Introduction to fractional calculus
 (Based on lectures by R. Gorenflo, F. Mainardi and I. Podlubny)

R. Vilela Mendes

July 2008

Contents

- Historical origins of fractional calculus
- Fractional integral according to Riemann-Liouville
- Caputo fractional derivative
- Riesz-Feller fractional derivative
- Grünwal-Letnikov
- Integral equations
- Relaxation and oscillation equations
- Fractional diffusion equation
- A nonlinear fractional differential equation. Stochastic solution
- Geometrical interpretation of fractional integration

Fractional Calculus was born in 1695

G.F.A. de L'Hôpital (1661-1704)

G.W. Leibniz
(1646-1716)

G. W. Leibniz (1695-1697)

In the letters to J. Wallis and J. Bernulli (in 1697) Leibniz mentioned the possible approach to fractional-order differentiation in that sense, that for non-integer values of n the definition could be the following:

$$
\frac{d^{n} e^{m x}}{d x^{n}}=m^{n} e^{m x}
$$

L. Euler (1730)

$$
\begin{gathered}
\frac{d^{n} x^{m}}{d x^{n}}=m(m-1) \ldots(m-n+1) x^{m-n} \\
\Gamma(m+1)=m(m-1) \ldots(m-n+1) \Gamma(m-n+1) \\
\frac{d^{n} x^{m}}{d x^{n}}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n} .
\end{gathered}
$$

Euler suggested to use this relationship also for negative or non-integer (rational) values of n. Taking $m=1$ and $n=\frac{1}{2}$, Euler obtained:

$$
\frac{d^{1 / 2} x}{d x^{1 / 2}}=\sqrt{\frac{4 x}{\pi}} \quad\left(=\frac{2}{\sqrt{\pi}} x^{1 / 2}\right)
$$

S. F. Lacroix adopted Euler's derivation for his successful textbook (Traité du Calcul Différentiel et du Calcul Intégral, Courcier, Paris, t. 3, 1819; pp. 409-410).

traité eĺémentaire

DE

CALCUL DIFFÉRENTIEL

ET DE
CALCUL INTÉGRAL,

Par $_{\text {S. }}$-F. $\underset{=}{\text { LACROIX. }}$

SEPTIEME EDITION,
revur et augmentée de notes
Par MM. HERMITE et J.-A. SERRET,
MEMBRES DE L'INSTITLT.

J. B. J. Fourier (1820-1822)

The first step to generalization of the notion of differentiation for arbitrary functions was done by J. B. J. Fourier (Théorie Analytique de la Chaleur, Didot, Paris, 1822; pp. 499-508).

After introducing his famous formula

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(z) d z \int_{-\infty}^{\infty} \cos (p x-p z) d p
$$

Fourier made a remark that

$$
\frac{d^{n} f(x)}{d x^{n}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(z) d z \int_{-\infty}^{\infty} \cos \left(p x-p z+n \frac{\pi}{2}\right) d p,
$$

and this relationship could serve as a definition of the n-th order derivative for non-integer n.

Riemann-Liouville definition

Fractional integral according to Riemann-Liouville

- According to Riemann-Liouville the notion of fractional integral of order $\alpha(\alpha>0)$ for a function $f(t)$, is a natural consequence of the well known formula (Cauchy-Dirichlet ?), that reduces the calculation of the n-fold primitive of a function $f(t)$ to a single integral of convolution type

$$
\begin{equation*}
J_{a+}^{n} f(t):=\frac{1}{(n-1)!} \int_{a}^{t}(t-\tau)^{n-1} f(\tau) d \tau, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

vanishes at $t=a$ with its derivatives of order $1,2, \ldots, n-1$. Require $f(t)$ and $J_{a+}^{n} f(t)$ to be causal functions, that is, vanishing for $t<0$.

Fractional integral according to Riemann-Liouville

- According to Riemann-Liouville the notion of fractional integral of order $\alpha(\alpha>0)$ for a function $f(t)$, is a natural consequence of the well known formula (Cauchy-Dirichlet ?), that reduces the calculation of the n-fold primitive of a function $f(t)$ to a single integral of convolution type

$$
\begin{equation*}
J_{a+}^{n} f(t):=\frac{1}{(n-1)!} \int_{a}^{t}(t-\tau)^{n-1} f(\tau) d \tau, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

vanishes at $t=a$ with its derivatives of order $1,2, \ldots, n-1$. Require $f(t)$ and $J_{a+}^{n} f(t)$ to be causal functions, that is, vanishing for $t<0$.

- Extend to any positive real value by using the Gamma function, $(n-1)!=\Gamma(n)$

Fractional integral according to Riemann-Liouville

- According to Riemann-Liouville the notion of fractional integral of order $\alpha(\alpha>0)$ for a function $f(t)$, is a natural consequence of the well known formula (Cauchy-Dirichlet ?), that reduces the calculation of the n-fold primitive of a function $f(t)$ to a single integral of convolution type

$$
\begin{equation*}
J_{a+}^{n} f(t):=\frac{1}{(n-1)!} \int_{a}^{t}(t-\tau)^{n-1} f(\tau) d \tau, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

vanishes at $t=a$ with its derivatives of order $1,2, \ldots, n-1$. Require $f(t)$ and $J_{a+}^{n} f(t)$ to be causal functions, that is, vanishing for $t<0$.

- Extend to any positive real value by using the Gamma function, $(n-1)!=\Gamma(n)$
- Fractional Integral of order $\alpha>\mathbf{0}$ (right-sided)

$$
\begin{equation*}
J_{a+}^{\alpha} f(t):=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau, \quad \alpha \in \mathbb{R} \tag{2}
\end{equation*}
$$

Define $J_{a+}^{0}:=I, J_{a+}^{0} f(t)=f(t)$

Fractional integral according to Riemann-Liouville

- Alternatively (left-sided integral)

$$
\begin{gathered}
J_{b-}^{\alpha} f(t):=\frac{1}{\Gamma(\alpha)} \int_{t}^{b}(\tau-t)^{\alpha-1} f(\tau) d \tau, \quad \alpha \in \mathbb{R} \\
(a=0, b=+\infty) \text { Riemann } \quad(a=-\infty, b=+\infty) \text { Liouville }
\end{gathered}
$$

Fractional integral according to Riemann-Liouville

- Alternatively (left-sided integral)

$$
\begin{gathered}
J_{b-}^{\alpha} f(t):=\frac{1}{\Gamma(\alpha)} \int_{t}^{b}(\tau-t)^{\alpha-1} f(\tau) d \tau, \quad \alpha \in \mathbb{R} \\
(a=0, b=+\infty) \text { Riemann } \quad(a=-\infty, b=+\infty) \text { Liouville }
\end{gathered}
$$

- Let

$$
J^{\alpha}:=J_{0+}^{\alpha}
$$

Semigroup properties $\quad J^{\alpha} J^{\beta}=J^{\alpha+\beta}, \quad \alpha, \beta \geq 0$ Commutative property $\quad J^{\beta} J^{\alpha}=J^{\alpha} J^{\beta}$ Effect on power functions

$$
J^{\alpha} t^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1+\alpha)} t^{\gamma+\alpha}, \quad \alpha>0, \gamma>-1, t>0
$$

(Natural generalization of the positive integer properties).

