can choose K ≥ 1
such that xnk

∈ B(x, ε/2) for all k ≥ K, and finally we can choose k ≥ K
such that 1/nk < ε/2. It follows that B(xnk

, 1/nk) ⊆ B(x, ε), since if y ∈ X
with d(xnk

, y) < 1/nk then d(x, y) ≤ d(x, xnk
) + 1/nk < ε/2 + ε/2 = ε. Hence

B(xnk
, 1/nk) ⊆ Ui, a contradiction. �

To finish the proof that sequentially compact metric spaces are compact, we
introduce another condition on metric spaces: total boundedness.

Definition B7.9 Let X be a metric space. For ε > 0, an ε-net on X is a subset
Z ⊆ X such that (B(z, ε))z∈Z covers X. We say that X is totally bounded if
for all ε > 0, there exists a finite ε-net on X.

As an exercise, you should show that a totally bounded metric space is always
bounded. But total boundedness is a stronger condition than boundedness:

Example B7.10 An infinite set with the discrete metric is bounded (because
all distances are ≤ 1) but not totally bounded (e.g. there is no finite 1/2-net).

Proposition B7.11 A sequentially compact metric space is totally bounded.

Proof Working by contradiction, let X be a sequentially compact metric space
that is not totally bounded. Then we can choose ε > 0 such that X has no
finite ε-net.

We construct a sequence (xn)∞n=1 recursively as follows. Let n ≥ 1 and
suppose that x1, . . . , xn−1 have been defined. Since {x1, . . . , xn−1} is not an
ε-net, we can choose xn ∈ X such that d(xi, xn) ≥ ε for all i < n.

Now (xn)∞n=1 is a sequence in X such that d(xm, xn) ≥ ε whenever m 6=
n. By sequential compactness, it has a subsequence converging to x, say. By
Lemma B7.3, there are infinitely many n ≥ 1 such that xn ∈ B(x, ε/2). But then
d(xm, xn) < ε for infinitely many pairs (m,n) with m 6= n, a contradiction. �

Proposition B7.12 A sequentially compact metric space is compact.

Proof Let X be a sequentially compact metric space and (Ui)i∈I an open cover
of X. By Lemma B7.8, this cover has a Lebesgue number ε. By Proposi-
tion B7.11, X has a finite ε-net Z. For each z ∈ Z, we can choose iz ∈ I such
that B(z, ε) ⊆ Uiz . Put J = {iz : z ∈ Z} ⊆ I. Then⋃

j∈J
Uj =

⋃
z∈Z

Uiz ⊇
⋃
z∈Z

B(z, ε) = X

(the last by definition of ε-net), so (Uj)j∈J is a finite subcover of (Ui)i∈I . �
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We now establish a third condition (or rather, pair of conditions) equivalent
to compactness: completeness together with total boundedness. Recall the
notion of completeness:

Definition B7.13 Let X be a metric space. A sequence (xn) in X is Cauchy
if for all ε > 0, there exists N such that for all m,n ≥ N , d(xm, xn) < ε. The
space X is complete if every Cauchy sequence in X converges.

(Conversely, a convergent sequence is always Cauchy, in any metric space.)

Lemma B7.14 A Cauchy sequence that has a convergent subsequence is itself
convergent.

Proof This was probably in Honours Analysis. If not, it’s a good exercise. �

Proposition B7.15 A sequentially compact metric space is complete.

Proof Let (xn) be a Cauchy sequence in a sequentially compact space. Then
(xn) has a convergent subsequence, so by Lemma B7.14, (xn) is convergent. �

We have now shown that

compact ⇐⇒ sequentially compact =⇒ complete and totally bounded,

and we just have the final ⇐= to prove. It amounts to the following lemma:

Lemma B7.16 In a totally bounded metric space, every sequence has a Cauchy
subsequence.

Proof Let X be a totally bounded metric space and (xn)n∈N a sequence in X.
By total boundedness, there is a finite cover of X by subsets of diameter ≤ 1 (for
instance, balls of radius 1/2), and the set N is infinite, so there must be some
element of this cover that contains xn for infinitely many values of n ∈ N. Hence
there is an infinite subset N1 of N such that d(xn, xm) ≤ 1 for all n,m ∈ N1.

Similarly, there is a finite cover of X by subsets of diameter ≤ 1/2, and
the set N1 is infinite, so there must be some infinite subset N2 of N1 such that
d(xn, xm) ≤ 1/2 for all n,m ∈ N2.

Continuing like this, we construct a chain N ⊇ N1 ⊇ N2 ⊇ · · · of infinite
subsets of N such that d(xn, xm) ≤ 1/k whenever n,m ∈ Nk.

Choose n1 ∈ N1. Since N2 is infinite, we can then choose n2 ∈ N2 with
n2 > n1. Then we can choose n3 ∈ N3 with n3 > n2. Continuing like this, we
construct n1 < n2 < · · · with nk ∈ Nk for all k. Then d(nk, nl) ≤ 1/k whenever
k ≤ l, so (xnk

)∞k=1 is a Cauchy subsequence of our original sequence (xn)∞n=1.�

Proposition B7.17 A totally bounded complete metric space is sequentially
compact.

Proof This is immediate from Lemma B7.16 and the definitions. �

Assembling all the results called ‘Proposition’ above, we arrive at:

Theorem B7.18 The following are equivalent for a metric space X:

i. X is compact;
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Figure B.3: One element of a (1/10)-net on the space X of Example B7.20.

ii. X is sequentially compact;

iii. X is complete and totally bounded. �

In particular, one way to prove that a metric space is compact is by show-
ing that it is complete and totally bounded. The next two examples sketch
applications of this strategy.

Example B7.19 Here, in outline, is an alternative proof of the Heine–Borel
theorem. One can show directly that every bounded subset of Rn is totally
bounded. On the other hand, R is complete, from which it can be shown that
Rn is complete; moreover, any closed subspace of a complete space is complete.
So, every closed subset of Rn is complete. Hence by Theorem B7.18, every
closed bounded subset of Rn is compact.

