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1 Some notes on prerequisites

Many years ago it was more or less clear what could and what could not be
assumed in an introductory functional analysis course. Since then, however,
many of the concepts have drifted into courses at lower levels.

I shall therefore assume that you know what is a normed space, and what
is a a linear map and that you can do the following exercise.

Exercise 1. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be normed spaces.
(i) If T : X → Y is linear, then T is continuous if and only if there exists

a constant K such that
‖Tx‖Y ≤ K‖x‖X

for all x ∈ X.
(ii) If T : X → Y is linear and x0 ∈ X, then T is continuous at x0 if and

only if there exists a constant K such that

‖Tx‖Y ≤ K‖x‖X

for all x ∈ X.
(iii) If we write L(X,Y ) for the space of continuous linear maps from X

to Y and write

‖T‖ = sup{‖Tx‖Y : ‖x‖X = 1, x ∈ X}

then (L(X,Y ), ‖ ‖) is a normed space.

I also assume familiarity with the concept of a metric space and a complete
metric space. You should be able to do at least parts (i) and (ii) of the
following exercise (part (iii) is a little harder).

Exercise 2. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be normed spaces.
(i) If (Y, ‖ ‖Y ) is complete then (L(X,Y ), ‖ ‖) is.
(ii) Consider the set s of sequences x = (x1, x2, . . . ) in which only finitely

many of the xj are non-zero. Explain briefly how s may be considered as a
vector space. If we write

‖x‖ = sup
j
|xj|
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show that (s, ‖ ‖) is a normed vector space which is not complete.
(iii) If (X, ‖ ‖X) is complete does it follow that (L(X,Y ), ‖ ‖) is? Give

a proof or a counter-example.

The reader will notice that I have not distinguished between vector spaces
over R and those over C. I shall try to make the distinction when it matters
but, if the two cases are treated in the same way, I shall often proceed as
above.

Although I shall stick with metric spaces as much as possible, there will
be points where we shall need the notions of a topological space, a compact
topological space and a Hausdorff topological space. I would be happy, if
requested, to give a supplementary lecture introducing these notions. (Even
where I use them, no great depth of understanding is required.)

I shall also use, without proof, the famous Stone-Weierstrass theorem.

Theorem 3. (A) Let X be a compact space and C(X) the space of real valued
continuous functions on X. Suppose A is a subalgebra of C(X) (that is a
subspace which is algebraicly closed under multiplication) and

(i) 1 ∈ A,
(ii) Given any two distinct points x and y in X there is an f ∈ A with

f(x) 6= f(y).
Then A is uniformly dense in C(X).
(B) Let X be a compact space and C(X) the space of complex valued

continuous functions on X. Suppose A is a subalgebra of C(X) and
(i) 1 ∈ A,
(ii) Given any two distinct points x and y in X there is an f ∈ A with

f(x) 6= f(y).
(iii) If f ∈ A then f ∗ ∈ A.
Then A is uniformly dense in C(X).

The proof will not be examinable, but if you have not met it, you may
wish to request a supplementary lecture on the topic.

Functional analysis goes hand in hand with measure theory. Towards the
end of the course I will need to refer Borel measures on the line. However,
I will not use any theorems from measure theory proper and I will make my
treatment independent of previous knowledge. Elsewhere I may make a few
remarks involving measure theory. These are for interest only and will not
be examinable1. I intend the course to be fully accessible without measure
theory.

1In this course, as in other Part III courses you should assume that everything in the
lectures and nothing outside them is examinable unless you are explicitly to the contrary.
If you are in any doubt, ask the lecturer.
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2 Baire category

If (X, d) is a metric space we say that a set E in X has dense complement2

if, given x ∈ E and δ > 0, we can find a y /∈ E such that d(x, y) < δ.

Exercise 4. Consider the space Mn of n × n complex matrices with an ap-
propriate norm. Show that the set of matrices which do not have n distinct
eigenvalues is a closed set with dense complement.

Theorem 5 (Baire’s theorem). If (X, d) is a complete metric space and
E1, E2, . . . are closed sets with dense complement then X 6=

⋃∞
j=1Ej.

Exercise 6. (If you are happy with general topology.) Show that a result
along the same lines holds true for compact Hausdorff spaces.

We call the countable union of closed sets with dense complement a set
of first category. The following observations are trivial but useful.

Lemma 7. (i) The countable union of first category sets is itself of first
category.

(ii) If (X, d) is a complete metric space, then Baire’s theorem asserts that
X is not of first category.

Exercise 8. If (X, d) is a complete metric space and X is countable show
that there is an x ∈ X and a δ > 0 such that the ball B(x, δ) with centre x
and radius δ consists of one point.

The following exercise is a standard application of Baire’s theorem.

Exercise 9. Consider the space C([0, 1]) of continuous functions under the
uniform norm ‖ ‖. Let

Em = {f ∈ C([0, 1]) : there exists an x ∈ [0, 1] with

|f(x+ h)− f(x)| ≤ m|h| for all x+ h ∈ [0, 1]}.

(i) Show that Em is closed in (C([0, 1], ‖ ‖∞).
(ii) If f ∈ C([0, 1]) and ε > 0 explain why we can find an infinitely

differentiable function g such that ‖f − g‖∞ < ε/2. By considering the
function h given by

h(x) = g(x) + ε
2
sinNx

with N large show that Em has dense complement.
(iii) Using Baire’s theorem show that there exist continuous nowhere dif-

ferentiable functions.

2If the lecturer uses the words ‘nowhere dense’ correct him for using an old fashioned
and confusing terminology
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Exercise 10. (This is quite long and not very central.)
(i) Consider the space F of non-empty closed sets in [0, 1]. Show that if

we write
d0(x,E) = inf

e∈E
|x− e|

when x ∈ [0, 1] and E ∈ F and write

d(E,F ) = sup
f∈F

d0(f, E) + sup
e∈E

d0(e, F )

then d is a metric on F .
(ii) Suppose En is a Cauchy sequence in (F , d). By considering

E = {x : there exist en ∈ En such that en → x},

or otherwise, show that En converges. Thus (F , d) is complete.
(iii) Show that the set

An = {E ∈ F : there exists an x ∈ E with (x− 1/n, x+ 1/n) ∩ E = {x}}

is closed with dense complement in (F , d). Deduce that the set of elements
of F with isolated points is of first category. (A set E has an isolated point
e if we can find a δ > 0 such that (e− δ, e+ δ) ∩ E = {e}.)

(iv) Let I = [r/n, (r + 1)/n] with 0 ≤ r ≤ n − 1 and r and n integers.
Show that the set

Br,n = {E ∈ F : E ⊇ I}

is closed with dense complement in (F , d). Deduce that the set of elements
of F containing an open interval is of first category.

(v) Deduce the existence of non-empty closed sets which have no isolated
points and contain no intervals.

3 Non-existence of functions of several vari-

ables

This course is very much a penny plain rather than tuppence coloured3. One
exception is the theorem proved in this section.

Theorem 11. Let λ be irrational We can find increasing continuous func-
tions φj : [0, 1] → R [1 ≤ j ≤ 5] with the following property. Given any

3And thus suitable for those ‘who want from books plain cooking made still plainer by
plain cooks’.
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continuous function f : [0, 1]2 → R we can find a function g : R → R such
that

f(x, y) =
5∑

j=1

g(φj(x) + λφj(y)).

The main point of Theorem 11 may be expressed as follows.

Theorem 12. Any continuous function of two variables can be written in
terms of continuous functions of one variable and addition.

