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CHAPTER 1

Preliminaries

We discuss in this Chapter some of the pertinent aspects of topology and measure theory
that are needed in the course of the rest of the book. We treat this material as background, and
well prepared students may wish to skip either of both topics.

1.1. Elementary Topology

In applied mathematics, we are often faced with analyzing mathematical structures as they
might relate to real-world phenomena. In applying mathematics, real phenomena or objects are
conceptualized as abstract mathematical objects. Collections of such objects are called sets.
The objects in a set of interest may also be related to each other; that is, there is some structure
on the set. We call such structured sets spaces.

EXAMPLES. (1) A vector space (algebraic structure).

(2) The set of integers Z (number theoretical structure or arithmetic structure).

(3) The set of real numbers R or the set of complex numbers C (algebraic and topological
structure).

We start the discussion of spaces by putting forward sets of “points” on which we can talk about
the notions of convergence or limits and associated continuity of functions.

A simple example is a set X with a notion of distance between any two points of X. A
sequence {z,}7°; C X converges to z € X if the distance from x,, to = tends to 0 as n increases.
This definition relies on the following formal concept.

DEFINITION. A metric or distance function on a set is a function d : X x X — R satisfying:
(1) (positivity) for any x,y € X, d(z,y) > 0, and d(z,y) = 0 if and only if x = y;
(2) (symmetry) for any =,y € X, d(z,y) = d(y, z);
(3) (triangle inequality) for any x,y,z € X, d(z,y) < d(z, z) + d(z,y).
A metric space (X,d) is a set X together with an associated metric d: X x X — R.

EXAMPLE. (Rd, | - |) is a metric space, where for z,y € R?, the distance from z to y is

d 1/2
o-ul={ S w-wrf
i=1
It turns out that the notion of distance or metric is sometimes stronger than what actu-

ally appears in practice. The more fundamental concept upon which much of the mathematics
developed here rests, is that of limits. That is, there are important spaces arising in applied
mathematics that have well defined notions of limits, but these limiting processes are not com-
patible with any metric. We shall see such examples later; let it suffice for now to motivate a
weaker definition of limits.
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A sequence of points {x,,}5° ; can be thought of as converging to x if every “neighborhood” of
x contains all but finitely many of the x,,, where a neighborhood is a subset of points containing
x that we think of as “close” to z. Such a structure is called a topology. It is formalized as
follows.

DEFINITION. A topological space (X,7T) is a nonempty set X of points with a family 7 of
subsets, called open, with the properties:
(1) XeT,0eT;
(2) If wi,wy € T, then wy Nwy € T;
(3) If wa € 7 for all a in some index set Z, then | J,c7wa € 7.

The family 7 is called a topology for X. Given A C X, we say that A is closed if its complement
A°=X\A={r e X :x¢ A} is open.
ExaAMPLE. If X is any nonempty set, we can always define the two topologies:
(1) Ty = {0, X}, called the trivial topology;
(2) T3 consisting of the collection of all subsets of X, called the discrete topology.

PROPOSITION 1.1. The sets ) and X are both open and closed. Any finite intersection of
open sets is open. Any intersection of closed sets is closed. The union of any finite number of
closed sets is closed.

PROOF. We need only show the last two statements, as the first two follow directly from the
definitions. Let A, C X be closed for a € Z. Then one of deMorgan’s laws gives that

(&
(ﬂ Aa) = U A, is open.
a€l acl
Finally, if J C Z is finite, the other deMorgan law gives
(&
(U Aa> = ﬂ A¢  is open.
acd acJ
O

It is often convenient to define a simpler collection of open sets that immediately generates
a topology.

DEFINITION. Given a topological space (X,7) and an z € X, a base for the topology at x
is a collection B, of open sets containing = such that for any open E > z, there is B € B, such
that

re€BCE.

A base for the topology, B, is a collection of open sets that contains a base at z for all x € X.

PROPOSITION 1.2. A collection B of subsets of X is a base for a topology T if and only if
(1) each x € X is contained in some B € B and (2) if x € B1 N By for By, Bs € B, then there is
some Bs € B such that x € B3 C By N By. If (1) and (2) are valid, then

7T ={FE C X : E is a union of subsets in B} .
PROOF. (=) Since X and B; N By are open, (1) and (2) follow from the definition of a base
at x.

(<) Let T be defined as above. Then () € 7 (the vacuous union), X € 7 by (1), and
arbitrary unions of sets in 7 are again in 7. It remains to show the intersection property. Let
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E1,Ey € T, and x € E1 N Ey (if E1 N Ey = (), there is nothing to prove). Then there are sets
B, By € B such that

x € By CFEr, x € By C Eo
SO
re€BNByCEiNEy.
Now (2) gives B3 € B such that
r€ By CEiNE;.

Thus F1 N E5 is a union of elements in B, and is thus in 7. O

We remark that instead of using open sets, one can consider neighborhoods of points = € X,
which are sets N > x such that there is an open set E satisfying x € £ C N.

THEOREM 1.3. If (X,d) is a metric space, then (X,T) is a topological space, where a base
for the topology is given by

Tp ={By(z) :x € X and r >0},
where
B, (z)={ye X :d(z,y) <r}
is the ball of radius r about x.

PRrROOF. Point (1) is clear. For (2), suppose x € B,(y) N Bs(2). Then x € B,(x) C B,(y) N
By(z), where p = Smin(r — d(z,y),s — d(z,z)) > 0. O

Thus metric spaces have a natural topological structure. However, not all topological spaces
are induced as above by a metric, so the class of topological spaces is genuinely richer.

DEFINITION. Let (X,7) be a topological space. The closure of A C X, denoted A, is the
intersection of all closed sets containing A:

PROPOSITION 1.4. The set A is closed, and it is the smallest closed set containing A.

Proor. This follows by Proposition 1.1 and the definition. O
DEFINITION. The interior of A C X, denoted A°, is the union of all open sets contained in
A:
A=) E.
E open
ECA

PROPOSITION 1.5. The set A° is open, and is the largest open set contained in A.
PRrooOF. This also follows from Proposition 1.1 and the definition. O

PROPOSITION 1.6. It holds that AC A, A=A, ACB = AC B, AUB = AUB, and

A closed & A = A. Moreover, A D A°, A° =A°, ACB = A°C B°, (ANDB)° = A°N B°,
and A open < A = A°.

These results are left to the reader to prove.
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PROPOSITION 1.7. It holds that (A€)° = (A)° and (A°)¢ = (A°).
PRrROOF. We have
r¢ (A erecAsre ﬂ F<:>x¢< ﬂ F) S d U F¢=(A9°.
F closed F' closed F¢ open
FDA FDA FeCAc

The second result is similar. O

DEFINITION. A point x € X is an accumulation point of A C X if every open set containing
x intersects A\ {x}. Also, a point x € A is an interior point of A if there is some open set E
such that

reFCA.
Finally, € A is an isolated point if there is an open set E 3 x such that E\ {z} N A = .

PROPOSITION 1.8. For A C X, A is the union of the set of accumulation points of A and A
itself, and A is the union of the interior points of A.

PRrRoor. Exercise. O
DEFINITION. A set A C X is dense in X if A= X.

DEFINITION. The boundary of A C X, denoted 0A, is

OA=ANAc.
ProposITION 1.9. If A C X, then JA is closed and
A=A°U0A, A°NOA=10.
Moreover,
0A =0A°={x € X : every open E > x intersects both A and A°} .
Proor. Exercise. g

DEFINITION. A sequence {x,}°°; C X converges to x € X, or has limit x, if given any open
E > z, there is N > 0 such that x,, € F for all n > N (i.e., the entire tail of the sequence is
contained in F).

PROPOSITION 1.10. If lim,, oo, = x, then x is an accumulation point of {x,}52 , inter-
preted as a set.

PRroor. Exercise. O

We remark that if = is an accumulation point of {z,}72,, there may be no subsequence
{2n, 132, converging to .

EXAMPLE. Let X be the set of nonnegative integers, and a base 75 = {{0,1,...,i} for
each ¢ > 1}. Then {z,}5°; with z,, = n has 0 as an accumulation point, but no subsequence
converges to 0.

If 2, > x € X and z,, — y € X, it is possible that = # y.

ExAMPLE. Let X = {a,b} and 7 = {0,{a},{a,b}}. Then the sequence x, = a for all n
converges to both a and b.
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DEFINITION. A topological space (X, 7) is called Hausdorff if given distinct x,y € X, there
are disjoint open sets F; and Es such that z € F; and y € Eo».

ProprosiTiON 1.11. If (X,7) is Hausdorff, then every set consisting of a single point is
closed. Moreover, limits of sequences are unique.

PRrRoor. Exercise. O

DEFINITION. A point z € X is a strict limit point of A C X if there is a sequence {x,}72, C
A\ {z} such that lim, .~ z,, = .

Note that if = is an isolated point of X, then x ¢ A°, so 0A # J(A°) in general.
Metric spaces are less susceptible to pathology than general topological spaces. For example,
they are Hausdorff.

PROPOSITION 1.12. If (X, d) is a metric space and A C X, then every x € DA is either an
isolated point, or a strict limit point of A and A°.

PRroor. Exercise. O

ProOPOSITION 1.13. If (X, d) is a metric space and {x,}° 1 is a sequence in X, then x, — x
if and only if, given € > 0, there is N > 0 such that

d(x,zy) <€ Vn>N.
That is, xy, € Be(x) for allm > N.

Proor. If z, — x, then the tail of the sequence is in every open set £ 3 x. In particular,
this holds for the open sets B.(x). Conversely, if F is any open set containing z, then the open
balls at = form a base for the topology, so there is some B.(z) C E which contains the tail of
the sequence. O

PROPOSITION 1.14. Every metric space is Hausdorff.
Proor. Exercise. g

PrOPOSITION 1.15. If (z,d) is a metric space and A C X has an accumulation point x,
Then there is some sequence {x,}5°; C A such that x, — x.

PROOF. Given integer n > 1, there is some x, € By/,(), since x is an accumulation point.
Thus z,, — =. ]

We avoid problems arising with limits in general topological spaces by the following definition
of continuity.

DEFINITION. A mapping f of a topological space (X,7) into a topological space (Y,S) is
continuous if the inverse image of every open set in Y is open in X.

This agrees with our notion of continuity on R.
We say that f is continuous at a point x € X if given any open set £ C Y containing f(z),
then f~!(E) contains an open set D containing x. That is,

reD and f(D)CE.

A map is continuous if and only if it is continuous at each point of X.

ProposiTioN 1.16. If f: X — Y and g : Y — Z are continuous, then go f : X — Z 1is
continuous.
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PRroor. Exercise. O
PROPOSITION 1.17. If f is continuous and x, — x, then f(z,) — f(x).
PRrRooFr. Exercise. O

The converse of Proposition 1.17 is false in general. When the hypothesis x,, — x always
implies f(x,) — f(x), we say that f is sequentially continuous.

ProrposiTiON 1.18. If f : X — Y 1is sequentially continuous, and if X is a metric space,
then f is continuous.

PROOF. Let E C Y be open and A = f~1(FE). We must show that A is open. Suppose not.
Then there is some z € A such that B,(x) ¢ A for all » > 0. Thus for r, = 1/n, n > 1 an
integer, there is some z, € B, (x) N A°. Since z,, — =, f(x,) — f(z) € E. But f(x,) € E¢
for all n, so f(r) is an accumulation point of E¢. That is, f(z) € E°NE = OFE. Hence,
f(z) e OENE = 0E N E° =, a contradiction. O

Suppose we have a map f : X — Y that is both injective (one to one) and surjective (onto),
such that both f and f~! are continuous. Then f and f~! map open sets to open sets. That is
E C X is open if and only if f(F) C Y is open. Therefore f(7) = S, and, from a topological
point of view, X and Y are indistinguishable. Any topological property of X is shared by Y,
and conversely. For example, if z,, — = in X, then f(x,) — f(z) in Y, and conversely (y, — y
Y = f1ya) — f1(y) in X).

DEFINITION. A homeomorphism between two topological spaces X and Y is a one-to-one
continuous mapping f of X onto Y for which f~! is also continuous. If there is a homeomorphism
f: X =Y, wesay that X and Y are homeomorphic.

It is possible to define two or more nonhomeomorphic topologies on any set X of at least two
points. If (X,7) and (X, S) are topological spaces, and S D 7, then we say that S is stronger
than 7 or that 7 is weaker than S.

ExAMPLE. The trivial topology is weaker than any other topology. The discrete topology
is stronger than any other topology.

PROPOSITION 1.19. The topology S is stronger than T if and only if the identity mapping
I:(X,S8)— (X,T) is continuous.

PROPOSITION 1.20. Given a collection C of subsets of X, there is a weakest topology T
containing C.

PROOF. Since the intersection of topologies is again a topology (prove this),

ccT= () S

SoC
S a topology

is the weakest such topology (which is nonempty since the discrete topology is a topology
containing C). O
Given a topological space (X,7) and A C X, we obtain a topology S on A by restriction.
We say that this topology on A is inherited from X. Specifically
S=TNA={E C A: thereis some G C 7 such that E = ANG} .

That S is a topology on A is easily verified. We also say that A is a subspace of X.
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Given two topological spaces (X,7) and (Y, S), we can define a topology R on
XxY={(z,y):zeX, yeY},
called the product topology, from the base
Rp={FE1 xEy: E1 €T, B, €S} .

It is easily verified that this is indeed a base; moreover, we could replace 7 and S by bases and
obtain the same topology R.

ExampLE. If (X,d;) and (Y, d2) are metric spaces, then a base for X x Y is
{Br(z) x Bs(y) CX xY:ze X, yeY and r,s > 0},

wherein the balls are defined with respect to the appropriate metric d; or ds. Moreover, d :
(X xY)x (X xY) — R defined by

d((z1,91), (22, y2)) = di(z1,22) + da(y1,Y2)
is a metric that gives the same topology.

ExXAMPLE. R? has two equivalent and natural bases for the usual Euclidean topology, the
set of all (open) circles, and the set of all (open) rectangles.

This construction can be generalized to obtain an arbitrary product of spaces. Let (X4, 74)
a € T be a collection of topological spaces. Then X = X,c7X,, defined to be the collection of
all points {xq}aecr with the property that z, € X, for all a € Z, has a product topology with
base

TB:{ X Ey:E,cT,VacT and E, = X,
o€l

for all but a finite number of @« € 7 } .

The projection map mq : X — X, is defined for x = {23} ge7 by max = x4, which gives the a-th
coordinate of x.

REMARK. The notation {z,}aez is properly understood as a map g : Z — Uyez Xo, where
g(a) = x4 € X, for all @« € Z. Then X = X,e7X4 is the collection of all such maps, and
To(g) = g(a) is evaluation at o € Z. However, we will continue to use the more informal view
of X as consisting of “points” {xq}aez-

PROPOSITION 1.21. Fach m is continuous. Furthermore, the product topology is the weakest
topology on X that makes each m, continuous.

Proor. If E, C X, is open, then

WEI(Ea) = BéIEﬁ )

where Eg = Xz for § # «, is a basic open set and so is open. Finite intersections of these sets
must be open, and indeed these form our base. It is therefore obvious that the product topology
as defined must form the weakest topology for which each 7, is continuous. 0

ProposiTIiON 1.22. If X and Y,, o € I, are topological spaces, then a function f: X —
X ae7Yqa s continuous if and only if mo o f : X — Y, is continuous for each o € T.

Proor. Exercise. O
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PROPOSITION 1.23. If X is Hausdorff and A C X, then A is Hausdorff (in the inherited
topology). If {Xa}aer are Hausdorff, then X ,e7Xq s Hausdorff (in the product topology).

Proor. Exercise. O

Most topologies of interest have an infinite number of open sets. For such spaces, it is often
difficult to draw conclusions. However, there is an important class of topological space with a
finiteness property.

DEFINITION. Let (X,7) be a topological space and A C X. A collection {E,}aer C 7 is
called an open cover of A if A C |J,er Eo- If every open cover of A contains a finite subcover
(i.e., the collection {E,} can be reduced to a finite number of open sets that still cover A), then
A is called compact.

An interesting point arises right away: Does the compactness of A depend upon the way it is
a subset of X7 Another way to ask this is, if A ; X is compact, is A compact when it is viewed
as a subset of itself? That is, (4,7 N A) is a topological space, and A C A, so is A also compact
in this context? What about the converse? If A is compact in itself, is A compact in X7 It is
easy to verify that both these questions are answered in the affirmative. Thus compactness is a
property of a set, independent of some larger space in which it may live.

The Heine-Borel Theorem states that every closed and bounded subset of R? is compact,
and conversely. The proof is technical and can be found in most introductory books on real
analysis (such as the one by Royden [Roy] or Rudin [Ru0]).

PROPOSITION 1.24. A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is closed.

PROOF. Let X be compact, and F' C X closed. If {E,}aez is an open cover of F', then
{Ea}acz U F€is an open cover of X. By compactness, there is a finite subcover {Eq }oes U F€.
But then {E, }qecs covers F, so F' is compact.

Suppose X is Hausdorff and K C X is compact. (We write K CC X in this case, and read
it as “K compactly contained in X.”) We claim that K€ is open. Fix y € K¢ For each z € K,
there are open sets F,, and G, such that z € E,, y € G5, and E, NG, = 0, since X is Hausdorff.
The sets {E,},cx form an open cover of K, so a finite subcollection {E,},c4 still covers K.

Thus
G={)G
z€A

is open, contains ¥y, and does not intersect K. Since y is arbitrary, K¢ is open and therefore K
closed. 0

PRrOPOSITION 1.25. The continuous image of a compact set is compact.
PRroor. Exercise. O

An amagzing fact about compact spaces is contained in the following theorem. Its proof can
be found in most introductory texts in analysis or topology (see [Roy], [Rul]).

THEOREM 1.26 (Tychonoff). Let { X, }acr be an indezed family of compact topological spaces.
Then the product space X = Xoc7Xo 15 compact in the product topology.

A common way to use compactness in metric spaces is contained in the following result,
which also characterizes compactness.
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PROPOSITION 1.27. Suppose (X,d) is a metric space. Then X is compact if and only if
every sequence {x,}o>; C X has a subsequence {xp, }7° | which converges in X.

PROOF. Suppose X is compact, but that there is a sequence with no convergent subsequence.
For each n, let

On = inf d(xy, xm) -
mf ( )

If, for some n, 6,, = 0, then there are x,,, such that

d<mmxmk) < % >
that is, z,,, — x as k — 00, a contradiction. So ¢, > 0 V n, and

{B(sn (xn)}:il U <£j1 EW)C

is an open cover of X with no finite subcover, contradicting the compactness of X and estab-
lishing the forward implication.

Suppose now that every sequence in X has a convergent subsequence. Let {Uy}acz be a
minimal open cover of X. By this we mean that no U, may be removed from the collection if
it is to remain a cover of X. Thus for each « € Z, 3 2, € X such that z, € U, but z, ¢ Us
Y B # a. If 7 is infinite, we can choose a,, € Z forn = 1,2,... and a subsequence that converges:

xak—mceX as k— oo.

n

Now z € U, for some v € Z. But then 3 N > 0 such that for all £ > N, Ta,, € U,, a
contradiction. Thus any minimal open cover is finite, and so X is compact. O

1.2. Lebesgue Measure and Integration

The Riemann integral is quite satisfactory for continuous functions, or functions with not
too many discontinuities, defined on bounded subsets of R?; however, it is not so satisfactory
for discontinuous functions, nor can it be easily generalized to functions defined on sets outside
R?, such as probability spaces. Measure theory resolves these difficulties. It seeks to measure
the size of relatively arbitrary subsets of some set X. From such a well defined notion of size,
the integral can be defined. We summarize the basic theory here, but omit most of the proofs.
They can be found in most texts in real analysis (see e.g., [Roy], [Ru0], [Ru2]).

It turns out that a consistent measure of subset size cannot be defined for all subsets of a
set X. We must either modify our notion of size or restrict to only certain types of subsets. The
latter course appears a good one since, as we will see, the subsets of R? that can be measured
include any set that can be approximated well via rectangles.

DEFINITION. A collection A of subsets of a set X is called a o-algebra on X if
i) X e 4
ii) whenever A € A, A° € A4;
iii) whenever A, € Aforn =1,2,3,... (i.e., countably many A,), then also | J;- , 4, € A.

PrROPOSITION 1.28.
i) 0 e A
ii) If A, € A forn=1,2,..., then ()~ An € A.
iii) If A,B € A, then A\B=ANDB°€ A.
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PRroor. Exercise. O

DEFINITION. By a measure on A, we mean a countable additive function y : A — R, where
either R = [0, +00], giving a positive measure (as long as u # +00), or R = C, giving a complex
measure. Countably additive means that if A, € Aforn=1,2,..., and 4; N A; = 0 for i # j,
then

u(@ A) = gjlumn) |

That is, the size or measure of a set is the sum of the measures of countably many disjoint pieces
of the set that fill it up.

PRrorosITION 1.29.

i) () = 0.
i) If A, € A, n=1,2,... ,N are pairwise disjoint, then

N N
u(U ) =St
n=1 n=1
iii) If p is a positive measure and A, B € A with A C B, then

W(A) < u(B) .
iv) If A, € A, n=1,2,..., and A,, C Apy1 for all n, then

u([j An> = nllrlgou(An) .
n=1
v) If A, e A, n=1,2,..., u(A1) < oo, and A, D A4 for all n, then
u<ﬁ An) = nILIEOM(An) .
n=1
PROOF. 1) Since p # +o0, there is A € A such that pu(A) is finite. Now A = AUJ;2, 0,

and these sets are pairwise disjoint, so p(A) = p(A) + > oo u(0). Thus p(@) = 0.
ii) Let A, =0 for n > N. Then

u(@ A) = M(G A) = i u(Ay) = Tlfjlumn) |

iii) Let C = B\ A. Then CNA =, so
u(A) + u(C) = p(CUA) = u(B) ,

and u(C) > 0 gives the result.
iv) Let By = Ay and B, = A, \ A,—1 for n > 2. Then the {B,} are pairwise disjoint, and,
for any N < oo,
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SO

u<n©1 An> = u([j Bn> iu(Bn)

n=

= lim EJV:M(Bn)_ lim M(CJ Bn>

N—o0
= 1 An) .

v) Let B, = A, \ A1 and B =) | An. Then the B, and B are pairwise disjoint,

N—-1 %)
Av=MA\|J B, and A =BU|JB..
n=1 n=1
In consequence of the countable additivity,
(A1) = u(B) + Y u(Bn) < o0,
n=1
or
N-1 00
p(B) = p(Ar) = Y u(Bn) = > u(B)
n=1 n=N
= u(Ay) = > u(By)
n=N

Since the series Y ; u(By) converges, the limit as N — oo of the second term on the right-hand
side of the last equation is zero and the result follows. O

A triple consisting of a set X, a o-algebra A of subsets of X, and a measure p defined on
A, ie., (X, A, p), is called a measure space.

An important o-algebra is one generated by a topology, namely the family B of all Borel
sets in R%.

DEFINITION. The Borel sets B in R? is the smallest family of subsets of R% with the prop-
erties:

i) each open set is in B;
ii) if A € B, then A® € B;
iii) if {A,}22, C B, then | J 7, 4, € B.

That is, B contains all open sets and is closed under complements and countable unions.

That there is such a smallest family follows from the facts that the family of all subsets
satisfies (ii)—(iii), and if {Ba}aez is any collection of families satisfying (i)-(iii), then ), o7 Ba
also satisfies (i)—(iii).

Note that closed sets are in B, as well as countable intersections by deMorgan’s rule. Obvi-
ously, B is a o-algebra.

REMARK. This definition makes sense relative to the open sets in any topological space.
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THEOREM 1.30. There exists a unique positive measure p, called Lebesgue measure, defined
on the Borel sets B of R, having the properties that if A C B is a rectangle, i.e., there are
numbers a; and b; such that

A:{xGRd:ai<azi ora; < x; and x; < b; or x; < b; V i},

then u(A) = Hle(bi —a;) and p is translation invariant, which means that if v € R? and A € B,
then

uo+ A) = p(A) |
where x + A= {y € R : y = & + 2z for some z € A} € B.

The construction of Lebesgue measure is somewhat tedious, and can be found in most texts
in real analysis (see, e.g., [Roy], [Ru0], [Ru2]). Note that an interesting point arising in this
theorem is to determine why = + A € B if A € B. This follows since the mapping f(y) =y +
is a homeomorphism of R? onto R, and hence preserves the open sets which generate the Borel
sets.

A dilemma arises. If A € B is such that pu(A4) = 0, we say A is a set of measure zero. As
an example, a (d — 1)-dimensional hyperplane has d-dimensional measure zero. If we intersect
the hyperplane with A C R?, the measure should be zero; however, such an intersection may
not be a Borel set. We would like to say that if u(A) =0 and B C A, then p applies to B and
u(B) = 0.

Let the sets of measure zero be

Z={AcCR?’: 3BcB with u(B)=0 and AC B},
and define the Lebesgue measurable sets M to be
M={ACR?: 3BeB, Z,Zy€ Z such that A= (BUZ)\ Zs} .

We leave it to the reader to verify that M is a o-algebra.
Next extend p: M — [0, 00| by

1(A) = pu(B)

where A = (BU Z1) \ Z for some B € B and Z;,Z3 € Z. That this definition is independent
of the decomposition is easily verified, since p|z = 0.
Thus we have

THEOREM 1.31. There exists a o-algebra M of subsets of R and a positive measure i
M — [0, 00] satisfying the following.

i) Every open set in R? is in M.

ii) If AC Be M and u(B) =0, then A € M and pu(A) =0.

iii) If A is a rectangle with x; bounded between a; and b;, then u(A) = Hle(bi —a;).
)

iv) u is translation invariant: if v € R4, A€ M, then x + A € M and u(A) = p(x + A).

Sets outside M exist, and are called unmeasurable or non-measurable sets. We shall not
meet any in this course. Moreover, for practical purposes, we might simply restrict M to B in
the following theory with only minor technical differences.

We now consider functions defined on measure spaces, taking values in the extended real
number system R = R U {—oo0, +00}, or in C.
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DEFINITION. Suppose  C R? is measurable. A function f : Q — R is measurable if the
inverse image of every open set in R is measurable. A function g : Q — C is measurable if its
real and imaginary parts are measurable.

We remark that measurability depends on M, but not on ! It would be enough to verify
that the sets

Ey={ze€Q: f(x) > a}
are measurable for all @ € R to conclude that f is measurable.

THEOREM 1.32.

i) If f and g are measurable, so are f + g, f — g, fg, max(f,g), and min(f,g).

i) If f is measurable and g : R — R is continuous, then go f is measurable.

iii) If f is defined on Q C R?, f continuous, and Q measurable, then f is measurable.
)

iv) If {fn}>2 is a sequence of real, measurable functions, then
inf f, , supf,, liminff,, and limsup f,
n n n—oo n—o0

are measurable functions.

The last statement above uses some important terminology. Given a nonempty set S C R
(such as S = {fn(z)}>2, for z € Q fixed), the infimum of S, denoted inf S, is the greatest
number « € [—00,400) such that s > « for all s € S. The supremum of S, sup S, is the least
number o € (—oo,+oo] such that s < « for all s € S. Given a sequence {y,}°°, (such as
Yn = fn(z) for x € Q fixed),

liminf y,, = sup inf y,, = lim ( inf ym) .

n—00 n>1m>n n—oo ‘m>n
Similarly,

lim sup y,, = inf sup ¥y, = lim ( sup ym) .

n—00 n21lm>n =00 "m>n

COROLLARY 1.33. If f is measurable, then so are
fT=max(f,0), f~ =-—min(f,0), and |f|.
Moreover, if {fn}52, are measurable and converge pointwise, the limit function is measurable.
REMARK. With these definitions, f = f* — f~ and |f| = f™ + f~.
DEFINITION. If X is a set and E C X, then the function X : X — R given by
SO T

is called the characteristic function of E. If s : X — R has finite range, then s is called a simple
function.

Of course, if the range of s is {c1,... ,¢,} and
Ei={re X :s(x)=cq¢},
then

s(2) = 3 e, () |
=1
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and s is measurable if and only if each E; is measurable.
Every function can be approximated by simple functions.

THEOREM 1.34. Given any function f : Q C R4 — R, there is a sequence {sn}>2, of simple
functions such that
lim s,(z) = f(x) for any x €Q
n—oo
(i.e., sn converges pointwise to f). If f is measurable, the {s,} can be chosen measurable.

Moreover, if f is bounded, {sn} can be chosen so that the convergence is uniform. If f >0, then
the {s,} may be chosen to be monotonically increasing at each point.

Proor. If f >0, define forn =1,2,... and i =1,2,... ,n2",

Then
n2™ .

1—1
sn(z) = Z 5 Xg, ,(x) +nXFE,
i=1

has the desired properties. In the general case, let f = f* — f~ and approximate f™ and f~ as
above. d

It is now straightforward to define the Lebesgue integral. Let Q C R¢ be measurable and
s: € — R be a measurable simple function given as
n
s(z) = ZCiXEi (x) .
i=1
Then we define the Lebesgue integral of s over €2 to be

/Qs(a:) dx = ZCzM(Ez) .

If f:Q — [0, 00] is measurable, we define

[ s@de=sup [ sta)de

where the supremum is taken over all measurable functions satisfying 0 < s(z) < f(z) for x € Q.
Note that the integral of f may be +oo.
If f is measurable and real-valued, then f = f™ — f~, where f* > 0 and f~ > 0. In this

case, define
[ r@iz= [ fraia= [ @,

provided at least one of the two integrals on the right is finite.
Finally, if f is complex-valued, apply the above construction to the real and imaginary parts
of f, provided the integrals of these parts are finite.

DEFINITION. We say that a real-valued measurable function f is integrable if the integrals
of fT and f~ are both finite. If only one is finite, then f is not integrable; however, in that case
we assign +0o or —oo to the integral.
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PROPOSITION 1.35. The real-valued measurable function f is integrable over € if and only

if
/ |f(z)]dr < oo .
Q
DEFINITION. The class of all integrable functions on Q C R%, © measurable, is denoted
L(§2) = {measurable f : / |f(x)|dr < oo} .
Q

THEOREM 1.36. If f is Riemann integrable on a compact set K C R, then f € L(K) and
the Riemann and Lebesgue integrals agree.

Certain properties of the Lebesgue integral are clear from its definition.

PROPOSITION 1.37. Assume that all functions and sets appearing below are measurable.

(a) If | f| is bounded on Q and u(2) < oo, then f € L(Q).
(b) Ifa< f<bonQ and u(Q2) < oo, then

< /Qf(:n) dr < bu(Q) .

/Qf(x)d:cg/gg(m)d:c

(d) If f,g € L(Q), then f+ g€ L(N) and

[rowin= [ f@art [ g

(e) If f € L(Q) and c € R (or C), then

/cf(x)dz:c/f(x)dx

(f) If f € L(Q), then |f| € L() and

‘/f d:c’</]f )| da

(g) If f € L(2) and A C Q, then f € L(A). If also f >0, then

OS/Af(x)dxs/Qf(x)dm
RS

(i) If fe L(Q) and Q=AUB, ANB =0, then

Af@)@:/ﬁ}f@)d%/}gf(@@

Part (i) has a natural and useful generalization.

(c) If f < g on Q, then

(h) If u(2) =0, then
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THEOREM 1.38. If Q C R? is measurable, f € L(Q), A C Q, A, € M forn =1,2,...,
A;NA; =0 fori#j, and A=J;" | Ay, then

/Af(a:) dz = E/A F(z)dz . (1.1)

Moreover, if f >0, the function A : M — R given by

AA) = / (@) do
A
1S a positive measure.

PrOOF. That A is a positive measure follows from (1.1), which gives the countable additivity.
If (1.1) is valid when f > 0, it will follow for any real or complex valued function via the
decomposition f = fi +ifs = fit — fi +i(fy — f5 ), where fii > 0.

For a characteristic function X'z, E measurable, (1.1) holds since p is countably additive:

/AXE(x)dx:,u(AﬂE):;u(AnﬁE):;/AHXE(QJ)CZ:B.

Because of (d) and (e) in Proposition 1.37, (1.1) also holds for any simple function.
If f >0 and s is a simple function such that 0 < s < f, then

/As(az)da::géns(x)dazgg/f‘nf(az)dx.

Thus
/Af(x) de = ig};/As(x) dr < ; N f(z)dx .

However, by iterating Proposition 1.37(i), it follows that

; i, f(x)dx_/uz_lAkf(x)dxS/Af(x>d$

for any n. The last two inequalities imply (1.1) for f. O
From Proposition 1.37(h),(i), it is clear that if A and B are measurable sets and p(A\ B) =

w(B\ A) =0, then
/Af(:n) dx = /Bf(x) dz

for any integrable f. Moreover, if f and g are integrable and f(x) = g(x) for all z € A\ C where

u(C) =0, then
/Af(:v) do = /Ag(a:) dz |

Thus sets of measure zero are negligible in integration.

If a property P holds for every z € E'\ A where u(A) = 0, then we say that P holds for
almost every x € E, or that P holds almost everywhere on EE. We generally abbreviate “almost
everywhere” as “a.e.” (or “p.p.” in French).
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PROPOSITION 1.39. If f € L(2), where Q is measurable, and if

/Af(:c) dz =0

for every measurable A C Q, then f =0 a.e. on €.

PROOF. Suppose not. Decompose f as f = f1 +ife = fi{ — f; +i(f5 — f5 ). At least one
of fli, fQi is not zero a.e. Let g denote one such component of f. Thus g > 0 and g is not zero
a.e. on Q. However, [, g(x)dx = 0 for every measurable A C Q. Let

Ap={ze€Q:g(z)>1/n} .

Then p(A,) =0V nand Ay = U2, An = {z € Q: g(z) > 0}. But p(Ag) = p(Uy2; An) <
oo m(Ay) = 0, contradicting the fact that ¢ is not zero a.e. O

We will not use the following, but it is interesting. It shows that Riemann integration is
restricted to a very narrow class of functions, whereas Lebesgue integration is much more general.

PROPOSITION 1.40. If f is bounded on a compact set [a,b] C R, then f is Riemann integrable
on [a,b] if and only if f is continuous at a.e. point of |a,b].

The Lebesgue integral is absolutely continuous in the following sense.

THEOREM 1.41. If f € L(Q), then [, |f|dx — 0 as p(A) — 0, where A C Q is measurable.
That is, given € > 0, there is 6 > 0 such that

INCIEE

whenever p(A) < 6.

PROOF. Given e > 0, there is a simple function s(z) such that

/ (@) - s(@)] de < ¢/2 |
A

by the definitionn of the Lebesgue integral. Moreover, by the proof of the existance of s(x), we
know that we can take s(x) bounded:

|s(x)] < M(e)
for some M (€). Then on A C Q2 measurable,
[ Ist@)lde < e

so if u(A) < d = ¢/2M (e), then

/A\f(-%')de/A\f(w)—S(w)!dw+A\8(w)!dw§6/2+6/2—6-
]

Theorem 1.34 states that we can approximate a measurable f by a sequence of simple
functions. We can go further, and approximate by a sequence of continuous functions, at least
when we control things near infinity. Let Cy(€2) be the set of continuous functions with compact
support, i.e., continuous functions that vanish outside a bounded set.
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THEOREM 1.42 (Lusin’s Theorem). Suppose that f is measurable on Q is such that f(x) =
for x & A, where A has finite measure. Given € > 0, there is g € Cy(f2) such that the measure
of the set where f and g differ is less than €. Moreover,

sup |g(x)| < sup |f(x)] .
zeQ zeN
A proof can be found in, e.g., [Ru2]. The following lemma is easily demonstrated (and left
to the reader), but it turns out to be quite useful.

LEMMA 1.43 (Chebyshev’s Inequality). If f > 0 and Q C R? are measurable, then

p{x e Q: f(x) > al}) < /f

for any a > 0.

We conclude our overview of Lebesgue measure and integration with the three basic con-
vergence theorems, Fubini’s Theorem on integration over product spaces, and the Fundamental
Theorem of Calculus, each without proof. For the first three results, assume that Q C R? is
measurable.

THEOREM 1.44 (Lebesgue’s Monotone Convergence Theorem). If {f,}2° is a sequence of
measurable functions satisfying 0 < fi(z) < fa(z) <--- for a.e. x € Q, then

lim fn( )dxz/ﬂ(nlgrolofn(a:)) dx .

n—oo

THEOREM 1.45 (Fatou’s Lemma). If {fn}32 is a sequence of nonnegative, measurable func-
tions, then

/ (liminffn( ) d:c<hm1nf/ fulx
0 T—00 n—oo
THEOREM 1.46 (Lebesgue’s Dominated Convergence Theorem). Let {f,}22 be a sequence

of measurable functions that converge pointwise for a.e. x € . If there is a functzon g € L(Q)
such that

|fn(z)| < g(x) for every n and a.e. x € Q,
then

nILH;O fn( )dx:/g<nlgrolof”($)) dx .

THEOREM 1.47 (Fubini’s Theorem). Let f be measurable on R"™™. If at least one of the
integrals

h:/ f(a,y)dedy ,
Rn+m

n=[ ([ s@d)i,
I3 = /n< - f(z,y) dy) dx

exists in the Lebesgue sense (i.e., when f is replaced by |f|) and is finite, then each exists and
L =1,=1s.
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Note that in Fubini’s Theorem, the claim is that the following are equivalent:
(i) f € LR™™),
(ii) f(-,y) € L(R™) for a.e. y € R™ and [p, f(z,-)dz € LR™),
(iil) f(z,-) € L(R™) for a.e. z € R" and [g,,, f(-,y)dy € L(R"),
and the three full integrals agree. Among other things, f being measurable on R™*™ implies
that f(-,y) is measurable for a.e. y € R™ and f(z,-) is measurable for a.e. z € R". Note also
that we cannot possibly claim anything about every x € R™ and/or y € R™, but only about
almost every point.

THEOREM 1.48 (Fundamental Theorem of Calculus). If f € L([a,b]) and

Fa) = [ St

then F'(x) = f(x) for a.e. x € [a,b]. Conversely, if F is differentiable everywhere (not a.e.!) on
[a,b] and F' € L([a,b]), then

F(z) — F(a) = / F'(t)dt
for any x € [a,b].
1.3. Exercises

1. Show that the following define a topology 7 on X, where X is any nonempty set.
(a) T = {0, X}. This is called the trivial topology on X.
(b) Tp = {{x} : v € X} is a base. This is called the discrete topology on X.
(¢) Let 7 consist of () and all subsets of X with finite complements. If X is finite, what
topology is this?
2. Let X = {a,b} and T = {0, {a}, X}. Show directly that there is no metric d : X x X — R
that is compatible with the topology. Thus not every topological space is metrizable.
3. Prove that if A C X, then 0A is closed and
A=A°U0A, A°NOA=1.
Moreover,
0A = 0A° = {x € X : every open E containing z intersects both A and A} .
4. Prove that if (X, 7) is Hausdorff, then every set consisting of a single point is closed. More-
over, limits of sequences are unique.

5. Prove that a set A C X is open if and only if, given x € A, there is an open E such that
r e E CA.

6. Prove that a mapping of X into Y is continuous if and only if the inverse image of every
closed set is closed.

7. Prove that if f is continuous and lim z,, = z, then lim f(z,) = f(x).
n—oo n—oo

8. Suppose that f(x) =y. Let B, be a base at x € X, and C a base at y € Y. Prove that f is
continuous at z if and only if for each C € C, there is a B € B, such that B C f~(C).

9. Show that every metric space is Hausdorff.
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10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.
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Suppose that F' : X — R. Characterize all topologies 7 on X that make f continuous.
Which is the weakest? Which is the strongest?

Construct an infinite open cover of (0,1] that has no finite subcover. Find a sequence in
(0,1] that does not have a convergent subsequence.

Prove that the continuous image of a compact set is compact.

Prove that a one-to-one continuous map of a compact space X onto a Hausdorff space Y is
necessarily a homeomorphism.

Prove that if f : X — R is continuous and X compact, then f takes on its maximum and
minimum values.

Show that the Borel sets B is the collection of all sets that can be constructed by a countable
number of basic set operations, starting from open sets. The basic set operations consist of
taking unions, intersections, or complements.

Prove each of the following.
(a) If f: R? — R is measurable and g : R — R is continuous, then g o f is measurable.
(b) If @ C R? is measurable and f : Q — R is continuous, than f is measurable.
Let € R? be fixed. Define d, for any A C R? by
S

Show that d, is a measure on the Borel sets B. This measure is called the Dirac or point
measure at x.

The Divergence Theorem from advanced calculus says that if 2 C R? has a smooth boundary
and v € (C*(Q))? is a vector-valued function, then

/QV-V(m) dﬂ::/aQV(x)-y(ﬂz) ds(z)

where v(x) is the outward pointing unit normal vector to Q for any x € 99, and ds(z) is
the surface differential (i.e., measure) on 9f). Note that here dx is a d-dimensional measure,
and ds is a (d — 1)-dimensional measure.

(a) Interpret the formula when d = 1 in terms of the Dirac measure.
(b) Show that for ¢ € C1(Q),
V-(pv)=Vo-v+ oV -v.
(c) Let ¢ € C(Q) and apply the Divergence Theorem to the vector ¢v in place of v. We

call this new formula integration by parts. Show that it reduces to ordinary integration by
parts when d = 1.

Prove that if f € £(Q2) and g : Q2 — R, where g and Q are measurable and ¢ is bounded,
then fg € L(Q).

Construct an example of a sequence of nonnegative measurable functions from R to R that
shows that strict inequality can result in Fatou’s Lemma.
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Let
= el s
fn(m) _ n 5 rsn,
0, |z|>n.
Show that f,,(x) — 0 uniformly on R, but

/_an(x)dz::2.

Comment on the applicability of the Dominated Convergence Theorem.

Let
17 OSx_ygla
f(a:,y): _17 OSy—xﬁla
0, otherwise.

[ ([ ey [“( [ smmi).

Comment on the applicability of Fubini’s Theorem.

Show that

Suppose that f is integrable on [a,b], and define

Pla) = /x F#)dt

Prove that F' is continuous on [a,b]. (In fact, F = f a.e., but it is more involved to prove
this.)






CHAPTER 2

Normed Linear Spaces and Banach Spaces

Functional Analysis grew out of the late 19th century study of differential and integral
equations arising in physics, but it emerged as a subject in its own right in the first part of
the 20th century. Thus functional analysis is a genuinely 20th century subject, often the first
one a student meets in analysis. For the first sixty or seventy years of this century, functional
analysis was a major topic within mathematics, attracting a large following among both pure
and applied mathematicians. Lately, the pure end of the subject has become the purview of a
more restricted coterie who are concerned with very difficult and often quite subtle issues. On
the other hand, the applications of the basic theory and even of some of its finer elucidations
has grown steadily, to the point where one can no longer intelligently read papers in much
of numerical analysis, partial differential equations and parts of stochastic analysis without a
working knowledge of functional analysis. Indeed, the basic structures of the theory arises in
many other parts of mathematics and its applications.

Our aim in the first section of this course is to expound the elements of the subject with an
eye especially for aspects that lend themselves to applications.

We begin with a formal development as this is the most efficient path.

2.1. Basic Concepts and Definitions.

Vector spaces are fundamental in science and engineering. They encapsulate notions of
scaling (scalar multiplication) and translation (vector addition). Vector spaces become very
powerful tools when we add the notion of vector size or norm.

DEFINITION. Let X be a vector space over the real numbers R or the complex numbers C.
We say X is a normed linear space (NLS for short) if there is a mapping

I-1: X =R =[0,00) ,

called the norm on X, satisfying the following set of rules which apply to z,y € X and A € R
or C:

(a) Azl = [A[flz],

(b) ||z|| =0 if and only if z =0 ,

(©) llz+yll < llzll + [yl (triangle inequality).

In situations where more than one NLS is under consideration, it is often convenient to write
| - ||x for the norm on the space X to indicate which norm is connoted.

A NLS X is finite dimensional if it is finite dimensional as a vector space, which is to
say there is a finite collection {z,}_; C X such that any x € X can be written as a linear

combination of the {z,})\_;,

ViZ2.
=Mz +XNzo+ -+ AyTN,

where the \; are scalars (member of the ground field R or C). Otherwise, X is called infinite
dimensional. Interest here is mainly in infinite-dimensional spaces.

27



28 2. NORMED LINEAR SPACES AND BANACH SPACES

REMARK. In a good deal of the theory developed here, it will not matter for the outcome
whether the NLS’s are real or complex vector spaces. When this point is moot, we will often
write F rather than R or C. The reader should understand when the symbol F appears that it
stands for either R or for C, and the discussion at that juncture holds for both.

ExAaMPLES. (a) Consider F¢ with the usual Euclidean length of a vector z = (z1, ..., 7q)
denoted |z| = (Ed \an)l/Q. If we define, for € F?, ||z| = |=|, then (F<,|| - ||) is a finite

n=1
dimensional NLS.
(b) Let a and b be real numbers, a < b, with a = —oo or b = +o0 allowed as possible values.
Then

C([a,b]) = {f :|a,b] — F: f is continuous and sup |f(z)| < oo} .
z€[a,b]

We impose a vector space structure by pointwise multiplication and addition; that is, for x € [a, b]
and A € F, we define

(f+9)(z)=f(z)+g(x) and  (Af)(z)=Af(z).
For f € C([a,b]), let

I fllc(ap) = Supb} |f(z)],

re|a,

which is easily shown to be a norm. Thus, (C([a,b]), ]l - [lc(as)) is a NLS, which is also infinite
dimensional. (To see this latter fact, the reader can consider the impossibility of finding a finite
basis for the periodic base functions of Fourier series on a bounded interval.)

(c) We can impose a different norm on the space C([a,b]) defined by

b
1 £1 2y (fa,t) :/ |f(z)| dx .

Again, it is easy to verify that (C([a,b]), |||, (ja,])) is & NLS, but it is different from (C([a, b]), |-
”C([a,b]))- These two NLS’s have the same set objects and the same vector space structure, but
different norms, i.e., they measure sizes differently.

Further examples arise as subspaces of NLS’s. This fact follows directly from the definitions,
and is stated formally below.

ProposITION 2.1. If (X, | - ||) is a NLS and V C X is a linear subspace, then (V|| -|) is a
NLS.

Let (X, |- ||) be a NLS. Then X is a metric space if we define a metric d on X by

d(z,y) = llz -yl -
To see this, just note the following: for z,y,z € X,

d(z,x) = ||lz —z|| = |0 =0,

O=d(z,y)=lr—y| = z-y=0 = z=y,
d(z,y) = |z —yll = | = (v = 2)l = [ = U lly = 2l = d(y, ) ,
d(z,y) = |z —yll = llz — 2+ 2z =y

< lz =2l + Iz =yl = d(z, 2) + d(z,y) -

Consequently, the concepts of elementary topology are available in any NLS. In particular, we
may talk about open sets and closed sets in a NLS.
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A set U C X is open if for each x € U, there is an r > 0 (depending on x in general) such
that

B.(x)={ye X :d(y,x)<r}cU.

The set B,(z) is referred to as the (open) ball of radius r about z. A set F' C X is closed if
Fe=XNF={ye X, y¢ F} is open. As with any metric space, F' is closed if and only if
it is sequentially closed. That is, F' is closed means that whenever {z,}{° C F and z,, — x as
n — oo for the metric, then it must be the case that x € F.

PROPOSITION 2.2. In a NLS X, the operations of addition, + : X x X — X and scalar
multiplication, - : F x X — X, and the norm, ||| : X — R, are continuous.

PRrROOF. Let {z,}7°; and {y,}72; be sequences in X converging to x,y € X, respectively.
Then

[(@n +yn) = (z+ )| = (@0 =) + (Yo = Y < 20 — 2l + lyn =yl = 0.

We leave scalar multiplication for the reader, which requires the fact that a convergent sequence
of scalars is bounded.
For the norm,

[zl <l = 2all + llonll < 20z — 2l + 2],
so we conclude that lim,,_, [|z,] = ||z, i.e., the norm is continuous. O

Recall that a sequence {z,}2°; in a metric space (X, d) is called a Cauchy sequence if

lim d(zp,xm)=0;
n,M—00

or equivalently, given € > 0, there is an N = N(¢) such that if n,m > N, then
d(xp, zm) < e .

A metric space is called complete if every Cauchy sequence converges to a point in X. A
NLS (X, | - ||) that is complete as a metric space is called a Banach space after the Polish
mathematician Stefan Banach, who was a pioneer in the subject.

ExaMPLES. (a) The spaces R? and C? are complete as we learn in advanced calculus or
elementary analysis.

(b) For a and b in [—o00,00], a < b, the space (C([a,b]), | - ||C([a7b])) is complete, since the
uniform limit of continuous functions is continuous. That is, a Cauchy sequence will converge
to a continuous function.

(¢) The space (C([a,b)),]| - | (la,p))) is not complete. To see this, suppose that a = —1 and
b =1 (we can translate and scale if this is not true) and define for n = 1,2,3, ...,

1 ifx <0,
() =<1—nzx fO0<zxz<1/n,
0 ife>1/n.

Each f, € C(]—1,1]), and this is a Cauchy sequence for the given norm, since

1 1
/ |fu(z) — fin(2)| dz s/ (| fa(@)] + | fm(2)]) dz < I
3 )

—2n  2m
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can be made as small as we like for n and m large enough (note that the sequence is not Cauchy
using the norm |- ||¢((=1,1))!)- However, f,, does not converge in C'([—1, 1]), since it must converge
to 1 for x < 0 and to O for x > 0, which is not a continuous function.

By convention, unless otherwise specified, we use the norm || - || = || - [l¢((a,5) o0 C([a,b]),
which makes it a Banach space.

If X is a linear space over F and d is a metric on X induced from a norm on X, then for all
z,y,a € X and A € F,

dz+a,y +a) = d(z,y) and  d(Az,\y) = |\d(z,y) . (2.1)

Suppose now that X is a linear space over F and d is a metric on X satisfying (2.1). Is it
necessarily the case that there is a norm || - || on X such that d(z,y) = || — y||? We leave this
question for the reader to ponder.

If X is a vector space and || [|; and || - ||, are two norms on X, they are said to be equivalent
norms if there exist constants ¢,d > 0 such that

cllefi < llzfls < dlx (2.2)

for all x € X. Equivalent norms do not measure size in the same way, but, up to the constants
c and d, they agree when something is “small” or “large.”

It is a fundamental fact, as we will see later, that on a finite-dimensional NLS, any pair of
norms is equivalent, whereas this is not the case in infinite dimensional spaces. For example, if

f € C([0,1]), then

£l o,y < N flleqo

but the opposite bound is lacking. To see this, consider the sequence

nx ifx<1/n,
fo(z)=<2n—n%r ifl/n<x<2/n,

0 ifz>2/n,

for which
[fallcqoay =n but [fllz o) =1 -
If || - |l and || - |2 are two equivalent norms on a NLS X as in (2.2), then the collections O;

and Oz of open sets induced by these two norms as just outlined are the same. To see this, let
B! (x) be the ball about € X of radius r measured using norm || - ||;. Then

B}.(x) C Bi(z) C B; ()

shows that our open balls are nested. Thus topologically, (X, - ||1) and (X,] - |l2) are indis-
tinguishable. Moreover, finite dimensional NLS’s have a unique topological structure, whereas
infinite dimensional NLS’s may have many distinct topologies.

Convexity is an important property in vector spaces.

DEFINITION. A set C in a linear space X over F is convex if whenever z,y € C, then
tr+(1—-t)yeC
whenever 0 < ¢ < 1.

PROPOSITION 2.3. Suppose (X, || - ||) is a NLS and r > 0. For any x € X, B,(x) is convez.
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PROOF. Let y,z € B,(z) and t € [0, 1] and compute as follows:
Ity + (1 —t)z =z = |ty —2) + (1 = t)(z — z)|
<|ltly — =)l + [[(1 =) (z = 2)||
— It ly — 2ll + 11 — #] [}z — 2]
<tr+(1—-t)r=r.
Thus, B,(x) is convex. O

One reason vector spaces are so important and ubiquitous is that they are the natural
domain of definition for linear maps, and the latter pervade mathematics and its applications.
Remember, a linear map is one that commutes with addition and scalar multiplication, so that

T(x+y)=T()+T(y) ,
T(\x) = \T'(z) ,

for x,y € X, A € F. For linear maps, we often write Tz for T'(x), leaving out the parentheses.
The scaling property requires that 7'(0) = 0 for every linear map.

A set M C X of a NLS X is said to be bounded if there is R > 0 such that M C Br(0);
that is,

lz| < R< oo forallxze M .

An operator T': X — Y, X and Y NLS’s, is bounded if it takes bounded sets to bounded sets.
(Note that this does not require that the entire image of 7" be bounded!)

PRrROPOSITION 2.4. If X and Y are NLS’s and T : X — Y is linear, then T is bounded if
and only if there is C > 0 such that

ITz|ly < Cllz||x foralze X .

PRrROOF. The result follows from scaling considerations. Suppose first that 7" is bounded.
For M = B4(0), there is R > 0 such that

ITylly <R forallye M.

Now let € X be given. If x = 0, the conclusion holds trivially. Otherwise, let y = z/2||z|x €
M. Then

ITzlly = |T@lzlxy)ly = [2l=lx Ty, = 2llzl x| Tylly <2R]z]x

which is the conclusion with C = 2R.
Conversely, suppose that there is C' > 0 such that

|Tz|ly <Cllz||x forallz e X .
Let M C Br(0) be bounded and fix x € M. Then
[Tzlly < Cllz[x < CR < oo,
so T takes a bounded set to a bounded set. O
On the one hand, the linear maps are the natural (i.e., structure preserving) maps on a

vector space. On the other hand, the natural mappings between topological spaces, and metric
spaces in particular, are the continuous maps. If (X,d) and (Y, p) are two metric spaces and
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f X — Y is a function, then f is continuous if for any x € X and € > 0, there exists a
d = 0(x,e) > 0 such that

d(z,y) <0 implies p(f(z),f(y)) <e.
This is to say, for NLS’s,
|z —yll <6 implies [|f(z)— f(y)l <e.

If (X,]-||x)and (Y,]| - ||y) are NLS’s, then they are simultaneously linear spaces and metric
spaces. Thus one might expect the collection

B(X,Y)={T:X — Y : T is linear and continuous} (2.3)

to be an interesting class of mappings that are consistent with both the algebraic and metric
structures of the underlying spaces. Continuous linear mappings between NLS’s are often called
bounded operators or bounded linear operators or continuous linear operators.

EXAMPLE. If X = R% and Y = R%, then B(R%,R%) is precisely the set of (real) di x dy
matrices, which are easily seen to be continuous linear operators. In fact, in finite dimensions,
every linear map is continuous. This is not the case in infinite dimensions.

PROPOSITION 2.5. Let X and Y be NLS’s and T : X — Y a linear map. The following are
equivalent:

(a) T is continuous,
(b) T is continuous at some point,
(¢) T is bounded.

PROOF. (a = D) Trivial.
(b = ¢) Suppose T is continuous at xy € X. Then there is a § = §(1,xg) > 0 such that

|l — zo||x <d implies ||Tx —Txolly <1. (2.4)
But by linearity Tx — T'zo = T'(xz — zo). Thus, (2.4) is equivalent to the condition
lyllx <6 implies |Tyly <1.

Hence, it follows readily that if x € X, x # 0, then

lellx 9 1], 3 1
Tx|y = T T = —||T x r||lx < =llz|x,
ey = | ()| = 3|7 ()| et < Fhelx
since
0 :L‘H =4.
EE®

(¢ = a) It is supposed that 7T is linear and bounded, so there is a C' > 0 such that
| Tz|ly < C|lz|lx forallz € X .
Let € > 0 be given and let 6 = ¢/C. Suppose ||x — zp||x < 6. Then
|72 = Taolly = |T(x — o)y < Clla — aollx << .

Therefore T is continuous at xg, and xg was an arbitrary point in X. O
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Let X,Y be NLS’s and let T' € B(X,Y) be a continuous linear operator from X to Y. We
know that 7T is therefore bounded on any bounded set of X, so the quantity

1T =1Tlpxy)= sup [ Tz|y (2.5)
x€B1(0)
is finite. The notation makes it clear that this mapping || - [[px,y) : B(X,Y) — [0,00) is
expected to be a norm. There are several things to check.
We begin by noting that B(X,Y") is a vector space in its own right if we define S 4+ 7" and
AT by
(S+T)(z)=Sr+Tx and (AS)(z) = ASz
for all z € X and A € F.
PROPOSITION 2.6. Let X and Y be NLS’s. The formula (2.5) defines a norm on B(X,Y).
Moreover, if T € B(X,Y), then

Tx Y
1Tl = sup [Tely = sup L2y |
el x =1 a0 ||]lx

IfY is a Banach space, then so is B(X,Y') with this norm.

(2.6)

PROOF. We first show that ||- | p(x,y) is a norm. If 7" is the zero map, then clearly ||T’|| = 0.
On the other hand, if ||T|| = 0, then T" vanishes on the unit ball. For any € X, x # 0, write
x = 2||z||(x/2||z]]) = 2||z|ly. Then y is in the unit ball, so T'(y) = 0. Then T'(x) = 2||z||T(y) = 0;
thus 7" = 0. Plainly, by definition of scalar multiplication
AT = sup [[(AT)(2)[ly = |Al sup | Tz[ly = AT -
B1(0) B1(0)
The triangle inequality is just as simple:

1T+ S| = sup |(T+5)(@)lly = sup |[[Te+ Szlly

z€B1(0) z€B1(0)

< sw {ITzly +Sally}

x€B1(0)

< suwp [Taly+ sup [|Sally = |T] + 5] -
z€B1(0) z€B1(0)

Thus (B(X,Y),| - |(x,y)) is indeed a NLS.
The alternative formulas for the norm expressed in (2.6) are straightforward to deduce.
Notice that the last formula makes it obvious that for all z € X and T' € B(X,Y),

ITzlly < 1Tl sy lzllx (2.7)

an inequality that will find frequent use.

The more interesting fact is that B(X,Y’) is complete if we only assume Y is complete.
This simple result has far-reaching consequences. To establish this point, suppose {T},}°2, is a
Cauchy sequence in B(X,Y). We must show it converges in B(X,Y). Let z € X and consider
the sequence {T,,x}2°; in Y. Because of (2.7), it follows that

| Thr — Tnzlly < ||T — Tm”B(X,Y)Hx”X’

and thus {7,,z}7°  is seen to be Cauchy in Y. AsY is a Banach space, {T,,z}7° ; must converge
to some element of Y that depends upon z of course; call this element Tx. There is thus
established a correspondence

zr—Tx
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between X and Y. We claim it is a continuous linear correspondence, whence T' € B(X,Y). It
is further asserted that 7,, — T in B(X,Y).
First note that

T(x+y) = lim Tp(z +y) = lim {Tpz + Toy}
= lim Thx+ lim Thyy=Tx+ Ty .
n—oo

n—oo
Similarly, T'(Ax) = ATz for x € X and A € F. Thus 7T is a linear map. To see that T is a
bounded map, first note that {7},}5°, being Cauchy, must be a bounded sequence. For there
is an IV such that if n > N, then
ITw—Twl <1,
say. By the triangle inequality, this means
ITnl < TNl + 1,

for n > N. The initial segment, {T1,T5,...,Ty_1} of the sequence is bounded since it is finite,
say || Tj|| < K for 1 < j < N — 1. It therefore transpires that

T3] < max{K, |[Tn | +1} = M,
say, for all k. From this it follows at once that T" is a bounded operator; for if x € X, then
[Tzlly = lim [[Tox|y < limsup [T poxy) lzllx < M| -
n—oo n—00
Finally, we check that T, — T'in B(X,Y). Let x € B1(0) in X and observe that
Tz — Thx|ly = lim ||Tne — Thx|ly = lim [[(Th — Th)x||
m—0oQ m—0o0

< limsup [T, — Tollpx v llzllx < e(n) -

m—00

Since x was an arbitrary element in B;(0), this means
|T = Tullpx,y) < e(n)
and because {T}}72, is Cauchy, e(n) — 0 as n — oo. O

The structure of bounded linear maps T : X — Y on infinite dimensional spaces can be
quite complex. However, it will turn out to be quite a fruitful to study the simpler case, albeit
still quite complex, of a map T : X — F, for which the range has a single dimension.

DEFINITION. Let X be a NLS over F. The dual space X* of X is the Banach space B(X,TF).
The elements of X* are called bounded linear functionals on X.

The dual space is complete because R and C are complete.

2.2. Some Important Examples

2.2.1. Finite dimensional spaces. Let X be a vector space of dimension d < oo over F,
and let {en}ﬁzl C X be a basis, which is to say that for any x € X, there are unique x,, € F
such that

d
T = g Ty €p -
n=1

We define a map T : X — F? by T(x) = (z1,...,24), which gives a one-to-one correspondance
between X and F¢. This map, called the coordinate mapping, is easily seen to be linear, so we
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have a vector space isomorphism between the spaces. Consequently, X and F? have the same
vector space structure. That is, given a dimension d, there is only one vector space structure of
the given dimension (for the field F).

Define for 1 < p < oo the map || - ||¢, : F¢ — [0,00) by

d 1/p
<Z :Un]p> forp < oo,
llle, =

n=1
maxp—i . q4|zn| forp=oo.

It is easy to verify that ||z||,, and ||z||., are norms on F?. In fact, the zero and scaling properties
of a norm are easily verified for || - ||¢,, but we need a few facts before we can verify the triangle
inequality. Once done, note that then also ||7'(-)|l, is a norm on X.

The following simple inequality turns out to be quite useful in practice.

LEMMA 2.7. Let 1 < p < 0o and let q denote the conjugate exponent to p defined by

1 1
—+-=1.
p q
If a and b are nonnegative real numbers, then
p bq
ab< T+ = (2.8)
p q

with equality if and only if a? /b7 = 1. Moreover, for any € > 0, then there is C = C(p,€) > 0
such that

ab < ea? + Ob? .

PRrROOF. The function u : [0,00) — R given by

tr 1
u(t)= —+ - —t
®=2%3
has minimum value 0, attained only with ¢t = 1. Apply this fact to t = ab~%/P to obtain main
result. Replace ab by [(ep)'/Pa][(ep)~'/Pb] to obtain the final result. O

This leads us immediately to Holder’s Inequality. When p = 2, the inequality is also called
the Cauchy-Schwarz Inequality.

THEOREM 2.8 (Holder’s Inequality). Let 1 < p < oo and let q denote the conjugate exponent
(i.e., 1/p+1/q =1, with the convention that ¢ =oco ifp=1and q=1 if p=o00). If z,y € F,
then

d
D lznynl < llzlle, lylle,
n=1

PROOF. The result is trivial if either p or ¢ is infinity. Otherwise, simply apply (2.8) to
a = |z,|/||z]le, and b= |yn|/[|y|le, and sum on n to see that

d d d
|£L‘n| |yn |xn|p |yn|q 1 1
2 <2 Rl il “pta
n=1

lle,, lylle, — dlvlly, pooa

Thus the conclusion follows. O
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We can now finish our proof that each | - ||, is in fact a norm on F?; it remains only to show
the triangle inequality for 1 < p < oo. For z,y € F?, simply apply Hélder’s inequality twice as
follows:

d d
(e Z, = Z |20+ yn " < Z |2p + yn‘p_l(‘xn‘ + |ynl)
n=1

n=1

d 1/q
< (Dxnmr@—m) (lzlle, +llylle,) -
n=1

Since (p — 1)¢g =p and 1 — 1/q = 1/p, we have the triangle inequality
1z 4+ ylle, < llzlle, + llylle,

as desired.

PROPOSITION 2.9. Let 1 < p < co. For any x € F¢,

I2llews < llzlle, < dPl2]le.,

with equality possible.

This result is trivial, and shows that all the £,-norms [[z[,,, 1 < p < oo, are equivalent on
F?, and it gives the optimal bounding constants with respect to the fo-norm.

A fundamental difference between finite and infinite dimensional spaces NLS’s is that in
finite dimensions, a closed and bounded set is always compact, but this statement turns out to

be untrue in infinite dimensions. This is closely related to another fundamental difference: in
finite dimensions, all norms are equivalent, and so there is in fact only one norm topology.

PRrROPOSITION 2.10. Let X be a finite dimensional NLS. All norms on X are equivalent.
Moreover, a subset of X is compact if and only if it is closed and bounded.

PROOF. Let d be the dimension of X, and let {e,}¢_; be a basis. We defined earlier the
coordinate mapping T : X — F?. Let || - || denote any norm of X, and let
[l = 1T (2)[ley

be a second norm. We will show that these two norms are equivalent, which then implies that
any pair are equivalent.

The space (X, | - |l1) is essentially F?, on which we assume the norm | - ||,,. In fact, by
definition of the norm || - ||1, the coordinate map T : (X, ||-||1) — F? is bounded, i.e., continuous,
as is its inverse, which is also a linear function. Thus, (X, || -||1) and F¢ are homeomorphic as
topological spaces, and also isomorphic as vector spaces. The Heine-Borel Theorem states that
every closed and bounded subset of F¢ is compact, so the same is true of (X, ||-||1). In particular,
St ={x € X :||z||y = 1} is compact.

For xz € X,

]l =

d d
anen < Z |Zn| [lenl] < Cllzli
n=1 n=1
where C' = max,, ||e,|| < co. This is one of the two bounds needed to show that the norms are
equivalent. Moreover, we conclude that the topology on X generated by || - ||; is stronger than
that generated by || - || (i.e., every open set of (X, || -||) is an open set of (X, || -]|1)). Because a
norm is continuous in its own topology, we conclude that the function || - || : (X, - [1) — R is
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also continuous (i.e., the inverse image of every open set in R is open in (X, || - ||), and thus also
open in (X, || - [|1)).
Now let

a= inf ||| .
xES%
Since S7 is compact and || - || is continuous, the function must take on its minimal value. That
is, there is some x1 € S such that a = ||z1]|, which is then strictly positive since 1 # 0. That
is, for any = € X, scaling implies that
||| > allz1, a>0,
which is the other bound needed and shows that in fact the two norms are equivalent. Finally,
the compactness result now holds in general, since there is only one norm topology on X. [

Within the course of the above proof, we established that for a given dimension d, there is
only one NLS structure. Infinite dimensional spaces are more interesting.

COROLLARY 2.11. Every NLS of dimension d < oo is isomorphic and homeomorphic to F¢,
and so is a Banach space.

We leave the following corollary for the reader.

COROLLARY 2.12. If X and Y are NLS’s, X finite dimensional, and T : X — Y linear,
then T is bounded. Moreover, the dual space X* is isomorphic and homeomorphic to FC.

2.2.2. The spaces ¢,. Let p lie in the range [1,00) and define the real vector spaces and
norms

o0 1/p
0, = {x ={zn}pzg i 2n €F and ||zfy, = (Z |xn|p> < oo} ,
n=1

and, if p = oo,
log = {a; ={x,}22 i xn €F and ||z, = sup|a,| < oo} .
n

These spaces are NLS’s over F, since it is easy to verify that they are vector spaces and since
| - ll¢, can be shown to be a norm using the techniques of the previous section. In fact, we have
the infinite dimensional version of Holder’s Inequality.

THEOREM 2.13 (Holder’s Inequality in ¢,). Let 1 < p < oo and let ¢ denote the conjugate
exponent (i.e., 1/p+1/q=1). If x € £, and y € {,, then

oo
> lznynl < lalle, llylle, -

n=1

We leave the details of the proof of these assertions to the reader. Moreover, it is not difficult
to show that

Ly, Cly whenever p < q .

Moreover, if 1 < p < o0, £, is countably infinite dimensional, having the basis {et -2, where
el, = 0 except e” = 1. In infinite dimensions, by a basis, we mean a set for which the set of
finite linear combinations is dense in the space; that is, our infinite series must converge in the
norm of the space. Thus, {e"}fil is not a basis for £, since infinite series do not converge in

the ¢o-norm.
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Let ¢y C f be the linear subspace defined as
co = {{J;n};’f:l : lim 2, = 0} )
n—oo
which is a NLS using norm || - ||¢... Another interesting subspace is

fe { {zn}o, : @, =0 except for a finite }

number of values of n
These normed linear spaces are related to each other; indeed if 1 < p < o0,
fClyCcyCls .

