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Introduction

If one drew a map of mathematical theories, the theory of elliptic curves would lie very much near
the center of that map. It draws from and connects several integral parts of mathematics: analysis
and the theory of functions, abstract algebra and algebraic geometry as well as number theory. In the
last twenty-five years elliptic curves have been both used to solve long-outstanding problems of pure
mathematics and to derive fast algorithms for practical use.

The central role of elliptic curves is made possible by them simultaneously being very simple and
having a deep theory. Indeed from the standpoint of algebraic geometry they are the simplest non-trivial
objects; but their theory is far from trivial. This is prominently shown by the modularity theorem (also
known as Taniyama–Shimura–Weil conjecture): Even the precise statement of the theorem needs an
astonishing amount of interesting mathematics [Dar99]. However here again elliptic curves are just a
“simple” case: The modularity theorem can been considered to be a special case of the (mostly unproven)
Langlands program.

Since 1985 a very unlikely group of people has become increasingly interested in elliptic curves:
cryptographers. The first practical public key cryptosystems were published by Diffie and Hellman in
1976 [DH76] and Rivest, Shamir and Adleman in 1977 [RSA78]1. Variants of these systems are still in
use today. They rely on the difficulty of computing discrete logarithms in Z/pZ (p prime) and factoring
integers respectively. For both problems no polynomial time algorithms are known (on classical computers).
However, subexponential algorithms were developed for both problems during the 1980s. Therefore the
minimal bit size needed to guarantee secure communications had to be increased so much that it became
impractical for some implementations. As a solution to this problem cryptography schemes based on the
discrete logarithm problem on elliptic curves were proposed. Nowadays many encryption schemes are
based on this idea.

The introduction of elliptic curves to cryptography lead to the interesting situation that many
theorems which once belonged to the purest parts of pure mathematics are now used for practical
cryptoanalysis. Therefore in order to analyze elliptic curve cryptography (ECC) it is necessary to have a
thorough background in the theory of elliptic curves. The goal of this diploma thesis is to provide such a
background.

This document consists of two parts: The first part, consisting of chapters 1–4 is a purely mathematical
introduction to elliptic curves. Since it is impossible to reproduce the whole theory in the restricted
space of a diploma thesis, many theorems will not be proven here. Instead the focus is on the theorems
of particular interest to ECC. To the author’s knowledge there is no such collection of these theorems
available.

The second part – consisting of chapters 5–7 – shows how the theory can be used for cryptographical
purposes and cryptoanalysis. While this is the more “practical” part, the focus will still be on the theory
and no complete implementations are given.

The idea behind this thesis to form a bridge between the abstract texts on elliptic curves (such as
[Sil92]) and concrete texts for cryptographers (such as [BSS99] and [BSS05]). It should provide enough
background to read and work on current research on ECC.

1These were the first publicly published efficient public key cryptosystems. As is now known, similar systems had been
developed by Ellis, Cocks and Williamson at the GCHQ (a UK intelligence agency) in the early 1970s.
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Chapter 1

Algebraic Curves

It is possible to prove many theorems about elliptic curves using elementary (ad-hoc) methods. For
example this is done in [ST92]. However in order to really understand the theory of elliptic curves, the
framework provided by algebraic geometry is necessary. Even for “simple” theorems the language of
algebraic geometry often greatly simplifies the notation and makes proofs more transparent. Therefore we
will dedicate the present chapter to an introduction of the theory of algebraic curves. However in order
to keep this chapter as short as possible, we have to make two concessions: First, we will only consider
curves embedded into a surrounding space, and second, we will skip (nearly) all proofs.

We will follow the first two chapters of [Sil92] quite closely. When not stated otherwise, proofs (or at
least references to them) can be found there. Naturally this chapter introduces only a small part of the
concepts found in algebraic geometry. A very readable introductory text to algebraic geometry is the two
books by Shafarevich [Sha94a, Sha94b]. A good and rather elementary introduction to algebraic curves
is the classic [Ful89]. In particular Fulton covers the important concepts of intersection numbers and
normalization (i.e. removing of singularities) which we will not discuss here. Of course no list of reference
works on algebraic geometry is complete without [Har77], but it is not recommended to read Hartshorne’s
book without having had any prior exposure to the subject.

First we will fix some notation that is used throughout this thesis: When not defined otherwise, K
is always a perfect field, i.e. every algebraic extension of K is separable. This is no real restriction as
all fields that are cryptographically interesting have this property. The algebraic closure of a field K is
denoted K̄. If L|K is a Galois extension then the Galois group of this extension is denoted Gal(L|K).

1.1 Basics of Algebraic Geometry

We will begin with a lot of definitions.

Definition 1.1. The affine n-space over K is the set

An = An(K̄) =
{

(x1, . . . , xn) : xi ∈ K̄
}
.

The set of K-rational points in An is

An(K) = {(x1, . . . , xn) ∈ An : xi ∈ K} .

The group Gal(K̄|K) acts on An by Pσ = (σ(x1), . . . , σ(xn)) for σ ∈ Gal(K̄|K) and P = (x1, . . . , xn).
Obviously the K-rational points of An(K) are exactly the points fixed under this action.

Let K[X] = K[X1, . . . , Xn] be the polynomial ring in n variables over K.

Definition 1.2. To every subset S ⊆ K̄[X] associate its zero set

Z(S) = {P ∈ An : f(P ) = 0 for all f ∈ S} .

A set Y ⊆ An is called an (affine) algebraic set if there exists S ⊆ K[X] with Y = Z(S).

1



2 Algebraic Curves

Definition 1.3. Let Y ⊆ An. Then the ideal associated to Y is

I(Y ) =
{
f ∈ K̄[X] : f(P ) = 0 for all P ∈ Y

}
.

An algebraic set Y is defined over K if I(Y ) can be generated by polynomials in K[X]. This is denoted by
Y/K. If Y is defined over K, the set of K-rational points of Y is the set

Y (K) = Y ∩ An(K).

One easily checks that I(Y ) is indeed an ideal. Note that by the Hilbert basis theorem [AM69, theorem
7.5], K̄[X] is a Noetherian ring and thus I(Y ) is always finitely generated. The K-rational points can also
be characterized by

Y (K) =
{
P ∈ Y : Pσ = P for all σ ∈ Gal(K̄|K)

}
.

Theorem 1.4. The union of two algebraic sets is an algebraic set. The intersection of an arbitrary family
of algebraic sets is an algebraic set. The empty set ∅ and the whole space An are algebraic sets.

Proof. [Har77, proposition I.1.1]

Definition 1.5. The topology on An with closed sets exactly the algebraic sets is called Zariski topology.
By the last theorem it is indeed a topology.

Definition 1.6. A closed subset of a topological space is called irreducible, if it cannot be expressed as
the union of two closed proper subsets. The empty set is not considered to be irreducible.

An algebraic set V ⊆ An that is irreducible with respect to the Zariski topology is called (affine)
variety.

Theorem 1.7. The functions I : P(An)→ P(K̄[x]) and V : P(K̄[x])→ P(An) are compatible with the
inclusion of sets. For an ideal a ⊆ K̄[X],

I(Z(a)) =
√

a =
{
f ∈ K̄[X] : ∃n ∈ N : fn ∈ a

}
.

For any subset Y ⊆ An,
Z(I(Y )) = Ȳ ,

the topological closure of Y . Therefore there is a one-to-one inclusion-reversing correspondence between
algebraic set in An and radical ideals of K̄[X]. An algebraic set is irreducible if and only if its ideal is
prime.

Proof. [Har77, proposition I.1.2 and corollary I.1.4]. Note that the only hard part is I(Z(a)) =
√

a, which
is Hilbert’s Nullstellensatz [Mat80, (14.L)] and depends on the fact that K̄ is algebraically closed.

Definition 1.8. Let V/K be an affine variety. The affine coordinate ring of V/K is

K[V ] = K[X]/ (I(V ) ∩K[X]) .

By the last theorem it is an integral domain. Its field of fractions is called the function field of V/K,
denoted K(V ).

Every element f ∈ K̄[V ] induces a well defined function on V : Choose F ∈ K̄[X] such that f =
F mod I(V ) and set f(P ) = F (P ). The Galois group Gal(K̄|K) acts on F ∈ K̄[X] by acting on its
coefficients. If V is defined over K, then Gal(K̄|K) takes I(V ) to itself and we obtain actions on K̄[V ]
and K̄(X). The sets K[V ] resp. K(V ) are exactly the fixed points of this action. For every f ∈ K̄[V ],
σ ∈ Gal(K̄|K) and P ∈ V (K̄) we have (f(P ))σ = fσ(Pσ).

Definition and Proposition 1.9. Let V be an affine variety. Then the following numbers are finite
and equal:

1. The supremum of all integers n such that there exists a chain Z0 ( Z1 ( · · · ( Zn of distinct
irreducible closed subsets of V .

2. The Krull dimension of K̄[V ], i.e. the supremum of all integers n such that there exists a chain
p0 ( p1 ( · · · ( pn of distinct prime ideals of K̄[V ].
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3. The transcendence degree of K̄(V ) over K̄.

This number is called the dimension of V , denoted dim(V ).

Proof. The equivalence of the topological dimension of V and the Krull dimension of K̄[V ] is easy. See
also [Har77, proposition I.1.7]. The equality to trdegK̄ K(V ) follows from the Noether normalization
theorem [Mat80, (14.G)].

For an affine variety V and any point P ∈ V define an ideal mP of K̄[V ] by

mP =
{
f ∈ K̄[V ] : f(P ) = 0 for all P ∈ V

}
.

Since K̄[V ]/mP = K̄, mP is a maximal ideal. Also note that mP /m
2
P is a K̄-vector space.

Definition 1.10. Let V be an affine variety and let P ∈ V . Then the local ring of V at P , denoted
K̄[V ]P , is the localization1 K̄[V ]mP of K̄[V ] at mP . An element f ∈ K̄(V ) is regular (or defined) at P , if
it is in K̄[V ]P . If f = g

h this is equivalent to h(P ) 6= 0 and hence f(P ) = g(P )
h(P ) ∈ K̄ is well-defined.

Proposition 1.11. If f ∈ K̄(V ) is regular at every point of V , then f ∈ K̄[V ].

Proof. [Har77, thm. I.3.2]

Definition and Proposition 1.12. Let V be a variety in An and P ∈ V . Then the following statements
are equivalent:

1. Let f1, . . . , fm ∈ K̄[V ] be a set of generators of I(V ). Then the rank of the Jacobian matrix(
∂fi
∂Xj

(P )
)

1≤i≤m
1≤j≤n

is n− dim(V ).

2. The local ring K̄[V ]P is a regular local ring, i.e. the minimal number of generators of mP is equal to
the Krull dimension of K̄[V ]P .

3. dim(V ) = dimK̄(mP /m
2
P ), where dimK̄ denotes the dimension as a K̄-vector space.

It this case V is non-singular (or smooth) at P . Otherwise P is a singular point of V . A variety that is
non-singular at every point is called non-singular (or smooth).

Proof. For the equivalence of (2) and (3) note that dim(V ) = dim K̄[V ] and use [AM69, cor. 3.13] and
[AM69, thm. 11.22]. For the equivalence of (1) and (3) see [Har77, thm. I.5.1].

An interesting corollary is that one can intrinsically define the tangent space of a variety V at point P
to be (mP /m

2
P )∗. By Taylor expansion this is equivalent to the “usual” definition using the surrounding

space.

For several reasons (some of them will become apparent later) the natural setting for algebraic geometry
is not affine, but projective space:

Definition 1.13. The projective n-space over K is given by

Pn = Pn(K̄) = (An+1 \ {0})/K̄∗.

In other words, Pn is the set of non-zero (n + 1)-tuples over K̄ where two tuples are identified when
they are multiples of each other. A point of Pn is given by homogeneous (or projective) coordinates
[x0 : x1 : · · · : xn]. The set of K-rational points of Pn is given by

Pn(K) = {[x0 : · · · : xn] ∈ Pn : all xi ∈ K} .

(Note that this only needs to be true for one representation of the point.)
1The localization of an integral domain A at a prime ideal p ⊂ A is

Ap =
na

b
: a ∈ A, b ∈ A \ p

o
⊆ Quot(A)

with the usual sum and product of fractions.
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Again the Galois group acts on Pn by acting on the coordinates and the K-rational points are exactly
the points fixed by Gal(K̄|K).

Definition 1.14. A polynomial f ∈ K̄[X0, . . . , Xn] is homogeneous of degree d if f(λX0, . . . , λXn) =
λdf(X0, . . . , Xn) for all λ ∈ K̄. An ideal of K̄[X] is called homogeneous if it is generated by homogeneous
polynomials.

While in general it is not possible to evaluate a polynomial f at a point P of projective space, if f is
homogeneous it makes sense to ask whether f(P ) = 0.

Definition 1.15. To every homogeneous ideal h ⊆ K̄[X0, . . . , Xn] associate its zero set

Z(h) = {P ∈ An : f(P ) = 0 for all homogeneous f ∈ h} ⊆ Pn.

Every set Y ⊆ An such that there exists h ⊆ K[X] with Y = Z(h) is called a (projective) algebraic set.

Let Y ⊆ Pn. Then the (homogeneous) ideal I(Y ) associated to Y is the homogeneous ideal generated
by all homogeneous polynomials of K̄[X] that vanish at all points of Y . The homogeneous coordinate
ring of Y is K̄[X]/I(Y ). An algebraic set Y is defined over K if I(Y ) can be generated by homogeneous
polynomials f ∈ K[X]. This is denoted by V/K. If V is defined over K, the set of K-rational points of V
is the set

Y (K) = Y ∩ Pn(K).

The topology on Pn with closed sets exactly the algebraic sets is called Zariski topology. Again one easily
checks that it is indeed a topology. An algebraic set is called a (projective) variety if it is irreducible or
equivalently if its associated ideal is prime.

For each 0 ≤ i ≤ n there is an inclusion φi : An ↪→ Pn, given by

φi(x1, . . . , xn) = [x1 : · · · : xi−1 : 1 : xi : · · · : xn].

The set Pn \ φi(An) = V (〈Xi〉) is closed. Thus Pn is covered by the open sets Ui = φi(An). One can
easily show that all φis are homeomorphisms [Har77, proposition I.2.2]. In other words every point of Pn
has an open affine neighborhood. The sets Ui are called affine pieces of Pn.

To each polynomial f ∈ K̄[X1, . . . , Xn] of degree d one can associate its homogenization with respect
to Xi. This is the homogeneous polynomial fh ∈ K̄[Y0, . . . , Yn] given by

fh(Y0, . . . , Yn) = Y di f

(
Y0

Yi
, . . . ,

Yi−1

Yi
,
Yi+1

Yi
, . . . ,

Yn
Yi

)
.

This process can be reversed by associating to every homogeneous polynomial f ∈ K̄[Y ] of degree d its
dehomogenization with respect to Yi which is

fd(X1, . . . , Xn) = f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn).

Fix an affine piece Ui of Pn and identify it with Ai. Let Y ⊆ Ai be an algebraic set. Its projective closure
V̄ ⊆ Pn is just the topological closure of V in Pn with respect to the Zariski topology. Its ideal is given by

I(V̄ ) = 〈fh : f ∈ I(V )〉

Proposition 1.16. If V is an affine variety, then V̄ is a projective variety and V̄ ∩ An = V .

If V is a projective variety, then V ∩ An is an affine variety and V ∩ An = ∅ or V ∩ An = V .

If an affine (resp. projective) variety V is defined over K, then V̄ (resp. V ∩ An) is also defined over
K.

We will usually give a variety by its equations in affine space with the understanding that its projective
closure is considered. The points in V̄ \ V are called points at infinity .

Definition 1.17. Let V be a projective variety. The function field of V , denoted K̄(V ), consists of
equivalence classes of fractions f

g , with f and g homogeneous polynomials of the same degree and g /∈ I(V )

where two frations f
g and f ′

g′ are considered equal if fg′ − f ′g ∈ I(V ). (In other words it is the degree
zero part of the localization of K̄[V ] with respect to the multiplicative system of non-zero homogeneous
polynomials.) The local ring of V at P ∈ V , denoted K̄[V ]P , is the ring of all elements f

g ∈ K̄(V ) with
g(P ) 6= 0. These elements are called regular (or defined) at P .
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If F = f
g ∈ K̄(V ) is regular at P ∈ V , then F (P ) = f(P )

g(P ) is a well-defined element of K̄. When we
speak of a (rational) function F on V , we always mean an element of K̄(V ) even though F might not be
defined at every point of V . Indeed all functions that are regular at all points of V are trivial:

Proposition 1.18. Let V be a projective variety. The only functions that are regular at all points of V
are the constant functions.

Let An be an affine piece of projective space such that An ∩ V 6= ∅. Then K̄(V ) ∼= K̄(V ∩ An). If
P ∈ V ∩ An, then K̄[V ]P ∼= K̄[V ∩ An]P .

Proof. [Har77, theorem 3.2] and Hartshorne’s definition of the function field and local rings.

The preceding proposition implies that in many cases it sufficient to prove theorems for affine varieties
and the projective case will follow automatically. This will always work when the property in question is
local.

Definition 1.19. Let V be a projective variety, P ∈ V and An an affine piece with P ∈ V ∩ An. Then
the dimension dimV of V is the dimension of V ∩ An. The variety V is non-singular (or smooth) at P if
V ∩ An is non-singular at P .

To complete the category of projective varieties, we need to define what the morphisms are:

Definition 1.20. Let V1 and V2 be projective varieties with V2 ⊆ Pn. A rational map from V1 to V2 is a
collection of functions f0, . . . , fn ∈ K̄(V1) such that [f0(P ) : · · · : fn(P )] ∈ V2 for all points P ∈ V1 where
the expression is well-defined. Even though a rational map φ might not be defined on all of V1, we write

φ : V1 → V2, φ = [f0 : · · · : fn].

A rational map φ = [f0 : · · · : fn] is regular or (defined) at P ∈ V1 if there exists g ∈ K̄(V1) such that each
gfi is regular at P and there exists an index i with gfi(P ) 6= 0. A morphism is a rational map which is
regular at every point of V1. A morphism is an isomorphism, if it has an inverse that is again a morphism.

Definition 1.21. A rational map φ = [f0 : · · · : fn] is defined over K if there exists an element λ ∈ K̄∗
such that all λfi ∈ K(V1). Two varieties are isomorphic over K if there exists an isomorphism φ between
them such that both φ and its inverse are defined over K.

The Galois group Gal(K̄|K) acts on a rational map φ = [f0 : · · · : fn] by acting on the fi. Note that φ
is defined over K if and only if φσ = φ for all σ ∈ Gal(K̄|K).

Definition 1.22. Let φ : V1 → V2 be a rational map. The pull-back of f ∈ K̄(V2) by φ is

φ∗f = f ◦ φ ∈ K̄(V1).

The function φ∗ : K̄(V2)→ K̄(Va) is a homomorphism of fields. If the image of V1 under φ is dense
in V2, then φ∗ is injective [Sha94a, p. 51]. A rational map φ is regular if and only if φ∗ maps regular
functions to regular functions.

1.2 Curves

Even in classical algebraic geometry there are several different notions of a “curve” [Har77, section I.6]
and of course modern algebraic geometry has vastly generalized the concept [Har77, definition II.6.7].
For the purpose of this text the word curve will always mean a one-dimensional projective variety. A
curve in P2 is uniquely determined by a single equation. We will usually give the dehomogenized version
of this equation. When we speak of models of a curve C, we mean curves with the same function field
(i.e. curves which are birational to C, see [Sha94a, sections I.4.3 and II.4.5]). Note that by proposition
1.27 below two non-singular curves are birationally equivalent if and only if they are isomorphic. Also
compare theorem 1.29.

Proposition 1.23. Let P be a non-singular point of a curve C. Then K̄[C]P is a discrete valuation ring
(see definition 3.59).
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Definition 1.24. Let P be a non-singular point of a curve C and f ∈ K̄[C]P . The order of f at P is

ordP (f) = max
{
d ∈ Z : f ∈ md

P

}
∈ {0, 1, 2, . . . } ∪ {∞} .

By ordP ( fg ) = ordP (f)− ordP (g) this can be extended to

ordP : K̄(C)→ Z ∪ {∞}.

Let f ∈ K̄(C). If ordP (f) > 0, then f has a zero at P . If ordP (f) < 0, then f has a pole at P . If
ordP (f) ≥ 0 then f is regular at P and f(P ) ∈ K̄ is well-defined. Otherwise we write f(P ) = ∞. If
ordP (f) = 1, then f is a uniformizer at P .

Proposition 1.25. Let f ∈ K̄(C), where C is smooth curve. Then f has only finitely many poles and
zeros. Further if f has no poles or no zeros, then it is constant.

Proposition 1.26. Let C/K be a curve and let t ∈ K(C) be a uniformizer. Then K(C) is a finite
separable extension of K(t).

Proposition 1.27. Let C be a curve, P ∈ C a non-singular point, V a (projective) variety and φ : C → V
a rational map. Then φ is regular at P . In particular, if C is smooth then φ is a morphism.

Note that there is a natural one-to-one correspondence between functions in K(C) and rational maps
C → P1 defined over K: A function f ∈ K(C) defines a rational map (also denoted f) by

f : C → P1, P 7→

{
[f(P ) : 1] if f is regular at P
[1 : 0] if f has a pole at P

.

The next two theorems are central to the study of algebraic curves:

Theorem 1.28. A morphism between two curves is either constant or surjective.

Theorem 1.29. Let C1/K and C2/K be smooth curves.

1. Let φ : C1 → C2 be a non-constant morphism. Then K(C1) is a finite field extension of φ∗K(C2).

2. Let ι : K(C1) → K(C2) be an injective homomorphism fixing K. Then there exists a unique
non-constant morphism φ : C1 → C2 such that φ∗ = ι.

3. Let L ⊆ K̄(C1) be a subfield of finite index containing K. Then there exists a smooth curve C ′/K
and a non-constant map φ : C1 → C ′ defined over K such that φ∗K(C ′) = L. The curve C ′ is
unique up to K-isomorphism.

Definition 1.30. Let φ : C1 → C2 be a rational map of curves defined over K. If φ is constant, then the
degree of φ is 0. Otherwise we define the degree of φ by

deg φ = [K(C1) : φ∗K(C2)].

The rational map φ is called separable, inseparable or purely inseparable if the field extensionK(C1)|φ∗K(C2)
has the corresponding property. The separable and inseparable degrees of the extension are denoted
degs φ resp. degi φ (see [Lan02, chapter V] for definitions of the field extension properties.).

Corollary 1.31. A map of degree one between smooth curves is an isomorphism.

Definition 1.32. Let φ : C1 → C2 be a non-constant morphism of smooth curves defined over K. Define
the push-forward by φ,

φ∗ : K(C1)→ K(C2),

by
φ∗ = (φ∗)−1 ◦NK(C1)|φ∗K(C2),

where NK(C1)|φ∗K(C2) denotes the usual norm map for field extensions ([Lan02, section VI.5]).

Definition 1.33. Let φ : C1 → C2 be a non-constant morphism of smooth curves and let P ∈ C1. Further
let tφ(P ) be a uniformizer of C2 at φ(P ). The ramification index of φ at P is

eφ(P ) = ordP (φ∗tφ(P )).
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The ramification index is always a positive integer. If eφ(P ) = 1, then φ is unramified at P . If φ is
unramified at all points of C1, then it is unramified.

Theorem 1.34. Let φ : C1 → C2 be a non-constant morphism of smooth curves.

1. For every Q ∈ C2, ∑
P∈φ−1(Q)

eφ(P ) = deg φ.

2. For all but finitely many Q ∈ C2,
#φ−1(Q) = degs(φ).

3. Let ψ : C2 → C3 be another non-constant morphism of smooth curves. Then for all P ∈ C1,

eψ◦φ(P ) = eφ(P )eψ(φ(P )).

In particular φ is unramified if and only if #φ−1(Q) = deg(φ) for all Q ∈ C2.

We will now introduce the most important family of morphisms for the study of varieties over fields of
positive characteristic. Let K be a field with charK = p > 0 and let q = pr for some positive integer r.
For any polynomial f ∈ K[x] let f (q) be the polynomial obtained from f by raising each coefficient to the
qth power. If V is a projective variety we define V (q) to be the variety given by the homogeneous ideal

I
(
V (q)

)
=
〈
f (q) : f ∈ I(V )

〉
.

Definition 1.35. The qth-power Frobenius morphism of a variety V is

φq :
{

V → V (q)

[x0 : · · · : xn] 7→ [xq0 : · · · : xqn]

Theorem 1.36. Let K be a field with characteristic p, C/K a curve, q = pr and φq : C → C(q) the
qth-power Frobenius morphism. Then the following statements hold (remember that K is assumed to be
perfect):

1. φ∗qK(C(q)) = K(C)q.
2. φq is purely inseparable.
3. deg φq = q.

Theorem 1.37. Let ψ : C1 → C2 be a morphism of smooth curves defined over a field of characteristic
p > 0. Further let q = degi ψ and let φq be the qth-power Frobenius morphism. Then ψ factors as

C1
φq→ C

(q)
1

λ→ C2,

where λ is separable.

Note that by [Lan02, corollary V.6.2], q = degi ψ is indeed a power of p.

1.3 Divisors

(Weil) divisors of curves are in several respects a very good concept: They are essentially trivial, provide
a very concise language that makes some difficult theorems more accessible and they give rise to several
interesting mathematical objects.

Definition 1.38. The divisor group of a curve C, denoted Div(C), is the free Abelian group generated
by the points of C. Its elements are called divisors and are usually written as a formal sum

D =
∑
P∈C

nP (P )

with nP ∈ Z and nP = 0 for all but finitely many points P . The order of a divisor D at a point P ,
denoted ordP D, is nP . The degree of D is

degD =
∑
P∈C

nP ∈ Z.
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The divisors of degree 0 form a subgroup, denoted

Div0(C) = {D ∈ Div(C) : degD = 0} .

The set {P ∈ C : ordP D 6= 0} is called the support of the divisor D, denoted suppD.

The concept can be generalized to arbitrary varieties (as Weil divisors, see [Sha94a, chapter III]) and
even to schemes (as Cartier divisors, see [Har77, section II.6]).

If C is defined over K, then Gal(K̄|K) acts on Div(C) by

Dσ =
∑
P∈C

nP (Pσ).

This action obviously takes Div0(C) to itself.

Definition 1.39. A divisor D ∈ Div(C) is defined over K if D = Dσ. The divisors defined over K form
a group, denoted DivK(C). In the same way, Div0

K(C) is the group of divisors of degree 0 defined over K.

Note that D = n1(P1) + · · ·+ nr(Pr) with ni 6= 0 and D defined over K does not necessarily mean
that all Pi ∈ C(K). It is sufficient that Gal(K̄|K) permutes the Pis in an appropriate way.

Definition 1.40. Let C be a smooth curve and let f ∈ K̄(C)∗. Then the divisor of f is

div(f) =
∑
P∈C

ordP (f).

This is well-defined by proposition 1.25. If C is defined over K and σ ∈ Gal(K̄|K), then div(fσ) =
div(f)σ. In particular if f ∈ K(C), then div(f) ∈ DivK(C). The map div : K̄(C)∗ → Div(C) is a
homomorphism of Abelian groups.

Proposition 1.41. Let C be a smooth curve and f ∈ K̄(C)∗. Then deg(div(f)) = 0. Further div(f) = 0
if and only if f ∈ K̄∗.

Definition 1.42. A divisor D ∈ Div(C) is called principal if it is of the form D = div(f) for some
f ∈ K̄(C). The principal divisors form a subgroup of Div(C). The quotient of Div(C) (Div0(C)) by this
subgroup is called (the degree zero part of ) the divisor class group or Picard group of C and is denoted
Pic(C) (Pic0(C)). Two divisors D1, D2 are called linearly equivalent, denoted D1 ∼ D2, if D1 −D2 is a
principal divisor. In other words, Pic(C) is the divisor group of C modulo linear equivalence. Further if C
is defined over K then PicK(C) (Pic0

K(C)) denotes the subgroup of Pic(C) (Pic0(C)) fixed by Gal(K̄|K).

The definitions and the last proposition are summarized by the following exact sequence:

0→ K̄∗ → K̄(C)∗ div→ Div0(C)→ Pic0(C)→ 0.

In section 3.1 we will prove an analogous sequence in an analytic context.

Definition 1.43. Let φ : C1 → C2 be a non-constant morphism of smooth curves. We define the pull-back
and push-forward

φ∗ : Div(C2)→ Div(C1) φ∗ : Div(C1)→ Div(C2)

φ∗(Q) =
∑

P∈φ−1(Q)

eφ(P )(P ) φ∗(P ) = (φ(P ))

for P ∈ C1, Q ∈ C2 and extending Z-linearly.

Note that for a smooth curve C and a function f ∈ K̄(C)∗ (identified with the corresponding map
f : C → P1) we have

div(f) = f∗ ((0)− (∞)) .

Definition 1.44. For a function f on a curve C and a divisor D =
∑
P np(P ) ∈ Div0(C) such that the

support of D is disjoint from the support of div(f) we define

f(D) =
∏
P

f(P )np ∈ K̄∗.
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If g is another rational function on C with g = cf for some constant c ∈ K̄∗ then f(D) = g(D). Thus
f(D) only depends on the divisors D and div(f). If C, f and D are all defined over K, then f(D) ∈ K∗.

The next proposition shows the all definitions we have so far perfectly fit together.

Proposition 1.45. Let φ : C1 → C2 be a non-constant morphism of smooth curves. Let Di ∈ Div(Ci)
and fi ∈ K̄(Ci)∗.

1. deg(φ∗D1) = degD1

2. deg(φ∗D2) = (deg φ)(degD2)

3. φ∗(div f1) = div(φ∗f1)

4. φ∗(div f2) = div(φ∗f2)

5. φ∗ ◦ φ∗ acts as multiplication by deg φ on Div(C2).

6. f1(φ∗D2) = (φ∗f1)(D2)

7. f2(φ∗D1) = (φ∗f2)(D1)

8. If ψ : C2 → C3 is another morphism of smooth curves then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Theorem 1.46 (Weil Reciprocity). Let f and g be two disjoint non-zero rational functions on a curve C
such that the supports of div(f) and div(g) are disjoint. Then f(div(g)) = g(div(f)).

Proof. If C = P1 one can easily write the functions g and f in terms of their divisors (if ∞ /∈ supp div(f)
and P1 is identified with K̄ ∪ {∞}, then f = c

∏
a∈K̄(x− a)orda(f)). Then it is easy to check that Weil

reciprocity holds.

Let C be an arbitrary curve. Let i be the identity map on P1. Then div(i) = (0) − (∞) and
div(g) = g∗ div(i). Also g∗f is a function on P1 and hence by the first paragraph (g∗f)(div(i)) =
i(div(g∗f)) = i(g∗ div(f)). Now the theorem follows by manipulating symbols:

f(div(g)) = f(g∗ div(i)) = (g∗f)(div(i)) = i(g∗ div(f)) = (g∗i)(div(f)) = i ◦ g(div(f)) = g(div(f)).

1.4 Differentials

We need one last ingredient of the theory of algebraic curves: the space of differential forms. We will give
a functorial definition which could be generalized to higher dimensions.

Definition 1.47. Let A be a commutative ring with identity, B an A-algebra and M a B-module. An
A-derivation from B into M is a map d: B →M with

1. d(b+ b′) = db+ db′ for all b, b′ ∈ B;
2. d(bb′) = bdb′ + b′ db for all b, b′ ∈ B;
3. da = 0 for all a ∈ A.

The module of relative differential forms of B over A is a B-module ΩB|A together with an A-derivation
d: B → ΩB|A such that for any B-module M and A-derivation d′ : B →M there exists a unique B-module
homomorphism f : ΩB|A →M such that the following diagram commutes:

B
d //

d′ !!D
DD

DD
DD

DD
ΩB|A

∃!f
��
M

Definition 1.48. Let C be a curve. The space of differential forms on C is ΩC = ΩK̄(C)|K̄ .
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Proposition 1.49. The pair (ΩB|A, d) exists and is unique up to unique isomorphism. In particular, ΩC
can be constructed in the following way: ΩC is the K̄(C)-vector space generated by symbols of the form
df , f ∈ K̄(C), modulo the relations

1. d(f + g) = df + dg for all f, g ∈ K̄(C);
2. d(fg) = g df + f dg for all f, g ∈ K̄(C);
3. da = 0 for all a ∈ K̄.

Proposition 1.50. Let C be a curve. Then ΩC is a one-dimensional K̄(C)-vector space. An element
dx, x ∈ K̄(C), is non-zero if and only if K̄(C)|K̄(x) is a finite separable extension.

Definition 1.51. Let φ : C1 → C2 be a non-constant map of curves. Then φ induces a pull-back

φ∗ :
{

ΩC2 → ΩC1∑
i fi dxi 7→

∑
i (φ∗fi) d (φ∗xi)

.

Proposition 1.52. Let φ : C1 → C2 be a non-constant map of curves. Then φ is separable if and only if
φ∗ : ΩC2 → ΩC1 is injective.

Proposition 1.53. Let C be a curve, let P ∈ C, let t ∈ K̄(C) be a uniformizer at P and let ω ∈ ΩC .

1. There exists a unique function g ∈ K̄(C) (depending on ω and t) such that ω = g dt. It is denoted
ω
dt .

2. Let f ∈ K̄(C) be regular at P . Then df
dt is also regular at P .

3. The order ordP
(
ω
dt

)
is independent of the choice of the uniformizer t. It is denoted ordP (ω) and

called the order of ω at P .

4. Let x, f ∈ K̄(C) with x(P ) = 0. Then:

ordP (f dx) = ordP (f) + ordP (x)− 1, if charK = 0 or charK - ordP (x)
ordP (f dx) ≥ ordP (f) + ordP (x), if charK > 0 and charK | ordP (x)

5. For all but finitely many P ∈ C, ordP (ω) = 0.

Definition 1.54. The divisor associated to ω ∈ ΩC is

div(ω) =
∑
P∈C

ordP (ω)(P ).

Definition 1.55. A differential ω ∈ ΩC is regular (or holomorphic) if ordP (ω) ≥ 0 for all P ∈ C. It is
non-vanishing if ordP (ω) ≤ 0 for all P ∈ C.

If ω1, ω2 are two non-zero differentials on C, then there exists a function f ∈ K̄(C)∗ such that
ω1 = fω2. In terms of divisors this implies div(ω1) = div(f) + div(ω2). Therefore the following definition
is independent of the chosen differential form ω.

Definition 1.56. Let ω be a non-zero differential form on C. The canonical divisor class on C is the
image of div(ω) in Pic(C). Any divisor in this class is called a canonical divisor and often denoted KC .

1.5 The Riemann-Roch Theorem

We will finish this introductory chapter with one of the most fundamental results of the theory of algebraic
curves. It will allow us to describe the space of functions on C having prescribed zeros and poles. Before
we can state the theorem we need to introduce some additional notation.

Definition 1.57. A divisor D =
∑
P nP (P ) is called effective (or positive), denoted D ≥ 0, if nP ≥ 0 for

all P ∈ C. This extends to a partial order ≥ on Div(C) by setting D1 ≤ D2 if D2 −D1 ≥ 0.

Definition 1.58. Let D ∈ Div(C). The associated vector space or Riemann-Roch space of D is the set of
functions

L (D) =
{
f ∈ K̄(C)∗ : div(f) ≥ −D

}
∪ {0} .