That is, there are no true functions of two variables! (We shall explain
why this statement is slightly less shocking than it seems at the end of this
section.)

For the moment we merely observe that the result is due in successively
more exact forms to Kolmogorov, Arnol’d and a succession of mathematicians
ending with Kahane whose proof we use here. It is, of course, much easier
to prove a specific result like Theorem 11 than one like Theorem 12.

Our first step is to observe that Theorem 11 follows from the apparently
simpler result that follows.

Lemma 13. Let λ be irrational We can find increasing continuous functions
φj : [0, 1]→ R [1 ≤ j ≤ 5] with the following property. Given any continuous
function F : [0, 1]2 → R we can find a function G : R → R such that
‖G‖∞ ≤ ‖F‖∞ and

sup
(x,y)∈[0,1]2

∣∣∣∣∣F (x, y)−
5∑

j=1

G(φj(x) + λφj(y))

∣∣∣∣∣ ≤
999

1000
‖F‖∞.

Next we make the following observation.

Lemma 14. We can find a sequence of functions fn : [0, 1]2 → R which are
uniformly dense in C([0, 1])2.

This enables us to obtain Lemma 13 from a much more specific result.

Lemma 15. Let λ be irrational and let the fn be as in Lemma 14. We can
find increasing continuous functions φj : [0, 1] → R [1 ≤ j ≤ 5] with the
following property. We can find functions gn : R → R such that ‖gn‖∞ ≤
‖fn‖∞ and

sup
(x,y)∈[0,1]2

∣∣∣∣∣fn(x, y)−
5∑

j=1

gn(φj(x) + λφj(y))

∣∣∣∣∣ ≤
998

1000
‖fn‖∞.
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Now that we have reduced the matter to satisfying a countable set of
conditions, we can use a Baire category argument. We need to use the
correct metric space.

Lemma 16. The space Y of continuous functions φ : [0, 1]→ R5 with norm

‖φ‖∞ = sup
t∈[0,1]

‖φ(t)‖

is complete. The subset X of Y consisting of those φ such that each φj is
increasing is a closed subset of Y . Thus if d is the metric on X obtained by
restricting the metric on Y derived from ‖ ‖∞ we have (X, d) complete.

Exercise 17. Prove Lemma 16

Lemma 18. Let f : [0, 1]2 → R be continuous and let λ be irrational. Con-
sider the set E of φ ∈ X such that there exists a g : R → R such that
‖g‖∞ ≤ ‖f‖∞

sup
(x,y)∈[0,1]2

∣∣∣∣∣f(x, y)−
5∑

j=1

g(φj(x) + λφj(y))

∣∣∣∣∣ <
998

1000
‖f‖∞.

The X \ E is a closed set with dense complement in (X, d).

(Notice that it is important to take ‘<’ rather than ‘≤’ in the displayed
formula of Lemma 18.) Lemma 18 is the heart of the proof and once it is
proved we can easily retrace our steps and obtain Theorem 11.

By using appropriate notions of information Vitushkin was able to show
that we can not replace continuous by continuously differentiable in Theo-
rem 12. Thus Theorem 11 is an ‘exotic’ rather than a ‘central’ result.

4 The principle of uniform boundedness

We start with a result which is sometimes useful by itself but which, for us,
is merely a stepping stone to Theorem 22.

Lemma 19 (Principle of uniform boundedness). Suppose that (X, d) is
a complete metric space and we have a collection F of continuous functions
f : X → R which are pointwise bounded, that is, given any x ∈ X we can
find a K(x) > 0 such that

|f(x)| ≤ K(x) for all f ∈ F .

Then we can find a ball B(x0, δ) and a K such that

|f(x)| ≤ K for all f ∈ F and all x ∈ B(x0, δ) .
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Exercise 20. (i) Suppose that (X, d) is a complete metric space and we have
a sequence of continuous functions fn : X → R and a function f : X → R
such that fn converges pointwise that is

fn(x)→ f(x) for all f ∈ F .

Then we can find a ball B(x0, δ) and a K such that

|fn(x)| ≤ K for all n and all x ∈ B(x0, δ) .

(ii) (This is elementary but acts as a hint for (iii).) Suppose y ∈ [0, 1].
Show that we can find a sequence of continuous function fn : [0, 1]→ R such
that 1 ≥ fn(x) ≥ 0 for all x and n, fn converges pointwise to 0 everywhere,
fn converges uniformly on [0, 1]\ (y−δ, y+δ) and fails to converge uniformly
on [0, 1] ∩ (y − δ, y + δ) for all δ > 0.

(iii) State with reasons whether the following statement is true or false.
Under the conditions of (i) we can obtain the stronger conclusion that we can
find a ball B(x0, δ) such that

fn(x)→ f(x) uniformly on B(x0, δ).

Exercise 21. Suppose that (X, d) is a complete metric space and Y is a
subset of X which is of first category in X. Suppose further that we have a
collection F of continuous functions f : X → R which are pointwise bounded
on X \ Y , that is, given any x /∈ Y , we can find a K(x) > 0 such that

|f(x)| ≤ K(x) for all f ∈ F .

Show that we can find a ball B(x0, δ) and a K such that

|f(x)| ≤ K for all f ∈ F and all x ∈ B(x0, δ) .

We now use the principle of uniform boundedness to prove the Banach-
Steinhaus theorem4.

Theorem 22. (Banach-Steinhauss theorem) Let (U, ‖ ‖U) and (V, ‖ ‖V )
be normed spaces and suppose ‖ ‖U is complete. If we have a collection F
of continuous linear maps from U to V which are pointwise bounded then we
can find a K such that ‖T‖ ≤ K for all T ∈ F .

Here is a typical use of the Banach-Steinhauss theorem.

4You should be warned that a lot of people, including the present writer, tend to
confuse the names of these two theorems. My research supervisor took the simpler course
of referring to all the theorems of functional analysis as ‘Banach’s theorem’.
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Theorem 23. There exists a continuous 2π periodic function f : R → R
whose Fourier series fails to converge at a given point.

The next exercise contains results that most of you will have already met.

Exercise 24. (i) Show that the set l∞ of bounded sequences over F (with
F = R or F = C)

a = (a1, a2, . . . )

can be made into vector space in a natural manner. Show that ‖a‖∞ =
supj≥1 |aj| defines a complete norm on l∞.

(ii) Show that s, the set of convergent sequences and s0 the set of sequences
convergent to 0 are both closed subspaces of (l∞, ‖ ‖∞).

(iii) Show that the set l1 of sequences

a = (a1, a2, . . . ) such that
∞∑

j=1

|aj| converges

can be made into vector space in a natural manner. Show that ‖a‖1 =∑∞
j=1 |aj| defines a complete norm on l1.

(iv) Show that, if a ∈ l1, then

Ta(b) =
∞∑

j=1

ajbj

defines a continuous linear map from l∞ to F and that ‖Ta‖ = ‖a‖1.

Here is another use of the Banach-Steinhaus theorem.

Lemma 25. Let aij ∈ R [i, j ≥ 1]. We say that the aij constitute a sum-
mation method if whenever cj → c we have

∑∞
j=1 aijcj convergent for each i

and
∞∑

j=1

aijcj → c

as i→∞.
The following conditions are necessary and sufficient for the aij to con-

stitute a summation method:-
(i) There exists a K such that

∞∑

j=1

|aij| ≤ K for all i.

(ii)
∞∑

j=1

aij → 1 as i→∞.

