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Preface

These are notes for the lecture course “Differential Geometry II” held by the
second author at ETH Ziirich in the spring semester of 2018. A prerequisite
is the foundational chapter about smooth manifolds in [21] as well as some
basic results about geodesics and the exponential map. For the benefit of
the reader we summarize some of the relevant background material in the
first chapter and in the appendix. The lecture course covered the content of
Chapters 1| to |7| (except Section .

The first half of this book deals with degree theory and the Pointaré—Hopf
theorem, the Pontryagin construction, intersection theory, and Lefschetz
numbers. In this part we follow closely the beautiful exposition of Milnor
in [14]. For the additional material on intersection theory and Lefschetz
numbers a useful reference is the book by Guillemin and Pollack [9].

The second half of this book is devoted to differential forms and de Rham
cohomology. It begins with an elemtary introduction into the subject and
continues with some deeper results such as Poincaré duality, the Cech—de
Rham complex, and the Thom isomorphism theorem. Many of our proofs
in this part are taken from the classical textbook of Bott and Tu [2] which
is also a highly recommended reference for a deeper study of the subject
(including sheaf theory, homotopy theory, and characteristic classes).

14 August 2018 Joel W. Robbin and Dietmar A. Salamon
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Chapter 1

Degree Theory Modulo Two

In this and the following two chapters we follow closely the beautiful book
“Topology from the Differentiable Viewpoint” by Milnor [14]. Milnor’s mas-
terpiece of mathematical exposition cannot be improved. The only excuse
we can offer for including the material in this book is for completeness of
the exposition. There are, nevertheless, two minor points in which the first
three chapters of this book differ from [I4]. The first is that our exposition
uses the intrinsic notion of a smooth manifold. The basic definitions are
included in Section and the proofs of some foundational theorems such
as the existence of partitions of unity and of embeddings in Euclidean space
are relegated to the appendix. For a more extensive discussion of these con-
cepts the reader is referred to the two introductory chapters of [2I] which
are understood as prerequisites for the present book. A second minor point
of departure from Milnor’s text is the inclusion of the Borsuk—Ulam theorem
in Section at the end of the present chapter. The other four section of
this chapter correspond to the first four chapters of Milnor’s book. After
the introductory section, which includes a proof of the fundamental theo-
rem of algebra, we discuss Sard’s theorem, manifolds with boundary, and
the Brouwer Fixed Point Theorem in Section include a proof of Sard’s
Theorem in Section and introduce the degree modulo two of a smooth
map in Section Throughout we assume that the reader is familiar with
first year analysis and the basic notions of point set topology.
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4 CHAPTER 1. DEGREE THEORY MODULO TWO

1.1 Smooth Manifolds and Smooth Maps

Let U C R™ and V C R” be open sets. A map f: U — V is called smooth
iff it is infinitely differentiable, i.e. iff all its partial derivatives

aa1+"'+amf
0f=—F5——2—, = e e Ny°,
exist and are continuous. For a smooth map f = (f1,...,fn) : U — V and

a point x € U the derivative of f at x is the linear map df(z) : R™ — R"”
defined by

flz+1t8) — f(x)
; 7

df ()¢ - f(@ -+ t€) = lim EER™.

dt|,_q

This linear map is represented by the Jacobian matrix of f at x which
will also be denoted by

i) )
g(@) - G (a)

df (x) :== : : e R™™,
dfn Ofn
) - glm(a)

Note that we use the same notation for the Jacobian matrix and the cor-
responding linear map from R" to R™. The derivative satisfies the chain
rule. Namely, if U CR™, V C R", W C R? are open sets and f: U =V
and g : V — W are smooth maps then go f : U — W is smooth and

d(go f)(z) =dg(f(x)) odf(z) : R™ — RP (1.1.1)

for every x € U. Moreover the identity map idy : U — U is always smooth
and its derivative at every point is the identity map of R™. This implies
that, if f: U — V is a diffeomorphism (i.e. f is bijective and f and f~!
are both smooth), then its derivative at every point is an invertible linear
map and so m = n. The Inverse Function Theorem is a partial converse (see
Theorem below for maps between manifolds).

Following Milnor [14], we extend the definition of smooth map to maps
between subsets X C R™ and Y C R™ which are not necessarily open. In
this case a map f: X — Y is called smooth if for each xyg € X there exists
an open neighborhood U C R™ of g and a smooth map £ : U — R™ that
agrees with f on UNX. A map f: X — Y is called a diffeomorphism
if f is bijective and f and f~! are smooth. When there exists a diffeomor-
phism f: X — Y then X and Y are called diffeomorphic. When X and Y
are open these definitions coincide with the usage above.
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Smooth Manifolds

Definition 1.1.1 (Smooth m-Manifold). Let m € Ny. A smooth m-
manifold is a topological space M, equipped with an open cover {Uy}aca
and a collection of homeomorphisms ¢ : Uy — Q4 onto open sets 2, C R™
(see Figure such that, for each pair o, B € A, the transition map

Gpe = Pp 0 Ot pa(Ua NUs) — ¢5(Us N Up) (1.1.2)

is smooth. The homeomorphisms ¢, are called coordinate charts and the
collection o := {Uy, o }aca is called an atlas.

Figure 1.1: Coordinate charts and transition maps.

Let (M,o = {Ua, ¢a}aca) be a smooth m-manifold. Then a sub-
set U C M is open if and only if ¢,(U NU,) is an open subset of R™ for
every o € A. Thus the topology on M is uniquely determined by the at-
las. A homeomorphism ¢ : U — € from an open set U C M to an open
set Q C R™ is called compatible with the atlas .o/ if the transition
map ¢a0¢ 1 d(UNU,) = ¢o(UNU,) is a diffeomorphism for each a.
The atlas & is called maximal if it contains every coordinate chart that
is compatible with all its members. Thus every atlas &/ is contained in
a unique maximal atlas .7, consisting of all coordinate charts ¢ : U —
that are compatible with /. Such a maximal atlas is also called a smooth
structure on the topological space M. We do not distinguish the mani-
folds (M, o) and (M, «/") if the corresponding maximal atlasses agree, i.e. if
the charts of .7’ are all compatible with &/ (and vice versa) or, equivalently,
if the union & U &/’ is again a smooth atlas. If this holds, we say that &/
and &7’ induce the same smooth structure on M.

Example 1.1.2. The m-sphere S™ := {a: eR™T |22 + ...+ x%H_l = 1} is
a smooth manifold with the atlas ¢4 : UL — R given by

Uy == 8"\ {(0,...,0,F1)}, ¢i(x)::< no n )

1:|:.2Um+1’ .’1:|:ZCm+1
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Example 1.1.3. The real m-torus is the topological space
T :=R™/Z™

equipped with the quotient topology. Thus two vectors z,y € R™ are equiv-
alent if their difference z — y € Z™ is an integer vector and we denote
by 7 : R™ — T"™ the obvious projection which assigns to each vector x € R™
its equivalence class

m(x) = [x] ==+ 2Z™.

Then a set U C T™ is open if and only if the set 7=!(U) is an open subset
of R™. An atlas on T™ is given by the open cover

Uy :={lz] |z € R, |z —a| < 1/2},

parametrized by vectors a € R™, and the coordinate charts ¢, : U, — R™
defined by ¢o([z]) := x for x € R™ with |z — o] < 1/2. Exercise: Show
that each transition map for this atlas is a translation by an integer vector.

Example 1.1.4. The complex projective space CP" is the set
CP" = {E c crtt | ¢ is a 1-dimensional complex subspace}
of complex lines in C"*1. It can be identified with the quotient
CP" = (T {0}) /T

of the space of nonzero vectors in C"*! modulo the action of the multiplica-
tive group C* = C\ {0} of nonzero complex numbers. The equivalence class

of a nonzero vector z = (20, ..., 2,) € C"! will be denoted by
2] =[z0:21: 1 2n] i ={X2| A€ C*}
and the associated line is £ = Cz. An atlas on CP" is given by the open
cover U; := {[z0: - :25)|2i #0} for i = 0,1,...,n and the coordinate
charts ¢; : U; — C™ are
20 Zi—1 Zit1 Zn
i Teee =—,... e 1.1.3
¢1([ZO Zn]) (Zi’ ) 2 ) 2 ) ) Zz) ( )

Exercise: Prove that each ¢; is a homeomorphism and the transition maps
are holomorphic. Prove that the manifold topology is the quotient topology,
i.e. if 7 : C"*1\ {0} — CP" denotes the obvious projection, then a sub-
set U C CP™ is open if and only if 771(U) is an open subset of C"*1\ {0}.
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Example 1.1.5. The real projective space RP" is the set
RP™ = {¢ c R""!| ¢ is a 1-dimensional linear subspace }

of real lines in R™*!. It can again be identified with the quotient
RP" = (RnJrl \ {0}) /R*

of the space of nonzero vectors in R”*! modulo the action of the multiplica-
tive group R* = R\ {0} of nonzero real numbers, and the equivalence class
of a nonzero vector z = (g, ..., z,) € R""! will be denoted by

[r] = [wo @y : - 2] = { Az | A € R}
An atlas on RP" is given by the open cover

Ui:=A[xo: - :xp] |z #0}

and the coordinate charts ¢; : U; — R™ are again given by , with z;
replaced by z;. The arguments in Example show that these coordinate
charts form an atlas and the manifold topology is the quotient topology. The
transition maps are real analytic diffeomorphisms.

Example 1.1.6. Consider the complex Grassmannian
Gr(C") :={V Cc C"|v is a k-dimensional complex linear subspace} .

This set can again be described as a quotient space G (C™) = Fi(C")/U(k).
Here
Fi(C) = {D e ™k | D*D = ]1}

denotes the set of unitary k-frames in C" and the group U(k) acts on Fj(C")
contravariantly by D — Dg for g € U(k). The projection

7 Fr(C") — Gi(C")

sends a matrix D € Fi(C") to its image V := w(D) := im D. A sub-
set U C Gi(C") is open if and only if 7=(U) is an open subset of F(C").
Every k-dimensional subspace V' C C™ determines an open set Uy C G (C")
consisting of all k-dimensional subspaces of C" that can be represented as
graphs of linear maps from V to V1. This set of graphs can be identified
with the space Hom®(V, V1) of complex linear maps from V to V' and
hence with C(»~*)*k_ This leads to an atlas on Gj(C"™) with holomorphic
transition maps and shows that Gi(C") is a manifold of complex dimen-
sion k(n — k). Exercise: Verify the details of this construction. Find
explicit formulas for the coordinate charts and their transition maps. Carry
this over to the real setting. Show that CP™ and RP"™ are special cases.
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Example 1.1.7 (The real line with two zeros). A topological space M
is called Hausdorff if any two points in M can be separated by disjoint
open neighborhoods. This example shows that a manifold need not be a
Hausdorff space. Consider the quotient space

M:=Rx{0,1}/ =

where [z,0] = [z,1] for x # 0. An atlas on M consists of two coordinate
charts ¢g : Up — R and ¢ : Uy — R where

Ui :={[z,i] |z € R}, ¢i([z,i]) ==

for ¢ = 0,1. Thus M is a l-manifold. But the topology on M is not
Hausdorff, because the points [0, 0] and [0, 1] cannot be separated by disjoint
open neighborhoods.

Example 1.1.8 (A 2-manifold without a countable atlas). Consider
the vector space X = R x R? with the equivalence relation

either y1 = yo # 0, t1 + x1y1 = t2 + Toys

[t1, 21, 2] = [t2, 22, y2] or y1 = yo = 0, t; = to, 71 = 9.

For y # 0 we have [0,z,y] = [t,x — t/y,y|, however, each point (z,0) on
the z-axis gets replaced by the uncountable set R x {(x,0)}. Our manifold
is the quotient space M := X/ = with the topology induced by the atlas
defined below. (This is not the quotient topology.) The coordinate charts
are parametrized by the reals: for ¢ € R the set Uy C M and the coordinate
chart ¢; : Uy — R? are given by

Up = {[t,z,y] | z,y € R}, ([t x,y)) = (2, 9).

A subset U C M is open, by definition, if ¢;(U NU;) is an open subset of R?
for every t € R. With this topology each ¢; is a homeomorphism from Uy
onto R? and M admits a countable dense subset S := {[0,z,y]| =,y € Q}.
However, there is no atlas on M consisting of countably many charts. (Each
coordinate chart can contain at most countably many of the points [¢,0, 0].)
The function f : M — R given by f([t,z,y]) := t + xy is smooth and each
point [¢,0,0] is a critical point of f with value ¢t. Thus f has no regular
value. Exercise: Show that M is a path-connected Hausdorff space.

Throughout this book we will tacitly assume that manifolds are Haus-
dorff and second countable. This excludes pathological examples such as
Example and Example Theorem shows that smooth man-
ifolds whose topology is Hausdorff and second countable are precisely those
that can be embedded in Euclidean space.



1.1. SMOOTH MANIFOLDS AND SMOOTH MAPS 9

Smooth Maps
Definition 1.1.9 (Smooth Map). Let
(M, {(¢a;Ua)}aca), (N, {(¢5,V5)}pen)

be smooth manifolds. A map f: M — N is called smooth if it is continuous
and the map

foa=1pofody': da(Uan f7H(Vs)) = ¢(Vs) (1.1.4)

18 smooth for every a € A and every 8 € B. It is called o diffeomorphism
if it is bijective and f and f~' are smooth. The manifolds M and N are
called diffeomorphic if there exists a diffeomorphism f: M — N.

The reader may verify that compositions of smooth maps are smooth,
and that the identity map is smooth.

Example 1.1.10. The map T! — St : [t] — (cos(27t),sin(27t)) is a diffeo-
morphism.

Example 1.1.11. The map f : S> — CP! defined by
f(ﬂj) . [1 + xr3 . T1 + il’Q], lf X 7& (0707 _1>7
T [0:1], if z=(0,0,-1),
for x = (21,22, 23) € S? is a diffeomorphism whose inverse is given by

_ 2Re(Zpz 2Im(Zzpz 20|12 = |21?
P 0 ) = (2, B, fo— )
202 + |21]? 7 |20[* + [21[* " [20]* + |21]
for [zg : 1] € CPL.

Example 1.1.12. Let p(z) = ag + a1z + asz? + - - - + a4z be a polynomial
with complex coefficients. Then the map f : CP! — CP! defined by

f([z0 : z1)) == [zg : aozg + alzg_lzl + 4 ad_lzoz‘li_l + adzf]

for [2g : z1] € CP! is smooth.

Example 1.1.13. Let A € Z™*™ and le b € R™. Then the map z — Ax + b
descends to a smooth map f: T™ — T™.

Smooth manifolds and smooth maps between them form a category
whose isomorphisms are diffeomorphisms. The subject of differential topol-
ogy can roughly be described as the study of those properties of smooth
manifolds that are invariant under diffeomorphisms. A longstanding open
problem in the field is of whether every smooth four-manifold that is homeo-
morphic to the four-sphere is actually diffeomorphic to the four-sphere. This
is known as the four-dimensional smooth Poincaré conjecture.
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Tangent Spaces and Derivatives

Definition 1.1.14. Let (M,{(¢a,Ua)}aca) be a smooth m-manifold and
let (N,{(vg,V3)}pecB) be a smooth n-manifold. Fix an element p € M.

(i) The tangent space of M at p is the quotient space

T,M = | J {a} xR™/%, (1.1.5)
JUSIOp

where the union is over all o« € A with p € Uy and

(e, &) X (8.n) = d(pgodt) (@)E=n, z:=da(p).

The equivalence class of a pair (a,§) € A x R™ with p € U, is denoted
by [a,&]p. The quotient space T,M is a real vector space of dimension m.

(i) Let f: M — N be a smooth map. The derivative of f at p is the
linear map df (p) : TyM — T,y N defined by

df (p)le, Elp = [B, dfa ()] fpy, T = balp), (1.1.6)

fora € Awithp € Uy and B € B with f(p) € V3, where the map fgq is given
by equation (L.1.4) in Definition[1.1.9

Remark 1.1.15. (i) Think of N = R" as a manifold with a single coordi-
nate chart ¢¥g = id : R" — R". For every ¢ € N = R" the tangent space T, N
is then canonically isomorphic to R™ via . Thus the derivative of a
smooth map f: M — R™ at p € M is a linear map df(p) : T,M — R", and

the formula reads
df (p)[ev, €lp = d(f o ¢ ") ()€

for p € Uy, = := ¢o(p), and £ € R™.

(ii) The formula in part (i) also applies to maps defined on some open sub-
set of M. In particular, with f = ¢ : Uy — R™ we have d¢,(p)[e, &, = &.
Thus d¢q(p) : T,M — R™ is the canonical vector space isomorphism deter-
mined by a. When the coordinate chart ¢, : Uy — 4 is understood from
the context, it is customary to use the notation

0
833‘i

(p) = [, ] € TyM (1.1.7)

forpe U, and i =1,...,m, where eq,..., e, is the standard basis of R™.
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(iii) For each smooth curve v : R — M with v(0) = p we define the deriva-
tive 4(0) € T, M as the equivalence class

’Y(O) = [av %}t:[] @Z)a('}/(t))]

In the notation of Definition [1.1.14f the vector §(0) € T )M is the image of
the vector 1 € ToR = R under the linear map dvy(0) : ToR — T’ ) M.

(iv) For every p € M and every tangent vector v € T,M there exists a
smooth curve v :R — M such that v(0) = p and 4(0) =v. To see this,
choose a coordinate chart ¢,, : Uy, — Q4 such that p € Uy, define x := ¢ (p)
and & := dp,(p)v, choose a constant € > 0 such that x + t£ € Q, for allt € R
with [t| < e, and define y(t) := ¢, (z + \/;?5) for t € R.

»

The Inverse Function Theorem

A fundamental property of the derivative is the chain rule. It asserts that,
if f: M — N and g: N — P are smooth maps between smooth manifolds,
then the derivative of the composition go f: M — P at p € M is given by

d(go f)(p) =dg(q) odf(p), q:=f(p)eN

In other words, to every commutative triangle

/\

T9of 2
of smooth maps between smooth manifolds M, N, P and every p € M there
corresponds a commutative triangle of linear maps

dV\

where ¢ := f(p) € N and r:=g(q) € P. A second fundamental observa-
tion is that the derivative of the identity map f =idy; : M — M at each
point p € M is the identity map of the tangent space, i.e.

gof

didM (p) = idTpM

for all p e M.
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Lemma 1.1.16. Let f : M — N be a diffeomorphism between smooth man-
ifolds and let p € M. Then the derivative df (p) : TyM — Ty, N is a vector
space isomorphism. In particular, M and N have the same dimension.

Proof. Denote the inverse map by g := f~!: N — M and let ¢ := f(p) € N.
Then g o f = idy and so dg(q) o df (p) = d(g o f)(p) = idz,ar by the chain
rule. Likewise df (p) o dg(q) = d(f o g)(¢) = idr,~ and so df (p) is a vector
space isomorphism with inverse dg(q) : T,N — T,,M. O

A partial converse of Lemma [I.1.16]is the inverse function theorem.

Theorem 1.1.17 (Inverse Function Theorem). Let M and N be smooth
m-manifolds and let f : M — N be a smooth map. Let py € M and suppose
that the derivative df (po) : Tpy M — T(po) N is a vector space isomorphism.
Then there exists an open neighborhood U C M of py such that V := f(U)
is an open subset of N and the restriction f|y : U — V is a diffeomorphism.

Proof. For maps between open subsets of Euclidean space a proof can be
found in [22 Appendix C]. The general case follows by applying the special
case to the map fg, in Definition O

Regular Values

Definition 1.1.18 (Regular value). Let M be a smooth m-manifold, let N
be a smooth n-manifold, and let f: M — N be a smooth map. An ele-
ment p € M is a called o regular point of f if df(p):T,M — T,;N is
surjective and is called a critical point of f if df (p) is not surjective. An
element ¢ € N is called a regular value of f if the set f~'(q) contains
only regular points and is called a critical value of f if it is not a reqular
value, i.e. if there exists an element p € M such that f(p) = q and df (p) is
not surjective. The set of critical points of f will be denoted by

Cp = {p eM ‘ df(p) : TyM — Ty, N is not surjective} .
Thus f(Cy) C N is the set of critical values of f and its complement
Ry :=N\Ff(Cy)

1s the set of reqular values of f.

Remark 1.1.19. Let f: M — N be as in Definition [[.1.18]

(i) The set C; of critical points of f is a closed subset of M. If M is
compact, if follows that Cy is a compact subset of M, hence its image f(Cy)
is a compact and therefore closed subset of IV, and so the set R of regular
values of f is open.
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(ii) Assume M is compact and dim(M) = dim(N) and let ¢ € N be a reg-
ular value of f. Then the set f~!(¢g) € M is closed and therefore com-
pact. Moreover, f~!(g) consists of isolated points. Namely, if p € f~1(q)
then df (p) : T,M — TyN is bijective, hence by the Inverse Function Theo-
rem there exists an open neighborhood U C M of p such that f|y is
injective, and this implies U N f~'(q) = {p}. Since f~'(q) is compact and
consists of isolated points, it is a finite subset of M.

(iii) Assume M is compact and dim(M) = dim(N). Then Ry C N is open
by (i) and #f71(g) < oo for all ¢ € Ry by (ii). We prove that the map

Ry —No:gr #f(q)

is locally constant. Fix a regular value ¢ € N of f, assume k := # f~1(q) > 0,

and write f~'(¢) = {p1,...,pr}. By the Inverse Function Theorem [1.1.17]
there exist open neighborhoods U; C M of p; and V; C N of ¢ such that f|y,

is a diffeomorphism from U; to V; for each ¢. Shrinking the U;, if necessary,
we may assume that U; N U; = () for ¢ # j. Then the set

VI=V1ﬂ”-ﬁVk\f(M\(UlU'--UUk))
is open, satisfies ¢ € V C Ry, and #f'(¢/) =k for all ¢ € V.

The Fundamental Theorem of Algebra

Let p : C — C be a nonconstant polynomial. Thus there exists a positive
integer d and complex numbers ag, a1, .. .,aq € C such that ag # 0 and

p(2) = ap + a1z + agz® + - + ag2?

for all 2 € C. Define the map f : CP! — CP! by f([1 : 2]) := [1 : p(2)]
for z € C and by f([0:1]:=1[0:1] (see Example [1.1.12)). Then the set of
critical points of f is given by

d
Cr= {[1 12|z €C,p(z) = Zlmkzk_l = 0} U {[O : 1]}
k=1

Thus Cy is a finite subset of CP! and so the set R = CP'\ f(Cy) of regular
values of f is connected. Hence it follows from part (iii) of Remark
that the function Ry — N : ¢ #f~%(q) is constant. Since f is not
constant, we have #f~1(¢g) > 0 for all ¢ € Ry. Since CP! is compact, an
approximation argument shows that #f~1(q) > 0 for all ¢ € CP! and hence,
in particular, #f~([1 : 0]) > 0. Thus there exists a complex number z € C
such that p(z) = 0 and this proves the fundamental theorem of algebra.
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1.2 The Theorem of Sard and Brown

On page we have seen that the set of singular values of a polynomial
map from CP! to itself is finite. In general, the set of singular values of a
smooth map may be infinite, however, it has Lebesgue measure zero in each
coordinate chart. This is the content of Sard’s Theorem [23], proved in 1942
after earlier work by A.P. Morse [I8].

Theorem 1.2.1 (Sard). Let U C R™ be an open set, let f:U — R"™ be a
smooth map, and denote the set of critical points of f by

C := {x € U | the derivative df (x) : R™ — R" is not surjective} .
Then the set f(C) C R™ of critical values of f has Lebesgue measure zero.
Proof. See page O

Since a set of Lebesgue measure zero connot contain any nonempty open
set, it follows from Theorem that the set R™\ f(C) of regular values
of f is dense in R™. This was proved by A.P. Brown [4, Thm 3-II1] in 1935
and rediscovered by Dubovitskii [7] in 1953 and by Thom [24] in 1954.

Theorem is not sharp. It actually suffices to assume that f is a
C'’-map, where ¢ > 1+ max{0,m —n}. The proof of this stronger version
can be found in [I]. For the applications in this book it suffices to assume
that f is smooth as in Theorem [1.2.1] The proof in Section [1.4]is taken from
Milnor [I4] and requires the existence of many derivatives.

Corollary 1.2.2 (Sard—Brown). Let M be a smooth m-manifold (whose
topology is second countable and Hausdorff), let N be a smooth n-manifold,
let f: M — N be a smooth map, and let Cy C M be the set of critical points
of f (where the derivative df (p) : T, M — Ty, N is not surjective). Then the
set f(Cy) of critical values of f has Lebesgue measure zero in each coordinate
chart and the set Ry := N\ f(Cy) of regular values of f is dense in N.

Proof. Since M is paracompact by Lemma it admits a countable
atlas {Uqa, ¢a}aca. Let ¥ :V — Q CR™ be a coordinate chart on N and,
for each o € A, define the map f, := o fop ! : Qu = ¢o(UsNfH(V)) — Q
and denote by C, C €, the set of critical points of f,. By Theorem [1.2.1
the set fo(Cq) C R™ has Lebesgue measure zero for every a € A. Since A is
countable, the set ¢ (f(C;)NV)) = Uyeca fa(Ca) C 2 has Lebesgue measure
zero. Hence the set (RyNV) = Q\ ¢(f(Cr) NV) is dense in €. Since this
holds for each coordinate chart on N, it follows that R is dense in N. This

proves Corollary O
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Submanifolds

Definition 1.2.3. Let M be a smooth m-manifold and let P C M. The
subset P 1is called a d-dimensional submanifold of M if, for every ele-
ment p € P, there exists an open neighborhood U C M of p and a coordinate
chart ¢ : U — Q with values in an open set £ C R™ such that

H(UNP)=0n ([R? x {0}). (1.2.1)

Let P C M be a d-dimensional submanifold of a smooth m-manifold M.
Then P is a smooth d-manifold in its own right. The topology on P is the
relative topology as a subset of M and the smooth structure is determined
by the coordinate charts ¢ := 7 o ¢|ynp — R?, where ¢ : U — Q C R™ is a
coordinate chart on M that satisfies and 7 : R™ — R¢ denotes the
projection m(z1,...,2n) := (z1,...,2q). By part (iv) of Remark [1.1.15] the
tangent space of P at p € P can be naturally identified with the space

there exists a smooth curve v: R — M }
such that v(R) C P, v(0) = p, (0) = v

Lemma 1.2.4. Let M be a smooth m-manifold, let N be a smooth n-
manifold, let f : M — N be a smooth map, and let ¢ € N be a regular value
of f. Then the set P := f~1(q) is an (m —n)-dimensional submanifold of M
and its tangent space at p € P is given by T,P = ker df (p).

Proof. Let d:=m —n and let pg € P. Then df(pg) is surjective and this
implies dim(ker df (pg)) = d. Choose a linear map ®¢ : T,y M — R? whose
restriction to ker df (pp) is bijective and, by Exercise choose a smooth
map g : M — R? such that g(pg) = 0 and dg(py) = ®g. Define the smooth
map F : M — R% x N by F(p) := (g(p), f(p)) for p € M. Then the deriva-
tive dF(pg) = ®¢ x df (po) : Ty, M — R? x T, N is bijective. Hence the In-
verse Function Theorem [I.1.17] asserts that there exists an open neigh-
borhood U C M of pg such that F(U) C R? x N is an open neighborhood
of F(po) = (0,q) and F|y : U — F(U) is a diffeomorphism. Shrinking U if
necessary, we may assume that f(U) C V, where V C N is an open neigh-
borhood of ¢ which admits a coordinate chart ¢ : V' — R"™. Then the coor-
dinate chart ¢ : U — R™, defined by ¢(p) := (9(p),¥(f(p))) for p € U, sat-
isfies equation in Definition Moreover, if p € P and v € T}, P,
then there exists a smooth curve v : R — P such that v(0) = p and 4(0) = v
hence df (p)v = %‘tzo f(v(t)) =0, and so df (p)v = 0. Thus T,P C ker df (p)
and, since both subspaces have dimension d, this proves Lemma O

nP:@e%M’

Exercise 1.2.5. For every p € M and every linear map A : T,M — R there
exists a smooth function f: M — R such that f(p) =0 and df(p) = A.
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1.3 Manifolds with Boundary

This section introduces the concept of a manifold with boundary. Fix a
positive integer m and introduce the notations
H™ :={z = (z1,...,2m) ERm‘xm >0},

1.3.1
8Hm::{x:(xl,...,xm)ERm‘xm:O}, ( )

for the m-dimensional upper half space and its boundary.

Figure 1.2: A manifold with boundary.

Definition 1.3.1. A smooth m-manifold with boundary consists of a
(second countable Haudorff) topological space M, an open cover {Uy}aca
of M, and a collection of homeomorphisms

Oa Uy = Qg

onto open subsets Qn, C H™, one for every o € A, such that, for every
pair o, f € A, the transition map

$pa = ¢ 0 by : $a(UaNUs) = ¢5(Ua N Up)
is a diffeomorphism (see Figure . The homeomorphisms ¢q : Uy — Qg
are called coordinate charts, the collection {¢a,Uqs}aca is called an atlas
of M, and the subset
OM={peM ’ ba(p) € OH™ for every o € A withp € Up}.  (1.3.2)

is called the boundary of M.
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Remark 1.3.2. Let (M, {¢qa,Us}aca) be a manifold with boundary.

(i) The domain Qup = ¢a(Us NUg) C H™ of the transition map ¢g, in
Definition need not be an open subset of R™. If z € Q,3 NIH™ is a
boundary point of €1,g, then the map ¢g, is called smooth near Z iff there
exists an open neighborhood U C R™ of Z and a smooth map ® : U — R™
such that ®(z) = ¢ga(z) for all z € QN U.

(ii) If p € M and let «, B € A such that p € U, NUg. Then
ba(p) € OH™ — ¢p(p) € OH™ (1.3.3)

To see this, assume that Z := ¢ (p) € Qg \ OH™ and ¢s(p) € OH™. Then
the mth coordinate ¢gq,m : 203 — R has a local minimum at Z and hence
the Jacobi matrix d¢g,(Z) is not invertible, a contradiction.

(iii) The boundary M admits the natural structure of an (m — 1)-manifold
without boundary. (Exercise: Prove this.)

(iv) The tangent space of M at p € M is defined as the quotient
T,M := | ] {a} xR™/~ (1.3.4)
pEU
under the equivalence relation

def

(o, &) ~ (B,m) — N = dpga(da(p))E.

Thus the tangent space at each boundary point p € OM is a vector space
(and not a half space). For p € M and a € A such that p € U,, define the
linear map

doa(p) : TyM — R™

by
doo(p)v =& for v = [, &] € T, M.

Here [o, £] denotes the equivalence class of the pair (a, &) with £ € R™.
(v) Let p € OM. A tangent vector v € T, M is called outward pointing if

doo(p)v € R™\ H™

for some, and hence every, o € A such that p € U,. (Exercise: Prove that
this condition is independent of the choice of a.)
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Lemma 1.3.3. Let M be a smooth m-manifold without boundary and sup-
pose that g : M — R is a smooth function such that 0 is a reqular value of g.
Then the set

My :={p € M|g(z) >0}

is an m-manifold with boundary
oMy := {pEM’g(z)zO}.

Proof. Fix an element py € M such that g(po) = 0. By [21, Theorem 2.2.17]
the set g~1(0) C M is a smooth (m — 1)-dimensional submanifold of M.
Hence there exists an open neighborhood U C M of py and a coordinate
chart ¢ : U — Q with values in an open set {2 C R™ such that

d(UNg~1(0) =N R™" x {0}).

Adding a constant vector in R™~! x {0} to ¢ and shrinking U, if necessary,
we may assume without loss of generality that

$po) =0,  Q={zeR™[|z| <r}
for some constant r > 0. Thus, for every p € U, we have

g(p) =0 = ém(p) = 0.

Thus (g o ¢~ 1) (z) = 0 for all z € Q with x,,, = 0. Since zero is a regular value
of g, this implies that %(g o¢p ) (z) #0forall z = (z1,...,2m-1,0) € Q.
This set is connected and so the sign is independent of x. Replacing ¢ by
its composition with the reflection (x1,...,zm) = (T1,..., Tm—1, —Tm), if
necessary, we may assume that

%(90¢_1)($)>0 for all = (z1,...,Zm-1,0) € Q.

Since Q = {z € R™||z| < r}, this implies
peUn M = dm(p) >0

for all p € U. Thus Uy := U N My = {p € U |g(p) > 0} is an open neighbor-
hood of py with respect to the relative topology of My and

¢0:U0—)Q0:={$€Q|meO}CHm

is a homeomorphism. Cover My by such open sets to obtain an atlas with
smooth transition maps. This proves Lemma [1.3.3] O
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Example 1.3.4. The closed unit disc
D™ :={zx e R"||z| < 1}

is a smooth manifold with boundary oD™ = S™~1 = {z € R™ ’ lz| =1}.
This follows from Lemma with M =R™ and g(z) =1— > 22.

In Lemma [1.3.3] the manifold M has empty boundary, the submani-
fold My C M has codimension zero. and near each boundary point of M
there exists a coordinate chart of M on an open set U C M that sends the
intersection U N My to an open subset of the closed upper half space H™.
The next definition introduces the notion of a submanifold with boundary
of any codimension such that the boundary of the submanifold is contained
in the boundary of the ambient manifold M.

Rm—n

F(0)

Figure 1.3: A submanifold with boundary.

Definition 1.3.5. Let M be a smooth m-manifold with boundary. A sub-
set X C M is called a d-dimensional submanifold with boundary

0X =XNoM,

if, for every p € X, there exists an open neighborhood U C M of p and a
coordinate chart ¢ : U — Q with values in an open set Q C H™ such that

HUNX)=0n ({0} x HY). (1.3.5)

Exercise 1.3.6. Let M be a smooth m-manifold without boundary. Call
a subset X C M a d-dimensional submanifold with boundary if, for ev-
ery p € X, there exists an open neighborhood U C M of p and a coordinate
chart ¢ : U — Q with values in an open set {2 C R™ that satisfies .
Prove that the set My in Lemma [1.3.3| satisfies this definition with d = m.
Prove that a closed subset My C M is an m-dimensional submanifold with
boundary if and only if its boundar dMy = My \ int(My) agrees with the
boundary of its interior and is an (m — 1)-dimensional submanifold of M.
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Lemma 1.3.7. Let M be a smooth m-manifold with boundary, let N be a
smooth n-manifold without boundary, let f : M — N be a smooth map, and
let ¢ € N be a regular value of f and a reqular value of f|apnr. Then the set

X:=fYg)={peM|flp)=q}c M
is an (m — n)-dimensional submanifold with boundary 0X = X NOM.

Proof. This is a local statement. Hence it suffices to assume that M = H™
and N =R" and ¢ =0 € R™.

Let f:H™ — R™ be a smooth map such that zero is a regular value
of f and of flggm. If f~1(0) NOH™ = () the result follows from [21, Theo-
rem 2.2.17]. Thus assume f~1(0) N OH™ # @ and let z € OH™ with f(z) = 0.
Choose an open neighborhood U C R™ of T and a smooth map F : U — R"
such that F(z) = f(z) for all x € UNH™. Since zero is a regular value
of f the derivative dF(z) = df(z): R™ — R" is surjective. Now denote
by e1,...,en the standard basis of R™. We prove the following.

Claim. There exist integers 1 < iy < - < i, <m — 1 such that
span{e;,,...,e;, } NkerdF(z) = {0} (1.3.6)

Denote by vy, ..., vy, € R™ the columns of the Jacobi matrix dF'(z) € R™*™.
Then the linear map d(f|oum)(Z) : TzOH™ = R™1 x {0} — R" is given
by d(flomm)(2)€ = Y7t &vi for € = (&1, &m—1,0) € R™1 x {0}. Since
this linear map is surjective, there exist integers 1 <43 < -+ <@, <m—1
such that det(v;,,...,v;,) # 0. These indices satisfy and this proves
the claim. Reordering the coordinates x1,...,x,,_1, if necessary, we may
assume without loss of generality that i, = v forv=1,...,n.
Now define the map @ : U — R™ = R"” x R™™" by

O(z):= (F(2),Tnt1,- - Tm) for x = (z1,...,2m) € U.
Then d®(2)€ = (AF ()€, Epst, - - Em) for € = (£1,...,6n) € R™. By the

claim with i, = v for v =1,...,n the linear map d®(z) : R™ — R™ is in-
jective and hence bijective. Thus the inverse function theorem asserts that
the restriction of ® to a sufficiently small neighborhood of Z is a diffeomor-
phism onto its image. Shrink U, if necessary, to obtain that ®(U) is an open
subset of R™ and ® : U — ®(U) is a diffeomorphism. Then U NH™ is an
open neighborhood of z in M = H™, the set Q := (U NH") = &(U) NH™
is an open subset of H™, the restriction ¢ := ®|yagm : UNH"™ — Q is a
diffeomorphism and hence a coordinate chart of M, and

dp(UNX)=0n ({0} xH™™)
(see Figure [1.3). This proves Lemma O
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The Brouwer Fixed Point Theorem
Recall from Example that the closed unit disc
D™= {z e R" |z} + a5+ -+, <1}

in R™ is a smooth manifold with boundary oD™ = S™~!. The following
fixed point theorem was proved by L.E.J. Brouwer [3] in 1910.

Theorem 1.3.8 (Brouwer Fixed Point Theorem). Every continuous
map g : D™ — D™ has a fized point.

Proof. See page O

Brouwer’s Fixed Point Theorem extends to continuous maps from any
nonempty compact convex subset of R™ to itself. An infinite-dimensional
variant of this result is the Tychonoff Fixed Point Theorem [25] which
asserts that, if C' is a nonempty compact convex subset of a locally convex
topological vector space, then every continuous map g : C' — C has a fixed
point. Another generalization of Brouwer’s Fixed Point Theorem is the
Lefschetz Fixed Point Theorem in Corollary

Following Milnor [14] we will first prove Theorem for smooth map
and then use an approximation argument to establish the result for all con-
tinuous maps. In the smooth case the proof is based on the following key
lemma which uses Sard’s Theorem about the existence of regular values
and Lemma [I.3.7] about the preimages of regular values.

Lemma 1.3.9. Let M be a compact smooth manifold with boundary. There
does not exist a smooth map f: M — OM that restricts to the identity map
on the boundary.

Proof. Suppose that there exists a smooth map f : M — dM such that
flp)=p  forall pedM.

By Corollary there exists a regular value ¢ € 9M of f. Since q is also
a regular value of the identity map id = f|gas, it follows from Lemma m
that the set X := f~!(gq) is a compact smooth 1-dimensional manifold with
a single boundary point

0X = f~H(g)nOM = {q}.

However, Theorem asserts that X is a finite union of circles and arcs
and hence must have an even number of boundary points. This contradiction

proves Lemma [T.3.9] O
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Lemma 1.3.10. Let g : D™ — D™ be a smooth map. Then there exists an
element © € D™ such that g(z) = x.

Proof. Suppose g(x) # x for every x € D™. For x € D™ let f(x) € S™ ! be
the unique intersection point of the straight line through x and g(x) that is
closer to x than to g(x) (see Figure . Then f(z) =z for all z € S™ L.
An explicit formula for f(z) is

_ _ r—g(@) . 2 2

f(z) =z + tu, u = T @)’ ti=/1—|z]2+ (z,u)2 — (z,u).

This formula shows that the map f: D™ — S™ ! is smooth. Such a map
does not exist by Lemma Hence our assumption that g does not have
a fixed point must have been wrong, and this proves Lemma, O

f(x)
Figure 1.4: Proof of Brouwer’s Fixed Point Theorem.

Proof of Theorem|[I.3.8, Let g : D™ — D™ be a continuous map and assume
that g(z) # = for all x € D™. Then, since D™ is a compact subset of R,
there exists a constant ¢ > 0 such that |g(z) — x| > 2¢ for all x € D™. By
the Weierstrall Approximation Theorem (see for example [5, Thm 5.4.5]
with M = D™ and A the set of polynomials in m variables with real coeffi-
cients), there exists a polynomial map p : D™ — R™ such that

Ip(z) —g(x)| < ¢ for all z € D™.
Define the map ¢ : D™ — R™ by

Then |¢(z)] <1 and

for all x € D™. Thus ¢ : D™ — D™ is a smooth map without fixed points,
in contradiction to Lemma, [1.3.10, This proves Theorem [1.3.8 O

< 2e
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1.4 Proof of Sard’s Theorem

The proof given below follows closely the argument in Milnor [14].

Proof of Theorem |[1.2.1. Let U C R™ be an open set, let f: U — R" be a
smooth map, and denote by

C:={z e U|df(z): R™ — R" is not surjective}

the set of critical points of f. We prove by induction on m that the
set f(C) C R™ of critical values of f has Lebesgue measure zero.

Assume first that m =0. If n=0 then C =0 and so f(C) =0 has
Lebesgue measure zero. If n > 1 then either C=U =0 or C=U = RY is a
singleton, and in both cases the set f(C) has Lebesgue measure zero.

Now let m € N be a positive integer and assume by induction that the
assertion holds with m replaced by m — 1. For k € N define

. o _forall = (ai1,...,am) € NJ
Ck.{xe(?’af(:c) such that |a| =1+ -+ <k |~

Thus the Ci form a descending sequence of relatively closed sets
COCiDCDC3D---.

The proof that the set f(C) of critical values of f has Lebesgue measure zero

will consist of the following three steps.

Step 1. The set f(C\ C1) has Lebesgue measure zero.

Step 2. The set f(Ci \ Cx+1) has Lebesque measure zero for each k € N.

Step 3. The set f(Ci) has Lebesgue measure zero whenever k > = — 1.

It follows from these steps with & > 7 — 1 that the set

k—1

f©)y=re\eyul €\ Cisa) U £(Cr)

=1

has Lebesgue measure zero. We also remark that, if f is a nonconstant real
analytic function and U is connected, then ();cyC; = 0. In this situation
only Steps 1 and 2 are needed to deduce that the set

fe)=reNe)ulJ rei\ i)

i=1

has Lebesgue measure zero.
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Proof of Step 1. The set
C\Ci={zeU ‘ df (z) is not surjective and df (z) # 0}

is empty for n =0 and n = 1. Thus assume n > 2. Under this assumption
we prove the following.

Claim. FEwvery element T € C\ C1 has an open neighborhood V. C U such
that the set f(V NC) has Lebesgue measure zero.

We show first that the claim implies Step 1. To see this, note that U \ C; is
an open subset of R”™ and hence can be expressed as a countable union of
compact sets K; C U\ Cy, i.e. U\ C1 = ;2 K;. Thus

o0

C\Cl = U(KzﬂC)

=1

Since each set K; NC is compact it can be covered by finitely many open
sets V as in the claim. Hence there exist countable many sets Vi, Vs, Vs, ...
as in the claim such that

C\C C G(erw).

j=1
Thus -
flena) c U (V;Ne)

and so by the claim the set f(C\ Cl) has Lebesgue measure zero. Thus it
remains to prove the claim. The proof makes use of the following version of
Fubini’s Theorem. Denote by u, the Lebesgue measure on R"”.

Fubini’s Theorem. Let A C R®" =R x R"! be a Lebesque measurable set
and, fort € R, define

At = {(yQJH'vyn) eRnil|(t7y27"'7yn) GA}

If in—1(A¢) =0 for allt € R then pn(A) = 0.

When A is a Borel set, this assertion follows directly from [22, Thm 7.28]
with k=1 and f the characteristic function of A. In general, choose a
Borel set B C A such that u,(A\ B) =0 (see [22, Thms 1.55 & 2.14]) and
apply [22, Thm 7.28] to the set B.
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U

G))) b))y
N

Figure 1.5: The ciritcal set of f.

With these preparations we are ready to prove the claim. Thus fix an
element T € C \ C;. Then df(Z) # 0 and so some partial derivative of f does
not vanish at T. Reordering the coordinates of R™ and R" if necessary, we
may assume without loss of generality that

ofi

67901@) # 0.

Now define the map A : U — R™ by

f(z) = (fi(x), 22, ., Tm)
for © = (x1,29,...,2my) € U. Then

S

e *
0 1 0 0
dh(Z) = : 0
: : . . 0
0 o --- 0 1

and so det(dh(Z)) # 0. Thus it follows from the Inverse Function Theo-
rem that there exists an open neighborhood V' C U of T such that the
set V/:= h(V) C R™ is open and hl|y : V — V' is a diffeomorphism. Define

g:=fo(hly)': V' = R™
Then the set of critical points of g is given by
C':= {2’ € V'|dg(a') is not surjective} = h(V NC).

Thus g(C') = go h(V NC) = f(V NC) (see Figure [L5).
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Next observe that, if (t,z2,...,2,) € V', then
it xo, .. xm) = (z1,22,...,2m) €V,

where
t = fl(ﬂj‘l, e ,{L‘m),

and hence
g(t,zo, ..., xm) = f(z1,...,2m) € {t} x R™7L,
For ¢t € R define the open set V/ ¢ R™~! by
V)= {(x2,...,2m) € R™1 ‘ (t,z2,...,2m) € V'}
and the smooth map ¢; : V/ — R"~! by
(t,ge(xay .. xm)) = g(t, T2, ..., Tuy)

for (za,...,zy) € V/. Then

1 0
dg(t,xo,...,Tm) =
g(t, z2 m) (* dgt(xg,...,xm))
for xa,...,zy € V. Thus the derivative dg(t, z2, ..., zy,) is not surjective if
and only if the derivative dg;(xa, ..., ;) is not surjective. This means that

C = {(w2,...,2m) € V/ |dgs(s,...,2m) is not surjective}
{(xg,...,xm) e R™! ‘ (t,x2y ... Tm) EC'}.

Thus it follows from the induction hypothesis that the set g;(C;) € R"~! has
Lebesgue measure zero for each t € R. Since

9e(C) ={(y2,-- - ym) ER" [ (t,y2, ..., yn) € 9(C)} = g(C'):

for all ¢, it follows from Fubini’s Theorem that the set
g =f(vNnC) cR"

has Lebesgue measure zero. This proves the claim and Step 1.
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Proof of Step 2. Fix a positive integer k and an element T € Ci \ C1.
We will prove that there exists an open neighborhood V' C U of T such that
the set f(V N Cy) has Lebesgue measure zero. Since the set f(Cr \ Cx41) can
be covered by countably many such neighborhoods, this implies that the
set f(Cg \ Cr+1) has Lebesgue measure zero.

By assumption, there exist indices i1, 72, ...,ix+1 € {1,...,m} such that

ak+1f

61:1-1 6%6% s 8xik+1

(@) # 0.

Assume without loss of generality that

11=1
and consider the function
8k
w = f :U — R.
8951-28952-3 s 8xik+1
Then 9
w ,_
w’Ck =0, 87371(3:) #0.

Now define the map h : U — R™ by
h($) = (U](.%),ZL‘Q, R xm)

for x = (x1,x9,...,2m) € U. Then det(dh(Z)) # 0 and so the Inverse Func-
tion Theorem [I.1.17] asserts that there exists an open neighborhood V C U
of T such that V/:= h(V) is an open subset of R™ and hly : V — V' is a
diffeomorphism. Moreover, the following holds.

(a) h(V NCx) C {0} x R™L.
(b) x e VNC, = df(z)=0.
Again consider the map

gi=fo(hly) :V = R"
and define
Vo= ({0} xR™ )NV, goi=gly: V) = R™

Then by (a) and (b) the set h(V N Cy) C Vj is contained in the set of critical
points of gy. Hence it follows from the induction hypothesis that the set

go(h(V N Cx)) = g(h(V N Cx)) = f(V NCk)

has Lebesgue measure zero. This proves Step 2.
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Proof of Step 3. Assume

m
k>——1 1.4.1
> (1.4.1)

and fix any closed cube Q C U of sidelength § > 0. Thus @ is a set of the
form

Q:[al,bl]x-~><[am,bm], bi—ai:d

We will prove that the set f(Cx N Q) has Lebesgue measure zero. Since f(C)
can be covered by countably many such sets, this will imply Step 3. To prove
the assertion, observe that by Taylor’s Theorem there exists a constant ¢ > 0
such that, for all x € C;, N Q and all h € R™ with x + h € @, we have

[f(x +h) = f(2)] < clp]*. (1.4.2)

For each r € N subdivide the cube @ into 7™ subcubes of sidelength 6/r
and then consider the limit » — oo. For a fixed value of r let ()1 be one of
the cubes in this subdivision containing a point z € Cx N Q1. Then every
element of (1 has the form

c+h, | < \/:75 (1.4.3)

In this situation it follows from (1.4.2]) and (|1.4.3) that
5 k+1
ot 1) = )] < cln < e (Y0) (1.4.4)
r

This shows that f(Q1) is contained in a cube with sidelength

k+1
2¢ (m(S) = r;%’ a:=2c (\/TTL(S)’CH : (1.4.5)

r

Hence
aTL

pn(F(Q1)) < - (1.4.6)

Since the set Ci N Q is contained in the union of at most ™ such cubes, it
follows that

arm™ _ n
pn(f(CeNQ)) < e = a"ym=(khn (1.4.7)

Since (k + 1)n > m by (1.4.1]), the term on the right in (1.4.7)) tends to zero
as r tends to infinity, and hence p, (f(Cr N Q)) = 0. This proves Step 3 and

Theorem [[-2.1] O
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1.5 The Degree Modulo Two of a Smooth Map
1.6 The Borsuk—Ulam Theorem
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Chapter 2

The Brouwer Degree

2.1 Oriented Manifolds and the Brouwer Degree

2.2 Zeros of a Vector Field

2.2.1 Isolated Zeros

Let M be a smooth manifold without boundary and let X € Vect(M).

Definition 2.2.1 (Isolated Zero). A point pg € M s called an isolated
zero of X if X(pg) = 0 and there exists an open set U C M such that py € U

and X (p) #0 for allp € U\ {po}.

The goal of this section is to assign an index ¢(pg, X) € Z to each isolated
zero of X. As a first step we consider the special case of a smooth vector
field € : 2 — R™ on an open set 2 C R™.

Definition 2.2.2 (Index). Let Q C R™ be an open set, let & : Q — R™ be
a smooth vector field, and let xg € ) be an isolated zero of €. Choose € > 0
such that, for all x € R™,

0<|z|<e = &(x) #0.
Then the integer
U(z0,€) :i=deg [ S = 5™ g W) 2.2.1

1s independent of the choice of € and is called the index of £ at zg.

31
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2.2.2 Nondegenerate Zeros
Lemma 2.2.3. Let X € Vect(M) and let p € M be a nondgenerate zero
of X. Then p is an isolated zero of X and

tp,X) = sign(det(DX(p)))

[ +1, ifDX
~\ -1, ifDX

p) is orientation preserving, (2.2.2)
p) is orientation reversing.

T~

Proof. O
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2.3 The Poincaré—Hopf Theorem

Theorem 2.3.1 (Poinaré—Hopf). Let M be a compact smooth m-dimen-
sional manifold with boundary and let X € Vect(M) be a smooth vector field
on M that points out on the boundary. Assume that X has only isolated
zeros. Then

ST upX) = S (1) dim(HF (M), (2.3.1)
peEM, X (p)=0 k=0
where H*(M) denotes the de Rham cohomology of M. In particular, the left
hand side is independent of the choice of the vector field X. It is called the
Euler characteristic of M and is denoted by

X(M) = > up,X). (2.3.2)

pEM, X (p)=0
Proof. See page O

Theorem was proved in 1885 by Poincaré in the case dim(M) = 2.
After partial results by Brouwer and Hadamard, the theorem was established
in full generality in 1926 by Hopf.

In this section we will only prove that the sum of the indices of the zeros
of a vector field with with only isolated zeros that points out on the boundary
is independent of the choice of the vector field. The formula for the
de Rham cohomology groups will be established in Theorem [6.4.8]

m

Lemma 2.3.2 (Hopf). Let N C R" be a compact smooth n-dimensional
submanifold with boundary, i.e. N is compact and its boundary agrees with
the boundary of its interior and is a smooth (n—1)-dimensional submanifold
of R™. LetY : N — R"™ be a smooth vector field with only isolated zeros such
that Y (x) # 0 for all x € ON. Then

Z vz, Y) = deg <’§| : ON — S”_1> . (2.3.3)

€N, Y (z)=0
If, in addition, the vector field Y points out of N on the boundary, then
Y
deg (]Y] :ON — S"_l) = deg(g), (2.3.4)

where g : ON — S"~1 denotes the Gauf3 map, i.e. for every x € ON the
unit vector g(x) € S"~1 is orthogonal to T,ON and points out of N, so
that x +tg(x) € R" \ N for every sufficiently small real number t > 0.

Proof. O
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Lemma 2.3.3. Let M be a smooth manifold with boundary, let X be a
smooth vector field on M, and let po € M \ OM be an isolated zero of X.
Choose an open neighborhood U C M \ OM of py such that py is the only
zero of X in U. Then there exists a smooth vector field X' on M such
that X'(p) = X(p) for allp € M \ U, the zeros of X' in U are all nondegen-
erate, and

> up, X') = upo, X). (2.3.5)

p€eU, X' (p)=0

Proof.

Proof of Theorem |2.3.1].



Chapter 3

Homotopy and Framed
Cobordisms

The purpose of the present chapter is to extend the degree theory developed
in Chapters |1 and [2] to smooth maps between manifolds of different dimen-
sions, with the dimension of the source being bigger than the dimension of
the target.

3.1 The Pontryagin Construction
3.2 The Product Neighborhood Theorem
3.3 The Hopf Degree Theorem
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Chapter 4

Intersection Theory

The purpose of the present chapter is to extend the degree theory developed
in Chapters (1] and [2| to smooth maps between manifolds of different dimen-
sions, with the dimension of the source being smaller than the dimension of
the target. The relevant transversality theory is the subject of Section
orientation and intersection numbers are introduced in Section self-
intersection numbers are discussed in Section and Section examines
the Lefschetz number of a smooth map from a compact manifold to itself
and establishes the Lefschetz—Hopf theorem and the Lefschetz fixed point
theorem.

4.1 Transversality
This section introduces the notion of transversality of a smooth map to a
submanifold of the target space.

Definition 4.1.1 (Transversality). Let m,n,k be nonnegative integers
such that k <n, let M be a smooth m-manifold, let N be a smooth n-
manifold, and let Q C N be a smooth submanifold of dimension n — k. The
number k is called the codimension of () and is denoted by

codim(Q) := dim(N) — dim(Q).

Let f: M — N be a smooth map and let p € f~1(Q). The map f is said to
be transverse to ) at p if

TN =im (df (p)) + ()@ (4.1.1)

It is called transverse to Q if it is transverse to Q at everyp € f~1(Q). The
notation f M Q signifies that the map f is transverse to the submanifold Q.

37
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Figure 4.1: Transverse and nontransverse intersections.

Q

Example 4.1.2. (i) If @ = N, then every smooth map f : M — N is trans-
verse to Q).

(i) If @ ={q} is a single point in N, then a smooth map f: M — N is
transverse to @ if and only if ¢ is a regular value of f.

(iii) If f : M — N is an embedding, then its image P := f(M) is a smooth
submanifold of N (see [2I, Theorem 2.3.4]). In this situation f is transverse
to @ if and only if

TyN =T,P +T,Q forall g € PN Q. (4.1.2)

If holds we say that P is transverse to ) and write P M Q.

(iv) Assume OM =0, let TM = {(p,v)|p € M, v € T,M} be the tangent
bundle, and let Z = {(p,v) € TM |v = 0} be the zero section in TM. Iden-
tify a vector field X € Vect(M) with the map M — TM : p— (p, X(p)).
This map is transverse to the zero section if and only if the vector field X
has only nondegenerate zeros. (Exercise: Prove this).

(v) Assume OM = (). Then the graph of a smooth map f: M — M is
transverse to the diagonal A = {(p,p) |p € M} C M x M if and only if ev-
ery fixed point p = f(p) € M is nondegenerate, i.e. det(1— df(p)) # 0.
(Exercise: Prove this).

The next lemma generalizes the observation that the preimage of a regu-
lar value is a smooth submanifold (see Lemma and [2I, Thm 2.2.17)).

Lemma 4.1.3. Let M be an m-manifold with boundary, let N be an n-
manifold without boundary, and let Q C N be a codimension-k submanifold
without boundary. Assume f and f|ans are transverse to Q). Then the set

P:=fQ)={peM|[f(p) € Q}

18 a codimension-k submanifold of M with boundary OP = PN OM and its
tangent space at p € P is the linear subspace

T,P = {veT,M ‘ df (p)v € Tf(p)Q} )
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Proof. Let po € P = f~4(Q) and define qo := f(po) € Q. Then it follows
from [2I, Theorem 2.3.4] that there exists an open neighborhood V C N
of g and a smooth map g : V — R¥ such that the origin 0 € R is a regular
value of g and V N Q = g~1(0). We prove the following.

Claim: Zero is a reqular value of the map go f: U := f~Y(V) = R* and
also of the map g o flunon : UNOM — RF.

To see this, fix an element p € U such that g(f(p)) = 0 and let € R¥. Then
q:=fp)eVnQ, g(g=0.

Since zero is a regular value of g, there exists a vector w € T, N such that
dg(q)w = 7.
Since f is transverse to @), there exists a vector v € T, M such that
w — df (p)v € T,Q.
Since T,Q = kerdg(q), this implies
d(g o f)(p)v = dg(q)df (p)v = dg(q)w = 1.

Thus zero is a regular value of go f : U — R¥, and the same argument shows
that zero is also a regular value of the restriction of go f to U NOM.
By Lemma [1.3.7] it follows from the claim that the set

PNU=fHQ)NU=(g0)"'(0)
is a smooth (m — k)-dimensional submanifold of M with boundary
oPNU)=PNUNIM

and the tangent spaces

TpP =kerd(g o f)(p)

= ker dg(q)df (p)
={veT,M ‘ df (p) € kerdg(q) = T,Q}
for p € U with ¢ := f(p) € Q. This proves Lemma O

The next goal is to show that, given a compact submanifold Q C N
without boundary, every smooth map f: M — N is smoothly homotopic
to a map that is transverse to (). This is in contrast to Sard’s theorem in
Chapter [1| which asserts, in the case where @ = {q} is a singleton, that
almost every element ¢ € N is a regular value of f. Instead, the results
of the present section imply that, given an element g € N, every smooth
map f: M — N is homotopic to one that has ¢ as a regular value.
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Thom—Smale Transversality

Assume throughout that M is a smooth m-manifold with boundary, that N
is a smooth n-manifold without boundary, and that () C N is a codimension-
k submanifold without boundary that is closed as a subset of N.

Definition 4.1.4 (Relative Homotopy). Let A C M be any subset and
let f,g : M — N be smooth maps such that f(p) = g(p) for all p € A.
A smooth map F :[0,1] x M — N s called o« homotopy from f to g
relative to A if

F(0,p) = f(p), F(l,p)=g(p)  foralpeM (4.1.3)

and
F(t,p) = f(p) = g(p) for allt € [0,1] and all p € A. (4.1.4)

The maps f and g are called homotopic relative to A if there exists a
smooth homotopy from f to g relative to A. We write

A

f~g
to mean that [ is homotopic to g relative to A. That relative homotopy is

an equivalence relation is shown as in Section[1.5

Theorem 4.1.5 (Local Transversality). Let f : M — N be a smooth map
and let U C M be an open set with compact closure such that

fFO\NU)NQ =0.

Then the following holds.

(i) There ezists a smooth map g: M — N such that g is homotopic to f
relative to M \ U and both g|y and glunaonm are transverse to Q.

(1) If flunons is transverse to Q, then there exists a smooth map g : M — N
such that g is homotopic to f relative to OM U (M \ U) and glunon is trans-
verse to Q.

Proof. See page O

Corollary 4.1.6 (Global Transversality). Assume M is compact. Then
every smooth map f: M — N is homotopic to a smooth map g: M — N
such that both g and glons are transverse to @, and the homotopy can be
chosen relative to the boundary whenever the restriction of f to the boundary
18 transverse to Q).

Proof. Theorem with U = M. O
The proof of Theorem relies on the following lemma.
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Lemma 4.1.7. Let N be an n-manifold without boundary, let Q C N be a
closed set, let K C N be a compact set, and let V C N be an open neighbor-

hood of K NQ with compact closure. Then there exists an integer £ > 0 and
a smooth map G : R x N — N such that, for all A € R® and all ¢ € N,

G(0,q9) =g, (4.1.5)
ge K, G\qg) eQ = qgev, (4.1.6)

qgeV = Tg(/\,q)N—span{gﬁ()\,q)M—1,...,6}. (4.1.7)

Moreover, if W C N is an open neighborhood of V, then G can be chosen
such that G(\,q) = q for all X € R® and all g€ N\ W.

Proof. The proof has three steps.

Step 1. Let W C N be an open neighborhood of V. with compact closure.
Then there are vector fields X1, ..., Xy € Vect(N) such that supp(X;) C W
for all i and T,N = span {X1(q),...,Xe(q)} for allg € V.

Assume without loss of generality that N C R’ is a smooth submanifold of
the Euclidean space R for some integer ¢ and that N is a closed subset of R

(see Theorem [A.3.1). By Theorem there exists a partition of unity
subordinate to the open cover M = W U (M \ V') and hence there exists a

smooth cutoff function p: M — [0, 1] such that supp(p) C W and p|y; = 1.
Define the vector fields Xq, ..., X, € Vect(IN) by

Xi(q) = p(¢)IL(q)e;

for i =1,...,¢ and ¢ € N, where II(q) € R**k denotes the orthogonal pro-
jection onto T; N and e1,...,e, denote the standard basis of RY. These
vector fields have support in W and the vectors Xi(q), ..., X¢(q) span the
tangent space T, N for every q € V. This proves Step 1.

Step 2. Let W and X1,...,X; be as in Step 1, for each i let ¢k € Diff (M)
be the flow of X;, and define the map ¥ : R x N — N by

Dt teq) 7= ¢ 0 g o 0§ (q)
fort; € R and g € N. Then ¥(0,q) = q for all ¢ € N and there exists a

constant € > 0 such that the following holds.
(I) If g € V and t € R satisfies max;|t;| < €, then

TygN = Span{aw(t,q) i = 1,...,6} . (4.1.8)

ot;

(IT) If g € K and t € R satisfies max;|t;| < e and ¥(t,q) € Q, then g€ V.
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The vector fields X; have compact support and hence are complete. Thus
the map 1 : R x N — N is well defined. It satisfies
oY

¥(0,q) = q, 871-(0"1) = Xi(q)

for all ¢ € N and all i € {1,...,¢}. Hence holds for t = 0 by Step 1
and so assertion (I) follows from the fact that V' is compact and the set of
all pairs (t,q) € R® x N that satisfy is open.

To prove (II) we argue by contradition and assume that (II) is wrong for
every constant € > 0. Then there exist sequences t” € R¢ and ¢ € K \V
such that lim,_,» t* = 0 and ¥(t”,¢") € @ for all v. Since K is compact,
there exists a subsequence (still denoted by ¢”) that converges to an el-
ement ¢ € K. Moreover, since GG is continuous and @ is a closed subset
of N, we have ¢ =¥ (0,q) = lim, oo ¥(t¥,¢") € Q. Thus g€ KNQ C V.
Since V is an open subset of N, this implies ¢¥ € V for v sufficiently large,
a contradiction. Thus (IT) must hold for some £ > 0 and this proves Step 2.

Step 3. We prove Lemma[{.1.7]
Let 9 be as in Step 2 and define the map G : R® x N — N by

el V) ¢
2 2 AR )
Vs + A7 NGEDY
for \; e R and ¢ € N. Then G(0,q) =q for all ¢ € N and so G satis-
fies (4.1.5)). Moreover, G satisfies (4.1.6|) by (II) and satisfies (4.1.7)) by (I).

This proves Lemma [4.1.7 ]

GA1,..,\,q) =1 (4.1.9)

Remark 4.1.8. The assertion of Lemma holds with ¢ < 2n. To see
this, suppose that the vector fields X7,..., X, satisfy the requirements of
Step 1 in the proof of Lemma with £ > 2n. Choose a Riemannian
metric on N and define the map f : TN — R’ by

f(g,w) == ((w, X1(q)), - . ., (w, Xe(q))) for g € N and w € T,N.