It is a finite dimensional K̄-vector space (see the next proposition) and its dimension is denoted `(D).
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Proposition 1.59. Let D ∈ Div(C). Then L (D) is a finite dimensional K̄-vector space. If degD < 0,
then L (D) = 0. Let D′ ∈ Div(C) with D′ ∼ D. Then L (D′) ∼= L (D). In particular ` : Div(D) → Z
descends to a well defined function ` : Pic(C)→ Z.

Proposition 1.60. Let KC be a canonical divisor of C. Then

L (KC) ∼= {ω ∈ ΩC : ω is holomorphic} .

Theorem 1.61 (Riemann-Roch). Let C be a smooth curve and KC a canonical divisor of C. There
exists a number g ≥ 0, called the genus of C, such that for every divisor D ∈ Div(C),

`(D)− `(KC −D) = degD − g + 1.

A proof of the Riemann-Roch theorem would definitely be beyond the scope of this text. However it is
interesting to see that there are many different ways to prove the theorem: An elegant and short proof is
given in [Har77, theorem IV.1.3] but it uses the language sheaves and Serre duality. A more elementary
proof is given in [Lan82, I.2]. Lang’s proof goes back to a proof by Weil [Wei48]. Both use a definition
of differentials that is different from the one we are using and then show that the definitions are in fact
equivalent (which is a nontrivial part of the proof). Also both proofs use the definition of an abstract
curve we have skipped in section 1.2 (see [Har77, section I.6]). The most accessible proof is probably the
classic proof of Noether and Brill for embedded curves as given in [Ful89]. It only needs normalization (or
one could restrict oneself to non-singular plane curves) and Bézout’s theorem. Restricting even further to
non-singular plane cubic curves (and this is what we will need) the proof gets much shorter and is given
in [Sha94a, theorem III.3.2].

Corollary 1.62. Some simple – but important – consequences of the Riemann-Roch theorem are:

1. `(KC) = g.
2. degKC = 2g − 2.
3. If degD > 2g − 2, then `(D) = degD − g + 1.

Proposition 1.63. Let C/K be a smooth curve and let D ∈ DivK(C). Then L (D) has a basis consisting
of functions in K(C).
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Chapter 2

Elliptic Curves

The mathematical objects used in elliptic curve cryptography are – of course – elliptic curves. For
cryptographic purposes we are mainly interested in curves over finite fields. In this chapter we will
however study elliptic curves over arbitrary (perfect) fields. This has two reasons: First, most of the
theory presented here is not harder to study in a general setting that it is over finite fields – it might even
become clearer. Second, we will need to make use of elliptic curves over C and over extensions of the
p-adic numbers Qp to derive information about curves over finite fields. Therefore in this section K will
again be an arbitrary perfect field and K̄ a (fixed) algebraic closure of K.

There as several books that cover many of the topics of this and the next chapter. In the author’s
opinion, the work by Silverman [Sil92] is still the best written “standard book” on elliptic curves. Other
books we will occasionally refer to include [Hus04] and [Was08]. The book by Washington deserves special
notice because it covers some material of particular importance to elliptic curve cryptography. Also
introductory books on algebraic geometry often contain a section dedicated to elliptic curves. Further the
book [ST92] should be mentioned. It is a very gentle introduction to elliptic curves over the rationals and
is useful for gaining intuition.

2.1 Curves of Genus One

We begin by defining the main object of our study.

Definition 2.1. An elliptic curve is a pair (E,O), where E is a smooth curve of genus 1 and O ∈ E.
The point O is called the base point. The elliptic curve E is defined over K, denoted E/K, if E is defined
over K as a curve and O ∈ E(K).

Theorem 2.2. Let (E,O) be an elliptic curve defined over K.

1. There exist functions x, y ∈ K(E) such that the map

φ :
{

E → P2

φ = [x, y, 1]

gives an isomorphism of E/K onto a curve given by an equation of the form

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

with a1, . . . , a6 ∈ K and φ(O) = [0 : 1 : 0].

2. Any two equations of the form (2.1) for E are related by a linear change of variables of the form(
X
Y

)
=
(
u2 0
s u3

)(
X ′

Y ′

)
+
(
r
t

)
, (2.2)

where r, s, t ∈ K and u ∈ K∗.

3. Conversely every smooth cubic curve C given by a equation of the form (2.1) is an elliptic curve
defined over K with base point O = [0 : 1 : 0].

13
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Proof.

1. We will use the Riemann-Roch theorem to show the existence of x and y and their relationship. Con-
sider the divisors n(O) (n = 1, 2, . . . ). Corollary 1.62 with g = 1 implies `(n(O)) = dim L (n(O)) =
n. By definition, L ((O)) ⊆ L (2(O)) ⊆ L (3(O)) ⊆ · · · . Hence there are functions x, y ∈ K̄(C)
such that {1, x} is a basis of L (2(O)) and {1, x, y} is one of L (3(O)). By theorem 1.63 we can
even choose x, y to be defined over K. We note that x must have exact pole order 2 in O, because
otherwise it would already be in L ((O)) which is one dimensional. Similarly y must have exact
pole order 3 at O.
The functions 1, x, y, x2, xy, y2, x3 are all in L (6(O)) which is 6-dimensional. Therefore there
exists a relation

A1 +A2x+A3y +A4x
2 +A5xy +A6y

2 +A7x
3 = 0.

The coefficients A6 and A7 cannot be 0 since otherwise every term would have a different pole order
at O and thus all coefficients would vanish. Replacing x by −A6A7x and y by A6A

2
7y we get the

desired map
φ : E → P2, φ = [x : y : 1]

with image in the locus of a curve C described by an equation of type (2.1). By 1.27, φ is a morphism
and by 1.28 it is onto. Also because y has higher pole order than x, φ(O) = [0 : 1 : 0].
Next we will show that φ : E → C has degree 1, or equivalently that K(E) = K(x, y). The function
x has a double pole at O and no other poles. Hence theorem 1.34.1 with Q = [1 : 0] implies that the
map [x : 1] : E → P1 has degree 2. In other words [K(E) : K(x)] = 2. Similarly [K(E) : K(y)] = 3.
But then [K(E) : K(x, y)] = 1 because it has to divide both 2 and 3.
Now suppose that C was singular. Then by lemma 2.3 below there exists a rational map ψ : C → P1

of degree 1. Therefore the composition ψ ◦ φ is a map of degree 1 of smooth curves and hence an
isomorphism (1.31). This is a contradiction to the fact that P1 has genus 0 but E has genus 1.
Therefore C is smooth and 1.31 shows that φ is an isomorphism.

2. Let C, C ′ be curves of the type (2.1) isomorphic to E via x, y resp. x′, y′. Then x and x′ have
poles of order 2 at O, so both {1, x} and {1, x′} are bases of L (2(O)). Therefore there exist scalars
u1 and r in K such that x = u1x

′ + r. By analogous reasoning in L (3(O)) there exists scalars
u2, s, t ∈ K such that y = sx+ u2y

′ + t. Both (x, y) and (x′, y′) satisfy equations of the form (2.1)
where the coefficients of x3 and y2 are 1. Thus u3

1 = u2
2. Let u = u2/u1 to obtain the coordinate

change given in the theorem.
3. We will see in 2.9 that the differential

ω =
dx

2y + a1x+ a3
∈ ΩC

has neither zeros nor poles. In other words div(ω) = 0. Hence the Riemann-Roch theorem (1.62.2)
implies

2g − 2 = deg(div(ω)) = 0,

where g is the genus of C. Thus g = 1 and C together with the point [0 : 1 : 0] is an elliptic
curve.

Lemma 2.3. Let C be a singular plane curve with equation (2.1). Then there exists a rational map
φ : E → P1 of degree 1.

Proof. [Sil92, proposition III.1.6]

Definition 2.4. Let E be an elliptic curve. Then by theorem 2.2 there exists a curve isomorphic to E
with equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.3)

Every equation of this form is called a called a Weierstraß equation for E with Weierstraß coordinate
functions x, y. When not stated otherwise we will always assume that E is given by a Weierstraß equation
and O = [0 : 1 : 0]. A change of coordinates of type (2.2) is called a Weierstraß change of coordinates
over K.
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Let E be an elliptic curve given by a Weierstraß equation (2.3). We will make use of the following
quantities:

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

(2.4)

Definition 2.5. The discriminant of an elliptic curve E in Weierstraß form (2.3) is

∆ = ∆(a1, . . . , a6) = −b22b8 − 8b4b3 − 27b26 + 9b2b4b6.

Its j-invariant is

j = j(a1, . . . , a6) =
c64
∆
.

Its invariant differential is

ω =
dx

2y + a1x+ a3
=

dy
3x2 + 2a2x+ a4 − a1y

.

Proposition 2.6. A Weierstraß change of coordinates (2.2) of elliptic curves changes the quantities of
the previous definition in the following way:

∆′ = u−12∆,
j′ = j,

ω′ = uω.

In particular j depends only on the isomorphism class and hence is well defined for an arbitrary elliptic
curve (not necessarily in Weierstraß from).

Proof. Tedious but simple calculations.

Proposition 2.7. Let E/K be an elliptic curve. Then, under the assumptions below, there is a Weierstraß
change of coordinates that takes E into the indicated form.

1. charK 6= 2, 3:

y2 = x3 + a4x+ a6 ∆ = −16(4a3
4 + 27a2

6) j = 1728
4a3

4

4a3
4 + 27a2

6

The only change of coordinates preserving this form of equation is x = u2x′, y = u3y′ for some
u ∈ K∗.

2. charK = 3 and j(E) 6= 0:

y2 = x3 + a2x
2 + a6 ∆ = −a4

2a6 j = −a
3
2

a6

charK = 3 and j(E) = 0:

y2 = x3 + a4x+ a6 ∆ = −a3
4 j = 0

3. charK = 2 and j(E) 6= 0:

y2 + xy = x3 + a2x
2 + a6 ∆ = a6 j =

1
a6

charK = 2 and j(E) = 0:

y2 + a3y = x3 + a4x+ a6 ∆ = a3
4 j = 0
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Proof. See [Sil92, proposition A.1.1]. Explicit calculations for characteristic 0 and a geometric interpreta-
tion can be found in [ST92].

Proposition 2.8.

1. A curve given by a Weierstraß equation (2.3) is non-singular if and only if ∆ 6= 0.
2. Two elliptic curves are isomorphic (over K̄) if and only if they have the same j-invariant.
3. Let j0 ∈ K̄. Then there exists an elliptic curve defined over K(j0) with j-invariant equal to j0.

Proof. See [Sil92, proposition III.1.4]. For convenience we will state the equation of a curve for a given
j-invariant. If j0 6= 0, 1728 then

E : y2 + xy = x3 − 36
j0 − 1728

x− 1
j0 − 1728

has j-invariant j0. If j0 = 0 then

E : y2 + y = x3 (∆ = −27)

is such a curve and for j0 = 1728 we can use

E : y2 = x3 + x (∆ = −64).

Note that for charK = 2, 3 we have 1728 = 0 and exactly one of the two curves is nonsingular.

Proposition 2.9. Let E be an elliptic curve in Weierstraß form. Then the invariant differential associated
to the Weierstraß equation of E is holomorphic and non-vanishing (i.e. div(ω) = 0).

Proof. [Sil92, proposition III.1.5]

To every curve we already associated a group: the divisor group. However, while divisors are a
very useful tool, the group itself is rather uninteresting – it is just a free Abelian group. A much more
interesting group is the Picard group. As we will see in a moment, elliptic curves have the remarkable
property that there is a natural bijection between the degree zero part of the Picard group and the curve.

Lemma 2.10. Let C be a smooth curve of genus one and let P, Q ∈ C. Then (P ) ∼ (Q) if and only if
P = Q.

Proof. [Sil92, lemma III.3.3]

Theorem 2.11. Let (E,O) be an elliptic curve. For each divisor D ∈ Div0(E) there exists a unique point
P ∈ E such that D ∼ (P )− (O). This induces a surjective map σ : Div0(E)→ E. The map is invariant
under linear equivalence and descends to a bijection

σ : Pic0(E)→ E.

Proof. [Sil92, proposition III.3.4 (a)-(c)]

The map σ of the last theorem can be used to define a group law on E. Another remarkable property
of elliptic curves is that this group law can also be defined geometrically and can be computed in a very
simple way.

Note that if L ⊆ P2(K̄) is a line and E is an elliptic curve in Weierstraß equation, then L and E
will have exactly three points of intersection (when counted with multiplicity). This is a special case of
Bézout’s theorem [Har77, theorem I.7.8] or can be calculated explicitly (see [ST92]).

Definition 2.12 (Tangent-Chord Law). Let P, Q be two points of an elliptic curve E given in Weierstraß
equation. We will define their sum P +Q ∈ E. Let L1 be the line connecting P and Q (or the tangent at
P if P = Q). Let R be the third point of intersection of L1 with E. Let L2 be the line connecting R and
O. Then P +Q is the third point of intersection of L2 with E.
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Theorem 2.13. Let E be an elliptic curve in Weierstraß form and let σ : Pic0(E)→ E be the map of
theorem 2.11. Let D1, D2 ∈ Pic0(E). Then

σ(D1 +D2) = σ(D1) + σ(D2),

where addition on the right side is according to the preceding definition. In particular, the tangent-chord
law makes E into an Abelian group. The neutral element of this group is O. If E is defined over K, then
the set of K-rational points E(K) forms a subgroup.

Proof. Because we will need similar constructions later on, we will give a full proof of the theorem. Let κ
be the inverse of σ. To every point P ∈ E, κ assigns the class of (P )− (O). It is sufficient to show that
for any two points P, Q ∈ E,

κ(P +Q) = κ(P ) + κ(Q).

Let lP,Q(X, Y, Z) = 0 be an equation of the line through P and Q. Let R be its third point of intersection
with E and let lR,O(X, Y, Z) = 0 be the line through R and O. By definition its third point of intersection
with E is P +Q. The line Z = 0 intersects E at O with multiplicity 3. Dividing the equations by Z gives
functions on E with

div
(
lP,Q
Z

)
= (P ) + (Q) + (R)− 3(O)

div
(
lR,O
Z

)
= (R) + (P +Q)− 2(O)

Therefore

(P +Q)− (P )− (Q) + (O) = div
(
lR,O
lP,Q

)
∼ 0,

which implies
κ(P +Q)− κ(P )− κ(Q) = 0.

If two solutions of a cubic equations with coefficients in K lie in K, then the third solution is also in K.
Therefore E(K) forms a subgroup of E. See also theorem 2.15 for explicit formulas.

Of course it can also be directly verified that that the tangent-chord law gives a group structure on E.
See [Sil92, proposition III.3.4 (a) - (e)] and [ST92].

Definition 2.14. Let E be an elliptic curve, P ∈ E and m ∈ Z. Then [m]P is defined by

[0]P = O, [m+ 1]P = [m]P + P, [m− 1]P = [m]P − P.

We call [m] : E → E the multiplication-by-m map.

Theorem 2.15 (Group Law Algorithm). Let E be an elliptic curve in Weierstraß form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let Pi = (xi, yi) be points on E.

1. −P0 = (x0, −y0 − a1x0 − a3).
2. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then P1 + P2 = 0.
3. Assume P1 6= −P2. If x1 6= x2 let

λ =
y2 − y1

x2 − x1
and ν =

y1x2 − y2x1

x2 − x1
.

If x1 = x2 (i.e. P1 = P2) let

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
and ν =

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
.

Then P3 = P1 + P2 is given by

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3
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These equations define morphisms

+: E × E → E : (P1, P2) 7→ P1 + P2

− : E → E : P 7→ −P.

Proof. The formulas can be derived by direct calculations using the tangent-chord group law, see [Sil92,
section III.2] or [ST92]. That the group operations are morphism is proved in [Sil92, theorem III.3.6].

Theorem 2.16. Let E be an elliptic curve and D =
∑
nP (P ) a divisor on E. Then D is principal if

and only if degD = 0 and
∑

[nP ]P = O.

Proof. [Sil92, corollary III.3.5]

We will finish this section with a brief look at singular curves in Weierstraß equation.

Definition 2.17. Let E be a (possibly singular) curve given by a Weierstraß equation. The non-singular
part of E, denoted Ens, is the set of non-singular points of E. If E is defined over K, then Ens(K) is the
set of non-singular points in E(K).

Theorem 2.18. Let E be a curve given by a Weierstraß equation with discriminant ∆ = 0. Then E has
exactly one singular point. The tangent-chord law makes Ens into an Abelian group.

If c4 6= 0, then E has a node (i.e. a point with two different tangent lines) and there exists an
isomorphism Ens → K̄∗. If c4 = 0, then E has a cusp (i.e. a singular point with exactly one tangent line)
and there exists an isomorphism Ens → K̄+. In both cases the isomorphism can be explicitly given by a
(simple) rational function in the coordinates.

Proof. [Sil92, proposition III.1.4a and III.2.5]

2.2 Isogenies

Definition 2.19. An isogeny between two elliptic curves E1, E2 is a morphism φ : E1 → E2 with
φ(O) = O. Two elliptic curves E1 and E2 are isogenous if there exists an isogeny φ between them with
φ(E1) ) {O}.

Note that by theorem 1.28 an isogeny is either constant or surjective. Obviously the composition of
two isogenies is an isogeny. Hence “being isogenous” is a transitive relation. We will later see that it is
also symmetric and therefore defines an equivalence relation on the set of elliptic curves over a fixed field.

Theorem 2.20. Every isogeny is also a homomorphism of the Abelian groups defined on the elliptic
curves: For P, Q ∈ E1 we have

φ(P +Q) = φ(P ) + φ(Q).

The kernel of a non-constant isogeny is always a finite subgroup.

Proof. [Sil92, theorem III.4.8]

Definition 2.21. Let E1, E2 be elliptic curves. We let1

Hom(E1, E2) = {isogenies E1 → E2} .

This is an Abelian group under the usual addition of functions

(φ+ ψ)(P ) = φ(P ) + ψ(P ).

The endomorphism ring of an elliptic curve E is

End(E) = Hom(E, E).

The invertible elements of End(E) form the automorphism group Aut(E).
1Some authors use Isog(E1, E2) instead of Hom(E1, E2).
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Proposition 2.22.

1. Let E be an elliptic curve and m ∈ Z, m 6= 0. Then the multiplication-by-m map [m] : E → E is a
surjective isogeny.

2. Let E1, E2 be elliptic curves. Then Hom(E1, E2) is a torsion-free Z-module.

Proof. [Sil92, proposition III.4.2]

Definition 2.23. The kernel of [m] : E → E (m > 0) is called the m-torsion subgroup of E and is denoted
E[m]. The torsion subgroup of E is the union of all m-torsion subgroups,

⋃
m>0

E[m].

Lemma 2.24. Let E/K be an elliptic curve over a field of positive characteristic p given by a Weierstraß
equation and let φq : E → E(q) be the qth-power Frobenius morphism. Then E(q) is an elliptic curve with
j(E(q)) = j(E)q and ∆(E(q)) = ∆(E)q.

Definition 2.25. Let E be an elliptic curve defined over a finite field Fq. Then E(q) = E and φq is called
the Frobenius endomorphism of E.

Definition 2.26. Let E be an elliptic curve and Q ∈ E. The translation-by-Q map on E is the map
P → P +Q. It is an isomorphism (but no isogeny) and denoted τQ.

Proposition 2.27. Let ω be the invariant differential of an elliptic curve. Then τ∗Qω = ω.

Proof. [Sil92, corollary III.5.1]

Theorem 2.28. Let φ : E1 → E2 be a non-constant isogeny. Then the map

kerφ → Aut
(
K̄(E1)/φ∗K̄(E2)

)
T 7→ τ∗T

is an isomorphism. (τT is the translation-by-T map and τ∗T the automorphism it induces on K̄(E1).) If φ
is separable, then it is unramified (hence # kerφ = deg φ) and K̄(E1)|φ∗K̄(E2) is a Galois extension.

Proof. [Sil92, theorem III.4.10b and c]

Corollary 2.29. Let f ∈ K̄(E) and m a positive integer. If f = f ◦ τT for all T ∈ E[m], then there
exists h ∈ K̄(E) such that f = h ◦ [m].

Theorem 2.30. Let φ : E1 → E2 and ψ : E1 → E3 be non-constant isogenies of elliptic curves. If φ is
separable and kerφ ⊆ kerψ there is a unique isogeny λ : E2 → E3 such that ψ = λ ◦ φ.

Proof. [Sil92, corollary III.4.11]

Theorem 2.31. Let φ, ψ : E1 → E2 be two isogenies of elliptic curves and let ω be the invariant differential
on ω. Then

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

Proof. [Sil92, theorem III.5.2]

Theorem 2.32. Let charK = p, let E be defined over Fq and let φq : E → E be the qth-power Frobenius
morphism. Then for m,n ∈ Z the map

m+ nφq : E → E

is separable if and only if p - m. In particular 1− φq is separable.

Proof. [Sil92, corollary III.5.5]

Theorem 2.33. Let E/K be an elliptic curve given by a Weierstraß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let C be a finite subgroup of E(K̄). Then there exists an elliptic curve E′ and a separable isogeny
α : E → E′ such that C = kerα. Further the Weierstraß coefficients of E′ and the rational map α can be
explicitly constructed from the ai and the coordinates of the points in C.
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Proof. An abstract proof of the first statement is given in [Sil92, theorem III.4.12] while a constructive
proof of the whole theorem is given in [Was08, theorem 12.16].

The formulas for E′ and α are called Vélu’s formulas and are explicitly given in [Was08, section 12.3].

While it is generally difficult to fully describe the endomorphism ring of an elliptic curve, the
automorphism group Aut(E) is trivial for most curves:

Theorem 2.34. Let E be an elliptic curve. Then Aut(E) is a finite group of order dividing 24. If j(E)
is not 0 or 1728, then Aut(E) = {± id}.

Proof. [Sil92, theorem III.10.1.]

We have already hinted that isogenies define an equivalence relation on the space of elliptic curves
over a field. The following theorems says that indeed for every isogeny there exists a canonical isogeny
going the other way.

Theorem 2.35. Let φ : E1 → E2 be a non-constant isogeny of elliptic curves. Then there exists a unique
isogeny φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [deg φ]. As a group homomorphism, φ̂ equals the composition

E2 → Div0(E2)
φ∗→ Div0(E1) sum→ E1,

where the first step is the embedding Q 7→ (Q)− (O) and sum (
∑
nP (P )) =

∑
[nP ]P .

Proof. [Sil92, theorem III.6.1]

Definition 2.36. The isogeny φ̂ of the preceding theorem is called the dual isogeny to φ. The dual
isogeny of [0] is [0].

Theorem 2.37. Let φ : E1 → E2 be an isogeny. Then

φ̂ ◦ φ = [deg φ] and φ ◦ φ̂ = [deg φ].

deg φ̂ = deg φ.̂̂
φ = φ.

Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂.

Let ψ : E1 → E2 be another isogeny. Then

φ̂+ ψ = φ̂+ ψ̂.

For all m ∈ Z,
[̂m] = [m] and deg[m] = m2.

Proof. [Sil92, theorem III.6.2]

2.3 Torsion Subgroups

Theorem 2.38. Let E be an elliptic curve over K and m a non-zero integer. Then #E[m] < m2. If
charK = 0 or m is coprime to char(K), then

E[m] ∼= (Z/mZ)× (Z/mZ).

If char(K) = p, then either
E[pe] = 0 for all e ∈ Z+, or

E[pe] = Z/peZ for all e ∈ Z+
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As we have seen in theorem 2.33, every finite subgroup of E(K̄) corresponds to a (separable) isogeny
of degree equal to the order of the subgroup. If l is a prime different from charK, the theorem above tells
us that there are l + 1 subgroups Ci of order l. Some of them might correspond to the same isogenous
curve (up to isomorphism). Fortunately most of the time this is not true and the subgroups of order l
correspond exactly to the isogenous curves of E with isogenies of degree l.

Theorem 2.39. Let E/K be an elliptic curve with j-invariant not equal to 0 or 1728. Further let l be a
prime different from char(K) and let Ci (1 ≤ i ≤ l + 1) be all subgroups of E(K̄) of order l. Then no two
of the elliptic curves E/Ci are isomorphic.

Proof. Assume on the contrary that there exists 1 ≤ r 6= s ≤ l + 1 such that E/Cr and E/Cs are
isomorphic. Let φr and φs be the corresponding isogenies and κ the isomorphism, so that we get the
following diagram:

E
φr // E/Cr

κ

��
E

φs // E/Cs

The maps φ̂s ◦ φs and φ̂s ◦ κ ◦ φr are both endomorphisms of E of degree l2. Hence they both have a
kernel of size l2 which has to be E[l]. By theorem 2.30 they differ only by an endomorphism of degree 1,
i.e. and automorphism. By theorem 2.34 this automorphism must be ± id. Therefore,

φ̂s ◦ κ ◦ φr = ±φ̂s ◦ φs = ±[l]

and by applying φs we get

φs ◦ φ̂s ◦ κ ◦ φr = [l] ◦ κ ◦ φr = κ ◦ φr ◦ [l] = φs ◦ [±l]. (2.5)

Since Cr 6= Cs and both have prime order, Cr ∩ Cs = {O}. Let P ∈ E(K̄) with [l]P ∈ Cr \ {O}. Then

κ ◦ φr([l]P ) = O and φs(±[l]P ) 6= O.

This is a contradiction to (2.5).

2.4 Pairings

Definition 2.40. Let n be a positive integer, G1, G2 two Abelian groups with exponent n (written
additively) and G3 a cyclic group of order n (written multiplicatively). A pairing is a function

e : G1 ×G2 → G3.

A pairing is bilinear if for all P, P ′ ∈ G1 and Q,Q′ ∈ G2:

e(P + P ′, Q) = e(P,Q)e(P ′, Q)

e(P,Q+Q′) = e(P,Q)e(P,Q′).

It is degenerate if there exists P ∈ G1, P 6= 0 such that e(P,Q) = 1 for all Q ∈ G2 or if there exists
Q ∈ G2, Q 6= 0 such that e(P,Q) = 1 for all P ∈ G1. Otherwise it is non-degenerate.

We will define pairings on (subgroups of) the points of an elliptic curve E and will use them for two
purposes: First we will use the existence of specific pairings to derive facts about the group structure and
secondly we will use them to transfer the elliptic curve discrete logarithm problem to a DLP where more
efficient algorithms are known.

Let µn = µn(K) = {u ∈ K̄∗ : un = 1} be the nth roots of unity. Further let (K∗)n = {un : u ∈ K∗}.
Choose a point P ∈ E(K)[n]. Then by theorem 2.16 there exists a function fP (unique up to a

multiplicative constant) with div(fP ) = n(P ) − n(O). Choose a second point Q ∈ E(K) and choose a
divisor DQ ∼ (Q)− (O) such that the support of DQ is disjoint from the support of div(fP ). We can now
combine fP and DQ and calculate fP (DQ) ∈ K∗ (see definition 1.44). Obviously the result will not only
depend on P and Q but also on the chosen divisor DQ. However, by factoring out the right subgroups we
can make it independent of the divisor.
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Definition 2.41. Let n be a positive integer such that K contains the nth roots of unity. Using the
notation of the preceding paragraph and writing Q̄ for the coset of Q, the Tate (or Tate-Lichtenbaum)
pairing

τn : E(K)[n]× E(K)/nE(K)→ K∗/(K∗)n

on the elliptic curve E/K is defined as

τn(P, Q̄) = fP (DQ).

The groups E(K)/nE(K) are called the weak Mordell-Weil groups of E and are used to study the
structure of E(K). The Tate pairing is in turn used to study the weak Mordell-Weil groups. See [Sil92,
chapters VIII–X] for more information. We will use it in section 7.3 to derive information about the other
group, E(K)[n].

Theorem 2.42. The Tate pairing is well-defined and bilinear. Further, it is Galois invariant, i.e. if
σ ∈ Gal(K̄/K), then τn(Pσ, Qσ) = τn(P,Q)σ. If K is a finite field then it is also non-degenerate.

Proof.

1. Well-definedness: Let D ∼ D′ = D+ div(g) be two degree zero divisors such that the supports of D
and D′ are disjoint from supp div(fP ). Then the supports of div(g) are div(fP ) are also disjoint and

fP (D′) = fP (D + div(g)) = fP (D)fP (div(g)).

Using Weil reciprocity (theorem 1.46) we get

fP (div(g)) = g(div(fP )) = g(n(P )− n(O)) = (g(P )/g(O))n ∈ (K∗)n

and thus fP (D) = fP (D′) mod (K∗)n.

Let Q1 and Q2 = Q1 + [n]R be two representatives of Q̄ and DQi ∼ (Qi)− (O). By theorem 2.16

DQ2 ∼ (Q1 + [n]R)− (O) ∼ (Q1)− (O) + n(R)− n(O) ∼ DQ1 + n(R)− n(O)

and, like above,

fP (DQ2) = fP (DQ1 + n(R)− n(O)) = fP (DQ1)fP ((R)− (O))n = fP (DQ1) mod (K∗)n.

2. Bilinearity: For bilinearity in the first component we have to show that τn(P1 + P2, Q) =
τn(P1, Q)τn(P2, Q). Let P3 = P1 + P2 and let g be a rational function with div(g) = (P3) −
(P1)− (P2) + (O). Hence div(fP3) = div(fP1fP2g

n). Further choose DQ ∼ (Q)− (O) with support
disjoint from {P1, P2, P3,O}. Then

τn(P1 + P2, Q) = τn(P3, Q) = fP1fP2g
n(DQ)

= fP1(DQ)fP2(DQ)g(DQ)n = τn(P1, Q)τn(P2, Q) mod (K∗)n.

For the second component we have to show τn(P,Q1 + Q2) = τn(P,Q1)τn(P,Q2). We have
DQ1+Q2 ∼ (Q1 +Q2)− (O) ∼ (Q1) + (Q2)− 2(O) ∼ DQ1 +DQ2 and hence mod(K∗)n,

τn(P,Q1 +Q2) = fP (DQ1 +DQ2) = fP (DQ1)fP (DQ2) = τn(P,Q1)τn(P,Q2).

3. Non-degeneracy: see [Heß04].

4. Galois invariance: We have div(fPσ) = n(Pσ) − n(O) = div((fP )σ) and DQσ = (DQ)σ. Thus
modulo nth powers:

τn(Pσ, Qσ) = fPσ (DQσ ) = (fP )σ((DQ)σ) = (fP (DQ))σ = τn(P,Q)σ.

Definition 2.43. A bilinear pairing e : G×G→ G′ is alternating if e(P, P ) = 1 for all P ∈ G.
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For alternating pairings,

1 = e(P +Q,P +Q) = e(P, P )e(P,Q)e(Q,P )e(Q,Q) = e(P,Q)e(Q,P )

and hence e(P,Q) = e(Q,P )−1.

We will now construct an alternating pairing on E[n]. Let P,Q ∈ E[n] and, like for the Tate pairing,
choose divisors DP ∼ (P )− (O) and DQ ∼ (Q)− (O) with disjoint support. Further choose functions gP
and gQ with div(gP ) = nDP and div(gQ) = nDQ respectively.

Definition 2.44. Let n be a positive integer such that E[n] ⊆ E(K). Using the notation of the preceding
paragraph we define the Weil pairing

en : E[n]× E[n]→ µn(K)

on the elliptic curve E/K by

en(P,Q) =
gP (DQ)
gQ(DP )

.

Theorem 2.45. The Weil pairing is well-defined, bilinear, non-degenerate, alternating and Galois
invariant. Further if P ∈ E[mn] and Q ∈ E[n], then emn(P,Q) = en([m]P,Q).

Proof.

1. Well-definedness: We have to show that the pairing does not depend on the particular choice
of DP and DQ. We will only show the independence of the choice of DP since the proof for
DQ is completely analogous. Let D′P = DP + div(f) for some f ∈ K(E) and g′P ∈ K(E) with
div(g′P ) = nD′P = nDP +ndiv(f). Then g′P = cgP f

n for some c ∈ K̄∗. Also (using Weil reciprocity),

gQ(D′P ) = gQ(DP )gQ(div(f)) = gQ(DP )gQ(div(f)) = gQ(DP )f(div(gQ))

and hence
g′P (DQ)
gQ(D′P )

=
gP (DQ)f(DQ)n

gQ(DP )f(nDQ)
=
gP (DQ)
gQ(DP )

.

Further e(P,Q) ∈ µn because(
gP (DQ)
gQ(DP )

)n
=
gP (nDQ)
gQ(nDP )

=
gQ(nDP )
gQ(nDP )

= 1.

2. Bilinearity can be checked, like for the Tate pairing, using a function h such that DP1+P2 =
DP1 +DP2 + div(h).

3. Alternating: The pairing en(P, P ) is computed using the divisors DP , D
′
P ∼ (P ) − (O) and

corresponding functions gP , g′P . Let f ∈ K(E) with D′P = DP + div(f). Then like above there
exists c ∈ K̄∗ with g′P = cgP f

n. Hence

gP (D′P ) = gP (DP )gP (div(f)) = gP (DP )f(div(gP )) = gP (DP )f(DP )n = g′P (DP ).

4. Non-degeneracy: Assume that en(P,Q) = 1 for all Q ∈ E[n]. Fix a point R in E(K̄) with
R /∈ {O, P}. For every point X ∈ E let YX = [n]X − [n − 1]R and choose a function ψX with
div(ψX) = n(X)− (n− 1)(R)− (YX). We note that the map X 7→ ψX(D) is rational for any fixed
D ∈ Div0(E). In the definition of the Weil pairing we choose DP = (P )− (O). Then we have(

gP (X)
ψX((P )− (O))

)n
=

gP (n(X))
ψX(div(gP ))

=
gP (n(X))
gP (div(ψX))

= gP (n(X)− div(ψX))

= gP ((YX) + (n− 1)(R)) = gP (YX)gP (R)n−1.

Further we choose DQ = (Q+X)− (X). Since [n](Q+X) = [n](X) we see that

div(ψQ+X)− div(ψX) = n(Q+X)− n(X) = div(gQ).
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Hence for all Q ∈ E[n] (τQ is the translation-by-Q map),(
gP

ψ·(DP )
◦ τQ

)
(X) =

gP (X +Q)
ψX+Q(DP )

=
gP ((X +Q)− (X))

gQ(DP )
gP (X)
ψX(DP )

= en(P,Q)︸ ︷︷ ︸
=1

gP (X)
ψX(DP )

.

Using corollary 2.29 we deduce that there exists a function h ∈ K̄(E) such that

gP (X)
ψX(DP )

= (h ◦ [n])(X) = h(YX + [n− 1]R).

Putting things together we get

gP (YX)gP (R)n−1 =
(
gP (X)
ψX(DP )

)n
= (h ◦ τ[n−1]R)n(YX).

Since [m] is a non-zero isogeny and hence surjective, for every Y ∈ E we can find an X ∈ E with
YX = Y . So the above equation is indeed an equation of functions on E. R is constant and thus

n((P )− (O)) = div(gP ) = ndiv(h ◦ τ[n−1]R).

Therefore (P ) ∼ (O) which is only possible if P = O (lemma 2.10).

5. Galois invariance can again be simply checked by inserting definitions.

6. Compatibility: In the same manner one can verify that

emn(P,Q) = en([m]P,Q).

Theorem 2.46. Let charK = 0 or n be coprime to charK. Then there exist points P,Q ∈ E[n] such that
en(P,Q) is a primitive nth root of unity. In particular the Weil pairing is surjective and if E[n] ⊆ E(K)
then µn ⊆ K∗.

