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Chapter 0O

Introduction

This book is an introduction to Fourier analysis and related topics with appli-
cations in solving linear partial differential equations (PDEs), integral equations
as well as signal problems. In this chapter we introduce some basic PDEs of
mathematical physics. We also introduce the step and impulse functions which
are crucial in describing the continuous time signals.

0.1 Partial Differential Equations

We shall use the common notation R" for the real Euclidean spaces of dimen-
sion n with the elements x = (21, zs,...,%,) € R". In the most applications
n will be 1,2,3 or 4 and the variables z;, o and z3 denote coordinates
in one, two, or three dimensions, whereas x, represents the time variable.
In this case we usually replace (z1, 9,3, 24) by a most common notation:
(z,y, 2,t). Further we shall use the common subscript notation for the partial
derivatives, viz:

ou ) ou 0%u 0%u otc
; Y U - ) (2 = ) (2 = b .
b 0wy ot Y 9zoy o2

Ug

A more general notation for a partial derivative for a sufficiently smooth
function u (see definition below) is given by

olely — gm g gor

= . e u
ozt ... 0x%» 0zt 0x3? 0xon

7
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where 38: Jl, 1 <4 < n, denotes the partial derivative of order 7 with respect
to the variable z;, @ = (aq,qq,...,q,) is a multi-index of integers «; > 0

and |a| = a1 + ... + ay.

Definition 1. A function f of one real variable is said to be of class C*) on
an interval I if its derivatives f', ..., f®) exist and are continuous on I. A
function f of n real variables is said to be of class C*) on a set S € R if
all of its partial derivatives of order < k i.e. 01 f/(0z$" ...0z%") with the
multi-indez |o| = a1 + ... + o, < k, exist and are continuous on S.

A key defining property of a partial differential equation (PDE) is that
there is more than one independent variable and a PDE is a relation between
an unknown function and its partial derivatives:

FZ1, -y Ty Uy Uy s Uy - -+ 5 Ugygrs - - - 0 u/028 . 0z, ..) = 0. (0.1.1)

The order of an equation is defined to be the order of the highest deriva-
tive in the equation. The most general PDE of the first order in two inde-
pendent variables can be written as

F(z,y,u(z,y), ug(z,y), uy(z,y)) = F(z,y,u, ug, uy) = 0. (0.1.2)

Likewise the most general PDE of the second order in two independent vari-
ables is of the form

F(x,y,u, uwauyaummauzyauyy) =0. (013)

It turns out that, when the equations (0.1.1)-(0.1.3) are considered in bounded
domains  C R", in order to obtain a unique solution (see below) one should
provide conditions at the boundary of the domain €2 called boundary condi-
tions, denoted, e.g. by B(u) = f or B(u) = 0 (as well as conditions for ¢t = 0,
initial conditions; denoted, e.g. by I(u) = g or I(u) = 0), as we often see
in the theory of ordinary differential equations. B and I are expressions on
u and its partial derivatives, stated on the whole or a part of the boundary
of Q (or, in case of I, for t = 0), and are associated to the underlying PDE.
Below we shall discuss the choice of relevant initial and boundary conditions
for a PDE.

A solution for a PDE of type (0.1.1)-(0.1.3) is a function u that identically
satisfies the corresponding PDE, and the associated initial and boundary
conditions, in some region of the variables zi, zs,...,z, (or z,y). Note
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that a solution of an equation of order k£ has to be k£ times differentiable. A
function in C(¥) that satisfies a PDE of order k is called a classical (or strong)
solution of the PDE. We sometimes also have to deal with solutions that are
not classical. Such solutions are called weak solutions. We shall discuss the
weak solutions in the distribution chapter.

Definition 2. A problem consisting of a PDE associated with boundary
and/or initial conditions is called well-posed if it fulfills the following three
criteria:

1. Existence The problem has a solution.

2. Uniqueness There is no more than one solution.

3. Stability A small change in the equation or in the side conditions gives
rise to a small change in the solution.

If one or more of the conditions above does not hold, then we say that the
problem is ill-posed. The fundamental theoretical question of PDE is whether
the problem consisting of the equation and its associated side conditions is
well-posed. In this regard, one can fairly say that the fundamental problems
of mathematical physics are all well-posed. However, in certain engineering
applications we might encounter problems that are ill-posed. In practice,
such problems are unsolvable. Therefore, when we face an ill-posed problem,
the first step should be to modify it appropriately in order to render it well-
posed.

Definition 3. An equation is called linear if in (0.1.1), F is a linear function
of the unknown function u and its derivatives.

Thus, for example, the equation e**Yu, + 27u, + cos(z® 4+ y?)u = y? is

a linear equation, while u2 + “; = 1 is nonlinear equation. The nonlinear

equations are often further classified into subclasses according to the type of

their nonlinearity. Generally, the nonlinearity is more pronounced when it

appears in higher order derivatives. For example, the following equations are
both nonlinear

Uy + Uyy = u° + u. (0.1.4)

Ugy + Uyy = |Vul*u. (0.1.5)

Here |Vu| denotes the norm of the gradient of u. While (0.1.5) is nonlinear,
it is still linear as a function of highest-order derivative. Such a nonlinearity
is called quasilinear. On the other hand in (0.1.4) the nonlinearity is only in
the unknown solution u. Such equations are called semilinear.



10 CHAPTER 0. INTRODUCTION

0.1.1 Differential operators , superposition principle

We recall that we denote the set of continuous functions in a domain D (a
subset of R") by C°(D) or C(D). Further, by C*)(D) we mean the set of
all functions that are k£ times continuously differentiable in D. Mappings
between function classes as C*) are called differential operators. We denote
by L[u] the operation of a mapping (operator) £ on a function u.

Definition 4. An operator L that satisfies

LBrur + Boug] = f1Lur] + B2 Lug], Vi, B2 € R, (0.1.6)

where uy; and uy are arbitrary functions is called a linear operator. We may
generalize (0.1.6) as

E[ﬁlul +...+ ﬁkuk] = ﬁlﬁ[ul] + ...+ ﬁkﬁ[uk], VBi,...,0Bk € R, (017)

i.e. L takes any linear combination of u;’s to corresponding linear combina-
tion of Llu;]’s.

For instance the integral operator L[f] = fab f(z) dz defined on the space
of continuous functions on [a, b] defines a linear operator from C|a, b] into R:
satisfies both (0.1.6) and (0.1.7).

A linear partial differential operator L that transforms a function u of

the variables x = (21,9, ..., ;) into another function L is given by
n a ° n 82 .
Lje] = bi(x)— i (X)=——— + ... 0.1.8
o] = a0+ bt + 3 o5+ (0.1.8)

where e represents any function v in, say C**), and the dots at the end indicate
higher-order derivatives, but the sum contains only finitely many terms.
The term linear in the phrase linear partial differential operator refers
to the following fundamental property: if £ is given by (0.1.8) and u;, 1 <
j < k, are any set of functions possessing the requisite derivatives, and
B, 1 < j < k, are any constants then the relation (0.1.7) is fulfilled. This
is an immediate consequence of the fact that (0.1.6) and (0.1.7) are valid for
L replaced with the derivative. A linear differential equation defines a linear
differential operator: the equation can be expressed as L[u] = F, where £
is a linear operator and F' is a given function. The differential equation
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L[u] = 0 is called a homogeneous equation. For example, define the operator

L = 0%/0z* — 0?/0y?. Then
Llu] = tgy — uyy = 0,
is a homogeneous equation, while the equation
Llu] = Ugy — Uy =z,

is an example of a nonhomogeneous equation. In a similar way we may define
another type of constraint for the PDEs that appears in many applications:
the boundary conditions. In this regard the linear boundary conditions are
defined as operators B satisfying

B(fBru1 + Bous) = B1B(u1) + 2B (us), Vi, B2 € R, (0.1.9)

at the boundary of a given domain (2.

The Superposition principle. An important property of the linear op-
erators is that if the functions u;, 1 < j < k, satisfy the linear differential
equation L[u] = F; and the boundary conditions (linear) B(u;) = f; for
j=1,2,...,k, then the linear combination v := ", S;u;, satisfies the equa-
tion L[v] = Y " | iF; as well as the boundary condition B(v) = Y, Bif;.
In particular, if each of the functions u;, 1 < ¢ < n, satisfies the homogeneous
equation L[u] = 0 and the homogeneous boundary condition B(u) = 0, then
every linear combination of them satisfies that equation and boundary con-
dition too. This property is called the superposition principle. It allows to
construct complex solutions through combining simple solutions: suppose we
want to determine all solutions of a differential equation associated with a
boundary condition viz,

L[u] = F, B(u) = f. (0.1.10)
We consider the corresponding, simpler homogeneous problem:
L[u] =0, B(u) = 0. (0.1.11)

Now it suffices to find just one solution, say v of the original problem (0.1.10).
Then, for any solution u of (0.1.10), w = u — v satisfies (0.1.11). Since
Llw] = L[u] — Lv] = F—F =0 and B(w) = B(u) — B(v) = f— f = 0.
Hence we obtain a general solution of (0.1.10) by adding the general solution
w of (0.1.11) to any particular solution of (0.1.10).
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Following the same idea one may apply superposition to split a problem
involving several inhomogeneous terms into simpler ones each with a single
inhomogeneous term. For instance we may split (0.1.10) as

Luq] = F, B(u;) =0,
Llugl =0,  Bl(ug) = f,

and then take u = u; + usg.

The most important application of the superposition principle is in the
case of linear homogeneous differential equations satisfying homogeneous
boundary conditions: if the functions uj, 1 < j < k, satisfy (0.1.11): the
linear differential equation L{u] = 0 and the boundary conditions (linear)
B(u;) = 0 for j = 1,2,...,k, then the linear combination v := Y ., Biu;,
satisfies the same equation and boundary condition: (0.1.11).

Finally, superposition principle is used to prove the uniqueness of solu-
tions to linear PDEs.

Exercises
1. Consider the problem
Uz +u =0, z€(0,0); u(0) = u(¢) = 0.

Cleasly the function u(z) = 0 is a solution. Is this solution unique?
Does the answer depend on £7

2. Consider the problem
Ve + 1ty = f(@), 7€ (0,0;  u(0) = (0) = <[w'(6) + u(0)].

a) Is the solution unique? (f is a given function).

b) Under what condition on f a solution exists?

3. Suppose u;, © = 1,2,..., N are N solutions of the linear differential
equation L[u] = F, where F' # 0. Under what condition on the con-
stant coefficients ¢;, ¢ = 1,2,..., N is the linear combination Zfil Cil;
also a solution of this equation?
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4. Consider the nonlinear ordinary differential equation u, = u(1 — u).

a) Show that uiz) = 1 and us(z) = 1 — 1/(1 + €®) both are solutions,
but u; + us is not a solution.

b) For which value of ¢; is ¢u; a solution? What about cous?
5. Show that each of the following equations has a solution of the form

u(z,y) = f(axz + by) for a proper choice of constants a, b. Fine the
constants for each example.

a) Uy +3uy, =0. b)3uy, —7u, =0. c¢) 2u, +eu, = 0.

6. a) Consider the equation uzy + 2ugy + u,,, = 0. Write equation in the
coordinates s=x,t =1 — y.
b) Find the general solution of the equation.
c) Consider the equation gz — 2ugy+5u,, = 0. Write it the coordinates
s=z+y and t = 2z.

7. a) Show that for n =1,2,3,...,, (z,y) = sin(nnz) sinh(nny) satisfies

Ugg + Uy =0, u(0,y) =u(l,y) =u(z,0) =0.

b) Find a linear combination of u,’s that satisfies u(z,1) = sin 27z —
sin 3.

¢) Solve the Dirichlet problem

Ugg + Uyy =0, u(0,y) =u(l,y) =0,
u(z,0) = 2sinmz, wu(z,1) =sin27z — sin3nz.

0.1.2 Some equations of mathematical physics

In this subsection we shall introduce some of the basic partial differential
equations of mathematical physics that will be the subject of our studies
throughout the book. These equations all involve a fundamental differential
operator of order two, called Laplacian, acting on C(? (R™) and defined as
follows:

82u 82’& 82U n
v? =omt o T T u e COR). (0.1.12)
1 2

n
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Basically, there are three types of fundamental physical phenomena described
by differential equations involving the Laplacian:

Vu = F(x,t), The Laplace equation
uy — kV?u = F(x,1), The heat equation (0.1.13)
uy — V3?u = F(x,1), The wave equation.

Here F' is a given function. If F # 0, then the equations (0.1.13) are in-
homogeneous. In the special case, when F' = 0 the equations (0.1.13) are
homogeneous.

Here the first equation, being time independent, has a particular nature:
besides the fact that it describes the steady-state heat transfer and the stand-
ing wave equations (loosely speaking, the time independent versions of the
other two equations), the Laplace’e equation arises in describing several other
physical phenomena such as electrostatic potential in regions with no electric
charge, electromagnetic potential, in the domains lacking gravity as well as
problems in elasticity, etc.

The heat equation describes the diffusion of thermal energy in a homogeneous
material where u = u(x, t) is the temperature at a position x at time ¢ and &
is a constant called thermal diffusivity or heat conductivity of the material.

Remark The heat equation can be used to model the heat flow in solids
and fluids, in the later case, however, it dose not take any account to the
convection phenomenon; and provides a reasonable model only if phenomena
such as macroscopic currents in the fluid are not present (or negligible).
Further, the heat equation is not a fundamental law of physics, and it does
not give reliable answers at very low or very high temperatures.

Since temperature is related to heat, which is a form of energy, the basic
idea in deriving the heat equation is to use the law of conservation of energy:

Fourier’s law of heat conduction and the derivation of heat equation
Let Q C R, d = 1,2,3 be a fixed spatial domain with the boundary 9.
The rate of change of thermal energy with respect to time in D is equal to
the net flow of energy across the boundary of D plus the rate at which heat
is generated within D.

Let now u denote the temperature at the position x = (z,y, z) € D and
at time t. We assume that the solid is on rest and it is rigid so that the only
energy present is thermal energy and the density p(z) is independent of the
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time ¢ and temperature u. Let £ denote the specific internal energy of the
solid, that is, the energy per unit mass. Then the amount of thermal energy

in 2 is given by
/ p& dx,
Q

and the time rate (time derivative) of change of thermal energy in (2 is:

d pgdx:/pé'tdx.
Q

dt Jq
Let ¢ = (q1, g2, q3) denote the heat flux vector and n = (n,ng, ng) denote
the outward unit normal, to the boundary 02, at the point x € 9€2. Then
g - n represents the flow of heat per unit cross-sectional area per unit time
crossing a surface element. Thus

—/ q-ndS
a0

is the amount of heat per unit time flowing across the boundary 0€2. Here dS
represents the element of surface area. The minus sign reflects the fact that
if more heat flows out of the domain D than in, the energy in D decreases.
Finally, in general, the heat production is determined by external sources that
are independent of the temperature. In some cases (such as an air conditioner
controlled by a thermostat) it depends on temperature itself but not on
its derivatives. Hence in the presence of a source (or sink) we denote the
corresponding rate at which heat is reduced per unit volume by f = f(x, ¢, u)
so that the source term becomes

/ f(x,t,u)dx.
Q
Now the law of conservation of energy takes the form

/pé‘tdx—/ q-ndS:/f(x,t,u)dx. (0.1.14)
Q o0 Q

Applying the Gauss divergent theorem to the integral over 02 we get

/(,0 & +V-q—f)dx=0, (0.1.15)
0

where V- denotes the divergent operator. In the sequel we shall use the
following simple result:
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Lemma 1. Let h be a continuous fiction satisfying fQ h(xdx) = 0 for every
domain  C R?. Then h = 0.

Proof. Let us assume to the contrary that there exists a point xo € {2 where
h(xo) # 0. Assume without loss of generality that h(xe) > 0. Since h is
continuous, there exists a domain (maybe very small) y C 2, containing
xo and € > 0, such that h(x) > ¢, for all x € Q. Therefore we have
Jo, h(x) dx > eVol(Qg) > 0, which contradicts the lemma’s assumption. [

From (0.1.15), using the above lemma, we conclude that
p& =—-V-q+ f. (0.1.16)

This is the basic form of our heat conduction law. The functions £ and ¢
are unknown and additional information of an empirical nature is needed to
determine the equation for the temperature u. First, for many materials,
over fairly wide but not too large temperature range, the function & = £(u)
depends nearly linearly on u, so that

Here A, called the specific heat, is assumed to be constant. Next we relate
the temperature u to the heat flux q. Here we use Fourier’s law but, first, to
be specific, we describe the simple facts supporting Fourier’s law:

(i) the heat flows from regions of high temperature to the regions of low
temperature.

(ii) The rate of heat flow is small or large according as temperature changes
between neighboring regions are small or large. To describe these quantitative
properties of heat flow, we postulate a linear relationship between the rate of
heat flow and the rate of temperature change. Recall that if x is a point in
the heat conducting medium and n is a unit vector specifying a direction at
x, then the rate heat flow at x in the direction n is ¢-n and the rate of change
of temperature is du/0n = Vu - n, the directional derivative of temperature.
Since ¢ - n > 0 requires Vu - n < 0, and vice versa, (from the calculus the
direction of maximal growth of a function is given by its gradient), our linear
relation takes the form ¢-n = —xkVu-n, with kK = k(x) > 0. Since n specifies
any direction from x, this is equivalent to the assumption

qg = —kVu, (0.1.18)
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which is concrete statement of the Fourier’s law. The positive function « is
called the heat conduction (or Fourier) coefficient. Let now o = k/Ap and
F = f/Ap and insert (0.1.16) and (0.1.17) in (0.1.18) to get the final form of
the heat equation.

w=V-(cVu)+ F. (0.1.19)

The quantity o is referred to as the thermal diffusivity (or diffusion) coef-
ficient. If we assume that o is constant, then the final form of the heat
equation would be

uy = oVu+F, or uy=0Au+F. (0.1.20)

Here A = divV = V? = 8‘9—; + 6‘9—; + ;—; denotes the Laplace’s operator
in three dimensions (its general form is introduced in the beginning of this
subsection).
The third equation in (0.1.13) is the wave equation: uy; —cV?u = F. Here
u represents a wave traveling through an n-dimensional medium; c is the
speed of propagation of wave in the medium and u(x,t) is the amplitude of
the wave at position x and time ¢. The wave equation provides mathematical
model for a number of problems involving different physics processes such as
in the following examples:
i) Vibration of a stretched string, such as guitar string (1-dimensional).
i1) Vibration of a column of air, such as a clarinet (1-dimensional).
i17) Vibration of a stretched membrane, such as a drumhead (2-dimensional).
iv) Waves in an incompressible fluid, such as water (2-dimensional).
v) Sound waves in air or other elastic media (3-dimensional).
vi) Electromagnetic, such as light waves and radio waves (3-dimensional).
Note that in (7), (i74) and (iv), u represents the transverse displacement
of the string, membrane, or fluid surface; in (i7) and (v), u represents the
longitudinal displacement of the air; and in (vi), u is any of the components
of the electromagnetic field. For detailed discussions and a derivation of the
equations modeling (7)- (vi), see, e.g, Folland [|, Guenther and Lee, Gus-
tavsson [|, [], Ingard [| Pinchover and Rubinstein [|, Strauss [| and Taylor
[]- We should point out, however, that in most cases the derivation involves
making some simplifying assumptions. Hence, the wave equation gives only
an approximate description of the actual physical process, and the validity
of the approximation will depend on whether certain physical conditions are
satisfied. For instance, in example (i) the vibration should be small enough

(
(
(
(
(
(
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so that the string is not stretched beyond its limits of elasticity. In exam-
ple (vi), it follows from Maxwell’s equations, the fundamental equations of
electromagnetism, that the wave equation is satisfied exactly in regions con-
taining no electrical charges or current, which of course cannot be guaranteed
under normal physical circumstances and can only be approximately justified
in the real world. So an attempt to derive the wave equation corresponding
to one and each of these examples from the physical principles is far beyond
the scope of this book. Nevertheless, to give an idea, below we shall de-
rive the wave equation for a vibrating string which is, by the way, the most
considered wave equation model in this book.

The vibrating string, derivation of a wave equation in 1D

Consider a perfectly elastic and flexible string stretched along the segment
[0, L] of the z-axis, moving perpendicular to its equilibrium position. Let
po(x) denote the density of the string in the equilibrium position and p(z, t)
the density at time ¢. In an arbitrary small interval [z, x + Az] the mass will
satisfy

T+Az T+Ax
/ po(z)de =m = / p(z,t)\/1+ u2dz. (0.1.21)

|
|
1
|
|
1
T

T+ Ax

Thus, using lemma 1, (2.4.1) gives the conservation of mass viz:

po(z) = p(z,t)\/1 + ul. (0.1.22)

Now we use the tensions T'(z,t) and T'(z + Az, t), at the endpoints of an
element of the string and determine the force acting on the interval [z, x+Az].
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Since we assumed that the string moves only vertically, hence the forces in
the horizontal direction should be in balance: i.e.,

T(x + Az, t)cosa(x + Az) — T(x,t) cosa(x) = 0. (0.1.23)

Dividing (2.4.3) by Az and letting Az — 0, we thus obtain

% (T(x, t) cos a(m)) =0, (0.1.24)

hence
T(x,t)cosa(zr) = 7(t), (0.1.25)

where 7(¢) > 0 because it is the magnitude of the horizontal component of
the tension.

On the other hand the vertical motion is determined by the fact that the
time rate of change of linear momentum is given by the sum of the forces
acting in the vertical direction. Hence, using (2.4.2), the momentum of the
small element [z, z + Ax] is given by

T+Ax T+Ax
/ po(z)us de = / p(z,t)\/1 + u2 u dz, (0.1.26)

with the time rate of change:

d T+Azx

T+Ax
pr polty dT = / Polly dT. (0.1.27)

There are two kind of forces acting on the segment [z, x + Ax] of the string:
(i) the forces due to tension that keep the string taut and whose horizontal
components are in balance, and (ii) the forces acting a along whole length of
the string, such as weight. Thus, using (2.4.5), the net force acting on the
ends of the string element [z, z + Ax] is

T(x 4+ Az, t)sina(z + Az)—T(z,t) sina(z) =
(sin alz + Az)  sina(z) )
cosa(z + Az)  coso(x)

(0.1.28)

T<tan a(x + Az) — tan a(x))
)

)

= T(ux(x + Az, t) — uz(z,t
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Further, the weight of the string acting downward is

r+AT r+AT
—/pgdS:—/ pg\/l—i-ugdac:—/ pog dx. (0.1.29)

Next, for an external load, with the density f(z,t), acting on the string (e.g.,
a violin string is bowed), we have

T+Azx
/pde = / pof(z,t)dx. (0.1.30)

Finally, one should model the friction forces acting on the string segment.
We shall assume a linear law of friction of the form:

T+Ax T+Ax
—/oputdSz—/ op 1+u§utdx:—/ o pougdz. (0.1.31)

Now applying the Newton’s second law yields

r+Az
- / potsy dz = Tlus(z + Az, 1) — u(e,1)]

T+Az z+Az (0132)
—/ apoutdac—f—/ po(f — g) dx.
Dividing (2.4.12) by Az and letting Az — 0 we obtain the equation
PoUtt = TUggy — O Po Ut + po(f — g) (0133)

Letting ¢> = 7/py and F = f — g, we end up we the following concise form:
U + O Uy = gy + F. (0.1.34)

Equation (2.4.14) describes the vibration of the considered string once it
is set into motion. The smallness assumption here results to a single linear
equation for u. Due to the presence of the friction term ou;, equation (2.4.14)
is often referred as the damped one-dimensional wave equation. If friction is
negligible, then we can let 0 = 0 and get the inhomogeneous wave equation

Uy = gy + F. (0.1.35)

In the absence of the external forces and when the weight of the string is
negligible, we may take F' = 0 to get the one-dimensional wave equation:

Uy = CUgy. (0.1.36)
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Note that since u has the unit of length ¢, uy; has the unit of acceleration
and g, the unit of £, hence ¢ has the unit of velocity.

Remark In Appendix A we include a discussion on derivations of some of the
partial differential equations, which are of interest in Fluid and gas dynamics,
from the underlying physical laws.

Exercises

1. Show that u(z,y) = log(z? + y?) satisfies the Laplace’s equation g, +
Uyy = 0 for (l‘,y) ?é (070)

2. u(z,y,z) = (2% + y? + 22)~/2 satisfies the Laplace’s equation ., +
Uyy + Uy, = 0 for (z,y,2) # (0,0,0).

3. Show that u(r, #) = Br™sin(n#) satisfies the Laplace equation in polar

coordinates: . .
Upy + —Upr + SUgy = 0.
T T

4. Verify that

—2y 2 +y?—1

u = , V=
24+y?+2z+1 224+y?+2r+1

both satisfy the Laplace equation, and sketch the curves u = constant
and v = constant. Show that

i(z —1)

+17

U+ = where 2z =1z +1y.

5. Show that u(z,t) = t~/2? exp(—z?/4kt) satisfies the heat equation u, =
kg, for t > 0.

6. Show that u(z,y,t) = t~ exp|—(z%+y?)/4kt] satisfies the heat equation
Ut = k(Ugy + Uyy) for ¢ > 0.

7. The spherically symmetric form of the heat conduction equation is:

2 1
Upp + —Up = —Uyg.
T K

Show that v = ru satisfies the standard one-dimensional heat equation.
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10.

11.

12.

13.

14.

15.
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Show that the equation
0; = KBz — h(6 — )

can be reduced to the standard heat conduction equation by writing
u = (6 — ). How do you interpret the term h(f — 6y)?

Use the substitution & = x—vt, n =t to transform the one-dimensional
convection-diffusion equation

U = Ktgy — VU,
into a heat equation for @(&,n) = u(& + v, n).
If f e Cl0,1], let u(x,t) satisfy

Up = Ugy, O<z<l, t>0,
u(0,t) = u(l,t) =0, t>0,
u(z,0) = f(x), 0<z<I1.

Derive the identity 2u(u; — ugg) = (u?); — (2uug), + 2u?.

Find the possible values of a and b in the expression u = cos at sin bz,
such that it satisfies the wave equation u; = c?ugg.

Taking u = f(z + at), where f is any function, find the values of «
that will ensure u satisfies the wave equation uy = c*ugy.

The spherically symmetric version of the wave equation wu; = c*ug,
takes the form

Uy = & (Upr + 2u, /7).
Show, by putting v = ru that it has a solution of the form

v=f(ct —r)+ glct+7).

Let £ = x — ¢t and n = = 4 ct. Use the chain rule to show that

Ut — CZU$$ = —4u§n.
Show that the solution for the initial value problem

Uy = c2uzz7 U(.T, 0) = f(x)a Ut(.fE, 0) = g(x)a

satisfies the d’Alembert’s formula:

u(z,t) = % flx—ct)+ flz+ ct)] + 1 /Hdg(y) dy.

c —ct
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0.2 Generalized functions

Here, loosely speaking, by generalized functions we shall mean a class of real-
valued functions having jump discontinuities at finite or countable number of
points, and their derivatives (the concept of derivative is “generalized” to dis-
continuity points in the context of “weak formulation”). The through study
of generalized functions is the subject of the distribution theory (for a brief in-
troduction see Appendix B). Impulse and step functions are examples of most
commonly used generalized functions with many applications, e.g. heat conduc-
tion, wave propagation, signal analysis and sampling signals, in order to describe
the data and solution of the underlying differential equations. Signals are certain
type of generalized functions defined over a continuous range of an independent
variable such as time. Examples of such signals include voltage, current, power,
pressure, flow, volume, angle, displacement, acceleration, and so forth. In this
section we derive the step and impulse functions through differentiating either
the ramp function introduced below, or the absolute value function. The Dirac
0-function is derived, e.g. as a “generalized” derivative from the step function.
We shall also use, formal, derivatives of -functions, which are, rigorously, defined
in the distribution sense.

I. The ramp function approach: The ramp function r(¢) is defined by

0, for t<0
r(t) =: { t for >0, (0.2.1)
r(t)

Figure 1: The ramp function ().

The function r(t) is everywhere differentiable except at the origin ¢t = 0. We
define the step function to be the modified derivative /() of (¢) by letting
r'(0) := 1.
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0.2.1 The Heaviside step function

In many engineering applications the underlying differential equation may
frequently have a discontinues forcing function, for example a square wave
resulting from an on/off switch. In order to accommodate such discontinuities
we use the Heaviside step function H(t), which we, customary, denote by 6().
As for the signal problems: to say that a signal is a continuous-time signal
is not the same that it is a continuous function of time, but only the time
t is a continuous variable. An important example of this distinction is the
Heaviside step function 6(t):

Definition 5. The Heaviside step function 0(t) is defined by:

B(t) =: () = { ! J;Z; i;g (0.2.2)

Figure 2: The Heaviside function 6(t).

The Heaviside step function is also frequently referred to as the unit step
function or simply the step function. As we mentioned above 7/(t) is not
defined for ¢t = 0 and 6(¢) is discontinuous at t = 0. Here we define 6(0) := 1,
unless otherwise the point ¢ = 0 is explicitly excluded from the domain of
definition. A function representing a unit step at ¢ = 7" may be obtained by
a horizontal translation of duration 7". This shift function is defined by

(1) 8(t—T)= {

The product f(t)0(t — T') takes values

F(DB(t —T) = { ?;( ) o i;; (0.2.4)

0, for t<T ¢
1, for t>T (2) T(t)=/ f(r)dr. (0.2.3)

) -0
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o(t—T)

Nob----o

Figure 3: The Heaviside function 6(t — 7).

So the function #(t — T') may be interpreted as a device for “switching on”

Fp(t—1)
F(r) /\
% t

Figure 4: The function f(¢)8(t — T).

the function f(¢) at t = T. In this way the unit step function may be used to
write a concise formulation of piecewise continuous functions. To illustrate
this, consider the piecewise-continuous function f(¢) illustrated in the Fig
below and defined by

fi1(t), for 0<t<ty
1) f®) =9 fO), for ¢ <t <t (0.2.5)
f3(t), for ¢ > ts.

To construct this function f(t) we use the following switching operations:
(i) switch on the function f(t) at ¢ = 0;

(ii) switch on the function fo(t) at ¢ = ¢; at the same time switch off the
function f;(¢);

(iii) switch on the function f5(¢) at ¢ = ¢, and at the same time switch off
the function f5(¢). In terms of the unit step function the function f(¢) may
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thus be expressed as

f() = [0)0() + [fo(t) — [L()]0(E — t1) + [f3(2) — f2(0)]0(t — t2).  (0.2.6)

Figure 5: The function f(¢)0(t — T).

Below are some other illustrative examples:

Exempel 1. The square pulse function with a given amplitude A:

| A, for te(ab)
f(t) —{ 0, for t¢(ab) (0.2.7)

can be representation by the one line expression: f(t) = A[f(t—a)—60(t—b)].

f(t) i

o ———

e ——-

Figure 6: The square pulse function f(¢).

Exempel 2. Using a combination of Heaviside functions The hat function:
1+ L for —T<t<0

pt)y=¢ 1—% for 0<t<T (0.2.8)
0 for t¢[-T,T],
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=T T

Figure 7: The hat function ¢(t).

can be expressed in a concise form as

o) = (14 )10 +7) — 66 + (1 - ) 6(6) — (¢~ 7))

t 2t t
= (1+ T)O(t +T) - Z6(t) - (1- T)Q(t ~ 7).
Exempel 3. If in the Ezample 1 we let A =sin(t), a =0 and b=, i.e.,
[ sint, for te[0,n]

then, we get the continuous sinus signal: f(t) = [0(t) — 0(t — 7)]sin(t). A
cut-off from sinus function as shown in the Fig. below

sin(t)

Figure 8: A sinus signal sin(?).

Exempel 4. Consider now the, purely, continuous signal O (t) given by

0 for  t <0,
OA(t) = ¢ % for  0<t<A, (0.2.10)
1 for A<t
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Then, Oa(t) has the following one line expression form:

1__ o
|
&
X t
Figure 9: The signal 0, (?),
%ay:iew—ﬂa—A)+ﬁa—Ay:imw+(y—iy@_Ay
A A A
0.2.2 The Impulse functions
We start with the function for the following Square pulse:
I 0<t<e
5.(t) = { 5 1d0.e] (0.2.11)
1/c ¢—o
Lot
|
|
S t
€

Figure 10: The square pulse function d.(%).

Note that §, satisfies

[5@@@:1

oo
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Definition 6. The Dirac’s § function is defined as the limit pulse function:
0(t) = im0 0:(t). This function has the following properties:

(1) 6(t)=0 for t#0, (2) 6(t) is undefined fort =0,
b2 1 ift1 <0<ty . . *©
(3) /t1 S(t)dt = { 0. otherwise, in particular /_oo d(t)dt = 1.

We may use the following geometric approach of the definition for the Dirac
delta function: using the, purely, continuous signal of Example 4 we have
obviously

0(t) = lim 0A(?), (0.2.12)
A—0
and the square pulse
5a(t) = dagt(t). (0.2.13)

Comparing (0.2.12) and (0.2.13) we get
_do(1)

Consequently 0(t) can be expressed as the running integral
t
6(t) :/ 3(7) dr, (0.2.15)

which is consistent with the original definition of §(¢), formulated in relation
(3) of the definition. The impulse function is depicted graphically as in the
Fig. below, where “1” beside the arrow indicates that the value of the area
of impulse is unity.

Figure 11: The delta function 6(¢) = ' ().
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The scaled impulse function Cé(t) is simply the derivative of the scaled
step function CH(t), C is a constant. Hence the value of the scaled impulse
is C.

Co(t) Co(t)
cl (C>0) (C <0)

C

Figure 12: Scaled unit impulse functions for C' > 0 and C < 0.

We will often encounter the product of unit-impulse function with another
function f(¢), that is

gty = f(t)o(t=1T), (0.2.16)

where we have included the possibility that §(¢) may be delayed in time by
some amout 7" (or advanced in time if T < 0) to produce §(t — T'). Another
interpretation of §(¢ — T') is simply that
do(t —T)
St-T)="—"=1 (0.2.17)
dt

To interpret the product signal g(¢) in (??) we again make use of approximate
impulse function da(t) to define the signal

ga(t) = f(t)oa(t = T), (0.2.18)

as illustrated in the Fig. below. Assuming that f(¢) is continuous over the
interval T < t < T 4+ A, we may approximate ga(t) for A sufficiently small
as simply

gA(t) = f(T)éA(t — T), (0219)

because f(t) is approximately constant over this interval. Since 6(t — T) is
the limit of 0A(t — 1) sa A — 0, it follows that

g(t) = fF()5(t —T) = F(T)5(t — T). (0.2.20)
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IO -

t
! T T+A
(1)
0N ﬂ
A
t
! T T+A

Figure 13: Illustration of approximate product ga(t) = f(t)oa(t — T).

That is the impulse §(¢t — 7T') is simply scaled by the value of f(¢t) at t =T
to produce g¢(t) as illustrated in Fig. above. This is sometimes called the
equivalence property of the unit impulse.

A simple, by particularly important extension of this result is that the
integral of ¢(t) over all ¢ equals, from the property (3) of the definition and
(0.2.20),

/ " F()6(t - T) dt = £(T), (0.2.21)

which is known as shifting property of the unit impulse. That is, no matter
how complicated the function f(¢) may by, the integral of f(¢)d(t — T) over
all ¢ equals simply the value of f(¢) at the point ¢ = T.

Exempel 5. We will encounter the integral
Fljw) = / eIl (t = T) dt. (0.2.22)

At first glance, this appears to be a complicated integral until we notice that
it contains an tmpulse fiction. The evaluation of the integral is the trivial
from (0.2.21) and is given by

F(jw) = e = coswT + jsinwT.



32 CHAPTER 0. INTRODUCTION

f(#)
S(t—T

Figure 14: Illustration of product signal g(t) = f(t)o(t — T).

The Dirac ¢ function is the most widely known generalized function.
Within the traditional realm of functions, the Dirac function does not make
sense. Nevertheless, it is one of the most important tools in the study of many
problems in pure and applied mathematics, physics, engineering, mathemat-
ical statistics, and so forth. One may think of, e.g. ¢d(z) as representing
the charge density of a particle of charge ¢ on the z-axis that occupies only
the single point x = 0: there is no charge except at the origin and the to-
tal charge is c¢. In the sequel, we treat the ¢ functions as normal functions
bearing in mind that their applications require careful interpretation based
on properties (1)-(3) above.

Remark. An alternative approach for the definition of the delta function
is by replacing the nonsmooth d.(¢) of the definition above by an infinitely
smooth one given by the Gauss-pulse:

2 2 2
6.(t) = —e /% £>0 (0.2.23)

where as above

§(t) = lim d.(¢).

e—0
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Figure 15: The Gauss pulse 8, (t) = 1/2/m e #/(2%),

Some properties of the Dirac function
Below we gather some of the most important properties of the Dirac function:

(1) Usually § is an even function and we have

5(—t) =6(t), Thus  O(T —t) =d(t—T).

(2) Recall that / Cs(dr=6(1), 0.

(3) We also recall that using the definition of d.(¢), we have

5(t) = lim 6.(1) = lim o) = g(t —8) o 5= %H(t).

(4) For an arbitrary continuous function f one can prove the following
evaluation formula:

F(0)(t = T) = F(T)3(t —T), (0.2.24)

(4)° where for T = 0 we get F@)o(t) = f(0)6(t)-

(4)" For continuously differentiable functions f we can, formally, deduce
that

fRE—T)=fT)t—-T)— f'(T)s(t—T). (0.2.25)
(4)" is a consequence of applying the product rule in differentiating (0.2.24):

[f@)o-T)) =[f(T)é(t-T) = (0.2.26)
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F)6( —T)+ f()F(t —T) = f(T)8'(t — T). (0.2.27)
[ |

Remark. By property (3), formally, we have that

§t) = dfg) _ d;t(;)’

(0.2.28)

where r(t) is the ramp function.

Below we formulate an alternative approach for deriving the step and impulse
functions

I1. The absolute value function approach. Recall that

] = t, fort >0
] -t for t <0,
t]

Figure 16: The absolute value function |¢|.

As the ramp function, the absolute-value function [t| is also everywhere dif-
ferentiable except at the origin ¢ = 0. The generalized derivative for |t| is the
signum function:

81gn(t) = % — {

Similarly the signum function is everywhere differentiable except at the
origin t = 0. A generalized derivative of the signum(¢) is 26(¢). The factor 2
is the magnitude of the jump at ¢t = 0. That is:

-1, fort <0

1 for t > 0. (0.2.29)

b

_ ldsign(t) _ 1d%(lt)
2 dt 2 dt

5(t) (0.2.30)
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sign(t)

—1

Figure 17: The signum function sign(t).

In solving problems we frequently encounter integrations involving € and
0 functions. Below, we shall formulate some of the most common integration
rules:

0.2.3 Rule of integration for Heaviside 6 functions

Integrating a causal restriction of f(t), e.g. the cut off function f(t)8(t —T)

NV
\/

\/\/

0t —T)f(2)
/-\ ¢
- T~

Figure 18: A causal restriction of the function f(¢).
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we get the rule
/ FO0(E —T)dt = [F(t) — (D)8t — T) + C (0.2.31)

where G(t) = F(t) — F(T) is a primitive function to f(¢) with G(T") = 0 and
C is a constant.

Exempel 6. For ezample when we compute the integral [(t—T)P0(t —T)dt
we have f(t) = (t —T)? and then
(t — T)rtt

0(t—T)+ C, > —1.
P ( ) p

/ (t = TYPO(t — T)dt =

Exempel 7. Let us now evaluate the integral f32[9(t+3)—2t0(t—1)] using the
rule of integration (0.2.31). The coefficient of (t+3) is 1 and the coefficient
of O(t — 1) is 2t. Let now f(t) =1 and g(t) = 2t. Then we have

/2 [0( +3) — 2t0(t — 1)]dt := /2 f(t)e(t+3)dt—/2 g(t)0(t — 1)dt.

-2 -2

To compute the first integral on the right hand side we use the rule of inte-
gration

/ F(O)8(t — Th)dt = [F(t) — F(T)J6(t —T1) + C.
where f(t)=1= F({t)=t and Ty = =3 = F(T1) = F(-3) = —3, thus
/f(t)H(t —T)dt =[t+3]0(t +3) + C.
Similarly for the second integral we have g(t) = 2t = G(t) = t? and Ty =

1= G(Tz) = G(1) = 1. Hence

/2 FO)0(E + 3)dt — /2 9(00(t ~ 1)t = [(£+3)0(t +3) — (12— 1)0( — 1) 2_2
= 50(5) — 30(1) — 0(+1) +30(=3) =5 -3 —1+0= 1.

Exempel 8. Compute the following integral

/9(1 _t)dt.
1+ ¢2




0.2. GENERALIZED FUNCTIONS 37

Here we note that (1 —t) =1 —60(t — 1), hence we can rewrite the integral

o(1—t),  [1—6(t—1) [ dt o(t —1)
/1+t2 dt_/ 1+ ¢2 dt_/l—i—t?_/l—i-t? dt.

We have now

1
142

f(t)

= F(t) = arctan(t)

and .
T=1= F(1) = arctan(l) = 1

Summing up we get

dt ot—1) , -
/ 1+ / T dt = arctan(t) — [arctan(t) — Z]9(,5 —1)+C.

0.2.4 Rules of integration for the Dirac § functions.
We shall, intuitively, use the following basic rules: An integral of the form

T+
/ d(t—T)dt  is not well-defined, (0.2.31)

T

whereas, avoiding the support point for § in integration limits we get the
rules:

T+p T+p
/ 5(t— T)dt =0, / St—Tydt=1, B>a>0. (0.2.32)

T—a TH+a

Exempel 9.  Use property (4) to evaluate the integml/ (t* +2)d(t)dt.
1

Let f(t) = (t*+2), then we have f(0) = 2. Thus using the evaluation formula
(4)° yields

/Oo(t2 +2)6(t)dt = /oo 26(t)dt.

But since the support of §(t) : 0 ¢ [1, 00| we have / d(t)dt =0, and hence
1

/1 " 28(t)ydt = 0.
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If instead we evaluate [ (¢* + 2)5(t)dt then we get the integral

/Oo(lt2 +2)6(t)dt = /oo 26(t)dt.

—1 -1

Now since 0 € [—1,00], we have [ 6(t)dt =1 and thus

/oo(t2 +2)6(t)dt = 2.

-1

o0

Remark Note that the integral / (t* + 2)6(t)dt is not well-defined. In

0

the presence of (¢ —T') in the integrand, the integrating interval must either

contain the point 7" (0 in this example) as an interior point or start from

t > T (t =a > 0), alternatively, end at a limit ¢ < 7 (¢ = b < 0 in the
o0

current case). Then d(t)dt = 0 and we have for instance
/ (t* + 2)6(t)dt = lim (2 +2)6(t)dt = 0.
0+ a—0t a

If the integration interval has zero as an interior point, then we have for
example

o0

[+ 2=t [+ 250 =2

b
Exempel 10. FEvaluate the integral / §'(t)dt

a

After integration we have
/ 5 (1)t = B = 6(b) — 5(a).
But6(t) =0 if t#0. Thus we have
/b 5 (8)dt = [5()]t = 6(b) —0(a) =0 —0=0ifa£0 and b0.

If either a or b =0, then the integral is not defined.
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Exempel 11. Use partial integration rule to evaluate the following integral:
o0
/ t26'(t + 3)dt
-5

Partial integration yields

o0

/Oo 26" (t + 3)dt = [t26(t + 3)]°, — / 2t6(t + 3)dt.

-5
Since 6(00) = §(—2) = 0. Thus we have

3

t25'(t + 3)d / 2t5(t + 3)d

-5 5

Finally, using f( Yo(t—T) = f(T)o(t—T) we get 2t5(t+3) = 2(—3)4(t + 3).
Hence using / d(t+3) =1, we get

/Oot25’(t+3)dt:/w2t5(t+3)dt:/002(—3)5(t+3):—6.

Exempel 12. Solve the differential equation:

" _ . . . _ _]. X < O _ -
y" +y = sign(x); sign(x) = { 1 z>0 } = 20(x)

Solution: The homogen solution yy, solves the equation y; + yn, = 0. This
equation has the characteristic equation r? +1 = 0 with the roots r = i and
we have

yn(z) = C1e™ + Coe™™ = yy(x) = Asin(z) + B cos(z).

A particular solution y, for the right hand side, sign(z) = 20(x) — 1, consists
of the sum of two particular solutions yy,, & yp,, satisfying y, +yp, = —1 and
y;,; + yp, = 20(x), respectively. We have that y,, = constant = —1. Further,
Yp, 15 of the form y,, = u(x)0(x), which inserting in the equation for y,,
yields

=(w@)0) +u(2)6(2)) + u()6(2) = 26(x) &
(«@0() +u(0)8(2)) +u(@)(z) = 20(z) ¢
u"(2)0(z) + u'(0)d(x) + u(0)d'(z) + u(z)8(z) = 260(x)
& (v +u)f(z) + ' (0)6(z) + u(0)d'(z) = 260(x).

yig2 + Yp2
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After identifying the coefficients we end up with the initial value problem

{ u' +u=2
u'(0) =u(0)=0

with the solution u(x) = 2 — 2 cos(x).
Summing all contributions would give the final solution as:

Y="Yp+Yn="Yp +Yp, +yn=—1+(2—2cos(z))0(x) + Asin(z) + B cos(z).



0.2. GENERALIZED FUNCTIONS
Exercises.

1. Draw the graphs for the following functions.

a) 20(t — 1) b) 20(1 — 1) «c) ot —1)
d) 10(t) — 0t —1)] ) e t8(t) )t + 1B+ 1) — 6(28)].

2. Rewrite the following functions using step functions

a) fi(t) =tt — 1], b) fo(z) = e17

aso={" 155 emo={5 5

g0 -{ 7 ST pan-{2  1sic
e elzm e 0 else.

3. Use the integration rule and solve the following differential equations:

a)y' =th(t—1) b)y"'=[t| <)y +y=|t

2zy' +y = 2z20(x — 4)
9 { J(1) -3

4. Calculate f(t)0"(t — T'),when f(t) has a continuous second derivative.

5. Compute the derivatives, of given order, in the following cases.

a) Third derivative of f)=0—-1)0(t—-1)

b) Second derivative of f(@) ={In(t* + 1)}0(¢)
— t? t<0

c) fourth derivative of ft) = { 0 >0,

6. Compute n-th derivative of for the following signals:

a) f(t):{gt elseogt<T

b) f®)=0t—-1002-1t) c) [f(t)=¢e0().



42 CHAPTER 0. INTRODUCTION

7. Calculate the following integrals

a) /00 (e72" +sint)(t)dt, b) /00 [6(t —1) — 6(t + 1)]e”%'dt,

o

oo 2
c) / {sinT + 2¢"}0(t — 7)dr, d) / e 2§ (t)dt, a=+1,a=—1,
e) / e S'6(t — T)dt,
0

f)/ e '6(t)dt, a -+ 07, a— 0", a=0.

8. Solve the following differential equations.
a)y' =2t+6(t), y(1)=-1, b) y" =t5(t = T),
o)y +ay=0(-T),
d) y'+2y = (t+2)6(t+3), y(-1)=1,
e) y" +vy' =0(x)+0(x), f) y" —y=4d"(z).
9. Determine the general solution of the differential equation

y +2ty=6(t—T).



Chapter 1

Laplace Transformation

Laplace transformation is a powerful technique for solving differential equations
with constant coefficients. Areas of application are widespread but traditional
fields include mechanics, electronics, and automatic control engineering.

Before the advent of computers it was a tedious task to multiply numbers
such as 1.4142 and 3.1416. Therefore logarithms were used to transform the
complicated operation of multiplication into the simpler operation of addition
via the formula

log(1.4142 - 3.1416) = log(1.4141) + log(3.1416).

By consulting tables of precomputed logarithms and exponentials one obtained
the result 4.4429. Roughly speaking, Laplace transformation works analogously
and reduces problems of calculus into simple algebraic problems via tables and
general properties of the transform.

1.1 The Laplace Transform

1.1.1 Definition
Let f(t) be a function defined for all ¢ > 0. If the improper integral

F(s) = /Ooo ft)e *tdt, (1.1.1)

converges for any s, then F(s) is said to be the Laplace transform® of f(t).

!Pierre Simon de Laplace (1749-1827) French mathematician.

43
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Exempel 13. Find the Laplace transform of the Heaviside step function,

0(t) = {1’ t>9, (1.1.2)

0, t<0.

Solution. By the definition (1.1.1) we get,

00 ) 1 ) 1
F(S) = / Q(t)e_“ dt = / e stdt = |:—g e_St:| =—-, s>0. (1.1.3)
0 0

0 S

The usual way of denoting the Laplace transform of a function f(¢) is
either F(s) or L[f(t)]. For example, we have L[0(t)] = .

Since the integral (1.1.1) has the limits 0 and oo, it follows that F'(s) is
not influenced by f(¢) when ¢ < 0. As a result, if f; and f, are two functions
such that f; = fo for £ > 0, then these functions have the same Laplace
transform, even if they differ for £ < 0. Because of this ambiguity, we shall
henceforth always assume that f(t) is causal, which is to say, f(t) = 0 for all
t < 0.

If f(t) is not causal to begin with, we can always force it to become so
by multiplying it with the Heaviside step function 6(t) (1.1.2). We illustrate
such a case below.

ft)
'./\ P |
4

N —
S

L Towr
: : _—
—4 -2 J 2 4
-1

Figure 1.1: A causal restriction of the function f(¢).
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Exempel 14. Find the Laplace transform of f(t) = e, where ¢ is a constant.

Solution. Again, by (1.1.1) we get

© 1 o 1
F(s) = / e st dt = [— e(sc)t] = ; (1.1.4)

0 s§—C

Note that, for the above integral to converge, we must assume s > c.

1.1.2 Existence

Not any function f(¢) have a Laplace transform L[f(¢)]. For example, it is
easy to see that L[e"’] does not exist, since its associated integral diverges as
t — oo. As a rule, to have a Laplace transform, it suffices (not necessary)
that the function f(¢) is of ezponential order. By this we mean that there
must exist a constant, a say, such that
lim | f(t)e"*| = 0. (1.1.5)
t—00
If this indeed is the case, then by choosing s > a, we see that the integrand
f(t)e™t of (1.1.1) goes to zero as ¢ tend to infinity and, hence, the integral
for L[f(t)] converges absolutely for s > a. Let us formalize this result by
stating it as a theorem.

Theorem 1. If f(t) is a piecewise continuous® function for all t > 0, and if
F(8)] < M, (1.1.6)

for some constants a and C, then the Laplace transform F(s) of f(s) exist.
We shall also refer to a piecewise continuous function f with the property
(1.1.6) as being in the class C and simply replace the whole expression by
fec.

Proof. If |f(t)| < Me™ and s > a, then

S—a

o0 o0 M
F(s)) g/ |f(t)|estdtg/ MeGatg = M (1.1.7)
0 0

Hence, if s > a the integral (1.1.1) converges.

2A function is said to be piecewise continuous if it is discontinuous only at isolated
points, and its left and right limits are defined at each discontinuity.
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1.1.3 General Properties of the Laplace Transform

Theorem 2. Laplace transformation is a linear operation, that is, for any
functions f(t) and g(t) whose Laplace transform exist and any constants a
and b, we have

Llaf(t) +bg(t)] = aL[f ()] + bL[g(1)]- (1.1.8)

Proof. By definition, it holds that
LI () + 9(t)] = / (af(t) + bg(t))e™ di

= a/ooo ft)e*tdt + b/ooog(t)eSt dt
=aLl[f(t)] + bL[g(t)]. (1.1.9)
Exempel 15. Find the Laplace transforms of sinht = (e’ — e™).
Solution. By the linearity of the Laplace transform, we get

Llsinht] = L[3(e' —e™")] = 1L[e'] — 3L[e "] = (5 — ) (1.1.10)

— 2 5— s+1

Exempel 16. Find the Laplace transforms of sin wt and cos wt.

Solution. If we set ¢ = iw in (1.1.4) then we have

; 1 5+ 1w
L wt] —
[ s—iw (s —iw)(s+w)
_Stw 8 Y (1.1.11)

24+ w? §24w? §2 + w?’
On the other hand we also have
L[e™'] = L[coswt + isinwt] = L]cos wt] + iL[sin wi]. (1.1.12)

Equating the real and imaginary parts of these two equations, we get

S

52 4+ w?’
W

52 4+ w?’

L[coswt] = (1.1.13)

L[sin wt] = (1.1.14)
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As the last examples show, the definition (1.1.1) is rarely the starting
point for deriving Laplace transforms. Instead, one usually first consults a
table of standard transforms, and then tries to adapt any of these to the
problem at hand using a set of general properties, such as the linearity, of
the Laplace transform. Below, we derive a number of other such properties
and illustrate their use.

