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The regular solids or regular polyhedra are solid geometric figures with the same identical regular

polygon on each face. There are only five regular solids discovered by the ancient Greek mathematicians.

These five solids are the following.

the tetrahedron (4 faces)

the cube or hexadron (6 faces)

the octahedron (8 faces)

the dodecahedron (12 faces)

the icosahedron (20 faces)

Each figure follows the Euler formula

Number of faces + Number of vertices = Number of edges + 2

F + V = E + 2
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Preface

This is the first volume of an introductory calculus presentation intended for

future scientists and engineers. Volume I contains five chapters emphasizing funda-

mental concepts from calculus and analytic geometry and the application of these

concepts to selected areas of science and engineering. Chapter one is a review of

fundamental background material needed for the development of differential and

integral calculus together with an introduction to limits. Chapter two introduces

the differential calculus and develops differentiation formulas and rules for finding

the derivatives associated with a variety of basic functions. Chapter three intro-

duces the integral calculus and develops indefinite and definite integrals. Rules

for integration and the construction of integral tables are developed throughout

the chapter. Chapter four is an investigation of sequences and numerical sums

and how these quantities are related to the functions, derivatives and integrals of

the previous chapters. Chapter five investigates many selected applications of the

differential and integral calculus. The selected applications come mainly from the

areas of economics, physics, biology, chemistry and engineering.

The main purpose of these two volumes is to (i) Provide an introduction to

calculus in its many forms (ii) Give some presentations to illustrate how power-

ful calculus is as a mathematical tool for solving a variety of scientific problems,

(iii) Present numerous examples to show how calculus can be extended to other

mathematical areas, (iv) Provide material detailed enough so that two volumes

of basic material can be used as reference books, (v) Introduce concepts from a

variety of application areas, such as biology, chemistry, economics, physics and en-

gineering, to demonstrate applications of calculus (vi) Emphasize that definitions

are extremely important in the study of any mathematical subject (vii) Introduce

proofs of important results as an aid to the development of analytical and critical

reasoning skills (viii) Introduce mathematical terminology and symbols which can

be used to help model physical systems and (ix) Illustrate multiple approaches to

various calculus subjects.

If the main thrust of an introductory calculus course is the application of cal-

culus to solve problems, then a student must quickly get to a point where he or

she understands enough fundamentals so that calculus can be used as a tool for

solving the problems of interest. If on the other hand a deeper understanding of

calculus is required in order to develop the basics for more advanced mathematical
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efforts, then students need to be exposed to theorems and proofs. If the calculus

course leans toward more applications, rather than theory, then the proofs pre-

sented throughout the text can be skimmed over. However, if the calculus course

is for mathematics majors, then one would want to be sure to go into the proofs

in greater detail, because these proofs are laying the groundwork and providing

background material for the study of more advanced concepts.

If you are a beginner in calculus, then be sure that you have had the appro-

priate background material of algebra and trigonometry. If you don’t understand

something then don’t be afraid to ask your instructor a question. Go to the li-

brary and check out some other calculus books to get a presentation of the subject

from a different perspective. The internet is a place where one can find numerous

help aids for calculus. Also on the internet one can find many illustrations of

the applications of calculus. These additional study aids will show you that there

are multiple approaches to various calculus subjects and should help you with the

development of your analytical and reasoning skills.

J.H. Heinbockel

September 2012
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Chapter 1

Sets, Functions, Graphs and Limits

The study of different types of functions, limits associated with these functions

and how these functions change, together with the ability to graphically illustrate

basic concepts associated with these functions, is fundamental to the understanding

of calculus. These important issues are presented along with the development of

some additional elementary concepts which will aid in our later studies of more ad-

vanced concepts. In this chapter and throughout this text be aware that definitions

and their consequences are the keys to success for the understanding of calculus and

its many applications and extensions. Note that appendix B contains a summary of

fundamentals from algebra and trigonometry which is a prerequisite for the study

of calculus. This first chapter is a preliminary to calculus and begins by introducing

the concepts of a function, graph of a function and limits associated with functions.

These concepts are introduced using some basic elements from the theory of sets.

Elementary Set Theory

A set can be any collection of objects. A set of objects can be represented using

the notation

S = { x | statement about x}

and is read,“S is the set of objects x which make the statement about x true”.

Alternatively, a finite number of objects within S can be denoted by listing the

objects and writing

S = {S1, S2, . . . , Sn}

For example, the notation

S = { x | x − 4 > 0}

can be used to denote the set of points x which are greater than 4 and the notation

T = {A, B, C, D, E}

can be used to represent a set containing the first 5 letters of the alphabet.

A set with no elements is denoted by the symbol ∅ and is known as the empty set.

The elements within a set are usually selected from some universal set U associated

with the elements x belonging to the set. When dealing with real numbers the

universal set U is understood to be the set of all real numbers. The universal set is
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usually defined beforehand or is implied within the context of how the set is being

used. For example, the universal set associated with the set T above could be the

set of all symbols if that is appropriate and within the context of how the set T is

being used.

The symbol ∈ is read “belongs to” or “ is a member of” and the symbol /∈ is

read “not in” or “ is not a member of”. The statement x ∈ S is read “x is a member

of S” or “x belongs to S”. The statement y /∈ S is read “y does not belong to S”

or “y is not a member of S”.

Let S denote a non-empty set containing real numbers x. This set is said to be

bounded above if one can find a number b such that for each x ∈ S, one finds x ≤ b.

The number b is called an upper bound of the set S. In a similar fashion the set S

containing real numbers x is said to be bounded below if one can find a number �

such that � ≤ x for all x ∈ S. The number � is called a lower bound for the set S.

Note that any number greater than b is also an upper bound for S and any number

less than � can be considered a lower bound for S. Let B and C denote the sets

B = { x | x is an upper bound of S} and C = { x | x is a lower bound of S},

then the set B has a least upper bound (�.u.b.) and the set C has a greatest lower

bound (g.�.b.). A set which is bounded both above and below is called a bounded set.

Some examples of well known sets are the following.

The set of natural numbers N = {1, 2, 3, . . .}

The set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

The set of rational numbers Q = { p/q | p is an integer, q is an integer, q �= 0}

The set of prime numbers P = {2, 3, 5, 7, 11, . . .}

The set of complex numbers C = { x + i y | i2 = −1, x, y are real numbers}

The set of real numbers R = {All decimal numbers}

The set of 2-tuples R2 = { (x, y) | x, y are real numbers }

The set of 3-tuples R3 = { (x, y, z) | x, y, z are real numbers }

The set of n-tuples Rn = { (ξ1, ξ2, . . . , ξn) | ξ1, ξ2, . . . , ξn are real numbers }

where it is understood that i is an imaginary unit with the property i2 = −1 and

decimal numbers represent all terminating and nonterminating decimals.
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Example 1-1. Intervals

When dealing with real numbers a, b, x it is customary to use the following no-

tations to represent various intervals of real numbers.

Set Notation Set Definition Name

[a, b] {x | a ≤ x ≤ b} closed interval

(a, b) {x | a < x < b} open interval

[a, b) {x | a ≤ x < b} left-closed, right-open

(a, b] {x | a < x ≤ b} left-open, right-closed

(a,∞) {x | x > a} left-open, unbounded

[a,∞) {x | x ≥ a} left-closed,unbounded

(−∞, a) {x | x < a} unbounded, right-open

(−∞, a] {x | x ≤ a} unbounded, right-closed

(−∞,∞) R = {x | −∞ < x < ∞} Set of real numbers

Subsets

If for every element x ∈ A one can show that x is also an element of a set B,

then the set A is called a subset of B or one can say the set A is contained in the

set B. This is expressed using the mathematical statement A ⊂ B, which is read “A

is a subset of B”. This can also be expressed by saying that B contains A, which is

written as B ⊃ A. If one can find one element of A which is not in the set B, then A

is not a subset of B. This is expressed using either of the notations A ⊂� B or B ⊃� A.

Note that the above definition implies that every set is a subset of itself, since the

elements of a set A belong to the set A. Whenever A ⊂ B and A �= B, then A is called

a proper subset of B.

Set Operations

Given two sets A and B, the union of these sets is written A ∪ B and defined

A ∪ B = { x | x ∈ A or x ∈ B, or x ∈ both A and B}

The intersection of two sets A and B is written A ∩ B and defined

A ∩ B = { x | x ∈ both A and B }

If A∩B is the empty set one writes A∩B = ∅ and then the sets A and B are said to

be disjoint.
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The difference1 between two sets A and B is written A −B and defined

A − B = { x | x ∈ A and x /∈ B }

The equality of two sets is written A = B and defined

A = B if and only if A ⊂ B and B ⊂ A

That is, if A ⊂ B and B ⊂ A, then the sets A and B must have the same elements

which implies equality. Conversely, if two sets are equal A = B, then A ⊂ B and

B ⊂ A since every set is a subset of itself.

A ∪ B A ∩ B A −B

Ac A ∪ (B ∩ C) (A ∪ B)c

Figure 1-1. Selected Venn diagrams.

The complement of set A with respect to the universal set U is written Ac and

defined

Ac = { x | x ∈ U but x /∈ A }

Observe that the complement of a set A satisfies the complement laws

A ∪ Ac = U, A ∩ Ac = ∅, ∅c = U, Uc = ∅

The operations of union ∪ and intersection ∩ satisfy the distributive laws

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

1 The difference between two sets A and B in some texts is expressed using the notation A \ B.
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and the identity laws

A ∪ ∅ = A, A ∪ U = U, A ∩ U = A, A ∩ ∅ = ∅

The above set operations can be illustrated using circles and rectangles, where

the universal set is denoted by the rectangle and individual sets are denoted by

circles. This pictorial representation for the various set operations was devised by

John Venn2 and are known as Venn diagrams. Selected Venn diagrams are illustrated

in the figure 1-1.

Example 1-2. Equivalent Statements

Prove that the following statements are equivalent A ⊂ B and A ∩ B = A

Solution To show these statements are equivalent one must show

(i) if A ⊂ B, then A ∩ B = A and (ii) if A ∩ B = A, then it follows that A ⊂ B.

(i) Assume A ⊂ B, then if x ∈ A it follows that x ∈ B since A is a subset of B.

Consequently, one can state that x ∈ (A ∩ B), all of which implies A ⊂ (A ∩ B).

Conversely, if x ∈ (A∩B), then x belongs to both A and B and certainly one can

say that x ∈ A. This implies (A ∩ B) ⊂ A. If A ⊂ (A ∩ B) and (A ∩ B) ⊂ A, then it

follows that (A ∩ B) = A.

(ii) Assume A ∩ B = A, then if x ∈ A, it must also be in A ∩ B so that one can say

x ∈ A and x ∈ B, which implies A ⊂ B.

Coordinate Systems

There are many different kinds of coordinate systems most of which are created

to transform a problem or object into a simpler representation. The rectangular

coordinate system3 with axes labeled x and y provides a way of plotting number

pairs (x, y) which are interpreted as points within a plane.

2 John Venn (1834-1923) An English mathematician who studied logic and set theory.
3 Also called a cartesian coordinate system and named for René Descartes (1596-1650) a French philosopher who

applied algebra to geometry problems.
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rectangular coordinates polar coordinates

x2 + y2 = ρ2
x = r cos θ,

tan θ = y
x

y = r sin θ
√

x2 + y2 = r
r = ρ

Figure 1-2. Rectangular and polar coordinate systems

A cartesian or rectangular coordinate system is constructed by selecting two

straight lines intersecting at right angles and labeling the point of intersection as

the origin of the coordinate system and then labeling the horizontal line as the

x-axis and the vertical line as the y-axis. On these axes some kind of a scale is

constructed with positive numbers to the right on the horizontal axis and upward

on the vertical axes. For example, by constructing lines at equally spaced distances

along the axes one can create a grid of intersecting lines.

A point in the plane defined by the two axes can then be represented by a number

pair (x, y). In rectangular coordinates a number pair (x, y) is said to have the abscissa

x and the ordinate y. The point (x, y) is located a distance r =
√

x2 + y2 from the

origin with x representing distance of the point from the y-axis and y representing

the distance of the point from the x-axis. The x axis or abscissa axis and the y axis

or ordinate axis divides the plane into four quadrants labeled I, II, III and IV .

To construct a polar coordinate system one selects an origin for the polar co-

ordinates and labels it 0. Next construct a half-line similar to the x-axis of the

rectangular coordinates. This half-line is called the polar axis or initial ray and the

origin is called the pole of the polar coordinate system. By placing another line on

top of the polar axis and rotating this line about the pole through a positive angle

θ, measured in radians, one can create a ray emanating from the origin at an angle θ

as illustrated in the figure 1-3. In polar coordinates the rays are illustrated emanat-

ing from the origin at equally spaced angular distances around the origin and then

concentric circles are constructed representing constant distances from the origin.
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A point in polar coordinates is then denoted by the number pair (r, θ) where θ is

the angle of rotation associated with the ray and r is a distance outward from the

origin along the ray. The polar origin or pole has the coordinates (0, θ) for any angle

θ. All points having the polar coordinates (ρ, 0), with ρ ≥ 0, lie on the polar axis.

Figure 1-3.

Construction of polar axes

Here angle rotations are treated the same as

in trigonometry with a counterclockwise ro-

tation being in the positive direction and a

clockwise rotation being in the negative di-

rection. Note that the polar representation

of a point is not unique since the angle θ can

be increased or decreased by some multiple

of 2π to arrive at the same point. That is,

(r, θ) = (r, θ ± 2nπ) where n is an integer.

Also note that a ray at angle θ can be extended to represent negative distances

along the ray. Points (−r, θ) can also be represented by the number pair (r, θ + π).

Alternatively, one can think of a rectangular point (x, y) and the corresponding polar

point (r, θ) as being related by the equations

θ = arctan(y/x),

r =
√

x2 + y2,

x =r cos θ

y =r sin θ
(1.1)

An example of a rectangular coordinate system and polar coordinate system are

illustrated in the figure 1-2.

Distance Between Two Points in the Plane

Figure 1-4.

Distance between points

in polar coordinates.

If two points are given in polar coordinates

as (r1, θ1) and (r2, θ2), as illustrated in the fig-

ure 1-4, then one can use the law of cosines

to calculate the distance d between the points

since

d2 = r2

1 + r2

2 − 2r1r2 cos(θ1 − θ2) (1.2)
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Alternatively, let (x1, y1) and (x2, y2) denote two points which are plotted on a

cartesian set of axes as illustrated in the figure 1-5. The Greek letter ∆ (delta) is

used to denote a change in a quantity. For example, in moving from the point (x1, y1)

to the point (x2, y2) the change in x is denoted ∆x = x2 − x1 and the change in y is

denoted ∆y = y2 − y1. These changes can be thought of as the legs of a right-triangle

as illustrated in the figure 1-5.

Figure 1-5.

Using a right-triangle to calculate distance between

two points in rectangular coordinates.

The figure 1-5 illustrates that by using the Pythagorean theorem the distance d

between the two points can be determined from the equations

d2 = (∆x)2 + (∆y)2 or d =
√

(x2 − x1)2 + (y2 − y1)2 (1.3)

Graphs and Functions

Let X and Y denote sets which contain some subset of the real numbers with

elements x ∈ X and y ∈ Y . If a rule or relation f is given such that for each x ∈ X

there corresponds exactly one real number y ∈ Y , then y is said to be a real single-

valued function of x and the relation between y and x is denoted y = f(x) and read

as “y is a function of x”. If for each x ∈ X, there is only one ordered pair (x, y),

then a functional relation from X to Y is said to exist. The function is called single-

valued if no two different ordered pairs (x, y) have the same first element. A way

of representing the set of ordered pairs which define a function is to use one of the

notations

{ (x, y) | y = f(x), x ∈ X } or { (x, f(x)) | x ∈ X } (1.4)
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The set of values x ∈ X is called t
¯
he domain of definition of the function f(x).

The set of values {y | y = f(x) , x ∈ X} is called the range of the function or the image

of the set X under the mapping or transformation given by f. The set of ordered

pairs

C = { (x, y) | y = f(x), x ∈ X}

is called the graph of the function and represents a curve in the x, y-plane giving

a pictorial representation of the function. If y = f(x) for x ∈ X, the number x is

called the independent variable or argument of the function and the image value

y is called the dependent variable of the function. It is to be understood that the

domain of definition of a function contains real values for x for which the relation

f(x) is also real-valued. In many physical problems, the domain of definition X must

be restricted in order that a given physical problem be well defined. For example,

in order that
√

x − 1 be real-valued, x must be restricted to be greater than or equal

to 1.

When representing many different functions the symbol f can be replaced by

any of the letters from the alphabet. For example, one might have several different

functions labeled as

y = f(x), y = g(x), y = h(x), . . . , y = y(x), . . . , y = z(x) (1.5)

or one could add subscripts to the letter f to denote a set of n-different functions

F = {f1(x), f2(x), . . . , fn(x)} (1.6)

Example 1-3. (Functions)

(a) Functions defined by a formula over a given domain.

Let y = f(x) = x2 + x for x ∈ R be a given rule defining a function which can

be represented by a curve in the cartesian x, y-plane. The variable x is a dummy

variable used to define the function rule. Substituting the value 3 in place of x in

the function rule gives y = f(3) = 32 + 3 = 12 which represents the height of the curve

at x = 3. In general, for any given value of x the quantity y = f(x) represents the

height of the curve at the point x. By assigning a collection of ordered values to x

and calculating the corresponding value y = f(x), using the given rule, one collects

a set of (x, y) pairs which can be interpreted as representing a set of points in the

cartesian coordinate system. The set of all points corresponding to a given rule is
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called the locus of points satisfying the rule. The graph illustrated in the figure 1-6

is a pictorial representation of the given rule.

x y = f(x) = x2 + x
-2.0 2.00

-1.8 1.44

-1.6 0.96

-1.4 0.56

-1.2 0.24

-1.0 0.00

-0.8 -0.16

-0.6 -0.24

-0.4 -0.24

-0.2 -0.16

0.0 0.00

0.2 0.24

0.4 0.56

0.6 0.96

0.8 1.44

1.0 2.00

1.2 2.64

1.4 3.36

1.6 4.16

1.8 5.04

2.0 6.00

Figure 1-6. A graph of the function y = f(x) = x2 + x

Note that substituting x + h in place of x in the function rule gives

f(x + h) = (x + h)2 + (x + h) = x2 + (2h + 1)x + (h2 + h).

If f(x) represents the height of the curve at the point x, then f(x + h) represents the

height of the curve at x + h.

(b) Let r = f(θ) = 1 + θ for 0 ≤ θ ≤ 2π be a given rule defining a function which

can be represented by a curve in polar coordinates (r, θ). One can select a set

of ordered values for θ in the interval [0, 2π] and calculate the corresponding

values for r = f(θ). The set of points (r, θ) created can then be plotted on polar

graph paper to give a pictorial representation of the function rule. The graph

illustrated in the figure 1-7 is a pictorial representation of the given function

over the given domain.

Note in dealing with polar coordinates a radial distance r and polar angle θ can

have any of the representations

((−1)nr, θ + nπ)
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and consequently a functional relation like r = f(θ) can be represented by one of the

alternative equations r = (−1)nf(θ + nπ)

θ r = f(θ) = 1 + θ

0 1 + 0

π/4 1 + π/4

2π/4 1 + 2π/4

3π/4 1 + 3π/4

4π/4 1 + 4π/4

5π/4 1 + 5π/4

6π/4 1 + 6π/4

7π/4 1 + 7π/4

8π/4 1 + 8π/4
Figure 1-7.

A polar plot of the function r = f(θ) = 1 + θ

(c) The absolute value function

The absolute value function is defined

y = f(x) =| x |=
{

x, x ≥ 0

−x, x ≤ 0

Substituting in a couple of specific values for x one can

form a set of (x, y) number pairs and then sketch a graph

of the function, which represents a pictorial image of the functional relationship

between x and y.

(d) Functions defined in a piecewise fashion.

A function defined by

f(x) =







1 + x, x ≤ −1

1 − x, −1 ≤ x ≤ 0

x2, 0 ≤ x ≤ 2

2 + x, x > 2

x ∈ R

is a collection of rules which defines the function in a piecewise fashion. One must

examine values of the input x to determine which portion of the rule is to be used

in evaluating the function. The above example illustrates a function having jump

discontinuities at the points where x = −1 and x = 0.
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(e) Numerical data.

If one collects numerical data from an experiment such as recording temperature

T at different times t, then one obtains a set of data points called number pairs. If

these number pairs are labeled (ti, Ti), for i = 1, 2, . . . , n, one obtains a table of values

such as

Time t t1 t2 · · · tn

Temperature T T1 T2 · · · Tn

It is then possible to plot a t, T -axes graph associated with these data points by plot-

ting the points and then drawing a smooth curve through the points or by connecting

the points with straight line segments. In doing this, one is assuming that the curve

sketched is a graphical representation of an unknown functional relationship between

the variables.

(e) Other representation of functions

Functions can be represented by different methods such as using equations,

graphs, tables of values, a verbal rule, or by using a machine like a pocket cal-

culator which is programmable to give some output for a given input. Functions can

be continuous or they can have discontinuities. Continuous functions are recognized

by their graphs which are smooth unbroken curves with continuously turning tangent

lines at each point on the curve. Discontinuities usually occur when functional values

or tangent lines are not well defined at a point.

Increasing and Decreasing Functions

One aspect in the study of calculus is to examine how functions change over an

interval. A function is said to be increasing over an interval (a, b) if for every pair

of points (x0, x1) within the interval (a, b), satisfying x0 < x1, the height of the curve

at x0 is less than the height of the curve at x1 or f(x0) < f(x1). A function is called

decreasing over an interval (a, b) if for every pair of points (x0, x1) within the interval

(a, b), satisfying x0 < x1, one finds the height of the curve at x0 is greater than the

height of the curve at x1 or f(x0) > f(x1).



13

Linear Dependence and Independence

A linear combination of a set of functions {f1, f2, . . . , fn} is formed by taking

arbitrary constants c1, c2, . . . , cn and forming the sum

y = c1f1 + c2f2 + · · ·+ cnfn (1.7)

One can then say that y is a linear combination of the set of functions {f1, f2, . . . , fn}.
If a function f1(x) is some constant c times another function f2(x), then one can

write f1(x) = cf2(x) and under this condition the function f1 is said to be linearly

dependent upon f2. If no such constant c exists, then the functions are said to

be linearly independent. Another way of expressing linear dependence and linear

independence applied to functions f1 and f2 is as follows. One can say that, if there

are nonzero constants c1, c2 such that the linear combination

c1f1(x) + c2f2(x) = 0 (1.8)

for all values of x, then the set of functions {f1, f2} is called a set of dependent

functions. This is due to the fact that if c1 �= 0, then one can divided by c1 and

express the equation (1.8) in the form f1(x) = − c2
c1

f2(x) = cf2(x). If the only constants

which make equation (1.8) a true statement are c1 = 0 and c2 = 0, then the set of

functions {f1, f2} is called a set of linearly independent functions.

An immediate generalization of the above is the following. If there exists con-

stants c1, c2, . . . , cn, not all zero, such that the linear combination

c1f1(x) + c2f2(x) + · · · cnfn(x) = 0, (1.9)

for all values of x, then the set of functions {f1, f2, . . . , fn} is called a linearly dependent

set of functions. If the only constants, for which equation (1.9) is true, are when

c1 = c2 = · · · = cn = 0, then the set of functions {f1, f2, . . . , fn} is called a linearly

independent set of functions. Note that if the set of functions are linearly dependent,

then one of the functions can be made to become a linear combination of the other

functions. For example, assume that c1 �= 0 in equation (1.9). One can then write

f1(x) = −c2

c1

f2(x) − · · · − cn

c1

fn(x)

which shows that f1 is some linear combination of the other functions. That is, f1

is dependent upon the values of the other functions.
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Single-valued Functions

Consider plane curves represented in rectangular coordinates such as the curves

illustrated in the figures 1-8. These curves can be considered as a set of ordered

pairs (x, y) where the x and y values satisfy some specified condition.

Figure 1-8. Selected curves sketched in rectangular coordinates

In terms of a set representation, these curves can be described using the set

notation

C = { (x, y) | relationship satisfied by x and y with x ∈ X }

This represents a collection of points (x, y), where x is restricted to values from some

set X and y is related to x in some fashion. A graph of the function results when the

points of the set are plotted in rectangular coordinates. If for all values x0 a vertical

line x = x0 cuts the graph of the function in only a single point, then the function is

called single-valued. If the vertical line intersects the graph of the function in more

than one point, then the function is called multiple-valued.

Similarly, in polar coordinates, a graph of the function is a curve which can be

represented by a collection of ordered pairs (r, θ). For example,

C = { (r, θ) | relationship satisfied by r and θ with θ ∈ Θ }

where Θ is some specified domain of definition of the function. There are available

many plotting programs for the computer which produce a variety of specialized

graphs. Some computer programs produce not only cartesian plots and polar plots,

but also many other specialized graph types needed for various science and engineer-

ing applications. These other graph types give an alternative way of representing

functional relationships between variables.
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Example 1-4. Rectangular and Polar Graphs

Plotting the same function in both rectangular coordinates and polar coordinates

gives different shaped curves and so the graphs of these functions have different

properties depending upon the coordinate system used to represent the function.

For example, plot the function y = f(x) = x2 for −2 ≤ x ≤ 2 in rectangular coordinates

and then plot the function r = g(θ) = θ2 for 0 ≤ θ ≤ 2π in polar coordinates. Show

that one curve is a parabola and the other curve is a spiral.

Solution

x y = f(x) = x2

-2.00 4.0000

-1.75 3.0625

-1.50 2.2500

-1.25 1.5625

-1.00 1.0000

-0.75 0.5625

-0.50 0.2500

-0.25 0.0625

0.00 0.0000

0.25 0.0625

0.50 0.2500

0.75 0.5625

1.00 1.0000

1.25 1.5625

1.50 2.2500

1.75 3.0625

2.00 4.0000

θ r = g(θ) = θ2

0.00 0.0000

π/4 π2/16

π/2 π2/4

3π/4 9π2/16

π π2

5π/4 25π2/16

3π/2 9π2/4

7π/4 49π2/16

2π 4π2

C1 = { (x, y) | y = f(x) = x2, −2 ≤ x ≤ 2 } C2 = { (r, θ) | r = g(θ) = θ2, 0 ≤ θ ≤ 2π }

Figure 1-9. Rectangular and polar graphs give different pictures of function.

Select some points x from the domain of the function and calculate the image

points under the mapping y = f(x) = x2. For example, one can use a spread sheet

and put values of x in one column and the image values y in an adjacent column

to obtain a table of values for representing the function at a discrete set of selected

points.
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Similarly, select some points θ from the domain of the function to be plotted in

polar coordinates and calculate the image points under the mapping r = g(θ) = θ2.

Use a spread sheet and put values of θ in one column and the image values r in an

adjacent column to obtain a table for representing the function as a discrete set of

selected points. Using an x spacing of 0.25 between points for the rectangular graph

and a θ spacing of π/4 for the polar graph, one can verify the table of values and

graphs given in the figure 1-9.

Some well known cartesian curves are illustrated in the following figures.

Figure 1-10. Polynomial curves y = x, y = x2 and y = x3

Figure 1-11. The trigonometric functions y = sinx and y = cosx for −π ≤ x ≤ 2π.
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Some well known polar curves are illustrated in the following figures.

b= -a b=2a b=3a

Figure 1-12. The limaçon curves r = 2a cos θ + b

r = a sin 3θ r = a cos 2θ r = a sin 5θ

Figure 1-13. The rose curves r = a cosnθ and r = a sin nθ

If n odd, curve has n-loops and if n is even, curve has 2n loops.

Parametric Representation of Curve

Examine the graph in figure 1-8(b) and observe that it does not represent a

single-valued function y = f(x). Also the circle in figure 1-8(c) does not define a

single valued function. An alternative way of graphing a function is to represent

it in a parametric form.4 In general, a graphical representation of a function or a

4 The parametric form for representing a curve is not unique and the parameter used may or may not have a

physical meaning.
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section of a function, be it single-valued or multiple-valued, can be defined by a

parametric representation

C = {(x, y) | x = x(t), y = y(t), a ≤ t ≤ b} (1.10)

where both x(t) and y(t) are single-valued functions of the parameter t. The re-

lationship between x and y is obtained by eliminating the parameter t from the

representation x = x(t) and y = y(t). For example, the parametric representation

x = x(t) = t and y = y(t) = t2, for t ∈ R, is one parametric representation of the

parabola y = x2.

The Equation of a Circle

A circle of radius ρ and centered at

the point (h, k) is illustrated in the figure

1-14 and is defined as the set of all points

(x, y) whose distance from the point (h, k)

has the constant value of ρ. Using the dis-

tance formula (1.3), with (x1, y1) replaced

by (h, k), the point (x2, y2) replaced by the

variable point (x, y) and replacing d by ρ,

one can show the equation of the circle is

given by one of the formulas

(x − h)2 + (y − k)2 = ρ2

or
√

(x − h)2 + (y − k)2 = ρ
(1.11) Figure 1-14.

Circle centered at (h, k).

Equations of the form

x2 + y2 + αx + βy + γ = 0, α, β, γ constants (1.12)

can be converted to the form of equation (1.11) by completing the square on the

x and y terms. This is accomplished by taking 1/2 of the x-coefficient, squaring

and adding the result to both sides of equation (1.12) and then taking 1/2 of the

y-coefficient, squaring and adding the result to both sides of equation (1.12). One

then obtains
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(

x2 + αx +
α2

4

)

+

(

y2 + βy +
β2

4

)

=
α2

4
+

β2

4
− γ

which simplifies to
(

x +
α

2

)2

+

(

y +
β

2

)2

= r2

where r2 = α2

4
+ β2

4
− γ. Completing the square is a valid conversion whenever the

right-hand side α2

4
+ β2

4
− γ ≥ 0.

An alternative method of representing the equation of the circle is to introduce

a parameter θ such as the angle illustrated in the figure 1-14 and observe that by

trigonometry

sin θ =
y − k

ρ
and cos θ =

x − h

ρ

These equations are used to represent the circle in the alternative form

C = { (x, y) | x = h + ρ cos θ, y = k + ρ sin θ, 0 ≤ θ ≤ 2π } (1.13)

This is called a parametric representation of the circle in terms of a parameter θ.

Figure 1-15.

Circle centered at (r1, θ1).

The equation of a circle in polar form can

be constructed as follows. Let (r, θ) denote

a variable point which moves along the cir-

cumference of a circle of radius ρ which is

centered at the point (r1, θ1) as illustrated

in the figure 1-15. Using the distances r, r1

and ρ, one can employ the law of cosines

to express the polar form of the equation

of a circle as

r2 + r2

1
− 2rr1 cos(θ − θ1) = ρ2 (1.14)

Functions can be represented in a variety of ways. Sometimes functions are

represented in the implicit form G(x, y) = 0, because it is not always possible to

solve for one variable explicitly in terms of another. In those cases where it is

possible to solve for one variable in terms of another to obtain y = f(x) or x = g(y),

the function is said to be represented in an explicit form.
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For example, the circle of radius ρ can be represented by any of the relations

G(x, y) =x2 + y2 − ρ2 = 0,

y = f(x) =

{

+
√

ρ2 − x2, −ρ ≤ x ≤ ρ

−
√

ρ2 − x2, −ρ ≤ x ≤ ρ
, x = g(y) =

{

+
√

ρ2 − y2, −ρ ≤ y ≤ ρ

−
√

ρ2 − y2, −ρ ≤ y ≤ ρ

(1.15)

Note that the circle in figure 1-8(c) does not define a single valued function. The

circle can be thought of as a graph of two single-valued functions y = +
√

ρ2 − x2

and y = −
√

ρ2 − x2 for −ρ ≤ x ≤ ρ if one treats y as a function of x. The other

representation in equation (1.15) results if one treats x as a function of y.

Types of functions

One can define a functional relationships between the two variables x and y in

different ways.

A polynomial function in the variable x has the form

y = pn(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−1x + an (1.16)

where a0, a1, . . . , an represent constants with a0 �= 0 and n is a positive integer. The

integer n is called the degree of the polynomial function. The fundamental theorem

of algebra states that a polynomial of degree n has n-roots. That is, the polynomial

equation pn(x) = 0 has n-solutions called the roots of the polynomial equation. If

these roots are denoted by x1, x2, . . . , xn, then the polynomial can also be represented

in the form

pn(x) = a0(x − x1)(x − x2) · · · (x − xn)

If xi is a number, real or complex, which satisfies pn(xi) = 0, then (x−xi) is a factor of

the polynomial function pn(x). Complex roots of a polynomial function must always

occur in conjugate pairs and one can say that if α + iβ is a root of pn(x) = 0, then

α− iβ is also a root. Real roots xi of a polynomial function give rise to linear factors

(x − xi), while complex roots of a polynomial function give rise to quadratic factors

of the form
[

(x − α)2 + β2
]

, α, β constant terms.

A rational function is any function of the form

y = f(x) =
P (x)

Q(x)
(1.17)

where both P (x) and Q(x) are polynomial functions in x and Q(x) �= 0. If y = f(x) is

a root of an equation of the form

b0(x)yn + b1(x)yn−1 + b2(x)yn−2 + · · ·+ bn−1(x)y + bn(x) = 0 (1.18)



21

where b0(x), b1(x), . . . , bn(x) are polynomial functions of x and n is a positive integer,

then y = f(x) is called an algebraic function. Note that polynomial functions and

rational functions are special types of algebraic functions. Functions which are built

up from a finite number of operations of the five basic operations of addition, sub-

traction, multiplication, division and extraction of integer roots, usually represent

algebraic functions. Some examples of algebraic functions are

1. Any polynomial function.

2. f1(x) = (x3 + 1)
√

x + 4

3. f2(x) =
x2 + 3

√
6 + x2

(x − 3)4/3

The function f(x) =
√

x2 is an example of a function which is not an algebraic func-

tion. This is because the square root of x2 is the absolute value of x and represented

f(x) =
√

x2 = |x| =

{
x, if x ≥ 0

−x, if x < 0

and the absolute value operation is not one of the five basic operations mentioned

above.

A transcendental function is any function which is not an algebraic function.

The exponential functions, logarithmic functions, trigonometric functions, inverse

trigonometric functions, hyperbolic functions and inverse hyperbolic functions are

examples of transcendental functions considered in this calculus text.

The Exponential and Logarithmic Functions

The exponential functions have the form y = bx, where b > 0 is a positive constant

and the variable x is an exponent. If x = n is a positive integer, one defines

bn = b · b · · ·b
︸ ︷︷ ︸

n factors

and b−n =
1

bn
(1.19)

By definition, if x = 0, then b0 = 1. Note that if y = bx, then y > 0 for all real values

of x.

Logarithmic functions and exponential functions are related. By definition,

if y = bx then x = logb y (1.20)

and x, the exponent, is called the logarithm of y to the base b. Consequently, one

can write

logb(b
x) = x for every x ∈ R and blog

b
x = x for every x > 0 (1.21)
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Recall that logarithms satisfy the following properties

logb(xy) = logb x + logb y, x > 0 and y > 0

logb

(

x

y

)

= logb x − logb y, x > 0 and y > 0

logb(y
x) = x logb y, x can be any real number

(1.22)

Of all the numbers b > 0 available for use as a base for the logarithm function

the base b = 10 and base b = e = 2.71818 · · · are the most often seen in engineering

and scientific research. The number e is a physical constant5 like π. It can not be

represented as the ratio of two integer so is an irrational number. It can be defined

as the limiting sum of the infinite series

e =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ · · ·+

1

n!
+ · · ·

Using a computer6 one can verify that the numerical value of e to 50 decimal places

is given by

e = 2.7182818284590452353602874713526624977572470936999 . . .

The irrational number e can also be determined from the limit e = lim
h→0

(1 + h)
1/h.

In the early part of the seventeenth century many mathematicians dealt with

and calculated the number e, but it was Leibnitz7 in 1690 who first gave it a name

and notation. His notation for the representation of e didn’t catch on. The value of

the number represented by the limit lim
h→0

(1 + h)
1/h is used so much in mathematics

it was represented using the symbol e by Leonhard Euler8 sometime around 1731

and his notation for representing this number has been used ever since. The number

e is sometimes referred to as Euler’s number, the base of the natural logarithms.

The number e and the exponential function ex will occur frequently in our study of

calculus.

5 There are many physical constants in mathematics. Some examples are e, π, i,(imaginary component), γ
(Euler-Mascheroni constant). For a listing of additional mathematical constants go to the web site

http : //en.wikipedia.org/wiki/Mathematical constant.
6 One can go to the web site

http : //www.numberworld.org/misc runs/e − 500b.html to see that over 500 billion digits of this number have

been calculated.
7 Gottfried Wilhelm Leibnitz (1646-1716) a German physicist, mathematician.
8 Leonhard Euler (1707-1783) a famous Swiss mathematician.



23

The logarithm to the base e, is called the natural logarithm and its properties

are developed in a later chapter. The natural logarithm is given a special notation.

Whenever the base b = e one can write either

y = loge x = lnx or y = log x (1.23)

That is, if the notation ln is used or whenever the base is not specified in using

logarithms, it is to be understood that the base b = e is being employed. In this

special case one can show

y = ex = exp(x) ⇐⇒ x = lny (1.24)

which gives the identities

ln(ex) = x, x ∈ R and eln x = x, x > 0 (1.25)

In our study of calculus it will be demonstrated that the natural logarithm has the

special value ln(e) = 1.

Figure 1-16. The exponential function y = ex and logarithmic function y = ln x

Note that if y = logb x, then one can write the equivalent statement by = x since a

logarithm is an exponent. Taking the natural logarithm of both sides of this last

equation gives

ln(by) = lnx or y ln b = lnx (1.26)
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Consequently, for any positive number b different from one

y = logb x =
lnx

ln b
, b �= 1 (1.27)

The exponential function y = ex, together with the natural logarithm function can

then be used to define all exponential functions by employing the identity

y = bx = (eln b)x = ex ln b (1.28)

Graphs of the exponential function y = ex = exp(x) and the natural logarithmic

function y = ln(x) = log(x) are illustrated in the figure 1-16.

The Trigonometric Functions

The ratio of sides of a right triangle are used to define the six trigonometric

functions associated with one of the acute angles of a right triangle. These definitions

can then be extended to apply to positive and negative angles associated with a point

moving on a unit circle.

The six trigonometric functions asso-

ciated with a right triangle are

sine

cosine

tangent

cotangent

secant

cosecant

which are abbreviated respectively as

sin, tan, sec, cos, cot, and csc .

Let θ and ψ denote complementary angles in a right triangle as illustrated above.

The six trigonometric functions associated with the angle θ are

sin θ =
y

r
=

opposite side

hypotenuse
,

cos θ =
x

r
=

adjacent side

hypotenuse
,

tan θ =
y

x
=

opposite side

adjacent side
,

cot θ =
x

y
=

adjacent side

opposite side
,

sec θ =
r

x
=

hypotenuse

adjacent side

csc θ =
r

y
=

hypotenuse

opposite side

Graphs of the Trigonometric Functions

Graphs of the trigonometric functions sin θ, cos θ and tan θ, for θ varying over the

domain 0 ≤ θ ≤ 4π, can be represented in rectangular coordinates by the point sets

S ={ (θ, y) | y = sin θ, 0 ≤ θ ≤ 4π },

C ={ (θ, x) | x = cos θ, 0 ≤ θ ≤ 4π }

T ={ (θ, y) | y = tan θ, 0 ≤ θ ≤ 4π }

and are illustrated in the figure 1-17.
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Using the periodic properties

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ and tan(θ + π) = tan θ

these graphs can be extend and plotted over other domains.

Figure 1-17. Graphs of the trigonometric functions sin θ, cos θ and tan θ

The function y = sin θ can also be interpreted as representing the motion of a point P

moving on the circumference of a unit circle. The point P starts at the point (1, 0),

where the angle θ is zero and then moves in a counterclockwise direction about the

circle. As the point P moves around the circle its ordinate value is plotted against

the angle θ. The situation is as illustrated in the figure 1-17(a). The function x = cos θ

can be interpreted in the same way with the point P moving on a circle but starting

at a point which is shifted π/2 radians clockwise. This is the equivalent to rotating

the x, y−axes for the circle by π/2 radians and starting the point P at the coordinate

(1, 0) as illustrated in the figure 1-17(b).

The Hyperbolic Functions

Related to the exponential functions ex and e−x are the hyperbolic functions

hyperbolic sine written sinh ,

hyperbolic cosine written cosh ,

hyperbolic tangent written tanh ,

hyperbolic cotangent written coth

hyperbolic secant written sech

hyperbolic cosecant written csch
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These functions are defined

sinhx =
ex − e−x

2
,

coshx =
ex + e−x

2
,

tanhx =
sinhx

coshx
,

cschx =
1

sinhx

sechx =
1

coshx

cothx =
1

tanhx

(1.29)

As the trigonometric functions are related to the circle and are sometimes referred

to as circular functions, it has been found that the hyperbolic functions are related

to equilateral hyperbola and hence the name hyperbolic functions. This will be

explained in more detail in the next chapter.

Symmetry of Functions

The expression y = f(x) is the representation of a function in an explicit form

where one variable is expressed in terms of a second variable. The set of values given

by

S = {(x, y) | y = f(x), x ∈ X}

where X is the domain of the function, represents a graph of the function. The

notation f(x), read “f of x”, has the physical interpretation of representing y which

is the height of the curve at the point x. Given a function y = f(x), one can replace

x by any other argument. For example, if f(x) is a periodic function with least

period T , one can write f(x) = f(x + T ) for all values of x. One can interpret the

equation f(x) = f(x + T ) for all values of x as stating that the height of the curve at

any point x is the same as the height of the curve at the point x + T . As another

example, if the notation y = f(x) represents the height of the curve at the point x,

then y + ∆y = f(x + ∆x) would represent the height of the given curve at the point

x+∆x and ∆y = f(x+∆x)−f(x) would represent the change in the height of the curve

y in moving from the point x to the point x+∆x. If the argument x of the function

is replaced by −x, then one can compare the height of the curve at the points x and

−x. If f(x) = f(−x) for all values of x, then the height of the curve at x equals the

height of the curve at −x and when this happens the function f(x) is called an even

function of x and one can state that f(x) is a symmetric function about the y-axis.

If f(x) = −f(−x) for all values of x, then the height of the curve at x equals the

negative of the height of the curve at −x and in this case the function f(x) is called

an odd function of x and one can state that the function f(x) is symmetric about the

origin. By interchanging the roles of x and y and shifting or rotation of axes, other
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symmetries can be discovered. The figure 1-18 and 1-19 illustrates some examples

of symmetric functions.

Figure 1-18. Examples of symmetric functions

Symmetry about a line. Symmetry about a point.

Figure 1-19. Examples of symmetric functions

In general, two points P1 and P2 are said to be symmetric to a line if the line is

the perpendicular bisector of the line segment joining the two points. In a similar

fashion a graph is said to symmetric to a line if all points of the graph can be

grouped into pairs which are symmetric to the line and then the line is called the

axis of symmetry of the graph. A point of symmetry occurs if all points on the graph

can be grouped into pairs so that all the line segments joining the pairs are then

bisected by the same point. See for example the figure 1-19. For example, one can

say that a curve is symmetric with respect to the x-axis if for each point (x, y) on the

curve, the point (x,−y) is also on the curve. A curve is symmetric with respect to

the y-axis if for each point (x, y) on the curve, the point (−x, y) is also on the curve.

A curve is said to be symmetric about the origin if for each point (x, y) on the curve,

then the point (−x,−y) is also on the curve.
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Example 1-5. A polynomial function pn(x) = a0x
n + a1x

n−1 + · · ·+ an−1x + an of

degree n has the following properties.

(i) If only even powers of x occur in pn(x), then the polynomial curve is symmetric

about the y-axis, because in this case pn(−x) = pn(x).

(ii) If only odd powers of x occur in pn(x), then the polynomial curve is symmetric

about the origin, because in this case pn(−x) = −pn(x).

(iii) If there are points x = a and x = c such that pn(a) and pn(c) have opposite signs,

then there exists at least one point x = b satisfying a < b < c, such that pn(b) = 0.

This is because polynomial functions are continuous functions and they must

change continuously from the value pn(a) to the value pn(c) and so must pass, at

least once, through the value zero.

Translation and Scaling of Axes

Consider two sets of axes labeled (x, y) and (x̄, ȳ) as illustrated in the figure 1-

20(a) and (b). Pick up the (x̄, ȳ) axes and keep the axes parallel to each other and

place the barred axes at some point P having the coordinates (h, k) on the (x, y) axes

as illustrated in the figure 1-20(c). One can now think of the barred axes as being

a translated set of axes where the new origin has been translated to the point (h, k)

of the old set of unbarred axes. How is an arbitrary point (x, y) represented in terms

of the new barred axes coordinates? An examination of the figure 1-20 shows that

a general point (x, y) can be represented as

x = x̄ + h and y = ȳ + k or x̄ = x − h and ȳ = y − k (1.30)

Consider a curve y = f(x) sketched on the (x, y) axes of figure 1-20(a). Change

the symbols x and y to x̄ and ȳ and sketch the curve ȳ = f(x̄) on the (x̄, ȳ) axes of

figure 1-20(b). The two curves should look exactly the same, the only difference

being how the curves are labeled. Now move the (x̄, ȳ) axes to a point (h, k) of the

(x, y) coordinate system to produce a situation where the curve ȳ = f(x̄) is now to be

represented with respect to the (x, y) coordinate system.

The new representation can be determined by using the transformation equations

(1.30). That is, the new representation of the curve is obtained by replacing ȳ by

y − k and replacing x̄ by x − h to obtain

y − k = f(x − h) (1.31)
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Figure 1-20. Shifting of axes.

In the special case k = 0, the curve y = f(x − h) represents a shifting of the curve

y = f(x) a distance of h units to the right. Replacing h by −h and letting k = 0 one

finds the curve y = f(x + h) is a shifting of the curve y = f(x) a distance of h units

to the left. In the special case h = 0 and k �= 0, the curve y = f(x) + k represents a

shifting of the graph y = f(x) a distance of k units upwards. In a similar fashion,

the curve y = f(x) − k represents a shifting of the graph of y = f(x) a distance of k

units downward. The figure 1-21 illustrates the shifting and translation of axes for

the function y = f(x) = x2.

Figure 1-21. Translation and shifting of axes.

Introducing a constant scaling factor s > 0, by replacing y by y/s one can create

the scaled function y = sf(x). Alternatively one can replace x by sx and obtain the

scaled function y = f(sx). These functions are interpreted as follows.

(1) Plotting the function y = sf(x) has the effect of expanding the graph of y = f(x)

in the vertical direction if s > 1 and compresses the graph if s < 1. This is
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equivalent to changing the scaling of the units on the y-axis in plotting a graph.

As an exercise plot graphs of y = sin x, y = 5 sinx and y = 1

5
sinx.

(2) Plotting the function y = f(sx) has the effect of expanding the graph of y = f(x)

in the horizontal direction if s < 1 and compresses the graph in the x-direction

if s > 1. This is equivalent to changing the scaling of the units on the x-axis in

plotting a graph. As an exercise plot graphs of y = sin x, y = sin(1

3
x) and y = sin(3x).

(3) A plot of the graph (x,−f(x)) gives a reflection of the graph y = f(x) with respect

to the x-axis.

(4) A plot of the graph (x, f(−x)) gives a reflection of the graph y = f(x) with respect

to the y-axis.

Rotation of Axes

Place the (x̄, ȳ) axes from figure 1-20(b) on top of the (x, y) axes of figure 1-20(a)

and then rotate the (x̄, ȳ) axes through an angle θ to obtain the figure 1-22. An

arbitrary point (x, y), a distance r from the origin, has the coordinates (x̄, ȳ) when

referenced to the (x̄, ȳ) coordinate system. Using basic trigonometry one can find

the relationship between the rotated and unrotated axes. Examine the figure 1-22

and verify the following trigonometric relationships.

The projection of r onto the x̄ axis produces x̄ = r cosφ and the projection of r onto

the ȳ axis produces ȳ = r sin φ. In a similar fashion consider the projection of r onto

the y-axis to show y = r sin(θ + φ) and the projection of r onto the x-axis produces

x = r cos(θ + φ).
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Figure 1-22.

Rotation of axes.

Expressing these projections in the form

cos(θ + φ) =
x

r

sin(θ + φ) =
y

r

(1.32)

cosφ =
x̄

r

sinφ =
ȳ

r

(1.33)

one can expand the equations (1.32) to obtain

x = r cos(θ + φ) =r(cos θ cos φ − sin θ sinφ)

y = r sin(θ + φ) =r(sin θ cosφ + cos θ sinφ)
(1.34)

Substitute the results from the equations (1.33) into the equations (1.34) to ob-

tain the transformation equations from the rotated coordinates to the unrotated

coordinates. One finds these transformation equations can be expressed

x =x̄ cos θ − ȳ sin θ

y =x̄ sin θ + ȳ cos θ
(1.35)

Solving the equations (1.35) for x̄ and ȳ produces the inverse transformation

x̄ =x cos θ + y sin θ

ȳ = − x sin θ + y cos θ
(1.36)

Inverse Functions

If a function y = f(x) is such that it never takes on the same value twice, then

it is called a one-to-one function. One-to-one functions are such that if x1 �= x2, then

f(x1) �= f(x2). One can test to determine if a function is a one-to-one function by

using the horizontal line test which is as follows. If there exists a horizontal line

y = a constant, which intersects the graph of y = f(x) in more than one point, then

there will exist numbers x1 and x2 such that the height of the curve at x1 is the

same as the height of the curve at x2 or f(x1) = f(x2). This shows that the function

y = f(x) is not a one-to-one function.

Let y = f(x) be a single-valued function of x which is a one-to-one function such as

the function sketched in the figure 1-23(a). On this graph interchange the values of

x and y everywhere to obtain the graph in figure 1-23(b). To represent the function
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x = f(y) with y in terms of x define the inverse operator f−1 with the property that

f−1f(x) = x. Now apply this operator to both sides of the equation x = f(y) to obtain

f−1(x) = f−1f(y) = y or y = f−1(x). The function y = f−1(x) is called the inverse

function associated with the function y = f(x). Rearrange the axes in figure 1-23(b)

so the x-axis is to the right and the y-axis is vertical so that the axes agree with

the axes representation in figure 1-23(a). This produces the figure 1-23(c). Now

place the figure 1-23(c) on top of the original graph of figure 1-23(a) to obtain the

figure 1-23(d), which represents a comparison of the original function and its inverse

function. This figure illustrates the function f(x) and its inverse function f−1(x) are

one-to-one functions which are symmetric about the line y = x.

Figure 1-23. Sketch of a function and its inverse function.

Note that some functions do not have an inverse function. This is usually the

result of the original function not being a one-to-one function. By selecting a domain

of the function where it is a one-to-one function one can define a branch of the function

which has an inverse function associated with it.

Lets examine what has just been done in a slightly different way. If y = f(x) is a

one-to-one function, then the graph of the function y = f(x) is a set of ordered pairs

(x, y), where x ∈ X, the domain of the function and y ∈ Y the range of the function.
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Now if the function f(x) is such that no two ordered pairs have the same second

element, then the function obtained from the set

S = { (x, y) | y = f(x), x ∈ X}

by interchanging the values of x and y is called the inverse function of f and it is

denoted by f−1. Observe that the inverse function has the domain of definition Y

and its range is X and one can write

y = f(x) ⇐⇒ f−1(y) = x (1.32)

Still another way to approach the problem is as follows. Two functions f(x)

and g(x) are said to be inverse functions of one another if f(x) and g(x) have the

properties that

g(f(x)) = x and f(g(x)) = x (1.33)

If g(x) is an inverse function of f(x), the notation f−1, (read f-inverse), is used to

denote the function g. That is, an inverse function of f(x) is denoted f−1(x) and has

the properties

f−1(f(x)) = x and f(f−1(x)) = x (1.34)

Given a function y = f(x), then by interchanging the symbols x and y there results

x = f(y). This is an equation which defines the inverse function. If the equation

x = f(y) can be solved for y in terms of x, to obtain a single valued function, then

this function is called the inverse function of f(x). One then obtains the equivalent

statements

x = f(y) ⇐⇒ y = f−1(x) (1.35)

The process of interchanging x and y in the representation y = f(x) to obtain

x = f(y) implies that geometrically the graphs of f and f−1 are mirror images of

each other about the line y = x. In order that the inverse function be single valued

and one-to-one, it is necessary that there are no horizontal lines, y = constant, which

intersect the graph y = f(x) more than once. Observe that one way to find the inverse

function is the following.
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(1.) Write y = f(x) and then interchange x and y to obtain x = f(y)

(2.) Solve x = f(y) for the variable y to obtain y = f−1(x)

(3.) Note the inverse function f−1(x) sometimes turns out to be a multiple-valued

function. Whenever this happens it is customary to break the function up into

a collection of single-valued functions, called branches, and then one of these

branches is selected to be called the principal branch of the function. That is,

if multiple-valued functions are involved, then select a branch of the function

which is single-valued such that the range of y = f(x) is the domain of f−1(x).

An example of a function and its inverse is given in the figure 1-22.

Figure 1-22. An example of a function and its inverse.

Example 1-6. (Inverse Trigonometric Functions)

The inverse trigonometric functions are defined in the table 1-1. The inverse

trigonometric functions can be graphed by interchanging the axes on the graphs

of the trigonometric functions as illustrated in the figures 1-23 and 1-24. Observe

that these inverse functions are multi-valued functions and consequently one must

define an interval associated with each inverse function such that the inverse function

becomes a single-valued function. This is called selecting a branch of the function

such that it is single-valued.
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Table 1-1

Inverse Trigonometric Functions

Alternate Interval for

Function notation Definition single-valuedness

arcsinx sin−1 x sin−1 x = y if and only if x = sin y −π
2
≤ y ≤ π

2

arccosx cos−1 x cos−1 x = y if and only if x = cos y 0 ≤ y ≤ π

arctanx tan−1 x tan−1 x = y if and only if x = tany −π
2

< y < π
2

arccotx cot−1 x cot−1 x = y if and only if x = cot y 0 < y < π

arcsec x sec−1 x sec−1 x = y if and only if x = sec y 0 ≤ y ≤ π, y �= π
2

arccsc x csc−1 x csc−1 x = y if and only if x = csc y −π
2
≤ y ≤ π

2
, y �= 0

Figure 1-23. The inverse trigonometric functions sin−1 x, cos−1 x and tan−1 x.

There are many different intervals over which each inverse trigonometric function

can be made into a single-valued function. These different intervals are referred to

as branches of the inverse trigonometric functions. Whenever a particular branch is

required for certain problems, then by agreement these branches are called principal

branches and are always used in doing calculations. The following table gives one

way of defining principal value branches for the inverse trigonometric functions.

These branches are highlighted in the figures 1-23 and 1-24.
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Principal Values for Regions Indicated

x < 0 x ≥ 0

−π
2
≤ sin−1 x < 0 0 ≤ sin−1 x ≤ π

2

π
2
≤ cos−1 x ≤ π 0 ≤ cos−1 x ≤ π

2

−π
2
≤ tan−1 x < 0 0 ≤ tan−1 x < π

2

π
2

< cot−1 x < π 0 < cot−1 x ≤ π
2

π
2 ≤ sec−1 x ≤ π 0 ≤ sec−1 x < π

2

−π
2 ≤ csc−1 x < 0 0 < csc−1 x ≤ π

2

Figure 1-24. The inverse trigonometric functions cot−1 x, sec−1 x and csc−1 x.

Equations of lines

Given two points (x1, y1) and (x2, y2) one can plot these points on a rectangular

coordinate system and then draw a straight line � through the two points as illus-

trated in the sketch given in the figure 1-25. By definition the slope of the line is

defined as the tangent of the angle α which is formed where the line � intersects the

x-axis.
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Move from point (x1, y1) to point (x2, y2) along the line and let ∆y denote a change

in y and let ∆x denote a change in x, then the slope of the line, call it m, is calculated

slope of line = m = tanα =
y2 − y1

x2 − x1
=

change in y

change in x
=

∆y

∆x
(1.36)

If (x, y) is used to denote a variable point which moves along the line, then one can

make use of similar triangles and write either of the statements

m =
y − y1

x − x1
or m =

y − y2

x − x2
(1.37)

The first equation representing the change in y over a change in x relative to the

first point and the second equation representing a change in y over a change in x

relative to the second point on the line.

This gives the two-point formulas for representing a line

y − y1

x − x1
=

y2 − y1

x2 − x1
= m or

y − y2

x − x2
=

y2 − y1

x2 − x1
= m (1.38)

Figure 1-25. The line y − y1 = m(x − x1)

Once the slope m =
change in y
change in x

= tanα of the line is known, one can represent

the line using either of the point-slope forms

y − y1 = m(x − x1) or y − y2 = m(x − x2) (1.39)

Note that lines parallel to the x-axis have zero slope and are represented by

equations of the form y = y0 = a constant. For lines which are perpendicular to the

x-axis or parallel to the y-axis, the slope is not defined. This is because the slope
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tends toward a + infinite slope or - infinite slope depending upon how the angle of

intersection α approaches π/2. Lines of this type are represented by an equation

having the form x = x0 = a constant. The figure 1-26 illustrates the general shape

of a straight line which has a positive, zero and negative slope.

Figure 1-26. The slope of a line.

positive slope zero slope negative slope ±∞ slope

The general equation of a line is given by

Ax + By + C = 0, where A, B, C are constants. (1.40)

The slope-intercept form for the equation of a line is given by

y = mx + b (1.41)

where m is the slope and b is the y−intercept. Note that when x = 0, then the point

(0, b) is where the line intersects the y axis. If the line intersects the y-axis at the

point (0, b) and intersects the x-axis at the point (a, 0), then the intercept form for

the equation of a straight line is given by

x

a
+

y

b
= 1, a �= 0, b �= 0 (1.42)

One form1 for the parametric equation of a straight line is given by the set of points

� = { (x, y) | x = t and y = mt + b, −∞ < t < ∞ }

Another parametric form such as

� = { (x, y) | x = sin t and y = m sin t + b, −∞ < t < ∞ }

gives only a segment of the total line.

1 The parametric representation of a line or curve is not unique and depends upon the representation.
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The polar form for the equation of a straight line can be obtained from the

intercept form for a line, given by equation (1.42), by using the transformation

equations (1.1) previously considered. For example, if the intercept form of the line

� is
x

a
+

y

b
= 1, then the transformation equations x = r cos θ and y = r sin θ change this

equation to the form
r cos θ

a
+

r sin θ

b
= 1 (1.43)

Figure 1-27.

Determining polar form for line.

Let d denote the perpendicular distance

from the line � to the origin of the rectan-

gular x, y coordinate system as illustrated

in the figure 1-27. This perpendicular line

makes an angle β such that

cosβ =
d

a
and cos(

π

2
− β) = sinβ =

d

b

Solve for
1

a
and

1

b
and substitute the results

into the equation (1.43) to show

r

d
cos θ cos β +

r

d
sin θ sin β = 1

Use trigonometry to simplify the above equation and show the polar form for the

equation of the line is

r cos(θ − β) = d (1.44)

Here (r, θ) is a general point in polar coordinates which moves along the line � de-

scribed by the polar equation (1.44) and β is the angle that the x-axis makes with

the line which passes through the origin and is perpendicular to the line �.

Perpendicular Lines
Consider a line �2 which is perpendicular to a given line

�1 as illustrated in the figure 1-28. The slope of the line

�1 is given by m1 = tanα1 and the slope of the line �2 is

given by m2 = tanα2 where α1 and α2 are the positive

angles made when the lines �1 and �2 intersect the x-axis. Figure 1-28.

Perpendicular lines.
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Two lines are said to intersect orthogonally when they intersect to form two right

angles. Note that α2 is an exterior angle to a right triangle ABC and so one can

write α2 = α1 +π/2. If the two lines are perpendicular, then the product of the slopes

m1 and m2 must satisfy

m1m2 = tanα1 tanα2 =

(

sinα1

cos α1

)

sin(α1 + π/2)

cos(α1 + π/2)
=

sin α1

cosα1
· cosα1

(− sinα1)
= −1 (1.45)

which shows that if the two lines are perpendicular, then the product of their slopes

must equal -1, or alternatively, one slope must be the negative reciprocal of the other

slope. This relation breaks down if one of the lines is parallel to the x-axis, because

then a zero slope occurs.

In general, if line �1 with slope m1 = tan θ1 inter-

sects line �2 with slope m2 = tan θ2 and θ denotes the

angle of intersection as measured from line �1 to �2,

then θ = θ2 − θ1 and

tan θ =tan(θ2 − θ1) =
tan θ2 − tan θ1

1 + tan θ1 tan θ2

tan θ =
m2 − m1

1 + m1m2

Note that as m2 approaches −1/m1, then the angle θ approaches π/2.

Limits

The notation x → ∞ is used to denote the value x increasing without bound

in the positive direction and the notation x → −∞ is used to denote x increasing

without bound in the negative direction. The limits lim
x→∞

f(x) and lim
x→−∞

f(x), if they

exist, are used to denote the values of a function f(x) as the variable x is allowed

to increase without bound in the positive and negative directions. For example one

can write

lim
x→∞

(2 +
1

x
) = 2 and lim

x→−∞

(2 +
1

x2
) = 2

The notation x → x0 denotes the variable x approaching the finite value x0, but

it never gets there. If x and x0 denote real numbers, then x can approach x0 from

any direction and get as close to x0 as you desire, but it cannot equal the value x0.

For ε > 0 a small real number, sketch on a piece of paper the difference between the

x-values defined by the sets

N = {x | | x − x0| < ε} and N0 = {x | 0 < |x − x0| < ε} (1.46)
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Observe that the set N contains all the points between x0 − ε and x0 + ε together with

the point x0 ∈ N , while the set N0 is the same as N but has the point x0 excluded so

one can write x0 /∈ N0. The set N is called a neighborhood of the point x0 while the set

N0 is called a deleted neighborhood of the point x0. The notation x → x0 emphasizes

the requirement that x approach the value x0, but x is restricted to taking on the

values in the set N0. The situation is illustrated in the figures 1-29(a) and 1-29(b).

The notation x → x+
0 is used to denote x approaching x0 from the right-hand side of

x0, where x is restricted such that x > x0. The notation x → x−

0 is used to denote x

approaching x0 from the left-hand side of x0, where x is restricted such that x < x0.

In general, the notation x → x0 means x can approach x0 from any direction, but x

can never equal x0.

Figure 1-29. Left and right-hand approaches of x to the value x0.

Infinitesimals

You cannot compare two quantities which are completely different in every way.

To measure related quantities you must have

(i) A basic unit of measurement applicable to the quantity being measured.

(ii) A number representing the ratio of the measured quantity to the basic unit.

The concept of largeness or smallness of a quantity is relative to the basic unit

selected for use in the measurement. For example, if a quantity Q is divided up

into some fractional part f , then fQ is smaller than Q because the ratio fQ/Q = f

is small. For f < 1, quantities like fQ, f2Q, f3Q, . . . are called small quantities of

the first, second, third orders of smallness, since each quantity is a small fraction

f of the previous quantity. If the fraction f is allowed to approach zero, then the

quantities fQ, f2Q, f3Q, . . . are very, very small and are called infinitesimals of the

first, second, third, . . ., orders. Thus, if ∆x is a small change in x, then (∆x)2 would

be an infinitesimal of the second order, (∆x)3 would be an infinitesimal of the third

order, etc.
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In terms of limits, if α and β are infinitesimals and lim
α→0

β

α
is some constant

different from zero, then α and β are called infinitesimals of the same order. However,

if lim
α→0

β

α
= 0, then β is called an infinitesimal of higher order than α.

If you are dealing with an equation involving infinitesimals of different

orders, you only need to retain those infinitesimals of lowest order, since the higher

order infinitesimals are significantly smaller and will not affect the results

when these infinitesimals approach zero .

This concept is often used in comparing the ratio of two small quantities which

approach zero. Consider the problem of finding the volume of a hollow cylinder, as

illustrated in the figure 1-30, as the thickness of the cylinder sides approaches zero.

Figure 1-30. Volume of hollow cylinder.

Let ∆V denote the volume of the hollow cylinder with r the inner radius of the

hollow cylinder and r + ∆r the outer radius. One can write

∆V =Volume of outer cylinder− Volume of inner cylinder

∆V =π(r + ∆r)2h − πr2h = π[r2 + 2r∆r + (∆r)2]h − πr2h

∆V =2πrh∆r + πh(∆r)2

This relation gives the exact volume of the hollow cylinder. If one takes the limit

as ∆r tends toward zero, then the ∆r and (∆r)2 terms become infinitesimals and

the infinitesimal of the second order can be neglected since one is only interested in

comparison of ratios when dealing with small quantities. For example

lim
∆r→0

∆V

∆r
= lim

∆r→0
(2πrh + πh∆r) = 2πrh
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Limiting Value of a Function

The notation lim
x→x0

f(x) = � is used to denote the limiting value of a function f(x)

as x approaches the value x0, but x �= x0. Note that the limit statement lim
x→x0

f(x) is

dependent upon values of f(x) for x near x0, but not for x = x0. One must examine

the values of f(x) both for x+
0 values (values of x slightly greater than x0) and for

x−

0 values (values of x slightly less than x0). These type of limiting statements are

written

lim
x→x+

0

f(x) and lim
x→x−

0

f(x)

and are called right-hand and left-hand limits respectively. There may be situations

where (a) f(x0) is not defined (b) f(x0) is defined but does not equal the limiting

value � (c) the limit lim
x→x0

f(x) might become unbounded, in which case one can write

a statement stating that “no limit exists as x → x0 ”.

Some limits are easy to calculate, for example lim
x→2

(3x + 1) = 7, is a limit of the

form lim
x→x0

f(x) = f(x0), where f(x0) is the value of f(x) at x = x0, if the value f(x0)

exists. This method is fine if the graph of the function f(x) is a smooth unbroken

curve in the neighborhood of the point x0.

Figure 1-31.

Sectionally-continuous

function

The limiting value lim
x→x0

f(x) cannot be calculated by eval-

uating the function f(x) at the point x0 if the function is

not defined at the point x0. A function f(x) is called a

sectionally continuous function if its graph can be repre-

sented by sections of unbroken curves. The function f(x)

defined

f(x) =

{

2 − (x − x0), x < x0

5 + 2(x − x0), x > x0

is an example of a sectionally continuous function. Note this function is not defined

at the point x0 and the left-hand limit lim
x→x−

0

f(x) = 2 and the right-hand limit given

by lim
x→x+

0

f(x) = 5 are not equal and f(x0) is not defined. The graph of f(x) is sketched

in the figure 1-31. The function f(x) is said to have a jump discontinuity at the point

x = x0 and one would write lim
x→x0

f(x) does not exit.

Some limiting values produce the indeterminate forms 0
0

or ∞

∞
and these resulting

forms must be analyzed further to determine their limiting value. For example, the
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limiting value 0

0
may reduce to a zero value, a finite quantity or it may become an

infinite quantity as the following examples illustrate.

lim
x→0

3x2

2x
= lim

x→0

3

2
x = 0, a zero limit

lim
x→0

3x

2x
= lim

x→0

3

2
=

3

2
, a finite limit

lim
x→0

3x

2x2
= lim

x→0

3

2x
= ∞, an infinite limit

lim
x→x0

x2 − x2

0

x − x0

= lim
x→x0

(x − x0)(x + x0)

(x − x0)
= 2x0,

a finite limit

Example 1-7. (Geometry used to determine limiting value)

Consider the function f(x) =
sin x

x
and observe that this function is not defined

at the value x = 0, because f(0) =
sinx

x
x=0

=
0

0
, an indeterminate form. Let us

investigate the limit lim
x→0

sinx

x
using the geometry of the figure 1-32 as the angle2 x

gets very small, but with x �= 0. The figure 1-32 illustrates part of a circle of radius

r sketched in the first quadrant along with a ray from the origin constructed at the

angle x. The lines AD and BC perpendicular to the polar axis are constructed along

with the line BD representing a chord. These constructions are illustrated in the

figure 1-32. From the geometry of figure 1-32 verify the following values.

AD = r sin x

BC = r tanx

Area � 0BD =
1

2
0B ·AD =

1

2
r2 sinx

Area sector 0BD =
1

2
r2x

Area � 0BC =
1

2
0B · BC =

1

2
r2 tan x

One can compare the areas of triangles �0BD, �0BC and sector 0BD to come

up with the inequalities

Area� 0BD ≤ Area sector 0BD ≤ Area � 0BC

or
1

2
r2 sin x ≤

1

2
r2x ≤

1

2
r2 tanx

(1.47)

Divide this inequality through by 1

2
r2 sin x to obtain the result 1 ≤

x

sin x
≤

1

cos x
.

Taking the reciprocals one can write

1 ≥
sin x

x
≥ cos x (1.48)

2 Radian measure is always used.
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Figure 1-32. Construction of triangles and sector associated with circle.

Now take the limit as x approaches zero to show

1 ≥ lim
x→0

sin x

x
≥ lim

x→0
cos x (1.49)

The function
sinx

x
is squeezed or sandwiched between the values 1 and cos x and since

the cosine function approaches 1 as x approaches zero, one can say the limit of the

function
sinx

x
must also approach 1 and so one can write

lim
x→0

sinx

x
= 1 (1.50)

In our study of calculus other methods are developed to verify the above limiting

value associated with the indeterminate form
sinx

x
as x approaches zero.

Example 1-8. (Algebra used to determine limiting value)

Algebra as well as geometry can be used to aid in evaluating limits. For example,

to calculate the limit

lim
x→1

xn − 1

x − 1
=

xn − 1

x − 1 x=1

=
0

0
an indeterminate form (1.51)

one can make the change of variables z = x−1 and express the limit given by equation

(1.51) in the form

lim
z→0

(1 + z)n − 1

z
(1.52)

The numerator of this limit expression can be expanded by using the binomial

theorem

(1 + z)n = 1 + nz +
n(n − 1)

2!
z2 +

n(n − 1)(n − 2)

3!
z3 + · · · (1.53)
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Substituting the expansion (1.53) into the equation (1.52) and simplifying reduces

the given limit to the form

lim
z→0

[

n +
n(n − 1)

2!
z +

n(n − 1)(n − 2)

3!
z2 + · · ·

]

= n (1.54)

This shows that lim
x→1

xn − 1

x − 1
= n

Example 1-9. (Limits)

The following are some examples illustrating limiting values associated with

functions.

lim
x→3

x2 =9

lim
x→0+

1

x
= +∞

lim
x→0−

1

x
= −∞

lim
x→∞

(

3 +
1

x

)

=3

lim
θ→0

tan θ

θ
=1

lim
x→0

√
x + 1 − 1

x
=

1

2

Formal Definition of Limit

In the early development of mathematics the concept of a limit was very vague.

The calculation of a limit was so fundamental to understanding certain aspects of

calculus, that it required a precise definition. A more formal ε−δ (read epsilon-delta)

definition of a limit was finally developed around the 1800’s. This formalization

resulted from the combined research into limits developed by the mathematicians

Weierstrass,3 Bolzano4 and Cauchy.5

Definition 1: Limit of a function

Let f(x) be defined and single-valued for all values of x in some deleted neigh-

borhood of the point x0. A number � is called a limit of f(x) as x approaches x0,

written lim
x→x0

f(x) = �, if for every small positive number ε > 0 there exists a number

δ such that6

|f(x) − �| < ε whenever 0 < |x − x0| < δ (1.55)

Then one can write f(x) → � (f(x) approaches �) as x → x0 (x approaches x0). Note

that f(x) need not be defined at the point x0 in order for a limit to exist.

3 Karl Theodor Wilhelm Weierstrass (1815-1897) A German mathematician.
4 Bernard Placidus Johan Nepomuk Bolzano (1781-1848) A Bohemian philosopher and mathematician.
5 Augustin Louis Cauchy (1789-1857) A French mathematician.
6 The number δ usually depends upon how ε is selected.
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The above definition must be modified if restrictions are placed upon how x

approaches x0. For example, the limits lim
x→x+

0

f(x) = �1 and lim
x→x−

0

f(x) = �2 are called

the right-hand and left-hand limits associated with the function f(x) as x approaches

the point x0. Sometimes the right-hand limit is expressed lim
x→x+

0

f(x) = f(x+
0 ) and

the left-hand limit is expressed lim
x→x−

0

f(x) = f(x−

0 ). The ε − δ definitions associated

with these left and right-hand limits is exactly the same as given above with the

understanding that for right-hand limits x is restricted to the set of values x > x0

and for left-hand limits x is restricted to the set of values x < x0.

Definition 2: Limit of a function f(x) as x → ∞

Let f(x) be defined over the unbounded interval c < x < ∞, then a number � is

called a limit of f(x) as x increases without bound, written as lim
x→∞

f(x) = �, if for

every ε > 0, there exists a number N1 > 0 such that |f(x) − �| < ε, whenever x ≥ N1.

In a similar fashion, if f(x) is defined over the unbounded interval −∞ < x < c,

then the number � is called a limit of f(x) as x decreases without bound, written

lim
x→−∞

f(x) = �, if for every ε > 0, there exists a number N2 > 0 such that |f(x)− �| < ε,

whenever x ≤ −N2.

In terms of the graph { (x, y) | y = f(x), x ∈ R } one can say that for x sufficiently

large, larger than N1 or less than −N2, the y values of the graph would get as close

as you want to the line y = �.

Definition 3: Limit of a function becomes unbounded

In the cases where the limit lim
x→x0

f(x) either increases or decreases without bound

and does not approach a limit, then the notation lim
x→x0

f(x) = +∞ is used to denote

that there exists a number N3 > 0, such that f(x) > N3, whenever 0 < |x−x0| < δ and

the notation lim
x→x0

f(x) = −∞ is used to denote that there exists a number N4 > 0,

such that f(x) < −N4, whenever 0 < |x − x0| < δ.

In the above notations the symbols +∞ (plus infinity) and −∞ (minus infinity)

are used to denote unboundedness of the functions. These symbols are not numbers.

Also observe that there are situations where to use the above notation one might

have to replace the limit subscript x → x0 by either x → x+
0 or x → x−

0 in order to

denote right or left-handed limits.
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In using the ε− δ methods to prove limit statements, observe that the statement

“f(x) is near �” is expressed mathematically by the statement |f(x) − �| < ε where

ε > 0 is very small. By selecting ε very small you can force f(x) to be very near �,

but what must δ be in order that f(x) be that close to �? The selection of δ, in most

cases, will depend upon how ε is specified. The statement that “x is near x0, but x

is not equal to x0 ” is expressed mathematically by the statement 0 < |x − x0| < δ.

The real number δ which is selected to achieve the smallness specified by ε, is not

a unique number. Once one value of δ is found, then any other value δ1 < δ would

also satisfy the definition.

Figure 1-33.
(a) Graphical sketch of ε− δ limit.

(b) Function having jump discontinuity at the point x0

A sketch of the ε − δ definition of a limit is given in the figure 1-33(a). Here

x0, �, ε > 0, δ > 0 are all real numbers and the given function y = f(x) is understood to

be well defined for both x < x0 and for x > x0, while the function value f(x0) may or

may not be defined. That portion of the graph inside the shaded rectangle is given

by the set of values

G = { (x, y) | 0 < |x − x0| < δ and y = f(x) }

which is a subset of all the points inside the shaded rectangle.
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The shaded rectangle consists of the set of values

S = { (x, y) | 0 < |x − x0| < δ and |y − �| < ε }

Note that the line where x = x0 and � − ε < y < � + ε is excluded from the set. The

problem is that for every ε > 0 that is specified, one must know how to select the

δ to insure the curve stays within the shaded rectangle. If this can be done then �

is defined to be the lim
x→x0

f(x). In order to make |f(x) − �| small, as x → x0, one must

restrict the values of x to some small deleted neighborhood of the point x0. If only

points near x0 are to be considered, it is customary to always select δ to be less than

or equal to 1. Thus if |x − x0| < 1, then x is restricted to the interval [x0 − 1, x0 + 1].

Example 1-10. (ε − δ proof)

Use the ε − δ definition of a limit to prove that lim
x→3

x2 = 9

Solution

Here f(x) = x2 and � = 9 so that

|f(x) − �| = |x2 − 9| = |(x + 3)(x− 3)| = |x + 3| · |x − 3| (1.56)

To make |f(x)− �| small one must control the size of |x− 3|. Recall that by agreement

δ is to be selected such that δ < 1 and as a consequence of this the statement “x is

near 3” is to mean x is restricted to the interval [2, 4]. This information allows us to

place bounds upon the factor (x + 3). That is, |x + 3| < 7, since x is restricted to the

interval [2, 4]. One can now use this information to change equation (1.56) into an

inequality by noting that if |x − 3| < δ, one can then select δ such that

|f(x)− �| = |x2 − 9| = |x + 3| · |x − 3| < 7δ < ε (1.57)

where ε > 0 and less than 1, is as small as you want it to be. The inequality (1.57)

tells us that if δ < ε/7, then it follows that

|x2 − 9| < ε whenever |x − 3| < δ

Special Considerations

1. The quantity ε used in the definition of a limit is often replaced by some scaled

value of ε, such as αε, ε2,
√

ε, etc. in order to make the algebra associated with

some theorem or proof easier.
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2. The limiting process has the property that for f(x) = c, a constant, for all values

of x, then

lim
x→x0

c = c (1.58)

This is known as the constant function rule for limits.

3. The limiting process has the property that for f(x) = x, then lim
x→x0

x = x0.

This is sometimes called the identity function rule for limits.

Properties of Limits

If f(x) and g(x) are functions and the limits lim
x→x0

f(x) = �1 and lim
x→x0

g(x) = �2 both

exist and are finite, then

(a) The limit of a constant times a function equals the constant times the limit of

the function.

lim
x→x0

cf(x) = c lim
x→x0

f(x) = c�1 for all constants c

(b) The limit of a sum is the sum of the limits.

lim
x→x0

[f(x) + g(x)] = lim
x→x0

f(x) + lim
x→x0

g(x) = �1 + �2

(c) The limit of a difference is the difference of the limits.

lim
x→x0

[f(x) − g(x)] = lim
x→x0

f(x) − lim
x→x0

g(x) = �1 − �2

(d) The limit of a product of functions equals the product of the function limits.

lim
x→x0

[f(x) · g(x)] =

(

lim
x→x0

f(x)

)

·
(

lim
x→x0

g(x)

)

= �1 · �2

(e) The limit of a quotient is the quotient of the limits provided that the denom-

inator limit is nonzero.

lim
x→x0

f(x)

g(x)
=

lim
x→x0

f(x)

lim
x→x0

g(x)
=

�1
�2

, provided �2 �= 0

(f) The limit of an nth root is the nth root of the limit.

lim
x→x0

n

√

f(x) = n

√

lim
x→x0

f(x) =
n

√
�1

{

if n is an odd positive integer or

if n is an even positive integer and �1 > 0

(g) Repeated applications of the product rule with g(x) = f(x) gives the extended

product rule.

lim
x→x0

f(x)n =

(

lim
x→x0

f(x)

)n

(h) The limit theorem for composite functions is as follows.

If lim
x→x0

g(x) = �, then lim
x→x0

f(g(x)) = f

(

lim
x→x0

g(x)

)

= f(�)
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Example 1-11. (Limit Theorem)

Use the ε − δ definition of a limit to prove the limit of a sum is the sum of the

limits lim
x→x0

(f(x) + g(x)) = lim
x→x0

f(x) + lim
x→x0

g(x) = �1 + �2

Solution By hypothesis, lim
x→x0

f(x) = �1 and lim
x→x0

g(x) = �2, so that for a small number

ε1 > 0, there exists numbers δ1 and δ2 such that

|f(x) − �1| < ε1 when 0 < |x − x0| < δ1

|g(x)− �2| < ε1 when 0 < |x − x0| < δ2

where ε1 > 0 is a small quantity to be specified at a later time. Select δ to be the

smaller of δ1 and δ2, then using the triangle inequality, one can write
|(f(x) + g(x))− (�1 + �2)| =|(f(x)− �1) + (g(x)− �2)|

≤ |f(x)− �1|+ |g(x)− �2|

≤ ε1 + ε1 = 2ε1 when 0 < |x − x0| < δ

Consequently, if ε1 is selected as ε/2, then one can say that

|(f(x) + g(x))− (�1 + �2)| < ε when 0 < |x − x0| < δ

which implies

lim
x→x0

(f(x) + g(x)) = lim
x→x0

f(x) + lim
x→x0

g(x) = �1 + �2

Example 1-12. (Limit Theorem)

Use the ε − δ definition of a limit to prove the limit of a product of functions

equals the product of the function limits. That is, if lim
x→x0

f(x) = �1 and lim
x→x0

g(x) = �2,

then lim
x→x0

f(x)g(x) =

(

lim
x→x0

f(x)

) (

lim
x→x0

g(x)

)

= �1�2.

Solution

By hypothesis, lim
x→x0

f(x) = �1 and lim
x→x0

g(x) = �2, so that for every small number

ε1, there exists numbers ε1, δ1 and ε1, δ2 such that

|f(x) − �1| < ε1, whenever 0 < |x − x0| < δ1

and |g(x)− �2| < ε1 whenever 0 < |x − x0| < δ2

where ε1 > 0 is some small number to be specified later. Let δ equal the smaller of

the numbers δ1 and δ2 so that one can write

|f(x) − �1| < ε1, |g(x)− �2| < ε1, whenever 0 < |x − x0| < δ
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To prove the above limit one must specify how to select δ associated with a given

value of ε such that

|f(x)g(x)− �1�2| < ε whenever |x − x0| < δ

One can select ε1 above as a small number which is some scaled version of ε. Observe

that the function f(x) is bounded, since by the triangle inequality one can write

|f(x)| = |f(x)− �1 + �1| < |f(x)− �1| + |�1| < ε1 + |�1| < 1 + |�1|

where ε1 is assumed to be less than unity. Also note that one can write

|f(x)g(x)− �1�2| = |f(x)g(x)− �2f(x) + �2f(x) − �1�2|

≤|f(x)(g(x)− �2)| + |�2(f(x)− �1)|

≤|f(x)||g(x)− �2| + |�2||f(x) − �1|

≤(1 + |�1|)ε1 + |�2|ε1 = (1 + |�1| + |�2|)ε1

Consequently, if the quantity ε1 is selected to satisfy the inequality (1+ |�1|+ |�2|)ε1 < ε,

then one can say that

|f(x)g(x)− �1�2| < ε whenever |x − x0| < δ

so that

lim
x→x0

f(x)g(x) =

(

lim
x→x0

f(x)

)(

lim
x→x0

g(x)

)

= �1�2

Example 1-13. (Limit Theorem)

If �2 �= 0, prove that if lim
x→x0

g(x) = �2, then lim
x→x0

1

g(x)
=

1

lim
x→x0

g(x)
=

1

�2

Solution By hypothesis lim
x→x0

g(x) = �2, with �2 �= 0. This means that for every ε1 > 0

there exists a δ1 such that |g(x) − �2| < ε1 whenever |x − x0| < δ1. How can this

information be used to show that for every ε > 0 there exists a δ such that
∣

∣

∣

∣

1

g(x)
− 1

�2

∣

∣

∣

∣

< ε whenever |x − x0| < δ ? (1.59)

The left-hand side of the inequality (1.59) can be expressed

∣

∣

∣

∣

1

g(x)
− 1

�2

∣

∣

∣

∣

=
|�2 − g(x)|
|g(x)�2|

=
|g(x)− �2|

|�2|
· 1

|g(x)| (1.60)
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For a given ε1, one can find a δ1 such that the quantity |g(x) − �2| < ε1 whenever

|x − x0| < δ1. What can be constructed as an inequality concerning the quantity
1

|g(x)| ? If �2 �= 0 one can employ the triangle inequality and write

|�2| = |�2 − g(x) + g(x)| ≤ |�2 − g(x)|+ |g(x)|

By the definition of a limit, one can select values ε3 and δ3 such that

|g(x)− �2| < ε3 when |x − x0| < δ3

This gives the inequalities

|�2| < ε3 + |g(x)| or |�2| − ε3 < |g(x)| or
1

|g(x)| <
1

|�2| − ε3
(1.61)

provided |�2| − ε3 is not zero. Recall that the values of ε1 and ε3 have not been

specified and their values can be selected to have any small values that we desire.

The inequality given by equation (1.60) can be expressed in the form
∣

∣

∣

∣

1

g(x)
− 1

�2

∣

∣

∣

∣

<
|g(x)− �2|

|�2|
· 1

|g(x)|
<

ε1
|�2|

· 1

|�2| − ε3
(1.62)

and is valid for all x values satisfying |x−x0| < δ, where δ is selected as the smaller of

the values δ1 and δ3. Let us now specify an ε1 and ε3 value so that with some algebra

the right-hand side of equation (1.62) can be made less than ε for |x − x0| < δ. One

way to accomplish this is as follows. After ε is selected, one can select δ1 above to go

with ε1 = ε(1 − β)|�2|2 and select δ3 above to go with ε3 = β|�2|, where β is some small

fraction less than 1. Then δ is selected as the smaller of the values δ1 and δ3 and the

product on the right-hand side of equation (1.62) is less than ε for |x − x0| < δ.

The above result can now be combined with the limit of a product rule

lim
x→x0

f(x)h(x) = lim
x→x0

f(x) · lim
x→x0

h(x) with h(x) = 1
g(x) to establish the quotient rule

lim
x→x0

f(x)

g(x)
=

(

lim
x→x0

f(x)

)(

lim
x→x0

1

g(x)

)

=
lim

x→x0

f(x)

lim
x→x0

g(x)
=

�1
�2

, provided �2 �= 0

The Squeeze Theorem

Assume that for x near x0 there exists three functions f(x), g(x) and h(x) which

can be shown to satisfy the inequalities f(x) ≤ g(x) ≤ h(x). If one can show that

lim
x→x0

f(x) = � and lim
x→x0

h(x) = �,

then one can conclude

lim
x→x0

g(x) = �

This result is known as the squeeze theorem.
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Continuous Functions and Discontinuous Functions

A function f(x) is called a continuous function over the interval a ≤ x0 ≤ b if for

all points x0 within the interval

(i) f(x0) is well defined

(ii) lim
x→x0

f(x) exists

(iii) lim
x→x0

f(x) = f(x0)

(1.63)

Polynomial functions are continuous functions. Rational algebraic functions,

represented by the quotient of two polynomials, are continuous except for those

points where the denominator becomes zero. The trigonometric functions, exponen-

tial functions and logarithmic functions are continuous functions over appropriate

intervals.

Alternatively, one can assume the right-hand limit lim
x→x0+

f(x) = �1 and the left-

hand limit lim
x→x−

0

f(x) = �2 both exist, then if �1 = �2 and f(x0) = �1, then the function

f(x) is said to be continuous at the point x0. A function continuous at all points x0

within an interval is said to be continuous over the interval.

If any of the conditions given in equation (1.63) are not met, then f(x) is called

a discontinuous function. For example, if lim
x→x0+

f(x) = �1 and lim
x→x−

0

f(x) = �2 both exist

and �1 �= �2, the function f(x) is said to have a jump discontinuity at the point x0.

An example of a function with a jump discontinuity is given in the figure 1-33(b).

If lim
x→x0

f(x) does not exist, then f(x) is said to be discontinuous at the point x0.

The Intermediate Value Property states that a function f(x) which is continuous

on a closed interval a ≤ x ≤ b is such that when x moves from the point a to the point

b the function takes on every intermediate value between f(a) and f(b) at least once.

An alternative version of the intermediate value property

is the following. If y = f(x) denotes a continuous function

on the interval a ≤ x ≤ b, where f(a) < c < f(b), and the

line y = c = constant is constructed , then the Intermediate

Value Theorem states that there must exist at least one

number ξ satisfying a < ξ < b such that f(ξ) = c.
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Example 1-14. (Discontinuities)

(a) f(x) = x2
−1

x−1
is not defined at the point x = 1, so f(x) is said to be discontin-

uous at the point x = 1. The limit lim
x→1

(x − 1)(x + 1)

x − 1
= 2 exists and so by defining

the function f(x) to have the value f(1) = 2, the function can be made continuous.

In this case the function is said to have a removable discontinuity at the point

x = 1.

(b) If lim
x→x0

f(x) = ±∞, then obviously f(x) is not defined at the point x0. Another

way to spot an infinite discontinuity is to set the denominator of a function equal

to zero and solve for x. For example, if f(x) =
1

(x − 1)(x− 2)(x − 3)
, then f(x) is

said to have infinite discontinuities at the points x = 1, x = 2 and x = 3.

(c) The function f(x) =

{

1, x < 2

5, x > 2
is not defined at the point x = 2. The

left and right-hand limits as x → 2 are not the same and so the function is said

to have a jump discontinuity at the point x = 2. The limit limx→2 f(x) does not

exist. At a point where a jump discontinuity occurs, it is sometimes convenient

to define the value of the function as the average value of the left and right-hand

limits.

Asymptotic Lines

A graph is a set of ordered pairs (x, y) which are well defined over some region

of the x, y-plane. If there exists one or more straight lines such that the graph

approaches one of these lines as x or y increases without bound, then the lines are

called asymptotic lines.

Example 1-15. (Asymptotic Lines)

Consider the curve C = { (x, y) | y = f(x) = 1+
1

x − 1
, x ∈ R } and observe that the

curve passes through the origin since when x = 0 one finds y = f(0) = 0. Also note

that as x increases, lim
x→∞

f(x) = 1 and that as x approaches the value 1, lim
x→1

f(x) = ±∞.

If one plots some selected points one can produce the illustration of the curve C as

given by the figure 1-34. In the figure 1-34 the line y = 1 is a horizontal asymptote

associated with the curve and the line x = 1 is a vertical asymptote associated with

the curve.
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Consider a curve defined by one of the equations

G(x, y) = 0, y = f(x), x = g(y)

If a line � is an asymptotic line associated with one of the above curves, then the

following properties must be satisfied. Let d denote the perpendicular distance from

a point (x, y) on the curve to the line �. If one or more of the conditions

lim
x→∞

d = 0, lim
x→−∞

d = 0, lim
y→∞

d = 0, lim
y→−∞

d = 0,

is satisfied, then the line � is called an asymptotic line or asymptote associated with

the given curve.

Figure 1-34. The graph of y = f(x) = 1 +
1

x − 1

y = 1 +
1

x − 1

y = 1

x = 1

Finding Asymptotic Lines

One can determine an asymptotic line associated with a curve y = f(x) by ap-

plying one of the following procedures.

1. Solve for y in terms of x and set the denominator equal to zero and solve for x.

The resulting values for x represent the vertical asymptotic lines.

2. Solve for x in terms of y and set the denominator equal to zero and solve for y.

The resulting values for y represent the horizontal asymptotic lines.

3. The line x = x0 is called a vertical asymptote if one of the following conditions

is true.

lim
x→x0

f(x) = ∞, lim
x→x−

0

f(x) = ∞, lim
x→x+

0

f(x) = ∞

lim
x→x0

f(x) = −∞, lim
x→x−

0

f(x) = −∞, lim
x→x+

0

f(x) = −∞
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4. The line y = y0 is called a horizontal asymptote if one of the following condi-

tions is true.

lim
x→∞

f(x) = y0, lim
x→−∞

f(x) = y0

5. The line y = mx + b is called a slant asymptote or oblique asymptote if

lim
x→∞

[f(x) − (mx + b)] = 0

Example 1-16. Asymptotic Lines

Consider the curve y = f(x) = 2x + 1 +
1

x
, where x ∈ R. This function has the

properties that

lim
x→∞

[f(x) − (2x + 1)] = lim
x→∞

1

x
= 0 and lim

x→0
f(x) = ±∞

so that one can say the line y = 2x + 1 is an oblique asymptote and the line x = 0 is

a vertical asymptote. A sketch of this curve is given in the figure 1-35.

Figure 1-35. Sketch of curve y = f(x) = 2x + 1 +
1

x

y = 2x + 1

x = 0

Conic Sections

A general equation of the second degree has the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (1.64)

where A, B, C, D, E, F are constants. All curves which have the form of equation (1.64)

can be obtained by cutting a right circular cone with a plane. The figure 1-36(a)

illustrates a right circular cone obtained by constructing a circle in a horizontal plane

and then moving perpendicular to the plane to a point V above or below the center

of the circle. The point V is called the vertex of the cone. All the lines through the

point V and points on the circumference of the circle are called generators of the
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cone. The set of all generators produces a right circular cone. The figure 1-36(b)

illustrates a horizontal plane intersecting the cone in a circle. The figure 1-36(c)

illustrates a nonhorizontal plane section which cuts two opposite generators. The

resulting curve of intersection is called an ellipse. Figure 1-36(d) illustrates a plane

parallel to a generator of the cone which also intersects the cone. The resulting

curve of intersection is called a parabola. Any plane cutting both the upper and

lower parts of a cone will intersect the cone in a curve called a hyperbola which is

illustrated in the figure 1-36(e).

Figure 1-36. The intersection of right circular cone with a plane.

Conic sections were studied by the early Greeks. Euclid7 supposedly wrote four

books on conic sections. The Greek geometer Appollonius8 wrote eight books on

conic sections which summarized Greek knowledge of conic sections and his work

has survived the passage of time.

Conic sections can be defined as follows. In the xy-plane select a point f , called

the focus, and a line D not through f . This line is called the directrix. The set of

points P satisfying the condition that the distance from f to P , call it r = Pf , is some

multiple e times the distance d = PP ′, where d represents the perpendicular distance

from the point P to the line D. The resulting equation for the conic section is

obtained from the equation r = ed with the geometric interpretation of this equation

illustrated in the figure 1-37.

7 Euclid of Alexandria (325-265 BCE)
8 Appollonius of Perga (262-190 BCE)
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Figure 1-37.

Defining a conic section.

The plane curve resulting from the equation

r = ed is called a conic section with eccentricity

e, focus f and directrix D and if the eccentricity e

satisfies

0 < e < 1, the conic section is an ellipse.

e = 1, the conic section is a parabola.

e > 1, the conic section is a hyperbola.

In addition to the focus and directrix there is associated with each conic section

the following quantities.

The vertex V The vertex V of a conic section is the midpoint of a line from the

focus perpendicular to the directrix.

Axis of symmetry The line through the focus and perpendicular to the directrix

is called an axis of symmetry.

Focal parameter 2p This is the perpendicular distance from the focus to the

directrix, where p is the distance from the focus to the vertex or distance from

vertex to directrix.

Latus rectum 2� This is a chord parallel to a directrix and perpendicular to a

focus which passes between two points on the conic section. The latus rectum

is used as a measure associated with the spread of a conic section. If � is the

semi-latus rectum intersecting the conic section at the point where x = p, one

finds r = � = ed and so it follows that 2� = 2ed.

Circle

A circle is the locus of points (x, y) in a plane equidistant from a fixed point called

the center of the circle. Note that no real locus occurs if the radius r is negative or

imaginary. It has been previously demonstrated how to calculate the equation of a

circle. The figure 1-38 is a summary of these previous results. The circle x2 + y2 = r2

has eccentricity zero and latus rectum of 2r. Parametric equations for the circle

(x − x0)
2 + (y − y0)

2 = r2, centered at (x0, y0), are

x = x0 + r cos t, y = y0 + r sin t, 0 ≤ t ≤ 2π
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When dealing with second degree equations of the form x2 + y2 + αx + βy = γ,

where α, β and γ are constants, it is customary to complete the square on the x and

y terms to obtain

(x2 + αx +
α2

4
) + (y2 + βy +

β2

4
) = γ +

α2

4
+

β2

4
=⇒ (x +

α

2
)2 + (y +

β

2
)2 = r2

where it is assumed that r2 = γ + α2

4
+ β2

4
> 0. This produces the equation of a circle

with radius r which is centered at the point
(

−α
2
,−β

2

)

.

Figure 1-38.

Circle about origin and circle translated to point (x0, y0)

Parabola

The parabola can be defined as the locus of points (x, y) in a plane, such that

(x, y) moves to remain equidistant from a fixed point (x0, y0) and fixed line �. The fixed

point is called the focus of the parabola and the fixed line is called the directrix of

the parabola. The midpoint of the perpendicular line from the focus to the directrix

is called the vertex of the parabola.

In figure 1-39(b), let the point (0, p) denote the focus of the parabola symmetric

about the y-axis and let the line y = −p denote the directrix of the parabola. If (x, y)

is a general point on the parabola, then

d1 =distance from (x, y) to focus =
√

x2 + (y − p)2

d2 =distance from (x, y) to directrix = y + p
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If d1 = d2 for all values of x and y, then
√

x2 + (y − p)2 = y + p or x2 = 4py, p �= 0 (1.65)

This parabola has its vertex at the origin, an eccentricity of 1, a semi-latus rectum

of length 2p, latus rectum of 2� = 4p and focal parameter of 2p.

Figure 1-39.

Parabolas symmetric about the x and y axes.

Other forms for the equation of a parabola are obtained by replacing p by −p

and interchanging the variables x and y. For p > 0, other standard forms for the

equation of a parabola are illustrated in the figure 1-40. In the figure 1-40 observe

the upward/downward and left/right opening of the parabola depend upon the sign

before the parameter p, where p > 0 represents the distance from the origin to the

focus. By replacing x by −x and y by −y one can verify the various symmetries

associated with these shapes.

Using the translation of axes equations (1.30), the vertex of the parabolas in the

figure 1-40 can be translated to a point (h, k). These translated equations have the

representations

(x − h)2 =4p(y − k)

(x − h)2 = − 4p(y − k)

(y − k)2 =4p(x− h)

(y − k)2 = − 4p(x − h)
(1.66)

Also note that the lines of symmetry are also shifted.
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Figure 1-40.

Other forms for representing a parabola.

One form for the parametric representation of the parabola (x−h)2 = 4p(y− k) is

given by

P = { (x, y) | x = h + t, y = k + t2/4p, −∞ < t < ∞ } (1.67)

with similar parametric representations for the other parabolas.

Use of determinants

The equation of the parabola passing through the three distinct points (x1, y1),

(x2, y2) and (x3, y3) can be determined by evaluating the determinant9

∣

∣

∣

∣

∣

∣

∣

y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1

∣

∣

∣

∣

∣

∣

∣

= 0

provided the following determinants are different from zero.

∣

∣

∣

∣

∣

∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣

∣

∣

∣

∣

∣

�= 0, and

∣

∣

∣

∣

∣

∣

x1 y1 1
x2 y2 1
x3 y3 1

∣

∣

∣

∣

∣

∣

�= 0

9 Determinants and their properties are discussed in chapter 10.
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Ellipse

The eccentricity e of an ellipse satisfies 0 < e < 1 so that for any given positive

number a one can state that

ae <
a

e
, 0 < e < 1 (1.68)

Consequently, if the point (ae, 0) is selected as the focus of an ellipse and the line

x = a/e is selected as the directrix of the ellipse, then in relation to this fixed focus

and fixed line a general point (x, y) will satisfy

d1 =distance of (x, y) to focus =
√

(x − ae)2 + y2

d2 =⊥ distance of (x, y) to directrix = |x − a/e|

The ellipse can then be defined as the set of points (x, y) satisfying the constraint

condition d1 = ed2 which can be expressed as the set of points

E1 = { (x, y) |
√

(x − ae)2 + y2 = e|x − a/e|, 0 < e < 1 } (1.69)

Applying some algebra to the constraint condition on the points (x, y), the ellipse

can be expressed in a different form. Observe that if d1 = ed2, then

(x − ae)2 + y2 =e2(x − a/e)2

or x2 − 2aex + a2e2 + y2 =e2x2 − 2aex + a2

which simplifies to the condition

x2

a2
+

y2

a2(1 − e2)
= 1 or

x2

a2
+

y2

b2
= 1, b2 = a2(1− e2) (1.70)

where the eccentricity satisfies 0 < e < 1. In the case where the focus is selected as

(−ae, 0) and the directrix is selected as the line x = −a/e, there results the following

situation

d1 =distance of (x, y) to focus =
√

(x + ae)2 + y2

d2 =⊥ distance of (x, y) to directrix = |x + a/e|
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The condition that d1 = ed2 can be represented as the set of points

E2 = { (x, y) |
√

(x + ae)2 + y2 = e|x + a/e|, 0 < e < 1 } (1.71)

As an exercise, show that the simplification of the constraint condition for the set

of points E2 also produces the equation (1.70).

Figure 1-41. The ellipse
x2

a2
+

y2

b2
= 1

Define the constants

c = ae and b2 = a2(1− e2) = a2 − c2 (1.72)

and note that b2 < a2, then from the above discussion one can conclude that an

ellipse is defined by the equation

x2

a2
+

y2

b2
= 1, 0 < e < 1, b2 = a2(1 − e2), c = ae (1.73)

and has the points (ae, 0) and (−ae, 0) as foci and the lines x = −a/e and x = a/e as

directrices. The resulting graph for the ellipse is illustrated in the figure 1-41. This
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ellipse has vertices at (−a, 0) and (a, 0), a latus rectum of length 2b2/a and eccentricity

given by
√

1 − b2/a2.

In the figure 1-41 a right triangle has been constructed as a mnemonic device to

help remember the relations given by the equations (1.72). The distance 2a between

(−a, 0) and (a, 0) is called the major axis of the ellipse and the distance 2b from (0,−b)

to (0, b) is called the minor axis of the ellipse. The origin (0, 0) is called the center of

the ellipse.

Figure 1-42. Symmetry of the ellipse.

Some algebra can verify the following property satisfied by a general point (x, y)

on the ellipse. Construct the distances

d3 =distance of (x, y) to focus (c, 0) =
√

(x − c)2 + y2

d4 =distance of (x, y) to focus (−c, 0) =
√

(x + c)2 + y2
(1.74)

and show

d3 + d4 =
√

(x − c)2 + y2 +
√

(x + c)2 + y2 = 2a (1.75)

One can use this property to define the ellipse as the locus of points (x, y) such

that the sum of its distances from two fixed points equals a constant.

The figure 1-42 illustrates that when the roles of x and y are interchanged, then

the major axis and minor axis of the ellipse are reversed. A shifting of the axes so

that the point (x0, y0) is the center of the ellipse produces the equations

(x − x0)
2

a2
+

(y − y0)
2

b2
= 1 or

(y − y0)
2

a2
+

(x − x0)
2

b2
= 1 (1.76)

These equations represent the ellipses illustrated in the figure 1-42 where the centers

are shifted to the point (x0, y0).
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The ellipse given by
(x − h)2

a2
+

(y − k)2

b2
= 1 which is centered at the point (h, k)

can be represented in a parametric form10. One parametric form is to represent the

ellipse as the set of points

E = { (x, y) | x = h + a cos θ, y = k + b sin θ, 0 ≤ θ ≤ 2π } (1.77)

involving the parameter θ which varies from 0 to 2π.

Hyperbola

Let e > 1 denote the eccentricity of a hyperbola. Again let (ae, 0) denote the focus

of the hyperbola and let the line x = a/e denote the directrix of the hyperbola. The

hyperbola is defined such that points (x, y) on the hyperbola satisfy d1 = ed2 where

d1 is the distance from (x, y) to the focus and d2 is the perpendicular distance from

the point (x, y) to the directrix. The hyperbola can then be represented by the set

of points

H1 = { (x, y) |
√

(x − ae)2 + y2 = e|x−a/e|, e > 1 }

A simplification of the constraint condition on the set of points (x, y) produces

the alternative representation of the hyperbola

x2

a2
− y2

a2(e2 − 1)
= 1, e > 1 (1.78)

Placing the focus at the point (−ae, 0) and using as the directrix the line x = −a/e,

one can verify that the hyperbola is represented by the set of points

H2 = { (x, y) |
√

(x + ae)2 + y2 = e|x + a/e|, e > 1 }

and it can be verified that the constraint con-

dition on the points (x, y) also simplifies to the

equation (1.78).

10 The parametric representation of a curve or part of a curve is not unique.
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Define c = ae and b2 = a2(e2 − 1) = c2 − a2 > 0 and note that for an eccentricity

e > 1 there results the inequality c > a. The hyperbola can then be described as

having the foci (c, 0) and (−c, 0) and directrices x = a/e and x = −a/e. The hyperbola

represented by
x2

a2
− y2

b2
= 1, b2 = a2(e2 − 1) = c2 − a2 (1.79)

is illustrated in the figure 1-43.

Figure 1-43. The hyperbola
x2

a2
− y2

b2
= 1

This hyperbola has vertices at (−a, 0) and (a, 0), a latus rectum of length 2b2/a and

eccentricity of
√

1 + b2/a2. The origin is called the center of the hyperbola. The line

containing the two foci of the hyperbola is called the principal axis of the hyperbola.

Setting y = 0 and solving for x one can determine that the hyperbola intersects

the principal axis at the points (−a, 0) and (a, 0) which are called the vertices of the

hyperbola. The line segment between the vertices is called the major axis of the

hyperbola or transverse axis of the hyperbola. The distance between the points (b, 0)

and (−b, 0) is called the conjugate axis of the hyperbola. The chord through either

focus which is perpendicular to the transverse axis is called a latus rectum. One

can verify that the latus rectum intersects the hyperbola at the points (c, b2/a) and

(c,−b2/a).

Write the equation (1.79) in the form

y = ± b

a
x

√

1 − a2

x2
(1.80)
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and note that for very large values of x the right-hand side of this equation ap-

proaches 1. Consequently, for large values of x the equation (1.80) becomes the

lines

y =
b

a
x and y = − b

a
x (1.81)

These lines are called the asymptotic lines associated with the hyperbola and are

illustrated in the figure 1-43. Note that the hyperbola has two branches with each

branch approaching the asymptotic lines for large values of x.

Let (x, y) denote a general point on the above hyperbola and construct the dis-

tances
d3 =distance from (x, y) to the focus (c, 0) =

√

(x − c)2 + y2

d4 =distance from (x, y) to the focus (−c, 0) =
√

(x + c)2 + y2
(1.82)

Use some algebra to verify that

d4 − d3 = 2a (1.83)

This property of the hyperbola is sometimes used to define the hyperbola as the

locus of points (x, y) in the plane such that the difference of its distances from two

fixed points is a constant.

The hyperbola with transverse axis on the x-axis have the asymptotic lines

y = + b
a
x and y = − b

a
x. Any hyperbola with the property that the conjugate axis has

the same length as the transverse axis is called a rectangular or equilateral hyperbola.

Rectangular hyperbola are such that the asymptotic lines are perpendicular to each

other.

Figure 1-44. Conjugate hyperbola.
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If two hyperbola are such that the transverse axis of either is the conjugate axis

of the other, then they are called conjugate hyperbola. Conjugate hyperbola will

have the same asymptotic lines. Conjugate hyperbola are illustrated in the figure

1-44.

The figure 1-45 illustrates that when the roles of x and y are interchanged, then

the transverse axis and conjugate axis of the hyperbola are reversed. A shifting

of the axes so that the point (x0, y0) is the center of the hyperbola produces the

equations

(x − x0)
2

a2
− (y − y0)

2

b2
= 1 or

(y − y0)
2

a2
− (x − x0)

2

b2
= 1 (1.84)

The figure 1-45 illustrates what happens to the hyperbola when the values of x and

y are interchanged.

If the foci are on the x-axis at

(c, 0) and (−c, 0), then
x2

a2
− y2

b2
= 1

If the foci are on the y-axis at

(0, c) and (0,−c), then
y2

a2
− x2

b2
= 1

Figure 1-45.

Symmetry of the hyperbola .

The hyperbola
x2

a2
− y2

b2
= 1 can also be represented in a parametric form as the

set of points

H = H1 ∪ H2 where

H1 ={ (x, y) | x = a cosh t, y = b sinht, −∞ < t < ∞ }

and H2 ={ (x, y) | x = −a cosh t, y = b sinh t, −∞ < t < ∞ }

(1.85)

which represents a union of the right-branch and left-branch of the hyperbola. Simi-

lar parametric representations can be constructed for those hyperbola which undergo
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a translation or rotation of axes. Remember that the parametric representation of

a curve is not unique.

Conic Sections in Polar Coordinates

Place the origin of the polar coordinate system at the focus of a conic section

with the y-axis parallel to the directrix as illustrated in the figure 1-46. If the point

(x, y) = (r cos θ, r sin θ) is a point on the conic section, then the distance d from the

point (x, y) to the directrix of the conic section is given by either

d = p + r cos θ or d = p − r cos θ (1.86)

depending upon whether the directrix is to the left or right of the focus. The conic

section is defined by r = ed so there results two possible equations r = e(p− r cos θ) or

r = e(p + r cos θ). Solving these equations for r demonstrates that the equations

r =
ep

1 − e cos θ
or r =

ep

1 + e cos θ
(1.87)

represent the basic forms associated with representing a conic section in polar coor-

dinates.

Figure 1-46. Representing conic sections using polar coordinates.

If the directrix is parallel to the x-axis at y = p or y = −p, then the general forms for

representing a conic section in polar coordinates are given by

r =
ep

1 − e sin θ
or r =

ep

1 + e sin θ
(1.88)

If the eccentricity satisfies e = 1, then the conic section is a parabola, if 0 < e < 1,

an ellipse results and if e > 1, a hyperbola results.
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General Equation of the Second Degree

Consider the equation

ax2 + bxy + cy2 + dx + ey + f = 0, (1.89)

where a, b, c, d, e, f are constants, which is a general equation of the second degree. If

one performs a rotation of axes by substituting the rotation equations

x = x̄ cos θ − ȳ sin θ and y = x̄ sin θ + ȳ cos θ (1.90)

into the equation (1.89), one obtains the new equation

ā x̄2 + b̄ x̄ ȳ + c̄ ȳ2 + d̄ x̄ + ē ȳ + f̄ = 0 (1.91)

with new coefficients ā, b̄, c̄, d̄, ē, f̄ defined by the equations

ā =a cos2 θ + b cos θ sin θ + c sin2 θ

b̄ =b(cos2 θ − sin2 θ) + 2(c− a) sin θ cos θ

c̄ =a sin2 θ − b sin θ cos θ + c cos2 θ

d̄ =d cos θ + e sin θ

ē = − d sin θ + e cos θ

f̄ =f

(1.92)

As an exercise one can show the quantity b2 − 4ac, called the discriminant, is an

invariant under a rotation of axes. One can show b2−4ac = b̄2−4āc̄. The discriminant is

used to predict the conic section from the equation (1.89). For example, if b2−4ac < 0,

then an ellipse results, if b2 − 4ac = 0, then a parabola results, if b2 − 4ac > 0, then a

hyperbola results.

In the case where the original equation (1.89) has a cross product term xy, so

that b �= 0, then one can always find a rotation angle θ such that in the new equations

(1.91) and (1.92) the term b̄ = 0. If the cross product term b̄ is made zero, then one

can complete the square on the x̄ and ȳ terms which remain. This completing the

square operation converts the new equation (1.90) into one of the standard forms

associated with a conic section. By setting the b̄ term in equation (1.92) equal to

zero one can determine the angle θ such that b̄ vanishes. Using the trigonometric

identities

cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ (1.93)

one can determine the angle θ which makes the cross product term vanish by solving

the equation

b̄ = b cos 2θ + (c − a) sin 2θ = 0 (1.94)

for the angle θ. One finds the new term b̄ is zero if θ is selected to satisfy

cot 2θ =
a − c

b
(recall our hypothesis that b �= 0) (1.95)
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Example 1-17. (Conic Section) Sketch the curve 4xy − 3y2 = 64

Solution

To remove the product term xy from the general equation

ax2 + bxy+ cy2 + dx+ ey+ f = 0 of a conic, the axes must be rotated through an angle θ

determined by the equation cot 2θ = a−c
b

= 3
4
. For the given conic a = 0, b = 4, c = −3.

This implies that cos 2θ = 3/5 = 1 − 2 sin2 θ or

2 sin2 θ = 2/5 giving sin θ = 1/
√

5 and cos θ = 2/
√

5.

The rotation equations (1.90) become

x =
1√
5
(2x̄ − ȳ) and y =

1√
5
(x̄ + 2ȳ)

The given equation then becomes

4

(

2x̄ − ȳ√
5

)(

x̄ + 2ȳ√
5

)

− 3

(

x̄ + 2ȳ√
5

)2

= 64

which simplifies to the hyperbola
x̄2

82
− ȳ2

42
= 1 with

respect to the x̄ and ȳ axes.

Example 1-18. The parametric forms for representing conic sections are not

unique. For a, b constants and θ, t used as parameters, the following are some repre-

sentative parametric equations which produce conic sections.

Parametric form for conic sections

Conic Section x y parameter

Circle a cos θ a sin θ θ

Parabola at2 2at t

Ellipse a cos θ b sin θ θ

Hyperbola a sec θ b tan θ θ

Rectangular Hyperbola at a/t t

The symbol a > 0 denotes a nonzero constant.

The shape of the curves depends upon the range of values assigned to the pa-

rameters representing the curve. Because of this restriction, the parametric repre-

sentation usually only gives a portion of the total curve. Sample graphs using the

parameter values indicated are given below.
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Computer Languages

There are many computer languages and apps that can do graphics and math-

ematical computations to aid in the understanding of calculus. Many of these pro-

gramming languages can be used to perform specific functions on a computing device

such as a desk-top computer, a lap-top computer, a touch-pad, or hand held calcu-

lator. The following is a partial list11 of some computer languages that you might

want to investigate. In alphabetical order:

Ada, APL, C, C++, C#, Cobol, Fortran, Java, Javascript, Maple, Mathcad, Math-

ematica, Matlab, Pascal, Perl, PHP, Python, Visual Basic.

11 For a more detailed list of programming languages go to

en.Wikipedia.org/wiki/List of programming Languages
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Exercises

� 1-1. Find the union A ∪ B and intersection A ∩ B if

(a) A = {x| − 2 < x ≤ 4} and B = {x| 2 ≤ x < 7}

(b) A = {x| − 2 < x ≤ 4} and B = {x| 4 < x ≤ 7}

(c) A = {x| x3 < 8} and B = {x| x2 < 16}

� 1-2. Sketch a Venn diagram to illustrate the following statements.

(a) A ⊂ B

(b) A ∩ B = φ

(c) B −A

(d) A ∩ (B ∪ C)

(e) (A ∩ B) ∪ (A ∩ C)

(f) A ∩ Bc

� 1-3. If any set operation involving ∅, U,∩,∪ is an identity, then the principle of

duality states that the replacements ∅ → U, U → ∅, ∩ → ∪, ∪ → ∩ in the identity

produces a dual statement which is also an identity. Determine the dual statements

associated with the given identities.

(a) (U ∩ A) ∪ (B ∩ A) = A (b) (B ∪ A) ∩ (∅ ∪ A) = A (c) A ∪ (A ∩ B) = A

� 1-4. Show that the following are equivalent.

(a) A ⊂ B if and only if A ∪ B = B

(b) A ⊂ B if and only if A ∩ Bc = ∅

(c) A ⊂ B if and only ifAc ∪ B = U

� 1-5. Prove the absorption laws

(a) A ∪ (A ∩ B) = A (b) A ∩ (A ∪ B) = A

� 1-6. Shade the Venn diagram to represent the statement underneath.

A ∩ B ∩ C A ∪ (B ∩ C) Ac ∩ Bc ∩ C
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� 1-7. Sketch a Venn diagram to illustrate the following set operations.

(a) A ∪ (B ∩ C) (b) (A ∪ B)c (c) (A ∪ B ∪ C)c

� 1-8. Determine if the given sets are bounded. If a set is bounded above find the

least upper bound (�.u.b.), if the set is bounded below, find its greatest lower bound

(g.�.b.).
(a) Sa = {x| x2 < 16}

(b) Sb = {x|x3 < 27}

(c) Sc = {x|
√

x < 5}

(d) Sd = {x| 3
√

x > 3}

� 1-9. Find the general equation of the line satisfying the given conditions.

(a) The line passes through the point (2, 4) with slope -2.

(b) The line has zero slope and passes through the point (2, 4)

(c) The line is parallel to 2x + 3y = 4 and passes through the point (2, 4)

(d) The line is parallel to the y-axis and passes through the point (2, 4)

� 1-10. Express the line 3x + 4y = 12 in the following forms.

(a) The slope-intercept form and then find the slope and y-intercept.

(b) The intercept form and then find the x-intercept and y-intercept.

(c) Polar form.

(d) The point-slope form using the point (1, 1)

� 1-11. Determine conditions that x must satisfy if the following inequalities are to

be satisfied.
(a) αx − β < 0

(b)
2x + 3

x + 4
< 0

(c) x + 1 − 12

x
< 0

(d)
x + 2

x − 3
≤ 0

� 1-12. For each function state how the domain of the function is to be restricted?

(a) y = f(x) =
√

8 − x

(b) y = f(x) =
1

(x − a)(x − b)(x − c)
, a, b, c are real constants.

(c) Area of a circle is given by A = f(r) = π r2

(d) y = f(x) =
x − 1√
x3 + 1

(e) Volume of a sphere V = f(r) =
4

3
π r3
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� 1-13. Sketch a graph of the given functions.

(a) y =
1

2
x, y = x, y = 2x, −4 ≤ x ≤ 4

(b) y =
1

4
x2, y = x2, y = 4x2, −4 ≤ x ≤ 4

(c) y =
1

2
sin x, y = sinx, y = 2 sinx, 0 ≤ x ≤ 2π

(d) y =
1

2
cos x, y = cos x, y = 2 cosx, 0 ≤ x ≤ 2π

� 1-14. Sketch the graphs defined by the parametric equations.

(a) Ca = { (x, y) | x = t2, y = 2t + 1, 0 ≤ t ≤ 4 }

(b) Cb = { (x, y) | x = t, y = 2t + 1, −2 ≤ t ≤ 2 }

(c) Cc = { (x, y) | x = cos t, y = sin t,
π

2
≤ t ≤ 3π

2
}

(d) Cd = { (x, y) | x = sin t, y = cos t, 0 ≤ t ≤ π }

(e) Ce = { (x, y) | x = t, y = −
√

9 − t2, −3 ≤ t ≤ 3 }

Note that the part of the curve represented depends on (i) the form of the parametric

representation and (ii) the values assigned to the parameters.

� 1-15. Sketch a graph of the given polynomial functions for x ∈ R.

(a) y = x − 1 (b) y = x2 − 2x − 3 (c) y = (x − 1)(x− 2)(x − 3)

(d) Show the function y = (x−1)(x−2)(x−3) is skew-symmetric about the line x = 2.

� 1-16. The Heaviside12 step function is defined

H(ξ) =

{

0, ξ < 0

1, ξ > 0

Sketch the following functions.

(a) y = H(x)

(b) y = H(x− 1)

(c) y = H(x− 2)

(d) y = H(x− 1) −H(x − 2)

(e) y = H(x) + H(x− 1) − 2H(x − 2)

(f) y =
1

ε
[H(x− x0)− H(x − (x0 + ε))] , ε > 0 is small.

12 Oliver Heaviside (1850-1925) An English engineer.
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� 1-17. Sketch the given curves.

(a) { (x, y) | y = x2, −2 ≤ x ≤ 2}

(b) { (x, y) | y = 1 + x2, −2 ≤ x ≤ 2}

(c) { (x, y) | y = −1 + x2, −2 ≤ x ≤ 2}

(d) { (x, y) | y = (x − 1)2, −1 ≤ x ≤ 3}

(e) { (x, y) | y = (x + 1)2, −3 ≤ x ≤ 1}

(f) { (x, y) | y = 1 + (x − 1)2, −1 ≤ x ≤ 3}

� 1-18. In polar coordinates the equation of a circle with radius ρ and center at the

point (r1, θ1) is given by

r2 + r2
1 − 2rr1 cos(θ − θ1) = ρ2

Write the equation of the circle and sketch its graph in polar coordinates for the

following special cases.

(a) r1 = ρ, θ1 = 0

(b) r1 = ρ, θ1 = π/2

(c) r1 = ρ, θ1 = π

(d) r1 = ρ, θ1 = 3π/2

(e) r1 = 0, θ1 = 0

(f) r1 = 3, θ1 = π/4 in the cases ρ < 3, ρ = 3, ρ > 3

� 1-19. In rectangular coordinates the equation of a circle with radius ρ > 0 and

center (h, k) is given by the equation

(x − h)2 + (y − k)2 = ρ2

Write the equation of the circle and sketch its graph in the following special cases.

(a) h = ρ, k = 0

(b) h = 0, k = ρ

(c) h = −ρ, k = 0

(d) h = 0, k = −ρ

(e) h = 3, k = 4, in the cases ρ < 5, ρ = 5 and ρ > 5

� 1-20. Show that each trigonometric function of an acute angle θ is equal to the

co-function of the complementary angle ψ = π
2
− θ.

sin θ =cos ψ

cos θ =sinψ

tan θ =cot ψ

cot θ =tanψ

sec θ =csc ψ

csc θ =sec ψ

� 1-21. If f(x) = x, 0 ≤ x < 1, and f(x + 1) = f(x) for all values of x, sketch a graph of

this function over the domain X = { x | 0 ≤ x < 5 }.
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� 1-22. If f(x) = x2 and g(x) = 3 − 2x, calculate each of the following quantities.

(a) f(3)

(b) g(3)

(c) f(x + h)

(d) g(x + h)

(e)
f(x + h) − f(x)

h

(f)
g(x + h) − g(x)

h

(g) f(g(x))

(h) g(f(x))

� 1-23. Sketch the given curves.

(a) { (x, y) | y = sin x, 0 ≤ x ≤ 2π }

(b) { (x, y) | y = sin

(

1

2
x

)

, 0 ≤ x ≤ 2π }

(c) { (x, y) | y = sin(2x), 0 ≤ x ≤ 2π }

(d) { (x, y) | y = sin(x − π), 0 ≤ x ≤ 2π }

� 1-24. Sketch the given curves.

(a) { (x, y) | y = cos x, 0 ≤ x ≤ 2π }

(b) { (x, y) | y = cos

(

1

2
x

)

, 0 ≤ x ≤ 2π }

(c) { (x, y) | y = cos(2x), 0 ≤ x ≤ 2π }

(d) { (x, y) | y = cos(x − π), 0 ≤ x ≤ 2π }

� 1-25. Graph the functions and then find the inverse functions.

(a) y = f1(x) = x2,

(b) y = f2(x) = x3

(c) y = f3(x) = 5x − 1

(d) y = f4(x) = 3
√

x + 4

(e) y = f5(x) =
2x − 3

5x − 2

� 1-26. Test for symmetry, asymptotes and intercepts and then sketch the given

curve.
(a) y = 1 − 1

x2

(b) y = 1 +
1

(x − 1)(x− 3)2

(c) x2y = 1

(d) y2 − x2y2 = 1

(e) x2y − 2y = 1

(f) xy = x2 − 1

� 1-27. Sketch the given curves.

(a) { (x, y) | x = 3 cosh t, y = 4 sinh t, 0 ≤ t ≤ 3 }

(b) { (x, y) | x = 3 cos t, y = 4 sin t, 0 ≤ t ≤ 2π }

(c) { (x, y) | x = 3 + t, y = 4 + t2/4, −3 ≤ t ≤ 3 }

(d) { (r, θ) | r =
4

1 + 2 cos θ
, 0 ≤ θ ≤ 2π }

� 1-28. Test for symmetry and sketch the given curves.

(a) y = x2

(b) x = y2

(c) y2 = −x

(d)
x2

9
+

y2

16
= 1

(e)
y2

4
+

x2

16
= 1

(f) x2 + y2 = 25

(g)
x2

9
− y2

16
= 1

(h)
y2

4
− x2

16
= 1

(i)
y2

9
− x2

4
= 1



79

� 1-29. Translate axes, then sketch the given curves.