Example B7.20 An important use of the ‘complete and totally bounded’ for-
mulation of compactness is to prove that certain function spaces are compact.
This is the subject of the last chapter of Sutherland’s book. Unfortunately, we
don’t have time to go into it in this course, but here is the flavour.

Let X be the set of functions f : [0, 1] → [0, 1] that are distance-
decreasing: |f(s)−f(t)| ≤ |s−t| for all s, t ∈ [0, 1]. Give X the d∞ metric (also
called the sup metric or uniform metric), as in Example A1.2(iii). Like many
function spaces, X is complete. The distance-decreasing hypothesis guarantees
that X is totally bounded; for instance, any f ∈ X can be reasonably closely
approximated by a function like the one in Figure B.3, of which there are only
finitely many. It follows from Theorem B7.18 that X is compact.

We introduced the concept of Lebesgue number to help us prove that a
sequentially compact metric space is compact. But it has other uses too:

Proposition B7.21 Let f : X → Y be a continuous map of metric spaces.
Suppose that X is compact. Then f is uniformly continuous.

Proof Let ε > 0. For each x ∈ X, we can choose δx > 0 such that for all
x′ ∈ B(x, δx), d(f(x), f(x′)) < ε/2. Then

(
B(x, δx)

)
x∈X is an open cover

of the sequentially compact space X, and so has a Lebesgue number δ (by
Lemma B7.8). Let x, x′ ∈ X with d(x, x′) < δ. By definition of Lebesgue
number, B(x, δ) ⊆ B(z, δz) for some z ∈ X. Now x, x′ ∈ B(z, δz), so

d(f(x), f(x′)) ≤ d(f(x), f(z)) + d(f(z), f(x′)) < ε/2 + ε/2 = ε,

as required. �

This can also be proved without the use of Lebesgue numbers (as in Propo-
sition 5.8.2 of Sutherland), but the proof above is a bit shorter.
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Chapter C

Connectedness

C1 The definition of connectedness

For the lecture of Monday, 10 November 2014

Intuitively, a topological space is said to be ‘connected’ if it is all in one piece.
Of course, just about any topological space can be torn into two pieces; for
instance, R can be torn into the two pieces (−∞, 0) and [0,∞). But tearing a
space changes its topological nature. Connectedness means that the space does
not fall naturally into two or more pieces.

Let us consider more closely what this means. The real line R is intuitively
all in one piece. Why does the decomposition (−∞, 0) ∪ [0,∞) not contradict
this? It is because the point 0 of the second piece is a limit point of the first
piece. So, the two pieces are related topologically; the break between them is
not clean.

More specifically, suppose we have a topological space X and disjoint subsets
U and V , with U ∪ V = X. We should only think of this as separating X into
two independent pieces if no point in U is a limit point of V , and vice versa.
Equivalently, this means that Cl(U) is disjoint from V , and vice versa. Since
U ∪ V = X, that means that Cl(U) = U and Cl(V ) = V , or equivalently that
U and V are both closed—or equivalently again, that U and V are both open.

Trivially, we can write any space X as a disjoint union U ∪V of open subsets
by taking U = ∅ and V = X, or vice versa. We define a space to be connected
if there is no other way to do it.

Definition C1.1 A space X is connected if it is nonempty and if whenever
X = U ∪ V for some disjoint open subsets U and V , then U or V is empty. A
disconnected space is one that is not empty or connected.

Since connectedness is defined in terms of the topological structure alone, it
is a topological property.

Remark C1.2 According to these definitions, the empty set is neither con-
nected or disconnected. This convention is made for much the same reason that
the number 1 is not counted as either prime or composite; it is simply a matter
of convenience. (Connected spaces are something like prime numbers; they are
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the ones that cannot be broken down any further.) Many authors do not follow
this convention, and class ∅ as connected.

Examples C1.3 i. X = R \ {0} is disconnected, since (−∞, 0) and (0,∞)
are disjoint open subsets of X whose union is X.

ii. The space Q of rational numbers (topologized as a subspace of R) is dis-
connected. Put U = (−∞,

√
2) ∩ Q and V = (

√
2,∞) ∩ Q. Then U and

V are open in Q (by definition of subspace topology), U ∪ V = Q (since√
2 is irrational), and U ∩ V = ∅.

iii. Any discrete space X with two or more points is disconnected, since if we
choose x ∈ X then {x} and X \ {x} are disjoint nonempty open subsets
whose union is X.

iv. Any nonempty indiscrete space is connected.

v. As we prove in the next section, all intervals in R are connected.

There are several equivalent ways of phrasing the definition of connectedness,
and it will be useful to have all of them available. In preparation for stating
them, we prove a lemma.

Lemma C1.4 Let X be a topological space, and let U and V be disjoint open
subsets with U ∪ V = X. Let f be a function from X to another topological
space Y . Then f is continuous if and only if both f |U and f |V are continuous.

Recall that f |U denotes the restriction of f to U ; it is the function U → Y
defined by u 7→ f(u) (u ∈ U).

Proof For ‘only if’, write i : U → X for the inclusion function. Then f |U = f◦i.
But i is continuous (Lemma A9.9) and a composite of continuous functions is
continuous, so f |U is continuous, and similarly f |V .

For ‘if’, suppose that f |U and f |V are continuous. Let W be an open subset
of Y . Then

f−1W = (f−1W ∩ U) ∪ (f−1W ∩ V ) = f |−1
U W ∪ f |−1

V W.

Now f |−1
U W is open in U (since f |U is continuous), and U is open in X, so

f |−1
U W is open in X (by Lemma A9.5). Similarly, f |−1

V W is open in X. Hence
f−1W is the union of two sets open in X, and is therefore open in X itself. �

Lemma C1.5 For a nonempty topological space X, the following are equiva-
lent:

i. X is connected;

ii. the only subsets of X that are both open and closed are ∅ and X;

iii. every continuous map from X to a discrete space is constant;

iv. every continuous map from X to the two-point discrete space is constant.
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Proof For (i)⇒(ii), suppose that X is connected, and let U be an open and
closed subset of X. Then X is the disjoint union of open subsets U and X \U ,
so one of them is empty.