Theorem 3 (1 Shifting Rule). If f(t) has the transform F(s) then for
any constant c, we have

Lle?f(t)] = F(s—c). (1.1.15)

Proof. Inserting e f(t) directly into the definition (1.1.1) gives, with
s>c,

Lle f(t)] = / ef(t)etdt = / f)e Cdt=F(s—¢). (1.1.16)
0 0
Exempel 17. Find the Laplace transform of 3e 2! cos 5t.

Solution. By the previous example, we have

S

= —. 1.1.1
L][cos 5t] T ( 7)
Applying now the 1°¢ Shifting Rule, we get
2
L[3e " cos 5t] = s+ 3546 (1.1.18)

(s +2)2+25 s24+4t+29

Theorem 4 (2" Shifting Rule). Assume that T > 0 and f(t —T) is a
function that is zero until t =T, then

L[ft—T)]=eT5F(s). (1.1.19)
Proof. Let T =t —T, then

/ft— ‘Stdt_/ ft—T)e " dt

= f(T)e’s(“LT) dr =e / f(r)e*M dr

—o0 0

=e T5F(s). (1.1.20)
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Introducing a generalized form of the Heaviside step function,

1, t>T
0t —-T)=<X" ’ 1.1.21
(t-7) {0’ g (11.21)
we can state the 2"¢ Shifting Rule (1.1.19) formally as
LOE—T)ft—T)] =e"5F(s). (1.1.22)

Theorem 5. If f(t) satisfies (1.1.6) for some constants M and a, then

Ltf(t)] = —F'(s). (1.1.23)
Proof. Differentiating under the integral sign we get
, d [* g [ e~ st
F(s) = %/0 Ft)e—" dt _/0 £t
= /OO —tf(t)e *tdt = —L[tf(t)]. (1.1.24)
0

Exempel 18. Find the Laplace transform of tsinht.

Solution. Recall that .

L[sinht] = R

(1.1.25)

By the last theorem, we get

) d 1 2s
L[tsinht] = e 1 o (1.1.26)

Theorem 6. If f(t) satisfies (1.1.6) for some constants M and a, and if
limy_,¢ % f(t) exists, then

CILF(0)] = / Flw)w. (1.1.27)
Proof. Put g(t) = 1f(¢t), i-e., f(t) = tg(t). The previous theorem then

gives F(s) = —G'(s). By the fundamental theorem of calculus, and the fact
that G(s) — 0 as s — oo, we have

G(s) = / " P(w) do. (1.1.28)
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int
Exempel 19. Find the Laplace transform of Sl%

Solution. Recall that L[sint] = (s* +1)71. Since

int
lim 2 = 1, (1.1.29)
t—0 ¢

the assumptions of the last theorem are satisfied and thus we have

> d
L[}sint] = / TL = [arctan w]° = g — arctan s. (1.1.30)

A fundamental property of the Laplace transform is the fact that, roughly
speaking, taking the derivative of the original function f(¢) corresponds to
multiplying its transform F(s) by s.

Theorem 7. Suppose f(t) and f'(t) are continuous and piecewise smooth
fort > 0 and a is sufficiently large so that |f(t)| < Me* and |f'(t)| < Me®.
Then, 1t follows that

L[f'(t)] = sF(s) — f(0). (1.1.31)
Proof. Integrating by parts, we have
[, ! — > ! —st d
o= [ roea
= [f®)e "]y + s/ f®)e*tdt = —f(0) + sF(s).  (1.1.32)
0
Applying this result to f”(t) yields
LIf" @) = sLIf' ()] = f'(0) = s*F(s) = sf(0) — f'(0). (1.1.33)
Similarly,
L[f"(t)] = s’ F(s) — s°£(0) = 5£'(0) — f"(0). (1.1.34)
By induction, we obtain the transform of the n-th derivative, viz.,

LIf™ )] = s"F(s) — s"1f(0) — s"2f(0) —... — f*7D(0).  (1.1.35)
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Theorem 8. The Laplace transform of

/Otf(T) dr, (1.1.36)

is given by 1F(s).

Proof. Let h(t) = fotf(T) dr. By construction we then have h'(t) = f(t)
and h(0) = 0. Using now that L[f'(t)] = sL[f'(t)] — f(0) we immediately get
F(s) = sH(s) — h(0). Hence, H(s) = +F(s).

Problem 1. Find the Laplace transform of the following functions.

a. t b. c. t? d. t"
e. t+1 fo(t—1)? g (1+1)* h. 1
i. et 4. edttt k. tet L e
m. cosht n. cost 0. sin 2t p. sinh?t

Problem 2. Find the Laplace transform of the following functions.

a. e cos bt b. 6(t—1) c. e 't —1)
d. t>sinht e. t3et f. tetcost
g. sin(wt + a) h. tsin & i. Int

j. +(1 —cost) k. coshtcost l. cos®t
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1.1.4 Table of Laplace Transforms

/0 f(r)dr

() (s
e (1) P (s)

e % f(t) F(s+a)

F(t—T)0 —T) e T5 B (s)

£t SF(s) — 7(0)

(2 2R (s) — 5(0) — 1/0)
£ 1 SE(s) - Z sk e )

F(s)

Table 1.1: Operational properties of the Laplace transform.

o1



92

CHAPTER 1. LAPLACE TRANSFORMATION

1
o(t) =
s
tn 1
efat 1
S+ a
s
cosh at o
) a
sinh at R
s
COS bt m
b
sin bt
- s2 + b2
t S
— sin bt
5% sin 1)
1 1
—(sin bt — bt cos bt
263 ( ) (s2 4+ b2)?
@ —a?/at N
VA3

Table 1.2: Standard transform pairs.
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1.2 The Inverse Laplace Transform

Finding the inverse Laplace transform of a function f(¢) is the operation of
recovering f(t) from its Laplace transform F'(s). One usually denotes this
by

f(t) = L7F(s)]. (1.2.1)

Remark. The Laplace transform of a function f € C is defined for complex
s for Res > a, viz

LH(s) = /0 T F)etdt, (1.2.2)

In this way one may use the inversion Formula for Fourier transforms to
obtain the so-called inversion formula, which gives a closed form expression
for L7'[F(s)]. This however, needs the Fourier transform formalism which we
shall introduce in a later chapter. Nevertheless, we can formulate a criterion
(without proof) as follows:

Lemma 2. If f and g are in C and Lf = Ly, the f = g. (More specifically,
f(t) =g(t) at all points t where both f and g are continuous

By this Lemma, a function is f € C is uniquely determined (up to modi-
fications at its discontinuities) by its Laplace transform F', and we shall say
that f is the inverse Laplace transform of F and write f(t) = L '[F(s)]:

f=L'F< F=Lf

Having in mind the above criterion we shall be content with the simple
minded approach of finding inverse Laplace transforms by using a table of
standard Laplace transforms.

Indeed, it turns out that with the aid of a table and a little algebra, we
are able to find L7![F(s)] for a large number of functions f(¢).

Due to the fact that the Laplace transform is linear it follows that also
the inverse Laplace transform is linear. Hence, if a and b are constants, then
we have

L aF(s) + bG(s)] = alL '[F(s)] + bLG(s)], (1.2.3)
Exempel 20. Find the inverse Laplace transform f(t) = L7[F(s)] of

e s 6—215
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Solution. From a table of standard transforms, we have
Llsl=t LG =35t,

s0 by the linearity of L™, we obtain

723]

Lfl 65_23 o e;js] — E_l[e;;] - £—1[854 .

Using now the 2" Shifting Rule, we find

LTS =0 —1)(t—1), L7 =1L00-2)(- 1)

32
Hence, the inverse transform of F(s) is

ft)=LTF(s)] =0(t —1)(t — 1) — 0(t — 2)(¢t — 1)°.

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)
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1.2.1 Method of Partial Fractions

A common situation is when F'(s) has the form

F@y:gg} (1.2.9)

where (s) and P(s) are real polynomials and the degree of () is less than
the degree of P. It is then necessary to decompose F'(s) into partial fractions
to obtain L7 [F(s)].

We demonstrate this technique for three cases of denominators P(s).

1. P(s) is a Quadratic with real Roots. Consider, for instance,

2s — 8

Fls)= ——> "%
(5) s2 —55+6’

(1.2.10)

Obviously, F'(s) cannot be inverted by inspection and neither do we have it

tabulated. However, since the denominator s? — 5s + 6 has two real roots,

s =2 and s = 3, it is possible to decompose F'(s) into partial fractions, viz.,
A B

F(s) = ——5 - —5 (1.2.11)

where A and B are numbers. Our goal is to determine these, because then it
is easy to obtain the inverse transform of F'(s). By elementary manipulations,
we get

A B A(s=3)+B(s—2) (A+B)s+(-34—-2B)

= = 1.2.12
s—2 5-3 (s —2)(s—3) 2 —5s+6 : )

which implies

25 — 8 (A+ B)s+ (—3A—2B)

= . 1.2.1
s2—5s+6 s2—5s+6 ( 3)
Comparing the right and left hand side, it is obvious that
2=A+B, —8=-3A-2B, (1.2.14)
which is a system of equations for A and B, i.e.,
A+B =2
{ 3A+2B =38. (1.2.15)
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Solving, we obtain A =4 and B = —2. Hence,

4 2
F(s) = — . 1.2.16
(5) s—2 s—3 ( )
By recognizing 5 as the transform of e* and 5 as that of e*, we obtain
f@) = L7YF(s)] = 4e* — 2¢™. (1.2.17)

2. P(s) is a Quadratic with a Double Root. Let
s+1

F(s)= — 1.2.18
0= o (1218
The denominator has a double root —2 and the partial fractions are therefore
1 A B A 2A+ B
St + _As+(24+B) (1.2.19)
(s+2)2 s+2 (s+2)? (s +2)?

Comparing the left and right hand side of the above expression, we find A =1
and B = —2. Recalling that £[—5] = e, we can use L[tf(t)] = —F'(s) to
deduce that the inverse transform of (s + 2)~2 is te?. Hence, the inverse of
F(s) is

ft) = e* — 2te*, (1.2.20)

3. P(s) is a Quadratic and has Complex Conjugated Roots. If

s+1
F(s)= ——— 1.2.21
() s24+4s+5’ ( )
then the denominator has the roots —2 + 7. Completing the square, we get
+4s+5=8s"+4ds+4+1=(s+2)>+1, (1.2.22)
ie.,
s+1
F(s)= ———. 1.2.23
B)= v (1-2.23)
By rewriting
1 2 -1
iy iy (1.2.24)

(s+2)2+1 - (s+2)2+1 * (s+2)2+1’
and recalling the transforms of sint and cost it is clear that

f(t)=L'F(s)] =e *cost —e *sint. (1.2.25)
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Exempel 21. Find the inverse transform of

s+ 2

F(s) = .
(5) s3—s2+s5—1

(1.2.26)
Solution. Calculating the roots of the denominator s® — s +s—1, we find
s1 =1, s =1, and ss3, i.e.,
s+ 2 s+ 2
F(s) = - ~ = . 1.2.27
() (s—=1)(s+i)(s—1) (s—1)(s2+1) ( )
Here, the appropriate decomposition into partial fractions is given by

F(s) = A +Bs+0_82(A+B)+5(C_B)+(A_C)

s—1  s24+1 3 —s24+s5—1 (1228)
Identifying coefficients it is clear that
s> (A+B)=0, s(C—-B)=s, A-C=2, (1.2.29)
which implies, A = %, B = —g, and C' = —%. Hence,
3 3 1
F(s) = . i Z 2 (1.2.30)

1 2+1 s2+4+1
Consulting a table of transforms, we recognize F(s) as the transform of
f(t) =3¢ — 2cost — Lsint. (1.2.31)

Problem 3. Find the inverse Laplace transform of the following functions.

B
s+1 s2+4 s2+1 s?2—1
s+ 12 S s+1 . e=$

“ 9 tds J (s +2)? g (s —3)* TS

Problem 4. Find the inverse Laplace transform of the following functions.

s 5+ 2 1
o ——— S c. ————
s2—2s—3 s2+4s+5 (s—2)2+9
s+1 3s 1

© 834+ 52 —6s “ $21+25-8 f's(s+1)(s+2)
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1.3 Applications of Laplace Transforms

1.3.1 Initial Value Problems
Enough with theory, let us find the solution y(t) of the initial value problem

y'(t) + 2y(t) = 12¢%,  y(0) = 3. (1.3.1)

By taking the Laplace transform of every term in the given differential
equation, we get

Lly' )]+ L[2y(t)] = L[12e*]. (1.3.2)
Put Y (s) = L[y(t)]- Now,
Lly'(t)] = sY (s) —y(0) = sY(s) — 3, (1.3.3)
L2y(®)] = 2Y (s), (1.3.4)
L[12¢%] = 1_—23 (1.3.5)

Inserting these formulas into (1.3.2) above, we get the subsidiary equation

12

sY(s) —34+2Y(s) = 3 (1.3.6)
Rearranging, we obtain
12 3+ 3s
2)Y(s)=——+3=—— 1.3.7
(s+2)¥(s) = o 43= 212 (137
o 35+ 3
s
Y(s) = ———F——. 1.3.8
&)= G569 (1:38)
At this point, we decompose Y (s) into partial fractions, viz.,
A B A+ B)s—3A+2B
3s+3 n _(A+B)s—34+ ’ (1.3.9)
(s+2)(s—3) s+2 s-—3 (s+2)(s—3)
which gives rise to a system of equations for A and B, namely,
A+ B =3,
{ —34+2B =3. (1.3.10)
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Solving this, we find A = £ and B = 2. Hence,

ol

12
5

Y (s) +

= . 1.3.11
s+2 s—3 ( )

Consulting a table of standard Laplace transforms, we finally have

y(t) = LY(s)]
— 3+ R
3 12

= 5 6_% -+ g €3t. (1312)

Summary of Solution Process. Note the three steps of the solution
process:

1. Take the Laplace transform of both sides of the given hard problem
for y(t). As a result a simple algebraic equation for Y (s) = L[y(t)] is
obtained.

2. Solve this so-called subsidiary equation for Y (s).

3. Use partial fractions and a table of elementary Laplace transforms to
invert Y (s) and so produce the required solution y(t) = L7![V (s)].

Exempel 22. Solve the following initial value problem for t > 0

y"(t) + 4y'(t) + 3y(t) = 0, (1.3.13)
y(0) =3, ¢'(0)=1. (1.3.14)

Solution. We have
L[y (t)] = sY(s) — 3, Lly"(t)] = s*Y(s) —3s — 1, (1.3.15)

Laplace transformation of (1.3.13) yields the subsidiary equation
s°Y () + 4sY (s) + 3Y (s) = 3s + 13, (1.3.16)

(5+3)(s+1)Y(s) = 35 + 13. (1.3.17)
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Solving for Y (s) and using a decomposition into partial fractions, we get

Y (s) = 3s+13 A n B
C (s+3)(s+1) s+3 s+1
_A(s+1)+B(s+3) (A+B)s+A+3B (1.3.18)
o (s+3)(s+1) (s+3)(s+1) o
from which we obtain A = —2, and B = 5. Thus,
2 5
Y(s)=— . 1.3.1
() s+3+5—1—1 (1.3.19)
Recalling (1.1.4) it is obvious that
L=, L] =¢. (1.3.20)
Hence, the solution is given by
y(t) = —2e73 + 5e". (1.3.21)

A simple way to check whether the correct solution has been obtained
is to see if the initial condition is satisfied by the found function y(¢). Here
we have y(0) = 2+ 2 = 3 and, since y'(t) = 6e~* — 5e™!, we also have
y'(0) = 6 —5 = 1. Hence, the requirements y(0) = 3 and 3'(0) = 1 are indeed
satisfied by (1.3.21).

Problem 5. Solve the following differential equations fort > 0
a. ¥y +2y=e3 y(0)=4.

b. v —y=e*, y(0)=-1.

c. Y'+2y+y=e€?, y(0)=0, y(0)=1.

d. y" +4y +13y =2e7t, y(0)=0, ¢'(0)=-1.

e. y' +4y =8e*, y(0)=0, v'(0)=3.

[y =2y +2y=cost, y(0)=1, %' (0)=0.

g y'+4y =3e, y(0)=2, (0)=1.

h. y" +2y' +2y=2, y(0)=0 fort<O.
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1.3.2 Integral Equations

Apart from solving differential equations, the Laplace transform technique
may also be used to solve integral equations. For instance, consider the flow
of electric current around a circuit consisting of a resistor, a capacitance, and
a battery.

Figure 1.2: Electric RC-circuit.

It follows® that the current i(¢) satisfies the integral equation

Ri(t) + /0 i(r) dr = v(#), (1.3.22)

where R and C' are respectively the resistance and capacity of the circuit, and
v(t) is the electromotive force of the battery. For simplicity, let us assume
that C = R = 1, and that v(¢) has the form of a square pulse of amplitude
1, applied between t =1 and t = 2, i.e.,

0, t<1,
v(t)=0(t—1)—0(t—-2) =41, 1<t<2, (1.3.23)
0, ¢>2.

The Laplace transform V' (s) of v(t) is given by

00 2 —st72 —2s —s
V(s) = / v(t)e *tdt :/ e *tdt = [_e } & L (1.3.24)
0 1

S 1 S S

Assuming that i(0) = 0, we may transform (1.3.22) to obtain

1(s)

I 7 =
RI(s) + Cs

V(s), (1.3.25)

3From the Kirchoff voltage law.
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or, since R=C =1,
I(s) + —2 = ~(e * —e %). (1.3.26)

Solving for I(s) we obtain, after elementary manipulations,

1

I(s) = e 1.3.27
(6= e o) (1327)
Noting that £ '[7] = e ', we then use the 2"* Shifting Rule, to obtain
i(t) = e Vgt — 1) — e~ EDg(t — 2). (1.3.28)
Hence,
0, t<1,
i(t) =< ele ™, l<t<?2, (1.3.29)
(e' —e?)e™, t>2.
1.0 1
0.5+ \
0 f f f |
1 2 4
—05 +
—-1.0 +

Figure 1.3: Graph of i(¢) for 0 < ¢ < 4.

Problem 6. Solve the integral equation for t > 0

/Oty(T) dr +2y(t) = 4.
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Problem 7. Solve the following integral equations fort > 0

a. y'(t) +2y(t) + /ty(T) dr = cost, y(0)=1.

b. y'(t) + 2y(t +2/y Ydr=1+e", y(0)=1.
0

t
c. y'(t) — Ty(t +6/ y(t y(0) =7, y'(0)=—12.
0
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Chapter 2

Separation of variables

The separation of variables is a widely used technique that transforms linear
partial differential equations to ordinary differential equations in the variables of
the pde.

We illustrate the method through some examples.

2.1 The heat equation: Dirichlet problem

Consider the 1-dimensional heat equation for a rod [0, L], with homogeneous
Dirichlet boundary conditions:

Up = kg, zel0,L], t>0, (PDE)
u(0,t) = u(L,t) =0, t>0, (BC) (2.1.1)
u(z,0) = f(x), xz € [0, L]. (IC)

We recall the general form of a standard pde in two variables z and :
Augy + Bugs + Cuy + Duy + Euy + F = 0, (2.1.2)
with the discriminant defined by
d:= AC — B*. (2.1.3)

In (2.1.1), since A=1, B=0 and C = 0. we have d = 0 and hence (2.1.1)
is a parabolic equation. Further (2.1.1) is described by totally three partial

65
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derivatives of the function u, one with respect to ¢ in u; and two with respect
to T in Ugg.

To solve a differential equation, e.g., (2.1.1) corresponds to finding an analytic
expression for the function u, i.e., loosely speaking, through integrating with
respect to the differentiated variable. Since there are three differentiations
involved in the heat equation (2.1.1), to regain u one needs to perform 3
integrations each creating a degree of freedom. Therefore it is necessary to
supply totally 3 (initial and boundary) conditions to determine these degrees
of freedom.

To convert the above pde to odes, in z and ¢, we let u(z,t) = X (z)T(t) # 0.
(Note! that u = 0 does not work if f # 0. For f = 0, u(z,t) = 0 is a
solution. Here we seek non-trivial solutions).
Inserting u(x,t) = X (2)T'(t) in the pde in (2.1.1) we get
X (2)T'(t) = kX" (2)T(t).
Dividing both sides by kX (z)T'(t) # 0 we thus obtain
TI XII
W _Xw) (2.1.4)

K1)~ X(x)

where the left hand side depends on only ¢ whereas the right hand side
depends on only x. This indicates that A must be an absolute constant
independent of x and t.

The differential equation for the function T(t) is now:

T'(t)
KT (1)

=X or T'(t)— MNkT(t) = 0. (2.1.5)

e Jo Mkds ~ Xkt

Here the integrating factor is = e """, Thus multiplying both side

by e ! we have,

d
ANV —Akt _ YA
T'(t)e MET (t)e 0 or p (T(t)e ) 0,

Integrating over (0,%) we get

/O t % (T(s)e ) dt = T(1)e™ — T(0)e™" = 0.
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which gives
T(t) = T(0)e*". (2.1.6)

The differential equation for the function X(x) is:

(2.1.7)

= e, X"(z) = AX (z),
boundary condition (BC) = X (0) = X(L) =0.

The characteristic equation is now r> = X. Thus if A > 0, then 7 = +v/X and
for A < 0 we have r = £iv/—\. We therefore need to consider three cases.

I.A=0, then X"(x) =0, which gives X(z) = Az + B. But X(0) =0
gives B = 0 and thus X (z) = Az. Further X (L) = 0 gives AL = 0, where
L # 0 and we get A = 0. Consequently, (since A = B = 0), u(z,t) =0
and we do not get a non-trivial solution in this case. Therefore A = 0 is not
acceptable.

II. A > 0, then we have a solution of the form
X(z) = AeV™ 4 Be V™

where X (0) =0 gives A+ B =0, i.e., A= —B. Further X(L) = 0 together
with A = — B gives that

X(L) = A(eﬁL - e—ﬁL) = 0.

But since L # 0 and A # 0, hence we have (e‘/XL — e“/XL) # 0 and conse-
quently A = 0. Thus B = —A = 0 gives finally u(z,t) = 0. This is also a
trivial solution, i.e., A > 0 is not acceptable.

III. A <0, yields a solution of the form
X(z) = AcosV—Ax + Bsin v —)Az,

where X (0) = 0 gives A = 0 and thus X (z) = Bsinv/—Az. Now X (L) =0
gives Bsiny/—AL = 0. If B = 0 we have X(z) = 0, leading again to the
trivial, and thus not acceptable, solution u(z,t) = 0. However, in contrary
to the cases I. and II. , here we have other choices than B = 0. If B # 0
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2
then sin/—AL =0, i.e., vV—AL =nm, n>1 or A = —(”%) . Thus for

each n = 1,2, ..., we have the following eigenvalues and eigenfunctions:
== and Xo(w) = sin T (2.1.8)
n=— , an n(T) = sin —ux. 1.
L? L
2_2

Since u(z,t) = X (x)T(t) # 0 and T(t) = T(0) - ek = T(0)e *"22 ! we have
for each n a solution u,(z,t) given by
ety nm
un(z,t) = Xp(x)T,(t) = e 7 22 "sin 7% (2.1.9)
Since our pde is linear and homogeneous, thus by the superposition principle
below, the finite linear combination of all solutions u,(z,t), n =1,2,...1is
a solution as well, and then passing to infinite linear combination we have

[e.e] o0 n27r2
u(z,t) = E Un(z,t) = E Cne™ 22 *gin %x (2.1.10)
n=1

n=1

There are some obvious questions concerning the convergence of such series
as well as their termvis differentiability. We postpone investigating these
phenomena and for the moment shall not worry about them. Below we
recall the Superposition Principle which is also stated in introduction.

Lemma 3 (The Superposition Principle). If u,us, ..., U, satisfy the
linear differential equations L(u;) = F; and the boundary conditions B(u;) =
fiforg=1,...,m andc, ..., ¢y, are arbitrary constants, then v = ciu; + ... +
CmUm Satisfies the partial differential equation

L(u) = 1 F1 + ... + ¢, F,  where B(u) =ci1fi + ... + cmfm-
Our problem corresponds to F; =0, for j =1,...,m.

Now it remains to determine the coefficients C,. To this approach we use
the initial condition (IC): u(z,0) = f(z), which gives

u(z,0) = ZC’n sin n%x = f(z). (2.1.11)

n=1
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Note! C,, is the so called Fourier sinus coefficients for f in the interval [0, L.
Now we multiply (2.1.11) by sin (%x), integrate over [0, L], and change the
order of integration and summation to obtain

/ f(z sm—xd:c—ZC / smﬂx sin %xdz (2.1.12)

Let now X, = sin 7"z and X, = sin %"z and define the scalar product of
two functions f and ¢ by

g) = / f(2)g(z)dz

(f, X / f(z)sin —x dz

(Xn, X)) = /0 sin Tac sin Tx dx.

Using simple trigonometric formulas we have

Thus

(2.1.13)

L L
1
/0 sin %x sin %x dzx = 5 /0 [cos(n - m)%x —cos(n + m)%x} dx.

Thus if n # m we have

T 1L
sin(n + m)zx] =0,
0

L 1 ) m
o [ sin(n —m)—x —

X, X
< )= —-m L n+m

i.e., X,, and X, are orthogonal functions, while for n = m we have

/L mnw . Mmmw d 1 /L [1 2mm ]d
sin —zsin —xdx = — — CoS T |dx
0 L L 2 /o L

L 1 L . 2mm 1L L
=51 oy =3

(2.1.14)

)

oarm oL

0

Hence we have

ad L
ZC”/ smn—xsm—xdx—C’ / sm—xsmmmdx—Cm- —
0 L L 2
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so that (2.1.12) is written as

L
mm L
in—azdr=C,, =
/0 f(z)sin 7 rdz C 5
and finally changing m to n
9 L
C, = E/o f(z)sin %m dx. (2.1.15)

Let us now give an abstract form for f(z) using scalar products. From the
above notation we can write (f, X;,(= Cpn{(Xm, X;m( and thus

— <f’Xm> _ <faXm>

= - . 2.1.1
O = Do Xu) ~ X? (2110
Let now f,, := C,,X,,, then
(f; Xn)
=Cp, X, = —"—-—""X 2.1.1
and (2.1.11) gives that
o ) ni o o
f(z) = ;Cn sin —~a = ;Can = ; fn- (2.1.18)

o0
Note that {Xn} are orthogonal basis functions and f,, the “n-th” compo-
1

nent of f is the orthogonal projection of f = (f1, fo, ..o, fn,...) on X,,.
Thus denoting the unit vector parallel to X,, by u, := ==, it follows that

T [ Xal?
X
| X
and since |f,| = | f|cosf, we get using the definition of the scalar product
(f, Xn) = | Xn||flcos® = | Xn|| ful- (2.1.20)
Hence (f X.)
|fal = 257 (2.1.21)
| X

Thus we have shown once again that

n—mm—‘&|Lm_|%P%_@m, (2.1.22)

where we have used (2.1.16) and (2.1.18) is justified geometrically as well.
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Xn

Figure 2.1: The orthogonal projection of f(z).

2.2 The heat equation: Neumann problem

In this part we consider the heat flow with Neumann boundary conditions:

Uy = kg, zel0,L], t>0, (PDE)
ug(0,1) = ug(L,t) = 0, t>0, (BC) (2.2.1)
u(z,0) = f(x), z € [0, L], (IC)

The same procedure as in the Dirichlet case yields

)  X"x)
0 = X() = )\ = constant,

with the boundary conditions X'(0) = X'(L) = 0, and the same

differential equation for the function T(t): 77(t) = AkT'(t).

XII (.Z')

X = A is studied

The differential equation for the function X(x):
in a similar way as in the previous section:

I''A=0 ,ie, X(z)=Az+ B and thus X'(z) = A.
The boundary conditions X'(0) = X’(L) = 0 imply that A = 0. Hence
we have X (z) = B and it follows that u(z,t) = B - T(0)e** is the solution

for this case.

IP.A>0 yields
X(z) = AeV™ 4+ Be V™. (2.2.2)

Thus X'(z) = AVX-e¥™ — BV/A- e V> and hence X'(0) = VA(4A — B) =
0, which implies that A = B. Inserting B = A in the other boundary
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condition: X'(L) = 0, we get A\/X(Cﬁl’ — e*ﬁL) = 0, which together

with (e‘f)‘L — e’ﬁL) # 0 gives A = 0. Thus A = B = 0 and consequently
X (z) =0 and we get the trivial, i.e., zero solution in this case.

IIT’. A < 0 gives the well-known solution
X(z) = AcosV—Az + Bsin vV —Az. (2.2.3)

with the derivative X'(z) = —Av/—Xsinv/—Az + Byv/—\cos v/~ Az, which
associated with the boundary data X'(0) = 0 gives B = 0 and thus X (z) =
Acos(v—=Ar).

The second boundary condition: X'(L) = 0 yields Av/—\ - sin(v/=AL) = 0,
which assuming A # 0, yields sin/—AL = 0, i.e., vV=AL = nm,n > 1, so

2

that as above we once again the eigenvalues A\ = —(%) . Thus for the

Neumann problem we have the following eigenvalues and eigenfunctions:
n’n?

2 and Xn(x)zcosn—w

Ap = — .

z, n=0,1,2,... (2.2.4)

Note that in this case for n = 0, we get the eigenvalue A\ = 0 with the
corresponding, non-trivial, eigenfunction Xo(x) = 1. This means that the
case ITT’. contains I’. as well.
In summary we get

n?n? 1y nmw

un(z,t) = Xp(2)T(t) = Cre™ 22 " cos T > 0. (2.2.5)

Using superposition we get the solution

u(z,t) = ZCnefﬁkt cos %x, (2.2.6)
n=0

where by a similar argument as in the Dirichlet case we have

2 [ nmw
C L/o f(z) cos Lxdx n ( )
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2.3 The heat conducting problem

To proceed below we study the heat conducting in a circular ring. This model
has many important features, e.g., as a by product, we can derive the basic
formulas for the Fourier series expansions.

For the heat conducting in a circular ring, we do not have a natural bound-
ary condition, however, we can use the periodicity and write the equation as
follows:

Figure 2.2: The circular ring

ur = kugg,
u(0,0) = f(6), (2.3.1)
u(t,0) = u(t, 2m),

Applying the principle of the separation of variables we let now the solution
u(t,0) =T (t)O(0) # 0 and get the following eigenvalue problems:

T'(t) _©"(0) _
ORI =\ (2.3.2)

The general solution for the eigenvalue problem T"(t) = AkT'(t) is given by

T(t) = Coe™, (2.3.3)
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whereas for the general solution of the eigenvalue problem ©”(0) = \©(0)
we have

©(f) = AcosV—A0 + BsinvV—\0. (2.3.4)

For the equation (2.3.4) we have no natural boundary conditions, which
means that we cannot find values for A and B as in the previous procedure.
However, the 27 periodicity in (2.3.4) would yield for ©(6): i.e., we have
©(0) = ©(27) and hence since

0(0) = 4, (2.3.5)
O(27) = AcosvV/—A2m + Bsiny/—\2m, o
©(0) =0(27r) = A= AcosV—\27 + BsinV—\2r. (2.3.6)

Now identifying the coefficients (Note! that B need not be zero) we get
cosV—A2r =1 and sinvV-A2r=0, B#0. (2.3.7)

Thus we have /=) = n , where n is a integer, i.e., \= —n?, n=0,1,2,....
Summing up we have

T.(t) = coefn%t’
{ ©,(0) = A, cosnf + B, sinnf (2.3.8)

Let now a, = CyA,, b, = CyB,, and use superposition principle to write

u(t,0) = i ekt (an cosnf + by, sin n0> : (2.3.9)

n=0

It remains to determine a,, and b,, where, as before, we use the initial con-

dition u(0,0) = f(0) to get

f(0) = i(an cos nf + by, sin nd). (2.3.10)

n=0

This is the well-known Fourier series expansion for f, which we shall study
in details in chapter 4.
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2.4 The wave equation

In this section we want to solve the initial boundary value problem for the
wave equation using separation of variables. We illustrate the procedure
studying the following example:

Uy = CPUgy, zel0,L], t>0, (PDE)

u(0,t) = u(L,t) =0, t>0, (BC)

u(z,0) = f(2), z€0,I], acy @4
u(z,0) = g(z) z € [0, L], (IC2).

Let u(z,t) = X(2)T(t) # 0. Our (PDFE) can we now be written as 7" () X (z) =
>T(t)X"(z), which yields

T”(t) B X”(.’L‘)
T(t) X(x)
where using the same argument as for the Dirichlet problem for the heat
equation we have A < 0. Further, due to that fact that the ordinary differ-

ential equation 7"(t) = AT'(t) has the characteristic equation r? = ¢?\ with
the rots r = icy/—A. It follows using the preceding examples that

=) (2.4.2)

T(t) = AcosvV—Act + BsinvV—\ct, (2.4.3)
Similarly for X (z) we get
X(z) =CcosvV—Az+ DsinvV-\z. (2.4.4)

Now the boundary condition give X (0) = C' = 0, hence X (z) = Dsin(v/—\ ).
Further X (L) = 0 together with D # 0 yields v—AL =nm, n = 1,2,....
Thus we have eigenvalues and eigenfunctions

2,2
)\:—%, X, () :sin%, n=12... (2.4.5)
Hence,
t t
Un(z,t) = (an CoS % + b,, sin nzc ) sin n%:v (2.4.6)
where we may interpret X, (x) = D, sin %" (not! normalized), a, = A,D,

and b, = B, D, with obvious notations for A, and B,. Finally using super-
position we get

M2

u(z,t) =

t t
(an cos % + b, sin m;c ) sin n%x (2.4.7)

n=1
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Now it remain to determine a,, and b,. Since u(z,0) = f(z) we get
= Z ay, sin %x (2.4.8)

Multiplying (2.4.8) by sin "z and integrating over [0, L] yields

2
- Z/o f(x)sin n%x dr, n>1. (2.4.9)
Similarly
i |:Clnn7TC . nmct + bnnﬂ—c COS nmct sin Ex (2 4 10)
a . 7 7 4.

n=1

together with u.(z,0) = g(z) yields

2 b,nme . nw
g9(x) = uy(z,0) = 7 sin . (2.4.11)

Multiplying (2.4.11) by sin %"z and integrating over [0, L] it follows that

2 L nmw
by = —— in "adr, n>1. 2.4.12
) g(x) sin Tedr, n2> ( )

In this way we have an expression for u(z,t) as a function of f(z) and g(z):

= nmct
u(z,t) = Z (an cos

n=1

t
+ by, sin %) sin n%x (2.4.13)

Now we want to present u(z,t), as a function of f(z) and g(z), in the form
of Hadamard’s formula. To this approach we write

o0 o
t 1)
u(z,t) = TLX:; ay, Sin ? cos mlr;c + Z by, sin ? sin n;c . (2.4.14)

Using the elementary trigonometric relations: sin(z +t¢) = sinz-cost+sint-
cosx and cos(x +t) = cosx - cost Fsinz - sint we rewrite (2.4.13) as

Zan [sm —(z + ct) + sin %(x - ct)}
(2.4.15)

=1 nm nmw
+ an§ [cos T(x — ct) — cos T(x + ct)].

n=1
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Now we using (2.4.8), that
. nm
Zan [sm —(x + ct) +sin T(x - ct)]
1 1
=3 nz sm (x+ct)+ 5 ; p, SID n%(x —ct) (2.4.16)
[ flx+ct)+ f :v—ct)]

Further using the identity

T+ct
[cos n%(a: —ct) — cosnfﬁ(:c + ct)} = n% /z_ct sin n—ﬂy dy, (2.4.17)

we have that

Zb —[cos— (x — ct) — cos %(x%—ct)]

1 nm
=§n§”"f/m

1 [t nr oo
_ b gin "0y
2/HthLsmLy v,

T+ct
sin n%y dy (2.4.18)

n=1

where, in the last step, we have changed the order of the summation and
integration. Now using (2.4.11) it follows that

1 v 1 nwe nw 1 [ote
- ~ . b, sin —ydy = — dy. 2.4.19

Thus we conclude the Hadamard’s formula:

z+ct

u(e,t) = g[fo+et) + fla—et)] + 5 / o(y)dy. (2.4.20)

—ct
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Chapter 3

Fourier series for 2r-periodic
functions

Periodic phenomenon occur frequently throughout nature and their study is of
the utmost importance for our understanding of many real-world systems. For
example, the signals from radio pulsars allow astronomers to study space, the
seasonal periodicity of the weather governs the crop of corn, and the regular
beats of a heart is necessary for the survival of every mammal. Periodicity
can be found everywhere and concern any absolute variable, i.e., time, space,
velocity, etc. In this chapter we shall begin to study periodic functions, and
especially, their representation as sums of sine and cosine functions, Fourier
series. Fourier series has long provided one of the principal tools of analysis for
mathematical physics, engineering, and signal processing. It has spurred many
generalizations, and applications that continue to develop right up to the present.
While the original theory of Fourier series applies to periodic functions describing
wave motion, such as with light and sound, its generalizations often relate to
wider settings, for example, the time-frequency analysis underlying the recent
theories of wavelet analysis and local trigonometric analysis. We shall, however,
be content with presenting the basic theory and its application to the solution of
partial differential equations.

79
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3.1 Periodic Functions

A function f(z) is said to be periodic in there is a constant p, such that

[z +p)=f(z), (3.1.1)

for all z. Any positive number with this property is called a period of f(z).
For example, f(x) = sinz has periods 27, 47w, etc. However, the smallest
number p > 0 with the property (3.1.1) is called the prime, period, and it
is generally this value that is meant when a function is referred to as being
p-periodic, or, of period p.

First we state and prove a frequently used result, viz:

Lemma 4. Suppose f(z) is periodic with period p, then the integral

/a+P F(z)dx (3.1.2)

1s independent of the starting point a.

Proof. Let

sy = [ e = [ 5@ - [ s

By the fundamental theorem of calculus ¢’(a) = f(a + P) — f(a) but since
f(p+ a) = f(a) we have that ¢'(a) = 0. Hence, g(a) is constant and inde-
pendent of a. 0

3.2 Fourier series

From about 1800 onwards, the French scientist Joseph Fourier ! was lead

by problems of heat conduction to consider the possibility of representing
a more or less arbitrary 2w-periodic function as a linear combination of the
functions

1, cos z,sin z, cos 2z, sin 2z, cos 3z, sin 3z, . .. (3.2.1)

!Jean Baptiste Fourier (1768-1830) French physicist and mathematician.
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Fourier conjectured that any integrable periodic function f(z) of period 27
can be written, at almost every point x (which we specify later), as the sum
of a trigonometric series of the form

1 - :
flz) = 500 + ; (an cos nx + by, sin n:v) (3.2.2)
where a,, and b,, n =0,1,2,..., are real numbers defied by

1 T

Uy = —/ f(z) cosnz dz, (3.2.3)
™ —T
1 [ .

b, = —/ f(z)sinnz dx. (3.2.4)
™ -7

Here the term %ao is due to the constant function cos0 = 1, the factor %
being included for reasons of later convenience. Further, by does not exist,
since sin 0 = 0.

Fourier manged to solve several problems of heat flow using such series
representations, and, as a result, (3.2.2) is today called the Fourier series of
f(z). Similarly, the corresponding coefficients a, and b, are called Fourier
coefficients of f(x).

As we stated above the equality (3.2.2) is not always true, and therefore
we replace this equality by a “~” sign indicating that the right hand side is
the Fourier series of the function f.

To be more specific, suppose that f(6) is a 2m-periodic Riemann inte-
grable function, e.g., f(#) is piecewise continuous and 2w-periodic. We sum-
marize the above discussion in the following definition which also reformulates

(2.3.10) in a slightly modified form

Definition 7. The real Fourier series expansion of a 2w periodic Riemann
integrable function f(0) is given by:

1 = :
F(0) ~ 50+ ; (an cosnf) + by sin ne). (3.2.5)
Here ag, a, and b, are called the Fourier coefficients for f. We shall return
to the reason why aq is isolated.
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Inserting

1 . . 1 . .
cosnf = i(ema +e ™) and sinnf = Q—i(eme — e ™0)

in (3.2.5) we get

1 1 , , . .
f(6) ~ 5@0 + (Ean(emé’ + e—me) . bn(ema B —ma)>
. = . (3.2.6)
= 5(10 + 2 §(an — ibn)eina + ; i(a" + ibn)@*inﬂ

We rewrite (3.2.6) as the following complex Fourier series expansion of f:
—o0 n=1 n=1

We identify the coefficients on the right hand sides of (3.2.6) and (3.2.7) to
obtain

1 1 1
C'0 = §a0a Cn = i(an - an): C*n = §(a’n +ibn)a n= 1: 25 st (328)

or equivalently

ag =2Cy, a,=C,+C_,, b, =i(C,—C_p), n=12,..., (3.2.9)

Obviously we can calculate complex Fourier coefficients C,, in terms of f(6)
using (3.2.8) and (3.2.2) and (3.2.3). Now, when (3.2.7) is an equality, we
may use this equality and first calculate the complex Fourier coefficients C),
in terms of f(f) and the using (3.2.9) we recompute a, and b,. The idea
is to use the orthogonality of the set {e™’} (as that of sinnf and cosnf in
the previous chapter). To this approach we multiply both sides in (3.2.7) by

e~"*% and integrate over [, —7| to obtain

/ FO)™*do=>"C, / ek g, (3.2.10)
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where we have changed the order of integration and summation. We compute
for n # k that

T T _ n—k) _ (__ n—=k)
/ei(nk)Odaz[ 1 ei(nfk)ﬂ] _ (=)!R - (1) _o0,

i(n —k) — i(n —k)
(3.2.11)
whereas n = k yields
/ =kl qp :/ df = 2r. (3.2.12)
Thus in concise form we have the orthogonality relation viz,
" e 0 forn # k
i(n—k)6 _ ’ )
/—7: e df = { o, for n — k. (3.2.13)

Hence only for n = k£ we can get a contribution from the sum on the left
hand side in (3.2.10), i.e.

/ ' f(0)e~™*dh = 21, (3.2.14)

Relabeling the integers £ and n, we have the following formula for the com-
plex Fourier coefficients C);:

1 g —inb
= — " de. 2.1
Co=ge | SO0 (3.2.15)
We note that by (3.2.15),
Cy= = —i/”f(e)de (3.2.16)
0= 20,0 = 27‘(‘ . s L.

is average or mean value of f on any interval of length 27. The real coefficient
ap is given by

2 (7 1 [
=2C) = — 0)df = — 0)do. 2.1
w=20=5- [ f@)as=~ [ s0) (3:217)
Further for n =1,2,..., we have using (3.2.8) and (3.2.15) that

1 g ) )
an=Cat Cn= - / FO) (e + ") o = / F(6)2 cos nddo.
m —T

1 ™
™ -
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Thus .
ay, = l/ f(0) cosnbdb. (3.2.18)
™ ™

Note that the formula (3.2.18) holds for n = 0, as well. This is the reason
why we use the factor £ in the formula (3.2.5). Analogously the real Fourier
coefficients b,, are then given by

?

b = i(Cu = Cn) = o

" FO) (e — ) df = - " F(0)(=24) sin nfdd,

and hence

1 ™
b, = —/ f(6) sinnbdb. (3.2.19)
T -
We summarize the result of this section in the following formal definition:

Definition 8. Suppose f(0) is a 27 periodic Riemann integrable function.
Then f(0) has a Complex Fourier series erpansion as

FO) ~ Y Cre™. (3.2.20)
The corresponding real Fourier series representation of f(0) is given by
1 - :
f(6) ~ 500 + ; (an cosnf + b, sin nH). (3.2.21)

The complex Fourier coefficients C,, of f are given by
Cp == /7r f(0)e ™ dp (3.2.22)
"o | e . 2.
Equivalently the real Fourier coefficients a,, and b,, for f are defined as

o =+ / " FO)cosnfds, (n>0), (3.2.23)
mJ x

by = % /_ ﬂ £(O)sinnddd, (n>1). (3.2.24)
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So far a crucial question is when we can write equality in (3.2.5) or
(3.2.21)? And defining a,, and b, as in (3.2.6) and (3.2.7), what is the rela-
tion between the right hand side in, e.g., (3.2.5) and f(z)? We put the whole
answer in the Fourier convergence theorem below:

Theorem 9 (Convergence Theorem). If f is 2m-periodic and piecewise
smooth on R, and

N N
1 )
SI{,(G) = 50 + E (an cos nf + by, sin n9) = E C,em? (3.2.25)
1 —N

then
lim S{(0) =

N—o00

[£(0-) + £(6+)]

N | =

for every 0 and in particular,

lim S%,(6) = f(6)

N—oo

for every 0 at which f is continuous.

We postpone the proof of Fourier convergence theorem. However, from
now on as soon as we can justify that a function f is continuous at a point
6, we use equality between the Fourier series expansion of f and f(#).

3.3 Even and odd functions

Below we examine some useful properties of even and off functions:

e For an even function F(0) we have F'(§) = F(—8), hence
/ F(z)dx = 2/ F(z)dx. (3.3.1)
—a 0
e For an odd function F'(#) we have F(—6) = —F(#), and hence

/a F(z)dz = — /Oa F(z)dx + /OGF(:c)dx = 0. (3.3.2)

—a
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Now since cos(nf) is an even function and sin(nf) is an odd function, we get

For even f an = ;/ f(6) cosnf df and b, = 0. (3.3.3)
0

2 ™
For odd f an, =0 and b, = —/ f(0) sinnd db. (3.3.4)
T Jo

Exempel 1. The function f(0) = |0|, —7 < 0 < m, is 2w periodic. Ezpress
f in Fourier series.

f(0) = 10|

7T__

i ¥ i i ¥ 0

—T ™

Figure 3.1: The 27 periodic function f(6) = |6].

The function f(0) is 2m-periodic and even, thus we have according to (3.3.3)
b, =0 and

anzg/ f(0) cosnb df
T Jo

Since f(8) = 10| and 0 > 0 on the interval [0, 7] we get first for n =0,

9 [m 9 [ 9 16277
aoz—/ ecosodez—/ edez—[—] —
T Jo T Jo mL2lo

and then for n > 0 we have using partial integration that

an:g/ \0\cosn0d0:g/ 6 cosnf df
T Jo

™ Jo
:2[9-lsinner—g/o‘wlsinnﬁcM:i[cosng}7r (3.3.5)

™ n 0 ™ n ™ n 0

:i[(—l)”—l}: Wi)w for odd n =2k — 1
Tn? 0, for even n := 2k.
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Thus the Fourier series expansion formula

f(6) = %ao + i": (an cos nf + b, sin n0)
1

yields

A 1

l\9|=1

Note that

M8

(2k—1 3.
2 2k—1 cos(2k — 1)0, (3.3.7)

convergence quadratically!

Exempel 2. The function g(8) =0, —7 < 0 <, is 2rw-periodic. Express g
. Fourier series.

g(0) =10

Figure 3.2: The 27 periodic function g(6) = 6.

Here g(8) = 0 is an odd function, thus by (3.3.4) we have a, = 0 for n =

0,1,... and
2 [T ) 2 [T )
:—/ f(O)smnGdH:—/ 6 - sinnf db
T Jo ™ Jo
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Now using partial integration we get

2 -1 ™ 2 [T-1
b, = —[9 . Fcosnﬁ} — —/ FcosnGdQ
T o mJ
3.3.8
P | (—1)n+ (3.38)
T n n
and hence
1 = :
g(0) ~ 00 + 21: (an cos nf + by, sin nG) (3.3.9)
yields
0)=0= 2i (D™ g (3.3.10)
g\v)="0v= 2 " . 3.
Note that
f: (=" sin(n) f: 1 (3.3.11)
1 n 1 n’ -

which means that g(8) = 0 has poor convergence properties than the previous
example: f(0) = |0|. Below we comment this phenomenon:

Remark. Note that, comparing the graphs of f and g we see that f is a
continuous, linear, oscillating functions, whereas ¢ is discontinuous (which
is also the reason behind the ~ sign in (3.3.9) rather than an equality, we
shall discuss this later on in this chapter). Now if in (3.3.6) and (3.3.11) we
take the summation only up to n and denoting the resulting finite sums by
fn(0) and g, (), then f,(#) goes faster towards f(6) than g,(6) goes towards
g(#). This is due to stronger continuity property in f than in g. Thus, if f
is regular the convergence of the Fourier series for f is faster towards f .

3.4 Bessel’s Inequalities

Theorem 10 (The Bessel’s Inequality I). If f(0) is a 27- periodic Rie-
mann integrable function on [—m, | and C,, are the Fourier coefficients of f,
then

o0 1 T
AT MHORT (3.4.1)
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Proof. We use the partial sum, of order N, of the complex Fourier series
expansion for f(6), i.e.,

N
= Cpe™, (3.4.2)
-N
and compute
N o N . N
‘f 0) = Cue?| = ( Y One"“’) ( - One—m”)
_ N —N
N
= fO)F =Y [CuT @™ + Tuf@)e ™| (343)
y —N
+ Z Cmc_nei(m—n)e'

mn=—N

Now integrating (3.4.3) over [—m, |, and changing the order of summation
N
=3 e
-N

and integration, it follows that
8 IUGIKE
7T -7
N

_ % > [Cn /_ ' f(®)e™d(9) + C, /_ 7; f(0)e™df| (3.4.4)

—N

Z /ccem">"d0

m, n=—N

27r

Recall that
1 [ .
cilm=m) g _ { 0, for  m#n

o 1, for  m=n.

-7

Further

1 [ . — 1 [ .
C, = —/ f(0)e~™d0  implies C, = —/ (9)e™dg.
2 | . 2 ) .
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Hence we can rewrite (3.4.4) as

Z c, eme

1 7T
=5 [ Ir@)ras

27r
N N (3.4.5)
— > (CuCr + CuCr) + Y CuCh.
—N —N
Thus
1 - N
0< 5 [ 1O =cuemfo =5 [ i0)an - Z\C ’,
-n —-N

and letting N — oo we obtain the first Bessel’s Inequality:

o0 1 T
Slcr< g [ iropa

Below using the relations between real and complex Fourier coefficients
we derive the real version of (3.4.1):

Theorem 11 (Bessel’s Inequality II). If f(6) is a 27- periodic Riemann
integrable function on [—m, x| and an, n =0,1,..., and b,, n=1,2,..., are
the real Fourier coefficients of f, then

1 2 1 = 2 2 1 /W 2
- — < — 4.
P+ L0l Py < 5o [ 1FOF (340)

-7

Proof. As we have seen earlier we have for n > 1 that a, = C, + C_,
and b, = i(C,, — C_,). Hence

|an|” + [bal* = (Cr + C_p)(Co + Cy) +i(Cr — C_p) (=) (Cr, — C—p)
= 20,0, +2C_,C_, = 2|C,|* + 2|C_,%.

Thus, for n > 1, we have
1
5 ([anl” + [Ba]*) = |Cul” + |C_a]?, (3.4.7)

whereas for n = 0 we get

lag|® = 20 _2C ¢ = 4|Cy|*. (3.4.8)
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Combining (3.4.7) and (3.4.8) and the Bessel’s inequality I, we obtain
1 2 1 - 2 b 2\ _ C 2 S C 2 C 2
Jlaol” + 5> _(lanf® + [baf*) = [Col” + Y (|Cuf* + |C—a]
1 1

9] 1 T
=Y k<5 [ Io)pas

which is the Bessel’s Inequality (II) and the proof is complete.

(3.4.9)

As a consequence of these two theorems we conclude that for 27 Riemann
integrable functions, the series obtained from the Fourier coefficients:

Z|an|2a Z|bn|2: Z|Cn|2 and Z|Cn|2
1 1 1 -1

are all convergent. Thus, |a,|?, |b,|* and |C,|?, being the n-th terms of
convergent series, tend to zero as n — oo (also as n — —oo in the case of
C,,) and hence so do ay, b, and C,,. We summarize these properties, viz,

Lemma 5. For a 27 periodic, Riemann integrable function f, the Fourier

coefficients an, b, and Cy, all tend to zero as as n — oo (also as n — —o0 in
the case of C,).

3.5 Proof of the convergence theorem

To prove the convergence theorem for the Fourier series we need to define
the concepts as piecewise continuous and piecewise smooth functions.

Definition 9. A function f on the closed interval [a,b] is said to be piece-
wise continuous on [a, b/ if

(1) f is continuous on [a, b] except perhaps at finitely many points x1, T, ..., Ty.
(#) at each of the points x1,xa, ..., Tk, [ has both the left-hand and the Right-
hand limits, i.e., f(x;—) and f(z;+), j=1,...,k, exist.