On f it is easy to construct a linear functional that is not continuous. Consider, for example,

T(z) = in:pn ,
n=1

for which e’ € f gives T'(e?) = i, but ||e’||,., = 1. Thus there can be no bound C' in the expression
T(z)| < Cllzllen -

The spaces £,, 1 < p < oo are complete, though this requires proof, which follows from the
completeness of F and is left for the exercises. However, if we take the vector space ¢1 and equip
it with the £y -norm, this is a NLS, but not a Banach space. To check this, first note that ¢; is
a linear subspace of . Indeed, if z = (21, x9,...) € £1, then

o0
[@len = sup fai| <D Jay] = |aly, < oo
i>1 —
7j=1
Hence ¢; with the /,-norm is a NLS. To see it is not complete, consider the following sequence.
Define {y;}72, C 41 by

111 1
ykZ(yk,hyk,Q,---):(l 70,0,...>,

7§7§717"'7k7
k=1,2,3,... . Then {y;}?2, is Cauchy in the {o-norm. For if k& > m, then
‘ ’ < #

If ¢; were complete in the {o-norm, then {y;}72, would converge to some element z € ¢;. Thus
we would have that

Yk — zlee — 0
as k — oo. But, for j > 1,
Wk — 251 < lyk = 2les

where y; ; and z; are the jt"-components of y;, and z, respectively. In consequence, it is seen
that z; = 1/j for all j > 1. However, the element

. (1 N S )
727374?"'7[{?]{;_,,_17"'
does not lie in #1, a contradiction. As a corollary, we conclude that an infinite dimensional vector
space may have multiple NLS structures imposed on it.

LEMMA 2.14. If p < 1, then || - ||, is not a norm on £p,.
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To prove this, show the unit ball B;(0) is not convex, which would otherwise contradict
Prop. 2.3. It is also easy to see directly that the triangle inequality does not always hold. We
leave the details to the reader.

The Holder inequality implies the existence of continuous linear functionals. Let 1 < p < oo
and ¢ be conjugate to p. Then any y € ¢, can be viewed as a function Y : £, — [F by

Y(z) = an Yn for all z € £, . (2.9)
n=1

This is clearly a linear functional, and it is bounded, since

Y (@) < (lylle,) e, -

In fact, we leave it to the reader to show that

V1= llylle, -

The converse is also true for 1 < p < oo: for any continuous linear functional Y on £, there
is y € {4 such that (2.9) holds. That is, we can identify the dual of ¢, as ¢, under the action
defined by (2.9). Again, we leave the details to the exercises, but it should be clear that we need
to define y, = Y (e"), where €” is from the standard basis. The main concern is justifying that
y € £,. We also have that ¢ = /1, but the dual of /, is larger that ¢;.

2.2.3. The Lebesgue spaces L,(2). Let Q C R? be measurable and let 0 < p < co. We
denote by L, () the class of all measurable functions f : Q@ — F such that

/Qlf(x)l” dz < oo . (2.10)

An interesting point arises here. Suppose f and g lie in L,(€2) and that f(x) = g(x) for a.e.
x € §2. Then as far as integration is concerned, one really cannot distinguish f from g. For
example, if A C 2 is measurable, then

t/\fﬁdw=i/lgﬁdx-
A A

Thus within the class of L,(Q2), f and g are equivalent. This is formalized by modifying the
definition of the elements of L,(€2). We declare two measurable functions that are equal a.e. to
be equivalent, and define the elements of L,(2) to be the equivalence classes

[fl={9:Q—=F:g=fae onQ}

such that one (and hence all) representative function satisfies (2.10). However, for convenience,
we continue to speak of and denote elements of L,(£2) as “functions” which may be modified on
a set of measure zero without consequence. For example, f = 0 in L,(2) means only that f =0
a.e. in Q.

The integral (2.10) arises frequently, so we denote it as

|um={1gﬂwvm}mf

and call it the L,(€2)-norm. We will indeed show it to be a norm.
A function f(x) is said to be bounded on Q by K € R if |f(x)| < K for every x € Q. We
modify this for measurable functions.
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DEFINITION. A measurable function f :  — C is essentially bounded on Q by K if |f(x)| <
K for a.e. x € . The infimum of such K is the essential supremum of |f| on €2, and denoted

ess sup,cq | f(x)].
For p = oo, we define || f|loc = ess sup,cq |f(z)|. Then for all 0 < p < oo,
Lyp(€) = {f : |fllp < oo} .

PROPOSITION 2.15. If 0 < p < oo, then L,(Q2) is a vector space and || f||, = 0 if and only if
f=0ae. in.

ProOF. We first show that L,(€) is closed under addition. For p < oo, f,g € L,(€2), and
x € €,

@)+ 9@ < (1F@) +1g(@)]) <2 (1@ + lg(@)l?) -

Integrating, there obtains || f + g|l, < 2(||fI[b + |lg|lb)*/P < co. The case p = oo is clear.
For scalar multiplication, note that for a € F,

leefllp = Ted £l »
so f € L,(Q) implies af € L,(€2). The remark that || f||, = 0 implies f = 0 a.e. is clear. O

These spaces are interrelated in a number of ways.

THEOREM 2.16 (Holder’s Inequality in Ly). Let 1 < p < oo and let g denote the conjugate
exponent defined by
1 1
pTg=1 (=00 ifp=1,g=1ifp=o0)
If f € Ly,(Q) and g € Ly(QQ), then fg € L1(?) and

1fglly < I fllpllgllq -
If 1 < p < 00, equality occurs if and only if | f(x)|P and |g(x)|? are proportional a.e. in €.

PROOF. The result is clear if p = 1 or p = co. Suppose 1 < p < co. Recall that (2.8) implies
that for a,b > 0,

aP bl
ab< —+ — |
p q
with equality if and only if a”/b% = 1. If || f||, = 0 or ||g||[; = 0, then fg =0 a.e. on Q and the
result follows. Otherwise let a = |f(x)|/|/fll, and b = |g(z)|/||g|l; and integrate over . O

We complete the proof that L,(2) is a NLS by showing the triangle inequality. This is called
Minkowski’s Inequality.

THEOREM 2.17 (Minkowski’s Inequality). If 1 < p < 0o and f and g are measurable, then

1+ glly < [1fllp + llgllp -

ProoF. If f or g ¢ L,(€2), the result is clear, since the right-hand side is infinite. The result
is also clear for p =1 or p = oo, so suppose 1 < p < oo and f,g € L,(2). Then

I+l = [ 1)+ g de < [ 17@)+ 9P~ (1£@)] +lo(a)l) do

1/q

< ([ @+ gl ras) (151 + ol
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by two applications of Hoélder’s inequality, where 1/p + 1/¢ = 1. Since (p — 1)¢ = p and
1/g=(p—1)/p,
1F+ gl < 1+ gllb (1 fllp + llglly) -

The integral on the left is finite, so we can cancel terms (unless ||f + g||, = 0, in which case
there is nothing to prove). O

PROPOSITION 2.18. Suppose Q C R? has finite measure (u() < o0) and 1 < p < ¢ < co. If
f e Ly(Q), then f € L,(Q) and

1/p—1
11 < (a()" 51l
If f € Lo(R2), then
lm || f[lp = [|.flloo -
p—00
If f € L,(Q) for 1 <p < oo and there is K > 0 such that
1fllp < K
then f € Loo(2) and || flloo < K.
We leave the proof of this as an exercise, though the latter two results are nontrivial.

PROPOSITION 2.19. Suppose that 1 < p < oo and Q C R? is measurable. Then L,(Q) is
complete, and hence a Banach space.

PrOOF. Let {f,}22, be a Cauchy sequence in L,(2). Select a subsequence such that

an].+1 —fn].Hp <27, j=1,2,...
Define the monotone increasing sequence of positive functions

F () = | fi (2 |+Z|fnm — fn; ()],

for which F(z) = lim F,,(z) may be +o00 for some points. However,
m—0o0

m
1Enllp < faillp +D 277 < I fullp +1-
j=1
We claim that F' € L,(12), and, in particular, that F(z) < oo for a.e. z € Q. When p < oo,
Lebesgue’s Monotone Convergence Theorem 1.44 shows that

[IF@Pds= [ lim [Fu(@lde= lim [Fa@} < (1l + 17
Q QTTL‘)OO m—0o0
When p = oo, we let A,,, be a set of measure zero such that

|Fn (@) < [[Finlloo < [[failloo +1 for o ¢ Ap, |

and let A be the (countable) union of the A,,, which continues to have measure zero. Thus,
provided that z € A, our bound holds for every m and therefore also for the limit function F'.
Now the collapsing sequence

fnj+l(x) = fn1($) + (fnz(x) - fnl(x)) +e (fnj+1 (33) - fnj (x))

converges absolutely for a.e. z € Q to some f(z). In fact,

|fny (@) < F()
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so f € Ly(Q2) follows immediately for p = oo, and, for p < oo, from Lebesgue’s Dominated
Convergence Theorem 1.46, since FP € L gives a bounding function for | f|P.

We finally claim that || f,, — f||, — 0. When p < oo, the Dominated Convergence Theorem
applies again with the bounding function

|fn; (@) = f(2)| < F(x) + | f(z)| € Lp(€2) .
If p = oo, let By, n, be a set of measure zero such that
’fnj(x) — [ (2)] < ||fnj — frplloo  for z & an,nk )

and let B be the union of the A and an,nm which continues to have measure zero. The right
side can be made as small as we please, say to € > 0, provided n; and nj are large enough.
Taking the limit on ny — oo, we obtain that

’fn;-(lf)—f(ﬂf)’ <e forzeQ\B,

which demonstrates the desired convergence.
It remains to consider the entire sequence. Given € > 0, we can choose N > 0 such that for
n,n; > N, || fn — fu;llp < €/2 and also || fn; — fl, < €/2. Thus

1 = fllp < (1 fn = s llp + [ fn; = fllp <€,

end the entire sequence converges to f in L,(12). O

A consequence of Holder’s Inequality is that we can define linear functionals. Let 1 < p < o
and let ¢ be the conjugate exponent. For g € L,(€2), we define Ty, : L,(2) — F for f € L,(2) by

7,0 = [ fa)gle) ds
Holder shows that this is well defined (i.e., finite), and further that

Ty ()] < llgllgll £l
so Ty is bounded, since it is easy to veryfy that Ty is linear; that is, Ty € (L,(€2))*. Moreover,

we leave it to the reader to verify that in fact
1Tyl (L, () = llgllq -

It is natural to ask if these are all the continuous linear functionals. The answer is “yes”
when 1 < p < oo, but “no” for p = co. To present the details of the proof here would take us
far afield of functional analysis, so we state the following without proof (see, e.g., [Ru2] for the
proof, which uses the important measure theoretic Radon-Nikodym Theorem).

PROPOSITION 2.20. Suppose that 1 < p < oo and Q € R? is measurable. Then
(Lp()" =A{Ty : g € Ly(D)} .
Moreover, ||Tgl|(1, )~ = llgllq-

Functions in L,(€2) can be quite complex. Fortunately, each is arbitrarily close to a simple
function s(x) with compact support, i.e., s(x) = 0 outside some ball, but only when p < cc.

PROPOSITION 2.21. The set S of all measurable simple functions with compact support is
dense in Ly(2) when 1 < p < oco.
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PRrROOF. It is clear that S C L,(Q2). For f € L,(Q2), f > 0, we have a sequence of simple
functions with compact support as given in the proof of Theorem 1.34. Now 0 < s,(z) < f(x),
sp(x) — f(x), and | f — s, [P < fP € L(£), so the Dominated Convergence Theorem 1.46 implies
that || f — sp||[p — 0 as n — oo. The case of a general f follows from the positive case. g

If we prefer, we can reduce to the set Cy(2) of continuous functions with compact support.
PROPOSITION 2.22. For 1 <p < oo, Cp(Q) is dense in L,(€2).
ProoOF. Given € > 0, we know that there is s € S such that

If = sllp <e.

By Lusin’s Theorem 1.42, given n > 0, there is g € Cy(€2) such that g and s agree except on a
set A of measure less than 7, and |g| < [|s]/co. Thus

1/p
1f=gllp < If —sllp+[Is —gllp < e+ { /A s — gl”dx} < e+2||s]loon™?

which can be made as small as we please by choosing € small, fixing s, and then choosing 7
small. 0

2.3. Hahn-Banach Theorems

Attention is now turned to the three principal results in the elementary theory of Banach
spaces. These theorems will find frequent use in many parts of the course. They are the
Hahn-Banach Theorem, the Open Mapping Theorem, and the Uniform Boundedness Principle.
A fourth theorem, the Banach-Alaoglu Theorem, is also presented, as it finds fundamental
importance in applied mathematics.

The Hahn-Banach theorems enable us to extend linear functionals defined on a subspace to
the entire space. The theory begins with the case when the underlying field F = R is real, and
the first crucial lemma enables us to extend by a single dimension. The main theorem then
follows from this result and an involved induction argument. The corresponding result over C
follows as a corollary from an important observation relating complex and real linear functionals.
In the case of a NLS, we can even extend the functional continuously. But first a definition.

DEFINITION. Let X be a vector space over F. We say that p: X — [0,00) is sublinear if it
satisfies for any =,y € X and real A > 0

p(Azx) = Ap(x) (positive homogeneous),
p(x+y) < plx)+p(y) (triangle inequality).
If p also satisfies for any z € X and A € F
p(Az) = [A[p(z) ,

then p is said to be a seminorm.

Thus a sublinear function p is a seminorm if and only if it satisfies the stronger homogeneity
property p(Ax) = |A|p(z) for any A € F, and a seminorm p is a norm if and only if p(x) = 0
implies that = 0.

LEMMA 2.23. Let X be a vector space over R and let Y C X be a linear subspace such that
Y £ X. Let p be sublinear on X and f:Y — R be a linear map such that

fy) <py) (2.11)
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forally €Y. For a given xg € X \Y, let

Y =span{Y,zo} =Y +Rag={y+ Azo:y €Y, AeR}.
Then there exists a linear map f :Y — R such that
fly = f and —p(-=z) < f(z) < p(x) (2.12)
forallz €Y.

_ Proor. We need only find f such that f(z) < p(z), since then we also have —f(z) =
f(=z) < p(—z). i ~
Suppose there was such an f. What would it have to look like? Let § = y+ Azg € Y. Then,
by linearity,
F@) = Fy) + Af(x0) = f(y) + Aa (2.13)

where a = f (zg) is some real number. Therefore, such an f , were it to exist, is completely
determined by «. Conversely, a choice of o determines a well-defined linear mapping. Indeed, if
J=y+ o=y +Naog,
then
y—y =N —=Nag .
The left-hand side lies in Y, while the right-hand side can lie in Y only if A’ — X\ = 0. Thus
A=) and then y = y'. Hence the representation of z in the form y + Az is unique and so
a choice of f(xz¢p) = a determines a unique linear mapping by using the formula (2.13) as its
definition.
It remains to be seen whether it is possible to choose « so that (2.12) holds. This amounts
to asking that for all y € Y and A € R,
F(y) + Aa = fy + Azo) < ply + Axo) - (2.14)
Now, (2.14) is true for A = 0 by the hypothesis (2.11). If A # 0, write y = —\z, or z = —y/A
(that is, we will remove X\ by rescaling). Then, (2.14) becomes
—A(f(z) = @) < p(=A(z — 20))
or, when A\ < 0,
f(@) —a<plx— ) ,
and, when \ > 0,
—(f(z) — @) < p(—(z — z0)) ,
for all x € Y. This is the same as the two-sided inequality
—p(zo — 2) < f(2) — a < p(z — x0)

fx) —plx —z0) <a < f(x)+play — ) . (2.15)

Thus any choice of « that respects (2.15) for all z € Y leads via (2.13) to a linear map f with
the desired property. Is there such an a? Let
a = sup f(z) — p(x — zo)
ey
and
b= inf f(x)+plxo—z).
ey
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If it is demonstrated that a < b, then there certainly is such an o and any choice in the non-empty
interval [a,b] will do. But, a calculation shows that for z,y € Y,

f(x) = fly) = flz —y) <plx —y) <p(x —z0) + p(r0 — V) ,

on account of (2.11) and the triangle inequality. In consequence, we have

f(@) = pl@ —x0) < f(y) +p(z0 —y) ,
and this holds for any x,y € Y. Fixing y, we see that

sup f(z) — p(z — z0) < f(y) + p(zo —y) -
€Y
As this is valid for every y € Y, it must be the case that
a = sup f(z) — p(zr — xo) < inf f(y) +plzo—y) =0b.
zeY yey
The result is thereby established. O

We now want to successively extend f to all of X, one dimension at a time. We can do this
trivially if X \Y is finite dimensional. If X \'Y were to have a countable vector space basis,
we could use ordinary induction. However, not many interesting NLS’s have a countable vector
space basis. We therefore need to consider the most general case of a possibly uncountable
vector space basis, and this requires that we use what is known as transfinite induction.

We begin with some terminology.

DEFINITION. For a set .S, an ordering, denoted by =, is a binary relation such that:

(a) = = x for every x € S (reflexivity);

(b) If 2 <y and y < z, then z = y (antisymmetry);

(¢) If x <y and y < z, then x < z (transitivity).
A set S is partially ordered if S has an ordering that may apply only to certain pairs of elements
of S, that is, there may be x and y in S such that neither x < y nor y < x holds. In that case,
x and y are said to be incomparable; otherwise they are comparable. A totally ordered set or
chain C'is a partially ordered set such that every pair of elements in C' are comparable.

LEMMA 2.24 (Zorn’s Lemma). Suppose S is a nonempty, partially ordered set. Suppose that
every chain C C S has an upper bound; that is, there is some u € S such that

z=u forallxeC .
Then S has at least one maximal element; that is, there is some m € S such that for any x € S,
m=x == m=2=x.
This lemma follows from the Aziom of Choice, which states that given any set S and any
collection of its subsets, we can choose a single element from each subset. In fact, Zorn’s lemma
implies the Axiom of Choice, and is therefore equivalent to it. Since the proof takes us deeply

into logic and far afield from Functional Analysis, we accept Zorn’s lemma as an Axiom of set
theory and proceed.

THEOREM 2.25 (Hahn-Banach Theorem for Real Vector Spaces). Suppose that X is a vector
space over R, Y is a linear subspace, and p is sublinear on X. If f is a linear functional on'Y
such that

f(z) < p(x) (2.16)
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for all x € 'Y, then there is a linear functional F' on X such that
Fly =f
(i.e., F' is a linear extension of f) and
—p(—x) < F(z) < p(z)
forallx € X.

PROOF. Let S be the set of all linear extensions g of f, defined on a vector space D(g) C X,
and satisfying the property g(x) < p(x) for all x € D(g). Since f € S, S is not empty. We
define a partial ordering on S by g = h means that A is an extension of g. More precisely, g < h
means that D(g) C D(h) and g(z) = h(x) for all z € D(g).

For any chain C' € S, let

D= D),
geC

which is easily seen to be a vector space since C is a chain. Define for x € D

ge(x) = g(x)

for any g € C such that x € D(g). Again, since C is a chain, g¢ is well defined. Moreover, it is
linear and D(g¢) = D. Hence, g¢ is in S and it is an upper bound for the chain C.

We can therefore apply Zorn’s Lemma to conclude that S has at least one maximal element
F. By definition, F' is a linear extension satisfying F'(xz) < p(z) for all x € D(F). It remains
to show that D(F) = X. If not, there is some nonzero x € X ~ D(F'), and by the previous
extension result, we can extend F to F on D(F) + Rx. This contradicts the maximality of F,
so I is a linear extension satisfying our desired properties. O

THEOREM 2.26 (Hahn-Banach Theorem for General Vector Spaces). Suppose that X is a
vector space over F (R or C), Y is a linear subspace, and p is a seminorm on X. If f is a
linear functional on'Y such that

|f(z)] < p(x) (2.17)
for all x € Y, then there is a linear functional F' on X such that
Fly =f
(i.e., F is a linear extension of f) and
|F(2)| < p(z)

forallx € X.

PROOF. Write f in terms of its real and imaginary parts, viz. f = g+ ih, where g and h are
real-valued. Clearly g(y + 2) = g(y) + ¢9(2) and h(y + z) = h(y) + h(z). If A € R, then

f(Az) = g(Ax) + ih(A\x)
I
A (z) = Ag(x) +i\h(x) .

Taking real and imaginary parts in this relation and combining with the fact that g and h
commute with addition shows them both to be real linear. Moreover, g and h are intimately
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related. To see this, remark that for z € Y,

fliz) = if(z) = ig(x) — h(zx) = —h(z) + ig(z)
[
g(iz) +ih(iz) .
Taking the real part of this relation leads to

gliz) = —h(z) ,
so that, in fact,
f(@) = () — iglix) . (2.18)
Since g is the real part of f, clearly for x € Y,
lg(2)| < |f(2)] < p(x) (2.19)

by assumption. Thus g is a real-linear map defined on Y, considered as a vector subspace of X
over R. Because of (2.19), g satisfies the hypotheses of Theorem 2.25, so we obtain an extension
G of g such that G is an R-linear map of X into R which is such that

G ()] < p(x)
for all z € X. Use (2.18) to define F":
F(z)=G(x) —iG(ix) .
It is to be shown that F' is a C-linear extension of f to X and, moreover, for all z € X,
IF(2)| < pla) (2.20)

First we check that F' is C-linear. As it is R-linear, it suffices to show F'(ix) = iF'(x). But this
is true since

F(iz) = G(iz) —iG(—x) = G(iz) + iG(z) = i(G(z) — iG(ix)) = iF () .

Inequality (2.20) holds for the following reason. Let x € X and write F(x) = re for some
r > 0. Then, we have

r=|F(z)| = e "F(z) = F(ez) = G(e"z) < ple™x) = p(a) ,

since F(e™z) is real. O

COROLLARY 2.27 (Hahn-Banach Theorem for Normed Linear Spaces). Let X be a NLS over
F (R or C) and let Y be a linear subspace. Let f € Y* be a continuous linear functional on'Y .
Then there is an F' € X* such that

Fly =f
and

[E N x= = 1 flly= -

PRrROOF. Simply apply the Hahn-Banach Theorem to f, using seminorm

p(x) = ||f]
We leave the details to the reader. O
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2.4. Applications of Hahn-Banach
COROLLARY 2.28. Let X be a NLS and xg # 0 in X. Then there is an f € X* such that
Ifllx+ =1 and f(xo) = [0l -
PROOF. Let Z = Fxg = span{xg}. Define h on Z by

h(Azg) = Al|zo]| -
Then h : Z — F and h has norm one on Z since for z € Z, say x = Az,
|h(@)] = |h(Azo)| = [Mlzoll | = [[Azoll = [l] -

By the Hahn-Banach Theorem, there exists f € X* such that f|z = h and ||f|| = |h||=1. O
COROLLARY 2.29. Let X be a NLS and xq € X. There exists an f € X* such that
f(@o) = 1 fllx=llzoll -

The proof is similar to that above.

COROLLARY 2.30. Let X be a NLS and xg € X. Then

f Zo

leoll = sup LE G 1 po)l
fex* HfHX* fex*
f#0 IIfll=1

PROOF. In any event, we always have

[ o)l [Ifllx+llzollx
Ifllx = Ifllx=

= [lzoll ,

and consequently

- | f(z0)]
p
rex 1fllx
f£0

On the other hand, by Corollary 2.29, there is an f € X* such that f(z) = ||f|| |lzol|. It follows
that

< [lzoll -

[f(zo)| o |f(o)| _ .

fexx
f#0
ProproOSITION 2.31. Let X be a NLS. Then X* separates points in X.

PROOF. Let 1,22 € X, with 1 # x5. Then zo — 1 # 0, so by Corollary 2.28, there is an
f € X* so that
flxg —x1) #0 .
Since f is linear, this means
f(x2) # f(z1) ,
which is the desired conclusion. ([l
COROLLARY 2.32. Let X be a NLS and x¢ € X such that f(xzg) =0 for all f € X*. Then
zg = 0.

ProoF. This follows from either of the last two results. O
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LEMMA 2.33 (Mazur Separation Lemma 1). Let X be a NLS, Y a linear subspace of X and
w € X NY. Suppose
d = dist(w,Y) = inf |w—y|/x >0 .
yey

Then there exists f € X* such that || f||x~ <1,
fw)y=d and f(y)=0 forall yeY .

PRrROOF. As before, any element x € Z = Y + Fw has a unique representation in the form
x =1y + A\w. Define g : Z — F by
gy +  w) = X\d .
It is easy to see g is F-linear and that ||g||z+ < 1. The latter is true since, if z € Z, x = y+Aw # 0,
then if A\ =0, z € Y and so |g(z)| = 0 < 1, whereas if A\ # 0, then

< Y+ \w ) A 1
g = d= - d .
ly+Awll ) ly + Awl| 15+ wll
Since %y = —z €Y, it follows that

1

o 2.

y+>\w> d
(22 ) <2
QW+AWH d

Use the Hahn-Banach Theorem to extend g to an f € X* without increasing its norm. The
functional f meets the requirements in view. O

In consequence, we have

DEFINITION. A NLS is separable if it contains a countable, dense subset.

Separable spaces, although very large, are in some ways like smaller, countable spaces. Given
any point in the larger space, it is arbitrarily close to a point in the countable, dense subset.
Separable spaces arise frequently in applied mathematics.

EXAMPLES. (a) The rational numbers Q are countable, and dense in R. Also, the countable
set Q+iQ is dense in C. Thus F¢ is separable for any finite dimension d. Moreover, if 1 < p < oo,
we have a countable basis {e, }°2; for £,, and a countable dense subset given by taking rational
coefficients (i.e., in Q or Q +iQ). We leave the details to the reader.

(b) If © C R? is measurable and 1 < p < oo, then L,(Q) is separable. This follows from
Proposition 2.21, which allows us to approximate and f € L,(£2) by a simple function with
compact support. These in turn can be approximated (in the L,(2)-norm) by simple functions
with range in Q or Q + iQ, depending on the base field F, and characteristic functions of
rectangles having edges in Q¢. That is, the countable set of rational simple functions on rational
rectangles is dense in L,(2), so L,(12) is separable.

PROPOSITION 2.34. Let X be a Banach space and X™* its dual. If X* is separable, then so
s X.

PRrROOF. Let {f,}22, be a countable dense subset of X*. Let {z,}>%, C X, be such that
leall =1 and |fa(en)l 2 50full =12,
Such elements {x,}°° ; exist by definition of the norm on X*. Let D be the countable set

Do all finite linear combinations of the {x,}72
B with rational coefficients '
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We claim that D is dense in X. If D is not dense in X, then there is an element wy € X \.D.
The point wy is at positive distance from D, for if not, there is a sequence {z,}°°; C D such
that z, — wg. As D is closed, this means wy € D and that contradicts the choice of wy. From
Lemma 2.33, there is an f € X* such that

fl3=0 and f(wp) =d= inf ||z —wo|x > 0.
zeD

Since f € X*, there is a subsequence {f,, }32,; C X* such that f,, X, f, by density. In
consequence,

1 = Fallses 2 [(F = i) (@)

Hence || fp,|[x+ — 0 as k — oo, and this means f = 0, a contradiction since f(w) =d >0. O

We can also use the Hahn-Banach Theorem to distinguish sets that are not strictly subspaces,
as long as the linear geometry is respected. The next two lemmas consider convex sets.

LEMMA 2.35 (Mazur Separation Lemma 2). Let X be a NLS, C a closed, convex subset of
X such that \x € C whenever x € C and |A\| < 1 (we say that such a set C is balanced). For
any w € X N\ C, there exists f € X* such that |f(x)| <1 for allz € C and f(w) > 1.

PRrROOF. Let B € X be an open ball about the origin such that B 4+ w does not intersect C.
Define the Minkowski functional p : X — [0, 00) by

p(x) =inf{t >0: 2/t € C+ B} .

Since 0 € C, p(x) is indeed finite for every x € X (i.e., eventually every point can be contracted
at least into the ball 0 + B). Moreover, p(z) <1 for x € C, but p(w) > 1.

We claim that p is a seminorm. First, given x € X, A € F, and ¢t > 0, the condition
Ax/t € C + B is equivalent to |Az/t € (|A|/A\)(C + B) = C + B, since C' and B are balanced.
Thus

p(Az) = p(|Alz) = [Alp(z) .
Second, if 2,y € X and we choose any r > 0 and s > 0 such that /r € C+ B and y/s € C'+ B,
then the convex combination
r o x + s Yy _ zT+y

- == €eC+B,
s+rr S+rs s+r

and so we conclude that
p(z+y) <p(@)+py) -
Now let Y = Fw and define on Y the linear functional
f(Aw) = Ap(w),
so f(w) = p(w) > 1. Now
|f(Qw)| = [A| p(w) = p(Aw)
so the Hahn-Banach Theorem gives us a linear extension with the property that
|f(2)] < p(x)
that is, |f(z)] < 1 for x € C C C + B, as required. Finally, f is bounded on B, so it is

continuous. O

Not all convex sets are balanced, so we have the following lemma. We can no longer require
that the entire linear functional be well behaved when F = C, but only its real part.
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LEMMA 2.36 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex
sets in a NLS X.

(a) If A is open, then there is f € X* and v € R such that
Ref(z) <y <Ref(y) VreA,yeB.

(b) If both A and B are open, then there is f € X* and v € R such that
Ref(x) <y <Ref(y) Vre A, yeB.

(c¢) If A is compact and B is closed, then there is f € X* and v € R such that
Ref(x) <y <Ref(y) Vre A, yeB.

PrOOF. It is sufficient to prove the result for field F = R. Then if F = C, we have a

continuous, real-linear functional g satisfying the separation result. We construct f € X* by
using (2.18):

f(x) = g(x) —ig(iz) .
So we consider now only the case of a real field F = R.
For (a), fix —~-we A—B={z—y:2€ A,y € B} and let

C=A-B+{w},

which is an open, convex neighborhood of 0 in X. Moreover, w ¢ C, since A and B are disjoint.
Define the subspace Y = Rw and the linear functional g : ¥ — R by

g(tw) =t .
Now let p: X — [0, 00) be the Minkowski functional for C,
p(x) =inf{t >0: 2/t C} .

We saw in the previous proof that p is sublinear (it is not necessarily a seminorm, since C' may
not be balanced, but it does satisfy the triangle inequality and positive homogeneity). Since
w ¢ C, p(w) > 1 and g(y) < p(y) for y € Y, so we use the Hahn-Banach Theorem for real
functionals (Theorem 2.25) to extend g to X linearly. Now g <1 on C, so also ¢ > —1 on —C,
and we conclude that |g| < 1 on C' N (—C), which is a neighborhood of 0. Thus g is bounded,
and so continuous.

Ifre Aandy € B, thena—b+w € C, so

1>g(a—b+w)=g(a) —g(b) +g(w) =gla) —g(b) + 1,
which implies that g(a) < g(b), and the result follows with v = sup,c 4 g(A).

For (b), we use the previous construction. It is left to the reader to show that g(A) is an
open subset of R, since g is linear and A is open. Now both g(A) and g(B) are open subsets
that can intersect only in one point, so they must be disjoint.

For (c), consider S = B — A. Since A is compact, we claim that S is closed. So suppose
there are points x,, € S such that z, = b, — a,, with b, € B and a,, € A and x,, — = in X.
But since A is compact, there is a subsequence (still denoted by a,, for convenience), such that
a, — a € A. But then b, =z, + a, — x4+ a =0b € B, since B is closed. But this implies that
x € S, and the claim follows.

Since 0 ¢ S, there is some open convex set U C X containing 0 such that U N S is empty.
Let A = A+ %U and B = B — %U. Then A’ and B’ are disjoint, convex, open sets, and so
(b) gives a functional with the desired properties, which hold also for the subsets A C A’ and
BcCB. O
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2.5. The Embedding of X into its Double Dual X**

Let X be a NLS and X* its dual space. Since X* is a Banach space, it has a dual space X**
which is sometimes referred to as the double dual of X. There is a natural construction whereby

X may be viewed as a subspace of X** that is described now.
For any = € X, define E, € X** as follows: if f € X* then

Eo(f) = f(z) . (2.21)
We call E, the evaluation map at x € X. First, let us check that this is an element of X**. We
need to see that F, is a bounded linear map on X*. Let f,g € X*, A € F and compute
Eo(f+9) = (f+9)(@) = f(z) + g(x) = Eo(f) + Ex(g)

and

Ex(Af) = (Af)(@) = Af(2) = AE(f) -
Thus E, is a linear map of X™* into [F for each fixed x. It is bounded since, by Corollary 2.30,
E

fexx ”f”X*
f#0

Thus, not only is F, bounded, but its norm in X** is the same as the norm of x in X. Thus we
may view X as a linear subspace of X**, and in this guise, X is faithfully represented in X**.

DEFINITION. Let (M,d) and (N, p) be two metric spaces and f : M — N. The function f
is called an isometry if f preserves distances, which is to say

p(f(z), f(y)) = d(z,y) .

The spaces M and N are called isometric if there is a surjective isometry f: M — N.

= [ -

Note that an isometry is an injective map. If it is also surjective, it is a one-to-one corre-
spondence that preserves open balls,

f(Br($)) = Br(f(x)) )
and so is also a homeomorphism. Metric spaces that are isometric are indistinguishable as metric
spaces. If the metric spaces are NLS’s (X, |- ||x) and (Y,||-||y) and T : X — Y is a linear
isometry, then 7'(X) may be identified with X. In this context, T" being an isometry means that
|zl x = ||T(x)|y for all z € X.
In this terminology, the correspondence F': X — X™** given by

F(x)=E,

is an isometry. Note that F' as a map itself is linear, so F' is an isomorphism. Thus X is
isomorphic and homeomorphic (in fact isometric) to a linear subspace F'(X) C X**. We identify
X as a subspace under the map F'; that is, we identify x and F,, and speak of X as being a
subset of the double dual.

A NLS space X is called reflexive if F' is surjective, i.e., F(X) = X**. A reflexive space
is necessarily complete, i.e., a Banach space. We leave it to the exercises to show that if X is
reflexive, then so is X*. Thus in terms of duals, we have only X and X*. Nonreflexive spaces
may produce a chain of distinct spaces X, X*, X** ... .

EXAMPLE. For 1 < p < o0, £, = {4, where q is the conjugate exponent for p, and consequently

¢, is reflexive. For the Lebesgue space L,(2), @ C R? open, we have that (L,(Q))* = L,(Q)
when 1 < p < oo; however, (Lo (2))* # L1(€2), so L,(£2) is reflexive only for 1 < p < oo,
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2.6. The Open Mapping Theorem

The second of the three major principles of elementary functional analysis is the Open
Mapping Theorem (or equivalently the Closed Graph Theorem). The third is the principle of
uniform boundedness (Banach-Steinhaus theorem). Both of these rely on the following theorem
of Baire.

THEOREM 2.37 (Baire Category Theorem). Let X be a complete metric space. Then the
intersection of any countable collection of dense open sets in X is dense in X.

ProoOF. Let {V;}°, be a countable collection of dense open sets. Let W be any non-empty
open set in X. It is required to show that if V = ﬂj’;l Vj, then VN W # (). Since V; is dense,
W N Vp is a non-empty open set. Thus there is an 1 > 0 and an x7; € W, and without loss of
generality, 71 < 1, such that

Brl(l'l) cwnwv.

Similarly, V5 is open and dense, hence there is an x5 and an ry with 0 < r9 < 1/2 such that
By, (z2) C Vo N By (1) .

Inductively, we determine x,,, 7, with 0 < r,, < 1/n such that

B, (zn) CVoN By, (zp-1), n=234,....
Consider the sequence {x,,}5° | just generated. If i, j > n, then by construction
2
zi, x5 € By () = d(z,25) < — .
n
This shows that {x;}22 is a Cauchy sequence. As X is complete, there is an « for which z; — =
as i — 0o0. Because x; € By, (zy,) for i > n, it follows that x € B, (z,), n = 1,2,... . Hence
x€Vy,n=1,2,... . Clearly, since x € B,,(z1) C W, x € W also. Hence
(o.¢]
reWn )V,
n=1
and the proof is complete. ]

COROLLARY 2.38. The intersection of countably many dense open subsets of a complete
metric space iS non-empty.

DEFINITION. A set A is called nowhere dense if Int(A) = (. A set is called first category if
it is a countable union of nowhere dense sets. Otherwise, it is called second category.

COROLLARY 2.39. A complete metric space is second category.

Proor. If X = (J;Z, M; where each M; is nowhere dense, then X = (J72, Mj, so by
deMorgan’s law,

[e.e]
0= (M5 .
j=1
But, for each j, M 7 1s open and dense since, by Prop. 1.7,

ﬁf = (Int(M;)) " =0°=X .

This contradicts Baire’s theorem. O
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THEOREM 2.40 (Open-Mapping Principle). Let X and Y be Banach spaces and let T : X —
Y be a bounded linear surjection. Then T is an open mapping, i.e., T maps open sets to open
sets.

PROOF. It is required to demonstrate that if U is open in X, then T'(U) is open in Y. If
y € T(U), we must show T'(U) contains an open set about y. Suppose it is known that there is
an r > 0 for which T'(B1(0)) D B,(0). Let x € U be such that Tz = y and let ¢ > 0 be such
that Bi(z) C U. Then, we see that

T(U) > T(By(z)) = T(tB;(0) + z)
— tT(B1(0)) + T > tB,(0) +y = Bu(y) -

As rt > 0, y is an interior point of T'(U) and the result would be established. Thus attention is
concentrated on showing that 7'(U) D B,(0) for some r > 0 when U = B;(0).
We continue to write U for B;(0). Since T is onto,

o0
Y =|JTkU) .
k=1
Since Y is a complete metric space, at least one of the sets T'(kU), k = 1,2,..., is not nowhere

dense. Hence there is a non-empty open set W; such that

Wy Cc T(kU) for some k>1 .

Multiplying this inclusion by 1/2k yields a non-empty open set W = in included in T(%U).
Hence there is a yg € Y and an r > 0 such that

B,(yo) CW CT(3U) .
But then, it must be the case that
B,(0) = B,(y0) — Yo C Br(yo) — Br(yo) C T(3U) —=T(AU) c T(U) . (2.22)

The latter inclusion is very nearly the desired conclusion. It is only required to remove the
closure operation on the right-hand side. Note that since multiplication by a non-zero constant
is a homeomorphism, (2.22) implies that for any s > 0,

Bys(0) C T(sU) . (2.23)
Fix y € B,(0) and an ¢ in (0,1). Since T(U) N B, (0) is dense in B, (0), there exists 1 € U
such that
ly = Ta1lly < 57,
where v = re. We proceed by mathematical induction. Let n > 1 and suppose x1,x2,... , 2y
have been chosen so that

ly —Tay —Tag — - —Taylly <27y . (2.24)
Let z = y— (Tz1+ -+ + Txy), so z € Bys(0), s = 27"y/r. Because of (2.23), there is an
Tnt1 € SU, ie.,
|Tntill <s=2""v/r=2""¢, (2.25)
such that
|2 = Tapi| < 27y
So the induction proceeds and (2.24) and (2.25) hold for all n > 1.
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Now because of (2.25), we know that 37 x; = s,, is Cauchy. Hence, there is an z € X so
that s, — = as n — oo. Clearly

o o
] < gl <1+ > 2 le=1+¢.
j=1 n=2
By continuity of T, T's,, — Tx as n — oo. By (2.24), T's,, — y as n — oco. Hence Tx = y. Thus
we have shown that
T((1+¢)U) > B:(0) ,
or, what is the same,
T(U) > Byy142(0)
That establishes the result. 0

COROLLARY 2.41. Let X,Y be Banach spaces and T a bounded, linear surjection that is also
an injection. Then T~ is continuous.

PROOF. This follows since (T~1)~! = T is open, hence T~! is continuous. O

A closely related result is the Closed-Graph Theorem. If XY are sets, D C X, and f :
D — Y a function defined on the subset D, the graph of f is the set
graph(f) ={(z,y) e X xY :z € D and y = f(x)} .
It is a subset of the Cartesian product X x Y.

PROPOSITION 2.42. Let X be a topological space, Y a Hausdorff space, and f : X — Y
continuous. Then graph(f) is closed in X x Y.

PROOF. Let U = X x Y ~ graph(f). We show that U is open. Fix (zg,y0) € U, so that
yo # f(xo). Because Y is Hausdorff, there exist open sets V and W with yo € V, f(z9) € W
and VN W = (). Since f is continuous, f~*(W) is open in X. Thus, the open set f~1(W) x V
lies in U. ]

QUESTION. Is the last result true if we omit the hypothesis that Y is Hausdorff?

In general, if f : X — Y and graph(f) is closed, it is not implied that f is continuous.
However, in special circumstances, the reverse conclusion is implied.

DEFINITION. Let X and Y be NLS’s and let D be a linear subspace of X. SupposeT : D — Y
is linear. Then T is a closed operator if graph(T') is a closed subset of X x Y.

Since both X and Y are metric spaces, graph(7') being closed means exactly that if {x,,}°° ; C
D with
xngx and Txn—Y—>y,
then it follows that x € D and y = T'x.

THEOREM 2.43 (Closed Graph Theorem). Let X and Y be Banach spaces and T : X —Y
linear. Then T is continuous (i.e., bounded) if and only if T is closed.

PROOF. T continuous implies graph(7') is closed on account of Proposition 2.42, since a
Banach space is Hausdorff.

Suppose graph(7') to be closed. Then graph(T') is a closed linear subspace of the Banach
space X X Y. Hence graph(T') is a Banach space in its own right with the graph norm

I(z, To)|| = llzllx + 1Ty -
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Consider the continuous projections Iy and Il; on X x Y given by
Hl(xay) = and HQ(:E?y) =Y.
Restrict these to the subspace graph(T).

X xY
U
graph(T)
H/ \‘Hz
X Y

The mapping II; is a one-to-one, continuous linear map of the Banach space graph(7') onto X.
By the Open Mapping Theorem,

;! : X — graph(T)
is continuous. But then
T=TMyoll;!: X =Y
is continuous since it is the composition of continuous maps. O

COROLLARY 2.44. Let X and Y be Banach spaces and D a linear subspace of X. Let

T:D —Y bea closed linear operator. Then T is bounded if and only if D is a closed subspace
of X.

Proor. If D is closed, it is a Banach space, so the closed graph theorem applied to T : D —
Y shows T' to be continuous.

Conversely, suppose T" is bounded as a map from D to Y. Let {z,}7°; C D and suppose
xn — x in X. Since T is bounded, it follows that {T'z,} > is a Cauchy sequence, for

[Tzn = Tam| < T lzn = 2m| — 0

as n,m — o0o. Since Y is complete, there is a y € Y such that Tz, — y. But since T is closed,
we infer that x € D and y = T'x. In particular, D has all its limit points, so D is closed. O

ExaMPLE. Closed does not imply bounded in general, even for linear operators. Take
X = C(0,1) with the max norm. Let Tf = f’ for f € D = C'(0,1). Consider T as a mapping
of D into X. Note that D C X is not closed. In fact, D = X, so T is defined on a dense
subspace of X.
T is not bounded. Let f,(x) = 2™. Then | f,|| =1 for all n, but Tf, = nz" ! so | T f.| = n.

T is closed. Let {f,}72; C D and suppose f, X, f and f/ — g. Then, by the Fundamental

Theorem of Calculus,

Falt) = £a(0) + /0 fi(r) dr

for n =1,2,.... Taking the limit of this equation as n — oo yields

=50+ () dr |

so g = f’, by another application of the Fundamental Theorem of Calculus.
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2.7. Uniform Boundedness Principle

The third basic result in Banach space theory is the Banach-Steinhauss Theorem, also known
as the Principle of Uniform Boundedness.

THEOREM 2.45 (Uniform Boundedness Principle). Let X be a Banach space, Y a NLS and
{To}aer € B(X,Y) a collection of bounded linear operators from X to Y. Then one of the
following two conclusions must obtain: either

(a) there is a constant M such that for all a € I,
1TallBx,yy <M,

i.e., the T, are uniformly bounded, or
(b) there is an x € X such that

sup ||Tpx| = +o0o
acl

i.e., there is a single fived x € X at which the Tox are unbounded.
PRrROOF. Define the function ¢ : X — [0, c0] by
() = sup || Taz] ,
acl

forze X. Forn=1,2,3,..., let
Vi={x € X:p(x)>n}.
For each o € I, the map ¢, defined by
Pa(r) = || Toz]
is continuous on X since it is the composition of two continuous maps. Thus the sets
{: | Tazl| > n} = 95" ((n, 00))

are open, and consequently,

V= ea'((n,00))
aecl
is a union of open sets, so is itself open. Each V,, is either dense in X or it is not. If for some
N, Vy is not dense in X, then there is an » > 0 and an xy € X such that

Br(xo) NVy = 0.
Therefore, if x € B,(x¢), then p(z) < N; thus, if ||z|| < r, then for all « € I,
[Ta(zo + 2)[| < N .
Hence if ||z]| < 7, then for all « € I,
[Ta ()| < Tz 4+ zo) || + [ Tazo) || < N + [ Taol| < 2N .
In consequence, we have
4N

sup [[Tof| < —
acl r

and so condition (a) holds.
On the other hand, if all the V,, are dense, then they are all dense and open. By Baire’s

Theorem,
o0
M Va
n=1
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is non-empty. Let z € (72, V5. Then, for all n = 1,2,3,..., ¢(z) > n, and so it follows that
o(z) = +00. O

2.8. Compactness and Weak Convergence in a NLS

In a metric space, an infinite sequence within a compact set always has a convergent subse-
quence. It is therefore useful to characterize compact sets. However, compact sets in a NLS tend
to be quite small. Fortunately, we can define weaker topologies, and thus larger compact sets
and weaker notions of sequential convergence than the one induced by the norm. Some natural
weaker topologies play an interesting and helpful role in numerical analysis and the theory of
partial differential equations.

2.8.1. The norm or strong topology. We begin our study of compactness by noting that
the Heine-Borel theorem is not true in infinite dimensions. That is, a closed and norm-bounded
set with nonempty interior is not compact. First, although we do not have any well-defined
notion of angle in a NLS, we can yet find a point that is nearly orthogonal to a subspace.

THEOREM 2.46. Let X be a NLS, Y a closed subspace, and Z a subspace containing Y. If
Z#Y and 0 < 0 < 1, then there is some z € Z such that ||z|| =1 and
dist(z,Y) >0 .
PROOF. Let zp € Z\ 'Y, and define
d = dist(29,Y)

= inf |20 —y] -
inf llz0 =yl

Since Y is closed, d > 0, so we can find yg € Y such that

d
2220 —woll = d,

0
and set
20 = wol|
Then, for y € Y,
20 — Yo — Yllz0 — vol| |20 — 1] 4
Iz —yll = | - I — =20 —will5 =6,
20 — ol 20 — ol

since y1 = yo + yl|z0 — yol| € Y, Y being a subspace. O

COROLLARY 2.47. If X is an infinite dimensional NLS and M is a closed bounded set with
nonempty interior, then M is not compact.

PRrROOF. It is enough to show the result for the closed unit ball. Let ;1 € X have norm 1.
By induction, we define a sequence x1, o, ... , , such that each has norm 1 and

s = a5l > 1/2

for i,j < n and i # j. We then continue the induction as follows. Let Y = span{z1,za,...,x,}
and choose any x € X \ Y, which is nonempty since X has infinite dimensions. With Z =
span{Y,x} and # = 1/2, the previous theorem gives x, 11 € Z of size 1 and such that

dist(zp41,Y) > 1/2 .
Thus we have constructed an infinite sequence of points that are at least a distance 1/2

apart from each other. There is clearly has no convergent subsequence, and so we conclude that
the closed unit ball cannot be compact. O
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2.8.2. The weak and weak-* topologies. We now define a weaker notion of convergence
than norm convergence.

DEFINITION. Let X be a NLS and {z,,}5° ; a sequence in X. We say that {z,,}2%, converges
weakly to x € X if

f(an) — f(x)
for all f € X*. We write x,, — z or x,, — for weak convergence. Let {f,}°%, be a sequence in
X* and f € X*. We say that f, converges weak-x if for each x € X

fo(x) = f(2) .
We write f, -, f to indicate weak-* convergence.

PROPOSITION 2.48. Let X be a NLS and {x,}52, a sequence from X. If {x,}22 | converges

weakly, then its weak limit is unique and {||x,||x}72 is bounded. If {f,}5°, C X* converges

weak-*, then its weak-+ limit is unique. If in addition X is a Banach space, then {|| fnllx=}22,
is bounded.

PRrROOF. Suppose z, — x and z, — y. That means that for any f € X*,
flan) — f(2)

!
()

as n — oo. Consequently f(x) = f(y) for all f € X*, which means = = y by the Hahn-Banach
Theorem.
Fix an f € X*. Then the sequence {f(z,)}>2, is bounded in F, say

|f(xn)| < Cf forall n

since {f(xn)}>2, converges. View z, as the evaluation map E,, € X**. In this context, the
last condition amounts to

| B, (S < Cf

for all n. Thus we have a collection of bounded linear maps {E,, }°2 ; in X** = B(X*,F) which
are bounded at each point of their domain X*. By the Uniform Boundedness Principle, which
can be applied since X™* is a Banach space, we must have

sup [| B, [|x - < €.
n

But by the Hahn-Banach Theorem,

[ B[ xe = [lznllx -

The conclusions for weak-* convergence are left to the reader. O

PROPOSITION 2.49. Let X be a NLS and {x,}°2, C X. If x,, ™ z, then ||z| < liminf ||z, ]|.

We leave this as an exercise; the result follows from the Hahn-Banach Theorem.
We have actually defined new topologies on X and X* by these notions of weak convergence.

DEFINITION. Suppose X is a NLS with dual X*. The weak topology on X is the smallest
topology on X such that each f € X* is continuous. The weak-x topology on X* is the smallest
topology on X* making continuous each evaluation map E, : X* — F, x € X (defined by

EL(f) = [f(x)).
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It is not difficult to describe a base for these topologies. A basic open set containing zero in
the weak topology of X is of the form

U={zeX:|fix)| <ei, i=1,...,n} =) f"(B(0)
i=1
for some n, g; > 0, and f; € X*, where B, (0) = {z € F : |z] < ¢;}. Similarly for the weak-x
topology of X*, a basic open set containing zero is of the form

V={feX":|f(z)| <&, i=1,...,n}=)E; (B(0))
=1

for some n, €; > 0, and x; € X. The rest of the topology is given by translations and unions of
these. If X is infinite dimensional, these topologies are not compatible with any metric, so some
care is warranted. That our limit processes arise from these topologies is given by the following.

PROPOSITION 2.50. Suppose X is a NLS with dual X*. Let x € X and {x,}5°; C X. Then
T, converges to x in the weak topology if and only if z, = z (i.e., f(zn) — f(z) inF for every
f € X*). Moreover, if f € X* and {fn}32, C X*, then f, converges to f in the weak-+ topology

if and only if fy >, f (ie., fu(x) = f(z) in F for every x € X).

Proor. If z,, converges to = in the weak topology, then, since f € X™* is continuous in the
weak topology (by definition), f(z,) — f(z). That is x, = z. Conversely, suppose f(z,) —
f(z)V f € X*. Let U be a basic open set containing x. Then

U=z+{yeX:|fily)<e, i=1,...,m}
for some m, ¢; > 0, and f; € X*. Now there is some N > 0 such that

|fi(xn) — fi(@)] = | filwn — 2)| < &

for all n > N, since f;(z,) — fi(x), so x, = v+ (z, —x) € U. That is, x converges to x, in the
weak topology. Similar reasoning gives the result for weak-* convergence. O

By Proposition 2.48, the weak and weak-* topologies are Hausdorff. Obviously the weak
topology on X is weaker than the strong or norm topology (for which more than just the linear
functions are continuous).

On X*, we have three topologies, the weak-* topology (weakest for which the evaluation
maps C X*™* are continuous), the weak topology (weakest for which X** maps are continuous),
and the strong or norm topology. The weak-* topology is weaker than the weak topology, which
is weaker than the strong topology. Of course, if X is reflexive, the weak-+ and weak topologies
agree.

It is easier to obtain convergence in weaker topologies, as then there are fewer open sets to
consider. In infinite dimensions, the unit ball is not a compact set. However, if we restrict the
open sets in a cover to weakly open sets, we might hope to obtain compactness. This is in fact
the case in X™.

THEOREM 2.51 (Banach-Alaoglu Theorem). Suppose X is a NLS with dual X*, and B is
the closed unit ball in X* (i.e., Bf = {f € X* : ||f|| < 1}. Then Bf is compact in the weak-x
topology.

By a scaling argument, we can immediately generalize the theorem to show that a closed
unit ball of any radius r > 0 is weak-* compact.
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PrOOF. For each z € X, let
B, = {\eF: A < ]}
Each B, is closed and bounded in F, and so is compact. By Tychonoff’s Theorem,

C= x B,
zeX
is also compact. An element of C' can be viewed as a function g : X — F satisfying |g(z)| < ||z||.
In this way, B7 is the subset of C' consisting of the linear functions. The product topology on C
is the weakest one making all coordinate projection maps g — g(z) continuous. As these maps
are the evaluation maps, the inherited topology on B7 is precisely the weak-* topology.

Since C' is compact, we can complete the proof by showing that B is closed in C. Since
X* is not a metric space when endowed with the weak-* topology, we must show that any
accumulation point g of BJ is in B, i.e., linear with norm at most one. Fix z,y € X and A € F.
Since g is an accumulation point, every neighborhood of the form

U=g+{heC:|h(z;))] <ei, i=1,...,m}
intersects By. Given € > 0, there is a neighborhood with m = 4 containing f € BT such that
f=9+h,

where

€ € 2¢
()| bI<s. h@ty)l<s, and [hOw)| <3

&
3max(1,|A])
Thus, since f is linear,
l9(x +y) — g(x) —g(W)| = |h(z +y) — h(z) — h(y)| <€
and
lg(Ax) — Ng(z)| = |[h(Ax) — Ah(x)] < € .

As ¢ is arbitrary, g is linear. Moreover,
€ €
9(@) = 1£(@) — h(@)] < f@)]+ 5 < lall + 5 |
so also |g(z)| < ||z||. That is, g € BY, so Bf is closed. O

What does compactness say about sequences? If the space is metrizable (i.e., there is a metric
that gives the same topology), a sequence in a compact space has a convergent subsequence (see
Proposition 1.27). This is the content of the next theorem.

THEOREM 2.52. If X is a separable Banach space and K C X* is weak-+ compact, then K
is metrizable in the weak-x topology.

PROOF. Recall that separability means that we can find a dense subset D = {x,}2°, C X.
The evaluation maps E, : X* — F, defined by E,(z*) = z*(x,), are weak-* continuous by
definition. If E,(z*) = E,(y*) for each n, then z* and y* are two continuous functions that
agree on the dense set D, and so they must agree everywhere. That is, the set {E,}22, is a
countable set of continuous functions that separates points on X*.

Now let C), = sup,«c |En(z*)| < 00, since K is compact and E,, is continuous, and define
fn = En/Cy. Then |f,| <1, and

da*,y") =D 27" | fulz®) = fuly")]
n=1
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is a metric on K, since the f,, separate points.
We now have two topologies, the weak-* open sets 7, and the open sets 7; generated from
the metric, which we must show coincide. First we show that 7, C 7. For N > 1, let

N
dn(z*,y") =Y 27" fula®) = faly?)]
n=1

which gives the 7-continuous function dy(-,y*) for fixed y*. Since dy(-,y*) converges uniformly
to d(-,y*), we conclude that d(-,y*) is also 7-continuous. Finally, any ball B,(y*) = {z* € K :
d(xz*,y*) < r} is the inverse image of the open set (—oo,r), and so is 7-open.

To show the opposite inclusion, 7 C 74, let A € 7. Then A¢ C K is 7-closed, and thus
7-compact (Proposition 1.24). But 74 C 7 implies that A€ is also 74-compact by definition, since
any Tg4-open cover of A€ is also a 7-open cover, which has a finite subcover. Proposition 1.24
now implies that A€ is 74-closed, and thus A € 74. The proof is complete. O

COROLLARY 2.53. If X is a separable Banach space, { f,}°°; C X*, and there is some R > 0

n=1
such that || f|| < R for all n, then there is a subsequence {fy,,}32, that converges weak-* in X*.

COROLLARY 2.54. If Banach space X is separable and reflexive and {x,}52, C X is a
bounded sequence, then there is a subsequence {x,};2, that converges weakly in X.

EXAMPLE. If 1 < p < oo and Q € R? is measurable, the L, () is separable and reflexive, so a
bounded sequence {f,}7° ; always has a weakly convergent subsequence. That is, if || f, |, < M

for some M > 0, then there is some f € L,(£2) and subsequence such that fy, L fin L,(9).

COROLLARY 2.55 (Generalized Heine-Borel Theorem). Suppose X is a Banach space with
dual X*, and K C X*. Then K is weak-+ compact if and only if K is weak-x closed and bounded.

PROOF. Any (weak-x) closed and bounded set K is compact, as it sits in a large closed ball,
which is compact. Conversely, if K is compact, it is closed. It must be bounded, for otherwise
we can find a nonconvergent sequence in K (every weak-* convergent sequence is bounded). O

We close this section with an interesting result that relates weak and strong convergence.

THEOREM 2.56 (Banach-Saks). Suppose that X is a NLS and {x,}5>; is a sequence in X
n

that converges weakly to x € X. Then for every n > 1, there are constants o > 0, Za? =1,
j=1

n
such that yn, = Z ajxj converges strongly to x.
j=1

. w . . . . .
That is, whenever x,, — z, there is a sequence ¥, of finite, convex, linear combinations of
the z,, such that y,, — x.

PROOF. Let 2, = , —x1 and z = z — z1, so that z; = 0 is in the sequence and z, — z. Let

n n
M= {Z@?yj:nZLa?ZO, and Zaggl} :

J=1 Jj=1

which is convex. The conclusion of the theorem is that z is in M, the (norm) closure of M.
Suppose that this is not the case. Then we can apply the Separating Hyperplane Theorem 2.36
to the closed set M and the compact set {z} to obtain a continuous linear functional f and a
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number « such that f(z,) <~ but f(z) > ~. Thus limsup,,_,, f(zn) <7, so f(zn) & f(z), and
we have a contradiction to z, — z and must conclude that z € M as required. O

COROLLARY 2.57. Suppose that X is a NLS, and S C X is conver. Then the weak and
strong (norm) closures of S are identical.

PROOF. Let Sv denote the weak closure, and S the usual norm closure. The Banach-Saks
Theorem implies that S¥ C S, since S is convex. But trivially S C S". a

2.9. The Dual of an Operator
Suppose X and Y are NLS’s and T' € B(X,Y'). The operator T induces an operator
T YF s X*

called the dual, conjugate, or adjoint of T, as follows. Let g € Y* and define T* : X* — F by
the formula

(T"g)(z) = g(T'x)
for x € X. Then, T#g € X*, for T*g = g o T is a composition of continuous linear maps,

T g
X —Y—F

T*g
and so is itself continuous and linear. Moreover, if g € Y*, z € X, then
T g(x)| = 19(Tz)| < llglly-T=[ly
< llglly= 1T xy ]l x
= (gl 1Tl ) il -
Hence, not only is T%¢g bounded, but
IT*gllx+ < 1Tl Bx ) lglly= - (2.26)

Thus we have defined a map T* : Y* — X*. In fact, T™ is itself a bounded linear map,

which is to say T* € B(Y™*, X*). For linearity, we need to show that for g,h € Y*, A € T,
T (g+h)=T"g+T"h,

( . ) . (2.27)

T*(A\g) = \T"g .

Let x € X and evaluate both sides of these potential equalities at x, viz.
(g + h)(x) = (g + h)(Tx) = g(Tx) + W(Tz) = T (9)(x) + T"h(x) = (T"g(g) + T"(h))(x)
and
T*(Ag)(x) = (A\g)(T'x) = Ag(Tx) = AT*g(x) .

As x € X, was arbitrary, it follows that the formulas (2.27) are valid. Thus 7™ is linear. The
fact that 7 is bounded follows from (2.26), and, moreover,

1T Bey+,x*) < ITlB(x,y) - (2.28)
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In fact, equality always holds in the last inequality. To see this, first note that if T' = 0 is the zero
operator, then 7" = 0 also and so their norms certainly agree. If T' # 0, then [T p(x,y) > 0.
Let € > 0 be given and let xp € X, ||zo||x = 1 be such that

ITxolly = 1Tl Bx,y) — € -
Let go € Y* be such that ||go||y+ =1 and
g9o(Tzo) = [|Txo -

Such a gg exists by one of the corollaries of the Hahn-Banach Theorem. Then, it transpires that

1T By+x*) = IT"gollx= = sup |T"go(x)]

llzllx=1
> |T"go(0)| = go(Two) = || Twolly
> Tl px,y) —€ -
In consequence of these ruminations, it is seen that
1T By=x* > ITlBx,y) — € »
and € > 0 was arbitrary. Hence
1T | By +x+) = 1Tl B(x,v)

and, along with (2.28), this establishes the result.
The map T —— T itself,

x: B(X,Y)— B(Y", X¥),
has many simple properties of its own, which we leave to the reader to verify.

PROPOSITION 2.58. Let X, Y, and Z be NLS’s, S,T € B(X,Y), Re B(Y,Z) and \,u € F.
Then

@) IT*|Boy=x+) = I Tl Bx,v) (i.e., * is norm preserving)
(b) (AT + puS)* = \T* + pS* (i.e., % is a linear map) ,

(¢) (RS)” = S"R",

(d) (Ix)" = Ix~ ,

where Ix € B(X, X) is the identity mapping of X to itself.

Exampres. (a) X = RY T : X — X may be represented by a d x d matrix My in the
standard basis, say. Then T™ also has a matrix representation in the dual basis and My~ = M%
the transpose of Myp.

(b) Here is a less elementary, but related example. Let 1 < p < oo and, for f € L,(0,1) and

€ (0,1), set
/ K(z,y)f(y)dy ,

where K is, say, a bounded measurable function. It is easily determined that T is a bounded
linear map of L,(0, 1) into itself. We have seen that the dual space of L,(0,1) may be realized
concretely as Ly(0, 1), where 1/p +1/q = 1. That is, for g € Ly(0,1), Ay € L;(0,1) is given by

1
_ / f(@)g(x) dz
0
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where f € L,(0,1). To understand T, we compute its action:

(T*A,)(f) = Ag(T)
1 1 1
:Ag@H@M:AM@AK@M@@M

1 1
:AﬂwAmemMMy

Now T : Ly(0,1) — Ly(0,
determined that for y € (0,1

1), which can be viewed as T : L,(0,1) — L4(0,1). Thus, it is
)s

1
(@) = | Kleo) ds

LEMMA 2.59. Let X,Y be NLS’s and T € B(X,Y). Then T** : X** — Y™ is a bounded
linear extension of T'. If X is reflexive, then T = T**.

PRrROOF. Let x € X and g € Y*. Realize z as E, € X**. Then, by definition,
(T Ez)(9) = Ex(T"g) = T"g(x) = g(Tx) = Ers(g) ,
and so
TE, = Er, .
Thus T**|x =T . If X = X**, then this means T' = T™*. O
LEMMA 2.60. Let X be a Banach space, Y a NLS and T € B(X,Y). Then T has a bounded
inverse defined on all of Y if and only if T* has a bounded inverse defined on all of X*. When
either exists, then
(Tfl)* _ (T*)fl .
PROOF. If S =T~ € B(Y, X), then
S*T* = (TS)" = (Iy)" = Iy~ .
This shows that T™ is one-to-one. The other way around,
T8 = (ST)" = (I'x)* = Ix~

shows T is onto. Moreover, S* is the inverse of T, and of course S* is bounded since it is the
dual of a bounded map.

Conversely, if T* € B(Y™*, X*) has a bounded inverse, then applying the preceding argument,
we ascertain that (T**)~! € B(Y**, X**). But,

T**}X — T ,
so T must be one-to-one. We claim that 7" maps onto. If so, the Open Mapping Theorem implies
that the inverse is bounded, and we are done. Since T™** is onto, it is an open mapping, and so
T** takes a closed set to a closed set. Since X is Banach, it is closed, so T**(X) is closed in
Y**, which is to say that T'(X) is closed in Y**, and hence in Y. Now suppose T is not onto.
Then we can find a y € Y \. T(X). By the Hahn-Banach Theorem, since T'(X) is closed, there
is a y* € Y* such that
Ylpxy =0, but y'(y) #0.
But then, for all z € X,
T*y*(x) = y"(Tz) =0,
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whence T*y* = 0, and y* = 0, since T™ is one-to-one. But y* # 0 in Y*, and so we have our
contradiction, and 7" maps onto Y. O

2.10. Exercises

1. Suppose that X is a vector space.

(a) If A, B C X are convex, show that A+ B and AN B are convex. What about AU B and
A\ B?
(b) Show that 24 C A+ A. When is it true that 24 = A 4 A?

2. Let (X,d) be a metric space.

(a) Show that
p(x,y) = min(1, d(z,y))

is also a metric.
(b) Show that U C X is open in (X, d) if and only if U is open in (X, p).
(c) Repeat the above for
__d(z,y)

1+d(z,y)
3. Let X be a NLS, xg be a fixed vector in X, and « # 0 a fixed scalar. Show that the mappings

T +— x + x9 and z — ax are homeomorphisms of X onto itself.

4. Show that if X is a NLS, then X is homeomorphic to B, (0) for fixed r. [Hint: consider the
xr
]

L[l
5. In RY, show that any two norms are equivalent. Hint: Consider the unit sphere, which is
compact.

6. Let X and Y be NLS over the same field, both having the same finite dimension n. Then
prove that X and Y are topologically isomorphic, where a topological isomorphism is defined
to be a mapping that is simultaneously an isomorphism and a homeomorphism.

o(z,y)

mapping x —

7. Show that (C([a,b]),]|), the set of real-valued continuous functions in the interval [a, ]
with the sup-norm (L-norm), is a Banach space.

8. If f e L,(Q) show that

£l =sup| [ fodz|=sup [ |fglde

where the supremum is taken over all g € Ly(f2) such that ||g||; < 1 and 1/p+1/q = 1,
where 1 < p,q < oco.

9. Suppose that Q C R has finite measure and 1 < p < ¢ < 0.
(a) Prove that if f € Ly(Q2), then f € L,(Q2) and

1£1lp < (u() 2= £l -
(b) Prove that if f € Loo(12), then

li = 0o -
Jin [|Fllp = 1.1l
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(c) Prove that if f € L,(Q) for all 1 < p < oo, and there is K > 0 such that || f||, < K, then
f € Loo(€) and || flloo < K.
Finite dimensional matrices.

(a) Let M™ ™ be the set of matrices with real valued coefficients a;;, for 1 < i < n and
1 <j <m. For every A € M™*™, define

A
1A] = max A2l
reR™ |x]Rm

Show that (M™*™ || -|) is a NLS.
(b) Each A € M™™ defines a linear map of R™ into itself. Show that

JA| = max yTAx,
|z|=|y|=1

where y7 is the transpose of 3.
(c) Show that each A € M™*™ is continuous.

(d) Prove that the convex hull is convex, and that it is the intersection of all convex subsets
of X containing A.

(e) If X is a normed linear space, prove that the convex hull of an open set is open.
(f) If X is a normed linear space, is the convex hull of a closed set always closed?

(g) Prove that if X is a normed linear space, then the convex hull of a bounded set is
bounded.

Prove that if X is a normed linear space and B = Bj(0) is the unit ball, then X is infi-
nite dimensional if and only if B contains an infinite collection of non-overlapping balls of
diameter 1/2.

Prove that a subset A of a metric space (X,d) is bounded if and only if every countable
subset of A is bounded.

Consider (£p,] - [p)-
(a) Prove that ¢, is a Banach space for 1 < p < co. Hint: Use that R is complete.
(b) Show that |- |, is not a norm for 0 < p < 1. Hint: First show the result on R,

If an infinite dimensional vector space X is also a NLS and contains a sequence {e,}°;
with the property that for every x € X there is a unique sequence of scalars {a, }>2, such
that

|z — (a1e1 + ... + anen)|| = 0 asn — oo,

then {e,}>°, is called a Schauder basis for X, and we have the expansion of x
o
T = Z Qnén
n=1

(a) Find a Schauder basis for £,, 1 < p < occ.

(b) Show that if a NLS has a Schauder basis, then it is separable. [Remark: The converse is
not true.]
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Let Y be a subspace of a vector space X. The coset of an element z € X with respect to Y
is denoted by x + Y and is defined to be the set
r+Y={2€X:z=zv+yforsomeycY}.

Show that the distinct cosets form a partition of X. Show that under algebraic operations
defined by

(1 +Y)+ (224+Y)=(x1+22)+Y and Az+Y)=+Y,

for any x1, 22,z € X and X in the field, these cosets form a vector space. This space is called
the quotient space of X by (or modulo Y, and it is denoted X/Y.

Let Y be a closed subspace of a NLS X. Show that a norm on the quotient space X/Y is
given for £ € X/Y by

. —inf .
121 x/y = inf |lllx
If X and Y are NLS, then the product space X x Y is also a NLS with any of the norms
1@, )l xxy = max(||z[x, [[ylly)

or, for any 1 < p < oo,

G, 9y = (2l + IylIF)” .