This map has a regular value & = (&,...,&) € R’ by Sard’s theorem.
Since ¢ > 2n = dim(T'N), we have £ ¢ f(T'N) and, in particular, £ # 0.
Assume without loss of generality that £ # 0 and define Y; € Vect(V) by

Yi(q) :== Xi(q)—ng(q) forge Nandi=1,...0—1.

&

Then, since £ ¢ f(T'N), it follows that T,N = span{Yi(q),...,Yr—1(q)} for
all ¢ € K. (Exercise: Verify the details.)
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We also need the following lemma. Let ) C N be a codimension-k sub-
manifold without boundary and let F : R x M — N be a smooth map such
that both F' and F|gey gy are transverse to Q. Then Lemma asserts
that the set

A= F Q) ={(\p) R x M|F(\p) € Q}
is a smooth submanifold of R x M with boundary 0.4 = .# N (R’ x OM).
Denote by 7 : .# — R’ the obvious projection.

Lemma 4.1.9. Fiz an element A\ € R¢ and define the map F\: M — N
by Fx(p) := F(\,p) forp € M. Then the following holds.

(1) A is a regular value of  if and only if F) is transverse to Q.

(ii) X is a regular value of wlg 4 if and only if Fx|on is transverse to Q.

Proof. Choose an element p € M such that ¢ := F\(p) = F(\,p) € Q.
Then (A, p) € 4, the tangent space of .# at (\,p) is given by

Topt = {(Av) € R x M| dF(\p)(\,v) € T,Q}

and dr(\, p)(\,v) = A for (A, v) € T\ p)~# . The following are equivalent.
(A) The differential dr (X, p) : Ty py 4 — R is surjective.

(B) TyN = im (dF)(p)) + T,Q-

Assume first that (B) holds and fix an element X € R Define

¢
~ OF
=1

By (B) there exists a vector v € T, M such that w — dF(p)v € T,Q. Hence
~ L OF
dF (A, p)(\,v) = dFx(p)v+ ) Aigy (A p) = dFx(p)v — w € T,Q.
i=1 t

Hence (X, v) € Tixp)-# and dr(\, p) (/):, v) = X, and so (A) holds. Conversely,
assume (A) and fix an element w € T;N. Then, since F' is transverse to @,
there exists a pair (A, v) € Rf x T,M such that w — dF(\,p)(\,v) € T,Q.
Now it follows from (A) that there exists a tangent vector vy € T, M such
that (X, vo) € T\ p)-# and so dF()\,p)(X, vo) € T;Q. This implies

w—dFy\(p)(v —wv) = w — dF()\,p)(X,v) — dF(/\,p)(X,vo) € T,Q

and so (B) holds. This shows that (A) is equivalent to (B) and this proves (i).
The proof of (ii) is analogous and this proves Lemma O
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Proof of Theorem[}.1.5. We prove part (i). Since U is compact, so is
K = f(U) C N.

Moreover, f(U \ U) N Q = () and this implies KN Q C N\ f(U\ U). Since
the set N\ f(U \ U) is open, Lemma asserts that there exists an open
set V C N with compact closure such that

KNQcVcVcN\fU\U).
Hence f(U\U)NV =0 and so the set
B:=UnftV)=UnfYV)
is compact. Hence there exists a smooth function g : M — [0, 1] such that

supp(B) C U, Blp = 1. (4.1.10)

(See Theorem [A.2.2]) Choose a map G : R x N — N as in Lemma
and define F' : R® x M — N by

F(\p):=Fx(p) .= G(BDA, f(p)  for (\,p) eR x M. (4.1.11)

Then
Fy =, Fxlanwo = flanw

for all A by (4.1.5)) in Lemma We prove that Flge,r and Flgey o)
are transverse to Q. Fix an element (\,p) € R x U with F(\,p) € Q.

Then G(B(p)\, f(p)) = F(\,p) € Q by definition of F, and so it follows
from (4.1.6) with ¢ := f(p) € K and A replaced by S(p)A that f(p) € V.

This implies p € U N f~1(V) = B, and hence the vectors

gi(x,p) = B(p) gi (BN f(p) = gi(/\,f(p))

span the tangent space Tr(y )N by (4.1.7) in Lemma 4.1.7} This shows
that Flgey and F’fo(UmaM) are transverse to () as claimed. Hence, by

Lemma the set

M =R xU)NFHQ)

is a smooth submanifold of R x U with boundary 0.4 = R’ x (U N oM).
By Sard’s theorem there exists a common regular value A € R¢ of the pro-
jection 7 : .# — R’ and of 7|g 4 : 0.4 — R’. Hence, by Lemma the
homotopy fi(p) := F(tA, p) satisfies the requirements of part (i).
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We prove part (ii). Thus assume that f|yngas is transverse to Q. As in
the proof of (i), define the compact set

K := f(U) C N,

choose an open neighborhood V- C N of K N with compact closure such
that B B
fFOU\NU)NV =1,

and define the compact set B C M by
B:=Unf V).
We prove that there exists a smooth function 5 : M — R such that

supp(8) C U, Blurom =0,  Bpam > 0. (4.1.12)

To see this choose a smooth function 5 : M — [0, 1] with

supp(B1) C U, pilp =1

as in (4.1.10). Choose an atlas {Uq, ¢a}aecyq on M and let po : M — [0, 1]
be a partition of unity subordinate to the cover, i.e. each point in M has an

open neighborhood on which only finitely many of the p, do not vanish and

supp(pa) C Uas D pa = 1.
o

(See Theorem |A.2.2|) For a € A define 3, : Uy, — R by
Ba 0 0y (x) 1= Tm

for x € ¢o(Uy) C H™. Then the function p,fBq : Uy — R extends uniquely
to a smooth function on M that vanishes on M \ Uy, the function

Bo=> pafa:M >R

vanishes on the boundary and is positive in the interior, and so the product

function B := [yf1 satisfies (4.1.12)).

With this understood, the proof of part (ii) proceeds exactly as the proof
of (i). The key observation is that the function F : R® x M — N in (&.1.11)
still has the property that Flge,y and Flge,wnon are transverse to @,
because F(\,-)|arr = floar for all A € RY and f|ynoas is transverse to Q by
assumption. This proves Theorem [4.1.5 ]
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4.2 Intersection Numbers

4.2.1 Intersection Numbers Modulo Two

Let N be a n-manifold without boundary, let Q C N be a codimension-m
submanifold without boundary that is closed as a subset of N, and let M
be a compact m-manifold with boundary. If f: M — N is a smooth map
that is transverse to () and satisfies

FOM)NQ =0, (4.2.1)

then the set f~1(Q) C M \ OM is a compact zero-dimensional submanifold
by Lemma and hence is a finite set (see Figure |4.2)).

Theorem 4.2.1 (Intersection Number Modulo Two). Let f : M — N
be a smooth map satisfying (4.2.1)). Then the following holds.

(i) There exists a smooth map g: M — N that is transverse to @ and ho-
motopic to [ relative to the boundary.

(ii) Let g be as in (i). Then the number #g=1(Q) is finite and its residue
class modulo two is independent of the choice of g. It is called the inter-
section number of f and @) modulo two and is denoted by

. _1 .
L(f,Q) = { (1)’ Zj ii‘légg Zz ZZZ”’ for g A fwithgh Q. (4.2.2)

(iii) Let fo, f1 : M — N be smooth maps satisfying the condition (4.2.1)) and
let F:[0,1] x M — N be a smooth homotopy from fo to f1 such that

F([0,1] x OM) N Q = 0. (4.2.3)

Then
I(fo,Q) = I2(f1,Q).

(iv) Let W be a compact (m+1)-manifold with boundary and let F' : W — N
be a smooth map. Then Is(F|sw,Q) = 0.

Proof. See page O

Lemma 4.2.2. Let fo, f1: M — N be smooth maps that satisfy
and are transverse to Q. Let F:[0,1] x M — N be a smooth homotopy
from fo to fi that satisfies . Then there exists a smooth homo-
topy G : [0,1] x M — N from fy to f1 such that G is transverse to Q and

G(t,p) = F(t,p) for all t € [0,1] and all p € OM.
Moreover, #fo_l(Q) = #fl_l(Q) (modulo 2).
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Figure 4.2: The intersection number modulo two.

Proof. Since A := F~1(Q) is a compact subset of
W :=10,1] x (M \ OM),

there exists an open subset U C [0,1] x M such that A c U Cc U C W.
Now W is a noncompact manifold with boundary 0W = {0,1} x (M \ OM)
and the homotopy F restricts to a smooth map F': W — N such that F|ay
is transverse to ). Hence it follows from part (ii) of Theorem that
there exists a smooth map G : W — N such that G is transverse to ) and

Glawunvy = Flawuw\v)-

This map G extends to a smooth homotopy from fy to fi on all of [0, 1] x M
that satisfies G(t,p) = F(t,p) for all (¢t,p) € [0,1] x OM.
Since G is continuous, the set

X:=G Q) c0,1] x M
is compact. Since G([0,1] x IM) N Q = 0, we have
X=G"YQ) c[0,1] x (M\ M) =W.

Since G|w and G|gw are transverse to @, it follows from Lemma that X
is a 1-dimensional submanifold of W with boundary

OX =X Nnow = ({0} x £,1(@Q) U ({1} x £,1(Q)).

Hence

#11(Q) + #171(Q) = #0X €22
by Theorem and this proves Lemma |4.2.2 O
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Proof of Theorem[{.2.1]. Part (i) follows directly from Corollary

We prove part (ii). Assume that g,h: M — N are both transverse to Q
and homotopic to f relative to the boundary. Then g is homotopic to h
relative to the boundary and hence #¢ 1(Q) = #h~1(Q) (modulo 2) by
Lemma [4.2.2] This proves (ii).

We prove part (iii). For ¢ = 0,1 it follows from (i) that there exists a
smooth map ¢g; : M — N such that g; is transverse to () and homotopic
to f; relative to the boundary. Compose the homotopies to obtain a smooth
homotopy G : [0,1] x M — N from gg to g1 with

G([0,1] x OM) N Q = 0.
Then
#00 1 (Q) = #971(Q) (modulo 2)

by Lemma and this proves (iii).

We prove part (iv). Corollary asserts that there exists a smooth
map G : W — N such that G is homotopic to F' and both G and G|gy are
transverse to Q. By Lemma the set

X =G Q)cwW
is a compact 1-dimensional submanifold with boundary
0X = X NOW = (GlaW)HQ).
Hence #(G|sW)~1(Q) is an even number by Theorem Since F|gw is
smoothly homotopic to G|gw it follows that Io(F|sw, Q) = 0. This proves

Theorem F2.1] O

Example 4.2.3. Let N = RP" be the real projective space and fix an in-
teger 0 < m < n. Define the inclusion f : RP"™ — RP" by

flro:rxm])i=(ro: - 1 Tm:0:---:0])
for [z : -+ : @y € RP™ and consider the submanifold
Q= {[molez-'nxn}ERP"‘@“O:w-:mm_l:O}.

Then f is transverse to @ and I5(f,Q) = 1. Hence f is not homotopic to a
constant map. With m = 1 this shows that RP" is not simply connected.
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Exercise 4.2.4. Let M C R" be a compact connected smooth codimension-1
submanifold without boundary. Then R™\ M has two connected components
and M is orientable.

Step 1. There exists a constant € > 0 such that p+v ¢ M for all p € M
and all v € T,M* with 0 < |v| < ¢, and the set

U.:={p+v|pe M, veT,M*, |v| <e}

18 an open neighborhood of M. Hint: This is a special case of the Tubular
Neighborhood Theorem below. It can be proved directly as follows.
Let V C R™ be an open set and let f:V — R be a smooth function such
that zero is a regular value of f and

fLo)y=vnM=w.
Define the normal vector field X : W — R" by
X = Lf

IV/]
Show the map W xR — R™: (p,t) — p+ tX(p) restricts to a diffeomor-
phism from W x (—¢,¢) onto an open subset of R™ for some € > 0 (after
shrinking W if necessary). Cover M by finitely many such open sets V.
Step 2. Letpe M, letv € Tp]WL NS" L, and let € >0 be as in Step 1.
Define the curve 7y : [—e,e] = R™ by vy(t) = p+tv. Then Is(y, M) =1 and
hence p + v and p — ev cannot be joined by a curve in R™\ M.
Step 3. Let pg,p1 € M. Then there exist smooth curves

y:[0,1] = M,  wv:[0,1] — S

such that v(0) = po, 7(1) = p1, and v(t) L T,y M for 0 <t < 1. Hint: Use
parallel transport in the normal bundle (see [21], §3.3]).

Step 4. Let U, be as in Step 1. Then U.\ M has precisely two connected
components. Hint: By Step 2 the set U, \ M has at least two connected
components and by Step 3 it has at most two connected components.
Step 5. The set R™\ M has precisely two connected components. Hint:
Every element of R™ \ M can be joined to U; \ M by a curve in R\ M.
Step 6. There exists a smooth map X : M — S™ 1 such that X (p) L T,M
for allp e M. Hence M is orientable.

Exercise 4.2.5. Let N be a connected manifold without boundary and
let M C N be a compact connected codimension-1 submanifold without
boundary. Find an example where N \ M is connected. If N is simply
connected, show that N\ M has two connected components.
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4.2.2 Orientation and Intersection Numbers

Let M and N be oriented smooth manifolds and let () C N be an oriented
submanifold with dim(M) =m, dim(N) =n, and dim(Q) =n — k. The
next definition shows how the orientations of M, @, N induce an orientation
of the manifold f~1(Q) whenever f: M — N is tranverse to Q.

Definition 4.2.6 (Orientation). Let f: M — N be a smooth map that
is transverse to Q. The manifold P := f~1(Q) C M is oriented by a map
which assigns to every basis of every tangent space of P a sign v € {£1}.
Let p € P and fix a basis vy,...,vym—k of T,P. The sign

V(pa U1y ey U’m—k) € {:l:]'}

is defined as follows. Choose tangent vectors Vpy—j+1,--.,0m € Tp,M such
that the vectors vi, ..., vy, form a positive basis of T,M and choose a positive
basis Wg+1, ..., wn of Ty Q. Then define

+1, if the vectors wy,...,w,, with
w; = df (p)vm—k+i for 1 <i <k,
form a positive basis of Ty, N,
—1, otherwise.

V(P v,y Umeg) = (4.2.4)

If k=0 then Q@ C N and P C M are open sets and the sign is determined
by the orientation of TyM. If k € {m,n} the sign is understood as follows.
Case 1: kK =m < n. In this case P is a zero-dimensional submanifold of M ,
there is only the ‘empty basis’ of T,P = {0}, and the sign is denoted by v(p).
Thus v(p) = +1 if and only if signs match in Ty N = im (df (p)) © Ty, Q-
Case 2: k=m =mn. In this case Q C N and P C M are zero-dimensional
submanifolds, the orientation of Q is a function ¢ : Q — {£1}, the deriva-
tive df (p) : TyM — Ty N is a vector space isomorphism, and

+e(f(p), fdf(p): TyM — TN
v(p) == s orientation preserving, (4.2.5)

—e(f(p)), otherwise.
Note that this formula is consitent with Case 1 and equation (4.2.4)).

Case 3: k=n<m. In this case Q has dimension zero and the orien-
tation is a map € : Q — {£1}. Now choose vm—nt1,...,vm € TyM such
that v1,...,vm form a positive basis of T,M. Then

+e(f(p), if df (P)om—n+1,---,df (P)vm
V(P U1y vy Upek) o= is a positive basis of Ty, N,  (4.2.6)
—e(f(p)), otherwise.
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Intersection Indices

The next definition introduces the intersection index of a transverse inter-
section in the case of complementary dimensions.

Definition 4.2.7 (Intersection Index). Let M be a compact oriented
m-manifold with boundary, let N be an oriented n-manifold without bound-
ary, and let @ C N be oriented (n — m)-dimensional submanifold without
boundary that is closed as a subset of N. Let f: M — N be a smooth
map that satisfies f(OM)NQ =10 and is transverse to Q. Fiz an ele-
ment p € f~1(Q) C M\ OM. Then

Ty N = im (df (p)) ® T () Q-

and the intersection index of f and @ at p is defined as the sign v(p; f, Q)
obtained by comparing orientations in this decomposition. Thus

+1, if df(p)vr, .-, df (P)Vm, Wit 1, - Wy,
is a positive basis of TN
vip; f,Q) == for every positive basis v1, ..., vy of TyM
and every positive basis Wm+1, ..., Wy of Tt;)Q,
—1, otherwise.

This corresponds to Case 1 in Definition [4.2.6]

Theorem 4.2.8 (Intersection Number). Let M and Q C N be as in
Definition[§.2.7 and let f : M — N be a smooth map with f(OM)NQ = 0.
Then the following holds.

(i) There exists a smooth map g : M — N that is transverse to Q and ho-
motopic to f relative to the boundary.

(ii) Let g be as in (z) Then the ?nteger 1(9,Q) = > peg-1(q) V(P 9,Q) is
independent of the choice of g. It is called the intersection number of f
and Q) and is denoted by

[(£,Q=1Q= Y vpmgQ forg™ fuwithghQ. (42.7)
PEg™HQ)
(iii) Let fo,f1 : M — N be smooth maps satisfying f;(OM) N Q = 0
and let F : [0,1] x M — N be a smooth homotopy from fy to fi such
that F([0,1] x OM)NQ = 0. Then I(fo,Q) = I(f1,Q).

(iv) Let W be a compact oriented (m + 1)-manifold with boundary and
let F: W — N be a smooth map. Then I(Flaw, Q) = 0.

Proof. See page O
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Lemma 4.2.9 (Vanishing). Let W be an oriented smooth (m+1)-manifold
with boundary and let F : W — N be a smooth map such that F' and F|sw
are transverse to Q. Assume that the set F~1(Q) C W is compact. Then
the intersection F~1(Q) NOW is a finite set and

> vpiFlaw,Q) =0.

pEF~1(Q)NOW

Proof. By Lemma the set
X =FlQcw
is a compact oriented smooth 1-manifold with boundary
0X =X NOW = (Flow)™(Q).

Thus X is a finite union of circles and arcs by Theorem Let A C X be
an arc and choose an orientation preserving diffeomorphism v : [0, 1] — A.
Then ~v(0),~v(1) € OW, the vector 4(0) points into W, and 4(1) points out
of W. Let v1,...,v, be a positive basis of TW(1)8W and let wy,41,...,wy, be
a positive basis of T (,(1))@. Since ¥(1) is outward pointing, it follows from
the definition of the boundary orientation that 4(1),v1,..., v, is a positive
basis of T',(;yW. Since §(1) is a positive tangent vector in T’ X it follows
from the sign convention in Definition [£.2.6] that the vectors

dF(y(1))v1, ..., dE(y(1)vm, Wity ..., Wy

form a positive basis of Tp(y(1))N. Hence it follows from the definition of
the intersection index in Definition 2.7 that

v(v(1); Flow, Q) = +1.

Since 4(0) points in to W, the same argument shows that

v(v(0); Flow, Q) = —1.

Thus v(v(0); Flow, Q) + v(v(1); Flaw, @) = 0. Since this holds for the end-
points of every arc A C X, we obtain

Z V(vabW?Q) =0.

peF~1(Q)NOW

This proves Lemma [4.2.9 O



4.2. INTERSECTION NUMBERS 93

Lemma 4.2.10 (Homotopy). Let M and Q C N be as in Definition [4.2.7
and let fo, f1 : M — N be smooth maps that satisfy (4.2.1)), are transverse
to Q, and are smoothly homotopic by a homotopy that satisfies (4.2.3). Then

> v fo,Q) = Y vp Q).
pefy 1(Q) PEfi (@)

Proof. By Lemmathere exists a smooth homotopy F : [0,1] x M — N
from fy to fi that satisfies and is transverse to Q. Thus F~1(Q) is
compact and contained in the set W :=1[0,1] x (M \ 0M). This set is an
oriented (m + 1)-manifold with boundary OW = {0,1} x M. The boundary
orientation of OW agrees with the orientation of M at ¢ = 1 and is opposite
to the orientation of M at ¢t =0. Moreover, F|sy is transverse to @ by
assumption. Hence it follows from Lemma [£.2.9] that

0= > v((t,p); Flow, Q)

(t,p)eF—1(Q)NOW

= > v Q- D) v fo,Q)
pef; H(Q) pefy (@)

This proves Lemma [4.2.10 O

Proof of Theorems[{.2.8 Part (i) follows directly from Corollary
We prove part (ii). Assume that g,h: M — N are both transverse to Q

and homotopic to f relative to the boundary. Then ¢ is homotopic to h
relative to the boundary and hence

Y. vmg. @ = > vphQ).

peg—1(Q) peh~1(Q)

by Lemma [4.2.10} This proves (ii).

We prove part (iii). For i = 0,1 it follows from (i) that there exists a
smooth map ¢g; : M — N such that g; is transverse to ) and homotopic
to f; relative to the boundary. Compose the homotopies to obtain a smooth
homotopy G : [0,1] x M — N from gy to g1 with G([0,1] x OM)NQ = 0.
Then I(fo,Q) = 1(g90,Q) = I(91,Q) = I(f1,Q) by Lemma and this
proves (iii).

We prove part (iv). Corollary asserts that there exists a smooth
map G : W — N such that G and G|sw are transverse to @ and G is homo-
topic to F. Then F|gy is homotopic to G|aw and G~1(Q) is compact be-
cause W is compact. Hence I(F|ow, Q) = I(Glow, Q) = 0 by Lemma[1.2.9]
This proves Theorem |4.2.8 O
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Exercise 4.2.11. Let P,(Q, N be compact oriented smooth manifolds with-
out boundary such that

dim(P) + dim(Q) = dim(N)

and let f: P— N and g: @ — N be smooth maps. The map f is called
transverse to g if every pair (p,q) € P x @ with f(p) = g(q) satisfies

TN =im (df (p)) @ im (dg(q)). (4.2.8)

In the transverse case the intersection index v(p,q; f,g) € {£1} is defined
to be 1 according to whether or not the orientations match in the direct
sum (4.2.8), and the intersection number of f and g is defined by

I(f,9)=Ff-g:= > vip.gf9) (4.2.9)
fP)=9(a)

(i) Prove that every smooth map f: P — N is smoothly homotopic to a
map f': P — N that is transverse to g.

(ii) If fo, f1 : P — N are transverse to g, prove that I(fo,g) = I(f1,g). De-
duce that the intersection number I(f,g) is well defined for every pair of
smooth maps f: P — N and g : Q — N, transverse or not.

(iii) Prove that ‘ .
1(97 f) _ (_l)dlm(P)dlm(Q)[(f7 g)_ (4.2_10)

(iv) Define themap f x g: P x Q@ — N x N by (f x g)(p,q) := (f(p),9(q))
forpe Pand g € Q and let A C N x N be the diagonal. Prove that

I(f,9) = (~)™™@1(f x g, A). (4.2.11)

Exercise 4.2.12. Let N := CP?. A smooth map f : CP! — CP? is called
a polynomial map of degree deg(f) = d if it has the form

f([20 : 21]) = [fo(20,21) : f1(20, 22) : f2(20,21)],

d

_—

fi(z0,21) = Zaijz(J)Zl ’
=0

with a;; € C and the homogeneous polynomials f; : C? \ {0} — C have no
common zeros. Let f,g: CP! — CP? be polynomial maps. Prove that

[ g = deg(f)deg(g).

Hint: Show that any two polynomial maps from CP! to CP? of degree d are

smoothly homotopic. Consider the examples f([zo : 21]) = [28 — 2§ : 0: 2§]

and g([z0 : z1]) = [0: 2§ — 2§ : 2¢] and show that f is transverse to g.
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4.2.3 Isolated Intersections

In this subsection we assign an intersection index to each isolated intersec-
tion which agrees with the index in Definition in the transverse case.

Definition 4.2.13 (The Index of an Isolated Intersection). Let M be a
compact oriented m-manifold with boundary, let N be an oriented n-manifold
without boundary, let Q C N be an oriented codimension-m submanifold
without boundary that is closed as a subset of N, and let f: M — N be
a smooth map such that

fOM)NQ = 0.
An element pg € M \ OM s called an isolated intersection of f and @

if f(po) € Q and there is an open neighborhood U of py such that f(p) ¢ Q

forallp e U\ {po}.
Let py € M be an isolated intersection. Choose an orientation preser-

ving diffeomorphism ¢ : V. — R", defined on an open neighborhood V.C N
of f(po) such that (VN Q)= {0} x R"™™ and the map

VN —->R"™:q— (Ymt+1(q), -, ¥n(q))

s an orientation preserving diffeomorphism. Choose an orientation preser-
ving diffeomorphism ¢ : U — R™, defined on an open neighborhood U C M
of po such that f(U) C V. Let x¢ := ¢(pg) and € > 0. Then the integer

: .7 m—1 . am—1. (w0 + &) )
v(po; f, Q) := deg (5’ — S DX €0+ 22)] )

€= (1., bm) o fod™ L :R™ 5 R™,
is called the intersection index of f and Q at py (see Figure[4.5).

Theorem 4.2.14. Let M, Q, N, and f : M — N be as in Definition[].2.13,
Then the following holds.

(i) The intersection index of f and Q at an isolated intersection py is inde-
pendent of the choice of the coordinate charts ¢ and 1 used to define it.

(ii) If f and Q intersect transversally at po, then the intersection index in

Definition agrees with the intersection index in Definition [{.2.7]
(iii) If f and @ have only isolated intersections, then

S v £,Q) = I(£,Q). (4.2.13)
pef~1(Q)

Proof. See page O

(4.2.12)
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Lemma 4.2.15 (Perturbation). Let M,Q, N, f be as in Deﬁm’tion.
Let po € M\ OM be an isolated intersection of f and Q and let U C M be
an open neighborhood of py such that U N f~1(Q) = {po} and UNIM = 0.
Let v(po; f, Q) be the integer in associated to coordinate charts ¢
and v as in Definition[{.2.13. Then there exists a smooth map g : M — N,
homotopic to f relative to M \ U, such that g|y is transverse to Q and

vipo; [,Q) = > v(pig, Q). (4.2.14)
peUNg~1(Q)
Here the summands on the right are the indices in Definition [{.2.7
Proof. Shrinking U, if necessary, we may assume that there exist coordinate
charts ¢ : U — R™ and ¢ : V — R" as in Definition [£.2.13] The resulting
map & := (1,...,%m) 0 fop~t: R™ — R™ is a smooth vector field on R™
with an isolated zero at xg = ¢(py) and no other zeros. Moreover, the index

in (4.2.12)) agrees with the index of the isolated zero xg of the vector field &
in Definition [2.2.2] i.e.

v(po; f, Q) = t(x0, ). (4.2.15)
We prove the following.

Claim 1: pg is a transverse intersection of f and Q if and only if the Jacobi
matriz d&(xo) € R™™ is nonsingular.

Claim 2: If py is a transverse intersection of f and QQ then the intersection

index in Definition is given by v(po; f,Q) = sign(det(dé(xo))) and
agrees with the intersection index in Definition [{.2.7]

To see this, observe that the transversality condition

im (df(po)) ) Tf(po)Q = Tf(po)N (4216)

in local coordinates takes the form

im (d(¢ o fo¢ ') (z0)) & ({0} x R"™™) =R".
This holds if and only if the linear map d{(z¢) : R™ — R™ is bijective,
which proves Claim 1. To prove Claim 2, assume (4.2.16)). Then it fol-

lows from (4.2.15)) and Lemma that
U(po; f7 Q) = L(l’o, 5)
= sign (det(d&(z0)))
| 41, if d¢(zo) is orientation preserving,
| -1, if d¢(=xo) is orientation reversing.

This sign is +1 if and only if the orientations match in the direct sum
decomposition (4.2.16)) and this proves Claim 2.
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SNE >l

Figure 4.3: The intersection index at isolated intersections.

By Lemma there exists a vector field £ : R™ — R™ with only non-
degenerate zeros such that &'(z) = £(z) for all z € R™ with |z — 29| > 1 and

Uz,&) = > sign(det(dg/(x))). (4.2.17)
¢/(2)=0
Let 7 := (Yma1,---,¥n) o fod™ 1 : R™ — R* ™ and define f; : M — N by

filwo = flano,  flo =9 o (1 —t)E+t,n) oo

for 0 <t <1. Then (¢1,...,%m)0 frogp ! =¢ :R™ — R™. Hence fi|y
intersects @ transversally by Claim 1, and thus by (4.2.15)), (4.2.17), and
Claim 2, we have

v(po; f,Q) = (w0, &) = Y sign(det(d¢'(z))) = Y v(pif1,Q)
€ (x)=0 pEUNSH(Q)
This proves Lemma [4.2.15| with g = f;. O

Proof of Theorem [{.2.1]). Let py be an isolated intersection of f and @ and
choose an open neighborhood U C M of pg such that U is diffeomorphic to a
closed ball, U N f~4(Q) = {po}, and U N OM = (). By Lemmaany two
coordinate charts ¢ and 1 as in Definition give rise to map g = gy
that is homotopic to f relative to M \ U such that g|y is transverse to @
and satisfies (4.2.14]). By part (ii) of Theorem with M replaced by U
the right hand side of equation @D is independent of the choice of g.
Hence the left hand side of @ is independent of the choice of the lo-
cal coordinate charts ¢ and v used to define it. That it agrees with the
intersection index in Definition in the transverse case follows by tak-
ing g = f. Now assume that f and @ have only isolated intersections. Then
by Lemma, there exists a smooth map ¢ : M — N that is transverse
to @ and homotopic to f relative to the boundary such that

Yo vpi Q= Y vpie,Q) =1(9,Q) = I(£,Q).
PEf1(Q) rEgH(Q)
This proves Theorem |4.2.14 O
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4.3 Self-Intersection Numbers

In Section we have defined the intersection number I(f,Q) € Z of
a smooth map f: P — N with a smooth submanifold QQ C N in the case
where P, (), N are oriented manifolds without boundary and P, () are com-
pact and satisfy dim(P) + dim(Q) = dim(N) (Definition [4.2.7). A special
case arises when P is a submanifold of N and f: P — N is the inclusion.

Definition 4.3.1. Let N be an oriented n-manifold without boundary and

let P,QQ C N be compact oriented submanifolds without boundary satisfying
the dimension condition

dim(P) + dim(Q) = dim(N). (4.3.1)
The intersection number of P and (@ is the integer
P-Q:=1(P,Q) =I(p,Q)€Z, (4.3.2)

where tp : P — N denotes the canonical inclusion.

If P is transverse to @ (see Example [4.1.2) then P N @ is a finite set.
In this case the intersection index of P and ) at g€ PN(Q is the
number v(q; P,Q) € {£1}, defined by

+1, if wy,...w, is a positive basis of T; N
whenever wi, ..., wy, is a positive basis of T, P
and W41, ..., wy, is a positive basis of T5Q),

—1, otherwise.

v(g; P,Q) ==

Here m := dim(P). In the transverse case the intersection number is the
sum of the intersection indices of the intersection points of P and @), i.e.

I(P,Q)= > v(gPQ). (4.3.3)
qePNQ

However, the intersection number is also well defined when P and @ do
not intersect transversally. In this case it is given by I(P,Q) = I(f,Q),
where f: P — N is any smooth map that is transverse to ) and smoothly
homotopic to the canonical inclusion tp : P — N. That such a map exists
is the content of Corollary and that the intersection number is inde-
pendent of the choice of f is the content of Theorem [4.2.8, In particular,
the intersection number is well-defined in the case P = Q.

Definition 4.3.2 (Self-Intersection Number). Let N be a compact ori-
ented 2m-dimensional manifold without boundary and let Q C N be a com-
pact oriented m-dimensional submanifold without boundary. The self-inter-
section number of Q is the integer Q - Q = 1(Q, Q) € Z.
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It follows from equation (4.3.3]) that the intersection numbers satisfy the
symmetry condition

Q P = (_1)dim(P) dim(Q)P . Q (434)

in the situation of Definition Hence the self-intersection number @ - Q
vanishes whenever the dimension dim(Q) = 3 dim(N) is odd.

The next goal is to show that the self-intersection number of @) is the
algebraic count of the zeros of a section of the normal bundle, in analogy
with the Poincaré—Hopf theorem. To make this precise, we first consider the
general case where N is a smooth n-manifold without boundary and @Q C N
is a smooth m-dimensional submanifold without boundary. Choose a Rie-
mannian metric on N and define the normal bundle of Q by

1Q* = {(g.w)|a € @ we T,Q},

(4.3.5)
T,Q* = {weT,N } (w,v) =0 for all v € T,Q} .

Denote by
:TQt - Q

the canonical projection given by 7(q, w) := ¢ for (¢, w) € TQ*. The normal
bundle is a smooth submanifold of the tangent bundle T'N and is a vector
bundle over @ (see Exercise below). A normal vector field on @
is a section of the normal bundle, i.e. a smooth map Y : Q — T'Q' whose
composition with the projection 7 : TQ+ — @ is the identity. Denote the
space of normal vector fields on ) by

Vectt(Q) :={Y : Q = TN|Y is smooth and 7o Y =1id}.

Thus a normal vector field Y € Vect(Q) assigns to an element ¢ € Q a
pair Y(q) = (¢, w) with w € T,Q*. Slightly abusing notation, it is often
convenient to discard the first component and write Y (q) = w € T, qQL. In
this notation a normal vector field is a natural transformation which as-
signs to each element ¢ € @ a normal vector Y (q) € T,Q* such that the
map Q — TQ" : ¢+ (q,Y(q)) is smooth. If N C R” is an embedded sub-
manifold of the Euclidean space R¥ for some k and the Riemannian metric
is determined by the inner product on R¥, then a normal vector field on Q is
a smooth map Y : Q — R* such that Y (q) € TN N TqQL forall g € Q. (In
the embedded case the notation T,Q" refers to the orthogonal complement
in the ambient space R* and so has a different meaning than in (4.3.5)).)

In the following we denote by V the Levi-Civita connection of the Rie-
mannian metric on N (see |21, Chapter 3]).
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Lemma 4.3.3 (Vertical Derivative). Let Y € Vect™(Q) and let gy € Q
such that Y (qo) = 0. Then there exists a unique linear map

DY (qo) : Ty Q — Tgo@",

called the vertical derivative of Y at qq, that satisfies the following con-
dition. If v € Ty, @ and v : R — Q is a smooth curve such that

7(0) = g0, () =v (4.3.6)

then
DY (go)o = Wi(Y 07)(0). (4.3.7)

Proof. Choose a coordinate chart ¥ : U — 2 C R™ on an open neighbor-
hood U C N of gg such that (U N Q) = QN (R™ x {0}). Let g : & — R™*"
be the metric tensor and write it in the form

g(x) = ( bczng Zg; > for x € Q, (4.3.8)

where a(x) € R™™ b(z) € R™* (=) and d(z) € RO*=")X(=m)  Define
Q= {z e R"|(z,0) € Q}.
Then, for z € ' and ¢ := ¥~ !(z,0) € U N Q, we have
_ ~1
dw(q)Tqu — { < a(x,())n b(.’E,O)T] ) ‘ ne Rn—m} )

Hence there exists a smooth map 7 : Q" — R™ ™ such that, for all x € Q,

d(q)Y (q) = < —a(%o)nzi()x,o)n(w)

Let o € €' such that (zg,0) := ¢ (go). Then n(z¢) = 0 and so, for v € Ty, Q
and £ € R™ with (£,0) := dy(qo)v, equation (4.3.7) takes the form

dip(qo) DY (go)v = ( —a(:no,())d;lzgca(c)(;%())dn(xg)g ) . (4.3.10)

Hence the right hand side of (£.3.7) defines an element DY (qo)v € T, Q-+
that is independent of the choice of the curve v satisfying (4.3.6)), and the

>, q:=v Yz,0). (4.3.9)

map DY (qo) : Ty,Q — Ty Q7 is linear. This proves Lemma O

Exercise 4.3.4. Verify the formula for the normal bundle in the proof of
Lemma and deduce that TQ" is a smooth submanifold of TN and a
vector bundle over Q).
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Let us now return to the special case where dim(N) = 2 dim(Q).

Definition 4.3.5 (The Index of a Zero of a Normal Vector Field).
Let N be an oriented Riemannian 2m-manifold without boundary, let Q C N
be a compact oriented m-dimensional submanifold without boundary, and
let Y € VectL(Q) be a normal vector field on Q. An element qy € Q 1is
called a nondegenerate zero of Y if Y(qy) =0 and the vertical deriva-
tive DY (qo) : Ty Q — Ty Q™ is bijective. The index of Y at a nondegen-
erate zero qq is the number

+1, if every positive basis vi,. ..,V of TgQ
gives Tise to a positive basis
1(qo,Y) :== U1y .y Um, DY (qo)vi, ..., DY (qo)vm (4.3.11)
of Ty, N,
—1, otherwise.

An element qy € Q is called an isolated zero of Y if Y(qo) = 0 and there
exists an open neighborhood V-.C N of qo such that

Y(q)#0 forallqe VNQ\{q} (4.3.12)

Let qo € Q be an isolated zero of Y. To define the index of Y at qo, choose an
open neighborhood V- C N of qo that satisfies and an orientation pre-
serving diffeomorphism ¢ : V — R?™ such that ¥(V N Q) = R™ x {0} and
the diffeomorphism (1, ...,%m) : VNQ — R™ is orientation preserving.
Define n: R™ — R™ by , and define xo € R™ by (z0,0) := 9¥(qo).
Then n(x) # 0 for all x € R™\ {xo}. The index of Y at qy is the integer

- - n(zo + )
1(qo,Y) := deg <Sm Lssm=l e > € Z. (4.3.13)
In(xo + )|
Lemma 4.3.6. Let Q C N and Y € Vect™(Q) be as in Definition
and let qo € Q be an isolated zero of Y. Then the index t(qy,Y) € Z is
independent of the choice of the coordinate chart used to define it. In the
nondegenerate case the indices in (4.3.11)) and (4.3.13)) agree.

Proof. The index of Y at gy agrees by definition with the intersection in-
dex of the zero section Z := {(q, w) € T |w = ()} C TQ* and the smooth
map Q — TQ" : g+ (¢,Y(q)) at the isolated intersection point qg, as de-
fined in Deﬁnition (Note the change in the ordering between the map
and the submanifold.) Hence by Theorem [4.2.14]it is independent of the co-
ordinate chart used to define it. That the indices in (4.3.11)) and (4.3.13)
agree in the nondegenerate case, follows directly from Lemma [2.2.3 O
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Theorem 4.3.7. Let N be an oriented Riemannian 2m-manifold without
boundary, let Q C N be a compact oriented m-dimensional submanifold with-
out boundary, and let Y € Vect™(Q) be a normal vector field on Q with only
isolated zeros. Then

Y e, Y)=@Q-Q. (4.3.14)
7€Q, Y (¢)=0

Proof. See page O

Theorem 4.3.8 (Tubular Neighborhood Theorem). Let N be a Rie-
mannian n-manifold without boundary, let Q@ C N be a compact m-dimen-
sional submanifold without boundary, and let eq := infoeqinj(q, N) > 0.
For 0 < e <e¢gq define

Ve = {(q,w) eTQt | w| < 5}, Ue := {p € N’ iggd(p,q) < 5}.
q
Then there exists a constant 0 < g9 < eg such that the map
Vo Us s (q,0) o (g, w) 1= exp, (w) (4.3.15)

is a diffeomorphism for 0 < e < gg.

Proof. The proof has three steps.

Step 1. The map . : Vo — Ue is a local diffeomorphism for € > 0 suffi-
ciently small.

The set V. € TQ' is an open neighborhood of the zero section and, for
every q € (), we have
T(q,U)TQL =T,Q® TqQL-

By [21, Lemma 4.3.6] the map v, : V. — U; is smooth and, by [2I, Corol-
lary 4.3.7], its derivative at (g,0) is the map

di-(¢,0) : T,Q & T,Q*+ — T,N

given by
dve(q,0)(q w) =g+ w

for g € T,Q and @ € T,Q*. Hence the derivative of 1. is bijective at every
point (¢,w) € TQ' with w = 0. Since @ is compact, this implies the the
derivative is bijective at every point (g, w) € V for € > 0 sufficently small.
This proves Step 1.
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Figure 4.4: A Tubular Neighborhood.

Step 2. The map 9. : V; — U; is surjective for 0 < e < £q.
Let p € U.. Since @ is compact, there exists an element ¢ €  such that

d(p,q) = inf d(p,¢') <e < eq.
q'eQ
By Theorem there is a unique tangent vector w € T; N such that

exp(w) =p,  |w|=d(p,q) <e
We must prove that w L T,Q). Assume first that |w| < inj(p, N), let v € T,Q,
and choose a curve 5 : R — @ such that
BO)=q,  BO)=v,  dlp,B(t)) < inj(p,N)

for all t. Then there exists a unique smooth curve u : R — T,,N such that

B(t) = expy(u(®),  |u(t)] = d(p,5(t))

for all ¢. Since d(p,q) < d(p, B(t)), there is a unique function X : R — (0, 1]
such that A(0) =1 and d(p, expp()\( Yu(t))) = d(p, q) for all t. Define

a(s) := expy(su(0)) = exp (1 = s)w),  7(t) := exp,(A(t)u(t)).
Then a(1) = v(0) = ¢ (see Figure and &(1) is orthogonal to 4(0) by the
Gaufl Lemma Moreover, A(0) = 1 = max; A(t), thus A(0) = 0, and
therefore .

a1 = —w,  4(0) = H(0) = v.
Hence (v,w) = 0. Thus we have w L T,Q whenever |w| < inj(p, N).
If |w| > inj(p, V), repeat this argument with p replaced by p. := exp, (cw)
for € > 0 sufficently small to obtain w L T;Q. This proves Step 2.
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Step 3. The map . : Vo — U; is a injective for € > 0 sufficiently small.

Suppose this is wrong. Then there exist sequences ¢;, ¢, € ), and w; € Tqul
and w; € Ty Q" such that

lim [w;| = lim [wj| =0, expy, (wi) = expy (wy),  (qi,wi) # (g, wj)-
1—>00 1—»00 g
Since (@ is compact, we may assume without loss of generality that the limits
q := lim ¢, q := lim ¢}
1—00 71— 00
exist. Since exp,, (w;) = expy (w}), the distance
dgi; ;) < |wi| + |wi

converges to zero and so ¢ = ¢’. However, by Step 2 and the inverse function
theorem, the restriction of the map . to a neighborhood of the point (g,0)
is injective, a contradiction. This proves Step 3 and Theorem O

Proof of Theorem [{.3.7, Choose 0 < € < £¢ such that the map ¢, : Vo — Us
in Theorem is a diffeomorphism, and assume without loss of generality
that |Y(¢)| < ¢ for all ¢ € Q. Define the map f : Q — N by

flq) :==exp,(-Y(q)) forqeQ.

Then f(q) € Q if and only if Y(¢) =0 and so f and @ have only isolated
intersections. We prove that

Ua.Y)=v(g f,Q)  forallge f7H(Q). (4.3.16)

To see this, fix an element gy € @ with Y (gg) = 0, choose an open neighbor-
hood U C @ that is diffeomorphic to R™ and contains no other zeros of Y,
and choose a positive orthonormal frame of the normal bundle TQ" over U.
Write this frame as a smooth family of isometric vector space isomorphisms

b, : Tqu — R™ for g € U.
Then the vector space isomorphism
T,Q xR™ = TyN : (v,y) = v+ @;l(y)

is orientation preserving for each ¢ € U.
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Now denote
V.= {equ(w) ‘ geU, we TqQL, lw| < 5}, B.:={yeR"||y| < e},

choose an orientation preserving diffeomorphism ¢ : U — R, and define the
coordinate chart ¢ : V — R™ x B. by

Y(expy(w)) := (¢(q), Bq(w))
for ¢ € U and w € T,Q* with |w| < e. Then
H(VNQ)=R" x {0}

and

(f(@) = (0(0), =2(Y(9))),  dv(q)w = (0, Py(w)) (4.3.17)
for all ¢ € U and all w € T,Q*. Define the map n : R™ — B, by

(@) = 2(Y(9), q=¢""'(x)=¢ (2,0, forzeR™
Then it follows from that

(Ymtts s tam) o fod™ = —n,  dp(@)Y(q) = (0,7(¢~ (),

for all ¢ € U and so n satisfies (4.3.9). Hence, with z¢ := ¢(qp), it follows
from Definition [£.2.13] and Definition [.3.5] that

. _(_1\ym m—1 m—1 . o 77(1"0 +IL‘)
t(qo; £, Q) = (—1)" deg (S — S T X |77($0+1‘)|>

= deg (Sml — 8L s 777(960 + ) )
[n(xo + )]

= 1(qo,Y).

Here the sign (—1)™ is required by the sign convention in Definition [4.2.13
This proves (4.3.16)). It follows from (4.3.16) and Theorem |4.2.14| that

Yo e Y)= D vafQ=fQ=Q-Q.
q€Q,Y (q)=0 qcf~1(Q)

This proves Theorem |4.3.7] . O
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Exercise 4.3.9. Let Q C N, Y € Vect™(Q), and f: Q — N be as in the
proof of Theroem so that f(q) = exp, (=Y (q)) for ¢ € Q. Let ¢ € Q
such that Y (¢) = 0. Prove that

df (9)w = w — DY (q)w. (4.3.18)

Deduce that g is a nondegenerate zero of Y if and only if it is a transverse
intersection of f and Q. Verify equation (4.3.16|) in the transverse case.

Exercise 4.3.10. Let M be a compact oriented manifold without boundary
and consider the zero section in the tangent bundle, i.e.

N=TM, Q={(p,v) eTM |v=0}.

Prove that @ - @ = x(M) is the Euler characteristic of M. Prove that the
Euler characteristic of every odd-dimensional compact manifold without
boundary vanishes. The Poincaré—Hopf theorem does not require the mani-
fold M to be orientable. How do you explain this?

Exercise 4.3.11. Let M be a compact oriented manifold without boundary
and consider the diagonal A C M x M. Prove that A - A = x(M).

Exercise 4.3.12. Let N be a 2m-manifold without boundary and let Q C N
be a compact m-dimensional submanifold without boundary. Define the
self-intersection number modulo two

1(Q,Q) €{0,1}.

Extend Theorem to the nonorientable case. Find an example where ()
is odd-dimensional and I»(Q, @) = 1. Hint: Consider the Mdbius strip.
Exercise 4.3.13. Define the submanifolds C,T,Q C N := CP? by

C:= {zo 21 ¢ 29 GCP2’Z2_0}NCP1

T :{Zo 21 ZQ ECPQHZ()‘ |Z1|:‘22|}§T2

Q= {zo 21 1 29] E(CP | 20, 21, 22 GR} RP2.
What is meant by the complex orientation of N7 Note that C' and T are
orientable while ) is not orientable. The submanifold C' is canonically
oriented as a complex submanifold of CP? and the orientation of T is a
matter of choice. The submanifold T C CP? is called the Clifford torus.

Prove that
c-C=1, C-T=T-T=0

and
IQ(QaQ) = 1a -[2(@70) - IQ(Q,T) =0.

Prove that CP? does not admit an orientation reversing diffeomorphism.
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Exercise 4.3.14. Define the set N ¢ C2 x CP! by
N := {(z,y,[a:b]) € C*> x CP! |ay = bx}

Prove that N is a complex submanifold of C? x CP! of real dimension four
and that E := {0} x CP! is a complex submanifold of N. Prove that

EF-E=-1
with respect to the complex orientation.

Exercise 4.3.15. The tangent bundle of the 2-sphere is the 4-manifold
T8 = {(z,y) € R*||z| =1, (z,y) = 0} .
Define the set N € C3 x CP! by

2+ 25+ 25 =0,
N :={ (z,[a:b]) € C3 x CP'| b2y +iz) —azz =0,
a(z —iz) +bzg =0

and let E := {0} x CP!. Show that N is a complex submanifold of C* x CP*
and that F is a complex submanifold of N. Prove that the formula

d(x,y) == (—z x y+ iy, [z1 + ize : 1 + x3])

defines an orientation reversing diffeomorphism ¢ : T'S? — N that sends the
zero section to E. Deduce that

E-E=-2

Prove that there does not exist an orientation preserving diffeomorphism
from 7'S? to N.

Exercise 4.3.16. (i) In the situation of Theorem prove the existence
of a normal vector field Y € Vect™(Q) with only nondegenerate zeros. Hint:
Use Corollary and Theorem Alternatively, see Exercise [7.3.5]
(ii) If Q - Q = 0, prove the existence of a normal vector field Y € Vect(Q)
without zeros. Hint: Combine the Homogeneity Lemma with parallel trans-
port to find a normal vector field whose zeros are all contained in an arbi-
trarily small ball. Then use the Hopf Degree Theorem.

(iii) If @ - Q = 0, prove the existence of a diffeomorphism ¢ : N — N that is
smoothly isotopic to the identity and satisfies @ N ¢(Q) = (). Hint: Use the
Tubular Neighborhood Theorem to extend the normal vector field Y
in (ii) to a vector field X € Vect(IN) on all of N and use the flow of X.
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Remark 4.3.17 (Whitney’s Theorem). Let N be a simply connected
smooth manifold without boundary and let P,Q C N be compact connected
submanifolds without boundary such that

dim(P) + dim(Q) = dim(N),
dim(P) = codim(Q) > 3, (4.3.19)
dim(Q) = codim(P) > 3.

Denote by Diffg(V) the group of diffeomorphisms of N that are smoothly
isotopic to the identity.

(i) If P,Q, N are oriented and I(P, Q) = 0, then a theorem of Whitney [15]
asserts that there exists a diffeomorphism ¢ € Diffo(M) with ¢(P) N Q = 0.

(ii) Whitney’s theorem continues to hold when at least one of the submani-
folds P or @ is not orientable and I>2(P, Q) = 0.

(iii) If P = @ is not orientable and I3(Q, Q) = 0, then it follows from (ii)
that there exists a diffeomorphism ¢ € Diffo(M) with ¢(Q) N Q = 0.

(iv) The manifold N is simply connected and hence orientable. Choose an
orientation of N, assume P = () is not orientable, and let Y € VectJ‘(Q)
be a normal vector field on ) with only nondegenerate zeros. Then the in-
dex 1(q,Y) € {£1} is well defined for every zero g of Y (see Definition [4.3.5).
Moreover, it follows as in the Poincaré-Hopf Theorem that the integer

e(TQY) := Z q,Y)eZ

q€Q,Y (¢)=0

(called the Euler number of the normal bundle) is independent of the
choice of Y, and it follows from Theorem that

e(TQY) = I(Q,Q) (modulo 2).

Thus, if e(TQ") is even, it follows from (iii) that there exists a diffeomor-
phism ¢ € Diffo(M) with ¢(Q) N Q = 0. In the case e(TQ"L) # 0 there is no
normal vector field on @ without zeros as in Exercise and the proof
requires Whitney’s theorem.

(v) An explicit example of a nonorientable middle-dimensional submani-
fold @ of a simply connected manifold N can be obtained by blowing up
two points on the Clifford torus 7 C CP? (see Exercise [4.3.13). This gives
rise to a nonorientable submanifold L C M := CP?#2CP" with ¢(TL') = 2.
Take N := M x M and @ := L x L to obtain an example of codimension 4
with e(TQY) = 4. Then by (iv) there exists a diffeomorphism ¢ € Diff(N)
with ¢(Q) N Q = 0. This diffeomorphism cannot be supported in a small
neighborhood of Q. The details are beyond the scope of this book.
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4.4 The Lefschetz Number of a Smooth Map

In this section we introduce the Lefschetz number of a smooth map f from a
closed manifold M to itself as the algebraic count of the fixed point indices.
If the manifold is oriented, the Lefschetz number can also be defined as
the intersection number of the graph of f with the diagonal. However,
orientability is not required and the Lefschetz number is always a homotopy
invariant. The Lefschetz—Hopf theorem asserts that the Lefschetz number is
the sum of the fixed point indices whenever the fixed points are all isolated.

The Lefschetz—Hopf Theorem

Assume throughout that M is a compact smooth m-manifold with boundary,
not necessarily orientable, and let f : M — M be a smooth map.

Definition 4.4.1 (Fixed Point Index). An element p € M is called a
fixed point of f if f(p) = p. The set of all fized points of f is denoted by

Fix(f) :={pe M| f(p) =p}.

A fized point pg € Fix(f) is called isolated if there exists an open neighbor-
hood U C M of pg such that

flp)#p  forallpe U\ {po}.

Let pg € M\ OM be an isolated fized point and let U C M \ OM be an open
neighborhood of py with U NFix(f) = {po} such that there exists a diffeo-
morphism ¢ : U — R™. Given such a coordinate chart ¢ : U — R™, define
the open set 0 C R™ and the smooth map n : Q2 — R™ by

Q:=o(UNf1U) cR™, ni=¢ofogp l:Q—R".

Let xo := ¢(po) and choose € > 0 such that B:(xg) C 2. Then the integer

zo + ex — n(xo + ex)
|zo + ex — (o + ex)|

t(po, f) := deg (Sm_l L ) (4.4.1)

is called the fixed point index of f at py. A fized point py € Fix(f) \ OM
is called nondegenerate if the linear map 1 — df (po) : Tpo M — Tp, M is a

vector space isomorphism. The map f is called a Lefschetz map if its fized
points are all nondegenerate and Fix(f) oM = (.
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Theorem 4.4.2 (Lefschetz—Hopf). Let M be a compact manifold with
boundary and let f: M — M be a smooth map such that

Fix(f)noM = 0. (4.4.2)

Then the following holds.

(1) If po € Fix(f) is an isolated fized point of f, then its fized point index is
independent of the choice of the coordinate chart ¢ used to define it.

(ii) If po € Fix(f) is a nondegenerate fized point of f, then py is an isolated
fixed point of f and its fized point index is given by

(po, f) = sign(det (1 — df (p0)))- (4.4.3)

(iii) If f has only isolated fized points, then

m

S up f) =) (D) rtrace(f* : H¥(M) — HF(D)). (4.4.4)
k

peFix(f) =0

Here H*(M) denotes the de Rham cohomology of M. In particular, the left
hand side of equation (4.4.4) is a homotopy invariant of f. If is called the
Lefschetz number of f and is denoted by L(f).

Proof. See page [78 O

In this section we will only prove that the sum of the fixed point indices of
a smooth map with with only isolated fixed points and no fixed point on the
boundary is a homotopy invariant. The formula will be established
in Theorem [6.4.8]

The strategy for the proof is to show that every smooth map with only
isolated fixed points and no fixed points on the boundary is homotopic to a
Lefschetz map with the same sum of the fixed point indices (Lemma
and then to show that the sum of the fixed point indices is a homotopy
invariant for Lefschetz maps (Lemma . To prove that the Lefschetz
number is well defined, we must also show that every smooth map is ho-
motopic to a Lefschetz map (Lemma . The proof that the fixed point
index at an isolated fixed point is well defined, requires local versions of these
results which are of interest in their own rights. In particular, Lemma [4.4.7]
asserts the existence of a local perturbation of a map f near an isolated
fixed point pg such that the perturbed map has only nondegenerate fixed
points near pg, the sum of whose indices is the fixed point index of f at pg.
This is analogous to Lemma for isolated zeros of vector fields and
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Lemma [4.2.15] for isolated intersections. A first preparatory result relates
the nondegenerate fixed points of f to the transverse intersections of the
graph of f and the diagonal in M x M (Lemma [4.4.6)).

The Lefschetz Number

Before carrying out the details, we formulate another theorem that summa-
rizes various properties of the Lefschetz number. These properties charac-
terize the Lefschetz number axiomatically and hence can also be used to
define it. For a smooth manifold M denote by Map(M, M) the space of all
smooth maps f: M — M.

Theorem 4.4.3. Let M be a compact manifold with boundary. Then there
exists a function
Map(M, M) — Z: f — L(f), (4.4.5)

called the Lefschetz number, that satisfies the following axioms for all
smooth maps f,g: M — M.

(Homotopy) If f is smoothly homotopic to g, then L(f) = L(g).
(Lefschetz) If f is a Lefschetz map, then

L(f) = Z sign(det(1 — df (p))).

pEFix(f)

(Fixed Point) If L(f) # 0 then Fix(f) # 0.
(Hopf) If Fix(f)NOM =0 and f has only isolated fized points, then

L(f)= Y up.f)

pEFix(f)
(Conjugacy) If ¢ : M — M s a diffeomorphism then
L(go fo¢™!) = L(f).

(Euler) If f is homotopic to the identity, then L(f) = x(M) is the FEuler
characteristic of M.

(Graph) If M is oriented and OM = 0, then L(f) = graph(f) - A.

Moreover, every smooth map f: M — M is smoothly homotopic to a Lef-
schetz map. Hence the map (4.4.5) is uniquely determined by the (Homo-
topy) and (Lefschetz) axioms.

Proof. See page O
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The Lefschetz Fixed Point Theorem

We remark that the (Fixed Point) axiom in Theorem is known as the
Lefschetz Fixed Point Theorem. We also remark that every continuous
map f: M — M is continuously homotopic to a smooth map and that any
two smooth maps fo, f1 : M — M that are continuously homotopic are also
smoothly homotopic and hence have the same Lefschetz number by the
(Homotopy) axiom in Theorem Thus the definition of the Lefschetz
number and the Lefschetz Fixed Point Theorem carry over to continuous
maps. In this form the Lefschetz Fixed Point Theorem can be viewed as a
generalization of the Brouwer Fixed Point Theorem. The Lefschetz Fixed
Point Theorem is particularly useful in combination with the formula
m
L(f) =Y _(=1)*trace(f* : H*(M;R) — H*(M;R)). (4.4.6)
k=0

This formula is proved in Theorem for smooth maps.

Corollary 4.4.4 (Lefschetz Fixed Point Theorem). Let M be a com-
pact manifold with boundary and let f: M — M be a continuous map such
that L(f) #0. Then f has a fized point.

Proof. If f is smooth and has no fixed points then f is trivially a Lef-
schetz map and so L(f) = 0 by Theorem If f is continuous and has
no fixed point, then there exists a smooth map g: M — M without fixed
points that is continuously homotopic to f and hence has the same Lefschetz
number L(f) = L(g) = 0. This proves Corollary O

Exercise 4.4.5. Let M C R¥ be a compact submanifold with boundary and
let f: M — M be a continuous map (without fixed points). Prove that there
exists a smooth map g : M — M (without fixed points) that is continuously
homotopic to f. If f,g : M — M are smooth maps which are continu-
ously homotopic, prove that they are smoothly homotopic. Deduce that
the Lefschetz number is well defined for continuous maps. Hint: For ¢ > 0
sufficiently small denote the e-tubular neighborhood of M \ OM by

U= {p+v|pe M\OM, veR, v LT,M, o] <<}

and define the (smooth) map r: U, — M \ OM by r(p+v) :==p forpe M
and v € T,M* with |v] < e. Assume f(M) C M \ OM and use the Weier-
stral Approximation Theorem to find a smooth map h : M — U, such

that sup,cp|h(p) — f(p)| <e. Define fi(p) :=r((1 —1t)f(p) +th(p)). If f
has no fixed points, choose € < inf,en|p — f(p)|.
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Four Lemmas
Define the diagonal in M x M and the graph of f by

A:={(p,p)|p € M},
graph(f) :={(p, f(p)) |p € M}.

The fixed points of f are in one-to-one correspondence with the intersection
points of the graph of f and the diagonal.

Lemma 4.4.6. Let p € Fix(f) \ OM. Then the following holds.

(i) The fized point p of f is nondegenerate if and only if the pair (p,p) is a
transverse intersection of the graph of f and the diagonal.

(ii) If p is a nondegenerate fixed point of f and M is oriented, then the fized
point index of f at p agrees with the intersection index of the graph of f and
the diagonal at the point (p,p) € M x M, i.e.

sign(det(1 — df (p))) = v((p, p); graph(f), A). (4.4.7)
Proof. The graph of f and the diagonal intersect transversally at (p,p) if
and only if T,M x T,M = T, ygraph(f) + T(, A or, equivalently, for
all v,w € T, M there exist tangent vectors v, v1 € T, M such that
v =1y + v, w = df (p)vo + v1

Taking the difference of these equations we find that this holds if and only if
for all v, w € T, M there exists a vg € T,M such that v —w = vy — df (p)vo.
This means that the linear map 1 — df (p) is surjective and hence also bijec-
tive, i.e. that p is a nondegenerate fixed point of f. This proves (i).

To prove (ii), assume p is a nondegenerate fixed point of f and M is
oriented. Fix a positive basis v1,..., v, of T, M and consider the basis

(Ula df(p)vl)v SRR (Uma df(p)vm)a (Ulv Ul)a SRR (Umv Um)a
of T,M x T,M. Subtracting the ith vector from the (m+i)th vector in this
basis we obtain the basis

(v, df (p)vr), - - (Ui, df (P)vm), (0,01 — df (p)v1), - -, (0, vm — df (p)om).-

Now subtract a suitable linear combination of the last m vectors from each
of the first m vectors to obtain the basis

(v1,0), ..., (v, 0), (0,01 — df (p)v1), ..., (0, v — df (p)vm)

of T,M x T,M. This basis is related to the original basis of T, M x T, M by
a matrix of determinant one and it is a positive basis of T,,M x T,,M if and
only if det(1l — df (p)) > 0. For an alternative proof of (ii) see Exercise[4.4.11]
This proves Lemma, [4.4.6 O
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Lemma 4.4.7 (Local Perturbation). Let M be a compact m-manifold
with boundary, let f : M — M be a smooth map, let py € Fix(f)\ OM be an
isolated fixed point, and let U C M be an open neighborhood of py such that

Fix(f)NU = {po}, UnoM =9. (4.4.8)

Then there exists a smooth map g: M — M that has only nondegenerate
fized points in U, is smoothly homotopic to f relative to M \ U, and satisfies

Wpo, f)= ) sign(det(l—dg(p))). (4.4.9)

peUNFix(g)

Proof. After shrinking U, if necessary, we may assume that there exists a
diffeomorphism ¢ : U — R™. Define the open set 2 C R™ and the smooth
map 1 : 2 — R™ by

Q:=oUNfFLU)) cR™, ni=¢gofop l:Q—R™

Let zp := ¢(pog) and choose a constant £ > 0 such that B.(z¢) C Q. Then
the map & : Q — R™, defined by

&(z) ==z —n(x) for x € Q,

is a smooth vector field with z( as its only zero and Defintion shows
that the fixed point index of pg, defined in terms of the coordinate chart ¢,
agrees with the index of zy as a zero of the vector field &, i.e.

Elwoter) \ o
!é(xoﬂg;)\) = t(x0,€).  (4.4.10)

Then by Lemma there exists a smooth vector field £ : Q@ — R™ with
only nondegenerate zeros such that

& (x) = &(x) for all x € Q\ B:(z), (4.4.11)

L(zo, &) = Z sign (det(d¢'(x))). (4.4.12)
£/ (x)=0
Hence the map n' :=id — & : Q@ — R™ has only nondegenerate fixed points
and agrees with n on Q\ B:(zg). Now define the map g : M — M by

_J f), for p e M\ (UN f~H(V)),
9(p) = { gf)_l on o¢(p), forpe Uﬂf_l(U).

Then g is homotopic to f, via filynr-1) = d Lo (1 —tm+tn)od
with fo = f and f1 = g, and the map ¢ has only nondegenerate fixed points
in U. The formula (4.4.9)) follows directly from (4.4.10) and (4.4.12)), and

this proves Lemma [4.4.7 ]

t(po, f) = deg (Sm_l N
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Lemma 4.4.8 (Local Transversality). Let M be a compact manifold with
boundary, let U C M \ OM be an open set, and let f: M — M be a smooth
map such that

Fix(f)NnU\ U = 0. (4.4.13)
Then there exists a smooth map g: M — M that has only nondegenerate
fized points in U and is smoothly homotopic to f relative to M \ U.

