Notes on K-theory

Arupkumar Pal

January 30, 2007

Contents

1 Preliminaries from C^{*}-algebra theory 2
1.1 Constructions with C^{*}-algebras 2
1.2 Unitization 2
$2 K$-theorv 4
2.1 Vector bundles 4
2.2 K_{0} group 5
2.2.1 Equivalence relations on projections 5
2.2.2 K_{0} group for unital C^{*}-algebras 7
2.2.3 K_{0} group for nonunital C^{*}-algebras 10
2.2.4 Properties 11
2.2.5 Computations of K_{0} 15
$2.3 \quad K_{1}$ group 15
2.3.1 Higher K-groups 15
2.3.2 Homotopies of unitaries and invertibles 17
2.3.3 Equivalence of the two pictures 20
3 Computational tools 21
3.1 Six term exact sequence 21
3.1.1 Lifting of homotopies 21
3.1.2 Fredholm operators 21
3.1.3 The index map 22
3.1.4 Computation of the index map 24
3.1.5 Bott periodicity 26
3.1.6 Computation of K-groups 29
$3.2 \quad K$-groups of crossed products 32
3.2.1 Crossed products 32
3.2.2 Crossed products with \mathbb{Z} 32
3.2.3 Crossed products with \mathbb{R} 32
3.3 K-groups of tensor products 33
$4 \quad K$-groups of some C^{*}-algebras 33
5 References 33

1 Preliminaries from C^{*}-algebra theory

1.1 Constructions with C^{*}-algebras

Direct Sum.

Tensor Product.

1. Form the algebraic tensor product $A \otimes_{a l g} B$,
2. put a C^{*}-norm on $A \otimes_{a l g} B$ that obeys $\|a \otimes b\|=\|a\| .\|b\|$ for $a \in A, b \in B$. One can put several C^{*}-norms in general; there is a maximal and minimal one.
3. complete $A \otimes_{\text {alg }} B$ with respect to that norm. several choices of norms on the algebraic tensor product and hence several choices of $A \otimes B$ possible.
4. the spatial norm: this is one choice of a C^{*}-norm on $A \otimes_{a l g} B$. By GNS theorem, there exist faithful representations $\pi_{A}: A \rightarrow \mathcal{L}\left(\mathcal{H}_{A}\right)$ and $\pi_{B}: B \rightarrow \mathcal{L}\left(\mathcal{H}_{B}\right)$. Define $\pi: A \otimes_{\text {alg }} B \rightarrow$ $\mathcal{L}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$ by $\pi(a \otimes b)=\pi_{A}(a) \otimes \pi_{B}(b)$ and define $\|\cdot\|$ by $\left\|\sum a_{i} \otimes b_{i}\right\|=\left\|\pi\left(\sum a_{i} \otimes b_{i}\right)\right\|$.
5. this norm is independent of the choice of the representations π_{A} and π_{B} as long as they are faithful, and is called the spatial norm. This turns out to coincide with the minimal norm on $A \otimes_{a l g} B$.
6. For a large class of C^{*}-algebras A, one can put only one norm (C^{*} cross norm) on $A \otimes_{\text {alg }} B$ for any C^{*}-algebra B. Such C^{*}-algebras are called nuclear C^{*}-algebras. All abelian C^{*} algebras and type I C^{*}-algebras are nuclear.

1.2 Unitization

Let A be a C^{*}-algebra, and let

$$
A^{\dagger}= \begin{cases}\text { unitization of } A & \text { if } A \text { is nonunital } \\ A \oplus \mathbb{C} & \text { if } A \text { is unital. }\end{cases}
$$

Exercise 1.1 Show that if $A \subseteq B, B$ is unital but $1_{B} \notin A$, then $A^{\dagger} \cong A+\mathbb{C} 1_{B}$.

Exercise 1.2 Let A be a C^{*}-algebra and let $\pi: A^{\dagger} \rightarrow \mathbb{C}$ be the map $(a, t) \mapsto t$ and $\lambda: \mathbb{C} \rightarrow A^{\dagger}$ be the map

$$
\lambda(t)= \begin{cases}(0, t) & \text { if } A \text { is nonunital, } \\ (t, t) & \text { if } A \text { is unital. }\end{cases}
$$

Show that the following sequence is split exact:

$$
0 \longrightarrow A \longrightarrow A^{\dagger} \underset{\lambda}{\stackrel{\pi}{\rightleftarrows}} \mathbb{C} \longrightarrow 0
$$

The map $s:=\lambda \circ \pi: A^{\dagger} \rightarrow A^{\dagger}$ is called the scalar map. Thus

$$
s(a, t)= \begin{cases}(0, t) & \text { if } A \text { is nonunital } \\ (t, t) & \text { if } A \text { is unital }\end{cases}
$$

Exercise 1.3 Let $\phi: A \rightarrow B$ be a morphism. Define a map $\phi^{\dagger}: A^{\dagger} \rightarrow B^{\dagger}$ as follows:

$$
\phi^{\dagger}(a, t)= \begin{cases}(\phi(a), t) & \text { if } A, B \text { both unital or both nonunital, } \\ (\phi(a)+t, t) & \text { if } A \text { nonunital and } B \text { unital, } \\ (\phi(a-t), t) & \text { if } A \text { unital and } B \text { nonunital. }\end{cases}
$$

Show that

1. ϕ^{\dagger} is the unique extension of ϕ to a unital morphism ϕ^{\dagger} from A^{\dagger} to B^{\dagger}.
2. ϕ^{\dagger} is injective if and only if ϕ is injective,
3. ϕ^{\dagger} is surjective if and only if ϕ is injective.

Exercise 1.4 Let $\phi: A \rightarrow B$ be a morphism and let s_{A} and s_{B} be the scalar maps for A^{\dagger} and B^{\dagger} respectively. Show that for any $a \in A^{\dagger}$, one has $s_{B}\left(\phi^{\dagger}(a)\right)=\phi^{\dagger}\left(s_{A}(a)\right)$.

Exercise 1.5 Let

$$
0 \longrightarrow J \xrightarrow{\phi} A \xrightarrow{\pi} A / J \longrightarrow 0
$$

be a short exact sequence. Then $\phi^{\dagger}: M_{n}\left(J^{\dagger}\right) \rightarrow M_{n}\left(A^{\dagger}\right)$ is injective.
An element $a \in M_{n}\left(A^{\dagger}\right)$ is in $\phi^{\dagger}\left(M_{n}\left(J^{\dagger}\right)\right)$ if and only if $\pi^{\dagger}(a)=s\left(\pi^{\dagger}(a)\right)$.

Inductive limits of C^{*}-algebras. Let $\left(A_{i}, \phi_{j k}\right)$ be an inductive system of C^{*}-algebras, i.e. $\phi_{j k}: A_{k} \rightarrow A_{j}$ are morphisms for $k \leq j$, and $\phi_{i j} \phi_{j k}=\phi_{i k}, \phi_{i i}=i d$.

Define

$$
\begin{aligned}
B_{\infty} & =\left\{\left(a_{i}\right): a_{i} \in A_{i} \text { for all } i, \text { there exists } k \text { such that } a_{j}=\phi_{k j}\left(a_{k}\right) \text { for } j \geq k\right\} \\
B & =\left\{\left(a_{i}\right): \sup \left\|a_{i}\right\|<\infty\right\} \\
J_{\infty} & =\left\{\left(a_{i}\right) \in B_{\infty}: a_{i}=0 \text { for all but finitely many } i\right\} \\
J & =\text { closure of } J_{\infty} \text { in } B \\
\pi & : \text { canonical projection } B \rightarrow B / J \\
A_{\infty} & =\pi\left(B_{\infty}\right) \\
A & =\text { closure of } A_{\infty} \text { in } B / J
\end{aligned}
$$

Note that forming B / J is same as putting the seminorm $\left\|\left(a_{i}\right)\right\|_{1}:=\limsup \left\|a_{i}\right\|$ on B and quotienting by elements of length zero.

Define $\phi_{j}: A_{j} \rightarrow A$ by

$$
\phi_{j}(a)=(\underbrace{0, \ldots, 0}_{j-1}, a, \phi_{j+1, j}(a), \phi_{j+2, j}(a), \ldots) .
$$

Then

1. the following diagram commutes:

2. $A_{\infty}=\cup_{j} \phi_{j}\left(A_{j}\right)$,
3. if D is a C^{*}-algebra such that for each i, there is a morphism $\psi_{i}: A_{i} \rightarrow D$ with

then there is a unique morphism $\psi: A \rightarrow D$ such that

If the ψ_{i} 's are all one-one, then ψ is one-one.
4. if $a \in A$, then for any $\epsilon>0$, there is a $k \in \mathbb{N}$ and $a_{k} \in A_{k}$ such that

$$
\left\|a-\phi_{k}\left(a_{k}\right)\right\|<\epsilon
$$

2 K-theory

2.1 Vector bundles

Let X be a compact hausdorff space and E be a complex vector bundle over X of rank n. Let $\Gamma(E)$ be the space of sections of E.

1. $\Gamma(E)$ is a vector space with pointwise addition.
2. It is a $C(X)$-module with pointwise multiplication.
3. If $E=X \times \mathbb{C}^{n}$, then $\Gamma(E)=C\left(X, \mathbb{C}^{n}\right) \cong C(X) \otimes \mathbb{C}^{n}$ is the direct sum of n copies of $C(X)$.
4. $\Gamma(E \oplus F)=\Gamma(E) \oplus \Gamma(F)$.
5. Theorem (Swan): If E is a locally trivial complex vector bundle over a compact Hausdorff space X, then there is another locally trivial complex vector bundle F over X such that $E \oplus F$ is trivial.
6. Thus $\gamma(E) \oplus \Gamma(F) \cong C(X) \oplus \ldots \oplus C(X)$. Observe that $\mathcal{L}(C(X) \oplus \ldots \oplus C(X))=M_{n}(C(X))$. So $\gamma(E)$ can be identified with the projection p_{E} in $M_{n}(C(X))$ onto $\gamma(E)$.
$K_{0}(A)$: Grothendieck group of the semigroup of projections in $\cup_{n} M_{n}(A)$ modulo homotopy.

$2.2 \quad K_{0}$ group

2.2.1 Equivalence relations on projections

Murray-von Neumann equivalence. Let $p, q \in \operatorname{Proj}(A)$. Define $p \sim_{M v N} q$ if there is a partial isometry $v \in A$ such that $p=v v^{*}$ and $q=v^{*} v$.

Exercise 2.1 Show that \sim is an equivalence relation on A.
Exercise 2.2 Show that $p \sim_{M v N} q$ if and only if there are elements $x, y \in A$ such that $p=x y$ and $q=y x$.

Unitary equivalence. Let $p, q \in \operatorname{Proj}(A)$. Define $p \sim_{u} q$ if there is a unitary $u \in A^{\dagger}$ such that $q=u p u^{*}$.

Exercise 2.3 Show that \sim_{u} is an equivalence relation on A.

Exercise 2.4 Show that $p \sim_{u} q$ if and only if there is an element $z \in G L_{1}\left(A^{\dagger}\right)$ such that $q=z p z^{-1}$.
Exercise 2.5 Let $p, q \in \operatorname{Proj}(A)$. Show that $\|p-q\| \leq 1$.
Lemma 2.1 If $\|p-q\|<1$ then $p \sim_{u} q$.
Proof: Write $x=q p+(1-q)(1-p)$. Then $x-1=2 q p-q-p=(2 q-1)(p-q)$, so that $\|x-1\|<1$. Therefore x is invertible. It is easy to see now that $x p x^{-1}=q$. By the previous exercise, the result follows.

Exercise 2.6 Let $p(t)$ be a continuous path of projections in a unital C^{*}-algebra A. Then there is a continuous path of unitaries $u(t)$ with $u(0)=I$ such that $p(t)=u(t) p(0) u(t)^{*}$ for all t.
(Use the proofs of the lemma above and exercise 2.4)

Homotopy. Let $p, q \in \operatorname{Proj}(A)$. p and q are said to be homotopic if there is a norm continuous path $t \mapsto P(t)$ in A such that $P(t)^{*}=P(t)=P(t)^{2}$ for all t and $P(0)=p, P(1)=q$. One writes $p \sim_{h} q$ in such a case.

Exercise 2.7 Show that \sim_{h} is an equivalence relation on A.
Exercise 2.8 Let $p, q \in \operatorname{Proj}(A)$. Suppose there is a homotopy of idempotents from p to q. Show that $p \sim_{h} q$.

Lemma 2.2 Let $p, q \in \operatorname{Proj}(A)$ and $\|p-q\|<1$. Then show that $p \sim_{h} q$.
Proof: Write $P(t)=t p+(1-t) q$ for $0 \leq t \leq 1$. Let $\delta=\frac{1}{2}\|p-q\|$. Then $\|P(t)-p\|=$ $(1-t)\|p-q\| \leq \delta$ for $\frac{1}{2} \leq t \leq 1$, and $\|P(t)-q\|=t\|p-q\| \leq \delta$ for $0 \leq t \leq \frac{1}{2}$. Thus for all $t \in[0,1]$, one has $\sigma(P(t)) \subseteq[-\delta, \delta] \cup[1-\delta, 1+\delta]$. Let $f:[-\delta, \delta] \cup[1-\delta, 1+\delta] \rightarrow \mathbb{R}$ be the function given by

$$
f(x)= \begin{cases}0 & \text { if }|x| \leq \delta \\ 1 & \text { otherwise }\end{cases}
$$

Then $f(P(t))$ gives a required homotopy.

