
Math 132, Lecture 1: Trigonometry

Charles Staats

Wednesday, 4 January 2012

1 The circular functions: Definitions of sine and
cosine

Any time we trace a path in the plane, we implicitly define two functions of
time. The first function takes t to the x-coordinate of our path at time t; the
second function takes t to the y-coordinate. Specifying x and y as functions of
t is called parametric graphing. It is more versatile than simply plotting y as a
function of x.

The particular path we are interested in at the moment is the unit circle,
i.e., the circle of radius 1 centered at the origin. The circle is not the graph of
a function, since a single x-coordinate can have more than one corresponding
y-coordinate:

x

y
a single x-value

Nevertheless, the circle can be described, parametrically, by two functions. By
convention, we start at the rightmost point (1, 0) and then move counterclock-
wise around the circle at constant speed 1. Then for any given time t, there
is a unique x-coordinate x(t) and a unique y-coordinate y(t), so we have two
functions.
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It is perhaps natural to ask whether these functions can be described by
formulas. So far in this class, we have used only +, −, ×, ÷, and exponents and
roots. As it turns out, no finite-length expression using only these operations
can describe either of the two functions x(t) and y(t). Nevertheless, we know
that these two functions do exist. So, we invent new symbols, sin (sine) and cos
(cosine), to describe them.

Definition. Let t be a real number. We define sin t and cos t as follows:
Let (x(t), y(t)) be the point on the unit circle obtained by starting at the
point (1, 0) and traveling a distance of t in the counterclockwise direction.
Then we define

sin t = y(t)

cos t = x(t).

x

y

t
(cos t, sin t)

Note: To make this apply for negative t, we take, e.g., “traveling −2 units
counterclockwise” to mean “traveling 2 units clockwise.”

This is the same idea as defining the
√

symbol to solve problems that
otherwise would have no formula for the solution.
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2 Radians

Whenever we specify a distance t to travel along the circle, there is a corre-
sponding angle θ:

x

y

t

θ

If we divide t by the circumference of the unit circle1, we obtain what fraction
of the circle t represents. If we measure θ in degrees, and divide it by the total
number of degrees in the circle (360), then we obtain the same fraction of the
circle. In other words,

t

2π
=

θ

360
.

Thus, t is really a measure of angle, not just distance; only, in making this
measurement, we are dividing the circle into 2π parts rather than 360 parts.

It may seem odd to divide the circle into 360 parts, but it seems even odder
to divide it into 2π parts—this is not even an integer. Why do we do this?
Essentially, we use radians because calculus formulas look much nicer in radians
than in degrees. For instance, let θ be the measure of an angle in degrees, and
let t be the measure of the same angle in radians. Then, as we will see later,
the following equations are all true.

radians degrees

lim
t→0

sin t

t
= 1 lim

θ→0

sin θ

θ
=

π

180

d

dt
sin t= cos t

d

dθ
sin θ=

π

180
cos θ

As you can see, the equations in radians are much nicer than the equations in
degrees. When we prove the first statement, we will perhaps see why.

1The circumference of the unit circle is 2πr = 2π · 1 = 2π.
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There’s one more pair of very nice formulas, important if we actually want
to compute sine and cosine:

sin t = t− 1
3! t

3 + 1
5! t

5 − 1
7! t

7 + · · · ,
cos t = 1− 1

2! t
2 + 1

4! t
4 − 1

6! t
6 + · · · .

These formulas are called the Taylor series for sine and cosine; we will get some
idea why they work next quarter. If we have measured t in radians and we want
to get a decimal approximation for sin t or cos t, we can usually get a very good
approximation by computing just the first few terms of the Taylor series. If we
have measured the angle in degrees, we probably want to convert it to radians
so that we can apply these formulas.

Warning. The Taylor series formulas above will (almost?) never come up
again until next quarter. In particular, you should not use them to solve any
problems unless specifically told otherwise.

3 Graphs of sine and cosine

Although we probably won’t have time to discuss these until next lecture, I
would be remiss if I did not at least show/remind you what the graphs of sine
and cosine look like.

t

f(t)

f(t)=sin t

f(t)=cos t

π 2π−π

1

−1
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Assignment 1 (due Friday, 6 January)

Note: I will sometimes assign homework problems that are supposed to prepare
you for the next lecture, rather than review the previous one. In this case, you
may have to consult the textbook to figure out how to do them.

Section 0.7, Problems 1(a)–(c), 2(a)–(c), 9, and 14.

Explain why the Taylor series formulas (Lecture 1, top of page 4) do not con-
tradict the assertion at the top of page 2 that the sine and cosine cannot be
given by non-trigonometric. Hint: You really do want to look at page 2 to see
exactly what this assertion is.

Assignment 2 (due Monday, 9 January)

Section 0.7, Problems 1(d)–(f), 2(d)–(f), 16, and 17.

Section 1.4, Problems 1, 2, 15, and 16.
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Math 132, Lecture 2: Trigonometry

Charles Staats

Friday, 6 January 2012

1 Slope versus angle of inclination

Suppose you have a slanted line (e.g., a road on a hillside). There are two ways
to measure how “steep” it is. In algebra class, you have learned to measure
its “steepness” as slope: vertical change divided by horizontal change, or “rise
over run.” On the other hand, in geometry class, the “steepness” would have
been measured by looking at the angle between the slanted line and a horizontal
line: the “angle of inclination.” These two measures behave quite differently;
for instance, lines of slopes 1 and 2 have quite different angles of inclinations,
whereas lines of slopes 100 and 101 have very nearly the same angle of inclination
(very slightly less than π/2, a right angle).

One question that bothered me when I was studying algebra and geometry
was how to relate these two different measures of “steepness.” As it happens,
there is a way—using trigonometry.

Definition. The tangent of a real number t, written tan t, is the slope of a line
that makes an angle of t radians with the horizontal:

slo
pe = tan t

t rad

Like sine and cosine, tangent cannot be expressed in a (finite) combination of
non-trigonometric operations. However, we can give an expression for tangent
in terms of sine and cosine:
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x

y

t rad

t

∆x = cos t

∆y = sin t
1

tan t =
∆y

∆x
=

sin t

cos t
.

The equation

tan t =
sin t

cos t
is extremely important, and is often taken as the definition of the tangent func-
tion. There are stories that are sometimes used to help remember this equation.
One such story concerns two sisters, named Sine and Cosine, who visit the beach
one day and meet a Tanned Gent. They both want him, but in the end, the
Tanned Gent chooses Sine over Cosine.

2 Periodicity

The graphs of the sine, cosine, and tangent are shown below:

t

f(t)

f(t)=sin t

f(t)=cos t

π 2π−π

1

−1
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t

tan t

−3

−2

−1

1

2

3

−π π−π2 π
2

3π
2

These functions exhibit a phenomenon called periodicity : if you translate any
of the three graphs left or right by the correct amount (the period), then you
get back the graph you started with.

Definition. Let f be a function (e.g., f(x) = sin(x) for all x). We say that a
positive real number p is a period of f if

f(x) = f(x+ c)

for all x in the domain of f . We say that f is periodic if it has a period. The
smallest period p, if it exists, is called “the” period of f .

The graphs of sine, cosine, and tangent suggest that sine and cosine are
periodic of period 2π, while tangent is periodic of period π. We can confirm
this by thinking about the definitions: if you add 2π radians to an angle, you
go all the way around the circle and get back the same angle, so of course it
has the same sine and cosine. Similarly, if you go all the way around a circle,
you get a line with the same slope, so 2π is a period of the tangent function;
but it is not the period, since there is a smaller period (namely π). If you add
π radians to an angle, you go halfway around the circle; you get a line with the
same slope, i.e., this angle has the same tangent as the angle you started with.
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y

x

t+
2π

t

t+
π

3 Sinusoidal functions; amplitude

Many phenomena in nature are more or less periodic—for instance, seasons,
waves, tides, pendula,. . . . If we want to provide formulas that allow us to
approximate these things mathematically, then we need periodic functions; and
the most generally useful periodic functions seem to be based on the sine and
cosine functions. Essentially, any wave function like the one pictured above is
called a sinusoidal function; and all sinusoidal functions can be described as
geometric shifts of the sine function.

Let s be a sinusoidal function. Then s has the form

s(t) = A sin
t− t0
p/2π

+ C,

where

t0 controls where the wave starts,

p is the period,

A is the amplitude, and
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C is the vertical translation.

This provides a geometric description as follows: Start with the sine function,
and then

1. Shift it right by t0;

2. Stretch it horizontally by p/2π;

3. Stretch it vertically by A; and finally

4. Shift it up by C.

Note, in particular, that the cosine function is a sinusoidal function, and may
be described as

cos t = sin(t+ π
2 );

the cosine function is obtained by shifting the sine function to the right by two.

4 Other trig functions

There are three other trigonometric functions, which are the reciprocals of the
three functions already introduced. It’s not entirely clear why these functions
deserve names of their own, or why those names are what they they are, but I
suppose you need to know them to understand what other people mean when
they use them:

Definition. The cosecant of t, denoted csc t, is the reciprocal of sin t:

csc t =
1

sin t
.

The secant of t, denoted sec t, is the reciprocal of cos t:

sec t =
1

cos t
.

The cotangent of t, denoted cot t, is defined by

cot t =
cos t

sin t
.

The following equations also hold whenever they make sense:

cot t =
1

tan t
=

csc t

sec t
.

However, these cannot be used as the definition for the cotangent because of
issues with division by zero. (E.g., tan t, and hence 1/ tan t, is undefined when
cot t = 0.)

5 Trigonometric identities

See pp. 47–48 in the textbook. These should be memorized.
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Assignment 2 (due Monday, 9 January)

Section 0.7, Problems 1(d)–(f), 2(d)–(f), 16, and 17.

Section 1.4, Problems 1, 2, 15, and 16.

Assignment 3 (due Wednesday, 11 January)

Section 0.7, Problem 11. Parts (a) and (d) will be graded carefully.

Section 1.3, Problems 15 and 16. Problem 16 will be graded carefully.

Section 1.4, Problems 5 and 6. Problems 6 will be graded carefully.

Section 2.4, Problems 1 and 2. Problem 2 will be graded carefully.

Bonus Exercise. Show that sin is not a rational function. (Hint: explain why
limt→∞ f(t) always exists (allowing ±∞ as the limit) if f is a rational function,
but limt→∞ sin t does not exist. You do not need to give a rigorous proof.)
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Math 132, Lecture 3: Limits and derivatives of

trigonometric functions

Charles Staats

Monday, 9 January 2012

1 Continuity of the trigonometric functions

The main result of this section is that the trigonometric functions are continuous
wherever they are defined. In other words,

lim
x→x0

sinx = sinx0

lim
x→x0

cosx = cosx0

lim
x→x0

tanx = tanx0,

where the last equation holds whenever tanx0 is defined. I won’t bother to
prove these; if this bothers you, see Section 1.4 in the textbook.

2 Derivative of sine

Let’s see what happens when we try to find the derivative of sinx using the
definition of the derivative:

d

dx
sinx = lim

h→0

sin(x + h)− sinx

h

= lim
h→0

sinx cosh + cosx sinh− sinx

h

= lim
h→0

(cosh− 1) sinx + cosx sinh

h

= lim
h→0

(
cosh− 1

h
· sinx +

sinh

h
· cosx

)

=

(
lim
h→0

cosh− 1

h

)
sinx +

(
lim
h→0

sinh

h

)
cosx,

where the last equality is contingent on the existence of the limits in question.
Thus, we can differentiate sinx if we can evaluate the two limits

lim
t→0

cos t− 1

t
and lim

t→0

sin t

t
.
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These are perhaps the first “interesting limits” as t approaches something finite
that we’ve seen in this course. Unlike the limits we discussed last quarter,
these limits cannot be resolved simply by canceling common factors from the
numerator and denominator.

Here’s a purely intuitive picture that should allow us to guess, and hopefully
remember, what these limits are. Imagine zooming in, very close, to the circle
at t = 0 radians; i.e., the point (0, 1). If you zoom in close enough, then the
circle becomes virtually indistinguishable from its (vertical) tangent line.

Thus, the distance gone around the circle, t, is virtually indistinguishable from
the height sin t. Likewise, the horizontal distance, 1 − cos t, is essentially zero.
So, we have that

sin t ≈ t and 1− cos t ≈ 0

for t very close to 0. From these, we might guess that

lim
t→0

sin t

t
= 1 and lim

t→0

1− cos t

t
= 0;

and we would be correct.
Once we have these limits, our earlier work shows that

Dx sinx =

(
lim
h→0

cosh− 1

h

)
sinx +

(
lim
h→0

sinh

h

)
cosx

= 0 sinx + 1 cosx

= cosx.

If we look at the graphs of sine and cosine, this makes some sense:
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t

f(t)

f(t)=sin t

f(t)=cos t

π 2π−π

1

−1

The cosine function is positive precisely where the sine function is increasing;
moreover, the peaks of the cosine wave are precisely the spots where the sine
function is increasing fastest (i.e., has the greatest slope).

3 Other derivatives

We can use the definitions, plus the rules we know for differentiating, to find
derivatives of the other trigonometric functions:

cos t = sin
(
π
2 − t

)

d

dt
cos t = cos

(
π
2 − t

)
· d
dt

(
π
2 − t

)
(Chain Rule)

= (sin t) · (−1)

= − sin t

tan t =
sin t

cos t
d

dt
tan t =

(cos t)(cos t)− (sin t)(− sin t)

cos2 t
(Quotient Rule)

=
cos2 t + sin2 t

cos2 t

=
1

cos2 t
(Pythagorean identity)

= sec2 t (Definition of secant function)

I’ll leave the derivatives of secant, cosecant, and cotangent to you as an exercise.
(Perhaps we’ll do one of these in class, if there’s time.)

4 Proofs of the limits

Now, let’s give something approaching a rigorous justification for the two limits
we discussed earlier from a purely intuitive point of view:

lim
t→0

sin t

t
= 1 and lim

t→0

1− cos t

t
= 0;

For the first one, the idea is to use the Squeeze Theorem (which I have also
seen called the Sandwich Theorem): If we can show that, in a neighborhood of
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zero, (sin t)/t lies between two functions that both approach 1 as t → 0, then
necessarily, (sin t)/t also approaches 1 as t → 0. To do this, we will sandwich
sin t between two functions. Here’s the picture:

t

(cos t, sin t)

The vertical line has height sin t, the outer arc has length t, and the inner
arc has length t times its radius, i.e., t cos t. The length of the vertical line is
sandwiched between the lengths of the two arcs (this can be made more obvious
using areas). Thus, sin t is sandwiched between t cos t and t. In particular, for
t > 0,

t cos t < sin t < t

cos t <
sin t

t
< 1

lim
t→0+

cos t ≤ lim
t→0+

sin t

t
≤ lim
t→0+

1

1 ≤ lim
t→0+

sin t

t
≤ 1.

The left-hand limit is similar, but with some of the inequalities going in the
opposite direction.
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Assignment 3 (due Wednesday, 11 January)

Section 0.7, Problem 11. Parts (a) and (d) will be graded carefully.