Proof. We prove that Fix(f) N U is a compact set. To see this, choose any
sequence p; € Fix(f) NU. Since M is compact, there exists a subsequence,
still denoted by p;, which converges to an element p € M. Thus p € U
and f(p) = f(lim; oo pi) = lim; 00 f(pi) = lim; 00 p; = p. Thus p € Fix(f)
and so p € U by (4.4.13). This shows that the set Fix(f) N U is compact.
Now choose a compact neighborhood K C U of U N Fix(f) and a smooth
cutoff function 5 : M — [0,1] such that supp(f) C U and f|lx = 1.
Then U \ K NFix(f) = (). Hence Lemma (with N := M \ OM) asserts
that there exists a smooth map G : R¢ x M — M such that
(A) G(0,p) =p for all pe M,
(B) T pyM = span{g—g()\,p) li=1,...,¢} for all p€ K and all A € R,

(C) G\, f(p)) #pforall \e Rf and all pe U \ K.
Here the last condition can be achieved by first restricting the map G to a
sufficiently small neighborhood of {0} x M and then composing it with a
diffeomorphism from R x M to this neighborhood.

Define the maps fy : M — M by

fp) == GB@A f(p))  for xeR and p € M,
and define the map F : R x U = M x M by
F(\,p) = (p, fr(p)) for A\ € R and p € U.

Then F is transverse to A. Namely, if A € R and p € U satisfy F(\,p) € A,
then G(B(p)A, f(p)) = fa(p) = p, hence p € K by (C), therefore 5(p) =1,
this implies T, M = span{a%if)\ (p)|i=1,...,¢} by (B), and hence we obtain
the equation T, M x T, M = im dF(\,p) + T, ,A. This shows that the set

A= FHB) = {(\p) € R < U| fr(p) = p}

is a smooth submanifold of R’ x U, by Lemma By Sard’s Theorem
there exists a regular value X\ € R’ of the canonical projection 7 : .# — RE.
Then, by Lemma the map U — M x M : p+— (p, fx(p)) is transverse
to A. Thus g := f) has only nondegenerate fixed points in U by Lemma[4.4.6]
and is homotopic to f via t — f;\ by (A). This proves Lemma m O
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Lemma 4.4.9 (Local Lefschetz Number). Let M be a compact mani-
fold with boundary, let U C M \ OM be an open set, let fo, f1: M — M be
smooth maps with only nondegenerate fixed points in U that satisfy ,
and suppose there exists a smooth homotopy [0,1] x M — M : (t,p) — fi(p)
from fo to f1 such that Fix(f;) NU\ U = 0 for all t. Then

> sign(det(l—dfo(p))) = Y sign(det(I1—dfi(p))). (4.4.14)
peUNFix(fo) peUNFix(f1)

Proof. The proof has four steps. The proof of Step 1 is analogous to the
proof of Lemma

Step 1. Define the map F :[0,1] x U — M x M by
F(t,p) = fi(p)) for0<t<1landpel.

We may assume without loss of generality that F is transverse to A.

The set {p € U |3t s.t. fi(p) = p} is compact by and so has a com-
pact neighborhood K C U. Choose a smooth function 5 : M — [0, 1] such
that supp(f) C U and f|x = 1. Next, by Lemma choose a smooth
map G : R¢ x [0,1] x M — M that satisfies (A), (B), and

(C°) G(\, fi(p)) #pforall \e R allt € [0,1],and all pe U \ K.
Define the map F : R x [0,1] x U — M x M by
F(\tp) = (p,G(t(L = 1)B(P)A, fi(p)))  for (A t,p) €R" x [0,1] x U.

This map and its restriction to R x {0,1} x U are transverse to A. Thus by
Lemmathe set .4 := F~1(A) is a smooth submanifold with boundary
of R® x [0,1] x U. Choose a regular value A € R of the projection .# — R,
Then by Lemma the map F'(t,p) = F(A,t,p) is transverse to A. Now
replace fi(p) by f{(p) := G(t(1 —t)B(p)A, f:(p)). This proves Step 1.

Step 2. Let F be as in Step 1 and transverse to A. Then the set
X :=F 1 (A) ={(t,p) € [0,1] x U fi(p) = p}
is a compact 1-manifold with boundary

90X = ({0} x Fix(folr)) U ({1} x Fix(f1]v))-

The map F|f1yxp is transverse to A by assumption and Lemma
Hence Lemma asserts that the set X is a submanifold of [0,1] x U
with boundary 0X = X N ({0,1} x U). Moreover, X is compact because

Fix(fy) NU\U =10
for all t. This proves Step 2.
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Figure 4.5: The local Lefschetz number.

Step 3. Fir a Riemannian metric on M. Then X 1is oriented as follows.
Choose an element (t,p) € X and a nonzero tangent vector (7o, vo) € Tz ) X -
Then the linear map ®r, v, : R X T,M — R x T,M defined by

® .00 (75 0) 1= (107 + (v0,v), v — dfe(p)v — 7% fi () | (4.4.15)

is bigective. The vector (19,vp) is called a positive tangent vector of X
iff the automorphism ®r, ., s orientation preserving.

If (t,p) € X then T,M = im (1 — df,(p)) + RE fi(p) and

TupX = {(r,0) ER X TM |dhp)o + 7§ 1ip) = v}

Thus the linear map @5, , : R x T,M — R x T,M in (4.4.15) is bijective
for every nonzero tangent vector (7o,vo) € T(;,)X and this proves Step 3.

Step 4. We prove (4.4.13)).

By Step 2 and Theorem the set X is a finite union of circles and
arcs, oriented by Step 3. Let A C X be an arc and choose an orientation
preserving diffeomorphism v : [0, 1] — A. We examine the boundary points.
Case 1: ~(0) = (0,p). Then fo(p) =p and ¥(0) = (70,v0) with 79 > 0.
Since det(®r,,) > 0, it follows from that det(1 — dfyp(p)) > 0.

Case 2: ~(1) = (1,p). Then fi(p) =p and (1) = (70,v0) with 70 > 0.
Since det(®r,.,) > 0, it follows from that det(1 — df1(p)) > 0.

Case 3: ~(0) = (1,p). Then fi(p) =p and (0) = (70,v0) with 79 < 0.
Since det(®r,.,) > 0, it follows from that det(1 — df1(p)) < 0.

Case 4: ~(1) = (0,p). Then fo(p) =p and (1) = (70,v9) with 79 < 0.
Since det(®r,.,) > 0, it follows from that det(1 — dfo(p)) < 0.

To verify these assertion, it is convenient to choose a basis of R x T,,M of the
form (79,v0), (0,v1),...,(0,v,). The four cases show that the signs of two
fixed points of fy (respectively f1) in U that are joined by an arc cancel and
that the signs of a fixed point of fy and a fixed point of f; that are joined
by an arc agree (see Figure [4.5)). This proves Step 4 and Lemma O
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Proofs of the Main Theorems

Before proving the Lefschetz—Hopf Theorem it is convenient to give a formal
definition of the Lefschetz number.

Definition 4.4.10 (Lefschetz Number). Let M be a compact manifold
with boundary and let f: M — M be a smooth map. By part (i) of Fux-
ercise and Lemma with U = M \ OM, there exists a Lefschetz
map g : M — M that is homotopic to f. By part (ii) of Exercise
and Lemma the integer 3 sign(det(1 — dg(p))) is independent of the
choice of g. It is called the Lefschetz number of f and is denoted by

forg~f
L(f):= Z sign(det(1 — dg(p))) with Fix(g) NOM =0 (4.4.16)
peFix(g) and graph(g) M A.

This number is a homotopy invariant of f.

Proof of Theorem[{.4.3. Let py € Fix(f) \ @M be an isolated fixed point
of f and choose an open neighborhood U C M of pg such that

Fix(f) N U = {po}

as in . Let us temporarily denote the fixed point index of f at pg
that is defined via the coordinate chart ¢ by t4(po, f). Then Lemma
asserts that there exists a smooth map g4 : M — M, constructed with the
same coordinate chart ¢, such that g4 is smoothly homotopic to f relative
to M \ U, has only nondegenerate fixed points in U, and satisfies equa-
tion . The right hand side of is independent of the choice of g4
by Lemma [£.4.9] Hence, if ¢/ : V — R™ is any other coordinate chart on an
open neighborhood V' C M of py such that Fix(f) NV = {pg}, we have

wipo, )= > sign(det(ll - dgy(p)))

pEVNFix(gy)

= Y sign(det(1— dgy(p)))
peUNFix(gq)
= tg(po, f)-
This proves (i).
We prove part (ii). Let pg € Fix(f) \ OM be a nondegenerate fixed point
of f. Then it follows from the Inverse Function Theorem in local coordinates
that pg is an isolated fixed point, and the equation

u(po, f) = sign(det(1 — df (po)))
in (4.4.1) follows by taking g, = f in the proof of (i). This proves (ii).
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We prove the homotopy invariance statement in part (iii). Thus as-
sume that Fix(f) NdM = () and that f has only isolated fixed points. By
Lemma there exists a smooth map g : M — M with only nondegener-
ate fixed points that is homotopic to f relative to the boundary and satisfies

Y up f)= D sign(det(1 - dg(p))).

peFix(f) peFix(g)
The right hand side is the number L(f) in Definition |4.4.10, Hence

> up, £) = L(f)

pEFix(f)

is a homotopy invariant of f This proves the homotopy invariance statement
in part (iii) of Theorem The relation to the de Rham cohomology will
be established in Theorem m O

Proof of Theorem[{.4.3 The uniqueness statement follows from the fact
that, by part (i) of Exercise and Lemma with U = M \ OM,
every smooth map f: M — M is homotopic to a Lefschetz map. To prove
existence, we show that the Lefschetz number in Definition satisfies
all the axioms in Theorem [4.4.3]

The (Homotopy) and (Lefschetz) axioms follow from Exercise
Lemma and Lemma The (Fixed Point) axiom follows from the
(Lefschetz) axiom and the Observatlon that a map without fixed points is
trivially a Lefschetz map. The (Hopf) axiom is the content of the Lefschetz—
Hopf Theorem [4.4.2)and the (Graph) axiom follows from Lemmal[4.4.6] Thus
it remains to verify the (Conjugacy) and (Euler) axioms.

The (Conjugacy) axiom is a consequence of chain rule. By the (Ho-
motopy) and (Lefschetz) axioms, we may assume without loss of generality
that f is a Lefschetz map. Let ¢ : M — M be a diffeomorphism and define

gi=¢ofos.
Then go ¢ = ¢o f and
Fix(g) = #(Fix(f)).
Let p € Fix(f) and define ¢ := ¢(p) € Fix(g). Then
dg(q)de(p) = do(p)df (p)
by the chain rule, hence 1 — dg(q) = dqb( )(]1 - df(p))d(b(p)*l, and hence
(4))) = sign(det(1 - df (p))).
Take the sum over all p € Fix(f) to obtain L(f) = L(g).

51gn(det (1—dg(q



80 CHAPTER 4. INTERSECTION THEORY

To verify the (Euler) axiom, fix a Riemannian metric on M such that
the boundary is totally geodesic (see Exercise . Choose a vector
field X € Vect(M) with only nondegenerate zeros such that X points out
on the boundary and |X(p)| < inj(p, M) for all p € M. (This condition
continuous to be meaningful at boundary points because the boundary is a
totally geodesic submanifold of M.) Define a smooth map f: M — M by

f(p) = exp, (=X (p))
for p € M. Then f is smoothly homotopic to the identity. Moreover,
Fix(f) = {p € M| X(p) = 0} € M\ OM
and
df (p)v =v — DX (p)v for all p € Fix(f) and all v € T,M.
Hence f is a Lefschetz map and
det(1 — df (p)) = det(DX (p)) for all p € Fix(f).

Take the sum of the signs over all p € Fix(f) to obtain

L(f)= > sign(det(1 - df(p)))

peFix(f)
= ) sign(det(DX(p)))
pEM, X (p)=0
= x(M).
Here the last equality follows from the Poincaré—Hopf Theorem for
manifolds with boundary and this proves Theorem [£.4.3] O

Exercises

Exercise 4.4.11. Prove that every square matrix A satisfies

1 1
det(A ]1>—det(]l—A).

Use this formula to give an alternative proof of part (ii) of Lemma m

Exercise 4.4.12. If f is homotopic to a constant map then L(f) = 1.
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Exercise 4.4.13. Deduce the Brouwer Fixed Point Theorem from the Lef-
schetz Fixed Point Theorem (Corollary [4.4.4). Hint: Show that every con-
tinuous map f : D™ — D™ has the Lefschetz number L(f) = 1.

Exercise 4.4.14. A smooth map f : S' — S! has the Lefschetz number

L(f) =1 —deg(f).
Find a smooth map f : S' — S! of degree 1 without fixed points.
Exercise 4.4.15. A smooth map f : S? — S? has the Lefschetz number

L(f) = 1+ deg(f).
Find a smooth map f : 2 — S? of degree —1 without fixed points.

Exercise 4.4.16. Prove that, for every integer m > 0, the m-sphere S™
admits a diffeomorphism without fixed points. What is the degree of such
a diffeomorphism?

Exercise 4.4.17. Let M = T? = R?/Z? and let f:T? — T? be the map
whose lift to R? is given by

f(z,y) = (az + by, cx + dy)
for (z,y) € R?, where a,b,c,d € Z. Then deg(f) = ad — bd and
L(f)zl—a—d+ad—bc:det<1_Ca 1_bd>. (4.4.17)

Each of the maps f : T? — T2 in this example has a fixed point. If L(f) = 0,
prove that f is homotopic to a smooth map without fixed points.

Exercise 4.4.18. Let A € Z™*" be an integer matrix. Prove that the
Lefschetz number of the induced map f : T" — T" is L(f) = det(1 — A).

Example 4.4.19. Use Theorem to show that every compact Lie group
of positive dimension has Euler characteristic zero. Hint: Find a smooth
map without fixed points that is homotopic to the identity.

Exercise 4.4.20. Let f : CP" — CP" be a smooth map. Prove that there
exists an integer d such that

L(f)y=1+d+d*+ - +d"

If n is even, deduce that every smooth map f : CP™ — CP™ has a fixed point.
If n is odd, find a smooth map f : CP™ — CP"™ without fixed points. Hint:
Use Theorem to prove the formula for the Lefschetz number. See also
Corollary If n = 1, consider the antipodal map of the 2-sphere.
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Exercise 4.4.21. Use the Lefschetz Fixed Point Theorem to prove that
every matrix A € C"*" has an eigenvector. Hint: Assume det(A) # 0 and
consider the induced map ¢4 : CP"~! — CP"~!. Show that ¢4 is homotopic
to the identity. Deduce that L(¢4) = x(CP" 1) = n, so ¢4 has a fixed point.

Exercise 4.4.22. If n is odd, prove that every matrix A € R™*" has a real
eigenvector. Hint: Exercise 4.4.21| with RP™ ! instead of CP" 1.

Exercise 4.4.23. Deduce the Fundamental Theorem of Algebra from
Exercise [4.4.21] Use Exercise [4.4.22] to show that every polynomial of odd

degree with real coefficients has a real root.

Exercise 4.4.24. Let M be a compact manifold with boundary.

(i) Let f: M — M be a smooth map. Prove that f is homotopic to a
smooth map g : M — M such that Fix(g) "M = (). Hint: Construct a
vector field X € Vect(M) that points in on the boundary and compose f
with the semi-flow of X.

(ii) Let fo, f1 : M — M be smooth maps such that
Fix(fo) NOM = Fix(f1) NOM = 0.

Suppose that fy and f; are smoothly homotopic. Prove that there exists a
smooth homotopy [0,1] x M — M : (t.p) — fi(p) from fy to f1 such that

Fix(f;) NoM =0 for 0 <t <1.

Hint: Given any smooth homotopy {f:}o<i<1 from fy to fi and a vec-
tor field X € Vect(M) that points in on the boundary, consider the homo-
topy gt 1= ¢y(1—1) © ft, where {¢;}i>0 is the semi-flow of X.

Exercise 4.4.25. Let M be a compact manifold with boundary.

(i) Prove that there exists a neighborhood U C M of the boundary that is
diffeomorphic to (—1,0] x OM. Hint: Use the negative time semi-flow of a
vector field X € Vect(M) that points out on the boundary.

(ii) Prove that there exists a Riemannian metric on M with respect to which
the boundary is totally geodesic, i.e. if p € OM and v € T,0M, then there
exists a geodesic v : R — M on all of R such that v(0) = p and 4(0) = v and
this geodesic takes values in the boundary of M. Hint: Choose a product
metric on a product neighborhood U of the boundary as in part (i) and
extend it to a Riemannian metric on all of M.



Chapter 5

Differential Forms

This chapter begins with an elementary discussion of differential forms on
manifolds. Section[5.I]explains the exterior algebra of a real vector space and
its relation to the determinant of a square matrix and indroduces differential
forms on manifolds. In Section [5.2] we introduce the exterior differential in
local coordinates as well as globally, define the integral of a compactly sup-
ported differential form of top degree over an oriented manifold and prove the
Theorem of Stokes. The section also contains a brief discussion of de Rham
cohomology. In Section we prove Cartan’s formula for the Lie derivative
of a differential form in the direction of a vector field and use it to show
that a top degree form on a compact connected oriented smooth manifold
without boundary is exact if and only if its integral vanishes. Section
discusses several applications of these results including the GauB3—~Bonnet
formula and Moser isotopy for volume forms.

5.1 Exterior Algebra

5.1.1 Alternating Forms

We assume throughout that V' is an m-dimensional real vector space and
fix a positive integer k € N. Let S denote the permutation group on k
elements, i.e. the group of all bijective maps o : {1,...,k} — {1,...,k}.
The group operation is given by composition and there is a group homo-
morphism ¢ : S — {£1} defined by

e(o) = (—1)", vio) :=#{(i,4) € {1,.. kY i< g, o(i) > a(j)}.

83
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Definition 5.1.1. An alternating k-form on V is a multi-linear map
w:Vx---xV >R
~—_———
k times

satisfying
W(Vo(1)s -+ -5 Vo (ky) = €(0)w(v1,. .., vk)

for allvy,...,vx € V and all 0 € S. An alternating 0-form is by defini-
tion a real number. The vector space of all alternating k-forms on V' will be
denoted by

ARV = {w VF SR |w is an alternating k—form}.

For w € A*V* the integer k =: deg(w) is called the degree of w.
Example 5.1.2. An alternating O-form on V is a real number and so
AV* =R,
Example 5.1.3. An alternating 1-form on V is a linear functional and so
A'W* = V* .= Hom(V, R).

In the case V =R™ denote by dz’:R™ — R the projection onto the ith
coordinate, i.e.

da'(¢) = ¢
for ¢ = (¢4,...,6€™) € R™ and i = 1,...,m. Then the linear function-
als do!, ... dx™ form a basis of the dual space (R™)* = AL(R™)*.

Example 5.1.4. An alternating 2-form on V is a skew-symmetric bilinear
map w: V x V — R so that

wv,w) = —w(w,v)

for all v,w € V. In the case V = R™ an alternating 2-form can be written
in the form

W(ga 77) = <€a A77>

for £,m € R™, where (-,-) denotes the standard Euclidean inner product

on R™ and A = —AT € R™X™ is a skew-symmetric matrix. Thus
—1
dim(A2V*) = m(m2 )

for every m-dimensional real vector space V.
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Definition 5.1.5. Let Z), = Z(m) denote the set of ordered k-tuples
I:(il,...,ik)ENk, 1<y <o <+ <1 <m.
For I = (iy,...,i;) € Iy the alternating k-form

dr' :R™ x ... x R™ - R
~—_——

k times
s defined by
R Y
1 2 k
iz glz L gi2
drl (€. &) =det| . § (5.1.1)

for & = (5]1 LLEMERT =1,k
Lemma 5.1.6. The elements dz! for I € Ij, form a basis of AF(R™)*.
Thus, for every m-dimensional real vector space V', we have

dim(ARV*) = (TZ) k=0,1,...,m,

and A*V* =0 for k > m.

Proof. The proof relies on the following three observations.

(1) Let ey, ..., en be the standard basis of R™ and let J = (j1,...,jk) € Zg.
Then, for every I € T, we have

17 lfI:J7
d$1(€j17--~7ejk):{0 if I # J.

(2) For every w € A*(R™)* we have
w=20 — w(€iy,-.-y€i) =0 VI=(ir,... i) € Lg.
(3) Every w € A¥(R™)* can be written as

1 ._
w = E wrdz”, wr = w(€i,...,e,).
1€y,

Here assertions (1) and (2) follow directly from the definitions and asser-
tion (3) follows from (1) and (2). That the da’ span the space A*(R™)*
follows immediately from (3). We prove that the dz! are linearly inde-
pendent: Let w; € R for I € 7, be a collection of real numbers such
that w := > ;wrdr! = 0; then, by (1), we have w(ej,...,e;,) = wy
for J = (j1,...,Jk) € Iy and so wy = 0 for every J € Zj. This proves
Lemma [(.1.6 O
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5.1.2 Exterior Product and Pullback

Let k,¢ € N be positive integers. The set Si¢ C Sgy¢ of (k,¢)-shuffles is
the set of all permutations in Sk, that leave the order of the first £ and of
the last ¢ elements unchanged:

Spe:={0€ Spe|lo(l)<---<o(k),ok+1)<---<ak+0)}.
The terminology arises from shuffling a card deck with k + £ cards.

Definition 5.1.7. The exterior product of w € A*V* and 7 € A'V* is
the alternating (k + £)-form w A T € A*HV* defined by

(WAT)(V1,. ., Vptp) == Z e(o)w (vo(l), e ,vg(k)) T (vg(kJrl), e Uo(k+£))
0ESk e

forvy,...,vk e €V.

Exercise 5.1.8. Show that the multi-linear map w A 7 : V¥ & R in
Definition is alternating.

Example 5.1.9. The exterior product of two 1-forms o, € V* is the
2-form

(@ B)(v,w) = a(v)B(w) — a(w)B(v).

The exterior product of a 1-form o € V* and a 2-form w € A2V* is given by
(e Aw)(u,v,w) = a(w)w(v, w) + a(v)w(w, u) + o(w)w(u,v)
for u,v,w € V.
Lemma 5.1.10. (i) The exterior product is associative:
w1 A (w2 Aws) = (w1 Awa) Aws

for wi,wo, w3 € A*V*.

(ii) The exterior product is distributive:
w1 N\ (wg —|—U.)3) = wi] ANw2 + w1 N\ ws

for wi,wo, w3 € A*V*,

(ii) The ezterior product is super-commutative:
A = (1)) deEr)

forw, T € A*V*.
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Proof. Let w; € A¥V*, denote
k =k + ko + ks,
and define Si, i, k, C Sk by
o(l) <+ <o(ky),
Sk1,k2,k3 =0 € Sk O'(k?l + 1) <L e < O'(kil —+ k:g), ,
U(kl—i-k?g—i-l) <---<U(]€)

Let w € A*V* be the alternating k-form

W, ove) = Y e(@)wr (Va1 V() -

O’ESkl,kQ’k?)
T W2 (Ua(k1+1)7 e 7vo(k1+k2)) w3 (Ua(k1+k2+1)7 cee Ua(k)) .
Then it follows from Definition [5.1.7 that

w1 A (w2 /\W3) = (wl /\wg) N\ w3

This proves (i). Assertion (ii) is obvious.

To prove (iii) we define the bijection

Sk’g—> S&k 00

by
. olk+1i), fori=1,...,¢,
o(1) := . .
o(t—120), fori=0+1,....,0+k.
Then
£(0) = (-1)*e(0)
and hence, for w € AFV*, 7 € AV* and vy, ..., v44¢ €V, we have
(WAT)(v1,. ., Vo)
= Z e(a)w (UU(1)7 s 7Ua(k)) T (Ua(k—l-l)a s 7Uo(k+€))
UESk,g
= (=D > e(@)w (va(et1)s - - > a(erm) T (V501)5 - Va(0))
363&16
= (=D)M(r Aw) (V1 vrre)

This proves (iii) and Lemma [5.1.10
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Exercise 5.1.11. The Determinant Theorem asserts that

ar(vr) ai(v2) -+ ar(vk)
a2( U1 a2( V9 s (e AN
(a1 A+ ANag) (v, ..., v) = det ( ) ( ) ( ) (5.1.2)
ap(vr) ag(v2) - ar(or)
for all a1,...,ar € V* and vq,...,v; € V. Prove this and deduce that

de! = dz™ A - A da
for I = (i1,...,ix) € Iy, where dz! € A¥(R™)* is given by (5.1.1).

Exercise 5.1.12. An alternating k-form § € A*V* is called decomposable
if there exist linear functionals a,...,ar € V* such that 6 = a3 A -+ A ay.
This notion extends to complex valued alternating k-forms 6 € A¥V* @ C.
Now suppose V has real dimension 2n and let § € A"V* Qg C be a complex
valued alternating n-form. Prove that 6 is decomposable if and only if there
exists a linear complex structure J : V — V (i.e. alinearmap J : V — V
with JoJ = —1) such that 6 is complex multi-linear with respect to J.
Prove that, in this situation, J is uniquely determined by 6.

Definition 5.1.13 (Pullback). Let ® : V — W be a linear map between
real vector spaces. The pullback of an alternating k-form w € AFW* un-
der ® is the alternating k-form ®*w € AFV* defined by

(P*w)(v1,. .., vg) = w(Pvy, ..., Pug)
forvy,...,up € V.

Lemma 5.1.14. (i) The map A*W — A*V : w — ®*w is linear and
preserves the exterior product, i.e. ®*(w A T) = ®*w A ®*1 for allw € AFW*
and all T € AW*.

(il) If ¥ : W — Z is another linear map with values in a real vector space Z,
then (U o ®)*w = ®*V*w for every w € A¥Z*. Moreover, if id: V — V de-
notes the identity map, then id*w = w for all w € AFV*.

(iii) If ®: V = V is an endomorphism of an m-dimensional real vector
space V', then ®*w = det(®)w for all w € A"V*.

Proof. Assertions (i) and (ii) follow directly from the definitions. By (ii) it
suffices to prove (iii) for V' = R™. In this case assertion (iii) can be written
in the form ®* (dz! A+ A dz™) = det(®)dz! A - Ada™ for @ € R™*™, and
this follows from and the product formula for the determinant. This
proves Lemma ]
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5.1.3 Differential Forms on Manifolds

Definition 5.1.15 (Differential Form). Let M be a smooth m-manifold
and let k be a nonnegative integer. A differential k-form on M is a
collection of alternating k-forms

wp : TpM x - x T,M — R,

k times

one for each element p € M, such that, for every k-tuple of smooth vector
fields X1, ..., Xk € Vect(M), the function

M —R:p— w,(Xi(p),...,Xk(p))

is smooth. The set of differential k-forms on M will be denoted by QF(M).
A differential form w € QF(M) is said to have compact support if the set

supp(w) == {p € M |w, # 0}

(called the support of w) is compact. The set of compactly supported k-

forms on M will be denoted by Q¥ (M) C QF(M). As before we call the
integer k =: deg(w) the degree of w € QF(M).

Remark 5.1.16. The set
AFT* M = {(p,w) lpe M, we A"’T*M}

is a vector bundle over M. This concept will be discussed in detail in
Section [7.1l We remark here that A*T*M admits the structure of a smooth
manifold, the obvious projection 7 : A¥T*M — M is a smooth submersion,
each fiber AkT;M is a vector space, and addition and scalar multiplication
define smooth maps. The manifold structure is uniquely determined by the
fact that each differential k-form w € QF(M) defines a smooth map

M — AFT*M - p— (p,wp),

still denoted by w. Its composition with 7 is the identity on M and such a
map is called a smooth section of the vector bundle. Thus QF(M) can be
identified the space of smooth sections of AFT*M. It is a vector space and is
infinite-dimensional (unless M is a finite set or k > dim(M)). In particular,
for k = 0 we have A’T*M = M x R and the space

QM) ={f: M — R| f is smooth}

is the set of smooth real valued functions on M, also denoted by F(M)
or C*°(M,R) or simply C*(M).
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Definition 5.1.17 (Exterior Product and Pullback). The (pointwise)
exterior product of w € Q¥(M) and 7 € QY(M) is the differential (k+()-
form w AT € QFFE(M) given by
(WAT)p :=wp ATy (5.1.3)
forpe M. If f: M — N is a smooth map between smooth manifolds
and w € QF(N) is a differential k-form on N, its pullback under f is the
differential k-form f*w € QF(M) defined by
(frfw)p(vr, .- o) == wy) (df (P)v1, - - . df (p)vk) (5.1.4)
forpe M and vi,..., v, € T,M.
The next lemma summarizes the basic properties of the exterior product

and pullback of differential forms.
Lemma 5.1.18. Let M, N, P be smooth manifolds.
(1) The exterior product is associative, i.e.
w1 A (w2 Aws) = (w1 Awa) Aws
for all wy,we, w3 € Q*(M).
(ii) The exterior product is distributive, i.e.
wi A (w2 +w3) =wy) Awa + w1 Aws
for all w1 € QF(M) and all wy,ws € QE(M).
(iii) The exterior product is graded commutative, i.e.
WAT = (—l)deg(‘”) deg(T) - A
for all w, 7 € Q*(M).
(iv) Pullback is linear and preserves the exterior product, i.e.
fflwnT)=ffwA f*r
for all w, 7 € Q*(N) and all smooth maps f: M — N.

(v) Pullback is contravariant, i.e. (go f)*w = f*g*w for all w € QF(P)
and all smooth maps f: M — N and g : N — P. Moreover, id*w = w for
all w € QF(M), where id : M — M denotes the identity map.

(vi) Pullback satisfies the following naturality condition. If ¢ : M — N is a
diffeomorphism and w € QF(N) and X1, ..., Xy € Vect(N), then
(P*w) (" X1, ..., 0" Xg) = w(Xq,...,Xg) 0P

Proof. Assertions (i), (ii) and (iii) follow from Lemma [5.1.10} assertion (iv)
follows from Lemma [5.1.14] (v) follows from Lemma [5.1.14] and the chain
rule, and (vi) follows directly from the definitions. O
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Differential Forms in Local Coordinates

Let M be an m-dimensional manifold equipped with an atlas {Uy, ¢n }acA-
Thus the U, form an open cover of M and each map ¢, : Uy — ¢ (Uy) is a
homeomorphism onto an open subset of R (or of the upper half space H™
in case M has a nonempty boundary) such that the transition maps

o =050 b5 : ¢a(UaNUp) = d5(Ua NUp)
are smooth. In this situation every differential k-form w € QF(M) deter-
mines a family of differential k-forms wy € Q2% (¢(Uy)), one for each o € A,
such that the restriction of w to U, (denoted by w|y, and defined as the
pullback of w under the inclusion of U, into M) is given by
wlu, = Pawa (5.1.5)

for every a € A. Explicitly, if

p € Uy, v; € TpM7 T = ¢a(p)7 §i = d(ba(p)vi
fori=1,...,k then

wa(x;fl,...,fk) pr(’l)l,...,?}k). (516)

Recall that v; € T,M and & € R™ are related by v; = [, ], in the tangent
space model
T,M = | {a} xR™/ ~.
pEU
Now let e, ...e,, denote the standard basis of R™ and define

fa,] : Ua — R
by
fa, (@) == wa (i€, ..., €5,) = wp ([, €3 ]p, - .-, [, €4 ]p)
for z € ¢a(Us), p := ¢ (x) € Uy, and I = (iy,...,ix) € Zx. Then
Wa € ¥ (¢o(Uy)) can be written in the form
Wo = Z fa,[dxl. (5.1.7)
1€Ty,

Remark 5.1.19. The differential forms w, € Q2%(¢4(Uy)) in local coordi-
nates satisfy the equation
wa|¢a(UamUﬁ) = ((bﬁ o ¢;1)* wﬁ’(]ﬁ@(UaﬁUﬁ) (518)

for all a, 8 € A. Conversely, every family of k-forms ¢, € QF(¢o(U,)) that
satisfy (5.1.8)) for all a, 3 € A determine a unique k-form w € Q¥(M) such
that (5.1.5) holds for every a € A.
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5.2 The Exterior Differential and Integration

In this Section we first introduce the exterior differential of a differential
form on an open set in R and establish its basic properties (Section .
The definition of the exterior differential of a differential forms on manifold is
then a straight forward construction in local coordinates (Section[5.2.2)). We
then move on to the integral of a compactly supported m-form on an oriented
m-manifold (Section and prove the Theorem of Stokes (Section [5.2.4)).

5.2.1 The Exterior Differential on Euclidean Space

Let U € R™ be an open set. The exterior differential on U is a linear
operator d : QF(U) — QF1(U). We give two definitions of this operator,
corresponding to the two ways of writing a differential form.

Definition 5.2.1. Let w € QF(U). Then w is a smooth map
w:UxR"x--xR™ =R
N————
k times

such that, for every x € U, the map
R™ x - X R™ SR (£, &) o w(@ié1, o &)

k times

1s an alternating k-form on R™. The exterior differential of w is the
(k + 1)-form dw € Q1 (U) defined by

dw (2381, -+ Epa1)
k+1

i-1 d
= ;(—1) -

forx € U and &, ...,&+1 € R™. Here the hat indicates that the jth term
1s deleted.

Definition 5.2.2. Let w € Q¥(U) and, for I = (i1, ..., i) € Iy, define the
function fr: U — R by fi(x) := w(x;e€iy,...,€,) forz € U. Then

W = Z f[d.CEI

1€y,

(5.2.1)

w<x+t§j;§1,...,gj,...,ng)

t=0

and the exterior differential of w is the (k + 1)-form

" Ofr
oxV

dw:= Y _dff ndz',  dfs = da. (5.2.2)

1€y, v=1



5.2. THE EXTERIOR DIFFERENTIAL AND INTEGRATION 93

Remark 5.2.3. Let f € Q°(U) be a smooth real valued function on U.
Then df € QY(U) is the usual differential of f, which assigns to each ele-
ment z € U the derivative df (z) : R™ — R, given by

U(:6) = df(w)e = lim LTI = Z

t—>0

for € = (¢1,...,&™) € R™. Here the last equality asserts that the derivative
of f at x is given by multiplication with the Jacobi matrix. Thus

and this shows that the two definitions of df € Q'(U) in and (5.2.2)
agree for k = 0.

Remark 5.2.4. We prove that the definitions of dw in (5.2.1]) and (5.2.2)

agree for all w € QF(U). To see this write w is the form

w= Y fid',  fi:U—>R

I€Ty,

Then
w(x;gla"'vgk Zf[ 51)"'7&6)

IEIk

for all z € U and &, ...,& € R™. Hence, by (5.2.1)), we have

dw(l‘a 515 e 75]{?4-1)

k+1

_ Z Z(_l)j_l i fl(;[; —|—tf])dl‘l (fl, ce ,g;‘a cee 7£k+1>
I€T, j=1 4t
k+1 ~
— ZZ DI dfr (25 €5)da! (51,...,€j,---,fk+1)
1€1;, j=1
= Z (df[ A\ de'I)(xa 517 e a§k+1)
1€y,

for all x € U and &,...,&+1 € R™. The last term agrees with the right

hand side of ([5.2.2)).
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Lemma 5.2.5. Let U C R™ be an open set.
(i) The exterior differential d : Q¥(U) — QF1(U) is a linear operator.
(ii) Ifw € QF(U) and 7 € QYU), then

d(wAT) =dw AT+ (=1)%8Wy A dr.

(iii) The exterior differential satisfies d o d = 0.

(iv) The exterior differential commutes with pullback: If ¢ : U — V is a

smooth map to an open subset V.C R™ then, for every w € QF(V), we have
o dw = do*w.

Part (ii) of Lemma follows from the Leibniz rule, part (iii) follows
from Schwarz’s Theorem which asserts that the second partial derivatives
commute, and part (iv) follows from the chain rule.

Proof of Lemma[5.2.5. Assertion (i) is obvious. To prove part (ii) it suffices
to consider two differential forms

w = fda', T = gdz’
with I = (i1,...,ik) € Iy, J = (J1,-.-,J¢) € Iy, and f,g: U — R. Then it
follows from Definition [£.2.2] that
dwAT) = d(fgda’ Adz”)
d(fg) A dx! A dx’!

= (gdf + fdg) Adz" A dx”

= (df Adzh) A (gdz?) + (=1)F(fdz?) A (dg A dz?)

= doAT+ (=D)FwAdr

For general differential forms part (ii) follows from the special case and (i).
We prove part (iii). For f € Q°(U) we have

0z 0zI

ddf = d ' %jdxj = Z dz' A dx? = 0.
Jj=1 i,j=1

Here the last equality follows from the fact that the second partial derivatives
commute. This implies that, for every smooth function f : U — R and every
multi-index I = (i1, ...,ix) € Zj, we have

dd(fdz") = d(df A da') = ddf A dx! — df A ddz’ = 0.

Here the second equality follows from (ii) and the last equality holds be-
cause ddf = 0 and ddx! = 0. This proves (iii).



5.2. THE EXTERIOR DIFFERENTIAL AND INTEGRATION 95

We prove part (iv). Denote the elements of U by x = (z!,...,2™), the
elements of V by y = (y!,...,y"), and the coordinates of ¢(x) by

¢(x) =t (¢'(z),..., 9" ())

for € U. Thus each ¢’ s a smooth map from U to R and we have

N d .
*dy! = -dx' = d¢’. 5.2.3
¢*dy Zl et = do (5:2.3)
Moreover, if g € Q°(V) is a smooth real valued function on V', then
— 9g
¢*g=go¢, dg—Z8 dy’,

and hence

aorg) =3 297 gy

dg aqﬁ
(8 J ¢> O:ﬂ

> » (5.2.4)
es)ow

Here the second equation follows from the chain rule and the fourth equation
follows from (5.2.3)). For J = (j1,...,jx) € Z we have
d(¢*dy”) = d(¢*dy™ A - - ¢*dy’*) = d(d¢’ A--- Nd¢PF) =0.  (5.2.5)

Here the first equation follows from Lemma and the determinant
theorem in Exercise the second equation follows from , and
the last equation follows from the Leibnitz rule in (ii) and the fact that
dd¢’ = 0 for every j, by (iii). Combining (5.2.4)) and (5.2.5]) we obtain

¢*d(gdy”) = ¢*dg A ¢*dy”’ = d(¢"g) A ¢*dy’ = do™ (gdy”)

for every smooth function g : V- — R and every J € Zj. This proves (iv)
and Lemma [5.2.5 O

I
:HM MS':'

(
(
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5.2.2 The Exterior Differential on Manifolds

Let M be a smooth m-dimensional manifold with an atlas {Uy, ¢a }aca and
let w € QF(M) be a differential k-form on M. Denote by

Wa € Qk(¢o¢(Ua))

the corresponding differential forms in local coordinates so that

wly, = Pawa (5.2.6)

for every o € A. The exterior differential of w is defined as the unique
(k 4+ 1)-form dw € QF¥+1(M) that satisfies

dwly, = dpdwa (5.2.7)

for every a@ € A. To see that such a form exists we observe that the wy,
satisfy equation (5.1.8) for all o, 3 € A. Then, by Lemma we have

dwal g Uanuy) = (88 © d0 ") dwsl oy anuy)

for all a;, B € A and so the existence and uniqueness of the (k + 1)-form dw

satisfying equation (5.2.7) follows from Remark |5.1.19] It also follows from
Lemma that this definition of dw is independent of the choice of the

atlas.

Lemma 5.2.6. Let M be a smooth manifold.
(i) The exterior differential d : QF (M) — Q¥ (M) is a linear operator.

(ii) The exterior differential satisfies the Leibnitz rule

dwAT) =dw AT+ (=1)%Wy A dr.

(iii) The exterior differential satisfies d o d = 0.

(iv) The exterior differential commutes with pullback: If ¢ : M — N is a
smooth map between manifolds then, for every w € QF(N), we have

¢*dw = do*w.

Proof. This follows immediately from Lemma and the definitions. [
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De Rham Cohomology

Lemma shows that there is a cochain complex

QM) -% ot -5 02 L - L aman,

called the de Rham complex. A differential form w € QF(M) is called
closed if dw = 0 and is called exact if there is a (k — 1)-form 7 € Q*~1(M)
such that dr = w. Lemmal5.2.6| (iii) asserts that every exact k-form is closed
and the quotient space

H*(M) = kerd : QF (M) — QFFH(M) _ {closed k — forms on M}
Coimd: QFY(M) — QF(M)  {exact k — forms on M}

is called the kth de Rham cohomology group of M. By Lemma (i)
is a real vector space. By Lemma (ii) the exterior product defines a
bilinear map

Hk(M) X HE(M) — Hk"’Z(M) ([w], [7]) = W] U 7] = [w AT

called the cup product. By Lemma|5.1.18| (iv) the pullback by a smooth
map ¢ : M — N induces a homomorphism

¢* : H*(N) — H*(M).
By Lemma [5.1.1§| this map is linear and preserves the cup product.

Example 5.2.7. The de Rham cohomology group H°(M) is the space
of smooth functions f : M — R whose differential vanishes everywhere.
Thus HY(M) is the space of locally constant real valued functions on M.
If M is connected, the evaluation map at any point defines an isomorphism

HO(M) =R.

To gain a better understanding of the de Rham cohomology groups we
introduce the integral of a differential form of maximal degree over a compact
oriented manifold, prove the theorem of Stokes, and examine the formula
of Cartan for the Lie derivative of a differential form in the direction of a
vector field. These topics will be discussed in the next two sections.
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5.2.3 Integration

Let M be an oriented m-manifold, with or without boundary and not nec-
essarily compact. Let {U,, ¢a)}aca be an oriented atlas on M. Thus the
sets U, form an open cover of M and the maps

d)a : Ua — ¢a(Ua)

are homeomorphisms onto open subsets ¢,(U,) C H™ of the upper half
space
H™ :={z e R™|z2™ > 0}

such that the transition maps
PBa = ¢p 0 ¢y a(Ua N Ug) = ¢(Ua NUp)

are smooth and

det (dga(w)) > 0
for all o, f € A and all = € ¢o(U, N Ug). Choose a partition of unity

Po s M — [0,1], a €A,

subordinate to the open cover {U,}qaca. Thus each point p € M has a
neighborhood on which only finitely many of the p, do not vanish and

supp(pa) C Uas D pa = 1.
(07

Definition 5.2.8. Let w € QUI'(M) be a differential form with compact
support and, for a € A, let

wa € Q"(Pa(Ua));  ga: ¢a(Ua) = R
be given by
wl|y, = Prwa, Wa =: galx)dzt A - Adz™.
The integral of w over M is the real number
[ wi= > / o Pl @ (529

The sum on the right is finite because only finitely many of the products pow
are nonzero. (Prove this!)
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Lemma 5.2.9. The integral of w over M is independent of the choice of
the oriented atlas and the partition of unity used to define it.

Proof. Choose another atlas {Vz,¢3}gcp on M and a partition of unity
0 : M — [0,1] subordinate to the cover {V3}gep. For f € B define

wp € A" (¥p(Va),  hp:yp(Vs) = R
by
wly, =: Yaws, wp =: hg(y)dy' A--- Ady™.
Then it follows from Lemma 4| (iv) that
ga(x) = hg (V5 O¢;1($)) det (d (1/% Oa')(@)) (5.2.9)

>0

for every z € ¢ (Uy N Vp). Hence

w = pao¢;1 gozd-rl"'da7m
Ju = B Ly eee

acA
_ -1 -1 1 m
a2 R CEE T
o UaﬁV[g
= EE gy P 00
Qﬁﬁ UaﬁV5

-y / (85 0 07 hsdy® - dy™
5 “¥5(Vs)

Here the first equation is the definition of the integral, the second equation
follows from the fact that the 63 form a partition of unity, the third equa-
tion follows from and the change of variables formula, and the last
equation follows from the fact that the p, form a partition of unity. This
proves Lemma [5.2.9 O

One can think of the integral as a functional
QT(M)—}RZ(U’—)/ w
M

It follows directly from the definition that this functional is linear.

Exercise 5.2.10. If f : M — N is an orientation preserving diffeomorphism
between oriented m-manifolds then [,, f*w = [y w for every w € QI'(N).
If f: M — N is an orientation reversing diffeomorphism between oriented
m-manifolds then [, f*w = — [ w for every w € Q*(N).
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5.2.4 The Theorem of Stokes

Theorem 5.2.11 (Stokes). Let M be an oriented m-manifold with bound-
ary and let w € Q™~Y(M). Then

/dw—/ w
M oM

Proof. The proof has three steps.
Step 1. The theorem holds for M = H™.

The boundary of H™ = {z = (z',...,2™) € R™|2™ >0} is the subset
= {z=(a',...,2™) e R™|2™ = 0}, diffeomorphic to R™~!. Con-
sider the differential (m — 1)-form

w—Zgz Yydat A - AT A - Adz™

where the g; : H™ — R are smooth functions with compact support (in the
closed upper half space) and the hat indicates that the ith term is deleted
in the ¢th summand. Then

dw = 891’. det Adzt A A dac" A Adx™
P ox’
= Z(—l)i_l%dxl A= Ndx™.

=1

Choose R > 0 so large that the support of each coordinate g; is contained
in the set [—R, R]””“l x [0, R]. Then

/ dw = 21// / ggz 2t a™)dxt - de™
m x
x

= (—1)m/ / gm(:cl,...,xmfl,O)dml-'-daszl
-R -R
= / w
OH™

Here the second equation follows from Fubini’s theorem, the third equation
follows again from the fundamental theorem of calculus. To understand the
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last equation we observe that the restriction of w to the boundary is
wlgrm = gm(zt, ..., 2™ 0)dzt Ao A dz™

Moreover, the orientation of R™~! as the boundary of H™ is (—1)™ times
the standard orientation of R™~! because the outward pointing unit normal
vector at any boundary point is v = (0,...,0,—1). This proves the last
equation above and completes the proof of Step 1.

Step 2. We prove Theorem|5.2.11 for every differential (m —1)-form whose
support is compact and contained in a coordinate chart.

Let ¢q : Uy — ¢a(Us) C H™ be a coordinate chart and w € Q7 1(M) be a
compactly supported differential form with

supp(w) C U,.
Define w, € Q™ (¢4 (U,)) by
wlu, = Prwa

and extend w, to all of H™ by setting w, equal to zero on H™ \ ¢ (U,).
Since ¢ (Uy NOM) = ¢o(Uy) N OH™ we obtain, using Step 1, that

/dw = / dorwa
M Ua
= / or dwe
Ua
= / dwg,
¢a(Ua)
= / wOé
ba(Ua)NOH™

= / PrWa
UaNOM

- / o.
oM
This proves Step 2.

Step 3. We prove Theorem [5.2.11).

Choose an atlas {U,, ¢ }o and a partition of unity p, : M — [0, 1] subordi-
nate to the cover {U,}o. Then, by Step 2, we have

/M = %:/M Hpat) = Za:/azw fate = /8M -

This proves Step 3 and Theorem [5.2.11 O
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Examples

Example 5.2.12. Let U C R? be a bounded open set with connected
smooth boundary I' := QU. Orient I' as the boundary of U and choose an ori-
ented parametrization of I' by an embedded loop R/Z — T : ¢t — (z(t), y(t)).
Let f,g: R? — R be smooth functions and define w := fdx + gdy € Q' (R?).

Then
<89 of

and hence, by Stokes’ theorem, we have

dg Of B
/U<8:E_8y>dxdy = /F(fdﬂs—f—gdy)

1
= /0(f(x(t)vy(t))i(t)+g(ﬂf(t),y(t))y(t)) dt.

dw =

Example 5.2.13. Let £ C R? be a 2-dimensional embedded surface and
let v: X — S? be a GauBl map. Thus v(z) L T,% for every x € . Define
the 2-form dvol, € Q%(X) by dvols(z;v,w) = det(v(z),v,w) for x € X
and v,w € T, X.. In other words

dvoly, = vida? A da® + v2da?® A dat + v3dat A da?,
vidvoly, = da? A d:c?’, v2dvoly, = da® A da:l, v3dvoly, = da' A dz?.
Let u = (u1,u2,u3) : R> — R3 be a smooth map and consider the 1-form
w = urdz' + uadz® + ugda® € QI(E).

Its exterior differential is

82’11,3 — 83’&2
dw = (curl(u), v) dvoly, curl(u) == | Osu; — Oruz |,
81u2 — 82u1

and hence Stokes’ theorem gives the identity

3
curl(u), v)dvoly, = / widz’.
[ teurltw).) 5>

Example 5.2.14. Let M be an oriented m-manifold without boundary and
let 7 € Q7" 1(M) be a compactly supported (m — 1)-form. Then Jydr=0
by Stokes’ theorem. We prove in the next section that, when M is connected,
the converse holds as well, i.e. if w € QI"(M) satisfies [,, w = 0, then there
exists a compactly supported (m — 1)-form 7 € Qm~1(M) such that dr = w.
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5.3 The Lie Derivative

This section introduces the Lie derivative of a differential form in the direc-
tion of a vector field and establishes Cartan’s formula (Section[5.3.1)). As an
application of this formula we prove that a differential form of top degree
on a compact connected oriented manifold without boundary is exact if and
only if its integral vanishes (Section |5.3.2)). For the Lie bracket of two vector
fields we will use the sign convention in [21], §2.4.3].

5.3.1 Cartan’s Formula

Assume throughout that M is a smooth m-manifold without boundary. The
Lie derivative of any object on M (such as a vector field or a differential
form or a Riemannian metric or an endomorphism of the tangent bundle)
in the direction of a vector field is defined as the derivative at time zero of
the pullback of the object under the flow of the vector field. For differential
forms this leads to the following definition.

Definition 5.3.1 (Lie Derivative). Let w € QF(M) and let X € Vect(M).

(1) If X is complete and ¢y € Diff (M) denotes the flow of X, then the Lie
derivative of w in the direction of X is defined by

Pre.

t=0

Lxw = o7

This formula continues to be meaningful pointwise even if X is not complete.

(ii) The interior product (or contraction) of the vector field X with w
is the (k — 1)-form «(X)w € QFY(M) defined by

((X)w)p(v1, ... vp—1) = wp(X(p),v1,...,Vk-1)
forpe M and vy, ..., vp—1 € T,M.

Cartan’s formula for the Lie derivative is the key identity for many com-
putations with differential forms.

Theorem 5.3.2 (Cartan). The Lie derivative of a differential form w in
the direction of a vector field X is given by

Lxw = du(X)w + t(X)dw. (5.3.1)

Proof. See page [106 O
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We will deduce Theorem from the following more general result.

Theorem 5.3.3 (Cartan). Let M and N be smooth manifolds, let I C R be
an interval, and let I x M — N : (t,p) — fi(p) be a smooth map. Fort € I
define the operator hy : QF(N) — QF1(M) by

(htw)p(vlw'ka—l) =Wh(p (atft( ), dft(p)vr, ..., dft(p)vg—1) (5.3.2)

for w € Q¥(N) and v1,...,v5_1 € T,M. Then
d *
ﬁft w = dhiw + hydw (5.3.3)

for allw € QF(N) and all t € 1.

Proof. The proof has four steps.
Step 1. Fquation (5.3.3|) holds for k = 0.
Let g : N — R be a smooth function. Then

Afi

G D0) = Galhie) = da o) B 0) = udg(p)

as claimed.
Step 2. Equation (5.3.3)) holds for k = 1.
Assume first that M = R™ and N = R". Let

IxR™ = R": (t,2) = filz) = (fi(@),.... fi'(2))

be a smooth map, let g, : R® — R be a smooth function for v =1,...,n,
and define

8= g gdy” € Ql(R”).
v=1
Then

n

Z

g = Z gv © ft 8ft

"\ [ 9g, 0 ofy
hdf =" ( Sy oft)< I gpy - J}dff>,

p,v=1

dhy 3 = Z gvoft aft Z 8ft d guoft

H“vl/il
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Moreover, f;3=>""_,(g, o fi)dff and hence

d 0
A Zat«gyoft)dft)

9y 0
= 3 (e n) G+ oo g

p,v=1
= dhf+ hdp

as claimed. This proves Step 2 for M = R and N = R"™. The general case
follows from this special case via local coordinates.

Step 3. The operator hy : Q*(M) — Q*~Y(M) is linear and satisfies
hi(wAT) = hgw A i1+ (=1)38@) £ A hyr

for allw, ™€ Q*(M).

This follows directly from the definitions.

Step 4. FEquation holds for every w € QF(M) and every k > 0.

We prove this by induction on k. For £k =0 and k = 1 the assertion was
proved in Step 1 and Step 2. Thus let £ > 2 and assume that the assertion
has been established for k — 1. Since every k-form w € QF(N) can be written
as a finite sum of exterior products of a 1-form and a (k — 1)-form it suffices
to assume that w = B A 7, where 8 € Q'(N) and 7 € Q*~1(N). Then

d d
(g#e8) nsir e (G5r)

= (dht,@ + htdﬁ) A ft*T + ft*ﬁ A (dht’T + hth)
=d(hB A fiT) — B N dffT
+ h(dBAT)— fidB A Wyt
— d(f{ BN hT) +dff BN I
— h(BAdT)+ B A fidr
=d(mB N fiT— fFBNMT)+ he(dB AT — B AdT)
= dhtw + htdw.
Here the first equality follows from Lemma [5.1.18| and the Leibniz rule, the
second equality follows from Step 2 and the induction hypothesis, the third
equality follows from Step 3 and the Leibniz rule for the exterior derivative,
the fourth equality follows from the fact that the exterior derivative com-

mutes with pullback, and the last equality follows again from Step 3 and
the Leibniz rule for the exterior derivative. This proves Theorem ]

d ..
%ftw
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Proof of Theorem[5.3.4 Assume for simplicity that X is complete and let ¢,
be the flow of X. Then the operator h; : QF(M) — Q¥~1(M) in is
given by hyw = ¢;1(X)w. In particular, how = ¢(X)w and hence
follows from with f; = ¢, and ¢ = 0. This proves Theorem O

Corollary 5.3.4. Let w € QF(M) and X1,..., X1 € Vect(M). Then

k+1
dw(Xl,. . 'an—l—l) = Z(—l)l_l[,Xi (W(Xl,. . .,XZ', ce an—l—l))
i=1 (5.3.4)
+ 3 (DX, XG), X X X Xer)

1<j
Proof. For k = 0 the equation is a tautology. Let k > 1 and assume by induc-
tion that the assertion holds with k replaced by k — 1. Let w € QF(M) and
let X1,..., Xp41 € Vect(M). and define 7 := (—1)*"1( X, 1 )w € QF1(M).
Then it follows from the induction hypothesis that

k
dT(Xl,...,Xk):Z(—l)i_lﬁxi(w(Xl,...,Xz‘,...,XkJrl))
i=1 N N (5.3.5)
+ > (U)X, X)X X X K)

1<i<j<k

Now assume that Xjy; is complete and denote by ¢, the flow of X 4.
Then w(Xi,...,Xk) o ¢ = (dfw)(¢d; X1,..., 07 Xk) for all ¢ by part (vi) of
Lemma [5.1.18] Differentiate this equation to obtain

Lx, (w(X1,. .., X)) = (ﬁka W) (X1, ..., Xp)
+Z W (X, Xpra)s X1y ooy Xiy ooy X3)
= (—1)kdw(X1, oy Xip1) — (=D)Fdr (X, ..., Xk)
+i w (X, Xpals X1y vy Xiy ooy X3
i=1

Here the last equality follows from Theorem [5.3.2
dw(Xl,.. X)) =dr (X, X)) + (D) L (w(X0, -0, X))

+Z l+k X’LuXk—l-l] X17"')X\’i)""Xk)

Insert equation (5 into this formula to obtain the identity (5.3.4]). This
proves Corollary O
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Exercise 5.3.5. Prove the formula (5.3.4)) directly in local coordinates.

Example 5.3.6. For 8 € Q'(M) and X,Y € Vect(M) equation (5.3.4) takes
the form

4B(X.Y) = Lx (B(Y)) - Ly (B(X) + B(X. VD). (5.3.6)

For w € Q*(M) and X,Y, Z € Vect(M) equation takes the form
dw(X,Y,Z) = Lx (w(Y, Z)) + Ly (w(Z,X)) + Ly (w(X, Y))
+w([X,Y],Z2)+w([Y, Z], X]) +w([Z, X],Y).
Exercise 5.3.7. Deduce the formula in Theorem from

by an induction argument, starting with k£ = 1.

Exercise 5.3.8. Deduce the formula in Theorem [5.3.3| from (/5.3.1)).
Hint: Assume first that the map f; : M — N is an embedding for every t.
Then prove that there exists a smooth family of vector fields Y; € Vect(N)
such that Y; o f; = 0 f; for all t. For example, choose a Riemannian metric
on N and take Yi(expy, ) (w)) := p(lw])dexpy, ) (w)0: fi(p) for w € T, () N
and a suitable cutoff function p. Let v; be the isotopy generated by Y; via

Oy = Y oy, Yo = id.

Show that f; = o fo for all t. Now deduce (5.3.3) from (5.3.1)) for Ly,w.
To prove (5.3.3) in general, replace the map f;: M — N by the embed-

ding M — M x N : p+— Fi(p) := (p, ft(p)) and argue as above.

Corollary 5.3.9. Let M™ and N™ be oriented manifolds without boundary
and let fy : M — N, 0<t <1, be a proper smooth homotopy, so that

(5.3.7)

K C N is compact = U fiY(K) € M is compact.
t

Let w € QF(N) be closed k-form with compact support. The there exists a
(k —1)-form 7 € QF=1(M) with compact support such that

dr = fiw — fyw.

Proof. By Theorem we have

1 1

d

ffw—fgw:/ dtft*wdt:/ dhyw dt = dr,
0 0

where 7 := fol hyw dt and hyw € QF~1(M) is given by (5.3.2). Moreover,
supp() € | f; ' (supp(w))

0<t<1
and so 7 has compact support. This proves Corollary ]
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5.3.2 Integration and Exactness

Theorem 5.3.10. Let M be a connected oriented m-dimensional manifold
without boundary and let w € QI (M) be an m-form with compact support.
Then the the following are equivalent.

(1) The integral of w over M wvanishes.

(ii) There is an (m—1)-form T on M with compact support such that dr = w.
Proof. That (ii) implies (i) follows from Stokes’ Theorem [5.2.11} We prove
in two steps that (i) implies (ii).

Step 1. Let f:R™ — R be a smooth function whose support is contained
in the set (a,b)™ where a <b and assume that [4,, f =0. Then there are

smooth functions u; : R™ — R for i =1,...,m, supported in (a,b)™, such
that f=5", guﬁ. Thus
T

fda:l/\‘--/\dmm:d<2(—1)i1uidx1/\-~/\c@/\---/\da:m> .
i=1

To see this, choose a smooth function p : R — [0, 1] such that

() = 0, fort<a-+e,
P = 1, fort>b—c¢,

for some € > 0 and define f; : R™ — R by fo :=0, f, ;== f, and
b b
fz(:r) ;:/ / f(l’l,...,xl,fl+1,...,§m)p($l+1)"'p(xm)dfz+1"'dfm

fori =1,...,m — 1. Then each f; is supported in (a,b)™. Fori=1,...,m
define u; : R™ — R by

uz($> = /Il(fl - fi—l)(x17"'7$i_17£7xi+17' . '7xm) dé.
= /xL fi(zt, 2 e L a™) de

b
- p(mz)/ fi(zt, .2 e 2t ™) de.
a
Here the second equality holds for ¢ > 2 by definition of f; and it holds
for ¢ = 1 because me f = 0. Thus each u; is supported in (a,b)” and

8ui
ozt

= fi — fim
and this proves Step 1.
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Step 2. We prove that (i) implies ().

Choose a point pg € M, an open neighborhood Uy C M of pg, and an
orientation preserving coordinate chart ¢g : Uy — R™ such that the image
of ¢p is the open unit cube (0,1)™ C R™. Since M is connected and has no
boundary there is, for every p € M, a diffeomorphism v, : M — M, isotopic
to the identity, such that v,(pp) =p. Thus the open sets U, := ¢,(Up)
cover M. Choose a partition of unity p,: M — [0, 1] subordinate to this
cover. Since the set K := supp(w) is compact there are only finitely many
points p € M such that the function p, does not vanish on K. Number these
points as p1,...,p, and abbreviate

U, .= Upw Pi ‘= Pp;>» P = %i

for i =1,...,n. Then supp(p;) C U; = ¢;(Up) for all ¢ and > | pi|x = 1.
Hence supp(p;w) C U; and

supp(¢; (piw)) C Up.

Since ; is smoothly isotopic to the identity and p;w has compact support, it
follows from Corollary that there exists a compactly supported (m—1)-
form 7; € Q™~1(M) such that

dri = 5 (piw) — piw.
Hence it follows from Stokes’ theorem [5.2.11] that

[BTUEEY S =y PR

Now 9} (pw) is supported in ;' (U;) = Uy and so is 31", 97 (piw). Thus
the pushforward of this sum under the chart ¢g : Uy — R™ has support in
(0,1)™ = ¢o(Up) and can be smoothly extended to all of R™ by setting it
equal to zero on R™ \ (0,1)™. Moreover,

(o)x Y ¥i(piw) = V¥ (piw) = 0.
Jon (o vt = [ 3 2vito

Hence it follows from Step 1 that there is an (m — 1)-form 79 € Q7 1(R™)
with support in (0, 1)™ such that

dro = (o)e Y ¥F(piw).

=1
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Thus ¢fm € Q7~1(Up) has compact support in Uy and therefore extends to
all of M by setting it equal to zero on M \ Uy. This extension satisfies

dgio =D vf (piw)
=1

and hence

n

w="Y Pi(piw) = Y (¥ (piw) — piw) = dgro — Y dr; = dr
=1

i=1 i=1
with 7 := ¢fmo — Yy 7 € Q7 1(M). This proves Theorem [5.3.10 O

Exercise 5.3.11. Let M be a compact connected oriented smooth m-mani-
fold without boundary and let A be a manifold. Let A — Q™ (M) : X — w),
be a smooth family of m-forms on M such that [,, wy = 0 for every A € A.
Prove that there is a smooth family of (m—1)-forms A — Q™ 1(M) : X — 7
such that dry = w)y for all A € A. Hint: Use the argument in the proof of
Theorem to construct a linear operator

h {w e Q™(M) ( /Mw - 0} = mL (M)

such that
/ w=20 = dhw = w
M

for every w € Q™(M). Find an explicit formula for the operator h. Note
that U;, p;, 1¥; can be chosen once and for all, independent of w.

Corollary 5.3.12. Let M be a compact connected oriented m-manifold
without boundary. Then the map Q"(M) — R:w s [,,w induces an is-
morphism H™(M) = R.

Proof. The kernel of this map is the space of exact forms, by Theorem [5.3.10

Hence the induced homomorphism on de Rham cohomology is bijective. [J

Exercise 5.3.13. Let M be a compact connected nonorientable m-manifold
without boundary. Prove that every m-form on M is exact and hence

H™(M) =0.
Hint: Let 7 : M — M be the oriented double cover of M. More precisely, a
point in M is a pair (p, o) consisting of a point p € M and an orientation o
of T,M. Prove that M is a compact connected oriented m-dimensional

manifold without boundary and that 7 : M — M is a local diffeomorphism.
Prove that the integral of 7*w vanishes over M for every w € Q™ (M).
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5.4 Volume Forms

A volume form on a smooth manifold is a nowhere vanishing differential form
of top degree. The existence of a volume form is equivalent to orientability.
For smooth maps between closed connected oriented manifolds of the same
dimension the degree theorem asserts that the integral of the pullback of a
volume form is the product of the degree with the integral of the original
volume form (Section [5.4.1)). A corollary of this result and the Poincaré-
Hopf theorem is the GauB-Bonnet formula (Section . Section m
introduces Moser isotopy for volume forms.