(iii) aij → 0 as i→∞ for each j.
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Exercise 26. Cesàro’s summation method takes a sequence c0, c1, c2, . . .
and replaces it with a new sequence whose nth term

bn =
c1 + c2 + · · ·+ cn

n

is the average of the first n terms of the old sequence.
(i) By rewriting the statement above along the lines of Lemma 25 show

that if the old sequence converges to c so does the new one.
(ii) Examine what happens when cj = (−1)j. Examine what happens if

cj = (−1)k when 2k ≤ j < 2k+1.
(iii) Show that, in the notation of Lemma 25, taking an,2n = 1, an,m = 0,

otherwise, gives a summation method. Show that taking an,2n+1 = 1, an,m =
0, otherwise, also gives a summation method. Show that the two methods
disagree when presented with the sequence 1, −1, 1, −1, . . . .

Another important consequence of the Baire category theorem is the open
mapping theorem. (Recall that a complete normed space is called a Banach
space.)

Theorem 27 (Open mapping theorem). Let E and F be Banach spaces
and T : E → F be a continuous linear surjection. Then T is an open map
(that is to say, if U is open in E we have TU open in F .)

This has an immediate corollary.

Theorem 28 (Inverse mapping theorem). Let E and F be Banach spaces
and let T : E → F be a continuous linear bijection. Then T−1 is continuous.

The next exercise is simple, and if you can not do it this reveals a gap in
your knowledge (which can be remedied by asking the lecturer) rather that
in intelligence.

Exercise 29. Let (X, d) and (Y, ρ) be metric spaces with associated topologies
τ and σ. Then the product topology induced on X×Y by τ and σ is the same
as the topology given by the metric

4((x1, y1), (x2, y2)) = d(x1, x2) + ρ(y1, y2).

The inverse mapping theorem has the following useful consequence.

Theorem 30 (Closed graph theorem). Let E and F be Banach spaces
and let T : E → F be linear. Then T is continuous if and only the graph

{(x, Tx) : x ∈ E}

is closed in E × F with the product topology.
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5 Zorn’s lemma and Tychonov’s theorem

Let A be a non empty set and, for each α ∈ A, let Xα be a non-empty
set. Is

∏
α∈AXα non-empty (or, equivalently, does there exist a function

f : A →
⋃

α∈AXα with f(α) ∈ Xα)? It is known that the standard axioms
of set theory do not suffice to answer this question in general. (In particular
cases they do suffice. If Xα = A for all α ∈ A then f(α) = α will do.)
Specifically, if there exists any model for standard set theory, then there
exist models for set theory obeying the standard axioms in which the answer
to our question is always yes (such systems are said to obey the axiom of
choice) and there exist models in which the answer is sometimes no.

Most mathematicians are happy to add the axiom of choice to the stan-
dard axioms and this is what we shall do. Note that if we prove something
using the standard axioms and the axiom of choice then we will be unable
to find a counter-example using only the standard axioms. Note also that,
when dealing with specific systems we may be able to prove the result for
that system without using the axiom of choice.

The axiom of choice is not very easy to use in the form that we have
stated it and it is usually more convenient to use an equivalent formulation
called Zorn’s lemma.

Definition 31. Suppose X is a non-empty set. We say that º is partial
order on X, that is to say, that º is a relation on X with

(i) x º y, y º z implies x º z,
(ii) x º y and y º x implies x = y,
(iii) x º x

for all x, y, z.
We say that a subset C of X is a chain if, for every x, y ∈ C at least

one of the statements x º y, y º x is true.
If Y is a non-empty subset of X we say that z ∈ X is an upper bound for

Y if z º y for all y ∈ Y .
We say that m is a maximal element for (X,º) if x º m implies x = m.

You must be able to do the following exercise.

Exercise 32. (i) Give an example of a partially ordered set which is not a
chain.

(ii) Give an example of a partially ordered set and a chain C such that
(a) the chain has an upper bound lying in C, (b) the chain has an upper
bound but no upper bound within C, (c) the chain has no upper bound.

(iii) If a chain C has an upper bound lying in C, show that it is unique.
Give an example to show that, even in this case C may have infinitely many
upper bounds (not lying in C).
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(iv) Give examples of partially ordered sets which have (a) no maximal
elements, (b) exactly one maximal element, (b) infinitely many maximal el-
ements.

(v) how should a minimal element be defined? Give examples of partially
ordered sets which have (a) no maximal or minimal elements, (b) exactly
one maximal element and no minimal element, (c) infinitely many maximal
elements and infinitely many minimal elements.

Axiom 33 (Zorn’s lemma). Let (X,º) be a partially ordered set. If every
chain in X has an upper bound then X contains a maximal element.

Zorn’s lemma is associated with a proof routine which we illustrate in
Lemmas 34 and 36

Lemma 34. Zorn’s lemma implies the axiom of choice.

The converse result is less important to us but we prove it for complete-
ness.

Lemma 35. The axiom of choice implies Zorn’s lemma.

Proof. (Since the proof we use is non-standard, I give it in detail.) Let X
be a non-empty set with a partial order º having no maximal elements. We
show that the assumption that every chain has a upper bound leads to a
contradiction.

We write x Â y if x º y and x 6= y. If C is a chain we write

Cx = {c ∈ C : x Â c}.

Observe that, if C is a chain in X, we can find an x ∈ X such that x Â c
for all c ∈ C. (By assumption, C has an upper bound, x′, say. Since X has
no maximal elements, we can find an x ∈ X such that x Â x′.) We shall take
∅ to be a well ordered chain.

We shall look at well ordered chains, that is to say, chains for which every
non-empty subset has a minimum. (Formally, if S ⊆ C is non-empty we can
find an s0 ∈ C such that s º s0 for all s ∈ S. We write minC = s0.) By the
previous paragraph

AC = {x : x Â c for all c ∈ C} 6= ∅.

Thus, if we writeW for the set of all well ordered chains, the axiom of choice,
tells us that there is a function κ :W → X such that κ(C) Â c for all c ∈ C.

We now consider ‘special chains’ defined to be well ordered chains C such
that

κ(Cx) = x for all x ∈ C.
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(Note that ‘well ordering’ is an important general idea, but ‘special chains’
are an ad hoc notion for this particular proof. Note also that if C is a special
chain and x ∈ C then Cx is a special chain.)

The key point is that, if K and L are special chains, then either K = L
or K = Lx for some x ∈ L or L = Kx for some x ∈ K.
Subproof If K = L, we are done. If not, at least one of K \ L and L \K is
non-empty. Suppose, without loss of generality, that K \ L 6= ∅. Since K is
well ordered, x = minK \ L exists. We observe that Kx ⊆ L. If Kx = L, we
are done.

We show that the remaining possibility Kx 6= L leads to contradiction.
In this case, L \ Kx 6= ∅ so y = minL \ Kx exists. By definition of y and
the fact that Kx ⊆ L, we have Ky = Ly. But K and L are special chains so
y = κ(Ky) ∈ K contradicting the definition of y.
End subproof

We now take S to be the union of all special chains. Using the key
observation, it is routine to see that:

(i) S is a chain. (If a, b ∈ S, then a ∈ L and b ∈ K for some special
chains. By our key observation, either L ⊇ K of K ⊇ L. Without loss of
generality, K ⊇ L so a, b ∈ K and a º b or b º a.)