Definition 10. A function f, defined on the closed interval [a,b] is piece-
wise smooth on [a,b] if f and its first derivative f' are both piecewise
continuous on [a, b].
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Definition 11. Let f be a 2w-periodic piecewise smooth function then, for
a fized 0, the Nth partial sum for f is defined by

N N

1 ‘

S}:,(G) = 500 + E (an cos nf + b, sin né’) = E C,em? (3.5.1)
1 —N

with a,, b, and C, being the usual Fourier coefficients, viz;

= %/_7; f(¥) cos(ny)dep, by, = %/_7; f(@)sin(ny)dy, and

1

—iny
Cu=gr | Fw)e ™au.

To prepare for the proof of the convergence theorem we note that

ZC@ 27TZ/f )0V dup,

is symmetric on n, since n ranges from —N to N. Hence replacing n by —n,
does not affect the above sum and thus we can write

1L .
ShO) =5- > [ rwe Nay (352
_N YT
Let now ¢ = 1) — 6, then ¢ = 0 + ¢ and dvy = d¢, so that
sL(9) = = [ 0 g 3.5.3
=55 [ | 10+00 (353)

Further since both f and e are 27-periodic, using Lemma 2, it follows that

1 & [" .
=5 > / F(O0+ ¢)e™do. (3.5.4)
_N YT

Now we define the Nth Dirichlet kernel by

Dy(¢) = % D e (3.5.5)
-N
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and rewrite S (6), in (3.5.4) as

L) = [ £(0+6)Dx(e)do. (3.5.6)

-7

Some properties of the Dirichlet kernel:
The function Dy (¢) is the sum of a finite geometric progression, which for
¢ # 0 can be written as

Dn(¢) = QL (e‘“v"’ +e N4 p e e e"N¢)
™

2N
= e (1 +el+ . te ) =5¢ ;e" (3.5.7)

1 eiN+1)¢ _ ,—iNo

o e —1

Multiply both the numerator and denominator by e~i% we get

1 lN+3)¢ _ o—i(N+3)é 1 sin(N + 1)¢
Dn(¢) = — =

.1 . - .
2 eizd _ iz® 21 sini¢

(3.5.8)

From this formula we can sketch the graph of Dy (¢). It is rapidly oscillating
to zero viz.
We conclude this part by the following lemma:

Lemma 6. For any N, we have that

[ Dutorto= [ utoris =

Proof: We give the proof for ¢ € (0,7). The case ¢ € (—n,0) is proved in
the same way. We rewrite the Nth D1r1chlet kernel as

N N

N
1 . 1 1 - - 1 1
D - neg _ - ( ng —zn¢) - - .
~N(®) QWZJ\;G 27T+27TZ e’ +e 27T+7Tzl:cos neo

Integrating over ¢ € (0, ) yields

/DN Vdp = / =~y Zcosn¢>d¢ [%+%2N251nn¢} 1,
1

and the proof is complete.
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D150(9)

\/\/\/\/\/\/\/\/“H.‘{\I\/\/\/\/\/\A/ 5

vvvv\/VVV vvv\/\/vvv

Figure 3.3: The Dirichlet kernel Dy (¢) for N = 150.

Now we return to the proof of our main result:
Proof of the Convergence Thereon: Since f is piecewise smooth we have
that f(8) = f(6—) for & < 0 and f(0) = f(6+) for & > 0. Further using
lemma 4 we can write

%f(e—) = f(0-) /_7r Dy (p)dg, %f(0+) = f(0+) /Oﬁ Dy(¢)do. (3.5.9)
By (3.5.6)

S4@ = [ 16+0Dy@s+ [ 10+ 0)Dx(@)s. (3510

Subtracting (3.5.9) from (3.5.10) we get

s40) - 3[r6-) + 160 = [ |£(0+6) — 1(6-)| Dx(6)ds 35.11)

. / C[£6+ ) - 164)] Dr(0)do
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We now wish to show that for each fixed 6 this approaches zero as N — oo.
Recalling (3.5.7) we have

1 elN+1)é _ —iNo

Dn(¢) = o e —1

We now define g(¢) by

J0+0)-10-)  for _ 1< p<0
o6 — { ] ¢ (3.5.12)

et®—1
% for 0<o¢<m,

and rewrite (3.5.11) as

1 1 [7 . .
f _ - _ - i(N+1)¢ _ _—iN¢
$40) - 3[16-)+ 160)] = - [ 9(0)(e e N)ds. (3.5.13)
We can easily see that g(¢) is a well-behaved function on [—7,7]. In fact
g(®) is as smooth as f(f), except near ¢ = 0, where ¥ — 1 vanishes. Using
I’Hopital’s rule it follows that

[O+0) 1) _ . [+d) _ [(69)

lim = lim - = -
¢—>0+g(d)) 0+ e —1 p—0+  1e'® )

Similarly g(¢) approaches the finite limit 1 f’(#—) as ¢ — 0—. Hence g(¢)
is actually piecewise continuous on [—7, 7], and as a consequence of Bessel’s
inequality (Lemma 3) its Fourier coefficients

Culg) = %/ g(@)e ™%dp — 0 as n — Foo. (3.5.14)
Now since
L[ ; I .
2 9(9)e"V?dp = C_(y11y(g9) and ﬂ/ 9(¢)e""Ndp = Cn(g),

using (3.5.13) it follows that

lim S7(0) _1 f(0-) + f(0+)} = 0.
N—oo 2
and the proof is complete.

Below we give an alternative approach to the proof of the Convergence
Theorem. This approach is based on the following properties of the Fourier
coefficients:
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Lemma 7. Let f and g be 2r periodic Riemann integrable (piecewise smooth)
function. Then the Fourier coefficient

_ _ 1 " —ind
Co(f) =Cn = o /_Wf(9)€ do,
as an operator, is linear, i.e.,

Culaf + Bg) = aCu(f) + 6Cn(g), Vo, BER (3.5.15)

Further we have that

1 [ _.
Cn(1) = %/ e~ dh = 6pp. (3.5.16)

-7

This 1s justified by the fact that for n = 0 we have

1 1
Co(1) = %/ dh = 5 [9} =1 (3.5.17)

while n # 0 yields

) = 5[~ e ™| =~

=5 - [cos nf — isin ner =0. (3.5.18)

2min

Finally

Cr(e® f) = % /7r e®0 F(0)e~™dh = cp_i(f) (3.5.19)

Proof of the Convergence Theorem, Method II: Suppose that f is
continuous at 0. Let

16 - f00)  (FO) = 160))/ 0~ 80)

0) 900) == (ew - ei”")/ (6 — 6y) e
We know that . f(0) = f(6o)
i L= 1) _ (60) (3.5.21)
and il _ gifo 2\ y
i = ()], = o
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Thus it follows from (3.5.20)- (3.5.22) that

lim ¢(f) = lim /') _ f’(00:|:).

0500+ 0500+ <€Z~9)' T et

(3.5.23)

Since f'(f) is piecewise continuous, g(f) is piecewise continuous. Further
using the (3.5.20) we get

£(0) = f(6o) +€”9(6) — ™g(0)

Thus by linearity of C,,(f), and the relations (3.5.16) and (3.5.19) (see Lemma
5) we have

Cu(f(8)) = Cu| f(B0) +€”9(6) — ™ g(0)

= [(B)Ca(1)+ = Cua(9(9)) = € Cu(g0)  (3:524)
= f(00)6n0 + Cn-1(9(0)) — €™ Cr(g(0)).
Hence
N .
SE(00) =~ Cul£(0))e™?
N (3.5.25)
=3 [700)500 + Cu 1 (9(0)) = €™ Calg(0))] €.
Y
Evidently we have
N
Z f(00)0no = f(6h) (3.5.26)
Y
Now to calculate the reaming part of the sum in (3.5.25) , we define
= Cr_1(g(6))e™, (3.5.27)
and write
[Cuca(9(6)) — e Culg(6)] €% = Cur(g(6))e™ — 100, (9(9))
=Tn —Tnt+1

(3.5.28)
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Thus we have

SK(0) = F(80) + Y _Irn — i)
o (3.5.29)
=f(0o)+(r n—7_nNy1)+ o+ ("N —TN11)

= f(0o) + r—n — N1
Finally since g is piecewise continuous, then using Lemma 3,
70| = [Ca1(9(8))e™™| = [Coa (9(0)| = 0, as |n[ = c0.  (3.5.30)
SI(0) = f(6y), as N — oo.

and the proof is complete.

3.6 Derivatives, primitive functions

The fundamental theorem of calculus:

| @ =) - ra) (3.6.1)

applies to functions f that are continuous and piecewise smooth, even though
f! is undefined at the “corners”. For example, if f is differentiable except at
the point ¢ € (a,b), we have

/abf’(ﬁ)d9=/:f’(0)d9+/cb f'(0)do
= [f(c) - f(a)} + [f(b) - f(c)] = f(b) — f(a).

Now we shall show how to relate the Fourier coefficients of a function to those
of its derivatives.

Theorem 12. Suppose f is 2w—periodic, continuous, and piecewise smooth.
Let ap, b, and C,, be the Fourier coefficients of the function f, and let al,, b,
and CJ, be the corresponding Fourier coefficients of the derivative f'. Then

a,, = nby, b, = —na,, and C, =1inC, (3.6.2)

Note! a;,b], and C,, are not derivatives of ay,, b, and C,.
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Proof: Using integration by parts it follows that:
1 [, 1 o1 [T ,
:—/fwnwwwz—p@mmﬂ —i/f@GmmW)
) . T P .
1 ™
= n—/ f(0)sinnf df = nb,
™ —T
where we use the fact that, because of 2m-periodicity f(n) = f(—n). Similarly
= l/7r f'(6) sinnd df = l[]‘(0) sinn@}7r — l/7r f(@)ncosnb db
), T TS,
1 ™
= —n—/ f(0) cosnf df = —na,,.
™ —T

As for C! we use once again f(—7) = f(w) and also ™™ = e = (—1)"
to obtain

Co=gz | 1@ o= (10|~ 5 [ f0)(ine)ap
=WH%;/f@€WM:m%

and the proof is complete.

In the next theorem we derive the Fourier series expansion of f'(6) in
terms of the Fourier coefficients of f and also give the convergence of the f's
Fourier series expansion (convergence theorem for f).

Theorem 13. Suppose that f(0) is a 2n—periodic, continuous, and piecewise
smooth function, and that f'(0) is piecewise smooth. Then the Fourier series
expansion of f' is obtained by the termwise derivation of the Fourier series
expansion for f, i.e., if

ZC’e —ao—f—z an cosnf + by, sinnd),

then

o0

= Z inC,e™ = Z (nbn cos nf — na,, sin n0) (3.6.3)

1
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for all 6 at which f'(6) exists. At the exceptional points where f'(0) has
jumps, the series (3.6.3) converges to

%[ F10-)+ (64, (3.6.4)
Proof: We know that f(0),f'(0) and f"(0) are continuous and piecewise
smooth. Using theorem 11 we have that f'(0) is the sum of its Fourier series
at every point (with appropriate modifications at the jumps). By theorem 12
the coefficients of €™, cosnf and sinnf in this series are inC, ,nb, and a,,
and we get the desired result.

Now we link the Fourier coefficients of f and that of its primitive functions
F'. Note that a periodic function f(#) has a periodic integral F(f) if and only
if the constant ag in the Fourier series expansion for f(#) is identically 0, i.e.,
if and only if f’s average vanishes:

1 1 (7

Exempel 3. We know that f(0) =1 is periodic but F(0) = [ f(8)d is not
periodic. However, except the constant term ag, the integral of every term
i a Fourier series erpansion is periodic. From this we see that a periodic
function has a periodic integral precisely when the constant term in its Fourier
series vanishes. We therefore arrive at the following result.

Theorem 14. Suppose f(0) is 2m—periodic and piecewise continuous, with
Fourier coefficients an,b, and C,, and let F(0) = foe f(p)do. If Cy = %ao =
0, then by termwise integration of the Fourier expansion for f we have that
for all 0

— Cn g 1  (Gn n
F(0) = Cy(F) + Z ?—neme = §A0 + Z (% sinnf — % cos n0> (3.6.5)
—o0,n#0 1

where the constant term
1 s

1

is the mean value of F on [—m, 7).
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Proof: Since f(0) is piecewise continuous, it follows that F = [ f is
continuous. Coy = %ao = 0 gives that F' is 2m—periodic since by lemma 2

F(6+2r) - F(6) = /0 ™ b (6)do - / " J(6)dé = 2nCy = 0.

Hence by the convergence theorem 11 F(0) is the sum of its Fourier series at
every 0. But theorem 12 applied to F, yields

et B i =S r0) @60

and the proof is complete.

Note! If Cy # 0, the above argument can be applied to the function
F(0) — Cy0, since then for the function

60):= [ (10) - Cu)o = Fi0) o,

the derivative G'(0) = g(f) — Cy has, in its Fourier series expansion, the
constant term Cy(g) = 0. Then

> Cn 1 X /a b
0) — “neind _ = 4 T oinng — =2 2]
G(0) CO(G)_{__;#O p— 5 0+;(nsmn ncosn)
where . s
Co(G) = 540 = 5 | GO)db.

Exempel 4. f(0) is 2m—periodic and piecewise continuous. Give the Fourier
series expansion for F(6)!

1 0<fO<m
f(e)_{ -1 —7<6<0,

Clearly F(0) = |0| for |0] < w. Since f is odd we have a, = 0. Conse-
quently Cy = %ao = 0. We also have

[-1+1] =0,

N | —

f0) = %[f(O—) +f(0+)] -
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f(0)
I I i 0
- m
Figure 3.4: The signum function f(6).
F(6) = 16|
7T —_—
| o — m o f

Figure 3.5: The (periodic) primitive function F'(f).

We compute b,, n > 1 viz,

1 [7 2 [7
b, = —/ f(8) sinnfdf = —/ f(0) sinnfdf.
T ) . T Jo
But since f(0) =1 for 0 < 0 < 7 and we get
2 [" 271 m 2
by = —/ sin nfdf = — = [—cosna] - ——((—1)" . 1)
T Jo wln 0 nm
and A
b =1 @EDr n=2k-—1
" 0 n =2k

Thus we have

S A~ 1
f(8) ~ ;bn sinnf = - nX_:l 51 sin(2n — 1)6.
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Since F(0) is continuous we now have that the Fourier series for F(0) = |6],
0] <, is

/f )dp = — /Z(% sin(2n — 1)¢dg

B 4 cos(2n —1)6
=Co w; (2n —1)?

(3.6.7)

where

1 [" 1 [ 1 (7 170*17  «
Co 2m /_7r (6)df 2n /_W|0|d0 7r/0 b 7r[2 }0 2

Note that this Cy is the lower bound of the integral in (3.6.7), i.e

4 & 1 T
CO_;;@n—l)z_?

which, as a by-product, gives the sum of the series:

2

ZQn—l 8"

3.7 Fourier series on the interval |7, 7]

Fourier series give expansions of periodic functions on the whole real line in
terms of trigonometric functions. They can also be used to give expansions
of functions defined on a finite interval in terms of trigonometric functions
on that interval. We start with the simplest case:

Suppose that f(6) is defined on [0, 7], as in the Figure below.
We want to extend f(f) to the whole real line by requiring it to be 27—
periodic. We have the even extension: feyen(f), of f to [—m, 7] is defined by

feven(_e) = f(e)a S [O’ﬂ—]

and the odd extension: f,qq4(6), of f to [—m, 7] : defined by
foaa(—0) = —£(0), 0 € (0, ], foad(0) = 0
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f(0)

™

\/

Figure 3.6: A function f(60), 0 € [0, 7].

From lemma 2.2 it follows that for even extensions we have
1 [7 A
ay, = —/ feven(0) cosnf df = —/ f(6) cosnf df
T —r Vs 0

and

1 7T
b / Foven(6) sin nf df = 0.

n — —
T

These give the following Fourier cosine series of f, if f is an even integrable
function on [0, 7.

1 - 2 [T
feven(0) ~ 500 + ;an cosnf, where a, = ;/0 f(0) cosnfdb. (3.7.1)

In the same way we have for the odd extension functions
1 ™
ay = — / foaa(f) cosnfdf =0
T™J-n
and | g o 7
b, = —/ foaa(f) sinnf df = —/ f(0)sinnd db
T ) . 7 Jo

These give the following Fourier sine series of f, if f is an odd integrable
function on [0, 7.

o 2 T
foaa(0) ~ E b,sinnf, where b, = — / f(6)sinnd do. (3.7.2)
n=1 T Jo
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feven (0)

-7 ™

VARV

Figure 3.7: The even extension of f(0) : fepen(0), 0 € [—m,7].

3.8 Fourier series on 2L-intervals

Suppose that f(x) is 2L-periodic. Making the change of variables:

Lo
r=—,
T

we get 0
@) =1(=) =90
Obviously ¢() is 2r—periodic, since
0 0 0
v =1 (H05) (2 o)< ()

If g(#) is piecewise smooth we can expand it in 27-periodic Fourier series:

9] ' 1 P .
6) ~ E et h Cn=— 0)e "0qg.
g(0) cne™,  where 27r/ g(f)e

n=-—00 -n

Now the substitution
T

T
O—T, dﬁ—zdx, and 0 =4m < x==%L.

yields

o .
f(-T) ~ Z CnemTWw:

n=—oo
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foda(0)

N\ :
L vV,

Figure 3.8: The odd extension of f(6): f,i(f), 0 € [—7, 7).

where 5 .
]_ inm ]_ inm
Cn= or /_L f(x)efTw%d»T =57 » f(z)e L %dx.
Thus we obtain with § = =
1 ad nmw . nm
f(z) ~ 5% + ; (an cos + by sin Tx) (3.8.1)

where
1 [t nm 1 [f nmw
— - = — in — . 8.2
n, L/Lf(:c)cos Lxdx and by, L/Lf(x)sm Lxdx (3.8.2)

Thus it follows that the Fourier cosine expansion of an even piecewise smooth
function f on the interval [0, L] is

1 - nm
f(z) ~ 500+ nz:; @y COS 2 (3.8.3)

where

9 L
a, = —/ f(z) cos " ¢ dr and b, = 0. (3.8.4)
L/, L
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Analogously, the Fourier sine expansion of an odd piecewise smooth function
f on the interval [0, L] is

1 = . nmw
fl@)=xz~ 540 + E_l @y 8in —1, (3.8.5)
where
2 [* . nmw
a, =0 and b,=— [ f(z)sin—zdz. (3.8.6)
A L

Exempel 5. Find the Fourier cosine expansion of f(z) =z on [0, L].

J3 2L

Figure 3.9: The function f(z) =z, = € [0, L].

We ezpand the function f(x) = z to an even 2L-periodic function , feyen =
\z|, for x € [-L, L]:

I [l [l x

I T T T T

—2L —L L 2L

Figure 3.10: The 2L periodic even function feyen(z) = |2|, € [-L, L].

Since the expanded function is even, we have that b, = 0. As for a, we
have

9 L
anzf/o f(:r)cos?dm,
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and with f(x) =z on [0, L], we get

ap = f/ zcosOdr = Z/ rdr = I [%] =1L, (3.8.7)
0 0

and

2 nm 1L
/f cosfxdx—z[x—smfx}o
9 L

L nmwL 2/ L nm 1L
_“ Tl MO Bl o 3.8.8
L J, nm S L do = L(mr) [COS Lx]o ( )
2L n
e ((_1) B 1)
Thus we have AL L
__—2b — 2 — 1
_J) @Iz "

an { 0 "= 9k (3.8.9)

Note that since feyen = || is continuous and piecewise differentiable on R,
it follows that

f(@) = feven(z —ao + Zan cos —33 (3.8.10)
and thus
flz)=|z| = g - i—s ::01 (2n1— g cos (2n z 1)7T3:, reR  (3.8.11)
In particular
flz)=2z= L_4ab 3 ! cos (2n — 1)7r:r, z €[0,L]. (3.8.12)

2 —1)2
2 mi(2n-1) L
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Exempel 6. Expand the function f(z) = x to a 2L-periodic odd function on
[—L, L].

I3 2L

Figure 3.11: The function f(z) ==z, z € [0, L].

We expand the function f(x) = x to an odd 2L-periodic function , foqs = z,
for x € [-L, L]:

8

Figure 3.12: The 2L periodic odd function f,q4(z) =z, = € [-L, L].

Since the expand function is odd, we have a, =0, and

9 L
bn:Z/(; f(x)sin?dm,
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Inserting f(z) = x on [0, L] and using partial integration it follows that

b — Q/L o 2[ —L niw / J
n =7 i xsmLxx Lmecos x cos x:r
2 —L 27 L\2 nm 1L 2L
_2,-L _(_) [_} _ 2X (1)t
L nm cos(n) + L\nnr s Lx 0 mr( )

Since f is continuous on (0, L) we get

- . nw 2L (=)™ onr
— b, = — . 8.1
flz)==z E sin —-a = — E ——sin—-g (3.8.13)

n=1 n=1

Thus for x € (0, L) we have using (3.8.13) and (3.8.11) that

_ 2L i": 1)+t L 4L & 1 (2n — D)m
—_— SlIl — == "= COS .
L v 2 7L (2n - 1)2 L "

™
n=1 n=

This equality is valid for x = 0 as well. Thus we have

2L K (=)™t L 4L & 1
= 0=0+=—-=— Y ———cos0.
T Z n o 2w~ (2n-1) oos

n=1

which gives

S
“~(2n-1)* 8

which we recognize also from previous computations.



Chapter 4

The Fourier Transform

Fourier transformation is the most powerful technique for solving differential
equations of different type arising in science and engineering. There are a variety
of both analytical and numerical approaches rely on Fourier transforms. FFT
(Fast Fourier Transform) is , e.g., the backbone of numerical approaches for
problems in signal analysis. Besides all the traditional applications the modern
technique of wavelet transform is based on (actually is an special version of) the
Fourier transform.

4.1 Introduction

We now turn to the study of Fourier transform which is an integral trans-
form, as Laplace transform, defined on the whole real line R, and focused
on analyzing functions and deriving relevant techniques to solve differential
equations. We start with an analogy with Fourier series viz:

Suppose that f is a function on R. For any L > 0 we can expand f on
the interval [—L, L] in a Fourier series,

I L
f(z) = oL Z Cnre' L% where C,p = / f(y)e "L ¥dy. (4.1.1)
= —L

Let n
% — A¢ and define &, := % — nAE.

111
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Then the formulas in (4.1.1) become
1 o . L ,
f(z) = o ch,Lezf"“Af, where C,, 1 = /L fy)e ®¥dy.  (4.1.2)

Suppose that f(z) vanishes rapidly as x — +o0, then for sufficiently large L
we get

Coz = /_ I; fly)e vdy ~ /_ Z f(y)e *vdy. (4.1.3)
Introducing the notation
Fe = [ rweay (4.1.4)
we have -
flz) =~ % _X:f(ﬁn)ei&””Aﬁ, where |z| < L. (4.1.5)

Let L — oo, so that Aé — 0 and the sum in (4.1.5) should turn into an
integral, thus:

f(z) = %/_ f(f)e’f‘”dg, where f(§):/_ f(zx)e “*dax, (4.1.6)

A

f is called the Fourier transform of f and the formula (4.1.6) is the Fourier
inversion theorem.

Definition 12. If f is an integrable function on R, i.e., f € L'(R), its
Fourier transform is the function f on R, defined by

0= [ s@e = Fli@]© = F[f0)]. @1

Lemma 8. The Fourier transform f(€) is (i) bounded, and (i) continuous.

Proof. (i) Since f(€) is defined for f € L'(R), and |e~%”| = 1, the integral
converges absolutely for all &,

7| = /00 f(x)e ™" dx < /00 f(z)dz < 0o where f e L'(R).
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(i) Let & — &. We want to show that f(€) — f(&). Since
F@e = 1@ Ve and JeL®, ie, [ f@d<,

the dominating convergence theorem give us

i )= [ i e s = [ j@pe s = f(e)

§—&o 0o €0

and the proof is complete. O

4.2 Basic properties of the Fourier transform

Some of the basic properties of the Fourier transform are given in the follow-
ing theorem.

Theorem 15. Suppose f € L', then
(a) For any a € R, we have

(al) F|@w—a)| =cf(§) and (a2) F|e“f(@)| = f(E~a).
(b) If 6 > 0, then we have the scaling formula:

Flren)© = £(3).

(c) If f is continuous and piecewise smooth and f' € L', then

(c1)  FIf'(2))(€) = i&f ().

On the other hand, if xf(x) is integrable, then
(2)  Flaf@)] =if©).

Proof. (al) From the definition we have

f[(x - a)} = /C: f(z — a)e™%%dx.
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Substituting £ — @ = y and thus dzr = dy we get

(-] = [ 1oy = [ e on=cieo
(a2) Using the definition it follows that

f[emzf(a:)] = /00 e f(x)e %%dy = /00 f(z)e ™ 69%dy = f(€ — a).

o0 o0

(b) The Fourier transform formula gives

= /OO f(6x)e ™ du.

Substituting 6z = y and thus dz = §~'dy we obtain

- [ o ho= 49,

(c1) Using partial integration it follows that

= /_ Z f(@)e eds = [f()e %] / f(z)(—i€)e € da.

But since f € L', the limit

i 1@ =10+ [ 1

exists and since f' € L! this limit must be zero. Likewise lim,_,_o, f(z) = 0.
Thus we have

[f@e]” =0 and FF@IE) = (©(©).

Le % = (—iz)e “*, we may write ze “* = zddg e 2.

6 Then we

(c2) Since
have

f[acf(x)] = /Z of (z)e " dx = 2—/ f@)e " dz = if' ().
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4.3 Convolutions

In this part we derive one of the most powerfully Fourier transform formulas:f
he Fourier transform of the convolution product of two functions.

Definition 13. If f and g are functions on R, their convolution is the func-
tion f x g defined by

frg(r)= /oo fla=ygly)dy, VzeR (4.3.1)

With a change of variables we have evidently

/_Oo flz—y)g(y) dy = /_OO f)g(z —y) dy. (4.3.2)

We can think of the convolution integral as a limit of the Riemann sum:

/oo fl@=yay)dy~ Y fl@—y)a(y;)Ay;.

j=—o0

The function f;(x) := f(xz — y;,) is a translation of f along the z-axis by the
amount y;, so the sum on the Right is a linear combination of translates of
f with coefficients g(y;)Ay;. We can therefore think of f * ¢g as a continuous
superposition of translates of f.

The weighted average of f on [a, b] with respect to a nonnegative weight
function g is

IN f(y)g(y)dy'

12 g(y)dy

Suppose now that fab 9(y)dy = 1. If we now use the identity (4.3.2) and write
frg(a)as [72 f(y)g(z —y)dy, we see that f x g(x) is the weighted average
of f with respect to the weight function g(z — y).

In the next two theorems we state (without proof) some basic algebraic
and analytic properties of convolutions.

Theorem 16. Convolution obeys the same algebraic laws as ordinary mul-
tiplication:

(i) The associative law: fx*(ag+bh) = a(f*g)+b(f*h), fora,b constants.
(ii) The commutative law:  fxg=gx* f.

(#5i) The distributive law:  fx (gxh) = (f x g) * h.
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Theorem 17. Suppose that f and g are differentiable and the convolutions
f*g, f'*g and f x g are well-defined. Then f * g is differentiable and

(f *9)'(z) = (f'*9)(z) = (f x ¢')(2).
Now we can give the proof for the convolution theorem:

Theorem 18 (The convolution theorem). Suppose that f, g € L', then

Flf+gl=(fxay= [
Proof. By the definition

Feaf© = [ rrawe o= [ [ fa-pate s

Since f, g € L' we can use Fubini’s theorem to change the order of integra-
tion. Substituting also z — y = z, it follow that

(f * g / / flx —v)g(y)e “®dady
= / 9(y) / f(z)e7 W+ dZ}dy

— ( / evay) ( / J(2)e % dz) = f(©)3(€)

and thus we have R
(f = g)(&) = f(£)9(&)
and the proof is complete. O

4.4 Some key examples

Exempel 7. Determine the Fourier transform for the function f(z) = e 7.
Solution: Using the definition of the Fourier transform it follows that

[eo) 0 o)
.7’[6"‘”'] &) = / e ltle 82 gy = / 17182y +/ e (Hi8)e gy
—00 0

—00

_ [e(l—iﬁ)m]o |:e_(1+i§)z ]w_ 1 4 1 _ 2
Sl —ge o —(1+i&)do  1—dE  1+i&  14€2
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f(@) = e
N x
F(6) = 12

3

Figure 4.1: The function f(t) = e * and its Fourier transform f(£) = 1f7

Note that, although the graphs for f and f have similar profiles, unlike
f, f is differentiable at zero.

Now using the scaling formula (theorem 15b):

Flren)© =357 (5),

with 0 = a we get

for a> 0.

e 21,2 2a
Fle }‘a1+@my‘e+ﬂ’

Next Fourier transform is used deriving several key formulas and deserves
a special attention:
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Lemma 9. Let f(z) = sign(z) - e, then f(£) = 7oss.

Proof. A straightforward calculation yields

F|sign(z) - e‘“‘zq :/ sign(z) - e~ ey

o

0 o)
= / B CaLl R / e~ (a0 gy
-0 0

44.1
. [e(a_if)z]ﬂ n [ e—(a—l—iE)SU :|oo ( )
S la—itlw l=(a+i&)lo
—1 1 —92i¢
== :
a—i& a+i€  a?+ &2
U

Exempel 8. Find the Fourier transform for the function f(z) = e *".

Solution: By the definition we have that the Fourier transform for f(x) =
e is o
() :/ e e %y,

It will be easier if we first compute (f)’(f) Then f({-“) will follow easily using
theorem 15(c):

(YO = [ (cine e s

— E —z2 —iéx > o OOE —z2 o —i€x

[26 e ]700 /_Oo 5¢ (—i&)e "“*dx (4.4.2)
_ 5 * —z? _—ifx _ 6 £

-t [T e =L,

. ) o0
where we used partial integration and the fact that [%e‘ﬁe_’fw} =0. Con-
—0oQ

sequently we have the differential equation f'(€) + %f({f) = 0, where solution
is f(€) = Ce~, with C = £(0).
Note that for £ =0,

f(O)Z/OOe_mzde\/Tr thus C =/,

—0oQ
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and hence

7€) = Fle](e) = vae . (4.4.3)

[(§) = Vet

Figure 4.2: f(z) = e~ and its Fourier transform f(£) = \/me ¢"/4.

This means that for a Gaussian distribution f its Fourier transform f
1s equivalent to a scaling of f preserving both its shape and reqularity. In
particular, as we shall see below, the Fourier transform of e**/2 is the same
function multiplied by v/2m.

As a consequence of this example we have the following important formula
for the Fourier transform of a general Gaussian function:

.7:[6*%] €) = \/%e%. (4.4.4)

Lemma 10.
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Proof. The proof is straightforward using the scaling formula with 6 = /42

29
2
\/5 _(q/%) 2 _¢?
= —\/7?6 4 = —e€ 2a,
a a

Later on we shall use the above formula with the substituting: z = £ and

£=(z—y): o e
[e 2](x—y)—\/;e 2. (4.4.5)

4.5 The Fourier Inversion Theorem

Viz,

O

By the Fourier inversion theorem we mean a procedure that justifies recov-
ering f from f.

Theorem 19 (The Fourier Inversion Theorem). Suppose f € L'(R),
f, piecewise continuous, and defined at its points of discontinuity so as to

satisfy f(x) = %[f(:v—) + f(x—i—)] for all z € R. Then

e—0 27

= hm—/ f(€)ee g (4.5.1)
Moreover, since f € L'(R), the f is continuous and
— o [ Foeeae (45.2)
=0 ) . 5.

Proof. Note that the cutoff function e~<*¢/? in (4.5.1) is just to make the
integrals converge, then passing to the limit the cutoff is removed. A straight-
forward calculation yields

iw /Z f(e)e e F de = % /Z /Z F)e Vet dydg
- % /Z f(y){ /Z e—%ge—iﬁ(y—”dg}dy (4.5.3)
e
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Now we apply (4.4.5) above with a = €2 to get

e2¢? V2 (@=y)?
]:[e_i‘f] (y—z) = 67T€—2£—"é.

Replacing in (4.5.3) it follows that

y—z

1 * - e2¢2 1 > 1 -

€5 ge — - <ﬂ> dy. 45.4
%/_oof(é?)e e” 2 d§ \/ﬁ/_wf(y)se y (4.5.4)
Substituting 3\’;—2’; = 7 gives y = « + v/2¢z and dy = v/2edz. Thus

%/Z fe)eiereF de - % /Z fl@+v2ez)e * da. (4.5.5)

Now since f is bounded we have

2

< Me™® and ‘f({f)ei&e_%_

‘ Fla+V2ez)e™ < f(g)‘ e L.

Taking limit in both sides of (4.5.5), by Lebesgue dominated convergence
theorem, we can pass the limits inside integrals to get

52§2 1

% /_Z f(g)eiﬁw{ li_{%e*T} d¢ = NG /_Z eli_{%f(a; + ﬁsz)e’z2dz.

Hence by the continuity of f it follows that

3 | _J@eie= 7 [ saetie= s 2 [ o= g,

and the proof is complete. O

The Fourier inversion formula can simply be interpreted as a improper
integral if f is integrable and piecewise smooth on R. Below, we state this
as a theorem (without proof!):

Theorem 20. If f is integrable and piecewise smooth on R, then

lim r e f(€)de = 1 flz—)+ f(x—f—)], (4.5.6)

r—oo [_. 2

for every x € R.
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4.6 Plancherel Theorem

Below we show that the Fourier transform preserves the inner products up
to a factor of 2.

Theorem 21. Suppose that f,f,g and G are in L*. Then
27 (f,9) = (f,3)- (4.6.1)

Proof. Using the Fourier inversion theorem for g:

g(z) = — / §(6)ecede,

2T

and the definition of the inner product yields

fg—27r/ i d:c—/oof(x)/wg()i&d«s
/ / Fla)e " da yde = / 150 = (f,3),

where we used the fact that since f,§ € L', and the proof is complete. [

Remark. The definition of the Fourier transform can be developed to arbi-
trary L2?-functions. If f, g, f and ¢ are in L', then f, g, f and § are also in
L2,

Because of our interest in L, spaces we formulate the following result:

Theorem 22 (The Plancherel Theorem). The Fourier transform, defined
originally on L' N L2, extends uniquely to a map on L? satisfying

2n(f,q) = (f,§) forall f g€ L%

As a consequence of the Plancherel theorem we have
The Parsevals formula: For f = g € L? we have that

on [ lpas= [ 7P

-0 o

or

21| £ ()17 = IIF ()7 (4.6.2)
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4.7 The symmetry rule

In this part we derive the symmetry rule which links, in a most simple way,
a function f with its Fourier transform f so that knowing one of f or f the
other one will follow using this rule:

Theorem 23. The Fourier inversion theorem can be formylated as a sym-
metry in the following way: If (&) = f(€) , where ¢(z) = f(z), we have

o(—x) =2nf(z) or ¢(x)=_2rf(—x). (4.7.1)

Proof. In the Fourier inversion formula

1 *; iz
-5 | e

we substitute x = —t. Then we get
L[ s et L[ —itt 5
=g | J@eHdE= o [ (e dE = o(t).
T J 21 J_o

Thus, witht = x, we have

f(=2) = —¢(x) ie, ¢(z)=2rf(-2)
The formulas in (4.7.1) are often given in transform variable &, viz

¢(&§) = 2m f(=£).
U
Remark. All the formulas and rules, including the symmetry rule are also
valid for the L? case.
Applications of the symmetry rule

Exempel 9. In this example we derive the following formula for the Fourier
transform of the cut-off function:

2sin(af)
—

A~

Xa() = 0(z +a) = 0(z — a) <= Xa(§) = (4.7.2)
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Solution: We have that

Xa(£) = /°° Xa(z))e 7 dE.

Since xo(x) =0 for |x| > a and xq.(x) =1 for |z| < a we get
. “ 1 e 1/, L 2sin(af)
Lal€) = / e zﬁwdg — [—_6 z§w:| — ._(ezﬁx —e Zﬁx) = 2>\
©) —a —ig —a i€ 3
Using the symmetry rule we get the following formulas:

F[2E) (6) = oy (-6

T
and since xq(—¢) = xq(§) thus

sin(azx)

FIZ2 0 = malo): (4.73)

T

Exempel 10. Recalling som of our key examples:

f[e_‘mq = %52 and ]:[e_“m] = 52%5&2.

The symmetry rule give us

2
1+ 22

]—‘[ } = ore 1€ = oe 1l — }'[ } — me I, (4.7.4)

1+ 22

Similarly, by the symmetry rule

[2a

o a2] = 27" — .7:[ ! } = (z)e_“m. (4.7.5)

22+ a?

Exempel 11. Since

by the symmetry rule

F[\/%egj] &) = 27Te*§ (4.7.6)
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The symmetry rule in general
If f(€) is a Fourier transform of f(z), f(z) D% f(€) := g(€), then
9() 57 2mf(=x) = §(z) ie. glx) > 2mf(=€) = §(©).
Exempel 12. Recalling the formula

xa(z) >F 2sin(af)
a é— I’

by the Fourier inversion theorem we have

Xa(JJ) = 1 /OO Mei&cdg — l/OO Meigmdé-_

) £ ) €
in(af)
'3
& (z)
2\ N\
—¢ @ e

Figure 4.3: f(z) = x,(z) and its Fourier transform f(f) — sinag)

Let a =1 and x = 0. Then we get the following important result:

* sin(€) oo _
/Oo eode=m (4.7.7)

The Fourier inversion formula can be interpreted as a (principal value)
improper integral, that is:

flz)=1lim [ e f(&)de,

r—oo [_.

which give us the following theorem.
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Theorem 24. Suppose f € L'(R), is continuous at xq, and has both right
and left derivatives, f'(x§) and f'(xy). Then

fleo) = tim [ fle)eode.
Proof. Let
_ (@)~ flag)e e

r — X

(4.7.8)
By the L’Hopital’s rule

lim g(z) = f'(z§) + lim+ f(zo)(z — 3150)67%(“’"’”0)2 = f'(z8).

+
.'I*)$0

Similarly lim,_, — g(z) = f'(zg). Thus g(z) is bounded in a neighborhood of

zo and both g(z) and zg(z) = xeg(z) + f(z) — f(z0)(x — zo)e™ 1 (@—x0)? ) €
L'(R). Further, by (4.7.8)

f(@) = f(zo)e 2@ + 2g(z) — zog(a). (4.7.9)

1

Let h(z) = e 2720 then by the Fourier transform rules: h(€ — a)

h(€)e ¢, Further F[xg(x)} = ig'(€). Now recalling e oF ome= ",
the Fourier transform of f(x), see (4.7.9), is
. 2 " .
F(&) = f(zo)V2me™ > e +4g/ (€) — 0g(§). (4.7.10)
Multiplying (4.7.10) by €%% and integrating over [—r,r] we get
1 1 r £2
f(ﬁ) “r0dg = f(wo) e 2d¢
o Vi
" . 2 o (4.7.11)
— 5 (£)etéroge 20 - i€wo
o [ d@emae= 32 [ e
Partial integration in the second term on the right hand side yields
3 | Feed = flan) = e2@+—pm%ﬂq
- (4.7.12)

-5 [ s mesde= 3 [ aepeeas
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where the last two terms are identical, and hence
1 T &2 ) )
3 [ Heeeds = pao) o= [ e Fder 5 [a)er - gone ],
Riemann-Lebesgue’s lemma give that for g € L', §(£) — 0, as £ — 400 and
2
since [ e~ d¢ = /27, we finally get
i 5 [ Feds = flao)

r—o0 27T

and the proof is complete. O

4.8 Applications of Fourier transform
Partial differential equations

We now use the Fourier transform to solve problems on unbounded re-
gions. The Fourier transform converts differentiation into a simple algebraic
operation and we can reduce partial differential equations to easily solvable
ordinary differential equations.

Exempel 13. Consider the heat flow in an infinitely long road, given the
initial temperature u(z,0) = f(z):

Up = kg, t>0, —oo<zx<o00. (4.8.1)

Solution: To find the temperature u(zx,t), let u(&,t) = Fy [u(m,t)] &).
Then

au—zw —iéx aﬁ’
Fule) = [ Greede =5 [ w2

Further Flug](§) = i€a(§) gives that Flug)(&) = (i€)*w(€) = —&*u(€).
Hence the Fourier transform of (4.8.1) yields

ol N
o7 = —ketu(e), (4.8.2)

with the general solution

(€, t) = Ce ke, (4.8.3)
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A

Fourier transform of the the initial data u(§,0) = f(§): 4(£,0) = f(§),
inserted in (4.8.3) give u(£,0) = C = f(§). Thus we have

i(&,1) = f(§e * (4.8.4)
To recover the solution u we recall that ]’[e’%} &) = ,/27”6’%. Letting
i = kt thus a = Qth, we then have
2 2 2 1 22
Fle ki =VArkt-e " hence e Ft = F e ki
et ] = v Tl ©
Inserting in (4.8.4) we get
1 . 22 1 2
u(&,t) = Fle ke = g , 4.8.5
€0 = FOF | #]©) = ——0(O)(© (4.8.5)
where §(&) := T[e‘f*:t} (€). Using the convolution theorem: fi = (f * g) it

follows that

1 1 C_@w)?
uat) = = ()@ == [ Ty @50

Exempel 14. Solve the Poisson’s equation,
Ugg + Uy =0, —o0<z<o00, y>0, (4.8.7)
where the boundary condition, u(x,0) = f(x), is bounded.

Solution: As in the previous example the Fourier transform of the equa-
tion and the boundary, with respect to x, yields to the following ordinary
differential equation in y;

02 A
~aen)+ g5 =0 wd ag0) =9, (489)
with the general solution given by
(€, y) = CL(E)ell + Cy(e)e™. (4.8.9)

By the boundedness requirement we have that C1(§) = 0. Moreover using the
Fourier transform of the boundary data from (4.8.8) we get 4(&,0) = Cy(§) =
f(€). Thus

a(&,y) = f(&)eTW. (4.8.10)
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To take the inverse transform, in this case, the appropriate Fourier transform
formula is:

1 u
— L galf
}—[ac? n az} e where a > 0. (4.8.11)

Choosing a =y in (4.8.11) we get

=T el (4.8.12)
Thus the inverse transform of (4.8.10) is

_ y 1y [* flz—s)
u(x,y)—f(aﬁ)*w 1L'2+y2_7'(' = 82+y2

ds, (4.8.13)

which is the Poisson integral formula for the solution the given problem.

Remark. This solution make sense since the Poisson kernel m e L!
and f(z) is bounded, |f(z)| < M. Thus we have
1 ° M 0o
lu(z,y)| < M - - /_Oo 32—(111—y2d$ = —arctan (g)_w = M.
Exempel 15. Solve the Dirichlet problem
Upgp + Uyy =0, x>0 y >0, where (4.8.14)

x
241

u(0,y) =0, wu(z,0)= and u(z,y) is bounded. (4.8.15)

Solution: First we solve the following full range (in x) problem:

Ugg + Uy =0, z €R, y >0, where (4.8.16)

u(z,0) = and u(z,y) is bounded. (4.8.17)

x
22+ 1
In this case since "= is odd then u(z,y) is odd in x and we have automat-
ically the condition u(0,y) = 0. Now we recall the formula

—2i¢

: —alz| ~F
sS1gnx - e D) .
9 a2 52
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By the symmetry rule we get

p —T—x2 >F —7i - sign(€) - ¢ (4.8.18)
Thus for a =1 we have
1 _fo 7 —mi - sign(€) - e7I¢l.

hence
u(z,0) :== f(z) O —mi - sign(€) - e I,

Now the Fourier transform of the solution 4(&,y) = f(f)e"f‘y, (see previous
example), can be written as

W(€,y) = —mi - sign(€) - e~ e Ve = i - sign(€) - e”FVEL

Thus with a = 1+ y in (4.8.18) we finally get

T

pny Cpr 2 (4.8.19)

u(z,y) =

4.9 Sturm-Liouville problems on [0, c0).

Solving PDEs by the separation of variables technique we encountered the
Sturm-Liouville problems. Here we study a singular Sturm-Liouville problem
in R:

X"(z) + X (z) =0, —00 <z <00, where& €R, (4.9.1)

where the general solution X (z) = c1e%® + coe %* ¢ Ly(R) and therefore
we do not have an orthogonal basis of eigenfunctions. Instead a function
f € Ly(R) can be expanded, in terms of these eigenfunctions, by the Fourier
inversion formula

fa) =5 [ F@e de = [ + -] de. (492)

Similarly for the half-line problems:

X"(z)+&X(z)=0, 0<z<oo, X'(0)=0; (4.9.3)
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and
X"(z) + X (z) =0, 0<z<oo, X(0)=0, (4.9.4)

the corresponding multipliers cos{x and sin £z, respectively, are not form-
ing orthogonal basis in Ly(0,00). So again, for an arbitrary function f €
L,(0,00), we seek Fourier type expansion formulas viz,

f() = /0 ") coscade,  fa) = /0 " b() sin £ de.

Here the idea is to employ even and odd extensions of f to R.
Indeed, if f € L'(R and f is even, then

f(e) = /00 f(z)(coséx —isinéx) dz = 2/00 f(z) coséx dx.
oo 0
Clearly f is even and the inversion formula give us
1 RN 1 [,
flz) = Py /oo f(&))(coséx +isin&x) dE = ;/0 f(&) cos&x dE.

Similarly if f is odd so is f, and hence

~

== [ f@singods,  f@) =% [ f(e)singads

Definition 14. Let f € L'(0,00). Then the Fourier cosine transform and
Fourier sine transform of f are the functions F[f](&) and F[f](§) on [0, 00)
defined by

Flf](€) = /000 f(x)coséxdx and F[f](&) = /000 f(z)sinéx dz. (4.9.5)

Thus, if feyen and f,qq are the even and odd extensions of j to R, then
Ff1(€) and F[f](€) are restrictions to [0,00) of £ feyen and £ foqq, since

feven(f) = 2/(; feven(x) COs é-m dz = ch[f](g):

Fua® = =2 [ fuaa)sinéa do =LY = SEIFE)
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The inversion formulas therefore become

fla)=2 [ Fif© coseads = 2 [ Ffl(@)singade

Plancherel Theorem for F.[f] and F;[f].

Using the above relations it follows that the norm of F.[f](§) on [0, c0)
is given by

oo R 2 1 1 S
||‘7:C[f]||%2([0,oo)) = /0 ‘Efeven(g) df - Z ) 5 /_oo ‘feven(§)|2d§a
ie., .
||F0[f]||%2[0,oo) = g“fev@ﬂ(g)”%?(—oo,oo)' (4.9.6)

Recalling the Parsevals formula: ||f(§)||i2(_oo’oo) = 27| f(2) |7 2(_oo,00) theE
relation (4.9.6) is written as

™

o 7T
||f6[f]||%2[0,oo) = Z/ |fe’uen($)|2 do = §||feven||2- (497)

Similarly,

0 =5 [ oao) o = S ol (199

We summarize the relation (4.9.7) and (4.9.8) in the:

Theorem 25 ( Plancherel Theorem for cos and sin transforms). F.[f]
and F,[f] extend to maps from L*(0,00) onto itself that satisfy

IFLANE = IELAE = S

Exempel 16. Use the Fourier sine transform to find a bounded solution
u(z,y) for the problem:

Ugg + Uyy = 0, x>0, y >0, (4.9.9)
with the boundary conditions

u(0,y) =0, and u(zx,0)=

241
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Solution: The Fourier sine expansion of u(z,y), in x is:

u(z,y) = %/Ooov(g,y) sinéxdf, where (4.9.10)

v(€y) = Folule,y)|(€) = / " u(e,y) sinéx da.

Differentiating (4.9.10) with respect to x yields

™

w= (2 [ e nsingode) = 2 [T oenecoseads

and hence
2

Ugy = ;/0 v(&,y)(—£?) sin £ dE. (4.9.11)

Thus the equation (4.9.9) can be written as

2 [ )
Ugg + Uyy = ;/ [vyy(f,y) — &%(&,y)| sinéx dé = 0.
0
So that we get the differential equation vy, —&*v = 0 with the general solution

(€, y) = C1(€)ellY + Cy(€)eEv.

Since we seek a bounded solution u(x,y) thus v(€,y) must be bounded and
hence Cy = 0. Further,

v(&,0) = Ffu(z, 0)() = £ 7] €) = Ca(&).
Now since fs = %zf, it follows that
T 1 T
Fs [x2 + 1] Ok §F[x2 + 1] (©)- (4.9.12)

Moreover, using our previously known transforms:

1 T 1 T

Ay o B — (—im)si —alg] _ Z o —alg] 491

SF | |0 = S (=imsign(©)e ™ = Tsign(©)e ™, (4.9.13)
for a = 1 we get, using (4.9.12) and (4.9.13), that Cy(§) = gsz’gn(f)e_m,
and consequently

v(€y) = Tsign(©)e e = Zsign(e)e C = F lu(z,y)| (¢).
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Finally, by (4.9.13) with a = y + 1, we have the solution

T

D T

This is the restriction on [0,00) of the odd expansion of the solution u(x,y)
on R x {y > 0}.

4.10 Generalized functions

Consider the generalized function

. 1, for x>0,
f(z) = sign(z) = { -1 for x < 0.

sign(x)

-1

Figure 4.4: The signum function sign(x).

/ |5ign(a:)|dx=/ ldzr = oo,

thus sign(z) ¢ L' and hence, a priori, the Fourier transform is not defined
for f(z) := sign(z). However, to define a generalized Fourier transform,
we multiply sign(x) by the convergence factor e~*I*l where ¢ > 0. Now
g(z) := e~*lsign(x) € L,, and we have

Formally since

00 e 0
§(z) D}-/ e “Flsign(z)e € dr :/ e e %7y —/ eTe Tdy
—00 0

1 0,1
:[ _ef(sm)w} _

- —e = .
€+ 1€ 0 g —1i& —0  £24&?
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Thus as € — 0 we get

sign(z) D7 = 2 i (4.10.1)
1 mm———
x
) — |
Figure 4.5: The signum function e~ sign(z).
Remark By the symmetry rule it follows that
2 7 21~ sign(—¢) = —2me ¢l sign(€) (4.10.2)
e? + 22 ’
or, € = a, '
Y o7 e “Elsign (€). (4.10.3)
Alternatively, to show F[sign(z)] = %, using Heaviside’s function 6(z) we
may write

sign(z) = 6(x) + (—-1)(1 — 6(x)) = 20(x) — 1.

Now we state, without proof, the Fourier transforms of two important gen-
eralized functions:

F[1] = 276(€) (4.10.4)
and
Fl0()] = 76() + % (4.10.5)
By (4.10.5) and (??) we have that
: _ o 2 ooy = 2
Flsign(z)] = 276(§) + i€ 216 () e
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20(z) — 1

-1

20(z) — 1

Figure 4.6: The signum function sign(x).

Fourier Transforms of impulse functions

The Dirac’s delta function is an even function defined by
d(x) =0, for z #0, (4.10.6)

and .
/ d(z)dx =1 for all a> 0. (4.10.7)

dn(x)

1/n

Figure 4.7: The Dirac function 6, (z).

For x =t — T this definition give

5(t—T) = /oo §(t —T)dz = 1. (4.10.8)

o

To derive the Fourier transform of §(¢t — T"), we recall that by the evaluation
formula:

f@)s(t—T)=f(T)6(t—T) wehave e '§(t—T)=e 15t —T)
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Figure 4.8: The Dirac function d;_7).

and thus we have

5(t—T) 5% / 5(t — T)e—otdt = =T / 5(t — T)dt = e=". (4.10.9)

Then for T = 0 : 6(t) D7= €® = 1. Using symmetry rule and the fact
that § is an even function we have the following “formal relations”: 1 >7
219(—w) = 276 (w), i.e., we have

§(t) >7=1, and 127 276(w). (4.10.10)

Remark Note that 1 ¢ L'. Therefore the formulas in (4.10.10) are only
formal (they are valid in distribution sense).

Signal analysis

Let f(t) represent the amplitude of a signal at time ¢. The Fourier represen-
tation

£lt) = o / T f@)dtds, )= / " F(t))e dt,

exhibits f as a continuous superposition of the simple periodic waves e** as
w ranges over all possible frequencies. This representation is the basic one in

the analysis of signals in electrical engineering:
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Let f(t) = 6(t—T) be the time impulse function. Then its Fourier transform:
f(w) = e 7T is the the frequency function.