Section 1.3, Problems 15 and 16. Problem 16 will be graded carefully.

Section 1.4, Problems 5 and 6. Problems 6 will be graded carefully.

Section 2.4, Problems 1 and 2. Problem 2 will be graded carefully.

Bonus Exercise. Show that sin is not a rational function. (Hint: explain why
limt→∞ f(t) always exists (allowing ±∞ as the limit) if f is a rational function,
but limt→∞ sin t does not exist. You do not need to give a rigorous proof.)

Assignment 4 (due Friday, 13 January)

Section 0.7, Problem 24.

Section 1.4, Problems 4 and 17. Problem 17 will be graded carefully.

Section 1.5, Problem 42. (Make sure you are looking at the limit as x approaches
infinity. You may want to use the Squeeze Theorem.) This will be graded
carefully.

Section 2.4, Problems 3 and 13. Problem 13 will be graded carefully, but problem
3 may be worth a second look on your part.

Section 2.5, Problem 9.
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Math 132, Lecture 4: The Chain Rule with

trigonometric functions; Review of Critical Points

Charles Staats

Wednesday, 11 January 2012

No class Monday

Monday, January 16 is Martin Luther King Day. We will not be having class.

1 Differentiating formulas that include trigono-
metric functions

There’s technically nothing new in this section. We’ve already discussed the
rules for differentiating sin, cos, tan, etc., and you already know the rules (prod-
uct rule, chain rule, etc.) for differentiating more complicated formulas when
you know how to differentiate the simpler functions of which they are composed.
This section is going to consist of a few examples of how to combine these rules.

Example 1. (Example 4, p. 120 in the textbook) If y = sin 2x, find
dy

dx
.

Solution 1: The long way. We may rewrite y as y = sinu, where u = 2x.
Then we have

dy

du
= cosu,

du

dx
= 2.

Hence, the Chain Rule gives us that

dy

dx
=

dy

du

du

dx
= (cosu) · 2
= 2 cos(2x).
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Solution 2: The short way.

d

dx
sin 2x = cos(2x) · d

dx
(2x)

= 2 cos 2x.

What I call the “long way” of applying the Chain Rule involves actually
specifying what u is in the equation

dy

dx
=

dy

du

dy

dx
.

When doing examples in class, I will typically use the “short way;” however,
when grading, I will give full credit to either method used correctly.

Example 2. Find
d

dt
sin2(t3).

Solution.

d

dt
sin2(t3) =

d

dt

(
sin t3

)2

= 2(sin t3) · d
dt

(sin t3)

= 2 sin t3 · cos t3 · d
dt

t3

= 2 sin t3 · cos t3 · 3t2.

Example 3. Find Dy(y cos y2).

Solution.

Dyy cos y2 = (Dyy) cos y2 + y(Dy cos y2) (Product Rule)

= 1 cos y2 + y · (− sin y2) ·Dy(y2)

= cos y2 + y(− sin y2)(2y)

= cos y2 − 2y2 sin y2.
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2 Why people really care about sinusoidal func-
tions: The differential equation x′′ = −x

Consider the situation of a ball in a bowl:

x
x = 0

Consider the ball’s horizontal position, x, as a function of time t. When the
ball rolls to the right or left of the center point x = 0, it will experience a force
pushing it back toward the center. Moreover, the farther away from the center
it goes, the greater this force will be. Now it is a basic fact of physics1 that
force determines acceleration d2x/dt2. Thus, we may guess that this situation
satisfies, at least approximately, the differential equation

d2x

dt2
= −kx,

for some constant k. In other words, the bigger |x| gets (i.e., the farther the ball
gets from the center), the greater will be the ball’s acceleration back towards
the center. The negative sign indicates that this acceleration is in the opposite
direction from x, i.e., back towards the center.

Now, note that the function x(t) = sin
√
kt satisfies

x(t) = sin
√
kt

x′(t) =
√
k cos

√
kt

x′′(t) =
√
k ·
√
k · (− sin

√
kt)

= −k sin
√
kt

= −k x(t).

In other words, this sinusoidal function is a solution of the differential equation.
More generally, one can show that any function satisfying this differential equa-
tion is sinusoidal; and so the motion of the ball in a bowl is described, more or
less2, by a sinusoidal function.

Moreover, this sort of differential equation, in which some sort of
force goes in the opposite direction from what it controls, shows up all
over. Certainly it occurs in many other physics situations (e.g., springs

1Newton’s Second Law, to be precise.
2The differential equation is only approximately true; a more exact version would require

more information, including the exact shape of the bowl.
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and pendulums, as well as the motion of air molecules in sound waves),
but also in areas like economics and ecology. I have even seen it ap-
plied to romance: see http://opinionator.blogs.nytimes.com/2009/05/26/
guest-column-loves-me-loves-me-not-do-the-math/.

3 Critical Points: A quick review

We will now briefly review the notion of critical points, which we discussed at
the end of last term.

Definition. Let f be a function defined on a closed interval [a, b]. A critical
point of f is a point c that is of at least one of the following three types:

(i) An endpoint: c is equal to either a or b.

(ii) A singular point: f is not differentiable at c, i.e., f ′(c) does not exist.
This could mean that the graph of f has a corner at c, but it could also
mean that the tangent line of f at c is vertical.

(iii) A stationary point: f ′(c) = 0. These are probably the most interesting
for us, but it is important to remember the other two. They are called
stationary points for the following reason: when f(t) describes the position
of an object at time t, then f ′(t) is the velocity of that object at time t.
Thus, the “stationary points” are precisely those points where the velocity
is 0, i.e., the object is “not moving” or “stationary.”

I really don’t care if you remember the names “singular point” and “station-
ary point,” but you do need to make sure that if I ask you to find the critical
points of a function, you remember to look for all three kinds.

The reason we care about critical points is the following:

Theorem. Let f be a continuous function defined on a closed interval [a, b].
Then f attains a maximum and a minimum on this interval. Moreover, the only
points at which f can attain a maximum or minimum are the critical points of
f .

Thus, if someone gives us a function and we want to maximize or minimize
it (say, we want to maximize profit), here’s the basic strategy:

1. Find the critical points.

2. Evaluate the function at each of the critical points.

3. Take the maximum (minimum) of the resulting function values.

This is also one of the most important reasons for understanding the deriva-
tive: in order to find singular points and stationary points, we have to use the
derivative.
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Assignment 4 (due Friday, 13 January)

Section 0.7, Problem 24.

Section 1.4, Problems 4 and 17. Problem 17 will be graded carefully.

Section 1.5, Problem 42. (Make sure you are looking at the limit as x approaches
infinity. You may want to use the Squeeze Theorem.) This will be graded
carefully.

Section 2.4, Problems 3 and 13. Problem 13 will be graded carefully, but problem
3 may be worth a second look on your part.

Section 2.5, Problem 9.

Assignment 5 (due Wednesday, 18 January)

Section 2.5, Problems 10, 11, 12, and 33. Problems 10 and 12 will be graded
carefully.

Section 2.6, Problems 5 and 6. Problem 6 will be graded carefully.

Section 2.7, Problem 11.

Section 3.1, Problems 7, 17, 18. Problems 7 and 18 will be graded carefully.
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Math 132, Lecture 5: Min/Max problems;

Monotonicity

Charles Staats

Friday, 13 January 2012

No class Monday

Monday, January 16 is Martin Luther King Day. We will not be having class.

1 Minima and Maxima: the theory

Theorem. Let f be a continuous function with domain a closed interval [a, b].
Then the only points where f could possibly equal its extreme values are the
critical points.

Idea of proof. We prove the contrapositive. Suppose x0 is not a critical point.
We will show that f(x0) is not an extremal value of f .

f(x)

x

f(x0)

x0

Since x0 is not a critical point, x0 is differentiable and f ′(x0) 6= 0. In other
words, f has a tangent line at x0 that is not horizontal. Thus, for x sufficiently
close to x0, f(x) is contained in a narrow cone about the tangent line.

1



Since the tangent line is not horizontal, if we make the cone sufficiently
narrow, we can ensure that the values of f immediately to the right of x0 (if
the slope is positive) or immediately to the left of x0 (if the slope is negative)
are above f(x0). Since x0 is not a critical point, it is not an endpoint of the
domain, so f does have values immediately to the left and right of x0. Hence,
f(x0) is not an maximum of f .

Similar reasoning shows that f(x0) is not a minimum value of f .

2 Maxima and minima: example

In other words, if we know f is a continuous function on [a, b], then the following
procedure will allow us to find the minima and maxima of f on [a, b]:

1. Find the critical points of f (all three kinds).

2. Evaluate f at each of the critical points.

3. The largest of the resulting values is the maximum value of f on [a, b].
The least of the resulting values is the minimum value of f on [a, b].

Example 1. Find the critical points, minimum, and maximum for the function
f given by

f(x) = 1
3x

3 − x

on the closed interval [−2.5, 1.5].

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4
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Solution to Example 1. First, we note that f is continuous (since it is a
polynomial) and has domain equal to a closed interval, namely, [−2.5, 1.5].
Thus, we can follow the procedure:

1. Find the critical points of f . There are three kinds of critical points
to consider:

(a) The endpoints are −2.5 and 1.5.

(b) The derivative of f is f ′(x) = x2− 1. This is defined everywhere
on the interval [−2.5, 1.5]. Thus, there are no singular points.

(c) The stationary points are the zeros of the derivative, i.e., those
points x such that

x2 − 1 = 0

x2 = 1

x = ±1.

Since both 1 and −1 lie within the interval [−2.5, 1.5], they are
both critical points.

Thus, the critical points of f are −2.5, −1, 1, and 1.5.

2. Evaluate f at each of the critical points. We have

x f(x)

−2.5 −65/24
−1 2/3
1 −2/3

1.5 −3/8

3. The greatest of the resulting values is 2
3 , since it is the only positive

value of the four. It is therefore the maximum, and is attained at
x = −1 and nowhere else.

The least of the resulting values is − 65
24 , since it is the only value less

than −1. It is therefore the minimum, and is attained at x = −2.5
and nowhere else.
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(a) increasing (b) decreasing

Figure 1: Strictly monotonic functions

3 Increasing and decreasing functions; mono-
tonicity

For the study of increasing and decreasing functions, we no longer require our
intervals to be closed.

Definition. (algebraic version) Let f be a function defined on an interval I.
We say

(i) f is increasing on I if whenever x1 < x2 both lie in I, then f(x1) < f(x2);

(ii) f is decreasing on I if whenever x1 < x2 both lie in I, then f(x1) > f(x2).

Geometric version: we say

(i) f is increasing on I if every secant line over I has positive slope;

(ii) f is decreasing on I if every secant line over I has negative slope.

Exercise 2. Explain why the algebraic and geometric versions of “increasing”
are really the same. Include a picture.

There’s also a term that includes both concepts:

Definition. A function is strictly monotonic if it is increasing or decreasing.

For example, we might save ourselves some breath by saying that “if a func-
tion is strictly monotonic on a closed interval, then it attains its extreme values
only at the endpoints.” We’ve really made (at least) two statements at once: One
statement about increasing functions, and a similar statement about decreasing
functions.

Note that the definition above uses secant lines defined over finite length. We
could also ask about the slope of the tangent lines—i.e., whether the function
is “infinitesimally” increasing or decreasing. As it turns out, these two notions
are closely related: “infinitesimally increasing” implies increasing, and the same
for decreasing.
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Theorem. (Monotonicity Theorem) Let f be continuous and differentiable on
an interval I.

(i) If f ′(x) is positive for all x in I except possibly the endpoints, then f is
increasing on I.

(ii) If f ′(x) is negative for all x in I except possibly the endpoints, then f is
decreasing on I.

This theorem illustrates one of the principle themes of mathematics: relating
an infinitesimal property (tangent lines have positive slope) to a more global
property (function is increasing, i.e., secant lines have positive slope).

Note that the infinitesimal notion is not identical to the more general notion.
For instance, the function

f(x) = x3

has a horizontal tangent line at (0, 0), so it is “infinitesimally constant” at this
one (stationary) point. However, this function is increasing on the whole real
line: even though one tangent line is horizontal, all the secant lines have positive
slope.

Assignment 5 (due Wednesday, 18 January)

Section 2.5, Problems 10, 11, 12, and 33. Problems 10 and 12 will be graded
carefully.

Section 2.6, Problems 5 and 6. Problem 6 will be graded carefully.

Section 2.7, Problem 11.

Section 3.1, Problems 7, 17, 18. Problems 7 and 18 will be graded carefully.

Assignment 6 (due Friday, 20 January)

Section 2.5, Problem 34. This will be graded carefully.

Section 2.6, Problems 13 and 14. Problem 14 will be graded carefully.

Section 2.7, Problem 12. This will be graded carefully.

Section 3.1, Problems 19, 20, and 29. Problem 20 will be graded carefully.

Section 3.2, Problems 1 and 2.

Lecture 5 notes, Section 3, Exercise 2 (p. 4). This will be graded carefully.

Bonus Exercise. Forthcoming.
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Math 132, Lecture 6: Concavity

Charles Staats

Wednesday, 18 January 2012

1 A trigonometric limit problem

I noticed, when making out the first quiz, that doing certain kinds of trigono-
metric limits requires a certain trick. Because I have not taught this class before,
I did not see this when I was assigning homework problems. I should have had a
bunch of people pointing out to me that I had not explained how to do some of
the homework problems. I should have been receiving emails, questions in class,
and visits in office hours. Instead, no one said anything to me. And judging by
the performance on the quiz, this was not because everyone already understood
how to do this; it was because most people did not have the courage to point
out that I had given them insufficient information. Please don’t let this happen
again.

[Side note: I do sometimes assign problems deliberately without explaining
precisely how to do them. But even in these cases—for that matter, even if I
think I have explained precisely how to do the problem—I welcome questions.
I value the courage required to ask such questions far more than the talent to
do the problems without asking.]

At any rate, I think it is time (overdue, in fact) for us to discuss this
“trick.” The key is to rewrite limits we don’t know how to evaluate directly

(like lim
θ→0

sin 2θ

θ
) in terms of limits we do know (like lim

θ→0

sin 2θ

2θ
= 1).
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Example 1. Evaluate

lim
t→0

sin 2t

sin 3t
.

Solution.

lim
t→0

sin 2t

sin 3t
= lim
t→0

(sin 2t)/t

(sin 3t)/t

= lim
t→0

(2 sin 2t)/(2t)

(3 sin 3t)/(3t)

= lim
t→0

2

3
· (sin 2t)/(2t)

(sin 3t)(3t)

=
2

3
· limt→0

sin 2t
2t

limt→0
sin 3t
3t

=
2

3
· 1

1

=
2

3
.

2 Concavity

Let f be a function defined on a (not necessarily closed) interval I. Recall the
geometric definition of increasing/decreasing:

Definition. (Geometric version) We say

(i) f is increasing on I if every secant line over I has positive slope;

(ii) f is decreasing on I if every secant line over I has negative slope.