(ii) If a ∈ S, then Sa is a special chain. (We must have a ∈ K for some
special chain K. Since K ⊆ S, we have Ka ⊆ Sa. On the other hand, if
b ∈ Sa then b ∈ L for some special chain L and each of the three possible
relationships given in our key observation imply b ∈ Ka. Thus Sa ⊆ Ka, so
Sa = Ka and Sa is a special chain.)

(iii) S is well ordered. (If E is a non empty subset of S, pick an x ∈ E. If
Sx ∩ E = ∅, then x is a minimum for E. If not, then Sx ∩ E is a non-empty
subset of the special, so well ordered chain Sx, so minSx ∩E exists and is a
minimum for E.)

(iv) S is a special chain. (If x ∈ S, we can find a special chain K such
that x ∈ K. Let y = κ(K). Then L = K ∪ {y} is a special chain. As in (ii),
Sy = Ly, so Sx = Lx and κ(Sx) = κ(Lx) = x.)

We can now swiftly obtain a contradiction. Since S is well ordered κ(S)
exists and does not lie in S. But S is special, so S∪κ(S) is, so S∪κ(S) ⊆ S,
so κ(s) lies in S. The required result follows by reductio ad absurdum5.

Lemma 36 (Hammel basis theorem). (i) Every vector space has a basis.
(ii) If U is an infinite dimensional normed space over F (with F = R or

F = C) then we can find a discontinuous linear map T : U → F.
5To the best of my knowledge, this particular proof is due to Jonathon Letwin (Amer-

ican Mathematical Monthly, Volume 98, 1991, pp. 353–4). If you know about transfinite
induction, there are more direct proofs.
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Exercise 37. (i) Show that if f : R → R is continuous and satisfies the
equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ R then there exists a c such that f(x) = cx for all x ∈ R.
(ii) Show that there exists a discontinuous function f : R → R and satis-

fying the equation
f(x+ y) = f(x) + f(y)

for all x, y ∈ R.
[Hint. Consider R as a vector space over Q.]

The rest of this section is devoted to a proof of Tychonov’s theorem.

Theorem 38 (Tychonov). The product of compact spaces is itself compact.

We follow the presentation in [1]. (The method of proof is due to Bour-
baki.)

The following result should be familiar to almost all of my readers.

Lemma 39 (Finite intersection property). (i) If a topological space is
compact then, whenever a non-empty collection of closed sets F has the
property that

⋂n
j=1 Fj 6= ∅, for any F1, F2, . . . , Fn ∈ F it follows that⋂

F∈F F 6= ∅.
(ii) A topological space is compact if whenever a non-empty collection of

sets A has the property that
⋂n

j=1Aj 6= ∅ for any A1, A2, . . . , An ∈ A it

follows that
⋂

A∈A Ā 6= ∅.

Definition 40. A system F of subsets of a given set S is said to be of finite
character if whenever every finite subset of a set A ⊆ S belongs to F it
follows that A ∈ F .

Lemma 41 (Tukey’s lemma). If a system F of subsets of a given set S has
finite character and F ∈ F then F has a maximal (with respect to inclusion)
element containing F .

We now prove Tychonov’s theorem.
The reason why Tychonov’s theorem demands the axiom of choice is made

clear by the final result of this section.

Lemma 42. Tychonov’s theorem implies the axiom of choice.
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6 The Hahn-Banach theorem

A good example of the use of Zorn’s lemma occurs when we ask if given a
Banach space (U, ‖ ‖) (over C, say) there exist any non-trivial continuous
linear maps T : U → C. For any space that we can think of, the answer
is obviously yes, but to show that the result is always yes we need Zorn’s
lemma6. Our proof uses the theorem of Hahn-Banach.

One form of this theorem is the following.

Theorem 43. (Hahn-Banach) Let U be a real vector space. Suppose p :
U → R is such that

p(u+ v) ≤ p(u) + p(v) and p(au) = ap(u)

for all u, v ∈ U and all real and positive a.
If E is a subspace of U and there exists a linear map T : E → R with

Tx ≤ p(x) for all x ∈ E then there exists a linear map T̃ : U → R with
Tx ≤ p(x) for all x ∈ U and T̃ (x) = Tx for all x ∈ E.

[Note that we do not assume that the vector space U is normed but we do
assume that the vector space is real.]

We have the following important corollary

Theorem 44. Let (U, ‖ ‖) be a real normed vector space. If E is a subspace
of U and there exists a continuous linear map T : E → R, then there exists
a continuous linear map T̃ : U → R with ‖T̃‖ = ‖T‖.

The next result is famous as ‘the result that Banach did not prove’.

Theorem 45. Let (U, ‖ ‖) be a complex normed vector space. If E is a
subspace of U and there exists a continuous linear map T : E → C then
there exists a continuous linear map T̃ : U → C with ‖T̃‖ = ‖T‖.

We can now answer the question posed in the first sentence of this section.

Lemma 46. If (U, ‖ ‖) is normed space over the field F of real or complex
numbers and a ∈ U with a 6= 0, then we can find a continuous linear map
T : U → F with Ta 6= 0

Here are a couple of results proved by Banach using his theorem.

6In fact the statement is marginally weaker than Zorn’s lemma but you need to be
logician either to know or care about this.
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Theorem 47 (Generalised limits). Consider the vector space l∞ of bounded
real sequences. There exists a linear map L : l∞ → R such that

(i) If xn ≥ 0 for all n then Lx ≥ 0.
(ii) L((x1, x2, x3, . . . )) = L((x0, x1, x2, . . . )).
(iii) L((1, 1, 1, . . . )) = 1.

The theorem is illustrated by the following lemma.

Lemma 48. Let L be as in Theorem 47. Then

lim sup
n→∞

xn ≥ L(x) ≥ lim inf
n→∞

xn.

In particular, if xn → x then L(x) = x.

Exercise 49. (i) Show that, even though the sequence xn = (−1)n has no
limit, L(x) is uniquely defined.

(ii) Find, with reasons, a sequence x ∈ l∞ for which L(x) is not uniquely
defined.

Banach used the same idea to prove the following odd result.

Lemma 50. Let T = R/Z be the unit circle and let B(T) be the vector space
of real valued bounded functions. Then we can find a linear map I : B(T)→
R obeying the following conditions.

(i) I(1) = 1.
(ii) If ≥ 0 if f is positive.
(iii) If f ∈ B(T), a ∈ T and we write fa(x) = f(x− a) then Ifa = If .

Exercise 51. Show that if I is as in Lemma 50 and f is Riemann integrable
then

If =

∫

T

f(t) dt.

However, Lemma 50 is put in context by the following.

Lemma 52. Let G be the group freely generated by two generators and B(G)
be the vector space of real valued bounded functions on G. If f ∈ B(G) let
us write fc(x) = f(xc−1) for all x, c ∈ G.

There exists a function f ∈ B(G) and c1, c2, c3 such that f(x) ≥ 0 for
all x ∈ G and

f(x) + fc1(x)− fc2(x)− fc3(x) ≤ −1

for all x ∈ G.
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Exercise 53. If G is as in Lemma 52 then there is no linear map I : B(G)→
R obeying the following conditions.

(i) I(1) = 1.
(ii) If ≥ 0 if f is positive.
(iii) Ifc = If for all c ∈ G.

It can be shown that there is a finitely additive, congruence respecting
integral for R and R2 but not Rn for n ≥ 3.

7 Banach algebras

Many of the objects studied in analysis turn out to be Banach algebras.