5.4.1 Integration and Degree

Theorem 5.4.1 (Degree Formula). Let M and N be compact oriented
smooth m-manifolds without boundary and suppose that N is connected.
Then, for every smooth map f: M — N and every w € Q™(N), we have

/M frw = deg(f) /Nw

Proof. Let ¢ € N be a regular value of f. Then f~!(q) is a finite subset of M.
Denote the elements of this set by p1,...,p, and let ¢; = £1 according to
whether or not df (p;) : T, M — TN is orientation preserving or orientation
reversing. Thus

F7U@) = {pryeepa}, e =signdet(df(p), deg(f) = e (5.4.1)
=1

Next we observe that there are open neighborhoods V' C N of g and U; C M
of p; for i =1,...,n satisfying the following conditions.
(a) f restricts to a diffeomorphism from U; to V for every i; it is orientation
preserving when ¢; = 1 and orientation reversing when ¢; = —1.
(b) The sets U; are pairwise disjoint.
(c) f[FAV)=UrU---UU,.
In fact, since df (p;) : Tp, M — TN is a vector space isomorphism, it follows
from the implicit function theorem that there are connected open neighbor-
hoods U; of p; and V; of ¢ such that f|y, : Uy — V; is a diffeomorphism.
Shrinking the sets Uj, if necessary, we may assume U; N U; = ) for ¢ # j.
Now take

Vi=VinnVp\ f(M\(U1U---UUy))

and replace U; by the set U; N f~1(V). These sets satisfy (a), (b), and (c).
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If w e Q™(N) is supported in V' then

Here the first equality follows from (b) and (c), the second equality follows

from (a) and Exercise[5.2.10, and the last equality follows from (5.4.1). Now
let w € Q™(N) is any m-form and choose w’ € Q™(N) such that

supp(w’) C V, / W —/ w.
N N
Then, by Theorem |5.3.10} there exists an (m — 1)-form

TE Qm_l(N)

such that

/
dr =w —w'.

Hence

= deg(f) /N W’
= deg(f) /N w.

Here the last but one equality follows from the fact that w’ is supported
in V. This proves Theorem [5.4.1 O

Theorem allows us to express the integrals of certain differential
forms of top degree in terms of topological data, such as the degree of a
smooth map or the Euler characteristic. A case in point is the Gaufi—Bonnet
formula in the next section.
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5.4.2 The Gaufi—Bonnet Formula

Let M be an oriented m-dimensional Riemannian manifold. Then there
exists a unique m-form dvoly, € Q™ (M), called the volume form of M,
that satisfies the condition

(dvolpr)p(er, ..., em) =1
for every p € M and every positive orthonormal basis e, ..., ey of T,M.

Exercise 5.4.2. Let M be an oriented m-dimensional Riemannian manifold
equipped with an oriented atlas ¢ : Uy — ¢0(Uy) C R™ and a metric
tensor go : ¢a(Uy) — R™*™. Prove that the volume form dvoly, is in local
coordinates given by

(dvolps)a = v/det(ga(x)) dzt A - A dz™.

Let M c R™*! be a compact m-dimensional manifold without boundary.
Then M inherits a Riemannian metric from the standard Euclidean inner
product on R™*! and it carries a Gauf3 map

v:M—S™

defined as follows. The complement of M in R™*! has two connected com-
ponents, one bounded and one unbounded (See Exercise . These
connected components can be distinguished by the mod-2 degree of the
map fp: M — S™ defined by f.(p):=|p—z| '(p—=x) for p€ M. The
bounded component is the set of all x € R™ 1\ M that satisfy degy(f:) =1
and its closure will be denoted by W. Thus W C R™*! is a compact con-
nected oriented manifold with boundary OW = M and we orient M as the
boundary of W. The Gaufl map v : M — S™ is characterized by the con-
dition that v(p) € S™ is the unique unit vector that is orthogonal to T, M
and points out of W. The volume form dvoly, € Q™ (M) associated to the
metric and orientation of M is then given by the explicit formula

(dvolar)p(vi, ..., vm) = det(v(p),v1, ..., vm).

Moreover, the derivative of the Gaufl map at p € M is a linear map from
the tangent space T,M to itself because T, ,)S™ = v(p)t =T,M. The
Gauflian curvature of M is the function K : M — R defined by

K(p) := det(dv(p) : TyM — T,M)

for p € M. When M is even-dimensional, this function is independent of
the choice of the Gaul map. In m is odd then replacing v by —v changes
the sign of K.
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Theorem 5.4.3 (Gaufl—Bonnet). Let m be an even positive integer and
let M C R™* be a compact m-dimensional submanifold without boundary.
Then

/ Kdvoly = V()lfm)x(M), (5.4.2)
M

where x(M) denotes the Euler characteristic of M.
Remark 5.4.4. When m is odd the Euler characteristic of M is zero.
When m = 2n we have
Vol(§2n)  22np]
2 ()"
Proof of Theorem[5.4.3 The Gaul map of S™ is the identity. Hence the

volume form on S™ is given by

n

m+1
dvolgm = i (1) tatdat A A dzi A -+ A da™
i=1
or, equivalently, (dvolgm).(&1,...,&n) = det(x,&,...,&y) for all z € S™
and all &,...,&, € T,S™ = 2. Hence the pullback of dvolg: under the
Gaufl map is given by
(v*dvolgm)p(v1,...,vm) = (dvolsm ), (dv(p)ve, ..., dv(p)vm)
= det(v(p), dv(p)vi, ..., dv(p)vm)
= K(p)det(v(p),v1,...,vm)
= K(p)(dvolar)p(v1, ..., 0m)
for p € M and vy,...,v, € T,M = v(p)t. Thus
Kdvoly; = v*dvolgm.

Since m is even, the Poincaré—Hopf Theorem [2.3.1] shows that the degree of
the Gaufl map is half the Euler characteristic of M. (Exercise: Verify this!)
Hence it follows from Theorem (.4.] that

M
/ Kdvoly = / v*dvolgm = deg(v) dvolgm = MVol(S'm).
M M gm 2
This proves Theorem [5.4.3 O

Remark 5.4.5. We shall prove in Section that the de Rham coho-
mology of a compact manifold M (with or without boundary) is finite-
dimensional and in Section that the Euler characteristic of a compact
oriented m-manifold without boundary is the alternating sum of the Betti
numbers b; := dim(H (M)), ie. x(M)=>3",(-1)"dim(H*(M)). This
formula continues to hold for nonorientable manifolds.
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5.4.3 Moser Isotopy

Definition 5.4.6. Let M be a smooth m-manifold. A volume form on M
1s a nowhere vanishing differential m-form on M. If M is oriented, a volume
form w € Q™(M) is called compatible with the orientation if

wWp(V1, .oy 0m) >0 (5.4.3)

for every p € M and every positively oriented basis vi,..., vy, of T,M.
If a volume form w on an oriented m-manifold M is compatible with the
orientation we write w > 0.

Lemma 5.4.7. A manifold M admits a volume form if and only if it is
orientable.

Proof. If w € Q™(M) is a volume form then wy(vi,...,vn) # 0 for every
element p € M and every basis vi,...,vy, of T,M. Hence a volume form
on M determines an orientation of each tangent space T,M. Namely, a
basis vy, ..., v, is called positively oriented if holds. These orienta-
tion fit together smoothly. To see this, fix a point pg € M and a positive
basis v1,...,v, of Tp,M and choose vector fields Xi,...,X,, € Vect(M)
such that X;(pg) = v; for i = 1,...,m. Then there exists a connected open
neighborhood U C M of pg such that the vectors X(p),... X;n(p) form a
basis of T, M for every p € U. Hence the function

U—-R:p— Wp(Xl(p)7 ooy Xon(p))

is everywhere nonzero and hence is everywhere positive, because it is positive
at p = po. Thus the vectors X;(p),..., X, (p) form a positive basis of T, M
for every p € U.

Here is a different argument. Given a volume form w € Q™ (M) we can
choose an atlas ¢, : Uy, — R™ such that the forms

Wa = (Pa)sw € Q" (da(Ua))

in local coordinates have the form

wa = fadz' Ao Adz™, fa > 0.
It follows that
d o —1 — fa(.'lf) 0
300 ) = e oaT @)

for all o, 8 and all = € ¢4 (U, N Up). Hence the atlas {Us, ¢q }o is oriented.
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Conversely, suppose M is oriented. Then one can choose a Riemannian
metric and take w = dvolys to be the volume form associated to the metric
and orientation. Alternatively, choose an atlas ¢o : Uy — ¢o(U,) C R™
on M such that the transition maps ¢gogyt : ¢a(UaNUg) — ¢5(UsNUg) are
orientation preserving diffeomorphisms for all o and 3. Let p, : M — [0, 1]
be a partition of unity subordinate to the cover {U,}q so that

supp(pa) C Uas D pa = 1.
(07

Define w € Q™ (M) by

w = Zpa(ﬁ:;dml A= Ndx™,
«

where po¢idrl A--- Ada™ € Q7(U,) is extended to all of M by setting it
equal to zero on M \ U,. Then we have

wp(V1, ..., V) 1= Z pa(p) det(doa(p)vr, ..., doa(p)vm)

pEUa

for p € M and v1,...,vy, € T,M. Here the sum is understood over all o
such that p € U,. For each p € M and each basis vi,...,v, of T,M all
the summands have the same sign and at least one summand is nonzero.
Hence w is a volume form on M and is compatible with the orientation
determined by the atlas. This proves Lemma [5.4.7 O

Theorem 5.4.8 (Moser Isotopy). Let M be a compact connected oriented
m-manifold without boundary and let wo, w1 € Q™ (M) be volume forms such

that
/ wo = / .
M M

Then there exists a diffeomorphism ¢ : M — M, isotopic to the identity,
such that Y*w; = wy.

Proof. We prove that wy and w; have the same sign on each basis of each
tangent space. Let U C M be the set of all p € M such that the real
numbers (wo)p(v1, ..., V) and (w1)p(vi, . . ., vpy) have the same sign for some
(and hence every) basis vi,...,vp, of T,M. Then U and M \ U are open
sets because wg and wy are volume forms, U # () because the integral of wq
and w; agree, and hence U = M because M is connected. Thus wy and w;
determine the same orientation of M. Hence the convex combinations

wy = (1 — t)wp + twr, 0<t<1,

are all volume forms on M.
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The idea of the proof is to find a smooth isotopy 1y € Diff (M), 0 <t <1,
starting at the identity, such that

Piwe = wo (5.4.4)

for every t. Now every isotopy starting at the identity determines, and is
determined by, a smooth family of vector fields X; € Vect(M), 0 <t < 1,
via

d :
bt =Xeo vy, Yo = id. (5.4.5)

By assumption the integral of w; — wg vanishes over M. Hence, by Theo-
rem [5.3.10} there exists an (m — 1)-form 7 € Q™~1(M) such that

dT = w1 — wy = Opwy.

If ¢y and X; are related by (5.4.5) it follows from Cartan’s formula in The-
orem [5.3.2] that

d * * *

%’(/Jt Wt = wt (ﬁtht + 8twt) = 1/’7& d(L(Xt)wt + 7'). (546)
By Exercise below there exists a smooth family of vector fields

X, = —1,}(7) € Vect(M), (Xp)we +71=0.

Let ¢, € Diff (M), 0 <t < 1, be the isotopy of M determined by the vector
fields X; via equation . Then it follows from that the volume
form jw; is independent of ¢ and therefore satisfies . Hence the
diffeomorphism v := 1)1 satisfies the requirements of Theorem [5.4.8 O

Exercise 5.4.9. Let M be a smooth m-manifold and w € Q"™(M) be a
volume form. Prove that the linear map

I, : Vect(M) — Q™ Y(M),  I,(X):=(X)w,
is a vector space isomorphism.

Remark 5.4.10. Let M be a compact connected oriented smooth m-mani-
fold without boundary. Fix a volume form wy and denote the group of
volume preserving diffeomorphisms by

Diff (M, wp) := {¢ € Diff (M) | ¢p*wo = wo} .

One can use Moser isotopy to prove that the inclusion of the group of vol-
ume preserving diffeomorphisms into the group of all diffeomorphisms is a
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homotopy equivalence. This is understood with respect to the C*°-topology
on the group of diffeomorphisms. A sequence 1), converges in this topology,
by definition, if it converges uniformly with all derivatives.

To prove the assertion consider the set

V(M) := {w € Q"™(M) |w is a volume form and / w= 1}
M

of all volume forms on M with volume one and assume wy € ¥ (M). The
group Diff (M) acts on ¥ (M) and the isotropy subgroup of wq is Diff (M, wy).
Theorem [5.4.8| asserts that the map

Diff (M) — ¥ (M) : ¢ — ¢ wo
is surjective. Moreover, there is a continuous map
V(M) — Diff (M) : w — 9,

such that ¢ w = wg for every w € ¥ (M) and 1, = id. To see this construct
an affine map ¥ (M) — Q™ Y(M) : w + 7, such that d7,, = w—wy for every
w € ¥ (M), following Exercise and then use the argument in the proof
of Theorem to find 1. It follows that the map

Diff (M) — ¥ (M) x Diff (M, wo) : ¥ = (¢*wo, ¥ 0 Yypeey) (5.4.7)

is a homeomophism with inverse (w, @) + ¢ o). Since V(M) is a convex
subset of Q"™ (M) it is contractible and hence the inclusion of Diff (M, wy)
into Diff (M) is a homotopy equivalence. (See Definitions |6.1.3 and [6.1.7|
below.)

Exercise 5.4.11. Prove that there are metrics on Diff (M) and Q™ (M) that
induce the C'*°-topology on these spaces. Prove that the map (5.4.7) is a
homeomorphism. Hint: If d : X x X — R is a metric so is d/(1 + d).



Chapter 6

De Rham Cohomology

In this chapter we take a closer look at the de Rham cohomology groups of
a smooth manifold that were introduced in Section £.2.21 Here we follow
closely the classical textbook of Bott and Tu [2]. An immediate consequence
of Cartan’s formula in Theorem is the observation that smoothly ho-
motopic maps induce the same homomorphism on de Rham cohomology,
that homotopy equivalent manifolds have isomorphic de Rham cohomology
groups, and that the de Rham cohomology of a contractible space vanishes
in positive degrees. In the case of Euclidean space this is a consequence of
the Poincaré Lemma which follows directly from Cartan’s formula. These
observations are discussed in Section which closes with the computa-
tion of the de Rham cohomology of a sphere. This computation is a special
case of the Mayer—Vietoris argument, the subject of Section It is a
powerful tool in differential and algebraic topology and can be used, for ex-
ample, to prove that the de Rham cohomology groups are finite-dimensional
and to establish the Kiinneth formula for the de Rham cohomology of a
product manifold. Section extends the previous discussion to compactly
supported de Rham cohomology and Section is devoted to Poincaré dua-
lity, which again can be proved with the Mayer—Vietoris argument. Using
Poincaré duality and the Kiinneth formula one can then show that the Euler
characteristic of a compact oriented manifold without boundary, originally
defined as the algebraic number of zeroes of a generic vector field, is indeed
equal to the alternating sum of the Betti-numbers. A natural generaliza-
tion of the Mayer—Vietoris sequence is the Cech-de Rham complex which
will be discussed in Section In particular, we show that the de Rham
cohomology of a manifold is, under suitable hypotheses, isomorphic to the
Cech cohomology.

119
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6.1 The Poincaré Lemma

Let M be an m-manifold, let N be an n-manifold, and let f: M — N be
a smooth map. By Lemma the pullback of differential forms under f
commutes with the exterior differential, i.e.

ffod=do f*. (6.1.1)
In other words, the following diagram commutes:

d

QO (M) —L= (M) 2 d

*>Q2(M)*>...
I Tf* Tf*
QO(NV) —L- QL(N) —4= Q2(N) L~ ...
Thus f* : Q¥(N) — QF(M) is a linear map which assigns closed forms

to closed forms and exact forms to exact forms. Hence it descends to a
homomorphism

HY(N) = HE(M) : o] = £l =[]

on de Rham cohomology, still denoted by f*. If g : N — @ is another
smooth map between smooth manifolds then, by Lemma we have

(go f)* = f*og*: H*(Q) — H"(M).

Moreover, it follows from Lemmas [5.1.18 and [5.2.6] that de Rham cohomol-
ogy is equipped with a cup product structure

H*(M) x HY (M) — H*** (M) - ([w], [T]) = [w] U [T] i= [w A T]
and that the cup product is preserved by pullback.

Theorem 6.1.1. If fy, f1 : M — N are smoothly homotopic then there is a
collection of linear maps h : Q¥(N) — QF=1(M), one for every nonnegative
integer k, such that

fi—fi=doh+hod: Q¥N)— QM) (6.1.2)

for every nonnegative integer k. In particular, the homomorphisms induced
by fo and f1 on de Rham cohomology agree, i.e.

fo = fi - H'(N) = H"(M).
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Proof. Choose a smooth homotopy F': [0,1] x M — N satisfying

F(0,p) = fo(p),  F(1,p) = fi(p)

for every p € M, and for 0 <t <1, define f; : M — N by

fi(p) == F(t,p).

By Theorem [5.3.3, we have

if*w—dhw—i—hdw

et T !
for w € QF(N), where h; : QF(N) — QF~1(M) is defined by

(hw)p(v1, -+ vk—1) = Wy, (p) (Oc fr(P), dfe(P)v1, - - -, dfe(p)vr—1)
for p € M and v; € T,M. Integrating over ¢ we find
La
fiw — fow = / @ft*wdt = dhw + hdw
0

where h : QF(N) — QF~1(M) is defined by

(hw)p(v1, ..., vp—1)
1 (6.1.3)
= [ @A) Ao i) di
for p € M and v; € T,M. This proves Theorem O

Remark 6.1.2. In homological algebra equation (6.1.1)) says that
fFQY(N) = Q"(M)

is a chain map. Equation (6.1.2) says that the chain maps f; and f; are
chain homotopy equivalent and the map

h:Q*(N) — QM)

is called a chain homotopy equivalence from fj to f;. In other words,
smoothly homotopic maps between manifold induce chain homotopy equiva-
lent chain maps between the associated de Rham cochain complexes. Chain
homotopy equivalent chain maps always descend to the same homorphism
on (co)homology.
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Definition 6.1.3. Two manifolds M and N are called homotopy equiv-
alent if there exist smooth maps f : M — N and g : N — M such that the
compositions

gof: M — M, fog: N— N

are both homotopic to the respective identity maps. If this holds the maps f
and g are called homotopy equivalences and g is called a homotopy
inverse of f.

Exercise 6.1.4. The closed unit disc in R™ (an m-manifold with boundary)
is homotopy equivalent to a point (a 0-manifold without boundary).

Corollary 6.1.5. Homotopy equivalent manifolds have isomorphic de Rham
cohomology (including the product structures).

Proof. Let f : M — N be a homotopy equivalence and g : N — M be a
homotopy inverse of f. Then it follows from Theorem that

ffog"=(gof) =id: H" (M) — H*(M)

and
g off=(fog)*=id: H*(N) — H*(N).

Hence f*: H*(N) — H*(M) is a vector space isomorphism and
(f )t =g " H (M) — H*(N).
This proves Corollary O
Example 6.1.6. For every smooth manifold M we have
H*(M) = H*(R x M).
To see this, define 1 : R x M — M and ¢ : M — R x M by
m(s,p):=p,  up):=(0,p)
forse Randpe M. Thentor=id: M — M and tom: Rx M — Rx M
is homotopic to the identity. An explicit homotopy is given by
fi i RxM—RxM, fi(s,p) := (st,p), fo=tom, f1 =id.

Hence M and R x M are homotopy equivalent and so the assertion follows
from Corollary Explicitly, the map «* : H*(M) — H*(R x M) is an
isomorphism with the inverse ¢* : H*(R x M) — H*(M).
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Definition 6.1.7. A smooth manifold M is called contractible if the iden-
tity map on M is homotopic to a constant map.

Exercise 6.1.8. Every contractible manifold is nonempty and connected.

Exercise 6.1.9. A manifold is contractible if and only if it is homotopy
equivalent to a point.

Exercise 6.1.10. Every nonempty geodesically convex open subset of a
Riemannian m-manifold without boundary is contractible.

Corollary 6.1.11 (Poincaré Lemma). Let M be a contractible manifold.
Then there is a collection of linear maps h : Q¥(M) — QF=1(M), one for
every nonnegative integer k, such that

doh+hod=id: Q¥M) = Q¥M), k>1. (6.1.4)
Hence H'(M) =R and H*(M) =0 for k > 1.

Proof. Let pg € M and let [0,1] x M — M : (t,p) — f:(p) be a smooth ho-
motopy such that fo(p) = pp and f1(p) = p for all p € M. Define the linear
map h: QF(M) — Q¥~1(M) by (6.1.3). Then, for every k-form w € QF(M)
with k& > 1, it follows from Theorem that

w= ffw— fw = dhw — hdw.

(The assumption k& > 1 is needed in the first equation.) Hence, for k > 1,
every closed k-form on M is exact and so H¥(M) = 0. Since M is connected
we have H°(M) = R. This proves Corollary [6.1.11 O

Example 6.1.12. The Euclidean space R™ is contractible. An explicit
homotopy from a constant map to the identity is given by fi(z) := tx for
0<t<1andzxecR™ Hence

R, fork=0
k my __ y )
H(R)_{O, for £ > 1.

The chain homotopy equivalence h : QF(R™) — QF~1(R™) associated to the
above homotopy f; via (6.1.3) is given by

1
(hw)(:r;&l,...,ﬁkl):/o tFw(wste, &1, Epy) dt (6.1.5)

for w € QF(R™) and x, &1, ...,&_1 € R™. By Corollary it satisfies
doh+hod=id: QFR™) = QFR™)

for k > 1. This is the Poincaré Lemma in its original form.
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Example 6.1.13. For m > 1 the de Rham cohomology of the unit sphere
sm c RMH

is given by
R™ for k=0and k=m
k/romy _ ; )
H(S)_{O, for 1 <k<m-—1.
That H°(S™) = R follows from Example because S™ is connected
(whenever m > 1). That H™(S™) = R follows from Corollary|5.3.12|because
S™ is a compact connected oriented manifold without boundary.
We prove that
HY(S™) =0

for every m > 2. To see this consider the open sets
U*:=5m\{(0,...,0,F1)}.

Their union is S™, each set U and U~ is diffeomorphic to R™ via stere-
ographic projection, and their intersection U™ N U~ is diffeomorphic to
R™ \ {0} and hence to R x S™~!:

Ut ~U~ 2R™, UTNU- 2R x S™ L.

In particular, the intersection U+ N U~ is connected because m > 2. Now
let o € QY(S™) be a closed 1-form. Then it follows from Example
that the restrictions of o to U™ and U~ are exact. Hence there are smooth
functions f* : UT — R such that

alp+ =dft, alg- =df .

The differential of the difference f* — f~ : Ut N U~ — R vanishes. Since
Ut NU™ is connected there is a constant ¢ € R such that

ffz)—f(x)=c VeeU NU".
Define f: S™ — R by

[ ff(@)+¢c, forzeU-,
f@) = { [T (x), forz e UT.

This function is well defined and smooth and satisfies df = «. Thus we
have proved that every closed 1-form on S™ is exact, when m > 2, and thus
H'(S™) =0, as claimed.
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We prove by induction on m that H¥(S™) =0 for 1 < k < m — 1 and
m > 2. We have just seen that this holds for m = 2. Thus let m > 3 and
assume, by induction, that the assertion holds for m — 1. We have already
shown that H'(S™) = 0. Thus we fix an integer

2<k<m-1
and prove that

H*(S™) = 0.
Let w € QF(S™) be a closed k-form. By Example [6.1.12] the restrictions
of w to UT and U~ are both exact. Hence there are smooth (k — 1)-forms
€ QF=1(U?) such that

wlg+ = drT, wly- =dr.
Hence the (k — 1)-form
v =7 lurau- € AN UTNUT)
is closed. By Example [6.1.6] and the induction hypothesis, we have
H' U nUT) = H Y (R x s™7H) = g (S = 0.

Hence there is a (k — 2)-form 8 € QF2(U+ N U~) such that

df =1 yrau- = T luau--
Now choose a smooth cutoff function p : S™ — [0, 1] such that

(z) = 0, for x near (0,...,0,—1),
PP)=3 1, for  near (0,...,0,1),

and define 7 € QF~1(S™) by

:{ = +d(pp) on U™,
t —d((1—-p)B3) onUT.

Then dr = w. Thus we have proved that every closed k-form on S™ is exact
and hence H*(S™) = 0, as claimed.

The computation of the de Rham cohomology of S™ in Example[6.1.13
is an archetypal example of a Mayer—Vietoris argument. More generally,
if we have a cover of a manifold by two well chosen open sets U and V,
the computation of the de Rham cohomology of M can be reduced to the
computation of the de Rham cohomology of the manifolds U, V, and UNV
by means of the Mayer—Vietoris sequence. We shall see that this exact
sequence is a powerful tool for understanding de Rham cohomology.
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6.2 The Mayer—Vietoris Sequence

The purpose of this section is to introduce the Mayer—Vietoris sequence and
show that it is exact (Section [6.2.1]), to show that manifolds with finite good
covers have finite-dimensional de Rham cohomology groups (Section ,
and to prove the Kiinneth formula (Section [6.2.3)).

6.2.1 Long Exact Sequences
A Short Exact Sequence

Let M be a smooth m-dimensional manifold (not necessarily compact or
connected and with or without boundary). Let U,V C M be open sets such
that M = U UV. The Mayer—Vietoris sequence associated to this open
cover by two sets is the sequence of homomorphisms

0 — QF (M) -5 QFU) @ QP (V) L5 F (U N V) — 0, (6.2.1)

where i* : QF(M) — QF(U) @ QF(V) and j* : Q¥(U) @ QF(V) — QXU N V)
are defined by

i*w = (wlr,wlv), 7w, wy) == wy|uny — wulunv

for w € QF (M) and wy € QF(U), wy € QF(V). Thus i* is given by restriction
and j* by restriction followed by subtraction.

Lemma 6.2.1. The Mayer—Vietoris sequence ([6.2.1) is exact.

Proof. That i* is injective, is obvious: if w € QF(M) vanishes on U and
on V then it vanishes on all of M. That the image of ¢* agrees with the
kernel of j* is also obvious: if wy € QF(U) and wy € QF(V) agree on the
intersection U NV, then they determine a unique global k-form w € QF(M)
such that w|y = wy and wly = wy.

We prove that j* is surjective. Choose a partition of unity subordi-
nate to the open cover M = U U V. It consists of two smooth functions
pu : M —[0,1] and py : M — [0, 1] satisfying

supp(pv) C U, supp(py) C V, pu +pv =1 (6.2.2)
Now let w € Q¥(U N V) and define wy € QF(U) and wy € QF(V) by
w4 TPvw on unv, o i 4 PUW o uny,
710 on U\V, V'l 0 on V\ U.

Then
7 (wu,wv) = wy|uny —wuluny = prw + prw = w
as claimed. This proves Lemma [6.2.1 ]
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A Long Exact Sequence

The Mayer—Vietoris sequence is an example of what is called a short
exact sequence in homological algebra in that it is short (five terms start-
ing and ending with zero), it is exact, and it consists of chain homomor-
phisms. Thus the following diagram commutes:

0 —— QFFL(M) o QL) @ QR L(V) L QI (U A V) —— 0.

R |

0— = QF (M) — " = QF () & O (V) — L = Q" U NV) ——0

Any such short exact sequence gives rise to a long exact sequence in
cohomology. The relevant boundary operator will be denoted by

d*: H"(UNV) — HY(M)

and it is defined as follows. Let w € QF¥(U NV) be a closed k-form and
choose a pair (wy,wy) € QF(U) @ QF(V) whose image under j* is w. Then
the pair (dwy,dwy) belongs to the kernel of j* because w is closed, and
hence belongs to the image of ¢* by exactness. hence there exists a unique
(k + 1)-form d*w € Q¥1(M) whose image under i* is the pair (dwy, dwy ).
Since i* is injective and i*d(d*w) = di*(d*w) = d(dwy, dwy) = 0, it follows
that d*w is closed. Moreover, one can check that the cohomology class of d*w
is independent of the choice of the pair (wy,wy) used in this construction.
Here is an explicit formula for the operator d* coming from the proof
of Lemma Namely, choose smooth functions py, py : M — [0, 1] that
satisfy and define the operator d* : Q¥(U N V) — QF1(M) by

d*w::{ dpoy ANw onUNYV,

0 on M\ (UNV). (6.2.3)

This operator is well defined because the 1-form dpy = —dpy is supported
in U NV. Moreover, we have

dod"+d" od=0 (6.2.4)

and hence d* assigns closed forms to closed forms and exact forms to exact
forms. Thus d* descends to a homomorphism on cohomology.

Exercise 6.2.2. Prove that the linear map d* : Q¥(U N V) — Q¥ (M) de-
fined by satisfies equation and hence descends to a homomor-
phism d* : H*(U NV) — H**1(M). Prove that the induced homomorphism
on cohomology is independent of the choice of the partition of unity py, pyv
and agrees with the homomorphism defined by diagram chasing as above.
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The homomorphisms on de Rham cohomology induced by *, j*, d* give
rise to a long exact sequence

L HROM S HRO) @ HYV) L BR U A V) LS B - (6.2.5)
which is also called the Mayer—Vietoris sequence.

Theorem 6.2.3. The Mayer—Vietoris sequence (6.2.5)) is exact.

Proof. The equation j* o ¢* = 0 follows directly from the definitions.
We prove that d* o j* = 0. Let wy € QF(U) and wy € QF(V) be closed
and define w € Q¥(M) by

puwy + pywy on UNV,

Ww:i=< puwu on U\V,
VWY on V\U.
Then
d* 5" (wy,wy) = d*(wv|vnv — wuluny)
= dpu N (wv|uny —wulunv)
= —dw
and hence

d*5*([w]; [wv]) = 0.

Thus d* o j* = 0.
We prove that i* o d* = 0. Let w € Q¥(U NV) be closed and define the
k-forms wy € QF(U) and wy € QF(V) by

w4 TPvw on unvy, ) pyw onUNYV,
Y70 onU\V, VTl 0 on VUL

as in the proof of Lemma Then
dwyluny = —dpy Aw = dpy Aw = dwy |luny = (d*w)|unv.
Hence dwy = (d*w)|y and dwy = (d*w)|y, and so
id*[w] = ([(d*w)|v], [(d*w)|v]) = 0.

Thus i* od* = 0.
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We prove that kerd* = imj*. Let w € Q¥(U NV) be a closed k-form
such that d*[w] = [d*w] = 0. Then the k-form d*w € QFFL(M) is exact.
Thus there exists a k-form 7 € Q¥(M) such that

dr = d*w
or, equivalently,
drlunv =dpy Aw,  dT|pn vy = 0.
Define wy € QF(U) and wy € QF(V) by
wy = —pyw — 7|y, wy = ppw — Ty

Here it is understood that the k-form —pyw on U NV is extended to all
of U by setting it equal to zero on U \ V and the k-form pyw on U NV is
extended to all of V' by setting it equal to zero on V' \ U. The k-forms wy
and wy are closed and hence determine cohomology classes [wy] € H¥(U)
and [wy] € H*(V). Moreover,

wvlvny —wulvny = puw + prvw = w
and hence
7" (lwu, lwv]) = [w].
Thus we have proved that ker d* = im j*.
We prove that ker j* = imi*. Let wy € QF(U) and wy € QF(V) be closed

k-forms such that j.([wy], [wy]) = 0. Then the k-form j.(wy,wy) on UNV
is exact. Thus there exists a (k — 1)-form 7 € Q*~1(U N V) such that

wy|vav — wuluay = dr.

By Lemma there exist (k — 1)-forms 77 € Q¥~1(U) and 7y € QF1(V)
such that
v|vnv — Twluny =T

Combining the last two equations we find that wy —dry agrees with wy —dry
on U NV. Hence there is a global k-form w € Q¥(M) such that

w\U:wU—dTU, w’V:wv—dTv.

This form is obviously closed, its restriction to U is cohomologous to wy,
and its restriction to V' is cohomologous to wy . Hence

i*lw] = ([wol, [wv]).

Thus we have proved that ker j* = im*.
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We prove that keri* = imd*. Let w € Q¥(M) be a closed k-form such
that i*[w] = 0. Then the restricted k-forms w|y and w|y are exact. Thus
there exist (k — 1)-forms 7y € QF~1(U) and 7y € QF~1(V) such that

dry = w|y, dry = wly.
Hence the (k — 1)-form
7= 1v|vav — Tuluar € LU NY)
is closed. We prove that d*[7] = [w]. To see this, define o € Q*~1(M) by

puTy +pymy onUNV,

o:=< puTy on U\'V,
VTV on V\U.
Then
w=—pyT+oly, TV =puT+oaly.

Here the (k — 1)-form py7 on U NV is understood to be extended to all of U
by setting it equal to zero on U \ V' and the (k — 1)-form py7 on UNV is
understood to be extended to all of V' by setting it equal to zero on V' \ U.
Since 7 is closed we obtain

« _ | —dlpyr) onU | _ [ dry—doly onU | _
dT_{ dipyr) onV [\ dry—doly onV [~ ¢ do.

Hence d*[r] = [w] as claimed. Thus we have proved that keri* = imd* and
this completes the proof of Theorem [6.2.3] O

Corollary 6.2.4. If M = U UV is the union of two open sets such that the
de Rham cohomology of U, V., UNV is finite-dimensional, then so is the de
Rham cohomology of M.

Proof. By Theorem the vector space H* (M) is isomorphic to the direct

sum of the image of the homomorphism
d* - H*="Y(UNnV)— H*(M)
and the image of the homomorphism
i* s HY(M) — HY(U) @ H*(V).

As both summands are finite-dimensional so is H¥(M). This proves Corol-

lary O
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6.2.2 Finite Good Covers

The previous result can be used to prove finite-dimensionality of the de
Rham cohomology for a large class of manifolds. A collection % = {U; }ier
of nonempty open subsets U; C M is called a good cover if M = |J;.; U;
and each intersection U;, N---NU;, is either empty or diffeomorphic to R™;
it is called a finite good cover if it is a good cover and [ is a finite set.
Note that the existence of a good cover implies that M has no boundary.

Exercise 6.2.5. Prove that every compact m-manifold without boundary
has a finite good cover. Hint: Choose a Riemannian metric and cover M
by finitely many geodesic balls of radius at most half the injectivity radius.
Show that the intersections are all geodesically convex and use Exercise[6.2.6

Exercise 6.2.6. Prove that every nonempty geodesically convex open sub-
set of a Riemannian m-manifold M without boundary is diffeomorphic
to R™. Hint 1: Prove that it is diffeomorphic to a bounded star shaped
open set U C R™ centered at the origin, so that if z € U, then tz € U
for 0 <t < 1. Hint 2: Prove that there exists a smooth function g : R — R
such that g(x) > 0 for every z € U, g(z) = 1 for |z| sufficiently small,
and g(x) = 0 for x € R"\ U. Define h : U — [0, 00) by

Loat
v = [

Prove that the map ¢ : U — R™, ¢(x) := h(z)z, is a diffeomorphism.
Hint 3: There is a lower semicontinuous function f : S~ 1 — (0, 00]
such that U = Uy := {rz|z € S™ ', 0<r < f(z)}. (Lower semicontinu-
ity is characterized by the fact that the set Uy is open.) The Moreau
envelopes of f are the functions

enf)@) = inf (f)+75 e —ol).

yES”“l

They are continuous and real valued (unless f = c0) and they approximate f
pointwise from below. Use this to prove that there exists a sequence of
smooth functions f,, : S™~! — R satisfying 0 < f, < fur1 < f for every n
and lim, o fn(x) = f(x) for every z. Construct a diffeomorphism from R™
to Uy that maps the open ball of radius n diffeomorphically onto the set Uy, .

Exercise 6.2.7. Let M be a compact manifold with boundary. Prove
that M \ OM has a finite good cover. Hint: Choose a Riemannian met-
ric on M that restricts to a product metric in a tubular neighborhood of the
boundary.
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Corollary 6.2.8. If M admits a finite good cover then its de Rham coho-
mology is finite-dimensional.

Proof. The proof is by induction on the number of elements in the good
cover. If M has a good cover consisting of precisely one open set then M is
diffeomorphic to R™ and hence its de Rham cohomology is one-dimensional
by Example [6.1.12] Now fix an integer n > 2 and suppose, by induction,
that every smooth manifold that admits a good cover by at most n — 1 open
sets has finite-dimensional de Rham cohomology. Let M = U UU>U---UU,
be a good cover and denote

U=U0U---UU,_1, V.=U,.

Then the open set U NV has a good cover consisting of the open sets U; N U,
fori=1,...,n — 1. Hence it follows from the induction hypothesis that the
manifolds U, V, UNV have finite-dimensional de Rham cohomology. Thus,
by Corollary [6.2.4] the de Rham cohomology of M is finite-dimensional as
well. This proves Corollary O

Corollary 6.2.9. Every compact manifold M has finite-dimensional de
Rham cohomology.

Proof. The manifold M\ 0M has a finite good cover by Exercise and is
homotopy equivalent to M. (Prove this.) Hence the assertion follows from

Corollary and Corollary [6.2.8] O
Corollary 6.2.10. Let M be a smooth m-manifold, let U C M be an open

subset, and let f: M — M be a smooth map such that f(M) C U. Assume
that the de Rham cohomology groups of both M and U are finite-dimensional.

Then, for k=0,1,...,m, we have

trace (f* L HF (M) - Hk(M)) — trace ((f\w* L HE(U) Hk(U))

Proof. Define V := M\ f(M). Then the Mayer—Vietoris sequence associated
to the cover M = U UV gives rise to a commutative diagram

HYUNV) L B (M)~ HF(U) @ HRY(V) 2= BN U N V),
g | | g
HYUNV) - BN M)~ BF(U) @ HY(V) = BYU N V)

where the second vertical map sends ([wy], [wy]) to ([(f|v)*wul, [(flv)*wu])-
Since the horizontal sequences are exact, this proves Corollary [6.2.10 ]
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6.2.3 The Kunneth Formula

Let M and N be smooth manifolds and consider the projections

M x N
M N
They induce a linear map
QF (M) @ QYN) = (M X N):w @7 = mhw ATt (6.2.6)

If w and 7 are closed then so is 73 ;w A7y and if, in addition, one of the forms
is exact so is m},w A w3 7. Hence the map (6.2.6]) induces a homomorphism

k:H*(M)® H*(N) - H*(M x N)
on de Rham cohomology, given by
r([w] @ [7]) == [rhw ATl (6.2.7)
for two closed forms w € Q*(M) and 7 € Q*(N).

Theorem 6.2.11 (Kiinneth Formula). If M and N have finite good cov-
ers then Kk is an isomorphism; thus

l
HYM x N) = @ HF (M) ® H*(N)
k=0

for every integer £ > 0 and

dim(H* (M x N)) = dim(H*(M)) - dim(H*(N)).

Proof. The proof is by induction on the number n of elements in a good cover
of M. If n =1 then M is diffeomorphic to R™. In this case it follows from
Example[6.1.6] that the projection 7y : M x N — N induces an isomorphism

wh  HY(N) — H*(M x N)

on de Rham cohomology. Moreover, H(R™) = R and H*(R™) = 0 for k > 0
by Example [6.1.12] and hence x is an isomorphism, as claimed.
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Now fix an integer n > 2 and assume, by induction, that the Kiienneth
formula holds for M x N whenever M admits a good cover by at most n — 1
open sets. Suppose that

M=UuU,U---UU,
is a good cover and denote
U=U0U---UU,_1, vV .=U,.

Then the induction hypothesis asserts that the Kiinneth formula holds for
the product manifolds

UXx N, V x N, (UNV)x N.

We abbreviate

l
H' (M) =@ H (M) ® HF(N),  H'(M):=H(M x N),
k=0

so that r is a homomorphism from H(M) to H'(M). Then the Mayer—
Vietoris sequence gives rise to the following commutative diagram:

(M) -2 B U @ HY(V) -2~ AU n V) L= B4 ()

| | : .

H(M) 2= BY U @ AYV) -2~ BYU V) L= B4 (0)

That the first two squares in this diagram commute is obvious from the
definitions. We examine the third square. It has the form

Do H (U NV) @ HMN) L= @ H'(M) @ HH(N) .

| |

HY((UNV) % N) & HY(M x N)

IfweQFUNV)and 7 € QF(N) are closed forms we have

Rd* (w@T) =myd'wATNT
d'k(w@T) =d" (mhyw A TNT).
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Recall that d*w € QF1(M) is given by dpy A w on U NV and vanishes
on the set M \ (U NV), where py,py : M — [0,1] are as in the proof of
Lemma These functions give rise to a partition of unity on M x N,
subordinate to the cover by the open sets U x N and V' x N, and defined by
TFT\/[pU = pUOTH - M x N — [0,1],
Typy =pyomy : M x N — [0,1].
Using this partition of unity for the definition of the boundary operator
d* QU NV) x N) = QLM x N)
in the Mayer—Vietoris sequence for M x N, we obtain the equation
d'rweT) = d(mywATNT)
= d(mypu) NTyw ATNT
= 7y(dpy Nw) ANTNT
= myd'wATNT
= Rd(W®T).

on the open set (UNV) x N. Since both sides of this equation vanish on
the set (M \ (UNV)) x N, we have proved that

d*ok=kKod".
Thus the homomorphism B
k:H"— H*
in (6.2.7) induces a commuting diagram of the Mayer—Vietoris sequences
for H* and H*. The induction hypothesis asserts that x is an isomorphism
for each of the manifolds U, V', and U N V. Hence it follows from the Five

Lemma below that it also is an isomorphism for M. This completes
the induction argument and the proof of Theorem [6.2.11 O

Lemma 6.2.12 (Five Lemma). Let

A f1 B Jo C f3 fa B

b

A —=pB 2> —>D —>F

be a commutative diagram of homomorphisms of abelian groups such that the
horizontal sequences are exact. If o, 5,9, are isomorphisms then so is 7.

Proof. Exercise. O
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6.3 Compactly Supported Differential Forms

This section introduces compactly supported de Rham cohomology groups,
establishes the Mayer—Vietoris sequence in this setting, and derives various
consequences such as finite-dimensionality and the Kiinneth formula.

6.3.1 Definition and Basic Properties

Let M be an m-dimensional smooth manifold (possibly with boundary) and,
for every integer k > 0, denote by ng (M) the space of compactly supported
k-forms on M. (See Section ) Consider the cochain complex

QO(M) - ol -5 o2 % - L am).

The cohomology of this complex is called the compactly supported de
Rham cohomology of M and will be denoted by

_ kerd: QF(M) — QM)
~imd: QM) — QE(M)

HE(M) :

for k=0,1,...,m.

Remark 6.3.1. If M is compact then every differential form on M has
compact support and hence Qf (M) = Q*(M) and H}(M) = H*(M).

Remark 6.3.2. The compactly supported de Rham cohomology of a mani-
fold is not functorial. If f : M — N is a smooth map (between noncompact
manifolds) and w € QF(N) is a compactly supported differential form on N
then

supp(f*w) C £~ (supp(w)).

Thus f*w may not have compact support.

Remark 6.3.3. If f : M — N is proper in the sense that
K C N is compact = f~Y(K) c M is compact,
then pullback under f is a cochain map
F* QLN = (M)

and thus induces a homomorphism on compactly supported de Rham co-
homology. By Corollary the induced map on cohomology is invari-
ant under proper homotopies. Here it is not enough to assume that each
map f; in a homotopy is proper; one needs the condition that the homo-
topy [0,1] x M — N : (t,p) — fi(p) itself is proper.



6.3. COMPACTLY SUPPORTED DIFFERENTIAL FORMS 137

Remark 6.3.4. If . : U — M is the inclusion of an open set then every
compactly supported differential form on U can be extended to a smooth
differential form on all of M by setting it equal to zero on M \ U. Thus
there is an inclusion induced cochain map

Ly QUU) — QLH(M)
and a homomorphism on compactly supported de Rham cohomology.

These remarks show that the compactly supported de Rham cohomology
of a noncompact manifold behaves rather differently from the usual de Rham
cohomology. This is also illustrated by the following examples.

Example 6.3.5. The compactly supported de Rham cohomology of the
1-manifold M = R is given by
HYR)=0, H)R)=R.

C

That H2(R) = 0 follows from the fact that every compactly supported
function f : R — R with df = 0 vanishes identically. To prove H!(R) = R
we observe that a 1-form w € QL(R) can be written in the form

w = g(a) da,

where ¢ : R — R is a smooth function with compact support. Thus w = df
where f : R — R is defined by f(z) := [ _g(t)dt. This function has
compact support if and only if the integral of g over R vanishes. Thus w
belongs to the image of the operator d : QO(R) — QL(R) if and only if its
integral is zero. This is a special case of Theorem [5.3.10

Example 6.3.6. If M is connected and not compact then every compactly
supported locally constant function on M vanishes and hence

HO(M) = 0.

Example 6.3.7. If M is a nonempty connected oriented smooth m-dimen-
sional manifold without boundary then

H"(M)=R.
An explicit isomorphism from H]"(M) to the reals is given by
HM"M) = R: [w] —>/ w.
M

This map is surjective, because M is nonempty, and it is injective by Theo-
rem [n.s.10
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Theorem 6.3.8. For every smooth m-manifold M we have
HEP (M xR) = HE(M),  k=0,1,...,m.

Corollary 6.3.9. The compactly supported de Rham cohomology of R™ 1is
given by
R, fork=m
k my __ 3 )
H:R )_{0, for k < m.

Proof. This follows from Example by induction. The induction step
uses Example for £ = 0 and Theorem for k > 0. O

Proof of Theorem[6.3.8. As a warmup we consider the case M = R™ and
use the coordinates (z!,...,2™,t) on R™xR. Then a (compactly supported)
k-form on R™ x R has the form

w= Z ap(z, t)dz! Adt + Z By(x,t)dx’,

[1|=k—1 |J|=k

where the ay and (; are smooth real valued functions on R™ x R (with
compact support). Fixing a real number ¢t € R we obtain differential forms

oy = Z ap(z, t)yde’ € QFHR™),
|T|=k—1
Bii=Y_ Bilx,t)de’ € QER™),

|J|=k

Going to the general case, we see that a compactly supported differential
form w € QF(M x R) can be written as

w=oy ANdt+ B, (6.3.1)

where R — Q¥ 1(M) : t = oy and R — QF(M) : t — B; are smooth families
of differential forms on M such that the set

supp(w) = (_J{t} x (supp(a) Usupp(8y))

teR

is compact. The formula in local coordinates shows that the exterior differ-
ential of w € QF(M x R) is given by

dw = dM*Ry = (dMat + (—1)’?@@) Adt+ dMB,. (6.3.2)
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Choose a smooth function e : R — R with compact support such that

/ e(t)dt =1
and define the operators
Tt QPN M X R) = QF(M), e, : QF (M) — QML (M x R),
by
Tal 1= / oy dt, esa = e(t)a A dt. (6.3.3)

for w = oy Adt + By € Q¥ (M x R) and o € QF(M). Then it follows from
equation (6.3.2) that

w*od:dMom, doe, =e,odM. (6.3.4)

Hence 7, and e, induce homomorphisms on compactly supported de Rham
cohomology, still denoted by m, and e,. We have the identity

Ts O €y = id

both on QF(M) and on H¥(M). We prove that the composition e, o 7, is
chain homotopy equivalent to the identity, i.e. there exists a collection of
linear operators K : QF1(M x R) — QF(R x M), one for each k, such that

id—esom,=do K+ Kod. (6.3.5)
Given w = ay Adt + 3 € QFL(M x R) define the k-form Kw € QF(M x R)
by Kw := a; A dt + B3, where

a; =0, By = (—1)F /t (045 — e(s)ﬂ*w) ds. (6.3.6)

—00

Combining (6.3.2)) and (6.3.6) we find

dKw = (at — e(t)mw) Adt 4 (—1)kaM /_t (as — e(s)mw) ds,

t
Kdw = (=1)"*! / (dMas +(=1)F19,8, — e(s)ﬂ*dw) ds

—00

= By + (—1)F1gM /_t (as - e(s)w*w> ds.

Here the last equality uses (6.3.4]). Take the sum to obtain
dKw+ Kdw = oy Ndt — e(t)mew AN dt + B = w — e,miw.
This proves (6.3.5)) and Theorem [6.3.8] O
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6.3.2 The Mayer—Vietoris Sequence for H}

Let M be a smooth m-manifold and let U,V C M be two open sets such
that U UV = M. The Mayer—Vietoris sequence in this setting has the
form

0+ QF(M) &= QMUY @ QF(V) L= QF U N V) «— 0, (6.3.7)
where the homomorphisms
i QMUY @ QE(V) = QF(M), 4. QRUNV) = QU @ QF (V)
are defined by
is(Wy, wy) = wy + wy, Jaw = (—w,w)

for wy € QF(U), wy € Q¥(V), and w € Q¥(U NV). Here the first summand
in the pair (—w,w) € Q¥ (U)@QF(V) is understood in the first component as
the extension of —w to all of U by setting it zero on U \ V and in the second
component as the extension of w to all of V' by setting it zero on V' \ U.
Likewise, the k-form wy + wy € QF(M) is understood as the sum after
extending wyr to all of M by setting it zero on V' \ U and extending wy to
all of M by setting it zero on U \ V.

Lemma 6.3.10. The Mayer-Vietoris sequence (6.3.7)) is exact.

Proof. That j, is injective is obvious. That the image of j, agrees with the
kernel of i, follows from the fact that if the sum of the compactly supported
differential form wy € QF(U) and wy € QF(V) vanishes on all of M, then
the compact set supp(wy ) = supp(wy) is contained in U N'V.

We prove that i, is surjective. As in the proof of Lemma [6.2.1] we choose
a partition of unity subordinate to the cover M = U UV, consisting of two
smooth functions py : M — [0, 1] and py : M — [0, 1] satisfying

supp(pr) CU,  supp(pv) CV,  pu+py =1
Let w € QF(M) and define wy € QF(U) and wy € QF(V) by

wy = puwlu, wy = pywly.

Then
ix(Wy, wy) = wy +wy = w.

This proves Lemma [6.3.10 O
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As in Section m we have that ¢, and j, are cochain maps so that the
following diagram commutes

0 <~— QM) < QLU @ QFL(V) L QHLUNV)<—0.

S O |

0= QF (M) =2 QFU) & QF (V) —2— QKU N V) =——0

The boundary operator
de : HY(M) — H Y (U NV)

for the long exact sequence is is defined as follows. Let w € QF(M) be a
closed k-form with compact support and choose a pair

(wo,wv) € QU) & (V)

whose image under i, is w. Then the pair (dwy, dwy) belongs to the kernel
of i, because w is closed, and hence belongs to the image of j, by exactness.
Hence there exists a unique (k + 1)-form d.w € Q¥1(U NV) with compact
support whose image under j, is the given pair (dwy, dwy). As before, this
form is closed and its cohomology class in H**'(U N V) is independent of
the choice of the pair (wy,wy) used in this construction.

Again, there is an explicit formula for the operator d, coming from the
proof of Lemma Define the map d, : QF(M) — Q¥*1({U N V) by

dyw = dpy N w|Umv. (638)

This operator is well defined because the 1-form dpy = —dpy is supported
in U NV. Moreover, we have

dod, +dyod=0 (6.3.9)

and hence d, assigns closed forms to closed forms and exact forms to exact
forms. Thus d, descends to a homomorphism on cohomology.

Exercise 6.3.11. Prove that the linear map d, : Q¥ (M) — QMU N V) de-
fined by satisfies equation and hence descends to a homomor-
phism d, : H¥(M) — H**1(U N V). Prove that the induced homomorphism
on cohomology is independent of the choice of the partition of unity py, pyv
and agrees with the homomorphism defined by diagram chasing as above.
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The homomorphisms on compactly supported de Rham cohomology in-
duced by 74, j«, di give rise to a long exact sequence

L HE(M) & BHRNU) o HRN V) S HRUNV) < HEY(M) - (6.3.10)
which is also called the Mayer—Vietoris sequence.

Theorem 6.3.12. The Mayer—Vietoris sequence (6.3.10)) is exact.

Proof. That the composition of any two successive homomorphisms is zero
follows directly from the definitions.

We prove that kerd, = imi,. Let w € QF(M) be a closed compactly
supported k-form on M such that d,[w] = 0. Then there exists a compactly
supported k-form 7 € QF(U NV) such that

dr = d(pyw)|vnv = —d(puw)|vnv.
Define wy € QF(U) and wy |[inQF (V) by

o pvw+T7 onUNYV, . pyw+T7 onUNYV,
U pow on U\V, Vol pvw on V\U.

These forms are closed and have compact support. Moreover, wy + wy = w
and hence i, (Jwy], [wy]) = [w]. Thus we have proved that ker d, = im i,.

We prove that keri, = imj,. Let wy € QF(U) and wy € QF(V) be
compactly supported closed k-forms such that i, ([wrr], [wy]) = 0. Then there
exists a compactly supported (k — 1)-form 7 € Q¥ 1(M) such that

wy +wy onUNYV,
dr = ¢ wy on U\ 'V,
wy on V\U.

It follows that the k-form
w = wylpny — d(pvT)|lvny = —wrlvav + d(puT)|uay € QMU NTV)

has compact support in U N V. Moreover, w is closed and the pair

— —w onUNYV, w onUNYV, N i
j*“’_({o onU\V }{o on V\U })GQC(U)@QC(V)

is cohomologous to (wy,wy). Hence ji[w] = ([wy], [wy]). Thus we have
proved that keri, = im j,.
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We prove that kerj, = imd,. Let w € QF(U N V) be a compactly
supported closed k-form such that j.[w] = 0. Then there exist compactly
supported (k — 1)-forms 7y € QF~1(U) and 1y € QF~1(V) such that

dr = 1 ¥ onUNYV, dro = 1 ¥ onUNYV,
=10 onU\V, VEl0 om VU

Define 7 € QF1(M) and 0 € Q¥~1({U N V) by

w+Ty onUNYV,

T = U onU\V, o= py1ulvav — puTvivav.
TV on V\U,

Note that the set supp(7) C supp(7y) Usupp(7y) is a compact subset of M

and the set supp(o) C (supp(pv) Nsupp(7v)) U (supp(pr) Nsupp(ry)) is a
compact subset of U N'V. Moreover, 7 is closed and

pvT|unv = Tv|unv + o.

Hence

dy[T] = [diT]

dpv A Tluav]
d(pv7)|unv]
dry|uny + do]

drv|vav]

=
=
=
=
=
= [w].

Thus ker j, = im d, and this proves Theorem [6.3.12 O

The proof of Theorem also follows from Lemma [6.3.10| and an
abstract general principle in homological algebra, namely, that every short
exact sequence of (co)chain complexes determines uniquely a long exact se-
quence in (co)homology. In the proof of Theorem we have established
exactness with the boundary map given by an explicit formula. The formu-
las for the boundary maps d* and d, in the Mayer—Vietoris sequences will
be useful in the proof of Poincaré duality. The Mayer—Vietoris sequence for
compactly supported de Rham cohomology can be used as before to estab-
lish finite-dimensionality and the Kiinneth formula. This is the content of
the next three corollaries.
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Corollary 6.3.13. If M = U UV 1is the union of two open sets such that
the compactly supported de Rham cohomology of U, V, UNV is finite-
dimensional, then so is the compactly supported de Rham cohomology of M.

Proof. By Theorem [6.3.12] the vector space H¥(M) is isomorphic to the
direct sum of the image of the homomorphism

iv: HY(U)® H¥(V) — HF(M).
and the image of the homomorphism
d*: H¥(M) — HM*Y U N V).

As both summands are finite-dimensional so is H¥(M). This proves Corol-

lary B3.13 O

Corollary 6.3.14. If M admits a finite good cover then its compactly sup-
ported de Rham cohomology is finite-dimensional.

Proof. The proof is by induction on the number of elements in a good cover

as in Corollary Here one uses Corollary instead of Example[6.1.12
and Corollary [6.3.13] instead of Corollary O

Corollary 6.3.15 (Kiinneth Formula). If M and N have finite good
covers then the map

QM M) @ QUN) = QUM x N) : w @7 = Thw AThT

mnduces an isomorphism

k:H(M)® H(N) — H:(M x N).
Thus

1

@ HE (M) © HEF(N) = HA(M x N)

k=0
for every integer £ > 0 and

dim(H} (M x N)) =dim(H}(M)) - dim(H; (N)).

Proof. The proof is exactly the same as that of Theorem [6.2.11 O
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6.4 Poincaré Duality

Section [6.4.1] introduces Poincaré duality for oriented manifolds without
boundary that admit finite good covers. The proof is deferred to Sec-
tion[6.4.2] Poincaré duality is used in Section[6.4.3]to associate to a compact
oriented submanifold without boundary a dual de Rham cohomology class.
A key formula which relates the cup product of two such classes to the inter-
section number (Theorem will be proved in Section This result
is used in Section [6.4.4] to establish the Poincaré-Hopf Theorem and
the Lefschetz—Hopf Theorem Section [6.4.5] uses Poincaré duality to
compute the de Rham cohomology groups of some examples.

6.4.1 The Poincaré Pairing

Let M be an oriented smooth m-dimensional manifold without boundary.
Then, for every integer k € {0,1,...,m}, there is a bilinear map

QF (M) x QT F(M) - (w,7) — /Mw AT. (6.4.1)

If the differential forms w and 7 are closed and one of them is exact,
then w A 7 is the exterior differential of a compactly supported (m — 1)-form

and so its integral vanishes by Theorem [5.2.11] Thus the pairing (6.4.1]) de-
scends to a bilinear form on de Rham cohomology, the Poincaré pairing

HE(M) x H™ (M) - (], [7]) > / WAT (6.4.2)
M

Theorem 6.4.1 (Poincaré Duality). Let M be an oriented smooth m-
dimensional manifold without boundary and suppose that M has a finite
good cover. Then the Poincaré pairing is nondegenerate. This is
equivalent to the following two assertions.

() If w € QF(M) is closed and satisfies the condition
e Q" kM), dr=0 = /w/\T:(),
M

then w is ezxact.
(b) If T € QF(M) is closed and satisfies the condition

weQ¥M), dw=0 = /w/\T:O,
M

then there exists a differential form o € QM =*=1(M) such that do = 7.
Proof. See page [148 O
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Remark 6.4.2. The assumption that w is closed is not needed in part (a)
and the assumption that 7 is closed is not needed in part (b). In fact,
if [, w A do = 0foreveryo € Qm=k=1(]M), then, by Stoke’s Theorem
we have [, dw Ao =0 for every o € Q" *~1(M) and hence dw = 0. Simi-
larly for 7.

Remark 6.4.3. The Poincaré pairing (6.4.2) induces a homomorphism
PD : H*(M) — H™ *(M)* = Hom(H™ *(M),R) (6.4.3)

which assigns to the cohomology class of a closed k-form w € QF(M) the
homomorphism

H™ (M) — R [] s PD([u])([7]) := / wAT.
M

Condition (a) says that the homomorphism PD is injective and, if H7"~*(M)
is finite-dimensional, condition (b) says that PD is surjective. This last asser-
tion is an exercise in linear algebra. By Corollary and Corollary
we know already that, under the assumptions of Theorem [6.4.1} both the
de Rham cohomology and the compactly supported de Rham cohomology
of M are finite-dimensional. Thus the assertion of Theorem [6.4.1] can be
restated in the form that the linear map

PD: H¥(M) — H™ *(M)*

is an isomorphism for every k. We say that a manifold M satisfies Poin-
caré duality if PD is an isomorphism.

Remark 6.4.4. The Poincaré pairing (6.4.2)) also induces a homomorphism
PD* : H™ *(M) — H*(M)* = Hom(H"*(M),R) (6.4.4)

which sends a class [r] € H™ %(M) to the homomorphism
HE (M) — R : [w] > PD*([])([w]) = / WAT
M

If both H¥(M) and H~*(M) are finite-dimensional then is bijective
if and only if is bijective. However, in general these two assertions
are not equivalent. It turns out that the operator is an isomorphism
for every oriented manifold M without boundary while (6.4.4]) is not always
an isomorphism. (See [2, Remark 5.7].)
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Remark 6.4.5. If M is compact without boundary then
In this case the homomorphisms
PD : HE(M) — H™ *(M)*

in (6.4.3]) and
PD* : HY(M) — H™ *(M)*
in (6.4.4) differ by a sign (—1)k(m=k),

Example 6.4.6. As a warmup we show that Poincaré duality holds for
M =R"™.

That PD : H¥(R™) — H™ *[R™)* is an isomorphism for k > 0 follows
from the fact both cohomology groups vanish. (See Example [6.1.12] and
Corollary ) For k = 0 the Poincaré pairing has the form

QU R™) x Q™(R™) : (f,7) — - fr.

If f € Q%(R™) and [}, f7 = 0 for every compactly supported m-form on M
then f vanishes; otherwise f # 0 on some nonempty open set U C R™ and
we can choose

T =pfdzt Ao Ada™,

where p : R™ — R™ is a smooth cutoff function with support in U such that
p(x) > 0 for some z € U; then

/ fr= fA(x)p(x)dxt - - dz™ > 0,
m Rm

a contradiction. Conversey, if 7 € QI'(R™) is given such that [, f7 =0
for every constant function f: M — R then

/ T=0

and hence it follows from Theorem [5.3.10| that there is a compactly sup-
ported (m — 1)-form o € Q71 (R™) such that do = 7.



148 CHAPTER 6. DE RHAM COHOMOLOGY

6.4.2 Proof of Poincaré Duality

Proof of Theorem [6.4.1. The proof is by induction on the number n of ele-
ments in a good cover of M. If n = 1 then M is diffeomorphic to R™ and
hence the assertion follows from Example Now let n > 2, suppose
that

M=U,U---uUU,

is a good cover, and suppose that Poincaré duality holds for every ori-
ented m-manifold with a good cover by at most n — 1 open sets. Denote
by U,V C M the open sets

U=U0U---UU,_1, V.=U,.

Then the induction hypothesis asserts that Poincaré duality holds for the
manifolds U, V', and UNV. We shall prove that M satisfies Poincaré duality
by considering simultaneously the Mayer—Vietoris sequences for H* and H}
associated to the cover M = U U V.

We prove that the following diagram commutes

Lo *
H* (M) — ® L HYNUNV)—L s HM1(M)
HH(V)
PD %iPD =1 PD PD
Hp RO 2 e P kU V) R R ()
k(v
(6.4.5)

Commutativity of the first square in (6.4.5|) asserts that all closed differential
forms w € QF(M), 7y € QPF(U), 7 € QT *(V) satisfy

/ wAi*(TU,Tv):/w|UATU+/wyv/\Tv.
M U 1%

This follows from the definition of the homomorphism
i QRO & QP E(V) > QR ()

in (6.3.7). Commutativity of the second square in (6.4.5)) asserts that all
closed differential forms wy € QF(U), wy € Q™ k(V), 7 € QKU NV)

satisfy
/wU/\(—T)+/wV/\T:/ JH(wu,wy) AT
U 1% unv
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This follows from the definition of the homomorphism
M) e (V) = QF U N V)

in (6.2.1). Commutativity of the third square in (6.4.5) with the sign
equal to (—1)**1 asserts that all closed differential forms w € Q¥(U N V)

and 7 € QP F1(M) satisfy

/ dwAT = (—1)k+1/ WA dyT.
M unv

To see this, recall that
d*w = dpy Aw € QFFL(M), dor =dpy AT € QTRUNV).