Why are these norms equivalent?
If X and Y are Banach spaces, prove that X x Y is a Banach space.
Let T : C([0,1]) — C(]0, 1]) be defined by

t
y(t) :/ x(T)dr .
0
Find the range R(T) of T, and show that T is invertible on its range, T~ : R(T) — C([0, 1]).
Is T~! linear and bounded?

Show that on C([a, b]), for any y € C([a,b]) and scalars a and 3, the functionals

b
fila) = [Cau(t)dt and fole) = ase) + fa(d)
are linear and bounded.
Find the norm of the linear functional f defined on C([—1,1]) by
0 1
f(z) —/ x(t) dt—/ x(t) dt .
—1 0

Recall that f = {{z,}32, : only finitely many x,, # 0} is a NLS with the sup-norm [{z,}| =
sup,, |zn|. Let T : f — f be defined by

T({znint1) = {nentnly -
Show that T is linear but not continuous (i.e., not bounded).

The space C([a,b]) is the NLS of all continuously differentiable functions defined on [a, b]
with the norm

lz]l = sup |z(t)| + sup |'(t)] .
t€la,b] t€la,b]
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(a) Show that || - | is indeed a norm.
(b) Show that f(z) = 2’((a + b)/2) defines a continuous linear functional on C"*([a, b]).

(c) Show that f defined above is not bounded on the subspace of C([a,b]) consisting of all
continuously differentiable functions with the norm inherited from C([a, b]).

Suppose X is a vector space. The algebraic dual of X is the set of all linear functionals
on X, and is also a vector space. Suppose also that X is a NLS. Show that X has finite
dimension if and only if the algebraic dual and the dual space X* coincide.

Let X be a NLS and M a nonempty subset. The annihilator M* of M is defined to be the
set of all bounded linear functionals f € X™* such that f restricted to M is zero. Show that
M* is a closed subspace of X*. What are X* and {0}%?

Define the operator T by the formula

b
T()) = [ Koy f)dy

Suppose that K € Ly([a,b] x [a,b]), where ¢ lies in the range 1 < ¢ < co. Determine the
values of p for which T' is necessarily a bounded linear operator from L,(a,b) to Ly(a,b).
In particular, if a and b are both finite, show that K € Lo ([a,b] X [a,b]) implies T" to be
bounded on all the L,-spaces.

Let U = B,(0) = {z : ||z]| < r} be an open ball about 0 in a real normed linear space, and
let y ¢ U. Show that there is a bounded linear functional f that separates U from y. (That
is, U and y lie in opposite half spaces determined by f, which is to say there is an a such
that U lies in {z : f(z) < a} and f(y) > «a.)

Prove that Ly([0, 1]) is of the first category in L1([0,1]). (Recall that a set is of first category
if it is a countable union of nowhere dense sets, and that a set is nowhere dense if its closure
has an empty interior.) Hint: Show that Ay = {f : || f|lL, < k} is closed in Ly but has empty
interior.

If a Banach space X is reflexive, show that X* is also reflexive. (x) Is the converse true?
Give a proof or a counterexample.

Let y = (y1,92, 93, ...) € C® be a vector of complex numbers such that) .~ y;x; converges
for every x = (x1,x9,x3,...) € Cp, where Cop = {x € C*° : x; — 0 as i — oo}. Prove that

oo
Z |yi| < oo
i=1

Let X and Y be normed linear spaces, T' € B(X,Y), and {z,}22, C X. If z, 2z, prove
that Tz, = Tz in Y. Thus a bounded linear operator is weakly sequentially continuous. Is
a weakly sequentially continuous linear operator necessarily bounded?

Suppose that X is a Banach space, M and N are linear subspaces, and that X = M & N,
which means that

X=M+N={m+n:meMmneN}
and M N N is the trivial linear subspace consisting only of the zero element. Let P denote
the projection of X onto M. That is, if z = m + n, then

P(x)=m
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Show that P is well defined and linear. Prove that P is bounded if and only if both M and
N are closed.

Let X be a Banach space, Y a NLS, and T,, € B(X,Y) such that {T,z}2, is a Cauchy
sequence in Y. Show that {||7, |}, is bounded. If, in addition, Y is a Banach space, show
that if we define T by T,,x — Tz, then T € B(X,Y).

Let X be the normed space of sequences of complex numbers x = {x;}°; with only finitely
many nonzero terms and norm defined by ||z| = sup; |z;|. Let T': X — X be defined by
1 1

Yy = T[,U = {1‘1’ 5.%2, gﬂfg, } .

Show that T is a bounded linear map, but that 7! is unbounded. Why does this not
contradict the Open Mapping Theorem?

Give an example of a function that is closed but not continuous.

For each a € R, let E,, be the set of all continuous functions f on [—1,1] such that f(0) = a.
Show that the E, are convex, and that each is dense in Lo([—1, 1]).

Suppose that X, Y, and Z are Banach spaces and that T : X x Y — Z is bilinear and
continuous. Prove that there is a constant M < oo such that

1T (z, y)|| < M|z lyl] for all z € X,y €Y.
Is completeness needed here?
Prove that a bilinear map is continuous if it is continuous at the origin (0, 0).

Consider X = C([a, b]), the continuous functions defined on [a, b] with the maximum norm.
Let {f,}22, be a sequence in X and suppose that f, = f. Prove that {f,}°2, is pointwise
convergent. That is,

fo(z) = f(z) for all z € [a,b] .
Prove that a weakly convergent sequence in C'([a,b]) is convergent in C([a,b]). (*) Is this
still true when [a, b] is replaced by R?

Let X be a normed linear space and Y a closed subspace. Show that Y is weakly sequentially
closed.

Let X be a normed linear space. We say that a sequence {x,}5°; C X is weakly Cauchy
if {Tz,}7 is Cauchy for all T' € X*, and we say that X is weakly complete if each weak
Cauchy sequence converges weakly. If X is reflexive, prove that X is weakly complete.

Show that every finite dimensional vector space is reflexive.
Show that C([0, 1]) is not reflexive.

If X and Y are Banach spaces, show that £ C B(X,Y) is equicontinuous if, and only if,
there is an M < oo such that ||T']| < M for all T € E.

Let X be a Banach space and T' € X* = B(X,F). Identify the range of T* € B(F, X*).
Let X be a Banach space, S,T € B(X, X), and I be the identity map.

(a) Show by example that ST = I does not imply 7S = I.

(b) If T'is compact, show that S(I —T') = I if, and only if, (/ —T)S = I.

(c) If S = (I —T)~! exists for some T compact, show that I — S is compact.
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47. Let 1 < p < oo and define, for each r € R, T, : L,(R?) — L,(R%) by
T(f)(@) = flx+r) .
(a) Verify that T,.(f) € L,(RY) and that T} is bounded and linear. What is the norm of 7}.?

(b) Show that as r — s, ||T,.f — Tsf||z, — 0. Hint: Use that the set of continuous functions
with compact support are dense in Lp(Rd) for p < oo.






CHAPTER 3

Hilbert Spaces

The norm of a normed linear space gives a notion of absolute size for the elements of the
space. While this has generated an extremely interesting and useful structure, often one would
like more geometric information about the elements. In this chapter we add to the NLS structure
a notion of “angle” between elements and, in particular, a notion of orthogonality through a
device known as an inner-product.

3.1. Basic Properties of Inner-Products
DEFINITION. An inner-product on a vector space H is a map (-,-) : H x H — F satisfying
the following properties.
(a) The map (-,) is linear in its first argument; that is, for o, 8 € F and z,y,2 € H,

(az + By, 2) = oz, 2) + B(y, 2) -
(b) The map (-, -) is conjugate symmetric (symmetric if F = R), meaning that for z,y € H,

(.f,y) - (y,(L‘) .
(c) For any x € H, (x,x) > 0; moreover, (z,z) = 0 if and only if z = 0.
If H has such an inner-product, then H is called an inner-product space (IPS) or a pre-Hilbert
space. Any map satisfying (a) and (b) is said to be sesquilinear (or bilinear, if F = R). We often
denote the inner-product on H as (-,-)g or (-, ).

PROPOSITION 3.1. If (+,-) is sesquilinear on H, then for o, € F and x,y,z € F,
(z,ay + B2) = a(z,y) + Bz, 2) .
That is, (-,-) is conjugate linear in its second argument.

EXAMPLES.
(a) ¢ (i.e., C? or RY) is an IPS with the inner-product

d
(.’E,y)zﬂfgj:leg“ LE,yEFd.
i=1
(b) Similarly ¢ is an IPS with

oo
(z,y) = sz@i ;o Ty €dly.
i=1
The Holder inequality shows that this quantity is finite.
(c) For any measurable set  C R, Ly(Q2) has inner-product

(f,g>:/ﬂf<x>g<x>dx, fr9 € La(9) |

73
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DEFINITION. If (H,(+,-)) is an IPS, we define the map || - || : H — R by
2] = (@, 2)"/?
for any z € H. This map is called the induced norm.

LEMMA 3.2 (Cauchy-Schwarz Inequality). If (H,(-,-)) is an IPS with induced norm || - ||,
then for any x,y € H,

(@, )| < llz[ Iyl
with equality holding if and only if x or y is a multiple of the other.
PRrOOF. If y = 0, there is nothing to prove, so assume y # 0. Then for z,y € H and A € F,
0< [l = Myl* = (& = Ay, = — Ay)
= (z,2) = Az, y) = My, 2) + A (3, 9)
= [l = (My, «) + Ay, ) + M|y ]|
= |lz]|* = 2 Real(A(y, =) + AP [lyl* -

Let
A= (L?é) '
Iyl
Then
2 2
0< ||xH2 — 92 Real (xay)(?é:‘r) + \(x,yi\ ||yH2 _ H$||2 _ ’(l’,yg’ ’
[yl Yl Iyl

since (z,y)(y,z) = |(z,y)|? is real. A rearrangement gives the result, with equality only if

COROLLARY 3.3. The induced norm is indeed a norm, and thus an IPS is a NLS.

PrOOF. For a € F and = € H, ||z| > 0, |jaz| = (az,ax)V/? = |a|(z,2)"/? = |a| ||z|| and
|z|| = 0 if and only if (x,2) = 0 if and only if x = 0.
It remains only to demonstrate the triangle inequality. For x,y € H,

lz+yl? = (z+y,2+y)
= [lz|1* + 2 Real(z,y) + [ly|?
< lz)* + 2/(z, v)| + [lylI?
< lzl1* + 2l lyll + llylI?
= (llzll + llyl)? -
0

Note that the Cauchy-Schwarz inequality gives a notion of angle, as we may define the angle
0 between x and y from

@)l
1 Iyl
However, generally we consider only the case where 6§ = /2.

cosf =

DEFINITION. If (H,(-,-)) is an IPS, z,y € H, and (x,y) = 0, then we say that x and y are
orthogonal, and denote this fact as = 1 y.
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PROPOSITION 3.4 (Parallelogram Law). If x,y € H, an IPS, then
2+l + llz =yl = 2(l|2[1* + [[y*)
PRroor. Exercise. O

The parallelogram law can be used to show that not all norms come from an inner-product,
as there are norms that violate the law. The law expresses the geometry of a parallelogram in
R?, generalized to an arbitrary IPS.

LEMMA 3.5. If (H,(-,-)) is an IPS, then (-,-) : H x H — F is continuous.

PROOF. Since H x H is a metric space, it is enough to show sequential continuity. So suppose
that (z,,yn) — (z,y) in H x H; that is, both z,, — = and y,, — y. Then

(Zns Yn) — (@, 9)| = [T, Yn) — (Tn, ¥) + (Tnsy) — (7,9)]
< [@ns yn) = (Zn, )| + [0, y) — (2, 9)]
= [(Tns Yn — Y)| + {20 — 2, 9)|
< znll lyn — yll + lzn — 2| [yl -

Since z,, — x, ||zy]|| is bounded. Thus [{(x,,yn) — (x,y)| can be made as small as desired by
taking n sufficiently large. O

COROLLARY 3.6. If \y, — X and pup, — p in F and x, — x and y, — y in H, then

(AT, tnYn) — (AT, py) -
PRrROOF. Just note that \,z, — Az and p,y, — uy. 0
DEFINITION. A complete IPS H is called a Hilbert space.

Hilbert spaces are thus Banach spaces.

3.2. Best Approximation and Orthogonal Projections
The following is an important geometric relation in an IPS.

THEOREM 3.7 (Best approximation). Suppose (H, (-,-)) is an IPS and M C H is nonempty,
convex, and complete (e.qg,, closed if H is Hilbert). If x € H, then there is a uniquey = y(x) € M
such that

dist(x, M) = inf -zl =z -yl .
ist(z, M) = Jnf [lz —z]| = [|lz —y|
We call y the best approximation of or closest point to x from M.

PROOF. Let

0= inf ||z —2z] .
zZeM

If § = 0, we must take x = y. That y = x is in M follows from completeness, since given any
integer n > 1, there is some z, € M such that ||z — z,|| = 1/n, so z, — z € M.
Suppose § > 0. Then = ¢ M and so there is a sequence {y,}>>; C M such that as n — oo,

|z —ynl| = 0p — 0 .
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We claim that {y,} is Cauchy. By the parallelogram law,
lyn — ym”2 = [[(yn — @) + (z — ym)H2

=2 (Hyn - l’HQ + Hw - ym”Q) - Hyn + Ym — 2.7}”2
2

=2(62 +62) — 4‘ WTW _ x”

< 2(62 +62,) — 467,

since by convexity (yn + ym)/2 € M. Thus as n,m — oo, ||yn — ym| — 0. By completeness,
yn — y for some y € M. Since || - || is continuous, ||z — y|| = 4.

To see that y is unique, suppose that for some z € M, || — z|| = . Then the parallelogram
law again shows

ly —2)* = [l(y — 2) + (z — 2)|?
=2(ly — zI*> + ||z — 2|*) — lly + z — 2=
Y+ z H2
— =z
2
<46%—46%°=0.
Thus y = 2. il

— 452 — 4”

COROLLARY 3.8. Suppose (H, (-,-)) is an IPS and M is a complete linear subspace. If x € H
and y € M 1s the best approximation to x in M, then

r—y L M.
PRrROOF. Let m € M, m # 0. For any A € F, by best approximation,
lz = yl* < llz =y + Am|* = ||z — y|I” + Mz — y,m) + A(m, @ —y) + [A[Jm]®
With A = —(z — y,m)/|/m||?, we have
0 < =AX[m|[ = AX[[m|[? + [A[?[[m]|? = —[A[Jm]* ,
so A = 0, which means
(z—y,m)=0
for any m € M. That is, x —y L M. O
DEFINITION. Given an IPS H and M C H,
M+ ={zeH:(x,m)=0Yme M} .
The space M is referred to as “M-perp.”

PROPOSITION 3.9. Suppose H is an IPS and M C H. Then M* is a closed linear subspace
of H, M 1 M+, and M N M+~ is either {0} or 0.

Closure follows easily from the continuity of the inner-product.

THEOREM 3.10. Suppose (H,(-,-)) is an IPS and M C H is a complete linear subspace.
Then there exist two unique bounded linear surjective mappings

P:H—M and P*:H— M+
defined for any x € H by
(a) ||z — Px|| = infyenr | — y|| (i.e., Pz is the best approzimation to x in M),



3.2. BEST APPROXIMATION AND ORTHOGONAL PROJECTIONS 7

(b) x = Pz + Ptz (i.e., PL =1—P),
with the additional properties
() llzl* = [ Px|* + | P+x]?,
(d) = € M if and only if Ptz =0 (i.e., x = Px),
(e) = € ML if and only if Px =0 (i.e., x = Ptx),
(f) ||P|| = 1 unless M = {0}, and |P*| =1 unless M = H,
(g) PP+ =P+P =0, P2=P, and (P+)? = Pt (i.e., P and P+ are orthogonal projection
operators),
(h) y = Px if and only if y € M satisfies (x —y,m) =0 for allm € M.

Note that (c) is the Pythagorean theorem in an IPS, since Pz 1 Ptz and (b) holds. We call P
and P the orthogonal projections of H onto M and M, respectively.

PROOF. By the best approximation theorem, (a) defines P uniquely, and then (b) defines
Pt : H — H uniquely. But if 2 € H, then for m € M,

(Ptz,m) = (z — Pz,m)=0

by Corollary 3.8, so the range of P+ is M=.
To see that P and P are linear, let a, 3 € F and z,y € H. Then by (b),

az + By = P(ax + By) + P (az + By) ,
and
azx + By = a(Px + Ptz) + 3(Py + Pty)
= aPz + 3Py + aPtz + BP1y .
Thus
aPz + Py — P(ax + By) = P (ax + By) — aPa — BP1y .
Since M and M* are vector spaces, the left side above is in M and the right side is in M. So
both sides are in M N M+ = {0}, and so
P(ax + By) = aPz + 3Py ,
PY(az + By) = aPtz + Py ;
that is, P and P~ are linear.
From the proof of the best approximation theorem, we saw that if x € M, then Px = z;

thus, P is surjective. Also, z = Px implies z = Px € M, so (d) follows.
If x € M*, then since x = Px + Pz,

¢ — Pty =Pre MnM*t={0},
so x € Pta, Pt is surjective, and (e) follows.

If z € H, then (e) and (d) imply that PP+x = 0 since Ptz € M+ and P1Pz = 0 since
Pr € M,s00=PP+=P(I-P)=P—P?and 0= P*P = P+(I - PY) = P+ — (P+)2. That
is, (g) follows.

We obtain (c) by direct computation,

|z||? = | Pz + Ptz|?* = (Px + Ptz, Pz + Pta)
— |Pa|]? + (Pa, P*a) + (P-x, Px) + | P-a]?

The two cross terms on the left vanish since M | M=,
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Finally, (c) implies that
1Pz|® = |l|* — | Pra| < [lz]*

so ||P|| < 1. But if M # {0}, there exists z € M \ {0} for which ||Px| = ||z|. Thus ||P| = 1.
Similarly remarks apply to P. We conclude that P and Pt are bounded and (f) holds.

For (h), Corollary 3.8 gives the forward implication. For the converse, note that ||z — (y +
m)||? = ||z — y||? + ||m||?, which is minimized for m = 0. Thus y = Pu. O

COROLLARY 3.11. If (H,(-,-)) is a Hilbert space and M C H is a closed linear subspace,
then P+ is best approzimation of H in M.

PROOF. We have the unique operators Py; and (Pyr)* from the theorem. Now M+ is closed,
so we can apply the theorem also to M~ to obtain the unique operators Py,. and (PML)J_. It
is not difficult to conclude that Py;. = (Py)*, which is best approximation of H in M+. O

3.3. The Dual Space

We turn now to a discussion of the dual H* of a Hilbert space (H, (-,-)). We first observe
that if y € H, then the functional L, defined by

Ly(z) = (z,y)
is linear in x and bounded by the Cauchy-Schwarz inequality. In fact,
1Ly ()| < [ly {l=] ,
50 [| Lyl < [lyll. But |Ly(y/llyl)| = llyll, so in fact
1Lyl = Nyl -
We conclude that L, € H*, and, as y is arbitrary,
{Ly}yeH C }I>’< .

We have represented certain members of H* as L, maps; in fact, as we will see, every member
of H* can be so represented. Thus by identifying L, with y, we see that in some sense H is its
own dual.

THEOREM 3.12 (Riesz Representation Theorem). Let (H,(-,-)) be a Hilbert space and L €
H*. Then there is a unique y € H such that

LZE:(x,y) VezeH.
Moreover, ||L|| g+ = ||yl -

Proor. If L =0 (i.e., Lv = 0V = € H), then take y = 0. Uniqueness is clear, since if
Lz = (z,z), then

0= Lz =(z,2) = |2I]

implies z = 0.
Suppose then that L # 0. Let

M =N(L)=ker(L)={x € H: Lz =0} .

As M is the inverse image of the closed set {0} under L, M is closed. Easily M is a vector
space, so M is a closed (i.e., complete) linear subspace of H.
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Since L # 0, M # H and M=+ # {0} by Theorem 3.10. Let z € M+ \ {0}, normalized so
|zl = 1. For x € H, let
u= (Lx)z — (L2)x ,
SO
Lu = (Lz)(Lz) — (Lz)(Lz) =0 .
Thus v € M and so u L z. That is,
0= (u,z2) = ((Laj)z — (Lz)z, z) = Lx(z,2z) — Lz(x,z) = Lv — Lz(z, z) ,
or
Lz = Lz(z,2) = (z,(L2)z) .
Uniqueness is trivial, for if
Lz = (z,y1) = (z,y2) Y2z e€H,
then
(x,y1—y2) =0 VYzeH.
Substitute = y; — y2 to conclude y; = y2. Finally, we already saw that |L|| = ||L,| = ||y|. O
We define a map R: H — H*, called the Riesz map, by
Rr=L,Vxe H.

The Riesz Representation Theorem says that R is one-to-one and onto. Thus we identify H
with its dual precisely through R: Given x € H there is a unique Rx = L, € H*, and conversely
given L € H*, there is a unique z = R~'L € H such that L = L,. While R is not linear when
F = C, it is conjugate linear:

R(x+y)=Rx+Ry Vz,ye H,
R(A\z)=ARx VxeH ANeF.

3.4. Orthonormal Subsets

In finite dimensions, a vector space is isomorphic to R% for some d < oo, which can be
described by an orthogonal basis. Similar results hold for infinite dimensional Hilbert spaces.

DEFINITION. Suppose H is an IPS and 7 is some index set. A set A = {x4}aez C H is said
to be orthogonal if x, # 0V « € Z and

To L g (i.e., (zq,23) =0)
for all o, 8 € Z, aw # (3. Furthermore, if also ||z.|| =1V a € Z, then A is orthonormal (ON).

DEFINITION. If A C X, a NLS, then A is linearly independent if every finite subset of A
is linearly independent. That is, every collection {z;}*; C A must satisfy the property that if
there are scalars ¢; € F with

icixi =0 (31)
i=1

then necessarily ¢; =0 V 1.



80 3. HILBERT SPACES

PRrROPOSITION 3.13. If a subset A of a Hilbert space H is orthogonal, and 0 & A, then A is
linearly independent.

Proor. If {z;}} | C A and ¢; € F satisfy (3.1), then for 1 < j < n,

n

n
. <Z) = cilaizj) = ¢l
=1

i=1
As x; # 0, necessarily each ¢; = 0. O
Let {x1,...,z,} be linearly independent in a Hilbert space H, and
M =span{zy,... ,z,} ,

which is closed in H as it is finite dimensional. We compute the orthogonal projection of x € H
onto M. That is, we want cy,... ,c, € [F such that Pyx = Z?zl cjrj and Pyx —x L M. That
is, for every 1 < i <mn,

(Pyz,x;) = (x,25) .

Now
(Puz,a;) =Y cjlaj,x)

so with
a;j = (z;,x;) and b; = (x,x;)
we have that the n x n matrix A = (a;;) and n-vectors b = (b;) and ¢ = (c;) satisfy
Ac=b.

We already know that a unique solution ¢ exists, so A is invertible and the solution ¢ can be
found, giving Pysx.

THEOREM 3.14. Suppose H is a Hilbert space and {uy,... ,u,} C H is ON. Let x € H.
Then the orthogonal projection of x onto M = span{uy,... ,u,} is given by

n

Pyx = Z(az,ul)ul .

=1
Moreover,

n

Do) < el

i=1

PROOF. In this case, the matrix A = ((u;,u;)) = I, so our coefficients ¢ are the values
b= ((z,u;)). The final remark follows from the fact that || Pysz| < ||z|| and the calculation

n
1Paal? = 3 (w2
i=1

left to the reader. O
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We extend this result to larger ON sets. To do so, we need to note a few facts about infinite
series. Let Z be any index set (possibly uncountable!), and {4 }ac7 a series of nonnegative real

numbers. We define
Z To = Sup Z To -
JCT
acl J finite acd

If7=N=1{0,1,2,...} is countable, this agrees with the usual definition

o n
D @a=lim > o
a=0 a=0
We leave it to the reader to verify that if
D aa <0,

acl

then at most countably many x, are nonzero.

THEOREM 3.15 (Bessel’s inequality). Let H be a Hilbert space and {uq}oaer C H an ON set.
Forx e H,

D @, ua)? < ) -
acl
PROOF. By the previous theorem, for any finite J C Z,

Dl ua)® < lz)?

acJ

so the same is true of the supremum. O
COROLLARY 3.16. At most countably many of the (x,uy) are nonzero.

In a sense to be made precise below in the Riesz-Fischer Theorem, x € H can be associated
to its coefficients (x,uqs) V o € Z, where Z is some index set. The subtlety is that Z may be
uncountable. We define a space of coefficients below.

DEFINITION. Let Z be a set. We denote by ¢2(Z) the set
05(T) = {f:I—>]F:Z|f(oz)|2 <oo} .
acl

If 7 = N, we have the usual space ¢3, which is a Hilbert space. In general, we have an
inner-product on ¢9(Z) given by

(f,9) =3 fla)gla) ,
a€el

as the reader can verify. Moreover, ¢2(Z) is complete.

THEOREM 3.17 (Riesz-Fischer Theorem). Let H be a Hilbert space and {uq}aecz any ON set
in H. Define the mapping F : H — ls(Z) by F(x) = f., where

fol@) =24 = (z,uq) forael.

Then F is a surjective, bounded linear map.
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PROOF. Denoting the map f, by {z4}aez, the mapping F' is linear since
Fz+y) ={(= +Y)atact = {(z + ¥, ua) }aez
= {(:E,ua) + (y, ua)}aGI
= {(%,ua) Yaez + {(Ys Ua) }aez
= F(z)+F(y),
and similarly for scalar multiplication. F' is a bounded map because of Bessel’s inequality
IE @7,z = D lwal® < il -
acl
Thus, not only is F' bounded, but

|l Br,ea)) <1 -
The interesting point is that F' is surjective. Let f € ¢5(Z) and let n € N. If

In:{aef:]f(a)|>l},

n

then if |Z,,| denotes the number of « in Z,,,
\Zo| < 0?1 £117, ) -
Let J =Uy2Zn. Then J is countable and if § ¢ J, then f(8) =0. In H, define x,, by
Ty = Z fla)ug
CVGIn

Since Z,, is a finite set, x, is a well-defined element of H. We expect that {z,}°; is Cauchy in
H. To see this, let n > m > 1 and compute

-zl = Y feu = X @< Y i@

Q€L \Tm Q€L ~\Im a€I~Tp,

and the latter is the tail of an absolutely convergent series, and so is as small as we like provided

we take m large enough. Since H is a Hilbert space, there is an x € H such that z, A, . As
F' is continuous, F'(x,) — F(z). We show that F(x) = f. By continuity of the inner-product,
foraeZ

F(z)(a) = (z,uq) = lirgo(:cn,ua)

= hm Z F(B)(ug,ua) = fla) . O

5€In

THEOREM 3.18. Let H be a Hilbert space. The following are equivalent conditions on an ON
set {uq}aer C H.

(1) {ua}taez is a mazimal ON set (also called an ON basis for H).
(ii) Span{uq : a € I} is dense in H.
i

)
(iil) |z||% = Y act (2, uq)|? for all z € H.
(1iv) (2,y) = > qer(®, ua)(y, ua) for all z,y € H.
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PRrROOF. (i) = (ii). Let M = span{u,}. Then M is a closed linear subspace of H. If M
is not all of H, M+ # {0} since H = M + M*. Let + € M+, z # 0, ||z|| = 1. Then the set
{uq : @ € T} U{z} is an ON set, so {uq }ae7 is not maximal, a contradiction.

(ii) = (iii). We are assuming M = H in the notation of the last paragraph. Let x € H.
Because of Bessel’s inequality,

lz* = ) lzal?

acl
where z, = (2,uq) for @ € Z. Let € > 0 be given. Since span{u, : @ € T} is dense, there is a
finite set aq,...,an and constants cq,... ,cy such that
N
H:c — Zciuai <e.
i=1

By the Best Approximation analysis, on the other hand,

N N
Hx— E Ta; Uy || < H:c— g Cilley;
i=1 i=1

It follows from orthonormality of the {uq }aez that

N
>> o= 3 ot = llal? - Zmr%w > fwal?
=1

acl

In consequence,

> <) fwal® +e,
a€l
and € > 0 was arbitrary. Thus equality holds everywhere in Bessel’s inequality.
(iii) == (iv). This follows because in a Hilbert space, the norm determines the inner-
product as we now show. Let z,y € H. Because of (iii), we have

)1 + Iyl + (z,9) + (y,2) = l|lz + y]*

—Z‘xa+ya Z|xa| JFZ‘ya +Z$aya+zxaya7

acl acl acl acl acl
whereas
lz)1* + lyll* + iy, x) — i(x, y) = ||z + iy|
= Z ‘ma + Z‘y04|2 = Z ‘xa’2 + Z |ya’2 +izyafoc - izxaga .
acl acl acl acl acl
Since
2> = Jzal® and [lylI* = |yal*,
ol o€l
it is ascertained that
(x y Z Talo + Z TaYa
ael a€el
and
(x y Z Tala — Z TaYa
acl acl

and the desired result follows (even for F = R, in which case the argument above simplifies).
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(iv) = (i). If {ua}aer is not a maximal ON set, let v € H, u L u, for all & € Z, and
|u|| = 1. Then, because of (iv),

L= [lul® =" [(u,ua)]* =0,
a€el

a contradiction. O

COROLLARY 3.19. If {uq}aez is mazimal ON and x € H is infinite dimensional, then there
are o; € L fori=1,2,... such that

[e.9]

T = Z(l’,uai)um = Z(x>ua)u&

=1 o€l

PRrRooOF. Exercise. t

That is, indeed, a maximal ON set is a type of basis for the Hilbert space. We call (z,uy)
the Fourier coefficients of x in the ON basis {uq }aez-

COROLLARY 3.20. If {uq}aez is a mazimal ON set, then the Riesz-Fischer map F : H —
l5(Z) is a Hilbert space isomorphism.

That F' is injective follows, for a linear map, from Fx = 0 implying that = 0, which follows
from (iii) of Theorem 3.18

THEOREM 3.21. Let H be a Hilbert space and {uq}acz any ON set in H. Then {uq}acz C
{ug}pes where the latter is ON and mazimal.

PRrROOF. The general result follows from transfinite induction. We prove the result assuming
that H is also separable.
Let {#;}32; be dense in H and
M = span{uq }ae7 -
Define
ij=&; — Pys; € M+,
where Pp; is orthogonal projection onto M. Then the span of
{uataer U{E;}72,

is dense in H. Define successively for j = 1,2,... (with z1 = 2)

N; =span{z,... ,z;} ,
Tj41 = Tj1 — PN &j41 € Nf .
Then the span of
{tataez U{z;}52,

is dense in H and any two elements are orthogonal. Remove any zero vectors and normalize to
complete the proof by the equivalence of (ii) and (iii) in Theorem 3.18. d

COROLLARY 3.22. Ewvery Hilbert space H is isomorphic to l3(Z) for some Z. Moreover, H
is infinite dimensional and separable if and only if H is isomorphic to f2(N).
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We illustrate orthogonality in a Hilbert space by considering Fourier series. If f : R — C
is periodic of period T, then g : R — C defined by g(x) = f(Az) for some X\ # 0 is periodic of
period T'/\. So when considering periodic functions, it is enough to restrict to the case T' = 2.

Let

Loper(—m,m) = {f R = C:s f € Ly([—m,m)) and f(z + 2n7) = f(2)
for a.e. x € [—m, ) and integer n} .

With the inner-product

o)== [ f@)a@de,

Com ),

Ly per(—m, ) is a Hilbert space (it is left to the reader to verify these assertions). The set

{1 o0 C Laper(—7,)
is ON, as can be readily verified.

THEOREM 3.23. The set span{e™®}°2 _ __ is dense in Lo per(—m,T).

ProOF. We first remark that Cper([—m,7]), the continuous functions defined on (—o0, c0)
that are periodic, are dense in Ly per(—7, 7). In fact, Co([—n, 7]) is dense (Proposition 2.22) and
clearly periodic. Thus it is enough to show that a continuous and periodic function f of period
27 is the limit of functions in span{e*}°°

For any integer m > 0, on [—7, 7] let

—00*

1 m

where ¢, is defined so that
1 ™

2

km(z)de =1 . (3.2)

Asm — o0, k() is concentrated about 2z = 0 but maintains total integral 27 (i.e., ky,, /27 — 0o,
the Dirac distribution to be defined later). Now

2+ el el

m .
; ] & span {e}m

km(z) = cm [
and so, for some A\, € C,

fonl) = o /ka(:v—y)f(y)dy

:% .

1 [T & (o
o [X e s dy

n=—m
m )\ T
=D, (% / T £ (y) dy) ¢ € span {¢"Y
n=—m -
We claim that in fact f,;, — f uniformly in the L., norm, so also in Lo, and the proof will
be complete. By periodicity,

@)= 2 [ f@— k() dy

T o r
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and, by (3.2),
fa) =2 [ f@ky) dy

T o o

Thus, for any § > 0,
o) = @) = 5| [~ (e =) = 1)) ]
1 s
<

If(x —y) = f(@)|kn(y) dy

>~ ﬂ .
- 2i |f(x —y) — f(2)|kn(y) dy
T Js<ly|<m
L ) - @kt iy
T Jlyl<s

Given ¢ > 0, since f is continuous on [—7, 7], it is uniformly continuous. Thus there is § > 0
such that |f(z —y) — f(z)| < /2 for all |y| < 0, and the last term on the right side above is
bounded by /2. For the next to last term, we note that from (3.2),

L Cm i (1+cosa:>m i
0

T 2
v m
5 Cm <1+COW> sing do
T 0 2
S (m+ D7’

which implies that

em < (m+1)m .
Now f is continuous on [—7, 7], so there is M > 0 such that |f(x)| < M. Thus for |y| > J,
1+ cos (5> " 5

o) < (14 myr (15 i

for m large enough. Combining, we have that

1 [ € €
o) = )| < 5 [ oMy =

<4M

We conclude that fy, Lo, f uniformly. O

Thus, given f € La per(—m, 7), we have the representation

e e} o

fl)y= > (fehemm = 3 (;/Zﬂy)emydy)e—w

n—=—oo n—=—
3.5. Weak Convergence in a Hilbert Space

Because of the Riesz Representation Theorem, a sequence {x,}5° ; from a Hilbert space H
converges weakly to z if and only if

(@n,y) — (2,9) (3.3)
for all y € H.
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LEMMA 3.24. If {eq}aer is an ON base for H and x, and x lie in H, then x, — x if and
only if ||zy|| is bounded and the Fourier coefficients
foralla e T.

PRrROOF. Clearly (3.3) implies (3.4). On the other hand suppose (3.4) is valid and let y € H.
Since {eq}aez is an ON base, we know from the Riesz-Fischer Theorem that span{e, }qez is
dense in H. Let ¢ > 0 be given and let {c,}aez be a collection of constants such that ¢, = 0
for all but a finite number of o and so that z = ) .7 ca€q € span{eq ez satisfies

ly —zll <e.
Because of (3.4),
(€0, 2) = (z,2)
since z is a finite linear combination of the e,’s. But then,

limsup |(x, — z,y)| < limsup |(z, — x,y — 2)| + limsup |(z,, — z, 2)|
n—oo n—oo n—oo

= limsup | (25 — 2,y — 2)|
n—oo

< (suplleal + b )1y - =1
n>1
<Ce.
It follows that
lim (z,,y) = (z,9) ,
n—oo
as required. O

Since H* = H, we can say more from the Banach-Alaoglu Theorem 2.51.

LEMMA 3.25. If z,, € H, then there erists a subsequence xn; converging weakly to some
reH.

EXAMPLE. Consider Lg per(—7, ) and consider the ON basis
{emn -
This sequence converges weakly to zero, for obviously if m is fixed,
(einx eimaz) -0
for n > m. However, as ||e* — ¢™®|| = \/2 for n # m, the sequence is not Cauchy in norm,
and so has no strong limit.

3.6. Exercises

1. Prove the parallelogram law in a Hilbert space.
2. On a NLS X, a linear map P : X — X is a projection if P2 = P.

(a) Prove that every projection on a Hilbert space for which ||P|| = 1 is the orthogonal
projection onto some subspace of H.
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(b) Prove that in general if P # 0, ||P|| > 1. Show by example that if the Hilbert space H
has at least two dimensions, then there is a nonorthogonal projection defined on H.

Let H be a Hilbert space, and R : H — H* the Riesz map.
(a) Show that R is conjugate linear.

(b) Show that the map (-,-) g+ : H* x H* — F defined by (L1, La) g+ = (R"'La, R™1Ly)y is
an inner product.

Show that if Z is an index set and {zs}aez is a collection of nonnegative real numbers

satisfying
Z To < 00,

acl
then at most countably many of the x, are different from zero.

If {tq}aer is @ maximal ON set in a Hilbert space (H, (-,-)), and x € H, show that there
exist at most countably many «; € Z such that

o0

x = Z(az, Ug,; ) Uqy; -

i=1
Prove that for any index set Z, the space ¢2(Z) is a Hilbert space.
Let H be a Hilbert space and {z,,}2%; a bounded sequence in H.
(a) Show that {z,}°2; has a weakly convergent subsequence.
(b) Suppose that 2, = 2. Prove that x,, — z if and only if ||lz,|| — ||z].
n
(c) If &, ™ z, then there exist non-negative constants {{a?}? 1%, such that Za? =1

i=1
and

n
E aj'r; =y, — x (strong convergence).
i=1

Let H be a Hilbert space and Y a subspace (not necessarily closed).
(a) Prove that
yYhHt=v and Yyt =(Y)t.
(b) If Y is not trivial, show that P, projection onto Y, has norm 1 and that
(Pz,y) = (2,9)
forallz € Hand y €Y.



CHAPTER 4

Spectral Theory and Compact Operators

We turn now to a discussion of spectral theory, which is concerned with questions of invert-
ibility of an operator. Initially our theory will be developed for operators in a Banach space;
later we will restrict to Hilbert spaces. Some of the best results apply to a special type of
operator, called a compact operator, which we also consider in this chapter.

Before continuing, there are two prototypical examples that we should consider. The first is
the case of a square d x d matrix

A:F¢—TF?,

for which we know that the eigenvalues A € C? and nonzero eigenvectors x € C¢ play a critical
role:

Ar = Ax |

that is, for this A, A — Al is singular, i.e., not invertible. Clearly A is invertible if and only if
0 is mot an eigenvalue. But in some cases, we can understand the entire action of A simply by
knowing its eigenstructure. Perhaps the best case is when A is real and symmetric. Then the
eigenvalues are real and the eigenvectors may be taken to be real. Moreover, if there are d distinct
eigenvalues )\;, with corresponding nonzero eigenvectors x;, ¢ = 1,...,d, then the eigenvectors
form an orthogonal basis for R?. That is, given = € R%, let

Q; = )
R

and then

d
r = E ;T .
=1

This is an important way to construct an orthogonal basis. Moreover, this particular basis is
tailored to the operator A, since

d
Az = E ai/\ixi;
i=1

that is, for all 4, the component of x in the x; direction is scaled by A; under the action of A.
We will prove these facts in a more general setting here, but the reader may recall them for this
special case from undergraduate linear algebra.

The second prototypical example is that of differentiation,

D:Cc'— (Y,
which is not invertible, but nearly so. A family of eigenvalues and eigenfunctions is
De)\x — )\e)\x

89



90 4. SPECTRAL THEORY AND COMPACT OPERATORS

On its surface there is a difference to the first example: the domain and range are different in
this case. However, they are separably infinite dimensional, so in some sense D is like a square
matrix.

4.1. Definitions of the Resolvent and Spectrum

Even in the finite dimensional case, we need complex eigenvalues. So let X be a complex
NLS (so F =C) and D = D(T) C X a dense linear subspace. Suppose that

T:D—X
is a linear operator. The domain of T is D(T'), the range or image is
R(T)={ye X :y=Tz forsomez € D} C X |
and the null space or kernel is
NT)={zeX :Te=0}C X.
For A € C, we consider
T\=T-M:D— Ry=R(T\(D(T))) Cc X,

where I is the identity operator on X.

If T’ is injective (i.e., it maps one-to-one), then 7', L. R\ — D exists, and it is necessarily
a linear operator. However, this is not a nice operator unless it is bounded and defined on at
least most of X, i.e., unless Ry C X is dense. These are subtle points that arise only in infinite
dimensions: In finite dimensions, linear operators are necessariy bounded, and as soon as R) is
dense, it is all of X.

DEFINITION. If T) is injective, maps onto a dense subset of X, and T/\_1 is bounded (i.e.,
continuous), then ) is said to be in the resolvent set of T', denoted p(T') C C. Also, Ty ' is then
called the resolvent operator of T for the given .

There are three reasons why A € C may fail to lie in p(T").

DEFINITION. If A ¢ p(T), then we say that A lies in the spectrum of T', denoted by o(T") =
C\ p(T), which is subdivided into the point spectrum of T,

op(T) = {p € C: T} is not one-to-one} ,
the continuous spectrum of T,

o.(T) = {p € C: T}, is one-to-one and R(T},) is dense in X, but T;l is not bounded} ,
and the residual spectrum of T,

or(T) = {p € C: 1T, is one-to-one and R(T},) is not dense in X} .

The following result is a clear consequence of the definition.

PROPOSITION 4.1. The point, continuous, and residual spectra are disjoint and their union
is o(T). That is,

o(T) = C\ p(T) = op(T) Uoe(T) U o (T)
where op(T) N oo(T) = 0p(T) Nop(T) = 0c(T) N0y (T) = 0.
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If X\ € 0p(T), then
N(T») # {0} ,
so there are x € X, x # 0, such that Thz = 0; that is,
Tr =Mz .
DEFINITION. The complex numbers in 0,(7") are called eigenvalues, and any = € X such
that = # 0 and
Tr = M\x
is called an eigenfunction or eigenvector of T' corresponding to A € o, (7).

ExAMPLES. (a) The linear operator T': o — {5 defined by
Tz =T(x1,22,...) = (0,21, 22, ...)
clearly has an inverse, but the range is not densely defined.
(b) The linear operator D : C1(R) — C°R) has ¢ = 0, = C and p(T) = 0, because of
the aforementioned eigenfunctions. This operator is densely defined, as required, since C'(R) is
dense in C°(R), but it is also unbounded (consider T applied to f,(z) = sinnz).

4.2. Basic Spectral Theory in Banach Spaces

Things are somewhat simpler if we consider bounded linear operators defined on the full
domain, i.e., operators T : X — X.

LEMMA 4.2. If X is Banach, T € B(X,X) (or simply a closed operator), and X\ € p(T),
then Ty maps onto X.

PROOF. By assumption, Ry = X. If Ry = X, we are done, so suppose this is not the case.
Let S =Ty 1. R\ — X, which is a bounded linear operator.

We first extend S to a bounded linear operator S defined on all of X. By density, given
y € X, there is a sequence y,, € Ry such that y, — y in X. Since {y,}>2, is Cauchy and S is
bounded linear, so is {Sy,}>2,, since

Therefore we can define
S(y) = lim Sy, .
n—oo
However, the definition appears to depend on the choice of limiting sequence y,,. We must verify

that the operator is well-defined in that it does not depend on this choice. But if z, € R) also
satisfies z, — y in X, then

lim ||Sz, — S(y)|| = lim lim ||Sz, — Syml|
< lim lim [|S||||zn — yml| =0 ;

that is, we get the same limit S (y), so it is indeed well-defined. Moreover, it is not hard to show
that S is a linear operator, and that Sy = Sy for y € R) (just consider y, =y — y). Moreover,
S is sequentially continuous by construction, so it is bounded.

Now given y € X, let y, € Ry be such that y, — y, and let x,, = Sy, = T;lyn. But then

Ty =Sy, — Sy=xeX ,
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and, by continuity (or closedness) of T
Yn =Tha, — Thr=1y .
Thus Ry = X, and the proof is complete. O

COROLLARY 4.3. If X is a Banach space and T € B(X, X), then X\ € p(T) if and only if T
is invertible on all of X (i.e., Ty is injective and surjective).

PROOF. The converse follows from the Open Mapping Theorem 2.40. O

LEMMA 4.4. Let X be a Banach space and V € B(X,X) with ||V| < 1. Then I —V €
B(X, X) is one-to-one and onto, hence by the open mapping theorem has a bounded inverse.
Moreover,

(I-V)™= ivn :
n=0

The latter expression is called the Neumann series for V.

PrROOF. Let N > 0 be an integer and let
N
Sy=IT+V4+Vi4. 4 VN=3"v".
n=0

Then Sy € B(X,X) for all N. The sequence {Sy}%_, is Cauchy in B(X,X), for if M > N,
then

M M
I = Snllsxn = | 2 V0 S 2 Wlheex -
n=N+1 ’ n=N+1
and this tends to zero as N — oo since u = [|[V|[px,x) < 1 implies } 7 pF < oco. Since

B(X, X) is a Banach space, it follows that there is an S € B(X, X) such that Sy — S.
We now show that (I —V)S = S(I — V) = I. Notice that

(I-V)Sy=T-VNTL =Sy —-V). (4.1)
On the other hand VN¥*! — 0 in B(X, X) since
HVNHHB(XJ() < HV”g(Jer,X) —0
as N — oo, so Sy — S in B(X, X). It follows readily that TSy — T'S and SyT — ST for any
T € B(X,X). Thus we may take the limit as N — oo in (4.1) to obtain

I-V)S=1I=SI-V).
These two relations imply I — V' to be onto and one-to-one, respectively. 0
COROLLARY 4.5. If X is a Banach space, T € B(X, X), A € p(T), and | T p(x,x) < A, then
N BN
Tol= o (—T) .
ezl

PRrROOF. Simply note that

Ty = (T — M) = —A(I—%T) .
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COROLLARY 4.6. Let X be a Banach space. Then the set of bounded invertible operators in
B(X, X), denoted GL(X) = GL(X, X), is open.

PROOF. Let A € B(X,X) be such that A~! € B(X,X). Let ¢ > 0 be such that ¢ <
1/[[A7Y 5(x,x)- Choose any B € B(X, X) with ||B|| < . Then A+ B is invertible. To see this,
write

A+B=A(I+A7'B)
and note that
1A' Bllpxx) < 1A Isixx)IBlax.x) < ellA  pxx) <1.

Hence I + A~ B is boundedly invertible, and thus so is A(I + A~!B) since it is a composition
of two invertible operators. O

COROLLARY 4.7. Let T € B(X, X), X Banach. Then p(T) is an open subset of C and o(T)
is compact. Moreover,

A < T|px,x)y forall e a(T).

PrOOF. If A € p(T), then T'— I is invertible. Hence T'— Al + B is invertible if || B||p(x,x)
is small enough. In particular,

T\ —ul
is invertible if |u| is small enough. Thus A € p(T) implies X\ + p € p(T) if |p| is small enough,
and so p(7T) is open.

Corollary 4.5 shows that if A > || ||, then A € p(T'), so o(T) is bounded as claimed. Finally,
o(T) is compact, since it is closed and bounded. O

We should caution the reader that we have not shown that o(7) # 0; operators with an
empty spectrum exist. To continue, we will restrict to certain classes of operators where we can
say more.

4.3. Compact Operators on a Banach Space
An important class of operators exhibit a compactness property. We will see examples later.

DEFINITION. Suppose X and Y are NLS. An operator T : X — Y is a compact linear
operator (or completely continuous linear operator) if T is linear and if the closure of the image
of any bounded set M C X is compact, i.e., T(M) C Y is compact. (We call a set with compact
closure precompact.)

PROPOSITION 4.8. Let X and Y be NLS. If T : X — Y is a compact linear operator, then
T is bounded, hence continuous.

PROOF. The unit sphere U = {z € X : ||z|| = 1} in X is bounded, so T'(U) is compact. A
compact set in Y is necessarily bounded, so there is some R > 0 such that

T({U) C Br(0)C Y ;
that is,
1T = sup [[Tz]| < R < o0,
zelU

soT € B(X,Y). O
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Compactness gives us convergence of subsequences, as the next two lemmas show. The first
is simply a restatement of Proposition 1.27.

LEMMA 4.9. Suppose (X,d) is a metric space. Then X is compact if and only if every
sequence {xn}o2 C X has a convergent subsequence {n, }7° .

LEMMA 4.10. Let X and Y be NLS’s and T : X — Y linear. Then T is compact if and
only if T maps every bounded sequence {x,}>2, C X onto a sequence {Txzp}22, C Y with a
convergent subsequence.

Proor. If T is compact and {z,}5° ; bounded, then the closure in Y of {T'z,,}>°  is com-
pact. Since Y is a metric space, the conclusion follows from the previous lemma.

Conversely, suppose every bounded sequence {z, }7° ; gives rise to a convergent subsequence
{Tz,}22 . Let B C X be bounded and consider T'(B). This set is compact if every sequence
{yn}>2, C T'(B) has a convergent subsequence. For each y,, € 0T (B), choose {yn,m oo, C T(B)
such that

1
H?/n,m —ynll < —
m

and x, , € B such that y,, = T@pm. Then {z,,}72; is bounded and there is a convergent
subsequence

ynk,’nk - Ta:nk’nk — Y € (B) as k — oo .

But then
1Yne = vl < llnne =yl + lYn, = Uil
1
<N Yngmp —Yll +— — 0 as k— oo,
ng
SO Yn, — y and, by the previous lemma, T'(B) is compact. O

Trivial examples of compact operators abound, as shown by the following proposition.

PROPOSITION 4.11. Let X and Y be NLS’s and T : X — Y a linear operator. Then

(a) If X is finite dimensional, then T is compact.
(b) If T is bounded and Y is finite dimensional, then T is compact.
(¢) If X is infinite dimensional, then I : X — X is not compact.

PrOOF. For (a), we note that necessarily T is bounded when 7" is linear and dim X < oo,
and R(T") is finite dimensional. Thus (a) follows from (b), which is trivial since closed bounded
sets in finite dimensional spaces are compact. The non compactness of such sets in infinite
dimensions gives (c). O

We denote the collection of all compact operators T': X — Y by
C(X,Y)C B(X,Y).

Clearly C'(X,Y) is a linear subspace, as a finite linear combination of compact linear operators
is compact. This set is also closed in B(X,Y’) when Y is complete, by the following theorem.

THEOREM 4.12. Suppose X is a NLS and Y a Banach space. Let {T,,}>°, C C(X,Y) be
convergent in norm to T € B(X,Y),

T, —T|| =0 as n— oo .

Then T € C(X,Y). That is, C(X,Y) is a closed linear subspace of B(X,Y).
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PROOF. We make extensive use of Lemma 4.10. Let {z,}5°;, C X be bounded. Then
{Thzp}72, C Y has a convergent subsequence. Denote it by {T1x1,}02 ;. Then {z1,}72,
bounded, so {Tox1,}52; has a convergent subsequence. Denote it by {T 23:2 n} ° 1 Contlnumg,
we obtain subsequences of {x,}5° ; satisfying

{Zentnets D {Thrintner VE

and Ty, converges as m — 00. We now apply a diagonalization argument by considering the
sequence

{nn by = {Ea)32 C X .

For each n > 1, the sequence {1}, %, }>°_, converges, since convergence depends only on the tail
of the sequence. We claim also that {T'Z,,}7°_; is Cauchy, and therefore T is compact. Let
€ > 0 be given and find N > 1 such that

HTN — TH <eg.
Let M bound {z,}2° ;. Then for any Z,, and Z,,
T2y = TE|| < T2 — TNZpl| + | TN En — TNZm|| + [[TNEm — T
< 2eM + |[TN&n — TNZm|| -

Since the last term above tends to zero as n,m — oo, we have our desired conclusion. ]

EXAMPLE. Let X =Y = /5 and define T' € B(X, X) by

1 1
Te =T(x1,22,...) = <x1,§x2,§x3,...) . (4.2)
If we define
1 1
Tnﬂ?— (3]'1,55132, 77:(:71707' > ’

then T;, is compact. But

IT —T,||> = sup |[Tpz — Tz||> = sup Z 2|gg]|2
lz|=1 lell=1 ;5517

so T,, — T, and we conclude that T is compact.

A useful property of a compact operator T' : X — Y is that it is sequentially continuous
when X has the weak topology.

THEOREM 4.13. Suppose X and Y are NLS’s and T € C(X,Y). If {zp}02, C X is weakly
convergent to x € X, i.e.,

Ty — T
then we have the norm or strong convergence for a subsequence

Txy, — Tz .
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Proor. Let y, = Tx, and y = Tx. We first show that ¢, — y. Let g € Y* and define
f: X —Fby
f(z) =g(T2) .
Then f is clearly linear and continuous, i.e., f € X* and so
flan) = f(z) ;
that is,

9(n) = 9(y)
and we conclude y, — .

Since {x,}72, converges weakly, it is also bounded. Thus {7z, }2; has a convergent sub-
sequence {Ta:nj };";1 with limit, say, y € Y. That is, Tx,, — 7 as j — oo. But then also
Txp; =y, so y=y. That is,

Tan, »y=Tz.
O

PROPOSITION 4.14. Suppose X is a NLS, T € C(X,X). Then o,(T) is countable (it could
be empty), and, if it is infinite, it must accumulate at 0.

PRrOOF. Let r > 0 be given. If it can be established that
ap(T) N {A: A = 7}

is finite for any positive 7, then the result follows, since o(T") is compact.

Arguing by contradiction, suppose there is an r > 0 and a sequence {\,}72 of distinct
eigenvalues of T with |A\,| > 7 > 0, for all n. Let {z,}>2, be corresponding eigenvectors, z,, # 0
of course. The set {z, :n=1,2,...} is a linearly independent set in X, for if

N
Za]’l‘j =0 (4'3)
7=1

and N is chosen to be minimal with this property consistent with not all the «; being zero, then

N N
0= T,\N <ZO&jl’j> = Z()éj()\j — )\N)l’j .
j=1

j=1
Since \j—An # 0 for 1 < j < N, by the minimality of N, we conclude that o; = 0,1 < j < N—1.
But then a = 0 since z # 0. We have reached a contradiction unless (4.3) implies a; = 0,
1<j<N.
Define
M, = span{z1,... ,xz,} ,

and let z € M,,. Then x = Z;L:1 ajz; for some o € F. Because T'xj; = \jx;, T': M,, — M, for
all n. Moreover, as above, for x € M,

n n—1
T,\nl’ = Z()éj()\j — )\n)l‘J = Zaj()\j — )\n)IL‘J .
7j=1 j=1

Thus it transpires that
T)\n(Mn)CMn_l , n=12,....
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Let y € My, \ M,,—1 and let
d = dist{y, M},_1} >0 .
Then there is a yg € M,,_1 such that
d<ly—woll <2d,

say. Let z, = (y — v0)/|ly — vol| so that ||z,]| = 1. Let w € M,,_; be arbitrary and note that

1
on = wll = || ==y = 90) = o
" 1y — ol
1
= 7Hy —yo—lly— yoHUfH
1y = woll
ly — ol — 2
since g + [ly — yollw € M.
Thus there is a sequence {z,}5%; in X for which z, € M,, ||z,|| =1 and
1
|z, — w|| > 3 for all we M, . (4.4)

Let n > m and consider
Tz, — T2y = Apzn — T,
where
T=Mn—Tz2n+T2m =T, 2n+ T2y, .
As above, T\, z, € My,—1 and Tz, € M,, C M,_;. Thus & € M,_1, and because of (4.4), we
adduce that (z = z/|\,| € My—_1)
[T 2n — Temll = Pal 120 — 2l > 51A] > 57> 0.

Thus {7z, }5°; has no convergent subsequence, and this is contrary to the hypothesis that T is
compact and the fact that {z,}°°; is a bounded sequence. ]

EXAMPLE. Let X = {5 and consider the compact operator defined in (4.2). It is not hard to
verify that o, (T') = {1/n : n is a positive integer} and the eigenspaces are N(T7,,) = span{e,},
where e,, is the vector with one in the nth position and zeros elsewhere. Moreover, we claim
that 7" maps onto a dense subspace of X. For, given ¢ > 0 and y € X, let n be such that

Y 5ni lysl? < € and

T = (y172y273y37 "'7nyn707 ) e X )
which leads us to ||y — Tz|| < e. Thus, 0 € o.(T).

PROPOSITION 4.15. Suppose that X is a NLS and T € C(X,X). If X # 0, then N(T)) is
finite dimensional.

Proor. If X ¢ 0,(T), then dim{N (7))} = 0, so we can assume X € 0,(T"). Let B be the
closed unit ball in N(T}), so that

B = Bl(O) ﬂN(T)\) .
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Let {z,}72, be any sequence in B. Since B is bounded, there is a subsequence {xy, }?°, such
that {Txy, }7°, converges, say

Tz, — 2z as k— o0 .

But Tx,, = Az,, and A # 0, so z,, — %z = w, say. As B is closed, w € B. Thus B is
sequentially compact, thus compact. Since N(T}) is a Hilbert space, its closed unit ball can be
compact only if

dim N(T}) < +o0 . 0

THEOREM 4.16. Let X be a Banach space and T € C(X,X). If A\ € o(T) and X\ # 0, then
X € op(T'). That is, all nonzero spectral values are eigenvalues.

PROOF. Let A € o(T) and XA # 0. If X\ ¢ 0,,(T'), then T is one-to-one but R(T)) # X, by
the Open Mapping Theorem 2.40.
Consider the nested sequence of closed subspaces

X2RM)2R(TR)2---2R(I{) 2 .

This sequence must stabilize for some n > 1, which is to say
R(I}) = R(I3H) .

If not, then use the construction in Proposition 4.14 to produce a sequence {zy}522, with

xn € R(TY), |lan| =1 n=0,1,...,
where R(TY) = R(I) = X by convention, having the property

|zn — || > % for all @ € R(TY) .
As before, if n > m, then
Txm —Txn =T\Tm — Th®m, + ATy — AT, = Ao — T,
where
T =Axp, + 1D, —Tham = Ar .

But z, € R(T}), Taan € R(IYT) C R(TY) and Thxy, € R(TYT). Hence # € R(TY™), and

- 1
Az = 2l = A lzm — 2] = SIA] -

Hence {x,}5°; is a bounded sequence such that {Tz,}>°; has no convergent subsequence, a
contradiction to the compactness of 1.
Thus there is an n > 1 for which

R(I}) = R(T3H) .
Let y € X \ R(Ty). Consider T{'y € R(T}) = R(T{"*!). There is an z such that
e =1y,
o)
T (y — Thx) =0 .
As T is one-to-one, this means
y—Thx=0,
ie., y € R(Ty), a contradiction. O
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We summarize our results.

THEOREM 4.17 (Spectral Theorem for Compact Operators). Let X be a Banach space and
T € C(X,X). The spectrum of T consists of at most a countable number of eigenvalues and
possibly 0. If X € o(T), X # 0, then the eigenspace N(T)) is finite dimensional. If X is infinite
dimensional, then 0 € o(T). If there are infinitely many eigenvalues, they converge to 0 € o(T).

In infinite dimensions, that 0 € o(7T') is clear from the definition, since the closed unit ball
is not compact.

COROLLARY 4.18 (Fredholm alternative). Suppose X is a Banach space, A € F, X # 0, and
TeC(X,X). Let y € X and consider

(T—-X)z=Ta=y.
FEither

(a) there exists a unique solution x € X to the equation for any y € X; or
(b) if y € X has a solution, then it has infinitely many solutions.

PRrROOF. Case (a) corresponds to A € p(T"). Otherwise, A € 0,,(T") which we must show is case
(b). So for A € 0,,(T'), if « is a solution to the equation, then so is x +z for any z € N(Ty) # {0},
and so we must have infinitely many solutions. 0

4.4. Bounded Self-Adjoint Linear Operators on a Hilbert Space

We consider now an operator 17" € B(H, H) defined on a Hilbert space H. Because of the
Riesz representation theorem, the adjoint operator T* : H* — H™* is also defined on H =& H*.
That is, we consider that 7" € B(H, H). In this case, we call T* the Hilbert-adjoint operator
for T'. Let us consider its action. If L, € H* for some y € H and x € H, then, by definition,

(T*Ly)(x) = Ly(Tx) = (Tz,y) .
Now T*L, = L, for some z € H. Call z = T*y, and then T*L, = L+, so
(2, T"y) = (Tz,y) YV v,y € H .

PROPOSITION 4.19. Let H be a Hilbert space and T € B(H,H). Then T = T** and
(T*x,y) = (=, Ty) V 2,y € H.

PRroor. Exercise. O
We consider maps 1" for which T = T™.

DEFINITION. If H is a Hilbert space, T' € B(H, H), and T' = T* (interpreted as above), then
T is said to be self-adjoint or Hermitian.

PROPOSITION 4.20. Let H be a Hilbert space and T' € B(H, H).
(a) If T is self-adjoint, then

(Tz,x) eR VaxeH.

(b) If H is a complex Hilbert space, then T is self-adjoint if and only if (Tx,z) is real for
allz € H.
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PrOOF. (a) We compute
(Tz,z) = (z,Tz) = (z,T*z) = (Tz,x) € R .
(b) By (a), we need only show the converse. This will follow if we can show that

(Tz,y) = (T"x,y) Va,yecH.

Let a € C and compute
R> (T(:U +ay),x + ay)
= (Tx,z) + |a|*(Ty,y) + a(Ty,z) + a(Tz,y) .
The first two terms on the right are real, so also the sum of the latter two. Thus
R > a(Tx,y) + a(T*z,y) .

If & = 1, we conclude that the complex parts of (Tx,y) and (T™*z,y) agree; if a = i, the real
parts agree. O

We isolate an important result that is useful in other contexts.

LEMMA 4.21. Suppose X and Y are Banach spaces and T € B(X,Y). Suppose that T is
bounded below, i.e., there is some v > 0 such that

|Tz|ly >7llzllx VezeX.
Then T is one-to-one and R(T) is closed in Y.

Proor. That T is one-to-one is clear by linearity. Suppose for n =1,2,..., y, = Tz, is a
sequence in R(T') and that y,, — y € Y. Then {y,}72, is Cauchy, so also is {z,}72 ;. Since X is

complete, there is € X such that x,, — x. Since T is continuous, y, = Tz, — Tx =y € R(T);
that is, R(T') is closed. O

THEOREM 4.22. Let H be a Hilbert space and T € B(H, H) be a self-adjoint operator. Then
o-(T) =0 and

o(T)C[r,R]CR,
where

r= ”irHlfl(Tx,a:) and R= sup (Tx,x) .
= llefl=1

Moreover, A € p(T) if and only if Ty is bounded below.
~ ProoF. If A € 0(T) and Tx = Az for x # 0, then \(z,z) = (Tz,z) = (z,Tx) = (v, \z) =
Az, x); thus A = X is real. If A € p(T'), then the final conclusion follows from the boundedness
of T/\_l7
]l = T3 Dozl < 175 1Tz
and the fact that T} L 2 0. Conversely, suppose Ty is bounded below. By Lemma 4.21, T} is
one-to-one and R(T)) is closed. If R(Ty) # H, then there is some zg € R(Ty)*, and, ¥V = € H,
0= (Thz,z0) = (Tx,z0) — Az, x0)
= (z,Tzo) — Mz, z9)
= (.CL‘,T;\JJQ) .
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Thus Txxo = 0, or Txg = Azg and A € 0,(T). But then A = X € 0,,(T), and T}, is not one-to-one,
a contradiction. Thus R(T)\) = H and X € p(T).
Suppose now A = a + i3 € o(T'), where o, 3 € R. For any = # 0 in H,

(Thz,z) = (Tx,z) — Az, x)
and
(Thz,z) = (Tz,z) — Nz, x) ,
since (T'z,x) is real. Thus
(Tye,7) = (Thw, 2) = ~2if(z, ),
or
811lal> = 5|(Tse, 2) ~ T, )| < Tl ]

As z # 0, we see that if § # 0, T is bounded below, and conclude A € p(T), a contradiction.

Thus o(T) C R.
Now suppose that o,(7) is not empty. Let A € o,.(T"). Then T} is invertible on its range

Ty R(Ty) — H

but
R(T\) # H .
Let
—
y € R(T\) \{0} .
Then, V z € H,

0= (T/\IE,y) = (m,T)\y) .

Let = Tyy to conclude that Thy = 0, i.e., A € 0,(T). Since 0,(T) Nop(T) = 0, we have our
contradiction, and conclude that o,.(T) = 0.
Finally, we bound the spectrum. Let ¢ > 0 and let A = R+ ¢ > R. Let x # 0 and compute

(o) = ol (7 (5 ) < P

[l
On the other hand,
—(Tx — Az, z) = —(Thz,z) < | Tox|| ||=]]
and
~(Tz = Az,2) = —(Tz,z) + N|z[|* > —[[2|*R + Al|z||* = cl|=||* .
It is concluded that
[Tox]| = ell]] 5

hence, X € p(T).
A similar argument applies in case A = r — ¢ where ¢ > 0. Write for x # 0

(Taa) = lal? (1 (55), 55 ) = ol

]
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On the other hand,
(Tz — Mz, z) = (Thx,z) < |Taz| ||z]| ,

and
(Tx — Az, z) = (Tz,z) — Az|* > (r = )|z = c|l=]|* ,
so X\ € p(T). O
We call
(T, )
=———2 VYV 0
q(z) ) T #

the Rayleigh quotient of T at x. The result above is that
o(T) C | inf q(z) , supq(x)
z#0 z#0
The next result shows the importance of the Rayleigh quotient of a self-adjoint operator.
THEOREM 4.23. Let H be a Hilbert space and T € B(H, H) self-adjoint. Then

r= Hiﬂlfl(T:c,x) €o(T) and R= sup (Tz,x)€o(T) .
z|= [l =1

Moreover,

1T Bx,x) = SuP |(T'z, )| = max(|r[, [R]) .

That is, the minimal real number in o(7) is r, and the maximal number in o(7) is R, the
infimal and supremal values of the Rayleigh quotient. Moreover, ||T|| = max(|r|, |R]).

PROOF. Let
M = sup |[(Tz,x)| .
llzll=1
Obviously,
M < |T]| -
If T'= 0, we are done, so let z € H be such that Tz # 0 and ||z|| = 1. Set
v=|Tz|"?2 , w=|Tz|| YTz .
Then
lol* = [lwl® = [T

and, since T is self-adjoint
(T(v +w), v+ w) - (T(U —w),v — w) =2 [(Tv,w) + (Tw,v)] = 4||Tz|?,
and
(e e s) - (o wno ) <7 ) (70 )
< M (o +wl® + o — wl?)
=2M (|lv]* + f[w]]®)
=4M||Tz| .
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We conclude that
ITz]| < M,
and, taking the supremum over all such z,
1T < M .

Thus ||T|| = M.
Obviously, A € o(T') if and only if A + € 0(7},), so by such a translation, we may assume
that 0 <7 < R. Then ||T|| = R and there is a sequence {z,}7°; such that ||z,|| =1 and

1
Tap,xn) = R— — .
(Txn, p) -

Now
HTRCUnH2 = HTxn - Rﬂ«“n\|2
= | Tz, |? — 2R(T 2y, 2,,) + R?
1 2
§2R2—2R<R——) _2E g
n n

Thus Tg is not bounded below, so R ¢ p(T), i.e., R € o(T). Similar arguments show r €
a(T). O

We know that if 7' € B(H, H) is self-adjoint, then (T'z,x) € R for all x € H.
DEFINITION. If H is a Hilbert space and T € B(H, H) satisfies
(Tz,z)>0 VxeH,

then T is said to be a positive operator. We denote this fact by writing 0 < T. Moreover, if
R,S € B(H,H), then R < S means that 0 < S — R.

PROPOSITION 4.24. Suppose H is a complex Hilbert space and T € B(H,H). Then T is a
positive operator if and only if o(T') > 0. Moreover, if T is positive, then T' is self-adjoint.

ProoF. This follows from Proposition 4.20 and Theorem 4.22. 0
An interesting and useful fact about a positive operator is that it has a square root.

DEFINITION. Let H be a Hilbert space and T' € B(H, H) be positive. An operator S €
B(H, H) is said to be a square root of T' if

S*=T.
If, in addition, S is positive, then S is called a positive square root of T, denoted by
S=T'?.

THEOREM 4.25. FEvery positive operator T € B(H, H), where H is a Hilbert space, has a
unique positive square root.

The proof is long but not difficult. We omit it and refer the interested reader to [Kr,
p. 473-479).
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EXAMPLES. (a) Let H = Lo(f2) for some Q C R? and ¢ : Q — R a positive and bounded
function. Then T : H — H defined by
(Tf)(x) = ¢(2)f(x) Ve

is a positive operator, with positive square root

(Sf) (@) =Vo(x) f(z) Vze.
(b) If T € B(H, H) is any operator, then T*T is positive.

4.5. Compact Self-Adjoint Operators on a Hilbert Space

On a Hilbert space, we can be very specific about the structure of a self-adjoint, compact
operator. In this case, the spectrum is real, countable, and nonzero values are eigenvalues with
finite dimensional eigenspaces. Moreover, if the number of eigenvalues is infinite, then they
converge to 0.