Definition 54. An algebra (B,+, .,×) is a vector space (B,+, .,C) equipped
with a multiplication × such that

(i) x× (y × z) = (x× y)× z,
(ii) (x+ y)× z = x× z + y × z and z × (x+ y) = z × x+ z × y,
(iii) (λx)× y = x× (λy) = λ(x× y) for all x, y, z ∈ B.

[We shall write x× y = xy.]

Note that there is no assumption that multiplication is commutative. In
principle, we could talk about real Banach algebras (in which C is replaced
by R) but, though some elementary results carry over, our treatment will
only cover complex Banach algebras.)

Definition 55. A Banach algebra (B,+, .,×, ‖ ‖) is an algebra (B,+, .,×,C)
such that (B,+, .,C, ‖ ‖) is a Banach space and such that the map (x, y) 7→ xy
is continuous.

Note that the two definitions above are not to be memorized; so far as
this course is concerned the following definition is all that is required.

Definition 56. A Banach algebra (B, ‖ ‖) is a Banach space equipped with
a continuous multiplication which makes it an algebra.

As usual there is a little amount of playing about with the definition.

Lemma 57. The following statements about (B, ‖ ‖) a Banach space equipped
with a multiplication are equivalent.

(i) Multiplication is left and right continuous (that is, the map x 7→ xy is
continuous for all y and the map y 7→ xy is continuous for all x).

(ii) There exists a K such that ‖xy‖ ≤ K‖x‖‖y‖ for all x and y.
(iii) (B, ‖ ‖) is a Banach algebra.
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Lemma 58. If (B, ‖ ‖) is a Banach algebra we can find a norm ‖ ‖B on B
which is equivalent to ‖ ‖ (that is, there exists a C > 0 such that C−1‖x‖ ≤
‖x‖B ≤ C‖x‖) such that

‖xy‖B ≤ ‖x‖B‖y‖B

for all x, y ∈ B.

Unless specifically indicated otherwise you may assume both in the rest of
the notes and in the literature generally that the norm on a Banach algebra
has been chosen to satisfy

‖xy‖ ≤ ‖x‖‖y‖

for all x and y.

Definition 59. We say that a Banach algebra B has a unit e if xe = ex = x
for all x ∈ B.

The following remarks forms part of the course but are left as an exercise.

Exercise 60. (i) If a Banach algebra has a unit that unit is unique.
(ii) If (B, ‖ ‖) is a Banach algebra with unit e we can find a norm ‖ ‖B

on B which is equivalent to ‖ ‖ such that

‖xy‖B ≤ ‖x‖B‖y‖B

for all x, y ∈ B and
‖e‖B = 1.

Unless specifically indicated otherwise you may assume both in the rest of
the notes and in the literature generally that the norm on a Banach algebra
with unit e has been chosen to satisfy

‖e‖ = 1.

for all x and y.

Example 61. (i) A Banach space (B, ‖ ‖) becomes a commutative Banach
algebra if we define xy = 0 for all x, y ∈ B. If B is non-trivial the resulting
algebra has no unit.

(ii) Consider the Banach space l1 of sequences a = (a0, a1, . . . ). If we
define a ∗ b = c with

cr =
∑

k+j=r, k≥0,j≥0

ajbk
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then ∗ is a well defined multiplication and l1 is a Banach algebra with this
multiplication. As a Banach algebra, l1 is commutative with a unit.

(ii) Consider the Banach space l1 of sequences a = (a1, a2, . . . ). If we
define a ∗ b = c with

cr =
∑

k+j=r, k≥1,j≥1

ajbk

then ∗ is a well defined multiplication and l1 is a Banach algebra with this
multiplication. As a Banach algebra, l1 is commutative but has no unit.

(iii) Consider the Banach space l1 of i two sided sequences a = (. . . , a−2, a−1, a0, a1, . . . ).
If we define a ∗ b = c with

cr =
∑

k+j=r

ajbk

then ∗ is a well defined multiplication and l1 is a Banach algebra with this
multiplication. As a Banach algebra, l1 is commutative and has a unit.

Exercise 62. If you know measure theory you ought to work through this
exercise. We work in L1 the space of Lebesgue integrable functions f : R → C.

(i) Use Fubini’s theorem to show that, if f, g ∈ L1, then

f ∗ g(x) =

∫ ∞

−∞

f(x− t)g(t) dx

is well defined almost everywhere and that f ∗ g ∈ L1 with

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

(ii) Use Fubini’s theorem to show that, if f, g ∈ L1 then

f̂ ∗ g(λ) = f̂(λ)ĝ(λ)

for all λ ∈ R.
(iii) If ea(t) = e−iat compute ˆeaf for f ∈ L1. Show that if e ∈ L1 is a

unit ê = 1.
(iv) Show that if f ∈ L1 then supλ∈R

|f̂(λ)| ≤ |f‖1. Show that if f is once
continuously differentiable with f, f ′ ∈ L1 and f(t), f ′(t) → 0 as |t| → ∞
then f̂(λ) → 0 as |λ| → ∞. Use a density argument to show that ĝ(λ) → 0
as |λ| → ∞ whenever g ∈ L1 (this is the Lebesgue-Riemann lemma).

(v) Use (iii) and (iv) to show that (L1, ∗) has no unit.
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Lemma 63. If B is a Banach algebra without unit we can find B̃ a Banach
algebra with a unit e such that

(i) B is a sub Banach algebra of B̃,
(ii) B is closed in B̃,
(iii) B̃ = span(B, e) in the algebraic sense.

Exercise 64. (i) Suppose we apply the construction of Lemma 63 to a Ba-
nach algebra B with unit u. Is u a unit of the extended algebra B̃? Does B̃
have a unit?

(ii) (Needs measure theory.) Can you find a natural identification for the

unit of L̃1 where L1 is the Banach algebra of Exercise 62.

Thus any Banach algebra B without a unit can be studied by ‘adjoining
a unit and then removing it’. This is our excuse for only studying Banach
algebras with a unit.

The following result is easy but fundamental.

Lemma 65. Let B be a Banach algebra with unit e.
(i) If ‖e−a‖ < 1 then a is invertible (that is has a multiplicative inverse).
(ii) If E is the set of invertible elements in B then E is open.

Lemma 65 (i) can be improved in a useful way.

Theorem 66. (i) If B is a Banach algebra and b ∈ B then, writing ρ(b) =
infn ‖b

n‖1/n we have
‖bn‖1/n → ρ(b)

as n→∞.
(ii) If B is a Banach algebra with unit e and ρ(e − a) < 1 then a is

invertible.

We call ρ(a) the spectral radius of a.

Exercise 67. Consider the space Mn of n × n matrices over C with the
operator norm.

(i) Show that Mn is a Banach algebra with unit. For which values of n is
it commutative?

(ii) Give an example of an A ∈M2 with A 6= 0 but ρ(A) = 0.
(iii) If A is diagonalisable show that

ρ(A) = max{|λ| : λ an eigenvalue of A}.

(iv) (Harder and not essential.) Show that the formula of (iii) holds in
general.
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8 Maximal ideals

We now embark on a line of reasoning which will eventually lead to a char-
acterization of a large class of commutative Banach algebras.

Initially we continue to deal with Banach algebras which are not neces-
sarily commutative. The generality is more apparent than real as the next
exercise reveals.

Exercise 68. Let B be a Banach algebra with unit e. Let A be the closed
Banach algebra generated by e and some a ∈ B. (Formally, A is the smallest
closed sub Banach algebra containing e and a.) Then A is commutative.