(a) (x − 2)2 = 4(y − 1)

(b) (y − 2)2 = −4(x− 1)

(c) (x − 3)2 = −8(y − 2)

(a)
(x − 1)2

9
+

(y − 2)2

16
= 1

(b)
(x − 1)2

9
− (x − 2)2

16
= 1

(c)
(y − 1)2

9
+

(x − 2)2

16
= 1

� 1-30. The number e

Consider two methods for estimating the limit e = lim
h→0

(1 + h)
1/h

Method 1

(a) Make the substitution n = 1/h and show e = lim
n→∞

(

1 +
1

n

)n

and then use the

binomial theorem to show

e = lim
n→∞

[

1 +
1

1!
+

1 − 1
n

2!
+

(1− 1
n
)(1− 2

n
)

3!
+

(1 − 1
n
)(1− 2

n
)(1 − 3

n
)

4!
+ · · ·

]

(b) Show that as n increases without bound that

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · ·

Find the sum of 5,6 and 7 terms of the series to estimate the number e.

Method 2

Use a calculator to fill in the given

table to estimate both (1 + h)1/h and
1

h
ln(1 + h) for small values of h. Your

results should show

e = lim
h→0

(1 + h)1/h

and ln e = lim
h→0

1

h
ln(1 + h) = 1

h e ≈ (1 + h)
1/h

1 ≈ 1
h ln(1 + h)

1.0
0.5
0.1
0.01
0.001
0.0001
0.00001
0.000001

� 1-31. If lim
x→∞

(

1 +
1

x

)x

= e, then make appropriate substitutions and find the fol-

lowing limits.

(a) lim
x→∞

(

1 +
α

x

)x

(b) lim
x→−∞

(

1 +
β

x

)x

where α and β are positive constants.

� 1-32. Use the ε − δ definition of a limit to prove that lim
x→3

(4x + 2) = 14
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� 1-33. Sketch a graph of the following straight lines. State the slope of each line

and specify the x or y-intercept if it exists.

(a) x = 5

(b) y = 5

(c) y = x + 1

(d) 3x + 4y + 5 = 0

(e)
x

3
+

y

4
= 1

(f) � = { (x, y) | x = t + 2, y = 2t + 3 }

(g) r cos(θ − π/4) = 2

(h) 3x + 4y = 0

� 1-34. For each line in the previous problem construct the perpendicular bisector

which passes through the origin.

� 1-35. Consider the function y = f(x) =
x2 − 1

x − 1
, for −2 ≤ x ≤ 2.

(a) Is f(1) defined?

(b) Is the function continuous over the interval −2 ≤ x ≤ 2?

(c) Find lim
x→1

f(x)

(d) Can f(x) be made into a continuous function?

(e) Sketch the function f(x).

� 1-36. Assume lim
x→x0

f(x) = �1 and lim
x→x0

g(x) = �2. Use the ε − δ proof to show that

lim
x→x0

[f(x) − g(x)] = �1 − �2

� 1-37.

(a) Find the equation of the line with slope 2 which passes through the point (3, 4).

(b) Find the equation of the line perpendicular to the line in part (a) which passes

through the point (3, 4).

� 1-38. Find the following limits if the limit exists.

(a) lim
x→1

(

x2 +
1

x

)

(b) lim
x→0

(

2x +
1

2x

)

(c) lim
h→0

√
x + h −

√
x

h
√

x(x + h)
, x �= 0

(d) lim
h→0

f(x + h) − f(x)

h
, f(x) = x2

(e) lim
x→2

x − 2

x2 + x − 6

(f) lim
x→2

x − 2

x2 − 4
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� 1-39. Find the following limits if the limit exists.

(a) lim
x→∞

3x2 + 2x + 1

x2 + 3x + 2

(b) lim
x→∞

sinx

x

(c) lim
x→0

sin
1

x

(d) lim
x→0

x sin
1

x

(e) lim
x→4−

7

x − 4

(f) lim
x→1

x3 − 1

x − 1

� 1-40. Show that

lim
x→0

1 − cosx

x
= lim

x→0

sin2 x

x(1 + cosx)
=

(

lim
x→0

sinx

x

)(

lim
x→0

sin x

1 + cos x

)

= 0

� 1-41. Evaluate the following limits.

(a) lim
h→0

sin 4h

h

(b) lim
h→0

sin2(2h)

h2

(c) lim
h→0

1 − cos h

h2

(d) lim
h→0

sin(h/2)

h

(e) lim
x→0

tan x

x

(f) lim
x→0

√
1 + x − 1

x

� 1-42. Evaluate the limit lim
h→0

f(x + h) − f(x)

h
, if f(x) =

√
x and x �= 0.

� 1-43. Determine if the following limits exist. State why they exist or do not exist.

(a) lim
x→∞

sin x

(b) lim
x→0

sin(mx)

sin(nx)

(c) lim
x→0

x sin(
1

x
)

(d) lim
x→∞

1 − cos(mx)

sin(nx)

(e) lim
x→0

sin2 x

1 − cos x

(f) lim
x→0

x sinx

1 − cos x

� 1-44. Given the line 3x + 4y + 5 = 0

(a) Find the slope of the line.

(b) Find the x and y-intercepts.

(c) Write the equation of the line in intercept form.

(d) Find the line perpendicular to the given line which passes through the point (0, 1).

� 1-45.

(a) Show that if p > 0, and r =
1

1 + p
, then r is such that 0 < r < 1.

(b) Write rn =
1

(1 + p)n
and use the binomial theorem to show that if 0 < r < 1, then

lim
n→∞

rn = 0.

(c) Show that if p > 0, and x = (1 + p), then x is such that x > 1.

(d) Write xn = (1 + p)n and use the binomial theorem to show that if x > 1, then

lim
n→∞

xn = ∞
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� 1-46. Use the ε− δ method to prove that if lim
x→x0

f(x) = f(x0), then

lim
x→x0

cf(x) = c lim
x→x0

f(x) = cf(x0) where c is a constant.

� 1-47. The equation of a line passing through two points on a curve is called a

secant line.

(a) Given the parabola y = x2 find the equation of the secant line passing through

the points (1, 1) and (2, 4). Sketch a graph of the curve and the secant line.

(b) Find the equation of the secant line which passes through the points (1, 1) and

(3/2, 9/4). Sketch this secant line on your graph from part (a).

(c) Discuss how one can determine the equation of the tangent line to the curve

y = x2 at the point (1, 1).

(d) Can you find the equation of the tangent line to the curve y = x2 at the point

(1, 1)?

� 1-48. Sketch the given parabola and find (i) the focus (ii) the vertex (iii) the

directrix and (iv) the latus rectum.

(a) y2 − 8y − 8x + 40 = 0

(b) x2 = 12y

(c) y2 − 8y + 4x + 8 = 0

(d) y2 − 6y + 12x− 3 = 0

(e) y2 = −8x

(f) x2 − 6x + 12y − 15 = 0

� 1-49. Sketch the given ellipse and find (i) the foci (ii) the directrices (iii) the latus

rectum and (iv) the eccentricity and (v) center.

(a) 4y2 + 9x2 − 16y − 18x − 11 = 0

(b)
x2

25
+

y2

9
= 1

(c) 16y2 + 25x2 − 64y − 150x − 111 = 0

(d) 25y2 + 16x2 − 150y − 64x − 689 = 0

(e)
x2

4
+

y2

9
= 1

(f) 4y2 + 9x2 + 8y + 18x − 23 = 0

� 1-50. Sketch the given hyperbola and find (i) the foci (ii) the vertices (iii) the

directrices (iv) the eccentricity and (v) the asymptotes.

(a) 9x2 − 4y2 − 36x + 24y − 36 = 0

(b)
x2

4
− y2

9
= 1

(c) 4y2 − 9x2 − 16y + 54x − 101 = 0

(d) x2 − 4y2 + 32y − 2x − 67 = 0

(e)
y2

4
− x2

9
= 1

(f) 4x2 − y2 + 4y − 24x + 28 = 0

� 1-51. Given the parabola y2 = 4x and the line y = x + b. What condition(s) must

be satisfied in order for the line to be a tangent line to the parabola?
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� 1-52. Examine the general equation of the second degree, given by equation (1.89).

When this equation is transformed using a rotation of axes there results the equation

(1.91) with coefficients defined by equation (1.92).

(a) Show that the quantity a + c is an invariant. That is, show a + c = ā + c̄.

(b) Show that the discriminant is an invariant. That is, show b2 − 4ac = b̄2 − 4āc̄

Note that these two invariants are used as a check for numerical errors when one

performs the algebra involved in the rotation of axes.

� 1-53. Show that the equation xy = a2, with a constant is a hyperbola.

� 1-54. Find the parabola symmetric about the x-axis which passes through the

points (−1, 0), (0, 1) and (0,−1).

� 1-55.

(a) Sketch the hyperbola
y2

4
− x2

9
= 1 and label the y-intercepts, and the asymptotes.

(b) Find the equation of the conjugate hyperbola.

� 1-56. Normal form for equation of line

Let p = 0N > 0 denote the perpendicular distance

of the line from the origin. Assume the line 0N makes

an angle α with the x-axis and let (x, y) denote a

variable point on the line. Write p = p1 + p2, where

p1 = projection of x on ON and p2 = projection of y

on ON.

(a) Show p1 + p2 = p =⇒ x cos α + y sinα − p = 0 which is called the normal form for

the equation of a line.

(b) Show that the line Ax + By + C = 0 has the normal form
Ax + By + C

±
√

A2 + B2
= 0 where

the correct sign is selected so that p > 0.

(c) Find the normal form for the line 3x + 4y − 5 = 0

(d) Show that the distance d of a point (x0, y0) from the line described by

Ax + By + C = 0 is given by d =

∣

∣

∣

∣

Ax0 + By0 + C√
A2 + B2

∣

∣

∣

∣

� 1-57. The boiling point of water is 100◦ Celsius or 212◦ Fahrenheit and the freezing

point of water is 32◦ Fahrenheit and 0◦ Celsius. If there is a linear relationship

between degrees Celsius and degrees Fahrenheit, then find this relationship.
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� 1-58. Graph the given equations by selecting θ such that r is well defined.

(a) r cos θ = 3 (b) r sin θ = 3 (c) r = 4 cos θ (d) r = 4 sin θ

� 1-59. Graph the given equations by selecting θ so that r is well defined.

(a) r =
3

1 − cos θ
(b) r =

3

1 + cos θ
(c) r =

6

2 − cos θ

� 1-60. Graph the following equations by selecting θ so that r is well defined.

(a) r =
3

1 − sin θ
(b) r =

3

2 − 3 cos θ
(c) r =

3

2 − cos θ

� 1-61. Find the horizontal and vertical asymptotes of the curve

xy − 3x + 2y − 10 = 0

� 1-62. Verify the following graphs by any method you wish.

Witch of Agnesi

x2y + 4a2y − 8a3 = 0

Folium of Descartes

x3 + y3
− 3axy = 0

Conchoid of Nicomedes with b > a

(x − a)2(x2 + y2) = b2x2

Trisectrix of Maclaurin

y2(a − x) = x2(3a + x)

Limaçon of Pascal with a = b

(x2 + y2
− 2ax)2 − b2(x2 + y2)

Limnescate of Bernoulli

(x2 + y2)2 = 2a2(x2
− y2)

Hints: Try substitutions r2 = x2 + y2 or x = r cos θ, y = r sin θ or let y = tx and try to

obtain a parametric representation of the given curves.
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Chapter 2

Differential Calculus

The history of mathematics presents the development of calculus as being ac-

credited to Sir Isaac Newton (1642-1727) an English physicist, mathematician and

Gottfried Wilhelm Leibnitz (1646-1716) a German physicist, mathematician. Por-

traits of these famous individuals are given in the figure 2-1. The introduction of

calculus created an explosion in the development of the physical sciences and other

areas of science as calculus provided a way of describing natural and physical laws

in a mathematical format which is easily understood. The development of calculus

also opened new areas of mathematics and science as individuals sought out new

ways to apply the techniques of calculus.

Figure 2-1. Joint developers of the calculus.

Calculus is the study of things that change and finding ways to represent these

changes in a mathematical way. The symbol ∆ will be used to represent change.

For example, the notation ∆y is to be read “The change in y”.

Slope of Tangent Line to Curve

Consider a continuous smooth1 curve y = f(x), defined over a closed interval

defined by the set of points X = { x | x ∈ [a, b] }. Here x is the independent variable, y

1 A continuous smooth curve is an unbroken curve defined everywhere over the domain of definition of the

function and is a curve which has no sharp edges. If P is a point on the curve and � is the tangent line to the point

P , then a smooth curve is said to have a continuously turning tangent line as P moves along the curve.
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is the dependent variable and the function can be represented graphically as a curve

defined by the set of points

{ (x, y) | x ∈ X, y = f(x) }

The slope of the curve at some given point P on the curve is defined to be the same

as the slope of the tangent line to the curve at the point P .

Figure 2-2. Secant line approaching tangent line as Q → P

One can construct a tangent line to any point P on the curve as follows. On

the curve y = f(x) consider two neighboring points P and Q with coordinates (x, f(x))

and (x + ∆x, f(x + ∆x)), as illustrated in the figure 2-2. In this figure ∆x represents

some small change in x and ∆y = f(x + ∆x)− f(x) denotes the change in y in moving

from point P to Q. In the figure 2-2, the near points P and Q on the curve define a

straight line called a secant line of the curve. In the limit as the point Q approaches

the point P the quantity ∆x tends toward zero and the secant line approaches the

tangent line. The quantity ∆y also tends toward zero while the slope of the secant

line ms approaches the slope of the tangent line mt to the curve at the point P .

The slope of the secant line ms is given by ms =
∆y

∆x
and the slope of the tangent

line mt at the point P with coordinates (x, f(x)) is given by the derived function f ′(x)

calculated from the limiting process

mt =
dy

dx
= f ′(x) = lim

∆x→0

∆y

∆x
= lim

∆x→0

f(x + ∆x) − f(x)

∆x
(2.1)

if this limit exists.
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The Derivative of y = f(x)

The secant line through the near points P and Q approaches the tangent line in

the limit as ∆x tends toward zero. The slope of the secant line ms =
∆y

∆x
represents

the average change of the height of the curve y with respect to changes in x over

the interval ∆x. The derived function f ′(x) =
dy

dx
represents the slope of the tangent

line mt at the point P and is obtained from equation (2.1) as a limiting process. The

derived function f ′(x) is called the derivative of y = f(x) with respect to x and

represents the slope of the curve y = f(x) at the point (x, f(x)). It also represents

the instantaneous rate of change of y = f(x) with respect to x at the point (x, f(x)) on

the curve y = f(x). The derived function f ′(x) or derivative represents the slope mt

of the tangent line constructed through the point (x, f(x)) on the curve. The limit,

defined by the equation (2.1), represents a process, called differentiation, for finding

the derivative
dy

dx
= f ′(x). A function y = f(x), where the differentiation process

is successful, is called a differentiable function. The derived function
dy

dx
= f ′(x)

obtained from the differentiation process is called the derivative function associated

with the given function y = f(x). By agreement, when referencing the derivative of

an explicit function y = f(x), it is understood to represent the ratio of changes of the

dependent variable y, with respect to changes of the independent variable x, as these

changes tend toward zero. There are alternative equivalent methods for calculating

the derivative of a function y = f(x). One alternative method is the following
dy

dx
= f ′(x) = lim

∆x→0

∆y

∆x
= lim

h→0

f(x + h) − f(x)

h
= lim

ξ→x

f(ξ) − f(x)

ξ − x
(2.2)

if these limits exist. If y = f(x) for x ∈ X, then the domain of definition of the

derivative f ′(x) is the set X ′ defined by X ′ = { x | f ′(x) exists }. In general X ′ ⊆ X.

Example 2-1. Tangent line to curve

Given the parabola y = f(x) = 16 − x2. Find the tangent lines which touch this

curve at the points (−2, 12) , (3, 7) and at a general point (x0, y0) on the curve.

Solution The derivative function
dy

dx
= f ′(x) associated with the parabolic function

y = f(x) = 16 − x2 represents the slope of the tangent line to the curve at the point

(x, f(x)) on the curve. The derivative function is calculated using the limiting process

defined by equation (2.1) or equation (2.2). One finds using the equation (2.1)

dy

dx
= f ′(x) = lim

h→0

f(x + h) − f(x)

h
= lim

h→0

16 − (x + h)2 − (16 − x2)

h

= lim
h→0

16 − (x2 + 2xh + h2) − (16 − x2)

h
= lim

h→0
−(2x + h) = −2x

or if one uses equation (2.2)
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dy

dx
= f ′(x) = lim

ξ→x

f(ξ) − f(x)

ξ − x
= lim

ξ→x

16 − ξ2 − (16 − x2)

ξ − x
= lim

ξ→x

(x − ξ)(x + ξ)

(ξ − x)

= lim
ξ→x

−(ξ + x) = −2x

Here the derivative function is f ′(x) = −2x and from the derivative function

the slope of the tangent line at (−2, 12) is mt = f ′(−2) = −2(−2) = 4

the slope of the tangent line at (3, 7) is mt = f ′(3) = −2(3) = −6

Using the point-slope formula y − y0 = m(x − x0) for representing the equation of a

line, one finds

tangent line through point (−2, 12) is y − 12 = 4(x + 2)

tangent line through point (3, 7) is y − 7 = −6(x− 3)

Knowing that a function y = f(x) has a derivative function
dy

dx
= f ′(x) which is

defined and continuous for all values of the independent variable x ∈ (a, b) implies

that the given function y = f(x) is a continuous function for x ∈ (a, b). This is because

the tangent line to a point P on the curve is a continuous turning tangent line as

the point P moves along the curve. This is illustrated in the figure 2-3 where the

tangent line to the curve is continuously turning without any interruptions, the slope

moving continuously from a positive value, through zero to a negative value.

Figure 2-3.

Tangent lines to curve y = 16 − x2

In general, at each point (x0, y0), where

y0 = f(x0) = 16−x2
0, the slope of the curve at that

point is also the slope of the tangent line at that

point and this slope is given by f ′(x0) = −2x0.

The equation of the tangent line to the curve

y = f(x) = 16−x2 which passes through the point

(x0, y0) is given by the point-slope formula

y−y0 = (−2x0)(x−x0), where y0 = f(x0) = 16−x2
0

and x0 is some fixed abscissa value within the

domain of definition of the function. The

parabolic curve and tangent lines are illustrated

in the figure 2-3.
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Also note that for x < 0, the slope of the curve is positive and indicates that as x

increases, y increases. For x > 0, the slope of the curve is negative and indicates that

as x increases, y decreases. If the derivative function changes continuously from a

positive value to a negative value, then it must pass through zero. Here the zero

slope occurs where the function y = f(x) = 16 − x2 has a maximum value.

Example 2-2. If y = f(x) = sinx, then show
dy

dx
= f ′(x) =

d

dx
sin x = cosx

Solution By definition
dy

dx
= f ′(x) = lim

∆x→0

sin(x + ∆x) − sinx

∆x
. Use the results from

example 1-7 together with the trigonometric identity for the difference of two sine

functions to obtain
dy

dx
= f ′(x) = lim

∆x→0
cos(x +

∆x

2
) lim

∆x→0

sin(∆x
2 )

∆x
2

= cos x

Example 2-3. If y = g(x) = cos x, then show
dy

dx
= g′(x) =

d

dx
cos x = − sinx

Solution By definition
dy

dx
= g′(x) = lim

∆x→0

cos(x + ∆x) − cos x

∆x
. Use the results from

example 1-7 together with the trigonometric identity for the difference of two cosine

functions to obtain
dy

dx
= g′(x) = lim

∆x→0
− sin(x +

∆x

2
) lim

∆x→0

sin(∆x
2

)
∆x
2

= − sinx

Right and Left-hand Derivatives

If a function y = f(x) has a jump

discontinuity at the point x = x0, then

one can define the right-hand derivative

of f(x) at the point x = x0 as the following

limit

f ′(x+
0 ) = lim

h→0+

f(x+
0 + h) − f(x+

0 )

h
, h > 0

if this limit exists.

The left-hand derivative of f(x) at the point x = x0 is defined as the limit

f ′(x−
0 ) = lim

h→0−

f(x−
0 + h) − f(x−

0 )

h
, where h is restricted such that h < 0

if this limit exists. If the left-hand derivative is different from the right-hand deriva-

tive, then there exists a tangent line through the point (x+
0 , f(x+

0 )) and a different

tangent line through the point (x−
0 , f(x−

0 )). If the left-hand derivative equals the

right-hand derivative then f(x) is said to have a derivative at the point x = x0.
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Alternative Notations for the Derivative

Some of the notations used to represent the derivative of a function y = f(x) are

dy

dx
=

d

dx
y = f ′(x) = y′ =

d

dx
f(x) =

df

dx
= Df(x) = Dxf(x) (2.3)

where
d

dx
, D =

d

dx
and Dx =

d

dx
are called differentiation operators. One can think

of
d

dx
as a derivative operator which operates upon a given function to produce the

differences ∆x and ∆y and then evaluates the limit lim
∆x→0

∆y

∆x
to produce the derivative

function.

Figure 2-4. Differentiation performed by an operator box.

The figure 2-4 illustrates an operator box where functions that enter the operator

box get operated upon using the differentiation process defined by equation (2.1)

and the output from the box represents a derivative of the input function. Observe

that a derivative of a derivative function is called a second derivative function. In

general, a derivative, such as
dy

dx
= f ′(x), is a measure of the instantaneous rate of

change of y = f(x) with respect to a change in x. The notation
dy

dx
for the derivative

was introduced by Gottfried Leibnitz. The prime notation f ′(x) for the derivative

of a function f(x) was introduced by Joseph-Louis Lagrange2. If y = y(t), Sir Isaac

Newton used the dot notation ẏ, ÿ, . . . for representing the first, second and higher

derivatives. The operator notation Dxy was introduced by Leonhard Euler3.

Higher Derivatives

If the derivative function f ′(x) is the input to the operator box illustrated in

the figure 2-4, then the output function is denoted f ′′(x) and represents a derivative

of a derivative called a second derivative. Higher ordered derivatives are defined in

a similar fashion with
d

dx

(

dn−1y

dxn−1

)

=
dny

dxn
which states that the derivative of the

2 Joseph-Louis Lagrange (1736-1813) an Italian born French mathematician.
3 Leonhard Euler (1707-1783) A Swiss mathematician.
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(n − 1)st derivative is the nth derivative. The function f ′(x) =
dy

dx
is called a first

derivative, f ′′(x) =
d2y

dx2
is called a second derivative, f ′′′(x) =

d3y

dx3
is called a third

derivative,. . . f (n)(x) =
dny

dxn
is called a n-th derivative. Other notations for higher

ordered derivatives are as follows.

The first derivative of y = f(x) is denoted

dy

dx
= f ′(x) or Dxy or Dy or y′

The second derivative of y = f(x) is denoted

d2y

dx2
=

d

dx

(

dy

dx

)

= f ′′(x) or D2
xy or D2y or y′′

The third derivative of y = f(x) is denoted

d3y

dx3
=

d

dx

(

d2y

dx2

)

= f ′′′(x) or D3
xy or D3y or y′′′

The n-th derivative of y = f(x) is denoted

dny

dxn
=

d

dx

(

dn−1y

dxn−1

)

= f (n)(x) or Dn
xy or Dny or y(n)

Rules and Properties

The following sections cover fundamental material associated with the introduc-

tion of different kinds of functions and developing techniques to find the derivatives

associated with these functions. The following list contains fundamental rules and

properties associated with the differentiation of sums, products and quotients of

functions. These fundamental properties should be memorized and recognized in

applications. Note that most proofs of a differentiation property use one of the pre-

vious definitions of differentiation given above and so the student should memorize

the definitions of a derivative as given by equations (2.2).

The derivative of a constant C is zero or
d

dx
C = 0. That is, if

y = f(x) = C = constant, then
dy

dx
= f ′(x) =

d

dx
C = 0

Proof

Sketch the curve y = f(x) = C = constant and observe that it has a zero slope

everywhere. The derivative function represents the slope of the curve y = C at the
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point with abscissa x and consequently
d

dx
C = 0 for all values of x since the slope is

zero at every point on the curve and the height of the curve is not changing. Using

the definition of a derivative one finds

dy

dx
= f ′(x) = lim

h→0

f(x + h) − f(x)

h
= lim

h→0

C − C

h
= lim

h→0

0

h
= 0

The converse statement that if f ′(x) = 0 for all values of x, then y = f(x) = C is a

constant also holds and will be proven later in this chapter.

The derivative of the function y = f(x) = x, is
dy

dx
= f ′(x) =

d

dx
x = 1

Proof

Sketch the curve y = f(x) = x and observe that it is a line which passes through

the origin making an angle of π/4 with the x-axis. The slope of this line is given by

m = tan
π

4
= 1 for all values of x. Consequently, f ′(x) =

d

dx
x = 1 for all values of x

since the derivative function represents the slope of the curve at the point x. Using

the definition of a derivative one finds

dy

dx
= f ′(x) =

d

dx
x = lim

h→0

f(x + h) − f(x)

h
= lim

h→0

x + h − x

h
= 1

for all values of x.

The derivative of the function y = f(x) = xn, where n is a nonzero integer, is

given by
dy

dx
= f ′(x) =

d

dx
xn = nxn−1 or in words one can say the derivative of x to

an integer power n equals the power n times x to the (n − 1)st power.

Proof

Using the limiting process which defines a derivative one finds

dy

dx
= f ′(x) =

d

dx
xn = lim

h→0

f(x + h) − f(x)

h
= lim

h→0

(x + h)n − xn

h

One can employ the binomial theorem to expand the numerator and obtain

dy

dx
= f ′(x) =

d

dx
xn = lim

h→0

xn + nxn−1h +
n(n−1)

2! xn−2h2 + · · ·+ hn − xn

h

= lim
h→0

[

nxn−1 +
n(n − 1)

2!
xn−2h + · · ·+ hn−1

]

= nxn−1

Consequently, one can write
d

dx
xn = nxn−1 where n is an integer.
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Later it will be demonstrated that
d

dx
xr = rxr−1 for all real numbers r which

are different from zero.

The derivative of a constant times a function equals the constant times the deriva-

tive of the function or

d

dx
[Cf(x)] = C

d

dx
f(x) = Cf ′(x)

Proof

Use the definition of a derivative applied to the function g(x) = Cf(x) and show

that
d

dx
g(x) = lim

h→0

g(x + h) − g(x)

h
= lim

h→0

Cf(x + h) − Cf(x)

h

= lim
h→0

C

(

f(x + h) − f(x)

h

)

It is known that the limit of a constant times a function is the constant times the

limit of the function and so one can write

d

dx
g(x) = C lim

h→0

f(x + h) − f(x)

h
= Cf ′(x)

or
d

dx
[Cf(x)] = C

d

dx
f(x) = Cf ′(x)

The derivative of a sum is the sum of the derivatives or

d

dx
[u(x) + v(x)] =

d

dx
u(x) +

d

dx
v(x) =

du

dx
+

dv

dx
= u′(x) + v′(x) (2.4)

This result can be extended to include n-functions
d

dx
[u1(x) + u2(x) + · · · + un(x)] =

d

dx
u1(x) +

d

dx
u2(x) + · · · +

d

dx
un(x)

Proof

If y(x) = u(x) + v(x), then

dy

dx
= lim

h→0

y(x + h) − y(x)

h

= lim
h→0

u(x + h) + v(x + h) − [u(x) + v(x)]

h

= lim
h→0

[

u(x + h) − u(x)

h

]

+ lim
h→0

[

v(x + h) − v(x)

h

]

or
dy

dx
=

d

dx
[u(x) + v(x)] =

d

dx
u(x) +

d

dx
v(x) = u′(x) + v′(x)

This result follows from the limit property that the limit of a sum is the sum of

the limits. The above proof can be extended to larger sums by breaking the larger

sums into smaller groups of summing two functions.
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Example 2-4. The above properties are combined into the following examples.

(a) If y = F (x) is a function which is differentiable and C is a nonzero constant, then

d

dx
[CF (x)] =C

dF (x)

dx
d

dx
[F (x) + C] =

dF (x)

dx
+

d

dx
C =

dF (x)

dx

d

dx

[

5x3
]

=5
d

dx
x3 = 5(3x2) = 15x2

d

dx

[

x3 + 8
]

=
d

dx
x3 +

d

dx
8 = 3x2

since the derivative of a constant times a function equals the constant times

the derivative of the function and the derivative of a sum is the sum of the

derivatives.

(b) If S = {f1(x), f2(x), f3(x), . . . , fn(x), . . . } is a set of functions, define the set of deriva-

tives
dS

dx
= {df1

dx
,
df2

dx
,
df3

dx
, . . . ,

dfn

dx
, . . . }. To find the derivatives of each of the func-

tions in the set S = {1, x, x2, x3, x4, x5, . . . , x100, . . . , xm, . . . }, where m is a very large

integer, one can use properties 1 , 2 and 3 above to write

dS

dx
= {0, 1, 2x, 3x2, 4x3, 5x4, . . . , 100x99, . . . , mxm−1, . . . }

(c) Consider the polynomial function y = x6 + 7x4 + 32x2 − 17x + 33. To find the

derivative of this function one can combine the properties 1, 2, 3, 4 to show

dy

dx
=

d

dx
(x6 + 7x4 + 32x2 − 17x + 33)

dy

dx
=

d

dx
x6 + 7

d

dx
x4 + 32

d

dx
x2 − 17

d

dx
x +

d

dx
(33)

dy

dx
=6x5 + 7(4x3) + 32(2x)− 17(1) + 0

dy

dx
=6x5 + 28x3 + 64x − 17

This result follows from use of the properties (i) the derivative of a sum is the

sum of the derivatives (ii) the derivative of a constant times a function is that

constant times the derivative of the function (iii) the derivative of x to a power

is the power times x to the one less power and (iv) the derivative of a constant

is zero.

(d) To find the derivative of a polynomial function

y = pn(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−2x

2 + an−1x + an, (2.5)

where a0, a1, . . . , an are constants,with a0 �= 0, one can use the first four proper-

ties above to show that by differentiating each term one obtains the derivative

function

dy

dx
= a0

[

nxn−1
]

+ a1

[

(n − 1)xn−2
]

+ a2

[

(n − 2)xn−3
]

+ · · ·an−2 [2x] + an−1[1] + 0
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(e) The polynomial function pn(x) of degree n given by equation (2.5) is a linear

combination of terms involving x to a power. The first term a0x
n, with a0 �= 0,

being the term containing the largest power of x. Make note of the higher

derivatives associated with the function xn. These derivatives are
d

dx
(xn) =nxn−1

d2

dx2
(xn) =n(n − 1)xn−2

d3

dx3
(xn) =n(n − 1)(n − 2)xn−3

...
...

dn

dxn
(xn) =n(n − 1)(n − 2) · · ·(3)(2)(1)x0 = n! Read n-factorial.

dn+1

dxn+1
(xn) =0

This result demonstrates that the (n+1)st and higher derivatives of a polynomial

of degree n will all be zero.

(f) One can readily verify the following derivatives

d3

dx3
(x3) =3! = 3 · 2 · 1 = 6

d4

dx4
(x3) =0

d5

x5
(x5) =5! = 5 · 4 · 3 · 2 · 1 = 120

d6

dx6
(x5) =0

The derivative of a product of two functions is the first function times the deriva-

tive of the second function plus the second function times the derivative of the first

function or

d

dx
[u(x)v(x)] =u(x)

dv

dx
+ v(x)

du

dx
= u(x)v′(x) + v(x)u′(x)

or
d

dx
[u(x)v(x)] =u(x)v(x)

(

u′(x)

u(x)
+

v′(x)

v(x)

) (2.6)

Proof

Use the properties of limits along with the definition of a derivative to show that if

y(x) = u(x)v(x), then

dy

dx
= lim

h→0

y(x + h) − y(x)

h

= lim
h→0

u(x + h)v(x + h) − u(x)v(x)

h

= lim
h→0

u(x + h)v(x + h) − u(x)v(x + h) + u(x)v(x + h) − u(x)v(x)

h
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Where the term u(x)v(x + h) has been added and subtracted to the numerator.

Now rearrange terms and use the limit properties to write

dy

dx
= lim

h→0

[

u(x + h) − u(x)

h

]

v(x + h) + lim
h→0

u(x)

[

v(x + h) − v(x)

h

]

dy

dx
= lim

h→0
u(x) lim

h→0

[

v(x + h) − v(x)

h

]

+ lim
h→0

v(x + h) lim
h→0

[

u(x + h) − u(x)

h

]

or
dy

dx
=

d

dx
[u(x)v(x)] = u(x)

dv

dx
+ v(x)

du

dx
= u(x)v′(x) + v(x)u′(x)

The result given by equation (2.6) is known as the product rule for differentiation.

Example 2-5.

(a) To find the derivative of the function y = (3x2+2x+1)(8x+3) one should recognize

the function is defined as a product of polynomial functions and consequently

the derivative is given by

dy

dx
=

d

dx

[

(3x2 + 2x + 1)(8x + 3)
]

dy

dx
=(3x2 + 2x + 1)

d

dx
(8x + 3) + (8x + 3)

d

dx
(3x2 + 2x + 1)

dy

dx
=(3x2 + 2x + 1)(8) + (8x + 3)(6x + 2)

dy

dx
=72x2 + 50x + 14

(b) The second derivative is by definition a derivative of the first derivative so that

differentiating the result in part(a) gives

d2y

dx2
=

d

dx

dy

dx
=

d

dx

(

72x2 + 50x + 14
)

= 144x + 50

Similarly, the third derivative is

d3y

dx3
=

d

dx

d2y

dx2
=

d

dx
(144x + 50) = 144

and the fourth derivative and higher derivatives are all zero.

Example 2-6.

Consider the problem of differentiating the function y = u(x)v(x)w(x) which is a

product of three functions. To differentiate this function one can apply the product

rule to the function y = [u(x)v(x)] · w(x) to obtain
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dy

dx
=

d

dx
([u(x)v(x)] · w(x)) = [u(x)v(x)]

dw(x)

dx
+ w(x)

d

dx
[u(x)v(x)]

Applying the product rule to the last term one finds

dy

dx
=

d

dx
[u(x)v(x)w(x)] = u(x)v(x)

dw(x)

dx
+ u(x)

dv(x)

dx
w(x) +

du(x)

dx
v(x)w(x)

dy

dx
=

d

dx
[u(x)v(x)w(x)] = u(x)v(x)w′(x) + u(x)v′(x)w(x) + u′(x)v(x)w(x)

A generalization of the above procedure produces the generalized product rule for

differentiating a product of n-functions

d

dx
[u1(x)u2(x)u3(x) · · · un−1(x)un(x)] =u1(x)u2(x)u3(x) · · · un−1(x)

dun(x)

dx

+u1(x)u2(x)u3(x) · · ·
dun−1(x)

dx
un(x)

+ · · ·

+u1(x)u2(x)
du3(x)

dx
· · · un−1(x)un(x)

+u1(x)
du2(x)

dx
u3(x) · · · un−1(x)un(x)

+
du1(x)

dx
u2(x)u3(x) · · · un−1(x)un(x)

This result can also be expressed in the form

d

dx
[u1u2u3 · · · un−1un] = u1u2u3 · · · un

(

u′

1

u1

+
u′

2

u2

+
u′

3

u3

+ · · · +
u′

n

un

)

and is obtained by a repeated application of the original product rule for two

functions.

The derivative of a quotient of two functions is the denominator times the deriva-

tive of the numerator minus the numerator times the derivative of the denominator

all divided by the denominator squared or

d

dx

[

u(x)

v(x)

]

=

v(x)
du

dx
− u(x)

dv

dx

v2(x)
=

v(x)u′(x) − u(x)v′(x)

v2(x)
(2.7)
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Proof

Let y(x) =
u(x)

v(x)
and write

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

u(x + h)

v(x + h)
− u(x)

v(x)

h

= lim
h→0

v(x)u(x + h) − u(x)v(x) + u(x)v(x)− u(x)v(x + h)

v(x + h)v(x)

h

= lim
h→0

v(x)

[

u(x + h) − u(x)

h

]

− u(x)

[

v(x + h) − v(x)

h

]

v(x + h)v(x)

=

v(x) lim
h→0

[

u(x + h) − u(x)

h

]

− u(x) lim
h→0

[

v(x + h) − v(x)

h

]

lim
h→0

v(x + h)v(x)

or
dy

dx
=

d

dx

[

u(x)

v(x)

]

=
v(x)u′(x) − u(x)v′(x)

v2(x)
, where v2(x) = [v(x)]2

This result is known as the quotient rule for differentiation.

A special case of the above result is the differentiation formula

d

dx

(

v(x)−1
)

=
d

dx

[

1

v(x)

]

=
−1

[v(x)]2
dv

dx
=

−1

[v(x)]2
v′(x) (2.8)

Example 2-7. If y =
3x2 + 8

x3 − x2 + x
, then find

dy

dx
Solution

Using the derivative of a quotient property one finds

dy

dx
=

d

dx

[

3x2 + 8

x3 − x2 + x

]

=
(x3 − x2 + x) d

dx (3x2 + 8)− (3x2 + 8) d
dx(x3 − x2 + x)

(x3 − x2 + x)2

=
(x3 − x2 + x)(6x) − (3x2 + 8)(3x2 − 2x + 1)

(x3 − x2 + x)2
=

−3x4 − 21x2 + 16x − 8

(x3 − x2 + x)2

Differentiation of a Composite Function

If y = y(u) is a function of u and u = u(x) is a function of x, then the derivative

of y with respect to x equals the derivative of y with respect to u times the derivative

of u with respect to x or

dy

dx
=

d

dx
y(u) =

dy

du

du

dx
= y′(u)u′(x) (2.9)
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This is known as the composite function rule for differentiation or the chain rule

for differentiation. Note that the prime notation ′ always denotes differentiation with

respect to the argument of the function. For example z′(ξ) =
dz

dξ
.

Proof

If y = y(u) is a function of u and u = u(x) is a function of x, then make note of

the fact that if x changes to x + ∆x, then u changes to u + ∆u and ∆u → 0 as ∆x → 0.

Hence, if ∆u �= 0, one can use the identity

∆y

∆x
=

∆y

∆u
· ∆u

∆x

together with the limit theorem for products of functions, to obtain

dy

dx
= lim

∆x→0

(

∆y

∆x

)

= lim
∆u→0

(

∆y

∆u

)

· lim
∆x→0

(

∆u

∆x

)

=
dy

du
· du

dx
= y′(u)u′(x)

which is known as the chain rule for differentiation.

An alternative derivation of this rule makes use of the definition of a derivative

given by equation (2.2). If y = y(u) is a function of u and u = u(x) is a function of x,

then one can write

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

y(u(x + h)) − y(u(x))

h
(2.10)

In equation (2.10) make the substitutions u = u(x) and ξ = u(x+h) and write equation

(2.10) in the form
dy

dx
= lim

ξ→u

[

y(ξ) − y(u)

(ξ − u)
· (ξ − u)

h

]

dy

dx
= lim

ξ→u

y(ξ) − y(u)

ξ − u
· lim

h→0

u(x + h) − u(x)

h

dy

dx
=

dy

du
· du

dx
= y′(u)u′(x)

Here the chain rule is used to differentiate a function of a function. For example, if

y = f(g(x)) is a function of a function, then make the substitution u = g(x) and write

y = f(u), then by the chain rule

dy

dx
=

dy

du

du

dx
= f ′(u)u′(x) = f ′(u)g′(x) (2.11)

The derivative of a function u = u(x) raised to a power n, n an integer, equals the

power times the function to the one less power times the derivative of the function or

d

dx
[u(x)n] = nu(x)n−1 du

dx
= nu(x)n−1u′(x) (2.12)
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This result is known as the power rule for differentiation.

Proof

This is a special case of the previous property. If y = y(u) = un is a function of

u and u = u(x) is a function of x, then differentiation of these functions with respect

to their independent variables gives the derivatives

dy

du
=

d

du
un = nun−1 and

du

dx
=

d

dx
u(x) = u′(x)

Using the chain rule for differentiation one finds

dy

dx
=

d

dx
u(x)n =

dy

du

du

dx
= nun−1 du

dx
= nun−1u′(x)

or
d

dx
u(x)n = nu(x)n−1 du

dx
= nu(x)n−1 u′(x)

The general power rule for differentiation is

d

dx
u(x)r = ru(x)r−1 du

dx
(2.13)

where r is any real number. Here it is understood that for the derivative to exist,

then u(x) �= 0 and the function u(x)r is well defined everywhere. A proof of the general

power rule is given later in this chapter.

Example 2-8. Find the derivative
dy

dx
of the function y =

3
√

x2 + x

Solution Let u = x2 + x and write y = u1/3. These functions have the derivatives

du

dx
=

d

dx
(x2 + x) = 2x + 1 and

dy

du
=

d

du
u1/3 =

1

3
u−2/3

By the chain rule for differentiation

dy

dx
=

dy

du

du

dx
=

1

3u2/3
(2x + 1) =

2x + 1

3(x2 + x)2/3

Using the general power rule one can write

dy

dx
=

d

dx
(x2 + x)1/3 =

1

3
(x2 + x)−2/3(2x + 1) =

2x + 1

3(x2 + x)2/3

Example 2-9. Find the derivative
dy

dx
of the function y =

(

x2 − 1

x4 + 1

)3

Solution Let u =
x2 − 1

x4 + 1
and write y = u3 so that by the chain rule for differentiation

one has
dy

dx
=

dy

du

du

dx
where

dy

du
=

d

du
u3 = 3u2 and
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du

dx
=

d

dx

(

x2 − 1

x4 + 1

)

=
(x4 + 1)(2x)− (x2 − 1)(4x3)

(x4 + 1)2
=

−2x5 − 4x3 + 2x

(x4 + 1)2

This gives the final result

dy

dx
=

dy

du

du

dx
= 3u2 du

dx
= 3

(

x2 − 1

x4 + 1

)2

·
(

−2x5 − 4x3 + 2x

(x4 + 1)2

)

dy

dx
=

6(x − 4x5 + 4x7 − x9)

(x4 + 1)4

Differentials

If y = f(x) is differentiable, then the limit lim
∆x→0

f(x + ∆x) − f(x)

∆x
= f ′(x) exists.

The quantity ∆x is called the increment given to x and ∆y = f(x + ∆x) − f(x)

is called the increment in y = f(x) corresponding to the increment in x. Since the

derivative is determined by a limiting process, then one can define dx = ∆x as the

differential of x and write

∆y = f(x + ∆x) − f(x) = f ′(x)∆x + ε∆x = f ′(x) dx + ε dx (2.14)

where ε → 0 as ∆x → 0. Define the quantity dy = f ′(x)dx as the differential of y

which represents the principal part of the change in y as ∆x → 0. Note that the

differential dy does not equal ∆y because dy is only an approximation to the actual

change in y. Using the above definitions one can write

dy

dx
= f ′(x) = lim

∆x→0

f(x + ∆x) − f(x)

∆x
= lim

∆x→0

∆y

∆x

Here dx = ∆x, but dy is not ∆y because ∆y = dy + ε dx, where ε → 0 as ∆x → 0.

Using the definition dy = f ′(x) dx one can verify the following differentials

df(x) =f ′(x) dx

dC =0 C is a constant

d(Cu) =C du

d(u + v) =du + dv

d(uv) =u dv + v du

d
(u

v

)

=
v du − u dv

v2

df =
df

du
du

d(un) =nun−1 du
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Differentiation of Implicit Functions

A function defined by an equation of the form F (x, y) = 0, where one of the

variables x or y is not explicitly solved for in terms of the other variable, then one

says that y is defined as an implicit function of x. For example, the equation of the

circle given by

F (x, y) = x2 + y2 − ρ2 = 0, ρ is a constant

is an example of an implicit function, where a dependent variable has not been

defined explicitly in terms of an independent variable. In general, when given an

implicit function F (x, y) = 0, there are times where it is possible to solve for one

variable in terms of another and thereby convert the implicit form into an explicit

form for representing the function. Note also that there are times where the implicit

functions F (x, y) = 0 cannot be converted into an explicit form. Given an implicit

function F (x, y) = 0, where it is not possible to solve for y in terms of x, it is still

possible to calculate the derivative
dy

dx
by treating the function F (x, y) = 0 as a function

F (x, y(x)) = 0, where it is to be understood, that theoretically the implicit function

defines y as a function of x. One can then differentiate every part of the implicit

function with respect to x and then solve the resulting equation for the derivative

term
dy

dx
.

Example 2-10. Given the implicit function F (x, y) = x3 + xy2 + y3 = 0, find the

derivative
dy

dx
.

Solution

Differentiate each term of the given implicit function with respect to x to obtain

d

dx
(x3) +

d

dx
(xy2) +

d

dx
(y3) =

d

dx
0 (2.15)

The derivative of the first term in equation (2.15) represents the derivative of x to

a power. The second term in equation (2.15) represents the derivative of a product

of two functions (the function x times the function y2(x)). The third term in equa-

tion (2.15) represents the derivative of a function to a power (the function y3(x)).

Remember, that when dealing with implicit functions, it is understood that y is to

be treated as a function of x. Calculate the derivatives in equation (2.15) using the

product rule and general power rule and show there results
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3x2 + x
d

dx
(y2) + y2 d

dx
(x) + 3y2 dy

dx
=0

3x2 + x · 2y
dy

dx
+ y2(1) + 3y2 dy

dx
=0

(3x2 + y2) + (2xy + 3y2)
dy

dx
=0

Solving this last equation for the derivative term gives

dy

dx
=

−(3x2 + y2)

2xy + 3y2

Make note that once the derivative is solved for, then the form for representing the

derivative can be changed by using some algebra along with the given original implicit

form y3 = −x3 − xy2. For example, one can write

dy

dx
=

−(3x2 + y2)

2xy + 3y2
=

−3x2y − y3

2xy2 + 3y3
=

−3x2y − (−xy2 − x3)

2xy2 + 3(−xy2 − x3)
=

3xy − x2 − y2

3x2 + y2

An alternative method to solve the above problem is to use differentials and find

the differential of each term to obtain

3x2 dx + x · 2y dy + dx · y2 + 3y2 dy = 0

Divide each term by dx and combine like terms to obtain

(2xy + 3y2)
dy

dx
= −(3x2 + y2)

and solving for dy
dx obtain the same result as above.

Example 2-11.

Find the equation of the tangent line to the circle x2 + 2x + y2 − 6y − 15 = 0 which

passes through the point (2, 7).

Solution

The given equation is an implicit equation defining the circle. By completing

the square on the x and y terms one can convert this equation to the form

(x2 + 2x + 1) + (y2 − 6y + 9) = 15 + 10 =⇒ (x + 1)2 + (y − 3)2 = 25

which represents a circle centered at the point (−1, 3) with radius 5.
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Figure 2-5.

Circle centered at (−1, 3)

with radius 5.

This circle is illustrated in the figure 2-5. One

can verify that the point (2, 7) is on the circle by

substituting the values x = 2 and y = 7 into the

given equation to show that these values do indeed

satisfy the equation. Use implicit differentiation

and show

2x + 2 + 2y
dy

dx
− 6

dy

dx
= 0 or (2y − 6)

dy

dx
= −(2x + 2)

and so the derivative is given by
dy

dx
= − (x + 1)

y − 3

This derivative represents the slope of the circle at a point (x0, y0) on the circle

which is the same as the slope of the tangent line to the point (x0, y0) on the circle.

Therefore, the slope of the tangent line to the circle at the point (2, 7) is obtained by

evaluating the derivative at this point. The notation used to denote a derivative
dy

dx

being evaluated at a point (x0, y0) is
dy

dx (x0,y0)

. For example, one can say the slope of

the tangent line to the circle at the point (2, 7) is given by

mt =
dy

dx (2,7)

=
−(x + 1)

(y − 3) (2,7)

=
−(2 + 1)

(7 − 3)
= −3

4

The equation of the tangent line to the circle which passed through the point (2, 7)

is obtained from the point-slope formula y− y0 = mt(x−x0) for the equation of a line.

One finds the equation of the tangent line which passes through the point (2, 7) on

the circle is given by

y − 7 = −(3/4)(x− 2)

Example 2-12.

(a) Consider two lines �1 and �2 which intersect

to form supplementary angles α and β as illus-

trated in the figure 2-6. Let α equal the coun-

terclockwise angle from line �1 to line �2. One

could define either angle α or β as the angle

of intersection between the two lines. To avoid

confusion as to which angle to use, define the

point of intersection of the two lines as a point

of rotation.

Figure 2-6.

Intersection of two lines.
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One can think of line �1 as being rotated about this point to coincide with the

line �2 or line �2 as being rotated to coincide with line �1. The smaller angle of

rotation, either counterclockwise or clockwise, is defined as the angle of intersection

between the two lines.

Assume the lines �1 and �2 have slopes m1 = tan θ1 and m2 = tan θ2 which are well

defined. We know the exterior angle of a triangle must equal the sum of the two

opposite interior angles so one can write α = θ2 − θ1 and consequently,

tanα = tan(θ2 − θ1) =
tan θ2 − tan θ1

1 + tan θ1 tan θ2

=
m2 − m1

1 + m1m2

(2.16)

Here α denotes the counterclockwise angle from line �1 to line �2. If the lines are

perpendicular, then they are said to intersect orthogonally. In this case the for-

mula given by equation (2.16) becomes meaningless because when the lines intersect

orthogonally then the slopes satisfy m1m2 = −1.

(b) If two curves C1 and C2 intersect at a point

P , the angle of intersection of the two curves is

defined as the angle of intersection of the tan-

gent lines to the curves C1 and C2 at the in-

tersection point P . Two curves are said to in-

tersect orthogonally when their intersection is

such that the tangent lines at the point of in-

tersection form right angles.

Figure 2-7.

Intersection of two curves.

(c) Find the angle of intersection between the circles

x2 + 2x + y2 − 4y = 0 and x2 − 4x + y2 − 6y + 8 = 0

Figure 2-8.

Intersection of two circles.

Solution First find the points where the two cir-

cles intersect. Eliminating the terms x2 and y2

by subtracting the equations of the circle shows

that the two circles must intersect at points

which lie on the line y = 4 − 3x. Substitute

this value for y into either of the equations for

the circle and eliminate y to obtain a quadratic

equation in x and show the points of intersec-

tion are (0, 4) and (1, 1). As a check, show that

these values satisfy both the given equations.
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To find the slopes of the tangent lines at these two points of intersection, use

implicit differentiation to differentiate the given equations for the circles. These

differentiations produce the following equations.

x2 + 2x + y2 − 4y =0

d

dx
(x2 + 2x + y2 − 4y) =

d

dx
(0)

2x + 2 + 2y
dy

dx
− 4

dy

dx
=0

dy

dx
=

−(2x + 2)

(2y − 4)

x2 − 4x + y2 − 6y + 8 =0

d

dx
(x2 − 4x + y2 − 6y + 8) =

d

dx
(0)

2x − 4 + 2y
dy

dx
− 6

dy

dx
=0

dy

dx
=

−(2x − 4)

(2y − 6)

The slopes of the tangent lines at the point (0, 4) are given by

For the first circle m1 =
dy

dx (0,4)

=
−(2x + 2)

(2y − 4) (0,4)

=
−1

2

and for the second circle m2 =
dy

dx (0,4)

=
−(2x− 4)

(2y − 6) (0,4)

= 2

This gives the equations of the tangent lines to the point (0, 4) as y − 4 = (−1/2)x and

y− 4 = 2x. Note that the product of the slopes gives m1m2 = −1 indicating the curves

intersect orthogonally.

Similarly, the slopes of the tangent lines at the point (1, 1) are given by

m1 =
dy

dx (1,1)

=
−(2x + 2)

2y − 4) (1,1)

= 2

and m2 =
dy

dx (1,1)

=
−(2x− 4)

(2y − 6) 1,1)

=
−1

2

This gives the equations of the tangent lines to the point (1, 1) as y − 1 = 2(x− 1) and

y− 1 = (−1/2)(x− 1). The product of the slopes gives m1m2 = −1 indicating the curves

intersect orthogonally. The situation is illustrated in the figure 2-8.

Importance of Tangent Line and Derivative Function f ′(x)

Given a curve C defined by the set of points { (x, y) | y = f(x), a ≤ x ≤ b } where

y = f(x) is a differentiable function for a < x < b. The following is a short list of

things that can be said about the curve C, the function f(x) defining the curve and

the derivative function f ′(x) associated with f(x).

1. If P is a point on the curve C, having coordinates (x0, f(x0)), the slope of the curve

at the point P is given by f ′(x0), where f ′(x) is the derivative function associated

with the function rule y = f(x) defining the ordinate of the curve.
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2. The tangent line to the curve C at the point P is given by the point-slope formula

y − f(x0) = f ′(x0)(x − x0) the point (x0, f(x0)) is a fixed point on the curve.

3. The curve C is called a smooth curve over the interval a ≤ x ≤ b if it has a

continuously turning tangent line as the point P moves from (a, f(a) to (b, f(b)).

4. If the continuously turning tangent line suddenly changes at a point (x1, f(x1)),

then the derivative function f ′(x) is said to have a jump discontinuity at the point

x = x1. See figure 2-9(a).

Figure 2-9. Analysis of the derivative function f ′(x).

5. If as x increases, the tangent line to the curve continuously changes from a positive

slope to a zero slope followed by a negative slope, the curve C is said to have a

local maximum or relative maximum at the point where the slope is zero. If this

local maximum occurs at the point (x1, f(x1)),then f(x1) ≥ f(x) for all points x

near x1. Similarly, if as x increases the tangent line continuously changes from a

negative slope to a zero slope followed by a positive slope, the curve C is said to

have a local minimum or relative minimum at the point where the slope is zero. If

the local minimum occurs at the point (x2, f(x2)), then f(x2) ≤ f(x) for all points

x near x2. See figure 2-9(b)

6. If f ′(x) > 0 for all values of x as x moves from a to b, the continuously turning

tangent line always has a positive slope which indicates that the function y = f(x)

is an increasing function of x over the interval (a, b). Functions with this property

are called monotone increasing functions. See figure 2-9(c).

7. If f ′(x) < 0 for all values of x as x moves from a to b, the continuously turning

tangent line always has a negative slope which indicates that the function y = f(x)

is a decreasing function of x over the interval (a, b). Functions with this property

are called monotone decreasing functions. See figure 2-9(d)
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Rolle’s Theorem4

If y = f(x) is a function satisfying (i) it is continuous

for all x ∈ [a, b] (ii) it is differentiable for all x ∈ (a, b) and

(iii) f(a) = f(b), then there exists a number c ∈ (a, b) such

that f ′(c) = 0.

This result is known as Rolle’s theorem. If y = f(x) is a

constant, the theorem is true so assume y = f(x) is different

from a constant. If the slope f ′(x) is always positive or

always negative for a ≤ x ≤ b, then f(x) would be either

continuously increasing or continuously decreasing between

the endpoints x = a and x = b and so it would be impossible

for y = f(x) to have the same value at both endpoints.

This implies that in order for f(a) = f(b) the derivative function f ′(x) must change

sign as x moves from a to b. If the derivative function changes sign it must pass

through zero and so one can say there exists at least one number x = c where f ′(c) = 0.

The Mean-Value Theorem

If y = f(x) is a continuous function for x ∈ [a, b] and is differentiable so that

f ′(x) exists for x ∈ (a, b), then there exists at least one number x = c ∈ (a, b) such that

the slope mt of the tangent line at (c, f(c)) is the same as the slope ms of the secant

line passing through the points (a, f(a)) and (b, f(b)) or

mt = f ′(c) =
f(b) − f(a)

b − a
= ms a < c < b

This result is known as the mean-value theorem and its implications are illustrated

in the figure 2-10.

Proof

A sketch showing the secant line and tangent line having the same slope is given

in the figure 2-10. In this figure note the secant line passing through the points

(a, f(a)) and (b, f(b)) and verify that the equation of this secant line is given by the

point-slope formula

y − f(a) =

[

f(b)− f(a)

b − a

]

(x − a)

4 Michel Rolle (1652-1719) A French mathematician. His name is pronounced “Roll”.
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Also construct the vertical line x = ξ, where a < ξ < b. This line intersects the curve

y = f(x) at the point P with coordinates (ξ, f(ξ)) and it intersects the secant line at

point Q with coordinates (ξ, f(a) +
[

f(b)−f(a)
b−a

]

(ξ − a)). Denote the distance from Q to

P as h(ξ) and verify that

h(ξ) = f(ξ) − f(a) −
[

f(b)− f(a)

b− a

]

(ξ − a) (2.17)

Figure 2-10. Construction of secant line to curve y = f(x)

Note that h(ξ) varies with ξ and satisfies h(a) = h(b) = 0. The function h(ξ) satisfies

all the conditions of Rolle’s theorem so one can say there exists at least one point

x = c where h′(c) = 0. Differentiate the equation (2.17) with respect to ξ and show

h′(ξ) =
dh

dξ
= f ′(ξ) − f(b)− f(a)

b− a
(2.18)

If there is a value ξ = c such that h′(c) = 0, then equation (2.18) reduces to

mt = f ′(c) =
f(b)− f(a)

b− a
= ms (2.19)

which shows that there must exist a point x = c such that the slope of the tangent

line at the point (c, f(c)) is the same as the slope of the secant line through the points

(a, f(a)) and (b, f(b)) as illustrated in the figure 2-10.

The mean-value theorem can be expressed in a slightly different form if in equa-

tion (2.19) one makes the substitution b− a = h, so that b = a + h. This produces the

form

f(a + h) = f(a) + hf ′(c) where a < c < a + h (2.20)
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Let β denote a real number between 0 and 1 and express the number c in the form

c = a + βh, then another form for the mean-value theorem is

f(a + h) = f(a) + hf ′(a + βh), 0 < β < 1 (2.21)

Figure 2-11. Another form for the mean value theorem.

A physical interpretation of the mean-value theorem, which will prove to be

useful in later sections, is obtained from an examination of the figure 2-11.

In this figure let QR = εh where ε → 0 as h → 0, then one can write

QS =QR + RS

or ∆y = f(a + h) − f(a) =εh + f ′(a)h

or by the mean-value theorem
f(a + h) − f(a)

h
=f ′(a) + ε = f ′(a + βh)

(2.22)

where ε → 0 as h → 0. This result was used earlier in equation (2.14).

In summary, if
d

dx
G(x) = G′(x) = g(x), then one form for the mean-value theorem

is

∆G = G(a + h) − G(a) = g(a)h + εh or ∆G = G(a + h) − G(a) = G′(a)h + εh (2.23)

where ε → 0 as h → 0.
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Cauchy’s Generalized Mean-Value Theorem

Let f(x) and g(x) denote two functions which are continuous on the interval [a, b].

Assume the derivatives f ′(x) and g′(x) exist and do not vanish simultaneously for all

x ∈ [a, b] and that g(b) �= g(a). Construct the function

y(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)] (2.24)

and note that y(a) = y(b) = f(a)g(b)− f(b)g(a) and so all the conditions exist such that

Rolle’s theorem can be applied to this function. The derivative of the function given

by equation (2.24) is

y′(x) = f ′(x)[g(b)− g(a)]− g′(x)[f(b)− f(a)]

and Rolle’s theorem states that there must exist a value x = c satisfying a < c < b

such that

y′(c) = f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)] = 0 (2.25)

By hypothesis the quantity g(b)− g(a) �= 0 and g′(c) �= 0, for if g′(c) = 0, then equation

(2.25) would require that f ′(c) = 0, which contradicts our assumption that the deriva-

tives f ′(x) and g′(x) cannot be zero simultaneously. Rearranging terms in equation

(2.25) gives Cauchy’s generalized mean-value theorem that f(x) and g(x) must satisfy

f(b) − f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
, a < c < b (2.26)

Note the special case g(x) = x reduces equation (2.26) to the form of equation (2.19).

Derivative of the Logarithm Function

Assume b > 0 is constant and y = y(x) = logb x. Use the definition of a derivative

and write

dy

dx
= y′(x) = lim

∆x→0

y(x + ∆x) − y(x)

∆x
dy

dx
= y′(x) = lim

∆x→0

logb(x + ∆x) − logb(x)

∆x
and use the properties of logarithms to write
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dy

dx
= y′(x) = lim

∆x→0

1

∆x
logb

(

x + ∆x

x

)

dy

dx
= y′(x) = lim

∆x→0

1

x

( x

∆x

)

logb

(

1 +
∆x

x

)

dy

dx
= y′(x) = lim

∆x→0

1

x
logb

(

1 +
∆x

x

)x/∆x

(2.27)

In equation (2.27) make the substitution h =
∆x

x
and make note of the fact that

h → 0 as ∆x → 0 to obtain

dy

dx
= y′(x) =

1

x
lim
h→0

logb (1 + h)
1/h

(2.28)

Recall from chapter 1 that lim
h→0

(1+h)1/h = e and use this result to simplify the equation

(2.28) to the form
dy

dx
= y′(x) =

d

dx
logb x =

1

x
(logb e) (2.29)

Observe that in the special case b = e one can use the result loge e = ln e = 1 to

simplify the equation (2.29) to the following result.

If y = lnx, x > 0, then
dy

dx
=

d

dx
ln x =

1

x
, x �= 0 (2.30)

If y = logb u, where u = u(x) > 0, the chain rule for differentiation can be employed

to obtain the results

d

dx
logb u =

d

du
logb u ·

du

dx
or

d

dx
logb u = (logb e) ·

1

u
·

du

dx
(2.31)

and in the special case y = lnu, u = u(x) > 0, then

d

dx
lnu =

d

du
ln u ·

du

dx
or

d

dx
ln u =

1

u

du

dx
(2.32)

The more general situation is that for

y = ln |x|, then
dy

dx
=

d

dx
ln |x| =

1

x
, x �= 0 (2.33)

and if

y = ln |u|, then
dy

dx
=

d

dx
ln |u| =

1

u(x)

du

dx
, u(x) �= 0 (2.34)

In differential notation one can write

d ln |u| =
du

u
(2.35)
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Example 2-13. Find the derivatives of the following functions

(a) y = ln | cosx|, (b) y = log10 |x|, (c) y = logb |u(x)|

Solution

(a)
dy

dx
=

d

dx
ln | cosx| =

1

cos x

d

dx
cosx = − sin x

cos x
= − tanx

(b)
dy

dx
=

d

dx
log10 |x| = (log10 e)

1

x
, x �= 0

(c)
dy

dx
=

d

dx
logb |u(x)| = (logb e)

1

u(x)

du

dx
, u(x) �= 0

Derivative of the Exponential Function

Let y = y(x) = bx, with b > 0 denote a general exponential function. Knowing

how to differentiate the logarithm function can be used to find a derivative formula

for the exponential function. Recall that

y = bx if and only if x = logb y (2.36)

Make use of the chain rule for differentiation and differentiate both sides of the

equation x = logb y with respect to x to obtain

d

dx
x =

d

dx
logb y

d

dx
x =

d

dy
logb y · dy

dx

1 =
1

y
logb e · dy

dx

(2.37)

This result can be expressed in the alternative form

dy

dx
=

1

logb e
y or

d

dx
(bx) =

1

logb e
bx (2.38)

Using the identity5 logb e =
1

ln b
the equation (2.38) can be expressed in the alternative

form
d

dx
(bx) = (ln b) · bx (2.39)

In the special case b = e there results logb e = ln e = 1, so that the equations (2.38)

and (2.39) simplify to the result

d

dx
ex = ex (2.40)

5 Use the change of base relation logb a =
log

b
x

loga x
in the special case a = e and x = b.
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Note the exponential function y = ex is the only function equal to its own derivative.

Often times the exponential function y = ex is expressed using the notation y = exp(x).

This is usually done whenever the exponent x is replaced by some expression difficult

to typeset as an exponent. Also note that the functions y = ex and y = lnx are inverse

functions having the property that

eln x = x for x > 0 and ln(ex) = x for all values of x

If u = u(x), then a generalization of the above results is obtained using the chain

rule for differentiation. These generalizations are

d

dx
(bu) =

d

du
(bu) ·

du

dx
or

d

dx
(bu) = (ln b) · bu ·

du

dx

and
d

dx
(eu) =

d

du
(eu) ·

du

dx
or

d

dx
(eu) = eu ·

du

dx

(2.41)

Because the exponential function y = eu is easy to differentiate, many differentiation

problems are converted to this form. For example, writing y = bx = ex ln b, then

dy

dx
=

d

dx
(bx) =

d

dx

(

ex ln b
)

= ex ln b d

dx
[x ln b]

which simplifies to the result given by equation (2.39).

In differential notation, one can write

d eu =eu du

d au =au lna du

d

(

au

ln a

)

=au du, 0 < a < 1 or a > 1

(2.42)

Example 2-14. The differentiation formula
d

dx
xn = nxn−1 was derived for n an

integer. Show that for x > 0 and r any real number one finds that
d

dx
xr = rxr−1

Solution Use the exponential function and write y = xr as y = er ln x, then

dy

dx
=

d

dx
er ln x = er ln x d

dx
(r lnx) = xr r

x
= rxr−1
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Example 2-15. If y = | sinx|, find dy
dx

Solution Use the exponential function and write y = | sinx| = eln | sin x|, then

dy

dx
=

d

dx
eln | sin x| =eln | sin x| d

dx
ln | sinx|

=| sinx| 1

sin x

d

dx
sin x =

| sinx|
sinx

cos x =

{

cos x if sin x > 0

− cosx if sin x < 0

Example 2-16. If y = xcos x with x > 0, find dy
dx

Solution Write y = xcos x as y = e(cos x) ln x, then

dy

dx
=

d

dx
e(cos x) ln x =e(cos x) ln x d

dx
[(cosx) lnx]

=xcos x

[

cos x · 1

x
+ lnx · (− sinx)

]

=xcos x
[cos x

x
− (ln x)(sinx)

]

Example 2-17. The general power rule for differentiation is expressed

d

dx
u(x)r = ru(x)r−1

du

dx
(2.43)

where r can be any real number. This is sometimes written as

d

dx
u(x)r =

d

dx
er lnu(x)

=er ln u(x) d

dx
[r lnu(x)]

=u(x)r · r
1

u(x)

du

dx

=ru(x)r−1 du

dx

(2.44)

which is valid whenever u(x) �= 0 with ln | u(x) | and u(x)r well defined.
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Example 2-18. The exponential function can be used to differentiate the

general power function y = y(x) = u(x)v(x), where u = u(x) > 0 and u(x)v(x) is well

defined. One can write y = u(x)v(x) = ev(x) ln u(x) and by differentiation obtain

dy

dx
=

d

dx
ev(x) ln u(x)

=ev(x) ln u(x) · d

dx
[v(x) lnu(x)]

=u(x)v(x) ·
[

v(x)
1

u(x)

du

dx
+

dv

dx
· lnu(x)

]

Derivative and Continuity

If a function y = f(x) is such that both the function f(x) and its derivative f ′(x)

are continuous functions for all values of x over some interval [a, b], then the function

y = f(x) is called a smooth function and its graph is called a smooth curve. A smooth

function is characterized by an unbroken curve with a continuously turning tangent .

Example 2-19.

(a) The function y = f(x) = x2 − 4 has the deriva-

tive dy
dx

= f ′(x) = 2x which is everywhere contin-

uous and so the graph is called a smooth curve.

(b) The function

y = f(x) = 2 + exp

(

1

3
ln | 2x − 3 |

)

= 2 + (|2x− 3|)1/3

has the derivative

dy

dx
= e

1

3
ln|2x−3| · 2

3(2x − 3)

which has a discontinuity in its derivative at the point x = 3/2 and so the curve is

not a smooth curve.

Maxima and Minima

Examine the curve y = f(x) illustrated in the figure 2-12 which is defined and

continuous for all values of x satisfying a ≤ x ≤ b. Start at the point x = a and move

along the x-axis to the point b examining the heights of the curve y = f(x) as you

move left to right.
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Figure 2-12. Curve y = f(x) with horizontal line indicating critical points.

A local maximum or relative maximum value for f(x) is said to occur at those

points where in moving from left to right the height of the curve increases, then stops

and begins to decrease. A local minimum or relative minimum value of f(x) is said

to occur at those points where in moving from left to right the height of the curve

decreases, then stops and begins to increase. In figure 2-12 the points x1, x3, x5, x8 are

where the function f(x) has local maximum values. The points x2, x4, x6 are where

f(x) has local minimum values. The end points where x = a and x = b are always

tested separately for the existence of a local maximum or minimum value.

Definition: (Absolute maximum) A function is said to have an absolute max-

imum M or global maximum M at a point (x0, f(x0)) if f(x0) ≥ f(x) for all x ∈ D,

where D is the domain of definition of the function and M = f(x0).

Definition: (Absolute minimum) A function is said to have an absolute min-

imum m or global minimum m at a point (x0, f(x0)) if f(x0) ≤ f(x) for all x ∈ D,

where D is the domain of definition of the function and m = f(x0).

For x ∈ D one can write m ≤ f(x) ≤ M where m and M are referred to as extreme

values of the function y = f(x). In the figure 2-12 the point where x = x5 gives

M = f(x5) and the point where x = x2 gives m = f(x2).Note that for functions defined

on a closed interval, the end points x = a and x = b must be tested separately for a

maximum or minimum value.
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Definition: (Relative maximum) A function is said to have a relative maximum

or local maximum at a point (x0, f(x0) if f(x0) ≥ f(x) for all x in some open interval

containing the point x0.

Definition: (Relative minimum) A function is said to have a relative minimum

or local minimum at a point (x0, f(x0)) if f(x0) ≤ f(x) for all values of x in some

open interval containing the point x0.

Concavity of Curve

If the graph of a function y = f(x) is such that f(x) lies above all of its tangents

on some interval, then the curve y = f(x) is called concave upward on the interval. In

this case one will have throughout the arc of the curve f ′′(x) > 0 which indicates that

as x moves from left to right, then f ′(x) is increasing. If the graph of the function

y = f(x) is such that f(x) always lies below all of its tangents on some interval, then

the curve y = f(x) is said to be concave downward on the interval. In this case one

will have throughout the arc of the curve f ′′(x) < 0, which indicates that as x moves

from left to right, then f ′(x) is decreasing. Related to the second derivative are

points known as points of inflection.

Definition: (Point of inflection)

Assume y = f(x) is a continuous function which

has a first derivative f ′(x) and a second derivative

f ′′(x) defined in the domain of definition of the

function. A point (x0, f(x0)) is called an inflection

point if the concavity of the curve changes at that point. The second derivative

f ′′(x0) may or may not equal zero at an inflection point. One can state that a point

(x0, f(x0)) is an inflection point associated with the curve y = f(x) if there exists a

small neighborhood of the point x0 such that

(i) for x < x0, one finds f ′′(x) > 0 and for x > x0, one finds f ′′(x) < 0

or (ii) for x < x0, one finds f ′′(x) < 0 and for x > x0, one find f ′′(x) > 0

No local minimum value or maximum value occurs at an inflection point.

A horizontal inflection point is characterized by a tangent line parallel with the

x-axis with f ′(a) = 0 and f ′′(a) = 0 as illustrated by point A. A vertical inflection

point is characterized by a tangent line parallel with the y-axis with f ′(b) = ±∞

as illustrated by the point B. The point C illustrates a point of inflection where
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f ′(c) �= 0 and f ′′(c) = 0 and the concavity changes from concave up to concave down

as x increases across the inflection point.

If the curve is continuous with continuous

derivatives, those points where the concavity

changes, from upward to downward or from

downward to upward, are inflection points with

a zero second derivative.

Sections of the curve which are concave upward will hold water, while those sections

that are concave downward will not hold water.

Comments on Local Maxima and Minima

Examine the figure 2-12 and make note of the following.

(1) The words extrema (plural) or extremum (singular) are often used when referring

to the maximum and minimum values associated with a given function y = f(x).

(2) At a local maximum or local minimum value the tangent line to the curve is

parallel to one of the coordinate axes.

(3) A local maximum or local minimum value is associated with those points x where

f ′(x) = 0. The roots of the equation f ′(x) = 0 are called critical points. Critical

points must then be tested to see if they correspond to a local maximum, local

minimum or neither, such as the point x7 in figure 2-12.

(4) Continuous curves which have abrupt changes in their derivative at a single

point are said to have cusps at these points. For example, the points where

x = x1 and x = x2 in the figure 2-12 are called cusps. At these cusps one finds

that either f ′(x) = ±∞ or f ′(x) has a jump discontinuity. These points must be

tested separately to determine if they correspond to local maximum or minimum

values for y = f(x).

(5) The end points of the interval of definition x = a and x = b must be tested

separately to determine if a local maximum or minimum value exists.

(6) The conditions f ′(x) = 0 or f ′(x) = ±∞ at a point x0 are not sufficient conditions for

an extremum value for the function y = f(x) as these conditions may produce an

inflection point or an asymptotic line and so additional tests for local maximum

and minimum values are needed.

(7) If the function y = f(x) is continuous, then between two equal values for the

function, where f ′(x) is not zero everywhere, at least one maximum or one min-

imum value must exist. One can also say that between two maximum values
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there is at least one minimum value or between two minimum values there is at

least one maximum value.

(8) In the neighborhood of a local maximum value, as x increases the function in-

creases, then stops changing and starts to decrease. Similarly, in the neighbor-

hood of a local minimum value, as x increases the function decreases, then stops

changing and starts to increase. In terms of a particle moving along the curve,

one can say that the particle change becomes stationary at a local maximum or

minimum value of the function. The terminology of finding stationary values of

a function is often used when referring to maximum and minimum problems.

First Derivative Test

The first derivative test for extreme values of a function tests the slope of the

curve at near points on either side of a critical point. That is, to test a given func-

tion y = f(x) for maximum and minimum values, one first calculates the derivative

function f ′(x) and then solves the equation f ′(x) = 0 to find the critical points. If x0

is a root of the equation f ′(x) = 0, then f ′(x0) = 0 and then one must examine how

f ′(x) changes as x moves from left to right across the point x0.

Slope Changes in Neighborhood of Critical Point

If the slope f ′(x) changes from

(i) + to 0 to −, then a local maximum occurs at the critical point.

(ii) − to 0 to +, then a local minimum occurs at the critical point.

(iii) + to 0 to +, then a point of inflection is said to exist at the critical point.

(iv) − to 0 to −, then a point of inflection is said to exist at the critical point.

Given a curve y = f(x) for x ∈ [a, b], the values of f(x) at the end points where

x = a and x = b must be tested separately to determine if they represents relative or

absolute extreme values for the function. Also points where the slope of the curve

changes abruptly, such as the point where x = x1 in figure 2-12, must also be tested

separately for local extreme values of the function.

Second Derivative Test

The second derivative test for extreme values of a function y = f(x) assumes that

the second derivative f ′′(x) is continuous in the neighborhood of a critical point.

One can then say in the neighborhood of a local minimum value the curve will be

concave upward and in the neighborhood of a local maximum value the concavity
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of the curve will be downward. This gives the following second derivative test for

local maximum and minimum values.

(i) If f ′(x0) = 0 and f ′′(x0) > 0, then f has relative minimum value at x0.

(ii) If f ′(x0) = 0 and f ′′(x0) < 0, then f has a relative maximum value at x0.

If f ′′(x0) = 0, then the second derivative test fails and one must use the first derivative

test. The second derivative test is often used because it is convenient. The second

derivative test is not as general as the first derivative test. If the second derivative

test fails, then resort back to the more general first derivative test.

Example 2-20.

Find the maximum and minimum values of the function y = f(x) = x3 − 3x

Solution

The derivative of the given function is
dy

dx
=

d

dx
x3 − 3

d

dx
x = 3x2 − 3 = f ′(x). Setting

f ′(x) = 0 one finds

3(x2 − 1) = 3(x − 1)(x + 1) = 0 with roots x = 1 and x = −1

being the critical points.

First derivative test

Selecting the points x = −3/2, x = −1 and x = −1/2 one finds that

f ′(−3/2) = 3x2 − 3
x=−3/2

=
15

4
, f ′(−1) = 0, f ′(−1/2) = 3x2 − 3

x=−1/2

= −9

4

and so the slope of the curve changes from + to 0 to − indicating a local maximum

value for the function.

Selecting the points x = 1/2, x = 1 and x = 3/2 one finds

f ′(1/2) = 3x2 − 3
x=1/2

= −9

4
, f ′(1) = 0, f ′(3/2) = 3x2 − 3

3/2

=
15

4

and so the slope of the curve changes from − to 0 to + indicating a local minimum

value for the function.

Second derivative test

The second derivative of the given function is
d2y

dx2
= f ′′(x) = 6x. The first and

second derivatives evaluated at the critical points gives
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(i) at x = −1 one finds f ′(−1) = 0 and f ′′(−1) = 6(−1) = −6 < 0 indicating the curve is

concave downward. Therefore, the critical point x = −1 corresponds to a local

maximum.

(ii) at x = 1 one finds f ′(1) = 0 and f ′′(1) = 6(1) = 6 > 0 indicating the curve is concave

upward. Therefore, the critical point x = 1 corresponds to a local minimum

value.

Sketching the curve

The local minimum value at x = 1 is f(1) = (1)3 − 3(1) = −2 and the local

maximum value at x = −1 is f(−1) = (−1)3 − 3(−1) = 2. Consequently, the curve

passes through the points (1,−2) being concave upward and it passes through the

point (−1, 2) being concave downward.

Select random points in the neighborhood of

these points for additional information about the

curve. Select the points where x = −2, x = 0

and x = 2 and show the points (−2,−2), (0, 0) and

(2, 2) lie on the curve. Plotting these points and

connecting them with a smooth curve gives the

following sketch.

Example 2-21. Snell’s Law

Refraction is the process where a light or sound wave changes direction when

passing from one isotropic6 medium to another. Examine the figure 2-13 illustrating

a ray of light moving from point P in air to a point Q in water. The point P is

a height h above the air-water interface and the point Q is at a depth d below the

air-water interface. The normal to the air-water interface is used to define angles of

incidence and refraction.

In figure 2-13 the symbol i denotes the angle of incidence and r denotes the

angle of refraction of the ray of light moving from point P in air to a point Q in

water and � is the x-distance between the points P and Q. Fermat’s law7 states that

light will travel from point P in air to point Q in water along a path POQ which

6 Having the same physical properties in all directions.
7 Pierre de Fermat (1601-1665) A French lawyer famous for his developing many results in number theory and

calculus.
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minimizes the time travel. If c1 denotes the speed of light in air and c2 denotes the

speed of light in water one can find from tables the approximate values

c1 ≈ 2.99 (10)10 cm/sec c2 ≈ 2.26 (10)10 cm/sec

Find the relation between the angles i and r such that Fermat’s law is satisfied.

Figure 2-13. Light ray moving from point P in air to point Q in water.

Solution

Use the formula Distance = (V elocity) (Time) to obtain the following values.

The time of travel for light in air to move from point P to O is

Tair =
PO

c1
=

√
x2 + h2

c1

The time of travel for light in water to move from point O to Q is

Twater =
OQ

c2
=

√

(� − x)2 + d2

c2

The total time to travel from point P to Q is therefore

T = T (x) = Tair + Twater =

√
x2 + h2

c1
+

√

(� − x)2 + d2

c2
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Calculating the derivative one finds

dT

dx
=

1

c1

x√
x2 + h2

− 1

c2

(� − x)
√

(� − x)2 + d2

If the time T has an extreme value, then dT
dx

= 0 and x is required to satisfy the

equation
1

c1

x√
x2 + h2

=
1

c2

(�− x)
√

(� − x)2 + d2

and from this equation one can theoretically solve for the value of x which makes

T = T (x) have a critical value. This result can be expressed in a slightly different

form. Examine the geometry in the figure 2-13 and verify that

sin i =
x√

x2 + h2
and sin r =

(�− x)
√

(� − x)2 + d2

so the condition for an extreme value can be written in the form

sin i

c1

=
sin r

c2

(2.45)

This result is known as Snell’s law.8 Show that the second derivative simplifies to

d2T

dx2
=

1

c1

h2

(h2 + x2)3/2
+

1

c2

d2

((� − x)2 + d2)3/2
> 0

By the second derivative test the critical point corresponds to a minimum value for

T = T (x)

Example 2-22. Consider the function y = f(x) =
x2 − x + 1

x2 + x + 1
and ask the question

“Is this function defined for all values of x?” If the denominator is not zero, then one

can answer yes to this question. If x2+x+1 = 0, then x = −1±
√

1−4

2
= 1

2
(−1±i

√
3) which

is a complex number and so for real values of x the denominator is never zero. One

can then say the domain of definition for the function is D = R. To determine the

range for the function, rewrite the function in the form x2(1− y)−x(1+ y)+ (1− y) = 0

8 This law was discovered by Willebrord Snell (1591-1526) a Dutch astronomer. Let c denote the speed of light
in vacuum and cm the speed of light in medium m. The ratio nm = c/cm is called the absolute index of refraction

and the more general form of Snell’s law is n1 sin i = n2 sin r.
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In order that x be a real quantity it is necessary for

(1 + y)2 >4(1 − y)2

1 + 2y + y2 >4(1 − 2y + y2)

−3y2 + 10y − 3 >0

−(3y − 1)(y − 3) >0

This requires that 1
3

< y < 3 which determines the range for the function.

Figure 2-14. Sketch of y =
x2 − x + 1

x2 + x + 1

As x increases without bound one can write

lim
x→∞

x2 − x + 1

x2 + x + 1
= lim

x→∞

1 − 1/x + 1/x2

1 + 1/x + 1/x2
= 1

so that y = 1 is an asymptotic line.

Differentiating the given function one finds

dy

dx
= f ′(x) =

(x2 + x + 1)(2x − 1) − (x2 − x + 1)(2x + 1)

(x2 + x + 1)2
=

2(x2 − 1)

(x2 + x + 1)2

The slope of the curve f ′(x) is zero when x = 1 or x = −1. These are the critical

points to be tested. One finds that at x = 1 the height of the curve is y = f(1) = 1/3

and when x = −1, the height of the curve is y = f(−1) = 3. A sketch of the function

is given in the figure 2-14. By the first derivative test for x < −1, f ′(x) > 0 and for

x > −1, f ′(x) < 0 so that x = −1 corresponds to an absolute maximum value. It is

similarly demonstrated that the point x = 1 corresponds to an absolute minimum

value.
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Example 2-23.

Find the largest rectangle that can be in-

scribed in a given triangle, where the base

of the rectangle lies on the base of the trian-

gle. Let b denote the base of the triangle and

let h denote the height of the triangle.

Solution

Let x denote the base of the rectangle and y the height of the rectangle, then the

area of the rectangle to be maximized is given by A = xy. This expresses the area as

a function of two variables. If y can be related to x, then the area can be expressed

in terms of a single variable and the area can be differentiated. In this way one can

apply the previous max-min methods for analyzing this problem. To begin, observe

that the triangles ABC and ADE are similar triangles so one can write

h − y

h
=

x

b
or x = b

h − y

h
or y = h −

h

b
x

This gives a relationship between the values of x and y. Note that as y varies from

y = 0 to the value y = h, the area A = xy will vary from 0 to a maximum value and

then back to 0. The area of the rectangle can now be expressed as either a function

of x or as a function of y. For example, if A = xy, then one can write either

A =x

(

h −
h

b
x

)

= hx −
h

b
x2, 0 ≤ x ≤ b

or A =b

(

h − y

h

)

y =
b

h
(hy − y2), 0 ≤ y ≤ h

These representation for the area can be differentiated to determine maximum and

minimum values for the area A. Differentiating with respect to x one finds

dA

dx
= h − 2

h

b
x

and a critical value occurs when dA
dx

= 0 or h − 2h
b
x = 0, which requires x = b/2 with

y = h/2. Alternatively, if one differentiates with respect to y one finds

dA

dy
=

b

h
(h − 2y)

and a critical value occurs when dA
dy

= 0, or when y = h/2 which then gives x = b/2.

In both cases one find the maximum area as A = hb/4. Note that there is only
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one critical point as y varies from 0 to h, since the area is zero at the end points

where y = 0 and y = h, the Rolle’s theorem implies there must be a maximum value

somewhere between. That is, if the area is a continuous function of y and A increases

as y increases from 0, then the only way for A to return to zero is for it to reach a

maximum value, stop and then return to zero.

Logarithmic Differentiation

Whenever one is confronted with functions which are represented by complicated

products and quotients such as

y = f(x) =
x2

√
3 + x2

(x + 4)1/3

or functions of the form y = f(x) = u(x)v(x), where u = u(x) and v = v(x) are complicated

functions, then it is recommended that you take logarithms before starting the

differentiation process. For example, to differentiate the function y = f(x) = u(x)v(x),

first take logarithms to obtain

ln y = ln
[

u(x)v(x)
]

which simplifies to ln y = v(x) lnu(x)

The right-hand side of the resulting equation is a product function which can then

be differentiated. Differentiating both sides of the resulting equation, one finds

d

dx
lny =

d

dx
[v(x) lnu(x)] = v(x)

d

dx
lnu(x) + lnu(x)

d

dx
v(x)

1

y
· dy

dx
=v(x)

1

u(x)

du(x)

dx
+ lnu(x) · dv(x)

dx

Solve this equation for the derivative term to obtain

dy

dx
= y ·

[

v(x)
1

u(x)

du(x)

dx
+ lnu(x) · dv(x)

dx

]

(2.46)

where y can be replaced by u(x)v(x).
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Differentiation of Inverse Functions

Assume that y = f(x) is a single-valued function of x in an interval (a, b) and the

derivative function dy
dx

= f ′(x) exists and is different from zero in this interval. If the

inverse function x = f−1(y) exists, then it has the derivative

dx

dy
=

1

dy

dx

Proof

By hypothesis the function y = f(x) is differentiable and the derivative is nonzero

in an interval (a, b) and so one can use implicit differentiation and differentiate both

sides of y = f(x) with respect to y to obtain
d

dy
y =

d

dy
f(x) which by the chain rule

becomes
d

dy
y =

d

dx
f(x) · dx

dy
or 1 = f ′(x) · dx

dy

Consequently, if f ′(x) �= 0, then one can write

dx

dy
=

1

f ′(x)
=

1

dy

dx

An alternative way to view this result is as follows. If y = f(x), then one can

interchange x and y and write

x = f(y) and solving for y obtain y = f−1(x)

Observe that by employing the chain rule there results

dx

dy
= f ′(y) and

d

dy
y =

d

dy
f−1(x) =

d

dx
f−1(x) · dx

dy

This last equation reduces to

1 =
d

dx
f−1(x) · dx

dy
or

1

dx

dy

=
1

f ′(y)
=

1

f ′(f−1(x))
=

d

dx
f−1(x) = f−1′(x)

which gives the result

d

dx
f−1(x) = f−1′(x) =

1

f ′ (f−1(x))
(2.47)

provided that the denominator is different from zero.
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Example 2-24. If y = f(x) =
x + 1

x
, show that

dy

dx
= f ′(x) =

−1

x2
. Solving for x

one finds x = f−1(y) =
1

y − 1
with derivative

dx

dy
=

d

dy
f−1(y) =

−1

(y − 1)2
. Note that

dx

dy
=

d

dy
f−1(y) =

−1

(y − 1)2
=

1
dy
dx

=
1
−1
x2

= −x2 =
−1

(y − 1)2

Approached from a different point of view one finds that by interchanging x and

y in the given function gives x = f(y) =
y + 1

y
and solving for y gives the inverse

function y = f−1(x) =
1

x − 1
. This function has the derivative

d

dx
f−1(x) = f−1′(x) =

d

dx
(x − 1)−1 =

−1

(x − 1)2

Using the equation (2.47) one can write

d

dx
f−1(x) = f−1′(x) =

1

f ′ (f−1(x))
=

1
−1

(f−1(x))
2

= −
(

f−1(x)
)2

=
−1

(x − 1)2

Example 2-25. If y = f(x) = ex, then interchanging x and y gives x = f(y) = ey

and solving for y one obtains y = f−1(x) = lnx. Here the functions ex and lnx are

inverse functions of one another. Differentiate y = f−1(x) = ln x to obtain

dy

dx
=

d

dx
f−1(x) = f−1′(x) =

d

dx
lnx =

1

x

Here f ′(x) = ex and f ′(f−1(x)) = eln x = x and

d

dx
f−1(x) =

d

dx
lnx =

1

x
= f−1′(x) =

1

f ′ (f−1(x))
=

1

x

Differentiation of Parametric Equations

If x = x(t) and y = y(t) are a given set of parametric equations which define y as

a function of x by eliminating the parameter t and the functions x(t) and y(t) are

continuous and differentiable, then by the chain rule one can write

dy

dt
=

dy

dx

dx

dt
or

dy

dx
=

dy

dt
dx

dt

=
y′(t)

x′(t)
provided x′(t) �= 0.
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Differentiation of the Trigonometric Functions

To derive the derivatives associated with the trigonometric functions one can

utilize the trigonometric identities

sin(A + B) − sin(A − B) = 2 cosA sin B

cos(A + B) − cos(A − B) = − 2 sinA sin B

sin A cosB − cos A sinB = sin(A − B)

as well as the limit relation lim
θ→0

sin θ

θ
= 1 previously derived in the example 1-6.

Example 2-26. Find the derivative of y = sin x and then generalize this result

to differentiate y = sinu(x) where u = u(x) is an arbitrary function of x.

Solution

Using the definition of a derivative, if y = sinx, then

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

sin(x + h) − sin x

h

dy

dx
= lim

h→0

2 sin(h
2
) cos(x + h

2
)

h
= lim

h→0

sin(h
2
)

h
2

lim
h→0

cos(x +
h

2
) = cos x

Therefore, the derivative of the sine function is the cosine function and one can write

d

dx
sinx = cos x (2.48)

Using the chain rule for differentiation this result can be generalized. If y = sinu,

then
dy

dx
=

dy

du

du

dx
or

d

dx
sinu =

d

du
sinu

du

dx
or

d

dx
sinu = cos u

du

dx
(2.49)

Example 2-27. Some examples involving differentiation of the sine function

are the following.

d

dx
sin(x2) = cos(x2) · 2x

d

dx
sin(αx + β) = cos(αx + β) · α

d

dx
sin(e3x) = cos(e3x) · 3e3x

d

dx
sin(

√

x2 + 1) = cos(
√

x2 + 1) · x√
x2 + 1
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Example 2-28. Find the derivative of y = cos x and then generalize this result

to differentiate y = cosu(x) where u = u(x) is an arbitrary function of x.

Solution

Using the definition of a derivative, if y = cosx, then

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

cos(x + h) − cos(x)

h

dy

dx
= lim

h→0

−2 sin(h
2 ) sin(x + h

2 )

h
= − lim

h→0

sin(h
2 )

h
2

· lim
h→0

sin(x +
h

2
)

dy

dx
= − sinx

One finds that the derivative of the cosine function is the negative of the sine function

giving
d

dx
cos x = − sinx (2.50)

This result can be generalized using the chain rule for differentiation to obtain the

result
d

dx
cos u =

d

du
cos u

du

dx
or

d

dx
cos u = − sinu

du

dx
(2.51)

Example 2-29. Some examples involving the derivative of the cosine function

are the following.

d

dx
cos(x2) = − sin(x2) · 2x

d

dx
cos(αx + β) = − sin(αx + β) · α

d

dx
cos(eαx) = − sin(eαx) · eαxα

d

dx
cos(

√

x3 + 1) = − sin(
√

x3 + 1) · 3x2

2
√

x3 + 1

Example 2-30. Find the derivative of y = tan x and then generalize this result

to differentiate y = tanu(x) where u = u(x) is an arbitrary function of x.

Solution

Until you get to a point where you memorize all the rules for differentiating a

function and learn how to combine all these results you are restricted to using the

definition of a derivative.
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If y = tanx, then

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

tan(x + h) − tanx

h
dy

dx
= lim

h→0

1

h

[

sin(x + h)

cos(x + h)
− sinx

cos x

]

= lim
h→0

sin(x + h) cos x − cos(x + h) sinx

h cos x cos(x + h)

dy

dx
= lim

h→0

sin h

h
· lim

h→0

1

cos x cos(x + h)

dy

dx
=

1

cos2 x
= sec2 x

If you know the derivatives of sinx and cos x you can derive the derivative of the

tan x by using the quotient rule for differentiation and write

d

dx
tanx =

d

dx

(

sinx

cos x

)

=
cosx · d

dx
sinx − sin x · d

dx
cos x

cos2 x

d

dx
tanx =

cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x

One finds
d

dx
tan x = sec2 x (2.52)

The chain rule can be utilized to show
d

dx
tan u =

d

du
tan u

du

dx
or

d

dx
tanu = sec2 u

du

dx
(2.53)

Example 2-31. Some examples involving the derivative of the tangent func-

tion are the following.

d

dx
tan(x2) = sec2(x2) · 2x

d

dx
tan(αx + β) = sec2(αx + β) · α

d

dx
tan(eαx) = sec2(eαx) · eαxα

d

dx
tan(

√

x2 + x) = sec2(
√

x2 + x) · 1 + 2x

2
√

x2 + x
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Example 2-32. Find the derivative of y = cot x and then generalize this result

to differentiate y = cotu(x) where u = u(x) is an arbitrary function of x.

Solution

Use the trigonometric identity y = cotx =
cosx

sinx
and write

dy

dx
= lim

h→0

y(x + h) − y(x)

h
= lim

h→0

cot(x + h) − cotx

h

= lim
h→0

cos(x+h)
sin(x+h)

− cos x
sin x

h
= lim

h→0

cos(x + h) sinx − cos x sin(x + h)

h sin x sin(x + h)

= lim
h→0

sinh

h
· lim

h→0

−1

sin x sin(x + h)

d

dx
cot x =

−1

sin2 x
= − csc2 x

so that
d

dx
cot x = − csc2 x (2.54)

Using the chain rule for differentiation one finds

d

dx
cot u(x) = − csc2 u(x)

du

dx
(2.55)

Example 2-33. Find the derivative of y = sec x and then generalize this result

to differentiate y = sec u(x) where u = u(x) is an arbitrary function of x.

Solution

Use the trigonometric identity y = sec x =
1

cos x
and write

dy

dx
= lim

h→0

sec(x + h) − sec x

h
= lim

h→0

1
cos(x+h)

− 1
cos x

h

= lim
h→0

cos x − cos(x + h)

h cos x cos(x + h)
= lim

h→0

sin(h
2 )

h
2

· lim
h→0

sin(x + h
2 )

cosx cos(x + h)

=
sin x

cos2 x
=

1

cos x

sinx

cos x
= sec x tan x

so that
d

dx
sec x = sec x tan x (2.56)

Using the chain rule for differentiation one finds

d

dx
sec u(x) = sec u(x) tan u(x)

du

dx
(2.57)
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Example 2-34. Find the derivative of y = csc x and then generalize this result

to differentiate y = csc u(x) where u = u(x) is an arbitrary function of x.

Solution

Use the trigonometric identity y = csc x =
1

sin x
and write

dy

dx
= lim

h→0

csc(x + h) − csc x

h
= lim

h→0

1
sin(x+h)

− 1
sin x

h

= lim
h→0

sin x − sin(x + h)

h sin x sin(x + h)
= lim

h→0

sin(h
2
)

h
2

· lim
h→0

− cos(x + h
2
)

sinx sin(x + h)

= − cosx

sin2 x
= − 1

sinx

cos x

sin x
= − cscx cotx

so that
d

dx
csc x = − csc x cot x (2.58)

Using the chain rule, show that

d

dx
csc u(x) = − csc u(x) cot u(x)

du

dx
(2.59)

Example 2-35. Some curves are easily expressed in terms of a parameter. For

example, examine the figure 2-15 which illustrates a circle with radius a which rolls

without slipping along the x-axis. On this circle there is attached a fixed arm of

length 0P = r, which rotates with the circle. At the end of the arm is a point P

which sweeps out a curve as the circle rolls without slipping. This arm initially lies

on the y-axis and the coordinates of the point P in this initial position is (0,−(r−a)).

As the circle rolls along the x-axis without slipping, the point P has coordinates

(x, y). From the geometry of the problem the coordinates of point P in terms of the

parameter θ are given by

x = aθ − x0 = aθ − r sin θ y = a + y0 = a − r cos θ (2.60)

The term aθ in the parametric equations (2.60) represents arc length as the circle

rolls and the terms r sin θ and r cos θ represent projections of the arm onto the x and

y axes respectively.
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Figure 2-15. Circle rolling without slipping.

Figure 2-16. Cycloid curves for r = 3
2a, r = a and r = a

2

The curve that the point P sweeps out as the circle rolls without slipping has different

names depending upon whether r > a, r = a or r < a, where a is the radius of the

circle. These curves are called

a prolate cycloid if r > a

a cycloid if r = a

a curtate cycloid if r < a

These curves are illustrated in the figure 2-16.
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To construct a tangent line to some point (x0, y0) on one of the cycloids, one must

be able to find the slope of the curve at this point. Using chain rule differentiation

one finds
dy

dθ
=

dy

dx

dx

dθ
or

dy

dx
=

dy

dθ
dx

dθ

, where
dx

dθ
= a − r cos θ and

dy

dθ
= r sin θ

The point (x0, y0) on the cycloid corresponds to some value θ0 of the parameter. The

slope of the tangent line at this point is given by

mt =
dy

dx
=

r sin θ

a − r cos θ θ=θ0

and the equation of the tangent line at this point is y − y0 = mt(x − x0).

Simple Harmonic Motion

If the motion of a particle or center of mass of a body can be described by either

of the equations

y = y(t) = A cos(ωt − φ0) or y = y(t) = A sin(ωt − φ0) (2.61)

where A, ω and φ0 are constants, then the particle or body is said to undergo a

simple harmonic motion. This motion is periodic with least period T = 2π/|ω|. The

amplitude of the motion is |A| and the quantity φ0 is called a phase constant or phase

angle.

Note 1: By changing the phase constant, one of the equations (2.61) can be trans-

formed into the other. For example,

A sin(ωt − φ0) = A cos [(ωt − φ0) − π/2] = A cos(ωt − θ0), θ0 = φ0 + π/2

and similarly

A cos(ωt − φ0) = A sin [(ωt − φ0) − π/2] = A sin(ωt − θ0), θ0 = φ0 + π/2

Note 2: Particles having the equation of motion

y = y(t) = α sinωt + β cosωt
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where α, β and ω are constants, can be written in the form of either equation in

(2.61) by multiplying both the numerator and denominator by
√

α2 + β2 to obtain

y = y(t) =
√

α2 + β2

[

α
√

α2 + β2
sin ωt +

β
√

α2 + β2
cosωt

]

(2.62)

The substitutions A =
√

α2 + β2, sin φ0 = α√
α2+β2

, cos φ0 = β√
α2+β2

reduces equation

(2.62) to the form

y = y(t) = A (sin φ0 sin ωt + cos φ0 cos ωt) = A cos(ωt − φ0)

Example 2-36.

Consider a particle P moving around a circle

of radius a with constant angular velocity ω. The

points P1 and P2 are the projections of P onto the

x and y axes. The distance of these points from

the origin are described by the x and y-positions

of the particle and are given by x = x(t) = a cosωt

and y = y(t) = a sinωt. Here both P1 and P2 exhibit a simple harmonic motion about

the origin as the particle P moves counterclockwise about the circle. This simple

harmonic motion has a time period 2π/ω and amplitude a.

The derivatives
dx

dt
= x′(t) = −aω sin ωt and

dy

dt
= y′(t) = aω cosωt represent the

velocities of the points P1 and P2. These velocities can be used to determine the

velocity of the particle P on the circle. Velocity is the change in distance with

respect to time. If s = aθ is the distance traveled by the particle along the circle,

then v =
ds

dt
= a

dθ

dt
= aω is the velocity of the particle. This same result can be

obtained from the following analysis. The quantity dx = −aω sin ωt dt represents a

small change of P in x-direction and the quantity dy = aω cos ωt dt represents a small

change of P in the y-direction. One can define an element of arc length squared

given by ds2 = dx2 + dy2. This result can be represented in the form

ds =
√

(dx)2 + (dy)2 =⇒ ds

dt
=

√

(

dx

dt

)2

+

(

dy

dt

)2

dt (2.63)

and when the derivatives x′(t) and y′(t) are substituted into equation (2.63) there

results v =
ds

dt
= aω. The second derivatives of x = x(t) and y = y(t) are found to be

d2x

dt2
= ẍ = −aω2 cos ωt and

d2y

dt2
= ÿ = −aω2 sin ωt (2.64)
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which can be written in the form

ẍ = −ω2 x and ÿ = −ω2y (2.65)

This shows that one of the characteristics of simple harmonic motion is that the

magnitude of the acceleration of either the point P1 or P2 is always proportional

to the displacement from the origin and the direction of the acceleration is always

opposite to that of the displacement.

L´Hôpital’s Rule

One form of L´Hôpital’s9 rule, used to evaluate the indeterminate form 0
0
, is the

following. If f(x) and g(x) are both differentiable functions and satisfy the properties

lim
x→x0

f(x) = 0, lim
x→x0

g(x) = 0, lim
x→x0

g′(x) �= 0,

then one can write

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
(2.66)

provided the limit on the right-hand side exists.

The proof of the above statement is obtained by using the definition of the

derivative and properties of the limiting process. One can write

lim
x→x0

f ′(x)

g′(x)
=

f ′(x0)

g′(x0)
=

lim
x→x0

f(x) − f(x0)

x − x0

lim
x→x0

g(x)− g(x0)

x − x0

= lim
x→x0

f(x) − f(x0)

g(x) − g(x0)
= lim

x→x0

f(x)

g(x)

because f(x0) = g(x0) = 0 by hypothesis.

The L´Hôpital’s rule can also be used to evaluate the indeterminate form ∞
∞ . If

lim
x→∞

f(x) = ∞ and lim
x→∞

g(x) = ∞, then one can write

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
(2.67)

To show this is true make the substitution x = 1/t so that as x → ∞, then t → 0 and

write

lim
x→∞

f(x)

g(x)
= lim

t→0

f(1/t)

g(1/t)
, t > 0 (2.68)

9 Guillaume François Antoine Marquis L´Hôpital (1661-1704) French mathematician who wrote the first calculus

book. L´Hôpital’s name is sometimes translated as L’Hospital with the s silent.
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and then apply L´Hôpital’s rule to the right-hand side of equation (2.68) to obtain

lim
x→∞

f(x)

g(x)
= lim

t→0

f ′(1/t)(−1/t2)

g′(1/t)(−1/t2)
= lim

t→0

f ′(1/t)

g′(1/t)
= lim

x→∞

f ′(x)

g′(x)

Still another form of L´Hôpital’s rule is that if x0 is a finite real number and

lim
x→x0

f(x) = ∞ and lim
x→x0

g(x) = ∞

then one can write

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
(2.69)

This result can be established using the result from equation (2.67). Make the

substitution x = x0 + 1/t so that as x → x0, then t → ∞ and write

lim
x→x0

f(x)

g(x)
= lim

t→∞

f(x0 + 1/t)

g(x0 + 1/t)
= lim

t→∞

F (t)

G(t)
(2.70)

Applying L´Hôpital’s rule from equation (2.67) one finds

lim
x→x0

f(x)

g(x)
= lim

t→∞

F (t)

G(t)
= lim

t→∞

F ′(t)

G′(t)
= lim

t→∞

f ′(x0 + 1/t)(−1/t2)

g′(x0 + 1/t)(−1/t2)
= lim

x→x0

f ′(x)

g′(x)

Note that sometimes L´Hôpital’s rule must be applied multiple times. That is,

if lim
x→x0

f ′(x)

g′(x)
is an indeterminate form, then apply L´Hôpital’s rule again and write

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= lim

x→x0

f ′′(x)

g′′(x)

Example 2-37. Find lim
x→0

1 − cos x

x2
.

Solution Use L´Hôpital’s rule multiple times and write

lim
x→0

1 − cos x

x2
= lim

x→0

−(− sinx)

2x
= lim

x→0

cos x

2
=

1

2

Make note of the fact that the functions that are used in equations (2.66), (2.67),

and (2.69) can themselves be derivatives.

One final note about L´Hôpital’s rule. There may occur limits10 where a re-

peated application of L´Hôpital’s rule puts you into an infinite loop and in such

cases alternative methods for determining the limits must be employed.

10 For example, L´Hôpital’s rule applied to limx→∞
√

x2+1
x produces an infinite loop.



140

Example 2-38.

(a) Evaluate the limit lim
x→0

sin x

x

Solution Using the L´Hôpital’s rule one finds lim
x→0

sin x

x
= lim

x→0

cos x

1
= 1

(b) Evaluate the limit lim
x→∞

lnx

x

Solution By L´Hôpital’s rule lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0

(c) Evaluate the limit lim
x→0

ln(sinx)

ln(tanx)

Solution By L´Hôpital’s rule lim
x→0

ln(sinx)

ln(tanx)
= lim

x→0

1

sin x
· cosx

1

tan x
· sec2 x

= lim
x→0

cos2 x = 1

Example 2-39. Use L´Hôpital’s rule to show lim
x→∞

(

1 +
1

n

)

n

= e

Solution Write
(

1 +
1

n

)

n

= en ln(1+ 1

n
), then by L´Hôpital’s rule

one can show that lim
x→∞

ln(1 + 1
x
)

1
x

= 1

Differentiation of Inverse Trigonometric Functions

Examine the inverse trigonometric functions illustrated in the figures 1-18 and

1-19 presented in chapter 1. Observe that these functions are multi-valued functions

and because of this their derivatives depend upon which branch of the function

you are dealing with. In the example 1-5 a branch was assigned to each inverse

trigonometric function. You are not restricted to use these branches all the time. In

using mathematics to solve applied problems it is customary to select the branch of

the inverse trigonometric function which is applicable to the kind of problem you are

solving. In this section derivations for the derivatives of the inverse trigonometric

functions will be given for all possible branches that you might want to deal with.

By definition y = sin−1 u is equivalent to siny = u and the branch where −
π

2
≤ y ≤

π

2

has been selected. Hence, to find the derivative of y = sin−1 u one can differentiate

instead the equivalent relationship siny = u. Differentiating with respect to x one

finds
d

dx
sin y =

du

dx
or cos y

dy

dx
=

du

dx
or

dy

dx
=

1

cos y

du

dx

Consequently,
dy

dx
=

d

dx
sin−1 u =

1

cos y

du

dx
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Observe that u = sin y is related to cos y, since sin2 y + cos2 y = 1 so that one can write

cos y = ±
√

1 − sin2 y = ±
√

1 − u2 (2.71)

The sign selected for the square root function depends upon where y is located. If

y = sin−1 u is restricted to the first and fourth quadrant, where −π
2
≤ y ≤ π

2
, then cos y

is positive and so the plus sign is selected for the square root. However, if y = sin−1 u

is restricted to the second or third quadrant, where π
2

< sin−1 u < 3π
2
, then the function

cos y is negative and so the minus sign is selected for the square root function. This

gives the following differentiation formula for the function y = sin−1 u = arcsinu

d

dx
arcsinu =

d

dx
sin−1 u =















1
√

1 − u2

du

dx
, |u| < 1, −π

2
< sin−1 u < π

2

−1
√

1 − u2

du

dx
, |u| < 1, π

2
< sin−1 u < 3π

2

(2.72)

To differentiate the function y = arccosu = cos−1 u write the equivalent statement

cos y = u and then differentiate both sides of this equivalent equation with respect to

x to obtain
d

dx
cos y = − siny

dy

dx
=

du

dx
or

dy

dx
=

−1

siny

du

dx

Here u = cos y and siny are related by

sin y = ±
√

1 − cos2 u = ±
√

1 − u2

where the sign assigned to the square root function depends upon where y lies. If

y = cos−1 u lies in the first or second quadrant, then sin y is positive and so the plus

sign is selected. If y = cos−1 u is the third or fourth quadrant, then sin y is negative

and so the minus sign is selected. One can then show that

d

dx
arccosu =

d

dx
cos−1 u =















−1
√

1 − u2

du

dx
, |u| < 1, 0 < cos−1 u < π

1
√

1 − u2

du

dx
, |u| < 1, π < cos−1 u < 2π

(2.73)

In a similar fashion, if y = arctanu = tan−1 u, then write tan y = u and differentiate

both sides of this equation with respect to x and show

d

dx
tany = sec2 y

dy

dx
=

du

dx
or

dy

dx
=

1

sec2 y

du

dx



142

Use the identity 1 + tan2 y = sec2 y = 1 + u2 and show

d

dx
tan−1 u =

1

1 + u2

du

dx
(2.74)

This result holds independent of which quadrant the angle y = tan−1 u lies in.

In a similar fashion one can derive the derivative formulas for the inverse func-

tions cot−1 u, sec−1 u and csc−1 u. One finds

d

dx
cot−1 u =

−1

1 + u2

du

dx
(2.75)

a result which holds independent of which quadrant the angle y = cot−1 u lies in.

The derivatives for the inverse secant and cosecant functions are found to be

d

dx
sec−1 u =















1

u
√

u2 − 1

du

dx
, 0 < sec−1 u <

π

2
or π < sec−1 u < π

2

−1

u
√

u2 − 1

du

dx
,

π

2
< sec−1 u < π or 3π

2
< sec−1 u < 2π

(2.76)

d

dx
csc−1 u =















1

u
√

u2 − 1

du

dx
,

π

2
< csc−1 u < π or 3π

2
< csc−1 u < 2π

−1

u
√

u2 − 1

du

dx
, 0 < csc−1 u <

π

2
or π < csc−1 u < 3π

2

(2.77)

Hyperbolic Functions and their Derivatives

The hyperbolic functions were introduced around the year 1760 by the mathe-

maticians Vincenzo Riccati11 and Johan Heinrich Lambert.12 These functions were

previously defined in terms of the exponential functions ex and e−x. Hyperbolic

functions occur in many areas of physics, engineering and related sciences. Recall

that these functions are defined

sinhx =
ex − e−x

2
=

e2x − 1

2ex
hyperbolic sine function

coshx =
ex + e−x

2
=

e2x + 1

2ex
hyperbolic cosine function

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
hyperbolic tangent function

(2.78)

11 Vincenzo Riccati (1707-1775) An Italian mathematician.
12 Johan Heinrich Lambert (1728-1777) A French mathematician.
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Analogous to the definition of the trigonometric functions the cothx, sechx and cschx

are defined.

cothx =
coshx

sinhx
=

ex + e−x

ex − e−x
=

e2x + 1

e2x − 1
hyperbolic cotangent function

sechx =
1

coshx
=

2

ex + e−x
=

2ex

e2x + 1
hyperbolic secant function

cschx =
1

sinhx
=

2

ex − e−x
=

2ex

e2x − 1
hyperbolic cosecant function

(2.79)

Figure 2-17. Circular functions and hyperbolic functions.

The set of points C = { (x, y) | x = cos(t), y = sin(t), 0 < t < 2π } defines a circle of

unit radius centered at the origin as illustrated in the figure 2-17. The parameter t

has the physical significance of representing an angle of rotation. This representation

for the circle gives rise to the terminology of calling trigonometric functions circular

functions. In a similar fashion, the set of points

H = { (x, y) | x = cosh(t), y = sinh(t), t ∈ R }

defines the right-half of the equilateral hyperbola defined by x2−y2 = 1 as illustrated

in the figure 2-17. If the point (x, y) = ( cosh(t), sinh(t)) on the hyperbola is connected

to the origin by a straight line, then an area between the line, the x-axis and the

hyperbola is formed having an area a. The physical significance of the parameter t in

this representation is that t = 2a. This representation gives rise to the terminology of
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calling the functions in equations (2.78) and (2.79) the hyperbolic functions. Graphs

of the hyperbolic functions, defined by the equations (2.79), are illustrated in the

figures 2-18 and 2-19.

Figure 2-18. Hyperbolic functions sinh(t), cosh(t), tanh(t).

An examination of the hyperbolic functions illustrated in the figures 2-18 and

2-19 show that

sinh(−x) = − sinh(x)

cosh(−x) = cosh(x)

tanh(−x) = − tanh(x)

csch(−x) = − csch(x)

sech(−x) = sech(x)

coth(−x) = − coth(x)

(2.80)

which shows that the functions cosh(x) and sech(x) are even function of x symmet-

ric about the y-axis and the functions sinh(x), tanh(x), csch (x) and coth(x) are odd

functions of x being symmetric about the origin.

Approximations

For large values of |x|, with x > 0

coshx ≈ sinhx ≈ 1

2
ex

tanhx ≈ cothx ≈ 1

sechx ≈ cschx ≈ 2e−x ≈ 0

For large values of |x|, with x < 0

coshx ≈ − sinhx ≈ 1

2
e−x

tanhx ≈ cothx ≈ −1

sechx ≈ − cschx ≈ 2ex ≈ 0
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Figure 2-19. Hyperbolic functions csch(t), sech(t), coth(t)

Hyperbolic Identities

One can readily show that the hyperbolic functions satisfy many properties

similar to the trigonometric identities. For example, one can use algebra to verify

that

coshx + sinhx = ex and coshx − sinhx = e−x (2.81)

and

cosh2x − sinh2x = 1, 1 − sech2x = tanh2x, 1 + csch2x = coth2x (2.82)

Algebra can also be used to prove the addition formula

sinh(x + y) = sinhx coshy + coshx sinhy

cosh(x + y) = coshx coshy + sinhx sinhy

tanh(x + y) =
tanhx + tanhy

1 + tanhx tanhy

(2.83)

Example 2-39. Show that sinh(x + y) = sinhx coshy + coshx sinhy.

Solution

Use the law of exponents and show that

sinh(x + y) =
ex+y − e−x−y

2
=

exey − e−xe−y

2
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Now use the results from the equations (2.81) to show

sinh(x + y) =
1

2
[( coshx + sinhx)( coshy + sinhy) − ( coshx − sinhx)( coshy − sinhy)]

which when expanded simplifies to the desired result.

Replacing y by −y in the equations (2.83) produces the difference expansions

sinh(x − y) = sinhx coshy − coshx sinhy

cosh(x − y) = coshx coshy − sinhx sinhy

tanh(x − y) =
tanhx − tanhy

1 − tanhx tanhy

(2.84)

Substituting y = x in the equations (2.83) produces the results

sinh(2x) =2 sinhx coshx

cosh(2x) = cosh2x + sinh2y = 2 cosh2x − 1 = 1 + 2 sinh2x

tanh(2x) =
2 tanhx

1 + tanh2x

(2.85)

It is left for the exercises to verify the additional relations

sinhx + sinhy =2 sinh

(

x + y

2

)

cosh

(

x − y

2

)

coshx + coshy =2 cosh

(

x + y

2

)

cosh

(

x − y

2

)

tanhx + tanhy =
sinh(x + y)

coshx coshy

(2.86)

sinhx − sinhy =2 cosh

(

x + y

2

)

sinh

(

x − y

2

)

coshx − coshy =2 sinh

(

x + y

2

)

sinh

(

x − y

2

)

tanhx − tanhy =
sinh(x − y)

coshx coshy

(2.87)

sinh

(

x

2

)

=

√

1

2
( coshx − 1)

cosh

(

x

2

)

=

√

1

2
( coshx + 1)

tanh

(

x

2

)

=
coshx − 1

sinhx
=

sinhx

coshx + 1

(2.88)
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Euler’s Formula

Sometime around the year 1790 the mathematician Leonhard Euler13 discovered

the following relation

eix = cos x + i sinx (2.89)

where i is an imaginary unit with the property i2 = −1. This formula is known as

Euler’s formula and is one of the most important formulas in all of mathematics.

The Euler formula can be employed to make a connection between the trigonometric

functions and the hyperbolic functions.

In order to prove the Euler formula given by equation (2.89) the following result

is needed.

If a function f(x) has a derivative f ′(x) which is everywhere zero within an

interval, then the function f(x) must be a constant for all values of x within the

interval.

The above result can be proven using the mean-value theorem considered earlier.

If f ′(c) = 0 for all values c in an interval and x1 �= x2 are arbitrary points within the

interval, then the mean-value theorem requires that

f ′(c) =
f(x2) − f(x1)

x2 − x1
= 0

This result implies that f(x1) = f(x2) for all values x1 �= x2 in the interval and hence

f(x) must be a constant throughout the interval.

To prove the Euler formula examine the function

F (x) = (cos x − i sinx)eix, i2 = −1 (2.90)

where i is an imaginary unit, which is treated as a constant. Differentiate this

product and show

d

dx
F (x) = F ′(x) =(cosx − i sinx)eixi + (− sinx − i cosx)eix

F ′(x) = [i cosx + sinx − sinx − i cosx] eix = 0

(2.91)

Since F ′(x) = 0 for all values of x, then one can conclude that F (x) must equal a

constant for all values of x. Substituting the value x = 0 into equation (2.90) gives

F (0) = (cos 0 − i sin 0)ei0 = 1

13 Leonhard Euler (1707-1783) A famous Swiss mathematician.



148

so that the constant value is 1 and consequently

1 = (cosx − i sinx)eix (2.92)

Multiply both sides of equation (2.92) by (cosx + i sinx) and show

cos x + i sinx =(cos x + i sinx)(cosx − i sinx)eix

cos x + i sinx =(cos2 x + sin2 x)eix

cos x + i sinx =eix

which is the Euler formula given by equation (2.89).

Note that if

eix =cos x + i sinx (2.93)

then e−ix =cos x − i sinx (2.94)

since cos(−x) = cos x and sin(−x) = − sinx. Adding and subtracting the above equa-

tions produces the results

sinx =
eix − e−ix

2i
and cos x =

eix + e−ix

2
(2.95)

Examine the equations (2.95) and then examine the definitions of the hyperbolic

sine and hyperbolic cosine functions to obtain the immediate result that

i sin x = sinh(ix) and cos x = cosh(ix) (2.96)

which states that complex values of the hyperbolic sine and cosine functions give

relations involving the trigonometric functions sine and cosine. Replacing x by ix in

the equations (2.96) produces the results

sinhx = −i sin(ix) and coshx = cos(ix) (2.97)

The results from equations (2.96) and (2.97) together with the definition of the

hyperbolic functions gives the additional relations

tanhx = −i tan(ix) and tanh(ix) = i tan x (2.98)

Properties of these complex functions are examined in more detail in a course

dealing with complex variables and their applications.
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Example 2-40. Using the above definitions one can show that an alternative

form of de Moivre’s theorem is

( coshx ± sinhx)n = coshnx ± sinhnx

Derivatives of the Hyperbolic Functions

For u = u(x) an arbitrary function of x, the derivatives of the exponential func-

tions
d

dx
eu = eu ·

du

dx
and

d

dx
e−u = −e−u ·

du

dx
(2.99)

can be used to calculate the derivatives of the hyperbolic functions, since they are

all defined in terms of exponential functions.

Example 2-41. Find the derivatives of the functions sinhu and coshu where

u = u(x) is a function of x.

Solution

Use the definitions of the hyperbolic sine and cosine functions and write

d

dx
sinhu =

d

dx

(

eu − e−u

2

)

=
eu + e−u

2
· du

dx
= coshu · du

dx

d

dx
coshu =

d

dx

(

eu + e−u

2

)

=
eu − e−u

2
· du

dx
= sinhu · du

dx

Following the above example, the derivatives of all the hyperbolic functions can

be calculated. One can verify that the following results are obtained.

d

dx
sinhu = coshu ·

du

dx
d

dx
coshu = sinhu ·

du

dx
d

dx
tanhu = sech2u ·

du

dx

d

dx
cschu = − cschu cothu ·

du

dx
d

dx
sechu = − sechu tanhu ·

du

dx
d

dx
cothu = − csch2u ·

du

dx

(2.100)

Inverse Hyperbolic Functions and their Derivatives

One can define the inverse hyperbolic functions14 in a manner analogous to how

the inverse trigonometric functions were defined. For example,

14 Sometimes the inverse hyperbolic functions are represented using the notations, arcsinh, arccosh, arctanh,

arccoth, arcsech, arccsch
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y = sinh−1x if and only if sinhy = x

y = cosh−1x if and only if coshy = x

y = tanh−1x if and only if tanhy = x

y = coth−1x if and only if cothy = x

y = sech−1x if and only if sechy = x

y = csch−1x if and only if cschy = x

(2.101)

Figure 2-20. Inverse Hyperbolic functions sinh−1(t), cosh−1(t), tanh−1(t).

Graphs of the inverse hyperbolic functions can be obtained from the graphs of

the hyperbolic functions by interchanging x and y on the graphs and axes and then

re-orienting the graph. The sketches given in the figures 2-20 and 2-21 illustrate the

inverse hyperbolic functions.

Examine the figures 2-20 and 2-21 and note the functions cosh−1t and sech−1t are

multi-valued functions. The other inverse functions are single-valued. The branches

where cosh−1t and sech−1t are positive are selected as the principal branches. If you

want the negative values of these functions, then use the functions − cosh−1t and

− sech−1t.
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Figure 2-21. Inverse Hyperbolic functions csch−1(t), sech−1(t), coth−1(t)

The hyperbolic functions are defined in terms of exponential functions. The

inverse hyperbolic functions can be expressed in terms of logarithm functions, which

is the inverse function associated with the exponential functions.

Example 2-42. Express y = sinh−1x in terms of logarithms.

Solution

If y = sinh−1x, then sinhy = x or

sinhy =
ey − e−y

2
= x or ey − e−y = 2x

This last equation can be converted to a quadratic equation in the unknown ey. This

is accomplished by a multiplication of the equation ey − e−y = 2x by ey to obtain

(ey)2 − 2x(ey) − 1 = 0

Solving this quadratic equation for the unknown ey one finds

ey = x ±
√

x2 + 1 (2.102)

Observe that ey is always positive for real values of y and
√

x2 + 1 > x. Hence, in

order that ey remain positive, one must select the positive square root in equation

(2.102). Then solving the equation (2.102) for y one obtains the result

y = sinh−1x = ln(x +
√

x2 + 1), −∞ < x < ∞
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Example 2-43. Express y = tanh−1x in terms of logarithms.

Solution

If y = tanh−1x, then tanhy = x, which implies −1 < x < 1. Use the definition of

the hyperbolic tangent to write

tanhy =
ey − e−y

ey + e−y
= x or ey − e−y = xey + xe−y

Multiply the last equation through by ey and then solve for e2y to obtain

(1 − x)e2y = (1 + x) giving ey =

√

1 + x

1 − x

Solving for y gives

y =
1

2
ln

(

1 + x

1 − x

)

, −1 < x < 1

Example 2-44. Find the derivative of y = cosh−1u where u = u(x) is a function

of x.

Solution One can write coshy = u and then differentiate both side with respect to x

and obtain

sinhy
dy

dx
=

du

dx

and then solve for
dy

dx
to obtain

dy

dx
=

1

sinhy

du

dx
=

1

±
√

cosh 2y − 1

du

dx
= ± 1√

u2 − 1

du

dx

where one uses the + sign in the principal value region where y > 0.

The previous examples demonstrate how one can establish the representations

sinh−1x =ln
(

x +
√

x2 + 1
)

, −∞ < x < ∞

cosh−1x =ln(x +
√

x2 − 1), x ≥ 1

tanh−1x =
1

2
ln

(

1 + x

1 − x

)

, −1 < x < 1

coth−1x =
1

2
ln

(

x + 1

x − 1

)

, x > 1 or x < −1

sech−1x =ln

(

1

x
+

√

1

x2
− 1

)

, 0 < x < 1

csch−1x =ln

(

1

x
+

√

1

x2
+ 1

)

, x �= 0

(2.103)



153

Relations between Inverse Hyperbolic Functions

In the previous equations (2.103) replace x by 1
x

and show

sinh−1

(

1

x

)

= csch−1x

cosh−1

(

1

x

)

= sech−1x

tanh−1

(

1

x

)

= coth−1x

(2.104)

Example 2-45.

(a) Examine the logarithm of the product (x+
√

x2 + 1)(−x+
√

x2 + 1) = 1 and observe

that ln(x +
√

x2 + 1) = − ln(−x +
√

x2 + 1). This result can be used to show

sinh−1(−x) = ln(−x +
√

x2 + 1) = − sinh−1x

(b) If tanh−1x =
1

2
ln

(

1 + x

1 − x

)

, then

tanh−1(−x) =
1

2
ln

(

1 − x

1 + x

)

= −1

2
ln

(

1 + x

1 − x

)

= − tanh−1x

(c) If y = sech−1x, with y > 0 and 0 < x < 1, then x = sechy. By definition

sechy =
1

coshy
, so that one can write

1

x
= coshy or y = cosh−1

(

1

x

)

= sech−1x

are equivalent statements.