There is a corresponding geometric version for the notion of concavity :

Definition. We say

(i) f is concave up on I if every secant line over I lies strictly above the graph
of f (except at its endpoints, which lie on the graph of f);

(ii) f is concave down on I if every secant line over I lies strictly below the
graph of f (except at its endpoints, which lie on the graph of f).

NOTE: This is not precisely equivalent to the definition given in the textbook.
However, it is the definition that mathematicians actually care about.

Perhaps a couple of examples will make this clear:
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Example 2. The function f defined by f(x) = − 1
2x

2 is concave down on
(−∞,∞). Consequently, the secant line shown in the figure lies below the graph
of f (except at its endpoints, which are on the graph of f). However, the secant
line is horizontal (slope neither positive nor negative), which corresponds to the
fact that f is neither increasing nor decreasing on (−∞,∞).

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4
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Example 3. The function g defined by g(x) = 1
9 (x3 + x) is increasing on

(−∞,∞). Consequently, the secant line shown in the figure has positive slope.
However, the secant line crosses the graph of g in the middle; it lies neither
above the graph nor below the graph, which corresponds to the fact that f is
neither concave up nor concave down on (−∞,∞).

x

g(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4
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Like increasing/decreasing, the notion of concave up/down can be under-
stood, more or less, by means of the derivative.

Theorem. Let f be a function defined on a not-necessarily-closed interval I.
Suppose that at every point of I except possibly the endpoints, f is differentiable
and the derivative is increasing. Then f is concave up.

Likewise, if the derivative is decreasing, then f is concave down.

This allows us to look at things in terms of the second derivative: Let f ′ be
the derivative of f . Then the derivative of f ′ is f ′′, the second derivative of f .
If f ′′ is positive on I, then f ′ is increasing on I, so the function f is concave up
on I. Similarly, if f ′′ is negative on I, then f ′ is decreasing on I, so f is concave
down on I.

The remainder of this lecture should be devoted to working out Examples
2 and 3 in terms of first and second derivatives. Unfortunately, I did not have
time to type this up before the lecture, but I’ll try to get it in before I post
the notes online. In the mean time, there seems to be a large amount of space
below each example, so you might use that space to take notes.
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Assignment 6 (due Friday, 20 January)

Section 2.5, Problem 34. This will be graded carefully.

Section 2.6, Problems 13 and 14. Problem 14 will be graded carefully.

Section 2.7, Problem 12. This will be graded carefully.

Section 3.1, Problems 19, 20, and 29. Problem 20 will be graded carefully.

Section 3.2, Problems 1 and 2.

Lecture 5 notes, Section 3, Exercise 2 (p. 4). This will be graded carefully.

Assignment 7 (due Monday, 23 January)

Section 1.3, Problem 18. This will be graded carefully.

Section 1.4, Problems 7 and 8. Problem 8 will be graded carefully.

Section 2.5, Problems 15 and 16. Problem 16 will be graded carefully.

Section 3.1, Problems 8 and 9. Problem 9 will be graded carefully.

Section 3.2, Problems 19 and 20. Both of these will be graded carefully.

Bonus Exercise. Suppose that a function f is increasing on the two closed
intervals [a, b] and [b, c]. Prove that f is increasing on the larger interval [a, c].
(Hint: use the algebraic definition of “increasing.” You should not be using the
derivative anywhere.)

Test Friday, 27 January

The test will cover Assignments 1–7 and Lectures 1–7. The most relevant sec-
tions of the textbook are probably 0.7, 1.4, 2.4, 2.5, 3.1, and 3.2. Note also that
there almost certainly will be a problem from Section 1.3, since many people
showed an inability to handle this sort of problem on last quarter’s final. I won’t
include a discussion of this in my lecture plans, but feel free to ask me to do an
example.
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Math 132, Lecture 7: Concavity; Local Extrema

Charles Staats

Wednesday, 18 January 2012

1 Concavity (for real, this time)

Let f be a function defined on a (not necessarily closed) interval I. Recall the
geometric definition of increasing/decreasing:

Definition. (Geometric version) We say

(i) f is increasing on I if every secant line over I has positive slope;

(ii) f is decreasing on I if every secant line over I has negative slope.

There is a corresponding geometric version for the notion of concavity :

Definition. We say

(i) f is concave up on I if every secant line over I lies strictly above the graph
of f (except at its endpoints, which lie on the graph of f);

(ii) f is concave down on I if every secant line over I lies strictly below the
graph of f (except at its endpoints, which lie on the graph of f).

NOTE: This is not precisely equivalent to the definition given in the textbook.
However, it is the definition that mathematicians actually care about.

Perhaps a couple of examples will make this clear:
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Example 1. The function f defined by f(x) = − 1
2x

2 is concave down
on (−∞,∞). Consequently, the secant line shown in the figure lies below
the graph of f (except at its endpoints, which are on the graph of f).
However, the secant line is horizontal (slope neither positive nor negative),
which corresponds to the fact that f is neither increasing nor decreasing on
(−∞,∞). It is, in fact, increasing on (−∞, 0] and decreasing1on [0,∞).

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

To actually prove that f is concave down, we can use the second derivative,
as described below:

f(x) = − 1
2x

2

f ′(x) = − 1
2 · 2x = −x

f ′′(x) = −1.

Since f ′′(x) < 0 on (−∞,∞), f is concave down on (−∞,∞).

1You may observe that both of this intervals include the point x = 0. This is an illustration
of why we define “increasing” and “decreasing” on an interval but not at a point. If someone
were to ask us whether f is increasing or decreasing (or neither) at x = 0, we’d have to say,
“Since f is increasing on (−∞, 0], an interval that includes 0, f must be increasing at 0. Since
f is decreasing on [0,∞), an interval that includes 0, f must be increasing at 0. So f is both
increasing and decreasing at 0,” a conclusion that is clearly bad. Thus, we should instead say,
“It makes no sense to ask whether f is increasing or decreasing at 0; f can only be increasing
or decreasing on an interval.”
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Example 2. The function g defined by g(x) = 1
9 (x3 + x) is increasing on

(−∞,∞). Consequently, the secant line shown in the figure has positive
slope. However, the secant line crosses the graph of g in the middle; it lies
neither above the graph nor below the graph, which corresponds to the fact
that f is neither concave up nor concave down on (−∞,∞).

x

g(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

We can analyze this example more carefully using the first and second
derivative.

g(x) = 1
9 (x3 + x)

g′(x) = 1
9 (3x2 + 1) = 1

3x
2 + 1

9

g′′(x) = 2
3x.

Thus, we see that g′(x) = 1
3x

2 + 1
9 > 0 for all x ∈ (−∞,∞), so g is

increasing on (−∞,∞). However, g′′(x) = 2
3x is not always positive or

always negative. It is positive on (0,∞); this implies that g is concave up
on [0,∞) (note that we do not care what g′′ does at x = 0, since this is an
endpoint). The second derivative g′′ is negative on (−∞, 0); this implies
that g is concave down on (−∞, 0].

Like increasing/decreasing, the notion of concave up/down can be under-
stood, more or less, by means of the derivative.

Theorem. Let f be a function defined on a not-necessarily-closed interval I.
Suppose that at every point of I except possibly the endpoints, f is differentiable
and the derivative is increasing. Then f is concave up.
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Likewise, if the derivative is decreasing, then f is concave down.

We won’t prove this theorem until we get to the mean value theorem, but
meanwhile, we can see how it is used. According to the theorem, if we have a
differentiable function f that we want to show is concave up, we can look at
whether the derivative f ′ is increasing. Write g for f ′; we’re trying to determine
whether g is increasing. By our theorems from before, we can look at whether
g′(x) is positive for all x in the interval. Thus, our question about the concavity
of f comes down to an inequality about g′ = f ′′.

Theorem. Let f be a function defined on a not-necessarily-closed interval I.
Suppose that at every point x of I except possibly the endpoints, f ′′(x) is defined
and f ′′(x) > 0. Then f is concave up on I.

Similarly, if f ′′(x) < 0, then f is concave down.

To illustrate this theorem, let’s revisit our examples from before. (I’ve put
the explanation together with the examples in the notes, so you should go back
to them.)

One final definition, that we don’t really have time to go into right now:

Definition. (taken almost straight from the book) If f is continuous at c, we
call c an inflection point of f if f is concave up on one side of c and concave
down on the other side.

I strongly suggest you see Figure 17 on page 159 of the textbook; it is really
a great illustration of different kinds of inflection points.

2 Local mins and maxes

Consider a function like f(x) = x3 − 3x:
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x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

(−1,2)

(1,−2)

Note that f ′(x) is defined everywhere. If we want to look at this function on
an open interval like (−∞,∞), there are no endpoints to consider, so the only
critical points we have to look at are the ones where f ′(x) = 0.

f(x) = x3 − 3x

f ′(x) = 3x2 − 3

3x2 − 3 = 0

x2 − 1 = 0

x2 = 1

x = ±1.

Note that f(−1) = (−1)3 + 3 = 2 and f(1) = 13 − 3 = −2. The two relevant
points are plotted on the graph. Note that neither of them is a global maximum,
since f attains arbitrarily large values (since limx→∞ f(x) = ∞; similarly, nei-
ther is a global minimum. But it seems like, in some sense, (−1, 2) ought to be a
local maximum: if x is forced to stay close to −1, then the point is a maximum.
Likewise, 1,−2) ought to be a local minumum. Here are the definitions that
make this precise:

Definition. Let f be a function, and c a point where f is defined. We say

(i) f(c) is a local maximum of f if there exists an open interval (a, b) contain-
ing c, such that f(c) is a maximum of f on2 (a, b);

(ii) f(c) is a local minimum of f if there exists an open interval (a, b) contain-
ing c such that f(c) is a minimum of f on (a, b);

2Since f may not be defined on all of (a, b) (e.g., if c is an endpoint of the domain), we
should technically say the following: f(x) ≤ f(c) whenever x lies in (a, b) and f(x) is defined.
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(iii) f(c) is a local extremum of f if it is a local minimum or a local maximum.

For instance, in the figure, f(−1) is clearly not a maximum value on all of
f . But it is a maximum value over (−1.5,−.5), and therefore a local maximum.

Like global extrema, we can find local extrema using critical points. But I
doubt I will have time to discuss this until next lecture.
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Assignment 7 (due Monday, 23 January)

Section 1.3, Problem 18. This will be graded carefully.

Section 1.4, Problems 7 and 8. Problem 8 will be graded carefully.

Section 2.5, Problems 15 and 16. Problem 16 will be graded carefully.

Section 3.1, Problems 8 and 9. Problem 9 will be graded carefully.

Section 3.2, Problems 19 and 20. Both of these will be graded carefully.

Bonus Exercise. Suppose that a function f is increasing on the two closed
intervals [a, b] and [b, c]. Prove that f is increasing on the larger interval [a, c].
(Hint: use the algebraic definition of “increasing.” You should not be using the
derivative anywhere.)

Assignment 8 (due Wednesday, 25 January)

Section 3.2, Problems 21, 37, and 51. All three of these will be graded carefully.

Section 3.3, Problems 1 and 2. Problem 2 will be graded carefully.

Where is the function f defined by f(x) = 2x + cosx increasing? Where is it
concave up? (Remember, your answer should be about intervals, not points.)
Justify your answers using the first and second derivatives. This will be graded
carefully.

Bonus Exercise. Show that the function g defined by g(x) = x + sinx is
increasing on all of (−∞,∞). (Hint: the same ideas used in the Assignment 7
bonus exercise should be helpful in dealing with points where f ′(x) = 0.)

Test Friday, 27 January

The test will cover Assignments 1–7 and Lectures 1–(7, Section 1). The most
relevant sections of the textbook are probably 0.7, 1.4, 2.4, 2.5, 3.1, and 3.2.
Note also that there almost certainly will be a problem from Section 1.3, since
many people showed an inability to handle this sort of problem on last quarter’s
final. I won’t include a discussion of this in my lecture plans, but feel free to
ask me to do an example.

7



Math 132, Lecture 8: More on local extrema; a

practical example

Charles Staats

Monday, 23 January 2012

1 Criteria for local maxima and minima

These criteria can be used to determine whether a critical point is a local min-
imum, local maximum, or neither.

General criteria:

(a) If f is increasing to the immediate left1 of x0 and decreasing to the im-
mediate right of x0, then f(x0) is a local maximum.

(b) If f is decreasing to the immediate left of x0 and increasing to the imme-
diate right of x0, then f(x0) is a local minimum.

(c) If f is decreasing on both sides of x0 or increasing on both sides of x0,
then x0 is not a local extremum.

First derivative test: Assume f is continuous in a neighborhood of x0, and
differentiable except possibly at x0.

(a) If f ′ is positive to the immediate left2 of x0 and negative to the immediate
right of x0, then f(x0) is a local maximum.

(b) If f ′ is negative to the immediate left of x0 and positive to the immediate
right of x0, then f(x0) is a local minimum.

(c) If the f ′ has the same sign to the immediate left of x0 and to the immediate
right of x0, then f(x0) is neither a local min nor a local max.

Second derivative test: Assume f ′ and f ′′ both exist in a neighborhood of x0,
and f ′(x0) = 0 (i.e., x0 is a “stationary point” of f).

(a) If f ′′(x0) < 0, then f(x0) is a local maximum of f .

(b) If f ′′(x0) > 0, then f(x0) is a local minimum of f .

1 More precisely: if there exists some a < x0 such that f is increasing on the interval (a, x0]
2 More precisely: if there exists some a < x0 such that f ′(x) > 0 for all x in the interval

(a, x0).
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(c) We don’t know anything this way if f ′′(0) = 0.

Example 1. (Examples 2 and 5, pages 163–165 in the book) Find the local
extreme values of f(x) = 1

3x
3 − x2 − 3x + 4 on (−∞,∞).

2 Practical Problems: an example

Example 2. (Example 1, p. 167 in the textbook) “A rectangular box is to be
made from a piece of cardboard 23 inches long and 9 inches wide by cutting out
identical squares from the four corners and turning up the sides, as in Figure 1
[omitted; I’ll try to draw this on the board]. Find the dimensions of the box of
maximum volume. What is this volume?
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Assignment 8 (due Wednesday, 25 January)

Section 3.2, Problems 21, 37, and 51. All three of these will be graded carefully.

Section 3.3, Problems 1 and 2. Problem 2 will be graded carefully.

Where is the function f defined by f(x) = 2x + cosx increasing? Where is it
concave up? (Remember, your answer should be about intervals, not points.)
Justify your answers using the first and second derivatives. This will be graded
carefully.

Bonus Exercise. Show that the function g defined by g(x) = x + sinx is
increasing on all of (−∞,∞). (Hint: the same ideas used in the Assignment 7
bonus exercise should be helpful in dealing with points where f ′(x) = 0.)

Test Friday, 27 January

The test will cover Assignments 1–7 and Lectures 1–(7, Section 1). The most
relevant sections of the textbook are probably 0.7, 1.4, 2.4, 2.5, 3.1, and 3.2.
Note also that there almost certainly will be a problem from Section 1.3, since
many people showed an inability to handle this sort of problem on last quarter’s
final. I won’t include a discussion of this in my lecture plans, but feel free to
ask me to do an example.