Definition 69. Let B be a Banach space with unit e. If x ∈ B the resolvent
R(x) of x is defined by

R(x) = {λ ∈ C : x− λe is invertible}.

Lemma 70. We use the notation of Definition 69.
(i) C \R(x) is bounded.
(ii) R(x) is open.
(iii) If µ ∈ R(x) we can find a δ > 0 and a0, a1, . . .∈ B such that∑∞

j=0 ajz
j converges for all |z| < δ and

(x− λe)−1 =
∞∑

j=0

aj(λ− µ)j

for λ ∈ C and |λ− µ| < δ.
(iv) R(x) 6= C.

Lemma 70 gives us our first substantial result on the nature of commu-
tative Banach algebras.

Theorem 71 (Gelfand-Mazur). Any Banach algebra which is also a field
is isomorphic as a Banach algebra to C.

9 Analytic functions

In order to extract more information on the resolvent we take a detour
through a little (easy) integration theory and complex variable theory.

Theorem 72. Let U be a Banach space, [a, b] a closed bounded interval in

R Then we can define an integral
∫ b

a
F (t) dt for every F : [a, b] → U a
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continuous function having the following properties (here F, G : [a, b] → U
are continuous and λ, µ ∈ C).

(i)

∫ b

a

λF (t) + µG(t) dt = λ

∫ b

a

F (t) dt+ µ

∫ b

a

G(t) dt.

(ii) If a < c < b then

∫ b

a

F (t) dt =

∫ c

a

F (t) dt+

∫ b

c

F (t) dt.

(iii)

∥∥∥∥
∫ b

a

F (t) dt

∥∥∥∥ ≤
∫ b

a

‖F (t)‖ dt.

(iv) If T : U → C is a continuous linear functional

∫ b

a

T (F (t))dt = T

∫ b

a

F (t) dt.

Using the integral just defined we can define contour integrals as we did
in the complex variable course.

Definition 73. If γ : [a, b] → C is continuously differentiable with γ(a) =
γ(b) and F : [a, b]→ U a continuous function we define

∫

γ

F (z) dz =

∫ b

a

F (γ(t))γ ′(t) dt.

(We shall talk about the ‘closed contour’ γ.)
We can now introduce the notion of an analytic Banach algebra valued

function.

Definition 74. Let B be a Banach algebra and Ω a simply connected7 open
set in C. A function f : Ω→ B is said to be analytic on Ω if there exists an
f ′ : Ω→ B such that, for all z ∈ Ω

∥∥∥∥
f(z + h)− f(z)

h
− f ′(z)

∥∥∥∥→ 0

as h→ 0 through values of h such that z + h ∈ Ω.

Theorem 75. Let B be a Banach algebra, Ω an open simply connected set
in C, and γ a closed contour in Ω. Then

∫

γ

f(z) dz = 0.

7Informally ‘with no holes’.

22



We can follow a first undergraduate complex variable course and show.

Lemma 76. Let B be a Banach algebra with a unit e, Ω an open set in
C containing a disc D(z0, R), and γ a contour describing a circle centre z0

radius 0 < r < R. If |z0 − z| < r then

f(z) =
1

2πi

∫

γ

f(w)

z − w
dw.

Lemma 77. Let B be a Banach algebra with a unit e and Ω an open set in
C containing a disc D(z0, R). There exist unique a0, a1, a2, . . .∈ B such
that

∑∞
j=0 ar(z − z0)

r converges and

f(z) =
∞∑

j=0

ar(z − z0)
r

for all |z − z0| < R.

Theorem 78. If B is a Banach algebra with unit

sup{|λ| : λ /∈ R(x)} = ρ(x).

10 Maximal ideals

One way of exploiting the Gelfand-Mazur theorem is to introduce the notion
of maximal ideals. (From now on all our Banach algebras will be commuta-
tive.)

Lemma 79. Every proper ideal in a commutative algebra with unit is con-
tained in a maximal ideal.

(Recall that an ideal I in a commutative algebra B is a vector subspace of
B such that if a ∈ B and b ∈ I then ab ∈ I. An ideal J is maximal if J 6= B
but whenever an ideal K satisfies J ⊆ K ⊆ B either K = J or K = B.)

Lemma 80. Every maximal ideal M in a commutative Banach algebra with
unit is closed.

Lemma 81. If M is a maximal ideal in a commutative Banach algebra with
unit then the quotient B/M is isomorphic to C as a Banach algebra.

The notion of a maximal ideal is closely linked to that of a multiplicative
linear functional.
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Definition 82. A multiplicative linear functional on a Banach algebra is a
non-trivial (i.e not the zero map) linear map χ : B → C such that χ(xy) =
χ(x)χ(y) for all x, y ∈ B.

Lemma 83. If B is commutative Banach algebra with identity and χ is a
multiplicative linear functional then the following results hold.

(i) kerχ is a maximal ideal.
(ii) The map x + kerχ 7→ χ(x) is an algebraic isomorphism of B/ kerχ

with C.
(iii) χ is continuous and ‖χ‖ = 1.

Theorem 84. If B is commutative Banach algebra with identity then the
mapping χ 7→ kerχ is a bijection between the set of multiplicative linear
functionals on B and its maximal ideals.

We now have the following useful corollary.

Lemma 85. If B is commutative Banach algebra with identity then an el-
ement x ∈ B is invertible if and only χ(x) 6= 0 for all multiplicative linear
functionals χ.

The Banach algebra proof Theorem 87 was the first result to convince
classical analysts of the utility of these ideas. The lemma that precedes it
places the result in context.

Lemma 86. If f ∈ C(T) has an absolutely convergent Fourier series (that
is to say,

∑∞
−∞ |f̂(n)| <∞) then

f(t) =
∞∑

−∞

f̂(n) exp(int).

Theorem 87 (Wiener’s theorem). Suppose f ∈ C(T) has an absolutely
convergent Fourier series. Then, if f(t) 6= 0 for all t ∈ T, 1/f also has ian
absolutely convergent Fourier series.

Exercise 88. Let B be any Banach space. Make it into a Banach algebra by
defining xy = 0 for all x, y ∈ B. Now add an identity in the usual manner.
Identify all the multiplicative linear functionals.

11 The Gelfand representation

Throughout this section B will be a commutative Banach algebra with a
unit e andM will be the space of maximal ideals. If x ∈ B and M ∈M we
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know by Theorem 84 that there is a unique multiplicative linear functional
χM with kernel M so we may write M(x) = χM(x) the space. We give M
the weak star topology, that is to say, the smallest topology containing sets
of the form

{M ∈M : |M(x)−M0(x)| < ε}

with M0 ∈M and x ∈ B.

Lemma 89. Under the weak topology M is a compact Hausdorff space.

If x ∈ B and M ∈M we now write x̂(M) = M(x).

Lemma 90. Let B be a commutative Banach algebra with unit. The mapping
x 7→ x̂ is an algebraic homomorphism of B into C(M). As linear map from
(B, ‖ ‖) to C(M, ‖ ‖∞) it is continuous with operator norm exactly 1.

We know that the homomorphism x 7→ x̂ need not be injective

Exercise 91. Justify this statement by considering the Banach algebra of
Exercise 88.

The following simple observation is the key to the question of when we
have isomorphism.

Lemma 92. Suppose x is an element of a commutative Banach algebra with
unit. Then the complement of the resolvent R(x) is the range of x̂.

That is to say,

{x̂(M) : M ∈M} = {λ ∈ C : (x− λe) is not invertible}.

There are two immediate corollaries.