Using the techniques illustrated in the previous example one can verify the

following identities

sinh−1(−x) = − sinh−1x

tanh−1(−x) = − tanh−1x

coth−1(−x) = − coth−1x

csch−1(−x) = − csch−1x

(2.105)
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Derivatives of the Inverse Hyperbolic Functions

To obtain the derivatives of the inverse hyperbolic functions one can differentiate

the functions given by the equations (2.103). For example, if

y = sinh−1x = ln
(

x +
√

x2 + 1
)

then
dy

dx
=

d

dx
sinh−1x =

d

dx
ln

(

x +
√

x2 + 1
)

=
1

x +
√

x2 + 1

d

dx

(

x + (x2 + 1)1/2
)

=
1

x +
√

x2 + 1

(

1 +
x√

x2 + 1

)

=
x +

√
x2 + 1

(

x +
√

x2 + 1
)√

x2 + 1

d

dx
sinh−1x =

1√
x2 + 1

One can use the chain rule for differentiation to generalize this result and obtain

d

dx
sinh−1u =

1√
u2 + 1

du

dx

where u = u(x) is a function of x. In a similar fashion all the inverse hyperbolic

functions can be differentiated and one can verify that

d

dx
sinh−1u =

1
√

u2 + 1

du

dx
, −∞ < u < ∞

d

dx
cosh−1u =

1
√

u2 − 1

du

dx
, u > 1

d

dx
tanh−1u =

1

1 − u2

du

dx
, −1 < u < 1

(2.106)

Example 2-46. Find the derivative of y = sech−1x with y > 0.

Solution
If y = sech−1x = ln

(

1 +
√

1 − x2

x

)

then
dy

dx
=

d

dx
sech−1x =

d

dx
ln

(

1 +
√

1 − x2

x

)

, 0 < x < 1

=
1

1 +
√

1 − x2

x

·





−x2

√
1−x2

− 1 −
√

1 − x2

x2





=
−1

x
√

1 − x2
, 0 < x < 1
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The chain rule for differentiation can be used to generalize this result to

d

dx
sech−1u =

−1

u
√

1 − u2

du

dx
, 0 < u < 1

If the lower half of the hyperbolic secant curve is used, then the sign of the above

result must be changed.

Differentiation of the logarithmic functions which define the inverse hyperbolic

functions, one obtains the results

d

dx
coth−1u =

−1

u2 − 1

du

dx
, u2 > 1

d

dx
sech−1u =















−1

u
√

1 + u2

du

dx
, sech−1u > 0, 0 < u < 1

1

u
√

1 + u2

du

dx
, sech−1u < 0, 0 < u < 1

d

dx
csch−1u =















−1

u
√

1 + u2

du

dx
, u > 0

1

u
√

1 + u2

du

dx
, u < 0

(2.107)

Some additional relations involving the inverse hyperbolic functions are the fol-

lowing.

sinh−1x = tanh−1 x
√

x2 + 1

sinh−1x = ± cosh−1
√

x2 + 1

tanh−1x = sinh−1 x
√

1 − x2
, |x| < 1

sinh−1x = − i sin−1(ix)

cosh−1x = ± i cos−1 x

tanh−1x = − i tan−1(ix)

Example 2-47. As an exercise study Mercator pro-

jections and conformal mappings and show projections of

point P using line from 0 to A gives y2 latitude which dis-

torts map shape and distances and projections of point P

using the line C to B also distorts shapes and distances.

Show the correct conformal projection is y between y1 and

y2 such that dy
dθ

= sec θ and

y = ln[sec θ + tan θ] = tanh−1[sin θ]
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Table of Derivatives

Function f(x) Derivative
df

dx

y = xm dy
dx

= mxm−1

y = ax dy
dx

= ax lna

y = ex dy
dx

= ex

y = sinx dy
dx

= cos x

y = cos x dy
dx

= − sinx

y = tan x dy
dx

= sec2 x

y = cot x dy
dx

= − csc2 x

y = sec x dy
dx

= sec x tanx

y = csc x dy
dx

= − csc x cot x

y = sin−1 x dy
dx

= 1√
1−x2

y = cos−1 x dy
dx

= −1√
1−x2

y = tan−1 x dy
dx

= 1
1+x2

y = cot−1 x dy
dx

= −1
1+x2

y = sec−1 x dy
dx

= 1

x
√

x2−1

y = csc−1 x dy
dx

= −1

x
√

x2−1

y = sinhx dy
dx

= coshx

y = coshx dy
dx

= sinhx

y = tanhx dy
dx

= sech2x

y = cothx dy
dx

= − csch2x

y = sechx dy
dx

= − sechx tanhx

y = cschx dy
dx

= − cschx cothx

y = sinh−1x = ln(x +
√

1 + x2) dy
dx

= 1√
1+x2

y = cosh−1x = ln(x +
√

x2 − 1) dy
dx

= 1√
x2−1

y = tanh−1x = 1
2

ln
(

1+x
1−x

)

dy
dx

= 1
1−x2

y = coth−1x = 1
2

ln
(

x+1
x−1

)

dy
dx

= −1
x2−1

y = sech−1x = cosh−1( 1
x
) dy

dx
= −1

x
√

1−x2

y = csc−1 x = sinh−1( 1
x
) dy

dx
= −1

x
√

x2+1
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Table of Differentials

d(c u) = c du

d(u + v) = du + dv

d(u + v + w) = du + dv + dw

d(u v) = u dv + v du

d(u v w) = u v dw + u dv w + du v w

d

(

u

v

)

=
v du − u dv

v2

d (un) = nun−1du

d sin u = cos u du

d cos u = − sinu du

d tan u = sec2 u du

d cot u = − csc2 u du

d sec u = secu tan u du

d csc u = − csc u cot u du

d (uv) = v uv−1 du + un (ln u) dv

d (uu) = uu (1 + ln u) du

d (eu) = eu du

d (bu) = bu (ln b) du

d(ln u) =
1

u
du

d(logb u) =
1

u
(logb e) du

d sin−1 u =(1 − u2)−1/2 du

d cos−1 u = − (1 − u2)−1/2 du

d tan−1 u =(1 + u2)−1 du

d cot−1 u = − (1 + u2)−1 du

d sec−1 u =
1

u
(u2 − 1)1/2 du

d csc−1 u = −
1

u
(u2 − 1)−1/2 du

All angles in first quadrant.

d sinhu = coshu du

d coshu = sinhu du

d tanhu = sech2u du

d cothu = − csch2u du

d sechu = − sechu tanhu du

d cschu = − cschu cothu du

d sinh−1u = (u2 + 1)−1/2 du

d cosh−1u = (u2 − 1)−1/2 du

d tanh−1u = (1 − u2)−1 du

d coth−1u = − (u2 − 1)−1 du

d sech−1u = −
1

u
(1 − u2)−1/2 du

d csch−1u = −
1

u
(u2 + 1)−1/2 du

d(xy) =xdy + ydx

d(
x

y
) =

ydx − xdy

y2

d(
x2 + y2

2
) =xdx + ydy

d(
y

x
) =

xdy − ydx

x2

d[tan−1(
y

x
)] =

xdy − ydx

x2 + y2
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Partial Derivatives

If u = u(x1, x2, x3, . . . , xn) is a function of several independent variables, the dif-

ferentiation with respect to one of the variables is done by treating all the other

variables as constants. The notations
∂

∂x1

,
∂

∂x2

,
∂

∂x3

, . . . ,
∂

∂xn

are used to denote

these differentiations. The partial derivative symbol
∂

∂xi
indicates all variables dif-

ferent from xi are being held constant. For example, if u = u(x, y) is a function of

two real variables x and y, then the partial derivatives of u with respect to x and y

are defined
∂u

∂x
= lim

∆x→0

u(x + ∆x, y) − u(x, y)

∆x
,

∂u

∂y
= lim

∆y→0

u(x, y + ∆y) − u(x, y)

∆y
,

provided these limits exist. The partial derivative operator
∂

∂x
is used to indicate

a differentiation with respect to x holding all other variables constant during the

differentiation processes. So treat the partial derivative operator just like an ordinary

derivative, except all other variables are held constant during the differentiation with

respect to x. Similarly, the partial differential operator
∂

∂y
is just like an ordinary

derivative with respect to y while holding all other variables constant during the

differentiation with respect to y.

Example 2-48. If u = u(x, y) = x3y2 − siny + cos x, then find
∂u

∂x
and

∂u

∂y
Solution

Treating y as a constant one finds

∂u

∂x
=

∂

∂x
(x3y2 − sin y + cos x)

=
∂(x3y2)

∂x
− ∂(sin y)

∂x
+

∂(cosx)

∂x
∂u

∂x
=y2 ∂(x3)

∂x
− 0 +

∂(cosx)

∂x
If y constant, then sin y is constant.

=y2(3x2) − sin x

In a similar fashion, if x is held constant, then

∂u

∂y
=

∂

∂y
(x3y2 − sin y + cos x)

∂u

∂y
=

∂(x3y2)

∂y
− ∂(sin y)

∂y
+

∂(cos x)

∂y

=x3 ∂(y2)

∂y
− ∂(sin y)

∂y
+ 0 If x is constant, cos x is constant.

∂u

∂y
=x3(2y) − cos y
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Higher partial derivatives are defined as a derivative of a lower ordered derivative.

For example, The second partial derivatives of u = u(x, y) are defined

∂2u

∂x2
=

∂

∂x

(

∂u

∂x

)

,
∂2u

∂y2
=

∂

∂y

(

∂u

∂y

)

The second derivatives
∂2u

∂x ∂y
=

∂

∂x

(

∂u

∂y

)

,
∂2u

∂y ∂x
=

∂

∂y

(

∂u

∂x

)

are called

mixed partial derivatives. If both the function u = u(x, y) and its first ordered partial

derivatives are continuous functions, then the mixed partial derivatives are equal to

one another, in which case it doesn’t matter as to the order of the differentiation

and consequently
∂2u

∂x ∂y
=

∂2u

∂y ∂x
.

Total Differential

If u = u(x, y) is a continuous function of two variables, then as x and y change,

the change in u is written

∆u = u(x + ∆x, y + ∆y) − u(x, y)

Add and subtract the term u(x, y + ∆y) to the change in u and write

∆u = [u(x + ∆x, y + ∆y] − u(x, y + ∆y)] + [u(x, y + ∆y) − u(x, y)]

which can also be expressed in the form

∆u =

[

u(x + ∆x, y + ∆y) − u(x, y + ∆y)

∆x

]

∆x +

[

u(x, y + ∆y) − u(x, y)

∆y

]

∆y (2.108)

Now use the mean-value theorem on the terms in brackets to show
[

u(x + ∆x, y + ∆y) − u(x, y + ∆y)

∆x

]

=
∂u

∂x
+ ε1

[

u(x, y + ∆y) − u(x, y)

∆y

]

=
∂u

∂y
+ ε2

(2.109)

where ε1 approaches zero as ∆x → 0 and ε2 approaches zero as ∆y → 0. One can then

express the change in u as

∆u =
∂u

∂x
∆x +

∂u

∂y
∆y + ε1 ∆x + ε2 ∆y (2.110)

Define the differentials dx = ∆x and dy = ∆y and write the change in u as

∆u =
∂u

∂x
dx +

∂u

∂y
dy + ε1 dx + ε2 dy (2.111)
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Define the total differential of u as

du =
∂u

∂x
dx +

∂u

∂y
dy (2.112)

and note the total differential du differs from ∆u by an infinitesimal of higher order

than dx or dy because ε1 and ε2 approach zero as ∆x → 0 and ∆y → 0. The total

differential du, given by equation (2.112) is sometimes called the principal part in

the change in u.

Notation

Partial derivatives are sometimes expressed using a subscript notation. Some

examples of this notation are the following.

∂u

∂x
=ux

∂u

∂y
=uy

∂2u

∂x2
=uxx

∂2u

∂x ∂y
=uxy

∂2u

∂y2
=uyy

∂3u

∂x3
=uxxx

∂3u

∂x2∂y
=uxxy

∂3u

∂x∂y2
=uxyy

∂3u

∂y3
=uyyy

In general, if f = f(x, y) is a function of x and y and m = i + j is an integer, then
∂mf

∂xi∂yj
is the representation of a mixed partial derivative of f .

Differential Operator

If u = u(x, y) is a function of two variables, then the differential of u is defined

du =
∂u

∂x
dx +

∂u

∂y
dy (2.113)

and if the variables x = x(t) and y = y(t) are functions of t, then u becomes a function

of t with derivative
du

dt
=

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
(2.114)

This is obtained by dividing both sides of equation (2.113) by dt. One can think of

equation (2.114) as defining the differential operator

d[ ]

dt
=

∂[ ]

∂x

dx

dt
+

∂[ ]

∂y

dy

dt
(2.115)

where the quantity to be substituted inside the brackets can be any function of x

and y where both x and y are functions of another variable t.
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By definition a second derivative is the derivative of a first derivative and so one

can write

d2u

dt2
=

d

dt

du

dt
=

d

dt

(

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt

)

=
d

dt

(

∂u

∂x

dx

dt

)

+
d

dt

(

∂u

∂y

dy

dt

)

(2.116)

since the derivative of a sum is the sum of derivatives. The quantities inside the

parentheses represents a product of functions which can be differentiated using the

product rule for differentiation. Applying the product rule one obtains

d2u

dt2
=

∂u

∂x

d

dt

dx

dt
+

dx

dt

d

dt

[

∂u

∂x

]

+
∂u

∂y

d

dt

dy

dt
+

dy

dt

d

dt

[

∂u

∂y

]

d2u

dt
=

∂u

∂x

d2x

dt2
+

dx

dt

d

dt

[

∂u

∂x

]

+
∂u

∂y

d2y

dt2
+

dy

dt

d

dt

[

∂u

∂y

] (2.117)

The equation (2.115) tells us how to differentiate the terms inside the brackets. Here

both
∂u

∂x
and

∂u

∂y
are some functions of x and y and so using the equation (2.115) one

finds
d2u

dt2
=

∂u

∂x

d2x

dt2
+

dx

dt

[

∂

∂x

(

∂u

∂x

)

dx

dt
+

∂

∂y

(

∂u

∂x

)

dy

dt

]

+
∂u

∂y

d2y

dt2
+

dy

dt

[

∂

∂x

(

∂u

∂y

)

dx

dt
+

∂

∂y

(

∂u

∂y

)

dy

dt

]

d2u

dt2
=

∂u

∂x

d2x

dt2
+

dx

dt

[

∂2u

∂x2

dx

dt
+

∂2u

∂x ∂y

dy

dt

]

+
∂u

∂y

d2y

dt2
+

dy

dt

[

∂2u

∂y ∂x

dx

dt
+

∂2u

∂y2

dy

dt

]

(2.118)

Functions of more than two variables are treated in a similar fashion.

Maxima and Minima for Functions of Two Variables

Given that f = f(x, y) and its partial derivatives fx and fy are all continuous

and well defined in some domain D of the x, y-plane. For R > 0, the set of points

N = { (x, y) | (x − x0)
2 + (y − y0)

2 ≤ R2 } is called a neighborhood of the fixed point

(x0, y0), where it is assumed that the point (x0, y0) and the neighborhood N are in the

domain D. The function f = f(x, y) can be thought of as defining a surface S over

the domain D with the set of points S = { (x, y, f) | x, y ∈ D, and f = f(x, y) } defining

the surface. The function f is said to have

a relative or local minimum value at (x0, y0) if f(x, y) ≥ f(x0, y0) for (x, y) ∈ N.

a relative or local maximum value at (x0, y0) if f(x, y) ≤ f(x0, y0) for (x, y) ∈ N.

Determining relative maximum and minimum values of a function of two variables

can be examined by reducing the problem to a one dimensional problem. Note that
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the planes x = x0 = a constant and y = y0 = a constant cut the surface f = f(x, y) in

one-dimensional curves. One can examine these one-dimensional curves for local

maximum and minimum values. For example, consider the curves defined by

Cx = { (x, y0, f) | f = f(x, y0) } Cy = { (x0, y, f) | f = f(x0, y)}

These curves have tangent lines with the slope of the tangent line to the curve Cx

given by ∂f
∂x

y=y0

= fx(x, y0) and the slope of the tangent line to the curve Cy given

by ∂f
∂y

x=x0

= fy(x0, y). At a local maximum or minimum value these slopes must be

zero. Consequently, one can say that a necessary condition for the point (x0, y0) to

corresponds to a local maximum or minimum value for f is that the conditions

∂f

∂x (x0,y0)

= fx(x0, y0) = 0 and
∂f

∂y (x0,y0)

= fy(x0, y0) = 0 simultaneously.

These are necessary conditions for an extreme value but they are not sufficient

conditions. The problem of determining a sufficient condition for an extreme value

will be considered in a later chapter and it will be shown that

If the function f = f(x, y) and its derivatives fx, fy, fxx, fxy, fyy exist and are

continuous at the point (x0, y0), then for f = f(x, y) to have an extreme value at

the point (x0, y0) the conditions

∂f

∂x (x0,y0)

= fx(x0, y0) = 0 and
∂f

∂y (x0,y0)

= fy(x0, y0) = 0

together with the condition fxx(x0, y0)fyy(x0, y0) − [fxy(x0, y0)]
2 > 0 that must be

satisfied. One can then say

f(x0, y0) is a relative maximum value if fxx(x0, y0) < 0

f(x0, y0) is a relative minimum value if fxx(x0, y0) > 0

Implicit Differentiation

If F (x, y, . . . , z) is a continuous function of n−variables with continuous partial

derivatives, then the total differential of F is given by

dF =
∂F

∂x
dx +

∂F

∂y
dy + · · · +

∂F

∂z
dz (2.119)
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In two dimensions, if F (x, y) = 0 is an implicit function defining y as a function

of x, then by taking the total differential one obtains

dF =
∂F

∂x
dx +

∂F

∂y
dy = 0

and solving for
dy

dx
the derivative is calculated as

dy

dx
= −

∂F

∂x
/

∂F

∂y
=

Fx

Fy

,

provided that ∂F
∂y = Fy �= 0.

In three dimensions, if F (x, y, z) = 0, is an implicit function of three variables

which defines z as a function of x and y, then one can write the total differential as

dF =
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dx = 0 (2.120)

Solving for dz in the equation (2.120) one finds

dz =

(

−
∂F

∂x
/

∂F

∂z

)

dx +

(

−
∂F

∂y
/

∂F

∂z

)

dy =

(−Fx

Fz

)

dx +

(−Fy

Fz

)

dy (2.121)

Note that if the implicit function F (x, y, z) = 0 defines z as a function of independent

variables x and y, then one can write z = z(x, y) and the total differential of z would

be given by

dz =
∂z

∂x
dx +

∂z

∂y
dy (2.122)

Comparing the equations (2.122) and (2.121), there results the relations

∂z

∂x
= −

∂F

∂x
/

∂F

∂z
=

−Fx

Fz

and
∂z

∂y
= −

∂F

∂y
/

∂F

∂z
=

−Fy

Fz

(2.123)

provided that ∂F
∂z

�= 0.

Given an implicit equation F (x, y, z) = 0, one could assume one of the following.

(a) x and y are independent variables.

(b) x and z are independent variables.

(c) y and z are independent variables.

The derivatives in these various cases all give results similar to equations (2.123)

and (2.122) derived above.
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Exercises

� 2-1.

(a) Sketch the curve y = x2

(b) Find the equation of the tangent line to this curve which passes through the

point (2, 4).

(c) Find the equation of the tangent line to this curve which passes through the

point (−2, 4)

(d) Find the equation of the tangent line to this curve which passes through the

point (0, 0)

� 2-2. Find the derivatives of the following functions.

(a) y = 3x5 + 2x2 − x + 4

(b) y = 4x3 − x2 + x + 1

(c) y = ax2 + bx + c

(d) y =
1

ax2 + bx + c

(e) y =
1

3x2 − x + 1

(f) y =
1

x2 + x

(g) y =
√

x2 + 1

(h) y = (2x + 1)3(3x2 − x)2

(i) y =

(

x − 1

x + 1

)2

� 2-3. Find the derivatives of the given functions.

(a) y =
1

x3

(b) y = 3
√

x

(c) y = x3/2

(d) y =
1√
x

(e) y =
3
√

t2

(f) y =
1

t
+ t

(g) y = 3 + 4t + 5t2

(h) y =
2x2 + x

x + 1

(i) y =
√

x +
1√
2t

(j) y = x lnx

(k) y = ex lnx

(l) y = n
√

a + x

� 2-4. Find the derivatives of the given functions.

(a) y =
3

x
+

4

x2

(b) y =

√
x

1 + x

(c) y =
√

x(1 + x)

(d) y = (x2 + 4)3

(e) y =
x + 1√

x

(f) y = x
√

x3 − x2

(g) y = e3x

(h) y = ln(3x)

(i) y = esin x

(j) y = tan−1( tanh3x)

(k) y = sin−1 1√
1 + x2

(l) y = tan−1(ln x)

� 2-5. Find the derivatives of the following functions.

(a) A = πr2

(b) V =
4

3
πr3

(c) S = 4πr2

(d) y = sin(3θ)

(e) y = cos(3θ)

(f) y = tan(3θ)

(g) y = sin2(3θ)

(h) y = cos2(3θ)

(i) y = tan2(3θ)

(j) y = sin(a + bxn)

(k) y = cos−1(ax − bx2)

(l) y = xx + x1/x
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� 2-6. Find the derivatives of the following functions.

(a) y = 3x

(b) y =
1

a
tan−1 x

a

(c) y = e3x

(d) y = e3x2

(e) y = sin(ex)

(f) y = cos(tanx)

(g) y = 3
√

1 + sin t

(h) y =
√

t2 − 3t

(i) y = e
√

t

(j) y =

√

1 − x2

1 + x2

(k) y = sec(ln(
√

a + bx + cx2))

(l) y = exx

� 2-7. Find the derivative dy
dx

= y′(x) if y = y(x) is defined by the equation

(a) x2 + y2 = 24

(b) x3 − y2 = 1

(c) xy + x3y3 = 1

(d) x3 + y3 = 6x

(e) x3 + y3 = 6y

(f) x3 + y3 = 6xy

(g) x2 − y2 = 1

(h)
x2

a2
+

y2

b2
= 1

(i) x2 = 4py

(j) xy = (x + y)3

(k) y = x ln

(

y

1 + x

)

(l) y = xy

� 2-8. Find the derivative dy
dx

associated with the given functions.

(a) y = sin−1(3x)

(b) y = cos−1(3x)

(c) y = tan−1(3x)

(d) y = sin−1(x2)

(e) y = cos−1(x2)

(f) y = tan−1(x2)

(g) y = (1 + x) sin−1 x

(h) y = (1 + x) cos−1 x

(i) y = (1 + x) tan−1 x

(j) y = (cos 3x)x

(k) y =

(

1 +
1

x

)x

(l) xy = x2y3 + x + 3

� 2-9. Differentiate the given functions.

(a) y = ln(3x)

(b) y = ln(ax)

(c) y = ln

(

x

x + 1

)

(d) y = (3 + x)x, x > 0

(e) (3 + x)x2

(f) (3 + x)x3

(g) y = ln(ax + b)

(h) y = eax+b

(i) y = xx

(j) y =
1√

x2 + x

(k) y = x +
1

x2

(l) y = x

√

sin3(4x)

� 2-10. Find the derivative of the given functions.

(a) y = sin−1(ax2)

(b) y = cos−1(ax2)

(c) y = tan−1(ax2)

(d) y = sinh(3x)

(e) y = cosh(3x)

(f) y = tanh(3x)

(g) y = sinh−1(3x)

(h) y = cosh−1(3x)

(i) y = tanh−1(3x)

(j) y =
a + bx + c2

x + 1

(k) y = ln( cosh3x)

(l) y = sin−1 x3

� 2-11. Show the derivative of a function f(x) at a fixed point x0 can be written

lim
x→x0

f(x) − f(x0)

x − x0
= f ′(x0) Hint: Make a substitution.

� 2-12. Use the quotient rule to differentiate the functions

(a) y = cotx =
cos x

sinx
, (b) y = sec x =

1

cosx
, (c) y = csc x =

1

sinx
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� 2-13. Find the first and second derivatives of the following functions.

(a) y =
1

t
e−3t

(b) y =
1

x

√

1 − x2

(c) y = te−3t

(d) y = x
√

4 + 3 sinx

(e) y =
x

(x − a)(x − b)

(f) y =
1

x2 + a2

� 2-14. Find the first derivative dy
dx

and second derivative d2y
dx2 associated with the

given parametric curve.

(a) x = a cos t, y = b sin t

(b) x = 4 cos t, y = 4 sin t

(c) x = 3t2, y = 2t

(d) x = at, y = bt2

(e) x = a cosh t, y = b sinh t

(f) x = sin(3t + 4), y = cos(5t + 2)

� 2-15. Differentiate the given functions.

(a) y = x sin(4x2)

(b) y = x2e−3x

(c) y = xe−x

(d) y = cos(4x2)

(e) y = x2 ln(3x), x > 0

(f) y = x2 tan(3x)

(g) y = ln(3x + 4) sin(x2)

(h) y = ln(x2 + x) cos(x2)

(i) y = tan x sec x

� 2-16. Differentiate the given functions.

(a) y =
sin x

x

(b) y =
cos x

x

(c) y =

√
x + 1

x

(d) y =
x√

x + 1

(e) y =
x

(1 + x2)3/2

(f) y =
(1 + x2)3/2

x

(g) y = x2 ln(x2)

(h) y = sin(x2) ln(x3)

(i) y = sin(x2) cos(x2)

� 2-17. Find the first and second derivatives of the given functions.

(a) y = x +
1

x

(b) y = sin2(3x)

(c) y =
x

x + 1

(d) y = x2 + 2x + 3 +
4

x

(e) y = cos2(3x)

(f) y = tan(2x)

(g) y = x sin x

(h) y = x2 cos x

(i) y = x cos(x2)

� 2-18. Find the tangent line to the given curve at the specified point.

(a) y = x +
1

x
, at (1, 2) (b) y = sinx, at (π/4, 1/

√
2) (c) y = x3, at (2, 8)

� 2-19. Show that Rolle’s theorem can be applied to the given functions. Find all

values x = c such that Rolle’s theorem is satisfied.

(a) f(x) = 2 + sin(2πx), x ∈ [0, 1] (b) f(x) = x +
1

x
, x ∈ [1/2, 2]
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� 2-20. Sketch the given curves and where appropriate describe the domain of the

function, symmetry properties, x and y−intercepts, asymptotes, relative maximum

and minimum points, points of inflection and how the concavity changes.

(a) y = x +
1

x

(b) y =
x

x + 1

(c) y = x4 − 6x2

(d) y = (x − 1)2(x − 4)

(e) y = sinx + cos x

(f) y = x4 + 12x3 + 1

� 2-21. If f ′(x) = lim
h→0

f(x + h) − f(x)

h

(a) Show that f ′′(x) = lim
h→0

f(x + 2h) − 2f(x + h) + f(x)

h2

(b) Substitute f(x) = x3 into the result from part (a) and show both sides of the

equation give the same result.

(c) Substitute f(x) = cosx into the result from part (a) and show both sides of the

equation give the same result. Hint: Use L´Hôpital’s rule with respect to the

variable h.

� 2-22. Find the local maximum and minimum values associated with the given

curves.

(a) y = x2 − 4x + 3

(b) y =
x2 − x + 1

x2 + 1

(c) y =
2

x2 + 4

(d) y = −5− 48x + x3

(e) y = sin x, all x

(f) y = cos x, all x

(g) y = sin(2πx), all x

(h) y = cos(2πx), all x

(i) y =
3

5 − 4 cos x
, x ∈ [−16, 16]

� 2-23. Find the absolute maximum and absolute minimum value of the given

functions over the domain D.

(a) y = f(x) = x2 +
2

x
, D = { x | x ∈ [1/2, 2] }

(b) y = f(x) =
x

x + 1
, D = { x | x ∈ [1, 2] }

(c) y = f(x) = sinx + cos x, D = { x | x ∈ [0, 2π] }

(d) y = f(x) =
x

1 + x2
, D = { x | x ∈ [−2, 2] }

� 2-24. Show that the given functions satisfy the conditions of the mean-value

theorem. Find all values x = c such that the mean-value theorem is satisfied.

(a) f(x) = −4 + (x − 2)2, x ∈ [2, 6] (b) f(x) = 4 − x2, x ∈ [0, 2]

� 2-25. A wire of length � = 4 + π is to be cut into two parts. One part is bent into

the shape of a square and the other part is bent into the shape of a circle. Determine

how to cut the wire so that the area of the square plus the area of the circle has a

minimum value?
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� 2-26. A wire of length � = 9 + 4
√

3 is to be cut into two parts. One part is bent

into the shape of a square and the other part is bent into the shape of an equilateral

triangle. Show how the wire is to be cut if the area of the square plus the area of

the triangle is to have a minimum value?

� 2-27. A wire of length � = 9+
√

3 is to be cut into two parts. One part is bent into

the shape of an equilateral triangle and the other part is bent into the shape of a

circle. Show how the wire is to be cut if the area of the triangle plus the area of the

circle is to have a minimum value?

� 2-28. Find the critical values and determine if the critical values correspond to a

maximum value, minimum value or neither.

(a) y = (x − 1)(x − 2)2

(b) y =
x2 − 7x + 10

x − 10

(c) y = f(x), where f ′(x) = x(x − 1)2(x − 3)3

(d) y = f(x), where f ′(x) = x2(x − 1)2(x − 3)

� 2-29. Evaluate the given limits.

(a) lim
x→1

xn − 1

x − 1

(b) lim
x→∞

(

1 +
1

x

)x

(c) lim
x→0

ax2 + bx

bx2 + ax

(d) lim
x→0

√
1 + x − 1

x

(e) lim
x→1

lnx

x2 − 1

(f) lim
x→0

ex − e−x

sin x

(g) lim
x→0

ax − 1

bx − 1

(h) lim
x→1

sinπx

x − 1

(i) lim
x→0

x − sinx

x2

� 2-30. Determine where the graph of the given functions are (a) increasing and

(b) decreasing. Sketch the graph.

(a) y = 8 − 10x + x2 (b) y = 3x2 − 5x + 2 (c) y = (x2 − 1)2

� 2-31. Verify the Leibnitz differentiation rule for the nth derivative of a product

of two functions, for the cases n = 1, n = 2, n = 3 and n = 4.

Dn[u(x)v(x)] = Dn[uv] =
n

∑

i=0

(

n

i

)

(

Dn−iu
) (

Div
)

Dn[uv] =

(

n

0

)

(Dnu) v +

(

n

1

)

(

Dn−1u
)

Dv +

(

n

2

)

(

Dn−2u
)

D2v + · · ·+
(

n

n

)

uDnv

where
(

n

m

)

=
n!

m!(n − m)!
are the binomial coefficients. The general case can be

proven using mathematical induction.
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� 2-32. Use Euler’s formula and show

(a) ei (θ+2nπ) = ei θ where n is an integer.

(b) The polar form of the complex number x + iy = rei θ

(c) Show de Moivre’s theorem can be expressed (rei θ)n = rn ei nθ

� 2-33. Find the partial derivatives
∂u

∂x
,

∂u

∂y
,

∂2u

∂x2
,

∂2u

∂x ∂y
,

∂2u

∂y2

(a) u = x2y + xy3

(b) u = (x2 + y2)3

(c) u =
√

x2 + y2

(d) u =
√

x2 − y2

(e) u = xyexy

(f) u = xey + yex

� 2-34.

(a) Show cosh−1x = ln(x +
√

x2 − 1), x ≥ 1

(b) Show sech−1x = ln

(

1

x
+

√

1

x2
− 1

)

, 0 < x < 1

(c) Show sinh−1(−x) = − sinh−1x

(d) Show
d

dx
cosh−1x =

1√
x2 − 1

, x > 1

� 2-35. Define the operators D =
d

dx
, D2 =

d2

dx2
, . . . , Dn =

dn

dxn
, with Dnf(x) =

dnf(x)

dxn

representing the nth derivative of f(x). Find a formula for the indicated derivatives.

(a) Dn(eαx)

(b) Dn(ax)

(c) Dn(lnx), x > 0

(d) Dm(xn), m < n

(e) Dn(sin x)

(f) Dn(cos x)

(g) Dn(sin3 x)

(h) Dn(
1

x2 − a2
)

(i) Dn(sin(ax + b))

(j) Dn(cos(ax + b))

(k) Dn(ln(x + a))

(l) Dn(
1

x + a
)

� 2-36. Find the first and second derivatives
dy

dx
and

d2y

dx2
if x2y + y2x = 1

� 2-37. Find the partial derivatives
∂φ

∂x
,

∂φ

∂y
,

∂2φ

∂x2
,

∂2φ

∂x ∂y
,

∂2φ

∂y2

(a) φ = x3 + yx2 − 3axy

(b) φ = x2 + y2 + xy

(c) φ = sin(xy)

(d) φ = ax +
b

y
+ cxy

(e) φ = ax + by + cxy + dx2y

(f) φ = 3
x2

y
+ 4

y2

x

� 2-38. Sketch the ellipse
x2

4
+

y2

9
= 1 and then find the tangent lines to this ellipse

at the following points (a) (0,−3) (b) (
√

3,−3/2) (c) (2, 0) (d) (
√

3, 3/2) (e) (0, 3)
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� 2-39. The area of a circle is given by A = πr2. If the radius r = r(t) changes with

time, then how does the area change with time?

� 2-40. If s describes the displacement of a particle from some fixed point, as mea-

sured along a straight line, and s = s(t) is a function of time t, then the velocity v

of the particle is given by the change in the displacement with respect to time or

v = v(t) =
ds

dt
. The acceleration a of the particle is defined as the rate of change

of the velocity with respect to time and so one can write a = a(t) =
dv

dt
=

d2s

dt2
. If

s = s(t) =
t4

4
− 2t3 +

11t2

2
− 6t, find the velocity and acceleration as a function of time.

Find where s increases and decreases.

� 2-41.

Let z = z(x, y) denote a function representing a surface

in three-dimensional space. Let P denote a point on this

surface with coordinates (x0, y0, z(x0, y0)).

(a) If
∂z

∂x (x0,y0)

= lim
∆x→0

z(x0 + ∆x, y0) − z(x0, y0)

∆x
and

∂z

∂y (x0,y0)

= lim
∆y→0

z(x0, y0 + ∆y) − z(x0, y0)

∆y

are the partial derivatives
∂z

∂x
and

∂z

∂y
evaluated at the point P , then what is the

geometric interpretation of these partial derivatives?

(b) Let the planes x = x0 = a constant, and y = y0 = a constant, intersect the surface

z = z(x, y) in curves C1 and C2 as illustrated. Find the equations of the tangent

lines AA and BB to the curves C1 and C2 at their point of intersection P .

� 2-42. Derive the absolute value rule
d

dx
| u |= u

| u |
du

dx
, where u = u(x) is a function

of x and test this rule using the function u = u(x) = x. Hint: |u| =
√

u2

� 2-43. Determine the sign of the slope to the left and right of the given critical

point.
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� 2-44.

(a) Semi-log graph paper has two perpendicular axes with a logarithmic scale on

one axis and an ordinary scale on the other axis. Show curves of the form

y = αβx, α > 0, β > 0 are straight lines when plotted on semi-log graph paper.

(b) Log-Log graph paper has two perpendicular axes with a logarithmic scale on

both axes. Show curves of the form y = αxβ, α > 0 are straight lines when

plotted on log-log graph paper.

� 2-45.

Let s denote the distance between a fixed point

(x0, y0) and an arbitrary point (x, y) lying on the line

ax + by + c = 0

(a) Show that the quantity s2 is a minimum when

the line through the points (x0, y0) and (x, y) is per-

pendicular to the line ax + by + c = 0.

(b) Show the minimum distance d from the point

(x0, y0) to the line ax + by + c = 0 is given by d =
|ax0 + by0 + c|√

a2 + b2

� 2-46.

If r = f(θ) is the polar equation of a curve, then this

curve can be represented in cartesian coordinates as a set

of parametric equations

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Show the slope of the curve can be represented

dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
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� 2-47. The volume of a sphere is given by V = 4
3πr3. If the radius r = r(t) changes

with time, then how does the volume change with time?

� 2-48. A pool is constructed 15 meters long, 8 meters wide and 4 meters deep.

When completed, water is pumped into the pool at the rate of 2 cubic meters per

minute.

(i) At what rate is the water level rising?

(ii) How long does it take to fill the pool?

� 2-49.

A box having a lid is to be constructed from a

square piece of cardboard having sides of length �.

The box is to be constructed by cutting squares with

sides x from two corners and then cutting rectangles

with sides of length x and y from the opposite corners

as illustrated in the figure. The sides are folded up

and the lid folded over with the sides to be taped.

Find the dimensions of the box having the largest volume.

� 2-50.

Determine the right circular cone of maximum volume

that can be inscribed inside a given sphere having a radius R.

The situation is illustrated in the figure where

AC = r = base radius of cone.

AB = h = altitude of cone.

0B = R = radius of sphere.

0C = R = radius of sphere.

� 2-51. Sketch the function y =
x

2
+ sin x and determine where the maximum and

minimum values are.

� 2-52. A cylindrical can is to be made such that it

has a fixed volume V . Show that the can using the

least amount of material has its height equal to its

diameter.
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� 2-53. Consider a rectangle inscribed inside a circle of radius R. Find the dimen-

sions of the rectangle with maximum perimeter.

� 2-54. Find the first and second derivatives if

(a) y =cos(x3 + x)

(b) y =x2 +
1

x3

(c) y =
x√

x2 + 1

(d) y = sin(x2 + x)

(e) y =tan(3x)

(f) y =e3x + cosh(2x)

� 2-55. Find the first and second derivatives
dy

dx
,

d2y

dx2
if

(a) x =sin(2t), y = cos(2t)

(b) x =t2, y = t3

(c) y =t2 sin(2t)e3t

(d) y =u3, u = x2 + x

(e) y =sinu, u = x2 + x

(f) y = sinh(3x2) + cosh(3x)

� 2-56. Sketch the curve y = 9
x2+3

(a) Find regions where the slope is positive.

(b) Find regions where the slope is negative.

(c) Find where the slope is zero.

(d) Find regions where the curve is concave up.

(e) Find regions where the curve is concave down.

� 2-57. Find the first and second derivatives of the given functions.

(a) y = sin−1(3x)

(b) y = cos−1(1 − x2)

(c) y = tan−1(
√

x)

(d) y = cot−1(x2 + x)

(e) y = sec−1(3x2)

(f) y = csc−1(
x

3
)

� 2-58. Find the derivatives of the given functions.

(a) y = ln(x +
√

1 + x2)

(b) y = sin2(ex)

(c) y = αx2 + βx ln |αx + β|

(d) y = cosxesin x

(e) y = sin(3x) cos(2x)

(f) y =
1

x
tan x

� 2-59. Use derivative information to sketch the curve over the domain specified.

(a) y = −1 + 3x2 − x3 for −1 ≤ x ≤ 4

(b) y = 1 + (x − 1)3(x − 5) for −1 ≤ y ≤ 6

� 2-60. Determine the following limits

(a) lim
x→α

xm − αm

xn − αn
(b) lim

x→0
(1 + ax)1/x (c) lim

x→0

sinmx

sin nx

� 2-61. Given the function F (x, y, z) = ax2+by2+cxyz−d = 0, where a, b, c, d are nonzero

constants. Assume x and y are independent variables and find the following partial

derivatives. (a)
∂z

∂x
(b)

∂z

∂y
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� 2-62. Given the function F (x, y, z) = ax2+by2+cxyz−d = 0, where a, b, c, d are nonzero

constants. Assume x and z are independent variables and find the following partial

derivatives. (a)
∂y

∂x
(b)

∂y

∂z

� 2-63. Given the function F (x, y, z) = ax2+by2+cxyz−d = 0, where a, b, c, d are nonzero

constants. Assume y and z are independent variables and find the following partial

derivatives. (a)
∂x

∂y
(b)

∂x

∂z

� 2-64.

The Heaviside15 step function H(ξ) is defined

H(ξ) =

{

0, ξ < 0

1, ξ > 0

The figure illustrates the step function H(x − x0)

(i) Sketch the functions y1(x) = H(x− x0) and y2(x) = H(x − (x0 + ε))

(ii) Sketch the function y(x) = y1(x)− y2(x)

(ii) Define the Dirac Delta function δ(x − x0) = lim
ε→0

y1(x) − y2(x)

ε
and give a physical

interpretation as to the meaning of this function.

� 2-65.

The crank arm 0P , of length r (cm), revolves with constant angular velocity ω

(radians/sec). The connecting rod PQ, of length � (cm), moves the point Q back

and forth driving a piston. Show that point Q has the velocity (cm/sec), given by

dS

dt
= V = −ωr sin ωt − r2ω sinωt cos ωt

√

�2 − r2 sin2 ωt
Hint: Use law of cosines

� 2-66. Find the global maximum of the function y(x) = x
√

x, 0 < x < 10 illustrated.

15 Oliver Heaviside (1850-1925) An English engineer and mathematician.
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Chapter 3

Integral Calculus

The integral calculus is closely related to the differential calculus presented in

the previous chapter. One of the fundamental uses for the integral calculus is the

construction of methods for finding areas, arc lengths, surface areas and volumes

associated with plane curves and solid figures. Many of the applications of the dif-

ferential and integral calculus are also to be found in selected areas of engineering,

physics, business, chemistry and the health sciences. These application areas re-

quire additional background material and so investigation into these applied areas

are presented in a later chapter after certain fundamental concepts are developed.

Various concepts related to the integral calculus requires some preliminary back-

ground material concerning summations.

Summations

The mathematical symbol
∑

(Greek letter sigma) is used to denote a summation

of terms. If f = f(x) is a function whose domain contains all the integers and m is

an integer, then the notation

m∑

j=1

f(j) = f(1) + f(2) + f(3) + · · · + f(m) (3.1)

is used to denote the summation of the terms f(j) as j varies from 1 to m. Here j = 1

is called the starting index for the sum and the m above the sigma sign is used to

denote the ending index for the sum. The quantity j is called the dummy summation

index because the letter j does not occur in the answer and j can be replaced by

some other index if one desires to do so.

The following are some examples illustrating how the summation notation is

employed.

(a) If m, n are integers satisfying 1 < m < n, then a summation from 1 to n of the

f(j) terms can be broken up and written as a sum of m terms followed by a

summation of (n − m) terms by writing

n∑

j=1

f(j) =
m∑

j=1

f(j) +
n∑

j=m+1

f(j) (3.2)

(b) The summation index can be shifted to represent summations in different forms.

For example, the representation S =
n∑

j=1

(j − 1)2 can be modified by making the
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substitution k = j − 1 and noting that when j = 1, then k = 0 and when j = n,

then k = n − 1, so that the sum S can also be expressed S =
n−1∑

k=0

k2.

As another example, the sum
n∑

j=m+1

f(j) can be expressed in the form
n−m∑

k=1

f(m+k).

This is called shifting the summation index. This result is obtained by making the

substitution j = m + k and then finding the summation range for the index k. For

example, when j = m + 1, then k = 1 and when j = n, then k = n−m giving the above

result.

(c) If c1, c2 are constants and f(x) and g(x) are functions, then one can write

n∑

k=1

(c1f(k) + c2g(k)) = c1

n∑

k=1

f(k) + c2

n∑

k=1

g(k) (3.3)

where the constant terms can be placed in front of the summation signs.

(d) If f(x) = c = constant, for all values of x, then

n∑

j=m

f(j) =f(m) + f(m + 1) + f(m + 2) + · · · + f(n)

= c + c + c + · · · + c
︸ ︷︷ ︸

(n−m+1) values of c

=c(n − m + 1)

(3.4)

The special sum
n∑

j=1

1 = 1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n ones

= n occurs quite often.

(e) The notation
∞∑

j=1

f(j) is used to denote the limiting process lim
n→∞

n∑

j=1

f(j) if this

limit exists. These summations are sometimes referred to as infinite sums.

(f) Summations can be combined. For example,

m−2∑

j=1

f(j) + f(m − 1) + f(m) =
m∑

j=1

f(j) (3.5)

Special Sums

If f(x) = a + xd, then the sum S =

n−1∑

j=0

f(j) =

n−1∑

j=0

(a + jd) or

S =

n−1∑

j=0

f(j) = a + (a + d) + (a + 2d) + (a + 3d) + · · · + (a + (n − 1)d) (3.6)
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is known as an arithmetic series with a called the first term, d called the common

difference between successive terms, � = a + (n − 1)d is the last term and n is the

number of terms. Reverse the order of the terms in equation (3.6) and write

S = (a + (n − 1)d) + (a + (n − 2)d) + · · · + (a + d) + a (3.7)

and then add the equations (3.6) and (3.7) on a term by term basis to show

2S = n[a + a + (n − 1)d] = n(a + �) (3.8)

Solving equation (3.8) for S one finds the sum of an arithmetic series is given by

S =

n−1∑

j=0

(a + jd) =
n

2
(a + �) = n

a + �

2
(3.9)

which says the sum of an arithmetic series is given by the number of terms multiplied

by the average of the first and last terms of the sum.

If f(x) = arx, with a and r nonzero constants, the sum S =
n−1∑

j=0

f(j) =
n−1∑

j=0

arj or

S =

n−1∑

j=0

f(j) =

n−1∑

j=0

arj = a + ar + ar2 + ar3 + · · · + arn−1 (3.10)

is known as a geometric series, where a is the first term of the sum, r is the common

ratio of successive terms and n is the number of terms in the summation. Multiply

equation (3.10) by r to obtain

rS = ar + ar2 + ar3 + · · · + arn−1 + arn (3.11)

and then subtract equation (3.11) from equation (3.10) to show

(1 − r)S = a − arn or S =
a − arn

1 − r
(3.12)

If |r| < 1, then rn → 0 as n → ∞ and in this special case one can write

S∞ = lim
n→∞

n−1∑

j=0

arj = lim
n→∞

a − arn

1 − r
=

a

1 − r
, |r| < 1 (3.13)
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Archimedes of Syracuse, (287-212 BCE), used infinite summation processes to find

the areas under plane curves and to find the volume of solids. In addition to the

arithmetic and geometric series, Archimedes knew the following special sums

n∑

j=1

1 =1 + 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n terms

= n

n∑

j=1

j =1 + 2 + 3 + · · ·+ n =
1

2
n(n + 1)

n∑

j=1

j2 =12 + 22 + 32 + · · ·+ n2 =
1

6
(2n3 + 3n2 + n)

n∑

j=1

j3 =13 + 23 + 33 + · · ·+ n3 =
1

4
(n4 + 2n3 + n2)

(3.14)

Modern day mathematicians now know how to generalize these results to obtain

sums of the form

Sn =
n∑

j=1

jp = 1p + 2p + 3p + · · ·+ np (3.15)

where p is any positive integer. They have found that the sum Sn of the series given

by equation (3.15) must be a polynomial of degree p + 1 of the form

Sn = a0n
p+1 + a1n

p + a2n
p−1 + · · ·+ apn (3.16)

where n is the number of terms in the series and a0, a1, a2, . . . , ap are constants to be

determined. A more general representation for the sum (3.15) can be found on page

349.

Example 3-1. Sum the series
n∑

j=1

j4 = 14 + 24 + 34 + 44 + · · ·+ n4

Solution Let Sn denote the sum of the series and make use of the fact that Sn

must be a polynomial of degree 5 having the form

Sn = a0n
5 + a1n

4 + a2n
3 + a3n

2 + a4n (3.17)

where a0, a1, a2, a3, a4 are constants to be determined and n is the number of terms to

be summed. The sums S1, S2, S3, S4, S5 give the five conditions
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S1 =
1∑

j=1

j4 = 14 = 1

S2 =

2∑

j=1

j4 = 14 + 24 = 1 + 16 = 17

S3 =
3∑

j=1

j4 = 14 + 24 + 34 = 1 + 16 + 81 = 98

S4 =
4∑

j=1

j4 = 14 + 24 + 34 + 44 = 1 + 16 + 81 + 256 = 354

S5 =
5∑

j=1

j4 = 14 + 24 + 34 + 44 + 54 = 1 + 16 + 81 + 256 + 625 = 979

to determine the constants a0, a1, a2, a3, a4. That is, if Sn has the form given by

equation (3.17), then

S1 = a0 + a1 + a2 + a3 + a4 =1

S2 = a0(2)5 + a1(2)4 + a2(2)3 + a3(2)2 + a4(2) =17

S3 = a0(3)5 + a1(3)4 + a2(3)3 + a3(3)2 + a4(3) =98

S4 = a0(4)5 + a1(4)4 + a2(4)3 + a3(4)2 + a4(4) =354

S5 = a0(5)5 + a1(5)4 + a2(5)3 + a3(5)2 + a4(5) =979

(3.18)

The equations (3.18) represent 5-equations in 5-unknowns which can be solved using

algebra. After a lot of work one finds the solutions

a0 =
1

5
=

6

30
, a1 =

1

2
=

15

30
, a2 =

1

3
=

10

30
, a3 = 0, a4 =

−1

30

This gives the result Sn =
n∑

j=1

j4 = 14 + 24 + 34 + · · ·+ n4 =
1

30
(6n5 + 15n4 + 10n3 − n)

Integration

The mathematical process which represents the inverse of differentiation is known

as integration. In the differential calculus the differential operator
d

dx
, which per-

formed differentiation, was employed as a shorthand notation for the limiting process

required for differentiation. Define the integral symbol

∫

( ) dx as an operator that

performs the inverse of differentiation which is called integration.
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Figure 3-1. Differential and integral operators.

Examine the operator boxes illustrated in the figure 3-1 where one box represents

a differential operator and the other box represents an integral operator. If f(x) is

an input to the differential operator box, then the output is denoted
d

dx
f(x) = f ′(x).

Suppose it is required to undo what has just been done. To reverse the differentiation

process, insert the derivative function into the integral operator box. The output

from the integral operator box is called an indefinite integral and is written
∫

f ′(x) dx = f(x) + C (3.19)

and the equation (3.19) is sometimes read as “The indefinite integral of f ′(x) dx is

equal to f(x)+C ”. Here f ′(x) is called the integrand, f(x) is called a particular integral

and f(x) + C is called the general integral of the indefinite integral of f ′(x) dx and C

is called the constant of integration. Recall that two functions f(x) and f(x) + C, C

constant, both have the same derivative f ′(x), this is because the derivative of a sum

is the sum of the derivatives and the derivative of a constant is zero. It is customary

when performing an indefinite integral to always add a constant of integration in

order to get the more general result.

Examine the notation for the inputs and outputs associated with the operator

boxes illustrated in the figure 3-1. One can state that if
d

dx
G(x) = g(x) then by

definition one can express the indefinite integral in any of the forms
∫

dG(x)

dx
dx = G(x) + C or

∫

g(x) dx = G(x) + C, or
∫

dG(x) = G(x) + C (3.20)

because G(x) + C is the more general function which has the derivative g(x) =
dG(x)

dx
.
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The symbol
∫

is called an integral sign and is sometimes replaced by the words,

“The function whose differential is”. The symbol x used in the indefinite integral

given by equation (3.20) is called a dummy variable of integration. It can be replaced

by some other symbol. For example,

if
d

dξ
G(ξ) = g(ξ) then

∫

g(ξ) dξ = G(ξ) + C (3.21)

where C is called a constant of integration.

Example 3-2.

The following integrals occur quite often and should be memorized.

If
d

dx
x = 1, then

∫

1 dx = x + C

If
d

dx
x2 = 2x, then

∫

2x dx = x2 + C

If
d

dx
x3 = 3x2, then

∫

3x2 dx = x3 + C

If
d

dx
xn = nxn−1, then

∫

nxn−1 dx = xn + C

If
d

du

(
um+1

m + 1

)

= um, then
∫

um du =
um+1

m + 1
+ C

If
d

dt
sin t = cos t, then

∫

cos t dt = sin t + C

If
d

dt
cos t = − sin t, then

∫

sin t dt = − cos t + C

or
∫

dx = x + C

or
∫

d(x2) = x2 + C

or
∫

d(x3) = x3 + C

or
∫

d(xn) = xn + C

or
∫

d

(
um+1

m + 1

)

=
um+1

m + 1
+ C

or
∫

d(sin t) = sin t + C

or −
∫

d(cos t) = − cos t + C

Properties of the Integral Operator

If

∫

f(x) dx = F (x) + C, then
d

dx
F (x) = f(x)

That is, to check that the integration performed is accurate, observe that one must

have the derivative of the particular integral F (x) always equal to the integrand

function f(x).

If

∫

f(x) dx = F (x) + C, then

∫

αf(x) dx = α

∫

f(x) dx = α [F (x) + C] = αF (x) + K

for all constants α. Here K = αC is just some new constant of integration. This

property is read, “The integral of a constant times a function equals the constant

times the integral of the function.”
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If

∫

f(x) dx = F (x) + C and

∫

g(x) dx = G(x) + C, then

∫

[f(x) + g(x)] dx =

∫

f(x) dx +

∫

g(x) dx = F (x) + G(x) + C

This property states that the integral of a sum is the sum of the integrals. The

constants C in each of the above integrals are not the same constants. The symbol

C represents an arbitrary constant and all C ′s are not the same. That is, the sum of

arbitrary constants is still an arbitrary constant. For example, examine the state-

ment that the integral of a sum is the sum of the integrals. If for i = 1, 2, . . . , m you

know
∫

fi(x) dx = Fi(x) + Ci, where each Ci is an arbitrary constant, then one could

add a constant of integration to each integral and write

∫

[f1(x) + f2(x) + · · · + fm(x)] dx =

∫

f1(x) dx +

∫

f2(x) dx + · · · +

∫

fm(x) dx

=[F1(x) + C1] + [F2(x) + C2] + · · · + [Fm(x) + Cm]

=F1(x) + F2(x) + · · · + Fm(x) + C

All the arbitrary constants of integration can be combined to form just one arbitrary

constant of integration.

Notation

There are different notations for representing an integral. For example, if
d

dx
F (x) = f(x), then dF (x) = f(x) dx and

∫
dF (x) =

∫
f(x) dx = F (x) + C or

∫

f(x) dx =

∫
d

dx
F (x) dx =

∫

dF (x) = F (x) + C (3.22)

Examine equation (3.22) and observe
∫

dF (x) = F (x) + C. One can think of the

differential operator d and the integral operator
∫

as being inverse operators of each

other where the product of operators
∫

d produces unity. These operators are

commutative so that d

∫

also produces unity. For example,

d

[∫

f(x) dx

]

= d[F (x) + C] = dF (x) + dC = f(x) dx

Some additional examples of such integrals are the following.
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If d(uv) = u dv + v du, then

∫ (

u
dv

dx
+ v

du

dx

)

dx =

∫

d(uv) = uv + C

If d

(
u

v

)

=
v du − u dv

v2
, then

∫







v
du

dx
− u

dv

dx

v2







dx =

∫

d

(
u

v

)

=
u

v
+ C

In general, if dw =
dw

dx
dx, then

∫
dw

dx
dx =

∫

dw = w + C

Integration of derivatives

If
d

dx

(
dy

dx

)

=
d2y

dx2
, or

d

dx
(f ′(x)) = f ′′(x), then multiplying both sides of this equa-

tion by dx and integrating both sides of the equation gives
∫

d

dx

(
dy

dx

)

dx =

∫
d2y

dx2
dx

∫

d

(
dy

dx

)

=

∫
d2y

dx2
dx

or

∫
d

dx
(f ′(x)) dx =

∫

f ′′(x) dx

∫

d (f ′(x)) =

∫

f ′′(x) dx

Since
∫

dw = w + C, one finds
∫

d2y

dx2
dx =

∫

d

(
dy

dx

)

=
dy

dx
+ C or

∫

f ′′(x) dx =

∫

d(f ′(x)) = f ′(x) + C (3.23)

In a similar fashion one can demonstrate that in general
∫

dn+1y

dxn+1
dx =

dny

dxn
+ C or

∫

f (n+1)(x) dx = f (n)(x) + C (3.24)

for n = 1, 2, 3, . . . .

Polynomials

Use the result
∫

xn dx =
xn+1

n + 1
+ C obtained from example 3-2 to evaluate the

integral of a polynomial function

pn(x) = a0x
n + a1xn−1 + · · · + an−2x2 + an−1x + an

where a0, a1, . . . , an−1, an are constants. Also use the result that the integral of a

sum is the sum of the integrals and the integral of a constant times a function is

that constant times the integral of a function. One can then integrate the given

polynomial function to obtain
∫

pn(x) dx =

∫
(
a0xn + a1xn−1 + · · · + an−2x2 + an−1x + an

)
dx

=a0

∫

xn dx + a1

∫

xn−1 dx + · · · + an−2

∫

x2 dx + an−1

∫

x dx + an

∫

dx

=a0

xn+1

n + 1
+ a1

xn

n
+ · · · + an−2

x3

3
+ an−1

x2

2
+ anx + C
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Example 3-3. Recall that if functions are scaled, then the chain rule for

differentiation is used to find the derivative of the scaled function. If you know
d

dx
F (x) = f(x), then you know

d

du
F (u) = f(u), no matter what u is, so long as it

is different from zero and well behaved. Say for example that you are required to

differentiate the function y = F (ax), where a is a constant different from zero, then

you would use the chain rule for differentiation. Make the substitution u = ax and

write y = F (u), then

dy

dx
=

dy

du

du

dx
=

d

du
F (u) · du

dx
= f(u) a = f(ax) a

In a similar fashion integrals must be adjusted when a scaling occurs. If you

know
∫

f(x) dx = F (x) + C, then you know
∫

f(u) du = F (u) + C, no matter what u

is, so long as it is different from zero and well behaved. Consequently, to evaluate

the integral
∫

f(ax) dx you would make the substitution u = ax with du = a dx and

then multiply and divide the given integral by the required scale factor and write

the integral in the form

∫

f(ax) dx =
1

a

∫

f(ax) a dx =
1

a

∫

f(u) du =
1

a
F (u) + C =

1

a
F (ax) + C

As another example, if you know
∫

x2 dx =
x3

3
+ C, then you know

∫

u2 du =
u3

3
+ C

since x is a dummy variable of integration and can be replaced by some other symbol.

To find the integral given by I =

∫

(3x+7)2 dx you would make a substitution u = 3x+7

with du = 3 dx and then perform the necessary scaling to write

I =
1

3

∫

(3x + 7)2 3 dx =
1

3

∫

u2 du =
1

3

u3

3
+ C =

1

3

(3x + 7)3

3
+ C =

1

9
(3x + 7)3 + C

Example 3-4. If
∫

cosu du = sinu + C, then to find
∫

cos(ax) dx one can scale

the integral by letting u = ax with du = a dx to obtain

1

a

∫

cosu du =
1

a
sinu + C =

1

a
sin(ax) + C

General Considerations

If you plot the functions
d2y

dx2
,

dy

dx
, y,

∫

y(x) dx,

∫ [∫

y(x) dx

]

dx you will find that

differentiation is a roughening process and integration is a smoothing process.
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If you are given a function, say y = y(x) = x3e5x, then you can use the rules for

differentiation of a product of two functions to obtain

dy

dx
= y′(x) = x3(5e5x) + (3x2)e5x = (5x3 + 3x2) e5x

One topic in integral calculus develops ways that enable one to reverse the steps

used in differentiation and work backwards to obtain the original function which was

differentiated plus a constant of integration representing the more general function

yg = yg(x) = x3e5x + C. In the study of integral calculus one develops integration

methods whereby the integral

∫

(5x3 + 3x2) e5x dx = x3e5x + C

can be obtained. This result can also be expressed in the form

∫
d

dx
(x3e5x) dx = x3e5x + C

and illustrates the basic relation between differentiation and integration, that if you

know a derivative
dF (x)

dx
= f(x), then you can immediately write down the integral

∫
dF (x)

dx
dx =

∫

F ′(x) dx =

∫

f(x) dx = F (x) + C (3.25)

Many integrals can be simplified by making a change of variable within the

integral. For example, if it is required to evaluate an integral I =

∫

f(x) dx, then

sometimes one can find a change of variables x = g(u) with dx = g′(u) du which

changes the integration to I =

∫

f(g(u))g′(u) du which may or may not be an easier

integral to evaluate. In the sections that follow we will investigate various methods

which will aid in evaluating difficult integrals.

Another thing to look for in performing integrations, is that an integration

might produce two results which appear to be different. For example, student A

might perform an integration and get the result

∫

f(x) dx = F (x) + C

and student B might perform the same integration and get the result

∫

f(x) dx = G(x) + C
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If both students results are correct, then (i) the constants of integration C need

not be the same constants and (ii) there must exist some relationship between the

functions F (x) and G(x) because they have the same derivative of f(x).

In the differential calculus, if one finds two functions F (x) and G(x) having deriva-

tives F ′(x) and G′(x) which are equal and satisfy F ′(x) = G′(x), over an interval (a, b),

then one can say that the functions F (x) and G(x) differ by a constant and one can

write
∫

F ′(x) dx =

∫

G′(x) dx or F (x) = G(x) + c.

Example 3-5. Consider the functions F (x) = cos2 x and G(x) = − sin2 x, these

functions have the derivatives F ′(x) =
dF

dx
= −2 cosx sinx and G′(x) = −2 sinx cos x

which are equal. Consequently one can state that

F (x) = G(x) + c or cos2 x = − sin2 x + c (3.26)

for all values of x. Substituting x = 0 into equation (3.26) one finds 1 = c and

consequently comes up with the trigonometric identity cos2 x + sin2 x = 1.

This result can also be illustrated using integration. Consider the evaluation of

the integral
∫

2 sinx cosx dx

Student A makes the substitution u = sin x with du = cosx dx and obtains the solution
∫

2 sinx cos x dx = 2

∫

u du = 2
u2

2
+ C1 = sin2 x + C1

Student B makes the substitution v = cos x with dv = − sinx and obtains the solution
∫

2 sinx cos x dx = −2

∫

v dv = −2
v2

2
+ C2 = − cos2 x + C2

The two integrals appear to be different, but because of the trigonometric identity

cos2 x + sin2 x = 1, the results are really the same as one result is expressed in an

alternative form of the other and the results differ by some constant.

Table of Integrals

If you know a differentiation formula, then you immediately obtain an integration

formula. That is, if

d

du
F (u) = f(u), then

∫

f(u) du = F (u) + C (3.27)

Going back and examining all the derivatives that have been calculated one can

reverse the process and create a table of derivatives and integrals such as the Tables

I and II on the following pages.
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Function f(u) Derivative Integral

y = up
dy

du
= pup−1

∫

up du =
up+1

p + 1
+ C, p �= −1

y = lnu
dy

du
=

1

u

∫
du

u
= ln | u | +C

y = au
dy

du
= au ln a

∫

au du =
au

lna
+ C

y = eu
dy

du
= eu

∫

eu du = eu + C

y = sinu
dy

du
= cos u

∫

cos u du = sinu + C

y = cos u
dy

du
= − sinu

∫

sinu du = − cos u + C

y = tan u
dy

du
= sec2 u

∫

sec2 u du = tan u + C

y = cot u
dy

du
= − csc2 u

∫

csc2 u du = − cot u + C

y = sec u
dy

du
= sec u tan u

∫

sec u tan u du = sec u + C

y = csc u
dy

du
= − csc u cot u

∫

csc u cot u du = csc u + C

y = sin−1 u
dy

du
=

1
√

1 − u2

∫
du

√
1 − u2

= sin−1 u + C

y = cos−1 u
dy

du
=

−1
√

1 − u2

∫
du

√
1 − u2

= − cos−1 u + C

y = tan−1 u
dy

du
=

1

1 + u2

∫
du

1 + u2
= tan−1 u + C

y = cot−1 u
dy

du
=

−1

1 + u2

∫
du

1 + u2
= − cot−1 u + C

y = sec−1 u
dy

du
=

1

u
√

u2 − 1

∫
du

u
√

u2 − 1
= sec−1 u + C

y = csc−1 u
dy

du
=

−1

u
√

u2 − 1

∫
du

u
√

u2 − 1
= − csc−1 u + C

y = sinhu
dy

du
= coshu

∫

coshu du = sinhu + C

y = coshu
dy

du
= sinhu

∫

sinhu du = coshu + C

y = tanhu
dy

du
= sech2u

∫

sech2u du = tanhu + C
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Table II Derivatives and Integrals

Function f(u) Derivative Integral

y = cothu
dy

du
= − csch2u

∫

csch2u du = − cothu + C

y = sechu
dy

du
= − sechu tanhu

∫

sechu tanhu du = − sechu + C

y = cschu
dy

du
= − cschu cothu

∫

cschu cothu du = − cschu + C

y = sinh−1u dy

du
=

1
√

1 + u2

∫
du

√
1 + u2

= sinh−1u + C
y = ln(u +

√

1 + u2)

y = cosh−1u dy

du
=

1
√

u2 − 1

∫
du

√
u2 − 1

= cosh−1u + C
y = ln(u +

√

u2 − 1)

y = tanh−1u dy

du
=

1

1 − u2

∫
du

1 − u2
= tanh−1u + C

y =
1

2
ln

(
1 + u

1 − u

)

y = coth−1u dy

du
=

−1

u2 − 1

∫
du

u2 − 1
= − coth−1u + C

y =
1

2
ln

(
u + 1

u − 1

)

y = sech−1u dy

du
=

−1

u
√

1 − u2

∫
du

u
√

1 − u2
= − sech−1u + C

y = cosh−1 1

u

y = csch−1u dy

du
=

−1

u
√

u2 + 1

∫
du

u
√

u2 + 1
= − csch−1u + C

y = sinh−1
1

u

Example 3-6. In the above tables of derivative and integrals the symbol u

is a dummy variable of integration. If u = u(x) is a function of x, then to use an

integration formula from the above table there may be occasions where it is necessary

to scale the integral to be evaluated in order that it agree exactly with the form given

in the above tables.

(a) To evaluate the integral Ia =

∫

(5x2 + 7)5 x dx one can make the substitution

u = 5x2 + 7 and make sure that the correct differential du = 10x dx is used in the

integral formula. This may or may not require that scaling by a constant be

performed. Observe that the given integral needs a constant factor of 10 to have

the correct du to go along with the u specified. Consequently, one can multiply

and divide by 10 in order to change the form of the given integral. This gives
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Ia =
1

10

∫

(5x2 + 7)5 (10x dx) =
1

10

∫

u5 du =
1

10

u6

6
+ C =

1

60
(5x2 + 7)6 + C

(b) In a similar fashion the integral Ib =

∫

e3x2

x dx is evaluated. If one makes the

substitution u = 3x2, then du = 6x dx is the required form necessary to use the

above table. This again requires that some type of scaling be performed. One

can write

Ib =
1

6

∫

e3x2

(6x dx) =
1

6

∫

eu du =
1

6
eu + C =

1

6
e3x2

+ C

(c) To evaluate the integral Ic =

∫

sin(x4) x3 dx make the substitution u = x4 with

du = 4x3 dx and then scale the given integral by writing

Ic =
1

4

∫

sin(x4)(4x3 dx) =
1

4

∫

sinu du =
−1

4
cosu + C =

−1

4
cos(x4) + C

(d) To evaluate the integral Id =

∫

sin βx dx let u = βx with du = β dx and scale the

integral by writing

Id =
1

β

∫

sinβx βdx =
1

β

∫

sinu du = − 1

β
cos βx + C

(e) Each of the above integrals has been scaled and placed into the form

α

∫

f(g(x))g′(x) dx

where α is some scaling constant. These type of integrals occur quite frequently

and when you recognize them it is customary to make the substitution u = g(x)

with du = g′(x) dx and simplify the integral to the form

α

∫

f(u) du

Always perform scaling if necessary to get the correct form for du.

Trigonometric Substitutions

The integration tables given above can be expanded by developing other types

of integrals. The appendix C gives an extended table of integrals representing just

a sampling of the thousands of integrals that have been constructed since calculus

was created.

Always examine the integrand of an integral and try to learn some of the alge-

braic and trigonometric forms that can be converted to integrals of a simpler type.
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All of the trigonometric identities that you have learned are available and can be

thought of as possible aids for evaluating integrals where the integrand involves

trigonometric functions.

One type of integrand to look for is the powers of the trigonometric functions.

Recall the de Moivre1 theorem that states

(cos x + i sinx)n = cos nx + i sinnx (3.28)

where i is an imaginary unit satisfying i2 = −1. Let cos x + i sin x = y and then

multiply both sides of this equation by cos x − i sinx to obtain

(cosx − i sin x)(cosx + i sinx) = y (cos x − i sinx)

and then expand the left-hand side to show that if

cos x + i sinx = y then cos x − i sinx =
1

y
(3.29)

An addition and subtraction of the equations (3.29) produces the relations

2 cos x = y +
1

y
and 2i sinx = y −

1

y
(3.30)

Apply de Moivre’s theorem to the quantities y and 1/y from equation (3.29) to show

cos nx + i sinnx = yn and cos nx − i sinnx =
1

yn
(3.31)

Adding and subtracting the equations (3.31) gives the relations

2 cos nx = yn +
1

yn
and 2i sinnx = yn −

1

yn
(3.32)

where n is an integer. The above relations can now be employed to calculate trigono-

metric identities for powers of sin x and cosx. Recall the powers of the imaginary unit

i are represented i2 = −1, i3 = −i, i4 = −i2 = 1, i5 = i, etc, so that the mth power

of either 2i sin x or 2 cosx can be calculated by employing the binomial expansion to

expand the terms
(

y − 1

y

)m

or
(

y +
1

y

)m

and then using the relations from equations

(3.32) to simplify the results.

1 Abraham de Moivre (1667-1754) a French mathematician.
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Using the results from the equations (3.30) one can verify the following algebraic

operations

22i2 sin2 x =

(

y − 1

y

)2

=

(

y2 +
1

y2

)

− 2 = 2 cos 2x − 2

or sin2 x =
1

2
(1 − cos 2x)

(3.33)

In a similar fashion show that

23i3 sin3 x =

(

y − 1

y

)3

= y3 − 3y +
3

y
− 1

y3

8(−i) sin3 x =

(

y3 − 1

y3

)

− 3

(

y − 1

y

)

= 2i sin 3x − 3(2i sinx)

or sin3 x =
3

4
sin x − 1

4
sin 3x

(3.34)

To calculate the fourth power of sin x write

24i4 sin4 x =

(

y − 1

y

)4

= y4 − 4y3 + 6 − 4

y2
+

1

y4

16 sin4 x =

(

y4 +
1

y4

)

− 4

(

y2 +
1

y2

)

+ 6 = 2 cos 4x − 4(2 cos 2x) + 6

or sin4 x =
3

8
− 1

2
cos 2x +

1

8
cos 4x

(3.35)

In summary, the use of de Moivre’s theorem together with some algebra produced

the trigonometric identities

sin2
x =

1

2
(1 − cos 2x)

sin3 x =
3

4
sinx −

1

4
sin 3x

sin4 x =
3

8
−

1

2
cos 2x +

1

8
cos 4x

(3.36)

In a similar fashion one can use the results from equation (3.30) and establish

the following identities

22 cos2 x =

(

y +
1

y

)2

=⇒ cos2 x =
1

2
(1 + cos 2x)

23 cos3 x =

(

y +
1

y

)3

=⇒ cos3 x =
3

4
cos x +

1

4
cos 3x

24 cos4 x =

(

y +
1

y

)4

=⇒ cos4 x =
3

8
+

1

2
cos 2x +

1

8
cos 4x

(3.37)

Verifying the above results is left as an exercise. The calculation of representations

for higher powers of sin x and cos x are obtained using an expansion similar to the

above examples.
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Example 3-7. Evaluate the integrals
∫

sin2 x dx and
∫

cos2 x dx

Solution Using the trigonometric identities for sin2 x and cos2 x from equations (3.36)

and (3.37) one can write

∫

sin2 x dx =
1

2

∫

(1 − cos 2x) dx

∫

sin2 x dx =
1

2

∫

dx − 1

4

∫

cos 2x 2dx

∫

sin2 x dx =
1

2
x − 1

4
sin 2x + C

∫

cos2 x dx =
1

2

∫

(1 + cos 2x) dx

∫

cos2 x dx =
1

2

∫

dx +
1

4

∫

cos 2x 2dx

∫

cos2 x dx =
1

2
x +

1

4
sin 2x + C

where C represents an arbitrary constant of integration.

Example 3-8. Evaluate the integrals
∫

sin3 x dx and
∫

cos3 x dx

Solution Using the trigonometric identities for sin3 x and cos3 x from equations (3.36)

and (3.37) one can write

∫

sin3 x dx =

∫ (
3

4
sinx − 1

4
sin 3x

)

dx

∫

sin3 x dx =
3

4

∫

sin x dx − 1

12

∫

sin 3x 3dx

∫

sin3 x dx = − 3

4
cos x +

1

12
cos 3x + C

∫

cos3 x dx =

∫

(
3

4
cos x +

1

4
cos 3x) dx

∫

cos3 x dx =
3

4

∫

cos x +
1

12

∫

cos 3x 3dx

∫

cos3 x dx =
3

4
sin x +

1

12
sin 3x + C

Example 3-9. Using the substitutions for sin4 x and cos4 x from the equation

(3.36) and (3.37) one can verify the integrals

∫

sin4 x dx =
3

8
x − 1

4
sin 2x +

1

32
sin 4x + C

∫

cos4 x dx =
3

8
x +

1

4
sin 2x +

1

32
sin 4x + C

Trigonometric substitution is just one of many methods which can be applied

to aid in the evaluation of an integral where the integrand contains trigonometric

functions.
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Example 3-10. Alternative methods for the integration of odd powers of sin x

and cos x involve using the trigonometric identity sin2 x+cos2 x = 1 as illustrated below.

(a) Integral of odd power of sinx

∫

sin2n+1 x dx =

∫

(sin2 x)n sin x dx =

∫

(1 − cos2 x)n sinx dx

Make the substitution ξ = cos x with dξ = − sinx dx and express the above integral

in the form
∫

sin2n+1 x dx = −
∫

(1 − ξ2)n dξ, ξ = cos x

The quantity (1− ξ2)n can be expanded by the binomial expansion. This creates

a sum of integrals, each of the form
∫

ξm dξ = ξm+1

m+1
where m is some constant

integer.

(b) Integral of odd power of cosx

∫

cos2n+1 x dx =

∫

(cos2 x)n cos x dx =

∫

(1 − sin2 x)n cos x dx

Make the substitution ξ = sin x with dξ = cos x dx and express the above integral

in the form

∫

cos2n+1 x dx =

∫

(cos2 x)n cosx dx =

∫

(1− ξ2)n dξ, ξ = sin x

Expand the quantity (1 − ξ2)n using the binomial theorem and then like the

previous example integrate each term of the expansion. Note that each term is

again an integral of the form
∫

ξm dξ = ξm+1

m+1
.

Products of Sines and Cosines

To evaluate integrals which are products of the sine and cosine functions such

as ∫

sin mx sinnx dx,

∫

sin mx cos nx dx,

∫

cosmx cosnx dx

one can use the addition and subtraction formulas from trigonometry

sin(A + B) = sinA cos B + cosA sin B

sin(A − B) = sinA cos B − cosA sin B

cos(A + B) = cosA cos B − sinA sin B

cos(A − B) = cosA cos B + sinA sin B

(3.38)
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to obtain the product relations

sinmx sin nx =
1

2
[cos(m − n)x − cos(m + n)x]

sinmx cos nx =
1

2
[sin(m − n)x + sin(m + n)x]

cos mx cos nx =
1

2
[cos(m − n)x + cos(m + n)x]

(3.39)

which, with proper scaling, reduce the above integrals to forms involving simple

integration of sine and cosine functions.

Example 3-11. Evaluate the integral I =

∫

sin 5x sin 3x dx

Solution Using the above trigonometric substitution one can write

I =

∫
1

2
[cos 2x − cos 8x] dx =

1

4

∫

cos 2x 2dx − 1

16

∫

cos 8x 8dx

to obtain, after proper scaling of the integrals,

I =

∫

sin 5x sin 3x dx =
1

4
sin 2x − 1

16
sin 8x + C

Special Trigonometric Integrals

Examining the previous tables of derivatives and integrals one finds that integrals

of the trigonometric functions tan x, cot x, sec x and csc x are missing. Let us examine

the integration of each of these functions.

Integrals of the form

∫

tan u du

To evaluate this integral express it in the form
∫

dw
w

as this is a form which can

be found in the previous tables. Note that

∫

tan u du =

∫
sin u

cos u
du = −

∫
d(cosu)

cosu
= − ln | cosu| + C

An alternative approach is to write

∫

tanu du =

∫
sec u tanu

sec u
du =

∫
d(sec u)

sec u
= ln | secu| + C

Therefore one can write

∫

tan u du = − ln | cos u| + C = ln | sec u| + C
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The reason that there are two equivalent representations for the integral of the tan-

gent function is because of a trigonometric identity and properties of the logarithm

function. Note that cos u sec u = 1 and taking logarithms gives

ln(cos u sec u) = ln 1

ln | cosu| + ln | sec u| =0

or ln | sec u| = − ln | cosu|

Integrals of the form

∫

cot u du

The integral of the cotangent function is treated much the same way as the

integral of the tangent function. One can write
∫

cot u du =

∫
cos u

sinu
du =

∫
d(sin u)

sin u
= ln | sinu| + C

One can then show that
∫

cot u du = ln | sinu| + C = −
∫ − csc u cot u

csc u
du = − ln | csc u| + C

From this result can you determine a relationship between ln | sinu| and − ln | csc u| ?

Integrals of the form

∫

sec u du

The integral of the secant function can be expressed in the form
∫

dw
w by writing

∫

sec u du =

∫

sec u
sec u + tanu

sec u + tanu
du =

∫
sec u tanu + sec2 u

sec u + tanu
du

so that
∫

sec u du =

∫
d(sec u + tan u)

secu + tan u
= ln | sec u + tanu| + C

Integrals of the form

∫

csc u du

In a similar fashion one can verify that
∫

csc u du = −
∫

d(csc u + cot u)

csc u + cot u
= − ln | csc u + cot u| + C

Method of Partial Fractions

The method of partial fractions is used to integrate rational functions f(x) =
P (x)

Q(x)
where P (x) and Q(x) are polynomial functions and the degree of P (x) is less than the

degree of Q(x). If a rational function
R(x)

Q(x)
is such that the degree of R(x) is greater

than the degree of Q(x), then one must use long division and write the rational

function in the form
R(x)

Q(x)
= a0x

n + a1x
n−1 + · · ·+ an−1x + an +

P (x)

Q(x)

where now P (x) is a remainder term with the degree of P (x) less than the degree of

Q(x) and our object is to integrate each term of the above representation.
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Example 3-12. The function y =
x3

(x − 1)(x − 2)
is a rational function with degree

of numerator greater than the degree of the denominator. One can use long division

and write

y =
x3

x2 − 3x + 2
= x + 3 +

7x − 6

(x − 1)(x − 2)

Recall from the study of algebra that when one sums fractions it is customary to

get a common denominator and then sum the numerators. In developing integration

techniques for rational functions the algebra mentioned above is reversed. It has

been found that to integrate a rational function f(x) = P (x)
Q(x)

, where the degree of

P (x) is less than the degree of Q(x), it is easier to first factor the numerator and

denominator terms and then split the fraction into the sum of fractions with simpler

denominators. The function f(x) is then said to have been converted into its simplest

fractional component form and these resulting fractions are called the partial fractions

associated with the given rational function. The following cases are considered.

Case 1 The denominator Q(x) has only first degree factors, none of which are

repeated. For example, Q(x) has the form

Q(x) = (x − x0)(x − x1)(x − x2) · · · (x − xn)

where x0 �= x1 �= x2 �= · · · �= xn. One can then write

f(x) =
P (x)

Q(x)
=

A0

x − x0

+
A1

x − x1

+
A2

x − x2

+ · · · +
An

x − xn

where A0, A1, A2, . . . , An are constants to be determined.

Example 3-13. Evaluate the integral I =

∫
11x − 43

x2 − 6x + 5
dx

Solution

Here the integrand f(x) =
11x − 43

x2 − 6x + 5
is a rational function with the degree of the

numerator less than the degree of the denominator. Observe that the denominator

has linear factors and so one can write

f(x) =
11x − 43

x2 − 6x + 5
=

11x − 43

(x − 1)(x − 5)
=

A1

x − 1
+

A2

x − 5
(3.40)

where A1, A2 are constants to be determined. Multiply both sides of equation (3.40)

by the factor (x − 1) and show

11x − 43

x − 5
= A1 +

A2(x − 1)

x − 5
(3.41)
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Evaluate equation (3.41) using the value x = 1 to show A1 = 8. Next multiply equation

(3.40) on both sides by the other factor (x − 5) and show

11x − 43

x − 1
=

A1(x − 5)

x − 1
+ A2 (3.42)

Evaluate the equation (3.42) using the value x = 5 to show A2 = 3. One can then

write

I =

∫
11x − 43

x2 − 6x + 5
dx =

∫ [
8

x − 1
+

3

x − 5

]

dx = 8

∫
dx

x − 1
+ 3

∫
dx

x − 5

Both integrals on the right-hand side of this equation are of the form
∫

du

u
and

consequently one finds

I = 8 ln |x − 1| + 3 ln |x − 5| + C

where C is a constant of integration. Observe that C is an arbitrary constant and so

one can replace C by lnK, to make the algebra easier, where K > 0 is also an arbitrary

constant. This is done so that all the terms in the solution will be logarithm terms

and therefore can be combined. This results in the solution being expressed in the

form

I = ln
∣
∣K(x − 1)8(x − 5)3

∣
∣

Case 2 The denominator Q(x) has only first degree factors, but some of these

factors may be repeated factors. For example, the denominator Q(x) might have

a form such as

Q(x) = (x − x0)
k(x − x1)

� · · · (x − xn)m

where k, �, . . . , m are integers. Here the denominator has repeated factors of

orders k, �, · · · , m. In this case one can write the rational function in the form

f(x) =
P (x)

Q(x)
=

A1

x − x0

+
A2

(x − x0)2
+ · · · +

Ak

(x − x0)k

+
B1

x − x1

+
B2

(x − x1)2
+ · · · +

B�

(x − x1)�

+ · · ·

+
C1

x − xn

+
C2

(x − xn)2
+ · · · +

Cm

(x − xn)m

where A1, . . . , Ak, B1, . . . , B�, . . . , C1, . . . , Cm are constants to be determined.
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Example 3-14. Evaluate the integral I =

∫
8x4 − 132x3 + 673x2 − 1183x + 560

(x − 2)3(x − 8)(x − 9)
dx

Solution

Using the method of partial fractions the integrand can be expressed in the

simpler form

8x4 − 132x3 + 673x2 − 1183x + 560

(x − 2)3(x − 8)(x − 9)
=

A1

x − 2
+

A2

(x − 2)2
+

A3

(x − 2)3
+

B1

x − 8
+

C1

x − 9
(3.43)

where A1, A2, A3, B1, C1 are constants to be determined. The constants B1 and C1 are

found as in the previous example. One can verify that

C1 =
8x4 − 132x3 + 673x2 − 1183x + 560

(x − 2)3(x − 8) x=9

= 2

and B1 =
8x4 − 132x3 + 673x2 − 1183x + 560

(x − 2)3(x − 9) x=8

= 3

One can then write

8x4 − 132x3 + 673x2 − 1183x + 560

(x − 2)3(x − 8)(x − 9)
− 2

x − 9
− 3

x − 8
=

A1

x − 2
+

A2

(x − 2)2
+

A3

(x − 2)3

which simplifies to

3x2 − 8x + 3

(x − 2)3
=

A1

x − 2
+

A2

(x − 2)2
+

A3

(x − 2)3
(3.44)

Multiply both sides of equation (3.44) by (x − 2)3 to obtain

3x2 − 8x + 3 = A1(x − 2)2 + A2(x − 2) + A3 (3.45)

Differentiate equation (3.45) and show

6x − 8 = 2A1(x − 2) + A2 (3.46)

Differentiate equation (3.46) and show

6 = 2A1 (3.47)

giving A1 = 3. Evaluate equations (3.45) and (3.46) at x = 2 to show A3 = −1 and

A2 = 4. The given integral can now be represented in the form

I = 3

∫
dx

x − 2
+ 4

∫
dx

(x − 2)2
−

∫
dx

(x − 2)3
+ 3

∫
dx

x − 8
+ 2

∫
dx

x − 9
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where each term can be integrated to obtain

I = 3 ln |x − 2| − 4

x − 2
+

1

2

1

(x − 2)2
+ 3 ln |x − 8| + 2 ln |x − 9| + C

or

I = ln
∣
∣(x − 2)3(x − 8)3(x − 9)2

∣
∣ +

1

2

1

(x − 2)2
− 4

x − 2
+ C

Case 3 The denominator Q(x) has one or more quadratic factors of the form

ax2 + bx + c none of which are repeated. In this case, for each quadratic factor

there corresponds a partial fraction of the form

A0x + B0

ax2 + bx + c

where A0 and B0 are constants to be determined.

Example 3-15. Evaluate the integral I =

∫
11x2 + 18x + 43

(x − 1)(x2 + 2x + 5)
dx

Solution

Use partial fractions and express the integrand in the form

11x2 + 18x + 43

(x − 1)(x2 + 2x + 5)
=

A

x − 1
+

Bx + C

x2 + 2x + 5

where A, B, C are constants to be determined. As in the previous example, the

constant A is given by

A =
11x2 + 18x + 43

(x2 + 2x + 5) x=1

= 9

One can then write

11x2 + 18x + 43

(x − 1)(x2 + 2x + 5)
− 9

x − 1
=

Bx + C

x2 + 2x + 5

Simplify the left-hand side of this last equation and show

2x + 2

x2 + 2x + 5
=

Bx + C

x2 + 2x + 5

giving B = 2 and C = 2. Here partial fractions were use to convert the given integral

to the form

I =

∫
8

x − 1
dx +

∫
2x + 2

x2 + 2x + 5
dx
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which can be easily integrated to obtain I = 9 ln |x − 1| + ln |x2 + 2x + 5| + lnK. This

result can be further simplified and one finds I = ln
∣
∣K(x − 1)9(x2 + 2x + 5)

∣
∣ where K

is an arbitrary constant.

Case 4 The denominator Q(x) has one or more quadratic factors, some of which

are repeated quadratic factors. In this case, for each repeated quadratic factor

(ax2 + bx + c)k there corresponds a sum of partial fractions of the form

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ · · · +

Akx + Bk

(ax2 + bx + c)k

where A1, B1, . . . , Ak, Bk are constants to be determined.

Before giving an example of this last property let us investigate the use of partial

fractions to evaluate special integrals which arise during the application of case 4

above. These special integrals will then be summarized in a table for later reference.

Integrals of the form

∫
dx

β2 − x2
, where x < β.

Use partial fractions and write

∫
dx

β2 − x2
=

1

2β

∫ (
1

β + x
+

1

β − x

)

dx

=
1

2β
[ln |β + x| − ln |β − x|] + C

so that

∫
dx

β2 − x2
=

1

2β
ln

∣
∣
∣
∣

β + x

β − x

∣
∣
∣
∣
+ C = −

1

β
tanh−1

(
x

β

)

+ C, x < β

See for example the previous result of equation (2.103) with x replaced by x/β.

Integrals of the form

∫
dx

x2 − β2
, where x > β.

Use partial fractions and show

∫
dx

x2 − β2
=

1

2β

∫ (
1

x − β
− 1

x + β

)

dx

=
1

2β
[ln |x − β| − ln |x + β|] + C

This can be simplified to one of the forms
∫

dx

x2 − β2
=

1

2β
ln

∣
∣
∣
∣

x − β

x + β

∣
∣
∣
∣
+C = −

1

β
coth−1

(
x

β

)

+C = −
1

β
tanh−1

(
β

x

)

+C, x > β

Here the previous results from equation (2.103) have been used to produce the

alternative form above.
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Integrals of the form

∫
dx

x2 + β2

Make the substitution x = β tan u with dx = β sec2 u du to obtain
∫

dx

x2 + β2
=

∫
β sec2 u du

β2(tan2 u + 1)
=

1

β

∫

du =
1

β
u + C

where u = tan−1

(
x

β

)

. Therefore one can write

∫
dx

x2 + β2
=

1

β
tan−1

(
x

β

)

+ C

or by constructing a right triangle representing the substitution, one can write the

equivalent forms

∫
dx

x2 + β2
=

1

β
cos−1 β

√

x2 + β2
+ C =

1

β
sec−1

√

x2 + β2

β
+ C

Integrals of the form

∫
dx

(x2 + β2)2

Make the trigonometric substitution x = β tan θ with dx = β sec2 θ dθ and show
∫

dx

(x2 + β2)2
=

∫
β sec2 θ dθ

β4(tan2 θ + 1)2
=

1

β3

∫
sec2 θ

sec4 θ
dθ =

1

β3

∫

cos2 θ dθ

=
1

2β3

∫

(1 + cos 2θ) dθ =
1

2β3

[

θ +
1

2
sin2θ

]

=
1

2β3
[θ + sin θ cos θ]

Using back substitution representing θ in terms of x one finds
∫

dx

(x2 + β2)2
=

1

2β3

[

tan−1

(
x

β

)

+
βx

x2 + β2

]

+ C

where C is a general constant of integration added to make the result more general.

Integrals of the form

∫
dx

ax2 + bx + c

Integrals having the form I =

∫
dx

Q(x)
, where Q(x) = ax2 + bx + c is a quadratic

factor, can be evaluated if one first performs a completing the square operation on

the quadratic term. One finds that either

ax2 + bx + c =a

[(

x +
b

2a

)2

+
4ac− b2

4a2

]

where 4ac− b2 > 0

or ax2 + bx + c =a

[(

x +
b

2a

)2

− b2 − 4ac

4a2

]

where b2 − 4ac > 0
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Case 1 If 4ac − b2 > 0, make the substitution β2 =
4ac − b2

4a2
so that

∫
dx

ax2 + bx + c
=

∫
dx

a
[(

x + b
2a

)2
+ β2

]

and then make the additional substitution X = x + b
2a

with dX = dx. One then

obtains ∫
dx

ax2 + bx + c
=

1

a

∫
dX

X2 + β2
=

1

a
· 1

β
tan−1

(
X

β

)

+ C

Back substitution and simplifying gives the result
∫

dx

ax2 + bx + c
=

2
√

4ac − b2
tan−1

(
2ax + b

√
4ac − b2

)

+ C, 4ac − b2 > 0

Case 2 If b2 − 4ac > 0, make the substitution β2 =
b2 − 4ac

4a2
and write

∫
dx

ax2 + bx + c
=

∫
dx

a
[(

x + b
2a

)2 − β2
]

and then make the additional substitution X = x+ b
2a

with dX = dx. This produces

the simplified form
∫

dx

ax2 + bx + c
=

1

a

∫
dX

X2 − β2
=

1

a
· 1

β
ln

∣
∣
∣
∣

X − β

X + β

∣
∣
∣
∣
+ C

Back substitution and simplifying then gives the final result

∫
dx

ax2 + bx + c
=

1
√

b2 − 4ac
ln

∣
∣
∣
∣
∣

2ax + b −
√

b2 − 4ac

2ax + b +
√

b2 − 4ac

∣
∣
∣
∣
∣
+ C, b2 − 4ac > 0

Sums and Differences of Squares

Use the Pythagorean theorem and the defi-

nitions of the trigonometric functions as follows.

In the right triangle illustrated one finds

x2 + y2 = r2 (3.48)

Divide each term of equation (3.48) by r2 and write

x2

r2
+

y2

r2
= 1 =⇒ cos2 θ + sin2

θ = 1 (3.49)
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Divide each term of equation (3.48) by x2 and write

1 +
y2

x2
=

r2

x2
=⇒ 1 + tan2 θ = sec2 θ (3.50)

Divide each term of equation (3.48) by y2 and write

x2

y2
+ 1 =

r2

y2
=⇒ cot2 θ + 1 = csc2 θ (3.51)

The above identities are known as the Pythagorean identities and can be used

when one recognizes sums and differences of squared quantities in the integrand of

an integral. Sometimes the integrand is simplified by using one of these identities.

Integrals of the form

∫
dx

√

β2 − x2

Make the substitution x = β sin θ with dx = β cos θ dθ to obtain
∫

dx
√

β2 − x2
=

∫
β cos θ

√

β2 − β2 sin2 θ
dθ =

∫
cos θ

√

1 − sin2 θ
dθ =

∫

dθ = θ + C = sin−1 x

β
+ C

This gives the general result
∫

du
√

β2 − u2
= sin−1 u

β
+ C (3.52)

Integrals of the form

∫
dx

√

x2 + β2

Let x = β tan u with dx = β sec2 u du and then form a right triangle with one angle

u and appropriate sides of x and β. One can then show

∫
dx

√

x2 + β2
=

∫
β sec2 u du

β
√

tan2 u + 1
=

∫

sec u du

= ln | secu + tanu| + C1

= ln |x
β

+

√

x2 + β2

β
| + C1 = ln |x +

√

x2 + β2|+ C

where C = C1 − lnβ is just some new constant. In general one can write
∫

du
√

u2 + β2
= ln |u +

√

u2 + β2| + C

Integrals of the form

∫
dx

√

x2 − β2

Let x = β sec u with dx = β sec u tanu du and form a right triangle with one angle u

and appropriate sides x and β. One can then show
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∫
dx

√

x2 − β2
=

∫
β sec u tan u du

β
√

sec2 u − 1
=

∫

sec u du = ln | sec u + tanu| + C1

= ln |x
β

+

√

x2 − β2

β
| + C1 = ln |x +

√

x2 − β2| + C

where C = C1 − lnβ is some new constant of integration. In general, one can write
∫

du
√

u2 − β2
= ln |u +

√

u2 − β2| + C

Example 3-16. Evaluate the integral I =

∫
du

u4 + 18x2 + 81

Solution Recognize the denominator is the square of (u2 +9) and write I =

∫
du

(u2 + 9)2

This is an integral of the form
∫

dx

(x2 + β2)2
previously investigated, so that one can

write

I =
1

2β3

[

tan−1

(
x

β

)

+
βx

x2 + β2

]

+ C

where β = 3.

Example 3-17. The Pythagorean identities can be employed when one rec-

ognizes the integrand has sums or differences of squared quantities. Sometimes it

is necessary to complete the square on quadratic terms in order to obtain a sum or

difference of squared terms. For example, to evaluate the integral

I =

∫
dx

36x2 + 48x + 41

one can write

I =
1

36

∫
dx

x2 + 48
36

x + 41
36

=
1

36

∫
dx

x2 + 4
3
x +

(
2
3

)2
+ 41

36
−

(
2
3

)2
=

1

36

∫
dx

(x + 2
3
)2 + 25

36

One can now make the substitution u = x + 2/3 with du = dx to obtain

I =
1

36

∫
du

u2 + β2
, where β = 5/6

One then finds

I =
1

36

1

β
tan−1 u

β
+ C =

1

36

1

5/6
tan−1

(
x + 2/3

5/6

)

+ C =
1

30
tan−1

(
6x + 4

5

)

+ C
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Example 3-18. Evaluate the integral I =

∫
4x5 − 15x4 + 13x3 − 4x2 + 13x + 89

(x − 3)2(x2 + 1)2
dx

Solution The denominator of the integrand has a repeated linear factor and a re-

peated quadratic factor and so by the properties of partial fractions one can write

4x5 − 15x4 + 13x3 − 4x2 + 13x + 89

(x − 3)2(x2 + 1)2
=

A

x − 3
+

B

(x − 3)2
+

Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2
(3.53)

where A, B, C, D, E, F are constants to be determined. Multiply both sides of equa-

tion(3.53) by (x − 3)2 and show

4x5 − 15x4 + 13x3 − 4x2 + 13x + 89

(x2 + 1)2
= A(x − 3) + B + (x − 3)2

[
Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2

]

(3.54)

Evaluate equation (3.54) using the value x = 3 to find

B =
4x5 − 15x4 + 13x3 − 4x2 + 13x + 89

(x2 + 1)2 x=3

= 2

The equation (3.53) can therefore be written as

4x5 − 15x4 + 13x3 − 4x2 + 13x + 89

(x − 3)2(x2 + 1)2
− 2

(x − 3)2
=

A

x − 3
+

Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2
(3.55)

The left-hand side of equation (3.55) simplifies to the form

4x4 − 5x3 − 3x2 − 14x − 29

(x − 3)(x2 + 1)2
=

A

x − 3
+

Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2
(3.56)

Multiply both sides of equation (3.56) by the factor (x − 3) and show

4x4 − 5x3 − 3x2 − 14x − 29

(x2 + 1)2
= A + (x − 3)

[
Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2

]

(3.57)

Evaluating equation (3.57) using the value x = 3 gives the result

A =
4x4 − 5x3 − 3x2 − 14x − 29

(x2 + 1)2 x=3

= 1

Consequently, the equation (3.56) can be written in the form

4x4 − 5x3 − 3x2 − 14x − 29

(x − 3)(x2 + 1)2
− 1

x − 3
=

Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2
(3.58)

The left-hand side of equation (3.58) simplifies to give the result

3x3 + 4x2 + 8x + 10

(x2 + 1)2
=

Cx + D

x2 + 1
+

Ex + F

(x2 + 1)2
(3.59)
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Multiply equation (3.59) on both sides by the factor (x2 + 1)2 and then expand the

right-hand side of the equation to obtain

3x3 + 4x2 + 8x + 10 =(Cx + D)(x2 + 1) + (Ex + F )

or 3x3 + 4x2 + 8x + 10 =Cx3 + Dx2 + (E + C)x + (F + D)
(3.60)

Comparing the left and right-hand sides of equation (3.60) one finds

C = 3, D = 4, E + C = 8, F + D = 10

From the last two equations one finds E = 5 and F = 6. All this algebra reduces the

integrand of the given integral to a summation of simpler terms where each term

can be easily integrated using a table of integrals if necessary.2 One finds

I =

∫ (
1

x − 3
+

2

(x − 3)2
+

3x + 4

x2 + 1
+

5x + 6

(x2 + 1)2

)

dx (3.61)

The first integral in equation (3.61) is

∫
dx

x − 3
= ln |x − 3| (3.62)

and the second integral in equation (3.61) is

2

∫
dx

(x − 3)2
=

−2

(x − 3)
(3.63)

The third integral in equation (3.61) needs to be scaled to get part of it in the form
du

u
which can then be integrated. One can write

3

∫
(x + 4/3)

x2 + 1
dx =

3

2

∫
(2x + 8/3)

x2 + 1
dx =

3

2

∫
2x dx

x2 + 1
+ 4

∫
dx

x2 + 1

Evaluating these integrals gives the result

∫
3x + 4

x2 + 1
dx =

3

2
ln(x2 + 1) + 4 tan−1 x (3.64)

The last integral in equation (3.61) can be scaled and written

∫
5x + 6

(x2 + 1)2
dx = 5

∫
(x + 6/5)

(x2 + 1)2
dx =

5

2

∫
2x + 12/5

(x2 + 1)2
dx =

5

2

∫
2x dx

(x2 + 1)2
+ 6

∫
dx

(x2 + 1)2

2 A table of integrals is given in the appendix C.
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and then integrated to obtain

∫

5x + 6

(x2 + 1)2
dx =

5

2

[

−1

x2 + 1

]

+ 3

[

tan−1 x +
x

x2 + 1

]

=
6x − 5

2(x2 + 1)
+ 3 tan−1 x (3.65)

Combining the above results gives

I = ln |x − 3| −
2

x − 3
+

3

2
ln(x2 + 1) + 4 tan−1 x +

6x − 5

2(x2 + 1)
+ 3 tan−1 x + C (3.66)

where C is a constant of integration. To check that what has been done is correct one

should note that the final result should satisfy
dI

dx
= f(x), where f(x) is the integrand

of the original integral. This check is left as an exercise.

Note that in the case the denominator has a single linear factor (x− a), then one

can write
f(x)

(x − a)g(x)
=

A

x − a
+

α(x)

β(x)
where A is a constant which can be determined

from the relation
f(x)

g(x)
= A + (x − a)

α(x)

β(x)
evaluated at x = a.

Example 3-19. Find the partial fraction expansion for representing a function

having the form

f(x) =
ax6 + bx5 + cx4 + dx3 + ex2 + fx + g

(x − 1)(x− 2)(x− 3)3(x2 + x + 1)(x2 + 3x + 1)4

where a, b, c, d, e, f, g are known constants.

Solution Here the denominator has the unrepeated linear factors (x − 1) and (x − 2).

The linear factor (x − 3) is repeated three times. The quadratic factor (x2 + x + 1) is

unrepeated and the quadratic factor (x2 + 3x + 1) is repeated four times. Using the

properties of partial fractions, represented by the previous cases 1 through 4, the

form for the partial fraction representation of the given function is

f(x) =
A0

x − 1
+

B0

x − 2
+

C0

x − 3
+

D0

(x − 3)2
+

E0

(x − 3)3
+

F0x + G0

x2 + x + 1

+
A1x + B1

x2 + 3x + 1
+

A2x + B2

(x2 + 3x + 1)2
+

A3x + B3

(x2 + 3x + 1)3
+

A4x + B4

(x2 + 3x + 1)4

where A0, B0, . . . , A4, B4 are constants to be determined.

The following table III is a summary of previous results.
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∫

sin2 u du =
1

2
u − 1

4
sin 2u + C

∫

cos2 u du =
1

2
u +

1

4
sin 2u + C

∫

sin3 u du = −3

4
cos u +

1

12
cos 3u + C

∫

cos3 u du =
3

4
sin u +

1

12
sin 3u + C

∫

sin4 u du =
3

8
− 1

4
sin 2u +

1

32
sin 4u + C

∫

cos4 u du =
3

8
u +

1

4
sin2u +

1

32
sin 4u + C

∫

tanu du = − ln | cos u | +C

∫

cotu du = ln | sinu | +C

∫

sec u du = ln | sec u + tanu | +C

∫

csc u du = ln | csc u + cot u | +C

∫
du

β2 − u2
=

1

2β
ln

β + u

β − u
+ C

∫
du

u2 − β2
=

1

2β
ln

u − β

u + β
+ C

∫
du

u2 + β2
=

1

β
tan−1

(
u

β

)

+ C

∫
du

(u2 + β2)2
=

1

2β3

[

tan−1

(
u

β

)

+
βu

u2 + β2

]

+ C

∫
du

au2 + bu + c
=

2√
4ac − b2

tan−1

(
2au + b√
4ac − b2

)

+ C, 4ac − b2 > 0

∫
du

au2 + bu + c
=

1√
b2 − 4ac

ln
2au + b −

√
b2 − 4ac

2au + b +
√

b2 − 4ac
+ C, b2 − 4ac > 0

∫
du

√

β2 − u2
= sin−1

(
u

β

)

+ C

∫
du

√

β2 + u2
= ln u +

√

u2 + β2 + C

∫
du

√

u2 − β2
= ln u +

√

u2 − β2 + C
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Integration by parts

If d(UV ) = U dV + V dU then one can write U dV = d(U V ) − V dU and so by inte-

grating both sides of this last equation one obtains the result
∫

U dV =

∫

d(U V ) −
∫

V dU

∫

U dV = U V −
∫

V dU

(3.67)

The equation (3.67) is known as the integration by parts formula. Another form for

the integration by parts formula is
∫

U(x)V ′(x) dx = U(x)V (x) −
∫

V (x)U ′(x) dx (3.68)

When using integration by parts try to select U = U(x) such that V (x)U ′(x) dx is easy

to integrate. If this is not possible, then alternative methods of integration have

to be investigated. Integration by parts is a powerful method for evaluating many

types of integrals. Sometimes it is necessary to apply the method of integration by

parts multiple times before a result is obtained.

Example 3-20. Evaluate the integral I =

∫

arctanx dx

Solution

For the given example, let U = arctanx and dV = dx then one can calculate

dU = d( arctanx) =
dx

1 + x2
and

∫

dV =

∫

dx or V = x (3.69)

Substituting the results from the equations (3.69) into the integration by parts

formula (3.67) one finds
∫

arctanx dx = x arctanx −
∫

x dx

1 + x2

In order to evaluate the last integral, use the integration formula
∫

dU

U
= lnU + C

and recognize that if U = 1 + x2, then it is necessary that dU = 2x dx and so a scaling

must be performed on the last integral. Perform the necessary scaling and express

the integration by parts formula in the form
∫

arctanx dx =x arctanx − 1

2

∫
2x dx

1 + x2

=x arctanx − 1

2
ln(1 + x2) + C

where C is a constant of integration.
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Note when using integration by parts and you perform an integration to find V ,

it is not necessary to add the constant of integration for if V is replaced by V +C in

equation (3.67) one would obtain

∫

U dV = U (V + C) −
∫

(V + C) dU = U V + C U −
∫

V dU − C U

and the constant would disappear. You can always add a general constant of integra-

tion after performing the last integral. This is usually done to make the final result

more general.

The integration by parts formula can be written in different ways. Using the

rule for differentiation of a product, write

d

dx
(UV ) = U

dV

dx
+ V

dU

dx
and consequently UV =

∫

U
dV

dx
dx +

∫

V
dU

dx
dx

or
∫

U
dV

dx
dx = UV −

∫

V
dU

dx
dx (3.70)

which is the form for integration by parts previously presented. In equation (3.70)

make the substitution
dV

dx
= W (x) with V (x) =

∫

W (x) dx, then equation (3.70) takes

on the form

∫

U(x)W (x) dx = U(x)

[
∫

W (x) dx

]

−

∫

dU

dx

[
∫

W (x) dx

]

dx (3.71)

and interchanging the functions U(x) and W (x) gives the alternative result

∫

U(x)W (x) dx = W (x)

[
∫

U(x) dx

]

−

∫

dW

dx

[
∫

U(x) dx

]

dx (3.72)

The above two integration by parts formulas tells us that to integrate a product

of two functions one can select either of the equations (3.71) or (3.72) to aid in the

evaluation of the integral. One usually selects from the above two formulas that

formula which produces an easy to obtain result, if this is at all possible.

Example 3-21. Evaluate the integral
∫

x
2 sin nx dx

Solution The integration by parts formula may be repeated many times to evaluate

an integral. For the given integral one can employ integration by parts, with U = x2

and dV = sinnx dx to obtain
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∫

x2 sin nx dx = x2

(
− cosnx

n

)

−
∫

2x

(
− cosnx

n

)

dx

Use scaling and apply integration by parts on the last integral, with U = 2x and

dV = − cos nx
n dx, to obtain

∫

2x

(
− cosnx

n

)

dx = 2x

(
− sinnx

n2

)

−
∫

2

(
− sinnx

n2

)

dx

The last integral can be scaled and integrated. One finds that the last integral

becomes ∫

2

(
− sinnx

n2

)

dx =
2

n3
cos nx

Back substitution gives the results
∫

x2 sinnx dx = x2

(
− cosnx

n

)

− 2x

(
− sinnx

n2

)

+
2

n3
cosnx + C

where C is a general constant of integration which can be added at the end of any

indefinite integral.

Reduction Formula

The use of the integration by parts formula
∫

U dV = UV −
∫

V dU to evaluate

an integral gives a representation of a first integral in terms of a second integral.

Sometimes, when an integration by parts is performed on the second integral, one

finds that it can be reduced to a form of the first integral. When this happens one

can usually obtain a general formula, known as a reduction formula, for evaluating

the first and sometimes the second integral.

Example 3-22. Evaluate the integral Im =

∫

sinm x dx where m is a positive

integer.

Solution Write the integral as Im =

∫

sinm−1 x sin x dx and use integration by parts

with
U =sinm−1 x

dU =(m − 1) sinm−2 x cos x dx

dV =sinx dx

V = − cos x

to obtain
Im = − sinm−1 x cos x + (m − 1)

∫

sinm−2 x cos2 x dx

Im = − sinm−1 x cos x + (m − 1)

∫

sinm−2 x(1 − sin2 x) dx

Im = − sinm−1 x cos x + (m − 1) [Im−2 − Im]

and using algebra one can solve for Im to obtain
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Im =
−1

m
sinm−1 x cosx +

(m − 1)

m
Im−2

or
∫

sinm x dx =
−1

m
sinm−1 x cos x +

(m − 1)

m

∫

sinm−2 x dx (3.73)

This result is known as a reduction formula where the integral of a higher power of

sin x is expressed in terms of an integral involving a lower power of sin x.

Substitute m = 2 into the reduction formula (3.73) and show
∫

sin2 x dx =
−1

2
sin x cos x +

1

2

∫

dx =
x

2
− 1

2
sin x cos x + C (3.74)

where a general constant of integration has been added to the final result.

Substitute m = 3 into the reduction formula (3.73) gives
∫

sin3 x dx =
−1

3
sin2 x cosx +

2

3

∫

sin x dx =
−1

3
sin2 x cos x − 2

3
cos x + C (3.75)

where C is some general constant of integration that has been added to obtain a more

general result. It is left as an exercise to show that the results given by equations

(3.74) and (3.75) are alternative forms of the results obtained in the examples 3-5

and 3-6.

Example 3-23. Using integration by parts on the integral Jm =

∫

cosm x dx one

can verify the reduction formula

Jm =
1

m
cosm−1 x sinx +

(m − 1)

m
Jm−2

or ∫

cosm x dx =
1

m
cosm−1 x sinx +

(m − 1)

m

∫

cosm−2 x dx

Example 3-24. For m and n integers and held constant during the integration

process, evaluate the integrals

Sm =

∫

xm sin nx dx and Cm =

∫

xm cosnx dx

Solution Use integration by parts on the Sm integral with U = xm and dV = sin nx dx.

One finds dU = mxm−1 dx and V =
− cosnx

n
so that

Sm = −xm cosnx

n
+

m

n

∫

xm−1 cos nx dx or Sm = −xm cos nx

n
+

m

n
Cm−1 (3.76)
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An integration by parts applied to the Cm integral with U = xm and dV = cos nx dx

produces dU = mxm−1 dx and V =
1

n
sin nx. The Cm integral then can be represented

Cm = xm
sin nx

n
− m

n

∫

xm−1 sin nx dx or Cm = xm
sinnx

n
− m

n
Sm−1 (3.77)

In the equations (3.76) and (3.77) replace m by m−1 everywhere and use the resulting

equations to show

Sm =− xm
cos nx

n
+

m

n

[

xm−1
sinnx

n
− m − 1

n
Sm−2

]

Cm =xm
sin nx

n
− m

n

[

−xm−1
cos nx

n
+

m − 1

n
Cm−2

]

which simplify to the reduction formulas

Sm = − x
m

cos nx

n
+ mx

m−1
sin nx

n2
−

m(m − 1)

n2
Sm−2 (3.78)

Cm =x
m

sinnx

n
+ mx

m−1
cos nx

n2
−

m(m − 1)

n2
Cm−2 (3.79)

These reduction formula can be used as follows. First show that

S0 =

∫

sin nx dx = −cos nx

n
and C0 =

∫

cosnx dx =
sinnx

n

and then use integration by parts to show

S1 =

∫

x sinnx dx,

S1 = − x
cos nx

n
+

sin nx

n2
,

C1 =

∫

x cos nx dx

C1 =x
sin nx

n
+

cos nx

n2

where the general constants of integration have been omitted. Knowing S0, S1, C0, C1

the reduction equations (3.78) and (3.79) can be used to calculate

S2, C2, S3, C3, S4, C4, . . .

The Definite Integral

Consider the problem of finding the area bounded by a given curve y = f(x), the

lines x = a and x = b and the x-axis. The area to be determined is illustrated in the

figure 3-2.
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Figure 3-2. Area under curve and partitioning the interval [a, b] into n-parts.

The curve y = f(x) is assumed to be such that y > 0 and continuous for all x ∈ [a, b].

To find an approximation to the area desired, construct a series of rectangles as

follows.

(1) Divide the interval [a, b] into n-parts by defining a step size ∆x =
b − a

n
and then

define the points
x0 =a

x1 =a + ∆x = x0 + ∆x

x2 =a + 2∆x = x1 + ∆x

...
...

xi =a + i∆x = xi−1 + ∆x

...
...

xn =a + n∆x = a + n
(b − a)

n
= b = xn−1 + ∆x

(3.80)

This is called partitioning the interval (a, b) into n-parts.

(2) Select arbitrary points ti, within each ∆x interval, such that xi−1 ≤ ti ≤ xi for all

values of i ranging from i = 1 to i = n. Then for all values of i ranging from 1 to

n construct rectangles of height f(ti) with the bottom corners of the rectangle

touching the x-axis at the points xi−1 and xi as illustrated in the figure 3-2.

(3) The area of the ith rectangle is denoted Ai=(height)(base), where the height of

the rectangle is f(ti) and its base is ∆xi = xi −xi−1. The sum of all the rectangles

is given by St
n =

n∑

i=1

Ai =
n∑

i=1

f(ti) ∆xi which is called the Riemann3 sum for the

3 Georg Friedrich Bernhard Riemann (1826-1866) A German mathematician.
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function y = f(x). The resulting sum is determined by the partition constructed.

This Riemannian sum represents an approximation to the area under the curve.

This approximation gets better as each ∆xi gets smaller.

Define the limit of the Riemann sum

lim
n→∞

St
n = lim

n→∞

n∑

i=1

Ai = lim
∆x→0

n→∞

n∑

i=1

f(ti)∆xi =

∫ b

a

f(x) dx, xi−1 ≤ ti ≤ xi (3.81)

where the quantity on the right-hand side of equation (3.81) is called the definite

integral from a to b of f(x) dx and the quantity on the left-hand side of equation (3.81)

is the limit of the sum of rectangles as ∆x tends toward zero. The notation for the

definite integral from a to b of f(x) dx has the physical interpretation illustrated in

the figure 3-3.

Figure 3-3. Mnemonic device for determining area under curve.

The quantity f(x) dx = dA is to represent an element of area which is a rectangle

positioned a distance x from the origin, having height f(x) and base dx. The integral

sign
∫

is an elongated S to remind you that rectangles are being summed and

the lower limit a and upper limit b on the integral sign is to remind you that the

summation of rectangles is a limiting process taking place between the limits x = a

and x = b.

Observe that if F (x) is a differentiable function which is continuous over the

interval [a, b] and F (x) is selected as a particular integral of f(x), then one can write
dF (x)

dx
= F ′(x) = f(x), or one can write the indefinite integral

∫

f(x) dx =

∫
dF (x)

dx
dx =

∫

dF (x) = F (x) + C
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It will now be demonstrated that any function F (x) which is a particular integral

of f(x) can be used to evaluate the definite integral
∫ b

a

f(x) dx. To accomplish this

graph the function y = F (x), satisfying F ′(x) = f(x), between the values x = a and

x = b and then partition the interval [a, b] into n-parts in the same way as for the

original function y = f(x). Apply the mean-value theorem for derivatives to the points

(xi−1, F (xi−1)) and (xi, F (xi)) associated with the ith ∆x interval of the curve y = F (x).

In using the mean-value theorem make special note that the function F (x) is related

to f(x) by way of differentiation so that F ′(x) = f(x) is the slope of the curve y = F (x)

at the point x. One can then calculate the slope of the secant line through the points

(xi−1, F (xi−1)) and (xi, F (xi)) as

ms =
∆F

∆x
=

F (xi) − F (xi−1)

xi − xi−1

The mean-value theorem says there must exist a point ci satisfying xi−1 ≤ ci ≤ xi,

such that the slope of the tangent line to the curve y = F (x), at the point x = ci,

is the same as the slope of the secant line. By our choice of F (x), the slope of the

tangent line to F (x) at the point x = ci is given by f(ci) since F ′(x) = f(x). Therefore,

one can write

F (xi)− F (xi−1)

xi − xi−1
= f(ci) or F (xi) − F (xi−1) = f(ci)∆xi, ∆xi = xi − xi−1 (3.82)

This mean-value relationship can be applied to each ∆x interval for all values of i

ranging from 1 to n.

Make note of the fact the points ti, i = 1, . . . , n, used to evaluate the definite

integral in equation (3.81) were not specified. They were arbitrary points satisfying

xi−1 ≤ ti ≤ xi for each value of the index i ranging from 1 to n. Note the values ci,

i = 1, . . . , n which satisfy the mean-value equation (3.82) are special values. Suppose

one selects for equation (3.81) the values ti = ci as i ranges from 1 to n. In this

special case the summation given by equation (3.81) becomes

Sc
n =

n∑

i=1

f(ci)∆xi = [F (x1) − F (x0)] + [F (x2) − F (x1)] + · · ·+ [F (xn) − F (xn−1)]

n∑

i=1

f(ci)∆xi =F (xn) − F (x0) = F (b) − F (a)

(3.83)

Observe that the summation of terms on the right-hand side of equation (3.83) is a

telescoping sum and can be written as
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[F (x1) − F (x0)]+ [F (x2) − F (x1)]

+ [F (x3) − F (x2)] + [F (x4) − F (x3)]

...

+ [F (xn−1) − F (xn−2)] + [F (xn) − F (xn−1)] = F (xn) − F (x0) = F (b) − F (a)

where as i ranges from 1 to n − 1, for each term F (xi) there is a −F (xi) and so these

terms always add to zero and what is left is just the last term minus the first term.

This result still holds as ∆x → 0 and so one can state that the area bounded by the

curve y = f(x), the x-axis, the lines x = a and x = b is given by the definite integral

∫ b

a

f(x) dx = F (x)
b

a

= F (b) − F (a) (3.84)

where F (x) is any particular integral of f(x).

Observe that the constant of integration associated with the indefinite integral

can be omitted when dealing with definite integrals. If this constant were used,

then equation (3.84) would become [F (b) + C] − [F (a) + C] = F (b) − F (a) which is

the same result as given in equation (3.84). Also note that the name “definite

integral” indicates that the integral has a definite value of F (b) − F (a), which does

not contain the symbol x or the constant C. The symbol x is called a dummy variable

of integration in the definite integral and can be replaced by some other symbol.

The above result is a special case of the fundamental theorem of integral calculus.

Fundamental theorem of integral calculus

Let f(x) > 0 denote a continuous function over the interval a ≤ x ≤ b. Partition

the interval (a, b) into n subintervals [x0, x1], [x1, x2], . . . , [xi−1, xi], . . . , [xn−1, xn] which

may or may not be of equal length. Select an arbitrary point ti ∈ [xi−1, xi] for

i = 1, 2, . . . , n and construct the rectangles of height f(ti) and base ∆xi = xi−xi−1 with

Ai = f(ti)∆xi the area of the ith rectangle. A special case of the above situation is

illustrated in the figure 3-2.

Let An =
∑n

i=1 Ai =
∑n

i=1 f(ti)∆xi denote the Riemannian sum which equals the

sum of the areas of these rectangles and let F (x) denote any function which is

an integral of f(x) with the property F (x) =
∫

f(x) dx or
dF (x)

dx
= f(x). Then the

fundamental theorem of integral calculus can be expressed

lim
n→∞

An = lim
n→∞

∆x→0

n∑

k=1

f(tk)∆x =

∫ b

a

f(x) dx = F (x)
b

a

= F (b) − F (a)
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Since F ′(x) = f(x), the fundamental theorem of integral calculus is sometimes ex-

pressed in the form
∫ b

a

F ′(x) dx = F (x)
x=b

x=a

= F (b) − F (a)

Note that the limiting summation of rectangles that represents the definite in-

tegral of f(x) from x = a to x = b has the same value no matter how the points ti are

selected inside the interval [xi−1, xi], for i = 1, 2, . . . , n. This is because of the continuity

of f(x) over the interval [a, b]. Recall that f(x) is a continuous function if for every ε1

there exists a positive number δ1 such that

|f(ti) − f(ci)| < ε1 whenever |ti − ci| < δ1 (3.85)

Suppose it is required that the condition given by (3.85) be satisfied for each value

i = 1, 2, . . . , n. If ε1 =
ε

(b− a)
, with ε as small as desired, and n is selected large enough

such that ∆x =
b − a

n
< δ1, then one can compare the two summations

St
n =

n∑

i=1

f(ti)∆xi and Sc
n =

n∑

i=1

f(ci)∆xi

One finds the absolute value of the difference of these sums satisfies

|St
n − Sc

n| =

∣
∣
∣
∣
∣

n∑

i=1

[f(ti)∆xi − f(ci)∆xi]

∣
∣
∣
∣
∣
≤

n∑

i=1

|f(ti) − f(ci)|∆xi

For n large enough such that each ∆xi =
b − a

n
< δ1 for all values of the index i and

|f(ti) − f(ci)| < ε1 for all values of the index i, then
∣
∣St

n − Sc
n

∣
∣ ≤ nε1∆x = n

ε

b − a

b − a

n
= ε

This states that the difference between the two sums St
n and Sc

n can be made as small

as desired for n large enough and in the limit these sums are the same. A similar

type of argument can be made for an arbitrary, unequally spaced, partitioning of

the interval [a, b].

Properties of the Definite Integral

1. If F ′(x) =
dF (x)

dx
= f(x), then the definite

integral

A(x) = F (x) − F (a) =

∫ x

a

f(t) dt

represents the area under the curve y = f(t) be-

tween the limits t = a and t = x. Whenever the

upper or lower limit of integration involves the symbol x, then the dummy variable

of integration in the definite integral is usually replaced by a different symbol.
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2. Differentiate the above result to show

dA(x)

dx
=

dF (x)

dx
=

d

dx

(∫ x

a

f(t) dt

)

= f(x) (3.86)

This shows that to differentiate a definite integral with respect to x, where the

upper limit of integration is x and the lower limit of integration is a constant,

one obtains the integrand evaluated at the upper limit x.

3. If the direction of integration is changed, then the sign of the integral changes

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx (3.87)

4. The interval of integration [a, b] can be broken up into smaller subintervals, say,

[a, ξ1], [ξ1, ξ2], [ξ2, b] and the integral written
∫ b

a

f(x) dx =

∫ ξ1

a

f(x) dx +

∫ ξ2

ξ1

f(x) dx +

∫ b

ξ2

f(x) dx (3.88)

5. Assume the curve y = f(x) crosses the x-axis at some point x = c between the

lines x = a and x = b, such that f(x) is positive for a ≤ x ≤ c and f(x) is negative

for c ≤ x ≤ b, then

∫ c

a

f(x) dx represents a positive area

and the integral

∫ b

c

f(x) dx represents a negative area.

The definite integral
∫ b

a

f(x) dx represents the summation of the signed areas

above and below the x-axis. The integral
∫ b

a

|f(x)| dx represents a summation of

positive areas.