Fractional integral according to Riemann-Liouville

- Alternatively (left-sided integral)

$$
\begin{gathered}
J_{b-}^{\alpha} f(t):=\frac{1}{\Gamma(\alpha)} \int_{t}^{b}(\tau-t)^{\alpha-1} f(\tau) d \tau, \quad \alpha \in \mathbb{R} \\
(a=0, b=+\infty) \text { Riemann } \quad(a=-\infty, b=+\infty) \text { Liouville }
\end{gathered}
$$

- Let

$$
J^{\alpha}:=J_{0+}^{\alpha}
$$

Semigroup properties $\quad J^{\alpha} J^{\beta}=J^{\alpha+\beta}, \quad \alpha, \beta \geq 0$ Commutative property $\quad J^{\beta} J^{\alpha}=J^{\alpha} J^{\beta}$ Effect on power functions

$$
J^{\alpha} t^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1+\alpha)} t^{\gamma+\alpha}, \quad \alpha>0, \gamma>-1, t>0
$$

(Natural generalization of the positive integer properties).

- Introduce the following causal function (vanishing for $t<0$)

$$
\Phi_{\alpha}(t):=\frac{t_{+}^{\alpha-1}}{\Gamma(\alpha)}, \quad \alpha>0
$$

Fractional integral according to Riemann-Liouville

$$
\begin{array}{cl}
\Phi_{\alpha}(t) * \Phi_{\beta}(t)=\Phi_{\alpha+\beta}(t), & \alpha, \beta>0 \\
J^{\alpha} f(t)=\Phi_{\alpha}(t) * f(t), & \alpha>0
\end{array}
$$

Fractional integral according to Riemann-Liouville

$$
\begin{array}{cl}
\Phi_{\alpha}(t) * \Phi_{\beta}(t)=\Phi_{\alpha+\beta}(t), & \alpha, \beta>0 \\
J^{\alpha} f(t)=\Phi_{\alpha}(t) * f(t), & \alpha>0
\end{array}
$$

- Laplace transform

$$
\mathcal{L}\{f(t)\}:=\int_{0}^{\infty} e^{-s t} f(t) d t=\widetilde{f}(s), \quad s \in \mathbb{C}
$$

Fractional integral according to Riemann-Liouville

$$
\begin{array}{cl}
\Phi_{\alpha}(t) * \Phi_{\beta}(t)=\Phi_{\alpha+\beta}(t), & \alpha, \beta>0 \\
J^{\alpha} f(t)=\Phi_{\alpha}(t) * f(t), & \alpha>0
\end{array}
$$

- Laplace transform

$$
\mathcal{L}\{f(t)\}:=\int_{0}^{\infty} e^{-s t} f(t) d t=\widetilde{f}(s), \quad s \in \mathbb{C}
$$

- Defining the Laplace transform pairs by $f(t) \div \widetilde{f}(s)$

$$
J^{\alpha} f(t) \div \frac{\widetilde{f}(s)}{s^{\alpha}}, \quad \alpha>0
$$

Fractional derivative according to Riemann-Liouville

- Denote by D^{n} with $n \in \mathbb{N}$, the derivative of order n. Note that

$$
D^{n} J^{n}=I, \quad J^{n} D^{n} \neq I, \quad n \in \mathbb{N}
$$

D^{n} is a left-inverse (not a right-inverse) to J^{n}. In fact

$$
J^{n} D^{n} f(t)=f(t)-\sum_{k=0}^{n-1} f^{(k)}\left(0^{+}\right) \frac{t^{k}}{k!}, \quad t>0
$$

Fractional derivative according to Riemann-Liouville

- Denote by D^{n} with $n \in \mathbb{N}$, the derivative of order n. Note that

$$
D^{n} J^{n}=I, \quad J^{n} D^{n} \neq 1, \quad n \in \mathbb{N}
$$

D^{n} is a left-inverse (not a right-inverse) to J^{n}. In fact

$$
J^{n} D^{n} f(t)=f(t)-\sum_{k=0}^{n-1} f^{(k)}\left(0^{+}\right) \frac{t^{k}}{k!}, \quad t>0
$$

- Then, define D^{α} as a left-inverse to J^{α}. With a positive integer m, $m-1<\alpha \leq m$, define:
Fractional Derivative of order $\alpha: \quad D^{\alpha} f(t):=D^{m} J^{m-\alpha} f(t)$

$$
D^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{d^{m}}{d t^{m}}\left[\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau\right], & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

Fractional derivative according to Riemann-Liouville

- Define $D^{0}=J^{0}=I$.

Then $D^{\alpha} J^{\alpha}=I, \quad \alpha \geq 0$

$$
D^{\alpha} t^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)} t^{\gamma-\alpha}, \quad \alpha>0, \gamma>-1, t>0
$$

Fractional derivative according to Riemann-Liouville

- Define $D^{0}=J^{0}=I$.

Then $D^{\alpha} J^{\alpha}=I, \quad \alpha \geq 0$

$$
D^{\alpha} t^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+1-\alpha)} t^{\gamma-\alpha}, \quad \alpha>0, \gamma>-1, t>0
$$

- The fractional derivative $D^{\alpha} f$ is not zero for the constant function $f(t) \equiv 1$ if $\alpha \notin \mathbb{N}$

$$
D^{\alpha} 1=\frac{t^{-\alpha}}{\Gamma(1-\alpha)}, \quad \alpha \geq 0, t>0
$$

Is $\equiv 0$ for $\alpha \in \mathbb{N}$, due to the poles of the gamma function

Caputo fractional derivative

- $D_{*}^{\alpha} f(t):=J^{m-\alpha} D^{m} f(t)$ with $m-1<\alpha \leq m$, namely

$$
D_{*}^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau, & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

Caputo fractional derivative

- $D_{*}^{\alpha} f(t):=J^{m-\alpha} D^{m} f(t)$ with $m-1<\alpha \leq m$, namely

$$
D_{*}^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau, & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

- A definition more restrictive than the one before. It requires the absolute integrability of the derivative of order m. In general

$$
D^{\alpha} f(t):=D^{m} J^{m-\alpha} f(t) \neq J^{m-\alpha} D^{m} f(t):=D_{*}^{\alpha} f(t)
$$

unless the function $f(t)$ along with its first $m-1$ derivatives vanishes at $t=0^{+}$. In fact, for $m-1<\alpha<m$ and $t>0$,

$$
D^{\alpha} f(t)=D_{*}^{\alpha} f(t)+\sum_{k=0}^{m-1} \frac{t^{k-\alpha}}{\Gamma(k-\alpha+1)} f^{(k)}\left(0^{+}\right)
$$

and therefore, recalling the fractional derivative of the power functions

$$
D^{\alpha}\left(f(t)-\sum_{k=0}^{m-1} \frac{t^{k}}{k!} f^{(k)}\left(0^{+}\right)\right)=D_{*}^{\alpha} f(t), \quad D_{*}^{\alpha} 1 \equiv 0, \alpha>0
$$

Riemann versus Caputo

$$
D^{\alpha} t^{\alpha-1} \equiv 0, \quad \alpha>0, t>0
$$

D^{α} is not a right-inverse to J^{α}

$$
J^{\alpha} D^{\alpha} t^{\alpha-1} \equiv 0, \quad \text { but } \quad D^{\alpha} J^{\alpha} t^{\alpha-1}=t^{\alpha-1}, \quad \alpha>0, t>0
$$

Riemann versus Caputo

$$
D^{\alpha} t^{\alpha-1} \equiv 0, \quad \alpha>0, t>0
$$

D^{α} is not a right-inverse to J^{α}

$$
J^{\alpha} D^{\alpha} t^{\alpha-1} \equiv 0, \quad \text { but } \quad D^{\alpha} J^{\alpha} t^{\alpha-1}=t^{\alpha-1}, \quad \alpha>0, t>0
$$