Here dpy Aw is extended to all of M by setting it equal to zero on M\ (UNV),
and dpy A T is restricted to U NV where it still has compact support.
Since dpy + dpy = 0 we obtain

/d*w/\T:/ dpy N\wNAT
M unv

:(—1)k/U Vw/\d,oU/\T
n

= (—1)k+1/U Vw/\dpv AT
N

= (—1)k+? / wAdyT
Unv

as claimed. This shows that the diagram (6.4.5) commutes. Since the hori-
zontal sequences are exact and the Poincaré duality homomorphisms

PD:H* — H"™

are isomorphisms for U, V', and UNV by the induction hypothesis, it follows
from the Five Lemma [6.2.12] that the homomorphism

PD : H*(M) — H™ *(M)

is an isomorphism as well. This proves Theorem [6.4.1 O
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6.4.3 Poincaré Duality and Intersection Numbers

Let M be an oriented smooth m-manifold without boundary that admits a
finite good cover. By Theorem every linear map A : H™ *(M) - R
determines a unique de Rham cohomology class [r] € H¥(M) with compact
support such that A([w]) = [,;w A7 for every closed k-form w € QF(M).
An important class of examples of such homomorphisms A arises from inte-
gration over submanifolds or from the integration of pullbacks under smooth
maps. More precisely, let P be a compact oriented f-manifold without
boundary and let f: P — M be a smooth map. Then there exists a closed
k-form 7; € Qm=Y(M), unique up to an additive exact form, such that

|wnm= [ 1o (6.4.6)

for every closed (-form w € QY(M). This follows from Theorem and
Remark Namely, the de Rham cohomology class of 7; in H™~¢(M)
is the inverse of the linear map H*(M) — R : [w] = [, f*w under isomor-
phism PD* : H™ 4(M) — HY(M)* in (6.4.4). The unique de Rham coho-
mology class 7] € H*(M) is called (Poincaré) dual to f. We also call
each representative of this class dual to f. If Q C M is a compact ori-
ented codimension-¢ submanifold without boundary, we use this construc-
tion for the obvious embedding of @ into M. Thus there exists a closed
(-form 7o € QL(M), unique up to an additive exact form, such that

/Mw/\TQ:/Qw (6.4.7)

for every closed (m — £)-form w € Q™~¢(M). The unique de Rham cohomol-
ogy class [tg] € HE(M) of such a form as well as the forms 7 themselves are
called (Poincaré) dual to ). The next theorem relates the cup product
to intersection theory. The proof will be given in Section [7.2.3

Theorem 6.4.7. Let M be an oriented m-manifold without boundary that
admits a finite good cover, let Q) C M be a compact oriented (m — £)-dimen-
sional submanifold without boundary, let P be a compact oriented £-manifold
without boundary, let f: P — M be a smooth map, and let 7 € QZ”*Z(M)
and 179 € QLM) be closed forms dual to f and Q, respectively. Then the
intersection number of f and Q is given by

f-Q:/MTf/\TQ:/QTf:(—1)€(m_€)/Pf*TQ. (6.4.8)

Proof. See page [200] O
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6.4.4 Euler Characteristic and Betti Numbers

Let M be a compact m-manifold. The Betti numbers of M are defined as
the dimensions of the de Rham cohomology groups and are denoted by

b; == dim(H'(M)), i=0,...,m.

By Corollary [6.2.9] these numbers are finite. Recall that the Euler charac-
teristic x (M) is defined as the sum of the indices of the zeros of a vector field
that points out on the boundary (Theorem . The next theorem shows
that this invariant is the alternating sum of the Betti numbers. It shows
also that the Lefschetz number of a smooth map from M to itself (defined
as the sum of the fixed point indices in Theorem is the alternating of
the traces of the induced homomorphism on de Rham cohomology.

Theorem 6.4.8 (Euler Characteristic). Let M be a a compact m-mani-
fold with boundary and let f: M — M be a smooth map. Then the Euler
characteristic of M is given by
m . .
X(M) =Y (~1)" dim(H'(M)) (6.4.9)
i=0
and the Lefschetz number of f is given by
m
L(f) = (~1)'trace (f* : H'(M) — H'(M)). (6.4.10)
i=0
Proof. The proof has seven steps. The first three steps establish the for-
mula ((6.4.10)) for compact oriented manifolds without boundary.

Step 1. Assume that M is oriented and OM = (). Let o € Q™(M x M)
be a closed m-form whose cohomology class is Poincaré dual to the dia-
gonal A :={(p,p)|p€ M}, so holds with M replaced by M x M
and Q= A. Let w; € Q% (M) for i =0,1,...,n be closed forms whose
cohomology classes [w;] form a basis of H*(M). Then there exist closed
forms 7; € Q™=K (M) for j =0,1,...,n such that

1, ifi=j
Ti ANw; = 0;; = o ] 6.4.11
/M ! / { 0, ifi#j. ( )
Their cohomology classes also form a basis of H*(M) and
[ral = Y (1)) x5 A mhw;] € H™(M x M). (6.4.12)
i=0

Here m; : M x M — M denotes the projection onto the first factor fori=1
and onto the second factor for i = 2.
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The existence of the 7; satisfying and the fact that their cohomology
classes form a basis of H*(M) follows directly from Theorem By the
Kiinneth formula in Theorem the cohomology classes of the differen-
tial forms 7jw; A m37; form a basis of the de Rham cohomology of M x M.
Hence there exist real numbers ¢;; € R such that

[Tal = Z cijlmiTj A mowil. (6.4.13)
12

We compute the coefficients c¢;; by using equation (6.4.7)), which asserts that

/w:/ wATA, W= T wg A TaTy,

A MxM

Define the map ¢ : M — M x M by u(p) := (p,p) for p € M. Then
mot=mgo0t=1d

and hence

/ W= / (g A i) = / Wi Ay = (—1)deBen) dea(r)g,
A M M
Moreover, by (6.4.13)), we have
/ wATA :Zcij/ TiwE A TaTe A T Tj A Tyw;
MxM i, MxM
= Z cij(—l)deg(”)deg(”) / Tiwg A T Tj A TaT A Tow;
i, MxM
=) cij(—1)desm)des) / wi A T; / o A wi
i M M
— Z Cij(_l)deg(n)deg(Tz)(_l)deg(Tj) deg(wk)(;jk(;ie
4,3
= (—1)des(r) deg(e) (_1)deg(me) deglwr)
Setting k = ¢ we find that
cre = (—1)18w) 5,

and this proves Step 1.
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Step 2. Assume that M is oriented and OM = (), and let w; and 7; be as
in Step 1. Then

L(f) =) (—1)sld) / i A frw;. (6.4.14)

i M

Since M is a compact oriented manifold without boundary, it follows from

Lemma and Definition [4.4.10| that L(f) = graph(f) - A. Hence it
follows from Theorem [6.4.7] with the triple M, f : P — M,Q replaced

by M x M,id x f: M — M x M, A that
L(f) = graph(f) - A
( >/M<1 % f)7a

= (1" S0 [ (i x py*(rin A i)

—Z degw, / Ti/\f*wi.
M

The last equality holds because deg(w;) + deg(7;) = m. This proves Step 2.
Step 3. Assume that M is oriented and OM = (). Then (6.4.10) holds.
Let w; and 7; be as in Step 1. Then it follows from ([6.4.11]) that
[rwi = Z a;jwj, a;j 12/ 7 N frwi,
deg(w;)=k M
for all i € {0,1,...,n} with deg(w;) = k. Hence
trace(f*:Hk(M)%Hk(M)): Z aj; = Z / Ti N\ frwi

deg(w;)=k deg(w;)=
and so it follows from equation (6.4.14)) in Step 2 that

_ _ q\deg(w;) o Wi
L) = S0t [ nn g
Z / 7 A frw;

deg(w;)=k

7 1

(—1)Ftrace(f* : H*(M) — H*(M)).

£
I
o

This proves Step 3.
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Step 4. Let M be a compact m-manifold with boundary and let f: M — M
be a smooth map such that f(M)NOM = 0. Then there exists a com-
pact m-manifold N without boundary, a smooth map g: N — N, an open
set U C M\ OM, and an embedding . : M — N such that

got=tof:U— N, f(M)cCU, g(N) C (U), (6.4.15)

and the inclusion of U into M is a homotopy equivalence.
Choose a vector field X € Vect(M) such that X points out on the boundary,
let ¢ : (—00,0] x M — M be the semi-flow of X, and define

Vei={o(t,p)| —e<t<0,pecIM}.

Then V. is a compact neighborhood of the boundary and ¢ restricts to a
diffeomorphism from [—¢,0] x M to V. for € > 0 sufficiently small. Fix a
constant € > 0 so small that this holds and f(M) N V. = (. Define

N =M x {£1}/~,
where the equivalence relation is given by

p,q € Ve and there exist elements
(p,—1) ~ (q,+1) PN —e <t <0 and pg € OM such that
b= ¢(t7p0) and q= qb(—{i - t7P0)-

Then N is a compact manifold without boundary, the map
M — N :p— p) := [p,—1]
is an embedding, the set
U:=M\V.

is open, and the inclusion of U into M is a homotopy equivalence with a
homotopy inverse given by M — U : p — ¢(2¢,p). Choose a smooth func-
tion 8 : [—¢,0] — [—¢,0] such that 5(t) = f(—e —t) =t for t close to —¢,
and define the map g: N — N by

[f(p)7_1]7 iprM\Vva
F(@(3(t).p0)), ~1], i p = 6(t,p0) € Vi
| [f(p),—1], if pe M\ VL,
ollp.+1D) = { [F(@(3(—¢ — £),p0)). —1], i p= o(t,po) € Va.

This map is smooth and satisfies the requirements of Step 4.
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Step 5. Assume M is oriented. Then (6.4.10) holds.

In the case 9M = () this was proved in Step 3. Thus assume OM # (). By
Exerciseand Lemmawe may assume that f(M)NIM = () and f
has only nondegenerate fixed points. Choose the open set U C M and the
maps ¢t: M — N and g: N — N as in Step 4. Then Fix(g) = «(Fix(f))
and det(1 — dg(c(p))) = det(1 — df(p)) for each p € Fix(f) by (6.4.15).
Hence, by definition of the Lefschetz number as the sum of the fixed point
indices, we have L(f) = L(g) and thus, by Step 3,

(—1)"trace (¢* : H'(N) — H'(N))

O

~
Il
o

L(f) =

(—1)trace ((flo)*: HY(U) — Hi(U))

I

~
I
o

(—1)"trace (f* : H'(M) — H'(M)) .

|
.MS

~
I
o

Here the last two equalities follow from Corollary|6.2.10} This proves Step 5.
Step 6. We prove (6.4.10)).

Assume first that M is not orientable and OM = (). Assume also, with-
out loss of generality, that M is a submanifold of R™ and that f has only
nondegenerate fixed points. Then, for £ > 0 sufficiently small, the set

N = {p+u‘peM,veTpMi, 0] ge}

is a smooth manifold with boundary. Moreover, the map r: N — M de-
fined by r(p +v) := p for p € M and v € T,M* with |v| < ¢ is a homotopy
equivalence, and the inclusion ¢ : M — N is a homotopy inverse of r. Define

g:=tofor: N — N.

Then Fix(g) = Fix(f) and, for p € Fix(f), we have dg(p)|r,ns = df (p)
and dg(p)|r,ar1 =0, and therefore det(1 — dg(p)) = det(1— df(p)). This
implies L(f) = L(g). Since the inclusion + : M — N is a homotopy equiva-
lence with homotopy inverse r, we also have

trace (¢* : H'(N) — H'(N)) = trace (f*: H'(M) — H'(M))

for each i. Thus, for nonorientable manifolds M without boundary, equa-
tion follows from Step 5. The case of nonempty boundary reduces
to the case of empty boundary by the exact same argument that was used
in the proof of Step 5 and this proves Step 6.
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Step 7. We prove (6.4.9)).
By Theorem the Euler characteristic of M is the Lefschetz number of

the identity map on M and hence (6.4.9)) follows directly from (6.4.10). This
proves Theorem O

Remark 6.4.9. The zeta function of a smooth map f: M — M on a
compact oriented m-manifold M without boundary (thought of as a discrete-
time dynamical system) is defined by

Gr(t) = exp <Z W) : (6.4.16)
n=1

where f* := fofo---of : M — M denotes the nth iterate of f. By
definition of the Lefschetz numbers (in terms of an algebraic count of the
fixed points) the zeta-function of f can be expressed in terms a count of
the periodic points of f, provided that they are all isolated. If the periodic
points of f are all nondegenerate then the zeta-function of f can be written
in the form

GO=T1 II (== gmen=een, (6.4.17)

n=1pePn(f)/Zn
where P,,(f) denotes the set of periodic points with minimal period n and
L<p7 fn) = Sign det(]l - dfn(p))v
e(p, f*) = signdet(1 + df"(p))

for p € Pp(f). This formula is due to Ionel and Parker. One can use
Theorem to prove that

(t) = T[ et (1— 57 - B > B ()
o (6.4.18)

_ det (]1 —tf*: Ho(M) — HOdd(M))
~ det (1 —tf*: HV(M) — Hev(M))
In particular, the zeta function is rational.

Exercise 6.4.10. Prove that the right hand side of (6.4.16)) converges for ¢
sufficiently small. Prove (6.4.17) and (6.4.18]). Hint: Use the identities

det(1— tA) ™! = exp (t (Z t;:‘)) S = o e
n=1

for a square matrix A and ¢ € R sufficiently small, and for a fixed point p
of f that is nondegenerate for all iterates of f.
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6.4.5 Examples and Exercises

Example 6.4.11 (The de Rham Cohomology of the Torus). It follows
from the Kiinneth formula in Theorem [6.2.11]by induction that the de Rham
cohomology of the m-torus

T =R™/Z™ = St x ... x St
————
m times

has dimension
dim(H*(T™)) = <7Z>

Hence every k-dimensional de Rham cohomology class can be represented
uniquely by a k-form

We = Z Ci1~~~z‘kd$i1 Ao A dzt
1<i < <ip<m
with constant coefficients. Thus the map ¢ — [w.| defines an isomorphism
A (R™)* — H*(T™).
This is an isomorphism of algebras with the exterior product on the left and
the cup product on the right.

Exercise 6.4.12. Show that a closed k-form w € QF(T™) is exact if and
only if its integral vanishes over every compact oriented k-dimensional sub-
manifold of T™. Hint: Given a closed k-form w € QF(T™) choose ¢ such
that w — w, is exact. Express the number c¢;,..;, as an integral of w over a
k-dimensional subtorus of T™.

Exercise 6.4.13. Prove that a 1-form w € Q'(M) is exact if and only if its
integral vanishes over every smooth loop in M. Show that every connected
simply connected manifold M satisfies

HY(M) = 0.

Hint: Assume that w € Q'(M) satisfies the equation [g, v*w =0 for ev-
ery smooth map ~: S! — M. Fix an element pg € M and define the func-
tion f: M — R as follows. Given an element p € M choose a smooth
path ~ : [0,1] — M jointing v(0) = pp to v(1) = p and define

(p) == / Yw.
[0,1]

Prove that the value f(p) does not depend on the choice of the path ~.
Prove that f is smooth. Prove that df = w.
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Example 6.4.14 (The Genus of a Surface). Let ¥ be a compact con-
nected oriented 2-manifold without boundary. Then Theorem [6.4.1] asserts
that the Poincaré pairing

HY(Z) x HY(2) = R: ([a], [8]) — /Za/\ﬁ

is nondegenerate. Since this pairing is skew-symetric it follows that H'(X)
is even-dimensional. Hence there is a nonnegative integer g € Ny, called the
genus of X, such that

dim(H'(%)) = 2¢.

Moreover, since ¥ is connected, we have H°(X) = R and H?(X) = R (see

Theorem [5.3.10[ or Theorem [6.4.1). Hence, by Theorem the Euler

characteristic of X is given by
xX(3) =2-2g.

Thus the Euler characteristic is even and less than or equal to two. Since the
2-sphere is simply connected we have H!(S?) = 0, by Exercise and
hence the 2-sphere has genus zero and Euler characteristic two. This follows
also from the Poincaré-Hopf Theorem. By Example the 2-torus has
genus one and Euler characteristic zero. This can again be derived from the
Poincaré—Hopf theorem because there is a vector field on the torus without
zeros. All higher genus surfaces have negative Euler characteristic. Exam-
ples of surfaces of genus zero, one, and two are depicted in Figure [6.1] By
the Gaufi-Bonnet formula only genus one surfaces can admit flat metrics. A
fundamental result in two-dimensional differential topology is that two com-
pact connected oriented 2-manifolds without boundary are diffeomorphic if
and only if they have the same genus. A beautiful proof of this theorem,
based on Morse theory, is contained in the book of Hirsch [10].

S

g=0 g=1 g=2

Figure 6.1: The genus of a surface.
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Example 6.4.15 (The de Rham Cohomology of CP"). The de Rham
cohomology of CP" is given by

R, if k is even,

0, if k is odd. (6.4.19)

H*(CP") = {

We explain the cup product structure on H*(CP™) in Theorem |7.3.19

For CP! = §2? the formula (6.4.19) follows from Example [6.4.14] We
prove the general formula by induction on n. Take n > 2 and suppose the
assertion has been proved for CP"~!. Consider the open subsets

U:=CP"\{[0:---:0:1]},
Vi:=CP"\CP" ' ={[20: - :2y_1:24] € CP"| 2, #0}.
These two sets cover CP™, the set V is diffeomorphic to C™ and the obvious

inclusion ¢ : CP"~! — U is a homotopy equivalence. A homotopy inverse of
the inclusion is the projection 7 : U — CP"~! given by

([0 zn_1:2n]) i=1[20: ¢ Zn_1]

Then 7ot =1id : CP" ! — CP" ! and von : U — U is homotopic to the
identity by the homotopy f; : U — U given by

fr(lzo: o i znm1 i 2n) == {20 1 -+ ¢ Zp—1 @ t2p]

with
f():LOT(', flzid.

Hence the inclusion ¢ : CP"~! — U induces an isomorphism on cohomology,
by Corollary and the cohomology of V' is isomorphic to that of C™.
Thus it follows from the induction hypothesis and Example [6.1.12] that

R, if kis even R, ifk=0
k ~ ) ) k ~ ’ )
H(U)—{O, if £ is odd, H(V)—{O, if k> 0.

Moreover, the intersection U NV is diffeomorphic to C™ \ {0} and therefore
is homotopy equivalent to S?*~'. Thus, by Example [6.1.13] we have

R, if k=0,
HYUNV)={ 0, if1<k<2n-2,
R, ifk=2n—1.
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Hence, for 2 < k < 2n — 2, the Mayer—Vietoris sequence takes the form
H*=Y(UNV)—Y~ H*CP") —“~ H*(U) & H*(V) —— H*(U n

Y

HF(CP") —— H*(CP™ 1)

This sequence is exact, by Theorem [6.2.3] Hence the inclusion induced
homomorphism

*: HF(CP") — H*(CP™ 1) (6.4.20)

is an isomorphism for 2 < k£ < 2n — 2. Thus it follows from the induc-
tion hypothesis that equation holds for 2 <k <2n—2. More-
over, since CP" is connected, we have H°(CP") =R and, since CP" is
simply connected by Exercise below, it follows from Exercise [6.4.13]
that H'(CP™) =0. This last observation can also be deduced from the
Mayer—Vietoris sequence. Since CP" is a complex manifold, it is oriented
and therefore satisfies Poincaré duality. Hence, by Theorem [6.4.1], we have

H*™(CP") = H(CP") =R,  H*"Y(CP") = HY(CP") =0

This proves ((6.4.19)) for all n. It also follows that the homomorphism ((6.4.20))
is an isomorphism for 0 < k < 2n — 2.

Exercise 6.4.16. Prove that CP" is simply connected.

Exercise 6.4.17 (The de Rham Cohomology of RP™). Prove that the
de Rham cohomology of RP™ is

if k=0,
ifl<k<m-1,
if K =m is even,

, if k =m is odd.

H*(RP™) =

IR

In particular, RP? has Euler characteristic one. Hint: RP™ is oriented
if and only if m is odd. Prove that, up to homotopy, there is only one
noncontractible loop in RP™, and hence its fundamental group is isomor-
phic to Zs. Use Exercise to prove that HY(RP™) 20 for m > 2.
Use an induction argument and Mayer—Vietoris to prove that H*(RP™) = 0
for2<k<m-—1.
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6.5 The Cech-de Rham Complex

In Section [6.2] on the Mayer—Vietoris sequence we have studied the de Rham
cohmology of a smooth manifold M by restricting global differential forms
on M to two open sets and differential forms on the two open sets to their
intersection and examining the resulting combinatorics. We have seen that
this technique is a powerful tool for understanding de Rham cohomology
allowing us, for example, to prove finite-dimensionality, derive the Kiinneth
formula, and establish Poincaré duality for compact manifolds in an elegant
manner. The Mayer—Vietoris principle can be carried over to covers of M by
an arbitrarly many (or even infinitely many) open sets. Associated to any
open cover (of any topological space) is the Cech cohomology. In general,
this cohomology will depend on the choice of the cover. We shall prove that
the Cech cohomology of a good cover of a smooth manifold is isomorphic
to the de Rham cohomology and hence is independent of the choice of the
good cover. This result is a key ingredient in the proof of de Rham’s theorem
which asserts that the de Rham cohomology of a manifold is isomorphic to
the singular cohomology with real coefficients.

6.5.1 The Cech Complex

Let M be a smooth manifold and
U = {Ui}z‘el
be an open cover of of M, indexed by a set I, such that
U; # 0

for every ¢ € I. The combinatorics of the cover % is encoded in the sets of
multi-indices associated to nonempty intersections, denoted by

Ik(%) = {(io,...,ik> GIk’Uioﬁ'--ﬂUik 75@}

for every nonnegative integer k. The permutation group Siy; of bijections
of the set {0,1,...,k} acts on the set Z(% ) and the nonempty intersections
of kK + 1 sets in % correspond to orbits under this action: reordering the
indices doesn’t change the intersection. We shall consider ordered nonempty
intersections up to even permutations; the convention is that odd permuta-
tions act by a sign change on the data associated to an ordered nonempty
intersection.
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The simplest way of assigning a cochain complex to these data is to assign
a real number to each ordered nonempty intersection of k+1 sets in %/. Thus
real number ¢;,...;, is assigned to each ordered tuple (ig,...,i) € Zy(%)
with the convention that the sign changes under every odd reordering of
the indices. In particular, the number c¢;,..;, is zero whenever there is any
repetition among the indices and is undefined whenever U;, N ---NU;, = 0.
Let C*(% ,R) denote the real vector space of all tuples

c= (CiO“'ik)(io,...,ik)EI({?/) € RI]C(%)

that satisfy the condition

Cio'(())"'ia(k) = S(U)Cio...ik

for o € Si41 and (ig,...,ix) € Zx(% ). These spaces determine a cochain
complex
0 4 1 4 2 5 3 )
(% ,R) — C(%,R) — C*(%,R) — C*(%,R) — --- . (6.5.1)

called the Cech complex of the open cover % with real coefficients.
The boundary operator 6 : C¥(%,R) — C*+t1(% R) is defined by

k+1

(8)iginss = D (=) s, (6.5.2)

v=0

for ¢ = (cigiy) yez() € Ck(% ,R).

(051

Example 6.5.1. A Cech 0-cochain ¢ € C°(%,R) assign a real number ¢; to
every open set U;, a Cech 1-cochain ¢ € C1(%,R) assigns a real number c¢;;
to every nonempty ordered intersection U; N U; such that

Cij = —Cji,

and a Cech 2-cochain ¢ € C?*(% ,R) assigns a real number ciji to every
nonempty ordered triple intersection U; N U; N Uy, such that

Cijk = —Cjik = —Cikj-
The boundary operator § assigns to a 0-cochain ¢ = (¢;);er the 1-cochain
(0¢)ij = ¢j — ¢, UinU; #0,
and it assigns to every 1-cochain ¢ = (ci;)(; j)ez, (%) the 2-cochain
(0¢)ijie = cji + cri + cijy U;NU; NU, # 0.

One verifies immediately that § o 6 = 0. This continues to hold in general
as the next lemma shows.
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Lemma 6.5.2. The image of the linear map & : C*(% ,R) — RIx+1(%) g
contained in the subspace C**1 (% ,R) and 6 o § = 0.

Proof. The first assertion is left as an exercise for the reader. To prove the
second assertion, let ¢ € C*(%,R), choose (ig,...,irr2) € Tpio(%), and
compute

k+2
5<5C)i0"~ik+2 = Z(_I)V(dc)io..‘iz...ikﬂ
v=0
— v+
- Z (_1) 'ucio.,.{; ...... byt
0<pu<v<k+2
v+u—1
+ Z (_1) K Cio...{; ...... {;...ik“
0<v<p<k+2
= 0.
This proves Lemma [6.5.2 O

The cohomology of the Cech complex (6.5.1)) is called the Cech coho-
mology of % with real coefficients and will be denoted by

Y R) = 1.<er5 : C”i(?/,R) — C’k“(%,R)'
imé : CFY(%,R) — C*(% ,R)

This beautiful and elementary combinatorial construction works for every
open cover of every topological space M and immediately gives rise to the
following fundamental questions.

Question 1: To what extent does the Cech cohomology H*(%,R) depend
on the choice of the open cover?

Question 2: If M is a manifold, what is the relation between H*(% ,R)
and the de Rham cohomology H*(M) (or any other (co)homology theory)?

Example 6.5.3. The Cech cohomology group H°(%,R) is the kernel of
the operator § : C°(%,R) — CY(%,R) and hence is the space of all tu-
ples ¢ = (¢;)ier that satisfy ¢; = ¢; whenever U; N U; # (). This shows that,
for every Cech O-cocycle ¢ = (¢;)ier € HY(%,R), there exists a locally con-
stant function f: M — R such that f|y, = ¢; for every i € I. If each open
set U; is connected, then H°(% ,R) is isomorphic to the vector space of all
locally constant real valued functions on M. Thus

HO(% \R) = R™M) — HO(M),
where mo(M) is the set of all connected components of M and H°(M) is the

de Rham cohomology group. On the other hand, if % consists only of one
open set U = M, then H*(% ,R) = R.

(6.5.3)
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6.5.2 The Isomorphism

Let M be a smooth manifold and % = {U,};cr be an open cover of M. We
show that there is a natural homomorphism from the Cech cohomology of %
to the de Rham cohomology of M. The definition of the homomorphism on
the cochain level depends on the choice of a partition of unity p; : M — [0, 1]
subordinate to the cover % = {U,};cr. Define the linear map

CHU ,R) = QF(M) : ¢ = w, (6.5.4)

by
We 1= Z Cio'“ikpiodpil VANRIIVAN dpzk (655)
(905,11 ) ETR (%)
for c € C*(% ,R).

Lemma 6.5.4. The map (6.5.4) is a chain homomorphism and hence in-
duces a homomorphism on cohomology

H*(% ,R) = H*(M) : [d] — [wd]- (6.5.6)

Proof. Tt will sometimes be convenient to set ¢;,...;, := 0 for ¢ € C¥(%,R)
and (ig, . ..,i,) € IFT'\ Z(%). We prove that the map (6.5.4)) is a chain
homomorphism. For ¢ € C*(% ,R) we compute

Woe = Z (6C)i0"~ik+1piodpi1 N Ndpiy
(io,...,ik+1)€Ik+1(02/)
k+1
= > Z(—l)”cio...,-;...mlpiodpil A Ndpi,,

(i0s--yit 1) ETp 41 (%) v=0

= Z Cil"'ik+1pi0dpi1 ARERRA dpik+1
(20, yig41)ETFT2
k+1
+ Z(_l)y Z cloﬁlk+lp’lodpll /\ e /\ dpik+1
v=1 (’io,...,’ik+1)61k+2
= Z Cil---ik+1dpi1 VANCEIWAN dpik+1

(i1, eyl )ETFFT

= dwe.

Here we have used the fact that the respective summand vanishes when-

ever (ig,...,ik41) ¢ Zy+1(%) and that ), ;dp; = 0 and > ,;p; = 1.
Thus (6.5.4) is a chain map and this proves Lemma O
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Remark 6.5.5. Let ¢ € C*(%,R) such that dc = 0. Then, for all tuples
(4,9,01, -+, ik) € Lgy1 (%), we have

k
Ciiyoi, = Cfiyify — Z(—Uljciﬁl...ij...ik
v=1
Multiply by pjdp;; A ---dp;, and restrict to U;. Since pjdp;; A --- A dp;,
vanishes on U; whenever (i, 7,41, ...,1) ¢ Zx+1(%), the resulting equation
continues to hold for all tuples (i, j,i1,...,ix) € I*72. Fixing i and taking
the sum over all tuples (4,i1,...,4;) € I**! we find

dc=0 — wc|Ui = Z Ciil---ikdpil VANRIERA dplk (657)
(il,...,ik)elk

This gives another proof that w,. is closed whenever dc = 0.

The next theorem is the main result of this section. It answers the above
questions under suitable assumptions on the cover % .

Theorem 6.5.6. If % is a good cover of M then (6.5.6) is an isomorphism
from the Cech cohomology of % to the de Rham cohomology of M

Proof. See page|171 O

The proof of Theorem [6.5.6| will in fact show that, under the assumption
that % is a good cover, the homomorphism on cohomology is inde-
pendent of the choice of the partition of unity used to define it. Moreover,
we have the following immediate corollary.

Corollary 6.5.7. The Cech cohomology groups with real coefficients asso-
ciated to two good covers of a smooth manifold are isomorphic.

If % is a finite good cover the Cech complex C*(%,R) is finite-dimensio-
nal and hence, so is its cohomology H*(% ,R). Combining this observation
with Theorem [6.5.6] we obtain another proof that the de Rham cohomology
is finite-dimensional as well.

Corollary 6.5.8. If a smooth manifold admits a finite good cover then its
de Rham cohomology is finite-dimensional.

Following Bott and Tu [2] we explain a proof of Theorem that is
based on a Mayer—Vietoris argument and involves differential forms of all
degrees on the open sets in the cover and their intersections. Thus we build
a cochain complex that contains both the de Rham complex and the Cech
complex as subcomplexes.
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6.5.3 The Cech—de Rham Complex

Associated to the open cover % = {U, };er of our m-manifold M is a cochain
complex defined as follows. Given two nonnegative integers k and p we
introduce the vector space

CH(w ,OP)
of all tuples

w = (in"'ik)(io i) ETH (%) * Wig-ip € QP(UZ‘O N---N UZk)?

77777

that satisfy wi, g i, = €(0)Wig-iy for o € Ski1 and (io, - . . ,ix) € Tp(%).
This complex carries two boundary operators

§:CRw, P =l (w,Qpy,  d:CF(w,0P) — CF(w, P

defined by
k+1
(5w)i0...ik+1 = Z(_l)ywi0~'{z\/"'ik+1’ (dw)i()"'ik+1 = dwio...ikJrl. (6.5.8)
v=0

They satisfy the equations
dod =0, dod=do}, dod=0. (6.5.9)

Here the first equation is proved as in Lemma the second equation is
obvious, and the third equation follows from Lemma [5.2.6

The complex is equipped with a bigrading by the integers k and p. The
total grading is defined by

deg(w) :==k+p, wel*¥,QP),
and the degree-n part of the complex will be denoted by

)= @ CFw,an).
k+p=n

Let w*? denote the projection of w € C" (%) onto C*(% , ). The bigraded
complex carries a boundary operator D : C™(%) — C"*1(%), defined by

(Dw)FP = k1P 4 (=1)FdwhP! (6.5.10)

for w € C™(%) and nonnegative integers k and p satisfying k +p = n + 1.
The sign (—1)* arises from the fact that d raises the second index in the
bigrading by one and so is weighted by the parity of the first index k.
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Lemma 6.5.9. The operator (6.5.10) satisfies D o D = 0.
Proof. Let w € C™(%) and choose k and p such that k +p =n + 2. Then

(D(Dw))" = §(Dew) ™1 4 (—1)Fd(Dew)*r~!
-5 (5wk72,p i (_1)k71dwk71,p71>
(1) (duF T (<1)Fdte?)
= 00w HP 4+ (=1)*(d6 — dd)w 1P 4 ddwh P2
=0.
The last equation follows from and this proves Lemmam ]

The complex (C*(% ), D) is called the Cech—-de Rham complex of the
cover % and its cohomology

- __ker D:C™(U) — C"TH(U)
H" (%) = D C(7) o O (6.5.11)

is called the Cech-de Rham cohomology of %. There are natural
cochain homomorphisms
v:CHU \R) — CR(w Q%) < CR(w),
r QP (M) — C%%,QP) C CP(%).
The operator ¢ is the inclusion of the constant functions and r is the restric-
tion defined by (rw); := w|y, for ¢ € I. The maps r,6,¢,d are depicted in

the following diagram. We will prove that all rows except for the first and
all columns except for the first are exact in the case of a good cover.

(6.5.12)

QO(M)—d>Ql(M)—d>Q2(M)*d>...
CO (%, R) —= CO(% ,Q°) %= CO(% , ) —L> CO(% , 02) L ...

0 6 0 0
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Lemma 6.5.10. The sequence
0— QP(M) 5 OO, P) S cHw,op) S Cx(w, Py S ... (6.5.13)
is exact for every integer p > 0. If % is a good cover of M then the sequence
0— CHw ,R) 5 CF (2, Q% & ok, 0 S chw,02) S ... (6.5.14)
is exact for every integer k > 0.

Proof. For the sequence (6.5.14)) exactness follows immediately from Exam-
ple6.1.12[ and the good cover condition. For the sequence ((6.5.13)) the good

cover condition is not required. Exactness at C°(%,P) follows directly
from the definitions. To prove exactness at C*(%,QP) for k > 1 we choose
a partition of unity p; : M — [0, 1] subordinate to the cover % = {U, }ier.
For k > 1 define the operator

h:CH,QF) — CHY(u , QP)
by

(hw)igeif_y = Zpiwii()"'ik—l (6.5.15)

icl
for w € CK(%,QP) and (ig,...,ix_1) € Iy_1(%), where each term in the
sum is understood as the extension to the open set U;, N---NU;, by setting
it equal to zero on the complement of U; N U;, N --- N U;,. We prove that
Soh+hod=id: C*%,QF) — C*(%,QF) (6.5.16)

for k > 1. This shows that if w € C*(% ,QP) satisfies 6w = 0 then w = Shw
belongs to the image of §. To prove (6.5.16)) we compute

(héw)iol..ik = Zpl(éw)uolk

iel
k
Yy (w _ z<—1>v%._.,.;_.ik)
iel v=0
k
= Wigriy = ) (=1 D Pty
v=0 iel
k
— iy = S (D ()
v=0
= (w — (5hw). )
101k

for w € C¥Z,QP) and (ig,...,ix) € Zi(%). This proves (6.5.16) and
Lemma [6.5.10 O
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Theorem 6.5.11. Let % be a good cover of M. Then the homorphism
QM) = CH %), L:CHUR) = C* (%)
induce isomorphism
r* H*(M) — H(%), S HY(%,R) — HY (%)
on cohomology.

Proof. We prove that r is injective in cohomology. Let w € QF(M) be
closed and assume that w'P := 7w = (w|y,)ier € CU%,QP) C CP(%) is
exact. Then there are elements 7~ 1P=%k ¢ CF1 (%, wP~F), k =1,...,p,
such that rw = Dr:

woap — d7-07p717
0 = orF—br=k p (—1)kgrkr—h-1 k=1,...,p—1, (6.5.17)
0 =P 10,
We must prove that w is exact. To see this we observe that there are elements
oh=2p=k ¢ OF=2(9 , QP=F), p > k > 2, satisfying

§oP 20 = 7p=10,
6.5.18
5Uk_2’p_k _ Tk—l,p—k + (—1)kd0'k_1’p_k_1, p—1> k> 2. ( )

The existence of 0P~ follows immediately from the last equation in (6.5.17))
and Lemma [6.5.10, If 2 <k < p—1 and ok=1P=k=1 has been found such

that
5O_k:71,p7k71 — Tk,pfkfl + (_1)k+1d0k,p—k—27

we have ddo*—1P—F—1 = grkp—k—1 314 hence
s (kal,pfk i (_1)kd0_k71,p7k71> e (_1)kd7_k,pfk71 —0.

Here the last equation follows from ((6.5.17)). Thus, by Lemma [6.5.10} there

is an element o*~2P~F satisfying (6.5.18)).
It follows from equation (6.5.17) with k = 1 that 67%P~1 = d71P~2 and

from equation (6.5.18)) with k& = 2 that 71P=2 4+ do'P~=3 = §0%P~2. Hence
§ (1071 — do™P7?) = 670271 —grlPT2 =,
d (To’p_l — dao’p_z) = dr0P~1 = 0P,

The first equation in (6.5.19) shows that there is a global (p — 1)-form 7

on M whose restriction to U; agrees with the relevant component of the

Cech-de Rham cochain 7971 — do%P=2 ¢ C%(%,QP~1). The second equa-
tion in (6.5.19)) shows that d7 = w. Hence w is exact, as claimed.

(6.5.19)



170 CHAPTER 6. DE RHAM COHOMOLOGY

We prove that r is surjective in cohomology. Let w®P=* € Ck(% ,Qp—F)
be given for £k =0, ...,p and suppose that Dw = 0:

0 = dw?,
0 = dwhP=F L (—1)kHlguhtle=h=1l " L —0, ... p—1, (6.5.20)
0 = swh?.

We construct elements 7~ P—% ¢ Ck=Y(g/ QP=F) k= 1,...,p, satisfying
67—p71’0 — wp707
srh—lp=k — kp=k | (—1)k+1d7'k’p_k_1, k=1,...,p—1.

The existence of 77~ 10 follows immediately from the last equation in (6.5.20))
and Lemma [6.5.10} If 1 <k <p—1 and 7hP=k=1 ha5 been found such that

kp—k—1 k+1,p—k—1 k+2 3 _k+1,p—k—1
oT™P = Ftip + (=1)FF2grithe ,

(6.5.21)

we have doTFP~F=1 = dwk+1P=F=1 and hence
) (wk’pfk + (—1)k+1d7k’p*k*1) = dwhP=k 4 (—1)k+1dwk+1’p*k*1 =0.
Here the last equation follows from ((6.5.20). By exactness, this shows that
there is an element 7~ 1P~F satisfying (6.5.21]). It follows from (6.5.21]) that
(w— DT)O’p =P — gr%P=1
(w— D7‘)k’p_'C = kP _ grk-lp—k _ (—1)":(17'1‘:”’_’“_1 =0, (6.5.22)
(w— D7)P0 =PV — 57P~10 =
for k = 1,...,p — 1. Moreover, it follows from (6.5.20)) with £ = 0 that
SwP = dw'P~1 and from (6.5.21)) with k& = 1 that 67%P~! = dr'"P~2. Hence
§(w— D7) = § (WP — drPP7 1)
=d (wl’p_l — 57‘0”’_1)
=d(—dr'?7?)
=0.
This shows there is a global p-form @ on M whose restriction to U; agrees
with the relevant component of W% — dr%P~1 € C%(%,QP). This form is
closed and satisfies rwo = w — D7, by (6.5.22)). Hence the cohomology class
of w in HP(% ) belongs to the image of r* : HP(M) — HP(% ).
Thus we have proved that r* : H*(M) — H*(% ) is an isomorphism.
The proof that * : H*(%,R) — H*(% ) is an isomorphism as well follows

by exactly the same argument with the rows and columns in our diagram
interchanged. This proves Theorem [6.5.11 O
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Proof of Theorem [6.5.6, Recall that the linear map
h:CHw,0P) — C* Y (w,0P)
in (6.5.15)) has the form (hw)ig...i,_, = D ;e PiWiig-i_,» and define the map
O CRw,ap) — CF (o, arth)
by
(Pw)igriyy = (=1)* D dps Awiigig_y = D dpi A Wiy
icl icl
for w € C*(% ,QP~F). The product with dp; guarantees that each summand
on the right extends smoothly to Uj,...;, , by setting it equal to zero on the
complement of the intersection with U;. These two operators satisfy
id=d0oh+hos, —®=((-1)""'d)oh+ho((—1)"d)
on C*(% ,QP~F). Here the first equation is (6.5.16]) and the second equation
follows directly from the definitions. Combining these two equations we find

id—®=Doh+hoD.

Thus ® induces the identity on H*(%).
Starting with p = 0 and iterating the operator k times we obtain a
homomorphism
PP =Podo...0d: CHw, Q) = COw,0F),
~—_—
k times

inducing the identity on H*(%). This operator assigns to every element
f= (fiD"'ik)(iomik)elk(‘?/) € C*(%,900 the tuple ®* f € CO(% ,QF) given by

(i1,yi ) ELK (U )

Hence, by Remark the following diagram commutes on the kernel of §:
Ck(% ,R) D ker § QF (M)

; ’

Ok, 00 —2 ok, 0F)

c— we

Since ®* induces the identity on Cech-de Rham cohomology, we deduce that
the composition of the homomorphism H*(% ,R) — H*(M) : [c] — [w.]
in with 7* : H*(M) — H¥(%) is equal to * : H*(%,R) — H*(%).
Hence it follows from Theorem that the homomorphism is an

isomorphism. This proves Theorem [6.5.6 O
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6.5.4 Product Structures

The Cech complex of an open cover % = {Ui}ier is equipped with a cup
product. The definition of this product structure is quite straight forward,
however, it requires the choice of an order relation < on the index set I.
Given such an ordering, each cochain

w = (in"'ik)(Z'O,...,’L'k)ezk(‘?/) € Ck<%7 Qp)

is uniquely determined by the elements wj,...;, for those tuples that satisfy
ig < i1 < --+ < dg. All the other elements are then determined by the
equivariance condition under the action of the permutation group Sg1.

Definition 6.5.12. The cup product on C*(%,Q*) is the bilinear map
CH(u ,QP) x CH U, Q) — C* Y, QPT9) - (w,7) = wU T
defined by
(WU T)igmipre i= (=1)Pwiy.ip A Tigeeine (6.5.23)
for every w € CH(% ,0P), every 7 € C*(%,Q9), and every (k + £+ 1)-tuple
(10,91, - - - s ikte) € Lpae(X) that satisfies

19 <11 <0 < Uppe-

Here the right hand side in (6.5.23|) is understood as the restriction of the
differential form to the open subset U;, NU;; N---NU;

k+e°

Remark 6.5.13. The product structure on C*(%,Q*) is sensitive to the
choice of the ordering of the index set I and is not commutative in any way,
shape, or form. In fact, the cup product 7 U w associated to the reverse
ordering agrees up to the usual sign (—1)de&8(«)deg(7) with the cup product
w U T associated to the original ordering.

Remark 6.5.14. The sign in equation (|6.5.23]) is naturally associated to
the interchanged indices p and /.

Remark 6.5.15. The cup product on C*(%,2*) restricts to the product
(a U b)i0'~~ik+e = aiO"'ikbik"'ik+w 10 <1 < o < Tpye, (6.5.24)
on C*(% ,R) C C*(%,°).

Remark 6.5.16. The cup product on C*(%,Q*) restricts to the exterior
product for differential forms on C%(%,Q*).



6.5. THE CECH-DE RHAM COMPLEX 173

Lemma 6.5.17. The cup product (6.5.23) on C*(% ,$2*) is associative and
D(wUT) = (Dw) U+ (—1)%@y, U (Dr) (6.5.25)
for w e CK(%,QP) and 7 € CY(% ,Q%), where deg(w) = k + p.

Proof. The proof of associativity is left as an exercise. To prove ((6.5.25)) we
compute

k4+0+1
(5(w U T))i0~~~ik+g+1 = (_l)y(w U T>i0"~7l;"~ik+z+1
v=0
k
— 0 N ) )
- Z(_l)u(_l) PWi 5 igar N Tinsring e
v=0
k4+0+1
¢
+ Z (_1)V(_1) pwi0~~ik A Tik"'a"'ik+z+1
v=k+1
k+1
_ ¢
- (=1D)"(=1) pwio---ﬁ,---ikﬂ N Tigg1ipgo
v=0
k4041
L
+ Z (=D (1) PWigie ATy i
v=k

V4
= (_1) p(éw)io---ikﬂ A Tigg1-thotot1
+ (=) TR i A (6T)

Tl ot1

= ((&u) U 7')1.0“_ik+e+1 + (—1)k+” (w U (57’))1.0__2.““1.
Thus we have proved that
S(wUT) = (dw)UT + (—1)%e@y U (57). (6.5.26)
Moreover,
(d(wU 7'))2.0“.1.“11+1 = (-1)"d (Wigewsig A Tigeripye)

(-1)
- (-1)

+ (—1)(6+1)pwi0...ik A dTik-~~ik+g

¢
pdwio...ik AN TR

Thus we have proved that
(-1 *dwur) = ((—D’“dw) U7+ (—1)%8%y, U ((—1)"dr) . (6.5.27)

With this understood, equation ((6.5.25)) follows by taking the sum of the
equations (6.5.26)) and (6.5.27]). This proves Lemma [6.5.17 O
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The cochain homomorphisms r and ¢ intertwine the product structures
on the cochain level. Hence the induced homomorphisms on cohomology

r*: H*(M) — H* (%), " :H"(%,R) = H*(%)

also intertwine the product structures. If % is a good cover these are iso-
morphisms and hence, in this case, both cohomology groups H (%) and
H*(% ,R) inherit the commutativity properties of the cup product on de
Rham cohomology, although this is not at all obvious from the definitions.

6.5.5 Remarks on De Rham’s Theorem
There is a natural homomorphism

Hig (M) — Hgng(M,R) (6.5.28)

sing

from the de Rham cohomology of M to the singular cohomology with real
coefficients, defined in terms of integration over smooth singular cycles. De
Rham’s Theorem asserts that this homomorphism is bijective. To prove
this it suffices, in view of Theorem to prove that the singular coho-
mology of M with real coefficients is isomorphic to the Cech cohomology
group H*(% ,R) associated to a good cover. The proof involves similar
methods as that of Theorem [6.5.6] but will not be included in this book.
Instead we restrict the discussion to some remarks and exercises. For more
details an excellent reference is the book of Bott and Tu [2].

Remark 6.5.18. Let M be a compact oriented smooth m-manifold without
boundary. It is a deep theorem in algebraic topology that a suitable integer
multiple of any integral singular homology class on M can be represented
by a compact oriented submanifold without boundary, in the sense that any
triangulation of the submanifold gives rise to a singular cycle representing
the homology class. The details of this are outside the scope of the present
book. However, we mention without proof the following consequence of this
result and de Rham’s theorem:

There is a finite collection of compact oriented (m — k;)-dimensional sub-
manifolds without boundary

Qi C M, i=0,...,n,
such that the cohomology classes of the closed forms
T =10, € (M),
dual to the submanifolds as in Section form a basis of H*(M).
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Remark 6.5.19. It follows from the assertion in Remark that every
closed form w € QF(M) that satisfies

for every compact oriented smooth k-manifold P without boundary and ev-
ery smooth map f : P — M is exact. (This implies that the homomor-

phism is injective.)

For k£ = 1 this follows from Exercise To see this in general, let Q);
and 7; be chosen as in Remark and denote by I, C {0,...,n} the set
of all indices ¢ such that

dim(Q;) =m — k; = k, deg(;) = ki =m — k.

If w € QF(M) satisfies our assumptions then

/w/\n:/ w=20
M i

for every i € Ij. Since the cohomology classes [r;] form a basis of H™ (M)

we have
/ wAT=0
M

for every closed (m — k)-form 7. Hence w is exact, by Theorem

Exercise 6.5.20. Define a homomorphism
HY(M) — Hom(m (M, po),R) : [w] = pu (6.5.29)

which assigns to every closed 1-form w € Q'(M) the homomorphism
po ™ (Mpo) = R, pu([y]) = /[01] v w,

for every smooth based loop 7 : [0,1] — M with v(0) = (1) = po. By Theo-
rem pw depends only on the cohomology class of w. By Exercise[6.4.13
the homomorphism [w] — p,, is injective. Prove that it is surjective. Hint:
Choose a good cover % = {U,};cr of M and, for each i € I, choose an ele-
ment p; € U; and a path ~; : [0,1] — M such that v;(0) = pp and ~;(1) = p;.
For (i,j) € Z1(% ) define the number ¢;; € R by

7(t) = i(4t), for 0 < ¢ < 1/4,

. V(t) € Ui, for 1/4 <t <1/2,

i =2l Y(t) € Uj, for 1/2 < t < 3/4,
v(t) = v;(4(1 —t)), for3/4<t<1.
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Prove that any two such paths v are homotopic with fixed endpoints. Prove
that the numbers ¢;; determine a 1-cocycle in the Cech complex C1(%,R).
Prove that the 1-form

wer= Y cijpidp;
(L5)ETU(%)

is closed and satisfies p,,. = p. Note that the only conditions on %, needed
in this proof are that the sets U; are connected and simply connected, and
that each nonempty intersection U; N Uj is connected.

Exercise 6.5.21. Consider the circle M = S! with its standard counter-
clockwise orientation and let

SIZUlUUQUUg

be a good cover. Thus the sets Uj,Us, Us are open intervals as are the
intersections Uy NUsy, UsNUs, U3NU;. Assume that in the counterclockwise
ordering the endpoint of U; is contained in Uy and the endpoint of Us in Us.
Prove that the composition of the isomorphism H!(%,R) — H'(S!) with
the isomorphism H'(S') — R, given by integration, is the map

HY% ,R) — R : [ca3, c13, C12) + a3 — €13 + 1.
Deduce that the homomorphism
Pw, 7r1(5’1) - R

associated to a cycle ¢ € C1(%,R) as in Exercise [6.5.20| maps the positive
generator to the real number co3 — c13 + c12.

Exercise 6.5.22. Choose a good cover % of the 2-sphere by four open
hemispheres and compute its Cech complex. Find an explicit expression for
the isomorphism H?(% ,R) — R associated to the standard orientation.



Chapter 7

Vector Bundles and the
Euler Class

In this chapter we introduce smooth vector bundles over smooth manifolds
in the intrinsic setting. Basic definitions and examples are discussed in Sec-
tion In Section we define Integration over the Fiber for differential
forms with wvertical compact support, prove the Thom Isomorphism Theo-
rem, and introduce the Thom Class and relate is to intersection theory. In
Section [Z.3] we introduce the Fuler Class of an oriented vector bundle and
show that, if the rank of the bundle agrees with the dimension of the base
and the base is oriented, its integral over the base, the Fuler Number, is
equal to the algebraic number of zeros of a section with only nondegenerate
zeros. As an application we compute the product structure on the de Rham
cohomology of complex projective space.

7.1 Vector Bundles

In [2I] we have introduced the notion of a vector bundle
m:E - M

over an (embedded) manifold M as a subbundle of the product M x R for
some integer ¢ > 0. In this section we show how to carry the definitions
of vector bundles, sections, and vector bundle homomorphisms over to the
intrinsic setting. This is also the appropriate framework for introducing
structure groups of vector bundles. In particular, we will discuss the notion
of orientability, which specializes to orientability of a manifold in the case
of the tangent bundle.

177
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Definitions and Remarks

Definition 7.1.1 (Vector Bundle). Let M be a smooth m-manifold and
let n be a nonnegative integer. A real vector bundle over M of rank n
consists of a smooth manifold E of dimension m +n, a smooth map

m:FE— M,

called the projection, an open cover {Uy}aca of M, a real n-dimensional
vector space V , a collection of diffeomorphisms

Vo : 1 HUy) = Uy x V, a € A,
called local trivializations, that satisfy
Pri o Yo = Tlr1,)

so that the diagram

Ua x V (7.1.1)

commutes for every a € A, and a collection of smooth maps
98a 1 Ua NUg — GL(V), a, 8 € A,
called transition maps, that satisfy
Yo ta (0,v) = (P, gga(p)V) (7.1.2)
foralla,B e A, peU,NUg, andv € V.
Forp e M the set
1s called the fiber of E over p. If
G Cc GL(V)

is a Lie subgroup and the transition maps gg. all take values in G we call E
a vector bundle with structure group G. We say that the structure
group of a vector bundle FF can be reduced to G if E can be covered by
local trivializations whose transition maps all take values in G.
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It is sometimes convenient to write an element of a vector bundle E as
a pair (p, e) consisting of a point p € M and an element e € E,, of the fiber
of E over p. This notation suggests that we may think of a vector bundle
over M as a functor which assigns to each element p € M a vector space F,.
The definition then requires that the disjoint union of the vector spaces E, is
equipped with the structure of a smooth manifold whose coordinate charts
are compatible with the projection 7 and with the vector space structures
on the fibers.

Remark 7.1.2. If 7: E — M is a vector bundle then the projection 7 is a
surjective submersion because the diagram ([7.1.1)) commutes.

Remark 7.1.3. If 7 : E — M is a vector bundle then, for every p € M, the
fiber E, = 7~ 1(p) inherits a vector space structure from V via the bijection

VYa(p) == prooalp, : By =V (7.1.3)

for o € A with p € U,. In other words, for A € R and e, €’ € E, we define
the sum e + ¢’ € E, and the product Ae € E, by

e+ :=1a(p) " (Wa@)e+ Ya(p)e),  Ae:=1a(p)” (Aa(p)).

The vector space structure on E, is independent of a because the map

Vs(p) 0 Ya(p) ™' = ggalp) : V =V
is linear for all o, 8 € A with p € U, N Us.
Remark 7.1.4. The transition maps of a vector bundle E satisfy the con-
ditions
9v8Y9B8a = Gyas Jaa = 1, (7-1-4)
for all o, B, € A. Here the first equation is understood on the intersection
Us NUg N U, where all three transition maps are defined.

Conversely, every open cover {U,}aca and every system of transition
maps ggq : Ua N Ug — GL(V) satisfying (7.1.4]) determines a vector bundle

E = LJA{a}anxV/N

where the equivalence relation is given by

[, p,v] ~ [B,D, gsa(p)V]

for o, € A, p € UyNUg, and v € V. The projection 7 : E — M is given
by [, p,v] — p and the local trivializations are given by [«, p,v] — (p,v).
These local trivializations satisfy (7.1.2]). This vector bundle is isomorphic

to E (see Definition [7.1.18| below).
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Examples and Exercises

Example 7.1.5 (Trivial Bundle). The simplest example of a vector bun-
dle over M is the trivial bundle

E =M xR".

It has an obvious global trivialization. Every real rank-n vector bundle
over M is locally isomorphic to the trivial bundle but there is not necessar-
ily a global isomorphism. (See below for the definition of a vector bundle
isomorphism.)

Example 7.1.6 (Mdgbius Strip). The simplest example of a nontrivial
vector bundle is the real rank-1 vector bundle

E:={(2,) € S' xC|z*¢C e R}

over the circle
St.={zeC||z|=1},

called the Mdobius strip. Exercise: Prove that the Mobius strip does not
admit a global trivialization; it does not admit a global nonzero section.
(See below for the definition of a section.)

Example 7.1.7 (Tangent Bundle). Let M be a smooth m-manifold with
an atlas {Uy,, ¢ taca. The tangent bundle

TM := {(p,v)|p€ M: v GTPM}

is a vector bundle over M with the obvious projection 7w : TM — M and
the local trivializations

Yo : Wﬁl(UOc) — Uq % ij Tlfa(pW) = (p, d(ba(p)v)‘
The transition maps ggq : Uo N Ug = GL(m, R) are given by

98a(p) = (9 © b5 )(ba(p))
for p € U, N Up.
Exercise 7.1.8 (Dual bundle). Let 7 : E — M be a real vector bundle
with local trivializations 1, (p) : E, — V. Show that the dual bundle
E* :={(p,e")|p e M, " € Hom(E,,R)}

is a vector bundle with V replaced by V* in the local trivializations and
that the transition maps are related by gga* = (gfﬁ)* :Ua NUg — GL(V™).
Deduce that the cotangent bundle T M is a vector bundle over M.
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Example 7.1.9 (Exterior Power). The kth exterior power
AFT* N = {(p,w) lpeM, we A’“T;M}

of the cotangent bundle is a real vector bundle with the the local trivializa-
tions given by pushforward under the derivatives of the coordinate charts:

(dga(p)™1)" - AMT;M — AR(R™)".
The transition maps of A*T*M are then given by

g3 T M (p) = (d(da 0 65")(93(p)))" € GL(AF(R™)*)
for p e U, NUg.

Example 7.1.10 (Pullback). Let 7¥ : E — M be a real vector bundle
with local trivializations ¥Z(p) : E, — V and let f : N — M be a smooth
map. Then the pullback bundle

fE = {(q,e)\qEN,eeE, WE(e):f(q)} CNxE

is a submanifold of N x E and a vector bundle over N with the obvious
projection =/ F . f*E — N onto the first factor, the local trivializations

L E () = VE(f(Q) : (f*E), = Epq — V for g € f7!(Us) and the transi-
tion maps

9bF =gho £ 7 Ua) N f71(Us) = GL(V).

Example 7.1.11 (Whitney Sum). Let 7 : E — M, 7" : F — M be
vector bundles with local trivializations ¥Z(p) : E, — V, ¥L(p) : F, = V
for p € U, (over the same open cover). The Whitney sum

EaF:= J{p} x (B0 F),
peEM

is a vector bundle over M with the obvious projection 7 : E® F — M, the
local trivializations

Vo (p) =05 () ®Yg (0) : By @ F 5 VO W,  peU,
and the transition maps
gEeT = gF @ gh,  UaNUs — GL(V @ W).

Replacing everywhere & by ® we obtain the tensor product of E and F.
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Exercise 7.1.12 (Normal Bundle). Let M be a smooth m-manifold and
let Q C M be a k-dimensional submanifold. Choose a Riemannian metric
on M. Prove that the normal bundle

TQ' = {(p,v)|lpeQ,veT,M, v 1 T,Q}

is a smooth vector bundle over @ of rank m — k. Hint: See Exercise
Alternatively, use geodesics to find coordinate charts ¢ : Uy — R¥ x R™~F
such that ¢o(Us N Q) = ¢a(Us) N (R¥ x {0}) and v L T,Q if and only
if dpo(q)v € {0} x R™~F for all ¢ € Q and v € T,;M. Another method is to
identify the normal bundle with the quotient bundle T'M|g/T'Q and use an
arbitrary submanifold chart to find a local trivialization modelled on the
quotient space V =R™ /]Rk. If @ is totally geodesic one can use the Levi-
Civita connection to construct local trivializations of the normal bundle.

Sections

Definition 7.1.13 (Section of a Vector Bundle). Let 7 : E — M be
a real vector bundle over a smooth manifold. A section of E is a smooth
map s: M — E such that tos=1id: M — M.

The set of sections of FE is a real vector space, denoted by
Q°%M,E) :={s: M — E|s is smooth and 7w o s = id} .

If we write a point in E as a pair (p,e) with p € M and e € E,, then
we can think of a section of E' as a natural transformation which assigns
to each element p of M and element s(p) of the vector space E, such that
the map M — E : p — (p,s(p)) is smooth. Slightly abusing notation
we will switch between these two points of view whenever convenient and
use the same letter s for the map M — E : p — (p,s(p)) and for the
assignment p — s(p) € E,.

Remark 7.1.14. In the local trivializations ¢ : 771 (U,) — Uy x V a
section s : M — F is given by smooth maps s, : U, — V such that

Ya(s(p)) = (P, 5a(p))- (7.1.5)
These maps satisfy the condition
58 = JBaSa (7.1.6)

on U, N Ug. Conversely, every collection of smooth maps s, : Uy — V
satisfying ((7.1.6) determine a unique global section s : M — E via ([7.1.5]).
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Example 7.1.15 (Zero Section). The zero section
t: M — E, t(p) =0, € B,

assigns to each p € M the zero element of the fiber E, = 7~!(E) with respect
to the vector space structure of Remark [7.1.3] Its image is a submanifold

Z:=u(M)={0,|pe M} C E,
which will also be called the zero section of E.

Exercise 7.1.16. For every vector bundle 7w : E — M, every p € M, and
every e € E,, there is a smooth section s : M — E such that s(p) = e.

Example 7.1.17. The space of sections of the tangent bundle is the space
of vector fields, the space of sections of the cotangent bundle is the space of
1-forms, and the space of sections of the kth exterior power of the cotangent
bundle is the space of k-forms on M:

Q%M,TM) = Vect(M),  QU(M,A*T*M) = QF(M).

If @ C M is a submanifold of a Riemannian manifold then the space of
sections of the normal bundle of Q is the space Q0(Q, TQ"+) = Vect™(Q) of
normal vector fields along Q.

Vector Bundle Homomorphisms

Definition 7.1.18 (Vector Bundle Homomorphism). Let 7¥ : E — M
and 78" : F — M be real vector bundles. A vector bundle homomor-
phism from E to F is a smooth map ® : E — F such that

' o®=rxF

and, for every p € M, the restriction ®, := ®|g, : E, — F, is a linear
map. A vector bundle isomorphism is a bijective vector bundle homo-
morphism. The vector bundles E and F are called isomorphic if there
exists a vector bundle isomorpism ® : E — F'.

Exercise 7.1.19. (i) Every vector bundle isomorphism is a diffeomorphism.

(ii) Every injective vector bundle homomorphism is an embedding.

(iii) Every real vector bundle over a compact manifold M admits an injective
vector bundle homomorphism ® : E — M x RY for some integer N. Hint:
Use a finite collection of local trivializations and a partition of unity.

Exercise 7.1.20. The Mobius strip 7 : £ — S in Example is not
isomorphic to the trivial bundle F := S' x R. The tangent bundle TM of
any manifold M is isomorphic to the cotangent bundle T M.
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Exercise 7.1.21. The set

Hom(E, F) := | J {p} x Hom(E),, F},)
pEM
is a vector bundle over M and the space of smooth sections of Hom(E, F) is

the space of vector bundle homomorphisms from E to F'. The vector bundle
E* ® F is isomorphic to Hom(FE, F).

Orientation

Definition 7.1.22 (Oriented Vector Bundle). A vector bundle
m:E—-M

1s called orientable if its local trivializations can be chosen such that the
transition maps take values in the group GLY (V) of orientation preserving
automorphisms of V, i.e. for all o, 8 € A we have

98a(p) = ¥5(p) 0 va(p)~ € GLT(V),  p€UaNUp. (7.1.7)
It is called oriented if V is oriented and (7.1.7)) holds.

A vector bundle 7 : E — M is orientable if and only if its structure group
can be reduced to GLT (V). Care must be taken to distinguish between the
orientability of F as a vector bundle and the orientability of F as a manifold.
By definition, a manifold M is orientable if and only if its tangent bundle is
orientable as a vector bundle. Thus F is orientable as a manifold if and only
if its tangent bundle T'FE is orientable as a vector bundle. For example the
trivial bundle £ = M x R" is always orientable as a vector bundle but the
manifold M x R™ is only orientable if M is. Conversely, the tangent bundle
of any manifold, orientable or not, is always an orientable manifold in the
sense that its tangent bundle TT'M is an orientable vector bundle.

Exercise 7.1.23. Let M be an orientable manifold and let 7 : £ — M be

a real vector bundle. Then E is orientable as a vector bundle if and only if
the manifold F is orientable.

Exercise 7.1.24. The Mobius strip in Example is not orientable.

Exercise 7.1.25. A vector bundle 7w : E — M of rank n is oriented if and
only if the fibers F), are equipped with orientations that fit together smoothly
in the following sense: for every pp € M there is an open neighborhood
U C M of py and there are sections s1,...,s, : U — E over U such that the
vectors s1(p), ..., sn(p) form a positive basis of E, for every p € U.

Exercise 7.1.26. The tangent bundle of the tangent bundle is orientable.
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7.2 The Thom Class

We assume throughout that M is a smooth m-manifold (not necessarily
compact and possibly with boundary) and that

T:E—>M

is an oriented real vector bundle of rank n. Section [7.2.1] introduces integra-
tion over the fiber for differential forms with vertical compact support. The
Thom Isomorphism Theorem asserts that the induced homomorphism on de
Rham cohomology is an isomorphism. A corollary is the existence of a Thom
form T € QF.(E), a closed n-form with vertical compact support whose inte-
gral over each fiber is one. In Section we give two proofs of this result,
one proof for bundles of finite type which is based on a Mayer—Vietoris ar-
gument, and another proof for compact oriented base manifolds M without
boundary which is based on Poincaré duality and which first establishes the
existence of Thom forms. Section[Z.2.3|relates the Thom class to intersection
theory and contains a proof of Theorem

7.2.1 Integration over the Fiber

Integration over the fiber assigns to an (n + k)-form on the total space E
of our vector bundle with wvertical compact support a k-form on M. This
homomorphism, also called pushforward, commutes with the differential and
hence induces a homomorphism on de Rham cohomology.

Definition 7.2.1 (Vertical Compact Support). A differential form
e QYE)
s said to have vertical compact support if the set
supp(t) N7 H(K) C E

is compact for every compact subset K C M. The set of all {-forms on E
with vertical compact support will be denoted by

Q' (E) = {7‘ e QYE) | 7 has vertical compact support} .