Assignment 9 (due Monday, 30 January)

Section 3.2, Problems 11, 12, and 22. Problems 12 and 22 will be graded
carefully. These problems are intended as review, but they would also be good
practice for the test Friday.

Section 3.3, Problems 3 and 4. Problem 4 will be graded carefully.

Section 3.4, Problem 9.
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Math 132, Lecture 9:

Charles Staats

Wednesday, 25 January 2012

1 Example: local mins and maxes

Example 1. (Examples 2 and 5, pages 163–165 in the book) Find the local
extreme values of f(x) = 1

3x
3 − x2 − 3x + 4 on (−∞,∞). Do this in two

different ways: using the First Derivative Test, and using the Second Derivative
Test.

2 Practical Max/Min Problems

One of the things calculus is really good for is finding ways to maximize or
minimize things within constraints. Typical questions might include things like,
“I have a certain amount of fence. How do I enclose the largest possible area?”
(a maximizing problem), or for a minimizing problem, “I need to enclose a
certain area. How do I do it with the least possible area?”

Here’s the example that will be used for illustrating the procedure:

Example 2. A farmer has 20 meters of fence and wants to build a rectangular
enclosure. What is the greatest possible area he can enclose, and how can he
enclose that area?

The procedure for handling these is something like the following:

1. Convert the word problem into mathematics. Often, this is the hardest
part. Typically, you will have one quantity you care about (say, area) and
one or more other quantities that control it (say, the length and width of
a rectangular enclosure). You’ll also have some additional information (in
this case, that the total length of the fence is a particular amount, say
20). You need to record all this information in mathematical terms:

(a) Identify the relevant quantities (in this case, length, width, and area)
and name them (say, `, w, and A, respectively).

(b) Write down an equation that gives the quantity you want to max/minimize
in terms of other quantites. In this case, we have

A = `w.
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(c) Write down any additional information in equations. In this case,
the farmer has 20 meters of fence, so the perimeter of the rectangular
enclosure should be 20. Thus, we have

2` + 2w = 20.

2. Convert the mathematical problem into a calculus problem. Play around
with the equations until the quantity you care about is expressed in terms
of a single other quantity. In our case, we have

2` + 2w = 20

` + w = 10

` = 10− w

Substituting in 10− w for ` in the equation for A, we get

A = `w = (10− w)w = 10w − w2.

At this point, you might ask how you know which variable to solve for in terms
of the others. Basically, it does not matter, as long as you find some variable
that works. For this example, we could just as easily have taken w = 10 − `,
and then gotten A = 10`− `2; we would still get the same answer.

3. Figure out what your domain is. In our case, what values could reasonably
be plugged in for w? Negative width makes no sense, so we have

w ≥ 0.

Likewise, negative length makes no sense, so we have

` ≥ 0

10− w ≥ 0

10 ≥ w.

Thus, 0 ≤ w ≤ 10, and so we are trying to maximize

A(w) = 10w − w2

for w on the interval [0, 10].

4. Solve the calculus problem. Differentiate the function you just found, find
the critical points, etc. This is, often, the easiest part. It’s also a demon-
stration of the “niceness” of calculus: the hardest part of the problem is
all the algebra beforehand. Once we get it down to a calculus problem, it
tends to be pretty easy.

In our case, we have

A(w) = 10w − w2

A′(w)10− 2w.

Thus, we have the following critical points:
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(a) Endpoints: w = 0, w = 10.

(b) Points where A′(w) is undefined: none.

(c) Points where A′(w) = 0:

10− 2w = 0

10 = 2w

5 = w.

The critical points are 0, 5, and 10. We have

A(0) = 10(0)− 02 = 0

A(5) = 10(5)− 52 = 50− 25 = 25

A(10) = 10(10)− 102 = 100− 100 = 0.

Thus, A is maximized at w = 5, where it attains the value 25.

5. Convert the answer back to practical terms. The largest possible rectangu-
lar enclosure is 25 square meters; to achieve this, the farmer should make
his rectangle with width 5 meters. The length is then given by

` = 10− w = 10− 5 = 5;

i.e., the length of the rectangle will also be 5 meters. In other words, the
greatest area will be attained by a square enclosure.

Example 3. (Example 1, p. 167 in the textbook) “A rectangular box is to be
made from a piece of cardboard 23 inches long and 9 inches wide by cutting out
identical squares from the four corners and turning up the sides, as in Figure 1
[omitted; I’ll try to draw this on the board]. Find the dimensions of the box of
maximum volume. What is this volume?”
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Test Friday, 27 January

The test will cover Assignments 1–7 and Lectures 1–(7, Section 1). The most
relevant sections of the textbook are probably 0.7, 1.4, 2.4, 2.5, 3.1, and 3.2.
Note also that there almost certainly will be a problem from Section 1.3, since
many people showed an inability to handle this sort of problem on last quarter’s
final. I won’t include a discussion of this in my lecture plans, but feel free to
ask me to do an example.

Assignment 9 (due Monday, 30 January)

Section 3.2, Problems 11, 12, and 22. Problems 12 and 22 will be graded
carefully. These problems are intended as review, but they would also be good
practice for the test Friday.

Section 3.3, Problems 3 and 4. Problem 4 will be graded carefully.

Section 3.4, Problem 9.
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Math 132, Lecture 10

Charles Staats

Monday, 30 January 2012

1 Practical Problems: Examples for finding the
equation.

We’ve already discussed a fair amount how to find minima and maxima, once
we’ve reduced ourselves to a calculus problem. Thus, I thought we should do
a couple examples in which we just concentrate on finding the equation to be
maximized or minimized.

Example 1. (Section 3.4, Problem 9) Find the volume of the largest open box
that can be made from a piece of cardboard 24 inches square by cutting equal
squares from the corners and turning up the sides.

Solution. asdf

Example 2. (Section 3.4, Problem 19) A small island is 2 miles from the nearest
point P on the straight shoreline of a large lake. If a woman on the island can
row a boat 3 miles per hour and can walk 4 miles per hour, where should the
boat be landed in order to arrive at a town 10 miles down the shore from P in
the least time?

1



Solution. asdf

2 Graphing functions with calculus

This is all about examples. Essentially, when you have the information we can
obtain about a function using calculus, you can use this to help graph it.

Example 3. Let’s start with an example from the test: Graph the function f
defined by

f(x) = cos(x+ 1
2π)− 3

2x.

Note that I did not require you to graph this on the test.

Solution. First, let’s simplify the formula a bit:

f(x) = cos(x+ 1
2π)− 3

2x

= cosx cos π
2 − sinx sin π

2 − 3
2x

= (cosx)(0)− (sinx)(1)− 3
2x

= − sinx− 3
2x.

Now, we don’t have the algebraic techniques necessary to solve this for 0 to find
the x-intercepts. We can find the y-intercept:

f(0) = − sin(0)− 3
2 (0) = 0− 0 = 0.

There’s one more thing we can do pre-calculus, to prove a point stated in the
textbook: “In graphing functions, there is not substitute for common sense.”
In this case, common sense tells us that perhaps we can use the inequality
−1 ≤ − sinx ≤ 1, which holds for all x. Subtracting 3

2x from both sides, we see
that

−1− 3
2x ≤ − sinx− 3

2x ≤ 1− 3
2x,

2



i.e.,
−1− 3

2x ≤ f(x) ≤ 1− 3
2x.

Graphically, this tells us that f must always lie between two parallel lines, as
shown below. (I’ve also plotted the point (0, 0), since we know f(0) = 0.)

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

Now, let’s get into the actual calculus. I’ve shown, below, f ′ and f ′′, together
with their graphs:

x

f ′(x) = − cosx− 3
2

− 1
2π−π− 3

2π
1
2π π

3
2π

−3

−2

−1

x

f ′′(x) = sinx

− 1
2π−π− 3

2π
1
2π π

3
2π

1

−1

3



From the graph of f ′, we can tell that f ′(x) < 0 everywhere. Hence, f is
decreasing on (−∞,∞). (This also makes sense with what we found out about
f lying between two downward-sloping parallel lines.) Furthermore, the tangent
line never hits the horizontal, even for an instant. From the graph of f ′′, we
can tell that f concave up on the intervals [0 + 2πk, π + 2πk] (for each integer
k) and concave down on the intervals [π+ 2πk, 2π+ 2πk]. The inflection points
lie at the points

(πk, f(πk)) = (πk,− sinπk − 3
2πk)

= (πk,−3kπ

2
).

We end up with

x

f(x)
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Assignment 10 (due Wednesday, 1 February)

Section 3.3, Problems 5, 6, 11, and 12. Problems 6 and 12 will be graded
carefully.

Section 3.4, Problems 1, 2, 10, and 11. Problems 2 and 10 will be graded
carefully.

Section 3.5, Problem 1. (You may need to skim Section 3.5 and/or ask your
tutor to figure out how to do this.)

Assignment 11 (due Friday, 3 February)

Section 3.3, Problems 21 and 22. Both of these will be graded carefully.

Read Section 3.4, pp. 172–174, on economic applications. (Remember the three-
pass method.)

Section 3.4, Problems 54–57. Given the interconnected nature of these problems,
they will all be graded carefully.

Section 3.5, Problems 2–4. Problem 4 will be graded carefully.
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Math 132, Lecture 11

Charles Staats

Wednesday, 1 February 2012

1 The Mean Value Theorem

The last two ideas we studied—solving practical problems and graphing func-
tions with calculus—were mostly about examples. By contrast, the Mean Value
Theorem is mostly about proofs. Here’s the theorem:

Theorem. Let f be a function continuous on a closed interval [a, b], such that
f ′ is defined on the open interval (a, b). Let m be the slope of the secant line
from (a, f(a)) to (b, f(b)). Then there exists at least one x0 inside the open
interval (a, b) such that

f ′(x0) = m.

Here’s an illustration:

a bx0

(a) one choice for x0

a bx0 x1

(b) two choices for x0

a b

(c) infinitely many choices for x0

A more velocity-based idea is given in this story (fictional, so far as I know):
The distance between two tollbooths on a highway was 70 miles. The speed
limit on this entire stretch was 55 miles per hour. One day, a cop at the second
tollbooth was looking at drivers’ toll records, and saw that one particular driver
had covered the entire 70 miles in one hour. The cop gave the driver a ticket
for going 15 mph over the speed limit.

1



The driver went to court, claiming that the ticket was unjustified because the
cop had never witnessed him speeding. The cop replied that since the driver’s
average speed was 70 miles per hour, she knew by the Mean Value Theorem
that the driver had, at some point, been going 70 miles per hour, even though
she had not witnessed it.

2 Why mathematicians care about the Mean
Value Theorem

The illustration of the cop and the driver is a nice view of the sorts of things one
can do with the Mean Value Theorem: It is not so much for studying particular
functions that we have formulas for, as for proving statements about functions
when we have incomplete information. Maybe we don’t know what the function
was anywhere in the middle, if we know what it was at the beginning and at
the end, then we know what the slope of the tangent line was somewhere.

The typical technique is proof by contradiction. Here’s an example, proving
a statement that made earlier without proof:

Theorem. Let f be a function continuous on [a, b] and differentiable on (a, b).
Suppose that f ′(x) is positive for all x in (a, b). Then f is increasing on [a, b].

Proof. We assume the theorem is false, and show that this would contradict the
Mean Value Theorem. Since the Mean Value Theorem is true, the theorem here
must also be true.

The only way for the theorem to be false is if there is a function f , continuous
on [a, b] and differentiable on (a, b), such that f ′(x) is positive for all x in (a, b),
but f is not increasing on [a, b].

The only way for f not to be increasing on [a, b] is if there exist x-values x0

and x1, both contained in [a, b], such that x0 < x1 but the secant line between
(x0, f(x0)) and (x1, f(x1)) does not have positive slope. Let m ≤ 0 be the
slope of this secant line. By the Mean Value Theorem, there exists an x-value
c between x0 and x1 such that f ′(c) = m ≤ 0. But this is a contradiction, since
by hypothesis, f ′(x) is positive for all x in (a, b).

The basic idea of the proof is this: We know something about tangent lines
(that their slope is always positive). We want to show the same thing holds for
secant lines. To do this, we assume there is a secant line for which the slope
is not positive, and use the Mean Value Theorem to produce a tangent line for
which the slope is not positive.

Here’s another example:

Theorem. Let f be a function continuous on [a, b]. Suppose that f ′′(x) exists
and is positive for all x in (a, b). Then f is concave up on [a, b].
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Assignment 11 (due Friday, 3 February)

Section 3.3, Problems 21 and 22. Both of these will be graded carefully.

Read Section 3.4, pp. 172–174, on economic applications. (Remember the three-
pass method.)

Section 3.4, Problems 54–57. Given the interconnected nature of these problems,
they will all be graded carefully.

Section 3.5, Problems 2–4. Problem 4 will be graded carefully.
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Math 132, Lecture 12: Antiderivatives

Charles Staats

Friday, 3 February 2012

1 The velocity of a falling object

So far, we have been discussing how, when we are given a function, we can find its
derivative. This has been a very useful thing; we can use the function’s derivative
to help us find important information about the function, such as its maxima and
minima, and what its graph “looks like” in many ways (increasing/decreasing,
concave up/down).

However, it is at least as important to be able to go in the opposite direction:
given f ′(x), how do we find f? Or, to put it another way: if we have a function
g and an equation of the form

dy

dx
= g(x),

how do we find y as a function of x? This is the most basic type of differential
equation: an equation that involves functions and their derivatives, rather than
just numbers. Differential equations are incredibly important. Among other
things, the laws of physics are practically all expressed as differential equations.
And I imagine many of the “laws” of economics are as well.

For a specific example, let v be the velocity (in meters per second) of a
“falling” object. (Remember that by falling, I mean that the object is not
being held up by anything; but it may still be moving up, at least initially—for
instance, if it was thrown up.) If we ignore air resistance, the laws of physics
tell us that

dv

dt
= −9.8;

in other words, the velocity is decreasing (or becoming more negative) steadily,
at a rate of (9.8 meters per second) per second. This can help us figure out a
formula for v. At the same time, it cannot be enough information to determine
v, since this same law holds whether the object starts out moving up or down;
and these motions have different v’s.

Thus, we really have two questions:

1. What is a solution to the differential equation, and

2. What are all solutions?
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In our case, the first question is quite easy to answer:

Solution. v(t) = −9.8t is a solution, since for this v,

v′(t) = −9.8

for all t.

However, this cannot be the only solution, because it only works for objects
that start out with velocity 0. In real life, if I throw an object up, I should
obtain a solution with v(0) positive.

A bigger family of solutions may be found by adding constants:

Solution. For any constant C, let v(t) = −9.8t + C; then

v′(t) = −9.8,

so v is a solution to the differential equation.