Lemma 93. If x is an element of a commutative Banach algebra with unit,
then ‖x̂‖∞ = ρ(x).

Lemma 94. If x is an element of a commutative Banach algebra with unit,
then ρ(x) = 0 if and only if x is contained in every maximal ideal.

We make the following definitions.

Definition 95. If B is a commutative Banach algebra with unit we define
the radical of B to be the set of all elements contained in every maximal ideal.

Thus x ∈ radical(B) if and only if ρ(x) = 0.
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Definition 96. We say that a commutative Banach algebra with unit is
semi-simple if and only if its radical consists of 0 alone.

Theorem 97. Let B be a commutative Banach algebra with unit. The map-
ping x 7→ x̂ is injective if and only if B is semi-simple.

Exercise 98. Consider the Banach algebra X of continuous linear maps
T : l∞ → l∞. Let S be the map given by

S(a1, a2, . . . ) = (0, c1a1, c2a2, . . . ),

(with the sequence cj bounded. Explain why the closed Banach subalgebra
generated by I and S is a commutative Banach algebra. Show that with an
appropriate choice of cj we can have Sn 6= 0 for all n but ρ(S) = 0.

Theorem 99. Let B be a commutative Banach algebra with unit. If there
exists a K > 0 such that ‖x‖2 ≤ K‖x2‖ for all x ∈ B, then ρ is a norm
equivalent to the original norm on B.

12 Finding the Gelfand representation

Suppose we are given a commutative Banach algebra B and we wish to
find its Gelfand representation. It is not enough to find its maximal ideals
(or, equivalently its multiplicative linear functionals). We must also find
the correct topology on the space of maximal ideals. The following simple
remarks resolve the problem in all the cases that we shall consider.

Exercise 100. Write out the proof that if (X, τ) and (Y, σ) are topological
spaces with (X, τ) compact and (Y, σ) Hausdorff then, if f : (X, τ)→ (Y, σ)
is a continuous bijection, f is a homeomorphism.

Lemma 101. Suppose τ is a compact topology on the space M of maxi-
mal ideals of commutative Banach space B with identity. If the maps x̂ :
(M, τ)→ C are continuous for each x ∈ B then τ is the weak star topology
on M.

Our first identification was adumbrated in our proof of Wiener’s theorem.

Example 102. Consider the space A(T) of continuous functions f : T → C
with absolutely convergent Fourier series (that is to say,

∑∞
−∞ |f̃(n)| < ∞

where f̃(n) is the nth Fourier coefficient). If we set

‖f‖A =
∞∑

−∞

|f̃(n)|,
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then (A(T), ‖ ‖A) is a commutative Banach algebra with unit 1 under point-
wise multiplication. (A(T), ‖ ‖A) has maximal ideal space (identified with) T
under its usual topology. We have f̂(t) = f(t).

Example 103. The ‘transform’ nature of the Gelfand transform is clearer
if we seek the maximal ideal space and transform associated with the Banach
algebra l1(Z) with standard norm and addition and multiplication given by
convolution (that is a ∗ b = c where cm =

∑∞
r=−∞ am−rbr).

Here is a variation on the theme.

Lemma 104. Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}.
Consider A(D) the set of continuous functions f : D̄ → C such that f is
analytic in D. If f1, f2, . . . , fn ∈ A(D) are such that

∑n
j=1 |fj(z)| > 0 for

all z ∈ C (that is to say that the fj do not vanish simultaneously) show that
we can find g1, g2, . . . , gn ∈ A(D) such that

∑n
j fj=1(z)gj(z) = 1 for all

z ∈ D̄

The next example is a key one in understanding the kind of problem we
face.

Example 105. Consider the sub Banach algebra A+(T) of A(T) consisting
of elements f of A(T) with f̃(n) = 0 for n < 0. Show that A+(T) has
maximal ideal space (identified with) D the closed unit disc. We have f̂(z) =∑∞

n=0 f̃(n)z
n.

Exercise 106. Consider the sub Banach algebra A−(T) of A(T) consisting
of elements f of A(T) with f̃(n) = 0 for n > 0. Find the maximal ideal space
and associated Gelfand transform.

Exercise 107. Consider the space B(T) of continuous functions f : T → C
with

∑∞
−∞ |nf̃(n)| <∞. Show that if we set

‖f‖B =
∞∑

−∞

(|n|+ 1)|f̃(n)|

then (B(T), ‖ ‖B) is a commutative Banach algebra with unit 1 under point-
wise multiplication. Find the maximal ideal space and associated Gelfand
transform.

Exercise 108. Consider the sub Banach algebra B+(T) of B(T) consisting
of elements f of B(T) with f̃(n) = 0 for n < 0. Find the maximal ideal space
and associated Gelfand transform.

27



Our next example is fundamental.

Example 109. Let (X, τ) be a compact Hausdorff space. The space C(X)
of continuous functions f : X → C with the uniform norm is a commutative
Banach algebra with unit 1 under pointwise operations. C(X) has maximal
ideal space (identified with) X under its usual topology. We have f̂(t) = f(t).

One way of expressing many of our results is in terms of function algebras.

Definition 110. Let (X, τ) be a compact Hausdorff space. If we consider
C(X) as a Banach algebra in the usual way then any subalgebra A with a
norm which makes it a Banach algebra is called a function algebra.

Lemma 111. With the notation of Definition 110, if A is a Banach algebra
with norm ‖ ‖ containing 1, then ‖f‖ ≥ ‖f‖∞ for all f ∈ A.

Lemma 112. We use the notation of Definition 110.
(i) If A separates points (that is, given x, y ∈ X with x 6= y, we can find

an f ∈ A such that f(x) 6= f(y)) and f ∈ A implies f ∗ ∈ A then A has
maximal ideal space (identified with) X under its usual topology. We have
f̂(t) = f(t).

(ii) If A satisfies (i) and, in addition, there exists a K such that ‖f‖2 ≤
K‖f 2‖ then A = C(X) and there exists a κ such that

κ‖f‖∞ ≥ ‖f‖ ≥ ‖f‖∞

for all f ∈ A (so the norms ‖ ‖ and ‖ ‖∞ are Lipschitz equivalent)

Exercise 113. Show that the space B of continuous functions f : [0, 1] ∪
[2, 3] → C such that f(2 + t) = f(t) for t ∈ [0, 1] equipped with the uni-
form norm is function algebra. Find the maximal ideal space and associated
Gelfand transform.

Exercise 114. Show that the space C1([0, 1]) of once continuously differen-
tiable functions equipped with norm

‖f‖ = ‖f‖∞ + ‖f ′‖∞

is function algebra. Find the maximal ideal space and associated Gelfand
transform.
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13 Three more uses of Hahn-Banach

The following exercise provides background for our first discussion but is not
examinable. For the moment C([a, b]) will be the set of real valued continuous
functions.

Exercise 115. We say that a function G : [a, b]→ R is of bounded variation
if there exists a K such that whenever we have a dissection

D = {x0, x1, x2, . . . , xn}

a = x0 < x1 < x2 < · · · < xn = b we have

n∑

j=1

|G(xj)−G(xj−1)| ≤ K.

We write

‖G‖BV = sup
D

n∑

j=1

|G(xj)−G(xj−1)|

where the supremum is taken over all possible dissections.
Suppose f : [a, b]→ R is continuous. Let us write

S(D, f, G) =
n∑

j=1

f(xj)(G(xj)−G(xj−1).