For (ii)⇒(iii), suppose that X satisfies (ii), and let f : X → D be a contin-
uous map to a discrete space D. Choose x ∈ X. Then {f(x)} is an open
and closed subset of D, so f−1{f(x)} is an open and closed subset of X.
But f−1{f(x)} is nonempty (since it contains x), so f−1{f(x)} = X. Hence
f(y) = f(x) for all y ∈ X.

Trivially, (iii)⇒(iv).
Finally, for (iv)⇒(i), suppose that X satisfies (iv), and let U and V be

disjoint open subsets of X with U ∪ V = X. Let {0, 1} denote the two-point
discrete space, and define a function f : X → {0, 1} by

f(x) =

{
0 if x ∈ U,
1 if x ∈ V.

Then f |U and f |V are continuous, so f is continuous by Lemma C1.4. Hence f
is constant, by (iv). It follows that U = X and V = ∅ or vice versa. �

Sometimes, one of these equivalent conditions is more convenient than an-
other. For instance, condition (iii) seems to be the most convenient one to use
in the following proof.

Lemma C1.6 Let X be a topological space. Let A and B be subspaces of X
with A ⊆ B ⊆ Cl(A). If A is connected then so is B.

Proof Since A is nonempty, so is B. Let f be a continuous map from B to a
discrete space D. Then f |A : A→ D is also continuous, and therefore constant
since A is connected; say f(a) = d for all a ∈ A. Now f and the constant
function d are continuous maps from B to the Hausdorff space D, and are equal
on the dense subset A, so by Corollary A8.12, they are equal on all of B. �

Example C1.7 Let A be the open unit disk in R2. We will eventually show
that A is connected. Let B be the union of A and any set of points on the unit
circle (the boundary of the unit disk). Then by Lemma C1.6, B is connected
too.

In Chapter B, we explored how the concept of compactness related to con-
structions such as subspaces, products and quotients. We can do the same for
connectedness, although the results here are rather easier.

Lemma C1.8 Let f : X → Y be a continuous map of topological spaces. If X
is connected then so is fX.

That is, a continuous image of a connected space is connected. In particular,
any quotient of a connected space is connected.

Proof First, fX is nonempty as X is. Now, by Proposition A9.10, the map
X → fX defined by x 7→ f(x) is also continuous, so it is enough to prove the
result when f is surjective. Under that assumption, let U and V be disjoint
open subsets of Y with U ∪ V = Y . Then f−1U and f−1V are disjoint open
subsets of X, so without loss of generality, f−1U = ∅; but f is surjective, so
U = ∅. �
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Proposition C1.9 The product of two connected spaces is connected.

Proof Let X and Y be connected spaces. Both X and Y are nonempty, so
X × Y is too. Let f be a continuous map from X × Y to a discrete space D.
We prove that f is constant. Let (x, y), (x′, y′) ∈ X × Y . Then {x} × Y is
homeomorphic to Y , hence connected; so f |{x}×Y is constant. In particular,
f(x, y) = f(x, y′). Similarly, since X is connected, f(x′, y′) = f(x, y′). Hence
f(x, y) = f(x′, y′), as required. �

Example C1.10 Once we have shown that real intervals [a, b] are connected
(which we will do in the next section), it will follow that all cuboids

[a1, b1]× [a2, b2]× · · · × [an, bn]

in Rn are connected. But in fact, we will later prove the more general result
that all convex subsets of Rn are connected.

We state one final basic lemma about connected spaces. Roughly, it says
that if you glue together several connected spaces, and the spaces all overlap
with each other, then the result is connected too.

Lemma C1.11 Let X be a nonempty topological space and (Ai)i∈I a family
of subspaces covering X. Suppose that Ai is connected for each i ∈ I and that
Ai ∩Aj 6= ∅ for each i, j ∈ I. Then X is connected.

Proof Let f be a continuous map from X to a discrete space D. For each i ∈ I,
we have the continuous map f |Ai

: Ai → D, and Ai is connected, so f |Ai
has

constant value di, say. But for each i, j ∈ I, we have Ai ∩ Aj 6= ∅, so di = dj .
Hence di is independent of i ∈ I, so that f is constant, as required. �

Example C1.12 The letter O is a quotient of [0, 1], so once we have shown
that real intervals are connected, it will follow from Lemma C1.8 that O is
connected. Gluing O to another line segment gives P, which by Lemma C1.11
is connected too. Finally, gluing P to a yet another line segment gives A, and
one more application of Lemma C1.11 then tells us that A is also connected.

Clearly, our most pressing task is to show that real intervals are indeed
connected. We do this in the next section.
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C2 Connected subsets of the real line

For the lecture of Thursday, 13 November 2014

We now show that nonempty real intervals are connected. In order to do that,
it will help to reflect on what an interval actually is. The following definition is
the most convenient:

Definition C2.1 A subset I ⊆ R is an interval if for x, y, z ∈ R,

(x ≤ y ≤ z and x, z ∈ I) =⇒ y ∈ I.

The next lemma says that this is equivalent to the much more explicit defi-
nition that you may be used to.

Lemma C2.2 Let I ⊆ R. Then I is an interval if and only if I is of one of
the following eleven types:

{a}, [a, b], [a, b), (a, b], (a, b),
[a,∞), (a,∞), (−∞, a], (−∞, a), (C:1)

∅, (−∞,∞),

where a, b ∈ R with a < b.

Proof ‘If’ is clear. For ‘only if’, suppose that I is an interval.
First assume that I is nonempty and bounded. Put a = inf I and b = sup I.

Certainly a ≤ b. If a = b then I = {a}; suppose, then, that a < b. I claim that
(a, b) ⊆ I. Indeed, let y ∈ (a, b). By definition of infimum, there exists x ∈ I
with x < y, and similarly there exists z ∈ I with y < z. So by definition of
interval, y ∈ I, proving the claim.

On the other hand, I ⊆ [a, b] by definition of infimum and supremum. So
(a, b) ⊆ I ⊆ [a, b], which means that I must be one of the sets in the first line
of (C:1).