Differential forms with vertical compact support are preserved by the differ-
ential and the cohomology group

HE(B) = ker(d : Q4.(E) — QU (E))
VT ker(d - QS H(E) — Q4(E))

1s called the de Rham cohomology with vertical compact support.
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Definition 7.2.2 (Pushforward). For k = 0,1,...,m the pushforward
under the projection 7 is the linear operator

m  QUN(E) = QF (M),

defined as follows. Let T € QUFK(E) and choose v1,...,vp € T,M. Asso-
ciated to these data is a differential form TPVYk € Q¥ (E,) defined as
follows.  Given e € E, =7"Y(p) and e1,...,e, € T.E, = ker dr(e) & E,,
choose lifts v; € T.E so that dr(e)v; =v; fori=1,...,k, and define

(TPOL) (o1, en) t= To(By e ey Dy €15 - s €0)- (7.2.1)

The expression on the right is independent of the choice of the lifts v;;
namely, if the e; are linearly independent any two choices of lifts v; dif-
fer by a linear combination of the ej, and if the e; are linearly dependent

the right hand side of (7.2.1) vanishes for any choice of the v;. Now the
pushforward 7.7 € QF(M) is defined by

(maT)p(vt, ...y vg) = / TRV (7.2.2)
E

P

forpe M and v; € T,M. The integral is well defined because TP*1»"% has
compact support and E, is an oriented n-dimensional manifold.

Exercise 7.2.3. Show that the map
(meT)p : (T,M)F — R

in (7.2.2) is an alternating k-form for every p and that these alternating
k-forms fit together smoothly. Show that the map 7 + m,7 is linear.

Exercise 7.2.4. If 7 € Q7 (E), show that 7.7 € Q°(M) is the smooth real
valued function on M defined by

wmwzéf

forpe M.

Exercise 7.2.5. If 7 € Q*(E), show that m,7 € QF(M). Show that
the map . : Q¥1(M x R) — QF(M) in the proof of Theorem is an
example of integration over the fiber.
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Lemma 7.2.6. Let m : E — M be an oriented real rank-n vector bundle
over a smooth m-manifold M with boundary and let m, : QF*(E) — Q*(M)
be the operator of Definition[7.2.3. Then

T (T W A T) = w A T, (7.2.3)

T dT = dmy T (7.2.4)
for allw € QY(M) and all T € QUFE(E). If M is oriented, then

/ WA T = / WA T (7.2.5)
M E
for all w € QM=F(M) and all T € QUFF(E).

Proof. The proof of equation relies on the observation that the vec-
tors e; € T.F), = E,, used in the definition of the compactly supported n-
form (7*w A 7)PV1Y+t on E, in Definition can only lead to nonzero
terms when they appear in 7. Thus

((m¥w A )PPkt l) (eq, ... ep)

= (T*"WAT)e(V1,. ., Vkte,€1,---,€n)

= Z €(U)wp(va(1), e ,vg(k))Te<5J(k+1), e 750(164-()’ €l,..., en)
O’ESk,g

- Z E(0)wp(Vo(1)s - - - s Vo)) (TH Vot o bt0) (e, .. en)
O'ESk,g

for e; € T.E, and v; € T, E with dr(e)v; = v;. Integrate both sides of this
equation over E), to obtain

(e (T W AT))p(V1,. .o, Vkte)

:/ (ﬂ—*w/\T)p,vh---»ka
E

P

= Z e(o)wp(Ve(1), - - - ,Ua(k))/ TP V0 (k41)r Vo (k+0)

O'ES;“Z Ep

= Z a(a)wp(vg(1)7 s ’va(k))(ﬂ-*T)p(/Ucr(k—l-lﬁ ) Uo(k+€))

0ESk e

= (WA TT)p(v1, ..o, Vi)

This proves (7.2.3]).
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To prove equation ((7.2.4) we will work in a local trivialization of E
followed by local coordinates on M. Thus we consider the vector bundle

U xR"

over an open set U C H™. Denote the coordinates on U by z!,..., 2™ and
the coordinates on R” by ¢!, ..., ¢". Then an (n+k)-form 7 € Q"*5(U x R")
can be written in the form

T= > 7kl t)de’ AdtF (7.2.6)
||+ K =tk

The vertical compact support condition now translates into the assumption
that the support of 7 is contained in the product of U with a compact subset
of R™. Integration over the fiber yields a k-form w7 € QF(U) given by

TWT = Z (/ T K, (2,1) dt1~--dt”> da”, (7.2.7)
|J|=k \/R?

where K, denotes the maximal multi-index K, = (1,...,n). Next we apply
the same operation to the form
" or
— JK i J K
dr = Z Z D (x,t)dx" Ndx Adt

|J| K [=ntk i=1

n

071K j J K

+ > Z o (@) dt? Ada? At
|J|+|K|=n+k j=1

The key observation is that, for every fixed element x € U and every fixed
multi-index J € Nij* with |J| = k + 1, the second summand belongs to the
image of the operator d : Q71 (R") — Q7(R") and hence its integral over R™
vanishes by Stokes” Theorem [5.2.11] Thus integration over the fiber yields
the (k + 1)-form

S 71K, n\ i
TadT = Z Z</n D (z,t)dt'---dt > dz® A dz’

| T|=k i=1
:i 8. Z/ i, (x, ) dtt - dt™ | dzt A dx?
L Ot no T
i=1 |J|=k
= dm,T.

Here the second equation follows by interchanging differentiation and inte-
gration and the last equation follows from (7.2.7). This proves ((7.2.4).
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We prove equation ([7.2.5)) under the assumption that M is oriented and w
has compact support. Usmg a partition of unity on M we may again re-
duce the identity to a computation in local coordinates. Thus we assume
that 7 € Q"T*(U x R™) is given by and has vertical compact support
as before, and that w € Q™~*(U) has the form

w= Z wr(x) da’

|T|=m—Fk

Then both forms 7*w A 7 € QIT(U x R") and w A 7 € Q7 (U) have
compact support. To compare their integrals it is convenient to define a
number

e(1,J) € {£1}

by
de! Nda? =:e(I, J)dzt A -+ A dz™

for multi-indices I and J with
|[I| =m — k, |J| = k.

With this setup we obtain

/w/\ﬂ'*

Z Z/wr (/ TJ,Kn(a:,t)dtl---dt">dfode

|I|l=m—k |J|=k
Z Z (Z, ) // wr( TJant)dtl cdthdzt - dx™
|I|=m—k |J|=k "
Z Z e(l, J)/ wi(x)Tr K, (2, t)dxt - dx™dt! - - - dt"
[I|l=m—k |J|=k UxR"™
/ )Ty, (x, t)det A da? A dtEn
|I| m—k |J|=k * UXR"

:/ T AT
UxR™

Here the third equality follows from Fubini’s thoerem. This proves (|7.2.5))
and Lemma [7.2.6] O
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7.2.2 The Thom Isomorphism Theorem

Continue the standing assumption that M is a smooth m-manifold (possibly
with boundary) and 7 : E — M is an oriented rank-n vector bundle. Equa-

tion (7.2.4) in Lemma shows that the map m, : Q*(E) — QF (M)
descends to de Rham cohomology.

Definition 7.2.7 (Finite Type). The vector bundle E is said to have
finite type if there exists a finite open cover M = Uy U --- U Uy such that B
admits a trivialization over U; for each 1.

Theorem 7.2.8 (Thom Isomorphism Theorem). Let 7 : E — M be an
oriented real rank-n vector bundle of finite type over a smooth m-manifold M
(possibly with boundary). Then the homomorphism

Tt HVH(E) — HY(M) (7.2.8)
is bijective for k =0,1,...,m. Moreover, H'**(E) = 0 for k < 0.
Proof. See page and page [195] O

Definition 7.2.9 (Thom Form). Let 7 : E — M be an oriented rank-n
vector bundle over a smooth m-manifold M. A Thom form on F is a
closed n-form T € QU.(E) with vertical compact support such that m,m = 1.

By Theorem [7.2.§] every oriented vector bundle of finite type admits a
Thom form and the difference of any two Thom forms is exact.

Corollary 7.2.10 (Thom Form). Let 7 : E — M be an oriented real
rank-n vector bundle of finite type over a smooth m-manifold M.

(i) Let U C E be an open neighborhood of the zero section. Then there exists
a compactly supported m-form T € Q.(E) such that

supp(7) C U, dr =0, meT = 1.

(ii) Let 7 € QZ.(FE) be closed. Then mo = 0 if and only if there exists an
(n — 1)-form form B € Q"1 (E) such that df = 7.

Proof. We prove part (ii). If 3 € Q7 !(E) then the equation 7.dS = 0 fol-
lows directly from equation in Lemma with k= —1. (The
proof shows that the equation continues to hold for k < 0.) Conversely,
assume 7,7 = 0. Then the existence of an (n — 1)-form form 3 € Q% 1(E)
that satisfies d3 = 7 follows from the assertion in Theorem that the
homomorphism m, : H(E) — H°(M) is injective. This proves (ii).
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We prove part (i). The existence of a Thom form 7 € Q. (E) follows
from the fact that the homomorphism r, : H™(E) — H°(M) is surjective
by Theorem To obtain a Thom form with support in U, choose a
smooth function A : M — [1,00) such that

e € supp(T) = Mr(e))te e U.

Such a function can be constructed via a partition of unity subordinate
to a suitable open cover. Define f; : E — E by fi(e) := (tA(n(e)) + 1 —t)e
for 1 <t <Xande€ E. Then fp=id and supp(f;7) C U. Moreover, the
restriction of the homotopy to E|g is proper for every compact set K C M.
Hence by Corollarythere exists an (n — 1)-form 8 € Q% 1(E) such that

fiT—1=4dp.
The n-form f{7 € Q. (F) is closed and supported in U. Moreover, by (ii)
it satisfies m,(f{7) = 1. This proves (i) and Corollary [7.2.10 O

Definition 7.2.11 (Thom Class). Let 7 : E — M be an oriented rank-
n wvector bundle of finite type over a smooth m-manifold M. By Corol-
lary there ewists a Thom form T on E and its cohomology class is
independent of the choice of 7. It is called the Thom class of E and will
be denoted by

T(E) :=[r] € H.(E), Te.(F), dr =0, mr =1. (7.2.9)

Corollary 7.2.12. Let w: E — M be an oriented rank-n vector bundle of

finite type over a smooth m-manifold M. Then the inverse of the isomor-
phism 7, : HEPF(E) — HF(M) is the map .7 : HF (M) — HXF(E) given by

T (a) :=7m*aUT(E) for a € HF(M). (7.2.10)

Proof. Let 7 € Q".(E) be a Thom form and let w € QF(M) be a closed
k-form. Then 7 [w] = [7*w A 7] and hence, by equation ([7.2.3)), we have

T T (W] = [mu(T ' w A T)] = [w A 7] = [w].

This shows that 7. 0.7 =idyk(p. The equation J om, =idyk ) then
follows from the fact that m, is injective. Tis proves Corollary [7.2.12 O

Exercise 7.2.13 (Pullback). Let 7 : E — M and ' : E' — M’ be oriented
rank-n vector bundles of finite type over smooth manifolds. Let ¢ : M’ — M
and ® : E/ — E be smooth maps such that 7’ o ® = ¢ o 7w and such that the
map ¢, := | E,: Ep— E:b(p) is an orientation preserving vector space iso-
morphism for every element p € M. Prove that ®*7(E) = 7(E’) € HIL(E').
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We will give two proofs of Theorem The first proof establishes the
result in full generality and uses a Mayer—Vietoris argument. The second
proof establishes the result in the special case where M is a compact oriented
manifold without boundary. It circumvents the Mayer—Vietoris argument by
using Poincaré duality.

First Proof of Theorem[7.2.8. Our first proof follows the argument given in
Bott—Tu [2, Thm 6.17]. It has five steps. The second step is the Mayer—
Vietoris sequence for de Rham cohomology with vertical compact support.
Step 1. If E admits a trivialization then m, : H.™*(E) — H*(M) is bijec-
tive for every integer k.

By Exercise we may assume that £ = M x R™. For¢=1,...,n inte-
gration over the fiber extends to a homomorphism

()5 : QEFH(M x RY) — QM1 (Ar x R,
Namely, let t = (¢1,...,t;) be the coordinates on R* and write a differential
form w € QFF (M x R?) as
w =y, Ndt; + By
with oy, € QFF =1 (M x R7™1) and £, € QFF(M x R!) and define

(7)) s ::/ ay, dt;.

—00

Then the proof of Theorem [6.3.8] carries over verbatim to the present set-
ting and shows that the homomorphism (7;). descends to an isomorphism
from HEF (M x R?Y) to HEF=1(M x R*~!) for each i. Since

T = (T1)s 0 -+ 0 (mp)s : H'F(M x R™) — H*(M)
by Fubini’s theorem, this proves Step 1.

Step 2. Let U and V be open subsets of M such that M =U UV and
let pu, pv : M — [0, 1] be a partition of unity subordinate to this cover. Then
there is a long exact sequence

<k e d*
< Hy(E) == Hi(Ely) ® HYE|v) == Hi(Eluay) — H(E)---

Here i* and j* are as in (6.2.1)) and the map d* : H(E|lyav) — HY(E) is
defined by d*[w] := [d*w] for every closed (-form w € QL. (E|yny), where d*w
is given by d*w = (7*dpy) Aw on Elyny and d*w := 0 on E|yp wnv)-

This is proved verbatim as in Theorem [6.2.3
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Step 3. Let M =U UV asin Step 2. Then the following diagram commutes

HIM(E) S HISH(Ely) @ HEH(EBly) > HEPF (Blyav) S HEPFY(E) |

N

*

HY(M) —"— H¥(U) @ HY(V) —— HYU N V) -5 HF1(M)

That the first two squares commute follows directly from the definitions. To
prove that the third square commutes, fix a k-form w € Q7+ (E|yny). Then

Tod'w = m (7" dpy) Aw) = (dpy) A Tuw = d*mew
on UNV. Here the second equality follows from (7.2.3) in Lemma [7.2.6

Since both m.d*w and d*m.w vanish on M \ (U NV'), this proves Step 3.
Step 4. Let M =U UV as in Step 2. If the homomorphism

Ty ch+*(E|W) — H*(W)

1s bijective for W = U, V,U NV, then it is bijective for W = M.
This follows directly from Step 3 and the Five Lemma [6.2.12
Step 5. We prove Theorem [7.2.8,

Let M = U, U---UU be an open cover such that E admits a trivialization
over U; for each i. We prove the assertion by induction on ¢. For £ =1 the
assertion holds by Step 1. Thus assume £ > 2 and assume by induction that
the assertion holds with ¢ replaced by ¢/ < ¢ — 1. Define

U=U,U---UUy_q, V .=U,.

Then
UNnV=UNnU)U---U(Up_1 NUy)

admits a cover by at most £ — 1 open sets over each of which the bundle F ad-
mits a trivialization. Hence it follows from the induction hypothesis that the
homomorphism 7, : H%M*(E|w ) — H*(W) is bijective for W = U, V,UNV.
Hence Step 4 asserts that it is bijective for W = M. This proves Step 5 and
Theorem [7.2.8 O

Remark 7.2.14. The finite type hypothesis in Theorem can be re-
moved. The proof then requires sheaf theory and the Cech-de Rham com-
plex. For details see Bott—Tu [2, Thm 12.2].
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The second proof of Theorem relies on the following lemma which
characterizes Thom forms in the case where M is a compact oriented man-
ifold without boundary (and so Q'.(FE) = Q2 (E)).

Lemma 7.2.15. Let m : E — M be an oriented real rank-n vector bundle
over a compact oriented smooth m-manifold M without boundary. Denote
by v : M — E the zero section, let A € R, and let T € QL (E) be closed. Then
the following are equivalent.

(a) mT = A

(b) Every m-form w € Q™ (M) satisfies [pm*w AT =X [}, w.

(c) Every closed m-form o € Q™(E) satisfies [po AT =X [, 1%0.

Proof. We prove that (a) is equivalent to (b). By Lemma every m-
form w € Q" (M) satisfies the equation [, wAm.7 = [ m*w A 7. Condi-
tion (a) holds if and only if the term on the left is equal to A [;,w for
every w, and (b) holds if and only if the term on the right is equal to A |’ MW
for every w. Thus (a) is equivalent to (b).

We prove that (b) is equivalent to (c¢). Since m o ¢ = idyy, every m-
form w € Q™(M) satisfies the equation (*7*w = (w0 ¢)*w = w. Hence (b)
follows from (c) with o := 7*w. Conversely, assume (b) and let o € Q™(E)
be closed. Since the map tom : E — FE is the projection onto the zero section,
it is homotopic to the identity via the homotopy fi(e) := te with fo =tox
and f; =id. Hence o — n**0 € Q™(FE) is exact by Theorem Since
the n-form 7 € Q7 (E) is closed, this implies

/U/\T:/Tr*L*U/\T:)\/ o,
E E M

Here the second equality follows from (b). Thus (b) implies (c) and this
proves Lemma O]

Remark 7.2.16. A subset U C E of a vector bundle is called star shaped
if it intersects each fiber of F in a star shaped set centered at zero, i.e.
eclU, 0<t<1 — te € U.

The proof of Lemma shows that, if U C FE is a star shaped open
neighborhood of the zero section and 7 € Q7 (FE) satisfies
supp(7) C U, dr =0, meT = 1,

then (c) continues to hold for every closed m-form o € Q™(U). Namely, in
this case the m-form f; o, with fi(e) = te, is defined on all of U for 0 < ¢ <1
and so 0 — 7**0 = ffo — fjo is an exact m-form on U, by Theorem
Hence the integral of its exterior product with 7 vanishes by Stokes’ theorem.
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Second Proof of Theorem[7.2.8 Assume M is a compact oriented smooth
m-manifold without boundary and thus H?*(E) = H?**(E). Then both
manifolds M and E are oriented and have finite good covers and therefore
satisfy Poincaré duality. With this understood, the proof has six Steps.

Step 1. Every 8 € Q¥ 1(E) satisfies m.dS = 0.

By Stokes” Theorem [5.2.11} we have [,7*wAdB = [Ld(m*w A B) =0 for
all w € Q™(M). Hence 7.df = 0 by Lemma [7.2.15{ with X\ = 0.

Step 2. There exists a closed n-form T € QI (E) such that w7 = 1.

Let ¢ : M — FE be the inclusion of the zero section as in Example and
define the linear functional A : H™(E) — R by A([o]) := [, "0 for every
closed m-form o € Q™(FE). Since E is an oriented manifold and has a
finite good cover it satisfies Poincaré duality, by Theorem [6.4.1l Hence
there exists a closed n-form 7 € Q2 (E) such that [ o AT = A([o]) = [,, "0
for every closed m-form o € Q™(E). By Lemma with A = 1, this
implies m,7 = 1. This proves Step 2.

Step 3. If 9,71 € QU (E) are closed and satisfy me1o = w71 = 1, then there
ezists a compactly supported form 3 € Q¥ 1(E) such that df = 1 — 70.
Since 7. (11 — 70) =0 and 7 — 79 is closed, it follows from Lemma [7.2.15
with A =0 that [0 A (71 —79) =0 for every closed m-form o € Q™(E).
Hence Step 3 follows from Poincaré duality in Theorem [6.4.1

Step 4. Let k € Z. Then H'F(E) = H*(M).

By Poincaré duality (Theorem [6.4.1)) for £ we have H?T#(E) = H™*(E).
Moreover the projection 7 : EF — M is a homotopy equivalence and this
implies H™*(E) = H™~*k(M). This group vanishes for k < 0 and is iso-
morphic to H*(M) for k > 0 by Poncaré duality. This proves Step 4.

Step 5. Let k€ {0,1,...,m} and let 7 € QI (E) be as in Step 2. Define
the homomorphism .7 : H¥(M) — HI"E(E) by T|w] := [1*w A 7] for every
closed k-form w € Q¥(M). Then 7,0 T = idge (-

By (7.2.3) we have 7,7 [w] = [m(m*wAT)] = [wATT] = [w] for every closed
k-form w € QF(M). This proves Step 5.

Step 6. For k=0,1,...,m the map m, : H'*(E) — H*(M) is bijective.

Since M and E have finite good covers, the cohomology groups H*(M)
and H?t*(E) are finite-dimensional by Corollary and Corollarym
Moreover, they have the same dimensions by Step 4. Since the homomor-
phism 7, : H'**(E) — H¥(M) is surjective by Step 5, it must therefore be
bijective. This completes the second proof of Theorem [7.2.8 ]
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7.2.3 Intersection Theory Revisited

It is interesting to review intersection theory in the light of the above results
on the Thom class. We consider the following setting. Let M be an oriented
(not necessarily compact) m-manifold without boundary and let

QCM

be a compact oriented (m — £)-dimensional submanifold without boundary.
Fix a Riemannian metric on M. For € > 0 sufficiently small consider the e-
neighborhood T'QZ of the zero section in the normal bundle and the tubular
e-neighborhood U, C M of ). These sets are defined by

g€, velyM,
v 1 T,Q, [v|<e |’

TQ- = {<q, )
(7.2.11)

U. := {p eM ‘ d(p,Q) = mind(p,q) < 6} .
qe@
They are open and, for € > 0 sufficiently small, the exponential map
exp : TQé‘ — Ue

is a diffeomorphism by Theorem We orient the normal bundle such
that orientations match in the direct sum decomposition

M =T,Q ® T,Q"
for ¢ € Q. Choose a Thom form
Te € Qg(TQL)

such that
supp(z) CTQF,  dr. =0, mm=1 (7.2.12)

Such a form exists by Corollary [7.2.10l Now define the differential form

7o € QL(M)
by
_f (exp™h)*. on U,
o = { 0 on M\ UL (7.2.13)

This differential form is closed by definition. The next lemma shows that 79
is Poincaré dual to @) as in Section [6.4.3
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Lemma 7.2.17. Let Q C M and g € Q4(M) be as above. Then

/Mw/\TQ:/Qw (7.2.14)

for every closed (m — £)-form w € Qm™~¢(M).
Proof. Denote the inclusion of the zero section in TQ+ by
lQ - Q — TQJ‘

For every closed form w € Q™ (M) we compute

/ wWATQ = / wATQ
M .
= / exp*w A T,
TR+

= 1Hexpt w
Q
\/652

= / (expoig)*w
Q

:/Q“"

Here the third step follows from Lemma [7.2.15 and Remark [7.2.16] because
the open set
TQ Cc TQ™*

is a star shaped open neighborhood of the zero section. The last step follows
from the fact that the map

exporg : QQ - M
is just the inclusion of @ into M. This proves Lemma [7.2.17] O

When M has a finite good cover the existence of a closed /-form 7 with
compact support that is dual to @, i.e. that satisfies equation for ev-
ery closed form w € Q™ (M), follows from Poincaré duality (Section.
Lemma gives us a geometrically explicit representative of this coho-
mology class that is supported in an arbitrarily small neighborhood of the
submanifold ). We will now show how this explicit representative can be
used to relate the cup product in cohomology to the intersection numbers
of submanifolds.
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Q

Figure 7.1: The intersection number of @) and f.

Theorem 7.2.18. Let Q C M and 7¢ € Q5(M) be as in Lemma |7.2.17.
Let P be a compact oriented smooth £-dimensional manifold without boun-
dary and let f: P — M be a smooth map that is transverse to Q. Then

Q f= /Pf*TQ. (7.2.15)

Proof. By assumption f~1(Q) is a finite set (see Figure . We denote it
by f~1(Q) =: {p1,...,pn} and observe that

Since dim(P)+dim(Q) = dim(M), the derivative df (p;) : Tp, P — Ty(p,) M is
an injective linear map and hence its image inherits an orientation from 7;,, P.
The intersection index v(p;; @, f) € {£1} is obtained by comparing orienta-
tions in (Definition . The intersection number of ) and f is
the sum of the intersection indices @ - f = >, v(pi; Q, f) (Theorem.

It follows from the injectivity of df(p;) that the restriction of f to a
sufficiently small neighborhood V; C P of p; is an embedding. Its image
is transverse to ). Choosing ¢ > 0 sufficiently small and shrinking the V;,

if necessary, we may assume that the V; are pairwise disjoint and that the
tubular neighborhood U, C M in ([7.2.11)) satisfies

fHU) =ViuTaU---UV,.

Since supp(7g) C U. we obtain supp(f*rg) C f~1(U.) = Ule V; and hence

/Pf*TQ - E:;/V fimq = i;/vi(e)(p‘1 of)Te. (7.2.17)

Here the second equation uses the exponential map exp : T QEL — U; and
the Thom form 7. = exp* 7¢ € Q7(TQ+) with support in TQL.
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Now choose a local trivialization
Vi TQ  |w, — Wi x R

of the normal bundle TQ" over a contractible neighborhood W; C Q of f(p;)
such that the open set T’ Qé‘]Wi is mapped diffeomorphically onto the prod-
uct W; x B.. Here B. C R denotes the open ball of radius € centered at
zero. Let 7; € QY(W; x B) be the Thom form defined by ¢f7; = 7.. Then,
by equation ([7.2.17)), we have

T = Y xplof)*T. = ; oexp L of)*T. 2.
/PfTQ—;/Vi(ep [y ;/Vi(wzep . (7.2.18)

Consider the composition
fir=pryot;oexp tofly, : V; = B..

If € > 0 is chosen sufficiently small, this is a diffeomorphism; it is orientation
preserving if v(p;; Q, f) = 1 and is orientation reversing if v(p;; @, f) = —1.
Since W; is contractible, there exists a homotopy h; : V; — W; such that

ho = f(pi), hy = pry o oexp_1 oflv, : Vi = Wj.
Thus
hy X f; :wioexpflof]vi Vi = W; x Be.

Moreover, the pullback of the Thom form 7; € QYW; x B.) under the
homotopy h; X f; has compact support in [0, 1] x V;.

With this notation in place it follows from Corollary and Stokes’
Theorem [B.2.17] that

/ (s oexp™of)*r; = / (h1 x fi)*r
Vi Vi

:/w(ho X fi)*T;
_’/(Pz‘;Q,f)/ Ti

{f(pi)}xBe
=v(pi; Q, f).
Here the third equality follows from Exercise [5.2.10| and the last equality
follows from the fact that the integral of 7; over each slice {¢} x B is equal
to one. Combining this with (7.2.18]) we find
n n
[ =3 [ oen topn=Y vpiQ. ) =@ 1
P i=17Vi i=1
This proves Theorem [7.2.18 O
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Proof of Theorem[6.4.7. By Lemma the closed (-form 7¢ € Q4(M),
constructed in (7.2.13) via the Thom class on the normal bundle TQ", is

Poincaré dual to @) as in Section Thus Theorem [7.2.18] yields

Q'f:/Pf*TQ:/MTQ/\Tf: (—1)“’”4)/62?-

Here the second equality follows from the definition of the cohomology
class [ry] € H™*(M), Poincaré dual to the map f, via equation (6.4.6)
in Section [6.4.3| with w = 7. The last equality follows from Lemma [7.2.17]
with w = 7;. This proves Theorem O

Let P and () be compact oriented submanifolds of M without boundary
and suppose that
dim(P) + dim(Q) = dim(M).

Then Theorem [6.4.7] asserts that
P.-Q= / TP NTQ.
M

By Lemma [7.2.17] we may choose 7p and 7¢ with support in arbitrarily
small neighborhoods of P and @), respectively, arising from Thom forms on
the normal bundles as in . If P is transverse to () then the exterior
product 7p A 7q is supported near the intersection points of P and @, and
the contribution to the integral is precisely the intersection number near
each intersection point. This is the geometric content of Theorem

Example 7.2.19. Consider the manifold M = R? and the submanifolds
P=Rx{0}, Q={0}xR,

Thus P and @) are the z-axis and the y-axis, respectively, in the Euclidean
plane with their standard orientations. We choose Thom forms

P =p(y)dy, 1@ = —p(x)dz,

where p : R — R is a smooth compactly supported function with integral
one. Then the exterior product

T A Tq = p(x)p(y)dz A dy

is a compactly supported 2-form on R? with integral one. This is also the
intersection index of P and () at the unique intersection point.
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7.3 The Euler Class

Section [7.3.1] introduces the Euler number of an oriented rank-m vector
bundle over a compact oriented m-manifold without boundary as the self-
intersection number of the zero section. In analogy to the Poincaré—Hopf
Theorem this number can also be defined as the algebraic count of the zeros
of a section with only isolated zeros, and it agrees with the integral of the
pullback of a Thorm form under a section. More generally, the Euler class
is the pullback of the Thom class under a section, whether or not the rank
agrees with the dimension of the base. Section establishes the basic
properties of the Euler class and shows that it is dual to the zero set of a
transverse section. The Euler class is used in Section [7.3.3] to establish the
product structure on the de Rham cohomology of complex projective space.

7.3.1 The Euler Number

Let m: E — M be a vector bundle. To define the Euler number of E
under suitable hypotheses, we will specialize Theorem to the case
where M is replaced by F, the submanifold @) is replaced by the zero sec-
tion Z ={0,|p € M} C E, and the map f: P — M is replaced by a sec-
tion s : M — E. In this case the normal bundle of Z is the vector bundle £
itself, and the dimension condition dim(P) + dim(Q) = dim(M) in intersec-
tion theory translates into the condition rank(F) = dim(M) = m.

Definition 7.3.1 (Vertical Derivative). Let s : M — E be a section of
a vector bundle. A point p € M is called a zero of s if s(p) =0, € E, is
the zero element of the fiber E, = m—1(p). The vertical derivative of s
at a zero p € M is the liner map Ds(p) : T,M — E, defined as follows.
Let o : 71 (Uy) = Uy x V be a local trivialization such that p € U, and
consider the vector space isomorphism 1a(p) := pry 0 Yulg, : By — V and

the section in local coordinates s := pry o ¥y o 8|y, : Uy — V. Then the
vertical derivative Ds(p) : T,M — E,, is defined by
Ds(p)v := o (p) tdsa(p)v (7.3.1)

forv e T,M. Thus we have a commutative diagram

% .
dse () Yo (p)
- M/;s(m\ 5
p D

The reader may wverify that the linear map (7.3.1)) is independent of the
choice of o with p € Uy (provided that s(p) = 0p).
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Exercise 7.3.2. Show that there is a natural splitting
To, E=T,M @ E), peM, (7.3.2)

of the tangent bundle of E along the zero section. The inclusion of T, M
into Tp, /' is given by the derivative of the zero section. If s: M — FE is
a section and p € M is a zero of s, show that Ds(p) : T,M — E, is the
composition of the usual derivative ds(p): T,M — Ty, E with the projec-
tion Tp, ' — E) onto the vertical subspace in the splitting .

Exercise 7.3.3. Show that a section s : M — FE'is transverse to the zero
section if and only if the vertical derivative Ds(p) : T,M — E,, is surjective
for every p € M with s(p) = 0,. We write s M 0 to mean that s is transverse
to the zero section.

Exercise 7.3.4. Let E be a real rank-n vector bundle over a smooth m-
manifold M and let s : M — E be a smooth section of E. Assume s is
transverse to the zero section. Then the zero set

s71(0):={p e M|s(p) =0,}
of s is a smooth submanifold of M of dimension m — n and
T,5(0) = ker Ds(p)
for every p € M with s(p) = 0,. Hint: Use Lemma [1.1.3]

Exercise 7.3.5 (Transversality). Let 7 : E — M be a vector bundle of
finite type over a manifold with boundary. Prove that there exists a smooth
section s : M — FE such that s and s|gps are transverse to the zero section.

Hint 1: Show that there exist finitely many sections
S1y...,8: M — F

such that the vectors s1(p),. .., s/(p) span the fiber E, for every p € M (see

Exercise [7.1.16{and Step 1 in the proof of Lemma [4.1.7)).
Hint 2: Define the map . : R x M — E by

4
Z(Ap) = Xisi(p) € Ep
=1

for A\ = (A1,...,\¢) € R® and p € M. This is a section of the pullback bun-
dle R® x E over R x M. Prove that . and .7 |ge, 5y, are transverse to the
zero section.
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Hint 3: Use Exercise [7.3.4] to show that the set
Z = {()\,p) ER' x M|.#(\p) = op}

is a smooth submanifold of R x M with boundary 0.2 = 2 N (Rf x OM).

Hint 4: Let A € R’ be a common regular value of the projections
Z =R (A p) = A, 0% =R : (\,p)— A

Define the section s : M — E by s(p) := % (\,p) for p € M. Prove that
both s and s|gys are transverse to the zero section.

Theorem 7.3.6 (Euler Number). Let E be an oriented rank-m vec-
tor bundle over a compact oriented m-manifold M without boundary and
let 7 € Q(E) be a Thom form. Let s: M — E be a smooth section that is
transverse to the zero section and define the index of a zero p € M of s by

op.5) = { +1, if Ds(p) : T,M — E, is orientation preserving, (7.3.3)

—1, if Ds(p) : T,M — E, is orientation reversing.

Then

/MS*T: Z t(p, s). (7.3.4)

s(p)=0p

This integral is independent of s and is called the Euler number of E.

Proof. The intersection index of the zero section Z with s(M) at a zero p of S
is t(p, S). Hence the sum on the right in equation (7.3.4)) is the intersection
number Z - s. Thus the assertion follows from Theorem [[.2.18 O]

Exercise 7.3.7. Let 7 : E — M be as in Theorem [7.3.6l Define the
index ¢(p,s) € Z of an isolated zero of a section s : M — E. Prove that
equation in Theorem continues to hold for sections with only
isolated zeros. Hint: See the proof of the Poincaré—Hopf Theorem.

By Theorem the Euler number is the self-intersection number of
the zero section in . One can show as in Chapter [2] that the right hand
side in is independent of the choice of the section s, assuming it is
transverse to the zero section, and use this to define the Euler number of £
in the case rank(E) = dim(M). Thus the definition of the Euler number
extends to the case where E is an orientable manifold (and M is not).
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Example 7.3.8 (Euler characteristic). Consider the tangent bundle of a
compact oriented m-manifold M without boundary. A section of E =TM
is a vector field X € Vect(M) and it is transverse to the zero section if and
only if all its zeros are nondegenerate. Hence it follows from Theorem [7.3.6]

that
/X*T: g t(p, X)
M

X(p)=0

for every vector field X with only nondegenerate zeros and every Thom
form 7 € Q7 (T'M). This gives another proof of the part of the Poincaré-
Hopf Theorem which asserts that the sum of the indices of the zeros
of a vector field (with only nondegenerate zeros) is a topological invariant.
By Theorem this invariant is given by

m

/M X*r=x(M) = (-1)'dim(H'(M)).

1=0

In other words, the Euler number of the tangent bundle of M is the Fuler
characteristic of M.

Example 7.3.9 (Self-Intersection Number). Let M be an oriented Rie-
mannian 2n-manifold without boundary and let ) C M be a compact ori-
ented n-dimensional submanifold without boundary. Then by Theorem [4.3.7]
and Theorem the Euler number of the normal bundle TQ+ is the self-
intersection number @ - Q. (See Corollary below).

Exercise 7.3.10 (Complex Line Bundles over CP'). Think of CP! as
the space of all 1-dimensional complex linear subspaces ¢ C C2. Let d € Z
and consider the complex line bundle H? — CP! defined by

i (C\{0}) x T

c ) [20 : 21;¢] = [Az0 : Az1; A4,

Here C* := C\ {0} denotes the multiplicative group of nonzero complex
numbers. Think of H? as an oriented real rank-2 vector bundle over CP!.
Prove that the Euler number of H? is d. (Hint: Find a section of H? that
is transverse to the zero section and use ) Show that H~' — CP! is
naturally isomorphic to the tautological bundle over CP! whose fiber over ¢
is the line ¢ itself. Show that H — CP! is the bundle whose fiber over ¢ is
the dual space Hom®(¢,C). Show that the bundle H? is isomorphic to H ¢
by an isomorphism that is orientation reversing on each fiber.
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7.3.2 The Euler Class

Let us now drop the condition that the rank of the bundle is equal to the
dimension of the base. Instead of a characteristic number we will then obtain
a characteristic de Rham cohomology class.

Definition 7.3.11 (Euler Class). Let w: E — M be an oriented rank-n
vector bundle of finite type over a smooth manifold M (possibly with bound-
ary). The Euler class of E is the de Rham cohomology class

e(E) = [s"1] =s*T(F) € H"(M)
where T € QY.(E) is a Thom form on E and s : M — E is a smooth section.

Since any two sections of E are smoothly homotopic, it follows from
Theorem and Corollary [7.2.10| that the cohomology class of s*7 is
independent of the choices of s and 7. Thus the Euler class is well defined.

Remark 7.3.12 (Euler Class and Euler Number). Let 7: E — M
be an oriented rank-n vector bundle over a compact oriented n-manifold M

without boundary. Then the integral of (a representative of ) the cohomology
class e(E) over M is the Euler number by Theorem It is denoted by

where 7 € Q7'(E) is a Thom form and s : M — E is a smooth section.

Corollary 7.3.13 (Euler Class and Self-Intersection). Let M be an
oriented Riemannian 2n-manifold without boundary, let Q C M be an ori-
ented n-dimensional submanifold without boundary, and denote by TQ  the
normal bundle of Q. Then the Euler number of the normal bundle TQ™" is
the self-intersection number of @, i.e.

/Qe(TQl) =Q-Q. (7.3.5)

Proof. Let 7 € Q(TQ") be a Thom form and let Y : Q — TQ* be a normal
vector field with only nondegenerate zeros (see Exercise [7.3.5)). Then

/Qemi):/@y*f: S oY) =00

Y (p)=0p

Here the first equality follows from the definition of the Euler class, the
second equality follows from Theorem and the last equality follows

from Theorem This proves Corollary [7.3.13 O
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Remark 7.3.14 (Euler Class for Odd Rank). Let 7 : M — E be as in
Definition [7.3.11} If n = rank(FE) is odd then

To see this, choose a Thom form 7 € Q. (E), let ¢ : M — E be the zero
section, and denote by 1 : E — E the involution given by

for e € E. Then
T:= =" € Qu.(F)

is another Thom form because n is odd. Hence there exists a 8 € Q% 1(E)
such that df =7 —7 =7 +¥*r. This implies dv*§ = v*7 + ™1 = 2.7
and hence e(E) = [v*7] = 0.

Theorem 7.3.15 (Euler Class and Integration). Let 7w : E — M be an
oriented rank-n vector bundle of finite type over an oriented m-manifold M
without boundary and let s : M — E be a smooth section that is transverse to
the zero section such that s~(0) is a compact subset of M. Let T € Q".(E)
be a Thom form and let w € Q'~™(M) be closed. Then

/ wAs'T = / w. (7.3.6)
M s=1(0)

(See below for our choice of orientation of s~1(0).)

Proof. Choose a Riemannian metric on M. Orient the zero set
Q= 5_1(0) = {q eM ‘ s(q) = Oq}

so that orientations match in the direct sum decomposition

.M =T,Q ® T,Q"
for every ¢ € (). Here TqQL is oriented such that the isomorphism

Ds(q) : TqQJ‘ — B,
is orientation preserving. Choose € > 0 so small that the map

) 1
exp: TQ; — U.

in (7.2.11)) is a diffeomorphism (Theorem [4.3.8]).
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Since the zero set of s is contained in U, There exists a neighbor-
hood U C E of the zero section such that s=!(U) C U.. For example, the
set U := E\ s(M \ U,) is an open neighborhood of the zero section with this
property. Assume first that our Thom form 7 is supported in U and so

supp(s*r) C s~ 1(U) C U..
This implies that the pullback of the differential form s*r € Q"(M) under
the exponential map exp : TQEL — U, defines a closed n-form

| exp*s*t in TQaL, " n

We prove that
TTe = 1. (7.3.7)

To see this, observe that the map s oexp : TQLT — E sends (g,0) to 04 and
agrees on the zero section up to first order with Ds. Hence we can homotop
the map soexp to the vector bundle isomorphism Ds: TQ+ — E lo- An
explicit homotopy F : [0,1] x TQ+ — E is given by

t~1s(exp,(tv)) € Eexp, (tv), £ >0,

F(t,q,v) = ft(Q7U) = { DS(C])’U, ift = 0,

for ¢ € Q@ = s7(0) and v € T, M such that v L T,Q and |v| < e. That F
is smooth can be seen by choosing local trivializations on E. Hence F'is a
smooth homotopy connecting the maps

fo=Ds, fi=soexp.

Moreover, F' extends smoothly to the closure of [0,1] x TQZ and the image
of the set [0,1] x TQF under F does not intersect the zero section of E.
Shrinking U if necessary, we may assume that

HOTQL) c M\U, UNE|gcC fi(TQY) for0<t<1.

Choose the Thom form 7 € Q7 (F) with support in U. Then it follows from
our choice of U that the forms f;7 have uniform compact support in TQEL.
Hence, for each g € @), we have

/ 75:/ (soexp)*T:/ fl*T:/ for=1
T,Q+ T,Q% T,QF T,Q+

q

Here the last equality follows from the fact that fo = Ds: TQ+ — E | is an
orientation preserving vector bundle isomorphism. This shows that m,7. =1
as claimed.
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Thus we have proved that 7. = (s o exp)*7 is a Thom form on 7' Q* with
support in TQZ. Hence 7. satisfies the conditions in and the closed
n-form 7¢g := s*t € " (M) with support in U, satisfies condition (7.2.13)),
i.e. 7|y, = (exp~!)*7.. With this understood, it follows from Lemm
that 7 satisfies for every closed (m — n)-form w € Q7*""(M). Since
the left hand side of is independent of the choice of the Thom form 7
by Corollary this proves Theorem [7.3.15 O

Example 7.3.16. The hypothesis that w has compact support cannot be
removed in Theorem Consider the trivial bundle £ = M x R™ over
the oriented m-manifold M := {z € R™ ||z| > 1}, let s : M — E be the sec-
tion s(x) := (z,x), choose a Thom form 7 € Q™ (FE) with support contained
in {(x,€) € E|¢] > 1}, and let w=1¢€ Q% M). Then the left hand side
of vanishes while the right hand side is one.

Exercise 7.3.17. Deduce Theorem from Theorem|[7.3.15]as the special
case where M is compact, rank(E) = dim(M) so that Q = s~1(0) is a zero-
dimensional manifold, and w = 1 € Q%(M) is the constant function one.

Theorem 7.3.18 (Properties of the Euler class). The Euler Class sat-
isfies the following conditions.

(Zero) Let w: E — M be an oriented vector bundle of finite type over a
smooth manifold M. If E admits a nowhere vanishing section then the
Euler class of E vanishes.

(Functoriality) Let m: E — M be an oriented vector bundle of finite type
over a smooth manifold M and let f: M' — M be a smooth map defined
on another smooth manifold M'. Then the pullback bundle f*E — M’ has
finite type and its Fuler class is the pullback of the Fuler class of E, i.e.

e(f'E) = fre(E).

(Sum) The Euler class of the Whitney sum of two oriented vector bun-
dlesm : By — M and wo : Eo — M of finite type over a smooth manifold M
is the cup product of the Fuler classes, i.e.

€(E1 D EQ) = €(E1) U e(Eg).

Proof. If s : M — FE is a nowhere vanishing section then the complement
of the image of s is a neighborhood of the zero section. Hence, by Corol-
lary there exists a Thom form 7 € QY (E) with support in E'\ s(M).
For this Thom form we have s*7 = 0 and this proves the (Zero) property.
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To prove (Functoriality) recall that

FPE={(,e)e M'x E|f(p) =n(e)}.

If £ admits a trivialization over an open set U C M, then the pullback
bundle admits a trivialization over the open set f~Y(U)c M'. Thus f*E
has finite type. Define the map f: f*E — E as the projection of the
set f*E C M’ x E onto the second factor, i.e.

fe)=e

for p € M' and e € Ef(y). Then the restriction of f to each fiber is an

orientation preserving vector space isomorphism. Now let n := rank(£) and
let 7 € Q.(F) be a Thom form. Then f*r € QY. (f*F) is a Thom form on

C

the pullback bundle by Exercise [7.2.13] Now let s: M — E be a section
of E. Then there exists a section f*s: M’ — f*FE defined by

(fs)(@) == (0, s(f(p))  forp' € M.

This section satisfies fo (f*s)=sof: M — f*M and hence

(f*s)" frr = (fo (f*s))"t = (so f)'r = f*(s*7).

This proves (Functoriality) of the Euler class.
To prove the (Sum) property abbreviate

E:=FE @ FE>
and observe that there are two obvious projections
pr; : B = E, 1=1,2.
Let n; := rank(E;) and let 7; € Q% (FE;) be a Thom form on E;. Then
T :=pri7 Apryme € QU2 (E)

is a Thom form on E, by Fubini’s theorem. A section s : M — E can be
expressed as a direct sum s = s; @ so of two sections s; : M — E;. Then we
have pr; o s = s; and hence

s*T = §" (priT A prame) = s7T1 A $570.

This proves Theorem [7.3.18 O
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7.3.3 The Product Structure on H*(CP")

We examine the ring structure on the de Rham cohomology of CP™, where
multiplication is the cup product with unit

1€ HY(M).

We already know from Example that the odd-dimensional de Rham
cohomology vanishes and that

H*(CP") =R, k=0,1,...,n.

Throughout we identify CP* with a submanifold of CP™ when k < n; thus

(CPk:{[20:21:---:zk:0:---:0] € CP"| \zo|2+---+\zk\2>0}.
In particular CP? is the single point [1:0:---:0]. Let
h € H*(CP")

be the class dual to the submanifold CP™ ! as defined in Sectionm Thus

/ aUh= / a (7.3.8)
cpn cpr—!

for every a € H?"~2(CP™).
Let C* :=C\ {0} denote the multiplicative group of nonzero complex
numbers and consider the complex line bundle

m: H— CP"

defined as the quotient

(Ct\{op) x C
(C*

H:= — CP",

where the equivalence relation is given by
[20 21 i z2n; (] = [A2o s Azp s+ 1 Az A(]

for (20,...,2,) € C"1\{0}, ¢ € C, and A € C*. The fibers of this bundle are
one-dimensional complex vector spaces; hence the term complex line bundle.
One can also think of H as an oriented real rank-2 bundle over CP™.
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Theorem 7.3.19. For k = 0,1,...,n define the de Rham cohomology
class h* € H**(CP™) as the k-fold cup product of h with itself, i.e.

h*:=huU---Uhe H*@CP").

k times

In particular, h® = 1 € HY(CP") is the empty product and h' = h. These
classes have the following properties.

(1) h is the Euler class of the oriented real rank-2 bundle H — CP™.

(ii) The cohomology class h* dual to the submanifold CP" % thus, for every
cohomology class a € H?"~2k(CP"™), we have

/ aUhk = / a. (7.3.9)
cpn cpnk

(iii) For k=0,...,n we have

/ hF =1. (7.3.10)
CcpP*

(iv) For every compact oriented 2k-manifold P without boundary and every
smooth map f: P — CP™ we have

/ f*hF = f.cpnk, (7.3.11)
P

Proof. Geometrically one can think of CP™ is as the set of complex one-
dimensional subspaces of C"*1, i.e.

Cp" = {E C C"| ¢ is a 1-dimensional complex subspace} .

The tautological complex line bundle over CP" is the bundle whose
fiber over /¢ is the line ¢ itself. In this formulation H is the dual of the
tautological bundle so that the fiber of H over £ € CP" is the dual space

Hy, = ¢* = Hom"®(¢,C).

Thus H can be identified with the set of all pairs (¢, ¢) where £ C C"+!
is a 1-dimensional complex subspace and ¢ : ¢ — C is a complex linear
map. (Exercise: Verify this.) In this second formulation every complex
linear map ® : C"*! — C defines a section s : CP™ — H which assigns
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to every ¢ € CP™ the restriction s(¢) := ®|,. An example, in our previous
formulation, is the projection onto the last coordinate:

s([zo:z1i i zn)) =201 210 ¢ Zn; 2Zn).

This section is transverse to the zero section and its zero set is the pro-
jectve subspace s~1(0) = CP""! ¢ CP" with its complex orientation. By
Theorem the Euler class e(H) € H?(CP") is dual to the zero set
of any transverse section of H. Hence it follows from from our definitions
that h := e(H). This proves (i).

By Theoremthe restriction of h to each projective subspace CP*+!
is the Euler class of the restriction of the bundle H. Hence

/ aUh = a
cpitl Cp¢

for every a € H*(CP™) by Theorem [7.3.15, By induction, we obtain

/ aURF = / a
Cpitk CP*

for all i,k > 0 with i + &k < n and every a € H*(CP™). With i = n — k this
proves (ii) and, with i = 0 and a = 1 € H°(CP"), this proves (iii). Now let P
be a compact oriented 2k-manifold without boundary and let f: P — CP"
be a smooth map. By (ii) the cohomology class h* is dual to the submani-
fold Q := CP" ¥ as in Section m Thus, by Theorem we have

f- CPn—k — (1)2k(2n—2k)/ f*hk _ / f*hk
P P

This proves (iv) and Theorem [7.3.19 O

Corollary 7.3.20. Let f : CP"™ — CP"™ be a smooth map. Then there exists
an integer d € Z such that

L(fy=14+d+d*+---+d" (7.3.12)

Proof. Since H?(CP™) = Rh, there is a real number d such that f*h = dh.
To prove that d is an integer, we compute

d—d/ h—/ f*h = (flep1) - CP" 1 € Z.
cp! cp!

Here the first equality uses and the last equality uses ((7.3.11)).
For i =0,1,...,n we have H*(CP") = Rh® by part (iii) of Theore
and f*h' = d'h?, and hence trace(f* : H*(CP") — H*(CP™)) = d*. More-
over, H*(CP™) = 0 in odd degrees, and so follows from in
Theorem This proves Corollary O
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Remark 7.3.21. Equation can be viewed as a special instance of
the general fact, not proved in this book, that the the cup product of two
closed forms dual to transverse submanifolds P,Q C M is dual to the inter-
section P N @ (with the appropriate careful choice of orientations). Theo-
rem [6.4.7] can also be interpreted as an example of this principle.

Remark 7.3.22. By equation (7.3.11)), the class hk € H*(CP") is in-
tegral in the sense that the integral of h¥ over every compact oriented
2k-dimensional submanifold ) C CP" without boundary is an integer. By
equation , the class h* generates the additive subgroup of all inte-
gral classes in H?¥(CP™) (also called the integral lattice) in the sense that
every integral cohomology class in H2?*(CP") is an integer multiple of h*.
Here we use the fact that H2¥(CP") is a one-dimensional real vector space

(see Example [6.4.15)).

Remark 7.3.23. The definition of the integral lattice in Remark
is rather primitive but suffices for our purposes. The correct definition
involves a cohomology theory over the integers such as, for example, the
singular cohomology. De Rham’s theorem asserts that the de Rham co-
homology group Hjy (M) is naturally isomorphic to the singular cohomol-
ogy Hs*ing(M ;R) with real coefficients. Moreover, there is a natural homo-
morphism Hj  (M;Z) — Hg,,(M;R). The correct definition of the inte-
gral lattice A C Hjz (M) is as the subgroup (in fact the subring) of all those
de Rham cohomology classes whose images under de Rham’s isomorphism
in H%__(M;R) have integral lifts, i.e. belong to the image of the homomor-

sing

phism HY (M;Z) — HY (M;R). The relation between these two defini-

sing sing
tions of the integral lattice is not at all obvious. It is related to the question

of which integral singular homology classes can be represented by submani-
folds. However, in the case of CP™ these subtleties do not play a role.

Remark 7.3.24. By Theorem the cohomology class h € H?(CP") is
a multiplicative generator of H*(CP"), i.e. every element a € H*(CP") can
be expressed as a sum a = cg+c1h+cah?+- - -+, h™ with real coefficients ¢;.
Think of the ¢; as the coefficients of a polynomial

p(u) = co + cru + cou’® + - + cu”
in one variable, so that a = p(h). Thus we have a ring isomorphism
Rlu]
@ =0)

The integral lattice in H*(CP"), as defined in Remark|7.3.22} is the image of
the subring of polynomials with integer coefficients under this isomorphism.

— H*(CP") : p— p(h).
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We shall return to the Euler class of a real rank-2 bundle in Section [8.3.3]
with an alternative definition and in Section with several examples.



Chapter 8

Connections and Curvature

In this chapter we discuss connections and curvature and give an introduc-
tion to Chern—Weil theory and the Chern classes of complex vector bundles.
The chapter begins in Section by introducing the basic notions of connec-
tion and parallel transport, followed by a discussion of structure groups. In
Section [8.2| we introduce the curvature of a connection, followed by a discus-
sion of gauge transformations and flat connections. With the basic notions
in place we turn to Chern—Weil theory in Section As a first application
we give another definition of the Euler class of an oriented real rank-2 bun-
dle and discuss several examples. Our main application is the introduction
of the Chern classes in Section We list their axioms, prove their exis-
tence via Chern—Weil theory, and show that the Chern classes are uniquely
determined by the axioms. Various applications of the Chern classes to ge-
ometric questions are discussed in Section The chapter closes with a
brief outlook to some deeper results in differential topology.

8.1 Connections

8.1.1 Vector Valued Differential Forms

Let w : E — M be a real rank-n vector bundle over a smooth m-manifold
M. Fix an integer k > 0. A differential k-form on M with values in F
is a collection of alternating k-forms

wp: TyM X T,M X -+ x T,M — E,,

k times

one for each p € M, such that the map M — E : p — w,(X1(p), ..., Xk(p))
is a smooth section of F for every k vector fields X1,..., Xy € Vect(M).

215
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The space of k-forms on M with values in E will be denoted by QF(M, E).
In particular, Q°(M, E) is the space of smooth sections of E. A k-form
on M with values in E can also be defined as a smooth section of the vector
bundle A*T*M ® E — M. Thus

QF(M) = Q°(M,A*T*M ® E).

Remark 8.1.1. The space QF(M, E) of E-valued k-forms on M is a real
vector space. Moreover, we can multiply an E-valued k-form on M by a
smooth real valued function or by a real valued differential form on M using
the pointwise exterior product. This gives a bilinear map

QY(M) x Q¥(M,E) — Q"M E) : (1,w) = 7 Aw,

defined by the same formula as in the standard case where both forms are
real valued. (See Definition )

Remark 8.1.2. Let 9, : 71 (Uy) — Uy x V be a family of local trivializa-
tions of E with transitions maps g, : UoNUg — GL(V'). Then every global
k-form w € Q%(M,E) determines a family of local vector valued k-forms

Wa = Pry 0 P 0 Wy, € QX (Uy, V). (8.1.1)
These local k-forms are related by
wg = gBaWa- (8.1.2)
Conversely, every collection of local k-forms w, € QF(U,,V) that sat-
isfy determine a global k-form w € QF(M, E) via (8:1.1).
8.1.2 Connections

Let 7 : E — M be a real vector bundle over a smooth manifold. A connec-
tion on F is a linear map

V:Q'M,E) — QY(M, E)
that satisfies the Leibnitz rule
V(fs) = fVs+(df)-s (8.1.3)

for every f € QY(M) and every s € Q°(M, E). For p € M and v € T,M we
write V,s(p) := (Vs),(v) € E, and call this the covariant derivative of s
at p in the direction v.
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The archetypal example of a connection is the usual differential
d: QM) = Q' (M)

on the space of smooth real valued functions on M, thought of as sections
of the trivial bundle £ = M x R. This is a first order linear operator and
the same works for vector valued functions. The next proposition shows
that every connection is in a local trivialization given by a zeroth order
perturbation of the operator d.

Proposition 8.1.3 (Connections). Let m : E — M be a vector bundle
over a smooth manifold with local trivializations

Vo :m N (Uy) = Uy x V
and transitions maps

9ga : Ua NUg — GL(V).

(i) E admits a connection.

(ii) For every connection V on E there are 1-forms A, € QY(U,, End(V)),
called connection potentials, such that

(Vs)q = dsa + AaSa (8.1.4)

for every s € Q%(M, E), where (Vs)y and s are defined by (8.1.1). The
connection potentials satisfy the condition

Aa = 950 d9pa + 9paAsgsa (8.1.5)

for all o, 3. Conwersely, every collection of 1-forms A, € QY (Uy, End(V))

satisfying (8.1.5) determine a connection V on E wvia (8.1.4).
(iii) If V,V': Q%(M, E) — QY(M, E) are connections on E then there is a
1-form A € QY(M,End(FE)) such that

V -V =A

Conversely if V is a connection on E then so is V + A for every endomor-

phism valued 1-form A € Q'(M,End(E)).

Proof. The proof has six steps.

Step 1. For every section s € Q°(M, E) and every connection V on E we
have supp(Vs) C supp(s).
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Let pop € M \ supp(s) and choose a smooth function f : M — [0,1] such
that f =1 on the support of s and f = 0 near pg. Then fs = s and hence

Vs =V(fs)= fVs+ (df)s.

The right hand side vanishes near pg and hence Vs vanishes at pg. This
proves Step 1.

Step 2. For every connection V on E and every « there is a 1-forms
Ay € QY Uy, End(V)) satisfying (8.1.4]).

Fix a compact subset K C U,. We first define the restriction of A, to K.
For this we choose a basis eq,...,e, of V and a smooth cutoff function
p: M — [0,1] with support in U, such that p =1 in a neighborhood of K.
Fori=1,...,nlet s; : M — E be the smooth section defined by

si(p) == p(p)ta(p)Lei, for pe U,,
e 0, for p € M \ U,.

For p € K define the linear map (Ay)p : T,M — End(V) by
(Aa)p(v) Z Ai€i == Ya(p) Z AiVysi(p)
i=1 i=1

for Ai,..., A, € R and v € T,M. By Step 1, the linear map (A,), is
independent of the choice of p and hence is defined for each p € U,.

If s € Q°(M, E) is supported in U, we take K = supp(s) and choose s;
as above. Then there are f; : M — R, supported in K, such that

SZZfiSia Sa:Zfiei-
i i
Hence, for p € K = supp(s) C U,, we have

(Vs)a(piv) = wa(p)VUS(p)Zwa(p)ZVv(fisz-)(p)

= 0al®) X (H0)Vosi0) + (dFi(p)0)si(p))

= (Ay(0) 3 filp)es + 3 (dfi(pv)e
= (A, (0)30(p) + dsa(p)r:

By Step 1, this continues to hold when s is not supported in U,.
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Step 3. The 1-forms A, € QY (U,, End(V)) in Step 2 satisfy (8.1.5).
By definition we have (Vs)g = gga(Vs)a and hence

dsg + Apsg = gpa (dsq + Aasa)
on U, N Ug. Differentiating the identity sg = ggoSo» We obtain

dsg = ggadsa + (dgpa) Sa

and hence

Apgpasa = Apgsp
= gﬂaAaSa + gﬁadsa - dsﬂ
= (gBaAoe - dgﬁa)sa
for every (compactly supported) smooth function s, : Uy N Ug — V. Thus
ABgsa = 9aAa — dgsa on Uy NUg and this proves Step 3.
Step 4. Every collection of 1-forms A, € QY (Uy, End(V)) satisfying (8.1.5)
determine a connection V on E via (8.1.4).

Reversing the argument in the proof of Step 3 we find that, for every smooth
section s € QY(M, E), the local E-valued 1-form

T,M — E, :v— d)a(p)_l(dsa(p)v + (Aa)p(v)sa(p))

agrees on U, N Ug with the corresponding 1-form with « replaced by f.
Hence these 1-forms define a global smooth 1-form Vs € Q'(M, E). This
proves Step 4. In particular, we have now established assertion (ii).

Step 5. We prove (iii).

The difference of two connections V and V' is linear over the functions, i.e.
(V' = V)(fs) = f(V' —V)s for all f € QM) and all s € Q°(M,E). We
leave it to the reader to verify that such an operator V' — V is given by
multiplication with an endomorphism valued 1-form. (Hint: See Step 2.)
Step 6. We prove (i).

Choose a partition of unity p, : M — [0, 1] subordinate to the cover {Up, }q
and define A, € Q' (U,,End(V)) by

Ay = prg;ofdgm. (8.1.6)
v

These 1-forms satisfy (8.1.5) and hence determine a connection on E, by
Step 4. This proves Proposition [8.1.3 O
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Example 8.1.4. The Levi-Civita connection of a Riemannian metric is an
example of a connection on the tangent bundle £ = T'M (see [21]).

Exercise 8.1.5. Let s : M — E be a smooth section and p € M be a zero
of s so that s(p) = 0, € E,. Then the vertical derivative of s at p is the map

T,M — E, : v~ Ds(p)v = V,s(p)
for every connection V on E. (See Definition [7.3.1])

Just as the usual differential d : Q°(M) — Q' (M) extends to a family of
linear operators d : QF(M) — QF+1(M), so does a connection V on a vector
bundle E induce linear operators d" on differential forms with values in E.

Proposition 8.1.6. Let 7 : E — M be a vector bundle over a smooth
manifold and V : Q°(M, E) — QY(M, E) be a connection. Then there is a
unique collection of operators

dV :Q¥(M,E) — Q' Y(M, E)
such that d¥ =V for k=0 and
dV(r Aw) = (dr) Aw + (—1)38M 7 A dVw (8.1.7)

for every T € Q*(M) and every w € Q*(M, E). In the local trivializations
the operator dV is given by

(de)a = dwg + Ao N\ wq (8.1.8)
for w € QF(M, E) and wq := pry o 1y 0wy, € QF(Uy, V).

Proof. Define d¥w by (8.1.§) and use equation (8.1.5) to show that dVs is
well defined. That this operator satisfies (8.1.7)) is obvious from the defi-

nition. That equation determines the operator dv uniquely, follows
from the fact that every k-form on M with values in E can be expressed as a
finite sum of products of the form 7;s; with 7, € QF(M) and s; € QO(M, E).
This proves Proposition [8.1.6 O

Exercise 8.1.7. Show that
(@Vw)(X,Y) = Vx (@(Y)) = W(w(X)) +w([X,Y]) (8.1.9)
for w € QY(M, E) and X,Y € Vect(M) and
(de)(X’ Y, Z) = VX(W(K Z)) + VY(W(Zv X)) + VZ(W(va))
—w(X,[Y, 2]) —w(Y,[Z,X]) - w(Z,[X,Y])
for w € Q*(M, E) and X,Y, Z € Vect(M). Hint: Use and (5.3.7).

(8.1.10)
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8.1.3 Parallel Transport

Let V be a connection on a vector bundle # : E — M over a smooth
manifold. For every smooth path v : I — M on an interval I C R the
connection determines a collection of vector space isomorphisms

v .
O (1, 10) + Byrg) = By
between the fibers of E along v satisfying
DY (ta,t1) 0 BY (t1,t0) = DY (t2,t0),  ®Y(t,t) =1id (8.1.11)

for t,tg,t1,t2 € I. These isomorphisms are called parallel transport of V
along v and are defined as follows.

A section of E along < is a smooth map s : I — E such that ros =~
or, equivalently, s(t) € E. ) for every t € I. Thus a section of E along v
is a section of the pullback bundle v*E — I and the space of sections of F
along v will be denoted by

QI VE):={s:1— E|nos=n}.
The connection determines a linear operator
V:QUILYE) = QYT E),

which is called the covariant derivative, as follows. In the local trivial-
izations 1, : 71 (Uy) — Uy x V a section s € Q0(I,7*E) is represented by
a collection of smooth curves s, : I, — V via

5a(t) =: Yal(y(t))s(t) €V, te I, =~y YUy,). (8.1.12)
These curves satisfy
s6(t) = gpa(¥(t))salt), telaNlig (8.1.13)

for all a, 8. Conversely, any collection of smooth curves s, : I, — E satis-
fying (8.1.13) determines a smooth section of E along v via (8.1.12)). The
covariant derivative Vs(t) € E, () is defined by

(Vs)a(t) = 8a(t) + Aa(F(t))sa(t), t e l,. (8.1.14)
By we have (Vs)g = g38a(7)(Vs)a on I N Iz and hence the vector
Vs(t) := e (7(t) 1 (Vs)a(t) € E, ), t €Iy, (8.1.15)

is independent of the choice of a with v(t) € U,,.
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Let us fix a smooth curve v : I — M and an initial time tg € I. Then
it follows from the theory of linear time dependent ordinary differential
equations that, for every eg € E,(y,), there is a unique section s € QI v*E)
along ~ satisfying the initial value problem

Vs =0, s(to) = eo. (8.1.16)
This section is called the horizontal lift of v through eg.

Definition 8.1.8 (Parallel Transport). The parallel transport of V
along v from ty to ¢t € I is the linear map

Y (t:t0) : Eyao) = By
defined by
@Wv(t,to)eo = s(t) (8.1.17)

for eqg € By, where s € QUI,~*E) is the unique horizontal lift of ~y
through eg.