- Functions which for $t>0$ have the same fractional derivative of order α, with $m-1<\alpha \leq m$. (the c_{j} 's are arbitrary constants)

$$
\begin{aligned}
& D^{\alpha} f(t)=D^{\alpha} g(t) \Longleftrightarrow f(t)=g(t)+\sum_{j=1}^{m} c_{j} t^{\alpha-j} \\
& D_{*}^{\alpha} f(t)=D_{*}^{\alpha} g(t) \Longleftrightarrow f(t)=g(t)+\sum_{j=1}^{m} c_{j} t^{m-j}
\end{aligned}
$$

Riemann versus Caputo

$$
D^{\alpha} t^{\alpha-1} \equiv 0, \quad \alpha>0, t>0
$$

D^{α} is not a right-inverse to J^{α}

$$
J^{\alpha} D^{\alpha} t^{\alpha-1} \equiv 0, \quad \text { but } \quad D^{\alpha} J^{\alpha} t^{\alpha-1}=t^{\alpha-1}, \quad \alpha>0, t>0
$$

- Functions which for $t>0$ have the same fractional derivative of order α, with $m-1<\alpha \leq m$. (the c_{j} 's are arbitrary constants)

$$
\begin{aligned}
& D^{\alpha} f(t)=D^{\alpha} g(t) \Longleftrightarrow f(t)=g(t)+\sum_{j=1}^{m} c_{j} t^{\alpha-j} \\
& D_{*}^{\alpha} f(t)=D_{*}^{\alpha} g(t) \Longleftrightarrow f(t)=g(t)+\sum_{j=1}^{m} c_{j} t^{m-j}
\end{aligned}
$$

- Formal limit as $\alpha \rightarrow(m-1)^{+}$

$$
\begin{gathered}
\alpha \rightarrow(m-1)^{+} \Longrightarrow D^{\alpha} f(t) \rightarrow D^{m} J f(t)=D^{m-1} f(t) \\
\alpha \rightarrow(m-1)^{+} \Longrightarrow D_{*}^{\alpha} f(t) \rightarrow J D^{m} f(t)=D^{m-1} f(t)-t^{(m-1)}\left(0^{+}\right)_{\alpha}
\end{gathered}
$$

Riemann versus Caputo

- The Laplace transform

$$
D^{\alpha} f(t) \div s^{\alpha} \widetilde{f}(s)-\sum_{k=0}^{m-1} D^{k} J^{(m-\alpha)} f\left(0^{+}\right) s^{m-1-k}, \quad m-1<\alpha \leq m
$$

Requires the knowledge of the (bounded) initial values of the fractional integral $J^{m-\alpha}$ and of its integer derivatives of order $k=1,2, m-1$

Riemann versus Caputo

- The Laplace transform

$$
D^{\alpha} f(t) \div s^{\alpha} \widetilde{f}(s)-\sum_{k=0}^{m-1} D^{k} J^{(m-\alpha)} f\left(0^{+}\right) s^{m-1-k}, \quad m-1<\alpha \leq m
$$

Requires the knowledge of the (bounded) initial values of the fractional integral $J^{m-\alpha}$ and of its integer derivatives of order $k=1,2, m-1$

- For the Caputo fractional derivative

$$
D_{*}^{\alpha} f(t) \div s^{\alpha} \widetilde{f}(s)-\sum_{k=0}^{m-1} f^{(k)}\left(0^{+}\right) s^{\alpha-1-k}, \quad m-1<\alpha \leq m
$$

Requires the knowledge of the (bounded) initial values of the function and of its integer derivatives of order $k=1,2, m-1$ in analogy with the case when $\alpha=m$

Riesz - Feller fractional derivative

- For functions with Fourier transform

$$
\begin{aligned}
\mathcal{F}\{\phi(x)\} & =\hat{\phi}(k)=\int_{-\infty}^{\infty} e^{i k x} \phi(x) d x \\
\mathcal{F}^{-1}\{\hat{\phi}(k)\} & =\phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} \hat{\phi}(k) d x
\end{aligned}
$$

Riesz - Feller fractional derivative

- For functions with Fourier transform

$$
\begin{aligned}
\mathcal{F}\{\phi(x)\} & =\hat{\phi}(k)=\int_{-\infty}^{\infty} e^{i k x} \phi(x) d x \\
\mathcal{F}^{-1}\{\hat{\phi}(k)\} & =\phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} \hat{\phi}(k) d x
\end{aligned}
$$

- Symbol of an operator

$$
\hat{A}(k) \hat{\phi}(k)=\int_{-\infty}^{\infty} e^{i k x} A \phi(x) d x
$$

Riesz - Feller fractional derivative

- For functions with Fourier transform

$$
\begin{aligned}
\mathcal{F}\{\phi(x)\} & =\hat{\phi}(k)=\int_{-\infty}^{\infty} e^{i k x} \phi(x) d x \\
\mathcal{F}^{-1}\{\hat{\phi}(k)\} & =\phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} \hat{\phi}(k) d x
\end{aligned}
$$

- Symbol of an operator

$$
\hat{A}(k) \hat{\phi}(k)=\int_{-\infty}^{\infty} e^{i k x} A \phi(x) d x
$$

- For the Liouville integral

$$
\begin{aligned}
J_{\infty+}^{\alpha} f(x) & :=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x}(x-\xi)^{\alpha-1} f(\xi) d \xi \\
J_{\infty-}^{\alpha} f(x): & =\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty}(\xi-x)^{\alpha-1} f(\xi) d \xi, \quad \alpha \in \mathbb{R}
\end{aligned}
$$

Riesz - Feller fractional derivative

- Liouville derivatives $(m-1<\alpha<m)$

$$
D_{\infty \pm}^{\alpha}=\left\{\begin{array}{cc}
\pm\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { odd } \\
\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { even }
\end{array}\right.
$$

Riesz - Feller fractional derivative

- Liouville derivatives $(m-1<\alpha<m)$

$$
D_{\infty \pm}^{\alpha}=\left\{\begin{array}{cc}
\pm\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { odd } \\
\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { even }
\end{array}\right.
$$

- Operator symbols

$$
\begin{aligned}
J_{\infty \pm}^{\hat{\alpha}} & =|k|^{-\alpha} e^{ \pm i(\text { signk }) \alpha \pi / 2}=(\mp i k)^{-\alpha} \\
D_{\infty \pm}^{\hat{\alpha}} & =|k|^{+\alpha} e^{\mp i(\text { signk) } \alpha \pi / 2}=(\mp i k)^{+\alpha} \\
& J_{\infty+}^{\hat{\alpha}}+J_{\infty-}^{\hat{\alpha}}=\frac{2 \cos (\alpha \pi / 2)}{|k|^{\alpha}}
\end{aligned}
$$

Riesz - Feller fractional derivative

- Liouville derivatives $(m-1<\alpha<m)$

$$
D_{\infty \pm}^{\alpha}=\left\{\begin{array}{cc}
\pm\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { odd } \\
\left(D^{m} J_{\infty \pm}^{m-\alpha}\right) f(x), & m \text { even }
\end{array}\right.
$$

- Operator symbols

$$
\begin{aligned}
J_{\infty \pm}^{\hat{\alpha}} & =|k|^{-\alpha} e^{ \pm i(\operatorname{signk}) \alpha \pi / 2}=(\mp i k)^{-\alpha} \\
D_{\infty \pm}^{\hat{\alpha}} & =|k|^{+\alpha} e^{\mp i(\operatorname{signk}) \alpha \pi / 2}=(\mp i k)^{+\alpha} \\
& J_{\infty+}^{\hat{\alpha}}+J_{\infty-}^{\hat{\alpha}}=\frac{2 \cos (\alpha \pi / 2)}{|k|^{\alpha}}
\end{aligned}
$$

- Define a symmetrized version
$I_{0}^{\alpha} f(x)=\frac{J_{\infty+}^{\alpha} f+J_{\infty-}^{\alpha} f}{2 \cos (\alpha \pi / 2)}=\frac{1}{2 \Gamma(\alpha) \cos (\alpha \pi / 2)} \int_{-\infty}^{\infty}|x-\xi|^{\alpha-1} f(\xi) d \xi$
(wth exclusion of odd integers). The operator symbol
is $\quad \hat{\jmath_{0}^{\alpha}}=|k|^{-\alpha}$

Riesz-Feller fractional derivative

- $I_{0}^{\alpha} f(x)$ is called the Riesz potential.

