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§1 Introduction

§1.1 Motivation and Goals

Trigonometry is one of the main ways to solve a geometry problem. Although there are synthetic solutions,
trigonometry frequently offers an solution that is very easy to find - even in the middle of the AIME or USA(J)MO.
Here’s a fish we will be trying to chase:

Problem 1 (2016 AIME II Problem 14)

Equilateral 4ABC has side length 600. Points P and Q lie outside the plane of 4ABC and are on opposite
sides of the plane. Furthermore, PA = PB = PC, and QA = QB = QC, and the planes of 4PAB and
4QAB form a 120◦ dihedral angle (the angle between the two planes). There is a point O whose distance
from each of A,B,C, P, and Q is d. Find d.

Geometry in three dimensions often is very hard to visualize - that is why algebraic vectors are so useful (more
information in 3-D Geometry), being used as a way to easily manipulate such-things. A second such problem
follows:

Problem 2 (2014 AIME II Problem 12)

Suppose that the angles of 4ABC satisfy cos(3A) + cos(3B) + cos(3C) = 1. Two sides of the triangle have
lengths 10 and 13. There is a positive integer m so that the maximum possible length for the remaining
side of 4ABC is

√
m. Find m.

Note how it is impossible to solve this problem without knowledge of trigonometry - such problems will be there
on the AIME. And finally, here’s a third problem:

Problem 3 (2005 AIME II Problem 12)

Square ABCD has center O, AB = 900, E and F are on AB with AE < BF and E between A and
F,m∠EOF = 45◦, and EF = 400. Given that BF = p+ q

√
r, where p, q, and r are positive integers and r

is not divisible by the square of any prime, find p+ q + r.

Remark. A word of advice for those who intend to follow this document: almost all problems are from the AIME; a
few HMMT and USA(J)MO problems might be scattered in, but remember we go into a fair amount of depth here.
Many of the areas will have olympiad-style questions, but the underlying idea is that they could very well show up on
the AIME, and most definitely olympiads.

§1.2 Contact

If do you have questions, comments, concerns, issues, or suggestions? Here are two ways to contact naman12 or
freeman66:

1. Send an email to realnaman12@gmail.com and I should get back to you (unless I am incorporating your
suggestion into the document, then it might take a bit more time).

2. Send a private message to naman12 or freeman66 by either clicking the button that says PM or by going
here and clicking New Message and typing naman12 or freeman66.

Please include something related to Trigonometry AIME/USA(J)MO Handout in the subject line so
naman12 or freeman66 knows what you are talking about.
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§2 Basic Trigonometry

We’ll start out with a right triangle. It’s a nice triangle - we know an angle of 90◦. What about the other angles?
Let’s call one θ and the other one will be 90◦ − θ:

θ

90◦ − θ

a

b
c

The big question arises: how does θ even relate to a, b, c? That’s why we introduce trigonometric functions.
But first we need the unit circle.

§2.1 Trigonometry on the Unit Circle

Although these definitions are accurate, there is a sense in which they are lacking, because the angle θ in a right
triangle can only have a measure between 0◦ and 90◦. We need a definition which will allow the domain of the
sine function to be the set of all real numbers. Our definition will make use of the unit circle, x2 + y2 = 1. We
first associate every real number t with a point on the unit circle. This is done by “wrapping” the real line
around the circle so that the number zero on the real line gets associated with the point (0, 1) on the circle. A
way of describing this association is to say that for a given t, if t > 0 we simply start at the point (0, 1) and
move our pencil counterclockwise around the circle until the tip has moved t units. The point we stop at is
the point associated with the number t. If t < 0, we do the same thing except we move clockwise. If t = 0, we
simply put our pencil on (0, 1) and don’t move. Using this association, we can now define cos(t) and sin(t).

Using the above association of t with a point (x(t), y(t)) on the unit circle, we define cos(t) to be the function
x(t), and sin(t) to be the function y(t), that is, we define cos(t) to be the x-coordinate of the point on the unit
circle obtained in the above association, and define sin(t) to be the y coordinate of the point on the unit circle
obtained in the above association.

Example 2.1

What point on the unit circle corresponds with t = π
2 ?

Solution. One loop around the circle gives an angle of 2π, implying π
2 is one-fourth of a loop. This brings us to

the northernmost point of the circle, which gives a vertical component of 1 (because that is the radius of a unit
circle), and a horizontal component of 0. This implies cos π2 is 0, and sin π

2 is 1.

Exercise 2.2. What point on the unit circle corresponds with t = π? What therefore are cos(π) and sin(π)?
Hints: 92

Exercise 2.3. What point on the unit circle correspond with t = 3π
2 ? What therefore is cos(3π2 )? Hints: 72
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§2.2 Definitions of Trigonometric Functions

Let us first start with a quick definition of a few important parts of a right triangle:

Definition 2.4 (Hypotenuse) — The hypotenuse of a right triangle is the side across from the right angle.

Definition 2.5 (Leg) — A leg of a right triangle is a side adjacent to the right angle and not the hypotenuse.

Definition 2.6 (Sine) — The sine of an angle θ is written as sin(θ), and is equivalent to the ratio of the
length of the side across from the angle to the length of the hypotenuse.

y

x
θ

r y

Figure 1: The length of the side opposite the angle is represented with y and the length of the hypotenuse is
represented with r (which is also the radius of the circle).

Note that when this altitude to the x-axis is below the x-axis the sine of the angle is negative. When θ is
between 0◦ and 180◦ or 0 rad and π rad, then sin(θ) is positive. In addition, when θ is between 0◦ and 90◦,
sin(θ) can be viewed in the context of a right triangle as the ratio of the length side opposite the angle to the
length of the hypotenuse. To see this, think about how the radius of the unit circle is the hypotenuse of the
triangle in the first definition and how from there we can scale it up for larger hypotenuses without changing the
value of the sine.

Definition 2.7 (Cosine) — The cosine of an angle θ is written as cos(θ), and is equivalent to the ratio of
the length of the side adjacent to the angle (not the hypotenuse) to the length of the hypotenuse.

6
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y

x
θ

r

x

Figure 2: The length of the side adjacent to the angle is represented with x.

Similar to the sine, the cosine is negative when the point is to the left of the y-axis (i.e. for 90◦ < θ < 270◦). In
addition, for angles between 0◦ and 90◦, the cosine can be seen in the context of a right triangle as the ratio of
the lengths of the side adjacent to the angle over the hypotenuse of the triangle (again, think about scaling up
the unit circle).

Definition 2.8 (Tangent) — The tangent of an angle θ is written as tan(θ) and is equivalent to the ratio
of the length of the line segment opposite the angle to the length of the line segment adjacent to the angle
(that is not the radius of the circle, i.e. the hypotenuse).

y

x
θ

y

x
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The tangent is negative when exactly one of the sine cosine is negative. The tangent can also be seen as sin θ
cos θ .

Thinking about the right triangle definitions of sine and cosine, we can get that for angles between 0◦ and 180◦,
the tangent in a right triangle is equal to the ratio of the side opposite the angle to the side adjacent to the angle.

Definition 2.9 (SOH-CAH-TOA) — If a is the length of the side opposite θ in a right triangle, and b is the
length of the side adjacent to θ, and c is the length of the hypotenuse, then

sin(θ) = a
c

cos(θ) = b
c

tan(θ) = a
b

cot(θ) = b
a

sec(θ) = c
b

csc(θ) = c
a .

This is commonly memorized as SOH-CAH-TOA, where S represents sine, C represents cosine, T represents
tangent, all Os represent opposite (the leg opposite the angle), all As represent adjacent (the leg adjacent/-
touching the angle), and H represents hypotenuse. Using the above definition of sin(θ) and cos(θ), we can
similarly define

tan(θ) = sin(θ)
cos(θ)

cot(θ) = cos(θ)
sin(θ)

sec(θ) = 1
cos(θ)

csc(θ) = 1
sin(θ)

§2.3 Radian Measure

Definition 2.10 — [Radian] A radian is defined to be the measure of an angle in a unit circle with arc
length one.

Thus, a 90◦ angle corresponds to an angle of radian measure π
2 , since the distance one fourth of the way around

the unit circle is π
2 .

It is also useful to note that an angle of measure 1◦ corresponds with an angle of radian measure π
180 , since 90

of these would correspond to a right angle. Also, an angle of radian measure 1 would correspond to an angle of
measure

(
180
π

)◦
, since π

2 of these would correspond to a right angle. These facts are enough to help you convert
from degrees to radians and back, when necessary.

Exercise 2.11. What is the degree measure of the angle θ = π
6 ? Hints: 66

Exercise 2.12. What is the radian measure of the angle 225◦? Hints: 100

§2.4 Properties of Trigonometric Functions

8
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Theorem 2.13 (Trigonometric Properties)

The following are some properties of functions:

1. Range of sin(x) and cos(x): −1 ≤ sin(x) ≤ 1, −1 ≤ cos(x) ≤ 1.

2. cos(x) is Even: cos(−x) = cos(x).

3. sin(x) is Odd: sin(−x) = − sin(x).

4. Periodicity: sin(x+ 2π) = sin(x), cos(x+ 2π) = cos(x).

Remark 2.14. Don’t get fooled! sin2(x) doesn’t mean sin(sin(x)) – rather, it means (sin(x))2. But later, you will
learn that sin−1(x) 6= 1

sin(x) - it’s actually the angle y such that sin(y) = x. While this seems confusing for now, you

will get accustomed to it.

Proofs. 1. Take a look at the unit circle again:

y

x
θ

b
1

a

We can see that a and b are fully contained inside the unit circle. However, this means that |a| and |b| are
at most 1 (as they are contained in a circle radius 1). Thus, we get that

|x| ≤ 1 =⇒ −1 ≤ a ≤ 1,

|y| ≤ 1 =⇒ −1 ≤ b ≤ 1.

However, we know that a = sinx and b = cosx, so then we get

−1 ≤ sinx ≤ 1,

−1 ≤ cosx ≤ 1.

9
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Remark 2.15. Typically, when it is unambiguous, we will resort to writing sinx instead of sin(x). However, if
there is a chance of misinterpretation, we shall include parentheses.

2. Once again, we resort to the unit circle:

y

x
θ

−θ

1

1

b

We see this is just a reflection over the x-axis - in particular, the value of the x-coordinate, b, stays the
same. However, we know that this particular value is cos θ, so we get that cos θ = cos−θ = b.

3. Can you guess what we will use? The unit circle:

y

x
θ

−θ

1

1

a

−a

We see this is just a reflection over the x-axis - in particular, the value of the y-coordinate, a, becomes

10
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negative. However, we know that this particular value is sin θ, so we get that sin θ = − sin−θ = a.

4. Think of this visually - as 2π = 360◦, in reality, we are just going all the way around the circle, so indeed
the point corresponding to (cosx, sinx) also corresponds to (cos(2π + x), sin(2π + x)).

§2.5 Graphs of Trigonometric Functions

§2.5.1 Graph of sin(x) and cos(x)

Note that from the definition of sine and cosine, it is clear that the domain of each of these is the set of all
real numbers. Also, from the properties above, we know that the range of both of these is the set of numbers
between −1 and 1, and that the functions are periodic. This information, together with a few points plotted as
a guide, are enough to graph the two functions. Note that if we shift the graph of the sine function by π

2 units
to the left, we get the graph of the cosine function. This is related to the fact that sin(x− π

2 ) = cos(x), which
we will explore more later.

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

Figure 3: Graph of sinx

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

Figure 4: Graph of cosx
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§2.5.2 Graph of tan(x) and cot(x)

Note that the domain of tan(x) is the set of all real numbers except those at which cos(x) = 0. Thus, the points
π
2 , 3π

2 , and so on aren’t in the domain of tan(x). An easy way to characterize these points is to say that these
are all the points which have the form π

2 + kπ, where k is any integer. Thus the domain of the tangent function
is everything unless x = π

2 ,
3π
2 ,

5π
2 , . . ..

Exercise 2.16. What is the domain of cot(x)? Hints: 69

We can get a good grasp on the graph of tan(x) by plotting a few points and doing a careful analysis of the
limiting behavior when x is near π

2 and the other points that aren’t in the domain. Note that when x is a little
less than π

2 , sin(x) is close to 1, while cos(x) is close to zero (but is positive.)

−6 −4 −2 2 4 6

−10

−5

5

10

Figure 5: Graph of tanx

−6 −4 −2 2 4 6

−10

−5

5

10

Figure 6: Graph of cotx

§2.5.3 Graph of sec(x) and csc(x)

Like the tangent function, the domain of the secant function is the set of all real numbers except those which
make cos(x) equal to zero. Thus the domain of the secant function is the same as the domain of the tangent

12
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function. Also, the fact that the cosine function always has values between −1 and 1 tells us that sec(x) = 1
cos(x)

always has values less than or equal to −1 or greater than or equal 1. An analysis of the limiting behavior of
sec(x) near x = π

2 and −π2 and a few strategically plotted points leads to the graph of y = sec(x).

−6 −4 −2 2 4 6

−10

−5

5

10

Figure 7: Graph of secx

−6 −4 −2 2 4 6

−10

−5

5

10

Figure 8: Graph of cscx

§2.5.4 Notes on Graphing

These notes were contributed by AoPS User AOPS12345678910.

1. The amplitude of a graph that models a tangent equation f (i.e. f(x) = a tan(bx+ c) + d) is equivalent
to f

(
π
4

)
.

(
π
4 , 1
)

Figure 9: Graph of tanx. 1 is the amplitude in this case.
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2. When graphing secx, it helps to first sketch cosx. Similarly, when graphing cscx, it helps to first sketch
sinx.

Figure 10: Graph of secx, with cosx in dashed blue.

§2.6 Bounding Sine and Cosine

The following theorem is extremely trivial but extremely useful. It is analogous to the ”Trivial Inequality” of
trigonometry:

Theorem 2.17 (Bounds of sin θ and cos θ)

For all angles θ,
−1 ≤ sin θ ≤ 1,

−1 ≤ cos θ ≤ 1.

Remark 2.18. The angle θ is actually a Greek Letter, theta, and is typically used to represents angles.

Proof. Refer to Property 3 of Trigonometric Properties.

Exercise 2.19. Bound tan θ, cot θ, sec θ, and csc θ. Hints: 49 95

Exercise 2.20 (AIME 1991/4). How many real numbers x satisfy the equation 1
5 log2 x = sin(5πx)? Hints:

18 19

§2.7 Periodicity

From the graphs of sinx and cosx, one intuitively knows sine and cosine have periods.

14
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Theorem 2.21 (Periods of Trigonometric Functions)

The periods of the following functions are:

1. sine: 2π

2. cosine: 2π

3. tangent: π

4. cotangent: π

5. secant: 2π

6. cosecant: 2π

Notice that both of tan and cot actually have a period of π. That’s because (from the graphs) we have
sin(x+ π) = − sinx and cos(x+ π) = − cosx. Later, we’ll also see another way to prove it with algebra.