Exercise 8.1.9. Prove that parallel transport satisfies (8.1.11)).

Exercise 8.1.10 (Reparametrization). If ¢ : I’ — I is any smooth map
between intervals and v : I — M is a smooth curve then

DY 4(t1,t0) = Y (¢(t1), 6(t0)) : Eysito)) = Er(o(tr)

for all tg,t; € I'.

8.1.4 Structure Groups
Let G C GL(V) be a Lie subgroup with Lie algebra

g := Lie(G) = T1G C End(V)

Let m: E — M be a vector bundle with structure group G, local trivializa-
tions ¥g : 71 (Uy) — Uy x V, and transition maps gga : Us NUs — G. The
bundle of endomorphisms of E' is defined by

peM,&: E, — E,is a linear map,

End(E) := {(p,E) ’ peUy = Yu(p)olotn(p) ™ eg

} . (8.1.18)
Thus End(E) is a vector bundle whose fibers are isomorphic to the Lie
algebra g. The space of sections of End(E) carries a Lie algebra structure,
understood pointwise. Differential forms with values in End(E) are in local
trivializations represented by differential forms on U, with values in g.
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Proposition 8.1.11. Let V : Q°(M, E) — QY (M, E) be a connection on E
with connection potentials A, € Q°(Uy, End(V)).

(i) The connection potentials A, € QY (Uy,g) take values in g if and only
if parallel transport preserves the structure group, i.e. for every smooth path
v: I — M and all to,t1 € I with y(to) € Uy and v(t1) € Ug we have

hp(v(t1)) 0 BY (t1,t0) © Ya(y(te)) ' € G. (8.1.19)

V is called a G-connection on E if it satisfies these equivalent conditions.

(ii) If V is a G-connection and A € QY(M,End(E)) then V + A is a G
connection. If V,V': Q°(M, E) — QY(M, E) are G-connections then

V' -V € QY(M,End(E)).

(iii) Fvery G-bundle admits a G-connection.

Proof. Tt suffices to prove (i) for curves v : I — U,. If A, € QY (U,,g) then

(1) == Aa(¥(t) € g

for every t € I. Thus £ : I — g is a smooth curve in the Lie algebra of G
and hence the differential equation

9(t) +&(t)g(t) =0, glto) =1,

has a unique solution g : I — G C GL(V). Now parallel transport along -y
from tg to t is given by

(1 t0) = Ya(7(t)) " 0 g(t) 0 ta((t0)) : Erry) = By

and hence satisfies (8.1.19). Reversing this argument we see that
for every smooth path v : I — U, implies A, € Q'(U,,g). This proves (i).
Assertion (ii) follows follows immediately from (i) and Proposition
Assertion (iii) follows from the explicit formula in the proof of Propo-
sition This proves Proposition [8.1.11 O

Example 8.1.12 (Oriented Vector Bundle). Let V' be an oriented vec-
tor space and G = GLT(V) be the group of orientation preserving auto-

morphisms of V. Vector bundles with structure group GL* (V) are oriented
vector bundles (see Definition [7.1.22]).
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Example 8.1.13 (Riemannian Vector Bundle). Let V be a finite-
dimensional oriented real Hilbert space and G = SO(V) be the group of
orientation preserving orthogonal transformations of V. If # : E — M is
a vector bundle with structure group SO(V') then the local trivializations
induce orientations as well as inner products

Ep X Ep —R: (61,62) — (61,€2>p

on the fibers. The inner products fit together smoothly in the sense that
the map M — R : p — (s1(p), s2(p))p is smooth for every pair of smooth
sections s1,s0 € Q°(M,E). Such a family of inner products is called a
Riemannian structure on E and a vector bundle F with a Riemannian
structure is called a Riemannian vector bundle.

A connection V on a Riemannian vector bundle 7 : E — M is called a
Riemannian connection if it satisfies the Leibnitz rule

d(s1,s2) = <V81, 82) + <81, VSQ) (8.1.20)

for all si,sy € Q°(M, E). Exercise: Prove that every oriented Rieman-
nian vector bundle admits a system of local trivializations whose transition
maps take values in SO(V). Prove that Riemannian connections are the
SO(V)-connections in Proposition In other words, a connection is
Riemannian if and only if parallel transport preserves the inner product.
Prove that End(F) is the bundle of skew-symmetric endomorphisms of E.

Example 8.1.14 (Complex Vector Bundle). Let V be a complex vector
space and G = GL¢ (V') be the group of complex linear automorphisms of V.
If 7: E — M is a vector bundle with structure group GL¢ (V') then the local
trivializations induce complex structures on the fibers of the vector bundle
that fit together smoothly, i.e. a vector bundle automorphism

J:E— E, J? = —1.

The pair (E,J) is called a complex vector bundle.
A connection V on a complex vector bundle 7 : E — M is called a com-
plex connection if it is complex linear, i.e.

V(Js) = JVs (8.1.21)

for all s € Q9(M, E). Exercise: Prove that every complex vector bundle
admits a system of local trivializations whose transition maps take values
in GL¢(V). Prove that complex connections are the GL¢(V')-connections
in Proposition In other words, a connection is complex linear if and
only if parallel transport is complex linear. Prove that End(F) is the bundle
of complex linear endomorphisms of E.
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Example 8.1.15 (Hermitian Vector Bundle). A Hermitian vector
space is a complex vector space V equipped with a bilinear form

VxV—=C:(u,v)— (u,v).

whose real part is an inner product and that is complex anti-linear in the
first variable and complex linear in the second variable. Thus, for u,v € V'
and A € C, we have

(Au,v), = X(u,v)c, (uy, Av)e = Mu, v)e.

Such a bilinear form is called a Hermitian form on V. Note that the
complex structure is skew-symmetric with respect to the inner product

(.’ > = Re <.’ .>C’

and that any such inner product uniquely determines a Hermitian form. The
group of unitary automorphisms of a Hermitian vector space V is

U(V):={g € GLc(V) | (gu, gv)e = (u,v). Yu,v € V'}.

For V = C" we use the standard notation U(n) := U(C").

If 7 : E— M is a vector bundle with structure group U(V') then the local
trivializations induce Hermitian structures on the fibers of the vector bundle
that fit together smoothly. Thus E is both a complex and a Riemannian
vector bundle and the complex structure is skew-symmetric with respect to
the Riemannian structure:

<61,J€2>+<J61,€2> =0, e1, e GEp.
The Hermitian form on the fibers of E' is then given by
(61, €2>c = <€1, €2> + i<J€1, €2>, e1,€9 € Ep.

A complex vector bundle with such a structure is called a Hermitian vec-
tor bundle. Every Hermitian vector bundle admits a system of local trivi-
alizations whose transition maps take values in U(V). Thus vector bundles
with structure group U(V') are Hermitian vector bundles.

A connection V on a Hermitian vector bundle 7 : E — M is called
a Hermitian connection if it is complex linear and Riemannian, i.e. if it
satisfies (8.1.20) and (8.1.21)). Thus the Hermitian connections are the U(V)-
connections in Proposition In other words, a connection is Hermitian
if and only if parallel transport preserves the Hermitian structure. Moreover,
End(E) is the bundle of skew-Hermitian endomorphisms of E.
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Exercise 8.1.16. Every complex vector bundle E admits a Hermitian struc-
ture. Any two Hermitian structures on E are related by a complex linear
automorphism of £. Hint: Let V' be a complex vector space and (V)
be the space of Hermitian forms on V' compatible with the given complex
structure. Show that J# (V') is a convex subset of a (real) vector space and
that GLc (V) acts tansitively on .2 (V). Describe Hermitian structures in
local trivializations.

8.1.5 Pullback Connections
Let m: E — M be a vector bundle with structure group G C GL(V), local

trivializations ¢ : E|y, — U, x V, and transition maps
98a 1 Ua x Ug — G.
Let V be a G-connection on F with connection potentials
AY € QY (U,, 9).
Let
f:M —-M
be a smooth map between manifolds. We show that the pullback bundle

J'E={(p;,e) e M' x E| f(p) = 7(e)}
is a G-bundle over M’ and that the G connection V on E induces a G-

connection f*V on f*E. To see this note that the local trivializations of £
induce local trivializations of the pullback bundle over f~!(U,) given by

Yo FElpawa = U)XV, (%)) == (0, pra 0 Yale)).
Thus
(F ) @) = ©alf(0) : (fFE)y = Efpry =V

for p’ € f~1(U,) and the resulting transition maps are given by

F 980 =gsao [+ [T (Ua) N f71(Us) = G.
The connection potentials of the pullback connection f*V are, by defini-
tion, the 1-forms

ALY =AY € QY FHUL), 9)-
Thus f*F is a G-bundle and f*V is a G-connection on f*F.
Exercise: Show that the 1-forms A£ v satisfy equation (8.1.5)) with gg,
replaced by f*gg, and hence define a G-connection on f*FE.

Exercise: Show that the covariant derivative of a section along a curve is
an example of a pullback connection.
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8.2 Curvature

8.2.1 Definition and basic properties

In contrast to the exterior differential on differential forms, the operator dV
does not, in general, define a cochain complex. The failure of d¥ o dV to
vanish gives rise to the definition of the curvature of a connection.

Proposition 8.2.1. Let 7 : E — M be a vector bundle over a smooth
manifold and V : Q°(M, E) — QY(M, E) be a connection.

(i) There is a unique endomorphism valued 2-form FY € Q?(M,End(FE)),
called the curvature of the connection V, such that

dVdVs=FVs (8.2.1)
for every s € QY(M, E). In local trivializations the curvature is given by
(FV8)g = Fusa,  Foi=dAg+ Ag N Ay € Q*(Uy, End(V)).  (8.2.2)
Moreover, on Uy, N Ug we have
98aFa = Fs9sa- (8.2.3)
(ii) For every w € QF(M, E) we have
dVdVw =FY Aw. (8.2.4)
(iii) For X,Y € Vect(M) and s € Q°(M, E) we have
FY(X,Y)s = VxWs — WVxs + Vxy]s. (8.2.5)
(iv) If V is a G-connection then F¥ € Q*(M,End(E)). (See (8.1.18).)

Proof. We prove (i). Define F,, € Q*(U,,End(V)) by (8.2.2). Then, for
every s € QU(M, E), we have

(dVdYs)a = d(dsa + Aasa) + Aa A (dsa + Aasa)
=d(AaSa) + Aa Ndse + (Ao N Al)Sa
= (dAa + Ao N Ad) 54

= F,54.-

(8.2.6)

Hence on U, N Ug:

9gatasa = gsa (dvdvs)a = (dvdvs)ﬁ = Fgsg = FgggaSa-
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This shows that the F, satisfy equation (8.2.3) and therefore determine a
global endomorphism valued 2-form FV € Q%(M,End(FE)) via

(FV58)g = Fasa

for s € QY(M,.E). By (8.2.6) this global 2-form satisfies (8.2.1]) and it is
uniquely determined by this condition. Thus we have proved (i).

We prove (ii). Given 7 € Q(M) and s € Q°(M, E), we have
dva¥ (rs) =dY ((dr)s + (-1)'7 A dVs)
=7AdVdVs
=71FVs
= FV A (75).
Since every k-form w € QF(M, E) can be expressed as a finite sum of k-forms

of the form 7s we deduce that FV satisfies (8.2.4) for all k. This proves (ii).
We prove (iii). Let X,Y € Vect(M) and s € QY(M, E). It follows from

equation [B.1.9) in Exercise [B.1.7] that
FY(X,Y)s = Vx (dVs(Y)) = W (dVs(X)) +dVs([X,Y])
=VxWs —VWVxs + V[X’y]s.

This proves (iii).
We prove (iv). If V is a G-connection then

(Fa>p(ua U) = (dAa)p<uv U) + [Aa(u>7 Aa(v)] €y
for all p € U, and u,v € T, M. This proves (iv) and Proposition O

Remark 8.2.2. A connection on a vector bundle 7 : £ — M induces a
connection on the endomorphism bundle End(E) — M. The corresponding
operator

dv : QF(M,End(E)) — Q1 (M, End(E))

is uniquely determined by the Leibnitz rule
dV(®s) = (dV®)s + (—1)3®)p A dVs

for ® € QF(M,End(E)) and s € Q°(M, E). Exercise: If the operator dv
on QO*(M,End(F)) is defined by this formula, prove that

dV(®AT) = (dVB) AT + (—1)4ED)P A gV

for ®, ¥ € Q*(M,End(FE)). Deduce that the operator d¥ on Q*(M, End(E))
arises from a connection on End(E).
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8.2.2 The Bianchi Identity

Proposition 8.2.3 (Bianchi Identity). Every connection V on a vector
bundle m: E — M satisfies the Bianchi identity

dVFY = 0. (8.2.7)

Proof 1. By definition of the operator
dv : Q*(M,End(E)) — Q3(M,End(E))
we have
(dVEYV)s =dYV(FVs) — FY ANdVs =dY (dVdVs) — (dVdY)dVs =0
for s € Q°(M, E). O
Proof 2. In the local trivializations we have
(dVFVs)y = (dVFVs—FY AdVs),
= d(Fusa) + Ao AN Fosq — Foy A (dsq + AaSa)

(dFy 4+ Aa AN Fo — Fu N Ag) Sa
= ( A /\A +Aa/\dAa_(dAoc)/\A0¢)sa
0

for s € Q°(M, E). O
Proof 3. It follows from (8.1.10) that

(dVFVs)(X,Y, Z)

=dV(FVs)(X,Y,Z) — (F¥ AdVs)(X,Y, Z)

= Vx (FY(Y, 2)s) + W (FY(Z,X)s) + Vz (FY(X,Y)s)
—FY(X,[Y,Z))s — FV(Y,[Z,X])s — FV(Z,[X,Y])s
—FY(Y,Z)Vxs — FV(Z,X)Ws — FV(X,Y)Vzs

=0.

for X,Y,Z € Vect(M) and s € Q°(M, E). Here the last equation follows
from (8.2.5) by direct calculation. O

Example 8.2.4. If V is the Levi-Civita connection on the tangent bundle
of a Riemannian manifold then (8.2.5) shows that FY € Q%(M,End(TM))
is the Riemann curvature tensor and (8.2.7)) is the second Bianchi identity.
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8.2.3 Gauge Transformations

Let m: E — V be a vector bundle with structure group G € GL(V), local
trivializations 1, : 71 (Uy) — Uq X V, and transition maps

gga:UaﬂUﬁ—)G.

A gauge transformation of F is a vector bundle automorphism v : £ — F
such that the vector space isomorphism

U (p) := Yo (p) o u(p) o wa(p)_1 V=V (8.2.8)

is an element of G for every a and every p € U,. The group
G(E) = {u: E = E|ta(p)ou(p) ovba(p) ™' € GVa Vp e Ua},

of gauge transformations is called the gauge group of F.
In the local trivializations a gauge transformation is represented by the
maps uq : Uy — G in (8.2.8). For all « and /3 these maps satisfy

9Balla = UBGpa (829)

on U, NUg. Conversely, every collection of smooth maps u, : Uy — G

satisfying (8.2.9)) determines a gauge transformation v € ¢ (FE) via ({8.2.8]).

The gauge group can be thought of as an infinite-dimensional analogue of a
Lie group with Lie algebra

Lie(9(E)) = Q°(M,End(E)).

If £: M — End(FE) is a section the pointwise exponential map gives rise to

a gauge transformation u = exp(§). This shows that the gauge group ¥(FE)

is infinite-dimensional (unless G is a discrete group or M is a finite set).
Let us denote the space of G-connections on E by

A (E) :={V:Q°%M,E) - Q' (M,E)|V is a G-connection } .

By Proposition this space is nonempty and the difference of two G-
connections is a 1-form on M with values in End(E). Thus o/ (F) is an affine
space with corresponding vector space Q!(M,End(E)). The gauge group
¢ (FE) acts on the space of k-forms with values in E in the obvious manner
by composition and it acts on the space of G-connections (contravariantly)
by conjugation. We denote this action by

wWV=uloVou: QM E)— QY(M,E)
for V€ &/ (F) and u € 4(F). The connection potentials of u*V are
AZ*V = u;ldua + u;lAZua € Ql(Uav 9). (8.2.10)
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Lemma 8.2.5. The curvature of the connection u*V is given by
FUV =y o FYV ou € Q*(M,End(E)) (8.2.11)
and in the local trivialisations by
FYV = u VY ug € Q2(Uy, g).
The parallel transport of the connection u*V is given by
UV (t1,t0) = u(v(t1)) " o By (t1,t0) o u(y(t0)) : Bygrg) = Eyyy (8.2.12)
for every smooth path ~v: I — M and all tg,t1 € 1.

Proof. Equation (8.2.11)) follows directly from the definitions. To prove
equation (8.2.12) we choose a smooth curve v : I — U, and a smooth
vector field s(t) € E, ;) along v and abbreviate

Si=uls, V =4V, A, = ug L dug + ugt Agtig.
In the local trivialization over U, we have

sa(t) = Ya(v(t) "' s(t)
and
Ba(t) = Pa(y(t)Tu(v(t))s(t)

and hence

Sa(t) = ua(y(t))sa(t)'
Differentiating this equation we obtain

(Vs)a = $a + Aa(¥)sa

d

— ua(y)%ga + (dua('y)"y)ga + Aa(Y)ua(7)Sa

d__ ~
= ua(7) <dt$a + Aa(7)5a>
= (u%’sv)a
Thus we have proved that
(uw*V)(u"ts) = u"1(Vs). (8.2.13)

In particular, Vs = 0 if and only if (u*V)(u"'s) = 0. This proves (8.2.12)
and Lemma [8.2.5] O
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8.2.4 Flat Connections

A connection V : Q°(M, E) — QY (M, E) on a vector bundle 7 : E — M is
called a flat connection if its curvature vanishes. By Proposition a
flat connection gives rise to a cochain complex

0 ¥, 1 dv, 2 dv v m
(M, E) — QU (M,E) — Q*(M,E) — --- — Q"™(M,E). (8.2.14)
The cohomology of this complex will be denoted by

ker dV : QF(M, E) — QF1(M, E)
im dY : QFY(M,E) = QM,E)"

H*(M,V) :=

The de Rham cohomology of M is the cohomology associated to the trivial
connection V = d on the vector bundle £ = M x R. The cohomology of the
cochain complex for a general flat connection V on FE is also called
de Rham cohomology with twisted coefficients in E. We shall see
that a vector bundle need not admit a flat connection.

To understand flat connections geometrically, we observe that any con-
nection V on a vector bundle 7 : £ — M determines a horizontal sub-
bundle H C TFE of the tangent bundle of E. It is defined by

d
H, = —
¢ {dt

for e € E. Note that the function s : R — FE in this definition is a section of
FE along the curve v := mos : R — M. The image of H. under the derivative
of a local trivialization v, : 71 (Uy) — U, X V with

s(t)

t=0

s:R—E, s(0)=e, Vs = 0} (8.2.15)

p:=m(e) € Uy,

is the subspace

dpo(e)He = {(p,0) € T,M x V|0 + (Aa)p(p)v =0} .
Here A, € Q'(U,, End(V)) is the connection potential of V.
Theorem 8.2.6. Let V be a connection on a vector bundle 7 : £ — M.
The following are equivalent.
(i) The curvature of V vanishes.
(ii) The horizontal subbundle H C TE is involutive.

(iii) The parallel transport isomorphism @3(1,0) : By — Ey1) depends

only on the homotopy class of v : [0,1] — M with fized endpoints.



8.2. CURVATURE 233

Proof. We prove that (i) implies (iii). Let pg,p; € M and
[0,1] x [0,1] = M = (A, ) = y(A, 1) = Mm(¢)
be a smooth homotopy with fixed endpoints

Y (0) = po, (1) = p1, 0<A<I

Fix an element ey € E,, and, for 0 < A < 1, denote by sy : [0,1] — E the
horizontal lift of vy through eg. Then it follows from the theory of ordinary
differential equations that the map

[0,1] x [0,1] = E: (A £) > s(\ 1) := sx(t)

is smooth. Let Vs be the covariant dervative of the vector field A — s(A,t)
along the curve A — (A, t) with ¢ fixed and similarly with A and ¢ inter-
changed. Then

FN (0xy,0r7)s = WVis — V, Vs (8.2.16)

This is the analogue of equation (8.2.5) for sections along 2-parameter
curves. The proof is left as an exercise for the reader. Since Vis = 0,
by defintion, and FV = 0, by (i), we obtain

ViVas = 0.

For ¢ = 1 this implies that the curve [0,1] — E,, : A — s)(1) is constant.
Thus we have proved that (i) implies (iii).

We prove that (iii) implies (ii). Choose a Riemannian metric on M
and fix an element ey € E. Let Uy C M be a geodesic ball centered at
po = m(ep), whose radius is smaller than the injectivity radius ro of M at
po. Then there is a unique smooth map § : Uy — T}, M such that

exp,, (§(p)) = p, 1€(p)| <o

We define a smooth section s : Uy — E over Uy by

5(p) == ®,,(1,0)e0 € By, p(t) := exp, (t&(p))

If v:[0,1] — Up is any smooth curve connecting pp to p then ~y is homo-
topic to v, with fixed endpoints and hence s(7(1)) = ®,(1,0)ep. The same
argument for the restriction of 7 to the interval [0, ] shows that

s(y(t)) = ®+(t,0)eo, 0<t<I1.
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Differentiating this equation at ¢ = 1 we obtain

d

a1 = 5|

S(V(t)) € Hs(p)-

This holds for every smooth path v : [0, 1] — M with v(0) = po and v(1) = p.
Since §(1) can be chosen arbitrarily we obtain im ds(p) C Hy,). Since
dim(Hy(p)) = dim(M) = dim(7,,M) for every p € M we have

s(po) = eo, imds(p) = Hyp) Y p € Up.

Thus we have found a submanifold of E through ey that is tangent to H.
Hence H is integrable and, by the Theorem of Frobenius, it is therefore
involutive. Thus we have proved that (iii) implies (ii).

We prove that (ii) implies (i). A vector field X € Vect(M) has a unique
horizontal lift X# € Vect(E) such that

droX#* =Xon, X¥(e)ecH, VeckE.
We show that the Lie bracket of two such lifts is given by
(X#,Y#](e) = [X,Y]#(e) + FY (X(7(e)),Y(n(e))). (8.2.17)

This equation is meaningful because FY (X (n(e)),Y (n(e)) € E. C T.E.
To prove (8.2.17) we observe that the restriction of X7 to 7~ 1(U,) is the
pullback under 1, of the vector field X7 e Vect(U, x V') given by

XE(pv) = (X(p), = (Aa 0 X)(p)v)
for p € Uy and v € V. Hence pr; o [XZ,YZ] = [X,Y] and

pro[XT, Y (p,v) = (Aao X)(p)(AaoY)(p)v

—Ly(Aq 0 X)(p)v
—(Aa 0 Y)(p)(Aa 0 X)(p)v
+Lx(Ag oY) (p)v

= [Aa(X(p)), Aa(Y (p))]v
+dAo (X (p), Y (p))v — Aa([X, Y](p))v

= Fa(X(p),Y(p))v— Aa([X,Y](p))v.

Here the second equation follows from for the trivial connection on

Ua xEnd(V) and the last equation follows from (8.2.2)). This proves (8.2.17).
It follows immediately from that the connection V is flat whenever
the horizontal subbundle H C TF is involutive. Thus we have proved
that (i) implies (i). This proves Theorem [8.2.6] O
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Fix a vector space V and a Lie subgroup G C GL(V). Every flat G-
connection V on a vector bundle 7w : E — M with structure group G gives
rise to a group homomorphism

pv : 7-[-1(]\471)0) — G7
defined by

p¥(7) :=ta(po) © ®4(1,0) 0 Pa(po) ' € G C GL(V) (8.2.18)

for every smooth loop ~ : [0, 1] — M with endpoints v(0) = y(1) = po. Here
VYo : T HUy) — Uy x V is a local trivialization with pg € U,. By Propo-
sition the right hand side of is an element of the structure
group G and, by Theorem it depends only on the homotopy class of ~y
with fixed endpoints. The notation pV is slightly misleading as the homo-
morphism depends on a choice of the local trivialization .. However, dif-
ferent choices of the local trivialization result in conjugate homomorphisms.
Moreover, different choices of the base point result in conjugate representa-
tions, by equation . And Lemma shows that the gauge group
%(F) acts on the space &/2(E) of flat G-connections on E and that the
representations p¥ and p*V are conjugate for every V € &712*( E) and every
u € 4(F). Thus the correspondence V ~ pV defines a map

%ﬂat(E) — ”Q{ﬂat(E) N Hom(ﬂ-l(M)?G).

Y(E) conjugacy (8.2.19)

This map need not be bijective as different representations p : m (M) — G
may arise from flat connections on non-isomorphic G-bundles. However it
extends to a bijective correspondence in the following sense.

Exercise 8.2.7. Prove the following assertions.
(T) For every homomorphism p : m (M) — G there is a flat G-connection V
on some G-bundle £ — M such that pV is conjugate to p.
(IT1) If (E,V) and (E', V') are flat G-bundles with fibers isomorphic to V
such that p¥ and pV' are conjugate then (E, V) and (E’, V') are isomorphic.
In particular, the map (8.2.19)) is injective.
Hint: Use parallel transport to prove (II). To prove (I) choose a universal
cover M — M and define E as the quotient

_ M xV

-~ m(M,po)
Here the fundamental group acts on V' throught p. Sections of E are p-

equivariant maps s : M — V. As the additive group R is isomorphic to
GL™(R) via the exponential map, this gives another proof of Exercise[6.5.20
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8.3 Chern—Weil Theory

8.3.1 Invariant Polynomials

We assume throughout that V' is a real vector space and G C GL(V) is
a Lie subgroup with Lie algebra g := Lie(G) C End(V). An invariant
polynomial of degree d on g is a degree-d polynomial p : g — R such that

p(g€g™") = p(&) (8.3.1)

for every £ € g and every g € G. The polynomial condition can be expressed
as follows. Choose a basis ey, ..., ey of g and write the elements of g as

N . .
£=) tei,  EER
=1

Then a polynomial of degree d on g is a map of the form

p&) =D ak, &= () (e (€N, (8.3.2)
lv|=d
where the sum runs over all multi-indices v = (11, ..., vn) € NJ satisfying

V| :=1r1 +1r0+--+uvy=d.

Definition 8.3.1. Let p : g — R be an invariant polynomial of degree d. Let
w: E — M be a vector bundle with structure group G and local trivializations

Vo 11 HUy) = Uy x V.
Let V be a G-connection on E. We define the differential form
p(FV) € 02(M)
as follows. Let F,, € Q%*(Uy,,g) be given by and write

F, = ngei, wg € QQ(Ua).

If p has the form (8.3.2)) we define
p(FV)|y, = Z a,we, Wl = (WA W) A A (W)
|v|=d
It follows from (8.2.3) and the invariance of p that these definitions agree
on the intersection U, N Ug for all o and B. The reader may verify that the

differential form p(FV) € Q%4(M) is independent of the choice of the basis
of g used to define it.
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8.3.2 Characteristic Classes

Theorem 8.3.2 (Chern—Weil). Let p: g — R be an invariant polynomial
of degree d and m: EE — M be a vector bundle with structure group G.

(i) The form p(FV) € Q24(M) is closed for every G-conection V on E.

(ii) The de Rham cohomology class of p(FY) € Q%*/(M) is independent of
the choice of the G-conection V.

(iii) If f : M’ — M is a smooth map then p(F1™V) = f*p(FV).

By Theorem [8.3.2] every invariant polynmial p : g — R of degree d on
the Lie algebra of the structure group G determines a characteristic de
Rham cohomology class

p(E) = [p(FY)] € H*(M)

for every vector bundle 7 : E — M with structure group G. Namely, by
Proposition there is a G-connection V on E and, by Theorem [8:3.2]
the differential form p(FY) € Q24(M) associated to such a connection is
closed and its cohomology class is independent of V. It follows also from
Theorem R.3.2] that the characteristic classes of G-bundles over different
manifolds are related under pullback by smooth maps f : M’ — M via

p(f*E) = [*p(E).

Since p(FV) = 0 for every flat G-connection V, a G-bundle with a nontrivial
characteristic class does not admit a flat G-connection.

Proof of Theorem[8.3.3 We prove (i). The Lie bracket on g determines
structure constants cfj € R such that

N
[ei,ej]:Zcfjek, i,j=1,...,N.
k=1

It follows from the invariance of the polynomial that

p(exp(tn)€ exp(—n)) = p(€)

for all £,n € g and all t € R. Differentiating this identity at ¢ = 0 we obtain

DO 6= G| rleimen-n) =0
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For k =1,..., N define the polynomial p; : g — R of degree d — 1 by

pr(§) = dp(§)er
Then, for i =1,..., N, we have
N

0= dp 61, ijdp ezvej = Z ijfjpk(f)

7,k=1

Replacing £ by the 2-form
N .
Wo = ngei = FY € Q*(Uy, 9)
of Definition [R.3.3] we obtain

m
Jk=1

Now write the connection potentials AY € Q!(U,,g) in the form
N
= dhei,  al, € QN (U).
i=1

Then the Bianchi identity takes the form
0= (dVFY)y = dEY +[AY AFY]
N . .
(dwg)er + Y ap Awllei ej]
ij=1

M= IM=

dwk + Z cfja; Awl | eg.

k=1 i,7=1

Hence
dw +Zcf]a’a/\w9—0 k=1,...,N. (8.3.4)

1,j=1

Combining equatlons and (| we obtain
N
d(p(wa)) = Zpk(wa) Nwf == > dipr(wa) Aah Awh = 0.
k=1 i,j,k=1

Here the first equation is left as an exercise for the reader, the second equa-

tion follows from (8.3.4), and the last equation follows from (8.3.3). Thus

we have proved (i).
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We prove (ii). Let V? and V! be two G-connections on E with con-
nection potentials A% € QY(U,,g) and AL, € Q'(Uy,g), respectively. Then
Proposition [8.1.11] shows that, for ¢ € R, the operator

Vi=1-t)VP+tV!: Q%M E) — QY(M, E)
is a G-connection on F with connection potentials
Al =tAL + (1 -1)A° € QY (U,, g).

Define a connection V on the vector bundle E := E x R over M := M x R
as follows. The local trivializations are given by

Yo 17 (Ua) X R = (Ua x R) XV, t(e,t) := ((p,1), Pr2 0 Yale)).
The connection potentials of V in these trivializations are the 1-forms

Aa €' Ua xR,g),  (Ad) ) (B,1) := (A4)p(D)
for p € Uy, p € T,M, and t,# € R. Then

FY = FY' — 9,AL Adt € QX (U, x R, g)

and hence _
p(FY) = w(t) +7(t) Adt € Q* (M x R),
where
wt) :=p(FV') e M), teR,
and

R — Q2L (M) : t — 7(t)
is a smooth family of (2d—1)-forms on M. By (i) the 2d-form p(F%) on M =
M x R is closed. Thus, by equation (6.3.2) in the proof of Theorem [6.3.8]
we have
0= d"*Ep(FV) = aMw(t) + (d B(t) + dw(t)) A dt.
This implies dyw(t) = —d™ B(t) for every t and hence

1 1
vih _ VY = w(1) — w(0) = om =—d" :
p(EYY) — p(F™") = w(1) - w(0) /0 Drom(t) dt = —d /0 B(t) di

Thus p(FV') — p(FV") is exact and this proves (ii).

We prove (iii). In Section we have seen that the curvature of the
pullback connection f*V is in the local trivializations f*v, given by the
2-forms

F{V = f*FY € Q'(f 7' (Ua), ).
Hence it follows directly from the definitions that p(F/"V) = f*p(FV). This
proves (iii) and Theorem O
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8.3.3 The Euler Class of an Oriented Rank-2 Bundle

Let 7 : E — M be an oriented Riemannian real rank-2 bundle over a smooth
manifold. By Example [8.1.13| F is a vector bundle with structure group

-2 )

Its Lie algebra consists of all skew-symmetric real 2 x 2-matrices:

50(2):{»5:(2 _3> ‘)\ER}.

The linear map e : s0(2) — R defined by

a,c € R, a2+c2:1}.

-A
e(§) = o
is invariant under conjugation. (However, e(¢g~1¢g) = —e(¢) whenever

g € O(n) has determinant —1. Thus we must assume that E is oriented.)
Hence there is a characteristic class

e(E) == [e(FY)] € H*(M), (8.3.5)

where V is Riemannian connection on F. If we change the Riemannian
structure on F then there is an orientation preserving automorphism of F
intertwining the two inner products. (Prove this!) Thus the characteristic
class e(F) is independent of the choice of the Riemannian metric. We prove
below that is the Euler class of E whenever M is a compact oriented
manifold without boundary. Thus we have extended the definition of the
Euler class of an oriented real rank-2 bundle to arbitrary base manifolds.

Theorem 8.3.3. If E is an oriented real rank-2 bundle over a compact
oriented manifold M without boundary then (8.3.5) is the Euler class of E.

Proof. Choose a smooth section s : M — E that is transverse to the zero
section and denote

Q := s~ 10).
Choose a Riemannian metric on M and let

exp : TQé‘ — U,

be the tubular neighborhood diffeomorphism in ((7.2.11)). Multiplying s by
a suitable positive function on M we may assume that

peM\Uy = [s(p)| = 1.
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Next we claim that there is a Riemannian connection V on E such that
Vs=0 on M\ U,s. (8.3.6)

To see this, we choose on open cover {U,} of M such that one of the sets is
Usy = M\U, /3 and E admits a trivialization over each set U,. In particular,
we can use s to trivialize E over U,,. Next we choose a partition of unity
where po, =1 on M \ U /5. Then the formula in Step 6 of the proof
of Proposition defines a Riemannian connection that satisfies .
By we have FVs=dVVs=0on M\ Ue/p. Since FV is a 2-form
with values in the skew-symmetric endomorphisms of E we deduce that

FV'=0 on  M\U.p. (8.3.7)
The key observation is that, under this assumption, the 2-form
7. == exp*e(FY) € Q2(TQL)

is a Thom form on the normal bundle of (). With this understood we obtain

from Lemma [7.2.17| with 7o = e(FV) that

/MwAe(FV):/Qw:/MwAs*T

for every closed form w € Q™ 2(M) and every Thom form 7 € Q2(E),
where the last equation follows from Theorem [7.3.15] By Poincaré duality
in Theorem this implies that e(FY) — s*7 is exact, which proves the
assertion. Thus it remains to prove that 7. is indeed a Thom form on TQ->.
To see this, fix a point g9 € @) and choose a positive orthonormal basis

u,v € Ty QF, lu| = |v| =1, (u,v) = 0.
We define a smooth map ~ : D — U, on the closed unit disc D C R? by
v(z) == expy, (e(zxu + yv)).

for z = (x,y) € D. (The exponential map extends to the closure of TQZ.)
This is an orientation preserving embedding of I into a fiber of the normal

bundle mel followed by the exponential map. Moreover, we have

/ny*e(FV) = /De(FV*V) =1.

Here the first equality follows from part (iii) of Theorem and the second
equality follows from Lemma[8.3.4] below by choosing a positive orthonormal
trivialization of the pullback bundle v*E — D (for example via radial paral-
lel transport). Hence 7,7, = 1 and this proves Theorem m O
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Lemma 8.3.4. Let D C R? be the closed unit disc with coordinates z = (,y)
and let s : D — R? and £,1: D — 50(2) be smooth functions. Suppose that

=0, forz=0,
s(z) #0,  for z#0, det(ds(0)) > 0,
s(2)[ =1, for |z 2 1/2,

and that the Riemannian connection
V:=d+ A, A = &dx 4 ndy € QY(D, 50(2))

satisfies Vs =0 for |z| > 1/2. Then

/De(FV) =1.

Proof. Identify R? with C via z = z + iy and think of s as a vector field
on D. For 0 < r < 1 define the curve v, : S' — S1 by

'yr(eie) = s(reia).

Then the index formula for vector fields shows that

1

27
1= deg () = 5 /0 Ww(0) e 0)do,  12<r<1 (3.35)

To see this, choose a smooth function ¢ : R — R such that
3 (0) = 0

for all 8. Then
(0 + 27m) = ¢(0) + 27 deg(7»)

and this proves (8.3.8)).

At this point it is convenient to identify so(2) with the imaginary axis
via the isomorphism

t:50(2) — iR, L((i _g >) =i\
Thus £ € 50(2) acts on R?2 22 C by multiplication with ¢(¢) and

e(FY) = %L(FV) _ %dL(A), W(A) = 1(€) d + 1(n) dy.
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The condition Vs = 0 for |z| = 1 takes the form
Bps(e”) + u(€(e”))s(e”) =0, Bys(el?) + u(n(e”))s(e’) =0

and this gives

Hence

i [ :
=5 ; (cos(@)L(n(ele)) — sin(@)L(ﬁ(ele))) db
s 21
= —QL 71(0) " 41(0) db
T Jo
=1.

The last equation follows from (8.3.8)) and this proves Lemmam O

Corollary 8.3.5. An oriented Riemannian rank-2 vector bundle E over
M admits a flat Riemannian connection if and only if its Euler class e(E)
vanishes in the de Rham cohomology group H?(M).

Proof. If E admits a flat Riemannian connection V then e(FV) = 0 and so
its Euler class vanishes by Theorem Conversely, assume e(F) = 0 and
let V be any Riemannian connection on E. Then e(FV) is exact. Hence
there is a 1-form a € QY(M) such that e(FY) = da. Since the linear
map e : s0(2) — R is a vector space isomorphism, there exists a unique
1-form A € Q'(M,End(E)) such that e(4) = a. Hence V — A is a flat
Riemannian connection. This proves Corollary O

Exercise 8.3.6. Let m : E — M be an oriented real rank-2 bundle over a
connected simply connected manifold M with vanishing Euler class e(E) = 0
in de Rham cohomology. Prove that E admits a global trivialization. Hint:
Use the existence of a flat Riemannian connection in Corollary
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8.3.4 Two Examples

Example 8.3.7. Consider the vector bundle

S2 x R2
Bo=22% _ Rrp?

~

where the equivalence relation on S? x R? is given by (z,() ~ (=2, —() for
x € §% and ¢ € R%. By the Borsuk-Ulam Theorem this vector bundle does
not admit a nonzero section and hence has no global trivialization. It is ori-
ented as a vector bundle (although the base manifold RP? is not orientable)
and its Euler class vanishes in the de Rham cohomology group H?(RP?) = 0.
Exercise: Find a flat Riemannian connection on E.

Example [8.3.7 shows that the assertion of Exercise[8.3.6] does not extend
non simply connected manifolds. The problem is that the Euler class in
Chern—Weil theory is only defined with real coeflicients. The definition of
the Euler class can be refined with integer coefficients. This requires a
cohomology theory over the integers which we do not develop here. The
Euler class of an oriented rank-2 bundle is then an integral cohomology
class. In particular, H*(RP?;Z) & Z/2Z and the Euler class of the bundle
in Example is the unique nontrivial element of H?(RP?;Z). More
generally, oriented rank-2 bundles are classified by their Euler classes in
integral cohomology: two oriented rank-2 bundles over M are isomorphic if
and only if they have the same Euler class in H?(M;Z).

Example 8.3.8 (Complex Line Bundles over the Torus). A complex
line bundle over the torus
T =R™/Z™
can be described by a cocycle
Z™ — CR™,SY) 1 k> ¢y
which satisfies
Grre(z) = go(z + k) dr(2)

for x € R™ and k, ¢ € Z™. The associated complex line bundle is

R™ x C
= Zm 5
A section of Ey is a smooth map s : R — C such that

s(z + k) = dr(z)s(z)

Ey: [,(] =[x+ k,pp(x)z] VEkeZ™.

for z € R™ and k € Z™.
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A Hermitian connection on Ey has the form
V=d+A, A= zn:Ai(:r)dxi,
i=1
where the functions A; : R™ — iR satisfy the condition

Aila 4 ) — Aila) = ~6u(a) O (),

for all z € R™ and all k£ € Z™. This can be used to compute the Euler class
of the bundle.
For example, any integer matrix B € Z™*™ determines a cocycle

$B(x) = exp(27ik! Bx). (8.3.9)
A Hermitian connection on Eyp is then given by
m . .
VP=d+A,  A:i=-27m) a'Bjdal. (8.3.10)
ij=1
Its curvature is the imaginary valued 2-form

FVB =dA = —27Tiz (Bl'j — Bji) da' A dad.

i<j
Hence the bundle E¢” has the Euler class

e(Egn) = Y _ Cijlda’ Ada] € HY(T™),  C:=B-B".

i<j

This bundle admits a trivialization whenever B is symmetric and it admits
a square root whenever B is skew-symmetric. (Prove this.) Another cocycle
with the same Euler class is given by

bi(z) = e(k) exp(mik? Cx), e(k+£) = e(k)e(0) exp(rik? C¥),
with e(k) = £1. If C = B — BT then the numbers
(k) = exp(nik? Bk)

satisfy this condition.
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Two cocycles ¢ and 1 are called equivalent if there exists a smooth
map
u:R™ — St

that satisfies the condition
Yr(x) = ulx + k)_1<z3k(:r)u(x)

for all z € R™ and k € Z'™. We claim that every cocycle ¢ is equivalent to
one of the form . To see this, we use the fact that every 2-dimensional
de Rham cohomology class on T" with integer periods can be represented
by a 2-form with constant integer coefficients (see Example . This
implies that there is a skew-symmetric integer matrix

C=-Cctegmxm

such that the Euler class of Ey is

€(E¢) = Z Cw[dxl N dl’j].

1<j

Now the argument in the Proof of Corollary shows that there is Her-
mitian connection V on Ey with constant curvature

FY = —2mi) " Cijda’ Ada’.

1<j
Choose an integer matrix B € Z™*™ such that
C=B-B"

and consider the connection V¥ in (8.3.10). It has the same curvature as V
and hence there exists a smooth function £ : R™ — iR such that

vV =vF4de
This implies that the gauge transformation
u:=exp(§) : R™ — St

transforms ¢ into ¢. Exercise: Fill in the details. Prove that the complex
line bundles £y and Ey, associated to equivalent cocycles are isomorphic.
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8.4 Chern Classes

8.4.1 Definition and Properties

We have already used the fact that a complex Hermitian line bundle can
be regarded as an oriented real rank-2 bundle. Conversely, an oriented real
Riemannian rank-2 bundle has a unique complex structure compatible with
the inner product and the orientation, and can therefore be considered as a
complex Hermitian line bundle. In this setting a Hermitian connection
is the same as a Riemannian connection. In the complex notation the curva-
ture FV of a Hermitian connection is an imaginary valued 2-form on M, the
Bianchi identity asserts that it is closed, and the real valued closed 2-form

i

e(Fv) - 2

FY € Q*(M)
is a representative of the Euler class. (See Lemma [8.3.4]) This is also the
first Chern class of E, when regarded as a complex complex line bundle.
More generally, the Chern classes of complex vector bundles are char-
acteristic classes in the even-dimensional cohomology of the base manifold.
They are uniquely characterized by certain axioms which we now formulate
in our de Rham cohomology setting. We will see that, in order to com-
pute the Chern classes of specific vector bundles, it suffices in many cases to
know that they exist and which axioms they satisfy, without knowing how
they are constructed. Just as in the case of the Euler class, the definition
of the Chern classes can be extended to cohomology theories with integer
coefficients, but this goes beyond the scope of the present book.

Theorem 8.4.1 (Chern Class). There exists a unique functor, called the
Chern class, that assigns to every complex rank-n bundle m : E — M over
a compact manifold a de Rham cohomology class

(E) = co(E) + c1(E) + - - + en(E) € H*(M)

with ¢;(E) € H¥(M) and co(E) = 1 and satisfies the following azioms.
(Naturality) Isomorphic vector bundles over M have the same Chern class.
(Zero) The Chern class of the trivial bundle E = M x C™ is ¢(F) = 1.

(Functoriality) The Chern class of the pullback of a complex vector bundle
m: E — M under a smooth map is the pullback of the Chern class of E, i.e.

(f°E) = [Te(E).
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(Sum) The Chern class of the Whitney sum E1 @ Ea of two complex vector
bundles over M is the cup product of the Chern classes:

C(El D EQ) = C(El) U C(Eg).

(Euler Class) The top Chern class of a complex rank-n bundle m : E — M
over a compact oriented manifold M without boundary is the Euler class

Proof. See page [250 O

It follows from the (Euler Class) axiom that the anti-tautological line
bundle H — CP™ with fiber Hy = £* over £ € CP" has first Chern class

c1(H) = h € H*(CP") (8.4.1)

where h is the positive integral generator of H2(CP™) whose integral over
the submanifold CP! ¢ CP" with its complex orientation is equal to one.
(See Theorem [7.3.19]) In fact, the proof of Theorem shows that the
(Euler Class) axiom can be replaced by the (Normalization) axiom (8.4.1).

8.4.2 Construction of the Chern Classes

We now give an explicit construction of the Chern classes via Chern—Weil
theory which works equally well for arbitrary base manifolds M, compact
or not. We observe that every complex vector bundle £ admits a Hermitian
structure and that any two Hermitian structures on E are related by a
complex automorphism of E (see Example and Exercise . A
Hermitian vector bundle of complex rank n is a vector bundle with structure
group
G=Un)={geC”"|g'g=1}.

Here g* := g denotes the conjugate transpose of g € C**". The Lie algebra
of U(n) is the real vector space of skew-Hermitian complex n x n-matrices

g=u(n)={eCV" | +E=1}.

The eigenvalues of a matrix £ € u(n) are imaginary and those of the matrix
i¢/2m are real. The kth Chern polynomial

ek u(n) —» R
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is defined as the kth symmetric function in the eigenvalues of i{/27. Thus

ck(§) = Z Ty Lo~~~ Ty,

11 <t <---<ip
where the real numbers x1, . . ., z,, denote the eigenvalues of i¢ /27 with repe-
titions according to multiplicity. In particular, we have

co(§) =1,
(&) = le = trace <21§;> ,
a(§) =) wiry,

1<J
cn(§) = 1w - - 1y, = det <1§> .
2

Thus ¢, : u(n) — R is an invariant polynomial of degree k and we define the
kth Chern class of a rank-n Hermitian vector bundle 7 : E — M by

cr(E) = [ex(FV)] € H*(M), (8.4.2)

where V is a Hermitian connection on E. By Theorem this cohomology
class is independent of the choice of the Hermitian connection V. We will
now prove that these classes satisfy the axioms of Theorem [8.4.1

8.4.3 Proof of Existence and Uniqueness
We begin with a technical lemma which will be needed later in the proof.

Lemma 8.4.2. Every complex vector bundle over a compact manifold M
admits an embedding into the trivial bundle M x CN for some N € N.

Proof. Let m: E — M be a complex rank-n bundle over a compact manifold.
Choose a system of local trivializations

i s Y (U;) = Uy x €7, i=1,...,¢,

such that the U; cover M, and a partition of unity p; : M — [0, 1] subordi-
nate to this cover. Define the map ¢ : E — M x C by

(e) = (m(e), pr(m(e))pra(thi(€)), - pul(€)pra(tn(e)) )

This map is a smooth injective immersion (verify this), restricts to a linear
embedding into {p} x C* on each fiber E,, and it is proper (verify this as
well). This proves Lemma O
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We remark that Lemma is the only place where the compactness
assumption on the base enters the proof of Theorem [8.4.1

Proof of Theorem |8.4.1 The cohomology classes are well defined in-
variants of complex vector bundles, because every complex vector bundle
admits a Hermitian structure and any two Hermitian structures on a com-
plex vector bundle are isomorphic (see Exercise . That these classes
satisfy the (Naturality) and (Zero) axioms follow directly from the defini-
tions and that they satisfy the (Functoriality) axiom follows immediately
from Theorem To prove the (Sum) axiom we observe that the Chern
polynomials are the coefficients of the characteristic polynomial

pt(ﬁ) := det <]1 + t;i) — ch(f)tk.
k=0

In particular, for t = 1, we have

(6 = - e) =[]0+ = et (14 55 )

k=0 i=1

and hence c¢(§€ @& n) = ¢(&)c(n) for the direct sum of two skew-Hermitian ma-
trices. This implies

c(FV1PV2) = ¢(FV' @ FV2) = ¢(FV') A c(FV?)

for the direct sum of two Hermitian connections on two Hermitian vector
bundles over M and this proves the (Sum) axiom.

It remains to prove the (Euler Class) axiom. By Theorem the first
Chern class of a complex line bundle is equal to the Euler class in H2(M).
With this understood, it follows from the (Sum) axiom for the Euler class
(Theorem and for the Chern class (already established) that the
(Euler Class) axiom holds for Whitney sums of complex line bundles.

An example is the partial flag manifold

A; is a complex subspace of CV, }

F(n,N):= {(Ai)izo dime(A;) =i, AgC Ay C--- C Ay

There is a complex rank-n bundle E(n, N) — F(n, N) whose fiber over the
flag Ag € Ay C --- C A, is the subspace A,. It is a direct sum of the
complex line bundles L; — F(n, N), i = 1,...,n, whose fiber over the same
flag is the intersection A;NA; ;. Hence it follows from what we have already
proved that the top Chern class of the bundle E(n,N) — F(n,N) agrees
with its Euler class, i.e. c,(E(n, N)) = e(E(n,N)) € H**(F(n,N)).
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Now consider the Grassmannian
Gp(CN) = {AC CY | A is an n-dimensional complex subspace }
of complex n-planes in CV. It carries a tautological bundle
E,(CYN) = Gn(CcM)

whose fiber over an n-dimensional complex subspace A C CV is the subspace
itself. There is an obvious map

7: F(n,N) = G,(CM)

which sends a partial flag Ag C Ay C --- C A,, in CV with dimc(A;) =i to
the subspace A,. We have

7 E,(C") = E(n,N) — F(n,N)
and hence, by (Functoriality),
T cn(En(CY)) = ¢ (E(n, N)) = e(E(n,N)) = n*e(E,(CY)).
At this point we use (without proof) the fact that the map
7 H*(Cn(CN)) — H*(F(n,N)) (8.4.3)
is injective. This implies
cn(En(CV)) = e(E,(CN)) € H*™(G,(CN)) (8.4.4)

for every pair of integers N > n > 0.

By Lemma[8.4.2] below, a complex line bundle 7 : E — M over a compact
manifold can be embedded into the trivial bundle M x C for a suitable
integer N € N. Such an embedding can be expressed as a smooth map

f:M — G,(CM)

into the Grassmannian of complex n-planes in C such that E is isomorphic
to the pullback of the tautological bundle E,(C") — G,(C"). Hence it
follows from (8.4.4) and (Functoriality) that

cn(E) = [*ea(Ea(CY)) = [re(En(CY)) = e(E).

This proves the existence of Chern classes satisfying the five axioms.
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To prove uniqueness, we first observe that the Chern classes of com-
plex line bundles over compact oriented manifolds without boundary are
determined by the (Fuler Class) axiom. Second, the Chern classes of the
bundle E(n,N) are determined by those of line bundles via the (Natural-
ity) and (Sum) axioms, as it is isomorphic to a direct sum of complex line
bundles. Third, the Chern classes of the tautological bundle

E,(CN) = G, (CM)

are determined by those of E(n, N) via (Functoriality), because the homo-
morphism ({8.4.3)) is injective. Fourth, the Chern classes of any complex
vector bundle E over a compact manifold M are determined by those of
E,(CN) via (Naturality) and (Functoriality), as there is a map

fi M — Gy(CN)

for some N such that E is isomorphic to the pullback bundle f*E, (CV):
E = f*E,(CM).

This proves Theorem [8.4.1 ]

We remark that the map
7 F(n, N) = G,(CY)

is a fibration with fibers diffeomorphic to the flag manifold F(n,n). One
can use the spectral sequence of this fibration to prove that the map
is injective. This can be viewed as an extension of the Kiinneth formula,
but it goes beyond the scope of the present book. For details see Bott and
Tu [2].

We also remark that Theorem [8.4.1] continues to hold for noncompact
base manifolds M. The only place where we have used compactness of M
is in Lemma [8:4.2] which in turn was used for proving uniqueness. If we re-
place the Grassmannian with the classifying space of the unitary group U(n)
(which can be represented as the direct limit of the Grassmanians G, (C")
as N tends to oo), then complex rank-n bundles over noncompact mani-
folds M can be represented as pullbacks of the tautological bundle under
maps to this classifying space or, equivalently, be embedded into the product
of M with an infinite-dimensional complex vector space. This can be used
to extend Theorem to complex vector bundles over noncompact base
manifolds or, in fact, over arbitrary topological spaces.
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Exercise 8.4.3 (Euler Number). Let 7 : E — M be a complex rank-n
bundle over compact oriented 2n-manifold without boundary. Show directly
that the top Chern number

/Mcn(E): /Mdet <2‘7ro> = > ups)

s(p)=0p

is the Euler number of E, without using the (Euler Class) axiom. Hint:
Assume s is transverse to the zero section and let p; be the zeros of s.
Show that s can be chosen with norm one outside of a disjoint collection of
neighborhoods U; of the p; and that the connection can be chosen such that
Vs = 0 on the complement of the U;. Show that

det(iFY/2r)=0 on M\|JU.

Now use the argument in the proof Lemma to show that
i
det (| —FY ) = u(ps,
[ 0 (37) =0

Exercise 8.4.4 (First Pontryagin Class). Let 7 : E — M be a real
vector bundle and consider the tensor product £ ®@r C. This is a complex
vector bundle and Pontryagin classes of E are defined as the even Chern
classes of ¥ ®g C:

for each 7.

pz<E) = (—1)i02z‘(E XRr C) € H41(X)
Show that the odd Chern classes of £ ®gr C vanish. Show that
pi(E) = c1(E)? — 2cy(E)

whenever F is itself a complex vector bundle. If F is a Hermitian vector
bundle and V is a Hermitian connection on E show that the first Pontryagin
class can be represented by the real valued closed 4-form ﬁtraee(F VAFEY):

pi(E) = i [trace (FY AFY)] € HY(M). (8.4.5)
Hint: The endomorphism valued 4-form FV A FY € Q4(M,End(E)) is de-
fined like the exterior product of scalar 2-forms, with the product of real
numbers replaced by the composition of endomorphisms. Express the 4-
form in the form p;(FV) for a suitable invariant degree-2 polyno-
mial p; : u(2) — R.
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8.4.4 Tensor Products of Complex Line Bundles

Let
7I‘12E1—>M, 7T2:E2—>M

be complex line bundles and consider the tensor product

E=F ®FE:= {(pael ® e2)

pE M, e € Eq, es € Eo, }
7F1(€1) = 772(6’2) =D '

This is again a complex line bundle over M and its first Chern class is the
sum of the first Chern classes of £ and Es:

01(E1 X Eg) =C (El) + Cl(Eg). (846)

(Here we use the formula as the definition of the first Chern class in
the case of a noncompact base manifold.) To see this, we choose Hermitian
structures on £ and F> and Hermitian local trivializations over an open
cover {Uy }o of M with transition maps g; go : UaNUz — U(1) = S'. These
give rise, in an obvious manner, to a Hermitian structure on the tensor
product £ = E1 ® F5 and to local trivializations of E with transition maps

9pa = 91,80 - 92,60 - Ua MUz — S*.

For ¢ = 1, 2 choose a Hermitian connection V; on F; with connection poten-
tials
Ao € Q(U,,iR).

They determine a connection V on E via the Leibnitz rule
V(s1 ® s2) := (V181) ® s2 4 1 @ (Vasa)
for 51 € Q°(M, E1) and so € QY(M, E5). The connection potentials of V are
Ay = A1 o+ Az € QHU,, iR).
Hence the curvature of FV is given by
FV = FV1 4+ FV2 € Q*(M,iR).

In fact, the restriction of F'V to U, is just the differential of A,. Since ¢1(F)
is the cohomology class of the real valued closed 2-form = FV € Q*(M),

this implies equation (8.4.6)).
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Example 8.4.5 (The Inverse of a Complex Line Bundle). Let E — M
be a complex line bundle with transition maps

98a : UaNUg — C* = C\ {0}.
Then there is a complex line bundle
E~' > M,
unique up to isomorphism, with transition maps
g UaNUg = C*.
Its tensor product with E is isomorphic to the trivial bundle. Hence
ci(E™Y = —¢1(E)

by equation ({8.4.6]).

Example 8.4.6 (Complex Line Bundles over CP™). For d € Z consider
the complex line bundle

S2n+1 C
H .= 2 X —

Sl

where the circle S' acts on $?"*! x C by

cp"

A : (207 <y Rn; C) = ()\207 )‘217 teel )\va AdC)

for (20,...,2,) € S?"*1 C C"*! ¢ € C, and A € S'. The equivalence classes
in H* are denoted by

[20:21: 2 (] = [)\ZO:Azl:---:)\zn;)\dC].

For d = 0 this is the trivial bundle, for d > 0 it is the d-fold tensor product
of the line bundle H — CP" in Theorem [7.3.19, and we have

H 4= (HY
Hence, by Theorem [7.3.19] equation (8.4.6]), and Example we have
c1(H?) = dh

for every d € Z. Here h € H?(CP") is the positive integral generator with
integral one over the submanifold CP* ¢ CP™.
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8.5 Chern Classes in Geometry

8.5.1 Complex Manifolds

Definition 8.5.1 (Complex Manifold). A complex n-manifold is a
real 2n-dimensional manifold X equipped with an atlas ¢o : Uy — C™ such
that the transition maps

$50 ¢y pa(Ua NU) = ¢(Ua N Up)

are holomorphic maps between open subsets of C™. This means that the
real derivative of ¢g o o1 at every point is given by multiplication with a
complex n X n-matrixz. A complex 1-manifold is called a complex curve
and a complex 2-manifold is called a complex surface. Thus a complex
curve has real dimension two and a complex surface has real dimension four.

Complex manifolds are oriented and their tangent bundles inherit com-
plex structures from the coordinate charts. Thus the tangent bundle T'X of
a complex manifold has Chern classes. If X is a complex n-manifold with
an atlas as above, a smooth function f : U — C on an open subset U C X is
called holomorphic if the function f o ¢, : ¢o(U NU,) — C is holomor-
phic for each a. Equivalently, the derivative df(p) : T,X — C is complex
linear for every p € U.

Example 8.5.2 (The Chern Class of CP"). The complex projective
space CP"™ is a complex manifold and hence its tangent bundle has Chern
classes. In the geometric description of CP" as the space of complex lines
in C"*! the tangent space of CP™ at a point ¢ € CP" is given by

T,CP™ = Hom® (¢, ¢1).

Geometrically, every line in C"*! sufficiently close to ¢ is the graph of a com-
plex linear map from ¢ to ¢. Moreover, each complex linear map from ¢ to it-
self is given by multiplication with a complex number. Thus Hom®(¢, £) = C
and hence TyCP" @ C = Hom®(¢, /- @ ¢) = Hom® (¢, C"*1). Thus the direct
sum of TCP™ with the trivial bundle H® = CP" x C is the (n+1)-fold direct
sum of the bundle H — CP" in Theorem with itself, i.e.

TCP"eoH =HeoH®---DH.

n—+1 times

Since ¢(H) = 1+ h it follows from the (Zero) and (Sum) axioms that
¢(TCP™) = (1 + h)™ ™,
where h € H?(CP™) is the positive integral generator as in Theorem |7.3.19
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Holomorphic Line Bundles

Definition 8.5.3 (Holomorphic Line Bundle). A holomorphic line
bundle over a complex manifold X is a complex line bundle m : E — X
equipped with local trivializations such that the transition maps

gﬁa:UaﬂUB%C*:(C\{O}

are holomorphic. A holomorphic section of such a holomorphic line bun-
dle E is a section s : X — E that, in the local trivializations, is represented
by holomorphic functions s, : U, — C. The notion makes sense because
the s, are related by sg = ggasa on Uy NUg and the gg, are holomorphic.

If we choose a Hermitian structure on a holomorphic line bundle and
Hermitian trivializations, the transition maps will no longer be holomorphic,
by the maximum principle, unless they are locally constant. It is therefore
often more convenient to use the original holomorphic trivializations.

Example 8.5.4 (Holomorphic Line Bundles over CP"). The line bun-
dle H* — CP™ in Example admits the structure of a holomorphic line
bundle. More precisely, the standard atlas ¢; : U; — C™ defined by

Ui:={[z0::2,] € CP"| 2z #0}
and
, _ [ * Zi-1 Zit1 Zn
Pl s zl): <z¢’m’ zi % ""’zZ‘)

has holomorphic transition maps. A trivialization of H? over U; is the map
W; - Hd|Ui — U; x C defined by

The transition maps g;; : U; N U; — C* are then given by
2\ @
gilloos 52 = ()
Zj
and they are evidently holomorphic. For d > 0 every homogeneous complex
polynomial p : C"*! — C of degree d determines a holomorphic section
s(lzor - zn]) =20+ zn;p(205 -« -y 20)]

of H%. Tt turns out that these are all the holomorphic sections of H? and that
the only holomorphic section of H? for d < 0 is the zero section. However the
proof of these facts would take us too far afield into the realm of algebraic
geometry. An excellent reference is the book [§] by Griffiths and Harris.
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8.5.2 The Adjunction Formula

Let X be a compact connected complex surface and
ccX

be a smooth complex curve. Thus C is a compact submanifold without
boundary whose tangent space T, C' at each point z € C is a one-dimensional
complex subspace of T, X. In particular, C' is a compact oriented 2-manifold
without boundary. The adjunction formula asserts

(el (TX),C) = x(C)+C - C, (8.5.1)

where C-C denotes the self-intersection number of C', x(C') denotes the Euler
characteristic of C, and (¢ (T'X ), C)) denotes the integral of (a representative
of) the first Chern class ¢1(TX) € H%(X) over C.

To prove the adjunction formula we choose a Riemannian metric on X
such that the complex structure on each tangent space 7, X is a skew sym-
metric automorphism. Thus both the tangent bundle of C' and the normal
bundle TC* are complex vector bundles over C and the restriction of T'X
to C' is the direct sum

TX|c=TCaTCt.

By the (Euler Class) axiom for the Chern classes and Example[7.3.8 we have
(1(TC),C) = (e(TC), C) = x(C).
Using the (Euler Class) axiom again we obtain
(e)(TCH),C) = (e(TCH),C)=C - C.

Here the last equality follows from Corollary [7.3.13] Now the (Sum) axiom
for the Chern classes asserts that

(e1(TX),C) = (e1(TC), C) + (a1 (TC), C)

and this proves (8.5.1)).

Now suppose that 7 : ' — X is a holomorphic line bundle over a com-
pact connected complex surface without boundary and s : X — FE is a holo-
morphic section that is transverse to the zero section. Then it follows directly
from the definitions that its zero set C' := s~1(0) is a compact complex curve
without boundary. Let us also assume that C is connected and denote by g
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the genus of C, understood as a compact connected oriented 2-manifold
without boundary. By Example we have

X(C) =2-2g
and hence the adjunction formula (8.5.1)) takes the form

2-29=((TX),C)-C-C
= {(a(TX) - c1(E), C)

(8.5.2)
- / (e1(TX) — e1(E)) U (E)
X
Here the second equality follows from the fact that the vertical derivative Ds
along C' = s71(0) furnishes an isomorphism form the normal bundle TC*+
to the restriction E|c. The last equality follows from the fact that the Euler
class ¢1(E) = e(E) is dual to C, by Theorem [7.3.15

Example 8.5.5 (Degree-d Curves in CP2). As a specific example we
take X = CP? and E = H% Suppose that p : C3 — C is a homoge-
neous complex degree-d polynomial and that the resulting holomorphic sec-
tion s:CP? — H? is transverse to the zero section (see Example [8.5.4).
Then the zero set of s is a smooth degree-d curve

Ca={[20: 21 : z2] € CP?| p(20, 21, 22) = 0} .

By Example we have ci(H?%) = dh and by Example we have
¢1(TCP?) = 3h. Thus equation (8.5.2)) asserts that the genus g = g(Cy) of

the complex curve Cy satisfies the equation

2—2g:(3—d)d/ hUh = 3d — d°.
Ccp?