The power of a signal f(t) is proportional to the square of the amplitude,
| f(t)]?, so the total energy of the signal is proportional to [ _|f(t)|*dt. Thus
the condition for the finiteness of the total energy corresponds to f(t) € L?.

The impulse energy in the frequency band , [w,w + dw], is given by

dw

dw

2

— — =dv.
27 v

= —jwT =
R

HOls
Thus the energy is uniformly distributed over the whole frequency band,
—00 < w < 00, which means that:
a. The total energy is oo.
b. The exact impulse §(¢ — T') is unphysical.
c.

1 [ . 1 o
6(t) = o /oo S(w) e dw = 5 /Oo e’'dw s divergent.

Let us look at the frequencies |w| < €2, where Q is large. Then we may
approximate the delta function as:

AL 111 .9 1
~ Juwt = — | — Jwt = — sl
o(t) = /_ e’ dw [ e ]79 tsm(Qt).

™

Hence we have

(4.10.11)
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b(t)

H

e

in(Qt)

gOn ega (t)

3\
Olx
©<I$
/
I
2
2

4.11 Dynamic systems

We begin by giving the definition of a linear space of functions for a dynamic
system and the definition for the impulse response.

Definition 15. A linear system L is a linear map from a linear space of
input signals, x;(t), to a linear space of output signals, L|x;|, where

Liciz1(t) + coxo(t)] = e1 L{z1(t)] + coL[z2(t)] (4.11.1)

L[i cnxn] - f: enL[zn] (4.11.2)

L[/abx(a,t)da] = /:L[:v(a,t)}da. (4.11.3)

Let y(t) = L[x(t)]. Then the linear system L is time invariant if
Lix(t—=T)=y({t—T) foral TEe€R. (4.11.4)
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Definition 16. The impulse response, H(t), is the output signal for the

Dirac (§-function) input signal.

Theorem 26. If L is a linear time invariant system with the impulse re-

sponse H, then
Llz(t)] = (xx H)()  or (Llz(t)]) = hf,
where h is called the system function.
L™ = H(w)e™*  for every weR
If H(t) is real, then we have for w > 0 that
L[cos(wt)] = Re[H (w)e™!].

Proof. We know that

By (4.11.3) we have

Lz(t)] = L /

—0o0 —0oQ0

o

where using (4.11.1) yields

Lia()] = [ ar)Lio(e ~ ),

—0oQ

and finally (4.11.1) gives the first assertion of the theorem:

Liz(t)] = /00 Z(r)H(t — 7)]dT = (x x H)(t).

o0

To prove (4.11.6) we let z(t) = e** in (4.11.5), then

#(r)a(t - )dr] = / L8t D]dr,

(4.11.5)

(4.11.6)

(4.11.7)

Liz(t)] = / H(r)e“tdr = ei‘“t/ H(r)e ™ dr = ¢“' H(w).
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Finally we let z(t) = cos(wt), in (4.11.5), then

o o

Liz(t)] = Lcos(wt)] = /_ H(r) coslw(t — 7)]dr = Re /_ H(r)e Dy,
Thus A '
Licos(wt)] = Re [H(w)e“"t] :

0

Definition 17. The linear system L is called causal if the output signal value
at the time t only depends on the input signal value at the times < t.

Theorem 27. Suppose L is a linear and time invariant system. Then L is
causal if and only if H(t) =0 fort <0.

Definition 18. A linear time invariant system with the impulse response
H(t) is called stable if

(e o]
/ H(8)|dt < oo,
—0oQ

Exempel 17. For a linear time invariant system we have that the input
signal, 0(t)e™?, give us the output signal, t20(t)e>". What will the output
signal, y(t), be if the input signal, x(t), is 2mw-periodic and x(t) = t for
0 < t < 27 Give the answer in the form of complex trigonometric Fourier
series.

Solution: Let us only study the interval [0,00) since 0(t) = 0 if t < 0.
Then the Fourier transform of 6(t)e ¢ is

/oo e,gtefzftdt _ /‘oo ef(g_H'g)tdt — |:—e_(€+lf)t:| 0o _ 1 .
0 0 €+ Zf 0 e+ 7,6

Then we calculate the limit value, when € — oo.

: _ e—il _ £ . £ 1
I T e i e i e O

Let now e = 2, then we have that the Fourier transform of x1(t) = 0(t)e™2
is $1(€) = #@5 and the Fourier transform of y,(t) = t20(t)e 3 is

~ d2 1 2
91(8) = _d—§2<3+i§) T B3+
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3 3

Figure 4.9: f(£) = %% and g(§) = =i

Then the Fourier transform of the impulse response H(t) will be
ooy 1(€) _ 2(2+14E)
H(¢) == = 3
21(6)  (B+1ig)
We get immediately that for € =0 we get
- 4
H(0) = —.
0)= o
Further, the complex Fourier series for 2w periodic (T = 2w), z(t) is
z(t) =t = i(]emm with Q:2—Wzl
L n 3 T .
Hence, the Fourier coefficients for n # 0 are
o 1 te~inty2r S
Cn:_/ te—mtdt:_[ (& : j| _/ _.e—mtdt
2m J, 2r L —in Jo o —in (4.11.8)
L | o
2 —indn’
For n =0 we have
1 [ 1 [¢%q2r
Co = —/ teldt = —[—] = .
2w Jo 2 L2 1o
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For € = n and with €' mapped on H(€)e™ we have that

z(t) = Z Cre™  will be mapped on Z Cnf:f(n)emt = y(t).

n=—oo n=—00
Thus we get the out signal viz,

] - & in 4 =
y(t) = CoH(0) + Z Cp,H(n)e™ = 77T + Z

n=—00,n#0 n=—00,n#0

22+ i)
(3+in)3

The sampling Theorem
We start with the definition of a band-limited signal f(¢).

Definition 19. The signal f(t) is called band-limited if it involves only
frequencies smaller than some constant 2. That s, f vanishes outside the
finite interval [—, Q.

Theorem 28 (The Sampling Theorem). Suppose that f is a band-limited
function, f € L? and f(w) =0 for |w| > Q. Then f is completely determined
by its values at the points t,, = nw/Q, where n = 0,+1,+2,.... In fact

Proof. Expand f in a Fourier series on the interval [—Q,)]. Since f is even
in n we have that

flw) = ZCRGMTW = ZC,ne_igW, where |w| < Q. (4.11.9)

The Fourier coefficients C'_,, are given by

1 (7
C_":ﬁf_ﬂf(w)e

and since f(w) = 0 for |w| > Q hence using the Fourier inversion formula it
follows that

in

5 duw (4.11.10)

1 *© ~ inTw T nmw
C_p = ﬁ/m Flw)e ™ dw = §f<6>. (4.11.11)
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By the bound-limit condition f = 0 for |w| > 0, i.e., we may write

1 o ot 1 Q R »
= — w = — “rdw. 4.11.12
5 /Oof(w)e dw 5 /Qf(w)e dw ( )
Further by (4.11.11)
A nd —inTw ad Vs nm —inTw

which, inserting in (4.11.13) yields

t) = % /Z 2 S ) e F et = % 2 (%) / Z e im0 g

Evaluating the integral:

fz(mrfﬂt)ﬁd — —
ot “ i(Qt — nm) (Qt — nm)L

/Q ) " ei(Qt—mr) _ e—i(Qt—mr) _ 9 sin(mr _ Qt)

we get the desired result
Zf(mr> sin(nm — Qt)
(Qt — nm)
and the proof is complete. O

Theorem 29 (The LP,-sampling Theorem). Suppose the band-limited
signal f(t) is a continuous function and f( ) =0 for |w| > 0. If we sample
this signal by the frequenczes 7 > 2 (i.e., with the angular frequencies Q =
2” > 2a), then we can regain f ( ) from the sampled signal through a low-pass
ﬁltering by the cutoff angel frequency a: LP,-filtering, multiplied by T .

Proof. For the time discrete signal {f(n7)}2° ___ the sampled signal, in the
time continuous form, is:

anT (t — nT) Z(St—nT f@®)Sp(t).  (4.11.14)

n=—oo n=—0oo
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The Fourier series expansion of Sr(t) is

[ r
. 1 [2 : 1
_ inSdt _ = —inSd gy
Sr(t) = n_E_OO Cpe™*, where C, = T) 4 d(t)e dt T (4.11.15)
Then we have the sampled signal
_ = 1 inQt F 1 —
F@)Sr(t) = nzg_oo 7€ f(t) > T n:E_oof(w —nf). (4.11.16)

LP,-filtering means a convolution of the signal by the function h,(t) =
sin(at)/mt. Consequently we multiply the Fourier transform of f(t)Sr(t)
by he(w), where

5 _J 1, for |w<a
ha(w) = { 0 for o] > (4.11.17)
Thus we have
1. EadN
f —_— - —_—
LP(F()S2(t)) 7 Zha(w) n;m flw=n9). (4.11.18)

The only non-vanishing term of the sum above, corresponds to n = 0, i.e.,
for n # 0 we have f(w —nf2) = 0. Thus

holw)= Y flw—nQ) = f(w) (4.11.19)

and hence
TLPa< f(t)ST(t)> = f(t). (4.11.20)
]

Exempel 18 (Sampling example). Let h,(w) be given as in (4.11.17) We
know that, see (4.7.3),

ho(w) %sin(at). (4.11.21)
Thus we have -
f) =halw) - > flw—n9), (4.11.22)

n=—oo
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fw) flw-9)

e

—a a Q2 & “

Figure 4.10: f(w) and f(w — Q).

which give us with Q = 2x /T,
f(t) = ho(t) * T f(t)or(2). (4.11.23)

Performing this convolution with respect to t it follows that

() :Tsm Z F(nT)o(t — nT)
> T sin[a(t — nT)] T sin[a(t — nT)]
= T .
n:zoo J(nT) 7(t —nT) n_zoo J(n 7(t —nT)
Exempel 19 (The T-Sampled signal). Let
=T Z f(nT)8(t — nT) Z §(t — nT). (4.11.24)

n=—00 n=—00

Then we have by (77)

Tf( Z (w —nQ).

The low pas filtering is convolution by hq, where ho(w) = O(w+a)—0(w—a),
which,here, coincides with f(w).
It follows that

g(t) = hqo(t) * f5(t) and thus = i flw—nQ).
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Compare by the proof of the sampling theorem. Now we can have one of the
following cases:

Case 1. If Q < 2a we only have f(w —nf2) # 0 for n =0, which means
that Q — o > «.

~
£
~
S

|
=

f(w—i—Q)

—Q - a—1 —Q 4+ &) — Q Q4+«

Since h(w) = 1 for |w| < a we get §(w) = §(w) and thus g(t) = f(t).
That we could have seen directly from the sampling theorem.

Case 2. If a < Q < 2« it occurs overlapping. From above we have

w) Z f(w—nQ). (4.11.25)

n=—oo

In general the Plancheral theorem would give

/ww) OFd = - / o) Pdo = 1 [ 1F@) - )P

|f w)[2d 0, Q> 2«
W= L[ ldw=22" o <Q< 20
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9(w)

—Q—a—0 —Q 4w € — o Q Q+a

4.12 The discrete Fourier transform

The discrete Fourier transform is a linear mapping that operates on complex
N-dimensional vectors in the same way that the Fourier transform operates
on functions on R. Let us consider the problem of numerical approximation
of Fourier transforms, thus we must approximate the Fourier transform by
something that involves only a finite number of algebraic calculations per-
formed on a finite set of data. First we replace the integral over (—oc, c0)
by the integral over a finite interval [0, Q]: We may assume that f vanishes
outside the bounded interval [0, 2]. Thus

fe) = /_: f(z)e “dr = /OQ flz)e Edz.

Using the sampling points z = /N we approximate f by the Riemann sum
N-1
N nf) o,
~ — e mNE. —. 4.12.1
G n}_oﬁf(N)e v (4.12.1)

The sum is periodic in & with the period @

Now we calculate f({-“) in the points £ = %Tm, m=20,1,...,.N —1:
~ 27Tm Q Nl —27winm TLQ
- ) > — — 4.12.2
f(Q) N;QN f(N)’ (4.122)

and let a,, = f(%), then we get

2mm Q iy

~ - 2mnm

f<T) o N&m’ where |m| << N and a,, = E e "N a,.
n=0
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We have therefore arrived at a mapping that transforms a given CV vector
a = (ag,ay,...,ay_1) into another CV vector & = (ay, a1, ..., anx_1), which
gives rise to the following definition:

Definition 20. The “N-point discrete Fourier transform” Fn : C¥N — CV,
that maps a = (ag, a1, ...,ax_1) € CV to a, is the linear defined by

2rnm

N-1
Fyva=a, and a, = Z e "N a, where 0<m < N. (4.12.3)
n=0

The discrete Fourier transform have the nice property that it converts
discrete convolution into ordinary multiplication:

.7-'N(a * b) = (&060, ...,CALN_llA)N_l), (4124)

where the discrete convolution a x b is defined by

N-1
(axb), = Z ki), (4.12.5)
k=0

where [n—kl=n—kifn>kand[n—kl]=n—k+ Nifn <k.

The Discrete Fourier Inverse Formula

We can restate the definition of the discrete Fourier transform viz,

Definition 21. Let w = /N, a = (ag, a1, ..., an—1) € CV, then the discrete
Fourier transform of a is a =€ CV with elements

=Y w™ay; m=0,...,N-1 (4.12.6)

Lemma 11. Form =0,1,...., N — 1 let

e, = (1, w™, w?™, ... wh-m where w = e2™/N
b b b ) b

Then {e,,}N=5 is an orthogonal basis for CV, and |ley||> = N for all m.
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. . —mn
Proof. Since w,, = e~?"mn/N — (eQm/N) = w~™" we get for [ # m that

the inner product

N-1 N-1
(er,en) = ) (w)™(@)™ =) (w)"(w)™™"
n=0 n=0
N1 I-m)N
= wld—mn — wtm) 1 =0,
— wl—m -1
) N .
since wV = (2" ) =2 =1 give w!"™N = (wN)-m =1
w!™™ # 1 when [ # m.
For | = m we have w{~™" = 4w =1 and
N-1

(emem) = lleall? = Y08 = Y1 -
n=0

n=0

and the proof is complete.

(4.12.7)

Now we derive the inversion formula for the discrete Fourier transform.

Theorem 30. The inversion formula for the discrete Fourier transform is

N-—
1
=~ Z (mem, (inverse formula)
m=0
N-1
an:% w4y, n=0,1,...N.
m=0

N—
Z lam|? = N Z lan|?,  (Parseval’s formula)

Proof. According to Lemma (11), any a € C" can be written as

Nl N-1

Z L Z%aemem,

=0 lem|? m=0

(4.12.9)

(4.12.10)

(4.12.11)
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where by the definition of the discrete Fourier transform

N-1 N-1
(@en) =Y 60" =Y ayw "™ =iy, (4.12.12)
n=0 n=0
and thus we have
. s,
n = 3 Z w™q,, = N Z e2mimn/Ng (4.12.13)
m=0 m=0

Now Pythagoras theorem for orthogonal vectors give for a viz (4.12.12) that

T, | N1
lall* = 55 D laml* - N = <5 > lam|” (4.12.14)
m=0 m=0
or equivalently
N-1 N-1
N anl” = lam|” (4.12.15)
n=0 m=0
and the proof is complete. O

Fast Fourier Transform (FFT)

To proceed we need the following definition:

Definition 22. An “elementary operation” is a multiplication of two complex
numbers followed by an addition of two complexr numbers.

From the definition of a,, we have that the calculation of each a,, requires
N elementary operations. But there are N a,,’s and hence the calculation
of G, requires a total of N? elementary operations so the discrete Fourier
transform may become computationally unmanageable for large N. When
N is prime, not much can be done about this. But when N is composite
we can write N = N; Ny and the indexes m and n in the definition of a,, as
multiples of Njand Ny plus remainders. Let us assume that

m=m'Ny+m", where 0<m"<N,—1 and 0<m' <N,—-1

n=n'Ny+n", where 0<n"<N,—1 and 0<n' <N, —1.
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Then it follows that

[~ ’on "1
| m'n'NyNg | m'n Ny om0 Ny | om0 Y ey e N e
_j2mnm —27”( N~ ot t—®x -+7§ —2mi| BB
e N =eg =e€

Thus we have

Ny—1 ( 1o iz H)
—omi| mnT ymn
~ N N
am, = E C(m",n")e 2 (4.12.16)
n’’=0
where
Ni—1 Ni—1

n_1 n_1
—2m B E —2mi g
C’(m",n") = E e M. A/ Ny+n/! = e M Qp. (41217)
n'=0 n'=0

Each C'(m”,n") requires N; elementary operations and there are Ny Ny = N
different C(m", n")’s, so NN; elementary operations are needed to calculate
them all. Then N, elementary operations are required to calculate each
Uy (Gm = ZZC& ...), and there are N of those, hence NN, elementary
operations. The total number of elementary operations are thus NN; +

NN2 = N(N1 + NQ)

Definition 23. The resulting algorithm for calculating discrete transforms
15 called the Fast Fourier Transform, FFT.

Suppose N; can be factored further, such that Ny = Ny1Nis. For a fixed
n", C(m",n") is a discrete Fourier transform in m”. Then all C(m"”,n") can
be calculated with

NyNi(Nyy + Nig) = N(Nyy + Nyo),

elementary operations, where N, is the number of n” and N; is the number
of m" for a fixed n".

Totally it requires N(N11 + N12) + NN2 = N(N11 + N12 + NQ) elementary
operations, where NN, are all a,, : s.

If N = Ni{Ny-...- Ni, then it requires N(N; + Ny + ... + Ni) elementary
operations. In particular, if N is a power of 2, say N = 2% it requires
2kN = 2N log, N elementary operations.
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Orthogonal sets of functions

We are now in ....

5.1 Function spaces

Consider the space of continuous functions f on the interval [a, b] and think
of functions f as infinite-dimensional vectors whose “components” are the
values f(z) as z ranges over the interval [a, b].

The operations of vector addition and scalar multiplication are just the usual
addition of functions and multiplication of functions by constants.

We first give the definition of the function spaces L,.

Definition 24. On an interval I = (a,b) the function spaces L,,1 < p < 00
are defined by

L(1)={: /I\f(a:)|”da: <o}, (5.1.1)
Thus for p = 1 we get

L0 = {r: [f@)lds < oo} (5.01.2)
and for p = 2 we have

Lo(l) = { /I|f(x)|2dx <o}, (5.1.3)

For p = oo we define

Loo(I) == {f  max|f(z)] < oo}. (5.1.4)

153
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Now we give the definition for the norm in L,p-spaces.

Definition 25. The L,-norm is defined as

1/p
£l = ([ @rae) ™, 1<p<oo (515)
T
and the Ly-maxnorm (L.-norm) is defined as
1Nl 2oery = max | f(x)]. (5.1.6)

Theorem 31 (Dominating convergens). Suppose that g,(x) — g(z) when
n— oo, x € I and |gn(x)| < o(x) for all n, x € I, where ¢ € L*(I). Then

/I gu(z)dz —> /I g(z)dz  when n — oo. (5.1.7)

In the sequel the functions that we consider are in L, (with some exception
of L, functions). Before we study the Lo-space we recall that for the complex
k-dimensional vector space, C*¥ | the inner product is

(a,b) = Za(j)% (5.1.8)

Jj=1

and the norm of a vector is defined by

|M=(imm®” (519)

To define the inner product and the norm for the functions in the Ls-space,
we simply replace the sum of vectors by the integrals of the functions. Thus:

Definition 26. The inner product in the Lo-space is defined by

Um=/f@%mx (5.1.10)

and the norm in the Lo-space by

1= 5.0 = ([ 15wPan) (5111)
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Below we denote by Lo(a,b) the space of square-integrable functions on
[a, b], that is, the set of all functions on [a, b] whose squares are absolutely
(Lebesgue-) integrable over [a,b]. Mostly it is enough to think of f €
PC(a,b), which is the space of piecewise continuous functions on the interval
[a, b].

We recall the famous Cauchy-Schwartz inequality:

‘/ fl@ dx‘ <\// |f(z Pdfﬂ\// |g(z)[*dz. (5.1.12)

5.2 Convergence and Completeness

Let us begin with some important definitions.

Definition 27. If {f,}>2, is a sequence of functions in PC(a,b), we say
that f, — f in norm, if ||f, — f|| — O.

Definition 28. A sequence of functions, {f,}2°
quence, if ||am — as|| = 0 as m,n — occ.

o 1, 15 called a Cauchy se-

Definition 29. A space S of functions is called complete if every Cauchy
sequence in S has a limit in S.

Exempel 20. The function space Ly(a,b) is complete, which means that if
{fn}so, is a Cauchy sequence, then there is a function f € Ly(a,b) such that
fn — f in norm.

Weighted L2 spaces

Definition 30. Let w(x) be a continuous function on [a, b], such that w(z) >
0 for all x € [a,b]. Then we call w(x) a weight function on [a,b].

Definition 31. The weighted Ly-space, LY (a,b), is the set of all (Lebesgue
measurable) functions on [a,b] such that

/ |f(@)[Fw(z)dz < cc. (5.2.1)
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Definition 32. The LY (a,b) inner product and norm are defined by

= / f(@)g(@)w(z)dz (5.2.2)

and

and ||fllu = (£.1)d = ( /|f )Pu(e)dr) ” (5.2.3)

Orthogonal and orthonormal sets

We recall that two k-dimensional complex vectors a and b € C*, (\a # b)
are orthogonal if (a,b) = 0. There is some work to be done in order to show
that we can define orthogonal and orthonormal sets for functions in the same
way. For simplicity we trust in the following definitions:

Definition 33. The functions {¢p,}5°, are orthogonal if (pn, om) = 0, when
n # m. Then we call {p,}22; an orthogonal set.

Definition 34. If {¢,}5%, is an orthogonal set and ||¢y,|| = 1 for all n, then
{en}se, is an orthonormal set.

Best approximation in Ls(a,b)

If {©,}5%, is an orthonormal basis for Ly(a,b) then the Fourier series ex-
pansion of f with respect to {¢,}52, is given by f =" ([, ¥n)@n, where
(f, ©n) is the projection of f on ¢,. Below we approximate the infinite sum
above by a finite sum, viz:

Theorem 32 (The projection theorem). Let {¢,}22, be an orthonormal
set of and {on}N_, C {pn}, be an orthonormal basis for the subspace
U C Ly(a,b). Then the best approzimation to a function f € Ls(a,b) by a
function in U is given by

N

F=Y {f¢n)en, (5.2.4)

n=1
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in the sense that

N

1= fll < Hf - ZCngpn for all constants C,. (5.2.5)
n=1

Further the function (f — f) 1s orthogonal to the subspace U and

N

1f = FIP =117 =D om)]* (5.2.6)

n=1

Proof. From the linear algebra we know that foreach £ , 1 <k < N,

(f—f,</?k>: <f790k>_<fa(pk>a

and since
(f:on) <Z<f Pn gon,sok> (5.2.7)
It follows that N
(Frok) =D (Fr on)(n, @n)- (5:2.8)
n=1
Further, since {¢,}Y_; is an orthonormal set of functions, we have that
(0n, k) = { é ii Z;IZ (5.2.9)

i.e., for (f, or) = (f, o) and hence (f — f, ) = 0. Thus (fM—f) is orthogonal
to all linear combinations of g:s which means that (f — f) is orthogonal to
U. Let g € Ly be an arbitrarily function and write

f-g=(F-H+-9)
Using Pythagoras theorem (as for the mutually orthogonal vectors) we get
1F=glP=1(F =N+ T =9I =17 = FIP+ ] =9l>> I/ = fII*
>0

Thus we have ||f — g|| > ||f — f||- Similarly writing f = f — f + f and using
Pythagoras theorem (see the Fig.) it follows that

IFI1P = 11F = £+ FI2 = ILf = FI7 + 117
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17 N\

i C
U [
Figure 5.1:
Thus 5 y
If = FIP = 1F17 = 1IF11% (5.2.10)
Recall that
3 N
f = Z<f’ QOTL)SOTL;
n=1

Thus by the orthogonality

=S o) Plleall? (5.2.11)

117 = | S Ul

Hence the orthonormalithy of {¢,}, i.e., ||¢n|| = 1, and (5.2.10) implies that

N
1F = FI7 = AP =D 1 ond (5.2.12)

n=1
And the proof is complete. O

Now since ||f — f||*> > 0 we have using (5.2.12) that

N

0 < IIFI1P =D 1S on)

n=1

and if we now let n — oo we get the following well-known result:



5.2. CONVERGENCE AND COMPLETENESS 159

Bessel’s Inequality: If {¢,}52, is an orthonormal set in Ly(a,b) and f €
Ls(a,b), then

o0

YKo < NI (5.2.13)

n=1
To proceed we shall need the following lemma:

Lemma 12. If f € Lo(a,b) and {p,}22, is any orthonormal set in Ly(a,b),
then the series

[e's) [e'e)
S (fou)n converges in norm, and | > (fpnen| < IS
n=1 n=1

Proof. Bessel’s inequality gives that the series Y > | [(f, ¢n)|? converges. Us-
ing the Pythagorean theorem for orthonormal vectors we obtain

H Z(fa SDk)(PkHQ = Z {fyor)? =0 when m,n— oc. (5.2.14)
k=m k=m

Thus the partial sums of the series )" | (f, ¢n)@n form a Cauchy sequence,
and since Ly(a,b) is complete, the series converges. By another use of the
Pythagorean theorem and Bessel’s inequality we get

H i(f, ©n)Pn i

N

‘= Jim > gl

N
= lim H > (f enden
n=t (5.2.15)

=Y (L) < IIFIP
n=1

And the proof is complete. O

Now we are ready to prove following important theorem.

Theorem 33. Let {,}>, be an orthonormal set in Ly(a,b), then the fol-
lounng conditions are equivalent:

(a) If {f, pn) =0 for all n, then f = 0.

(b) For every f € Lo(a,b) we have f = > o0 (f, on)pn, where the series
converges in norm.

(c) For every f € L?(a,b) we have Parseval’s equation:

IF17 = 1KF on)
n=1
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Proof. (c) = (a): If {f, p,) = 0 for all n, and (c) holds, we have

o0

IAIP =D Kfren)>=0 and f=0.

n=1
(a) = (b): Given f € Ly(a,b), by Lemma (12) the series f =Y, {f, ¥n)¢n
converges in norm and ‘ o2 Sy onyenl| < NIf]l- We can see that its sum is
f by showing that the difference g = f — >_>° ([, ©n) @y is zero. But

(9, 0m) = (f,0m) = > _{F> m)(@n: €m) = {f,0m) = {f,0m) =0,
n=1

for all m, and if (a) holds then g = 0. Thus we have f = > (f, ¢n)¢n
(b) = () If f =377 (f,¢n)pn, then by Pythagorean theorem,

"= gim S e = S e

n=1 n=1

since ||¢m|| =1 and thus (c) holds. And the proof is complete. O

Definition 35. An orthonormal set, {©,}5%,, that possesses the properties
(a) -(c) in Theorem (33) is called a complete orthonormal set or orthonor-
mal basis for Ly(a,b).

Definition 36. If {©,}5°, is an orthonormal basis of Le(a,b) and f €
Ly(a,b), the numbers {f, pn) are called the (generalized) Fourier coefficients
of f with respect to {pn} . The series Y oo (f, ¢n)en is called the (gener-
alized) Fourier series of f.

Often it is more convenient not to require the elements of basis to be unit
vectors. Suppose {1, }2; is an orthogonal set. Let

b Un
" Tl

then {¢, }5°  is an orthonormal set and the corresponding expansion formula
for f € Ly(a,b) and the Parseval relation take the following form

< 2
n=1

| ||2 ||1/Jn||2
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Definition 37. {¢,,}°°, is a complete orthogonal set or an orthogonal basis

for Lo(a,b) if {on}rs = {¥n/ll¥nll}o2: is an orthonormal basis of Lo (a,b).
The Fourier coefficients for f with respect to the orthogonal basis {1, }32 is

C — <f’ ¢n> .
14 l1?
Now we can rewrite the Parseval equation in the following way
2 ‘f’wnP ¢ 202 5.92.17
n=1

Orthogonal bases for Ly(—m, ).
Theorem 34. The sets
{1 and {cos(nz)}>>, U {sin(nz)}

are orthogonal bases for Lo(—m,m). The sets

n=1

{cos(nx)}:>, and {sin(nz)}:>,
are orthogonal bases for Ly(0,).

Let us now calculate a Parseval equation for Ly(—m, 7) , using (5.2.15):

all = [ o) 0uiin = [ (o)
For v, (x) = €™ we get

||1[Jn||2=/ ei"‘”eimdazz/ dr = 2r for all n. (5.2.18)

—T —T

Yn(z) = €™, n = —o0,...,00 form basis functions and the Fourier series
expansion of f:

= E Cpe™* converges in norm.

C, = Mﬁﬁz = /f )b (2) _—/ f(z)e ™ dz.  (5.2.19)

Thus we get the Parseval equation in Ly(—m, )

I£1* = Z 1%a|I*|Cn* = 27 Z |Cal”. (5.2.20)

n=-—00 n=-—00
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5.3 Regular Sturm-Liouville problems

There is a large class of boundary value problems on an interval [a,b] that
lead to orthogonal bases for Ly(a,b). These problems are the subject of this
section. To start we provide some basic definitions:

Definition 38. A linear transformation T : C* — CF is called self-adjoint
or Hermitian if

(Ta,by = {a,Tb) for all a,be C*. (5.3.1)

Let S and T be two linear operators that are defined on the subspaces Ds and
Dr of Ly(a,b) and map them into Ly(a,b). We say that S and T are adjoint
to each other if

(S(f),9)={f,T(9)) forall feDs and g¢€ Dr. (5.3.2)

S is called selt-adjoint or Hermitian if

(S(f),9)=(f,5(9)) forall f,g€Ds. (5.3.3)

Theorem 35 ( Lagrange’s Indentity). Let L(f) = (rf') +pf and L(g) =

(rg") + pg, where r,q and p are real functions of class C?) on [a,b], then L
1s “formally” self-adjoint:

b

(L(F).9) = (£, L(g)) + [r(F'7 — 7)) . (5.3.4)

Proof. 1f we write out the integral defining (L(f), g), we can move the derivate
from f to g by integration by parts, viz:

(L(f),9) = / (ry9+ pra)ds = [r] - / g+ / 'pfoda

- [Tf'ﬁ]z - [f@'}i%—/ab ((f(rg')’+pfg)dx

= [r(ra-19)] + / s ((rg)' + pg) da.

a

For r and p real we have that

(rg") 4+ pg = (rg') + pg = L(g), (5.3.5)
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and hence

/a bf((rzz’)’ +p§) dr = / b fL(g)dz = (f, L(g))- (5.3.6)

Thus we have )

(L(F),9) = (£, Lg)) + (75— £9)] .

a

and the proof is complete. O
L is obviously self-adjoint if

b

a

[r(15-13)] =0, (5:3.7)

which is determined by the endpoints ¢ and b. Thus we have a boundary
value problem.
Let now the boundary conditions be of the form:
af(a) +a'f'(a) =0  Bf(b)+Bf(b) =0,
ag(a) +o'g'(a) =0 Bg(b) + B'g'(b) = 0.
where o, o/, 5,5 € R, (o, ) # (0,0) and (8, ') # (0,0).

If o =0 then o # 0 and we have f(a) = g(a) = 0. Thus f'g— fg' =0 in
x = a, since if g(a) = 0 we have g(a) = 0.

If o/ # 0, we have af(a) = —d/f'(a) and ag(a) = —d/g¢'(a). Thus

Ja)==—1(@) and ¢'(a) = - ~g(a). (5:38)
Let now ¢ = —=, then
f'(a)g(a) — f(a)g(a) = cf(a)g(a) — f(a)eg(a) = O (5.3.9)

!

In the same way we obtain f'(b)g(b) — f(b)g(b) = 0.

For a second-order operator L we impose two independent boundary condi-
tions of the form

Bi(f) = a1f(a) + oy f'(a) + Bf(b) + BLf' (D),
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By(f) = aaf(a) + oy f'(a) + Bof (b) + B f' (D),

where «, o/, 8 and 3’ are constants.

Almost all the boundary conditions that arise in practice are of the form
af(a)+a'f'(a)=0  Bf(b)+Bf(b)=0

where o, o/, 5,5 € R, (a, ') # (0,0) and (5, 5) # (0,0).
These boundary conditions are called separated, since each one involves a
condition at only one endpoint.

Now we give the definition for a regular Sturm-Liouville problem.

Definition 39. A regular Sturm-Liouville problem on the interval [a,b] is
specified by the following:

(1) a formally self adjoint differential operator L defined by L(f) = (rf') +pf,
where r,r" and p are real and continuous on [a,b] and r > 0 on |[a,b)].

(#) a set of self-adjoint boundary conditions, Bi(f) = 0 and By(f) = 0, for
the operator L.

(#3) a positive continuous function w on [a, b].

Now we want to find all the solutions f of the boundary value problem

L(f)+ M Mwf =0, where B;=B;=0, (5.3.10)
(@) @) +p@) (@) + (@) f() =0,  a<z<b
{ af(a)+af @) 20, BFb)+ 5 FB) =0, (5.3.11)

where A\ is an arbitrary constant.

For most values of ), the only solution of this boundary problem is the trivial
one, f(x) =0.

Definition 40. If the Sturm-Liouville problem has nontrivial solutions, A
18 called an eigenvalue and the corresponding nontrivial solutions are called
eigenfunctions.
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We summarize the properties of eigenvalues and eigenfunctions in a theorem,
which displays the importance of eigenfunctions from the point of view of
orthogonal sets. Recall that if w > 0 is a weight function on [a,b] the
weighted inner product, (f, g),, is defined as

/f (2)dz = (wf, g) = (f, wg). (5.3.12)

Theorem 36. Given a regular Sturm-Liouville problem defined as in (5.3.11)
we have that:

(a) All eigenvalues are real.

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with
respect to the weight function w; that is, if f and g are eigenfunctions with
eigenvalues A and p, \ # i then

(f9) = [ f@g@u(e)dz =0, (5.3.13)

(c) The eigenspace for any eigenvalue A is at most 2-dimensional. (If the
boundary conditions are separated, it is always 1-dimensional).

Proof. Suppose that L(f) + Awf = 0 and L(g) + pwg = 0, where f, g # 0.
Using Lagrange’s Identity we have (L(f),g) = (f, L(g)) and since L(f) =
—Awf and L(g) = —pwg we obtain —(Awf, g) = —(f, pwg) and thus

M, 9w = XS, 9)w- (5.3.14)

(a) Let g = f and p = A. Then since (f, f)w = || ||, we have that \||f||2, =
All£]12 and since || f||?, # 0 it follows that A = X and hence the eigenvalue \
is real.

(b) From (a) we have that y = i and thus (5.3.14)is written as A(f, ¢)w, =
p{f, g)w. Therefore if A # p we obtain (f, g).,, = 0.

(c) The proof is left for the reader, (see, e.g., Folland, Fourier analysis and
its applications, page 90). ]

It is not evident that a given Sturm-Liouville problem has any eigenfunc-
tions at all. But, in fact, there are as many as anyone could wish for. Let us
study the L¥(a,b)-space using the following theorem:
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Theorem 37. For every reqular Sturm-Liouville problem on |a, b|:
(rf"Y +pf+dwf=0,  Bi(f)=B(f) =0, (5.3.15)

(a) There is an orthonormal basis {p}22, of LYw(a,b) consisting of eigen-
functions.

(b) if A\, is the eigenvalue for ¢, then lim, . A\, = +00.

(c) If f € C? and satisfies the boundary conditions Bi(f) = By(f) = 0,

then the series
o0

> (fron)en (5.3.16)

n=1

converges uniformly in norm to f.

Exempel 21. Determine the orthonormal bases for the following Sturm-
Liouwville problem
{f”+/\f:0, 0<z<a
f(0) =0, f'(a) =0.
If A =0 we obtain f" =0 and the general solution is f(x) = ¢ + cox. Then

f(0) =c¢; =0 and f'(a) = co = 0. Hence there are no eigenfunctions.
If X\ # 0 the general solution (for both A > 0 and X\ < 0) is

(5.3.17)

f(z) = ¢1 cos(VAz) + ¢y sin(VAz) (5.3.18)

This holds also for A < 0, since sin(if8) = —1 sinh(8) and cos(if) = cosh(p).
Then
F(z) = —aVAsin(VAz) + eaV/ A cos(VAx)

The boundary conditions give us
f0)=cicos(0)=c; =0 and f'(a) = c2vV'Acos(vha) = 0.

Since co # 0 we have cos (VAa) = 0 and thus VAa = (n + )7, where
n=20,1,.... Then

A== [0+ 5)7] (5.3.19)
and we get
fu(2) := n(2) = czsin ((n + %)gx) (5.3.20)
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But since we want {©}%°_, to be an orthonormal bases, we require ||@,||* = 1,
i.e.,

¢ 1
ol =3 [ sin? (04 5) ) s = 33 =1,
and hence ¢y = \/g Inserting co in (5.3.20) we finally get

on(z) = \/gsin ((n + %)gx) (5.3.21)

Lemma 13 (The Normalizing Lemma). Ifsin(28z) =0 forz =a, x = b
and 8 # 0, then

/ba sin?(Bz)dr = /ba cos?(Bz)dx = b ; a (5.3.22)

Proof.

P [, [ 1=£cos(28x)
/b sin (Ba:)dx—/b cos (ﬂx)dm-/b — dx

b—a
5

:b—a [

5 — s1n(2ﬂx)]b =

4p
O

Note! If the eigenfunctions ¢,, are not normalized the Fourier series exten-
sion have the form

> 1
f= Cnn, Cn = <f Qon / f @n )
nz:; llenll2, ||90n||2

b
ol = / ouPw(z)dz
a

where ¢, is real and
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Chapter 6

Boundary value problems

In this chapter we will give three techniques to solve Sturm-Liuville problems.

6.1 Fourier techniques for inhomogeneous PDE

Technique 1: To solve an inhomogeneous problem with time-independent
data, reduce to the homogeneous case by finding a steady-state solution.

To illustrate this technique we apply it to the following example: a problem
describing heat flow on an interval [0, []:

L(u) := uy — kg = T O<o<l
u(0,t) =0, ug(l,t) =2 (6.1.1)
u(z,0) = 1.

Let u(z,0) = ug(x) satisfy the time independent Steady-state problem

L(uo) = —kuy = z t=0
{ uo(0) =0, up(l) = 2. (6.1.2)
Then —kug = z give us ug = —¢ and after twice integration we get
ul__$_2+0 and u__x_3+0.’13—|—0
o 2]€ 1 0 — 6]§ 1 2.

Now invoking the boundary values ew have

12 52
up(0) =Cy =0 and ug(l):—ﬂ+01:2:>01:2+ﬁ.

169
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Thus the solutions is
3 l2

uo(z) = _g_k + (2 + ﬁ)x (6.1.3)

Let now v(x,t) = u(x,t) — ug(x) and we have
bz _,  _%
6k "k

Thus we can rewrite the inhomogeneous partial differential equation in (6.1.1)
as

Uy = Uy, Vge = Ugg —

Up — kUgy — X = Uy — kvgg = 0, (6.1.4)

which is a homogeneous partial differential equation for v. Further the bound-
ary values for v will take the following form

v(0,t) = u(0,t) — up(0) =0,
Uw(la t) = U’w(lvt) - ug(l) =2- 27 . ‘ (615)
v(z,0) = ugy(z,0) —ug(x) =1+ % - (2 + %)x = vo(2)

Summing up we have the homogeneous problem for v, viz,

vt_kvmm:() O<zx<l
v(0,t) =0  v,(l,t)=0 (6.1.6)
vo(x):1+%—(2+%>x 0<z<l,

which is solved by the method of separation of variables. Insert v(z,t) =
X (z)T'(t) # 0,in the differential equation in (6.1.6) to get
X" T
XT' =kX"T ie. —=-—=-— 0).
k le. — =1n A, (A>0)
Now using the normal procedure of the separation of variables we have the
following two problems:

and  T'=-XkT, (6.1.7)

X" +AX =0 O<z<l
X(0) = X'(I) = 0

which we have solved earlier. For the equation for X we get the eigenvalues
and eigenfunctions as

A=A, = [(n—}-%)?r X, (z) = sin (n+%)? n>0, (6.18)



6.1. FOURIER TECHNIQUES FOR INHOMOGENEOUS PDE 171

where {X,}°, are the orthogonal basis for Ly(0,1), with || X,||? = 1/2.
The equation for T has the solution 7T}, (t) = e *A»t,

Finally Super-positioning gives that

v(z, ) = i Ce " [(“%) ﬂ 2tsin (n ¥ 1) T (6.1.9)

— 2/ 1

where the initial condition:

- 1
v(x,0) = ZC’n sin (n + 5) 7rl_:1c = vo(x), (6.1.10)
n=0

yields that C,,, the Fourier coefficients of vg(z) = 1 — ug(x), are given by

2 [ , 1\ 7z
C, = Z/o vo(z) sin (n + 5) de
2

_ %/Ovl {1 N g B (2 + 2l_]<;>x} sin(B,z)dz,

where 3, = (n + %) 7- Using partial integration we get

(6.1.11)

Ch

2[ = 2% 5 . | (6.1.12)

=il VT gl

A common heat flow equation

A common heat flow equation is of the form
o (z)u; = (k(x)um> + R(z,t) — h(z)(u — uo). (6.1.13)

o(x) : is the heat capacity,

k(z) : is the thermal conductivity,

R(z,t) : is the produced heat,

h(z)(u — up) : is the heat loss along the bar.
Ug : 1S a given temperature.
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The corresponding homogeneous differential equation is
ouy = (kug)e — hu. (6.1.14)

Using separation of variables, where u = XT # 0, gives

T (kX')T —hX _

XT = (kX'"T — hXT = — = - 6.1.15
o (kX) 7 X ( )
Thus we get ,e.g., then the eigenvalue problem

(kXY —hX + XX =0, + boundary conditions. (6.1.16)

We demonstrate Techniques 2 and 3 in the next section:

6.2 Inhomogeneous Sturm-Liouville problems
We consider the linear inhomogeneous differential equation:
L(u) = u — Li(u) = F(z,1) (6.2.1)

where L is a linear differential operator in x. To solve this problem we first
have to solve the homogeneous problem

ur — L1 (u) = 0. (6.2.2)
Separation of variables give us the eigenvalue problem
Li(X)+AX =0  + boundary conditions, (6.2.3)

where we can compute the eigenvalues ), and eigenfunctions X, (z).
Now we expand everything in Fourier series with respect to the basis
{Xn(2)}7°: We get

F(z,t) = Zan(t)Xn(x), an(t) = ||Xi||2 / F(z,t) X, (z)o(x)dx.
= (6.2.4)
Let -
u(@,t) = ua(t) X () (6.2.5)

n=1
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then we have that (6.2.1) is equivalent to

Z Zun (t)L1 (X Zan (6.2.6)

where  Li(X,) = =X\, X,(z) and thus

o o

Z[u;(t) + A ()] X (z) = Zan(t)Xn(x). (6.2.7)

n=1 n=1

Now, identifying the coefficients in (6.2.7) we have the ODE-problem u! (t) +
Antin () = ay,.

Technique 2: The Sturm-Liouville expansions used to solve L(u) = 0
with homogenous boundary conditions B(u) = 0 can also be used to solve the
inhomogeneous equation L(u) = F(z,t) with the same boundary conditions.

Exempel 22. Solve the Sturm-Liouville problem

Uy — CPUgy = L O<z<l, t>0,
u(0,t) =0, u(l,t) =0 (6.2.8)
u(x,0) = 22, ug(z,0) = 0.

We use separation of variables to solve first the homogeneous problem

2
Vg — C Vg = 0
{ 0(0,4) = v(l, 1) = 0. (6.2.9)
Insert v(z,t) = X(x)T(t) # 0 in (6.2.9) to get
XII TII
XT" = cX"T  and thus X = 2T = -\ (6.2.10)
For the eigenvalues problem:
X"+AX =0
{ X(0) = X(I) = 0, (6.2.11)

we get, as earlier, the eigenvalues and eigenfunctions, viz,

A=)\, = (?)2, Xp(x) = sin (nlﬂ), n>1, (6.2.12)
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where { X, (x)}22, is an orthogonal basis for Ly(0,1), where || X, (z)||* = /2.

Below we expand tz and x? in Fourier series with respect to X, (x):

= . (NTT _2 ! . (nTT
tx—nz::lansm (T>’ an—l/o(tac)mn( 7 )da:, (6.2.13)

partial integration gives
21 21
ap =t(-1)"' = =1t8,, where (—1)"'= =3,. (6.2.14)
nmw nmw

Similarly we have

72 = i% sin (nilx>’ Yn = %/l 2% sin (nlﬂ)dx, (6.2.15)
n=1 0

where partial integration yields

e i o,
= [(—1) _ 1} - (-1 (6.2.16)
Let now .
nTL
u(z,t) = ;::1 Wy (t) sin <T)’ (6.2.17)
then

U — Cllggy = 30| [wg(t) +c2 (% wn(t)] = oo Batsin (nlﬂ) =tz
u(x, 0) = Z:Lozl wn(O) Sin (%) = zozl Tn Sin <n7lr_w) = [132
u(z,0) =327, wysin (nzﬂ) =0,

And we get, identifying the coefficients, a sequence of ordinary differential
equations, viz

{ w!(t) + (C”T”)an(t) = fnt (6.2.18)
wn(o) = "Tn w, (0) =0.

n

2
Now there are two inhomogeneous terms to deal with: w!!(t) + (%) wy(t) =

Bnt and w,(0) = v,. Suppose we can solve two new problems obtained by
replacing one by B,t =0 and one by 7, = 0:

{ gn(t) + (C"T”)zwn(t) =0 (6.2.19)
9n(0) =Y,  g,(0)=0
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and )
fin(8) + (%> fin(t) = Pt (6.2.20)
h,(0) = 0, g,(0) = 0.

If g, (t) and h,(t) are solutions to the equations (6.2.19) and (6.2.20), respec-

tively, then by the superposition principle w, = g, + h, will be the solution
to the equation (6.2.18). We know that the solution g,(t) will be

9gn(t) = Yn cos chw (6.2.21)

Using Laplace transform we can solve hy, and thus also wy(t).

Technique 1: Use the superposition principle to deal with inhomogeneous
terms one at time.

6.3 The Dirichlet problem

The Dirichlet problem is to find a solution of Laplace’s equation in a region
D that assumes given values on the boundary 0D of D:

V2u(r,f) =0, in D, u(z) = f(z) for z € dD. (6.3.1)

This can be interpreted physically as finding the steady-state temperature
in D, when the temperature on 0D is known.

Let us now solve the following Dirichlet problem in polar coordinates.

Au:V2u:uM+%ur+r%u(m:O, ro<r<r, 0<60<2r7
u(r1,0) = f(0)
u(ro, g) = 9(0)
Using separation of variables u(r,0) = R(r)©(0), we get
TZRII + TR, _@II
R ©
Then we solve the equation ©” + \© = 0, where © and ©' are 2w —periodic.
A = 12 gives solutions on the form ©(f) = e**? and since the function

is 2 —periodic £v = n must be an integer, i.e, ©,(f) = ™. Now since
A = 1v? = n? we get the equation

r’R"+rR" —n*R =0, (6.3.2)

=\

1 1
R'©+ RO+ —2R®" =0 and
r r
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M
C

Figure 6.1: D is the ring 1 < r?2 = 22 +¢y2 < 2.

which is an Euler equation with the solutions on the form R = rP. Inserting
R =r?in (6.3.2) it follows that

p(p— 1) + prot = 2 = 22(32 — pkp— ) =0,
and since r? # 0, we have p? = n? and p = +n. Thus we have
R,(r) = apr™ + byr™™ for n #O0. (6.3.3)

If n =0 we get ’R" + rR' =r(rR" + R') = 0 and thus & (rR’) = 0.
Hence r R’ = by, which gives R' = ”70 and consequently

RO = ag + bo Inr. (634)
Summing up
u(r,0) = ag + boInr + Z (anr” + bnr_">em0. (6.3.5)
n#0

Using boundary data we have

u(ry,0) = ag+bolnry +37, 4 (anr’f + bnrf">ei”9 = f(0) = >, ane™,
u(ro,0) = ag +bolnrg + 37, 4 (anr(’f + bnro_”>em0 =g(0) =3, Bne™.
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Identifying the coefficients we get the following system of equations

ag + bolnr; = ap
{ ag + boInry = [y, (6.3.6)
and L
apr? + bpry ™ =y, n#0
{ anry + byry™ = B, n # 0. (6.3.7)

If we let the inner radius ry tend to zero, then the functions will blow up
at r = 0 unless the terms involving Inr or negative powers of r vanish.
Requiring continuity of the product solutions u(r,6) = RO at r = 0, we thus
let by = 0, b, =0 for n > 0 and a,, = 0 for n < 0. It follows that

u(r,0) = chrwei"a (ro =0). (6.3.8)
Thus - -
u(ry, 0) = Z care™ = F(0) = Z ane™, (6.3.9)

which means that the numbers ¢, 7" are the Fourier coefficients of f(6). To
simplify the calculation, we shall take r, = 1. We recall that the Fourier
coefficients of f(y) are given by

n L7 i
cnr‘l l=¢, = %/ flp)e™™dp. (6.3.10)

Substituting (6.3.10) into the formula (6.3.8) for u(r,#) we get
=N I : 1 [T ©
u('r, 0) = g %Tlnlema /_Wf(w)em(pdw — % /_7r f(go) ;7"”6"”(0*”)(&0.
Let ¢ =6 — ¢, then
Sorren = 3 e = 30 (1) 4 3 (v
—00 0 1 0 1

For r < 1 the geometric series converge and this fact justifies the interchange
of integration and summation. Thus we have

Zr\meimp _ 1 o _Te 1”" _1-ve i + (1- re“p)'re i
—c0 1—re 1—re® (I —re®)(1 —re)
1-— 7"2 1 — 7,,2
= P(r,v),

= 1+72 —7r(e? + e @) - 1+7r2—2rcosvy :
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where P(r,1) is the Poisson kernel. Now we have
1 " - In| jiny 1 "

ur,0) = | flp) Yy r"e™dp=— [ [(o)P(r,$)dy

1 1—17?2
= dy.
21 J_ 1+ 7%= 2rcosvy (p)d¢

(6.3.11)

which is the Poisson integral formula with r; = 1.

6.4 Heat flow

A general 3-D heat flow equation can be represented as

%///L)qdvz—//aDj-ﬁds+///]DFdV (6.4.1)

Figure 6.2: a two dimensional cross-section of D.

Using the divergence theorem:

[ [ inas=[ [ [ v-jav. (6.4.2)
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the equation (6.4.1) can be rewritten as

/// j— F) dv =0, (6.4.3)

where
q=q(x,t), is the energy (heat condensation)  [J/m?]
p = p(x,1), is the density [kg/m?]
c = c(x,1), is the heat capacity [J/kgK]
u = u(x,t), is the temperature (K]
i=ix,1), the density of the flow [J/m?s]
F = F(x,t), is the heat gain [J/m3s]
% +V-j=F, is the continuity equation,
j=-—-r-Vu, is Fourier’s law,
r=r(x,t), the heat transferability [J/msK].
Finally using the relations
0q ou
Ag=cp-Vu and L =cp2?, 6.4.4
g=cp-Vu and = =cp (6.4.4)
we get that
ou
Py~ V(r-Vu)=F. (6.4.5)

One-dimensional heat flow

Let F'(z,t) model the effect of some mechanism that adds or subtracts heat
from the rod, perhaps a nuclear reaction within the rod itself. Suppose
that we lose heat from the system, which is proportional to u(z,t), where
F(z,t) = —p(x)u(x,t). Suppose also that the density function is given be
cp(z,t) = a(t)w(r) and the hear transferability function is r = r(z). Then
we have

a(tyw(e) 2~ L (r(x)9) + plafu = 0 (6.4.6)

Let now u = u(x,t) = X (z)T'(t), then we have

a(tyw(z)XT' = a% (r(x)X')T — p(z)XT, (6.4.7)
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Thus .
oT" (rX’) —pX
= — = —)\ 6.4.8
T wX ’ ( )
and we have the following equations for X and T,
!
(rX ! ) —pX + \wX =0, an Sturm-Liouville problem (6.4.9)
oT"+ T =0, an ODE problem.