§2.8 Trigonometric Identities

Let me now list them out:

Theorem 2.22 (Even-Odd Identities)

For all angles θ,

• sin(−θ) = − sin(θ)

• cos(−θ) = cos(θ)

• tan(−θ) = − tan(θ)

• sec(−θ) = sec(θ)

• csc(−θ) = − csc(θ)

• cot(−θ) = − cot(θ)

Sketch of Proof. We’ve already seen the proof of the sin and cos. Now, the rest follows by expressing each
function in terms of sin and cos. For example,

tan(−θ) =
sin(−θ)
cos(−θ) = − sin θ

cos θ
= − tan θ

Theorem 2.23 (Pythagorean Identities)

For all angles θ,

• sin2 θ + cos2 θ = 1

• 1 + cot2 θ = csc2 θ

• tan2 θ + 1 = sec2 θ

15
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Proof. We consider the triangle 4ABC:

θ

90◦ − θ

a

b
c

C B

A

The Pythagorean Theorem tells us that
a2 + b2 = c2

or upon dividing by c2,
(a
c

)2
+

(
b

c

)2

= 1

We now can use SOH-CAH-TOA. This tells us sin θ = b
c and cos θ = a

c , so we can substitute to get

sin2(θ) + cos2(θ) = 1

We just use the definition of Tangent and Secant:

tan(θ) =
sin(θ)

cos(θ)

sec(θ) =
1

cos(θ)

Now, we get

1 + tan2(θ) = 1 +
sin2(θ)

cos2(θ)
=

sin2(θ) + cos2(θ)

cos2(θ)

However, by the first identity, we have that sin2(θ) + cos2(θ) = 1. Thus, we get

1 + tan2(θ) =
sin2(θ) + cos2(θ)

cos2(θ)
=

1

cos2(θ)
= sec2(θ)

The other one follows similarly. The definitions of Cotangent and Cosecant are:

cot(θ) =
cos(θ)

sin(θ)

csc(θ) =
1

sin(θ)

Now, we get

1 + cot2(θ) = 1 +
cos2(θ)

sin2(θ)
=

sin2(θ) + cos2(θ)

sin2(θ)

However, by the first identity, we have that sin2(θ) + cos2(θ) = 1. Thus, we get

1 + cot2(θ) =
sin2(θ) + cos2(θ)

sin2(θ)
=

1

sin2(θ)
= csc2(θ)

16
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Exercise 2.24 (AIME 1995/7). Given that (1 + sin t)(1 + cos t) = 5
4 , compute (1− sin t)(1− cos t). Hints:

61

Exercise 2.25. If cosx+ sinx = 0.2, compute cos4 x+ sin4 x. Hints: 60

Theorem 2.26 (Addition-Subtraction Identities)

For all angles α and β,

• sin(α± β) = sinα cosβ ± sinβ cosα

• cos(α± β) = cosα cosβ ∓ sinα sinβ

• tan(α± β) = tanα±tanβ
1∓tanα tanβ

Proof. The proof of these will feel pretty magical. That’s completely intended:

α

β

C B

A

D

E

F

G

We’ll use the above diagram to find our values. We let DB = 1. Then, we first note that

AD = sinβ,

AB = cosβ,

from right triangle ADB. Now, from right triangle ABC, we get

AC = AB sinα = cosβ sinα.

Now, we get that AFEC is a rectangle, so we must have that FE = AC = cosβ sinα. Furthermore, we have
that AF ‖ BC, so thus ∠FAG = ∠GBE = α. Thus, we must have that

∠DAF = 90◦ − ∠GAF = 90◦ − α,

17
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so
∠FDA = 90◦ − ∠DAF = α.

Now, we can use trigonometry on the right triangle 4DAF to get

DF = AD cosα = sinβ cosα.

Thus, we get from trigonometry on right triangle 4BDE

sin(α+ β) = DE = DF + FE = sinα cosβ + sinβ cosα.

Doing it for cos and tan are essentially the same and left as an exercise. Furthermore, an additional comment is
that to achieve the ± result, use the Even-Odd Identities.

Exercise 2.27. Verify cos(α+ β) = cosα cosβ − sinα sinβ. Hints: 26

Exercise 2.28. Verify tan(α+ β) = tanα+tanβ
1−tanα tanβ . Hints: 86

If we let α = β, then

Theorem 2.29 (Double Angle Identities)

For all angles α,

• sin 2α = 2 sinα cosα

• cos 2α = cos2 α− sin2 α = 2 cos2 α− 1 = 1− 2 sin2 α

• tan 2α = 2 tanα
1−tan2 α

• csc(2α) = csc(α) sec(α)
2

• sec(2α) = 1
2 cos2(α)−1 = 1

cos2(α)−sin2(α) = 1
1−2 sin2(α)

• cot(2α) = 1−tan2(α)
2 tan(α)

Exercise 2.30. Verify all the Double Angle Identities. Hints: 23

Exercise 2.31. The angle θ has the property that

sin θ + cos θ =
2

3
.

Compute sin 2θ. Hints: 70 90

Exercise 2.32. Determine all real 0 ≤ θ < 2π such tath

1 + sin 2θ = sin
(
θ +

π

4

)
.

Hints: 93 88

18
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Theorem 2.33 (Half Angle Identities)

For all angles θ,

• sin θ
2 = ±

√
1−cos θ

2

• cos θ2 = ±
√

1+cos θ
2

• tan θ
2 = ±

√
1−cos θ
1+cos θ = sin θ

1+cos θ = 1−cos θ
sin θ

Make sure to understand why we have the ±. We note that for any angle θ, cos 2θ = cos(2π+ 2θ) = cos 2(θ+ π).
However, we have that cos(π + θ) = − cos θ, and sin(π + θ) = − sin θ, so we must have the ±. These aren’t very
hard to show - they’re a direct application of the Double Angle Identities - try it as an exercise.

Exercise 2.34. Verify all the Half Angle Identities. Hints: 54

Theorem 2.35 (Sum to Product Identities)

For all angles θ and γ,

• sin θ + sin γ = 2 sin
θ + γ

2
cos

θ − γ
2

• sin θ − sin γ = 2 sin
θ − γ

2
cos

θ + γ

2

• cos θ + cos γ = 2 cos
θ + γ

2
cos

θ − γ
2

• cos θ − cos γ = −2 sin
θ + γ

2
sin

θ − γ
2

Proof. Let α = θ+γ
2 and β = θ−γ

2 . Then, we get

α+ β = θ

α− β = γ

so thus we can use Addition-Subtraction Identities to get

sin θ + sin γ = sin(α+ β) + sin(α− β) = (sinα cosβ + sinβ cosα) + (sinα cosβ − sinβ cosα) = 2 sinα cosβ =

and looking back at our definition of α, β, we get the first of the Sum to Product Identities. The rest follow
essentially the same proof and will be left as an exercise.

Another remark - the product-to-sum identities turn out to be extremely helpful when they slap a bunch of
trigonometric functions at you:
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Exercise 2.36. Verify the rest of the Sum to Product Identities.

Exercise 2.37 (ARML 1988). If 0◦ < x < 180◦ and cosx+ sinx = 1
2 , then find (p, q) such that tanx =

−p+
√
q

3 . Hints: 44

Exercise 2.38 (ARML). Compute sin 13◦+sin 47◦+sin 73◦+sin 107◦

cos 17◦ . Hints: 35

Exercise 2.39 (AIME I 2006/12). Find the sum of the values of x such that cos3 3x + cos3 5x =
8 cos3 4x cos3 x, where x is measured in degrees and 100 < x < 200. Hints: 47 22

Theorem 2.40 (Potpourri)

Some other identities:

1. sin(90− θ) = cos(θ)

2. cos(90− θ) = sin(θ)

3. tan(90− θ) = cot(θ)

4. sin(180− θ) = sin(θ)

5. cos(180− θ) = − cos(θ)

6. tan(180− θ) = − tan(θ)

7. (tan θ + sec θ)2 = 1+sin θ
1−sin θ

8. sin(θ) = cos(θ) tan(θ)

9. cos(θ) = sin(θ)
tan(θ)

10. sec(θ) = tan(θ)
sin(θ)

11. arctan(x) + arctan(y) = arctan

(
x+ y

1− xy

)

12. sin2(θ) + cos2(θ) + tan2(θ) = sec2(θ)

13. sin2(θ) + cos2(θ) + cot2(θ) = csc2(θ)

Most of these can be proved by Addition-Subtraction Identities, with a few of them following from Pythagorean
Identities.
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Exercise 2.41. Verify the identites given in the Potpourri.

Exercise 2.42. Compute the exact numerical value of

cos
π

9
cos

3π

9
cos

5π

9
cos

7π

9
.

Hints: 12 97

Exercise 2.43. Compute sin 18◦. Hints: 94 55

Exercise 2.44. Determine the sum of the values of tan θ for which 0 ≤ θ < π and 1 = 2004 cos θ · (sin θ −
cos θ). Hints: 46

These are oftentimes very useful, as we shall see in the following examples.

Example 2.45 (AIME I 2012/12)

Let 4ABC be a right triangle with right angle at C. Let D and E be points on AB with D between A and

E such that CD and CE trisect ∠C. If DE
BE = 8

15 , then tanB can be written as
m
√
p

n , where m and n are
relatively prime positive integers, and p is a positive integer not divisible by the square of any prime. Find
m+ n+ p.

B

A

C

E

D

Solution. Let CB = 1, and let the feet of the altitudes from D and E to CB be D′ and E′, respectively. Also,
let DE = 8k and EB = 15k. We see that BD′ = 15k cosB and BE′ = 23k cosB by right triangles 4BDD′
and 4BEE′. From this we have that D′E′ = 8k cosB. With the same triangles we have DD′ = 23k sinB

and EE′ = 15k sinB. From 30◦ − 60◦ − 90◦ triangles 4CDD′ and 4CEE′, we see that CD′ = 23k
√
3 sinB
3 and

CE′ = 15k
√

3 sinB, so D′E′ = 22k
√
3 sinB
3 . From our two values of D′E′ we get:

8k cosB =
22k
√

3 sinB

3
,

sinB

cosB
=

8k
22k
√
3

3

= tanB,

tanB =
8

22
√
3

3

=
24

22
√

3
=

8
√

3

22
=

4
√

3

11
.

Thus, m = 4, n = 3, p = 11, so 4 + 3 + 11 = 018 .
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That was a geometric problem. We’ll leave you with this problem, which is algebraic:

Exercise 2.46 (AIME II 2000/15). Find the least positive integer n such that

1

sin 45◦ sin 46◦
+

1

sin 47◦ sin 48◦
+ · · ·+ 1

sin 133◦ sin 134◦
=

1

sinn◦
.

Hints: 32 65 39

§3 Applications to Complex Numbers

Definition 3.1 (Complex Numbers) — A complex number is of the form z = a+ bi where a, b are real and
i =
√
−1 is the imaginary unit. It has a conjugate z = a− bi. Furthermore, it has magnitude |z| =

√
a2 + b2.

Theorem 3.2 (Complex Number Multiplication and Addition)

We multiply complex numbers w = a+ bi and z = c+ di as

wz = (ac− bd) + (ad+ bc)i

and add them as
w + z = (a+ c) + (b+ d)i

Proof. The second follows by the associative law of addition, while the first follows by using FOIL (First Inner
Outer Last) as well as the fact that i2 = −1.

Exercise 3.3 (AIME 1985/3). Find c if a, b, and c are positive integers which satisfy c = (a+ bi)3 − 107i,
where i2 = −1. Hints: 63

Exercise 3.4 (AIME 1988/11). Let w1, w2, . . . , wn be complex numbers. A line L in the complex plane is
called a mean line for the points w1, w2, . . . , wn if L contains points (complex numbers) z1, z2, . . . , zn such
that

n∑

k=1

(zk − wk) = 0.

For the numbers w1 = 32 + 170i, w2 = −7 + 64i, w3 = −9 + 200i, w4 = 1 + 27i, and w5 = −14 + 43i, there
is a unique mean line with y-intercept 3. Find the slope of this mean line. Hints: 78

Exercise 3.5 (AIME I 2009/2). There is a complex number z with imaginary part 164 and a positive
integer n such that

z

z + n
= 4i.

Find n. Hints: 37
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Theorem 3.6 (Euler’s Theorem)

For all angles θ,
eiθ = cos θ + i sin θ.

This is a very deep result that Euler proved from the Taylor Series (This is calculus - don’t worry) of ex, sinx,
and cosx. But let’s see some properties

Definition 3.7 (Polar Complex Numbers) — Every complex number can be expressed as z = reiθ for r = |z|.

Theorem 3.8 (Properties of Complex Numbers)

cis θ1 · cis θ2 = cis(θ1 + θ2).

Proof. Let complex numbers z1 = r1e
iθ1 and z2 = r2e

iθ2 . Then

z1z2 = r1r2e
i(θ1+θ2).

This directly implies
cis θ1 · cis θ2 = cis(θ1 + θ2).

The following are other useful properties:

Exercise 3.9. Show that w + z = w + z. Hints: 79

Exercise 3.10. Show that w · z = w · z. Hints: 74

Exercise 3.11. Show that |wz| = |w||z|. Hints: 59

Theorem 3.12 (De Moivre’s Theorem)

Let θ be an angle. Then
(cis θ)n = cis(nθ).

Proof. Use Properties of Complex Numbers n times, all on the angle θ.

Theorem 3.13 (Complex Form of Trigonometric Functions)

For some angle θ and constant k, defining z = cis θ,

cos kθ =
1

2

(
zk +

1

zk

)
,

and

sin kθ =
1

2i

(
zk − 1

zk

)
.
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Proof. From De Moivre’s Theorem, we get that if

cos kθ + i sin kθ = (cis θ)k = zk

cos kθ − i sin kθ = cos−kθ + i sin−kθ = (cis θ)−k = z−k

Adding these and dividing by 2 gives the first result. Subtracting these and dividing by 2i gives the second
result.

§3.1 Roots of Unity

Definition 3.14 (Root of Unity) — A root of unity is a root of the equation

ωn = 1.

We define ωk as the kth root of unity, ordered by their angle with respect to the positive x-axis counter-
clockwise.

These actually turn out to form a regualr polygon, as implied by the next theorem:

Theorem 3.15 (Roots of Unity)

Let ω be a solution to the equation
ωn = 1.

Then
ω = e

2kπi
n ,

where k = 0, 1, 2, . . . , n− 1. This of course implies there exist n solutions to this equation (which should be
intuitive from the Fundamental Theorem of Algebra).