Proof. By linearity the image of en is a subgroup µd of µn. Therefore for all P,Q ∈ E[n] we have
1 = en(P,Q)d = en([d]P,Q) an since the Weil pairing is non-degenerate this implies P ∈ E[d] for all
P ∈ E[n]. By theorem 2.38 this is only possible if d = n. Hence en is surjective and the image contains a
primitive nth root of unity.

If E[n] ⊆ E(K), the Galois invariance of en shows that en(P,Q) ∈ K∗ for all P,Q ∈ E[n] and thus
µn ⊆ K∗.

Our definition of the Weil pairing is not the only one possible, but it is one that is useful for our
purposes because it lends itself to computation. (The same is true for the Tate-Lichtenbaum pairing.)
However sometimes the following alternative definition is used:

Proposition 2.47. Let P,Q ∈ E[n]. Chose a function g satisfying

div(g) = [n]∗(Q)− [n]∗(O).

Then for any point X ∈ E such that X and X + P are disjoint from the support of div(g),

en(P,Q) = g((X)− (X + P )).

Proof. The proof is conceptually simple but rather technical and lengthy and thus we will not include it
here. See [Was08, Theorem 11.12]

Proposition 2.48. Let ψ : E → E′ be an isogeny with dual φ̂ : E′ → E. Then φ and φ̂ are adjoint with
respect to the Weil pairing, i.e. em(φ(P ), Q) = em(P, φ̂(Q)).

Proof. We will use our original definition of the Weil pairing. Let DQ = (Q) + (O), DbφQ = (φ̂Q)− (O)
and DφP = φ∗DP (and thus gφP = φ∗gP ). Chose a function h ∈ K̄(E1) such that

φ∗(Q)− φ∗(O) = (φ̂Q)− (O) + div(h).
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This is possible by 2.35. Now

div
(
f ◦ φ
hm

)
= φ∗ div(f)−m div(h) = m(φ̂Q)−m(O).

Hence up to multiplication with a constant gbφQ = gQ◦φ
hm . Using this we get

em(P, φ̂Q) =
gP (DbφQ)
gQ◦φ
hm (DP )

=
gP (DbφQ) · h(mDP )

(gQ ◦ φ)(DP )
=
gP (DbφQ) · gP (div(h))

(gQ ◦ φ)(DP )
=
gP (DbφQ + div(h))

(gQ ◦ φ)(DP )

=
gP (φ∗DQ)
gQ(φ∗DP )

=
φ∗gP (DQ)
gQ(φ∗DP )

=
gφP (DQ)
gQ(DφP )

= em(φP,Q).

2.5 The Tate Module

Definition 2.49. Let E be an elliptic curve and ` ∈ Z be a prime. Then the (`-adic) Tate module of E
is the group

T`(E) = lim←−
n

E[`n],

where the inverse limit is taken with respect to the multiplication-by-` maps

[`] : E[`n+1]→ E[`n].

Every E[`n] is a Z/`nZ-module and the natural maps Z/`n+1Z → Z/`nZ are obviously compatible
with the inverse system used to define the Tate module. Hence T`(E) is a Z`-module.

From theorem 2.38 we immediately obtain the following structure of the Tate module:

Proposition 2.50. As a Z`-module T`(E) has the following structure:

1. T`(E) ∼= Z` × Z` for ` 6= char(K);
2. Tp(E) ∼= {0} or Zp for p = char(K) > 0.

On every torsion group E[n] we defined a pairing en, so we can try to put them together to get a
pairing on the Tate module. First we need some additional notation: Let K be a field and µ`n ⊆ K̄
its (`n)th roots of unity. Then raising to the `th power gives maps ` : µ`n+1 → µ`n and all these maps
together form an inverse system (µ`n , `)n∈N. The inverse limit T`(µ) = lim←−n µ`n of this system is called
the Tate module of K.

Theorem 2.51. There exists a bilinear, alternating, non-degenerate and Galois invariant pairing

e : T`(E)× T`(E)→ T`(µ),

called the `-adic Weil pairing. If φ : E1 → E2 is an isogeny then φ and φ̂ are adjoints for this pairing.

Proof. We only have to show that the Weil pairing is compatible with the maps of the inverse systems
defining T`(E) and T`(µ), i.e. that

e`n+1(P,Q)` = e`n([`]P, [`]Q).

This follows immediately from the properties of the Weil pairing (in particular linearity and compatibility):

e`n([`]P, [`]Q) = e`n([`]P,Q)` = e`n·`(P,Q)`.

Let φ : E1 → E2 be an isogeny of elliptic curves. It induces homomorphisms

φ : E1[`n]→ E2[`n].

Thus every isogeny φ induces a Z`-linear map

φ` : T`(E1)→ T`(E2).

In particular this gives a (ring) homomorphism End(E) → End(T`(E)). For ` 6= charK, End(T`(E))
is isomorphic to M2(Z`) (the 2× 2-matrices over Z`). So we can look at the determinant and trace of
endomorphisms.



26 Elliptic Curves

Theorem 2.52. Let ` be a prime not equal to char(K) and φ ∈ End(E). Then

det(φ`) = deg(φ), tr(φ) = 1 + deg(φ) + deg(1− φ).

In particular, det(φ`) and tr(φ`) are in Z and independent of `.

Proof. Choose any basis v1, v2 for Z` and write φ` =
(
a b
c d

)
with respect to this basis. Using the paring e

we have just defined we can calculate

e(v1, v2)deg φ = e([deg φ]v1, v2) = e(φ̂`φ`v1, v2) = e(φ`v1, φ`v2) =

e(av1 + cv2, bv1 + bv2) = e(v1, v2)ad−bc = e(v1, v2)detψ` .

By the non-degeneracy of e this implies deg φ = detψ`. Further for any 2× 2 matrix A we have

trA = 1 + detA− det(1−A).

Definition 2.53. Let φ ∈ End(E). Then the determinant detφ, the trace trφ and the characteristic
polynomial of φ are defined to be the respective objects of φ` for any prime ` 6= char(K).

In section 3.3 we will see that the trace of the Frobenius plays an important role in the theory of
elliptic curves over finite fields.

Proposition 2.54. The characteristic polynomial of the qth-power Frobenius endomorphism φq is

T 2 − tr(φq)T + q ∈ Z[T ].

Proof. By linear algebra we know that the characteristic polynomial of a 2× 2 matrix A is T 2 − tr(A)T +
det(A). For the Frobenius we have detφq = deg φq = q.

Theorem 2.55. For any φ ∈ End(E),
φ+ φ̂ = [trφ].

Further, φ and φ̂ have the same characteristic polynomial.

Proof. First we will show that φ+ φ̂ ∈ Z ⊆ End(E):

deg(1 + φ) = (1 + φ)(1 + φ̂) = 1 + (φ+ φ̂) + φφ̂.

Since φφ̂ ∈ Z and deg(1 + φ) ∈ Z, also φ+ φ̂ ∈ Z. Define a polynomial

p(T ) = T 2 − (φ+ φ̂)T + det(φ) ∈ Z[T ].

Then p(φ) = 0 (because det(φ) = φ̂φ) and hence p(T ) is equal to the minimal polynomial of φ, which is
T 2 − (trφ)T + det(φ).

Also directly from theorem 2.52 we see that trφ = tr φ̂ and detφ = det φ̂.

2.6 Hyperelliptic curves

Our interest in elliptic curves ultimately stems from the fact that they provide a means of realizing an
abstract group. In particular, the abstract group Pic0(E) is represented by the points of E and the group
laws of section 2.1. Therefore the group operations in Pic0(E) are efficiently computable. A second class
of curves where the degree zero part of the Picard group has an efficiently computable group operation are
the hyperelliptic curves. We will later see how they are connected to elliptic curve cryptography. Presently
we will only introduce the necessary theoretic background. As we have done for the basic properties of
elliptic curves, we will skip all proofs. Everything in this chapter can be proven in an elementary way. A
good self-sufficient introduction is given in [MWZ98]. Another (less elementary) introduction is [Was08,
chapter 13].
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Definition 2.56. A hyperelliptic curve of genus g (g ≥ 2) is an algebraic curve C/K given by an equation

C : y2 + h(x)y = f(x), (2.6)

where h(x) ∈ K[x] is a polynomial of degree at most g and f(x) ∈ K[x] is a monic polynomial of degree
exactly 2g + 1 and such that C is non-singular at all points of C ∩ A2.

There is exactly one point on C that does not lie in the usual affine piece. As usual it is called the
point at infinity and denoted ∞. Note that while a hyperelliptic curve is non-singular at every finite point,
it is singular at ∞. In order to apply the results of chapter 1 to C one needs a non-singular model of the
curve. The way to obtain one is a process called normalization [Sha94a, section II.5.3]. For hyperelliptic
curves this is done explicitly in [Sil92, exercise 2.14]. Fortunately the curve one obtains by this process
has the same affine piece as (2.6). The same exercise in Silverman’s book also shows that the genus of the
curve given by this equation is indeed g.

There is also an intrinsic way to define hyperelliptic curves: A curve X is hyperelliptic if and only if its
genus is at least 2 and there exists a finite morphism f : X → P1 of degree 2.2 See [Har77] for the essential
differences of hyperelliptic and non-hyperelliptic curves form the point of view of abstract algebraic
geometry. See also [Mum84] for a through study of hyperelliptic curves over the complex numbers.

For g = 1, definition 2.56 also includes elliptic curves, but it is usual not to include elliptic curves under
the notion of hyperelliptic curves, as there are some essential differences. Nevertheless, everything in this
section does also apply in the case of g = 1 and yields the corresponding properties of elliptic curves.

Proposition 2.57. Let charK 6= 2 and let C/K be the hyperelliptic curve given by (2.6). Then the
change of variables x 7→ x, y 7→ y−h(x)

2 transforms C to the form

C : y2 = f(x). (2.7)

An equation of this form defines an hyperelliptic curve if and only if charK 6= 2 and f has no repeated
roots in K̄.

For the rest of this section C will always denote a hyperelliptic curve of genus g given by an equation
of the form (2.6) or (2.7).

Definition 2.58. For a finite point P = (x, y) ∈ C(K̄) define w(P ) = (x,−y − h(x)) and for the point
at infinity define w(∞) = ∞. Then w(P ) is called the opposite of P and the map w the hyperelliptic
involution. On elliptic curves w is just multiplication by −1. If D =

∑
mPP ∈ Div(C) is a divisor then

w(D) =
∑
mPw(P ).

Proposition 2.59. Let D be a divisor of degree 0. Then D + w(D) is a principal divisor.

Definition 2.60. A divisor D ∈ Div(C) is called semi-reduced if it is of the form D =
∑
mP (P ) −

(
∑
mP ) (∞) and satisfies the following conditions:

1. all mP ≥ 0 and m∞ = 0,
2. if P = w(P ), then mP ≤ 1 and
3. if P 6= w(P ), then mP = 0 or mw(P ) = 0.

A divisor is called reduced if it is semi-reduced and
∑
mP ≤ g.

Let J = Pic0(C) be the degree zero part of the divisor class group, i.e. the quotient of Div0(C) by the
subgroup of principal divisors. It is also called the Jacobian variety of C. (Strictly speaking this name
is not correct, see [Sha94a, section III.4.4] and [Har77, section IV.4]). The following two theorems are
crucial to the use of hyperelliptic curves for computational purposes.

Theorem 2.61. In every class of Pic0(C) there is a unique reduced representative.

For every point P ∈ C(K̄) the divisor P −∞ is reduced. Thus the last theorem implies that the map

κ : C → J
P 7→ class of P −∞

is injective. In the case of elliptic curves it is an isomorphism as we have already seen in theorems 2.11
and 2.13.

2This definition is not completely equivalent to the one we gave, but a through discussion of hyperelliptic curves is beyond
the scope of this section.
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Definition 2.62. Let D1 =
∑
mP ((P ) − (∞)) and D2 =

∑
nP ((P ) − (∞)) be two divisors with

mP , nP ≥ 0 for all P ∈ C. Then the greatest common divisor of D1 and D2 is

gcd(D1, D2) =
∑
P

min {mP , nP } ((P )− (∞)).

Theorem 2.63. There is a one-to-one correspondence between semi-reduced divisors
∑
mP ((P )− (∞))

and pairs (U(x), V (x)) of polynomials in K̄[x] satisfying

1. U(x) is monic,
2. degU(x) =

∑
mP , deg V (x) < degU(x) and

3. V (x)2 + V (x)h(x)− f(x) is a multiple of U(x).

Under this correspondence, D = gcd(div(U(x)),div(y − V (x)).

Corollary 2.64. There is a one-to-one correspondence between element of Pic0(C) and pairs (U(x), V (x))
of polynomials in K̄[x] satisfying

1. U(x) is monic,
2. deg V (x) < degU(x) ≤ g and
3. V (x)2 + V (x)h(x)− f(x) is a multiple of U(x).

There is a one-to-one correspondence between element of Pic0
K(C) and pairs (U(x), V (x)) of polynomials

in K[x] satisfying the above properties.

This representation of divisor classes is called Mumford representation. The zero divisor is represented
by (1, 0).

Corollary 2.65. If K is a finite field, then Pic0
K(C) is finite.

We will later give bounds for the exact size of Pic0
K(C).

The only remaining piece is an algorithm that calculates the Mumford representation of the sum of
two divisors given in Mumford representation. Such an algorithm has been devised by David Cantor in
[Can87] for h(x) = 0. It has been extended to arbitrary h by Neil Koblitz in [Kob89]. We will state the
generalized algorithm. Cantor’s original algorithm is obtained by setting h(x) = 0.

Algorithm 2.66 (Cantor’s Algorithm). Let D1 and D2 be two semi-reduced divisors of C with Mum-
ford representation (U1, V1) and (U2, V2) respectiviely. The following algorithm returns the Mumford
representation (U, V ) of D1 +D2.

1. Using the (extended) Euclidean algorithm, calculate d = gcd(U1, U2, V1 + V2 + h) and polynomials
h1, h2, h3 such that d = h1U1 + h2U2 + h3(V1 + V2 + h).

2. Set U = U1U2
d2 .

3. Set V = U1V2h1+U2V1h2+(V1V2+f)h3
d mod U with deg V < degU .

4. Return (U, V ).

Algorithm 2.67 (Reduction Procedure). Let D be a semi-reduced divisor with Mumford representation
(U, V ). The following algorithm returns the Mumford representation (U ′, V ′) of a reduced divisor D′ ∼ D.

1. Set U ′ = f−V h−V 2

U .
2. Set V ′ = −h− V ′ mod U with deg V ′ < degU ′.
3. If degU ′ > g, set U = U ′ and V = V ′ and return to step 1.
4. Let c be the leading coefficient of U ′, and set U ′ ← c−1U ′.
5. Return (U ′, V ′).

Corollary 2.68. Let (U, V ) be the Mumford representation of a divisor class in Pic0(C). Then its inverse
in given by (U,−V − h).

Cartan’s algorithm is not the only algorithm for the addition of two divisor classes. See [BSS05, section
VII.2] for an overview of algorithms and considerations that have to be taken into account for efficient
implementation.



Chapter 3

Elliptic Curves over Special Fields

So far we developed the theory of elliptic curves without assuming anything about the ground field (except
that it is perfect). Ultimately we want to derive information about elliptic curves defined over finite fields.
However in order to do this we have to make use of the theory of elliptic curves over the complex numbers
and over local fields. Therefore we will take a look at these classes of curves. We will also define two
families of polynomials which make sense over every field.

3.1 Elliptic Curves over the Complex Numbers

In many parts of the theory of elliptic curves it is helpful to have the background of elliptic curves over the
complex numbers. In a sense the complex numbers are the must natural field of definition. Historically
the study of elliptic curves began here. The intuition gained over the complex numbers will guide us in
the next section to the right definitions.

Why are the complex numbers the “most natural” setting for elliptic curves? Firstly the GAGA
principle [Har77, appendix B] allows us to use methods from complex analysis to study the a priori only
algebraic variety. Secondly there exists an analytic group isomorphism to a much simpler space (namely a
2-torus) which reduces many problems on the elliptic curve to problems about elliptic functions which
are a classical and well-studies domain. Historically the development was of course the other way round,
starting with elliptic integrals and then elliptic function. Algebraic methods were only introduced much
later. See the appendix of [Sha94b] for a short historical sketch.

Throughout this section Λ will always denote a lattice in C, i.e. a discrete subgroup which contains an
R-basis of C, or equivalently the image of the canonical lattice Z2 in R2 under an R-linear map R2 → C
of rank 2. Further for a ∈ C let

P = Pa = {a+ t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1}

be a fundamental parallelogram of Λ. Here and later ω1, ω2 are a basis of the lattice. Of course the
canonical projection map C→ C/Λ is bijective when restricted to P.

Definition 3.1. An elliptic function with respect to a lattice Λ is a meromorphic function f such that
for all z ∈ C and all ω ∈ Λ,

f(z + ω) = f(z).

The field of all elliptic functions is denoted C(Λ).

If f is elliptic and holomorphic it has to be bounded on the compact set P (the closure of P) and
therefore on all of C. Thus by Liouville’s theorem [Con78, theorem IV.3.4] applied to f resp. 1/f we get:

Theorem 3.2. An elliptic function with no poles or no zeros is constant.

Note that this result is not very surprising. It is just the analytic analogue to the already known fact
that a rational function without zeros or poles is constant. The next theorem again has an algebraic
analogue, compare theorems 1.41 and 2.16.

29
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Theorem 3.3. Let f ∈ C(Λ). Then

1.
∑
w∈P

resw(f) = 0

2.
∑
w∈P

ordw(f) = 0

3.
∑
w∈P

ordw(f)w ∈ Λ

Proof. The statements are all simple consequences from integrating around ∂P and using the residue
theorem [Con78, theorem V.2.2]. A complete proof can for example be found in [Sil92, theorem VI.2.2].

Corollary 3.4. The number of poles of an elliptic function is equal to the number of zeros (counted with
multiplicity). Any non-constant elliptic function has at least two poles (again counted with multiplicity).

Proof. The first statement is just a reformulation of the second point in the last theorem. If f had just a
single simple pole, the residue at that pole had to be 0 and f therefore holomorphic.

For w ∈ C/Λ and f ∈ C(Λ) define the order ordw(f) of f at w by ordz(f) for any z ∈ C that maps
to w under the canonical projection. Like in the algebraic case the following definitions will prove to be
useful:

Definition 3.5. The divisor group Div(C/Λ) is the free Abelian group over C/Λ. Its elements are written
as formal linear combinations D =

∑
w∈C/Λ nw(w) with nw ∈ Z and almost all nw vanish. Define the

degree of a divisor D by degD =
∑
nw and let

Div0(C/Λ) = {D ∈ Div(C/Λ) : degD = 0} .

From any function f ∈ C(Λ)∗ we get a principal divisor div(f) ∈ Div0(C/Λ) by

div(f) =
∑

w∈C/Λ

ordw(f)w.

Further we define a summation map

sum:

{
Div0(C/Λ)→ C/Λ∑
nw(w) 7→

∑
nww

.

We will later show that the sequence

1→ C∗ → C(Λ)∗ div→ Div0(C/Λ) sum→ C/Λ→ 0

is exact. (The interesting part is the exactness at Div0(C/Λ).)

It would be convenient to have a good characterization of the field of elliptic functions and indeed we
will prove that C(Λ) = C(℘, ℘′) where ℘ is the Weierstraß ℘-function that we will shortly define.

Notation. We will use the notation ∑′

ω∈Λ

f(ω) =
∑
ω∈Λ
ω 6=0

f(ω).

Lemma 3.6. The series
G2k = G2k(Λ) =

∑′

ω∈Λ

1
ω2k

converges absolutely for all k > 1.

The G2k are called Eisenstein series of weight 2k. For odd numbers the Eisenstein series G2k+1 are 0.

Proof. See for example [Sil92, theorem VI.3.1a] or [Hus04, lemma 9.3.1].
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Now we would like to construct an elliptic function ℘ that has only the single pole 0 (mod Λ). Of course,
by corollary 3.4 this pole must be of order 2 and have residue 0. We could try to set ℘(z) =

∑
ω∈Λ

1
(z−ω)2

but unfortunately this does not converge. Therefore we have to make it convergent.

Definition 3.7. Let Λ ⊂ C be a lattice. The Weierstraß ℘-function for Λ is defined by the series

℘(z) = ℘(z; Λ) =
1
z2

+
∑′

ω∈Λ

(
1

(z − ω)2
− 1
ω2

)
.

Theorem 3.8. The series in the last definition converges absolutely and uniformly on every compact
subset of C \ Λ. Thus it defines a meromorphic function ℘ on C. This function has a double pole with
residue 0 at each lattice point an no other poles. It is an even elliptic function.

Proof. Let C be a compact subset of C \ Λ and r such that ∀z ∈ C : |z| ≤ r. For |ω| ≥ 2r and z ∈ C we
have ∣∣∣∣ 1

(z − ω)2
− 1
ω2

∣∣∣∣ =
∣∣∣∣ z(z − 2ω)
ω2(z − ω)2

∣∣∣∣ ≤ r(r + 2|ω|)
|ω|2 |ω|

2

4

≤ 4
r( |ω|2 + 2|ω|)
|ω|4

=
10r
|ω|3

.

Thus for z ∈ C there exists a constant c ∈ R such that:∣∣∣∣∣ 1
z2

+
∑′

ω∈Λ

(
1

(z − ω)2
− 1
ω2

)∣∣∣∣∣ ≤ c+
∑
ω∈Λ
|ω|>2r

∣∣∣∣ 1
(z − ω)2

− 1
ω2

∣∣∣∣ ≤ c+
∑
ω∈Λ
|ω|>2r

10r
|ω|3

≤ c+10r
∑′

ω∈Λ

1
|ω|3

<∞.

Therefore ℘ is holomorphic in C \ Λ and from the series it is evident that it has a double pole at every
lattice point and that ℘(z) = ℘(−z). Because of the uniform convergence we can compute

℘′(z) = −2
∑
ω∈Λ

1
(z − ω)3

.

Clearly ℘′ is an elliptic function, so integrating yields

℘(z + ω) = ℘(z) + c(ω)

where c(ω) ∈ C is independent of z. Now setting z = −ω2 and the evenness of ℘ implies c(ω) = 0.

We can now prove what we had set out to do, namely the following theorem:

Theorem 3.9. Every elliptic function can be written as a rational function in ℘ and ℘′:

C(Λ) = C(℘( · ; Λ), ℘′( · ; Λ)).

Proof. Let f ∈ C(Λ). Then by

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2

it can be decomposed into the sum of an even and an odd elliptic function. Since ℘′ times an odd function
is even, it suffices to show that every even elliptic function is in C(℘). So assume that f is even.

For w ∈ C the evenness of f implies ordw(f) = ord−w(f). Differentiate f(z) = f(−z) to get
f (i)(z) = (−1)if (i)(−z). If w = −w mod Λ (i.e. 2w ∈ Λ) then f (i)(w) = −f (i)(w) and thus f (i)(w) = 0
for all odd i and so ordw(f) must be even (if f has a pole at w then the argument has to be applied to
1/f).

In particular ord0(f) = 2m for some integer m. Let f(z) = ℘(z)−mg(z) where g(z) is an even elliptic
function with ord0(g) = 0, i.e. g has no zeros or poles on Λ. By the last paragraph there exist n ∈ N
and ai, bi ∈ P such that a1, . . . , an,−a1, . . . ,−an are exactly the zeros and b1, . . . , bn,−b1, . . . ,−bn are
exactly the poles of g mod Λ (listed with multiplicities). Thus

h(z) = g(z)
∏n
i=1(℘(z)− ℘(bi))∏n
i=1(℘(z)− ℘(ai))

is an elliptic function without zeros or poles (the divisor of ℘(z)−℘(w) is (w) + (−w)− 2(0)). By theorem
3.2, h is constant.
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Since C/Λ is a complex manifold of dimension 1, its function field C(Λ) should – analogous to the
algebraic case – have transcendence degree 1 over C. It can be proven without using the theorem above
that any two elliptic functions are algebraically dependent [Cha85, theorem III.9]. We will however just
prove that there exists a relation between ℘ and ℘′.

Theorem 3.10 (Differential equation for ℘). There exist complex numbers g2 and g3 (depending on Λ)
such that

℘′2 = 4℘3 − g2℘− g3.

Proof. Since ℘ is an even function, its Laurent expansion is of the form

℘(z) =
1
z2

+ c0 + c2z
2 + c4z

4 +O(z6)

with c0 = 0 because (℘(z)− 1
z2 )(0) = 0. This yields

℘′(z) =
−2
z3

+ 2c2 + 4c4z3 +O(z5)

℘(z)3 =
1
z6

+
3c2
z2

+ 3c4 +O(z)

℘′(z)2 =
4
z6
− 8c2

z2
− 16c4 +O(z)

Therefore (using the again that an elliptic and holomorphic function is constant):

℘′(z)2 − 4℘(z)3 + 20c2℘(z) = −28c4 +O(z) = −28c4.

Set g2 = 20c2 and g3 = 28c4.

It is not difficult to explicitly calculate the Laurent series of ℘ in terms of Eisenstein series (see [Sil92,
theorem VI.3.5]):

℘(z) = z−2 +
∞∑
k=1

(2k + 1)G2k+2z
2k.

This implies g2(Λ) = 60G2(Λ) and g3(Λ) = 140G6(Λ).

To proceed we need some way of constructing elliptic functions with given zeros and poles. For this
it would be convenient to have an elliptic function with just single zeros at the lattice points and no
zeros or poles elsewhere. Of course by corollary 3.4 this is impossible. We can however construct a
“pseudo-periodic” function with this property. To see the connections between the various functions we
also need to introduce a function with single poles at the lattice points.

Definition 3.11. The Weierstraß ζ-function for a lattice Λ is defined by the following infinite product:

ζ(z) =
1
z
−
∑′

ω∈Λ

(
1

z − ω
+

1
ω

+
z

ω2

)
.

The Weierstrass σ-function is defined by

σ(z) = z
∏′

ω∈Λ

(
1− z

ω

)
exp

(
z

ω
+

1
2

( z
ω

)2
)
.

Theorem 3.12.

1. The ζ-function is a well-defined meromorphic function with single poles at the lattice points and no
poles elsewhere.

2. The σ-function is a well-defined odd entire function with single zeros at the lattice points an no zeros
elsewhere.

3. ζ ′(z) = −℘(z) and d
dz log σ(z) = σ′(z)

σ(z) = ζ(z).
4. There exists a group homomorphism η : Λ→ C such that ζ(z + ω) = ζ(z) + η(ω) for all z ∈ C and

ω ∈ Λ.
5. ( Legendre relation) If (ω1, ω2) is a basis of Λ with Im ω2

ω1
> 0 then η(ω1)ω2 − η(ω2)ω1 = 2πi.
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6. For all ω ∈ Λ and z ∈ C
σ(z + ω) = λ(ω)eη(ω)(z+ω

2 )σ(z) (3.1)

where

λ(ω) =

{
1 if ω ∈ 2Λ
−1 if ω /∈ 2Λ

.

Proof.

1. The (absolute!) convergence can be proven just like for the ℘-function [Sil94, proposition I.5.1].
2. The product converges by the Weierstraß factorization theorem [Con78, theorem VII.5.12].
3. These are simple calculations (because of the derivation, the branch of log is irrelevant).
4. Since d

dz (ζ(z+ω)− ζ(z)) = −℘(z+ω) +℘(z) = 0 we can define η(ω) = ζ(z+ω)− ζ(z) independent
of z. Now for all z ∈ C:

η(ω1 + ω2) + ζ(z) = ζ(z + ω1 + ω2) = ζ(z + ω1) + η(ω2) = ζ(z) + η(ω1) + η(ω2).

5. Integrate ζ around a fundamental parallelogram of Λ with 0 in its interior and use Cauchy’s residue
theorem. ([Cha85, theorem IV.2] with ηi = η(ωi)

2 .)
6. Let F (z) be an antiderivative of ζ(z). Then

d
dz

(F (z + ω)− F (z)) = ζ(z + ω)− ζ(z) = η(ω).

Hence there exists h : Λ→ C such that

F (z + ω)− F (z) = η(ω)z + h(ω).

By (3) this gives
σ(z + ω)
σ(z)

= eη(ω)z+h(ω).

Define λ(ω) = exp(h(ω)− η(ω)ω2 ) to get the desired relation. Now we need to show that λ is the
function given in the theorem. Let ω /∈ 2Λ and z = −ω2 /∈ Λ.

0 6= σ(
ω

2
) = σ(z + ω) = σ(−ω

2
) · 1 · λ(ω) = −σ(

ω

2
)λ(ω)

and thus λ(ω) = −1. Let ω = 2ω′ and z arbitrary:

σ(z + 2ω′)
σ(z)

=
σ(z + 2ω′)
σ(z + ω′)

· σ(z + ω′)
σ(z)

,

e2η(ω′)(z+ω′)λ(2ω′) = eη(ω′)(z+ω′+ω′
2 )λ(ω′) · eη(ω′)(z+ω′

2 )λ(ω′).

Therefore λ(ω) = λ(2ω′) = λ(ω′)2 and induction yields the statement.

Theorem 3.13. Let f ∈ C(Λ) with divisor

div(f) =
∑

ni(zi)

Replace z1 by z1 − ω where ω =
∑
nizi ∈ Λ. Then there exists a constant c ∈ C such that

f(z) = c
∏

σ(z − zi)ni .

Proof. Let h(z) =
∏
σ(z − zi)ni . Using the last theorem one shows that h(z + ω) = h(z) for all ω ∈ Λ,

i.e. h ∈ C(Λ). Then div( fh ) = 0 and therefore c = f
h is constant.

We can now prove the converse of theorem 3.3, i.e. the analytic analogue of theorem 2.16.
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Theorem 3.14. Let n1, . . . , nr ∈ Z and z1, . . . , zn ∈ Λ with∑
ni = 0 and

∑
nizi ∈ Λ.

Then there exists f ∈ C(Λ) satisfying
div(f) =

∑
ni(zi).

Proof. Use the representation in theorem 3.13 to construct f .

Corollary 3.15. The sequence

1→ C∗ → C(Λ)∗ div→ Div0(C/Λ) sum→ C/Λ→ 0

is exact.

Proof. Exactness at C∗ is trivial. Exactness at C(Λ)∗ is theorem 3.2. Exactness at Div0(C/Λ) is theorem
3.14 and exactness as C/Λ is again trivial.

The differential equation 3.10 looks remarkably like a Weierstraß equation. In fact the following
important connection between elliptic functions and elliptic curves over C holds:

Theorem 3.16. Let Λ be a lattice in C and ℘(z) = ℘(z; Λ), g2 = g2(Λ), g3 = g3(Λ).

1. The plane complex curve E/C defined by

y2 = 4x3 − g2x− g3

is an elliptic curve (i.e. it is non-singular).
2. The function

φ : C/Λ→ E ⊆ P2(C)

z mod Λ 7→

{
[0 : 1 : 0] z = 0 mod Λ
[℘(z) : ℘′(z) : 1] z 6= 0 mod Λ

is an analytic isomorphism of complex Lie groups (i.e. an isomorphism of Riemann surfaces that is
also a group homomorphism).

3. Let E′/C be an elliptic curve defined by a Weierstraß equation

E′ : y2 = 4x3 − ax− b.

(By some change of coordinates every complex elliptic curve can be brought into this form.) Then
there exists a lattice Λ′ such that g2(Λ′) = a and g3(Λ′) = b, i.e. such that the map φ is an
isomorphism of C/Λ′ to E′(C).

4. Two elliptic curves are isomorphic over C if and only if their associated lattices are homothetic
(i.e. ∃α: αΛ = Λ′).

Proof.

1. This equivalent to f(x) = 4x3 − g2x− g3 having no double roots. See [Sil92, proposition VI.3.6a]
for a proof of this.

2. See [Sil92, proposition VI.3.6b] or [Hus04, theorem 9.4.4].
3. See [Hus04, section 9.6] and [Sil92, section VI.5].
4. See [Sil94, corollary I.4.3].

Now we can transfer the addition formulas of 2.15 to the ℘-function.

Theorem 3.17 (Analytic Addition Theorem). Let z 6= u mod Λ. Then

℘(z + u) = −℘(z)− ℘(u) +
1
4

(
℘′(z)− ℘′(u)
℘(z)− ℘(u)

)2

℘′(z + u) = −℘′(z) +
(
℘′(z)− ℘′(u)
℘(z)− ℘(u)

)
(℘(z)− ℘(z + u))

℘(2z) = −2℘(z) +
1
4

(
℘′′(z)
℘′(z)

)2

= −2℘(z) +
1
4

(
6℘(z)2 − g2

2

℘′(z)

)2

℘′(2z) = −℘′(z) +
(
℘′′(z)
℘′(z)

)
(℘(z)− ℘(2z)) = −℘′(z) +

(
6℘(z)2 − g2

2

℘′(z)

)
(℘(z)− ℘(2z)) .
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Proof. The addition formulas can be obtained like the group law formulas for plane cubics using the
slightly different equation y2 = 4x3 − g2x− g3. The duplication formulas are the result of taking the limit
u→ z and using the differential equation for ℘ to obtain ℘′′(z) = 6℘(z)2 − g2

2 .

There is of course a lot more to say about elliptic functions, but we have to stop here and will finish
with a small proposition that we will need later on.

Proposition 3.18.

℘(z)− ℘(u) = −σ(z + u)σ(z − u)
σ(z)2σ(u)2

Proof. By theorem 3.13 (considering ℘(z)− ℘(u) as a function in z and u respectively) there exist c1(u)
and c2(z) such that

℘(z)− ℘(u) = c1(u)
σ(z + u)σ(z − u)

σ(z)2
= c2(z)

σ(u+ z)σ(u− z)
σ(u)2

.

Since σ(z − u) = −σ(u − z) this gives c1(u) = −c2(z)σ(z)2

σ(u)2 independent of z and hence there exists a
constant c such that

℘(z)− ℘(u) = −cσ(z + u)σ(z − u)
σ(z)2σ(u)2

.

Multiplying with z2 and letting z → 0 we deduce that c = 1

This formula can be used to deduce the addition theorem for ℘ without using elliptic curves at all
[Wei93, Art. 12].

For more information about the theory of elliptic functions see for example [Lan87]. Of historical
interest is Schwarz’s transcription of Weierstraß’ lectures [Wei93]. See also [Cha85] which contains many
references.

3.2 Two Families of Polynomials

3.2.1 Elliptic Divisibility Sequences and the Division Polynomials

Elliptic divisibility sequences (EDS) were first introduced and studied by Morgan Ward in [War48]. Recently
the study of these sequences resurfaced because of their connection to elliptic division polynomials and
therefore to the group structure of elliptic curves. Shipsey [Shi00] was the first to realize the possibility to
transform the discrete logarithm problem to a problem on elliptic divisibility sequences (more on that in
section 7.6).

Definition 3.19. A sequence u : Z→ R where R is an integral domain is called a divisibility sequence if
un | um for all n | m. If R = Z the sequence is called integral.

Some trivial examples of divisibility sequences are un = nk and un = an1 − an2 .

Definition 3.20. A sequence un is elliptic if it satisfies

um+num−n = um+1um−1u
2
n − un+1un−1u

2
m. (3.2)

for all m,n ∈ Z. If it is also a divisibility sequence, it is called elliptic divisibility sequence, often shortened
to EDS.

A simple calculation shows that all sequences of the form an−bn
a−b with ab = 1 and a+ b ∈ Z are integral

EDS. For example let a be a primitive complex third root of unity and b = ā to obtain the sequence
0, 1, −1, 0, 1, −1, . . . . Note that for a = b = 1 this includes the sequence un = n.