The boundary condition for the Sturm-Liouville problem is given by

0 ou
o kv = ku+r(z) o 0, k>0 (6.4.10)

Suppose a < z < b, and assume the homogeneous boundary conditions as

{ X (a) + 0y X'(a) =0,
BoX(b) + 1 X'(b) =0,

=)

o, a1 B, B 2> 0. (6.4.11)

The eigenvalues are A = \,, > 0 associated with the eigenfunctions X, (z) =
©n(x), where {¢,}2° , are orthogonal basis for LY (a,b), and the solution of
the Sturm-Liouville problem is continued as earlier.

The ODE for T is written as

T'(t) = —a/\(’;)T(t), (6.4.12)
which has the general solution of the form

T(t) = Ty(t) = Cpe haw® ¢, =T,(0). (6.4.13)

Now since - o
u(, 1) = S Tult)Xa(2) = 3 Talt)on (o), (6.4.14)

we get for ¢t =0, ~ "~
u(2,0) = Y To(0)¢n(w) = Y Cogpnls) = f (), (6.4.15)

n=1 n=1

where C,, are the Fourier coefficients of f with respect to ¢, (z) = X, (z):

1 b
C, = ||§0n||2/a f(@)on(z)w(z)dz. (6.4.16)
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Sturm-Liouoville problem with periodic bound-
ary conditions

Consider the following Sturm-Liouoville problem with periodic boundary con-
ditions:

X"z)+ XX (z) =0, —l<z<lI
VX IRG T ¥Eh v (6417
Let as usual A = 2, then we know that
X (z) = C1e™* + Cye™™". (6.4.18)

Thus the boundary conditions yield the following system of equations for the
coefficients C; and Cl:

Cle—iul + 0262'1/1 — Cfleiul + 026—2'1/1
i (Cle—iul _ 0261'1/[) T (Cleiul _ Cze—iul) (6419)
From this equation system we get
2C e = 20 €™ vl —2ivl __
{ 202e*i1/l _ QCQeiVl — € =€ =1. (6420)

Thus we have 2vl = 2nm, where n is an integer, hence v = %% and the
eigenfunctions are given by

o(z) =€, for n=0.+1,42, .. (6.4.21)

Consequently, in the periodic case the trigonometric Fourier series for f, see
(6.4.15), would be

f@ =" Cupalz)= Y Cpe™™/!, (6.4.22)

n—=——0oo n—=——0oo

with the Fourier coeflicients

1 l r
Cu=oslfon) lnll = [ lon@)da = [ jermehan =

Thus we have

1/ — 1/ ;
Cn=35 / f@)p@)de = / J(@)e e/ d. (6.4.23)
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We can alternatively use the real Fourier coefficients, viz,

1 o
T) = 500 + ; (an cOS @ + b, sin mlr_x>’ where (6.4.24)
/ f(z) cos @dx n=0,1,2,.., (6.4.25)
/ () sin de n=1,2, .. (6.4.26)

In general if f € Ly(—I,1) the the Fourier series for f, given by (6.4.22) or
(6.4.24), converges to f in norm. If f is piecewise smooth then these series
would converge to £(f(z+) + f(z—)].

If {¢r}32, is an orthogonal basis then using Parseval’s equation we have
o) 1 00
A2 =D Gl lenl® = /l F@)Pdr=20) |Caf”.  (6.427)

Further if {¢; }22 , form an orthonormal basis then by the projection theorem
the projection error:

N
I1F = arexll, (6.4.28)
k=1
is minimal when .
ap =Cy = W(fa @k)a (6-4-29)

and the minimum value (of the projection error) is given by

N
AP =D leelllexl (6.4.30)
n=1

Inhomogeneous heat flow problem

Consider the following inhomogeneous heat flow problem:

VQU:%-F%:CCQ:U, 0<z<1, 0<y<?2
u(0,y) =y, u(l,y) =1—2y° (6.4.31)
u(z,0) =0, u(z,2) = 1.
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We write v = v + w and consider the same partial differential equation for
v with homogeneous data in x and the same data in y as in the original
problem for u. As for w we use the homogeneous version of the differential
equations with homogeneous data in y and the data of the original problem
in z:

u=y ug1l—2P=Yy va41—29=0 w =0

R
R
&

=0 =0 =0

Figure 6.3: The splitting u(z,u) = v(z,y) + w(z,y).

Thus we write u(z,y) = v(z,y) + w(z,y), with

VZU:%%—%:ny, 0<z<1, 0<y<?2
v(0,y) =y, v(ly) =1— 22 (6.4.32)
v(z,0) =0, v(z,2) =0
and
Viw=2%+20-0, 0<z<1l, 0<y<?2
w(0,y) =0, w(l,y) =0 (6.4.33)

w(z,0) =0, w(z,2) = 1.

We start solving the homogeneous equation for w. Let w(z,y) = X (2)Y (y) #
0, which give us

Viw=X"Y + XY", and o Y_) (6.4.34)
- : <~ ="y ="* 4.

Then, for X, we have the ODE

{X"+AX=0, 0<z<l1

X(0)=X(1)=0, (6.4.35)
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having the eigenvalues A = \, = (n7)? and the corresponding eigenfunctions
X, (z) = sin(nmz) for n > 1. Then the ODE for Y will be

(e e
with the eigenfunctions given by Y, (y) = C,, sinh(nny). Thus
y) = i C,, sinh(nmy) sin(nrz). (6.4.37)
n=1
To determine the coefficients C,, we use the boundary data viz,
w(x,2) = i C, sinh(2n7) sin(nrz) = 1. (6.4.38)

n=1

The Fourier coefficients are

Cy sinh(2n7) = 1/% /01 sin(nrz)dx = 2[— M}; = i(1 - (—1)").

nm nmw

The problem (6.4.33) for v is homogeneous in y, and the corresponding eigen-
functions are sin(nmy/2). Let now

v(z,y) = ivn(x) sin (%) (6.4.39)
Then we have
Viy = 20; [vg(x) - (%) 2vn(x)] sin (%) = 2%y = 2° zo;an sin (%)

Now we invoke the boundary data in v:

Zvn sm( )—y—Zansm< )
Zvn sm(—>—1—2y—z%sm( )

(6.4.40)
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To find out v,(z) we identify the coefficients in both sides of the last three
formulas. Then it follows that v, (z) satisfies the ODE:

2
vl — —(%) Uy, = QT2
vn(0) = (6.4.41)
vn(l) = Tn

Solving (6.4.41) we finally can get u(z,y) = v(z,y) + w(z,y).
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Chapter 7

Bessel functions

Bessel functions are solutions for the Bessel’s differential equation. This equation
and its variants arise in many problems in physics and engineering, particularly
where some sort of circular symmetry is involved.

We start with the two-dimensional wave equation in polar coordinates:

1 1
Uy = 02V2u(7“, 0, t) = (Urr —+ —u, + —2U99>. (701)
T T

By the separation of variables, u(r,0) = R(r)©(0)T'(t) # 0, this equation is
rewritten as

1 1
T'RO = ¢ (TR"@ + TRO+ T—QTRe"), (7.0.2)
which, in the usual way, yields

TII RII 1 RI 1 (__)II
= — —p2. (7.0.3)

TR TR 20
Thus we have one ordinary differential equation for T, viz

T" + 1T = 0, (7.0.4)
and the other equation, involving both R and © is
RII RI @Il

—_ —_ - — 2
R * rR + 720 a (7.05)
which multiplying through by r?, is written in the following, separated form:
T'2R” T'R, 5 o @Il )
R +7+,UIT——§—Z/. (706)

187
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Now we have another ordinary differential equation for ©, viz
0" + 1?0 =0, (7.0.7)
The left hand side gives the third ordinary differential equation for R:
r*R" +rR+ (p*r* — v*)R = 0. (7.0.8)

Now we simplify the equation (7.0.8) using the change of variable r = x/p,
and introducing the new function f(x) := R(r), hence

R(r) = f(pr), R'(r) = uf'(ur), R"(r) = 12 f"(ur). (7.0.9)
Thus (7.0.8) is rewritten as

(5) 1@ + Zr @) + @ = 1)1 ) = (7010)

or equivalently

22 f"(z) + zf' () + (22 — V) f(z) = 0. (7.0.11)
This is the Bessel’s differential equation of order v. It and its variants arise
in many problems in physics and engineering, particularly where some sort
of circular symmetry is involved.
7.1 Solutions of Bessel’s differential equation

The Bessel’s equation has a regular singular point at x = 0, so we expect to
find solutions of the form

fl@) = "z, a #0, (7.1.1)
7=0

which we substitute into Bessel’s equation and, when v is not a negative
integer, we get the relation on the coefficients a;, as:

e (—1)ka0
2k = 22kk!(1 + ]/)(2 + 1/) S (k' + V)’

A2k+1 — 0. (7.1.2)



7.1. SOLUTIONS OF BESSEL’S DIFFERENTIAL EQUATION 189

Thus, in short, except when v is a negative integer we have the solution

o (_1)kx2k+u
= i 7.1.3
/(@) “Og 2RI+ )2+ 1) - ... (k+0) (7.1.3)
The standard choice for ag is
S - (7.1.4)
W PTw 1) -

where the gamma function, I'(z), is defined in the complex half-plane, Rez >
0, by

I(z) = /0 h t*~te~tdt. (7.1.5)

From the definition above, we extract some of the most important basic
properties of the gamma function:
The second functional equation:

[(z+1) =2I'(2) (7.1.6)
The second functional equation:
T'(2)T'(1 — z) = w/sin(7z). (7.1.7)

Let z = 1. Then we get

r(1) = / e tdt = [— e*tro ~1. (7.1.8)
0 0
Then the first functional equation is giving us for z =1,
'n+1)=1-2-...-nl'(1) = nl (7.1.9)
The first functional equation can be iterated and consequently we get
T(z4+n)=2z(z+1)-...- (z+n—1)T(2). (7.1.10)

Thus I'(z), or rather I'(z 4+ 1), provides a natural extension of the factorial
function to numbers other than integers:

I(z) = I'(z+n)

o 2(z4+1D) - (z+n—=1) (7.1.11)
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Another important result is that

r(n + 1) = 1@) o (n - %) N3 (7.1.12)

2 2\2

Now we return to solution (7.1.13), of the Bessel’s equation (7.0.11), where
ag is given by (7.1.4). This choice of ag give us the following theorem, where

f(z) = J,(2):

Theorem 38. A solution to Bessel’s differential equation of order v is given

by
(=) ) (Q)QW. (7.1.13)

k'F k +v+1
J,(z) is called the Bessel function of order v.

Proof. To show that J,(z) is a solution to the Bessel’s equation of order v;
(7.0.8) we let

1)k 2%k+v ( 1)k 2k+v
y(z) = v ( ) Z u 2htv
krk+z/+1) 2 < kID(k+v+1)2
First we assume that v is not a negative integer: v # —1,—2,.... Then the
series converges for all x # 0 and we have that
[ele) 1) Qk + I/) 2k+v—1 7 1 14
I e T
k=0
= VE(2k + v)(2k + v — 1)kt =2 115
ZO ET(k + v + 1)22k+v (7.1.15)
Thus letting A(z) := z%y"(z) + zv'(z) — v?y(x) we get
i MR+ v)2k+v—1)+2k+v — 1% 5.,
= Xz
p E'T(k+ v+ 1)2%+v
- 1)k4k(k
_ Z +v) o2kt

£ k+]/+ )22k+1/
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Now since (k + V)F(k +v)=T(k+v+1) it follows that

i k4k(k‘ +v) 2k zoo: (—1)kg2k+v
prt E\( k + v)T'(k + v)22k+v B p (k — D)IT(k + )220 1)+v
( 1)k 2k+2+v ( 1)]6) 2k+v

2
=—-TY,

Z KIT(k + 1+ v)22k+ — ° Z < KID(k + 1+ v)22%+7

where on the last line the sum is rewritten using the shift law: (k —1) — £.
Thus we have that y(z) = J,(z) satisfies the Bessel’s equation

2%y (z) + 2y (z) + (2* — v*)y(z) = 0.

Lemma 14. If v = n is an integer we have
J_n(z) = (=1)"Ju(2). (7.1.16)

Proof. Let v = —n, where n =1,2,.... For k=0,1,...,(n — 1) we have by
the basic properties of gamma functions that

! =0 (7.1.17)

Dk—n+1) o

This simply follows from (7.1.11) with z = k —n + 1, i.e.,
I(z) = I'(z+n)

2(z+1)-.-(z+n—1)

implies that
1 - — 2)...
_kmntDk=n+2) ko oy
I'k—n+1) L(k+1)

Thus, the first n terms in the series

Zklr —n+1)(2>2k g

vanish. Using ['(j + 1) = j!, and then setting £ = k — n we find that

kl in ( )Qk ' Zf‘ﬂ-l—n ( )2€+":(_1)an(x)’

and the proof is complete. O
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If v is not a integer, J,(x) and J_,(x) are linear independent and the
general solution is the linear combination

Thus we want to find a solution, Y, (z), to the Bessel’s equation, which is a
linear combination of J,(z) and J_ ,(z). The standard solution is given in
the following definition.

Definition 41. The Weber function Y, (z), (which is also known as Neu-
mann function or Bessel function of the second kind), is defined by

cos(vm)d,(x) — J_,(x)

Y, (z) = , integer, 1.1

(x) Sn(v7) where v # integer (7.1.19)
lim Y, (z) = Y, (). (7.1.20)
v—n

7.2 The Recurrence Formulas

There is a set of algebraic identities relating the Bessel’s function J, and its
derivate to the functions J, ; and J,;1. In this regard we have the following
recurrence formulas:

Theorem 39. For all x and v, we have

[z ")y (2)] = =2 " Jn(2), (7.2.1)
(27, (2)] = 2" J, 1 (2), (7.2.2)
z[y-1(x) + Jp1(z)] = 2vJ,(2), (7.2.3)
Jy—1 (@) = Joa(2)] = 2J(), (7.2.4)
at,(x) = vly(z) = =2 ]y (2), (7.2.5)
zJ (x) + Z/J,,(x) =zJ, 1(x). (7.2.6)

Proof. Below we give the proofs for (7.2.2), (7.2.5) and (7.2.6), since the
proof of formulas (7.2.1) and (7.2.2) are near similar, and (7.2.3) and (7.2.4)
follow by subtracting and adding (7.2.5) and (7.2.6). Thus we start to prove
formula (7.2.2) using the power series

> o\ 2ty & (—1)ka2k+
Z k+l/+1) (2> B kz_; 26BN (k+ v+ 1)




7.2. THE RECURRENCE FORMULAS 193

Multiplying by ¥ and differentiating give us

) d & (—1)kg2k+2v o 1)k2(k + v)g?k+2v-1
%[x Ju(@)] = %Z 2+ D (k + v + 1) Z 22+ EIN(k+v+1)

k=0
Now since I'(k + v + 1) = (k + v)I'(k + v) it follows that

k 2k+u 1

_[xu‘] wuz 22k:+1/ 1k'F k+v) =" Jy-1(z),
k=0

and the proof of (7.2.2) is complete.
To prove (7.2.5): performing the indicated differentiation in (7.2.1), we
obtain

%[x_”Jy(x)] = v (2) + 5T ().
Thus by formula (7.2.2) we have
ve VN ,(2) + 2V T(2) = —x VT, (2),
and multiplying by V!, we obtain
zJ,(z) — vd,(z) = —xJ,41(2),

which is the formula (7.2.5).
Formula (7.2.6) is proved similarly: Performing the indicated differentia-
tion in (7.2.2), we obtain

Ll o)) = vt ) + 20,

Thus using formula (7.2.2) we get
ve" 1, (x) + 2T (z) = ¥, 1 (2),

—v+1

which multiplying by z , yields
zJ () +vd,(z) = xJ, 1()

and hence the proof of (7.2.6) is complete. O
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Bessel fictions of half-integer order
Bessel functions of half-integer order can be expressed in Taylor series of

cos(z) and sin(z),

@ =(=)  cos() and J(e) = (=) * Sin(a). (7.2.7)

™ ™

J

1
2
Using the recurrence formula (7.2.3), we obtain

J%(x) = x_lJ%(:U) —-J_

(x). (7.2.8)

1
2

Bessel functions of integer order

We recall that if {a,}?°, is a sequence of numbers, the generating function
for a,, is the power series Zn: a2,

Theorem 40. The generating function for J,(z) for all x and all z # 0 is

Z Jo(z)2" = e’ (_%). (7.2.9)

n=—oo

Proof. We first note that

(-
(&

Using the Taylor series for e* give us absolutely convergent series viz,

=35 G EalE) XX G
7=0 k=0
Let now j = k +n. We know also that

1 1
(k+n)! T(k+n+1)

=

xz

) = e%Z -e 2z, (7210)

-

=0, when k£+4+n<0.

Then
e% (z ) n_z_oo [g Kk ( )2’“+n] " =n§oo=]n($)z

and the proof is complete. O



7.2. THE RECURRENCE FORMULAS 195

Bessel’s Integral Formulas

In the generating function for J,(z) formula, z can be any nonzero complex

number. Let z = e? = cosf + isinf and 27! = e % = cosf — isin 6, then

%(27%) iz sin 0
e = ™Y, (7.2.11)

Using the the generating function (7.2.9) for J,(z), we get

ewsind — Z Jn(x)e™. (7.2.12)

n=-—oo

Hence J,(z), are given by the Fourier coefficients for ¢*5in?

T [ . . ) 1 [ . .
Jn(x) / emsmﬁ . €_m0d9 — %/‘ ez(wsmﬂ—nﬁ)de. (7213)

:% .

Because of symmetry we replace 6 by —6, in (7.2.13), then

1 [ _. . ) 1 [
Jn(.??) / e—m:smﬂ . emé?de — % / e—z(msmﬁ—nQ)dO. (7214)

:% .

Thus adding up we get

T on m

- —T

1 . 1 ™ o
2.0, (z) / om0y 4 — / gi@sind—n0) g (7.2.15)

Now using e*(#sin0-m9) — cos(z sin § — nf) + i sin(x sin @ — nf) we get

" 2r

1 e
In () / cos(x sin @ — nf)de, (7.2.16)

and since the integrand in (7.2.16) is even in @ it follows that

Jn(z) = 1/0 cos(z sin  — nh)do, (7.2.17)

™

which is one of Bessel’s Integral Formulas.
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An alternative proof of Bessel’s theorem. Below, using Bessel’s recurrence for-
mula (7.2.5), we give an easier way to prove the theorem of Bessel’s differen-
tial equation:

2?y" + zy' + (27 — v*)y = 0. (7.2.18)

We write

2T +2d =zt + J) = z(x])

7.2.19
z(vl, — xdy1) =vad, — 1 — 2T, ( )

Using (7.2.5) once again we get vzJ), = v(vJ, — xJ,;1) thus
? Iz, =v(wl,—xJ,1) -zt~ I, = Vi, —vad, g —xd, -1t T
Hence

2?2 I 2l -V ), = —xWdpr + Jos1 + zJ,.q). (7.2.20)

Further using recurrence formula (7.2.6) with v replaced by v + 1 we get
zJ), , =xJ, — (v +1)J,41 and consequently

$2JL, +zJ, — VA, = —x(wdys1 + Jpp1 +ad, — (v+1)J,41)
=—z((v+1)Jp1+ad,—(v+1)J,11) (7.2.21)

= —a:ZJ,,,
so that
2 J) +xJ, + (2* —v*)J, =0 (7.2.22)
and the proof is complete. O
Exempel 23. Show that
/a:sJo(x)dac = (2° — 42)Jy(z) + 22° Jo(z) + C. (7.2.23)

Solution. The recurrence formula (7.2.1) with v = 0 yields
d
%[xOJO(:U)] =—2Ji(z) or Ji(z)=—Ji(z). (7.2.24)

Hence

/ J(z)dz = Jo(x) + C. (7.2.25)
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We write
/m3J0(x)dx = /xQ-xJO(x)dx,

and use the recurrence formula (7.2.2) with v =1 to obtain

/ 2 Jo(x)dz = / [m2-%[xJ1(x)]]dx.

Integrating by parts we have

/ [:132 : %[:&]1(3:)]] de = 23J,(z) — Q/xQJl(x)dx.

The recurrence formula (7.2.2) (v =2) give now
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(7.2.26)

(7.2.27)

(7.2.28)

/a:3J0(x)da: =2°Ji(z) —2/x2J1(x)daE = 2 Ji(7) =222 Jy(2) + C. (7.2.29)

Further by v =1 the recurrence formula (7.2.2) (v=1),
xJo(x) + xJo(z) = 2J1(z),

thus
2xJy(x) = 4J1(x) — 22Jo(z).

Then summing up we have
/x?’Jo(a:)dx =22 Ji(z) — z(4J1(z) — 22Jo(2)) + C

and finally the desired result (7.2.23):

/:U3J0(:U)d:v = (2 — 42)J, (z) — 22 Jo(z) + C.

7.3 Orthogonal sets of Bessel functions

We rewrite the Bessel’s differential equation (7.0.8) for R:
r*R"+rR+ (u*r* — V)R =0,

as
2?f"(z) + 2 f'(z) + (*2* - v*) f(z) = 0,

(7.2.30)

(7.2.31)

(7.2.32)

(7.3.1)

(7.3.2)
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where we used the identifications x = r and f = R. Let A\ = u? and assume
that = # 0, then multiplying by 1/z yields

d V2

%(xf'(:v)) — ;f(:v) + Az f(z) =0, (7.3.3)

which associated with appropriate boundary conditions is is a Sturm-Liouville
equation with

1/2

r(z) =z, px)= - and w(zr) = x.
The equation (?7?) is a regular Sturm-Liouville problem on an interval [a, b]
if 0 <a<b<oo.
On an interval of the form [0, 5] and under the assumption v > 0 we get
a singular Sturm-Liouville problem which, by the way, is a more interesting
case. Below we examine this case: The general solution to the differential
equation(??) is then the eigenfunctions of the form

f(z) = C1J,(ux) + CoY, (ux). (7.3.4)

The boundary condition at x = 0 is interpreted as that f(0+) exists, which
means that C; # 0 and Cy = 0, whereas the boundary condition at x = b
can be taken as Sf(b) + 8'f'(b) = 0, which means that

B, (ub) + B uJ.,(ub) = 0. (7.3.5)
Let now f(z) = J,(p;z) and g(x) = J,(uex) be the eigenfunctions, then

2

(L(7).0) = (£, L(g)), where L(P)=+-(zf)~"f.  (136)

As in the PDE chapter, we still have real eigenvalues and the eigenfunctions
are orthogonal with respect to the weight function w(z) = z,.

Let 8 # 0 and ' # 0, which is the most usual case. Then all the
eigenvalues are nonnegative and thus for

2= (%
A> 0, )\k_,uk_(b), (7.3.7)
where «;, > 0 are the roots of the equation
!
By(a) + = J,(a) =0, (7.3.8)

b
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where ub = o and the eigenfunctions are

or(z) = J(%) (7.3.9)

We summarize this section formulating some fundamental results (without
proofs)

Lemma 15. If 3 =0 and v = 0, then Ao = 0 also is an eigenvalue with the
eigenfunction @o(x) = 1.

Lemma 16. If 41 >0, b > 0 and v > 0, then

252 _ 2

’ 2 b 2 M
= _J 27 7
/0 Jy(px)” zde J,(ub)* + 5

gy (1b)?. (7.3.10)
Theorem 41. Supposev > 0, b > 0 and w(x) = x. Let {\;}$° be the positive
zeros of J,(x) and let ¢(x) = J,(Agx/b). Then {¢y}5° is an orthogonal basis
for L2(0,b) and
b2
16]l% = u+1(/\k) . (7.3.11)

Heat flow in a cylinder

Exempel 24. Let us consider following heat flow problem in a cylinder.

Uy :]{JV2U,, 0<7’§b, 0<9§27T, 21 <2< 2z

u :Aa T:b,

u, =0, z=2 and z=2 (7.3.12)
u = DB, t=0,

where u = u(r, 0, z,t) and V?u = u,. + %ur + r%uga +u,,. This is a Dirichlet
problem in the cylinder

D={(r0,2):0<r<b, 0<0<2w ,z<z<2} (7.3.13)

Let us assume that u(r, 0, z,t) is independent of 0 and z. Then we get the
following problem for u = u(r t):

Uy = k(tpr + Zu,)
u(b,t) = A, uw(0+,t) erists (7.3.14)
u(r,0) = B.
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Figure 7.1: Cylindrical space domain.

For further simplification first we study the steady state problem, where u; =
0. To this approach let u(r) satisfy the differential equation

1 , d, -
'+ -u' =0, or equivalently d—(ru') = 0. (7.3.15)
r r
Then we have ru’ = Cy, i.e., u' = % After integration we get
u=Cilnr + Cs. (7.3.16)

That u(0+) ezists yields Cy = 0, and the boundary condition u(b) = A for
gives that u(r) = A.

Let now v(r,t) = u(r,t) —u(r) = u(r,t) — A. Then v satisfies the problem:
vy = k(vpr + Lvy)
v(b,t) =0, v(0+,t) exists (7.3.17)
v(r,0) =B—A

Using separation of variables v(r,t) = R(r)T(t) # 0, it follows that

RT' = k(R” + %R’)T and hence

RII + lRI T! )
. r = = — . . 1
R wr - (7.3.18)

Then we have to solve the following two problems:

1) { R'"+ iR +1’R=0

R(b) =0, R(0+) emists, (7.3.19)
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and
T = —Ku°T. (7.3.20)

For the first problem, which is a Sturm-Liouville problem, we know that the
etgenfunctions will be of the form

R(r) = C1Jo(ur) + CoYo(ur). (7.3.21)

That R(0+) exists yields Co = 0 (see definition of Yo(ur) and R(b) = 0 gives
Jo(ub) = 0. Let now «q, ay, ... be the positive zeros of Jo(x). Then we have

b =a, and p=p, = %, for n>1. (7.3.22)
Thus the eigenfunctions are
QT
Ra(r) = J0<T). (7.3.23)

Correspondingly the solution for the differential equation T' = —Ku2T 1is
T, (t) = CpeFwat, (7.3.24)

By the superposition we have

v(r,t) = ni:; CpekHat J, (%) . (7.3.25)
Fort =0 we get
v(r,0) = ; Cdo (%) —B- A (7.3.26)

Recalling that { R, (1)}, is an orthogonal basis for LYy (0,b), where w(r) =r,
the Fourier coefficients C,, are

1 b a,T
= B — A)Jo (" rar. 3.2
c ||Rn||;i/o( 9o (227 ) rar (7.3.27)

Thus by the previous theorem

b2
1Bl = 5 T2 (o). (7.3.28)
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Making the substitution of variable x = %% i.e., v = Z—CZ, and integrating it
follows that
b QT b \2 [
/0 JO(T)rdr = (a—n> /0 Jo(z)zdx. (7.3.29)
The second recurrence formula:
/ Jo(wyede = [2:(2)] ™ = ani (o), (7.3.30)
0
yields that
2 VJia,) 2(B-A)
C,=—-———-(B=—A)——~" = . 7.3.31
b2J12(an) ( ) Oy, anjl(an) ( )
And finally we have, since ug = u = A and Jp(ay,) = 0, that
- 1 _pont (0T
U(T, t) =A+ 2(B - A) ; m@ b2 J()( b ) (7332)
Exempel 25. Solve the following heat equation in the plane:
u = kV2u =ty + up + Sugy, 0<r<b 0<6<2rm (7.3.33)
u(b,0,t) =0, u(r,0,0) = f(r,0). o
Using separation of variables u(r,0,t) = R(r)©(0)T(t) # 0 we get
1 1
ROT' = (R" + ;R’)@T + T_2R®”T' (7.3.34)
Multiplying (7.3.34) by % we have
TI T‘2R” + T'RI @Il
2t _rhvwrh Y o
T 7 5 ve. (7.3.35)

This give us two differential equations. The differential equation for © reads
0" +1°0 =0, (7.3.36)

where the 2m-periodicity of ©(0) and ©'(0) implies that v = n = integer.
Thus '
O, (h) = ™. (7.3.37)
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The other equation s

TI ZRII RI
P r ; UL, p— (7.3.38)
which in turn can be separated into two new equations, viz,
T 7r’R"+rR n? )
— = — — = —u”. 7.3.39
T r2R r2 a ( )

Let us first solve R:s equation, which is a Bessel’s differential equation of
order n, where p > 0.

2 " ! 22 2 —
{ R"+ 1R + (u*r* —n*)R =10 (7.3.40)

R(r) bounded as r — 0+, R(b) = 0.
As before the solution to the Bessel’s equation of order n is given by

where since R(r) is bounded as v — 0+, it follows that Cy = 0. Further
R(b) = 0 yields J,,(ub) = 0. Let now oy, be the positive zeros to Jy(x). Then

b=, and p=pn, = %. (7.3.42)
Thus we obtain, for C; =1
R (r) = Jn(a’“bk’"). (7.3.43)
The equation for T: T' = —,ufka, has the solution
T =T, (t) = Cpe "ut. (7.3.44)

The superposition principle give us now the solution to the original equation
in the form of

o0 o ol o]

u(r, 6,t) Z ZTnk )0, (0) = Z Zane_“iktJn(azkr>ema

n=—o0 k=1 n=—oo k=1

and

u(r,6,0)= 3 chkjn(“’;jr)ema = f(r,0), (7.3.45)
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where Cy,, are the Fourier coefficients of f in the multiple orthogonal basis

Jn(M e, To calculate these coefficients we first need to calculate the

b
2 b o r 2T
_ 2 Nk
- /0 Jn( ; )rdr /0 do, (7.3.46)

following normalization factor:
b
which using the recurrence formula yields

Q. T .
‘Jn( k )em9

ankr ind 2 _ b_2 2
‘ Jn<—b Jemt| = o . (Jnsi(ame) (7.3.47)
Thus the Fourier coefficients are
1 2w b . )
Ch, = i / / Fr,0) (P25 ) e 0rdras. (7.3.49)
782 T ()] 70 0

Note! If D is the circular domain x? +y? < b?, then we continue computing

of Cp, viz,
2 b
/ / Frdrdf = // Fdzdy.
o Jo D



Chapter 8

Orthogonal polynomials

The orthogonal polynomials are ...

8.1 Legendre polynomials
Some of the most useful orthogonal bases for Ly spaces consist of polynomial
functions. One of these polynomial functions is the Legendre polynomial,

Definition 42. The nth Legendre polynomial, denoted by P,, is defined by

dn
Pu(@) = o gam

For the first three values of n = 0,1,2 we have

(z* = 1)" (8.1.1)

Po)= (a2 —1° =1, Pi(z)= %%(:ﬂ 1) =,

1 d? 1d
Py(z)==—(2*—2224+1) = =—
2(z) 8d$2(x v +1) 8dx
We have that (22 — 1)" is of degree 2" with leading term z?". After n
derivations the leading term is 2™ and thus P,(z) is a polynomial of degree

n. The leading coefficient of P,(z) is

1 1
(42° — 4x) = g4(3:1:2 -1)= §(3x2 —1).

(8.1.2)

an!(Qn)(Zn —1)--(n+1) =

In the sequel we use frequently the following:

205
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Lemma 17. Suppose {p,}° is a sequence of polynomials such that p, is of
degree n for all n. Then every polynomial of degree k(k = 0,1,2,...) is a
linear combination of pg, ..., Pk

Theorem 42. The Legendre polynomials { P, }§° are orthogonal in La(—1,1)

and
2

1P.||* = :
2n+1

(8.1.3)

Proof. If f is any function of class C™ on the interval [—1, 1], we have

2"nl( "dx. 8.1.4
Wi B = [ 1) gt = 1) (514)
Using partial integration the right hand side in (8.1.4)

/f 1)”dx:[f(x)j;ll /f dcfnll ~1)"da.

Note, that f(x)dd;:;—__ll(:::2 —1)" =0, for z = £1. After n-fold integration by
parts we get

2"n!{f, Py, /f (2% — 1)"dx. (8.1.5)

Now if f(z) is a polynomial of a degree m < n, we have that f™(z) = 0,
so {f, P,) = 0 and thus (P,,, P,) = 0. By the same reasoning with m and n
interchanged, we also have (P,, P,,) = 0 for m > n, so we have proved that
the P,’s are mutually orthogonal.

Let now f = P, and then we have

1 1
IR = o (1" [ PP@) (@ = 1) (5.1.6)
2nn! _1
Since the leading term for P,(z) is 2,(,(n),)2a: we have that
2n)!
PO () = 1.

Then we get

2_(_1)n. (2n)! n 1x2— .
12 = : !/( 1)"da. (8.1.8)

2npl - 2n(n!)? 1
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Note that

/_1 (22 — 1)"dx = /_l (x+1)"(x —1)"dx

1 1

1 n+1 1 1 n+1
= [7(:5 +1) (x — 1)”] — / e+ )™ n(z —1)" 'da,
n+1 ~1 1 n+1

where the first term on the right hand side is identically zero. After n-fold
integration by parts we have

! 2 n _ n ! (:L.+1)2n
/_l(x 1y dg = (—1) /_1 T Ees e IR PR

_ . (D)2 (z+1)2 i B (n))?2 22
—CY (2n)![ 2n+1 ]71 =1 2n)! 2n+1

Inserting in (8.1.8) we finally get

e p o GO @l a2 2 2
" 2npl  2n(nl)2 (2n)! 2n+1 2n+1

(8.1.9)

and the proof is complete. O

Below we state (without proof) the most important property of the Leg-
endre polynomials:

Theorem 43. {P,}3° is an orthogonal base for Ly(—1,1).

Thus every polynomial of degree k, can be written as a linear combination
of Legendre polynomials P,, n =0, ..., k. For instance the polynomial 322 —
4z + 1 can be written as a linear combination of Py(z), P;(z) and Py(x), viz

2P;(z) — 4P (z) + 2Py(x) = 32> — 1 — 4z + 2 = 32° — 42 + 1.

We next derive the differential equation satisfied by the Legendre polynomi-
als.

Theorem 44. For alln > 0 we have

(1 = 2)P.(z)] +n(n+1))Pu(x) = 0. (8.1.10)
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!
Proof. Let g(x) = [(1 — :EQ)P,’l(x)] . Since x2P!(z) is of degree n+ 1 we have
that g(x) is of degree n. Now lemma 6.1 gives that

—_

g(x) = ZCij(x), where C; = (9, Pj). (8.1.11)

15,
For j < n we have
= [ [a-#re) pew
=[a —xQ)PT'L(x)Pj(x)T - /_ a — )P, () P)(x)dx
= [-R@0-2P@] + [ P@I0-2)P@)dz =0

In the last step we used the fact that h;(z) = [(1—2?)Pj(z)] is a polynomial
of degree j and the orthogonality give us

1
(g, P)) = / Py (2)h;(2)dz = 0. (8.1.12)
-1
Consequently
C; =0 when j<n. (8.1.13)
Thus we have
g(z) = Cp Py (). (8.1.14)

Let now a,z" be the leading term for P,(z). Then the leading term for
!
9(@) = [(1-22)P()] is

d d
—d—[iﬂzannfvn_l] = —%(annfvnﬂ) = —aun(n +1)z". (8.1.15)
T

Since the leading term for g(z) = C,,P,(x) also is C,a,,2™ we have
—apn(n+1)2" = Chayz” and C, = —n(n+1). (8.1.16)
Then g(z) = —n(n + 1)P,(x) and thus
(1— x2)P,;(:1:)]' +n(n+ 1)) Py(z) = 0. (8.1.17)

and the proof is complete. O
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Generating function for Legendre polynomials

Below we formulate the generating function for the Legendre polynomials.

Theorem 45. For —1 <z < 1 and |z| < 1 (here z may be complex), the
Legendre polynomaials satisfy

1
ZP (8.1.18)
\/1 — 222+ 22

(8.1.18) can be derived, e.g., by means of contour integrals, see Folland.
We shall use (8.1.18) to evaluate the integral

1
0
To this approach, first we compute P, (0) using the Taylor expansion:
1 (=3 o
P,( 2 ) 2%, 8.1.20
>r07 = =2 () e12
Consequently
Pyy41(0) =0, (8.1.21)
and

k!
_ (-1)F-1-3-...-(2k—1) _ (—1)%(2k)! (8.1.22)
2k ! kgl .24 ... - (2Kk)
_ (=D)F(2k)!
R

Now we have that

i{/olpk(x)dx}zn = /1(1 - 2xz+z2)*% dr = [%(1 _ 2xz+ZQ)%]0

n=0
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Thus we have . .
/ Py(x)dz =1, / Py (z)dz =0, (8.1.23)
0 0

and

)=y bty
k!

(8.1.24)
13 (26-3)
=(=1) 2k
Now transferring k£ to k + 1, it follows that
! —1)k.1-1-3-...-(2k—1
[T AC U IS
0 2k+1(k + 1)! (8.1.25)
Py (0)  (=1)F(2k)! o

T2(k+1) 2 (EN2(k+1)
We conclude this section with a formula relating the Legendre polynomials
and their derivatives.

Theorem 46. For all n > 1 we have
P, i(z) — P,_i(z) = 2n + 1) P, (). (8.1.26)
Proof. The second derivative of (z? — 1)"! is
A= = Lo e -1
=2(n+1) [(m2 — )" + 2nz*(2* — 1)"’1]
=2n+1)2n+1)(z> = )"+ 4n(n + 1) (2> — )" 1,

where the last step is derived writing the factor z2 as 22 = (22 — 1) + 1.
Now by the definition of Legendre polynomials (8.1.1) and using the relation
above we write
1 dn+1
Fra(2) = 20+l (n + 1)! dgntt
_ 1 dn—1 . (d_2($2 _ 1)n—|—1>
2ntl(n + 1)l dzn=t \dzx?
(2n+1) dt
~onpl g (2" = 1)" +
(2n+1) d*t

= g (22 = 1)" + P, 1(2).

(l’2 o 1)n+1
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Finally, differentiating both sides we obtain the desired result:

d’n

Prya(@) = Pioy(e) = @+ 1)t

(2 = 1)" = 2n+ 1) P, (),

and complete the proof. O

Spherical coordinates and Legendre functions

Recall that the spherical coordinates of a point x= (z,y,2) € R® are given
by
z=rcos¢sinf, y=rsingsinf, and z=rcosh (8.1.27)

and that the Laplacian operator in these coordinates is given by

2 1
2
) 50 = + - + - 5 . 9 n .
u(r, ¢,0) = rr Tu r2sin 6 df r231n20u¢¢

As an application of Legendre polynomials we consider the Dirichlet problem
for the unit ball in R, viz

%u(r, 6,0) = 0, u(l,,6) = f($,0), (8.1.29)

— (sin O ug) + (8.1.28)

where
ro <1 <7, 0<6<m, -1 < ¢ <. (8.1.30)

Applying the method of separation of variables we write the solution u as
u(r, ¢,0) = R(r)®(4)O(0) # 0, and insert it on the right hand side of (8.1.28)
to obtain

2 ! 1
"+-R'|Od inf-0') R " = 0. .1.31
(R +TR>® +r251n0(5m0 ®>R +r251n GRG (8.1.31)
Multiplying by r?sin” 0 sm 9 we get
RII 2 RI 3 0@[ ! @II
r? sin” 0% + sin 9% =—3 = m?. (8.1.32)

Thus ®” + m?® = 0 and hence
() = ae™? + be™ ™9, (8.1.33)

Since ®(¢) is 2m-periodic hence m must be an integer, which we may take to
be nonnegative.
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Now we separate © andR on the left side of (8.1.32), viz

r’R"+2rR m®  (sinf@')

R = Gn?d  sin6e (8.1.34)
and write the equations for © and R as
1 . "y m?
Sine(smﬁé) ) — sin29@ +20 =0, (8.1.35)
and
rR"+2rR' — AR = 0. (8.1.36)

Now the equation for © can be transformed into a close relative of the
Legendre equation by the substitutions s = cosf and S(s) = O(6), where
—1 < s < 1. Recalling the chain rule:

d d ds d

— = —— = —sinf— 8.1.37

o dsdo o ds’ (8.1.37)
and since sin?f = 1 — s, it follows that

2

d
%((1 - 32)5') - T:LSQS FAS =0, (8.1.38)

which in general is called the associated Legendre equation of order m.
Definition 43. The associated Legendre equations are defined by

m d™ P
Pm(s)=(1- 32)?7"(8). (8.1.39)
ds™
Below we state (without proof) some properties of the associated Legen-
dre equations:

Theorem 47. For A = n(n + 1) the associated Legendre equations have the
non trivial solutions given by:

S(s) = P*(s), where n >m. (8.1.40)

n

Theorem 48. For each positive integer m,{P"}5° is an orthogonal basis
for Ly(—1,1) and

(n+m)! 2
(n—m)! 2n+1

PP = (8.1.41)
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Now we return to the equation (8.1.36) and let A = n(n + 1) to get
r’R"+2rR —n(n+1)R=0. (8.1.42)
This is an Euler equation with the solutions of the form P, giving
r’p(p — 1)r? 2 + 2rpr? * — n(n — 1)1 =0, (8.1.43)
which is is the same equation as
(p* — p)r? + 2pr? — n(n — 1) = 0. (8.1.44)
After dividing by 77 we get

PP—p+2p—nn-1)=0 <= p’+p—-nn+1)=0  (8.1.45)

= 11,/1+ 2+n= 11( +1)
b= 5 1 n“+n = 3 n 5)

Thus P, =n and P, = —n — 1 and the general solution for R is given by

and we have

R,(r) = A,r™ + Br" 1. (8.1.46)

Hence the Dirichlet problem (8.1.2): V?u = 0, on the unit sphere has a
solution of the form

u(r, ¢,0) = i i = Cmn (Anr” + Bnr_”_l) e™? PIml(cos ),  (8.1.47)

n=0 m=—n

where Y, (0,8) 1= ™ P (cos6) are called the spherical harmonics. If
u(r, ¢,0) = u(r, ¢) is independent of ¢ (rotationally invariant) then the solu-
tions are

u(r,0) = i (Anr" + Bnr_"_l) P,(cos ). (8.1.48)

n=0

Spherical harmonics

Definition 44. The spherical harmonics or spherical surface functions are
defined by

Yo (0, ¢) = €™ P™(9),  where n=0,1,2,... and |m|<n, (8.1.49)
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From above it follows that the functions Y;,,(f, ¢) considered as function
on the unit sphere S in R®, form an orthogonal basis of Ly(S) with respect
to the surface measure do(6,¢) = sinfdfd¢p. Moreover the normalization

constants are A ( ‘ \)'
T n—+ |mi)!

Yonll? = 8.1.50

I I 2n+1(n — |m|)! ( )

and the coefficients C,,,, are given by

f’ Ymn
Conm = <”Y ”2). (8.1.51)

Exempel 26. Solve the following, radial dependent Laplace equation in the
spherical coordinates:

r?

Viy=1 r>R,
{ u=cosf —cos’f, r=R. (8.1.52)

This is formally valid since if u(r) — 0 when R — oo (normal requirement
is: V2u = -5, where P > 2 and P # 3).

P’
Solution. First we find a particular solution (r,0,0), satisfying V?u = %
This implies that (see Folland, page 406),

1d 1 d
2 _ 2~1 —_ 2~1 —
VZu(r,0,0) = e (r*a’) . thus o (r*a’) =r. (8.1.53)
Integrating we get
2
2~r T ~r 1 01
r°u = 5+01.<:>’U,I— §+ﬁ (8154)

Integrating once again we have

G

.
. . 1.
;= 0 (8.1.55)

U=

Let now Cy = 0 and choose Cy such that a(R) = 0. We get £ — &1 =0 and
thus C = %2. Hence

RQ

-5

i(r) = (8.1.56)

N3
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Note! that since 4(r) — oo, as r — oo therefor Viu = % has no physi-
cal meaning. Loosely speaking, it corresponds to an ongoing charge with no
interruption and consequently would mean unbounded potential.

Let now v = u — 4 (this removes the unboundedness as r — o0). Then

Vv =0, r > R,
{ v=-cosf—cos’l, r=R, (8.1.57)
with a solution given by
v(r,0) = Z (Anr" - Bnr’"’l)Pn(cos 6). (8.1.58)

n=0

Now since v is bounded as r — oo thus A, = 0. Hence for r = R we have

v(R,0) = Z B,R™" ' P,(cosf) = cosf — cos® 0. (8.1.59)

n=0

The substitution s = cosf, gives that
v(R,0) =Y B,R™'Py(s) =s—s". (8.1.60)
n=0

Recalling the Legendre polynomials
1 1
Po(s) =1, Pi(s)=s, Pos)=503s"—1), Pi(s) = 555" = 39),

we write, using Ps(s) and Py(s) = s that s> = 2Py + 3s = 2Py + $P,. Thus

2 3 2 2
=P PP =P — ZP. .1.61
S S 1 53 51 51 53 (8 6)

Inserting (8.1.61) in (8.1.60) and identifying the coefficients we get
-2 2 —4 2 . —n—1
BiR “ = R and B3R = — otherwise B,R = 0.
Thus we have

2 2
B, = SRQ and Bz = —5R4, otherwise B, = 0. (8.1.62)
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Hence it follows that

R R
v(r,0) = % (z) :P1(cos 0)2—5 (47)14P3(COS 0) (8.1.63)
25(7) c050—5<7) -5(5COS39—36089)

and consequently

u(r,0) = g - ;i: + [% (?)2 + §(E)4} cos 6 — (5)40053 6. (8.1.64)

8.2 Hermite polynomials

2

Another useful orthogonal basis for Ly(R) and LY (R), where w(z) = e *, is
the Hermite polynomials.

Definition 45. The nth Hermite polynomial, H,(x), is defined by

nw2dn 2

Ho(x) = (~1)"e” —e ™" (8.2.1)

The recursion formula for Hermaite polynomials is
H,(z) =2zH,_(z) — H,_,(x). (8.2.2)
Simple calculations show that
Hy(r) =1, Hi(z) =2z, Hy(x)=42>—2z, and Hs(z)=8z"—12z.

For the Hermite polynomials we have the following orthogonality properties
which we state without proof:

Theorem 49. The Hermite polynomials {H,}3° are orthogonal on R with
respect to the weight function w(z) = e * and

| H,||? = 2"n!y/. (8.2.3)

Theorem 50. The set of Hermite polynomials, {H,}3°, is an orthogonal
basis for LY (R).
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Theorem 51. For any v € R and z € C we have the generating function

o0 n

N Ho(x) o =2 (8.2.4)

|
0 n.

For many purposes it is preferable to replace the Hermit polynomials by the
Hermite functions,h,,(z).

Definition 46. The Hermite functions are defined by

ha(2) = ¢ Hy (). (8.2.5)

Differential equations:

The Hermite polynomials, Y (z) = H,(z), where z € R, are eigenfunctions
to the Sturm-Liouville problem

%(e‘”zY') + e Y =0. (8.2.6)

The Hermite functions, y(x) = h,(x), where z € R, are eigen functions to
the Sturm-Liouville problem

y" — 2’y + dy =0, called Hermit’s equations. (8.2.7)

8.3 Laguerre polynomials

Definition 47. Let o be a real number such that o > —1, then the nth
Laguerre polynomial LS corresponding to the parameter o is defined by

%% d"

oy (z*tme™). (8.3.1)

Ly(z) =

For the Laguerre polynomial we give the following theorems Without
proof

Theorem 52. The Laguerre polynomials { L&}, are a complete orthogonal
set on (0,00) with respect to the weight function

w(x) = z%"", (8.3.2)
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and their norms are given by

F'n+a+1)

gl = ="

. (8.3.3)

Theorem 53. The Laguerre polynomial LS satisfies the Laguerre equation

d
%(aja“e_’”y’) + nz®e %y = 0, (8.3.4)

which can be written in the form
2y + (a+1—2)y +ny=0. (8.3.5)

Theorem 54. The generating function for Laguerre polynomials is for x > 0
and |z| < 1,

—xz

el—z

Y Le(x)" = e (8.3.6)




Chapter 9

Distribution theory

Heaviside and Dirac functions are distributions, ...

9.1 Test functions

Let us first introduce the impulse train, which we write in the form

u(t) = i 5(t —mT). (9.1.1)

m=—0oQ

St+2T) S(t+T)  8()  6(t—T) 6(t—2T)

1 1
¢
9T T -T2 0 T/2 T 2T

Figure 9.1: A sequence of delta functions 6(t — mT), m =0, +1, £2.

The impulse train (9.1.1) can formally be we written as a Fourier series

expansion
o0

u(t) ~ ) ua(t)e™™, (9.1.2)

n=—o0

219
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where the Fourier coefficients are given by

u (t) — l /T/2 u(t)efjnﬂt _ l /T/2 5(t)efjnﬂt _ l (9 1 3)
" T J 1 T J 1 T o
Thus we have
u(t) ~ n;oo Teﬂnm. (9.1.4)

This series is divergent for all . We computed its partial sum in Chapter 5:
the Dirichlet kernel

N . 1
1 . sin(N + 5(2)
— Jnit — 2 = D .
Sn(t)= ), T Tsin(101) w(®), (9-1.5)

n=—N
Below we define some basic concepts:
Definition 48. Smooth T-periodic functions are called test functions.

Definition 49. If f(t) is a T-periodic function with the Fourier series ez-
pansion

f)~ > Cre™, (9.1.6)

then, we say that, f:s partial sum converges to f weakly and write

N
Sn(t) = Z Ce?™¥ — f(t)  weakly

n=—N

if for all test functions o(t)

a+T

lim Sn(t)p(t)dt = / ” F)p(t)dt. (9.1.7)

N—o00 a

Then we may write

ft) = Z Ce™™¥  with the convergence in the weak sense.  (9.1.8)

n—=——0oo
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For the impulse train we have the approximation (9.1.4).

variational form of its partial sum can be written as:

/aa+T Sn(t)e(t)dt = é % /aa+T o ()™,

Let C,, be the Fourier coefficients for ¢(t), then

1 a+T )

221

Therefor a

(9.1.9)

(9.1.10)

Obviously we can write ZiVN C_,= Zfzv Cy. Then since ¢(t) is smooth we

have -
QO(t) = Z Cnejnﬂt’ Vta
and in particular
0(0)= Y Ca.
Taking the limit in (9.1.9) and using (9.1.12) we get

a+T

lim Sn(t)e(t)dt

N—oo a

I
B
~—~

S
=

On the other hand we have

a+T T/2
/ u(t)p(t)dt = / 5()p(t)dt = o (0).

~T/2
Then we have combining (9.1.13) and (9.1.14), that

a+T

lim Sn(t)p(t)dt = /a+T u(t)p(t)dt, Yeo(t).

N—oo a

Thus we have finally, recalling the right hand side of (9.1.9)

o0

u(t) = Z Tej"m for weak convergence.

(9.1.11)

(9.1.12)

(9.1.13)

(9.1.14)

(9.1.15)

(9.1.16)
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Exempel 27. Ezpand the function f(t) =1 —1t for 0 < t < 2 in complex
Fourier series. (T =2)

Solution: With the weak convergence we have

= , 2
f(t) = R_Z_OO Cpe?™  where Q= % =T. (9.1.17)
Then the Fourier coefficients C,, are
1 [T : 1 [? :
G == / Ft)e—imtgy — - / (1 — t)e=inmty. (9.1.18)
T Jo 2 /o

For n # 0 and using partial integration we get

1 —jnmta2 1 2 —jnmt
Cn:—[(l—t)e, ] ——/(—1)6_ dt
2 —Jjnmlo 2 J, —Jnm
Y i (9.1.19)
_1( e~ AT 1 )+1[69”” ]2_ 1
2 —jnmT  —jnm 2L(—jnm)2lo  jnn’
. —jnmw 2
where we have used e ™" =1 and [%] = 0. For n =0 we have
0
0—1/2(1 t)dt—l[ Ly t)zr—() (9.1.20)
°“ 2/, T2l 2 o o
Consequently
oo 1 -
t) = — it 0. 9.1.21
f(t) n;,o o n# (9-1.21)
ft)

NN
ESENENIEX
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Exempel 28. Let u(t) =1 —t. Then using the previous example we get

u(t)= Y Coe™, Q=rn, and 0n={ Yoot

RE——— (9.1.22)

n=—oo

We may assume an electrical circuit associated to u(t) as in the figure below:

<
—
N
=
e
—
N

Figure 9.2: An electrical circuit.

or in the dynamic form: Then using the superposition principle each fre-

+
jwlL
+J) J

Figure 9.3: The dynamic form circuit

quency can be treated separately. The component Cnel™* gives an output
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signal which can be computed by the jw-method, where w = nf). Now by the
well-known formulas:

u

= (JwL+ R)I I=—— 9.1.23
and R O R
u
V=RI= = = 9.1.24
jwL+ R  jnwL+ R’ ( )
the output signal is
C.R -
W(t) 1= — It 9.1.25
and finally we have
- C.R = 1 R :
t) = — ™M — - gnt, 9.1.26
u(t) n_zoo JnQL + Re n_zoo jnm jnmL + Re ( )

9.2 Delta functions

To get a test function we can use the Dirac’s delta function. Below we list
some of the properties of the delta functions (see also Chapters 1 and 5):

Definition 50. Dirac’s delta function is defined as

6(z) =0 for z #0,
{ [ 8(@)de =1 forall a>0. (9.2.1)

Within the traditional realm of functions, the Dirac function does not
make sense. But we want to look at §(x) as a idealized limit element to
sequences of the form 6, (z): or

d(z) = lim 6 (). (9.2.2)

e—0
To do this we expand the concept in the definition of a function:

Instead of describe a function by the functions values f(x) we give the values
of the integrals

/OO f(x)p(x)dz, (9.2.3)
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Figure 9.4: The Dirac function 4, ()

for a sufficiently large class of generalized functions p(z). If ¢ = ¢, were as
the above the ¢, functions, but centered about xy, then f fondx will be a
weighted mean value of the function values about z, and

/_OO f(@)on(z)dz — f(z0), n — 0o, (9.2.4)

if f(z) is uniformly continuous. Note that F[p] := [ fedz is linearly de-
pending on ¢(z) and thus defines a linear functional. There are also other
linear functionals.

on(x) 1= 0n(x — o)

Zo

Figure 9.5: The Dirac function centered on zq : 6,(z — x¢)
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Below we give some more examples of delta functions:

The square pulse function. As we have seen in the introduction Chapter
the square pulse function is defined as

| 1/e for 0<z<e
0c(z) = { 0 otherwise, (9-2.5)

1/c e—o
| Oe(2)
I
|
b T
€

Figure 9.6: The square pulse function d.(t).