Riesz-Feller fractional derivative

- $I_{0}^{\alpha} f(x)$ is called the Riesz potential.
- Define the Riesz fractional derivative by analytical continuation

$$
\mathcal{F}\left\{D_{0}^{\alpha} f\right\}(k):=\mathcal{F}\left\{-I_{0}^{-\alpha} f\right\}(k)=-|k|^{\alpha} \hat{f}(k)
$$

generalized by Feller

Riesz-Feller fractional derivative

- $I_{0}^{\alpha} f(x)$ is called the Riesz potential.
- Define the Riesz fractional derivative by analytical continuation

$$
\mathcal{F}\left\{D_{0}^{\alpha} f\right\}(k):=\mathcal{F}\left\{-I_{0}^{-\alpha} f\right\}(k)=-|k|^{\alpha} \hat{f}(k)
$$

generalized by Feller

- $D_{\theta}^{\alpha}=$ Riesz-Feller fractional derivative of order α and skewness θ

$$
\mathcal{F}\left\{D_{0}^{\alpha} f\right\}(k):=-\psi_{\alpha}^{\theta}(k) \hat{f}(k)
$$

with

$$
\psi_{\alpha}^{\theta}(k)=|k|^{\alpha} e^{i(\operatorname{signk}) \theta \pi / 2}, \quad 0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}
$$

Riesz-Feller fractional derivative

- $I_{0}^{\alpha} f(x)$ is called the Riesz potential.
- Define the Riesz fractional derivative by analytical continuation

$$
\mathcal{F}\left\{D_{0}^{\alpha} f\right\}(k):=\mathcal{F}\left\{-I_{0}^{-\alpha} f\right\}(k)=-|k|^{\alpha} \hat{f}(k)
$$

generalized by Feller

- $D_{\theta}^{\alpha}=$ Riesz-Feller fractional derivative of order α and skewness θ

$$
\mathcal{F}\left\{D_{0}^{\alpha} f\right\}(k):=-\psi_{\alpha}^{\theta}(k) \hat{f}(k)
$$

with

$$
\psi_{\alpha}^{\theta}(k)=|k|^{\alpha} e^{i(\operatorname{signk}) \theta \pi / 2}, \quad 0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}
$$

- The symbol $-\psi_{\alpha}^{\theta}(k)$ is the logarithm of the characteristic function of a Lévy stable probability distribution with index of stability α and asymmetry parameter θ

Grünwald-Letnikov definition

Grünwal - Letnikov

- From

$$
\begin{aligned}
D \phi(x) & =\lim _{\substack{h \rightarrow 0 \\
\cdots}} \frac{\phi(x)-\phi(x-h)}{h} \\
D^{n} & =\lim _{h \rightarrow 0} \frac{1}{h^{n}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \phi(x-k h)
\end{aligned}
$$

Grünwal - Letnikov

- From

$$
\begin{aligned}
D \phi(x) & =\lim _{h \rightarrow 0} \frac{\phi(x)-\phi(x-h)}{h} \\
D^{n} & =\lim _{h \rightarrow 0} \frac{1}{h^{n}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \phi(x-k h)
\end{aligned}
$$

- the Grünwal-Letnikov fractional derivatives are

$$
\begin{aligned}
G_{L} D_{a+}^{\alpha} & =\lim _{h \rightarrow 0} \frac{1}{h^{\alpha}} \sum_{k=0}^{[(x-a) / h]}(-1)^{k}\binom{\alpha}{k} \phi(x-k h) \\
G L D_{b-}^{\alpha} & =\lim _{h \rightarrow 0} \frac{1}{h^{\alpha}} \sum_{k=0}^{[(b-x) / h]}(-1)^{k}\binom{\alpha}{k} \phi(x+k h)
\end{aligned}
$$

[•] denotes the integer part

Integral equations

- Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

Integral equations

- Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

- The mechanical problem of the tautochrone, that is, determining a curve in the vertical plane, such that the time required for a particle to slide down the curve to its lowest point is independent of its initial placement on the curve.

Integral equations

- Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

- The mechanical problem of the tautochrone, that is, determining a curve in the vertical plane, such that the time required for a particle to slide down the curve to its lowest point is independent of its initial placement on the curve.
- Found many applications in diverse fields:
- Evaluation of spectroscopic measurements of cylindrical gas discharges
- Study of the solar or a planetary atmosphere
- Star densities in a globular cluster
- Inversion of travel times of seismic waves for determination of terrestrial sub-surface structure
- Inverse boundary value problems in partial differential equations

Abel's equation

- - Heating (or cooling) of a semi-infinite rod by influx (or efflux) of heat across the boundary into (or from) its interior

$$
u_{t}-u_{x x}=0, \quad u=u(x, t)
$$

in the semi-infinite intervals $0<x<\infty$ and $0<t<\infty$. Assume initial temperature, $u(x, 0)=0$ for $0<x<\infty$ and given influx across the boundary $x=0$ from $x<0$ to $x>0$,

$$
-u_{x}(0, t)=p(t)
$$

Abel's equation

- - Heating (or cooling) of a semi-infinite rod by influx (or efflux) of heat across the boundary into (or from) its interior

$$
u_{t}-u_{x x}=0, \quad u=u(x, t)
$$

in the semi-infinite intervals $0<x<\infty$ and $0<t<\infty$. Assume initial temperature, $u(x, 0)=0$ for $0<x<\infty$ and given influx across the boundary $x=0$ from $x<0$ to $x>0$,

$$
-u_{x}(0, t)=p(t)
$$

- Then,

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{p(\tau)}{\sqrt{t-\tau}} e^{-x^{2} /[4(t-\tau)]} d \tau, \quad x>0, t>0
$$

Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

- Is

$$
J^{\alpha} u(t)=f(t)
$$

and consequently is solved by

$$
u(t)=D^{\alpha} f(t)
$$

using $D^{\alpha} J^{\alpha}=I$. Let us now solve using the Laplace transform

$$
\frac{\tilde{u}(s)}{s^{\alpha}}=\tilde{f}(s) \Longrightarrow \tilde{u}(s)=s^{\alpha} \tilde{f}(s)
$$

Abel's equation (1st kind)

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad 0<\alpha<1
$$

- Is

$$
J^{\alpha} u(t)=f(t)
$$

and consequently is solved by

$$
u(t)=D^{\alpha} f(t)
$$

using $D^{\alpha} J^{\alpha}=I$. Let us now solve using the Laplace transform

$$
\frac{\tilde{u}(s)}{s^{\alpha}}=\tilde{f}(s) \Longrightarrow \tilde{u}(s)=s^{\alpha} \tilde{f}(s)
$$

- The solution is obtained by the inverse Laplace transform: Two possibilities :

Abel's equation (1st kind)

- 1)

$$
\begin{gathered}
\tilde{u}(s)=s\left(\frac{\tilde{f}(s)}{s^{1-\alpha}}\right) \\
u(t)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d t} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha}} d \tau
\end{gathered}
$$