6. The summation
n∑

i=1

f(ti) represents the sum of the heights associated with the

rectangles constructed in the figure 3-2, and the sum ȳ =
1

n

n∑

i=1

f(ti) represents

the average height of these rectangles. Using the equation (3.81) show that in

the limit as ∆x → 0 and using ∆xi =
b − a

n
, this average height can be represented

ȳ = lim
∆x→0

n→∞

1

n

n∑

i=1

f(ti) = lim
∆x→0

n→∞

1

b − a

n∑

i=1

f(ti)∆xi =
1

b − a

∫ b

a

f(x) dx
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This states that the average value for the height of the curve y = f(x) between

the limits x = a and x = b is given by

Average height of curve = ȳ =
1

b − a

∫ b

a

f(x) dx (3.89)

7. The integral of a constant times a function equals the constant times the integral

of the function or
∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

8. Change of variables in a definite integral

Given an integral of the form I =

∫ b

a

f(g(x)) g′(x) dx it is customary to make the

substitution u = g(x) with du = g′(x) dx. When this is done in a definite integral, then

the limits of integration must also be changed. Thus, when x = a, then u = g(a) and

when x = b, then u = g(b) so that if f(u) is well defined on the interval [g(a), g(b)], then

the given integral can be reduced to the form

I =

∫ b

a

f(g(x)) g′(x) dx =

∫ g(b)

g(a)

f(u) du

9. Area between curves

Let y = f(x) and y = g(x) denote two curves which are continuous on the interval

[a, b] and assume that f(x) ≤ g(x) for all x ∈ [a, b], then one can state that

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx or
∫ b

a

g(x) dx ≥
∫ b

a

f(x) dx

Sketch the curves y = f(x), y = g(x), the lines x = a and x = b and sketch in a

rectangular element of area dA representative of all the rectangular elements being

summed to find the area bounded by the curves and the lines x = a and x = b. Note

that the element of area is given by

dA = (y of upper curve− y of lower curve) dx
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and these elements of area must be summed between the lines x = a and x = b. The

situation is illustrated in the figure 3-4(a). The area between the curves is obtained

by a summation of the rectangular elements to obtain

Area =

∫ b

a

dA =

∫ b

a

(g(x)− f(x)) dx

There may be times when the given curves dictate that a horizontal element of area

between the curves be used to calculate the area between the curves.

Figure 3-4. Area between curves.

For example, if x = F (y) and x = G(y) are two curves where a vertical element of area

is not appropriate, then try using a horizontal element of area with the element of

area dA given by

dA = (x of right-hand curve− x of left-hand curve) dy

and then sum these elements of area between the lines y = c and y = d to obtain

Area =

∫ d

c

dA =

∫ d

c

(G(y)− F (y)) dy

The situation is illustrated in the figure 3-4(b).

If the curves are intersecting curves between the limits of integration and sit-

uations arise where the upper curve switches and becomes a lower curve, then the

integral representing the area must be broken up into integrals over sections otherwise

one obtains a summation of “signed”areas.
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Example 3-25. Consider the definite integral I =

∫ π/6

0

sin 2x cos4 2x dx

Make the change of variable u = cos 2x with du = −2 sin 2x dx. The new limits of

integration are found by substituting x = 0 and x = π/6 into the equation u = cos 2x

to obtain ua = cos 2x
x=0

= 1 and ub = cos 2x
x=π/6

=
1

2
. Here du = −2 sin 2x dx

and so the given integral must be scaled. The scaled integral can then be written

I =
−1

2

∫ π/6

0

(cos 2x)4(−2 sin 2x dx)

where now the substitutions for u, du and new limits on integrations can be performed

to obtain

I =
−1

2

∫ 1/2

1

u4 du =
1

2

∫ 1

1/2

u4 du =
1

2

u5

5

1

1/2

=
1

10

(

1 − 1

32

)

=
31

320

Example 3-26. Find the area between the curves y = sinx and y = cos x for

0 ≤ x ≤ π.

Solution

Sketch the given curves over the domain specified and show the curves intersect

where x = π/4. The given integral can then be broken up into two parts and one can

write

A1 =

∫ π/4

0

[cosx − sin x] dx = sinx + cos x
π/4

0

=
√

2 − 1

A2 =

∫ π

π/4

[sinx − cos x] dx = − cosx − sin x
π

π/4

= 1 +
√

2

The total area is then A1 + A2 = 2
√

2

A summation of the signed areas is given by

∫ π

0

[cosx − sin x] dx = (
√

2 − 1) − (1 +
√

2) = −2 = A1 −A2

Example 3-27. Find the area of the triangle bounded by the x-axes, the line

y = h
b1

x and the line y = h − h
b2

(x − b1), where b = b1 + b2.



223

Solution

Get into the habit of

(i) Sketching the curve y = f(x) to be integrated.

(ii) Sketching in an element of area dA = f(x) dx or dA = y dx

(iii) Labeling the height and base of the rectangular element of area.

(iv) Sketching the lines x = a and x = b for the limits of integration.

Sketching the above lines one obtains the figure 3-5 illustrated below.

Figure 3-5. Triangle defined by x-axis, y = h
b1

x and y = h − h
b2

(x − b1)

The big triangle is built up of two smaller right triangles and an element of area

has been constructed inside each of the smaller right triangles. The area of the left

smaller right triangle is given by

A1 =

∫ b1

0

y1 dx =

∫ b1

0

h

b1
x dx =

h

b1

∫ b1

0

x dx =
h

b1

x2

2

x=b1

x=0

=
h

b1

b2
1

2
=

1

2
hb1

where the element of rectangular area y1 dx is summed from x = 0 to x = b1. This

result says the area of a right triangle is one-half the base times the height. The

area of the other right triangle is given by

A2 =

∫ b

b1

y2 dx =

∫ b

b1

[

h − h

b2
(x − b1)

]

dx =

∫ b

b1

h dx −
∫ b

b1

h

b2
(x − b1) dx

=h

∫ b

b1

dx − h

b2

∫ b

b1

(x − b1) dx = h x
x=b

x=b1

− h

b2

(x − b1)
2

2

x=b

x=b1

=h(b− b1) −
h

b2

(b − b1)
2

2
= hb2 −

h

b2

b2
2

2
=

1

2
hb2
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where the rectangular element of area y2 dx was summed from x = b1 to x = b = b1+b2.

Adding the areas A1 and A2 gives the total area A where

A = A1 + A2 =
1

2
hb1 +

1

2
hb2 =

1

2
h(b1 + b2) =

1

2
hb

That is, the area of a general triangle is one-half the base times the height.

Example 3-28.
The curve

{ (x, y) | x = r cos θ, y = r sin θ, 0 ≤ θ ≤ π }

is the set of points (x, y) defined by the para-

metric equations x = r cos θ and y = r sin θ as

θ varies from 0 to π. Sketch this curve and

show it represents the upper half of a circle

with radius r centered at the origin as illustrated in the figure. An element of rect-

angular area dA = y dx is constructed at a general point (x, 0), where the height of the

rectangle is y and the base of the rectangle is dx. The area between the semi-circle

and the x-axis is given by A =

∫ r

−r

y dx which says the elements of area are to be

summed between the limits x = −r and x = r. Make the substitutions y = r sin θ and

dx = −r sin θ dθ and note that when x = −r, then θ = π and when x = r, then θ = 0.

This gives the integral for the area as

A =

∫ r

−r

y dx =

∫ 0

π

r sin θ(−r sin θ dθ) = r2

∫ π

0

sin2 θ dθ

Make the trigonometric substitution sin2 θ = 1
2
(1 − cos 2θ) and then perform the inte-

grations, after appropriate scaling, by using the previous table of integrals to show

A =
r2

2

∫ π

0

(1 − cos 2θ) dθ =
r2

2

[∫ π

0

dθ − 1

2

∫ π

0

cos 2θ(2dθ)

]

A =
r2

2
θ

π

0

− 1

2
sin 2θ

π

0

=
πr2

2

This shows the area of the semi-circle is πr2/2 and so the area of the full circle is πr2.

As an alternative, one can construct an element of area in the shape of a rectangle

which is parallel to the x-axis as illustrated in the figure below. Due to symmetry
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this element of area is represented dA = 2x dy and summing these elements of area

in the y-direction from 0 to r gives the total area as

A =

∫ r

0

dA =

∫ r

0

2x dy

Substituting in the values x = r cos θ and dy = r cos θ dθ and noting that y = 0, cor-

responds to θ = 0 and the value y = r, corresponds to θ = π/2, one obtains the

representation

A =

∫ π/2

0

2(r cos θ)(r cos θ dθ) = 2r2

∫ π/2

0

cos2 θ dθ

Using the trigonometric identity cos2 θ =
1

2
(1 + cos 2θ) the above integral for the area

becomes

A = 2r2

∫ π/2

0

1

2
(1+cos 2θ) dθ = r2

[
∫ π/2

0

dθ +
1

2

∫ π/2

0

cos 2θ (2 dθ)

]

where the integral of cos 2θ has been appropri-

ately scaled. Performing the integrations one

finds

A =r2

[

θ
π/2

0

+
1

2
sin 2θ

π/2

0

]

A =
πr2

2

which is the same as our previous answer.

Solids of Revolution

Examine the shaded areas in each of the figures 3-6(a),(b),(c) and (d). These

areas are going to be rotated about some axis to create a solid of revolution. The

solid of revolution created depends upon what line is selected for the axis of rotation.

Figure 3-6(a)

Examine rotation of element of area about lines x = 0, y = 0, x = x0 and y = y0.

Consider a general curve y1 = y1(x) for a ≤ x ≤ b such as the curve illustrated in

the figure 3-6(a). To find the area bounded by the curve, the x−axis, and the lines

x = a and x = b one would construct an element of area dA = y1(x) dx and then sum

these elements from a to b to obtain the area

A =

∫ b

a

y1(x) dx (3.90)
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If this area is rotated about the x−axis a solid of revolution is created. To find

the volume of this solid the element of area is rotated about the x−axis to create a

volume element in the shape of a disk with thickness dx. The radius of the disk is

y1(x) and the volume element is given by

dV = πy2
1(x) dx

Figure 3-6.

Area element to be rotated about an axis to create volume element.

A summation of these volume elements from a to b gives the volume of the solid as

V = π

∫ b

a

y2
1(x) dx (3.91)

If the shaded area of figure 3-6(a) is rotated about the y−axis one can create a

cylindrical shell volume element with inner radius x, outer radius x + dx and height

y1(x). The cylindrical shell volume element is given by
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dV =(Volume of outer cylinder− Volume of inner cylinder)(height)

dV =π
[
(x + dx)2 − x2

]
y1(x) = π

[
2x dx + (dx)2

]
y1(x)

The term π (dx)2 y1(x) is an infinitesimal of second order and can be neglected so that

the volume of the cylindrical shell element is given by

dV = 2πxy1(x) dx (3.92)

A summation of these cylindrical shell volume elements gives the total volume

V = 2π

∫ b

a

xy1(x) dx (3.93)

If the element of area dA = y1 dx is rotated about the line x = x0 one obtains the

volume element in the shape of a cylindrical shell with the volume element given by

dV = 2π(x0 − x)y1(x) dx

and the volume of the solid of revolution is obtained from the integral

V = 2π

∫ b

a

(x0 − x)y1(x) dx

which represents a summation of these volume elements to generate the volume of

revolution.

If the element of area is rotated about the line y = y0 one obtains a volume

element in the shape of a washer with the volume element represented

dV =
[
Area outer circle− Area of inner circle

]
(Thickness)

dV =π
[
y2
0 − (y0 − y1(x))2

]
dx
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The total volume is then given by a summation of these volume elements

V = π

∫ b

a

[y2
0 − (y0 − y1(x))2] dx

Figure 3-6(b)

Examine rotation of element of area about lines x = 0, y = 0, x = x0 and y = y0.

Examine the figure 3-6(b) and show that to determined the area bounded by the

curve x1 = x1(y), the y−axis and the lines y = α, y = β is obtained by a summation of

the area element dA = x1(y) dy from α to β. The total area is given by

A =

∫ β

α

x1(y) dy

If the area is rotated about a line, then a solid of revolution is created. To find

the volume of the solid one can rotate the element of area about the line to create

an element of volume which can then be summed. Consider the element of area

illustrated as being rotated about the axes (i) the x−axis, (ii) the y−axis, (iii) the

line x = x0 and (iv) the line y = y0 to obtain respectively elements of volumes in the

shapes of (i)a cylindrical shell element, (ii) a disk element, (iii) a washer element and

(iv) another cylindrical shell element. Show these volume elements are given by

(i) dV = 2πyx1(y) dy

(ii) dV = πx2
1(y) dy

(iii) dV = π
[
x2

0 − (x0 − x1(y))2
]

dy

(iv) dV = 2π(y0 − y)x1(y) dy

Figure 3-6(c)

Examine rotation of element of area about lines x = 0, y = 0, x = x0 and y = y0.

Examine the figure 3-6(c) and show the area bounded by the curves y1 = y1(x),

y2 = y2(x) and the lines x = a, x = b, is obtained by a summation of the area element

dA = [y1(x) − y2(x)] dx from a to b. This summation gives the total area as

A =

∫ b

a

(y1(x) − y2(x)) dx

If this area is rotated about a line, then a solid of revolution is created. To find the

volume of the solid one can rotate the element of area about the same axis to create

an element of volume which can then be summed. Consider the element of area

being rotated about the axes (i) the x−axis, (ii) the y−axis, (iii) the line x = x0 and

(iv) the line y = y0 to obtain respectively elements of volumes in the shapes of (i) a

washer element, (ii) a cylindrical shell element, (iii) another cylindrical shell element

and (iv) another washer element. Show these volume elements can be represented

as follows.
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(i) dV = π
[
y2
2(x)− y2

1(x)
]

dx

(ii) dV = 2πx [y1(x) − y2(x)] dx

(iii) dV = 2π(x0 − x) [y1(x) − y2(x)] dx

(iv) dV = π
[
(y0 − y2(x))2 − (y0 − y1(x))2

]
dx

Figure 3-6(d)

Examine rotation of element of area about lines x = 0, y = 0, x = x0 and y = y0.

Examine the figure 3-6(d) and show the area bounded by the curves x1 = x1(y),

x2 = x2(y) and the lines y = α, y = β, is obtained by a summation of the area element

dA = [x1(y) − x2(y)] dy from α to β. This summation gives the total area

A =

∫ β

α

[x1(y)− x2(y)] dy

If this area is rotated about a line, then a solid of revolution is created. The volume

associated with this solid is determined by a summation of an appropriate volume

elements. These volume elements can be determined by rotating the element of area

about the same line from which the solid was created.

Consider the element of area rotated about the lines (i) the x−axis, (ii) the

y−axis, (iii) the line x = x0 and (iv) the line y = y0 to obtain respectively elements

of volumes in the shapes of (i) a cylindrical shell element, (ii) a washer element,

(iii) another washer element and (iv) another cylindrical shell element. Show these

volume elements can be represented as follows.

(i) dV = 2πy [x1(y) − x2(y)] dy

(ii) dV = π
[
x2

1(y)− x2
2(y)

]
dy

(iii) dV = π
[
(x0 − x2(y))2 − (x0 − x1(y))2

]
dy

(iv) dV = 2π(y0 − y)(x1(y) − x2(y)) dy

Example 3-29. Take the semi-circle

{ (x, y) | x = r cos θ, y = r sin θ, 0 ≤ θ ≤ π }

as defined in the previous example and rotate it about the x-axis to form a sphere.

The figure 3-7 will aid in visualizing this experiment.

Note that the vertical element of area when rotated becomes an element of

volume dV in the shape of a disk with radius y and thickness dx. The volume of this

disk is given by dV = πy2 dx and a summation of these volume elements from x = −r

to x = r gives

V =

∫ r

−r

dV =

∫ r

−r

πy2 dx
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Making the same substitutions as in the previous example one finds

V =

∫ 0

π

π(r sin θ)2(−r sin θ) dθ = πr3

∫ π

0

sin3 θ dθ

Figure 3-7.

Semi-circle rotated about x-axis creating the volume element in shape of a disk.

Now use the trigonometric identity

sin3 θ =
1

4
(3 sin θ − sin 3θ)

and express the volume integral in the form of an integration of trigonometric func-

tions. After appropriate scaling, make use of the integration table to show that

V =
πr3

4

∫ π

0

(3 sin θ − sin 3θ) dθ =
πr3

4

[

3

∫ π

0

sin θ dθ − 1

3

∫ π

0

sin 3θ(3dθ)

]

V =
πr3

4

[

3(− cos θ)
π

0

− 1

3
(− cos 3θ)

π

0

]

=
πr3

4

[

−3(−1− 1)] +
1

3
(−1− 1)

]

V =
4

3
πr3

This shows the volume of the sphere of radius r is 4/3 times π times the radius cubed.

If the horizontal element of area illustrated in the example 3-24, is rotated about

the x-axis a cylindrical shell element results, like the one illustrated by equation

(3.92), but with x and y interchanged. The inner radius of the cylinder is y and the

outer radius is y + dy and the length of the cylinder is 2x. The element of volume is

given by
dV =π(length)[(outer radius)2 − (inner radius)2]

dV =π(2x)[(y + dy)2 − y2] = π(2x)[y2 + 2y dy + (dy)2 − y2]

dV =2π(2x)y dy + π(2x)(dy)2
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This is an example of an equation where (dy)2 is a higher ordered infinitesimal which

can be neglected. Neglecting this higher ordered infinitesimal gives

dV = 2π(2x)y dy

Summation on dy from 0 to r gives the total volume

V = 4π

∫ r

0

xy dy

Substituting x = r cos θ, y = r sin θ and dy = r cos θ dθ and changing the limits of inte-

gration to θ ranging from 0 to π/2, one finds

V =4π

∫ π/2

0

(r cos θ)(r sin θ)(r cos θ dθ)

V =4πr3

∫ π/2

0

cos2 θ sin θ dθ

This last integral is recognized as being of the form
∫

u2 du =
1

3
u3 where u = cos θ and

du = − sin θ dθ. Perform the necessary scaling and then integrate to obtain

V = 4πr3

(
−1

3

)

(cos θ)3
π/2

0

=
4

3
πr3

for the volume of the sphere.

Sometimes one can place axes associated with a solid such that plane sections

at x and x + dx create a known cross sectional area which can be represented by a

function A = A(x) and consequently the plane sections produce a slab shaped volume

element given by dV = A(x) dx. The resulting volume

between the planes x0 and x1 can then expressed as a

summation of these sandwich slices

V =

∫ x1

x0

A(x) dx (3.94)

One can also check cross sections at y and y+dy to see if

there results a known area A = A(y). If this is the case,

then the volume element associated with these plane
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slices are written dV = A(y) dy and the total volume between the planes y0 and y1 is

expressed as the summation

V =

∫ y1

y0

A(y) dy (3.95)

Integration by Parts

Integration by parts associated with a definite integral has the form

∫ b

a

u(x)v′(x) dx =

∫ b

a

d(u(x)v(x)) dx −
∫ b

a

v(x)u′(x) dx

∫ b

a

u(x)v′(x) dx =u(x)v(x)
x=b

x=a

−
∫ b

a

v(x)u′(x) dx

∫ b

a

u(x)v′(x) dx =u(b)v(b) − u(a)v(a) −
∫ b

a

v(x)u′(x) dx

(3.96)

Example 3-30. To integrate I =

∫ T

0

te−st dt let u = t with du = dt and dv = e−st dt

with v = − 1
s
e−st, then the integration by parts formula gives

I =

∫ T

0

te−st dt =
−t

s
e−st

T

0

−
∫ T

0

−1

s
e−st dt =

−T

s
e−sT − 1

s2
e−st

T

0

=
−T

s
e−sT − 1

s2
[e−sT − 1]

Example 3-31. Evaluate the integral J =

∫ π/2

−π/2

x sin x dx

Solution Let U = x and dV = sin x dx giving dU = dx and V = − cosx, so that integration

by parts produces the result

J = −x cosx
π/2

−π/2

−
∫ π/2

−π/2

− cosx dx = −π

2
cos

π

2
+

−π

2
cos

−π

2
+ sinx

π/2

−π/2

= 2

Example 3-32. Evaluate the integral I =

∫ b

a

x2
√

b − x dx, where a, b are constants

satisfying a < b.

Solution Use integration by parts with

u =x2

du =2x dx

dv =(b − x)1/2 dx

v = − 2

3
(b− x)3/2
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to obtain

I =uv
x=b

x=a

−
∫ b

a

v du = −2

3
x2(b − x)3/2

b

a

+
4

3

∫ b

a

x(b − x)3/2 dx

I =
2

3
a2(b − a)3/2 +

4

3

∫ b

a

x(b− x)3/2 dx

One can now apply integration by parts again on the last integral using

u =x

du =dx

dv =(b − x)3/2 dx

v =− 2

5
(b− x)5/2

to obtain

I =
2

3
a2(b− a)3/2 +

4

3

[

−2

5
x(b − x)5/2

b

a

+
2

5

∫ b

a

(b − x)5/2 dx

]

I =
2

3
a2(b− a)3/2 +

4

3

(
2

5
a(b− a)5/2 +

2

5

[

−2

7
(b− x)7/2

b

a

])

I =
2

3
a2(b− a)3/2 +

8

15
a(b − a)5/2 +

16

105
(b − a)7/2

I =
2

105
(b− a)3/2(15a2 + 12ab + 8b2)

Physical Interpretation

When using definite integrals the integration by parts formula has the following

physical interpretation. Consider the section of a curve C between points P and Q

on the curve which can be defined by

C = { (x, y) | x = x(t), y = y(t), t0 ≤ t ≤ t1 } (3.97)

Here the section of the curve C is defined by a set of parametric equations x = x(t)

and y = y(t) for t0 ≤ t ≤ t1 with the point P having the coordinates (x0, y0) where

x0 = x(t0) and y0 = y(t0). Similarly, the point Q has the coordinates (x1, y1) where

x1 = x(t1) and y1 = y(t1). A general curve illustrating the situation is sketched in the

figure 3-8.

Examine the element of area dA1 = y dx and sum these elements of area from x0

to x1 to obtain

A1 =

∫ x1

x0

y dx =

∫ t1

t0

y(t)
dx

dt
dt = Area x0PQx1 (3.98)

Similarly, if one sums the element of area dA2 = x dy from y0 to y1 there results

A2 =

∫ y1

y0

x dy =

∫ t1

t0

x(t)
dy

dt
dt = Area y0PQy1 (3.99)



234

Figure 3-8. Physical interpretation for integration by parts.

Examine the figure 3-8 and verify the areas of the following rectangles

A3 = area rectangle 0x1Qy1 = x1y1, A4 = area rectangle 0x0Py0 = x0y0 (3.100)

The integration by parts formula can then be expressed

∫ t1

t0

y(t)
dx

dt
dt =x(t)y(t)

t1

t0

−
∫ t1

t0

x(t)
dy

dt
dt

=(x1y1 − x0y0)−
∫ t1

t0

x(t)
dy

dt
dt

(3.101)

In terms of areas this result can be written

A1 = A3 −A4 − A2 or A2 = A3 − A4 −A1

and is interpreted as saying that the areas A1 and A2 are related and if one these

areas is known, then the other area can also be evaluated.

Improper Integrals

Integrals of the form

I1 =

∫ ∞

a

f(x) dx, I2 =

∫ ∞

−∞
f(x) dx, I3 =

∫ b

−∞
f(x) dx (3.102)
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are called improper integrals and are defined by the limiting processes

I1 = lim
b→∞

∫ b

a

f(x) dx, I2 = lim
a→−∞

b→∞

∫ b

a

f(x) dx, I3 = lim
a→−∞

∫ b

a

f(x) dx (3.103)

if these limits exist. In general an integral of the form

I =

∫ b

a

f(x) dx (3.104)

is called an improper integral if

(i) The lower limit a is allowed to increase or decrease without bound.

(ii) The upper limit b is allowed to increase or decrease without bound.

(iii) The lower limit a decreases without bound and the upper limit b increases with-

out bound.

(iv) The integrand f(x) is not defined at some point c between the end points a and

b, then the integral is called an improper integral and one must write

I =

∫ b

a

f(x) dx = lim
ξ→c−

ξ<c

∫ ξ

a

f(x) dx + lim
ξ→c+

ξ>c

∫ b

ξ

f(x) dx (3.105)

if these limits exist.

Improper integrals occur in a variety of forms in advanced mathematics courses

involving integral transforms. For example,

The Laplace transform of a function is written as the improper integral

L{F (t)} = L{F (t); t → s} =

∫ ∞

0

F (t)e−st dt = f(s) (3.106)

and represents a transformation of a function F (t) into a function f(s), if the improper

integral exists. Other transforms frequently encountered are

The Fourier exponential transform is written as the improper integral

Fe{f(x); x → ω} =
1

2π

∫ ∞

−∞
f(ξ)eiωξ dξ = Fe(ω) (3.107)

The Fourier sine transform is written as the improper integral

Fs{f(x); x → ω} =
2

π

∫ ∞

0

f(x) sinωx dx = Fs(ω) (3.108)

The Fourier cosine transform is written as the improper integral

Fc{f(x); x → ω} =
2

π

∫ ∞

0

f(x) cosωx dx = Fc(ω) (3.109)
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if the above integrals exist. Numerous other transforms similar to those mentioned

above can be found in many advanced mathematics, physics and engineering texts.

Integrals used to define Functions

Definite integrals are frequently used to define special functions. For example,

the natural logarithm function can be defined

ln x =

∫ x

1

1

t
dt

d

dx
ln x =

d

dx

∫ x

1

1

t
dt =

1

x

(3.110)

The natural logarithm of x is represented as the area bounded by the curve 1/t, the

lines t = 1, t = x and the t-axis.

Properties of the natural logarithm function can be obtained from the defining

integral. For example, one finds

(i) ln 1 = 0

(ii) ln(a · b) =

∫ ab

1

1

t
dt =

∫ a

1

1

t
dt +

∫ ab

a

1

t
dt In the last integral make the substitution

t = au with dt = a du, so that when t = a, u = 1 and when t = ab, u = b and obtain

ln(a · b) =

∫ a

1

1

t
dt +

∫ b

1

1

u
du

giving ln(a · b) = ln a + ln b

(iii) ln

(
1

b

)

=

∫ 1/b

1

1

t
dt Make the substitution t = u

b
with dt = du

b
with new limits on u

from b to 1 and show

ln

(
1

b

)

=

∫ 1

b

du

b
u

b

= −
∫ b

1

du

u

giving ln

(
1

b

)

= − ln b

(iv) Using the result from (iii) it follows that ln
(a

b

)

= ln

(

a · 1

b

)

= lna+ ln
1

b
giving the

result ln

(
a

b

)

= lna − ln b

(v) ln (ar) =

∫ ar

1

1

t
dt Make the substitution t = ur with dt = rur−1 du with new limits

of integration u ranging from 1 to a to show

ln (ar) =

∫ ar

1

1

t
dt = r

∫ a

1

1

u
du

showing that ln (ar) = r ln a
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Other functions defined by integrals

There are many special functions which are defined as a definite integral or im-

proper integral. For example, three functions defined by integrals which occur quite

frequently are the following.

The Gamma function is defined

Γ(z) =

∫
∞

0

tz−1e−t dt (3.111)

and integration by parts shows that

Γ(z + 1) = zΓ(z) (3.112)

Use limits to show Γ(1) = 1 and then use equation

(3.112) to show

Γ(1) = 1, Γ(2) = 1!, Γ(3) = 2Γ(2) = 2!, . . .

and when z = n is an integer the Gamma function reduces to the factorial function

Γ(n) = (n − 1)! = (n − 1)(n − 2)(n − 3) · · ·3 · 2 · 1 or Γ(n + 1) = n!

The values Γ(0), Γ(−1), Γ(−2), . . . are not defined.

The error function is defined

erf (x) =
2

√
π

∫ x

0

e−t2 dt (3.113)

The complementary error function is defined

erfc (x) = 1 − erf (x) =
2

√
π

∫
∞

x

e−t2 dt (3.114)

The error function4 erf (x) occurs in the study of the normal probability dis-

tribution and represents the area under the curve 2√
π
e−t2 from 0 to x, while the

complementary error function is the area under the same curve from x to ∞.

The above is just a very small sampling of the many special functions which are

defined by integrals.

4 Note alternative forms for the definition of the error function are due to scaling.
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Arc Length

Let y = f(x) denote a continuous curve for x ∈ [a, b] and consider the problem

of assigning a length to the curve y = f(x) between the points (a, f(a)) = P0 and

(b, f(b)) = Pn. Partition the interval [a, b] into n-parts by defining ∆x =
b− a

n
and

labeling the points

a = x0, x1 = x0 + ∆x, x2 = x1 + ∆x, . . . , xi = xi−1 + ∆x, . . . , xn = xn−1 + ∆x = b

as illustrated in the figure 3-9.

Label the points (xi, f(xi)) = Pi for i = 0, 1, 2, . . . , n and construct the line segments

Pi−1Pi for i = 1, 2, . . . , n. These line segments connect the points

(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), . . . , (xi, f(xi)), . . . , (xn−1, f(xn−1)), (xn, f(xn))

in succession and form a polygonal line connecting the points (a, f(a)) and (b, f(b)).

Figure 3-9.

Approximation of arc length by summation of straight line segments.

The sum of these line segments can be represented

sn =

n∑

i=1

√

(xi − xi−1)2 + [f(xi)− f(xi−1)]2 =

n∑

i=1

√

1 +

[
f(xi) − f(xi−1)

∆xi

]2

∆xi (3.115)

where ∆xi = xi−xi−1. This sum is an approximation to the length of the curve y = f(x)

between the points (a, f(a)) and (b, f(b)). This arc length approximation gets better

as ∆xi gets smaller or as n gets larger. If in the limit as n → ∞, the above sum exists
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so that one can write s = lim
n→∞

sn, then the curve y = f(x) is said to be rectifiable.

The limiting value s is defined to be the arc length of the curve y = f(x) between the

end points (a, f(a)) and (b, f(b)). Here lim
∆x→0

f(xi) − f(xi−1)

∆xi
= f ′(xi) and the infinite sum

becomes a definite integral and so one can express the limiting value of the above

sum as

s =

∫ b

a

√

1 + [f ′(x)]2 dx =

∫ b

a

√

1 +

(
dy

dx

)2

dx (3.116)

If x ∈ [a, b], then define the arc length s = s(x) of the curve y = f(x) between the points

(a, f(a)) and (x, f(x)) as

s = s(x) =

∫ x

a

√

1 + [f ′(t)]2 dt (3.117)

and define the differential of arc length ds = s′(x) dx. The element of arc length ds

can be determined from any of the following forms

ds =
√

dx2 + dy2 =

√

1 +

(
dy

dx

)2

dx =

√
(

dx

dy

)2

+ 1 dy

ds =

√
(

dx

dt

)2

+

(
dy

dt

)2

dt =
√

[x′(t)]2 + [y′(t)]2 dt

(3.118)

Example 3-33. Find the circumference of the circle defined by x = r cos θ,

y = r sin θ for 0 ≤ θ ≤ 2π, where r is a constant.

Solution

The element of arc length squared can be written

ds2 =dx2 + dy2 or

ds =
√

[x′(θ)]2 + [y′(θ)]2] dθ

Substituting in the derivatives
dx

dθ
= x′(θ) = −r sin θ and

dy

dθ
= y′(θ) = r cos θ, the element

of arc length is

ds =
√

[−r sin θ]2 + [r cos θ]2 dθ = r
√

sin2 θ + cos2 θ dθ = r dθ

and the total arc length is a summation of these elements

s = r

∫ 2π

0

dθ = r θ
2π

0

= 2π r
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Example 3-34. Find the length of the line segment connecting the points

(x1, y1) and (x2, y2) where x1 �= x2.

Solution

The slope of the line through these points is m =
y2 − y1

x2 − x1
and the equation of the

line through these points is y − y1 = m(x − x1). The arc length is given by

s =

∫ x2

x1

√

1 +

(
dy

dx

)2

dx =

∫ x2

x1

√

1 + m2 dx = (
√

1 + m2) x
x2

x1

= (
√

1 + m2)(x2 − x1)

This simplifies to the well known result s =
√

(x2 − x1)2 + (y2 − y1)2

Area Polar Coordinates

The equation of a curve in polar coordinates is given by r = f(θ). To find the

area bounded by the curve r = f(θ), the rays θ = α and θ = β, divide the angle β − α

into n-parts by defining ∆θ = β−α
n and then defining the rays

θ0 = α, θ1 = θ0 + ∆θ, . . . , θi = θi−1 + ∆θ, . . . , θn = θn−1 + ∆θ = β

The area between the rays θ = θi−1 , θ = θi and the curve r = f(θ), illustrated in the

figure 3-10, is approximated by a circular sector with area element

dAi =
1

2
r2
i ∆θi =

1

2
f2(θi) ∆θi (3.119)

where ∆θi = θi − θi−1 and ri = f(θi). A summation of these elements of area between

the rays θ = α and θ = β gives the approximate area
n∑

i=1

dAi =
n∑

i=1

1

2
r2
i ∆θi =

n∑

i=1

1

2
f2(θi) ∆θi (3.120)

Figure 3-10.

Approximation of area by summation of circular sectors.
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This approximation gets better as ∆θi gets smaller. Using the fundamental

theorem of integral calculus, it can be shown that in the limit as n → ∞, the equation

(3.119) defines the element of area dA =
1

2
r2 dθ. A summation of these elements of

area gives

Polar Area =

∫ β

α

dA =
1

2

∫ β

α

r2 dθ =
1

2

∫ β

α

f2(θ) dθ (3.121)

Example 3-35. Find the area bounded by the polar curve

r = 2r0 cos θ for 0 ≤ θ ≤ π.

Solution

One finds that the polar curve r = 2r0 cos θ, for 0 ≤ θ ≤ π, is a circle of radius r0

which has its center at the point (r0, 0) in polar coordinates. Using the area formula

given by equation (3.121) one obtains

Area =
1

2

∫ π

0

(2r0 cos θ)2 dθ = 2r2
0

∫ π

0

cos2 θ dθ = r2
0

∫ π

0

(cos 2θ + 1) dθ = r2
0

[
sin 2θ

2
+ θ

]π

0

= πr2
0

Make note of the fact that polar curves sometimes sweep out a repetitive curve. For

example, in the polar equation r = 2r0 cos θ, if θ varied from 0 to 2π, then the polar

distance r would sweep over the circle twice. Consequently, if one performed the

integration
1

2

∫ 2π

0

(2r0 cos θ)2 dθ

one would obtain twice the area or 2πr2
0. Therefore, one should always check polar

curves to see if some portions of the curve are being repeated as the independent

variable θ varies.

Arc Length in Polar Coordinates

In rectangular coordinates, ds2 = dx2 + dy2 represents the element of arc length

squared. If one changes to polar coordinates using the transformation equations

x = x(r, θ) = r cos θ and y = y(r, θ) = r sin θ (3.122)

then the total differentials dx and dy are given by

dx =
∂x

∂r
dr +

∂x

∂θ
dθ

dx =cos θ dr − r sin θ dθ
and

dy =
∂y

∂r
dr +

∂y

∂θ
dθ

dy =sin θ dr + r cos θ dθ
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and represent the total differentials in terms of the variables r and θ. Squaring and

adding these differentials one finds

ds2 = dx2 + dy2 = dr2 + r2dθ2 (3.123)

as the representation for the arc length squared in polar coordinates. Other forms

for representing the element of arc length in polar coordinates are

ds =

√
(

dr

dθ

)2

+ r2 dθ =

√

1 + r2

(
dθ

dr

)2

dr =
√

[r′(t)]2 + r2[t][θ′(t)]2 dt (3.124)

Example 3-36. Find the circumference of the circle r = 2r0 cos θ given in the

previous example.

Solution Here an element of arc length is given by the polar coordinate representation

ds =

√
(

dr

dθ

)2

+ r2 dθ, where
dr

dθ
= −2r0 sin θ. Integration of the element of arc length

from 0 to π gives

s =

∫ π

0

√

4r2
0 sin2 θ + 4r2

0 cos2 θ dθ = 2r0

∫ π

0

dθ = 2r0θ
π

0

= 2πr0

Surface of Revolution

When a curve is revolved about the x or y-

axis a surface of revolution results. The problem

of determining the surface area of the resulting

surface of revolution is approached using the fol-

lowing arguments. First consider a right circular cone where the top has been cut

off. The resulting figure is called the frustum of a right circular cone. The top sur-

face is the shape of a circle with radius r1 and the bottom surface is a circle with

radius r2 > r1. The side surface has a slant height of length � as illustrated in the

accompanying figure. The surface area associated with the side of this figure is given

by5

Side surface area = π(r1 + r2) � (3.125)

5 How this result is derived can be found in example 3-38
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Figure 3-11.

Arc length ds rotated about x-axis to form frustum of right circular cone.

Consider next the surface of revolution obtained when a curve y = f(x) is rotated

about the x-axis as illustrated in the figure 3-11. Let ds denote an element of arc

length in cartesian coordinates connecting the points (x, y) and (x + dx, y + dy) on the

curve and observe that when this element is rotated about the x-axis a frustum of

a right circular cone results. The radius of one circle is y and radius of the other

circle is y + dy. The element of surface area dS is the side surface area of the frustum

and given by equation (3.125) and so one can write

dS = π[y + (y + dy)] ds (3.126)

The product dy ds is an infinitesimal of the second order and can be neglected so

that the element of surface area can be written in the form

dS = 2πy ds (3.127)

By the fundamental theorem of integral calculus a summation of these surface el-

ements gives the total surface area of the surface of revolution. This total surface

area can be expressed in different forms depending upon the representation of the

arc length ds (See equations (3.118).) If y = y(x), then one can write

S =

∫ b

a

2πy ds = 2π

∫ b

a

y

√

1 +

(
dy

dx

)2

dx (3.128)

In a similar fashion, a curve x = F (y), for c ≤ y ≤ d, rotated about the y-axis

would created a surface of revolution with surface area given by

S = 2π

∫ d

c

x

√

1 +

(
dx

dy

)2

dy (3.129)
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In general, if a curve is rotated about a line, one can express the element of surface

area associated with a surface of revolution as dS = 2πρ ds where ds is an element

of arc length on the curve expressed in an appropriate form and ρ represents the

distance from the arc length element ds to the axis of revolution.

Example 3-37. Consider the upper half of the circle x2 + y2 = r2 rotated about

the x-axis to form a sphere. Here 2x+2y
dy

dx
= 0 or

dy

dx
= −x/y so that the surface area

of the sphere is given by

S = 2π

∫ r

−r

y

√

1 +
x2

y2
dx = 2π

∫ r

−r

√

x2 + y2 dx = 2πr

∫ r

−r

dx = 2πrx
r

−r

= 4πr2

Example 3-38.
The line y = −h

b
(x − b), 0 ≤ x ≤ b is rotated about

the y-axis to form a cone. An element of arc length

ds on the line is rotated about the y-axis to form an

element of surface area dS given by dS = 2πx ds Using

ds2 = dx2 + dy2 in the form ds =

√

1 +
(

dy
dx

)2

dx, the total

surface area of a cone with height h and base radius b

is given by

S = 2π

∫ b

0

x

√

1 +

(
dy

dx

)2

dx

Perform the integration and show the total surface area of the cone is given by

S = πb� where �2 = b2 + h2, (3.130)

with � = �1 + �2 representing the slant height of the cone.

As an exercise, use the above results to obtain the surface area of a frustum

associated with the given right circular cone as follows. If a is the base radius of

cone associated with slant height �1 and b is the base radius associated with cone

of the slant height �1 + �2, then show, Area of frustum = πb(�2 + �1) − πa�1. Then use

similar triangles and simplify this result and show, Area of frustum = π�2(b+a) which

agrees with equation (3.125).
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Mean Value Theorems for Integrals

There are several mean value theorems associated with definite integrals which

can be found under the following names.

(i) The first mean value theorem for integrals. If f(x) is a continuous function for

a ≤ x ≤ b, then there is a point x = ξ1 ∈ [a, b] such that

∫ b

a

f(x) dx = (b− a) f(ξ1) = (b− a)f(a + θ1(b − a)), 0 < θ1 < 1 (3.131)

(ii) The generalized first mean value theorem for integrals.

If both f(x) and g(x) are continuous functions for a ≤ x ≤ b and the function

g(x) does not change sign for x ∈ [a, b], then there exists a point x = ξ2 ∈ [a, b] such

that
∫ b

a

f(x)g(x) dx = f(ξ2)

∫ b

a

g(x) dx = f(a + θ2(b − a))

∫ b

a

g(x) dx, 0 < θ2 < 1 (3.132)

(iii) Bonnet’s second mean value theorem for integrals.

If both f(x) and g(x) are continuous functions for a ≤ x ≤ b and the function g(x)

is a positive monotonic6 decreasing function, then there exists a point x = ξ3 ∈ [a, b]

such that ∫ b

a

f(x)g(x) dx = g(a)

∫ ξ3

a

f(x) dx (3.133)

where ξ3 = a + θ3(b− a), for 0 < θ3 < 1. Alternatively, if g(x) is a positive monotonic

increasing function, then there exists a point x = ξ4 ∈ [a, b] such that

∫ b

a

f(x)g(x) dx = g(b)

∫ b

ξ4

f(x) dx (3.134)

where ξ4 = a + θ4(b− a), for 0 < θ4 < 1.

(iv) The generalized second mean value theorem for integrals.

If both f(x) and g(x) are continuous functions for a ≤ x ≤ b and the function

g(x) is a monotone increasing or monotone decreasing over the interval [a, b], then

there exists a point x = ξ5 ∈ [a, b] such that

∫ b

a

f(x)g(x) dx = g(a)

∫ ξ5

a

f(x) dx + g(b)

∫ b

ξ5

f(x) dx (3.135)

where ξ5 = a + θ5(b− a), for 0 < θ5 < 1.

6 If f(x) is defined on an interval [a, b] and if f is such that whenever a < x1 < x2 < b, there results

f(x1) ≤ f(x2), then f is called a monotone increasing function over the interval [a, b]. If the inequality above is

reversed so that f(x1) ≥ f(x2), then f is called a monotone decreasing function over the interval [a, b].
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Proof of Mean Value Theorems

If f(x) > 0 is a continuous function over the interval a ≤ x ≤ b, define the functions

G(x) =

∫ x

a

g(t) dt,

G′(x) =g(x),

H(x) =

∫ x

a

f(t)g(t) dt,

H ′(x) =f(x)g(x),

P (x) =G(x)H(b)− G(b)H(x)

P ′(x) =G′(x)H(b)−G(b)H ′(x)

and observe that P (a) = P (b) = 0 because G(a) = H(a) = 0 and the way P (x) is defined.

Consequently, it is possible to apply Rolle’s7 theorem which states that there must

exist a value x = ξ, for a < ξ < b, such that P ′(ξ) = 0. This requires

g(ξ)

∫ b

a

f(t)g(t) dt − f(ξ)g(ξ)

∫ b

a

g(t) dt = 0

which simplifies to give the generalized first mean value theorem for integrals

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx

Note the special case g(x) = 1 produces the first mean value theorem for integrals.

To prove Bonnet’s second mean value theorem, assume f(x) > 0 is a continuous

function for a ≤ x ≤ b and consider the cases where g(x) is monotone decreasing and

monotone increasing over the interval [a, b].

Case 1: Assume that g(x) is positive and monotone decreasing over the inter-

val [a, b]. Define the function φ(x) = g(a)
∫ x

a
f(x) dx which is continuous over the

interval [a, b] and demonstrate φ(a) = 0 ≤
∫ b

a
f(x)g(x) dx ≤ φ(b). An application

of the intermediate value theorem shows there exists a value x = ξ such that

φ(ξ) = g(a)
∫ ξ

a
f(x) dx =

∫ b

a
f(x)g(x) dx.

Case 2: Assume that g(x) is positive and monotone increasing over the interval

[a, b]. Define the function ψ(x) = g(b)
∫ b

x
f(x) dx which is continuous over the in-

terval [a, b] and demonstrate ψ(b) = 0 ≤
∫ b

a
f(x)g(x) dx ≤ ψ(a). An application of

the intermediate value theorem shows that there exists a value x = ξ such that

ψ(ξ) = g(b)
∫ b

ξ
f(x) dx =

∫ b

a
f(x)g(x) dx.

To prove the generalized second mean value theorem for integrals consider the

function F (x) =

∫ x

a

f(u) du and then evaluate the integral
∫ b

a

f(x)g(x) dx using integra-

tion by parts to show

∫ b

a

f(x)g(x) dx = g(x)F (x)
b

a

−
∫ b

a

F (x)g′(x) dx = g(b)F (b)−
∫ b

a

F (x)g′(x) dx (3.136)

7 Michel Rolle (1652-1719) a French mathematician.
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The last integral in equation (3.136) can be evaluated as follows. The assumption

that g(x) is a monotonic function implies that the derivative g′(x) is of a constant

sign for x ∈ [a, b] so that by the generalized first mean value theorem for integrals the

equation (3.136) can be expressed in the form

∫ b

a

f(x)g(x) dx =g(b)F (b)− F (ξ)

∫ b

a

g′(x) dx = g(b)F (b)− F (ξ)[g(b)− g(a)]

=g(a)F (ξ) + g(b)[F (b)− F (ξ)] = g(a)

∫ ξ

a

f(x) dx + g(b)

∫ b

ξ

f(x) dx

(3.137)

Differentiation of Integrals

The general Leibnitz formula for the differentiation of a general integral, where

both the lower and upper limits of integration are given by functions α(t) and β(t),

is given by the relation

d

dt

∫ β(t)

α(t)

f(t, τ) dτ =

∫ β(t)

α(t)

∂f(t, τ)

∂t
dτ + f(t, β(t))

dβ

dt
− f(t, α(t))

dα

dt
(3.138)

To derive the Leibnitz differentiation formula consider the following simpler exam-

ples.

Example 3-39. Show that
d

dx

∫ x

a

f(t) dt = f(x) where a is a constant.

Solution Let F (x) =

∫ x

a

f(t) dt and use the definition of a derivative to obtain

dF (x)

dx
= lim

∆x→0

F (x + ∆x) − F (x)

∆x
= lim

∆x→0

∫ x+∆x

a
f(t) dt −

∫ x

a
f(t) dt

∆x
= lim

∆x→0

1

∆x

∫ x+∆x

x

f(t) dt

Apply the mean value theorem for integrals and show the above reduces to

dF (x)

dx
= F ′(x) = lim

∆x→0

1

∆x
f(x + θ ∆x) ∆x = f(x), where 0 < θ < 1

Consequently, one can write

d

dx

∫ x

a

f(t) dt = f(x),
d

dβ

∫ β

0

f(t) dt = f(β),
d

dα

∫ α

0

f(t) dt = f(α)

Note that the above results imply that
d

dx

∫ a

x

f(t) dt = − d

dx

∫ x

a

f(t) dt = −f(x).
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Example 3-40. Show that
d

dx

∫ β(x)

α(x)

f(t) dt = f(β(x))
dβ

dx
− f(α(x))

dα

dx

Solution Write the given integral in the form

d

dx

∫ β(x)

α(x)

f(t) dt =
d

dx

[
∫ 0

α(x)

f(t) dt +

∫ β(x)

0

f(t) dt

]

=
d

dx

[
∫ β(x)

0

f(t) dt −
∫ α(x)

0

f(t) dt

]

and use chain rule differentiation employing the results from the previous example

to show
d

dx

∫ β(x)

α(x)

f(t) dt =
d

dx

[
∫ β(x)

0

f(t) dt −
∫ α(x)

0

f(t) dt

]

=
d

dβ

[
∫ β

0

f(t) dt

]

dβ

dx
− d

dα

[∫ α

0

f(t) dt

]
dα

dx

d

dx

∫ β(x)

α(x)

f(t) dt =f(β(x))
dβ

dx
− f(α(x))

dα

dx

Example 3-41.

Consider the function I = I(x, g(x), h(x)) defined by the integral

I = I(x, g, h) =

∫ h(x)

g(x)

f(x, t) dt (3.139)

where the integrand is a function of both the variables x and t and the limits of

integration g and h are also functions of x. The integration is with respect to the

variable t and it is assumed that the integrand f is both continuous and differentiable

with respect to x. The differentiation of a function defined by an integral containing

a parameter x is given by the Leibnitz rule

dI

dx
= I ′(x) =

∫ h(x)

g(x)

∂f(x, t)

∂x
dt + f(x, h(x))

dh

dx
− f(x, g(x))

dg

dx
. (3.140)

The above result follows from the definition of a derivative together with the use of

chain rule differentiation.

Consider first the special case of the integral I1(x) =
∫ h

g
f(x, t) dt where g and h

are constants. Calculate the difference

I1(x + ∆x) − I1(x) =

∫ h

g

[f(x + ∆x, t)− f(x, t)] dt

and then employ the mean value theorem with respect to the x-variable and write
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f(x + ∆x, t) − f(x, t) =
∂f(x + θ∆x, t)

∂x
∆x, 0 < θ < 1

to write

I1(x + ∆x) − I1(x) =

∫ h

g

∂f(x + θ∆x, t)

∂x
∆x dt where 0 < θ < 1.

Dividing both sides by ∆x and letting ∆x → 0 gives the derivative

dI1

dx
= I ′

1(x) = lim
∆x→0

I1(x + ∆x) − I1(x)

∆x
= lim

∆x→0

∫ h

g

∂f(x + θ∆x, t)

∂x
dt =

∫ h

g

∂f(x, t)

∂x
dt

In the special case that both the upper and lower limits of integration are functions

of x, one can employ chain rule differentiation for functions of more than one variable

and express the derivative of I = I(x, g, h) as
dI

dx
=

∂I

∂x
+

∂I

∂g

dg

dx
+

∂I

∂h

dh

dx
. (3.141)

where
∂I

∂x
=

∫ h(x)

g(x)

∂f(x, t)

∂x
dt,

∂I

∂h
= f(x, h(x)),

∂I

∂g
= −f(x, g(x))

The equation (3.141) then simplifies to the result given by equation (3.140).

Double Integrals

Integrals of the form

I1 =

∫ b

a

∫ d

c

f(x, y) dy dx or I2 =

∫ d

c

∫ b

a

f(x, y) dx dy

are called double integrals of the function z = f(x, y) over the rectangular region R

defined by

R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }

These double integrals are evaluated from the inside out and can be given the fol-

lowing physical interpretation. The function z = f(x, y), for (x, y) ∈ R, can be thought

of as a smooth surface over the rectangle as illustrated in the figure 3-12.

Figure 3-12.
Planes x = a constant and y = a constant intersecting surface z = f(x, y).
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Figure 3-13.
Elements of volume in the shape of slabs.

In the left figure, the plane, y = a constant, intersects the surface z = f(x, y) in the

curve

z = f(x, y) y = a constant

and the integral
∫ b

a

f(x, y) dx y = a constant

represents the area under this curve. If this area is multiplied by dy, one obtains an

element of volume dV in the shape of a slab with thickness dy as illustrated in the

figure 3-13. This element of volume dV can be expressed as an area times a thickness

to obtain

dV =

[
∫ b

a

f(x, y) dx

]

dy

If the element of volume is summed from y = c to y = d, there results the total volume

V =

∫ d

c

[
∫ b

a

f(x, y) dx

]

dy

Here the inner integral is integrated first while holding y constant and then the result

is integrated with respect to y from c to d to perform a summation representing

the volume under the surface z = f(x, y). Double integrals and multiple integrals in

general are sometimes referred to as iterated or repeated integrals. When confronted

with multiple integrals always perform the inner integral first and the outside integral

last.
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In a similar fashion, the plane, x = a constant, intersects the surface z = f(x, y) in

the curve

z = f(x, y) x = a constant

so that the integral
∫ d

c

f(x, y) dy x = a constant

represents the plane area under the curve. If the resulting area is multiplied by dx,

one obtains a volume element dV in the shape of a slab times a thickness dx. This

slab is given by

dV =

[
∫ d

c

f(x, y) dy

]

dx

If these volume elements are summed from x = a to x = b, then the resulting volume

under the surface is given by

V =

∫ b

a

[
∫ d

c

f(x, y) dy

]

dx

Another way to interpret the previous double integrals is to first partition the

interval [a, b] into n parts by defining ∆x = b−a
n

and then partition the interval [c, d]

into m parts by defining ∆y = d−c
m

. One can then define the points

a =x0, . . . , xi = a + i∆x, . . .xn = a + n∆x = a + n
b − a

n
= b

c =y0, . . . , yj = c + j∆y, . . .ym = c + m∆y = c + m
d − c

m
= d

where i and j are integers satisfying 0 ≤ i ≤ n and 0 ≤ j ≤ m. One can then move to a

point (xi, yj) located within the rectangle R and construct a parallelepiped of height

f(xi, yj) and base with sides ∆xi = xi+1 − xi and ∆yj = yj+1 − yj as illustrated in the

figure 3-14.

Figure 3-14. Element of volume dV = f(x, y) dy dx
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A summation over the rectangle of these parallelepiped volume elements gives an

approximation to the volume bounded by the surface z = f(x, y), and the planes

x = a, x = b, y = c, y = d and z = 0. This approximation gets better and better as

∆xi → 0 and ∆yj → 0. One finds that

lim
∆xi→0

∆yj→0

n∑

i=1

m∑

j=1

f(xi, yj) ∆xi ∆yj =

∫ d

c

[
∫ b

a

f(x, y) dx

]

dy =

∫ b

a

[
∫ d

c

f(x, y) dx

]

dy

where the inner integrals produce a slab, either in the x or y directions and the outer

integrals then represents a summation of these slabs giving the volume under the

surface. Note that if the surface z = f(x, y) oscillates above and below the plane z = 0,

then the result of the double integral gives a summation of the “signed”volumes.

The orientation of the surface might be such that it is represented in the form

x = g(y, z), in which case the height of the surface is the distance x above the plane

x = 0. If the surface is represented y = h(x, z), then the height of the surface is

the distance y above the plane y = 0. Hence volume integrals can be represented

as double integrals having one of the forms V1 =

∫ b1

a1

∫ d1

c1

f(x, y) dy dx if z = f(x, y)

describes the surface, or V2 =

∫ b2

a2

∫ d2

c2

g(y, z) dzdy if x = g(y, z) describes the surface or

V3 =

∫ b3

a3

∫ d3

c3

h(x, z) dz dx if y = h(x, z) describes the surface.

Summations over nonrectangular regions

If the smooth surface z = f(x, y) is defined over some nonrectangular region R

where the region R can be defined

(i) by a lower curve y = g1(x) and upper curve y = g2(x) between the limits

a ≤ x ≤ b

(ii) or by a left curve x = h1(y) and a right curve x = h2(y) between the limits

c ≤ y ≤ d

as illustrated in the figure 3-15, then the volume is still obtained by a limiting

summation of the parallelepipeds constructed with base area dx dy and height f(x, y).
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Figure 3-15. Summation of dx dy over region R

The volume under the surface is similar to the case where the region R is a

rectangle, but instead the summations of the parallelepipeds are from one curve to

another curve. One can write either of the volume summations

∫∫

R

f(x, y) dy dx =

∫ x=b

x=a

[
∫ y=g2(x)

y=g1(x)

f(x, y) dy

]

dx

∫∫

R

f(x, y) dx dy =

∫ y=d

y=c

[
∫ x=h2(y)

x=h1(y)

f(x, y) dx

]

dy

The first inner integral sums in the vertical direction to create a slab and the outer

integral sums these slabs from a to b. The second inner integral sums in the horizontal

direction to form a slab and the outer integral sums these slabs from c to d.

Example 3-42.

If the surface (x − x0)
2 + (y − y0)

2 = r2 is a

cylinder in three-dimensions. If this cylinder is

cut by the planes z = 0 and z = h, a finite cylinder

is formed by the bounding surfaces. It is known

that the total volume V of this finite cylinder is

the area of the base times the height or V = πr2h.

Derive this result using double integrals.

Solution Here the region R is a circle of radius r centered at the point (x0, y0) and

bounded by the upper semi-circle y = y0 +
√

r2 − (x − x0)2 and the lower semi-circle

y = y0 −
√

r2 − (x − x0)2. The parallelepiped element of volume is located at position

(x, y) where the base area dx dy is constructed. The height of the parallelepiped to

be summed is h and so the parallelepiped element of volume is given by dV = h dy dx

where the element dy is written first because the inner integral is to be summed in
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the y−direction from the lower semi-circle to the upper semi-circle. Summing these

volume elements first in the y-direction and then summing in the x−direction gives

V =

∫ x=x0+r

x=x0−r

[
∫ y=y0+

√
r2−(x−x0)2

y=y0−
√

r2−(x−x0)2
h dy

]

dx (3.142)

Here the inner integral produces a slab and then these slab elements are summed

from x0 − r to x0 + r. Perform the inner integration to obtain

V = h

∫ x0+r

x0−r

y
y0+

√
r2−(x−x0)2

y0−
√

r2−(x−x0)2
dx = 2h

∫ x0+r

x0−r

√

r2 − (x − x0)2 dx (3.143)

Here the integrand involves a difference of squares and suggests that one make the

trigonometric substitution x − x0 = r cos θ with dx = −r sin θ dθ to obtain

V =2h

∫ 0

π

r
√

1 − cos2 θ (−r sin θ dθ) = 2hr2

∫ π

0

sin2 θ dθ = 2hr2

∫ π

0

1

2
(1 − cos 2θ) dθ

V =hr2

[∫ π

0

dθ − 1

2

∫ π

0

cos 2θ 2dθ

]

= hr2

[

θ − 1

2
sin 2θ

]π

0

= πr2h

It is left as an exercise to perform the inner summation in the x−direction first, fol-

lowed by a summation in the y−direction and show that the same result is obtained.

Example 3-43. Evaluate the iterated integral of the function f(x, y) = xy2 over

the region between the parabola x = 2y2 and the line x = 2y.

Solution
Sketch the region over which the integration

is to be performed and then move to a general

point (x, y) within the region and construct an

element of area dx dy and determine which di-

rection is “best” for the inner integral. For

this problem the given curves intersect where

x = 2y2 = 2y giving the points of intersection

(0, 0) and (2, 1). One can then construct the fig-

ure illustrated. Let us examine the integrals

V =

∫ x=2

x=0

[
∫ y=

√
x/2

y=x/2

xy2 dy

]

dx and V =

∫ y=1

y=0

[∫ x=2y

x=2y2

xy2 dx

]

dy (3.144)

where the top inner integral is a summation in the y−direction and the bottom inner

integral represents a summation in the x−direction. Now select the iterated integral
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which you think is easiest to integrate. For this problem, both integrals are about

the same degree of difficulty. For the first double integral in equation (3.144) one

finds

V =

∫ x=2

x=0

[
∫ y=

√
x/2

y=x/2

xy2 dy

]

dx =

∫ x=2

x=0

[

x
y3

3

]y=
√

x/2

y=x/2

dx

V =

∫ x=2

x=0

x

3

[(√
x

2

)3

−
(x

2

)3
]

dx

V =

∫ 2

0

(
1

6
√

2
x5/2 − 1

24
x4

)

dx =
1

6
√

2

[
x7/2

7/2
− 1

24

x5

5

]2

0

=
4

35

For the second double integral in equation (3.144) the inner integral is evaluated

first followed by an integration with respect to the outer integral to obtain

V =

∫ y=1

y=0

[∫ x=2y

x=2y2

xy2 dx

]

dy =

∫ 1

0

y2 x2

2

x=2y

x=2y2

dy =

∫ 1

0

y2

2

[
(2y)2 − (2y2)2

]
dy

V =

∫ 1

0

(
2y4 − 2y6

)
dy =

(

2
y5

5
− 2

y7

7

)
y=1

y=0

=
4

35

Polar Coordinates

An element of area in polar coordinates can

be constructed by sketching the arbitrary rays θ

and θ+dθ together with the circular arcs of radius

r and r+dr as illustrated in the figure given. The

element of area dA can then be expressed as the

area of the sector with radius r + dr minus the

area of the sector with radius r. This can be

represented

dA =
1

2
(r + dr)2dθ − 1

2
r2dθ =

1

2

(
r2 + 2r dr + dr2 − r2

)
dθ = r dr dθ +

1

2
dr2dθ

The last term is 1
2
dr2dθ is an infinitesimal of higher order and so this term can

be neglected. One then finds the element of area in polar coordinates is given by

dA = r dr dθ.

To find an area associated with a region bounded by given curves one can use

cartesian coordinates and write dA = dxdy as an element of area and perform sum-

mations in the x−direction and then the y−direction and express the total area as
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A =
∫∫

dxdy with appropriate limits on the integrals. Alternatively, one can represent

the element of area in polar coordinates as dA = r dr dθ and perform summations in

the r−direction and then the θ−direction to express the total area as A =
∫∫

r dr dθ

with appropriate limits on the integrals.

Example 3-44. Find the area bounded by the lemniscate r2 = 2a2 cos 2θ.

Solution
Construct an element of area dA = r dr dθ in-

side the lemniscate and then make use of sym-

metry by calculating only the area in the first

quadrant. One can then represent the area in

the first quadrant by the double integral

A =

∫ θ=π/4

θ=0

∫ r=
√

2a2 cos 2θ

r=0

r dr dθ =

∫ π/4

0

1

2
r2

√
2a2 cos 2θ

0

dθ

A =a2

∫ π/4

0

cos 2θ dθ =
a2

2
sin 2θ

π/4

0

=
a2

2

The total area under the lemniscate is therefore Atotal = 4

(
a2

2

)

= 2a2.

Cylindrical Coordinates

The coordinate transformation from carte-

sian coordinates (x, y, z) to cylindrical coordi-

nates (r, θ, z) is given by

x =ρ cos θ

y =ρ sin θ

z =z

or

ρ =
√

x2 + y2

θ =tan−1(y/x)

z =z

where ρ is a radial distance from the z−axis, θ

is an angular displacement measured from the

x−axis and is called the azimuth or azimuthal

angle and z is the height above the plane z = 0.

The element of volume in cylindrical coordinates

is given by dV = ρ dρdθdz
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Example 3-45. Find the volume of a cylinder of radius R and height H.

Solution Use the volume element in cylindrical coordinates and express the volume

as the triple integral

V =

∫ z=H

z=0

∫ θ=2π

θ=0

∫ ρ=R

ρ=0

ρ dρdθdz

Evaluating this integral from the inside-outward gives

V =

∫ z=H

z=0

∫ θ=2π

θ=0

ρ2

2

ρ=R

ρ=0

dθ dz =
R2

2

∫ z=H

z=0

∫ θ=2π

θ=0

dθ dz =
R2

2

∫ z=H

z=0

θ
θ=2π

θ=0

dz

V =πR2

∫ z=H

z=0

dz = πR2z
z=H

z=0

= πR2H

Spherical Coordinates
The coordinate transformation from cartesian coordi-

nates (x, y, z) to spherical coordinates (r, θ, φ) is given by

x = r sin θ cos φ, y = r sin θ cos φ, z = r cos θ

for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, where r is called the radial

distance from the origin, θ is called the inclination from

the z−axis and φ is called the azimuth or azimuthal angle.

The element of volume in spherical coordinates is given

by

dV = (r sin θ dφ)(r dθ) dr = r2 sin θ dr dθdφ

Example 3-46. Find the volume of a sphere having a radius R.

Solution Using the element of volume for spherical coordinates, the volume of a

sphere is given by the triple integral

V =

∫ φ=2π

φ=0

∫ θ=π

θ=0

∫ r=R

r=0

r2dr sin θdθdφ

Evaluating the triple integral from the inside-outward gives

V =

∫ φ=2π

φ=0

∫ θ=π

θ=0

r3

3

r=R

r=0

sin θdθdφ

V =
R3

3

∫ φ=2π

φ=0

∫ θ=π

θ=0

sin θ dθdφ =
R3

3

∫ φ=2π

φ=0

(− cosθ)
θ=π

θ=0

dφ

V =
2

3
R3

∫ φ=2π

φ=0

dφ =
2

3
R3 φ

φ=2π

φ=0

=
4

3
πR3



258

Using Table of Integrals

The appendix C contains a table of integrals. In order to use these tables one

must sometimes make appropriate substitutions in order to convert an integral into

the proper form as given in the tables. For example, if it is required to evaluate the

integral

I =

∫
e3x dx

a + bex

where a and b are constants and you look for this integral in the table, you will not

find it. This is because the integral is listed under a different form. If you make the

substitution u = ex with du = ex dx The above integral can be written in the form

I =

∫
u2 du

a + bu
where u = ex

which is a form that you can locate in the tables. One finds under the listing for

integrals containing X = a+ bx, the listing number 78 for
∫

x2 dx

X
. Here the variable x

in the table of integrals is just a dummy variable of integration and you can replace

x by u and write

I =

∫
u2 du

a + bu
=

1

2b3

[
(a + bu)2 − 4a(a + bu) + 2a2 ln(a + bu)

]
+ C

Use back substitution to express the integral in terms of ex.

The Bliss Theorem

In the previous pages there were times when summations were replaced by inte-

grals because of the fundamental theorem of integral calculus. The replacement of

summations by integrals can be also be justified by using the Bliss’ theorem. Gilbert

Ames Bliss (1876-1961) was an American mathematician who studied mathematics

his whole life. One of the results he discovered is known as Bliss’ theorem8. This

theorem relates summations and integrations and has the following geometric in-

terpretation. Consider an interval (a, b) which is partitioned into n-subintervals by

defining points

a = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = b

and intervals ∆xi = xi − xi−1 for i = 1, . . . , n. The spacing for the points xi need not

be uniform. Define

δ = maximum [∆x1, ∆x2, . . . , ∆xi, . . . , ∆xn ]

8 Bliss,G.A., A substitute for Duhamel’s Theorem, Annals of Mathematics, Vol. 16 (1914-15), Pp 45-49.
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as the largest subinterval associated with the selected partition. Bliss showed that if

f(x) and g(x) are single-valued and continuous functions defined in the interval (a, b),

then for each subinterval ∆xi one can select arbitrary points ξi and ηi inside or at

the ends of the subinterval (xi−1, xi) such that for each value i = 1, . . . , n one can write

xi−1 < ξi < xi and xi−1 < ηi < xi

One can then form the sum
n∑

i=1

f(ξi)g(ηi)∆xi

and one can also form the integral
∫ b

a

f(x)g(x) dx.

Bliss’ theorem states that as n → ∞ and δ → 0, then

lim
δ→0

n→∞

n∑

i=1

f(ξi)g(ηi)∆xi =

∫ b

a

f(x)g(x) dx (3.145)

Note that this important theorem allows one to replace summations over an

interval by integrations over the interval and the fundamental theorem of integral

calculus is a special case of this theorem. The above result is used quite often in

developing methods for finding answers to physical problems where discrete sum-

mations become continuous integrals as the number of summations increase.

Example 3-47.

A right circular cone is obtained by revolving the line y = r
h
x,

0 ≤ x ≤ h, about the x-axis. Divide the interval 0 ≤ x ≤ h into

n-parts each of length ∆x = h
n

and then form circular disks at position xi = i∆x = ih
n

having radius yi = r
hxi = ir

n , for i = 1, 2, 3, . . . , n. Find the total volume V of the disks

in the limit as n → ∞.

Solution 1 Use the result from page 178,
∑n

i=1 i2 = 1
6
(2n3 + 3n2 + n) and write

V = lim
n→∞

n∑

i=1

πy2
i ∆x = lim

n→∞

n∑

i=1

π
r2

n2
i2

h

n
= lim

n→∞
π

r2h

n3

n∑

i=1

i2 = πr2h lim
n→∞

2n3 + 3n2 + n

6n3
=

π

3
r2h

Solution 2 Write

V =

∫ h

0

πy2 dx =

∫ h

0

π
r2

h2
x2 dx =

π

3
r2h
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Exercises

� 3-1. Evaluate the given integrals.

(a)

∫

(2x + 1)3 dx

(b)

∫

sin 4x dx

(c)

∫
cos t

sin2 t
dt

(d)

∫

(
√

4 − sin 2t) cos 2t dt

(e)

∫

(sin x)(cosx) dx

(f)

∫

(ax2 + bx + c) dx

� 3-2. Evaluate the given integrals.

(a)

∫

(2 + sin2t)4 cos 2t dt

(b)

∫
(3 + 2x)

4 + 3x + x2
dx

(c)

∫

x 4x2

dx

(d)

∫

e3x dx

(e)

∫

sin(3x + 1) dx

(f)

∫

x cos(3x2 + 1) dx

� 3-3. Evaluate the given integrals.

(a)

∫

sec2(3x + 4) dx

(b)

∫

csc2(3x + 4) dx

(c)

∫

sec(3x + 4) tan(3x + 4) dx

(d)

∫

(2x + 1) csc(x2 + x) cot(x2 + x) dx

(e)

∫
cos(3x2)

sin(3x2)
x dx

(f)

∫

xex2

dx

� 3-4. Evaluate the given integrals.

(a)

∫
x dx√
1 − x4

(b)

∫
x dx

1 + x2

(c)

∫
x dx√
1 − x2

(d)

∫

x sinh(x2) dx

(e)

∫

x cosh(x2) dx

(f)

∫

x sech 2(x2) dx

� 3-5. Evaluate the given integrals.

(a)

∫

csch(3x + 1) coth(3x + 1) dx

(b)

∫

sech(3x + 1) tanh(3x + 1) dx

(c)

∫

csch 2(3x + 1) dx

(d)

∫
(3x + 1) dx

√

1 − (3x + 1)2

(e)

∫
(3x + 1) dx

√

(3x + 1)2 − 1

(f)

∫
(3x + 1) dx

1 − (3x + 1)2

� 3-6. Evaluate the given integrals.

(a)

∫ (
1

x2
+

1

x
+ 5

)

dx

(b)

∫

x
√

x2 + 25 dx

(c)

∫ (

a + b
√

t +
c√
t

)

dt

(d)

∫

z
√

2z dz

(e)

∫

u
√

a + bu2 du

(f)

∫ √
a + budu

� 3-7. Evaluate the definite integrals and give a physical interpretation of what the

integral represents.

(a)

∫ 3

1

x2 dx (b)

∫ π

0

sin x dx (c)

∫ B

0

H

B
x dx
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� 3-8. If necessary use trigonometric substitution to evaluate the given integrals.

(a)

∫
dx

(3x + 1)
√

(3x + 1)2 + 1

(b)

∫
dx

(3x + 1)
√

1 − (3x + 1)2

(c)

∫
dx

(3x + 1)2 − 1

(d)

∫
dx

√

9 − (2x + 1)2

(e)

∫
√

a2 − u2 du

(f)

∫ √
a2 − t2

t2
dt

� 3-9. For C1, C2 constants, explain why the following integrals are equivalent.

(a)

∫
du√

1 − u2
= sin−1 u + C1,

∫
du√

1 − u2
= − cos−1 u + C2

(b)

∫
du

1 + u2
= tan−1 u + C1,

∫
du

1 + u2
= − cot−1 u + C2

(c)

∫
du

u
√

u2 − 1
= sec−1 u + C1,

∫
du

u
√

u2 − 1
= − csc−1 u + C2

(d)

∫

tanu du = − ln | cos u | +C1,

∫

tan u du = ln | sec u | +C2

(e)

∫

cotu du = ln | sin u | +C1,

∫

cotu du = − ln | csc u | +C2

� 3-10. Evaluate the given integrals.

(a)

∫

sin2(3x + 1) dx

(b)

∫

cos2(3x + 1) dx

(c)

∫

sin3(3x + 1) dx

(d)

∫

cos3(3x + 1) dx

(e)

∫

sin4(3x + 1) dx

(f)

∫

cos4(3x + 1) dx

� 3-11. Use partial fractions to evaluate the given integrals.

(a)

∫
3x2 − 12x + 11

(x − 1)(x − 2)(x − 3)
dx

(b)

∫
4x2 − 8x + 3

(x − 1)2(x − 2)
dx

(c)

∫
3x2 + 3x + 2

(x + 1)(x2 + 1)
dx

(d)

∫
x dx

x2 + 4x − 5

(e)

∫
2x8 + 5x7 + 8x6 + 5x5 − 5x3 − 2x2 − 3x − 1

(x − 1)(x2 + x + 1)2
dx

(f) 2

∫
x3 + x2 + x

(x2 − 1)(x + 2)
dx

� 3-12. Find the function y = y(x) passing through the given point (x0, y0) whose

derivative satisfies
dy

dx
= f(x), if

(a) f(x) = x, (x0, y0) = (1, 3)

(b) f(x) = x + 1, (x0, y0) = (1, 2)

(c) f(x) = sin3x, (x0, y0) = (0, 1)

(d) f(x) = tan2(3x), (x0, y0) = (0, 1)

(e) f(x) = sin2(3x), (x0, y0) = (0, 1)

(f) f(x) = cos2(3x), (x0, y0) = (0, 1)

Note: An equation which contains a derivative, like
dy

dx
= f(x), is called a differential

equation. The above problem can be restated as, “Solve the first order differential

equation
dy

dx
= f(x) subject to the initial condition y(x0) = y0.”
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� 3-13. If necessary use partial fractions to evaluate the given integrals.

(a)

∫
x2 − x − 1

(x − 2)(x − 1)2
dx

(b)

∫
x2 dx

x2 + 1

(c)

∫
dx

x(x2 + x + 1)

(d)

∫
x2 dx

(x + 1)2

(e)

∫
dx

x(x − 1)2

(f)

∫
dx

x(a − x)

� 3-14. Use partial fractions to evaluate the given integrals.

(a)

∫
dx

(x − a)(x − b)

(b)

∫
dx

(x − a)2(x − b)

(c)

∫
dx

(x − a)2(x − b)2

(d)

∫
dx

(x − a)(x2 − b2)

(e)

∫
dx

(x − a)(x2 + b2)

(f)

∫
dx

(x2 − a2)(x2 + b2)

� 3-15. Use integration by parts to evaluate the given integrals.

(a)

∫ 1

0

sin−1 x dx

(b)

∫ π/2

0

x sinx dx

(c)

∫ π/2

0

x cosx dx

(d)

∫ e

1

x lnx dx

(e)

∫ π

0

x sin 3x dx

(f)

∫ 16

1

x
√

x − 1 dx

� 3-16. Use integration by parts to evaluate the given integrals.

(a)

∫

xex dx

(b)

∫

x2 ex dx

(c)

∫

x2 sinx dx

(d)

∫

ex sin x dx

(e)

∫

ex cos x dx

(f)

∫

sec3 x dx

� 3-17. Use integration by parts to evaluate the given integrals.

(a)

∫

eαx sin βx dx

(b)

∫

lnx dx

(c)

∫

x ln(x + 1) dx

(d)

∫

eαx cos βx dx

(e)

∫ 1

0

x2ex dx

(f)

∫ 1

0

x3e−x dx

� 3-18. Use the fundamental theorem of integral calculus and express the given sums

as a definite integral.

(a) lim
n→∞

1

n

[

f(
1

n
) + f(

2

n
) + · · ·+ f(

n

n
)

]

(b) lim
n→∞

1

n

[

sin(
π

n
) + sin(

2π

n
) + · · ·+ sin(

nπ

n
)

]

(c) lim
n→∞

1

n

[√

1

n
+

√

2

n
+ · · ·+

√
n

n

]

� 3-19. Sketch the curves x = y2 − 6 and x = 4y − 1. Find the area enclosed by these

curves.
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� 3-20. It has been found that to integrate rational functions of the sine and cosine

functions, the change of variables u =
sinx

1 + cosx
= tan

x

2
sometimes simplifies the

integration problem.

(a) Show that if u = tan
x

2
, then one obtains

(i) dx =
2du

1 + u2
, (ii) sin x =

2u

1 + u2
, (iii) cos x =

1 − u2

1 + u2

(b) Evaluate the integral
∫

dx

1 + cos x

(c) Evaluate the integral
∫

dx

sinx − cos x

� 3-21.

The intersection of the curves y = x2 − 4, y = −x2 + 4, y = 4 and y = −4 are

illustrated in the figure.

(a) Find the area with vertices ABH

(b) Find the area with vertices BDFH

(c) Find the area with vertices HABFGH

(d) Find the area with vertices ABDEFHA

� 3-22. If
d

dx

[
tan−1(3x2) + ln(x4 + x2)

]
=

6x

1 + 9x4
+

2 + 4x2

x + x3
, then find

∫ (
6x

1 + 9x4
+

2 + 4x2

x + x3

)

dx

� 3-23. Evaluate the given integrals.

(a)

∫
dx√

16 + 6x − x2

(b)

∫ (

x2 +
1√

1 − x2

)

dx

(c)

∫

ex sin ex dx

(d)

∫

x
√

a2 − x2 dx

(e)

∫

(lnx)2 dx

(f)

∫

xeαx dx

� 3-24. Evaluate the given integrals.

(a)

∫
dt√

t2 + 4t − 3

(b)

∫
dx

9 − x2

(c)

∫
dx

(x2 + 9)2

(d)

∫
dx

(3x)2 + 9

(e)

∫
dx

(3x)2 − 9

(f)

∫
dx

√

9 − (3x)2



264

� 3-25. Evaluate the given integrals.

(a)

∫
dx√

x(1 +
√

x)

(b)

∫
ex dx

1 + 3ex

(c)

∫

sin2(3θ) dθ

(d)

∫
au + b

u2 + c2
du

(e)

∫
ax + b

x2 − c2
dx

(f)

∫
ax + b

√

b2 − (x + a)2
dx

� 3-26. Evaluate the given integrals.

(a)

∫
dx

ex + e−x

(b)

∫
α dx

x3 + β2x

(c)

∫
dx

1 +
√

x

(d)

∫

eln
√

x dx

(e)

∫

tan−1
√

x dx

(f)

∫

sin−1
√

x dx

� 3-27. Evaluate the given integrals.

(a)

∫
dx

a + bx

(b)

∫
x dx

(x − 1)2

(c)

∫

(x + 1)2ex dx

(d)

∫

(1− x2)3/2 dx

(e)

∫

sec−1 x dx

(f)

∫

x sin−1 x dx

� 3-28. Find the derivative
dy

dx
if

(a) y(x) =

∫ β(x)

0

f(t) dt (b) y(x) =

∫ 0

α(x)

f(t) dt, (c) y(x) =

∫ β(x)

α(x)

f(t) dt

� 3-29. Sketch the curve defined by the set of points

C = { (x, y) | x = t − sin t, y = 1 − cos t, 0 ≤ t ≤ 2π }

If the curve C is rotated about the x−axis a surface of revolution is generated.

(i) Show the element of surface area can be expressed dS = 2πy(t)

√
(

dx

dt

)2

+

(
dy

dt

)2

dt

(ii) Find the surface area produced by the rotation.

(iii) Find the volume inside the surface.

� 3-30. Solve for the value of α if

(a)

∫ α

0

x2 dx =
64

3
(b)

∫ α+1

α

x dx =
3

2
(c)

∫ α

0

x dx =
1

8

∫ 6

α

x, dx

� 3-31. Verify the reduction formula
∫

sinn x dx = − 1

n
sinn−1 x cosx+

n − 1

n

∫

sinn−2 x dx
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� 3-32.

(a) Let In =

∫

xn eαx dx and derive the reduction formula In =
1

α
xn eαx − n

α
In−1

(b) Evaluate the integral
∫

xeαx dx

� 3-33.

(a) Find the arc length of the curve y = 2
3
x3/2

between the values x = 0 and x = 3.

(b) Find the arc length of the curve y = 1
4
x3 + 1

3x

between the values x = 1 and x = 4.

(c) Find the arc length of the curve defined by

the parametric equations

x =
t3

3
and y =

t2

2

between the values t = 0 and t = 1.

� 3-34.

(a) Let Jn =

∫

(ln | αx |)n dx and derive the reduction formula Jn = x (ln | αx |)n−nJn−1

(b) Evaluate the integral
∫

ln | αx | dx

� 3-35.

(a) Let In,m =

∫

xm (ln x)
n

dx and derive the reduction formula

Im,n =
1

m + 1
xm+1(ln x)n − n

m + 1
Im,n−1

(b) Evaluate the integral
∫

x lnx dx

� 3-36.

(a) Consider the area bounded by the x−axis, the curve y =
√

2x + 1 and the lines

x = 0 and x = 3. This area is revolved about the x−axis.

(i) Find the surface area of the solid generated.

(ii) Find the volume bounded by the surface generated.

� 3-37. Consider the area bounded by the x-axis, the lines x = 1 and x = 8 and the

curve y = x1/3. This area is revolved about the y−axis.

(i) Find the surface area of the solid generated.

(ii) Find the volume enclosed by the surface.
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� 3-38. The average value of a function y = y(x) over the interval [a, b] is given by

ȳ =
1

b− a

∫ b

a

y(x) dx and the weighted average of the function y = y(x) is given by

ȳw =

∫ b

a

w(x)y(x) dx

∫ b

a
w(x) dx

where w = w(x) is called the weight function.

(a) Find the average value of y = y(x) = sinx over the interval [0, π].

(b) Find the weighted average of y = y(x) = sinx over the interval [0, π] with respect

to the weight function w = w(x) = x.

(c) Find the weighted average of y = y(x) = sinx over the interval [0, π] with respect

to the weight function w = w(x) = cos2 x

(d) Where does the weight function place the most emphasis in calculating the

weighted average in parts (b) and (c)?

� 3-39. Find the area under the given curves from x0 to x1.

(a) y = x
√

x2 + 1, x0 = 0, x1 = 2

(b) y =
x√

x2 + 1
, x0 = 0, x1 = 2

(c) y = ln x, x0 = 1, x1 = e

(d) y = sin x, x0 = 0, x1 = π

(e) y = cos x, x0 = 0, x1 = π/2

(f) y = tan x, x0 = 0, x1 = π/4

� 3-40. Consider the triangular area bounded by the x−axis, the line y = x, 0 ≤ x ≤ 1

and the line y = 2− x, 1 ≤ x ≤ 2. This area is revolved about the line x = 6 to form a

solid of revolution.

(i) Find the surface area of the solid generated.

(ii) Find the volume of the solid generated.

� 3-41. The line y = r = a constant, for 0 ≤ x ≤ h is rotated about the x−axis to form

a right circular cylinder of base radius r and height h.

(a) Use calculus and find the volume of the cylinder.

(b) Use calculus and find the lateral surface area of the cylinder.

� 3-42. Sketch the region of integration for the double integral

I =

∫ 1

0

∫ 4−x

x

f(x, y) dy dx.

� 3-43. The line y = r
h
x for 0 ≤ x ≤ h is rotated about the x−axis to form a right

circular cone of base r and height h.

(a) Use calculus and find the volume of the cone.

(b) Use calculus and find the lateral surface area of the cone.



267

� 3-44.

The radius r of a circle is divided into n−parts by

defining a distance ∆x = r/n and then constructing the

points

x0 = 0, x1 = ∆r, x2 = 2∆r, . . . , xi = i∆r, . . . , xn = n∆r = r

The large circle can then be thought of as being com-

posed as a series of concentric circles. The figure on

the right shows the concentric circles constructed with

radii xi and xi+1.

(a) Use calculus to find the circumference of a circle with radius r.

(b) Use calculus to sum the areas between concentric circles and find the area of a

circle. Hint: Show dA = 2πx dx

(c) Use polar coordinates and double integrals to find the area of a circle.

� 3-45.

(a) Find common area of intersection associated with the

circles x2 + y2 = r2
0 and (x − r0)

2 + y2 = r2
0

(b) Find the volume of the solid of revolution if this area

is rotated about the x−axis.

Hint: Make use of symmetry.

� 3-46. Sketch the region R over which the integration is to be performed

(a)

∫ 1

0

∫ y

y2

f(x, y) dx dy (b)

∫ π

0

∫ 3 cos θ

0

f(r, θ) r dr dθ (c)

∫ 4

1

∫ x2

1

f(x, y) dy dx

� 3-47. Sketch the region of integration, change the order of integration and evaluate

the integral.

(a)

∫ 3

1

∫ 2

y−1

12xy dx dy (b)

∫ 4

0

∫ √
x

x/2

3xy dy dx (c)

∫ b

a

∫ d

c

xy dx dy,
a ≤ x ≤ b

c ≤ y ≤ d

� 3-48. Integrate the function f(x, y) = 3
2
xy over the region R bounded by the curves

y = x and y2 = 4x

(a) Sketch the region of integration.

(b) Integrate with respect to x first and y second.

(c) Integrate with respect to y first and x second.
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� 3-49. Evaluate the double integral and sketch the region of integration.

I =

∫ 1

0

∫ x

0

2(x + y) dy dx.

� 3-50. For f(x) = x and b > a > 0, find the number c such that the mean value

theorem
∫ b

a

f(x) dx = f(c)(b − a) is satisfied. Illustrate with a sketch the geometrical

interpretation of your result.

� 3-51. Make appropriate substitutions and show

∫
dx

α2 + x2
=

1

α
tan−1 x

α
+ C

∫
dx

α2 − x2
=

1

α
tanh−1 x

α
+ C, x < α

∫
dx

b2 + (x + a)2
=

1

b
tan−1 x + a

b
+ C

∫
dx

b2 − (x + a)2
=

1

b
tanh−1x + a

b
+ C, x + a < b

� 3-52.

(a) If f(x) = f(x + T ) for all values of x, show that
∫ nT

0

f(x) dx = n

∫ T

0

f(x) dx

(b) If f(x) = −f(T − x) for all values of x, show that
∫ T

a

f(x) dx = −
∫ a

0

f(x) dx

� 3-53.

(a) Use integration by parts to show
∫

eax sin bx dx =
1

a
eax sin bx− b

a

∫

eax cos bx dx and
∫

eax cos bx dx =
1

a
eax cos bx+

b

a

∫

eax sin bx dx

(b) Show that
∫

eax sin bx dx = eax a sin bx − b cos bx

a2 + b2
+ C

∫

eax cos bx dx = eax b sin bx + a cos bx

a2 + b2
+ C

� 3-54. Make an appropriate substitution to evaluate the given integrals

(a)

∫

(e2x + 3)m e2x dx (b)

∫
e4x + e3x

ex + e−x
dx (c)

∫

(ex + 1)2 ex dx

� 3-55. Evaluate the given integrals

(a)

∫
x + a

x3
dx (b)

∫
(x + a)(x + b)

x3
dx (c)

∫
(x + a)(x + b)(x + c)

x3
dx

� 3-56. Evaluate the given integrals

(a)

∫

ln(1 + x) dx (b)

∫
x4 + 1

x − 1
dx (c)

∫

(a + bx)(x + c)m dx
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� 3-57. Use a limiting process to evaluate the given integrals

(a)

∫ ∞

0

e−st dt, s > 0 (b)

∫ x

−∞
et dt (c)

∫ ∞

0

te−st dt, s > 0

� 3-58. Consider a function Jn(x) defined by an infinite series of terms and having

the representation

Jn(x) =
xn

2n

[
1

n!
− x2

221!(n + 1)!
+

x4

242!(n + 2)!
+ · · ·+ (−1)mx2m

22mm!(n + m)!
+ · · ·

]

where n is a fixed integer and m represents the mth term of the series. Here m takes

on the values m = 0, 1, 2, . . .. Show that

∫ x

0

J1(x) dx = 1 − J0(x)

The function Jn(x) is called the Bessel function of the first kind of order n.

� 3-59. Determine a general integration formula for In =

∫

xn ex dx and then evaluate

the integral I4 =

∫

x4 ex dx

� 3-60. Show that if g(x) is a continuous function, then
∫ a

0

g(x) dx =

∫ a

0

g(a− x) dx

� 3-61. Let h(x) = −h(2T − x) for all values of x. Show that
∫ 2T

b

h(x) dx = −
∫ b

0

h(x) dx

� 3-62. If for m, n positive integers one has Im,n =

∫

cosm x sinnx dx, then derive the

reduction formula

(m + n)Im,n = − cosm x cosnx + m Im−1,n−1

� 3-63. If f(−x) = f(x) for all values of x, then f(x) is called an even function. Show

that if f(x) is an even function, then
∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx

� 3-64. If g(−x) = −g(x) for all values of x, then g(x) is called an odd function. Show

that if g(x) is an odd function, then
∫ a

−a

g(x) dx = 0

� 3-65. If f(2T − x) = f(x) for all values of x, then show
∫ 2T

0

f(x) dx = 2

∫ T

0

f(x) dx
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� 3-66. Let A = A(y) denote the cross-sectional area of a pond at height y measured

from the bottom of the pond. If the maximum depth of the pond is h, then set up

an integral to represent volume of water in the pond.

� 3-67. Determine if the given improper integral exists. If the integral exists, then

evaluate the integral. Assume β > 0 in parts (e) and (f).

(a)

∫ 1

−1

dx

x2

(b)

∫ 1

0

dx√
1 − x2

(c)

∫ 1

0

dx√
x

(d)

∫ ∞

−∞

dx

x2 + 1

(e)

∫ β

0

dx

(β − x)p

{
if p < 1

if p ≥ 1

(f)

∫ ∞

0

dx

(β + x)p

{
if p > 1

if p ≤ 1

� 3-68. A particle moves around the circle x2 +y2 = r2
0 with constant angular velocity

of ω cm/s. Find the amplitude and period of the simple harmonic motion described

by (a) the projection of the particles position on the x-axis. (b) the projection of

the particles position on the y-axis.

� 3-69. Find the angle of intersection associated with the curves r = sin θ and r = cos θ

which occurs in the region r > 0 and 0 < θ < π
2

� 3-70. Make use of symmetry when appropriate and sketch a graph of the following

curves.

(a) y =
a2

a2 − x2
(b) y =

x

x2 + a2
(c) y =

x2

x2 − a2

� 3-71. Let A1 =
∫ b

0
sin

(
πx
2b

)
dx and A2 =

∫ b

0
sin

(
πx
b

)
dx

(a) Sketch the representation of the area A1 and evaluate the integral to find the

area A1.

(b) Sketch the representation of the area A2 and evaluate the integral to find the

area A2.

(c) Which area is larger?

� 3-72. A plane cuts a sphere of radius r forming a spherical cap of height h. Show

the volume of the spherical cap is V =
π

3
h2(3r − h)

� 3-73. A solid sphere x2 +y2 + z2 = r2 is placed in a drill press and a cylindrical hole

is drilled through the center of the sphere. Find the volume of the resulting solid if

the diameter of the drill is αr, where 0 < α < 1/4

� 3-74. Show that
∫

dx
√

x(a − x)
= 2 sin−1

√
x

a
= 2 cos−1

√

a − x

a
= 2 tan−1

√
x

a − x
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Chapter 4

Sequences, Summations and Products

There are many different types of functions that arise in the application of

mathematics to real world problems. In chapter two many of the basic functions used

in mathematics were investigated and derivatives of these functions were calculated.

In chapter three integration was investigated and it was demonstrated that definite

integrals can be used to define and represent functions. Many of the functions

previously introduced can be represented in a variety of ways. An infinite series is

just one of the ways that can be used to represent functions. Some of the functions

previously introduced are easy to represent as a series while others functions are very

difficult to represent. In this chapter we investigate selected methods for representing

functions. We begin by examining summation methods and multiplication methods

to represent functions because these methods are easy to understand. In order to

investigate summation and product methods to represent functions, one must know

about sequences.

Sequences

A sequence is defined as a one-to-one correspondence between the set of positive

integers n = 1, 2, 3, . . . and a set of real or complex quantities u1, u2, u3, . . ., which are

given or defined in some specific way. Such a sequence of terms is often expressed

as {un}, n = 1, 2, 3, . . . or alternatively by {un}∞n=1 or for short just by {un}. The set of

real or complex quantities {un}, for n = 1, 2, 3, . . . is called an infinite sequence. The

indexing or numbering for the terms in the sequence can be selected to begin with

any convenient number. For example, there may be times when it is convenient to

examine sequences such as

{un}, n = 0, 1, 2, 3, . . . or {un}, n = ν, ν + 1, ν + 2, . . .

where ν is some convenient starting index.

A sequence of real numbers can be represented as a function or mapping from the

set of integers to the set of real numbers f : N → R and is sometimes represented as

f(1), f(2), . . . or f1, f2, . . .. Similarly, a sequence of complex numbers can be represented

as a function or mapping from the set of integers to the set of complex numbers

f : N → C.
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Example 4-1. The following are some examples of sequences.

(a)

{
1

n

}∞

n=1

, un =
1

n
,

{
1,

1

2
,
1

3
,
1

4
, . . . ,

1

n
, . . .

}

(b)

{
1

n!

}∞

n=0

, un =
1

n!
,

{
1, 1,

1

2
,
1

6
, . . . ,

1

n!
, . . .

}

(c)

{
4n

n − 2

}∞

n=3

, un =
4n

n − 2
,

{
12, 8,

20

3
, 6, . . . ,

4n

n − 2
, . . .

}

(d)
{
(−1)n sin

nπ

6

}∞

n=1
, un = (−1)n sin

nπ

6
,

{
−1

2
,

√
3

3
,−1,

√
3

2
, . . . , (−1)n sin

nπ

6
, . . .

}

Limit of a Sequence

The limit of a sequence, if it exists, is the problem of determining the value

of the sequence {un} as the index n increases without bound. A sequence such as

un = 3 + 4
n

for n = 1, 2, 3, . . . has the values

u1 = 7, u2 = 5, u3 = 13/3, u4 = 4, u5 = 19/5, u6 = 11/3, . . .

and as n increases without bound one can write

lim
n→∞

un = lim
n→∞

(
3 +

4

n

)
= 3

This limit statement means that for n sufficiently large the values un are as close as

desired to the value 3.

Some sequences {un} do not have a limit as the index n increases without bound.

For example, the sequence un = (−1)n for n = 1, 2, 3, . . . oscillates between the values

+1 and −1 and does not have a limit. Another example of a sequence which does

not have a limit is the sequence {vn} where vn = 3n for n = 1, 2, 3, . . .. Here the values

vn increase without bound as n increases.

Convergence of a sequence

A sequence {un}, n = 1, 2, 3, . . ., where un can be a real or complex number, is

said to converge to a number � or have a limit �, if to each small positive number

ε > 0 there exists an integer N such that

|un − �| < ε for every integer n > N (4.1)

If the sequence converges, then the limit is written

lim
n→∞

un = � (4.2)

If the sequence does not converge it is said to diverge.
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Divergence of a sequence

A sequence {un} is said to diverge in the positive direction if for every number

M > 0, there exists a number N > 0, such that un > M for all integers n > N.

This is sometimes expressed limn→∞ un = ∞. Similarly, a sequence {vn} is said to

diverge in the negative direction if there exists numbers M > 0 and N > 0 such that

vn < −M for all integers n > N. This is sometimes expressed limn→∞ vn = −∞.

Figure 4-1. Interpretation of convergence of a sequence {un}.

When the sequence converges, the elements un of the sequence tend to concen-

trate themselves around the point � for large values of the index n. The terms un do

not have to approach � at any specified rate nor do they have to approach � from a

particular direction. However, there may be times where un approaches � only from

the left and there may be other times when un approaches � only from the right.

These are just special cases associated with the more general definition of a limit

given above.

There are two geometric interpretations associated with the above limit state-

ment. The first whenever un = xn + i yn is a set of complex numbers and the second

geometric interpretation arises whenever un = xn represents a sequence of real num-

bers. These geometric interpretations are illustrated in the figure 4-1. In the case
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the sequence {un} is a sequence of complex numbers, the quantity |z − �| < ε repre-

sents an open disk centered at the point � = �1 + i �2 and the statement lim
n→∞

un = �

can be interpreted to mean that there exists an integer N , such that for all integers

m > N , the terms um are trapped inside the circular disk of radius ε centered at �. In

the case where the terms un = xn, n = 1, 2, 3, . . . are real quantities, the interpretation

of convergence is that for all integers m > N , the terms um are trapped inside the

interval (� − ε, � + ε). These regions of entrapment can be made arbitrarily small by

making the quantity ε > 0 small. In either case, there results an infinite number of

terms inside the disk or interval illustrated in the figure 4-1. A sequence which is

not convergent is called divergent or non-convergent.

Relation between Sequences and Functions

There is a definite relation associated with limits of sequences and limits of

functions. For example, if {un} is a sequence and f = f(x) is a continuous function

defined for all x ≥ 1 with the property that un = f(n) for all integers n ≥ 1, then if �

exists, the following limit statements are equivalent

lim
n→∞

un = �, and lim
x→∞

f(x) = �

One can make use of this property to find the limits of certain sequences.

Example 4-2. Evaluate the limit lim
n→∞

un where un =
lnn√

n
Solution

Let f(x) =
lnx√

x
and use L´Hôpital’s rule to show

lim
x→∞

f(x) = lim
x→∞

lnx√
x

= lim
x→∞

1/x

1/2
√

x
= lim

x→∞

2√
x

= 0

The limit properties for functions also apply to sequences. For example, if the

sequences {un} and {vn} are convergent sequences and lim
n→∞

vn �= 0, then one can write

lim
n→∞

(un ± vn) = lim
n→∞

un ± lim
n→∞

vn

lim
n→∞

(un vn) =
(

lim
n→∞

un

) (
lim

n→∞
vn

)

lim
n→∞

(
un

vn
) =

lim
n→∞

un

lim
n→∞

vn

If k is a constant and lim
n→∞

un = U exists, then the limit lim
n→∞

k un = k U also exists.
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Establish Bounds for Sequences

A real sequence {un}, n = 1, 2, 3, . . . is said to be bounded if there exists numbers

m and M such that m ≤ un ≤ M for all integers n. The number M is called an upper

bound and the number m is called a lower bound for the sequence.

The previous squeeze theorem1 from chapter 1 can be employed if there exists

three sequences {fj}, {gj}, {hj}, j = 1, 2, 3, . . . where the sequences {fj} and {hj} have

the same limit so that

lim
j→∞

fj = � and lim
j→∞

hj = �

If one can verify the inequalities fj ≤ gj ≤ hj, for all values of the index j, then the

terms gj are sandwiched in between the values for fj and hj for all values j and

consequently one must have lim
j→∞

gj = �.

Example 4-3. Evaluate the limit lim
n→∞

un where un =
n!

nn
, where n! is n-factorial.

Solution

An examination of un for n = 1, 2, 3, . . . , m, . . . shows that

u1 = 1, u2 =
2 · 1
22

, u3 =
3 · 2 · 1

33
, · · · um =

m · (m − 1) · · ·3 · 2 · 1
mm

, · · ·

Observe that the um term is positive and can be written as

um =
m · (m − 1) · · ·3 · 2 · 1

m · m · m · · ·m︸ ︷︷ ︸
m times

=

(
m

m

(m − 1)

m
· · · 3

m

2

m

)
1

m

where the term within the parentheses is less than 1. Consequently, one can say um

is bounded with

0 < um ≤ 1

m

Here 1
m

→ 0 as m increases without bound and so by the sandwich principle one can

say that um → 0 as m increases without bound.

Every convergent sequence {un} is bounded. If lim
n→∞

un = �, then there exists

neighborhoods Nε given by

(i) A circular neighborhood about � given by |z− �| < ε. This occurs when the values

un are complex numbers and there are an infinite number of values un from the

sequence inside the circle and a finite number of points un outside the circle.

1 Also known as the pinching lemma or the sandwich lemma
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(ii) An interval neighborhood given by � − ε < un < � + ε. Here the values un are real

numbers where there is an infinite number of points un inside the interval and

only a finite number of points outside the interval.

These neighborhoods Nε represent bounded sets. By increasing the radius of the

bounded sets Nε to encompass the finite number of points outside Nε, a new set can

be constructed which will still be bounded and contain all the terms of the sequence.

If the real sequence {xj}, j = 1, 2, 3, . . . is a convergent sequence, then

(i) The sequence must be bounded and

(ii) The limit of the sequence is unique.

Make note that it is sometimes convenient to replace the small quantity ε used

in the definition of convergence by some other small quantity such as ε2, ε
2
, or

ε
M

, (M > 0 constant). The small quantity used is usually selected so that when

many applications of the inequality (4.1) are made, the final results add up to some

convenient number.

To show the sequence must be bounded, use the definition of convergence of a

sequence with a fixed value for ε. If the limit of the sequence is �, then there exists

an integer N such that for integers n satisfying n > N

|xn| = |xn − � + �| ≤ |xn − �| + |�| < ε + |�| = M1 for n > N

That is, if the sequence has a limit, then there exists a value N such that each term of

the sequence xN+1, xN+2, . . . are less then M1 in absolute value. Let us now examine the

terms x1, x2, . . . , xN . Let M2 = max{|x1|, |x2|, . . . , |xN |}. By selecting M = max{M1, M2},

it follows that |xj | < M for all values of j and so the sequence is bounded. If the

sequence is not bounded, then it diverges.

To show the limit of the sequence is unique, assume that there are two limits,

say � and �′. Now use the method of reductio ad absurdum to show this assumption

is false. The assumption of convergence of the sequence insures that for every ε > 0,

there exists a value N1 such that for all integers n > N1 there results |xn − �| < ε
2
. If

�′ is also a limit, then there must exist an integer N2 such that for all n > N2 there

results |xn − �′| < ε
2
. Here the selection ε/2 has been used as the small quantity in the

definition of convergence rather than ε. The reason for this change is to make the

final answer come out in terms of the quantity ε. Define, N = max{N1, N2}, then for

all integers n > N it follows that

|� − �′| = |� − xn + xn − �′| ≤ |� − xn| + |xn − �′| <
ε

2
+

ε

2
= ε

and since ε can be made arbitrarily small, then � must equal �′. Hence our original

assumption was false.
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Additional Terminology Associated with Sequences

1. A real sequence u1, u2, u3, . . . is said to be monotone increasing

if u1 ≤ u2 ≤ u3 ≤ . . .. Alternatively, define a monotone increasing sequence {un}

as one where un+1 ≥ un for all values of n greater than some fixed integer N .

2. A real sequence u1, u2, u3, . . . is said to be monotone decreasing

if u1 ≥ u2 ≥ u3 ≥ . . .. An alternative definition of a monotone decreasing sequence

{un} is that un+1 ≤ un for all values of n greater than some fixed integer N .

3. Consider an infinite sequence u1, . . . , uj1 , . . . , uj2 , . . . , uj3 , . . . , un−1, un, un+1, . . . where

j1 < j2 < j3 < · · · < jn < · · · represent a selected subset from the real numbers N .

The sequence of numbers uj1 , uj2 , uj3, . . . or {ujk
}∞k=1 is called a subsequence of the

given sequence.

4. A sequence is called oscillating, either finite oscillatory or infinitely oscillatory,

depending upon whether the terms are bounded or unbounded. For example, the

sequence {cos nπ
3
}, for n = 1, 2, 3, . . ., is said to oscillate finitely, because the terms

remain bounded. In contrast, consider the sequence of terms {(−1)nn2} for the

values n = 1, 2, 3, . . . This sequence is said to oscillate infinitely, because the terms

become unbounded. In either case the sequence is called a nonconvergent se-

quence. A finite oscillatory sequence {xn}, n = 1, 2, 3, . . . is a sequence of real num-

bers which bounce around between finite limits and does not converge. An ex-

ample of a finite oscillatory sequence are the numbers {−1, 0, 1,−1, 0, 1,−1, 0, 1, . . .}
with the pattern repeating forever. Oscillatory sequences occur in certain ap-

plied mathematics problems quite frequently.

5. A number L is called a limit point of the sequence {un}, n = 1, 2, 3, . . ., if for every

ε > 0, | un −L |< ε for infinitely may values of n. A sequence may have more than

one limit point. For example, the sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . with the pattern

1, 2, 3 repeating forever, has the limit points 1, 2, 3. Note the following special

cases. (i) A finite set cannot have a limit point. (ii) An infinite set may or may

not have a limit point.

6. A real sequence {un}, n = 1, 2, 3, . . ., is called a null sequence if for every small

quantity ε > 0 there exists an integer N such that |un| < ε for all values of n > N .

7. Every bounded, monotonic sequence converges. That is, if the sequence is in-

creasing and bounded above, it must converge. Similarly, if the sequence is

decreasing and bounded below, it must converge. Another way of examining

these situations is as follows.
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If {un} is an increasing sequence and the un are bounded above, then the set

SL = { un | n ≥ 1 } has a least upper bound L. Similarly, if {vn} is a decreasing

sequence and the vn are bounded below, the set of values SG = { vn | n ≥ 1 } has

greatest lower bound G. One can then show

lim
n→∞

un = L and lim
n→∞

vn = G

since the sequences are monotonic.

8. Cauchy’s convergence criteria

The existence of a limit for the sequence lim
n→∞

un, can be established by using

the Cauchy condition for convergence. A sequence {uj}, j = 1, 2, 3, . . ., is said to be

Cauchy convergent or to satisfy the Cauchy convergence criteria if for every small

quantity ε > 0, there exists an integer N > 0, such that if one selects any two terms

from the sequence, say um and un, where n > N and m > n > N , then |um − un| < ε.

The Cauchy criteria is another way of saying that for large values of m and n the

terms of the sequence will always stay close together. Also observe that in using the

Cauchy criteria it is not necessary to know the exact limit in order to demonstrate

convergence.

There are alternative ways for expressing the Cauchy convergence condition.

Some of these representations are the following.

(i) A sequence of points u1 = (x1, y1), u2 = (x2, y2), . . . , um = (xm, ym), . . . , un = (xn, yn)

tends to a limit point if and only if, for every ε > 0 there exists an integer N = N (ε)

such that
√

(xm − xn)2 + (ym − yn)2 < ε whenever m > N and n > N . That is, the

distance between the points um and un can be made as small as desired if m and

n are selected large enough.

(ii) A necessary condition for the existence of the limit lim
n→∞

un, is for every ε > 0,

there exists an integer N such that for all integers n > N and for every integer

k > 0, the condition |un+k − un| < ε is satisfied.

The Cauchy condition follows from the following argument. If the limit of the

sequence {un} is �, then for every ε > 0 one can find an integer N such that for

integers n and m both greater than N one will have

|un − �| <
ε

2
and |um − �| <

ε

2

and consequently one can add and subtract � to obtain
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|un − um| = |(un − �) + (� − um)| ≤ |un − �| + |um − �| <
ε

2
+

ε

2
= ε

In more advanced mathematics courses one can show that the Cauchy conver-

gence condition is both a necessary and sufficient condition for the existence of a

limit for the sequence {un}.

Example 4-4. If {un} is a monotone increasing sequence with

u1 ≤ u2 ≤ u3 ≤ · · · ≤ un ≤ · · ·

and for each value of the index n one can show un ≤ K where K is some constant,

then one can state that the sequence {un} is a convergent sequence and is such that

lim
n→∞

un ≤ K.

To prove the above statement let SL = { x | x = un } and select for the set

SL a least upper bound and call it L so that one can state un ≤ L for all values

n = 1, 2, 3, . . .. Note that if L is the least upper bound, then every number K > L is

also an upper bound to the set SL. If ε > 0 is a small positive number, then one can

state that L − ε is not an upper bound of SL, but L + ε is an upper bound of the set

SL. Let N denote an integer such that L− ε < uN . Such an integer N exists since the

infinite set {un} is monotone increasing. Once N is found, one can write that for all

integers n > N one must have L − ε < uN < un < L + ε, which can also be written as

the statement

for all integers n > N the inequality |un − L| < ε

is satisfied. But this is the meaning of the limit statement lim
n→∞

un = L. Consequently,

one can state that the sequence is convergent and if each un ≤ K, then lim
n→∞

un ≤ K.

Stolz -Cesàro Theorem

Let {an}∞n=1 and {bn}∞n=1 denote sequences of real numbers such that the terms

bn are strictly increasing and unbounded. The Stolz2-Cesàro3 theorem states that if

the limit

lim
n→∞

an+1 − an

bn+1 − bn
= �

2 Otto Stolz (1842-1905) an Austrian mathematician.
3 Ernesto Cesàro (1859-1906) an Italian mathematician.
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exits, then the limit

lim
n→∞

an

bn
= �

will also exists with the limit �. This result is sometimes referred to as the L’Hôpital’s

rule for sequences.

A proof of the Stolz -Cesàro theorem is along the following lines. If the limit

lim
n→∞

an+1 − an

bn+1 − bn
= � exists, then for every ε > 0 there must exists an integer N such

that for all n > N there results the inequality
∣∣∣∣
an+1 − an

bn+1 − bn
− �

∣∣∣∣ < ε or � − ε <
an+1 − an

bn+1 − bn
< � + ε

By hypothesis, {bn} is strictly increasing so that bn+1 − bn �= 0 and consequently one

can write

(� − ε)(bn+1 − bn) < an+1 − an < (� + ε)(bn+1 − bn) (4.3)

Let K denote a large number satisfying K > N and then sum each term in equation

(4.3) from N to K and show

(� − ε)
K∑

n=N

(bn+1 − bn) <
K∑

n=N

(an+1 − an) < (� + ε)
K∑

n=N

(bn+1 − bn)

which simplifies to

(�− ε)(bK+1 − bN) < aK+1 − aN < (� + ε)(bK+1 − bN )

By dividing each term by bK+1 one obtains

(� − ε)

(
1 − bN

bK+1

)
<

aK+1

bK+1
− aN

bK+1
< (� + ε)

(
1 − bN

bK+1

)

For N fixed and large enough values of K, the above inequality reduces to

(� − ε) <
aK+1

bK+1
< (� + ε) (4.4)

because the other sequences are null sequences. The final equation (4.4) implies that

lim
n→∞

an

bn
= �.
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Examples of Sequences

The following table gives some examples of sequences.

Table 4.1 Example of Sequences

Example Sequence Comments

1 1, 0, 1, 0, 1, 0, 1, 0, . . . Divergent sequence with limit points 0 and 1

A bounded oscillating sequence

2 1
4
, 3

4
, 1

5
, 4

5
, . . . , 1

n
, n−1

n
, . . . Divergent sequence with limit points 0 and 1.

3 1, 2, 3, 4, . . . Divergent sequence.

4 0, 1
2 , 2

3 , 3
4 , 4

5 , 5
6 , 6

7 , . . . Convergent sequence with limit 1.

5 0, 2
3 , 4

5 , 6
7 , 8

9 . . . Convergent subsequence of previous sequence.

6 1, 1
2
, 1

3
, 1

4
, . . . A null sequence.

If | r |< 1, sequence converges.

7 {rn}∞n=0 If r = 1, constant sequence with limit 1.

If r > 1 or r ≤ −1, sequence diverges.

Infinite Series

Consider the infinite series
∞∑

n=1

un = u1 + u2 + u3 + · · ·+ um + · · · (4.5)

where the terms u1, u2, u3, . . . are called the first, second, third,. . . terms of the series.

The set of terms {un} usually represents a set of real numbers, complex numbers or

functions. In the discussions that follow it is assumed that the terms of the series

are represented by one of the following cases.

(i) um are real numbers um = αm

(ii) um are complex numbers um = αm + i βm

(iii) um are functions of a real variable um = um(x)

(iv) um are functions of a complex variable um = um(z) for z = x + i y

for m = 1, 2, 3, . . .. Examine the cases (i) and (ii) above, where the terms of the infinite

series are constants.
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The infinite series given by equation (4.5) is sometimes represented in the forms
∑

un or
∑

n∈N

un, where N denotes the set of integers {1, 2, 3, . . .}. This is done as a

shorthand representation of the series and is a way of referring to the formal series

after it has been properly defined and no confusion arises as to its meaning. In

equation (4.5) the index n is called a dummy summation index. This summation

index can be changed to any other symbol and it is sometimes shifted by making

a change of variable. For example, by making the substitution n = k − m, where m

is some constant, the summation index is shifted so that when n = 1, k takes on

the value m + 1 and the series given by equation (4.5) can be represented in the

alternative form
∞∑

k=m+1

uk−m. Because k is a dummy index it is possible to replace k

by the original index n to obtain the equivalent representation

∞∑

n=m+1

un−m = u1 + u2 + u3 + · · · , m is a constant integer. (4.6)

The indexing for an infinite series can begin with any convenient indexing. For

example, it is sometimes more advantages to consider series of the form

∞∑

n=0

un = u0 + u1 + u2 + · · · , or
∞∑

n=ν

un = uν + uν+1 + uν+2 + · · · (4.7)

where ν is some convenient starting index.

Sequence of Partial Sums

Given an infinite series
∞∑

j=1

uj = u1 + u2 + u3 + · · ·, form the sequence of terms

U1, U2, U3, . . . defined by

U1 = u1, U2 = u1 + u2, · · · Un = u1 + u2 + u3 + · · ·+ un

where the finite sum Um =
m∑

j=1

uj = u1 + u2 + · · · + um represents the summation of

the first m terms from the infinite series. The sequence of terms {Um}, m = 1, 2, 3, . . .

is called the sequence of partial sums associated with the infinite series given by

equation (4.5). The notation of capital letters with subscripts or Greek letters with

subscripts is used to denote partial sums. For example, if the given infinite series

is
∑∞

j=1 aj , then the sequence of partial sums is denoted by the sequence {An} where

An = a1 + a2 + · · · + an =
∑n

j=1 aj for n = 1, 2, . . . or alternatively use the notation

αn =
∑n

j=1 aj .
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Convergence and Divergence of a Series

The infinite series

∞
∑

j=1

uj is said to converge to a limit U , or is said to have a

sum U , whenever the sequence of partial sums {Un}, has a finite limit, in which

case one can write lim
n→∞

Un = U . If the sequence of partial sums {Un} becomes

unbounded, is oscillatory or the limit lim
n→∞

Un does not exist, then the infinite

series is said to diverge.

Example 4-5. Divergent finite oscillatory and infinite oscillatory

Consider the series
∞
∑

n=0

(−1)n = 1− 1 + 1− 1 + 1− 1 + · · · which has the partial sums

U1 = 1, U2 = 0, U3 = 1, U4 = 0, · · · . These partial sums oscillate between the finite values

of 0 and 1 and so the sequence of partial sums is called a finite oscillatory sequence.

In this case the series is said to diverge.

In contrast consider the series
∞
∑

n=0

(−1)n2n = 1−2+4−8+16−32+ · · · which has the

partial sums U1 = 1, U2 = −1, U3 = 3, U4 = −5, U5 = 11, · · ·. Here the sequence of partial

sums become infinite oscillatory and so the series is said to diverge.

Example 4-6. Harmonic series

Consider the harmonic series H =
∞
∑

m=1

1

m
which has the nth partial sum4

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+

1

n

Nicole Oresme (1323-1382), a French mathematician and scholar who studied infinite

series, examined this series. His analysis considers the above finite sum, using the

value n = 2m, where he demonstrated that the terms within the partial sum Hn can

be grouped together and expressed in the form

Hn = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + · · ·+

(

1

2m−1 + 1
+

1

2m−1 + 2
+ · · ·+

1

2m

)

4
The nth partial sum of the harmonic series occurs in numerous areas of mathematics, statistics and probability

theory and no simple formula has been found to represent the sum Hn. The sums Hn are also known as harmonic

numbers, with H0 = 0. A complicated formula for Hn is given by Hn = γ + d

dz
Log [Γ(z)] where γ is the

Euler-Mascheroni constant and Γ(z) is the Gamma function.
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Observe that using a term by term comparison of the above finite sums one can state

Hn > hn, where n = 2m. The finite sum hn, becomes unbounded and so the harmonic

series diverges5. Express the nth partial sum of harmonic series as Hn =
n∑

m=1

1

m
and

express the harmonic series using the partial sums H2, H4, H8, H16, . . . by writing

H =1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ · · ·+ 1

16

)
+

(
1

17
+ · · ·+ 1

32

)
+ · · ·

H = H2 + (H4 − H2) + (H8 − H4) + (H16 − H8) + · · ·+ (H2n −Hn) + · · ·

where

H2n − Hn =
1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
>

1

2n
+

1

2n
+ · · ·+ 1

2n︸ ︷︷ ︸
n terms

=
1

2

Hence, the 2nth partial sum can be written

H2n =H2 + (H4 −H2) + (H8 −H4) + · · ·+ (H2n − H2n−1)

H2n >
3

2
+

1

2
+

1

2
+ · · ·+ 1

2
n terms

H2n >
3

2
+

1

2
(n − 1) = 1 +

1

2
n

and 1
2
n increases without bound with increasing n and by comparison H2n also in-

creases without bound as n increases.

Note that the harmonic mean of two numbers n1 and n2 is defined as n̄ =
2

1
n1

+ 1
n2

.

The harmonic series gets its name from the fact that every term of the series, after

the first term, is the harmonic mean of its neighboring terms. For example, examining

the three consecutive sums
1

m − 1
+

1

m
+

1

m + 1
from the harmonic series, one can show

that the harmonic mean of n1 = 1
m−1

and n2 = 1
m+1

is given by n̄ = 1
m

.

Example 4-7. Convergent Series

Triangular numbers, illustrated in the figure 4-2, were known to the Greeks.

The first few triangular numbers are 1, 3, 6, 10, . . . and one can verify that the nth

triangular number is given by the formula
n(n + 1)

2
.

5 The harmonic series is a very slowly diverging series. For example, it would take a summation of over

1.509(10)43 terms before the sum reached 100.
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Figure 4-2. Triangular numbers.

Consider the infinite sum
∞∑

n=1

2

n(n + 1)
=

2

1 · 2
+

2

2 · 3
+

2

3 · 4
+ · · ·+ 2

m(m + 1)
+ · · · which

represents the sum of the reciprocal of the triangular numbers. The mth partial sum

of this series is given by

Um =
2

1 · 2 +
2

2 · 3 +
2

3 · 4 + · · ·+ 2

m(m + 1)

Observe that by partial fractions one can write
2

m(m + 1)
=

2

m
− 2

m + 1
so that

Um = (2 − 1) + (1 − 2

3
) + (

2

3
− 2

4
) + · · ·+ (

2

m
− 2

m + 1
)

This is called a telescoping series because of the way the terms add up. The resulting

sum is

Um = 2 − 2

m + 1
with limit lim

m→∞
Um = lim

m→∞
(2 − 2

m + 1
) = 2

Consequently, the infinite series converges with sum equal to 2.

In general, one should examine the nth partial sum Un =
n∑

j=1

uj of a given series

such as (4.5) to determine if the limit of the sequence of partial sums lim
n→∞

Un is

infinite, becomes finite oscillatory or infinite oscillatory or the limit does not exist,

then the series
∑

un is said to be a divergent series. Whenever the limit lim
n→∞

Un

exists with a value U , then U is called the sum of the series and the series is called

convergent. The convergence of the series can be represented in one of the forms

∞∑

n=0

un = lim
n→∞

Un = U = lim
N→∞

N∑

j=0

uj
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Comparison of Two Series

Consider two infinite series which differ only in their starting values

∞∑

m=1

um = u1 + u2 + · · ·+ uν + uν+1 + · · · and
∞∑

n=ν

un = uν + uν+1 + · · · (4.8)

where ν > 1 is an integer. Observe that it follows from the above definition for

convergence that if one of the series in equation (4.8) converges, then the other

series must also converge. Similarly, if one of the series from equation (4.8) diverges,

then the other series must also diverge. In dealing with an infinite series there are

many times where it is convenient to chop off or truncate the series after a finite

number of terms counted from the beginning of the series. One can then deal with

the remaining part. This is because the portion chopped off is a finite number of

terms representing some constant being added to the series. Consequently, it is

possible to add or remove a finite number of terms to or from the beginning of an

infinite series without affecting the convergence or divergence of the series.

Test For Divergence

If the infinite series
∞∑

n=1

un converges to a sum U , then a necessary condition for

convergence is that the nth term of the series approach zero as n increases without

bound. This necessary condition is expressed lim
n→∞

un = 0. This requirement follows

from the following arguments.

If Un =
n∑

i=1

ui is the nth partial sum, and Un−1 =
n−1∑

i=1

ui is the (n − 1)st partial

sum, then for convergence, both of these partial sums must approach a limit U as n

increases without bound and so

lim
n→∞

Un = U and lim
n→∞

Un−1 = U (4.9)

By subtracting the nth and (n − 1)st partial sums one obtains Un − Un−1 = un and

consequently

lim
n→∞

un = lim
n→∞

(Un − Un−1) = U − U = 0 (4.10)

The condition limn→∞ un = 0 is a necessary condition for convergence of the infinite

series
∞∑

i=1

ui. If this condition is not satisfied, then one can say the infinite series
∞∑

i=1

ui

diverges. The nth term of a series approaching zero as n increases without bound is

a necessary condition for any series to converge, but it doesn’t guarantee convergence

of the series. If the nth term of the series approaches zero, then additional testing
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must be done to determine if the series converges or diverges. Take for example the

harmonic series

H =
∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n
+ · · ·

considered earlier, one can observe that the nth term 1
n

approaches zero, but further

investigation shows that the series diverges

Cauchy Convergence

The Cauchy convergence condition associated with an infinite series examines

the sequence of partial sums {Uj} for j = 1, 2, 3, . . . and requires for convergence that

for every given small number ε > 0, there exists an integer N such that for any two

integers m and n satisfying n > m > N , one can show that |Un −Um| < ε. Observe that

the sequence of partial sums Un and Um are written

Un =
n∑

j=1

uj and Um =
m∑

j=1

uj , n > m

so that for Cauchy convergence of the sequence of partial sums it is required that

|Un − Um| = |um+1 + um+2 + · · ·+ un| be less than the given small quantity ε > 0. This

test holds because if lim
n→∞

Un = � and limm→∞ Um = �, then by definition of a limit one

can select integer values for n and m so large that one can write

| Un − � |< ε

2
and | Um − � |< ε

2

where ε > 0 is any small positive quantity and m and n are sufficiently large, say

both m and n are greater than N . It follows then that

| Un − Um |=| (Un − �) − (Um − �) |≤| |Un − � | + | Um − � |< ε

2
+

ε

2
= ε

The Cauchy test is an important test for convergence because it allows one to test

for convergence without actually finding the limit of the sequence.

Example 4-8. Geometric series

Consider the geometric series a + a r + a r2 + a r3 + · · ·+ a rn + · · · where a and r are

nonzero constants. The sequence of partial sums is given by

A1 =a

A2 =a + a r

...
...

An =a + a r + a r2 + a r3 + · · ·+ a rn−1
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Recall that by multiplying An by r and subtracting the result from An one obtains

(1 − r)An = a − a rn or An =
a

1 − r
− a rn

1 − r
(4.11)

The convergence or divergence of the sequence {An} depends upon the sequence {rn}.

Skipping the trivial case where r = 0, the sequence {An} converges if the sequence

{rn} converges. Consider the sequence {rn}, for n = 0, 1, 2, 3, . . . in the following cases

|r| < 1, r > 1, r = 1, r < −1 and r = −1.

(i) If |r| < 1, write |r| = 1
1+α

where α > 0. Using the binomial expansion show
1

rn
= (1 + α)n > 1 + nα for n > 2, or rn =

1

(1 + α)n
<

1

1 + nα
and consequently for a

given ε > 0, with 0 < ε < 1, write

|rn| = |r|n =
1

(1 + α)n
<

1

1 + nα
< ε for all n > N >

1 − ε

εα

Here 1
1+nα → 0 as n → ∞. This is an example of the sandwich theorem and

demonstrates limn→∞ rn = 0.

(ii) If r > 1, then rn for n = 1, 2, 3, . . . increases without bound. Consequently, for any

given positive number M , rn > M for all integers n >
lnM

ln r
and so the sequence

{rn} diverges.

(iii) If r = 1, then rn = 1 for all integers n and the sequence for {An} diverges.

(iv) If r < −1 the sequence {rn} diverges since it becomes infinitely oscillatory with

r2n → +∞ and r2n+1 → −∞.

(v) The special case r = −1 also gives a finite oscillating sequence since r2n = 1 and

r2n+1 = −1 for n = 1, 2, 3, . . . and so in this case the sequence {rn} diverges.

In summary, the geometric series has the finite sum given by equation (4.11)

and the infinite sum

A = lim
n→∞

An = a + a r + a r2 + a r3 + · · ·+ a rn + · · · = a

1 − r
, for |r| < 1

otherwise, the geometric series diverges.

The Integral Test for Convergence

Assume f(x) is a given function satisfying the following properties.

(i) f(x) is defined and continuous for x ≥ M for some positive integer M.

(ii) f(x) has the property that f(n) = un for all integers n ≥ M.

(iii) f(x) decreases as x increases which implies un = f(n) is a monotonic decreasing

function.

(iv) f(x) satisfies lim
x→∞

f(x) = 0.
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One can then say that the infinite series
∑∞

n=1
un

(a) converges if the integral
∫ ∞
M

f(x) dx converges.

(b) diverges if the integral
∫ ∞
M

f(x) dx diverges.

where

∫ ∞

M

f(x) dx = lim
T →∞

∫ T

M

f(x) dx is an improper integral.

The integral test for convergence of an infinite series compares the area under the

curve y = f(x) with overestimates and underestimates for this area. The following is

a proof of the integral test in the case M = 1. Given the infinite series
∑∞

n=1 un, with

un > 0 for all values of n, one tries to find a continuous function y = f(x) for 1 ≤ x < ∞

which decreases as x increases and is such that f(n) = un for all values of n. It is

then possible to compare the summation of the infinite series with the area under

the curve y = f(x) using rectangles. This comparison is suggested by examining the

rectangles sketched in the figure 4-3.