The Gauss pulse function The Gauss pulse function is defined as

11 22
=— e 27, (9.2.6)
EN2m

e ()

which we illustrate in the following figure:

Figure 9.7: The Gauss pulse 0.(z) = 1/2/m e~/
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The exponential pulse function The Exponential pulse function is defined
as

€72, (9.2.7)

Area=1

Figure 9.8: The exponential pulse 6, (z) = le72.

The triangular pulse function The triangular pulse function is defined as

1, 1
_J s+ 3z for —e <z <0,
0c(x) = { % — E%x for 0<z<e. (9-2.8)
1/e
be(z)
x
—& 5

Figure 9.9: The triangle pulse function d.(x).

Now we need to introduce some terminology.

Definition 51. If f is a function on R™, then its support is the closure of

the set of all points x, such that f(x) # 0, in other words, the smallest closed
set outside of which f vanishes identically.
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We let C’(()OO)(R") denote the space of all functions on R™ whose (partial)
derivatives of all orders exist and are continuous on R* and whose support
1 a bounded subset of R"

Exempel 29. Let

e/ for x>0,
Y(z) = { 0 for <0, (9.2.9)
Show that
o(z) = Y21+ 2)) - ¥(2(1 — z)) € C. (9.2.10)

Solution: Since
dn
dzm

1
(e_l/””> = {polynomial in =} - e /* -0, as z—0", (9.2.11)
x

therefore 1(x) have derivatives of all orders, and we have

1 1

o(z) = e 204w - ¢TI = ¢ 122, (9.2.12)

For |z| > 1 we have (1 — %) < 0 and hence p(z) = (1 —z%) = 0. It follows
that

_ [ eV for af <,
o(z) = { 0 for o> 1 (9.2.13)
and hence o(z) € C.
p(z)
] /\ ] x
—1 1

Figure 9.10: The function ¢(z) = e~ /02" |z| <1, ¢(z) =0, |z| > 1.
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9.3 Distributions

A continuous function f on R™ is specified by giving its values f(z) at all
points x € R”, but f can equally well be specified by giving the values of the
integrals

/_ F@)e(y)dy, where e C™. (9.3.1)

For a particular ¢ € C(()OO) such that

/00 o(y)dy =1, (9.3.2)

—0oQ
we get for all x and ¢

lim / " F ) ore¥)dy = F(x), (9.3.3)

e—0

and therefor we know f(x) for all x. (See Folland, Theorem 7.7). In other
words we can think of f(x) as a limit of [ f(y)¢x.(y)dy and we introduce
the following notation:

flol = / " F®)ely)dy, where o€ O, (9.3.4)

There are other linear functionals on C(§°°) that are not given by integration
against a function f and these functionals will be our generalized functions
or distributions they are commonly called.

Now we can give the definition of a distribution.

Definition 52. A distribution is a mapping F : Céoo) — C that satisfies the
following conditions:

(i) Linearity: Y1, 9 € C’(()OO), and Ve, co € C we have that
Flerpr + capa] = e Flp1] + coF[pa)- (9.3.5)

(#) Continuity: Suppose {¢r} is a sequence in Céoo) such that supp(ex) is
contained in a fired bounded set D for all k, and suppose that the functions
o and all derivatives 0%py, converge uniformly to zero as k — oo. Then
Flor] — 0. Shortly

ok =0 = Flgg] = 0. (9.3.6)
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(#i) Equality:

Notation. The space of all distributions on R" is denoted by D'(R™) or for
short D'. The prime is an indication that D’ is a space of linear functionals.

A distribution F' is like a function, but it may be too singular for the point-
wise values F'(x) to make sense, whereas only the smeared-out values F[¢p]
are well-defined. For convenience we write

Flp] = /_00 F(x)p(x)dx. (9.3.8)

o

Example on distributions

Exempel 30. Let f(z) be a piecewise continuous function and p(z) a test
function. Then

Fld= [ fa)ela)is (9.3.9)
18 a distribution and F € D'.

Exempel 31. The simplest example of a distribution that is not a function
is the Dirac delta-function §, which is defined by

S| = ¢(0). (9.3.10)
Operations on distributions

It is possible to extend the operation of differentiation from functions to
distributions in such way that every distribution possesses derivatives of all
orders that are also distributions. To this approach let f(z) be a continuously

differentiable function on R and ¢ € C’éoo) (R). Then using (9.3.9) we have

Flg] = / F(2)0(x)dz. (9.3.11)
Integrating by parts we get

Flol = [f(z)e(x)]% - /OO f(@)¢' (z)dz, (9.3.12)
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and since ¢(z) = 0 when |z| is large, it follows that

Flgl=— [~ 1@ @)is = ~Flg) (9.3.13)

Hence we have the following definition:

Definition 53. For any distribution F' on R we define the distribution deriva-
tive F' by

F'lg] = —F|¢| where FeD'[R) and ¢ e C(R). (9.3.14)

Exempel 32. Show that §'(x) = 6(x), where

|1, for x>0
O(z) = { 0. for z<0 (9.3.15)

and §(z) is Dirac’s delta function.

Solution: We know that

0] = / " 0o () ds = /0 " ol)dz. (9.3.16)

-0

Using the definition and the previous example it follows that

Ol =~0l) =~ [ ohto==[p)] = e(0) =gl @217
Hence we get 0] = 6[¢] and thus
0'(z) = 6(x). (9.3.18)
Jump discontinuities

Theorem 55. Suppose f is piecewise smooth on R with discontinuities at
Ty, T, ..., Tn. Let fO) denote the pointwise smooth derivate of f, which exists
and 1is continuous except at the x;’s and perhaps some points where it has
qump discontinuities, and let f' denote the distribution derivate of f. Then
for any test function ¢ we have

fiel= [ 1O+ Y [ - f@o)ele). 0319
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in other words

n

@) = fO@) + 3 [Flag) - Fla-)] o — ). (9.3.20)

i=1
Proof. Exercise! O

Exempel 33. Let f be piecewise smooth on R with a jump discontinuity x,
then we have the distribution derivative

fl@) = fO) + | f(zo+) — f(iﬂo—)]fs(x — x9) = fO(z) + 0b(z — z0),

where §(x — xg) is Dirac’s delta function, where x = xy.

Figure 9.11: The function f(x) with a jump discontinuity at .

Multiplication by smooth functions
For multiplying distributions by a smooth function we give the definition:

Definition 54. Suppose g is an infinitely differentiable function on R, then
gy is a test function whenever ¢ is, and is defined as

(9F)[¢] = Flgy], (9.3.21)

and since gp € C'(()OO) we have that gF € D'.
To calculate the derivative of the distribution gF we have the theorem:

Theorem 56. If g € C(§°°) and F € D', then

(9F) =g'F + gF". (9.3.22)
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Proof. Using the definition of the distribution derivative and the definition
above we have that

(9F)[¢]l = —(9F)¢'] = —Flg¢']. (9.3.23)

But since (g¢)' = ¢'¢ + g¢’ we obtain

—Flg¢'| = —F[(99) — g'¢l = —F(99)'] + Flg'¢]
= F'lgpl + (¢'F)lp] = (9F)¢] + (¢'F)le] = (9F" + ¢'F))[¢p]

thus using (9.3.23) the proof is complete. O

Convergence of distributions

We only give a definition of weakly convergence for distributions and a the-
orem for differentiation of distributions with weak convergence.

Definition 55. A sequence {F,}3° of distributions converges weakly to a
distribution F (we write F,, — F weakly), if

Fle] = Flgl,  Vpe CP. (9.3.24)

Theorem 57. Differentiation is continuous with respect to weak convergence:

F, — F wedkly = F, — F' weakly. (9.3.25)
Proof. For any test function ¢ we have that F[p] = —F,[¢']. Further
—F,l¢'] = —F[¢'] and —F[¢'| = F'[p]. Thus we have that F)[¢] — F'[¢]
and the proof is complete. 0

Periodic distributions

Definition 56. A distribution F' on R is called periodic with period P if
F(z + P) = F(x), where

F[gp(x — P)} - F[(p(x)], Vo € O, (9.3.26)
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Theorem 58. If F' is any periodic distribution, then F can be expanded in
a weakly convergent Fourier series, viz

x) = che““, (9.3.27)
that 1s,
Z ck/ z)e**dg, Voe Céoo), (9.3.28)

k=—00

where the coefficients ¢y satisfy
N
e < 0(1 + |k\) , (9.3.29)

for some C; N > 0. Conversely, if {cx}>, is any sequence satisfying the
estimate (9.3.29), then the series Y o cxe™™® converges weakly to a periodic
distribution.

The most fundamental example of a periodic distribution that is not a func-
tion is the periodic delta function:

Sper( Za x — 2km). (9.3.30)

Exempel 34. Calculate the first and second derivatives for the 2m-periodic
distribution given by

f(z) = %(my — %2), 0<x<2m. (9.3.31)

Solution: We have earlier seen that for an even Fourier series expansion and
weak convergence we have

ap cosk:v
= .3.32
5 ]; — (9.3.32)

Then with weak convergence we have the first derivative

fz) =3 Siil]jx. (9.3.33)

k=1
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/4

L 1 1
-3 =27 -7 T 27 3

Figure 9.12: The function f(z) = %(ﬂ'.’r — %), |z| < 3.

_ N p —\ Nw RY

—1/2

Figure 9.13: The function f'(z) = Y ;o S22 |z| < 37,

- k=1 ¢k >’
The second derivative s
1 o0
f'(@) = -+ ; §(x — 2k). (9.3.34)

But with the weak convergence we get
5 (x)—ia(x—2kw)—i+icosm —iiem (9.3.35)
e Cor 42 ’ "

having the Fourier coefficients

1 " —inx _ i " —inx _ i " _ i
%/W Oper.(x)e™"dx = 27r/ d(z)e™"dx = 27r/ §(z)dx = o

- -7

Thus we have

fra) =3 k. (9.3.36)

™
k=1
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8(t + 2m) d(z) d(z — 2m)
fll(x)
=3 -2 —I7T T 2m 3m
o e O
—1\/127r

Figure 9.14: The functions f(z) = Y 5o, k2 || < 37.

™

Exempel 35. Solve the differential (wave) equation

2
Uy = CUgg, t >0, r €R,
{ u(@,0) = f(z), w(5,0)=0, zER (9.3.37)
Solution: Let .
ue,t) =5 [ fl@+ct)+ fla— ct)] . (9.3.38)

The weak solution is in C2 and we have that ¥ ¢ € C™ <]R x (0, oo)),

(ug — Cuige)[p] = / / u(z, 1) (y — g )drdt = 0. (9.3.39)
0 —00
We introduce the change of variables vizn =x — ct and ( = x + ct. Then
= 1 d(z,t i1 1
r=5n g Y@ s L (9.3.40)
t="5" d(n,¢) | —2 2| 2

1s the Jacobian of this transformation which yields dxdt = 2%0377{. Now t >
0 < n < ¢, and letting p(z,t) = ¥(n, (), it follows that

/0 : /_ Z f(a = ct) (o — ¢ pge)drdt = /n /C f (n)[—402wn<]2icdnc
=2 [ s / ) gl by = =2 | sl ] dn=o

—o0 norQ —00 (nor0)

where the last step is due to the boundary condition and the fact that v has
compact support (see Figures below).
The term corresponding to f(x + ct) is treated analogously.
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supp ¢
L/ x

Figure 9.15: The support of ¢(x) containing the origin.

supp

- :
/

Figure 9.16: The support of ¢)(x) on the left side of the line { = 7.
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Chapter 10

Derivations of Some PDEs

In this appendix we discuss some of the important partial differential equations
and derive a few of them based on the fundamental laws of physics. Here, to
give an concise outline for a derivation procedure, we focus on derivation of
the principle equations of fluid dynamics: the Navier-Stokes equations. For more
discussions and derivation of other equations we refer the reader to the seemingly
rich literature in PDE.

Remark We point out that the Laplacian V2 commutes with all rigid
motion of Euclidean space; that is, if 7 denotes any translation or rotation
of n-space, then V?(f o T) = V3(f) o T for all function f. Moreover, the
only linear differential operators of order < 2 with this property are aV2+ /3
where o and (8 are constants. Hence, the differential equation describing
any process that is spatially symmetic (i.e., unaffected by translation and
rotation) is likely to involve the Laplacian V2.

10.1 Some important equations

Below we shall introduce some of the important equations modelling physics
that govern, e.g., the motion of fluids and gases. These equations result from
the conservation laws and constitutive relations based on some macroscopic
entities described, mainly, by the following space-time fuctions:

e the density function p(x, t)
e the velocity vector u(x,t)
e the pressure p(x, ).

239
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10.2 The Incompressible Navier-Stokes

The most important equations of the fluid dynamics are the Incompressible
Navier-Stokes equations (NS). NS equations consists of a system of partial
differential equations described by

(1) the moment equation, Newton’s second law

(2) the constinuity equation, conservation of mass.
The first derivation of NS was given 1822 by Claude Navier (and later, 1845,
by George Stokes).

e Continuity equation
Consider a fluid element occupying an arbitrary, fixed domain (volume) €.
We can describe the variation of the mass in this volym by

0 dp
9 yax= | Lux. 10.2.1
at/ﬂp X /Qat x (10.2.1)

The flow of mass out €2 per area unit is then p - un, where n is the outward
unit normal to 092. Using conservation of mass (the increase of mass inside
() is identical to outflow of the mass through the boundary 09Q):

2/de:—/ pu-ndS. (10.2.2)
9t Ja 20

Using Gauss divergent theorem, we rewrite the equation (10.2.2) as

/Q (% +V- (pu)) dx = 0. (10.2.3)

Since (2 is arbitrary, using lemma 1, this yields continuity equation known
as the transport equation:

pr+ V- (pu)=0. (10.2.4)
If p is constant (homogeneous media), then we get the simpler equation
V.-u=0. (10.2.5)

Exempel 36. We justify (10.2.4) for a one-dimensional model problem for
traffic flow where we assume that p = p(x,t), the density of cars, satisfies
0 < p < 1. For a highway path (a,b) the difference between the traffic inflow
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u(a)p(a) at the (boundary) point x = a and outflow u(b)p(b) at the (boundary)
point © = b gives the density variation on the interval (a,b)

| oty e = / Pl t) dz = u(a)p(a) — u(B)p(b) = — / (up)' dz,

or equivalently
/b{,b-l- (up)' }dz = 0. (10.2.6)
Now since a and b are choosen arbitray, hence by the above lemma,
p+ (up) =0, (10.2.7)
which is just the 1 — D wersion of the transport equation (10.2.4).

Exempel 37. We may relate the velocity vector u and the density function
p in a variety of ways. For instance if we choose u =1 — p in (10.2.7), then
we get the nonlinear convection equation

p+(1—2p)p =0. (10.2.8)

On the other hand, choosing u = ¢ — e(p'/p), ¢ > 0,& > 0, then (10.2.7)
yields

!
p+ ((c — 5—)p> =0, (10.2.9)
which, in its simplified form
p+cp —ep =0, (10.2.10)

is a one dimensional convection -diffusion equation. If ¢ > ¢, then (10.2.10)
s a convection-dominated convection-diffusion equation. Finally a change
of notation p ~u and ¢ ~ B gives

i+ Bu' —eu" = 0. (10.2.11)

Equation (10.2.11) can be compared with the homogenoeous Navier-
Stokes equations for an incompressible flow

u+ (B8-V)u—eAu+ Vp =0,

10.2.12
Vu=0. ( )



242 CHAPTER 10. DERIVATIONS OF SOME PDES

where 8 = u, u = (uy, us, ug):=(mass, momentum, energy) is the velocity
vector, p is the pressure and ¢ = 1/Re with Re denoting the Reynold’s
number. These equations are not easily solvable, for ¢ > 0 small, because
of the appearence of boundary layer and turbulence. A typical range for Re
is between 10° and 107. To derive the Navier-Stokes equations we shall also
need the equation of moment:
¢ Equation of moment
We denote by X () the trajectory of a fluid particle (or a very small portion
of the fluid which we call the fluid particle), in Lagrange coordinates, in €.
The velocity, u(X (t),t), of this fluid particle is given by

dX(t)

u(X(t),t) = T

and its acceleration a(X (t),t), through the chain rule, by

d? d Ou = Ou ou
X (1) = Su(X(0),1) = o + z:; = g (u-V)u.  (10.2.13)

It is customary to denote the right hand side by the so called mass derivative
of u: Du/Dt, viz

d? d Du _ 0du
X)) = Su(X(0),0)= 5 =2+ (u Vu (10.2.14)

There are a number of different forces acting on a fluid particle such as the
pressure, viscosity forces (or internal forces) and volum forces such gravity.
The pressure p is acting on the surface of the fluid particle in the direction
of the normal to surface. The viscosity forses, which are denoted by a d x d
matrix o, are also acting on the surface of the fluid particles, but both in
the normal and the tangent direction to the surface. The matrix o, which is
called the stress tensor, must be a matrix that represents the forces acting on
all and d directions. These forces appear because of the motion (diffusion) of
atoms with different kinetic enegy in and out of the fluid particle. One may
think this phenomenon as frictions between different fluid particles moving
with different velocities. The volum force f is a force per unit of mass, i.e.
a force action on the whole volume of the particle. We sum all forces acting
on a particle, and use Gauss theorem, to obtain

/ (—pn+a-n)d5+/,0fdx:/(—Vp+V-0)+pfdx. (10.2.15)
20 Q Q
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This means that the sum of forces acting on the fluid per unit volume is given
by
-Vp+ V-0 +pf. (10.2.16)

Thus with equations (10.2.14) and (10.2.16) the Newton second law, for
volume unit in a fluid, becomes

Du

—_— =— . . 10.2.1
P Dy Vp+V.-o+pf (10.2.17)

It remains to find an expression for the stress tensor o. The viscos forces
appear as the fluid particles move with different velocities. Hence, these
forces must depend on the spatial derivatives of the velocity field. In general
(i) the velocity gradient is assumed to be small. (ii) it is assumed that there
is an approximative linear relation relation between the stress tensor and the
first derivatives of the velocity vector, viz 0;; o< Ou;/0z;. Note that, with this
assumption, if u is constant, then ¢ = 0. Further that o should depend only
on first derivatives means that there will not be any contributions from the
constants. Finally, o should vanish for the fluids rotating with a constant
velocity (angular frequency) w. It appears that the linear combination of
Ou;/0x; + Ou;/0x; vanishes for the velocities of the form and therefore o
should contain such a linear combinations. Thus, we have a suggestion for
the form of the stress tensor as

Ou; 8“j), (10.2.18)

Tij = "(axj ox;

where 7 is called the viscosity. Hence, assuming that 7 is constant, the
viscous term in the equation (10.2.17) can be written as

\%

0 (8ui au]->

-0 = = nAu. 10.2.19

Inserting (10.2.19) in the equation (10.2.17) the moment equation becomes

Du
e The continum hyphotesis
The above reasoning is based on the hypothesis of considering the fluid as a
continum. This is under the hyphothesis that the size (volume) of the fluid
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under consideration is much larger that the size of the fluid atoms/moleculs.
This is the so called continum hyphotesis.

e Boundary value problem and Navier-Stokes equations

We consider a bounded spatial domain Q = Q(¢) C R?, a time interval
I = [0,T], and assume that n and p are constants. Then the equations
(10.2.5) and (10.2.20) give the following Navier-Stokes equations:

1
ut—l—(u-V)u—l/Au—i-;Vp:f, z € Qt), tel,

Vu=0, zeQt), tel, (10.2.21)
u = ug, x€Qt), t=0,
u=g, rel, tel,

where T' = 01 is the boundary of 2, v = n/p is the kinetic viscosity, ug is
the initial data and g is the velocity at the boundary. Note that here are no
slip boundary conditions, i.e., the fluid at the boundary and the boundary
itself have the same velovity.

e Approximatios of Navier-Stokes equations

Stokes equations:

1
VAu+-Vp=f, ze),
vAut Vp=f  zell) (10.2.22)

Vu=0 z € Q(1),

The Potential flow:
—vAu = f, x € Q(t). (10.2.23)

eOther models

Navier-Stokes and Stokes equations are the so-called continum models. In
contrast to these there are particle models that describe how the particles
(atoms, moleculs) interact in a microscopic level. Boltzmann equation is an
example of a particle-based model equation.

e Dimensionless form of the Navier-Stokes equations

Below we shall derive the Navier-Stokes equations in the dimensionless form.
To this approach we introduce a characteristic lenght L, and a characteristic
speed U, (then we get a characteristic time T'= L/U). The choice of L and
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U can be based of a form of averaging. We scale the Navier-Stokes equations
using the following scaling of the involved parameters:

.I;, = iCz/L; U; = uz/U7 t' = t/Tv pl = p/(pU2)

Now using termwise chain rule in the Navier-Stokes equations (10.2.21), and
lengthy calculations yield

ou _ oo _Uow
ot ot ot Tot’
_Ou o, ouox, U* ou  U?
= =V p e, — T 0w, L 0201
o 200 05 _ U O _ U (10224
P S 0, ~ L 02t L
0 Ou 0 Orjou'ox; U 0 ou U
A — — - - ’L:___:_AI I.
" Ox; Ox; Uaac; Oz; Ox; Oxr; L2 0x;Oxr; L2 "

Here V' and A’ denote the gradient and Laplacian in the dimensionless vari-
ables. Now for simplicity we supress the / s and get the following dimension-
less Navier-stokes equations:

1

ut—l-(u-V)u—Re

Au+ Vp=f, z € Qt), tel,
Vu =0, z € Qt), tel,

(10.2.25)

where Re = LU/v is the so called Reynold number.

e Laminary and turbulent fluids

Solutions to the Navier-Stokes equations depend on the size of the Reynold
number and may look completely different for different ranges of the size
of the Renold number Re. For instance large Reynold numbers, as Re 2
100, correspond to turbulent fluids having irregular, chaotic, “stochastic”,
solutions, whereas the small Reynold numbers, represent laminary fluids,

with regular solutions.

e Existence and uniqueness questions

We point out that in the case of the Stokes equations we have existence of
unique solutions. As for the Navier-Stokes equations it is hard to give a
simple answer. See

www.claymath.org/Millennium_Price_Problems (a one-million $ problem!).
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¢ Boundary value problem for the pressure

The pressure is determined by the velocity field. This is justified through
taking the divergence of the moment equation in Navier-Stokes. A detailed

term- and stepwise calculation yields

( V-ut:%V-u:{V-uzﬂ}zﬂ,
2
) V-Au:axiaxjv-uzo,
V -Vp = Ap,
The moment equation now becomes
SR

(10.2.26)

(10.2.27)

In the of no-slip case (assume g = 0) we can derive the boundary conditions
through the scalar product of the moment equation in the Navier-Stokes with

the normal vector at the boundary:

r U n:%(u'n)_O,
. Vp-n= g—ﬁ,
\ {(w-V)u}-n= ujg—z;nj =0
We obtain that
g—z={f+l/Au}-n.

(10.2.28)

(10.2.29)

Equations (10.2.27) and (10.2.29) give a boundary value problem for the

pressure with the Neumann boundary condition (10.2.29).
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10.2.1 The weak formulation of the Navier-Stokes

First we shall assume that in the equation (10.2.21), ¢ = 0 and introduce
some function spaces. Let £ C R?, for the functions ¢, v : Q — R we define

13(Q) = {¢: / ¢ dx < oo},

Ly(Q) ={q e L*(Q) : /qux =0}, (10.2.30)

HY(Q) = {v: /Q(\Vv|2 +v?) dx < o0},
Hy(Q) = {ve H'(Q) : v|r = 0}.

We shall use LZ(Q) for the pressure. The pressure in the NS is in determined
modulo constants (if p is a solution for the pressure then also p + ¢, where ¢
is a constant, is a solution). The conditoion : [, ¢dx = 0 gives a uniquelly
determined pressure. The space Hj(2) is employes for the velocity field. For
u € H}(Q) and p € L3(Q) we multiply the Navier-Stokes equation (10.2.21)
by v € Hj(€Q) and the continuity equation by ¢ € L2() and integrate over
Q). The termwise, step-by-step, calculation yields

au-vdx:i/u-vdx,
dt Jo

ot
ou; Ou; 0v;
— [ Au-vdx ={PI} = — | —v;dl’ e
/Q u-vdx = {PI} Fanv anjaxjdx’
8u,— (%i
— — = 10.2.31
oz, Oz, dx, (vlr =0), (10.2.31)

/Vu-vdxz{PI}z/pv-ndF—/pV-vdx
0 T Q

:—/pV-v.
Q

Now the final weak formulation is: find (u,p) € (H¢ ()¢ x L3(£2) such that

d 1 Ou; Ov; ou;

— | u-vdx+ — h UdX+/UiﬂvjdX‘i‘/pV'UdX:/f'de,
Q Q Q

dt Jq Re Jq Oxj Oz; ozx;
/ qV -udx =0,
Q

(10.2.32)
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for all (v,q) € (Hy(2))? x L3(Q).
Further, introducing the following notation

(u,v) :/u-vdx,
Q
a(u,v) :/ Ou; Ov dx,

Q a.ij a.Tj

(10.2.33)
b(p,?)) = _/pv ' UdX,
Q
ou,;

c(u,u,v) = Qu,-a—vaj dx
we may write the equation (10.2.32) in the following concise form: find
(u,p) € (HE(Q))4 x L2(Q2) such that

d 1
a(u, v) + —a(u,v) + c(u, u,v) + b(p,v) = (f,v)

Re (10.2.34)
b(g,u) =0,

for all (v,q) € (H}(2))? x L3(9).

Exempel 38. Below we give an alternative derivation, (a heuristic one), of
Navier-Stokes equations. For a more detailed derivation and motivation of
the assumpltions see PDE and Fluid dynamics litterature.

Now we return to the transport equation (10.2.4). Requiring that the fluid
satisfies the law of Conservation of momentum. Then, the forces acting on
the fluid in Q2 are the pointwise gravity g and the pressure p applied at the
boundary 02. Now, neglecting the friction forces beween fluid molecules,
Newton’s law of motion implies an equality between the change in the fluid
momentum and the total forces acting on the fluid.

9 pudx = —/ pndS+/pgdx. (10.2.35)
ot Ja o9 Q
Now, using (10.2.4) we get
/[,ou + p(u - Vu)u] dx = /(—Vp + pg) dx, (10.2.36)
Q Q

which yields Fuler equation:

1
ur+ (u-V)u = —;Vp +9, (10.2.37)
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where ¢ is the density vector of the gravitational force. Let now v be the
fluid’s viscosity coefficient, then using the relation between g and the fluid
viScosity

pg=vAu, (10.2.38)

and assuming a gradient-free flow (Vu = 0) we get the Navier-Stokes equa-
tions:
puy + (u- V)u) = vAu —p,

10.2.39
Vu = 0. ( )

10.3 Further real world equations

e The minimal surface equation: Lagrange equation

Lagrange showed in 1760 that the surface area of the membrane is smaller
than the surface area of any other surface that is a small perturbation of
it. Such special surfaces are called the minimal surfaces. Lagrange further
demonstrated that the graph of a minimal surface satisfies the following
second-order nonlinear partial differential equation:

(14 ) Yty — 2ugliyligy + (1 + ul)uy, = 0. (10.3.1)

For minimal surfaces with small slope (i.e. s, u, < 1), then the equation
(10.3.1) can be approximated by the two-dimensional Laplace equation.

e The biharmonic equation
The equilibrium state of a thin elastic plate is provided by its amplitude
u(z,y) and satisfies the biharmonic equation:

A%y = A(AU) = Uppzs + 2Ugayy + Uyyyy = 0. (10.3.2)

The unknown function u(z,y) describes the deviation of the plate from its
horizontal position. Note that in contrast to all important equations, which
are of first or second order, the biharmonic equation is a PDE of order four.
There are other biharmonic equations, e.g. the Cohan-Hilliard equations, to
mention one.

e The Schrodinger equation

One of the fundamental equations of quantum mechanics, derived in 1926
by Erwin Schrodinger, governs by the evolution of the wave function u of a
particle in a potential field V:
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ou h
) —_— " —— . .
zhat =-3 Au + Vu, (10.3.3)

where m is the particle’s mass, V is a given function, and i = 9/27, with 9
being the Planck’s constant.
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Solved Problems

Example 1. The function f(z) given by f(z) = (zr +1)?for -1 <z < 1, is
2-periodic. Expand f(z) in complex trigonometric Fourier series. Determine
a 2-periodic solution to the equation

20" — o —y = f(x). (11.0.1)
Solution: Let f(z) =>>° _ c ™. Since T = 2 we get Q = 27 /T = .
Thus we have f(z) = Y oo ¢,e™™®, where the Fourier coefficients C,, are

computed as follows: For n # 0, using repeated partial integration

I ; I ,
=7 /1 f(x)e™™ ™ dx = 5 /1(33 +1)2e7 ™y
1 —inmTT - 1 1 1 —inmT
:_[(x+1)26, ] ——/ 2z +1)—daz
2 —nml-1 2 ) —inx (11.0.2)
(_1)n [ e—inTT 41 /1 e—inT e
—inm (z+ )(—m7r)2 -1 * _1 (—inm)3 v
2i(=1)"  2(-1)" 2(=1)™(1 +inm)
nm —n?m? n2m?
For n = 0 we get
1! L(z+1)31 8 4
= — ]_ 2 Od = [—7} = — = —,
o 2/_1(‘”)637 5 3 1. 6 3
Then the complex Fourier series expansion for the function f(z) is given by
4 2 = (_1)n(1 + ZTLTI') N
f@ =3+ > e
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Now to solve the equation (11.0.1) we may rewrite it as

o0

2yli - yl —y = f(.I) — Z Cneimr;c’ (1103)

n=—oo

and denote the complex Fourier series expansion for the solution y by y =
> Yne™™. Now our task is to determine the unknown Fourier Coeffi-
cients y,. To this end we note that, performing derivations on y, (11.0.3) can
be written as

29—y —y = Z [2(inm)? — (inT) — 1]y,e™™ = Z cn€™,  (11.0.4)

n=—oo n=—oe

where identification of coefficients yields

[2(inm)? — (inw) = 1yn = ¢,  Vn. (11.0.5)
Thus for n = 0 we get —yo = co and yo = —co = —%.
As for n # 0 we have from (11.0.5) that
2 (=1)™(1+: 2 (=) N1+4
—[2n?*m? +inm+1]y, = 2 (=11 + inm) =y, = (=)™ (1 + inm)

2 n? " w2 n2(2n2n? 4+ inm + 1)

Thus the solution to the original equation (11.0.1) is

4 2 & (—1)" (1 +inm) |
=——4 — mre 11.0.6
y(@) * Z n?(2n’m? +inm + 1) ¢ ( )

3 7
n=—o0,n#0

Example 2. The function f(t) is 3-periodic, where

t for 0<t<1
ft)=1¢1 for 1<t<2
3—t for 2<t<3

Determine a periodic solution to the differential equation y” + 3y’ = f(¢) in
the form of a trigonometric Fourier series

Solution: We have that the function f(¢) is even, (see the Figure below). For
T =3 we get Q = 2n/T = 2n/3. Thus in the Fourier series expansion

flt) = % + Z a, cosnnt + b, sinnwt, we have b, =0, Vn. (11.0.7)

n=1
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Figure 11.1: The 3-periodic function f(?).

As an appropriate interval we choose ¢ € [-T/2,T/2] then, since f(t) =
t, t€[0,1] and f(¢t) =1, t € [1,3/2], it follows that, for n > 1,

S
3
I
|

f()coantdt — 2/ f(t) cosnQt dt

[N}
Sl

1 3/2
/ t cosnfdt dt + / cosnflt dt}
0 1

sin nQt1 L sin n)t sin n§)t13/2 (
_ 11.0.8)
[t n) ]0 /0 n) dt+|: nf ]1 }
sin nf? [cos nQ} 1 sin nQ% B sin n{2 }
ns (n£2)? ns) ns)
4{(:0an— 1 n sian%} _ ECOS%TW -1
(n2)? n) 2 2

]

Wk Wik Wik

— A

= T > 1.
3 or n >

™ n

where in the last step we substituted 2 = <!

_{/ tdt + /3/2 dt} = = ﬁ} g 1= % (11.0.9)

The expand of the given function f (t) in a Fourier series is thus

3 1 — cos 22T 2nmt

2 3
=3 2 = cos ——. (11.0.10)

To solve the differential equation we let y(t) = yo + Y oo | Yn COS @ Then

An?n? ot
ngw +3)yncos 7? = f(#).  (11.0.11)

y"+3y=3yo+z<—

n=1
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Identification of the coefficients of (11.0.10) and (11.0.11) we get

An?? 31— cosZar
B0 =2/3, and (3- 0 )y =~
Thus
2 3 S 1 —cosr 2nmt
YO =5 =52 e S g (11.0.12)
n=1MN (3 — T)

Example 3. Expand the function g(z) = cosz in Fourier sine series at the
interval (0,7/2). Use the result to calculate the sum

e 2

Y (4712”7_1)2. (11.0.13)

n=1

Solution: We expand the function g(z) = cosz to a (2L = 7)-periodic odd
function f at the interval [—7/2,7/2], see the figure below:

()

1_
N
\ /2 ’

Figure 11.2: The 7-periodic function f(x).

We know that

ft)= %‘*‘; <a'n cos ?‘an sin ?) = %4—; (an cos nfdx+b,, sin an) .
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Since f(t) is an odd function we have a,, = 0 for all n > 0. Further T =7 =
2L = Q =27/T =2 =m7/L. Hence,

4 w/2
bn: f sinwda}——/ COS T sm@daj

L L T™Jo 7T/2
4 4 1 (7 .

=— cosx sin2nrdr = — - — [sin(2n + 1)z + sin(2n — 1)z] dz
T Jo T 2/

e il =t

= 2n_i_lcos n . 5, — 1 cos(2n z|

Gt moT) e
m\2n+1 o m(4n? — 1)

Thus we have an expansion of the odd function f(x) in Fourier sinus series
as

8 n .
fla)~— ; T2 Sn2ne, (11.0.14)
and hence the function g(z) = cosz has an odd expansion on (0,7/2) viz,
cosx = Z 4n2 -sin2nz. @ € (0,7/2). (11.0.15)

To compute the sum (11.0.13) we multiply the equation(11.0.15) by cosx
and integrate the result over the interval (0,7/2). Then changing the order
of sum and integral on the right side we get

o0

7T/2 8 n 71'/2
/0 cosxcosx dr = - 2:; 47127_1/0 sin 2nx cos = dz (11.0.16)

Note that the integral on the right hand side is b, which we have already
calculated above:

4 71'/2
— / cos z sin 2nx dx =
™ Jo

8n 2n

W—l) = / cosz sin2nz dx =

Consequently (11.0.16) can be written as

T2 11 8L n om
4z 2>d =2 : , 11.0.17
/0 (5 + 5 cos20 )da w;4n2—1 An? — 1 ( )

4n? —1°
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which yields

T 16 S n? . - n? 2

Example 4. Let f(t) = 1—¢2 be a 2-periodic function for |t| < 1. Determine
a bounded solution for the partial differential equation

u _ 2% —
5 = 922 z >0, 0o <t <o (11.0.19)
u(0,t) = f(?), —00 <t <00

Solution: Expand the function f(¢) = 1 — #? in a complex trigonometric
Fourier series, f(t) =Y. c,e™", where for T = 2 have Q = 27/T = 7.
For n # 0, using repeated partial integration, we get the Fourier coefficients

1 1 ) 1 —inmt 41 1 1 —inmt
¢, = _/ (1 - e ™mdt = - [(1—t2)e ] —5/ (—2t) S dt

2/ R —inm -1 1 —inT
=0
efimrt 1 1 efimrt -1 ) ) efin'/rt 1
= t'i] — — dt= —inm mmwy [7]
[ (—inm)2]l 1 /_1 (—inm)? n27r2(e +e) (—inm)3l
N————
=0
—2(-1)"
s

For n = 0 we get
[ ! 2
coz—/ (1—t2)dt=/(1—t2)dt=—.
2/, o 3

Thus the complex trigonometric expansion of the function f(¢) is

ft) = 2_2 f: ﬂei”“. (11.0.20)

n2

Let now

u(z,t) = Z Uy, (7)™ (11.0.21)
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be a periodic solution for (11.0.19) with bounded Fourier coefficients u,(z) =
%ﬁl u(x,t)e”™ . Then the condition u(0,t) = f(t) yields

u(0,8) = un(0)e™™ = f(t) =) cpe™™, (11.0.22)

and thus u,(0) = ¢, for all n. Now we may rewrite the pde: %% = % as
o [e.e]
D un(@)(inm)e™™ = N ull(z)e™™, (11.0.23)
n=—00 n=-—00

where, identifying the coefficients gives the ordinary differential equations,

(inm)u,(z) = ul,
{ un(0) = cp, vn, (n#0). (11.0.24)

The characteristic equation for (11.0.24) r? = in7 has the roots

Toq = :I:%(l +i)/nm n>0
To1 = :t%(l —1)/|n|T n <O,

which we identify by r; and 79, with Rer; < 0 and Re ro > 0. More
specifically,

(11.0.25)

1 1
r = ——=(1+4isignn)+/|n|m and 1y = —=(1+isignn)/|n|r. (11.0.26)
V2 V2
Note that v/£i = J5(1 £ i) since £i = 5(1 £4)* = (1 +¢* £ %) = +i.
The general solution of the ode (11.0.24) is then given by

Un(z) = Ape™® + B,e™*. (11.0.27)

Since Re ro > 0, [€%| — 00, as ¢ — oo. Thus, since the solution is bounded,
we have B,, = 0.

As for n = 0, the ode: u! = 0 has the solution uyg = Ay + Byz. As above,
bounded solution yields, By = 0. Hence we have

_ —Lz(l—kisi nn)y/|n|rz
Up(z) = Age” Vit T ; nez, (11.0.28)
Un(o) Ay = cp,
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which yields

Un () = cpe™V T (Hisignn)T (11.0.29)
The periodic solution to the pde is now

Z |"|” 1—|—z sign n)w inmt
Cn€

n=—oo

00
— nmwo 4 — nm _ nmo g0 nm
:CO+§ :{cne 2ez(mrt Ve $)+C_n€ V5 ez( nat+y/" z)}
n=1

o
=co+ Z {cne_\/ 2 2 cos(nat — \/nm /2 z)
n=1

Recalling that ¢, = 1(2 U _ 2(71;2:31 and ¢y = £ We finally have the bounded

solution for the pde (11.0.19) given by

2 =AD" e
u(z,t) = 3 + Z ¥67 2 cos (nmt — /n7/2 x). (11.0.30)

Example 5. Solve the following Laplace equation on the circular ring de-
scribed by 1 < r < 2 in polar coordinates:

Au:uw+§ur+}2u09:0, 1<r<?2
u(1,0) =0 (11.0.31)
u(2,0)=f0)=1-1%, 6] < .

where the function f(#) is 27-periodic.

Solution: For a fixed r the solution, u(r, §), is 2w-periodic in 6, hence we may
write

= iun(r)eme. (11.0.32)

Inserting in the differential equation yields

¢ 1, . 1 .
Z [(u'rlb + ~u!)e™? — —2n2unem0} =0. (11.0.33)
T T

—oQ
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Thus we have

1 1

up + ;u; — r—2n2un =0 = r’ul + ru,, — n*u, = 0. (11.0.34)

This is the Euler equation of order n, which has a solution of the form
un(r) =72, ie.,

rp(p — D)rP~2 + rprP~! — n?r?P = 0. (11.0.35)

Hence we have p> —p + p —n? = 0, thus p = £n and, for n # 0, we have

the solution wu,(r) = a,r™ + b,r~™. For n = 0 the equation would become

un + %u; = 0, which has a solution of the form wug(r) = ag + b Inr. Thus

u(r,8) = Z U (r)e™ = ag + byInr + Z (apr™ 4 byr~™)e™, (11.0.36)

—o0,n#0

and hence, invoking the boundary conditions we get

( 0
u(1,0) = ag + Z (ap + by)e™ =0,
—00,n#0
< o0 o0
u(2,0) =ag+byIn2 + Z (an2™ +0,27")e™ = f(0) = cheme.
. —o0,n#0 —00

Now we identify the coefficients to get

ag =10 ay + b, =0, for n #0.
{ ag +boln2 =cq, a,2" + 0,27" = ¢,, for n #0. (11.0.37)
This implies that
Co Cn
ag =0, by et U = oo by, an,for n#0. (11.0.38)

Now we determine complex Fourier coefficients ¢, for the function f(8):

1 " 02 —inf
=5 (1-— 7—Tg)e dh. (11.0.39)

This yields, for n = 0,

1 " 02 —inf 2
%——A(L—ﬂe ==, (11.0.40)
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and for n # 0 we get

1 02 e—inG . 1 ™ 20 e—inO
——|[(1- —) } =~ [ =, do
= on [( w2/ —inl—x * 2r J_, 7  —in
_ 1 20 e—inO - 1 s ) e—in9 da (11 0 41)
Sbr B R v I =T o
_ 1 21T efimr o 2(_1)n—|—1
2 w2 —n? w2

Finally we have the solution to the given Laplace equation

9 o _1\n+1 )
u(r,0) = lnr—i-z Z _ ey (r" —r e’ (11.0.42)

Example 6. Compute the Fourier transform of the following rational func-
tions:

i) i i) iy
G e o (11.0.43)
iii) P 12t45) iv) e sinbt, a>0,b>0.

Solution: i) We start from the Fourier transform f[m;ﬁ} = %e’“"‘", which

we may also denote using the notation

1 F T —a|w|
— . 11.0.44
12 + a2 - 2ae (11.0-44)

Differentiating the left side of (11.0.44) with respect to ¢ and using the Fourier
transform formula for the derivatives we get that

-2t FooNT t 5T
(2 + a?)? 2 (lw)ge W= @+ a)y D —ig we alwl " (11.0.45)
ii) By the definition of the Fourier transform we have
o
1 .
/ e i = e, (11.0.46)
. a a

Differentiating both sides in (11.0.46) with respect to a, gives

° —2a . /°° 1 . T T B
[ dt = —2 - Wt =—— alw| T wle a‘w"
/Oo (2 + a?)Q6 a4 oo (B2 a?)Q6 o a| |
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Hence, once again, by the definition of the Fourier transform we get

- | =1 ,-aw —alw| _ —a|w|
f[(tQ + a2)2] = 293¢ * 2a? wle N 2a3(1 +alwlle . (11.047)

iii) For this expression we use partial fractions to write

t A+ Bt C+ Dt
- = f(t). 11.0.48
(B+1)(t2+2t+5) t2+1 +t2+2t+5 f(®) ( )

To determine the constants A, B, C' and D, we let first ¢ = 0 and get 0 =
A+ C/5, thus
C = -b5A. (11.0.49)

Further multiplying both sides of (11.0.48) by ¢ and letting ¢t — oo, it follows
that
B+D=0. (11.0.50)

Next we multiply both sides of (11.0.48) by (#*> + 1) and let ¢ = i, to get

i . . i i(2 — 4) 1
—— = A+Bi— A+Bi= = — = —(2i+1),
ir2its o Bi= Gy T ye—y 102t
where, identifying the coefficients gives A = 1 and B = ;. Thus we have
C =—-5A=—1 and D = —B = —, and we can rewrite the function f(t) as

1,1 1,1 3 .1
Ll lily 1 142t 2+1t+1
fy=2T5"__2%s - FF s+ 1) (11.0.51)
211 £2+2+5 10 £+1 (t+1)2+4
Here we use the following chain of known Fourier transforms:
L 7 Tl (11.0.52)
?+1 2a
By the symmetry rule we have that
e signt > 2w el = ! >F 3.-27re_|“’|sz'gn (—w) = —me “Isign (w).
14 w? ?+1 2
Further the scaling would give
t/2 2t t
/ >7 —2ire 2% sign (2w) = >7 —ime 2 sign (w),

1+ (/22 2+4 244
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which by the substitution; t — ¢ 4 1, yields

t+1

m D}- —iweiw6_2‘w‘sign ((,LJ) (11053)

Similarly, by the same change of variable:t — ¢ + 1, in (11.0.46) for a = 2,
we have

1 FT -2 1 Foiw,—2wl
O e = —————— D7 —e™e " 11.0.54
12 +4 2¢ (t+1)2+4 ¢ © ( )

Summing up the Fourietransform f(w) of the function f(t) is

T2l gio (3o i
T (2 2252gn(w)>. (11.0.55)

" ™

flw)= EG_M (1 — 2i sign (w)) —

iv) The repeated use of the Fourier transform

(11.0.56)

and the relation sin bt = (e“’t — e‘“’t) /2i, gives that

1/ . . 1 2a 2a
—alt| o3 bt = —alt| | _( bt —zbt) D.’F _( _ )
¢ oosmiEme roi\e e 2\ —b2+a (w+b)?+a?

i 1 1
_m<w2+2bw+b2+a2 B w2—2bw+62+a2)'
Thus we have

—4iabw

~lf sin bt 57 :
¢ o (w? 4 2bw + b2 + a?)(w? — 2bw + b% + a?)

(11.0.57)

Example 7. The Fourier transform of the function f(¢) is given as

F = ; 11.0.
)= = (11.0.58)
Compute the following quantities:
) / LE(E) dt, ) f(0). (11.0.59)
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Solution: a) Using the formula and the definition of the Fourier transform
for the function ¢f(t) we have that

tft) 7 if'(w) = z‘f'(w):/ootf(t)e—"wtdt. (11.0.60)

o

We let w = 0 in (11.0.60), and evaluate the derivative of f(w), given by
(11.0.58), at w = 0 to get

[irom=s0 ()] )

o0

b) Similar to part a) we consider now the formula and the definition of the
Fourier transform for the function f'(¢) viz,

R 1 [ . .
f'(t) o7 iwfw) <= fit)= 2—/ iwf(w)e™ dw. (11.0.61)
™ -0
Now evaluating (11.0.61) at ¢ = 0 yields
O =5 [ wiao=o [ 12 (11.0.62)
=5 7oozw w)dw = o B w. .0.

We compute the integral on the right hand side of (11.0.62) using the residual

calculus viz: The function g(z) = lj; has pols in {z; 1+ 2¢ = 0}, i.e.,

Zp=—1=¢e"HH) ey =GR —0,1,2,3.  (11.0.63)

From these poles 2y = e"”_/‘l%(l +14) and z; = eP"/4 = %(—1 +1) are in the

upper half plane and their residuals are
22 1 20 1
Resiesy9(2) = || =1-=2=—2(1-1) 11.0.64
€3 Og(z) 423 2=20 420 4 4\/5( Z) ( )
Similarly
1 1
Res,—y, g(2) = — = —=(-1—1). (11.0.65)

421 4\/§

Now we can calculate the integral

> ./EZ ) . .
/Oo T2t dx = 2mi (Resz:zO g(z)+Res,—,, g(z)) = 4—(1—@—1—@) =
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Inserting in (11.0.62) we finally get

1w )

"0)= ——==——. 11.0.66
F10) =5 NN ( )

Example 8. The function f(¢) has the Fourier transform

2 1—iw sinw
= . ) 11.0.67
J) l+w  w ( )
Compute the following integral

/ | f(t)]? dt. (11.0.68)

Solution: By the Parseval’s relation we have that

1 — w12
‘ 2 dt = - |2dw— 1 iw|2sin® wdw
14wl w?
- (11.0.69)

oo

sin w
d
271' ( w ) s
where we used 1+Z = 1. Further since x;(t) = 0(t+1)—0(t—1) >F 2%-
Thus
1 X1 (t)
—T
: :
| |
] L t
-1 1

Figure 11.3: The function x:(t) =6(t+1) — 0(t — 1).

% W(Siiw)dez/Z{%[Q(t+1)—9(t—1)]}2dt %/ﬁt:%.

-0
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Consequently

| 1rwpa=; (11.0.10

—0o0

Example 9. Use the Fourier transform to compute the integral

/ (Sli dw (11.0.71)

z (22 +1)

Solution: We have the Fourier transform of the rectangular pulse function

2sin aé

Xa(z) = 0(z + a) — 0(z — a) DT hatx, (&) = :

(11.0.72)

Thus by the symmetry rule

2sin ax

5 21 xa(—€) = 27xa(€) = 2 [0(5 +a)—0(¢ - a)], (11.0.73)

where for a = 1 we get

sinx

>F [0(5 +1)—0(¢ - 1)} . (11.0.74)

Further, we have the following Fourier transform:

1

pea >7 we €, (11.0.75)

Thus by the Plancherel Theorem it follows that
°° sin T
T dr = — _ —l¢l

= g/le—fldgzﬂ/o e €l dg = [_6—6}::“1_6—1).

Example 10. The function f(t) has the Fourier transform f(w) = ‘w'ﬁ
Compute

/OO \f = f'|* dt, (11.0.76)
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where f x f'is the convolution between the functions f and f’.

Solution: We have that f(t) > f(w) = f'(t) % (iw)f(w) = f'(w). Thus
using Parsevals formula and (f % f')(z) D7 f(£)§(€) it follows that

oo , 1 o0 o 1 o0 R R
[ ipesras =g [T pypdo= o [0 FPd
1 [ 1 w 1 w
_%/_w(|w|3+1'|w|3+1)(\w|3+1'\w|3+1)d“’

1 [ w? 1
_ —/ Y = —/ B
21 J_ o (lw|®+1)4 T Jo (W3+1)*

1 [ 1
= 3: :}3 2d :d :—/ d
{w’ =2 w”dw = dz} ), Grin z

1 o0 1

:[——(z+1) } =—

O 0 O’

Example 11. Determine the Fourier transform of the function

\/_ zwt
f(t) = v dw (11.0.77)

and then compute the integrals

/ F(t) cost dt, b) / F(O)2 dt. (11.0.78)
Solution: We identify (11.0.77) and the Fourier Inversion formula:
2
zwtd — ﬂ twt ) 11.0.
27r/ f(w w= i T+ ot dw (11.0.79)
to get
2 2nye for O<w<?2
=9 4w’ 11.0.80
@) { 0, otherwise. ( )

a) Using the definition of the Fourier Transform

= /Oo f(t)e ™t dt, (11.0.81)
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for w = 1 we rewrite the integral in a) as

/ F(t) costdt = / (1) e”+e Yt = S[f(—1) + F1)]. (11.0.82)
2
Now by (11.0.80) f(—1) = 0 and f(1) = 27/2 = =, thus
/00 f(t)costdt = g (11.0.83)

b) Here, by the Parsevals formula

o T[> . 17 2w
2 3, 2 _ -
[ ispa= o [ iepra = o [
3 3
y—1 1 1
={l+w= :27r/ —d =27T/ - ——=)d
{ y} Rl 1 (y yQ) Y

173 1 2
:2W[lny+§}l :27r(ln3+§ —0—-1)=27(In3 — §)

Example 12. Let f(t) / Vwe coswt dw. Compute/ |f'(2)|? dt.

o0

Solution: Note that, on the interval [0, 1], we can write w = |w|, so that the
integrand in f(t) can be written as an even function \/|w|e*’ coswt dw. Thus

1 1
=/ \/Ee"ﬂcoswtdw:/ V]w| e cos wt dw
/ V]w| e’ (cos wt + i sinwt) d / V]w| e et duw.

where we used the fact that sin wt is an odd function. On the other hand by
the inverse Fourier transform:

1 [ . . 1 [t .
= 2—/ f(w)e™ dw = 5/ Viwl e e“t dw. (11.0.84)
T J o .