ω0

ω1

ω2
ω3

ω4

ω5

ω6
ω7

ω8

Proof. This is more or less a direct consequence of De Moivre’s Theorem. We must have that if ω = cis θ, then

ωn = (cis θ)n = cisnθ = cis 2kπ

so in particular, we have that θ = 2πk
n . Now, note by taking 1 ≤ k ≤ n, we get n such distinct solutions. We

can’t have any more by the Fundamental Theorem of Algebra (see my Polynomials in the AIME Handout and
Appendix A).
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Exercise 3.16 (AIME I 2004/13). The polynomial P (x) = (1 + x+ x2 + · · ·+ x17)2 − x17 has 34 complex
roots of the form zk = rk[cos(2πak) + i sin(2πak)], k = 1, 2, 3, . . . , 34, with 0 < a1 ≤ a2 ≤ a3 ≤ · · · ≤ a34 < 1
and rk > 0. Given that a1 + a2 + a3 + a4 + a5 = m/n, where m and n are relatively prime positive integers,
find m+ n. Hints: 2

Exercise 3.17 (AIME 1990/10). The sets A = {z : z18 = 1} and B = {w : w48 = 1} are both sets of
complex roots of unity. The set C = {zw : z ∈ A and w ∈ B} is also a set of complex roots of unity. How
many distinct elements are in C? Hints: 102

Exercise 3.18 (AIME I 2002/15). Let P (x) = x+2x2+3x3 . . . 24x24+23x25+22x26 . . . x47. Let z1, z2, . . . , zr
be the distinct zeros of P (x), and let z2k = ak + bki for k = 1, 2, . . . , r, where ak and bk are real numbers. Let

r∑

k=1

|bk| = m+ n
√
p,

where m,n, and p are integers and p is not divisible by the square of any prime. Find m+n+p. Hints: 82 21

Theorem 3.19 (Vieta’s Formulas in Roots of Unity)

Let the n nth roots of unity be ω0, ω1, . . . , ωn. Then

n−1∑

k=0

Re(ωk) =
n−1∑

k=0

cos

(
θ0 +

2kπ

n

)
= 0,

n−1∑

k=0

Im(ωk) =
n−1∑

k=0

sin

(
θ0 +

2kπ

n

)
= 0.

n−1∏

k=0

ωk = (−1)n+1

Proof. Note that the ωk are the roots of the polynomial

zn − 1 = 0

so by Vieta’s Formulas (see my Polynomials in the AIME Handout and Chapter 3), we have that the last one
immediately follows and

n−1∑

k=0

ωk = 0.

To be formal, I would say that 1 and i are linearly independent over R, which means that we can seperate out
into real and imaginary parts. For those of you who aren’t linear algebra experts, it basically means that we
can’t cancel out 1 and i when adding them together, which gives us the first two.

Theorem 3.20 (Complex Trigonometric Products)

n−1∏

k=1

(1− ωk)(1 + ωk) = (−2i)n−1
n−1∏

k=1

sin θk.

25
Copyright © 2020 by Euclid’s Orchard. All rights reserved.

https://yu-dylan.github.io/euclid-orchard/Handouts/Polynomials_in_the_AIME.pdf


naman12 and freeman66 (May 26, 2020) Trigonometry in the AIME and the USA(J)MO

Proof. We note that for all z = reiθ,
zz = |z|2 = r2,

z + z = 2r cos θ,

z − z = 2ri sin θ.

Thus, if ωn = 1 or −1, then for all ωk = eiθk ,

(x− ωk)(x− ωn−k) = (x− ωk)(x− ωk) = x2 − 2x cos θk + 1,

(x+ ωk)(x+ ωn−k) = (x− ωk)(x+ ωk) = x2 − 2xi sin θk − 1.

If we plug in x = 1 and take the product over all ωk, we get

n−1∏

k=1

(1− ωk)(1 + ωk) = (−2i)n−1
n−1∏

k=1

sin θk.

as desired.

Exercise 3.21. Derive a similar equation for cosines. Hints: 24

Theorem 3.22 (Triple Angle Trig Theorem)

Let A,B,C be angles such that

sinA+ sinB + sinC = cosA+ cosB + cosC = 0.

Then 3 cos(A+B + C) = cos 3A+ cos 3B + cos 3B and 3 sin(A+B + C) = sin 3A+ sin 3B + sin 3C

Proof. This is one of the most coveted uses of complex numbers. We have that if we let

a = cosA+ i sinA = eiA

b = cosB + i sinB = eiB

c = cosC + i sinC = eiC

then a+ b+ c = 0. Noting the identity a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ac), we get

a3 + b3 + c3 = 3abc =⇒ e3iA + e3iB + e3iC = 3ei(A+B+C)

Breaking this into real and imaginary parts, we get the desired result.

Example 3.23

Find 2 cos 72◦.
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Solution. Let z = e
2kπ
5 . This implies

z5 = 1,

and z 6= 1, so
(z − 1)(z4 + z3 + z2 + z + 1) = 0,

z4 + z3 + z2 + z + 1 = 0.

Note that 2 cos 72◦ = z + 1
z . If we divide the equation above by z2, we get

z2 + z + 1 +
1

z
+

1

z2
= 0,

(
z2 +

1

z2

)
+

(
z +

1

z

)
+ 1 = 0,

(
z +

1

z

)2

+

(
z +

1

z

)
− 1 = 0,

which implies (
z +

1

z

)
=
−1 +

√
5

2
.

Note that we find that the other root doesn’t work from bounding cos 72◦ (i.e. it is positive from 0◦ to 90◦).

Example 3.24 (AIME II 2005/9)

For how many positive integers n less than or equal to 1000 is (sin t+ i cos t)n = sinnt+ i cosnt true for all
real t?

Solution. We note that this looks a lot like De Moivre’s Theorem - if only we could get it in that form! Well, we
know

sinx = cos
(π

2
− x
)

so we basically have

cosn
(π

2
− t
)

+ i sinn
(π

2
− t
)

= (cos
(π

2
− t
)

+ i sin
(π

2
− t
)n

= (sin t+ i cos t)n = sinnt+ i cosnt

Now, it really boils down to finding the solutions to cosx = sin y, right? But what are they? Fortunately, we
can use our above observation again to get

cosx = cos
(π

2
− y
)

Now, we note that cos a = cos b if and only if a− b or a+ b is a multiple of 2π. Thus, we get that

2πk = x+
π

2
− y

or
2πk = x+ y − π

2
Thus, we have that either

2πk = n
(π

2
− t
)

+ nt− π

2
=

(n+ 1)π

2

2πk = n
(π

2
− t
)
− nt− π

2
=

(n− 1)π

2
− 2nt

The second can’t hold for all t, so the first one is our only possibility. But that’s not too hard to find - it’s just
all n ≡ 1 (mod 4). This gives us 250 solutions.
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Example 3.25 (AIME I 2012/6)

The complex numbers z and w satisfy z13 = w, w11 = z, and the imaginary part of z is sin mπ
n , for relatively

prime positive integers m and n with m < n. Find n.

Solution. Well, we should be easily able to do this. We have that z = z11·13 = z143, so it is a 142 root of unity.
Thus, it is in the form

cos
2πk

142
+ i sin

2πk

142

Thus, the answer is 71 (don’t forget to divide by 2!)

Here’s a few exercises to test you: none of them are from the AIME.

Exercise 3.26. What is the value of sin 20◦ sin 40◦ sin 80◦? Hints: 15

Exercise 3.27 (Lagrange’s Trigonometric Identity). For all angles θ and positive integer n,

1 + cos θ + cos 2θ + . . .+ cosnθ =
1

2
+

sin
[
(2n+ 1) θ2

]

2 sin
(
θ
2

) ,

and derive a similar expression for sine. Hints: 28

Exercise 3.28 (Generalized ARML 2013). Let a = cos 2π
7 , b = cos 4π

7 , and c = cos 8π
7 . Then compute

ab+ bc+ ca and a3 + b3 + c3. Hints: 76

Exercise 3.29 (PUMaC 2010/7). The expression sin 2◦ sin 4◦ sin 6◦ . . . sin 90◦ is equal to p
√
5

250
, where p is

an integer. Find p. Hints: 71

Exercise 3.30. Let ω = e
2πi
101 . Evaluate the product

∏

0≤p<q≤100
(ωp + ωq).

Hints: 41

Exercise 3.31. ABCDEFG is a regular heptagon inscribed in a unit circle. Compute the value of the
following expression:

AB2 +AC2 +AD2 +AE2 +AF 2 +AG2.

Hints: 56 27

§4 Applications to Planar Geometry

§4.1 Direct Applications
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Theorem 4.1 (Trigonometric Laws)

In triangle ABC with a = BC, b = CA, c = AB,

• Law of Sines: a
sinA = b

sinB = c
sinC

• Law of Cosines: a2 = b2 + c2 − 2bc cosA

• Law of Tangents:
tan (A−B

2 )
tan (A+B

2 )
= a−b

a+b

Theorem 4.2 (Extended Law of Sines)

Let ABC be a triangle with sides a, b, and c, and of circumradius R. Then

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Proof. In the diagram below, point O is the circumcenter of 4ABC. Point D is on BC such that OD is
perpendicular to BC. Since 4ODB ∼= 4ODC, BD = CD = a

2 and ∠BOD = ∠COD. But 2∠BAC = ∠BOC
making ∠BOD = ∠COD = θ. We can use simple trigonometry in right triangle 4BOD to find that

sin θ =
a
2

R
⇐⇒ a

sin θ
= 2R.

The same holds for b and c, thus establishing the identity.

A

B CD

O

a/2

R θ

θ

Law of Cosines has been listed before, so to avoid repetition I will not list it again.
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Theorem 4.3 (Ratio Lemma)

Let D be a point on BC in triangle ABC. Then

DB

DC
=
AB

AC
· sin∠DAB

sin∠DAC
.

A

B CD

Theorem 4.4 (Trig Ceva)

Let ABC be a triangle with points D,E, and F on sides BC,AC, and AB respectively of triangle ABC.
Line segments AD,BE, and CF are concurrent if and only if

sin∠BAC sin∠ACF sin∠CBE
sin∠DAC sin∠FCB sin∠EBA

= 1.

Sketch of Proof. From Regular Ceva’s, start to apply Law of Sines everywhere fathomable.

Theorem 4.5 (Quadratic Formula of Trigonometry)

Let
a cos θ + b sin θ = c.

Then

cos θ =
ac± b

√
a2 + b2 − c2

a2 + b2
,

sin θ =
bc±

√
a2 + b2 − c2
a2 + b2

Proof. Just solve
a cos θ + b sin θ = c

and
cos2 θ + sin2 θ = 1

It’s not fun, but it’ll come with enough practice.

The following theorem and proof is by AoPS User NJOY. Many thanks to him for the diagram and the
proof!

Theorem 4.6 (Trigonometric Form of Ptolemy’s Theorem)

Four points X,A,B,C of the Euclidean plane are concyclic if, and only if

XA · sin∠BXC +XB · sin∠CXA+XC · sin∠AXB = 0.
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Proof. Without Loss of Generality, we can assume that the ray
←→
XB lies between

←→
XA and

←→
XC, as in the diagram

below. Let B′ be the point in which XB intersects the circle �(XAC).

A

B

CX

B′

Then by Ptolemy’s theorem,
XA · CB′ +XC ·AB′ = XB′ ·AC.

By the law of sines,

2R =
AB′

sin∠AXB
=

B′C
sin∠BXC

=
AC

sin∠CXA
,

so that we get XA · sin∠BXC + XB′ · sin∠CXA + XC · sin∠AXB = 0. Therefore, XB′ = XB and hence,
B′ = B, as desired.

Here is a nice problem using Trigonometric Form of Ptolemy’s Theorem:

Example 4.7 (IMO SL 2012 G2)

Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions of the sides
AD and BC beyond A and B meet at F . Let G be the point such that ECGD is a parallelogram, and let
H be the image of E under reflection in AD. Prove that D,H,F,G are concyclic.

Proof. Using Trigonometric Form of Ptolemy’s Theorem, it remains to prove that

DH · sin∠FDG+DG · sin∠FDH = DF · sin∠HDG.

Note that DH = DE and DG = CE. Now, simple angle chasing yields

∠FDG = ∠DBC, ∠HDF = ∠ADB, ∠HDG = ∠DFC.

Our condition can then be rewritten as

DE · sin∠DBC + CE · sin∠ADB = DF · sin∠DFC.

Now, by the law of sines,

DF · sin∠DFC = DC · sin∠FCD = DC · sin∠BCD

CE · sin∠ADB = CE · sin∠ECB = EB · sin∠EBC

and hence
DE · sin∠DBC + EB · sin∠EBC = DC · sin∠BCD,

as desired.

Let’s look at a few problems:
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Example 4.8

Square ABCD has center O, AB = 900, E and F are on AB with AE < BF and E between A and
F,m∠EOF = 45◦, and EF = 400. Given that BF = p+ q

√
r, where p, q, and r are positive integers and r

is not divisible by the square of any prime, find p+ q + r.

A B

CD

E FG

O

x y

450

Solution. We let G be the midpoint of AB. We get

tan∠EOG =
EG

OG
=
EG

450

tan∠FOG =
FG

OG
=
FG

450

Thus, we can use the tangent addition formula to get

tan∠EOF =
FG
450 + EG

450

1− FG·EG
4502

But wait! tan∠EOF = tan 45◦ = 1! So we have that

4502 − FG · EG = 450 · EF = 450 · 400

Thus, we get
FG · EG = 1502

FG+ EG = 400

We can get a quadratic by substitution - we have FG2 − 400FG + 1502 = 0, so FG = 200 ± 50
√

7 (the ± is
there to choose between FG and EG). However, FG < EG, so FG = 200− 50

√
7, so BF = 250 + 50

√
7. The

answer is thus 307 .

Example 4.9 (AIME II 2005/14)

In triangle ABC,AB = 13, BC = 15, and CA = 14. Point D is on BC with CD = 6. Point E is on BC
such that ∠BAE ∼= ∠CAD. Given that BE = p

q where p and q are relatively prime positive integers, find q.
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A

B

D
E

C

Solution. There are very smart solutions using the fact that AE and AD are isogonal. However, that isn’t really
enough for us. We shall trig bash. Using the ratio lemma, we have

BD

DC
=
AB

AC
· sin∠BAD

sin∠CAD

What’s the inspiration for this? Well, the ratio lemma is always a handy tool. And we have that ∠BAE = ∠CAD
and ∠BAD = ∠CAE, which is even nicer. So that’s why we try this. Similarly, we get

BE

EC
=
AB

AC
· sin∠BAE

sin∠CAE

so multiplying get’s rid of our worries
BE ·BD
CD · EC =

AB2

AC2

This implies
CE

BE
=

3 · 142

2 · 132
=

294

169

Now, we look for BE. Noting CE +BE = BC, we get

15

BE
− 1 =

BC

BE
− 1 =

CE

BE
=

294

169

Thus, we solve for BE to get

BE =
2535

463

which gives the answer as 463 .

Try the next few problems:
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Exercise 4.10 (AIME 1987/15). Squares S1 and S2 are inscribed in right triangle ABC, as shown in the
figures below. Find AC + CB if area (S1) = 441 and area (S2) = 440. Hints: 51 77

Exercise 4.11 (AIME 1985/9). In a circle, parallel chords of lengths 2, 3, and 4 determine central angles
of α, β, and α+ β radians, respectively, where α+ β < π. If cosα, which is a positive rational number, is
expressed as a fraction in lowest terms, what is the sum of its numerator and denominator? Hints: 98

Exercise 4.12 (AIME II 2004/7). ABCD is a rectangular sheet of paper that has been folded so that
corner B is matched with point B′ on edge AD. The crease is EF, where E is on AB and F is on CD. The
dimensions AE = 8, BE = 17, and CF = 3 are given. The perimeter of rectangle ABCD is m/n, where m
and n are relatively prime positive integers. Find m+ n. Hints: 62

A B

CD

E

F

B′

C ′

§4.2 Indirect Applications

What is this section for? Well, sometimes when working with problems, trigonometry sometimes doesn’t solve
the whole problem - you have to combine it with techniques such as coordinates and/or synthetic observations,
that will finish the problem. Let’s see some examples:

Example 4.13 (AIME II 2016/10)

Triangle ABC is inscribed in circle ω. Points P and Q are on side AB with AP < AQ. Rays CP and CQ
meet ω again at S and T (other than C), respectively. If AP = 4, PQ = 3, QB = 6, BT = 5, and AS = 7,
then ST = m

n , where m and n are relatively prime positive integers. Find m+ n.