Following Ward, we will call a solution of (3.2) proper if u0 = 0, u1 = 1 and not both u2 and u3 are
zero.

We collect some elementary properties of elliptic sequences in the following lemma:
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Lemma 3.21. Let un be a proper elliptic sequence. Then uk = −u−k for a all k ∈ Z. The set {n : un = 0}
is a subgroup of Z.

Proof. Setting n = 0, m = 1 yields u−1 = −1. If uk = u−k = 0 then the first claim is trivial. Assume
uk 6= 0 and let m = 0, n = −k to get uku−k = −u2

k and thus u−k = −uk. If u−k 6= 0 replace k by −k.

By lemma 4.1 in [War48], if any two consecutive terms of the sequence vanish, then un = 0 for n ≥ 4.
In this case let m = 3, n = 2: 0 = 0− u1u

3
3 and thus u3 = 0. Then let m = 2, n = 0 to get u2

2 = 0 and so
the sequence cannot be proper.

Assume that uk = 0 and ul = 0. Then by the last paragraph uk−1uk+1 6= 0. Let m = k + l, n = k:

u2k+lul = uk+l+1uk+l−1u
2
l − uk+1ul+1u

2
k+l

and hence uk+l = 0.

Definition 3.22. Let un be a proper elliptic sequence. Then the smallest positive integer k such that
uk = 0 is called the rank of zero-apparition of the sequence.

For proper sequences the following theorem gives a base set:

Theorem 3.23. Let un be a proper solution of (3.2) with values in the quotient field of R. Then un is
completely determined by u2, u3 and u4. Further if these values are in R and u2|u4, then the sequence is
an EDS in R.

Proof. This is a slight generalization of [War48, theorem 4.1].

Theorem 3.24. Let Λ ⊆ C be a lattice. Define functions ψn( · ; Λ) on C by

ψn(z; Λ) =
σ(nz; Λ)
σ(z; Λ)n2 .

Then for every z ∈ C the sequence n 7→ ψn(z; Λ) is an elliptic divisibility sequence.

Proof. Because C is a field and by lemma 3.21 we only need to prove that the sequence is elliptic.

For easier notation we will only write ψn for ψn(z; Λ). By proposition 3.18,

℘(mz)− ℘(nz) = −σ((m+ n)z)σ((m− n)z)
σ(nz)2σ(mz)2

= −ψm+nσ(z)(m+n)2ψm−nσ(z)(m−n)2

ψ2
nσ(z)2n2ψ2

mσ(z)2m2

= −ψm+nψm−n
ψ2
mψ

2
n

.

(3.3)

Also ψ1 = 1. Dividing (3.2) by u2
mu

2
n and using the above formula yields the statement.

From (3.3) we get a nice multiplication-by-n formula:

℘(nz) = ℘(z)− ψn−1(z)ψn+1(z)
ψ(z)2

. (3.4)

This is the first hint that elliptic divisibility sequences are connected to the discrete logarithm on elliptic
curves. We also see that in order to calculate ℘(nz) we need the three values ψn−1(z), ψn(z) and ψn−1(z).
Basically this is already the width 3 EDS discrete logarithm problem considered in section 7.6.1.

The functions ψn have many interesting properties. First of all, using the transformation formula
(3.1),

ψn(z + ω) =
σ(nz + nω)
σ(z + ω)n2 =

σ(nz)λ(nω)enη(ω)n(z+ω
2 )(

σ(z)λ(ω)eη(ω)(z+ω
2 )
)n2 =

σ(nz)λ(ω)nen
2η(ω)(z+ω

2 )

σ(z)n2λ(ω)n2en
2η(ω)(z+ω

2 )
=

σ(nz)
σ(z)n2 = ψn(z)



3.2. Two Families of Polynomials 37

for all ω in Λ. Hence ψn is an elliptic function. Now by theorem 3.9 we know that ψn is a rational function
in ℘ and ℘′. Actually it is possible to explicitly compute the representation [Kie73, Wei93]:

ψn(z) =
(−1)n−1

(1! 2! 3! · · · (n− 1)!)2
det
(
℘(i+j−1)(z)

)n−1

i,j=1
. (3.5)

Using the differential equation 3.10 to get ℘′′(z) = 6℘(z)2 − g2
2 we see that the functions ψn are actually

polynomials in ℘ and ℘′. For the first few n expression (3.5) yields:

ψ1(z) = 1, ψ2(z) = −℘′(z),

ψ3(z) = 3℘4(z)− 3
2
g2℘

2(z)− 3g3℘(z)− g2
2

16
.

Similarly one can expand ψ4 as a polynomial of degree 7 in ℘(z) and degree 1 in ℘′(z). If one chooses g2,
g3 and z such that these values are integral one obtains an integral EDS. Ward proved that every integral
EDS arises in this way [War48, theorem 12.1].

Of course we want to work over finite fields. Here we have to modify the approach to the definition of
the ψn. We have to work the other way round and define the ψn as polynomials in x, y just so that we
get an EDS and an analogous relation to (3.4). However, before we define these polynomials we need to
show that what we want to do actually makes any sense.

Theorem 3.25. Let E/K be an elliptic curve given by

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

Then there exist rational functions gn, hn ∈ Quot (Z[a1, a2, a3, a4, a6][x, y]/〈f(x, y)〉) ⊆ K(E) with poles
exactly at the points in E[n] and such that for all n ∈ Z and every point P ∈ E(K̄) \ E[n]:

[n]P = (gn(P ), hn(P )) .

Proof. This follows by induction from the formulas in theorem 2.15.

Definition 3.26. Let L = Q(α1, α2, α3, α4, α6) be a field extension of Q with transcendence degree 5
and let

f(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x− α6.

Further let
β2 = α2

1 + 4α2,

β4 = 2α4 + α1α3,

β6 = α2
3 + 4α6,

β8 = α2
1α6 + 4α2α6 − α1α3α4 + α2α

2
3 − α2

4.

Define the abstract division polynomials Ψn ∈ Z[α1, α2, α3, α4, α6][x, y]/〈f(x, y)〉 by

Ψ1 = 1, Ψ2 = 2y + α1x+ α3,

Ψ3 = 3x4 + β2x
3 + 3β4x

2 + 3β6x+ β8,

Ψ4 = Ψ2(x, y) · (2x6 + β2x
5 + 5β4x

4 + 10β6x
3 + 10β8x

3 + (β2β8 − β4β6)x+ β4β8 − β2
6)

and such that for all m, n ∈ Z:

Ψm+nΨm−n = Ψm+1Ψm−1Ψ2
n −Ψn+1Ψn−1Ψ2

m.

(This is well defined by theorem 3.23.)

Let R = Z[α1, α2, α3, α4, α6][x, y]/〈f(x, y)〉. Further let E/K be an elliptic curve defined by

fE(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

and define a homomorphism φE : R → K(E) by αi 7→ ai.
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Theorem 3.27. The functions ψn = φE(Ψn) ∈ Z[a1, a2, a3, a4, a6][x, y]/〈fE(x, y)〉 ⊆ K(E) have the
following properties:

1. They form an EDS with ψ1 = 1.

2. For P ∈ E(K) and n ∈ Z with [n]P 6= O:

[n]P =
(
xψ2

n − ψn+1ψn−1

ψ2
n

,
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

4yψ3
n

)
(P ).

3. For P ∈ E(K) and n ∈ Z: [n]P = O if and only if ψn(P ) = 0.

The functions ψn are called division polynomials of E.

The following proof is inspired by the one in [CR88]. For the sake of better readability we will split it
into three parts.

Proof of theorem 3.27, part 1. The first statement is of trivial since homomorphisms transfer algebraic
relations.

Proof of theorem 3.27, part 2. First we will show that the statement is true for the elliptic curve C/L
defined by f(x, y). There exists an isomorphism of L to as subfield L′ of C. Therefore we can view C as
an elliptic curve defined over C. (This is an application of the Lefschetz principle [Sil92, section VI.6].)
Now one can check that the division polynomials defined here evaluated at (℘(z), ℘′(z)) are just the
elliptic functions σ(nz)

σ(z)n2 studied earlier. Thus this case of the theorem follows from classical results about
elliptic functions; see [Lan78] for details. (It is actually possible to prove it in a purely algebraic way. See
[CR88].)

For an arbitrary elliptic curve E/K we will prove the theorem by induction on n. More precisely, we
will use induction on the following statement:

(i) ψn+1 is not identically zero,
(ii) x([n](x, y)) = gn = x− ψn+1ψn−1

ψ2
n

and

(iii) y([n](x, y)) = hn = ψn+2ψ
2
n−1−ψn−2ψ

2
n+1

4yψ3
n

.

The statements can easily be checked for n ≤ 4. Assume they hold for all n < m. From the addition
formulas 2.15 we know that

gm =
(
hm−1 − y
gm−1 − x

)2

+ α1
hm−1 − y
gm−1 − x

− α2 − gm−1 − x

holds on the curve C of the first paragraph. Here we already know that we can replace gm, gm−1 and
hm−1 with the rational functions in the Ψs as given in (ii) and (iii). Multiplying this resulting relation by
(Ψm−2Ψm−1Ψm)2 we get a polynomial relation in R which we can transfer by φE to a relation of the
ψs. By induction we know that (ψm−2ψm−1ψm)2 6= 0, so we can divide by that term and again using the
induction hypothesis we can resubstitute gm−1 and hm−1 to get

x− ψm+1ψm−1

ψ2
m

=
(
hm−1 − y
gm−1 − x

)2

+ a1
hm−1 − y
gm−1 − x

− a2 − gm−1 − x.

The right hand side is equal to gm and thus we have proved (ii) for n = m. Similarly we can prove (iii).

If ψn+1 = 0, then gn − x = 0. But then [n]P = ±P or equivalently [n ∓ 1]P = O for all P ∈ E(K̄)
and thus either E[n− 1] or E[n+ 1] must be infinite, which is not possible (theorem 2.38). Therefore
ψn+1 6= 0, finishing the induction step.

Before we continue with the proof we note that it is possible to state a more symmetric version of (ii)
in analogy to (3.3).

Corollary 3.28.

gm − gn = −ψm+nψm−n
ψ2
mψ

2
n
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Proof. Using (ii) from the last proof and the recurrence relation for EDS:

gm − gn = x− ψm+1ψm−1

ψ2
m

−
(
x− ψn+1ψn−1

ψ2
n

)
= −ψm+1ψm−1ψ

2
n − ψn+1ψn−1ψ

2
m

ψ2
mψ

2
n

= −ψm+nψm−n
ψ2
mψ

2
n

Proof of theorem 3.27, part 3. Again using the Lefschetz principle, we see that div(Ψn) = E[n]− n2(O).
We also know that −ψn+1ψn−1

ψ2
n

= gn − x has poles on E[n] and thus ψn must have zeros on E[n]. We have
to show that it has no other zeros. Let p = char(K).

First assume that p = 0 or n is prime to p. Induction shows that the pole order of Ψn at O is n2 − 1
and if π = x

y is a uniformizer at O, then (πn
2−1Ψ)(O) = n. By the assumption, φE(n) 6= 0 and thus ψn

also has pole order n2 − 1 at O. There are no other poles and, since #E[n] = n2, there cannot be any
additional zeros. Also from (ii) of the last part we see that the zeros must be simple (gn − x has poles of
order two at the points in E[n]). Hence div(ψn) = E[n]− n2(O).

Now assume that n is not prime to p. From the EDS recurrence relation we get

ψ2n+1 = ψn+2ψ
3
n − ψ3

n+1ψn−1.

If ψn was not prime to ψn+1, then ψ2n+1 would have a triple zero which is not possible since 2n+ 1 is
prime to p. Similarly ψn must be prime to ψn−1. Thus again from (ii) we see that ψn cannot have any
zeros outside of E[n]. Of course they need not be simple as we do not know the pole order.

In light of the last theorem it is natural to define:

Definition 3.29. Let E/K be an elliptic curve defined by

fE(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

and P ∈ E(K). Then define the elliptic divisibility sequence associated to E and P by

WE,P :

{
Z→ K

n 7→ φE(Ψn)(P )
.

From theorem 3.27 we immediately get the following corollary:

Corollary 3.30. For an elliptic divisibility sequence W : Z→ K associated to an elliptic curve E and a
point P on E we have W (n) = 0 if and only if [n]P = O on E.

3.2.2 The Modular Polynomials

Let L be the set of lattices in C. In theorem 3.16 we saw that to two complex elliptic curves are isomorphic
if and only if their associated lattices are homothetic. In other words there is a canonical bijection

L/C∗ ←→ {isomorphism classes of complex elliptic curves} .

We can describe a lattice completely by its basis (ω1, ω2) ∈ C2 but this description is only unique up
to a change of basis. Such a change can of course be described by an invertible 2 × 2 matrix with
integer coefficients, i.e. by an element of GL2(Z). On the other hand we can describe a lattice up to
homothety by τ = ω2

ω1
. Since reordering a basis does not change the lattice, it is enough to consider

τ ∈ H = {z ∈ C : Im z > 0} and SL2(Z). This gives a surjection

H→ L/C∗,
τ 7→ Λτ = Zτ + Z.

The action of SL2(Z) on the basis induces an action on H which is given by

στ =
aτ + b

cτ + d
, for σ =

(
a b
c d

)
∈ SL2(Z).
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Thus Λτ1 is homothetic to Λτ2 if and only if there exists σ ∈ SL2(Z) such that στ1 = τ2. Hence there are
natural bijections

SL2(Z)\H←→ L/C∗ ←→ {isomorphism classes of complex elliptic curves} .

This is the fundamental incentive for the study of elliptic curves over C through the use of modular
functions (see [Sil94] or [Kob93]). Note that since

(−1 0
0 −1

)
= −I acts trivially on H, one can use

PSL2(Z) = SL2(Z)/{±I} instead of SL2(Z). Both groups are often called the modular group.

All invariants of elliptic curves under isomorphism can now be lifted to functions on H that are
invariant under the action of the modular group. For the j-invariant this gives

j(τ) = j(C/Λτ ) = 123 g2(τ)3

∆(τ)
,

where gi(τ) = gi(Λτ ) and ∆(τ) = g2(τ)3 − 27g3(τ)2 is the (modular) discriminant. Obviously j ◦ σ = j
for all σ ∈ SL2(Z).

We want to construct monic polynomials Fn(X, Y ) such that Fn(j(E), j(E′)) = 0 if an only if there
exists an isogeny E → E′ of degree n. In order to do this we extend the action of SL2(Z) on H to an
action of all matrices α ∈M2(R) with detα > 0. Further we define

Sn =
{(

a b
0 d

)
∈M2(Z) : ad = n, 0 ≤ b < d

}
,

S∗n =
{(

a b
0 d

)
∈ Sn : gcd(a, b, d) = 1

}
.

By [Sil94, lemma I.9.3], there exists an isogeny of degree n between C/Λτ and C/Λτ ′ if and only if there
exists α ∈ Sn with τ ′ = ατ . Therefore it is not surprising that we define Fn in the following way:

Definition 3.31. For positive integers n let

Fn(j,X) =
∏
α∈Sn

(X − j ◦ α)

and
Φn(j,X) =

∏
α∈S∗n

(X − j ◦ α).

Both are called the nth modular polynomial.

Theorem 3.32. The modular polynomials are symmetric monic polynomials in Z[X,Y ]. Let E, E′

be two elliptic curves defined over C. Then there exists an isogeny E → E′ of degree n if and only if
Fn(j(E), j(E′)) = 0. The kernel of this isogeny is cyclic if and only if Φn(j(E), j(E′)) = 0.

Proof. While the proof is not very difficult it would require an introduction to modular and automorphic
forms. Therefore we have to skip it here. For the first family of modular polynomials refer to to [Sil94,
theorem II.6.3a and lemma I.9.3]. For the second family refer to [Lan87, theorems 5.3 and 5.5].

Note that for prime numbers n, Fn(x, y) = Φn(x, y). The curve in P2(C) described by (the homoge-
nization of) Φn(x, y) = 0 is a singular model of the (classical) modular curve X0(n) (see [Sil92, section
C.13] for the definition and an overview of modular curves, and [Shi71] for details).

Since the modular polynomials are in Z[X,Y ] they make sense in every field. Thus we can ask if it is
possible to generalize theorem 3.32 to arbitrary fields:

Theorem 3.33. Let E and E′ be elliptic curves defined over a field K. Let ` be a prime different from
charK. Then there exists a separable isogeny E → E′ with degree ` if and only if Φ`(j(E), j(E′)) = 0.

Proof. Fix an elliptic curve E. By theorem 2.39 there are exactly `+ 1 isomorphism classes of elliptic
curves isogenous to E. This is equal to the degree of Φ`(j(E), T ). Thus we only have to show that if there
exists an isogeny, then Φ`(j(E), j(E′)) = 0.

Let E be given by a Weierstraß equation

fE(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0.
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If P is a nontrivial point in E[`] then there exists exactly one subgroup CP ⊆ E(K̄) with order ` and
P ∈ CP . It is given by CP = {[i]P : i = 0, · · · , `− 1}. Using theorem 3.27 we can calculate the coordinates
of all points of CP by rational functions in P (over Z(a1, a2, a3, a4, a6)). Then with Vélu’s formulas 2.33
we get rational functions over the same ring for the Weierstraß coefficients of an elliptic curve EP such
that there exists an isogeny αP : E → EP with CP = kerαP . Of course the j-invariant j(EP ) is a rational
function of the coefficients. Hence we get a rational function JE ∈ Z(a1, a2, a3, a4, a6)(x, y) such that
JE(P ) = j(EP ) for all P ∈ E[`]. Therefore we have to check that Φ`(j(a1, · · · , a6), JE(P )) = 0 for all
P ∈ E[`].

Like in the proof of theorem 3.27, we first look at the field L = Q(α1, α2, α3, α4, α6) (of transcendence
degree 5 over Q) and an elliptic curve C given by

fC(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x− α6 = 0.

Using the Lefschetz principle (i.e. embedding L in C) and theorem 3.32 we see that

Φ`(j(α1, · · · , α6), JC(P )) = 0 ∈ L for all C ∈ E[`].

Also as elements of Z(a1, a2, a3, a4, a6)(x, y) we have

φE (Φ`(j(α1, · · · , α), JC(x, y))) = Φ`(j(a1, · · · , a6), JE(x, y)),

where φE is the homomorphism defined by αi → ai.

Let H(x, y) ∈ Z(α1, α2, α3, α4, α6)[x, y] be the polynomial obtained from Φ`(j(α1, · · · , α6), JC(x, y))
be clearing denominators. Then H as the same roots as Φ`(j(α1, · · · , α6), JC(x, y)), which includes all
points of C[`]. Hence Ψ` divides H (over Q), so there exists a polynomial G(x, y) with

G(x, y)Ψ`(x, y) = H(x, y). (3.6)

Since H is monic and the leading coefficient of Ψ` is `, we actually have G(x, y) ∈ Z[ 1
` ](α1, . . . , α6)[x, y].

Since ` 6= charK the element φE( 1
` ) ∈ K is well defined and we can apply φE to (3.6). Therefore

ψ`(x, y) is a divisor of φE(H)(x, y) which has the same roots as Φ`(j(a1, · · · , a6), JE(x, y)). Thus
Φ`(j(a1, · · · , a6), JE(P )) = 0 for all P ∈ E[`].

Theorem 3.34 (Kronecker Congruence Relation). Let p be a prime.

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) (mod p).

Proof. [Lan87, section 5.3]

3.3 Elliptic Curves over Finite Fields

3.3.1 The Weil Conjectures

We will introduce the zeta function of a variety over a finite field. It essentially encodes the size of the
variety over all finite extensions of the ground field. It turns out that this function is simpler than one
might assume: The Weil conjectures give a very close description. As such they are an essential tool in
the study of projective varieties over finite fields.

Definition 3.35. Let V be a projective variety over the finite field Fq. Then the zeta function of V/K is
the formal power series

Z(V/K; T ) = exp

( ∞∑
n=1

#V (Kn)
Tn

n

)
.
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Theorem 3.36 (Weil Conjectures). Let V/K be a smooth projective variety of dimension n over a finite
field with q elements. Then the following properties hold for the zeta function of V :

1. Rationality: Z(V/K; T ) ∈ Q(T ).
2. Functional Equation: There exists an integer ε (the Euler characteristic of V ) so that

Z

(
V/K;

1
qnT

)
= ±q nε2 T εZ(V/K; T ).

3. Riemann Hypothesis: The zeta function factorizes as

Z(V/K; T ) =
P1(T )P3(T ) · · ·P2n−1(T )
P0(T )P2(T ) · · ·P2n(T )

,

where each Pi(T ) ∈ Z[T ]. Further P0(T ) = 1− T , P2n(T ) = 1− qnT and for 1 ≤ i ≤ 2n− 1 there
exist numbers αij ∈ C with |αij | = qi/2 such that

Pi(T ) =
∏
j

(1− αijT ).

Although these statements are still called Weil conjectures they, have been full proven since 1973 by the
work of Dwork [Dwo60] (rationality), Grothendieck [Gro64] and others (functional equation) and finally
Deligne [Del74]. In fact Weil himself proved the conjectures for curves in 1948 [Wei48] even before he
published the conjectures themselves in 1949 [Wei49]. An overview of the history of the Weil Conjectures
and the techniques used to prove them is given in [Har77, appendix C].

The practical significance of the Weil conjectures is that they say that it is possible to calculate the
whole zeta function of a variety if we know the value of #V (Fqn) for some small values of n. In particular
for curves we only need to know the single value #V (Fq). Then we can compute the size of the variety
over bigger fields by

#V (Fqn) =
1

(n− 1)!
dn

dTn
logZ(V/K; T ).

The following theorem is the key point for proving the Weil conjectures for elliptic curves.

Theorem 3.37. Let E be an elliptic curve over K = Fq and φq the qth-power Frobenius morphism. Then

#E(Fq) = q + 1− trφq.

Proof. Since φq (topologically) generates the Galois group Gal(K̄/K) we know that for a point P ∈ E(K̄),

P ∈ E(K) ⇔ φq(P ) = P.

In other words E(K) = ker(1− φq). Hence by 2.32, 2.28 and 2.52,

#E(K) = # ker(1− φq) = deg(1− φq) = det(1− φq) = 1− trφq + q,

where the last equality is obtained by substituting 1 into the characteristic polynomial of φq.

Corollary 3.38. Let E, E′ be two elliptic curves defined over Fq and ψ : E → E′ an isogeny. Then
#E(Fq) = #E′(Fq).

Outline of proof. Let ` be a prime such that ` - q degψ. Then ψ gives isomorphisms E[`i]→ E′[`i]. Hence
the traces of the Frobenius morphisms on E and E′ are equal and so the two elliptic curves must have the
same number of points.

Tate proved that the converse also true [Tat66]: Two elliptic curves defined over Fq are isogenous if
and only if #E(Fq) = #E′(Fq). Therefore the zeta function of an elliptic curve completely determines its
isogeny class.
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Theorem 3.39 (Weil Conjectures for Elliptic Curves). Let E/Fq be an elliptic curve. Then there exists
an integer a such that

Z (E/Fq; T ) =
1− aT + qT 2

(1− T )(1− qT )
.

The numerator 1 − aT + qT 2 factors as (1 − αT )(1 − βT ) with |α| = |β| =
√
q. Further the following

functional equation holds:

Z

(
E/Fq;

1
qT

)
= Z (E/Fq; T ) .

Proof. Let φq be the qth-power Frobenius morphism on E. The characteristic polynomial of φq factors
over C, say

det(T − φq) = T 2 − tr(φq)T + q = (T − α)(T − β).

For every rational number m
n ∈ Q,(m

n

)2

− tr(φq)
m

n
+ q =

m2 − tr(nφq)m+ n2q

n2
=

det(m− nφq)
n2

=
deg(m− nφq)

n2
≥ 0.

Thus the polynomial det(T − φq) ∈ R[T ] cannot have two distinct real roots. Hence |α| = |β|. Further
because of

αβ = detφq = deg φq = q,

we conclude that |α| = |β| =
√
q. Set a = α + β = trφq ∈ Z. The (qn)th-power Frobenius morphism

is given by φnq and by putting (φq)` into Jordan normal form we see that (φq)
n
` has trace αn + βn. In

particular
#E(Fqn) = 1− αn − βn + qn.

Now we can assemble the zeta function:

logZ(E/Fq; T ) =
∞∑
n=1

#E(Fqn)
Tn

n
=
∞∑
n=1

(1− αn − βn + qn)
Tn

n
=

− log(1− T ) + log(1− αT ) + log(1− βT )− log(1− qT ).

Therefore

Z(E/Fq; T ) =
(1− αT )(1− βT )
(1− T )(1− qT )

.

Corollary 3.40 (Hasse’s Theorem). Let E be an elliptic curve defined over Fq. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. Let φq be the qth-power Frobenius morphism on E. Then

|#E(Fq)− q − 1| = | trφq| = |α+ β| ≤ 2
√
q.

Using suitable generalizations of the ideas we have used in this section one can show the Weil conjectures
for arbitrary curves. See [Mum74, pp. 203–207] and [Har77, exercise C.5.7].

Theorem 3.41 ([Wei48]). Let C be an irreducible non-singular curve of genus g defined over Fq. Then

Z(C/Fq; T ) =
P1(T )

(1− T )(1− qT )
,

where

P1(T ) =
2g∏
j=1

(1− αjT ) ∈ Z[T ]

with |αj | =
√
q. Hence Hasse’s theorem generalizes to

|#C(Fqr )− qr − 1| ≤ 2g
√
qr.

Further, ∣∣∣# Pic0
Fqr (C)− qg

∣∣∣ = O
(
qg−

1
2

)
.
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3.3.2 Torsion Subgroups

A finite field Fqk contains the nth roots of unity if and only if xn − 1 | x(xq
k−1 − 1) and this holds if and

only if n | qk − 1. Note that this is only possible if n and q are coprime

Definition 3.42. Let Fq be a finite field and n a positive integer coprime to q. Then the embedding
degree corresponding to q and n is the smallest positive integer k = k(q, n) such that n | qk − 1. In other
words it is the smallest k such that µn(Fq) ⊆ Fqk .

Theorem 3.43. Let E be an elliptic curve over Fq and n and k positive integers such that E[n] ⊆ E(Fqk).
Then n | qk − 1.

Proof. This follows immediately from theorem 2.46.

Theorem 3.44 ([BK98]). Let E be an elliptic curve over Fq and ` a prime dividing #E(Fq). Suppose
that ` is coprime to q and does not divide q − 1. Then E[`] ⊆ E(Fqk) if and only if ` | (qk − 1).

Proof. Necessity is the preceding theorem. Suppose ` ≡ 1 (mod qk). Since ` is prime to q, E[`] ∼= (Z/`Z)2.
By assumption there exists a point P ∈ E(Fq) of order `. Let Q ∈ E(F̄q) be any point such P,Q is a basis
of E[`]. Further let φq be the qth-power Frobenius morphism on E. Since φkq generates Gal(F̄q/Fqk), the
point Q is defined over Fqk if and only if φkq (Q) = Q.

The action of φq on E[`] with respect to the basis P,Q is given by the matrix(
1 b
0 d

)
for some integers b and d. From theorem 3.37 we know that

q + 1−#E(Fq) = tr(φq) ≡ 1 + d (mod `).

Further #E(Fq) ≡ 0 (mod `), so q ≡ d (mod `). Thus the action of φkq on E[`] is given by(
1 b
0 q

)k
=

(
1 b q

k−1
q−1

0 qk

)
.

So φkq (Q) = Q if and only if this matrix is the identity matrix modulo `, i.e. qk ≡ 1 (mod `).

Corollary 3.45. Let E be an elliptic curve over Fq and ` be a prime dividing #E(Fq). Suppose that
` is coprime to q and does not divide q − 1. Then the Weil pairing is defined on E(Fqk) if and only if
µ`(Fq) ⊆ Fqk .

The Tate pairing maps into K∗/(K∗)n. For a finite field K = Fq which contains the nth roots of unity
this group is canonically isomorphic to µn(K) under the map

α mod (F∗q)n 7→ α
q−1
n .

Therefore we get the modified Tate(-Lichtenbaum) pairing

τ̃n : E(Fq)[n]× E(Fq)/nE(Fq)→ µn

τ̃n(P, Q̄) = τn(P, Q̄)
q−1
n = fP (DQ)

q−1
n . (3.7)

We conclude this section with a partial description of the group structure of elliptic curves over finite
fields.

Theorem 3.46. Let E be an elliptic curve over Fq. Then there exist non-negative integers n1, n2 with
n1 | gcd(n2, q − 1) such that

E(Fq) ∼= (Z/n1Z)⊕ (Z/n2Z).

(Possibly n1 = 1.)
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Proof. E(Fq) is a finite Abelian group, so, by the fundamental theorem on finitely generated Abelian groups,
there exist integers n1, n2, . . . , nr with ni|ni+1 (i = 1, . . . , r−1) and E ∼= (Z/n1Z)⊕(Z/n2Z)⊕· · ·⊕(Z/nrZ).
Without loss of generality we can assume that n1 > 1. Then E(Fq) has at least nr1 points of order n1, but
by theorem 2.38, #E(Fq)[n1] ≤ n2

1. Hence r ≤ 2. By adding Z/1Z summands we can assume that r = 2.

There are n2
1 elements of order n1 contained in (Z/n1Z) ⊕ (Z/n2Z), so again by theorem 2.38

E[n1] ⊆ E(Fq). With a look a theorem 3.43 we conclude that n1 | q − 1.

It is possible to give additional conditions that n1 and n2 have to satisfy, see [Vol88].

3.3.3 Supersingular Curves

Theorem 3.47. Let K = Fq, q = pn, and E/K be an elliptic curve. For r ≥ 1 let φr be the (pr)th-power
Frobenius morphism on E. Then the following statements are equivalent:

(i) E[pr] = 0 for one (all) r ≥ 1.
(ii) φ̂r is (purely) inseparable for one (all) r ≥ 1.

(iii) The map [p] : E → E is purely inseparable for all E.
(iv) trφn ≡ 0 (mod p).

Proof. For the equivalence of the first three statements see [Sil92, theorem V.3.1]. We will only show (ii)
⇔ (iv). Let φ = φn be the qth-power Frobenius. By theorem 2.55 we know that φ̂ = [trφ]− φ and thus
by theorem 2.32 φ̂ is inseparable if and only if p | trφ.

Definition 3.48. An elliptic curve which satisfies the equivalent properties given in the last theorem is
called supersingular. Otherwise it is ordinary. A supersingular curve is said to have Hasse invariant 0, an
ordinary curve has Hasse invariant 1.

Remark 3.49. There are several other equivalent characterizations for supersingularity. Some of them and
further references are given in [Sil92, sections V.3 and V.4] and [Hus04, chapter 13]. We should also note
that a supersingular curve is in particular an elliptic curve and hence non-singular (i.e. smooth) and that
one should not confuse these two notions.

Using [Wat69, theorem (4.1)] and [Sch87, lemma (4.8)] one can give the following classification of
supersingular elliptic curves:

Theorem 3.50. Let E/Fq, q = pe be a supersingular elliptic curve with #E(Fq) = q + 1− t. Then one
of the following holds:

(I) t = 0 and E(Fq) is cyclic.
(II) t = 0, E(Fq) = Z q+1

2
⊕ Z2.

(III) t2 = q and E(Fq) is cyclic.
(IV) t2 = 2q and E(Fq) is cyclic.
(V) t2 = 3q and E(Fq) is cyclic.

(VI) t2 = 4q and E(Fq) = Z√q±1 ⊕ Z√q±1.

Corollary 3.51 ([MOV93]). Let E/Fq be a supersingular elliptic curve and n the order of a subgroup of
E(Fq). Then there exists k ≤ 6 such that E[n] ⊆ E(Fqk), i.e. the maximal embedding degree is 6.

Proof. Since n | q + 1− t and p | t we know that gcd(n, q) = 1. Now one only has to check the six cases
above with theorem 3.44.

Two elliptic curves E, E′ are isogenous if and only Hom(E,E′) 6= 0. From [Sil92, corollary III.7.5] we
know that Hom(E,E′) is a free Z module of rank less or equal 4. Using the supersingularity property,
one can completely determine the rank.

Theorem 3.52. Let E, E′ be two isogenous elliptic curves. Then the rank of Hom(E,E′) is 2 if E is
ordinary and 4 if E is supersingular.

Proof. [Hus04, proposition 13.8.2]
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3.3.4 The Modular Polynomials

In section 6.2.1 we will need some theorems about the modular polynomials over finite fields which we are
going to collect in this section.

Theorem 3.53. Let E be a ordinary elliptic curve defined over K = Fq with j-invariant j 6= 0, 1728 and
let ` 6= charK be a prime. Let φq be the qth-power Frobenius endomorphism on E.

1. Let j′ ∈ F̄q be a root of Φ`(j, T ) ∈ Fq[T ]. Let C be the kernel of the corresponding isogeny E → E/C
of degree `. Then j′ ∈ Fqr if and only if C is a one dimensional eigenspace of φrq, i.e. if there exists
ν ∈ Z such that φrqP = νP for all P ∈ C.

2. The polynomial Φ`(j, T ) splits completely in Fqr if and only if φrq acts as a scalar matrix on E[`],
i.e. if there exists ν ∈ Z such that φrqP = νP for all P ∈ E[`].

Proof. [Sch95, proposition 6.1]

Theorem 3.54 (Atkin). Let E be a ordinary elliptic curve defined over Fq, q = pe with j-invariant
j 6= 0, 1728 and let ` 6= p be a prime. Further let t = trφq be the trace of the Frobenius morphism of E
over Fq. Write

Φ`(j, T ) = f1(T ) · · · fs(T )

for the factorization of Φ`(j, T ) in irreducible polynomials in Fq[T ]. Then there exists r such that the
degrees of the factors are one of the following:

(1) 1 and ` (in this case set r = `);
(2) 1, 1, r, r . . . , r;
(3) r, r, r . . . , r;

In the first case t2 − 4q ≡ 0 (mod `), in the second case t2 − 4q is a square mod ` and in the last one
t2 − 4q is not a square mod `. Further in the last two cases

t2 ≡
(
ζ + 2 + ζ−1

)
q (mod `),

where ζ is a primitive rth root of unity in F̄`.

Proof. Let (φq)` be the action of φq on E[`]. Let F (T ) = T 2 − tT + q be the characteristic polynomial
of φq. First suppose that it factors as F (T ) = (T − λ)(T − µ) (mod `) with two distinct roots λ, µ ∈ F`.
Then it is possible to find a basis of E[`] that diagonalizes (φq)`. Hence there exists a subgroup Cλ such
that φq(P ) = [λ]P for all P ∈ Cλ and an analogous subgroup Cµ. These are the only possible eigenspaces
of φq. By the last theorem there are exactly two corresponding j-invariants jλ, jµ ∈ Fq that are roots
of Φ`(j, T ). Let j′ ∈ Fq be another root of Φ`(j, T ) and let r be the smallest integer such that j′ ∈ Fqr .
Choose j′ such that r is minimal. Again by the last theorem there exists a subgroup C ′ of E[`] and an
integer ν such φrq acts on C ′ as multiplication by ν. Since j′ 6= jλ, jµ we have C ′ 6= Cλ, Cµ. Thus we have
three distinct eigenspaces of (φq)

r
` which is only possible if (φq)

r
` is scalar. Therefore by part (2) of the

preceding theorem, Φ`(j, T ) splits completely in Fqr . By the minimality of r no roots (except jλ and jµ)
can lie in a smaller field. So we have case (2). Further F (T ) factors mod ` if and only if the discriminant
t2 − 4q is a square in F`.