Hence, identifying the integrands it follows that

2 my/|wle?”  for lw| <1
= 11.0.
f(w) { 0, for lw| > 1 (11.0.85)
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Note! that f is not continuous.
Now by the formula f’(t) D7 iwf(w) and the Plancherels theorem,

00 00 1
"t th:i iw f(w 2du):i wW?n2|w|e®” dw
PO = - L
o —o0 —1

1
= g . 2/ w?e?’ dw = [2w2 =, dwdw = dv}
(11.0.86)

Sl [ew -}

Example 13. Compute a solution to the integro-differential equation below

u'(t) + 2u(t) +e % /t e* u(r) dr = 6(t). (11.0.87)

—0o0

Solution: To solve the problem we shall apply the Fourier transform operator
to both sides in the equation (11.0.87), where for the integral term we use
the convolution representation:

/ AT D7) dr = / "0t — e X Du(r) dr = {0()e ) + fu(b)}.

—0o0 —0o0

The Fourier transform of the first term on the right hand side: §(¢)e™?" is

o0 . o i+ o ]
0 t —2t *th dt — / *Z(2+’L§)t dt — [ _ € :| — .
/ (W e 0 24iE Jo 2+
(11.0.88)
Thus the Fourier transform of the integro-differential equation (11.0.87), and

consequently the solution function u, is written as

—0o0

(i€)i(€) + 20(€) + Qii [ =1 < (z'g+2i—l,§+2)a(g):1
€4 4i€+5 94 i

(11.0.89)
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We substitute i€ = s and write u(£) in (11.0.89) in the rational form:

2 2 A B
ts +s __ 4 L (11.0.90)
?+4s+5  (s+2—i)(s+2+4+1) s+2—i s+2+13
where, using simple partial fractional techniques, we get
) 1 —1 1
=2 = and B=—-=—_. (11.0.91)
21 2 —21 2
Thus, substituting back (s = i£), we have
1 1 1 1
ué)==-—m—+ - ——————. 11.0.92
U =3 35— T2 2xies ) ( )
Further, (11.0.88) implies that
1 F —2t 1 F it —2t
O(t == —— Ot . 11.0.93
v © e sz © ¢ We (11.0.93)
Hence, finally we have the solution of the equation (11.0.87) as
1 . 1 : . .
u(t) = 3’ e"f(t)e " + 3 e "O(t)e™® = 0(t)e ' (e" + e™™) = O(t)e”* cost.

Example 14. Solve the integro-differential equation

/000 e Tu(t —7)dr — /0 eTu(t — 1) dr = V3u(t) — e M. (11.0.94)

—00
Solution: Using the sign T the equation can also be written as:

| e signrute - 7)dr = Vauge) - 1, (11.0.95)

oo

or in the convolution form as
{e sign t} * {u(t)} = V3u(t) — e M. (11.0.96)
Fourier transforming (11.0.96) yields

—21w

-~ 11.0.97
1 +w2u ( )
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and gives

29w 2 2
a(w) (V3 + ): =  q(w)= . (11.0.98
()( 1+ w? 14 w? @) V3(1 + w?) + 2iw ( )

Substituting iw = s, we get by the usual partial fractions

) = 2 1 2 1 1
Us)=——F4—5——=—"F7= =5 -5 ;
\/332—%3—1 \/g(s—i-%)(s—\/g) 28+% 25 —/3

which, substituting back, yields

)=~ L (11.0.99)
fw) ==+ ———+ = ——. .0.
2 %—i—iw 2 V3—iw

Now we need to compute the function, which has the Fourier transform of
the form 1/(a + iw). To this approach we note that

00 ) [ ) ef(a—|—iw)t 00 1
/ e h(t)e ™ dt = / e (o)t g — [7 } = —.
_ 0 —(a+iw)le=0 a+iw

oo

Thus we have .

~o(t) O : 11.0.100
¢ ®) a + w ( )
Further, by changing ¢ — —t, we get also
1
U1 —0(t) =e*9(—t) DT : 11.0.101
(1~ 0(0)) = e"0(~1) 57 —— (11.0.101)

Hence, combining (11.0.100) and (11.0.101), we get the desired result:

—t
1 -2 V3t les, >0
t)=—-e v3O(t 1—0(t 2 ’ - 11.0.102
u(t) 5¢ 50(t) + —eVoY( (1)) %e‘/gt, o ( )
Example 15. Compute a solution to the equation
t
u(t) +/ e tu(r) dr = e, (11.0.103)
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Solution: Using the definition of Heaviside function #(¢ — 7) and the convo-
lution we have

t o0
/ & tu(r) dr = / 0t — Tyu(r) dr = {e0(t)} * {u(t)}.
- - (11.0.104)
Now Fourier transform of the equation(11.0.103) yields

" 1 4 . 1 4
0+ i@ =gr; = W00+ ey =
a(e) = e+ :4_(( i€ +2 1 )

(i€ +2)(&2 +4) i€+2)(E2+4)  (£+2)(2+4)

Now we apply partial fractioning to write
1 1 A B C

= - - = — + — + R
(€+2)(E2+4) (2—-i6)(2+1i6)? 2—-3i& 2+i&  (241€)?
(11.0.105)
The coefficients A and C' are determined easily as : A =1/16 and C = 1/4.
Thus we have
1 =2+ +BA+)+1(2—1
| _ 1(2+%) + (4+&) +4(2—1) (11.0.106)
(i€ +2)(€% +4) (i€ +2) (&2 +4)
Identifying the coefficient for the £2-term in both numerators we end up with
—1/16 + B =0, i.e, B=1/16. Thus

41 11 1
“(5)_g2+4_1'2—¢§_1 24if (24 if)?
4 1 4 d/ i
~ari i art d_§<2+i5) (11.0.107)

D S
4 244 de\24ig
Using Fourier transform formulas we get the solution of (11.0.103) as

u(t) = 26—2“ — te”240(t). (11.0.108)

Example 16 The input and out signals for a linear, time invariant system are
t

iven by —— and ———, respectively. Compute the impulse response,
BV T M at ey

h(t) and the response for the input coswt. Is this causally stable.
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Solution: We have that

L ! 1d( ! ) (11.0.109)
~ =———(——]. 0.
211 (@4+2)2 2dt\4+

Recall that the Fourier transform of output signal is the product of the
Fourier transforms of the corresponding input signal and the impulse respond.
Thus after Fourier transforming in (11.0.109) we get

1 ~
—i(iw)ge’%‘" = h(w)me I, (11.0.110)
Hence we have
N 2w 1 1 d 1
hw)=——e ¥ =_——(; el (—— ) = h(t), (11.0.111
(W) =—7e g )me e — dt(t2 n 1) ), ( )

which give the impulse response

1 t
h(t) = — - ———. 11.0.112
®) 2 (12 41)2 (11.0.112)
Note that if h(t) is real valued then
Slcos wt] = Re[h(w)e™"]. (11.0.113)

Hence the output signal corresponding to the input signal cos wt is given by
~W . W ol
coswt ~ Re [Te (coswt + isin wt)} =,¢ “sin wt. (11.0.114)

1 t

Finally, we observe that h(t) = o 117 # 0 for t < 0, hence the system
is not causal. However, since
* 1 o t 1 1 00
ydt=— | o= || =0< 11.0.115
/Oo Wdt=5r | Ere - mlEei) Sl )

thus the system is a stable.

Example 17. A linear time invariant system has the impulse response,
h(t) = e *. Let y(t) be the response to the input signal z(t) = e *.
Compute the integral

/ e"h(t)y(t) dt. (11.0.116)

o
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Solution: We use the Fourier transform for e=%"/2: i.e.

2
e~z ~F [ZT w220 (11.0.117)
a

Then for a/2 =4 = a = 8 we get

2 .
e~ 57 \/g e /16 = ? e 10 = h(w). (11.0.118)

Using (11.0.117) with a/2 =1 = a = 2 we have
z(t) = e 7 Vre @t = i(w), (11.0.119)

and the corresponding output response y(t) viz,

ol

y(t) = h(t) % 2(t) > h(w)i(w) = YE 10 Jremstt = VT s,

2

Now using (11.0.117) once again, this time with ;- = 2, i.e., a = 8/5 and
Va =24/2/5, it follows that

/2
Jlw) = g\/g %e‘*”“z/m -l \/ge—%tz = y(1). (11.0.120)

Now to compute we write

/ SRy (E) dt = \[/ —5t . ¢t gt
\/7/ —B2 it gy \/gf[e_%ﬁ](—l)-

Here we have in (11.0.117) a/2 = 24/5, and thus a = 48/5 and 1/2a = 5/96.
Consequently

107r T 5
e h(t)y(t) dt = — ¢ %, 11.0.122
/_ \/7 48 w—fl 2\/66 ” ( )

Example 18. For a linear, time invariant system the input signal z(t) =

(11.0.121)

1
4+¢2
yields the output signal y(t) = e 2, Compute the impulse response and also
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the output signal, in the form of a complex Fourier series, corresponding to

the input signal given by the following impulse series:

> [26(t—2n) — §(t - 2n — 1)]. (11.0.123)
Solution: Recall that
1 FT 9w _ 4
z(t) = g o7 e = z(w). (11.0.124)
Further, recalling (11.0.117) with e = 4, it follows that
e~ /? 5F ,/2—7%—“2/2“ = yt) = >F \/ge—wz/s = g(w). (11.0.125)
a
Thus, using §(w) = h(w)z(w) we get
“ J 2
hw) = 1) _ \/ie“’2/8+2‘”|. (11.0.126)
Z(w) s
Now we consider the inpulse series signal
(11.0.127)

z(t)= Y [20(t—2n) - &(t—2n — 1)].
Now we expand z(t) in the complex trigonometric Fourier series with the
period T =2 and Q = 27 /T =7 as z(t) = Z cn€™™, where the complex

n=—oo

Fourier coefficients are given by

1 /32 . 1 /32 '
/ 2t gt — - / [26(1) — 6(t — 1)])e—™ it
2/ (11.0.128)

Cp = —
T J 1)
_ 1(2 0 fimr) =1 ( 1)n
=3 e —e = 5 .
Now the formula
e ~ h(w)e™" (11.0.129)



275

2(t+4) 26(t+2)  20(t)  20(t—2) 20(t—4)

—0(t+3) —6(t+1) =6(t—1) —d6(t—3)
Figure 11.4: The functions z(t) =Y oo _[26(t — 2n) — 6(t — 2n — 1)].

n=—oo

with w = nm implies that
e ~ h(nm)e™. (11.0.130)

In other words, the input signal e® gives the output signal i (w)e™*. Hence

z(t) Z cph(nm)e™, (11.0.131)

n—=—oo

i.e.

y(t) = \/g i (1 — %(—1)"))6—"28”2“'"”em”. (11.0.132)

n=—oo

Example 19. Let X (n) be a N-periodic function defined by

1, for 0<n<k-1
X(n) —{ 0 for k<n<N_1 (11.0.133)
Compute the discrete Fourier transform, X (1), for X (n) and use Parseval’s
formula to evaluate the sum

N—-1 2 uk

1 — cos ZZ&2

h S (11.0.134)
Pl COS 3~
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Solution: By the definition of the discrete Fourier transform, substituting
;27
e 'N =w, we get

X(u) = X (n)wh™. (11.0.135)

Inserting X (n) from (11.0.133) yields

- k for u=0
¢ — myn _ ’ o 11.0.1
X (u) Z(w ) { “";k__ll, for p=12,...,N—1. (11.0.136)
n=0 w
Further by the Parseval’s theorem for discrete Fourier transform
N—1 PR 9
3 (X(n)) =<2 X (11.0.137)
Thus, using (11.0.136), with w = e™*¥, it follows that
N-1 9 N-1 |7 _q ?
X(p)| =k*+ 5
2
pu=0 p=1 |e7 "W 1
2
N—-1 27Tuk _ ) a2 27T[Lk
2y (cos A 1) +sin” =%
B 2w 2 c 227w
p=1 (COSTH— ) + sin® 5F
N-1 2(1—603%) N1
— k24 =N |X(n)] = Nk.
-1 2 (1 — COS 2”—“) —
(11.0.138)

where in the last two steps we use the Parseval’s relation (11.0.137), followed
by the definition of X (n) viz (11.0.133). Consequently,

N-1 2(1 — cos 27;#’“)
= Nk —k* = k(N — k). (11.0.139)
=1 2(1 — Cos 2%“)

Example 20. Compute the discrete Fourier transform for the, N-periodic,
signal (sequence) given by
nm

X (n) =sin N = 0,...,N—1. (11.0.140)



277

Solution: The period T = N yields 2 = 2% = %” Letting w = e%i, the
discrete Fourier transform of X (n) is written as

N-1 | N
A~ inmT —inmw L 2mpn
X =Y X(n)e* = - (eT e )e‘“ ¥ (11.0.141)
2
Let now v = e~'~. Then
| N L Nl
¢ _ = -n __ ,m\,2un _ (2u—1)n 2u+1)n
X(n) = nz_% (v v )v e [v R A } (11.0.142)
Note that vV = (e7*~¥ )N = ¢ = —1 and since 2 — 1 is an odd integer,

hence v?#~1 = ¢~*r=1m/N £ 1 Thus, using the formula for the sum of
geometric series, it follows that

N-1 N-1 2u—1\N
(2u—1)n _ 2—1n_(“ ) -1 —2
EO T = EO (v )" = 11 g1 (11.0.143)

The substitution g — g+ 1 in (11.0.143) gives

N-1 9
(2u+l)n _ —
g v = T (11.0.144)

Inserting (11.0.143) and (11.0.144) in (11.0.142) we have that

. 1 1 -2 1 2l g2ul
Xw) = 52—~ ) =~ 7 T
2i V2 1 o2 1 i v 4+ 1 — (v2F1 4 p2u-T)
1 v — Ufl 1 efz'ﬂ'/N _ eiﬂ'/N
- 202;1 4+ p—2m — (U + ,U—l) = _;e—iZ;ur/N + et2um /N _ (e—iﬂ'/N + eir/N)’
and finally
- sinm /N
X () il (11.0.145)

~ cos2un/N — cos/N’

Example 21. Show that the functions ¢,(z) = 2222¢in7 are mutually

T
orthogonal in Ly(R). Compute the coefficients ¢, minimizing the integral:

[its- ¥
w1+ Bt

2
da. (11.0.146)
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Solution: Recall the Fourier transform of sm%

sinar _ r

D7 TXa(§) (11.0.147)
and let a = 1/2 to get
sinz/2 _ 1, for —-1/2<€&<1)2

Then using a shift Fourier transform formula we get

sinz/2 |
on(x) = Tx/em‘” > x1/2(€ = n), (11.0.149)
where
1, -1/2<&—-n<1/2 <= n—-1/2<&<n+1/2
X1/2(§ —n) = { 0 else/. ¢ / / /
Pn () Pm(€)
| |
| |
: | : | - é-
n—1/2 n n+1/2 m

Figure 11.5: The functions ¢,(§) and @,,(§).

Hence, (see figure)

/ %@WMOMz{é:g men (11.0.150)

o m # n.

Thus by the Plancherel’s formula we have

/oo On(2)om(z) dx L[~ On (&) Pm () dE = { (1)’/27T, 2; Z

-0 27T -0
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Hence {¢,}*,, is an orthogonal set.

Let now f(z) =1/(z2+1), i.e. f(€) =me I, Then, the integral

N

[ @ =3 el

o0 n=—N

2
dx (11.0.151)

will be minimal if and only if ¢, are the Fourier coefficients of f on the base
{6n} 5%

1 A ©°
n+1/2 . n+1/2 (110152)
[ Hede= [ e e
n—1/2 n—1/2
Thus, for n > 1 we have n —1/2 > 0 and
n+1/2 n+1/2
Cp = / me ¢ d¢ = W[ _ 676} — 7T<677H-1/2 . efn71/2>
n=1/2 nol/2 (11.0.153)

— e ™ (61/2 _ 671/2)'

Asforn < —1,ie. n+1/2 <0:
n+1/2
Cn = / meé dé = 7r<e”+1/2 - e”_1/2> = me" (61/2 - e_l/2>. (11.0.154)
n—1/2
Finally, for n = 0 we have
1/2 1/2
cop = / me ¥l d¢ = 2/ e S d¢ = 27r(1 - 6_1/2). (11.0.155)
~1/2 0
Summing up we have
men (61/2 — e’l/2>e’|”‘, for n#0
27 (1 - 6*1/2), for n=0.

Cp =

(11.0.156)

Example 22. Compute the solution y(z) for the differential equation y" —
y = 0, that minimize the following integral.

/1 1[1”_@/(93)‘2@ (11.0.157)
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Solution: The differential equation y” — y = 0 has the general solution

y(z) = ¢ coshx + ¢y sinh z. (11.0.158)
Since cosh x sinh x is an odd function we have, over the symmetric interval
[—1,1], that

1
/ cosh z sinhz dx = 0. (11.0.159)
—1

Thus ¢1(x) = coshz and ¢y(x) = sinhz form an orthogonal base for the
solution space viewed as a subspace of Ly(—1,1). Therefore

/_11 [(1 +1z) - (61@1(90) + @(pz(ac)ﬂ2 dz (11.0.160)

is minimal when

1
[lxI?

¢ = (I+z,01), k=12 (11.0.161)

By straightforward computation we get

1 1
1 h?2 1
loull? = / cosh’ 2 dz = 2 / Lreosh 22y — 14 Lsinn

1 1
h2z —1 1
a2 = / sinh? 7 dz — 2 / coh 2 =L gy~ Leinh2 -1,

and

1

1 1
/ (1+x)coshxd:c:2/ coshxdsz[sinhx} = 2sinh 1,
- 0

1 0

1 1 1

/ (1+a:)sinhxdac:2/ xsinhacdx:2[xcoshx}
_ 0

1

1
—2/ 1-coshzdx
0 0

=2(cosh1 —sinh1) = 2¢7".

Inserting in (11.0.161) we get the coefficients ¢, £ = 1,2. Finally, using
(11.0.158), it follows that

2sinh1 2¢ !
oSS coshz+ v sinha. 11.0.162
Tsnho +1 0 T Tonng 10" ( )

y(z) =
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Example 23. Compute all eigenvalues and, their corresponding, eigenfunc-
tions to the Sturm-Liuoville problem

" _
{f +Af =0, 0<z<a (11.0.163)

f0)=f(0)=0,  fla) +2f(a) = 0.

Solution: Case I: A = 0, then f” = 0 and f(z) = c12 + c,. Inserting the
boundary points yields

F(0) = F/(0) = ¢ — r = 0,
{ fla)+2f'(a) = c1a + 3¢, = 0. (11.0.164)

Thus, for a # —3, we have ¢; = co = 0 and hence f = 0. In other words we
get a trivial solution and therefore A = 0 is not an eigenvalue.
Case IT: A # 0. Let A =2 and set, v = VA > 0if A > 0and v = V=X =iy
if A< 0,(u>0).

If A <0, then using the general solution form

f(x) =cicosvr + cpsinve = f'(x) = v(cp cosvx — ¢y sinvz),

it follows that

fO)—f'(0)=c1 —vey =0, = ¢ =vey, and
fla) + 2f’(a) = ¢1 cosva + ¢y sinva + 2v(cy cosva — ¢ sin va) (11.0.165)

=y (31/ cosva + (1 — 2v%) sin zxa) =0.

Now if ¢ # 0, then we have

3
3vcosva = (20> — 1)sinay = tanva = 5 21/ T (11.0.166)
V _
For v > 0, we let vy, 1o, 13, ..., be the positive rots to equation (11.0.166),
see figure below: If v = iu we get the equation
. 3t 3
itanh pa = Sy = tanhpa = Tt (11.0.167)

which has no positive roots y > 0 due to the fact that then the left hand
side becomes positive and the right hand side is negative.



282 CHAPTER 11. SOLVED PROBLEMS

w
<

521 tan va
/.
v

Figure 11.6: The functions 5%~ (blue) and tan va (red).

Now since ¢; = vecy we can rewrite the solution f(x) as
f(z) = c1cosvax + cosinva = cy(v cos v + sinvx). (11.0.168)

Summing up the eigenvalues: v, k£ = 1,2,... are the positive roots of the

equation tan va = 25;’1 - with the corresponding eigenfunctions being fi(z) =

Vj COS V& + Sin v, x.

Example 24. a) Compute all eigenvalues and eigenfunctions to the Sturm-
Liuoville problem

dx dx

(11.0.169)
u(0) =0, u'(1) =0.

{ —6’49”1(64”—“) = \u, 0<z<a

b) Expand the function e=2*

functions.

in a Fourier series with respect to the eigen-
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Solution:(a). We rewrite the differential equation as
!
e (e“u') +Au = e * (4e4zu'+e4xu") +Au = u"+4u'+du = 0. (11.0.170)
Equation (11.0.170) has the characteristic equation 72 +4r + X = 0, with the

roots rp = —-2E£v4 -\
Case I: Let A < 4 and set 5 = /4 — A. Then the general solution to the
equation has the form

u = e **(c; cosh Bz + ¢y sinh Bz). (11.0.171)

Then we have u(0) = ¢; = 0 and v/(1) = cye ?Bcosh f — 2e72¢y sinh 8 = 0.
If now ¢y # 0, then tanh 8 = g This equation has only one positive root:
B1 > 0, (see the figure below):

B/2

1 / tanh 3

Figure 11.7: The functions 3/2 (blue) and tanh § (red).

The eigenvalue is A\; = 4 — 37 with the eigenfunction u(z) = e~ ?sinh ;.

Case II: A = 4. For A = 4 we get ry = ro = —2 and therefore the solution
u(z) = (c1 + cox)e 2. Here the data u(0) = 0 gives ¢; = 0 and /(1) = 0
yields —cye™2 = 0, thus we have ¢, = 0. Since ¢; = ¢; = 0 there are no
eigenfunctions corresponding to A = 4.

Case ITI: A > 4. Then =+ A —4 > 0. Then the general soution is
u(z) = e %" (¢; cos Bz + ¢z sin ). (11.0.172)

Hence u(0) = ¢; = 0, which give us u(z) = coe™?®sin fz. We assume that
¢z # 0 then the eigenfunctions are u,(r) = e **sinfx, n > 2. Now,
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invoking the data u'(1) = 0 we get the equation
u'(1) = ca(e™?Bcos B — 2e ?sin ) =0 (11.0.173)

with solutions satisfying tan 5 = /2, [ > 0 (note that co # 0). Let now
Ba, Pa, ... be the positive rots of the equation (11.0.173) ( 8; = 0), see fig.
below. The eigenvalues are )\, = 4 + 2, n > 2, with the corresponding
eigenfunctions: u,(r) = e %" sin 3,z.

Note that, in case I, we have treated 1, +, A\; and uy, corresponding to A < 4.

2 B3

Figure 11.8: The functions /2 (blue) and tan g (red).

Solution:(24b). The eigenfunctions {u,}2° ; form a complete orthogonal sys-

tem of functions at the interval (0,1), with the weight function w(z) = €**.

We expand f(z) in terms of u,, viz,

f(z) = chun(x), with ¢, = 1 /1 f(z)uy(z)e*” dr, (11.0.174)
n=1 Pn Jo

where

1
P = ||un|? = / u? (z)e” da. (11.0.175)
0
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We thus compute

1 14 1
= [ sinh?Bzdr = —< h2 —1)d — —_inh28, — -
P1 /0 sinh” 12 dx /0 5 cosh 25,z 4,81 sinh 23, 5

B L . 2 sinh 31 cosh 3y B I L tanh 3 1
4&1 COSh2 ﬂl — SiIlh2 51 2 B

26, 1—tanh?f;, 2
1 51/2 11 1 1 1 2-X\

As for n > 2 we get

1 1
1 1
P = ||’ = / sin? B,z dz = / 5(1 — cos 206,x ) dr = - — ——sin 20,
0 0

1 1 2sin B, cos B, 1 tan 3,

5 4/671 .Cos2ﬂn+5in2ﬁn B 2ﬂn . 1+tan25n
_1o1 B2 1 1 1 =2
T2 28, 148242 A4+82 2 Ay 2\,

1
2

For n =1 and f(z) = e 2® we have
1
prey = / f(@)ui(z)w(x)de = / sinh Sz dz = 3 (Cosh B —1).
0 1
(11.0.176)
Now we calculate cosh (3, viz,
h? 1 1
W — cosh” 3 _ _
cosh™ b = T B —snh? B 1 —tanh?h, 1= /A (11.0.177)
4 4 2 e
4B N osh b= LA
where only cosh 3; = 2/v/); is acceptable. Inserting (11.0.177) in (11.0.176)
we get
1 2 2V
0= (e 1) = VAL 11.0.178
p1C1 61( /\1 ) Bl\/)\_l ( )
which, recalling p;, yields
2 — 2 201(2 — /A
¢ = VAL 2a 2M( ). (11.0.179)

VA 2=A  Bi2—N\)
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For n > 2, the same procedure yields

1 1
1
PrCn = / f@)uy(z)w(x)de = / sin Bz dx = ﬁ_(l —cos (). (11.0.180)
0 0 n
To calculate cos 3, we use
COS2 ﬁn = 1 = 1 = 4 = i,
1+tan?B3, 1+p82/4 4462 N\,
which give
2 2
cos B, = + =(-1)" 11—, 11.0.181
p W (=1) W ( )

where, in the last step, we use the fact that cos s < 0 and the alternating
sign. Inserting (11.0.181) in (11.0.178) it follows that

Ly g 2y a2y
i G B e,

which gives that
L VA 2=0NRVA) _ 20+ 2(=1)7]
n ,Bn\/x()\n—Q) Bn(\/Tn—Q)

Note that formula (11.0.182) yields for n = 1 as well, giving the value of ¢;.
Summing up we have the expand of the function e ?® in a Fourier series as

2e _ o 2V +2(=1)"]
‘ B Z /Bn(m - 2)

(11.0.182)

un (). (11.0.183)

n=1

Example 25. Solve the following boundary value problem:

%+§27?=y, 0<z<2, O<y<l
u(z,0) =0, u(z,1) =0 (11.0.184)

w0, ) =y—y°,  u(2,y)=0
Solution: Recall the homogenization procedure: We want to determine a
function w(y), such that w”(y) = y having the same boundary conditions, as

u(z,y), i.e., w(0) = w(l) = 0.

1 1
w'y) =y =u'l)=5+4 = wy) =y’ +Ay+B. (11.0185)
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Then using the boundary conditions we get
1 1
w(0)=0= B =0 and w(l):0:>8+A:0:> A:_é'

Thus we have
w(y) == (y" —y)- (11.0.186)

Let now v(z,y) = u(z,y) — w(y), then

0%v  0%u v 0%u

o= b 11.0.1

0xr?  Ox? and 0y?  0y? Y (11.0.187)

and
3 ]‘ 3 7 3
v(0,y) =u0,y) —w(y) =y —y° — g(y—y )= g(y—y )s
) (11.0.188)

v(2,9) = u(2,y) —wly) = £y - y%)

Now inserting (11.0.187) and (11.0.188) in (11.0.184) we obtain the homoge-
neous boundary value problem for v viz,

fat+82=0, 0<z<2, 0<y<1
v(z,0) =0, v(z,1) =0 (11.0.189)
U(an): %(y_yg)a U(27y): %(y_y?))
Using separation of variables: let v(x,.y) = X(z,y)Y (z,y) # 0, then the
differential equation (11.0.189) yields
XII YII

XY +XY"'=0 = X - v A (11.0.190)

Thus we end up with the two eigenvalue problems:

Y = \Y X = \X
{ Y(0)=Y(1) =0, and { X(0)=X(2) =0. (11.0.191)

The Sturm-Liouville problem for Y has the eigenvalues and eigenfunctions

A=)\, = (n7)? Y =Y,(y) =sinnry, n>1. (11.0.192)



288 CHAPTER 11. SOLVED PROBLEMS

The general solution for the equation for X, with A = \,, can be written as
X, (z) = A, sinhnmz+ = B, sinhnr(2 — z)z. (11.0.193)

Now we may write v(z,y) as a superposition of X, (z)Y,(y):

v(z,y) = Z [An sinh nrx + B, sinhnm(2 — x)] sinh nmy, (11.0.194)

n=1

where, the boundary conditions are given by

.- 7
v(0,y) = ZB” sinh 2n7 - sinnry = é(y — y3)’

"~ 1 (11.0.195)
v(2,y) = ZA" sinh 2nm - sin ny = é(y _ y3).
n=1

We expand the function (y y®) in Fourier series with respect to the com-
plete orthonormal system {sinnmy}e,:

1
é(y —®) Z Cpsinnmy, with C, =

n=1

[ 5= sinnmy a

in )
1/2 Yy — Yy )smnnny ay
Identifying the coefficients C,, with those of equation (11.0.195), it follows

that

7cp
Apsinh2nm = C, and By = TA, = —" (11.0.196)
sinh 2nm

We compute C,, by repeated use of partial integration, viz

1 —cos nmylt cos nm
G =5[-) =) 5 [y I g
0 nm
sinnry7l 1 ! sin nmy
- _[(1 —3y") (nm)? ]0 3/ (=6y) (nm)? dy
X 0 (11.0.197)

cosSNTY ' cos nmry cos N

- —2[ } 2 dy = —2
y (nm)3 0+ o (nm)3 y (nm)3

2(—1)" !
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Thus by (11.0.196) we have

2/ N U TG D

A, = .
(nm)3 sinh 2n7 (nm)3 sinh 2n7

(11.0.198)

Hence, the solution to the original problem (11.0.184) is given by

1)n 1

53 by [ snhome Tinhnr(2=)] sy

1
u(z,y) = 6(y3—y

An alternative Solution for Example 25. We solve the problem by using
Fourier series in product form: Let

v(z,y) =u(z,y) — o(z,y), (11.0.199)

so that ¢(z,y) is a polynomial in z and y with ¢,, =0, ¢,, = Ay + B and
 satisfies the boundary conditions. This yields

¢(2,y) = (az +0)(py’ + qy* +ry + 5). (11.0.200)
Then
o(z,0) =(ax+0b)s=0 Vuz, = s=0,
o(z,1) =(az+b)(p+qg+r1)=0, V:v, = p+qg+r=0,
©(0,y) =b(py* + qy? +7‘y)—y y3, = =—%,q-0,r—%,
e2y) =E+D)(*+y) =0 Vy, = b=-2a

Thus we have

w(x,y)=(ax+b)(py3+qy2+ry+8)=(ax—2a)%(—y3+y) ;(2 z)(y—y°).

Therefore ¢, = 0, ¢y = 5(2 — z)(—6y) = —6y + 3zy, and hence
Vg + Uyy = Ugg+ Uy — (Pzz+Pyy) = y— (—6y+3zy) = y(7—3z). (11.0.201)
Consequently we have the following boundary value problem for v:

Vg + Uy = y(7 — 32), 0<z<l, 0<y<?2
v(z,0) =v(z,1) =0, 0<z <1, (11.0.202)
v(0,y) =v(2,y) =0, 0<y<2
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Using separation of variables, viz v(z,y) = X (z,y)Y (z,y) # 0, we get, for
the homogeneous differential equation, that

XII YII
—=——=-), = X"+MX =0 and Y"-AY =0. (11.0.203)
X Y
So that we have two Sturm-Liouville problems:
XII+)\X:0 . mT 2 e mi
{ X0 2 x@=o —M=(%) Xn@=sinTFa m>1
(11.0.204)
and
Y/I _ AY — O ‘
= > 1. 0.
{ Y(0)=Y(1)=0 = Yu(y) = apsinnmy, n > 1 (11.0.205)

Now we use multiple Fourier sinus series (technique II for the homogeneous
boundary conditions) to write

o0 oo
v(z,y) = Gy SIN mne sin nmy. 11.0.206
(,7) mz::l ; o 11— y ( )
Thus
Vgg + Vyy = Z Z amn( - m47r — n27r2) sin m;m; sinnmy = y(7 — 3x).
m=1n=1">s ~ -
=dmn

Here d,,, are the Fourier coefficient for y(7—3x), with respect to the multiple

basis sin *7* sin nmy, which we compute below:

4 [ 2
Amn :m /0 y sin ny dy /0 (7 — 3z) sin m;m" dz

:2[y—COS7Ty 1 B /1 — cosnmy dy}-
nmw 0 0 nmw
-0

-9 2 2 -9

. [(7 — 3x)— cos ULUE / (—3)— cos mme dx}
mm 2 o 0 mm 2

~0
-2 2
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This yields

. = amn( o n27r2> i ((-1)’” — 7), (11.0.207)

Oy, = , . (11.0.208)
nm(mT + n2) 4

Finally, inserting @, from (11.0.208) in (11.0.206) and recalling the com-
puted expression for ¢ we get the solution of the original problem as

o s 4(-1)" (T (-1)™) .
u(z,y) = ;(2 — 1) )+ Z Z ( ) sin sin nmy.

2
—1 =1 nm(mT-i—n?)w‘l 2

Example 26. Solve following initial-boundary value problem:

T+t8e =% o<z<l, t>0 (& up, = Amu)
u(0,t) =1, u(1,t) =0
u(z,0) =1 — 2?

(11.0.209)

Solution: Observe that there is an inhomogeneous boundary value. We
choose a polynomial S(x) in z such that S”(z) = 0 and S satisfies the bound-
ary conditions in z: S(0) = 1 and S(1) = 0. Then S(z) = Az + B, where
S(z) and S(0) =1 = B =1, whereas S(1) =0=>A+B=0= A= -1
Thus S(z) =1 —z.

Now let v(x,t) = u(z,t) — S(x). Then the initial-boundary value problem
for v is given by:

vm:mvt, <z <1, t>0
v(0,t) =0, v(1,t) =0 t>0 (11.0.210)

v(x,O):x—xQ, 0<z<l.
Using separation of variables v(z,t) = X (z)T'(t) # 0 we get

1 X" 1T
XT = = A(< 0).

XIIT —
V1+t X VitiT
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The Sturm-Liouville problem for X with its eigenvalues and eigenvectors are:

X" = AX An = —(n)?
{ X(0)=X(1) =0, { Xp(z) =sinnrz, n>1.

To determine the corresponding 7},:s we integrate the t-dependent eigenvalue
problem as

3
2

T 2
lnT:)\/\/l—i-tdt—i—lnC:Hn— :5(1+t)%A:>T(t) = Ces 1H1)?

C
Inserting A, = —(n7)? for the eigenvalues, we get
T, (t) = Cpe 3" *(149)F (11.0.211)

Thus, by superposition theorem, we have that

e 3
t) =" Coe X7 sinnra. (11.0.212)

n=1
Now we need to compute C,,. To this approach we use the initial data, viz
o
2
v(z,0) = ZCne_ﬁ’\ sinnmz = z(x + 1), (11.0.213)
n=1

and compute the Fourier coefficients, d,, := Cpe™3*, for the function z(z +1)
expanded in the orthogonal basis {sinnmz}22:

1 [t — 1
d, :—/ z(1 —z)sinnrxdr = 2 [a:(l - x)M]
1/2 J, 1 nw 0
~
1 . 1 1 .
COS NI sin nrx sin nwx
2 [ (1-2 dz =2 |(1 - 20) 2 CF —2/ —2)220T2 g
* /0 ( z) a0 ( z) (nm)? lo 0 (=2) (nm)? v
=0
—cosnmzll 4 S n=2k+1
= — 1— — w3(2k+1)37?
[ (nm)3 }0 (n7r)3( cosn) { 0, n = 2k.
Consequently inserting C,, = e3*d, in (11.0.212) we have
-8 i $hal040)2 1] sin(2k + 1) (11.0.214)
3 —~ 2k +1)3
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and finally the solution for the original equation, u(z,t) = S(z) + v(z, 1), is
given by

8 — 2 2.2 3
— 1 _ = = Rk R [(14) 2 1] s
u(z,t) =1—2+ - kg_o okt 1)36 5 sin(2k + 1)mz.

Example 27. Solve the homogeneous boundary value problem:

Ugy + Uy +20u=0 0<z <1, 0<y<l1
u(0,y) =0, u(l,y) =0, 0<y<1  (11.0.215)
u(z,0) =0, u(z,1)=2> -z

Solution: Using Spartan of variables: u(z,y) = X (2)Y (y) # 0, we get from
the differential equation that

" " XII YII
XY+ XY'+20XY =0 = o =-o-20=A (110216)

Invoking also the boundary conditions, the eigenvalue problem for X and its
solution are given below

X" = \X _ An = —(nm)?
{ X0)=X(1)=0 with { Xp(z) =sinnmz, n>1. (11.0.217)

As for the equation for Y

{ Y= —(20+ )Y = ((W)2 - 20>Y (11.0.218)

Y (0) =0,

we note that, for n = 1 we have (nm)?—20 = 72—20 < 0, and (n7)*—20 > 0,
when n > 2. Therefore we treat the case n = 1 separately:

For n = 1 we rewrite the equation for Y as Y}" = —82Y; with 8, = v/20 — 72
The general solution to this equation is given by

Vi(y) = Ai cos By + By sin By, (11.0.219)
where the boundary condition Y;(0) = 0 yields Y;(0) = A; = 0. Thus

Yi(y) = By sin fry. (11.0.220)
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For n > 2 we have the equation V" = —32Y,, with 3, = \/m, and
the general solution
Y, (y) = A, cosh B,y + By, sinh 5y, (11.0.221)
where Y,,(0) = 0 gives Y, (0) = A, = 0 and hence
Y, (y) = B, sinh f;y. (11.0.222)
Now by the superposition we have

u(z,y) = Z Xn(2)Y,(y) = Bysinmz - sin 1y + Z B, sin nmz sinh £,y.
n=1

n=2

It remains to compute B,,, such that
u(@,1) =Y Ya(1)X,(z) = 2* — 2. (11.0.223)
n=1

Recall that { X, (z)}52 , is a complete orthogonal system on the interval (0, 1),
with

1 1
1
M, :=/ X2(z) d:v:/ sin® nrx do = 3 (11.0.224)
0 0

Then the Fourier coefficients, Y,,(1), for the function z? — z in (11.0.223) in
a Fourier sine series expansion are

1 1 1
Y, (1) = —/ (2% — 2) X, (2) dox = 2/ (z? — x)sinnmx dz
Mn 0 0
_ 1 1
_o [($2 _ ) cosmm:} +2/ (20 — 1)cosn7mc e
A nm 0 0 nm
S:i(l)l nmz]l ! sinnmz (11.0225)
=222 —-1)——5| —2 2————d
e -0, 2 2
-0
. [cos mm"}l = -1
L ()3 o (nm)3
Then for n = 1 we have Y;(1) = —8/7° and thus Y;(y) = C sin 3y, give that
B, = s (11.0.226)

_7'('3 sin ,31 '
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1) -1
As for n > 2 we have Y,,(1) = 4L = B, sinh 3, and thus
(nm)?
By, =0 for £=0,1,...
{ I g for E—102 (11.0.227)
2k+1 — (2k+1)373 sinh Bapr1 or — L4y
Summing up the solution to the equation is given by
u(z, y) 8 i xsin(\/QO — 72 y)
) = m
' WS sin V20 = 7 (11.0.228)
éism?knLl X smh\/2k+1)27r2 20y o
w4~ (2k+1)*  sinh./(2k+1)272 —20
Example 28. Solve the following inhomogeneous heat equation:
%—g——tsmx 0<z <1, t>0
u(0,t) = u(1,t) =0 (11.0.229)

u(z,0) = sin 27z.

Solution: Applying separation of variables technique for the corresponding
homogeneous heat equation:

ou  0%*u
5~ 5 =0 (11.0.230)
with u(z,y) = X (2)T(t) # 0, yields
X()T't) — X"(2)Tt)=0 = 1;((:)) = jgl((;)) = A (11.0.231)

The eigenvalues and eigenfunctions to the eigenvalue problem:

X"=)X Ap = —(n7r)2
{ X(O) = X(l) =0 are { Xn(:v) —sinnrz, n>1, (11.0.232)

where {sinnmz}°, is a complete orthogonal system on the interval (0,1),
with
! 1
M, = / sin® nrz dr = 3" (11.0.233)
0
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We expand both u(x,t) and ¢ sin x as Fourier sine series in the base {sinnrz}% ,,
viz

u(z,t) = ZBn(t) sinnrz,
m - (11.0.234)
tsinsztbnsinmr:c (<: sinx:ansinmrx>,

n=1 n=1

The expansion of u(z,t) gives the Fourier expansion for the left hand side of
the differential equation (11.0.229):

ou  Pu , 2 .
o=y (By.(t) + (vm)*Ba(t)) sinn, (11.0.235)

n=1
Thus the differential equation (11.0.229) can be written as

o0 oo

Z (B:z(t) + (n7r)2Bn(t)> sinnrr = thn sinnrz. (11.0.236)

n=1 n=1

From the second expansion in (11.0.234) we compute the Fourier coefficients
b, as

1 [ 1
b, = —/ sin z sinnrz = 2/ (cos(l —nm)x — cos(1l + nw)x) dx
1/2 Jq 0
_sin(l—nm) sin(l+nm) (=1)"sinl (—1)"sinl
 l-nnm l+nr  1l-nrm 1+nrm
2nm
= (_l)nm sin 1.

Now, identifying the coefficients in (11.0.236) we get the following ode for
B, (1):
B, (t) + (n7)?B,(t) = tb,. (11.0.237)

Multiplying (11.0.237) by the integrating factor e(nm)’t yields

d
"B (1) + (nm) e B (1) = e 11, = = (1B, (1)) = et
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Then, by integrating, it follows that:

(nﬂ')Qt (n7r)2t
e(mr)ztBn(t) — bn /te(nﬂ)2tdt = bn <t67 — / eidt) + Cn

2 2
— — (n) () (11.0.238)
= byt — by—— + C.
(n)? (n)*
Thus we have
2 1 1
B,(t) = Cpe ™ 1~ _pt — by. 11.0.239
(t) € * )2 () ( )
Now we invoke the initial data
u(z,0) = Z B, (0) sinnwx = sin 27z
n=1
to get
- 1
Z (Cn - W bn) sin nmx = sin 27z, (11.0.240)
nm
n=1
where for n = 2 we have
1 . . 1
(Cg — W b2) sin 27z = sin 27z = (02 — W b2) =1 (11.0.241)
1
whereas,for n # 2 we have C, = ) bn. Thus by (11.0.239) we have
nm
2 1 2 1 1
By(t) = et 4 [—e‘4”) b4 t— }bQ
2m)4 21)2 2m)4
X (2m) X ( W)l (2m) (11.0.242)
B,(t) = [ ~(nm)’t t— }bn, 2
O= G e il "7

Note that the expression for B, (t) in (11.0.242) gives the expression for By
as well (is valid also for n = 2).

Finally we have the solution for the differential equation (11.0.242):

w(z,t) =e*"*sin 27z

+ (2wsin1) x Z

n=1

_ 2.2
n(_l)n 1[ t 1_en7rt )

- SIN NTI.
n2 2 _ 1 n27r2 n47r4
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Example 29. Solve the following problem:

u _ 9% O<z<1l, t>0
w0, ) =t+1,  wu(l,t) =0, t>0  (11.0.243)
u(z,0)=1-—z, 0<z<l.

Solution: Choose a function, which satisfies the given boundary conditions:
For example, @(z,t) = (t+ 1)(1 —z). Let v = u — 4. Then v satisfies
ov 0w Ou _0%u (811 0?1

Thus, using the data, we formulate the problem for v, viz
2%y =y —1. O<z<1l, t>0
v(z,0)=1—-2—-(1-2)=0, O<z<l.

Using the separation of variables, v(z,y) = X (x)T'(t) # 0, for the corre-
sponding homogeneous equation for v we have that
() X"(a)

W - X@

X (2)T"(t) — 2X"(2)T(t) = 0

The eigenvalues and the eigenfunctions of the eigenvalue problem for X:

X" = \X An = (n7)?
X(0)=X(1)=0 are X,(z) =sinnrz, n>1,

where {sinnmz}2, is a complete orthogonal system on the interval (0, 1),
with

1
1
M, = / sin? nra de = 2" (11.0.245)
0
Now we expand z — 1 in a Fourier sine series with respect to {sinnmz}>:
o
z—1= ZC" sin nwx (11.0.246)
n=1
and let
o0
v(z,t) = Z vn(t) sinnmz. (11.0.247)

n=1
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Inserting the expansions (11.0.246) and (11.0.247) in the differential equation
for v we get Then we get the Fourier coefficients, C,, for z — 1 as

1 1
C, dx——/ (x — 1) sinnrz dx
IIX 2 / 1/2 J
:2[(x_1)—cosn7rx]0+2/1 cosmm;dx
0

nr nr (11.0.248)
2 sinnmx?l 2
2 ppinmey 2
nm (nm)% lo nm
———

=0

Inserting the expansions (11.0.246) and (11.0.247) in the differential equation
for v it follows that

ov 0%v > <. -2

i 2@ = nz_:l [v;(t) +2(nm)?v,(t) | sinnrr =2 — 1 = nz_:l — sin nmz.
Further
= Zvn(O) sinnrz =0 = v,(0)=0. (11.0.249)

Identifying the coefficients for sinnmz and using (11.0.249) we get the ode

for v, as
(1) + 2(nm)?on (t) = 32,
{ on(0) = 0. (11.0.250)
Multiplying the equation for v, by the integrating factor 2T e get
d 2 2 2t 2 2 2 2t
4 (e2n?m nt):—— et 11.0.251
Z (et (1) = - (11.0251)

Now let ¢ = s in (11.0.251) and integrate over the interval [0, ¢] to get

t 9 [t
|:62n27r25,un (8)] - _ = 627127"25 ds — (110252)
0 nm 0
2n’7t (t) — v, (0) = L e + 1 (11.0.253)
e Un Un, - ngﬂ_ge n3m3 e
Thus we have ]
wnlt) = (ef%%zt _ 1), (11.0.254)
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and therefore

= 1 22
v(z,t) = Z 53 (672" Tt 1) sinnmz, (11.0.255)
n=1

which gives the solution to the original equation (11.0.243), viz:

1

n3m3

u(z,t)=(t+1)(1—2)+ Z (6_2”2”% - 1) sin nwz. (11.0.256)
n=1

Example 30. Solve the Laplace equation Au = 0, in the polar coordinates
region 0 <6 < 7%, 1 <r <2, with the boundary conditions given viz,

Au=12(r2)+ L5 =0, 1<r<2, 0<0<%
u(1,0) =0, 54(2,0) =0,
u(r,0) =0, u(r,f)=r—1

Solution: Using separation of variables u(r,6) = R(r)©(#) # 0, we rewrite
the Laplace equation as two odes:

T(TR’)I A

. 11.0.2
7 5 =) (11.0.257)

%(TR'),@ + %R@" -0 = -

Associated with the boundary conditions we get the Sturm-Liouville prob-
lems for R and ©:

—ri(r@) — AR { 0" =)0
I dr dr Il 11.0.258
0 { R(1)=0, R'(2)=0. D ©(0) = 0. ( )
The differential equation (I):

rR'+rR + AR =0, (11.0.259)

is of Euler type. Let t = Inr, then by the chain rule

d d dr d
e (11.0.260)
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Now since ¢ = Inr thus 7 = €' and hence if we define T'(¢) := R(e'), then we
have 7" = r R, which give us the more easier eigenvalue problem:

—T" =T
{ T(0), T'(in2) =0, (11.0.261)
with the eigenvalues
1\ 772 9
= —)l— = =0,1,2,... 11.0.262
M=[(n+3)5) =6 n=012.., (11.0.262)

and the eigenfunctions T, (t) = sin 8,t. Consequently we have that
R, (r) =sin(f, Inr). (11.0.263)

Now the differential equation (IT) would become ©” = 320, which has the
general solution

©,(0) = a, cosh 3,0 + b, sinh 3,6. (11.0.264)

The boundary condition 6,(0) = 0 yields a, = 0. Thus the total s solution
is written as

u(r,0) = i R,.(r)0,(0) = i b, sin(B, Inr) - sinh 3,6. (11.0.265)
n=0 n=0

Using the boundary condition u(r, ) = r — 1 we get

u(r, %) = ;bn sin(f, Inr) - sinh Bn% =r—1. (11.0.266)
Since t =In7 and r = €', we can rewrite (11.0.266) as
u(r, z) = an sinh ﬂnz sinfBt=e" -1, 0<t<In2. (11.0.267)
4 — 4

It remains to compute b,. To this approach we recall that {sin 3,t}>°, is
a complete orthogonal system on the interval (0,In2). Thus the Fourier
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coefficient, C,, for the function e’ — 1 is given by

T 1 In2
C,, = b, sinh ,an = H/ (¢! — 1) sin Bt dt
5 Jo

— In2 In2
- él(et N 1)(:%%7@}0 ,+é ; etcogint dt = [by tabell...]
=0 since ﬂ::(nﬂ /2) =
_ 2 [et(cos Bnt + B, sin ﬁnt)}lnz _ 9 251 1
fnIn2 g2 +1 o 2 BB+l :

Now since b,

= % we have the solution to the original Laplace equa-
tion given by:

sinh(B,,

2[2(n+%)ﬁ(_1)n_1} ‘s1nh(n+ 1zt
#9224 1] sinh(nt g

3
Il
)

1
X sinh ((n—i— 2)&lnr)

Example 31. Expand the function sin(2sin z) in the trigonometric Fourier
series, in real form.

Solution: We recall the generalizing function for the Bessel function 7, (z):

giesing _ Z jn mO. (110268)

n=—oo

We take the imaginary part in (11.0.268), (note that J,(x) are real functions),
to obtain

-1 00
sin(z sin 0) Z Jn(x)sinnb = Z Jn(x)sinnb + Z Jn(z) sinnd.

n=-—00 n=-—00 n=1

Changing n — —n in the first sum and using J ,(z) = (—=1)"J,(x) yields

sin(z sin 6) Z J n(x)sin(—nf) + Z JIn(z) sinnf
n=1

o0

Z [ } n(2) sinnf = 22j2k+1 ) sin(2k + 1)6.

n=1 k=0
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Let now x = 2 and then substitute § by = to get the desired expansion for
sin(2sin z):

sin(2sinz) =23  Jops1(2) sin(2k + 1)a. (11.0.269)
k=0

Example 32. A circular membrane with the radius a is effected by a,
uniformly distributed, periodic external force ¢ sinwt. Hence the transversal
vibrations has the equation:
1 0%u q .
U= S am = —gsin wt, Ulp—q = 0. (11.0.270)
Compute the stationary vibration movement, i.e., a solution of the form
u(r,t) = v(r) sinwt. Which are the resonance angle frequencies?

Solution: In polar coordinates and with u = u(r,t) we get the equation

12( au) 1 0%u

3 TE =_31 sinwt, 0<r<a, u(at)=0. (11.0.271)

2o S

Let v = I'm 4, where 4 satisfy the equation
10/ 0u 1 0%a q it
——\r=) - === =—-=¢e" u(a,t) = 0. 11.0.272
rOor (T(97“> c? Ot? ¢ W, 1) ( )

twt

For this equation: (11.0.272), we seek a solution of the form a(r,t) = v(r)e™*,
that is

1d/ dvy ;, w? q it
() et o et = Lt 11.0.273
rdr(rdr)e * 2 ° S°¢ ( )
Thus we have the differential equation for v, viz
1d(,.dv w2,
m(’“a) tov=—% O<r<a (11.0.274)
v(a) =0, v(r)is bounded as r — 0.

This Imogen equation has a particular solution of the form v, = A = con-
stant, which insuring in the equation (11.0.274) yields

vy = A= —% (5)2 (11.0.275)
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The homogeneous equation

%dii Q%) L (%)QU —0, (11.0.276)

is a Bessel differential equation of order 0 with the general solution
un(r) = 1o (=) + Yo (). (11.0.277)
c c

Since the solution is bounded as r — 07 thus we have Cy = 0, and hence

v(r) = v, +op(r) = —%(5)2—%6’150(%). (11.0.278)

The boundary condition v(a) = 0 gives that

qc?