Solution. I’ll provide a proof for those who are an expert at projective geometry - take a pencil through C and
the cross ratio is preserved.

For those of you who didn’t understand that, let’s use the Ratio Lemma:
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A BP Q

T

C

S

4 3 6

57

Well, let’s try to find almost everything here. Well, we note that we have a ton of application of similar
triangles (by, say AA similarity):

• 4ACQ ∼ 4TBQ

• 4PCB ∼ 4PAS
There are more, but those are enough. In fact, the first one itself suffices. We get from Ratio Lemma that

AC

CQ
=

5

6

so we get that using Ratio lemma on 4ACQ, we have

4

3
=
AP

PQ
=
AC

CQ
· sin∠ACP

sin∠PCQ
=

5

6
· sin∠ACP

sin∠PCQ

This implies that
sin∠ACP
sin∠PCQ

=
24

15

Well, I could have kept on going, but it’s not of substance anymore. We can just use the Extended Law of Sines
to get

AS

sin∠ACP
= 2R =

ST

sin∠PCQ

which implies

ST = AC · sin∠ACP
sin∠PCQ

=
35

8

so the answer is 35 + 8 = 43 .

Example 4.14 (AIME II 2012/15)

Triangle ABC is inscribed in circle ω with AB = 5, BC = 7, and AC = 3. The bisector of angle A meets
side BC at D and circle ω at a second point E. Let γ be the circle with diameter DE. Circles ω and γ
meet at E and a second point F . Then AF 2 = m

n , where m and n are relatively prime positive integers.
Find m+ n.
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Solution. For those of you who know how inversions and harmonics work, here’s a two-second solution: Use
a force overlaid

√
bc inversion to get M ←→ F (M is the midpoint of BC) implying AF is the symmedian so

ABFC is a harmonic bundle. Law of Cosines and/or Ptolemy’s will finish it off.

A

B

C

D
E

F

X

Remark 4.15. While this solution is quick, it is overkill. Try not to use the sledgehammer when only a hammer is
needed. That being said, don’t use a hammer when nothing needs to be nailed. However, if something does need to
be nailed, use a hammer.

Now, if you are a normal competitor, and have no idea what that means, don’t worry. This is trig, so I’ll talk
about trig here. First, what’s 4ABC? That seems like horrible numbers - unless we have nice numbers. We try
to use the law of cosines:

cos∠A =
52 + 32 − 72

2 · 5 · 3 =
−15

2 · 15
= −1

2

cos∠B =
52 + 72 − 32

2 · 5 · 7 =
65

2 · 35
=

13

14

cos∠C =
32 + 72 − 52

2 · 3 · 7 =
34

2 · 21
=

17

21

Well, only the first one looks nice. That’s ∠A = 120◦, and seems like the only nice characterization here. Now,
this also makes sense as the problem is A-indexed. Now, let’s see what else we have. We note that as E is on
the angle bisector, we have

∠EAB = ∠EAC = 60◦

Why did we choose E? Well, it’s on the circumcircle, so it’s nice right away, and another important property is
that E is the midpoint of arc BC. That’s because we have that

∠CBE = ∠CAE = ∠BAE = ∠BCE

which means CE = BE. But wait! We know that’s 60◦, so we have an equilateral triangle. What other
information can we extract? Well, we know that we have to get F into the picture somehow. But how do we
insert F? Well, what do we know? Looking at our characterizations, we have that ∠DFE = 90◦. What else do
we know? ∠BFC = 60◦, but that doesn’t give us any important things. Remember, if we can find most of these
lengths, from the diagram, it appears we should apply Ptolemy to ABFC. So we need to find BF and FC.
How do we do that? Well, time to find almost every single length possible. First, let’s find CD,BD,AD, as we
have good control of those. We use the angle bisector theorem to get

BD =
AB

AB +AC
·BC =

35

8

CD =
AC

AB +AC
·BC =

21

8
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Now, AD - that’s Stewart’s theorem, right? We get

AD =

√
1

BC
(AC2 ·BM +AB2 · CM − CM ·BM ·AB) =

√
225

64
=

15

8

So everything is a rational number! How nice. Let’s write down every single Law of Cosines equation we can get:

AE2 = AF 2 + EF 2 − 2 ·AF · EF cos∠AFE

AF 2 = AE2 + EF 2 − 2 ·AE · EF cos∠AEF

What can we do? Canel stuff out! We get

2 · EF 2 = 2 · EF · (AF cos∠AFE +AE cos∠AEF )

Hmmm...what do we know about those angles? well, we know that E,F is on the circle, so ∠AFE = ∠ACE.
We’re doing this to get rid of F , so let’s see if we can get ∠AEF . Well, we know that D,E,A are collinear, so
∠AEF = ∠DEF . But that’s perfect! We know that as DEF is a right triangle (right angle at F ) so we have
that

cos∠AEF = cos∠DEF =
EF

DE
=

8EF

49

cos∠AFE = cos∠ACE =
AC2 + CE2 −AE2

2 ·AC · CE =
AC2 +BC2 −AE2

2 ·AC ·BC = −1

7

So we can find EF ! We have

EF = −AF
7

+
8 · EF ·AE

64
= −AF

7
+

64EF

49

which implies that
15EF = 7AF

Well, we were so close! But we also have that

AE2 = AF 2 + EF 2 − 2 ·AF · EF cos∠AFE

Let’s use this equation one last time! Substituting, we get

64 = 82 = AE2 = AF 2 + EF 2 − 2 ·AF · EF cos∠AFE = AF 2 +
49

225
AF 2 +

2

15
AF 2 =

304

225
AF 2

We get

AF 2 =
900

19

which gives us an answer of 919 .

So what exactly did we do? Made a few trivial observations, and then said hello to our good friend Law of
Cosines. Sometimes, it will be Law of Sines, but it’s not always too much of a variant. There are only 2 main
laws, after all! In addition, this example was pretty involved - make sure you understand this.
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Exercise 4.16 (AIME II 2003/14). Let A = (0, 0) and B = (b, 2) be points on the coordinate plane. Let
ABCDEF be a convex equilateral hexagon such that ∠FAB = 120◦, AB ‖ DE, BC ‖ EF, CD ‖ FA, and
the y-coordinates of its vertices are distinct elements of the set {0, 2, 4, 6, 8, 10}. The area of the hexagon
can be written in the form m

√
n, where m and n are positive integers and n is not divisible by the square of

any prime. Find m+ n. Hints: 91 68 43

Exercise 4.17 (AIME I 2018/15). David found four sticks of different lengths that can be used to form
three non-congruent convex cyclic quadrilaterals, A, B, C, which can each be inscribed in a circle with
radius 1. Let ϕA denote the measure of the acute angle made by the diagonals of quadrilateral A, and
define ϕB and ϕC similarly. Suppose that sinϕA = 2

3 , sinϕB = 3
5 , and sinϕC = 6

7 . All three quadrilaterals

have the same area K, which can be written in the form
m

n
, where m and n are relatively prime positive

integers. Find m+ n. Hints: 48 67 6

Exercise 4.18 (AIME I 2005/15). Triangle ABC has BC = 20. The incircle of the triangle evenly trisects
the median AD. If the area of the triangle is m

√
n where m and n are integers and n is not divisible by the

square of a prime, find m+ n. Hints: 11 84 85

By the way, I’m sorry for all the hard problem here!

§4.3 Trigonometric Functions at Special Values

There are a few special angles for which you should know the values of the trigonometric functions, without
having to resort to a table or a calculator. These are summarized in the following table.

θ cos(θ) sin(θ)

0 1 0

π

12

√
6−
√

2

4

√
6 +
√

2

4

π

10

√
5− 1

4

√
5 +
√

5

8

π

8

√
2−
√

2

2

√
2 +
√

2

2

π

5

√
5−
√

5

8

√
5 + 1

4

π

6

√
3

2

1

2

π

4

√
2

2

√
2

2

π

3

1

2

√
3

2
π

2
0 1

You should also be able to use reference angles along with these values to compute the values of the trigonometric
functions at related angles in the second, third and fourth quadrants. For example, the point associated with
t = 5π

6 is directly across the unit circle from the point associated with π
6 . (In this case we say that we are using
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π
6 as a reference angle.) Thus the coordinates of the point associated with 5π

6 has the same y value and the

opposite x value of the point associated with π
6 . Thus cos(5π6 ) = − cos(π6 ) = −

√
3
2 , and sin(5π6 ) = sin(π6 ) = 1

2 .
This especially useful for geometry problems in which the angle is given, and the angles are nice. Memorizing

special properties of certain triangles is extremely useful. One of the first things you should try when parts of a
triangle are given is to look for special angles.

Example 4.19 (AIME I 2005/7)

In quadrilateral ABCD, BC = 8, CD = 12, AD = 10, and m∠A = m∠B = 60◦. Given that AB = p+
√
q,

where p and q are positive integers, find p+ q.

E

A B

D

C12

10 8

Solution. Extend the lines to meet at E. This is a fairly standard trick, and has many useful results. In this
case, 4ABE is isosceles, so AE = BE. Now, if you know what we’re planning on doing, it’s time for the Law of
Cosines. Assuming AE = BE = x, we get that DE = x− 10 and CE = x− 8, so we get (as ∠AEB = 60◦)

144 = 122 = CD2 = DE2+CE2−2·DE ·CE cos∠DEC = (x−10)2+(x−8)2−2·(x−10)(x−8)·1
2

= x2−18x+84

We get two roots - x = 9±
√

141. Which one do we take?

We note that 9−
√

141 is negative, so it’s 9 +
√

141. The answer is 9 + 141 = 150 .

Example 4.20 (AIME 1989/6)

Two skaters, Allie and Billie, are at points A and B, respectively, on a flat, frozen lake. The distance
between A and B is 100 meters. Allie leaves A and skates at a speed of 8 meters per second on a straight
line that makes a 60◦ angle with AB. At the same time Allie leaves A, Billie leaves B at a speed of 7 meters
per second and follows the straight path that produces the earliest possible meeting of the two skaters, given
their speeds. How many meters does Allie skate before meeting Billie?
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A B

C

60◦

100

8t 7t

Solution. Well, this sort of is a d = rt problem. Of course we’re throwing in the Law of Cosines! We have that
as seen in the above diagram

49t2 = (7t)2 = (8t)2 + 1002 − 2 · 8t · 1002 cos 60◦ = 64t2 − 800t+ 10000

This rearranges to
15t2 − 800t+ 10000 = 0

which by the quadratic formula gives

t =
100

3
, 20

Wait - there are two answers. How do we choose? Well, we must have the first intersection - so the answer is
8 · 2 = 160 . An alternative (that would work on a test) would be to use the fact AIME has integral answers.

Theorem 4.21 (Blanchet’s Theorem)

Let AD, BE, and CF be concurrent cevians in 4ABC. If AD ⊥ BC, show that ray AD bisects ∠EDF .

Proof. Note that
tan∠ADE
tan∠ADF

=
sin∠ADE
sin∠ADF

· cos∠ADF
cos∠ADE

=
sin∠ADE
sin∠ADF

· sin∠FDB
sin∠EDC

=
AE
AD sin∠AED
AF
AD sin∠AFD

· sinFDB

sinEDC

=
AE

AF
· sin∠CED

sin∠BFD
· sin∠FDB

sin∠EDC

=
AE

AF
· sin∠CED

sin∠EDC
· sin∠FDB

sin∠BFD

=
AE

AF
· CD
CE
· FB
BD

=
AE

CE
· CD
BD
· FB
AF

= 1

by Ceva’s theorem, so ∠ADE = ∠ADF .
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Exercise 4.22 (AIME II 2004/1). A chord of a circle is perpendicular to a radius at the midpoint of the
radius. The ratio of the area of the larger of the two regions into which the chord divides the circle to the

smaller can be expressed in the form aπ+b
√
c

dπ−e√f , where a, b, c, d, e, and f are positive integers, a and e are

relatively prime, and neither c nor f is divisible by the square of any prime. Find the remainder when the
product abcdef is divided by 1000. Hints: 9

Exercise 4.23 (AIME 1990/12). A regular 12-gon is inscribed in a circle of radius 12. The sum of the
lengths of all sides and diagonals of the 12-gon can be written in the form a+ b

√
2 + c

√
3 + d

√
6, where a,

b, c, and d are positive integers. Find a+ b+ c+ d. Hints: 89

Exercise 4.24 (1995 AIME/14). In a circle of radius 42, two chords of length 78 intersect at a point whose
distance from the center is 18. The two chords divide the interior of the circle into four regions. Two of
these regions are bordered by segments of unequal lengths, and the area of either of them can be expressed
uniquely in the form mπ− n

√
d, where m,n, and d are positive integers and d is not divisible by the square

of any prime number. Find m+ n+ d. Hints: 81 8 36

§4.4 Vector Geometry

Definition 4.25 (Vector) — A vector is a directed line segment. It can also be considered a quantity with

magnitude and direction. Every vector
−−→
UV has a starting point U〈x1, y1〉 and an endpoint V 〈x2, y2〉.

Theorem 4.26 (Addition of Vectors)

For vectors ~v and ~w, with angle θ formed by them, ‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2 + 2‖~v‖‖~w‖ cos θ.

θ

~v
~w

~v + ~w

Theorem 4.27 (Multiplying Vectors by Constant)

For some constant c > 0, c~v increases the magnitude of ~v by c times in the same direction as ~v. If c < 0, c~v
increases the magnitude of ~v by c times in the opposite direction as ~v. If c = 0, the magnitude becomes 0
and there is no direction.

41
Copyright © 2020 by Euclid’s Orchard. All rights reserved.



naman12 and freeman66 (May 26, 2020) Trigonometry in the AIME and the USA(J)MO

Theorem 4.28 (Vector Identities)

For any vectors ~x, ~y, ~z, and real numbers a, b,

1. Commutative Property: ~x+ ~y = ~y + ~x

2. Associative Property: (~x+ ~y) + ~z = ~x+ (~y + ~z)

3. Additive Identity: There exists the zero vector ~0 such that ~x+~0 = ~x

4. Additive Inverse: For each ~x, there is a vector ~y such that ~x+ ~y = ~0

5. Unit Scalar Identity: 1~x = ~x

6. Associative in Scalar: (ab)~x = a(b~x)

7. Distributive Property of Vectors: a(~x+ ~y) = a~x+ a~y

8. Distributive Property of Scalars: (a+ b)~x = a~x+ b~x

Definition 4.29 (Dot Product) — Consider two vectors a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉 in Rn.
The dot product is equal to the length of the projection (i.e. the distance from the origin to the foot of
the head of a to b) of a onto b times the length of b.

Theorem 4.30 (Magnitude of Dot Product)

Consider two vectors a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉 in Rn. The dot product is then

a · b = b · a = |a||b| cos θ = a1b1 + a2b2 + · · ·+ anbn,

where θ is the angle formed by the two vectors.