Abel's equation (1st kind)

- 1)

$$
\begin{gathered}
\tilde{u}(s)=s\left(\frac{\tilde{f}(s)}{s^{1-\alpha}}\right) \\
u(t)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d t} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha}} d \tau
\end{gathered}
$$

- 2)

$$
\begin{gathered}
\tilde{u}(s)=\frac{1}{s^{1-\alpha}}\left[s \tilde{f}(s)-f\left(0^{+}\right)\right]+\frac{f\left(0^{+}\right)}{s^{1-\alpha}} \\
u(t)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{f^{\prime}(\tau)}{(t-\tau)^{\alpha}} d \tau+f\left(0^{+}\right) \frac{t^{-\alpha}}{\Gamma(1-a)}
\end{gathered}
$$

Solutions expressed in terms of the fractional derivatives D^{α} and D_{*}^{α}, respectively

Abel's equation (2nd kind)

$$
u(t)+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad \alpha>0, \lambda \in \mathbb{C}
$$

Abel's equation (2nd kind)

$$
u(t)+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad \alpha>0, \lambda \in \mathbb{C}
$$

- In terms of the fractional integral operator

$$
\left(1+\lambda J^{\alpha}\right) u(t)=f(t)
$$

solved as

$$
u(t)=\left(1+\lambda J^{\alpha}\right)^{-1} f(t)=\left(1+\sum_{n=1}^{\infty}(-\lambda)^{n} J^{\alpha n}\right) f(t)
$$

Abel's equation (2nd kind)

$$
u(t)+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{t} \frac{u(\tau)}{(t-\tau)^{1-\alpha}} d \tau=f(t), \quad \alpha>0, \lambda \in \mathbb{C}
$$

- In terms of the fractional integral operator

$$
\left(1+\lambda J^{\alpha}\right) u(t)=f(t)
$$

solved as

$$
u(t)=\left(1+\lambda J^{\alpha}\right)^{-1} f(t)=\left(1+\sum_{n=1}^{\infty}(-\lambda)^{n} J^{\alpha n}\right) f(t)
$$

- Noting that

$$
\begin{aligned}
& J^{\alpha n} f(t)=\Phi_{\alpha n}(t) * f(t)=\frac{t_{+}^{\alpha n-1}}{\Gamma(\alpha n)} * f(t) \\
& u(t)=f(t)+\left(\sum_{n=1}^{\infty}(-\lambda)^{n} \frac{t_{+}^{\alpha n-1}}{\Gamma(\alpha n)}\right) * f(t)
\end{aligned}
$$

Abel's equation (2nd kind)

- Relation to the Mittag-Leffler functions

$$
\begin{aligned}
& e_{\alpha}(t ; \lambda):=E_{\alpha}\left(-\lambda t^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{\left(-\lambda t^{\alpha}\right)^{n}}{\Gamma(\alpha n+1)}, \quad t>0, \alpha>0, \lambda \in \mathbb{C} \\
& \sum_{n=1}^{\infty}(-\lambda)^{n} \frac{t_{+}^{\alpha n-1}}{\Gamma(\alpha n)}=\frac{d}{d t} E_{\alpha}\left(-\lambda t^{\alpha}\right)=e_{\alpha}^{\prime}(t ; \lambda), \quad t>0
\end{aligned}
$$

Abel's equation (2nd kind)

- Relation to the Mittag-Leffler functions

$$
\begin{aligned}
& e_{\alpha}(t ; \lambda):=E_{\alpha}\left(-\lambda t^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{\left(-\lambda t^{\alpha}\right)^{n}}{\Gamma(\alpha n+1)}, \quad t>0, \alpha>0, \lambda \in \mathbb{C} \\
& \sum_{n=1}^{\infty}(-\lambda)^{n} \frac{t_{+}^{\alpha n-1}}{\Gamma(\alpha n)}=\frac{d}{d t} E_{\alpha}\left(-\lambda t^{\alpha}\right)=e_{\alpha}^{\prime}(t ; \lambda), \quad t>0
\end{aligned}
$$

- Finally,

$$
u(t)=f(t)+e_{\alpha}^{\prime}(t ; \lambda)
$$

Fractional differential equations

- Relaxation and oscillation equations. Integer order

$$
u^{\prime}(t)=-u(t)+q(t)
$$

the solution, under the initial condition $u\left(0^{+}\right)=c_{0}$, is

$$
u(t)=c_{0} e^{-t}+\int_{0}^{t} q(t-\tau) e^{-\tau} d \tau
$$

Fractional differential equations

- Relaxation and oscillation equations. Integer order

$$
u^{\prime}(t)=-u(t)+q(t)
$$

the solution, under the initial condition $u\left(0^{+}\right)=c_{0}$, is

$$
u(t)=c_{0} e^{-t}+\int_{0}^{t} q(t-\tau) e^{-\tau} d \tau
$$

- For the oscillation differential equation

$$
u^{\prime \prime}(t)=-u(t)+q(t)
$$

the solution, under the initial conditions $u\left(0^{+}\right)=c_{0}$ and $u^{\prime}\left(0^{+}\right)=c_{1}$, is

$$
u(t)=c_{0} \cos t+c_{1} \sin t+\int_{0}^{t} q(t-\tau) \sin \tau d \tau
$$

Relaxation and oscillation equations

Fractional version

$$
D_{*}^{\alpha} u(t)=D^{\alpha}\left(\left(u(t)-\sum_{k=0}^{m-1} \frac{t^{k}}{k!} u^{(k)}\left(0^{+}\right)\right)=-u(t)+q(t), \quad t>0\right.
$$

$m-1<\alpha \leq m$, initial values $u^{(k)}\left(0^{+}\right)=c_{k}, k=0, \ldots, m-1$. When α is the integer m

$$
u(t)=\sum_{k=0}^{m-1} c_{k} u_{k}(t)+\int_{0}^{t} q(t-\tau) u_{\delta}(\tau) d \tau
$$

$u_{k}(t)=J^{k} u_{0}(t), u_{k}^{(h)}\left(0^{+}\right)=\delta_{k h}, h, k=0, \cdots, m-1, u_{\delta}(t)=-u_{0}^{\prime}(t)$
The $u_{k}(t)$'s are the fundamental solutions, linearly independent solutions of the homogeneous equation satisfying the initial conditions. The function $u_{\delta}(t)$, which is convoluted with $q(t)$, is the impulse-response solution of the inhomogeneous equation with $c_{k} \equiv 0, k=0, \ldots, m-1$, $q(t)=\delta(t)$. For ordinary relaxation and oscillation, $u_{0}(t)=e^{-t}=u_{\delta}(t)$ and $u_{0}(t)=\cos t, u_{1}(t)=J u_{0}(t)=\sin t=\cos (t-\pi / 2)=u_{\delta}(t)$.