Figure 4-3.

Overestimates and underestimates for area under curve y = f(x).

Assume there exists a function f(x) > 0 which decreases as x increases with the

property f(n) = un and that limx→∞ f(x) = 0. The integral
∫ n+1

n

f(x) dx represents

the area under the curve y = f(x) bounded by the x-axis and the lines x = n and

x = n + 1. Using the mean value theorem for integrals the value of this integral is

f(ξ) for n < ξ < n + 1.
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The assumption f(x) decreases as x increases implies the inequality

un = f(n) ≥
∫ n+1

n

f(x) dx = f(ξ) ≥ f(n + 1) = un+1 for all values of n. (4.12)

The inequality (4.12) can now be applied to each interval (n, n+1) to calculate over-

estimates and underestimates for the area under the curve y = f(x), for x satisfying

n ≤ x ≤ n + 1 and for n = 1, 2, 3, . . .. A summation of the inequalities given by equa-

tion (4.12), for n = 1, 2, . . . , N − 1, gives a summation of areas under the curve and

produces the inequality

u2 + u3 + · · ·+ uN ≤
∫ N

1

f(x) dx ≤ u1 + u2 + u3 + · · ·+ uN−1 (4.13)

A graphic representation of this inequality is given in the following figure.

≤
∫ N

1

f(x) dx ≤

Figure 4-4. Pictorial representation of the inequality (4.13)

The inequality (4.13) gives an underestimate and overestimate for the area under

the curve y = f(x) of figure 4-3. Consider the following cases.

Case 1: If in the limit as N increases without bound the integral lim
N→∞

∫ N

1

f(x) dx exists,

say with value S, then the left-hand side of equation (4.13) indicates the se-

quence of partial sums is monotonic increasing and bounded above by S and

consequently the infinite series must converge.

Case 2: If in the limit as N increases without bound the integral lim
N→∞

∫ N

1

f(x) dx is un-

bounded or the integral does not exist, then the right-hand side of the inequality

(4.13) indicates that the infinite series diverges.
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Example 4-9. The p-series

Consider the p-series which is defined H =
∞∑

n=1

1

np =
1

1p +
1

2p +
1

3p +
1

4p
+ · · ·

(Case I) In the case p = 1, the above series is called the harmonic series or the p-series

of order 1. Sketch the curve y = f(x) = 1/x and construct rectangular overestimates

for the nth partial sum. One can then verify that the nth partial sum of the harmonic

series satisfies

1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑

i=1

1

i
≥

∫ n+1

1

1

x
dx = ln(n + 1)

In the limit as n increases without bound the logarithm function diverges and so the

harmonic series diverges using the integral test.

(Case II) In the case p ≤ 0, the p-series diverges because it fails the test of the nth

term approaching zero as n increases without bound.

(Case III) In the case p is positive and p �= 1 use the function f(x) =
1

xp
and show

∫ ∞

1

1

xp
dx = lim

T→∞

∫ T

1

1

xp
dx = lim

T→∞

[
1

p − 1

(
1 − 1

T p−1

)]
(4.14)

If p > 1 the right-hand limit from equation (4.14) has the value 1
p−1 and so the

integral exists and consequently the p-series converges. If 0 ≤ p < 1 the limit on the

right-hand side of equation (4.14) diverges and so by the integral test the p-series

also diverges.

In conclusion, the p-series

H =
∞∑

n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+

1

4p
+ · · ·

converges for p > 1 and diverges for p ≤ 1

Example 4-10. Estimation of error

Let
∞∑

n=1

un denote a given infinite series which converges by the integral test.

If U denotes the true sum of this series and Un denotes its nth partial sum, then

|U − Un| = Rn is the remainder term that was omitted and represents the true error

in using Un as an approximate value for the sum of the series.

Let En denote an estimate for the error associated with the truncation of an

infinite series after the nth term where the nth partial sum Un is being used as an
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estimate for the true value U of the series. The function f(x) used in the integral

test for convergence is a decreasing function of x and so

|Rn| ≤
∫ ∞

n

f(x) dx

If one sets En =
∫ ∞

n
f(x) dx, then the magnitude of the remainder |Rn| ≤ En or the

true error is less than the estimated error En.

Here un = f(n) so that the partial sum UN =
∑N

n=1 un =
∑N

k=1 f(k) can be used as

an approximation to the infinite sum. A better approximation for the sum is given

by U∗
N =

∑N
k=1 f(k)+

∫ ∞

N
f(x) dx since the integral representing the tail end of the area

under the curve in figure 4-3 is a good approximation to the sums neglected.

Example 4-11.

Sum 100 terms of the infinite series S =
1

12
+

1

22
+ · · ·+ 1

m2
+ · · · and estimate the

error associated with this sum.

Solution: Let Sn denote the nth partial sum

Sn =
n∑

m=1

1

m2
=

1

12
+

1

22
+ · · ·+ 1

n2

Use a computer and verify that S100 = 1.63498 so that an estimate for the error

between the finite sum and the infinite sum is given by

E100 =

∫ ∞

100

1

x2
dx = 0.01

Therefore, one can state that the difference between the true sum and approximate

sum is |S − S100| < 0.01 or 1.62498 < S < 1.64498. The exact value for S is known to be

π2/6 = 1.64493... and this exact value can be compared with our estimate. Observe

that the value S100 +
∫ ∞

100
1

x2 dx gives a better estimate for the sum.

It is important that you make note of the fact that the integral test does not give

the sum of the series. For example,

S =
∞∑

m=1

1

m2
=

π2

6
and

∫ ∞

1

1

x2
dx = 1
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Alternating Series Test

An alternating series has the form

∞∑

j=1

(−1)j+1uj = u1 − u2 + u3 − u4 + u5 − u6 + · · · , uj > 0 (4.15)

where each term of the series is positive, but the sign in front of each term alter-

nates between plus and minus. An alternating series converges if the following two

conditions are satisfied.

(i) For a large enough integer N, the terms un of the series are decreasing in absolute

value so that |un+1| ≤ |un|, for all values of n > N.

(ii) The nth term approaches zero as n increases without bound so that one can

write lim
n→∞

un = 0 or lim
n→∞

|un| = 0.

To prove the above statement one can examine the sequence of partial sums UN ,

starting with N = 1, and make use of the fact that un+1 ≤ un to obtain the situation

illustrated in the figure 4-5.

Figure 4-5.

Sequence of partial sums for alternating series.

partial sums

The even sequence of partial sums U2, U4, U6, . . . forms a bounded monotone in-

creasing sequence. The odd sequence of partial sums U1, U3, U5, . . . forms a bounded

monotone decreasing sequence. Both the even {U2n} and odd {U2n+1} sequence of

partial sums converge and consequently

lim
n→∞

U2n = U and lim
n→∞

U2n+1 = V



294

Note also that for n large, the term u2n+1 of the series must approach zero and

consequently

lim
n→∞

u2n+1 = lim
n→∞

(U2n+1 − U2n) = lim
n→∞

U2n+1 − lim
n→∞

U2n = V − U = 0

which implies that U = V and the alternating series converges.

Example 4-12. Alternating series

Consider the series
∞∑

n=2

(−1)n

lnn
. For n+1 > n, then ln(n+1) > lnn and consequently

1

ln(n + 1)
<

1

lnn
indicating the terms un =

1

lnn
decrease as n increases or equivalently,

the sequence {un} is monotonic decreasing. In addition, lim
n→∞

1

lnn
= 0. These two

conditions guarantee the convergence of the given alternating series.

Example 4-13. Estimation of error

Denote by Um the mth partial sum of a convergent alternating series and let U

denote the true sum of the series. For n > m examine the difference between the nth

partial sum and mth partial sum by writing

|Un − Um| =

∣∣∣∣∣

n∑

i=1

(−1)i+1ui −
m∑

i=1

(−1)i+1ui

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=m+1

(−1)i+1ui

∣∣∣∣∣

Using an appropriate selection of the value n (i.e. being either even or odd and

greater than m) one can write
∣∣∣∣∣

n∑

i=m+1

(−1)i+1ui

∣∣∣∣∣ = um+1 − (um+2 − um+3) − (um+4 − um+5) − · · · − (un−1 − un) < um+1

This inequality is independent of the value of n so that

|U − Un| =

∣∣∣∣∣

∞∑

i=1

(−1)i+1ui −
n∑

i=1

(−1)i+1ui

∣∣∣∣∣ < un+1

This last inequality is sometimes referred to as the Leibniz condition and implies that

by selecting an error En as the absolute value of the (n + 1) st term of an alternating

series, then one can write |Rn| = |U − Un| ≤ En. Hence, to obtain the sum of an

alternating series accurate to within some small error ε > 0, one must find an integer

value n such that |un+1| = En+1 < ε, then it can be stated with confidence that the nth

partial sum Un and the true sum U of the alternating series satisfies the inequality

Un − ε < U < Un + ε.
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Bracketing Terms of a Convergent Series

Let A = a0 + a1 + a2 + · · ·+ am + · · · =
∞∑

n=0

an denote a convergent series and define

the sequence of terms {jν}∞ν=1 which is a strictly increasing sequence of nonnegative

integers. That is the terms j1, j2, . . . are positive integers satisfying

j1 < j2 < · · · < jn < jn+1 < · · ·

The series for A can then be bracketed into nonoverlapping groups or partitions as

follows

A = (a0 + · · ·+ aj1) + (aj1+1 + · · ·+ aj2) + (aj2+1 + · · ·+ aj3) + · · ·+ (ajn+1 + · · ·+ ajn+1
) + · · ·

where there is a finite number of terms in each group. This is equivalent to defining

the infinite series

B =
∞∑

n=0

bn where

b0 =a0 + a1 + · · ·+ aj1

b1 =aj1+1 + aj1+2 + · · ·+ aj2

...
...

bn =ajn+1 + ajn+2 + · · ·+ ajn+1

...
...

The partial sums Bn = b0 + b1 + · · · + bn of the bracketed series, by definition, must

equal the partial sum Ajn+1
of the original series and consequently the sequence of

partial sum {Bn} is a subsequence of the partial sums {An}. In advanced calculus it

is shown that every subsequence of a convergent sequence converges and from this

result it can be concluded that

If a convergent series A has its terms bracketed into nonoverlapping groups to

form a new series B, then the series B converges to the sum of the original series.

The converse of the above statement is not true. For example, the bracketed

series (1 − 1) + (1 − 1) + (1 − 1) + · · · converges, but the unbracketed series has partial

sums which oscillate and hence is divergent.
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Example 4-14.

Consider the infinite series

A =
∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+ · · ·+ (−1)m−1 1

m
+ · · ·

and say this series is bracketed into groups of two terms as follows

B =

(
1 − 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+ · · · =

∞∑

n=1

1

(2n − 1)(2n)

Here both series converge to the same value as the bracketing does not effect the

convergence of a converging series.

Comparison Tests

Consider two infinite series, say
∞∑

n=1

un and
∞∑

n=1

vn where the terms of the series

un and vn are nonnegative. Let M denote a positive integer, then

(i) if un ≤ vn for all integers n > M and the infinite series
∑∞

n=1
vn converges, then

the infinite series
∑∞

n=1
un is also convergent.

(ii) if un ≥ vn ≥ 0 for all integers n > M and if the infinite series
∞∑

n=1

vn diverges,

then the infinite series
∞∑

n=1

un must also diverge.

To prove statement (i) above, let
∑∞

n=1 vn denote a convergent series with sum

V and let

Un = u1 + u2 + · · ·+ un, and Vn = v1 + v2 + · · ·+ vn

denote the nth partial sums associated with the infinite series
∑

un and
∑

vn respec-

tively. If un ≤ vn and V is the value of the converging series, then the sequence of

partial sums {Un} and {Vn} satisfy Un ≤ Vn ≤ V and consequently the sequence {Un}
is an increasing bounded sequence which must converge.

If the series
∞∑

n=1

vn diverges, then the sequence of partial sums {Vn} increases

without bound. If un ≥ vn for all n, then Un ≥ Vn for all n and so Un must also

increase without bound, indicating that the series
∞∑

n=1

un must also diverge.
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Ratio Comparison Test

If
∞∑

n=1

un is a series to be compared with a known convergent series
∞∑

n=1

cn, then

if the ratios of the (n + 1)st term to the nth term satisfies

un+1

un

≤
cn+1

cn

, (4.16)

then the series
∞∑

n=1

un is a convergent series.

If
∞∑

n=1

un is a series to be compared with a known divergent series
∞∑

n=1

dn, then if

the ratios of the (n + 1)st term to the nth term satisfies

un+1

un

≥
dn+1

dn

, (4.17)

then the series
∞∑

n=1

un is a divergent series.

To prove the above statements, make the assumption that the inequalities hold

for all integers n ≥ 0. The proofs can then be modified to consider the cases where

the inequalities hold for all integers n ≥ N . The proof of the above statements follows

by listing the inequalities (4.16) and (4.17) for the values n = 0, 1, 2, . . . , (m− 1). This

produces the listings

u1

u0
≤ c1

c0
u2

u1
≤ c2

c1
u3

u2
≤ c3

c2

...
...

um

um−1
≤ cm

cm−1

u1

u0
≥ d1

d0

u2

u1
≥ d2

d1

u3

u2
≥ d3

d2

...
...

um

um−1
≥ dm

dm−1

(4.18)

Multiply the terms on the left-hand sides and right-hand sides of the above listings

and then simplify the result to show

um ≤ u0

c0
cm, and um ≥ u0

d0
dm (4.19)

A summation of the terms on both sides of the above inequalities produces a com-

parison of the given series with known convergent or divergent series multiplied by

some constant.
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Example 4-15. Comparison test (set up an inequality)

Two known series used quite frequently for comparison with other series are the

geometric series
∞∑

n=0

arn and the p-series
∞∑

n=1

1

np
. These series are used in comparison

tests because inequalities involving powers of known quantities are easy to construct.

For example, to test the series
∞∑

n=1

1

n2 + 1
for convergence or divergence, use the

comparison test with the known p-series. The inequality n2 + 1 > n2 implies that
1

n2 + 1
<

1

n2
and consequently by summing both sides of this inequality one finds

∞∑

n=1

1

n2 + 1
<

∞∑

n=1

1

n2
. It is known that the p-series, with p = 2, converges and so by

comparison the given series converges.

As another example, consider the series
∞∑

n=1

a

3n + b
where a > 0 and b > 0 are

constants and compare this series with the geometric series
∞∑

n=1

1

3n
. Since 3n + b > 3n,

then
a

3n + b
<

a

3n
and consequently,

∞∑

n=1

a

3n
converges, so that the given series must

also converge.

Example 4-16. Estimation of error

Let
∞∑

n=1

un denote a convergent infinite series, then use the nth partial sum Un to

estimate the true value U of the series. The true error in using the nth partial sum

as an estimated value for the sum is given by

Rn = |U − Un| =
∞∑

i=n+1

un

where Rn is the remainder after the summation of n-terms of the series.

If there exists a known comparison series
∞∑

n=1

vn such that for all integers n greater

than some fixed integer N there results the inequality |un| ≤ vn, then it follows that

|un+1 + un+2 + · · ·+ un+m| ≤|un+1| + |un+2| + · · ·+ |un+m|

≤vn+1 + vn+2 + · · ·+ vn+m ≤
∞∑

i=n+1

vi
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which implies that for all n > N , |Rn| = |U − Un| = lim
m→∞

∣∣∣∣∣

n+m∑

i=n=1

ui

∣∣∣∣∣ ≤
∞∑

i=n+1

vi. Conse-

quently if one selects En =
∞∑

i=n+1

vi as an error estimate for the series sum, then write

|Rn| ≤ En which says the true error must be less than the estimated error En obtained

by summation of terms greater than vn from the known comparison series.

Absolute Convergence

Consider the two series
∞∑

n=1

an and
∞∑

n=1

| an | where the second series has terms

which are the absolute value of the corresponding terms in the first series. By

definition the series
∞∑

n=1

an is called an absolutely convergent series if the series of

absolute values
∞∑

n=1

| an | is a convergent series.

Example 4-17.

(a) The series S1 = 1− 1

2
+

1

3
− 1

4
+ · · · is called the alternating harmonic series. By the

alternating series test it is a convergent series. It is not an absolutely convergent

series because the series of absolute values is the harmonic series which is a

known divergent series.

(b) The series S2 =
1

12
− 1

22
+

1

32
− 1

42
+ · · · is an absolutely convergent series because

the corresponding series of absolute values is the p-series or order 2 which is a

known convergent series.

Example 4-18.

If
∞∑

j=1

|uj| is an absolutely convergent series, then the series
∞∑

j=1

uj must also be

a convergent series.

To prove the above statement examine the sequence {Un} where Un denotes the

nth partial sum associated with the series of absolute values

Un = |u1| + |u2|+ · · ·+ |un| =
n∑

j=1

|uj | for n = 1, 2, 3, . . .

For convergence of the series of absolute values the Cauchy convergence criteria

requires that there exist an integer N such that for all integers n and m satisfying,

n > m > N , one has
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|Un − Um| = ||um+1| + |um+2| + · · ·+ |un|| < ε (4.20)

where ε > 0 is any small number. Select the value N large enough that one can apply

the Cauchy convergence criteria to the infinite series
∞∑

j=1

uj for the same given value

of ε > 0 using the same values of m and n. For Cauchy convergence of the series
∞∑

j=1

uj, it is required that the difference of the mth partial sum Um =
m∑

j=1

uj and nth

partial sum, Un =
n∑

j=1

uj, for n > m, must satisfy |Un −Um| = |um+1 + um+2 + · · ·+ un| < ε.

Using the generalized triangle inequality, the absolute value of a sum is less than or

equal to the sum of the absolute values. That is,

|um+1 + um+2 + · · ·+ un| ≤ ||um+1| + |um+2| + · · ·+ |un|| < ε. (4.21)

But this is the Cauchy condition which is required for convergence of the infinite

series
∞∑

j=1

|uj |.

Another proof is to consider the two series
∞∑

n=1

un and
∞∑

n=1

|un| with partial sums

Un =u1 + u2 + u3 + · · ·+ un

and Un =|u1| + |u2| + |u3| + · · · |un|

Our hypothesis is that the sequence of partial sums {Un} converges. Our problem

is to show that the sequence of partial sums {Un} also converges. Assume the series
∑∞

n=1 un has both positive and negative terms so that the partial sum {Un} can be

written as Un = Pn − Nn where Pn is the sum of the positive terms and Nn is the

sum of the absolute values of the negative terms within the nth partial sum. This

implies that the partial sum Un can be expressed Un = Pn + Nn. Here the sequence

{Un} is a bounded increasing sequence with some limit limn→∞ Un = U which implies

the inequalities

Pn ≤ Un ≤ U and Nn ≤ Un ≤ U

so that the limit U is an upper bound for the sequences {Pn} and {Nn}. Both the

sequences {Pn} and {Nn} are monotone increasing and bounded sequences and must
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converge to some limiting values. If these limiting values are called P and N , then

one can employ the limit theorem from calculus to write

lim
n→∞

Un = lim
n→∞

(Pn − Nn) = lim
n→∞

Pn − lim
n→∞

Nn = P − N

which shows the infinite series
∑∞

n=1 un is a convergent series.

If
∑∞

n=1 an is an absolutely convergent series, then write

lim
N→∞

∣∣∣∣∣

N∑

n=1

an

∣∣∣∣∣ ≤ lim
N→∞

N∑

n=1

|an|

as this is just a limit associated with the generalized triangle inequality.

Also note the terms within an absolutely convergent series can be rearranged

with the resulting series also being absolutely convergent with the same sum as the

original series.

Slowly Converging or Slowly Diverging Series

In using the comparison test to determine whether a series converges or diverges,

one should be aware that some series converge very slowly while other series diverge

very slowly. To estimate the value of a very slowly convergent series to within some

error bound, it is sometimes necessary to sum an excessive number of terms.

If
∑

an and
∑

bn are two convergent series, one says that the series
∑

an con-

verges at a slower rate than the series
∑

bn if the condition lim
n→∞

bn

an

= 0 is

satisfied.

In a similar fashion

If
∑

an and
∑

bn are two divergent series, one says that the series
∑

an diverges

at a slower rate than the series
∑

bn if the condition lim
n→∞

an

bn

= 0 is satisfied.

Example 4-19.

The series
∞∑

n=2

an =
∞∑

n=2

1

n(ln n)2
will converge at a slower rate than the series

∞∑

n=2

bn =
∞∑

n=2

1

n2
because lim

n→∞

bn

an
= lim

n→∞

1

n2

1

n(ln n)2

= lim
n→∞

(lnn)2

n
= 0

This result follows by using L’Hôpital’s rule to evaluate

lim
x→∞

(lnx)2

x
= lim

x→∞

2(lnx) · x−1

1
= lim

x→∞

2x−1

1
= 0
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Example 4-20.

The series
∞∑

n=2

an =
∞∑

n=2

1

n lnn
diverges at a slower rate than the comparison series

∞∑

n=2

bn =
∞∑

n=2

1

n
, because lim

n→∞

an

bn
= lim

n→∞

1

n lnn
1

n

= lim
n→∞

1

lnn
= 0.

As an exercise estimate how many terms of each series needs to be summed for the

result to be greater than 3. Verify that the answer is
∑8718

n=2 an > 3 and
∑31

n=2 bn > 3

Ratio Test

The following tests investigate the ratio of certain terms in an infinite series

as the index of the terms increases without bound. The ratio test is sometimes

referred to as the d’Alembert’s test, after Jean Le Rond d’Alembert (1717-1783) a

French mathematician. The ratio test examines the absolute value of the ratio of

the (n+1)st term divided by the nth term of the series
∞∑

i=1

ui as the index n increases

without bound.

d’Alembert ratio test

If the terms un are different from zero for n = 1, 2, 3, . . . and the limit

lim
n→∞

∣∣∣∣
un+1

un

∣∣∣∣ = q exists6, then

(i) The series
∑∞

n=1
un is absolutely convergent if q < 1.

(ii) The series
∑∞

n=1
un diverges if q > 1.

(iii) The test fails if q = 1.

The above result can be proven using the geometric series. Assume that for all

values of n greater than some value N it is possible to show that
∣∣∣∣
un+1

un

∣∣∣∣ ≤ r < 1, (4.22)

Define the quantities

v0 =u
N+1

, v1 = u
N+2

, v2 = u
N+3

, · · ·

and use the inequality given by equation (4.22) to show |vm| ≤ r|vm−1|. This is

accomplished by setting n = N+1, N+2, . . . in equation (4.22) to obtain the inequalities

6 If all the terms of the series are nonnegative, then the absolute value sign can be removed
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|v1| ≤ r|v0|

|v2| ≤ r|v1| ≤ r2v0

...
...

|vm| ≤ r|vm−1| ≤ rmv0

(4.23)

The original series can then be split into two parts. The first part
∑N

j=1 |uj | is a

finite series leaving the series
∑∞

j=N+1 |uj | representing the second part which can be

compared with a geometric series. The second part satisfies the inequality
∞∑

j=N+1

|uj | ≤
∞∑

i=0

|vi| ≤ |v0|(1 + r + r2 + r3 + · · ·) ≤ |v0|
1 − r

, |r| < 1 (4.24)

and so the series is absolutely convergent by the comparison test.

If for all values of n greater than some value N it is possible to show
∣∣∣∣
un+1

un

∣∣∣∣ = q > 1 (4.25)

then the terms of the series
∑

un become a monotonic increasing sequence of positive

numbers and consequently the nth term cannot approach zero as n increases without

bound. Under these conditions the given series is divergent.

Example 4-21. Ratio test

Consider the series
∞∑

m=1

m + 1

2m
=

2

2
+

3

22
+

4

23
+ · · ·+ n + 1

2n
+ · · ·

Using the ratio test one finds lim
n→∞

un+1

un
= lim

n→∞

n + 2

2n+1

n + 1

2n

= lim
n→∞

1

2

(
n + 2

n + 1

)
=

1

2
< 1 and so

the given series is absolutely convergent.

Example 4-22. Ratio test

Test the harmonic series
∞∑

n=1

1

n
for convergence using the ratio test. The ratio test

produces the limit lim
n→∞

un+1

un
= lim

n→∞

1
n+1

1
n

= lim
n→∞

n

n + 1
= lim

n→∞

1

1 + 1/n
= 1 and so the

ratio test fails and so some other test must be used to investigate convergence or

divergence of the series.

Example 4-23. Ratio test

Test the series
∞∑

n=1

en

n!
to determine if the series converges. Using the ratio test

one finds lim
n→∞

un+1

un
= lim

n→∞

en+1

(n+1)!

en

n!

= lim
n→∞

e

n + 1
= 0 < 1 and so the given series converges.
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Root Test

If the limit lim
n→∞

n

√
|un| = L exists, then the series

∞∑

n=1

un is

(i) absolutely convergent if L < 1

(ii) is divergent if L > 1

(iii) The test fails if L = 1

Note that if n
√

|un| < q < 1 for all n > N , the |un| < qn < 1 so that the series
∞∑

i=N

|ui|

converges by comparison with the geometric series. If n
√
|un| > q > 1, the nth term of

the series does not approach zero and so the series diverges.

Certain Limits

Three limits that prove to be very useful are the following.

1. If α > 0 and β is any real number, then lim
n→∞

nβ

(1 + α)n
= 0. This limit follows by

examining the function f(x) =
xβ

(1 + α)x
=

xβ

ex ln(1+α)
=

(
x

e
x
β

ln(1+α)

)β

.

2. If β is any real number and α > 0 is real, then lim
n→∞

(ln n)β

nα
= 0. This limit follows

by examining the function g(x) =
(lnx)β

xα
=

(
lnx

xα/β

)β

.

3. A consequence of the ratio test is that if all the terms of the sequence {un} are

such that un �= 0 and the limit limn→∞

∣∣∣un+1

un

∣∣∣ < 1, then the series
∑

un is absolutely

convergent, which implies that limn→∞ un = 0 as this is a necessary condition for

convergence. Hence, the ratio test can be used to investigate certain limits which

approach zero.

Example 4-24. Limits

If un =
n1000

(1 + ε)n
, investigate the infinite series

∞∑

n=1

un and find the limit lim
n→∞

n1000

(1 + ε)n

where ε > 0 is a constant.

Solution: If one tests the ratio

un+1

un
=

(n + 1)1000

(1 + ε)n+1

n1000

(1 + ε)n

=

(
n + 1

n

)1000

· 1

(1 + ε)
=

(
1 +

1

n

)1000

· 1

(1 + ε)

in the limit as n increases without bound, one finds lim
n→∞

un+1

un
=

1

(1 + ε)
< 1 and so

the sum
∑

un converges. The convergence of the series implies that the nth term

approaches zero, so that lim
n→∞

n1000

(1 + ε)n
= 0, provided ε > 0.
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Power Series

A series of the form
∞∑

n=1

cnxn = c0 + c1x + c2x
2 + c3x

3 + · · ·+ cmxm + · · ·

is called a power series centered at the origin. Here x is a variable and the terms

c0, c1, . . . , cm, . . . are constants called the coefficients of the power series. If x is assigned

a constant value, the power series then becomes a series of constant terms and it

can be tested for convergence or divergence. One finds that in general power series

converge for some values of x and diverge for other values of x. If the power series

converges for |x| < R, then R is called the radius of convergence of the power series.

A series having the form

∞∑

n=1

cn(x − x0)
n = c0 + c1(x − x0) + c2(x − x0)

2 + c3(x − x0)
3 + · · ·+ cm(x − x0)

m + · · ·

is called a power series in (x − x0) centered at the point x0 with coefficients cm for

m = 0, 1, 2, . . ..

Example 4-25. Power series

Consider the power series

∞∑

n=0

an(x − x0)
n = a0 + a1(x − x0) + a2(x − x0)

2 + · · ·

where the coefficients an, for n = 0, 1, 2, . . . are constants and independent of the

value selected for x. This series converges for certain values of x and diverges for

other values of x. For convergence, the ratio test is required to satisfy the limiting

condition

lim
n→∞

∣∣∣∣
un

un−1

∣∣∣∣ = lim
n→∞

∣∣∣∣
an(x − x0)

n

an−1(x − x0)n−1

∣∣∣∣ = lim
n→∞

∣∣∣∣
an(x − x0)

an−1

∣∣∣∣ =
|x − x0|

R
< 1

where R = lim
n→∞

∣∣∣∣
an−1

an

∣∣∣∣ . Consequently, the power series is absolutely convergent when-

ever |x−x0| < R and is divergent whenever x satisfies |x−x0| > R. For real variables, the

power series converges for x satisfying −R < x−x0 < R and the interval (x0 −R, x0+R)

is called the interval of convergence for the power series and R is called the radius

of convergence of the power series. For complex variables the region of convergence

is the interior of the circle |z − z0| < R in the complex plane.
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A power series

f(x) =
∞∑

n=0

an(x − x0)
n = a0 + a1(x − x0) + a2(x − x0)

2 + · · ·+ am(x − x0)
m + · · · (4.26)

will satisfy one of the following conditions.

(i) If lim
n→∞

∣∣∣∣
an−1

an

∣∣∣∣ = 0, then the infinite series (4.26) converges only for x = x0 and

diverges for all other values of x.

(ii) If lim
n→∞

∣∣∣∣
an−1

an

∣∣∣∣ = ∞, then the infinite series (4.26) converges absolutely for all

values of x.

(iii) If lim
n→∞

∣∣∣∣
an−1

an

∣∣∣∣ = R exists and is nonzero, then the infinite series (4.26) converges

for | x − x0 |< R and diverges for | x − x0 |> R.

In general, if a power series

f(x) =
∞∑

i=0

ai(x − x0)
i = a0 + a1(x − x0) + a2(x − x0)

2 + · · ·+ an(x − x0)
n + · · ·

exists and converges for | x − x0 |< R, then one can say

(i) The function f(x) is a continuous function on the interval |x− x0| < R.

(ii) The function f(x) has the derivative

f ′(x) = a1 + 2a2(x − x0) + 3a3(x − x0)
2 + · · ·+ nan(x − x0)

n−1 + · · ·

and this series for the derivative converges over the same interval |x − x0| < R.

(iii) The function f(x) has the integral given by

∫
f(x) dx = a0(x − x0) +

a1

2
(x − x0)

2 +
a2

3
(x − x0)

3 + · · ·+ an

n + 1
(x − x0)

n+1 + · · ·

plus some arbitrary constant of integration can be added to this result. The

series for the integral also converges over the interval |x − x0| < R.

Operations with Power Series

Two power series given by f(x) =
∞∑

n=0

fn(x − x0)
n with radius of convergence Rf

and g(x) =
n∑

n=0

gn(x − x0)
n with radius of convergence Rg can be added

a(x) = f(x) + g(x) =
∞∑

n=0

fn(x − x0)
n +

∞∑

n=0

gn(x − x0)
n
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or they can be subtracted

b(x) = f(x) − g(x) =
∞∑

n=0

fn(x − x0)
n −

∞∑

n=0

gn(x − x0)
n

by adding or subtracting like powers of (x− x0). The resulting series has a radius of

converge R = smaller of {Rf , Rg }.

The product of the power series for f(x) and g(x) can be expressed

f(x)g(x) =

[
∞∑

n=0

fn(x − x0)
n

][
∞∑

n=0

gn(x − x0)
n

]

=
∞∑

n=0

∞∑

k=0

fngk(x − x0)
n+k

=
∞∑

n=0




n∑

j=0

fjgn−j



 (x − x0)
n

=
∞∑

n=0

cn(x − x0)
n

where cn =
n∑

j=0

fjgn−j is the Cauchy product, sometimes referred to as the convolution

of the sequences fn and gn.

The two power series for f(x) and g(x) can be divided and written

f(x)

g(x)
=

∞∑

n=0

fn(x − x0)
n

∞∑

n=0

gn(x − x0)
n

=
∞∑

n=0

hn(x − x0)
n

where the coefficients hn are related to the coefficients fn and gn by comparison of

the coefficients of like powers of (x − x0) on both sides of the expression

∞∑

n=0

fn(x − x0)
n =

[
∞∑

n=0

gn(x − x0)
n

][
∞∑

n=0

hn(x − x0)
n

]

Maclaurin Series

Let f(x) denote a function which has derivatives of all orders and assume the

function and each of its derivatives has a value at x = 0. Also assume that the

function f(x) can be represented within some interval of convergence by an infinite

series of the form

f(x) = c0 + c1x + c2x
2 + c3x

3 + · · ·+ cnxn + · · ·
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where c0, c1, c2, . . . , cn, . . . are constants to be determined. If the above equation is to

be an identity, then it must be true for all values of x. Substituting x = 0 into the

equation gives f(0) = c0. The series can be differentiated on a term by term basis as

many times as desired. For example, one can write

f ′(x) =c1 + 2c2x + 3c3x
2 + 4c4x

3 + · · ·

f ′′(x) =2!c2 + 3!c3x + 4 · 3c4x
2 + 5 · 4x3 + · · ·

f ′′′(x) =3!c3 + 4!c4x + 5 · 4 · 3x2 + · · ·
...

...

f (n)(x) =n!cn + (n + 1)!cn+1x + · · ·
...

Substituting x = 0 into each of the above derivative equations gives the results

c1 = f ′(0), c2 =
f ′′(0)

2!
, c3 =

f ′′′(0)

3!
, · · · , cn =

f (n)(0)

n!
, · · ·

This shows that f(x) can be represented in the form

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(x)

n!
xn + · · · (4.27)

or

f(x) =
∞∑

m=0

f (m)(0)

m!
xm (4.28)

where f (0)(0) = f(0) and 0! = 1 by definition. The series (4.27) is known as a Maclau-

rin7 series expansion of the function f(x) in powers of x. This type of series is useful

in determining values of f(x) in the neighborhood of the point x = 0 since if |x| is less

than 1, then the successive powers xn get very small for large values of n.

In the special case f(x) = g(x + h) one finds, for h constant, the derivatives

f ′(x) = g′(x + h), f ′′(x) = g′′(x + h), etc. Evaluating these derivatives at x = 0 gives

f(0) = g(h), f ′(0) = g′(h), f ′′(0) = g′′(h), etc., so that the equation (4.27) takes on the

form

g(x + h) = g(h) + g′(h)x + g′′(h)
x2

2!
+ g′′′(h)

x3

3!
+ · · ·+ g(n)(h)

xn

n!
+ · · · (4.29)

which is called Taylor’s form for Maclaurin’s results.

7 Colin Maclaurin (1698-1746) a Scottish mathematician.
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Example 4-26. Some well known Maclaurin series expansions are the following.

sinx =x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · · |x| < ∞

cosx =1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ · · · |x| < ∞

sinhx =x +
x3

3!
+

x5

5!
+

x7

7!
+

x9

9!
+

x11

11!
+ · · · |x| < ∞

coshx =1 +
x2

2!
+

x4

4!
+

x6

6!
+

x8

8!
+

x10

10!
+ · · · |x| < ∞

ex = Exp(x) =1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · · |x| < ∞

ax = ex ln a =1 + x lna +
(x lna)2

2!
+

(x lna)3

3!
+ · · · − ∞ < x < ∞

ln(1 + x) =x − x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · · − 1 ≤ x < 1

1

1 − x
=1 + x + x2 + x3 + x4 + · · · |x| < 1

(1 + x)β =1 + βx + β(β − 1)
x2

2!
+ β(β − 1)(β − 2)

x3

3!
+ · · · |x| < 1

sin−1 x =x +
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · · − 1 < x < 1

cos−1 x =
π

2
− sin−1 x =

π

2
−

(
x +

1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · ·

)
− 1 < x < 1

Note that many functions do not have a Maclaurin series expansion. This occurs

whenever the function f(x) or one of its derivatives cannot be evaluated at x = 0.

For example, the functions lnx, x3/2, cot x are examples of functions which do not

have a Maclaurin series expansion.

Example 4-27. The following are series expansions of selected special func-

tions occurring in advanced mathematics, engineering, mathematical physics and

the sciences.

Jν(x) The Bessel function of the first kind of order ν

Jν(x) =
(x

2

)ν
∞∑

k=0

(−1)kx2k

22k k!Γ(ν + k + 1)

where Γ(x) is the gamma function.

Yν(x) The Bessel function of the second kind of order ν

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
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Figure 4-6. The Bessel functions J0(x), Y0(x), J1(x), Y1(x)

The sine integral Si(x) =
∫ x

0

sin t

t
dt

Si(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)(2n + 1)!

The cosine integral

Ci(x) = γ + lnx +
∫ x

0

cos t−1

t
dt, | arg x| < π

Ci(x) = γ + lnx +
∞∑

n=1

(−1)nx2n

2n(2n)!

where γ = limn→∞

[
1 + 1

2 + 1
3 + · · ·+ 1

n − lnn
]

=

0.57721 . . . is called the Euler-Mascheroni con-

stant.

The error function erf(x) = 2√
π

∫ x

0
e−t2 dt

erf(x) =
2√
π

∞∑

n=0

(−1)nx2n+1

n! (2n + 1)
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The hypergeometric function F (α, β ; γ ; x)

F (α, β ; γ ; x) =
∞∑

k=0

αk β k

γ k

xk

k!

where a 0 = 1 and a k = a(a + 1)(a + 2) · · ·(a + k − 1) for k a nonnegative integer,

is called the factorial rising function8 or upper factorial. In expanded form the

hypergeometric function is written

F (α, β ; γ ; x) =1 +
αβ

γ

x

1!
+

α(α + 1)β(β + 1)

γ(γ + 1)

x2

2!
+ · · ·

+
α(α + 1) · · ·(α + n − 1)β(β + 1) · · ·(β + n − 1)

γ(γ + 1) · · · (γ + n − 1)

xn

n!
+ · · ·

The hypergeometric function is related to many other functions. Some example

relationships are the following.

F (1, 1 ; 2 ; x) = − ln(1 − x)

x

F (
1

2
, 1 ;

3

2
; x) =

tan−1 x

x

F (−α, α ;
1

2
; sin2 x) = cos(2αx)

F (α, β ; β ; x) =
1

(1 − x)α

lim
α→∞

F (α, β ; β ;
x

α
) =ex

F (
1

2
,−1 ;

1

2
; x2) =1 − x2

Taylor and Maclaurin Series

Brook Taylor (1685-1731) an English mathematician and Colin Maclaurin (1698-

1746) a Scottish mathematician both studied the representation of functions f(x) in

terms of a series expansion in powers of the independent variable x. If f(x) is a real

or complex function which is infinitely differentiable in the neighborhood of a fixed

point x0, then f(x) can be represented in the form

f(x) = Pn(x, x0) + Rn(x, x0) (4.30)

where Pn(x, x0) is called a nth degree Taylor polynomial centered at x0 and Rn(x, x0)

is called a remainder term. The Taylor polynomial of degree n has the form

Pn(x, x0) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + · · ·+ f (n)(x0)

n!
(x − x0)

n (4.31)

8 There is a factorial falling function or lower factorial defined by a k = a(a− 1)(a− 2) · · ·(a− (k− 1)) for
k a nonnegative integer. There are alternative notations to represent the factorial rising and falling functions. Some

texts use the notation x(n) for the rising factorial function and the notation (x)n for the falling factorial function.

In terms of gamma functions one can write x(n) = xn =
Γ(x + n)

Γ(x)
and (x)n = xn =

Γ(x + 1)

Γ(x − n + 1)
.
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and the remainder term is represented

Rn(x, x0) =
1

n!

∫ x

x0

(x − t)nf (n+1)(t) dt (4.32)

If the point x0 = 0, then the series is called a Maclaurin series.

One method of deriving the above series expansion is to assume that a given

function f(x) has derivatives of all orders and these derivatives all have a finite value

at some point x0. Also assume the function f(x) can be represented by a convergent

infinite series of the form

f(x) = c0 + c1(x − x0) + c2(x − x0)
2 + · · ·+ cn(x − x0)

n + · · · (4.33)

where c0, c1, . . . are constants to be determined. Substituting x = x0 into this equation

gives f(x0) = c0. The assumed series representation can be differentiated on a term

by term basis as many times as desired. The first n-derivatives are

f ′(x) =c1 + 2c2(x − x0) + 3c3(x − x0)
2 + 4c4(x − x0)

3 + · · ·

f ′′(x) =2!c2 + 3!c3(x − x0) + 4 · 3c4(x − x0)
2 + · · ·

f ′′′(x) =3!c3 + 4!c4(x − x0) + · · ·
...

...

f (n)(x) =n!cn + (n + 1)!cn+1(x − x0) + · · ·

Substituting the value x = x0 into each of the above derivatives produces the results

c1 = f ′(x0), c2 =
f ′′(x0)

2!
, c3 =

f ′′′(x0)

3!
, · · · , cn =

f (n)(x0)

n!
, · · ·

This shows that f(x) can be represented in the form

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x − x0)

2 + · · ·+ f (n)(x0)

n!
(x − x0)

n + · · · (4.34)

or

f(x) =
∞∑

m=0

f (m)(x0)

m!
(x − x0)

m (4.35)

which is known as a Taylor series expansion of f(x) about the point x0. Note that

when x0 = 0 the Taylor series expansion reduces to the Maclaurin series expansion.

The validity of the infinite series expansions given by the Maclaurin and Taylor

series is related to the convergence properties of the resulting infinite series. In

general, the Taylor series given by equation (4.33) will satisfy one of the following
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conditions (i) The infinite series converges for all values of x (ii) the series converges

only when x = x0 or (iii) The infinite series converges for x satisfying | x−x0 |< R and

diverges for | x−x0 |> R, where R > 0 is a real number called the radius of convergence

of the power series. Note that in the case where there is a radius of convergence R

and x is an endpoint of the interval (x0 − R, x0 + R), then the infinite series may or

may not converge. Usually the ratio test, and the root test are used to determine

the radius of convergence of the infinite series. The endpoints of the interval of

convergence must be tested separately to determine convergence or divergence of

the series.

Using the mean value theorem for integrals the remainder term can be reduced

to one of the forms

Rn(x, x0) =f (n+1)(ξ1)
(x − x0)

n+1

(n + 1)!
, (4.36)

or Rn(x, x0) =
f (n+1)(ξ2)(x − ξ2)

n(x − x0)

n!
(4.37)

where ξ1, ξ2 are constants satisfying x0 < ξ1 < x and x0 < ξ2 < x. The equation (4.36)

is known as the Lagrange form of the remainder term and equation (4.37) is known

as the Cauchy form for the remainder term.

Another method to derived the above results involves integration by parts. Con-

sider the integral

f(x) − f(x0) =

∫ x

x0

f ′(t) dt (4.38)

where x0 and x are held constant. An integration of the right-hand side is performed

using integration by parts with U = f ′(t), dU = f ′′(t) dt and dV = dt and V = t−x. Here

−x is treated as a constant of integration so that

∫ x

x0

f ′(t) dt =f ′(t)(t − x)
x

x0

−
∫ x

x0

(t − x) f ′′(t) dt

∫ x

x0

f ′(t) dt =f ′(x0)(x − x0) +

∫ x

x0

(x − t) f ′′(t) dt

(4.39)

Now evaluate the integral on the right-hand side of equation (4.39) using integration

by parts to show

∫ x

x0

f ′(t) dt = f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+

∫ x

x0

(x − t)2

2!
f ′′′(t) dt (4.40)
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Continue to use integration by parts n-times to obtain

∫ x

x0

f ′(t) dt = f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+ · · ·+ f (n)(t)

(x − x0)
n

n!
+ Rn(x, x0) (4.41)

where the remainder term is given by

Rn(x, x0) =
1

n!

∫ x

x0

(x − t)n f (n+1)(t) dt (4.42)

Example 4-28. Some additional Series Expansions

tan x =x +
x3

3
+

2x5

15
+ · · ·+ (−1)n−122n(22n − 1)B2nx2n−1

(2n)!
+ · · · |x| <

π

2

cotx − 1

x
=− x

3
− x3

45
− 2x5

945
− · · · − (−1)n−122nB2nx2n−1

(2n)!
− · · · 0 < |x| < π

sec x =1 +
x2

2
+

5x4

24
+

61x6

720
+ · · ·+ (−1)nE2nx2n

(2n)!
+ · · · |x| <

π

2

csc x − 1

x
=

x

6
+

7x3

360
+

31x5

15, 120
+ · · ·+ (−1)n−12(22n−1 − 1)B2nx2n−1

(2n)!
+ · · · 0 < |x| < π

tanhx =x − x3

3
+

2x5

15
+ · · ·+ 22n(22n − 1)B2nx2n−1

(2n)!
+ · · · |x| <

π

2

Where Bn are the Bernoulli numbers and En are the Euler numbers. These numbers

are defined9 from the expansions

x

ex − 1
=1 +

B1x

1!
+

B2x
2

2!
+

B4x
4

4!
+

B6x
6

6!
+ · · ·+ B2nx2n

(2n)!
+ · · ·

x

ex − 1
=1 − 1

2
x +

1

6

x2

2!
− 1

30

x4

4!
+

1

42

x6

6!
− · · ·

2ex

e2x + 1
=E0 +

E1x

1!
+

E2x
2

2!
+

E3x
3

3!
+ · · ·

2ex

e2x + 1
=1 − x2

2!
+ 5

x4

4!
− 61

x6

6!
+ 1385

x8

8!
− · · ·

and produce the numbers

B0 =1, B1 = −1/2, B2 =
1

6
, B4 =

−1

30
, B6 =

1

42
, · · · , B2n+1 = 0 for n > 1

E0 =1, E2 = −1, E4 = 5, E6 = −61, · · · , E2n+1 = 0 for n = 0, 1, 2, . . .

9 There are alternative definitions of the Bernoulli and Euler numbers which differ by subscripting notation,

signs and scale factors.
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Taylor Series for Functions of Two Variables

Using the above results it is possible to derive a Taylor series expansion asso-

ciated with a function of two variables f = f(x, y). Assume the function f(x, y) is

defined in a region about a fixed point (x0, y0), where the points (x0, y0) and (x, y) can

be connected by a straight line. Such regions are called connected regions. Further,

let f(x, y) possess nth-order partial derivatives which also exist in the region which

surrounds the fixed point (x0, y0). The Taylor’s series expansion of f(x, y) about the

point (x0, y0) is given by

f(x0 + h, y0 + k) =f(x0, y0) +
∂f(x0, y0)

∂x
h +

∂f(x0, y0)

∂y
k

+
1

2!

[
∂2f(x0, y0)

∂x2
h2 + 2

∂2f(x0, y0)

∂x∂y
hk +

∂2f(x0, y0)

∂y2
k2

]
+ · · ·

(4.43)

where h = x− x0 and k = y − y0. This expansion can be represented in a simpler form

by defining the differential operator

D = h
∂

∂x
+ k

∂

∂y
, h and k are constants.

The Taylor series can then be represented in the form

f(x0 + h, y0 + k) =

n∑

j=0

1

j!
Djf(x, y) + Rn+1, (4.44)

where all the derivatives are evaluated at the point (x0, y0). The remainder term can

be expressed as

Rn+1 =
1

(n + 1)!
D(n+1)f(x, y), to be evaluated at (x, y) = (ξ, η) (4.45)

where the point (ξ, η), lies somewhere on the straight line connecting the points

(x0 + h, y0 + k) and (x0, y0).

The equation (4.43) or (4.44) is derived by introducing a new independent vari-

able t which is the parameter for the straight line defined by the equations

x = x0 + ht, y = y0 + kt, with
dx

dt
= h, and

dy

dt
= k

where h and k are constants and 0 ≤ t ≤ 1. Consider the function of the single variable

t defined by

F (t) = f(x, y) = f(x0 + ht, y0 + kt)

which is a composite function of the single variable t. The composite function can

be expanded in a Maclaurin series about t = 0 to obtain

F (t) = F (0) + F ′(0)t + F ′′(0)
t2

2!
+ · · ·+ F (n)(0)

tn

n!
+ F (n+1)(ξ)

t(n+1)

(n + 1)!
, 0 < ξ < t. (4.46)

Evaluation of equation (4.46) at t = 1 gives f(x0 + h, y0 + k).
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The first n derivatives of the function F (t) are calculated using chain rule differ-

entiation. The first derivative is

F ′(t) =
∂f(x, y)

∂x

dx

dt
+

∂f(x, y)

∂y

dy

dt

=
∂f(x, y)

∂x
h +

∂f(x, y)

∂y
k.

(4.47)

By differentiating this expression, the second derivative can be determined as

F ′′(t) =

[

∂2f(x, y)

∂x2
h +

∂2f(x, y)

∂y ∂x
k

]

dx

dt

+

[

∂2f(x, y)

∂x ∂y
h +

∂2f(x, y)

∂y2
k

]

dy

dt

or

F ′′(t) =
∂2f(x, y)

∂x2
h2 + 2

∂2f(x, y)

∂x ∂y
hk +

∂2f(x, y)

∂y2
k2. (4.48)

Continuing in this manner, higher derivatives of F (t) can be calculated. For

example, the third derivative is

F ′′′(t) =

[

∂ 3f

∂x 3
h2 + 2

∂ 3f

∂x 2∂y
hk +

∂ 3f

∂x∂y 2
k2

]

dx

dt

+

[

∂ 3f

∂x 2∂y
h2 + 2

∂ 3f

∂x∂y 2
hk +

∂ 3f

∂y 3
k2

]

dy

dt

or

F ′′′(t) =
∂ 3f

∂x 3
h3 + 3

∂ 3f

∂x 2∂y
h2k + 3

∂ 3f

∂x∂y 2 hk2 +
∂ 3f

∂y 3
k3, (4.49)

Using the operator D = h
∂

∂x
+ k

∂

∂y
a pattern to these derivatives can be constructed

F ′(t) = Df(x, y) =

(

h
∂

∂x
+ k

∂

∂y

)

f(x, y)

F ′′(t) = D2f(x, y) =

(

h
∂

∂x
+ k

∂

∂y

)2

f(x, y)

F ′′′(t) = D3f(x, y) =

(

h
∂

∂x
+ k

∂

∂y

)3

f(x, y)

...
...

F (n)(t) = Dnf(x, y) =

(

h
∂

∂x
+ k

∂

∂y

)

n

f(x, y).
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Here the operator Dn =

(
h

∂

∂x
+ k

∂

∂y

)n

can be expanded just like the binomial ex-

pansion and

F (n)(t) = Dnf(x, y) = hn ∂nf

∂xn
+

(
n

1

)
hn−1k

∂nf

∂xn−1∂y
+

(
n

2

)
hn−2k2 ∂nf

∂xn−2∂y2

+ · · ·+
(

n

n − 1

)
hkn−1 ∂nf

∂x∂yn−1
+ kn ∂nf

∂yn
,

(4.50)

where
(

n

m

)
=

n!

m!(n −m)!
are the binomial coefficients.

In order to calculate the Maclaurin series about t = 0, each of the derivatives

must be evaluated at the value t = 0 which corresponds to the point (x0, y0) on the

line. Substituting these derivatives into the Maclaurin series produces the result

given by equation (4.43), where all derivatives are understood to be evaluated at

the point (x0, y0).

In order for the Taylor series to exist, all the partial derivatives of f through

the nth order must exist at the point (x0, y0). In this case, write f ∈ Cn over the

connected region containing the points (x0, y0) and (x, y). The notation f ∈ Cn is

read, “f belongs to the class of functions which have all partial derivatives through

the nth order, and further, these partial derivatives are continuous functions in the

connected region surrounding the point (x0, y0). ”

In a similar fashion it is possible to derive the Taylor series expansion of a

function f = f(x, y, z) of three variables. Assume the Taylor series expansion is to be

about the point (x0, y0, z0), then show the Taylor series expansion has the form

f(x0 + h, y0 + k, z0 + �) =
n∑

j=0

1

j!
Djf(x, y, z) + Rn+1 (4.51)

where

Df =

(
h

∂

∂x
+ k

∂

∂y
+ �

∂

∂x

)
f =

(
h

∂f

∂x
+ k

∂f

∂y
+ �

∂f

∂x

)
(4.52)

is a differential operator and h = x− x0, k = y − y0 and � = z − z0. After expanding the

derivative operator Djf for j = 0, 1, 2, . . ., each of the derivatives are to be evaluated

at the point (x0, y0, z0). The term Rn+1 is the remainder term given by

Rn+1 =
1

(n + 1)!
D(n+1)f(x, y, z)

(x,y,z)=(ξ,η,ζ)

(4.53)
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where the point (ξ, η, ζ) is some unknown point on the line connecting the points

(x0, y0, z0) and (x0 + h, y0 + k, z0 + �).

Functions of n-variables f = f(x1, x2, . . . , xn) have their Taylor series expansions

derived in a manner similar to the above by employing a differential operator of the

form

D =

(
h1

∂

∂x1
+ h2

∂

∂x2
+ · · ·+ hh

∂

∂xn

)
(4.54)

where h1 = x1 − x10, h2 = x2 − x20, . . . , hn = xn − xn0.

Example 4-29. Hypergeometric series

The hypergeometric series defines a power series in x in terms of three parameters

a, b, c as

F (a, b ; c ; x) = 1 +
ab

c

x

1!
+

a(a + 1)b(b + 1)

c(c + 1)

x2

2!
+ · · ·+ an bn

cn

xn

n!
+ · · ·

where

an = a(a + 1)(a + 2)(a + 3) · · ·(a + n − 1) =
n−1∏

i=0

(a + i)

is called the rising factorial function and the symbol
∏

is used to denote a product

of terms as the index i ranges from 0 to n − 1. Apply the ratio test and examine the

ratio of successive terms and show

un+1

un
=

an+1 bn+1

cn+1

xn+1

(n + 1)!

an bn

cn
xn

n!

=
(a + n)(b + n)

(c + n)

x

(n + 1)

Divide the numerator and denominator by n2 and show

un+1

un
=

(
1 + a

n

) (
1 + b

n

)
(
1 + c

n

) (
1 + 1

n

) x

and in the limit as n increases without bound one obtains the limit x for the ratio of

successive terms. Hence, in order for the series to converge it is required that |x| < 1.

Alternative Derivation of the Taylor Series

The above results for the representation of f(x) as a power series can also be

derived by considering the definite integral

f(x) − f(x0) =

∫ x

x0

f ′(t) dt (4.55)
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where x0 and x are held constant. An integration of the right-hand side is performed

using integration by parts with U = f ′(t), dU = f ′′(t) dt and dV = dt and V = t−x. Here

−x is treated as a constant of integration so that
∫ x

x0

f ′(t) dt =f ′(t)(t − x)
x

x0

−
∫ x

x0

(t − x) f ′′(t) dt

∫ x

x0

f ′(t) dt =f ′(x0)(x − x0) +

∫ x

x0

(x − t) f ′′(t) dt

(4.56)

Now evaluate the integral on the right-hand side of equation (4.56) using integration

by parts to show
∫ x

x0

f ′(t) dt = f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+

∫ x

x0

(x − t)2

2!
f ′′′(t) dt (4.57)

Continue to use integration by parts n-times to obtain
∫ x

x0

f ′(t) dt = f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+ · · ·+ f (n)(t)

(x − x0)
n

n!
+ Rn(x, x0) (4.58)

or

f(x) = f(x0) + f ′(x0)(x − x0) + f ′′(x0)
(x − x0)

2

2!
+ · · ·+ f (n)(t)

(x − x0)
n

n!
+ Rn(x, x0) (4.59)

where Rn(x, x0) is called the remainder term and is given by

Rn(x, x0) =
1

n!

∫ x

x0

(x − t)n f (n+1)(t) dt (4.60)

Remainder Term for Taylor Series

Use the generalized mean value theorem for integrals
∫ x

x0

F (t)G(t) dt = F (ξ)

∫ x

x0

G(t) dt, x0 < ξ < x (4.61)

to evaluate the integral used in the representation of the remainder term as given

by equation (4.60). Let F (t) = f (n+1)(t) and G(t) = (x−t)n

n! in equation (4.61) and show

Rn(x, x0) =
1

n!

∫ x

x0

(x − t)nf (n+1)(t) dt = f (n+1)(ξ1)

∫ x

x0

(x − t)n

n!
dt = f (n+1)(ξ1)

(x − x0)
n+1

(n + 1)!

where x0 < ξ1 < x. This is the Lagrange form of the remainder term associated with

a Taylor series expansion. Alternatively, substitute F (t) = f (n+1)(t)(x−t)n

n!
and G(t) = 1

into the equation (4.61) to obtain

Rn(x, x0) =
1

n!

∫ x

x0

(x − t)nf (n+1)(t) dt =
f (n+1)(ξ2)(x − ξ2)

n

n!

∫ x

x0

1 dt

Rn(x, x0) =
f (n+1)(ξ2)(x − ξ2)

n

n!
(x − x0)

(4.62)

where x0 < ξ2 < x. This is the Cauchy form for the remainder term associated with

a Taylor series expansion.
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Schömilch and Roche Remainder Term

Still another form for the remainder term associated with the Taylor series ex-

pansion is obtained from the following arguments. Let f(x), f ′(x), . . . , f (n+1)(x) all be

defined and continuous on the interval [x0, x0 + h] and construct the function

F (x) = f(x) +
n∑

m=1

(x0 + h − x)m

m!
f (m)(x) + (x0 + h − x)p+1A (4.63)

where A and p are nonzero constants. Select the constant A such that

F (x0 + h) =f(x0 + h)

and F (x0) =f(x0) +
n∑

m=1

hm

m!
f (m)(x) + hp+1A = f(x0 + h),

(4.64)

then F (x) satisfies all the conditions of Rolle’s theorem so there must exist a point

x = ξ = x0 + θh, 0 < θ < 1, such that F ′(ξ) = 0. Differentiate the equation (4.63) and

show

F ′(x) = f ′(x)+
n∑

m=1

[
(x0 + h − x)m

m!
f (m+1)(x) − m(x0 + h − x)m−1

m!
f (m)(x)

]
−(p+1)(x0+h−x)p A

which can be simplified as follows.

F ′(x) =
n∑

m=1

(x0 + h − x)m

m!
f (m+1)(x) −

n∑

m=2

m(x0 + h − x)m−1

m!
f (m)(x) − (p + 1)(x0 + h − x)p A

F ′(x) =
n∑

m=1

(x0 + h − x)m

m!
f (m+1)(x) −

n−1∑

i=1

(x0 + h − x)i

i!
f (i+1)(x) − (p + 1)(x0 + h − x)p A

F ′(x) =
(x0 + h − x)n

n!
f (n+1)(x)− (p + 1)(x0 + h − x)p A

(4.65)

At x = ξ = x0 + θh it follows that

F ′(ξ) =
(h − θh)n

n!
f (n+1)(ξ) − (p + 1)(h − θh)p A = 0

a condition which requires that

A =
[h(1 − θ)]n−p

(p + 1) n!
f (n+1)(ξ) (4.66)

Substituting A from equation (4.66) into the equation (4.64) produces the result

f(x0 + h) = f(x0) +
n∑

m=1

hm

m!
f (m)(x0) +

hp+1[h(1 − θ)]n−p

(p + 1) n!
f (n+1)(ξ)
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Let x = x0 + h and write the above equation in the form

f(x) = f(x0) +
n∑

m=1

(x − x0)
m

m!
f (m)(x0) + Rn(x, x0) (4.67)

where Rn(x, x0) is the Schlömilch10 and Roche11 form of the remainder term given by

Rn(x, x0) =
(x − x0)

p+1(x − ξ)n−p

(p + 1) n!
f (n+1)(ξ) (4.68)

where ξ = x0 + θh, for 0 < θ < 1 and p is a constant satisfying 0 ≤ p ≤ n. Note that

in the special case p = 0 there results the Cauchy form for the remainder and when

p = n there results the Lagrange form for the remainder.

No one can sum an infinite number of terms on the computer. In order to use a

Taylor series expansion to represent a function for computational purposes, one must

chop of the infinite series or truncated it after n-terms. Knowing and controlling

the error associated with the part of the infinite series that is thrown away is very

important in applications and use of Taylor series when summation with a computer

is used. If the remainder term is known, then it is possible to work backwards by first

specifying an error tolerance and then determining the number of terms n required

to achieve this error tolerance for the values of x being used in the application of

the Taylor series.

Example 4-30. (Alternative derivation of L´Hôpital’s rule)

Assume the functions f(x) and g(x) have the Taylor series representations

f(x) =f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + · · ·

g(x) =g(x0) + g′(x0)(x − x0) +
g′′(x0)

2!
(x − x0)

2 + · · ·

which are convergent series in some neighborhood of the point x0. One can then

express the limit lim
x→x0

f(x)

g(x)
in the form

lim
x→x0

f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + · · ·

g(x0) + g′(x0)(x − x0) +
g′′(x0)

2!
(x − x0)

2 + · · ·
(4.69)

The L´Hôpital’s rule can be derived by considering the following cases.

10 Oscar Xaver Schlömilch (1823-1901) a German mathematician.
11 Edouard Albert Roche (1820-1883) a French mathematician.



322

Case 1 If f(x0) = 0 and g(x0) = 0 but g′(x0) �= 0, then equation (4.69) reduces to

lim
x→x0

f ′(x0) +
f ′′(x0)

2!
(x − x0) +

f ′′′(x0)

3!
(x − x0)

2 + · · ·

g′(x0) +
g′′(x0)

2!
(x − x0) +

g′′′(x0)

3!
(x − x0)

2 + · · ·
=

f ′(x0)

g′(x0)
= lim

x→x0

f ′(x)

g′(x)
(4.70)

and so L´Hôpital’s rule takes on the form

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

Case 2 If f(x0) = 0, f ′(x0) = 0, g(x0) = 0 and g′(x0) = 0, but g′′(x0) �= 0, then equation (4.69)

reduces to the form

lim
x→x0

f ′′(x0)

2!
+

f ′′′(x0)

3!
(x − x0) + · · ·

g′′(x0)

2!
+

g′′′(x0)

3!
(x − x0) + · · ·

=
f ′′(x0)

g′′(x0)
= lim

x→x0

f ′′(x)

g′′(x)
(4.71)

and so in this case the L´Hôpital’s rule takes on the form

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= lim

x→x0

f ′′(x)

g′′(x)

The above examples illustrate that one can reapply L´Hôpital’s rule whenever

the ratio of derivatives gives an indeterminate form.

Indeterminate forms 0 · ∞, ∞ − ∞, 00, ∞0, 1∞

If the limit lim
x→x0

f(x)

g(x)
=

0

0
or lim

x→x0

f(x)

g(x)
=

∞
∞ , then the limits are said to have

indeterminate forms and are calculated using the L´Hôpital’s rule

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

if the limit exists.

Other indeterminate forms are

lim
x→x0

f(x)g(x) = 0 · ∞ or lim
x→x0

f(x)g(x) = ∞ · 0

lim
x→x0

[f(x) − g(x)] = ∞−∞

lim
x→x0

f(x)g(x) = 00

lim
x→x0

f(x)g(x) = ∞0

lim
x→x0

f(x)g(x) = 1∞

The general procedure used to investigate these other indeterminate forms is

to use some algebraic or trigonometric transformation that reduces these other in-

determinate forms to the basic forms 0
0

or ∞
∞

so that L´Hôpital’s rule can then be

applied. The following examples illustrate some of these techniques.
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Example 4-31. Evaluate the limit lim
x→0

[csc x · ln(1 + x)]

Solution If x = 0 is substituted into the functions given one obtains ∞ · 0 which is

an indeterminate form. Products of functions can be written in alternative forms

using algebra. For example,

f(x) · g(x) =
f(x)

1

g(x)

or f(x) · g(x) =
g(x)

1

f(x)

If the given limit is expressed in the form lim
x→0

ln(1 + x)

sin x
, then one can use L´Hôpital’s

rule to investigate the limit. One finds

lim
x→0

ln(1 + x)

sin x
= lim

x→0

1

1 + x
cosx

= 1

Example 4-32. Evaluate the limit lim
x→π/2

(sec x − tanx)

Solution Investigating this limit one finds that it depends upon how x approaches

π/2. One finds lim
x→π/2

(sec x − tan x) = lim
x→π/2

sec x − lim
x→π/2

tan x = ±(∞ − ∞) which is an

indeterminate form. Using appropriate trigonometric identities the given limit can

be expressed in an alternative form where L´Hôpital’s rule applies. One can write

lim
x→π/2

(sec x − tanx) = lim
x→π/2

(
1

cos x
− sin x

cosx

)
= lim

x→π/2

1 − sinx

cos x
= lim

x→π/2

− cosx

− sinx
=

0

−1
= 0

Example 4-33. Evaluate the limit lim
x→0

|x|x

Solution This limit gives the indeterminate form 00. One can use the identity

|x| = eln |x| and write

lim
x→0

|x|x = lim
x→0

ex·ln |x| = elimx→0 x·ln |x|

Here limx→0 x · ln |x| gives the indeterminate form 0 · (−∞). Writing

lim
x→0

x · ln |x| = lim
x→0

ln |x|
1
x

one can apply L´Hôpital’s rule and show

lim
x→0

x · ln |x| = lim
x→0

ln |x|
1
x

= lim
x→0

1
x
−1
x2

= lim
x→0

(−x) = 0

Consequently, one can write lim
x→0

|x|x = lim
x→0

ex·ln |x| = e0 = 1
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Example 4-34. Evaluate the limit lim
x→∞

(x + 9)1/x2

Solution This limit gives the indeterminate form ∞0. One can use the identity

(x + 9) = eln(x+9)and write

lim
x→∞

(x + 9)1/x2

= lim
x→∞

e
1

x2 ln(x+9) = elimx→∞

ln(x+9)

x2

Apply L´Hôpital’s rule to this last limit and show

lim
x→∞

ln(x + 9)

x2
= lim

x→∞

1
x+9

2x
= lim

x→∞

1

2x(x + 9)
= 0

Therefore

lim
x→∞

(x + 9)1/x2

= elimx→∞

ln(x+9)

x2 = e0 = 1

Example 4-35. Evaluate the limit lim
x→0

(2 − 3x)1/x

Solution This limit gives the indeterminate form 1∞. Write

lim
x→0

(2 − 3x)1/x = lim
x→0

e
1
x

ln(2−3x) = elimx→0
ln(2−3x)

x

Recall that
d

dx
3x =

d

dx
ex ln 3 = ex ln 3 · ln 3 = 3x · ln 3

and consequently when L´Hôpital’s rule is applied to the above limit, one finds

lim
x→0

ln(2 − 3x)

x
= lim

x→0

1

2 − 3x
· (0 − 3x · ln 3)

1
= − ln 3

Therefore,

lim
x→0

(2− 3x)1/x = elimx→0
ln(2−3x)

x = e− ln 3 = 3−1 =
1

3

Modification of a Series

Let un ≥ 0 for all n and let {vn} denote a bounded sequence satisfying |vn| < K,

where K is a constant. If the infinite series
∞∑

n=1

un is a convergent series, then the

series

∞∑

n=1

unvn will also be a convergent series.
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This follows from an analysis of the Cauchy condition for convergence. Select an

integer value N so large that for all integer values n > m > N the Cauchy convergence

condition satisfies

|Un − Um| = |um+1 + um+2 + · · ·+ un| ≤
n∑

i=m+1

|ui| <
ε

K

then write

∣∣∣∣∣

n∑

i=m+1

uivi

∣∣∣∣∣ ≤
n∑

i=m+1

|uivi| and since the terms vi are bounded, it follows that

|uivi| = ui|vi| ≤ uiK so that the Cauchy condition for convergence becomes

∣∣∣∣∣

n∑

i=1

uivi −
m∑

i=1

uivi

∣∣∣∣∣ ≤
n∑

i=m+1

|uivi| ≤ K
n∑

i=m+1

|ui| < K
( ε

K

)
= ε

so that the infinite series
∞∑

i=1

uivi is convergent.

Conditional Convergence

An infinite series
∑∞

n=1
un is called a conditionally convergent series or semi-

convergent series, if the given series is convergent but the series of absolute values

is not convergent.

As an example, consider the alternating series given by

1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

This alternating series converges, however it is not absolutely convergent because

the series of absolute values turns into the harmonic series which diverges. The

series is therefore said to be conditionally convergent.

In dealing with an absolutely convergent series, the rearrangement of terms does

not affect the sum of the series. However, in dealing with a conditionally convergent

series, the value of the sum can be changed by using some special rearrangement of

terms and some rearrangements of terms can even make the series diverge. Condi-

tionally convergent series are very sensitive to any changes made to the summation

process.

Algebraic Operations with Series

Examine the series operations of addition, subtraction and multiplying a series

by a constant term together with the operation of multiplying two infinite series as

these are operations that occur quite frequently when dealing with infinite series.
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Addition and Subtraction

Two convergent series can be added or subtracted if one is careful to maintain

parenthesis. That is, given two series A =
∑∞

n=0 an and B =
∑∞

n=0 bn then these series

can be added or subtracted on a term by term basis to obtain

S =
∞∑

n=0

an +
∞∑

n=0

bn =
∞∑

n=0

(an + bn) =(a0 + b0) + (a1 + b1) + (a2 + b2) + (a3 + b3) + · · ·

D =

∞∑

n=0

an −
∞∑

n=0

bn =

∞∑

n=0

(an − bn) =(a0 − b0) + (a1 − b1) + (a2 − b2) + (a3 − b3) + · · ·

The use of parentheses is important because the bn terms may be negative and

in such cases the removal of parenthesis is not allowed. That is, the addition or

subtraction of two infinite series is on a term by term basis with parenthesis being

used to group terms. The partial sums are given by An =
∑n

m=0 am and Bn =
∑n

m=0 bm

so that the sum S and difference D can be expressed

lim
n→∞

Sn = lim
n→∞

n∑

m=0

(am + bm)

S = lim
n→∞

An + lim
n→∞

Bn

S = A + B

lim
n→∞

Dn = lim
n→∞

n∑

m=0

(an − bn)

D = lim
n→∞

An − lim
n→∞

Bn

D = A − B

Multiplication by a Constant

A series
∑∞

n=0 an can be multiplied by a nonzero constant c to obtain the series

c
∞∑

n=0

an =
∞∑

n=0

(c an) = c a0 + c a1 + c a2 + c a3 + · · ·

The multiplication of each term by a nonzero constant does not affect the conver-

gence or divergence of the series.

Cauchy Product

If the infinite series
∞∑

n=0

an = a0 + a1 + a2 + a3 + · · · and the infinite series

∞∑

n=0

bn = b0 + b1 + b2 + b3 + · · · are multiplied, then the product series can be written



327

a0b0 + a0b1 + a0b2 + a0b3 + · · ·+ a0bn + · · ·

+ a1b0 + a1b1 + a1b2 + a1b3 + · · ·+ a1bn + · · ·

+ a2b0 + a2b1 + a2b2 + a2b3 + · · ·+ a2bn + · · ·

+ a3b0 + a3b1 + a3b2 + a3b3 + · · ·+ a3bn + · · ·

+ · · ·

+ anb0 + anb1 + anb2 + anb3 + · · ·+ anbn + · · ·

+ · · ·

(4.72)

and this result can be grouped into a summation in any convenient way. The Cauchy

method of grouping is to use a summation of terms on a diagonal starting in the

upper left corner of the sum given by (4.72) and drawing diagonal lines from column

n to row n and then summing the results. This gives the elements {cn} from the

double array defined as the diagonal elements
c0 =a0b0

c1 =a1b0 + a0b1

c2 =a2b0 + a1b1 + a0b2

c3 =a3b0 + a2b1 + a1b2 + a0b3

...
...

cn =anb0 + an−1b1 + an−2b2 + · · ·+ a1bn−1 + a0bn =
n∑

i=0

aibn−i

and consequently the product series, called the Cauchy product, can be represented

(
∞∑

n=0

an

) (
∞∑

n=0

bn

)
=

∞∑

n=0

cn =
∞∑

n=0

(
n∑

i=0

aibn−i

)
(4.73)

The Cauchy product is often used in multiplying power series because the result

is also a power series. The Cauchy product is just one of several different definitions

which can be used for the representation of a multiplication of two infinite series.

If the summation of the series begins with the index 1, instead of 0, then

(
∞∑

n=1

an

) (
∞∑

n=1

bn

)
=

∞∑

n=1

cn =
∞∑

n=1

(
n∑

i=1

aibn+1−i

)
(4.74)
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Bernoulli Numbers

The sequence of numbers {Bn} defined by the coefficients of the Maclaurin series

expansion
x

ex − 1
=

∞
∑

n=0

Bn

xn

n!
, |x| < 2π

are called Bernoulli
12

numbers. Multiply by ex − 1 and use the Maclaurin series for

the exponential function along with the Cauchy product to show

x =

[

∞
∑

n=0

xn

n!

] [

∞
∑

n=0

Bn

xn

n!

]

−

∞
∑

n=0

Bn

xn

n!
=

∞
∑

n=0

n
∑

j=0

Bj

xn

j!(n− j)!
−

∞
∑

n=0

Bn

xn

n!

Now equate coefficients of like powers of x above and show B0 = 1 and

Bn =
n

∑

j=0

n!

j!(n− j)!
Bj =

n
∑

j=0

(

n

j

)

Bj for n ≥ 2 (4.75)

Verify that B0 = 1, B1 = − 1

2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, . . . Alternatively, expand the

function
x

ex − 1
in a Maclaurin series about x = 0 and show

x

e
x
− 1

= 1 −

1

2
x +

1

6

x
2

2!
−

1

30

x
4

4!
+

1

42

x
6

6!
−

1

30

x
8

8!
+

5

66

x
10

10!
−

691

2730

x
12

12!
+

7

6

x
14

14!
−

3617

510

x
16

16!
+

43867

798

x
18

18!
− · · ·

These expansions produce the Bernoulli numbers

n 0 1 2 4 6 8 10 12 14 16 · · ·

Bn 1 − 1

2

1

6
− 1

30

1

42
− 1

30

5

66
− 691

2730

7

6
− 3617

510
· · ·

Here the odd Bernoulli numbers are given by B2n+1 = 0 for n ≥ 1.

Euler Numbers

The sequence of numbers {En} defined by the coefficients of the Maclaurin series

expansion

f(x) =
2ex

e2x + 1
=

∞
∑

n=0

En

xn

n!
, |x| <

π

2

are called Euler13 numbers. The function f(x) is an even function of x which implies

that the odd Euler numbers satisfy E2n+1 = 0 for all n ≥ 0.

12 Named after Jakob Bernoulli (1654-1705) a Swiss mathematician. Due to scaling, indexing and sign conven-

tions, there are alternative definitions for the Bernoulli numbers, sometimes denoted Bn (see table of integrals).
13 Named after Leonhard Euler (1701-1783) a Swiss mathematician. Due to scaling, indexing and sign con-

ventions, there are alternative definitions for the Euler numbers, sometimes denoted En (see table of integrals).
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Consequently,

f(x) =
2ex

e2x + 1
=

2

ex + e−x
= sechx =

∞∑

n=0

En
xn

n!
=

∞∑

m=0

E2m
x2m

(2m)!

A multiplication by e2x + 1 and a Maclaurin series expansion of e2x together with an

application of the Cauchy product formula demonstrates that

2

∞∑

n=0

x
n

n!
=

[
∞∑

n=0

2n
x

n

n!

][
∞∑

n=0

En

x
n

n!

]
+

∞∑

n=0

En

x
n

n!
=

∞∑

n=0

n∑

k=0

2n−k
n!

k!(n − k)!
Ek

x
n

n!
+

∞∑

n=0

En

x
n

n!

By equating like powers of x show E0 = 1 and

En = 2 −
n∑

k=0

n!2n−k

k!(n − k)!
Ek, for n ≥ 1

Alternatively, expand the function f(x) = 2ex

e2x+1 in a Maclaurin series and show

f(x) = 1 − x2

2!
+ 5

x4

4!
− 61

x6

6!
+ 1385

x8

8!
− 50521

x10

10!
+ 2702765

x12

12!
− 199360981

x14

14!
+ · · ·

These expansions produce the Euler numbers.

n 0 2 4 6 8 10 12 14 · · ·
En 1 -1 5 -61 1385 -50521 2702765 -199360981 · · ·

Here the odd Euler numbers are zero and E2n+1 = 0 for n = 0, 1, 2, . . ..

Example 4-36. Additional Series Expansions

One can verify the following infinite series expansions.

tan x =x +
x3

3
+

2x5

15
+ · · ·+ 22n(22n − 1)Bn x2n−1

(2n)!
+ · · · |x| <

π

2

cot x − 1

x
=− x

3
− x3

45
− 2x5

945
+ · · ·+ 22nBn x2n−1

(2n)!
+ · · · 0 < |x| < π

sec x =1 +
x2

2
+

5x4

24
+ · · ·+ En x2n

(2n)!
+ · · · |x| <

π

2

csc x − 1

x
=

x

6
+

7x3

360
+

31x5

15, 120
+ · · ·+ 2(22n−1Bn x2n−1

(2n)!
+ · · · 0 < |x| < π

tanhx =x − x3

3
+

2x5

15
− · · ·(−1)n−122n(22n − 1)Bnx2n−1

(2n)!
+ · · · |x| <

π

2

cothx − 1

x
=

x

3
− x3

45
+

2x5

945
+ · · ·+ (−1)n−122n(22n − 1)Bnx2n−1

(2n)!
+ · · · 0 < |x| < π

sechx =1 − x2

2
+

5x4

24
− 61x6

720
+ · · ·+ (−1)nEn x2n

(2n)!
+ · · · |x| <

π

2

cschx − 1

x
=− x

6
+

7x3

360
− 31x5

15, 120
+ · · ·+ (−1)n2(22n−1 − 1)Bn x2n−1

(2n)!
+ · · · 0 < |x| < π

where Bn are the Bernoulli numbers and En are the Euler numbers.
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Functions Defined by Series

If {fn(x)} , n = 0, 1, 2, . . ., denotes an infinite sequence of functions defined over an

interval [a, b], then other functions can be constructed from these functions.

Many functions F (x) are defined by an infinite series having the form

F (x) =
∞∑

j=0

cjfj(x) (4.76)

where c0, c1, c2, . . . are constants. To study the convergence or divergence of such

series one should consider the sequence of finite sums {Fn(x)} where

Fn(x) =
n∑

j=0

cjfj(x) = c0f0(x) + c1f1(x) + · · ·+ cnfn(x) (4.77)

for n = 0, 1, 2, . . .. The sequence {Fn(x)} is called the sequence of partial sums asso-

ciated with the infinite series (4.76). The infinite series is said to converge if the

sequence of partial sums converges. If the sequence of partial sums diverges, then

the infinite series (4.76) is said to diverge.

The sequence is said to converge uniformly on an interval a ≤ x ≤ b to a function

F (x), if for every ε > 0 there exists an integer N such that

|Fn(x) − F (x)| < ε, for all n > N and for all x ∈ [a, b] (4.78)

Example 4-37.

(a) From the sequence of functions {sin nx} one can define the Fourier sine series

expansions

F (x) =

∞∑

n=1

bn sin nx (4.79)

where the bn coefficients are constants.

(b) From the sequence of functions {cos nx} one can define the Fourier cosine series

expansions

G(x) = a0 +
∞∑

n=1

an cos nx (4.80)

where the an coefficients are constants. The study of Fourier series expansions

has many applications in advanced mathematics courses.
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Generating Functions

Any function g(x, t) which has a power series expansion in the variable t having

the form

g(x, t) =
∞∑

n=0

φn(x) tn = φ0(x) + φ1(x) t + φ2(x) t2 + · · ·+ φm(x) tm + · · · (4.81)

is called a generating function which defines the set of functions {φn(x)} for the

values n = 0, 1, 2, . . .. In the above definition scaling of the terms sometimes occurs.

For example, the starting index n = 0 can be changed to some other value and

sometimes tn is replaced by
tn

n!
. Some examples of generating functions are the

following.

(i) g(x, t) =
1

1 − xt
=

∞∑

n=0

xn tn

(ii) g(x, t) =
1 − t cos θ

1 − 2t cos θ + t2
=

∞∑

n=0

(cos nθ) tn

(iii) g(x, t) =
t sin θ

1 − 2t cos θ + t2
=

∞∑

n=1

(sin nθ) tn

(iv) g(x, t) =
1

1 − tex
=

∞∑

n=0

(enx) tn

(v) g(x, t) = (1 − 2xt + t2)−1/2 =
∞∑

n=0

Pn(x) tn Legendre polynomials {Pn(x)}

(vi) g(x, t) = (1 − t)−1 exp

(
−xt

1 − t

)
=

∞∑

n=0

Ln(x) tn Laguerre polynomials {Ln(x)}

There are many other special functions which can be defined by special gener-

ating functions.

Functions Defined by Products

Given a sequence {fn} of numbers or functions, one can define the finite product
n∏

i=1

fi = f1f2f3 · · ·fn and then the infinite product is written

∞∏

i=1

fi = f1f2f3 · · · where
∞∏

i=1

fi = lim
n→∞

n∏

i=1

fi = lim
n→∞

f1f2 · · ·fn

if this limit exists. Let Sn denote the finite product Sn =
n∏

i=1

fi and take the logarithm

of both sides to obtain

lnSn = ln
n∏

i=1

fi =
n∑

i=1

ln fi (4.82)
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One can then say that the infinite product
∞
∏

i=1

fi is convergent or divergent depending

upon whether the infinite sum
∞
∑

i=1

lnfi is convergent or divergent.

Example 4-38. Some examples of infinite products

(a) The French mathematician and astronomer François Viéte (1540-1603) discov-

ered the representation
2

π
=

√
2

2
·
√

2 +
√

2

2
·

√

2 +
√

2 +
√

2

2
· · ·

(b) The English mathematician John Wallis (1616-1703) discovered the representa-

tion
π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · ·

(c) The German mathematician Karl Theodor Wilhelm Weierstrass (1815-1897) rep-

resented the Gamma function as the infinite product

1

Γ(z)
= zeγz

∞
∏

n=1

[(

1 +
z

n

)

exp
(

− z

n

)]

where γ = 0.577215665 . . . is known as the Euler-Mascheroni constant.

(d) Euler represented the function sin θ as the infinite product

sin θ = θ

(

1 − θ2

π2

)(

1 − θ2

22π2

)(

1 − θ2

32π2

)

· · ·

(e) One definition of the Riemann zeta function is ζ(z) =
∞
∑

n=1

1

nz
. Another form

is ζ(z) =
∞
∏

n=1

1

1 − p−z
n

where {pn} denotes the sequence of prime numbers. The

Riemann zeta function has many uses in number theory.

Continued Fractions

Continued fractions occasionally arise in the representation of various kinds of

mathematically quantities. A continued fraction has the form

f = a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4

a4 +
b5

a5 + · · ·

(4.83)

where the coefficients a0, a1, . . . , b1, b2, . . . can be real or complex quantities. They can

be constants or functions of x.



333

In general, when using the continued fraction representation14 given by equation

(4.83) the coefficients a0, {ai} and {bi}, i = 1, 2, 3, . . . can be constants or functions of

x and these coefficients can be finite in number or infinite in number. The pattern

of numerator over denominator can go on forever or the ratios can terminate after

a finite number of terms. A finite continued fraction has the form

fn = a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4

a4 + · · ·+ bn

an

(4.84)

which terminates with the ratio
bn

an
.

Terminology

(i) The numbers b1, b2, b3, . . . are called the partial numerators.

(ii) The numbers a1, a2, a3, . . . are called the partial denominators.

(iii) If the partial numerators bi, for i = 1, 2, 3, . . . are all equal to 1 and all the ai

coefficients have integer values, then the continued fraction is called a simple or

regular continued fraction. A simple continued fraction is sometimes represented

using the shorthand list notation f = [a0 ; a1, a2, a3, . . .] where the ai, i = 0, 1, 2, . . .

are called the quotients of the regular continued fraction.

(iv) The continued fraction is called generalized if the terms ai and bi for i = 1, 2, 3, . . .

do not have any restrictions as to their form.

(v) The ratio of terms notation as illustrated by the equations (4.83) and (4.84) is

awkward and takes up too much space in typesetting and is often abbreviated

to the shorthand Pringsheim15 notation

fn = a0 + |
b1

a1

|
+ |

b2

a2

|
+ · · ·+ |

bn

an

|
(4.85)

for a finite continued fraction terminating with the bn

an
term and in the form

f = a0 + |
b1

a1

|
+ |

b2

a2

|
+ · · ·+ |

bn

an

|
+ · · · (4.86)

14 Take note that the starting index is zero. Some notations use a different starting index which can lead to

confusion at times.
15 Alfred Israel Pringsheim (1850-1941) a German mathematician.
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for an infinite continued fraction. Historically, the shorthand notation originally

used for representing an infinite continued fraction was of the form

f = a0 +
b1

a1+

b2

a2+

b3

a3+
. . . (4.87)

where the three dots indicates that the ratios continue on forever.

(vi) If the continued fraction is truncated after the nth term, the quantity fn is called

the nth convergent.

(vii) The continued fraction is called convergent if the sequence of partial convergents

{fn} converges, otherwise it is called a divergent continued fraction.

Evaluation of Continued Fractions

Consider a regular continued fraction which has been truncated after the nth

ratio

fn = a0 + |
1

a1

|
+ |

1

a2

|
+ |

1

a3

|
+ · · ·+ |

1

an−1

|
+ |

1

an

|
(4.88)

To evaluate this continued fraction start at the bottom and calculate backwards

through the continued fraction. For example calculate the sequence of rational

numbers

r1 = an−1 +
1

an
, r2 = an−2 +

1

r1
, · · · , rn−2 = a2 +

1

rn−3
, rn−1 = a1 +

1

rn−2
, rn = fn = a0 +

1

rn−1

For example, consider the continued fraction

f5 = 1 + |
1

2

|
+ |

1

3

|
+ |

1

4

|
+ |

1

5

|
+ |

1

6

|

and start at the bottom and calculate the ratios

r1 =5 +
1

6
=

31

6
, r2 = 4 +

6

31
=

130

31
, r3 = 3 +

31

130
=

421

130
,

r4 =2 +
130

421
=

972

421
, r5 = 1 +

421

972
=

1393

972

Continued fractions have a long history of being used to approximate numbers

and functions. In 1655 John Wallis discovered an iterative scheme for calculating

the partial convergents of a continued fraction in the forward direction. His iterative

scheme can be written as follows. Define

A−1 = 1, A0 = a0, B−1 = 0, B0 = 1 (4.89)
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and for j = 1, 2, 3, 4, . . . define the recursion relations

Aj = ajAj−1 + bjAj−2, Bj = ajBj−1 + bjBj−2 (4.90)

or the matrix equivalent
[

Aj

Bj

]
=

[
Aj−1 Aj−2

Bj−1 Bj−2

] [
aj

bj

]
(4.91)

then the ratio fn =
An

Bn
is the nth partial convergent and represents the continued

fraction after having been truncated after the
bn

an
term. A proof of

the above assertion is a proof by mathematical induction. For j = 1 one obtains

A1 =a1A0 + b1A−1 = a1a0 + b1

B1 =a1B0 + b1B−1 = a1

so that the ratio f1 is given by

f1 =
A1

B1
=

a1a0 + b1

a1
= a0 +

b1

a1

Similarly, for j = 2 one finds

A2 =a2A1 + B2A0 = a2(a1a0 + b1) + b2a0

B2 =a2B1 + b2B0 = a2a1 + b2

so that the second partial convergent is written

f2 =
A2

B2
=

a0a1a2 + a0b2 + a2b1

a1a2 + b2
= a0 +

a2b1

a1a2 + b2
= a0 +

b1

a1 +
b2

a2

Hence, the recursion relations hold for j = 1 and j = 2. Assume the recursion relations

holds for j = n such that

fn =
An

Bn
=

anAn−1 + bnAn−2

anBn−1 + bnBn−2
(4.92)

Observe that the partial convergent for fn+1 is obtained from the partial convergent

for fn by replacing an by an +
bn+1

an+1
. Making this substitution in equation (4.92) one

obtains
(
an +

bn+1

an+1

)
An−1 + bnAn−2

(
an + bn+1

an+1

)
Bn−1 + bnBn−2

=
anAn−1 + bnAn−2 + bn+1

an+1
An−1

anBn−1 + bnBn−2 +
bn+1

an+1
Bn−1

=
An + bn+1

an+1
An−1

Bn +
bn+1

an+1
Bn−1

=
an+1An + bn+1An−1

an+1Bn + bn+1Bn−1
= fn+1

and so the truth of the nth proposition implies the truth of the (n+1)st proposition.
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Convergent Continued Fraction

Examine the sequence of partial convergents fn =
An

Bn

associated with a given

continued fraction. If the limit lim
n→∞

fn = lim
n→∞

An

Bn

= f exists, then the continued

fraction is called convergent. Otherwise, it is called a divergent continued fraction.

Regular Continued Fractions

Regular continued fractions of the form

f = a0 + |
1

a1

|
+ |

1

a2

|
+ · · ·+ |

1

an

|
+ · · · (4.93)

are the easiest to work with and are sometimes represented using the list notation

f = [a0 ; a1, a2, a3, . . . , an, . . .] (4.94)

Example 4-39. (Continued fraction)

The representation of a number x as a regular continued fraction of the form

of equation (4.93) is accomplished using the following algorithm to calculate the

partial denominators ai for i = 1, 2, 3, . . . , n.

a0 =[x], x1 =
1

x − a0

a1 =[x1], x2 =
1

x1 − a1

...
...

an =[xn], xn+1 =
1

xn − an

(4.95)

where [x] is the greatest integer in x function. For example, to represent the number

x = π = 3.1415926535897932385 . . . as a continued fraction one finds

a0 =[x] = 3, x1 =
1

π − 3
= 7.0625133059310457698 . . .

a1 =[x1] = 7, x2 =
1

x1 − 7
= 15.9965944066857199 . . .

a2 =[x2] = 15, x3 =
1

x2 − a2
= 1.0034172310133726 . . .

a3 =[x3] = 1, x4 =
1

x3 − a3
= 292.63459101440 . . .

and so one representation of π as a continued fraction has the list form given by

f = π = [3 ; 7, 15, 1, 292, . . .] which gives the following rational number approximations

for π.

f1 = 3, f2 =
22

7
, f3 =

333

106
, f4 =

355

113
, f5 =

103993

33102
, · · ·
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Continue the above algorithm and show

f = π = [3 ; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .]

A generalized continued fraction expansion for π can be obtained from the arctanx

function evaluated at x = 1 to obtain the representation

π

4
= |

1

1

|
+ |

1

3

|
+ |

4

5

|
+ |

9

7

|
+ |

16

9

|
+ |

25

11

|
+ |

36

13

|
+ · · ·

where all the partial numerators after the first term are squares and the partial

denominators are all odd numbers.

Other examples of mathematical constants represented by regular continued

fractions are
e =[2 ; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, . . .]

γ =[0 ; 1, 1, 2, 1, 2, 1, , 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 40, 1, . . .]

Euler’s Theorem for Continued Fractions

Euler showed that the infinite series U = u1 + u2 + u3 + · · · can be represented by

the continued fraction

U = |
u1

1

| − |
u2

u1 + u2

| − |
u1u3

u2 + u3

| − |
u2u4

u3 + u4

| − |
u3u5

u4 + u5

| − · · · − |
unun+2

un+1 + un+2

| − · · · (4.96)

The convergence or divergence of this continued fraction is then closely related to

the convergence or divergence of the infinite series which it represents.

Gauss Representation for the Hypergeometric Function

Carl Fredrich Gauss (1777-1855) a famous German mathematician showed that

the hypergeometric function could be represented by the continued fraction

2F1(a + 1, b ; c+ 1 ; z)

2F1(a, b ; c ; z)
= |

1

1

|
+ |

(a−c)b
c(c+1)

z

1

|
+ |

(b−c−1)(a+1)
(c+1)(c+2)

z

1

|
+ |

(a−c−1)(b+1)
(c+2)(c+3)

z

1

|
+ |

(b−c−2)(a+2)
(c+3)(c+4)

z

1

|
+ · · ·

Representation of Functions

There are many areas of mathematics where functions f(x) are represented in

the form of an infinite generalized continued fraction having the form

f(x) = a0(x) +
b1(x)

a1(x) +
b2(x)

a2(x) +
b3(x)

a3(x) + · · ·+ bn(x)

an(x) + rn+1(x)

(4.97)
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where rn+1(x) =
bn+1(x)

an+1(x) + rn+2(x)
. This continued fraction is often expressed in the

more compact form

f(x) = a0(x) + |
b1(x)

a1(x)

|
+ |

b2(x)

a2(x)

|
+ |

b3(x)

a3(x)

|
+ · · ·+ |

bn(x)

an(x)

|
+ · · · (4.98)

in order to conserve space in typesetting. It is customary to select the functions

a0(x), ai(x) and bi(x), i = 1, 2, 3, . . . as simple functions such as some linear function of

x or a constant, but this is not a requirement for representing a function. If one

selects the functions bi(x) and ai(x), for i = 1, 2, 3, . . . as polynomials, then whenever

the continued fraction is truncated, the resulting function fn(x) becomes a rational

function of x. The converse of this statement is that if f(x) is a rational function of

x, then it is always possible to construct an equivalent continued fraction.

Observe also that the reciprocal function is given by

1

f(x)
= |

1

a0(x)

|
+ |

b1(x)

a1(x)

|
+ |

b2(x)

a2(x)

|
+ |

b3(x)

a3(x)

|
+ · · ·+ |

bn(x)

an(x)

|
+ · · · (4.99)

Example 4-40. (Arctangent function)

Assume the function arctanx has the continued fraction expansion

arctanx =
x

a1 +
x2

a2 +
4x2

a3 +
9x2

a4 +
16x2

a5 +
25x2

a6 + · · ·

(4.100)

where a1, a2, . . . are constants to be determined. Note

1

a1
= lim

x→0

arctanx

x
= 1

and the continued fraction (4.100) has the form

arctanx =
x

a1 + r1
=⇒ r1 =

x

arctanx
− 1 =

1

3
x2 − 4

45
x4 + · · ·

r1 =
x2

a2 + r2
=⇒ r2 =

x2

r1
− 3 =

4

5
x2 − 36

175
x4 + · · ·

Continuing this iterative processes one obtains



339

r2 =
4x2

a3 + r3
=⇒ r3 =

4x2

r2
− 5 =

9

7
x2 − 16

49
x4 + · · ·

r3 =
9x2

a4 + r4
=⇒ r4 =

9x2

r3
− 7 =

16

9
x2 − 400

891
x4 + · · ·

...
...

rn =
(nx)2

an+1 + rn+1
=⇒ rn+1 =

(nx)2

rn
− [2(n + 1) − 1] =

(n + 1)2

2(n + 1) + 1
x2 + · · ·

Observe that lim
x→0

ri(x) = 0 so it is possible to calculate the coefficients ai, i = 1, 2, 3, . . .

and show

(a1, a2, a3, a4, a5, . . . , an, . . .) = (1, 3, 5, 7, 9, . . . , 2n + 1, . . .)

Evaluating the arctangent function at x = 1 gives the continued fraction

π

4
= |

1

1

|
+ |

1

3

|
+ |

4

5

|
+ |

9

7

|
+ |

16

9

|
+ |

25

11

|
+ |

36

13

|
+ · · ·

given in the previous example 4-29.

Fourier Series

Consider two functions f = f(x) and g = g(x) which are continuous over the

interval a ≤ x ≤ b. The inner product of f and g with respect to a weight function

r = r(x) > 0 is written (f, g) or (g, f) and is defined

(f, g) = (g, f) =

∫ b

a

r(x)f(x)g(x) dx (4.101)

The inner product of a function f with itself is called a norm squared and written

‖ f ‖2. The norm squared is defined

‖ f ‖2= (f, f) =

∫ b

a

r(x)f2(x) dx (4.102)

with norm given by ‖ f ‖=
√

(f, f). If the inner product of two functions f and g

with respect to a weight function r is zero, then the functions f and g are said to be

orthogonal functions.
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Example 4-41. The set of functions {1, sinx, cosx} are orthogonal functions over

the interval (0, π) with respect to the weight functions r = r(x) = 1. This is because

the various combinations of inner products satisfy

(1, sinx) =

∫ π

0

(1) sinx dx = 0

(1, cosx) =

∫ π

0

(1) cosx dx = 0

(sinx, cos x) =

∫ π

0

sin x cos x dx = 0

The given functions have the norm squared values

(1, 1) =‖ 1 ‖2=

∫ π

0

(1)2 dx = π

(sin x, sinx) =‖ sin x ‖2=

∫ π

0

sin2 x dx =
π

2

(cos x, cosx) =‖ cos x ‖2=

∫ π

0

cos2 x dx =
π

2

A set or sequence of functions {f1(x), f2(x), . . . , fn(x), . . . , fm(x), . . .} is said to be

orthogonal over an interval (a, b) with respect to a weight function r(x) > 0 if for all

integer values of n and m, with n �= m, the inner product of fm with fn satisfies

(fm, fn) = (fn, fm) =

∫ b

a

r(x)fm(x)fn(x) dx = 0 m �= n. (4.103)

Here the inner product is zero for all combinations of m and n values with m �= n.

If the sequence of functions {fn(x)}, n = 0, 1, 2, . . . is an orthogonal sequence one can

write for integers m and n that the inner product satisfies the relations

(fm, fn) = (fn, fm) =

∫ b

a

r(x)fn(x)fm(x) dx =

{
0, m �= n

‖ fn ‖2, m = n

This result can be expressed in the more compact form

(fm, fn) = ||fn||2δmn =

{
0 m �= n

||fn||2 m = n
(4.104)

where ||fn||2 is the norm squared and δmn is the Kronecker delta defined to have a

value of unity when m and n are equal and to have a value of zero when m and n are

unequal.

δmn =

{
0, m �= n

1, m = n
(4.105)

In the special case where ||fn||2 = 1, for all values of n, the sequence of functions

{fn(x)} is said to be orthonormal over the interval (a, b).
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Example 4-42. If the set of functions {gn(x)} is an orthogonal set of functions

over the interval (a, b) with respect to some given weight function r(x) > 0, then the

set of functions fn(x) = gn(x)
‖gn‖

is an orthonormal set. This result follows since

(fn, fm) = (fm, fn) =

∫ b

a

r(x)
gn(x)

‖ gn ‖ · gm(x)

‖ gm ‖ dx =
1

‖ gn ‖ · ‖ gm ‖(gn, gm)

since the norm squared values are constants. The above inner product representing

(fn, fm) is zero if m �= n and has the value 1 if m = n.

Example 4-43. Show the set of functions {1, sin nπx
L

, cos nπx
L

} is an orthogonal

set over the interval −L ≤ x ≤ L with respect to the weight function r = r(x) = 1.

Solution Using the definition of an inner product one can show

(1, sin
nπx

L
) =

∫ L

−L

sin
nπx

L
dx = 0 for n = 1, 2, 3, . . .

(1, cos
nπx

L
) =

∫ L

−L

cos
nπx

L
dx = 0 for n = 1, 2, 3, . . .

(sin
nπx

L
, sin

mπx

L
) =

∫ L

−L

sin
nπx

L
sin

mπx

L
dx = 0 n �= m

(cos
nπx

L
, cos

mπx

L
) =

∫ L

−L

cos
nπx

L
cos

mπx

L
dx = 0 n �= m

(cos
nπx

L
, sin

mπx

L
) =

∫ L

−L

cos
nπx

L
sin

mπx

L
dx = 0 for all n, m values.

(4.106)

The given set of functions have the norm-squared values

(1, 1) = ||1||2 =

∫ L

−L

dx = 2L

(sin
nπx

L
, sin

nπx

L
) =|| sin nπx

L
||2 =

∫ L

−L

sin2 nπx

L
dx = L for all values of n

(cos
nπx

L
, cos

nπx

L
) =|| cos

nπx

L
||2 =

∫ L

−L

cos2
nπx

L
dx = L for all values of n

(4.107)

A Fourier16 trigonometric series representation of a function f(x) is expressing

f(x) in a series having the form

f(x) = a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑

n=1

bn sin
nπx

L
where − L ≤ x ≤ L (4.108)

16 Jean Baptgiste Joseph Fourier (1768-1830) A French mathematician.
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with a0 and an, bn for n = 1, 2, 3, . . . are constants called the Fourier coefficients. If the

Fourier coefficients are properly defined, then f(x) is said be represented in the form

of a trigonometric Fourier series expansion over the interval (−L, L). The interval

(−L, L) is called the full Fourier interval associated with the series expansion.

One can make use of the orthogonality properties of the set {1, sin nπx
L

, cos nπx
L

} to

obtain formulas for determining the Fourier coefficients of the Fourier trigonometric

expansion. For example, if one integrates both sides of equation (4.108) from −L to

L one finds

∫ L

−L

f(x) dx = a0

∫ L

−L

dx +
∞∑

n=1

an

∫ L

−L

cos
nπx

L
dx +

∞∑

n=1

bn

∫ L

−L

sin
nπx

L
dx

and this result can be expressed in terms of inner products as

(1, f(x)) = a0 ‖ 1 ‖2 +
∞∑

n=1

an(1, cos
nπx

L
) +

∞∑

n=1

bn(1, cos
nπx

L
)

By the above orthogonality properties one finds

a0 =
(1, f(x))

‖ 1 ‖2
=

∫ L

−L
f(x) dx

∫ L

−L
dx

=
1

2L

∫ L

−L

f(x) dx (4.109)

If one multiplies both sides of equation (4.108) by sin mπx
L

and then integrates

both sides of the resulting equation from −L to L, the result can be expressed in

terms of inner products as

(f(x), sin
mπx

L
) =

a0

2
(1, sin

mπx

L
) +

∞∑

n=1

an(cos
nπx

L
, sin

mπx

L
) +

∞∑

n=1

bn(sin
nπx

L
, sin

mπx

L
)

and by the orthogonality of these functions one finds the above equation reduces to

(f(x), sin
mπx

L
) = bm ‖ sin

mπx

L
‖2

because the only nonzero inner product occurs when the summation index n takes on

the value m. This shows that the coefficients bm, for m = 1, 2, 3, . . . can be determined

from the relations

bm =
(f(x), sin mπx

L
)

‖ sin mπx
L

‖2
=

1

L

∫ L

−L

f(x) sin
mπx

L
dx for m = 1, 2, 3, . . . (4.110)
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Similarly, if one multiplies both sides of equation (4.108) by cos mπx

L
and then

integrates both sides of the resulting equation from −L to L, one can make use of

inner products and orthogonality properties to show

am =
(f(x), cos mπx

L
)

‖ cos mπx

L
‖2

=
1

L

∫ L

−L

f(x) cos
mπx

L
dx for m = 1, 2, 3, . . . (4.111)

In summary, the equations (4.109), (4.110), (4.111) demonstrate that the Fourier

coefficients can be determined from an appropriate inner product divided by a norm

squared

a0 =
(1, f)

‖ 1 ‖2
, an =

(cos(nπx

L
), f)

‖ cos(nπx

L
) ‖2

, bn =
(sin(nπx

L
), f)

‖ sin(nπx

L
) ‖2

(4.112)

Note that the set of functions {1, sin nπx

L
, cos nπx

L
} are periodic functions with period

2L and consequently the Fourier trigonometric series will produce a periodic function

for all values of x. The notation f̃(x) is introduced to define the periodic extension

of f(x) outside the full Fourier interval (−L, L). One can write

f(x) = a0 +
∞
∑

n=1

an cos
nπx

L
+

∞
∑

n=1

bn sin
nπx

L
where − L ≤ x ≤ L

or

f̃(x) = a0 +
∞
∑

n=1

an cos
nπx

L
+

∞
∑

n=1

bn sin
nπx

L
where −∞ < x < ∞

The above definitions are introduced due to the fact that f(x) �= f̃(x) because the

original function f(x) need only be defined over the full Fourier interval and f(x) is

not necessarily a periodic function, whereas the function f̃(x) is periodic and satisfies

f̃(x + 2L) = f̃ (x) for all values of x.

Example 4-44. (Fourier Series.)

Represent the exponential function as a Fourier series

ex = a0 +

∞
∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

over the interval (−L, L)

Solution

One must find the Fourier coefficients a0, an, bn, n = 1, 2, 3, . . . associated with the

exponential function ex. The Fourier coefficients are calculated from the relations

(4.109), (4.110) and (4.111). One finds

a0 =
(ex, 1)

||1||2
=

1

2L

∫ L

−L

ex dx =
1

L
sinhL

an =
(ex, cos nπx

L
)

|| cos nπx

L
||2

=
1

L

∫ L

−L

ex cos
nπx

L
dx =

2L(−1)n sinhL

L2 + n2π2

bn =
(ex, sin nπx

L
)

‖ sin nπx

L
‖2

=
1

L

∫ L

−L

ex sin
nπx

L
dx =

−2nπ(−1)n sinhL

L2 + n2π2
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which gives the Fourier trigonometric series representation of ex as

ẽx =
sinhL

L
+

∞∑

n=1

(
2L(−1)n sinhL

L2 + n2π2
cos

nπx

L
− 2nπ(−1)n sinhL

L2 + n2π2
sin

nπx

L

)
(4.113)

Figure 4-7.

Fourier trigonometric representation of the function ex compared with ex

The figure 4-7 illustrates a graphical representation of two curves. The first curve

plotted illustrates the given function f(x) = ex for all values of x while the second

curve plotted illustrates f̃(x) = ẽx, the Fourier trigonometric series representation.

Note that because the set of functions {1, sin nπx
L

, cos nπx
L

} are periodic of period 2L the

Fourier series given by equation (4.113) only represents ex on the interval (−L, L).

The Fourier series does not represent ex for all values of x. The interval (−L, L) is

called the full Fourier interval. Outside the full Fourier interval the Fourier series

gives the periodic extension of the values of f(x) inside the full Fourier interval.

Properties of the Fourier trigonometric series

Conditions for the existence of a Fourier series are: (i) f(x) must be single-valued

and piecewise continuous over the interval (−L, L). (ii) The function f(x) is bounded

with a finite number of maxima and minima and a finite number of discontinuities

over the interval (−L, L). (iii) The integrals defining the Fourier coefficients must

exist.
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The Fourier series, when it exists, represents f(x) on the interval (−L, L) which is

called the full Fourier interval. The Fourier series evaluated at points x outside the

full Fourier interval gives the periodic extension of f(x) defined over the full Fourier

interval.

In order for a function f(x) to have a Fourier series representation one must

be able to calculate the Fourier coefficients a0, an, bn given by the equations (4.109),

(4.110)and (4.111). Consequently, some functions will not have a Fourier series.

For example, the functions 1

x
, 1

x2 are examples of functions which do not have a

Fourier trigonometric series representation over the interval (−L, L). Note that these

functions are unbounded over the interval.

If the functions f(x) and f ′(x) are piecewise continuous over the interval (−L, L)

then the Fourier series representation for f(x) (a) Converges to f(x) at points where

f(x) is continuous. (b) Converges to the periodic extension of f(x) if x is outside the

full Fourier interval (−L, L). (c) At points x0 where there is a finite jump discontinu-

ity, the Fourier trigonometric series converges to 1

2

[

f(x+

0
) + f(x−

0
)
]

which represents

the average of the left and right-hand limits associated with the jump discontinuity.

The function SN (x) = a0 +
∑

N

n=1

(

an cos nπx

L
+ bn sin nπx

L

)

is called the Nth partial

sum associated with the Fourier series and represents a truncation of the series

after N terms of both the sine and cosine terms are summed. One usually plots

the approximating function SN(x) when representing the Fourier series f̃(x) graph-

ically. Whenever the function f(x) being approximated has a point where a jump

discontinuity occurs, then the approximating function SN (x) has oscillations in the

neighborhood of the jump discontinuity as well as an “overshoot” of the jump in

the function. These effects are known as the Gibb’s17 phenomenon. The Gibb’s

phenomenon always occurs whenever one attempts to use a series of continuous

functions to represent a discontinuous function. The Gibb’s phenomenon is illus-

trated in the figure 4-7. These effects are not eliminated by increasing the value of

N in the partial sum.

Fourier Series of Odd Functions

If f(−x) = −f(x) for all values of x, then f(x) is called an odd function of x and

f(x) is symmetric about the origin. In this special case the Fourier series of f(x)

reduces to the Fourier sine series

17 Josiah Willard Gibbs (1839-1903) An American mathematician.
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f̃(x) =
∞∑

n=1

bn sin
nπx

L
(4.114)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx (4.115)

Fourier Series of Even Functions

If f(−x) = f(x) for all values of x, then f(x) is called an even function of x and

f(x) is symmetric about the y−axis. In this special case the Fourier series of f(x)

reduces to a Fourier cosine series

f̃(x) = a0 +
∞∑

n=1

an cos
nπx

L
(4.116)

where

a0 =
1

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
nπx

L
dx for n = 1, 2, 3, . . . (4.117)

Options

If you are only interested in the function f(x) defined on the interval 0 ≤ x ≤ L,

then you can represent this function in three different ways. (1) You can extend

f(x) to the full Fourier interval by making it into an odd function. This extension

produces a Fourier sine series. (2) You can extend f(x) to the full Fourier interval by

making into an even function. This extension produces a Fourier cosine series. (3)

You can extend f(x) is some arbitrary fashion so f(x) is neither even nor odd, then

one obtains the full Fourier trigonometric series for the Fourier expansion of f(x).

Figure 4-8.

Function f(x) extended as (a) an odd function (b) an even function (c) neither
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Example 4-45. Given the function f(x) = x for 0 < x < L. Extend this function

to the full Fourier interval (−L, L) and express f(x) as (i) a Fourier sine series (ii) a

Fourier cosine series (c) a Fourier trigonometric series.

Solution

(a) If f(x) is extended as an odd function, then f(x) = x for −L < x < L so that the

Fourier trigonometric series

f̃(x) = a0 +
∞∑

n=1

an cos(
nπx

L
) +

∞∑

n=1

bn sin(
nπx

L
) (4.118)

reduces to a Fourier sine series since

a0 =
(1, f)

‖ 1 ‖2
=

1

L

∫ L

−L

x dx = 0

an =
(cos(nπx

L
), f)

‖ cos(nπx
L

) ‖2
=

1

L

∫ L

−L

x cos(
nπx

L
) dx = 0

bn =
(sin(nπx

L
), f)

‖ sin(nπx
L

) ‖2
=

1

L

∫ L

−L

x sin(
nπx

L
) dx = −2(−1)n L

nπ

This gives the Fourier sine series

f̃1(x) =

∞∑

n=1

−2(−1)n L

nπ
sin(

nπx

L
)

A graph of f̃1(x) over the interval (−3L, 3L) is illustrated in the following figure.

Note that f̃1(x) is periodic and has jump discontinuities at the points −3L,−L, L

and 3L where the Gibb’s phenomena is readily observed.
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(b) If f(x) is extended to the full Fourier interval as an even function, then it can be

represented as f(x) =

{
x, 0 < x < L

−x, −L < x < 0
and the Fourier trigonometric series

(4.118) reduces to a Fourier cosine series since

a0 =
(1, f)

‖ 1 ‖2
=

1

2L

(
2

∫ L

0

x dx

)
=

L

2

an =
(cos(nπx

L
), f)

‖ cos(nπx
L

) ‖2
=

1

L

(
2

∫ L

0

x cos(
nπx

L
) dx

)
=

2L

n2π2
(−1 + (−1)n)

bn =
(sin(nπx

L ), f)

‖ sin(nπx
L

) ‖2
= 0

This gives the Fourier cosine series

f̃2(x) =
L

2
+

∞∑

n=1

2L

n2π2
(−1 + (−1)n) cos(

nπx

L
)

A graph of f̃2(x) over the interval (−3L, 3L) is illustrated in the following figure.

(c) If f(x) is defined f(x) =

{
x, 0 < x < L

0, −L < x < 0
, then f(x) is neither an odd nor even

function and so there results a Fourier trigonometric series with coefficients

a0 =
(1, f)

‖ 1 ‖2
=

1

2L

∫ L

0

x dx =
L

4

an =
(cos(nπx

L
), f)

‖ cos(nπx
L

) ‖2
=

1

L

∫ L

0

x cos(
nπx

L
) dx =

L

n2π2
(−1 + (−1)n)

bn =
(sin(nπx

L
), f)

‖ sin(nπx
L

) ‖2
=

1

L

∫ L

0

x sin(
nπx

L
) dx =

−(−1)n

nπ

This gives the Fourier series

f̃3(x) =
L

4
+

∞∑

n=1

L

n2π2
(−1 + (−1)n) cos(

nπx

L
) −

∞∑

n=1

(−1)n L

nπ
sin(

nπx

L
)
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A graph of f̃3(x) over the interval (−3L, 3L) is given in the following figure.

Note the Gibb’s phenomena results because of the jump discontinuity in the

periodic extension of the function. Also note that f̃3(x) = 1
2

[

f̃1(x) + f̃2(x)
]

.

Some Spectacular Results

1. Summation of positive powers

For m a positive integer

1m + 2m + 3m + · · ·+ nm =
(B + n + 1)m+1

− Bm+1

m + 1

where the right-hand side of the above equation is evaluated as follows.

(a) Expand (B + n + 1)m+1 in a binomial series.

(b) In the binomial expansion replace Bk by the Bernoulli number Bk

2. Summation of negative powers

For m a positive integer with B2m a Bernoulli number and ζ(m) the Riemann

zeta function, then

∞
∑

n=1

1

n2m
= 1 +

1

22m
+

1

32m
+

1

42m
+ · · · =

(−1)m(2π)2mB2m

2(2m)!
= ζ(2m)

Euler showed that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945

One just doesn’t sit down and come up with wonderful formulas like the ones

above. It takes a lot of work to make a discovery. If you don’t have a lot of informa-

tion about a subject, then you don’t know what questions to ask about the subject.

Therefore, one can say that the more information you have about different subjects,

a better understanding of interrelationships between subjects can be developed. Re-

sults like the above come about by a person getting deeply involved in the subject

matter and investigating simple ideas which in turn lead to complicated results.
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Exercises

� 4-1. Examine the given sequence {un} and determine if it converges or diverges. If

the sequence converges, then find its limit.

(a) un =
3n

4n − 3

(b) un =
n2

2n2 − 1

(c) un = 1 + (
1

2
)n

(d) un =
lnn√

n

(e) un =
n2

en

(f) un =

(
1 +

1

n

)n

� 4-2. Examine the given sequence {vn} and determine if it converges or diverges. If

the sequence converges, then find its limit.

(a) vn =
n

1 − 2n

(b) vn = (−1)n2n2 + 3n + 4

n2 + n + 1

(c) vn = 1 + (−1)n

(d) vn =
1 + (−1)n

n

(e) vn = sin(nπ/2)

(f) vn =
2n

3n

� 4-3. Find the sum of the given series

(a)
50∑

n=1

(3 + 5n)

(b)
20∑

j=1

(
3

2
+

5

2
j)

(c)
10∑

n=1

(2 + 7n)

(d)

10∑

n=1

4(3)n−1

(e)
100∑

n=1

(0.02)n−1

(f)
10∑

m=1

(2 +
√

2)

(
3 −

√
2

2 +
√

2

)m−1

� 4-4. Find the sum of the given geometric series.

S1 =
1

4
+

1

8
+

1

16
+

1

32
+ · · ·

S2 =0.6 + 0.06 + 0.006 + 0.0006 + · · ·

S3 =(2 −
√

3) + (7 − 4
√

3) + (26− 15
√

3) + (97 − 56
√

3) + · · ·

S4 =
√

6 −
√

2 +
1

3

√
6 − 1

3

√
2 + · · ·

� 4-5. Find the sum of the given series.

S1 =
∞∑

i=1

(
1

3

)i

S2 =
∞∑

i=1

(
1

4

)i

S3 =
∞∑

i=1

[(
1

3

)i

+

(
1

4

)i
]

S4 =
∞∑

i=1

[(
1

3

)i

−
(

1

4

)i
]

S5 =
∞∑

n=1

[
1

n + x
− 1

n + x + 1

]

S6 =

N∑

n=1

ln

(
1 +

1

n

)

� 4-6. Determine values of x for which the given series converges.

(a)
∞∑

n=1

xn

2n2 − n
(b)

∞∑

n=1

nxn

2n
(c)

∞∑

n=1

1

nx2n
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� 4-7. Probability Theory

Assume that a random variable X can take on any of the values {1, 2, 3, . . . , k, . . .},

where k is an integer. If pk is the probability that X takes on the value k, then the

probabilities p1, p2, . . . , pk, . . . must be selected such that

(i) Each pk ≥ 0 and (ii)
∞∑

k=1

pk = 1 7(a)

In statistics the quantity E(X) is called the expected value of X and is defined

E(X) =
∞∑

k=1

k pk 7(b)

provided the series converges.

Show that the given probabilities satisfy each of the conditions 7(a) and then

calculate the expected value given by equation 7(b).

(i) pk =
1

2k
(ii) pk =

1

2

(
2

3

)k

(iii) pk = 3

(
3

4

)k

� 4-8. For constants a, b and r with a > 0 and b > 0 the given series are known to

converge. Find their sums and required condition for convergence.

S1 =
∞∑

i=1

1

ai/2

S2 =
∞∑

i=1

a2i + 1

bi

S3 =
N∑

k=0

ark

S4 =
N∑

k=0

(
ark + bkrk−1

)

� 4-9. Use partial fractions and convert the given series to telescoping series and

find their sums.

(a)
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · ·+ 1

(2n − 1)(2n + 1)
+ · · ·

(b)
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

(n − 2)(n − 1)
+ · · ·

(c)
1

32
+

2

152
+

3

352
+ · · ·+ n

(4n2 − 1)2
+ · · ·

� 4-10. Examine the Nth partial sum associated with the given infinite series and

determine if the series converge. If the given series converges, find its sum.

(a)
∞∑

n=1

1

n(n + 1)(n + 2)

(b)
∞∑

n=1

1

n(n + 1)

(c)
∞∑

n=1

n

(n + 1)!

(d)
∞∑

n=1

n

(n + 1)(n + 2)(n + 3)

Hint: Use partial fractions.
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� 4-11. Use the integral test to determine convergence or divergence of the given

series.

(a)
∞∑

n=1

1√
n

(b)
∞∑

n=1

lnn

n

(c)
∞∑

n=1

lnn

n2

(d)
∞∑

n=1

1

n lnn

(e)
∞∑

n=1

3n + 4

n2

(f)
∞∑

n=1

n

en

� 4-12. Assume that f(x) is a given function satisfying the following properties.

(i) The function f(x) is a continuous function such that f(x) > 0 for all values of x.

(ii) For p > 0 the limit lim
n→∞

nP f(n) exists and the limit is different from zero.

Show that
∞∑

n=1

f(n) converges if p > 1 and diverges for 0 < p ≤ 1.

Hint: See modification of a series.

� 4-13. Use the comparison test to determine convergence or divergence of the given

series.

(a)
∞∑

n=1

1

n(n + 3)(n + 6)

(b)
∞∑

n=1

1

3 + 2n

(c)
∞∑

n=1

1

3 + 2
√

n

(d)
∞∑

n=1

1

3n2 + 2n + 1

(e)
∞∑

n=1

cos nπ

n2 + 1

(f)
∞∑

n=1

1

n2 lnn

� 4-14.

(a) Verify that the given series converge.

(b) Find the sum of the first four terms of each series and give an estimate for the

error between the exact solution and your calculated value.

(c) Find the sum of the first eight terms of each series and give an estimate for the

error between the exact solution and your calculated value.

(i)
∞∑

n=1

1

n3
(ii)

∞∑

n=1

(−1)n+1 1

n3
(iii)

∞∑

n=1

1

n4
(iv)

∞∑

n=1

(−1)n+1 1

n4

� 4-15. Show that the given series converge and determine which series converges

at the slower rate.

(i) A =
∞∑

n=1

1

n 3n
(ii) B =

∞∑

n=1

n

5n

� 4-16. Show that the given series diverge and determine which series diverges at

the slower rate.

(i) A =
∞∑

n=1

1

n
(ii) B =

∞∑

n=1

1

lnn
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� 4-17. Newton’s root finding method To deter-

mine where a given curve y = f(x) crosses the

x-axis one can select an initial guess x0 and if

f(x0) �= 0 one can then calculate f ′(x0). From

the values f(x0) and f ′(x0) one can construct the

tangent line to the curve y = f(x) at the point

(x0, f(x0)). This tangent line given by y − f(x0) = f ′(x0)(x− x0).

(a) Show the tangent line intersects the x-axis at the point x1 = x0 − f(x0)/f ′(x0)

(b) Form the sequence {xn} where xn = xn−1 − f(xn−1)/f ′(xn−1) for n = 1, 2, 3, . . .

(c) Give a geometric interpretation to what this sequence is doing. Hint: What has

been done once can be done again.

(d) If y = f(x) = x2 − 3x + 1 and x0 = 1, find using a calculator x1, x2, x3 and x4

(e) If y = f(x) = x2 − 3x + 1 and x0 = 2, find using a calculator x1, x2, x3 and x4

(f) Sketch the curve y = f(x) = x2 − 3x+1 and find the roots of the equation f(x) = 0.

(g) What happens if the initial guess x0 is bad? Say x0 = 3/2 for the above example.

� 4-18. Let fn(x) =
xn

n(n + 1)

(a) Show that
∞∑

n=1

fn(9/10) converges. (b) Show that
∞∑

n=1

fn(10/9) diverges.

� 4-19. Given the infinite series
∞∑

n=2

1

n [lnn]p
, with p > 0.

(a) Show the series converges for p > 1.

(b) Show the series diverges for p ≤ 1.

Hint: Let f0(t) = t, f1(t) = lnf0(t), f2(t) = ln f1(t), . . . , fn+1(t) = ln fn(t) and show

∫
dt

f0(t)f1(t)f2(t) · · ·fm−1(t) [fm(t)]
p =

{
fm+1(t), p = 1
−1

(p−1)
[fm(t)]

p−1
, p �= 1

and then examine
∞∑

n=2

1

n [lnn]p
=

∞∑

n=2

1

f0(n)[f1(n)]p

� 4-20. Show that if the series
∞∑

n=1

un converges, then the series
∞∑

n=1

1

un
diverges.

� 4-21. If Un = 1
3
n 3 = 1

3
n(n + 1)(n + 2), show ∆Uk = Uk+1 − Uk = (k + 1)(k + 2) and find

the sum of the series Sn = 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n + 1) =
n−1∑

k=0

(k + 1)(k + 2) =
n−1∑

k−0

∆Uk
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� 4-22. Reversion of series

(a) Given the series

y = y(x) = 1 − (x − 1) +
(x − 1)2

2!
− (x − 1)3

3!
+ · · · 22(a)

and it is required that you solve for x − 1 in terms of y to obtain a series of the

form

(x − 1) = A1(y − 1) + A2(y − 1)2 + A3(y − 1)3 + A4(y − 1)4 + · · · 22(b)

where A1, A2, A3, A4 . . . are constants to be determined. Substitute equation 22(b)

into equation 22(a) and expand all terms. Equate like powers of (y − 1) and

obtain a system of equations from which the constants A1, A2, A3, A4, . . . can be

determined.

(b) If the original series in part(a) is y = e−(x−1) and the series obtained by reversion

is the function (x − 1) = − lny, expanded in a series about y = 1, then examine

the approximation for x − 1 by truncation of your series after the A4 term. Let

E = E(y) denote the error in using this truncated series to solve for x− 1. Plot a

graph of the error E = E(y) for 1 ≤ y < 2.

� 4-23. Examine the given alternating series to determine if they converge.

(a)

∞∑

n=1

1

(−3)n−1

(b)
∞∑

n=2

(−1)n 1

lnn

(c)

∞∑

n=1

(−1)n−1

n!

(d)
∞∑

n=1

(−1)n

√
n

(e)

∞∑

n=1

(−1)n+1

n

(f)
∞∑

n=1

(−1)n+1 n

n2 + 1

� 4-24. Use the root test to determine if the given series converge.