If F (T ) = (T − λ)2 (mod `) (i.e. t2 − 4q ≡ 0 (mod `)) then either (φq)` = λI or there exists some
basis of E[`] such that (φq)` =

(
λ 1
0 λ

)
. In the first case, theorem 3.53 (2) immediately implies that Φ`(j, T )

splits in linear factors over Fq. This is case r = 1 in (2). For the non-diagonal Jordan form case we have(
λ 1
0 λ

)k
=
(
λk kλk−1

0 λk

)k
,

which is non-diagonal for k < ` and diagonal for k = `. Therefore the smallest r such that (φq)
r
` has two

independent eigenvectors is r = `. The reasoning of the first part can again be applied and we see that
Φ`(j, T ) has an irreducible factor of degree `. This yields case (1).

Finally suppose that F (T ) is irreducible (i.e. t2 − 4q is not a square mod `). Then the two roots λ,
µ of F (T ) lie in Fq2 and are quadratic conjugates. The eigenvalues of (φq)

k
` are λk and µk. Let k be

the smallest integer such that λk ∈ F` (or equivalently µk ∈ F`). This is also the smallest k such that
(φq)

k
` has an eigenvalue. Hence Fpk is the smallest field containing a root of Φ`(j, T ). Since λk and µk are
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quadratic conjugates and lie in F` they are equal and (φq)
k
` is scalar. Therefore all irreducible factors of

Φ`(j, T ) have degree r = k.

In all cases, since (φq)
r
` is scalar, λr = µr = qr

λr . Hence λ2r = qr or λ2 = ζq for some rth root of unity
ζ ∈ F̄`. From t = λ+ µ (mod `) we get

t2 = (λ+
q

λ
)2 = λ2 + 2q +

q2

λ2
= q(ζ + 2 + ζ−1) (mod `).

If ζk = 1 for some k < r then λk = µk and (φq)
k
` is scalar. This contradicts the minimality of r.

Definition 3.55. Let E and ` be defined as in the last theorem. If one of the first two cases of the
theorem holds, then ` is called Elkies prime. In case (3), ` is called Atkin prime

3.4 Elliptic Curves over Local fields

3.4.1 A Short Review of the Theory of Local Fields

For reference briefly state the parts of the theory of local fields that we are going to use. Details and
proofs can, for example, be found in [Neu07] or [Ser79].

Definition 3.56. Let R be an integral domain. An absolute value on R is a function | · | : R→ R such
that for all x, y ∈ R:

1. |x| ≥ 0,
2. |x| = 0 if and only if x = 0,
3. |xy| = |x||y| and
4. |x+ y| ≤ |x|+ |y| (triangle inequality).

If instead of the triangle inequality the stronger condition |x + y| ≤ max {|x|, |y|} holds, then the
absolute value is called non-Archimedean. Otherwise it is called Archimedean. An absolute value is
non-Archimedean if and only if |n| is bounded for n ∈ Z. Every absolute value induces a topology on R
and two absolute values | · |1 and | · |2 are called equivalent if they induce the same topology. This is the
case if and only if there exists a constant s > 0 such that |x|1 = |x|s2 for all x ∈ R.

Definition 3.57. Let R be an integral domain. A valuation on R is a map v : R→ R ∪ {∞} such that
for all x, y ∈ R:

1. v(x) =∞ if and only if x = 0,
2. v(xy) = v(x) + v(y) and
3. v(x+ y) ≥ min{v(x) + v(y)}.

It is called discrete if its image is a discrete subgroup of R together with ∞. A discrete valuation is
normalized if v(R) = Z ∪ {∞}.

Some authors use the term valuation instead of absolute value and then call a valuation an exponential
valuation. For any non-Archimedean absolute value | · | one can define valuations by v(x) = − logb |x| for
any base b (and v(0) =∞).

For Q (and subrings) and a prime number p define the p-adic absolute value by |x|p = p−m where m
is chosen such that x = pma

b with p - ab. The corresponding p-adic valuation vp is defined by vp(x) = m.
The usual absolute value on Q is denoted by | · |∞.

Theorem 3.58 (Ostrowski). Any non-trivial absolute value on Q is equivalent to either | · |∞ or | · |p for
some prime number p.

Definition 3.59. A valuation ring is an integral domain R such that for every element x ∈ Quot(R) at
least one of x and x−1 belongs to R. A discrete valuation ring (DVR) is a local principal ideal domain
which is not a field.

Proposition 3.60. Every valuation ring is a local ring and is integrally closed in its field of fractions. If
it is a principal ideal domain, then it is either a field or a DVR.
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Proposition 3.61. Let R be an integral domain. Then the following conditions are equivalent:

1. R is a discrete valuation ring.
2. R is a local Dedekind domain but not a field.
3. R is a Noetherian local ring with Krull dimension one and a principal maximal ideal.
4. R is an integrally closed Noetherian local ring with Krull dimension one.
5. R is a unique factorization domain with a unique irreducible element (up to multiplication by units).
6. There exists a discrete valuation v on Quot(R) such that R = {x ∈ Quot(R) : v(x) ≥ 0}.

Let m be the maximal ideal of R and π a generator of m. Then every non-zero element x ∈ Quot(R) can
be uniquely written as x = επv(x) where ε ∈ R∗ and v(x) ∈ Z. Further v(x) defines a discrete valuation
on Quot(R). The element π is called a uniformizing parameter of R.

Definition and Proposition 3.62. Let K be any field with a valuation v : K → R and corresponding
absolute value | · |. Then

Ov = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1}

is the ring of integers or valuation ring of K. It is a valuation ring with units

O∗v = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1}

and maximal ideal
m = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1}.

The field k = Ov/m is called the residue field of Ov (or K). If v is discrete, then Ov is a DVR.

When the valuation is implicitly clear we will sometimes write OK for the valuation ring of K.

Proposition 3.63. Let K be a field with discrete valuation v. All non-trivial ideals of Ov are given by

mn = πnOv = {x ∈ K : v(x) ≥ n},

where π is a fixed uniformizing parameter of Ov and n runs through the positive integers. Further for
every n ∈ N,

mn/mn+1 ∼= Ov/m = k.

A discrete valuation v defines a metric on K by dv(x, y) = dv(x−y) for a fixed d ∈ (0, 1). For every
x ∈ K a basis of open neighborhoods of x is given by x + πnOv, n ∈ N. With this topology K is a
topological field which is called a discrete valuation field.

Definition 3.64. A Cauchy sequence in a discrete valuation field K is a Cauchy sequence with respect to
the metric defined above. K is complete when every Cauchy sequence is convergent. A complete discrete
valuation field with perfect residue field is called a local field.

Theorem 3.65. Local fields are locally compact. The ring of integers of a local field is compact.

Theorem 3.66. Local fields are exactly the finite extensions of Qp and Fp((t)).

In a complete discrete valuation field the power series
∑
n≥0 anx

n is convergent whenever all an ∈ Ov
and x ∈ m.

Theorem 3.67 (Hensel’s Lemma). Let K be a complete discrete valuation field and f(X) a polynomial
in Ov[X]. Let f̃(X) ∈ k[x] be the polynomial that arises from f(X) by reducing every coefficient modulo
m. Further let f̃(X) have a simple root α ∈ k. Then there exists a unique a ∈ Ov such that f(a) = 0 and
a ≡ α mod m. Further, a is the limit of the sequence

w0 = α wn+1 = wn −
f(wn)
f ′(wn)

, (3.8)

where f ′ is the formal derivative of f . This sequence has quadratic convergence.

This version of Hensel’s lemma can be heavily generalized, see [Eis95, section 7, especially the exercises]
and [Bou89, theorem IV.5.2 and corollaries]. We will give a short proof of the version presented here
because of its computational importance later on. Like its counterpart in real analysis the approximation
of the root using (3.8) is often called Newton’s iteration.
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Proof. We will show by induction on n that wn is well-defined and wn ≡ α (mod m). That α is a simple
root of f̃(x) is equivalent to f ′(α) 6≡ 0 (mod m). Assume that wn ≡ α (mod m). Then f(wn) ≡ f(α) ≡ 0
(mod m) and f ′(wn) ≡ f ′(α) 6≡ 0 (mod m). Thus wn+1 is well-defined and wn+1 ≡ wn ≡ α (mod m).

Now we will show that f(wn) ∈ m2n . For n = 0 this is the hypothesis of the theorem. Assume that
the statement holds for some n. By Taylor expansion we have

f(wn+1) = f(wn) + f ′(wn)(wn+1 − wn) + β(wn+1 − wn)2

for some β ∈ Ov. Using (3.8) and the induction hypothesis we obtain

f(wn+1) = β

(
f(wn)
f ′(wn)

)2

∈
(
m2n

)2

= m2n+1
.

In particular we see that wn+1−wn ∈ m2n . Since Ov is complete this implies that the limit a = limwn ∈ Ov
exists and F (a) = 0.

All that is left to show is uniqueness. Suppose b ∈ Ov is another root of f(x) with b ≡ α mod m.
Taylor expansion shows that there is an element γ ∈ Ov such that

f(x) = f(a) + f ′(a)(x− a) + γ(x− a)2.

Evaluating this at x = b yields

0 = f(b) = (b− a)(f ′(a) + γ(b− a)).

By assumption, a− b 6= 0. Hence,

f ′(a) = −γ(b− a) ≡ −γ(α− α) = 0 (mod m)

which is a contradiction to the assumption that f ′(a) 6≡ 0 (mod m).

Theorem 3.68. Let K be complete with respect to a discrete valuation v and let L|K be an algebraic
extension. Then there exists a unique discrete valuation w on L such that w|K = v. Further Ow is the
integral closure of Ov in L. If [L : K] = n <∞, then

w(α) =
1
n
v(NL|K(α))

and L is again complete.

Definition 3.69. Let L|K be a finite extension of complete discrete valuation fields with respective
valuations w and v and residue fields l and k. Then

e = e(w|v) = [w(L∗) : v(K∗)]

is their ramification index and
f = f(w|v) = [l : k]

their inertia or residue degree.

Theorem 3.70. With the notation of the definition, [L : K] ≥ ef . If L|K is separable, then [L : K] = ef .

Definition 3.71. Again with the same notation, if l|k is separable and e = 1, then the extension is
called unramified. The maximal unramified extension of K, denoted Kur, is the union of all unramified
extensions of K in K̄.

Theorem 3.72. Let K be a complete discrete valuation field with residue field k = Fq, q = pr, and ζ
a primitive nth root of unity in K̄ with gcd(n, p) = 1. Let L = K(ζ) and let l be the residue field of L.
Then:

1. The extension L|K is unramified and of degree f , where f is the smallest positive integer such that
qf ≡ 1 (mod n).

2. The Galois group Gal(L|K) is canonically isomorphic to Gal(l|k) which is generated by φq : x 7→ xq.
3. OL = OK [ζ].

Definition 3.73. Using the notation of the last theorem, if K = Qp and n = pf − 1 then [L : K] = f
and we write L = Qq with q = pf . The residue field l is Fq and φp ∈ Gal(Fq|Fp) is called Frobenius
automorphism (it is often denoted by σ̄). The unique automorphism Σ ∈ Gal(Qq|Qp) with φp ≡ Σ
(mod p) is called Frobenius substitution. The ring of integers of Qq is denoted Zq.

Note the Σ is not simply pth powering. For more info on p-adic numbers and extension fields, see
[Kob84].
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3.4.2 Formal Groups

In mathematics there are some objects which proved to be useful in a wide variety of areas. One of them
are (formal) power series. So it is not surprising they can be used to describe groups. More precisely the
idea is to abstract group laws from the underlying group to get a “group law without any group elements”
which is then described by a power series.

In this section let (R,m) be a local ring that is complete with respect to the topology induced by the
powers of the maximal ideal m. (Some of the following definitions and theorems make sense in a more
general setting. However we will only apply them to local fields.)

Definition 3.74. A (one-parameter, commutative) formal group F defined over R is a power series
F (X,Y ) ∈ RJX,Y K satisfying:

1. F (X,Y ) = X + Y + (terms of higher degree),
2. F (X,F (Y, Z)) = F (F (X,Y ), Z) (associativity),
3. F (X,Y ) = F (Y,X) (commutativity),
4. there exists a unique power series i(T ) ∈ RJT K such that F (T, i(T )) = 0 (existence of inverse),
5. F (X, 0) = X and F (0, Y ) = Y .

The series F (X,Y ) is called the formal group law of F .

Let (G, G) be another formal group defined over R. A homomorphism from F to G defined over R is a
power series f(T ) ∈ RJT K that has no constant term and satisfies

f(F (X,Y )) = G(f(X), f(Y )).

By abuse of notation we write f : F → G.

The formal groups F and G are isomorphic over R if there are homomorphisms f : F → G and
g : G → F (both defined over R) such that

f(g(T )) = g(f(T )) = T.

Definition 3.75. The formal additive group Ĝa is given by

F (X,Y ) = X + Y.

The formal multiplicative group Ĝm is given by

F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1.

Definition 3.76. Let (F , F ) be a formal group. The multiplication-by-m map on F is the homomorphism

[m] : F → F

defined inductively for m ∈ Z by [0](T ) = 0 and

[m+ 1](T ) = F ([m](T ), T ),

[m− 1](T ) = F ([m](T ), i(T )).

The following lemma about formal power series is well-know and easy to prove by induction (see [Sil92,
lemma IV.2.4]). So we will skip the proof and only state the result for reference.

Lemma 3.77. Let f ∈ RJT K be a power series starting with f(T ) = aT + · · · , where a ∈ R∗. Then there
exists a unique power series g(T ) ∈ RJT K such that f(g(T )) = T . Further, it satisfies g(f(T )) = T .

Proposition 3.78. Let F be a formal group over R and m ∈ Z. Then

[m](T ) = mT + (higher order terms).

Further if m ∈ R∗, then [m] : F → F is an isomorphism.

Proof. The first statement can be shown by a simple induction. (Note that because of 0 = F (T, i(T )) =
T + i(T ) + · · · , we have i(T ) = −T + · · · .) Then the second statement follows from the lemma above.
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Definition 3.79. Let (F , F ) be a formal group over R. Then the group associated to F , denoted F(m)
is the set m with the group operations

x⊕F y = F (x, y),

	Fx = i(x).

Similarly we can define F(mn). (Since R is complete, F (x, y) and i(x) converge to an element of m).

The definition of a formal group implies that F(mn) is indeed a group. Notice that Ĝa(m) is just m

with the usual addition and Ĝm(m) is isomorphic to the group of 1-units 1 + m.

Theorem 3.80. For n ≥ 1 the identity map on sets induces an isomorphism

F(mn)/F(mn+1)→ mn/mn+1.

Proof. Bijectivity is obvious since the sets are the same. Thus it is enough to show that the map is a
homomorphism. For x, y ∈ mn:

x⊕F y = F (x, y) = x+ y + · · · ≡ x+ y (mod mn+1).

We would like to have something like a formal logarithm which linearizes the formal group. It turns
out that there exists such an object, though we have to introduce another object first.

A differential form on a formal group F/R is just an expression P (T ) dT where P (T ) ∈ RJT K. We
are interested in differential forms that respect the group law:

Definition 3.81. An invariant differential on F/R is a differential form ω(T ) = P (T ) dT such that

w ◦ F (T, S) = ω(T ),

i.e. P (F (T, S))FX(T, S) = P (T ), where FX(X,Y ) is the formal partial derivate of F with respect to the
first variable. It is called normalized if P (0) = 1.

Theorem 3.82. Let F/R be a formal group. Then there exists a unique normalized invariant differential
ω on F/R. It is given by

ω = FX(0, T )−1 dT.

Further every invariant differential on F/R is of the form aω for some a ∈ R.

Proof. If P (T ) dT is an invariant differential, then by definition

P (F (T, S))FX(T, S) = P (T ).

Putting T = 0 gives (using F (0, S) = S)

P (S)FX(0, S) = P (0).

Since FX(0, S) = 1 + · · · , it is invertible in RJSK. Thus P (T ) is fully determined by P (0) and every
possible invariant differential has to be of the form aω with a ∈ R and ω as in the statement of the
theorem. Since ω is already normalized, we only have to show that it is invariant, i.e.

FX(0, F (T, S))−1FX(T, S) = FX(0, T )−1.

By differentiating the associative law F (U,F (T, S)) = F (F (U, T ), S) with respect to U we obtain

FX(U,F (T, S)) = FX(F (U, T ), S)FX(U, T ).

Setting U = 0 yields the desired result.

The unique normalized invariant differential on Ĝa is ω = dT . On Ĝm it is ω = (1 + T )−1 dT =
(1− T + T 2 − · · · ) dT .

By integrating ω we would like to get a homomorphism from F to Ĝa. Unfortunately, integrating Tn

gives Tn+1

n+1 which might not be well defined in R. So first of all we will have to restrict to char(R) = 0, so
that n+ 1 6= 0 for all n. However n+ 1 could still fail to be invertible in R. One possibility to proceed is
to go from R to R⊗Q. However we will restrict ourselves even further: For the rest of this section let K
be a local field of characteristic zero complete with respect to the normalized discrete valuation v and
R = Ov its ring of integers.



52 Elliptic Curves over Special Fields

Definition 3.83. Let ω = (1 +
∑
n≥1 cnT

n) dT be the normalized invariant differential of F/R (where
R is the ring of integers of a local field K). Then the formal logarithm of F/R is the power series

logF (T ) =
∫
ω = T +

∑
n≥1

cn
n+ 1

Tn+1 ∈ KJT K.

The unique power series expF (T ) ∈ KJT K with

logF ◦ expF (T ) = expF ◦ logF (T ) = T

is called the formal exponential of F/R. (It exists by lemma 3.77.)

The formal logarithm of Ĝm is given by

logbGm(T ) =
∫

dT
1 + T

=
∑
n≥1

(−1)n+1

n
Tn.

and the formal exponential by

expbGm(T ) =
∑
n≥1

1
n!
Tn.

So the names “logarithm” and “exponential” are indeed justified. (The “identity” is at T = 0, so in terms
of the usual series these series are log(1 + T ) and exp(T )− 1.)

Proposition 3.84. The formal exponential is given by a power series of the form

expF (T ) =
∑
n≥1

an
n!
Tn,

where an ∈ R and a1 = 1.

Proof. This is a direct consequence of [Sil92, lemma IV.5.4].

Theorem 3.85. The map logF : F → Ĝa is an isomorphism of formal groups over K.

Proof. The normalized invariant differential ω satisfies

ω(F (T, S)) = ω(T ).

Integrating with respect to T gives

logF F (T, S) = logF (T ) + f(S)

for some “constant of of integration” f(S) ∈ KJSK. Putting T = 0, we see that f(S) = logF (S), and
hence that logF is a homomorphism. Its inverse is expF , so it is an isomorphism.

Theorem 3.86. Let F/R be a formal group.

1. The formal logarithm of F induces a homomorphism

logF : F(m)→ K+.

2. Let p ∈ Z be a prime with v(p) > 0 and let r > v(p)
p−1 be an integer. Then the formal logarithm induces

an isomorphism
logF : F(mr)→ Ĝa(mr) = mr.
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Proof.

1. We only have to show that the function is well defined, i.e. that the power series defining logF (x)
converges for every x ∈ m. By definition we have

logF (T ) =
∑
n≥1

an
n
Tn with an ∈ R.

Let p ∈ Z be a prime with v(p) > 0. Since an ∈ R, we have for x ∈ m:

v(
an
n
xn) ≥ nv(x)− v(n) ≥ n− (logp n)v(p).

For n→∞ this tends to ∞ and therefore the power series converges.
2. It suffices to show that for x ∈ mr both logF and expF converge and lie in mr. In order to do this let

g(T ) =
∑
n≥1

bn
n!
Tn

be any power series with bn ∈ R and b1 ∈ R∗. We will show that if v(x) > v(p)
p−1 then the series

converges and v(g(x)) = v(x). Like above and using [Sil92, lemma IV.6.2] for the second estimation

v

(
bn
n!
xn
)
≥ nv(x)− v(n!) ≥ nv(x)− (n− 1)

v(p)
p− 1

≥ v(x) + (n− 1)
(
v(x)− v(p)

p− 1

)
.

For n→∞ this tends to infinity, so the series converges. Further for n ≥ 2 the estimate gives

v

(
bn
n!
xn
)
> v(x).

Hence the leading term determines v(g(x)).

Having worked through the general theory we can start to apply it to elliptic curves. We will try to
capture the elliptic curve E and its group law “close to O” in a power series. Since O is outside our usual
affine subset of the curve, we need to choose another affine piece. Since O = [0 : 1 : 0] it is natural to
make the following change of coordinates:

z = −x
y

w = −1
y
.

This takes O to (z, w) = (0, 0). Now z has a zero of order 1 at O and hence is a local uniformizer. The
usual Weierstraß equation 2.3 of E is transformed to

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 = f(z, w).

We want to expand w as a power series in z, so we resubstitute f(z, w) for w in the equation to get
w = f(z, f(z, w)) and iterate the process. More formally we define recursively

f1(z, w) = f(z, w) and fn+1(z, w) = f(z, fn(z, w))

and look at the limit
w(z) = lim

n→∞
fn(z, 0)

in Z[a1, a2, a3, a4, a6]JzK, provided it makes sense. (This idea is not unique to elliptic curves, see [Sha94a,
section II.2.2] for the theoretical background.)

Theorem 3.87. The procedure just described gives a power series

w(z) = z3(1 +A1z +A2z
2 + · · · ) ∈ Z[a1, a2, a3, a4, a6]JzK.

Further w(z) is the unique power series satisfying w(z) = f(z, w(z)).

Proof. See [Sil92, proposition IV.1.1].
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We can use this to get Laurent series for x, y and the invariant differential ω with coefficients in
Z[a1, a2, a3, a4, a6]:

x(z) =
z

w(z)
=

1
z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 + · · ·

y(z) =
−1
w(z)

= − 1
z3

+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z + · · ·

ω(z) =
(
1 + a1z + (a2

1 + a2)z2 + (a3
1 + 2a1a2 + 2a3)z3 + · · ·

)
dz

By construction, (x(z), y(z)) is still a solution to the Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If K is a local field and all ai are in R = Ov, then these Laurent series converge for every z ∈ m. Hence
we get a map

m→ E(K)
z 7→ (x(y), y(z))

(3.9)

which is injective (its inverse is z = −xy ).

Now that we obtained an expansion of the curve around O we take a closer look at the group law.
We will emulate the calculations done in section 2.1 and apply the group law in the (z, w)-plane. Let
wi = w(zi). Then the slope of the line connecting (z1, w1) and (z2, w2) is

λ = λ(z1, z2) =
w2 − w1

z2 − z1
=
∞∑
n=3

An−3
zn2 − zn1
z2 − z1

∈ Z[a1, a2, a3, a4, a6]Jz1, z2K.

Set ν = ν(z1, z2) = w1 − λz1 ∈ Z[a1, a2, a3, a4, a6]Jz1, z2K, so that the line connecting the two points is
given by w = λz + ν. Substituting this into the Weierstrass equation yields a cubic in z of which we know
the two roots z1 and z2. Using Viète’s formulas we see that the third root z3 can be expressed as

z3 = z3(z1, z2) = −z1 − z2 +
a1λ+ a3λ

2 − a2ν − 2a4λν − 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
∈ Z[a1, a2, a3, a4, a6]Jz1, z2K.

For the group law on E we must have (z1, w1)⊕ (z2, w2)⊕ (z3, w3) = O, so in order to add the first two
we must take the inverse of (z3, w3). In the (x, y)-plane inverses are given by (x,−y − a1x− a3), so the
inverse of (z, w) has z-coordinate

i(z) = − x(z)
−y(z)− a1x(z)− a3

∈ Z[a1, a2, a3, a4, a6]JzK.

Finally we can write the formal group law

F (z1, z2) = i(z3(z1, z2)) = z1 + z2 + a1z1z2 + · · · ∈ Z[a1, a2, a3, a4, a6]Jz1, z2K.

From the corresponding properties of the elliptic curve group law we see that F (z1, z2) is indeed a formal
group law:

Definition 3.88. Let E be an elliptic curve given by a Weierstraß equation with coefficients in R. The
power series we have just described gives the formal group associated to E over R. It is denoted by Ê.

The above expansion of the invariant differential of E gives the unique normalized invariant differential
of Ê. As we have already seen (3.9), we have an injective homomorphism Ê(m) → E(K) given by
z 7→ (x(z), y(z)). This map will play an important role in the next section.

3.4.3 Reduction mod π

We can now finally study elliptic curves over a local field K. In the general theory one breaks up the “big”
elliptic curve E(K) into “smaller” parts, one of them being an elliptic curve over the residue field. Then
one studies the individual parts and hopes to learn something about the whole curve. We will however
use the theory in the opposite way: Starting from an elliptic curve Ẽ over the (finite) residue field k of K
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we will go up to an elliptic curve E over K and use this new curve to derive information about Ẽ. The
advantage of working over K is that it will have characteristic 0 and that we can attach the formal group
Ê where we can do calculations. Therefore this chapter contains only parts of the theory of elliptic curves
over local fields. The remaining pieces can be found in any standard reference about elliptic curves like
[Sil92] or [Hus04].

Again let K be a local field that is complete with respect to a valuation v with ring of integers R = Ov.
Further let m = πR be the maximal ideal of R with uniformizing parameter π and k = R/m the residue
field of K. As usual, E denotes an elliptic curve over K.

Let P = [x0 : x1 : · · · : xn] ∈ Pn(K). When we multiply every coordinate with the common
denominator, we get a representation of P where all coordinates are in R. We can assume that at least
one of the coordinates is in R∗. Then we can reduce every coordinate separately modulo m to get a
well-defined point P̃ = [x̃0 : x̃1 : · · · : x̃n] ∈ Pn(k). Hence we have a reduction map

·̃ : Pn(K)→ Pn(k).

This map is also called reduction modulo π and we will sometimes also denote it by π. We could try to
apply this to the points of E. However the result depends on the particular embedding of E in P3(K),
i.e. its Weierstrass equation.

If a1, · · · , a6 are the coefficients of a Weierstraß equation of E and u their common denominator, the
change of coordinates (x, y) 7→ (u−2x, u−3y) will result in a Weierstraß equation where all coefficients are
in R. Hence the transformed discriminant ∆ satisfies v(∆) ≥ 0. Since v is discrete we can look for an
equation of E defined over R where v(∆) is as small as possible.

Definition 3.89. A Weierstraß equation of E/K is called a minimal Weierstraß equation for E if v(∆)
is minimal under the condition a1, a2, a3, a4, a6 ∈ R. In this case ∆ is the minimal discriminant of E.

Theorem 3.90.

1. Every elliptic curve E/K has a minimal Weierstraß equation. It is unique up to a change of
coordinates

x = u2x′ + r y = u3y′ + u2sx′ + t

with u ∈ R∗ and r, s, t ∈ R.
2. The invariant differential

ω =
dx

2y + a1x+ a3

associated to a minimal Weierstraß equation is unique up to multiplication with an element of R∗.

Proof. The existence has already been discussed. The uniqueness properties can be deduced by explicitly
calculating how the Weierstraß coefficients change under a change of coordinates, see [Sil92, proposition
VI.1.3b].

Proposition 3.91. If charK 6= 2, 3 then a Weierstraß equation of E is minimal if and only if all ai ∈ R
and v(c4) < 4 or v(c6) < 6.

Definition 3.92. Let E/K have minimal Weierstraß equation

E : y3 + a1yx+ a3y = x3 + a2x
2 + a4x+ a6.

Then the (possibly singular) curve Ẽ/k given by

Ẽ : y3 + ã1yx+ ã3y = x3 + ã2x
2 + ã4x+ ã6

is called the reduction of E modulo π and E is called a lift of Ẽ to K.

By theorem 3.90 the reduced equation is unique up to a standard change of coordinates for Weierstraß
equations over k and hence the curve Ẽ is well defined as an abstract curve. Further from the reduction
map on P2(K) we get a reduction map E(K)→ Ẽ(k). The curve Ẽ might be non-singular or not, but in
any case the set Ẽns(k) of nonsingular points forms a group.
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Definition 3.93.

1. If Ẽ is non-singular, then E has good (or stable) reduction.
2. If Ẽ has a node, then E has multiplicative (or semi-stable) reduction.
3. If Ẽ has a cusp, then E has additive (or unstable) reduction.

Theorem 3.94. Let E/K be an elliptic curve, ∆ its minimal discriminant and c4 the usual combination
of the ais (2.4) of a minimal Weierstraß equation of E.

1. E has good reduction if and only if v(∆) = 0 (i.e. ∆̃ 6= 0). In this case Ẽ/k is an elliptic curve.
2. E has multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0. In this case Ẽns(k̄) ∼= k̄∗.
3. E has additive reduction if and only if v(∆) > 0 and v(c4) > 0. In this case Ẽns(k̄) ∼= k̄+.

Proof. This follows directly from the general theorems and conditions in section 2.1.

Definition 3.95. The filtration of E(K) with respect to v is given by the sets

En(K) = {P ∈ E(K) : v(x(P )) ≤ −2n}

for n ≥ 1 and
E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)}.

Lemma 3.96. The set E0(K) is a subgroup of E(K) and the reduction map π|E0(K)
: E0(K)→ Ẽns(k) is

a homomorphism.

Proof. The reduction map takes lines into lines and maps [0 : 1 : 0] ∈ P2(K) to [0 : 1 : 0] ∈ P2(k). Hence
it is compatible with the elliptic curve group law.

Lemma 3.97. E1(K) = {P ∈ E(K) : P̃ = Õ} = kerπ|E0(K)
. In particular E1(K) is a subgroup of

E0(K).

Proof. If (x, y) ∈ {P ∈ E(K) : P̃ = Õ}, then (x, y) reduces modulo π to the point at infinity on Ẽ(k).
Hence v(x) < 0 or v(y) < 0. But from the Weierstraß equation y2 + · · · = x3 + · · · we have

2v(y) = 3v(x).

Thus they must both be negative and v(y) = 3
2v(x) a whole number, i.e. v(x) ≤ −2.

The other inclusion follows by the same argument.

Theorem 3.98. The reduction map induces an exact sequence

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0.

Proof. By the lemmata we only have to show that the reduction map is surjective. Let f(x, y) = 0 be
a minimal Weierstraß equation of E, f̃(x, y) = 0 the corresponding reduced equation and choose any
point P̃ = (α, β) ∈ Ẽns(k). Assume that ∂ ef

∂x (P̃ ) 6= 0 (the case ∂ ef
∂y (P̃ ) 6= 0 is analogous). Let y0 ∈ R be

any lift of β, i.e. ỹ0 = β. When reduced modulo π the equation f(x, y0) = 0 has the simple root α since
∂ ef
∂x (α, ỹ0) 6= 0. Thus by Hensel’s lemma 3.67 α can be lifted to x0 ∈ R such that f(x0, y0) = 0. Hence the
point P = (x0, y0) ∈ E0(K) reduces to P̃ .

Theorem 3.99. Let E/K be given by a minimal Weierstraß equation. Then the sets En(K) (n ≥ 1) are
groups and the maps

ϑn : Ê(mn)→ En(K)

z 7→
(

z

w(z)
,− 1

w(z)

)
(and z = 0 7→ O) are isomorphisms.
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Proof. First we will show that the maps are well-defined and bijective. We already know that ϑn
is well-defined and injective as a map to E(K) and has inverse (x, y) 7→ −xy on the image. Since

w(z) = z3(1+ · · · ) ∈ RJzK we have v(x(ϑn(z))) = −2v(z) ≤ −2n and hence ϑn(Ê(mn)) ⊆ En(K). Further
for (x, y) ∈ En(K) we know from the proof of lemma 3.97 that 3v(x) = 2v(y) = −6r with r ≥ n. Thus
v(−xy ) = −2r + 3r ≥ n and −xy ∈ mn. Therefore the map is surjective.

The set E1(K) is a group and ϑ1 is a homomorphism. For all n > 1 the sets Ê(mn) are subgroups
of Ê(m) and the maps ϑn are just the restrictions of ϑ1. Because they are homomorphisms as maps to
E1(K) the sets En(K) must be closed under the group operations.

Corollary 3.100. For n ≥ 1 there is an exact sequence

0→ En+1(K)→ En(K)→ k+ → 0.

Proof. By the last theorem and 3.80 there are isomorphisms

En(K)/En+1(K) ∼= Ê(mn)/Ê(mn+1) ∼= mn/mn+1 ∼= R/m = k+.

The whole situation is summarized in the following commutative diagram (note that the maps marked
id are not homomorphisms, only the factor groups are homomorphic).

· · · // E3(K) // E2(K) // E1(K) // E0(K) mod π// // Ẽns(k)

· · · // Ê(m3) //

∼=

OO

Ê(m2) //

∼=

OO

Ê(m)

∼=

OO

· · · // m3 //

id

OO

m2 //

id

OO

m // //

id

OO

k+

3.4.4 The Canonical Lift

Assume that we are given an elliptic curve E/Fq. Then we can easily lift it to a curve E over Qq. However,
there are many possible lifts of E and in the last section we have only seen how one can canonically reduce
a curve. First we state what we would expect from a canonical lift:

Definition 3.101. The canonical lift of an elliptic curve E/Fq is an elliptic curve E/Qq that satisfies:

1. E is a lift of E;
2. End(E) ∼= End(E) as a ring.

Theorem 3.102 ([Deu41]). The canonical lift of an ordinary elliptic curve always exists and is unique
up to isomorphism.

Theorem 3.103 ([Mes72]). Let E1, E2 be ordinary elliptic curves over Fq and E1, E2 their respective
canonical lifts. Then

Hom(E1, E2) ∼= Hom(E1, E2).

A consequence of this is that the Frobenius lifts:

Corollary 3.104. Let E/Fq be an elliptic curve and φp : E → E(p) the pth-power Frobenius morphism.
Then the Frobenius substitution Σ of Qq induces an isogeny Σ: E → E(p) of the corresponding canonical
lifts.

Lubin, Serre and Tate showed how one can explicitly compute the canonical lift by solving a system
of equations (e.g. with Newton iteration). Note that from the knowledge of J = j(E) it is easy to get a
Weierstraß equation: Set A = 3J

1728−J and B = 2J
1728−J , then an equation for E is y2 = x3 +Ax+B.
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Theorem 3.105 ([LST64]). Let E/Fq, q = pe, have j-invariant j(E) /∈ Fp2 (in particular E is ordinary).
Let Σ be the Frobenius substitution of Qq and Φp(x, y) the pth modular polynomial. Then the system of
equations

Φp(x,Σ(x)) = 0
x ≡ j(E) (mod p)

(3.10)

has a unique solution J ∈ Zq, which is the j-invariant of the canonical lift E of E.

Proof. Let φp : E → E(p) be the pth-power Frobenius morphism and let Σ: E → E(p) be its canonical lift.
Then Σ(j(E)) is the j-invariant of E(p) and thus by theorem 3.33, Φp(J,Σ(J)) = 0. By the definition of a
lift, J ∈ Zq.