THEOREM 4.26 (Hilbert-Schmidt). Let H be a Hilbert space, T € C(H,H), and T' = T*.
There is an ON set {uy,} of eigenvectors corresponding to non-zero eigenvalues {\,} of T such
that every x € H has a unique decomposition of the form

T = g plp + 0,

where ay, € C and v € N(T).
ProOOF. By Theorem 4.23, there is an eigenvalue Ay of T" such that

(Ai| = sup [(Tz,z)| .
[lzf|=1

Let u; be an associated eigenvector, normalized so that ||ui|| = 1. Let Q1 = {u;}*. Then Q) is
a closed linear subspace of H, so ()1 is a Hilbert space in its own right. Moreover, if x € @)1, we
have by self-adjointness that

(Tz,uy) = (x,Tuy) = M(z,u1) =0,

so Tr € Q1. Thus T : Q1 — @1 and we may conclude by Theorem 4.23 that there is an
eigenvalue Ay with

|Ao| = sup [(Tz,2)] .
llzl|=1
z€Q1

Let ue be a normalized eigenvector corresponding to Ao. Plainly, u; L us. Let

Qr={re@Q:xLu}= {Ul,UQ}J_ .

Arguing inductively, there obtains a sequence of closed linear subspaces {@Q,}. At the n-th stage,
we note that if z € Q, = {u1,... ,u,}*, then for j =1,... ,n,
(Tz,uj) = (x,Tuj) = Nj(z,u;) =0,
so T : Qn — @Qpn. Thus there is an eigenvalue \,41 with
|[Ant1| = sup |[(Tz,z)|
ll=[=1
T€Qn

and an eigenvector w1 with ||u,41]| = 1 corresponding to Ap41.
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Two possibilities occur. Either we reach a point where |(T'z,z)| > 0 for some x € @,, but
(Tz,z) =0 (4.5)

for all x € Qn41 for some n, or we do not. If (4.5) is obtained, then with T = Tq,,,, our
theory shows that

|T1|| = sup |[(Tz,z)]=0.
l|lz]|=1
$€Qn+1

Hence T vanishes on Q,+1, and @Q,+1 C N(T). Equality must hold since 7" does not vanish
on span{ui, ... ,us} \ {0}, as Tz = 377 Ajaju; = 0 only if each aj = 0 (the \; # 0). Thus
Qn+1 = N(T') and we have the orthogonal decomposition from H = span{ui,... ,un} ® Qni1:
Every z € H may be written uniquely as

n
xr = g Qjuj +v
Jj=1

for some v € {u1,... ,up}t = Quy1.

If the procedure does not terminate in a finite number of steps, it generates an infinite
sequence of eigenvalues {\,}°°; and eigenvectors {u,}2> ;. By our general results, we know
that although the A\, may repeat, each can do so only a finite number of times. Thus

A — 0 as n— oo .

Let H; be the Hilbert space generated by the ON family {u,}72,. Every element z € H is
written uniquely in the form

o0

x = Z(w, uj)uj + v

Jj=1

for some v € Hi, since H = Hy; @ Hi-. It remains to check that Hi- = N(T). Let v € H{,
v # 0. Now,

Hf‘CQn forall n=1,2,...,

so it must obtain that

Tv,v Tx,x
[R5 DU £
o]l veQn Il

The right-hand side tends to zero as n — +o00, whereas the left-hand side does not depend on
n. It follows that

(Tw,v) =0 forall ve Hi .
Thus Th =T - vanishes, as
IT2| = sup |[(Tv,v)] =0,
[vll=1
fUEHlJ-
so H{- ¢ N(T). For x € Hy, for some scalars [3,,

n=1 n=1

n=1
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and we conclude that T': Hy — Hj is one-to-one and onto (each \,, # 0). Thus N(T)NnH; = {0},
so N(T) = H{-. O

THEOREM 4.27 (Spectral Theorem for Self-Adjoint Compact Operators). Let T' € C(H, H)
be a self-adjoint operator on a Hilbert space H. Then there exists an ON base {vy}aecr for H
such that each vy, is an eigenvector for T. Moreover, for every x € H,

Tr = Z Aa(Z,00)Vq (4.6)
acl

where Ay is the eigenvalue corresponding to v,,.

PRrROOF. Let {u,} be the ON system constructed in the last theorem. Let H; be the closed
subspace span,, {u, }. Let {eg}gcs be an ON base for Hi-. Then
{estpes U{un}t
is an ON base for H. Moreover,
Teﬁ =0 W ﬂ S j )

so the eg are eigenvalues corresponding to the eigenvalue 0.
We know that for z € H, there is v € N(T') such that

N

Z(w,un)un +v

n=1

converges to z in H. Because T is continuous,

N N
Z An (X, U Uy = T(Z(w, U )Up + U> —Tx .
n=1 n=1
That is, (4.6) holds since A, = 0 for any index a corresponding to an eg, 8 € J. O

We have represented a self-adjoint 7' € C(H, H) as an infinite, diagonal matrix of its eigen-
values. It should come as no surprise that if 7" is a positive operator, S defined by

St = Z VAo (T, Uq)Ug
a€el

is the positive square root of T'. We leave it to the reader to verify this statement, as well as the
implied fact that S € C(H, H).

PROPOSITION 4.28. Let S,T € C(H,H) be self-adjoint operators on a Hilbert space H.
Suppose ST =TS. Then there exists an ON base {vq}acr for H of common eigenvectors of S
and T.

PROOF. Let A € (S) and let V) be the corresponding eigenspace. For any x € Vj,
STer=TSx=T(A\x) = NTz=TzecV,.

Therefore T : V), — V). Now T is self-adjoint on V) and compact, so it has a complete ON set
of T-eigenvectors. This ON set are also eigenvectors for S since everything in V) is such. 0
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4.6. The Ascoli-Arzela Theorem

We now discuss important examples of compact operators called integral operators. These
are operators of the form

(Tf)(x) = /ﬂ K, 9) () dy .

where f is in an appropriate Hilbert (or Banach) space and K satisfies appropriate hypothesis.
To demonstrate compactness, we will derive a more general result, known as the Ascoli-Arzela
Theorem, about compact metric spaces.

LEMMA 4.29. A compact metric space (M,d) is separable (i.e., it has a countable dense
subset).

PRrROOF. For any integer n > 1, cover M by balls of radius 1/n:

M= | By(x) .
zeM

By compactness, we can extract a finite subcover

Nn,

M = By (o) (4.7)
=1

for some zj' € M. The set
S={«}]i=1,... ,Ny;n=1,2...}

is countable, and we claim that it is dense in M. Let x € M and € > 0 be given. For n large
enough that 1/n < e, by (4.7), there is some 27 € S such that

T € Bl/n(x?) :
that is, d(z,z7) < 1/n <e. Thus indeed S is dense. O
THEOREM 4.30 (Ascoli-Arzela). Let (M,d) be a compact metric space and let
C(M) = C(M;F)
denote the Banach space of continuous functions from M to F with the maximum norm

I£]l = max | f(2)] -

Let A C C(M) be a subset that is bounded and equicontinuous, which is to say, respectively, that
for some R > 0,

IfI<R vfeA,
(i.e., A C Br(0)), and, given € > 0 there is 6 > 0 such that

Jnax |If(z)— fly)|<e VfeA. (4.8)
(z,y)<d

Then the closure of A, A, is compact in C(M).
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ProOF. It suffices by Lemma 4.9 to show that an arbitrary sequence {f,}22; C A has a
convergent subsequence. For each fixed = € M, {f,(x)}52 is bounded in F by R, and so it has

n=1
a convergent subsequence. Let {x; };";1 be a countable dense subset of M. By a diagonalization

argument, we can extract a single subsequence {fy, }2°; such that {f,, (z;)}72, converges for
each j. The argument is as follows. Let {f,, (z,)(71)}32, be convergent, and from the bounded
set { fn.(z1)(T2) 172, select a convergent subsequence {fy, (z,)(72)}72,. Continuing, we obtain
indices

{ne(e1)}eZa O {nw(z2) 152, D -

such that {f,, (z,)(7;)}32; converges for all j < i. Finally, {f,, (2, }iz; is our desired subse-
quence.

Now let £ > 0 be given and fix x € M. Let § > 0 correspond to ¢ via (4.8). There exists a
finite subset {Z,}N_; C {z;}52, such that

N
| Bs(@m) > M,
m=1

since M is compact. Choose Z, such that
d($, .%g) <4 .
Then for any i, j, by (4.8),
| fri(@) = [, (2)]
< i (@) = fri(Z0)| + | i (Te) — fn](@)’ + |fn](j€) - fn](x)‘
< 26+ | fn,(Te) — fnj(@”
<2+ 123%(]\] | fri (Tm) — fn](xm)‘ .

(4.9)

Since each sequence of real numbers { fy, (Z,,)}72, is Cauchy, we conclude that {fy, (z)}72 is
also Cauchy. Now define f : M — F by

f(z) = lim fp, (z) .

k—oo

This is the pointwise limit. However, since the right-hand side of (4.9) is independent of z,
we conclude that in fact the convergence is uniform, i.e., the convergence is in the norm of

C(M). O

THEOREM 4.31. Let Q C R? be bounded and open, and K continuous on Q x Q. Let

X =C(Q) and define T : X — X by

Tf(z) = /Q K (2.y)f(y) dy

(that T is well defined is easily checked). Then T is compact.

ProOF. Let {f,}°2; be bounded in M. We must show that {7f,}22; has a convergent
subsequence. Since €2 is a compact metric space, the Ascoli-Arzela theorem implies the result if
the image of our sequence is bounded and equicontinuous. The former follows since

1Tl < Ml 1K N ke /Q da
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is bounded independently of n. For equicontinuity, we compute
T fula) = Thal)] = | [ (K(w2) = K2l

<l sup | K (2, 2) — K (3, 2)] / dz |
2N Q

Since K is uniformly continuous on € x £, the right-side above can be made uniformly small
provided |z — y| is taken small enough. O

By an argument based on the density of C'() in Lo(Q2), and the fact that the limit of
compact operators is compact, we can extend this result to Lo(2). The details are left to the
reader.

COROLLARY 4.32. Let Q C RY be bounded and open. Suppose K € La(2 x Q) and
T : Ly(2) — Lo(Q) is defined as in the previous theorem. Then T is compact.

4.7. Sturm Liouville Theory
Suppose I = [a,b] C R, a; € C*7(I), j = 0,1,2 and ap > 0. We consider the operator
L:C%*(I) — C(I) defined by
(Lz)(t) = ap(t)z" (t) + a1(t)x' (t) + ao(t)x(t) .
Note that L is a bounded linear operator.

THEOREM 4.33 (Picard). Given f € C(I) and zg,x1 € R, there exists a unique solution
x € C%(I) to the initial value problem (IVP)

Lx =

r=f, (4.10)
z(a) =z , 2'(a) =21 .

Consult a text on ordinary differential equations for a proof.

COROLLARY 4.34. The null space N(L) is two dimensional.

PROOF. We construct a basis. Solve (4.10) with f = x; = 0, zp = 1. Call this solution
20(t). Clearly zp € N(L). Now solve for z;(t) with f = xop =0, x; = 1. Then any x € N(L)
solves (4.10) with zg = z(a) and z; = 2/(a), so

2(t) = z(a)20(t) + 2'(a)21(t) ,

by uniqueness. O

Thus, to solve (4.10), we cannot find L~! (it does not exist). Rather, the inverse operator
we desire concerns both L and the initial conditions. Ignoring these conditions for a moment,
we study the structure of L within the context of an inner-product space.

DEFINITION. The formal adjoint of L is denoted L* and defined by L* : C?(I) — C(I)
where

(L*z)(t) = (apz)” — (a1x)" + agsz

= apx” + (2a(, — a1)x’ + (ag — @) + az)z .
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The motivation is the Lo(I) inner-product. If 2,y € C?(I), then
b
(Lo = [ Lattyate)di
a
b
= / [aowﬁg + alx’y + agl'?j] dt
a

b
= / cL¥y dt + [apx' — x(aoy ) + a127]°
a
= (z, L*y) + Boundary terms.

DEFINITION. If L = L*, we say that L is formally self-adjoint. If ag,aq, and ao are real-
valued functions, we say that L is real.

PROPOSITION 4.35. The real operator L = agD? + a1 D + ay is formally self-adjoint if and
only if ay = ay. In this case,

Lz = (apx’)' + asx = D(agD)x + asx

i.e.,

L =DagD + as .

PRrOOF. Note that for a real operator,
L* = agD* + (2af — a1)D + (af — d} + a2) ,

so L = L* if and only if

a1 = 2a6 —ap ,

agza{]’—a&—&—ag .
That is,

ai =ay and d} =ag,
or simply the former condition. Then
Lz = agD?x + ayDx + agx = D(agDzx) + asx .
g

REMARK. If L = agD? + a1 D + as is real but not formally self-adjoint, we can render it so
by a small adjustment using the integrating factor

1
Q) = =P,
P(t) = exp(/ Z;E:; dT) >0,

for which P’ = a1 P/ag. Then

where
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But L is formally self-adjoint, since
Lo =QLz = Pa" + Z—;Pa:’ + asQu
= Pz" + P'z' + asQx
= (P2') + (Z—EP):U .
ExXAMPLES. The most important examples are posed for I = (a,b), a or b possibly infinite,

and aj € C*7J(I), where ag > 0 on I (thus ag(a) and ag(b) may vanish — we have excluded
this case, but the theory is similar).

(a) Legendre:

Lz = ((1-t%)z")", —1<t<1.

(b) Chebyshev:
Lz =(1-2)"Y2((1-)Y2)y , —1<t<1.

(c) Laguerre:

Lz = e'(te '2’)", 0<t<oo.
(d) Bessel: for v € R,

szi(t:r’)'—:j:r, 0<t<l1.
(e) Hermite:

Lz = et2(e*t2x/)’ , teR.

We now include and generalize the initial conditions, which characterize N(L). Instead of
two conditions at ¢ = a, we consider one condition at each end of I = [a,b], called boundary
conditions (BC’s).

DEFINITION. Let p,q, and w be real-valued functions on I = [a,b], a < b both finite, with
p#0and w > 0. Let a1, as,B1, and B € R be such that
a2 +a3#0 and BF+65#40.
Then the problem of finding z(¢) € C?(I) and X\ € C such that
Az = L((p2') + qz] = Mz, te(a,b),
a1z(a) + agx’(a) =0 , (4.11)
Prz(b) + B2a’(b) =0,

is called a regular Sturm-Liouville (regular SL) problem. It is the eigenvalue problem for A with
the BC's.

We remark that if @ or b are infinite or p vanishes at a or b, the corresponding BC' is lost
and the problem is called a singular Sturm-Liouville problem.

EXAMPLE. Let I = [0, 1] and

Ax = —2" = x| te(0,1),
{x(O) =2(1)=0. (4.12)
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Then we need to solve
2+ =0,
which as we saw has the 2 dimensional form
z(t) = Asin VAt + beos VAL
for some constants A and B. Now the BC’s imply that
z(0)=B =0,
(1) = Asin VA =0.
Thus either A = 0 or, for some integer n,
VA =nr;
that is, non trivial solutions are given only for the eigenvalues
A = n?m?
and the corresponding eigenfunctions are
Zn(t) = sin(nmnt)
(or any nonzero multiple).
To analyze a regular SL problem, it is helpful to notice that
A:CHI) — C(I)

has strictly larger range. However, its inverse (with the BC’s), would map C°(I) to C*(I) C
CY(I). So the inverse might be a bounded linear operator with known spectral properties,
which can then be related to A itself. This is the case, and leads us to the classical notion of
a Green’s function. The Green’s function allows us to construct the solution to the boundary
value problem

Az = f , t € (a,b),
a1z(a) + aer’(a) =0, (4.13)
Bra(b) + Boa’(b) =0,
for any f € CO(I).
DEFINITION. A Green’s function for the regular SL problem (4.11) is a function G : IxI — R
such that

(a) G € C°%I x I) and G € C*(I x I\ D), where D = {(t,t) : t € I} is the diagonal in
I x1I;

(b) For each fixed s € I, G(-, s) satisfies the BC’s of the problem;

(c) A applied to the first variable ¢ of G(t,s), also denoted A;G(t, s), vanishes for (¢,s) €

IxI\D,ie.,
1[0y, .0G - _
MG = o | 5 (005 0.9)) + a6l =0 ¥ e s
. 0G . 0G 1
(d) slir{l* E(t’ s) — slgg E(t’ s) = e} for all t € (a,b).
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ExaMPLE. Corresponding to (4.12), consider
Az = -2’ = t 1
T ' =f, €(0,1), (4.14)
z(0)=2(1)=0,

for f € CO(I). Let

1-1¢ 0<s<t<1
Gt,s)= 4 L5 —o=te
(1—s)t, 0<t<s<l.
Then G satisfies (a) and

so (b) holds. Since w =1, p=—1, and ¢ = 0,

32
AG(t,s) = _@G(t’ s)=0 for s#t
and
. 0G .0
R T A T

we also have (c) and (d). Thus G(¢,s) is our Green’s function. Moreover, if we define

1
x(t) :/0 G(t,s)f(s)ds ,
then x(0) = (1) = 0 and

2/ (t) :;t{/otG(t,s)f(s) ds—i—/th(t,s)f(s) ds}

t oG Laa
=G(t,t)f(t) + ; at(t,s)f(s)ds—G(t,t)f(t)—l—/t a(t,s)f(s)ds
Loa

= [ Gr)ssds,

vy [0, oG
x(t)—dt ; 6tfals—i— t 875de

0G _ t92@ 0G e
= 5 (L)) + ; Wfds—a(t,ﬁ)f(tw ) 52 ds
e
—f(t) .

Thus we constructed a solution to (4.14) with G(¢, s).
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THEOREM 4.36. Suppose that for the regular SL system (so a2 + a2 >0 and 32+ 32 > 0)

Au = ELU = l[(pu')’ +qul=f, t € (a,b),
aqu(a) + agu'(a) =0,

Bru(b) + o/ (b) =0,

on the interval I = [a,b], p € CY(I), w,q € C°(I), and p,w > 0. Suppose also that 0 is not
an eigenvalue (so Au = 0 with the BC'’s implies w = 0). Let u; and uy be any nonzero real
solutions of Au = Lu =0 such that for uq,

arug(a) + asuy(a) =0,
and for us,

Bruz(b) + Boub(b) =0 .
Define G : I x I — R by

uQ(t)m(S) <s<t<l
G(t S) = | ’
9y
71(15),&2(8) a<t<s<b
‘17 ) — )

where p(t) W(t) is a nonzero constant and
W(s) = W (s;u1,uz) = ug(s)us(s) — uy(s)ua(s)

is the Wronskian of u; and us. Then G is a Green’s function for L. Moreover, if G is any
Green’s function for L and f € C°(I), then

b
u(t) = / G(t,s)f(s)ds (4.15)
is the unique solution of Lu = f satisfying the BC'’s.

To solve Au = f, just solve Lu = wf:

b
u(t) = / G(t,s)f(s)w(s)ds .
We first prove two lemmas concerning the Wronskian.

LEMMA 4.37 (Abel). Let Lu = (pu’)' + qu satisfy p € C*(I) and q € C°(I). For any positive
w € C%I) and X € C, if u1 and uy solve

Lu = dwu ,
then
p(O)W (t; uy, u2)

1s constant.
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Proor. We compute
0 = Aw(ujug — uguq)
= uyLuo — usLuq
= w1 (puy + p'uy + qua) — uz(puy +p'uy + qua)
= p(uruly — uguy) +p'W
= ()"
]

LEMMA 4.38. Suppose u,v € CY(I). If W(to;u,v) # 0 for some tg € I, then u and v are
linearly independent. If u and v are linearly independent, then W (t;u,v) # 0 for allt € 1.

PROOF. Suppose for some scalars o and 3,
au(t) + Pu(t) =0,
so also
au'(t) + B (t) =0 .

At t = tg, we have a linear system

Lty v 1(5)=(0)

which is uniquely solvable if the matrix is invertible, i.e., if its determinant, W (tg) # 0. Thus
a = =0 and we conclude that u and v are linearly independent.

Conversely, the linear independence of u and v requires the determinant W (t) # 0 for each
tel O

PROOF OF THEOREM 4.36. The existence of u; and us follows from Picard’s Theorem 4.33.
If we use the standard basis

N(L) = span{zg, 21} ,

where

then

ul(t) = —OéQZo(t) + Oqzl(t) Z0.

A similar construction at t = b gives ug(t).

If w1 = Aus for some A € C, i.e., u; and uo are linearly dependent, then u; # 0 satisfies both
boundary conditions, since A cannot vanish, and the equation Lu; = 0, contrary to the hypoth-
esis that 0 is not an eigenvalue to the SL problem. Thus w; and wy are linearly independent,
and by our two lemmas pW is a nonzero constant. Thus G(t, s) is well defined.

Clearly G is continuous and C? when t # s, since uy,uz € C?(I). Moreover, G(-, s) satisfies
the BC’s by construction, and A;G is either Au; = 0 or Aug = 0 for ¢t # s. Thus it remains
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only to show the jump condition on 9G/dt of the definition of a Green’s function. But

wuls) <y
aﬁ(ts)— pW ’ B - 7
ot YWl (¢

1”(]9);/2(3), a<t<s<b,

SO

pW pwW p(t)

If Lu = f has a solution, it must be unique since the difference of two such solutions would
satisfy the eigenvalue problem with eigenvalue 0, and therefore vanish. Thus it remains only to
show that u(t) defined by (4.15) is a solution to Lu = f. We use only (a)—(d) in the definition
of a Green’s function.

Trivially u satisfies the two BC’s by (b) and the next computation. We compute for ¢ € (a, b)

using (a):
v = ([ 9t.916))
- i(/:g(t, 9f()ds) + ;t(/tbg(t,s)f(s) is)
— 90050+ [ Hanseasgw.050+ [ 20,950 ds
- [ %905
Then
(o (1) = jt( [ 5w s ds) + j( [ o0 000105 05)
" / ot
—plt )ag tth)f / s)) £(s) ds

b
50+ [ gt(pmgfa,@)ﬂs) ds
using (d). Finally, we use (c) to conclude
Lu(t) = (pu') + qu
b
1)+ [ 4Gt 95)w(0)ds
= f(t)

as required. O

We define the solution operator

T:C%I) — C(D)
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b
= / G(t,s)f(s)ds

where G is our Green’s function. Endowing 7" with the Lo(I) inner-product, we conclude that
T is a bounded linear operator, since for f € C°(I),

i< [ b (/ (6t 9) f(8)|d8>2dt
g/ab/abyG(t,s)Pds/abyf(s)\?dsdt

= G, (1) I o) -
Since G(s,t) = G(t, s) is real, we compute that for f,g € C°(I),

(Tf,9) //Gts s)ds g(t) dt
/ /Gst t)dtds

=(f,Tg) ,

that is, T is self-adjoint. By the Ascoli-Arzela theorem, we know that 1" is a compact operator.
The incompleteness of C°(I) is easily rectified, since C°(I) is dense in L2(I). We extend T
to Lo(I) as follows. Given f € Lo(I), find f,, € CY(I) such that f, — f in Ly(I). Then
boundedness implies that {T'f,}>° is Cauchy in Ly(I). So define

Tf= lim Tf, .
Then
T : Lo(I) — Lo(I)

is a continuous linear operator. Moreover, it is not difficult to conclude that the extended T
remains compact and self-adjoint.

We know much about the spectral properties of 7. We relate these properties to those of
L =wA.

ProproOSITION 4.39. If A = 0 is not an eigenvalue of the reqular SL problem, then X = 0 is
not an eigenvalue of T either.

PROOF. Suppose T'f = 0 for some f € Lo(I). Then, with ¢ = (pW)~!,

0= (T) () = dt{cuz /f 8 ds + cun(t /f SYuals }
:c{u’Q/a fU1ds+u’1/t fugds}.

b
0="Tf(t) :c{u2/tfu1ds—|—u1/ fuzds} ,
a t

But
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so, since W (t;u1,uz) # 0, the solution of this linear system is trivial; that is, for each ¢ € [a, b],

t b
/fulds:/fUst:O.
a t

F@ur(t) = f()ua(t) =0,

so f = 0, since u; and ug cannot both vanish at the same point (W # 0). Thus N(T) = {0}
and 0 ¢ o, (7). O

We conclude that

PROPOSITION 4.40. Suppose A # 0. Then X is an eigenvalue of the regular SL problem if
and only if 1/ is an eigenvalue of T. Moreover, the corresponding eigenspaces coincide.

PrOOF. If f € CY(I) is an eigenfunction for L, then

Lf=Af,
SO
f=TLf=\Tf
shows that
1
Tf=—f.
=51
Conversely, suppose f € Ly(I) is an eigenfunction for 7T":
1
Tf=—f.
=5t

Since G is continuous, in fact R(T) C CO(I), so f € C°(I) and

f:LTf:%Lf.

We return to our original operator A = iL. Define the inner-product on Lo([])

b —
(F9)u = [ FOTO WO
a
This induces a norm equivalent to the usual Lo(I)-norm, since
i <w(t) <
0< I§1€1}1’UJ(S) <w(t) < rglealxw(s) < 00

for all t € I. Define K : Ly(I) — Lo(I) by

b
K1) = [ Glt.s)fuis)ds
This is the solution operator for
Au=f.

With the usual inner-product on Lo(I), K is not self-adjoint; however, with (-, ), K is self-
adjoint. The proof of the following result is left as an exercise .
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PROPOSITION 4.41. The operator K is self-adjoint and compact on (La(I), (-, )w), 0 ¢
op(K), and

o(K)={0}U{X#0:1/X is an eigenvalue of A} .
Moreover, the eigenspaces of K and A coincide.

We know that dim(N (7)) = dim(/NV(K))) is finite. However, we can conclude directly that
eigenfunctions of a regular SL problem are simple (i.e., one dimensional).

PROPOSITION 4.42. The eigenvalues of a reqular SL problem are simple.

PROOF. Suppose u and v are eigenvectors for A # 0 an eigenvalue. Lemma 4.37 tells us
that pWW = ¢ for some constant c¢. If ¢ = 0, then as p £ 0, W = 0 and u and v are linearly
independent. So suppose W (tp) # 0 for some ty. By Lemma 4.38, W # 0 for all t € [a,b].
However, W (a) = 0 by the boundary conditions:

aju(a) + agu'(a) =0,
arv(a) + agv'(a) =0

is a linear system with a nontrivial solution (i, as), so W(a), the determinant of the corre-
sponding matrix, vanishes. Thus v and v are linearly independent and A is simple. O

We summarize what we know about the regular SL problem for A based on the Spectral
Theorem for Compact Self-adjoint operators as applied to K. The details of the proof are left
as an exercise.

THEOREM 4.43. Let a,b € R, a <b, I =[a,b], p€ C*(I), p#0, g € CO(I), and w € C°(I),
w > 0. Let

1
A = —[DpD + q|
w
be a formally self-adjoint regular SL operator with boundary conditions
aru(a) + asu'(a) =0,
Bru(b) + Bau'(b) =0,
for u € C%(I), where o2 + a3 # 0 and 2 + B3 #0, a;, B; € R. If 0 is not an eigenvalue of A,

then A has a countable collection of real eigenvalues {\,}>2, such that

[An| = 00 as n— oo

and each eigenspace is one-dimensional. Let {un}22, be the corresponding normalized eigen-
functions. These form an ON basis for (La(I), (-, )w), so if u € La(I),

o0

u= Z(u,un>wun

n=1

and, provided Au € Lo(I),

Au = i An (U Up )y

n=1
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We saw earlier that the regular SL problem

2" =Xz, te(0,1),
z(0)=z(1)=0,

has eigenvalues
A, = nn? | n=12 ...
and corresponding (normalized) eigenfunctions
U (t) = V2 sin(nnt) .

Given any f € L2(0,1), we have its sine series

ft) = i (2 /01 f(s)sinnms ds) sinnmt |

n=1

where equality holds for a.e. ¢ € [0, 1], i.e., in L3(0,1). This shows that L2(0,1) is separable.
By iterating our result, we can decompose any f € Lo(I x I), I = (0,1). For a.e. z € I,

flx,y) = i <2 /01 f(z,t)sinnmt dt) sin nmy

n=1

1
:42/0 Z/o f(s,t)sinmmsds sinnrwtdt sinnry sinnrx
m=1

:42 Z/o /0 f(s,t)sinmms sinnrtdsdt sinnrz sinnry .

n=1m=1

So Ly(I x I) has the ON basis

00,00

{2 sinnmz sinnmy}, 7,

and again Lo(I x I) is separable. Continuing, we can find a countable basis for any La(R),

R=1I% d=1,2,.... By dilation and translation, we can replace R by any rectangle, and since

Ly(2) C L2(R) whenever 2 C R (if we extend the domain of f € Ly(Q2) by defining f = 0 on

R\ ), Ly(2) is separable for any bounded €2, but the construction of a basis is not so clear.
The regular SL problem

-2’ =X, te(0,1),
2(0)=2'(1)=0,
gives the eigenfunctions
U (t) = V2 cos(nmt) .

These are used to define cosine series expansions, similar to the development above. The
problem

2" =Xz, te(0,1),
z(0) = z(1)
2'(0) = 2'(1) ,
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seeks a periodic solution. Although not a regular SL problem as defined above, a similar theory
produces a complete set of orthogonal eigenfunctions, which leads us to Fourier series:

Un(t) = V2 cos(2nmt) and  wy(t) = V2 sin(2nmt) .
EXAMPLE. Let Q = (0,a) x (0,b), and consider a solution u(z,y) of

?u 0%
—W—@:f(xay)a (z,y) €,

u(x,y) =0, (z,y) €0,

where f € L9(€2). We proceed formally; that is, we compute without justifying our steps.
We justify the final result only. We use the technique called separation of variables. Suppose
v(z,y) = X(2)Y (y) is a solution to the eigenvalue problem

-X"Y - XY" = \XY .

Then
X// Y//
e W
X + Y /"L )
a constant. Now the B(C’s are
X(0)=X(a)=0,
Y(0)=Y(®b) =0,
so X satisfies a SL problem with
mi\ 2
M:Mm:<7) y m:1,2, 3
a
Xm(x) = sin (mﬂ'x)

Now, for each such m,

has solution

That is, for m,n=1,2,...,

mnrx ., nmy
sin —= .

a b
We know that {vy,,} form a basis for Ly((0,a) x (0,b)), so, rigorously, we expand

y) = Z Cm,nUm,n (5137 y)
m,n

Vin(x,y) = sin

for the coefficients
fo Io [ (@, y)vmn(z,y) da dy
fo fo (x,y)dx dy

m,n —
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Forming

Z\/ivmnxy
Am,n

we verify that indeed w is a solution to the problem.

10.

4.8. Exercises

Let {z,}72, be an orthonormal set in a Hilbert space H. Let {a,}>2; be a sequence of
non-negative numbers and let

S:{er:m:anxn and ]bn\ganforalln}.

n=1
Show that S is compact if and only if >"°° | a2
Let H be a Hilbert space and P € B(H, H) a projection.

< Q.

(a) Show that P is an orthogonal projection if and only if P = P*.
(b) If P is an orthogonal projection, find o, (P), o.(P), and o,(P).

Let A be a self-adjoint, compact operator on a Hilbert space. Prove that there are positive
operators P and N such that A = P — N and PN = 0. (An operator T is positive if
(Tz,x) > 0 for all z € H.) Prove the conclusion if A is merely self-adjoint.

Let T be a compact, positive operator on a complex Hilbert space H. Show that there is a
unique positive operator S on H such that S? = T. Moreover, show that S is compact.

Give an example of a self-adjoint operator on a Hilbert space that has no eigenvalues (see
[Kr], p. 464, no. 9).

Let H be a separable Hilbert space and T' a positive operator on H. Let {e,}7°; be an
orthonormal base for H and suppose that tr(T") is finite, where

e}

tr(T) = (Ten,en) -

n=1
Show the same is true for any other orthonormal base, and that the sum is independent of
which base is chosen. Show that this is not necessarily true if we omit the assumption that
T is positive.

Let H be a Hilbert space and S € B(H, H). Define |S| to be the square root of S*S. Extend
the definition of trace class to non-positive operators by saying that S is of trace class if

= |S| is such that ¢r(T") is finite. Show that the trace class operators form an ideal in
B(H,H).

Show that T' € B(H, H) is a trace class operator if and only if 7'= UV where U and V are
Hilbert-Schmidt operators.

Derive a spectral theorem for compact normal operators.

Define the operator T : Ly(0,1) — L2(0,1) by

Tu(z) = /Oﬂﬁ u(y) dy .
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Show that T is compact, and find the eigenvalues of the self-adjoint compact operator T*T'.
[Hint: 7™ involves integration, so differentiate twice to get a second order ODE with two
boundary conditions.]

For the differential operator

L=D?+zD,
find a multiplying factor w so that wL is formally self adjoint. Find boundary conditions
on I = [0, 1] which make this operator into a regular Sturm-Liouville problem for which 0 is
not an eigenvalue.

Give conditions under which the Sturm-Liouville operator
L=DpD+q,
defined over an interval I = [a, b], is a positive operator.

Write the Euler operator

L=2?D*+aD
with the boundary conditions u(1) = u(e) = 0 on the interval [1,e] as a regular Sturm-
Liouville problem with an appropriate weight function w. Find the eigenvalues and eigen-
functions for this problem.

Prove that eigenfunctions of distinct eigenvalues are linearly independent.






CHAPTER 5

Distributions

The theory of distributions, of “generalized functions,” provides a general setting within
which differentiation may be understood and exploited. It underlies the modern study of differ-
ential equations, optimization, the calculus of variations, and any subject utilizing differentiation.

5.1. The Notion of Generalized Functions

The classic definition of the derivative is rather restrictive. For example, consider the function
defined by

z, >0,
f(x) =

0, x<0.

Then f € C%(—o00,00) and f is differentiable at every point except 0. The derivative of f is the
Heaviside function

1, >0,
, £<0.

The nondifferentiability of f at 0 creates no particular problem, so should we consider f differ-
entiable on (—o00,00)? The derivative of H is also well defined, except at 0. However, it would
appear that
0, x#0,
H'(z) =
400, =0,

at least in some sense. Can we make a precise statement? That is, can we generalize the notion
of function so that H' is well defined?
We can make a precise statement if we use integration by parts. Recall that if u,¢ €

C1([a,b]), then
b b
/u’gbdw:u(ﬂl;—/ ug' dx .

If € C! but u € CY . C', we can define “f; u'vdx” by the expression
b b
ugi)‘a—/ ud dx .
a

If we have enough “test functions” ¢ € C!, then we can determine properties of /. In practice,
we take ¢ € C§°(—00,00) = {p € C*°(—00,00) : 3 R > 0 such that ¢(z) =0V |z| > R} so that
the boundary terms vanish for a — —o0, b — oc.

125
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In our example, we have for all ¢ € C§°,

[[resn=- [

= —/O x¢ dx

= —:c¢‘go —|—/0 ¢dx

:/::H¢dx.

Thus, we identify f’ = H. Moreover,

and we identify H' with evaluation at the origin! We call H'(z) = do(z) the Dirac delta function.
It is essentially zero everywhere except at the origin, where it must be infinite in some sense. It
is not a function; it is a generalized function (or distribution).

We can continue. For example

Obviously, H” = §{, has no well defined value at the origin; nevertheless, we have a precise
statement of the “integral” of d; times any test function ¢ € C§°.

What we have described above can be viewed as a duality pairing between function spaces.
That is, if we let

D = C§°(—00,0)
be a space of test functions, then
f, ff=H, H =6, H' =4

can be viewed as linear functionals on D, since integrals are linear and map to F. For any linear
functional u, we imagine

b

uo) = [uods,
even when the integral is not defined in the Lebesgue sense, and define the derivative of u by

u'(¢) = —u(¢') .

Then also
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and so on for higher derivatives. In our case, precise statements are

=1/f¢dx,

() = /f¢Mr1/HWM— 6,
H'(¢) = —H(&) = — /wa—wmz%w,
fﬂwzﬂwwzfﬂwmz—wm:ﬂww:%wm

for any ¢ € D, repeating the integration by parts arguments for the integrals in the second line
(which are now well defined).

We often wish to consider limit processes. To do so in this context would require that the
linear functionals be continuous. That is, we require a topology on D. Unfortunately, no simple
topology will suffice.

5.2. Test Functions

Let Q C R? be a domain, i.e., an open subset.

DEFINITION. If f € C°(Q), the support of f is

supp(f) ={z € Q:|f(z)| >0} CQ,

the closure (in Q) of the set where f is nonzero. A multi-index o = (a1, , ... ,aq) € N is an
ordered d-tuple of nonnegative integers, and

lol=a1+a2+- +ag.

0\ 0\
« p— Da pr— — . [
g (8;1:1) <8xd>

be a differential operator of order |«|. Then we can define

C"(Q) ={feC%Q): Df € CO(Q) for all |a] <n},

We let

C®(Q)={feC’Q):D*f € C°Q) forall a}= ﬁ c™(Q)
n=1

D(Q) = C5°(N2) ={f € C™(Q) : supp(f) is compact},
and, if K cC Q (i.e., K compact and K C Q),
Dr ={f € C5°(Q) : supp(f) C K} .
PROPOSITION 5.1. The sets C™(Q2), C*°(2), D(Q), and Dk (for any K CC Q with nonempty
interior) are nontrivial vector spaces.

PROOF. It is trivial to verify that addition of functions and scalar multiplication are alge-
braically closed operations. Thus, each set is a vector space.
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To see that these spaces are nonempty, we construct an element of D C D(2) C C*(Q2) C
C"(Q). Consider first Cauchy’s infinitely differentiable function ¢ : R — R given by

e~ 1/a? , x>0,
P(z) = (5.2)
0, x < 0.
This function is clearly infinitely differentiable for  # 0, and its m‘* derivative takes the form

R “a? 45,
0, x <0,
for some polynomial divided by = to a power R,,(x). But L’Hopital’s rule implies that
lim Rm(x)e_l/x2 =0,
z—0

so in fact /(™) is continuous at 0 for all m, and thus ¢ is infinitely differentiable.
Now let ¢(x) = (1 — z)1(1 + x). Then ¢ € C§°(R) and supp(¢) = [—1,1]. Finally, for
z € RY,
®(x) = ¢(x1)¢(2) ... p(zq) € CF(RY)

has support [—1, 1]d. By translation and dilation, we can construct an element of Dg. O
COROLLARY 5.2. There exist nonanalytic functions.

That is, there are functions not given by their Taylor series, since the Taylor series of ¥ (x)
about 0 is 0, but ¢ (z) # 0 for z > 0.
We define a norm on C™(2) by

16lnoc0 = Y 1Dl -

|| <n
Then C™(€2) is a Banach space, since completeness follows from the fact that, on compact
subsets, the uniform limit of continuous functions is continuous. Note that if m > n, then

6llm,00.0 = [|@]ln,c00, SO we have a nested sequence of norms. We will use these to define
convergence in D(2), but we must be careful, as the following example shows.

ExXAMPLE. Take any ¢ € C3°(R) such that supp(¢) = [0,1] and ¢(z) > 0 for z € (0,1)
(for example, we can construct such a function using Cauchy’s infinitely differentiable function
(5.2)). Define for any integer n > 1

(@) = Y oo =) € CF(R)

j=1
for which supp(¢y,) = [1,n + 1]. Define also
1
U(z) =Y 3¢(CL’ —J) € CFR) N C5°(R) .
j=1

Now it is easy to verify that for any m > 0,

D™, =2 D™ ;
that is,

19 = ¥llm,com — 0



5.3. DISTRIBUTIONS 129

for each m, but ¢ ¢ C§°(R).

To insure that D(2) be complete, we will need both uniform convergence and a condition to
force the limit to be compactly supported. The following definition suffices, and gives the usual
topology on C3°(€2), which we denote by D = D(1Q).

DEFINITION. Let Q C R? be a domain. We denote by D(Q) the vector space C5°(Q2) endowed
with the following notion of convergence: A sequence {¢;}32, C D(§2) converges to ¢ € D(Q) if
and only if there is some fixed K" CC Q such that supp(¢;) C K for all j and

lim H¢J - ¢||n,<>0,fl =0
Jj—0o0

for all n. Moreover, the sequence is Cauchy if supp(¢;) C K for all j for some fixed K CC Q
and, given € > 0 and n > 0, there exists N > 0 such that for all j,k > N,

1¢; — Pklln,con <€

That is, we have convergence if the ¢; are all localized to a compact set K, and each of
their derivatives converges uniformly. Our definition does not identify open and closed sets;
nevertheless, it does define a topology on D. Unfortunately, D is not metrizable! However, it is
easy to show and left to the reader that D(Q2) is complete.

THEOREM 5.3. The linear space D(Q)) is complete.

5.3. Distributions

It turns out that, even though D(2) is not a metric space, continuity and sequential con-
tinuity are equivalent for linear functionals. We do not use or prove the following fact, but it
does explain our terminology.

THEOREM 5.4. If T : D(Q) — F is linear, then T is continuous if and only if T is sequentially
continuous.

DEFINITION. A distribution or generalized function on a domain {2 is a (sequentially) con-
tinuous linear functional on D(Q2). The vector space of all distributions is denoted D'(£2) (or
D(Q)*). When Q = R9, we often write D for D(R?) and D’ for D'(R%).

As in any linear space, we have the following result.

THEOREM 5.5. If T : D(Q2) — F is linear, then T is sequentially continuous if and only if T
s sequentially continuous at 0 € D.

We recast this result in our case as follows.

THEOREM 5.6. Suppose that T : D(Q) — F is linear. Then T € D'(Q) (i.e., T is continuous)
if and only if for every K CC Q, there are n > 0 and C' > 0 such that

for every ¢ € Dg.

PROOF. Suppose that T' € D'(2), but suppose also that the conclusion is false. Then there
is some K CC € such that for every n > 0 and m > 0, we have some ¢, ,,, € D such that

|T(¢n,m)‘ > mH¢n,mHn,OOQ .

Normalize by setting ¢; = 6/ (jl¢;lljc00) € Pi- Then |T(¢;)| > 1, but ¢; — 0 in D(Q) (since
lIn.00.0 < ||@jlj00,0 = 1/ for j > n), contradicting the hypothesis.
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For the converse, suppose that ¢; — 0 in D(€). Then there is some K CC Q such that
supp(¢;) C K for all j, and, by hypothesis, some n and C' such that

T ()| < Cllgjlln,co0 — 0.
That is, T is (sequentially) continuous at 0. O
We proceed by giving some important examples.

DEFINITION.

Li10c(Q2) = {f : Q — | f is measurable and for every K CC Q0 , /K |f(x)| de < oo} :

Note that Li(2) C L1 1oc(2). Any polynomial is in Ly joc(€2) but not in Li(Q), if © is
unbounded. Elements of Lj jo¢(€2) may not be too singular at a point, but they may grow at
infinity.

EXAMPLE. If f € L 10c(€), we define Ay € D'(€2) by

- /Q f(2)é(x) dx

for every ¢ € D(2). Now Ay is obviously a linear functional; it is also continuous, since for

¢ € Dk,
Al < [ 150w ds < ( /| If(a:>\d:c>|!¢Ho,oo,sz

satisfies the requirement of Theorem 5.6.
The mapping f — Ay is one to one in the following sense.

PROPOSITION 5.7 (Lebesgue Lemma). Let f,g € L110c(R2). Then Ay = Ay if and only if
f =g almost everywhere.

Proor. If f = g a.e., then obviously Ay = A,. Conversely, suppose Ay = Ay. Then
Ay_4 = 0 by linearity. Let

R={zeR%:q;<x<b;,i=1,...,d} CQ

be an arbitrary closed rectangle, and let 1(z) be Cauchy’s infinitely differentiable function on
R given by (5.2). For € > 0, let

¢e(2) = P(e —x)P(z) 2 0

/qbs
/¢5

1, ®.(z) =0 for <0, and ®.(z) =1 for x > e.

and

Then supp(¢:) = [0,¢], 0 < P (z) <
Now let

\IIE($) = H(I)E(l‘i — ai)q)g(bi — SL‘Z) € Dpgr .
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If we let the characteristic function of R be

1, z€eR,
Xr(z) =
0, z¢ R,

then, pointwise, U.(z) — xgr(x) as ¢ — 0, and Lebesgue’s Dominated Convergence Theorem
implies that

(f —9)¥e = (f —9)xr
in Li(R). Thus

0=Ary(¥) = [ (1= 9@ ¥e@)dr— [ (= g)w)ds

as € — 0. So the integral of f — g vanishes over any closed rectangle. From the theory of
Lebesgue integration, we conclude that f — g =0, a.e. 0

We identify f € Li1oc(2) with Ay € D'(Q), calling the function f a distribution in this
sense. Since there are distributions that do not arise this way, as we will see, we call distributions
generalized functions: functions are distributions but also more general objects are distributions.

DEFINITION. For T' € D'(Q), if there is f € Lj10c(€2) such that 7' = Ay, then we call T a
reqular distribution. Otherwise T is a singular distribution.

Because the action of regular distributions is given by integration, people sometimes write,
improperly but conveniently,

7(0)= [ Tods
Q
for T € D'(2), ¢ € D(2). To be more precise, we will often write
T(¢) =(T,¢) = (T, ¢)pp ,

where the notation (-,-) emphasizes the dual nature of the pairing of elements of D'(€2) and
D(Q) and is sometimes, but not always, ordinary integration on Q (i.e., the standard Lo(£2)
inner product).

ExAMPLE. We let ¢y € D'(2) be defined by
(00, ¢) = ¢(0)
for every ¢ € D(Q2). Again, linearity is trivial, and
(60, 9} = [¢(0)] < [|¢

implies by Theorem 5.6 that dg is continuous. We call §y the Dirac mass, distribution or delta
function at 0. There is clearly no f € L1 16c(£2) such that 6o = Ay, so &g is a singular distribution.
If = € Q, we also have ¢, € D'(Q2) defined by

(02, 9) = () .

This is the Dirac mass at . This generalized function is often written, improperly, as

6z(§) = d0(§ — ) = do(x = &) .

0,00,
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REMARK. We sketch a proof that D(2) is not metrizable. The details are left to the reader.
For K CcC Q,

Dk = ﬂ ker(d;) .
TEQONK

Since ker(d,) is closed, so is Dk (in D(Q2)). It is easy to show that Dx has empty interior in D.
But for a sequence K1 C Ko C --- C Q of compact sets such that

o0
U Kn =0 5
n=1
we have
o
D(Q) = | Dx, -
n=1

Apply the Baire Theorem to conclude that D(£2) is not metrizable.

ExXAMPLE. If i is either a complex Borel measure on €2 or a positive measure on €2 such that
u(K) < oo for every K CC €, then

M0 = [ o) duta)
defines a distribution, since

[Au(@)] < u(supp(9))][llo,00,0 -
ExAMPLE. We define a distribution PVL € D'(R) by
<Pvl ¢) = PV/1¢(x) dz = lim l(;5(56) dx
x’ a X o el0 |z|>¢ x ’

called Cauchy’s principle value of 1/x. Since 1/x ¢ L 1oc(R), we must verify that the limit is
well defined. Fix ¢ € D. Then integration by parts gives

1
[ oo =lo(-2) = d(e)me— [ lald/(@)do
lz|>e £ |z|>e

The boundary terms tend to 0:
. BT ¢ - 9 _ / . _
181{{)1[¢>( g) —¢(e)]lne = 1;1%1 2—26 elne = —¢'(0) 151?([)151115 =0.

Thus, if supp(¢) C [-R, R] = K, then

R

PV/ﬂl:gi)(x) = —lim In |z|¢(z) dx = —/Rln]a:|¢>/(a:) dz

el0 Jiz|>e —

v [ Lowas] < ([ el ol

shows that PV (1/z) is a distribution, since the latter integral is finite.

exists, and
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5.4. Operations with Distributions

A simple way to define a new distribution from an existing one is to use duality. If T :
D(2) — D(Q) is sequentially continuous and linear, then 7% : D'(Q2) — D'(Q) satisfies

(u,T¢) = (T"u, ¢)
for all u € D'(Q), ¢ € D(Q). Obviously T*u = uo T is sequentially continuous and linear.

PROPOSITION 5.8. Ifu € D'(Q) and T : D(QY) — D(Q) is sequentially continuous and linear,
then T*u =uoT € D'(Q).

We use this proposition below to conclude that our linear functionals are distributions;
alternatively, we could have shown the condition of Theorem 5.6, as the reader can verify.

5.4.1. Multiplication by a smooth function. If f € C*(€2), we can define T} : D(2) —
D(Q2) by T(¢) = f¢. Obviously Ty is linear and sequentially continuous, by the product rule
for differentiation. Thus, for any u € D'(Q), Tju = uo Ty € D'(Q2). But if u = A, is a regular
distribution (i.e., u € Lj10c(12)),

(T, 6) = (u, Tyd) = {u, £)
- /Q ul(a) f (2)d(x) dx

= (fu, ) ,
for any ¢ € D(2). We define for any v € D' and f € C*°(f2) a new distribution, denoted fu, as
fu= T}‘u, satisfying
(fu,0) =(u, fo) VD).
Thus we can multiply any distribution by a smooth function, and
fAy = Ay,

for a regular distribution.

5.4.2. Differentiation. Our most important example is differentiation. Note that D :
D(Q2) — D(Q) is sequentially continuous for any multi-index «, so (D%)*u = uo D* € D'(Q).
Moreover, for ¢, 9 € C3°(Q),

[ Do ds = (-0 [ ola)prv(a)do
using integration by parts.
DEFINITION. If « is a multi-index and u € D'(Q2), we define D*u € D'(Q2) by
(D%u,¢) = (~1)l*N(u, D) ¥ ¢ eD(Q). (5.3)

We should verify that this definition is consistent with our usual notion of differentiation when
u = A, is a regular distribution.

PROPOSITION 5.9. Suppose u € C"™(2) for n > 0. Let o be a multi-index such that |a] < n,
and denote the classical a-partial derivatives of u by 0%u = 0%u/0z*. Then

D% = DA, = 0% .
That is, the two distributions D*A,, and Aga, agree.
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PROOF. For any ¢ € D(Q),
<DaAU7 ¢> = (_1)|a‘ (Au) Da¢>

where the third equality comes by the ordinary integration by parts formula. Since ¢ is arbitrary,
D*A,, = 0%u. 0

ExaMpLE. If H(z) is the Heaviside function (5.1), then H € Lj joc(R) is also a distribution,
and, for any ¢ € D(R),

(H',¢) =

¢')
/ Hz
/ ¢ (x) dx

505 ¢> .
Thus H' = 0y, as distributions.

EXAMPLE. Since In|z| € Ljjoc(R) is a distribution, the distributional derivative applied to
¢ €Dis

<DID|IE|,¢)> = —<1H|$|,D¢>

—/ln|x|¢/(1’) dx

= —lim In |x|¢/ (x) dx
el |z|>e

—tim{ [ o)+ (0(0) ~ o(-e) el

el0
= lim qu(x) dz .
£l0 Jig|>0 T
Thus DIn |z| = PV (1/x).
PROPOSITION 5.10. If u € D'(Q) and o and 8 are multi-indices, then
D*DPu = DD = D*"Py
Proor. For ¢ € D(Q),
(D*Du, ¢) = (~1)1*|(Du, D*¢)
= (—1)leHBly, DB D)
- (_1)\/6’|+|a\<u’ DDPg) .



5.4, OPERATIONS WITH DISTRIBUTIONS 135
Thus o and G may be interchanged. Moreover,
(D*DPu,¢) = (~1)l* P {u, D*Dg)
— (_1)Ia+ﬂ|<u7 Da+ﬁ¢>
= (D Pu, ¢) . O
LEMMA 5.11 (Leibniz Rule). Let f € C*(Q), u € D'(Q), and o a multi-index. Then

D(fu) =" <O‘> DB fDBy € D'(Q) |

BLa s
where
(a) B o!
B} (a=p)pt"
al = aglag! - ay!, and B < a means that 3 is a multi-index with 3; < «; fori=1,...,d.

If u e C*°(Q), this is just the product rule for differentiation.

PRrOOF. By the previous proposition, we have the theorem if it is true for multi-indices that
have a single nonzero component, say the first component. We proceed by induction on n = |a.
The result holds for n = 0, but we will need the result for n = 1. Denote D* by D}. When
n =1, for any ¢ € D(Q),

<D1(fu)7¢> = _<fu7 D1¢>
= —<U, fD1¢> = _<u’ Dl(f¢) - D1f¢>
= (Dyu, f¢) + (u, D1 f¢)
= (fD1u+ D1 fu, o) ,
and the result holds.
Now assume the result for derivatives up to order n — 1. Then
DY (fu) = DiD}y ™ (fu)

n—1 n—1 ) )

—\ J

]_

n—1

-1 . . L .
> (n ' ><D’f TfDju+ DY fD] )
J

=0
-1

S <

I
(]

n—1 » ) " n—1 i .
. DY fD]u + ( >D" T D

n L
(%) pi- 10
J
where the last equality follows from the combinatorial identity

() =05+ Go)

and so the induction proceeds. O

=0

n

<

0

<
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ExAMPLE. Consider f(z) = zIn|z|. Since z € C*°(R) and In|z| € D', we have
1
D(zln|z|) =In|z| + xPV(f) .
x

But, for ¢ € D, integration by parts gives
(D@ fo]), ¢) = —(zIn ], Do)

= —/a:ln|x|¢>’(x) dx

o 0
:/ (ln|x|—|—1)gb(1‘)d$—|—/ (In|z| + 1)¢(x) d
O — 0
=(ln|z|+1,¢) .
Thus
v,

which the reader can prove directly quite easily.

5.4.3. Translations and dilations of R?. Assume Q = R and define for any fixed z € R¢
and A € R, A #0, the maps 7, : D — D and T) : D — D by

7¢(y) = ¢y —z) and Thé(y) = ¢(\y) ,

for any y € R? These maps translate and dilate the domain. They are clearly sequentially
continuous and linear maps on D.
Given u € D', we define the distributions 7,u and Thu for ¢ € D by

(Tou, @) = (u, T—20)

1

(Thu, ¢) = W<U7T1/,\¢> :

These definitions are clearly consistent with the usual change of variables formulas for integrals
when wu is a regular distribution.

5.4.4. Convolutions. If f, g : R? — F are functions, we define the convolution of f and g,
a function denoted f % g : R* — T, by

(F+o)@ = [ W —9)dy = (o5 Hia).

provided the (Lebesgue) integral exists for almost every € R?. If we let 7, denote spatial
translation and R denote reflection (i.e., R = T_1 from the previous subsection), then

fra@ = [ Fw)mR W) dy
This motivates the definition of the convolution of a distribution u € D'(R?) and a test function
¢ € D(RY):
(u* @) (x) = (u,7xRP) = (RT_pu,¢) , for any z € R?.
Indeed, RT_,u =uo7, 0 R €D is well defined.
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EXAMPLE. If ¢ € D and z € R?, then

8o * ¢(x) = (o, T2 Rp) = P(x) .
If uw € D', then
ux R(0) = (u, ) .
PROPOSITION 5.12. If u € D'(R?) and ¢ € D(RY), then
(a) for any x € R,
Te(ux @) = (Tpu) * ¢ = ux (7:9) ,
(b) u* ¢ € C®(RY) and, for any multi-index «,
DY(ux* @) = (D) *x ¢ = ux (D) .
REMARK. Since u could be a function in LUOC(Rd), these results hold for functions as well.
PRrOOF. For (a), note that
Te(ux @)(y) = (u* @) (y — ) = (u, 7y RP) ,
(Tou) * ¢(y) = (Teu, Ty RP) = (u, 7y—c R) ,
(u s 720)(y) = (u, 7y R72¢) = (u, 7y RO) .
Part of (b) is easy:
D% * ¢p(x) = (D%, 1, Rp)
= (=1)*(u, D, R¢)
= (=1)!*N(u, 7. D*Rg)

= (u, 7, RD%¢)
=ux*xD%(x) .
Now for A > 0 and e € R? a unit vector, let
1
Th = E(I — The) .
Then 96
lim T, = —
lim ho(z) 96 (2)

pointwise; in fact we claim that the convergence is uniform since 9¢/de is uniformly continuous
(it has a bounded gradient). Given £ > 0, there is 6 > 0 such that

0 0
2w - L) <

whenever |z — y| < J. Thus

Thow) — 92 (@) = ‘2/1 (220 + se) 22 (a)) as| <«

whenever |h| < §. Similarly

R%)

DTy = T,0%¢ LY, pad?

DY =
Oe ’
so we conclude that

Thqb—Da@ as h— 0,
Oe
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since supp(Tp¢) C {z € Q : dist(z, Q) < h} is compact.
Now, by part (a), for any 2 € R?,

Th(u* ¢)(x) = uxTho(x) ,

S0
o¢
lim Ty (0 )(x) = Jim u Tyo(a) = u = 9 (2)
since uo 7, 0o R € D'. Thus %(u * @) exists and equals u * %. By iteration, (b) follows. O

If ¢, € D, then ¢ x 1) € D, since
supp(¢ * 1) C supp(¢) + supp(¢) .
PROPOSITION 5.13. If ¢,v € D, u € D', then

(uk @) =ux(Pxy) .

PROOF. Since ¢ * 1 is uniformly continuous, we may approximate the convolution integral
by a Riemann sum: for h > 0,

rh(z) = > ¢lx — kh)p(kh)h?

kezd

and 7, (z) — ¢ * ¢(z) uniformly in z as h — 0. Moreover,

D%y — (D%¢) * 1 = D*(¢ x 1))
uniformly, and

supp(rp) C supp(¢) + supp(¢) .

We conclude that
D

Th—%(ﬁ*w.
Thus

wk (¢ P)(x) = limu xry(z)

- 1}3% > wr gl — kh)p(kh)h?
kezd

= (u* ) xp(z) . O
5.5. Convergence of Distributions and Approximations to the Identity

We endow D'(2) with its weak topology. Although we will not prove or use the fact, D is
reflexive, so the weak topology on D’(Q) is the weak-* topology. The weak topology on D’'(2)
is defined by the following notion of convergence: a sequence {uj};.";l C D'(Q2) converges to
u € D'(Q) if and only if

(uj, ) — (u,0) ¥ 6 € D) .
As the following proposition states, D’(2) is (sequentially) complete.

PROPOSITION 5.14. If {u,}5°, € D'(Q) and {{un, $)}5°, C F is Cauchy for all ¢ € D(R),
then v : D — F defined by

u(6) = {u.¢) = lim {u,,¢)

n
defines a distribution.
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The existence and linearity of u is clear. We hypothesize pointwise convergence, so the
continuity of u follows from a uniform boundedness principle, which we do not prove here (see,
e.g., [Yo] and [Rul)).

LEMMA 5.15. If T : D(Q) — D(Q) is continuous and linear, and if u, — u in D'(QY), then
T*u, — T*u.
PROOF. Simply compute, for ¢ € D(Q),
(T Up, @) = (up, TP) — (u, To) = (T u, ) . O

COROLLARY 5.16. If uy, AN u and « s any multi-index, then D%uy, AN D%u.

Of course, we can also directly show the corollary: For any ¢ € D,
(D%un, ¢) = (=1)"un, D*¢) — (=1)1*N(u, D*¢) = (D"u, 9) .
We leave the following two propositions as exercises.

PROPOSITION 5.17. If u € D'(Q) and o is a multi-index with |a| =1, then
: D'(9)
}ILILI(I] ﬁ(u — Thatt) — D%,
wherein the first o is interpreted as a unit vector in R?.
PROPOSITION 5.18. Let xg(x) denote the characteristic function of R C R. For e > 0,

1 D' (R)
TXle/2e/2 T do

as e — 0.

DEFINITION. Let ¢ € D(RY) satisfy

(a) ¢ =0,
(b) [o(z)dx =1,
and define for ¢ > 0
=Ll
Pe = gdsa c)
Then we call {¢e}c>0 an approximation to the identity.
The following is easily verified.

PROPOSITION 5.19. If {pc}e>0 is an approzimation to the identity, then

/@5(:p)d$:1 Ve>0

and supp(yp:) — {0} ase — 0.
THEOREM 5.20. Let {p-}c>0 be an approximation to the identity.
(a) If ¢ € D, then ¢ % e —> 1.
(b) If u € D', then u * ¢ L

Since u * . € C™, we see that C°(R?) C D’ is dense. Moreover, {@. }.~o approximates the
convolution identity dg.
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PRrROOF. (a) Let supp(yp) C Br(0) for some R > 0. First note that for 0 < e <1,

supp(1) * =) C supp(¥) + supp(g:) C supp(y) + Br(0) = K
is contained in a compact set. If f € C5°(R?), then

froo) = [ 1= ey
= / flx—y)e%o(e " y) dy
— [ 1 et ds
— [ 22) - f@Dete s + 1 (a) .

and this converges uniformly to f(z). Thus for any multi-index «,
Lo
D (¢ * ) = (D) * pe —= D ;

that is, ¥ * ¢, Dx, 1, and so also 1 * ¢ 2, .
(b) Since convolution generates a (continuous) distribution for any fixed z, by (a) and
Proposition 5.13, we have for ¢ € D,

(u, 1) = u * Ryp(0)
= lim ux (Ryp ) (0)
— iif(l)(u * pz) * Rip(0)

= lim (u * pg, ) .
e—0

COROLLARY 5.21. . = dg * ¢ N 0.

5.6. Some Applications to Linear Differential Equations

An operator L : C™(R%) — CO(R?) is called a linear differential operator if there are
functions a, € C°(RY) for all multi-indices a such that

L= ) auD". (5.4)
la|<m

The maximal |« for which a,, is not identically zero is the order of L.
If a, € C*®(RY), then we can extend L to

L:D -7,
and this operator is linear and continuous. Given f € D', we have the partial or ordinary
differential equation

Lu=f in D
for which we seek a distributional solution u € D' such that

(Lu,¢) = (f,¢) VoeD.

We say that any such u is a classical solution if u € C™(R?) satisfies the equation pointwise. If
u is a regular distribution, then w is called a weak solution (so classical solutions are also weak
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solutions). Note that if u € D’ solves the equation, it would fail to be a weak solution if u is a
singular distribution.

5.6.1. Ordinary differential equations. We consider the case when d = 1.

LEMMA 5.22. Let ¢ € D(R). Then [ ¢(x)dx =0 if and only if there is some ¢p € D(R) such
that ¢ = 1.

The proof is left to the reader.
DEFINITION. A distribution v € D'(R) is a primitive of u € D'(R) if Dv = v = w.

THEOREM 5.23. Fvery u € D'(R) has infinitely many primitives, and any two differ by a
constant.

PRrRoOOF. Let

qﬁ € D(R / ¢(z)dx = 0
={¢p € D(R) : therelstD( ) such that ¢’ = ¢} .
Then Dy is a vector space and v € D’ is a primitive for v if and only if

(u, ) = (v',9) = —(v,¢) VY eD;
that is, by the lemma, if and only if

(v,0) = / P& d£> VoeDy.

Thus v : Dy — F is defined. We extend v to D as follows. Fix ¢ € D such that [ ¢y (x)dz = 1.
Then any 1 € D is uniquely decomposed as

Y =0+ (L,v)o
where ¢ € Dg. Choose ¢ € F and define v, for ¢ € D by

(ve, ) = (ve, @) + (L) (ve, ¢1) = (v, @) + (1, ¥) .

Clearly v, is linear and vc|p, = v. We claim that v, is continuous. If ¥, A 0, then
< %) L0 and Dy 3 ¢p = ¢y — (1, a1 = 0, as does [*_ $n(€) dé. Therefore (v, ¢,) =
f dn (&) d&) — 0, and so also (v, 1,) — 0. Thus v,, for each ¢ € I, is a distribution and
vl = u.
If v,w € D’ are primitives of u, then for ¢ € D expanded as above with ¢ € Dy,
<U - w,@/)) = <U - w>¢> =+ <1) - w, <17¢>¢1>
=0+ <<U_U),<Z51>a¢> )
and so
v—w=(w—w¢)€EF. O
COROLLARY 5.24. If v’ =0 in D'(R), then u is constant.

COROLLARY 5.25. If a € F, then ' = au in D'(R) has only classical solutions given by
u(z) = Ce™
for some C € F.
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PROOF. We have the existence of at least the solutions C'e®*. Let u be any distributional
solution. Note that e € C°(R), so v = e~ *u € D’ and Leibniz rule implies

v = —ae”u+e u =e (U —au) =0.
Thus v = C, a constant, and u = Ce®*. O
COROLLARY 5.26. Let a(x),b(x) € C*°(R). Then the differential equation
v +a(z)u=0b(z) in D'(R) (5.5)

possesses only the classical solutions
u=e A {/ eA®p(&) d¢ + C
0

for any C € F where A is any primitive of a (i.e., A’ = a).

PROOF. If u,v € D' solve the equation, then their difference solves the homogeneous equa-
tion
w' +a(x)w =0 in D'(R).
But, similar to the proof above, such solutions have the form

w = Ce A&

(i.e., (eA®w) =A@y 4+ a(z)eA@w = 0). Thus any solution of the nonhomogeneous equation
(5.5) has the form

u=Ce 4@ 4y

where v is any solution. Since
v = e A@) / eA(E)b(g) d¢
0

is a solution, the result follows. O

Not all equations are so simple.

EXAMPLE. Let us solve
zu' =1 in D'(R).

We know u = In |z| € Ly 1oc(R) is a solution, since (In|z|)’ = PV (1/z) and 2PV (1/z) = 1. All
other solutions are given by adding any solution to

zv'=0 in D'(R) .

Since v" € D'(R) may not be a regular distribution, we must not divide by x to conclude v is a
constant (since = 0 is possible). In fact,

v=c1+coH(x),
for constants c1,co € F, where H(x) is the Heaviside function. To see this, consider
rw=0 in D .
For ¢ € D,
0= (2w, ¢) = (w,z¢) ,
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so we wish to write ¢ in terms of zv for some 1) € D. To this end, let » € D be any function
that is 1 for —e < z < ¢ for some £ > 0 (such a function is easy to construct). Then

6(x) = B(0)r(z) + (&(x) — H(O)r(x))
— $(0)r(x) + /0 (6/(6) — B0} (€)) de

1
— $(O)r(z) + 2 /0 (& (xn) — S(O) () dn
— $(0)r(a) + 2(a) |

where )
= / (¢ () — S(0) (an)) i
0

clearly has compact support and ¢ € C'°, since differentiation and integration commute when
the integrand is continuously differentiable. Thus

(w, @) = (w,p(0)r) + (w, z¢p) = G(0)(w,T) ;
that is, with ¢ = (w,r),
w = cdy -
Finally, then v' = c2dg and v = ¢ + co H. Our general solution
u=1In|z|+c1 + coH(x)

is not a classical solution but merely a weak solution.

5.6.2. Partial differential equations and fundamental solutions. We return tod > 1
but restrict to the case of constant coefficients in L:
L= Y cD*,
|| <m

where ¢, € F. We associate to L the polynomial

p($) = Z Caxa 9
la|<m

where 2% = z{* 257 -

-y thus,

L=p(D).
Easily, L is the adjoint of
£= Y (-1)fle,De

|a| <m
since (u, L¢) = (L*u, @) = (Lu, ¢) for any u € D', ¢ € D.
EXAMPLE. Suppose L is the wave operator:
_P 0
- ot2 Ox?
for (t,z) € R? and ¢ > 0. For every g € C%(R), f(t,z) = g(x — ct) solves Lf = 0. Similarly, if
g € Lj joc, We obtain a weak solution. In fact, f(t,z) = do(z — ct) is a distributional solution,
although we need to be more precise. Let v € D'(R?) be defined by

[e.9]

(u,6) = (Gole —ct), d(t,0)) = | d(t,et)dt V¢ € D(R?)

—00
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(it is a simple exercise to verify that u is well defined in D). Then

(Lu, ¢) = (u, L) = (u, L)

= (w (5 +ez) (5 ~c2)%)
(v G o))
where ¢ € D. Continuing,

(Lu, ) = /oo (gt + ch)w(t, o) dt = /Z %w(t, ct)dt =0 .

—0o0
DEFINITION. If Lu = ¢ for some u € D', then u is called a fundamental solution of L.
If a fundamental solution w exists, it is nmot in general unique, since any solution to Lv = 0

gives another fundamental solution u + v. The reason for the name and its importance is given
by the following theorem.

THEOREM 5.27. If f € D and E € D' is a fundamental solution for L, then E x f is a
solution to

Lu=f.
PROOF. Since LE = Jy, then also
(LE)« f=00xf=[.
But
(LE)x f=L(Ex*f) . O

THEOREM 5.28 (Malgrange and Ehrenpreis). Every constant coefficient linear partial differ-
ential operator on R® has a fundamental solution.