The other cases, where I is empty or not bounded above and/or below, are
handled similarly. �

Back in Section A9, we saw that an open subset of an open subspace of a
space X is itself open in X (Lemma A9.5). I should have also included the
analogous fact for closed subsets, whose proof is very similar:

Lemma C2.3 Let X be a topological space and V ⊆ C ⊆ X. Suppose that V
is closed in C and C is closed in X. Then V is closed in X.

Proof We have V = S∩C for some closed subset S of X, by Lemma A9.7. But
then V is the intersection of two closed subsets of X, and is therefore closed in
X. �

We begin our proof of the connectedness of intervals with a special case.

Lemma C2.4 Let a, b ∈ R with a < b. Then there do not exist disjoint open
subsets A and B of [a, b] such that A ∪B = [a, b], a ∈ A, and b ∈ B.
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Proof Suppose that such an A and B do exist. Then A and B are both closed in
[a, b], since, for instance, A = [a, b]\B and B is open in [a, b]. So by Lemma C2.3,
A and B are both closed in R.

Since A is a nonempty subset of R, bounded above by b, it has a supremum
s ≤ b. The supremum of a subset of R always lies in its closure in R, and A
is closed in R, so s ∈ A. Now (s, b] is a subset of [a, b] disjoint from A, so
(s, b] ⊆ B. But B is closed in R, so B contains the closure of (s, b] in R, which
is [s, b]. Hence s ∈ A ∩B = ∅, a contradiction. �

Remark C2.5 When we have a topological space X and subsets A ⊆ I ⊆ X,
the notation Cl(A) does not specify whether the closure is intended to be taken
in I or in X. For this reason, I have avoided this notation in the proof above
(where I = [a, b] and X = R). If we wanted to distinguish the two, we could
write ClI(A) and ClX(A). There can be a difference: e.g. if A = I = (0, 1) and
X = R then ClI(A) = (0, 1) and ClX(A) = [0, 1]. But there is no difference
when I is closed in X, as one can show using Lemma C2.3.

Proposition C2.6 A subset of R is connected if and only if it is a nonempty
interval.

Proof First let X be a connected subset of R. Let x ≤ y ≤ z be real numbers
with x, z ∈ X. If y 6∈ X then (−∞, y) ∩ X and (y,∞) ∩ X are disjoint open
subsets of X whose union is X, and are both nonempty since x belongs to the
first and z to the second. This contradicts X being connected; so y ∈ X after
all.

Now let I ⊆ R be a nonempty interval. Let U and V be disjoint open subsets
of I with U ∪ V = I. Suppose for a contradiction that U and V are nonempty;
choose a ∈ U and b ∈ V . We may assume without loss of generality that a < b
(otherwise swap the names of U and V ). Put A = U ∩ [a, b] and B = V ∩ [a, b].
Then A and B are disjoint nonempty open subsets of [a, b] with A ∪B = [a, b],
a ∈ A, and b ∈ B, contradicting Lemma C2.4. �

Corollary C2.7 (Intermediate value theorem) Let f : [a, b]→ R be a con-
tinuous function, and let y ∈ R with f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). Then
there exists c ∈ [a, b] such that f(c) = y.

Proof By the ‘if’ part of Proposition C2.6, [a, b] is connected, so by continuity
of f and Lemma C1.8, f [a, b] is connected. Now by the ‘only if’ part of Propo-
sition C2.6, f [a, b] is an interval. The result now follows from the definition of
interval. �

Remark C2.8 Here, we have derived the intermediate value theorem from the
connectedness of intervals. But the chain of reasoning can also be reversed: the
connectedness of intervals can be derived from the intermediate value theorem.

Indeed, assume the intermediate value theorem and let I be a nonempty
interval. To prove that I is connected, take a continuous map f from I to the
two-point discrete space {0, 1}. We can regard {0, 1} as a subset of R, and
the subspace topology is discrete, so the inclusion i : {0, 1} → R is continuous.
Hence i ◦ f : I → R is a continuous map taking only the values 0 and 1. The
intermediate value theorem then implies that i ◦ f , hence f , is constant.

Which one to prove first is a matter of taste. My own feeling is that the
connectedness of intervals is a more fundamental fact than the intermediate
value theorem, and should therefore occupy the primary position.
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If you take Algebraic Topology, you will meet the excellent Brouwer fixed
point theorem. This says that every continuous map B̄n → B̄n has a fixed
point, where

B̄n = {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n ≤ 1}

is the closed Euclidean n-ball. (A fixed point of a map f : X → X is a point
x ∈ X such that f(x) = x.) We do not have the tools to prove this, but we can
at least prove the one-dimensional case.

Corollary C2.9 (One-dimensional Brouwer fixed-point theorem)
Every continuous map [0, 1]→ [0, 1] has at least one fixed point.

Proof Let f : [0, 1] → [0, 1] be a continuous map. Define g : [0, 1] → R by
g(x) = f(x)− x. Then g(1) ≤ 0 ≤ g(0), so by the intermediate value theorem,
g(c) = 0 for some c ∈ [0, 1]. Hence f(c) = c. �

Similarly, methods of algebraic topology can be used to show that Rn and
Rm are never homeomorphic unless n = m. Indeed, something stronger is true:
if there is a continuous injection Rn → Rm then n ≤ m. (Why does this imply
the result about homeomorphism?) But again, all we are capable of proving with
our current technology is the one-dimensional case, as in Proposition C2.11.

Lemma C2.10 There is no continuous injection S1 → R.

Proof Suppose for a contradiction that there is a continuous injection f : S1 →
R. Choose distinct points a, b, c ∈ S1. Without loss of generality, f(a) < f(b) <
f(c). Let I be the arc between a and c in S1 that does not contain b (but does
contain its endpoints a and c). Then I is homeomorphic to a real interval, and
its image under f contains f(a) and f(c), so by the intermediate value theorem,
it also contains f(b). That is, there exists b′ ∈ I such that f(b′) = f(b). But
b′ 6= b (since b 6∈ I), so this contradicts f being injective. �

Proposition C2.11 Let n ≥ 2. Then there is no continuous injection Rn → R.