This seems like a much more reasonable candidate for “all possible solutions.”
If I throw the object up at a speed of v0, then I can simply set

v(t) = −9.8t + v0,

and I will have a solution such that the velocity at time 0 is v(0) = v0, as it
should be. And, as it turns out, these are all possible solutions.

2 Antiderivatives

Definition. Let f be a function. We say that another function F is an an-
tiderivative for f if F is differentiable wherever f is defined, and F ′(x) = f(x).

The simplest antiderivatives to find are those given by reversing the power
rule for differentiation:

Theorem. (Power Rule) Let f(x) = xn. Then an antiderivative for f is given
by

F (x) =
1

n + 1
xn+1 + C,

where C can be any constant.

Proof.

F ′(x) =
1

n + 1
· (n + 1)xn + 0 = xn = f(x).

Note that what we did in the previous section to solve dv/dt = −9.8 was
precisely an application of this rule.
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Theorem. (linearity)

1. If F is an antiderivative of f and G is an antiderivative of g, then F + G
is an antiderivative of f + g.

2. Let a be a real number (constant). If F is an antiderivative of f , then aF
is an antiderivative of af .

Theorem. (uniqueness up to constant) If F1 and F2 are both antiderivatives
for f , then for some constant C,

F1(x) = F2(x) + C

for all x.

This means that, in some sense, “taking an antiderivative” is an operation
we can apply to a function; the “answer” is unique up to constant.

Definition. For any function f , the indefinite integral of f , denoted

∫
f(x) dx,

is the family of all antiderivatives of f . According to the theorem above, these
all differ from each other by a constant (= vertical translation of the graph).

For example, the Power Rule may be restated as

∫
xn dx =

1

n + 1
xn+1 + C.

The “+C” at the end is intended to indicate that we are considering a family of
functions; different particular functions may be obtained by choosing different
values for C.
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Assignment 12 (due Monday, 6 February)

Complete the attached worksheet. Use a straightedge. All six of these will be
graded carefully.

Section 3.3, Problems 13 and 14. Problem 14 will be graded carefully.

Section 3.4, Problems 19–21. Problem 19 will be graded carefully.

Section 3.5, Problem 28. This will be graded carefully.

Section 3.8, Problems 1 and 2.

Assignment 13 (due Wednesday, 8 February)

Section 3.4, Problem 12. This will be graded carefully.

Section 3.5, Problems 13, 14, and 31. Problems 14 and 31 will be graded
carefully.

Section 3.6, Problems 22 and 27. Both of these will be graded carefully.

Section 3.8, Problems 3–6. Problems 4 and 6 will be graded carefully.
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Math 132, Lecture 13: Indefinite integrals

Charles Staats

Monday, 6 February 2012

1 Theory

Recall, from last time, the definition of the indefinite integral:

Definition. For any function f , the indefinite integral of f , denoted

∫
f(x) dx,

is the family of all antiderivatives of f ; that is, the family of all functions F
such that F ′(x) = f(x) for all x at which f(x) is defined.

A note on the notation: the integral sign
∫

was originally an elongated S.
We will understand later why Leibniz (and most mathematicians since) thought
that this was an appropriate notation.

Remark. We will later in this lecture need to understand why

d

dx

∫
f(x) dx = f(x).

This is, in essence, just a fancy notational way of saying that “the derivative
of an antiderivative of f” is precisely f . In other words, the definition of an-
tiderivative.

When we know a single antiderivative F for f , we typically write

∫
f(x) dx = F (x) + C,

where C is taken to be a constant. If F is an antiderivative for f , then so is
F (x) + C:

d

dx
(F (x) + C) = F ′(x) + 0 = f(x).

The theorem below tells us that, in fact, once we have a single antiderivative,
every other antiderivative may be obtained from it by adding a constant:

1



Theorem. (uniqueness up to a constant) If F and F1 are both antiderivatives
for f , then

F1(x) = F (x) + C

for some constant C.

Proof. A common technique in mathematics, when you are trying to prove a
“hard” result, is to first prove an “easier” special case, and then show that
the “hard” statement follows from the “easier” statement. In our case, we will
consider the special case in which f(x) = 0 for all x. Clearly, F (x) = 0 is an
antiderivative of f . Thus, in this case, the theorem says precisely the following:

Claim. If F1(x) is an antiderivative of 0, then

F1(x) = 0 + C = C

for some constant C.

Proof. We are given that F1(x) is an antiderivative of 0, i.e., that

F ′
1(x) = 0

for all x. We want to find a constant C such that F1(x) = C for all x. Let
x0 be any point in the domain of F1, and set C = f(x0). Now we have
a “candidate” value for C; we need to show that this value for C actually
does what we want, i.e., that F1(x) = C for all x. To do this, we use the
Mean Value Theorem.1

[Examine Figure 1 to help understand the following paragraph.] Let
x be any point in the domain of F1. We want to show that F1(x) = C.
Consider the secant line between x0 and x. By the Mean Value Theorem,
this secant line has the same slope as the tangent line to F1 at some point
x1 between x0 and x. Since F ′

1(x1) = 0, this tangent line is horizontal.
Hence, the secant line is also horizontal. In other words,

F1(x) = F1(x0)

= C,

which is precisely what we wanted to show.

2



F1

(x0, C)

x0 x1 x

(x, F1(x))

Figure 1: Since the secant line between x0 and x is horizontal, F1(x) = C.

Now, let’s see how the whole theorem can be reduced to the special case
we’ve just proved. We know that F and F1 are both antiderivatives of f . In
other words, for all x, F ′(x) = F ′

1(x) = f(x). Let G be the function defined by

G(x) = F1(x) − F (x).

Then

G′(x) = F ′
1(x) − F ′(x)

= f(x) − f(x)

= 0.

Thus, G is an antiderivative of 0. By the Claim, G is a constant function; in
other words, there is a constant C such that

G(x) = C

for all x. Thus, by definition of G, we have

F1(x) − F (x) = G(x) = C

F1(x) = F (x) + C,

which is exactly what we wanted to show.

The “proof” part of this lecture is now concluded; for the rest of the lecture,
we will focus on how to use what we now know to actually compute antideriva-
tives.

1I’m cheating a little bit here. To do this, I really need to know that the set over which
F ′
1(x) is defined is an interval. And in fact, if it is not, the theorem may not hold. For

instance, the piecewise-defined function

f(x) =

{
0 if x < 0,

1 if x > 0,

is an antiderivative for f(x) = 0 wherever it is defined (i.e., wherever x 6= 0), but it is not
equal to a single constant.
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2 Polynomials; sine and cosine

Recall, from last time, the power rule and linearity, which together allow us to
integrate polynomials:

Theorem. (Power Rule)
∫

xn dx =
1

n + 1
xn+1 + C.

for any rational number n other than n = −1.

Theorem. (Linearity)

(i)

∫
kf(x) dx = k

∫
f(x) dx for any nonzero constant k.

(ii)

∫
[f(x) + g(x)] dx =

∫
f(x) dx +

∫
g(x) dx.

Example 1. (Example 4a on p. 200 in the textbook)

∫
(3x2 + 4x) dx

Solution.
∫

(3x2 + 4x) dx = 3

∫
x2 dx + 4

∫
x dx

= 3
(
1
3x

3
)

+ 4
(
1
2x

2
)

+ C

= x3 + 2x2 + C.

The rules for sine and cosine are not given in the textbook, but they are
really quite simple:

Theorem. (integrating sine and cosine)
∫

cosx dx = sinx + C

∫
sinx dx = − cosx + C.

Proof. Since
d

dx
sinx = cosx,

we know that sinx is an antiderivative of cosx. Thus, every antiderivative of
cosx is of the form sinx + C, for some constant C.

Since
d

dx
(− cosx) = − d

dx
cosx = −(− sinx) = sinx,

we know that − cosx is an antiderivative of sinx. Thus, every antiderivative of
sinx is of the form − cosx + C, for some constant C.
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3 u-substitution

Recall that there are two differentiation rules with a fair amount of subtlety:
the product rule, and the chain rule. The corresponding integration tech-
niques are also fairly subtle, and (unlike, e.g., the power rule) have different
names. The product rule for differentiation corresponds to “integration by
parts,” which we will study later (if ever). However, the chain rule corresponds
to “u-substitution”, which we will introduce now.

Theorem. (u-substitution)

Leibniz notation: If y can be given in terms of u and u can be given in terms
of x, then ∫

y · du
dx

dx =

∫
y du.

Functional notation:
∫

f(g(x)) · g′(x) dx =

∫
f(u) du.

Example 2. (Example 5a, p. 201 in the textbook) Evaluate

∫
(x4 + 3x)30(4x3 + 3) dx.

Solution. Let u = x4 + 3x. The rest will be an in-class exercise. (Hint:
first, find du, in terms of x and dx.)
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Example 3. (Example 5b, p. 201 in the textbook) Evaluate

∫
sin10 x cosx dx.

Solution. Let u = sinx. Again, the rest will be an in-class exercise.

Example 4. Evaluate

∫
sin(2x) dx.

Solution. Let u = 2x.

6



Proof of u-substitution. Leibniz notation: By the Chain Rule, we have

du

dx
dx = du

y
du

dx
dx = y du

∫
y
du

dx
dx =

∫
y du.

Functional notation: Let u = g(x). By the Chain Rule,

d

dx

∫
f(u) du =

du

dx
· d

du

∫
f(u) du

=
du

dx
· f(u), by the remark back on the first page

= g′(x) · f(g(x)), since u = g(x).

Thus,
∫
f(u) du is a (family of) antiderivatives for f(g(x)) · g′(x); or, in integral

notation, ∫
f(g(x))g′(x) dx =

∫
f(u) du.
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Assignment 13 (due Wednesday, 8 February)

Section 3.4, Problem 12. This will be graded carefully.

Section 3.5, Problems 13, 14, and 31. Problems 14 and 31 will be graded
carefully.

Section 3.6, Problems 22 and 27. Both of these will be graded carefully.

Section 3.8, Problems 3–6. Problems 4 and 6 will be graded carefully.

Assignment 14 (due Monday, 13 February)

Section 3.4, Problem 13. This will be graded carefully.

Section 3.5, Problems 15 and 32. Problem 32 will be graded carefully.

Section 3.6, Problem 27. This will be graded carefully.

Section 3.8, Problems 19, 20, 27, and 28. Problems 20 and 28 will be graded
carefully.

Explain why the two statements of u-substitution, on p. 5 of this lecture, mean
the same thing.
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Math 132, Lecture 14: Sums and their limits

Charles Staats

Wednesday, 8 February 2012

1 No class Friday

There will be no class on Friday, February 10. Thus, Assignment 14 will instead
be due on Monday, 13 February.

However, tutorial will proceed as usual on Thursday (tomorrow). There will
even be a graded quiz.

2 Sums and Σ (sigma) notation

I assume that all of you know how to do a sum like

1 + 2 + 3 + · · ·+ 10,

given enough time. We are going to study, instead, how to do sums like

1 + 2 + 3 + · · ·+ n,

even when you do not know n. We will be able to find a “nice” formula for a sum
like this in terms of n. This will be important shortly, since we will compute
areas as limits of these sums as n → ∞. But you don’t need to worry about
that just yet.

First of all, a few important formulas:

1 + 2 + 3 + · · ·+ n = 1
2n(n + 1) (1)

12 + 22 + 32 + · · ·+ n2 = 1
6n(n + 1)(2n + 1) (2)

13 + 23 + 33 + · · ·+ n3 =
[
1
2n(n + 1)

]2
. (3)

The first formula can be remembered as “n times the average of 1 and n.” (You
might think of this as “the number of numbers” times “the average of the first
number and the last number,” but this is dangerous in that it fails for the second
and third formulas.) The third formula is the square of the first. I don’t know of
any easy way to remember the second formula, although some of you might find
1
3 (n + 0)(n + 1

2 )(n + 1) an easier form to remember than the one given above.
These formulas are important in order to be able to do other stuff; however,
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they are not particularly memorable (although I have tried to make them as
memorable as I could). Thus, if you might need them on a test, I will give them
to you.

We can use these equations to find formulas for more complex sums. How-
ever, we’re going to need a better notation. For a demonstration, let’s see try
the following sum:

Example 1. (Example 3, p. 4 in the textbook) Find a formula, in terms of n,
for

3(−4) + 4(−3) + 5(−2) + 6(−1) + · · ·+ (n + 2)(n− 5).

You may have no idea how to start on this. That’s not surprising. Seeing the
problem written this way, I find it a bit intimidating myself. However, once we
introduce sigma notation for sums, the solution will fall out much more easily.

Here’s how sigma notation works: if you have an expression for the ith term
of the sum, say stuff(i), then for the sum of n terms stuff(1) + stuff(2) + · · ·+
stuff(n), you write

n∑

i=1

stuff(i).

Thus, for instance, we could write

1 + 2 + · · ·+ n =
n∑

i=1

i

12 + 22 + · · ·+ n2 =
n∑

i=1

i2

3(−4) + 4(−3) + 5(−2) + 6(−1) + · · ·+ (n + 2)(n− 5) =
n∑

i=1

(i + 2)(i− 5).

The Greek capital letter Σ (sigma) is, as I understand it, the Greek version
of the Roman letter S; it stands for “Sum.” The Σ “operator” has some nice
properties that the book, as usual, calls “linearity”:

Theorem. (“linearity of Σ”)

(i)
n∑

i=1

c stuff(i) = c
n∑

i=1

stuff(i). This is just a fancy way of writing the dis-

tributive property.

(ii)
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi. This is a fancy way of writing that it does

not matter what order you add things in.
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(iii)
n∑

i=1

(ai − bi) =
n∑

i=1

ai −
n∑

i=1

bi. To see this, we write

n∑

i=1

(ai − bi) =
n∑

i=1

(ai + (−1)bi)

=
n∑

i=1

ai +
n∑

i=1

(−bi)

=

n∑

i=1

ai + (−1)

n∑

i=1

bi

=

n∑

i=1

ai −
n∑

i=1

bi.

There’s one more thing I should state: for any fixed c,

n∑

i=1

c = c + c + · · ·+ c︸ ︷︷ ︸
n times

= nc.

Now, using this notation, together with the previously given formulas, we will
return to the example at hand:

n∑

i=1

(i + 2)(i− 5) =
n∑

i=1

i2 − 3i− 10

=

n∑

i=1

i2 −
n∑

i=1

3i−
n∑

i=1

10

=

n∑

i=1

i2 − 3

n∑

i=1

i−
n∑

i=1

10

= 1
6n(n + 1)(2n + 1)− 3 · 12n(n + 1)− 10n.

The last step is where we apply the formulas. Obviously, this can be simplified,
and for many purposes, probably should be; but I’ll leave it for now.

3 Areas as limits of infinite sums

3



Assignment 14 (due Monday, 13 February)

Section 3.4, Problem 13. This will be graded carefully.

Section 3.5, Problems 15 and 32. Problem 32 will be graded carefully.

Section 3.6, Problem 27. This will be graded carefully. (Note: this is a repeat
problem.)

Section 3.8, Problems 19, 20, 27, and 28. Problems 20 and 28 will be graded
carefully.