Relaxation and oscillation equations

- Solution of the fractional equation by Laplace transform Applying the operator J^{α} to the fractional equation

$$
u(t)=\sum_{k=0}^{m-1} \frac{t^{k}}{k!}-J^{\alpha} u(t)+J^{\alpha} q(t)
$$

Laplace transforming yields

$$
\tilde{u}(s)=\sum_{k=0}^{m-1} \frac{1}{s^{k+1}}-\frac{1}{s^{\alpha}} \tilde{u}(s)+\frac{1}{s^{\alpha}} \tilde{q}(s)
$$

hence

$$
\tilde{u}(s)=\sum_{k=0}^{m-1} \frac{s^{\alpha-k-1}}{s^{\alpha}+1}+\tilde{q}(s)
$$

Relaxation and oscillation equations

- Solution of the fractional equation by Laplace transform Applying the operator J^{α} to the fractional equation

$$
u(t)=\sum_{k=0}^{m-1} \frac{t^{k}}{k!}-J^{\alpha} u(t)+J^{\alpha} q(t)
$$

Laplace transforming yields

$$
\tilde{u}(s)=\sum_{k=0}^{m-1} \frac{1}{s^{k+1}}-\frac{1}{s^{\alpha}} \tilde{u}(s)+\frac{1}{s^{\alpha}} \tilde{q}(s)
$$

hence

$$
\tilde{u}(s)=\sum_{k=0}^{m-1} \frac{s^{\alpha-k-1}}{s^{\alpha}+1}+\tilde{q}(s)
$$

- Introducing the Mittag-Leffler type functions

$$
e_{\alpha}(t) \equiv e_{\alpha}(t ; 1):=E_{\alpha}\left(-t^{\alpha}\right) \div \frac{s^{\alpha-1}}{s^{\alpha}+1}
$$

Relaxation and oscillation equations

$$
u_{k}(t):=J^{k} e_{\alpha}(t) \div \frac{s^{\alpha-k-1}}{s^{\alpha}+1}, \quad k=0,1, \ldots, m-1
$$

we find

$$
u(t)=\sum_{k=0}^{m-1} u_{k}(t)-\int_{0}^{t} q(t-\tau) u_{0}^{\prime}(\tau) d \tau
$$

Relaxation and oscillation equations

$$
u_{k}(t):=J^{k} e_{\alpha}(t) \div \frac{s^{\alpha-k-1}}{s^{\alpha}+1}, \quad k=0,1, \ldots, m-1
$$

we find

$$
u(t)=\sum_{k=0}^{m-1} u_{k}(t)-\int_{0}^{t} q(t-\tau) u_{0}^{\prime}(\tau) d \tau
$$

- When α is not integer, $m-1$ represents the integer part of $\alpha([\alpha])$ and m the number of initial conditions necessary and sufficient to ensure the uniqueness of the solution $u(t)$. The m functions $u_{k}(t)=J^{k} e_{\alpha}(t)$ with $k=0,1, \ldots, m-1$ represent those particular solutions of the homogeneous equation which satisfy the initial conditions

$$
u_{k}^{(h)}\left(0^{+}\right)=\delta_{k h}, h, k=0,1, \ldots, m-1
$$

and therefore they represent the fundamental solutions of the fractional equation Furthermore, the function $u_{\delta}(t)=-e_{\alpha}^{\prime}(t)$ represents the impulse-response solution.

Fractional diffusion equation

- Fractional diffusion equation, obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order $\alpha \in(0,2]$ and skewness θ and the first-order time derivative with a Caputo derivative of order $\beta \in(0,2]$

$$
\begin{gathered}
{ }_{x} D_{\theta}^{\alpha} u(x, t)={ }_{t} D_{*}^{\beta} u(x, t), \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}, \quad 0<\beta \leq 2
\end{gathered}
$$

Fractional diffusion equation

- Fractional diffusion equation, obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order $\alpha \in(0,2]$ and skewness θ and the first-order time derivative with a Caputo derivative of order $\beta \in(0,2]$

$$
\begin{gathered}
{ }_{x} D_{\theta}^{\alpha} u(x, t)={ }_{t} D_{*}^{\beta} u(x, t), \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}, \quad 0<\beta \leq 2
\end{gathered}
$$

- Space-fractional diffusion $\{0<\alpha \leq 2, \beta=1\}$

Time-fractional diffusion $\{\alpha=2,0<\beta \leq 2\}$
Neutral-fractional diffusion $\{0<\alpha=\beta \leq 2\}$

Fractional diffusion equation

- Fractional diffusion equation, obtained from the standard diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order $\alpha \in(0,2]$ and skewness θ and the first-order time derivative with a Caputo derivative of order $\beta \in(0,2$]

$$
\begin{gathered}
{ }_{x} D_{\theta}^{\alpha} u(x, t)={ }_{t} D_{*}^{\beta} u(x, t), \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}, \quad 0<\beta \leq 2
\end{gathered}
$$

- Space-fractional diffusion $\{0<\alpha \leq 2, \beta=1\}$

Time-fractional diffusion $\{\alpha=2,0<\beta \leq 2\}$
Neutral-fractional diffusion $\{0<\alpha=\beta \leq 2\}$

- Riesz-Feller space-fractional derivative

$$
\begin{gathered}
\mathcal{F}\left\{{ }_{x} D_{\theta}^{\alpha} f(x) ; \kappa\right\}=-\psi_{\alpha}^{\theta}(\kappa) \widehat{f}(\kappa) \\
\psi_{\alpha}^{\theta}(\kappa)=|\kappa|^{\alpha} e^{i(\text { signk }) \theta \pi / 2}, \quad 0<\alpha \leq 2,|\theta| \leq \min \{\alpha, 2-\alpha\}
\end{gathered}
$$

Fractional diffusion equation

- Caputo time-fractional derivative

$$
D_{*}^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau, & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

Fractional diffusion equation

- Caputo time-fractional derivative

$$
D_{*}^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau, & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

- Cauchy problem

$$
\begin{gathered}
u(x, 0)=\varphi(x), \quad x \in \mathbb{R}, u(\pm \infty, t)=0, t>0 \\
u_{\alpha, \beta}^{\theta}(x, t)=\int_{-\infty}^{+\infty} G_{\alpha, \beta}^{\theta}(\xi, t) \varphi(x-\xi) d \xi \\
G_{\alpha, \beta}^{\theta}(a x, b t)=b^{-\gamma} G_{\alpha, \beta}^{\theta}\left(a x / b^{\gamma}, t\right), \quad \gamma=\beta / \alpha
\end{gathered}
$$

Fractional diffusion equation

- Caputo time-fractional derivative

$$
D_{*}^{\alpha} f(t):=\left\{\begin{array}{cc}
\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f^{(m)}(\tau)}{(t-\tau)^{\alpha+1-m}} d \tau, & m-1<\alpha<m \\
\frac{d^{m}}{d t^{m}} f(t), & \alpha=m
\end{array}\right.
$$

- Cauchy problem

$$
\begin{gathered}
u(x, 0)=\varphi(x), \quad x \in \mathbb{R}, u(\pm \infty, t)=0, t>0 \\
u_{\alpha, \beta}^{\theta}(x, t)=\int_{-\infty}^{+\infty} G_{\alpha, \beta}^{\theta}(\xi, t) \varphi(x-\xi) d \xi \\
G_{\alpha, \beta}^{\theta}(a x, b t)=b^{-\gamma} G_{\alpha, \beta}^{\theta}\left(a x / b^{\gamma}, t\right), \quad \gamma=\beta / \alpha
\end{gathered}
$$

- Similarity variable x / t^{γ}

$$
G_{\alpha, \beta}^{\theta}(x, t)=t^{-\gamma} K_{\alpha, \beta}^{\theta}\left(x / t^{\gamma}\right), \quad \gamma=\beta / \alpha
$$

Fractional diffusion equation

- Solution by Fourier transform for the space variable and the Laplace transform for the time variable

$$
\begin{gathered}
-\psi_{\alpha}^{\theta}(\kappa) \widehat{\widehat{G_{\alpha, \beta}^{\theta}}}=s^{\beta} \widehat{\widehat{G_{\alpha, \beta}^{\theta}}}-s^{\beta-1} \\
\widehat{\widehat{G_{\alpha, \beta}^{\theta}}}=\frac{s^{\beta-1}}{s^{\beta}+\psi_{\alpha}^{\theta}(\kappa)}
\end{gathered}
$$