Definition 4.31 (Cross Product) — The cross product between two vectors a and b in R3 is defined as
the vector whose length is equal to the area of the parallelogram spanned by a and b and whose direction is
in accordance with the right-hand rule.

Theorem 4.32 (Magnitude of Cross Product)

The magnitude of the cross product is

|a× b| = |a||b| sin θ,

where θ is the angle formed by the two vectors.

Vectors seem useless, but just take a look at this theorem by AoPS User A-Student. Thanks for helping
out!
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Theorem 4.33 (Vectorial Form of Ptolemy’s Theorem)

With points X,A,B,C,B′ as defined in the diagram below,

~XA× ~XC

| ~XA|| ~XC|
·

~BX · ~BA
| ~BX|| ~BA|

+
~XA · ~XC
| ~XA|| ~XC|

·
~BX × ~BA

| ~BX|| ~BA|
=

~XB × ~XC

| ~XB|| ~XC|
.

A

B

CX

B′

Proof. Four points X,A,B,C of the Euclidean plane are concyclic if and only if

XA · sin∠BXC +XB · sin∠CXA+XC · sin∠AXB = 0.

We consider the reverse of this, we get:

If four points X,A,B,C of the Euclidean plane are concyclic, then

XA · sin∠BXC +XB · sin∠CXA+XC · sin∠AXB = 0.

Let ~XA, ~XB, ~XC be position vectors of the points A, B & C taking X as the origin.
Now, as per property of concyclic quadrilaterals,

∠AXC + ∠ABC = π

=⇒ ∠AXC + ∠ABX + ∠BXC = π

=⇒ ∠AXC + ∠ABX = π − ∠BXC.

=⇒ sin(∠AXC + ∠ABX) = sin(π − ∠BXC).

=⇒ sin(∠AXC + ∠ABX) = sin(∠BXC).

Expanding the angles as per sin(A+B) rule,

sin(∠AXC) cos(∠ABX) + cos(∠AXC) sin(∠ABX) = sin(∠BXC).

=⇒
~XA× ~XC

| ~XA|| ~XC|
·

~BX · ~BA
| ~BX|| ~BA|

+
~XA · ~XC
| ~XA|| ~XC|

·
~BX × ~BA

| ~BX|| ~BA|
=

~XB × ~XC

| ~XB|| ~XC|
.
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Exercise 4.34. Show that a× b = −b× a. Hints: 31

Exercise 4.35. Show that |a|2|b|2 = |a · b|2 + |a× b|2. Hints: 10 75

Exercise 4.36. A ship is travelling at a speed of 4 m/s to the north. A boy on the ship travels to the
east at 3 m/s with respect to the ship. What speed does he travel at with respect to the sea (which is not
moving)? Hints: 83

Theorem 4.37 (Right Hand Rule)

The right hand rule is used to determine the direction of the cross product. One can see this by holding
one’s hands outward and together, palms up, with the fingers curled, and the thumb out-stretched. If the
curl of the fingers represents a movement from the first or x-axis to the second or y-axis, then the third or
z-axis can point along either thumb.

Theorem 4.38 (Triple Scalar Product)

The triple scalar product of three vectors a,b, c is defined as (a× b) · c. Geometrically, the triple scalar
product gives the signed volume of the parallelepiped determined by a,b and c. It follows that

(a× b) · c = (c× a) · b = (b× c) · a.

Theorem 4.39 (Triple Vector Product)

The vector triple product of a,b, c is defined as the cross product of one vector, so that a × (b × c) =
b(a · c)− c(a · b), which can be remembered by the mnemonic ”BAC-CAB”.

While the above theorems are extremely useful, the only crucial piece (for the AIME) is the following:
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Theorem 4.40 (AIME Vectors)

Let θ be the angle between ~u and ~v. Then

~u · ~v = uv cos θ,

and
|~u× ~v| = uv sin θ.

Theorem 4.41 (Properties of Vectors)

Some geometric properties of vectors:

1. If and only if the dot product of two vectors is zero, then those vectors are orthogonal or perpendicular.
(The zero vector is orthogonal to every vector.)

2. If and only if the cross product of two vectors is zero (the zero vector), then those vectors are parallel.
They can point in the same direction or in opposite directions.

3. The cross product of ~u and ~v is always orthogonal to ~u and ~v. As long as ~u and ~v are not parallel,
there exists one unique axis perpendicular to both which ~u× ~v will lie on.

Example 4.42 (AMC 10 A 2012/21)

Let points A = (0, 0, 0), B = (1, 0, 0), C = (0, 2, 0), and D = (0, 0, 3). Points E, F , G, and H are midpoints
of line segments BD, AB, AC, and DC respectively. What is the area of EFGH?

(A)
√

2 (B) 2
√
5

3 (C) 3
√
5

4 (D)
√

3 (E) 2
√
7

3

Solution. Computing the points of EFGH gives E(0.5, 0, 1.5), F (0.5, 0, 0), G(0, 1, 0), H(0, 1, 1.5). The vector
EF is (0, 0,−1.5), while the vector HG is also (0, 0,−1.5), meaning the two sides EF and GH are parallel.
Similarly, the vector FG is (−0.5, 1, 0), while the vector EH is also (−0.5, 1, 0). Again, these are equal in both
magnitude and direction, so FG and EH are parallel. Thus, figure EFGH is a parallelogram.

Computation of vectors EF and HG is sufficient evidence that the figure is a parallelogram, since the vectors
are not only point in the same direction, but are of the same magnitude, but the other vector FG is needed to
find the angle between the sides.

Taking the dot product of vector EF and vector FG gives 0 · −0.5 + 0 · 1 +−1.5 · 0 = 0, which means the two
vectors are perpendicular. (Alternately, as above, note that vector EF goes directly down on the z-axis, while
vector FG has no z-component and lie completely in the xy plane.) Thus, the figure is a parallelogram with a
right angle, which makes it a rectangle. With the distance formula in three dimensions, we find that EF = 3

2

and FG =
√
5
2 , giving an area of 3

2 ·
√
5
2 = (C)

3
√

5

4
.

§4.5 Parameterization

Parameterization is extremely useful for changing to only one variable, especially for conic sections.
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Theorem 4.43 (Parameterizations of Conic Sections)

The following is the parametric equations for conic sections:

1. circle: x = sin θ, y = cos θ

2. ellipse: x = a sin θ, y = b cos θ

3. hyperbola: x = a sec θ, y = b tan θ

4. parabola: x = 2pt2, y = 2pt

Note that the parameter for the parabola is t, because using an angle is mostly useless for parabolas.

Parameterization is also heavily influenced by complex numbers.

Theorem 4.44 (Polar Form of Conic Sections)

Let a focal point of a conic section lie at the origin. Then its polar form is

r =
l

1− e cos θ
,

where e is the eccentricity, and l is a constant. If:

1. e = 0 : the equation is a circle

2. 0 < e < 1 : the equation is an ellipse

3. e = 1 : the equation is a parabola

4. e > 1 : the equation is a hyperbola

The parabola can also be determined by its trajectory:

Theorem 4.45 (Trajectory of a Parabola)

The trajectory of a parabola is given by

x · tan θ
(

1− x

R

)
,

for constants θ and R.

Example 4.46 (AIME 1983/4)

A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is
√

50 cm,
the length of AB is 6 cm and that of BC is 2 cm. The angle ABC is a right angle. Find the square of the
distance (in centimeters) from B to the center of the circle.

Solution. Draw segment OB with length x, and draw radius OQ such that OQ bisects chord AC at point
M . This also means that OQ is perpendicular to AC. By the Pythagorean Theorem, we get that AC =√

(BC)2 + (AB)2 = 2
√

10, and therefore AM =
√

10. Also by the Pythagorean theorem, we can find that
OM =

√
50− 10 = 2

√
10.
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Next, find ∠BAC = arctan
(
2
6

)
and ∠OAM = arctan

(
2
√
10√
10

)
. Since ∠OAB = ∠OAM − ∠BAC, we get

∠OAB = arctan 2− arctan
1

3

tan (∠OAB) = tan (arctan 2− arctan
1

3
)

By the subtraction formula for tan, we get

tan (∠OAB) =
2− 1

3

1 + 2 · 13
tan (∠OAB) = 1

cos (∠OAB) =
1√
2

Finally, by the Law of Cosines on 4OAB, we get

x2 = 50 + 36− 2(6)
√

50
1√
2

x2 = 026 .

Example 4.47

In acute angled triangle ABC, from a point D is on segment BC, draw perpendiculars DP and DQ to AB
and AC, respectively. Show that PQ is minimized when D is the foot of the altitude from A to BC.

Solution. Let E be the foot of the altitude from A to BC and let R and S be the feet of the altitudes
of AB and AC from E, respectively. I claim APEDQ is cyclic. I will now prove this claim. Note that
∠APD = ∠AED = ∠AQD = 90◦. Thus, not only does the circle (APEDQ) exist, but AD is the diameter. I
will now provide some motivation for the next result.

We note that at AE, AD is minimized. Because we are trying to prove PQ is minimized when D = E, it seems
that as D approaches E (i.e. AD becomes minimized), PQ is minimized. This of course implies some relation
between AD and PQ, motivating us to find the relation between these two.

Now that motivation is resolved, let us see how we can relate the two lengths. Let ∠PAD = α and ∠DAQ = β.
Then using trigonometric identities, we have

AP = AD cosα, PD = AD sinα,

AQ = AD cosβ,QD = AD sinβ.

Using Ptolemy’s Theorem on quadrilateral APDQ, we get

AD · PQ = AP ·QD +AQ · PD = AD cosα ·AD sinβ +AD cosβ ·AD sinα = AD2 sin(α+ β),

and since α+ β = ∠A, we have
PQ = AD sin∠A.
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Thus, as AD decreases, so does PQ, implying that when D = E, PQ is minimized.

A

B
C

DE

P Q

R

S

§4.6 Exercises

Exercise 4.48. Let D and E be the trisection points of segment AB, where D is between A and E.
Construct a circle using DE as diameter, and let C be a point on the circle. Find the value of

tan∠ACD · tan∠BCE.

Hints: 53 33

Exercise 4.49 (Bretschneider’s Formula). The area of quadrilateral ABCD is

[ABCD] =

√
(s− a)(s− b)(s− c)(s− d)− abcd cos2

∠A+ ∠C
2

where a, b, c, d are the sidelengths and 2s = a+ b+ c+ d. Hints: 64 20 40

Exercise 4.50. Given that quadrilateral ABCD has in inscribed circle, show that

[ABCD] =
√
abcd sin θ,

where a, b, c, d are the side lengths and θ = ∠A+∠C
2 . Hints: 42 38

Exercise 4.51. In 4ABC,∠B = 3∠C. If AB = 10 and AC = 15, compute the length of BC. Hints: 103

52

Exercise 4.52. ARML is a convex kite with A(0, 0), R(1, 3), and M(7, 2). Determine the coordinates of L.

Exercise 4.53 (AIME 2001/4). In triangle ABC, angles A and B measure 60 degrees and 45 degrees,
respectively. The bisector of angle A intersects BC at T , and AT = 24. The area of triangle ABC can be
written in the form a+ b

√
c, where a, b, and c are positive integers, and c is not divisible by the square of

any prime. Find a+ b+ c. Hints: 80

Exercise 4.54 (AIME I 2003/10). Triangle ABC is isosceles with AC = BC and ∠ACB = 106◦. Point M
is in the interior of the triangle so that ∠MAC = 7◦ and ∠MCA = 23◦. Find the number of degrees in
∠CMB. Hints: 96 99

Exercise 4.55 (AIME 1996/15). In parallelogram ABCD, let O be the intersection of diagonals AC and
BD. Angles CAB and DBC are each twice as large as angle DBA, and angle ACB is r times as large as
angle AOB. Find the greatest integer that does not exceed 1000r. Hints: 58 87 105
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§5 3-D Geometry

§5.1 More Vector Geometry

Vectors are very useful, especially for 3D geometry. Consider the distance between a point and a plane. We
can find the vector normal to the plane by taking the cross product of two linearly independent vectors lying
in the plane. We can then take any vector from a point on the plane to the point of interest and compute its
dot product with a unit vector in the direction of the normal. By projecting the arbitrary displacement vector
from the plane to the point onto the normal vector, we eliminate the ”sideways” portion of the displacement
and reduce it to its perpendicular part. The magnitude of the resulting value is the distance we wished to
determine.

Theorem 5.1 (Vector on Vector Projection)

Let
proj~b(~a)

be the projection of ~a onto ~b. Then
proj~b(~a) = a cos θb̂,

where θ is the angle between the two vectors and b̂ is the direction the projection of ~a onto ~b faces (in this
case, the direction is the same as ~b).

Let us turn to areas now.

Theorem 5.2 (Area-Sine Formula)

Let there exist a triangle ABC such that BC = a,AC = b, and ∠ACB = θ. Then the area of 4ABC is

1

2
ab sin θ.

Notice that this is exactly one half of the expression for the cross product of two vectors in terms of their
magnitudes and the angle between them. In the case that the angle involved is not easily determined, such as in
a three-dimensional situation, we can directly apply the cross product to vectors representing two sides of the
triangle to determine its area. This will eliminate the necessity to find the angle. Similarly, finding the area
of parallelogram is simply the cross product of the two vectors that determine it (also note that the area of a
parallelogram is simply twice of the triangle).

Now that we have dealt with distances and areas, let us see how we can generalize to volumes. The method is
very similar:

Theorem 5.3 (Volume of a Parallelepiped)

A parallelepiped (which is basically a shifted box [think 3D parallelogram]) is defined by three vectors
~a,~b,~c. Then the volume of the parallelepiped is

|~a×~b| · ~c.

Note that half of this volume is the volume of the tetrahedron defined by ~a,~b,~c.

Vectors are also great for finding dihedral angles.
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Definition 5.4 (Dihedral Angle) — A dihedral angle is the angle formed by two intersecting planes.

Definition 5.5 (Normal Vector) — The normal vector, often simply called the ”normal,” to a surface is
a vector which is perpendicular to the surface at a given point.

Definition 5.6 (Unit Vector) — A unit vector is a vector of magnitude one. We say the unit vector of ~u
is û, and is used to show direction.

Theorem 5.7 (Unit Normal Vector Formula)

Let n̂P and n̂Q be the unit normal vectors of planes P and Q, respectively. Also, let ~p1 and ~p2 be vectors
in the plane P and let ~q1 and ~q2 be vectors in the plane Q. Then

n̂P =
~p1 × ~p2
p1p2

,

and

n̂Q =
~q1 × ~q2
q1q2

.

Theorem 5.8 (Dihedral Angle Formula)

Let θ be the angle between two planes P and Q, and let n̂P and n̂Q be the unit normal vectors of P and Q,
respectively. Then

cos θ = n̂P · n̂Q.

We can try our hand at the following example:

Example 5.9 (AIME II 2016/14)

Equilateral 4ABC has side length 600. Points P and Q lie outside the plane of 4ABC and are on opposite
sides of the plane. Furthermore, PA = PB = PC, and QA = QB = QC, and the planes of 4PAB and
4QAB form a 120◦ dihedral angle (the angle between the two planes). There is a point O whose distance
from each of A,B,C, P, and Q is d. Find d.