Explain why the two statements of u-substitution, on p. 5 of Lecture 13, mean
the same thing.

Assignment 15 (due Wednesday, 15 February)

Section 3.4, Problem 59. This will be graded carefully.

Section 3.6, Problem 28. This will be graded carefully.

Section 3.8, Problems 21, 22, 29, and 35. Problems 22 and 35 will be graded
carefully.

Section 4.1, Problems 38, 53, and 54. Problems 38 and 54 will be graded
carefully.
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Math 132, Lecture 15: Definite integrals

Charles Staats

Monday, 13 February 2012

1 Theoretical framework

We’d like to be able to just sit down and talk about “the area under a function
f(x),” and in fact, this is what the earliest practitioners of calculus did. How-
ever, as the rigorous foundation of mathematics evolved—as mathematicians
built the “skyscraper” of analysis to hold up the “cloud castle” of calculus—
they ran into a problem: for some incredibly badly behaved functions, the term
“area underneath the function” simply makes no sense. Asking what is the area
under such a function is like asking what is limx→∞ sinx; the question simply
has no answer.

In order to understand what is going on, mathematicians came up with the
following procedure for dealing with a function f :

• Start with an intuitive idea of what the “area under f” should mean.

• Using this intuition, come up with a precise definition for a “lower area”
A and an “upper area” A. These should be approximations for the “true
area” A such that, according to our intuition about the “true area,” we
will necessarily have

A ≤ A ≤ A.

• If it happens that A = A, then we know exactly what A must be. In
this case, we say that the function is integrable (a fancy word for “it
makes sense to talk about the area under the function”), and we define
the integral to be A.

• If A is not equal to A, then we can do one of two things:

– give up, or

– find a better procedure for getting A and A.

The procedure we will introduce for finding A and A is called “Riemann in-
tegration.” It’s not the “best” procedure out there, but it will be more than
adequate for our purposes.
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2 Review: Finding the area under x2 as a limit

Consider the following problem:

Example 1. What is the area of the region under the curve y = x2 from x = 0
to x = 1? (See the picture.)

We more or less did this example in class last time (albeit without finishing),
so I will just briefly give an idea of how we did it.

We don’t (yet) have any simple, geometric formulas for the area under a
parabola. But we can calculate the area of a bunch of little rectangles. So, let’s
approximate the area as a bunch of little rectangles:

Looking at it like this, we can even give a formula for our “approximate area”
in terms of the number of rectangles: Let n be the number of rectangles. The
area of the rectangle at xi is

width ·height = ∆x · f(xi).

Our approximate area An is the sum of the areas of all of these rectangles:

An = f(x1)∆x + f(x2)∆x + · · ·+ f(xn)∆x

=
n∑

i=1

f(xi)∆x.
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Now, we can figure out that

∆x =
1

n

xi = (i− 1)∆x =
i− 1

n

f(xi) = (xi)
2 =

(
i− 1

n

)2

.

Making these substitutions, we find that

An =

n∑

i=1

(
i− 1

n

)2

· i− 1

n

=
1

n3

n∑

i=1

(i− 1)2

=
1

n3

n∑

i=1

(i2 − 2i + 1)

=
1

n3

(
n∑

i=1

i2 − 2

n∑

i=1

i +

n∑

i=1

1

)
.

As it happens, we have formulas from last time for
∑

i2,
∑

i, and
∑

1. Applying
these, we find

=
1

n3

(
n(n + 1)(2n + 1)

6
− 2

n(n + 1)

2
+ n

)

=
1

n3

(
n3

3
− n2

2
+

n

6

)

=
1

3
− 1

2n
+

1

6n2
.

Now, it makes sense that lots of narrow rectangles should give a better approxi-
mation than a few wide rectangles. Correspondingly, An should be a better and
better approximation to the area as we make n larger and larger. And in the
limit, the area will be

lim
n→∞

An = lim
n→∞

1

3
− 1

2n
+

1

6n2

=
1

3
.

There is an important alternative way to do this: we chose to make the
height of the rectangle determined by f(xi), the value of f on the left side of
the rectangle. For this particular function, that means our region of “lots of
rectangles” always lies inside the area we are trying to calculate, so the area An

3



always ought to underestimate the area we care about. If A denotes the area
we care about, it’s intuitive that An ≤ A for all n, and so

lim
n→∞

An ≤ A.

It is less obvious that these two should in fact be equal. Thus, we should
probably call limn→∞ An by the name A, the “lower area,” as outlined in the
first section.

For a more conclusive argument, we could instead take the “upper sum”
given by taking the rectangles to intersect the function on their top-right corners:

In this case, the area A we care about will be contained in the areas of all the
rectangles put together, so we’ll have A ≤ An for these An, and consequently

A ≤ lim
n→∞

An.

Let’s call limn→∞ An the “upper area” A. Then A will be sandwiched between
A and A. As it turns out, in our case, the two limits A and A are both equal
to 1

3 , so the function f(x) = x2 is “integrable over [0, 1],” with “integral” equal
to 1

3 .

3 The definite integral

The same procedure can be carried out more generally to give a definition for
“integral on an interval [a, b].” Some important properties:

• integral as “signed area”

• notation

• linearity

• If a function is continuous on a closed interval [a, b], then it is integrable
on [a, b].

• Calculating: Once we know the function is integrable, we only have to
calculate a single limit to know the integral. It can be the “upper area,”
the “lower area,” or anything in between.
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Assignment 15 (due Wednesday, 15 February)

Section 3.4, Problem 59. This will be graded carefully.

Section 3.6, Problem 28. This will be graded carefully.

Section 3.8, Problems 21, 22, 29, and 35. Problems 22 and 35 will be graded
carefully.

Section 4.1, Problems 38, 53, and 54. Problems 38 and 54 will be graded
carefully.

Assignment 16 (due Friday, 17 February)

Section 3.4, Problem 14. This will be graded carefully.

Section 3.8, Problems 30 and 36. Problem 36 will be graded carefully.

Section 4.1, Problems 55 and 56. Problem 56 will be graded carefully.

Section 4.2, Concepts Review. Include a picture for number 4.

Section 4.2, Problems 11 and 12. Problem 12 will be graded carefully. (Note:
These are very similar to the problems from Section 4.1.)
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Math 132, Lecture 16: The Fundamental

Theorem of Calculus

Charles Staats

Wednesday, 15 February 2012

1 Accumulation Functions

We are going to show, in this lecture, that in an appropriate sense, “taking
definite integrals” is the same thing as “taking antiderivatives.” This will explain
why we use the “indefinite integral” notation

∫
f(x) dx for the antiderivative of

f(x).
There’s a problem here, though: a definite integral is a number, whereas

an antiderivative is a function. As I have emphasized repeatedly, numbers and
functions are completely different kinds of things: not so much apples and
oranges, as apples and juicers. (A juicer takes one food—say, an apple—and
turns it into another food, apple juice. A function takes one number and turns
it into another number.) Thus, claiming that the definite integral (a number)
is “the same as” the antiderivative (a function) will take some explanation.

In truth, we’re not dealing with the definite integral directly. Instead, we use
the process of definite integration to produce a new function—the accumulation
function—that will, it turns out, be equal to an antiderivative.

Definition. Let f be a function that is integrable on [a, b]. The accumulation
function of f is the function F over [a, b] defined by

F (x) =

∫ x

a

f(t) dt.

Note that t here is a “dummy variable;” we could have used any letter other
than a or x and it would have worked just as well. We cannot, however, write
something like

∫ x

a

f(x) dx,

any more than we can say “let x be the function defined by x = x2 + 1.” In
some sense, this is like a man being his own father. The upper and lower limits
(say, a and x) cannot depend on the dummy variable (the thing after the d; in
our case, the dummy variable is t).

1



What does this expression for “accumulation function of f” really mean?
Basically, the accumulation function measures the “area under f so far.” In the
picture below, F (x) =

∫ x

a
f(t) dt is the area of the shaded region.

a x

f(t)

ta b

2 The Fundamental Theorem

Theorem. (The Fundamental Theorem of Calculus)

Version 1 Let f be a function continuous on [a, b]. Then the accumulation
function

∫ x

a
f(t) dt is differentiable, and

d

dx

∫ x

a

f(t) dt = f(x).

Version 2 Let f be a function continuous on [a, b]. Then the accumulation
function

∫ x

a
f(t) dt is an antiderivative for f on [a, b].

Sketch of proof. The second version is often more useful, but the first is easier
to prove. (Fortunately, they are just slightly different ways of saying exactly
the same thing.)

I’m going to sketch how the proof would go in terms of “infinitesimally small”
differentials dx and dy.

2





Assignment 16 (due Friday, 17 February)

Section 3.4, Problem 14. This will be graded carefully.

Section 3.8, Problems 30 and 36. Problem 36 will be graded carefully.

Section 4.1, Problems 55 and 56. Problem 56 will be graded carefully.

Section 4.2, Concepts Review. Include a picture for number 4.

Section 4.2, Problems 11 and 12. Problem 12 will be graded carefully. (Note:
These are very similar to the problems from Section 4.1.)

Assignment 17 (due Monday, 20 February)

Section 4.2, Problems 7, 8, 13, and 14. Problems 8 and 14 will be graded
carefully.

Section 4.3, Problems 3, 4, 9, and 10. Problems 4 and 10 will be graded carefully.

Section 4.4, Problems 1 and 2.
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Math 132, Lecture 17: Using Antiderivatives to

find definite integrals

Charles Staats

Friday, 17 February 2012

1 The method

Recall the Fundamental Theorem of Calculus from last time:

Theorem. (Fundamental Theorem of Calculus) Let f be a function continuous
on [a, b]. Then the accumulation function

∫ x
a
f(t) dt is an antiderivative for f

on [a, b].

The idea for the “practical” application here is the following: when we have
somehow managed to compute an antiderivative for f (e.g., using the techniques
for finding indefinite integrals), then we can use this to find the accumulation
function A(x) =

∫ x
a
f(t) dt, which in particular gives us the definite integral

since ∫ b

a

f(t) dt = A(b).

The “nice” way to do this would be to say, simply, that if we have an antideriva-
tive F , A is equal to F . Unfortunately, this is not true, since f will have more
than one antiderivative. [We will, however, end up finding out that A is given
by A(x) = F (x) − F (a), so in some sense, it is “almost true.”]

Exercise 1. If F is an antiderivative of f , then so is the function G defined by
G(x) = x+ C, for any fixed constant C.

However, we were also able to show, using the Mean Value Theorem, that
this is the only thing that can go wrong:

Theorem. If F and G are two antiderivatives of f on [a, b], then there is a
constant C such that F (x) = G(x) + C, for all x.

Now, suppose f is continuous on [a, b], and suppose we have somehow, “mag-
ically,” produced an antiderivative F for f . Let A be the accumulation function
of f , i.e.,

A(x) =

∫ x

a

f(t) dt.

1



By the Fundamental Theorem of Calculus, A is also an antiderivative of f .
Thus, there is some function constant C such that

A(x) = F (x) + C.

So, to find A, all we have to do is find C. But this is easy:

C = A(x) − F (x) for all x. In particular,

C = A(a) − F (a)

=

(∫ a

a

f(t) dt

)
− F (a)

= −F (a),

since
∫ a
a
f(t) dt = 0 no matter what f is. (“The area of a vertical line segment

is zero.”) Thus,

A(x) = F (x) − F (a)
∫ x

a

f(t) dt = F (x) − F (a). In particular, for x = b,

∫ b

a

f(t) dt = F (b) − F (a).

This is what the textbook calls the “Second Fundamental Theorem of Calculus”:

Theorem. If f is continuous on [a, b], and F is an antiderivative for f on [a, b],
then ∫ b

a

f(t) dt = F (b) − F (a).

Personally, I think that when you really understand the first two theorems
I stated, and you really know what the word “antiderivative” means1, then you
should be able to get to the “Second Fundamental Theorem” without having to
remember it as a separate theorem. However, if the name “Second Fundamental
Theorem of Calculus” is helpful to you, then by all means use it.

Here’s another bit of intuition: recall that the “indefinite integral”
∫
f(x) dx = F (x) + C

is just a way of denoting the “antiderivative.” You can also think of the “in-
definite integral” as an accumulation function for which we don’t know where it
starts. When someone gives us a starting point a and asks for

∫ x

a

f(t) dt,

1An analogy I used in class last time that may help with this: “F is an antiderivative of
f” means precisely the same thing as “f is the derivative of F ,” much as “John is a child of
Jessica” means precisely the same thing as “Jessica is a parent of John.”

2



we now know what C is: it is precisely −F (a) [to ensure that the integral is
zero when we set x = a]. Thus, we get that

∫ x

a

f(t) dt = F (x) − F (a),

where F is given by the indefinite integral. If you will, the indefinite integral
has an indefinite starting point a; this becomes a definite integral by choosing a
definite starting point. With this in mind, I am sometimes inclined to denote the
accumulation function by an integral sign with only the lower limit:

∫ x
a
f(t) dt =∫

a
f(x) dx = F (x) − F (a). I probably won’t take off points if you use this

notation, but please don’t tell anyone else I let you do this.

2 Some examples

At this point, we will do some examples, to show how to use the Fundamental
Theorem to compute definite integrals in practice (using antiderivatives). Each
of the following examples should be done in two steps:

1. First, find the indefinite integral,

∫
f(x) dx = F (x) + C.

2. Then, find the definite integral as

∫ b

a

f(t) dt = F (b) − F (a).

Example 2.

∫ 1

0

t2 dt

Solution.
∫
x2 dx = 1

3x
3 + C

∫ 1

0

t2 dt = 1
3 (1)3 − 1

3 (0)3

= 1
3 − 0

= 1
3 .

Notice how much easier that was than the “limit of
∑

’s” version.
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Example 3.

∫ π/3

0

sin 3t dt (Hint: use u-substitution.)

Solution. First, to find
∫

sin 3t dt, let

u = 3t

du = 3dt
1
3du = dt.

Thus,

∫
sin 3t dt =

∫
sinu · 1

3du

=
1

3

∫
sinu du

= 1
3 (− cosu+ C0)

= − 1
3 cosu+ C

= − 1
3 cos 3t+ C,

and so

∫ π/3

0

sin 3t dt = − 1
3 cos 3t

∣∣π/3
t=0

= − 1
3 cos 3(π/3) + 1

3 cos 3(0)

= − 1
3 cosπ + 1

3 cos 0

= − 1
3 (−1) + 1

3 (1)

= 1
3 + 1

3

= 2
3 .
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Example 4. (Example 12, p. 284 in the textbook)

∫ 1

0

(x+ 1) dx

(x2 + 2x+ 6)2
. (This

may require a somewhat clever choice of u.)
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Assignment 17 (due Monday, 20 February)

Section 4.2, Problems 7, 8, 13, and 14. Problems 8 and 14 will be graded
carefully.

Section 4.3, Problems 3, 4, 9, and 10. Problems 4 and 10 will be graded carefully.

Section 4.4, Problems 1 and 2.