Fractional diffusion equation

- Solution by Fourier transform for the space variable and the Laplace transform for the time variable

$$
\begin{gathered}
-\psi_{\alpha}^{\theta}(\kappa) \widehat{\widehat{G_{\alpha, \beta}^{\theta}}}=s^{\beta} \widehat{\widehat{G_{\alpha, \beta}^{\theta}}}-s^{\beta-1} \\
\widehat{\widehat{G_{\alpha, \beta}^{\theta}}}=\frac{s^{\beta-1}}{s^{\beta}+\psi_{\alpha}^{\theta}(\kappa)}
\end{gathered}
$$

- Inverse Laplace transform

$$
\begin{gathered}
\widehat{G_{\alpha, \beta}^{\theta}}(k, t)=E_{\beta}\left[-\psi_{\alpha}^{\theta}(\kappa) t^{\beta}\right], \quad E_{\beta}(z):=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\beta n+1)} \\
G_{\alpha, \beta}^{\theta}(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i k x} E_{\beta}\left[-\psi_{\alpha}^{\theta}(\kappa) t^{\beta}\right] d k
\end{gathered}
$$

Fractional diffusion equation

Particular cases

$\{\alpha=2, \beta=1\}$ (Standard diffusion)

$$
G_{2,1}^{0}(x, t)=t^{-1 / 2} \frac{1}{2 \sqrt{\pi}} \exp \left[-x^{2} /(4 t)\right]
$$

Fractional diffusion equation

$\{0<\alpha \leq 2, \beta=1\}$ (Space fractional diffusion)
The Mittag-Leffler function reduces to the exponential function and we obtain a characteristic function of the class $\left\{L_{\alpha}^{\theta}(x)\right\}$ of Lévy strictly stable densities

$$
\widehat{L_{\alpha}^{\theta}}(\kappa)=e^{-\psi_{\alpha}^{\theta}(\kappa)}, \quad \widehat{G_{\alpha, 1}^{\theta}}(\kappa, t)=e^{-t \psi_{\alpha}^{\theta}(\kappa)}
$$

The Green function of the space-fractional diffusion equation can be interpreted as a Lévy strictly stable pdf, evolving in time

$$
G_{\alpha, 1}^{\theta}(x, t)=t^{-1 / \alpha} L_{\alpha}^{\theta}\left(x / t^{1 / \alpha}\right), \quad-\infty<x<+\infty, t \geq 0
$$

Particular cases:

$$
\alpha=1 / 2, \theta=-1 / 2, \text { Lévy-Smirnov }
$$

$$
e^{-s^{1 / 2}} \stackrel{\mathcal{L}}{\leftrightarrow} L_{1 / 2}^{-1 / 2}(x)=\frac{x^{-3 / 2}}{2 \sqrt{\pi}} e^{-1 /(4 x)}, \quad x \geq 0
$$

$$
\alpha=1, \theta=0, \text { Cauchy }
$$

$$
e^{-|x|} \stackrel{\mathcal{F}}{\leftrightarrow} L_{1}^{0}(x)=\frac{1}{\pi} \frac{1}{x^{2}+1}, \quad-\infty<x<+\infty
$$

Fractional diffusion equation

Fractional diffusion equation

Fractional diffusion equation

Fractional diffusion equation

$\{\alpha=2,0<\beta<2\}$ (Time-fractional diffusion)

$$
\widehat{G_{2, \beta}^{0}}(\kappa, t)=E_{\beta}\left(-\kappa^{2} t^{\beta}\right), \quad \kappa \in \mathbb{R}, t \geq 0
$$

or with the equivalent Laplace transform

$$
\widetilde{G_{2, \beta}^{0}}(x, s)=\frac{1}{2} s^{\beta / 2-1} e^{-|x| s^{\beta / 2}}, \quad-\infty<x<+\infty, \Re(s)>0
$$

with solution

$$
G_{2, \beta}^{0}(x, t)=\frac{1}{2} t^{-\beta / 2} M_{\beta / 2}\left(|x| / t^{\beta / 2}\right), \quad-\infty<x<+\infty, t \geq 0
$$

$M_{\beta / 2}$ is a function of Wright type of order $\beta / 2$ defined for any order $v \in(0,1)$ by

$$
M_{v}(z)=\sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!\Gamma[-v n+(1-v)]}=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-z)^{n-1}}{(n-1)!} \Gamma(v n) \sin (\pi v n)
$$

Fractional diffusion equation

Fractional diffusion equation

Fractional diffusion equation

Fractional diffusion equation

Space-time fractional diffusion equation. Some examples

Fractional diffusion equation

A fractional nonlinear equation. Stochastic solution

A fractional version of the KPP equation, studied by McKean

$$
{ }_{t} D_{*}^{\alpha} u(t, x)=\frac{1}{2}{ }_{x} D_{\theta}^{\beta} u(t, x)+u^{2}(t, x)-u(t, x)
$$

${ }_{t} D_{*}^{\alpha}$ is a Caputo derivative of order α

$$
{ }_{t} D_{*}^{\alpha} f(t)= \begin{cases}\frac{1}{\Gamma(m-\beta)} \int_{0}^{t} \frac{f^{(m)}(\tau) d \tau}{(t-\tau)^{\alpha+1-m}} & m-1<\alpha<m \\ \frac{d^{m}}{d t^{m}} f(t) & \alpha=m\end{cases}
$$

${ }_{x} D_{\theta}^{\beta}$ is a Riesz-Feller derivative defined through its Fourier symbol

$$
\mathcal{F}\left\{{ }_{x} D_{\theta}^{\beta} f(x)\right\}(k)=-\psi_{\beta}^{\theta}(k) \mathcal{F}\{f(x)\}(k)
$$

with $\psi_{\beta}^{\theta}(k)=|k|^{\beta} e^{i(\text { signk }) \theta \pi / 2}$.

A fractional nonlinear equation. Stochastic solution

A fractional version of the KPP equation, studied by McKean

$$
{ }_{t} D_{*}^{\alpha} u(t, x)=\frac{1}{2}{ }_{x} D_{\theta}^{\beta} u(t, x)+u^{2}(t, x)-u(t, x)
$$

${ }_{t} D_{*}^{\alpha}$ is a Caputo derivative of order α

$$
{ }_{t} D_{*}^{\alpha} f(t)= \begin{cases}\frac{1}{\Gamma(m-\beta)} \int_{0}^{t} \frac{f^{(m)}(\tau) d \tau}{(t-\tau)^{\alpha+1-m}} & m-1<\alpha<m \\ \frac{d^{m}}{d t^{m}} f(t) & \alpha=m\end{cases}
$$

${ }_{x} D_{\theta}^{\beta}$ is a Riesz-Feller derivative defined through its Fourier symbol

$$
\mathcal{F}\left\{{ }_{x} D_{\theta}^{\beta} f(x)\right\}(k)=-\psi_{\beta}^{\theta}(k) \mathcal{F}\{f(x)\}(k)
$$

with $\psi_{\beta}^{\theta}(k)=|k|^{\beta} e^{i(\operatorname{sign} k) \theta \pi / 2}$.

- Physically it describes a nonlinear diffusion with growing mass and in our fractional generalization it would represent the same phenomenon taking into account memory effects in time and long range correlations in space.