Here the second equality follows from ([7.3.10). Thus we have proved that

g(Cy) = (d1)2(d2) (8.5.3)
This is the original version of the adjunction formula. One can verify it
geometrically by deforming a degree-d curve to a union of d generic lines
in CP2. Any two of these lines intersect in exactly one point and “generic”
means here that these points are pairwise distinct. Thus we end up with a
total of d(d—1)/2 intersection points. Performing a connected sum operation
at each of the intersection points one can verify the formula .
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A compact connected oriented 2-dimensional submanifold ¥ ¢ CP? with-
out boundary is said to represent the cohomology class dh if

dh = [rx]

is Poincaré dual to X as in Section Thus our complex degree-d curve Cy

is such a representative of the class dh. A remarkable fact is that every

representative of the class dh has at least the genus of Cy, i.e.
(d—1)(d—2)

g(2) > 5 (8.5.4)

This is the socalled Thom Conjecture which was open for many years
and was finally settled in the nineties by Kronheimer and Mrowka [12],
using Donaldson theory. They later extended their result to much greater
generality and proved, with the help of Seiberg—Witten theory, that every 2-
dimensional symplectic submanifold with nonnegative self-intersection num-
ber in a symplectic 4-manifold minimizes the genus in its cohomology class.
For an exposition see their book [13]. The case of negative self-intersection
number was later settled by Ozsvath and Szabo [20].

8.5.3 Complex Surfaces
Chern Class and Self-Intersection

Let X be a complex surface and
CcX

be a compact oriented 2-dimensional submanifold without boundary. Then
the integral of the first Chern class of T X over % agrees modulo two with
the self-intersection number:

(1(TX),X)=%-% mod 2. (8.5.5)

To see this, choose any complex structure on each of the real rank-2 bun-
dles TS and TY+. Then the same argument as in the proof of the adjunction
formula shows that the integral of the first Chern class of this new
complex structure on T X |y, over ¥ is the sum

XE)+2-X%.

Since the Euler characteristic x(X) is even and the integrals of the first
Chern classes of T'X |y, with both complex structures agree modulo two, by

Exercise below, this proves (8.5.5]).
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Exercise 8.5.6 (Complex Rank-2 Bundles over Real 2-Manifolds).
Let 3 be compact connected oriented 2-manifold without boundary.

(i) There are precisely two oriented real rank 4-bundles over X, one trivial
and one nontrivial.

(ii) Every oriented real rank 4-bundle admits a complex structure compat-
ible with the orientation.

(iii) A complex rank-2-bundle 7 : £ — ¥ admits a real trivialization if and
only if its first Chern number (¢ (E),X) = [ ¢1(E) is even.

Hint 1: An elegant proof of these facts can be given by means of the
Stiefel-Whitney classes (see Milnor—Stasheff [16]).

Hint 2: Consider the trivial bundle ¥ x R* and identify R* with the quater-
nions H via x = x¢+iz; +jrs +krs where i2+j?+k? = —1 and ij = —ji = k.
Show that every complex structure on H that is compatible with the inner
product and orientation has the form

Jy=Mi+doj+ Ak, AHA+A=1.

Thus a complex structure on E = X x H that is compatible with the metric
and orientation has the form z — Jy(,) where A : ¥ — 2 is a smooth map.
Prove that the first Chern number of (£, Jy) is given by

/ c1(E, Jy) = 2deg(A: ¥ — S%).
P

Use the ideas in the next hint.

Hint 3: Here is a sketch of a proof that the first Chern numbers of any
two complex structures on an oriented real rank 4-bundle 7 : £ — ¥ agree
modulo two. By transversality every real vector bundle whose rank is bigger
than the dimension of the base has a nonvanishing section (see Chapter |4)).
Hence FE has two linearly independent sections s; and s3. Denote by A C F
the subbundle spanned by s; and se. Given a complex structure J on E
denote by Fy C E the complex subbundle spanned by s; and Js;. Thus F;
has a global trivialization and so the first Chern number of the complex line
bundle E/E; agrees with the first Chern number of (E, J). Show that this
number agrees modulo two with the Euler number of the oriented real rank-
2 bundle E/A. To see this, think of sy as a section of E'/F; and of Js; as a
section of E//A. Both sections have the same zeros: the points z € 3 where
A, is a complex subspace of E,. Prove that the transversality conditions for
both sections are equivalent. Compare the indices of the zeros.
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Hint 4: Choose an closed disc D C ¥ and show via parallel transport that
the restrictions of E to both D and ¥\ D admit global trivializations. This
requires the existence of a pair-of-pants decomposition of ¥ (see Hirsch [10]).
Assuming this we obtain two trivializations over the boundary

I:=0D =49

These differ by a loop in the structure group. In the complex case this
construction gives rise to a loop

g:S' = U(2) c SO4).

In the real case we get a loop in SO(4). Prove that, in the complex case
with the appropriate choice of orientations, the first Chern number of E is
given by

/ c1(E) = deg(detog : S — S1).

by

Prove that a loop g : S — U(2) is contractible in SO(4) if and only if the
degree of the composition det og : ST — S! has even degree.

The Hirzebruch Signature Theorem

Let X be a compact connected oriented smooth 4-manifold without bound-
ary. Then Poincaré duality (Theorem[6.4.1)) asserts that the Poincaré pairing

H*(X) x H¥(X) = R: ([w],[r]) — /Xw AT, (8.5.6)
is nondegenerate. The pairing is a symmetric bilinear form, also
called the intersection form of X and denoted by

Qx : H*(X) x H*(X) = R.
Thus the second Betti number by(X) = dimH?(X) is a sum
bo(X) = bT(X) + b (X)

where b* (X) is the maximal dimension of a subspace of H?(X) on which the
intersection form @ x is positive definite and b~ (X) is the maximal dimen-
sion of a subspace of H2(X) on which Qy is negative definite. Equivalently,
bT(X) is the number of positive entries and b~ (X)) is the number of negative
entries in any diagonalization of Qx. The signature of X is defined by

o(X) == b (X) — b~ (X).
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The Hirzebruch Signature Theorem asserts that, if X is a complex
surface, then

/X a(TX)Uca(TX) =2x(X) + 30(X). (8.5.7)

Equivalently, the signature is one third of the integral of the cohomology
class

c1(TX)? —265(TX) € HY(X)

over X. The class ¢? — 2cy is the first Pontryagin class and is also defined
for arbitrary real vector bundles £ — X (see Exercise [8.4.4)). Thus equa-
tion (8.5.7]) can be expressed in the form

7(X) = Lpi(TX).

(Here we use the same notation p;(7TX) for a 4-dimensional de Rham co-
homology class and for its integral over X.) In this form the Hirzebruch
Signature Theorem remains valid for all compact connected oriented smooth
4-manifold without boundary. It is a deep theorem in differential topology
and its proof goes beyond the scope of this book.

As an explicit example consider the complex projective plane

X =CP? ¢(X)=3h x(X)=3, oX)=1,
Another example is
X=652%x58% c(X)=2a+2b, x(X)=4, o(X)=0.

Here we choose as a basis of H2(S? x S?) the cohomology classes a and b of
two volume forms with integral one on the two factors, pulled back to the
product. The intersection form is in this basis given by

~ (01
ax=(] ;).
A third example is the 4-torus X = T* = C?/Z* with its standard complex
structure. In this case both Chern classes are zero and x(T*) = o(T*) = 0.

Exercise: Verify the last equality by choosing a suitable basis of H2(T4).
Verify the Hirzebruch signature formula in all three cases.
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Hypersurfaces of CP?

An interesting class of complex 4-manifolds is given by complex hyper-
surfaces of CP3. More precisely, consider the holomorphic line bundle
He — CP? in Example let p : C* — C be a homogeneous complex
degree-d polynomial, and assume that the resulting holomorphic section
s : CP? — HY is transverse to the zero section. Denote the zero set of s by

X4 = {[zo D21 29t 23] € CP? | p(2g, 21, 22, 23) = 0}.

This is a complex submanifold of CP? and hence is a complex surface. In this
case the Lefschetz Hyperplane Theorem asserts that X, is connected
and simply connected. (More generally, the Lefschetz Hyperplane Theorem
asserts that the zero set of a transverse holomorphic section of a “sufficiently
nice” holomorphic line bundle inherits the homotopy and cohomology groups
of the ambient manifold below the middle dimension; “nice” means that
the line bundle has lots of holomorphic sections or, in technical terms, is
“ample”. The holomorphic line bundle H% — CP™ satisfies this condition
for d > 0.) We prove that

X(Xq) = d3 — 4d® + 6d,

4d — d®
d® —6d?+11d — 3 (8.5.8)
b+(Xd) = ;_ 5
_ 2d3 — 6d? 4+ 7d — 3
b (Xy) = ; .

To see this, we first observe that, by Poincaré duality and the the Hard
Lefschetz theorem, we have by(X4) = ba(X4) =1 and b1 (Xy) = b3(X4) = 0.
Hence

X(Xq)=2+0b" 40"

and so the last two equations in follow from the first two. Next we
choose a Riemannian metric on CP? with respect to which the standard com-
plex structure is skew-symmetric (for example the Fubini-Study metric [§]).
This gives a splitting

TCP3|x, =TXy®TX}

into complex subbundles. The vertical derivative of s along X again provides
us with an isomorphism Ds : TX; — E|x,. Thus, by the (Sum) axiom for
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the Chern classes and Example [8.5.2] we have
(1+h)* = ¢(TCP?) = «(TXq)e(TX7) = c(TX4)(1 + dh).

Here we think of the cohomology classes on CP? as their restrictions to X.
Abbreviating ¢ := ¢1(TXy) and ¢g := co(TXy) we obtain

1—|—4h—|—6h2 = (1—|—Cl —|—Cg)(1+dh) =1+ (01 —|—dh)—|—(62—|—dh61)
and hence
c1=(4—dh,  cy=6hn%—dhec; = (d* —4d + 6)h>.

Since Xy is the zero set of a smooth section of H? it is dual to the Euler

class e(H?) = ¢1(H?) = dh (see Example , by Theorem [7.3.15, Hence

/ hUh:d/ hUhRUR =d.
X, cp3

Here the second equality follows from ([7.3.10)). Combining the last three
equations we find

X(Xd):/ Cz(TX)Z(d2—4d+6)/ hUh = d® — 4d? + 6d
Xd Xd

and

/cl(TXd)Ucl(Xd):(d—ZL)Q/ hUh =d(d— 4)2.
Xgq4 Xa

Hence the Hirzebruch signature formula gives

d(d—4)* —2d* + 8d* — 12d  4d — d®

U(Xd) = 3 3

and this proves (8.5.8|).

The first two examples are X; = CP? and Xy = S? x S2. The reader
may verify that the numbers in equation match in these cases. The
cubic surfaces in CP? are all diffeomorphic to CP? with six points blown up.
This blowup construction is an operation in algebraic geometry, where one
removes a point in the manifold and replaces it by the set of all complex lines
through the origin in the tangent space at that point. Such a blowup admits
in a canonical way the structure of a complex manifold [8]. An alternative
description of X3 is as a connected sum

X3 = CP246CP .
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Here @2 refers to the complex projective plane with the orientation re-
versed, which is not a complex manifold. (Its signature is minus one and
the number 2x(@2) + 30(@2) = 3 is not the integral of the square of any
2-dimensional cohomology class.) The symbol # refers to the connected
sum operation where one cuts out balls from the two manifolds and glues
the complements together along their boundaries, which are diffeomorphic
to the 3-sphere. The resulting manifold is oriented and the numbers b+ are
additive under this operation Thus

x(X3) =9,  o(X3)=-5 b (X3)=1 b (X3) =6
and this coincides with (8.5.8)) for d = 3.

Particularly interesting examples are the quartic surfaces in CP3. They
are K3-surfaces. These can be uniquely characterized (up to diffeomor-
phism) as compact connected simply connected complex surfaces without
boundary whose first Chern classes vanish. These manifolds do not all ad-
mit complex embeddings into CP? but the surfaces of type X, are examples.
They have characteristic numbers

x(X4) = 24, o(X4) = —16, b (Xy) = 3, b~ (X4) =19,

which one can read off equation . One can also deduce these numbers
from the Hirzebruch signature formula, which in this case takes the form
0 =2x+30c =4+ 5b" —b~. That the number b™ must be equal to 3
follows from the existence of a Ricci-flat Kahler metric, a deep theorem of
Yau, and this implies that the complex exterior power A297*X has a global
nonvanishing holomorphic section. Therefore the dimension p, of the space
of holomorphic sections of this bundle is equal to one, and it then follows
from Hodge theory that b* = 1+ 2p, = 3. The details of this lie again much
beyond what is covered in the present book.
The distinction between the cases

d <4, d=4, d>4

for hypersurfaces of CP? is analogous to the distinction of complex curves
in terms of the genus. For curves in CP? these are the cases d < 3 (genus
zero/positive curvature), d = 3 (genus one/zero curvature), and d > 3
(higher genus/negative curvature). In the present situation the case d < 4
gives examples of Fano surfaces analogous to the 2-sphere, the K3-surfaces
with d = 4 correspond to the 2-torus allthough they do not admit flat
metrics, and for d > 4 the manifold Xy is an example of a surface of
general type in analogy with higher genus curves.
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Exercise 8.5.7. Show that the polynomial p(zg,...,2,) = z(‘)i + o+ zg
on C"*1 gives rise to a holomorphic section s : CP™ — H? that is transverse
to the zero section. Hence its zero set X4 is a smooth complex hypersurface
of CP". Prove that its first Chern class is zero whenever d = n + 1. Kéhler
manifolds with this property are called Calabi—Yau manifolds. The K3-
surfaces are examples. The quintic hypersurfaces of CP* are examples of
Calabi—Yau 3-folds and they play an important role in geometry and physics.

Exercise 8.5.8. Compute the Betti numbers of a degree-d hypersurface
in CP*. Hint: The Lefschetz Hyperplane Theorem asserts in this case
that bg(Xy) = b2(Xy) = 1 and by (Xy) = 0.

8.5.4 Almost Complex Structures on Four-Manifolds

Let X be an oriented 2n-manifold. An almost complex structure on X
is an automorphism of the tangent bundle T'X with square minus one:

J:TX = TX, J? = —1.

The tangent bundle of any complex manifold has such a structure, as the
multiplication by i = /=1 in the coordinate charts carries over to the tan-
gent bundle. However, not every almost complex structure arises from a
complex structure (except in real dimension two).

Let us now assume that X is a compact connected oriented smooth 4-
manifold without boundary. Let J be an almost complex structure on X
and denote its first Chern class in de Rham cohomology by

c:=c(TX,J) € H*(X).
This is an integral class in that the number ¢-X = (¢, X) = [;, ¢ is an integer

for every compact oriented 2-dimensional submanifold ¥ C X. Moreover,
equation ({8.5.5)) carries over to the almost complex setting so that

c-Y¥=%-%¥ mod 2 (8.5.9)

for every ¥ as above. The Hirzebruch signature formula also continues to
hold in the almost complex setting and hence

¢ = 2x(X) 4 30(X). (8.5.10)

Here we abbreviate ¢ := (¢?, X) = [, c® € Z. It turns out that, con-
versely, for every integral de Rham cohomology class ¢ € H?(X) that sat-
isfies (8.5.9) and ({8.5.10) there is an almost complex structure J on X
with ¢1(TX,J) =c¢. We will not prove this here. However, this can be
used to examine which 4-manifolds admit almost complex structures and to
understand their first Chern classes.
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Exercise 8.5.9. Consider the 4-manifold X = CPQ#IC@2 (the projective
plane with k& points blown up). This manifold admits a complex structure
by a direct construction in algebraic geometry [§]. Verify that it admits
an almost complex structure by finding all integral classes ¢ € H?(X) that

satisfy (8.5.9) and (8.5.10)). Start with k=0, 1, 2.

Exercise 8.5.10. The k-fold connected sum X = kCP? = CP?# - .- #CP?
admits an almost complex structure if and only if k is odd.

Exercise 8.5.11. Which integral class ¢ € H?(T*) is the first Chern class
of an almost complex structure on T*.

8.6 Low-Dimensional Manifolds

The examples in the previous section show that there is a rich world of
manifolds out there whose study is the subject of differential topology and
other related areas of mathematics, including complex, symplectic, and alge-
braic topology. The present notes only scratch the surface of some of these
areas. One fundamental question in differential topology is how to tell if
two manifolds of the same dimension m are diffeomorphic, or perhaps not
diffeomorphic as the case may be. In this closing section we discuss some
classical and some more recent answers to this question.

The easiest case is of course m = 1. We have proved in Chapter [2] that
every compact connected smooth 1-manifold without boundary is diffeomor-
phic to the circle and in the case of nonempty boundary is diffeomorphic to
the closed unit interval. We have seen that this observation plays a cen-
tral role in the definitions of degree and intersection number, and in fact
throughout differential topology.

The next case is m = 2, where this question is also completely un-
derstood, although the proof is considerably harder. Two compact con-
nected oriented smooth 2-manifolds without boundary are diffeomorphic if
and only if they have the same genus. As pointed out in Example
a beautiful proof of this theorem, based on Morse theory, is contained in
the book of Hirsch [I0]. The result generalizes to all compact 2-manifolds
with or without boundary, and orientable or not. Both in the orientable
and in the nonorientable case the diffeomorphism type of a compact con-
nected 2-manifold is determined by the Fuler characteristic and the number
of boundary components. The proof is also contained in [I0]. This does
not mean, however, that the study of 2-manifolds has now been settled. For
example the study of real 2-manifolds equipped with complex structures
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(called Riemann surfaces) is a rich field of research with connections to
many areas of mathematics such as algebraic geometry, number theory, and
dynamical systems. A classical result is the uniformization theorem,
which asserts that every connected simply connected Riemann surface is
holomorphically diffeomorphic to either the complex plane, or the open unit
disc in the complex plane, or the 2-sphere with its standard complex struc-
ture. In particular, it is not necessary to assume that the Riemann surface
is paracompact; paracompactness is a consequence of uniformization. This
is a partial answer to a complex analogue of the aforementioned question.
We remark that interesting objects associated to oriented 2-manifolds are,
for example, the mapping class group (diffeomorphisms up to isotopy) and
Teichmiiller space (complex structures up to diffeomorphisms isotopic to the
identity).

The compact connected manifolds without boundary in dimensions one
and two are not simply connected except for the 2-sphere. Let us now turn
to the higher-dimensional case and focus on simply connected manifolds. In
dimension three a central question, which was open for about a century, is
the following.

Three-Dimensional Poincaré Conjecture. FEvery compact connected
simply connected 3-manifold M without boundary is diffeomorphic to S°.

This conjecture has recently (in the early years of the 21st century) been
confirmed by Grigory Perelman. His proof is a modification of an earlier pro-
gram by Richard Hamilton to use the socalled Ricci flow on the space of all
Riemannian metrics on M. The idea is, roughly speaking, to start with an
arbitrary Riemannian metric and use it as an initial condition for the Ricci
flow. It is then a hard problem in geometry and nonlinear parabolic partial
differential equations to understand the behavior of the metric under this
flow. The upshot is that, through lot of hard analysis and deep geometric
insight, Perelman succeded in proving that the flow does converge to a round
metric (with constant sectional curvature). Then a standard result in dif-
ferential geometry provides a diffeomorphism to the 3-sphere. The proof of
the Poincaré conjecture is one of the deepest theorems in differential topol-
ogy and is an example of the power of analytical tools to settle questions
in geometry and topology. There are now many expositions of Perelman’s
proof of the three-dimensional Poincaré conjecture, beyond Perelman’s orig-
inal papers, too numerous to discuss here. An example is the detailed book
by Morgan and Tian [17].

The higher-dimensional analogue of the the Poincaré conjecture asserts
that every compact connected simply connected smooth m-manifold M
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without boundary whose integral cohomology is isomorphic to that of the
m-sphere, i.e.

kivs. | Z, for k=0 and m,

" (M’Z)_{ 0, forl<k<m-—1,
is diffeomorphic to the m-sphere. This question is still open in dimen-
sion four. However, by the work of Michael Freedman, it is known that
every such 4-manifold is homeomorphic to the the 4-sphere. In fact one
distingushes between the smooth Poincaré conjecture (which asserts
the existence of a diffeomorphism) and the topological Poincaré conjec-
ture (which asserts the existence of a homeomorphism). Remarkably, the
higher-dimensional Poincaré conjecture is much easier to understand than
in dimensions three and four. It was settled long ago by Stephen Smale with
the methods of Morse theory. A beautiful exposition is Milnor’s book [15].
The topological Poincaré conjecture holds in all dimensions m > 5. But in
certain dimensions there are socalled exotic spheres that are homeomor-
phic but not diffeomorphic to the m-sphere. Examples are Milnor’s famous
exotic 7-spheres. Later work by Kervaire and Milnor showed that there are
precisely 27 exotic spheres in dimension seven.

Let us now turn to compact connected simply connected smooth 4-
manifolds X without boundary and with H?(X) # 0. The intersection form

Qx: H*(X)x H*(X) =R

is then a diffeomorphism invariant and so are the numbers b*(X) and b~ (X))
(see Section . They are determined by the Euler characteristic and
signature of X. In fact, more is true. The intersection form can be defined
on integral cohomology and Poincaré duality over the integers asserts that it
remains nondegenerate over the integers (which can be proved with the same
methods as Theorem once an integral cohomology theory has been set
up). This means that it is represented by a symmetric integer matrix with
determinant +1 in any integral basis of H?(X;Z).

This leads to the issue of understanding quadratic forms over the inte-
gers. One must distinguish between the even and odd case, where even
means that Q(a,a) is even for every integer vector a and odd means that
Q(a,a) is odd for some integer vector a. Thus an oriented 4-manifold X
is called even if the self-intersection number of every compact oriented 2-
dimensional submanifold ¥ C X without boundary is even and it is called
odd is the self-intersection number is odd for some X.. This property (being
even or odd) is called the parity of X. For example, it follows from the
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formula that a hypersurface Xy C CP? of degree d is odd if and only
if d is odd. (Exercise: Prove this using the fact that ¢ (Xy) = (4—d)h. Find
a surface with odd self-intersection number when d is odd.)

Examples of even quadratic forms are

2 -1 0 0 0 0 0 0

-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 -1

01 0 0 -1 2 -1 0 0 0
H_<1 0)’ Es==1 9 0o 0 -1 2 -1 0 o0
0o 0 0 0 -1 2 -1 0

0o 0 0 0 0 -1 2 0

0 0 -1 0 0 0 0 2

Both matrices are symmetric and have determinant +1. The second matrix
is the Cartan matrix associated to the Dynkin diagram FEg and is positive
definite. A quadratic form (over the integers) is called indefinite if both b
and b~ are nonzero. The classification theorem for nondegenerate quadratic
forms over the integers asserts that every indefinite nondegenerate quadratic
form is diagonalizable over the integers in the odd case (with entries £1 on
the diagonal) and in the even case is isomorphic to a direct sum of copies
of H and +£Fg. It follows, for example, that the self-intersection form of a
K 3-surface is isomorphic to 3H — 2FEg. However, there are many positive
(or negative) definite exotic quadratic forms. A deep theorem of Donaldson,
that he proved in the early eighties, asserts that the intersection form of
a smooth 4-manifold is diagonalizable, whenever it is positive or negative
definite. Thus the exotic forms do not appear as intersection forms of smooth
4-manifolds.

Donaldson’s Diagonalizability Theorem. If X is a compact connected
oriented smooth 4-manifold without boundary with definite intersection form
Qx, then Qx is diagonalizable over the integers.

Combining this with the aforementioned known facts about quadratic forms
over the integers, we see that two compact connected simply connected
oriented smooth 4-manifolds without boundary have isomorphic intersection
forms over the integers if and only if they have the same Euler characteristic,
signature, and parity. Now a deep theorem of Michael Freedman asserts
that two compact connected simply connected oriented smooth 4-manifolds
without boundary are homeomorphic if and only if they have isomorphic
intersection forms over the integers. In the light of Donaldson’s theorem
Freedman’s result can be rephrased as follows.
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Freedman’s Theorem. Two compact connected simply connected oriented
smooth 4-manifold without boundary are homeomorphic if and only if they
have the same Fuler characteristic, signature, and parity.

A corollary is the Topological Poincaré Conjecture in Dimension Four. A
natural question is if Freedman’s theorem can be strengthened to provide a
diffeomorphism. The answer is negative. In the early 1980s, around the same
time when Freedman proved his theorem, Donaldson discovered remarkable
invariants of compact oriented smooth 4-manifolds without boundary by
studying the anti-self-dual Yang—Mills equations with structure group SU(2).
He proved that the resulting invariants are nontrivial for Kahler surfaces
whereas they are trivial for every connected sum X;# X5 with b7 (X;) > 0.
Thus two such manifolds cannot be diffeomorphic.

Donaldson’s Theorem. Let X be a compact connected simply connected
Kihler surface without boundary and assume bt (X) > 2. Then X is not

diffeomorphic to any connected sum kCPQ#K@Q.

The only candidate for such a connected sum would be with k = b*(X)
and ¢ = b~ (X). Since k > 2, this manifold has trivial Donaldson invariants
and so cannot be diffeomorphic to X. To make the statement interesting we
also have to assume that X is odd. Then the two manifolds are homeomor-
phic, by Freedman’s theorem. An infinite sequence of examples is provided
by hypersurfaces Xy C CP? of odd degree d > 5 (see Section . These
are connected simply connected Kéhler surfaces, satisfy b"(Xy) > 2, and
they are odd. Hence Donaldson’s theorem applies, and Friedmans theorem
furnishes a homeomorphism to a connected sum of CP?’s and TPs.

A beautiful introduction to Donaldson theory can be found in the book
by Donaldson and Kronheimer [6]. The book includes a proof of Donald-
son’s Diagonalizability Theorem, which is also based on the study of anti-
self-dual SU(2)-instantons. When Seiberg-Witten theory was discovered in
1994, Taubes proved that all symplectic 4-manifolds have nontrivial Seiberg—
Witten invariants. Since the Seiberg—Witten invariants of connected sums
have the same vanishing properties as Donaldson invariants, this gave rise
to an extension of Donaldson’s theorem with “Kdhler surface” replaced by
“symplectic 4-manifold”. Both Donaldson and Seiberg—Witten theory are
important topics in the study of 3- and 4-manifolds with a wealth of results
in various directions, the Kronheimer—Mrowka proof of the Thom conjecture
being just one example (Section . In a nutshell one can think of these
as intersection theories in suitable infinite-dimensional settings. This shows
again the power of analytical methods in topology and geometry.
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Notes

This appendix discusses some foundational material that is used through-
out this book. Section examines paracompact topological spaces, Sec-
tion shows how to construct partitions of unity, and Section shows
how to use partitions of unity to embed second countable Hausdorff man-
ifolds into Euclidean space. Section discusses Riemannian metrics and
the Levi-Civita connection, Section explains some background material
about geodesics and the exponential map, and Section establishes the
classification of compact one-manifolds following Milnor [14].

A.1 Paracompactness

Definition A.1.1. Let M be a topological space and denote by % C 2™ the
collection of open sets. The topological space M 1is called

e locally compact if for every open set U C M and every p € U there
exists a compact neighborhood of p that is contained in U,

e g-compact if there exists a sequence of compact sets K; C M such
that K; C int(K;y1) for alli € N and |J;2, Ki = M,

e second countable if its topology has a countable base, i.e. there ex-
ists a countable collection of open sets V' C % such that every open
set U € % is a union of elements from the collection ¥,

e paracompact if every open cover {Uqy}aca of M admits a locally fi-
nite refinement, i.e. there exists an open cover {Vsz}gep such that every
set Vg is contained in one of the sets U, and every element p € M has
an open neighborhood W such that #{8 € B|W NVz # 0} < oco.

273
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We will use the basic facts that a compact subset of a Hausdorff topo-
logical space is closed and that a closed subset of a compact set is compact.
We will also use the axiom of choice whenever convenient.

Lemma A.1.2. Let M be a locally compact Hausdorff space, let U C M be
an open set, and let K C U be a compact set. Then there exists an open
set V.C M such that V is compact and

KcvcVcU.

Proof. Since K C U and M is locally compact, every element p € K has a
compact neighborhhod B, C U. Since M is a Hausdorff space, the set B, is
closed. Hence V), := int(B),) is an open neighborhood of p such that

peV,CcV,CB,CU.

Since {V} }pex is an open cover of K and K is compact, there exist finitely
elements pq,...,py, € K such that

KCVyU---UV, = V.

This set V is open. Its closure V.=V, U---UV,, is a closed subset of
the compact set B := B),, U---U B,, and hence is itself compact. More-
over, V C B C U and this proves Lemma ]

Lemma A.1.3. Let M be a second countable locally compact Hausdorff
space. Then M is o-compact.

Proof. Let ¥ be a countable base for the topology of M. Then the collection
Yo :={V € ¥ |V is compact}

is still a countable base for the topology of M by Lemma Enumerate
the elements of ¥, as a sequence

Ye={V1,Va,V5,... }.

Then, for every k € N, the set By, :== V1 U--- UV}, is compact and hence is
contained in the set Uy := V3 U--- UV, for some integer ¢ > k. For k € N
let v(k) > k be the smallest integer bigger than k such that By C U, ). De-
fine the sequence ki < ko < k3 < --- inductively by k;1+1 := v(k;) for ¢ € N.
Then the set K; := By, is compact and is contained in U,y C int(K;41)
for each i, and |J;cn Ki = Upen Vi = M. This proves Lemma O
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Lemma A.1.4. Let M be a second countable locally compact Hausdorff
space. Then M is paracompact.

Proof. By Lemma there exists a sequence of compact sets K; C M
such that

K; C int(KiH)

for all 7+ € N and

| Ki=M.
1€N

Let K; := () for 7 < 0 and, for i € N, define
Bi = Kl \ Kifl, Wl = int(KHl) \ KZ‘,Q.

Then (J;cy Bi = M and, for each i € N, the set B; is compact, the set W; is
open, and B; N K; o C B; N int(Kz;l) = @, and so

B, c W;, WiNW,i3 = 0.
Now let {Uq }aca be an open cover of M. Then, for each i € N, the collection
{Wz N Ua}aeA

is an open cover of B; and so has a finite subcover

m;
B; C U (W@'ﬂUaij), Aty e v Qi € A.
j=1

It follows that the collection
Vo= {WiﬂUaij\iEN,jzl,...,mi}

is a locally finite refinement of the open cover {U,}qaca of M. Namely,
each pg € M belongs to one of the sets W;,, and this set intersects only those
sets W; N U,,; with ig —2 < i <y + 2. This proves Lemma O

We remark that every second countable locally compact Hausdorff space
is metrizable by the Urysohn Metrization Theorem [19, Thm 34.1]. Using
this fact one can deduce Lemma from a general theorem which asserts
that every metric space is paracompact [19, Thm 41.4].
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A.2 Partitions of Unity

Definition A.2.1. Let M be a smooth manifold. A partition of unity
on M is a collection of smooth functions p,, : M — [0, 1], one for eacha € A,
such that each point p € M has an open neighborhood V- C M on which only
finitely many pa do not vanish, i.e.

#{a € Al palv # 0} < o0, (A2.1)

and, for every p € M, we have

> palp) = 1. (A2.2)

a€cA

If {Ua}aeca is an open cover of M, then a partition of unity {pa}taca (in-
dexed by the same set A) is called subordinate to the cover if each p,, is
supported in Uy, i.e. supp(pa) :={p € M | pa(p) # 0} C U, for all o € A.

Theorem A.2.2 (Partitions of unity). Let M be a smooth manifold
whose topology is paracompact and Hausdorff. Then, for every open cover
of M, there exists a partition of unity subordinate to that cover.

Proof. See page 277} O

Lemma A.2.3. Let M be a smooth m-manifold with a Hausdorff topology.
Then, for every open set V.C M and every compact set K C 'V, there exists
a smooth function k : M — [0,00) with compact support such that

supp(k) C V, k(p) >0 forallp e K.

Proof. Assume first that K = {pg} is a single point. Since M is a manifold
it is locally compact. Hence there exists a compact neighborhood C' C V
of pp. Since M is Hausdorff C is closed and hence the set U := int(C)
is a neighborhood of py whose closure U C C is compact and contained
in V. Shrinking U, if necessary, we may assume that there is a coordinate
chart ¢ : U — § with values in some open neighborhood 2 C R™ of the ori-
gin such that ¢(pg) = 0. Now choose a smooth function kg : 2 — [0, c0) with
compact support such that x(0) > 0. Then the function s : M — [0, 00),
defined by
Klu == koo o

and k(p) := 0 for p € M \ U is supported in V and satisfies x(pg) > 0. This
proves the lemma in the case where K is a point.
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Now let K be any compact subset of V. Then, by the first part of
the proof, there is a collection of smooth functions x, : M — [0,00),
one for every p € K, such that kp(p) > 0 and supp(k,) C V. Since K
is compact there are finitely many points pi1,...,pr € K such that the
sets {p € M | Ky, (p) >0} cover K. Hence the function x := >_j Kp; is sup-
ported in V and is everywhere positive on K. This proves Lemma[A.2.3] O

Lemma A.2.4. Let M be a topological space. If {Vi},c; is a locally finite
collection of open sets in M then Uielo V= Uz'elo Vi for every subset Iy C I.

Proof. The set ¢y, V; is obviously contained in the closure of Uier, Vi-
To prove the converse choose a point pg € M \ |J;c I V. Since the collec-
tion {V;};cs is locally finite, there exists an open neighborhood U of pg such
that the set I := {i € I|V;NU # 0} is finite. Thus Up := U\ U;eznr, Vi
is an open neighborhood of py and we have Uy N'V; = ) for every i € I.
Hence po ¢ U;c;, Vi- This proves Lemma O

Proof of Theorem[A.2.9. Let {Uq},c 4 be an open cover of M. We prove in
four steps that there is a partition of unity subordinate to this cover. The
proofs of steps one and two are taken from [19, Lemma 41.6].

Step 1. There is a locally finite open cover {Vi},c; of M such that, for
every i € I, the closure V; is compact and contained in one of the sets U,.

Denote by 7 C 2M the set of all open sets V' C M such that V is compact
and V C U, for some a € A. Since M is a locally compact Hausdorff
space the collection ¥ is an open cover of M. (If p € M then there is an
a € A such that p € Uy; since M is locally compact, there exists a compact
neighborhood K C U, of p; since M is Hausdorff, the set K is closed and
thus V :=int(K) is an open neighborhood of p with V. K C U,.) Since
M is paracompact, the open cover ¥ has a locally finite refinement {V;};c;.
This cover satisfies the requirements of Step 1.

Step 2. There is a collection of compact sets K; C V;, one for each i € I,
such that M = J;c; K;.

Denote by # < 2M the set of all open sets W C M such that W C Vj for
some i. Since M is a locally compact Hausdorff space, the collection # is an
open cover of M. Since M is paracompact # has a locally finite refinement
{W;},es. By the axiom of choice there is a map J — I : j — i; such that

W;cVy Vjeld
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Since the collection {W;};c s is locally finite, we have

K= Jw,=JW;cVv

ij=i ij=i
by Lemma Since V; is compact so is K.
Step 3. There is a partition of unity subordinate to the cover {V;}ier.

Choose a collection of compact sets K; C V; for ¢ € I as in Step 2. Then,
by Lemma and the axiom of choice, there is a collection of smooth
functions k; : M — [0, 00) with compact support such that

supp(k;) C Vi, Kilr, >0 Viel.

Since the cover {V;}ies is locally finite, the sum s := >, ; /i : M — R is
locally finite (i.e. each point in M has a neighborhood in which only finitely
many terms do not vanish) and thus defines a smooth function on M. This
function is everywhere positive, because each summand is nonnegative and,
for each p € M, there is an i € I with p € K; so that x;(p) > 0. Thus the
funtions x; := k;/k define a partition of unity satisfying supp(x;) C V; for
every ¢ € I as required.

Step 4. There is a partition of unity subordinate to the cover {Uy}aca-

Let {x;}icr be the partition of unity constructed in Step 3. By the axiom
of choice there is a map I — A : i — «; such that V; C U,, for every i € I.
For a € A define p,, : M — [0,1] by

Pa = Z X
a;=o

Here the sum runs over all indices ¢ € I with a; = «. This sum is locally
finite and hence is a smooth function on M. Moreover, each point in M has
an open neighborhood in which only finitely many of the p, do not vanish.
Hence the sum of the p, is a well defined function on M and

D2pa=) D xi=) =L
acA acA o=« el
This shows that the functions p, form a partition of unity. To prove the in-

clusion supp(ps) C U, we consider the open sets W; := {p € M | x;(p) > 0}
for © € I. Since W; C V;, this collection is locally finite. Hence, by

Lemma we have
supp(pa) = | J Wi= |J Wi= | supp(xi) € |J Vi C U
=« =« a; =«

a;=a

This proves Theorem ]
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A.3 Embedding a Manifold into Euclidean Space

Theorem A.3.1. Let M be a smooth m-manifold whose topology is second
countable and Hausdorff. Then there exists an embedding f : M — R*m+1
with a closed image.

Proof. The proof has five steps. The first two steps deal with case where M
is compact.

Step 1. Let U C M be an open set and let K C U be a compact set.
Then there exists an integer k € N, a smooth map f: M —R*, and an
open set V.C M, such that K CV C U, the restriction fly : V — R* is an
injective immersion, and f(p) =0 for allp € M\ U.

Choose a smooth atlas &7 = {(¢a,Us)}aca on M such that, for each a € A,
either Uy, C U or U,N K = . Since M is a paracompact Hausdorff man-
ifold, Theorem asserts that there exists a partition of unity {pa}taca
subordinate to the open cover {U, }aeca of M. Since the sets U, with U, C U
form an open cover of K and K is a compact subset of M, there exist finitely
many indices aq,...,ap € A such that

K CUyU-UUy, =V CU.
Let k:=/4(m+ 1) and, for i = 1,..., ¢, abbreviate

bi = Pa,, Pi = Pay-
Define the smooth map f : M — R* by
p1(p)

p1(p)o1(p)
f(p) = : for p e M.

pe(p)
pe(p)de(p)

Then the restriction f|y : V — RF is injective. Namely, if pg, p1 € V satisfy

f(po) = f(p1)
then
I:={i|pi(po) > 0} = {i| pi(pr) > 0} #0

and, for i € I, we have p;(po) = pi(p1), hence ¢;(po) = ¢i(p1), and so pg = p1.
Moreover, for every p € K the derivative df (p) : T,M — R is injective, and
this proves Step 1.
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Step 2. Let f: M — R be an injective immersion and let A ¢ REm+1)xk
be a nonempty open set. Then there exists a matrix A € A such that the
map Af : M — R*™+1 s an injective immersion.

The proof of Step 2 uses the Theorem of Sard. The sets

Wo :={(p,q) € M x M |p+#q},
Wi ::{(p,v)ETM‘v#O}

are open subsets of smooth second countable Hausdorff 2m-manifolds and
the maps

Fy: Ax Wy — R+ Fi: Ax W, — R+
defined by

Fo(A,p,q) = A(f(p) — f(@),  Fi(A,p,v) = Adf(p)v

for A € A, (p,q) € Wy, and (p,v) € Wi, are smooth. Moreover, the zero
vector in R?™*! is a regular value of Fy because f is injective and of F}
because f is an immersion. Hence it follows from [21, Theorem 2.2.17] that
the sets

Mo = F; 1 (0) = {(A,p,q) € Ax Wy | Af(p) = Af(q)},
My = FH0) = {(A,p,v) € Ax W, }Adf(p)v =0}

are smooth manifolds of dimension
dim(Mp) = dim(My) = 2m + 1)k — 1.

Since M is a second countable Hausdorfl manifold, so are My and M;j.
Hence the Theorem of Sard asserts that the canonical projections

MO —A: (Aapa Q) = A= 7-‘-0(147])) q)7
Ml — A (A,p,U) = A= ﬂ-l(Aap7U)v

have a common regular value A € A. Since
dim(Myp) = dim(M7) < dim(A),

this implies

A€ .A\ (WQ(M()) U 7T1(./\/l1)) .

Hence Af : M — R?>™*1 is an injective immersion and this proves Step 2.
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If M is compact, the result follows from Steps 1 and 2 with K =U = M.
In the noncompact case the proof requires two more steps to construct an
embedding into R¥"*4 and a further step to reduce the dimension to 2m + 1.

Step 3. Assume M is not compact. Then there exists a sequence of open
sets U; C M, a sequence of smooth functions p; : M — [0, 1], and a sequence
of compact sets K; C U; such that

supp(p;) C Uj, K; = p;l(l) c U, UuinU; = 0
for alli,j € N with i — j| > 2 and M = |J;2, K;.

Every manifold is locally compact. Since M is also second countable and
Hausdorff, Lemma asserts that there exists a sequence of compact
sets C; C M such that C; C int(Cjy1) for all i € N and M = J;cy Ci. As in
the proof of Lemma let Cp := 0 and define

for i € N. Then M = {J;cn Bi- We prove that
BZ' == Cl \ int(Cifl) (A32)

for all ¢ € N. To see this, note first that every compact subset of M is closed
because M is Hausdorff. Hence the right hand side in is a closed
set containing C; \ C;—1 and so B; C C; \ int(C;_1). To prove the converse
inclusion, observe that C; \ B; C C;_1, hence int(C;) \ B; is an open subset
of C;_1, hence int(C;) \ B; C int(Cj_1), and hence int(C;) \ int(C;—1) C B;.
Since C; \ int(C;) € C; \ C;—1 C B; by , this proves .

It follows from that

B, CcW,; := int(Ci_H) \ Ci_a, W;N Bito = ] (A.3.3)

for all ¢. Since the set B; is compact, the set W; is open, and M is a locally
compact Hausdorff space, it follows from Lemma by induction that
there exists a sequence of open sets U; C M such that

B, CcU, C Uz cW; \Ui_g (A.3.4)

for all i € N. (Here we take U;—o =0 for i =1,2.) Now M is paracom-
pact by Lemma Hence it follows from and Theorem
that, for each i € N, there exists of a partition of unity subordinate to the
open cover M = U; U (M \ B;), and hence a smooth function p; : M — [0, 1]
such that supp(p;) C U; and p;|p, = 1. Thus K; := pi_l(l) is a sequence
of compact sets such that B; C K; C U; for all i« and U; N U; = () when-
ever |i — j| > 2. Hence M = J;c K and this proves Step 3.
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Step 4. Assume M is not compact. Then there exists an embedding
[ M — R

with a closed image and a pair of orthonormal vectors x,y € R¥™+* such
that, for every € > 0, there exists a compact set K C M with

| £(p)]

sup inf
peM\K s,teR

Assume M is not compact and let K;,U;, p; be as in Step 3. Then, by
Steps 1 and 2, there exists a sequence of smooth maps g; : M — R*™+1 such
that gi|anp, =0, the restriction g;|x, : Ki — R*™*! is injective, and the
derivative dg;(p) : T,M — R?*™T! is injective for all p € K; and all i € N.
Let £ € R?"*! be a unit vector and define the maps f; : M — R*™+1 by

fip) = putp) [ ig + —2®L__ (A.3.6)
1+ |gi(p)?

for p € M and i € N. Then the restriction f;|x, : K; — R*™*! is injective,
the derivative df;(p) : T,M — R?™+1 is injective for all p € K;, and

supp(fi) C Us, fi(KG) € Ba(i§), fi(M) C Bi+1(0).
Define the maps f°44, fev: M — R?™+1 and p°dd, p®v : M — R by

wM@%:{P%MM,ﬁiGNmﬁpG%FL

0, if p € M\ Usen Uzi-1,
Fodd () 1= { fai1(p), lfl € Nand p € Uy,
0, ifpe M\ UieN Us;_1,
v (p) = p2i(p), ifi€Nandpe Uy,
! ”’{m if p e M\ Uen Ui,
£ (p) = { f2i(p), 1f@ € Nand p € Uy,
0, ifpe M\ UieN Us;,

and define the map f: M — R¥m+4 by

)= (72 ®), 1), 6 (), 1 (1)

forpe M.
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We prove that f is injective. To see this, note that

2i — 2 < |fo4(p)| < 2i,
pEKgi_l — { o .
Vip)| < 20+ 1,
e
11— 1< |f%(p)| < 2¢ ,
Ko, — :
pE K { | Fe(p)| < 2i + 2,

Now let po,p1 € M such that f(po) = f(p1). Assume first that py € Ko;—1.
Then p°d(p;) = p°dd(pg) = 1 and hence p; € Ujen K2j-1. By (A3.7), we
also have 2i — 2 < |f°4d(py)| = | f°44(po)| < 2i and hence p; € Ko;_1. This
implies fo;—1(p1) = f°4(p1) = f°%(po) = f2i-1(po) and so py = p1. Now
assume po € Ko;. Then p®(p1) = p®V(po) =1 and hence p; € UjeN Ky;.
By (A.3.7)), we also have 2i — 1 < |f*V(p1)| = |/ (po)| < 2i + 1, s0 p1 € Ko,
which implies foi(p1) = f(p1) = f<(po) = f2i(po), and so again py = p1.
This shows that f is injective. That f is an immersion follows from the fact
that the derivative df;(p) is injective for all p € K; and all i € N.

We prove that f is proper and has a closed image. Let (p,),en be a
sequence in M such that the sequence (f(p,))yen in R is bounded.
Choose i € N such that |f°44(p,)| < 2i and |f¥(p,)| < 2i + 1 for all v € N.
Then p, € U?;l K for all v € Nby (A.3.7). Hence (p,),en has a convergent
subsequence. Thus f : M — R*™*4 is an embedding with a closed image.

Next consider the pair of orthonormal vectors

x:=(0,&,0,0), y:=(0,0,0,¢)

in R+ =R x R?"F1 x R x R+ Let (p,)yen be a sequence in M
that does not have a convergent subsequence and choose a sequence i, € N
such that p, € Kog;,—1 U Ky;, for all v € N. Then ¢, tends to infinity.
If p, € Ko, 1 for all v, then we have limsup,_, | f°%(p,)| 7 f¥(p,)| < 1
by . Passing to a subsequence, still denoted by (p,),en, we may
assume that the limit A := lim, 00| f°(£,)| 71 £V (p,)| exists. Then

odd oy
0<az1, fim L@l g @Al A

vooo [f(p)l VI AT v [f(p)l VI
and it follows from ({A.3.6) that

) i )
lim 2 \Pv) lim ————— = \¢.
AT S R TR,
This implies
. f(pl/) _ < £ AL ) = L A
Jim fol - e i) Tyt T
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Similarly, if p, € Ko;, for all v, there exists a subsequence such that the
limit A == lim, 00| £V (p,)| 71 £°%(p, )| exists and, by (A.3.6)), this implies

mf(pu)_<0 & >: U N
v=o0 | f(py)] WVIHATTVIHN) VI N VI N
This shows that the vectors x and y satisfy the requirements of Step 4.

Step 5. There exists an embedding f : M — R?*™ 1 with a closed image.

For compact manifolds the result was proved in Steps 1 and 2 and for m = 0
the assertion is obvious, because then M is a finite or countable set with
the discrete topology. Thus assume that M is not compact and m > 1.
Choose f: M — R¥*4 and z,y € R¥"*+* as in Step 4 and define

A= A e REMADX(Am+4) the vectors Ax and Ay
' are linearly independent |

Since m > 1, this is a nonempty open subset of RZm+1)x(Am+4) e prove

that the map Af : M — R*"*+! is proper and has a closed image for ev-
ery A € A. To see this, fix a matrix A € A. Let (p,),en be a sequence in M
that does not have a convergent subsequence. Then by Step 4 there exists a
subsequence, still denoted by (p,),en, and real numbers s,¢ € R such that

2 2 . f(pv) .
s°+te =1, lim = sx + ty, lim |f(p,)| = cc.
M T F ) A )
This implies
. Af(p)
lim = sAx +tAy #0
v=oo |f(py)]

and hence lim, o |Af(py)| = co. Thus the preimage of every compact sub-
set of R?™*! under the map Af : M — R?*"+1 is a compact subset of M,
and hence Af is proper and has a closed image.

Now it follows from Step 2 that there exists a matrix A € A such that the
map Af : M — R?>™*1! is an injective immersion. Hence it is an embedding
with a closed image. This proves Step 5 and Theorem O

The Whitney Embedding Theorem asserts that every second count-
able Hausdorff m-manifold M admits an embedding f: M — R?>™. The
proof is based on the Whitney Trick and goes beyond the scope of this
book. The next exercise shows that Whitney’s theorem is sharp.

Remark A.3.2. The manifold RP? cannot be embedded into R3. The same
is true for the Klein bottle K := R?/ = where the equivalence relation is
given by [z,y] =[x + k, ¢ — y] for z,y € R and k, ¢ € Z.
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A.4 Riemannian Metrics

Definition A.4.1 (Riemannian Metric). Let M be a smooth m-manifold
(possibly with boundary) and let {Uy, o taca be an atlas on M. A Rieman-
nian metric on M is a collection of inner products

T,M x T,M — R : (v,w) — gp(v,w), (A4.1)
one for every p € M, such that for every a € A the map

9o = (ovij)ij=1 * Pa(Ua) — R™™,
defined by

s 0a0) = 5, (5 0. 51 0)) (A42)

forpe Uy andi,j =1,...,m, is smooth. (See part (ii) of Remark )
We will also denote the inner product by (v, w), = gp(v,w) and drop the
subscript p if the base point is understood from the context. A smooth mani-
fold equipped with a Riemannian metric is called a Riemannian manifold.

For different coordinate charts the maps g, and gg are related by

9a(@) = dpga(2)" ga(dpa(x))ddsa(x) (A.4.3)

for © € ¢o(Us NUg), where ¢pa := ¢pg 0 ¢5t i ¢a(Ua NUs) — ¢5(Us NUp)
denotes the transition map (see Definition . Conversely, every col-
lection of smooth maps g4 : ¢o(Usy) — R™*™ with values in the space of
positive definite matrices that satisfies for all o, 8 € A determines a
Riemannian metric on M via .

Let (M,g) be a Riemannian manifold. The norm of a tangent vec-
tor v € TyM determined by this metric is given by |v| := |v|, := \/(v,v),
and the length of a smooth curve v : [0,1] — M is defined by

1
L(v) := /0 |5(t)] dt. (A.4.4)
Now assume that M is connected. Then the set
Qpq == {v:1[0,1] = M|~ is smooth, v(0) = p, ¥(1) = ¢}.
of smooth curves joining p to ¢ is nonempty, and the formula

d(p,q) = X eigf L(v)
P,q

for p,q € M defines a distance function on M that induces the manifold
topology (see [21, Lemma 4.7.1]).
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Lemma A.4.2. Let M be a smooth m-manifold whose topology is Hausdorff.
Then the following are equivalent.

(i) M admits a Riemannian metric.

(ii) The topology on M is metrizable.

(iii) M is paracompact.

Proof. That (i) implies (ii) was proved above under the assumption that M
is connected. If M is disconnected, define d'(p,q) :=d(p,q)/(1+ d(p,q))
whenever Q,, # 0, and d'(p,q) := 1 whenever Q,,=10. Then d’ is a dis-
tance function that induces the manifold topology of M. That (ii) im-
plies (iii) follows from a general theorem which asserts that every metric
space is paracompact (see [19, Thm 41.4]). To prove that (iii) implies (i),
choose an atlas {Uq, ¢a }aca on M. Since M is paracompact, Theorem
asserts that there exists a partition of unity {pq}taca, subordinate to the
cover {Uy}aea. Now the formula

(v,w), ==Y pa(p) (dda(p)v,dda(p)1w)gm

p€EUy

for p € M and v,w € T, M defines a Riemannian metric on M. This proves
Lemma [A.4.2) ]

The next lemma uses the concept of a connection
V QUM TM) — QY (M, TM)

for the tangent bundle £ = T'M of a Riemannian manifold (M, g) as intro-
duced in Section B.1.21 The connection V is called torsion-free if

[X,Y] = WX — VyY (A.4.5)

for all X,Y € Vect(M) = Q°(M,TM )E| and it is called Riemannian if it

satisfies the Leibnitz rule
Ly (Y, Z) = (VK Y, Z) + (Y, V Z) (A4.6)
for all X,Y,Z € Vect(M) (see Example 8.1.13)).

Lemma A.4.3. FEvery Riemannian manifold admits a unique torsion-free
Riemannian connection, called the Levi-Civita connection.

Proof. See [21, Lemma 5.2.7]. O

! Our sign convention for the Lie bracket is explained in [21], §2.4.3]
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To describe the Levi-Civita connection in local coordinates, let (M, g)
be a Riemannian m-manifold, fix a coordinate chart ¢ : U — ) on an open
set U C M with values in an open set {2 C H™, denote by g;; : 2 — R the
associated metric tensor, and let g% : Q — R be the inverse tensor so that

m .
> gy’ =6
j=1

for i,k =1,...,m. In these coordinates a smooth vector field X € Vect(M)
is represented by a smooth map & = (¢1,...,€™) : Q — R™ defined by

§(o(p)) == do(p) X (p)
for p € U. In the notation (|1.1.7) this equation can be written as

Xy = ¢ .

lu ;(5 ° )5

Let Y € Vect(M) be another smooth vector field represented by the func-
tion 1 : Q@ — R™ so that n(¢(p)) := do(p)Y (p) for p € U.

Lemma A.4.4 (Christoffel Symbols). Let Z := VxY be the covariant
derivative of the vector field Y in the direction of the vector field X and de-
note by ¢ = (¢Y,...,¢™) :  — R™ the local coordinates of the vector field Z

so that C(6(p)) = d(p)(VxY)(p) for p € U. Then

¢F=> Pl > ket (A.4.7)
i=1 ij=1
for k=1,...,m, where the I‘fj : 2 — R are the Christoffel symbols
~ el (Ogu | D9y Ogi
rk .= w2 . J 24 A48
" ;g 2 (81’] * dzt Ot ( )

fori, i, k=1,...,m.

Proof. In local coordinates every connection V on T'M is given by an equa-
. . . k . .

tion of the form (A.4.7) for suitable functions I'j; : €2 — R. The torsion-free

and Riemannian conditions on V then take the form

0gii
Ffj = F?i’ 8;5 = Z (gz‘kl—‘?e + gijfg) . (A.4.9)
k=1

These equations taken together are equivalent to (|A.4.8)). For more details
see [21) Lemma 3.6.5]. O



288 APPENDIX A. NOTES

A.5 The Exponential Map

Let (M, g) be a Riemannian m-manifold without boundary and denote by V
the Levi-Civita connection. Via pullback the Levi-Civita connection induces
a covariant derivative operator on the space Vect(y) := QO(I,y*TM) of
smooth vector fields along any smooth curve v : I — M, and this pullback
connection will be denoted by the same symbol V : Vect(y) — Vect(y) (see

Sections and [8.1.5)).

Definition A.5.1. Let I C R be an interval. A smooth curve v: 1 — M
is called a geodesic if it satisfies the equation V4 =0, i.e. the covariant
derivative of its derivative vanishes everywhere.

Geodesics are solutions of a second order differential equation. Namely,
if ¢ : U — Q1 is a local coordinate chart and the Ffj : 2 — R are the Christof-
fel symbols as in Lemma[A:4.4] then a smooth curve v : I — U is a geodesic
if and only if the curve ¢ = (c!,...,c™) := ¢ oy : I — Q) satisfies the second
order differential equation

m
&+ Th(edd =0,  k=1,..m. (A.5.1)
ij=1
As an aside, the reader may verify that (A.5.1)) is the Euler—Lagrange equa-
tion associated to the energy functional

m
B = [ 3 sl e
Iig=1
on the space of smooth curves c¢: I — . In the intrinsic formulation, a
smooth curve v : I — M is a geodesic if and only if the map (v,7) : I — TM
is an integral curve of a suitable vector field on T'M, called the geodesic
spray (see [21, Lemma 4.3.3]). This implies that, for every p € M and ev-
ery v € T, M, there exists a unique geodesic 7y : I, , — M on a maximal open
existence interval I, C R containing the origin such that

70)=p,  4(0)=w (A.5.2)
(see |21, Lemma 4.3.4]). These geodesics give rise to an exponential map
exp, : V, = M, Vp={veT,M|1lel,,}, (A.5.3)

defined by exp,(v) := (1), where 7 : I;,,, — M is the unique geodesic satis-
fying . The exponential map is smooth because it is obtained from
the integral curves of a smooth vector field on the tangent bundle. Moreover
it has the following properties.
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Lemma A.5.2. (i) The set

V= (J{p}xV,cTM
peEM

is open and the map
V = M : (p,v) = exp,(v)

18 smooth.
(ii) Let pe M and v € T,M. Then the unique geodesic 7y : I, — M that
satisfies (A.5.2) is given by I, = {t € R|tv € V},} and

(1) = exp,(tv)

fortel,,.

(iii) The derivative of the exponential map (A.5.3)) at the origin is the iden-
tity, i.e. dexp,(0) = idr,r for all p € M.

Proof. See [21, Lemma 4.3.6 & Corollary 4.3.7]. O

Exercise A.5.3. Assume dim(M) = 1. Prove that a curve y: I — M is a
geodesic if and only if the function I — R : ¢ — |¥(t)| is constant.

It follows from part (iii) of Lemma and the Inverse Function The-
orem that, for » > 0 sufficiently small, the exponential map restricts
to a diffeomorphism from the ball

B, (p) :={veT,M|v| <r} (A.5.4)
of radius r in the tangent space onto its image
U (p) = {exp,(v) |v € T,M, |v| <r}. (A.5.5)

The supremum of the numbers r > 0 for which this holds is called the
injectivity radius of (M, g) at p and will be denoted by

exp, : By(p) — Ur(p) } _ (A.5.6)

inj(p; M) := sup {r >0 is a diffeomorphism

In [211, §4.5] it is shown that geodesics minimize the distance on small time in-
tervals and that the set U, (p) is the ball of radius r in the metric space (M, d)
whenever 0 < r < inj(p; M). Here is a precise formulation of the result.
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Theorem A.5.4 (Existence of Minimal Geodesics). Let (M,g) be a
Riemannian m-manifold, fix a point p € M, and let r > 0 be smaller than
the injectivity radius of M at p. Let v € T,M such that |v| < r. Then

d(p7 q) - ‘U‘ ) q:= epr(”)a

and a curve v € Qp 4 has minimal length L(y) = |v| if and only if there is a
smooth map B : [0,1] — [0, 1] satisfying

such that (t) = exp,(B(t)v) for 0 <t < 1.
Proof. See [21, Theorem 4.5.4]. O

A key ingredient in the proof of Theorem is the Gaufl Lemma
which is also used in the proof of the Tubular Neighborhood Theorem [£.3.8]

Ur

Figure A.1: The Gau8 Lemma.

Lemma A.5.5 (Gau3 Lemma). Let M, p, r be as in Theorem
let I C R be an open interval, and let w: I — V), be a smooth curve whose
norm |w(t)| =: r is constant. Define

a(s,t) = exp,(sw(t))

for (s,t) € R x I with sw(t) € V,,. Then

da da\ _
ds’ ot |
Thus the geodesics through the point p are orthogonal to the boundaries of

the balls U, (p) in (A5.5) (see Figure[A.]).
Proof. See [21, Lemma 4.5.5]. O
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A.6 Classifying Smooth One-Manifolds

Theorem A.6.1. Every nonempty compact connected smooth one-manifold
is diffeomorphic either to the unit circle S* = {z € C||z| = 1} or to the unit
interval [0,1] ={teR|0<t < 1}.

Proof. Let M be a nonempty compact connected smooth one-manifold and
choose a Riemannian metric on M (Lemma [A.4.2)).

Step 1. If there exists a nonconstant geodesic in M that is not injective,
then M is diffeomorphic to S' and hence OM = ().

Let I C R be an interval and let v : I — M be a nonconstant geodesic that
is not injective. Then there exist numbers tg,¢; € I such that ¢y < ¢; and

v(to) = v(t1), v(t) # y(to) for tog <t < t1. (A.6.1)

To obtain the second condition choose t; := inf{t € I'|t > to, v(t) = v(to)}.
We claim that

ko) = A(t). (A.6.2)
Suppose, by contradiction that this does not hold. Then, since dim(M) =1
and |§(to)] = |7(¢t1)] = 1, we must have §(t1) = —¥(tp). By uniqueness of
geodesics this implies v(to +t) = v(t1 — t) and hence (tg +t) = —%(t1 — t)
for 0 <t <ty—ty. Witht := (tl — to)/2 it follows that "y((t() + tl)/2) =0, in
contradiction to the assumption that ~ is nonconstant. This proves .
It follows from that

yt+T) = ’y(t), T :=1; — 1o, (A.6.3)

for all t e INT —T. Thus v extends uniquely to a geodesic on all of R
satisfying . The extended geodesic will still be denoted by v : R — M.
It satisfies

0<s<T = v(t+s) # y(t) (A.6.4)

for all t € R. Otherwise, there exists a 7 € R with v(7 4+ s) = v(7) and one
can argue as above that ¥(7 + s) = 4(7) and so v(t + s) = y(t) for all t € R,
which contradicts (A.6.1)) for t = ty. It follows from (A.6.3|) that the map

ST M : ¥ s y(sT) (A.6.5)

is well-defined and from that it is injective. Moreover, it is a lo-
cal diffeomorphism because 4(t) # 0 for all ¢ € R. Thus the image of the
map is open. It is also compact and hence closed. Since M is
connected it follows that the map is surjective. Hence it is a diffeo-
morphism by the Inverse Function Theorem This proves Step 1.
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Step 2. Assume OM = (). Then M is diffeomorphic to S*.

Fix an element p € M and a tangent vector v € T,M with |v| = 1. Since M
is compact, and so geodesically complete, there exists a geodesic v : R — M
that satisfies v(0) = p and 4(0) = v. Since M is complete and connected,
the Hopf-Rinow Theorem [2I, Theorem 4.6.6] asserts that the exponen-
tial map exp,, : T,M — M is surjective. Since exp,(tv) = 7(t) for t € R by
Lemma [A’5.2] this implies that « is surjective. Since M is compact, the
map v : R — M cannot be a diffeomorphism and so 7y is not injective. Hence
it follows from Step 1 that M is diffeomorphic to S' and this proves Step 2.

Step 3. Assume OM # (). Then M is diffeomorphic to [0,1].

Fix an element p € M \ OM and a tangent vector v € T,M with |v| = 1.
Let v: 1 — M\ OM be the unique geodesic on the maximal open inter-
val I =1I,, CR containing the origin such that v(0) =p and (0) = v.
Then 7 is injective by Step 1. Next we claim that

I = (a,b), —00<a<0<b<+oo.

Suppose otherwise that I = (a,b) with a = —0co or b= +o00. If b= +o0,
then d(v(i),7(j)) > 1 for any two distinct integers ¢, j > 1 by Theorem[A.5.4]
and so the sequence {~(i) };en has no convergent subsequence, contradicting
the compactness of M. The same argument shows that a > —oco. Invoking
compactness again, we find that the limits
po = tli\rr(llv(t), p1i= y}%'y(t)

exists. Next we prove that pg € OM. Assume otherwise that py ¢ OM and
choose a geodesic g : (—e,e) — M such that ~p(0) =pp and |yo(t)] =1
for all t. Then either vo(t) =~v(a+t) for 0 <t <e or v(t) =~v(a—1t)
for —e <t < 0. In both cases the geodesic v extends to the interval (a—e, b),
via y(a +t) := y(t) for —e < ¢t <0 in the first case and y(a + t) := yo(—t)
for —e <t <0 in the second case. This shows that pg € M as claimed.
The same argument shows that p; € M. Hence v extends to a geodesic on
the compact interval [a, b] via

v(a) :=po € OM, v(b) :=p1 € OM.

(Exercise: Prove that this extension is smooth near the endpoints.) By
Step 1 the extended geodesic v : [a,b] — M is injective. Moreover, its image
is open and is compact and hence closed. Since M is connected, this shows
that v : [a,b] — M is surjective. Thus ~ is bijective and its derivative is
everywhere nonzero. Hence v : [a,b] — M is a diffeomorphism and so is the
map [0,1] — M : ¢ — y((1 — t)a + tb). This proves Theorem [A.6.1] O
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