Proof There is a continuous injection S1 → Rn, so if there were a continuous
injection Rn → R then by composing, there would also be a continuous injection
S1 → R. This would contradict Lemma C2.10. �

In case it seems that we have just proved the obvious, note that there is a
continuous surjection R→ Rn for every n ≥ 2 (Sheet 4, q.7).

Connectedness can be a helpful tool in showing that two spaces are not
homeomorphic. Certainly, if one of the spaces is connected and the other is not,
then they are not homeomorphic. But even in situations where both spaces are
connected, we can use connectedness to distinguish between them. This is best
explained by some examples.

Examples C2.12 i. The intervals [0, 1) and (0, 1) are not homeomorphic.
To prove this, let us temporarily call a space X ‘good’ if it has the following
property:

there exists x ∈ X such that X \ {x} is connected.
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Clearly goodness is a topological property. The space [0, 1) is good, since
[0, 1) \ {0} is the connected space (0, 1). On the other hand, (0, 1) is not
good, since for all x ∈ X, the subspace (0, 1) \ {x} = (0, x) ∪ (x, 1) of R
is not an interval and therefore not connected (by Proposition C2.6). So
[0, 1) and (0, 1) are not homeomorphic.

ii. The letters T and L are not homeomorphic. (View both as closed bounded
subspaces of R2.) One way to prove this would be to consider the following
topological property of a space X:

there exists x ∈ X such that X \ {x} is in three pieces.

Although this seems to be satisfied by T but not L, the problem is that we
do not yet have a precise way of saying ‘in three pieces’. (We will soon.)
So let us consider this topological property of a space X instead:

there exist distinct x1, x2, x3 ∈ X such that X\{xi} is connected
for each i = 1, 2, 3.

We could call a point x of a space X ‘removable’ if X \ {x} is connected;
then the property is that X has at least three removable points. The space
T has the property, since its three endpoints are removable. On the other
hand, L does not, as if we take three distinct points of L then at least one
is not an endpoint, and is therefore not removable. So T and L are not
homeomorphic.

iii. We could attempt to prove that R2 and R3 are not homeomorphic by
considering the following topological property of a space X:

there exists a subspace Y of X such that Y ∼= R and X \ Y is
disconnected.

Certainly R2 has this property (e.g. take Y to be the y-axis). It seems
highly implausible that there could be a subspace Y of R3 such that Y ∼= R
and R3 \Y is disconnected, but it is not so easy to prove. Once again, this
kind of problem is best handled using the techniques of algebraic topology.
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C3 Path-connectedness

For the lecture of Monday, 17 November 2014

The physical space we exist in looks something like R3, the earth we walk on
resembles R2 (at least over small distances), and we perceive time as moving
along a line R. For these and other, more subtle, reasons, Euclidean spaces Rn
have a special place in mathematics as done by human beings.

For instance, a topological space is said to be an n-dimensional manifold
if it is Hausdorff and has an open cover by subsets each homeomorphic to an
open ball in Rn. Typical examples of 2-dimensional manifolds (surfaces) are the
sphere, the torus and the Klein bottle. Manifolds are enormously important in
mathematics, especially in subjects such as mathematical physics and algebraic
topology.

If we view topology through the lens of Euclidean space, it looks a little
different. For instance, spaces with the cofinite or Zariski topology look noth-
ing whatsoever like Euclidean space, and it becomes natural to simply ignore
them (perhaps by restricting attention to Hausdorff spaces). And, as we are
about to see, the Euclidean point of view suggests a variant on the notion of
connectedness.

Definition C3.1 i. Let X be a topological space. A path in X is a con-
tinuous map γ : [0, 1] → X. If γ(0) = x and γ(1) = y, we say that γ is a
path from x to y.

ii. A space X is path-connected if it is nonempty and for all x, y ∈ X,
there exists a path from x to y in X.

Lemma C3.2 Every path-connected space is connected.

Proof Let f be a continuous map from a path-connected space X to a discrete
space D. By Lemma C1.5, it is enough to show that f is constant. Indeed,
let x, y ∈ X. There is a path γ : [0, 1] → X from x to y, and f ◦ γ is then a
continuous map [0, 1]→ D. But [0, 1] is connected, so f ◦ γ is constant, and in
particular f(x) = f(γ(0)) = f(γ(1)) = f(y), as required. �

It is sometimes quite hard to prove that a connected space really is connected.
For example, how would you show that a disk in R2 cannot be expressed as a
union of disjoint nonempty open subsets? The lemma we have just proved can
be very useful in such situations.

Example C3.3 A subset X of Rn is convex if for all x, y ∈ X and t ∈ [0, 1],
we have (1− t)x+ ty ∈ X. (For example, the convex subsets of R are precisely
the intervals; see Definition C2.1.) Every convex subset of Rn is path-connected,
since t 7→ (1 − t)x + ty defines a path from x to y in X. Hence every convex
subset of Rn is connected.

Given paths γ from x to y and δ from y to z in a space X, we can join them
together (concatenate them) to form a new path γ∗δ from x to z (Figure C.1).
If we think of γ as a point moving from x to y over a period of one second, and
similarly δ, then γ∗δ performs γ at double speed in the first half-second, followed

76



x

y

z

γ

δ

Figure C.1: Concatenating paths.

by δ at double speed in the second half-second. Formally, the concatenation
γ ∗ δ : [0, 1]→ X is defined by

(γ ∗ δ)(t) =

{
γ(2t) if t ∈ [0, 1/2]

δ(2t− 1) if t ∈ [1/2, 1].

Note that the two cases agree at t = 1/2, and that γ ∗ δ is continuous (that is,
a path) by Sheet 5, q.1(ii).

Example C3.4 For n ≥ 2, the space X = Rn \ {0} is path-connected. Indeed,
let x, y ∈ Rn. If x, y and 0 are not collinear, the straight line segment from x to
y defines a path from x to y in X. If they are collinear, we may choose a point
z ∈ X not on the straight line containing x, y and 0 (since n ≥ 2). The straight
line from x to z does not pass through 0, and therefore defines a path γ from x
to z in X. Similarly, the straight line from z to y defines a path δ from z to y
in X. So γ ∗ δ is a path from x to y in X, as required.