Assignment 18 (due Wednesday, 22 February 22)

Section 4.2, Problems 15 and 16. Calculate each of these integrals two ways:
first, using the definition of definite integral (i.e., as a limit of

∑
’s); second, using

the Fundamental Theorem of Calculus. All of these will be graded carefully.

Section 4.4, Problems 3, 4, 15, 16, 35, and 36. The even-numbered problems
will be graded carefully.

Section 4.4, Problem 71. This will be discussed in tutorial on Tuesday, but you
will get more out of the discussion if you try to solve it yourself ahead of time.
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Math 132, Lecture 18: More on finding definite

integrals; Average values

Charles Staats

Monday, 20 February 2012

1 Minor shortcuts in taking definite integrals

Recall the basic strategy for finding a definite integral
∫ b

a
f(t) dt using the

Fundamental Theorem of Calculus:

1. Find the indefinite integral
∫
f(x) dx = F (x) + C.

2. Evaluate the definite integral as

∫ b

a

f(t) dt = F (b)− F (a).

While this process is simple to describe, it can take time and space to write out
in full. In this section, we will be discussing some “notational shortcuts” that
can make the process faster. These “shortcuts” are completely unnecessary for
being able to do problems on my tests, but they may help you to finish the test
on time.

The first is something that I actually introduced last time in a very casual
way. It is just a notation that allows us to avoid writing out the “F (x) + C”
bit, and skip directly to evaluating the definite integral.

Notation. For any function F , the two expressions

F (x)|bx=a and [F (x)]
b
x=a

will both be taken to mean
F (b)− F (a).

With this notation, we can rewrite the Fundamental Theorem as follows:

∫ b

a

f(t) dt =

[∫
f(t) dt

]b

t=a

In practice, when evaluating a definite integral, we sometimes use this notation
to avoid ever writing the indefinite integral as such.

1



Example 1. Evaluate

∫ 1

−1
t2 dt.

Solution.

∫ 1

−1
t2 dt =

[
1
3 t

3
]1
t=−1

= 1
3 (1)3 − 1

3 (−1)3

= 1
3 −

(
− 1

3

)

= 2
3 .

Notice how short the solution is with this notation. If I had wanted, I
probably could have written it out in one line.

The second “new” trick is a bit more substantial. It allows us to shorten
the process of applying u-substitution with definite integrals. When we do this
process in full to an indefinite integral like

∫
f(g(x))g′(x) dx, we have steps like

the following:

(a) Substitute in g(x) = u and g′(x) dx = du. The integral above then
becomes

∫
f(u) du.

(b) Evaluate this indefinite integral as F (u) + C.

(c) Substitute back in u = g(x), obtaining F (g(x)) + C.

Consequently, if
∫
f(u) du = F (u) + C, then

∫
f(g(x))g′(x) dx = F (g(x)) + C.

Thus, if we want to find the definite integral
∫ b

a
f(g(x))g′(x) dx, we obtain

∫ b

a

f(g(x))g′(x) dx = F (g(x))|bx=a

= F (g(b))− F (g(a))

= F (u)|g(b)u=g(a)

=

∫ g(b)

g(a)

f(u) du.

This can be simpler and quicker to write, because applying g to the particular
numbers a and b can give much shorter answers than taking a formula for g(x)
and plugging it into F , simplifying, and then plugging in the numbers a and b.

Example 2. (Example 12, p. 248 in the textbook; repeated from last lecture)
Evaluate ∫ 1

0

(x + 1) dx

(x2 + 2x + 6)2
.
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Solution. Set

u = x2 + 2x + 6 = g(x)

du = (2x + 2)dx = 2(x + 1) dx.

Note that when x = 0, u = g(0) = 6; and when x = 1,

u = g(1) = 1 + 2 + 6 = 9.

Thus,

∫ 1

0

(x + 1) dx

(x2 + 2x + 6)2
=

∫ 9

6

1
2du

u2

=
1

2

∫ 9

6

u−2 du

=
1

2

[
u−1

−1

]9

u=6

=
1

2

[−1

u

]9

u=6

=
1

2

(−1

9
− −1

6

)

=
1

2
· 1

3

(−1

3
− −1

2

)

=
1

6
· −2− (−3)

6

=
1

6
· 1

6

=
1

36
.

In the version of this solution that I typed up, a lot of the space is devoted
to adding fractions. The actual calculus is only a few lines at the beginning.

2 Using symmetry

This section discusses, quickly, some tricks that can simplify integration in some
very special circumstances. Surprisingly enough, these very special circum-
stances do in fact show up in practice, so the “symmetry tricks” are worth
knowing.

Warning. To apply the tricks below to
∫ b

a
f(t) dt, you have to look at a and b,

3



−a
a

Figure 1: For an odd function, the area on the left negates the area on the right,
so the sum is zero.

not just f .

Theorem. (Odd functions) If f is an odd function (i.e., f(−x) = −f(x) for all
x), then ∫ a

−a
f(t) dt = 0.

Note that this only applies if we are integrating from −a to a. The idea is that
the “area on the left” cancels the “area on the right.”

Theorem. (Even functions) If f is an even function (i.e., f(−x) = f(x) for all
x), then ∫ a

−a
f(t) dt = 2

∫ a

0

f(t) dt.

In the case of an even function, the “area on the left” equals the “area on the
right,” so

∫ a

−a
f(t) dt =

∫ 0

−a
f(t) dt

︸ ︷︷ ︸
area on left

+

∫ a

0

f(t) dt

︸ ︷︷ ︸
area on right

= 2

∫ a

0

f(t) dt.

4



−a a

Figure 2: For an even function, the area on the left equals the area on the right.

Example 3. Evaluate

∫ 4

−4
(x3 + x2) dx.

Solution. Note that x3 is odd and x2 is even. Thus, we have

∫ 4

−4
(x3 + x2) dx =

∫ 4

−4
x3 dx +

∫ 4

−4
x2 dx

= 0 + 2

∫ 4

0

x2 dx

= 2
[
1
3x

3
]4
x=0

= 2 · 13 (4)3

=
128

3
.

3 Average value of a function

It is a common theme in calculus that much of what can be done with sums can
also be done with integrals. The definition of “average value” is a case in point.

When we take the average of a bunch of numbers x1, . . . , xn, we are trying,
in some sense, to approximate the entire data set by a single number. More
precisely, we are finding the single number M such that if we pretended all of
the xi were equal to M , they would still have the correct sum:

n∑

i=1

M =
n∑

i=1

xi

nM =

n∑

i=1

xi

M =
1

n

n∑

i=1

xi.
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This gives us a formula for the average M : you take the sum of all the xi, and
then divide this sum by the number of data points.

When we take the average of a function f over an interval [a, b], we are trying
to approximate the entire function by a single number. More precisely, we are
finding a single number M such that if we pretended f(x) were equal to M for
every x in the interval, we would still obtain the correct integral:

∫ b

a

M dx =

∫ b

a

f(x) dx

M(b− a) =

∫ b

a

f(x) dx

M =
1

b− a

∫ b

a

f(x) dx.

Geometrically, the average value M is the height of a rectangle over [a, b] that
has the same area as the area under f .

There is a Mean Value Theorem for integrals stating that if f is continuous
on [a, b], then f attains its average value at some point in (a, b). In other words,
there exists c in (a, b) such that

f(c) =
1

b− a

∫ b

a

f(x) dx.

I may eat these words later, but for the moment, I don’t see any particular reason
for you to need to remember this. It would, however, be good to understand
how this is very closely related to the last Mean Value Theorem for derivatives,
using the Fundamental Theorem of Calculus.
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Assignment 18 (due Wednesday, 22 February 22)

Section 4.2, Problems 15 and 16. Calculate each of these integrals two ways:
first, using the definition of definite integral (i.e., as a limit of

∑
’s); second, using

the Fundamental Theorem of Calculus. All of these will be graded carefully.

Section 4.4, Problems 3, 4, 15, 16, 35, and 36. The even-numbered problems
will be graded carefully.

Section 4.4, Problem 71. This will be discussed in tutorial on Tuesday, but you
will get more out of the discussion if you try to solve it yourself ahead of time.

Assignment 19 (due Friday, 24 February)

Section 4.4, Problems 5, 6, 17, 18, 37, and 38. The even-numbered problems
will be graded carefully.

Section 4.5, Problems 1, 2, 35, and 36. The even-numbered problems will be
graded carefully.

Explain how the Fundamental Theorem of Calculus relates the Mean Value
Theorem for Derivatives to the Mean Value Theorem for Integrals. This will be
discussed in tutorial on Thursday, but you will get more out of the discussion if
you try to solve it yourself ahead of time.

Test Wednesday, 29 February

The text will be cumulative, but will be focused on (Lecture 7, section 2) through
Lecture 18. See also Assignments 8–19. The most relevant sections in the
textbook are 3.3–3.6, 3.8, and 4.1–4.5, with particular emphasis on 3.4 (practical
problems) and 4.4 (evaluating integrals).
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Math 132, Lecture 19: Area between two curves

Charles Staats

Wednesday, 22 February 2012

1 Area between two curves

We introduced the definite integral as a way to define and calculate the area
under the graph of a function. In this lecture, we will discuss how to use the
same mathematical tools to solve a problem that, on the surface, appears harder:
finding the area between two such graphs. The “slogan” that the book gives for

y = f(x)

a b

y

x

(a) area under y = f(x) from x = a to x = b∫ b
a f(x) dx

y = f(x)
y = g(x)

a b

y

x

(b) area between y = f(x) and y = g(x) from
x = a to x = b

finding such areas is “slice, approximate, and integrate.” In other words,

1. Find an expression for dA (an infinitesimal change in the area, typically
by a very thin rectangle—a “slice”) in terms of dx (an infinitesimal change
in x; typically, the width of the rectangle).

2. Once we have dA = stuff(x) dx, we “add up the infinitely many infinites-
imally small rectangles”—in other words, integrate:

A =

∫ b

a

stuff(x) dx.

Often, this will end up taking the form

A =

∫ b

a

(top function − bottom function) dx.

1



Sometimes it’s obvious what a and b are, but sometimes you need to
compute them by taking the intersection points of the top function and
the bottom function; in other words, solving f(x) = g(x) for x.

One unstated, but often crucial, first step is to sketch the region first and make
sure you understand exactly what is going on. Let’s do some examples to
illustrate the method.

Example 1. Find the area between y = 3 − x2 and y = x from x = −1 to
x = 1.

Solution. asdf
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Example 2. Find the area between y = x2 and y = x3 to the right of x = 0.

Solution. asdf
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Example 3. Find the area between y = sinx and y = 0 from x = −π to x = 0.

Solution. asdf

2 What is a solid of revolution?
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Assignment 19 (due Friday, 24 February)

Section 4.4, Problems 5, 6, 17, 18, 37, and 38. The even-numbered problems
will be graded carefully.

Section 4.5, Problems 1, 2, 35, and 36. The even-numbered problems will be
graded carefully.

Explain how the Fundamental Theorem of Calculus relates the Mean Value
Theorem for Derivatives to the Mean Value Theorem for Integrals. This will be
discussed in tutorial on Thursday, but you will get more out of the discussion if
you try to solve it yourself ahead of time.

When you are preparing for the test, you may want to write down any specific
questions you have so that you will remember to ask them on Monday (which I
will be devoting mostly to review). As always, you may also come to my office
hours or make an appointment to see me. And don’t forget that tutorial is
taylor-made for asking questions.

Assignment 20 (due Monday, 27 February)

Section 4.4, Problems 19, 20, 39, and 40. The even-numbered problems will be
graded carefully.

Section 4.5, Problems 7 and 8. Problem 8 will be graded carefully.

Section 5.1, Problems 3, 4, 19, and 20. All four of these will be graded carefully.

When you are preparing for the test, you may want to write down any specific
questions you have so that you will remember to ask them on Monday (which I
will be devoting mostly to review). As always, you may also come to my office
hours or make an appointment to see me. And don’t forget that tutorial is
taylor-made for asking questions.

Test Wednesday, 29 February

The test will be cumulative, but will be focused on (Lecture 7, section 2) through
Lecture 18. See also Assignments 8–19 and the first part of 20 (anything from
Chapter 4). The most relevant sections in the textbook are 3.3–3.6, 3.8, and
4.1–4.5, with particular emphasis on 3.4 (practical problems) and 4.4 (evaluating
integrals).
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Math 132, Lecture 21: Prelude to logarithms and

exponentials

Charles Staats

Monday, 27 February 2012

1 Test Wednesday

In case you had forgotten, there is a test coming up on Wednesday (next class
meeting). I expect to devote most of this class period to review, but I thought I
would put in a bit of lecture to prepare you for the fairly non-intuitive approach
to logarithms and exponentials we’ll be starting on Friday.

2 The dog and the squirrel

There is a well-known experiment that goes something like this. A dog is placed
on a leash near a bowl of food. However, the leash is anchored so that the dog
must take a detour away from the food and around a post in order to get to the
food. If it tries to go toward the food directly, the leash will pull it up short.
Experiments show that dogs are very bad at solving this problem; they will
strain toward the bowl, but not think to go away from it to unloop the leash.
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By contrast, if a squirrel is placed in the same situation, it will very quickly
take the detour and solve the problem—in spite of the fact that by most mea-
sures, squirrels are less intelligent than dogs. This is because a squirrel is ac-
customed to traveling through the treetops, where indirect routes are the norm.
A squirrel wanting to go from point A to point B cannot simply jump directly
toward point B; it must figure out a path of smaller jumps and runs along
branches.

A lot of mathematics is like this. We may understand exactly where it is we
want to go, or what it is we want to prove; but if we try to prove it directly, we
can’t get there. Instead, we have to think like the squirrel and take an indirect
route. We start off going in a strange direction that may seem to have nothing
to do with our goal, but will end up “unlooping” our “leashes” from any number
of obstacles that would otherwise bring us up short.

3 Exponentials and logarithms

One such problem is producing a “good” definition for 2x. If x is a rational
number—say, x = p/q where p and q are integers—then we can define

2p/q =
q
√

2p.

This is the only definition that fulfills the standard rules of exponents:

(
2p/q

)q
= 2

p
q · q = 2p,

i.e., 2p/q is a qth root of 2. Unfortunately, we cannot use this to define 2π, since
π cannot be written as a fraction. We could try something like

2π = lim
r→π

2r,

where we take the limit over rational numbers only. In principle, this method
might work. In practice, it will prove very difficult to show directly that the
limit exists and that 2x, when defined this way, will have all the properties we
expect (e.g., 2x is what we have already said it should be when x is rational, 2x

is continuous, 2x+y = 2x · 2y, etc.). Instead, we will take a “squirrel approach”,
starting out in a direction that seems wrong but will ultimately lead to a better
solution.