A proof can be found in [Yo| and [Rul]. The solution has a simple interpretation, referred
to as the Principle of Superposition. If we consider f as a source of disturbance to the system
described by the linear partial differential operator L, then E is the response to a unit point
disturbance at the origin (i.e., to dp). By linearity, E(x — y) is the response to a unit point
disturbance at y (i.e., to d, = do(z —y)). If we multiply by the correct magnitude of disturbance,
f(y), we see that the responce to the actual point disturbance at y is E(z — y) f(y), again by
linearity of the operator L. We now “sum” these responses, in the sense of integration theory,
to obtain the entire response of the system:

u(w) = [ Bl—y) 1) dy
That is, we superimpose the point solutions to obtain the entire solution.

ExXAMPLE. A fundamental solution of

where ¢ > 0, is given by

1 1
E(t,x) = Z—CH(ct —lz|) = 2—CH(ct —z)H(ct +x)
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where H is the Heaviside function. That is, we claim
(LE,¢) = ¢(0,0) VéeD(R?.

For convenience, let Dy = % + ca%, soL=D;D_=D_D,. Then

(LE.6) = (B.DiD-0) = [ [ 3 H(ct ~|a)D1D_pdt do

[ee) [e'e] 0 o]

A z/c —oo J—z/c

oo/OOO(D+D¢)(t+:ﬁ/c,x)dtdm+/0 /OO(DD+¢)(t—x/c,x)dtdx}

{/OOO/OOOCZ:( )(t—l—a;/ca:dacdt—// —(D¢) t—x/cx)dazdt}

D_D.¢dt da:}

Since the fundamental solution is E(t,z) = + H(ct —|z|), a solution to Lu = f € D is given
by

wtn) =Befea =g [ sy
s)—|z—y

T4c(t— s)
= / / (s,y)dyds .
z—c(t—s)

Thus we see that the solution at a point (¢,z) depends on the value of f only in the cone of
points

{(s,9):0< —co<s<tandax—c(t—s)<y<z+c(t—s)},

which is called the domain of dependence of the point (¢,x). If f were to be changed outside
this cone, the solution at (¢,x) would be unchanged. Conversely, we note that a point (s,y) will
influence the solution in the cone

{(t,z)):0<s<t<owandy—c(t—s)<z<y+c(t—s)},
called the domain of influence of the point (s,y).
ExAMPLE. The Laplace operator is

0? 0?
A= — 4o~ —VJ.V=VY2,
6x%+ +8w§ V.-V=V
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A fundamental solution is given by

1
—|z|, d=1,
2
1
E(z) = %ln\ﬂ , d=2, (5.6)
1 ‘.’L‘|2_d
—_— d> 2
dog 2—d° “7%
where
27Td/2
Y4 = ar(d/2)

is the hyper-volume of the unit ball in R, (As a side remark, the hyper-area of the unit sphere
is dwg.) It is trivial to verify the claim if d = 1: D?$|z| = D1(2H(z) —1) = H' = §y. For d > 2,
we need to show

(AE,¢) = (E,A¢) = ¢(0) V¢ € D(RY) .

It is important to recognize that F is a regular distribution, i.e., F € LUOC(Rd). This is clear
everywhere except possibly near x = 0, where for 1 > r > 0 and d = 2, change of variables to

polar coordinates gives
1 2T r 1
/ ln|x\‘dx:—/ / — Inrrdrdf
B, (0) | 2T o Jo 2

1 1
:—§r2lnr—|—1r2<oo
and, for d > 2,
/ E(z)|d / /TTH -1 g d
z)|dr = — r rdo

B, (0) s10)Jo dwa(2—d)

2

= <00,

2(d—2)
where S1(0) is the unit sphere. Thus we need that

/ E(2)Ad(z) de = 6(0) VeD.

Let supp(¢) C Bgr(0) and € > 0. Then

/ EA(bda::—/ VE - -Vodr + EV¢-vdo,
e<|z|<R e<|z|<R |z|=¢
by the divergence theorem, where v € R? is the unit vector normal to the surface || = ¢ pointing
toward 0 (i.e., out of the set ¢ < |z| < R). Another application of the divergence theorem gives
that

/ EAgbd:r:/ AE¢dx — VE -vodo + EV¢-vdo .

e<|z|<R e<|z|<R |z|=¢e |z|=¢

It is an exercise to verify that AE = 0 for x # 0. Moreover,

2—d
Ew.yda:/ L

_— Vo -vettdo — 0
51(0) dwd 2—d

|z|=e
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as € | 0 for d > 2 and similarly for d = 2. Also

- VE -vpdo = / oE ——(e,0)p(e,0)e?  do

lo|=e Si1(0) Or

1 d d—1
= do — .
/51(0) dwd (e, 0)e o #(0)

Thus

/EAgb dr = lim EA¢dx = ¢(0) ,

€l0 Je<|z|<R

as we needed to show.

If f € D, we can solve
Au=f
by u = FE % f. Note that in this case, the domains of dependence and influence are the entire
domain: a change in f on a set of nontrivial measure will change the solution everywhere. We

can extend this result to many f € L; by the following.

THEOREM 5.29. If E(x) is the fundamental solution to the Laplacian given by (5.6) and
f € Li(R?) is such that for almost every x € R,

E(z —y)f(y) € Li(RY)
(as a function of y), then
u=FExf
is well defined, u € LLlOC(Rd), and
Au=f in D .

PrOOF. For any r > 0, using Fubini’s theorem,

/BT@ fule)] e < /B / |B(x—9)f(y)|dyda
=[], 1Pl
=[], )
<[] 1Bl <.

since I/ decreases radially, E € Lq joc, and f € L1. Thus u € L joc.
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For ¢ € D, using again Fubini’s theorem,

(Au, ¢) = (u, Ag)
/qubdx—/ E(x —y)f(y)A¢(x) dy dx

/Ea;— VAG(z) dz F(y) dy
—/Euwwﬂw@

since E(z —y) = E(y — x) and
ExAp=AExp=08*xp=0¢.
Thus Au = f in D’ as claimed. O

5.7. Local Structure of D’
We state without proof the following theorem. See [Rul, p. 154] for a proof.

THEOREM 5.30. If u € D'(Q), then there exist continuous functions go, one for each multi-
ndex a, such that

(i) each K CC € intersects the supports of only finitely many of the go
and

(i) u = ZDaga.

Thus we see that D'(€2) consists of nothing more than sums of derivatives of continuous
functions, such that locally on any compact set, the sum is finite. Surely we wanted D'(Q) to
contain at least all such functions. The complicated definition of D’(€2) we gave has included no
other objects.

5.8. Exercises

1. Let®y € Dbefixed and define T : D — Dby T'(¢) = [ ¢(§) d€ 4. Show that T is a continuous
linear map.

2. Show that if ¢ € D(R), then [ ¢(z)dz = 0 if and only if there is ¢ € D(R) such that ¢ = ¢'.
3. Let T}, be the translation operator on D(R): Tho(x) = ¢(x—h). Show that for any ¢ € D(R),

lim (6~ T16) = ¢/ in D(R).

4. Prove that D(Q) is not metrizable. [Hint: see the sketch of the proof given in Section 5.3.]
5. Prove directly that zPV(1/z) = 1.
6. LetT:D(R)— R.

(a) If T(¢) = |¢(0)|, show T is not a distribution.

(b) If T(¢) = > 72y d(n), show T is a distribution.
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(c) T (p) => 02 D"¢(n), show T is a distribution.
Is it true that &y, — do in D'? Why or why not?

Determine if the following are distributions.

00 N
(@) > 6p= lim > 6.
n=1 n=1

N—oo

o0 N
n=1 n=1

Let © € R% be open and let {an}22, be a sequence from  with no accumulation point in
Q. For ¢ € D(R), define

T(¢) = Z An ¢(an)7
n=1

where {\,}22 is a sequence of complex numbers. Show that 7' € D'(Q).

1
Prove the Plemelij-Sochozki formula 0= PV(1/x) — imdo(x); that is, for ¢ € D,
T+

. . 1 . 1 ,
i { i [ srge@ish = i [ Cete)de =m0

e}

Prove that the trigonometric series Z ane™® converges in D’'(R) if there exists a constant

n=—0oo

A >0 and an integer N > 0 such that |a,| < A|n|V.

Show the following in D’'(R).

(a) 711;11010 cos(nx) PV(1/x) = 0.

(b) ?}LII;O sin(nx) PV(1/x) = wdp.

(c) nh_)rglo ™ PV(1/z) = indy.

Prove that the set of functions ¢ * 1, for ¢ and 1 in D, is dense in D.

Suppose that u € D’ and that there is some K CC 2 such that u(¢) = 0 for all ¢ € D
with supp(¢) C K¢ (We say that u has compact support.) Show that for any ¢ € D,
ux ¢ € C°(Q) has compact support. For any v € D', show that v * (u * ¢) is well defined.
Further define v x u, show that it is in D', and that (v xu) *x ¢ = v * (u * ).

Find a general solution to the differential equation D27 = 0 in D'(R).

Verify that AF = 0 for z # 0, where E is the fundamental solution to the Laplacian given
in the text.

Find a fundamental solution for the operator —D? + I on R.

On R3, show that the operator

1
T = lim —_—
(¢) =0T |z|>e 47T‘$|

e~ %2l () da

is a fundamental solution to the Helmholtz operator —A + k%1I.






CHAPTER 6

The Fourier Transform

Fourier analysis began with Jean-Baptiste-Joseph Fourier’s work two centuries ago. Fourier
was concerned with the propagation of heat and invented what we now call Fourier series. He
used a Fourier series representation to express solutions of the linear heat equation. His work
was greeted with suspicion by his contemporaries.

The paradigm that Fourier put forward has proved to be a central conception in analysis
and in the theory of differential equations. The idea is this. Consider for example the linear
heat equation

ou  0%u

E—@, O<.T<].,t>0,

w(0,t) = u(1,t) =0, (6.1)
U(ZL‘,O) = QD(*I) )

in which the ends of the bar are held at constant temperature 0, and the initial temperature
distribution () is given. This might look difficult to solve, so let us try a special case

(x) = sin(nmx) , n=12....
Try for a solution of the form
un(x,t) = Up(t) sin(nmx) .
Then U, has to satisfy
U! sin(nmx) = —n?U, sin(nrx) |

or
We can solve this very easily:

The solution is

up(z,t) = Un(O)eant sin(nmz) .

[e.9]

Now, and here is Fourier’s great conception, suppose we can decompose ¢ into {sin(nmz)}5 ;:

o(z) = Z p sin(nmz) ;
n=1

151
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that is, we represent ¢ in terms of the simple functions sin(nnz), n = 1,2,.... Then we obtain
formally a representation of the solution of (6.1), namely

o
t) = Zun(:v t) ngne "t gin (nmx) .

In obtaining this, we used the representation in terms of simple harmonic functions {sin(nmwz)}5 ,
to convert the partial differential equation (PDE) (6.1) into a system of ordinary differential
equations (ODE’s) (6.2).

Suppose now the rod was infinitely long, so we want to solve

Up = Ugg , —0O0< <00, t>0,
u(z,0) = p(z) , (6.3)
u(z,t) -0 as = — +oo .

Again, we would like to represent ¢ in terms of harmonic functions, e.g.,

)
—inx
E Yne .

n=-—oo
Any such function is periodic of period 27w, however. It turns out that to represent a general
function, you need the uncountable class

{e_Mx})\eR )
We cannot sum these, but we might be able to integrate them; viz.,
(o]
o) = [ epan,
—00

say for some density p. Suppose we could. As before, we search for a solution in the form

Ul(z,t) :/oo TN ) d

—00

If this is to satisfy (6.3), then

/ e”‘ng()\,t) d\ = — / e ATN2p(N, 1) dX

. op
—iA\x 2 _
/ e |:at+)\ }dx_o,

for all ,t. As x is allowed to wonder over all of R, we conclude that this will hold only when
Op
ot
This collection of ODE’s is easily solved as before:

p(A1) = p(X,0)e ™ .

or

+Ap=0 VAIER. (6.4)

Thus formally, the full solution is

u(x,t) :/ e_i’\ze_’\%p()\) A ,

another representation of solutions. These observations that
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(1) functions can be represented in terms of harmonic functions, and
(2) in this representation, PDE’s may be reduced in complexity to ODE’s,

is already enough to warrant further study. The crux of the formula above for u is p — what is
p such that
oo
o) = [ ey
—o0
Is there such a p, and if so, how do we find it? This leads us directly to the study of the Fourier
transform: F.

The Fourier transform is a linear operator that can be defined naturally for any function in
L1(R%). The definition can be extended to apply to functions in Ls(R?), and then the transform
takes Lg(Rd) onto itself with nice properties. Moreover, the Fourier transform can be applied
to some, but unfortunately not all, distributions, called tempered distributions.

Throughout this chapter we assume that the underlying vector space field F is C.

6.1. The L;(R?) Theory
If ¢ € R?, the function
Pe(x) = e = cos(x - €) — isin(x - €) , zeR?,

is a wave in the direction &. Its period in the jth direction is 27/§;. These functions have nice
algebraic and differential properties.

PROPOSITION 6.1.

(a) el =1 and @¢ = p_¢ for any € € RY.
(b) ez +y) = pe(x)pely) for any x,y,€ € R
(¢) —Agpe = [€]Pp¢ for any & € R

These are easily verified. Note that the third result says that ¢¢ is an eigenfunction of the
Laplace operator with eigenvalue —|&|?.

If f(x) is periodic, we can expand f as a Fourier series using commensurate waves e~ (i.e.,
waves of the same period) as mentioned above. If f is not periodic, we need all such waves. This
leads us to the Fourier transform, which has nice algebraic and differential properties similar to
those listed above for e =<,

DEFINITION. If f € L1(R%), the Fourier transform of f is
Fi(€) = F§) = 202 | flaje¢da
This is well defined since

|f(x)e™ ¢ = |f(2)| € L1(RT) .

We remark that it is possible to define a Fourier transform by any of the following;:

f(x)ei%m'x{ dz |
Rd

f@)et™ dx
Rd

@2m)~ 2 [ f(x)et™ dx
Rd
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The choice here affects the form of the results that follow, but not their substance. Different
authors make different choices here, but it is easy to translate results for one definition into
another.

PROPOSITION 6.2. The Fourier transform
F: L1(RY) — Loo(RY)
is a bounded linear operator, and
HfHLOO(]Rd) (2m)” d/QHfHLl (R4) -
The proof is an easy exercise of the definitions.

ExampLE. Consider the characteristic function of [—1,1]%:

1 if-l<z;<l,j=1,...,d,
f(x) = Y
0 otherwise.

f( (27) d/Q/ / e e dy

d
e [ e,
—1

Then

d
2 —-1/2" -~ —i& zﬁj
- IJm (e )

_H\/§S1n£] .

PROPOSITION 6.3. If f € L1(R?) and 7, is translation by y (i.e., Ty0(z) = ¢(x —y)), then
(a) (yf)NE) = e VEf(€) VyeRY:
(b) (e*VH)NE) =7y f(6) VyeRY
(c) if r > 0 is given,
) flra)(©) = f(rte) ;
(d) F(&) = f(=9).
The proof is a simple exercise of change of variables.

While the Fourier transform maps L;(R?) into Lo (R?), it does not map onto. Its range is
poorly understood, but it is known to be contained in a set we will call Cv(Rd).

DEFINITION. A continuous function f on R? is said to wanish at infinity if for any € > 0
there is K cC R? such that
|lf(z)|<e Vz¢gK.

We define
Cy(RY) = {f € CO(R?) : f vanishes at co} .

PROPOSITION 6.4. The space C,(RY) is a closed linear subspace of Loo(R?).
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PROOF. Linearity is trivial. Suppose that {f,,}°; C C,(R?) and that

Loo

fn—>f

Then f is continuous (the uniform convergence of continuous functions is continuous). Now let
e > 0 be given and choose n such that ||f — f,| 1., <¢/2 and K CC R? such that | f,(x)| < &/2
for x ¢ K. Then

[f(@)] < [f(x) = fu(@)| + [ fu(2)] <€

shows that f € C,(R?). O

LEMMA 6.5 (Riemann-Lebesgue Lemma). The Fourier transform
F:Li(RY) — Cp(RY) G Leo(RY) .
Thus for f € L1(RY),
lim |f(€)]=0 and fe C'(R?).

€] =00

PROOF. Let f € Li(R?). There is a sequence of simple functions {f,,}°; such that f,, — f
in L1 (R%). Recall that a simple function is a finite linear combination of characterlstlc functions
of rectangles. If f,, € C,(R?), we are done since

Loo

fn—’f

and C,(R?) is a closed subspace. We know that the Fourier transform of the characteristic
function of [—1,1]¢

H 2 smgj C’v(Rd).

By Proposition 6.3, translation and dilation of this cube gives us that the characteristic function
of any rectangle is in C,(R%), and hence also any finite linear combination of these. O

Some nice properties of the Fourier transform are given in the following.

PROPOSITION 6.6. If f,g € L1(R%), then

) [ fgordo = [ i ds

(b) fxg € Li(RY) and fxg = (2m)"fg ,
where the convolution of f and g is
0= [ 1= oy .

which is defined for almost every x € RY.



156 6. THE FOURIER TRANSFORM

PRrOOF. For (a), note that f € Lo and g € Ly implies fg € L1, so the integrals are well
defined. Fubini’s theorem gives the result:

[ F@g(w)dz = a2 [[ e =rg(a) dydo
= 2m 2 [ [ 1) rg(o) do dy

- / Fw)iy) dy .

The reader can show (b) similarly, using Fubini’s theorem and change of variables, once we know
that f* g € L1(R?). We show this fact below, more generally than we need here. g

THEOREM 6.7 (Generalized Young’s Inequality). Suppose K (x,vy) is measurable on R x R?
and there is some C > 0 such that

/ |K (z,y)|dx < C for almost every y € R?

and

/\K(x,y)\ dy < C for almost every z € R? .

Let the operator T be defined by
7f0) = [ Ko f)dy

If1<p<oo, then T : Ly(RY) — L,(R?) is a bounded linear map with norm |T| < C.

COROLLARY 6.8 (Young’s Inequality). If 1 < p < oo, f € Ly(R%), and g € L1(R%), then
f g€ Ly,(RY) and

I1f * gl ey < W f 1L, llgllz, ey -
Just take K(x,y) = g(x — y).

COROLLARY 6.9. The space Li(R?) is an algebra with multiplication defined by the convolu-
tion operation.

PROOF. (Generalized Young’s Inequality) If p = oo, the result is trivial (and, in fact, we
need not assume that [ |K(z,y)|dx < C). If p < oo, let % + % =1 and then

T ()] < / K (2, ) [V K (2, )] VP £ ()] dly

< ([ 1) dy)l/q ([1ten \f(y)\pdy)l/p
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by Hoélder’s inequality. Thus

17417, < 0 [ [ 1K @)l dy da
= v/t [[ 1Kyl dsl )P dy

< oo/t / F@)P dy

_ P £||P
— sl
and the theorem follows since T is clearly linear. O

An unresolved question is: Given f, what does f look like? We have the Riemann-Lebesgue
lemma, and the following theorem.

THEOREM 6.10 (Paley-Wiener). If f € C3°(R?), then f extends to an entire holomorphic
function on C2.

Proor. The function

Er—s e g

is an entire function for z € R? fixed. The Riemann sums approximating
f) = @ny 2 [ jwe =i

are entire, and they converge uniformly on compact sets since f € C§° (R4). Thus we conclude
that f is entire. O

See [Rul] for the converse. Since holomorphic functions do not have compact support, we
see that functions which are localized in space are not localized in Fourier space (the converse
will follow after we develop the inverse Fourier transform).

6.2. The Schwartz Space Theory

Since Lo(R?) is not contained in L;(R?), we restrict to a suitable subspace S C Ly(R%) N
L1(R%) on which to define the Fourier transform before attempting the definition on Lo(R?).

DEFINITION. The Schwartz space or space of functions of rapid decrease is

S =S(RY) = {d) € C*°(RY) : suﬂgl |22 DP¢(z)| < oo for all multi-indices o and ﬂ} .
Te

That is, ¢ and all its derivatives tend to 0 at infinity faster than any polynomial. As an
example, consider ¢(z) = jto(av)e*“k”'2 for any a > 0 and any polynomial p(z).

PROPOSITION 6.11. One has that
CP(RY) G S G Li(RY) N Lo (RY) ;
thus also S(RY) C L,(R?) ¥V 1 < p < cc.
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PROOF. The only nontrivial statement is that S C Ly. For ¢ € S,

Jo@ias= [ ol /M 6(2)] da

The former integral is finite, so consider the latter. Since ¢ € S, we can find C' > 0 such that
|z|9 Y o(z)| < C ¥ |z| > 1. Then

z)|ar = 217 (1219 b ()] d
[ ez = [ e o

<C 2|7 da
|lz[>1

= C’dwd/ rod=lpd=1 gy
1

o0
:C'dwd/ r2dr < oo,
1
where dwy is the measure of the unit sphere. O

Given n=0,1,2,..., we define for p € S
pn(®) = sup sup(1+[|*)"/?|D*¢(x)| = sup [[(1+]- [)"* D] (ga) - (6.5)

lajsn @ |a|<n
Each p,, is a norm on S and p,(¢) < pm(¢) whenever n < m.
PROPOSITION 6.12. With wag(¢) = sup, [z*DF¢| = H(-)O‘DﬁngLw(Rd), the Schwartz class

S ={¢ € C®R?) : wap(¢) < 0o for all multi-indices o and [}
= {6 € C(R) : pa(9) < 00 ¥ n}.

PRrROOF. The expression p,(¢) is bounded by sums of terms of the form wyg(¢), and p,(¢)
bounds wag(¢) for n = max(|al, |3]). O

PROPOSITION 6.13. The Schwartz class S is a complete metric space where the {pn}2,
generate its topology through the metric
o)

(g1, d2) = 27"

n=0

pn(P1 — ¢2)
L+ pn(o1 — ¢2)

We remark that for a sequence in S, ¢; — ¢ if and only if p,(¢1 — ¢2) — 0 for all n if and
only if wag(¢) — 0 for all @ and 3. The Schwartz class is an example of a Fréchet space: a
linear metric space defined through an infinite sequence of seminorms that separate points.

ProOF. Clearly § is a vector space and d is a metric. To show completeness, let {qﬁj}}?’;l
be a Cauchy sequence in §. That is,

puldy — ) =0 as jk—ocoVn.

Thus, for any o and n > |a,
o0
{(1 + |x\2)"/2Da¢j}' ) is Cauchy in C°(R%) |
]:
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so there is some v, o € C*(R?) such that

(1+ 22D =25 i .
But then it follows

Loo Tpn,a 0 d
D% € CY(RY) .
5 Wy S
Now ¢; Leo, o0, so as distributions D¢ 2, D%pop. So Yna = (1 + |ZE|2)"/2DO‘LZ)0’0,
pn(t00) < 0o V n, and pp(¢; — o) — 0V n. That is, ¢ € S, and ¢; S, Yo .0 O

PROPOSITION 6.14. If p(z) is a polynomial, g € S, and « a multi-index, then each of the
three mappings

fepf, fgf, ad f—D%f

is a continuous linear map from S to S.

PRrOOF. The range of each map is S, by the Leibniz formula for the first two. Each map is
easily seen to be sequentially continuous, thus continuous. O

We leave the proof of the following to the reader.

PROPOSITION 6.15. If {f;}52, C S, f; S, f, and 1< p < oo, then fi Lo, f.
Since S C L1 (R?), we can take the Fourier transform of functions in S.

THEOREM 6.16. If f € S and « is a multi-indez, then f € C>=(R%) and

(2) (D°N)NE) = (°F(€),
(0) Df(€) = ((~ia)" £ () "(©).

Proor. For (a)

(2m)4/2(D% £)(€) = / DO f(x)e € da

= lim D% f(z)e” ¢ dx
T—00 BT(O)

= lim {/ f(x)(i€) e dz + (boundary terms)} ,
~(0)

r—00

by integration by parts. There are finitely many boundary terms, each evaluated at |z| = r and
the absolute value of any such boundary term is bounded by a constant times | D? f(z)| for some
multi-index 8 < . Since f € S, each of these tends to zero faster than the measure of 9B,(0)
(i.e., faster than r?~1), so each boundary term vanishes. Continuing,

(DPYNE) = (2m) 2 / F(@)(i€) e € dx = (i€)2 f(€) .

For (b), we wish to interchange integration and differentiation, since

2m)2D°f() = D [ fl)e e
Consider a single derivative
ih 1

2m)Y2D; f(€) = }Ligé/f(x)e”fe_mh dz .
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Since
)e‘ie—l‘Q B ‘1—COS¢9‘ <1
0 02 -7
we have
_ int e—i:cjh -1
‘mjf(x)e mjh) <l|z;f(x)| € Ln

independently of h, and the Dominated Convergence theorem applies and shows that

—imjh _ 1

(2m)¥2D;f(¢) = /}Lli% iz; f(x) e_ix'éeixﬂl dx

- /—iajj!}"(x)e_ig”'5 dx
= 2m)Y?(—iz; f(2))"(€) .

By iteration, we obtain the result for D f . This and the Riemann-Lebesgue Lemma 6.5 also
show that f € C>(R9). O

LEMMA 6.17. The Fourier transform F : S — S is continuous and linear.

PROOF. We first show that the range is S. For f € S, 2*DPf € Lo, for any multi-indices a
and 8. But then

D7 f =g ((=in)"f)" = ()N (D2 P )"
and so
162 D5 fllpoe < 2m) =D (@7 f)l|z, < o0,
since D(z” f) rapidly decreases, and we conclude that f € S.
The linearity of F is clear. Now if {fj}?‘;l C S and f; 5, f, then also f; L1, f. Since F is

continuous on L, fj Leo, f . Using Proposition 6.14, we similarly conclude D%z fi S, pagh I
o)

(D2 f;)" == (D2’ f)"
and thus, using Theorem 6.16, we conclude
¢ D°f; == ¢ Df ;
that is, fj S, f , and the Fourier Transform is continuous. ]
In fact, after the following lemma, we show that F : S — S is one-to-one and maps onto S.
LEMMA 6.18. If ¢(z) = e 1*1*/2 then ¢ € S and $(&) = ¢(€).

PROOF. The reader can easily verify that ¢ € S. Since

o(€) = (27r)_d/2/ o122 =i g,

R4

d
_ H(Qﬂ_)—l/2/ e—x?/Qe—iaxjfj dl’j ’
- R

j=1
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we need only show the result for d = 1. This can be accomplished directly using complex contour
integration and Cauchy’s Theorem. An alternate proof is to note that for d = 1, ¢(z) solves

Yy +zy=0
and ¢(€) solves R
0=y +ay =iy +ij
theAsame equation. Thus ¢/¢ is constant. But ¢(0) = 1 and ¢(0) = (27) /2 fe_x2/2 de =1,
SO ¢ = ¢. O

THEOREM 6.19. The Fourier transform F : S — S is a continuous, linear, one-to-one map
of S onto S with a continuous inverse. The map F has period 4, and in fact F? is reflection
about the origin. If f € S, then

f() = (2m) 2 / f(&)eie de | (6.6)

Moreover, if f € Li(R?) and f € L1(R%), then (6.6) holds for almost every z € R%,

Sometimes we write F~1 = & for the inverse Fourier transform:
F o)) = o) = (2m) " [ g(pere e
PRrOOF. We first prove (6.6) for f € S. Let ¢ € S and € > 0. Then

[ t@ b 0 do = [ Fleniwdy — 10 /¢

as € — 0 by the Dommated Convergence Theorem since f(ey) — f(0) uniformly. (We have just
shown that e~9@(e~'z) converges to a multiple of dy in S’.) But also

/f _d¢ 1y dx—/f ¢(ex) dx — ¢(0 /f
0) [ éwdy=0(0) [ fia)da

d(z)=e P ecs

SO

Take

to see by the lemma that
£0) = m) 2 [ fle)ag
which is (6.6) for x = 0. The general result follows by translation:

£(2) = (e )(0)
= 202 [ (e de

= 22 [ ef e
We saw earlier that F : S — S is continuous and linear; it is one-to-one by (6.6). Moreover,

F2f(x) = f(-x)
follows as a simple computation since F and F~! are so similar. Thus F maps onto S, F4 =1,
F~1 = F3 is continuous.
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It remains to extend (6.6) to Li(R%). If f, f € Li(RY), then we can define

fola) = Fla) = (2m) 2 [ flereinas
Then for ¢ € S,

[ t@éta) o= [ fw)o) do
=202 [ fa) [ o)< dg s

= (22 [[ fa)e= o) dua

~

= [ fo(§)e(&) dE
and we conclude by the Lebesgue Lemma that
f(z) = fo(x)

for almost every z € R%, since ¢(x) is an arbitrary member of S (since F maps onto).
We conclude the S theory with a result about convolutions.
THEOREM 6.20. If f,g € S, then fxg€ S and
(2m) 2 (fg)" = f =3 .
PrROOF. We know from the L; theory that
(f*9)" = 2m)"2fg .

SO

(f%9)" = (2m)"2 5 = (2m)"*(fg)"
since F? is reflection. The Fourier inverse then gives

frg=0m) 2 (fg)" .
We saw in Proposition 6.14 that f§ € S, so also

frg=frj=0EnP(f)tes. O
6.3. The Lo(R?) Theory
Recall from Proposition 6.6 that for f,g € S,

/ﬁz/ﬁ-
COROLLARY 6.21. If f,g € S,
[ t@ig@ias = [ foa@d .

[ta=[si=[Fa=[Fs.

Proor. We compute

since § = § is readily verified.
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Thus F preserves the Ly inner product on S. Since S C Ly(R?) is dense, we extend F : S
(with Ls topology) — Lo to F : Ly — Ly by the following general result.

THEOREM 6.22. Suppose X and Y are metric spaces, Y is complete, and A C X is dense.
If T : A —Y is uniformly continuous, then there is a unique extension T : X — Y which is
uniformly continuous.

PROOF. Given z € X, take {z;}72, C A such that xj X, 2. Let y; = T'(x;). Since T is

uniformly continuous, {y;}72, is Cauchy in Y. Let y; R y and define T(z) = y = lim;j_o. T(z;).

Note that T is well deﬁned since A is dense and limits exist uniquely in a complete metric
space. If T is fully continuous (i.e., not just for limits from A), then any other continuous
extension would necessarily agree with 7', so T would be unique.

To see that indeed T is continuous, let ¢ > 0 be given. Since T is uniformly continuous,
there is 6 > 0 such that for all z,& € A,

dy (T(z),T(§)) < e whenever dx(z,§) <.

Now let z,£ € X such that dx(z,€§) < d/3. Choose {z;}32; and {{;}32; in A such that z; X
and §; X, &, and choose N large enough so that for j > N,
dx(zj,&5) < dx(zj,z) +dx(z,§) +dx(§,§) <9
Then
dy (T(2), T(€)) < dy (T(x), T(x)) + dy (T(;), T(&;)) + dy (T (&), T(€)) < 3¢ ,
provided j is sufficiently large. That is, 7' is uniformly continuous. O

COROLLARY 6.23. If X is a NLS and Y is Banach, A C X is a dense subspace, and T :
A —Y is continuous and linear, then there is a unique continuous linear extension T : X — Y.

PROOF. A continuous linear map is uniformly continuous, and the extension, defined by
continuity, is necessarily linear. ]

THEOREM 6.24 (Plancherel). The Fourier transform extends to a unitary isomorphism of
Ly(R%) to itself. That is,

F : Ly(RY) — Ly(RY)

is a bounded linear, one-to-one, and onto map with a bounded linear inverse such that the Lo(R?)

inner product is preserved:

/ f@ig@) dz = [ F©)3tE (6.7)
Moreover, F*F =1, F* = , FI =1,

1 £llLs = I1fllL, V f € La(RY)

and F? is reflection.

PrOOF. Note that S (in fact C§°) is dense in Ly(R?), and that Corollary 6.21 (i.e., (6.7) on
S) implies uniform continuity of F on S:

R RNV 12
1 Fllacee) = ( / ffda:) _ ( / ffdx) = [l -
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We therefore extend F uniquely to Ly(R%) as a continuous operator. Trivially F is linear and
|F|l = 1. By continuity, (6.7) on S continues to hold on all of Ly(R%), and so also F*F = I.
Similarly we extend F~1: S — Ly to Ly. For f € Lo, f; €S, fj — f in Lo, we have

FF'f=lim FFfj=lim fj=f
Jj—00 j—00
and similarly F~!Ff = f. Thus F is one-to-one, onto, and continuous linear. Since F? is

reflection on S, it is so on Lo(R?) by continuity (or by the uniqueness of the extension, since
reflection on S extends to reflection on Lo(R?)). O

By the density of S in Ly(R?) and the definition of F as the continuous extension from S
to Lo, many nice properties of F on S extend to Ls(R?) trivially.

COROLLARY 6.25. For all f,g € La(RY),

/fgda::/fgda:.

Proor. Extend Proposition 6.6. O

The following lemma allows us to compute Fourier transforms of Lo functions.

LEMMA 6.26. Let f € Lo(R%).
(a) If f € L1(R%) as well, then the Ly Fourier transform of f is

f©)=@m™" | fla)ede

(i.e., the Ly and Lo Fourier transforms agree).
(b) If R > 0 and

or(€) = (2m) /2 / f(@)e ™€ da |

|| <R
then vR Lz, f
Similar statements hold for F~1.

PROOF. (a) Let R > 0 be given. Take fJR € C§°(Br+1(0)) such that fJR — XBgr(0)f in L2
as j — oo, which implies also convergence in Li. If F; and F, denote the L; and Ly Fourier
transforms, respectively, then Tgf]R — FaXBr(o)f In Ly and flf]R — F1XBr(0)) In L. But

.7:2ij = .7:1ij, so also Faxpg0)f = FixBg(0)f- As R — 0o, we obtain the result.
(b) Let xr(x) denote the characteristic function of Br(0). Then

HXRf—fHLg:HXRf—fHL2—>O as R—oo. O

6.4. The S’ Theory

The Fourier transform cannot be defined on all distributions, but it can be defined on a
subset S’ of D'. Here, &’ is the dual of S. Before attempting the definition, we study S and &'.

PROPOSITION 6.27. The inclusion map i : D — S is continuous (i.e., D — S, D is contin-
uously imbedded in S), and D is dense in S.
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PROOF. Suppose that ¢; € D and ¢; — ¢ in D. Then there is a compact set K such that
the supports of the ¢; and ¢ are in K, and || D%(¢; — ¢)|/r.. — 0 for every multi-index o. But
this immediately implies that in S,

pa(i(d;) —i(9)) = sup sup(1 + |z*)"/|D*(¢;(x) - ¢(x))]

la|<nzeK

< (SHE(I +[2[*)*/?) sup |D*(¢; — )l|L. — 0,
S

laj<n

since K is bounded, which shows that i(¢;) — i(¢) in S, i.e., i is continuous.
Let f € S and ¢ € D be such that ¢ =1 on B1(0). For £ > 0, set

fe(x) = d(ex)f(x) €D .

We claim that f. S, f, so that D is dense in S. We need to show that for any multi-indices «
and 3,
[a°D(f = £)l — 0 as e —0.

Now f(z) = f-(z) for |z| < 1/e, so consider |z| > 1/e. By Leibniz Rule,

@D = f)] = o Y (f) DI D1~ (o))

v<B
B _
<> < 1z DO fll 1 |DY(1 = $(e@)) | poc”
v<B 7
for any multi-index §. This is as small as we like, so the result follows. O

COROLLARY 6.28. If ¢; —> ¢, then ¢j > .
PROOF. That is, i(¢;) <> i(¢). O
DEFINITION. The dual of S, the space of continuous linear functionals on S, is denoted S’

and called the space of tempered distributions.

PROPOSITION 6.29. Every tempered distribution w € 8" can be identified naturally with a
unique distribution v € D’ by the relation

. ./
v=wuoi=ulp=1iou;

that is, the dual operator i’ : 8’ — D’ is the restriction operator, restricting the domain from S
to D, and i’ is a one-to-one map.

PROOF. If we define v = uoi, then v € D', since 7 is continuous and linear. If u,w € &’ and
%01 =w o1, then in fact u = w since D is dense in S. ]

COROLLARY 6.30. The dual space S’ is precisely the vector subspace of D' consisting of those
functionals that have continuous extensions from D to S. Moreover, these extensions are unique.

ExXaMPLE. If « is any multi-index, then
D% € S
We can see easily that D*Jy is continuous as follows. Let ¢ € D be identically one on a
neighborhood of 0. Then for ¢ € S,

D8o(1pe) = (—1)1*'D¢(0)
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is well defined, so D%y : S — F is the composition of multiplication by % (taking S to D) and
D%y : D — F. The latter is continuous. For the former, if ¢; S, ¢, then each 1¢; is supported
in supp(¢)) and DP(1¢;) Lo, DB(pgp) for all B. Thus Vo, D, ¢, so multiplication by ¢ is a
continuous operation.

We have the following characterization of &', which is similar to Theorem 5.6 for D’.

THEOREM 6.31. Let u be a linear functional on S. Then uw € S’ if and only if there are
C >0 and N > 0 such that

lu()l < Cpn(9) VoS,
where (6.5) defines pn ().

PRroOF. By linearity, u is continuous if and only if it is continuous at 0. If ¢; € S converges
to 0 and we assume the existence of C' > 0 and N > 0 such that

lu(¢;)] < Cpn(pj) =0,
we see that u is continuous.

Conversely, suppose that no such C' > 0 and N > 0 exist. Then for each j > 0, we can find
¢; € S such that p;(¢;) =1 and

lu(yi)| =7
Let ¢; = 1;/7, so that ¢; — 0 in S (since the p, are nested, the tail of the sequence p,(¢;) <

pi(¢;) < 1/j is eventually small for large j and any fixed n). But w continuous implies that
|u(¢;)| — 0, which contradicts the previous fact that |u(¢;)| = |u(vy)|/j > 1. O

ExXAMPLE (Tempered Lj). If for some N >0 and 1 < p < oo,

OJF‘]C’S‘CQ))M € Lp(RY)

then we say that f(x) is a tempered Ly, function (if p = oo, we also say that f is slowly increasing).

Define Ay € S’ by

A/(0) = [ Fa)o(w)do
This is well defined since by Holder’s inequality for 1/p+1/q =1,

z)

000 = | [ a1+ ) P0(e) do

< el

is finite if ¢ = oo (i.e., p = 1), and for ¢ < oo,

10+ o21/200E, = [ (14 laf) ¥ o(a) 1 de

L+ [a)M2g ()],

= /(1 + |2 NEM (L 4 |2 )M g ()] da

< ( Ja+ \xP)Nq/?-de) 13+ ) M/ag)g
< (Cpani/q(6))?

oo
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is finite provided M is large enough. By the previous theorem, A; is also continuous, so indeed
Ay € §’. Since each of the following spaces is in tempered L, for some p, we have shown:

(a) Lp(RY) C &' for all 1 < p < oo;

(b) S c &;

(c) a polynomial, and more generally any measurable function majorized by a polynomial,
is a tempered distribution.

ExaMPLE. Not every function in LUOC(Rd) is in §’. The reader can readily verify that
e® ¢ S’ by considering ¢ € S such that the tail looks like e~ 12172,

Generally we endow S’ with the weak-* topology, so that
u;j 5w if and only if u;(¢) —u(¢) Voes.

PROPOSITION 6.32. For any 1 <p < oo, L, — §' (L, is continuously imbedded in S’).

L
PROOF. We need to show that if f; — f, then

/(fj—f><z>dwo Vees,

which is true by Hélder’s inequality. ([l

As with distributions, we can define operations on tempered distributions by duality: if
T : S — S is continuous, and linear, then so is 77 : &' — &’. Since F : S — § is continuous
linear, we define the Fourier transform on &’ this way.

PROPOSITION 6.33. If av is a multi-index, x € R?, and f € C>(R?) is such that D f grows
at most polynomially for all 3, then for u € 8’ and all ¢ € S, the following hold:

(a) (Du,¢) = (u,(=1)l*lD*¢) defines Du € S';

(b) (fu,d) = (u, f9) defines fu € &';

(¢) (Tpu, @) = (u, 7_5¢) defines T,u € S';

(d) (Ru,¢) = (u, Rp), where R is reﬂectzon about x = 0, defines Ru € §';
(e) (u, o) <u¢>deﬁnesﬁ€8

(f) (@, d) = (u, d) defines v € S'.

Moreover, these operations are continuous on S'.

Note that if ¢ € D, then gg ¢ D, so the Fourier transform F is not defined for all u € D'.
We also have convolution defined for v € 8’ and ¢ € S:

(uk @) (z) = (u, 2 R) .
PROPOSITION 6.34. Foru € S’ and ¢ € S,
(a) u*x¢p e C>® and
D¥ux¢)= (D) xp=u*xD VYV a,
(b) ux¢ €S (in fact, u* ¢ grows at most polynomially).

PROOF. The proof of (a) is similar to the case of distributions and left to the reader. For
(b), note that

L+ |z +yl” <21+ |2) (1 + [y?)
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SO

pn(720) < 2V (14 |2V px (9) |
Now u € &', so there are C > 0 and N > 0 such that
lu(¢)] < Cpn(9) ,

SO

jux | = [u(raRe)| < C2V2(1 + |2) 2 pn(9)
shows u *x ¢ € S’ and grows at most polynomially. O

Let us study the Fourier transform of tempered distributions. Recall that if f is a tempered
L, function, then Ay € §'.

PROPOSITION 6.35. If f € Ly U Ly, then Ay = Aj and Af = Aj. That is, the Ly and Ly

definitions of the Fourier transform are consistent with the S’ definition.
PROOF. For ¢ € S,

(.0 = g d) = [ 16= [ Fo=(a5.9).

so A F=A I3 A similar computation gives the result for the Fourier inverse transform.

O
PROPOSITION 6.36. If u € S', then
(a) &= u,
(b) @ = u,
(¢) &= Ru,
(d) @ = (Ru)" = Ra.
PROOF. By definition, since these hold on S. O

THEOREM 6.37 (Plancherel). The Fourier transform is a continuous, linear, one-to-one
mapping of 8" onto S’, of period 4, with a continuous inverse.

Proor. If u; s, u, (i.e., (uj, @) — (u, ) for all ¢ € S), then
(a,9) = (uj,0) — (u,9) = (@, ¢) ,

so i; — 4; that is, the Fourier transform is continuous. Now

F2u=1u=Ru,
SO

Flu=Ru=u=F(Fu=(F)Fu
shows that F has period 4 and has a continuous inverse F~1 = F3.

ExaMPLE. Consider 0y € S’. For ¢ € S,

(d0,0) = (60, 9) = $(0) = (27T)d/2/¢(93) de = ((2m)"%,9) ,

SO

80 = (27r)_d/2 .
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Conversely, by Proposition 6.36(d),
o = F~1(2m) "2 = F(2m)~9? |
SO

1= (2m)%25 .

PROPOSITION 6.38. Ifu € S, y € R, and a is a multi-index, then
(a) (ryu)" = e ¥*q,
(b) 7, = (e7u)",
(c) (D)™ = (i&)*a,
(d) D= ((—i€)*u)".
Proposition 6.33 (b) implies that the products involving tempered distributions are well
defined in &'.

PRrROOF. For (a), consider ¢ € S and
()", 0) = (ryu, @) = (u, 7y @) = (u, e WEP) = (1, e ) = (e7V%4, ¢) .
Results (b)—(d) are shown similarly. O

PROPOSITION 6.39. Ifu € 8" and ¢, € S, then
(a) (ux )" = (2m)¥/2a,
(b) (u* @) * 9 =ux(P*1).
PROOF. Let ¢ € S and choose ©; € D with support in K; such that 1; S, ¥ (so also
~ S ~
j — ). Now
(w6 5) = (wxbv) = [wso(opisy(o)do

since u * ¢ € C* and has polynomial growth. Continuing, this is

/K_<u,TxR¢>¢j(x) dr = <U,/IV(.T$R¢’¢]~($) d:c> :

J J
which we see by approximating the integral by Riemann sums and using the linearity and
continuity of u. Continuing, this is

<u, / oz — 9 () dx> = (u, R+ 1)
= (@, (R * 45)")
= (2m)"*(a1, (R¢)" ;)
= (2m) (i, );)
— (2m) 2 (pir, ) .
That is, for all ¥ € S,

((ux )" ) = ((2m) 2, )

and (a) follows.



170 6. THE FOURIER TRANSFORM

Finally, (b) follows from (a):
((wr9) + )" = 2m)P(ur ¢)" = (2m)")du

and
(ux (¢ 9)" = 2m) (¢ x ) i = (2m) ¢
Thus
((wrg) =) = (ux (6 )",
and the Fourier inverse gives (b). O

6.5. Some Applications

ExaMPLE (Heat operator). The heat operator for (z,t) € R? x (0, 00) is
3}

a—A.

Intrepreting w as the temperature, the operator models the flow of heat in space and time. We
consider the initial value problem (IVP)

E—Auzo, (x,t) € R? x (0, 00),
U(LU,O) :f(x)v $€Rda
where f(x) is given. To find a solution, we proceed formally (i.e., without rigor). Assume that

the solution is at least a tempered distribution and take the Fourier transform in x only, for

each fixed t¢:
du —~ 0
2 Au = —1 25 —
5 u atu—|—|£]u 0,

A~

For each fixed ¢ € RY, this is an ordinary differential equation with an initial condition. Its
solution is

~ N _ 2
a(é,t) = f(&)e .
Thus, using Lemma 6.18 and Proposition 6.39,
u(z, 1) = (fe ¥

- [f<(2t;d/2 64%2&)?
— (2m) 2 f « ((Qt;dﬂeuﬁ/@) _

Define the Gaussian, or heat, kernel

12
o lzl2/at

K(z,t) = (47Tt)d/2

Then
u(z,t) = (f x K(-,t))(v)
should be a solution to our IVP.
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In fact, K should solve the IVP with f = Jg, so it is a type of fundamental solution. It
describes the diffusion in time of an initial unit amount of heat energy at the origin. Our model
of heat flow has many interesting properties. First, the solution is self-similar, meaning that it
is given by scaling a function of a single variable:

K(z,t) = t"¥2 Kt~ %2,1) .

Thus K approximates dy as t — 0, and the initial condition is satisfied as ¢ — 0. For positive
times, K controls how the initial condition (initial heat distribution) dissipates, or diffuses,
with time. The maximal temperature is (47t)~%2, which decreases in time. The self-simililar
structure predicts that the distance through the origin between points of half this value, say, will
increase on the order of v/¢; that is, the front will spread at a rate proportional to v/t. Second,
even though K(z,t) — 0 as t — oo for each fixed x, our model conserves heat energy, since for
all time ¢ > 0,

/K(z,t) dr = K(0,t) =1.

Finally, our model predicts infinite speed of propagation of information, since K(z,t) > 0 for all
x whenever ¢ > 0. This property is perhaps unsatisfying from the point of view of the physics.

To remove the formality of the above calculation, we start with K(z,t) defined as above,
and note that for f € D and u = f x K as above,

u—Au=f*x(K;—AK)=f+0=0.
To extend to f € L,, we use that D is dense in L,. See [Fo, p. 190] for details.

EXAMPLE ( Schrodinger operator). In quantum mechanical theory, systems are governed by
the time-dependent Schrédinger equation,

ih?;:—Hu:0,

where £ is the fundamental Planck’s constant divided by 27, H is a given self adjoint operator
(the Hamiltonian operator), and u is the unknown wave function of the system. One intreprets
|u|? as the probability density of the system.

Consider the simple Schrédinger IVP

Ju
ot
u(z,0) = f(z), x € RY,

+Au=0, (z,t) € RY x (0, 00),

7

where f(z) is given. It formally resembles the heat equation except for the imaginary coefficient.
The Fourier transform implies that

ity — [€Pa =0, (6.8)
so that, after multiplying by @, we obtain that
ity — €70 =0 .
Since 4y = (1), by considering real and imaginary parts of 4, it is easy to conclude that the real

part of 4,4 is %m\? , so separating real and imaginary parts, we see that

%W? =0,
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which implies that for all £,
(e, O = 1F©F .

invoking the initial condition. Integrating in space and applying the Plancherel Theorem, we
obtain the conservation principle

w( Ol Lymay = 1F (Ol y@ey 3
that is, the total probability remains constant (to the value one, if f is properly normalized).
Moreover, from (6.8), we have that

i = —ilePa
(which is similar to the case of the heat equation 4; = |£|?%). As in the last example, we deduce
that

u(z,t) = f* K(z,t) ,
where the Shrodinger kernel is given by
K(z,t) = (2m) Y2 ((e 7)) (2) = (4imt) =4/ 2ellel*/4,
This Fourier inverse transform can be computed as follows. For ¢ > 0, let
ge(€) = e~ (itFOlE

For € > 0, this is a well-behaved function. The Dominated Convergence Theorem implies that
ge — go in &’ as € — 0, and so we have that §. — go in S’ as well. Now, completing the square
and using contour integration to change the variable, we have that

(27T)d/2ge(x) = /e(it+5)|§|2+ix-§ d§

_ / e~ (it+Oll6—in/2it+e) P+lal/alit+e)?] ge

_ o lal?/aditte) / e+l g

d oo
_ e—|a:|2/4(it+e) H/ e—(it+s)gj2. dg;
J=177%°

d/2
S o712 /4(it+e)
it+e€ ’

wherein we take the branch of the square root giving positive real part. The result follows after
taking € — 0.

6.6. Exercises

1. Compute the Fourier transform of e~*! for z € R.

—alzf?

2. Compute the Fourier transform of e , a > 0, directly, where x € R. You will need to

use the Cauchy Theorem.
3. If f € Li(R%) and f > 0, show that for every & # 0, | f(€)| < f(0).

4. If f € Li(R%) and f(x) = g(|z|) for some g, show that f(£) = h(|¢|) for some h. Can you
relate g and h?
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z+1
Let 1 < p < oo and suppose f € L,(R). Let g(z) = / f(y)dy. Prove that g € C,(R).

Give an example of a function f € Ly(R®) which is not in Ly (R%), but such that f € L;(R%).
Under what circumstances can this happen?

Suppose that f € L,(R?) for some p between 1 and 2.
(a) Show that there are f; € L1(RY) and fo € Lo(R?) such that f = fi + fo.

(b) Define f = fl + fg. Show that this definition is well defined; that is, that it is independent
of the choice of f; and fs.

Let the field be complex and define T : Lo(R?) — Ly(RY) by

Tf(@) = [ B () ay .
Use the Fourier transform to show that 1" is a positive, injective operator, but that T is not

surjective.

Suppose that f and g are in Ly(R?). The convolution f g is in Ls(R?), so it may not have
a Fourier transform. Nevertheless, prove that f x g = (21)%2(fg)" is well defined, wherein
the Fourier inverse is given by the usual integration formula.

Find the four possible eigenvalues of the Fourier transform: f = Af. For each possible
eigenvalue, show that there is at least one eigenfunction. Hint: When d = 1, consider
p(;v)e_xz/Q, where p is a polynomial.

Show that the Fourier Transform F : Li(R?) — C,(R?) is not onto. Show, however, that
F(L1(R%)) is dense in C,(RY). Hint: See Exercise 5.

Let T be a bounded linear transformation mapping Lg(Rd) into itself. If there exists a

bounded measurable function m(§) (a multiplier) such that T}(f) = m(€)f(€) for all f e
Ly(R%), show that then T commutes with translation and ||T|| = ||m/| ;... Such operators
are called multiplier operators. (Remark: the converse of this statement is also true.)

Compute the Fourier Transforms of the following functions, considered as tempered distri-
butions.

(a) f(x) =2a™ for x € R and for integer n > 0.
(b) g(z) = e 1*l for z € R.

(c) h(z) = €l*!* for z € RY.

(d) sinz and cosz for z € R.

Let ¢ € S(RY), ¢(0) = (2m)~%2, and ¢ (z) = € "¢(z/€). Prove that ¢, — dy and p, —
(27)~%? as € — 0F. In what sense do these convergences take place?

Is it possible for there to be a continuous function f defined on R¢ with the following two
properties?

(a) There is no polynomial P in d variables such that |f(x)| < P(z) for all z € R%.
(b) The distribution ¢ — [ ¢ f dz is tempered.
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o
When is Z ardy € S'(R)? (Here, & is the point mass centered at = = k.)
k=1

1

For f € La(R), define the Hilbert transform of f by Hf = PV<> * f, where the convo-
T

lution uses ordinary Lebesgue measure.

(a) Show that F(PV(1/z)) = —iy/7/2 sgn(&), where sgn(&) is the sign of . Hint: Recall
that 2PV(1/x) = 1.

(b) Show that |H f||z, = ||f|lz, and HH f = —f.

The gamma function is I'(s) = / t5le7tdt. Let ¢ € S(RY) and 0 < a < d.
0

(a) Show that [¢|~® € Ly joc(RY) and [€]~%¢ € Ly (R%).
(b) Let co = 2%/?T(r/2). Show that

(16°°6)" (@) = o |l = wi () dy.

Hints: First show that
o
calél™® =/ o/ 2-1g=IEPt/2 gy
0

Also recall that e~ l€1"t/2 = ¢=d/2 (e*mz/?’f)/\,

Give a careful argument that D(R?) is dense in S. Show also that S’ is dense in D’ and that
distributions with compact support are dense in S’.

Make an argument that there is no simple way to define the Fourier transform on D’ in the
way we have for S’.

Use the Fourier Transform to find a solution to
2 2
u_@ u  O%u e
893% 83:%

Hint: write your answer in terms of a suitable inverse Fourier transform and a convolution.
Can you find a fundamental solution to the differential operator?

Consider the partial differential equation

Ou  Fu_, <z<o0, 0<y<
—+—-—5=0, —oo<x< oo, o ,
0x?  Oy? 4

u(z,0) = f(z) and u(z,y) — 0 as 2° + y* — oo,
for the unknown function u(z,y), where f is a nice function.

(a) Find the Fourier transform of e~ 7.

(b) Using your answer from (a), find the Fourier transform of et
x

(¢) Find a function g(z,y) such that u(z,y) = f * g(x,y) = /f(z)g(:n — z,y) dz.
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Consider the Telegrapher’s equation
utt+ut+u:02uxx forc e Randt >0,

where also
u(z,0) = f(z) and wu(z,0) = g(x)
are given in La(R).
(a) Use the Fourier Transform (in z only) and its inverse to find an explicit representation
of the solution.

(b) Justify that your representation is indeed a solution.

Use the Fourier Transform and its inverse to find a representation of solutions to the Klein-
Gordon equation

up —Au4+u=0, zeRandt>0,

where also u(z,0) = f(x) and u(x,0) = g(x) are given. Leave your answer in terms of a
Fourier inverse.

Consider the problem v + u = f (4 derivatives). Up to finding an integral, find a funda-
mental solution that is real. Using the fundamental solution, find a solution to the original
problem.

Consider L2(0,00) as a real Hilbert space. Let A : Ly(0,00) — La(—00,00) be defined by

Au(z) = u(z) + ; w(z —y)uly) dy,

where w € L1(0,00) N L2(0,00) N C?(0, 00) is nonnegative, decreasing, convex, and even.

(a) Justify that A maps into La(—o00, 00).

(b) Show that A is symmetric on L9(0,00). Hint: Extend u by zero outside (0, 00).

(c) Show that w > 0.

(@)

()
)

f) Why is the solution unique?

Use the Fourier Transform to show that A is strictly positive definite on L2 (0, 00).

Use the Fourier Transform to solve Au = f for f € La(—00,00).






CHAPTER 7

Sobolev Spaces

In this chapter we define and study some important families of Banach spaces of measur-
able functions with distributional derivatives that lie in some L, space (1 < p < o00). We
include spaces of “fractional order” of functions having smoothness between integral numbers
of derivatives, as well as their dual spaces, which contain elements that lack derivatives.

While such spaces arise in a number of contexts, one basic motivation for their study is
to understand the trace of a function. Consider a domain Q C R¢ and its boundary 0. If
f € C°Q), then its trace f|sq is well defined and f|gn € C°(09Q). However, if merely f € La(Q),
then f|oq is not defined, since 9 has measure zero in R?. That is, f is actually the equivalence
class of all functions on €) that differ on a set of measure zero from any other function in the
class; thus, f|sg can be chosen arbitrarily from the equivalence class. As part of what we will
see, if f € Lo(Q) and 0f /0x; € Lo(Q) for i = 1,... ,d, then in fact f|sq can be defined uniquely,
and, in fact, f|sq has 1/2 derivative.

7.1. Definitions and Basic Properties

We begin by defining Sobolev spaces of functions with an integral number of derivatives.

DEFINITION (Sobolev Spaces). Let © € R? be a domain, 1 < p < oo, and m > 0 be an
integer. The Sobolev space of m derivatives in L, () is

W™P(Q) ={f € L,(Q) : D*f € L,(?) for all multi-indices a such that |a] < m} .

Of course, the elements are equivalence classes of functions that differ only on a set of
measure zero. The derivatives are taken in the sense of distributions.

EXAMPLE. The reader can verify that when € is bounded and 0 € Q, f(x) = |z|* € W™P(Q)
if and only if (&« —m)p+d > 0.

DEFINITION. For f € W™P(Q), the W™P(Q)-norm is

1/p
ey = { & 10 e} i p<ox

laj<m

and

| fllwrm.oo ) = E}T;”DafHLOO(Q) if p=o0.

o]
PROPOSITION 7.1.

(@) || lwmw(q) is indeed a norm.

(b) WOP(Q) = Ly(Q2).

(c) W™mP(Q) — WkP(Q) for allm >k >0 (i.e., W™P is continuously imbedded in W*P ).
The proof is easy and left to the reader.

177
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PROPOSITION 7.2. The space WP () is a Banach space.

PROOF. It remains to show that W™P((2) is complete. Let {u;}32; C W™P(§2) be Cauchy.
Then {D%u;}32, is Cauchy in L,(€2) for all |af < m, and, L,(f2) being complete, there are
functions u, € Ly(€2) such that

Do‘ujiua as j — oo .
We let u = ug and claim that D%u = ug,. To see this, let ¢ € D and note that
<Dauja ¢> - <UOM ¢)>
and
(D%, ¢) = (=1)1*N(uj, D) — (=1)*l{u, D*¢) = (D, 9) .
Thus u, = D%u as distributions, and so also as L, () functions. We conclude that
D%, I, poy v la] <m ;

that is,

Wmop

Certain basic properties of L, spaces hold for W™P spaces.
PROPOSITION 7.3. The space WP () is separable if 1 < p < oo and reflezive if 1 < p < 0.

PROOF. We use strongly the same result known for L,(2), i.e., m = 0. Let N denote the
number of multi-indices of order less than or equal to m. Let

N
Li]av = Lp(Q) x - x Ly(Q) = HLP(Q)
j=1

N times

and define the norm for u € L]JDV by

N 1/p
lully = {3 Il ) -
j=1

It is trivial to verify that Lév is a Banach space with properties similar to those of L,: Lév is
separable and reflexive if p > 1, since (L;)V)* = Lév where 1/p+1/q = 1. Define T': W™P(Q) —
LIIOV by
(Tu); = D%,
where « is the jth multi-index. Then 7' is linear and
[Tully = llullwms ) -

That is, T is an isometric isomorphism of W™™?(Q) onto a subspace W of LY. Since W™?(Q)

is complete, W is closed. Thus, since L;,V is separable, so is W, and since L;,V is reflexive for
1<p<oo,sois W. O

When p = 2, we have a Hilbert space.
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DEFINITION. We denote the mth order Sobolev space in Ls(€2) by
H™(Q) = W™2(Q) .

PROPOSITION 7.4. The space H™(Q) = W™2(Q) is a separable Hilbert space with the inner
product

(u, ) () = Z (D%u, D*v) 1,(q) 5
|| <m

where
(s = [ f@al@) da

is the usual Lo(S2) inner product.

When p < oo, a very useful fact about Sobolev spaces is that C'*° functions form a dense
subset. In fact, one can define W™P(£) to be the completion (i.e., the set of “limits” of Cauchy
sequences) of C*°(2) (or even C™(2)) with respect to the W™P(§2)-norm.

THEOREM 7.5. If1 < p < oo, then
{f € C®Q) ¢ [ Flwmaqa) < o} = C(Q) NW™P(Q)
is dense in W™P(Q)).
We need several results before we can prove this theorem.

LEMMA 7.6. Suppose that 1 < p < oo and ¢ € Cgo(Rd) 18 an approximate identity supported
in the unit ball about the origin (i.e., ¢ > 0, [@(x)dr = 1, supp(p) C B1(0), and ¢.(x) =
e~dp(e™1x) fore > 0). If f € L,(Q) is extended by 0 to R (if necessary), then

(a) pe* f € Lp(Rd) nC>(RY),
(b) [lpe * fHLp(Rd) < | fllz, @)
(c) cpg*fif ase — 0.
ProOF. Conclusions (a) and (b) follow from Young’s inequality. For (c), we use the fact

that continuous functions with compact support are dense in Lp(Rd). Let n > 0 and choose
g € Co(R?) such that

If = glle, <n/3.
Then, using (b),
o * f = fllL, <llvex (f = 9llL, + llvexg—gllr, + g — fllL,
<2n/3+[lpexg—gllL, -

Since g has compact support, it is uniformly continuous. Now supp(g) C Bg(0), so supp(p. *
g —g) C Bry2(0) for all e < 1. Choose 0 < ¢ < 1 such that

U
lg(z) — g(y)| < W

whenever |z — y| < 2e, where |Br42(0)| is the measure of the ball. Then for x € Br42(0),
(9= 9)@) = [ eela = 1)(gly) ~ () dy

n
< sup g(y) —9(2)| € =77
lo—y|<2¢ 3|Br2(0)|1/P
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s0 |lge * g —gllz, <n/3 and |le * f — fllz, <7 is as small as we like. O
COROLLARY 7.7. If Q' cC Q or ' = Q =RY, then
Wwmp(Q
per f T [ W e WTH(Q)

ProoF. Extend f by 0 to R? if necessary. For any multi-index o with |a| < m,
Da(QDE*f) :SO&‘*Dafa

since p. € D(R?) and f € D'(R?). The subtlety above is whether D®f, on R? after extension
of f, has a d-function on 0€2; however, restriction to ' removes any difficulty:
pexD°f T Doy
since eventually as € — 0, ¢, * D*f involves only values of D f strictly supported in (2. U
PROOF OF THEOREM 7.5. Define Qg = Q_1 = () for integer k > 1
Qp={reQ:|z| <k and dist(z,00) > 1/k} .

Let ¢ € C§°(52) be such that 0 < ¢p <1, ¢, =1 on U, and ¢, =0 on Qf . Let )1 = ¢ and
Y = ¢p — Pr—1 for k > 2, 50 ¢y > 0, ¢y € C5°(Q), supp(¥r) C Q41 N -1, and

Zzpk(:v):l VaeeQ.
k=1

At each x € Q, this sum has at most two nonzero terms. (We say that {1}, is a partition of
unity.)

b2 ®1 &
i I T T -
S 1
l Qs
l Q

Now let € > 0 be given and ¢ be an approximate identity as in Lemma 7.6. For f € WP (),
choose, by Corollary 7.7, e, > 0 small enough that ¢, < %dist(QkH, 0Q12) and

ey * (U f) — i fllwms < e27F .
Then supp(pz, * (Ve f)) C Qpya ~ Q_a, 50 set

o0
QZZSOEk*(%Zka)ECOO 3
k=1
which is a finite sum at any point z € €2, and note that

1f = gllwmr@y < D kS = e (Wrf)llwms <ey_27F =¢.

k=1 k=1

The space C5°(2) = D(Q) is dense in a generally smaller Sobolev space.
DEFINITION. We let W;""(2) be the closure in W?(Q) of C§°(Q).
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PrRoOPOSITION 7.8. If1 < p < o0, then
(a) WP (RY) = W (Re),
(b) W"P(Q) — W™P(Q) (continuously imbedded,),
(c) Wo(©2) = Ly(9).

The dual of L,(€) is Ly(€2), when 1 <p < oo and 1/p+1/g =1. Since W™P(Q) — L,(Q2),
Ly(©2) c (W™P(Q2))*. In general, the dual of W P(Q) is much larger than L,(2), and consists
of objects that are more general than distributions. We therefore restrict attention here to
WP (Q); its dual functionals act on functions with m derivatives.

DEFINITION. For 1 <p < oo, 1/p+1/q =1, and m > 0 an integer, let
(Wo ()" =W =m1(Q) .

PROPOSITION 7.9. If1 <p < oo (1 < qg<o0), W™™4(Q) consists of distributions that have
unique, continuous extensions from D(Q) to Wy (Q).

PrOOF. Note that D(2) — W™P(Q), since inclusion ¢ : D(Q2) — W™P(Q) is clearly (se-
quentially) continuous. Thus, given T' € W—™1(Q), T oi € D'(2), so T o i has an extension
to Wy"P(2). That this extension is unique is due to Theorem 6.22, since D(f2) is dense in
Wy (Q). O

Extensions of distributions from D(Q) to W™P(Q2) are not necessarily unique, since D(Q) is
not necessarily dense. Thus (W"P(£2))* may contain objects that are not distributions.

7.2. Extensions from  to R

Qs R, how are W™P(Q) and W™P(R?) related? It would seem plausible that W™P(Q)
is exactly the set of restrictions to € of functions in W™P(R%). However, the boundary of €,
0%}, plays a subtle role, and our conjecture is true only for reasonable €2, as we will see in this
section. ~

The converse to our question is: given f € W™P(Q), can we find f € W™P(R%) such that
f = f on Q7 The existence of such an eztension f of f can be very useful.

LEMMA 7.10. If Q is a half space in RY, 1 < p < 0o, and m > 0 is fized, then there is a
bounded linear extension operator

B W) — (RS |
that is, for f € W™P(Q), Ef|q = f and there is some C' > 0 such that
IEfllwme @y < Clfllwms@) -
Note that in fact
[fllwme) < IEfllwmeray < Cllfllwme@)
50 || fllwmr(q) and [ Ef|lym.pga) are comparable.

PRrROOF. Choose a coordinate system so that

Q={recR?:z;>0} =R .
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If f is defined (almost everywhere) on R‘i, we extend f to the rest of R¢ by reflection about x4 =
0. A simple reflection would not preserve differentiation, so we use the following construction.
For almost every z € R?, let

f(x) if 24 >0,
m~+1
Z/\ fl'l,... ,xd,l,—jxd) if x4 <0,

where the numbers \; are defined below. Clearly E' is a linear operator.
If fe Cm(Ri )N W"L’p(R‘i), then for any integer k& between 0 and m,

Dsf(.%'l, e, Td—1, -fd) if xTq > 0
DEEf(z) =T _ '
d f( ) Z(—j)k/\jDsf(xl,... ,.CCd_l,—j:Bd) if Tqg < 0.
=1

We claim that we can choose the \; such that

m—+1

S (=)N=1, k=01,...,m. (7.1)
j=1

If so, then DXE f(x) is continuous as x4 — 0, and so Ef € C™(R?). Thus for |a| < m,

1
m-+ p

101, oy = D11 e + \Z R AN
+ .

P
S Cm,pHDafHLp(Ri) .
Let now f € W™P(R%)NC>®(RY), extended by zero. For ¢ > 0, let 7; be translation by ¢ in
the (—eq)-direction:
Tf(x) = [z +teq) .

Translation is continuous in L,(R%), so

L
Derif =7 DYf % DYf as t— 0" .
That is,
wm™P(RY)

T f I

But 7.f € C*°(R%), so in fact C°(R% )N W™P(RY) is dense in W™P(R%). Thus (7.2) extends
to all of W™P(R%).

We must prove that the \; satisfying (7.1) can be chosen. Let z; = —j, and define the
(m+1) x (m+ 1) matrix M by

Then (7.1) is the linear system
MMN=e,
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where A is the vector of the A;’s and e is the vector of 1’s. Now M T is a Vandermonde matrix,

m+1 m+1
and the jth row of MT¢c =0 is Z cixj_l = 0. Thus the polynomial p(z) = Z c;z' ™1 of degree
i=1 i=1

m has m + 1 distinct roots, and so must be identically zero. This means that ¢ = 0, and we
conclude that M7 and so also M, is nonsingular, and so the Aj’s exist (uniquely, in fact). [

We can generalize the Lemma through a smooth distortion of the boundary. We first define
what we mean by a smooth boundary.