We will now show uniqueness of the solution. Using the Kronecker relation 3.34 we see that for any
solution J of (3.10),

∂

∂X
Φ(J,Σ(J)) ≡ j(E)p − j(E)p = 0 (mod p), (3.11)

∂

∂Y
Φ(J,Σ(J)) ≡ j(E)− j(E)p

2
6= 0 (mod p) (3.12)

Here we use that j(E) /∈ Fp2 . Let J1, J2 be two different solutions. By Taylor expansion at (J1,Σ(J1))
there exist α, β ∈ Zq such that

0 = Φ(J2,Σ(J2)) = (J2 − J1)
(

∂

∂X
Φ (J1,Σ (J1)) + α (J2 − J1)

)
+

(Σ (J2)− Σ (J1))
(
∂

∂Y
Φ (J1,Σ (J1)) + β (Σ (J2)− Σ (J1))

)
(3.13)

We have J2 − J1 ∈ pZq. Write J2 − J1 = γpn such that γ ∈ Z∗q . Then Σ(J2 − J1) = Σ(γpn) = γ′pn for
some γ′ ∈ Z∗q . Therefore from (3.13),

0 = pn
(
γ
∂

∂X
Φ(J1,Σ(J1)) + γ′

∂

∂Y
Φ(J1,Σ(J1)) + δpn

)
for some δ ∈ Zq. Now pn 6= 0, so the expression in the parenthesis has to vanish. Using (3.11) we deduce

0 = γ
∂

∂X
Φ(J1,Σ(J1)) + γ′

∂

∂Y
Φ(J1,Σ(J1)) + δpn ≡ γ′ ∂

∂Y
Φ(J1,Σ(J1)) (mod p)

which is a contradiction to (3.12).



Chapter 4

More on Elliptic Divisibility
Sequences and Elliptic Nets

In section 3.2.1 we already introduced elliptic divisibility sequence on our way to the definition of the
division polynomials for elliptic curves. Besides being interesting on their own (see for example [EvSW03])
they will turn out to have several connections with the elliptic curve discrete logarithm problem. In
the present chapter we will study them more closely by first generalizing them to elliptic nets and then
specializing to a certain class of sequences and nets.

4.1 Elliptic Nets

Following Stange [Sta07a] we will now generalize elliptic divisibility sequences to higher dimensions.

Definition 4.1. Let A be a finitely generated free Abelian group, R an integral domain and n an integer.
An elliptic net is any map W : A→ R that satisfies the following recurrence for all p, q, r, s ∈ A:

W (p+ q + s)W (p− q)W (r + s)W (r)
+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 (4.1)

and such that W (0) = 01. The rank of A is also called the rank of the elliptic net W . An elliptic net of
rank one is called a generalized elliptic sequence.

We begin our study of elliptic nets with some simple properties.

Lemma 4.2. Let W : A→ R be an elliptic net. Then W (−z) = −W (z) for all z ∈ A.

Proof. If W (z) = W (−z) = 0 then we are already done. If W (z) 6= 0, set p = q = z, r = s = 0 so that
(4.1) reduces to 0 + W (z)4 + W (z)3W (−z) = 0, i.e. W (z) = −W (−z). If W (−z) 6= 0, set p = q = −z,
r = s = 0 to get the same result.

Lemma 4.3. A generalized elliptic sequence W : Z→ R with W (1) = ±1 is an elliptic sequence.

Proof. Let s = 0, r = 1, p = m and q = n to get the EDS recurrence relation.

Lemma 4.4. Let W : A→ R be an elliptic net and B ≤ A a subgroup. Then the restriction W |B of W
to B is also an elliptic net. It is called a subnet of W .

Like in the case of EDS we can get elliptic nets from elliptic curves. First we take a look at the complex
case:

1Stange does not demand that W (0) = 0. Instead she proves that this is always the case. Unfortunately her proof does
not work for char(R) = 3.

59
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Definition 4.5. Let Λ ⊆ C be a lattice. For v = (v1, . . . , vn) ∈ Zn define a function Ωv on Cn in variables
z = (z1, . . . , zn) by

Ωv(z; Λ) =
σ(v1z1 + · · ·+ vnzn; Λ)

n∏
i=1

σ(zi; Λ)2v2i−
Pn
j=1 vivj

∏
1≤i<j≤n

σ(zi + zj ; Λ)vivj

(and Ω0 ≡ 0).

In particular for n = 1 this definition agrees with the ψn(z; Λ) of 3.24. In rank 2 these functions are of
the following form:

Ωm,n(z, w; Λ) =
σ(mz + nw; Λ)

σ(z; Λ)m2−mnσ(z + w; Λ)mnσ(w; Λ)n2−mn

Like in the rank one case one shows

Theorem 4.6. The functions Ωv are elliptic functions with respect to Λ in each variable.

The following two useful statements can be checked by direct calculations using the theory of elliptic
functions we developed in section 3.1.

Theorem 4.7. The divisor of Ψv as a function of z1 is n∑
j=2

[
−vj
v1

]
zj

− n∑
j=2

v1vj(−zj)−

v2
1 −

n∑
j=2

v1vj

 (0).

Theorem 4.8. Let v ∈ Zm and z ∈ Cn. Further let T ∈ Zn×n with transpose TT . Then

Ωv(TT (z); Λ) =
ΩT (v)(z; Λ)

n∏
i=1

ΩT (ei)(z; Λ)2v2i−
Pn
j=1 vivj

∏
1≤i<j≤n

ΩT (ei+ej)(z; Λ)vivj
,

where the ei are the standard basis of Zm.

Theorem 4.9 ([Sta07a, theorem 4.5]). Let E/C be an elliptic curve with associated lattice Λ ⊆ C.
Further choose points P1, . . . , Pn on E and let z1, . . . , zn be the associated points in C. Define a function
W : Zn → C by

W (v) = Ωv(z1, . . . , zn; Λ).

Then W is an elliptic net.

We would like to get something equivalent to the division polynomials ψn and indeed it is possible to
define net polynomials. Unfortunately, the proof uses some more advanced parts of algebraic geometry
than we introduced in chapter 1. It also relies on some complicated nested inductions for a recursive
definition of the polynomials. Therefore we have to skip the proof and can only state the resulting theorem.

Theorem 4.10 ([Sta07a, theorem 6.1]). Let E be an elliptic curve defined over K by

f(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x− α6.

Let n > 0 be an integer. For all v ∈ Zn there are functions Ψv : En → K in the ring

Z[α1, α2, α3, α4, α6][xi, yi]ni=1[(xi − xj)−1]1≤i<j≤n/〈f(xi, yi)〉ni=1 ⊆ K(En)

such that

1. W (v) = Ψv is an elliptic net.
2. Ψv = 1 whenever v = ei for some 1 ≤ i ≤ n or v = ei − ej for some 1 ≤ i < j ≤ n.
3. Ψv vanishes at P = (P1, . . . , Pn) ∈ En if and only if v · P = O on E (and v is not one of the vectors

specified in 2).
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In the case of rank one, the Ψv agree with the division polynomials. Like there the following definition
is natural:

Definition 4.11. Let E be an elliptic curve over K and choose non-zero points P1, . . . , Pn ∈ E such that
no two are equal or inverses. Then the map

WE,P1,...,Pn :

{
Zn → K

v 7→ Ψv(P1, . . . , Pn)

is the elliptic net associated to E and P1, . . . , Pn.

Definition 4.12. Let W : Zn → K be an elliptic net associated to a curve. Then by theorem 4.10 (3)
the zeros of W form a sublattice of Zn. It is called the lattice of zero-apparition.

Finally we can translate theorem 4.8 to elliptic nets.

Theorem 4.13. Let v ∈ Zm and P ∈ En. Further let T ∈ Zn×n. Then

WE,TT (P)(v) =
WE,P(T (v))

n∏
i=1

WE,P(T (ei))2v2i−
Pn
j=1 vivj

∏
1≤i<j≤n

WE,P(T (ei + ej))vivj
,

4.2 Perfectly Periodic Sequences and Nets

Definition 4.14. An EDS is called perfectly periodic if it is periodic with respect to its rank of zero-
apparition. Similarly, an elliptic net is perfectly periodic if it is periodic with respect to its lattice of
zero-apparition.

Definition 4.15. A function f : A→ B between two Abelian groups A and B is a quadratic function if
the function b : A×A→ B defined by b(x, y) = f(x+y)−f(x)−f(y) is bilinear. If f is also homogeneous
of degree two with respect to multiplication by integers, it is called a quadratic form.

By symmetry, b is bilinear in the first coordinate if and only if it is bilinear in the second one. So the
condition above is equivalent to b(x, y+ z) = b(x, y) + b(x, z) for all x, y, z ∈ A. Applying the definition of
b to this equation we immediately get the following alternative definition of quadratic functions:

Lemma 4.16. A function f : A→ B is quadratic if and only if for all x, y, z ∈ A,

f(x+ y + z)− f(x+ y)− f(y + z)− f(z + x) + f(x) + f(y) + f(z) = 0. (4.2)

Lemma 4.17. If f : A→ B is a quadratic form, then

1. f(0) = 0;
2. f(x) = f(−x) for all x ∈ A and
3. f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ A ( parallelogram law).

Proof. Let x = y = z = 0 in equation (4.2) to obtain f(0) = 0. Since f is homogeneous of degree 2,
f(−x) = (−1)2f(x) = f(x). Now use the original definition of quadratic functions to get

f(x+ y) + f(x− y) = b(x, y) + f(x) + f(y) + b(x,−y) + f(x) + f(−y) = 2f(x) + 2f(y).

Theorem 4.18. Let W : A→ K be an elliptic net and f : A→ K∗ a quadratic form. Then W ′ : A→ K
with W ′(v) = f(v)W (v) is also an elliptic net.

Proof. We use the parallelogram law and equation (4.2) to get (written multiplicatively in K∗)

f(p+ q + s)f(p− q)f(r + s)f(r) = f(q + s)f(p+ s)f(r + s)f(p)f(q)f(q)f(s)−1,

where the right hand side is symmetric in p, q, r. Hence

f(p+ q + s)f(p− q)f(r + s)f(r) = f(q + r + s)f(q − r)f(p+ s)f(p) = f(r + p+ s)f(r − p)f(q + s)f(q).

Therefore multiplication with f does not change the validity of the elliptic net recurrence.



62 More on Elliptic Divisibility Sequences and Elliptic Nets

Definition 4.19. Two elliptic nets W and W ′ of rank n defined over K are called equivalent if there
exists k ∈ K∗ and a quadratic form f : A→ K∗ with W ′(v) = kf(v)W (v) for all v ∈ A.

Surprisingly many elliptic nets in a finite field have an equivalent elliptic net that is perfectly periodic.

Theorem 4.20 ([LS08]). Let K = Fq and E an elliptic curve defined over K. For all points P ∈ E(K)
of order relatively prime to q − 1 and greater than 3 define

Φ(P ) =
(

WE,P (q − 1)
WE,P (q − 1 + ord(P ))

) 1
ord(P )2

. (4.3)

Let P ∈ E(K)n be a collection of non-zero points of a single subgroup of E(K) having prime order greater
than 3 and relatively prime to q − 1 such that no two points are equal or inverses. Then Φ(v · P) forms a
perfectly periodic elliptic net equivalent to WE,P(v). Specifically,

Φ(v · P) = WE,P(v)
n∏
i=1

Φ(Pi)2v2i−
Pn
j=1 vivj

∏
1≤i<j≤n

Φ(Pi + Pj)vivj .

In particular, if P is a point of prime order greater than 3 and relatively prime to q − 1 then Φ([n]P ) is a
perfectly periodic EDS equivalent to WE,P (n) with

Φ([n]P ) = Φ(P )n
2
WE,P (n).

Proof. We will first prove the EDS case and then indicate how to proceed in the general case without
explicitly calculating every single step.

In theorem 4.13 take T = (l):

WE,[l]P (n)WE,P (l)n
2

= WE,P (nl).

By symmetry,
WE,[n]P (l)WE,P (n)l

2
= WE,P (nl).

Let m = ord(P ). We combine the two formulas, isolate WE,[l]P (n) and use this with l = q − 1 and
l = q − 1 +m:

WE,[n]P (q − 1)WE,P (n)(q−1)2

WE,P (q − 1)n2 = WE,[q−1]P (n) =

= WE,[q−1+m]P (n) =
WE,[n]P (q − 1 +m)WE,P (n)(q−1+m)2

WE,P (q − 1 +m)n2

We are working in F∗q , so WE,P (n)q−1 = 1. Thus rearranging yields

Φ([n]P ) = Φ(P )n
2
WE,P (n).

Hence by theorem 4.18, Φ([n]P ) is an EDS. By definition, Φ([n]P ) has period ord(P ) witch is equal to
the rank of zero-apparition of WE,P and Φ([n]P ).

In the case of elliptic nets of rank n let m be the order of the subgroup containing all points of P. We
will again use theorem 4.13: first with T = ( v1 v2 ··· vn )T for

WE,P(lv) = WE,v·P(l)WE,P(v)l
2
,

and then with T = l Idn for

WE,P(lv) = WE,lP(v)
n∏
i=1

WE,P(lei)2v2i−
Pn
j=1 vivj

∏
1≤i<j≤n

WE,P(lei + lej)vivj .

Using WE,P(lei) = WE,Pi(l) and WE,P(lei + lej) = WE,Pi+Pj (l) and combining the two equations above,
we have

WE,lP(v) =
WE,v·P(l)WE,P(v)l

2

n∏
i=1

WE,Pi(l)
2v2i−

Pn
j=1 vivj

∏
1≤i<j≤n

WE,Pi+Pj (l)
vivj

.

Like in the rank one case we set l = q − 1 and l = q − 1 +m and compare the two resulting equations to
get the required result. We can easily check that the multiplicative factor is indeed a quadratic form.
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In light of the preceding theorem we define

Definition 4.21. Let E be an elliptic curve defined over K = Fq and P ∈ E(K) of prime order m ≥ 3
with gcd(m, q − 1) = 1. Then

W̃E,P (n) = Φ([n]P )

is the perfectly periodic elliptic divisibility sequence associated to E and P .

The most important property of W̃E,P is that by formula (4.3) we can calculate W̃E,P (n) as a function
of the point [n]P without knowledge of n. We will exploit this property in section 7.6.
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Chapter 5

Elliptic Curve Cryptography

So far we only considered the abstract theory of elliptic curves. Although we discussed some topics that
do not normally appear in an introduction to elliptic curves, nothing directly related to cryptography.
Yet the title of this thesis is “Mathematical Foundations of Elliptic Curve Cryptography”. The previous
chapters covered the mathematical foundations, so we will now have a look at the “cryptography” part.

Elliptic curve cryptography (ECC) was invented independently by Koblitz [Kob87] and Miller [Mil86b]
in 1985. The groundwork for this simultaneous invention was laid by Schoof in the same year when he
first described an efficient algorithm for counting the number of rational points on an elliptic curve defined
over a finite field (see section 6.2.1). Another inspiration was the recent use of elliptic curves in Lenstra’s
Elliptic Curve Method (ECM) integer factorization algorithm [Len87].

The basic idea of ECC is simple: take any cryptographic algorithm that is defined over an arbitrary
(cyclic) group and use it on the group of rational points of an elliptic curve over a finite field (or a cyclic
subgroup of these points). Before 1985 these algorithms had only been applied on the multiplication groups
of finite fields. However, advances in solving the discrete logarithm problem in finite fields (especially index
calculus methods, see section 7.2.1) drastically reduced the security of these cryptography schemes. At
the same time the security of the RSA method was gradually reduced, for example by Lenstra’s ECM or a
bit later by index calculus methods (algorithms for finite field discrete logarithm and integer factorization
are often closely related). To provide high security the size of the underlying field had to be increased.
The caused problem when computational resources were restricted, for example in smart cards. ECC
promised to require lower field sizes for the same strength of encryption. Nevertheless there was severe
opposition to the use of ECC. Many cryptographers thought that the elliptic curve discrete logarithm
problem, on which ECC relies, had not been adequately examined to be used in for security. Also RSA
had a very strong market position and for many people was synonymous with public key cryptography.
Therefore it took several years before ECC was widely accepted. A detailed account of the history of
ECC is given by Koblitz et al. in [KKM08].

For RSA it is currently recommended to use a key length of at least 2048 bits. This corresponds to an
effective security of about 175 bits, i.e. using the best known method (the general number field sieve) it
will take about 2175 operations to break the cipher. Using ECC on a suitably chosen curve one only needs
a 350-bit ground field to obtain comparable security. The suite B published by NSA in 2005 recommends
a 384-bit elliptic curve for the protection of top secrete information [NSA].

5.1 Basic Principles

The elliptic curve discrete logarithm problem (ECDLP) is the following problem: given two Fq-rational
points P and Q on an elliptic curve over Fq with Q ∈ 〈P 〉, find an integer h such that Q = [h]P . For
general elliptic curves there are no known algorithms that are able to solve this problem in less than
O(
√
q) steps. Note that this is exponential in log2 q, i.e., in the number of bits needed for representing a

point of E. We will analyze the ECDLP in more depth in chapter 7. Most ECC schemes are based on the
following problem:

Definition 5.1 (Elliptic Curve Diffie-Hellman Problem (EC-DHP)). Given the points P , [n]P and [m]P
of an elliptic curve, determine [nm]P .
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Obviously, if one can efficiently solve the ECDLP, then the EC-DHP is easy. The other direction is
less obvious and in fact has not been proven in general. However, for some groups orders it can be shown
that the DLP can be solved with a polynomial amount of calls to a DHP solving algorithm so that in
these cases the two problems are computationally equivalent [MW96]. It is interesting that elliptic curves
play a crucial part of the proof even for general abstract cyclic groups. For the EC-DHP the situation has
been analyzed in depth in [MSV04].

Before one can apply any ECC scheme, the participants have to agree upon a some common values,
called domain parameters. In principle it would be possible that everybody separately chooses domain
parameters and makes them available as part of their public key. However it is more practical to agree on
common parameters. The parameters necessary for almost all ECC schemes are the following:

1. The size q of a finite field Fq and a representation of that field.
2. An elliptic curve E/Fq.
3. A base point P ∈ E(Fq) such that the index of 〈P 〉 in E(Fq) is small (preferably 1).

Typically one chooses q = 2e or q prime. There are several constraints on the elliptic curve E and the
order n of the subgroup generated by P . Let n be the order of P .

1. The order n should be prime or at least divisible by a large prime (to avoid Pohlig-Hellman reduction
7.1.1).

2. The embedding degree k(q, n) (see 3.42) should not be too small (to avoid pairing based attacks
7.3). In particular E should not be supersingular.

3. If q = pe, then n should not be divisible by p (to avoid anomalous curve attacks 7.4).
4. If q = pe with e 6= 1, then e should be prime (to avoid Weil decent attacks 7.5).

There are two approaches to choosing domain parameters: Either one tries to construct a curve that
satisfies the above constraints and has as few additional properties that might be used for future attacks
as possible; or one generates random curves until the constraints are met and hopes that the randomness
thwarts any attacks in the future. Both approaches have advantages ans disadvantages. See [KKM08,
section 11] for some discussion of the approaches. The books [HMV04] and [CF06] include further
discussion relating to the generation of domain parameters.

Typically ECC schemes transmit points of the elliptic curve. To keep bandwidth usage low one should
consider to use point compression. Since there are at most two points with any given x-coordinate, it is
sufficient to transmit the x-coordinates of points together with a bit that indicates which y-coordinate to
choose. Note that calculating square roots in finite fields can be done reasonably fast (see [CF06, chapter
11]).

All forms of elliptic curve cryptography are based around the principle of asymmetric encryption;
different keys are used for en- and decryption.

Definition 5.2 (ECC key pair). The private key for ECC schemes is a randomly chosen integer d ∈ [1, n−1]
and the public key is Q = [n]P .

While users typically publish their public key on a publicly accessible place (like a key server) they
must under all circumstances keep their private key secret. All asymmetric schemes are based on the fact
that only the user who generated the key knows the private key. It is important to note that in most
cryptographic schemes when the private key is compromised all past messages can easily be decrypted by
a third party. Protocols where this is impossible are said to provide forward secrecy.

Another problem is to verify that a public key does indeed belong to the correct person. Otherwise a
man-in-the-middle attack is trivial. The usual way to verify this is via a trusted third party known as
certificate authority (CA) [MvV97, chapter 13] or key exchange in person.

We will use the archetypal Alice and Bob for the two communicating parties and Mallory for the
attacker.

5.2 Key Exchange

The aim of key exchange protocols is to establish a shared key for subsequent communication using a
symmetric key cipher. The first key exchange protocol was the Diffie-Hellman key exchange over prime
fields. Since it can be formulated for any cyclic group, it can also be used on cyclic subgroups of elliptic
curves and gives the Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol we will now describe.
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First the two communicating create key pairs (QA, dA) and (QB , dB). Alice computes KA = [dA]QB
and Bob computes KB = [dB ]QA. Then

KA = [dA][dB ]P = [dB ][dA]P = KB

and the common key is the image of KA under a predefined map 〈P 〉 → Z. For example if the curve is
defined over Fp, one can just take the x-coordinate of KA.

Diffie-Hellman protocols should never be used on their own, because they are susceptible to man-in-the-
middle attacks. Key exchange protocols are typically used on a per-session basis, hence the authenticity
of the keys has not been previously established. Mallory could trick Alice into thinking that she is Bob
and Bob into believing that she is Alice (for example by intercepting the traffic between them). She could
then individually create shared keys with both Alice and Bob. Any message sent between Alice an Bob
can be intercepted by Mallory, decrypted and then encrypted with the other shared key. Thus Mallory
has access to the full communication while being completely transparent to the senders.

One way to remove the possibility of a man-in-the-middle attack on DH is to use preauthenticated key
pairs. However, this would result in the same symmetric key for every communication session and it is a
bad cryptographic practice to reuse the same key multiple times. However, there are several ways to use
preauthenticated key pairs together with a new random number on every key exchange. One possible way
is to use standard ECDH (with new keys for every key exchange) and sign the transmitted keys using the
already known authentic keys. We will discuss signature schemes later on. One variant of this approach is
the Station-To-Station (STS) protocol [HMV04, section 4.6.1]. However the one most widely used key
exchange protocol is ECMQV (Elliptic Curve Menezes-Qu-Vanstone) which we will describe next.

Suppose that the authenticity of the key pairs (QA, dA) and (QB , dB) is already known to the
communicating parties. For key exchange both parties create a new key (Q′A, d

′
A) and (Q′B , d

′
B) respectively

and exchange Q′A and Q′B . In order to provide forward security it is important that d′A and d′B are new
random numbers for every key exchange. The shared key is then derived by the following algorithm:

Algorithm 5.3 (MQV key generation). Suppose we are Alice. Then QA, Q
′
A, QB , Q

′
B , dA and d′A are

known. Further let n = ordP be the group size and let l = d(blog2 nc+ 1)/2e.
1. Convert Q′A to an integer i.
2. Put sA = (i mod 2l) + 2l.
3. Convert Q′B to an integer j.
4. Put tA = (j mod 2l) + 2l.
5. Put hA = d′A + sAdA.
6. Return K = [hA](Q′B + [tA]QB).

Bob’s algorithm works by interchanging A and B in the subscripts.

Note that Bob has sB = tA and sA = tB . Therefore

K = [hA](Q′B +[sB ]QB) = [d′A+sAdA]([d′B ]P +[sB ][dB ]P ) = [d′Ad
′
B +sAdAd

′
B +sBdBd

′
A+sAsBdAdB ]P,

which is symmetric in A and B. Thus Alice and Bob arrive at the same key. Also the key can only be
calculated correctly when the respective private keys are known. Therefore the knowledge of the correct
key serves as implicit authentication. A complete description of the full procedure including all necessary
communication is given in [HMV04, section 4.6.2]. Recently a possible weakness of the MQV protocol
has been found and fixed in [Kra05]. However, the validity of the arguments in this paper and of the
underlying security model has been challenged [Men07].

5.3 Message Encryption

While we have just seen that the Diffie-Hellman and MQV protocols can easily be applied on elliptic curves,
ElGamal cannot. The main problem is that there exists no canonical map Z → 〈P 〉 with computable
inverse. Therefore a variant called ECIES (Elliptic Curve Integrated Encryption Scheme) is often used for
message encryption. With ECIES a form of Diffie-Hellman is used to create a key which is then used to
encrypt the message using a symmetric cipher (e.g. AES). Additionally a second key is derived and used
for message authentication. This guards against chosen-ciphertext attacks.
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ECIES needs three “subschemes”, called cryptographic primitives:

• A key derivation function (KDF) with accepts points of the underlying curve as input and returns
a pair of keys used for the symmetric encryption and message authentication. KDFs are usually
constructed using a hash function.

• A symmetric cipher. We write ENCk and DECk for encryption and decryption using the key k.

• A message authentication code (MAC) algorithm such as HMAC. It accepts a key and a message as
input and returns a hash code depending on both the key and the message.

We can now describe the ECIES procedure:

Algorithm 5.4 (ECIES encryption). Let m be the message and Q be the public key of the receiver. The
following algorithm is used to generate the ciphertext for ECIES.

1. Choose a random integer r ∈ [1, n− 1] (where n is the group size).
2. Put R = [r]P and Z = [r]Q. If Z = O then return to step 1.
3. Compute (k1, k2) = KDF (Z).
4. Compute c = ENCk1(m) and t = MACk2(c).
5. Return (R, c, t).

Algorithm 5.5 (ECIES decryption). Let (R, c, t) be an encrypted message and let d be the private key
of the receiver. The following algorithm returns the plain text m or rejects the message if it cannot be
authenticated.

1. If R is no valid element of 〈P 〉, reject the message.
2. Compute Z = [d]R. If Z = O, reject the message.
3. Put (k1, k2) = KDF (Z).
4. If t 6= MACk2(c), reject the message.
5. Return DECk1(c).

Because of Z = [r]Q = [r][d]P = [d][r]P = [d]R, both parties generate the same key, so ECIES does
indeed work.

5.4 Signatures

A signature scheme is used to verify that a message does indeed originate from the specified sender
and that is was not altered during transmission. We will describe the Elliptic Curve Digital Signature
Algorithm (ECDSA). Like every signature scheme, ECDSA consists of two algorithms: one for signature
generation and one for signature verification. Let H be a cryptographic hash function (that is collision
and preimage resistant). Further the base point P must have prime order n.

Algorithm 5.6 (ECDSA signature generation). Let m be the message to sign and let d be the private
key of the sender.

1. Choose a random k ∈ [1, n− 1].
2. Convert [k]P into an integer x.
3. Compute r = x mod n. If r = 0, return to 1.
4. Compute e = H(m).
5. Compute s = k−1(e+ dr) mod n. If s = 0, return to 1.
6. Return (r, s).

Algorithm 5.7 (ECDSA signature verfication). Let m be a message with signature (r, s) and let Q be
the public key of the sender.

1. If r or s is not in [1, n− 1], reject the signature.
2. Compute e = H(m).
3. Compute u1 = es−1 mod n and u2 = rs−1 mod n.
4. Compute X = [u1]P + [u2]Q.
5. If X = O, reject the signature.
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6. Convert X to an integer x (in the same way as in the signature generation algorithm) and compute
v = x mod n.

7. If v = r, accept the signature, otherwise reject it.

The algorithm works because

k ≡ s−1(e+ dr) ≡ s−1e+ s−1dr ≡ u1 + u2d (mod n)

and thus
X = [u1]P + [u2]Q = [u1 + u2d]P = [k]P.

5.5 Related Cryptography Schemes

Looking for groups which might provide even better security Koblitz suggested to apply cryptographic
algorithms in the Jacobian of a hyperelliptic curve [Kob89]. As we have seen in section 2.6, it is possible
to efficiently do computations in this group. Since the genus of a curve can be interpreted as a measure for
its “complexity”, he reasoned that hyperelliptic curve cryptosystems might provide even better security
than ECC. Unfortunately it turned out that the opposite is true. The discrete logarithm problem for
hyperelliptic curves can be solved faster with growing genus (cf. section 7.2.2). As he writes in in [KKM08,
p. 9]:

Isn’t it reasonable to assume that a problem would be at least as hard to solve on a more
complicated object (a g-dimensional Jacobian) as on a relatively simple object?

That way of thinking was a “rookie mistake” for a cryptographer to make, because [Koblitz] was
confusing two meanings of “complexity”: conceptual complexity and computational complexity.

The only case where hyperelliptic curves might provide better security than elliptic curves is the case
of genus 2.

Slightly related to ECC is pairing-based cryptography. Here the Weil and Tate pairings are used for
cryptographic applications (note that we will also use them, but in a less constructive way by showing
that certain instances of the ECDLP are not secure). One problem that can be solved by pairing-based
techniques is identity-based cryptography, where the public key of a user is just a unique piece information
about that user (e.g. the email address). A discussion of pairing-bases cryptography schemes is beyond
the scope of this document. For details see [BSS05, chapter X].
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Chapter 6

Computational Aspects

Elliptic curve cryptography depends on the fact that one can efficiently calculate in the group of points of
an elliptic curve. It also depends on the existence of fast algorithms to count the number of Fq-rational
points of a given curve. In the present chapter we take a look at the computational problems that arise in
connection with ECC and present algorithms to solve them. We will also study some algorithms which
will used in the various attacks on ECC in the next chapter.

6.1 Elliptic Curve Arithmetic

The basic operation on elliptic curves is of course point addition. Using the formulas of section 2.1 we see
that adding two points takes a fixed amount of multiplications, inversions and additions in the ground
field. How many operations are exactly necessary depends on the equation of the curve. Usually field
inversions are much slower than multiplications while additions are so fast that they can be ignored in
time estimates. Also multiplication with a (small) integer can normally be done fast. Therefore one would
like to do point addition with as few inversions as possible.

In the addition formulas there are only two places where an inversion in necessary: when calculating
the slope λ and the y-intercept ν of the line through the points. The denominators of both are the same,
so we need to do only one inversion. However there is a trick to save even this one inversion at the cost of
a few multiplications and additional storage requirements. Instead of using the standard affine coordinates
to specify a point we use weighted projective or Jacobian coordinates : a triplet [X : Y : Z] corresponds to
the affine point ( XZ2 ,

Y
Z3 ). The motivation for this are of course the multiplication formulas of theorem

3.27. For point addition in characteristic p ≥ 3 we take Z3 = Z1Z2(X2Z
2
1 − X1Z

2
2 ). Multiplying the

addition formulas for x and y by Z2
3 resp. Z3

3 we see that all denominators vanish. Similarly one can find
good choices for Z3 for point doubling and characteristic 2, see [BSS99] for details.

We will refer to one point addition on an elliptic curve as one group operation. For most algorithms
which we will discuss in this and the next section we will give the running time in the number of group
operations. We have just seen that group operations need a fixed amount (actually less than 16) ground
field multiplications. With a naive implementation of the ground field multiplication this means O((log q)2)
basic operations (where q is the size of the ground field). With fast multiplication we can reduce this
to O((log q)1+ε) for any ε > 0, but the constant in the O-notation will grow quite fast ([Knu97, section
4.3.3]). Which implementation is the fastest depends on the characteristic and size of the ground field.
For a detailed discussion see [CF06]. When not mentioned otherwise we will assume naive, i.e. O((log q)2),
implementation of ground field multiplication.

We should also note that for calculating [k]P one needs at most 2 log2(k) group operations using a
standard double-and-add algorithm ([Knu97, section 4.6.3]). Since inversion of points on elliptic curve
(i.e. computing −P ) is very easy one can improve on the standard algorithm by using an “addition-and-
subtraction”-chain ([BSS99, section 4.2.4]). Of course one can often exploit any additional structure of
the elliptic curve, for example when it is defined over a subfield.

Similar considerations also hold true for group operations in the Picard group of a hyperelliptic curve,
see [BSS05, chapter VII].
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6.2 Determining the Group Order

One of the domain parameters in elliptic curve cryptography is the size of the group E(Fq). ECC is
only practical if one is able to compute it fairly quickly for large q. There is of course a naive way to
point counting: Run through all possible x ∈ Fq and count how many ys there are that fulfill the curve
equation (the only possibilities are 0, 1 ore 2). For a Weierstrass equation y2 = x3 +Ax+B this amounts
to checking the quadratic residuosity of x3 +Ax+B. Even if we have access to a precomputed lookup
table for determining residuosity, this approach needs O(q) time. Hence it is not practical.

If for a point P there is exactly one number m ∈ [q+ 1− 2
√
q, q+ 1− 2

√
q] such that [m]P = O, then

by Hasse’s theorem (3.40) m is the group order. J. F. Mestre has shown how one can always find a point
with this property. Then, in order to find m, one can apply any (general purpose) discrete logarithm
algorithm. Historically it was first suggested to use the baby-step-giant-step algorithm. Therefore the
resulting point counting algorithm is often called Shanks-Mestre algorithm. A complete description can
be found in [Sch95]. Though this approach is much faster than the naive one, it still has exponential
running time.

The breakthrough in point counting came in 1985, when Schoof published an algorithm with polynomial
running time [Sch85]. He uses an `-adic approach by determining the group order modulo several (small)
primes ` and then combining this knowledge with the Chinese remainder theorem. In 2000, Satoh [Sat00]
suggested a p-adic algorithm which lifts the curve to the local field Qq and uses the lift to determine the
trace of the Frobenius (and thus the group order).

Before describing the approaches in more detail, it should be noted that in the case of subfield curves ,
i.e. curves over Fpm with coefficients in a subfield Fpn , one only needs to determine #E(Fpn) and apply
the Weil conjectures 3.39.

6.2.1 Schoof’s Algorithm and Improvements

We will begin by giving a short description of Schoof’s original algorithm. Afterwards we will discuss how
ideas of Elkies and Atkin can be used to speed it up. Let E/Fq be defined by the Weierstrass equation
f(x, y) = 0.

In order to determine the group order of E(Fq), it is sufficient to know the trace of the qth-power
Frobenius φq. Let S be a set of primes not equal to p = char Fq with

∏
`∈S ` > 4

√
q. We will compute

t` = trφq (mod `) for all ` ∈ S. By the Chinese remainder theorem and Hasse’s theorem this is enough
to fully determine t = trφq. For a positive integer x, the product of all primes smaller than log x is of
order x [HW60, theorems 420 and 6]. Therefore by the prime number theorem [HW60, theorem 6], we
know that we can take |S| = O(log q/ log log q) primes of size at most O(log q).

The case ` = 2 is trivial, since #E(Fq) is even if and only if it contains a point of order two. Assume
f(x, y) = y2 − x3 − Ax− B. Then points of order two can only have the form (e, 0) for some root e of
x3 +Ax+B and such a root exists if and only if gcd(x3 +Ax+B, xq − x) 6= 1.

From now on assume that ` > 2. Let P ∈ E[`] and q` ≡ q (mod `), where the representative with
least absolute value is taken. Then the characteristic polynomial 2.54 of φq gives

φ2
q(P ) + [q`]P = [t`]φq(P ). (6.1)

If P 6= O, there is exactly one t` (mod `) for which this equation holds. The idea is to calculate the left
hand side of the equation and then find a value τ such that [τ ]φq(P ) is equal to it. The only problem is
that we do not know how to find a point P ∈ E[`] ∩E(Fq). Thus we have to modify this approach a bit.

Let ψ` be the `th division polynomial of E as defined in 3.27. Then P ∈ E[`] if and only if ψ`(P ) = 0.
When we set P = (x, y) in (6.1), the relation becomes

(xq
2
, yq

2
) + [q`](x, y) ≡ [t`](xq, yq) mod 〈f(x, y), ψ`(x, y)〉.

All we have to do is check for which t` the above equality of polynomials is true modulo f and ψ` (note
that the addition above is addition on the elliptic curve). The modulus ψ` is of degree O(`2), so every
operation in the ring Fq[x, y]/〈f(x, y), ψ`(x, y)〉 takes O((`2)2) = O(log4 q) operations in Fq. Thus we need
O
(
log4 q · log2 q

)
bit operations for every curve addition. Further, calculating the left side takes O(log q)



6.2. Determining the Group Order 73

curve operations while the right side take O(log t`) = O(log log q) curve operations, but O(`) = O(log q)
times. Since |S| = O(log q/ log log q) this gives an overall complexity of O(log8 q).