’

§5.2 Exercises

Exercise 5.10. Let PQ be the line passing through the points P = (−1, 0, 3) and Q = (0,−2,−1).
Determine the shortest distance from PQ to the origin. Hints: 1

Exercise 5.11. A parallelpiped has a vertex at (1, 2, 3), and adjacent vertices (that form edges with this
vertex) at (3, 5, 7), (1, 6,−2), and (6, 3, 6). Find the volume of this parallelpiped. Hints: 57
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§6 Trigonometric Substitution

Trigonometry substitution is extremely useful for a variety of problems. Here are a few substitutions to
employ.

Theorem 6.1 (Weierstrauss Substitution)

Let t = tan x
2 , where x ∈ (−π, π). Then

sin
x

2
=

t√
1 + t2

,

and

cos
x

2
+

1√
1 + t2

.

Similarly,

sinx =
2t

1 + t2
,

cosx =
1− t2
1 + t2

,

and

tanx =
2t

1− t2 .

Theorem 6.2 (Trigonometric Triangle-Angle Condition)

Let α, β, γ be angles in the range (0, π). Then α, β, γ are angles of a triangle if and only if

tan
α

2
tan

β

2
+ tan

β

2
tan

γ

2
+ tan

γ

2
tan

α

2
=,

or

sin2 α

2
+ sin2 β

2
+ sin2 γ

2
+ 2 sin

α

2
sin

β

2
sin

γ

2
= 1.

The former is useful for expressions of the form ab+ bc+ ca = 1.

Theorem 6.3 (Triangle-Angle Substitution)

Let α, β, γ be angles of a triangle. Then

A =
π − α

2
, B =

π − β
2

, C =
π − γ

2

transforms the triangle into an acute triangle with angles A,B,C.
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Theorem 6.4 (ab+ bc+ ca = 1 Substitution)

Let a, b, c be positive real numbers such that ab+ bc+ ca = 1. Then we can substitute

a =
tanα

2
, b =

tanβ

2
, c =

tan γ

2
,

or
a = cotA, b = cotB, c = cotC,

where α, β, γ and A,B,C are angles of a triangle.

Theorem 6.5 (a+ b+ c = abc Substitution)

Let a, b, c be positive real numbers such that a+ b+ c = abc. Then we can substitute

a = cot
α

2
, b = cot

β

2
, c = cot

γ

2
,

or
a = tanA, b = tanB, c = tanC,

where α, β, γ are angles of a triangle.

Theorem 6.6 (a2 + b2 + c2 + 2abc = 1 Substitution)

Let a, b, c be positive real numbers such that a2 + b2 + c2 + 2abc = 1. Then we can substitute

a = sin
α

2
, b = sin

β

2
, c = sin

γ

2
,

or
a = cosA, b = cosB, c = cosC.

Example 6.7 (Darij Grinberg)

Let x, y, z be positive real numbers. Prove that

√
x(y + z) +

√
y(z + x) +

√
z(x+ y) ≥ 2

√
(x+ y)(y + z)(z + x)

x+ y + z
.

Solution. We can rewrite this inequality as

∑

cyc

√
x(x+ y + z)

(x+ y)(y + z)
≥ 2.

These values can be substituted for sinA, sinB, and sinC, so it suffices to prove

sinA+ sinB + sinC ≥ 2,

where A,B,C are angles of an acute triangle (prove why this substitution is true!). Using Jordan’s Inequality,
we have

2α

π
≤ sinα ≤ α,
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and summing cyclically gives us the desired result.

Example 6.8 (HMMT)

Find the minimum possible value of
√

58− 42x+
√

149− 140
√

1− x2 where −1 ≤ x ≤ 1.

Solution. The
√

1− x2 is an obvious indicator of trigonometric substiution. Thus, if we let

x = cos θ,

then √
1− x2 = sin θ.

While
√

58− 42x is rather innocent, 149 and 140 should indicate Law of Cosines. In particular,

149 = 72 + 102,

140 = 2 · 7 · 10.

If we turn our attention to 58 and 42, we have

58 = 32 + 72,

42 = 2 · 3 · 7.
Thus, if we have a triangle with side lengths 3 and 7, with angle θ between them, then

√
58− 42x would be

the last side. Similarly, if we have a triangle with side lengths 7 and 10, with angle 90◦ − θ between them,√
149− 140

√
1− x2 would be the last side. The θ and 90◦−θ, paired with the common 7, inspires us to combine

these two triangles such that the angles of measure θ and 90◦ − θ become 90◦, and the two sides of length 7

become one side. Thus, we have a triangle with side lengths 3, 10, and
√

58− 42x+
√

149− 140
√

1− x2, with a
90-degree angle between 3 and 10. Thus,

√
58− 42x+

√
149− 140

√
1− x2 ≥

√
32 + 102 =

√
109 .

Theorem 6.9 (Trigonometric Inequalities)

Let A,B,C be angles of triangle ABC. Then

1. cosA+ cosB + cosC ≤ sin A
2 + sin B

2 + sin C
2 ≤ 3

2

2. sinA+ sinB + sinC ≤ cos A2 + cos B2 + cos C2 ≤ 3
√
3

2

3. cosA cosB cosC ≤ sin A
2 sin B

2 sin C
2 ≤ 1

8

4. sinA sinB sinC ≤ cos A2 cos B2 cos C2 ≤ 3
√
3

8

5. cot A2 + cot B2 + cot C2 ≥ 3
√

3

6. cos2A+ cos2B + cos2C ≥ sin2 A
2 + sin2 B

2 + sin2 C
2 ≥ 3

4

7. sin2A+ sin2B + sin2C ≤ cos2 A2 + cos2 B2 + cos2 C2 ≤ 9
4

8. cotA+ cotB + cotC ≥ tan A
2 + tan B

2 + tan C
2 ≥
√

3
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Theorem 6.10 (Well-Known Triangle Trigonometric Identities)

Let A,B,C be angles of triangle ABC. Then

1. cosA+ cosB + cosC = 1 + 4 sin A
2 sin B

2 sin C
2

2. sinA+ sinB + sinC = 4 cos A2 cos B2 cos C2

3. sin 2A+ sin 2B + sin 2C = 4 sinA sinB sinC

4. sin2A+ sin2B + sin2C = 2 + 2 cosA cosB cosC

Theorem 6.11 (Well-Known Trigonometric Identities)

For arbitrary angles α, β, γ,

sinα+ sinβ + sin γ − sin(α+ β + γ) = 4 sin
α+ β

2
sin

β + γ

2
sin

γ + α

2
,

and

cosα+ cosβ + cos γ + cos(α+ β + γ) = 4 cos
α+ β

2
cos

β + α

2
cos

γ + α

2
.

§7 Worked Through Problems

Example 7.1 (AIME 1989/10)

Let a, b, c be the three sides of a triangle, and let α, β, γ, be the angles opposite them. If a2 + b2 = 1989c2,
find

cot γ

cotα+ cotβ
.

Solution. We can draw the altitude h to c, to get two right triangles. cotα+ cotβ = c
h , from the definition of

the cotangent. From the definition of area, h = 2A
c , so cotα+ cotβ = c2

2A .
Now we evaluate the numerator:

cot γ =
cos γ

sin γ

From the Law of Cosines and the sine area formula,

cos γ =
1988c2

2ab

sin γ =
2A

ab

cot γ =
cos γ

sin γ
=

1988c2

4A

Then cot γ
cotα+cotβ =

1988c2

4A
c2

2A

= 1988
2 = 994 .
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Example 7.2 (AIME II 2013/5)

In equilateral 4ABC let points D and E trisect BC. Then sin(∠DAE) can be expressed in the form a
√
b

c ,
where a and c are relatively prime positive integers, and b is an integer that is not divisible by the square of
any prime. Find a+ b+ c.

Solution. Without loss of generality, assume the triangle sides have length 3. Then the trisected side is partitioned
into segments of length 1, making your computation easier.

A

B CD EM

Let M be the midpoint of DE. Then ∆MCA is a 30-60-90 triangle with MC =
3

2
, AC = 3 and

AM =
3
√

3

2
. Since the triangle ∆AME is right, then we can find the length of AE by pythagorean the-

orem, AE =
√

7. Therefore, since ∆AME is a right triangle, we can easily find sin(∠EAM) =
1

2
√

7
and

cos(∠EAM) =
√

1− sin(∠EAM)2 =
3
√

3

2
√

7
. So we can use the double angle formula for sine, sin(∠EAD) =

2 sin(∠EAM) cos(∠EAM) =
3
√

3

14
. Therefore, a+ b+ c = 020 .

Example 7.3 (AIME 1994/10)

In triangle ABC, angle C is a right angle and the altitude from C, meets AB, at D. The lengths of the
sides of 4ABC, are integers, BD = 293, , and cosB = m/n, where m and n are relatively prime positive
integers. Find m+ n.

Solution. We will solve for cosB using 4CBD, which gives us cosB = 293

BC . By the Pythagorean Theorem on
4CBD, we have BC2 −DC2 = (BC +DC)(BC −DC) = 296. Trying out factors of 296, we can either guess
and check or just guess to find that BC +DC = 294 and BC −DC = 292 (The other pairs give answers over

999). Adding these, we have 2BC = 294 + 292 and 293

BC = 2∗293
292(292+1)

= 58
842 = 29

421 , and our answer is 450 .

Example 7.4 (AIME 1996/10)

Find the smallest positive integer solution to tan 19x◦ =
cos 96◦ + sin 96◦

cos 96◦ − sin 96◦
.
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Solution. Note that
cos 96◦ + sin 96◦

cos 96◦ − sin 96◦

=
sin 186◦ + sin 96◦

sin 186◦ − sin 96◦

=
sin (141◦ + 45◦) + sin (141◦ − 45◦)
sin (141◦ + 45◦)− sin (141◦ − 45◦)

=
2 sin 141◦ cos 45◦

2 cos 141◦ sin 45◦
= tan 141◦.

The period of the tangent function is 180◦, and the tangent function is one-to-one over each period of its
domain.

Thus, 19x ≡ 141 (mod 180).
Since 192 ≡ 361 ≡ 1 (mod 180), multiplying both sides by 19 yields x ≡ 141 · 19 ≡ (140 + 1)(18 + 1) ≡

0 + 140 + 18 + 1 ≡ 159 (mod 180).
Therefore, the smallest positive solution is x = 159 .

Example 7.5 (AIME 1983/15)

The adjoining figure shows two intersecting chords in a circle, with B on minor arc AD. Suppose that the
radius of the circle is 5, that BC = 6, and that AD is bisected by BC. Suppose further that AD is the only
chord starting at A which is bisected by BC. It follows that the sine of the central angle of minor arc AB is
a rational number. If this number is expressed as a fraction m

n in lowest terms, what is the product mn?

A

B

C
D

Solution. (Figure by AoPS User Adamz.)

O M

N

B

C

P

A

Q R
D

Let A be any fixed point on circle O, and let AD be a chord of circle O. The locus of midpoints N of the chord
AD is a circle P , with diameter AO. Generally, the circle P can intersect the chord BC at two points, one
point, or they may not have a point of intersection. By the problem condition, however, the circle P is tangent
to BC at point N .
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Let M be the midpoint of the chord BC. From right triangle OMB, we have OM =
√
OB2 −BM2 = 4.

This gives tan∠BOM = BM
OM = 3

4 .
Notice that the distance OM equals PN +PO cos∠AOM = r(1 + cos∠AOM), where r is the radius of circle

P .
Hence

cos∠AOM =
OM

r
− 1 =

2OM

R
− 1 =

8

5
− 1 =

3

5

(where R represents the radius, 5, of the large circle given in the question). Therefore, since ∠AOM is clearly
acute, we see that

tan∠AOM =

√
1− cos2∠AOM

cos∠AOM
=

√
52 − 32

3
=

4

3

Next, notice that ∠AOB = ∠AOM −∠BOM . We can therefore apply the subtraction formula for tan to obtain

tan∠AOB =
tan∠AOM − tan∠BOM

1 + tan∠AOM · tan∠BOM
=

4
3 − 3

4

1 + 4
3 · 34

=
7

24

It follows that sin∠AOB = 7√
72+242

= 7
25 , such that the answer is 7 · 25 = 175 .

Example 7.6 (AIME I 2003/11)

An angle x is chosen at random from the interval 0◦ < x < 90◦. Let p be the probability that the numbers
sin2 x, cos2 x, and sinx cosx are not the lengths of the sides of a triangle. Given that p = d/n, where d is
the number of degrees in arctanm and m and n are positive integers with m+ n < 1000, find m+ n.

Solution. Note that the three expressions are symmetric with respect to interchanging sin and cos, and so the
probability is symmetric around 45◦. Thus, take 0 < x < 45 so that sinx < cosx. Then cos2 x is the largest of
the three given expressions and those three lengths not forming a triangle is equivalent to a violation of the
triangle inequality

cos2 x > sin2 x+ sinx cosx

This is equivalent to

cos2 x− sin2 x > sinx cosx

and, using some of our trigonometric identities, we can re-write this as cos 2x > 1
2 sin 2x. Since we’ve chosen

x ∈ (0, 45), cos 2x > 0 so

2 > tan 2x =⇒ x <
1

2
arctan 2.

The probability that x lies in this range is 1
45 ·

(
1
2 arctan 2

)
= arctan 2

90 so that m = 2, n = 90 and our answer is

092 .

Example 7.7 (AIME I 2003/12)

In convex quadrilateral ABCD,∠A ∼= ∠C,AB = CD = 180, and AD 6= BC. The perimeter of ABCD is
640. Find b1000 cosAc. (The notation bxc means the greatest integer that is less than or equal to x.)
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Solution. By the Law of Cosines on 4ABD at angle A and on 4BCD at angle C (note ∠C = ∠A),

1802 +AD2 − 360 ·AD cosA = 1802 +BC2 − 360 ·BC cosA

(AD2 −BC2) = 360(AD −BC) cosA

(AD −BC)(AD +BC) = 360(AD −BC) cosA

(AD +BC) = 360 cosA

We know that AD +BC = 640− 360 = 280. cosA =
280

360
=

7

9
= 0.777 . . .

b1000 cosAc = 777 .

A B

C

D

180

180

Example 7.8 (AIME I 2014/10)

A disk with radius 1 is externally tangent to a disk with radius 5. Let A be the point where the disks are
tangent, C be the center of the smaller disk, and E be the center of the larger disk. While the larger disk
remains fixed, the smaller disk is allowed to roll along the outside of the larger disk until the smaller disk
has turned through an angle of 360◦. That is, if the center of the smaller disk has moved to the point D,
and the point on the smaller disk that began at A has now moved to point B, then AC is parallel to BD.
Then sin2(∠BEA) = m

n , where m and n are relatively prime positive integers. Find m+ n.

Solution. First, we determine how far the small circle goes. For the small circle to rotate completely around
the circumference, it must rotate 5 times (the circumference of the small circle is 2π while the larger one has a
circumference of 10π) plus the extra rotation the circle gets for rotating around the circle, for a total of 6 times.
Therefore, one rotation will bring point D 60◦ from C.

Now, draw 4DBE, and call ∠BED x, in degrees. We know that ED is 6, and BD is 1. Since EC||BD,

∠BDE = 60◦. By the Law of Cosines, BE
2

= 36 + 1− 2× 6× 1× cos 60◦ = 36 + 1− 6 = 31, and since lengths
are positive, BE =

√
31.