Proposition 2.3 Let $p, q \in \operatorname{Proj}(A)$. Then $p \sim_{h} q \Rightarrow p \sim_{u} q \Rightarrow p \sim_{M v N} q$.
Proof: Let $P:[0,1] \rightarrow A$ be a homotopy from p to q. Let $0<t_{1}<\ldots<t_{k}<1$ be such that $\left\|P\left(t_{i}\right)-P\left(t_{i+1}\right)\right\|<1$ for each i. Now use exercise 2.1 for each pair to conclude that $p \sim_{u} q$.

Next assume that u is a unitary such that $p=u q u^{*}$. Write $v=u q$. Then $v v^{*}=u q u^{*}=p$ and $v^{*} v=q u^{*} u q=q$. Thus $p \sim_{M v N} q$.

Lemma 2.4 Let $p, q \in \operatorname{Proj}(A)$. If $p \sim_{M v N} q$ and $1-p \sim_{M v N} 1-q$, then $p \sim_{u} q$.
Proof: Let v and w be partial isometries in A with $v^{*} v=p, v v^{*}=q, w^{*} w=1-p, w w^{*}=1-q$. Then $1-v^{*} v=w^{*} w$. Multiplying both sides from the left by w and from the right by w^{*}, one gets $w v^{*} v w^{*}=0$, so that $v w^{*}=0$. A similar argument shows that $v^{*} w=0$. It follows then that $u=v+w$ is unitary and $u p u^{*}=q$.

Corollary 2.5 Let $p, q \in \operatorname{Proj}(A) . p \sim_{u} q$ if and only if $p \sim_{M v N} q$ and $1-p \sim_{M v N} 1-q$.
Example 2.6 Example where $p \sim_{M v N} q$ but $p \not \chi_{u} q$: Take $P \in L_{2}(\mathbb{N})$ to be the projection onto $L_{2}(\mathbb{N} \backslash\{0\})$ and Q to be the identity operator.

Example 2.7 Example where $p \sim_{u} q$ but $p \not \chi_{h} q$: exists in $M_{2}\left(C\left(S^{3}\right)\right)$!
Proposition 2.8 Let $p, q \in \operatorname{Proj}(A)$. If $p \sim_{M v N} q$, then $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{u}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$ in $M_{2}(A)$.

Proof: Let v be a partial isometry with $v^{*} v=p$ and $v v^{*}=q$. Then $u:=\left(\begin{array}{cc}v & 1-v v^{*} \\ v^{*} v-1 & v^{*}\end{array}\right)$ is a unitary and $u\left(\begin{array}{cc}p & 0 \\ 0 & 0\end{array}\right) u^{*}=\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$.

Proposition 2.9 Let $p, q \in \operatorname{Proj}(A)$. If $p \sim_{M v N} q$, then $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{h}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$ in $M_{2}(A)$.
Proof: Let v and u be as in the previous proof. The path

$$
t \mapsto\left(\begin{array}{cc}
\cos \left(\frac{\pi}{2} t\right) v & 1-\left(1-\sin \left(\frac{\pi}{2} t\right)\right) v v^{*} \\
\left(1-\sin \left(\frac{\pi}{2} t\right)\right) v^{*} v-1 & \cos \left(\frac{\pi}{2} t\right) v^{*}
\end{array}\right)
$$

connects u to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. The path

$$
t \mapsto\left(\begin{array}{cc}
\cos \left(\frac{\pi}{2} t\right) & \sin \left(\frac{\pi}{2} t\right) \\
-\sin \left(\frac{\pi}{2} t\right) & \cos \left(\frac{\pi}{2} t\right)
\end{array}\right)
$$

connects $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Let u_{t} be a continuous path of unitaries that connect u to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $t \mapsto u_{t}\left(\begin{array}{cc}p & 0 \\ 0 & 0\end{array}\right) u_{t}^{*}$ is a continuous path of projections that connect $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right)$ with $\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$.

Proposition 2.10 Let $p, q \in \operatorname{Proj}(A)$. If $p \sim_{u} q$, then $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{h}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$ in $M_{2}(A)$.
Proof: This is a corollary of the previous proposition.

2.2.2 K_{0} group for unital C^{*}-algebras

Exercise 2.9 Let $p, p^{\prime} \in \operatorname{Proj}\left(M_{n}(A)\right), q, q^{\prime} \in \operatorname{Proj}\left(M_{k}(A)\right)$. Assume $p \sim_{M v N} p^{\prime}$ and $q \sim_{M v N} q^{\prime}$. Show that

$$
\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right) \sim_{M v N}\left(\begin{array}{cc}
p^{\prime} & 0 \\
0 & q^{\prime}
\end{array}\right) \quad \text { in } M_{n+k}(A) \text {. }
$$

Exercise 2.10 Let $p, q \in \operatorname{Proj}\left(M_{n}(A)\right)$. Show that

$$
\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right) \sim_{u}\left(\begin{array}{ll}
q & 0 \\
0 & p
\end{array}\right) .
$$

Let $P_{\infty}(A)$ denote $\operatorname{Proj}\left(\cup_{n} M_{n}(A)\right)$ modulo the equivalence $p \sim_{0}\left(\begin{array}{cc}p & 0 \\ 0 & 0\end{array}\right)$. On $P_{\infty}(A)$, define an equivalence relation \sim by declaring $[p]_{0} \sim[q]_{0}$ if there is an $n \in \mathbb{N}, p^{\prime} \in[p]_{0}, q^{\prime} \in[q]_{0}$ with $p^{\prime}, q^{\prime} \in M_{n}(A)$ and $p^{\prime} \sim_{M v N} q^{\prime}$ in $M_{n}(A)$. Let $V(A):=P_{\infty}(A) / \sim$.

Exercise 2.11 Define a relation \sim_{1} on $\sqcup_{n} \operatorname{Proj}\left(M_{n}(A)\right)$ as follows:
for $p \in M_{n}(A)$ and $q \in M_{k}(A), p \sim_{1} q$ if there exists a partial isometry $v \in M_{n, k}(A)$ such that $p=v v^{*}, q=v^{*} v$. Show that this is an equivalence relation and $\sqcup_{n} \operatorname{Proj}\left(M_{n}(A)\right) / \sim_{1}=V(A)$.

Define an operation on $V(A)$ by

$$
[p]+[q]:=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right]
$$

This is well-defined and turns it into an abelian semigroup. We will denote this semigroup by $V(A)$.

Exercise 2.12 Recall that if $p, q \in \operatorname{Proj}(A)$ obey $\|p-q\|<1$, then $p \sim_{u} q$. Use this to show that if A is separable, then $V(A)$ is countable.

Exercise 2.13 Let $p, q \in \operatorname{Proj}(A)$ with $p q=0=q p$. Show that $\left(\begin{array}{cc}p+q & 0 \\ 0 & 0\end{array}\right) \sim_{h}\left(\begin{array}{cc}p & 0 \\ 0 & q\end{array}\right)$.
Exercise 2.14 Let $(S,+)$ be a cancellative abelian semigroup. Define a relation \sim on $S \times S$ by declaring $(a, b) \sim_{M v N}\left(a^{\prime}, b^{\prime}\right)$ if $a+b^{\prime}=a^{\prime}+b$. Show that this is an equivalence relation.

Define an operation + on $S \times S$ by $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$. Show that if $(a, b) \sim_{M v N}\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim_{M v N}\left(c^{\prime}, d^{\prime}\right)$, then $(a, b)+(c, d) \sim_{M v N}\left(a^{\prime}, b^{\prime}\right)+\left(c^{\prime}, d^{\prime}\right)$. Thus the operation + lifts to a well-defined operation on $S \times S / \sim$.

Show that $(S \times S / \sim,+)$ is an abelian group with identity $[(a, a)]$ and $-[(a, b)]=[(b, a)]$.

If $(S,+)$ is an abelian semigroup possibly without cancellation, the relation defined in the above exercise need not be an equivalence relation. So in general, one needs to define the relation on $S \times S$ slightly differently.

Exercise 2.15 Let $(S,+)$ be an abelian semigroup. Define a relation \sim on $S \times S$ by declaring $(a, b) \sim_{M v N}$ $\left(a^{\prime}, b^{\prime}\right)$ if there exists a $c \in S$ such that $a+b^{\prime}+c=a^{\prime}+b+c$. Show that this is an equivalence relation.

Show that the natural addition on $S \times S$ lifts to an operation on $S \times S / \sim$, and $(S \times S / \sim,+)$ is an abelian group. (this is called the Grothendieck group of $(S,+)$ and will be denoted by $G(S)$.)

Exercise 2.16 Let $(S,+)$ be a semigroup and let \sim be as above. Show that $[(x+y, y)]$ is independent of y. Choose and fix an $y \in S$. Show that $\iota: x \mapsto[(x+y, y)]$ gives a semigroup homomorphism from S into $G(S)$. ι is injective if and only if S is cancellative.

Exercise 2.17 Let S and S^{\prime} be two semigroups and let $\phi: S \rightarrow S^{\prime}$ be a homomorphism. Then there is a unique group homomorphism $\psi: G(S) \rightarrow G\left(S^{\prime}\right)$ such that the following diagram commutes:

Exercise 2.18 Let S be a semigroup, G be a group and let $\phi: S \rightarrow G$ be a homomorphism. Then there is a unique group homomorphism $\psi: G(S) \rightarrow G$ such that the following diagram commutes:

Exercise 2.19 Let $S=\mathbb{N} \cup\{\infty\}$, with an operation + that gives the usual addition when restricted to \mathbb{N} and for $n \in S$, one has $n+\infty=\infty=\infty+n$.

Show that the Grothendieck group of $(S,+)$ is the trivial group.
Definition 2.11 Let A be a unital C^{*}-algebra. The K_{0} group of A is defined to be the Grothendieck group of $V(A)$.

Exercise 2.20 Let A be a unital C^{*}-algebra. Let S be the set $\operatorname{Proj}\left(M_{\infty}(A)\right)$ modulo the equivalence relation \sim. Let $\widetilde{K}_{0}(A)$ be the abelian group with generators $[p] \in S$ and satisfying the relation $[p]+[q]=[p \oplus q]$. Show that $\widetilde{K}_{0}(A)=K_{0}(A)$.

Exercise 2.21 Show that two projections p and q in $M_{n}(\mathbb{C})$ are equivalent if and only if Trace $p=\operatorname{Trace} q$. Use this to prove that $V(\mathbb{C})=(\mathbb{N},+)$ and hence conclude that $K_{0}(\mathbb{C})=\mathbb{Z}$.

Exercise 2.22 Use exercise 2.21 to show that $K_{0}\left(M_{n}(\mathbb{C})\right)=\mathbb{Z}$.
Exercise 2.23 Let A and B be two unital C^{*}-algebras and let $\phi: A \rightarrow B$ be a *-homomorphism. Denote by the same symbol the induced homomorphism $M_{n}(A)$ to $M_{n}(B)$. Let $p, q \in M_{n}(A)$. Show that if p and q are homotopic, then $\phi(p)$ and $\phi(q)$ are also homotopic.

Define $K_{0}(\phi): V(A) \rightarrow V(B)$ by $K_{0}(\phi)[p]=[\phi(p)]$. Show that this induces a homomorphism from $K_{0}(A)$ to $K_{0}(B)$.

Show that $K_{0}(i d)=i d$.
Exercise 2.24 Let A, B, C be unital C^{*}-algebras and let $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ be $*$-homomorphisms. Show that $K_{0}(\psi \circ \phi)=K_{0}(\psi) \circ K_{0}(\phi)$.

Let A, B be C^{*}-algebras. Two homomorphisms $\phi, \psi: A \rightarrow B$ are said to be homotopic if there exist a family of $*$-homomorphisms $\phi_{t}: A \rightarrow B, t \in[0,1]$ such that $\phi_{0}=\phi, \phi_{1}=\psi$ and for each $a \in A$, the map $t \mapsto \phi_{t}(a)$ is norm continuous.

Exercise 2.25 Show that if two homomorphisms $\phi, \psi: A \rightarrow B$ are homotopic, then $K_{0}(\phi)=K_{0}(\psi)$.
Two C^{*}-algebras A and B are said to be homotopy equivalent if there exist homomorphisms $\phi: A \rightarrow B$ and $\psi: B \rightarrow A$ such that $\phi \circ \psi$ is homotopic to $i d_{B}$ and $\psi \circ \phi$ is homotopic to $i d_{A}$.