DEFINITION. For integer m > 0, the domain Q C R? has a C™!-boundary (or a Lipschitz
boundary if m = 0) if there exit sets ; C R? | j =1,..,N with N possibly +oco, with the
following properties:

(a) Q; CC R4, 00 C U; ©;, and only finitely many of the sets intersect B(0) for all R > 0;
(b) There are functions 1; : 2; — B1(0) that are one-to-one and onto such that both 1);
and 1/);1 are of class C™!, ie., ¢; € C™1(§;) and w;l € C™Y(B(0));
(¢) ¥j(2;NQ) =B = B1(0) NRE and ¥;(2; N 9Q) = BT NIR%.
That is, 02 is covered by the €2;, ; can be smoothly distorted by v; into a ball with 02

distorted to the plane z4 = 0. Note that 1 € C"™'(Q2) means that v € C™(Q) and, for all
|a| = m, there is some C' > 0 such that

[DY(x) = DY(y)| < Clo —y| ¥V a,y € Q2
that is, D% is Lipschitz.

THEOREM 7.11. If m > 0, 1 < p < oo, and domain Q C R? has a C™ 5! boundary, then
there is a bounded (possibly nonlinear) extension operator

B W™mP(Q) — WmP(RY)

Proor. If m =0, 2 may be any domain and we can extend by zero. If m > 1, let {Qj}é-v:l

and {wj}évzl be as in the definition of a C™ 1! boundary, where N = +o0 is possible. Let
Qo CC Q be such that

N
oclJo;.
j=0

Let {¢x}4L, (M possibly infinite) be a locally finite C* partition of unity subordinate to this
covering; that is, ¢ € C™(R?), supp(di) C 2, for some jj, between 0 and N, ¢i(x) # 0 for
only a finite number of k£ independent of z € €2, and

M
d delw)=1 VazeqQ.
k=1

Such a partition is relatively easy to construct (see, e.g., [Ad] or [GT]| for a more general
construction, and also one of the exercises for this chapter). Then for f € W™P(Q), let fi, =
orf € WmP(Q;, NQ), which has support inside €2, and can be extended by zero, maintaining
smoothness. Let Ey be the extension operator given in the lemma. If ji # 0,

Eo(fr0v;,') € W™ (B1(0))
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SO
—1 s
Eo(fk O"l/ij ) o ¥, € Wo™P(9;,) -

Extend this by zero to all of R?. We define E by

M M N
Ef= > éuf+ > Eo((fﬁkf)ol/fj_kl) ° Py, € W(;n’p<U Qj) :
k=1 k=1 =0

(4x=0) (j1#0)

Note that derivatives of Ef are in L,(R?) because the 1; and wj_l € C™ b (ie., derivatives
up to order m of ¢; and %—1 are bounded), and so Ef € W™P(R?Y), Ef|q = f, and

IEflwmr@ay < Cllfllwmee)

where C' > 0 depends on m, p, and ) through the €2, v;, and ¢y. O

We remark that if @ cC Q ¢ R?, then we can assume that Ef € Wgn’p(fl). To see this,
take any ¢ € CSO(Q) with ¢ = 1 on ), and define a new bounded extension operator by ¢Ef.

Many generalizations of this result are possible. In 1961, Calderén gave a proof assuming
only that € is Lipschitz. In 1970, Stein [St] gave a proof where a single operator E can be used
for any values of m and p (and Q is merely Lipschitz). Accepting the extension to Lipschitz
domains, we have the following characterization of W™P ().

COROLLARY 7.12. If Q has a Lipschitz boundary, 1 < p < oo, and m > 0, then
W™P(Q) = {fla: f € W™P(RY)} .

If we restrict to the W;"P(2) spaces, extension by 0 gives a bounded extension operator,
even if 99 is ill-behaved.

THEOREM 7.13. Suppose Q C R%, 1 < p < 0o, and m > 0. Let E be defined on Wy"P(Q) as
the operator that extends the domain of the function to R¢ by 0; that is, for f € WP (),

f(x) ifx e,
0 if v ¢ Q.

Then E : W"P(Q) — W™P(RY).
Of course, then
1f lwe ) = 1Eflwms ey -

PROOF. If f € W™ (Q), then there is a sequence {f;}52, C C§°(€) such that

WnL,p(Q)
fi——1F.
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Let ¢ € D(R?). Then as distributions for |a| < m,
«a - ap — (_1\ll o
| pesods — [ Dogodo= (-1l [ £, do
— (=1)l D% d
0 [ FDoods
:(—1)04/ Ef D% dx
Rd

= | D°Efé¢dr,
Rd

so ED®f = D*Ef in D'. The former is an Lj jo function on R?, so the Lebesgue Lemma
(Prop. 5.7) implies that the two agree as functions. Thus

1/p 1/p
> /Rd|ED"‘f\pda:} :{Z /Rd\DaEﬂpdx} = |Eflwmomey - O

laj<m laj<m

T {

7.3. The Sobolev Imbedding Theorem

A measurable function f fails to lie in some L, space either because it blows up or its tail
fails to converge to 0 fast enough (consider |z|~* near 0 or for |z| > R > 0). However, if Q is
bounded and f € W™P(Q), m > 1, the derivative is well behaved, so the function cannot blow
up as fast as an arbitrary function and we expect f € L,(§2) for some g > p.

ExaMPLE. Consider 2 = (0,1/2) and

1
for which
, B -1
fla) = z(logz)?

The change of variable y = —logz (z = e7¥) shows f € WH1(Q). In fact, f' € L,(Q) only for
p=1. But f € L,(Q) for any p > 1.

We give in this section a precise statement to this idea of trading derivatives for bounds in
higher index L, spaces. Surprisingly, if we have enough derivatives, the function will not only
lie in Loy, but it will in fact be continuous. We begin with an important estimate.

THEOREM 7.14 (Sobolev Inequality). If 1 <p < d and
_
q - d _ p )
then there is a constant C' = C(d,p) such that
lull,gay < ClIVull(p,gaya ¥V ue CoRY . (7.3)

LEMMA 7.15 (Generalized Holder). If Q CR?%, 1 < p; < oo fori=1,... ,m, and

m

PDEEER

im1 Pi
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then for f; € L, (), i
/ Fu(@) ) do < il Wl
PrROOF. The case m = 1 is clear. We proceed by induction on m, using the usual Holder

inequality. Let p/, be conjugate to py, (i.e., 1/pm + 1/pl, = 1), where we reorder if necessary so
Pm > pi Vi < m. Then

| e bnde < W g Wl

Now p1/pl,, .-+ s Pm—1/D,, lie in the range from 1 to oo, and
/ /
pﬂ + .+ pim =1 ,
b1 Pm—1

so the induction hypothesis can be applied:

! / 1/p’,m'
Hfl"'fm—lHLp;n — {/‘flypm...’fm_ﬂpm d:c}

< {(/ | f1]P! dx)Pin/Pl .. (/ | fore [Pt daj);p;n/pWF1 }1/p;n

= fill,, - I fm-1llz,,, ., - O

PROOF OF THE SOBOLEV INEQUALITY. Let D; = 9/0x;, i = 1,... ,d. We begin with the
case p =1 < d. For u € C}(R?),

- | / " Dyu(x) da:

d 0 1/d—1
i=1 W T

Integrate this over R% and use generalized Holder in each variable separately for d — 1 functions
each with Lebesgue exponent d — 1. For x1,

d 00 1/d—1
R4 Rd i=1

—0o0

0 1/d—1 d 1/d—1
/d ) / </ \Dlu\ d.Tl) < |D1u| dxl) d.il?l dxg ce diL'd
Rae=1 JR —00
00 1/d—1 d 1/d—1
/ (/ ]Dlu]dan) / H( ]Dzu\d:(:1> dridzs - - dxy
Rd-1 —oo R
o0 1/d—1 d 1/d—1
/ </ ]Dlu]dxl) H(/ / ]Dzu\daﬁz da;1> dxo---dxg .
Rd-1 —o0 i—o \WRJ—co

oo
S/ |Diu|dx; Vi,
—o0

and so

IN



7.3. THE SOBOLEV IMBEDDING THEOREM 187

Continuing for the other variables, we obtain

d 1/d—1
R4 o1 JRd
For nonnegative numbers ay, ... ,a,, the geometric mean is bounded by the arithmetic:
( H ai) < - Z a; ;
i=1 i=1

moreover,

n 2 n
(Zai) §n2a?
i=1

i=1

(i.e., in R™, |alg, < +/nlale,). Thus we see that

41 1 d dy 1/d—1
! |
/Rd ()[4 da < {A;/M |Dzu|da:> }

1 d/d—1

1 d/d—1
< < (x/&/Rd |Vulg, d:n) :

and so for Cyj a constant depending on d,

HuHLd/d—l < CdeuH(Ll)d : (7.4)

For p # 1, we apply (7.4) to |u|” for appropriate v > 0:
ez, < ACall 1V ul ||
<ACal [a ), IVl 0

where 1/p + 1/p’ = 1. We choose ~ so that

~vd
i1 (y=1p';
that is
(d—1)p
¥ = >0
d—p
and so
vd / dp
_ = - 1 = — =
1= (=p =g —, 4
Thus
1
hully, < ACallally, IV ullr, e
and the result follows. O

We get a better result if p > d.
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LEMMA 7.16. If p > d, then there is a constant C = C(d,p) such that
11
]l . (ray < C(diam())7 ™7 |Vl (g, gapa ¥ u€ Cg(R) | (7.5)
where 2 = supp(u) and diam(S?) is the diameter of Q.

PROOF. Suppose u € CL(R?). For any unit vector e,

u(z) = au(:lc—re d’r—/ Vu(x —re)-edr ,
0 de

so integrate over e € S1(0), the unit sphere:

dwgu(z) = /Sl(o)/ Vu(z —re(0©)) - e(0)drdO

1
/V“ DL T

where wy is the volume of the unit ball.
Now suppose supp(u) C By(z). Then for 1/p+1/p' =1,

1 —d
(@) < - IVulleell N 5,00

and

Il = [l ay
p B3(0)

2
= dwd/ p=dp'+d=1 g,
0
_ dwq (1—d)p'+d 2
(1—-d)p +d 0
provided (1 —d)p’ +d > 0, i.e., p > d. So there is Cy, > 0 such that
()] < CapllVull(z,)a -

If Q = supp(u) ¢ B1(0), for x € , consider the change of variable

< 00

xr—
=———¢€B
Gam(@) € 21O
where T is the average of z on . Apply the result to
i(y) = u( diam(Q)y + z) . O

We summarize and extend the two previous results in the following lemma.

LEMMA 7.17. Let Q C R? and 1 < p < co.
(a) If 1 <p<d and ¢ = dp/(d —p), then there is a constant C' > 0 independent of Q@ such
that for all u € WyP(Q),

ullz, < ClIVull(r, @) - (7.6)

(b) If p = d and Q is bounded, then there is a constant Cq > 0 depending on the measure
of Q such that for all u € Wol’d(Q),

[ullz, @ < CallVullp @y ¥V qg<oo, (7.7)

where Cq depends also on q. Moreover, if p=d =1, g = 0o is allowed.
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(c) If d < p < o0 and Q is bounded, then there is a constant C' > 0 independent of  such
that for all u € WyP(Q),

&\*—‘
’13\>—‘

ull Lo @) < C(diam(2)?) 4™
Moreover, Wy () € C(Q).

IVull(z, @) (7.8)

PRrOOF. For (7.6) and (7.8), we extend (7.3) and (7.5) by density. Note that a sequence in
C5°(€2), Cauchy in Wol’p(Q), is also Cauchy in Ly(Q) if 1 < p < d and in C°(Q) if p > d, since
we can apply (7.3) or (7.5) to the difference of elements of the sequence. Moreover, when p > d
and  bounded, the uniform limit of continuous functions in C§°(Q2) C C(2) is continuous on
Q, so W P()  C(Q).

Consider (7.7). The case d = 1 is a consequence of the Fundamental Theorem of Calculus and
left to the reader. Since €2 is bounded, the Holder inequality implies L,, () C L;,(2) whenever

p1 > po. Thusif p=d > 1and u € Wol’d(ﬂ), also u € Wol’pi(Q) forany 1 <p~ <p=d. We
apply (7.6) to obtain that

[ullz,@) < ClIVullr, @y < ClQ P Tl o,
for ¢ < dp~/(d — p~), which can be made as large as we like by taking p~ close to d. O

COROLLARY 7.18 (Poincaré). If Q € R is bounded, m > 0 and 1 < p < oo, then the norm
on Wi"P(Q) is equivalent to

hygro = { 3 1D% (Q)}

laf=m

PRrROOF. Repeatedly use the Sobolev Inequality (7.6) (or (7.7) or (7.8) for larger p) and the
fact that L,(2) C L,(2) for ¢ > p. O

That is, only the highest order derivatives are needed in the W;"”(2)-norm. This is an
important result that we will use later when studying boundary value problems.

DEFINITION. We let
CL(Q) = {ue CI(Q) : Du € Loy(Q) ¥ |a] < j} .
This is a Banach space containing C7(2). We come now to our main result.

THEOREM 7.19 (Sobolev Imbedding Theorem). Let Q C RY be a domain, j >0 and m > 1
integers, and 1 < p < co. The following continuous imbeddings hold.

(a) If mp < d, then

dp

Wg’er,p(Q) SN Wj#](Q) vV finite ¢ < d

with g > p if Q) is unbounded.
(b) If mp > d and Q bounded, then
WITmP(Q) — CL(Q) .

Moreover, if Q has a bounded extension operator on WIit™P(Q), or if @ = RY, then the following
hold.
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(c) If mp < d, then
dp

WIHTMP(Q) < WH(Q) VY finite ¢ < g

with ¢ > p if Q unbounded.
(d) If mp > d then

WITMP(Q) < CL(Q) .

PRrROOF. We begin with some remarks that simplify our task.

Note that the results for j = 0 extend immediately to the case for j > 0. We claim the
results for m = 1 also extend by iteration to the case m > 1. The critical exponent g, that
separates case (a) from (b), or (c) from (d), satisfies for m = 1,2, ...,

__¢dp
d—mp

which implies that for 0 < k < m,

oo = dp _ _dag
TTd—(k+p  d—g

When we apply the m = 1 result successively to a series of Lebesgue exponents, we never change
case; thus, we obtain the final result for m > 1.

We also claim that the results for Q = R? imply the results for Q # R¢ through the bounded
extension operator E. If u € W™P(Q), then Eu € W™P(R?) and we apply the result to Eu.
The boundedness of E allows us to restrict back to €. For the W["(Q2) spaces, we have F
defined by extension by 0 for any domain, so the argument can be applied to this case as well.

We have simplified our task to the case of @ = R% m =1, and j = 0.

Consider the case of p < d, and take any v € WP(R?) such that [vllwre@ey < 1. We wish

to apply (7.6) or (7.7) to v. To do so, we must restrict to a bounded domain and lie in Wol’p.
Let R = (—1,1)? be a cube centered at 0, and R = (—2,2)? D> R. Let 3 € Z¢ be any vector
with integer components. Clearly

RY=| J(R+3) = J(R+B)
8 8

is decomposed into bounded domains; however, v|g4 g does not lie in WO1 P(R+ ). Let
E: WY (R) — W,?(R)

be a bounded extension operator with bounding constant Cg. By translation we define the
extension operator

Eg: WH(R+6) = Wo(R+5)
i.e., by
Eg() = B(r-g¥) = B(W(- = 9)) .

Obviously the bounding constant for Ejg is also Cg.
Now we can apply (7.6) or (7.7) to

Eﬁ(U\Rw)
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to obtain, for appropriate q,

1E (0l r+0)ll 1, (45 < CslIVEsIR18) (1, (R+8))

where Cg is independent of 5. Thus
100, ey < IR, 1
< CEHVEﬁ(U\Rw)IIq
< CLCE|v
< CLCE|w

q(R+0))4
H[/Vl P(R+p)
sorss)

since p < ¢ and [[v|[yy1p(rey < 1. Summing over 3 gives
vl ®ay < C

for some C > 0, since the union of the R + 3 cover R? a finite number of times.
If now u € WIP(RY), u # 0, let

u
V=
”UHWLP(Rd)

to obtain

lullz, ey < Cllullwegey ;
thus, (a) and (c) follow.

Finally the argument for p > d, i.e., (b) and (d), is similar, since again our bounding constant
in (7.8) is independent of 3. This completes the proof. O

REMARK. The extension operator need only work for W1P(Q), since we iterated the one
derivative case. Thus Lipschitz domains satisfy the requirements. Most domains of interest
(e.g., any polygon or polytope) have Lipschitz boundaries.

7.4. Compactness

We have an important compactness result for Sobolev spaces.

THEOREM 7.20 (Rellich-Kondrachov). Let @ C R? be a bounded domain, 1 < p < oo, and
j >0 and m > 1 be integers. Then Wi T™P(Q) is compactly imbedded in WH1(Q) V 1 < q <
dp/(d —mp) if mp < d, and in CI(Q) if mp > d. Moreover, if @ C R? has a bounded extension
operator, then a similar statement holds for W/ T™P(Q).

PROOF. We only sketch the proof and leave it to reader to fill out the argument (more
details may be found in, e.g., [GT, p. 167-8] or [Ad, p. 144-8]). We need only show the result
for j =0, m =1, and I/VO1 P(Q1). The result for general j and m follows from an iteration of the
case treated. The result for W7+™P(Q) can be obtained from bounded extension to € O Q and
the result for WZT"(Q).

We apply the Ascoli-Arzela Theorem 4.30 to a bounded set A in W™ (Q) By density we
may assume A C C3(Q).

First consider the case p > d. The Sobolev Imbedding Theorem gives us that A is bounded
in C%(Q). For equicontinuity of A, consider u € A, extended by zero to R%. Let & > 0 be given,



192 7. SOBOLEV SPACES

and take any = and y such that [r —y| < e. Fix any ball B = B, 5 of radius £/2 containing
both x and y. In a manner similar to the proof of Lemma 7.16, we have that for z € B,

|z—2|
u(z) —u(z) = /0 Vu(x —re,) - e, dr ,

x —
where e, = | | With up = | B / x) dx, integration in z over B gives
x—z

|z~ Zl
lu(z) —up| = |B| ‘// u(x —re,) - e, drdz|

|\Vu(x —re,)|drdz
|B| Bg(a:/

:1/ / |\Vu(x —rz/|z|)| drdz
|B| JB.(0) Jo

1 3 &€
= — / / / |Vu(z — re(©))| drdO p®dp
IB| Jo Jsi(0) Jo

zgd/ V(e — 2)| || d=
d|B| JB.(0)

o
1—d
< d|B|HVU||Lp(Q) Iz ML, (B-0)

< Cel~d/p ,

where p’ is the conjugate exponent to p and C' is independent of x, y, u, and ¢, since |B| =
wa(e/2)%. Now

[u(@) — uy)| < Ju(z) — up| + uly) - up| < 2017,

and equicontinuity of A follows for p > d, and the Ascoli-Arzela Theorem implies compactness
of Ain C°(Q).
Now consider the case p < d, and assume initially that ¢ = 1. For ¢ € C§°(B1(0)) an
approximation to the identity and € > 0, let
A.={uxp.:uec A} C CYQ) .

We estimate u* . and V(ux.) = ux Vo, using the Holder inequality to see that A. is bounded
and equicontinuous in CY(2) (although not uniformly so in €). Thus A. is precompact in C°(£2)
by the Ascoli-Arzela Theorem, and so also precompact in L1 (2), since €2 is bounded. Next, we
estimate

/\u(m)—u*gog(x)\dxge/ |Du|dx < Ce ,
Q Q

S0 u * . is uniformly close to u in L1(£2). It follows that A is precompact in L1 (2) as well.
For 1 < ¢ <dp/(d — p), we use Holder and (7.6) or (7.7) to show

@) < Cllull}y @ IVull; gy

where A+ (1 — A\)(1/p — 1/d) = 1/q. Thus boundedness in Wol’p(Q) and convergence in L;()
implies convergence in Ly(§2). O
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COROLLARY 7.21. If Q C R? s bounded and has a Lipschitz boundary, 1 < p < 0o, and
{u;}52, C WItmP(Q) is a bounded sequence, then there exists a subsequence {uj, }32; C {u;}52,
which converges in W74(Q) for ¢ < dp/(d — mp) if mp < d, and in CI(Q) if mp > d.

This result is often used in the following way. Suppose

Wmp(Q
uj Au as j — oo weakly .

Then {u;} is bounded, so there is a subsequence for which

wm=1r(Q)
uj, ——— u as k — oo strongly .

7.5. The H® Sobolev Spaces

In this section we give an alternate definition of W2(R%) = H™(R?) which has a natural
extension to nonintegral values of m. These fractional order spaces will be useful in the next
section on traces.

If f € S(R), then
Df =itf .
This is an example of a multiplier operator T': & — S defined by
T(f) = (m(&)f(€)" .

where m(§), called the symbol of the operator, is in C°°(R) and has polynomial growth. For
T = D, m(§) = i£. While i€ is smooth, it is not invertible, so D is a troublesome operator.
However T =1 — D? has

(1=D)f)" =1+,

and (1 + £2) is well behaved, even though it involves two derivatives of f. What is the square
root of this operator? Let f,g € & and compute using the Lo-inner product:

(Tf,9) = (TF,3) = (1 +€)F,8) = (L + V2], (1 +€2)1/2) .
Thus T = S? where
(SHN =1 +EHY2f() ,

and S is like D (S = (1 — D?)'/?).
We are thus led to consider in R? the symbol for (I — A)Y/2, which is

bi(§) = (1 +[€*)"/? € S'RY) .
Then by (€) is like D in RZ. For other order derivatives, we generalize for s € R to
bs(€) = (L+ [€[*)** e S'(RY) .

In fact by(¢) € C°(R?) and all derivatives grow at most polynomially. Thus we can multiply
tempered distributions by b(§) by Proposition 6.33.

DEFINITION. For s € R, let A®*: 8" — &' be given by
(A*u)" (&) = (1 + [¢[*)**a(¢)
for all u € §’. We call A® the Bessel potential of order s.
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REMARK. If u € S, then
Au(z) = (27) Y 2bg % u(z) .

PROPOSITION 7.22. For any s € R, A* : 8 — &’ is a continuous, linear, one-to-one, and
onto map. Moreover

ASTE=ASAY Vs, teR
and
(A%t = A5
DEFINITION. For s € R, let
HRY) = {ue 8 :Auc Ly(RD},
and for u € H*(RY), let
[ullrs = 1A ul[py ey -

We note that H™(R?) has been defined previously as W™2(R%). Our definitions will coincide,
as we will see.

PROPOSITION 7.23. For all s € R, || - ||g= is a norm, and for u € H®,

1/2
fullas = vl = { [ @+ lePylaepas)

Moreover, H® = L.
ProOOF. Apply the Plancherel Theorem. U
TECHNICAL LEMMA. For integer m > 0, there are constants C1,Co > 0 such that
m
Cr(1+a)™2 <> a2k < Cy(1 4 27)™/?

k=0
for all x > 0.

ProoF. We need constants ¢y, co > 0 such that

m 2
(1 +x2)m < (Zxk) < o1 +m2)m Vz>0.

k=0

Consider
m 2
()
== (o :
@) = 4 € C°(0nox)

Since f(0) =1 and lim,_. f(z) =1, f(x) has a maximum on [0, c0), which gives cp. Similarly
g(z) = 1/f(z) has a maximum, giving c;. O

THEOREM 7.24. If m > 0 is an integer, then
Hm(Rd) — W’m,Q(Rd) )
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PrOOF. If u € W™2(R?), then D*u € Ly V |a| < m. But then
€Fla@)l €Ly VE<m,
which is equivalent by the lemma to saying that

(1+ (€)™ [a(€)| € La .

195

That is, v € H™(RY). For u € H™, we reverse the steps above to conclude that u € W™2.

Moreover, we have shown that the norms are equivalent.

PROPOSITION 7.25. A compatible inner product on H*(R?) for any s € R is given by

(u,v)gs = (A°u, A°v)p, = /ASUASUCZIL‘

for all u,v € HS(Rd). Moreover, S C H® is dense and H® is a Hilbert space.
PROOF. It is easy to verify that (u,v)ps is an inner product, and easily

lull%s = (u,u)gs Y ue H®.

Given € > 0 and u € H?, there is f € S such that
11+ 1€ Pa = fllo, <&,
since S is dense in Ly. But
g=Q1+E*)2fes,
SO
lu = gllas = [[(1+ €)@= g)llz, <<,
showing that S is dense in H*®. Finally, if {u;}72, C H* is Cauchy, then
fi = L+ €24

gives a Cauchy sequence in Lo. Let f; L2, f and let

g=(+le?"r) em
Then

luj —gllas = I1fi = flle = 0

as j — oo. Thus H?® is complete.

These Hilbert spaces form a one-parameter family { H*},cgr. They are also nested.

PROPOSITION 7.26. If s > t, then H* C H' is continuously imbedded.

Proor. If u € H®, then
w@=/unWmW@
< / (1 + [62)°a(€)? d = [ull%s -

We note that the negative index spaces are dual to the positive ones.

0
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PROPOSITION 7.27. If s > 0, then we may identify (H*®)* with H™* by the pairing
(u,v) = (A°u, A™%v),

for allu e H® and v € H™%.

PrOOF. By the Riesz Theorem, (H®)* is isomorphic to H® by the pairing

<u7 ’LU> = (ua w)HS
for all w € H® and w € H® = (H®)*. But then
v
o= (1 +IgPrn) en

gives a one-to-one correspondence between H~° and H®. Moreover,

[oll -+ = l[wl[gs ,

so we have H~* isomorphic to H® = (H®)*. O
COROLLARY 7.28. For all integral m, H™ = W™2.
PROOF. For m >0, W—™2 = (Wgn’z)* = (W™2)* since our domain is all of R?. O

Finally, let us consider restriction to a domain Q C R

DEFINITION. If Q C R is a domain and s > 0, let
H*(Q) = {ulg : u € H*(RY)} .
Moreover, let H(Q) be constructed as follows. Map functions in C§°(€2) to C§°(R?) by extending

by zero. Take the closure of this space in H*(R%). Finally, restrict back to Q. We say more
concisely but imprecisely that Hg((2) is the completion in H*(R%) of C§°(12).

Let us elaborate on our definition of H*(Q2), s > 0. We have the following general construc-
tion for a Banach space H and Z C H a closed linear subspace. We can define the quotient
space

H/Z={x+Z:x€ H};
that is, for z € H, let
T=x+72

be the coset of x, and let H/Z be the set of cosets (or equivalence classes where x,y € H are
equivalent if v —y € Z, so & = ¢). Then H/Z is a vector space, a norm is given by

. —inf 13l — inf
Jill iz = int Il = ing o+ =l
TET
and H/Z is complete. If H is a Hilbert space, the construction is simpler. Let Pé‘ be H-
orthogonal projection onto Z+. Then Pé‘.x €=+ 7 and
- 1
12l /2 = 1Pz llm -
We also have an inner product defined by
(&.9)n/z = (Pzz,Pzy)n -
If the field F = R, this is more easily computed as

(& 9 ryz = 111& + 952 — 12— 0lF2) -
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Moreover, H/Z is a Hilbert space, isomorphic to Z+. We leave these facts for the reader to
verify.
For H = H*(RY), let
Z ={ue HRY) :ulg =0},
which is a closed subspace, so we have the quotient space
HRY/Z ={x+Z:2 € H' (R} .

Now define

m: HRY/Z — H*(Q)
by

(&) =m(x+ 2Z) =x|q .

This map is well defined, since if Z = g, then z|q = y|q. Moreover, 7 is linear, one-to-one, and
onto. So we define for z,y € H*(Q2)

-1 . ~ n

|| gs) = ) || s = inf Z|| s = ||P7x| g ,

2z @) = l7 (@) s () ) 2 EGHS(Rd)H s ey = 1 P72 s (may
Z|lo=z

and H*(Q) is isomorphic to H*(R?)/Z; that is, H*(Q2) becomes a Hilbert space with inner
product

(@, 9) ) = (@2, 7' Y) gerayz = (Pra e, Prr~'y) goray
which, if F = R, can be computed as
(@9 ms@) = 1z + Y7 @) — 1z — yllEe o) -

PROPOSITION 7.29. If Q C R? is a domain and s > 0, then H*(Q) is a Hilbert space.
Moreover, for any constant C > 1, given u € H*(Q), there is & € H*(R?) such that G| = u and

[/l s (may < Cllullms(o) :
that is, there is a bounded extension operator E : H*(Q) — H*(R?) with ||E|| < C.

If s = m is an integer, then we had previously defined H™(Q) as W™2(Q). If Q has a
Lipschitz boundary, the two definitions coincide, with equivalent, but not equal, norms. This
can be seen by considering the bounded extension operator

E:W™2(Q) - W™ (RY)
for which u € W™2(Q) implies

[Eullpm2mey < Cllullwmz@) < CllEullymzgay -
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Since W™2(RY) is the same as H™(R?), with equivalent norms,
ullgmqy =  inf v|| gm
llull gm0 veHm(Rd)” | zrm (e
v|g=u
< [|Bull gmray < Cil| Eullyym2 g
< Oy l|ullyym, < C inf V| yirm,
< Collullwma@) < C2 WW(Rd)H lwrm.2(ra)
v|g=u
<(Cs inf v|| gm = Csl|u||gmqy -
< 3v€Hm(Rd)H | zrm Rty = Csllull gm(q)
v|g=u

Thus our two definitions of H™(€2) are consistent, and, depending on the norm used, the constant
in the previous proposition may be different than described (i.e., not necessarily any C' > 1).
Summarizing, we have the following result.

PROPOSITION 7.30. If Q C R? has a Lipschitz boundary and m > 0 is an integer, then
H™(Q) = W™2(Q)
and the H™(Q) and W™2(Q) norms are equivalent.

7.6. A Trace Theorem

Given a domain Q C R? and a function f : @ — R, the trace of f is its value on the
boundary of €; i.e., the trace is f|sq, provided this makes sense. We give a precise meaning and
construction when f belongs to a Sobolev space.

We begin by restricting functions to lower dimensional hypersurfaces. Let 0 < k < d be an
integer, and decompose

RY=R¥F x R¥ .
If ¢ € CO°(RY), then the restriction map
R: C°(R?) — CORIF)
is defined by
Ro(2') = ¢(2/,0) Vo' e RIF
wherein 0 € R,

THEOREM 7.31. Let k and d be integers with 0 < k < d. The restriction map R extends to
a bounded linear map from H*(RY) onto H*~*/2(R~*), provided that s > k/2.

PROOF. Since S is dense in our two Sobolev spaces, it is enough to consider u € S(R?)
where R is well defined. Let v = Ru € S(R?F).
The Sobolev norm involves the Fourier transform, so we compute for y € R4—*

o(y) = (2m) P2 / V() dip
Rd—k
But, with ¢ = (n,¢) € R* x R¥, this is
o(y) = uly,0) = (2m)~%? / €04 (¢) de

R4

=m0z [l [ . ac] an.
Rd—k RFE
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Thus

o) = 2m) ™2 [ ity dc

Introduce (14 |n|2 4 [¢[2)*/2(1 + |n|?> + |¢|*)~*/? into the integral above and apply Hélder’s
inequality to obtain

ol < @r 7 [ 1t QPO+ P + 0BG [ (1 P+ 1P de
The second factor on the right is
/Rku + I +[¢1*) 70 d¢ = kwy /000(1 + >+ %)k dr
With the change of variable
L+ 2p=r,
this is
kg (14 |n)*/2= /Ooo(l +p) 7 dp

which is finite provided —2s + k — 1 < —1, i.e., s > k/2. Combining, we have shown that there
is a constant C' > 0 such that

[o(n) (L + [n?)* /% < ©2 /Rk [a(n, O (1 + [n* +[¢[*) d¢ .
Integrating in 7 gives the bound
[0l prs-rr2(ga—ry < Cllull r=(ay -

Thus R is a bounded linear operator mapping into H s—k/2 (Rd_k).
To see that R maps onto H**/2(R%*) let v € S(RY*) and extend v to & € C®(R%) by

a(y,z) =v(y) YyeRTF 2ecRF.
Now let ¢ € C§°(R¥) be such that (z) = 1 for |z] < 1 and ¥(z) = 0 for |2| > 2. Then
u(y, 2) = ¥ (2)aly, 2) € SRY) ,

and Ru = v. Thus R maps onto a dense subspace. Note that 4(§) = u(n, () = 1[1(()27(7)), and a
change of variables as above leads us to ||ul| gs(ray < C||v|| grs—#/2(ga-r) for some C' (we leave the

details to the reader). We can thus extend the result to the entire space by density. U
REMARK. We saw in the Sobolev Imbedding Theorem that
H*(R?) — CR(RY)
for s > d/2. Thus we can even restrict to a point (k = d above).
Now consider Q € R? such that 9Q is C%! smooth (i.e., Lipschitz). Our goal is to define
the trace of u € H*(Q) on 9. Let {Qj}évzl and {wj}év:l, N possibly 400, be as given in the
definition of a C%! smooth boundary. Take 2y open such that Qg C Q and Q C U;V:O ;. Let

{#x}2L, be a locally finite C°° partition of unity subordinate to the cover, so supp(¢g) C €2,
for some jj. Define for u € H (),

up = E(gpu) otp; ' : Bi(0) = F,
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so up € HY(B1(0)). We restrict u to 9Q by restricting ug to S = B1(0) N {zg = 0}. Since
supp(ug) CC B1(0), we can extend by zero and apply Theorem 7.31 to obtain

[kl /28y < Crllunll (s, (o) -

We need to combine the u; and change variables back to Q and 0f).
Summing on k, we obtain

M M M
D lurlFparagsy < Cr ) lukllin sy < C2 D I(@wu) 0 w5 17 gy -
k=1 k=1 k=1

using the bound on E. The final norm merely involves Ly norms of (weak) derivatives of
(¢pu) 0 b=, The Leibniz rule, Chain rule, and change of variables imply that each such norm
is bounded by the H' () norm of u, so

M M
Z Hukuiﬂﬁ(s) < Cy Z | (Pru) o ¢;€1”§{1(Rd+) < C3||“H§{1(Q) .
k=1

k=1
Let the trace of u, you, be defined for a.e. z € 9Q2 by
M
ou(@) = > (Blgru) 0 v (45.(2)) -
k=1

Then we clearly have after change of variable

M M
ol o0y < Ca 3 lluell?,s) < Cs S lunlZ/es) < Collull?ng, - (7.9)
k=1 k=1

In summary, for u € H*(Q), we can define its trace you on dQ as a function in Lo(99), and
Y0 : HY(Q) — Lo(99) is a well defined, bounded linear operator.

The above computations carry over to u € H*(€2) for nonintegral s > 1/2, as can be seen
by using the equivalent norms of the next section. Since we do not prove that those norms are
indeed equivalent, we have restricted to integral s = 1 here (and used the ordinary chain rule
rather than requiring some generalization to fractional derivatives). What we have proven is
sufficient for the next chapter, where we will use integral s.

While L2(052) is well defined (given the Lebesgue measure on the manifold 052), we do not
yet have a definition of the Sobolev spaces on 9. For s > 1/2, let

Z={ue H*(Q) :you=0 on 0N} ;

this set is well defined by (7.9) (at least we have proven this for s > 1), and is in fact closed in
H?*(Q2). We therefore define

H*7Y2(00) = {you : u € H*(Q)} C Ly(09) ,

which is isomorphic to H*(Q)/Z, which is a Hilbert space. While H*~1/2(8Q) C Ly(Q), we
expect that such functions are in fact smoother. A norm is given by

[ull gra-172(00) = ﬂe}}{gf(ﬂ) ol s - (7.10)
You=u

Note that this construction gives immediately the trace theorem

H’YOUHHs—1/2(aQ) < CH“”HS(Q) )
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where C' = 1. If an equivalent norm is used for H~1/ 2(00), C # 1 is likely. While we do
not have a constructive definition of H*~/2(9Q) and its norm that allow us to see explicitly
the smoothness of such functions, by analogy to Theorem 7.31 for 2 = R‘j_, we recognize that
H*~1/2(9Q) functions have intermediate smoothness. The equivalent norm of the next section
gives a constructive sense to this statement. We summarize our results.

THEOREM 7.32. Let Q C R? have a Lipschitz boundary. The trace operator ~o : C°(Q) —
CY(0R) defined by restriction, i.e., (you)(x) = u(x) V x € 09, extends to a bounded linear map

o 1 H5(9) 222 Hs~1/2(p0)
for any s > 1 (actually, s > 1/2).

We can extend this result to higher order derivatives. Tangential derivatives of ygu are well
defined, since if D, is any derivative in a direction tangential to 9€2, then

Divou=D;Fu=FED;u=~D;u.
However, derivatives normal to €2 are more delicate.

DEFINITION. Let v € R? be the unit outward normal vector to 9. Then for u € C1(Q),

Dyu:%:Vu-l/ on 0f)
v
is the normal derivative of u on 9. If j > 0 is an integer and u € C7(), let
YU = Diu = % .
We state and prove the following theorem for integral s = m, though it actually holds for
appropriate nonintegral values.

THEOREM 7.33 (Trace Theorem). Let Q C RY have a C™~H1 N C%' boundary for some
integer m > 0. The map v : C™(2) — (C°(9Q))™+! defined by
yu = (’YOU/?’}/luv e ;’Ymu)

extends to a bounded linear map

m
v H™HH Q) 22 T H™ 712 (00)
j=0
PROOF. Let u € H™(Q)NC>(Q), which is dense because of the existence of an extension
operator. Then iterate the single derivative result for ~o:

You € H™2(0Q) | ~vu=(Vu-v) € H™V2(09Q) |
You = 10(V(Vu-v)-v) € H"3/2(09Q) , etc.,

wherein we require 0€) to be smooth eventually so that derivatives of v can be taken, and wherein
we have assumed that the vector field v on 02 has been extended locally into © (that this can
be done follows from the Tubular Neighborhood Theorem from topology).

To see that v maps onto, take

ve [[H™2(00) nC>(09)
j=0
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and construct o € C°°(Q) N H™(£2) such that
YO =

as follows. If 99 € R4 we define ¥ as a polynomial
o' wa) = vo(@’) + vr(2)aa + -+ —som(@)zy

for 2/ € R¥! and x4 € R, and then multiply by a smooth test function Y (zq) that is identically
equal to 1 near x4 = 0. If 0L is curved, we decompose 02 and map it according to the definition
of a C™~ 1! boundary, and then apply the above construction. ]

Recall that
Hy (Q) = Wi (Q)

is the closure of C§°(2) in W™2(Q). Since yu = 0 for u € C§°(Q), the same is true for any
u € HJ'(2). That is, u and its m — 1 derivatives (normal and/or tangential) vanish on 0€.

THEOREM 7.34. If m > 1 is an integer and Q C R? has a C™ 51 boundary, then
H' Q) ={ue H"(Q) :yu=0} ={ue H"(Q) : yju=0Vj <m— 1} =ker(y) .
PROOF. As mentioned above, HJ*(2) C ker(y). We need to show the opposite inclusion.

Again, by a mapping argument of the C" 1! boundary, we need only consider the case Q = Ri.
Let

u € ker(y) N CSC(RY) |

we saw earlier that C§°(R?) is dense in H™(R%). Let 1 € C*(R) be such that 1 (t) = 1 for
t>2and ¢(t) =0for t <1. For j > 1, let

Un(t) = P(nt)
which converges to 1 on {¢t > 0} as n — co. Then ¥, (z4)u(x) € C§°(R%). We claim that

H™(RY)
Un(zg)u(r) ——— u(z) as n — oo .

If so, then u € HJ"(R%) as desired.
Let a € Z¢ be a multi-index such that || < m and let o = (3,¢) where 8 € Z%! and £ > 0.
Then

‘e
D (Ypu — u) = D5D§(¢nu —u) = kz_o <k‘> Dsik(lf)n — 1)D5D§u ,

and we need to show that this tends to 0 in LQ(RSIF) as n — o0o. It is enough to show this for
each

DY * (4, — 1)DP Dl = n*"*Di7* (¢ — 1)|0, D’ Dhue
which is clear if k = ¢, since the measure of {x : ¥,(z) — 1 > 0} tends to 0. If & < ¢, our

expression is supported in {z € R‘fr : % <zg < %}, SO

2/n
D5 F (¢ — 1)D’6D§U||i2(Ri) < Cyn2=h) /Rd 1 // \DP DEu(a’, 24)? dogda’ .
- 1/n
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Taylor’s theorem implies that for z = (2/,24) € R? and j < m,

1 -
Dfju(a’,z4) = Dju(a’,0) + - - + Gk tu(a’, 0)
1 d j—k—171J /
+7(j—k’—1)' ; (xg—1) Dlu(a',t)dt |

which reduces to the last term since yu = 0. Thus for j =m — |5| = < m,

HDflik(@Z’n - 1)DﬂD§u”iQ(Rd+)

2/n
< Cyn2(t=1) / /
Rd-1 J1/n

2/n 2/n 2
< anQ(é_k)n_z(é_k_l)/ / </ ]DﬁDf;u(x',t)\dt> drgdx’
Ri-1 J1/n 0

1 2/n
§C’4n2/ 2/ |DP DYu(a’, t))? dt da’
Rd—1 T 0

—0 as n— o

2
dxgdx’

q
/ (zqg — )" *1DPDhu(2’ ) dt
0

since the measure of the inner integral tends to 0. Thus the claim is established and the proof
is complete. O

7.7. The W*P({2) Sobolev Spaces

We can generalize some of the Lo(€2) results of the last two sections to L,(€2), and the results
for integral numbers of derivatives to nonintegral. We summarize a few of the important results.
See [Ad] for details and precise statements.

DEFINITION. Suppose Q C R%, 1 < p < oo, and s > 0 such that s = m + ¢ where 0 < o < 1
and m is an integer. Then we define for a smooth function w,

a « 1/p
e D uta) ~ Duly)
[— {Ilullwm,p(gﬁlagm | [ e sy

if p < o0, and otherwise

[D%u(x) — D*u(y)|
l|ul[ys.00 (@) = maxq [|ul[yym.c (), max ess sup = .
|a|=m z,ye) ‘1‘ - y‘

PROPOSITION 7.35. For any 1 <p < oo, |- |lws»(q) is a norm.
DEFINITION. We let W*P(€) be the completion of C°°(£2) under the || - ||yys.(q)-norm, and
WyP(€) is the completion of C§°(2).
PROPOSITION 7.36. If Q = R? or Q has a Lipschitz boundary, then
W2(Q) = H*(Q) and W*(Q) = Hy(Q) .
Thus we have an equivalent norm on H*() given above.

If 1 <p < oo and m = s is nonintegral, then we have analogues of the Sobolev Imbedding
Theorem, the Rellich-Kondrachov Theorem, and the Trace Theorem. For the Trace Theorem,
every time a trace is taken on a hypersurface of one less dimension (as from Q to 09), 1/p
derivative is lost, rather than 1/2.
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7.8. Exercises

Prove that for f € H'(R?), | f1 11 (ay 18 equivalent to

{[Larimiora)”

Can you generalize this to H*(RY)?
Prove that if f € H}(0,1), then there is some constant C' > 0 such that

£l o0,y < CllF N La0,1) -
If instead f € {g € H*(0,1) : fol g(x)dx = 0}, prove a similar estimate.

Prove that dg & (H'(R?))* for d > 2, but that dy € (H'(R))*. You will need to define what
do applied to f € H'(R) means.

Prove that H'(0,1) is continuously imbedded in C5(0,1). Recall that C5(0,1) is the set of
bounded and continuous functions on (0, 1).

Suppose that Q C R? is a bounded set and {U; }jvzl is a finite collection of open sets in R?
N

that cover the closure of Q (i.e., Q C U Uj;). Prove that there exists a finite C'°° partition
j=1

of unity in  subordinate to the cover. That is, construct {¢x}2L, such that ¢) € C§°(R?),

¢ C Uj, for some ji, and

Suppose that Q C R? is a domain and {U, }ac7 is a collection of open sets in R? that cover €

(ie., Q C U U, ). Prove that there exists a locally finite partition of unity in Q subordinate
acl
to the cover. That is, there exists a sequence {1;}52; C C§° (R9) such that
(i) For every K compactly contained in 2, all but finitely many of the ¢; vanish on K.
oo

(ii) Each ¢; > 0 and ij(a:) =1 for every x € .
j=1

(iii) For each j, the support of v; is contained in some Uy, a; € Z.
Hints: Let S be a countable dense subset of € (e.g., points with rational coordinates).
Consider the countable collection of balls B = {B,(x) C R? : r is rational, € S, and
B.(z) C U, for some a € T}. Order the balls and construct on B; = B, (x;) a function
¢; € CSO(BJ) such that 0 < ¢j < 1land ¢; =1 on Brj/2($j)~ Then ;1 = ¢ and Y =
(1 - ¢1)(1 - ¢j—1)¢j should work.

Let v € D'(R?) and ¢ € D(R?). For y € R? the translation operator 7, is defined by
() = ¢(z — y).
(a) Show that
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11.

12.
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(b) Apply this to

f € VVli’cl(Rd) = {f € Ll,loc(Rd) : % S Ll,loc(Rd) for all ]}
J

to show that
1
fa+9) = @) = [y Vet )
0

(c) Let the locally Lipschitz functions be defined as
C'IOO’C1 (RY) = {f € C°(R?) : YR > 0, there is some Lp ; depending on R and f
such that |f(z) — f(y)| < Lrglz —y| Yo,y € Br(0)} .

Conclude that W' (R?) ¢ CP1(RY).

loc loc
Counterexamples.
(a) No imbedding of WHP(Q) < Ly(Q) for 1 < p < d and ¢ > dp/(d — p). Let Q C R? be
bounded and contain 0, and let f(z) = |z|* Find « so that f € WhP(Q) but f & Ly(9).
(b) No imbedding of W1P(Q) — C%(Q) for 1 < p < d. Note that in the previous case, f is
not bounded. What can you say about which (negative) Sobolev spaces the Dirac mass lies
in?
(c) No imbedding of WP(Q) «— L () for 1 < p = d. Let Q@ ¢ R? = Br(0) and let
f(z) = log(log(4R/|z])). Show f € W'?(Bg(0)).
(d) C*® N W is not dense in Wh*. Show that if Q = (—1,1) and u(z) = |z|, then
u € WL but u(z) is not the limit of C* functions in the W1*°-norm.
Suppose that f; € H?(Q) for j =1,2,..., f; % f weakly in H'(€), and D f; 2 go weakly
in Ly(Q) for all multi-indices a such that || = 2. Show that f € H?(Q), D*f = g,, and,
for a subsequence, f; — f strongly in H(Q).

Suppose that € R? is bounded with a Lipschitz boundary and fi 2 f and 9j 2 g weakly
in H(Q2) . Show that, for a subsequence, V(f;g;) — V(fg) as a distribution. Find all p in
[1,00] such that the convergence can be taken weakly in L,(2).

Suppose that € R? is a bounded domain with Lipschitz boundary and {u;} C H?>T¢(Q) is
a bounded sequence, where € > 0.

(a) Show that there is u € H?(Q) such that, for a subsequence, u; — u in H2({2).
(b) Find all ¢ and s > 0 such that, for a subsequence, u; — u in W*4(Q).

(c) For a subsequence, |u;|"Vuj — |u]"Vu in Ly(€2) for certain r > 1. For fixed d, how big
can r be? Justify your answer.

Prove that H*(R?) is imbedded in C%(R?) if s > d/2 by completing the following outline.
(a) Show that / (14 [€[2)~" de < oo.
R4

(b) If ¢ € S and = € RY, write ¢(z) as the Fourier inversion integral of ¢. Introduce
1 = (1+[€)%2(1 + |£]%)~*/? into the integral and apply Hélder to obtain the result for
Schwartz class functions.
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(c) Use density to extend the above result to H*(R9).

Interpolation inequalities.

() Show that for f € HY(RY) and 0 < s < L, ||l < /1573 g0 1]
generalize this result to f € H"(R?) for r > 0?

(b) If Q is bounded and 0f2 is smooth, show that there is a constant C' such that for all

f € HYQ), 1 flz2g00) < CllF 50 11 e [Hint: Show for d =1 on (0,1) by considering

T d
0)% = f(x)? — / —f(t)*dt .
702 = 1@ = [ s
For d > 1, flatten out 02 and use a (d = 1)-type proof in the normal direction.]

Suppose f € La(R) and @(§) = /|£|. Make sense of the definition g = w * f, and determine
s such that g € H*(R).

Suppose that w € L1(R), w(z) > 0, and w is even. Moreover, for x > 0, w € C?[0,0c0),
W'(x) <0, and w”(x) > 0. Consider the following equation for w:

wru—u" = f € Ly(R).

—S

1LQ(Rd). Can you

(a) Show that @(§) > 0. [Hint: use that w is even, integrate by parts, and consider subin-
tervals of size 27 /|| ]

(b) Find a fundamental solution to the differential equation (i.e., replace f by dp). You may
leave your answer in terms of an inverse Fourier Transform.

(c) For the original problem, find the solution operator as a convolution operator.
(d) Show that the solution u € H?(R).

Elliptic regularity theory shows that if the domain @ C R? has a smooth boundary and
f € H%(R), then —Au = f in Q, u = 0 on JQ, has a unique solution u € H*T2. For what
values of s will u be continuous? Can you be sure that a fundamental solution is continuous?
The answers depend on d.



CHAPTER 8

Boundary Value Problems

We consider in this chapter certain partial differential equations (PDE’s) important in science
and engineering. Our equations are posed on a bounded Lipschitz domain © C R¢, where
typically d is 1, 2, or 3. We also impose auxiliary conditions on the boundary 92 of the domain,
called boundary conditions (BC’s). A PDE together with its BC’s constitute a boundary value
problem (BVP). We tacitly assume throughout most of this chapter that the underlying field
F=R.

It will be helpful to make the following remark before we begin. The Divergence Theorem
implies that for vector 1 € (C*(Q))? and scalar ¢ € C*(Q),

[ @oae= [ ovviow). (8.1)
Q o0

where v is the unit outward normal vector (which is defined almost everywhere on the boundary
of a Lipschitz domain) and do is the (d — 1)-dimensional measure on 0f). Since

V(oy)=Vo- -+ ¢V -9,

we have the integration-by-parts formula in R?
/¢V~z/zdx:—/v¢-1/1dm+/ oY -vdo(z) . (8.2)
Q Q o0

By density, we extend this formula immediately to the case where merely ¢ € H'(Q2) and
Y € (H'(2))?. Note that the Trace Theorem 7.33 gives meaning to the boundary integral.

8.1. Second Order Elliptic Partial Differential Equations

Let ©Q C R? be some bounded Lipschitz domain. The general second order elliptic PDE in
divergence form for the unknown function w is

-V - (aVu+bu)+cu=f inQ, (8.3)

where a is a d x d matrix, b is a d-vector, and ¢ and f are functions. To be physically relevant
and mathematically well posed, it is often the case that ¢ > 0, |b| is not too large (in a sense to
be made clear later), and the matrix a is uniformly positive definite, as defined below.

DEFINITION. If  C R? is a domain and a : O — R%*? is a matrix, then a is positive definite
if for a.e. x € €,

a(z)¢ >0 VEeRT, €40,

and a is merely positive semidefinite if only ¢Ta(z)¢ > 0. Moreover, a is uniformly positive
definite if there is some constant a, > 0 such that for a.e. z € §,

Ta(z)é > alé)?  VEER?.

207
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We remark that positive definiteness of a insures that
aVu-Vu>0.

The positivity of this term can be exploited mathematically. It is also related to physical
principles. In many applications, Vu is the direction of a force and aVu is the direction of a
response. Positive definiteness says that the response is generally in the direction of the force,
possibly deflected a bit, but never more than 90°.

8.1.1. Practical examples. We provide some examples of systems governed by (8.3).

EXAMPLE (Steady-state conduction of heat). Let © C R? be a solid body, u(z) the temper-
ature of the body at x € Q, and f(x) an external source or sink of heat energy. The heat flux
is a vector in the direction of heat flow, with magnitude given as the amount of heat energy
that passes through an infinitesimal planar region orthogonal to the direction of flow divided by
the area of the infinitesimal region, per unit time. Fourier’s Law of Heat Conduction says that
the heat flux is —aVu, where a(z), the thermal conductivity of the body, is positive definite.
Thus, heat flows generally from hot to cold. Finally, s(z) is the specific heat of the body; it
measures the amount of heat energy that can be stored per unit volume of the body per degree
of temperature. The physical principle governing the system is energy conservation. If V' C (),
then the total heat inside V is fv sudz. Changes in time in this total must agree with the
external heat added due to f minus the heat lost due to movement through 9V; thus,

jt/vsuda::/vfdx—/av(—aVu)-Vda(x),

where, as always, v is the outer unit normal vector. Applying the Divergence Theorem, the last
term is

/aVaVu-z/do—(x) = /VV-(aVu)dx :

and so, assuming the derivative may be moved inside the integral,

A(?—V-(a%))@:/vfdx.

This holds for every V' C Q with a reasonable boundary. By a modification of Lebesgue’s
Lemma, we conclude that, except on a set of measure zero,
J(su)
ot
In steady-state, the time derivative vanishes, and we have (8.3) with b = 0 and ¢ = 0. But
suppose that f(x) = f(u(z),z) depends on the temperature itself; that is, the external world
will add or subtract heat at x depending on the temperature found there. For example, a room
2 may have a thermostatically controlled heater/air conditioner f = F(u,z). Suppose further
that F'(u,x) = ¢(z)(upef(x) — u) for some ¢ > 0 and reference temperature uef(x). Then
J(su)
ot
and, in steady-state, we have (8.3) with b = 0 and f = cuyes. Note that if ¢ > 0 and u < Uy,
then F' > 0 and heat energy is added, tending to increase u. Conversely, if © > wupe, u tends
to decrease. In fact, in time, u — wus. However, if ¢ < 0, we have a potentially unphysical
situation, in which hot areas (i.e., u > uyf) tend to get even hotter and cold areas even colder.
The steady-state configuration would be to have u = 400 in the hot regions and u = —oo in the

—V-(aVu)=f. (8.4)

— V- (aVu) = c(tpes — u) , (8.5)
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cold regions! Thus ¢ > 0 should be demanded on physical grounds (later it will be required on
mathematical grounds as well).

EXAMPLE (The electrostatic potential). Let u be the electrostatic potential, for which the
electric flux is —aVu for some a measuring the electrostatic permitivity of the medium Q.
Conservation of charge over an arbitrary volume in €2, the Divergence Theorem, and the Lebesgue
Lemma give (8.3) with ¢ =0 and b = 0, where f represents the electrostatic charges.

EXAMPLE (Steady-state fluid flow in a porous medium). The equations of steady-state flow
of a nearly incompressible, single phase fluid in a porous medium are similar to those for the
flow of heat. In this case, u is the fluid pressure. Darcy’s Law gives the volumetric fluid flux
(also called the Darcy velocity) as —a(Vu — gp), where a is the permeability of the medium 2
divided by the fluid viscosity, g is the gravitational vector, and p is the fluid density. The total
mass in volume V C Q is fv pdz, and this quantity changes in time due to external sources (or
sinks, if negative, such as wells) represented by f and mass flow through 0V. The mass flux is
given by multiplying the volumetric flux by p. That is, with ¢ being time,

4 pdr = / fdx — / —pa(Vu — gp) - vdo(x)
dt Jy 1% ov

z/vfdaz+/vv-[pa(wgp)]d:c,

and we conclude that, provided we can take the time derivative inside the integral,

dp

5~V lpa(Vu—gp)] =7

Generally speaking, p = p(u) depends on the pressure u through an equation-of-state, so this
is a time dependent, nonlinear equation. If we assume steady-state flow, we can drop the first
term. We might also simplify the equation-of-state if p(u) & pg is nearly constant (at least over
the pressures being encountered). One choice uses

p(u) = po +y(u —up) ,

where v and ug are fixed (note that these are the first two terms in a Taylor approximation of
p about ug). Substituting this in the equation above results in

—V -{al(po + v(u — 1)) Vu — g(po + 7(u —u0))*|} = f .

This is still nonlinear, so a further simplification would be to linearize the equation (i.e., assume
u =~ ug and drop all higher order terms involving u — up). Since Vu = V(u — ug), we obtain
finally

=V - {poalVu — g(po + 2v(u — uo))]} = f
which is (8.3) with a replaced by pga, ¢ = 0, b = —2ppagy, and f replaced by f — V - [poag(po —
2yug)]-

8.1.2. Boundary conditions (BC’s). In each of the previous examples, we determined
the equation governing the behavior of the system, given the external forcing term f distributed
over the domain §2. However, the description of each system is incomplete, since we must also
describe the external interaction with the world through its boundary 0.

These boundary conditions generally take one of three forms, though many others are possi-
ble depending on the system being modeled. Let 02 be decomposed into I'p, I'y, and I'g, where
the three parts of the boundary are open, contained in 92, cover 9 (i.e., 92 = TpUT Ny UTR),
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and are mutually disjoint (so Tp NIy =Tp NI =Txy NTr = 0). We specify the boundary
conditions as

—(aVu+bu) -v = gn on 'y, (8.7)
—(aVu+bu) -v = gr(u —ur) onI'p, (8.8)

where up, ug, gy, and gr are functions with ggr > 0. We call (8.6) a Dirichlet BC, (8.7) a
Neumann BC, and (8.8) a Robin BC.

The Dirichlet BC fixes the value of the (trace of) the unknown function. In the heat con-
duction example, this would correspond to specifying the temperature on I'p.

The Neumann BC fixes the normal component of the flux —(aVu + bu) - v. The PDE
controls the tangential component, as this component of the flux does not leave the domain in
an infinitesimal sense. However, the normal component is the flux into or out of the domain,
and so it may be fixed in certain cases. In the heat conduction example, gy = 0 would represent
a perfectly insulated boundary, as no heat flux may cross the boundary. If instead heat is added
to (or taken away from) the domain through some external heater (or refrigerator), we would
specify this through nonzero gy .

The Robin BC is a combination of the first two types. It specifies that the flux is proportional
to the deviation of u from ug. If u = ug, there is no flux; otherwise, the flux tends to drive u
to upg, since gg > 0 and a is positive definite. This is a natural boundary condition for the heat
conduction problem when the external world is held at a fixed temperature ug and the body
adjusts to it. We will no longer discuss the Robin condition, but instead concentrate on the
Dirichlet and Neumann BC’s.

The PDE (8.3) and the BC’s (8.6)—(8.8) constitute our boundary value problem (BVP). As
we will see, this problem is well posed, which means that there exists a unique solution to the
system, and that it varies continuously in some norm with respect to changes in the data f, up,
and gn.

8.2. A Variational Problem and Minimization of Energy

For ease of exposition, let us consider the Dirichlet BVP
{—V-(aVu)—i—cu:f in Q,

8.9
U =up onl'p, (8.9)

where we have set b = 0 and I'p = 9€2. To make classical sense of this problem, we would expect
u € C%(Q) N C%N), so we would need to require that f € C°(Q), a € (C1(Q))™*?, ¢ € CO(Q),
and up € C°(00). Often in practice these functions are not so well behaved, so we therefore
interpret the problem in a weak or distributional sense.

If merely f € La(Q), a € (WH(Q))4*4, and ¢ € Ly (9), then we should expect u € H2(Q).
Moreover, then u|gq € H3/2(89Q) is well defined by the trace theorem. Thus the BVP has a
mathematically precise and consistent meaning formulated as: If f, a, and ¢ are as stated and
up € H32(0Q), then find u € H?(Q) such that (8.9) holds. This is not an easy problem;
fortunately, we can find a better formulation using ideas of duality from distribution theory.

We first proceed formally: we will justify the calculations a bit later. We first multiply the
PDE by a test function v € D(£2), integrate in z, and integrate by parts. This is

/(—V-(aVu)—i—cu)vdm:/(aVu-Vv—{—cuv)dx:/fvdx.
Q Q Q
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We have evened out the required smoothness of u and v, requiring only that each has a single
derivative. Now if we only ask that f € H™Y(Q), a € (Loo(2))??, and ¢ € Loo(), then
we should expect that u € H'(Q); moreover, we merely need v € H{(Q). This is much less
restrictive than asking for u € H?(f2), so it should be easier to find such a solution satisfying
the PDE. Moreover, u|gq € H'/2(9) is still a nice function, and only requires up € H'/2(99Q).

REMARK. Above we wanted to take cu in the same space as f, which was trivially achieved
for ¢ € Loo(€2). The Sobolev Imbedding Theorem allows us to do better. For example, suppose
indeed that v € H'(Q) and that we want cu € L2(Q) (to avoid negative index spaces). Then in
fact u € Ly(?) for any finite ¢ < 2d/(d—2) if d > 2 and u € Cp() C Loo(2) if d = 1. Thus we
can take

Ly(Q) ifd=1,
c€ Lote(Q) ifd=2forany e>0,
Ly ifd>3,
and obtain cu € Ly(Q) as desired.

With this reduced regularity requirement on u (u € H*(Q2), not H?(2)), we can reformulate
the problem rigorously as a variational problem. Our PDE (8.9) involves a linear operator

=-V-aV+c:H(Q) - HQ),
which we will transform into a bilinear operator
B:HY(Q)x HY(Q) - R.

Assume that u € H!(Q) solves the PDE (we will show existence of a solution later), and take a
test function v € H}(2). Then

(=V - (aVu) + cu,v) g1 g2 = (f;v) g1 g2 -
Let {v;}32, C D(Q2) be a sequence converging to v in HZ(Q). Then
(=V- (GVU)W>H*1,H3 = jllfélo<—v : avu?”ﬁH*l,Hé
= 115&<—v -aVu,v;)p p
= ?lim (aVu,Vvj)p p
= ].EI{E:(GVU’ Vi) Ly Q)
= J(aVu, VU)L2(Q) ,
where the “Lo(Q)”-inner product is actually the one for (L2(£2))?. Thus
(aVu, V), ) + (cu,v) 1,0 = (f,0) g1 mp -
Let us define B by
B(u,v) = (aVu, Vv) ) + (1, ) 1, () Vu,v € HY(Q) ,
and F : H}(Q) — R by
F(v) =(/, U>H—1,Hg )
then the PDE has been reduced to the variational problem:
Find u € H(Q) such that

B(u,v) = F(v) Yo € HY(Q) .
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What about the boundary condition? Recall that the trace operator
vo : HY(Q) 2% H2(90) .

Thus there is some @p € H () such that yo(@p) = up € H/2(dQ). Tt is therefore required
that

u € Hy(Q) +ip ,
so that vo(u) = yo(tp) = up. For convenience, we no longer distinguish between up and its
extension up. We summarize our construction below.

THEOREM 8.1. If Q C RY is a domain with a Lipschitz boundary, and f € H™1(Q), a €

(Loo(2))¥4 ¢ € Loo(R), and up € HY(Q), then the BVP for u € H'(),
-V - (aVu) +cu = m ),

(aVu) d (8.10)

u=up on o,

18 equivalent to the variational problem:
Find uw € H}(Q) 4+ up such that

B(u,v) = F(v)  Yve H}Q), (8.11)
where B+ HY(Q) x H'(Q) — R is
B(u,v) = (aVu, Vo)1, ) + (cu, v) 1,()
and F : H}(Q) — R is
F(v) = (f,0) m-1.m@)

Actually, we showed that a solution to the BVP (8.10) gives a solution to the variational
problem (8.11). By reversing the steps above, we see the converse implication. Note also that
above we have extended the integration by parts formula (8.2) to the case where ¢ = v € H}(Q)
and merely ¢ = —aVu € (L2(Q))%.

The connection between the BVP (8.10) and the variational problem (8.11) is further illu-
minated by considering the following energy functional.

DEFINITION. If @ symmetric (i.e., a = al), then the energy functional J : H(Q) — R for
(8.10) is given by

J(U) = % [(aVv, VU)LZ(Q) + (CU, U)LQ(Q)] (8 12)
= (f,0) a-1),m1 ) T (@Vup, Vo) 1,0) + (cup, v)1,(0) - '

We will study the calculus of variations in Chapter 9; however, we can easily make a simple
computation here. We claim that any solution of (8.10), minus up, minimizes the “energy”
J(v). To see this, let v € H}(2) and compute

J(u—up+v) = J(u—up) = (aVu, V), ) + (ct,v)r,0) = (f, V) 519,101 0)
+ %[(aVv, V), + (cv, U)LQ(Q)] )

using that a is symmetric. If u satisfies (8.11), then

(8.13)

J(u—up+v)—Ju—up)= %[(QVU,VU)LZ(Q) + (CU,U)L2(Q)] >0,

provided that a is positive definite and ¢ > 0. Thus every function in H}(Q2) has “energy” at
least as great as u — up.
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Conversely, if u —up € H} () is to minimize the energy J(v), then replacing in (8.13) v by
ev for e € R, € £ 0, we see that the difference quotient
% [J(’LL —up + 6?)) — J(u — UD)] = (aVu, VU)LQ(Q) + (CU, U)LQ(Q) — <f, U>H—l(Q)7H&(Q)
=+ %[(CLV"U, VU)LQ(Q) + (CU7 U)LQ(Q)] 5

must be nonnegative if € > 0 and nonpositive if ¢ < 0. Taking ¢ — 0 on the right-hand side
shows that the first three terms must be both nonnegative and nonpositive, i.e., zero; thus, u
must satisfy (8.11). Note that as e — 0, the left-hand side is a kind of derivative of J at u—up.
At the minimum, we have a critical point where the derivative vanishes.

(8.14)

THEOREM 8.2. If the hypotheses of Theorem 8.1 hold, and if ¢ > 0 and a is symmetric and
positive definite, then (8.10) and (8.11) are also equivalent to the minimization problem:

Find u € H}(Q) + up such that
J(u—up) < J(v) Yo € HY(Q) (8.15)
where J is given above by (8.12).
The physical principles of conservation or energy minimization are equivalent in this context,
and they are connected by the variational problem: (1) it is the weak form of the BVP, given
by multiplying by a test function, integrating, and integrating by parts to even out the number

of derivatives on the solution and the test function, and (2) the variational problem also gives
the critical point of the energy functional where it is minimized.

EXAMPLE. As another example of the use of energy functionals, consider a thin membrane
stretched over a rigid frame. We describe this as follows. Let € € R? be open in the zy-plane
and suppose that there is a function f : 02 — R which describes the z-coordinate (height) of
the rigid frame. That is, the frame is

{(z,y,2) : 2 = f(z,y) for all (z,y) € ON} .

We let u : 2 — R be the height of the membrane. The membrane will assume the shape that
minimizes the energy, subject to the constraint that it attaches to the rigid frame. If f = 0, the
energy functional E : H'(2) — R is a sum of the elastic energy and the gravitational potential
energy:

E(u) = / [3a|Vul® + gu] dz |
Q

where a is a constant related to the elasticity of the membrane and g is the gravitational constant.
We minimize E subject to the constraint that the trace of u, vo(u), vanishes on the boundary.
This minimization problem gives rise to the partial differential equation

—V-aVu=—-g inQ, u=0 ond,
and, equivalently, its variational form.
8.3. The Closed Range Theorem and Operators Bounded Below

We continue with an abstract study of equation solvability that will be needed in the next
section. In this section, we do not require the field to be real. We begin with a basic definition.

DEFINITION. Let X be a NLS and Z C X. Then the orthogonal complement of Z is
Zt={r" e X*: (a",2)x»x =0Vz € Z} .
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PROPOSITION 8.3. Let X be a NLS and Z C X. Then
(a) Z* is closed in X*, and
(b) Z c (ZH)*.
Moreover, if Z C X is a linear subspace and X is reflexive, then
(c) Z is closed in X if and only if Z = (Z+)*.
Of course, (Z+)+ C X**, so we have used the natural inclusion X C X** implicitly above.
ProoF. For (a), suppose that we have a sequence {y; };‘il C Z* that converges in X* to y.
But then for any z € Z,
0= (yj,2)x*x = (¥, 2)x*.x
soy € Z+ and Z* is closed. Result (b) is a direct consequence of the definitions: for z € Z C
X C X** we want that 2z € (Z1)4, i.e., that (z,y)x= x+ = (z,y)x.x+ = 0 for all y € Z1, which
holds.
Finally, for (c), that Z is closed follows from (a). For the other implication, suppose Z is
closed. We have (b), so we only need to show that (Z+)* C Z. Suppose that there is some
nonzero = € (Z+)+ ¢ X** = X such that x ¢ Z. Now the Hahn-Banach Theorem, specifically

Lemma 2.33, gives us the existence of f € ((Z1))* such that f(z) # 0 but f(z) = 0 for all
z € Z, since Z is linear. That is, f € Z1, so 2 cannot be in (Z+)*, a contradiction. O

PROPOSITION 8.4. Let X and Y be NLS’s and A: X — Y a bounded linear operator. Then
R(A)" = N(A%)
where R(A) is the range of A and N(A*) is the null space of A*.
PROOF. We note that y € R(A)* if and only if for every z € X,
0= (y, Az)y-y = (A"y, 2)x x ,
which is true if and only if A*y = 0. 0
We have now immediately the following important theorem.