(a)
∞∑

n=2

1

[lnn]n

(b)
∞∑

n=1

nn

24n

(c)
∞∑

n=1

n2

2n

(d)
∞∑

n=1

(
n

n2 + 1

)n

(e)
∞∑

n=1

1

nn

(f)
∞∑

n=1

(
1

n + 1

)n

� 4-25. Test the following series to determine convergence or divergence.

(a)
∞∑

n=1

(−1)n

n!

(b)
∞∑

n=1

n10

(1.001)n

(c)
∞∑

n=1

sinn(π/3)

(d)
∞∑

n=1

n

2n

(e)
∞∑

n=1

n3

3n

(f)
∞∑

n=1

3n

n!
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� 4-26. Determine whether the given series converge or diverge.

(a)
1

2
+

2

3
+

3

4
+

4

5
+ · · ·+ n

n + 1
+ · · ·

(b)
3

19
+

5

35
+

7

51
+ · · ·+ 2n + 1

16n + 1
+ · · ·

(c) sin(1) + 2 sin(1/2) + 3 sin(1/3) + · · ·+ n sin(1/n) + · · ·

(d)
∞∑

n=1

n cos(
1

n
)

(e)
∞∑

n=1

2

n

� 4-27. Determine the convergence or divergence of the given series.

(a)

∞∑

n=1

n√
n + 1

(b)
∞∑

n=1

(n!)2

(2n)!

(c)

∞∑

n=1

1

n3/2

(d)
∞∑

n=1

1

n3 + n

(e)

∞∑

n=1

1

2n + 4n

(f)
∞∑

n=1

2n

n2

� 4-28. Determine if the given series is (a) conditionally convergent, (b) absolutely

convergent or (c) divergent.

(a)
∞∑

n=2

(−1)n

√
n

(b)

∞∑

n=1

cos(nπ)

n2

(c)
∞∑

n=1

(−1)n+1

n

(d)

∞∑

n=1

(−1)n+1

6n + 3

(e)
∞∑

n=1

(−1)n+1 lnn

n2

(f)

∞∑

n=1

(−1)n+1 nn

n!

� 4-29. Determine if the given series is (a) conditionally convergent, (b) absolutely

convergent or (c) divergent.

(a)
∞∑

n=0

(−1)n

√
3n + 2

(b)
∞∑

n=1

(−1)n+1

√
(n + 1)(n + 2)

(c)
∞∑

n=2

(−1)n

2 lnn

(d)
∞∑

n=1

(−1)n+1 n

n2 + 1

(e)
∞∑

n=1

(−1)n+1n2

3n

(f)
∞∑

n=1

(−1)n+1

√
n

n2 + 1

� 4-30. Find the interval where the power series converges absolutely.

(a)
∞∑

n=1

x2n

n 2n

(b)
∞∑

n=1

(−1)n+1 (x − 2)n

n

(c)
∞∑

n=1

n (x − 1)n

3n

(d)
∞∑

n=1

(3x)n

ln(n + 1)

(e)
∞∑

n=1

(−1)n−1xn

3n

(f)
∞∑

n=1

(−1)n−1 (3x + 2)n

4n

� 4-31. Let y = f(x) = |
x

1

|
+ |

x

1

|
+ |

x

1

|
+ · · · and show that

dy

dx
= f ′(x) = |

1

1

|
+ |

2x

1

|
+ |

x

1

|
+ |

x

1

|
+ · · ·

Hint: Show that y =
x

1 + y
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� 4-32. Explain the difference between (a) the limit of a sequence and (b) the limit

point of a sequence.

� 4-33. Examine the binomial series for the expansion of (a+b)n when n is an integer.

(a + b)n =an + nan−1b +
n(n − 1)

2!
an−2b2 +

n(n − 1)(n − 2)

3!
an−3b3 + · · ·+ bn

(a + b)n =

(
n

0

)
anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−1b2 + · · ·+

(
n

n − 1

)
a1bn−1 +

(
n

n

)
a0bn

(a + b)n =
∞∑

j=0

(
n

j

)
an−jbj

33(a)

where
(

n

m

)
=

{ n!
m! (n−m)!

m ≤ n

0, m > n
are the binomial coefficients.

(a) Show that (a + b)n =
n∑

j=0

(
n

j

)
an−jbj =

n∑

j=0

(
n

j

)
ajbn−j

(b) Newton generalized the binomial expansion to

(a + b)r =
∞∑

k=0

(
r

k

)
ar−kbk

(a + b)r =ar + rar−1b +
r(r − 1)

2!
ar−2b2 +

r(r − 1)(r − 2)

3!
ar−3b3 + · · ·

33(b)

where r represents an arbitrary real number.

(i) Show that when r is a nonnegative integer, the equation 33(b) reduces to

equation 33(a).

(ii) (Difficult problem) Write equation 33(b) in the form ar(1+x)r where x = b/a.

Examine the series expansion for f(x) = (1+ x)r. Then use the Lagrange and

Cauchy forms of the remainder Rn to show the equation 33(b) converges if

|a| > |b| and diverges if |a| ≤ |b|, where x = b/a.

� 4-34. Let y = g(x) = x + |
1

x

|
+ |

1

x

|
+ |

1

x

|
+ · · · and show that

dy

dx
= g′(x) = |

1

2

| − |
x

x

|
+ |

1

x

|
+ · · ·+ |

1

x

| · · · Hint: Show that y = x +
1

y

� 4-35. Let y = h(x) = |
sin x

1

|
+ |

cos x

1

|
+ |

sin x

1

|
+ |

cos x

1

|
+ · · · and show that

dy

dx
= h′(x) =

(1 + y) cosx + y sinx

1 + 2y + cos x − sinx

Hint: Show that y =
sin x

1 + cos x
1+y
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� 4-36. The continued fraction function

yn = yn(x) =
Pn(x)

Qn(x)
= α0 + |

1

α1

|
+ |

1

α2

|
+ · · ·+ |

1

αn

|
+ |

1

x

|

where α0, α1, α2, . . . , αn are constants, represents a rational function of x.

(a) Show that
dy1

dx
=

1

[Q1(x)]2

(b) Show that
dy2

dx
=

−1

[Q2(x)]2

(c) Show that
dy3

dx
=

1

[Q3(x)]2

(d) Can you show that in general
dyn

dx
= (−1)n 1

[Qn(x)]2

� 4-37. Euler used the product formula sin θ = θ

[
1 −

(
θ

π

)2
] [

1 −
(

θ

2π

)2
]
· · ·

[
1 −

(
θ

nπ

)2
]
· · ·

to represent sine of θ. Differentiate this relation and show θ cot θ = 1+2θ2
∞∑

n=1

1

θ2 − n2π2

� 4-38. Assume that
∑

un and
∑

vn are two infinite series of positive terms and that

there exists an integer N such that for all n > N the inequality un ≤ Kvn for some

positive constant K.

(i) If the series
∑

vn converges, prove the series
∑

un converges.

(ii) If the series
∑

un diverges, prove the series
∑

vn diverges.

� 4-39. Show that the alternating p-series
∞∑

n=1

(1)n+1 1

np
converges if p > 0.

� 4-40. Consider the geometric series
1

1 − z
= 1 + z + z2 + z3 + · · · + zn + · · · where

z = reiθ, |z| < 1 and i2 = −1. Show that by equating real and imaginary parts

1 − r cos θ

1 − 2r cos θ + r2
=1 + r cos θ + r2 cos 2θ + · · ·+ rn cos nθ + · · ·

r sin θ

1 − 2r cos θ + r2
=r sin θ + r2 sin 2θ + · · ·+ rn sinnθ + · · ·

Hint: Use Euler identity eiθ = cos θ + i sin θ

� 4-41.

(a) Show {sin nx}, n = 1, 2, 3, . . . is an orthogonal sequence over the interval (0, π) with

respect to the weight function r = 1.

(b) Scale the above sequence to construct an orthonormal sequence over the given

interval.
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� 4-42. Calculate the inner products and norm squared values associated with the

given sequence of functions {fn(x)} using the given interval (a, b) and weight function

r(x), for n = 1, 2, 3, . . ..

(a) {fn} = {sin nπx

L
}, (0, L), r = 1

(b) {f0, fn} = {1, cos
nπx

L
}, (0, L), r = 1

(c) {f0, f2n, f2n−1} = {1, cos
nπx

L
, sin

nπx

L
}, (−L, L), r = 1

(d) {f0, f1, f2} = {1, 1− x, x2 − 4x + 2}, (0,∞), r = e−x

� 4-43. Even and Odd Functions

(a) If Go(−x) = −Go(x) for all values of x, show that
∫ L

−L

Go(x) dx = 0

(b) If Ge(−x) = Ge(x) for all values of x, show that
∫ L

−L

Ge(x) dx = 2

∫ L

0

Ge(x) dx

(c) Let Fo(x) denote an odd function of x and Fe(x) denote an even function of x.

Similarly, let Go(x) denote an odd function of x and Ge(x) denote an even function

of x, show that

(i) H(x) = Fo(x)Go(x) is an even function of x

(ii) H(x) = Fo(x)Ge(x) is an odd function of x

(iii) H(x) = Fe(x)Ge(x) is an even function of x

(d) Determine which functions are even or odd.

(i) Fe(x) cos(
nπx

L
)

(ii) Fe(x) sin(
nπx

L
)

(iii) Fo(x) cos(
nπx

L
)

(iv) Fo(x) sin(
nπx

L
)

(e) Use the above properties to simplify the Fourier series representation of f(x) over

the interval (−L, L), as given by equation (4.108), if

(i) The function f(x) is an even function.

(ii) The function f(x) is an odd function.

� 4-44. (Newton’s method for nonlinear system)

To solve the system of simultaneous nonlinear equations

f(x, y) = 0, g(x, y) = 0

in the two unknowns x and y, one can use Newton’s method which is described as

follows.
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Start with an initial guess of the solution and call it x0 and y0. Now expand f

and g in Taylor series expansions about the point (x0, y0). These expansions can be

written

f(x0 + h, y0 + k) = f(x0, y0) +
∂f(x0, y0)

∂x
h +

∂f(x0, y0)

∂y
k

+
1

2!

[
fxxh2 + 2fxyhk + fyyk2

]
+ · · ·

g(x0 + h, y0 + k) = g(x0, y0) +
∂g(x0, y0)

∂x
h +

∂g(x0, y0)

∂y
k

+
1

2!

[
gxxh2 + 2gxyhk + gyyk

2
]
+ · · · .

Usually the initial guess (x0, y0) is such that f(x0, y0) and g(x0, y0) are not zero. It is

desired to find values h and k such that the equations

f(x0 + h, y0 + k) = 0 and g(x0 + h, y0 + k) = 0

are satisfied simultaneously. Now assume that the values h and k to be selected are

small corrections to x0 and y0 so that second-order terms h2, hk, k2, and higher order

product terms are small and can consequently be neglected in the above Taylor

series expansion. These assumptions produce the linear system of equations

f(x0, y0) +
∂f(x0, y0)

∂x
h +

∂f(x0, y0)

∂y
k = 0

g(x0, y0) +
∂g(x0, y0)

∂x
h +

∂g(x0, y0)

∂y
k = 0

which can then be solved to determine the correction terms h and k.

(a) Show by letting h = x1 − x0 and k = y1 − y0 that an improved estimate for the

solution to the simultaneous equations f(x, y) = 0 and g(x, y) = 0, is given by

x1 = x0 + h = x0 +
α

∆

y1 = y0 + k = y0 +
β

∆
,

where

α =

∣∣∣∣∣
−f(x0, y0)

∂f(x0,y0)
∂y

−g(x0, y0)
∂g(x0 ,y0)

∂y

∣∣∣∣∣ and β =

∣∣∣∣
∂f(x0,y0)

∂x
−f(x0, y0)

∂g(x0,y0)
∂x

−g(x0, y0)

∣∣∣∣

and ∆ is the determinant of the coefficients given by ∆ =

∣∣∣∣∣

∂f(x0,y0)
∂x

∂f(x0,y0)
∂y

∂g(x0,y0)
∂x

∂g(x0 ,y0)
∂y

∣∣∣∣∣ .

(b) Illustrate Newton’s method by solving the nonlinear system of equations

f(x, y) = 2x2 − 3y + 1 = 0 g(x, y) = 8x + 11 − 3y2 = 0

Hint: Nonlinear equations may have multiple solutions, a unique solution, or

no solutions at all. Sometimes a graph is helpful in estimating a solution if one

exists.
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� 4-45.

Verify the Fourier series representation for the functions illustrated. In each

graph assume the maximum amplitude of each function is +1 and the minimum

amplitude of each function is either zero or -1 depending upon the graph.

(a) f(x) =
4

π

∞∑

n=0

1

2n + 1
sin

[
(2n + 1)πx

a

]

(b) f(x) =
1

2
− 1

π

∞∑

n=1

1

n
sin

[nπx

a

]

(c) f(x) =
1

2
− 4

π2

∞∑

n=0

1

(2n + 1)2
cos

[
(2n + 1)πx

a

]

(d) f(x) =
−2

π

∞∑

n=1

(−1)n

n
sin

[nπx

a

]

(e) f(x) =
8

π2

∞∑

n=1

1

n2
sin(

nπ

2
) sin(

nπx

a
)

� 4-46. Show the Fourier trigonometric series

f(x) = a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑

n=1

bn sin
nπx

L
where − L ≤ x ≤ L

can also be expressed in the form f(x) = a0 +
∞∑

n=1

cn sin(
nπx

L
+βn) by finding the values

cn and βn.

� 4-47. Let f(x) ∼ a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
denote the Fourier series repre-

sentation of f(x) over the full Fourier interval (−L, L).

(a) Use the Euler formulas

einπx/L = cos
nπx

L
+ i sin

nπx

L
and e−inπx/L = cos

nπx

L
− i sin

nπx

L
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and show

cos
nπx

L
=

ei nπx/L + e−inπx/L

2
and sin

nπx

L
=

ei nπx/L − e−inπx/L

2i

(b) Define C0 = a0

2 , Cn = 1
2 (an − ibn), Cn = 1

2 (an + ibn) and show the Fourier series can

be represent in the complex form

f(x) ∼
∞∑

n=−∞

Cneinπx/L where Cn =
1

2L

∫ L

−L

f(x)e−inπx/L dx

� 4-48. You are sick and your doctor prescribes medication XY Z to be taken τ-times

a day based upon the concentration of XY Z. Find τ . First get over the shock of

being asked such a question. To solve the problem you must make some assumptions

such as the following.

(i) At time τ = 0 you take medication XY Z and this produces a concentration C0 of

XY Z in your blood stream.

(ii) The concentration C0 decays exponentially with time so that after a time τ

the concentration of XY Z in your blood is C0e
−kτ , where k is called the decay

constant.

(iii) At times τ, 2τ, 3τ, . . . , nτ you take the medication XY Z and consequently you build

up a certain residual concentration of XY Z in your blood stream given by

C0e
−kτ + C0e

−2kτ + C0e
−3kτ + · · ·+ C0e

−knτ

(a) If you continue the prescribed dosage forever, then the residual concentration

would be

C =
∞∑

m=1

C0e
−mkτ = C0e

−kτ
∞∑

m=0

(
e−kτ

)m

Sum this series and determine the residual concentration C.

(b) If Cs denotes the maximum safe concentration of XY Z that the human body can

stand, then show that τ must be selected to satisfy

C0 + C = C0

(
1 +

e−kτ

1 − e−kτ

)
≤ Cs

(c) Assume k, C0, Cs are known values and solve for τ .
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� 4-49.

(a) Verify the well known result
1

1 + ξ
= 1 − ξ + ξ2 − ξ3 + ξ4 − ξ5 + ξ6 − ξ7 + · · ·

and memorize this result.

(b) Assume y = f(x) = tan−1 x = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · where a0, a1, a2, . . . are

constants to be determined. Show

dy

dx
= f ′(x) =

1

1 + x2
= a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · ·

(c) Use the well known result from part (a) to expand f ′(x) =
1

1 + x2
and compare the

expansion in part (b) with the expansion in part (c) to determine the coefficients

a1, a2, a3, . . .

(d) Pick a particular value of x whereby you can determine a0 and then give the

series expansion for tan−1 x

� 4-50. Apply the method outlined in the previous problem to determine the series

expansion for sin−1 x.

� 4-51. Show that

(a) ax = 1 + x lna +
x2

2!
(ln a)2 +

x3

3!
(lna)3 + · · ·

(b)
√

x + h =
√

x +
h

2
√

x
− h2

23 x3/2
+

h3

24 x5/2
− 5h4

26 x7/2
+ · · ·

� 4-52.

(a) Assume the series expansion y =ax = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · 52-(a)

and show
dy

dx
=ax lna = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · · 52-(b)

(b) Substitute equation 52-(a) into equation 52-(b) and compare coefficients to show

ax = 1 + x ln a +
x2

2!
(ln a)2 +

x3

3!
(ln a)3 +

x4

4!
(lna)4 +

x5

5!
(lna)5 + · · ·

� 4-53. If y =

√

sin x +

√
sinx +

√
sin x +

√
sinx + · · · show that

dy

dx
=

cos x

2y − 1

� 4-54. Show that ex sin x = 1 + x2 +
1

3
x4 +

1

120
x6 + · · ·

� 4-55. Show that ex cos x = 1 + x +
1

2
x2 − 1

3
x3 − 11

24
x4 − 1

5
x5 +

61

720
x6 + · · ·

� 4-56. Show that ex tan x = 1 + x2 +
5

6
x4 +

19

30
x6 + · · ·
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Chapter 5

Applications of Calculus

Selected problems from various areas of physics, chemistry, engineering and the

sciences are presented to illustrate applications of the differential and integral calcu-

lus. Many of these selected topics require knowledge of basic background material,

such as terminology and fundamentals, associated with the area of application. Con-

sequently, much of this chapter gives a presentation of selected basic material from

areas of engineering, physics, chemistry and the sciences which is required knowledge

for the understanding of many scientific applications of the differential and integral

calculus.

Related Rates

The rate of change of a quantity Q = Q(t) with respect to time t is denoted by the

derivative
dQ

dt
. Problems which involve rates of change of two or more time dependent

variables are referred to as “related rate problems”. The general procedure for

solving related rate problems is something like the following.

1. If necessary, define the variables of the problem and make note of the units of

measurement being used. For example, one could write [Q] = cubic centimeters

which is read1 “The dimension of Q is cubic centimeters”.

2. Find how the variables of the problem are related for all values of time t being

considered.

3. Determine if the variables of the problem, or their derivatives, have known values

at some particular instant of time.

4. Find the rate of change relation between the variables by differentiating the

relation or relations found in step 2 above.

5. Evaluate the results in step 4 at the particular instant of time specified.

Example 5-1. Consider a large inverted right circular cone with altitude H

and base radius R where water runs into the cone at the rate of 3 cubic feet per

second. How fast is the water level rising when the water level, as measured from

the vertex of the cone, is 4 feet? Here the base radius R and height H of the cone

are considered as fixed constants.

1 Notation introduced by J.B.J. Fourier, theorie analytique de la chaleur, Paris 1822.
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Solution Let r = r(t), [r] = feet, denote the radius of the water level at time t and let

h = h(t), [h] = feet, denote the height of the water level at time t, [t] = minutes. One

can then express the volume V of water in the cone at time t as

V = V (t) =
π

3
r2h, [V ] = cubic feet (5.1)

Using similar triangles one finds that there is

a relation between the variables r and h given by

r

h
=

R

H
or r =

R

H
h (5.2)

The given problem states that
dV

dt
= 3, where

[
dV

dt
] = ft3

/min and it is required to find
dh

dt
, when

h = 4 feet. Differentiating equation (5.1) with

respect to time t gives

dV

dt
=

π

3

[

r2 dh

dt
+ 2r

dr

dt
h

]

(5.3)

and differentiating equation (5.2) with respect to t gives

dr

dt
=

R

H

dh

dt
(5.4)

since R and H are constants. Substituting the results from the equations (5.2) and

(5.4) into the equation (5.3) gives

dV

dt
=

π

3

[(

R2

H2
h2

)

dh

dt
+ 2

(

R

H
h

) (

R

H

dh

dt

)

h

]

which simplifies to
dV

dt
= π

R2

H2
h2 dh

dt
(5.5)

Now one can evaluate the equation (5.5) when h = 4 to obtain

3 = π
R2

H2
(4)2

dh

dt
or

dh

dt
=

3

16π

H2

R2
,

[

dh

dt

]

= ft/min (5.6)

Alternatively, one could have substituted the equation (5.2) into the equation (5.1)

to obtain

V =
π

3

R2

H2
h3 (5.7)

and then differentiate the equation (5.7) with respect to time t to obtain

dV

dt
=

π

3

R2

H2

(

3h2 dh

dt

)

and evaluating this last equation when h = 4 gives the same result as equation (5.6).
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Example 5-2. Two roads intersect at point 0 at an angle of 60 degrees. Assume

car A moves away from 0 on one road at a speed of 50 miles per hour and a second

car B moves away from point 0 at 60 miles per hour on the other road. Let a denote

the distance from point 0 for car A and let b denote the distance from point 0 for

car B. How fast is the distance between the cars changing when a = 1 mile and b = 2

miles.

Solution

Let r denote the distance between the cars A and B

and use the law of cosines to show

r2 = a2 + b2 − 2ab cos θ

Differentiate this relation with respect to time t and show

2r
dr

dt
= 2a

da

dt
+ 2b

db

dt
− 2

[

a
db

dt
+

da

dt
b

]

cos θ, θ is a constant

and then solve for the rate of change
dr

dt
to obtain

dr

dt
=

a
da

dt
+ b

db

dt
−

[

a
db

dt
+

da

dt
b

]

cos θ

√
a2 + b2 − 2ab cos θ

Substitute into this equation the values

a =1 mi
da

dt
=50 mi/hr

b =2 mi
db

dt
=60 mi/hr

θ =
π

3

and show
dr

dt
= 30

√
3 miles per hour.

Example 5-3. Boyle’s2 law resulted from a study of an ideal compressed gas

at a constant temperature. Boyle discovered the relation PV = C = constant, where P

represents pressure, [P ] = Pascal, abbreviated Pa, and V represents volume, [V ] = cm3

and C is a constant. If at some instant the pressure is P0 and the volume of the gas

has the value V0 and the pressure is increasing at the rate r0, [r0] = Pa/min, then at

what rate is the volume decreasing at this instant?

2 Robert Boyle (1627-1691) an Irish born chemist/mathematician.
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Solution Here Boyle’s law is PV = P0V0 = constant, where the pressure and volume

are changing with respect to time. Differentiating this relation with respect to time

t gives the relation

P
dV

dt
+

dP

dt
V =

d

dt
(P0V0) = 0 (5.8)

Evaluating the equation (5.8) at the instant where
dP

dt
= r0, P = P0 and V = V0, one

finds

P0
dV

dt
+ r0V0 = 0 or

dV

dt
= −r0

V0

P0

The minus sign indicates that the volume is decreasing and the volume rate of change

has dimension, [
dV

dt
] = cm3/min.

Note that Boyle’s law is a special case of the more general gas law given by
PV

T
= C = Constant relating pressure P , volume V and temperature T all having

appropriate units of measurements.

Newton’s Laws

Isaac Newton used his new mathematical knowledge of calculus to formulate

basic principles of physics in studying the motion of objects and particles. The

following are known as Newton’s laws of motion.

(i) Newton’s First Law

A body at rest tends to stay at rest or a body in a uniform straight line

motion tends to stay in motion unless acted upon by an external force.

(ii) Newton’s Second Law

The time rate of change of momentum3 of a body is proportional to the

resultant force that acts upon it.

(iii) Newton’s Third Law

For every action there is an equal and opposite reaction.

In the following discussions the symbols F, x, v, a, m, p, t are used to denote force,

distance, velocity, acceleration, mass, momentum and time. Time t is measured

in units of seconds, abbreviated (s). The symbol F is to denote force, measured

in units of Newton’s abbreviated4 (N). The quantity x denotes distance, measured

in meters, abbreviated (m). The velocity is denoted v =
dx

dt
and represents the

3 Momentum is defined as mass times velocity.
4 If a unit of measurement is named after a person, then the unit is capitalized, otherwise it is lower case.
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change in distance with respect to time. The velocity is measured in units of meters

per second, abbreviated (m/s). The second derivative of distance
d2x

dt2
=

dv

dt
= a or

derivative of the velocity with respect to time t, is called the acceleration, which is

measured in units (m/s2). The symbol m denotes the mass5 of a body, measured in

units called kilograms, abbreviated (kg) and the momentum p = mv is defined as the

mass times the velocity and is measured in units (kg · m/s).

The first law concerns the inertia of a body. A body at rest, unless acted upon

by an external force, will remain at rest. In terms of the above symbols one can

write the first law as F = 0 or ∆v = 0. That is, if the body is at rest, then it has no

forces acting on it and if the body is in a state of uniform motion, then there is no

change in the velocity. An external force is required to change the state of rest or

uniform motion.

The momentum p of a body is defined as the mass times the velocity and written

p = mv. Consequently, the second law can be expressed F =∝ d

dt
(mv), where ∝ is a

proportionality sign. The units of measurement for force, mass, distance, velocity

and time are selected to make the proportionality constant unity so that one can

write Newton’s second law as

F =
d

dt
(mv) = m

dv

dt
+ v

dm

dt
(5.9)

If the mass is constant and does not change with time, then the second law can be

expressed

F = m
dv

dt
= m

d2x

dt2
= ma (5.10)

The units of measurement used for the representation of Newton’s laws are either the

meter-kilogram-second system (MKS), the centimeter-gram-second system (CGS) or

the foot-pound-second system (FPS) where
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m in slugs
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CGS

F in dynes

m in gm

a in cm/s2































5 Note the subtle distinction between the notation used to denote mass (m) and meters (m).
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1N =105 dynes = 0.2248 lbs-force

1Kg =6.852 (10)−2 slugs = 1000 gm

9.807m/s2 =32.17 ft/s2 = 980.7 cm/s2

Here F denotes a summation of the forces acting in the direction of motion.

Note that if the sum of the forces or resultant force is zero, then the object is said

to be in translational equilibrium. If the velocity of a body is constant, but its mass

is changing, then the equation of motion (5.9) becomes

F = v
dm

dt
(5.11)

In terms of symbols, the third law can be expressed by examining two bodies,

call them body A and body B. If body A exerts a force FAB on body B, then body

B exerts a force FBA on body A and the third law requires that FAB = −FBA, that is

the forces are equal and opposite.

Newton’s Law of Gravitation

Newton’s law of gravitation states that the cen-

ters of mass associated with two solids m1 and m2

experience an inverse square law force F of attrac-

tion given by

F =
Gm1m2

r2
(5.12)

where r is the distance between the centers of mass and G = 6.673 10−11 m3/kg · s2 is

a proportionality constant called the gravitational constant.

If m1 = me is the mass of the Earth and m2 = m is the mass of an object at

a height h above the surface of the Earth, then the force of gravity between these

masses is given by

Fg =
Gme m

(re + h)2
= m

[

Gme

(re + h)2

]

(5.13)

where re denotes the radius of the Earth6. Write the quantity in brackets as

[

Gme

(re + h)2

]

=
Gme

r2
e

(

1 +
h

re

)−2

≈ Gme

r2
e

(5.14)

6 The radius of the Earth is approximately 6400 km≈4000 mi and the mass of the Earth is approximately

6.035 (10)24 kg.
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since h is much less than the radius of the Earth re. The equation (5.14) can be used

to define the following terms.

The acceleration of gravity g is defined

g =
Gme

r2
e

(5.15)

and the weight W of an object of mass m due to gravity is defined

W = Fg = mg (5.16)

That is, the weight of an object is the force (force of gravity), by which an

object of mass m is pulled vertically downward toward the center of the Earth.

The dimensions of g and W are given by [g] = m/s2, and [W ] = kg ·m/s2 = N . The

acceleration of gravity varies slightly over the surface of the Earth because the

radius of the Earth is not constant everywhere. If re is assumed to be constant,

then the acceleration of gravity is found to have the following values in the MKS,

FPS and CGS system of units

g = 9.807m/s2, g = 32.17 ft/s2, g = 980.7 cm/s2 (5.17)

Example 5-4. Approximating Value of Escape Velocity

A rocket launched straight upward from the surface of the Earth will fall back

down if it doesn’t achieve the correct velocity. Let r = r(t) denote the distance of

the rocket measured from the center of the Earth and let m = m(t) denote the mass

of the rocket which changes with time. The forces acting on the rocket as it moves

upward are the thrust from the engines, the pull of gravity and resistance due to air

friction called a drag force. By Newton’s second law one can write

d

dt
(mv) =

d

dt

(

m
dr

dt

)

= Ftotal = Fthrust − Fgravity − Fdrag (5.18)

where v = v(t) =
dr

dt
is the velocity of the rocket. This is an equation, called a

differential equation, which describes the motion of the rocket. When you learn

more about aerodynamics you will learn how to represent the thrust force and drag

forces on the rocket and then you can solve the resulting differential equation.

Instead, let us solve a much simpler problem created by making assumptions

which will reduce the equation (5.18) to a form which is tractable7

7 When confronted with a very difficult problem to solve, one can always make assumptions to simplify the
problem to a form which can be solved. Many times an analysis of the simplified solution produces an incite into

how to go about solving the more difficult original problem.
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(i) Neglect the thrust force and drag force and consider only the gravitational force.

(ii) Assume the mass of the rocket remains constant.

(iii) Assume that at time t = 0, the initial velocity of the rocket is v0 and the position

of the rocket is given by r(0) = re, where re is the radius of the Earth.

These assumptions greatly simplify the differential equation (5.18) to the form

m
dv

dt
= −Gme m

r2
where

dv

dt
=

dv

dr

dr

dt
=

dv

dr
v (5.19)

and one obtains after simplification the differential equation

v
dv

dr
= −Gme

r2
(5.20)

One can separate the variables and express equation (5.20) in the form

vdv = −Gme
dr

r2
(5.21)

An integration of both sides of this separated equation gives the result
∫

vdv = −Gme

∫

dr

r2
=⇒ v2

2
=

Gme

r
+ C (5.22)

where C is a constant of integration. The constant C is selected such that the initial

conditions are satisfied. This requires

v2
0

2
=

Gme

re
+ C =⇒ C =

v2
0

2
− Gme

re
(5.23)

Substitute this value for C into the equation (5.22) and simplify the result to obtain

v2 = v2
0 + 2Gme

(

1

r
− 1

re

)

(5.24)

In equation (5.24) the term
2Gme

r
is always positive so that if it is required that

v2
0 − 2Gme

re
≥ 0

then one can say that the velocity of the rocket will always be positive. This condi-

tion can be written

v0 ≥
√

2Gme

re
=

(

2
Gme

r2
e

re

)1/2

=
√

2g re ≈ 11200m/s ≈ 7miles per second

where g =
Gme

r2
e

is the acceleration of gravity. This value is a good approximation of

the velocity necessary to overcome the gravitational forces pulling the rocket back

to Earth. This velocity is called the escape velocity.
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Work

Let W denote the work done by a constant force F , which has moved an object

in a straight line a distance x in the direction of the force. Here W is defined8 as the

scalar quantity

Work = Force times distance W = F x (5.25)

If the force F = F (x) varies continuously as the distance x changes, then if the

object is moved in a straight line an increment dx, the increment of work done dW

is expressed

dW = F (x) dx

and the total work done in moving an object from x1 to x2 in a straight line is given

by the integral

W =

∫ x2

x1

F (x) dx (5.26)

The equation (5.26) tells us that the work done is nothing more than the area under

the curve F = F (x) between the values x1 and x2.

Example 5-5.

If the constant force F acts at an angle to

the direction of motion, then the component of

force in the direction of motion is F cos θ and the

work done in moving an object is the component

of force in direction of the displacement times the displacement or W = (F cos θ) s

If the force F = F (s) varies as a function of displacement s, then the increment

of work done in moving an object the incremented distance ds is

dW = (F (s) cos θ) ds

and the total work done moving an object from s1 to s2 is

W =

∫ s2

s1

F (s) cos θ ds

8 If there are many discrete forces acting on a body at different times, then one can define the work as the

average force times the displacement.
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Recall that force is measured in units called Newtons, where 1N = 1kg · m/s2. Dis-

placement is measured in meters (m) so that work is force times distance and is

measured in units of Newton-meters or (N ·m) and one can write [W ] = N ·m, which

is read, “The dimension of work is Newton-meter”. By definition 1N · m = 1Joule,

where Joule is abbreviated (J).

Energy

In the language of science the term energy is a scalar measure of a physical

systems ability to do work. There are many different kinds of energy. A few selected

types of energy you might have heard of are chemical energy, kinetic energy, various

kinds of potential energy, internal energy, elastic energy due to stretching or twisting,

heat energy, light energy and nuclear energy.

Kinetic Energy Ek

The energy associated with a body in motion is called kinetic energy and is

denoted by Ek. The kinetic energy is defined Ek =
1

2
mv2, where m is the mass of

the body, [m] = kg and v is the velocity of the body, [v] = m/s. Kinetic energy is a

positive scalar quantity measured in the same units as work. One can verify that

[Ek] = kg · m2/s2 =
(

kg · m/s2
)

· m = N · m = J

Example 5-6. The work done by a constant force F moving an object in a

straight line through a distance s during a time t is given by the integral

W =

∫ s

0

F ds (5.27)

Let s denote distance traveled during a time t with
ds

dt
= v denoting the velocity

and a =
dv

dt
=

d2s

dt2
denoting the acceleration. Using Newton’s second law of motion

one can write

F = ma = m
dv

dt
= m

d2s

dt2
, where

ds

dt
= v and

d2s

dt2
=

dv

dt
= a (5.28)

Substituting the equation (5.28) into the equation (5.27) gives

W =

∫ s

0

(

m
dv

dt

)

ds =

∫ s

0

m
d2s

dt2
ds =

∫ t

0

m
d2s

dt2
ds

dt
dt (5.29)

Observe the equation (5.29) is written as an integration with respect to time by

using the relations v =
ds

dt
and

dv

dt
=

d2s

dt2
. If the object has an initial velocity v0 at

time t = 0, then the integration (5.29) can be expressed in the form

W =

∫ t

0

m
dv

dt
v dt = m

∫ t

0

d

(

1

2
v2

)

=
1

2
mv2

t

0

=
1

2
mv2 − 1

2
mv2

0 (5.30)
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The equation (5.30) is a representation of the work-energy relation

“The work done by forces acting on a body

equals the change in kinetic energy of the body”

Potential Energy Ep

The energy associated with a body as a result of its position with respect to

some reference line is called the potential energy and is defined Ep = mgh, where m

is the mass of the body, [m] = kg, g is the acceleration of gravity, [g] = m/s2 and h

is the height of the body above the reference line, [h] = m. The potential energy is

sometimes called the gravitational potential energy. The potential energy is measured

in units of kg ·m/s2 · m = N ·m = J and has the same units of measurement as work.

The work done against gravity in lifting a weight from a height h1 to a height h2 is

given by

W =

∫ h2

h1

−Fg dx =

∫ h2

h1

−mg dx = −mg x
h2

h1

= −(mg h2 − mg h1) = −∆Ep

where −Fg = −W is the weight acting downward. One can say the work done equals

the change in potential energy.

Example 5-7. Consider a ball of mass m which is thrown vertically

upward with an initial velocity v0. Neglect air resistance

so that the only force acting on the ball is the force due

to gravity and construct a coordinate system with the

origin placed at the point where the ball is released.

Here the upward direction is taken as positive and by

Newton’s second law one can write

m
dv

dt
= −mg (5.31)

since the weight of the ball is mg and this force is acting downward. Separate the

variables in equation (5.31) and then integrate to obtain

∫ v

v0

m dv = −mg

∫ t

0

dt or mv − mv0 = −mgt (5.32)
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If y denotes the distance of the ball above the reference axis, then the velocity of

the ball is given by v =
dy

dt
. The equation (5.32) can now be expressed in the form

m
dy

dt
= mv0 − mgt (5.33)

since the velocity v =
dy

dt
represents the change in the height of the ball as a function

of time. Multiply equation (5.33) by dt and integrate to obtain

m

∫ y

0

dy =

∫ t

0

[mv0 − mgt] dt or my = mv0t −
1

2
mgt2 (5.34)

Solve equation (5.32) for the variable t and substitute for t in equation (5.34) and

then simplify to show
1

2
mv2 + mgy =

1

2
mv2

0 (5.35)

which can be interpreted as stating that the sum of the kinetic energy plus the

potential energy of the ball always has a constant value. Note that when the ball

reaches its maximum height, where y = h, the velocity of the ball is zero, and at this

time the equation (5.35) shows that the initial kinetic energy of the ball equals the

potential energy of the ball at its maximum height.

There are many more types of energy and all these energy types obey the law

of conservation of energy which states that there is no change in the total energy in

the Universe. Another way of saying this is to state that energy can be transformed,

but it cannot be created or destroyed.

First Moments and Center of Gravity

Consider a force F acting perpendicular to a

plane containing a line 0 − 0. The first moment

of a force F , also called a torque, is defined

Moment =(Force)(Lever arm distance)

M =F �
(5.36)

where the lever arm � is understood to represent

the shortest perpendicular distance from the line

0 − 0 to the line of action of the force F . The moment is a measure of the ability of

the force to produce a rotation about the line 0 − 0. In general a quantity times a

distance to a point, or times a distance to a line, or times a distance to a plane, is

called a moment of that quantity with respect to a point, line or plane.
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Centroid and Center of Mass

In the figure 5-1 the x-axis is considered as a see-saw with weights W1 and

W2 placed at the positions (x1, 0) and (x2, 0) respectively. Consider the problem of

determining where one would place a fulcrum so that the see-saw would balance.

Let (x̄, 0) denote the point where the fulcrum is placed and let �2 = x2 − x̄ denote

a lever arm associated with the weight W2 and let �1 = x̄ − x1 denote the lever arm

associated with the weight W1. The see-saw will balance if x̄ is selected such that

the sum of the moments9 about the fulcrum equals zero. This requires that

M1 = �1W1 = �2 W2 = M2 or (x̄ − x1)W1 = (x2 − x̄)W2 (5.37)

Figure 5-1. Balancing of weights using moments.

Another way to express the balancing of the see-saw is to examine the distances

x̄ − x1 and x̄ − x2. One distance is positive and the other is negative and the product

(x̄ − x1)W1 gives a positive moment and the product (x̄ − x2)W2 gives a negative

moment. One can then say that the moments produced by the weights balance if x̄

is selected such that the sum of the moments is zero or
2

∑

i=1

(x̄ − xi)Wi = 0 or x̄ =
W1x1 + W2x2

W1 + W2
(5.38)

The point (x̄, 0) is then called the center of gravity or centroid of the system.

9 By placing the fingers of the right-hand in the direction of the force and letting the fingers move in the direction
of rotation produced by the force, then the thumb points in a positive or negative direction. If the z-axis comes

out of the page toward you, then this is the positive direction assigned to the moment. The moment M1 = �1W1
is then said to be a positive moment and the moment M2 = �2W2 is called a negative moment. The sum of the

moments equal to zero is then written −�2W2 + �1W1 = 0.
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If there are n-weights W1, W2, . . . , Wn placed at the positions (x1, 0), (x2, 0), . . . , (xn, 0)

respectively, then the centroid of the system is defined as that point (x̄, 0) where the

sum of the moments produces zero or

n
∑

i=1

(x̄ − xi)Wi = 0 or x̄ =
W1x1 + W2x2 + · · ·+ Wnxn

W1 + W2 + · · ·+ Wn
=

∑n
i=1 Wixi

∑n
i=1 Wi

(5.39)

If W =
∑n

i=1 Wi is the total sum of the weights, then equation (5.39) can be written

as

W x̄ = W1x1 + W2x2 + · · ·+ Wnxn (5.40)

and this equation has the following interpretation. Imagine a three-dimensional

right-handed xyz Cartesian system of axes with the z-axis in figure 5-1 coming out

of the page. Each weight Wi then produces a moment Mi = Wixi about the z-axis.

That is, for each value i = 1, 2, . . . , n, the distance xi denotes the lever arm and Wi

denotes the force. The total sum of these moments gives the right-hand side of

equation (5.40). The left-hand side of equation (5.40) is then interpreted as stating

that if the sum of the weights W was placed at the position (x̄, 0), it would create

a moment M = W x̄ equivalent to summing each individual moment produced by all

the weights. The position x̄ is then called the center of gravity or centroid of the

system. Another interpretation given to equation (5.39) is that the numerator is a

weighted sum of the x-values and the denominator is the sum of the weights so that

x̄ is then a weighted average of the x-values.

One can generalize the definition of a first moment by defining a first moment

associated with just about any quantity. For example, one can define first moments

such as
Mf =(force)(lever arm)

Mm =(mass)(lever arm)

Ma =(area)(lever arm)

Mv =(volume)(lever arm)

...
...

Mq =(quantity)(lever arm)

(5.41)

where the lever arm is understood to represent the shortest perpendicular distance

from some reference point, line or plane to the quantity.

Example 5-8. Let m1, m2, . . . , mn denote n point masses located respectively at

the points (x1, y1), (x2, y2), . . . , (xn, yn). Find the center of mass (x̄, ȳ) of this system of

masses.
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Solution

Use the x and y-axes as the lines about which

one can take first moments associated with the

given point masses. If m =
∑n

i=1 mi is the total

sum of all the point masses, then if this mass

were placed at the point (x̄, ȳ) it would produce

first moments about these axes given by

Mx = mȳ and My = mx̄

These moments must be equivalent to the sum of the first moments produced by

each individual mass so that one can write

My = mx̄ =
n

∑

i=1

mixi and Mx = mȳ =
n

∑

i=1

miyi

The center of mass of the system then has the coordinates (x̄, ȳ) where

x̄ =

∑n
i=1 mixi

∑n
i=1 mi

=
My

m
and ȳ =

∑n
i=1 miyi

∑n
i=1 mi

=
Mx

m

Here the center of mass of the system of masses has coordinates (x̄, ȳ) where x̄ is a

weighted sum of the xi values and ȳ is a weighted sum of the yi values for positions

ranging from i = 1, 2, . . . , n

Centroid of an Area

Moments can be used to find the centroid of an area bounded by the curve

y = f(x) > 0, the x-axis and the lines x = a and x = b. Partition the interval [a, b] into

n equal parts with

a = x0, x1 = x0 + ∆x, x2 = x0 + 2∆x, . . . , xn = x0 + n∆x = b where ∆x =
b − a

n

Consider the center of the rectangular element of area illustrated in the figure 5-2

which has the coordinates (ξi, yi), where ξi = xi−1 + ∆x
2

and yi = 1
2
f(ξi). The center of

this element of area has a first moment about the y-axis given by

∆My = (lever arm)(area) = (ξi)[f(ξi) ∆xi]

and it also has a first moment about the x-axis given by

∆Mx = (lever arm)(area) =

(

1

2
f(ξi)

)

[f(ξi) ∆xi]
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A summation of the first moments associated with each rectangle produces a sum

from 1 to n giving the total moments

My =
n

∑

i=1

ξif(ξi)∆xi Mx =
n

∑

i=1

1

2
[f(ξi)]

2 ∆xi

Figure 5-2. Moments for Centroid of an area.

Neglecting infinitesimals of higher order and using the fundamental theorem of in-

tegral calculus one finds that in the limit as ∆xi → 0, the above sums become the

definite integrals

My =

∫ b

a

xf(x) dx Mx =

∫ b

a

1

2
[f(x)]2 dx (5.42)

The total area under the curve y = f(x) is given by the definite integral

A =

∫ b

a

f(x) dx

and if this total area were concentrated and placed at the point (x̄, ȳ) it would produce

moments about the x and y-axes given by Mx = Aȳ and My = Ax̄. The centroid is

that point (x̄, ȳ) where

Mx = Aȳ =

∫ b

a

1

2
[f(x)]2 dx and My = Ax̄ =

∫ b

a

xf(x) dx (5.43)

from which one can solve for x̄ and ȳ to obtain ȳ =
Mx

A
and x̄ =

My

A
.

In a similar fashion one can use the fundamental theorem of integral calculus

to show the lever arms associated with the first moments of the center point of an

element of area can be expressed in terms of the x and y coordinates associated

with the element of area. One can then verify the following lever arm equations

associated with the elements of area illustrated.
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1.) For the center point of the element of area

dA = y dx

lever arm to y-axis is x

lever arm to x-axis is y/2

2.) For the center point of the element of area

dA = (y2 − y1) dx

lever arm to y-axis is x

lever arm to x-axis is 1
2
(y1 + y2)

3.) For the center point of the element of area

dA = x dy

lever arm to y-axis is x/2

lever arm to x-axis is y

4.) For the center point of the element of area

dA = (x2 − x1) dy

lever arm to y-axis is 1
2
(x1 + x2)

lever arm to x-axis is y

Note that in determining the above lever arm distances the infinitesimals of

higher order have been neglected.

For example, associated with the last figure there is an element of area given by

dA = (x2 − x1) dy = [g(y)− f(y)] dy and the total area is given by

A =

∫ d

c

[g(y)− f(y)] dy

This element of area has a moment about the x-axis given by

dMx = (lever arm)(area) = y dA = y[g(y)− f(y)] dy

and a moment about the y-axis given by

dMy = (lever arm)(area) =
1

2
[g(y) + f(y)][g(y)− f(y)] dy =

1

2

[

g2(y) − f2(y)
]

dy

Summing these moments one finds

Mx =

∫ d

c

y[g(y)− f(y)] dy and My =

∫ d

c

[g2(y) − f2(y)] dy

with the centroid (x̄, ȳ) found from the relations

x̄ =
My

A
and ȳ =

Mx

A
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Symmetry

If an object has an axis of symmetry, then

the centroid of the object must lie on this line.

For example, if an area has a line of symmetry,

then when the area is rotated 180◦ about this

line the area has its same shape. Examine the

rectangle when rotated about a line through its center and find out the rectangle is

unchanged. One can say the centroid for the rectangle is at its geometric center.

Example 5-9. Use the equations (5.43) and find the centroid of a rectangle of

height h and base b.

Solution

Here y = f(x) = h is a constant and so one

can write

My =

∫ b

0

xf(x) dx =

∫ b

0

xh dx =
1

2
hb2

Mx =

∫ b

0

1

2
[f(x)]2 dx =

∫ b

0

1

2
h2 dx =

1

2
bh2

The total area of the rectangle is A = bh and so the centroid (x̄, ȳ) is determined by

the equations

x̄ =
My

A
=

b

2
and ȳ =

Mx

A
=

h

2

Example 5-10. Find the centroid of the area bounded by the x-axis, the y-

axis and the ellipse defined by the parametric equations x = a cos θ, y = b sinθ, for

0 ≤ θ ≤ π/2 and a > b > 0 constants.

Solution

The area to be inves-

tigated is the upper quad-

rant of an ellipse. Move out

a distance x from the origin

and construct an element of area dA = y dx. and substitute y = b sin θ, x = a cos θ with

dx = −a sin θ dθ and show the total area is

A =

∫ a

0

y dx =

∫ 0

π/2

b sin θ (−a sin θ) dθ = ab

∫ π/2

0

sin2 θ dθ

A =ab

∫ π/2

0

1

2
[1 − cos 2θ] dθ =

π

4
ab
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The element of area dA has a moment about the y-axis given by

My =

∫ a

0

xy dx =

∫ 0

π/2

(a cos θ)(b sin θ)(−a sin θ) dθ = a2b

∫ π/2

0

sin2 θ cos θ dθ =
1

3
a2b

The element of area has a moment about the x-axis given by

Mx =

∫ a

0

1

2
y(y dx) =

∫ 0

π/2

1

2
b2 sin2 θ (−a sin θ) dθ

Mx =
ab2

2

∫ π/2

0

sin3 θ dθ =
ab2

2

∫ π/2

0

[

3

4
sin θ − 1

4
sin 3θ

]

dθ =
1

3
ab2

The centroid (x̄, ȳ) is given by x̄ =
My

A
=

4

3

a

π
and ȳ =

My

A
=

4

3

b

π

Example 5-11. Find the centroid of the triangle with vertices (0, 0), (b, 0), (c, h)

The equation of the line �1 with slope h/c is

given by y = (h/c)x. The equation of the line �2

with slope h/(c− b) is given by y = [h/(c − b)] (x− b)

Construct a horizontal element of area

dA = (x2 − x1) dy

and show

dA =

[

b +
(c − b)

h
y − c

h
y

]

dy =

[

b− b

h
y

]

dy

and after summing these elements of area one finds

A =

∫ h

0

[

b − b

h
y

]

dy =
1

2
bh

This element of area has a moment about the x-axis given by

Mx =

∫ h

0

y

[

b − b

h
y

]

dy =
1

6
bh2

and moment about the y-axis given by

My =

∫ h

0

1

2

[

(

b +
(c− b)

h
y

)2

− c2

h2
y2

]

dy =
1

6
hb(b + c)

The centroid for the given triangle is (x̄, ȳ) where

x̄ =
My

A
=

1

3
(b + c) and ȳ =

Mx

A
=

h

3
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Table 5-1 Centroids of Some Simple Shapes

Shape Area x̄ ȳ

Triangle
1

2
bh

1

3
(1 + α)b

1

3
h

Rectangle bh
b

2

h

2

Quadrant
of circle

π

4
r2

4r

3π

4r

3π

Quadrant
of ellipse

π

4
ab

4a

3π

4b

3π

Wedge θr2
2

3
r

sin θ

θ
0
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Centroids of composite shapes

If an area is composed of some combination of simple shapes such as triangles,

rectangles, circles or some other shapes where the centroids of each shape have

known centroids, then the resultant moment about an axis is the algebraic sum of

the moments of the component shapes and the centroid of the composite shape is

given by x̄ =
My

A
and ȳ = Mx

A
, where A is the total area of the composite shape.

Whenever the centroids of all the individual shapes which make up the total shape

are known, then integration is not required.

Example 5-12. If the composite shape is composed of n known shapes having

area A1 with centroid (x̄1, ȳ1)

area A2 with centroid (x̄2, ȳ2)

...

area An with centroid (x̄n, ȳn)

then the total area of the composite shape is

A = A1 + A2 + A3 + · · ·+ An

The total moment produced about the y−axis from each area is

My = A1x̄1 + A2x̄2 + A3x̄3 + · · ·+ Anx̄n

The total moment produced about the x−axis from each area is

Mx = A1ȳ1 + A2ȳ2 + A3ȳ3 + · · ·+ Anȳn

The centroid of the composite shape is therefore

x̄ =
My

A
and ȳ =

Mx

A

Centroid for Solid of Revolution

Consider the area bounded by the curve y = f(x) > 0 and the lines x = a, x = b > a

and the x-axis which is revolved about the x-axis to form a solid of revolution. One

can construct an element of volume dV for this solid using the disk generated when

dA is rotated about the x-axis. The volume element associated with this disk is

dV = πy2 dx with V =

∫ b

a

πy2 dx
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where the integral represents a summation of the volume elements. The moment of

the disk about the plane perpendicular to the axis of rotation which passes through

the origin is

dM = x dV = πx y2 dx and M =

∫ b

a

πxy2 dx

where x is the lever arm distance from the plane to the volume element and M is a

summation of these moments. The above integral is called the first moment of the

solid of revolution with respect to the plane through the origin and perpendicular

to the axis of rotation. The centroid x̄ is then defined as

x̄ =
M

V
=

∫ b

a

xy2 dx

∫ b

a

y2 dx

(5.44)

and by symmetry the position of x̄ is on the axis of rotation.

Centroid for Curve

Let y = f(x) define a smooth continuous

curve for a ≤ x ≤ b. At the position (x, y) on

the curve construct the element of arc length

ds =
√

dx2 + dy2.

The first moments about the x and y-axes associated with the curve

C = { (x, y) | y = f(x), a ≤ x ≤ b }

are defined as a summation of the first moments associated with the element of arc

length ds. One can define

dMx = (lever arm)(element of arc length) = y ds

dMy = (lever arm)(element of arc length) = x ds

A summation of these first moments gives

Mx =

∫ b

a

y ds and My =

∫ b

a

x ds

If the given curve C has an arc length s given by

s =

∫ b

a

√

1 +

(

dy

dx

)2

dx,
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then the centroid of the curve C is defined as the point (x̄, ȳ) where

x̄ =
My

s
and ȳ =

Mx

s
(5.45)

That is, if the arc length s could be concentrated and placed at a point (x̄, ȳ) called

the centroid, then the centroid is selected so that the first moment x̄s is the same

as that produced by the summation of individual moments about the y-axis and

the first moment ȳ s is the same as that produced by the summation of individual

moments about the x-axis.

Example 5-13. Consider the arc of a circle which lies in the first quadrant.

This curve is defined C = { (x, y) | x = r cos θ, y = r sin θ, 0 ≤ θ ≤ π/2 } where r is the

radius of the circle. Find the centroid associated with this curve.

Solution

The element of arc length squared is given

by ds2 = dx2 + dy2 so that one can write

s =

∫ π/2

0

ds =

∫ π/2

0

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ

s =

∫ π/2

0

ds =

∫ π/2

0

r dθ = r θ
π/2

0

=
1

2
πr

Use the equations (5.45) and calculate the first moments of the curve about the

x and y-axes to obtain

Mx =

∫ π/2

0

y ds =

∫ π/2

0

r sin θ r dθ = r2(− cos θ)
π/2

0

= r2

My =

∫ π/2

0

x ds =

∫ π/2

0

r cos θ r dθ = r2(sin θ)
π/2

0

= r2

The centroid (x̄, ȳ) is then x̄ =
My

s
=

2

π
r and ȳ =

Mx

s
=

2

π
r

Higher Order Moments

The various first moments defined by the relation (5.41) can be further general-

ized to second moments by replacing the lever arm by the lever arm squared. Second

moments about a line � are denoted I�� and one can write

I�� =(force)(lever arm)2

I�� =(mass)(lever arm)2

I�� =(area)(lever arm)2

I�� =(volume)(lever arm)2

...
...

I�� =(quantity)(lever arm)2

(5.46)
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where the lever arm is understood to represent a perpendicular distance from some

reference line �. Second moments are referred to as moments of inertia. In the

study of rotational motion of rigid bodies it is found that the moment of inertia is

a measure of how mass distribution affects changes to the angular motion of a body

as it rotates about an axis.

Third order moments would involve the lever arm cubed and nth order moments

would involve the lever arm raised to the nth power. Third order and higher order

moments arise in the study of statistics, mechanics and physics.

Example 5-14.

Given a region R one can construct at a general

point (x, y) ∈ R an element of area dA. This element

of area has a second moment of inertia about the

y−axis given by

dIyy = x2 dA

and summing these second moments of inertia over

the region R gives the total second moment about

the y-axis as

Iyy =

∫∫
R

x2 dA

In a similar fashion, the second moment of inertia of the element dA about the x−axis

is given by

dIxx = y2 dA

and a summation of these second moments over the region R gives the total second

moment about the x-axis as

Ixx =

∫∫
R

y2 dA

If the moment axis is perpendicular to the plane in which the region R lies, say

a line through the origin and perpendicular to the x and y axes, then the second

moment with respect to this line is called a polar moment of inertia and is written

J00 =

∫∫
R

r2 dA =

∫∫
R

(x2 + y2) dA =

∫∫
R

x2 dA +

∫∫
R

y2 dA = Iyy + Ixx

which shows the polar moment of inertia about the line through the origin is the

sum of the moments of inertia about the x and y axes.
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An examination of the Figure 5-3 shows that if �y is the line x = x0 parallel to

the y−axis, then an element of area dA has a second moment with respect to the

line �y given by

I�y�y
=

∫∫

R

|x − x0|2 dA =

∫∫

R

(x − x0)
2 dA (5.47)

If �x is the line y = y0 which is parallel to the x−axis, then the element of area dA

has the second moment with respect to line �x given by

I�x�x
=

∫∫

R

|y − y0|2 dA =

∫∫

R

(y − y0)
2 dA (5.48)

Figure 5-3.

Second moments with respect to lines parallel to the x and y axes.

Expanding equation (5.47) one finds

I�y�y
=

∫∫

R

(x2 − 2xx0 + x2
0) dA

=

∫∫

R

x2 dA − 2x0

∫∫

R

x dA + x2
0

∫∫

R

dA

I�y�y
=Iyy − 2x0My + x2

0A

(5.49)

Similarly, if one expands the equation (5.48) one finds that

I�x�x
= Ixx − 2y0Mx + y2

0A (5.50)

The results given by the equations (5.49) and (5.50) are known as the basic equations

for representing the parallel axes theorem from mechanics. This theorem states that

if you know the area of a region and the first and second moments of the region

about one of the coordinate axes, then you can find the second moment about any

axis parallel to the coordinate axes by using one of the above results.
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Example 5-15. Let dτ = dx dy dz denote an element of volume and ρ dτ = dm

denote an element of mass, where ρ is the density of the solid. The second moments

of mass with respect to the x, y and z axes are given by

Ixx =

∫∫∫
(y2 + z2)ρ dτ

Iyy =

∫∫∫
(x2 + z2)ρ dτ

Izz =

∫∫∫
(x2 + y2)ρ dτ

where integrations are over the volume defining the solid.

Example 5-16.

Consider a particle P with constant mass m

rotating in a circle of radius r about the origin

having a tangential force F producing the mo-

tion. Let θ denote the angular displacement of

the particle, ω =
dθ

dt
the angular velocity of the

particle,
dω

dt
=

d2θ

dt2
= α, the angular acceleration

of the particle. Newton’s second law of motion

can then be expressed F = m
dv

dt
.

If s = rθ is the distance traveled by the particle, then
ds

dt
= v = r

dθ

dt
= rω is the

change in distance with respect to time or speed10 of the particle, so that Newton’s

second law can be expressed

F = m
dv

dt
= m

d

dt

(
r
dθ

dt

)
= mr

d2θ

dt2
(5.51)

Note that if F is the tangential force acting on the particle, then M = Fr is the torque

or first moment of the force about the origin. Consequently, multiplying equation

(5.51) on both sides by r one finds Fr = mr2
d2θ

dt2
. Here Fr = M is the first moment or

torque about the origin, mr2 = I is the mass times the lever arm squared or moment

of inertia of the mass about the origin. The Newton’s law for rotational motion can

therefore be expressed in the form

M = Iα or M = I
d2θ

dt2
(5.52)

10 Speed is a scalar quantity representing the magnitude of velocity which is a vector quantity.



389

Example 5-17. Find the centroid and moments of inertia about the x and y−
axes associated with the semi-circle x2 + y2 = R2 for x > 0.

Solution The area inside the semi-circle is A = π
2 R2. At

a general point (x, y) within the semi-circle construct an

element of area dA = dxdy, then the first moment about the

y−axis is given by

dMy = xdA = xdxdy

and a summation over all elements dA within the semi-circle gives the first moment

My =

∫ x=R

x=0

∫ y=
√

R2−x2

y=−
√

R2−x2

x dydx My =

∫ R

0

2x
√

R2 − x2 dx

Make the substitution u = R2 − x2 with du = −2x dx and show the integration

produces the result My =
2

3
R3, so that x̄ =

My

A
=

2R3/3

πR2/2
=

4R

3π
. By symmetry, the

centroid must lie on the line y = 0 so that the centroid of the semi-circle lies at the

point (x̄, ȳ) = (
4R

3π
, 0).

The second moments of the area element about the x and y−axes gives

dIxx = y2 dA = y2 dydx and dIyy = x2 dA = x2 dxdy

A summation over the area of the semi-circle gives the integrals

Ixx =

∫ x=R

x=0

∫ y=
√

R2−x2

y=−
√

R2−x2

y2 dydx =
2

3

∫ R

0

(R2 − x2)3/2 dx =
π

8
R4

Iyy =

∫ x=R

x=0

∫ y=
√

R2−x2

y=−
√

R2−x2

x2 dydx =

∫ R

0

2x2(R2 − x2)1/2 dx =
π

8
R4

where the substitution x = R sin θ can be used to aid in evaluating the above integrals.

Let Icc denote the moment of inertia about the line x = x0 = 4R
3π

through the

centroid. The parallel axis theorem shows that Icc =

(

π

8
− 8

9π

)

R4.



390

Example 5-18. Find the centroid and moments of inertia about the x and

y−axes associated with the circular sector bounded by the rays θ = −θ0 and θ = θ0

and the circle r = R.
Solution The area inside the circular sector is given by

A = θ0R
2. Move to a general point (x, y) within the sector

and construct an element of area dA = r drdθ. The x and y

lever arms are given by x = r cos θ and y = r sin θ. The first

moment of this area element about the y−axis is given by

dMy = xdA = (r cos θ)r drdθ

and a summation of these elements over the area of the sector gives

My =

∫ r=R

r=0

∫ θ0

−θ0

cos θ dθ r2 dr =
2

3
R3 sin θ0

The x̄ value for this area is given by x̄ =
My

A
=

2

3
R

sin θ0

θ0
. By symmetry, the

centroid lies on the ray θ = 0 where (x̄, ȳ) = (2
3
R sin θ0

θ0

, 0).

The elements for the second moments about the x and y−axes are given by

dIxx = y2 dA = (r2 sin2 θ) r drdθ and dIyy = x2 dA = (r2 cos2 θ) r drdθ

and summing these elements over the area of the sector gives the moments of inertia

Ixx =

∫ R

0

∫ θ0

−θ0

r3 sin2 θ dθ dr = (2θ0 − sin 2θ0)
R4

8

Iyy =

∫ r

0

∫ θ0

−θ0

r3 cos2 θ dθ dr = (2θ0 + sin2θ0)
R4

8

Moment of Inertia of an Area

The moment of inertia of a general plane area

with respect to an axis can be calculated as fol-

lows. Construct elements of area dA all in the

shape of a rectangle within the plane area and

which are parallel to the axis not passing through

the area. By definition, the element of moment

of inertia associated with an element of area dA
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Table 5-2 Moments of Inertia of Some Simple Shapes

Shape Area Ixx Iyy

Triangle
1

2
bh

1

12
bh3

1

12
b3h(1 + α + α2)

Rectangle bh
1

3
bh3

1

12
b3h

Quadrant
of circle

π

4
r2

1

16
πr4

1

16
πr4

Quadrant
of ellipse

π

4
ab

1

16
πab3

1

16
πa3b

Wedge θr2 (2θ0 − sin 2θ0)
r4

8
(2θ0 + sin 2θ0)

r4

8
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is the lever arm squared times the element of area or dI�� = ξ2 dA, where ξ represents

the distance from the axis to an element of area dA. The total moment of inertia is

then a summation over all rectangular elements. If α and β are values denoting the

extreme distances of the plane area from the axis, then the moment of inertia of the

plane area is determined by evaluating the integral

I�� =

∫ ξ=β

ξ=α

ξ2 dA (5.53)

Here it is assumed that the element of area dA can be expressed in terms of the

distance ξ.

Moment of Inertia of a Solid

In the study of mechanics one fre-

quently encounters the necessity to cal-

culate the moment of inertia of a solid

which is generated by revolving a plane

area about an axis. If a rectangular ele-

ment of area is construct within the plane

area and is rotated about an axis � not

passing through the area, then a cylindrical shell shaped volume element dV is

generated. Multiplying this volume element by the density ρ of the solid creates an

element of mass dm = ρ dV . The element of the moment of inertia is then given by

dI�� = ξ2 dm = ξ2 ρ dV (5.54)

where ξ is the distance of dm from the axis of rotation. If the extreme distances

of the plane area from the axis of rotation have the values a and b, then the total

moment of inertia about the rotation axis is

I�� =

∫ ξ=b

ξ=a

ξ2 dm =

∫ ξ=b

ξ=a

ξ2 ρ dV (5.55)

If the solid is homogeneous, then the density ρ is a constant so that the moment of

inertia can be expressed

I�� = ρ

∫ ξ=b

ξ=a

ξ2 dV (5.56)
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Moment of Inertia of Composite Shapes

To calculate the moment of inertia of a composite area about a selected axis

(i) Calculate the moment of inertia of each component about the selected axis.

(ii) Next one need only sum the moments of inertia calculated in step (i) to calculate

the moment of inertia of the given composite area.

That is, the moment of inertia of a composite area about an axis is equal to the

sum of the moments of the component areas with respect to the same axis. Note that

if a component of the shape is removed, then this places a hole in the composite

shape and in this case the moment of inertia of the component removed is then

subtracted from the total sum.

Pressure

The average density ρ of a substance is defined as its mass m divided by its

volume V or ρ = m
V

, where [ρ] = kg/m3, [m] = kg, [V ] = m3. The relative density of a

substance is defined as the ratio of density of substance divided by the density of

water. Pressure is a scalar quantity defined as the average force per unit of area and

its unit of measurement is the Pascal, abbreviated (Pa), where 1Pa = 1Nm−2.

Liquid Pressure

Integration can be used to determine the forces acting on submerged objects.

Pressure at a point is p = lim
∆A→0

∆F

∆A
, and represents a derivative of the force with

respect to area. An area submerged in water experiences only a pressure normal to

its surface and there are no forces parallel to the area. This is known as Pascal’s

law. Knowing the pressure at a point, one can use integration to calculate the total

force acting on a submerged object. The pressure p representing force per unit of

area must be known when constructing water-towers, dams, locks, reservoirs, ships,

submarines, under-water vessels as the total force acting on a submerged object

must be known for certain design considerations.

Consider two points P1 and P2 beneath a fluid having a constant density ρ. If

∆h = |P1 −P2| is the distance between the points and ρ is the constant density of the

liquid, then the change in pressure between the points P1 and P2 is given by

∆p = ρ g ∆h (5.57)

where h, [h] = m, is measured positive in the downward direction, ρ, [ρ] = kg/m3,

is the density and g, [g] = m/s2 is the acceleration of gravity so that [p] = N/m2.

Defining w = ρ g, [w] = N/m3 as the weight of the liquid per unit volume, one can
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write ∆p = w ∆h. Note the pressure increases with depth and depends only on the

quantities vertical distance, density and acceleration of gravity. The pressure is then

the same at all points of a submerged area lying on a horizontal line of constant

depth within the liquid.

Consider a vertical plane area submerged in

a liquid. Using the fact that the pressure is

the same at all point lying on a horizontal

line at constant depth, one can construct an

element of area dA = �(h) dh on the submerged

area as illustrated, where � = �(h) is the hor-

izontal dimension of the element of area.

The element of force exerted by the liquid on one side of the submerged element

of area is given by

dF = p dA = w h dA = w h �(h) dh

and so the total force acting on the submerged area is given by the summation of

forces

F =

∫ h2

h1

w h �(h) dh (5.58)

The representation for the total force given by equation (5.58) assumes that the

element of area can be expressed in terms of the depth h. If one selects a different

way of representing the position of the submerged object, say by constructing an

x, y-axes somewhere, then the above quantities have to be modified accordingly.

Gas Pressure

The equation (5.57) is valid for the change in gas pressure between two points P1

and P2 for small volumes. However, for small volumes the gas pressure is very small

and ∆p remains small unless h is very large. One usually makes use of the fact that

the gas pressure is essentially constant at all points within a volume of reasonable

size. When dealing with volumes of a very large size, like the Earth’s atmosphere,

the equation (5.57) is no longer valid. Instead, one usually uses the fact that (i)

the pressure decreases as the height h above the Earth increases and (ii) the density

of the air varies widely over the surface of the Earth. Under these conditions one

uses the approximate relation that the change in pressure with respect to height is

proportional to ρ g and one writes

dp

dh
= −ρ g (5.59)
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The negative sign indicating that the pressure decreases with height. Note that the

pressure has a wide range of values over the Earth’s surface, varying with tempera-

ture, humidity, molar mass of dry air and sea level pressure. The average sea level

pressure being 101.325 kPa or 760 mmHg. One can find various empirical formulas

for variations of the density ρ determined by analyzing weather data.

Chemical Kinetics

In chemistry a chemical reaction describing how hydrogen (H2) and oxygen (O2)

combine to form water is given by

2H2 + O2
k
⇀ 2H2O

This reaction is a special case of a more general chemical reaction having the form

n1A1 + n2A2 + n3A3 + · · ·
kf
⇀
↽

k r

m1B1 + m2B2 + m3B3 + · · · (5.60)

where A1, A2, A3, . . . represent molecules of the reacting substances, called reactants

and B1, B2, B3, . . . represent molecules formed during the reaction, called product el-

ements of the reaction. The coefficients n1, n2, n3, . . . and m1, m2, m3, . . . are either

positive integers, zero or they have a fractional value. These values indicate the

proportion of molecules involved in the reaction or proportions involved when the

reactants combine. These coefficients are referred to as stoichiometric coefficients.

The constants kf and kr are positive constants called the forward and reverse re-

action rate coefficients. If kr = 0, then the reaction goes in only one direction.

The stoichiometric representation of a reaction gives only the net result of a re-

action and does not go into details about how the reaction is taking place. Other

schemes for representing a reaction are used for more complicated reactions. One

part of chemistry is the development of mathematical models which better describe

the mechanisms of how elements and compounds react and involves the study of re-

action dynamics of chemicals. This sometimes requires research involving extensive

experimental and theoretical background work in order to completely understand all

the bonding and subreactions which occur simultaneously during a given reaction.

Simple chemical reactions can be described using our basic knowledge of calculus.

Rates of Reactions

A reaction is called a simple reaction if there are no intermediate reactions or

processes taking place behind the scenes. For example, a simple reaction such as

n1A1 + n2A2
k
⇀ m1B1 + m2B2 (5.61)
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states that n1 molecules of A1 and n2 molecules of A2 combined to form m1 molecules

of B1 and m2 molecules of B2. Let [A1], [A2], [B1], [B2] denote respectively the concen-

trations of the molecules A1, A2, B1, B2 with the concentration measured in units of

moles/liter. The stoichiometric reaction (5.61) states that as the concentrations of

A1 and A2 decrease, then the concentrations of B1 and B2 increase. It is assumed

that A1 and A2 decrease at the same rate so that

− 1

n1

d[A1]

dt
= − 1

n2

d[A2]

dt
(5.62)

and the concentrations of B1 and B2 increase at the same rate so that

1

m1

d[B1]

dt
=

1

m2

d[B2]

dt
(5.63)

Equating the equations (5.62) and (5.63) gives

− 1

n1

d[A1]

dt
= − 1

n2

d[A2]

dt
=

1

m1

d[B1]

dt
=

1

m2

d[B2]

dt
(5.64)

Here a standard rate of reaction is achieved by taking the rate of change of each

substance and dividing by its stoichiometric coefficient. Also note that the minus

signs are used to denote a decrease in concentration and a plus sign is used to denote

an increase in concentration.

The Law of Mass Action

There are numerous and sometimes complicated rate laws for describing the

chemical kinetics of a reaction. These complicated rate laws are avoided in presenting

this introduction to chemical kinetics. For simple chemical reactions at a constant

temperature which have the form of equation (5.60), let x = x(t) denote the number

of molecules per liter which have reacted after a time t. Many of these simple

equations obey the law of mass action which states that the rate of change of x = x(t)

with respect to time t can be represented

dx

dt
= k[A1]

n1 [A2]
n2[A3]

n3 · · · (5.65)

Each of the superscripts n1, n2, n3, . . . have known values and k is a rate or velocity

coefficient having units of 1/time. The order of the chemical reaction is represented

by the sum n1 + n2 + n3 + · · · of these exponents. If the sum is one, the reaction is

called a first-order reaction or unimolecular reaction. If the sum is two, the reaction

is called a second-order reaction or bimolecular. If the sum is three, the reaction is
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called a third-order reaction or trimolecular, etc. Note that trimolecular and higher

order reactions are rare.

An example of a unimolecular reaction is a substance disintegrating and this

type of reaction can be represented

−d[A]

dt
= k[A], [A] = [A](t) (5.66)

and this equation is a way of stating that the rate of change of a decaying substance

is proportional to the amount present. The proportionality constant k being called

the rate coefficient. Separate the variables in equation (5.66) and write
d[A]

[A]
= −k dt

and then integrate both sides from 0 to t, assuming that at time t = 0, [A](0) = [A]0

is the initial concentration. One can then write
∫ [A]

[A]0

d[A]

[A]
= −k

∫ t

0

dt

and then these equations can be integrated to obtain

ln [A] − ln [A]0 = −kt =⇒ [A] = [A](t) = [A]0 e−kt (5.67)

where the reaction rate k has dimensions of 1/time. Use equation (5.67) and plot

[A](t) versus t one finds the result is a straight line on semi-log paper. A second-order

reaction or bimolecular reaction has the form

A1 + A2

kf
⇀
↽

k r

B1 (5.68)

and represents a reversible bimolecular reaction. Here kf is the forward rate constant

and kr is the reverse rate constant. One can alternatively write the forward and

reverse reactions as two separate equations. If kr = 0, then there is no reverse

reaction. Apply the law of mass action to the stoichiometric reaction (5.68) gives

the differential equations

d[A1]

dt
=kr[B1]− kf [A1][A2]

d[A2]

dt
=kr[B1]− kf [A1][A2]

d[B1]

dt
= − kr[B1] + kf [A1][A2]

(5.69)

Note that the rate coefficients kr and kf can have very large differences in magnitudes

thus driving the reaction more in one direction than the other and for the reaction
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(5.68) the rate coefficients kf and kr do not have the same units of measurements.

To show this one should perform a dimensional analysis on each of the terms in the

equations (5.69). Each group of terms in equation (5.69) must have the same units of

measurements so that by examining the dimensions of each term in a group one can

show the reaction rates kf and kr do not have the same dimensions. For example, if

the concentrations are measured in units of mol/liter, then the terms on the left-hand

side of the equations (5.69) all have units of mol/liter per second and consequently

each group of terms on the right-hand side of the equations (5.69) must also have this

same unit of measurement. This requires that kr have units of 1/second and kf have

units of 1
mol

liter
· second

. If different units of measurement are used one must perform

a similar type of analysis of the dimensions associated with each group of terms.

The requirement that each group of terms have the same dimensions is known as

requiring that the equations be homogeneous in their dimensions. If an equation is

not dimensionally homogeneous, then you know it is wrong.

In the equations (5.69) let kr = 0 to obtain

d[A1]

dt
= − kf [A1][A2]

d[A2]

dt
= − kf [A1][A2]

d[B1]

dt
= kf [A1][A2]

(5.70)

Let y = y(t) = [B1] denote the concentration of B1 as a function of time t. If at time

t = 0 the concentrations of A1 and A2 are denoted by [A1]0 and [A2]0, then after a

time t one can express the amount of A1 and A2 by using the equations

[A1] = [A1](t) = [A1]0 − y and [A2] = [A2](t) = [A2]0 − y

Substituting these values into the last of the equations (5.70) gives the result

dy

dt
= kf ([A1]0 − y)([A2]0 − y) (5.71)

Let α1 = [A1]0 and α2 = [A2]0 and assume α1 �= α2 so that equation (5.71) can be

expressed in the form
dy

(α1 − y)(α2 − y)
= kf dt (5.72)
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where the variables have been separated. Use partial fractions and write

1

(α1 − y)(α2 − y)
=

A

α1 − y
+

B

α2 − y

and show A = 1
α2−α1

and B = −1
α2−α1

= −A. The equation (5.72) can then be expressed

the following form
A dy

α1 − y
− A dy

α2 − y
= kf dt, α1 �= α2 (5.73)

which is easily integrated to obtain

−A ln |α1 − y| + A ln |α2 − y| = kf t + C

where C is a constant of integration. Solving for y gives

A ln

∣

∣

∣

∣

α2 − y

α1 − y

∣

∣

∣

∣

=kf t + C

ln

∣

∣

∣

∣

α2 − y

α1 − y

∣

∣

∣

∣

=kf(α2 − α1)t + C∗, where C∗ = C(α2 − α1)

α2 − y

α1 − y
=Kekf (α2−α1)t, where K = eC∗

is some new constant.

(5.74)

Evaluate equation (5.74) at time t = 0 with y(0) = 0 to show K = α2

α1

. Substituting

this value into the last equation in (5.74) and using algebra to solve for y one finds

that

y = y(t) = α1α2

(

1− ekf (α2−α2)t
)

α1 − α2ekf (α2−α1)t
(5.75)

In the special case α1 = α2, the equation (5.72) takes on the form

dy

(α1 − y)2
= kf dt (5.76)

As an exercise integrate both sides of this equation and show

y = y(t) =
α2

1kf t

1 + α1kf t
(5.77)

Differential Equations

Equations which contain derivatives which are of the form

L(y) = a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−2(x)

d2y

dx2
+ an−1(x)

dy

dx
+ an(x)y = 0 (5.78)
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where a0, a1, . . . , an are constants or functions of x, are called linear nth order homo-

geneous differential equations and linear differential equations of the form

L(y) = a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−2(x)

d2y

dx2
+ an−1(x)

dy

dx
+ an(x)y = F (x) (5.79)

are called linear nth order nonhomogeneous differential equations. The symbol L is

a shorthand notation to denote the linear differential operator

L( ) = a0(x)
dn( )

dxn
+ a1(x)

dn−1( )

dxn−1
+ · · ·+ an−2(x)

d2( )

dx2
+ an−1(x)

d( )

dx
+ an(x)( ) (5.80)

An operator L is called a linear differential operator when it satisfies the conditions

L(y1 + y2) = L(y1) + L(y2)

L(αy) = αL(y)
(5.81)

where α is a constant. The first condition is satisfied because a derivative of sum is

the sum of the derivatives and the second condition is satisfied because the derivative

of a constant times a function is the constant times the derivative of the function.

Differential equations with ordinary derivatives, not having the forms of equations

(5.78) or (5.79) , are called nonlinear differential equations. In general, linear differ-

ential equations are easier to solve than nonlinear differential equations.

A solution of the differential equation (5.78) is any continuous function y = y(x)

which can be differentiated n-times and one can show that when the function y = y(x)

and its derivatives are substituted into the equation (5.78) then an identity results.

The function y = y(x) is then said to have satisfied the conditions specified by the

differential equation. The differential equation (5.78) has a nth derivative term and

consequently it would require n-integrations to obtain the solution. The general

solution will therefore contain n arbitrary constants. Sometimes it is possible to

integrate the differential equation and determine the solution by integration meth-

ods. Sometimes the given differential equation has a special form where short cut

methods have been developed for obtaining a solution.

The general procedure to solve the linear nth order nonhomogeneous equation

(5.79) is to first solve the homogeneous differential equation (5.78) by finding n

linearly independent solutions {y1(x), y2(x), . . . , yn(x)}, called a fundamental set of so-

lutions, where each function yi(x) satisfies L(yi(x)) = 0 for i = 1, 2, . . . , n. The general

solution of the linear homogeneous differential equation (5.78) is then any linear
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combination of the functions in the fundamental set. The general solution of the

linear homogeneous equation can be expressed

yc = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) (5.82)

where c1, c2, . . . , cn are constants and yc is called a complementary solution. After

determining the complementary solution one then tries to find any function yp which

satisfies L(yp) = F (x). The function yp is then called a particular solution of the

nonhomogeneous linear differential equation (5.79). The general solution to the linear

nonhomogeneous differential equation (5.79) is written

y = yc + yp (5.83)

which represents a sum of the complementary and particular solutions.

Spring-mass System

Consider a vertical spring which is suspended from a support as illustrated in

figure 5-4(a). Consider what happens when a weight W is attached to a linear spring,

and the spring stretches some distance s0, and the weight remains at rest in an

equilibrium position as illustrated in the figure 5-4(b). The weight is in equilibrium

because the downward force W is offset by the upward spring restoring force and

these forces must be equal and in opposite directions. If the weight is displaced

from this equilibrium position and then released, it undergoes a vibratory motion

with respect to a set of reference axes constructed at the equilibrium position as

illustrated in figure 5-4(c).

In order to model the above problem, the following assumptions are made:

(a) No motion exists in the horizontal direction.

(b) A downward displacement is considered as positive.

(c) The spring is a linear spring and obeys Hooke’s11 law which states that the

restoring force of the spring is proportional to the spring displacement.

Using Hooke’s law the spring force holding the weight in equilibrium can be

calculated. In figure 5-4(b), there is no motion because the weight W acting down

is offset by the spring force acting upward. Let fs denote the spring force illustrated

in figure 5-4(d). Using Hooke’s law, the spring force fs is proportional to the dis-

placement s and is written fs = Ks, where K is the proportionality constant called

11 Robert Hooke (1635–1703) English physicist.
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the spring constant. The graph of fs versus displacement s is therefore a straight

line with slope K.

Figure 5-4. Spring-mass system.

Summation of the forces in equilibrium is represented in figure 5-4(b) which illus-

trates the spring force equal to the weight acting down or fs = Ks0 = W . This

determines the spring constant K as

K =
W

s0
. (5.84)

In figure 5-4(c), the spring force acting on the weight is given by fs = K(s0 +y) where

y is the displacement from the equilibrium position. The vibratory motion can be

describe by using Newton’s second law that the sum of the forces acting on the mass

must equal the mass times acceleration. The motion of the weight is thus modeled

by summing the forces in the y direction and writing Newton’s second law as

m
d2y

dt2
= W − fs = W − Ks0 −Ky = −Ky, or m

d2y

dt2
+ Ky = 0 (5.85)

or
d2y

dt2
+ ω2y = 0, ω2 = K/m (5.86)
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Here the substitution ω2 = K/m or ω =
√

K/m has been made to simply the

representation of the differential equation describing the motion of the spring-mass

system. The quantity ω is called the natural frequency of the undamped system.

Simple Harmonic Motion

Consider the spring illustrated which is stretched

a distance y. Hooke’s law states the for a linear

spring, the restoring force Fs is proportional to the

displacement y and one can write Fs = −Ky, where K

is the proportionality constant called the spring constant. The negative sign indicat-

ing that the restoring force is in the opposite direction of the spring displacement.

The elastic potential energy of the spring is defined as follows. The work done

in stretching a spring a distance y is given by

W =(average force)(displacement)

W =

(

1

2
K y

)

(y) =
1

2
K y2

In stretching the spring using a force Ky, the spring exerts an opposite force −Ky

which does negative work. This negative work is called the elastic potential energy

of the spring and it is denoted by

Ep =
1

2
Ky2

Multiply equation (5.85) by
dy

dt
dt to obtain

m
dy

dt

d2y

dt2
dt + K y

dy

dt
dt = 0 (5.87)

Note that the integration of each term in equation (5.87) is of the form
∫

u du for

an appropriate value of u. One can verify that an integration of equation (5.87)

produces the result that the kinetic energy plus spring potential energy is a constant

and represented
1

2
m

(

dy

dt

)2

+
1

2
Ky2 = E (5.88)
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where E is a constant of integration. Observe that the terms in equation (5.88)

represent

Ek =
1

2
mv2 =

1

2
m

(

dy

dt

)2

= Kinetic energy of system

Ep =
1

2
K y2 = Spring potential energy

E =Total energy of the system

Equation (5.88) can be integrated to obtain the displacement y = y(t) as a function

of time t. Write equation (5.88) as

(

dy

dt

)2

=
2E

m
− K

m
y2 = ω2

(

A2 − y2
)

, where A2 =
2E

K
and ω2 =

K

m
(5.89)

Take the square root of both sides to obtain the differential equation

dy

dt
= ω

√

A2 − y2

This is a differential equation where the variables can be separated to obtain

dy
√

A2 − y2
= ω dt

and then integrated by making the substitution

y = A sin θ, dy = A cos θ dθ to obtain
A cos θdθ

A cos θ
= dθ = ω dt

where another integration produces

θ = ω t + θ0 or θ = sin−1
( y

A

)

= ω t + θ0 or y = y(t) = A sin(ωt + θ0) (5.90)

where θ0 is a constant of integration. Any periodic motion y = y(t) represented by

either of the equations

y = A sin(ωt + θ0) or y = A cos(ωt + θ0) (5.91)

is said to be a simple harmonic motion with amplitude A. The period P associated

with the oscillation is the time taken to complete one oscillation. The period of

the motion described by equation (5.90) or (5.91) is P = 2π
ω

. The frequency of the

motion is f = 1
P = ω

2π and represents the number of oscillation performed in one

second, where 1 unit cycle per second is called a Hertz. The angle θ0 in equation

(5.91) is called the phase angle or phase shift associated with the oscillations.
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Note that equations (5.91) differ only by a phase constant, since one can write

A sin(ωt + θ0) =A cos(ωt + θ0 − π/2) = A cos(ωt + φ0), φ0 = θ0 − π/2

A cos(ωt + θ0) =A sin(ωt + θ0 + π/2) = A sin(ωt + ψ0), ψ0 = θ0 + π/2

In general, given an equation of the form

y = y(t) = A1 cos ωt + A2 sinωt

one can multiply both the numerator and denominator by
√

A2
1 + A2

2 to obtain

y = y(t) =
√

A2
1 + A2

2

[

A1
√

A2
1 + A2

2

cosωt +
A2

√

A2
1 + A2

2

sin ωt

]

so that the oscillatory motion can be expressed in the following form.

y =y(t) = A [sin θ0 cos ωt + cos θ0 sin ωt]

y =y(t) = A sin(ωt + θ0)

Simple harmonic motion can be characterized by observing that the acceleration
d2y

dt2

satisfies the conditions

(i) It is always proportional to its distance from a fixed point
d2y

dx2
= −ω2y .

(ii) It is always directed toward the fixed point.

Damping Forces

Observe the sign of the spring force in equation (5.85). If y > 0, the restoring force

is in the negative direction. If y < 0, the restoring force is in the positive direction.

The directions of the forces are important because forces are vector quantities and

must have both a magnitude and a direction. The direction of the forces is one check

that the problem is correctly modeled.

If additional forces are added to the spring mass system, such as damping forces

and external forces, then equation (5.85) must be modified to include these addi-

tional forces. In figure 5-5, assume a damper and an external force are attached to

the spring as illustrated.
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Figure 5-5. Spring mass system with additional forces.

If there is a damping force FD which opposes the motion of the mass and the

magnitude of the damping force is proportional to the velocity12, then this can be

represented by

FD = −β
dy

dt
(5.92)

where β > 0 is the proportionality constant called the damping coefficient. The sign

of the damping force is determined by the sign of the derivative
dy

dt
. Note that if y

is increasing and dy

dt
> 0, the damping force is in the negative direction, whereas, if y

is decreasing and dy

dt
< 0, the damping force acts in the positive direction. In figure

5-5, the quantity F (t) denotes an external force applied to drive the mass.

The use of Newton’s second law of motion, together with the summation of

forces, one can construct a mathematical model describing the motion of the spring

mass system with damping and external force. The illustration in the figure 5-5 can

be used as an aid to understanding the following equation

m
d2y

dt2
= −Ky − β

dy

dt
+ F (t) (5.93)

or mÿ + βẏ + Ky = F (t) ˙ =
d

dt
, ¨ =

d2

dt2
(5.94)

where the right-hand side of equation (5.93) represents a summation of the forces

acting on the spring-mass system. Each term in equation (5.94) represents a force

12
Various assumptions can be made to model other types of damping.
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term and for the equation to be dimensionally homogeneous, every term must have

dimensions of force. The quantity mÿ is called the inertial force, βẏ is the damping

force, Ky is the spring force and F (t) is an external force. Here m, β and K are all

positive constants with dimensions [m] =
[W ]
[g] = lbs

ft/sec2
, [β] = lbs

ft/sec
, [K] = lbs

ft
with

y and t having the dimensions [y] = ft and [t] = seconds. It is left as an exercise to

verify that the equation (5.94) is dimensionally homogeneous.13

To solve the differential equation (5.94) one first solves the homogeneous equa-

tion

m
d2y

dt2
+ β

dy

dt
+ Ky = 0 (5.95)

by finding a set of two independent solutions {y1(t), y2(t)} called a fundamental set

of solutions to the homogeneous differential equation. The general solution to the

homogeneous differential equation is then any linear combination of the solutions

from the fundamental set. The general solution to equation (5.95) can be expressed

yc = c1y1(t) + c2y2(t) where c1, c2 are arbitrary constants. (5.96)

This general solution is called the complementary solution and is usually denoted

using the notation yc. Any solution of the nonhomogeneous differential equation

(5.94) is denoted using the notation yp and is called a particular solution. The general

solution to the differential equation (5.94) can then be expressed as y = yc + yp.

If the homogeneous differential equation has constant coefficients, one can assume

an exponential solution y = exp(γt) = eγt, γ constant, to obtain the fundamental set

of solutions.

Example 5-19. Solve the differential equation
d2y

dt2
+ 3

dy

dt
+ 2y = 2e−3t

Solution Assume an exponential solution y = eγt to the homogeneous differential

equation
d2y

dt2
+ 3

dy

dt
+ 2y = 0 (5.97)

and substitute y = eγt, dy
dt

= γeγt, d2y
dt2

= γ2eγt into the homogeneous differential equa-

tion (5.97) to obtain the algebraic equation

γ2 + 3γ + 2 = (γ + 2)(γ + 1) = 0 (5.98)

13 The word homogeneous is used quite frequently in the study of differential equations and its meaning depends

upon the context in which it is used.
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called the characteristic equation. The roots of this equation γ = −2 and γ = −1

are called the characteristic roots. Substituting these characteristic roots into the

assumed solution produces the fundamental set {e−2t, e−t}. The complementary solu-

tion is then a linear combination of the functions in the fundamental set. This gives

the complementary solution

yc = c1e
−2t + c2e

−t (5.99)

where c1, c2 are arbitrary constants.

The right-hand side of the given nonhomogeneous equation is an exponen-

tial function and since it is known that derivatives of exponential functions give

exponential functions, one can assume that a particular solution yp must have

the form yp = Ae−3t where A is a constant to be determined. The processes of

examining the derivatives of the right-hand side of the nonhomogeneous equa-

tion and forming a linear combination of the basic terms associated with the

right-hand side function and all its derivatives, is called the method of undeter-

mined coefficients for obtaining a particular solution. Substituting the functions

yp = Ae−3t,
dyp

dt
= −3Ae−3t,

d2yp

dt2
= 9Ae−3t into the given nonhomogeneous differential

equation one finds

9Ae−3t − 9Ae−3t + 2Ae−3t = 2e−3t (5.100)

Simplify equation (5.100) and solving for the constant A one finds A = 1, so that

yp = e−3t is a particular solution. The general solution is then given by

y = yc + yp = c1e
−2t + c2e

−t + e−3t (5.101)

Example 5-20. (Representation of solution)

Obtain a general solution to the linear homogeneous differential equation

d2y

dt2
+ ω2y = 0, ω is a constant (5.159)

which represents simple harmonic motion.

Solution When dealing with homogeneous linear differential equations with constant

coefficients one should assume an exponential solution y = eγt having derivatives
dy

dt
= γ eγt and

d2y

dt2
= γ2 eγt. Substitute the assumed exponential solution into the

given differential equation to obtain the characteristic equation

γ2 eγt + ω2 eγt = 0 =⇒ γ2 + ω2 = (γ − i ω)(γ + i ω) = 0 (5.104)
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The characteristic roots are the complex numbers γ = i ω and γ = −i ω, where i is an

imaginary unit satisfying i2 = −1. These characteristic roots are substituted back

into the assumed exponential solution to produce the fundamental set of solutions

{ ei ω t, e−i ω t } (5.104)

Observe that any linear combination of the solutions from the fundamental set is also

a solution of the differential equation (5.159), so that one can express the general

solution to the homogeneous differential equation as14

y = c1e
i ω t + c2e

−i ω t (5.105)

where c1, c2 are arbitrary constants. Use Euler’s identity ei θ = cos θ + i sin θ and

consider the following special cases of equation (5.105).

(i) If c1 = 1
2

and c2 = 1
2
, the general solution becomes the real solution

y1 = y1(t) =
1

2
ei ω t +

1

2
e−i ω t = cos ωt

(ii) If c1 = 1
2i

and c2 = −1
2i

, the general solution becomes the real solution

y2 = y2(t) =
1

2i
ei ω t − 1

2i
e−i ω t = sin ωt

The functions cosωt and sinωt are real linearly independent solutions to the

differential equation (5.159) and consequently one can state that the set of solutions

{ cosωt, sinωt } (5.106)

is a fundamental set of solutions to the equation (5.159), and

y = k1 cos ωt + k2 sinωt (5.107)

is a general solution15 to the given differential equation (5.159), where k1 and k2 are

arbitrary constants.

Multiply and divide equation (5.107) by
√

k2
1 + k2

2 to obtain

y =
√

k2
1 + k2

2

(

k1
√

k2
1 + k2

2

cos ωt +
k2

√

k2
1 + k2

2

sinωt

)

(5.108)

14 Electrical engineers prefer to use this form for the solution.
15 Mechanical engineers prefer this form for the solution.
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The substitutions

A =
√

k2
1 + k2

2, sin θ0 =
k1

√

k2
1 + k2

2

, cos θ0 =
k2

√

k2
1 + k2

2

allow one to express the general solution in the form

y = A sin(ωt + θ0)

The substitutions

A =
√

k2
1 + k2

2, sin φ0 =
k2

√

k2
1 + k2

2

, cos φ0 =
k1

√

k2
1 + k2

2

allows one to express the general solution in the form

y = A cos(ωt − φ0)

This example illustrates that one has many options available in representing the

form for the general solution to a linear homogeneous differential equation with

constant coefficients. The resulting form is closely associated with the selection of

the two independent functions which make up the fundamental set of solutions.

Example 5-21. (Representation of solution)

Solve the linear homogeneous differential equation

d2y

dt2
− β2 y = 0, β is a constant (5.109)

Solution The given differential equation is a linear homogeneous second order dif-

ferential equation with constant coefficients and so one can assume an exponential

solution of the form y = y(t) = eγ t which has the derivatives
dy

dt
= γ eγ t and

d2y

dt2
= γ2 eγ t.

Substitute the assumed solution and its derivatives into the above differential equa-

tion to obtain the characteristic equation

γ2 eγ t − β2 eγ t = 0 =⇒ γ2 − β2 = (γ − β)(γ + β) = 0 (5.110)

giving the characteristic roots γ = β and γ = −β from which one can construct the

fundamental set of solutions

{ eβ t, e−β t } (5.111)
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A general solution is then any linear combination of the functions in the fundamental

set and so can be represented in the form

y = y(t) = c1e
β t + c2e

−β t (5.112)

where c1, c2 are arbitrary constants. A special case of equation (5.112) occurs when

c1 = 1
2 and c2 = 1

2 and one finds the special solution

y1 = y1(t) =
1

2
eβ t +

1

2
e−β t = coshβt (5.113)

The special case where c1 = 1
2

and c2 = − 1
2

produces the solution

y2 = y2(t) =
1

2
eβ t − 1

2
e−β t = sinhβt (5.114)

The functions coshβt and sinhβt are linearly independent solutions to the differential

equation (5.109) and therefore one can construct the fundamental set of solutions

{ coshβt, sinhβt } (5.115)

and from this fundamental set one can construct the general solution in the form

y = y(t) = k1 coshβt + k2 sinhβt (5.116)

where k1 and k2 are arbitrary constants.

If one selects the constants k1 and k2 such that

k1 = A coshβt0 and k2 = −A sinhβt0 t0 is a constant

then the general solution can be expressed in the form

y = y(t) = A ( coshβt coshβt0 − sinhβt sinhβt0) = A coshβ(t − t0)

Alternatively, one can select the constants

k1 = −A sinhβt0 and k2 = A coshβt0

and express the general solution in the alternative form

y = y(t) = A ( sinhβt coshβt0 − coshβt sinhβt0) = A sinhβ(t − t0)

This is another example, where the form selected for the fundamental set of

solutions can lead to representing the general solution to the differential equation

in a variety of forms. In selecting a particular form for representing the solution

one should select a form where the representation of the solution and any required

auxiliary conditions are easily handled.
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Mechanical Resonance

In equation (5.94), let F (t) = F0 cos λt, with λ is a constant, and then construct

the general solution to equation (5.94) for this special case. To solve

L(y) = mÿ + βẏ + Ky = F0 cos λt (5.117)

it is customary to first solve the homogeneous equation

L(y) = mÿ + βẏ + Ky = 0. (5.118)

This is an ordinary differential equation with constant coefficients and this type of

equation can be solved by assuming an exponential solution y = exp(γt) = eγt. Sub-

stituting this assumed value for y into the differential equation (5.118) one obtains

an equation for determining the constant(s) γ. This resulting equation is called the

characteristic equation associated with the homogeneous differential equation and

the roots of this equation are called the characteristic roots. One finds the charac-

teristic equation

mγ2 + βγ + K = 0

with characteristic roots

γ =
−β ±

√

β2 − 4mK

2m
= − β

2m
±

√

(

β

2m

)2

− K

m
. (5.119)

(i) If the characteristic roots are denoted by γ1, γ2 and these roots are distinct,

then the set of solutions {eγ1t, eγ2t} is called a fundamental set of solutions to the

homogeneous differential equation and the general solution is denoted by the

linear combination

y = c1e
γ1t + c2e

γ2t, c1, c2 are arbitrary constants (5.120)

(ii) If the characteristic roots are equal and γ1 = γ2, then one member of the funda-

mental set is eγ1t. It has been found that each time a characteristic root repeats

itself, then one must multiply the first solution by t. This rule gives the sec-

ond member of the fundamental set as teγ1t The fundamental set is then given

by {eγ1t, teγ1t} and produces the general solution as a linear combination of the

solutions in the fundamental set. The general solution can be written

y = c1e
γ1t + c2te

γ1t, c1, c2 are arbitrary constants. (5.121)
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(iii) If the characteristic roots are imaginary and of the form γ1 = α+i β and γ2 = α−i β,

then one can use the Euler formula eix = cos x + i sin x to express the general

solution in either of the forms

y =c1e
(α+i β)t + c2e

(α−i β)t, complex form for the solution

y =eαt (C1 cosβt + C2 sinβt) , real form for the solution
(5.122)

where c1, c2, C1, C2 represent arbitrary constants.

The general solution to the homogeneous differential equation (5.118) is called

the complementary solution. In equation (5.119), the discriminant (β/2m)2−K/m > 0,

determines the type of motion that results. The following cases are considered.

CASE I (Homogeneous Equation and Overdamping)

If (β/2m)2−K/m > 0, equation (5.119) has two distinct roots γ1 and γ2 where both

γ1 and γ2 are negative, then the corresponding complementary solution of equation

(5.118) has transient terms eγ1t and eγ2t and the general solution is of the form

yc = c1e
γ1t + c2e

γ2t, γ1 < 0, γ2 < 0 (5.123)

where c1, c2 are arbitrary constants. This type of solution illustrates that if the

damping constant β is too large, then no oscillatory motion can exist. In such a

situation, the system is said to be overdamped.

CASE II (Homogeneous equation and underdamping)

For the condition (β/2m)2 −K/m < 0, let ω2
0 = K/m− (β/2m)2 and obtain from the

characteristic equation (5.119) the two complex characteristic roots

γ1 = −β/2m + iω0 and γ2 = −β/2m− iω0.

These characteristic roots produce a complementary solution of the form

yc = e−βt/2m (c1 sin ω0t + c2 cosω0t)

or

yc =
√

c2
1 + c2

2e
−βt/2m cos(ω0t − φ) (5.124)

with c1, c2 arbitrary constants. Here ω0 represents the damped natural frequency of

the system. If β is small, ω0 is approximately the natural frequency of the undamped

system given by ω =
√

K/m.
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Figure 5-6. Damped oscillations.

The solution equation (5.124) denotes a

damped oscillatory solution which can be vi-

sualized by plotting the curves

y1 =
√

c2
1 + c2

2 e−βt/2m and y2 = −y1

as envelopes of the oscillation cos(ω0t − φ) as

is illustrated in figure 5-6. The term −β/2m

is called the damping constant or damping

factor.

CASE III (Homogeneous equation and critical damping) If (β/2m)2−K/m = 0, equation

(5.119) has the repeated roots γ1 = γ2 = −β/2m which produces the solution

yc = (c1 + c2t)e
−βt/2m. (5.125)

By reducing the damping constant β one gets to a point where oscillations begin

to occur. The motion is then said to be critically damped. The critical value for

the damping constant β in this case is denoted by βc and is determined by setting

the discriminant equal to zero to obtain βc = 2mω where ω =
√

K/m is the natural

frequency of the undamped system.

Particular Solution

Associated with the complementary solution from one of the cases I, II, or III,

is the particular solution of the nonhomogeneous equation (5.117). The particular

solution can be determined by the method of undetermined coefficients. Examine the

function(s) on the right-hand side of the differential equation and all the derivatives

associated with these function(s). Select the basic terms which keep occurring in the

function and all of its derivatives and form a linear combination of these basic terms.

For the equation (5.117) the basic terms which occur by continued differentiation

of the right-hand side are the functions {cos λt, sin λt} multiplied by some constant.

One can then assume that the particular solution is of the form

yp = A cosλt + B sinλt (5.126)

with A and B unknown constants to be determined. Substituting this assumed par-

ticular solution into the differential equation (5.117) produces the equation

[(K − mλ2)A + βλB] cosλt + [−βλA + (K − mλ2)B] sinλt = F0 cos λt (5.127)
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Now equate the coefficients of like terms to obtain the system of equations

(K − mλ2)A + βλB = F0

−βλA + (K − mλ2)B = 0,
(5.128)

which are equations used to determine the constants A and B. Solving equations

(5.128) gives

A =
(K −mλ2)F0

∆
and B =

βλF0

∆
(5.129)

where

∆ = (K −mλ2)2 + β2λ2.

The particular solution16 can then be expressed as

yp =
(K − mλ2)F0

∆
cosλt +

βλF0

∆
sinλt =

F0√
∆

cos(λt − φ) (5.130)

where φ is a phase angle defined by tanφ = βλ/(K − mλ2) for mλ2 �= K. The general

solution to equation (5.119) can then be written y = yc + yp. In the general solution,

the complementary solutions are transient solutions, and the particular solution rep-

resents the steady state oscillations. The amplitude of the steady state oscillations

is given by

Amp =
F0√
∆

=
F0

√

(K − mλ2)2 + β2λ2
=

F0

m
√

(ω2 − λ2)2 + 4λ2ω2(β/βc)2
(5.131)

where ω is the natural frequency of the undamped system and βc = 2mω is the critical

value of the damping. For β = 0 (no damping), the denominator in equation (5.131)

becomes m|ω2−λ2| and approaches zero as λ tends toward ω. Thus, with no damping,

as the angular frequency λ of the forcing term approaches the natural frequency ω

of the system, the denominator in equation (5.119) approaches zero, which in turn

causes the amplitude of the oscillations to increase without bound. This is known

as the phenomenon of resonance. For β �= 0, there can still be a resonance-type

behavior whereby the amplitude of the oscillations become large for some specific

value of the forcing frequency λ.

Define the resonance frequency as the value of λ which produces the maximum

amplitude of the oscillation, if an oscillation exists.

16 Recall that A cos λt + B sin λt =
√

A2 + B2

[

A√
A2+B2

cos λt + B√
A2+B2

sin λt

]

=
√

A2 + B2 cos(λt − φ)
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Figure 5-7. Amplitude versus frequency for a forced system.

This amplitude, given by equation (5.131), has a maximum value when the

denominator is a minimum. Let

H = (ω2 − λ2)2 + 4λ2ω2(β/βc)
2

denote this denominator. The quantity H has a minimum value with respect to λ

when the derivative of H with respect to λ is zero. Calculating this derivative gives

dH

dλ
= 2(ω2 − λ2)(−2λ) + 8λω2(β/βc)

2 = 0

when

λ2 = ω2
[

1 − 2(β/βc)
2
]

. (5.132)

The phenomenon of resonance is illustrated graphically in figure 5-7 by plotting the

amplitude, as given by equation (5.131), versus λ for various values of the ratio β/βc.

In practical problems, it is important to be able to design vibratory structures to

avoid resonance. For example, printing presses vibrating at the correct frequency can

act as forcing functions to cause large vibrations and even collapse of the supporting

floor. High winds can act as forcing functions to cause resonance oscillations of

structures. Flutter of aircraft wings, if not controlled properly, can result in dynamic

instability of an aircraft.
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Resonance can also be a desired phenomenon such as in tuning an electrical

circuit for a maximum response of a voltage of a specified frequency. In the study

of electrical circuits where frequency is a variable, it is desirable to have frequency

response characteristics for the circuit in a graphical form similar to figure 5-7.

Train yourself to look for curves which have shapes similar to those of the curves

in figure 5-7. Chances are some kind of resonance phenomenon is taking place.

Curves similar to the curves of figure 5-7 usually result from vibration models used

to study a wide variety of subjects and are the design basis of a large number of

measuring devices. The following is a brief list of subject areas where it is possible to

find additional applications of the basic equations of vibratory phenomena and res-

onance. Examine topics listed under mechanical vibrations, earthquake modeling,

atomic vibrations, atomic cross sections, vibrations of atoms in crystals, scattering

of atoms, particles, and waves from crystal surfaces, sound waves, string instru-

ments, tidal motions, lasers, electron spin resonance, nuclear magnetic resonance,

and behavior of viscoelastic materials.

Torsional Vibrations

Torsional vibrations are similar in form to the spring mass system and the dif-

ferential equation of the motion can be obtained from the example 5-15 presented

earlier. From this example the relation
∑

Torques = M = Iα = I
d2θ

dt2
(5.133)

is employed from equation (5.52) where θ denotes the angular displacement, I is the

moment of inertia of the body, and α = θ̈ =
d2θ

dt2
is the angular acceleration. Consider

a disk attached to a fixed rod as in figure 5-8.

Figure 5-8. Torsional vibrations.

If the disk is rotated through an angle θ,

there is a restoring moment M produced by

the rod. Hooke’s law states that the restor-

ing moment is proportional to the angular

displacement and

M = −KTθ (5.134)

where KT is called the spring constant of the

shaft and is the proportionality constant as-

sociated with the angular displacement θ.
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From the relation in equation (5.133) there results

M = −KTθ = I
d2θ

dt2
or I

d2θ

dt2
+ KT θ = 0 (5.135)

as the equation of motion describing the angular displacement θ.

By adding a linear damper and external force to equation (5.135), a more general

equation results

I
d2θ

dt2
+ β

dθ

dt
+ KTθ = F (t). (5.136)

From strength of materials, the constant KT is given by the relation KT = GJ/L,

where G is called the shearing modulus of the rod material, J is the polar moment

of inertia of the rod cross section, and L is the length of the shaft.

The simple pendulum

For the pendulum illustrated the forces about 0 are the weight

of the mass and the radial force along the string. The radial

force passes through the origin and so does not produce a mo-

ment about the origin. The moment of inertia of the mass m

about 0 is given by I = m�2 and the torque about 0 is given by

T = −(mg)(� sinθ)and consequently the equation of motion can

be expressed T = −mg� sinθ = m�2
d2θ

dt2

Simplification reduces the equation of motion to the form

d2θ

dt2
+ ω2 sin θ = 0, ω2 =

g

�

For small oscillations one can make the approximation sin θ ≈ θ and write the equation

for the oscillating pendulum in the form

d2θ

dt2
+ ω2θ = 0

which is the equation of a simple harmonic oscillator.

Electrical Circuits

The basic elements needed to study electrical circuits are as follows:

(a) Resistance R is denoted by the symbol

The dimension of resistance is ohms17 and written [R] = ohms.

17 George Simon Ohm (1787–1854), German physicist.
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(b) Inductance L is denoted by the symbol

The dimension of inductance is henries18 and written [L] = henries.

(c) Capacitance C denoted by the symbol

The dimension of capacitance is farads19 and written [C] = farads.

(d) Electromotive force (emf) E or V denoted by the symbols or

The dimensions of electromotive force is volts20 and written [E] = [V ] = volts.

(e) Current I is a function of time, denoted I = I(t), with dimensions of amperes21

and written [I ] = amperes.

(f) Charge Q on the capacitance is a function of time and written Q = Q(t),

with dimensions [Q] = coulombs.

The basic laws associated with electrical circuits are as follows: The current is

the time rate of change of charge. This can be represented with the above notation

as

I =
dQ

dt
with [I ] = amperes, [

dQ

dt
] = coulombs/second (5.137)

Figure 5-9.

Voltage drop VR across a resistor.

Figure 5-10.

Voltage drop VL across inductor.

The voltage drop VR across a resistance, see figure 5-9, is proportional to the

current through the resistance. This is known as Ohm’s law. The proportionality

18 Joseph Henry (1797–1878), American physicist.
19 Michael Faraday (1791– 1867) English physicist.
20 Alessandro Volta (1745–1827) Italian scientist.
21 André Marie Ampére (1775–1836) French physicist.
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constant is called the resistance R. In symbols this can be represented as VR = RI

where

[VR] = volts = [R][I ] = (ohm) (ampere) (5.138)

The voltage drop VL across an inductance, see figure 5-10, is proportional to the

time rate of change of current through the inductance. The proportionality constant

is called the inductance L. In symbols this can be represented as

VL = L
dI

dt
where [VL] = volts = [L] [

dI

dt
] = (henry)(ampere/second) (5.139)

Figure 5-11.

Voltage drop VC across capacitor.

The voltage drop VC across a capacitance, see

figure 5-11, is proportional to the charge Q of

the capacitance. The proportionality constant

is denoted 1/C. In symbols this is represented

as

VC =
Q

C
(5.140)

where [VC ] = volts =

[

1

C

]

[Q] = coulombs/farad

The Kirchoff laws for an electric circuit are.

Kirchhoff’s22 first law :

The sum of the voltage drops around a closed circuit must equal zero.

Kirchhoff’s second law:

The amount of current into a junction must equal the current leaving the junc-

tion.

The place in an electrical circuit where two or more circuit elements are joined

together is called a junction. A closed circuit or loop occurs whenever a path con-

structed through connected elements within a circuit closes upon itself. Voltage

drops are selected as positive, whereas voltage rises are selected as negative.

Example 5-22. For the RC-circuit illustrated in figure 5-12, set up the differ-

ential equation describing the rate of change of the charge Q on the capacitor. Make

the assumption that Q(0) = 0.

22 Gustav Robert Kirchhoff (1924–1887) German physicist.
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Figure 5-12. An RC-series circuit.

Solution For a path around the circuit illustrated in figure 5-12, the Kirchhoff’s

voltage law would be written

VR + VC −E = 0.

Let I = I(t) = dQ
dt denote the current in the circuit at any time t. By Kirchhoff’s first

law:
(

V oltage drop
across R

)

+
(

V oltage drop
across C

)

=
(

Applied
emf

)

VR + VC = E
RI + Q

C
= E.

This gives the differential equation

L(Q) = R
dQ

dt
+

1

C
Q = E (5.141)

where R, C and E are constants. The solution of the homogeneous differential equa-

tion

R
dQ

dt
+

1

C
Q = 0

can be determined by separating the variables and integrating to obtain

dQ

Q
=

−1

RC
dt and

∫

dQ

Q
=

∫ −1

RC
dt =⇒ lnQ =

−t

RC
+ α

where α is a constant of integration. Solving for Q one finds is Qc = c1 exp(−t/RC)

where c1 = eα is just some new constant. Since the right-hand side of the nonho-

mogeneous differential equation is a constant, one can assume a particular solution

of the form Qp = c2E where c2 is a constant to be determined. Substituting this

assumed solution into the nonhomogeneous differential equation and solving for c2

one finds c2 = C and so the particular solution can be written Qp = CE. The general
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solution of equation (5.141) is represented by the sum Q = Qc + Qp and the solution

satisfying Q(0) = 0 is given by

Q = Q(t) = EC(1− e−t/RC) (5.142)

The relation (5.142) is employed to determine the current I and voltages VC and VR

as
I = I(t) =

dQ

dt
=

E

R
e−t/RC

VC =
Q

C
= E(1− e−t/RC)

VR = RI = E e−t/RC

(5.143)

In equations (5.142) and (5.143) the term exp(−t/RC) is called a transient term

and the constant τ = RC is called the time constant for the circuit. In general,

terms of the form exp (−t/α) are transient terms, and such terms are short lived and

quickly or slowly decay, depending upon the magnitude of the time constant τ = α.

The following table illustrates values of exp(−t/α) for t equal to various values of the

time constant.

Time t exp(−t/α)

α 0.3679
2α 0.1353
3α 0.0498
4α 0.0183
5α 0.0067

The values in the above table gives us valuable information concerning equations

such as (5.142) and (5.143). The table shows that decaying exponential terms are es-

sentially zero after five time constants. This is because the values of the exponential

terms are less than 1 percent of their initial values.

Solutions to circuit problems are usually divided into two parts, called transient

terms and steady state terms. Transient terms eventually decay and disappear and

do not contribute to the solution after about 5 time constants. The steady state

terms are the part of the solution which remains after the transient terms become

negligible.
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Example 5-23. For the parallel circuit illustrated in figure 5-13, apply Kirch-

hoff’s first law to each of the three closed circuits.

Figure 5-13. A parallel circuit.

Note that each closed circuit has the same voltage drop. This produces the

following equations.
E = RI1

E = L
dI2

dt

E =
1

C

∫

I3 dt.

(5.144)

Kirchhoff’s second law applied to the given circuit tells us

I = I1 + I2 + I3. (5.145)

If the impressed current I is given, the above four equations can be reduced to one

ordinary differential equation from which the impressed voltage E can be found.

Write equation (5.145) in the form

I =
E

R
+

1

L

∫

E dt + C
dE

dt
.

called a differential–integral equation. By differentiation of this equation there re-

sults an ordinary linear second-order differential equation

dI

dt
=

1

R

dE

dt
+

E

L
+ C

d2E

dt2
,

where E is the dependent variable to be determined.

Conversely, if E is given and I is unknown, then equations (5.144) give us I1, I2,

and I3, and equation (5.145) can be used to determine the current I.
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Thermodynamics

Experiments on a fixed mass of gas has established the following gas laws which

relate the pressure P , volume V and absolute temperature T .

Boyle’s Law If T is held constant, then pV = constant.

Charles’s Law If P is held constant, then
V

T
= constant.

Gay-Lussac Law If V is held constant, then
P

T
= constant.

These laws are summarized using the gas equation

P1V1

T1
=

P2V2

T2

where pressure P can be measured in units [N/m2], volume V can be measured in

units [m3] and absolute temperature T is measured in units [K].

The ideal gas absolute temperature is defined using Boyles law which states

PV ∝ T which produces the equation of state for an ideal gas, which can be expressed

in the form
PV =nRT

[
N

m2
][m3] =[mol]

[

J

mol K

]

[K]

where n is the number of moles of gas and R = 8.314472
[

J
mol K

]

is the ideal gas constant

or universal molar gas constant. Note that real gases may or may not obey the ideal

gas law. For gases which are imperfect, there are many other proposed equations of

state. Some of these proposed equations are valid over selected ranges and conditions

and can be found under such names as Van der Waals equation, Berthelot equation,

Dieterici equation, Beattie-Bridgeman equation, Virial equation.

The zeroth law of thermodynamics states that if two bodies are in thermal equi-

librium with a third body, then the two bodies must be in thermal equilibrium with

each other. The zeroth law is used to develop the concept of temperature. Here

thermodynamic equilibrium infers that the system is (i) in chemical equilibrium and

(ii) there are no pressure or temperature gradients which would cause the system

to change with time. The first law of thermodynamics is an energy conservation

principle which can be expressed dQ = dU + dW where dQ is the heat supplied to

a gas, dU is the change in internal energy of the gas and dW is the external work

done. The second law of thermodynamics examines processes that can happen in

an isolated system and states that the only processes which can occur are those for

which the entropy either increases or remains constant. Here entropy S is related
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to the ability or inability of a systems energy to do work. The change in entropy is

defined as dS = dQ/T where dQ is the heat absorbed in an isothermal and reversible

process and T denotes the absolute temperature.

Recall that the ability of gases to change when subjected to pressure and tem-

perature variations can be described by the equation of state of an ideal gas

PV = nRT, (5.146)

where P is the pressure [N/m2], V is the volume [m3], n is the amount of gas [moles], R

is the universal gas constant [J/mol · K], and T is the temperature [K]. For an ideal

gas, the gas constant R can also be expressed in terms of the specific heat at constant

pressure Cp, [J/mol · K] and the specific heat at constant volume Cv, [J/mol · K] by

Mayer’s equation R = Cp −Cv. Equation (5.146) is illustrated in the pressure-volume

diagram of figure 5-14.

The curves where T is a constant are called isothermal curves and are the hy-

perbolas labeled (b) and (c) illustrated in figure 5-14. These curves correspond to

the temperature values T1 and T2. When a gas undergoes changes of state it can do

so by an isobaric process (P is a constant) illustrated by line (a) in figure 5-14, an

isovolumetric process (V is a constant) illustrated by the line (e) in figure 5-14, an

isothermal process (T is a constant) illustrated by the hyperbolas with T = T1 and

T = T2 in figure 5-14, or an adiabatic process (no heat is transferred) represented by

the curve (d) in figure 5-14.

Figure 5-14. Pressure-Volume diagram.
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The first law of thermodynamics states that when a gas undergoes a change,

the equation dU = dQ + dW must be satisfied, where dU is the change in internal

energy, dQ is the change in heat supplied to the gas, and dW is the work done. An

adiabatic process is one in which dQ = 0. For an adiabatic process, the first law

of thermodynamics requires dU = dW . The work done dW is related to the volume

change by the relation dW = −PdV, and the change in internal energy is related to

the temperature change by the relation dU = µCpdT . For an adiabatic process

dP

P
+ γ

dV

V
= 0 (5.147)

Integrate the equations (5.147) and show the adiabatic curve (d) in figure 5-14 can

be described by any of the equations

TV γ−1 = Constant, TP
1−γ

γ = Constant, or PV γ = Constant,

where γ = Cp/Cv is the ratio of the specific heat at constant pressure to the specific

heat at constant volume. Also note that during an adiabatic process dQ = 0 so that

the work done by the system undergoing a change in volume is given by the integral

of dW which is represented by the shaded area in the figure 5-14. This shaded area

is represented by the integral

work done =

∫ v2

v1

P dV

Radioactive Decay

The periodic table of the chemical elements lists all 118 known chemical elements

using the notation α
η A, where A represents a shorthand notation used to signify the

name of an element, α is the atomic mass number or total number of protons and

neutrons in the nucleus of the element and η is the atomic number or number of

protons in the nucleus of the element. Isotopes of an element all have the same

number of protons in the nucleus, but a different number of neutrons. For example,

carbon is denoted 12
6 C and the elements 13

6 C, 14
6 C are isotopes of carbon. Many of the

isotopes experience a process known as nuclear decay or radioactive decay, where an

isotope will emit some particles in a continuous way and lose some of its mass over

time.

Let A denote the quantity of a radioactive substance, measured in grams, with

the derivative dA
dt

denoting the rate of disintegration or amount of mass lost as a
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function of time t. In general, the amount of mass lost during radioactive decay is

proportional to the amount present and so can be represented by the mathematical

statement
dA

dt
= −kA (5.148)

where k is a proportionality constant and the minus sign indicates mass being lost.

The proportionality constant k is referred to as the decay constant.

If A = A0 at time t = 0 one can separate the variables in equation (5.148) and

write
dA

A
= −kdt (5.149)

Integrate both sides of equation (5.149) and show

∫ A

A0

dA

A
= −k

∫ t

0

dt (5.150)

Here the limits of integration indicate that at time t = 0, A = A0 and at time t, then

A = A(t). After integrating equation (5.150) one obtains

lnA
A

A0

= −kt
t

0

=⇒ ln

(

A

A0

)

= −kt =⇒ A = A0e
−kt (5.151)

If, by experiment, it is found that p percent of A0 disappears in T years, then
(

1 − p
100

)

A0 is the amount remaining after T years and so this information can be

used to determine the decay constant k. At time T one has the equation

(

1 − p

100

)

A0 = A0e
−kT (5.152)

which implies ln
(

1 − p

100

)

= −kT and so one can solve for the decay constant k and

find

k = − 1

T
ln

(

1 − p

100

)

(5.153)

The half-life of a radioactive material is the time τ it takes for 50-percent of the

material to disappear. Consequently, if A = 1
2
A0 at time t = τ , the equation (5.151)

requires that
1

2
A0 = A0e

−kτ =⇒ ln

(

1

2

)

= −kτ =⇒ τ =
1

k
ln(2) (5.154)

The table below gives the half-life of some selected elements from the periodic table.
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Element Isotope Half-Life

Silver (Ag) 105Ag 41.29 days

111Ag 7.45 days

107Ag 44 seconds

Gold (Au) 197Au 7.4 seconds

Iodine (I) 125I 59 days

123I 13 hours

131I 8 days

Cesium (Ce) 137Ce 30 years

Uranium (U) 238U 4.46 (10)9 years

Thorium (Th) 232Th 14.05 (10)9 years

Using the results from equa-

tion (5.154) one can express the

radioactive decay curve given by

equation (5.151) in the form

A

A0
= e−(ln 2) t/τ =

(

1

2

)t/τ

(5.155)

The figure 5-15 is a sketch of

y =
A

A0
versus x = t/τ . Examine

this figure and note the values of

A for the values t = τ, 2τ, 3τ, 4τ, . . ..

One can then construct the table

of values illustrated.

The figure 5-15 illustrates that after a time of one half-life, then one-half of the

material is gone. After another time span of one half-life, half of the remaining

material is gone.

Figure 5-15. Radioactive decay curve A = A0e
−(ln 2) t/τ
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t/τ A/A0

0 1

1 1/2

2 1/4

3 1/8

4 1/16
...

...

The reduction in the amount of material by one-half is

illustrated by the scaling of the A and t axis of the radioac-

tive decay curve given by equation (5.155). If one uses the

axes A/A0 and t/τ , then for each span of one half-life there

is a decrease in the amount of material by one-half.

Different radioactive substances are used for scientific

research in many disciplines. For example, archaeology uses
14C for dating of ancient artifacts.

Carbon-12 is a stable element and its isotope carbon-14 is radioactive with a

half-life of 5730 years. All living organisms contain both 12C and 14C in known

ratios. However, after an organism dies, the carbon-12 amount remains the same

but the carbon-14 begins to decay. By measuring the proportions of 12C and 14C in

dead organisms one can estimate the elapsed time since death.

Geologist use 238U, 206Pb, 232Th, and 208Pb to determine the age of rocks. They

measure the relative amounts of these radioactive substances and compare ratios of

these amounts with rocks from an earlier age.

Radioactive substances are used for tracers and imaging in chemistry, biology

and medicine.

Economics

Suppose that it cost C = C(ξ) dollars to produce ξ number of units of a certain

product. The function C(x) is called the cost function for production of x items. Let

r = r(x) denote the price received from the sale of 1 unit of the item and let P = P (x)

denote the profit from the sale of x items. This profit can be represented

P = P (x) =(number of items sold)(selling price of 1 unit)− cost of production

P = P (x) =x · r(x)− C(x)

where the function x · r(x) is called the revenue function.

As a first approximation for the representations of r(x) and C(x) one can assume

that they are linear functions of x and one can write

r = α − βx and C(x) = a + bx

These assumptions have the following interpretations for α, β, a, b all constants.
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(i) The minus sign in the representation for r indicates that an increase in the

selling price will cause a decrease in sales. This can be seen by plotting the

curve x = α
β
− 1

β
r versus r which is a straight line with slope −1/β. This line tells

one that as r increases (price increases), then the number of sales x decreases.

(ii) The constant α has to be large enough such that α − βx remains positive as you

don’t want to give away the product.

(iii) In the cost function, the constant a represents the overhead for the maintenance

of the production facilities and the variable term bx represent the additional cost

of production associated with producing x units. The units of measurements for

each term must be in dollars so [a] = $ and [b] = $/unit and [x] = number of units.

Hence, one can interpret b as the cost to produce 1 unit.