The procedure just described is not exactly how one would implement Schoof’s algorithm. At the cost
of some additional considerations and special cases one only needs to check half the possible t` but this
does not change the asymptotic behavior. For details see [Was08, section 4.5] and [BSS99, section VII.1].

The most time consuming part of Schoof’s algorithm is the computations modulo ψ` which is a
polynomial of degree `2−1

2 . It would be nice to be able to do calculations modulo a polynomial of smaller
degree and indeed with ideas of Elkies and Atkin this is possible. The resulting algorithm is often called
SEA algorithm after the names of its inventors. Since the exact calculations and formulas are rather
tedious we will only give a short overview of the ideas. A full discussion is given in [BSS99]. The algorithm
does not work for supersingular curves (but in this case point counting is trivial) or if the j-invariant
of E is 0 or 1728 (in this case see [Sch95] for alternatives). So we will assume that E is ordinary and
j(E) 6= 0, 1728.

The first part is to decide whether ` is an Elkies or an Atkin prime (see definition 3.55). This is
possible by using 3.54 and simply checking how many zeros Φ`(j, T ) has in Fq. The number of zeros is
equal to the degree of

gcd(T q − T, Φ`(j, T )).

Suppose first that ` is an Atkin prime. We compute

gcd(T q
i

− T, Φ`(j, T )).

for i = 1, 2, . . . until it is equal to Φ`(j, T ). This number i must be equal to r of theorem 3.54. Of course
it is not necessary to compute the gcd for all i since the theorem states that r divides `+ 1. Further, if
q = p is an odd prime then Schoof proved that

(−1)
`+1
r =

(p
`

)
,

where
(
p
`

)
is the Legendre symbol [Sch95, proposition 6.3]. Having determined r, the last statement

of theorem 3.54 at least halves the possible t (mod `): Since r divides ` + 1, there are ϕ(r) ≤ `+1
2

primitive rth roots of unity in F̄`. So there are at most `+1
4 values for t2 (mod `) (here ϕ is the Euler

function). Atkin then combines this with the information gained from Elkies primes (see below) and uses
a baby-step-giant-step algorithm to obtain the exact value of the trace.

Now let ` be an Elkies prime. By theorem 3.53, φq has at least one eigenspace C ⊆ E[`] with eigenvalue
λ ∈ F`. Let F` be a polynomial that vanishes exactly at the points in C. Then F` is a divisor of ψ` of
degree `−1

2 . It is obtained by clever use of the modular polynomial and isogenies, see the discussion in
[BSS99] or [Sch95]. Since t ≡ λ+ q

λ (mod `) we only have to find λ. Hence we simply check for which
λ′ = 1, . . . , `− 1 we have

φq(x, y) = (xq, yq) ≡ [λ′](x, y) mod 〈f(x, y), F`(x, y)〉.

The degree of F` is O(`) compared with O(`2) for ψ`. Hence the running time of this step is O(log5 q)
instead of O(log7 q) in the original algorithm.

The biggest problem in the SEA algorithm is that the coefficients of the modular polynomials grow
quite fast. In practice one tries to replace them with polynomials with similar splitting properties but
smaller coefficients. The basic idea is to find different models for the modular curve X0(`). One such
family of polynomials is given in [Mül95].

6.2.2 p-adic Algorithms

We will give a short overview of Satoh’s p-adic algorithm for point counting. This algorithm is fast for
elliptic curves over Fpn where p is a small prime. Let µ be a constant such that the multiplication of
two m-bit integers can be computed in O(mµ) time (i.e. 2 for naive multiplication and 1 + ε for fast
multiplication). For fixed p, the algorithm has time complexity O(n2µ+1), instead of O(n2µ+2) of the
SEA-algorithm. However with growing p the O-constant grows a lot faster for Satoh’s algorithm.
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First a bit of notation. Let E1, E2 be elliptic curves defined over the same field and φ : E1 → E2 an
isogeny. Further let τ1 and τ2 be the uniformizing element −xy of E1 resp. E2 at O. Then there is an
expansion

φ∗(τ2) = c1τ1 + c2τ
2
1 + · · · .

We call c1 the leading coefficient of φ and denote it by lc(φ). If φ is separable, then by 2.28 and the
definition of the ramification index (1.33), c1 6= 0.

Let E be an elliptic curve over Fq, q = pn. We will assume that j(E) /∈ Fp2 (in particular E is not
supersingular). If j(E) ∈ Fp2 , then E is isomorphic to a curve E′ defined over Fp2 . Hence we just count
#E′(Fp2) and apply the Weil conjectures. Let φq be the qth-power Frobenius endomorphism of E and
φp the pth-power Frobenius automorphism of Fq and by abuse of notation also every isogeny it induces.
Further let E be the canonical lift of E to Qq and F be the lift of φq. We want to compute trφq = trF .
Since Qq has characteristic 0 it would be possible to directly compute trF , but computationally this
approach is too expensive because degF is q. On the other hand deg φp = p which is assumed to be small
and φq is equal to the n-fold iteration of φp. Let Σ be the Frobenius substitution of Qq. Put E0 = E and
Ei+1 = φp(Ei). Then φq and its lift F can be decomposed in the following way:

E0
Σ0 //

π

��

E1
Σ1 //

π

��

· · ·
Σn−2 //

π

��

En−1
Σn−1 //

π

��

E0
π

��
E0

φp // E1

φp // · · ·
φp // En−1

φp // E0

(6.2)

So instead of lifting E, we will lift the cycle (E0, E1, . . . , En−1). There is one additional problem: φq is
inseparable. However this can be easily circumvented by using its dual isogeny φ̂q which has the same trace
and determinant as φq and is separable since E is ordinary. We can use the same decomposition (with the
arrows pointing the other way) and the dual isogenies φ̂p and Σ̂i which are often called Verschiebung .
The characteristic equation

F̂2 − tr(F̂)F̂ + q = 0

implies
lc(F̂)2 − tr(F̂) lc(F̂) + q = 0.

From the observation above we know that π(lc(F̂)) = lc(φ̂q) 6= 0 and hence lc(F̂) ∈ Z∗p. Therefore,

tr(φq) = tr(F) = tr(F̂) = lc(F̂) +
q

lc(F̂)
≡ lc(F̂) (mod pZq).

Thus it is sufficient to know lc(F̂) with sufficiently high precision. From the diagram (6.2) we see that

lc(F̂) =
n−1∏
i=0

lc(Σ̂i). (6.3)

The Frobenius substitution Σ generates Gal(Qq|Qp), so the squares are all conjugates and we get for all
i ∈ {0, . . . , n− 1},

lc(F̂) = NQq|Qp(lc(Σ̂i)). (6.4)

We can use (6.3) or (6.4) to calculate the group order. Note that though with (6.4) we only need to lift
one of the squares of (6.2), norm computation is also not easy.

Now we are in a good position to give an outline of Satoh’s algorithm:

(1) Compute the j-invariants of E0 and E1 (and from this equations for the curves, according to 2.8).
(2) Compute c = lc(Σ̂0).
(3) Compute NQq|Qp(c)

All computation have to be done with sufficiently high precision so that we can deduce the trace t of
which we know that |t| < 2

√
q.

Step (1) can be done with theorem 3.105 and Newton iteration. Norm computation is nothing special
to elliptic curves so we will not discuss it here (see for example [BSS05, section VI.5]). Of course one can
also completely ignore it and use (6.3) instead. See also Vercauteren’s improvement of Satoh’s algorithm
[VPV01]. There are several improvements of these parts of Satoh’s algorithm, see [BSS05, section VI.4].
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We will now give a short overview of step (2). Assume that we know ker Σ̂0. Using Vélu’s formulas we
can explicitly calculate a Weierstraß equation of E ′ = E1/ ker Σ̂0 and the isogeny u : E1 → E ′. We see that
lc(u) = 1. Further by theorem 2.30 and comparison of degrees there exists an isomorphism λ making the
following diagram commutative:

E1
bΣ0 //

u
  @

@@
@@

@@
E

E ′
λ

??��������

Using that isomorphisms for Weierstraß forms have very specific forms one can easily calculate lc(λ) =
lc(Σ̂0). Therefore the only problem is to calculate ker Σ̂0. This is done using a modified version of Hensel’s
lemma to compute the polynomial1

H(x) =
∑

P∈(ker bΣ0\{O})/±
(X − x(P )).

See [BSS05, section VI.2.5] for details.

The AGM Algorithm

We will discuss a different p-adic algorithm by Harley and Mestre for the case p = 2. Again we will only
give a high level overview and refer to [BSS05, section VI.3] and [Sat02] for details. We should note that
the algorithm is covered by a US patent.

Let a0 ≥ b0 > 0 be two real numbers and define two sequences ai, bi by

(ai+1, bi+1) =M(ai, bi) =
(
ai + bi

2
,
√
aibi

)
.

One can easily show that both sequences converge to the same number called the arithmetic-geometric
mean (AGM) of a0, b0. The AGM is closely related to elliptic curves, see for example [Sil92, exercise 6.14]
and [BB87]. Let q = 2n and a, b ∈ 1 + 4Zq ⊆ Qq with a

b ∈ 1 + 8Zq. Then

(a′, b′) =M(a, b) =
(
a+ b

2
, b

√
a

b

)
is well defined and a′, b′ ∈ 1 + 4Zq with a′

b′ ∈ 1 + 8Zq. For a, b with these properties define

Ea,b : y2 = x(x− a)(x− b).

Then Ea,b and EM(a,b) are 2-isogenous. There exists a lift of E/Fq of the form Ea,b. Define two sequences
ai, bi by (a0, b0) = (a, b) and (ai+1, bi+1) =M(ai, bi). In general these sequences do not converge. However
if E is the canonical lift of E, then j(Eani,bni) converges to j(E):

j(Eai,bi) ≡ Σi(j(E)) (mod 2i+1).

Hence this gives an alternative method for step (1) of Satoh’s algorithm. Also the AGM provides a very
efficient way for computing the trace of the Frobenius. See the references given above for explicit formulas.

6.3 Calculating Values of EDS and Elliptic Nets

Before we can apply elliptic divisibility sequences and nets to solving the elliptic curve discrete logarithm
problem we need to figure out how to calculate their values. Let W be an EDS and assume W (1) = 1. In
(4.1) we let p = i− 1, q = i, r = 1 and s = 0 to obtain

W (2i− 1) = W (i+ 1)W (i− 1)3 −W (i− 2)W (i)3. (6.5)

1Actually, this approach only works for p ≥ 3. For p = 2 one has to use a different method to obtain ker bΣ0. Also note

that
˛̨̨
ker bΣ0

˛̨̨
= p is very small.
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Further, with p = i+ 1, q = i− 1, r = 1 and s = 0,

W (2i) =
W (i)W (i+ 2)W (i− 1)2 −W (i)W (i− 2)W (i+ 1)2

W (2)
. (6.6)

Actually these two formulas are used to prove theorem 3.23.

Theorem 6.1. Let W = WE,P be the EDS associated to an elliptic curve E over Fq and point P ∈ E(Fq)
of order at least 4. Then it is possible to calculate W (k) in O((log k)(log q)2) time.

Proof. Let 〈W (i)〉 be the block centered at i consisting of the 8 values W (i − 3), . . . , W (i + 4). Using
formulas (6.5) and (6.6) it is possible to calculate the blocks centered at 2i and 2i+ 1 using only the values
of the block centered at i. The amount of Fq multiplications and divisions needed for this is independent of
i. The block centered on 0 can be calculated as in definition 3.26. Therefore we can use a double-and-add
algorithm to calculate the block centered at k and hence the value of W (k).

Additional discussion and refinements can be found in [Shi00].

Calculating the values of an elliptic net is by far more difficult because the recurrence relations one
needs quickly become complicated. However, the only computational application of elliptic nets will be in
corollary 6.6 and there we will only need W (k, 0) and W (k, 1). For a general discussion about calculating
terms of elliptic nets see [Sta07a].

Theorem 6.2. Let W = WE,P,Q be the elliptic net associated to an elliptic curve E over Fq and points
P,Q ∈ E(Fq). Then it is possible to calculate W (k, 0) and W (k, 1) in O((log k)(log q)2) time.

Proof. The algorithm we will use is very similar to the one of the last theorem. Now a block centered at
k consists of the values W (k − 3, 0), . . . ,W (k + 4, 0) together with W (k − 1, 1), W (k, 1) and W (k + 1, 1).
Calculating the W (·, 0)-values of the block centered at 2k or 2k+ 1 can again be done using equations (6.5)
and (6.6). For the other three values we need the following formulas obtained form (4.1) using (p, q, r, s) =
((k, 0), (k − 1, 0), (1, 0), (0, 1)), ((k + 1, 0), (k, 0), (1, 0), (−1, 1)), ((k + 1, 0), (k, 0), (−1, 0), (0, 1)) and
((k + 2, 0), (k, 1), (1, 0), (0, 0)) respectively.

W (2k − 1, 1) =
W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2 −W (k, 0)W (k − 2, 0)W (k, 1)2

W (1, 1)
,

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2 −W (k − 1, 0)W (k + 1, 0)W (k, 1)2,

W (2k + 1, 1) =
W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2 −W (k, 0)W (k + 2, 0)W (k, 1)2

W (−1, 1)
,

W (2k + 2, 1) =
W (k + 1, 0)W (k + 3, 0)W (k, 1)2 −W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2

W (2,−1)
.

6.4 Evaluating Pairings

We will present two polynomial time algorithms for evaluating the pairings of section 2.4. The first one
is the classical algorithm by Miller [Mil86a]. The second one is a relatively new algorithm for the Tate
pairing based on elliptic nets.

6.4.1 Miller’s algorithm

Let E be an elliptic curve defined over a finite field and let P and Q be rational points on E. Let n
denote the order of P . In order to calculate the pairings we need to calculate f(DQ) for a function f with
div(f) = n(P )− n(O) and a divisor DQ ∼ (Q)− (O) with support disjoint from div(f). Note that this is
sufficient for both the Tate and the Weil pairing because the latter is essentially just a quotient of two
such functions (compare [Mil04]).
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Lemma 6.3. Recursively define a sequence of functions on E by f1 = 1 and

fi+j = fifj
li,j
li+j,0

where li,j = 0 and li+j,0 = 0 are the equations of the lines used in the calculation of [i]P + [j]P = [i+ j]P .
Then

div(fi) = i(P )− ([i]P )− (i− 1)(O).

Proof. Like in the proof of theorem 2.13,

div
(

li,j
li+j,0

)
= ([i]P ) + ([j]P )− ([i+ j]P )− (O).

Therefore by induction,

div(fi+j) = div
(
fifj

li,j
li+j,0

)
=

i(P )− ([i]P )− (i− 1)(O) + j(P )− ([j]P )− (j − 1)(O) + ([i]P ) + ([j]P )− ([i+ j]P )− (O) =
(i+ j)(P )− ([i+ j]P )− (i+ j − 1)(O).

We are of course interested in fn. Miller’s algorithm uses an addition chain to calculate fn(DQ) =
τn(P, Q). It will use DQ = (Q+ S)− (S) for a point S 6= P, O.

Algorithm 6.4 (Miller’s Algorithm). Let P, Q ∈ E(K) where P has order n. The following algorithm
computes τn(P, Q).

1. Choose a suitable point S ∈ E(K) and set Q′ ← Q+ S.
2. Set T ← P , m← blog2(n)c − 1, f ← 1.
3. If m < 0, return f .
4. Calculate the lines lT,T and l[2]T,O for doubling T .
5. Set T ← [2]T .

6. Set f ← f2 lT,T (Q′)l[2]T,O(S)
l[2]T,O(Q′)lT,T (S)

.

7. If the mth bit of n is zero, go to 11.
8. Compute lines lT,P and lT+P,O for the addition of T and P .
9. Set T ← T + P .

10. Set f ← f
lT,P (Q′)lT+P,O(S)
lT+P,O(Q′)lT,P (S)

.

11. Set m← m− 1 and go to 3.

Clearly the algorithms has log2(n) iterations of the main loop. There are several ways to improve the
efficiency of the algorithm (without reducing its overall complexity), see [BSS05, section IX.14].

6.4.2 Using Elliptic Nets to Calculate the Tate Pairing

Theorem 6.5 ([Sta07b]). Let n ≥ 4 and let E be an elliptic curve defined over a finite field K containing
the nth roots of unity. Let P ∈ E[n] and Q,S ∈ E with S /∈ {O, P}. Further let W be the elliptic net of
rank m associated to E and points T ∈ E(K)m. Choose s, p, q ∈ Zm such that

P = p · T, Q = q · T, S = s · T.

Then the Tate pairing τn satisfies

τn(P,Q) =
W (np + q + s)W (s)
W (np + s)W (q + s)

.

We will only give a sketch of the proof. For details see [Sta07b].
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Sketch of proof. Let

fP =
Ψ1,0,0(−S, P,Q)
Ψ1,n,0(−S, P,Q)

.

Using 4.7 (one has to show that it is still true for the Ψv!) we can calculate the divisor of fP as a function
of S,

div(fP ) = −([n]P ) + (1− n)(O) + n(P ) = n(P )− n(O)

and see that the name for this function is indeed justified. Let DQ = (−S) − (−S − Q) ∼ (Q) − (O).

Using theorem 4.8 (again in K) with T =
(

1 0 0
0 1 0
1 0 1

)
we calculate

fP (DQ) =
Ψ1,0,0(S, P,Q)Ψ1,n,0(S +Q,P,Q)
Ψ1,n,0(S, P,Q)Ψ1,0,0(S +Q,P,Q)

=
Ψ1,0,0(S, P,Q)Ψ1,n,1(S, P,Q)
Ψ1,n,0(S, P,Q)Ψ1,0,1(S, P,Q)

mod (K∗)n

Transforming again (with T = (s, p, q)T ) we get in K∗/(K∗)n:

τn(P,Q) = fP (DQ) =
Ψ1,0,0(S, P,Q)Ψ1,n,1(S, P,Q)
Ψ1,n,0(S, P,Q)Ψ1,0,1(S, P,Q)

=
W (np + q + s)W (s)
W (np + s)W (q + s)

.

Corollary 6.6. Let n, E, K, P and Q be as above. Then

τn(P,Q) =
WE,P,Q(n+ 1, 1)WE,P,Q(1, 0)
WE,P,Q(n+ 1, 0)WE,P,Q(1, 1)

.

Proof. Take T = (P,Q), p = s = (1, 0) and q = (0, 1).

As we have already discussed how to calculate values of an elliptic net, the corollary immediately yields a
way to calculate the Tate pairing. The basic algorithm should not be much slower than an optimized version
of Miller’s algorithm. Optimization possibilities as well as an implementation for Sage can be found at http:
//maths.straylight.co.uk/archives/110 and http://maths.straylight.co.uk/archives/111.

http://maths.straylight.co.uk/archives/110
http://maths.straylight.co.uk/archives/110
http://maths.straylight.co.uk/archives/111


Chapter 7

Elliptic Curve Discrete Logarithm

Definition 7.1. Let G be a cyclic group with generator g. The minimal multiplier of an element h ∈ G
(with respect to g) is the smallest non-negative integer m such that h = gm.

The discrete logarithm problem (DLP) in a cyclic group G is, given a generator g of G and an element
h ∈ G, to find the minimal multiplier of h with respect to g.

The name “logarithm” is justified by the fact that the map

logg : h 7→ minimal multiplier of h

is a homomorphism of a complicated “multiplicative” group G to the “easy” additive group Z/ ord(g)Z.

As we have seen in chapter 5, discrete logarithm problems in (finite) cyclic groups are of fundamental
importance to cryptography. Of special interest for us is the case where G = 〈P 〉 is a subgroup of an elliptic
curve defined over a finite field. This is called the elliptic curve discrete logarithm problem (ECDLP).
In general the ECDLP is believed to be hard (i.e. it is conjectured that there are no sub-exponential1

algorithms to solve it for arbitrary elliptic curves). However in special instances of the ECDLP on
might have additional useful information about the structure of the underlying elliptic curve. We will
study several families of curves where we can exploit this knowledge to obtain sub-exponential (or even
polynomial) time algorithms.

Using the Pohlig-Hellman reduction – which we will discuss in a moment – it is always possible to
assume that the generator P has prime order. This will greatly simplify things. Then our strategy will
be to construct an isomorphism of our given group 〈P 〉 to a group where we already know how to solve
the DLP (relatively) quickly. Of course we cannot just take any isomorphism, but one we can compute
efficiently.

Before we discuss any specific attacks on th ECDLP we will have a look at generic methods to solve
discrete logarithm problems and then study some groups which we will later take as targets for the
isomorphisms.

7.1 General Purpose Methods

The following methods will work in every group. We will assume that G = 〈g〉 is a cyclic group of order n.
We want to solve the DLP h = [m]g.

7.1.1 Pohlig-Hellman Reduction

Let n =
∏
peii be the prime factor decomposition of n. The reduction of Pohlig and Hellman consists of

three steps:

1An algorithm is said to have sub-exponential time, if it runs slower than polynomial, but faster than exponential time.

A typical example is O
“

2
√

n
”

.
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1. For each i, obtain m mod pi: Let ni = n
pi

. Multiplication of the DLP by ni gives the new DLP

h′ = [ni]h = [ni]([m]g) = [m] ([ni]g) = [m]g′

in the subgroup 〈g′〉 of order pi. Solving this DLP yields m(0)
i = m mod pi.

2. For each i, inductively obtain m mod pji until j = ei: Suppose m(j)
i = m mod pji is known. Then

there exists some (unknown) integer λ such that m = m
(j)
i + λpji . If we could determine λ mod pi,

then we would know m
(j+1)
i . Let s = n

pj−1
i

and l = h− [m(j)
i ]g = [λ]([pji ]g). We obtain the DLP

l′ = [s]l = [s]
(

[λ]([pji ]g)
)

= [λ]([ni]g) = [λ]g′,

which yields λ mod pi.
3. Combine this information: Use the Chinese Remainder Theorem to solve the system

m ≡ m(ei)
i (mod peii ).

In conclusion the DLP in a group of order n is not harder than the DLP in a group of order p where
p is the largest prime divisor of n. Therefore groups that are used in cryptosystems based on the DLP
should have order that is prime or at least divisible by a large prime.

7.1.2 Baby-Step Giant-Step

The baby-step giant-step (BSGS) algorithm was first described by Shanks [Sha71]. It is a more sophisticated
version of trail division and a classic example of space-time trade-off: it uses O(

√
n) space and time

instead of O(n) time and O(1) space of the naive trail division.

There exist (unknown) integers 0 ≤ i, j ≤ d
√
ne such that m = i d

√
ne+ j. The algorithm finds these

integers by first precomputing [j]g for all j and then searching for i.

Algorithm 7.2 (Baby-Step Giant-Step). Let g be of order n and h ∈ 〈g〉. The following algorithm returns
logg h.

1. Baby steps: For all 0 ≤ j ≤ d
√
ne, compute [j]g and store the pair (j, [j]g) in a lookup table2.

2. Compute g′ =
[
−
⌈√

n
⌉]
g and set h′ ← h, i← 0.

3. Giant steps: For 0 ≤ j ≤ d
√
ne − 1, check if h′ is equal to the second component of the pair (j, [j]g)

stored in the table. If so, return i d
√
ne+ j. Otherwise set h′ ← h′ + g′, i← i+ 1 and repeat step 3.

7.1.3 Pollard-ρ

We will only describe the most basic version of the rho algorithm. Many improvements as well as Pollard’s
lambda algorithm (also known as Pollard’s kangaroo algorithm) are described in [CF06, chapter 19]. Note
that the algorithm can be efficiently parallelized; a description can be found at the same place.

Assume that we know two different pairs of integers (c, d) and (c′, d′) such that

[c]g + [d]h = [c′]g + [d′]h.

Then,
[c− c′]g = [d− d′]h = [d− d′][m]g.

Hence m = (c−c′)(d−d′)−1 mod n (the existence of the inverse is guaranteed if we assume that n is prime).
Therefore an approach to solving the DLP is to randomly choose pairs (c, d) and store (c, d, [c]g + [d]h)
into a lookup table until a collision occurs. By the birthday paradox the expected number of pairs needed
before a there is a collision is about

√
πn/s ≈ 1.24

√
n [FGKP95]. Using the following idea of Pollard, one

can eliminate the huge storage cost of this approach while keeping the expected O(
√
n) time complexity.

2In practice one would of course inductively compute [j − 1]g + g. Also since the lookup will be on the second component
one should use a hash table where hashing is done on the second component.
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Let f : G→ G be a function, called iterating function, such that given x = [c]g + [d]h one can easily
compute c′, d′ ∈ [0, n− 1] with f(x) = [c′]g + [d′]h. Further f should have the characteristic of a random
function. One possibility for f is the following construction: let G1, . . .Gr be a partition of G into r
“random” subsets and select integers ci, di (1 ≤ i ≤ r). If x ∈ Gi, then take f(x) = x+ [ci]g + [di]h.

Let x0 ∈ G. Then xi+1 = f(xi) defines a random walk in G. Since G is finite, there exist integers µ, τ
such that xi = xi+τ for all i ≥ µ. The number τ is called cycle length and µ is called tail length. By the
birthday paradox we expect that µ+ τ ≈

√
πn/2. It possible to find a cycle without comparing all xi

using the following algorithm (note that this algorithm is not the fastest possibility, but the simplest one):

Algorithm 7.3 (Floyd’s cycle-finding algorithm). Let xi+1 = f(xi) be a sequence as described above.
The algorithm returns an index i such that xi = x2i.

1. Set x← f(x0), y ← f(x) = f(f(x0)), i← 1.
2. If x = y, return i.
3. Set i← i+ 1, x← f(x), y ← f(f(y)).
4. Return to 2.

One can show (see [Knu97, exercise 3.1.1]) that the number of iterations needed in this approach lies
between µ and µ+ τ . In particular the expected running time is O(

√
n). Once one has obtained a collision

one can apply the idea we discussed at the beginning of the section to find m. There is a small chance
that di = d2i. In this case it is necessary to restart with a different x0.

7.2 Index Calculus

We will now consider a group of algorithms collectively known as index calculus. We will first describe the
general principle and then how it can be applied to the finite field DLP and the hyperelliptic DLP.

Definition 7.4. Let P be a countable set, called primes, and let M be the free Abelian monoid with
free generators P such that there exists a congruence relation ∼ with G ∼=M/∼. A size map is a map
| · | : (M,⊕)→ (R,+) such that all primes have positive size. Further let ι : G→M be a section, i.e. an
injection with [ι(g)]∼ = g for all g ∈ G. Then (G, (M, ⊕), ∼, ι, | · |) is called an (arithmetic) formation.

Definition 7.5. Let B be a positive integer, called smoothness bound. An element g ∈ G is called
B-smooth if the decomposition of ι(g) ∈M only contains primes of size less than B.

For notational convenience we will identify elements g ∈ G with their representation ι(g) ∈M.

Algorithm 7.6 (Index Calculus). Let G = 〈g〉 be a cyclic group of order n and let h ∈ G. Let M be a
formation for G. The algorithm described below will return logg h.

1. Construction of a factor base:
Define a set S = {p1, . . . , pt} of primes of M. Typically one chooses a smoothness bound B and
sets S to be the set of all B-smooth primes. The set S is called a factor base.

2. Gather relations:
Choose random numbers (ai, bi) and compute [ai]g + [bi]h. If this element can be decomposed over
S, set

[ai]g + [bi]h =
t⊕

j=1

[ei,j ]pj .

If the element does not factor, choose a different pair (ai, bi). Let A be the matrix with rows

(ei,1, ei,2, . . . , ei,t).

Keep adding rows to the matrix until there is linear relation between the rows (i.e. the map defined
by AT has nontrivial kernel). This should be the cases after t+ 1 rows were added to A.

3. Linear algebra:
Compute a column vector x in the kernel of AT , i.e. such that AT x = 0. This can be done by Gauß
elimination or by a more sophisticated method.
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4. Extract the solution:
Let a = (a1, . . . , at+1) and b = (b1, . . . , bt+1). The relations found in step (2) assert that

[ax]g + [bx]h = 0.

If gcd(bx, n) = 1, return
logg h = −ax

bx
mod n.

Otherwise add relations to A and choose different vectors in the kernel of AT until gcd(bx, n) = 1.

The efficiency of index calculus algorithms depends on the choice of a good factor base. Its size
represents a trade-off between the relation gathering step and the linear algebra step. A larger factor
base means that it is easer to find elements that are smooth with respect to the base. On the other hand
a smaller factor base makes the linear algebra step faster. Further it should be easy to actually factor
elements into prime factors of the base. See [CF06, chapter 20] for recommendations for implementations.

The most important point of elliptic curve cryptography is that it is highly unlikely that index calculus
methods can be directly applied to solve the ECDLP (sometime they can be indirectly applied, see section
7.5). A discussion (with both theoretical and empirical evidence) why this is so is given in [SS98].

7.2.1 Finite Field DLP

Prime fields: The classical and easiest application of index calculus is in the multiplicative groups of
prime fields Fp. Here we can take M = N which is freely generated (as a multiplicative monoid) by the
usual prime numbers. As size of a natural number we take the bit length of its binary representation
and ι is the canonical injection Fp → N. With a suitable smoothness bound this yields a sub-exponential
algorithm for the discrete logarithm problem in Fp.

Non-prime fields: Every non-prime finite field Fq can be represented in the form Fp[X]/〈f(X)〉 for
some polynomial f(X) ∈ Fp[X]. Hence we can take M = Fp[X]. A polynomial in M is prime if it is
monic and irreducible. The size of an element can be taken to be its degree.

The fastest known variant of index calculus for the general finite field DLP is a variant of the number
field sieve as described in [Sch00]. Its running time is about Lp[ 1

3 , 1.923] where

Ln[α, c] = O
(
e(c+o(1))(lnn)α(ln lnn)1−α

)
.

For binary fields F2d , the fastest know algorithm is Coppersmith’s function field sieve [Cop84], which runs
in L2d [ 1

3 , 1.588] time.

7.2.2 Hyperelliptic Curve DLP

Lemma 7.7. Let C/Fq be a hyperelliptic curve and let (U, V ) be a pair of polynomials in Fq[x] representing
a semi-reduced divisor D ∈ Div0

Fq(C). Let U(x) =
∏
Ui(x) be the factorization of U(x) into irreducible

polynomials Ui(x) ∈ Fq[x]. Further let Vi = V mod Ui with deg Vi < degUi. Then each pair (Ui, Vi)
represents a semi-reduces divisor Di and

∑
Di = D. If D is reduced, so is each Di.

Proof. [Was08, proposition 13.12]

Definition 7.8. The size (in the sense of definition 7.4) of a semi-reduced divisor is the degree of the
corresponding polynomial U . A semi-reduced divisor is called prime, if it has degree at least 1, is defined
over Fq and cannot be written as a sum of semi-reduced divisors.

This is already enough to apply index calculus in the Jacobian of hyperelliptic curves. The factor
base is selected as usual by a smoothness bound B. For small genera one usually takes B = 1. To list all
elements of the factor base, one can simply look at every irreducible polynomial T in Fq[x] of degree at
most B and then find a suitable W ∈ Fq[x] such that (T, W ) is the Mumford representation of a divisor
class. This is of course rather trivial in the case B = 1.
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Note that for elliptic curves every semi-reduced divisor has size 1 and is prime. Therefore this definition
does not help to apply index calculus methods on elliptic curves.

With some optimizations this approach gives the algorithms behind the following result:

Theorem 7.9 ([Thé03]). Let C/Fq be an elliptic curve of genus g. Let ε > 0 be arbitrary.

1. If q > (g − 1)!, then there exists an algorithm that solves the DLP in the Jacobian of C in
O
(
g5q2− 2

g+1 +ε
)

time.

2. If q < (g−1)!
g , then there exists an algorithm that solves the DLP in the Jacobian of C in

O
(
g5q2− 2

2g+1 +ε
)

time.

In particular for g ≥ 3 the hyperelliptic DLP can be asymptotically solved faster than with the general
purpose algorithms.

More algorithms for the hyperelliptic DLP and possible optimizations are described in [CF06, chapter
21].

7.3 Pairing Based Attacks

We can now return to our goal of providing sub-exponential algorithms for the ECDLP on some special
curves. The first such result was published by Menezes, Okamoto and Vanstone in 1993 [MOV93] and
became known as the MOV attack. Shortly afterwards it was generalized by Frey and Rück [FR94, FMR99]
to the divisor class groups of general curves. The idea of these attacks is to use a pairing on the elliptic
curve to reduce the ECDLP to a finite field DLP.

We will again denote the underlying elliptic curve defined over Fq (with q = pr) by E. Further let
P ∈ E(Fq) be of prime order n and Q ∈ 〈P 〉. Our aim is to recover an integer m such that Q = [m]P .

Suppose that Fq contains the nth roots of unity and that we have a bilinear pairing e : G1 ×G2 → µn
where the Gi are subgroups of E(Fq) and P ∈ G1. Suppose further that we have a point S with e(P, S) 6= 1.
Then, since n is prime, e(P, S) is a primitive nth root. By linearity

e(Q,S) = e([m]P, S) = e(P, S)m

gives a DLP-equation in Fq which can be solved with index calculus methods.

We already studied two pairings on E with values in µn: the Weil pairing en (2.44) and the modified
Tate-Lichtenbaum pairing τ̃n (3.7). In fact the first one is used in the MOV attack while the second one
is used in the Frey-Rück attack. We note that by theorem 3.43 the Tate pairing is defined on E(Fq)
whenever the Weil pairing is defined there. (The converse is not always true. However by theorem 3.45 it
is true in most cryptographically interesting situations.) Also in general the Tate pairing can be computed
faster then the Weil pairing. Therefore we will only describe the Frey-Rück attack.

Algorithm 7.10 (MOV/Frey-Rück). Let E be an elliptic curve over Fq and P ∈ E(Fq) of prime order n
and coprime to q. Further let Q ∈ 〈P 〉. The following algorithm returns the minimal multiplier of Q with
respect to P .

1. Construct a field Fqk such that n | qk − 1.

2. Choose a random point S ∈ E(Fqk).

3. Set A← e(P, S). If A = 1 return to 2 and choose a different point S.

4. Set B ← e(Q,S).

5. Find m mod n such that Am = B using index calculus methods in Fqk .

6. Return m.
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Since the Tate pairing is non-degenerate and n is prime, its image contains a primitive nth root of
unity and hence the map S 7→ τn(P, S) is surjective. By linearity the size of its kernel is |E(K)/nE(K)|

|µn| . So
the probability that τn(P, S) = 1 is 1

|µn| = 1
n for a random S. Considering that n is typically quite large,

we expect that a suitable point S is picked on the first try virtually every time.

We already know that we can compute the Tate pairing in polynomial time (in k log q), so by far the
most computational expensive part is step 5. Thus the whole algorithm runs in sub-exponential time in
k log q. For most curves one can expect k to be fairly large and this attack will not reduce the computation
time. However, we have seen in corollary 3.51 that supersingular elliptic curves have embedding degree at
most 6. Hence we get the following result:

Corollary 7.11. On supersingular elliptic curves the ECDLP can be solved in sub-exponential running
time.

In practice it is easy to avoid curves with small k as a random curve will have a big embedding degree
with high probability [BK98]. Historically however, supersingular curves have been proposed for elliptic
curve cryptography schemes. See section V of [MOV93] for further discussion.