Exercise 2.26 In such a case, one has $K_{0}(A)=K_{0}(B)$ and $K_{0}(\phi)^{-1}=K_{0}(\psi)$.
Exercise 2.27 Let X be a contractible compact Hausdorff space. Show that $K_{0}(C(X))=\mathbb{Z}$.
Exercise 2.28 Find $V(\mathcal{L}(\mathcal{H}))$ where \mathcal{H} is infinite dimensional. Use this to show that $K_{0}(\mathcal{L}(\mathcal{H}))=0$.
Exercise 2.29 Let A be a unital C^{*}-algebra, and let $n \in \mathbb{N}$. Show that the map $a \mapsto\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ induces an isomorphism between $K_{0}\left(M_{n}(A)\right)$ and $K_{0}(A)$.

2.2.3 K_{0} group for nonunital C^{*}-algebras

Suppose we have the short exact sequence

$$
0 \longrightarrow A \longrightarrow A^{\dagger} \xrightarrow{\pi} \mathbb{C} \longrightarrow 0 .
$$

Then we have a group homomorphism $K_{0}(\pi)$ from $K_{0}\left(A^{\dagger}\right)$ to $K_{0}(\mathbb{C})=\mathbb{Z}$. Define the K_{0} group of A to be the kernel of this homomorphism.

Exercise 2.30 Let A and B be two C^{*}-algebras and let $\phi: A \rightarrow B$ be a $*$-homomorphism. Then ϕ extends uniquely to a unital $*$-homomorphism $\phi^{\dagger}: A^{\dagger} \rightarrow B^{\dagger}$ such that the following diagram commutes:

Show that

1. $K_{0}\left(\phi^{\dagger}\right)$ maps ker $K_{0}\left(\pi_{A}\right)$ into ker $K_{0}\left(\pi_{B}\right)$.
2. if A is unital, then $\operatorname{ker} K_{0}\left(\pi_{B}\right) \cong K_{0}(A)$.
3. if A and B are unital, then the restriction of $K_{0}\left(\phi^{\dagger}\right)$ to ker $K_{0}\left(\pi_{A}\right)$ is same as the map $K_{0}(\phi)$.

Let ϕ_{t} be a family of homomorphisms from A to B and let ϕ_{t}^{\dagger} be its unique extension to a homomorphism from A^{\dagger} to B^{\dagger}. Show that if ϕ_{t} is a homotopy, then ϕ_{t}^{\dagger} is also a homotopy.

If A and/or B is nonunital, define $K_{0}(\phi)$ to be the restriction of $K_{0}\left(\phi^{\dagger}\right)$ to ker $K_{0}\left(\pi_{A}\right)$.
Exercise 2.31 Let A, B, C be C^{*}-algebras and let $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ be $*$-homomorphisms. Show that $K_{0}\left(i d_{A}\right)=i d$ and $K_{0}(\psi \circ \phi)=K_{0}(\psi) \circ K_{0}(\phi)$.

Exercise 2.32 Suppose two C^{*}-algebras A and B are homotopic, i.e. there are homomorphisms $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ such that $\phi \circ \psi$ is homotopic to $i d_{B}$ and $\psi \circ \phi$ is homotopic to $i d_{A}$. Then $K_{0}(A)=K_{0}(B)$ and $K_{0}(\phi)^{-1}=K_{0}(\psi)$.

Proposition 2.12 Let A be a nonunital C^{*}-algebra. Lets be the extension of the map $(a, z) \mapsto$ $(0, z)$ (from A^{\dagger} to A^{\dagger}) to $\cup_{n} M_{n}\left(A^{\dagger}\right)$. Then

$$
K_{0}(A)=\left\{[p]-[s(p)]: p \in \operatorname{Proj}\left(\cup_{n} M_{n}\left(A^{\dagger}\right)\right)\right\} .
$$

Proof: Let $p \in \operatorname{Proj}\left(M_{n}\left(A^{\dagger}\right)\right)$. Look at the element $[p]-[s(p)]$ in $K_{0}\left(A^{\dagger}\right)$. Since

$$
K_{0}(\pi)([p]-[s(p)])=[\pi(p)]-[\pi(s(p))]=[\pi(p)]-[\pi(p)]=0,
$$

we have $[p]-[s(p)] \in K_{0}(A)$.
Let us take an element $[p]-[q] \in K_{0}\left(A^{\dagger}\right)$ such that $[p]-[q] \in \operatorname{ker} K_{0}(\pi), p, q \in \operatorname{Proj}\left(\cup_{n} M_{n}\left(A^{\dagger}\right)\right)$. Let $\lambda: \mathbb{C} \rightarrow A^{\dagger}$ be the map $z \mapsto(0, z)$. Then $s=\lambda \circ \pi$. Therefore $[p]-[q] \in \operatorname{ker} K_{0}(s)$. Let us write

$$
\tilde{p}=\left(\begin{array}{cc}
p & 0 \\
0 & 1-q
\end{array}\right), \quad \tilde{q}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),
$$

Then observe that

$$
[p]-[q]=\left[\left(\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right)\right]-\left[\left(\begin{array}{ll}
0 & 0 \\
0 & q
\end{array}\right)\right]=[\tilde{p}]-[\tilde{q}]
$$

Therefore $K_{0}(s)([\tilde{p}]-[\tilde{q}])=0$. But clearly $s([\tilde{q}])=[\tilde{q}]$. Therefore $[s(\tilde{p})]-[\tilde{q}]=0$. Thus there exist $r, r^{\prime} \in \operatorname{Proj}\left(\cup_{n} M_{n}\left(A^{\dagger}\right)\right)$ such that $[p]+[\tilde{q}]+[r]=[\tilde{p}]+[q]+[r]$ and $[s(\tilde{p})]+\left[r^{\prime}\right]=[\tilde{q}]+\left[r^{\prime}\right]$. Combining these, we get

$$
[p]+[s(\tilde{p})]+\left[r \oplus r^{\prime}\right]=[\tilde{p}]+[q]+\left[r \oplus r^{\prime}\right]
$$

which means $[p]-[q]=[\tilde{p}]-[s(\tilde{p})]$.

Lemma 2.13 If $p \in \operatorname{Proj}\left(M_{k}\left(A^{\dagger}\right)\right)$ and $\pi(p) \sim_{M v N} 1_{n}$ in $M_{k}(\mathbb{C})(n \leq k)$, then there is an element $q \in \operatorname{Proj}\left(M_{k}\left(A^{\dagger}\right)\right)$ such that $p \sim_{u} q$ and $\pi(q)=1_{n}$.

Proof: Since $\pi(p) \sim_{M v N} 1_{n}$ in $M_{k}(\mathbb{C})$, which is finite dimensional, we have $1_{k}-\pi(p) \sim_{M v N}$ $1_{k}-1_{n}$ and consequently $\pi(p) \sim_{u} 1_{n}$, i.e. there is a unitary $u \in M_{k}(\mathbb{C})$ such that $u \pi(p) u^{*}=1_{n}$. Then $q:=u p u^{*}$ gives a required projection.

Exercise 2.33 Elements of $K_{0}(A)$ can be written in the form $[p]-\left[1_{n}\right]$ where $p \in M_{k}\left(A^{\dagger}\right), k \geq n$ and $p-1_{n} \in M_{k}(A)$.
Proof: First show that any element can be written as $\left[p^{\prime}\right]-\left[1_{n}\right]$. Next use the fact that this is in the kernel of $K_{0}(\pi)$ to conclude that $\left[\pi\left(p^{\prime}\right)\right]-\left[1_{n}\right]=0$. Since $V(\mathbb{C})=\mathbb{N}$ is cancellative, this implies $\left[\pi\left(p^{\prime}\right)\right]=\left[1_{n}\right]$, i.e. $\pi\left(p^{\prime}\right) \sim_{M v N} 1_{n}$. Now use lemma 2.13 to get a projection p such that $p \sim_{u} p^{\prime}$ and $\pi(p)=1_{n}$.

Exercise 2.34 Let $p, q \in \operatorname{Proj}\left(M_{k}\left(A^{\dagger}\right)\right)$ and $[p]-[q]=0$ in $K_{0}(A)$. Then there exist $m, n \in \mathbb{N}, m \leq n$ such that

$$
\left(\begin{array}{cc}
p & 0 \\
0 & 1_{m}
\end{array}\right) \sim_{h}\left(\begin{array}{cc}
q & 0 \\
0 & 1_{m}
\end{array}\right) \quad \text { in } M_{k+n}\left(A^{\dagger}\right)
$$

Proof: Since $[p]-[q]=0$, there exists $r \in \operatorname{Proj}\left(M_{m}\left(A^{\dagger}\right)\right)$ for some $m \in \mathbb{N}$ such that $[p]+[r]=[q]+[r]$. Therefore

$$
\left(\begin{array}{cc}
p & 0 \\
0 & r
\end{array}\right) \sim_{h}\left(\begin{array}{ll}
q & 0 \\
0 & r
\end{array}\right) \quad \text { in } M_{k+n}\left(A^{\dagger}\right)
$$

for some $n \geq m$. The required homotopy now follows.

2.2.4 Properties

Theorem $2.14 K_{0}$ is half-exact, i.e. if we have a short exact sequence

$$
0 \longrightarrow J \xrightarrow{\phi} A \xrightarrow{\pi} A / J \longrightarrow 0
$$

then the sequence

$$
K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \xrightarrow{K_{0}(\pi)} K_{0}(A / J)
$$

is exact in the middle.

Proof: Since $\pi \circ \phi=0$, it follows that the range of $K_{0}(\phi)$ is contained in ker $K_{0}(\pi)$. Now take an element x in ker $K_{0}(\pi)$. By exercise 2.33, $x=[p]-\left[1_{n}\right], p \in M_{k}\left(A^{\dagger}\right)$. Since this is in the kernel of $K_{0}(\pi)$, we have $[\pi(p)]-\left[1_{n}\right]=0$ in $K_{0}(A / J)$. Hence it follows from exercise [2.34 that,

$$
\left(\begin{array}{cc}
\pi(p) & 0 \\
0 & 1_{m}
\end{array}\right) \sim_{u}\left(\begin{array}{cc}
1_{n} & 0 \\
0 & 1_{m}
\end{array}\right) \quad \text { in } M_{k+j}\left((A / J)^{\dagger}\right)
$$

Let u be a unitary in $M_{k+j}\left((A / J)^{\dagger}\right)$ such that

$$
u\left(\begin{array}{cc}
\pi(p) & 0 \\
0 & 1_{m}
\end{array}\right) u^{*}=\left(\begin{array}{cc}
1_{n} & 0 \\
0 & 1_{m}
\end{array}\right)
$$

Let w be a unitary in $M_{2 k+2 j}\left(A^{\dagger}\right)$ such that $\pi(w)=\left(\begin{array}{cc}u & 0 \\ 0 & u^{*}\end{array}\right)$ and $w \sim_{h} 1_{2 k+2 j}$. (Assume that such a w would exist; this is a fact from C^{*}-algebras that we will prove later) Now let $q=w\left(\begin{array}{cc}p & 0 \\ 0 & 1_{m}\end{array}\right) w^{*}$. Then

$$
\pi(q)=\left(\begin{array}{cc}
u & 0 \\
0 & u^{*}
\end{array}\right)\left(\begin{array}{cc}
\pi(p) & 0 \\
0 & 1_{m}
\end{array}\right)\left(\begin{array}{cc}
u^{*} & 0 \\
0 & u
\end{array}\right)=\left(\begin{array}{cc}
1_{k} & 0 \\
0 & 1_{m}
\end{array}\right)
$$

Therefore $q \in M_{k}\left(J^{\dagger}\right)$. Since $[q]=\left[\left(\begin{array}{cc}p & 0 \\ 0 & 1_{m}\end{array}\right)\right]$, we have

$$
[p]-\left[1_{n}\right]=\left[\left(\begin{array}{cc}
p & 0 \\
0 & 1_{m}
\end{array}\right)\right]-\left[\left(\begin{array}{cc}
1_{n} & 0 \\
0 & 1_{m}
\end{array}\right)\right]=[q]-\left[1_{n+m}\right]
$$

But the right hand side is clearly in the range of $K_{0}(\phi)$.