When I start out next lecture by defining the “natural logarithm” as the
”antiderivative of 1/x,” you may be confused because this seems to have nothing
to do with the logarithm you have seen before. Remember that we are taking
the “squirrel approach.” This logarithm will turn out to be the same as the one
you know, but if we started out with the definition you know, we’d be heading
“directly toward the target”—and we’d never get there.
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Test Wednesday, 29 February

The test will be cumulative, but will be focused on (Lecture 7, section 2) through
Lecture 18. See also Assignments 8–19 and the first part of 20 (anything from
Chapter 4). The most relevant sections in the textbook are 3.3–3.6, 3.8, and
4.1–4.5, with particular emphasis on 3.4 (practical problems) and 4.4 (evaluating
integrals).

Assignment 21 (due Friday, 2 March)

Section 5.1, Problems 36 and 37. These will be discussed in tutorial on Thursday.

Section 5.3, Concepts Review, all four questions (but not the second blank in
the second question). These will be graded carefully. In particular, if you give
only the answers without any work, you will not receive credit.
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Math 132, Lecture 23: Logarithms, inverse

functions, and exponentials

Charles Staats

Monday, 5 March 2012

1 Algebraic properties of the natural logarithm

Recall that, taking the “squirrel approach” (i.e., indirect approach that is faster
in the long run), we defined the natural logarithm function ln by

lnx =

∫ x

1

dt

t
.

Note that lnx is only defined when x is positive, since we cannot integrate 1/t
across a point where it is not only undefined, but also unbounded. The graph
of the natural logarithm is shown in Figure 1.

x

lnx

Figure 1: Graph of the natural logarithm.

At the end of the last lecture, I had just stated the following important
algebraic properties of the natural logarithm function:

(i) ln 1 = 0.
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(ii) ln ab = ln a + ln b for any a, b > 0.

(iii) ln
(a
b

)
= ln a− ln b for any a, b > 0.

(iv) ln(ar) = r ln a for any a > 0 and any rational number r (so that ar =
ap/q = q

√
ap is defined).

We are about to prove these.
Note that these are all statements about a function (the natural logarithm)

that, right now, we “know” (i.e., have proven) very little about. Practically
the only thing we know how to do is differentiate it. In situations like this,
the following strategy can often be helpful for showing identities of the form
f(x) = g(x):

1. Show that f ′(x) = g′(x), and that these are “nice” functions. Since f and
g are antiderivatives of the same function, they must differ by a constant:
f(x) = g(x) + C.

2. Show that f(x0) = g(x0) at some point x0. Thus, in the case x = x0, we
have f(x0) = g(x0) + C and f(x0) = g(x0), so the constant C is equal to
zero. Thus, f(x) = g(x) for all x.

I may ask you to repeat the strategy above on the final exam. Now, we will
apply the strategy in the proofs of (ii) and (iv) below.

Proof. (i) Showing that ln(1) = 0 is easy:

ln(1) =

∫ 1

1

dt

t
= 0

since the “area” of a vertical line segment is always zero.

(iv) We will use the strategy to show that for fixed rational r, the two
functions ln(xr) and r lnx are equal.

First, we show that they have the same derivative:

d

dx
ln(xr) =

1

xr

d

dx
xr =

1

xr
· rxr−1 =

r

x
d

dx
r lnx = r

d

dx
lnx = r · 1

x
=

r

x
.

Since ln(xr) and r lnx are both antiderivatives of r/x on the interval (0,∞), we
know that they differ by a constant C:

ln(xr) = r lnx + C.

Second, we determine what C is, by evaluating the two functions at the one
x-value we know: x = 1. We find that

ln(1r) = ln 1 = 0

r ln 1 = r · 0 = 0.
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Thus, we have

ln(1r) = r ln 1 + C

0 = 0 + C

C = 0.

Hence, from the first step,
ln(xr) = r lnx.

(ii) We again use the strategy to show that ln ab = ln a+ln b. Unfortunately,
in this case, it is even less obvious how to turn the two sides into functions of
x. As it turns out, we can make it work by fixing a and setting x = b. Thus,
we are trying to show that ln ax = ln a + lnx.

First, we show that the derivatives of both sides are equal:

d

dx
ln ax =

1

ax

d

dx
(ax) =

1

ax
· a =

1

x
d

dx
ln a + lnx = 0 +

1

x
=

1

x
.

Thus, ln ax and ln a + lnx differ by a constant.
Second, to show that this constant is zero, we evaluate both sides at x = 1:

ln(a · 1) = ln a

ln a + ln 1 = ln a + 0 = ln a.

Thus, the constant is zero, and so

ln ax = ln a + lnx.

In particular, setting x = b, we find that

ln ab = ln a + ln b.

(iii) Finally, given that we have already shown (ii) and (iv), the proof that
ln(a/b) = ln a−ln b can be done purely “algebraically,” with no need for calculus:

ln
(a
b

)
= ln(a · b−1)

= ln a + ln b−1

= ln a + (−1) ln b

= ln a− ln b.

Recalling our original mission to seek a good definition for ax and the asso-
ciated function loga x, let’s define the latter by

loga x :=
lnx

ln a

3



for any a > 0. It is not hard to do the algebra to show that properties (i)–(iv)
all hold for loga and not just ln. In particular, property (iv) will tell us that

loga a
r =

ln ar

ln a

=
r ln a

ln a
= r

whenever r is rational. Since loga a
x = x is perhaps the defining property of

the base-a logarithm you may have seen before, this suggests that we are on the
right track.

2 Inverse functions

In particular, if you accept that the definition we have given above for loga

really is the “right” definition, then we can turn the usual equality around and
define exponential by using the logarithm, rather than the other way around:

Definition. (Preliminary) If a is a positive number and x is any real number,
we define ax to be the solution y to the equation

loga y = x.

Note that this definition is constructed precisely so that loga a
x = loga y = x.

Unfortunately, there are two issues that need to be addressed before we can make
this definition for real:

• Does the equation have a solution?

• Does the equation have only one solution?

In other words, we want to make sure that ax exists and is unambiguous. It is a
similar situation to

√
x. You cannot simply define

√
x to be “the solution to the

equation y = x2,” since this equation has two solutions if x > 0 (one positive
and one negative), and no solutions if x < 0. Instead, you define

√
x to be “the

nonnegative solution to the equation y = x2 if x ≥ 0 and undefined otherwise,”
thus eliminating the ambiguity and being upfront about the fact that

√
x is only

defined for nonnegative x.
To see how this is done in general (so that we can apply it to our special

case to define ax), we will discuss inverse functions.
Inverse functions are one of those ideas in mathematics that seem very nat-

ural in principle (one function gives the solution to another function, much as
y =
√
x gives a solution to x = y2), but the notation can add extra confusion. I

realized when I was trying to type this up that I would like to take some more
time to figure out a way of presenting it that clarifies rather than obfuscates the
ideas. Thus, I have put “inverse functions” on hold until the next lecture. In
the mean time, let’s look at logarithmic differentiation.
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3 Logarithmic differentiation

One of the key properties of the logarithm is that it turns the “hard” opera-
tions of multiplication and division into the comparatively “easy” operations
of addition and subtraction. When the logarithm was first invented (according
to the textbook), it was used to simplify long, complicated by-hand calcula-
tion. Now that calculators are available, this particular usage is moot. But the
conversion of multiplication to addition can still be useful to simplify advanced
computations, like taking derivatives.

Example 1. Let y =

√
1 + x2

(x + 1)2/3
. Differentiate y with respect to x.

Solution. This is certainly possible without any use of logarithms: we can
combine the quotient rule, the power rule, and the chain rule for a rather
messy solution. But let’s look at what we can do by taking logarithms, and
then differentiating.

ln y = 1
2 ln(1 + x2)− 2

3 ln(x + 1)
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Assignment 23 (due Wednesday, 7 March)

Even-numbered problems will be graded carefully. Problems in [brackets] need
not be handed in, but should be done as practice for the final exam.

[Section 4.4, Problems 21–28.]

Section 5.1, Problems 21 and 22.

Section 5.3, Problems 5–8.

[Section 5.3, Problems 9–12.]

Section 6.1, Problems 7–10 and 19–22.

[Section 6.3, Problems 3–6, 11–14, and 37–40.]

Exam Wednesday, March 14

The exam will cover all the material from this quarter, including the lecture on
Wednesday, March 7. I may also include differentiation questions that could
have been asked last quarter; however, except for these, I will not design any
questions specifically to test material from last quarter.

The exam will take place at 10:30AM in the same room as the lectures.
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Math 132, Lecture 24: Exponential functions

Charles Staats

Wednesday, 7 March 2012

1 Logistics

• Seth will be holding a review session tomorrow (Thursday) at the usual
tutorial time (noon–1:20) in Eckhart 207. I encourage you all to go, whether

or not you are in Seth’s tutorial. Bring your own questions, or listen to those of your

peers. Questions might include homework questions or test questions that you did not

fully understand. NOTE: Seth does not know what will be on the final exam; don’t

ask him.

• I will be holding class at the usual time and place on Friday. I will be re-

viewing rather than introducing new material. Attendance is optional but encouraged.

Please bring your questions.

• Time changes on Sunday. If you forget to change your clock,
you may be an hour LATE to your first exam. Don’t forget.

• The final exam will be Wednesday, March 14, at 10:30am, in the same
room as the lectures.

2 Differentiating exponential functions

Before I get into the theory, I want to make absolutely sure I cover the things
in this lecture for which you will be responsible on the final exam.

• For any a > 0, the exponential ax is defined for all x. Again: a must be
positive, but x can be any real number—2, 0,−7/2, π − π2, . . . .1

• d

dx
ax = (ln a) · ax

1For certain values of x, you can define ax when x ≤ 0. For instance, if x is a positive
integer, ax is defined for all a. But you don’t have a continuous function ax defined for all x
unless a > 0. For instance,

0−1 = 1
0

is undefined (a = 0, x = −1).

(−1)1/2 =
√−1 is undefined (a = −1, x = 1

2
).
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• There is a unique number, called e (the “Euler number”), such that ln e =
1. Consequently, ex is its own derivative:

d

dx
ex = (ln e) · ex = 1 · ex = ex.

The function ex is sometimes denoted exp(x) and called the “natural ex-
ponential function.” You don’t need to memorize the digits of e for the
exam, but since I’ve said this much, I might as well add that e is an
irrational number and its first few digits are

e ≈ 2.718281828459045

Example 1. Find the derivative of the function f defined by

f(x) = 32x.

Solution.

f ′(x) = (ln 3) · 32x · d
dx

(2x)

= (ln 3) · 32x · 2
= (2 ln 3) · 32x

Exercise 2. (optional) Redo the exercise above, first using the fact that

f(x) = 32x = (32)x = 9x.

Explain why the two answers are the same. (Hint: use the algebraic properties
of ln.)

Note that if you can differentiate 9x (this exercise), but cannot differentiate
32x using the Chain Rule (previous Example), you are not prepared for the test.

3 Defining exponentials

Mathematicians have this weird hangup about telling people rules (e.g., rules
for computing derivatives) without telling them why these rules work. Thus, in
what time is left to us, I will try to explain how to finish up the “squirrel route”
to get a rigorous definition of exponentials and compute their derivatives.

Recall that we defined the natural logarithm ln by

lnx =

∫ x

1

dt

t
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and the base-a logarithm loga by

loga x =
lnx

ln a

whenever a > 0 and a 6= 1. We then showed the following, whenever r is a
rational number:

y = ar =⇒ loga y = r. (1)

So far, we have only really defined ax when x is rational, via

ap/q = q
√
ap.

We’re going to use the property (1) to define ax whenever x is real. Thus, we’ll

be able to talk about aπ, a−
√
2, etc. More precisely, we’re going to define the

function f(x) = ax by the rule

f(x) is the number y such that loga y = x.

Or, in other words,
y = ax ⇐⇒ loga y = x.

But we need to make sure that this “rule” actually defines a function: we need
to show that

(i) For any x, there is a number y (which we will call ax) such that loga y = x.

(ii) ax is unambiguous: i.e., for each x, there is only one number y such that
loga y = x.

To understand these properties better (and prove them), we will bring in the
graphs.

4 The graphs

Recall that the graph of the equation y = loga x consists, by definition, of

the set of all points (x, y) such that y = loga x.

Correspondingly, the graph of y = ax should be

the set of all points (x, y) such that y = ax

= the set of all points (x, y) such that loga y = x

= the set of all points (x, y) such that x = loga y.

If we compare this to the graph of y = loga x, we we see that the roles of x
and y are switched. In other words, (x, y) lies on the graph of y = ax if and
only if (y, x) lies on the graph of y = loga x. Geometrically, this corresponds to
reflecting about the line y = x:
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x

y
y = x

y = loga x

loga y = x
y = ax

(y, x)

(x, y)

Thus, what we need to do is to show that the graph of

loga y = x

does in fact give y as a function of x. In other words, that every vertical line
meets this graph in exactly one place. And (again) switching the role of x and
y (= reflecting about the line y = x), we realize this is equivalent to showing
that every horizontal line meets the graph of y = loga x in exactly one place.

To show this, the key fact we need is that y = loga x is continuous and
monotonic on (0,∞).

Claim. The function f defined by f(x) = loga x is monotonic and continuous
on x > 0, i.e., wherever it is defined.

Proof. By definition,

f(x) =
lnx

ln a
= 1

ln a · lnx

f ′(x) = 1
ln a

d

dx
lnx

=
1

ln a

1

x
.
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Thus, f ′(x) exists whenever x > 0. Consequently, f is continuous, since differ-
entiable functions are continuous. Moreover, for any x > 0, f ′(x) has the same
sign as ln a. Thus, f is increasing on the entire interval (0,∞) if ln a > 0, and
decreasing on the entire interval if ln a < 0. Either way, f is monotonic.

For simplicity, let’s assume ln a > 0, i.e., a > 1. Then we have

(i) Every horizontal line meets the graph, by the Intermediate Value Theo-
rem.

(ii) A horizontal line meets the graph in only one place, since f is increasing:
to the right of x0, f lies above the horizontal line. To the left of x0, f lies
below the horizontal line.

Thus, we can in fact define y = ax by loga y = x, since we have already defined
loga.

5 Derivatives

To differentiate y = ax, we use implicit differentiation:

y = ax

loga y = x

1

ln a
· ln y = x

1

ln a
· 1
y

dy

dx
=

d

dx
(x)

1

(ln a)y

dy

dx
= 1

dy

dx
= (ln a)y

dy

dx
= (ln a)ax.

This is a special case of the “inverse function theorem,” which states, roughly,
that

dx

dy
=

1

dy/dx
.

6 The existence of e

Let’s show that there exists a (unique) number e such that ln e = 1. We use the
intermediate value theorem. We know that lnx attains the value 0 at x = 1. We
know that lnx attains really big values since limx→∞ lnx = ∞. Thus, it must
hit every y-value in between. In particular, there exists x such that lnx = 1.

Note: The paragraph above is essentially the same argument as was used for
(i): showing that y = loga x meets every horizontal line.
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Exam Wednesday, March 14

The exam will cover all the material from this quarter, including the lecture on
Wednesday, March 7. I may also include differentiation questions that could
have been asked last quarter; however, except for these, I will not design any
questions specifically to test material from last quarter.

The exam will take place at 10:30AM in the same room as the lectures.
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