7.4 Anomalous Curves

In principle the Frey-Rück attack applies to all elliptic curves E/Fpl with gcd(#E(Fq), p) = 1. Thus
an obvious way to create secure elliptic curve cryptosystems would be to take curves with #E(Fq) = q,
i.e. curves where the qth power Frobenius has trace 1. Such curves are called anomalous . Unfortunately it
turned out that the ECDLP on anomalous curves can be broken in linear time. There are two different
approaches to the anomalous curve DLP: one by Smart [Sma99] and Satoh and Araki [SA98] and one by
Semaev [Sem98]. The first idea is rather number theoretic and uses properties special to elliptic curves
while Semaev’s approach comes from algebraic geometry and can be generalized to curves of higher genus
[Rüc99]. Even though Semaev’s (and Rück’s) results are stronger, both approaches are interesting and we
will present both.

For Smart’s and Satoh-Araki’s technique let K = Fp and #E(Fp) = p where p is a prime number.
As usual we have two points Q = [m]P and have to solve for m. Obviously ordP = p. The first step is to
compute and arbitrary lift of P and Q to points P , Q on an elliptic curve E over Qp that reduces to E(Fp)
modulo pZp (the maximal ideal of the ring of integers Zp in the local field Qp). In order to do this choose
any lifts of the x-coordinates of the points and calculate the y-coordinates with Hensel’s lemma 3.67.

By the general theory of elliptic curves over local fields we have the exact sequences

0→ E1(Qp)→ E0(Qp)→ E(Fp)→ 0, (7.1)

0→ E2(Qp)→ E1(Qp)→ F+
p → 0. (7.2)

Define an isomorphism
logp = log bE ◦ϑ−1

1 : E1(Qp)→ pZp,

where ϑ1 is the isomorphism defined in theorem 3.99. This is well defined by theorem 3.86. The restriction
gives isomorphisms En(Qp)→ pnZp for n ≥ 1.

Since E is non-singular, E0(Qp) = E(Qp). In general it is not the case that [m]P = Q. However,

[m]P = Q mod E1(Qp).

Let R = Q− [m]P ∈ E1(Qp). By (7.2),

[p]Q− [m]([p]P) = [p]R ∈ E2(Qp).

By (7.1), [p]P ∈ E1(Qp) for every point P ∈ E(Qp) (here we use the anomaly of E/Fp). Hence we can
take the logarithm of the last equation:

logp([p]Q)−m logp([p]P) = log([p]R) ≡ 0 mod p2Zp.
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Thus all we have to do is to solve a DLP in Zp/p2Zp = Z/p2Z, i.e. to calculate

m ≡
logp([p]Q)
logp([p]P)

(mod p2).

It suffices to do all calculations modulo p2 so the only nontrivial calculations that have to be done are the
O(log p) group operations on E . With a very small possibility (1/p) the denominator logp([p]P) vanishes.
In this case one can simply take a different lift E .

The attack of Semaev-Rück uses a different approach to construct a “logarithm”. As we have seen in
theorem 2.13 there is an isomorphism κ : E → Pic0(E) mapping a point P to the class of DP = (P )− (O).
Let Pic0(E)p = κ(E[p]). To each class D̄ ∈ Pic0(E)p associate a function f with pD = div(f). While
logarithms might not be defined in K we can still look at the logarithmic differential df

f . By a result
of Serre [Ser58, Proposition 10] this defines an isomorphism of Pic0(E)p into the space of holomorphic
differentials of E. Let t = −xy be a uniformizer at O and look at the power series expansion

df/dt

f
=
∑
i≥0

ait
i.

Remember that L (KE) ∼= {ω ∈ ΩE : ω is holomorphic} and `(KE) = g = 1. Hence df/dt
f is uniquely

determined by a0. So we get an isomorphism φ : E[p]→ K̄+ sending a point P to

φ(P ) =
dfP /dt

fP
(O) ∈ K̄,

where fP is a rational function on E with div(fP ) = p(P )−p(O). Actually, since everything is defined over
K, we have φ(P ) ∈ K. Then in order to solve the ECDLP [m]P = Q, we only need to solve mφ(P ) = φ(Q)
in K, which is trivial.

The hard part of this procedure is to calculate fP . However, this is not needed. It is possible to obtain
φ(P ) without knowing fP using the following idea: For arbitrary points P1, P2 ∈ E(K) define a function
hP1,P2 by div(hP1,P2) = (P1) + (P2)− (P1 + P2)− (O). Then up to multiplication with a constant,

hP1,P2 =
lP1,P2

lP1+P2,O

where lP,Q = 0 is the equation of the line through P and Q. Let δ(P1, P2) be the constant term of
dhP1,P2/ dt

hP1,P2
. On the set E[p]×K define a group law by

(P1, v1)� (P2, v2) = (P1 + P2, v1 + v2 + δ(P1, P2)).

Then using induction one can show that

(P, 0)� · · · � (P, 0)︸ ︷︷ ︸
p times

= (O, φ(P )).

Hence using a double-and-add algorithm the ECDLP can be solved in O(log p) time. Further one can
show that δ(P1, P2) is just the slope of the line through P1 and P2 (the slope of the tangent if P1 = P2,
and 0 if P1 = −P2).

A slight reformulation of this algorithm can be applied to p-torsion points in curves of higher genus
[Rüc99].

7.5 Weil Descent Attacks

Attacks on the ECDLP using the so-called “Weil descent” method3 are a relatively new invention. The
possibility of these attacks was first recognized by Frey [Fre98]. The first successful application was given

3The usage of the term “Weil descent” in cryptography is different from its usage in general algebraic geometry were it
describes a proof technique similar to Fermat’s infinite descent.
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by Gaudry, Heß and Smart in 2002 [GHS02]. After the names of the inventors it is called the GHS attack.
The application of Weil decent to elliptic and hyperelliptic curve DLP is still a subject of ongoing work.

Usually these attacks use more sophisticated parts of algebraic geometry than we have introduced in
chapter 1. However, it is relatively simple to describe the basic idea. We will give the following definitions
only for projective varieties (in the sense of definition 1.15). The usual definitions are far more general,
see for example [BLR90].

Definition 7.12. An Abelian variety is a projective variety G with a group structure on G such that the
group operations · : G×G→ G and −1 : G→ G are given by regular maps.

Proposition 7.13. An Abelian variety is an Abelian group.

Proof. [Sha94a, theorem III.4.2]

Definition 7.14. Let L|K be a field extension of degree s and let X ⊂ An be an affine variety defined
over L. Then the Weil restriction or restriction of scalars of X with respect to L|K, denoted ResL|K(X),
is defined in the following way:

Let f1, . . . , fm ∈ L[X1, . . . , Xn] define X and let α1, . . . , αs ∈ L be a basis of L over K. Further
let Yi,j with 1 ≤ i ≤ n, 1 ≤ j ≤ s be new variables. Define polynomials gl,r ∈ K[Yi,j ] such that
ft = gt,1α1 + · · ·+ gt,sαs (1 ≤ t ≤ m) with Xi = Yi,1α1 + · · ·+ Yi,sαs. Then ResL|K(X) is the variety in
Ans given by 〈gr,s〉. Obviously it is defined over K.

For projective varieties the construction can be carried through by passing first to a non-empty affine
piece of X, then to its Weil restrictions and finally to the projective closure of the Weil restriction.

There exists a natural bijection between ResL|K(X) and X given by

(yi,j)i,j ∈ Ans 7→ (yi,1α1 + · · ·+ yi,sαs)i ∈ An

(respectively the homogenization of this map). If X is an Abelian variety, this induces a group structure on
ResL|K(X) which makes ResL|K(X) into an Abelian variety. If additionally the group operations on X are
defined over L, then the group operations on ResL|K(X) are defined over K and X(L) ∼= ResL|K(X)(K).

We will now describe the idea behind Weil descent attacks as introduced in [GS99]. Let X = E be an
elliptic curve defined over a finite field L = Fqs . Using Weil restriction the DLP in E(Fq) can be transfered
to a DLP in ResFqs |Fq (E)(Fq). Let A = ResFqs |Fq (E) and K = Fq. In general the structure of A is quite
complicated. However, suppose we can find a curve C0 defined over K and a map C0 → ResL|K(E).
Then by the universal property of the Jacobian [GS99, proposition 1] this map induces a homomorphism
φ : J(C0) → A. If we find a suitable curve such that we can lift the DLP from A(K) to J(C0)(K) we
might be able to efficiently solve it using index calculus methods in J(C0). In particular, this is the case
if C0 is a hyperelliptic curve.

The GHS attack implements this idea for some curves over binary fields. Details as well as further
results are collected in [BSS05, chapter VIII]. The important implication of these attack is that the
security of curves over a field Fpk might suffer if k is composite, especially if it is divisible by a small
integer larger than 2 (since [BSS05] was written further improvements have been made, e.g. [Gau08]).
The usual recommendation it to use only prime fields or fields of prime extension degree.

7.6 Connection to Elliptic Divisibility Sequences

We will give a short description of the ideas of Lauter and Stange [LS08] which might be used in the
future for devising new attacks on the ECDLP – or proving that some families of elliptic curves are secure.

In this section we will always assume that ordP and q − 1 are coprime. This is no real restriction
because if this was not the case than we could use the Frey-Rück attack.
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7.6.1 The EDS Discrete Logarithm Problem

The width s EDS discrete logarithm problem (EDSDLP) is to find the integer k given an EDS W in Fq
and terms W (k), W (k + 1), . . . , W (k + s− 1).

Theorem 7.15. If one of the following problems is solvable in sub-exponential time, then both are:

1. the elliptic curve discrete logarithm;
2. the width 3 EDS discrete logarithm for perfectly periodic sequences associated to a curve (see definition

4.21).

Proof. First assume that we can solve the ECDLP in sub-exponential time. We are given an elliptic curve
E over Fq, a point P of prime order n (with gcd(n, q − 1) = 1) and terms W̃E,P (k), W̃E,P (k + 1) and
W̃E,P (k+ 2). We will show that the point Q = [k+ 1]P can be calculated in probabilistic O((log q)4) time
without knowledge of k. Then we can use the sub-exponential algorithm for the ECDLP to solve for k.

Using theorem 3.27 we have

x([m]P ) = x(P )− W̃E,P (m)W̃E,P (m+ 1)

W̃E,P (m)2
, (7.3)

where x(P ) is the x-coordinate of P . From this we can calculate x([k+ 1]P ) in O((log q)2) time. Then we
can compute the two possible values for the corresponding y-coordinate in probabilistic O((log q)4) time
[BS96]. In order to find out which value of y is the correct one we choose one of the values and calculate
x([k + 2]P ) and x([k + 3]P ) using addition on the elliptic curve. Next we use (7.3) to determine W̃ (k + 3)
and W̃ (k + 4) in turn. Since 4 consecutive terms of an EDS determine the entire sequence, we simply
have to check whether

W̃ (k + 4)W̃ (k) = W̃ (k + 1)W̃ (k + 3)W̃ (2)2 − W̃ (3)W̃ (1)W̃ (k + 2)2.

If this holds, then our choice was correct, otherwise we have to take the other possible value for y.

Now assume that we can solve the EDSDLP in sub-exponential time. We are again given an elliptic
curve E over Fq, a point P of prime order n with gcd(n, q − 1) = 1 and a point Q = [k]P . We will show
that we can calculate W̃E,P (k) in O((log q)3) time without knowledge of k. Then we can do the same for
Q+ P and Q+ P + P and we get an instance of the EDSDLP. We will of course use formula (4.3) which
states

Φ(P ) =
(

WE,P (q − 1)
WE,P (q − 1 + n)

) 1
n2

.

By theorem 6.1 we can compute the terms WE,P (q − 1) and WE,P (q − 1 + n) in O((log q)2(log(q − 1) +
log(q − 1 + n)) time. By Hasse’s theorem, n = O(q), so this is O((log q)3). Finding the inverse of n2 mod
q − 1 and raising to that power are also O((log q)3) operations.

7.6.2 EDS Association and EDS Quadratic Residuosity

Assume again that we are given an elliptic curve E over K = Fq and a point P ∈ E(K) of prime order
n = ordP with n > 3 and gcd(n, q − 1) = 1.

The EDS association problem is, given a point Q ∈ 〈P 〉, to calculate WE,P (k), where k is the minimal
multiplier of Q. The EDS residue problem is to determine the quadratic residuosity of WE,P (k) (in
K). Note that while it is easy to determine W̃E,P (k) without knowledge of k, there are no known fast
algorithms for determining WE,P (k).

We will start with an observation that is true for any discrete logarithm problem:

Lemma 7.16. Let G be a cyclic group of odd order q and let P be a generator of G. Suppose we are given
an oracle that, given an element [k]P ∈ G, can determine the parity of k. Then the discrete logarithm
problem in G can be solved in O(log q) steps where each step consists of one call to the oracle and O(log q)
operations in the group.

Proof. Suppose that we are given Q = [k]P . The following algorithm will determine the minimal multiplier
k of Q.
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1. Set k = 1.
2. If Q = P , stop with result k.
3. Use the oracle to determine the parity λ ∈ {0, 1} of the minimal multiplier of Q. Find Q′ such that

[2]Q′ = Q− λP and set k = 2k + λ.
4. Set Q = Q′ and continue with step 2.

Since the order of the group is odd, there is a unique Q′. It can be calculated by determining l = 2−1

(mod |G|) (with the Euclidean algorithm) and calculating Q′ = [l](Q − [λ]P ) (with a double-and-add
algorithm in O(log q) operations). The number of steps required is O(log2 k) = O(log q).

We return to elliptic curves. Let E, K = Fq, P ∈ E(Fq), n = ordP and Q = [k]P as above.

Theorem 7.17. If one of the following problems is solvable in sub-exponential time, then both are:

1. elliptic curve discrete logarithm;
2. EDS association;

Proof. If we can solve the ECDLP, we can calculate k in sub-exponential time and then use theorem 6.1
to calculate WE,P (k) in polynomial time.

If we can solve the EDS association problem, we know WE,P (k). By theorem 4.20,

Φ(Q)
WE,P (k)

= Φ(P )k
2
, (7.4)

so we can reduce the ECDLP to a DLP in Fq, which is solvable in sub-exponential time.

Theorem 7.18. Suppose that charK 6= 2 and that Φ(P ) is a quadratic non-residue of K. If one of the
following problems is solvable in sub-exponential time, then both are:

1. elliptic curve discrete logarithm;
2. EDS quadratic residue.

Of course the assumption that q is not a power of 2 is necessary since otherwise x 7→ x2 would be
an automorphism and hence every element of K a quadratic residue. If Φ(P ) is a quadratic residue
then we can try to find an integer m such that Φ([m]P ) is a quadratic non-residue and consider the
equivalent problem [m]Q = [k]([m]P ). If −1 is a quadratic non-residue, then we can take m = n − 1
because Φ([n− 1]P ) = Φ(−P ) = −Φ(P ).

Proof. If we can solve the ECDLP then, by the last theorem, we also know WE,P (k) and can calculate its
residuosity in polynomial time [BS96].

Assume that we can solve the EDS quadratic residue problem. Looking at (7.4) we can determine
the quadratic residuosity of the left hand side in polynomial time. We know that Φ(P ) is a quadratic
non-residue. Thus if the left hand side is a quadratic residue, then k2 must be even; otherwise it must be
odd. Using this we apply lemma 7.16.

Lauter and Stange argue in [LS08] that the knowledge of the value or residuosity of any product of
the form

N∏
i=1

WE,P (pi(k))ei ,

where pi(x) ∈ Z[x] and ei ∈ Z with some restrictions, is sufficient to solve the ECDLP. For example they
deduce the equation(

WE,P,Q(n+ 1, 0)WE,P,Q(2, 0)
WE,P,Q(n+ 2, 0)

)k
=
(
WE,P (k − 1)
WE,P (k)

)n(
− WE,P,Q(1, n)WE,P,Q(2, 0)
WE,P,Q(2, n)WE,P,Q(1,−1)n

)
.

Here everything except WE,P (k−1)
WE,P (k) can be calculated in polynomial time and when we assume knowledge

of that term, the equation yields a Fq DLP. Note that if n = q− 1, then
(
WE,P (k−1)
WE,P (k)

)n
= 1 and we do not

need to know anything about the fraction. Also Shipsey [Shi00, eq. (6.3)] deduces an equation of this
type:

WE,P ((n+ 1)(k + 1))WE,P (k)
WE,P ((n+ 1)k)WE,P (k + 1)

= WE,P (n+ 1)2k+1.
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7.7 Quantum Computers

As we have seen in this chapter there are several attacks on the ECDLP that could severely reduce the
security of an ECC scheme. However, they only apply to very special curves. If one avoids all curves
where security has already been reduced or that look like they could be threatened by future attacks
there are still plenty of curves left. Indeed, the general opinion amongst researchers seems to be that
a complete breach of ECC security on classical computers will never happen. On the other hand, in
quantum computing the situation is different: there already exists an algorithm that solves the ECDLP in
quantum polynomial time [PZ03, CMMP07]. Therefore whenever quantum computing would move nearer
to existence (currently there are still severe technical problems preventing its realization), it would be
prudent to abandon ECC. Unfortunately this is true for almost all classical encryption schemes, including
symmetric schemes.
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[Sch85] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.
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η(ω) quasi-period homomorphism 32

expF formal exponential 52

(F , F ) formal group F with formal group law F 50

f(D) function evaluated at a divisor 8

fd dehomogenization of f 4

fh homogenization of f 4

F(m) group associated to a formal group 51

Fn(X,Y ) modular polynomial 40

Fq finite field with q elements 19

Gk Eisenstein series 30

g2 g2(Λ) = 60G2(Λ) 32

g3 g3(Λ) = 140G3(Λ) 32

Ĝa formal additive group 50

Gal(L|K) the Galois group of the Galois extension L|K 1

gcd(D1, D2) greatest common divisor of D1 and D2 28

GL2(Z)
{
A ∈ Z2×2 : A is invertible over Z

}
39
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Ĝm formal multiplicative group 50

H upper half plane {τ ∈ C : Im τ > 0} 39

Hom(E1, E2) {isogenies E1 → E2} 18

I(Y ) homogeneous ideal associated to Y ⊆ Pn 4

I(Y ) ideal associated to Y ⊆ An 2

J Jacobian variety 27

j(τ) modular j-invariant 40

j(E) j-invariant of an elliptic curve 15

K̄ a (fixed) algebraic closure of K 1

K a perfect field (in some sections K is further restricted) 1

k residue field of a discrete valuation field K 48

k(q, n) embedding degree corresponding to Fq and n 44

K+ additive group of K 18

K∗ multiplicative group of K 3

KC a canonical divisor of C 10

Kur maximal unramified extension of K 49

K(V ) function field of V/K 2

K[V ] coordinate ring of V/K 2

K̄[V ]P local ring at P 3

K[X] polynomial ring 1

L (D) Riemann-Roch space of D ∈ Div(C) 10

`(D) dimK̄ L (D) 10

λ(w) “parity” of lattice points 33

L set of complex lattices 39

Λ lattice 29

Λτ the lattice Zτ + Z 39

lc(φ) leading coefficient of the isogeny φ 74

Ln[α, c] L-notation, O
(
e(c+o(1))(lnn)α(ln lnn)1−α

)
82

logF formal logarithm 52

logg h minimal multiplier of h with respect to g 79

logp p-adic formal logarithm 84

[m] multiplication by m 17

M(a, b) AGM iteration 75

Mn(R) n× n-matrices over R 25

mP maximal ideal at P 3
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µn(K) nth roots of unity in K̄ 21

NL|K norm map of the field extension L|K 6

O base point of an elliptic curve; [0 : 1 : 0], when it is in Weierstraß form 13

OK valuation ring of K 48

ω invariant differential of a Weierstraß equation 15

ΩC differential forms on C 9

ΩB|A module of relative differential forms of B over A 9

ω
dt function such that ω = ω

dt dt 10

ordP D order of the divisor D at the point P 7

ordP (ω) order of ω ∈ ΩC at P 10

ordP (f) order of f ∈ K̄(C) at P 6

ordw(f) order of an elliptic function at w 30

Ov ring of integers with respect to the valuation v 48

P fundamental parallelogram of a lattice 29

℘(z) Weierstraß ℘-function 31

φ̂ dual isogeny 20

φ Frobenius automorphism 49

Φ(P ) function used to define perfectly periodic EDSs, see (4.3) 62

φ∗ pull-back by the rational map φ 5

φ∗ push-forward by the rational map φ 6

φ` map on the Tate module induced by an isogeny φ 25

Φn(X,Y ) modular polynomial 40

φq qth-power Frobenius morphism 7

π reduction map 55

Pic(C) Picard group (divisor class group) of C 8

Pic0(C) degree zero part of the Picard group (divisor class group) of C 8

Pic0
K(C) subgroup of Pic0(C) fixed by Gal(K̄|K) 8

PicK(C) subgroup of Pic(C) fixed by Gal(K̄|K) 8

Pn projective n-space over K, i.e. Pn(K̄) 3

Pn(K) K-rational points in Pn 3

Ψn(x, y) abstract division polynomial 37

ψn(x, y) division polynomial 38

ψn(z; Λ) complex division polynomial 36

Ψv net polynomials 60

PSL2(Z) projective SL2(Z), SL2(Z)/ {± ( 1 0
0 1 )} 40

Quot(A) quotient field of the integral domain A 3
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σ(z) Weierstraß σ-function 32

σ̄ Frobenius automorphism 49

Σ Frobenius substitution 49

SL2(Z)
{(

a b
c d

)
∈ Z2×2 : ad− bc = 1

}
39

sum summation map 30

suppD support of the divisor D 8

·T transpose of a matrix 60

τn Tate-Lichtenbaum pairing 22

τQ translation-by-Q map 19

τ̃n modified Tate-Lichtenbaum pairing 44

ϑn the isomorphisms Ê(mn)→ En(K) 56

T`(E) `-adic Tate module of E 25

T`(µ(K)) `-adic Tate module of K 25

trφ trace of the endomorphism φ 26

V̄ projective closure of V 4

v the vector v = (v1, . . . , vn) 60

V a variety 2

vp p-adic valuation 47

V (q) variety with homogeneous ideal
〈
f (q) : f ∈ I(V )

〉
7

W̃E,P perfectly periodic EDS associated to E and P 63

w hyperelliptic involution 27

w(z) Expansion of an elliptic curve around O 53

WE,P elliptic net associated to the elliptic curve E and points P = (P1, . . . , Pn) 61

WE,P EDS associated to the elliptic curve E and point P 39

X0(n) (classical) modular curve 40

Y (K) set of K-rational points of Y 2

Y/K algebraic set Y defined over K 2

ζ(z) Weierstraß ζ-function 32

Z(h) zero set of the homogeneous ideal h ⊆ K[X] 4

Z(S) zero set of S ⊆ K[X] 1

Z(V/K; T ) zeta function of V over K 41
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Abelian variety, 86
absolute value, 47

equivalent, 47
non-Archimedean, 47

abstract division polynomial, 37
addition, 71
additive reduction, 56
affine

algebraic set, 1
coordinate ring, 2
piece of projective space, 4
space, 1
variety, 2

AGM, see arithmetic-geometric mean
AGM algorithm, 75
algebraic set

affine, 1
defined over K, 2, 4
projective, 4
rational points, 2, 4

algorithm
AGM point counting, 75
baby-step giant-step, 80
Cantor’s, 28
double-and-add, 71, 76
elliptic curve group law, 17
Floyd’s cycle finding, 81
index calculus, see index calculus
Miller’s, 77
Pollard’s rho, 80
Satoh’s, 74
Schoof’s, 72
SEA, 73
sub-exponential, 79

alternating pairing, 22
analytic addition theorem, 34
anomalous curves, 84
Archimedean

absolute value, 47
arithmetic formation, 81
arithmetic-geometric mean, 75
Atkin prime, 47, 73
automorphism group, 18, 20

baby-step giant-step algorithm, 72, 73, 80
base point, 13
bilinear pairing, 21

canonical

divisor class, 10
lift, 57

Cantor’s algorithm, 28
Cauchy sequence, 48
characteristic polynomial, 26

of the Frobenius endomorphism, 26, 43, 72,
74

complete valuation field, 48
composition law, 16, 17
coordinate ring

affine, 2
homogeneous, 4

coordinates
homogeneous, 3
Jacobian, 71
projective, 3
weighted projective, 71

curve, 5
elliptic, see elliptic curve
genus, 11
hyperelliptic, see hyperelliptic curve
model, 5
modular, see modular curve
non-singular part, 18

degenerate pairing, 21
degree

inseparable, 6
of a divisor, 7, 30
of a morphism, 6
separable, 6

dehomogenization, 4
derivation, 9
determinant, 25, 26
differential, see differential form

invariant, see invariant differential
differential form, 9, 51

divisor, 10
holomorphic, 10
non-vanishing, 10
order, 10
pull-back, 10
regular, 10

Diffie-Hellman Problem, 65
dimension

of a projective variety, 5
of an affine variety, 3

discrete
valuation, 47
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valuation field, 48
valuation ring, 5, 47

discrete logarithm problem, 79
for EDS, 87
in cyclic groups, 79–81
in finite fields, 82
on elliptic curves, see elliptic curve discrete

logarithm problem
on hyperelliptic curves, 82

discriminant, 15, 40
minimal, 55

divisibility sequence, 35
elliptic, see elliptic divisibility sequence

division polynomial, 38, 72
abstract, 37

divisor, 7, 30
associated vector space, 10
canonical, 10
class group, 8

canonical class, 10
degree zero part, 8, 16, 27
Mumford representation, 28

defined over K, 28
defined over K, 8
degree, 7, 30
effective, 10
greatest common divisor, 28
group, 7, 30

partial order, 10
linear equivalence, 8
of a differential form, 10
of a function, 8
order, 7
positive, 10
principal, 8, 18, 30, 34
pull-back, 8
push-forward, 8
reduced, 27

reduction, 28
Riemann-Roch space, 10
semi-reduced, 27

addition, 28
support, 8

DLP, see discrete logarithm problem
domain parameters, 66
dual isogeny, 20
DVR, see discrete valuation ring

EC-DHP, see Elliptic Curve Diffie-Hellman Prob-
lem

ECC, see elliptic curve cryptography
ECDLP, see elliptic curve discrete logarithm prob-

lem
ECIES, 67
EDS, see elliptic divisibility sequence
EDSDLP, 87
effective divisor, 10
Eisenstein series, 30
Elkies prime, 47, 73

Elliptic Curve
Diffie-Hellman, 66
Diffie-Hellman Problem, 65
Digital Signature Algorithm, 68
Integrated Encryption Scheme, 67
Menezes-Qu-Vanstone, 67

elliptic curve, 13
arithmetic addition law, 17
base point, 13
defined over K, 13
endomorphism, 18
formal group, 54
geometric addition law, 16
group law, 16
isogenous, 18
j-invariant, 15
ordinary, 45
supersingular, 45
torsion subgroup, 19, 20
Weierstraß equation, 14
Weil conjectures, 43

elliptic curve cryptography, 65–69
domain parameters, see domain parameters
key pair, 66

elliptic curve discrete logarithm problem, 65, 79
elliptic divisibility sequence, 35, 76

associated to a curve, 39
association problem, 87
discrete logarithm problem, 87
equivalence, 62
perfectly periodic, 61, 63
proper, 35
quadratic residuosity, 87
zero-apparition, 36

elliptic function, 29
order, 30

elliptic net, 59, 76
associated to a curve, 61
equivalence, 62
perfectly periodic, 61
rank, 59
subnet, 59
zero-apparition, 61

elliptic sequence, 35
generalized, 59

embedding degree, 44
endomorphism

characteristic polynomial, 26
determinant, 26
ring, 18
trace, 26

equivalent
absolute value, 47
elliptic nets and EDS, 62

Euler characteristic, 42
extension

of complete discrete valuation fields, 49
of discrete valuations, 49
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field
complete, 48
function field of a variety, 2
local, 48
of definition, 2, 4
of elliptic functions, 29, 31
perfect, 1

filtration of E(K), 56
formal

additive group, 50
exponential, 52
group, 50

associated group, 51
homomorphism, 50
isomorphism, 50
of an elliptic curve, 54

group law, 50
logarithm, 52
multiplicative group, 50

formation, 81
forward secrecy, 66
Frey-Rück attack, 83
Frobenius

automorphism, 49
dual isogeny, 74
endomorphism, 19
isogeny, 19
morphism, 7, 19
substitution, 49

function, 5
at a divisor, 8
divisor of a, 8
elliptic, 29
order, 6
pull-back, 5
push-forward, 6
rational, 5
regular, 3, 4

function field, 2, 4
fundamental parallelogram, 29

Galois group, 1
action

on An, 1
on Pn, 4
on rational maps, 5
on the coordinate ring, 2
on the divisor group, 8
on the function field, 2

Galois invariant pairing, 22
genus, 11
GHS attack, 86
good reduction, 56
greatest common divisor, 28
group associated to a formal group, 51
group law, 16

algorithm, 17
geometric, 16
tangent-chord, 16

group operation, 71

Hasse invariant, 45
Hasse’s theorem, 43
Hensel’s Lemma, 48
holomorphic differential form, 10
homogeneous

coordinate ring, 4
coordinates, 3
ideal, 4
polynomial, 4

homogenization, 4
homomorphism of formal groups, 50
homothetic lattices, see lattice, homothetic
hyperelliptic

curve, 26–28
involution, 27

hyperelliptic curve
discrete logarithm problem, 82

ideal
at a point, 3
homogeneous, 4
of an algebraic set, 2, 4

index calculus, 81
finite fields, 82
Jacobian of hyperelliptic curves, 82

inertia degree, 49
inseparable

degree, 6
morphism, 6

integer, 48
integral sequence, 35
invariant differential

normalized, 51
of an elliptic curve, 15, 19
on a formal group, 51

irreducible
algebraic set, 2
closed set, 2

isogenous, 18
isogeny, 18

dual, 20
leading coefficient, 74

isomorphism
of formal groups, 50
of projective varieties, 5

defined over K, 5

j-invariant, 15, 40
Jacobian

coordinates, 71
variety, 27

key exchange, 66
Diffie-Hellman, 66
MQV, 67

Kronecker congruence relation, 41
Krull dimension, 2



Index 105

`-adic Weil pairing, 25
lattice, 29, 39

basis, 29, 39
homothetic, 34, 39
of zero-apparition, 61

leading coefficient, 74
Legendre relation, 32
lift, 55

canonical, 57
linear equivalence, 8
local field, 48
local ring

of a curve, 5
of a projective variety, 4
of an affine variety, 3

logarithm
discrete, see discrete logarithm problem
formal, 52

maximal
ideal at a point, 3
unramified extension, 49

Mestre’s algorithm, 72
Miller’s algorithm, 77
minimal

discriminant, 55
multiplier, 79
Weierstraß equation, 55

model, 5
modular

curve, 40, 73
discriminant, 40
group, 40
polynomial, 40

morphism
of curves

degree, 6
inseparable, 6
inseparable degree, 6
purely inseparable, 6
ramification index, 6
separable, 6
separable degree, 6
unramified, 7

of projective varieties, 5
pull-back, 8
push-forward, 6, 8

MOV attack, 83
MQV, 67
multiplication-by-m map

computation, 71
on elliptic curves, 17
on formal groups, 50

multiplicative reduction, 56
Mumford representation, 28

net polynomials, 60
Newton’s iteration, 48
non-Archimedean

absolute value, 47
non-degenerate pairing, 21
non-singular

part, 18
point, 3, 5
variety, 3

non-vanishing differential form, 10
normalized

discrete valuation, 47
invariant differential, 51

opposite point, 27
order

of a differential form, 10
of a divisor, 7
of a function, 6
of elliptic functions, 30

ordinary curve, 45
Ostrowski’s theorem, 47

p-adic
absolute value, 47
valuation, 47

℘-function, see Weierstraß ℘ function
pairing, 21

alternating, 22
bilinear, 21
Galois invariant, 22
non-degenerate, 21
Tate(-Lichtenbaum), see Tate pairing
Weil, see Weil pairing

parallelogram law, 61
perfect field, 1
perfectly periodic, 61

EDS associated to a curve, 63
Picard group, see divisor class group
Pohlig-Hellman reduction, 79
point

addition, 71
at infinity, 4, 27
compression, 66
non-singular, 3, 5
rational, 1–4
singular, 3

pole, 6
Pollard’s rho algorithm, 80
polynomial

division, see division polynomial
modular, see modular polynomial
net, 60

positive divisor, 10
principal divisor, see divisor, principal
private key, 66
projective

closure, 4
coordinates, 3, 71
space, 3

affine piece, 4
variety, 4
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proper elliptic divisibility sequence, 35
public key, 66
pull-back

of a divisor, 8
of a function, 5
of differential forms, 10

purely inseparable morphism, 6
push-forward

of a divisor, 8
of a function, 6

quadratic
form, 61
function, 61
residuosity, 87

ramification index, 6, 49
rank

of an elliptic net, 59
of zero-apparition, 36

rational
function, 5
map, 5

defined over K, 5
pull-back, 5, 10
regular, 5

point, 1–4
reduced divisor, 27
reduction

additive, 56
good, 56
map, 55
modulo π, 55
multiplicative, 56
semi-stable, 56
stable, 56
unstable, 56

reduction procedure, 28
regular

differential form, 10
function, 3, 4
rational map, 5

relative differential forms, 9
residue degree, 49
residue field, 48
restriction of scalars, 86
Riemann hypothesis, 42
Riemann-Roch

space, 10
theorem, 11

ring of integers, 48
roots of unity, 21

σ-function, see Weierstraß σ-function
Satoh’s algorithm, 74
Schoof’s algorithm, 72
Schoof-Elkies-Atkin algorithm, 73
SEA algorithm, 73
semi-reduced divisor, 27

prime, 82
semi-stable reduction, 56
separable

degree, 6
morphism, 6

sequence
Cauchy, 48
divisibility, 35
elliptic, 35
integral, 35

Shanks-Mestre algorithm, 72
singular point, 3
smooth, 3, 81
smoothness bound, 81
space

affine, 1
projective, 3

stable reduction, 56
subfield curve, 71, 72
subnet, 59
summation map, 30
supersingular, 45
support of a divisor, 8

tangent-chord law, 16
Tate

module
of a field, 25
of an elliptic curve, 25

pairing, 22
computation, 76–78
modified, 44

Tate-Lichtenbaum pairing, see Tate pairing
torsion subgroup, 19, 20
trace, 25, 26
translation-by-Q map, 19
triangle inequality, 47

uniformizer, 6
uniformizing parameter, 48
unramified

field extension, 49
morphism, 7

unstable reduction, 56
upper half plane, 39

valuation, 47
discrete, 47
normalized, 47

valuation ring, 47
of a field, 48

variety
Abelian, 86
affine, 2
dimension, 3, 5
isomorphism, 5
Jacobian, 27
non-singular, 3
projective, 4
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smooth, 3
Verschiebung, 74
Vélu’s formulas, 20

Weierstraß
change of coordinates, 14
coordinate functions, 14
equation, 14

discriminant, 15
invariant differential, 15
minimal, 55
non-singular points, 18

℘-function, 31
differential equation, 32

σ-function, 32
ζ-function, 32

weighted projective coordinates, 71
Weil

conjectures, 41–43
for curves, 43
for elliptic curves, 43

descent, 85
divisor, see divisor
pairing, 23, 44
`-adic, 25

reciprocity, 9
restriction, 86

Z-function, see zeta function
ζ-function, see Weierstraß ζ-function
Zariski topology, 2, 4
zero, 6
zero set, 1, 4
zero-apparition, 36, 61
zeta function, 41–43
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