Theorem $2.15 K_{0}$ takes split exact sequences to split exact sequences, i.e. if the short exact sequence

$$
0 \longrightarrow J \xrightarrow{\phi} A \xrightarrow{\pi} A / J \longrightarrow 0,
$$

splits with a splitting homomorphism $\lambda: A / J \rightarrow A$, then the sequence

$$
0 \longrightarrow K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \xrightarrow{K_{0}(\pi)} K_{0}(A / J) \longrightarrow 0
$$

is exact and splits with splitting map $K_{0}(\lambda)$.
Proof: Since $\pi \circ \lambda=i d_{A / J}$, it follows that

$$
K_{0}(\pi) \circ K_{0}(\lambda)=K_{0}\left(i d_{A / J}\right)=i d_{K_{0}(A / J)} .
$$

So $K_{0}(\pi)$ is onto.
Take an element in $K_{0}(J)$. By exercise [2.33] it is of the form $[p]-\left[1_{n}\right]$ where $p \in$ $\operatorname{Proj}\left(M_{k}\left(J^{\dagger}\right)\right)$ for some $k \in \mathbb{N}, k \geq n$ and $p-1_{n} \in M_{k}(J)$. If it is an element of ker $K_{0}(\phi)$ then
it follows that $\left[\phi_{k}^{\dagger}(p)\right]-\left[1_{n}\right]=0$. From exercise 2.34, we conclude that there exist $m, j \in \mathbb{N}$, $m \leq j$ such that

$$
\left(\begin{array}{cc}
\phi_{k}^{\dagger}(p) & 0 \\
0 & 1_{m}
\end{array}\right) \sim_{h}\left(\begin{array}{cc}
1_{n} & 0 \\
0 & 1_{m}
\end{array}\right) \quad \text { in } M_{k+j}\left(A^{\dagger}\right)
$$

i.e. there is a unitary $u \in M_{k+j}\left(A^{\dagger}\right)$ such that

$$
u\left(\begin{array}{cc}
\phi_{k}^{\dagger}(p) & 0 \\
0 & 1_{m}
\end{array}\right) u^{*}=\left(\begin{array}{cc}
1_{n} & 0 \\
0 & 1_{m}
\end{array}\right)
$$

Write

$$
p^{\prime}=\left(\begin{array}{cc}
p & 0 \\
0 & 1_{m}
\end{array}\right) \in M_{k+j}\left(J^{\dagger}\right)
$$

Then $[p]-\left[1_{n}\right]=\left[p^{\prime}\right]-\left[1_{n+m}\right], u \phi_{k+j}^{\dagger}\left(p^{\prime}\right) u^{*}=1_{n+m}$ and $p^{\prime}-1_{n+m} \in M_{k+j}(J)$.
Exercise 2.35 Now complete the proof.

Proposition 2.16 Let A be a C^{*}-algebra, and let $n \in M_{n}(A)$. Then $K_{0}\left(M_{n}(A)\right)=K_{0}(A)$.
Proof: Let $\phi: A \rightarrow M_{n}(A)$ be the map $a \mapsto\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ and let ψ be the corresponding map from \mathbb{C} to $M_{n}(\mathbb{C})$. Then the following diagram commutes and have split exact rows:

It follows from the properties of K_{0} that the following diagram also commutes and have split exact rows:

Exercise 2.36 Show that if $K_{0}\left(\phi^{\dagger}\right)$ and $K_{0}(\psi)$ are isomorphisms, then $K_{0}(\phi)$ is also an isomorphism.
Therefore the proof follows from the result for the unital case.

Proposition 2.17 Let A and B be two C^{*}-algebras. Let ι_{A} and ι_{B} be the natural inclusions of A and B into $A \oplus B$. Then $K_{0}\left(\iota_{A}\right) \oplus K_{0}\left(\iota_{B}\right): K_{0}(A) \oplus K_{0}(B) \rightarrow K_{0}(A \oplus B)$ is an isomorphism.

Proof: Let π be the projection $A \oplus B \rightarrow B$. Then the following sequence is split exact:

$$
0 \longrightarrow A \xrightarrow{\iota_{A}} A \oplus B \underset{\iota_{B}}{\stackrel{\pi}{\longrightarrow}} B \longrightarrow 0
$$

By split exactness, we have the split exact sequence of abelian groups

$$
0 \longrightarrow K_{0}(A) \xrightarrow{K_{0}\left(\iota_{A}\right)} K_{0}(A \oplus B) \stackrel{K_{0}(\pi)}{\underset{K_{0}\left(\iota_{B}\right)}{\longrightarrow}} K_{0}(B) \longrightarrow 0
$$

Therefore the result follows.

Proposition 2.18 Let $\left(A_{i}, \phi_{j k}\right)$ be an inductive system of C^{*}-algebras. Then $K_{0}\left(\lim \left(A_{i}, \phi_{j k}\right)\right)=$ $\lim \left(K_{0}\left(A_{i}\right), K_{0}\left(\phi_{j k}\right)\right)$.

Proof: Since

we have

By universality of $\lim \left(K_{0}\left(A_{i}\right), K_{0}\left(\phi_{j k}\right)\right)$, there is a unique morphism $\psi_{*}: \lim K_{0}\left(A_{i}\right) \rightarrow K_{0}(A)$ such that

where ξ_{j} 's are the maps corresponding to the inductive system $\left(K_{0}\left(A_{i}\right), K_{0}\left(\phi_{j k}\right)\right)$.
We need to show that ψ_{*} is one-one and onto.
Since $\lim K_{0}\left(A_{i}\right)=\cup_{j} \xi_{j}\left(K_{0}\left(A_{j}\right)\right)$, for injectivity it is enough to show that ψ_{*} is injective on $\xi_{j}\left(K_{0}\left(A_{j}\right)\right)$. So take an element $x \in K_{0}\left(A_{j}\right)$ and assume $\psi_{*} \xi_{j}(x)=0$. We have to show that $\xi_{j}(x)=0$. We will use the facts that $\psi_{*} \xi_{j}=K_{0}\left(\psi_{j}\right)$ and $\xi_{k} K_{0}\left(\phi_{k j}\right)=\xi_{j}$ for $k \geq j$.

Exercise 2.37 Complete the proof of injectivity of ψ_{*}.
Next, take $[p]-[s(p)], p \in \operatorname{Proj}\left(M_{k}\left(A^{\dagger}\right)\right)$. In order to show that this is in the range of ψ_{*}, complete the following steps:

Approximate p with $\phi_{n}\left(a_{n}\right)$ for some self adjoint element $a_{n} \in M_{k}\left(A_{n}^{\dagger}\right)$; write $a_{m}=\phi_{m n}\left(a_{n}\right)$ for $m \geq n$.

Now show:

1. $\left\|a_{m}-a_{m}^{2}\right\|<1 / 4$ for large m,
2. there is a projection $q \in M_{k}\left(A_{m}^{\dagger}\right)$ such that $\left\|a_{m}-q\right\|<1 / 2$,
3. $\left\|\phi_{m}(q)-p\right\|<1$,
4. $[p]-[s(p)]=\left[\phi_{m}(q)\right]-\left[s\left(\phi_{m}(q)\right)\right]=K_{0}\left(\phi_{m}\right)([q]-[s(q)])$.

Exercise 2.38 Show that $K_{0}(\mathcal{K} \otimes A)=K_{0}(A)$.

2.2.5 Computations of K_{0}

A C^{*}-algebra is called properly infinite if there are projections p, q with $p q=0$ and $1 \sim_{M v N}$ $p \sim_{M v N} q$.

Exercise 2.39 If a C^{*}-algebra is properly infinite, then its quotients are also properly infinite.
Show that $\mathcal{L}(\mathcal{H})$ for infinite dimensional \mathcal{H} and the Cuntz algebras \mathscr{O}_{n} are properly infinite.
Let A be properly infinite, p and q being projections with $p q=0$ and $1 \sim_{M v N} p \sim_{M v N} q$. Let $v, w \in A$ such that $v^{*} v=1=w^{*} w$ and $p=v v^{*}, q=w w^{*}$. Since $p q=0$, it follows that $v^{*} w=0$. Let $s_{k}=v^{k} w, k \in \mathbb{N}$. Then $s_{k}^{*} s_{j}=\delta_{k j}$, i.e. s_{k} 's are isometries with orthogonal range. Let $v_{n}=\left(s_{1}, \ldots, s_{n}\right)$. Then it is easy to see that $b_{n} p b_{n}^{*} \sim p$ in $\operatorname{Proj}\left(\cup_{n} M_{n}(A)\right)$.

Exercise 2.40 Let $p, q \in \operatorname{Proj}(A)$. Write $r=s_{1} p s_{1}^{*}+s_{2}(1-q) s_{2}^{*}+s_{3}\left(1-s_{1} s_{1}^{*}-s_{2} s_{2}^{*}\right) s_{3}^{*}$. Show that

1. $r \in \operatorname{Proj}(A)$,
2. $r \sim\left(\begin{array}{lll}p & & \\ & 0 & \\ & & 0\end{array}\right)+\left(\begin{array}{lll}0 & & \\ & 1-q & \\ & & 0\end{array}\right)+\left(\begin{array}{lll}0 & & \\ & 0 & \\ & & 1\end{array}\right)$,
3. $\left.[r]=\left[\begin{array}{lll}p & & \\ & 0 & \\ & & 0\end{array}\right)\right]-\left[\left(\begin{array}{lll}0 & & \\ & q & \\ & & 0\end{array}\right)\right]=[p]-[q]$.

$2.3 \quad K_{1}$ group

2.3.1 Higher K-groups

Let A be a C^{*}-algebra. Then the C^{*}-algebra

$$
\{f \in C([0,1], A): f(0)=f(1)\}
$$

is called the suspension of A and is denoted by $S A$.
Exercise 2.41 Show that $S A \cong C_{0}(\mathbb{R}) \otimes A$.
Exercise $2.42(S A)^{\dagger}=\left\{f \in C\left([0,1], A^{\dagger}\right): f(0)=f(1)=\lambda \in \mathbb{C}, s(f(t))=\lambda \in \mathbb{C}\right.$ for $\left.t \in[0,1]\right\}$.

Exercise 2.43 Let $\phi:[0,1] \times[0,1] \rightarrow A$ be a continuous map with $\phi(t, 1)=\phi(t, 0)=0$ for all $t \in[0,1]$. Then $t \mapsto \phi_{t}$ where $\phi_{t}(s)=\phi(t, s)$ gives a homotopy in $S A$.

Conversely, any homotopy in $S A$ arises in this way.
Exercise 2.44 Let $p_{0}, p_{1} \in \operatorname{Proj}\left(\cup_{n} M_{n}\left(A^{\dagger}\right)\right)$. Then $p_{0} \sim_{M v N} p_{1}$ if and only if there are projections $p_{t} \in$ $\cup_{n} M_{n}\left((S A)^{\dagger}\right)$ such that for each $s \in[0,1], t \mapsto p_{t}(s)$ is a homotopy between $p_{0}=p_{0}(s)$ and $p_{1}=p_{1}(s)$.

Exercise 2.45 Let $u_{0}, u_{1} \in \mathscr{U}\left(\cup_{n} \mathscr{U}_{n}\left(A^{\dagger}\right)\right)$. Then $u_{0} \sim u_{1}$ if and only if there are unitaries $u_{t} \in \cup_{n} M_{n}\left((S A)^{\dagger}\right)$ such that for each $s \in[0,1], t \mapsto u_{t}(s)$ is a homotopy between $u_{0}=u_{0}(s)$ and $u_{1}=u_{1}(s)$.

Definition 2.19 Let $n \in \mathbb{N}$. Define the $\mathbf{n t h} K$-group of A by $K_{n}(A):=K_{0}\left(S^{n} A\right)$. In particular $K_{1}(A):=K_{0}(S A)$.

Exercise 2.46 Show that $S M_{n}(A) \cong M_{n}(S A)$.
Exercise 2.47 Let A and B be two C^{*}-algebras and let $\phi: A \rightarrow B$ be a $*$-homomorphism. Define a map $\tilde{\phi}: S A \rightarrow S B$ by

$$
\tilde{\phi} f(t)=\phi(f(t)), \quad t \in[0,1] .
$$

Show that $\tilde{\phi}$ is a $*$-homomorphism from $S A$ to $S B$. (we will normally denote this map $\tilde{\phi}$ by $S(\phi)$ or ϕ_{s})

Exercise 2.48 Let

$$
0 \longrightarrow J \xrightarrow{\phi} A \xrightarrow{\pi} A / J \longrightarrow 0
$$

be a short exact sequence of C^{*}-algebras. Then the sequence

$$
0 \longrightarrow S J \xrightarrow{S(\phi)} S A \xrightarrow{S(\pi)} S(A / J) \longrightarrow 0
$$

is exact.
If the sequence

$$
0 \longrightarrow J \longrightarrow A \underset{\lambda}{\stackrel{\pi}{\rightleftarrows}} A / J \longrightarrow 0
$$

is split exact, then so is the sequence

$$
0 \longrightarrow S J \longrightarrow S A \underset{\lambda_{s}}{\stackrel{\pi_{s}}{\rightleftarrows}} S(A / J) \longrightarrow 0
$$

Exercise 2.49 Let A and B be C^{*}-algebras. Show that $S(A \oplus B)=S A \oplus S B$.
Exercise 2.50 Let B be a C^{*}-algebra. Show that $S(\mathcal{K} \otimes B) \cong \mathcal{K} \otimes S B$.

Proposition 2.20 Let A and B be two C^{*}-algebras. Then

1. $K_{1}\left(M_{n}(A)\right)=K_{1}(A)$,
2. $K_{1}(A \oplus B)=K_{1}(A) \oplus K_{1}(B)$,
3. $K_{1}(\mathcal{K} \otimes A)=K_{1}(A)$,
4. K_{1} is half exact and carries split exact sequences to split exact sequences.