If D = {x0, x1, x2, . . . , xn} and D′ = {x′0, x
′
1, x

′
2, . . . , x

′
n′} are such that

|f(t)−f(s)| < ε for all t, s ∈ [xj−1, xj] [1 ≤ j ≤ n] and for all t, s ∈ [x′j−1, x
′
j]

[1 ≤ j ≤ n′] show by considering D ∪D′, or otherwise that

|S(D, f, G)− S(D′, f, G)| ≤ 2Kε.

Hence, or otherwise, show that there exists a unique I(f,G) such that,
given any ε > 0 we can find a δ > 0 such that, given any

D = {x0, x1, x2, . . . , xn}

with |xj−1 − xj| < δ [1 ≤ j ≤ n] we have

|S(D, f, G)− I(f,G)| < ε.

We write

I(f,G) =

∫ b

a

f(t) dG(t).
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(i) Let [a, b] = [0, 1]. Find elementary expressions for
∫ b

a
f(t) dG(t) in the

three cases when G(t) = t, when G(t) = −t and when G(t) = 0 for t < 1/2,
G(t) = 1 for t ≥ 1/2.

(ii) Show that the map T : (C([a, b]), ‖ ‖∞)→ R given by

Tf =

∫ b

a

f(t) dG(t)

is linear and continuous with ‖T‖ = ‖G‖BV .

Theorem 116. If T : C([a, b])→ R is a continuous linear function then we
can find a function G : [a, b]→ R of bounded variation such that

Tf =

∫ b

a

f(t) dG(t)

for all f ∈ C([a, b])

If you know a little measure theory you can restate the theorem in more
modern language.

Theorem 117. (The Riesz representation theorem.) The dual of C([a, b])
is the space of Borel measures on [a, b].

The method used can easily be extended to all compact spaces.
Our second result is more abstract. We require Aloaoglu’s theorem.

Theorem 118. The unit ball of the dual of a normed space X is compact in
the weak star topology.

Our proof of the Riesz representation theorem used the Hahn-Banach
theorem as a convenience. Our proof of the next result uses it as basic
ingredient.

Theorem 119. Every Banach space is isometrically isomorphic to some
subspace of C(K) for some compact space K.

(In my opinion this result looks more interesting than it is.)
Our third result requires us to recast the Hahn Banach theorem in a

geometric form.

Lemma 120. If V is a real normed spaced and E is a convex subset of V
containing B(0, ε) for some ε > 0, then, given any x /∈ E we can find a
continuous linear map T : V → R such that Tx ≥ Te for all e ∈ E.
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Theorem 121. If V is a real normed spaced and K is a compact convex
subset of V , then, given any x /∈ E we can find a continuous linear map
T : V → R and a real α such that Tx > α > Tk for all k ∈ K.

Definition 122. Let V be a real or complex vector space. If K is a non-
empty subset of V we say that E ⊆ K is an extreme set of K if, whenever
u, v ∈ K, 1 > λ > 0 and λu+ (1− λ)v ∈ E, it follows that u, v ∈ E. If {e}
is an extreme set we call e an extreme point.

Exercise 123. Define an extreme point directly.

Exercise 124. We work in R2. Find the extreme points, if any, of the
following sets and prove your statements.

(i) E1 = {x : ‖x‖ < 1}.
(ii) E2 = {x : ‖x‖ ≤ 1}.
(iii) E3 = {(x, 0) : x ∈ R}.
(iv) E4 = {(x, y) : |x|, |y| ≤ 1}.

Theorem 125. (Krein-Milman). A non-empty compact convex subset K
of a normed vector space has at least one extreme point.

Theorem 126. A non-empty compact convex subset K of a normed vector
space is the closed convex hull of its extreme points (that is, is the smallest
closed convex set containing its extreme points).

Our hypotheses in our version of the Krein-Milman theorem are so strong
as to make the conclusion practically useless. However the hypotheses can
be much weakened as is indicated by the following version.

Theorem 127. (Krein-Milman). Let E be the dual space of a normed
vector space. A non-empty convex subset K which is compact in the weak
star topology has at least one extreme point.

Theorem 128. Let E be the dual space of a normed vector space. A non-
empty convex subset K which is compact in the weak star topology is the weak
star closed convex hull of its extreme points.

Lemma 129. The extreme points of the closed unit ball of the dual of
C([0, 1]) are the delta masses δa and −δa with a ∈ [0, 1].

14 The Rivlin-Shapiro formula

In this section we give an elegant use of extreme points due to Rivlin and
Shapiro.
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Lemma 130. Carathéodory We work in Rn. Suppose that x ∈ Rn and we
are given a finite set of points e1, e2, . . . , eN and positive real numbers λ1,
λ2, . . . , λN such that

N∑

j=1

λj = 1,
N∑

j=1

λjej = x.

Then after renumbering the ej we can find positive real numbers λ′1, λ
′
2,

. . . , λ′m with m ≤ n+ 1 such that

m∑

j=1

λ′j = 1,
m∑

j=1

λ′jej = x.

Lemma 131. Consider Pn, the subspace of C([−1, 1]) consisting of real poly-
nomials of degree n or less. If S : Pn → R is linear then we can find an
N ≤ n + 1 and distinct points x0, x1, . . . , xN ∈ [−1, 1] and non-zero real
numbers λ0, λ1, . . . , λN such that

N∑

j=0

|λj| = 1, ‖S‖
N∑

j=0

λjP (xj) = SP.

for all P ∈ Pn.

Lemma 132. We continue with the hypotheses and notation of Lemma 131
There exists a P∗ ∈ Pn such that

P∗(xj) = ‖P∗‖∞ sgnλj

for all j with 0 ≤ j ≤ N . Further, if P ∈ Pn satisfies

P (xj) = ‖P‖∞ sgnλj

then ‖P‖∞‖S‖ = SP .

The following results are of considerable interest in view of Lemma 132.

Lemma 133. We have cosnθ = Tn(cos θ) where Tn is a real polynomial of
degree n. Further

(i) |Tn(x)| ≤ 1 for all x ∈ [−1, 1].
(ii) There exist n+ 1 distinct points x1, x2, . . . , xn+1 ∈ [−1, 1] such that

|Tn(xj)| = 1 for all 1 ≤ j ≤ n+ 1.
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Lemma 134. If P is a real polynomial of degree n or less such that
(i) |P (x)| ≤ 1 for all x ∈ [−1, 1] and
(ii) There exist n+ 1 distinct points x1, x2, . . . , xn+1 ∈ [−1, 1] such that

|P (xj)| = 1 for all 1 ≤ j ≤ n+ 1,
Then P = ±Tn.

Theorem 135. If P is a real polynomial of degree at most n and t /∈
[−1, 1]then

|P (t)| ≤ sup
|x|≤1

|P (x)||Tn(t)|.

Exercise 136. If P is a real polynomial of degree at most n then

|P (r)(t)| ≤ |T (r)(t)| sup
|x|≤1

|P (x)|.

Exercise 137. (This exercise is part of the course.) (i) Show that if n ≥ 1
the coefficient of tn in Tn(t) is 2n−1.

(ii) Show that if n ≥ 1 and P is a real polynomial of degree n or less with
|P (t)| ≤ 1 then the coefficient of tn in P (t) has absolute value at most 2n−1.

(iii) Find, with proof, a polynomial P of degree at most n − 1 which
minimises

sup
t∈[−1,1]

|tn − P (t)|.

Show that P is unique. (Tchebychev introduced his polynomials Tn in this
context.)
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