By the Law of Sines, we know that 1
sinx =

√
31

sin 60◦ , so sinx = sin 60◦√
31

=
√
93
62 . As x is clearly between 0 and 90◦,

cosx is positive. As cosx =
√

1− sin2 x, cosx = 11
√
31

62 .

Now we use the angle sum formula to find the sine of ∠BEA: sin 60◦ cosx+ cos 60◦ sinx =
√
3
2

11
√
31

62 + 1
2

√
93
62 =

11
√
93+
√
93

124 = 12
√
93

124 = 3
√
93

31 = 3
√
31
√
3

31 = 3
√
3√

31
.

Finally, we square this to get 9×3
31 = 27

31 , so our answer is 27 + 31 = 058 .
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A

B

C

D

E

F

Example 7.9 (AIME 1997/14)

Let v and w be distinct, randomly chosen roots of the equation z1997− 1 = 0. Let m
n be the probability that√

2 +
√

3 ≤ |v + w|, where m and n are relatively prime positive integers. Find m+ n.

Solution. We know that
z1997 = 1 = 1(cos 0 + i sin 0).

By De Moivre’s Theorem, we find that (k ∈ {0, 1, . . . , 1996})

z = cos

(
2πk

1997

)
+ i sin

(
2πk

1997

)
.

Now, let v be the root corresponding to θ = 2πm
1997 , and let w be the root corresponding to θ = 2πn

1997 . The
magnitude of v + w is therefore:

√(
cos

(
2πm

1997

)
+ cos

(
2πn

1997

))2

+

(
sin

(
2πm

1997

)
+ sin

(
2πn

1997

))2

=

√
2 + 2 cos

(
2πm

1997

)
cos

(
2πn

1997

)
+ 2 sin

(
2πm

1997

)
sin

(
2πn

1997

)

We need cos
(
2πm
1997

)
cos
(
2πn
1997

)
+ sin

(
2πm
1997

)
sin
(
2πn
1997

)
≥
√
3
2 . The cosine difference identity simplifies that to

cos
(
2πm
1997 − 2πn

1997

)
≥
√
3
2 . Thus, |m− n| ≤ π

6 · 19972π = b199712 c = 166.
Therefore, m and n cannot be more than 166 away from each other. This means that for a given value of m,

there are 332 values for n that satisfy the inequality; 166 of them > m, and 166 of them < m. Since m and n
must be distinct, n can have 1996 possible values. Therefore, the probability is 332

1996 = 83
499 . The answer is then

499 + 83 = 582 .

Example 7.10 (AIME 1999/14)

Point P is located inside triangle ABC so that angles PAB,PBC, and PCA are all congruent. The sides of
the triangle have lengths AB = 13, BC = 14, and CA = 15, and the tangent of angle PAB is m/n, where
m and n are relatively prime positive integers. Find m+ n.

Solution. The following is the figure for this problem.
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A B

C

P

13

15 14

Drop perpendiculars from P to the three sides of 4ABC and let them meet AB,BC, and CA at D,E, and F
respectively.

A B

C

P

13

15 14

D

E
F

Let BE = x,CF = y, and AD = z. We have that

DP = z tan θ

EP = x tan θ

FP = y tan θ

We can then use the tool of calculating area in two ways

[ABC] = [PAB] + [PBC] + [PCA]

=
1

2
(13)(z tan θ) +

1

2
(14)(x tan θ) +

1

2
(15)(y tan θ)

=
1

2
tan θ(13z + 14x+ 15y)

On the other hand,

[ABC] =
√
s(s− a)(s− b)(s− c)

=
√

21 · 6 · 7 · 8
= 84

We still need 13z + 14x+ 15y though. We have all these right triangles and we haven’t even touched Pythagoras.
So we give it a shot:

x2 + x2 tan2 θ = z2 tan2 θ + (13− z)2 (1)

z2 + z2 tan2 θ = y2 tan2 θ + (15− y)2 (2)

y2 + y2 tan2 θ = x2 tan2 θ + (14− x)2 (3)
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Adding (1) + (2) + (3) gives

x2 + y2 + z2 = (14− x)2 + (15− y)2 + (13− z)2
⇒ 13z + 14x+ 15y = 295

Recall that we found that [ABC] = 1
2 tan θ(13z + 14x+ 15y) = 84. Plugging in 13z + 14x+ 15y = 295, we get

tan θ = 168
295 , giving us 463 for an answer.

Example 7.11 (AIME I 2007/12)

In isosceles triangle 4ABC, A is located at the origin and B is located at (20, 0). Point C is in the first
quadrant with AC = BC and angle BAC = 75◦. If triangle ABC is rotated counterclockwise about point
A until the image of C lies on the positive y-axis, the area of the region common to the original and the
rotated triangle is in the form p

√
2 + q

√
3 + r

√
6 + s, where p, q, r, s are integers. Find p−q+r−s

2 .

Solution. Let the new triangle be 4AB′C ′ (A, the origin, is a vertex of both triangles). Let B′C ′ intersect with
AC at point D, BC intersect with B′C ′ at E, and BC intersect with AB′ at F . The region common to both
triangles is the quadrilateral ADEF . Notice that [ADEF ] = [4ADB′]− [4EFB′], where we let [. . .] denote
area.

To find [4ADB′]: Since ∠B′AC ′ and ∠BAC both have measures 75◦, both of their complements are 15◦,
and ∠DAB′ = 90− 2(15) = 60◦. We know that ∠DB′A = 75◦, so ∠ADB′ = 180− 60− 75 = 45◦.

Thus 4ADB′ is a 45− 60− 754. It can be solved by drawing an altitude splitting the 75◦ angle into 30◦ and
45◦ angles, forming a 30− 60− 90 right triangle and a 45− 45− 90 isosceles right triangle. Since we know that
AB′ = 20, the base of the 30− 60− 90 triangle is 10, the base of the 45− 45− 90 is 10

√
3, and their common

height is 10
√

3. Thus, the total area of [4ADB′] = 1
2(10
√

3)(10
√

3 + 10) = 150 + 50
√

3 .
To find [4EFB′]: Since 4AFB is also a 15− 75− 90 triangle,

AF = 20 sin 75 = 20 sin(30 + 45) = 20
(√

2+
√
6

4

)
= 5
√

2 + 5
√

6 and

FB′ = AB′ − AF = 20 − 5
√

2 − 5
√

6 Since [4EFB′] = 1
2(FB′ · EF ) = 1

2(FB′)(FB′ tan 75◦). With some
horrendous algebra, we can calculate

[4EFB′] =
1

2
tan(30 + 45) · (20− 5

√
2− 5

√
6)2

= 25

( 1√
3

+ 1

1− 1√
3

)(
8− 2

√
2− 2

√
6− 2

√
2 + 1 +

√
3− 2

√
6 +
√

3 + 3
)

= 25(2 +
√

3)(12− 4
√

2− 4
√

6 + 2
√

3)

[4EFB′] = −500
√

2 + 400
√

3− 300
√

6 + 750 .

To finish,

[ADEF ] = [4ADB′]− [4EFB′]
=
(

150 + 50
√

3
)
−
(
−500

√
2 + 400

√
3− 300

√
6 + 750

)

= 500
√

2− 350
√

3 + 300
√

6− 600

Hence, p−q+r−s
2 = 500+350+300+600

2 = 1750
2 = 875 .
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Example 7.12 (AIME I 2012/12)

Let 4ABC be a right triangle with right angle at C. Let D and E be points on AB with D between A and

E such that CD and CE trisect ∠C. If DE
BE = 8

15 , then tanB can be written as
m
√
p

n , where m and n are
relatively prime positive integers, and p is a positive integer not divisible by the square of any prime. Find
m+ n+ p.

Solution. Without loss of generality, set CB = 1. Then, by the Angle Bisector Theorem on triangle DCB, we
have CD = 8

15 . We apply the Law of Cosines to triangle DCB to get 1 + 64
225 − 8

15 = BD2, which we can simplify
to get BD = 13

15 .

Now, we have cos∠B =
1+ 169

225
− 64

225
26
15

by another application of the Law of Cosines to triangle DCB, so

cos∠B = 11
13 . In addition, sin∠B =

√
1− 121

169 = 4
√
3

13 , so tan∠B = 4
√
3

11 .

Our final answer is 4 + 3 + 11 = 018 .

Example 7.13 (AIME II 2014/12)

Suppose that the angles of 4ABC satisfy cos(3A) + cos(3B) + cos(3C) = 1. Two sides of the triangle have
lengths 10 and 13. There is a positive integer m so that the maximum possible length for the remaining
side of 4ABC is

√
m. Find m.

Solution. Note that cos 3C = − cos (3A+ 3B). Thus, our expression is of the form cos 3A + cos 3B −
cos (3A+ 3B) = 1. Let cos 3A = x and cos 3B = y.

Using the fact that cos(3A + 3B) = cos 3A cos 3B − sin 3A sin 3B = xy −
√

1− x2
√

1− y2, we get x + y −
xy +

√
1− x2

√
1− y2 = 1, or

√
1− x2

√
1− y2 = xy − x− y + 1 = (x− 1)(y − 1).

Squaring both sides, we get (1−x2)(1−y2) = [(x−1)(y−1)]2. Cancelling factors, (1+x)(1+y) = (1−x)(1−y).
Notice here that we cancelled out one factor of (x-1) and (y-1), which implies that (x-1) and (y-1) were not 0.

If indeed they were 0 though, we would have cos(3A)− 1 = 0, cos(3A) = 1
For this we could say that A must be 120 degrees for this to work. This is one case. The B case follows in

the same way, where B must be equal to 120 degrees. This doesn’t change the overall solution though, as then
the other angles are irrelevant (this is the largest angle, implying that this will have the longest side and so we
would want to have the 120 degreee angle opposite of the unknown side).

Expanding, 1 + x+ y + xy = 1− x− y + xy → x+ y = −x− y.
Simplification leads to x+ y = 0.
Therefore, cos(3C) = 1. So ∠C could be 0◦ or 120◦. We eliminate 0◦ and use law of cosines to get our answer:

m = 102 + 132 − 2 · 10 · 13 cos∠C

→ m = 269− 260 cos 120◦ = 269− 260

(
-
1

2

)

→ m = 269 + 130 = 399 .
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Example 7.14 (AIME I 2011/14)

Let A1A2A3A4A5A6A7A8 be a regular octagon. Let M1, M3, M5, and M7 be the midpoints of sides A1A2,
A3A4, A5A6, and A7A8, respectively. For i = 1, 3, 5, 7, ray Ri is constructed from Mi towards the interior
of the octagon such that R1 ⊥ R3, R3 ⊥ R5, R5 ⊥ R7, and R7 ⊥ R1. Pairs of rays R1 and R3, R3 and R5,
R5 and R7, and R7 and R1 meet at B1, B3, B5, B7 respectively. If B1B3 = A1A2, then cos 2∠A3M3B1 can
be written in the form m−√n, where m and n are positive integers. Find m+ n.

Solution. Let θ = ∠M1M3B1. Thus we have that cos 2∠A3M3B1 = cos
(
2θ + π

2

)
= − sin 2θ.

Since A1A2A3A4A5A6A7A8 is a regular octagon and B1B3 = A1A2, let k = A1A2 = A2A3 = B1B3.
Extend A1A2 and A3A4 until they intersect. Denote their intersection as I1. Through similar triangles and

the 45− 45− 90 triangles formed, we find that M1M3 = k
2 (2 +

√
2).

We also have that4M7B7M1 = 4M1B1M3 through ASA congruence (∠B7M7M1 = ∠B1M1M3, M7M1 =
M1M3, ∠B7M1M7 = ∠B1M3M1). Therefore, we may let n = M1B7 = M3B1.

Thus, we have that sin θ = n+k
k
2
(2+
√
2)

and that cos θ = n
k
2
(2+
√
2)

. Therefore sin θ − cos θ = k
k
2
(2+
√
2)

= 2
2+
√
2

=

2−
√

2.
Squaring gives that sin2 θ − 2 sin θ cos θ + cos2 θ = 6− 4

√
2 and consequently that −2 sin θ cos θ = 5− 4

√
2 =

− sin 2θ through the identities sin2 θ + cos2 θ = 1 and sin 2θ = 2 sin θ cos θ.
Thus we have that cos 2∠A3M3B1 = 5− 4

√
2 = 5−

√
32. Therefore m+ n = 5 + 32 = 037 .

Example 7.15 (AIME II 2013/15)

Let A,B,C be angles of an acute triangle with

cos2A+ cos2B + 2 sinA sinB cosC =
15

8
and

cos2B + cos2C + 2 sinB sinC cosA =
14

9

There are positive integers p, q, r, and s for which

cos2C + cos2A+ 2 sinC sinA cosB =
p− q√r

s
,

where p+ q and s are relatively prime and r is not divisible by the square of any prime. Find p+ q + r + s.

Solution. Let’s draw the triangle. Since the problem only deals with angles, we can go ahead and set one of the
sides to a convenient value. Let BC = sinA.

By the Law of Sines, we must have CA = sinB and AB = sinC.
Now let us analyze the given:

cos2A+ cos2B + 2 sinA sinB cosC = 1− sin2A+ 1− sin2B + 2 sinA sinB cosC

= 2− (sin2A+ sin2B − 2 sinA sinB cosC)

Now we can use the Law of Cosines to simplify this:

= 2− sin2C

Therefore:

sinC =

√
1

8
, cosC =

√
7

8
.

63
Copyright © 2020 by Euclid’s Orchard. All rights reserved.



naman12 and freeman66 (May 26, 2020) Trigonometry in the AIME and the USA(J)MO

Similarly,

sinA =

√
4

9
, cosA =

√
5

9
.

Note that the desired value is equivalent to 2− sin2B, which is 2− sin2(A+ C). All that remains is to use the

sine addition formula and, after a few minor computations, we obtain a result of
111− 4

√
35

72
. Thus, the answer

is 111 + 4 + 35 + 72 = 222 .
Note that the problem has a flaw because cosB < 0 which contradicts with the statement that it’s an acute

triangle. Would be more accurate to state that A and C are smaller than 90. Also note that the identity
cos2A+ cos2B + cos2C + 2 cosA cosB cosC = 1 would have easily solved the problem.

§8 Parting Words and Final Problems

So with this, you should be able to solve almost any AIME Problem on trigonometry and its applications. We
hope this document helped you learn a bit about how to use trigonometry in all kinds of contexts, even ones
that aren’t obviously apparent. In addition, we hope that this will boost your geometry skills, as trigonometry
is very commonly used to solve problems. Any suggestion would be extremely helpful, whether it would be
problem suggestions, mistakes we made, or stuff we should explain better. Here’s a final problem set that should
incorporate (almost) every AIME Problem which requires trigonometry (that hasn’t been solved above):

Problem 8.1. Evaluate sin(7π6 ). Hints: 104

Problem 8.2. Evaluate tan(−3π4 ). Hints: 4

Problem 8.3. Solve sin(x) + cos(x) = 0 for x. Hints: 7

Problem 8.4. Solve 2 cos(2x) + 1 = 0 for x. Hints: 34

Problem 8.5 (CMIMC 2018/7). Compute the value of

2017∑

k=0

5 + cos
(
kπ
1009

)

26 + 10 cos
(
kπ
1009

) .