We have the following split exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow A \longrightarrow A^{\dagger} \stackrel{\pi}{\stackrel{\lambda}{\rightleftarrows}} \mathbb{C} \longrightarrow 0 \\
& 0 \longrightarrow S A \longrightarrow(S A)^{\dagger} \stackrel{\pi_{s}}{\underset{\lambda_{s}}{\longrightarrow}} \mathbb{C} \longrightarrow 0
\end{aligned}
$$

Recall that

$$
\begin{aligned}
(S A)^{\dagger}= & \left\{f \in C\left([0,1], A^{\dagger}\right): f(0)=f(1)=\lambda \in \mathbb{C}, \pi(f(t))=\lambda \text { for all } t\right\}, \\
M_{n}\left((S A)^{\dagger}\right)= & \left\{f \in C\left([0,1], M_{n}\left(A^{\dagger}\right)\right): f(0)=f(1)=\lambda \in M_{n}(\mathbb{C}), \pi(f(t))=\lambda \text { for all } t\right\}, \\
\operatorname{Proj}\left(M_{n}\left((S A)^{\dagger}\right)\right)= & \left\{f \in C\left([0,1], M_{n}\left(A^{\dagger}\right)\right): f(0)=f(1)=\lambda \in M_{n}(\mathbb{C}), \pi(f(t))=\lambda \text { for all } t,\right. \\
& \text { each } f(t) \text { is a projection }\}, \\
K_{0}\left((S A)^{\dagger}\right)= & \left\{[p]-[q]: p, q \in \cup_{n} \operatorname{Proj}\left(M_{n}\left((S A)^{\dagger}\right)\right)\right\} \\
= & \cup_{n}\left\{[p]-[q]: p, q \in \operatorname{Proj}\left(M_{n}\left((S A)^{\dagger}\right)\right)\right\} .
\end{aligned}
$$

If $[p]-[q] \in \operatorname{ker} K_{0}\left(\pi_{s}\right)$, then $\left[\pi_{s}(p)\right]-\left[\pi_{s}(q)\right]=0$, i.e. $[p(0)]-[q(0)]=0$. But this equality takes place in the Grothendieck group of $V(\mathbb{C})=\mathbb{N}$ where cancellation holds. So $p(0) \sim q(0)$. So there is a unitary $u \in M_{2 n}(\mathbb{C})$ such that

$$
u\left(\begin{array}{cc}
p(0) & 0 \\
0 & 0
\end{array}\right) u^{*}=\left(\begin{array}{cc}
q(0) & 0 \\
0 & 0
\end{array}\right) .
$$

Define

$$
p^{\prime}(t)=\left(\begin{array}{cc}
p(t) & 0 \\
0 & 0
\end{array}\right), \quad q^{\prime}(t)=\left(\begin{array}{cc}
q(t) & 0 \\
0 & 0
\end{array}\right), \quad u(t)=u
$$

Then $p^{\prime}, q^{\prime} \in \operatorname{Proj}\left(M_{2 n}\left((S A)^{\dagger}\right)\right)$, u is unitary in $M_{2 n}\left((S A)^{\dagger}\right)$. So $p \sim p^{\prime} \sim u p^{\prime} u^{*}$ and $q \sim q^{\prime}$. Therefore $[p]-[q]=\left[u p^{\prime} u^{*}\right]-\left[q^{\prime}\right]$ and

$$
u p^{\prime} u^{*}(0)=u\left(\begin{array}{cc}
p(0) & 0 \\
0 & 0
\end{array}\right) u^{*}=q^{\prime}(0) .
$$

Thus

$$
K_{0}(S A) \subseteq \cup_{n}\left\{[p]-[q]: p, q \in \operatorname{Proj}\left(M_{n}\left((S A)^{\dagger}\right)\right), p(0)=q(0)\right\}
$$

The opposite inclusion is clear. So we have

$$
K_{0}(S A)=\cup_{n}\left\{[p]-[q]: p, q \in \operatorname{Proj}\left(M_{n}\left((S A)^{\dagger}\right)\right), p(0)=q(0)\right\} .
$$

2.3.2 Homotopies of unitaries and invertibles

Define

$$
G L_{n}^{\dagger}(A)=\left\{a \in G L_{n}\left(A^{\dagger}\right): \pi(a)=1_{n}\right\}, \quad U_{n}^{\dagger}(A)=\left\{a \in U_{n}\left(A^{\dagger}\right): \pi(a)=1_{n}\right\}
$$

Exercise 2.51 Show that

1. if A is unital, then $G L_{n}^{\dagger}(A)=\left\{a \oplus 1_{n}: a \in G L_{n}(A)\right\}$,
2. $z \in G L_{n}\left(A^{\dagger}\right)$ implies $z \pi\left(z^{-1}\right) \in G L_{n}^{\dagger}(A)$,
3. $u \in U_{n}\left(A^{\dagger}\right)$ implies $u \pi\left(u^{*}\right) \in U_{n}^{\dagger}(A)$.

Exercise 2.52 Let A be unital and let $x \in G L_{n}(A), y \in M_{n}(A)$ satisfy

$$
\|x-y\|<\frac{1}{\left\|x^{-1}\right\|}
$$

Then the path $t \mapsto t x+(1-t) y, t \in[0,1]$ lies in $G L_{n}(A)$.
Show that every path component of $G L_{n}(A)$ is open, so that every connected component coincides with a path component.

Exercise 2.53 Let A be a unital C^{*}-algebra and u be a unitary in A with $\sigma(u) \neq S^{1}$. Then there a continuous path of unitaries in A connecting u to the identity. (Hint: Get a self-adjoint element $a \in A$ such that $u=\exp (i a))$

Exercise 2.54 Show that any unitary in $M_{n}(\mathbb{C})$ can be connected to the identity through a continuous path of unitaries.

Lemma 2.21 Let $z \in G L_{1}(A)$. Then $u=z|z|^{-1} \in \mathscr{U}(A)$ and $u \sim_{h} z$.
Proof: Let $z_{t}=u \exp (t \log |z|)$. This gives a homotopy between u and z.

Lemma 2.22 Let $u, v \in \mathscr{U}(A)$ with $\|u-v\|<2$. Then $u \sim_{h} v$.
Proof: Since $\|u-v\|<2$, we have $\left\|u v^{*}-1\right\|<2$, so that $\sigma\left(u v^{*}\right) \subseteq S^{1}-\{-1\}$. Therefore $u v^{*} \sim_{h} 1$, which implies that $u \sim_{h} v$.

Proposition 2.23 Let A be a unital C^{*}-algebra and let $u \in A$ be a unitary. Then

1. $\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & u\end{array}\right)$,
2. $\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right) \sim_{h}\left(\begin{array}{cc}u v & 0 \\ 0 & 1\end{array}\right) \sim_{h}\left(\begin{array}{cc}v u & 0 \\ 0 & 1\end{array}\right)$,
3. $\left(\begin{array}{cc}u & 0 \\ 0 & u^{*}\end{array}\right) \sim_{h}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Proof: Define

$$
V(t)=\left(\begin{array}{cc}
\cos \left(\frac{\pi}{2} t\right) & \sin \left(\frac{\pi}{2} t\right) \\
-\sin \left(\frac{\pi}{2} t\right) & \cos \left(\frac{\pi}{2} t\right)
\end{array}\right), \quad t \in[0,1]
$$

Then $u_{t}: t \mapsto V(t)\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right) V(t)^{*}$ gives a homotopy from $\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right)$ to $\left(\begin{array}{ll}1 & 0 \\ 0 & u\end{array}\right)$.
The other two parts are immediate corollaries of part 1.

Remark 2.24 If u and v are in A^{\dagger} with $s(u)=1=s(v)$ in the above proposition, then the homotopies u_{t} etc constructed are such that $u_{t} \in M_{2}\left(A^{\dagger}\right)$ and $s\left(u_{t}\right)=1$ for all t.

Proposition $2.25 G L_{n}^{\dagger}(A) / G L_{n}^{\dagger}(A)_{0} \cong U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}$.

Proof: Let π_{1} and π_{2} be the quotient maps from $G L_{n}^{\dagger}(A)$ to $G L_{n}^{\dagger}(A) / G L_{n}^{\dagger}(A)_{0}$ and from $U_{n}^{\dagger}(A)$ to $U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}$ respectively. Define $\phi: G L_{n}^{\dagger}(A) \rightarrow U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}$ by

$$
\phi(z)=\pi_{2}\left(z|z|^{-1}\right)
$$

Clearly ϕ is surjective.
Exercise 2.55 If x_{t} is a homotopy between z and w, then $t \mapsto x_{t}\left|x_{t}\right|^{-1}$ gives a homotopy between $z|z|^{-1}$ and $w|w|^{-1}$.

Thus ϕ lifts to a map $\tilde{\phi}$ from $G L_{n}^{\dagger}(A) / G L_{n}^{\dagger}(A)_{0}$ to $U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}$.
Exercise 2.56 Show that $\tilde{\phi}$ is injective and is a group homomorphism.

This completes the proof!

Proposition 2.26 $G L_{n}\left(A^{\dagger}\right) / G L_{n}\left(A^{\dagger}\right)_{0} \cong G L_{n}^{\dagger}(A) / G L_{n}^{\dagger}(A)_{0}$.

Proof: Use the map $z \mapsto z \pi\left(z^{-1}\right)\left(\pi\right.$ is the projection $G L_{n}\left(A^{\dagger}\right) \rightarrow G L_{n}(\mathbb{C})$.

Proposition $2.27 U_{n}\left(A^{\dagger}\right) / U_{n}\left(A^{\dagger}\right)_{0} \cong U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}$.

Proof: Use the map $u \mapsto u \pi\left(u^{*}\right)$ from $U_{n}\left(A^{\dagger}\right)$ to $U_{n}^{\dagger}(A)\left(\pi\right.$ is the projection $\left.U_{n}\left(A^{\dagger}\right) \rightarrow U_{n}(\mathbb{C})\right)$.

Let us now define the group $\tilde{K}_{1}(A)$. Take the disjoint union $\sqcup_{n} U_{n}^{\dagger}(A)$. Suppose $u \in U_{n}^{\dagger}(A)$ and $v \in U_{k}^{\dagger}(A)$. Declare them to be equivalent $(u \sim v)$ if there are integers $r, s \in \mathbb{N}$ such that $n+r=k+s$ and

$$
\left(\begin{array}{cc}
u & 0 \\
0 & 1_{r}
\end{array}\right) \sim_{h}\left(\begin{array}{cc}
v & 0 \\
0 & 1_{s}
\end{array}\right)
$$

in $U_{n+r}^{\dagger}(A)$. On the quotient $\sqcup_{n} U_{n}^{\dagger}(A) / \sim$, define

$$
[u]+[v]:=\left[\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)\right] .
$$

This turns it into an abelian group which we denote by $\tilde{K}_{1}(A)$.
Proposition $2.28 \tilde{K}_{1}(A)=\lim U_{n}^{\dagger}(A) / U_{n}^{\dagger}(A)_{0}=\lim G L_{n}^{\dagger}(A) / G L_{n}^{\dagger}(A)_{0}=\lim U_{n}\left(A^{\dagger}\right) / U_{n}\left(A^{\dagger}\right)_{0}=$ $\lim G L_{n}\left(A^{\dagger}\right) / G L_{n}\left(A^{\dagger}\right)_{0}$.

2.3.3 Equivalence of the two pictures

Theorem 2.29 Let A be a C^{*}-algebra. Then $\tilde{K}_{1}(A) \cong K_{0}(S A)$.
Proof: Let us first define a map $\phi: \tilde{K}_{1}(A) \rightarrow K_{0}(S(A))$.
Take $v \in \mathscr{U}\left(M_{n}\left(A^{\dagger}\right)\right)$ with $s(v)=1_{n}$. Let $u(t)$ be a path of unitaries such that

$$
u(0)=\left(\begin{array}{cc}
v & 0 \\
0 & v^{*}
\end{array}\right), \quad u(1)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad s(u(t))=1_{2 n}, t \in[0,1] .
$$

Next let

$$
p(t)=u(t)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) u(t)^{*}, \quad q(t)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Exercise 2.57 Show that $[p]-[q]$ gives an element of $K_{0}(S A)$.
$\left(s(p(t))=1_{n}\right.$, i.e. $p(t)-1_{n} \in M_{2 n}(A)$ for all t. This means $t \mapsto p_{i j}(t) \in(S A)^{\dagger}$, which in turn implies that $p \in M_{2 n}\left((S A)^{\dagger}\right)$. Thus $[p]-[q] \in K_{0}\left((S A)^{\dagger}\right)$. Since $p(t)-1_{n} \in M_{2 n}(A)$ for all t and $p(0)-1_{n}=0=p(1)-1_{n}$, it follows that $p-q \in S M_{2 n}(A)=M_{2 n}(S A)$. Thus $\pi(p)=\pi(q)$ so that $[p]-[q] \in K_{0}(S A)$.)