Since R \ {x} is not connected (let alone path-connected) for any x ∈ R,
this provides another proof that Rn is not homeomorphic to R when n ≥ 2.
(Compare Proposition C2.11.)

We have shown that path-connectedness implies connectedness. The con-
verse is false: there are topological spaces (even subsets of Rn) that are con-
nected but not path-connected. So path-connectedness is a stronger condition.

To prove this, we use a lemma that has nothing to do with connectedness.

Lemma C3.5 Let f : X → Y be a continuous map between topological spaces.
Then the subspace

{(x, y) ∈ X × Y : f(x) = y} (C:2)

of X × Y is homeomorphic to X.

This subspace (C:2) is called the graph of f . (If you don’t see why, draw a
picture!)

Proof Write Γf = {(x, y) ∈ X × Y : f(x) = y}. Define functions

p : Γf → X
(x, y) 7→ x,

q : X → Γf
x 7→ (x, f(x)).

Evidently p ◦ q = idX and q ◦ p = idΓf
, so it remains to show that p and q are

continuous.
Write i : Γf → X×Y for the inclusion function (as defined in Remark A9.8).

Then p is the composite of i : Γf → X×Y with the first projection map X×Y →
X. Both the inclusion and the projection are continuous, so p is continuous.

77



Figure C.2: The topologist’s sine curve.

To show that q is continuous, it is enough to show that i ◦ q : X → X × Y is
continuous (by Proposition A9.10). But (i ◦ q)(x) = (x, f(x)) = (idX(x), f(x))
(x ∈ X), and both idX and f are continuous, so q is continuous by Proposi-
tion A10.9. �

Example C3.6 Define subspaces L, C and X of R2 by

L = {(0, y) ∈ R2 : −1 ≤ y ≤ 1},
C = {(x, sin(1/x)) ∈ R2 : x > 0},
X = L ∪ C.

The space X is called the topologist’s sine curve (Figure C.2). We show that
it is connected but not path-connected.

To show that is connected, first note that C is homeomorphic to (0,∞), by
Lemma C3.5. Hence C is connected. Claim: the closure of C in R2 contains L.
Proof: let (0, y) ∈ L (so that y ∈ [−1, 1]) and ε > 0. There exists z > 1/ε such
that sin z = y. Putting x = 1/z gives (x, y) ∈ C and d2((0, y), (x, y)) = |x| < ε,
proving the claim. Hence the closure of C in R2 contains X. (In fact, it is
X, although we do not need to know this.) Since C is connected, Lemma C1.6
implies that X is connected too.

To prove that X is not path-connected, we show that there is no path
in X from (0, 0) to (1/π, 0). Suppose, for a contradiction, that γ is such a
path, and write γ(t) = (γ1(t), γ2(t)) (t ∈ [0, 1]). By Proposition A10.9, the
maps γ1, γ2 : [0, 1] → R are continuous. By compactness of [0, 1] and Propo-
sition B7.21, γ2 is uniformly continuous, so there exists δ > 0 such that
|γ2(t) − γ2(t′)| < 2 whenever t, t′ ∈ [0, 1] with |t − t′| < δ. Choose a posi-
tive integer N such that 1/N < δ.

(The idea now is to partition the interval [0, 1] into subintervals
[0, 1/N ], [1/N, 2/N ], . . . , [(N − 1)/N, 1]. The function γ2 cannot vary too much
on any of these subintervals, and this will prevent it from attaining all the
peaks and troughs of the graph. For the argument that follows, recall that
sin((2k + 1/2)π) = 1 and sin((2k + 3/2)π) = −1 for all integers k.)

Since γ1 is a path from 0 to 1/π in R, the intermediate value theorem implies
that for each k ≥ 1, there exists tk ∈ [0, 1] such that γ1(tk) = 1/(2k + 1/2)π.
Since there are infinitely many integers k ≥ 1, there must exist some i ∈
{1, . . . , N} such that the interval [(i − 1)/N, i/N ] contains tk for at least two
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values of k; say tk, tm ∈ [(i− 1)/N, i/N ] with 1 ≤ k < m. We have

1/(2k + 1/2)π > 1/(2k + 3/2)π > 1/(2m+ 1/2)π,

so by the intermediate value theorem again, there exists t between tk and tm
such that γ1(t) = 1/(2k+3/2)π. But then |γ2(tk)−γ2(t)| = |1− (−1)| = 2 with
|tk − t| ≤ 1/N < δ, a contradiction, as required.

On the other hand, there are reasonable hypotheses under which connected
spaces are automatically path-connected. We first give a necessary and suffi-
cient condition for a general space to be path-connected, then give a sufficient
condition for subsets of Rn.

Proposition C3.7 Let X be a topological space. Then X is path-connected if
and only if X is connected and every point of X has at least one path-connected
neighbourhood.

Proof If X is path-connected then as we have already seen, X is connected,
and X itself is a path-connected neighbourhood of every point.

Conversely, suppose that X is connected and that every point has a path-
connected neighbourhood. Let x ∈ X, and write

U = {y ∈ X : there exists a path from x to y in X}.

We show that both U and X \U are open in X. Since x ∈ U , it will follow that
U = X, and therefore that X is path-connected.

To show that U is open, let y ∈ U . Then we may choose a path γ from x to
y. Also, by hypothesis, we may choose a path-connected neighbourhood W of
y. For each w ∈ W , there is a path from y to w; concatenating it with γ gives
a path from x to w. Hence W ⊆ U . So by Lemma A2.9, U is open in X.

The argument that X \ U is open is similar. Let y ∈ X \ U . By hypothesis,
we may choose a path-connected neighbourhood W of y. Then W ⊆ X \U : for
if w ∈ U ∩W then there exist paths from x to w and from w to y, which when
concatenated give a path from x to y, contradicting the fact that y 6∈ U . So by
Lemma A2.9 again, X \ U is open in X. �

Corollary C3.8 Every connected open subset of Rn is path-connected.