Cl = Wﬂ(w—a). (110279)
Thus
q(c\? qc” wry _ g e\ 1(%)
—_2(Z —)=21(= €~ — 1. (11.0.2
v =-5(5) + Sw2.70(%)‘70( ) =5() [JO(%) J (11.0.280)
Inserting v(r) in @ we have that
a(r,t) = v(r)e™* = v(r)(coswt + isinwt). (11.0.281)
Now since u(r,t) = I'm @, we finally get the solution:
_ g reN\21Jo(<) .
t) = t==— €~ —1 t. 11.0.282
u(r,t) = v(r) sinw S(w> [%(7&) ]smw ( )

: : . wa
Resonance frequencies are obtained setting Jo(—) = 0. Thus the resonance
c
frequencies are: w = w, = fagn, where ag,, n = 1,2,... are the positive
zeros for Jp.

Example 33. Solve the heat equation u; = V?u in a cylinder with the
radius b so that: The cross-section surfaces are isolated and the surface
r = b, (cylinder coordinates), obeys the cooling law u + 2u, = 0. Further,
the initial temperature is assumed to be u|;—o = r? = 22 + ¢2.
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Solution: The problem for u = u(r,t) is given by
ut:VQu:%%<r%>, 0<r<b t>0,
v bounded as r— 0%, (11.0.283)
u(b, t) + 2u,(b,t) = 0,
u(r,0) = r2 = 22 + y2.

Using the separation of variables, u(r,t) = R(r)T(t) # 0, we get

!
1 !
1 / ;(rf%) Jﬂ
r_+ / _ 1 __
RT' = (rr)T = - = ==X (11.0.284)

This yields a singular Sturm-Liuville problem for R with A > 0:

!
—%(TR') = AR, O0<r<b, t>0,
R(r) bounded as r — 0, (11.0.285)
R(b) + 2R'(b) = 0.
Let A = 5% with 8 > 0. Then the general solution for R is
R(r) = C1Jo(Br) + C2Yo(Br). (11.0.286)

Since R(r) is bounded, as r — 0 we have Cy = 0 thus R(r) = C1J(8r).
Consequently

R(b) 4+ 2R'(b) = C1[To(Bb) + 28T,(8b)] = 0. (11.0.287)
For C; # 0, (and with b = z) fb is a zero of the function

Jo(z) + %Jé(m) (11.0.288)

Let now ax, k = 0,1,..., be the positive zeros for the function (11.0.288).
Then Bxb = oy, k=0,1,2,.... The eigenfunctions are thus Ry (r) = Jo(Bkr),
(we take C1; = 1). Ry(r) = Jo(Ber)-

The second equation in (11.0.283): 7" = —AT is thus written as T}(t) =
— 2Ty (t) with the solution Ty(t) = are Pi*. Hence the solution for the
original problem is now

o0

u(r,t) =Y Tt R(r) =Y _ are P To(Ber), (11.0.289)

k=0 k=0
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where { Ry ()}, = {Jo(Bkr)}32, is a complete orthogonal system, i.e., an
orthogonal base on (0,b) with the weight function 7.

Now we expand the initial condition u(r,0) = r? in a Fourier series with
respect to this system. Then the Fourier coefficients are

1 ’
a, = - rJo(Ber)rdr, where pp = / JE(Byr)rdr.  (11.0.290)
k Jo 0

To compute pg, we use Lemma 14, with nu = 0 and x = [;r, to get

1 [Prb=a 1 2
. _2/ Te(2)zde = - %( 72 () + J02(ak)). (11.0.201)
Bi Jo 2

B
: / _ 1 _ jo(a’k)
Now since Jo(a) + 28k Tg (i) = 0 we have Jj(ax) = — 25 and thus
k
_Uro Tg(ok)) _0* 485 +1
pr = | T5aw) + Tﬂ,%] -5 iz T2 (o). (11.0.292)

To compute a; we use the first relation in (11.0.290) and rewrite

b
pkak:/ 3 Jo(Ber) dr. (11.0.293)
0

To compute the integral in (11.0.293) we use recurrence formulas for Bessel
functions (see the first 2 formulas in theorem 39) and partial integration, to
get

P JRo(x)dr = [ 2% aJo(z)dr = [ 2*- i(le (x)) dzx
/ / / dx
=227 (z) — /235 caJi(x) dz = 23 Ty (x) + /2$2J6(x) dr

=22 J1(z) +22° To(z) — /4xj0(x) dz = (2° — 42) T, (z) + 222 To(z).
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We let = fSir in (11.0.293) and use the above relation to write

Pply = 5%?/0 k 2> Jo(z) do = Biﬁ[(x?’ — 42) J1(x) + 22 Jo() :k
— 5[ (@ ~ 4 Ti(aw) + 202 (an)]
1k G (11.0.294)
= g (o) + 201 (o)
T b N/ b
g0 ot

where we also used the relation Jj (o) = —J'o(ax) = —To()/20k- Insert-
ing py, from (11.0.293), in equation (11.0.294), it follows that

86 Jo(a) by
_ . 24+ — —2b

O e (G L
{2+ b - 2

0’ Br (485 + 1) Jo(cw)
Now B = /b implies that 452 + 1 = (4a2 + b%)/b%. Thus, finally, we can
write the solution as

= 8P[(2+ §)aj — 28] —(ax /b)t
u(r,t) = kz::l 4ol T b2).70(ak)e Jo(ayr/b), (11.0.296)

where Jo(ay) + 275 (ay) = 0.

Gy,
(11.0.295)

Example 34 (a) Give a bounded solution, of the form u(r,t) = v(r)e*t, to
the equation

2u _ 1.0 (0 2
o = o Tb‘_?) —eu 0<r<a, (11.0.297)
u(a,t) = e,
where n > 0 is an integer. For which values of w > 0 there is a solution of
this form?

34 (b) Let w be chosen so that there exists a solution to problem (11.0.297).
Show how to use this solution in oder to solve the following problem:

%z%-%(T%)—f—ju:O, 0<r<a, t >0,
u(a,t) = sinwt u is bounded (11.0.298)

u(r,0) = 0, u(r,0) = 0.
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Solution (a): Let u(r,t) = v(r)e®? in the equation (11.0.298), then

2

. : 1 dy/ dv n ;
. Zzwt:_ 22wt: —. JR iwt 11.0.2
v(r)(iw)’e v(r)we [r o <Td7'> TQU(T)]e ,  (11.0.299)
and hence
1 dy/ dv , n\ o, 1, s M\
;.E(r$>+(w —ﬁ)v_v +;U +(w —F)U—O (11.0.300)

Equation (11.0.300) is a Bessel differential equation of order n, with general
solution
v(r) = AT, (wr) + BY, (wr). (11.0.301)

Since v is bounded ( u is bounded ) thus we have B = 0 and hence v(r) =
AJn(wr). Further using boundary data u(a,t) = v(a)e®! = e*! gives that
v(a) = 1, whereas by (11.0.301), (note! B = 0), v(a) = AJy(wa). Thus if
JIn(wa) # 0, then A = 1/J,(wa) and hence we have the following solution
for the equation system (11.0.297)

twt — Jn(wr) eiwt‘

1) = 11.0.302
ulr ) = o(r)e = ZH0 (110,302
Solution (b): We use the function v defined in (a) and note that
_ : : Tnlwr)
_ wt| —
a(r,t) = Im [U(r)e ] = v(r)sinwt = - (@a) sinwt (11.0.303)

is a solution to the first 2 equations in (11.0.298). Let now w = u — @. Then
w satisfies the initial-boundary value problem:

2 2
Pw _ 1 a(ra_w)_n_w

o2 —r T ar\! or 72

w(a,t) = u(a,t) = Aa,1) = sinwt = e sinwt =0, (17 304
w(r,0) =0

wy(r,0) = ug(r, 0) — Gy(r,0) = —%-

Using separation of variables as, w(r,t) = R(r)T(t) # 0, we get

1 d n? 7" f(rRY n?
== LR -~ RT S _T ) (110
RT" =~ DGR = "RT = =22 =~ (11.0.305)
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which yields the following two eigenvalue problems for R and T

i, 1 _n? —
AR (A r?)R 0, (11.0.306)
R(a) =0, R is bounded,
and - \T
{ T(0) =0 (11.0.307)

The equation for R; (11.0.306) is a Bessel eigenvalue problem of order n with
A>0,u>0 \=p? (p>0),: The general solution to this equation is
given by

R(r) = AT (ur) + BY,(ur), (11.0.308)

where, as immediate consequence of boundedness, we have B = 0 and there-
fore R(r) = AJ,(ur). For a non-trivial solution we have A # 0. Then the
boundary data

R(a) = AT, (pa) =0 = Jn(pa)=0. (11.0.309)

Let now oy, k£ =1,2,... be the positive zeros for J,(z). Then pa = a4, and
thus we may write u = p, = ai/a.
As for the solution for (11.0.307) we get

T= Tk(t) = ay sin pugt + by cos put, (11.0.310)

where T(0) =0 = b, = 0, k = 1,2,.... Thus we have Ty(t) = ay sin pt
and the superposition yields

w(r,t) = Z ag sin gt - T (pxr)- (11.0.311)
k=1

From (11.0.311) we get

wy(r,t) = Z ay o (cos pgt) - Tn(pxr), (11.0.312)
k=1

Hence, by the initial data in (11.0.304) it follows that

wy(r,0) = Zak,ukjn(,ukr) = —%. (11.0.313)
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{Tn(uer) 152, is an orthogonal basis for the function space L¥ (0, a), where

w(r) = r. Thus agu are the Fourier coefficient of %n(w)r) with respect
n(wa
to the basis functions {7, (uer)}52,, and are computed viz,
1 ¢ —wTn
Or iz = WInr) 7 ey dr. (11.0.314)

[Tn(r) % Jo - Tnlwa)

From theorem 41 we have

a? 2
1) = 5 | T ()] (11.0.315)
which inserting in (11.0.314) yields
2w @ Qg
ar = — Tnlwr) Tn(—7)r dr. 11.0.316
=T Ty T T (11.0.316)
The final solution is now given by:
Tn(wr)

u(r,t) = a(r,t) +w(r,t) =

o
. . O Oy
s wt sin —tJp(—7).
inw +I§:1ak in— A ar)

TIn(wa)
(11.0.317)

Example 35. Solve the Laplace equation V?u = 0 in the cylinder: f =
Vil+1y? < R, 0 < 2z < L, where uw = 0 for 2z = 0 and 2z = L, and

—_ a1 Tz T —
u = sin 22 (1 — cos &*) for r = R.

Solution: We reformulate the problem for u(r,z) in the cylindrical coordi-
nates as

Sy il Zu—y, 0<r<R, 0<z<lIL,

u(r,0) =0, u(r,L) =0, (11.0.318)
u(R, z) = sin (1 — cos &).

Separation of variables: u(r, z) = R(r)Z(z) # 0 gives that
R'+ 1R zZ"
T = —7 =

The eigenvalues and eigenfunctions for the Sturm-Liouville problem for Z:

7" =-\Z /\:)‘n:(%)2a n=12,...
Z(0)=2(L)=0 " | Z(2) = Zu(2) =sin 2.

1
(R” + ;R’) Z+RZ"=0 A (11.0.319)
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Therefore the differential equation for R is written as follows

2
%) R=0. (11.0.320)

(11.0.320) is a modified Bessel’s differential equation, (the usual Bessel’s
differential equation z — iz), with the general solution

R+ R’ (T)R:O = TZR"—i—TR'—(

nrnrr

R(r) = aIO< 7

) + bKO(nzT) (11.0.321)

EI—V(‘II;) - I,,(IE)

2 sin v

Z,(x) =i"T,(ix) and K,(z) = =Y, (iz). (11.0.322)

That R(r) is bounded as 7 — 0 implies b = 0. Thus we may use the ansatz

> nmr . nmz
2) = ;anIO(T) sin ©. (11.0.323)

Using the boundary data we get

¢ R 1. 2
u(R,z) = Z anI()(mTT) sin ? = sin %Z (1—cos 7T—Lz) = sin 7T_LZ_§ sin %Z
n=1

Identifying the coefficients of sin 7= for n = 1,2,..., it follows that

allo( ) sin %Z = sin 7% = allo(%R> =1,
aZIO(TR> sin 202 = —2 sin 27 :>a210(¥) = -3,
anIO(L) sin *7% =0 = anI()(”%) =0, n>3.
(11.0.324)
Thus
1
a; = IO("TR)’ ay = —@, a, =0, n>3. (11.0.325)

Inserting the values of a;, 1 = 1,2,...1in (11.0.323) we get the desired solution

() Tz (%) . 27z
u(r, z) = IO("L—R) sin ( 7 ) — 2[0(25’—12) sin ( 7 ) (11.0.326)
L L
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Example 36. Find the polynomial P(z) of at most degree 2 that minimizes
the integral

/ N [\f - P(x)} P (11.0.327)

0
Solution: We use the Laguerre polynomials, { L%}5°, which are orthogonal on
(0, 00) with the weight function w(z) = z*e~* (in our problem o = 0). By

the completeness {L2}5° every polynomial P(z) of degree k, k = 0,1,2, ...
is a linear combination of Ly, Lq, ..., Ly. Thus let

P(z) = coLo(z) + c1Li(2) + cala(z Z cxLi(@ (11.0.328)

Then the integral is

/Om[ﬁ_ick%(“'] mdx_”\/__ZCkLk 20 (11.0.329)

is minimal only if C}, are the Laguerre coefficients for \/z with respect to the
weight function w(z) = e *:

Cp = — VrLy(z)e ®dr = / VzLg(z)e ®dz, (11.0.330)
0 0

Pk

where, for the Gamma functions, we used the property, I'(z + 1) = z2I'(2), to
compute

1 n! n! _nl
= = =1. 11.0.331
Pk ILk|2, T(n+a+1)le=0I'(n+1) ~ ol ( )
We recall a few first Laquerre polynomials for a = 0,
72
Ly(z) =1, Li(x)=1—2 and Ly(z)=1-2z+ 5 (11.0.332)

Thus, to compute Cy, k =0, 1, 2, we need to compute integrals of the form

Y+ ),

oo 1 oo 3 1 3
I, = / z2z"e T dx = / "2t dy,=T(n+ =
0 0 2 2

2= (n+
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which we compute for n =0, 1, 2, viz,

* 1 1 1
Iy = i \/Ee_xd$=§ (5)25\/7_@
o 3.3 3 1_.1 3
I - 7wd = —F ) = — - —F —) = —
o ) 5 3.3 5 3 15
2 Oﬁxe 1=l =g lQ) =g gVr=gVr
These integrals give us
o° 1
C():/ \/E,e_wdx210:§\/7?,
0
= _ 1 3 1
01:/ \/5(1—33)6 xdleo—llzif—E\/_:—Zﬁ,
0 , ; (11.0.333)
02:/ \/5(1—2374—%)e_wdﬁﬂ:[o—Qll—f—iIQ
0
1 6 15 1
=GtV Y
Finally, inserting these values in (11.0.328) we get
1 1 1 22 T 1
P(z) = [—-1——1— o (1—2 —}:— ~ a2,
(r) =7 5 4( T) 16( T+ 2) 16 (3+ 6z 2x)

Example 37. Find the polynomial P(z) of at most degree 2 that minimizes
the integral

I= /_OO [:& — P(l‘)]ZewZ/Q dx. (11.0.334)

o

Solution: To solve the problem we use Hermite polynomials

n 2 d" 2

H,(z) = (-1)"e %eﬂ” . (11.0.335)

which are orthogonal on the real line (—oo, o0). First we substitute 75 =5
to get

I= /oo [a:4 . P(x)} See2 gy = \/i/c: [454 . Q(s)} "5 ds, (11.0.336)

— 00
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where Q(s) = P(v/2s). Now since the function s* is even and the Hermits
polynomials { H, }$° are orthogonal on R with respect to the weight function
w(z) = e *" we may expand Q(s) in even Hermits polynomials viz,

Q(s) = P(V2s) =) CrHy(s). (11.0.337)

Thus the integral (11.0.334) would become minimum only if Cy, £ = 0,1 are
the Hermite coefficients of 4s*.

1 () 2 4 © 2
Cp= L / Hop(s)-ds*e"ds = — | Hyp(s)s*e~*"ds,  (11.0.338)
Pk J - Pk J —o0

where p, = (2k)!2%%,/7. Hence, omitting the details, the coefficients are

4 [ 2 4 o 2
Cozﬁ/_ool-S‘leS ds =3 and Clzﬁ/_w%-s‘le” ds = 3.

Inserting in Cy and C in (11.0.337) we have that
P(V/2s) = 3Hy(s)+3H,(s) = 3-1+3(45—2) = 3(4s*—1) = P(z) = 3(22°—1).

Note that computing the above integrals for C;,,7 = 1,2 are rather tedious.
An alternative way is to proceed through a Hermit expansion for f(x) = z°™:

om _ N\~ (2m)!Hy(2)
= . 11.0.339
v ; 22m(2k) ! (m — k)] ( )
For our case f(z) = z* = 2™ yields m = 2. Thus we get
41 41
=4. ——— = Ci=4-———=3 11.0.340
Co=4d gignm =3 ad G =4 gEy =3 ( )

which are the same as above.

Example 38. Determine the polynomial P(x) of at most degree 2 that
minimizes the integral

/00 [em/‘L — P(x)} i ze * dx. (11.0.341)

o
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Solution I: To solve the problem we use the Laguerre polynomials L, which
are orthogonal on the interval (0, 00) with the weight function z%e~®. (Here,
with the weight function ze ® we have o = 1).

-1,z dar
LW(@) =2 n,e P (ﬂ“ﬂ). (11.0.342)

Below we compute the Laguerre polynomials up to degree 2:

L(()l) () =2 ' -ze” =1

d
Lgl)(x) = ;L'*lew . y (.’L'Qefw) — $716$(2$67x o xQef:v) -9 7z
X
“let P (11.0.343)
(1) _LL'G.d 3—m_1—1m 2 —z 3 _—z\/
Ly’(z) = o1 —dmz(xe )—ix e’ (3x"e” " —z°e™ ")

1 1
= ix_leI(Gx — 32> - 322 +2%) =3 -3z + 5352'

We also compute the norm of the Laguerre polynomials Lg)(x),

o 2 r 2 1)!
IEO@IE = [ [106@)] e = T SRy,
0 n! n!

where we used Theorem 52 with @ = 1. Now let
2
P(z) =Y CoL(x). (11.0.344)
n=0

Then the integral (11.0.341) would be minimal if and only if C,, are the
Fourier coefficients of e/, expanded with respect to the Laguerre bases
functions LS)(.I), n=20,1,2.

/ LM (m)xe’%w dx.
0

1 o0
C, = 7/ e LY (z) e ® dx =
z)|l% Jo n+l

L8 (

Note that with the substitution y = %x we have

Im: m _sz = (—) m _y—d
/0 ve ! /0 3) ¢ 3%

::<§)m+Hxny+1)::(§)m+5nL

(11.0.345)
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Now for n =0, 1,2 it follows, from (11.0.345), that

1 (™ 4N2 16
C_— —iL‘d :I:(—) 1'—_’
Tox1, TG 9
1 [ 1 16 443
Ci=—- | (2- Ty = =[21; — I _———(—) 2!
11+10( z)ze” " de = S[21 = I] = 3) @)
16 64 16
9 27 27’
1 (™ 1, _s 1 1
= - - Ty = Z[31; — 3L, + =1
Cy 211, (3 3x+2x)xe 1% dg 3[ 1 2+23]
1 16 [4\3 1744 16
L —L+=1 :__(_) 2! —(—) 3 = .

Inserting these values for C;, i = 0,1,2 in (11.0.345) it follows that

P(z) = oL (z) + C1 LV (z) + Co LY (z)
16 16 16 1 8 (11.0.346)

1——(2- —(3 - —2%) = — (2% +12).
( x)+81(3 3x+2x) 81(9c+ )

Solution II: We could use Theorem 54 and derive the expansion of the func-
tion f(z) = e ®,b > 0 in a series of Laguerre polynomials with o = 1,
viz

e = (b%)&+1 i L©(z) (b%)" (11.0.347)
n=0

Actually (11.0.347) can be proved for b > —1/2. (We have omitted the details
in deriving (11.0.347) and refer the reader to the exercises of this section).
In our case we have b = —1/4 and o = 1. Thus using (11.0.347) we get

el = (—ll+ 1)2iLS)(:€)(—_i1)n - (g)QiLg)(@<_ %)n

4 n=0

N,
3

Il

=]

This would yield an optimal approximation of e*/* in L¥ (0, 00), with w(z) =
xe~*, with a polynomial of degree two consisting of the first three Laguerre
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polynomials: i.e.,

P = (5) @~ 5) + 10@( =) + @ ()]
= IO @)~ 1@ + 5 1)
—% 1—;—3(2—@—1—;—?(3—33:—!—%332)
=8§1(x2+12)

Example 39. Determine a polynomial of the form P(z) = 2 +az?+bx +c,
which minimizes the integral

/OI[P(JJ)]Z dz. (11.0.348)

Solution I: The integral (11.0.348) is over a bounded interval. To solve this
problem we use Legendre polynomials, which are orthogonal in Ly(—1,1).
Therefore we employ the substitution ¢ = 2z — 1 which transfers = € [0, 1]
into ¢ € [—1,1]. Thus, since [P(z)]? is an even function it follows that

/Ol[P(x)]zdx - %/11P[%(t+ ) a

L . . (11.0349)
_isl 3 _ (442 — L
- 2(8) /1 [t (At +Bt+0)} dt = .
Then J is minimal when
1 2
J= / [t3 — {CoPy(t) + CLPL(t) + 02P2(t)}} dt, (11.0.350)
-1

where Py(t) = 1, Pi(t) = ¢t and P(t) = 3(3t* — 1) are Legendre polynomi-
als, and Cy, k = 0,1,2, are the Fourier coefficient of #3, expanded on the
orthogonal bases {Py(t), P1(t), P»(t)} for polynomials of degree < 2:

1 L 2
e P, =0.1.2 h P.(D? = .
Ci ||Pk<t>||2/1t e(t)dt, k=012 where [IB(0)I" =5
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Thus we have the Fourier coefficients

4 1 1 5 ( ) 1 1 3
Cy= /tPOtdt:—/t -1dt =0,
RO SRS
{ C = —/ 3 tdt = 3/ thdt = —, (11.0.351)
2/, 0 o
5 (1 a1, :
Co=—-[ t°=(3t°=1)dt =0, odd function !
L 2/, 2
Thus J is minimal when
1 1 1 3
Pb(t + 1)} =< [t?’ — {CoPy(t) + C1 Py (1) + Cng(t)}] =3 (t3 _ gt).
(11.0.352)
Consequently, with ¢ = 2o — 1, we finally get
1 13\3 3 1 33
= Plae+1] = (3) - g5t = (Gee 1) - gl
P@)=P[5+1)] = (51) -5t = (50 -1) - 2o —1)
=2’ - §$2 + 330 - l
B 2 57 20
(11.0.353)
Solution II: An alternative way to solve this problem is to let
P(z) = 2* + a2’ + bz + ¢ = 2° — Q(w). (11.0.354)

Then the substitution ¢t = 2z — 1 yields

1= [lirerass [ -awpae= L [ (51 o'y @

Now we rewrite the second degree polynomial Q(%) as

t+1
Q(%) = AoPy(t) + APy (t) + AsPo(t), (11.0.355)
where Py (t) are Legendre polynomials. Then the integral I would be minimal
if and only if Ay are the Fourier coefficients of [(# + 1)/2] in the Legendre

expansion for polynomials of degree < 2:

% +1 [P t+1
A== /1( . )Pk(t)dt (11.0.356)
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Substituting x = % we have dt = 2dx and hence

9% + 1 1 1
Ay = k2+ : 2/ P22 — 1) dx = (2k + 1)/ 2 Py(22 — 1) da.
0 0

Thus the Fourier coefficients for £ =0, 1,2 are

r 1
Aozl-/ 23 1dr =
1
x3(2x—1)d:c:3/ (2z* — 2*) dz = —
0

P
A:B/
! . 20

1 1
1 1
A2=5/ x3—[(2x—1)2—1]d:c=§/ 2?(122% — 122 + 2) dz = ~.
\ o 2 2 /o 4

N
e~ =

It follows that

1 9 11 2
_1.14_%(2;3—1)4-1-5[3(2:6—1) —1] (11.0.357)
—§:152—§ac-|-i
2 5 20’

and finally the polynomial P(z), which minimize the integral in (11.0.348)
is:

3 3 1
I _.3_ 92 9 1
Pz)=2"—-Q(z)==x 52 T 2%~ 50° (11.0.358)
Example 40. Show that
! 1/ 3/2
/0 2Py () dz = 3 ( et 1 ) . (11.0.359)

Solution: Recall the generating formula for Legendre polynomials:

o0

ZPn(x)z" =(1—-222+22)712, —1<z<1, |2/]<1. (11.0.360)

n=0
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By (11.0.360) and partial integration we have that

M

{/xP dx 2" —/
\/1—2xz+z2

1
:[x<——>(1—2xz+z)1/2 /\/1—2x2+22dx
z
1 1 1 2
—~J1-9 2 _[ —9 3/2}
. 1—2zz+ 2 t2l 5 3(1 Tz + 2°)
1 1 32 | 2\3/2
=——(-2) -5 (- 22+z)/+§;ﬂ+z)

=(1-2)3

z=0

1 1
=——1-2)[32+(1-2)"+ @(1 + 2%)3/2 {mini-telescoping},
~— ——

322
=1+42+22
1 1 3/2 1 1 213/2
:—g(l—z)—i-ﬁ(l-l—z) =§Z+§[(1+Z) —1].

Now since (1 + z)* = Z < z )xk for —1 <z < 1, it follows that
k=0

([ b5 ()
e (5) 5 ()
— " (11.0.361)

Identifying the coefficient for z?™, in (11.0.361), completes the proof:

/01 2Py (z) dz = % ( n?f1 ) . (11.0.362)

Example 41. The generating function of the Hermite,s polynomial H,, is
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given by

o

ZHn(x)z— =2 % 2eR, ze€C, (11.0.363)
n!

Use (11.0.363) to compute HJ (0).
Solution: Differentiating (11.0.363) with respect to x yields

S Hl(0)5 = 22e2 (11.0.364)
o n!
For x = 0 we get
N on e o (_zQ)k 0 22k+1
E:H,'l(o)m =27 =22) o= 2y (1) o (11.0.365)
n=0 k=0 k=0
Identifying the coefficients imply that
2(=1)*
1 AT — —
Hl (0) ; — k! ; n = 2k+1, k —O,]_’... (11.0,366)
n: 0, n = 2k.
Thus we have
2(2k +1)!(—1)*

0, n = 2k.

Example 42. Recall the generating function for the Laguerre polynomials:

e—mz/(l—z)
ZLM—I m, >0, |z|]<L (11.0.368)
Show that
Ly (z) = =Lt () (11.0.369)
dx n+1 n . -V

Solution: Differentiating (11.0.368) with respect to  we get

e—acz/(l—z)

<. d z
— : 11.0.
> In T A (11.0.370)

n=0
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which can also be written (for z # 0) as

e—acz/(l—z)

Z di = e (11.0.371)

Now we may rewrite the equation (11.0.371) as

o

—ZLaH ) 2" _deLa Zdi @ (z)z".  (11.0.372)

n=0

Identifying the coefficients for 2" we get the desired relation: (11.0.369).

Example 43. Solve the Laplace equation Au = 0 in a spherical domain
z?+y*+2? < R?, and the boundary data u = z(z%*+%?), for z°+y?+2? = R2.

Solution: In spherical coordinates we rewrite the Laplace equation as

{Au:O, r <R,

u=z(z*>+y*) = R3cosf -sin*6, r=R. (11.0.373)

Assuming rotationally invariant solution we may make a ¢ independent
ansatz viz,

= i (Anr" + Bnr_"_l)Pn(cos 9), (11.0.374)

n=0

where P, are Legendre polynomials.
Since u is bounded for » = 0 we have B, =0, for n =0, 1,... and thus

Z A R"P,(cosf) = R®cosfsin® 0 = R>(cos — cos® §).

Let & = cos @, then
u(R,0) = R*(& = &). (11.0.375)

Recall now the Legendre polynomials

Pe) =€ and Pye) = 1 (5~ ), (11.0.376)



rsin 6

Figure 11.9: The spherical coordinates.

and compute &3 as:

“E=SRO+RE = €=IRE+h0.
Thus we have
€= €8 = Pi(€) — SPi(€) — 2Py(€) = 2Pi(€) — 2 Py(6),
5 5 5 5

and consequently

u(R,0) =)  A,R"Py(cosf) = §R3P1(§) — §R3P3(§).

n=0

Identification the coefficients it follows that

2 2
AR = 5R3 = A= 5R2

2 2
AR = -ZR = Ay=-2
3 5 3 5

A,=0, n#1,3.
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(11.0.377)

(11.0.378)

(11.0.379)

(11.0.380)
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Thus, using also r cosf = z, we finally obtain the solution as

2

2 2
u(r, 0) = AyrPy(cos f) + Azr® Ps(cos 0) %TPl (cos @) — 5T3P3 (cos 0)

2R? 2 20— 6 2R* 1
=%TCOS€—5T3-5COS 5 scost 5 2—5(523—37'22)
:%mz+§(x2+y2+22)z—z3.

Example 44. Solve the Laplace equation Au(r,d) = 0, 0 < a < r < b,
(using spherical coordinates), with the boundary conditions given by

u(r,0) =1+ cosb, for r=a
{ u(r, 0) = cos(26), for r=1b (11.0.381)
Solution: A ¢ independent solution can be written as
u(r,0) = Z (Anr" + Bnr”“l)Pn(cos 0), (11.0.382)

n=0

where P, are Legendre polynomials. Inserting (11.0.382) in the expressions
for the boundary data yields

u(a,d) = Z (Ana" + Bna_”_1>Pn(cos §) =1+ cosb
n=0

u(b,0) = Z (Anb” + Bnb_”_l) Py (cos ) = cos(260) = 2cos®f — 1.
n=0

We recall the few first Legendre polynomials,

L (3cos?f — 1),

Py(cos@) =1, Pi(cosf) =cosf and Py(cosf) = 3

and rewrite the boundary terms as

u(a,0) =1+ cos@ = Py(cos ) + Pi(cosb),
u(b,0) = 2cos’ — 1 = CoPy(cos 0) + CoPy(cos ) = Cp + Ca3(3cos? 6 — 1).

Identifying the coefficients of the last relation above we get

Co —2=-1 = Co=-14+%L=-14+2=_1
{ 30, =2 = Cy=14 (11.0.383)
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Identifying the coefficients of the Fourier-Legendre-series it follows that

B 3a+b
A+ =2 =1, A= "30ay
n=0 & = (11.0.384)
A n BO . 1 B. = 4ab
T T3 7 3(b—a)
B a?
Aot 3 =1, A=
n=1 a = a (11.0.385)
A+ B g _a’h
1 + b_2 - Bl = b3 _ a3
B 4b3
A2a2+—32:0, A2=m,
"9 a N (11.0.386)
Abg_}_%_é B, — 4a5b3
T T3 2735 — )
B,
Ana” + ol = 0,
n>3: % = A,=B,=0. (11.0.387)
A" + T = 0
Inserting these coefficients in (11.0.382) we get the solution as
B B
u(r,0) = (Ao + TO)PO(COS 6) + (Alr + T—;)Pl(cos 6)
B
+ (A2r2 + /r_f)PQ(COS 9)
- (4ab 3 b) L@ (b3 ) . (11.0.388)
= — _ = — —  (— =7
3b—al\ r ¢ b3 — a® \r?
2 , a )
+§b5 — (7“ - T—g)(cos 6—1).
Example 45. Find a solution to the problem
Uy = Ky, —o<r<oo t>0,
) 11.0.389
{ u(z,0) = (1 —22%)e*, —oco <z <oc. ( )

Solution: To solve this problem we use Fourier transform, with respect to x
to obtain.

ty = k(i&)*0 = —k&*. (11.0.390)
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Hence, ,
a(€,t) = (&, 0)e e (11.0.391)

where ,
a(€,0) (1 —22%)e ™™ = ug(w). (11.0.392)

Thus, we need to compute the Fourier transform of uy(z). Recall that
2 2 2 2 2
Fle P =/ Te . (a=2) = Fle)€) = Ve

Further, we compute

Fl-a®e™](€) = Fl(~ix)*e " ](€) = (%)Zf[e—“ﬁ@) = V(e "

- (= e = (§ - e

Thus
2 2 2 1 2 2
ug(z) = (1 —20%)e™ 2F /e /% — Q[ﬁ(% — 5)6_6 /4} = 4526_6 /,

and hence (11.0.391) can be rewritten as

a(é,t) = g 2e=(kt+2)€”, (11.0.393)
Let now kt + i = ﬁ and use the Fourier transform for e=9%"/2 to get

R m —£2/%a 1 a 27T_2a 1 a,d2 —az?
e = e = e e mer 3 () ()
1 ! 1
- 55— ) = g [ atatye

Thus substituting back: 5= = kt + 7, i.e., a = 2/(4kt + 1), it follows that

( t) == ( 1 )3/2 (1 2.’,5'2 ) 7%
ST ke Akt +1/°

! oy 2>

B m(4kt + 1 - 2.73 )e Akt+1 |

(11.0.394)
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Example 46. Solve the problem

uz(0,y) =0, u(l,y) =ye ¥

Solution: To solve this problem we need to homogenize the equation: Let
u(z,y) = v(z,y) + S(z), (11.0.396)

and determine S(z), so that S”(z) = z, S’(0) = S(1) = 0. It follows that
S'(xz) = 2%/2 + A, where S'(0) = 0= A =0, i.e., S(z) = 23/6 + B. Now
S(1)=1/6+ B =0= B = —1/6. Thus, we end up with

$3

1
S(z)=—— 11.0.397
@) =%"% ( )
From this, the problem for v is:
Umz+vyy:0, 0<.’E<1, _Oo<y<OO,

Now we Fourier transform the system (11.0.398) with respect to y, to obtain

Ve — w?D =0,
02 (0,w) = 0, (11.0.399)

5 _ s ad 2 _ 4w
?)(1,&)) = Y <1+w2> = T Fw?)2

where we have used the Fourier transforms e ¥/ 5% 25 and zf(z) D7

i(f)'(€). The general solution to the differential equation for 9 is written as
U(z,w) = A(w) coshwz + B(w) sinh wz. (11.0.400)
Thus ¥;(z,w) = wA(w)sinhwz + wB(w) coshwz = 0 and 7,(0,w) = 0 +
wB(w) = 0 = B(w) = 0. Consequently,
41w 41w
5(1,w) (w) coshw (1 + w?)? () (1 4+ w?)?coshw

Inserting the values of A(w) and B(w) in (11.0.400) and using the Fourier
inversion formula we get

1 /°° diwcoshwz p 4 /°° w cosh wzx sin wy
—— e“dw = —
21 J_o (1 +w?)?coshw mJo (1+w?)?coshw

v(z,y) =
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41w cosh wx
(14w?)? coshw
Hence we have the solution for the original problem (11.0.395) given as:

due to the fact that the expression in the integrand is odd in w.

22 1 4/°°wcoshwacsinwy . (11.0.401)
0

u(z,y) = 5 6 (1 + w?)? coshw

Example 47. Let f € L?(R) and find a solution to the problem

Pu | Pu _ ) <z < 0<y<
A s (11.0.402)
u(z,0) =0, u(z,a) = f(z).
Show that - -
/ u(z, y)|? do g/ ()2 da. (11.0.403)

Solution I: We Fourier transforming with respect to z: 4(§,y) = F, [u(az, y)}
to get the equation

0%

(11.0.404) has the general solution
(&, y) = C1(€) sinh &y + Cy(&) cosh &y. (11.0.405)

The boundary data is transformed as: 4(€,0) = 0 and (€, a) = f(€). Hence
= C5(§) = (&, 0) = 0 and

Be) — a(c. q) = : _ J©
f(&) =a(& a) =C(§)sinhéa = C1(¢) = Sinhéa’ (11.0.406)
Thus we have nh¢
. sinh £y 4
= : 11.0.4
Using the Fourier inversion formula we get the solution viz,
L [*sinh&y .\ 4
= — T dE. 11.0.4
o) = 5= [ S fee de (11.0.408)
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Solution II: We can also use the Fourier transform

sinh at 7 sin 5
sinh bt = 0<a<b. 11.0.409
t[sinhbt}(c‘)) bCOSh%’i_bCOSﬂ-—ba’ a ( )

Let a =y and b = a and use the symmetry rule to get

1 sin X inh
[_ . ﬂ;rz . ﬂy] - S?n gyﬂ (11'0'410)
2a  cosh %F + cos -} sinh éa
such that we can write the solution as
1 [ 7 sin ™
t) dt. 11.0.411
uy) = 2a/oocosh ”(x ) +cos%f( ) ( )

To show (11.0.403) we use (11.0.407) and (twice) Plancherel’s theorem, to
get

o I Y Al _ 1 * rsinh &y \2, &
| el iz = o / enPac=5- [ (Ger) 1fe)rd

o0 o

<1

1
< — ()7 de = / (z)|* da.
27
Example 48. Find a periodic solution for the equation
y' =y +y=ft), (11.0.412)

where f'(t) is the distribution derivative of the 2-periodic function

0 for 0<t<1,

Ft) = { t—1 for 1 <t<2. (11.0.413)

Solution: Since the function f is 2-periodic we have 2L = 2 and thus L = 1.
Then, for 0 < t < 2, we compute the distribution derivative of f, viz

F1(8) = —8(t) + [0(t — 1) — 6(t — 2)]. (11.0.414)

Using the 2-periodic Fourier series expansion of the function f:

=§Cn(f inft ZC enrt, (11.0.415)
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) f(t)
t+1 t—1

| : t

1

I I I y
2 —1 1 2

Bt —1) — 0t — 2)
5(t+2) 5 (%)

Figure 11.10: The function f(¢) and its distribution derivative.

The Fourier series expansion for the distribution derivative f' is given by

F1(t) = ineCp(f)e™™ =Y Ch(f)e™™. (11.0.416)
Thus
C) = inmC,. (11.0.417)

Hence, to determine C) we shall need the Fourier coeflicients C), below:

1 [f . 1[0 ,
Qﬁh—/tmkm”ﬁz—/@+DeWWt (11.0.418)
2L L 2 -1

)20 1
[(t+ ) } =7 = 04 =0. (11.0.419)
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For n # 0 we use (11.0.418) and partial integration to compute
1 e—inmt o0 1 0 e—inmt
ST 1Y o
"2 (t+ )—'L'mr -1 2 J)_{ —inmw
11 1[ e~ tnmt }0 B 1( 1 N 1 (-1)" )
2 —int 2l(—inm)2)l1 2\inm  (—inm)?2 (—inm)?
1 1 1 —-1)"
=—" (——)<1+.——(.—1))-
mnm 2 mnm mnm

Thus, for n # 0, we have

1 1 —1)" 1
C’;L:iernz——(l-i-. —(, ))= _ (—z’mr—l-l—(—l)”).
2 T T 2inm
(11.0.420)

Summing up we have

n#0, C =

n

T [ I i((—l)" - 1)} and C)=0. (11.0.421)

Now we let y(¢) be a 2-periodic function with a general Fourier series viz
By .
y(t) = dne™™. (11.0.422)
—00
Thus

y'(t) = Zfimr dpe™™  and  y'(t) = Z —n’r?d,e™™.  (11.0.423)

Now inserting the expansions for y, ¢/, y”, and f’ in (11.0.412), it follows
that

o [e 9]
Z dy, [1 —inmT — n27r2] ne™mt = Z C! e, (11.0.424)
—00 —00
Identifying the coefficients we get
o | - — i((—l)" - 1)
" l—inm—n2m?2 2w 1 —inm — n?n? an 0

Consequently, the solution is given by

© 1 nm-— i(l - (—1)") -
t) = . mat, 11.0.425
y(t) n_zoo 2nm n?7? — 1+ inmw € ( )
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Example 49. Determine the distribution derivative f'(¢) of the 3-periodic
function
-1 for 0<t<1,

f(t)z{ ] for 1<t<3 (11.0.426)

Expand f'(¢) in complex trigonometric Fourier series and use the result to
compute the Fourier series expansion of f(t) itself.

Solution: As we can see in the figure f’(t) can be written as

f®)
I 1 I 1
1 1 1
l l l
5 51 PR
1 1 1
3 Y _
26(t + 2) 7ol 2 25(t — 1)
: = 3 ¢
—2 -1 2
—25(t) —25(t — 3)

Figure 11.11: The function f(¢) and its distribution derivative.

o0 oo

Fit)y=>" 20(t—3n—-1)— Y 256(t—3n) =2 i [6(t—3n—1)—68(t—3n)].

n=—00 n=—o00 n=—00

Since T = 3, we have that Q = 27/T = 2n/3. Then the Fourier series
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expansion of the function f'(t) is
=Y CnenF, (11.0.427)
where the Fourier coefficients C,, are given by
_mz_Wt 1 ’ —in2z¢
f st dt = 3 [20(t —1) —25(t)]e ™
-1

( 2 0) 2( : ) (11.0.428)
=Z(e™m3t— ) = Z(eFl— 1 = (Cy=0.
3 3

Thus the complex Fourier series expansion of f’ in (11.0.427) is given by

2 nd 27 s 27
Fo=:3 (e*m t 1) st (11.0.429)

—00,n#0

Note that we separate n = 0, to determine the constant term in the Fourier
series expansion for f, viz

ad Cn 21r
fy= Y —-emil4 A (11.0.430)
inYg
—o0,n#£0
The coefficient A, corresponding to n = 0, is computed as

/‘f 1) dt = (1+2) ; (11.0.431)

Hence, it follows that the complex Fourier series expansion of the function

f(t) is:

1 X eIFt_ 1,
1) = = e 11.0.432
f(®) 3+_g%0 e ( )

Example 50. Compute the complex Fourier series of the 27-periodic func-
tion f(z) = xz(z? —7?) on the interval (—m, 7). What is the sum of this series
at the points 27 and 37 /27

Solution I: Since the function f(x) is 27w-periodic we have Q = 27 /271 = 1,
and thus the complex Fourier series expansion for f(z) is given by

f(z) = z(z* — 7 ZC et (11.0.433)
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with the Fourier coefficients
C, = ! Wf() T g = L[ (2 — %) e d (11.0.434)
"= B z)e $_27r _Wxac T™)e . .0.
Thus for n = 0 we get

1 K
Co / z(x? — 7)) dr =0, (11.0.435)

T or

-7

and for n # 0 using partial integration it follows that

1 1 L T 1 .
C, = oy [x(x2 —7?) —_me_”m T /_7T(Z’>ac2 — 7r2)—_me_“” dx}
1 e—inz T ™ e_mx
= |(32% — 72 _/ 6 - d }
o [( SERy ) Il L e P
1 e—ina: T s e—i'n,x
2 6)[‘”(—7,71)3 . /_7r (—in)s " (11.0.436)
—_———
=0
3 1 —inm inm 3
= T (—in)® [We (—m)e ] = (_in)?’?cosmr
6 6(—1 n+1
(~in) n3
Hence we have that
o _1 n+1 )
fl@)=a2("—r")~6i Y ( n)3 e, (11.0.437)
—00,n#£0

Solution II: Since f(z) is an odd function we have the Fourier coefficients



—cosnacrr 2
0, TN

2 i ™ 12 [T
= [(3302 - WZ)SIDMC} —— / xsinnx dx
o wn? J,

12 1 —cosnxi~ 12 [™
= — [x ] — cosnx dx
0

mn? n o mnd
—_—
=0
127 12(=1)"
= —cosnm = 3
™ n

Thus the complex Fourier series coefficients are given by

1, 1)
C’n = 5(0% — an) = T’L

+—/ (32 — w%) cosnx dz
0
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(11.0.438)

(11.0.439)

and we get the same complex Fourier series expansion for the function f(z) =

2

z(z? — 7%) as in the solution I above.

Further, since the function f(x) is 2w-periodic the sum of the Fourier series

inz =27 is
f(@m) = f(0)=0.
For x = 37 /2 we compute the sum viz

2

)1 - 56 -) -5

Example 51. Solve the following problem

U + 1= Juy, 0<z<2, t>0, (DE)
u(0,t) =0, u(2,t) = -2, (BC)
ug(z,0) =0, u(z,0) =z — 22 (I0)

Solution: To make the problem homogeneous we let

u(z,t) = w(z,t) + S(z),

(11.0.440)

(11.0.441)

(11.0.442)

(11.0.443)
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such that

S" ) = _1’
{ S(((J) ): 0, S(2) = —2. (11.0.444)

Solving (11.0.444) we get

2

S"z)=-1 = S(z)= —% + Az + B,
S(0)=0 = B=0
(11.0.445)
S(2)=-2 = -—2+24=-2=A=0,
72
Now we get a homogeneous equation for w(z,t), viz
wm:iwttZO, O<CE<2, t>0, (DE)
w(0,t) =0, w(2,t) =0 (BC)  (11.0.446)
wi(2,0)=0,  w(z,0)=u(z,0)-S(x)=a—2. (IC)
Using separation of variables, w(z,t) = X (x)T'(t) # 0, we get
XI/ TII
S (11.0.447)

Thus we obtain Sturm-Liouville problems, with respect to both z and ¢. We
start with the Sturm-Liouville problem in z:

X" = )X,
{ X(0) = X(2) = 0. (11.0.448)
For A < 0 the general solution of this problem is given by
X(z) =AcosV—Az+ = BsinvV—-Az. (11.0.449)
The boundary data yields
X(0)=A=0,
{ X(2)= Bsin2/—A=0 = 2/ A=nm (B£0). (1:0:450)

Hence the eigenvalues and eigenfunctions for (11.0.448) are given by

Ap=——,  and Xn(x):sin%x, n=1,2,...  (11.0.451)
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As for the t dependent differential equation we get, for every n, that
T" — 4\ T, = 0, (11.0.452)
with the general solution
T,(t) = C, cosnmt + D,, sin nrt. (11.0.453)
To compute the coefficients we use the derivate of T),():
T, (t) = —nwC, sinnwt + nw D, cosnmt = T, (0) = nwD,.  (11.0.454)
where the initial data
wi(z,0)=0 = T, (t)=nrD,=0 = D,=0. (11.0.455)

Since now both the differential equation and the boundary conditions are
homogeneous for w, thus

w(z,t) = X(2)T(t) = Z C,, cosnrt - sin %x (11.0.456)
n=1

is the general solution for (11.0.446). To compute C,, we use the initial data
to get

S 2
w(z,0) =Y Cysin %x =z % (11.0.457)
n=1

The equation (11.0.457) is valid through choosing C,, as the Fourier coef-
ficients for the function z — x?/2 with respect to the complete orthogonal
system X, (z) = {sin %z} ;. Thus

1 /2 2
Cn = E/O (x — %) sin %x dz, (11.0.458)

where

2
M, = / sin %x dz = 1. (11.0.459)
0
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Hence using partial integration we get

2 2
C’n:/ (x—x—) sinmxdx
. 2 2

22\ cos 2 2 cos g
[—(x—;) 2 }0+/(1—x) 2% gy
- 2 0

2
>
-~

=0

sin 2112 2 sin 2y 1 nr 12 (11.0.460)
=[—(1—9€) 55 } + | —— =[——3300s—x
I 2 5 0
-0
(D)1 —(D"+L [0, n=2%
Coee e (M)3 T s n=2k+1
2

Thus the solution to the equation system (11.0.462) is given by
16 1 . (2k+ )7
w(z,t) = = 2 TP cos ((Qk + 1)7rt) - sin (Tx) (11.0.461)
and finally we have the solution for the original problem (11.0.462), viz

z? 16 1 2k + )m
= 4= - 2 Drt) -sin [ 7" 4.
u(z,t) 5 +—= 2 2k + 1) cos <( k+1) t) sm( 5 x)

Example 52. Solve the following Dirichlet problem

Ugg + Uyy = 0,

for r=4/22+9y%2<1, (ubounded)
u(1,0) := f(#) = sin®0 + cosd, in polar coordinates

u 1s bounded as r — 0.

(11.0.462)
Solution: Let u = u(r, #) in the spherical coordinates. Set the solution

u(r,0) = Z (Anr" + Bnr’"’I)Pn(cos 6). (11.0.463)
n=0

That u is bounded for » = 0 implies B,, = 0. Further

(1,6) = Z A, P,(cos) =sin?f + cos = 1+ cosf — cos®f. (11.0.464)
n=0
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Thus with s = cos @ we have

S AuPu(s) =145 — 8 = Po(s) + Pi(s) — %(Po(s) +2Py(s))

(11.0.465)
2 2
= —P()(S) -+ Pl(S) — —PQ(S).
3 3
Identifying the coefficients we get
2 2
AO = g, A1 = 1, A2 = —g, An = 0, n > 2. (110466)
Consequently the solution is
u(r,0) = AgPy(cos @) + AirPi(cos ) + Ayr?Py(cos )
2 2,1
= §+rc0s9— §r2§(3c0520— 1) (11.0.467)
1
= 5(2-1—7'2) +7cosf — r* cos® 6.

Example 53. The function f(z) is continuous and has the Fourier transform

Fe) = h1(1§+§2) (11.0.468)

a) Determine the mass of f: [*_ f(z)dz b) Compute f(0).
Solution: a) Note that

: In(1 + &2 ; . In(1+¢&
flo="U28 o jo) -y

Using the definition of the Fourier transform and (11.0.469) yields

=1. (11.0.469)

fe) = /_00 f@)e ™ de = f(0)= /_00 f(z)dz =1. (11.0.470)

b) Recall the inverse Fourier transform

f(z) = %/ f(&)e’® de. (11.0.471)
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Then for x = 0 we have, using partial integration, that

1 1+ 1 [®h(1+¢)
nd [ Hose [ [
_1 1/~ 2
_;[—Eln(l-i—&Z)]o 1] ire
1 . In(1+¢&*) . In(1+¢&?

S S i A Lt

-~

=0 3163)
— hm ef(e) + =1

T £€—0F

Thus we have f(0) =

dg

o0

™ 0

ﬁll\D
1\9|=1

Example 54. Determine the solution f(¢), t > 0, for the integral equation

t

F(t) = Af'(t) + f(t) + 6/0 f(r) dr = 2¢', (11.0.472)
f0-)=1, f'(0)=0.

Solution: We Laplace transform the equation to get

F 2
Then using the initial data yields
9 6 2
(s —4s+1+5)F()_s—4+f1 (11.0.474)
Thus we have
s— 4+ 2 2 —1)(s—4
F(S) — s—1 - — S . + (8 )(8 )
—4s+1+¢ s-—1 s2—4s24+s5s+6
s (s=5s+6) s (11.0.475)

T s—1 (s+1)(s2—55+6) (s—1)(s+1)
1 1 1 1

2 s—1 2 s+1
Hence by the inverse Laplace transform we get
1 1

f(t) = §et + ée’t =cosh(t), t>0. (11.0.476)
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Example 55. Let u(x,t) be the solution for the initial value problem

Uy = CUgy, t>0, O<z<m, (DE)
u(0,t) =0, u(m, t) =0, (BO) (11.0.477)
u(z,0) =0, uy(z,0) = g(z), (IC).

Show that for ¢ > 0 we have

/|ut(x,t)\2dx§/ l9(2)|? da. (11.0.478)
0 0

Solution: By the separation of variables, u(z,t) = X (z)T(t) # 0, the (DE)
yields
XII TII
X T
(A > 0 gives trivial solutions). The Sturm-Liuville problem for X is
X"+ 12X = 0
X(0) = X(7) =0,

A=—p? p>0. (11.0.479)

(11.0.480)

with the general solution X (z) = Asin ux + B cos uz. Using the boundary
data we get X(0) = B = 0 and X (7) = Asinpyr = 0. For a non-trivial
solution we have A # 0 and thus p = 1,2,..., i.e., g = n > 0. Thus the
eigenvalues and eigenfunctions for the problem (11.0.480) are

2

Ap=-—n° and X,(z) =sinnz, n>1 (11.0.481)

Similarly, the Sturm-Liuoville problem for 7" would be

{ T" + Ap*T =0

T(0)=0, T'(0)=g(z), (11.0.482)

with the general solution T,,n(t) = P, sinnct + @, cosnct. Using the initial
data we get 7,,(0) = @, = 0. Thus T,,(¢) = P, sin nct and by superpositioning

o o
u(z,t) = Z P,sinnct-sinnz = wuz,t) = Z ncP, cosnct - sin nx.

n=1 n=1

Then invoking the second initial condition yields

u(z,0) = chPn sinnz = g(z). (11.0.483)

n=1
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Finally using Parseval’s formula
T o T T
2 2 . 2 2
dz < P too < P2
/0 lug(z,t)|° dx < E |ncP,|” cos® ne 5 < (nch,) 5

n=1 n=1
- / uy(z, 0)? dz = / 9(@) P de.
0 0

|M8

(11.0.484)