Exercise 2.58 If v^{\prime} is a unitary homotopic to v, u^{\prime} is a homotopy of unitaries connecting $\left(\begin{array}{cc}v^{\prime} & 0 \\ 0 & v^{\prime *}\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $p^{\prime}=u^{\prime}(t)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{\prime}(t)^{*}$, then show that $[p]-[q]=\left[p^{\prime}\right]-[q]$.
(Let $t \mapsto w_{t}$ be a homotopy from v to v^{\prime}. Define

$$
z(t)=u(t)\left(\begin{array}{cc}
v^{*} w_{t} & 0 \\
0 & v w_{t}^{*}
\end{array}\right) u^{\prime}(t)^{*} .
$$

Now show that $z \in \mathscr{U}_{2 n}^{\dagger}(S A)$ and $z p^{\prime} z^{*}=p$.)
Exercise 2.59 Let $v^{\prime}=\left(\begin{array}{cc}v & 0 \\ 0 & 1_{m}\end{array}\right)$, u^{\prime} is a homotopy of unitaries connecting $\left(\begin{array}{cc}v^{\prime} & 0 \\ 0 & v^{\prime *}\end{array}\right)$ and $1_{2 m+2 n}$ and $p^{\prime}=u^{\prime}(t)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) u^{\prime}(t)^{*}$. Show that $[p]-[q]=\left[p^{\prime}\right]-[q]$.

Define $\phi([v])=[p]-[q]$. We will show that it is an isomorphism.
COMPLETE THE PROOF.
Remark 2.30 The inverse map $\psi: K_{0}(S(A)) \rightarrow \tilde{K}_{1}(A)$ is given as follows.
Take a $p \in \operatorname{Proj}\left(M_{n}\left(S(A)^{\dagger}\right)\right)$. Then p can be viewed as a projection valued map on $[0,1]$ such that $p(0)=p(1) \in M_{n}(\mathbb{C})$. Assume that $p(0)=p(1)=\left(\begin{array}{cc}1_{m} & 0 \\ 0 & 0\end{array}\right)$. Now there is a path of unitaries $u(t)$ with $u(1)=1$ such that $p(t)=u(t) p(1) u(t)^{*}$. Since $p(0)=p(1)=\left(\begin{array}{cc}1_{m} & 0 \\ 0 & 0\end{array}\right)$, it follows that $u(0)$ is of the form $\left(\begin{array}{cc}v & 0 \\ 0 & w\end{array}\right)$. Define $\psi([p])=[v]$.

Exercise 2.60 Show the following:

1. $K_{1}(\mathbb{C})=0,2 . K_{1}\left(\mathcal{L}\left(L_{2}(\mathbb{N})\right)\right)=0$, 3. $K_{1}\left(Q\left(L_{2}(\mathbb{N})\right)\right)=\mathbb{Z}, 4 . K_{0}\left(C\left(S^{1}\right)\right)=\mathbb{Z}$.

Exercise 2.61 Let $\left(A_{i}, \phi_{j k}\right)$ be an inductive system of C^{*}-algebras. Show that

$$
K_{1}\left(\lim \left(A_{i}, \phi_{j k}\right)\right)=\lim \left(K_{1}\left(A_{i}\right), K_{1}\left(\phi_{j k}\right)\right) .
$$

3 Computational tools

3.1 Six term exact sequence

3.1.1 Lifting of homotopies

Proposition 3.1 Suppose we have a short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} A / J \longrightarrow 0
$$

If u_{t} is a path of unitaries in A / J and v_{0} is a unitary in A such that $\pi\left(v_{0}\right)=u_{0}$, then there is a continuous path of unitaries v_{t} in A such that $\pi\left(v_{t}\right)=u_{t}$ for $t \in[0,1]$.

Proof: For each $t \in[0,1]$, there is an open interval $N(t)$ around t such that $\left\|u_{s}-u_{s^{\prime}}\right\|<2$ for all $s, s^{\prime} \in N(t)$. By compactness of $[0,1]$, there are t_{1}, \ldots, t_{k} such that $[0,1] \subseteq \cup N\left(t_{i}\right)$. It is now enough to prove that a lifting exists on each $N\left(t_{i}\right)$. In other words, without loss in generality we can assume that $\left\|u_{t}-u_{s}\right\|<2$ for all t, s.

Since $\left\|u_{0}^{*} u_{t}-1\right\|<2$, the spectrum $\sigma\left(u_{0}^{*} u_{t}\right)$ does not contain the point -1 for all t. So there is a continuous path of self adjoint elements x_{t} such that $\exp \left(i x_{t}\right)=u_{0}^{*} u_{t}$.

Exercise 3.1 Show that x_{t} admits a lift to a continuous path y_{t} of self adjoint elements in A.
Define $v_{t}=v_{0} \exp \left(i y_{t}\right)$. Then v_{t} gives a required lifting.

Exercise 3.2 If p_{t} is a path of projections in A / J and q_{0} is a projection in A such that $\pi\left(q_{0}\right)=q_{0}$, then there is a continuous path of unitaries q_{t} in A such that $\pi\left(q_{t}\right)=p_{t}$ for $t \in[0,1]$.

3.1.2 Fredholm operators

Let π denote the projection map from $\mathcal{L}(\mathcal{H})$ onto $Q(\mathcal{H})=\mathcal{L}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called Fredholm if $\operatorname{ker} T$ and coker T are finite dimensional. If T is a Fredholm operator, then the range of T is closed.

1. Theorem (Atkinson): T is Fredholm if and only if $\pi(T)$ is invertible in $Q(\mathcal{H})$.
2. Define index $(T):=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$. If S and T are both Fredholm, then $S T$ and T^{*} are also Fredholm and one has index $(S T)=\operatorname{index}(S)+\operatorname{index}(T)$ and index $\left(T^{*}\right)=$ -index (T).
3. If T is Fredholm and K is compact, then $T+K$ is Fredholm and index $(T+K)=\operatorname{index}(T)$.
4. If T is Fredholm and index $(T)=0$, then there is a finite rank operator F such that $T+F$ is invertible.
5. The map $T \mapsto \operatorname{index}(T)$ is continuous.
6. index $(T)=\operatorname{index}(S)$ if and only if S and T are homotopic.

Exercise 3.3 Use the fact that $\mathcal{L}(\mathcal{H})$ and $Q(\mathcal{H})$ are properly infinite C^{*}-algebras to show that $K_{1}(Q(\mathcal{H}))=$ $\{[T]: T$ Fredholm $\}$, where $[T]$ stands for the homotopy class for T.

Use the above facts to show that index : $K_{1}(Q(\mathcal{H})) \rightarrow \mathbb{Z}$ is a group isomorphism.
We will next see that the above map $(T \mapsto \operatorname{index}(T))$ can be looked upon as a map from $K_{1}(Q(\mathcal{H}))$ to $K_{0}(\mathcal{K}(\mathcal{H}))$.

Take an operator $T \in \mathcal{L}(\mathcal{H}), T$ Fredholm. Then $z:=\pi(T)$ is invertible in $Q(\mathcal{H})$. Let $T=V|T|$ and $\pi(T)=u|z|$ be the polar decompositions of T and z respectively. Then $\pi(V)=u$, i.e. V is a lift of u in $\mathcal{L}(\mathcal{H})$. Now

$$
\text { range } V=\operatorname{range} T=\left(\operatorname{ker} T^{*}\right)^{\perp}, \quad \operatorname{ker} V=(\operatorname{range}|T|)^{\perp}=\operatorname{ker}|T|=\operatorname{ker} T .
$$

Therefore $1-V V^{*}$ is the projection onto $\operatorname{ker} T^{*}$ and $1-V^{*} V$ is the projection onto $\operatorname{ker} T$. For $p \in \operatorname{Proj}(\mathcal{K}(\mathcal{H})), p \mapsto \operatorname{dim} p$ gives the natural inclusion of $V(\mathcal{K}(\mathcal{H}))$ in $K_{0}(\mathcal{K}(\mathcal{H}))=\mathbb{Z}$. Thus the number $\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$ corresponds to the element $\left[1-V^{*} V\right]-\left[1-V V^{*}\right]$ in $K_{0}(\mathcal{K}(\mathcal{H}))$.

3.1.3 The index map

Suppose we have a short exact sequence

$$
0 \longrightarrow J \xrightarrow{\phi} A \xrightarrow{\pi} A / J \longrightarrow 0 .
$$

We have already seen that in such a case one has the following two exact sequences:

$$
\begin{array}{r}
K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \stackrel{K_{0}(\pi)}{\longrightarrow} K_{0}(A / J) \\
K_{1}(A / J) \underset{K_{1}(\pi)}{\leftrightarrows} K_{1}(A) \underset{K_{1}(\phi)}{ } K_{1}(J)
\end{array}
$$

We will now define a map $\partial: K_{1}(A / J) \rightarrow K_{0}(J)$ such that the following sequence is exact:

$$
\begin{gather*}
K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \xrightarrow{K_{0}(\pi)} K_{0}(A / J) \tag{3.1}\\
\partial \uparrow \\
K_{1}(A / J) \stackrel{(}{K_{1}(\pi)} K_{1}(A) \stackrel{\left(K_{1}(\phi)\right.}{ } K_{1}(J)
\end{gather*}
$$

For a C^{*}-algebra A, define the cone over A to be the C^{*}-algebra Cone $(A):=\{f \in$ $C([0,1], A): f(0)=0\}$.

Exercise 3.4 Show that Cone (A) is contractive and hence $K_{0}($ Cone $(A))=0$.

The mapping cone Cone $(A, A / J)$ of π is the C^{*}-algebra

$$
\{(a, f): a \in A, f \in C([0,1], A / J), f(1)=0, f(0)=\pi(a)\}
$$

Theorem 3.2 Let $\phi: J \rightarrow$ Cone $(A, A / J)$ be given by $\phi(a)=(a, 0)$. Then $K_{0}(\phi)$ gives an isomorphism between $K_{0}(J)$ and $K_{0}(\operatorname{Cone}(A, A / J))$.

Proof: Let $\phi: J \rightarrow \operatorname{Cone}(A, A / J)$ be given by $\phi(a)=(a, 0)$. Then we have a short exact sequence

$$
0 \longrightarrow J \xrightarrow{\phi} \text { Cone }(A, A / J) \longrightarrow \text { Cone }(A / J) \longrightarrow 0 .
$$

Therefore

$$
K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(\text { Cone }(A, A / J)) \longrightarrow K_{0}(\text { Cone }(A / J))
$$

is exact in the middle. But Cone (A / J) is contractible, so that $K_{0}($ Cone $(A / J))=0$. So $K_{0}(\phi)$ is onto.

Next, let $B=\{f \in C([0,1], A): f(1) \in J\}$.
Exercise 3.5 Let $\theta_{1}: J \rightarrow B$ be given by $\theta_{1}(a)=$ the map $t \mapsto a$ and $\theta_{2}: B \rightarrow J$ be given by $\theta_{2}(f)=f(1)$. Show that these give homotopy equivalence between J and B.

Exercise 3.6 Show that there is a short exact sequence

$$
0 \longrightarrow C_{0}((0,1], J) \longrightarrow B \xrightarrow{\psi} \text { Cone }(A, A / J) \longrightarrow 0 .
$$

Since $K_{0}\left(C_{0}((0,1], J)\right)=0$, by half exactness, $K_{0}(\psi)$ is injective. Since the diagram

commutes, we have $K_{0}(\phi)=K_{0}(\psi) \circ K_{0}\left(\theta_{1}\right)$. But $K_{0}\left(\theta_{1}\right)$ is an isomorphism. So $K_{0}(\phi)$ is injective.