Hints: 13 5

Problem 8.6 (HMMT Guts 2014/31). Evaluate

1007∑

k=1

(
cos

(
kπ

1007

))2014

.

Hints: 101 17

Problem 8.7. Consider a rectangle ABCD such that side AB has length n and side BC has length m. A circle
is drawn with center E at the midpoint of side BC such that it is tangent to the diagonal AC. Determine the
radius of this circle in terms of n and m. Hints: 73 106

Problem 8.8. Find the number of intersections of the parabola x2 = 2p(y + p
2) and the line x cos θ + y sin θ =

p sin θ. Hints: 30 50 3

Problem 8.9. For a 6= b,
a2 sin θ + a cos θ − 1 = 0,

b2 sin θ + b cos θ − 1 = 0.

Let l be the line determined by (a, a2) and (b, b2). Find the number of intersections of l and the unit circle.
Hints: 14 16 25
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Problem 8.10. Let ABC be a triangle with inradius r and circumradius R. Show that

1. 4 sinA sinB sinC = sin 2A+ sin 2B + sin 2C.

2. if sin2A+ sin2B + sin2C = 2 then ABC is a right triangle.

3. if ABC is a cute then 2 cosA cosB cosC + cos 2A+ cos 2B + cos 2C = −1.

4. [ABC] = 2R2 sinA sinB sinC.

5. a cosA+ b cosB + c cosC = abc
2R .

6. r = 4R sin A
2 sin B

2 sin C
2 .

7. a cosB + b cosC + c cosA = a+b+c
2 .

Hints: 29

Problem 8.11. Find the dihedral angle between adjacent faces of a:

1. regular tetrahedron,

2. regular octahedron,

3. regular dodecahedron, and

4. regular icosahedron.

Hints: 45
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§A Appendix A: List of Theorems and Definitions

List of Theorems

2.13 Theorem - Trigonometric Properties 9

2.17 Theorem - Bounds of sin θ and cos θ 14

2.21 Theorem - Periods of Trigonometric Functions 15

2.22 Theorem - Even-Odd Identities 15

2.23 Theorem - Pythagorean Identities 15

2.26 Theorem - Addition-Subtraction Identities 17

2.29 Theorem - Double Angle Identities 18

2.33 Theorem - Half Angle Identities 19

2.35 Theorem - Sum to Product Identities 19

2.40 Theorem - Potpourri 20

3.2 Theorem - Complex Number Multiplication and Addition 22

3.6 Theorem - Euler’s Theorem 23

3.8 Theorem - Properties of Complex Numbers 23

3.12 Theorem - De Moivre’s Theorem 23

3.13 Theorem - Complex Form of Trigonometric Functions 23

3.15 Theorem - Roots of Unity 24

3.19 Theorem - Vieta’s Formulas in Roots of Unity 25

3.20 Theorem - Complex Trigonometric Products 25

3.22 Theorem - Triple Angle Trig Theorem 26

4.1 Theorem - Trigonometric Laws 29

4.2 Theorem - Extended Law of Sines 29

4.3 Theorem - Ratio Lemma 30

4.4 Theorem - Trig Ceva 30

4.5 Theorem - Quadratic Formula of Trigonometry 30

4.6 Theorem - Trigonometric Form of Ptolemy’s Theorem 30
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4.21 Theorem - Blanchet’s Theorem 40

4.26 Theorem - Addition of Vectors 41

4.27 Theorem - Multiplying Vectors by Constant 41

4.28 Theorem - Vector Identities 42

4.30 Theorem - Magnitude of Dot Product 42

4.32 Theorem - Magnitude of Cross Product 42

4.33 Theorem - Vectorial Form of Ptolemy’s Theorem 43

4.37 Theorem - Right Hand Rule 44

4.38 Theorem - Triple Scalar Product 44

4.39 Theorem - Triple Vector Product 44

4.40 Theorem - AIME Vectors 45

4.41 Theorem - Properties of Vectors 45

4.43 Theorem - Parameterizations of Conic Sections 46

4.44 Theorem - Polar Form of Conic Sections 46

4.45 Theorem - Trajectory of a Parabola 46

5.1 Theorem - Vector on Vector Projection 49

5.2 Theorem - Area-Sine Formula 49

5.3 Theorem - Volume of a Parallelepiped 49

5.7 Theorem - Unit Normal Vector Formula 50

5.8 Theorem - Dihedral Angle Formula 50

6.1 Theorem - Weierstrauss Substitution 51

6.2 Theorem - Trigonometric Triangle-Angle Condition 51

6.3 Theorem - Triangle-Angle Substitution 51

6.4 Theorem - ab+ bc+ ca = 1 Substitution 52

6.5 Theorem - a+ b+ c = abc Substitution 52

6.6 Theorem - a2 + b2 + c2 + 2abc = 1 Substitution 52

6.9 Theorem - Trigonometric Inequalities 53

6.10 Theorem - Well-Known Triangle Trigonometric Identities 54
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6.11 Theorem - Well-Known Trigonometric Identities 54

List of Definitions

2.4 Definition - Hypotenuse 6

2.5 Definition - Leg 6

2.6 Definition - Sine 6

2.7 Definition - Cosine 6

2.8 Definition - Tangent 7

2.9 Definition - SOH-CAH-TOA 8

2.10 Definition 8

3.1 Definition - Complex Numbers 22

3.7 Definition - Polar Complex Numbers 23

3.14 Definition - Root of Unity 24

4.25 Definition - Vector 41

4.29 Definition - Dot Product 42

4.31 Definition - Cross Product 42

5.4 Definition - Dihedral Angle 50

5.5 Definition - Normal Vector 50

5.6 Definition - Unit Vector 50

§B Appendix B: Hints

1. Without vectors, simply calculate the lengths of the sides of triangle PQO, where O is the origin. This is easily
done by 3D Pythagorean Theorem. With vectors, calculate the normal vector.

2. Try to factor the given expression. Maybe the form at the end will help you a bit?

3. We get y = p
1±cos θ . Isn’t that cool?

4. Find tan π
4 . What does this have to do with what we want?

5. The value from the last hint is θ = πk
1009 . Now try to complete the square on part of the denominator (exclude sin2 θ).

If you would like the full solution, look here.

6. 1
2ab sinC works for triangles - does a similar thing work for quadrilaterals (using the diagonals)?

7. We either have tanx = −1, or cosx = 0. Why?

8. Your answer will come from sector− triangle− triangle. But can you find special properties of these triangles?

9. Try to find 30− 60− 90 triangles.
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10. This looks suspiciously like Pythagorean Theorem, and this is in a trigonometry handout. What could this mean?

11. Most of the work is using power of a point. Can you find two points that have the same power? Can you then find
AB > AC and AC?

12. Can you evaluate one of them very easily? Also, try to rewrite such that all the cos terms are less than π
2 .

13. 26 isn’t a nice number. What about 25 + cos2 θ + sin2 θ? What θ will make this good?

14. Subtraction seems nice.

15. This is a rather direct application of complex numbers. I’ll leave you to it, in order to not spoil anything.

16. What is the slope of the line?

17. Note that cos
(
πk
1007

)
= 1

2 (ωk + ω−k). Now bash with sums. The full solution is located here.

18. Try to graph it and use the Bounds of sin θ and cos θ (specifically sin θ).

19. Consider the cases x > 1, x < 1, and x = 1 all separately. Try to find patterns in the case x > 1.

20. BD is a good candidate for the Law of Cosines.

21. Hey! You know a lot about the properties of sine! Simplify your expression into something manageable. Then
compute using basic trigonometric values.

22. Note that if a3 + b3 = (a+ b)3, this rearranges to 3ab(a+ b) = 0. What can you take a and b as? What can you
conclude? You should have 3 cases - just solve all of them!

23. For the first three, substitute them into the Addition-Subtraction Identities, with α = β. The last three immediately
follow from their definitions as reciprocals.

24. Try to substitute x = i instead.

25. The slope was a+ b, and we got that from the first hint as − tan θ. Now intersect it with x2 + y2 = 1.

26. Using the above diagram, we can see that cos(α+ β) = EB = CB − CE = CB −AF .

27. Have you considered complex yet? Roots of Unity!

28. Try using the exponential form (ex). If you want a full proof, look here.

29. All I’ll say is refer to Trigonometric Substitution, and good luck.

30. Find x in terms of y, p, and θ, then substitute into the first equation.

31. Apply the Magnitude of Cross Product theorem.

32. This looks like a partial decomposition problem - there is sin in the denominator so which trig function do you think
of? There are two possible answers.

33.

34. Find cos 2x. What does this tell us about 2x?

35. Consider the first two and last two terms separately. Use the Sum to Product Identities on each of them.

36. As said before, don’t wait for some magic. Heron’s formula does the trick.

37. Try to assume z = a = bi and cross multiply. Separate the real and imaginary parts as well.

38. Try using Bretschneider’s Formula. For those that have given up, I believe the full proof is in here. You can also
search up “the area of a tangential quadrilateral”.

39. Even though things don’t work out as you imagine, use the facts in Potpourri to get a lot of cancellation.

40. Try to simply factor and reduce as much as possible.

41. There’s a lot of symmetry going on, and 101 seems like a random number. What if we tried a simpler case, where
101 was replaced with 2 or 3? The result follows pretty fast from Engineer’s Induction. See if you can prove it for all
n, however.
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42. You may need to use Pitot’s Theorem.

43. The shoelace formula is one of the best ways to find the area.

44. Applying a few basic trigonometric identities will get you far in this question. Don’t think to hard about it, it’s just
relating sin and cos.

45. Just bash with the Dihedral Angle Formula.

46. Try to divide by cos2 θ. It would help, especially to get an equation all in terms of tan θ (use section 3 of my
Polynomials in the AIME Handout to finish the problem).

47. The cos3 is annoying - try to start with Sum to Product Identities on cos 3x+ cos 5x. What is the result? How does
it relate to what you have in the problem.

48. It’s begging for trigonometry, but it’s not very obvious how to calculate this. Try to assign arc lengths.

49. Try to use our bounds on sin θ and cos θ instead of rederiving them.

50. Remember that p is a constant. Find y using the quadratic formula.

51. Try to let tan∠ABC = x. What can you get?

52. You probably know ∠A. Law of Cosines should finish it off.

53. Choosing a nice point can give you the answer, but not the proof. Perhaps trigonometric bashing will help - if a
nicer proof is what you desire, go to the next hint. If you are okay with a little bash, try Ratio Lemma.

54. Just use the Double Angle Identities with α = 1
2θ.

55. Find a cubic in terms of sin 18◦. Can you find an easy root (see my Polynomials in the AIME Handout and section
2)? Note that this root is not sin 18◦.

56. A non-trigonometric way to attempt this problem is to realize the pattern for equilateral triangles, squares, regular
pentagons, etc. With this knowledge, it may help in a trigonometric proof.

57. Use the formula (Volume of a Parallelepiped) given above.

58. Try to write down as many Law of Sines equations as possible. Can you combine some such that (even though it
looks very contrived) the only term is ∠DBA.

59. I suggest Polar Complex Numbers.

60. It helps if you know Newtons’ Sums (see my Polynomials in the AIME Handout and section 4). Otherwise, use the
same strategy as in the above problem, by finding cos2 x sin2 x.

61. The identity x2 +y2 = (x+y)2−2xy comes in useful, with x = sin t and y = cos t. You can get a system of equations,
and try to solve it.

62. Similar triangles help, and try to use tan∠BEF .

63. Try to expand and factor. Remember 107 is prime!

64. Use the Law of Cosines and 1
2ab sinC to get [ABCD] in terms of a, b, c, d,∠A,∠C.

65. For both of the trig functions, write them with a common denominator. Which one seems the easiest to use (maybe
Addition-Subtraction Identities can help)?

66. Use the definition to derive the general formula, then plug in π
6 .

67. Use the Law of Sines (extended version) to find AC and BD of any quadrilateral. Can you finish off with the area
(you can guess - it’s most likely symmetric).

68. Try to let the angle between AB and the x-axis be θ. Use trig functions to find the value of θ and the rest of the
coordinates.

69. Consider the graph below, as well as the domain of a tangent graph.

70. Use that Double Angle Identities to write sin 2θ is in form of sin θ and cos θ. Does this look familiar?
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71. What section is this again? That’s right use complex numbers! Specifically, ω = e
2πi
90 . The solution is available here.

72. Like the last example, look at the unit circle below.

73. Let the circle be tangent to AC at F . What is EF in terms of EC and ∠ACB?

74. I suggest Polar Complex Numbers.

75. Look back at the definitions.

76. There is obviously a pattern between a, b, and c. What happens when we add up the angles?

77. Remember, sometimes the substitution y = x+ 1
x helps.

78. I suggest to let zk = xk + (mxk + b)i where the equation of line L is y = mx+ b. Now solve for m.

79. Use w = a+ bi and z = c+ di and use the definition.

80. You could fool around with the Law of Sines, but it seems easy enough to just drop perpendiculars.

81. Try to draw in the feet of the perpendiculars as well as the center to the intersection point.

82. Try to factor P (x). Maybe find a few roots?

83. This was added just to make sure the reader understood vectors. Well, do you? Think of how adding vectors works.

84. Try to use the Law of Cosines on 4ADC and 4ABC. Find the length of the median.

85. Don’t look for some smart trig identity - Heron’s formula.

86. Don’t use the diagrams - use the definition of Tangent. Once you get a nasty expression in terms of sinα, sinβ, cosα, cosβ,
try to divide both the numerator and denominator by cosα cosβ.

87. Maybe you can work with something like 2∠DBA? Write a cubic in cos 2∠DBA.

88. You’ll get a quadratic - which you can hopefully solve for sinx+ cosx and then solve for sinx cosx. Can you find
sin 2x from the Double Angle Identities? Can this help you find what x is?

89. There are 6 different cases you should have - remember that the Law of Sines (or alernatively drawing radii) will
make your life much easier.

90. Refer to AIME 1995/7 to see the same method used to solve this problem.

91. It typically helps to draw a diagram. Draw one! Can you make inferences about y-coordinates?

92. Look at the unit circles below for a bit of intuition.

93. It’s on similar lines to the previous problem - use Double Angle Identities and Addition-Subtraction Identities to
break down the problem into sinx, cosx.

94. Try relating 36◦ and 54◦ by some of the identities in the Potpourri.

95. Just because the question said to bound these functions does not mean they have a bound. Think about the graphs
of the functions.

96. There’s a fancy construction solution - but use the law of Sines should get you pretty far. Alternatively, Trig Ceva
could work.

97. Try using the Double Angle Identities by multiplying by sin π
9 .

98. Rearrange the position of the chords to form a triangle. Then, use trigonometry!

99. Sometimes expanding the sum/difference of angles helps a lot.

100. Like the last example, use the definition to derive the general formula, then plug in 225◦.

101. Try roots of unity, with ω = e
2πi
2014 .

102. Try to see if a direct application of the roots of unity helps here.
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103. Seems so perfect for the Law of Sines. Find ∠B and ∠C.

104. Find sin π
6 . What does this have to do with what we want?

105. To finish, just factor the cubic! It should be a familiar angle.

106. Now calculate ∠ABC in terms of m and n. Use 4ABC.
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