Using the above assumptions the profit from the sale of x items is given by

P = P (x) = x(α − βx) − (a + bx)

and if a profit is to be made from the sale of just one item, then it is required that

α > β + a + b. The derivative of the profit with respect to x is

dP

dx
= x(−β) + (α − βx) − b

The profit is a maximum when
dP

dx
= 0 or x =

α − b

2β
is a critical point to be investi-

gated. The second derivative gives
d2P

dx2
= −2β < 0 indicating that the critical point

produces a maximum value. These results are interpreted

(i) x =
α − b

2β
items should be produced for a maximum profit.

(ii) The sale price for each item should be r =
α + b

2
dollars per unit.

In economics the term R(x) = x · r(x) is called the revenue function and its deriva-

tive dR
dx

is called the marginal revenue. The term P (x) is called the profit function

and its derivative dP
dx

is called the marginal profit. The term C(x) is called the cost

function and its derivative dC
dx

is called the marginal cost function.

By collecting data from production costs and sales over a period of time one can

construct better approximations for the price function and cost function and other

models similar to the above can be constructed and analyzed.
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Population Models

Mathematical modeling is used to study the growth and/or decay of a pop-

ulation. The population under study can be human populations subjected to a

spreading disease, insect populations which can affect crops, bacteria growth or cell

growth in the study of the spread of a disease or cancer cell growth. Predator-prey

models are used to study the advance and decline of populations based upon food

supplies. The effect of a certain type of medicine on the spread of bacteria or virus

growth is still another example of population changes which can be studied using

mathematics.

One begins by making some assumptions and starting with a simple model which

is easy to solve. By adding perturbations to the simple model it can be made more

complex and applicable to the type of problem one is trying to model. This type of

modeling has produced many extremely accurate results and the models predictive

capability has given much incite into the study of population growth or decay.

For example, an over simplified population growth model for say predicting

census changes is to let N denote the current population number and then assume

that the rate of change of a population is proportional to the number present. The

resulting model is represented
dN

dt
= αN

Here α > 0 is a proportionality constant. The conditions that at time t = 0 the

population is N0 can be used as an initial condition that the model must satisfy.

This model is simple and easy to solve. The variables can be separated and the

result integrated giving
∫ N

N0

dN

N
=

∫ t

0

α dt =⇒ lnN
N

N0

= α t
t

0

=⇒ N = N0 eαt

This result states that there is an exponential increase in the population with time.

One immediate method to modify the model is to investigate what happens if α is

allowed to change with time. If α = α(t) then the above integrations become
∫ N

N0

dN

N
=

∫ t

0

α(t) dt =⇒ lnN
N

N0

=

∫ t

0

α(t) dt =⇒ N = N0 e

∫

t

0

α(t) dt

Whenever the exponent of e gets too cumbersome it is sometimes convenient to

represent the solution in the form

N = N0 exp

[
∫ t

0

α(t) dt

]
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To try and make the census population model more accurate one can make

assumptions that include the rate of births and rate of deaths associated with the

current population. If one makes the assumptions that the birth rate is proportional

to N , say βN and the death rate is proportional to N2, say δ N2, where β and δ are

positive constants. The population model then has the form

dN

dt
= βN − δN2 = (β − δN )N (5.156)

which states the rate of change of the population with time is determine by the birth

rate minus the death rate. Analyze this differential equation to see if it makes sense

by

(i) Determining conditions for when dN
dt

> 0 which would indicate the population is

increasing.

(ii) Determining conditions for when dN
dt

< 0 which would indicate the population is

decreasing.

(iii) Determining conditions for when dN
dt

= 0 which would indicate no change in the

population.

Setting the equation (5.156) equal to zero, implies that N = N (t) is a constant,

since dN
dt

= 0. One finds the constant solutions N = N (t) = 0 and N = N (t) = β/δ, are

constant solutions for all values of time t. These solutions are called steady-state

solutions and they do not change with time.

In order for dN
dt

> 0, one must require that N > 0 and (β − δN ) > 0 or β/δ > N . In

order for dN
dt

< 0, one must require that either N < 0 and (β − δN ) > 0 or N > 0 and

(β − δN ) < 0 as these conditions would indicate the population was decreasing.

One can add additional assumptions such as (i) N is never zero and (ii) either

N0 < N < β/δ for t > 0 producing an increasing population or (iii) N0 > N > β/δ

producing a decreasing population. In either of the cases where dN
dt

is different from

zero, one can separate the variables in equation (5.156) and write

dN

(β − δN )N
= dt

An integration of this equation gives

∫ N

N0

dN

(β − δN )N
=

∫ t

0

dt
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To integrate the left-hand side of the above equation use partial fractions and show

the above integral reduces to

∫ N

N0

[

δ/β

β − δN
+

1/β

N

]

dN =

∫ t

0

dt

Scaling the integral properly, one can integrate this equation to obtain

[

ln

∣

∣

∣

∣

N

β − δN

∣

∣

∣

∣

]N

N0

= β t
t

0

=⇒ ln

∣

∣

∣

∣

N

β − δN

∣

∣

∣

∣

− ln

∣

∣

∣

∣

N0

β − δN0

∣

∣

∣

∣

= β t

Solving for N gives the solution

N = N (t) =
βN0e

βt

b − δN0 + δN0 eβt
=

βN0

δN0 + (β − δN0)e−βt
(5.157)

The equation (5.156) is called the logistic equation. The solution of this equation is

given by equation (5.157) which gives the limiting value lim
t→∞

N (t) = β/δ. A graphical

representation of the logistic equation solutions are given in the figure 5-16.

Figure 5-16. Solutions to the logistic equation.

There are many more population models which are much more complicated than

the simple ones considered in this introduction.

Approximations

If the Greek letter epsilon ε is positive and very small, then this is expressed by

writing 0 < |ε| << 1. For very small ε one can truncate certain Taylor series expan-

sions to obtain the following formulas to approximate f(x0 + ε). These approximate

expansions are denoted using the symbol ≈ to represent approximation.
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(1 + ε)n ≈ 1 + nε

1

1 + ε
≈ 1 − ε

1√
1 + ε

≈ 1 − ε

2

sin ε ≈ ε − ε3

3!

cos ε ≈ 1 − ε2

2!

tan ε ≈ ε +
ε3

3

aε ≈ 1 + ε lna

eε ≈ 1 + ε

ln(x + ε) ≈ lnx +
ε

x

It is left as an exercise to verify the above approximations.

Partial Differential Equations

Examples of partial differential equations can be found in just about all of the

scientific disciplines. For example, partial differential equations are employed to

describe such things as fluid motion, quantum mechanical interactions, diffusion

processes, wave motion and electric and magnetic phenomena. The following are

some examples of partial differential equations. The derivation of these well known

partial differential equations are presented in more advanced courses.

The vibrating string

Let u = u(x, t) denote the displacement of a

string at position x and time t, where the string

is stretched between the points (0, 0) and (L, 0).

The assumption that T , the tension in the string,

is much greater than the weight of the string,

produces the equation describing the vibrations of the string. The partial differential

equation describing the vibrations of the string is given by

∂2u

∂t2
= ω2 ∂2u

∂x2
, u = u(x, t), ω2 =

Tg

ρ

where T is the string tension, g the acceleration of gravity and ρ is the weight per

unit length of string. This equation is called the one-dimensional wave equation and

is subject to boundary conditions u(0, t) = 0 and u(L, t) = 0 and initial conditions

u(x, 0) =f(x) = the initial shape of the string

and
∂u(x, 0)

∂t
=g(x) = the initial velocity of the string

The above quantities have the following dimensions [x] = cm, [t] = s, [u] = cm,

[ρ] = gm/cm, [T ] = dynes/cm and [g] = cm/sec2.

The above one-dimensional wave equation is a special case of a more general

three-dimensional wave equation.
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One-dimensional heat flow

The partial differential equation describing the one-dimensional heat flow in a

rod along the x-axis is given by

k
∂2T

∂x2
= cρ

∂T

∂t
, T = T (x, t)

where T = T (x, t) is the temperature at position x and time t in an insulated rod of

length L, where k is called the thermal conductivity of the solid, ρ is the volume

density of the solid and c is the specific heat of the solid. The above quantities have

the following dimensions [x] = cm, [t] = s, [T ] = ◦C, [c] = cal/gm ◦C , [ρ] = gm/cm3 and

[k] = cal/sec cm2 ◦C/cm.

The one-dimensional heat equation is a special case of the more general three-

dimensional diffusion equation.

Easy to Solve Partial Differential Equations

Partial differential equations of the form

∂u

∂x
= f(x, y)

can be integrated partially with respect to x to obtain

∫

∂u

∂x
dx =

∫

f(x, y) dx =⇒ u(x, y) =

∫

f(x, y) dx + φ(y)

Here, y is held constant during the integration process and so the constant of inte-

gration can be any arbitrary function of y, represented here by φ(y).

Similarly, the partial differential equation

∂u

∂y
= g(x, y)

can be integrated partially with respect to y to obtain

∫

∂u

∂y
dy =

∫

g(x, y) dy =⇒ u(x, y) =

∫

g(x, y) dy + ψ(x)

Here x is held constant during the integration process and so any arbitrary func-

tion of x is considered as a constant of integration. This constant of integration is

represented by ψ(x).
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Partial differential equations of the form

∂2u

∂x ∂y
= h(x, y)

can be integrated with respect to y to obtain

∂u

∂x
=

∫

h(x, y) dy + ψ(x)

where ψ(x) is an arbitrary function of x representing the constant of integration

during a partial integration with respect to y. One can then integrate with respect

to x and obtain the solution in the form

u(x, y) =

∫ ∫

h(x, y) dy dx +

∫

ψ(x) dx + φ(y)

where φ(y) is the constant of integration associated with a partial integration with

respect to x. Note if ψ(x) is arbitrary, then
∫

ψ(x) dx is just some new arbitrary

function of x.

If you use partial differentiation to differentiate each of the above solutions,

holding the appropriate variables constant, you wind up with the integrand that

you started with. These partial differentiations are left as an exercise.

Example 5-24. Determine by integration the solution u = u(x, y) of the given

partial differential equations. Remember, that when dealing with functions of more

than one variable, you are going to be holding one of the variables constant during

a partial differentiation or partial integration.

(i) The solution to the partial differential equation ∂u
∂x

= 0 is

u = u(x, y) = φ(y) where φ(y) is an arbitrary function of y.

(ii) The solution to the partial differential equation ∂u
∂y = 0 is u = u(x, y) = ψ(x) where

ψ(x) is an arbitrary function of x.

(iii) The solution to the partial differential equation ∂u
∂x

= x + y is given by

u = u(x, y) = x2

2
+ xy + φ(y) where φ(y) is an arbitrary function of y.

(iv) The solution to the partial differential equation ∂u
∂y

= x + y is given by

u = u(x, y) = xy + y2

2 + ψ(x) where ψ(x) is an arbitrary function of x.

Note that if a variable is held constant during a partial integration, then an

arbitrary function of that variable can be considered as a constant of integration.
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Example 5-25. Show that for f, g arbitrary functions which are continuous

and differential, then the function u = u(x, t) = f(x− ct) + g(x + ct) is a solution to the

one-dimensional wave equation

∂2u

∂t2
= c2∂2u

∂x2
, u = u(x, t), c is a constant

Solution Use the chain rule for differentiation and show

∂u

∂t
= f ′(x − ct)(−c) + g′(x + ct)(c)

∂2u

∂t2
= f ′′(x − ct)(c2) + g′′(x + ct)(c2)

∂u

∂x
= f ′(x − ct) + g′(x + ct)

∂2u

∂x2
= f ′′(x − ct) + g′′(x + ct)

Substitute the derivatives in the one-dimensional wave equation and obtain the

identity

c2f ′′ + c2g′′ = c2f ′′ + c2g′′

Maximum and Minimum for Functions of Two Variables

Finding the maximum and minimum values associated with a function z = f(x, y),

which is defined and continuous over a domain D, is similar to what has been done for

functions of one variable. A function z = f(x, y) is said to have a relative maximum

value at a point (x0, y0) ∈ D if f(x, y) ≤ f(x0, y0) is satisfied for all points (x, y) in some

δ-neighborhood of the point (x0, y0). Here a δ-neighborhood of the point (x0, y0) is

defined at the set of points

Nδ = { (x, y) | (x− x0)
2 + (y − y0)

2 ≤ δ2 } (5.158)

A function z = f(x, y) is said to have a relative minimum at a point (x0, y0) if the

condition f(x, y) ≥ f(x0, y0) is satisfied for all (x, y) in some δ-neighborhood of the

point (x0, y0). If (x0, y0) is a critical point to be tested for a relative maximum or

minimum point, then one can reduce the test to a study of one-dimensional problems.

Construct the three-dimensional curves

z = f(x0, y) and z = f(x, y0)
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This is equivalent to letting the plane x = x0 cut the surface z = f(x, y) in the curve

z = f(x0, y) and then letting the plane y = y0 cut the surface z = f(x, y) to produce

the curve z = f(x, y0). If the curve z = f(x0, y) has a relative maximum or minimum

value, then ∂z
∂y = 0. If the curve z = f(x, y0) has a relative maximum or minimum

value, then ∂z
∂x

= 0. Hence, a necessary condition that the point (x0, y0) have relative

maximum or minimum value is for

∂z

∂x
= 0 and

∂z

∂y
= 0 simultaneously (5.159)

Note that if one of the functions f(x0, y) or f(x, y0) has a maximum at (x0, y0)

and the other function has a minimum at the point (x0, y0), then the point (x0, y0)

is called a saddle point. A surface with saddle point is illustrated in the following

figure.

Figure 5-17. Surface in the shape of a saddle.

The study of maximum and minimum values are investigated in more detail in

the next volume.
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Exercises

� 5-1. Consider a spherical balloon at the instant when the radius of the balloon is

r0 [cm]. If air is entering the balloon at the rate of α [cm3/s], then at what rate is

the radius of the balloon changing at this instant?

� 5-2. Air expands adiabatically (no heat loss or gain) according to the gas law

pv1.4 = constant, where p is the pressure [dyne/cm2] and v is the volume [cm3].

(a) If the volume is increasing at a rate α [cm3/s], then find the corresponding rate

of change in pressure.

(b) If the pressure is decreasing at a rate β [dyne/cm2 s] then find the corresponding

rate of change in the volume.

� 5-3. A women who is 5.5 feet tall walks away from a street lamp, where the lamp

is 10 feet above the ground. She walks at a rate of 4 ft/s

(a) At what rate is her shadow changing when she is 4 feet from the lamp post?

(b) Is the length of shadow increasing or decreasing as she walks away from the

lamp?

(c) At what instant is the shadow 5.5 feet long?

� 5-4. For a thin lens in air, let x denote the distance of the object from the lens

and let y denote the distance of the image from the lens. The distances x and y are

related by the thin lens formula
1

x
+

1

y
=

1

f
where f is a constant representing the

focal length of the lens.

(a) Show the thin lens formula can be written

in the Newtonian form S1S2 = f2 where

S1 = x − f > 0 and S2 = y − f > 0.

(b) If x changes at a rate
dx

dt
= r0, then find a

formula for the rate of change of y.

� 5-5. The sides of an equilateral triangle increase at the rate of r0 cm/hr. Find a

formula for the rate of change of the area of an equilateral triangle when the length

of a side is x0 cm.
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� 5-6. A meteorologist, at a secret location, collects data and comes up with an

atmospheric pressure formula p = p0 e−α0h where [p] = lbs/ft2, h has dimensions of feet

and represents the altitude above sea-level. In the atmospheric pressure formula the

quantities p0 and α0 are known constants.

(a) Find the dimensions of the constants p0 and α0.

(b) If the meteorologist gets into a balloon which rises at a rate of 10 ft/s, then find

a formula representing the rate of change in the pressure when the altitude is h0

feet.

� 5-7. Given the parabola y − y0 = −(x − x0)
2 where x0, y0

are known constants.

(a) At the point (ξ, η) on the curve a tangent line is

constructed. Find the equation of the tangent

line.

(b) The tangent line makes an angle θ with the x-

axis as illustrated. If ξ changes at the rate of 1/2

cm/s, then at what rate does θ change?

� 5-8. Charles23 law, sometimes referred to as the law of volumes, states that at a

constant pressure the volume V of a gas and gas temperature T satisfy the relation
V

T
= C = constant, where V is the volume of the gas in cubic centimeters and T

is the absolute temperature in degrees Kelvin. If at a certain instant when V has

the volume V0 and T has the temperature T0, it is know that the volume of gas is

changing at the rate
dV

dt
= r0, then find how the temperature is changing.

� 5-9. The Gay-Lussac24 law states that if the mass and volume of an ideal gas

are held constant, then the pressure of the gas varies directly with the gas absolute

temperature. If P denotes pressure measured in Pascals and T is the absolute temper-

ature in degrees Kelvin, then the Gay-Lussac law can be expressed
P

T
= C = constant.

If at some instant when P has the value P0 and T has the value T0, it is known that

the temperature is change at the rate
dT

dt
= r0, then find how the pressure is changing

at this instant.

23 Jacques Charles (1746-1823) French physicist and physical chemist as well as a balloonist.
24 Joseph Louis Gay-Lussac (1778-1850) A French chemist who studied the expansion of gases.
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� 5-10. A rock is thrown off a cliff so that after a time t its height above the ground

is h = h(t) = 200 − 16t2.

(a) Find a formula representing the velocity of the rock.

(b) Find a formula representing the acceleration of the rock.

(c) What is the rocks velocity when it hits the ground?

� 5-11.

A spherical water tank has a radius of r = 12 feet. As-

sume h = h(t) is the depth of the water in the spherical

tank. The empty space above the water level inside

the tank defines a spherical cap whose volume is given

by Vcap = π
3
(2r − h)2(r + h)

(a) Show the volume of water in the spherical tank is given by V = V (h) = π
3
(3rh2−h3)

(b) If water is entering the tank at 10 gallons per minute, then how fast is the water

level rising when h = 10 feet? Hint: Use 1 gallon =0.1336 cubic feet.

� 5-12. A spherical water tank has radius of r = 12 feet. Assume that h = h(t) is the

depth of the water in the spherical water tank and R = R(t) is the radius of the top

surface of the water. Find a relationship between dh
dt

and dR
dt

.

� 5-13. A ball is shot from an air gun inclined at an angle θ with the horizontal.

The height of the ball as a function of time is given by y = y(t) = −16t2 + 50
√

3 t and

the horizontal distance traveled is given by x = x(t) = 50 t.

Answer the following questions.

(a) Find the maximum height of the ball.

(b) Find the time when the maximum height is achieved.

(c) Find the time when the ball hits the ground.

(d) Find the x position where the maximum height is achieved.

(e) Eliminate time t from x = x(t) and y = y(t) to obtain y as a function of x.

� 5-14. Empirical data obtained by shooting bullets into maple wood blocks pro-

duces the formula

v = v(x) = K
√

1 − 2x, 0 < x < 1/2, (K is a constant )

for the speed [ft/s] of the bullet after it has penetrated the wood a distance x feet.

Find the rate at which the speed of the bullet is decreasing after it enters the wood.
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� 5-15. Use the results from table 5-1 to find the centroid of the given composite

shapes.

� 5-16. Find the centroid of the area bounded by the curves

(a) The parabola y = x2 and the line y = y0 > 0

(b) The parabola y = x2 and the lines x = x0 > 0 and y = 0

(c) The parabola y = x2 and the lines x = x0 > 0, x = x1 > x0 > 0 and y = 0

� 5-17. Find the centroid of the area bounded by the curves

(a) The parabola x = 6y − y2 and the line x = 0

(b) The parabola x = 6y − y2 and the line x = 1

(c) The parabola x = 6y − y2 and the line 2y + x = 0

� 5-18. Find the centroid of the solid produced by rotation of the given area about

the axis specified.

Area defined by bounding curves Axis of rotation

(a) by − hx = 0, x = b, y = 0 x-axis

(b) by − hx = 0, x = b, y = 0 y-axis

(c) by − hx = 0, x = b, y = 0 The line y = −2

(d) y2 = 4x, x = 0, y = y0 > 0 y-axis

(e) y2 = 4x, x = 0, y = y0 > 0 x-axis

(f) y2 = 4x, x = 0, y = y0 > 0 The line x = −1

b, h, y0 are all positive constants.

� 5-19. The curve y = 4 − x2, 0 ≤ x ≤ 2, is revolved about the y-axis to form a solid

of revolution. Find the centroid of this solid.

(a) Use disk shaped volume elements.

(b) Us cylindrical shell shaped volume elements.
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� 5-20. Newton’s law of cooling states that the temperature T of a body cools with

time t at a rate proportional to the temperature difference T −Tenv between the body

temperature T and the temperature of the environment Tenv. Newton’s law of cooling

can therefore be expressed by the differential equation
dT

dt
= −k(T − Tenv), where

k > 0 is a proportionality constant and the negative sign indicates the temperature

is decreasing. (a) Use integration techniques to obtain the general solution to this

differential equation. (b) If the body initially has a temperature T = 100◦ C and is

cooling in an environment at 0◦ C, find T = T (t). (c) If the body cools to 80◦ C in

20 minutes, find the proportionality constant k. (d) Find the time it takes for the

body to cool from 90◦ C to 70◦ C. (e) Give units of measurement for each term in the

solution to part (a).

� 5-21. It has been found that under certain conditions, the number density N

(#/cm3) of a certain bacteria increases at a rate proportional to the amount N

present. If at time t = 0, N = N0 is the initial number of bacteria per cubic centimeter

and if after 5 hours, the value of N has been found to increase to 3N0, then find the

equation representing N = N (t) as a function of time t. Give units of measurement

for all terms in your equation.

� 5-22. Pappus’s Theorem

Pappus’s25 theorem states that if a region

R is rotated about a line which does not pass

through the region, then the volume of the solid

of revolution equals the area of the region R mul-

tiplied by the distance traveled by the centroid

of the region R. Assume the region R illustrated

is rotated about the y-axis.

(a) Show the volume of the solid formed is V = 2π

∫ x1

x0

xh(x) dx

(b) Show the x-position of the centroid is x̄ =
1

A

∫ x1

x0

xh(x) dx, where A is the area of

the region R.

(c) Prove Pappus’s theorem.

(d) Prove Pappus’s theorem if the region R is rotated about the x-axis.

25 Pappus of Alexandria (290-350) A Greek geometer.
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� 5-23. Use the Pappus theorem from the previous example

(a) to find the volume of a right circular cone obtained by revolving the line y = r
h
x,

0 ≤ x ≤ h about the x-axis

(b) to find the volume of a sphere obtained by revolving the semi-circle x2 + y2 = r2

−r ≤ x ≤ r, y > 0 about the x-axis.

� 5-24. Solve the given differential equations using integration techniques.

(a)
dy

dx
= 0

(b)
dy

dx
= 1

(c)
dy

dx
= x

(d)
dy

dx
= ex

(e)
dy

dx
= y

(f)
d2y

dx2
=

dy

dx

(g)
dy

dx
= y2

(h)
dy

dx
= sin x

(i)
dy

dx
= cos x

� 5-25. Solve each of the given differential equations by separating the variables

and applying integration techniques.

(a)
dy

dx
=

1 + x

1 + y
(b)

dy

dx
=

1 + x2

1 + y2
(c)

dy

dx
=

1 + x3

1 + y3

� 5-26.

(a) Solve the differential equation
d2y

dt2
+ ω2y = cosλt, where ω and λ are constants.

(b) For what value λ does resonance occur?

� 5-27.

Use a plane to cut the regular pyramid with height h and

square base having sides of length b and form an element of

volume which can then be summed to determine the volume

of the pyramid. (a) Find the volume of this pyramid. (b) Find

the volume of a frustum of this pyramid.

� 5-28. A piece of cardboard having length � = 1
2 (15+

√
33) and width w = 1

2(15−
√

33)

is to be made into a box by cutting squares of length x from each corner and then

turning up the sides followed by reinforcing the sides with tape. Find the box that

can be constructed which has the maximum volume.

� 5-29. Find the centroid of the region bounded by the following curves.

(a) y = x2 and y = 2x (b) y = x2 and y = mx, m > 0 (c) y2 = x and y = 2(x−1)
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� 5-30.

The face of a dam is a rectangular plate of

width w and length �. The plate is inclined at

an angle θ so that the longer side is at the water

level. Let ρ = 62.4 lbs/ft3 denote the water density and construct an x, y-axis lying

on the plate with origin at one corner as illustrated in the sketch.

(i) Show the distance y along the plate, measured from the water surface, corre-

sponds to a water depth h = y sin θ

(ii) Show a rectangular element of area dA on the plate is given by dA = �dy

(iii) At depth h, the pressure p acting on the element of area dA is given by p = ρh.

(iv) Show the element of force dF acting on the element of area is dF = p dA = p � dy

(v) Find the total force acting normal to the face of the dam.

� 5-31. Assume a body falls from rest from a height of 100 meters in air and the

body experiences a drag force proportional to its velocity.

(i) Show that Newton’s law of motion is represented

m
dv

dt
= mg − kv

where k is a proportionality constant.

(ii) Separate the variables and then integrate to determine the velocity as a function

of time.

(iii) When does the body hit the ground? What is its velocity when is hits the

ground.

(iv) Give units of measurement for all terms in the equations you used to obtain your

answer.

� 5-32. For each of the given differential equations assume an exponential solution

eγx and find

(a) The characteristic equation

(b) The characteristic roots

(c) A fundamental set of solutions

(d) The general solution

(a)
dy

dx
− αy = 0

(b)
d2y

dx2
+ ω2y = 0

(c)
d2y

dx2
− ω2y = 0

(d)
d2y

dx2
+ 3

dy

dx
+ 2y = 0

(e)
d2y

dx2
− dy

dx
+ 6y = 0

(f)
d3y

dx3
+ 6

d2y

dx2
+ 11

dy

dx
+ 6y = 0
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� 5-33.

For the RLC circuit illustrated Kirchhoff’s

law produces the differential equation

L
di

dt
+ Ri +

q

C
= E, i =

dq

dt

(a) Set L = 0 and i =
dq

dt
and then solve the initial-value problem that q = 0 when t = 0

and show q = q(t) = CE
(

1 − e−t/RC
)

and then find the current i in the circuit.

(b) Set E = 0, R = 0 to find the discharge of a condenser through an inductance L.

Assume the initial-values q = q0 and i = 0 at time t = 0

Hint: One method is to let i = dq
dt

and write d2q
dt2

= di
dt

= di
dq

dq
dt

= i di
dq

and then

separate variables.

(c) Set C = 0, E = 0 to find the decay of current in the circuit containing a resistance

and inductance. Assume the initial-value i = i0 at time t = 0 and show the

current decays according to the law i = i0e
−(R/L)t. Find the current at the times

t = L/R, t = 2L/R, t = 3L/R, t = 4/R and t = 5L/R

� 5-34. A Paradox

The curve y =
1

x
for 1 ≤ x ≤ T is revolved about the x-axis to form a surface.

(a) Find the volume V = V (T ) bounded by the surface and the planes x = 1 and

x = T . (b) Find the surface area S = S(T ) and show S(T ) > 2π lnT . (c) Show that in

the limit as T → ∞ that V (T ) is finite, but S(T ) becomes infinite.

The above results shows that you can take paint and fill up the infinite volume,

but you can’t paint the surface of this volume. Question: If you fill up the volume

with paint and then pour it out, does this count as painting the outside surface?

� 5-35. Assume y1 = y1(x) is a solution of the differential equation

L(y) =
d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0

What condition must u = u(x) satisfy, if y2(x) = u(x)y1(x) is also a solution to the

same differential equation?

(a) Determine the general solution to the differential equation
d2y

dx2
+ 2

dy

dx
+ y = 0

if it is known that y1 = y1(x) = e−x is a solution of this equation.

(b) Determine the general solution to the differential equation

x2 d2y

dx2
− 2x

dy

dx
+ 2y = 0 if it is know that y1 = y1(x) = x is a solution of this

equation.
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� 5-36. Use partial integration to solve the given partial differential equations for

the most general representation of the unknown function u = u(x, y).

(a)
∂u

∂x
= 6x2 + y

(b) x
∂u

∂x
+ u = y + x

(c) y
∂u

∂y
+ u = x + y

(d) y
∂2u

∂x ∂y
= x + y

(e)
∂2u

∂y2
= x + y

(f)
∂u

∂x
+

∂2u

∂x2
= 1 + y

(g)
∂u

∂y
= x2 + y

(h)
∂u

∂x
= xy

(i)
∂2u

∂x ∂y
= xy

Hint for (f): After one integration, multiply through by ex.

� 5-37. Assume f(x + iy) = u(x, y) + i v(x, y) is such that u = u(x, y) and v = v(x, y) are

real continuous functions with partial derivatives of the first and second order which

satisfy the Cauchy-Riemann conditions
∂u

∂x
=

∂v

∂y
and

∂u

∂y
= − ∂v

∂x

(a) Show that
∂2u

∂x2
+

∂2u

∂y2
= 0 (b) Show that

∂2v

∂x2
+

∂2v

∂y2
= 0

� 5-38. Find the largest rectangle that can be inscribed inside a circle of radius r.

� 5-39. Find the length of each of the given curves.

(a) y = x2 from x = 0 to x = 1

(b) y2 = 4x from x = 0 to x = 1

(c) y = coshx from x = 0 to x = 1

(d) y = ex from x = 0 to x = 1

� 5-40. A cylindrical can is to be constructed to hold πV0 cubic meters of material.

The cost of construction for the sides of the cylinder is c0 dollars per square meter

and the cost of constructing the top and bottom is 3c0 dollars per square meter.

This is because the side of the cylinder can be considered as a rectangle with height

h and width 2πr, where h is the height of the cylinder and r is the radius of the

cylinder. The top and bottom of the cylinder are circles and consequently more

manufacturing techniques and waste of material occurs in their construction. Find

the dimensions of the cylinder requiring minimum cost of construction. Hint: The

volume of the cylinder is V = πr2h = πV0.

� 5-41. Evaluate the following limits

(a) lim
h→0

u(x + h, y) − u(x, y)

h
(b) lim

k→0

u(x, y + k) − u(x, y)

k

assuming these limits exist.
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� 5-42.
(a) (Resistors in Series) Show that Ohm’s

law requires the voltage drop in moving around

the series circuit requires V = iR1 + iR2 + · · ·+ iRn

and so one can replace the sum of the resistors

by an equivalent resistance Req given by

Req = R1 + R2 + · · ·+ Rn.

(b) (Resistors in Parallel) Use Kirchhoff’s law

and show the current i in the parallel circuit

must satisfy i = i1 + i2 + · · ·+ in and that V = i1R1,

V = i2R2, . . . , V = inRn.

(c) Show an equivalent resistance Req must satisfy V = Reqi and from this result show

1

Req
=

1

R1
+

1

R2
+ · · ·+ 1

Rn

� 5-43. Assume an open container with vertical sides where the bottom of the

container has the same shape as the top of the container. If water evaporates from

this open container at a rate which is directly proportional to the exposed surface

area, use calculus to show that the depth of water in the container changes at a

constant rate and it doesn’t matter what shape the top and bottom have as long as

they are the same.

� 5-44. Evaluate the integral I =

∫

tan4 x dx for 0 < x < π
2

(a) Use the substitution z = tanx and show dx = dz
1+z2 so that the integral becomes

I =

∫

z4

1 + z2
dz =

∫

z4 + z2 − (z2 + 1) + 1

z2 + 1
dz =

∫
(

z2 − 1 +
1

1 + z2

)

dz

(b) Integrate the result from part (a) and then use back substitution to express the

integral I in terms of x.

� 5-45. Show that integrals of the type I =

∫

f(sin x, cosx) dx where f(u, v) is a rational

function of u, v, can be simplified by making the substitution z = tan
x

2

(a) Show sin x =
2z

1 + z2
, cos x =

1 − z2

1 + z2
, dx =

2dz

1 + z2
Hint: Show cos2

x

2
=

1

1 + tan2 x
2

(b) Evaluate the integral I =

∫

1 + cos2 x

cos4 x
dx
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� 5-46. The Trapezoidal Rule

Given a curve y = f(x), a ≤ x ≤ b, one can

partition the interval [a, b] into n-parts by defin-

ing a step size h = ∆x = (b−a)
n

and then labeling

the points

a = x0, x1 = x0+h, . . . , xn−1 = x0+(n−1)h, xn = x0+nh

Next construct trapezoids, the ith trapezoid has

the vertices xi−1, yi−1, xi, yi as illustrated in the

figure, where yi−1 = f(xi−1) and yi = f(xi).

(a) Show the area of the ith trapezoid is given by

Ai =
1

2
(yi−1 + yi)h =

h

2
[f(xi−1) + f(xi)]

(b) Show the area of all the trapezoids is

A = total area =
n

∑

i=1

Ai =
n

∑

i=1

1

2
(yi−1 + yi)h =

h

2

[

(y0 + yn) + 2
n−1
∑

i=1

yi

]

(c) Computer Problem

For the functions given over the interval specified compare the area under

the curve using the definite integral
∫

b

a

f(x) dx, with the trapezoidal rule for

approximating the area. Fill in the following table for values of n = 10, 50 and

100 associated with each function.

Area under curve y = f(x) for a ≤ x ≤ b

Function Interval Trapezoidal Integration

n= f(x) a ≤ x ≤ b
∑n

i=1 Ai

∫ b

a
f(x) dx

x 0 ≤ x ≤ 2

x2 0 ≤ x ≤ 2

x3 0 ≤ x ≤ 2

sin x 0 ≤ x ≤ π

cosx π

2
≤ x ≤

3π

2

(d) If the theoretical error of approximation using the trapezoidal rule is

E =

∣

∣

∣

∣

(b− a)3

12n2
f ′′(ξ)

∣

∣

∣

∣

, where a < ξ < b, compare your errors with the maximum

theoretical error.
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� 5-47. For a > 0, verify the improper integrals

(a)

∫ ∞

0

e−ax sin bx dx =
b

a2 + b2
(b)

∫ ∞

0

e−ax cos bx dx =
1

a2 + b2

� 5-48. If the Gamma function is defined by the improper integral

Γ(x) =

∫ ∞

0

e−ttx−1 dx

(a) Use integration by parts to show Γ(x + 1) = xΓ(x)

(b) Show for n an integer Γ(n + 1) = n!

� 5-49. Consider two particles starting at the origin at the same time and moving

along the x-axis such that their positions at any time t are given by

s1(t) = 2t2 + t and s2(t) = 11t − 3t2

(a) At what time will the particles have the same position and what will be their

velocities at this position?

(b) Find the particles positions when they have the same speed? What is this same

speed?

(c) Describe the motion of each particle.

� 5-50. Find the maximum and minimum values for the given functions

(a) f(x, y) = x2 + y2 − 2x − 4y − 20 (b) g(x, y) = 4x2 + 9y2 − 16x− 54y + 61

� 5-51. Given a point (x0, y0) �= (0, 0) lying in the first quadrant. Pick a point x1 > x0

on the x-axis and draw a line from (x1, 0) through (x0, y0) which intersects the y-axis.

Find the shortest line from the x-axis, through the point (x0, y0) which intersects the

y-axis Hint: If � is the length of the line segment, then minimize �2.

� 5-52. Find the maximum and minimum distances from the origin to points on

the circle (x − 6)2 + (y − 8)2 = 25

� 5-53. A particle undergoes simple harmonic motion on the x-axis according to

the law x = x0 + a cosωt + b sinωt, where x0, a, b, ω are given constant values.

(a) Find the center and amplitude of the motion.

(b) Find the period and frequency associated with the motion.

(c) Find the maximum acceleration.
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� 5-54.
A right circular conical water tank, as illus-

trated has a top radius R and height H. As-

sume water is in the tank at a depth h0. Let

ω = 62.5 lbs/ft3 denote the density of water.

(a) Show weight of disk at height h produces

force dF = ωπr2 dh

(b) Show element of work done in lifting disk a

distance H − h is

dW = (ωπr2 dh)(H − h)

(c) Show the work done in pumping the water out over the top of the tank is

W =

(

R

H

)2

π ω

∫ h0

0

h2(H − h) dh

and then evaluate this integral.

� 5-55. For p pressure and v volume, the integral W =

∫ v2

v1

p dv occurs in the study

of thermodynamics and represents work done by a gas.

(a) Evaluate this integral for an isothermal expansion where pv = c = constant.

(b) Evaluate this integral for an adiabatic expansion where pvγ = c = constant, where

γ = 1.41 is also a constant.

� 5-56.

A botanical gardens is planning the construction of flower

beds to display their hosta plants. The flower beds are to be

rectangular and constructed inside a rectangular area having

a known perimeter P . There is to be a walk surrounding each

flower bed having dimensions of s-feet on each side and e-feet

on each end. Design studies are to begin where the exact values

of P ,s and e are to be supplied for each flower bed. For a given

value of P, s and e find the dimensions of the flower bed if the

area of the flower bed is to be a maximum.
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APPENDIX A

Units of Measurement

The following units, abbreviations and prefixes are from the
Système International d’Unitès (designated SI in all Languages.)

Prefixes.

Abbreviations

Prefix Multiplication factor Symbol

exa 1018 W

peta 1015 P

tera 1012 T

giga 109 G

mega 106 M

kilo 103 K

hecto 102 h

deka 10 da

deci 10−1 d

centi 10−2 c

milli 10−3 m

micro 10−6 µ
nano 10−9 n

pico 10−12 p

femto 10−15 f

atto 10−18 a

Basic Units.

Basic units of measurement

Unit Name Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature degree Kelvin ◦ K

Luminous intensity candela cd

Supplementary units

Unit Name Symbol

Plane angle radian rad

Solid angle steradian sr

Appendix A
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DERIVED UNITS
Name Units Symbol

Area square meter m2

Volume cubic meter m3

Frequency hertz Hz (s−1)
Density kilogram per cubic meter kg/m3

Velocity meter per second m/s
Angular velocity radian per second rad/s

Acceleration meter per second squared m/s2

Angular acceleration radian per second squared rad/s2

Force newton N (kg · m/s2)
Pressure newton per square meter N/m2

Kinematic viscosity square meter per second m2/s
Dynamic viscosity newton second per square meter N · s/m2

Work, energy, quantity of heat joule J (N · m)
Power watt W (J/s)

Electric charge coulomb C (A · s)
Voltage, Potential difference volt V (W/A)

Electromotive force volt V (W/A)
Electric force field volt per meter V/m
Electric resistance ohm Ω (V/A)

Electric capacitance farad F (A · s/V)
Magnetic flux weber Wb (V · s)

Inductance henry H (V · s/A)
Magnetic flux density tesla T (Wb/m2)

Magnetic field strength ampere per meter A/m
Magnetomotive force ampere A

Physical Constants:

• 4 arctan 1 = π = 3.14159 26535 89793 23846 2643 . . .

• limn→∞

(

1 + 1

n

)

n

= e = 2.71828 18284 59045 23536 0287 . . .

• Euler’s constant γ = 0.57721 56649 01532 86060 6512 . . .

• γ = limn→∞

(

1 + 1

2
+ 1

3
+ · · · + 1

n
− log n

)

Euler’s constant
• Speed of light in vacuum = 2.997925(10)8 m s−1

• Electron charge = 1.60210(10)−19 C

• Avogadro’s constant = 6.0221415(10)23 mol−1

• Plank’s constant = 6.6256(10)−34 J s

• Universal gas constant = 8.3143J K−1 mol−1 = 8314.3J Kg−1 K−1

• Boltzmann constant = 1.38054(10)−23 J K−1

• Stefan–Boltzmann constant = 5.6697(10)−8 W m−2 K−4

• Gravitational constant = 6.67(10)−11 N m2kg−2

Appendix A
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APPENDIX B

Background Material

Geometry

Rectangle

Area = (base)(height) = bh

Perimeter = 2b + 2h

Right Triangle

Area =
1

2
(base)(height) =

1

2
bh

Perimeter = b + h + r

where r2 = b2 + h2 is the Pythagorean theorem

Triangle with sides a, b, c and angles A, B, C

Area =
1

2
(base)(height) =

1

2
bh =

1

2
b(a sinC)

Perimeter = a + b + c

Law of Sines
a

sin A
=

b

sin B
=

c

sinC

Law of Cosines c2 = a2 + b2 − 2ab cosC

Trapezoid

Area =
1

2
(b1 + b2)h

Perimeter = b1 + b2 + c1 + c2

c1 =
h

sin θ1

c2 =
h

sin θ2

Circle

Area = πρ2

Perimeter = 2πρ

Equation x2 + y2 = ρ2
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Sector of Circle

Area =
1

2
r2θ, θ in radians

s = arclength = r θ, θ in radians

Perimeter = 2r + s

Rectangular Parallelepiped

V = Volume = abh

S = Surface area = 2(ab + ah + bh)

Parallelepiped

Composed of 6 parallelograms

V = Volume = (Area of base)(height)

A = Area of base = bc sinβ

height = h = a cosα

Sphere of radius ρ

V = Volume =
4

3
πρ3

S = Surface area = 4πρ2

Frustum of right circular cone

V = Volume =
π

3
(a2 + ab + b2)h

Lateral surface area = π�(a + b)
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Chord Theorem for circle

a2 = x(2R − x)

Right Circular Cylinder

V = Volume = (Area of base)(height) = (πr2)h

Lateral surface area = 2πrh

Total surface area = 2πrh + 2(πr2)

Right Circular Cone

V = Volume =
1

3
πr2h

Lateral surface area = πr � = πr
√

h2 + r2

height = h, base radius r

Algebra

Products and Factors

(x + a)(x + b) = x2 + (a + b)x + ab

(x + a)2 = x2 + 2ax + a2

(x − b)2 = x2 − 2bx + b2

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ac + bc + ab)x + abc

x2 − y2 = (x − y)(x + y)

x3 − y3 = (x − y)(x2 + xy + y2)

x3 + y3 = (x + y)(x2 − xy + y2)

x4 − y4 = (x − y)(x + y)(x2 + y2)

If ax2 + bx + c = 0, then x =
−b±

√
b2 − 4ac

2a
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Binomial Expansion

For n = 1, 2, 3, . . . an integer, then

(x + y)n = xn + nxn−1y +
n(n − 1)

2!
xn−2y2 +

n(n − 1)(n− 2)

3!
xn−3y3 + · · ·+ yn

where n! is read n factorial and is defined

n! = n(n − 1)(n − 2) · · ·3 · 2 · 1 and 0! = 1 by definition.

Binomial Coefficients

The binomial coefficients can also be defined by the expression
(

n

k

)

=
n!

k!(n − k)!
where n! = n(n − 1)(n − 2) · · ·3 · 2 · 1

where for n = 1, 2, 3, . . . is an integer. The binomial expansion has the alternative

representation

(x + y)n =

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 +

(

n

3

)

xn−3y3 · · ·+
(

n

n

)

yn

Laws of Exponents

Let s and t denote real numbers and let m and n denote positive integers.

For nonzero values of x and y

x0 = 1, x �= 0

xs xt =xs+t

xs

xt
=xs−t

(xs)t =xst

(xy)s =xs ys

x−s =
1

xs

x1/n = n

√
x

xm/n = n

√
xm

(

x

y

)1/n

=
x1/n

y1/n
=

n

√
x

n

√
y

Laws of Logarithms

If x = by and b �= 0, then one can write y = logb x, where y is called the logarithm

of x to the base b. For P > 0 and Q > 0, logarithms satisfy the following properties

logb(PQ) = logb P + logb Q

logb

P

Q
= logb P − logb Q

logb QP =P logb Q
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Trigonometry

Pythagorean identities

Using the Pythagorean theorem x2 + y2 = r2 associated with a right triangle with

sides x, y and hypotenuse r, there results the following trigonometric identities,

known as the Pythagorean identities.
(x

r

)2

+
(y

r

)2

=1,

cos2 θ + sin2 θ =1,

1 +
( y

x

)2

=
( r

x

)2

,

1 + tan2 θ =sec2 θ,

(

x

y

)2

+ 1 =

(

r

y

)2

,

cot2 θ + 1 =csc2 θ,

Angle Addition and Difference Formulas

sin(A + B) = sinA cos B + cos A sin B,

cos(A + B) = cos A cos B − sin A sin B,

tan(A + B) =
tan A + tanB

1 − tanA tan B
,

sin(A −B) = sinA cos B − cosA sin B

cos(A −B) = cosA cos B + sinA sin B

tan(A −B) =
tanA − tan B

1 + tanA tanB

Double angle formulas

sin 2A =2 sinA cosA =
2 tanA

1 + tan2 A

cos 2A =cos2 A − sin2 A = 1 − 2 sin2 A = 2 cos2 A − 1 =
1 − tan2 A

1 + tan2 A

tan2A =
2 tanA

1 − tan2 A
=

2 cotA

cot2 A − 1

Half angle formulas

sin
A

2
= ±

√

1 − cos A

2

cos
A

2
= ±

√

1 + cos A

2

tan
A

2
= ±

√

1 − cos A

1 + cos A
=

sinA

1 + cos A
=

1 − cos A

sin A

The sign depends upon the quadrant A/2 lies in.

Multiple angle formulas

sin 3A =3 sinA − 4 sin3 A,

cos 3A =4 cos3 A − 3 cosA,

tan 3A =
3 tanA − tan3 A

1 − 3 tan2 A
,

sin 4A =4 sinA cosA − 8 sin3 A cos A

cos 4A =8 cos4 A − 8 cos2 A + 1

tan4A =
4 tanA − 4 tan3 A

1 − 6 tan2 A + tan4 A
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Multiple angle formulas

sin 5A =5 sinA − 20 sin3 A + 16 sin5 A

cos 5A =16 cos5 A − 20 cos3 A + 5 cos A

tan 5A =
tan5 A − 10 tan3 A + 5 tanA

1 − 10 tan2 A + 5 tan4 A

sin 6A =6 cos5 A sinA − 20 cos3 A sin3 A + 6 cosA sin5 A

cos 6A =cos6 A − 15 cos4 A sin2 A + 15 cos2 A sin4 A − sin6 A

tan 6A =
6 tanA − 20 tan3 A + 6 tan5 A

1 − 15 tan2 A + 15 tan4 A − tan6 A

Summation and difference formula

sinA + sinB =2 sin(
A + B

2
) cos(

A −B

2
),

cosA + cos B =2 cos(
A + B

2
) cos(

A −B

2
),

tan A + tanB =
sin(A + B)

cos A cosB
,

sinA − sin B =2 sin(
A − B

2
) cos(

A + B

2
)

cos A − cos B =− 2 sin(
A − B

2
) sin(

A + B

2
)

tanA − tan B =
sin(A −B)

cosA cos B

Product formula

sin A sinB =
1

2
cos(A − B)− 1

2
cos(A + B)

cos A cosB =
1

2
cos(A − B) +

1

2
cos(A + B)

sin A cosB =
1

2
sin(A − B) +

1

2
sin(A + B)

Additional relations

sin(A + B) sin(A − B) = sin2 A − sin2 B,

− sin(A + B) sin(A − B) = cos2 A − cos2 B,

cos(A + B) cos(A − B) = cos2 A − sin2 B,

sinA ± sinB

cosA + cosB
= tan(

A ± B

2
)

sinA ± sinB

cosA − cosB
= − cot(

A ∓ B

2
)

sin A + sinB

sin A − sinB
=

tan(
A + B

2
)

tan(
A − B

2
)
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Powers of trigonometric functions

sin2 A =
1

2
− 1

2
cos 2A,

sin3 A =
3

4
sinA − 1

4
sin 3A,

sin4 A =
3

8
− 1

2
cos 2A +

1

8
cos 4A,

cos2 A =
1

2
+

1

2
cos 2A

cos3 A =
3

4
cos A +

1

4
cos 3A

cos4 A =
3

8
+

1

2
cos 2A +

1

8
cos 4A

Inverse Trigonometric Functions

sin−1 x =
π

2
− cos−1 x

cos−1 x =
π

2
− sin−1 x

tan−1 x =
π

2
− cot−1 x

sin−1 1

x
= csc−1 x

cos−1 1

x
= sec−1 x

tan−1 1

x
= cot−1 x

Symmetry properties of trigonometric functions

sin θ =− sin(−θ) = cos(π/2− θ) = − cos(π/2 + θ) = + sin(π − θ) = − sin(π + θ)

cos θ = + cos(−θ) = sin(π/2− θ) = + sin(π/2 + θ) = − cos(π − θ) = − cos(π + θ)

tan θ =− tan(−θ) = cot(π/2 − θ) = − cot(π/2 + θ) = − tan(π − θ) = + tan(π + θ)

cot θ =− cot(−θ) = tan(π/2 − θ) = − tan(π/2 + θ) = − cot(π − θ) = + cot(π + θ)

sec θ = + sec(−θ) = csc(π/2− θ) = + csc(π/2 + θ) = − sec(π − θ) = − sec(π + θ)

csc θ =− csc(−θ) = sec(π/2− θ) = + sec(π/2 + θ) = + csc(π − θ) = − csc(π + θ)

Transformations

The following transformations are sometimes useful in simplifying expressions.

1. If tan
u

2
= A, then

sin u =
2A

1 + A2
, cosu =

1 − A2

1 + A2
, tan u =

2A

1 − A2

2. The transformation sin v = y, requires cos v =
√

1 − y2, and tan v =
y

√

1 − y2

Law of sines

a

sin A
=

b

sin B
=

c

sin C

Law of cosines

a2 =b2 + c2 − 2bc cosA

b2 =c2 + a2 − 2ac cosB

c2 =a2 + b2 − 2ab cosC
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Special Numbers

Rational Numbers

All those numbers having the form p/q, where p and q are integers and q is

understood to be different from zero, are called rational numbers.

Irrational Numbers

Those numbers that cannot be written as the ratio of two numbers are called

irrational numbers.

The Number π

The Greek letter π (pronounced pi) is an irrational number and can be defined

as the limiting sum1 of the infinite series

π = 4

(

1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·+ (−1)n

2n + 1
+ · · ·

)

Using a computer one can verify that the numerical value of π to 50 decimal places

is given by

π = 3.1415926535897932384626433832795028841971693993751 . . .

The number π has the physical significance of representing the circumference C of

a circle divided by its diameter D. The symbol π for the ratio C/D was introduced

by William Jones (1675-1749), a Welsh mathematician. It became a standard nota-

tion for representing C/D after Euler also started using the symbol π for this ratio

sometime around 1737.

The Number e

The limiting sum

1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · ·

is an irrational number which by agreement is called the number e. Using a computer

this number, to 50 decimal places, has the numerical value

e = 2.71828182845904523536028747135266249775724709369996 . . .

The number e is referred to as the base of the natural logarithm and the function

f(x) = ex is called the exponential function.

1 Limits are very important in the study of calculus.
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Greek Alphabet

Letter Name

A α alpha

B β beta

Γ γ gamma

∆ δ delta

E ε epsilon

Z ζ zeta

H η eta

Θ θ theta

I ι iota

K κ kappa

Λ λ lambda

M µ mu

Letter Name

N ν nu

Ξ ξ xi

O o omicron

Π π pi

P ρ rho

Σ σ sigma

T τ tau

Υ υ upsilon

Φ φ phi

X χ chi

Ψ ψ psi

Ω ω omega

Notation

By convention letters from the beginning of an alphabet, such as a, b, c, . . . or the

Greek letters α, β, γ, . . . are often used to denote quantities which have a constant

value. Subscripted quantities such as x0, x1, x2, . . . or y0, y1, y2, . . . can also be used to

represent constant quantities. A variable is a quantity which is allowed to change

its value. The letters u, v, w, x, y, z or the Greek letters ξ, η, ζ are most often used to

denote variable quantities.

Inequalities

The mathematical symbols = (equals), �= (not equal), < (less than), << (much

less than), ≤ (less than or equal), > (greater than), >> (much greater than) ≥

(greater than or equal), and | | (absolute value) occur frequently in mathematics to

compare real numbers a, b, c, . . .. The law of trichotomy states that if a and b are real

numbers, then exactly one of the following must be true. Either a equals b, a is less

than b or a is greater than b. These statements are expressed using the mathematical

notations2

a = b, a < b, a > b

2 In mathematical notation, the statement b > a, read “b is greater than a”, can also be represented a < b or

“a is less than b”depending upon your way of looking at things.
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Inequalities can be defined in terms of addition or subtraction. For example, one

can define

a < b if and only if a − b < 0

a > b if and only if a − b > 0, or alternatively

a > b if and only if there exists a positive number x such that b + x = a.

In dealing with inequalities be sure to observe the following properties associated

with real numbers a, b, c, . . .

1. A constant can be added to both sides of an inequality without changing the

inequality sign.

If a < b, then a + c < b + c for all numbers c

2. Both sides of an inequality can be multiplied or divided by a positive constant

without changing the inequality sign.

If a < b and c > 0, then ac < bc or a/c < b/c

3. If both sides of an inequality are multiplied or divided by a negative quantity,

then the inequality sign changes.

If b > a and c < 0, then bc < ac or b/c < a/c

4. The transitivity law
If a < b, and b < c, then a < c

If a = b and b = c, then a = c

If a > b, and b > c, then a > c

5. If a > 0 and b > 0, then ab > 0

6. If a < 0 and b < 0, then ab > 0 or 0 < ab

7. If a > 0 and b > 0 with a < b, then
√

a <
√

b

A negative times a negative is a positive

To prove that a real negative number multiplied by another real negative number

gives a positive number start by assuming a and b are real numbers satisfying a < 0

and b < 0, then one can write

−a + a < −a or 0 < −a and − b + b < −b or 0 < −b
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since equals can be added to both sides of an inequality without changing the in-

equality sign. Using the fact that both sides of an inequality can be multiplied by a

positive number without changing the inequality sign, one can write

0 < (−a)(−b) or (−a)(−b) > 0

Another way to show a negative times a negative

is a positive is as follows. Think of a number line

with the number 0 separating the positive num-

bers and negative numbers. By agreement, if a

number on this number line is multiplied by -1,

then the number is to be rotated counterclockwise 180 degrees. If the positive num-

ber x is multiplied by -1, then it is rotated counterclockwise 180 degrees to produce

the number −x. If the number −x is multiplied by -1, then it is to be rotated 180

degrees counterclockwise to produce the positive number x. If a > 0 and b > 0, then

the product a(−b) scales the number −b to produce the negative number −ab. If the

number −ab is multiplied by −1, which is equivalent to the product (−a)(−b), one

obtains by rotation the number +ab.

Absolute Value

The absolute value of a number x is defined

|x| =

{

x, if x ≥ 0

−x, if x < 0

The symbol ⇐⇒ is often used to represent equivalence of two equations. For example,

if a and b are real numbers the statements

|x − a| ≤ b ⇐⇒ −b ≤ x − a ≤ b ⇐⇒ a − b ≤ x ≤ a + b

are all equivalent statements involving restrictions on the real number x.

An important inequality known as the triangle inequality is written

|x + y| ≤ |x|+ |y| (1.1)

where x and y are real numbers. To prove this inequality observe that |x| satisfies

−|x| ≤ x ≤ |x| and also −|y| ≤ y ≤ |y|, so that by adding these results one obtains

−(|x|+ |y|) ≤ x + y ≤ |x|+ |y| or |x + y| ≤ |x| + |y| (1.2)

Related to the inequality (1.2) is the reverse triangle inequality

|x − y| ≥ |x| − |y| (1.3)

a proof of which is left as an exercise.
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Cramer’s Rule

The system of two equations in two unknowns

α1x + β1y =γ1

α2x + β2y =γ2

or
[

α1 β1

α2 β2

][

x
y

]

=

[

γ1

γ2

]

has a unique solution if α1β2 − α2β1 is nonzero. The unique solution is given by

x =

∣

∣

∣

∣

γ1 β1

γ2 β2

∣

∣

∣

∣

∣

∣

∣

∣

α1 β1

α2 β2

∣

∣

∣

∣

, y =

∣

∣

∣

∣

α1 γ1

α2 γ2

∣

∣

∣

∣

∣

∣

∣

∣

α1 β1

α2 β2

∣

∣

∣

∣

where
∣

∣

∣

∣

α1 β1

α2 β2

∣

∣

∣

∣

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
............

........
......
....
....
....
..

......................................

.......................
...........................................

.........................................................
..............................

.................................
..
..
..
..
...
..
..
..
...
..
...
..
...
..
...
.

..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.

−α2β1

+α1β2

= α1β2 − α2β1

is a single number called the determinant of the coefficients.

The system of three equations in three unknowns

α1x + β1y + γ1z =δ1

α2x + β2y + γ2z =δ2

α3x + β3y + γ3x =δ3

has a unique solution if the determinant of the coefficients
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∣
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α2 β2 γ2

α3 β3 γ3
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∣
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∣

= α1β2γ3 + β1γ2α3 + γ1α2β3 − α3β2γ1 − β3γ2α1 − γ3α2β2

is nonzero. A mnemonic device to aid in calculating the determinant of the co-

efficients is to append the first two columns of the coefficients to the end of the

array and then draw diagonals through the coefficients. Multiply the elements along

an arrow and place a plus sign on the products associated with the down arrows

and a minus sign associated with the products of the up arrows. This gives the figure
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= α1β2γ3 + β1γ2α3 + γ1α2β3 − α3β2γ1 − β3γ2α1 − γ3α2β2

The solution of the three equations, three unknown system of equations is given

by the determinant ratios

x =

∣

∣

∣

∣

∣

∣

δ1 β1 γ1

δ2 β2 γ2

δ3 β3 γ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣

∣

∣

∣

∣

∣

, y =

∣

∣

∣

∣

∣

∣

α1 δ1 γ1

α2 δ2 γ2

α3 δ3 γ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣

∣

∣

∣

∣

∣

, z =

∣

∣

∣

∣

∣

∣

α1 β1 δ1

α2 β2 δ2

α3 β3 δ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣

∣

∣

∣

∣

∣

and is known as Cramer’s rule for solving a system of equations.
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Appendix C

Table of Integrals
Indefinite Integrals

General Integration Properties

1. If
dF (x)

dx
= f(x) , then

∫

f(x) dx = F (x) + C

2. If
∫

f(x) dx = F (x)+C , then the substitution x = g(u) gives
∫

f(g(u)) g′(u) du = F (g(u))+C

For example, if
∫

dx

x2 + β2
=

1

β
tan−1 x

β
+ C, then

∫
du

(u + α)2 + β2
=

1

β
tan−1 u + α

β
+ C

3. Integration by parts. If v1(x) =

∫

v(x) dx, then
∫

u(x)v(x) dx = u(x)v1(x) −
∫

u′(x)v1(x) dx

4. Repeated integration by parts or generalized integration by parts.

If v1(x) =
∫

v(x) dx, v2(x) =
∫

v1(x) dx, . . . , vn(x) =
∫

vn−1(x) dx, then
∫

u(x)v(x) dx = uv1 − u′v2 + u′′v3 − u′′′v4 + · · ·+ (−1)n−1un−1vn + (−1)n

∫

u(n)(x)vn(x) dx

5. If f−1(x) is the inverse function of f(x) and if
∫

f(x) dx is known, then

∫

f−1(x) dx = zf(z) −
∫

f(z) dz, where z = f−1(x)

6. Fundamental theorem of calculus.
If the indefinite integral of f(x) is known, say

∫

f(x) dx = F (x) + C, then the definite integral

∫ b

a

dA =

∫ b

a

f(x) dx = F (x)]
b
a = F (b) − F (a)

represents the area bounded by the x-axis, the curve

y = f(x) and the lines x = a and x = b.

7. Inequalities.

(i) If f(x) ≤ g(x) for all x ∈ (a, b), then
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

(ii) If |f(x) ≤ M | for all x ∈ (a, b) and
∫ b

a f(x) dx exists, then

∣
∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
∣
≤

∫ b

a

f(x) dx ≤ M(b − a)
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8.
∫

u′(x) dx

u(x)
= ln |u(x)|+ C

9.
∫

(αu(x) + β)nu′(x) dx =
(αu(x) + β)n+1

α(n + 1)
+ C

10.
∫

u′(x)v(x) − v′(x)u(x)

v2(x)
dx =

u(x)

v(x)
+ C

11.
∫

u′(x)v(x) − u(x)v′(x)

u(x)v(x)
dx = ln |u(x)

v(x)
|+ C

12.
∫

u′(x)v(x) − u(x)v′(x)

u2(x) + v2(x)
dx = tan−1 u(x)

v(x)
+ C

13.
∫

u′(x)v(x) − u(x)v′(x)

u2(x) − v2(x)
dx =

1

2
ln |u(x)− v(x)

u(x) + v(x)
|+ C

14.
∫

u′(x) dx
√

u2(x) + α
= ln |u(x) +

√

u2(x) + α| + C

15.
∫

u(x) dx

(u(x) + α)(u(x) + β)
=







α

α− β

∫
dx

u(x) + α
− β

α − β

∫
dx

u(x) + β
, α �= β

∫
dx

u(x) + α
− α

∫
dx

(u(x) + α)2
, β = α

16.
∫

u′(x) dx

αu2(x) + βu(x)
=

1

β
ln | u(x)

αu(x) + β
| + C

17.
∫

u′(x) dx

u(x)
√

u2(x) − α2
=

1

α
sec−1 u(x)

α
+ C

18.
∫

u′(x) dx

α2 + β2u2(x)
=

1

αβ
tan−1 βu(x)

α
+ C

19.
∫

u′(x) dx

α2u2(x) − β2
=

1

2αβ
ln |αu(x)− β

αu(x) + β
| + C

20.
∫

f(sin x) dx = 2

∫

f

(
2u

1 + u2

)
du

1 + u2
, u = tan

x

2

21.
∫

f(sin x) dx =

∫

f(u)
du√

1 − u2
, u = sin x

22.
∫

f(cos x) dx = 2

∫

f

(
1 − u2

1 + u2

)
du

1 + u2
, u = tan

x

2

23.
∫

f(cos x) dx = −
∫

f(u)
du√

1 − u2
, u = cosx

24.
∫

f(sin x, cosx) dx =

∫

f(u,
√

1 − u2)
du√

1 − u2
, u = sin x

25.
∫

f(sin x, cosx) dx = 2

∫

f

(
2u

1 + u2
,
1 − u2

1 + u2

)
du

1 + u2
, u = tan

x

2

26.
∫

f(x,
√

α + βx) dx =
2

β

∫

f

(
u2 − α

β
, u

)

udu, u2 = α + βx

27.
∫

f(x,
√

α2 − x2) dx = α

∫

f(α sin u, a cosu) cos u du, x = α sin u
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General Integrals

28.
∫

c u(x) dx = c

∫

u(x) dx 29.
∫

[u(x) + v(x)] dx =

∫

u(x) dx +

∫

v(x) dx

30.
∫

u(x)u′(x) dx =
1

2
| u(x) |2 +C 31.

∫

[u(x) − v(x)] dx =

∫

u(x) dx−
∫

v(x) dx]

32.
∫

un(x)u′(x) dx =
[u(x)]n+1

n + 1
+ C 33.

∫

u(x) v′(x) dx = u(x) v(x) −
∫

u′(x) v(x) dx

34.
∫

F ′[u(x)] u′(x)dx = F [u(x)] + C 35.
∫

u′(x)

u(x)
dx = ln | u(x) | +C

36.
∫

u′

2
√

u
dx =

√
u + C 37.

∫

1 dx = x + C

38.
∫

xn dx =
xn+1

n + 1
+ C 39.

∫
1

x
dx = ln | x | +C

40.
∫

eau u′ dx =
1

a
eau + C 41.

∫

au u′ dx =
1

lna
au + C

42.
∫

sin u u′ dx = cosu + C 43.
∫

cos u u′ dx = − sin u + C

44.
∫

tanu u′ dx = ln | sec u | +C 45.
∫

cotu u′ dx = ln | sin u | +C

46.
∫

sec u u′ dx = ln | sec u + tanu | +C 47.
∫

csc u u′ dx = ln | csc u − cotu | +C

48.
∫

sinhu u′ dx = cosh u + C 49.
∫

cosh u u′ dx = sinhu + C

50.
∫

tanhu u′ dx = lncosh u + C 51.
∫

coth u u′ dx = ln sinhu + C

52.
∫

sech u u′ dx = sin−1(tanhu) + C 53.
∫

csch u u′ dx = ln tanh
u

2
+ C

54.
∫

sin2 u u′ dx =
1

2
u − 1

4
sin 2u + C 55.

∫

cos2 u u′ dx =
u

2
+

1

4
sin 2u + C

56.
∫

tan2 u u′ dx = tanu − u + C 57.
∫

cot2 u u′ dx = − cotu − u + C

58.
∫

sec2 u u′ dx = tanu + C 59.
∫

csc2 u u′ dx = − cotu + C

60.
∫

sinh2 u u′ dx =
1

4
sinh 2u − 1

2
u + C 61.

∫

cosh2 u u′ dx =
1

4
sinh2u +

1

2
u + C

62.
∫

tanh2 u u′ dx = u− tanhu + C 63.
∫

coth2 u u′ dx = u − coth u + C

64.
∫

sech 2u u′ dx = tanhu + C 65.
∫

csch 2u u′ dx = − coth u + C

66.
∫

sec u tanu u′ dx = sec u + C 67.
∫

csc u cotu u′ dx = − csc u + C

68.
∫

sech u tanhu u′ dx = −sech u + C 69.
∫

csch u coth u u′ dx = −csch u + C

Integrals containing X = a + bx, a �= 0 and b �= 0

70.
∫

Xn dx =
Xn+1

b(n + 1)
+ C, n �= −1

71.
∫

xXn dx =
Xn+2

b2(n + 2)
− aXn+1

b2(n + 1)
+ C, n �= −1, n �= −2

72.
∫

X(x + c)n dx =
b

n + 2
(x + c)n+2 +

a − bc

n + 1
(x + c)n+1 + C
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73.
∫

x2Xn dx =
1

b3

[
Xn+3

n + 3
− 2aXn+2

n + 2
+

a2Xn+1

n + 1

]

+ C

74.
∫

xn−1Xm dx =
1

n + m
xnXm +

am

m + n

∫

xn−1Xm−1 dx

75.
∫

Xm

xn+1
dx = − 1

na

Xm+1

xn
+

m − n + 1

n

b

a

∫
Xm

xn
dx

76.
∫

dx

X
=

1

b
lnX + C

77.
∫

x dx

X
=

1

b2
(X − a ln | X |) + C

78.
∫

x2 dx

X
=

1

2b3

(
X2 − 4aX + 2a2 ln | X |

)
+ C

79.
∫

dx

xX
=

1

a
ln | x

X
| +C

80.
∫

dx

x3X
= −a + 2bx

a2xX
+

2b

a3
ln |X

x
| + C

81.
∫

dx

X2
= − 1

bX
+ C

82.
∫

x dx

X2
=

1

b2

[

ln | X | +
a

X

]

+ C

83.
∫

x2 dx

X2
=

1

b3

[

X − 2a ln | X | −a2

X

]

+ C

84.
∫

dx

xX2
=

1

aX
− 1

a2
ln | X

x
| +C

85.
∫

dx

x2X2
= −a + 2bx

a2xX
+

2b

a3
ln | X

x
| +C

86.
∫

dx

X3
= − 1

2bX2
+ C

87.
∫

x dx

X3
=

1

b2

[
−1

X
+

a

2X2

]

+ C

88.
∫

x2 dx

X3
=

1

b3

[

ln | X | +
2a

X
− a2

2X2

]

+ C

89.
∫

dx

xX3
=

1

2aX2
+

1

aX
− ln | X

x
| +C
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90.
∫

dx

x2X3
=

−b

2a2X
− 2b

a3X
− 1

a3x
+

3b

a4
ln | X

x
|

91.
∫

x dx

Xn
=

1

b2

[
−1

(n − 2)Xn−2
+

a

(n − 1)Xn−1

]

+ C, n �= 1, 2

92.
∫

x2 dx

Xn
=

1

b3

[
−1

(n − 3)Xn−3
+

2a

(n − 2)Xn−2
− a2

(n − 1)Xn−1

]

+ C, n �= 1, 2, 3

93.
∫ √

X dx =
2

3b
X3/2 + C

94.
∫

x
√

X dx =
2

15b2
(3bx − 2a)X3/2 + C

95.
∫

x2
√

X dx =
2

105b3
(8a2 − 12abx + 15b2x2)X3/2 + C

96.
∫ √

X

x
dx = 2

√
X + a

∫
dx

x
√

X

97.
∫ √

X

x2
dx = −

√
X

x
+

b

2

∫
dx

x
√

X

98.
∫

dx√
X

=
2

b

√
X + C

99.
∫

x dx√
X

=
2

3b2
(bx − 2a)

√
X + C

100.
∫

x2 dx√
X

=
2

15b3
(8a2 − 4abx + 3b2x2)

√
X + C

101.
∫

dx

x
√

X
=







1√
a

ln |
√

X −
√

a√
X +

√
a
| +C1, a > 0

2√
−a

tan−1

√

X

−a
+ C2, a < 0

102.
∫

dx

x2
√

X
= −

√
X

ax
− b

2a

∫
dx

x
√

X

103.
∫

xn
√

X dx =
2

(2n + 3)b
xnX3/2 − 2na

(2n + 3)b

∫

xn−1
√

X dx

104.
∫ √

X

xn
dx =

−1

(n − 1)a

X3/2

xn−1
− (2n − 5)b

2(n − 1)a

∫ √
X

xn−1
dx

105.
∫

xm−1Xn dx =
xmXn

m + n
+

an

m + n

∫

xm−1Xn−1 dx + C

106.
∫

Xn

xm+1
dx = − Xn+1

ma xm
+

n − m + 1

m

b

a

∫
Xn

xm
dx
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107.
∫

Xn

x
dx =

Xn

n
+ a

∫
Xn−1

x
dx

Integrals containing X = a + bx and Y = α + βx, (b �= 0, β �= 0, ∆ = aβ − αb �= 0 )

108.
∫

dx

XY
=

1

∆
ln | Y

X
| +C

109.
∫

x dx

XY
=

1

∆

[
a

b
ln | X | −

α

β
ln | Y |

]

+ C

110.
∫

x2 dx

XY
=

x

bβ
=

a2

b2∆
ln |X| + α2

β2∆
ln |Y | + C

111.
∫

dx

X2Y
=

1

∆

(
1

X
+

β

∆
ln |Y

X
|
)

+ C

112.
∫

x dx

X2Y
= − a

b∆X
− α

∆2
ln |Y

X
| + C

113.
∫

x2 dx

X2Y
=

a2

b2∆X
+

1

∆2

[
α2

β
ln |Y | + a(aβ − 2αb)

b2
ln |X|

]

+ C

114.
∫

X

Y
dx =

b

β
x +

∆

β2
ln | Y

X
| + C

115.
∫ √

XY dx =
∆ + 2bY

4bβ

√
XY − ∆2

8bβ

∫
dx√
XY

116.
∫

dx

XnY m
=

−1

(m− 1)∆Xn−1Y m−1
+

(m + n − 2)b

(m− 1)∆

∫
dx

XnY m−1
, m �= 1

117.
∫

dx

Y
√

X
=







2√
−∆β

tan−1 β
√

X√
−∆β

, +C1 ∆β < 0

1√
∆β

ln |β
√

X −
√

∆β

β
√

X +
√

∆β
| + C2, ∆β > 0

118.
∫

dx√
XY

=







2√
−bβ

tan−1

√

−βX

bY
+ C1, bβ < 0, bY > 0

2√
bβ

tanh−1

√

βX

bY
+ C2, bβ > 0, bY > 0

119.
∫

x dx√
XY

=
1

bβ

√
XY − (bα + aβ)

2bβ

∫
dx√
XY

120.
∫ √

Y√
X

dx =
1

b

√
XY − ∆

2b

∫
dx√
XY

121.
∫ √

X

Y
dx =

2

β

√
X +

∆

β

∫
dx

Y
√

X
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Integrals containing terms of the form a + bxn

122.
∫

dx

a + bx2
=







1√
ab

tan−1

(√

b

a
x

)

+ C, ab > 0

1

2
√
−ab

ln

∣
∣
∣
∣

a +
√
−abx

a −
√
−abx

∣
∣
∣
∣
+ C, ab < 0

123.
∫

x dx

a + bx2
=

1

2b
ln |x2 +

a

b
| + C

124.
∫

x2 dx

a + bx2
=

x

b
− a

b

∫
dx

a + bx2

125.
∫

dx

(a + bx2)2
=

x

2a(a + bx2)
+

1

2a

∫
dx

a + bx2

126.
∫

dx

x(a + bx2)
=

1

2a
ln

∣
∣
∣
∣

x2

a + bx2

∣
∣
∣
∣
+ C

127.
∫

dx

x2(a + bx2)
= − 1

ax
− b

a

∫
dx

a + bx2

128.
∫

dx

(a + bx2)n+1
=

1

2na

x

(a + bx2)n
+

2n − 1

2na

∫
dx

(a + bx2)n

129.
∫

dx

α3 + β3x3
=

1

6α2β

[

2
√

3 tan−1

(
2βx − α√

3α

)

+ ln

∣
∣
∣
∣

(α + βx)2

α2 − αβx + β2x2

∣
∣
∣
∣

]

+ C

130.
∫

x dx

α3 + β3x3
=

1

6αβ2

[

2
√

3 tan−1

(
2βx − α√

3α

)

− ln

∣
∣
∣
∣

(α + βx)2

α2 − αβx + β2x2

∣
∣
∣
∣

]

+ C

If X = a + bxn, then

131.
∫

xm−1Xp dx =
xmXp

m + pn
+

apn

m + pn

∫

xm−1Xp−1 dx

132.
∫

xm−1Xp dx = −
xmXp+1

an(p + 1)
+

m + pn + n

an(p + 1)

∫

xm−1Xp+1 dx

133.
∫

xm−1XP dx =
xm−nXp+1

b(m + pn)
− (m − n) a

b(m + pn)

∫

xm−n−1Xp dx

134.
∫

xm−1Xp dx =
xmXp+1

am
− (m + pn + n) b

am

∫

xm+n−1Xp dx

135.
∫

xm−1Xp dx =
xm−nXp+1

bn(p + 1)
− m − n

bn(p + 1)

∫

xm−n−1Xp+1 dx

136.
∫

xm−1Xp dx =
xmXp

m
− bpn

m

∫

xm+n−1Xp−1 dx
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Integrals containing X = 2ax − x2, a �= 0

137.
∫ √

X dx =
(x − a)

2

√
X +

a2

2
sin−1

(
x − a

|a|

)

+ C

138.
∫

dx√
X

= sin−1

(
x − a

|a|

)

+ C

139.
∫

x
√

X dx = sin−1

(
x − a

|a|

)

+ C

140.
∫

x dx√
X

= −
√

X + a sin−1

(
x − a

|a|

)

+ C

141.
∫

dx

X3/2
=

x − a

a2
√

X
+ C

142.
∫

x dx

X3/2
=

x

a
√

X
+ C

143.
∫

dx

X
=

1

2a
ln | x

x− 2a
|+ C

144.
∫

x dx

X
= − ln |x − 2a| + C

145.
∫

dx

X2
= − 1

4ax
− 1

4a2(x − 2a)
+

1

4a2
ln | x

x − 2a
| + C

146.
∫

x dx

X2
= − 1

2a(x − 2a)
+

1

4a2
ln | x

x − 2a
| + C

147.
∫

xn
√

X dx = − 1

n + 2
xn−1X3/2 +

(2n + 1)a

n + 2

∫

xn−1
√

X dx, n �= −2

148.
∫ √

X dx

xn
=

1

(3 − 2n)a

X3/2

xn
+

n − 3

(2n − 3)a

∫ √
X

xn−1
dx, n �= 3/2

Integrals containing X = ax2 + bx + c with ∆ = 4ac − b2, ∆ �= 0, a �= 0

149.
∫

dx

X
=







1√
−∆

ln

(
2ax + b −

√
−∆

2ax + b +
√
−∆

)

+ C1, ∆ < 0

2√
∆

tan−1 2ax + b√
∆

+ C2, ∆ > 0

− 1

a(x + b/2a)
+ C3, ∆ = 0

150.
∫

x dx

X
=

1

2c
ln | X | − b

2a

∫
1

X
dx

151.
∫

x2 dx

X
=

x

a
− b

2a2
ln |X| + 2ac − ∆

2a2

∫
dx

X
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152.
∫

dx

xX
=

1

2c
ln |x

2

X
| − b

2c

∫
dx

X

153.
∫

dx

x2X
=

b

2c2
ln |X

x2
| − 1

cx
+

2ac − ∆

2c2

∫
dx

X

154.
∫

dx

X2
=

bx + 2c

∆X
− b

∆

∫
dx

X

155.
∫

x dx

X2
= −bx + 2c

∆X
− b

∆

∫
dx

X

156.
∫

x2 dx

X2
=

(2ac − ∆)x + bc

a∆X
+

2c

∆

∫
dx

X

157.
∫

dx

xX2
=

1

2cX
− b

2c

∫
dx

X2
+

1

c

∫
dx

xX

158.
∫

dx

x2X2
= − 1

cxX
− 3a

c

∫
dx

X2
− 2b

c

∫
dx

xX2

159.
∫

dx√
X

=







1√
a

ln |2
√

aX + 2ax + b|+ C1, a > 0

1√
a

sinh−1

(
2ax + b√

∆

)

+ C2, a >, ∆ > 0

− 1√
−a

sin−1

(
2ax + b√

−∆

)

+ C3, a < 0, ∆ < 0

160.
∫

x dx√
X

=
1

a

√
X −

b

2a

∫
dx√
X

161.
∫

x2 dx√
X

=

(
x

2a
− 3b

4a2

)√
X +

2b2 − ∆

8a2

∫
dx√
X

162.
∫

dx

x
√

X
=







−
1√
c

ln |
2
√

cX

x
+

2c

x
+ b| + C1, c > 0

− 1√
c

sinh−1

(
bx + 2c

x
√

∆

)

+ C2, c > 0, ∆ > 0

1√
−c

sin−1

(
bx + 2c

x
√
−∆

)

+ C3, c < 0, ∆ < 0

163.
∫

dx

x2
√

X
= −

√
X

cx
−

b

2c

∫
dx

x
√

X

164.
∫ √

X dx =
1

4a
(2ax + b)

√
X +

∆

8a

∫
dx√
X

165.
∫

x
√

X dx =
1

3a
X3/2 − b(2ax + b)

8a2

√
X − b∆

16a2

∫
dx√
X

166.
∫

x2
√

X dx =
6ax − 5b

24a2
X3/2 +

4b2 − ∆

16a2

∫ √
X dx

Appendix C



475

167.
∫ √

X

x
dx =

√
X +

b

2

∫
dx√
X

+ c

∫
dx

x
√

X

168.
∫ √

X

x2
dx = −

√
X

x
+ a

∫
dx√
X

+
b

2

∫
dx

x
√

X

169.
∫

dx

X3/2
=

2(2ax + b)

∆
√

X
+ C

170.
∫

x dx

X3/2
=

−2(bx + 2c)

∆
√

X
+ C

171.
∫

x2 dx

X3/2
=

(b2 − ∆)x + 2bc

a∆
√

X
+

1

a

∫
dx√
X

172.
∫

dx

xX3/2
=

1

x
√

X
+

1

c

∫
dx

x
√

X
−

b

2c

∫
dx

X3/2

173.
∫

dx

x2X3/2
= −ax2 + 2bx + c

c2x
√

X
+

b2 − 2ac

2c2

∫
dx

X3/2
− 3b

2c2

∫
dx

x
√

X

174.
∫

dx

X
√

X
=

2(2ax + b)

∆
√

X
+ C

175.
∫

dx

X2
√

X
=

2(2ax + b)

3∆
√

X

(
1

X
+

8a

∆

)

+ C

176.
∫

X
√

X dx =
(2ax + b)

8a

√
X

(

X +
3∆

8a

)

+
3∆2

128a2

∫
dx√
X

177.
∫

X2
√

X dx =
(2ax + b)

8a

√
X

(

X2 +
5∆

16a
X +

15∆2

128a2

)

+
5∆3

1024a3

∫
dx√
X

178.
∫

x dx

X
√

X
= −2(bx + 2c)

∆
√

X
+ C

179.
∫

x2 dx

X
√

X
=

(b2 − ∆)x + 2bc

a∆
√

X
+

1

a

∫
dx√
X

180.
∫

xX
√

X dx =
X2

√
X

5a
− b

2a

∫

X
√

X dx

181.
∫

f(x,
√

ax2 + bx + c) dx Try substitutions (i)
√

ax2 + bx + c =
√

a(x + z)

(ii)
√

ax2 + bx + c = xz+
√

c and if ax2+bx+c = a(x−x1)(x−x2), then (iii) let (x−x2) = z2(x−x1)

Integrals containing X = x2 + a2

182.
∫

dx

X
=

1

a
tan−1 x

a
+ C or

1

a
cos−1 a√

x2 + a2
+ C or

1

a
sec−1

√
x2 + a2

a
+ C

183.
∫

x dx

X
=

1

2
ln X + C
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184.
∫

x2 dx

X
= x − a tan−1 x

a
+ C

185.
∫

x3 dx

X
=

x2

2
− a2

2
ln |x2 + a2| + C

186.
∫

dx

xX
=

1

2a2
ln |x

2

X
| + C

187.
∫

dx

x2X
= − 1

a2x
− 1

a3
tan−1 x

a
+ C

188.
∫

dx

x3X
= − 1

2a2x2
− 1

2a4
ln |x

2

X
| + C

189.
∫

dx

X2
=

x

2a2X
+

1

2a3
tan−1 x

a
+ C

190.
∫

x dx

X2
= − 1

2X
+ C

191.
∫

x2 dx

X2
= − x

2X
+

1

2a
tan−1 x

a
+ C

192.
∫

x3 dx

X2
=

a2

2X
+

1

2
ln |X| + C

193.
∫

dx

xX2
=

1

2a2X
+

1

2a4
ln | x

X
| + C

194.
∫

dx

x2X2
= − 1

a4X
− x

2a4X
− 3

2a5
tan−1 x

a
+ C

195.
∫

dx

x3X2
= − 1

2a4x2
− 1

2a4X
− 1

a6
ln |x

2

X
| + C

196.
∫

dx

X3
=

x

4a2X2
+

3x

8a4X
+

3

8a5
tan−1 x

a
+ C

197.
∫

dx

Xn
=

x

2(n − 1)a2Xn−1
+

2n − 3

(2(n − 1)a2

∫
dx

Xn−1
, n > 1

198.
∫

x dx

Xn
= − 1

2(n − 1)Xn−1
+ C

199.
∫

dx

xXn
=

1

2(n − 1)a2Xn−1
+

1

a2

∫
dx

xXn−1

Integrals containing the square root of X = x2 + a2

200.
∫ √

X dx =
1

2
xX +

a2

2
ln |x +

√
X | + C
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201.
∫

x
√

X dx =
1

3
X3/2 + C

202.
∫

x2
√

X dx =
1

4
xX3/2 − 1

8
a2x

√
X − a2

8
ln |x +

√
X |+ C

203.
∫

x3
√

X dx =
1

5
X5/2 − a2

3
X3/2 + C

204.
∫ √

X

x
dx =

√
X − a ln |a +

√
X

x
| + C

205.
∫ √

X

x2
dx = −

√
X

x
+ ln |x +

√
X | + C

206.
∫ √

X

x3
dx = −

√
X

2x2
− 1

2a
ln |a +

√
X

x
| + C

207.
∫

dx√
X

= ln |x +
√

X |+ C or sinh−1 x

a
+ C

208.
∫

x dx√
X

=
√

X + C

209.
∫

x2 dx√
X

=
x

2

√
X − a2

2
ln |x +

√
X | + C

210.
∫

x3 dx√
X

=
1

3
X3/2 − a2

√
X + C

211.
∫

dx

x
√

X
= −1

a
ln |a +

√
X

x
|+ C

212.
∫

dx

x2
√

X
= −

√
X

a2x
+ C

213.
∫

dx

x3
√

X
= −

√
X

2a2x2
+

1

2a3
ln |a +

√
X

x
| + C

214.
∫

X3/2 dx =
1

4
X3/2 +

3

8
a2x

√
X +

3

8
a4 ln |x +

√
X | + C

215.
∫

xX3/2 dx =
1

5
X5/2 + C

216.
∫

x2X3/2 dx =
1

6
X5/2 − 1

24
a2xX3/2 − 1

16
a4x

√
X − 1

16
a6 ln |x +

√
X | + C

217.
∫

x3X3/2 dx =
1

7
X7/2 − 1

5
a2X5/2 + C
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218.
∫

X3/2

x
dx =

1

3
X3/2 + a2

√
X − a3 ln |

a +
√

X

x
| + C

219.
∫

X3/2

x2
dx = −X3/2

x
+

3

2
x
√

X +
3

2
a2 ln |x +

√
X | + C

220.
∫

X3/2

x3
dx = −X3/2

2x2
+

3

2

√
X − 3

2
a ln |a +

√
x

x
|+ C

221.
∫

dx

X3/2
=

x

a2
√

X
+ C

222.
∫

x dx

X3/2
=

−1√
X

+ C

223.
∫

x2 dx

X3/2
=

−x√
X

+ ln |x +
√

X | + C

224.
∫

x3 dx

X3/2
=

√
X +

a2

√
X

+ C

225.
∫

dx

xX3/2
=

1

a2
√

X
− 1

a3
ln |a +

√
X

x
| + C

226.
∫

dx

x2X3/2
= −

√
X

a4x
− x

a4
√

X
+ C

227.
∫

dx

x3X3/2
=

−1

2a2x2
√

X
− 3

2a4
√

X
+

3

2a5
ln |a +

√
X

x
|+ C

228.
∫

f(x,
√

X) dx = a

∫

f(a tanu, a sec u) sec2 u du, x = a tanu

Integrals containing X = x2 − a2 with x2 > a2

229.
∫

dx

X
=

1

2a
ln

(
x− a

x + a

)

+ C or −
1

a
coth−1 x

a
+ C or −

1

a
tanh−1 a

x
+ C

230.
∫

x dx

X
=

1

2
ln X + C

231.
∫

x2 dx

X
= x +

a

2
ln |x− a

x + a
| + C

232.
∫

x3 dx

X
=

x2

2
+

a2

2
ln |X| + C

233.
∫

dx

xX
=

1

2a2
ln |X

x2
| + C

234.
∫

dx

x2X
=

1

a2x
+

1

2a3
ln |x − a

x + a
| + C
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235.
∫

dx

x3X
=

1

2a2x
− 1

2a4
ln |x

2

X
| + C

236.
∫

dx

X2
=

−x

2a2X
− 1

4a3
ln |x − a

x + a
| + C

237.
∫

x dx

X2
=

−1

2X
+ C

238.
∫

x2 dx

X2
=

−x

2X
+

1

4a
ln |x − a

x + a
| + C

239.
∫

x3 dx

X2
=

−a2

2X
+

1

2
ln |X| + C

240.
∫

dx

xX2
=

−1

2a2X
+

1

2a4
ln |x

2

X
| + C

241.
∫

dx

x2X2
= − 1

a4x
− x

2a4X
− 3

4a5
ln |x− a

x + a
|+ C

242.
∫

dx

x3X2
= − 1

2a4x2
− 1

2a4X
+

1

a6
ln |x

2

X
| + C

243.
∫

dx

Xn
=

−x

2(n − 1)a2Xn−1
− 2n − 3

2(n − 1)a2

∫
dx

Xn−1
, n > 1

244.
∫

x dx

Xn
=

−1

2(n − 1)Xn−1
+ C

245.
∫

dx

xXn
=

−1

2(n − 1)a2Xn−1
− 1

a2

∫
dx

xXn−1

Integrals containing the square root of X = x2 − a2 with x2 > a2

246.
∫ √

X dx =
1

2
x
√

X − a2

2
ln |x +

√
X |+ C

247.
∫

x
√

X dx =
1

3
X3/2 + C

248.
∫

x2
√

X dx =
1

4
xX3/2 +

1

8
a2x

√
X − a4

8
ln |x +

√
X |+ C

249.
∫

x3
√

X dx =
1

5
X5/2 +

1

3
a2X3/2 + C

250.
∫

X

x
dx =

√
X − a sec−1 |x

a
| + C

Appendix C



480

251.
∫

X

x2
dx = −

√
X

x
+ ln |x +

√
X | + C

252.
∫

X

x3
dx = −

√
X

2x2
+

1

2a
sec−1 |x

a
| + C

253.
∫

dx√
X

= ln |x +
√

X |+ C

254.
∫

x dx√
X

=
√

X + C

255.
∫

x2 dx√
X

=
1

2
x
√

X +
a2

2
ln |x +

√
X | + C

256.
∫

x3 dx√
X

=
1

3
X3/2 + a2

√
X + C

257.
∫

dx

x
√

X
=

1

a
sec−1 |x

a
| + C

258.
∫

dx

x2
√

X
=

√
X

a2x
+ C

259.
∫

dx

x3
√

X
=

√
X

2a2x2
+

1

2a3
sec−1 |x

a
|+ C

260.
∫

X3/2 dx =
x

4
X3/2 − 3

8
a2x

√
X +

3

8
a4 ln |x +

√
X | + C

261.
∫

xX3/2 dx =
1

5
X5/2 + C

262.
∫

x2X3/2 dx =
1

6
xX5/2 +

1

24
a2xX3/2 − 1

16
a4x

√
X +

a6

16
ln |x +

√
X| + C

263.
∫

x3X3/2 dx =
1

7
X7/2 +

1

5
a2X5/2 + C

264.
∫

X3/2

x
dx =

1

3
X3/2 − a2

√
X + a3 sec−1 |x

a
| + C

265.
∫

X3/2

x2
dx = −X3/2

x
+

3

2
x
√

X − 3

2
a2 ln |x +

√
X | + C

266.
∫

X3/2

x3
dx = −X3/2

2x2
+

3

2

√
X − 3

2
a sec−1 |x

a
|+ C

267.
∫

dx

X3/2
= − x

a2
√

X
+ C
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268.
∫

x dx

X3/2
=

−1√
X

+ C

269.
∫

x2 dx

X3/2
= −

x√
X

−
a2

√
X

+ C

270.
∫

x3 dx

X3/2
=

√
X + ln |x +

√
X | + C

271.
∫

dx

xX3/2
=

−1

a2
√

X
− 1

a3
sec−1 |x

a
| + C

272.
∫

dx

x2X3/2
= −

√
X

a4x
− x

a4
√

X
+ C

273.
∫

dx

x3X3/2
=

1

2a2x2
√

X
− 3

2a4
√

X
− 3

2a5
sec−1 |x

a
| + C

Integrals containing X = a2 − x2 with x2 < a2

274.
∫

dx

X
=

1

2a
ln

(
a + x

a − x

)

+ C or
1

a
tanh−1 x

a
+ C

275.
∫

x dx

X
= −

1

2
ln X + C

276.
∫

x2 dx

X
= −x +

a

2
ln |a + x

a − x
| + C

277.
∫

x3 dx

X
= −

1

2
x2 −

a2

2
ln |X| + C

278.
∫

d

xX
=

1

2a2
ln |x

2

X
| + C

279.
∫

dx

x2X
= − 1

a2x
+

1

2a3
ln |a + x

a− x
| + C

280.
∫

dx

x3X
= − 1

2a2x2
+

1

2a4
ln |x

2

X
| + C

281.
∫

dx

X2
=

x

2a2X
+

1

4a3
ln |a + x

a − x
| + C

282.
∫

x dx

X2
=

1

2X
+ C

283.
∫

x2 dx

X2
=

x

2X
− 1

4a
ln |a + x

a − x
| + C
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284.
∫

x3 dx

X2
=

a2

2X
+

1

2
ln |X| + C

285.
∫

dx

xX2
=

1

2a2X
+

1

2a4
ln |x

2

X
| + C

286.
∫

dx

x2X2
= − 1

a4x
+

x

2a4X
+

3

4a5
ln |a + x

a − x
|+ C

287.
∫

dx

x3X2
= − 1

2a4x2
+

1

2a4X
+

1

a6
ln |x

2

X
| + C

288.
∫

dx

Xn
=

x

2(n − 1)a2Xn−1
+

2n − 3

2(n − 1)a2

∫
dx

Xn−1

289.
∫

x dx

Xn
=

1

2(n − 1)Xn−1
+ C

290.
∫

dx

xXn
=

1

2(n − 1)a2Xn−1
+

1

a2

∫
dx

xXn−1

Integrals containing the square root of X = a2 − x2 with x2 < a2

291.
∫ √

X dx =
1

2
x
√

X +
a2

2
sin−1 x

a
+ C

292.
∫

x
√

X dx = −1

3
X3/2 + C

293.
∫

x2
√

X dx = −1

4
xX3/2 +

1

8
a2x

√
X +

1

8
a4 sin−1 x

a
+ C

294.
∫

x3
√

X dx =
1

5
X5/2 − 1

3
a2X3/2 + C

295.
∫ √

X

x
dx =

√
X − a ln |a +

√
X

x
| + C

296.
∫ √

X

x2
dx = −

√
X

x
− sin−1 x

a
+ C

297.
∫ √

X

x3
dx = −

√
X

2x2
+

1

2a
ln |a +

√
X

x
| + C

298.
∫

dx√
X

= sin−1 x

a
+ C

299.
∫

x dx√
X

= −
√

X + C
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300.
∫

x2 dx√
X

= −1

2
x
√

X +
a2

2
sin−1 x

a
+ C

301.
∫

x3 dx√
X

=
1

3
X3/2 − a2

√
X + C

302.
∫

dx

x
√

X
= −1

a
ln |a +

√
X

x
|+ C

303.
∫

dx

x2
√

X
= −

√
X

a2x
+ C

304.
∫

dx

x3
√

X
= −

√
X

2a2x2
− 1

2a3
ln |a +

√
X

x
| + C

305.
∫

X3/2 dx =
1

4
xX3/2 +

3

8
a2x

√
X +

3

8
a4 sin−1 x

a
+ C

306.
∫

xX3/2 dx = −1

5
X5/2 + C

307.
∫

x2X3/2 dx = −1

6
xX5/2 +

1

24
a2xX3/2 +

1

16
a4x

√
X +

a6

16
sin−1 x

a
+ C

308.
∫

x3X3/2 dx =
1

7
X7/2 − 1

5
a2X5/2 + C

309.
∫

X3/2

x
dx =

1

3
X3/2a2

√
X − a3 ln |a +

√
X

x
| + C

310.
∫

X3/2

x2
dx = −X3/2

x
− 3

2
x
√

X − 3

2
a2 sin−1 x

a
+ C

311.
∫

X3/2

x3
dx = −X3/2

2x2
− 3

2

√
X +

3

2
a ln |a +

√
X

x
|+ C

312.
∫

dx

X3/2
=

x

a2
√

X
+ C

313.
∫

x dx

X3/2
=

1√
X

+ C

314.
∫

x2 dx

X3/2
=

x√
X

− sin−1 x

a
+ C

315.
∫

x3 dx

X3/2
=

√
X +

a2

√
X

+ C

316.
∫

dx

xX3/2
=

1

a2
√

X
− 1

a3
ln |a +

√
X

x
| + C
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317.
∫

dx

x2X3/2
= −

√
X

a4x
+

x

a4
√

X
+ C

318.
∫

dx

x3X3/2
= − 1

2a2x2
√

X
+

3

2a4
√

X
− 3

2a5
ln |a +

√
X

x
| + C

Integrals Containing X = x3 + a3

319.
∫

dx

X
=

1

6a2
ln | (x + a)3

X
| + 1√

3a2
tan−1

(
2x − a√

3a

)

+ C

320.
∫

x dx

X
=

1

6a
ln | X

(x + a)3
| + 1√

3a
tan−1

(
2x − a√

3a

)

+ C

321.
∫

x2 dx

X
=

1

2
ln |X| + C

322.
∫

dx

xX
=

1

3a3
ln |x

3

X
| + C

323.
∫

dx

x2X
= − 1

a2x
− 1

6a4
ln | X

(x + a)3
| − 1√

3a4
tan−1

(
2x − a√

3a

)

+ C

324.
∫

dx

X2
=

x

3a3X
+

1

9a5
ln | (x + a)3

X
| + 2

3
√

3a5
tan−1

(
2x − a√

3a

)

+ C

325.
∫

x dx

X2
=

x2

3a3X
+

1

18a4
ln | X

(x + a)3
| + 1

3
√

3a4
tan−1

(
2x − a√

3a

)

+ C

326.
∫

x2 dx

X2
= −

1

3X
+ C

327.
∫

dx

xX2
=

1

3a2X
+

1

3a6
ln |x

3

X
| + C

328.
∫

dx

x2X2
= − 1

a6x
− x2

3a6X
− 4

3a6

∫
x dx

X

329.
∫

dx

X3
=

1

54a3

[
9a5x

X2
+

15a2x

X
+ 10

√
3 tan−1(

2x − a√
3a

) + 10 ln |x + a| − 5 ln |x2 − ax + a2|
]

+ C

Integrals containing X = x4 + a4

330.
∫

dx

X
=

1

4
√

2a3
ln | X

(x2 −
√

2ax + a2)2
| − 1

2
√

2a3
tan−1

( √
2ax

x2 − a2

)

+ C

331.
∫

x dx

X
=

1

2a2
tan−1

(
x2

a2

)

+ C

332.
∫

x2 dx

X
=

1

4
√

2a
ln | X

(x2 +
√

2ax + a2)2
| − 1

2
√

2a
tan−1

( √
2ax

x2 − a2

)

+ C

333.
∫

x3 dx

X
=

1

4
ln |X| + C

334.
∫

dx

xX
=

1

4a4
ln |x

4

X
| + C

335.
∫

dx

x2X
= − 1

a4x
− 1√

24a5
ln | (x

2 −
√

2ax + a2)2

X
|+ 1

2
√

2a5
tan−1

( √
2ax

x2 − a2

)

+ C

336.
∫

dx

x3X
= − 1

2a4x2
− 1

2a6
tan−1

(
x2

a2

)

+ C
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Integrals containing X = x4 − a4

337.
∫

dx

X
=

1

4a3
ln |x− a

x + a
| − 1

2a3
tan−1

(x

a

)

+ C

338.
∫

x dx

X
=

1

4a2
ln |x

2 − a2

x2 + a2
| + C

339.
∫

x2 dx

X
=

1

4a
ln |x − a

x + a
| + 1

2a
tan−1

(x

a

)

+ C

340.
∫

x3 dx

X
=

1

4
ln |X| + C

341.
∫

dx

xX
=

1

4a4
ln |X

x4
| + C

342.
∫

dx

x2X
=

1

a4x
+

1

4a5
ln |x − a

x + a
| + 1

2a5
tan−1

(x

a

)

+ C

343.
∫

dx

x3X
=

1

2a4x2
+

1

4a6
ln |x

2 − a2

x2 + a2
| + C

Miscelaneous algebraic integrals

344.
∫

dx

b2 + (x + a)2
=

1

b
tan−1 x + a

b
+ C

345.
∫

dx

b2 − (x + a)2
=

1

b
tanh−1 x + a

b
+ C

346.
∫

dx

(x + a)2 − b2
= −1

b
coth−1 x + a

b
+ C

347.
∫

dx
√

x(a − x)
= 2 sin−1

√
x

a
+ C

348.
∫

dx
√

x(a + x)
= 2 sinh−1

√
x

a
+ C

349.
∫

dx
√

x(x − a)
= 2 cosh−1

√
x

a
+ C

350.
∫

dx

(b + x)(a − x)
= 2 tan−1

√

b + x

a − x
+ C, a > x

351.
∫

dx

(x − b)(a − x)
= 2 tan−1

√

x − b

a − x
+ C, a > x > b

352.
∫

dx

(x + b)(x + a)
=







2 tanh−1
√

x+b
x+a + C1, a > b

2 tanh−1
√

x+a
x+b + C2, a < b
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353.
∫

dx

x
√

x2n − a2n
= − 1

nan
sin−1

(
an

xn

)

+ C

354.
∫ √

x + a

x − a
dx =

√

x2 − a2 + a cosh−1 x

a
+ C

355.
∫ √

a + x

a − x
dx = a sin−1 x

a
−

√

a2 − x2 + C

356.
∫

x

√
a − x

a + x
dx =

a2

2
cos−1

(x

a

)

+
(x − 2a)

2

√

a2 − x2 + C, a > x

357.
∫

x

√
a + x

a − x
dx =

a2

2
sin−1 x

a
−

x + 2a

2

√

a2 − x2 + C

358.
∫

(x + a)

√

x + b

x − b
dx = (x + a + b)

√

x2 − b2 +
b

2
(2a + b) cosh−1 x

b
+ C

359.
∫

dx√
2ax + x2

= ln |x + a +
√

2ax + x2| + C

360.
∫

√

ax2 + c dx =







1

2
x
√

ax2 + c +
c

2
√

a
ln |

√
ax +

√

ax2 + c|+ c, a > 0

1
2x

√
ax2 + c + c

2
√
−a

sin−1
(√

−a
c x

)

+ C, a < 0

361.
∫ √

1 + ax

1 − ax
dx =

1

a
sin−1 x − 1

a

√

1 − x2 + C

362.
∫

dx

(ax + b)2 + (cx + d)2
=

1

ad − bc
tan−1

[
(a2 + c2)x + (ab + cd)

ad − bc

]

+ C, ad − bc �= 0

363.
∫

dx

(ax + b)2 − (cx + d)2
=

1

2(bc − ad)
ln

∣
∣
∣
∣

(a + c)x + (b + d)

(a − c)x + (b − d)

∣
∣
∣
∣
+ C, ad− bc �= 0

364.
∫

x dx

(ax2 + b)2 + (cx2 + d)2
=

1

2(ad− bc)
tan−1

[
(a2 + c2)x2 + (ab + cd)

ad− bc

]

+ C, ad− bc �= 0

365.
∫

dx

(x2 + a2)(x2 + b2)
=

1

b2 − a2

(
1

a
tan−1 x

a
− 1

b
tan−1 x

b

)

+ C

366.
∫

(x2 + a2)(x2 + b2)

(x2 + c2)(x2 + d2)
dx = x +

1

d2 − c2

[
(a2 − c2)(b2 − c2)

c
tan−1 x

c
− (a2 − d2)(b2 − d2)

d
tan−1 x

d

]

+ C

367.
∫

ax2 + b

(cx2 + d)(ex2 + f)
dx =

1√
cd

(
ad − bc

ed − fc

)

tan−1

(√
c

d
x

)

+
1√
ef

(
af − be

fc − ed

)

tan−1

(√
e

f
x

)

+ C

368.
∫

x dx

(ax2 + bx + c)2 + (ax2 − bx + c)2
=

1

4b
√

b2 + 4ac
ln

∣
∣
∣
∣
∣

2a2x2 + 2ac + b2 − b
√

b2 + 4ac

2a2x2 + 2ac + b2 + b
√

b2 + 4ac

∣
∣
∣
∣
∣
+ C, b2 + 4ac > 0
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369.
∫

dx

(x2 + a2)(x2 + b2)
=

1

b2 − a2

(
1

a
tan−1 x

a
− 1

b
tan−1 x

b

)

+ C

370.
∫

(x2 + α2)(x2 + β2)

(x2 + γ2)(x2 + δ2)
dx = x +

1

δ2 − γ2

[
(α2 − γ2)(β2 − γ2)

γ
tan−1 x

γ
− (α2 − δ2)(β2 − δ2)

δ
tan−1 x

δ

]

+ C

371.
∫

αx2 + β

(γx2 + δ)(εx2 + ζ)
dx =

1√
γδ

αδ − βγ

εδ − ζγ
tan−1

(√
γ

δ
x

)

+
1√
εζ

αζ − βε

ζγ − εδ
tan−1

(√
ε

ζ
x

)

+ C

372.
∫

dx
√

(x + a)(x + b)
= cosh−1

(
2x + a + b

a − b

)

+ C, a �= b

373.
∫

dx
√

(x − b)(a − x)
= 2 tan−1

√

x − b

a − x
+ C

374.
∫

dx

(αx + β)2 + (γx + δ)2
=

1

αδ − βγ
tan−1

[
(α2 + γ2)x + (αβ + γδ)

αδ − βγ

]

+ C

375.
∫

x dx

(a2 + b2 − x2)
√

(a2 − x2)(x2 − b2)
=

1

2ab
sin−1

[
(a2 + b2)x2 − (a4 + b4)

(a2 − b2)(a2 + b2 − x2)

]

+ C

376.
∫

(x + b) dx

(x2 + a2)
√

x2 + c2
=

1√
a2 − c2

sin−1

√

x2 + c2

x2 + a2
+

b

a
√

a2 − c2
cosh−1

[

a

c

√

x2 + c2

x2 + a2

]

+ C

377.
∫

px + q

ax2 + bx + c
dx =

p

2a
ln |ax2 + bx + c| +

(

q − pb

2a

) ∫
dx

ax2 + bx + c

378.
∫

(
√

a −
√

x)2

(a2 + ax + x2)
√

x
dx =

2
√

3√
a

tan−1 2
√

x +
√

a√
3a

− 2√
3a

tan−1 2
√

x −
√

a√
3a

+ C

379.
∫

(a + x)
√

a2 + x2 dx =
1

6
(2x2 + 3ax + 2a2)

√

a2 + x2 +
1

2
a2 sinh−1 x

a
+ C

380.
∫

x2 + a2

x4 + a2x2 + a4
dx =

1

a
√

3
tan−1 ax

√
3

a2 − x2
+ C

381.
∫

x2 − a2

x4 + a2x2 + a4
dx =

1

2a3
ln

x2 − ax + a2

x2 + ax + a2
+ C

Integrals containing sin ax

382.
∫

sin ax dx = −
1

a
cos ax + C

383.
∫

x sin ax dx =
1

a2
sin ax − x

a
cos ax + C

384.
∫

x2 sinax dx =
2

a2
x sin ax +

(
2

a3
− x2

a

)

cos ax + C
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385.

∫

x3 sinax dx =

(

3x2

a2
− 6

a4

)

sin ax +

(

6x

a
− x3

a

)

cos ax + C

386.

∫

xn sin ax dx = −1

a
xn cos ax +

n

a2
xn−1 sin ax − n(n − 1)

a2

∫

xn−2 sin ax dx

387.

∫

sin ax

x
dx = ax − a3x3

3 · 3!
+

a5x5

5 · 5!
− a7x7

7 · 7!
+ · · ·+ (−1)nx2n+1x2n+1

(2n + 1) · (2n + 1)!
+ · · ·

388.

∫

sin ax

x2
dx = −1

a
sin ax + a

∫

cos ax

x
dx

389.

∫

sin ax

x3
dx = − a

2x
cos ax − 1

2x2
sin ax − a2

2

∫

sin ax

x
dx

390.

∫

sin ax

xn
dx = − sinax

(n − 1)xn−1
+

a

n − 1

∫

cos ax

xn−1
dx

391.

∫

dx

sin ax
=

1

a
ln | csc as − cot ax| + C

392.

∫

x dx

sin ax
=

1

a2

[

ax +
a3x3

18
+

7a5x5

1800
+ · · ·+ 2(22n−1 − 1)Bna2n+1x2n+1

(2n + 1)!
+ · · ·

]

+ C

where Bn is the nth Bernoulli number B1 = 1/6, B2 = 1/30, . . . Note scaling and shifting

393.

∫

dx

x sin ax
= − 1

ax
+

ax

6
+

7a3x3

1080
+ · · ·+ 2(22n−1 − 1)Bna2n+1x2n+1

(2n − 1)(2n)!
+ · · ·+ C

394.

∫

sin2 ax dx =
x

2
− sin 2ax

4a
+ C

395.

∫

x sin2 ax dx =
x2

4
− x sin 2ax

4a
− cos 2ax

8a2
+ C

396.

∫

x2 sin2 ax dx =
1

6a
− 1

4a2
cos 2ax +

1

24a3
(3 − 6a2x2) sin 2ax + C

397.

∫

sin3 ax dx = −cos ax

a
+

cos2 ax

3a
+ C

398.

∫

x sin3 ax dx =
1

12a
x cos 3ax − 1

36a2
sin 3ax − 3

4a
x cos ax +

3

4a2
sin ax + C

399.

∫

sin4 ax dx =
3

8
x − sin 2ax

4a
+

sin 4ax

32a
+ C

400.

∫

dx

sin2 ax
= −1

a
cot ax + C
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401.

∫

x dx

sin2 ax
= −x

a
cot ax +

1

a2
ln | sin ax|+ C

402.

∫

dx

sin3 ax
= −

cos ax

2a sin2 ax
+

1

2a
ln | tan

ax

2
|+ C

403.

∫

dx

sinn ax
=

− cos ax

(n − 1)a sinn−1 ax
+

n − 2

n − 1

∫

dx

sinn−2 ax

404.

∫

dx

1 − sin ax
=

1

a
tan

(π

4
− ax

2

)

+ C

405.

∫

dx

a − sin ax
=

2

a
√

a2 − 1
tan−1

[

a tan(ax/2) − 1√
a2 − 1

]

+ C, a > 1

406.

∫

x dx

1 − sin ax
=

x

a
tan

(π

4
− ax

2

)

+
2

a2
ln | sin

(π

4
− ax

2

)

| + C

407.

∫

dx

1 + sin ax
= −1

a
tan

(π

4
− ax

2

)

+ C

408.

∫

dx

a + sin ax
=

2

a
√

a2 − 1
tan−1

[

1 + a tan(ax/2)√
a2 − 1

]

+ C, a > 1

409.

∫

x dx

1 + sin ax
=

x

a
tan

(π

4
− ax

2

)

+
2

a2
ln | sin

(π

4
− ax

2

)

| + C

410.

∫

dx

1 + sin2 x
=

1√
2

tan−1(
√

2 tanx) + C

411.

∫

dx

1 − sin2 x
= tanx + C

412.

∫

dx

(1 − sin ax)2
=

1

2a
tan

(π

4
− ax

2

)

+
1

6a
tan3

(π

4
− ax

2

)

+ C

413.

∫

dx

(1 + sin ax)2
= − 1

2a
tan

(π

4
− ax

2

)

− 1

6a
tan3

(π

4
− ax

2

)

+ C

414.

∫

dx

α + β sin ax
=



































2

a
√

α2 − β2
tan−1

(

α tan
ax

2
+ β

)

+ C, α2 > β2

1

a
√

β2 − α2
ln

∣

∣

∣

∣

∣

α tan ax
2

+ β −
√

β2 − α2

α tan ax
2

+ β +
√

β2 − α2

∣

∣

∣

∣

∣

+ C, α2 < β2

1

aα
tan

(ax

2
± π

4

)

+ C, β = ±α

415.

∫

dx

α2 + β2 sin2 ax
=

1

aα
√

β2 + α2
tan−1

(

√

β2 + α2

α
tan ax

)

+ C
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416.

∫

dx

α2 − β2 sin2 ax
=























1

aα
√

α2 − β2
tan−1

(

√

α2 − β2

α
tan ax

)

+ C, α2 > β2

1

2aα
√

β2 − α2
ln

∣

∣

∣

∣

∣

√

β2 − α2 tan ax + α
√

β2 − α2 tan ax − α

∣

∣

∣

∣

∣

+ C, α2 < β2

417.

∫

sinn ax dx = − 1

an
sinn−1 ax cos ax +

n − 1

n

∫

sinn−2 ax dx

418.

∫

dx

sinn ax
=

− cos ax

(n − 1)a sinn−1 ax
+

n − 2

n − 1

∫

dx

sinn−2 ax

419.

∫

xn sin ax dx = −
1

a
xn cos ax +

n

a

∫

xn−1 cos ax dx

420.

∫

α + β sin ax

1 ± sin ax
dx = βx +

α ∓ β

a
tan

(π

4
∓ ax

2

)

+ C

421.

∫

α + β sin ax

a + b sin ax
dx =

β

b
x +

αb − aβ

b

∫

dx

a + b sin ax

422.

∫

dx

α + β

sin ax

=
x

α
− β

α

∫

dx

β + α sin ax

Integrals containing cos ax

423.

∫

cos ax dx =
1

a
sin ax + C

424.

∫

x cos ax dx =
1

a2
cos ax +

x

a
sinax + C

425.

∫

x2 cos ax dx =
2x

a2
cos ax +

(

x2

a
− 2

a3

)

sin ax + C

426.

∫

xn cos ax dx =
1

a
xn sin ax +

n

a2
xn−1 cos ax − n(n − 1)

a2

∫

xn−2 cos ax dx

427.

∫

cos ax

x
dx = ln |x| − a2x2

2 · 2!
+

a4x4

4 · 4!
− a6x6

6 · 6!
+ · · ·+ (−1)na2nx2n

(2n) · (2n)!
+ · · ·+ C

428.

∫

cos ax dx

xn
= − cos ax

(n − 1)xn−1
− a

n − 1

∫

sin ax

xn−1
dx

429.

∫

dx

cos ax
=

1

a
ln | sec ax + tan ax|+ C

430.

∫

x dx

cos ax
=

1

a2

[

a2x2

2
+

a4x4

4 · 2!
+

5a6x6

6 · 4!
+ · · ·+ Ena2n+2x2n+2

(2n + 2) · (2n)!
+ · · ·

]

+ C

431.

∫

dx

x cos ax
= ln |x|+ a2x2

4
+

5a4x4

96
+ · · ·+ Ena2nx2n

2n(2n)!
+ · · ·+ C

where En is the nth Euler number E1 = 1, E2 = 5, E3 = 61, . . . Note scaling and shifting
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432.
∫

dx

1 + cos ax
=

1

a
tan

ax

2
+ C

433.
∫

dx

1 − cos ax
= −

1

a
cot

ax

2
+ C

434.
∫ √

1 − cos axdx = −2
√

2 cos
ax

2
+ C

435.
∫ √

1 + cos axdx = 2
√

2 sin
ax

2
+ C

436.
∫

cos2 ax dx =
x

2
+

sin 2ax

4a
+ C

437.
∫

x cos2 ax dx =
x2

4
+

1

4a
x sin 2ax +

1

8a2
cos 2ax + C

438.
∫

cos3 ax dx =
sinax

a
− sin3 ax

3a
+ C

439.
∫

cos4 ax dx =
3

8
x +

1

4a
sin 2ax +

1

32a
sin 4ax + C

440.
∫

dx

cos2 ax
=

1

a
tan ax + C

441.
∫

x dx

cos2 ax
=

x

a
tan ax +

1

a2
ln | cos ax| + C

442.
∫

dx

cos3 ax
=

1

2a

sinax

cos2 ax
+

1

2a
ln | tan

(π

4
+

ax

2

)

| + C

443.
∫

dx

1 − cos ax
= −1

a
cot

ax

2
+ C

444.
∫

x dx

1 − cos ax
= −x

a
cot

ax

2
+

2

a2
ln | sin ax

2
|+ C

445.
∫

dx

1 + cos ax
=

1

a
tan

ax

2
+ C

446.
∫

x dx

1 + cos ax
=

x

a
tan

ax

2
+

2

a2
ln | cos

ax

2
|+ C

447.
∫

dx

1 + cos2 ax
= − 1√

2a
tan−1(

√
2 cot ax) + C

448.
∫

dx

1 − cos2 ax
= −1

a
cot ax + C

Appendix C



492

449.
∫

dx

(1 − cos ax)2
= − 1

2a
cot

ax

2
− 1

6a
cot3

ax

2
+ C

450.
∫

dx

(1 + cos ax)2
=

1

2a
tan

ax

2
+

1

6a
tan2 ax

2
+ C

451.
∫

dx

α + β cos ax
=







2

a
√

α2 − β2
tan−1

(√

α − β

α + β
tan

ax

2

)

+ C, α2 > β2

1

a
√

β2 − α2
ln

∣
∣
∣
∣

√
β + α +

√
β − α tan ax

2√
β + α −

√
β − α tan ax

2

∣
∣
∣
∣
+ C, α2 < β2

452.
∫

dx

α +
β

cos ax

=
x

α
− β

α

∫
dx

β + α cos ax

453.
∫

dx

(α + β cos ax)2
=

α sin ax

a(β2 − α2)(α + β cos ax)
− α

β2 − α2

∫
dx

α + β cos ax
, α �= β

454.
∫

dx

α2 + β2 cos2 ax
=

1

aα
√

α2 + β2
tan−1

(

α tan ax
√

α2 + β2

)

+ C

455.
∫

dx

α2 − β2 cos2 ax
=







1

aα
√

α2 − β2
tan−1

(

α tanax
√

α2 − β2

)

+ C, α2 > β2

1

2aα
√

β2 − α2
ln

∣
∣
∣
∣
∣

α tanax −
√

β2 − α2

α tanax +
√

β2 − α2

∣
∣
∣
∣
∣
+ C, α2 < β2

456.
∫

dx

cosn ax
=

sec(n−2) ax tanax

(n − 1)a
+

n − 2

n − 1

∫

secn−2 ax dx + C

Integrals containing both sine and cosine functions

457.
∫

sin ax cos ax dx =
1

2a
sin2 ax + C

458.
∫

dx

sin ax cos ax
= −1

a
ln | cot ax|+ C

459.
∫

sin ax cos bx dx = −cos(a − b)x

2(a − b)
− cos(a + b)x

2(a + b)
+ C, a �= b

460.
∫

sin ax sin bx dx =
sin(a − b)x

2(a − b)
− sin(a + b)x

2(a + b)
+ C

461.
∫

cos ax cos bx dx =
sin(a − b)x

2(a − b)
+

sin(a + b)x

2(a + b)
+ C

462.
∫

sinn ax cos ax dx =
sinn+1ax

(n + 1)a
+ C

463.
∫

cosn ax sin ax dx = −cosn+1 ax

(n + 1)a
+ C
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464.
∫

sin ax dx

cos ax
=

1

a
ln | sec ax| + C

465.
∫

cos ax dx

sin ax
=

1

a
ln | sin ax|+ C

466.
∫

x sin ax dx

cos ax
=

1

a2

[
a3x3

3
+

a5x5

5
+

2a7x7

105
+ · · ·+ 22n(22n − 1)Bna2n+1x2n+1

(2n + 1)!