THEOREM 8.5 (Closed Range Theorem). Let X and Y be NLS’s, Y =Y, and A: X —Y
a bounded linear operator. Then R(A) is closed in'Y if and only if R(A) = N(A*)*.

This theorem has implications for a class of operators that often arise.

DEFINITION. Let X and Y be NLS’s and A : X — Y. We say that A is bounded below if
there is some constant v > 0 such that

[Azlly Z7lzllx  VzeX.

A linear operator that is bounded below is one-to-one. If it also mapped onto Y, it would
have a continuous inverse. We can determine whether R(A) =Y by the Closed Range Theorem.

THEOREM 8.6. Let X and Y = Y™ be Banach spaces and A : X — Y a continuous linear
operator. Then the following are equivalent:

(a) A is bounded below;
(b) A is injective and R(A) is closed;
(c) A is injective and R(A) = N(A*)*.
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PRrROOF. The Closed Range Theorem gives the equivalence of (b) and (c). Suppose (a). Then
A is injective. Let {y; 21 C R(A) converge to y € Y. Choose z; € X so that Az; = y; (the
choice is unique), and note that

lyi — yelly = |A(z; — 2p)lly = 7llzy — 21l x

implies that {xj}ﬁl is Cauchy. Let z; — 2 € X and define y = Az € R(A). Since A is
continuous, y; = Az; — Az =y, and R(A) is closed.

Conversely, suppose (b). Then R(A), being closed, is a Banach space itself. Thus 4 : X —
R(A) is invertible, with continuous inverse by the Open Mapping Theorem 2.40. For z € X,
compute

l2lx = A7 Azl x < AT Az]ly
which gives (a) with constant v = 1/||A71|[. O
COROLLARY 8.7. Let X and Y = Y™ be Banach spaces and A : X — Y a continuous linear

operator. Then A is continuously invertible if and only if A is bounded below and N(A*) = {0}
(i.e., A* is injective).

8.4. The Lax-Milgram Theorem

It is easy at this stage to prove existence of a unique solution to (8.10), or equivalently,
(8.11), provided that a is symmetric and uniformly positive definite, ¢ > 0, and both these
functions are bounded. This is because B(,-) is then an inner-product on Hg (), and this
inner-product is equivalent to the usual one. To see these facts, we easily note that B is bilinear
and symmetric (since a is symmetric), and B(v,v) > 0. We will show that B(v,v) = 0 implies
v = 0 in a moment, which will show that B is an inner-product. For the equivalence with the
HE(Q) inner-product, we have the upper bound

B(v,v) = (aVv, V) + (ev,v) < [lallp@paxall VolT ) + el o @ 0l17, @) < ClH”H%{&(Q) ;

for some constant C;. A lower bound is easy to obtain if ¢ is strictly positive, i.e., bounded
below by a positive constant. But we allow merely ¢ > 0 by using the Poincaré inequality, which
is a direct consequence of Cor. 7.18.

THEOREM 8.8 (Poincaré Inequality). If Q C R is bounded, then there is some constant C
such that

[l 30y < ClIVUlly@) Yo € Hy(Q) - (8.16)
Now we have that
B(v,v) = (aVv, Vv) + (cv,v) > a.[[Vol|7, ) > (a*/CQ)HUII?{(%(Q) :

and now both B(v,v) = 0 implies v = 0 and the equivalence of norms is established.
Problem (8.11) becomes:

Find w = u —up € H}() such that
B(w,v) = F(v) — B(up,v) = F(v) Vv e H}(Q).
Now F' : H}(Q) — R is linear and bounded:

|E()| < [F(0)] +[B(up, )| < (IFll-19) + Cllunllm@) v/l «) -



216 8. BOUNDARY VALUE PROBLEMS

where, again, C' depends on the Lo, (Q)-norms of a and ¢. Thus F € (H$(Q))* = H (), and
we seek to represent F' as w € H&(Q) through the inner-product B. The Riesz Representation
Theorem 3.12 gives us a unique such w. We have proved the following theorem.

THEOREM 8.9. IfQ C RY is a Lipschitz domain, f € H~Y(Q), up € H(Q), a € (L (Q))4*4
is uniformly positive definite and symmetric on Q, and ¢ > 0 is in Lo(Q2), then there is a
unique solution u € HY(Q) to the BVP (8.10) and, equivalently, the variational problem (8.11).
Moreover, there is a constant C > 0 such that
lull 1) < C(IIF||g-10) + llupll g )) - (8.17)
This last inequality is a consequence of the facts that

lull i) < llwllgao) + lupllmg)
and B
Ilelfq&(Q) < CB(w,w) = CF(w) < C(||1F|lg-1@) + llupllm @) 1wl g q) -

REMARK. We leave it as an exercise to show that u is independent of the extension of up
from 0X2 to all of 2. This extension is not unique, and we have merely that once the extension
for up is fixed, then w is unique. That is, w depends on the extension. The reader should
show that the sum v = w + up does not depend on the extension chosen. Moreover, since the
extension operator is bounded, that is,

lupllmr@) < Cllubll gizeg) »
we can modify (8.17) so that it reads

ullr ) < CUIFIE-1) + lupll gir200)) »
and thereby refers only to the raw data itself and not the extension.
For more general problems, where either a is not symmetric, or b # 0 in the original Dirichlet
problem (8.9), B is no longer symmetric, so it cannot be an inner-product. We need a gener-

alization of the Riesz theorem to handle this case. In fact, we present this generalization for
Banach spaces rather than restricting to Hilbert spaces.

THEOREM 8.10 (Generalized Lax-Milgram Theorem). Let X' and Y be real Banach spaces,
and suppose that Y is reflerive, B : X XY — R is bilinear, and X C X be a closed subspace.
Assume also the following three conditions:

(a) B is continuous on X XY, i.e., there is some M > 0 such that
[B(z,y)| < M|z|x|ylly VzeX, yeY;
(b) B satisfies the inf-sup condition on X XY, i.e., there is some v > 0 such that
inf  sup B(z,y) >~v>0;
e yey
el =1 gy =1
(c) and B satisfies the nondegeneracy condition on X that

sup B(z,y) > 0 VyeY, y#0.
zeX

If xgp € X and F € Y™, then there is a unique u solving the abstract variational problem:
Findu e X +x9 C X such that

B(u,v) = F(v) YoeY . (8.18)
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Moreover,
1 M
fulle < 21FLy-+ (2 +1) ol (8.19)
Y Y
We remark that (b) is often written equivalently as
B
up () >qllzllx Ve X.
vey lylly

y70
In our context, X = H'(Q), X =Y = H}(Q), and x¢ = up.
PROOF. Assume first that zp = 0. For each fixed x € X, B(z,-) defines a linear functional

on Y, since B is linear in each variable separately, so certainly the second. Let A represent the
operator that takes = to B(x,y):

(Az,y) = Az(y) = B(z,y) Vee X, yeY .
Since (a) gives that

[(Az,y)| = |B(z,y)| < (M|[z]|x)llylly ,

Az is a continuous linear functional, i.e., A : X — Y™*. Moreover, A itself is linear, since B is
linear in its first variable, and therefore A is a continuous linear operator:

[Az|y~ = sup (Az,y) < M|z|x .
lylly=1

We reformulate (8.18) in terms of A as the problem of finding u € X such that
Au=F .
Now (b) implies that

[Az|ly~ > vllzl|lx Yz e X, (8.20)
so A is bounded below and wu, if it exists, must be unique (i.e., A is one-to-one). Since X
is closed, it is a Banach space and we conclude that the range of A, R(A), is closed in Y*
(Theorem 8.6). The Closed Range Theorem 8.5 now implies that R(A) = N(A*)*. We wish to
show that N(A*) = {0}, so that A maps onto. Suppose that for some y € Y = Y** y € N(A*);
that is,

B(z,y) = (Az,y) =0 VreX.

But (c) implies then that y = 0. So we have that A has a bounded inverse, with |[A™1|| < 1/y
by (8.20), and u = A~'F solves our problem.
Finally, we compute

_ _ 1
lullx = 1A Fllx < AT Flly~ < SIE

The theorem is established when xg = 0.
If 9 # 0, we reduce to the previous case, since (8.18) is equivalent to:

Find w € X such that
B(w,v) = F(v) YveY,
where u =w +x9g € X + 29 C X and
F(v) = F(v) — B(zg,v) .
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Now F € Y* and
|F(v)| < |F )|+ |B(xo,v)| < (|Flly- + Mol x)lv]ly -

Thus the previous result gives

lwllx < = (IFlly= + Mlaollx)

==

and so
ullx < flw+zollx < [lwllx + llzollx
gives the desired bound. O

When X =Y is a Hilbert space, things are a bit simpler.

COROLLARY 8.11 (Lax-Milgram Theorem). Let X be a real Hilbert space with closed subspace
H. Let B: X x X — R be a bilinear functional satisfying the following two conditions:

(i) B is continuous on X, i.e., there is some M > 0 such that
[B(z,y)| < Mlz|x|yllx  Va,ye X
(ii) B is coercive (or elliptic) on H i.e., there is some v > 0 such that
B(z,z) > ~|z|% Ve e H .
If vg € X and F € H*, then there is a unique u solving the abstract variational problem:
Finduw e H+z9 C X such that
B(u,v) = F(v) Vve H . (8.21)

Moreowver,
1 M
|WH§WWWF+(7+QWMX- (8.22)

PROOF. The corollary is just a special case of the theorem except that (ii) has replaced (b)
and (c). We claim that (ii) implies both (b) and (c), so the corollary follows.
Easily, we have (c), since for any y € H,

sup B(z,y) > B(y,y) > 7|lyll% >0
reH

whenever y #£ 0. Similarly, for any z € H with norm one,
sup B(z,y) > B(z,z) 27 >0,
yeH
lyllx=1
so the infimum over all such z is bounded below by ~y, which is (b). O
The Generalized Lax-Milgram Theorem gives the existence of a bounded linear solution
operator S : Y* x X — X such that S(F,z¢) = u € X + xo C X satisfies
B(S(F,x0),v) = F(v) YoeY .
The bound on S is given by (8.19). This bound shows that the solution varies continuously with
the data. That is, by linearity,

1 M
HﬂR%%ﬂ@wMMSJW—QRH<V*ﬂw%—wh-

So if the data (F,xp) is perturbed a bit to (G, yo), then the solution S(F,z¢) changes by a small
amount to S(G,yp), where the magnitudes of the changes are measured in the norms as above.
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8.5. Application to Second Order Elliptic Equations

We consider again the BVP (8.10), in the form of the variational problem (8.11). To apply
the Lax-Milgram Theorem, we set X = H'(Q), X = Y = H}(Q), and 29 = up. Now B :
H'(Q) x H'(Q) — R is continuous, since a and ¢ are bounded:

|B(u,v)| = [(aVu, V)1, @) + (cu, v) 1)
< lall(z@)yaxal Vull Ly Vol Ly + el @ lull Ly@)llvl Lo
< Mllull groyllvllar )
by Hélder’s inequality for some M > 0 depending on the bounds for a and ¢. Coercivity is more

interesting. We will only assume that ¢ > 0, since in practice, often ¢ = 0. Using that a is
uniformly positive definite and €2 is bounded, we compute

B(u,u) = (aVu, Vu), @) + (cu, u) 1)
> @, (Vu, Vu) 1y ) = a:l| Va7, )
> (a./C?)Jull 1 g »

for some C' > 0 by Poincaré’s inequality. Thus there exists a unique solution u € H&(Q) + up,
and

C? <02M

lullmey < el + (S +1) el -

Note that the boundary condition v = up on 02 is enforced by our selection of the trial
space H&(Q) + up, i.e., the space within which we seek a solution has every member satisfying
the boundary condition. Because of this, we call the Dirichlet BC an essential BC for this
problem.

*

8.5.1. The general Dirichlet problem. Consider more generally the full elliptic equation
(8.3) with a Dirichlet BC:

—V - (aVu+bu)+cu=f in Q,
{ U =up on 0f) .

We leave it to the reader to show that an equivalent variational problem is:
Find u € H}(Q) + up such that

B(u,v) = F(v) Yo € HY(Q)
where
B(u,v) = (aVu, V) ,q) + (bu, V) 1,) + (cu, v) 1, 0) 5
F(v) = (f,0) g-1(),m @) -

Now if b € (Loo(€2))? (and a and ¢ are bounded as before), then the bilinear form is bounded.
For coercivity, assume again that ¢ > 0 and a is uniformly positive definite. Then for v € HE(Q),

B(v,v) = (aVv, V) 1,) + (bv, VV) 1, 0) + (cv,v) 1,(0)
> @*HVUH%Q(Q) — |(bv, Vo) L,
> (axlI Vol o) = 10l n @2Vl Lo@) VOl 2y ) -
Poincaré’s inequality tells us that for some Cp > 0,

axlIVollLy) = 10l (Lo @)illvl o) = (ax = CrlIbll (o @) VOl Ly -
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To continue in the present context, we must assume that for some o > 0,
Ay — CPHbH(LOO(Q))d >a>0; (823)
this restricts the size of b relative to a. Then we have that

2 @ 2

B(v,v) z af|[Vollz,q) = mHUHHl(Q) )

and the Lax-Milgram Theorem gives us a unique solution to the problem as well as the continuous
dependence result. Note that in this general case, if a is not symmetric or b # 0, then B is not
symmetric, so B cannot be an inner-product. However, continuity and coercivity show that the
diagonal of B (i.e., u = v) is equivalent to the square of the H}(2)-norm.

8.5.2. The Neumann problem with lowest order term. We turn now to the Neumann
BVP
{—V'(aVu)—i-cu—f in Q,

.24
—aVu-v=g on 0F) , (8.24)

wherein we have set b = 0 for simplicity. This problem is more delicate than the Dirichlet
problem, since for v € H'(f), we have no meaning in general for aVu - v. We proceed formally

to derive a variational problem by assuming that u and the test function v are in, say C°°(£2).
Then the Divergence Theorem can be applied to obtain

—/V-(aVu)vda:—/aVu-Vvdx—/ aVu-vvdzx ,
Q Q o0

or, using the boundary condition and assuming that f and g are nice functions,

(aVu, Vv) ) + (cu,v)y) = (1) Ly) — (950) Ly00) -
These integrals are well defined on H'(2), so we have the variational problem:
Find u € H'(Q) such that

B(u,v) = F(v) Yo e H'(Q) (8.25)
where B : H'(Q2) x H}(Q) — R is
B(u,v) = (aVu, V)1, ) + (cu, v) 1,()
and F : HY(Q) — R is
F(v) = (f,v) @ @)= mi@) = (9 0) g-12090),11/2(60) - (8.26)

It is clear that we will require that f € (H'(2))*. Moreover, for v € H*(Q), its trace is in
H'Y2(Q), so we merely require g € H~/2(0Q), the dual of H'/2(99Q). Note that the Trace
Theorem 7.33 implies that F' € (H'(£2))*, since lull grr2o0) < Cllullgiq)-

A solution of (8.25) will be called a weak solution of (8.24). These problems are not strictly
equivalent, because of the boundary condition. For the PDE, consider u satisfying the variational
problem. Restrict to test functions v € D(Q2) to avoid 02 and use the Divergence Theorem, as
in the case of the Dirichlet boundary condition, to see that the differential equation in (8.24) is
satisfied in the sense of distributions. This argument can be reversed to see that a solution in
H'(Q) to the PDE gives a solution to the variational problem for v € D(f2), and for v € H(Q)
by density. The boundary condition will be satisfied only in some weak sense, i.e., only in the
sense of the variational form.

If in fact the solution happens to be in, say, H?(f2), then aVu - v € H1/2(8Q) and the
argument above can be modified to show that indeed —aVu - v = g. Of course in this case, we
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must then have that g € H/2(99Q), and, moreover, that f € Ly(Q). So suppose that u € H?(Q)
solves the variational problem (and f and g are as stated). Restrict now to test functions
v e HY Q) NC>®(Q) to show that

B(u,v) = (aVu, Vo)1, @) + (cu, v) 1,(q)
= —(V - (aVu),v)r,) + (aVu - v,v)1,00) + (cu,v) 1, 0)
=F() = (f,v)r,0) — (9,V) Ly (09) -

Using test functions v € C§° shows again by the Lebesgue Lemma that the PDE is satisfied.
Thus, we have that
(aVu-v,v)1,00) = —(9,V) Ly00) >

and another application of the Lebesgue Lemma (this time on 92) shows that indeed —aVu-v =
g in Ly(99), and therefore also in H'/2(d€). That is, a smoother solution of (8.25) also solves
(8.24). The converse can be shown to hold as well by reversing the steps above, up to the
statement that indeed v € H?()). But this latter fact follows from the Elliptic Regularity
Theorem 8.13 to be given at the end of this section.

Let us now apply the Lax-Milgram Theorem to our variational problem (8.25) to obtain the
existence and uniqueness of a solution. We have seen that the bilinear form B is continuous if
a and ¢ are bounded functions. For coercivity, we require that a be uniformly positive definite
and that c is uniformly positive: there exists ¢, > 0 such that

c(x) >ce >0 for a.e. 2 € Q.

This is required rather than merely ¢ > 0 since H'(2) does not satisfy a Poincaré inequality.
Now we compute

(aVu, Vu) ) + (cu,u)p,) = G*HVU”%Q(Q) + C*HUH%Q(Q)
> min(as, ¢ )|[u] 7 q)

which is the coercivity of the form B. We now conclude that there is a unique solution of the
variational problem (8.25) which varies continuously with the data. Moreover, if the solution is
more regular (i.e., u € H?(12)), then (8.24) has a solution as well. (But is it unique?)

Note that the boundary condition —aVu - v = g on 0f) is not enforced by the trial space
H'(Q), since most elements of this space do not satisfy the boundary condition. Rather, the
BC is imposed in a weak sense as noted above. In this case, the Neumann BC is said to be a
natural BC. We obtain the bound

lull ) < CUf Il @)y + 912000} -

8.5.3. The Neumann problem with no zeroth order term. In this subsection, we
also require that €2 be connected. If it is not, consider each connected piece separately.

Often the Neumann problem (8.24) is posed with ¢ = 0, in which case the problem is
degenerate in the sense that coercivity of B is lost. In that case, the solution cannot be unique,
since any constant function solves the homogeneous problem (i.e., the problem for data f = g =
0).

The problem is that the kernel of the operator V is larger than {0}, and this kernel intersects
the kernel of the boundary operator —ad/dv. In fact, this intersection is

Z = {v € H'(Q) : v is constant a.e. on Q} ,
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which is a closed subspace isomorphic to R. If we “mod out” by R, we can recover uniqueness.
One way to do this is to insist that the solution have average zero. Let

HY(Q) = {u € HY(Q): / u(z)dr = O},
Q
which is isomorphic to H*(2)/Z or Hl(Q)/I@, i.e., H'(£2) modulo constant functions, and so is a
Hilbert space. To prove coercivity of B on H'(£2), we need a Poincaré inequality, which follows.

THEOREM 8.12. If Q € R? is a bounded and connected domain, then there is some constant
C > 0 such that

0]l Lo < CIVOllLyye Vv € HYQ) . (8.27)

PROOF. Suppose not. Then we can find a sequence {u,}22, C H'(Q) such that
[unlloy@ =1 and  [[Vug|r,e) <1/n,

and so
Vu, — 0 strongly in La(2) .

Furthermore, |[un|| 1) < V2, so we conclude, for a subsequence (still denoted by u, for
convenience) both that, by Lemma 3.25 (i.e., the Banach-Alaoglu Theorem),

Up 2 u weakly in H'(Q)
and, by the Rellich-Kondrachov Theorem 7.20,
Up — U strongly in La(Q) .

That is, Vu,, — 0 and Vu,, — Vu as a distribution, so we conclude that Vu = 0. Thus u is a
constant (since € is connected) and has average zero, so u = 0. But this contradicts the fact
that

L= Junllro@) — lull o) =0,
and the inequality claimed in the theorem must hold. O
On a connected domain, then, we have for u € H'(Q)
B(u,u) = (aVu, Vo) 1y0) > axl|Vul7, ) > Cllullf g

for some constant C' > 0, that is, coercivity of B. Thus we conclude from the Lax-Milgram
Theorem that a solution exists and is unique for the variational problem:

Find u € H'(Q) such that
B(u,v) = F(v)  Yve HYQ), (8.28)
where B(u,u) = (aVu, Vv)p, ) and F is defined in (8.26).

Note that F' € (H'(2))*. Often we prefer to formulate the Neumann problem for test functions
in H1(Q) rather than in H'(Q), as:

Find u € H'(Q) such that
B(u,v) = F(v) Vo € HY(Q) . (8.29)
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In that case, for any a € R,
B(u,v + «) = B(u,v) ,
so if we have a solution u € H'(Q), then also
F(v) = B(u,v) = B(u,v+ a) = F(v+a) = F(v) + F(a)

implies that F'(a) = 0 is required. That is, R C ker(F'). This condition is called a compatibility
condition, and it says that the kernel of B(u,-) is contained in the kernel of F’; that is, f and g
must satisfy

(£, D@y mr@ — (9 Da-12),meo =0,

/Q f(x)do = /8 gla)dota)

provided that f and g are integrable.

The compatibility condition arises from enlarging the space of test functions from H Q) to
H1(9), which is necessary to prove that the solution to the variational problem also solves the
BVP. In abstract terms, we have the following situation. The problem is naturally posed for u
and v in a Hilbert space X. However, there is nonuniqueness because the set ¥ = {u € X :
B(u,v) =0¥v € X} ={ve X :B(u,v) =0 Vu € X} is contained in the kernel of the natural
BC. But the problem is well behaved when posed over X/Y, which requires F|y = 0, i.e., the
compatibility condition.

which is to say

8.5.4. Elliptic regularity. We close this section with an important result from the theory
of elliptic PDE’s. See, e.g., [GT] or [Fo| for a proof. This result can be used to prove the
equivalence of the BVP and the variational problem in the case of Neumann BC'’s.

THEOREM 8.13 (Elliptic Regularity). Suppose that k > 0 is an integer, 2 C R? is a bounded
domain with a C*11(Q)-boundary, a € (Wk+HL2(Q))4%4d s uniformly positive definite, b €
(WhtLeo(Q)), and ¢ € WH™(Q) is nonnegative. Suppose also that the bilinear form B :
HY(Q) x HY(Q) — R,

B(u,v) = (aVu, V)1, ) + (bu, V) 1, 0) + (cu,v) 1)

is continuous and coercive on X, for X given below.

(a) If f € H*(Q), up € H*2(Q), and X = HL(SY), then the Dirichlet problem:
Find u € H}(Q) 4+ up such that

B(u,v) = (f,0),0) v € Hy(Q) (8:30)
has a unique solution u € H**2(Q) satisfying, for constant C' > 0 independent of f, u,
and up,
[ull g2y < C(I1F | me) + llunll grrsrz o)) -

Moreover, k = —1 is allowed in this case, provided c € W% (Q).
(b) If f € H*(Q), g € H**Y2(09Q), and X = H'(Q), then the Neumann problem:
Find u € HY(Q) such that

B(U,’U) - (f?U)Lg(Q) - (g7v)L2(8Q) Vo € Hl(Q) ) (831>
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has a unique solution u € H**2(Q) satisfying, for constant C' > 0 independent of f, u,
and g,

Jull grszioy < C UL r) + 9l mrer2a0)) -
Moreover, k = —1 is allowed if ¢ € C%*°(Q) and we intrepret [ £l ee oy as 1|z i)y

8.6. Galerkin Approximations

Often we wish to find some simple approximation to our BVP. This could be for computa-
tional purposes, to obtain an explicit approximation of the solution, or for theoretical purposes to
prove some property of the solution. We present here Galerkin methods, which give a framework
for such approximation.

THEOREM 8.14. Suppose that H is a Hilbert space with closed subspaces
HycHC---CH

o
such that the closure of U H,, is H. Suppose also that B : H x H — R is a continuous, coercive

bilinear form on H andnt:hoat F € H*. Then the variational problems, one for each n,
Find u,, € H, such that
B(up,v,) = F(vy) Y, € H, , (8.32)
have unique solutions. The same problem posed on H also has a unique solution uw € H, and
Up — U m H .
Moreover, if M and v are respectively the continuity and coercivity constants for B, then for

any n,

M .
o= uallsr < 2 inf ffu—wulln (8.33)

Furthermore, if B is symmetric, then for any n,

lu —up||p = inf |u—ov,|B, (8.34)

where || - | = B(-,-)'/? is the energy norm.

REMARK. Estimate (8.33) says that the approximation of u by u,, in H,, is quasi-optimal in
the H-norm; that is, up to the constant factor M /v, u, is the best approximation to u in H,.
When B is symmetric, || -|| 5 is indeed a norm, as the reader can verify, equivalent to the H-norm

by continuity and coercivity. Estimate (8.34) says that the Galerkin approximation u,, € H, is
optimal in the energy norm.

Proor. We have both
B(up,vy) = F(vy) Y, € H, ,
and
B(u,v) = F(v) Yve H .
Existence of unique solutions is given by the Lax-Milgram Theorem. Since H, C H, restrict
v = v, € H, in the latter and subtract to obtain that

B(u — up,v,) =0 Y, € H,, .
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(We remark that in some cases B gives an inner-product, so in that case this relation says that
the error u—u,, is B-orthogonal to H,; thus, this relation is referred to as Galerkin orthogonality.)
Replace vy, by (v — u,) — (u — vy,) € H, for any v, € H,, to obtain that

B(u — up,u —uy) = B(u— up,u —vy) Y, € H,, . (8.35)
Thus,
Yllu— unH%I < B(u —up,u—up) = B(u — up,u —vp) < M|lu—up||gllu —vnllg,

and (8.33) follows. If B is symmetric, then B is an inner-product, and the Cauchy-Schwarz
inequality applied to (8.35) gives

lu— UnHQB = B(u—un,u —up) = B(u—un,u —vn) < |lu—unlpllu—vnl5,
and (8.34) follows.
o0

Finally, since U H,, is dense in H, there are ¢, € H,, such that ¢, — v in H as n — oc.
n=0
Then

M M
lw —unllg < — inf |lu—onllg < —llu—¢ulla ,
v v

Un n

so U, — u in H as n — oo. O

If (8.32) represents the equation for the critical point of an energy functional J : H — R,
then for any n,
. _ S _ . ‘
111[5 J(vp) = J(up) > J(u) Ulg]g J(v)

vnE€Hn
That is, we find the function with minimal energy in the space H,, to approximate u. In this
minimization form, the method is called a Ritz method.
In the theory of finite element methods, one attempts to define explicitly the spaces H, C H
in such a way that the equations (8.32) can be solved easily and so that the optimal error

e iy
vnlanHu vnll

is quantifiably small. Such Galerkin finite element methods are extremely effective for computing
approximate solutions to elliptic BVP’s, and for many other types of equations as well. We now
present a simple example.

EXAMPLE. Suppose that Q = (0,1) C R and f € L3(0,1). Consider the BVP

—u = on (0,1)
{u(()) _ 5(1) —0 ( | (8:36)
The equivalent variational problem is:
Find u € H{(0,1) such that
(', 0", = (f,0) L, Vv € H}(0,1) . (8.37)

We now construct a suitable finite element decomposition of Hg(0,1). Let n > 1 be an
integer, and define h = h,, = 1/n and a grid x; = ih for i = 0,1, ...,n of spacing h. Let

H, = Hy, = {v € C°0,1) : v(0) = v(1) = 0 and v(z) is a first degree
polynomial on [x;_1,x;] for i = 1,2,....,n} ;

that is, H}, consists of the continuous, piecewise linear functions. Note that Hy, C H&(O7 1), and
Hj, is a finite dimensional vector space. We leave it to the reader to show that the closure of
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[e.9]
U Hj, is dense in H}(0,1). In fact, one can show that there is a constant C' > 0 such that for
n=1

any v € HE(0,1) N H?(0,1),

min [|v — vy g1 < C||v|| g2k . (8.38)
v, €Hp,

The Galerkin finite element approximation is:
Find uj, € Hp, such that

(s h)Ls = (fson)r, Yo € Hy, (8.39)
If w solves (8.37), then Theorem 8.14 implies that
lu—upllpr < C min Jlu—wpllg < Cllulgzh < C[f( LR
UhEHh
using elliptic regularity. That is, the finite element approximations converge to the true solution
linearly in the grid spacing h.

The problem (8.39) is easily solved, e.g., by computer, since it reduces to a problem in linear
algebra. For each ¢ = 1,2,...,n — 1, let ¢y, ; € H}, be such that

fo it
¢h’l(x”)_{1 ifi=j.

Then {qﬁh,i}?z_ll forms a vector space basis for H}, and so there are coefficients a; € R such that
n—1
up(x) =Y ajén (@)
j=1
and (8.39) reduces to

n—1
Z O‘j(¢%,j’ gb;t,i)[& = (f7 ¢h,i)L2 Vi=1,2,..,n—1,

j=1
since it is sufficient to test against the basis functions ¢, ;. Let the (n — 1) x (n — 1) matrix M
be defined by
Mij = (¢hj> Phi) L
and the (n — 1)-vectors a and b by
aj=cj and b= (f ni)L, -

Then our problem is simply Ma = b, and the coefficients of uy are given from the solution
a = M~1b (why is this matrix invertible?). In fact M is tridiagonal (i.e., all the nonzero entries
lie on the diagonal, subdiagonal, and superdiagonal), so the solution is easily and efficiently
computed.

8.7. Green’s Functions

Let £ be a linear partial differential operator, such as is given in (8.3). Often we can find a
fundamental solution F € D’ satisfying
LE =6y,

wherein &g is the Dirac delta function or point mass at the origin. If for the moment we consider
that £ has constant coeflicients, then we know from the Malgrange and Ehrenpreis Theorem 5.28,
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that such a fundamental solution exists. It is not unique, but for f € D, say, the equation Lu = f
has a solution u = E * f. However, u, defined this way, will generally fail to satisfy any imposed
boundary condition. To resolve this difficulty, we define a special fundamental solution in this
section. For maximum generality, we will often proceed formally, assuming sufficient smoothness
of all quantities involved to justify the calculations.

Let B denote a linear boundary condition operator (which generally involves the traces
and/or 71, and represents a Dirichlet, Neumann, or Robin boundary condition). For reasonable
f and g, we consider the BVP

{Eu =f in (8.40)

Bu=g on 0f) .

Initially we will consider the homogeneous case where g = 0.

DEFINITION. Suppose  C R?, £ is a linear partial differential operator, and B is a homo-
geneous linear boundary condition. We call G : 2 x Q — R a Green’s function for £ and B if,
for any f € D, a weak solution u of (8.40) with g = 0 is given by

/G ,y) f (8.41)

We assume here that 02 is smooth enough to support the definition of the boundary condition.

PROPOSITION 8.15. The Green’s function G(-,y) : Q@ — R is a fundamental solution for L
with the point mass §y(-) = do(- —y): for a.e. y € Q,

L.Gla,y) =do(w—y) forzeQ

(wherein we indicate that L acts on the variable x by writing L, instead). Moreover, G(x,y)
satisfies the homogeneous boundary condition

B.G(z,y) =0 for x € 02 .

PRrOOF. For any f € D, we have u defined by (8.41), which solves Lu = f. We would like
to calculate

f(2) = Lu(z) = £ /Q Gla.y) f(y) dy = /Q £.G(z,y) f(y)dy .

which would indicate the result, but we need to justify moving £ inside the integral. So for

¢ € D(Q),
| @ oy = [ et ofe) da
= / u(z) L*P(x) dx
Q

- / / Gw,y) f(y) £*6(x) dy de
//Gm y) £*6(x) f(y) dz dy

— [ (€600 fw)dy
Q

showing that

that is, £L,G(z,y) = dy(z).
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That G(x,y) satisfies a homogeneous Dirichlet condition in z is clear. Other boundary
conditions involve normal derivatives, and it can be shown as above that G must satisfy them. [J

REMARK. For a fundamental solution of a constant coeflicient operator, LE = dg, translation

implies that
LoE(x —y) = dy(z) ,

which can be understood as giving the response of the operator at z € RY, E(z — %), to a
point disturbance 6, at y € R?. Multiplying by the weight f(y) and integrating (i.e., adding
the responses) gives the solution w = E x f. When boundary conditions are imposed, a point
disturbance at y is not necessarily translation equivalent to a disturbance at § # y. This is also
true of nonconstant coefficient operators. Thus the more general form of the Green’s function
being a function of two variables is required: G(z,y) is the response of the operator at = € Q to
a point disturbance at y € {2, subject also to the boundary conditions.

Given a fundamental solution E that is sufficiently smooth outside the origin, we can con-
struct the Green’s function by solving a related BVP. For almost every y € €2, solve

Lywy(x) =0 for x € O,
Bywy(z) = BoE(x — y) for x € 002,

and then

G(z,y) = E(z —y) — wy(z)
is the Green’s function. Note that indeed £,G(z,y) = do(x — y) is a fundamental solution, and
that this one is special in that B,G(z,y) = 0 on 9f.

It is generally difficult to find an explicit expression for the Green’s function, except in
special cases. However, its existence implies that the inverse operator of (£, B) is an integral
operator, and thus has many important properties, such as compactness. When G can be found
explicitly, it can be a powerful tool both theoretically and computationally.

We now consider the nonhomogeneous BVP (8.40). Suppose that there is ug defined in 2
such that Bug = g on d€). Then, if w = u — uy,

Lw=f— Lug in Q
{szO on 0f2 ,

and this problem has a Green’s function G(x,y). Thus our solution is

u(r) = w(z) + uo(z) = /Q G(z,y)(f(y) — Luo(y)) dy + uo() -

This formula has limited utility, since we cannot easily find wyg.

In some cases, the Green’s function can be used to define a different integral operator involv-
ing an integral on J2 which involves g directly. To illustrate, consider (8.40) with £ = —A + I,
where I is the identity operator. Now L£,G(z,y) = (), so this fact and integration by parts
implies that

uly) = /Q £, y) u(z) da

(8.42)

= / G(z,y) u(zr)dx +/ V.G(z,y) - Vu(z)dr — V.G(z,y) - vu(z)do(x)
Q Q o0

= / G(z,y) Lu(z) dx + G(z,y)Vu(z) -vdo(x) — V.G(x,y) - vu(z)do(z) .
Q oN oN
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If B imposes the Dirichlet BC, so u = up, then since Lu = f and G(x,y) itself satisfies the
homogeneous boundary conditions in x, we have simply

/ G(z,y) f(z)dx — VxG(x,y) -vup(z)do(x) .

This is called the Poisson integral formula. If 1nstead B imposes the Neumann BC, so —Vu-v = g,
then

/ G(z,y) f(x)dx — G(z,y) g(x)do(z) .

o0
Note that when g = 0, we have that

:/G(x,y)f(y)de/G(yvx)f(y)dx
Q Q

Since this formula holds for all f € D, we conclude that G(z,y) = G(y,x), i.e., G is symmetric.
This is due to the fact that £ is self adjoint in 2. When L is not self-adjoint, we would need to
consider the Green’s function for the operator £*, so that

= / LrG(z,y)u(z)de = / G(z,y) Lu(z) dz + boundary terms
Q

/ G(z,y) f(z)dr + boundary terms .

We remark that when a compatibility condition condition is required, it is not always possible
to obtain the Green’s function directly. For example, if £ = —A and we have the nonhomoge-
neous Neumann problem, then [, d,(z)dz =1 # 0 as is required. So, instead we solve

—V.G(x,y) - v=20 on 01 ,

where || is the measure of Q. Then our BVP (8.40) has the extra condition that the average
of w vanishes. Thus, as above,

—/ A G(z,y) u(x) de
Q

— [ VaGlow)- Vu@@)do~ [ 9.Glay) - vule) doo)
Q oN

—/ G(z,y) Au(x) dz + G(z,y)Vu(z) - vdo(zx)
o0

/ G(z,y) f(z)dx — G(:p,y)g(x) do(x) .

8.8. Exercises

1. If A is a positive definite matrix, show that its eigenvalues are positive. Conversely, prove
that if A is symmetric and has positive eigenvalues, then A is positive definite.

2. Suppose that the hypotheses of the Generalized Lax-Milgram Theorem 8.10 are satisfied.
Suppose also that zp1 and zg2 are in X are such that the sets X + z91 = X + x92. Prove
that the solutions u; € X + 01 and uy € X + x¢ 2 of the abstract variational problem (8.18)
agree (i.e., u1 = ug). What does this result say about Dirichlet boundary value problems?
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Suppose that we wish to find v € H?(Q2) solving the nonlinear problem —Au + cu? = f €
Ly (), where Q C R? is a bounded Lipschitz domain. For consistency, we would require
that cu? € Ly(Q). Determine the smallest p such that if ¢ € L,(£2), you can be certain that
this is true, if indeed it is possible. The answer depends on d.

Suppose © C R¢ is a connected Lipschitz domain and V C Q has positive measure. Let
H={uec H(Q): uly =0}.

(a) Why is H a Hilbert space?
(b) Prove the following Poincaré inequality: there is some C' > 0 such that
lull o) < ClIVullpy)  Yu e H .

Suppose that Q ¢ R? is a smooth, bounded, connected domain. Let
H:{ueHQ(Q):/u(m)dszanqu-uzOon@Q} .
Q

Show that H is a Hilbert space, and prove that there exists C' > 0 such that for any v € H,

lulliie) < C Y 1Dl Ly -
|a|=2

Suppose Q € R? is a C1! domain. Consider the biharmonic BVP
Au=f in Q,
Vu-v=g on 0F2 ,
u=up on 0f2 ,
wherein A%y = AAuw is the application of the Laplace operator twice.

(a) Determine appropriate Sobolev spaces within which the functions u, f, g, and up should
lie, and formulate an appropriate variational problem for the BVP. Show that the two prob-
lems are equivalent.

(b) Show that there is a unique solution to the variational problem. [Hint: use the Elliptic
Regularity Theorem to prove coercivity of the bilinear form.]

(¢) What would be the natural BC’s for this partial differential equation?

(d) For simplicity, let up and g vanish and define the energy functional

70 = [ (180@) = 24(e)v(a) da
Prove that minimization of J is equivalent to the variational problem.

Suppose Q C R? is a bounded Lipschitz domain. Consider the Stokes problem for vector u
and scalar p given by
—Au+Vp=f in Q,
V-u=0 in Q,
u=0 on 0f) ,
where the first equation holds for each coordinate (i.e., —Au; + dp/dz; = f; for each

j = 1,...,d). This problem is not a minimization problem; rather, it is a saddle-point
problem, in that we minimize some energy subject to the constraint V - u = 0. However, if
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we work over the constrained space, we can handle this problem by the ideas of this chapter.
Let

H={ve H):V -u=0}.
(a) Verify that H is a Hilbert space.

(b) Determine an appropriate Sobolev space for f, and formulate an appropriate variational
problem for the constrained Stokes problem.

(c) Show that there is a unique solution to the variational problem.

Use the Lax-Milgram Theorem to show that, for f € Lo(R?), there exists a unique solution
u € H'(RY) to the problem

—Aut+u=f in RY .
Be careful to justify integration by parts. [Hint: D is dense in H'(R%).]
Consider the boundary value problem for u(z,y) : R? — R such that
—Upy +€u=f, for (z,y) € (0,1)%,
u(0,y) =0, u(l,y) =cos(y), forye (0,1).

Rewrite this as a variational problem and show that there exists a unique solution. Be sure
to define your function spaces carefully and identify where f must lie.

Let Q € R? be a bounded domain with a Lipschitz boundary, f € Ly(), and o > 0.
Consider the Robin boundary value problem

—Autu=f in Q,

@+au:() on Of) .
ov

(a) For this problem, formulate a variational principle

B(u,v) = (f,v) Vo e HY(Q) .

(b) Show that this problem has a unique weak solution.
Let Q = [0,1]%, define

Hy(Q) = {’U € HL.(RY) : v is periodic of period 1 in each direction and /dew = 0} )

and consider the problem of finding a periodic solution u € Hi% (@) of
—Au=f on,
where f € La(Q).
(a) Define precisely what it means for v € H'(R?) to be periodic of period 1 in each direction.
(b) Show that H#(Q) is a Hilbert space.
(c) Show that there is a unique solution to the partial differential equation.
Consider

B(u,v) = (aVu, Vo)1, ) + (bu, V) 1,0) + (cu, v) 1,(0)

(a) Derive a condition on b to insure that B is coercive on H'(2) when a is uniformly positive
definite and c is uniformly positive.
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13.

14.

15.

16.

17.

18.

8. BOUNDARY VALUE PROBLEMS

(b) Suppose b = 0. If ¢ < 0, is B not coercive? Show that this is true on H'(Q), but that
by restricting how negative ¢ may be, B is still coercive on H} ().

Modify the statement of Theorem 8.14 to allow for nonhomogeneous essential boundary
conditions, and prove the result.

Let Q € R? have a smooth boundary, V,, be the set of polynomials of degree up to n, for
n=1,2,..,and f € Ly(2). Consider the problem: Find u,, € V,, such that

(Vn, Vun) o) + (Un, Vn) L) = (fsvn) o) for all v, € V..

(a) Show that there exists a unique solution for any n, and that
lunll @) < I flla@)-

(b) Show that there is u € H*(Q) such that u, = u weakly in H'(Q). Find a variational
problem satisfied by u. Justify your answer.
(c) Show that [|u — up|| g1 (o) decreases monotonically to 0 as n — oco.
(d) What can you say about u and Vu - v on 907
Consider the finite element method in Section 8.6.
(a) Modify the method to account for nonhomogeneous Neumann conditions.
(b) Modify the method to account for nonhomogeneous Dirichlet conditions.

Compute explicitly the finite element solution to (8.36) using f(z) = z%(1 — x) and n = 4.
How does this approximation compare to the true solution?

Let Hj, be the set of continuous piecewise linear functions defined on the grid z; = jh,
where h = 1/n for some integer n > 0. Let the interpolation operator Z,, : H}(0,1) — Hj,
be defined by

Thv(z;) = v(zy) Vi=1,2,..,n—1.
(a) Show that 7, is well defined, and that it is continuous. [Hint: use the Sobolev Imbedding
Theorem. |
(b) Show that there is a constant C' > 0 independent of h such that

HU - IhUHHl(ij_l,[L'j) g C||UHH2($J'_1,(EJ')
[Hint: change variables so that the domain becomes (0,1), where the result is trivial by
Poincaré’s inequality Corollary 7.18 and Theorem 8.12.]

(c) Show that (8.38) holds.
Consider the problem (8.36).
(a) Find the Green’s function.

(b) Instead impose Neumann BC’s, and find the Green’s function. [Hint: recall that now we
require —(0?/022)G(z,y) = dy(z) — 1.]



CHAPTER 9

Differential Calculus in Banach Spaces
and the Calculus of Variations

In this chapter, we move away from the rigid, albeit very useful confines of linear maps and
consider maps f : U — Y, not necessarily linear, where U is an open set in a Banach space X
and Y is also a Banach space.

As in finite-dimensional calculus, we begin the analysis of such functions by effecting a local
approximation. In one-variable calculus, we are used to writing

f(x) = fxo) + f'(x0)(x — x0) (9.1)

when f : R — R is continuously differentiable, say. This amounts to approximating f by an
affine function, a translation of a linear mapping. This procedure allows the method of linear
functional analysis to be brought to bear upon understanding a nonlinear function f.

9.1. Differentiation

In attempting to generalize the notion of a derivative to more than one dimension, one
realizes immediately that the one-variable calculus formula

Fe) 1 TE TR = @)

h—0 h

(9.2)

cannot be taken over intact. First, the quantity 1/h has no meaning in higher dimensions.
Secondly, whatever f’(x) might be, it is plainly not going to be a number. Instead, just as in
multivariable calculus, it is a precise version of (9.1) that readily generalizes, and not (9.2). We
digress briefly for a definition.

DEFINITION. Suppose X,Y are NLS'sand f: X — Y. If
1f ()l

—— —0 ash—0,
12| x

we say that as h tends to 0, f is “little oh” of h, and we denote this as
1f(M)lly = o(l[hllx) -

DEFINITION. Let f: U — Y where U C X is open and X and Y are normed linear spaces.
Let z € U. We say that f is Fréchet differentiable (or strongly differentiable) at x if there is an
element A € B(X,Y) such that if

R(xz,h) = f(x + h) — f(x) — Ah (9.3)

then
1

T Ry =0 (94)

233
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as h — 0in X, i.e.,
IR, W)y = oAl x) -
When it exists, we call A the Fréchet-derivative of f at x; it is denoted variously by
A=A, = f(x)=Df(x) . (9.5)

Notice that this generalizes the one-dimensional idea of being differentiable. Indeed, if
f € CYR), then

Rla.) = fo+1) = 1) - £ @ = LI pi

and so

Rl | St h) -~ i),
i e A

as h — 0 in R. Note that B(R,R) = R, and thus that the product f’(z)h may be viewed as the
linear mapping that sends h to f’(z)h.
We can also think of D f as a mapping of X x X into Y via the correspondence

(x,h) — f'(x)h .

PROPOSITION 9.1. If f is Fréchet differentiable, then D f(x) is unique and f is continuous
at x. Moreover, if g is Fréchet differentiable and o, 3 € F, then

D(af +pg)(x) = aDf(x) + fDg(x) .
PROOF. Suppose A, B € B(X,Y) are such that
flz+h) = f(x) = Ah = Ra(x, h)

and
where
|Ra@B)lly o o IRs@ )y
Al x Al x

as h — 0 in X. It follows that

1
|A— Bllpx,y)y=~ sup |[[Ah— Bhlly
€ ||nl|lx=e

[Rp(z,h) — Ra(x,h)|ly

= sup

IAl|x == 17l x
R h R h
S sup M + sup M ,
l|h]| x=¢ 1Al x Al x=e Il x

and the right-hand side may be made as small as we like by taking € small enough. Thus A = B.
Continuity of f at x is straightforward since

1f(@+h) = f(@)ly = [IDf(x)h + Rz, h)|ly
< [IDf @) ey lhlly + 1B, h)ly

and the right-hand side tends to 0 as h — 0 in X.
The final result is left as an exercise. O
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In fact, we have much more than mere continuity. The following result is often useful. It
says that when f is differentiable, it is locally Lipschitz.

LEMMA 9.2 (Local-Lipschitz property). If f: U — Y is differentiable at x € U, then given
e >0, there is a 6 = 6(x,e) > 0 such that for all h with ||h||x <0,

1f@+h) = F@)ly < (IDF@) ey + <) IAlx - (9.6)

PRrROOF. Simply write

flx+h)— f(z)=R(z,h) + Df(z)h . (9.7)
Since f is differentiable at z, given ¢ > 0, there is a § > 0 such that ||h||x < ¢ implies
IRG Wl _
1]l x
Then (9.7) implies the advertised results. O

ExAMPLES. 1. If f(x) = Az, where A € B(X,Y), then f(x+h)— f(x) = Ah, so f is Fréchet
differentiable everywhere and

Df(z)=A

for all z € X.
2. Let X = H be a Hilbert-space over R. Let f(z) = (x, Az)g where A € B(H, H). Then,
f+H —Rand

fl@+h) = f(z) = (x,Ah)g + (h, Ax)u + (h, Ah)u
- ((A* + A)z, h) + (h, Ah)g -
H
Hence if we define, for z, h € X,
D h=((A"+ A)x,h
f@h = ((A"+A,h)
then
1f (& +h) = f(x) = Df(@)h]y < [PIX1AlBxy) -
Thus Df(x) € H* = B(H,R) is the Riesz-map associated with the element (A* + A)x.
3. Let f:R™ — R and suppose f € C*(R"), which is to say 0;f exists and is continuous on
R™, 1 <i<n. Then Df(z) € B(R",R) is defined by
Df(x)h=Vf(x)-h.
4. Let f:R"™ — R™ and suppose f € C*(R", R™), which is to say each of the component

functions f = (f1,...,fm) as a R-valued function, having all its first partial derivatives, and
each of these is continuous. Then f is Fréchet differentiable and

Df(x)h = [0;fi(z)|h

where the latter is matrix multiplication and the matrix itself is the usual Jacobian matrix.
That is, Df(z) € B(R™,R™) is an m x n matrix, and the ith component of D f(z)h is

> 0 filx)h; .
j=1
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5. Let ¢ € Ly(R?), where p > 1, p an integer, and define

fo)= [ P @ydo.

Then f : L,(R?) — R, f is Fréchet differentiable and

Df(p)h =p / L (@)h(x) da .

R4
To see this, we use the Binomial Theorem:

fle+m = 1) = [ [(o+hP@) - @] da

= [ @+ pet@n + ()it + 4 1000 - 20| do

:p/Rd o (@) h(z) daz+/Rd [@@p—%) h2(m)+...+hp(x)] dz .

There is a differentiability notion weaker than Fréchet differentiable, but still occasionally
useful. In this conception, we only ask the function f to be differentiable in a specified direction.
Let h € X and consider the Y-valued function of the real variable ¢:

g(t) = f(z +th) .
DEFINITION. Suppose f : X — Y. Then f is Gateauz differentiable (or weakly differentiable)
at x € X in the direction h € X if there is an A € B(X,Y) such that
SIF @+ th) — f(a) — tAR] = 0
as t — 0. The Gateaux-derivative is denoted by
A= Dpf(x) .

Moreover, f is Gateauz differentiable at x if it is Gateaux differentiable at x in every direction
helX.

PROPOSITION 9.3. If f is Fréchet differentiable, then it is Gateaux differentiable.
REMARK. The converse is not valid. The function f : R? — R given by
0 5 if Ty = 0 y
flx) =4 3 .
xy/xe, faxe#0,

is not continuous at the origin. For instance f((t,t3)) — 1 as t — 0, but f(0) = 0. However, f
is Gateaux differentiable at (0,0) in every direction h since

F(th) — £(0)  f(th) {o if hy =0,

t t t(h3/ha) ifha #0 .

The limit as t — 0 exists and is zero, whatever the value of h.

THEOREM 9.4 (Chain Rule). Let X,Y,Z be NLS’s andU C X open, V C Y open, f:U —Y
and g :V — Z. Let x € U and y = f(x) € V. Suppose g is Fréchet differentiable at y and
f is Gateaux- (respectively, Fréchet-) differentiable at x. Then g o f is Gateaux- (respectively,
Fréchet-) differentiable at x and

D(go f)(x) = Dg(y) o Df(x) .
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X F(z+h) Y Z
f y\é f(z) 9.
%Q«erh //9(f($+h))
z=g(f(z))

FIGURE 1. The Chain Rule.

PROOF. The proof is given for the case where both maps are Fréchet differentiable. The
proof for the Gateaux case is similar. Write

Ry(x,h) = f(z +h) = f(x) = Df(x)h

and

Ry(y, k) = g(y + k) — g(y) — Dg(y)k .

By assumption,

By h) v o oo n X0 (9.8)
172
and
Ryly, k) 20 as k50, (9.9)
%]
Define
u=u(h)=f(x+h)— flx)=f(r+h)—y. (9.10)

By continuity, u(h) — 0 as h — 0. Now consider the difference

9(f(x+h)) —g(f(x)) = g(f(x +h)) - g(y)
= Dg(y)[f (@ + h) = y] + Bye(y, u)
= Dg()[Df(2)h + Ry (z, h)] + Ry(y, u)
= Dy(y)Df(x)h + R(z,h) ,
where
R(z,h) = Dg(y)Ry(z, h) + Ry(y,u) .
We must show that R(x,h) = o(]|h||x) as h — 0. Notice that
IDg(y) Ry (z, bl IRy, B)lly

< [[Dg(y)llB(v,2) —0 as h—0

17| x 1]l
because of (9.8). The second term is slightly more interesting. We are trying to show
[[h]lx

as h — 0. This does not follow immediately from (9.9). However, the local-Lipschitz property
comes to our rescue.
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If w =0, then Ry(y,u) = 0. If not, then multiply and divide by ||u|ly to reach

IRy (y, w)llz _ [ Rg(y, ) Nlully (9.12)

172/l x lully — llAllx
Let € > 0 be given and suppose without loss of generality that ¢ < 1. There is a ¢ > 0 such
that if ||k|ly < o, then

k
IRy W)z 019
I[E[ly
On the other hand, because of (9.6), there is a § > 0 such that ||h]x < § implies
lut)lly = 1I£ (e +h) = f@)ly < (IDF@sxy) +1)Ibllx <o (9.14)

(simply choose d so that 6(||Df(z)||px,y)y + 1) < o in addition to it satisfying the smallness
requirement in Lemma 9.2). With this choice of ¢, if ||h]|x < d, then (9.12) implies

Ry(y,
I < (1010 +1) -

The result follows. g

PROPOSITION 9.5 (Mean-Value Theorem for Curves). Let Y be a NLS and ¢ : [a,b] — Y be
continuous, where a < b are real numbers. Suppose ¢'(t) exists on (a,b) and that ||’ (t)|| pm,y) <
M. Then

le(b) = wla)lly < M(b—a) . (9.15)

REMARK. Every bounded linear operator from R to Y is given by ¢ — ty for some fixed
y € Y. Hence we may identify ¢'(¢) with this element y. Notice in this case that y can be
obtained by the elementary limit

PRrROOF. Fix an ¢ > 0 and suppose € < 1. For any ¢ € (a,b), there is a §; = (¢, ) such that
if |[s — t| < 0, s € (a,b), then

lo(s) — @(t)|ly < (M +e)ls — (9.16)
by the Local-Lipschitz Lemma 9.2. Let
S(t) = Bs, () N (a,) |

which is open. Then if a < @ < b < b,

Hence by compactness, there is a finite sub-cover, of, say, N intervals, S(a), S(t2), S(t4),...,S(b),
where

d:t0<t2<'-'<t2]\[:l~7,

such that also S(togi2) N S(tar) # O for all k. Choose points togr1 € S(tokr2) N S(tax), enrich
the partition to

d:t0<t1<t2<"'<t2]\7:l~),
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and note that

o) — e(te)lly < (M 4 €)|tpr1 — til
for all k. Hence

2N
le®) =@y <> llets) = eltr-1)lly
k=1

2N
<S(M+e)y (th—th1) = (M+e)(b—a) .
k=1

By continuity, we may take the limit on b— band @ — a, and the same inequality holds. Since
e > 0 was arbitrary, (9.15) follows. O

REMARK. The Mean-Value Theorem for curves can be used to give reasonable conditions
under which Gateaux differentiability implies Fréchet differentiability. Here is another corollary
of this result.

THEOREM 9.6 (Mean-Value Theorem). Let X,Y be NLS’s and U C X open. Let f :U —Y
be Fréchet differentiable everywhere in U and suppose the line segment

Ez{tx2+(1—t)x1:0§t§1}
1s contained in U. Then

1f (z2) = flz1)lly < S%lz||Df(if)||B(x,y)H1172 —zflx - (9-17)

PROOF. Define ¢ : [0,1] — Y by
o(t) = f((1 = t)z1 + tag) = fa1 + t(xz — 21)) = f(4(1))
where 7 : [0,1] — X. Certainly ¢ is differentiable on [0, 1] by the chain rule. By Proposition 9.5,

I£(z2) = F@n)lly = o) = 2(0)lly < sup l¢E)]y

but, the chain rule insures that
¢'(t) = Df((t)) o' (t) = Df(y(t))(z2 — 21) ,

SO
le" Oy < IDF(vE)l By llee — z1llx

< sup [|Df(z) px,v)ll72 — 21]lx - O
zel
One can generalize the discussion immediately to partial Fréchet differentiability. Suppose
X1,..., X, are NLS’s over F and Y another NLS. Let
X = Xl PP Xm

be a direct sum of the X;’s. Thus, as a point set, X = X7 X --- x X,,, is the Cartesian product,
and the vector-space operations are carried out componentwise. Let the norm be any of the
equivalent functions

m 1/p
lellx = (i) = Nlaallase+ lemll, (9.18)
j=1



240 9. DIFFERENTIAL CALCULUS IN BANACH SPACES AND THE CALCULUS OF VARIATIONS

where p € [1, 0] (modified in the usual way if p = c0) and = (x1, ... , %y, ), which makes X into
a NLS. It is a Banach space if and only if X; is a Banach space, 1 < i < m. Conversely, given
a Banach space X, we could decompose it into a direct sum of subspaces Y = X1 ® --- & X,,,,
with norms || - || x, = || - [|x, so that X and Y would be equivalent Banach spaces.

DEFINITION. Let X = X1 ®--- & X,,, as above. Let U C X beopenand FF: U —- Y, Y a

NLS. Let z = (z1,... ,2y) € U and fix an integer k € [1,m]. For z near zj in X}, the point
(L1, ,Tk—1,2,Thkt1,s--- ,Tm) lies in U, since U is open. Define
fe(2) = P, @1, 50 k1s - Tm) -

Then fr maps an open subset of X into Y. If f; has a Fréchet derivative at z = xj, then we
say F' has a kth-partial derivative at x and define

Notice that D F(z) € B(Xg,Y).
PROPOSITION 9.7. Let X = X1 & --- & X, be the direct sum of NLS’s, U C X open, and
F :U —Y, another NLS. Suppose DjF(x) exists for x € U and 1 < j < m, and that these

linear maps are continuous as a function of x at xo € U. Then F' is Fréchet differentiable at xg

and for h = (hy,... ,hy) € X,

m
DF(xo)h =Y _ D;F(zo)h; . (9.19)
j=1
PROOF. The right-hand side of (9.19) defines a bounded linear map on X. Indeed, it may
be written as

m
Ah = Z D]F(xo) (e} H]h
j=1
where II; : X — X, is the projection on the jth-component. So A is a sum of compositions of
bounded operators and so is itself a bounded operator. Define

R(h) :F(l‘o—i—h)—F(IL‘o)—Ah.

It suffices to show that R : X — Y is such that
R(h)

Al x

as h — 0. Let ¢ > 0 be given. Because F' is partially Fréchet differentiable and A is linear, it
follows immediately from the chain rule that R is partially Fréchet differentiable in h and

DJR(h) = DjF(x() +h) — DjF(a}()) .

— 0

Since the partial Fréchet-derivatives are continuous as a function of = at x( it follows there is a
§ > 0 such that if |h°||x < J, then

ID;R(E°) || px, ) <€ for 1<j<m. (9.20)
On the other hand,
IR(WO)|ly < IR(R?) — R(0,h3, ... ,hp)lly + [ R(0, kS, ..., h9,) — R(0,0, A, ..., h9,)|ly

0 (9.21)
+ -+ ||R(0,...,0,h,,) — RO,...,0)]y .
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Thus, if ||h]|x < d, then by the Mean-Value Theorem applied to the mappings
Rj(hj) = R(0,...,0,h;,h%,1,... ,h)) ,
it is determined on the basis of (9.20) that

1R (h;) — R;(0)|ly < tSl[épl] IDR;(thj)| B(x; v)IPjllx;
€10,

= S 1D RO, 0,thy Ay, B s, il x,
€|0,

<elhjllx; , for 1<j<m.

Choosing in (9.18) the ¢;-norm on X, it follows from (9.21) and the last inequalities that for
1Rl <6,

m
IRy < e lIhjllx, =ellhlx -

J=1

(If another £,-norm is used in (9.18), we merely get a fixed constant multiple of the right-hand
side above.) The result follows. g

9.2. Fixed Points and Contractive Maps

DEFINITION. Let (X, d) be a metric space and G : X — X. The mapping G is a contraction
if there is a 8 with 0 < 6 < 1 such that

d(G(x),G(y)) < 0d(xz,y) forall z,y e X .
A fized point of the mapping G is an x € X such that z = G(z).

A contraction map is a Lipschitz map with Lipschitz constant less than 1. Such maps are
also continuous.

THEOREM 9.8 (Banach Contraction-Mapping Principle). Let (X,d) be a complete metric
space and G a contraction mapping of X. Then there is a unique fized point of G in X.

PROOF. If there were two fixed points x and y, then
d(z,y) = d(G(z),G(y)) < 0d(z,y) ,

and since d(z,y) > 0 and 0 < 6 < 1, it follows that d(z,y) = 0, whence = = y.

For existence of a fixed point, argue as follows. Fix an zp € X and let z; = G(x¢), z2 = G(x1)
and so on. We claim the sequence {z,}>2 of iterates is a Cauchy sequence.

If this {z,},2, is Cauchy, then since (X,d) is complete, there is an Z such that z,, — Z.
But then G(z,) — G(Z) by continuity. Since G(z,) = xn41, it follows that G(z) = .

To see {z,}72 is a Cauchy sequence, first notice that

d(z1,x2) = d(G(x0), G(x1)) < 0d(zo,x1) .
Continuing in this manner,
d(xn, Tpt1) = d(G(xp—1), G(xy)) < 0d(zp_1,xs)
forn=1,2,3,.... In consequence, we derive by induction that

d(xp, Tpt1) < 0"d(zo,x1) , for n=0,1,2,... .
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Thus, if n > 0 is fixed and m > n, then
d(xn, Tm) < d(Tp, Tpt1) + A(Tpg1, Tps2) + -+ d(Tm—1, Tm)
< (0" + -+ 0™ d(z0, 1)
=0"(1+ -+ 0™ " Yd(zg,21)

J1—gmn

=0 T d(xo, 1)
en
< .
< T —g%xo, 1)
As 0 < 1, the right-hand side of the last inequality can be made as small as desired, independently
of m, by taking n large enough. ([l

Not only does this result provide existence and uniqueness, but the proof is constructive.
Indeed, the proof consists of generating a sequence of approximations to x = G(x).

COROLLARY 9.9 (Fixed Point Iteration). Suppose that (X,d) be a complete metric space, G
a contraction mapping of X with contraction constant 6, and o € X. If the sequence {x,}72
is defined successively by xn11 = G(xy,) forn =0,1,2,..., then x, — =, where x is the unique
fized point of G in X. Moreover,

n
1-90
EXAMPLE. Consider the initial value prooblem (IVP)

d(xnv ‘T) S

d(x(), xl) .

ug = cos(u(t)) , t>0,

u(0) = ug -
We would like to obtain a solution to the problem, at least up to some final time T" > 0, using
the fixed point theorem. At the outset we require two things: a complete metric space within
which to seek a solution, and a map on that space for which a fixed point is the solution to our

problem. It is not easy to handle the differential operator directly in this context, so we remove
it through integration:

u(t) = ug —i—/o cos(u(s)) ds .

Now it is natural to seek a continuous function as a solution, say in X = C°([0,7]), for some as
yet unknown 7" > 0. It is also natural to consider the function

t
G(u) = ug +/ cos(u(s))ds
0
which clearly takes X to X and has a fixed point at the solution to our IVP. To see if G is
contractive, consider two functions v and v in X and compute

|G(u) — G()||L., = sup /0 (cos(u(s)) — cos(v(s))) ds

0<t<T

= sup

e / (— sin(w(s))(u(s) — v(s)) ds

S THU’ - U”Loo )
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wherein we have used the ordinary mean value theorem for functions of a real variable. So, if
we take T = 1/2, we have a unique solution by the Banach Contraction Mapping Theorem.
Since T is a fixed number independent of the solution u, we can iterate this process, starting at
t = 1/2 (with “initial condition” u(1/2)) to extend the solution uniquely to ¢ = 1, and so on, to
obtain a solution for all time.

EXAMPLE. Let € Li(R), ¢ € C(R) and consider the nonlinear operator

Dy, // k(x —y)(uly, s) +u*(y,s)) dyds .

We claim that there exists T = T'(||¢||co) > 0 such that ® has a fixed point in the space
X =Cp([R x[0,T]).

Since & is in L; (R), ®u makes sense. If u € Cp(R), then it is an easy exercise to see du € X.
Indeed, ®u is C' in the temporal variable and continuous in = by the Dominated Convergence
Theorem. That is, ® : X — X; however, ® is not contractive on all of X.

Let R > 0 and Bpg the closed ball of radius R about 0 in X. We want to show if R and T
are chosen well, ® : Bp — Bp is a contraction. Let u,v € Br and consider

|Pu — Pv||x =  sup ‘ / / k(z —y)(u—v+u* —v?)dyds
(z,t)€ERx%[0,T)]

<T sup / lk(x —y)(u— v+ u? —v?)|dy
(z,t)ERX[0,T] J—o0

< Tz, (Jlu = vllx + u? = v2)lx)

< Tl (1 + lullx + lollx )l = vllx

STl (1 +2R)[|u —vx -
Let
0=T((1+2R)|k|L, »

choose R = 2||¢|| L., and then choose T so that § = 1/2. With these choices, ® is contractive on
Bpg and if u € Bpg, then indeed

[Pullx < [|Pu— @0|[x + [|PO]|x
< Oflu = 0llx + llell Lo
1 1

<-R+-R=R.

-2 + 2
That is, ® : Bp — Bpg, ® is contractive, and Bpg, being closed, is a complete metric space. We
conclude that there exists a unique u € Bgr such that

u= dPu .
Why do we care? Consider

ou Ou 5 ou Pu

En + or + u% T 00t 0, (9.22)
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a nonlinear, dispersive wave equation. Write it as
(1—0Hu = —up — 2uu, = f .

The left-hand side is a nice operator, at least from the point of view of the Fourier Transform,
as we will see in a moment, while the terms defining f are more troublesome. Take the Fourier
transform on x to reach
(1 + 52)@4 = f 3 i°e‘a ’lALt = ;f )
14 &2

whence, by taking the inverse Fourier transform, it is formally deduced that
up = Rk f = —f* (ug + 2uug) = —F * (u+u?),

where

Rlz) =V2rF~ L —1(27‘3’3|
()—ﬁfl<1+§2>_2 |

Let Kk = —Fg € Li1(R) to conclude
ug(z,t) = K * (u+u?) .
Now integrate over [0,t] and use the Fundamental Theorem of Calculus with constant of inte-

gration u(z,0) = ¢(x) € Cp(R) to reach

) = o)+ [ ws ety

which has the form with which we started the example. Thus our fixed point ®u = u is formally
a solution to (9.22), at least up to the time 7', with the initial condition u(z,0) = ¢(z).

COROLLARY 9.10. Let X be a Banach space and f : X — X a differentiable mapping.
Suppose |Df(z)||px,x) < k <1 for x € Bg(0). If there is an xo € Br(0) such that B.(xg) C
Br(0) for some r > || f(zo) — xol||/(1 — k), then f has a unique fized point in By(zo).

That is, a map f which is locally contractive and for which we can find a point not moved
too far by f has a fixed point, and the iteration

ro, 21 = f(w0), w2 = f(x1),---,

generates a sequence that converges to a fixed point.

PROOF. In fact, we show that f is a contraction mapping of B,(zp). First, by the Mean-
Value Theorem, for any x,y € Bgr(0),

1f (@) = fW)ll < wllz =yl -
Hence f is contractive. The Contraction-Mapping Theorem will apply as soon as we know that
f maps B, (x¢) into itself, since B,(x¢) is a complete metric space. By the triangle inequality, if
x € Br(xp),

1 (@) = woll < [[f(x) = f(zo)ll + IIf (o) — ol
<kllz—axol| + (1 —r)r <r. O
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9.3. Nonlinear Equations

Developed here are some helpful techniques for understanding when a nonlinear equation has
a solution. The basic tool is to convert the equation into a fixed point problem. For example,
when X, Y are Banach spaces and f : X — Y, the problem of finding x for fixed y in

f@) =y
is equivalent to finding a fixed point of
G(z) =2 —Tu(f(z) —y)
where T}, : Y — X vanishes only at 0. If T, = T is independent of x, we have that
DG(z)=1—-ToDf(x),
so G is a contraction provided T' can be chosen to make |[I —T o Df(x)| < 1.

THEOREM 9.11 (Simplified Newton Method). Let X,Y be Banach spaces and f : X — Y a
differentiable mapping. Suppose A = D f(x¢) has a bounded inverse and that

Il - A"'Df(z)| <r<1 (9.23)
for all x € B, (xg), for some r > 0. Let
5— (1—r)r ‘
||A71||B(Y,X)
Then the equation
flz)=y

has a unique solution x € B,(xo) whenever y € Bs(f(xo)).
PROOF. Let y € Bs(f(xo)) be given and define a mapping g, : X — X by
gy(2) =2~ AT (f(z) —y) . (9.24)
Notice that g,(z) = z if and only if f(z) = y. Note also that
Dgy(z) =1—-A"'Df(z),

by the chain rule. By assumption, ||Dgy,(z)||px,x) < & < 1 for x € B.(0), so gy is a contraction

on B, (zg) by continuity. Moreover, by the choice of y and §, for x € B, (x¢),

gy () — zollx < lgy(x) — gy(zo)llx + [lgy(x0) — 2ol x
§r+||A_1(f($0)—y)||X <r+(1—-r)r=r.