Exercise 3.7 Show that the map $(a, f) \mapsto a$ gives rise to a short exact sequence

$$
0 \longrightarrow S(A / J) \longrightarrow \text { Cone }(A, A / J) \longrightarrow A \longrightarrow 0
$$

By half-exactness of K_{0}, the sequence

$$
K_{0}(S(A / J)) \longrightarrow K_{0}(\text { Cone }(A, A / J)) \longrightarrow K_{0}(A)
$$

is exact in the middle. View the map on the left as a map ∂ from $K_{1}(A / J)$ to $K_{0}(J)$. This is called the index map for the short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} A / J \longrightarrow 0
$$

Exercise 3.8 Show that the map $(a, f) \mapsto a$ gives rise to a short exact sequence

$$
0 \longrightarrow S A \longrightarrow \text { Cone }(\text { Cone }(A, A / J), A) \longrightarrow \text { Cone }(A, A / J) \longrightarrow 0
$$

Again by half exactness,

$$
K_{0}(S A) \longrightarrow K_{0}(\text { Cone }(\text { Cone }(A, A / J), A)) \longrightarrow K_{0}(\text { Cone }(A, A / J))
$$

is exact in the middle. But $K_{0}(\operatorname{Cone}(A, A / J))=K_{0}(J)$ and $K_{0}(\operatorname{Cone}(\operatorname{Cone}(A, A / J), A))=$ $K_{0}(S(A / J))=K_{1}(A / J)$. Thus we have a sequence

$$
K_{0}(S A) \longrightarrow K_{1}(A / J) \longrightarrow K_{0}(J)
$$

that is exact at $K_{1}(A / J)$.
Exercise 3.9 Verify that the map on the left is $K_{1}(\pi)$ and the one on the right is ∂.
Thus the sequence

$$
\begin{gathered}
K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \xrightarrow{K_{0}(\pi)} K_{0}(A / J) \\
\quad \partial \uparrow \\
K_{1}(A / J) \stackrel{(}{K_{1}(\pi)} K_{1}(A) \stackrel{\left(K_{1}(\phi)\right.}{ } K_{1}(J)
\end{gathered}
$$

is exact and repeating the procedure we get the following long exact sequence

$$
\longrightarrow K_{n+1}(J) \longrightarrow K_{n+1}(A) \longrightarrow K_{n+1}(A / J) \xrightarrow{\partial_{n+1}} K_{n}(J) \longrightarrow K_{n}(A) \longrightarrow K_{n}(A / J) \longrightarrow
$$

where ∂_{n+1} is the index map for the exact sequence

$$
0 \longrightarrow S^{n} J \xrightarrow{\phi} S^{n} A \xrightarrow{\pi} S^{n} A / S^{n} J \longrightarrow 0
$$

3.1.4 Computation of the index map

Assume that A is unital. We will derive a computable formula for the index map now.
Let $p \in \operatorname{Proj}\left(M_{n}\left((S(A / J))^{\dagger}\right)\right)$. Then $p(0) \in \operatorname{Proj} M_{n}(\mathbb{C})$ so that it admits a lift to a projection P in $\operatorname{Proj} M_{n}\left(A^{\dagger}\right)$. Since $\pi(P)=p(0) \in M_{n}(\mathbb{C})$, we have $s \circ \pi(P)=\pi(P)$. Therefore one has $P \in \operatorname{Proj} M_{n}\left(J^{\dagger}\right) \subseteq \operatorname{Proj} M_{n}\left(A^{\dagger}\right)$. By lifiting property of homotopy of projections, there is a path $P(t)$ of projections in $M_{n}\left(A^{\dagger}\right)$ with $P(0)=P$.

Lemma 3.3 Suppose $P(t)$ and $P^{\prime}(t)$ are two such liftings, so that $P(0)=P^{\prime}(0)=P$. Then $P(1)$ and $P^{\prime}(1)$ are unitarily equivalent in $M_{n}\left(J^{\dagger}\right)$.

Proof: Exercise!
Exercise 3.10 Show that $[P(1)]-[P(0)] \in K_{0}(J)$.

Proposition 3.4 Let $p, q \in \operatorname{Proj} M_{n}\left((S(A / J))^{\dagger}\right)$ with $p(0)=q(0)$, let $P \in \operatorname{Proj} M_{n}\left(A^{\dagger}\right)$ be a lifting of $p(0)$ and let $P(t)$ and $Q(t)$ be the liftings of p and q respectively with $P(0)=Q(0)=P$. Then

$$
\begin{equation*}
\partial([p]-[q])=([P(1)]-[P(0)])-([Q(1)]-[Q(0)]) . \tag{3.2}
\end{equation*}
$$

Proof:
Exercise 3.11 Assuming A is unital, show that

$$
\text { Cone }(A, A / J)^{\dagger}=\{(a, f): a \in A, f \in C([0,1], A / J), f(0)=\pi(a), f(1) \in \mathbb{C}\} .
$$

Recall that we have an exact sequence

$$
0 \longrightarrow S(A / J) \xrightarrow{\phi} \text { Cone }(A, A / J) \longrightarrow A \longrightarrow 0
$$

and the index map ∂ is the map $K_{0}(\phi)$. Therefore

$$
\partial([p]-[q])=K_{0}(\phi)([p]-[q])=[(P(0), p)]-[(Q(0), q)] .
$$

On the other hand, we have the inclusion $\psi: J \rightarrow$ Cone $(A, A / J)$ given by $\psi(a)=(a, 0) . K_{0}(\psi)$ gives an isomorphism from $K_{0}(J)$ to $K_{0}($ Cone $(A, A / J))$ and we have to check that the image under $K_{0}(\psi)$ of the right hand side coincides with the above.

Exercise 3.12 Show that the unique extension $\psi^{\dagger}: J^{\dagger} \rightarrow$ Cone $(A, A / J)^{\dagger}$ of ψ is given by

$$
\psi^{\dagger}(a)=(a, s(a)),
$$

where $s(a)$ is the constant loop $t \mapsto s(a)$.
Now,

$$
K_{0}(\psi)(([P(1)]-[P(0)])-([Q(1)]-[Q(0)]))=[(P(1), p(1))]-[(Q(1), q(1))] .
$$

Therefore it is enough to show that

$$
(P(0), p) \sim_{h}(P(1), p(1)) \quad \text { in Cone }(A, A / J)^{\dagger} .
$$

For this, take the homotopy $\widetilde{P}(t)=\left(P(1-t), p_{t}\right)$, where $p_{t}(s)=p(1-t(1-s))$.
Exercise 3.13 Let u be a unitary element of $M_{n}\left((A / J)^{\dagger}\right)$. Show that there is an $a \in M_{n}\left(A^{\dagger}\right)$ such that $\|a\|=1$ and $\pi(a)=u$.
Exercise 3.14 Show that $w:=\left(\begin{array}{cc}a & -\left(1-a a^{*}\right)^{\frac{1}{2}} \\ \left(1-a^{*} a\right)^{\frac{1}{2}} & a^{*}\end{array}\right)$ is unitary and $\pi(w)=\left(\begin{array}{cc}u & 0 \\ 0 & u^{*}\end{array}\right)$.

Let $a(t)=t a+1-t, t \in[0,1]$. Then

$$
w(t):=\left(\begin{array}{cc}
a(t) & -\left(1-a(t) a(t)^{*}\right)^{\frac{1}{2}} \\
\left(1-a(t)^{*} a(t)\right)^{\frac{1}{2}} & a(t)^{*}
\end{array}\right)
$$

is a path of unitaries that connect w to $1_{2 n}$. Write $v(t)=\pi(w(t))$. Define $p(t)=v(t) 1_{n} v(t)^{*}$ and $q(t)=1_{n}$. Then $p, q \in M_{2 n}\left((S(A / J))^{\dagger}\right)$ and $p(0)=q(0)=1_{n}$. Therefore $[p]-[q]$ gives the element of $K_{0}(S(A / J))$ corresponding to the element $[u]$ in $K_{1}(A / J)$.

Since $w(t) 1_{n} w(t)^{*}$ is a lifting of p with $w(0) 1_{n} w(0)^{*}=1_{n}$ and the constant loop $t \mapsto 1_{n}$ is a lifting of q, by the previous proposition, we have

$$
\partial([u])=\partial([p]-[q])=\left[w(1) 1_{n} w(1)^{*}\right]-\left[1_{n}\right]=\left[\left(\begin{array}{cc}
a a^{*} & a\left(1-a^{*} a\right)^{\frac{1}{2}} \tag{3.3}\\
\left(1-a^{*} a\right)^{\frac{1}{2}} a^{*} & 1-a^{*} a
\end{array}\right)\right]-\left[1_{n}\right] .
$$

If a happens to be a partial isometry so that $a\left(1-a^{*} a\right)^{\frac{1}{2}}=0$, then

$$
\partial([u])=\left[\left(\begin{array}{cc}
a a^{*} & 0 \tag{3.4}\\
0 & 1-a^{*} a
\end{array}\right)\right]-\left[1_{n}\right]=\left[1-a^{*} a\right]-\left[1-a a^{*}\right] .
$$

3.1.5 Bott periodicity

Toeplitz algebra. Let S be the unilateral shift $e_{n} \mapsto e_{n+1}$ in $L_{2}(\mathbb{N})$. The C^{*}-subalgebra \mathscr{T} of $\mathcal{L}\left(L_{2}(\mathbb{N})\right.$) generated by the operator S is called the Toeplitz algebra.

Exercise 3.15 Show that

1. $\mathcal{K} \subseteq \mathscr{T}$,
2. if π is the projection of \mathscr{T} onto $\mathscr{T} / \mathcal{K}$, then the element $\pi(S)$ is a unitary in $\mathscr{T} / \mathcal{K}$ and has spectrum S^{1}, so that there is a short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T} \xrightarrow{\pi} C\left(S^{1}\right) \longrightarrow 0
$$

3. if $\phi: \mathscr{T} \rightarrow \mathbb{C}$ is the morphism given by $\phi=e v_{1} \circ \pi$ ($e v_{1}$ is evaluation at 1)so that $\phi(S)=1$, then $\mathscr{T}_{0}:=\operatorname{ker} \phi$ is the C^{*}-subalgebra of \mathscr{T} generated by the operator $1-S$, and one has the following split exact sequence

$$
0 \longrightarrow \mathscr{T} \longrightarrow \mathscr{T} \underset{j}{\stackrel{\pi_{0}}{\rightleftarrows}} \mathbb{C} \longrightarrow 0,
$$

where j is the map $t \mapsto t .1$.
4. there is a short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T}_{0} \xrightarrow{\pi} C_{0}(\mathbb{R}) \longrightarrow 0 .
$$

Theorem 3.5 Let \mathscr{T} be the Toeplitz algebra. Then there exists a canonical surjection π_{0} : $\mathscr{T} \rightarrow \mathbb{C}$ such that $K_{0}\left(\pi_{0}\right)$ gives an isomorphism between $K_{0}(\mathscr{T})$ and $K_{0}(\mathbb{C})=\mathbb{Z}$.

Proof: From split exactnes of the sequence

$$
0 \longrightarrow \mathscr{T}_{0} \longrightarrow \mathscr{T} \underset{j}{\stackrel{\pi_{0}}{\rightleftarrows}} \mathbb{C} \longrightarrow 0
$$

we conclude that the sequence

$$
0 \longrightarrow K_{0}\left(\mathscr{T}_{0}\right) \longrightarrow K_{0}(\mathscr{T}) \stackrel{K_{0}\left(\pi_{0}\right)}{\stackrel{\left(K_{0}(j)\right.}{\longrightarrow}} \mathbb{Z} \longrightarrow 0
$$

is split exact, so that $K_{0}\left(\pi_{0}\right) \circ K_{0}(j)=i d$. We will now show that $K_{0}(j) \circ K_{0}\left(\pi_{0}\right)=i d_{K_{0}(\mathscr{T})}$.
Exercise 3.16 Let $\sigma: \mathscr{T} \rightarrow \mathcal{K} \otimes \mathscr{T}$ be the embedding $a \mapsto\left(I-S S^{*}\right) \otimes a$. Show that $K_{0}(\sigma)$ is an isomorphism.
since $K_{0}(\sigma)$ is an isomorphism, it is enough to show that

$$
K_{0}(\sigma) \circ K_{0}(j) \circ K_{0}\left(\pi_{0}\right)=K_{0}(\sigma) .
$$

Let \mathscr{T}^{\prime} be the C^{*}-subalgebra of $\mathscr{T} \otimes \mathscr{T}$ generated by $\mathcal{K} \otimes \mathscr{T}$ and $\mathscr{T} \otimes 1$.
Exercise 3.17 Show that $\mathcal{K} \otimes \mathscr{T}$ is an ideal in \mathscr{T}^{\prime} and $\mathscr{T}^{\prime} /(\mathcal{K} \otimes \mathscr{T}) \cong C\left(S^{1}\right)$.
Denote by π^{\prime} the projection of \mathscr{T}^{\prime} onto $C\left(S^{1}\right)$. Let $\widetilde{\mathscr{T}}$ be the join of \mathscr{T}^{\prime} and \mathscr{T} along $C\left(S^{1}\right)$, i.e.

$$
\widetilde{\mathscr{T}}=\left\{a \oplus b \in \mathscr{T}^{\prime} \oplus \mathscr{T}: \pi^{\prime}(a)=\pi(b)\right\} .
$$

Define maps $i: \mathcal{K} \otimes \mathscr{T} \rightarrow \widetilde{\mathscr{T}}, \tilde{\pi}: \widetilde{\mathscr{T}} \rightarrow \mathscr{T}$ and $\gamma: \mathscr{T} \rightarrow \widetilde{\mathscr{T}}$ by

$$
i(a)=a \oplus 0, \quad \tilde{\pi}(a \oplus b)=b, \quad \gamma(b)=(b \otimes 1) \oplus b .
$$

Then one has the split exact sequence

$$
0 \longrightarrow \mathcal{K} \otimes \mathscr{T} \xrightarrow{i} \widetilde{\mathscr{T}} \underset{\gamma}{\stackrel{\tilde{\pi}}{\rightleftarrows}} \mathscr{T} \longrightarrow 0 .
$$

Since K_{0} is split exact, it follows that $K_{0}(i)$ is injective. Therefore it is now enough to show that

$$
K_{0}(i) \circ K_{0}(\sigma) \circ K_{0}(j) \circ K_{0}\left(\pi_{0}\right)=K_{0}(i) \circ K_{0}(\sigma) .
$$

We have $i \circ \sigma(S)=\left(1-S S^{*}\right) \otimes S \oplus 0$ and $i \circ \sigma \circ j \circ \pi_{0}(S)=\left(1-S S^{*}\right) \otimes 1 \oplus 0$.
Exercise 3.18 Write

$$
P=1-S S^{*}, \quad V=S \otimes 1, \quad Q=P \otimes 1, \quad W=P \otimes S, \quad R=P \otimes P .
$$

Let

$$
u_{0}=V(1-Q) V^{*}+W V^{*}+V W^{*}+R, \quad u_{1}=V(1-Q) V^{*}+Q V^{*}+V Q .
$$

Show that u_{0} and u_{1} are self-adjoint unitaries.
It follows that there is a homotopy of unitaries u_{t} connecting u_{0} and u_{1}. Define $\phi_{t}: \mathscr{T} \rightarrow \mathscr{T}^{\prime}$ by $\phi_{t}(S)=u_{t}(S \otimes 1)$. This gives a homotopy of morphisms. Next, define $\psi_{t}(S)=\phi_{t}(S) \oplus S$.