]

+ C

467.
∫

x cos ax dx

sin ax
=

1

a2

[

ax − a3x3

9
− a5x5

225
− · · · − 22nBna2n+1x2n+1

(2n + 1)!
− · · ·

]

+ C

468.
∫

cos ax dx

x sin ax
= − 1

ax
− ax

2
− a3x3

135
− · · · − 22nBna2n−1x2n−1

(2n − 1)(2n)!
− · · ·+ C

469.
∫

sin ax

x cos ax
dx = ax +

a3x3

9
+

2a5x5

75
+ · · ·+ 22n(22n − 1)Bna2n−1x2n−1

(2n − 1)(2n)!
+ · · ·+ C

470.
∫

sin2 ax

cos2 ax
dx =

1

a
tan ax − x + C

471.
∫

cos2 ax

sin2 ax
dx = −1

a
cot ax − x + C

472.
∫

x sin2 ax

cos2 ax
dx =

1

a
x tanax +

1

a2
ln | cos ax| − 1

2
x2 + C

473.
∫

x cos2 ax

sin2 ax
dx = −1

a
x cot ax +

1

a2
ln | sinax| − 1

2
x2 + C

474.
∫

cos ax

sin ax
dx =

1

a
ln | sin ax|+ C

475.
∫

sin3 ax

cos3 ax
dx =

1

2a
tan2 ax +

1

a
ln | cos ax| + C

476.
∫

cos3 ax

sin3 ax
dx = − 1

2a
cot2 ax − 1

a
ln | sinax| + C

477.
∫

sin(ax + b) sin(ax + β) dx =
x

2
cos(b − β) − 1

4a
sin(2ax + b + β) + C

478.
∫

sin(ax + b) cos(ax + β) dx =
x

2
sin(b − β) − 1

4a
cos(2ax + b + β) + C

479.
∫

cos(ax + b) cos(ax + β) dx =
x

2
cos(b − β) +

1

4a
sin(2ax + b + β) + C

480.
∫

sin2 ax cos2 bx dx =







x

4
− sin 2ax

8a
+

sin 2bx

8b
− sin 2(a − b)x

16(a − b)
− sin 2(a + b)x

16(a + b)
+ C, b �= a

x

8
− sin 4ax

32a
+ C, b = a
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481.
∫

dx

sin ax cos ax
=

1

a
ln | tanax|+ C

482.
∫

dx

sin2 ax cos ax
=

1

a
ln | tan

(π

4
+

ax

2

)

| −
1

a sinax
+ C

483.
∫

dx

sin ax cos2 ax
=

1

a
ln | tan

ax

2
| + 1

a cos ax
+ C

484.
∫

dx

sin2 ax cos2 ax
= −2 cos 2ax

a
+ C

485.
∫

sin2 ax

cos ax
dx = −sin ax

a
+

1

a
ln | tan

(ax

2
+

π

4

)

| + C

486.
∫

cos2 ax

sin ax
dx =

cos ax

a
+

1

a
ln | tan

ax

2
|+ C

487.
∫

dx

cos ax (1 + sin ax)
=

1

2a(1 + sin ax)

[

−1 + (1 + sin ax) ln

∣
∣
∣
∣

cos ax
2 + sin ax

2

cos ax
2 − sin ax

2

∣
∣
∣
∣

]

+ C

488.
∫

dx

sin ax (1 + cos ax)
=

1

4a
sec2 ax

2
+

1

2a
ln | tan

ax

2
| + C

489.
∫

dx

sin ax (α + β sin ax)
=

1

aα
ln | tan

ax

2
| − β

α

∫
dx

α + β sin ax

490.
∫

dx

cos ax (α + β sin ax
=

1

α2 − β2

[
α

a
ln | tan

(π

4
+

ax

2

)

| − β

α
ln

∣
∣
∣
∣

α + β sin ax

cos ax

∣
∣
∣
∣

]

+ C, β �= α

491.
∫

dx

sin ax (α + β cos ax)
=

1

α2 − β2

[
α

a
ln | tan

ax

2
|+ β

a
ln |α + β cos ax

sin ax
|
]

+ C, β �= α

492.
∫

dx

cos ax (α + β cos ax)
=

1

aα
ln | tan

(π

4
+

ax

2

)

| − β

α

∫
dx

α + β cos ax

493.
∫

dx

α + β cos ax + γ sin ax
=







2

a
√
−R

tan−1

(
γ + (α − β) tan ax

2√
−R

)

+ C,
α2 > β2 + γ2

R = β2 + γ2 − α2

1

a
√

R
ln

∣
∣
∣
∣
∣

γ −
√

R + (α − β) tan ax
2

γ +
√

R + (α − β) tan ax
2

∣
∣
∣
∣
∣
+ C, α2 < β2 + γ2

1

aβ
ln

∣
∣
∣β + γ tan

ax

2

∣
∣
∣ + C, α = β

1

aβ
ln

∣
∣
∣
∣

cosax
2 + sin ax

2

(β + γ) cos ax
2 + (γ − β) sin ax

2

∣
∣
∣
∣
+ C, α = γ

1

aγ
ln |1 + tan

ax

2
| + C, α = β = γ

494.
∫

dx

sin ax ± cos ax
=

1√
2a

ln | tan
(ax

2
± π

8

)

| + C
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495.
∫

sinax dx

sin ax ± cos ax
=

x

2
∓ ln | sinax ± cos ax| + C

496.
∫

cos ax dx

sin ax ± cos ax
= ±

x

2
+

1

2a
ln | sinaxx ± cos ax|+ C

497.
∫

sin ax dx

α + β sin ax
=

1

aβ
ln |α + β sin ax|+ C

498.
∫

cos ax dx

α + β sin ax
=

1

aβ
ln |α + β sin ax|+ C

499.
∫

sin ax cos ax dx

α2 cos2 ax + β2ax
=

1

2a(β2 − α2)
ln |α2 cos2 ax + β2 sin2 ax|+ C, β �= α

500.
∫

dx

α2 sin2 ax + β2 cos2 ax
=

1

aαβ
tan−1

(
α

β
tanax

)

+ C

501.
∫

dx

α2 sin2 ax − β2 cos2 ax
=

1

2aαβ
ln

∣
∣
∣
∣

α tan ax− β

α tan ax + β

∣
∣
∣
∣
+ C

502.
∫

sinn ax

cos(n+2 ax
dx =

tann+1 ax

(n + 1)a
+ C

503.
∫

cosn ax

sin(n+2) ax
dx = −cot(n+1) ax

(n + 1)a
+ C

504.
∫

dx

α + β sin ax
cos ax

=
αx

α2 + β2
+

β

a(α2 + β2)
ln |β sinax + α cos ax|+ C

505.
∫

dx

α + β cos ax
sin ax

=
αx

α2 + β2
− β

a(α2 + β2)
ln |α sin ax + β cos ax|+ C

506.
∫

cosn ax

sinn ax
dx = −cot(n−1) ax

(n − 1)a
−

∫

cot(n−2) ax dx

507.
∫

sinn ax

cosn ax
dx =

tann−1 ax

(n − 1)a
−

∫
sinn−2 ax

cosn−2 ax
dx

508.
∫

sin ax

cos(n+1) ax
dx =

1

na
secn ax + C

509.
∫

α sin x + β cosx

γ sin x + δ cosx
dx =

[(αγ + βδ)x + (βγ − αγ) ln |γ sin x + δ cosx|]
γ2 + δ2

+ C

510.
∫

α + β sin x

a + b cosx
dx =







2α√
a2 − b2

tan−1

√

a − b

a + b
tan

x

2
− β

b
ln |a + b cos x|+ C, a > b

2α√
b2 − a2

tanh−1

√

b − a

b + a
tan

x

2
−

β

b
ln |a + b cos x|+ C, a < b
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511.
∫

dx

a2 − b2 cos2 x
=







1

a
√

a2 − b2
tan−1

(
a√

a2 − b2
tanx

)

+ C, a > b

−1
a
√

b2−a2
tanh−1

(
a√

b2−a2
tanx

)

+ C, b > a

512.
∫

dx

(a cos x + b sin x)2
=

1

a2 + b2
tan

(

x − tan−1 b

a

)

+ C

513.
∫

sin x dx√
a cos2 x + 2b cosx + c

=







−1√
−a

sin−1

(√

−a(a cos2 x + 2b cosx + c)√
b2 − ac

)

+ C, b2 > ac, a < 0

−1√
a

sinh−1

(√

a(a cos2 x + 2b cosx + c)√
b2 − ac

)

+ C, b2 > ac, a > 0

−1√
a

cosh−1

(√

a(a cos2 x + 2b cosx + c)√
ac − b2

)

+ C, b2 < ac, a > 0

514.
∫

cosx dx
√

a sin2 x + 2b sinx + c
=







1√
−a

sin−1





√

−a(a sin2 x + 2b sinx + c)
√

b2 − ac



 + C, b2 > ac, a < 0

1√
a

sinh−1





√

a(a sin2 x + 2b sin x + c)
√

b2 − ac



 + C, b2 > ac, a > 0

1√
a

cosh−1





√

a(a sin2 x + 2b sinx + c)
√

ac − b2



 + C, b2 < ac, a > 0

Integrals containing tan ax, cot ax, sec ax, csc ax

Write integrals in terms of sin ax and cos ax and see previous listings.
Integrals containing inverse trigonmetric functions

515.
∫

sin−1 x

a
dx = x sin−1 x

a
+

√

a2 − x2 + C

516.
∫

cos−1 x

a
dx = x cos−1 x

a
−

√

a2 − x2 + C

517.
∫

tan−1 x

a
dx = x tan−1 x

a
− a

2
ln |x2 + a2| + C

518.
∫

cot−1 x

a
dx = x cot−1 x

a
+

a

2
ln |x2 + a2| + C

519.
∫

sec−1 x

a
dx =







x sec−1 x

a
− a ln |x +

√

x2 − a2| + C, 0 < sec−1 x
a < π/2

x sec−1 x

a
+ a ln |x +

√

x2 − a2 + C, π/2 < sec−1 x
a < π

520.
∫

csc−1 x

a
dx =







x csc−1 x

a
+ a ln |x +

√

x2 − a2| + C, 0 < csc−1 x
a < π/2

x csc−1 x

a
− a ln |x +

√

x2 − a2| + C, −π/2 < csc−1 x
a < 0

521.
∫

x sin−1 x

a
dx =

(
x2

2
− a2

4

)

sin−1 x

a
+

1

4
x
√

a2 − x2 + C

522.
∫

x cos−1 x

a
dx =

(
x2

2
− a2

4

)

cos−1 x

a
− 1

4
x
√

a2 − x2 + C
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523.
∫

x tan−1 x

a
dx =

1

2
(x2 + a2) tan−1 x

a
−

a

2
ln |x2 + a2|+ C

524.
∫

x cot−1 x

a
dx =

1

2
(x2 + a2) cot−1 x

a
+

a

2
x + C

525.
∫

x sec−1 x

a
dx =







1

2
x2 sec−1 x

a
− a

2

√

x2 − a2 + C, 0 < sec−1 x
a < π/2

1

2
x2 sec−1 x

a
+

a

2

√

x2 − a2 + C, π/2 < sec−1 x
a < π

526.
∫

x csc−1 x

a
dx =







1

2
x2 csc−1 x

a
+

a

2

√

x2 − a2 + C, 0 < csc−1 x
a < π/2

1

2
x2 csc−1 x

a
− a

2

√

x2 − a2 + C, −π/2 < csc−1 x
a < 0

527.
∫

x2 sin−1 x

a
dx =

1

3
x3 sin−1 x

a
+

1

9
(x2 + 2a2)

√

a2 − x2 + C

528.
∫

x2 cos−1 x

a
dx =

1

3
x3 cos−1 x

a
− 1

9
(x2 + 2a2)

√

a2 − x2 + C

529.
∫

x2 tan−1 x

a
dx =

1

3
tan−1 x

a
− a

6
x2 +

a3

6
ln |x2 + a2| + C

530.
∫

x2 cot−1 x

a
dx =

1

3
cot−1 x

a
+

a

6
x2 − a3

6
ln |a2 + x2|+ C

531.
∫

x2 sec−1 x

a
dx =







1

3
x3 sec−1 x

a
− a

6
x
√

x2 − a2 − a3

6
ln |x +

√

x2 − a2|+ C, 0 < sec−1 x
a < π/2

1

3
x3 sec−1 x

a
+

a

6
x
√

x2 − a2 +
a3

6
ln |x +

√

x2 − a2|+ c, π/2 < sec−1 x
a < π

532.
∫

x2 csc−1 x

a
dx =







1

3
x3 csc−1 x

a
+

a

6
x
√

x2 − a2 +
a3

6
ln |x +

√

x2 − a2|+ C, 0 < csc−1 x
a

< π/2

1

3
x3 csc−1 x

a
− a

6
x
√

x2 − a2 − a3

6
ln |x +

√

x2 − a2|+ C, −π/2 < csc−1 x
a

< 0

533.
∫

1

x
sin−1 x

a
dx =

x

a
+

1

2 · 3 · 3

(x

a

)3

+
1 · 3

2 · 4 · 5 · 5

(x

a

)5

+
1 · 3 · 5

2 · 4 · 6 · 7 · 7 + · · ·+ C

534.
∫

1

x
cos−1 x

a
dx =

π

2
ln |x|+ −

∫
1

x
sin−1 x

a
dx

535.
∫

1

x
tan−1 x

a
dx =

x

a
− 1

32

(x

a

)3

+
1

52

(x

a

)5

− 1

72

(x

a

)7

+ · · ·+ C

536.
∫

1

x
cot−1 x

a
dx =

π

2
ln |x| −

∫
1

x
tan−1 x

a
dx

537.
∫

1

x
sec−1 x

a
dx =

π

2
ln |x|+ a

x
+

1

2 · 3 · 3

(x

a

)3

+
1 · 3

2 · 4 · 5 · 5

(x

a

)5

+
1 · 3 · 5

2 · 4 · 6 · 7 · 7

(x

a

)7

+ · · ·+ C
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538.
∫

1

x
csc−1 x

a
dx = −

(
a

x
+

1

2 · 3 · 3

(x

a

)3

+
1 · 3

2 · 4 · 5 · 5

(x

a

)5

+
1 · 3 · 5

2 · 4 · 6 · 7 · 7

(x

a

)7

+ · · ·
)

+ C

539.
∫

1

x2
sin−1 x

a
dx = −1

x
sin−1 x

a
− 1

a
ln |a +

√
a2 − x2

a
|+ C

540.
∫

1

x2
cos−1 x

a
dx = −1

x
cos−1 x

a
+

1

a
ln |a +

√
a2 − x2

a
| + C

541.
∫

1

x2
tan−1 x

a
dx = −1

x
tan−1 x

a
− 1

2a
ln |x

2 + a2

a2
| + C

542.
∫

1

x2
cot−1 x

a
dx = −1

x
cot−1 x

a
+

1

2a

∫
1

x
tan−1 x

a
dx

543.
∫

1

x2
sec−1 x

a
dx =







−1

x
sec−1 x

a
+

1

ax

√

x2 − a2 + C, 0 < sec−1 x
a < π/2

−
1

x
sec−1 x

a
−

1

ax

√

x2 − a2 + C, π/2 < sec−1 x
a < π

544.
∫

1

x2
csc−1 x

a
dx =







−1

x
csc−1 x

a
− 1

ax

√

x2 − a2 + C, 0 < csc−1 x
a

< π/2

−1

x
csc−1 x

a
+

1

ax

√

x2 − a2 + C, −π/2 < csc−1 x
a

< 0

545.
∫

sin−1

√
x

a + x
dx = (a + x) tan−1

√
x

a
−
√

ax + C

546.
∫

cos−1

√
x

a + x
dx = (2a + x) tan−1

√
x

2a
−
√

2ax + C

Integrals containing the exponential function

547.
∫

eax dx =
1

a
eax + C

548.
∫

xeax dx =

(
x

a
− 1

a2

)

eax + C

549.
∫

x2eax dx =

(
x2

a
− 2x

a2
+

2

a3

)

eax + C

550.
∫

xneax dx =
1

a
xneax − n

a

∫

xn−1eax dx

551.
∫

1

x
eax dx = ln |x|+ ax

1 · 1!
+

(ax)2

2 · 2!
+

(ax)3

3 · 3!
+ · · ·+ C

552.
∫

1

xn
eax dx = − 1

(n − 1)xn−1
eax +

a

n − 1

∫
1

xn−1
eax dx

553.
∫

eax

α + βeax
dx =

1

aβ
ln |α + βeax| + C
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554.
∫

eax sin bx dx =

(
a sin bx− b cos bx

a2 + b2

)

eax + C

555.
∫

eax cos bx dx =

(
a cos bx + b sin bx

a2 + b2

)

eax + C

556.
∫

eax sinn bx dx =

(
a sin bx − nb cos bx

a2 + n2b2

)

eax sinn−1 bx +
n(n − 1)b2

a2 + n2b2

∫

eax sinn−2 bx dx

557.
∫

eax cosn bx dx =

(
a cos bx + nb sin bx

a2 + n2b2

)

eax cosn−1 bx +
n(n − 1)b2

a2 + n2b2

∫

eax cosn−2 bx dx

Another way to express the above integrals is to define

Cn =

∫

eax cosn bx dx and Sn =

∫

eax sinn bx dx, then one can write the reduction formulas

Cn =
a cos bx + nb sin bx

a2 + n2b2
eax cosn−1 bx +

n(n − 1)b2

a2 + n2b2
Cn−2

Sn =
a sin bx− nb cos bx

a2 + n2b2
eax sinn−1 bx +

n(n − 1)b2

a2 + n2b2
Sn−2

558.
∫

xeax sin bx dx =

(
[2ab− b(a2 + b2)x] cos bx + [a(a2 + b2)x − a2 + b2] sin bx

(a2 + b2)2

)

eax + C

559.
∫

xeax cos bx dx =

(
[a(a2 + b2)x − a2 + b2] cos bx + [b(a2 + b2)x − 2ab] sin bx

(a2 + b2)2

)

eax + C

560.
∫

eax ln x dx =
1

a
eax ln x − 1

a

∫
1

x
eax dx

561.
∫

eax sinh bx dx =

[
a sinh bx − b cosh bx

(a − b)(a + b)

]

eax + C, a �= b

562.
∫

eax sinh ax dx =
1

4a
e2ax − x

2
+ C

563.
∫

eax cosh bx dx =

[
a cosh bx − b sinh bx

(a − b)(a + b)

]

eax + C, a �= b

564.
∫

eax cosh ax dx =
1

4a
e2ax +

x

2
+ C

565.
∫

dx

α + βeax
=

x

α
− 1

aα
ln |α + βeax| + C

566.
∫

dx

(α + βeax)2
=

x

α2
+

1

aα(α + βeax)
− 1

aα2
ln |α + βeax| + C

567.
∫

dx

αeax + βe−ax
=







1

a
√

αβ
tan−1

(√
α

β
eax

)

+ C, αβ > 0

1

2a
√
−αβ

ln

∣
∣
∣
∣
∣

eax −
√

−β/α

eax +
√

−β/α

∣
∣
∣
∣
∣
+ C, αβ < 0
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568.
∫

eax sin2 bx dx =

(
a2 + 4b2 − a2 cos(2bx) − 2ab sin(2bx)

2a(a2 + 4b2

)

eax + C

569.
∫

eax cos2 bx dx =

(
a2 + 4b2 + a2 cos(2bx) + 2ab sin(2bx)

2a(a2 + 4b2

)

eax + C

Integrals containing the logarithmic function

570.
∫

ln x dx = x ln |x|+ C

571.
∫

x lnx dx =
1

2
x2 ln |x| − 1

4
x2 + C

572.
∫

xn ln x dx =
1

(n + 1)2
xn+1 +

1

n + 1
xn+1 ln |x|+ C, n �= −1

573.
∫

1

x
lnx dx =

1

2
(ln |x|)2 + C

574.
∫

dx

x lnx
= ln | ln |x||+ C

575.
∫

1

x2
ln x dx = −1

x
− 1

x
ln |x|+ C

576.
∫

(ln |x|)2 dx = x(ln |x|)2 − 2x ln |x|+ 2x + C

577.
∫

1

x
(ln |x|)n dx =

1

n + 1
(ln |x|)n+1

+ C, n �= −1

578.
∫

(ln |x|)n dx = x(ln |x|)n − n

∫

(ln |x|)n−1 dx

579.
∫

ln |x2 + a2| dx = x ln |x2 + a2| − 2x + 2a tan−1 x

a
+ C

580.
∫

ln |x2 − a2| dx = x ln |x2 − a2| − 2x + a ln |x + a

x − a
| + C

581.
∫

(ax + b) ln(βx + γ) dx =
β2(ax + b)2 − (bβ − aγ)2

2aβ2
ln(βx + γ) − a

4β2
(βx + γ)2 − 1

β
(bβ − aγ)x + C

582.
∫

(ln ax)2 dx = x(lnax)2 − 2x lnax + 2x + C

Integrals containing the hyperbolic function sinh ax

583.
∫

sinh ax dx =
1

a
cosh ax + C
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584.
∫

x sinh ax dx =
1

a
x cosh ax −

1

a2
sinh ax + C

585.
∫

x2 sinhax dx =

(
x2

a
+

2

a3

)

cosh ax − 2x

a2
sinh ax + C

586.
∫

xn sinh ax dx =
1

a
xn cosh ax − n

a

∫

xn−1 cosh ax dx

587.
∫

1

x
sinh ax dx = ax +

(ax)3

3 · 3!
+

(ax)5

4 · 5!
+ · · ·+ C

588.
∫

1

x2
sinh ax dx = −1

x
sinh ax + a

∫
1

x
cosh ax dx

589.
∫

1

xn
sinh ax dx = − sinh ax

(n − 1)xn−1
+

a

n − 1

∫
1

xn−1
cosh ax dx

590.
∫

dx

sinh ax
=

1

a
ln | tanh

ax

2
|+ C

591.
∫

x dx

sinh ax
=

1

a2

[

ax− (ax)3

18
+ frac7(ax)51800 + · · ·+ (−1)n 2(22n − 1)Bn a2n+1x2n+1

(2n + 1)!
+ · · ·

]

+ C

592.
∫

sinh2 ax dx =
1

2a
x sinh2ax − 1

2
x + C

593.
∫

sinhn ax dx =
1

na
sinhn−1 ax cosh ax − n − 1

n

∫

sinhn−2 ax dx

594.
∫

x sinh2 ax dx =
1

4a
x sinh 2ax − 1

8a2
cosh 2ax − 1

4
x2 + C

595.
∫

dx

sinh2 ax
= −1

a
coth ax + C

596.
∫

dx

sinh3 ax
= − 1

2a
csch ax coth ax − 1

2a
ln | tanh

ax

2
| + C

597.
∫

x dx

sinh2 ax
= −1

a
x coth ax +

1

a2
ln | sinh ax|+ C

598.
∫

sinh ax sinh bx dx =
1

2(a + b)
sinh(a + b)x − 1

2(a − b)
sinh(a − b)x + C

599.
∫

sinh ax sin bx dx =
1

a2 + b2
[a cosh ax sin bx − b sinh ax cos bx] + C

600.
∫

sinh ax cos bx dx =
1

a2 + b2
[a cosh ax cos bx + b sinh ax sin bx] + C

Appendix C



502

601.
∫

dx

α + β sinh ax
=

1
√

α2 + β2
ln

∣
∣
∣
∣
∣

βeax + α −
√

α2 + β2

βeax + α +
√

α2 + β2

∣
∣
∣
∣
∣
+ C

602.
∫

dx

(α + β sinh ax)2
=

−β

a(α2 + β2)

cosh ax

α + β sinh ax
+

α

α2 + β2

∫
dx

α + β sinh ax

603.
∫

dx

α2 + β2 sinh2 ax
=







1

aα
√

β2 − α2
tan−1

(√

β2 − α2 tanh ax

α

)

+ C, β2 > α2

1

2aα
√

α2 − β2
ln

∣
∣
∣
∣
∣

α +
√

α2 − β2 tanh ax

α −
√

α2 − β2 tanh ax

∣
∣
∣
∣
∣
+ C, β2 < α2

604.
∫

dx

α2 − β2 sinh2 ax
=

1

2aα
√

α2 + β2
ln

∣
∣
∣
∣
∣

α +
√

α2 + β2 tanh ax

α−
√

α2 + β2 tanh ax

∣
∣
∣
∣
∣
+ C

Integrals containing the hyperbolic function cosh ax

605.
∫

cosh ax dx =
1

a
sinh ax + C

606.
∫

x cosh ax dx =
1

a
x sinhax − 1

a2
cosh ax + C

607.
∫

x2 cosh ax dx = − 2

a2
x cosh ax +

(
x2

a
+

2

a3

)

sinh ax + C

608.
∫

xn cosh ax dx =
1

a
xn sinh ax − n

a

∫

xn−1 sinh ax dx

609.
∫

1

x
cosh ax dx = ln |x|+ (ax)2

2 · 2!
+

(ax)4

4 · 4!
+

(ax)6

6 · 6!
+ · · ·+ C

610.
∫

1

x2
cosh ax dx = −1

x
cosh ax + a

∫
1

x
sinh ax dx

611.
∫

1

xn
cosh ax dx = −

1

n − 1

cosh ax

xn−1
+

a

n − 1

∫
sinhax

xn−1
dx, n > 1

612.
∫

dx

cosh ax
=

2

a
tan−1 eax + C

613.
∫

x dx

cosh ax
=

1

a2

[
a2x2

2
− a4x4

8
+

5a6x6

144
+ · · ·+ (−1)n Ena2n+2x2n+2

(2n + 2) · (2n)!
+ · · ·

]

+ C

614.
∫

cosh2 ax dx =
1

2
x +

1

2
sinhax cosh ax + C

615.
∫

coshn ax dx =
1

na
coshn−1 ax sinh ax +

n − 1

n

∫

coshn−2 ax dx

616.
∫

x cosh2 ax dx =
1

4
x2 +

1

4a
x sinh2ax − 1

8a2
cosh 2ax + C
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617.
∫

dx

cosh2 ax
=

1

a
tanh ax + C

618.
∫

x dx

cosh2 ax
=

1

a
x tanh ax − 1

a2
ln | cosh ax| + C

619.
∫

dx

coshn ax
=

1

(n − 1)a

x sinh ax

coshn−1 ax
+

n − 2

n − 1

∫
dx

coshn−2 ax, n > 1

620.
∫

cosh ax cosh bx dx =
1

2(a − b)
sinh(a − b)x +

1

2(a + b)
sinh(a + b)x + C

621.
∫

cosh ax sin bx dx =
1

a2 + b2
[a sinhax sin bx − b cosh ax cos bx] + C

622.
∫

cosh ax cos bx dx =
1

a2 + b2
[a sinh ax cos bx + b cosh ax sin bx] + C

623.
∫

dx

α + β cosh ax
=







2
√

β2 − α2
tan−1 βeax + α

√

β2 − α2
+ C, β2 > α2

1

a
√

α2 − β2
ln

∣
∣
∣
∣
∣

βeax + α −
√

α2 − β2

βeax + α +
√

α2 − β2

∣
∣
∣
∣
∣
+ C, β2 < α2

624.
∫

dx

1 + cosh ax
=

1

a
tanh ax + C

625.
∫

x dx

1 + cosh ax
=

x

a
tanh

ax

2
− 2

a2
ln | cosh

ax

2
| + C

626.
∫

dx

−1 + cosh ax
= −1

a
coth

ax

2
+ C

627.
∫

dx

(α + β cosh ax)2
=

β sinh ax

a(β2 − α2)(α + β cosh ax)
− α

β2 − α2

∫
dx

α + β cosh ax

628.
∫

dx

α2 − β2 cosh2 ax
=







1

2aα
√

α2 − β2
ln

∣
∣
∣
∣
∣

α tanh ax +
√

α2 − β2

α tanh ax−
√

α2 − β2

∣
∣
∣
∣
∣
+ C, α2 > β2

−1

aα
√

β2 − α2
tan−1 α tanh ax

√

β2 − α2
+ C, α2 < β2

629.
∫

dx

α2 + β2 cosh2 ax
=

1

aα
√

α2 + β2
tanh−1

(

α tanh ax
√

α2 + β2

)

+ C

Integrals containing the hyperbolic functions sinh ax and cosh ax

630.
∫

sinh ax cosh ax dx =
1

2a
sinh2 ax + C

631.
∫

sinh ax cosh bx dx =
1

2(a + b)
cosh(a + b)x +

1

2(a − b)
cosh(a − b)x + C
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632.
∫

sinh2 ax cosh2 ax dx =
1

32a
sinh 4ax −

1

8
x + C

633.
∫

sinhn ax cosh ax dx =
1

(n + 1)a
sinhn+1 ax + C, n �= −1

634.
∫

coshn ax sinh ax dx =
1

(n + 1)a
coshn+1 ax + C, n �= −1

635.
∫

sinhax

cosh ax
dx =

1

a
ln | cosh ax| + C

636.
∫

cosh ax

sinh ax
dx =

1

a
ln | sinh ax|+ C

637.
∫

dx

sinh ax cosh ax
=

1

a
ln | tanhax|+ C

638.
∫

x sinh ax

cosh ax
dx =

1

a2

[
a3x3

3
− a5x5

15
+ · · ·+ (−1)n 22n(22n − 1)Bna2n+1x2n+1

(2n + 1)!
+ · · ·

]

+ C

639.
∫

x cosh ax

sinh ax
dx =

1

a2

[

ax +
a3x3

9
− a5x5

225
+ · · ·+ (−1)n−1 22n

Bna2n+1x2n+1

(2n + 1)!
+ · · ·

]

+ C

640.
∫

sinh2 ax

cosh2 ax
dx = x − 1

a
tanh ax + C

641.
∫

cosh2 ax

sinh2 ax
dx = x − 1

a
coth ax + C

642.
∫

x sinh2 ax

cosh2 ax
dx =

1

2
x2 − 1

a
x tanh ax +

1

a2
ln | cosh ax| + C

643.
∫

x cosh2 ax

sinh2 ax
dx =

1

2
x2 − 1

a
x coth ax +

1

a2
ln | sinh ax|+ C

644.
∫

sinh ax

x cosh ax
dx = ax − a3x3

9
+ · · ·+ (−1)n−1 22n(22n − 1)Bna2n−1x2n−1

(2n − 1)(2n)!
+ · · ·+ C

645.
∫

cosh ax

x sinh ax
dx = − 1

ax
+

ax

3
− a3x3

135
+ · · ·+ (−1)n 22nBna2n−1x2n−1

(2n − 1)(2n)!
+ · · ·+ C

646.
∫

sinh3 ax

cosh3 ax
dx =

1

a
ln | cosh ax| − 1

2a
tanh2 ax + C

647.
∫

cosh3 ax

sinh3 ax
dx =

1

a
ln | sinhax| − 1

2a
coth2 ax + C

648.
∫

dx

sinh ax cosh2 ax
=

1

a
sech ax +

1

a
ln tanh

ax

2
| + C
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649.
∫

dx

sinh2 ax cosh ax
= −1

a
tan−1(sinh ax) − 1

a
csch ax + C

650.
∫

dx

sinh2 ax cosh2 ax
= −

2

a
coth ax + C

651.
∫

sinh2 ax

cosh ax
dx =

1

a
sinh ax − 1

a
tan−1(sinh ax) + C

652.
∫

cosh2 ax

sinh ax
dx =

1

a
cosh ax +

1

a
ln | tanh

ax

2
| + C

653.
∫

dx

cosh ax (1 + sinh ax)
=

1

2a
ln

∣
∣
∣
∣

1 + sinh ax

cosh ax

∣
∣
∣
∣
+

1

a
tan−1 eax + C

654.
∫

dx

sinh ax (cosh ax + 1)
=

1

2a
ln | tanh

ax

2
| + 1

2a(cosh ax + 1)
+ C

655.
∫

dx

sinh ax (cosh ax − 1)
= − 1

2a
ln | tanh

ax

2
| − 1

2a(cosh ax − 1)
+ C

656.
∫

dx

α + β sinhax
cosh ax

=
αx

α2 − β2
− β

a(α2 − β2)
ln |β sinh ax + α cosh ax| + C

657.
∫

dx

α + β cosh ax
sinh ax

=
αx

α2 − β2
+

β

a(α2 − β2)
ln |α sinh ax + β cosh ax| + C

658.
∫

dx

b cosh ax + c sinh ax
=







1

a
√

b2 − c2
sec−1

[
b cosh ax + c sinh ax√

b2 − c2

]

+ C, b2 > c2

−1

a
√

c2 − b2
csch −1

[
b cosh ax + c sinh ax√

c2 − b2

]

+ C, b2 < c2

Integrals containing the hyperbolic functions tanh ax, coth ax, sech ax, csch ax

Express integrals in terms of sinh ax and cosh ax and see previous listings.

Integrals containing inverse hyperbolic functions

659.
∫

sinh−1 x

a
dx = x sinh−1 x

a
−

√

x2 + a2 + C

660.
∫

cosh−1 x

a
dx =

{

x cosh−1(x/a) −
√

x2 − a2, cosh−1(x/a) > 0

x cosh−1(x/a) +
√

x2 − a2, cosh−1(x/a) < 0

661.
∫

tanh−1 x

a
dx = x tanh−1 x

a
+

a

2
ln |a2 − x2| + C

662.
∫

coth−1 x

a
dx = x coth−1 x

a
+

a

2
ln |x2 − a2| + C

663.
∫

sech −1 x

a
dx =







xsech −1 x

a
+ a sin−1 x

a
+ C, sech −1(x/a) > 0

xsech −1 x

a
− a sin−1 x

a
+ C, sech −1(x/a) < 0
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664.
∫

csch −1 x

a
dx = xcsch −1 x

a
± a sinh−1 x

a
, + for x > 0 and − for x < 0

665.
∫

x sinh−1 x

a
dx =

(
x2

2
+

a2

4

)

sinh−1 x

a
− 1

4
xx

√

x2 + a2 + C

666.
∫

x cosh−1 x

a
dx =







1

4
(2x2 − a2) cosh−1 x

a
− 1

4
x
√

x2 − a2 + C, cosh−1(x/a) > 0

1

4
(2x2 − a2) cosh−1 x

a
+

1

4
x
√

x2 − a2 + C, cosh−1(x/a) < 0

667.
∫

x tanh−1 x

a
dx =

ax

2
+

1

2
(x2 − a2) tanh−1 x

a
+ C

668.
∫

x coth−1 x

a
dx =

ax

2
+

1

2
(x2 − a2) coth−1 x

a
+ C

669.
∫

xsech −1 x

a
dx =







1

2
x2sech −1 x

a
− 1

2
a
√

a2 − x2, sech −1(x/a) > 0

1

2
xsech −1 x

a
+

1

2
a
√

a2 − x2 + C, sech −1(x/a) < 0

670.
∫

xcsch −1 x

a
dx =

1

2
x2csch −1 x

a
± a

2

√

x2 + a2 + C, + for x > 0 and − for x < 0

671.
∫

x2 sinh−1 x

a
dx =

1

3
x3 sinh−1 x

a
+

1

9
(2a2 − x2)

√

x2 + a2 + C

672.
∫

x2 cosh−1 x

a
dx =







1

3
x3 cosh−1 x

a
− 1

9
(x2 + 2a2)

√

x2 − a2 + C, cosh−1(x/a) > 0

1

3
x3 cosh−1 x

a
+

1

9
(x2 + 2a2)

√

x2 − a2 + C, cosh−1(x/a) < 0

673.
∫

x2 tanh−1 x

a
dx =

a

6
x2 +

1

3
x3 tanh−1 x

a
+

1

6
a3 ln |a2 − x2| + C

674.
∫

x2 coth−1 x

a
dx =

a

6
x2 +

1

3
x3 coth−1 x

a
+

1

6
a3 ln |x2 − a2| + C

675.
∫

x2sech −1 x

a
dx =

1

3
x3sech −1 x

a
− 1

3

∫
x3 dx√
x2 + a2

676.
∫

x2csch −1 x

a
dx =

1

3
x3csch −1 x

a
± a

3

∫
x2 dx√
x2 + a2

677.
∫

xn sinh−1 x

a
dx =

1

n + 1
xn+1 sinh−1 x

a
−

1

n + 1

∫
xn+1 dx√
x2 − a2

678.
∫

xn cosh−1 x

a
dx =







1

n + 1
xn+1 cosh−1 x

a
− 1

n + 1

∫
xn+1

√
x2 − a2

, cosh−1(x/a) > 0

1

n + 1
xn+1 cosh−1 x

a
+

1

n + 1

∫
xn+1 dx√
x2 − a2

, cosh−1(x/a) < 0

679.
∫

xn tanh−1 x

a
dx =

1

n + 1
xn+1 tanh−1 x

a
− a

n + 1

∫
xn+1 dx

a2 − x2
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680.
∫

xn coth−1 x

a
dx =

1

n + 1
xn+1 coth−1 x

a
− a

n + 1

∫
xn+1 dx

a2 − x2

681.
∫

xnsech −1 x

a
dx =







1

n + 1
xn+1sech −1 x

a
+

a

n + 1

∫
xn dx√
a2 − x2

, sech −1(x/a) > 0

1

n + 1
xn+1sech −1 x

a
− a

n + 1

∫
xn dx√
a2 − x2

, sech −1(x/a) < 0

682.
∫

xncsch −1 x

a
dx =

1

n + 1
xn+1csch −1 x

a
± a

n + 1

∫
xn dx√
x2 + a2

, + for x > 0, − for x < 0

683.
∫

1

x
sinh−1 x

a
dx =







x

a
− (x/a)3

2 · 3 · 3 +
1 · 3(x/a)5

2 · 4 · 4 · 5 − 1 · 3 · 5(x/a)7

2 · 4 · 6 · 7 · 7 + · · ·+ C, |x| > a

1

2

(

ln |2x

a
|
)2

− (a/x)2

2 · 2 · 2 +
1 · 3(a/x)4

2 · 4 · 4 · 4 − 1 · 3 · 5(a/x)6

2 · 4 · 6 · 6 · 6 + · · ·+ C, x > a

−1

2

(

ln |−2x

a
|
)2

+
(a/x)2

2 · 2 · 2
− 1 · 3(a/x)4

2 · 4 · 4 · 4
+

1 · 3 · 5(a/x)6

2 · 4 · 6 · 6 · 6
+ · · ·+ C, x < −a

684.
∫

1

x
cosh−1 x

a
dx = ±

[

1

2

(

ln |2x

a
|
)2

+
(a/x)2

2 · 2 · 2
+

1 · 3(a/x)4

2 · 4 · 4 · 4
+

1 · 3 · 5(a/x)6

2 · 4 · 6 · 6 · 6
+ · · ·

]

+ C

+ for cosh−1(x/a) > 0, − for cosh−1(x/a) < 0

685.
∫

1

x
tanh−1 x

a
dx =

x

a
+

(x/a)3

32
+

(x/a)5

52
+ · · ·+ C

686.
∫

1

x
coth−1 x

a
dx =

ax

2
+

1

2
(x2 − a2) coth−1 x

a
+ C

687.
∫

1

x
sech −1 x

a
dx =







−1

2
ln |a

x
| ln |4a

x
| − (x/a)2

2 · 2 · 2
− 1 · 3(x/a)4

2 · 4 · 4 · 4
− · · ·+ C, sech −1(x/a) > 0

1

2
ln |a

x
| ln |4a

x
| + (x/a)2

2 · 2 · 2
+

1 · 3(x/a)4

2 · 4 · 4 · 4
+ · · · , sech −1(x/a) < 0

688.
∫

1

x
csch −1 x

a
dx =







1

2
ln |x

a
| ln |4a

x
| + (x/a)2

2 · 2 · 2
− 1 · 3(x/a)4

2 · 4 · 4 · 4
+ · · ·+ C, 0 < x < a

1

2
ln |−x

a
| ln |−x

4a
| − (x/a)2

2 · 2 · 2 +
1 · 3(x/a)4

2 · 4 · 4 · 4 − · · · , −a < x < 0

−a

x
+

(a/x)3

2 · 3 · 3 − 1 · 3(a/x)5

2 · 4 · 5 · 5 + · · ·+ C, |x| > a

Integrals evaluated by reduction formula

689. If Sn =

∫

sinn x dx, then Sn = −
1

n
sinn−1 x cosx +

n − 1

n
Sn−2

690. If Cn =

∫

cosn x dx, then Cn =
1

n
sinx cosn−1 x +

n − 1

n
Cn−2

691. If In =

∫
sinn ax

cos ax
dx, then In =

−1

(n − 1) a
sinn−1 ax + In−2

692. If In =

∫
cosn ax

sin ax
dx, then In =

1

(n − 1) a
cosn−1 ax + In−2
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693. If Sm =

∫

xm sin nx dx and Cm =

∫

xm cos nx dx, then

Sm =
−1

n
xm cosnx +

m

n
Cm−1 and Cm =

1

n
xm sin nx − m

n
Sm−1

694. If I1 =

∫

tanx dx, and In =

∫

tann x dx, then In =
1

n − 1
tann−1 x − In−2, n = 2, 3, 4, . . .

695. If In =

∫
sinn ax

cos ax
dx, then In = −sinn−1 ax

(n − 1)a
+ In−2

696. If In =

∫
cosn ax

sin ax
dx, then In =

cosn−1 ax

(n − 1)a
+ In−2

697. If In,m =

∫

sinn x cosm x dx, then

In,m =
−1

n + m
sinn−1 x cosm+1 x +

n − 1

n + m
In−2,m

In,m =
1

n + 1
sinn+1 x cosm+1 x +

n + m + 2

n + 1
In+2,m

In,m =
1

n + m
sinn+1 x cosm−1 x +

m − 1

n + m
In,m+2

In,m =
−1

m + 1
sinn+1 x cosm+1 x +

n + m + 2

m + 1
In,m+2

In,m =
−1

m + 1
sinn−1 x cosm+1 x +

n − 1

m + 1
In−2,m+2

In,m =
1

n + 1
sinn+1 x cosm−1 x +

m − 1

n + 1
In+2,m−2

698. If Sn =

∫

eax sinn bx dx and Cn =
∫

eax cosn bx dx, then

Cn =eax cosn−1 bx

[
a cos bx + nb sin bx

a2 + n2b2

]

+
n(n − 1) b2

a2 + n2b2
Cn−2

Sn =eax sinn−1 ax

[
a sin bx − nb cos nx

a2 + n2b2

]

+
n(n − 1) b2

a2 + n2b2
Sn−2

699. If In =

∫

xm(lnx)n dx, then In =
1

m + 1
xm+1(lnx)n − n

m + 1
In−1

Integrals involving Bessel functions

700.
∫

J1(x) dx = −J0(x) + C

701.
∫

xJ1(x) dx = −xJ0(x) +

∫

J0(x) dx

702.
∫

xnJ1(x) dx = −xnJ0(x) + n

∫

xn−1J0(x) dx
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703.
∫

J1(x)

x
dx = −J1(x) +

∫

J0(x) dx

704.
∫

xνJν−1(x) dx = xνJν(x) + C

705.
∫

x−νJν+1(x) dx = x−νJν(x) + C

706.
∫

J1(x)

xn
dx =

−1

n

J1(x)

xn−1
+

1

n

∫
J0(x)

xn−1
dx

707.
∫

xJ0(x) dx = xJ1(x) + C

708.
∫

x2J0(x) dx = x2J1(x) + xJ0(x) −
∫

J0(x) dx

709.
∫

xnJ0(x) dx = xnJ1(x) + (n − 1)xn−1J0(x) − (n − 1)2
∫

xn−2J0(x) dx

710.
∫

J0(x)

xn
dx =

J1(x)

(n − 1)2xn−2
− J0(x)

(n − 1)xn−1
− 1

(n − 1)2

∫
J0(x)

xn−2
dx

711.
∫

Jn+1(x) dx =

∫

Jn−1(x) dx− 2Jn(x)

712.
∫

xJn(αx)Jn(βx) dx =
x

β2 − α2
[αJ ′

n(αx)Jn(βx) − βJ ′
n(βx)Jn(αx)] + C

713. If Im,n =

∫

xmJn(x) dx, m ≥ −n, then

Im,n = −xmJn−1(x) + (m + n − 1) Im−1,n−1

714. If In,0 =

∫

xnJ0(x) dx, then In,0 = xnJ1(x) + (n − 1)xn−1J0(x) − (n − 1)2In−2,0 Note that

I1,0 =

∫

xJ0(x) dx = xJ1(x) + C and I0,1 =

∫

J1(x) dx = −J0(x) + C Note also that the integral

I0,0 =

∫

J0(x) dx cannot be given in closed form.
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Definite integrals

General integration properties

1. If
dF (x)

dx
= f(x), then

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a)

2.
∫ ∞

0

f(x) dx = lim
b→∞

∫ b

0

f(x) dx,

∫ ∞

−∞
f(x) dx = lim

b→∞

a→−∞

∫ b

a

f(x) dx

3. If f(x) has a singular point at x = b, then
∫ b

a

f(x) dx = lim
ε→0

∫ b−ε

a

f(x) dx

4. If f(x) has a singular point at x = a, then
∫ b

a

f(x) dx = lim
ε→0

∫ b

a+ε

f(x) dx

5. If f(x) has a singular point at x = c, a < c < b, then
∫ b

a

f(x) dx =

∫ c−ε

a

f(x) dx +

∫ b

c+ε

f(x) dx

6.
∫ b

a

cf(x) dx =c

∫ b

a

f(x) dx, c constant
∫ a

a

f(x) dx =0,

∫ b

0

f(x) dx =

∫ b

0

f(b − x) dx

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx,

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx

7. Mean value theorems
∫ b

a

f(x) dx =f(c)(b − a), a ≤ c ≤ b

∫ b

a

f(x)g(x) dx =f(c)

∫ b

a

g(x) dx, g(x) ≥ 0, a ≤ c ≤ b

∫ b

a

f(x)g(x) dx = f(a)

∫ ξ

a

g(x) dx

∫ b

a

f(x)g(x) dx = f(b)

∫ b

η

g(x) dx

a < ξ < b a < η < b

The last mean value theorem requires that f(x) be monotone increasing and nonnegative

throughout the interval (a, b)

8. Numerical integration

Divide the interval (a, b) into n equal parts by defining a step size h = b−a
n .

Two numerical integration schemes are

(a) Trapezoidal rule with global error − (b−a)
12

h2f ′′(ξ) for a < ξ < b.
∫ b

a

f(x) dx =
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·2f(xn−1) + f(xn)]

(b) Simpson’s 1/3 rule with global error − (b−a)
90

h4f(iv)(ξ) for a < ξ < b.
∫ b

a

f(x) dx =
2h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]
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9. If f(x) is periodic with period L, then f(x+L) = f(x) for all x and
∫ nL

0

f(x) dx = n

∫ L

0

f(x) dx,

for integer values of n.

10.
∫ x

0

dx

∫ x

0

dx · · ·
∫ x

0
︸ ︷︷ ︸

n integration signs

dx f(x) =
1

(n − 1)!

∫ x

0

(x − u)n−1f(u) du

Integrals containing algebraic terms

11.
∫ 1

0

xm−1(1 − x)n−1 dx = B(m, n) =
Γ(m)Γ(n)

Γ(m + n)
, m > 0, n > 0

12.
∫ 1

0

dx√
1 − x4

=
1

4
√

2π

[

Γ(
1

4
)

]2

13.
∫ 1

0

dx

(1 − x2n)n/2
=

π

2n sin π
2n

14.
∫ 1

0

1

β − αx

dx
√

x(1 − x)
=

π
√

β(β − α)

15.
∫ 1

0

xp − x−p

xq − x−q

dx

x
=

π

2q
tan

pπ

2q
, |p| < q

16.
∫ 1

0

xp + x−p

xq + x−q

dx

x
=

π

2q
sec

pπ

2q
, |p| < q

17.
∫ 1

0

xp−1 − x1−p

1 − x2
dx =

π

2
cot

pπ

2
, 0 < p < 2

18.
∫ a

0

dx√
a2 − x2

=
π

2

19.
∫ a

0

√

a2 − x2 dx =
π

4
a2

20.
∫ ∞

0

dx

x2 + a2
=

π

2a

21.
∫ ∞

0

xα−1

1 + x
dx =

π

sin απ
, 0 < α < 1

22.
∫ 1

0

xα−1 + x−α

1 + x
dx =

π

sin απ
, 0 < α < 1

23.
∫ ∞

0

xm dx

1 + x2
=

π

2
sec

mπ

2

24.
∫ ∞

0

xα−1

1 − x2
dx =

π

2
cot

απ

2
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25.
∫ ∞

0

dx

1 − xn
=

π

n
cot

π

n

26.
∫ ∞

0

dx

(a2x2 + c2)(x2 + b2)
=

π

2bc

1

c + ab

27.
∫ ∞

0

dx

(a2 + x2)(b2 + x2)
=

π

2

1

ab (a + b)

28.
∫ ∞

0

dx

(a2 − x2)(x2 + p2)
=

π

2p

1

a2 + p2

29.
∫ ∞

0

x2 dx

(a2 − x2)(x2 + p2)
=

π

2

p

a2 + p2

30.
∫ ∞

0

x2 dx

(x2 + a2)(x2 + b2)(x2 + c2)
=

π

2(a + b)(b + c)(c + a)

31.
∫ ∞

0

√
x dx

1 + x2
=

π√
2

32.
∫ ∞

0

x dx

(1 + x)(1 + x2)
=

π

4

Integrals containing trigonometric terms

33.
∫ 1

0

sin−1 x

x
dx =

π

2
ln 2

34.
∫ π/2

0

tan−1( b
a tan θ) dθ

tan θ
=

π

2
ln |1 +

b

a
|

35.
∫ π/2

0

sin2 x dx =
π

4

36.
∫ π/2

0

cos2 x dx =
π

4

37.
∫ π/2

0

dx

a + b cosx
=

cos−1(b/a)√
a2 − b2

38.
∫ π/2

0

sin2m−1 x cos2n−1 x dx = B(m, n) =
Γ(m)Γ(n)

Γ(m + n)
, m > 0, n > 0

39.
∫ π/2

0

sinp x cosq x dx =
Γ(p+1

2 )Γ( q+1
2 )

2Γ(p+q
2 + 1)

40.
∫ π/2

0

dx

1 + tanm x
=

π

4

41.
∫ π

0

cos pθ cos qθ dθ =

{
0, p �= q
π

2
, p = q
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42.
∫ π

0

sinpθ sin qθ dθ =

{
0, p �= q
π

2
, p = q

43.
∫ π

0

sinpθ cos qθ dθ =







0, p + q even
2p

p2 − q2
, p + q odd

44.
∫ π

0

x dx

a2 − cos2 x
=

π2

2a
√

a2 − 1

45.
∫ π

0

dx

a + b cosx
=

π√
a2 − b2

46.
∫ π

0

sin θ dθ

1 − 2a cos θ + a2
=

2

a
tanh−1 a

47.
∫ π

0

sin 2θ dθ

1 − 2a cos θ + a2
=

2

a2
(1 + a2) tanh−1 a − 2

a

48.
∫ π

0

x sinx dx

1 − 2a cosx + a2
=







π

a
ln(1 + a), |a| < 1

π ln

(

1 +
1

a

)

, |a| > 1

49.
∫ π

0

cos pθ dθ

1 − 2a cos θ + a2
=







πap

1 − a2
, a2 < 1

πa−p

a2 − 1
, a2 > 1

50.
∫ π

0

cos pθ dθ

(1 − 2a cos θ + a2)2
=







πap

(1 − a2)3
[(p + 1) − (p − 1)a2], a2 < 1

πa−p

(a2 − 1)3
[(1 − p) + (1 + p)a2], a2 > 1

51.
∫ π

0

cos pθ dθ

(1 − 2a cos θ + a2)3
=







πap

2(1 − a2)5
[
(p + 2)(p + 1) + 2(p + 2)(p − 2)a2 + (p − 2)(p − 1)a4

]
, a2 < 1

πa−p

2(a2 − 1)5
[
(1 − p)(2 − p) + 2(2 − p)(2 + p)a2 + (2 + p)(1 + p)a4

]
, a2 > 1

52.
∫ 2π

0

dx

(a + b sinx)2
=

2πa

(a2 − b2)3/2

53.
∫ 2π

0

dx

a + b sinx
=

2π√
a2 − b2

54.
∫ 2π

0

dx

a + b cosx
=

2π√
a2 − b2

55.
∫ 2π

0

dx

(a + b sinx)2
=

2πa

(a2 − b2)3/2

56.
∫ 2π

0

dx

(a + b cosx)2
=

2πa

(a2 − b2)3/2

57.
∫ L

−L

sin
mπx

L
sin

nπx

L
dx =

{
0, m �= n, m, n integers
L
2
, m = n
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58.
∫ L

−L

cos
mπx

L
sin

nπx

L
dx = 0 for all integer m, n values

59.
∫ L

−L

cos
mπx

L
cos

nπx

L
dx =







0, m �= n
L
2 , m = n �= 0

L, m = n = 0

60.
∫ ∞

0

xm dx

1 + 2x cosβ + x2
=

π

sinmπ

sin mβ

sin β

61.
∫ ∞

0

sin αx

x
dx =







π/2, α > 0

0, α = 0

−π/2, α < 0

62.
∫ ∞

0

sin αx sinβx

x
dx =







0, α > β > 0

π/2, 0 < α < β

π/4, α = β > 0

63.
∫ ∞

0

sin αx sinβx

x2
dx =

{
πα
2 , 0 < α ≤ β

πβ
2

, α ≥ β > 0

64.
∫ ∞

0

sin2 αx

x2
dx =

πα

2

65.
∫ ∞

0

1 − cosαx

x2
dx =

πα

2

66.
∫ ∞

0

cos αx

x2 + a2
dx =

π

2a
e−αa

67.
∫ ∞

0

x sin αx

x(x2 + a2)
dx =

π

2
e−αa

68.
∫ ∞

0

sin x

xp
dx =

π

2Γ(p) sin(pπ/2)

69.
∫ ∞

0

cos x

xp
dx =

π

2Γ(p) cos(pπ/2)

70.
∫ ∞

0

tanx

x
dx =

π

2

71.
∫ ∞

0

sin αx

x(x2 + a2)
dx =

π

2a2
(1 − e−αa)

72.
∫ ∞

0

sin2 x

x2
dx =

π

2

73.
∫ ∞

0

sin3 x

x3
dx =

3π

8

74.
∫ ∞

0

sin4 x

x4
dx =

π

3
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75.
∫ ∞

0

sin ax2 cos 2bx dx =
1

2

√
π

2a

(

cos
b2

a
− sin

b2

a

)

76.
∫ ∞

0

cos ax2 cos 2bx dx =
1

2

√
π

2a

(

cos
b2

a
+ sin

b2

a

)

77.
∫ ∞

0

dx

x4 + 2a2x2 cos 2β + a4
=

π

4a3 cosβ

78.
∫ ∞

0

cos

(

x2 +
a2

x2

)

dx =

√
π

2
cos(

π

4
+ 2a)

79.
∫ ∞

0

sin

(

x2 +
a2

x2

)

dx =

√
π

2
sin(

π

4
+ 2a)

80.
∫ ∞

0

tan bx dx

x(p2 + x2)
=

π

2p2
tanh bp

81.
∫ ∞

0

x tan bx dx

p2 + x2
=

π

2
− π

2
tanh bp

82.
∫ ∞

0

x cot bx dx

p2 + x2
=

π

2
coth bp

83.
∫ ∞

0

sin ax

sin bx

dx

(p2 + x2)
=

π

2p

sinh ap

sinh bp
, a < b

84.
∫ ∞

0

cos ax

cos bx

dx

(p2 + x2)
=

π

2p

cosh ap

cosh bp
, a < b

85.
∫ ∞

0

sin ax

cos bx

dx

(p2 + x2)
=

π

2p2

sinh ap

cosh bp
, a < b

86.
∫ ∞

0

sin ax

cos bx

x dx

(x2 + p2)
= −π

2

sinh ap

cosh bp
, a < b

87.
∫ ∞

0

cos ax

sin bx

x dx

(p2 + x2)
=

π

2

cosh ap

sinh bp
, a < b

Integrals containing exponential and logarithmic terms

88.
∫ 1

0

ln 1
x

1 + x
dx =

π2

12

89.
∫ 1

0

ln 1
x

(1 − x)
dx =

π2

6

90.
∫ 1

0

(
ln 1

x

)3

1 − x
dx =

π4

15

91.
∫ 1

0

ln(1 + x)

x
dx =

π2

12
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92.

∫ 1

0

ln(1 − x)

x
dx = −π2

6

93.

∫ 1

0

(ax2 + bx + c)
ln 1

x

1 − x
dx = (a + b + c)

π2

6
− (a + b) −

a

4

94.

∫ 1

0

ln 1
x√

1 − x2
dx =

π

2
ln2

95.

∫ 1

0

1 − xp−1

(1 − x)(1 − xp)
(ln

1

x
)2n−1 dx =

1

4n
(1 − 1

p2n
)(2π)2n

B2n−1

96.

∫ 1

0

xm − xn

ln x
dx = ln

∣

∣

∣

∣

1 + m

1 + n

∣

∣

∣

∣

97.

∫ 1

0

xp(lnx)n dx =















(−1)n n!

(p + 1)n+1
, n an integer

(−1)n Γ(n + 1)

(p + 1)n+1
, n noninteger

98.

∫ π/4

0

ln(1 + tanx) dx =
π

8
ln2

99.

∫ π/2

0

ln sin θ dθ =
π

2
ln(

1

2
)

100.

∫ π

0

ln(a + b cosx) dx = π ln

∣

∣

∣

∣

∣

a +
√

a2 + b2

2

∣

∣

∣

∣

∣

101.

∫ 2π

0

ln(a + b cos x) dx = 2π ln |a +
√

a2 − b2|

102.

∫ 2π

0

ln(a + b sin x) dx = 2i ln |a +
√

a2 − b2|

103.

∫

∞

0

e−ax dx =
1

a

104.

∫

∞

0

xne−ax dx =
Γ(n + 1)

an+1

105.

∫

∞

0

e−a2x2

dx =
1

2a

√
π =

1

2a
Γ(

1

2
)

106.

∫

∞

0

xne−a2x2

dx =
Γ(m+1

2 )

2am+1

107.

∫

∞

0

e−ax cos bx dx =
a

a2 + b2

108.

∫

∞

0

e−ax sin bx dx =
b

a2 + b2
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109.

∫

∞

0

e−ax sin bx

x
dx = tan−1 b

a

110.

∫

∞

0

e−ax − e−bx

x
dx = ln

b

a

111.

∫

∞

0

e−a2x2

cos bx dx =

√
π

2a
e−b2/4a2

112.

∫

∞

0

e−(ax2+b/x2) dx =
1

2

√

π

a
e−2

√

ab

113.

∫

∞

0

x2ne−βx2

dx =
(2n − 1)(2n − 3) · · ·5 · 3 · 1

2n+1βn

√

π

β

114.

∫

∞

0

e
−k

(

x
2

a2
+ b

2

x2

)

dx =

√
π

2

a√
k

e−2kb/a

115.

∫

∞

0

sin rx dx

x(x4 + 2a2x2 cos 2β + a4)
=

π

2a4

[

1 − sin(ar sinβ + 2β)

sin 2β
e−βr cosβ

]

116.

∫

∞

0

cos rx dx

x4 + 2a2x2 cos 2β + a4
=

π

2a3

sin(β + ar sin β)

sin 2β
e−ar cosβ

117.

∫

∞

0

sin rx dx

x(x6 + a6)
=

π

6a6

[

3 − e−ar − 2e−ar/2 cos
ar

√
3

2

]

118.

∫

∞

0

cos rx dx

x6 + a6
=

π

6a5

[

e−ar − 2e−ar/2 cos(
ar

√
3

2
+

2π

3
)

]

119.

∫

∞

0

sin πx dx

x(1 − x2)
= π

120.

∫

∞

0

e−qx − e−px

x
cos bx dx =

1

2
ln

∣

∣

∣

∣

p2 + b2

q2 + b2

∣

∣

∣

∣

121.

∫

∞

0

e−qx − e−px

x
sin bx dx = tan−1 p

b
− tan−1 q

b

122.

∫

∞

0

e−ax sin px − sin qx

x
dx = tan−1 p

a
− tan−1 q

b

123.

∫

∞

0

e−ax cos px− cos qx

x
dx =

1

2
ln

∣

∣

∣

∣

a2 + a2

a2 + p2

∣

∣

∣

∣

124.

∫

∞

0

xe−x2

sin ax dx =
a
√

π

4
e−a2/4

125.

∫

∞

0

x2e−x2

cos ax dx =

√
π

4

(

1 − a2

2

)

e−a2/4
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126.

∫

∞

0

x3e−x2

sinax dx =

√
π

8

(

3a − a3

2

)

e−a2/4

127.

∫

∞

0

x4e−x2

cos ax dx =

√
π

8

(

3 − 3a2 +
a4

4

)

e−a2/4

128.

∫

∞

0

(

ln x

x− 1

)3

dx = π2

129.

∫

∞

−∞

x sin rx dx

(x − b)2 + a2
=

π

a
(a cos br + b sin br) e−ar

130.

∫

∞

−∞

sin rx dx

x[(x − b)2 + a2]
=

π

a(a2 + b2)

[

a − (cos br − b sin br) e−ar
]

131.

∫

∞

−∞

cos rx dx

(x − b)2 + a2
=

π

a
e−ar cos br

132.

∫

∞

−∞

sin rx dx

(x − b)2 + a2
=

π

a
e−ar sin br

133.

∫

∞

−∞

e−x2

cos 2nx dx =
√

π e−n2

134.

∫

∞

0

xp−1 ln x

1 + x
dx =

−π2

sin pπ
cot pπ, 0 < p < 1

135.

∫

∞

0

e−x ln x dx = −γ

136.

∫

∞

0

e−x2

ln x dx = −
√

π

4
(γ + 2 ln2)

137.

∫

∞

0

ln

(

ex + 1

ex − 1

)

dx =
π2

4

138.

∫

∞

0

x dx

ex − 1
=

π2

6

139.

∫

∞

0

x dx

ex + 1
=

π2

12

Integrals containing hyperbolic terms

140.

∫ 1

0

sinh(m ln x)

sinh(lnx)
dx =

π

2
tan

mπ

2
, |m| < 1

141.

∫

∞

0

sin ax

sinh bx
dx =

π

2b
tanh(

πa

2b
)

142.

∫

∞

0

cos ax

cosh bx
dx =

π

2b
sech (

πa

2b
)
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143.

∫

∞

0

x dx

sinh ax
=

π2

4a2

144.

∫

∞

0

sinh px

sinh qx
dx =

π

2q
tan(

πp

2q
), |p| < q

145.

∫

∞

0

cosh ax− cosh bx

sinhπx
dx = ln

∣

∣

∣

∣

∣

cos b
2

cos a
2

∣

∣

∣

∣

∣

, −π < b < a < π

146.

∫

∞

0

sinh px

sinh qx
cos mx dx =

π

2q

sin πp
q

cos πp
q + cosh πm

q

, q > 0, p2 < q2

147.

∫

∞

0

sinh px

cosh qx
sin mx dx =

π

q

sin pπ
2q sinh mπ

2q

cos pπ
q + cosh mπ

q

148.

∫

∞

0

cosh px

cosh qx
cos mx dx =

π

q

cos pπ
2q cosh mπ

2q

cos pπ
q

+ cosh mπ
q

Miscellaneous Integrals

149.

∫ x

0

ξλ−1[1 − ξµ]ν dξ =
xλ

λ
F (−ν,

λ

µ
;
λ

µ
+ 1; xµ) See hypergeometric function

150.

∫ π

0

cos(nφ − x sin φ) dφ = π Jn(x)

151.

∫ a

−a

(a + x)m−1(a − x)n−1 dx = (2a)m+n−1 Γ(m)Γ(n)

Γ(m + n)

152. If f ′(x) is continuous and

∫

∞

1

f(x) − f(∞)

x
dx converges, then

∫

∞

0

f(ax) − f(bx)

x
dx = [f(0) − f(∞)] ln

b

a

153. If f(x) = f(−x) so that f(x) is an even function, then
∫

∞

0

f

(

x − 1

x

)

dx =

∫

∞

0

f(x) dx

154. Elliptic integral of the first kind
∫ θ

0

dθ
√

1 − k2 sin2 θ
= F (θ, k), 0 < k < 1

155. Elliptic integral of the second kind
∫ θ

0

√

1 − k2 sin2 θ dθ = E(θ, k)

156. Elliptic integral of the third kind
∫ θ

0

dθ

(1 + n sin2 θ)
√

1 − k2 sin2 θ
= Π(θ, k, n)
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Appendix D

Solutions to Selected Problems

Chapter 1

� 1-1.

(a)

A ∪ B = { x | − 2 < x < 7 }

A ∩ B = { x | 2 ≤ x ≤ 4 }

(b)

A ∪ B = { x | − 2 < x ≤ 7 }

A ∩ B = ∅

(c)

A ∪ B = { x | x < 4 }

A ∩ B = { x | − 5 < x < 3}

� 1-2.

� 1-5. (a) A ∪ (A ∩ B) = (A ∩ U) ∪ (A ∩ B) and use distributive law to write

(A ∩ U) ∪ (A ∩ B) = A ∩ (U ∪ B) = A ∩ U = A

� 1-8.

(a) Sa bounded above �.u.b. = 4, Sa bounded below g.�.b = −4

(b) Sb bounded above �.u.b. = 3, Sb is not bounded below

(c) Sc bounded above �.u.b. = 25, Sc bounded below g.�.b = 0

(d) Sd is not bounded above, Sc bounded below g.�.b. = 27
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� 1-9.

(a) y − 4 = −2(x− 2)

(c) y − 4 = −2

3
(x − 2)

� 1-10.

(a) y = −(3/4)x + 7/4, m = −3/4, b = 7/4

(c) Polar form of 3x + 4y = 7 is r cos(θ − β) = d, where d = 7/5 and tanβ = 4/3

� 1-12.

(b) x �= a, x �= b, x �= c

(c) r ≥ 0

(d) x3 + 1 > 0 =⇒ x > −1

� 1-13.

� 1-14.

� 1-15.

Solutions Chapter 1
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� 1-16.

� 1-18.

� 1-21.

� 1-22.

(e)
(x + h)2 − x2

h
(g) f(g(x)) = g2(x) = (3− 2x)2

� 1-24. (d) f−1(x) = x3 − 4

� 1-26.

� 1-27.

Solutions Chapter 1
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� 1-31. (a) eα (b) eβ

� 1-34. (c) y = −x, (d) y =
4

3
x, (e) y =

3

4
x, (f) y =

−1

2
x, (g) y = x, (h)

y =
4

3
x

� 1-37. (b) y − 4 =
−1

2
(x − 3)

� 1-38. (c) Multiply numerator and denominator by
√

x + h +
√

x and simplify.

(d) 2x

(f)
1

4

� 1-39. (c) Limit does not exist.

(e) Limit does not exist.

All other limits have finite values.

� 1-41. (a) 4

(c) Multiply numerator and denominator by (1 + cosh)

(e) 1

� 1-42.
1

2
√

x

� 1-43. (a) sinx oscillates between -1 and +1.

(b) sin( 1
x) oscillates between -1 and +1.

(c) Put in form sin θ
θ

� 1-44. (d) 3y − 4x = 1
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� 1-45. (b) Show (1 + p)n > 1 + np and
1

(1 + p)n
<

1

1 + np
(d) Show (1 + p)n > 1 + np and 1 + np → ∞ as n → ∞

� 1-47. (c) Let the point (3/2, 9/4) approach the point (1, 1), then secant line ap-

proaches the tangent line.

(d) y − 1 = 2(x− 1)

� 1-48. (d) Complete the square y2−6y+9+12x−3−9 = 0 and then simplify to obtain

(y − 3)2 = −12(x − 1) From this equation show the focus is at (-2,3), the vertex is at

(1,3), the directrix is the line x = 4 ant the latus rectum is 12.

� 1-49. (d) Complete the square on the x and y terms to obtain

25(y2 − 6y + 9) + 16(x2 − 4x + 4) = 689− 4(25)− 4(16) = 400

which simplifies to
(y − 3)2

42
+

(x − 2)2

52
= 1

representing an ellipse. Here the foci are at (5,3) and (-1,3), the directrices are at

x = 31/3 and x = −19/3, the latus rectum is 32/5, the eccentricity is 3/5 and the

center is (2,3).

� 1-50. (d) Complete the square (x2 − 2x + 1) − 4(y2 − 8y + 16) = 67 + 1 − 64 = 4 which

simplifies to
(x − 1)2

22
− (y − 4)2

12
= 1

which is a hyperbola centered at (1,4). The foci are at (1−2
√

5, 4) and (1+2
√

5, 4), the

verticies are at (-1,0) and (3,0, the directrices are at x = 1 −
√

5 and x = 1 +
√

5, the

eccentricity is 2
√

5
5

and the asymptotic lines are y − 4 = −1
2

(x − 1) and y − 4 = 1
2
(x − 1).

� 1-51. If yline = yparabola, then x + b = 2
√

x so that x must satisfy x2 + 2xb + b2 = 4x or

x2 + (2b − 4)x + b2 = 0. This is quadratic equation with roots

x =
4 − 2b ±

√

(2b− 4)2 − 4b2

2

The discriminant is
√

(2b− 4)2 − 4b2 =
√

16(1− b) which tells one that

b = 1, one point of intersection

b < 1, two points of intersection

b > 1, no points of intersection
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� 1-52. (a) If ā, b̄, c̄, d̄, ē, f̄ are defined by equations (1.97), then

ā + c̄ = a(cos2 θ + sin2 θ) + c(sin2 θ + cos2 θ) = a + c

� 1-53. Rotate axes π/4 radians and show that for x = x̄ 1√
2
− ȳ 1√

2
and y = x̄ 1√

2
+ ȳ 1√

2
,

then

xy =
x̄2

2
− ȳ2

2
= a2

� 1-54. (x + 1)2 = y2

� 1-57. F =
9

5
C + 32

� 1-58. (a) line x = 3 (c) circle (x − 2)2 + y2 = 22

� 1-59. (a) parabola opens to right ε < θ < 2π − ε (c) ellipse centered at (2,0)

intersecting x-axis at (-2,0) and (6,0).

� 1-60. (a) parabola opens upward π
2

+ ε < θ < 5π
2
− ε (c) ellipse centered at (1, 0)

intersecting x-axis at (3,0) and (-1,0).

� 1-62. y = 3 and x = −2
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Chapter 2

� 2-1. (b) y − 4 = 4(x − 2) (c) y − 4 = −4(x + 2)

� 2-2. (d)
dy

dx
= − b + 2ax

(ax2 + bx + c)2

(h)
dy

dx
= 3(2x + 1)2(2)(3x2 − x)2 + (2x + 1)32(3x2 − x)(6x − 1)

which can also be expressed in the form
dy

dx
= 2x(3x − 1)(1 + 2x)2(−1 + x + 21x2)

� 2-3. (d)
dy

dx
=

−1

2x3/2
(j)

dy

dx
= 1 + lnx (l)

dy

dx
=

1

n
(a + x)

1

n
−1

� 2-4. (b)
dy

dx
= −

√
x

(1 + x)2
+

1

2
√

x(1 + x)
(f)

dy

dx
=

x(3x2 − 2x)

2
√

x3 − x2
+

√

x3 − x2

(k)
dy

dx
=

−x

(1 + x2)3/2
√

1 − 1
1+x2

� 2-5. (g)
dy

dθ
= 6 cos(3θ) sin(3θ) = 3 sin(6θ)

(k)
dy

dx
= − a − 2bx

√

1 − (ax − bx2)2

(l)
dy

dx
= xx(1 + lnx) + x1/x

(
1

x2
− lnx

x2

)

� 2-6. (j) y′ =
−2x

(1 + x2)2
√

1−x2

1+x2

(k) y′ =
(b + 2cx) sec[ln(a + bx + cx2)] tan[ln(a + bx + cx2)]

a + bx + cx2

� 2-7. (e) y′ =
−x

y2 − 2
(j) y′ =

3x2 − y + 6xy + 3y2

x − 3x2 − 6xy − 3y2
(l) y′ =

yxy−1

1 − x4 lnx

� 2-8. (d) y′ =
2x√

1 − x4
(g) y′ =

1 + x√
1− x2

+sin−1 x (j) y′ = (cos(3x))x (ln | cos 3x| − 3x tan(3x))

� 2-9. (d) y′ = (3 + x)x

(
x

3 + x
+ ln(3 + x)

)

(i) y′ = xx(1 + lnx)

(l) y′ =
6x cos(4x) sin2(4x)

√

sin3(4x)
+

√

sin3(4x)

� 2-10. (b) y′ =
−2ax√
1 − a2x4

(h) y′ =
3√

3x − 1
√

1 + 3x
=

3√
9x2 − 1

(l) y′ =
3x2

√
1 − x6
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� 2-11. lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x
, let x = x0 + ∆x

� 2-13. (d) y′ =
3x cosx

2
√

4 + 3 sinx
+

√
4 + 3 sinx

y′′ =
−9x cos2 x

4(4 + 3 sinx)3/2
+

3 cos x√
4 + 3 sinx

− 3x sinx

2
√

4 + 3 sinx

(e) y′ =
ab − x2

(a − x)2(b− x)2

y′′ = −2(a2b + ab(b − 3x) + x2)

(a − x)3(x − b)3

� 2-14.

dy

dx

dx

dt
=

dy

dt
=⇒ dy

dx
=

dy

dt
dx

dt

Note that
d

dt

(
dy

dx

)

=
d

dx

(
dy

dx

)
dx

dt
=

d2y

dx2

dx

dt

so differentiating the above with respect to t gives

dy

dx

d2x

dt2
+

d2y

dx2

(
dx

dt

)2

=
d2y

dt2
=⇒ d2y

dx2
=

d2y
dt2 − dy

dx
d2x
dt2

(
dx
dt

)2

(b)

x = 4 cos t y = 4 sin t with
dx

dt
= −4 sin t

dy

dt
= 4 cos t and

d2x

dt2
= −4 cos t

d2y

dt2
= −4 sin t

so that
dy

dx
=

4 cos t

−4 sin t
= −x

y
and

d2y

dx2
=

−4 sin t − (−x/y)(−4 sin t)

(−4 sin t)2
= −y2 + x2

y3

Another method. x2 + y2 = 16 so that 2x + 2yy′ = 0 =⇒ y′ = −x/y

and 2 + 2yy′′ + 2(y′)2 = 0 =⇒ y′′ = −x2 + y2

y3

� 2-15. (e) y′ = x + 2x ln(3x) (h) y′ =
1 + 2x

x + x2
cos(x2) − 2x ln(x + x2) sin(x2)

� 2-16. (e) y′ =
1

(1 + x2)3/2
− 3x2

(1 + x2)5/2
(h) y′ = 2x cos(x2) ln(x3) +

3 sin(x2)

x

� 2-17. (e)
y′ =− 6 cos(3x) sin(3x)

y′′ =− 18 cos2(3x) + 18 sin2(3x)
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� 2-18. (b) y′ = cos x so that m = cos π
4 = 1√

2
and therefore

(y − 1√
2
) =

1√
2
(x − π

4
)

� 2-20. (d)

� 2-21.

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)

h

but f ′(x) = lim
h→0

f(x + h) − f(x)

h

therefor, f ′′(x) = lim
h→0

f(x+2h)−f(x+h)
h −

(
f(x+h)−f(x)

h

)

h2

f ′′(x) =
f(x + 2h) − 2f(x + h) + f(x)

h2

� 2-22. (b) y′ = x2−1
(x2+1)2

critical points at x = ±1

(e) local maximums at x = (2n + 1)π/2

local minimums at x = (2n + 3)π/2 where n is an integer.

� 2-23. (d) Critical points at x = ±1 and curve symmetric about origin.

� 2-26. Let x + y = � with x used for square and y used for triangle, then area of

square is As = (x/4)(x/4) = x2/16 and the area of the triangle is At =
1

2
sin

π

3
(y/3)2.

The sum of these areas can be expressed

A =
x2

16
+

√
3

36
y2

A =
x2

16
+

√
3

36
(� − x)2

Show x = 4
√

3 and y = 9 when A is a minimum.
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� 2-28. (c) If f ′(x) = x(x − 1)2(x − 3)2, then

f ′′(x) = 3x(x− 1)2(x− 3)2 + 2x(x− 1)(x− 3)3 +(x− 1)2(x− 3)3 = (x− 1)(x− 3)2(6x2 − 13x +3)

f ′(x) = 0 at x = 0, x = 1 and x = 3, these are the critical values.

At x = 0, f ′′(x) = (−1)2(−3)3 < 0 =⇒ f(x) is local maximum.

At x = 1, f ′′(1) = 0, second derivative test fails, so use the first derivative test

using the values x = 1/2, x = 1 and x = 3/2.

At x = 1/2, f ′(1/2) < 0 negative slope

At x = 1, f ′(1) = 0 zero slope

At x = 3/2, f ′(3/2) < 0 negative slope

Hence, the point where x = 1 corresponds to a point of inflection.

At x = 3, f ′′(3) = 0 second derivative test again fails, so use first derivative test

with x = 2.5, x = 3 and x = 3.5. One finds

f ′(2.5) < 0 negative slope

f ′(3) = 0 zero slope

f ′(3.5) > 0 positive slope

so that x = 3 corresponds to a local minimum.

� 2-29. (b) e (d) 1/2 (g)
ln a

ln b

� 2-30.

� 2-33. (c)

∂u

∂x
=

x
√

x2 + y2

∂u

∂y
=

y
√

x2 + y2

∂2u

∂x2
=

−x2

(x2 + y2)3/2
+

1
√

x2 + y2

∂2u

∂x ∂y
=

∂2u

∂y ∂x
=

−xy

(x2 + y2)3/2

∂2u

∂y2
=

−y2

√

x2 + y2
3/2

+
1

√

x2 + y2
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� 2-35.

(a) D eαx =αeαx

D2 eαx =α2eαx

...
...

Dn eαx =αneαx

(b) D(ax) =D(ex ln a) = ln a ax

D2(ax) =(lna)2 ax

...
...

Dn(ax) =(lna)n ax

(c) D(ln x) =
1

x

D2(ln x) =
−1

x2

D3(ln x) =
(−1)(−2)

x3

...
...

Dn(ln x) =
(−1)(−2)(−3) · · ·(−n + 1)

xn
=

(−1)n−1(n − 1)!

xn

(d) D(xn) =nxn−1

D2(xn) =n(n − 1)xn−2

D3(xn) =n(n − 1)(n − 2)xn−3

...
...

Dm(xn) =n(n − 1)(n − 2) · · ·(n − (m − 1))xn−m, m < n

or one can write Dm(xn) =
n!

(n − m)!
xn−m, m < n

(e) D(sinx) = cos x = sin(x +
π

2
)

D2(sinx) = − sinx = sin(x + 2
π

2
)

D3(sinx) = − cosx = sin(x + 3
π

2
)

...
...

Dn(sinx) = sin(x + n
π

2
)
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� 2-35.

(f) D(cosx) = − sinx =cos(x +
π

2
)

D2(cosx) = − cosx =cos(x + 2
π

2
)

D3(cosx) = sin x =cos(x + 3
π

2
)

...
...

Dn(cos x) = cos(x + n
π

2
)

(g) Express problem so that the results from parts (e) and (f) can be employed.

Use sin3 x =
3

4
sinx − 1

4
sin(3x), then

D(sin3 x) =
3

4
D(sinx) − 3

4
sin(3x +

π

2
)

D2(sin3 x) =
3

4
D2(sin x) − 32

4
sin(3x + 2

π

2
)

...
...

Dn(sin3 x) =
3

4
Dn(sin x) − 3n

4
sin(3x + n

π

2
) or

Dn(sin3 x) =
3

4
sin(x + n

π

2
)− 3n

4
sin(3x + n

π

2
)

� 2-40. v = t3 − 6t2 + 11t − t and a = 3t2 − 12t + 11

Hint: Show v =
ds

dt
= (t − 1)(t − 2)(t − 3)

� 2-42.
d

dx
|u| =

d

dx

√
u2 =

1

2
(u2)−1/2 2u

du

dx
=

u

|u|
du

dx

� 2-44.

(a) ln y = lnα + x lnβ =⇒ Y = mx + b where Y = lny, m = ln β, b = ln α

(b) ln y = lnα + β lnx =⇒ Y = βX + b where Y = ln y, X = ln x, b = lnα
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� 2-45.

Let y = y(x) = s2 =(x − x0)
2 +

(
(−c− ax)

b
− y0

)2

dy

dx
=2

[
ax2 + b2(x − x0) + a(c + by0)

]
= 0 at the point where

(a2 + b2)x − b2x0 + ac + aby0 = 0

or x = x∗ =
b2x0 − ac − aby0

a2 + b2

Show that ymin = y(x∗) = smin2 =
(c + ax0 + by0)

2

a2 + b2
and that

Smin = d =
|c + ax0 + by0|√

a2 + b2

� 2-46. Chain rule differentiation requires
dy

dx

dx

dθ
=

dy

dθ
or

dy

dx
=

dy
dθ
dx
dθ

� 2-50. Cone with maximum volume has base radius r = 2
√

2
3

R and height h = 4
3
R.

� 2-53. A square with side
√

2R.

� 2-56.

� 2-60. (a)
m

n
αm−n

� 2-65. By the law of cosines �2 = r2 + s2 − 2rs cos ωt. Differentiate this relation and

show
ds

dt
= −ωr sin ωt − ωr2 cos ωt sin ωt

s − r cosωt

From the law of cosines show s − r cos ωt =
√

�2 − r2 sin2 ωt
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Chapter 3

� 3-1. (a) 4
3
x3 + 2x2 + x + C or 1

6
(2x + 1)3 + C1

(b) − csc(t) + C

(c) − 1
2

cos2 x + C1 or 1
2

sin2 x + C2

� 3-2. (a) 1
10 sin5(2t) + sin4(2t) + 4 sin3(2t) + 8 sin2(2t) + 8 sin(2t) + C1 or 1

10 [2 + sin(2t)]5 + C2

(c) 4x
2

4 ln 2
+ C

(e) − 1
3

cos(3x + 1) + C

� 3-3. (a) 1
3

tan(3x + 4) + C (c) 1
3

sec(3x + 4) + C (e) 1
6

ln | sin(3x2)|+ C

� 3-4. (a) 1
2

sin−1(x2) + C (c) −
√

1 − x2 (e) 1
2

sinh(x2) + C

� 3-5. (a) − 1

3 sinh (3x+1)
+ C (c) − 1

3
coth(3x + 1) + C (e) 1

3

√

(3x + 1)2 − 1

� 3-6. (a) − 1
x + 5x + lnx + C (c) 2c

√
t + at + 2

3bt3/2 + C (e) 1
3b (a + bu2)

√
a + bu2

� 3-7. (a) 26
3

Area under parabola

(b) 2 Area under sine curve

(c) 1
2
BH Area of triangle

� 3-8. (a) Let u = 3x + 1 = tan θ with du = 3 dx = sec2 θ dθ

then
1

3

∫

csc θ dθ = −1

3
ln | csc θ + cot θ| = −1

3
ln

∣
∣
∣
∣
∣

√
1 + u2

u
+

1

u

∣
∣
∣
∣
∣

= −1

3
ln |1 +

√

1 + u2| + 1

3
lnu + C where u = 3x + 1

� 3-9. Two functions with the same derivative differ by some constant value.

� 3-10. Use table III with appropriate scaling.

� 3-11. (a) ln |x − 3|+ ln |x − 2| + ln |x − 1| + C

(c) tan−1 x + ln(x + 1) + ln(x2 + 1) + C

(e) x +
3

2
x2 + x3 +

1

2
x4 − 1

1 + x + x2
+ ln |x − 1| + C
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� 3-12. (a) dy = x dx

∫ y

1

dy =

∫ x

1

x dx =⇒ y − 3 =
1

2
(x2 − 1) or y =

1

2
x2 +

5

2

(c) dy = sin(3x) dx

∫ y

1

dy =
1

3

∫ x

0

sin(3x) 3dx =⇒ y − 1 =
1

3
[1− cos(3x)]

or y =
4

3
− 1

3
cos(3x)

(e) dy = sin2(3x) dx

∫ y

1

dy =
1

3

∫ x

0

sin2(3x) 3 dx =⇒ y − 1 =
1

12
[6x − sin(6x)]

or y = 1 − 1

2
x − 1

12
sin(6x)

� 3-13. (b) x − tan−1 x + C (d) x − 1

x + 1
− 2 ln(x + 1) + C (f)

1

a
lnx − 1

a
ln(x − a) + C

� 3-14. (b)
1

(b− a)(x − a)
+

1

(a − b)2
[ln(x − b)− ln(x − a)] + C

(d)
ln(x2 − b2)

2(b2 − a2)
+

ln(x − a)

a2 − b2
− a

b(b2 − a2)
tan−1

(x

b

)

+ C

(f)
−1

a2 + b2

[
1

b
tan−1

(x

b

)

+
1

a
tan−1

(x

b

)]

+ C

� 3-15. (b) 1 (d)
1

4
+

e2

4
(f) 100

√
15

� 3-16. (b) (x2−2x+2)ex+C (d)
1

2
(sin x−cos x)ex+C (f)

1

2
sec x tanx+

1

2
ln | secx+tanx|+C

� 3-17. (a)
eax

a2 + b2
(a sin bx − b cos bx)+C (c)

x

2
− x2

4
− 1

2
ln(x+1)+

x2

2
ln(x+1)+C (e) e−2

� 3-18. (a)

∫ 1

0

f(x) dx

� 3-19. A =

∫ 5

−1

[(4y − 1) − (y2 − 6)] dy, =⇒ A = 36

� 3-21. (a) Use symmetry to find

area ABH = area BCD =

∫ 4

0

(
√

y + 4 −
√

4 − y) dy =
32

3
(
√

2 − 1)

� 3-23. (d) − 1

3
(a2 − x2)3/2 + C (e) 2x − 2x lnx + x(lnx)2 + C (f)

(
x

a
− 1

a2

)

eax + C

� 3-24. (a) ln[t + 2 +
√

t2 + 4t − 3] + C (d)
1

9
tan−1 x + C (e)

1

18
[ln(x − 1) − ln(x + 1)] + C

� 3-25. (a) 2 ln(1+
√

x)+C (f) −a
√

b2 − (x + a)2+(b−a2) tan−1

[

(a + x)
√

b2 − (a + x)2

b2 − a2 − 2ax − x2

]

+C
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� 3-26. (c) 2
√

x − 2 ln(1 +
√

x) + C (f)
1

2

(√

x − x2 + (2x − 1) sin−1
√

x
)

+ C

� 3-27. (c) (x2 + 1) ex (d)
√

1 − x2

(
5

8
x − 1

4
x2

)

+
3

8
sin−1 x + C

� 3-28. Surface S =
64

3
π and volume V = 5π2

� 3-29. (b) α = 1

� 3-32. (b)arc lengths = 16

� 3-35. (i) Surface area S =
28

√
2

3
π (ii) volume V = 12π

� 3-36. (i) Surface area S =
π

27

[

(145)3/2 − (10)3/2
]

(ii) Volume V =
762

7
π

� 3-37. (a)
2

π
(b)

2

π
(c)

4

3π

� 3-38. (d) 2 (f)
1

2
ln 2

� 3-39. The area of three sides need to be calculated. Call these surface areas S1, S2

and S3. Show S = S1 + S2 + S3 = 11
√

2π + 9
√

2π + 20π

� 3-44. (a) A =

∫ 2π

0

r dθ (b) A = 2π

∫ r

0

x dx (c) A =

∫ 2π

0

∫ r

0

r drdθ

� 3-45. The figure illustrated in the problem 3-45, without the axes, is known as the

symbol the Pythagoreans use to represent their society.

(a) Divide area into four symmetric parts and show the area of one of these parts

is A1 = r2
0

(

π

6
−

√
3

8

)

and the total area is A = 4A1 = r2
0

(

2

3
π −

√
3

2

)

(b) Volume is given by V =
5

12
π r3

0

� 3-47. (a) 80 (b) 8 (c)
1

4
[ a2c2 − b2c2 − a2d2 + b2d2]

� 3-50. c = 1
2 (a + b)
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� 3-52. The function f(x) is periodic so that

f(x) = f(x + T ) = f(x + 2T ) = · · · = f(x + (m − 1)T ) = f(x + T ) = · · ·

Write

I =

∫ nT

0

=

∫ T

0

f(x) dx +

∫ 2T

T

f(x) dx + · · ·+
∫ mT

(m−1)T

f(x) dx + · · ·+
∫ T

(n−1)T

f(x) dx

or I =
∑n

m=1

∫ mT

(m−1)T
f(x) dx Let x = u + (m − 1)T with dx = du and note that when

x = (m − 1)T , then u = 0 and when x = mT , then u = T , so that

I =
n∑

m=1

∫ T

0

f(u + (m − 1)T ) du =
n∑

m=1

∫ T

0

f(u) du = n

∫ T

0

f(u) du

� 3-54.

(a) let u = e2x, du = 2e2x dx then interal has value
1

2

(u + 3)m+1

m + 1
+ C

(b) let u = ex, du = ex dx and show integral is
∫

u4 + u3

u2 + 1
du

Show
u4 + u3

u2 + 1
= −1 + u + u2 +

1 − u

1 + u2
and integral is

− u +
u2

2
+

u3

3
+ tan−1 u − 1

2
ln(1 + u2) + C

(c) let u = ex, du = ex dx with integral
1

3
(u + 1)3 + C

� 3-55.

(a) − a

2x2
− 1

x
+ C

(b) − ab

2x2
− (a + b)

x
+ lnx + C

(c) − abc

x
− (bc + ab + ac)

x
+ x + (a + b + c) lnx + C

� 3-56.

(a) − x + ln(1 + x) + x ln(1 + x) + C

(b) Hint :
x4 + 1

x − 1
= 1 + x + x2 + x3 +

2

x − 1
1

12

[
12x + 6x2 + 4x3 + 3x4 + 24 ln(x − 1)

]
+ C

(c)
(m + 2)a + b(m + 1) − c

m2 + 3m + 2
(x + c)m+1 + C

� 3-57. (a)
1

s
(b) ex (c)

1

s2
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� 3-58. Integrate term by term and show

J0(x) =1 − x2

221!1!
+

x4

242!2!
+ · · · (−1)m x2m

22mm!m!
+ · · ·

J1(x) =
x

2
− x3

231!2!
+

x5

252!3!
+ · · ·+ (−1)m−1 x2m−1

22m−1(m − 1)!m!
+ · · ·

� 3-59. In = xn ex − nIn−1, I4 = (x4 − 4x3 + 12x2 − 24x + 24) ex

� 3-60. Let u = a − x, with du = −dx, then when x = 0, u = a and when x = a, u = 0 so

that
∫ a

0

g(a − x) dx =

∫ 0

a

g(u)(−du) =

∫ a

0

g(u) du =

∫ a

0

g(x) dx

� 3-65. Write
∫ 2T

0

f(x) dx =

∫ T

0

f(x) dx +

∫ 2T

T

f(x) dx and in the second integral let

x = 2T − u with dx = −du, so that when x = T, u = T and when x = 2T, u = 0, then use

f(2T − x) = f(x) and write

∫ 2T

0

f(x) dx =

∫ T

0

f(ξ) dξ +

∫ 0

T

f(2T − u)(−du) =

∫ T

0

f(ξ) dξ +

∫ T

0

f(u) du = 2

∫ T

0

f(x) dx

Note—Definite integrals have dummy variables of integration.

� 3-66. V =

∫ h

0

A(y) dy

� 3-67.

(e)

∫ β

0

dx

(β − x)p
=

{
β1−p

1−p
if p < 1

Doesn’t exist if p ≥ 1

(f)

∫ ∞

0

dx

(β + x)p
=

{
β1−p

p−1
if p > 1

Doesn’t exist if p ≤ 1

� 3-73. Material removed is cylinder with spherical end caps of height h = r − r0

where r0 = r
√

1 − α2/4. Diameter of drill is αr implies radius of cylinder is αr/2.

V0 =volume sphere before drilling =
4

3
πr3

V1 =volume of cylinder without spherical caps = π(
αr

2
)2(2r0)

V2 =volume of 2 spherical caps = 2
(π

3
h2(3r − h)

)

V3 =volume removed by drill = V1 + V2

V4 =Volume remaining after drilling = V0 − V3 = V0 − (V1 + V2)
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Chapter 4

� 4-1. (a) 3/4 (c) 1 (e) 0

� 4-2. (a) − 1/2 (d) 0 (f) 0

� 4-3. S =
m∑

n=0

rn = 1 + r + r2 + · · ·+ rm, S =
rm+1 − 1

r − 1

(d) 4
310 − 1

2
= 118, 096

(e)
1 − (.02)100

1 − .02
= 1.02041

(f) (2 +
√

2)

(
3−

√
2

2+
√

2

)10

− 1

3−
√

2
2+

√
2
− 1

= 6.37237

� 4-4. For S3 use r =
7 − 4

√
3

2 −
√

3
and show S3 =

r

1 − r
=

1

2
(
√

3 − 1)

� 4-5. S3 = 0.83333 . . . and S4 = 0.16666 . . .

� 4-6. (b) Use ratio test and show convergence for |x| < 2

� 4-7. (ii) E(X) =
∞∑

k=1

kpk = 3

� 4-8. S2 =
∑∞

i=1

(
ri
1 + ri

2

)
r1 = a2/b r2 = 1/b

Show for a, b real and b > a2 > 1, then series converges to
a2

b − a2
+

1

b− 1

Note if S = 1 + r + r2 + · · · converges, then
dS

dr
= 1 + 2r + 3r2 + 4r3 + · · · =

∞∑

k=0

krk−1 =
d

dr
(1 − r)

−1
=

1

(1 − r)2

Consequently, one can show S4 =
a

1 − r
+

b

(1− r)2

� 4-9. (b)
∞∑

n=3

1

(n − 2)(n − 1)
=

∞∑

n=3

(
1

n − 2
− 1

n − 1

)

S =

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+

(
1

3
− 1

4

)

+ · · · which converges to S = 1.
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� 4-10. (d) un =
n

(n + 1)(n + 2)(n + 3)
=

1/2

n + 1
− 1

n + 2
+

1/2

n + 3
so that the Nth partial

sum can be written

UN =

N∑

n=1

un =
5N + N2

12(6 + 5N + N2)

Divide numerator and denominator by N2 and show lim
N→∞

UN =
1

12

� 4-11. (d) If f(x) = 1
x ln x

, then
∫ T

M
f(x) dx =

∫ T

M
1

x ln x
dx

Let u = lnx with du = 1
x dx and show

∫ T

M
f(x) dx = ln[lnx]TM = ln[lnT ] − ln[lnM ]

Show this result increases without bound as T → ∞ so the integral diverges and

series diverges.

� 4-12. Let un =
1

np
, where

∞∑

n=1

1

np
is the p-series which converges p > 1 and diverges

p ≤ 1. Now select vn = npf(n) and follow results for modification of a series.

� 4-13. (d) Since 3n2 +2n+1 > n2, then
1

3n2 + 2n + 1
<

1

n2
and we know the p-series,

with p = 2 converges.

� 4-14. (iv)
4∑

n=1

(−1)n+1 1

n4
= 0.945939 with error E <

1

54
= 0.0016

8∑

n=1

(−1)n+1 1

n4
= 0.94694 with error E| <

1

94
= 0.000152416

� 4-15. (A) converges slower than (B)

� 4-17. xn = xn−1 −
x2

n − 3xn + 1

2xn − 3
x0 = 2, . . . , x4 = 2.61803

Exact roots are x =
3 ±

√
5

2
Convergence to desired root depends upon position

of initial guess.

� 4-18. Converges |x| < 1 and diverges for |x| > 1

� 4-20. Assume
∞∑

n=1

un converges by ratio test so that lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= p < 1. Let vn = 1

un

and examine
∞∑

n=1

vn using the ratio test to show series diverges.
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� 4-21. This is a telescoping series with

Sn =
n−1∑

k=0

(Uk+1 − Uk) = (U1 − U0) + (U2 − U1) + (U3 − U2) + · · ·+ (Un − Un−1)

so that Sn = Un − U0 =
1

3
n(n + 1)(n + 2)

Note that this result can be generalized. If one is given a Uk and calculates the

difference ∆Uk = Uk+1 − Uk, then one can write
N∑

k=1

∆Uk =
N∑

k=1

(Uk+1 − Uk) = UN+1 − U1

What would
m∑

k=�

∆Uk produce for the answer?

� 4-22.

x − 1 = − ln(y) = −(y − 1) +
1

2
(y − 1)2 − 1

3
(y − 1)3 +

1

4
(y − 1)4 − 1

5
(y − 1)5 + · · ·

Error = E = E(y) = − ln(y) −
[

−(y − 1) +
1

2
(y − 1)2 − 1

3
(y − 1)3 +

1

4
(y − 1)4

]

Over the interval 1 ≤ y ≤ 2 the error curve is as illustrated

� 4-23. (b) (c) (e) all converge

� 4-24. (a) limn→∞
n

√
un = limn→∞

1
ln n

= 0 hence converges.

� 4-25. (c) sin(π/3) =
√

3
2 gives geometric series with sum 3 + 2

√
3

� 4-26. Use the nth term test → 0 and note (e) is a form of the harmonic series.

� 4-27. (f) divergent

� 4-28. (f)
nn

n!
=

n · n · n · · ·n
n(n − 1)(n − 2) · 1 > n divergent

� 4-29. (f)
√

n < n and
√

n
n2+1

< n
n2+1

. The series
∞∑

n=1

√
n

n2 + 1
can be compared with the

p-series
∞∑

n=1

1

np
to show absolute convergence.
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� 4-30. Use ratio test

� 4-33. Write (a+ b)r = [a(1+ b/a)]r = ar(1+ b/a)r and let x = b/a and then examine the

series f(x) = (1 + x)r. Here

f ′(x) =r(1 + x)r−1

f ′′(x) =r(r − 1)(1 + x)r−2

...
...

f (n)(x) =r(r − 1)(r − 2) · · ·(r − (n − 1)(1 + x)r−n

This series has the power series expansion

f(x) = (1 + x)r = 1 +

(
r

1

)

x +

(
r

2

)

x2 +

(
r

3

)

x3 + · + Rn

Using the Lagrange form of the remainder

Rn =
xn

n!
f (n)(θx) =

(
r

n

)

xn(1 + θx)r−n

where 0 < θ < 1. For 0 ≤ x < 1 and n > r, then one can show (1 + θx)r−n < 1 and
(

r
n

)
xn → 0 as n → ∞ The Lagrange form for the remainder doesn’t aid in the analysis

of the region −1 < x ≤ 0 and so one can use the Cauchy form of the remainder to

analyze the remainder in this region.

The Cauchy form of the remainder is

Rn =
r(r − 1)(r − 2) · · ·(r − n + 1)

(n − 1)!

(1 − θ)n−1xn

(
1 + θx)n−m, 0 < θ < 1

If |x| < 1, then 1−θx
1+θx

< 1 so that

(1− θ)n−1

(1 + θx)n−1 · 1
1+θx

1−m
<

1

(1 + θx)1−m

For −1 < x ≤ 0 the term 1
(1+θx)1−m

= K is some constant independent of the index n

and the term

r(r − 1) · · ·(r − n + 1)

(n − 1)!
= r

[
(r − 1)!

(n − 1)!(r − n)!

]

= r

(
r − 1

n − 1

)

Therefore,

|Rn| < K|r|
∣
∣
∣
∣

(
r − 1

n − 1

)∣
∣
∣
∣
|x|n → 0 as n → ∞

So the binomial series converges as |Rn| → 0 for |x| < 1
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� 4-36. y1 = α0 + 1
α1+

1

x

= α0 + x
α1x+1 Here Q1 = α1x + 1 and

dy1

dx
=

(α1x + 1)(1)− x(α1)

(α1x + 1)2
=

1

[Q1(x)]2

� 4-41. For n, m integers and n �= m

(sinnx, sin mx) =

∫ π

0

sin nx sin mx dx =
sin[(m − n)x]

2(m − n)
− sin[(m + n)x]

2(m + n)

∣
∣
∣
∣

π

0

= 0, m �= n

‖ sin nx ‖2= (sinnx, sinnx) =

∫ π

0

sin2(nx) dx =
x

2
− sin 2nx

4n

∣
∣
∣
∣

π

0

=
π

2

or ‖ sinnx ‖=
√

π

2
. The set of functions

{√

2

π
sin nx

}

is therefore an orthonormal set

with norm-squared equal to unity.

� 4-42. (c)

(1, cos
nπx

L
) =

∫ L

−L

cos
nπx

L
dx = 0

(1, sin
nπx

L
) =

∫ L

−L

sin
nπx

L
dx = 0

(cos
nπx

L
, cos

mπx

L
) =

∫ L

−L

cos
nπx

L
sin

mπx

L
dx = 0, m �= n

(cos
nπx

L
, cos

mπx

L
) =

∫ L

−L

cos
nπx

L
cos

mπx

L
dx = 0

(sin
nπx

L
, sin

mπx

L
) =

∫ L

−L

sin
nπx

L
sin

mπx

L
dx = 0 m �= n

(1, 1) = ‖ 1 ‖2= 2L

(sin
nπx

L
, sin

nπx

L
) = ‖ sin

nπx

L
‖2= L

(cos
nπx

L
, cos

nπx

L
) = ‖ cos

nπx

L
‖2= L

� 4-43. (e) (i) If f(x) is even, bn = 0 and a0 =
1

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
nπx

L
dx

(ii) If f(x) is odd, a0 = an = 0 and bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx
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� 4-44. Roots are (2, 3) and (−1, 1)

� 4-48. (a) C =
C0e

−kτ

1 − e−kτ
(c) kτ = − ln









Cs

C0

− 1

Cs

C0









� 4-53. y =
√

sin x + y =⇒ y2 = sinx + y Differentiate this relation to obtain given

answer.

� 4-55. If ex cos x = a0 + a1x + a2x
2 + a3x

3 + · · ·, then its derivative is

ex cos x[cosx − x sinx] = a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · ·

Show

cosx − x sin x = 1 −
3

2
x2 +

5

24
x4

−
7

720
x6 +

1

4480
x8 + · · ·

and substitute the top line equation and third line equation into the second line

equation to obtain

(a0 + a1x + a2x
2 + · · ·)(1 −

3

2
x2 +

5

24
x4 + · · ·) = a1 + 2a2x + 3a3x

2 + · · ·

Expanding the left-hand side of this equation gives

a0 + a1x + (a2 −
3

2
a0)x

2 + (a3 −
3

2
a1)x

3 + · · · = a1 + 2a2x + 3a3x
2 + · · ·

Equate like powers of x to find a relation between the coefficients. Use top line

equation to show at x = 0 that a0 = 1 and from equating like powers of x one finds

a1 = 1, a2 = 1/2, a3 = −1/3, a4 = −11/24, etc
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Chapter 5

� 5-1. V =
4

3
πr3,

dV

dt
= 4πr2 dr

dt
, α = 4πr2

0

dr

dt
=⇒ dr

dt
=

α

4πr2
0

� 5-2. pv1.4 = c,
dp

dt
v1.4 + p(1.4)v0.4dv

dt
= 0 or

dp

dt
= −1.4

p

v

dv

dt

(a) dp
dt

= −1.4 p
v
α

(b) dv
dt

= β
1.4

v
p

� 5-3.

� + s

10
=

s

5.5
, if d�

dt
= 4 ft/s, then show

ds

dt
=

22

4.5
ft/s.

� 5-4. (a) Let S1 = x − f > 0 and S2 = y − f > 0, then
1

x − f + f
+

1

y − f + f
=

1

f
or

1

S1 + f
+

1

S2 + f
=

1

f
Simplify this expression and show f2 = S1S2

(b) Differentiate the lens law and show
dy

dt
= − y2

x2
r0

� 5-5. Area of equilateral triangle with side x is A =

√
3

8
x2 so that

dA

dt
=

2
√

3

8
x

dx

dt
Now substitute x = x0 and dx

dt
= r0

� 5-6. p = p0e
−α0h

(a) [p0] = lbs/ft2, [α0] = 1/ft

(b)
dh

dt
= 10 ft/s

dp

dt
= p0e

−α0h(−α0
dh

dt
) Substitute for dh

dt
and find the pressure

decreases with height.

� 5-7. y−y0 = α(x−x0)
2 has the derivative

dy

dx
= 2α(x−x0). When x = ξ, the slope of the

tangent is m = 2α(ξ−x0) and the equation of the tangent line is y−η = 2α(ξ−x0)(x−ξ).

Here tan θ = m = 2α(ξ−x0) and if dξ
dt

= 1/2 cm/s, then sec2 θ
dθ

dt
= 2α

dξ

dt
or

dθ

dt
=

2α

1 + tan2 θ

dξ

dt

or
dθ

dt
=

2α

1 + 4α2(ξ − x0)2
1

2

� 5-8.
dT

dt
=

r0

c0
where c0 = V0/T0.

� 5-9.
dP

dt
= c0r0 where c0 = P0/T0.
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� 5-10.

h =200− 16t2 ft

v =
dh

dt
= − 32 t ft/s

a =
dv

dt
=

d2h

dt2
= − 32 ft/s2

When h = 0, then t =
√

210/4 and v = −80
√

2 ft/s

� 5-11.

(a) V =
4

3
πr3−pi

3
(2r−h)2(r+h) =

π

3
(3rh2−h3) and

dV

dt
=

π

3
(3r 2h

dh

dt
−3h2 dh

dt
), ris a constant

(b)
dh

dt
= 30/(π 420)

� 5-12. (h − r)2 + R2 = r2 Differentiate this relation and show

R
dR

dt
=− (h − r)

dh

dt
r < h < 2r

R
dR

dt
=(r − h)

dh

dt
0 < h < r

� 5-13. (a) 1125/16 ft (b) 50
√

3/2 (c) 50
√

3/16 (d) 625
√

3/8 (e) parabola

� 5-14.
dv

dx
=

−K√
1 − 2x

� 5-15. (a) My = 60 Mx = 44 x̄ =
My

A
=

60

20
= 3, ȳ =

Mx

A
=

44

20
=

11

5

� 5-16. (b) x̄ =
My

A
=

3

4
x0 ȳ =

Mx

A
=

3

10
x2

0

� 5-17. (b) x̄ =
21

5
ȳ = 3

� 5-18. (c) x̄ =
b

4
(
3h + 16

h + 6
)

� 5-19. ȳ = 4/3

� 5-20. (a) T −Tenv = T0e
−kt, T0 constant (b) T = 100e−kt (c) k = − 1

20
ln(4/5) (d)

∆t = 20 ln(9/7)/ln(5/4)

� 5-21. N = N0e
t

5
ln 3
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� 5-22.

(a) dV = 2πxh(x) dx V =

∫ x1

x0

2πxh(x) dx

(b) dA = h(x) dx A =

∫ x1

x0

h(x) dx

(c) dM = x dA = xh(x) dx M =

∫ x1

x0

xh(x) dx x̄ =
1

A

∫ x1

x0

xh(x) dx

(d) (Area)(distance traveled by centroid)=A · 2πx̄=(volume)=
∫ x1

x0

2πxh(x) dx

A · 2π 1
A

∫ x1

x0

xh(x) dx = 2π
∫ x1

x0

xh(x) dx reduces to an identity.

� 5-23. (a) ȳ =
1

3
r x̄ =

2

3
h A =

1

2
hr Volume=V=2πȳA =

π

3
r2h

(b) ȳ =
4

3π
r, A =

π

2
r2 Volume=2πȳA =

4

3
πr3

� 5-24. (e)
dy

y
= dx,

∫
dy

y
=

∫

dx, lny = x + C or y = y0e
x, y0 = eC

(f)
∫

d2y

dx2
dx =

∫
dy

dx
dx gives

dy

dx
= y + C

Now separate the variables and write

dy

y + C
= dx with

∫
dy

y + C
=

∫

dx giving ln(y + C) = x + C2

which can also be expressed in the form y+C = y0e
x where y0 = eC2 is a new constant.

� 5-25. (b)
∫

(1 + y2) dy =

∫

(1 + x2) dx gives y +
y3

3
= x +

x3

3
+ C

� 5-26. Assume solution y = eγt to the homogeneous equation y′′ +ω2y = 0 and show

γ = i ω and γ = −i ω are characteristic roots which lead to the real fundamental set

{cos ωt, sinωt} and complementary solution yc = c1 cos ωt + c2 sin ωt.

Examine the right-hand side and its derivative to find basic terms needed for

assumed solution. The terms cos λt and sin λt (multiplied by some constants) are the

only basic terms and so one can assume a particular solution yp = A cos λt + B sin λt

where A and B are constants to be determined. Substitute this solution and its

derivatives into the nonhomogeneous equation and equate coefficients of like terms

and show A, B must be selected to satisfy

−Aλ2 + ω2A =1

−Bλ2 + ω2B =0
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giving B = 0 and A = 1
ω2−λ2 . This gives the particular solution yp = 1

ω2−λ2 cos λt.

The general solution is therefore

y = yc + yp = c1 cosωt + c2 sin ωt +
1

ω2 − λ2
cosλt

Resonance occurs as λ → ω.

� 5-27.

Use similar triangles and write
h

b/2
=

h − y

x
or x =

h − y

h

b

2

This gives element of volume dV = 4x2 dy = 4

(
h − y

h

)2
b2

4
dy

Sum these elements from 0 to h and show volume of pyramid is V = 1
3
b2h.

� 5-28.

The box has volume V = x(w − 2x)(� − 2x) = 4x3 − 2(w + �)x2 + wlx

Here
dV

dx
= 12x2 − 4(w + �)x + w� = 12x2 − 60x + 48 = (2x − 8)(6x− 6)

The second derivative is
d2V

dx2
= 24x − 60. When x = 1, d2V

dx2 < 0 hence maximum box

achieved. If x = 4, solution is meaningless as the volume becomes negative.

� 5-29.

(a) Area =
1

6
Mx =

1

15
My =

1

12

(b) Area =
m3

6
Mx =

m5

15
My =

m4

12

� 5-30. F = ρ� sin θ
ω2

2

� 5-32. (d) y′′+3y′
2y = 0 assume solution y = eγt get characteristic equation (γ+2)(γ+

1) = 0 with characteristic roots γ = −2 and γ = −1. This gives the fundamental set

{e−2x, e−x} and general solution y = c1e
−2x + c2e

−x, with c1, c2 arbitray constants.

� 5-33. (b) L
di

dt
+

q

C
= 0 or L

di

dq

dq

dt
+

q

C
= 0 =⇒ i

di

dq
= − 1

LC
q Separate the variables

and write i di = − 1
LC

q dq and then integrate to obtain

i2

2
= − 1

LC

q2

2
+

K

2

Here K/2 is selected as the constant of integration to help simplify the algebra. If

i = 0, q = q0 at t = 0, then K = 1
LC q2

0 . This gives

dq

dt
=

1√
LC

√

q0
0 − q2 =⇒ dq

√

q2
0 − q2

=
1√
LC

dt
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Integrate this equation and show

q = q0 cos

(
t√
LC

)

and i =
dq

dt
= − q0√

LC
sin

(
t√
LC

)

� 5-35. Hypothesis, y1 = y1(x) satisfies the given differential equation so that y′′ +

P (x)y′ + Q(x)y = 0. If y2 = uy1 = u(x)y1(x), then by differentiation

y′
2 =uy′

1 + u′y1

y′′
2 =uy′′

1 + 2u′y′
1 + u′′y1

We desire to select u = u(x) such that y2 = y2(x) is also a function which satisfies the

differential equation. If y′′
2 + P (x)y′

2 + Q(x)y2 = 0, the u = u(x) must be selected such

that

uy′′
1 + 2u′y′

1 + P (x)[uy′
1 + u′y1] + Q(x)[uy1] = 0

Rearrange terms and show

y′′
2 + P (x)y′

2 + Q(x)y2 = u [y′′
1 + P (x)y′

1 + Q(x)y1]
︸ ︷︷ ︸

zero by hypothesis

+u′[2y′
1 + P (x)y1 + u′′y1 = 0

Therefore u = u(x) must be selected to satisfy

u′[2y′
1 + P (x)y1] + u′′y1 = 0

Make the substitution u′ = v and u′′ = dv
dx and show

v =
1

y2
1

e−
∫

P (x) dx

then another integration gives u.

� 5-36. (e) Integrate with respect to y and show

∂u

∂y
= xy +

y2

2
+ f(x), f(x) arbitrary function

Integrate again with respect to y holding x constant to obtain

u =
xy2

2
+

y3

6
+ yf(x) + g(x) where g(x) is another arbitrary function

(f) Integrate with respect to x and show

∂u

∂x
+ u = x + xy + f(y) f(y) arbitrary function
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Now multiply by ex and show
∂u

∂x
ex + uex =

∂

∂x
(uex) = xex + xyex + f(y)ex

Integrate with respect to x and show

uex = ex(x − 1) + yex(x − 1) + f(y)ex + g(y), g(y) arbitrary

� 5-37. (a) If ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

, then differentiate the first equation with respect

to x and differentiate the second equation with respect to y and show

∂2u

∂x2
=

∂2v

∂y ∂x
and

∂2u

∂y2
= − ∂2v

∂x ∂y

then by addition of these equations one obtains
∂2u

∂x2
+

∂2u

∂y2
= 0.

� 5-38.

Area= A = (2x)(2y) = 4xy = 4x
√

r2 − x2 since x2 + y2 = r2

dA

dx
=

−4x2

√
r2 − x2

+ 4
√

r2 − x2

Show the derivative is zero when x = r/
√

2 and y = r/
√

2 and a

square is the maximum inscribed rectangle. To show it is a maxi-

mum examine dA
dx

for x < r/
√

2 and dA
dx

for x > r/
√

2

� 5-39. y = ex for 0 ≤ x ≤ 1 use ds2 = dx2 + dy2 and write ds =

√

1 +
(

dy
dx

)2

dx so

that s =

∫ 1

0

√

1 + e2x dx To evaluate this integral make the substitution u = ex with

du = ex dx and show s =

∫ e

1

√

1 + u2
du

u
Make another substitution w2 = 1 + u2 with

2w dw = 2u du and show

s =

∫ √
1+e2

√
2

w · w dw√
w2 − 1

1√
w2 − 1

s =

∫
√

1+e2

√
2

w2 − 1 + 1

w2 − 1
dw

s =

∫
√

1+e2

√
2

[

dw − dw

1 −w2

]

= w]
√

1+e2

√
2

− tanh−1w
]
√

1+e2

√
2

s =
√

1 + e2 −
√

2 + tanh−1
√

2 − tanh−1(
√

1 + e2)

� 5-40. The side area is As = 2πrh and the ends (top and bottom) have area Ae = 2πr2

where πr2h = πV0 is to be satisfied. The cost of construction is

C = c0 (2πrh) + 3c0

(
2πr2

)

Substitute into this equation h = V0

r2 to express C = C(r) as a function of r. Show
dC

dr
= 0 when r = 3

√
V 0/6 and h = 62/3 3

√
V 0. Show curve for C = C(r) is concave up at

this point and hence a minimum is achieved.
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� 5-41. (a) ∂u
∂x (b) ∂u

∂y

� 5-43. V = AH so that if dV
dt

= kA and A is a constant, then dV
dt

= Adh
dt

= kA which

implies
dh

dt
= k is a constant. Here k is the proportionality constant.

� 5-44. I = x − 4

3
tan x +

1

3
sec2 x tanx + C

� 5-45. (b) I = 5
3

tanx + 1
3

sec2 x tanx + C

� 5-46. For n = 50

f(x)
50∑

i=1

∫ b

a

f(x) dx

x 2 2

x2 2.6672 8/3

x3 4.0016 4

sin x 1.99934 2

cos x -1.99934 2

� 5-48. Γ(x) =

∫ ∞

0

e−ttx−1 dx, Integrate by parts with U = tx−1 and dV = e−t dt to

obtain Γ(x) = (x − 1)Γ(x− 1) Now replace x by x + 1 to obtain Γ(x + 1) = xΓ(x)

Γ(1) =

∫ ∞

0

e−t dt = 1

Γ(2) =1Γ(1) = 1

Γ(3) =2Γ(2) = 2 · 1 = 2!

Γ(4) =3Γ(3) = 3 · 2! = 3!

...
...

Γ(n + 1) =nΓ(n) = n · (n − 1)! = n!

� 5-49. (a) s1(t) = s2(t) when 2t2 + t = 11t − 3t2 or t = 0 and t = 2.

ds1

dt
= v1 = 4t + 1

ds2

dt
= v2 = 11 − 6t

At t = 0, v1 = 1 and v2 = 11. At t = 2, v1 = 9 and v2 = −1.

(b) v1 = v2 when t = 1 at positions s1(1) = 3 and s2(1) = 8.

(c) v1 = ds1

dt
> 0 steadily increases, while v2 = ds2

dt
> 0 for t < 11/6, s2 increases and

ds2

dt
< 0 for t > 11/6, then s2 decreases.

Solutions Chapter 5



551

� 5-50. (a)
∂f

∂x
= 2x − 2, and

∂f

∂x
= 0 when x = 1.

∂f

∂y
= 2y − 4 and

∂f

∂y
= 0 when y = 2. f(1, 2) = −25 is a minimum value, since for

all (x, y) is a neighborhood of (1, 2) we have f(x, y) > f(1, 2).

� 5-51.

m = slope =
−y0

x1 − x0
and equation of line is

y − y0 =
(−y0)

(x1 − x0)
(x − x0), when x = 0, y1 = y0 + x0y0

x1−x0

.

Therefore

�2 = x2
1 + y2

1 = x2
1 +

(

y0 +
x0y0

x1 − x0

)2

, x0, y0 fixed

Show ∂�
∂x1

= 0, when x1 = x0 + x
1/3
0 y

2/3
0 This is the value of x1 which will produce the

shortest line.

� 5-52. x = 3, y = 4 and x = 9, y = 12
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Index

A

abscissa 6

absolute maximum 117

absolute value function 11

acceleration of gravity 369

addition 325

addition of series 326

adiabatic process 425

algebraic function 20

algebraic operations 325

alternating series test 293

amplitude 403

amplitude versus frequency 416

analysis of derivative 106

angle of intersection 104, 105

angle of intersection for lines 40

arc length 238

Archimedes 178

arctangent function 338

area between curves 220

area polar coordinates 240, 256

Area under a curve 215

arithmetic series 176

asymptotic lines 55, 68

axis of symmetry 59, 380

B

belongs to 2

Bernoulli numbers 314, 328

Bessel functions 309

bimolecular reaction 397

binomial coefficients 356

binomial series 356

binomial theorem 92

Bonnet’s second mean value theorem 245

bounded increasing sequence 300

bounded sequence 324

bounded set 2

bounds for sequence 275

Boyle’s law 365, 424

bracketing terms 295

C

capacitance 419

cartesian coordinates 5

Cauchy convergence 278, 287

Cauchy form for the remainder 313

Cauchy product 326

Cauchy’s mean-value theorem 111

center of gravity 374

center of mass 374

centroid 375, 380

centroid of area 377

centroid of curve 384

centroid of composite shapes 383

chain rule differentiation 99

change of variables 220

characteristic equation 407

characteristic roots 407, 412

charge 419

Charles’s law 424

chemical kinetics 395

chemical reaction 395

circle 18, 59

circular functions 142

circular neighborhood 275

circumference of circle 239

closed interval 3

comparison test 296, 298

complementary error function 237

complementary solution 414

composite function 98, 315

concavity 118

conditional convergence 325

conic sections 57

conic sections polar coordinates 70

conjugate hyperbola 69

conservation of energy 374

constant of integration 181

contained in 3

continued fraction 332

continuity 116

continuous function 54, 88

convergence of a sequence 272

convergence of series 283

convergent continued fraction 336

coordinate systems 5

cosine function 24

critical damping 414

current 419

curves 16

cycles per second 403

cycloid 134

cylindrical coordinates 256

Index
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D

d’Alembert ratio test 302

damped oscillations 413

damping force 405

de Moivre’s theorem 149, 168, 190

decreasing functions 12

definite integrals 213

derivative 87

derivative notation 90

derivative of a product 95

derivative of a quotient 97

derivative of the logarithm 111

derivative of triple product 96

derivatives of inverse hyperbolic functions 149

derivatives of trigonometric functions 131

determinants and parabola 62

difference between sets 3

differential equations 399

differentials 101

differentiation of composite function 98

differentiation of implicit functions 102

differentiation of integrals 247

differentiation operators 90

differentiation rules 91

Dirac delta function 174

direction of integration 219

directrix 59

discontinuous function 54

disjoint sets 3

distance between points 8

distance from point to line 171

divergence of a sequence 273

divergence of series 283

domain of definition 33

double integrals 249

dummy summation index 282

dummy variable of integration 184

E

elastic potential energy 403

electrical circuits 418

electromotive force 419

element of volume 226, 249

ellipse 63

empty set 1

energy 372

epsilon-delta definition of limit 46

equality of sets 3

equation of line 36

equation of state 425

equations for line 36

equivalence 5

error function 237, 310

escape velocity 369

estimation of error 291, 294, 298

Euler numbers 328

Euler-Mascheroni constant 310

Euler’s formula 147

Euler’s identity 409

evaluation of continued fraction 334

even and odd functions 358

even function of x 26

existence of the limit 278

exponential function 21, 113

exterior angle 40

extrema 119

extreme value 162

extremum 119

F

finite oscillatory 277, 283

finite oscillatory sequence 277

finite sum 282

first derivative test 120

first law of thermodynamics 424

first mean value theorem for integrals 245

first moment 374

focal parameter 59

focus 59

Fourier cosine transform 235

Fourier exponential transform 235

Fourier series 339

Fourier sine transform 235

frequency of motion 403

full Fourier interval 345

function 271

function changes sign 108

functions 8, 20

functions defined by products 330

functions defined by series 330

functions of two variables 159

fundamental theorem of integral calculus 217

G

Gamma function 237

gas pressure 394

Gay-Lussac law 424

general equation of line 38

general equation of second degree 71

generalized mean value theorem for integrals 245

generalized mean-value theorem 111

Index



554

generalized second mean value theorem 245

generalized triangle inequality 300

geometric interpretations 273

geometric series 177, 287, 350, 357

graph compression 29

graph expansion 29

graph scaling 29

graphic compression 29

graphs 8

graphs of trigonometric functions 24

H

half-life 427

harmonic series 283

harmonic series of order p 291

Heaviside 174

higher derivatives 90

higher order moments 385

higher partial derivatives 159

Hooke’s law 401

horizontal inflection point 118

horizontal line test 31

hyperbola 66

hyperbolic functions 25, 142, 149

hyperbolic identities 145

hypergeometric function 311

hypergeometric series 318

I

implicit differentiation 106, 162

improper integrals 234

increasing functions 12

indefinite integral 180

indeterminate forms 43, 322

inductance 419

infinite oscillatory 283

infinite series 281

infinitesimals 41

inner product 339

integral notation 182

integral sign 181

integral test 288

integral used to define functions 236, 248

integration 179

integration by parts 209, 232

integration of derivatives 183

integration of polynomials 183

intercept form for line 38

intercepts 38

intermediate value property 54

intersecting lines 40, 104

intersection 3

intersection of circles 105

intersection of two curves 105

interval neighborhood 275

interval notation 3

interval of convergence 305

inverse functions 31, 128

inverse hyperbolic functions 153

inverse of differentiation 179

inverse operator 31

inverse trigonometric functions 34, 140

isothermal curves 425

iterative scheme 334

J

jump discontinuity 43, 89, 107

K

kinetic energy 372

Kirchoff’s laws 420

Kronecker delta 340

L

L´Hôpital’s rule 138, 321

Lagrange form of the remainder 313

Laplace transform 235

latus rectum 59, 67

law of exponents 145

law of mass action 396

left-hand limits 40

left-handed derivative 89

Leibnitz 85

Leibnitz differentiation rule 168

Leibnitz formula 247

Leibnitz rule 248

length of curve 238

limit 46, 272

limit of a sequence 272

limit of function 42

limit point of sequence 277

limit theorem 50

limiting value 43

limits 40, 46, 304

linear dependence 13

linear homogeneous differential equation 410

linear independence 13

linear spring 403

lines 36

liquid pressure 393

local maximum 107, 117, 161

Index
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local minimum 107, 117, 161

logarithm base e 23

logarithmic differentiation 127

logarithmic function 21, 111

log-log paper 171

lower bound 2, 275

M

Maclaurin Series 311, 315

mapping 271

maxima 107, 116, 161

mean value theorem for integrals 245, 289

mean value theorem 108, 245

mechanical resonance 412

method of undetermined coefficients 414

minima 107, 116, 161

mirror image 33

modification of series 324

moment of force 374

moment of inertia of solid 392

moment of inertial of area 390

moment of inertia of composite shapes 393

moments of inertia 385

momentum 367

monotone decreasing 107, 245, 277

monotone increasing 107, 245, 277

multiple-valued functions 14

multiplication 325

N

natural logarithm 23

natural logarithm function 236

necessary condition for convergence 286

negative slope 37

neighborhoods 275

Newton 85

Newton root finding 353

Newton’s law of gravitation 368

Newton’s laws 366

nonconvergence 277

nonrectangular regions 252

not in 2

notation for limits 40, 42

notations for derivatives 90

nth term test 286

n-tuples 2

null sequence 277

number pairs 5

O

odd function of x 26

one-to-one correspondence 271

one-to-one function 31, 33

open interval 3

operator 90

operator box 90, 180

order of reaction 396

ordered pairs 33, 55

ordinate 6

orientation of the surface 252

orthogonal intersection 40

orthogonal intersection 104

orthogonal lines 105

orthogonal sequence 340

orthonormal 340

oscillating sequence 277

overdamping 413

P

parabola 60

parallel circuit 423

parallelepiped volume elements 252

parametric equations 129

parametric equation for line 38

parametric representation 17, 134

partial denominators 333

partial derivatives 158, 160

partial fractions 195, 284

partial numerators 333

partial sums 282

particular solution 414

period of oscillation 403

periodic motion 403

perpendicular distance 39

perpendicular lines 39

phase shift 403

piecewise continuous 345

piecewise continuous functions 11

piston 174

plane curves 14

plotting programs 14

point of inflection 118

point-slope formula 37, 88

polar coordinates 5

polar coordinates 240, 255

polar form for line 39

polar graph 14

polynomial function 20, 95

positive monotonic 245

positive slope 37

Index
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potential energy 373

power rule 100

power rule for differentiation 99

power series 305

pressure 393

pressure-volume diagram 425

principal branches 35

product rule 95

products of sines and cosines 193

Proof of Mean Value Theorems 246

proper subsets 3

properties of definite integrals 218

properties of integrals 181

properties of limits 50

p-series 291

Pythagorean identities 203

Pythagorean theorem 8

Q

quadrants 6

quotient rule 97

R

radioactive decay 426

radius of convergence 305

radius of Earth 369

range of function 33

rate of reaction 395

ratio comparison test 297

ratio test 302

rational function 20

ray from origin 7

rectangular coordinates 6

rectangular graph 14

reductio ad absurdum 276

reduction formula 211

reflection 29

refraction 123

regular continued fractions 336

related rates 363

relative maximum 107, 117, 161

relative minimum 107, 117, 161

remainder term 313, 319

Remainder Term for Taylor Series 319

representation of functions 337

resistance 419

resonance 412

resonance frequency 416

restoring force 403

reverse reaction rate 395

reversion of series 354

Riemann sum 215

right circular cone 172

right-hand limits 40

right-handed derivative 89

Rolle’s theorem 107, 246

rotation of axes 30

rules for differentiation 91

S

scale factors 29

scaling for integration 183

scaling of axes 28

Schlömilch and Roche remainder term” 320

secant line 85

second derivative test 120

second derivatives 90

second law of thermodynamics 424

second moments 385

sectionally continuous 43

semi-convergent series 325

semi-log paper 171

sequence of partial sums 282

sequence of real numbers 271

sequences and functions 274

series 281, 325

series circuit 421

set complement 4

set operations 3

set theory 1

sets 1

shearing modulus 418

shift of index 282

shifting of axes 28

shorthand representation 282

signed areas 220

simple harmonic motion 136, 403

simple pendulum 418

sine function 24

sine integral function 310

single-valued function 14, 31

slicing method 231

slope 37, 85

slope changes 120

slope condition for orthogonality 104

slope of line 36

slope-intercept form for line 38

slowly converging series 301

slowly diverging series 301

smooth curve 107

smooth function 116

Snell’s law 122

solids of revolution 225

Index
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special functions 309

special limit 304

special sums 176

special trigonometric integrals 194

spherical coordinates 257

spring-mass system 401

squeeze theorem 53, 275

Stolz -Cesáro theorem 279

subscript notation 160

subsequence 277

subsets 3

subtraction 325

subtraction of series 326

summation notation 175

summation of forces 401

sums and differences of squares 202

surface area 242

surface of revolution 242

symmetric functions 26

symmetry 26, 31, 380

T

table of centroids 382

table of derivatives 156

table of differentials 157

table of integrals 186, 208

table of moments of inertia 390

tangent function 24

tangent line 86

Taylor series 311, 315, 318

Taylor series two variables 315

telescoping series 284, 351

terminology for sequences 277

thermodynamics 424

torque 374

torsional vibrations 417

total derivative 160

total differential 159

transcendental function 21

transformation equations 28

translation of axes 28

transverse axis 67

triangular numbers 284

trigonometric functions 24, 129

trigonometric substitutions 189

truncation of series 286

two point equations of line 36

two-point formula 37

U

union 3

units of measurement 367

universal set 1

upper bound 2, 275

using table of integrals 258

V

Venn diagram 4

vertex 59

voltage drop 419

volume of sphere 172

volume under a surface 253

W

weight function 340

weight of an object 369

work 371

work done 403

Z

zero slope 37

zeroth law of thermodynamics 424

Index
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