The hypotheses of Theorem 9.8 are verified, i.e., g, is a contractive map of B,(z¢), and the
conclusion follows. O

REMARK. If Df(z) is continuous as a function of x, then Hypothesis (9.23) is true for
r small enough. Thus another conclusion is that at any point = where D f(x) is boundedly
invertible, there is an » > 0 and a § > 0 such that f(B,(z)) D Bs(f(z)) and f is one-to-one on

By (x) N f~H(Bs(f(@))).
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Notice the algorithm that is implied by the proof. Given y, start with a guess zy and form
the sequence

Tn4+1 = gy(xn) =Tn — Ail(f(xn) - y) .

If things are as in the theorem, the sequence converges to the solution of f(z) =y in B,(xz¢).
Notice that if = is the solution, then
[2n = xllx = [lgy(zn-1) — gy ()]l x
< wllzn-a —2lx
<...
< K"||lxo — z||x -

More can be shown. We leave the rather lengthy proof of the following result to the reader.

THEOREM 9.12 (Newton-Kantorovich Method). Let X,Y be Banach spaces and f: X —Y
a differentiable mapping. Assume that there is an xg € X and an r > 0 such that
(i) A= Df(xo) has a bounded inverse, and
(i) [[Df(z1) = Df(x2)llBx,y) < mllzn — a2
for all x1,x9 € B.(xg). Let y € Y and set

e= A" (f(z0) = y)llx -
For any y such that

e< - and 45/@HA*1HB(Y,X) <1,

N3

the equation

y=f(x)
has a unique solution in By.(xy). Moreover, the solution is obtained as the limit of the Newton-
iterates

Tha1 = o — D f(ze) " (f(zn) — v)

starting at xo. The convergence is asymptotically quadratic; that is,

zrt1 — znllx < Cllae — |

for k large, where C' does not depend on k.

THEOREM 9.13 (Inverse Function Theorem I). Suppose the hypotheses of the Simplified New-
ton Method hold. Then the inverse mapping f~' : Bs(f(x0)) — By (o) is Lipschitz.

PROOF. Let y1,y2 € Bs(f(xo)) and let x1, 22 be the unique points in B,(zg) such that
f(zi) = y;, for i = 1,2. Fix ay € Bs(f(z0)), y = yo = f(zo) for example, and reconsider the
mapping g, defined in (9.24). As shown, g, is a contraction mapping of B, (z) into itself with
Lipschitz constant £ < 1. Then

17 o) = w)llx = llon — 22lx

= llgy(z1) — gy(x2) + A7 (f(22) — f(=1))lIx
< kllrr — 22 x + ||A_1||B(Y,X)||y2 —uilly -

It follows that

At | Bv,x)

lz1 = 22|l £ ——— ly1 — |
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and hence that f~! is Lipschitz with constant at most [|A™!|| gy, x)/(1 — k). O

Earlier, we agreed that two Banach spaces X and Y are isomorphic if thereisa 7' € B(X,Y)
which is one-to-one and onto (and hence with bounded inverse by the Open Mapping Theorem).
Isomorphic Banach spaces are indistinguishable as Banach spaces. A local version of this idea
is now introduced.

DEFINITION. Let X,Y be Banach spaces and U C X, V C Y open sets. Let f : U — V
be one-to-one and onto. Then f is called a diffeomorphism on U and U is diffeomorphic to V
if both f and f~! are O, which is to say f and f~! are Fréchet differentiable throughout U
and V', respectively, and their derivatives are continuous on U and V, respectively. That is, the
maps

z— Df(x) and y+—— Df™'(y)
are continuous from U to B(X,Y) and V to B(Y, X), respectively.

Note that a diffeomorphism is stronger than a homeomorphism.

THEOREM 9.14 (Inverse Function Theorem II). Let X,Y be Banach spaces. Let xo € X be
such that f is C! in a neighborhood of xo and Df(xo) is an isomorphism. Then there is an
open set U C X with xo € U and an open set V. C Y with f(xo) € V such that f : U —V is a
diffeomorphism. Moreover, fory eV, x €U, y = f(x),

D(f ™)) = (Df) ™" .

Before presenting the proof, we derive an interesting lemma. Let GL(X,Y) denote the set
of all isomorphisms of X onto Y. Of course, GL(X,Y) C B(X,Y).

LEMMA 9.15. Let X andY be Banach spaces. Then GL(X,Y) is an open subset of B(X,Y').
If GL(X,Y) # 0, then the mapping Jxy : GL(X,Y) — GL(Y, X) given by Jxy(A) = A~! is

one-to-one, onto, and continuous.

PrROOF. If GL(X,Y) = (), there is nothing to prove. Clearly Jy xJxy = I and JxyJy x =
I, so Jx y is both one-to-one and onto (but certainly not linear!). Let A € GL(X,Y) and H €
B(X,Y). We claim that if [|H||g(x,y) < 0/||A~"||pv,x) where § < 1, then A+ H € GL(X,Y)
also. To prove this, one need only show A + H is one-to-one and onto.

We know that for any |z| < 1,

so consider the operators
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in B(Y, X). The sequence {Sn}3_; is Cauchy in B(Y, X) since, for M > N,
M

1S = SnllBr.x) < A B x) Z I(HA=H"|
n=N+1

M

< [ A7 pvx) Z (||HHB(X,Y)HA_lH)%(Y,X) (9.25)
n=N+1

M

< A sevix) Z 6" — 0
n=N+1

as N — +o0. Hence Sy — S in B(Y, X). Notice that
(A—l—H)S:A}im (A+ H)SN

N N

— ]\}im Z(_HAfl)n - Z(_HAfl)nJrl
e n=0 n=0
= Jim [ — (—HA YN+

But as |[HA7'| <0 <1, (HA™H)Y — 0in B(Y,Y). It is concluded that (A + H)S = I, and a
similar calculation shows S(A+ H) = I. Thus A+ H is one-to-one and onto, hence in GL(X,Y).
For use in a moment, notice that ||S| gy, x) < |47 | pv,x)/(1 — 0), by an argument similar to
(9.25).

For continuity, it suffices to take A € GL(X,Y) and show that (A+H)™! — A~ in B(Y, X)
as H — 0in B(X,Y). But, as S = (A+ H)~!, this amounts to showing S —A~! — 0 as H — 0.
Now,

S—A'=(SA-NAT'=(S(A+H)-SH-T)A"' = -SHA™ .
Hence
.S — A_IHB(KX) < ||SHB(Y,X)||H||B(X,Y)||A_1||B(Y,X) —0

as H — 0 since ||A™Y| gy, x) is fixed and [|S|| pyv,x) < [A7 | pv,x)/ (1 — 0) is bounded indepen-
dently of H. O

PROOF OF THE INVERSE FUNCTION THEOREM II. Let A = Df(x). Since f is a C!-
mapping, Df(z) — Ain B(X,Y) as x — ¢ in X, so there is an r’ > 0 such that
_ 1
11 = AT Df ()| px.x) < 3

for all z € By (zo).

Because of Lemma 9.15, there is an 7’ with 0 < 7”7 < ¢/ such that Df(x) has a bounded
inverse for all x € By (zg). It is further adduced that Df(z)™ — A7 as 2 — xp. In
consequence, for 0 < r < 7", and for x € B,(z9),

IDf(z) M) < 20147 I Byx) -
Appealing now to the Simplified Newton Method, it is concluded that there is an r > 0 and a

0 > 0 such that f: U — V is one-to-one, and onto, where

V = Bs(f(zo)) with 6 =

r

QHA_lHB(Y,X)
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and
U =B, (zo)NfHYV).

It remains to establish that f~! is a C'' mapping with the indicated derivative. Suppose it
is known that

Df Ny)=Df(x)"", when y= f(z), (9.26)

where x € U and y € V. In this case, the mapping from y to D f~!(y) is obtained in three steps,
namely

yr— [ y) — Df(f () — DF(f'(y) ' =Df (),
y L5 x 2L pix,v) L By, X) .

As all three of these components is continuous, so is the composite.
Thus it is only necessary to establish (9.26). To this end, fix y € V and let k& be small enough
that y + k also lies in V. If z = f~'(y) and h = f~'(y + k) — z, then

IF 7y + k) = f7H () = Df (@) kllx = [Ih — Df ()" [f (@ + h) = f(2)]]lx
= [Df(2)"'[f(@+h) = fz) = Df(x)h]]x (9.27)

< 2| A7 sy I f(x +h) = f() = Df(@)hlly -

The right-hand side of (9.27) tends to 0 as h — 0 in X since f is differentiable at . Hence if
we show that h — 0 as k — 0, it follows that f~! is differentiable at y = f(z) and that

Df ' y) = Df(x)~" .
The theorem is thereby established because of our earlier remarks. But,
Ihllx = 152y + k) — £ @)llx < Mkl .
since f~! is Lipschitz (see Theorem 9.13). O
THEOREM 9.16 (Implicit Function Theorem). Let X,Y, Z be Banach spaces and suppose
f:ZxX->Y

to be a C'-mapping defined at least in a neighborhood of a point (29, o). Denote by yo the image
f(z0,0). Suppose Dy f(z0,20) € GL(X,Y). Then there are open sets

WcZz, UcCcX, Vcy
with z0 € W, xg € U and yo € V and a unique mapping
g:WxV ->U
such that
f(z,9(z,9) =y (9.28)

for all (z,y) € W x V.. Moreover, g is C* and, with x = g(z,y),
Dy(z,9)(n,¢) = D f(z,2) " (¢ = D2 f(z,2)n)
for (z,y) e W xV and (n,{) € ZxY.

REMARK. If Z = {0} is the trivial Banach space, this result recovers the Inverse Function
Theorem.
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Vx W \
W UxW

FIGURE 2. The Implicit Function Theorem.

PROOF. Define an auxiliary mapping f by

A~

f(z2) = (2, f(2,2)) -

Then f 4 x X —ZxY and f is C'' since both its components are. Moreover, from Proposi-
tion 9.7 it is adduced that

Df(z,2)(n, @) = (n, D=f(z,2)n+ Daf(z,2)p)
for (z,x) in the domain of f and (n,¢) € Zx X. If D, f(z, ) is an invertible element of B(X,Y),
then Df is an invertible element of B(Z x X, Z x Y') and its inverse is given by
Df(z,2)"'(n,¢) = (n, Duf(z,2) " (( = D.f(z,2)n) ,

as one checks immediately. The Inverse Function Theorem implies f is a diffeomorphism from
some open set U about (z0,0) to an open set V containing (20,Y0). By continuity of the
projections onto components in Z x Y, there are open sets W and V in Z and Y, respectively,
such that W x V C V. By construction

F =) = (2,9(29)
where ¢ is a C'-mapping. And, since
(z.9) = F(F 1 (z0) = F(z.9(20) = (2, f (. 9(2,0))) ,
g solves the equation (9.28). O

COROLLARY 9.17. Let f be as in Theorem 9.16. Then there is a unique C'-branch of
solutions of the equation

f(Z> SL’) =%
defined in a neighborhood of (29, xg).
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PROOF. Let h(z) = g(z,90) in the Implicit Function Theorem. Then h is C', h(zy) = w0,
and

f(z,h(z)) = yo
for z near zj. O

ExAMPLE. The eigenvalues of an n X n matrix are given as the roots of the characteristic
polynomial

p(A,\) =det(A —AI) .

In fact, p is a polynomial in A and all entries of A, so it is C' as a function p : C"*" x C — C.
Fix Ap and A\ such that \g is a simple (i.e., nonrepeated) root of Ay. Then Daop(Ag, Ag) # 0
(i.e., Dap(Ap, Ao) € GL(C,C)), so every matrix A near Ay has a unique eigenvalue

A=9(4A,0) =g(A),

where § is C'. As we change A continuously from Ay, the eigenvalue \g changes continuously
until possibly it becomes a repeated eigenvalue, at which point a bifurcation may occur. A
bifurcation cannot occur otherwise.

ExaMpPLE. Consider the ordinary differential initial value problem
W=1l-ute", 0<t,
u(0) =0
If € = 0, this is a well posed linear problem with solution
up(t) =1—e*

which exists for all time ¢. It is natural to consider if there is a solution for € > 0. Note that if
€ is very large, then we have essentially the equation

/
w' = ee”

which has solution
w(t) = —log(l —et) o0 ast — 1/e.

Thus we do not have a solution w for all time. The Implicit Function Theorem clarifies the
situation. Our parameter space is Z = R, and our function space is X = {f € Cj(0,00) :
f(0) =0}. We have a mapping T: Z x X — Y = C%(0,00) defined by

T(e,u)=u —1+u— e,
which is C'; in fact, the partial derivatives are
DzT(e,u)(z,v) = —ze" and DxT(e,u)(z,v) =v + v — eve™ .

Now DxT(0,u)(z,v) = v’ + v maps one-to-one and onto, since we can uniquely solve v’ +v = f
by using an integrating factor. Thus the Implicit Function Theorem gives us an ¢y > such that
for |e| < €p, there exists a solution defined for all time. Moreover, there is a unique solution in
a neighborhood of ug in X.
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9.4. Higher Derivatives

Here, consideration is given to higher-order Fréchet derivatives. The development starts
with some helpful preliminaries.

DEFINITION. Let X,Y be vector spaces over F. A n-linear map is a function
f: Xx-- - xX—Y
—_—
n-components
for which f is linear in each argument separately. The set of all n-linear maps from X to Y is
denoted B"(X,Y). By convention, we take B%(X,Y) =Y.
ProOPOSITION 9.18. Let X,Y be NLS’s and let n € N. The following are equivalent for
feB"(X,)Y).
(i) f is continuous,
(ii) f is continuous at 0,
(iii) f is bounded, which is to say there is a constant M such that
(1, an)lly < Mllaaflx - fleallx -
We denote by B™(X,Y") the subspace of B"(X,Y) of all bounded n-linear maps, and we let
B%(X,Y) =Y. Moreover, B(X,Y) = B(X,Y).
PROPOSITION 9.19. Let X,Y be NLS’s and n € N. For f € B"(X,Y), define

IfllBrxyy = sup [1f (21, an)lly
z,€X:
[z [ <1
1<i<n
Then || - || gn(x,y) is @ norm on B"(X,Y) and if Y is complete, so is B"(X,Y).
PROPOSITION 9.20. Let k, £ be non-negative integers and X,Y NLS’s. Then B*¥(X, BY(X,Y))
is isomorphic to B*T(X,Y) and the norms are the same.

PROOF. Let n =k + ¢ and define J : B¥(X, BY(X,Y)) — B"(X,Y) by
(JH)(z1,. - yzn) = f(x1, .o, 20) (@kt1, .-, Tn) -
This makes sense because f(z1,...,zx) € BYX,Y). Clearly Jf € B*(X,Y), and
[T llBnxyy = sup [[Jf (@1, an)lly

||| <1
1<i<n

= sup ||f(3717--~733k)”B€(X,Y)
[zilI<1
1<i<k

= | fllBrx,Be(xY)) 5
soJf € B"(X,Y) is norm preserving and one-to-one. For g € B"(X,Y), define § € B*(X, B(X,Y))
by
g1, k) (X, ooy Tn) = g(T1, .00y Tp)
A straightforward calculation shows that
191l B (x,Be(x,v)) < N9llBrxyy

so § € B¥(X,BYX,Y)) and J§ = g. Thus J is a one-to-one, onto, bounded linear map, so it
also has a bounded inverse and is in fact an isomorphism. O
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DEFINITION. Let X,Y be Banach spaces and f: X — Y. For n = 2,3,..., define f to be
n-times Fréchet differentiable in a neighborhood of a point x if f is (n — 1)-times differentiable
in a neighborhood of  and the mapping z +— D"~! f(x) is Fréchet differentiable near x. Define

D"f(x) = DD" ' f(x) , n=23....

Notice that
fX->Y,
Df:X — B(X,Y),
D?’f=D(Df): X — B(X,B(X,Y)) = B¥X,Y),

D"f=DD"'f): X - B(X,B" '(X,Y)) = B"(X,Y) .
We remark that, for n =2 and f: X — Y, we must find D?f(z) € B%(X,Y) such that
IDf(z +h) = Df(x) = D f(2)(h) | x.yy = olIP]lx) -
This is equivalent to showing
IDf (2 + h)k = Df(x)k — D*f(x)(h, k)lly = o(||h|lx) %]l x -
A similar remark holds for higher derivatives.
ExampLEs. 1. If A € B(X,Y), then DA(x) = A for all z. Hence
D?A(z) =0 for all z .
This is because
DA(z+h) — DA(z) =

for all «.
2. Let X = H be a Hilbert space, F =R, and A € B(H, H). Define f: H — R by

f((L') = (x7Ax)H

Then, Df(x) = R((A+A*)z), where R denotes the Riesz map. That is, Df(z) € B(H,R) = H*,
and for y € H,

Df(x)(y) = (y, A"z + Az)n
To compute the second derivative, form the difference
[Df(x+h) = Df(x)ly = (y,(A+ A")(x + h) = (A+ A)z) = (y, (A + A)h) ,
for y € H. Thus it is determined that
D*f(z)(y. h) = (y,(A+ A")h) .

Note that D2 f(z) does not depend on x, so D3 f(x) = 0.
3. Let K € Loo({ x I) where I = [a,b] C R. Define F': L,(I) — L,(I) by

/ny

for p e N and z € I. Then, DF(g) € B(L,(I), Ly(I)) and

F(g)hZP/IK(m,y)gp‘l(y)h(y) dy ,
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since the Binomial Theorem gives the expansion

F(g+h)—F(g9) = /IK(w,y)[(ng h)P — g*1dy

= /IK(fv,y) [pgpl(y)h(y) + (g)g“(y)hQ(y) +--o | dy,

wherein all but the first term is higher-order in h. Thus it follows readily that

DF(g+ h)u — DF(g)u = p/IK(;U, y) [(g+ h)P~tu — gp_lu] dy

=p(p-1) /K(:L‘,y) (9" 2hu] dy + terms cubic in h,u .
I
It follows formally, and can be verified under strict hypotheses, that
D)) = plp = 1) [ K(ay)g 2@ hwk) dy

LEMMA 9.21 (Schwarz). Let X,Y be Banach spaces, U an open subset of X and f :U —Y
have two derivatives. Then D?f(x) is a symmetric bilinear mapping.

Proor. Consider the difference

g(h.k) = f(z+h+k) = f(x+h) = f(z+k) + f(x) = D*f(2)(k, h) ,

so that

ID? f(x)(h, k) — D*f(2)(k, h)lly = llg(h, k) — g(k, )|y
< llg(h, k) = g(0, k)lly + [lg(0, k) — g(k, h)|ly
= llg(h, k) — g0, k)lly +1l9(0, h) — g(k, h)|ly

since ¢g(0, k) = ¢g(0,h) = 0. But the right-hand side of the last equality is bounded above by the
Mean Value Theorem as

lg(h, k) — g(0,k)|ly <sup|[Digllpxy)llhlx
lg(k, h) — g(0,h)|ly < sup [ Digllpxy)llklx -

Differentiate g partially with respect to the first variable h to obtain
Dig(h,k)h = Df(x + h+k)h — Df(x + h)h — D*f(x)(k, h)
= Df(x+h+k)h— Df(z)h — D*f(x)(h + k, h)
— [Df(z+h)h = Df(x)h — D* f(x)(h, h)] .
For ||h||x, ||k||x small, it follows from the definition of the Fréchet derivative of D f that
1D1g(h, k)l 5x,yy = oll[hllx + [IFllx) -
Thus we have established that
ID?f (2)(h, k) = D* f(z)(k, B)lly = o([[kllx + Ihllx) (1Allx + 1k]lx)
and it follows from bilinearity that in fact
D?f(z)(h, k) = D* f(z)(k, h)
for all h,k € X [replace (h, k) by (eh,ck) and take € — 0]. O
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COROLLARY 9.22. Let f, X, Y and U be as in Lemma 9.21, but suppose f has n > 2
derivatives in U. Then D" f(x) is symmetric under permutation of its arguments. That is, if T
is an n X n symmetric permutation matriz, then

D" f(x)(h1,... ,hy) = D" f(z)(m(h1,...  hy)) .
PROOF. This follows by induction from the fact that D" f(x) = D*(D" 2 f)(x). O

THEOREM 9.23 (Taylor’s Formula). Let X,Y be Banach spaces, U C X open and suppose
f:U =Y hasn derivatives throughout U. Then for x € U and h small enough that t+h € U,

1 1

flx+h)=f(x)+ Df(z)h + §D2f($)(h, h)+---+ ED"f(x)(h, .o. h)+ R,(x,h) (9.29)

and
[ Bz, W)y
[1711%

as h — 0 in X, i.e., |Rn(z,h)|ly = o([|h[|%)-

PROOF. We first note in general that if F' € B"™(X,Y’) is symmetric and g is defined by

g(h) =F(h,... ,h),
then
Dg(h)k =mF(h,... hk) .

This follows by straightforward calculation. For m = 1, F' is just a linear map and the result is
already known. For m = 2, for example, just compute

g(h+k)—g(h) —2F(h,k) = F(h+k,h+ k) — F(h,h) —2F(h,k) = F(k,k) ,
and
B, Rl < ClIRI
showing ¢ is differentiable and that Dg(h) = 2F(h, ).
For the theorem, the case n = 1 just reproduces the definition of f being differentiable at
x. We initiate an induction on n, supposing the result valid for all functions f satisfying the

hypotheses for k < n, where n > 2. Let f satisfy the hypotheses for £ = n. Define R, as in
(9.29) and notice that

DoR,(x,h) = Df(x +h) — Df(x) — D*f(z)(h,-) — - — (n_ll)!D”f(x)(h, ooy hy)
That is,
Df(x+h) = Df(z) + D*f(z)(h,-) + -+ (niD!D”f(:U)(h,... Jhy )+ DaRy(z,h)

which is the (n — 1)st Taylor expansion of D f, and by induction we conclude that
| Do Ry (z, h) HB(X,Y)

n—1 —0
1[I’
as h — 0. On the other hand, by the Mean-Value Theorem, if ||h||x is sufficiently small, then
||Rn(f€7:b)”Y _ [[Rn(z,h) —fn(:v,())l\y < HD2Rn(9€7aii)1HB(X,Y) 0
1721’ 1211% 0<a<1 1721

as h — 0. O
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9.5. Extrema

DEFINITION. Let X be a set and f: X — R. A point zyp € X is a minimum if f(z¢) < f(x)
for all x € X; it is a mazimum if f(z9) > f(x) for all x € X. An eztrema is a point which is
a maximum or a minimum. If X has a topology, we say z is a relative (or local) minimum if
there is an open set U C X with z¢ € U such that

fzo) < f(z)
for all x € U. Similarly, if
f(xo) = f()

for all z € U, then z¢ is a relative mazimum. If equality is disallowed above when x # xg, the
(relative) minimum or maximum is said to be strict.

THEOREM 9.24. Let X be a NLS, let U be an open set in X and let f: U — R be differen-
tiable. If xo € U is a relative mazimum or minimum, then D f(xg) = 0.

ProOOF. We show the theorem when x is a relative minimum; the other case is similar. We
argue by contradiction, so suppose that D f(z¢) is not the zero map. Then there is some h # 0
such that D f(xg)h # 0. By possibly reversing the sign of h, we may assume that D f(xq)h < 0.
Let to > 0 be small enough that xz¢ + th € U for |t| < to and consider for such ¢

1 1
n [f(zo +th) — f(z0)] = n [D f(xo0)(th) + Ri(xo, th)]
1
= Df(zo)h + 231(1‘0, th) .
The quantity Ri(xo,th)/t — 0 as t — 0. Hence for t; < ¢y small enough and [¢| < {1,

1 1
e th)| < 1o

It follows that for |t| < 1,

Flao-+ ) = fan) + ¢ DS Gl + 3 oo t)] < flao)

provided we choose ¢ > 0. This contradiction proves the result for relative minima. Similar
ruminations establish the conclusion for relative maxima. O

DEFINITION. A critical point of a mapping f: U — Y, where U is open in X, is a point zg
where D f(zo) = 0. This is also referred to as a stationary point by some authors.

COROLLARY 9.25. If f : U — R is differentiable, then the relative extrema of f in U are
critical points of f.

DEFINITION. Let X be a vector space over R, U C X a convex subset, and f: U — R. We
say that f is convex if whenever x1,x9 € U and X € (0, 1), then

JAz1+ (1= Nxz) S Af(z1) + (1= A) f(a2) -

We say that f is concave if the opposite inequality holds. Moreover, we say that f is strictly
convex or concave if equality is not allowed above.

PROPOSITION 9.26. Linear functionals on X are both convexr and concave (but not strictly
so). If a,b > 0 and f, g are convez, then af+bg is convex, and if at least one of f or g is strictly
convex, then so is af + bg. Furthermore, f is (strictly) convex if and only if —f is (strictly)
concave.
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We leave the proof as an easy exercise of the definitions.

PROPOSITION 9.27. Let X be a NLS, U a convex subset of X, and f: U — R convex and
differentiable. Then, for x,y € U,
fy) =z f(@) + Df(x)(y — ) ,
and, if Df(z) = 0, then x is a minimum of f in U. Moreover, if f is strictly convez, then for
T F Y,
fy) > f(z)+ Df(x)(y — ) ,

and Df(x) = 0 implies that f has a strict and therefore unique minimum.
PROOF. By convexity, for A € [0,1],

M)+ A =Nf(z) = flz+ Ay —2)),
whence

fla+ My —2)) — f(z)
fy) = flz) = 3 :

Take the limit as A — 0 on the right-hand side to obtain the desired result.
We leave the proof of the strictly convex case to the reader. O

EXAMPLE. Let Q C R?, f € Ly(Q), and assume that the underlying field is real. Define
J: HH(Q) — R by

J(v) = 5IVolZ,@) — (f;0) Ly -

We claim that ||V1)H%2(Q) is strictly convex. To verify this, let v,w € H(Q) and X\ € (0,1).
Then

IV (A + (1= Nw)1Z, 0
= N[ VolZ, ) + (1= X?[[Vwll7, o) + 22(1 = A) (Vo, V) (@)
= N[VolZ,@) + (1 = MIVwlZ,q) = M1 = NIVolZ, ) + Vwll], @ — 2(Vo, V) L,q)
= M|[Vol[T, ) + (1= NVl — A1 = 2) (Vv —w), V(0 - w) 0
<AVl 0y + (1= NVwll7, ) -

unless v — w is identically constant on each connected component of Q. As v —w € H}(Q),
v =w on Jf), and so v = w everywhere. That is, we have strict inequality whenever v # w, and
so we conclude that ”’UH%Z(Q) is strictly convex. By Prop. 9.26, we conclude that J(v) is also

strictly convex. Moreover,
DJ(u,v) = (Vu, V), — (f;v)L.9) -
We conclude that u € HE(Q) satisfies the boundary value problem
(Vu, Vo)) = (f,0) L)
if and only if u minimizes the “energy functional” J(v) over Hg(Q):
J(u) < J(v) forallve HHQ),v#u.
Moreover, such a function u is unique.

Local convexity suffices to verify that a critical point is a relative extrema. More generally,
we can examine the second derivative.
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THEOREM 9.28. If X is a NLS and f : X — R is twice differentiable at a relative minimum
r € X, then
D?f(x)(h,h) >0 forallhe X .
Proor. By Taylor’s formula
flz£Ah) = f(z) £ Df(x)Ah + 5 2D f(z)(h h) + o(N||h[IX)
so we conclude that

D2 () (h, h) = Jim L& EAR) (@ = AR) = 2/ ()

A—0 A2 =0

if z is a local minimum. O

REMARK. In infinite dimensions, it is not the case that Df(z) = 0 and D?f(x)(h,h) > 0
for all A # 0 implies that = is a local minimum. For example consider the function f : ¢ — R
defined by

=3 (o) ot

where x = (x1);2,; € f2. Note that f is well defined on / (i.e., the sum converges). Direct
calculation shows that

Df(w)(h) = ki (7~ 30 ) out

D2f()(hh) =Y (i - 6:ck> n2

k=1

so f(0) =0, Df(0) = 0, and D2f(0)(h,h) > 0 for all h # 0. However, let 2* be the element of
{5 such that :L‘;C is 0 if j # k and 2/k if j = k. We compute that f(2¥) < 0, in spite of the fact

that 2 — 0 as k — oo. Thus 0 is not a local minimum of f.

THEOREM 9.29 (Second Derivative Test). Let X be a NLS, and f : X — R have two
derivatives at a critical point x € X. If there is some constant ¢ > 0 such that

D2f(x)(h,h) > c||h||% forallhe X ,
then x 1s a strict local minimum point.
PrOOF. By Taylor’s Theorem, for any € > 0, there is § > 0 such that for ||h|[x <0,
f(z+h) — f@) — D2 (@) (h,h)| < ellhlk |
since the Taylor remainder is o(||h|/%). Thus,
F(@+h) = f@) = $D2f(@)(h,h) — ellhl% > (de - Il ,
and taking € = ¢/4, we conclude that
Flo+h) > f() + el

i.e., f has a local minimum at z. O
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REMARK. This theorem is not as general as it appears. If we define the bilinear form
(h,k)x = D*f(x)(h, k) ,

we easily verify that, with the assumption of the Second Derivative Test, that in fact (h,k)x is
an inner product, which induces a norm equivalent to the original. Thus in fact X must be a
pre-Hilbert space, and it makes no sense to attempt use of the theorem when X is known not
to be pre-Hilbert.

9.6. The Euler-Lagrange Equations

A common problem in science and engineering applications is to find extrema of a functional
that involves an integral of a function. We will consider this situation via the following problem.
Let a < b,

fi]a,b] x R" x R" — R
and define the functional F : C1([a,b]) — R by

b
ﬂw—/fmmmwaw
With « and § given in R", let
Crl

0.5([a,b],R") = {v : [a,b] — R™ | v has a continuous first derivative,

v(a) = «, and v(b) = [} .
Our goal is to find y € C'Ol(ﬁ([a, b], R™) such that

F = min F(v) .
<y) UEC}Xﬂ([a,bLR”) <)

ExaMPLE. Find y(z) € C'([a,b]) such that y(a) = a > 0 and y(b) = 8 > 0 and the surface
of revolution of the graph of y about the z-axis has minimal area. Recall that a differential of

arc length is given by
ds = 1+ (y(2))* dz

so our area as a function of the curve y is

b
Aly) = / 2my(x)/1+ (f @)2da | (9.30)

since clearly y(z) > 0 for all = € [a, b].

If o and (3 are zero, C&vo([a, b],R") = C{([a,b],R™) is a Banach space with the W1 ([a,b])
(Sobolev space) maximum norm, and our minimum is found at a critical point. However, in
general C’Ol[’ ﬁ([a, b],R™) is not a linear vector space. Rather it is an affine space, a translate of a
vector space. To see this, let

() = =—la(b — ) + Bz o)

be the linear function connecting (a, ) to (b, 3). Then
Colz,ﬁ([a? b]aRn) - C(%([“? b]7Rn> +£.

To solve our problem, then, we need to consider any fixed element of C;“ g» such as ¢(x), and
all possible “admissible variations” h of it that lie in C&; that is, we minimize F'(v) by searching
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among all possible “competing functions” v = £+ h € C’Ol[ﬁ, where h € C}, for the one that

minimizes F(v), if any. On C}, we can find the derivative of F(¢ + h) as a function of h, and
thereby restrict our search to the critical points. We call such a point y = £ + h a critical point
for F' defined on Cclx, 5- We present a general result on the derivative of F* of the form considered
in this section.

THEOREM 9.30. If f € C1([a,b] x R™ x R™) and
Flo) = | " floy(a)of @) di
then F : C'([a,b]) — R is continuously differentiable and
PR = [ "D (s y(), /() () + Ds (o) f () B (2] i

for all h € C([a, b]).
PROOF. Let A be defined by

b
Ah = [ [Dafe.y(a).1/(2)) ) + Daf(w,y(a), /(@) W (w)] da
which is clearly a bounded linear functional on C, since the norm of any v € C' is

[l = max({|v]l o ll0']] L) -

Now
b 1 d
F(y—i—h)—F(y)_/ / S Flesy + thyy + ) di do
a JO

b rl
:/ / [Dgf(:n,y+th,y’+th')h—|—D3f(:E,y—i—th,y’—i—th')h’] dtdx ,
a JO

SO

b 1
[F(y+ h) — F(y) — Ah| < / /O Dof @,y + thy' + th) — Daf(z,y, )] b dt da

b ol
4 [ [ Darey 4 thy + ) = Dafeyf)) W] drdo
a JO
Since Dyf and Dsf are uniformly continuous on compact sets, the right-hand side is o(||h|),
and we conclude that DF(y) = A.

It remains to show that DF(y) is continuous. But this follows from uniform continuity of
Dsf and Dsf, and from the computation

b

b
+/ \[Dsf(z,y+ h,y + 1)+ Dsf(z,y,y )] K| dz ,

which tends to 0 as ||h| — 0 for any k € C([a,b]) with ||k|| < 1. O
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THEOREM 9.31. Suppose f € C'([a,b] x R* x R"), y € C’é,ﬂ([a, b)), and

b
F(y) =/ flz,y(x),y (z)) dz .

Then vy is a critical point for F if and only if the curve x — Dsf(x,y(z),y (z)) is C*([a,b]) and
y satisfies the Euler-Lagrange Equations

d
Dy f(x,y,y") — —Dsf(z,y,4) =0 .

dx
In component form, the Euler-Lagrange Equations are
af d of
—=—=, =1,...,n,
Oy, dx Oy,
or
d

fur = afy;@, k=1,...n.

The converse implication of the Theorem is easily shown from the previous result after
integrating by parts, since h € C}. The direct implication follows easily from the previous result
and the following Lemma, which can be proved by classical methods, but is also trivial to prove
from the Lebesgue Lemma 5.7. We leave the details to the reader.

LEMMA 9.32 (Dubois-Reymond). Let ¢ and ¢ lie in C°([a,b],R™). Then
(i) fab o(z) - W (x)dz =0 for all h € C} if and only if o is identically constant.
(ii) f;[gp(aj) “h(z) +9(x) - B (z)]dx =0 for all h € C} if and only if yp € C1 and ¢ = ¢.

PROOF. Both converse implications are trivial after integrating by parts. For the direct
implication of (i), let

1 b
o=z [ v,
and note that then
b b
0= [ @) W@)do = [ (ola) - 9) - W(a) da
Take
h= [ (o)~ prds € G
so that ' = ¢ — ¢. We thereby demonstrate that
H(p - @Hl@ =0,

and conclude that ¢ = ¢ (almost everywhere, but both functions are continuous, so everywhere).
For the direct implication of (ii), let

@zfaxso(s)ds,

so that ® = ¢. Then the hypothesis of (ii) shows that

b b b
/[@—w]-h’d:v:/[@-h'(:v)—i—gp-h]dm:/ %(‘I)-h)dx:(),
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since h vanishes at a and b. We conclude from (i) that ® — ) is constant. Since ® is C', so is
Y, and ¢ = @' = . O

DEFINITION. Solutions of the Euler-Lagrange equations are called extremals.

ExaMpPLE. We illustrate the theory by finding the shortest path between two points. Suppose
y(z) is a path in Coléﬁ([a, b]), which connects (a, @) to (b, 3). Then we seek to minimize the length
functional

b
L) = [ VIF @)
a
over all such y. The integrand is
ftyy) = V1t (2)?,
so the Euler-Lagrange equations become simply
(D3f)/ =0 )
and so we conclude that for some constant c,
y'(x)
1+ (y(2))?

/(x)—jm/i
yie = 1—¢2’

if ¢2 # 1, and there is no solution otherwise. In any case, y'(z) is constant, so the only critical
paths are lines, and there is a unique such line in C’;y 5([a, b]). Since L(y) is convex, this path is
necessarily a minimum, and we conclude the well-known maxim: the shortest distance between
two points is a straight line.

=cC.

Thus,

EXAMPLE. Many problems have no solutions. For example, consider the problem of min-
imizing the length of the curve y € C*([0,1]) such that y(0) = y(1) = 0 and %/(0) = 1. The
previous example shows that extremals would have to be lines. But there is no line satisfying
the three boundary conditions, so there are no extremals. Clearly the minimum approaches 1,
but is never attained by a C!-function.

It is generally not easy to solve the Euler-Lagrange equations. They constitute a nonlinear
second order ordinary differential equation for y(z). To see this, suppose that y € C?([a, b]) and
compute

Dyf = (D3f) = DiDsf + DaDsf o/ + D3fy" .
We note that D3 f(x,y,y’) € B(R",R), which is isomorphic to B(R™, R"), so, provided D3 f(x,y,v’)
is invertible,

y" = (D3f) " (Daf — D1Dsf — DaDsfy) .

DEFINITION. If y is an extremal and D3 f(z,y,y’) is invertible for all z € [a, b], then we call
y a reqular extremal.

PROPOSITION 9.33. If f € C?([a,b] x R® x R™) and y € C*([a,b]) is a regular extremal, then
y € C%([a,b)).

In this case, we can reduce the problem to first order.
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THEOREM 9.34. If f € C?([a,b] x R" x R"™), f(z,y,2) = f(y,2) only, and y € C*([a,b]) is
a reqular extremal, then D3f vy — f is constant.

PRrROOF. Simply compute
(Dsfy —f) =Dsfy" +(Dsf)y — f
=D3fy"+ Dafy — (Daf y' + Dsf y") =0,
using the Euler-Lagrange equation for the extremal. O
EXAMPLE. We reconsider the problem of finding y(x) € C!([a,b]) such that y(a) = a > 0

and y(b) = B > 0 and the surface of revolution of the graph of y about the z-axis has minimal
area. The area as a function of the curve is given in (9.30), so

fyy) = 2my(x) V1 + (v (2))* .
Note that
2my(z)
1+ (v (2))?)
unless y(x) = 0. Clearly y(x) > 0, so our extremals are regular, and we can use the theorem to
find them. For some constant C,

21y (y')?
L+ e

Dif(y.y) = 5270

(L+ ()" = 2nC

which implies that

/ 1 /y2_02'

y = 6
Applying separation of variables, we need to integrate
dy dx

N

which, for some constant A, gives us the solution
y(x) = C cosh(z/C + A) ,
which is called a catenary. Suppose that a = 0, so that C' = «/ cosh A and

h A
y(b) =p = @ cosh <COS b+ /\> .
co! a

That is, we determine C' once we have A\, which must solve the above equation. There may or
may not be solutions A (i.e., there may not be regular extremals). It is a fact, which we will
not prove (see [Sa, pp. 62ff.]), that the minimal area is given either by a regular extremal or
the Goldschmidt solution, which is the piecewise graph that uses straight lines to connect the
points (0, a) to (0,0), (0,0) to (b,0), and finally (b,0) to (b,3). This is not a C* curve, so it is
technically inadmissible, but it has area Ag = m(a? + 32). If there are no extremals, then, given
€ > 0, we have C! curves approximating the Goldschmidt solution such that the area is greater
than but within € of Ag.

EXAMPLE (The Brachistochrone problem with a free end). Sometimes one does not impose
a condition at one end. An example is the Brachistochrone problem. Consider a particle moving
under the influence of gravity in the zy-plane, where y points upwards. We assume that the
particle starts from rest at the position (0,0) and slides frictionlessly along a curve y(z), moving
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dx

F1GUrE 3. The Brachistochrone problem.

in the z-direction a distance b > 0 and falling an unspecified distance (see Fig. 3). We wish to
minimize the total travel time. Let the final position be (b, 3), where 5 < 0 is unspecified. We
assume that the curve y € C1([0,b]), where

Cy([a,b]) = {v € C'([a,b]) : v(a) = 0} .

The steeper the curve, the faster it will move; however, it must convert some of this speed into
motion in the z-direction to travel distance b. To derive the travel time functional T'(y), we
note that Newton’s Law implies that for a mass m traveling on the arc s with angle 8 from the
downward direction (see Fig. 3),

d’s 0 dy
m—s = —mgcosf = —mg—
dt? g Tds
where g is the gravitational constant. The mass cancels and
Ld (ds\*_ dsds __ dy
oat\at) ~azar ~ Jar’

so we conclude that for some constant C,

2
<ds> =—-2g9y+C .

dt
But at ¢t = 0, both the speed and y(0) are zero, so C' = 0, and
ds
> /9
dt gy

Now the travel time is given by

b1+ (Y (2)? .
/dt /\/—29 0 —2gy(z) 4

We need a general result to deal with the free end.

THEOREM 9.35. If y € C?([a,b]) minimizes

/fxy (2)) da

subject only to the single constraint that y(a) = « € R, then y must satisfy the Euler Lagrange
equations and Dsf(b,y(b),y'(b)) = 0.
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PROOF. We simply compute for y € C}([a,b]) + o and h € C}([a, b])

b b
DF(y)h = / (D2f h+ Dsf I') do = / (D2f h = (Dsf)" h) dz + D3 f (b, y(b),y' (b)) h(b) -
Ifhe C&O([a, b]), we derive the Euler-Lagrange equations, and otherwise we obtain the second
condition at x = b. 0

EXAMPLE (The Brachistochrone problem with a free end, continued). Since we are looking
for a minimum, we can drop the factor /2¢g and concentrate on

This is independent of x, so we solve

/ o _ 1 (3/)2 . /
yDsf =1 == o= (AL VT

—y
= dy =z — Cs .
/ C;2+yy T

This is solved using a trigonometric substitution, so we let
y = —C%sin?(¢/2) = —(1 — cos ¢) /207 |
where 0 < ¢ < m, and then

or

z=—(¢ —sing)/2C% 4+ Cy .
Applying the initial condition (¢ = 0), we determine that the curve is
(Z’, y) = C(¢ - Sin¢7 1 —cos ¢)

for some constant C'. This is a cycloid. Now C'is determined by the auxiliary condition

0= Dsf(y(b),y'(b)) = \/yl(b) V1 —ilg(b)ﬁ 7

which requires

o dy(dz\T' sing(b)
0=v0=3(%) = e

Thus ¢(b) = 7 (since ¢ € [0,7]), so C = b/m and the solution is complete.

9.7. Constrained Extrema and Lagrange Multipliers

When discussing the Euler-Lagrange equations, we considered the problem of finding relative
extrema of a nonlinear functional in C(i 3 which is an affine translate of a Banach space. We can

phrase this differently: we found extrema in the Banach space C'! subject to the linear constraint
that the function agrees with o and (8 at its endpoints. We consider now the more general
problem of finding relative extrema of a nonlinear functional subject to a possibly nonlinear
constraint.

Let X be a Banach space, U C X open, and f : U — R. To describe our constraint, we
assume that there are functions g; : X — R for ¢ = 1, ...,m that define the set M C U by

M ={zeU:g(x)=0for all i} .
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Our problem is to find the relative extrema of f restricted to M. Note that M is not necessarily
open, so we must discuss what happens on M. To rephrase our problem: Find the relative
extrema of f(z) on U subject to the constraints

91(z) = ... = gm(z) =0. (9.31)

To find the relative extrema of f(x) on U subject to the constraints (9.31), we can instead
solve an unconstrained problem, albeit in more dimensions. Define H : X x R™ — R by

H(w,A) = £(2) + M01(2) + o + Amgon(3) - (9.32)

The critical points of H are given by solving for a root of the system of equations defined by
the partial derivatives

DlH(xv )‘) = Df(x) + Angl(m) +.+ )‘ngm(l‘) ’
DaH(z,A) = g1(2) ,

Dpi1H(z,A) = gm(x) .
Such a critical point satisfies the m constraints and an additional condition which is necessary
for an extrema, as we prove below.

THEOREM 9.36 (Lagrange Multiplier Theorem). Let X be a Banach space, U C X open,
and f,g; : U — R, i =1,...,m, be continuously differentiable. If x € M 1is a relative extrema for
flar, where

M ={zeU:yg(x)=0 for all i} ,
then there is a nonzero A = (Ao, ..., Am) € R™ T such that
XD f(z) +MDgi(z) + ... + AmDgm(z) =0 . (9.33)

That is, to find a local extrema in M, we need only consider points that satisfy (9.33). We
search through the unconstrained space U for such points z, and then we must verify that in
fact x € M holds. Two possibilities arise for x € U. If {Dg;(x)}*, is linearly independent,
the only nontrivial way to satisfy (9.33) is to take \g # 0. Otherwise, {Dg;(z)}", is linearly
dependent, and (9.33) is satisfied for a nonzero A with A\g = 0.

Our method of search then is clear. (1) First we find critical points of H as defined above in
(9.32). These points automatically satisfy both (9.33) and & € M. These points are potential
relative extrema. (2) Second, we find points z € U where {Dg;(z)}", is linearly dependent.
Then (9.33) is satisfied, so we must further check to see if indeed x € M, i.e., each g;(z) = 0.
If so, x is also a potential relative extrema. (3) Finally, we determine if the potential relative
extrema are indeed extrema or not. Often, the constraints are chosen so that {Dg;(x)}", is
always linearly independent, and the second step does not arise. (We remark that if we want
extrema on M, then we would also need to check points on 9M.)

PROOF OF THE LAGRANGE MULTIPLIER THEOREM. Suppose that x is a local minimum of
flar; the case of a local maximum is similar. Then we can find an open set V' C U such that
xz €V and

flx) < f(y) forallye MNV .
Define F': V. — R™t! by

F(y) = (f),91()s - gm(y)) -
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Since x is a local minimum on M, for any ¢ > 0,
(f(z) —¢,0,...,0) £ F(y) forallyeV .

Thus, we conclude that F' does not map V onto an open neighborhood of F(x) = (f(x),0,...,0) €
R+

Suppose that DF(z) maps X onto R™t1. Then construct a space X = span{vy, ..., vymp1} C
X where we choose each v; such that DF(z)(v;) = e;, the standard unit vector in the ith
direction in R™*!. Let X = {v € X : z + v € V}, and define the function h : X — R™! by
h(v) = F(xz+v). Now Dh(0) = DF(z) maps X onto R™*! is invertible, so the Inverse Function
Theorem implies that A maps an open subset S of X containing 0 onto an open subset of R™+!
containing h(0) = F(x). But then x +.S C V is an open set that contradicts our previous
conclusion regarding F'.

Thus DF(x) cannot map onto all of R™*! and so it maps onto a proper subspace. There
then is some nonzero vector A € R™"! orthogonal to DF (z)(X). Thus

MDf(2)(y) + MDgi(z)(y) + ... + AnDgm(z)(y) =0,

for any y € X, and we conclude that this linear conbination of the operators must vanish, i.e.,
(9.33) holds. O

Note that this theorem is especially useful when the function F' and constraints G; are given
as integral operators, i.e., when

b b
Fly) = / f@,y,y)de and Gily) = / gilw, o) de .

In that case,

b
H(y,\) =/ ha(z,y,y') dz

where

hA(xayay/) = f($7y7y/) + Z)‘Zgl(xa Y, y/) ;

i=1
and the Euler-Lagrange equations can be used to find the extrema:
d
Dyh)\(l’, Y, y/) = %Dy/h)\(l’, Y, y/) .
In the previous section we had boundary conditions. It may be best to impose such point
constraints directly, as in the following example.

ExAaMPLE. The Isoperimetric Problem can be stated as follows: among all rectifiable curves
in R% from (—1,0) to (1,0) with length ¢, find the one enclosing the greatest area. We need to
maximize the functional

1
A(u):/ u(t) dt

-1

subject to the constraint

1
L) = /1 I+ @O2dt =
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over the set u € C’&’O([—l, 1]) with u > 0. Let

1
H(u,\) = A(u) + \[L(') — ] = /_1 () d |

where

ha(u, ') = u+ A(y/1+ (W/(t)2—£/2) .

To find a critical point of the system, we need to find both D, H and DyH. For the former, it is
given by considering A fixed and solving the Euler-Lagrange equations: Dohy = (Dsh))’. That
is,

so for some constant Cf,

Solving for v’ yields
t—C
Another integration gives a constant Cy and

u(t) = /N —(t—C1)2+Cy,

or, rearranging, we obtain the equation of a circular arc

(u(t) — C2)? + (t — C1)* = N2

u'(t) =

with center (C1,C2) of radius A. The partial derivative Dy H simply recovers the constraint that
the arc length is ¢, and the requirement that u € Cyo([—1,1]) says that it must go through the
points u(—1) = (—=1,0) and u(1) = (1,0). We leave it to the reader to complete the example
by showing that these conditions uniquely determine C; = 0, Ca, and XA = /1 + C7, where Cy
satisfies the transcendental equation

¢
Y1+ = 2[r — tan 1 (1/C5)]

Moreover, the reader may justify that a maximum is obtained at this critical point.

We also need to check the condition DL(u') = 0. Again the Euler-Lagrange equations allow
us to find these points easily. The result, left to the reader, is that for some constant C' of
integration,

,C
V1I-C'
which means that u is a straight line. The fixed ends imply that u = 0, and so we do not satisfy

the length constraint unless ¢ = 2, a trivial case to analyze.
As a corollary, among curves of fixed lengths, the circle encloses the region of greatest area.
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9.8. Lower Semi-Continuity and Existence of Minima

Whether there exists a minimum of a functional is an important question. If a minimum
exists, we can locate it by analyzing critical points. Perhaps the simplest criterion for the
existence of a minimum is to consider convex functionals, as we have done previously. Next
simplest is perhaps to note that a continuous function on a compact set attains its minimum.

However, in an infinite dimensional Banach space X, bounded sets are not compact; that
is, compact sets are very small. This observation suggests that, at least when X is reflexive,
we consider using the weak topology, since then the Banach-Alaoglu Theorem 2.51 implies that
bounded sets are weakly compact. The problem now is that many interesting functionals are
not weakly continuous, such as the norm itself. For the norm, it is easily seen that:

If u, = u, then liminf |lu,| > ||Jul ,
n—oo
with inequality possible. We are lead to consider a weaker notion of continuity.

DEFINITION. Let X be a topological space. A function f : X — (—o0, 0] is said to be lower
semicontinuous (l.s.c.) if whenever lim,,_, o x,, = x, then

lim inf f(z,) > /(z)

PROPOSITION 9.37. Let X be a topological space and f : X — (—oo,00]. Then f is lower
semicontinuous if and only if the sets

Ap={ze X : f(z) <a}
are closed for all a € R.
PROOF. Suppose f is L.s.c. Let x,, € A, be such that x,, — x € X. Then
f(2) < liminf f(z,) <o,

sox € A, and A, is closed.
Suppose now each A, is closed. Then

Al ={z e X: f(z) > a}

is open. Let z,, — = € X, and suppose that z € AS for some « (i.e., f(z) > a). Then there is
some N, > 0 such that for all n > N,, x,, € AS, and so liminf,, . f(x,) > «. In other words,
whenever f(z) > «, liminf,, . f(zn) > «, so we conclude that

hnrrigff(a:n) >sup{a: f(z) > a} = f(x) .
g

THEOREM 9.38. If M is compact and f : M — (—o0, 00| is lower semicontinuous, then f is
bounded below and takes on its minumum value.

PROOF. Let
A= mlél]& f(z) € [~o0, 0] .

If A = —o0, choose a sequence x,, € M such that f(x,) < —n for all n > 1. Since M is compact,
there is € M such that, for some subsequence, z,, — = as ¢ — co. But

f(z) <liminf f(zy,) = —oc0 ,

contradicting that f maps into (—oo, 00]. Thus A > —o0, and f is bounded below.
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Now choose a sequence x,, € M such that f(z,) < A+ 1/n, and again extract a convergent
subsequence z,, — x € M as i — co. We compute

A < f(z) < liminf f(z,,) <liminf(A+1/n) = A ,
and we conclude that f(z) = A attains its minimum at x. O

The previous results apply to general topological spaces. For reflexive Banach spaces, we
have both the strong (or norm) and weak topologies.

THEOREM 9.39. Let M be a weakly closed subspace of a reflexive Banach space X. If f :
M — (—o0, 0] is weakly lower semicontinuous and, for some o, Ay = {z € X : f(z) < a} is
bounded and nonempty, then f is bounded from below and there is some xog € M such that

flwo) = min ()

PROOF. By the Banach-Alaoglu Theorem 2.51, A, is compact, so f]| 4, attains its minimum.
But for # € M \ Aq, f(x) > a > min,c 5 f(z), and the theorem follows. O

It is important to determine when a function is weakly lower semicontinuous. The following
requirement is left to the reader, and its near converse follows.

PROPOSITION 9.40. If X is a Banach space and f : X — (—o0,00] is weakly lower semicon-
tinuous, then f is strongly lower semicontinuous.

THEOREM 9.41. Suppose X is a Banach space and f : X — (—oo,00|. If V. ={z € X :
f(z) < oo} is a subspace of X, and if f is both convex on V and strongly lower semicontinuous,
then f is weakly lower semicontinuous.

PRrROOF. For a € R, let A, = {x € X : f(x) < a} be as usual. Since f is strongly ls.c.,
Prop. 9.37 implies that A, is closed in the strong (i.e., norm) topology. But f being convex on V'
implies that A, is also convex. A strongly closed convex set is weakly closed (see Corollary 2.57),
so we conclude that f is weakly Ls.c. O

LEMMA 9.42. Let f : C — [0,00) be convex, Q a domain in R?, and 1 < p < oo. Then
F: L,(Q) — [0,00], defined by

Flu) = /Q flu)) da

1s norm and weak [.s.c.

PROOF. Since F' is convex, it is enough to prove the norm l.s.c. property. Let uw, — w in
L,(£2) and choose a subsequence such that

lim F(uy,) = liminf F'(u,)
1— 00 n—oo

and up,(r) — u(z) for almost every x € Q. Then f(up,(z)) — f(u(x)) for a.e. z, since f being
convex is also continuous. Fatou’s lemma finally implies that

F(u) < liminf F(uy,) = liminf F'(u,) .
O

COROLLARY 9.43. If Q is a domain in R% and 1 < p,q < 0o, then the Ly(§2)-norm is weakly
l.s.c. on L,(Q).
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We close this section with two examples that illustrate the concepts.
EXAMPLE. Let f € C§°(R™) and consider the differential equation
—Au+ulu|+u=f.

Let us show that there is a solution. Let
F(u) = /R (3IVul® + 3 + Sul® — fu) de
which may be +oo for some u. Now if v € C$°(R?),

DF(u)(v) = /Rd (Vu- Vo + |ujuv + wv — fv) dz

:/d(—Au+u]uH—u—f)vdx
R

which vanishes if and only if the differential equation is satisfied. Since F'is clearly convex, there
will be a solution to the differential equation if F' takes on its minimum.
Now

F(w) = 3IVul?, o) = 1 g lull agnay = 2102, oy — 1712,z

so the set {u € Lo(RY) : F(u) < 1} is bounded by 4(1 + HfH%Q(Rd)), and nonempty (since it

contains u = 0). We will complete the proof if we can show that F is Ls.c.
The last term of F' is weakly continuous, and the second and third terms are weakly l.s.c.,
since they are norm Ls.c. and the space is convex. For the first term, let u, — w in Ls. Then

IVullz, = sup (¥, Vu)L,|
VE(CE)?, bl 2=1

= sup (V- )]
YE(CE), ¥l 2=1

< sup li_)m (V- up) L,
Pe(Ce)d, 9l p2=1"">

_ sup lim |(v), Vg )L, |
YE(C)d, %]l p2=1"T>

< liminf || Vuy|| L,
n—oo
by Cauchy-Schwartz. Thus the first term is l.s.c. as well.

ExaMPLE (Geodesics). Let M C R? be closed and let + :
(i.e., v is continuous and 7/, as a distribution, is in L'([0,1]; R

1
1) = [ Welds.

THEOREM 9.44. Suppose M C R? be closed. If z,yy € M and there is at least one rectifiable
curve v : [0,1] — M with v(0) = x and (1) =y, then there exists a rectifiable curve 7 : [0,1] —
M such that %(0) =z, (1) =y, and

L(¥) = inf{L(y)|y : [0,1] — M is rectifiable and v(0) = z,v(1) =y} .

0,1] — M be a rectifiable curve
))-

[
4)). The length of v is

Such a minimizing curve is called a geodesic.
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Note that a geodesic is the shortest path on some manifold M (i.e., surface in R?) between
two points. One exists provided only that the two points can be joined within M. Note that
a geodesic may not be unique (e.g., consider joining points (—1,0) and (1,0) within the unit
circle).

ProoF. We would like to use Theorem 9.39; however, L' is not reflexive. We need two key
ideas to resolve this difficulty. We expect that +/ is constant along a geodesic, so define

1
B0) = [ ()P ds

and let us try to minimize F in L?([0,1]). This is the first key idea.
Define

Y = {f € L*([0,1];RY) : y4(s) = x+/s f(t)dt € M for all s € [0,1] and v¢(1) = y} .
0

These are the derivatives of rectifiable curves from z to y. Since the map f — f(f f(t)dt
is a continuous linear functional, ¥ is weakly closed in L?([0,1];R%). Since vy = f, define

E:Y —[0,00) by

E(f) = E(vy) :/0 1F(s))?ds .

Clearly | - | is convex, so E is weakly Ls.c. by Lemma 9.42. Let
Aa:{fGY:E(f)SO[}7

so that by definition A, is bounded for any «. If A, is not empty for some «, then there is a
minimizer fy of E, by Theorem 9.39.

Now we need the second key idea. Given any rectifiable v, define its geodesic reparameteri-
zation v* by

1 3 ! * — ~(s
T() = 775 /0 ()] dt € 0,1] and ~*(T(s)) = 7(s) |

which is well defined since T is nondecreasing and 7'(s) is constant only where - is also constant.
But

() = (7)) =N o) =) T

SO
v (s)l = L(7)
is constant. Moreover, L(v*) = L(v), and so
E(y") =L(v")*.
Now at least one v exists by hypothesis, so the reparameterized v* has F (j*) < o0o. Thus,

for some «, A, is nonempty, and we conclude that we have a minimizer fy of E.
Finally, for any rectifiable curve,

E(y) 2 L(7)* = L(v*)* = E(Y") .
Thus a curve of minimal energy E must have |y| constant. So, for any rectifiable v = ¢ (where
f=
L(v) = E(y)"? = E()'? = E(fo)'* = E(v,)"? = L(5)
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and vy, is our geodesic. O
9.9. Exercises

1. Let X, Y7, Y5, and Z be normed linear spaces and P : Y] X Yo — Z be a continuous bilinear

map (so P is a “product” between Y] and Y5).

(a) Show that for y;,y; € Y,

DP(y1,y2) (1, §2) = P(y1,92) + P(§1,92) -
(b) If f: X — Y] x Y is differentiable, show that for h € X,
D(Po f)(x)h = P(Dfi(x)h, f2(x)) + P(fi(x), Dfa(x) h) .

2. Let X be a real Hilbert space and Ay, A2 € B(X,X), and define f(z) = (x, A1z)x Asz.

Show that D f(x) exists for all x € X by finding an explicit expression for it.
3. Let X = C([0,1]) be the space of bounded continuous functions on [0, 1] and, for v € X,

define F(u / K(z,y) f(u(y)) dy, where K : [0,1] x [0,1] — R is continuous and f is

a Cl—mapplng of R into R. Find the Fréchet derivative DF'(u) of F at u € X. Is the map
u +— DF(u) continuous?

4. Suppose X and Y are Banach spaces, and f : X — Y is differentiable with derivative
Df(z) € B(X,Y) being a compact operator for any 2 € X. Prove that f is also compact.
5. Set up and apply the contraction mapping principle to show that the problem
Uy +u—eu? = f(z), z€R,
has a smooth bounded solution if € > 0 is small enough, where f(z) € S(R).

6. Use the contraction-mapping theorem to show that the Fredholm Integral Equation

b
f@) = ola) + X [ K@) i) dy
has a unique solution f € C(]a,b]), provided that A is sufficiently small, wherein ¢ € C(]a, b))
and K € C([a,b] x [a,b]).

7. Suppose that F' is defined on a Banach space X, that o = F(zg) is a fixed point of F,
DF(x) exists, and that 1 is not in the spectrum of DF(xp). Prove that z( is an isolated
fixed point.

8. Consider the first-order differential equation
u'(t) + u(t) = cos(u(t))
posed as an initial-value problem for ¢ > 0 with initial condition
u(0) = up .
(a) Use the contraction-mapping theorem to show that there is exactly one solution u cor-
responding to any given ug € R.

(b) Prove that there is a number & such that tlim u(t) = £ for any solution u, independent
—00

of the value of ug.
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Set up and apply the contraction mapping principle to show that the boundary value problem
—Upe +u—eu? = f(z), x€(0,400),
u(0) = u(+o00) =0,

has a smooth solution if € > 0 is small enough, where f(x) is a smooth compactly supported
function on (0, +00).

Consider the partial differential equation

3
%_%—eu‘g:f, —oco<x<oo, t>0,
u(z,0) = g(z) .

Use the Fourier transform and a contraction mapping argument to show that there exists a
solution for small enough €, at least up to some time T' < co. In what spaces should f and
g lie?

Surjective Mapping Theorem: Let X and Y be Banach spaces, U C X beopen, f: U — Y be
Cl, and zg € U. If Df(x¢) has a bounded right inverse, then f(U) contains a neighborhood
of f(xo).

(a) Prove this theorem from the Inverse Function Theorem. Hint: Let R be the right inverse
of Df(z¢) and consider g : V' — Y where g(y) = f(zo+Ry) and V ={y € Y : 90+ Ry € U}.
(b) Prove that if y € Y is sufficiently close to f(x¢), there is at least one solution to f(z) = y.
Let X and Y be Banach spaces.

(a) Let F and G take X to Y be C!' on X, and let H(x,¢) = F(x) + ¢G(x) for € € R. If
H(x0,0) = 0 and DF(z9) is invertible, show that there exists z € X such that H(z,e) =0
for € sufficiently close to 0.
(b) For small €, prove that there is a solution w € H?(0,7) to

w' =w+ew?, w0)=w)=0.
Prove that for sufficiently small € > 0, there is at least one solution to the functional equation

f(fﬂ)+smx/oo f@—y) fy)dy=ec ", zeR,

such that f € LY(R).

Let X and Y be Banach spaces, and let U C X be open and convex. Let F' : U — Y be
an n-times Fréchet differentiable operator. Let x € U and h € X. Prove that in Taylor’s
formula, the remainder is actually bounded as

1

[ Rn—1(z, h)|| = (n—1)!

F(z+h)— F(z) — DF(z)h + -+

D" YE(z)(h,. .. ,h)H

< sup [[D"F(z+ ah)|[|n]" .
0<a<1

Prove that if X is a NLS, U a convex subset of X, and f : U — R is strictly convex and
differentiable, then, for x,y € U, x # vy,

fy) > f(@)+ Df(x)(y — =),

and D f(x) = 0 implies that f has a strict and therefore unique minimum.



16.

17.

18.

19.

20.

21.

9.9. EXERCISES 275

Let © C R? have a smooth boundary, and let g(z) be real with ¢ € H'(Q). Consider the
BVP
—Au+u=0, inQ,
{u =g, on0f).

(a) Write this as a variational problem.
(b) Define an appropriate energy functional J(v) and find DJ(v).
(c) Relate the BVP to a constrained minimization of J(v).

Let 2 C R™ have a smooth boundary, A(x) be an n x n real matrix with components in
L>®(Q), and let c¢(x), f(z) be real with ¢ € L®(Q) and f € L*(Q2). Consider the BVP

—V-AVu+cu=f, inQ,
{uzO, on 0N .

(a) Write this as a variational problem.

(b) Assume that A is symmetric and uniformly positive definite and ¢ is uniformly positive.
Define the energy functional J : Hi — R by J(v) = % /Q {|A1/2Vv\2 +c|v|* = 2fv}dz. Find
DJ(v).

(c) Prove that for u € H}, the following are equivalent: (i) u is the solution of the BVP; (ii)
DJ(u) = 05 (iii) v minimizes J(v).

Suppose we wish to find the surface u(x,y) above the square Q = [—1,1]?, with « = 0 on
0Q), that encloses the greatest volume, subject to the constraint that the surface area is fixed
at s > 4.

(a) Formulate the problem, and reformulate it incorporating the constraint as a Lagrange
multiplier. [Hint: the surface area is [[ /1 +[Vu[* dz dy ]
(b) Using the definition of the Fréchet derivative, find the conditions for a critical point.

(c) Find a partial differential equation that u must satisfy to be an extremal of this problem.
[Remark: a solution of this differential equation, that also satisfies the area constraint, gives
the solution to our problem.|

Let X and Y be Banach spaces, U C X an open set, and f: U — Y Fréchet differentiable.
Suppose that f is compact, in the sense that for any x € U, if B,(x) C U, then f(B,(z)) is
precompact in Y. If g € U, prove that D f(z() is a compact linear operator.

5
€ u) = u’ X 2 _1)? X.
Lot Fu) = [ [(/(@) = 1%
(a) Find all extremals in C'([—1,5]) such that u(—1) = 1 and u(5) = 5.

(b) Decide if any extremal from (a) is a minimum of F. Consider u(z) = |z|.

Consider the functional

defined for y € C1([0, 1]).

(a) Find all extremals.
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(b) If we require y(0) = 0, show by example that there is no minimum.
(c) If we require y(0) = y(1) = 0, show that the extremal is a minimum. Hint: note that
yy' = (3v°)-
Find all extremals of
w/2 : 9
/O (1) + (y@)” +2y(t)] dt
under the condition y(0) = y(7/2) = 0.

Suppose that we wish to minimize

1
- /0 f(x,y(a:),y’(x),y"(x))dx

over the set of y(z) € C?([0, 1]) such that y(0) = a, ¥'(0) = 3, y(1) = ~, and ¢/(1) = §. That
is, with C§([0,1]) = {u € C?([0,1]) : u(0) = w'(0) = (1) = v/(1) = 0}, y € CF([0 71]) p(x),
where p is the cubic polynomial that matches the boundary conditions.

(a) Find a differential equation, similar to the Euler-Lagrange equation, that must be satis-
fied by the minimum (if it exists).

(b) Apply your equation to find the extremal(s) of

1
ﬂw:A@mmﬂm,

where y(0) = ¢/(0) = ¢'(1) = 0 but y(1) = 1, and justify that each extremal is a (possibly
nonstrict) minimum.

Prove the theorem: If f and ¢ map R? to R and have continuous partial derivatives up to
second order, and if u € C?([a,b]), u(a) = o and u(b) = 3, minimizes

/fxu (2))da ,
subject to the constraint

b

[ st @)ds =0,

then there is a nontrivial linear combination h = uf 4+ Ag such that u(x) satisfies the Euler-
Lagrange equation for h.

Consider the functional
b
Ba,.1) = [ Play().y@)ds .
a
(a) If F = F(y,y’) only, prove that the Euler-Lagrange equations reduce to

d
—(F -y F,)=0.

(b) Among all continuous curves y(z) joining the points (0,1) and (1, cosh(1)), find the one
which generates the minimum area when rotated about the z-axis. Recall that this area is

—271'/ yv/ 1+ (v)2dx .
0
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[Hint: /\/ﬂdiim =1In(t + \/W).]

Consider the functional

/2
Sz, y] —/O / [(2'(£))? + (y'(1)” + 2z(t)y(t)] dt
and the boundary conditions
z(0)=y(0)=0 and z(n/2)=y(r/2)=1.
(a) Find the Euler-Lagrange equations for the functional.
(b) Find all extremals.
(¢) Find a global minimum, if it exists, or show it does not exist.

(d) Find a global maximum, if it exists, or show it does not exist.

Consider the problem of finding a C'! curve that minimizes

1
/ (o (£))? dt
0

subject to the conditions that y(0) = y(1) = 0 and
1
| o=,
0

(a) Remove the integral constraint by incorporating a Lagrange multiplier, and find the
Euler equations.

(b) Find all extremals to this problem.

(c) Find the solution to the problem.

(d) Use your result to find the best constant C' in the inequality
lyll2c0,1) < ClIY 1 L2(0,1)

for functions that satisfy y(0) = y(1) = 0.

Find the C? curve y(t) that minimizes the functional

1
| (o + /w2 a
subject to the endpoint constraints

y(0)=0 and y(1)=1

1
/ y(t)dt =0 .
0

Find the form of the curve in the plane (not the curve itself), of minimal length, joining
(0,0) to (1,0) such that the area bounded by the curve, the z and y axes, and the line z = 1
has area /8.

and the constraint

Solve the constrained Brachistochrone problem: In a vertical plane, find a C'-curve joining
(0,0) to (b,3), b and [ positive and given, such that if the curve represents a track along
which a particle slides without friction under the influence of a constant gravitational force
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of magnitude g, the time of travel is minimal. Note that this travel time is given by the
functinal
y@)?
29(8 — y(v))

Consider a stream between the lines x = 0 and x = 1, with speed v(x) in the y-direction. A
boat leaves the shore at (0,0) and travels with constant speed ¢ > v(z). The problem is to
find the path y(z) of minimal crossing time, where the terminal point (1, ) is unspecified.

X .

(a) Find conditions on y so that it satisfies the Euler-Lagrange constraint. Hint: the crossing

time is .
VAR R
= 2 _ 2 x
0

(b) What free endpoint constraint (transversality condition) is required?

(c) If v is constant, find y.
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