Proof Let U be a connected open subset of Rn. For each x ∈ U , we can choose
ε > 0 such that B(x, ε) ⊆ U ; and B(x, ε) is convex, hence path-connected. So
by Proposition C3.7, U is path-connected. �

Path-connectedness has some of the same convenient properties as connect-
edness:

Lemma C3.9 Let f : X → Y be a continuous map of topological spaces. If X
is path-connected then so is fX.

Proof Let y, y′ ∈ fX. Then y = f(x) and y′ = f(x′) for some x, x′ ∈ X. Since
X is path-connected, there is a path γ : [0, 1] → X from x to x′ in X. Then
f ◦ γ : [0, 1]→ Y is a path from y to y′ in Y . �

Proposition C3.10 The product of two path-connected spaces is path-
connected.

Proof See Sheet 5. �
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C4 Connected-components and path-components

For the lecture of Thursday, 20 November 2014

Suppose we have before us two spaces, X and Y . If X is connected and Y is not,
then we know that they cannot be homeomorphic. However, what if both are
disconnected, but they fall into different number of pieces? We would like to be
able to conclude then that X is not homeomorphic to Y . For instance, Exam-
ple C2.12(ii) was one such situation, but we did not have the formal language
to make the argument precise. We develop it here.

Let X be a topological space. The connectedness relation on X is the
binary relation ∼ on X defined by x ∼ y if and only if there exists a connected
subspace C ⊆ X such that x, y ∈ C.

Lemma C4.1 The connectedness relation on a topological space is an equiva-
lence relation.

Proof Let X be a topological space. For reflexivity: given x ∈ X, the subspace
{x} of X is connected and contains x. Symmetry is immediate. For transitivity,
let x, y, z ∈ X, and suppose we have connected subspaces C and D of X such
that x, y ∈ C and y, z ∈ D. By Lemma C1.11, C ∪ D is connected too, and
x, z ∈ C ∪D. �

The equivalence classes of the connectedness relation on X are called the
connected-components of X. Each point x ∈ X is therefore contained in
precisely one connected-component, which we call the connected-component of
x.

The next lemma expresses the idea that splitting a space into its connected-
components amounts to dividing it into the ‘biggest possible connected chunks’.

Lemma C4.2 Let X be a topological space.

i. Every connected-component of X is connected.

ii. Every connected-component C of X is maximal among the connected sub-
spaces; that is, if D is a connected subspace of X containing C then
D = C.

iii. Every maximal connected subspace of X is a connected-component.

So, the connected-components of a nonempty space are exactly the maximal
connected subspaces.

Proof Write ∼ for the connectedness relation on X.
For (i), let C be a connected-component of X. Since C is an equivalence

class, it is nonempty, so we can choose some x ∈ C. For each y ∈ C, we have
x ∼ y, so there exists a connected subspace Dy of X such that x, y ∈ Dy. For
each y ∈ C, we have x ∼ z for all z ∈ Dy; but C is the equivalence class of x,
so Dy ⊆ C. Hence C =

⋃
y∈C Dy. By Lemma C1.11, this union is connected,

so C is connected.
For (ii), let C be a connected-component of X and D a connected subspace

of X containing C. Again, since C is an equivalence class, it is nonempty, so we
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can choose some x ∈ C. Then x ∼ y for all y ∈ D, by definition of ∼. But C is
the equivalence class of x, so D ⊆ C, so D = C.

For (iii), let C be a maximal connected subspace of X. Then C is nonempty
(being connected), so we can choose a point x ∈ C. We have x ∼ y for every
y ∈ C (since C is a connected subspace containing x and y), so C is a subset of
the connected-component of x. On the other hand, the connected-component
of x is connected, so by maximality, C is equal to the connected-component of
x. �

Lemma C4.3 A topological space is connected if and only if it has exactly one
connected-component.

Proof Let X be a topological space, and write ∼ for the connectedness relation
on X.

Suppose that X is connected. Then by definition, X is nonempty, so has at
least one connected-component. On the other hand, any two points x, y ∈ X
are contained in the connected subspace X of X, so x ∼ y. Hence X has exactly
one connected-component.

Conversely, suppose that X has exactly one connected-component. This
connected-component must be X itself, so by Lemma C4.2(i), X is connected.�

Lemma C1.6 states that if you add some limit points to a connected subspace,
it remains connected. We deduce:

Lemma C4.4 Every connected-component of a topological space is closed.

Proof Let C be a connected-component of a topological space X. By
Lemma C1.6, Cl(C) is also connected, and of course C ⊆ Cl(C). But C is
a maximal connected subspace of X, so Cl(C) = C. Hence C is closed. �

Examples C4.5 i. The connected-components of R \ {0} are (−∞, 0) and
(0,∞). Indeed, (−∞, 0) is certainly a connected subspace, and it is a max-
imal connected subspace, since any subspace of R\{0} containing (−∞, 0)
must have a strictly positive element, and is therefore disconnected.

ii. Similarly, the connected-components of R \ {0, 1} are (−∞, 0), (0, 1) and
(1,∞).

Here is a major theorem. It is the intuitively obvious statement that every
closed curve (loop) in the plane has an inside and an outside (Figure C.3). Once
again, this apparently obvious theorem is surprisingly hard to prove, and needs
the tools of algebraic topology. We do not attempt to prove it here.

Theorem C4.6 (Jordan curve theorem) Let L be a subspace of R2 home-
omorphic to the circle. Then R2 \L has exactly two connected-components, one
bounded and one unbounded.

Some spaces are highly fragmented:

Definition C4.7 A topological space is totally disconnected if every
connected-component is a one-element subset.

Equivalently, a space X is totally disconnected if and only if every connected
subspace has exactly one element. (Why is this equivalent?)
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Figure C.3: Inside or outside? (Image from Saunders Mac Lane, Mathematics:
Form and Function.)

Examples C4.8 i. We saw in Example C1.3(iii) that the only connected
discrete space is the one-element space. Since every subspace of a discrete
space is discrete, the only connected subspaces of a discrete space are those
with just one element. Hence every discrete space is totally disconnected.

ii. An example of a space that is totally disconnected but not discrete is Q.
It is not discrete, since, for instance, {0} is not open in Q. But it is totally
disconnected. Indeed, let x, y ∈ Q with x 6= y. Then x 6∼ y: for we can
choose an irrational number u ∈ R between x and y, and then whenever
C is a subset of Q containing x and y, we have disjoint nonempty open
subsets (−∞, u) ∩ C and (u,∞) ∩ C of C whose union is C, proving that
C is disconnected.