A fractional nonlinear equation

The first step towards a probabilistic formulation is the rewriting as an integral equation. Take the Fourier transform (\mathcal{F}) in space and the Laplace transform (\mathcal{L}) in time
$s^{\alpha} \hat{\hat{u}}(s, k)=s^{\alpha-1} \hat{u}\left(0^{+}, k\right)-\frac{1}{2} \psi_{\beta}^{\theta}(k) \hat{\tilde{u}}(s, k)-\hat{\hat{u}}(s, k)+\int_{0}^{\infty} d t e^{-s t} \mathcal{F}\left(u^{2}\right)$ where

$$
\begin{aligned}
& \hat{u}(t, k)=\mathcal{F}(u(t, x))=\int_{-\infty}^{\infty} e^{i k x} u(t, x) \\
& \tilde{u}(s, x)=\mathcal{L}(u(t, x))=\int_{0}^{\infty} e^{-s t} u(t, x)
\end{aligned}
$$

This equation holds for $0<\alpha \leq 1$ or for $0<\alpha \leq 2$ with $\frac{\partial}{d t} u\left(0^{+}, x\right)=0$.
Solving for $\hat{u}(s, k)$ one obtains an integral equation

$$
\tilde{\hat{u}}(s, k)=\frac{s^{\alpha-1}}{s^{\alpha}+\frac{1}{2} \psi_{\beta}^{\theta}(k)} \hat{u}\left(0^{+}, k\right)+\int_{0}^{\infty} d t \frac{e^{-s t}}{s^{\alpha}+\frac{1}{2} \psi_{\beta}^{\theta}(k)} \mathcal{F}\left(u^{2}(t, x)\right)
$$

A fractional nonlinear equation

Taking the inverse Fourier and Laplace transforms

$$
\begin{aligned}
& u(t, x) \\
= & {\left[E_{\alpha, 1}\left(-t^{\alpha}\right)\right.} \\
& +\int_{-\infty}^{\infty} d y \mathcal{F}^{-1}\left(\frac{E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, 1}\left(-t^{\alpha}\right)}\right)(x-y) u(0, y) \\
& \int_{-\infty}^{\infty} d y \mathcal{F}^{-1}\left(\frac{E_{\alpha, \alpha}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right)(t-\tau)^{\alpha}\right)}{E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)}\right)(x-y) u^{2}(\tau, y)
\end{aligned}
$$

$E_{\alpha, \rho}$ is the generalized Mittag-Leffler function $E_{\alpha, \rho}(z)=\sum_{j=0}^{\infty} \frac{z^{j}}{\Gamma(\alpha j+\rho)}$

$$
E_{\alpha, 1}\left(-t^{\alpha}\right)+\int_{0}^{t} d \tau(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)=1
$$

A fractional nonlinear equation

We define the following propagation kernel

$$
\begin{aligned}
& G_{\alpha, \rho}^{\beta}(t, x)=\mathcal{F}^{-1}\left(\frac{E_{\alpha, \rho}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, \rho}\left(-t^{\alpha}\right)}\right)(x) \\
& u(t, x) \\
& =E_{\alpha, 1}\left(-t^{\alpha}\right) \int_{-\infty}^{\infty} d y G_{\alpha, 1}^{\beta}(t, x-y) u\left(0^{+}, y\right) \\
& +\int_{0}^{t} d \tau(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right) \\
& \int_{-\infty}^{\infty} d y \underline{G_{\alpha, \alpha}^{\beta}(t-\tau, x-y)} u^{2}(\tau, y)
\end{aligned}
$$

$E_{\alpha, 1}\left(-t^{\alpha}\right)$ and $(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)=$ survival probability up to time t and the probability density for the branching at time τ (branching process B_{α})

A fractional nonlinear equation

The propagation kernels satisfy the conditions to be the Green's functions of stochastic processes in \mathbb{R} :

$$
u(t, x)=\mathbb{E}_{x}\left(u\left(0^{+}, x+\xi_{1}\right) u\left(0^{+}, x+\xi_{2}\right) \cdots u\left(0^{+}, x+\xi_{n}\right)\right)
$$

Denote the processes associated to $G_{\alpha, 1}^{\beta}(t, x)$ and $G_{\alpha, \alpha}^{\beta}(t, x)$, respectively by $\Pi_{\alpha, 1}^{\beta}$ and $\Pi_{\alpha, \alpha}^{\beta}$
Theorem: The nonlinear fractional partial differential equation, with $0<\alpha \leq 1$, has a stochastic solution, the coordinates $x+\xi_{i}$ in the arguments of the initial condition obtained from the exit values of a propagation and branching process, the branching being ruled by the process B_{α} and the propagation by $\Pi_{\alpha, 1}^{\beta}$ for the first particle and by $\Pi_{\alpha, \alpha}^{\beta}$ for all the remaining ones.
A sufficient condition for the existence of the solution is

$$
\left|u\left(0^{+}, x\right)\right| \leq 1
$$

A fractional nonlinear equation

Geometric interpretation of fractional integration: shadows on the walls

$$
\begin{gathered}
{ }_{0} I_{t}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} f(\tau)(t-\tau)^{\alpha-1} d \tau, \quad t \geq 0 \\
{ }_{0} I_{t}^{\alpha} f(t)=\int_{0}^{t} f(\tau) d g_{t}(\tau) \\
g_{t}(\tau)=\frac{1}{\Gamma(\alpha+1)}\left\{t^{\alpha}-(t-\tau)^{\alpha}\right\}
\end{gathered}
$$

For $t_{1}=k t, \tau_{1}=k \tau(k>0)$ we have:

$$
g_{t_{1}}\left(\tau_{1}\right)=g_{k t}(k \tau)=k^{\alpha} g_{t}(\tau)
$$

"Live fence" and its shadows: ${ }_{0} I_{t}^{1} f(t)$ a ${ }_{0} I_{t}^{\alpha} f(t)$, for $\alpha=0.75, f(t)=t+0.5 \sin (t), 0 \leq t \leq 10$.

"Live fence": basis shape is changing for ${ }_{0} I_{t}^{\alpha} f(t), \alpha=0.75,0 \leq t \leq 10$.

Snapshots of the changing "shadow" of changing "fence" for ${ }_{0} I_{t}^{\alpha} f(t), \alpha=0.75, f(t)=t+0.5 \sin (t)$, with the time interval $\Delta t=0.5$ between the snapshops.

Right-sided R-L integral

$$
{ }_{t} I_{0}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{b} f(\tau)(\tau-t)^{\alpha-1} d \tau, \quad t \leq b,
$$

Riesz potential

$$
{ }_{0} R_{b}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{b} f(\tau)|\tau-t|^{\alpha-1} d \tau, \quad 0 \leq t \leq b
$$

References

- F. Gorenflo and F. Mainardi; Fractional Calculus: Integral and Differential Equations of Fractional Order, in Fractals and Fractional Calculus in Continuum Mechanics, pp. 223-276, A. Carpinteri and F. Mainardi (Eds.), Springer, New York 1997
- F. Mainardi, Y. Luchko and G. Pagnini; The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis 4 (2001) 153-192.
- I. Podlubny; Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis 5 (2002) 367-386.
- V. Pipiras and M. S. Taqqu; Fractional Calculus and its connections to fractional Brownian motion, in Theory and Applications of Long-Range Dependence, pp. 165-201, P. Doukhan, G. Oppenheim and M. S. Taqqu (Eds.) Birkhäuser, Boston 2003.
- RVM and L. Vazquez; The dynamical nature of a backlash system with and without fluid friction, Nonlinear Dynamics 47 (2007) 363-366.
- F. Cipriano, H. Ouerdiane and RVM; Stochastic solution of a KPP-type nonlinear fractional differential equation, arXiv:0803.4457, Fractional Calculus and Applied Analysis, to appear