Let us write K(X) for the set of connected-components of X. (This is not
standard notation; there is none, as far as I know.) It is clear in principle
that the set of connected-components is a topological invariant (as defined in
Section A6): that is, if the spaces X and Y are homeomorphic then the sets
K(X) and K(Y ) are in bijection. This is because K(X) is defined purely in
terms of the topological structure of X.

So, for instance, if X has three connected-components and Y has two, then
X and Y are not homeomorphic, since there is no bijection between the three-
element set K(X) and the two-element set K(Y ). This proves that R \ {0, 1}
and R \ {0} are not homeomorphic.

Although it may be clear in principle that a homeomorphism between two
spaces leads to a bijection between their sets of connected-components, it is
worth examining more closely why this is the case.

Lemma C4.9 Let f : X → Y be a continuous map and x, x′ ∈ X. If x and x′

are in the same connected-component of X then f(x) and f(x′) are in the same
connected-component of Y .

Proof Let x and x′ be points in the same connected-component of X. Then
there is some connected subspace C ⊆ X such that x, x′ ∈ C. By Lemma C1.8,
fC is a connected subspace of Y , and clearly f(x), f(x′) ∈ fC. �

(Note that the image of a connected-component under a continuous map
must be connected, but need not be a connected-component. Can you think of
an example?)
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Write [x] for the connected-component of a point x ∈ X. Lemma C4.9 states
that given a continuous map f : X → Y , if [x] = [x′] then [f(x)] = [f(x′)]. So
we may define a function

K(f) : K(X)→ K(Y )

by
K(f)([x]) = [f(x)]

(x ∈ X).
Thus, a continuous map between topological spaces gives rise to a function

between their sets of connected-components. This process behaves well with
respect to composition and identities:

Lemma C4.10 i. Let X
f−→ Y

g−→ Z be continuous maps of topological
spaces. Then K(g ◦ f) = K(g) ◦K(f).

ii. Let X be a topological space. Then K(idX) = idK(X).

Proof For (i), both K(g ◦ f) and K(g) ◦ K(f) are functions K(X) → K(Z).
Let x ∈ X; we must show that

K(g ◦ f)([x]) = (K(g) ◦K(f))([x]).

The left-hand side is [(g ◦ f)(x)] = [g(f(x))]. The right-hand side is

K(g)
(
K(f)([x])

)
= K(g)([f(x)]) = [g(f(x))].

So the two sides are equal.
For (ii), both K(idX) and idK(X) are functions K(X)→ K(X). Let x ∈ X.

Then
K(idX)([x]) = [idX(x)] = [x] = idK(X)([x]),

as required. �

In the jargon, K is a functor from spaces to sets. Roughly speaking, this
means that K is a method for turning spaces into sets, and continuous maps
between spaces into functions between sets, with the properties in the lemma
just proved. If you take Algebraic Topology, you will meet some other important
functors, mostly turning spaces into groups.

Corollary C4.11 Let f : X → Y be a homeomorphism. Then K(f) : K(X)→
K(Y ) is a bijection.

Proof By Lemma C4.10,

K(f) ◦K(f−1) = K(f ◦ f−1) = K(idY ) = idK(Y ),

and similarly K(f−1) ◦ K(f) = idK(X). So K(f−1) is a two-sided inverse to
K(f), from which it follows that K(f) is a bijection. �

So we have now proved formally that if X and Y are homeomorphic then
there is a bijection between K(X) and K(Y ).

The notion of connected-component arises from the more basic notion of
connectedness. This process can be imitated with path-connectedness in place
of connectedness. Here is a quick sketch of how this works.

Let X be a topological space. The path relation on X is the binary relation
≈ on X defined by x ≈ y if and only if there exists a path from x to y in X.
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Lemma C4.12 The path relation on a topological space is an equivalence rela-
tion.

Proof Let X be a topological space. Reflexivity follows from the fact that for
every x ∈ X, the map [0, 1] → X with constant value x is a path from x to x.
Symmetry follows from the fact that if γ is a path from x to y in X then γ′ is a
path from y to x in X, where we define γ′(t) = γ(1− t) (t ∈ [0, 1]). Transitivity
follows from the fact that if γ is a path from x to y and δ is a path from y to z
then their concatenation γ ∗ δ is a path from x to z. �

The equivalence classes of the path relation on X are called the path-
components of X. Very much as in Lemma C4.2, they are the maximal
path-connected subspaces of X (Sheet 5). As in Lemma C4.3, a space is path-
connected if and only if it has exactly one path-component. But in contrast to
Lemma C4.4, the path-components of a space need not be closed: for instance,
the path-components of the topologist’s sine curve X (Example C3.6) are L and
C, and C is not closed in X.

We write π0(X) for the set of path-components of a topological space X.
(This is standard notation. In algebraic topology, there are also sets—in fact,
groups—called πn(X) for each n ≥ 1.) Just as for connected-components, we
have:

Lemma C4.13 Let f : X → Y be a continuous map and x, x′ ∈ X. If x and
x′ are in the same path-component of X then f(x) and f(x′) are in the same
path-component of Y .

Proof If x and x′ are in the same path-component of X then we can find a
path γ : [0, 1] → X from x to x′ in X. Then f ◦ γ : [0, 1] → Y is a path from
f(x) to f(x′) in Y . �

This enables us to define a function π0(f) : π0(X) → π0(Y ), sending the
path-component of x in X to the path-component of f(x) in Y . Just as for
connected-components, this satisfies the equations

π0(g ◦ f) = π0(g) ◦ π0(f), π0(idX) = idπ0(X),

from which it follows that if f : X → Y is a homeomorphism then
π0(f) : π0(X)→ π0(Y ) is a bijection. In particular, the set of path-components
is a topological invariant.

You will meet other, more powerful, topological invariants if you take Alge-
braic Topology next term.

∗ ∗ ∗
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