Exercise 3.19 Show that ψ_{t} is a homotopy of morphisms from \mathscr{T} to $\tilde{\mathscr{T}}$.

Exercise 3.20 Define $\psi(S)=\left(S^{2} S^{*} \otimes 1\right) \oplus S$. Show that ψ extends to a morphism from \mathscr{T} to $\tilde{\mathscr{T}}$.
Show that

$$
\psi_{0}-\psi=i \circ \sigma, \quad \psi_{1}-\psi=i \circ \sigma \circ j \circ \pi_{0}
$$

Show that $K_{0}\left(\psi_{0}\right)=K_{0}(\psi)+K_{0}(i \circ \sigma)$ and $K_{0}\left(\psi_{1}\right)=K_{0}(\psi)+K_{0}\left(i \circ \sigma \circ j \circ \pi_{0}\right)$.

The required equality follows.

Theorem 3.6 For any C^{*}-algebra A, one has a natural isomorphism between $K_{0}(A)$ and $K_{0}\left(S^{2} A\right)$.

Proof: [Cuntz]
From the short exact sequence

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T}_{0} \longrightarrow C_{0}(\mathbb{R}) \longrightarrow 0
$$

we get, by tensoring with A,

$$
0 \longrightarrow \mathcal{K} \otimes A \longrightarrow \mathscr{T}_{0} \otimes A \longrightarrow S A \longrightarrow 0
$$

Therefore we now have the long exact sequence

$$
\longrightarrow K_{1}(\mathcal{K} \otimes A) \longrightarrow K_{1}\left(\mathscr{T}_{0} \otimes A\right) \longrightarrow K_{1}(S A) \longrightarrow K_{0}(\mathcal{K} \otimes A) \longrightarrow K_{0}\left(\mathscr{T}_{0} \otimes A\right) \longrightarrow K_{0}(S A) \longrightarrow
$$

Since $K_{0}(\mathcal{K} \otimes A)=K_{0}(A)$ and $K_{1}(S A)=K_{0}\left(S^{2} A\right)$, if we can now prove that $K_{1}\left(\mathscr{T}_{0} \otimes A\right)=$ $0=K_{0}\left(\mathscr{T}_{0} \otimes A\right)$, then we are through. Since $K_{1}\left(\mathscr{T}_{0} \otimes A\right)=K_{0}\left(\mathscr{T}_{0} \otimes S A\right)$, it is enough to show that for any C^{*}-algebra B, we have $K_{0}\left(\mathscr{T}_{0} \otimes B\right)=0$.

Exercise 3.21 Show that one has the following split exact sequence:

$$
0 \longrightarrow \mathscr{T}_{0} \otimes B \longrightarrow \mathscr{T} \otimes B \longrightarrow B \longrightarrow 0
$$

Prove that $K_{0}\left(\mathscr{T}_{0} \otimes B\right)=0$.

The proof is thus complete.

The Bott map. Assume A is unital. Denote by z the map $w \mapsto w$ from S^{1} to \mathbb{C}. Let $p \in M_{n}(A)$ be a projection. Then $p z+1-p: w \mapsto p w+1-p$ is an element in $\mathscr{U}\left(M_{n}\left((S A)^{\dagger}\right)\right)$.

Exercise 3.22 If $p \in \operatorname{Proj}\left(M_{n}(A)\right)$ and $q \in \operatorname{Proj}\left(M_{k}(A)\right)$ are homotopic, then $p z+1-p$ and $q z+1-q$ can be connected by a homotopy of unitaries.

The map $\beta:[p] \mapsto[p z+1-p]$ from $K_{0}(A)$ to $K_{1}(S A) \cong K_{0}\left(S^{2} A\right)$ is called the Bott map.

3.1.6 Computation of K-groups

Stable multiplier algebra.

Lemma 3.7 For any C^{*}-algebra A, one has $K_{0}(M(\mathcal{K} \otimes A))=0$.
Proof: Let $p \in \operatorname{Proj} M(\mathcal{K} \otimes A)$. Choose isometries v_{1}, v_{2}, \ldots in $\mathcal{L}(\mathcal{H})$ with $v_{i}^{*} v_{j}=0$ for $i \neq j$. Define

$$
q=\sum\left(v_{i} \otimes 1\right) p\left(v_{i}^{*} \otimes 1\right), \quad a=\sum v_{i+1} v_{i}^{*} \otimes 1 .
$$

Exercise 3.23 Show that both the above series converge in the strict topology in $M(\mathcal{K} \otimes A)$.
Now define

$$
w=\left(\begin{array}{cc}
0 & 0 \\
v_{1} \otimes 1 & \sum v_{i+1} v_{i}^{*} \otimes 1
\end{array}\right)\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
\left(v_{1} \otimes 1\right) p & \left(v_{i+1} \otimes 1\right) p\left(v_{i}^{*} \otimes 1\right)
\end{array}\right) .
$$

Then

$$
w^{*} w=\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right), \quad w w^{*}=\left(\begin{array}{cc}
0 & 0 \\
0 & q
\end{array}\right) .
$$

Thus $[p]+[q]=[q]$. Since $M(\mathcal{K} \otimes A)$ is properly infinite, so that $K_{0}(M(\mathcal{K} \otimes A))=\{[p]: p \in$ $\operatorname{Proj} M(\mathcal{K} \otimes A)\}$, it follows that $K_{0}(M(\mathcal{K} \otimes A))=0$.

Exercise 3.24 Show that for any unital C^{*}-algebra $B, K_{0}(M(\mathcal{K} \otimes A) \otimes B)=0$. Use this to prove that $K_{1}\left(M(\mathcal{K} \otimes A)=0\right.$ for any C^{*}-algebra A.

Proposition 3.8 $K_{i}(Q(\mathcal{K} \otimes A))=K_{1-i}(A), i=0,1$.
Proof: From the short exact sequence

$$
0 \longrightarrow \mathcal{K} \otimes A \longrightarrow M(\mathcal{K} \otimes A) \longrightarrow Q(\mathcal{K} \otimes A) \longrightarrow 0
$$

we have the following six-term exact sequence:

Since $K_{i}(M(\mathcal{K} \otimes A))=0$, the result follows.

Toeplitz algebra.

Quantum $S U(2)$. The C^{*}-algebra A associated with the quantum $S U(2)$ group is defined to be the universal C^{*}-algebra generated by two elements α and β satisfying the following relations:

$$
\begin{aligned}
\alpha^{*} \alpha+\beta^{*} \beta=1, & \alpha \alpha^{*}+q^{2} \beta \beta^{*}=1, \\
\alpha \beta-q \beta \alpha=0, & \alpha \beta^{*}-q \beta^{*} \alpha=0, \\
\beta^{*} \beta= & \beta \beta^{*} .
\end{aligned}
$$

The C^{*}-algebra A has two families of irreducible representations:

$$
\left.\begin{array}{rl}
\mathcal{H} & =L_{2}(\mathbb{N}) \\
\alpha & \mapsto S^{*} \sqrt{1-q^{2 N}} \\
\beta & \mapsto z q^{N} .
\end{array} \begin{array}{rl}
\mathcal{H} & =\mathbb{C} \\
\alpha & \mapsto \\
\beta & \beta
\end{array}\right\} z \in S^{1}, \quad \mapsto .
$$

The following representation gives a faithful representation of A :

$$
\pi:\left\{\begin{aligned}
\mathcal{H} & =L_{2}(\mathbb{N}) \otimes L_{2}(\mathbb{Z}) \\
\alpha & \mapsto S^{*} \sqrt{1-q^{2 N}} \otimes 1, \\
\beta & \mapsto q^{2 N} \otimes \ell
\end{aligned}\right.
$$

One can thus identify A with the C^{*}-subalgebra of $\mathcal{L}(\mathcal{H})$ generated by $\pi(\alpha)$ and $\pi(\beta)$.
Exercise 3.25 Show that the map given by $\alpha \mapsto 1$ and $\beta \mapsto 0$ gives rise to the following short exact sequence:

$$
0 \longrightarrow \mathcal{K} \otimes C\left(S^{1}\right) \longrightarrow C\left(S U_{q}(2)\right) \xrightarrow{\sigma} C\left(S^{1}\right) \longrightarrow 0
$$

Exercise 3.26 Show that

1. ∂ is one-one and onto.
2. $K_{0}(\sigma)$ is onto.
3. $K_{0}\left(C\left(S U_{q}(2)\right)\right)=\mathbb{Z}=K_{1}\left(C\left(S U_{q}(2)\right)\right)$.

Podles spheres $S_{q c}^{2}, c>0$. This is the universal C*-algebra, denoted by $C\left(S_{q c}^{2}\right)$, generated by two elements A and B subject to the following relations:

$$
\begin{aligned}
A^{*}=A, & B^{*} B=A-A^{2}+c I, \\
B A=q^{2} A B, & B B^{*}=q^{2} A-q^{4}+c I .
\end{aligned}
$$

Here the deformation parameters q and c satisfy $|q|<1, c>0$. Let $\mathcal{H}_{+}=l^{2}(\mathbb{N}), \mathcal{H}_{-}=\mathcal{H}_{+}$. Define $\pi_{ \pm}(A), \pi_{ \pm}(B): \mathcal{H}_{ \pm} \rightarrow \mathcal{H}_{ \pm}$by

$$
\begin{aligned}
& \pi_{ \pm}(A)\left(e_{n}\right)=\lambda_{ \pm} q^{2 n} e_{n} \quad \text { where } \quad \lambda_{ \pm}=\frac{1}{2} \pm\left(c+\frac{1}{4}\right)^{1 / 2}, \\
& \pi_{ \pm}(B)\left(e_{n}\right)=c_{ \pm}(n)^{1 / 2} e_{n-1} \quad \text { where } \quad c_{ \pm}(n)=\lambda_{ \pm} q^{2 n}-\left(\lambda_{ \pm} q^{2 n}\right)^{2}+c \text {. }
\end{aligned}
$$

Exercise $3.27 \pi_{ \pm}$are irreducible and the direct sum $\pi_{+} \oplus \pi_{-}$is faithful.
Since $\pi=\pi_{+} \oplus \pi_{-}$is a faithful representation, an immediate corollary follows.
Proposition 3.9 (Sheu) (i) $C\left(S_{q c}^{2}\right) \cong \mathscr{T} \oplus_{\sigma} \mathscr{T}:=\{(x, y): x, y \in \mathscr{T}, \sigma(x)=\sigma(y)\}$ where \mathscr{T} is the Toeplitz algebra and $\sigma: \mathscr{T} \rightarrow C\left(S^{1}\right)$ is the symbol homomorphism.
(ii) We have a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \xrightarrow{i} C\left(S_{q c}^{2}\right) \xrightarrow{\alpha} \mathscr{T} \longrightarrow 0 \tag{3.5}
\end{equation*}
$$

Proof: (i) An explicit isomorphism is given by $x \mapsto\left(\pi_{+}(x), \pi_{-}(x)\right)$.
(ii) Define $\alpha((x, y))=x$. Then $\operatorname{ker} \alpha=\mathcal{K}$.

Exercise 3.28 Show that the sequence (3.5) above is split exact. Conclude that $K_{0}\left(C\left(S_{q c}^{2}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}$ and $K_{1}\left(C\left(S_{q c}^{2}\right)\right)=0$.

Another way to compute the K-groups for the Podles̀ sphere is to prove that one has the following short exact sequence:

$$
0 \longrightarrow \mathcal{K} \oplus \mathcal{K} \longrightarrow C\left(S_{q c}^{2}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \longrightarrow 0 .
$$

so that one has the six term sequence:

Exercise 3.29 Show that

1. ∂ is one-one.
2. $K_{0}(\sigma)$ is onto.
3. $K_{0}\left(C\left(S_{q c}^{2}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}, K_{1}\left(C\left(S_{q c}^{2}\right)\right)=0$.

3.2 K-groups of crossed products

3.2.1 Crossed products

3.2.2 Crossed products with \mathbb{Z}

Theorem 3.10 Let A be a C^{*}-algebra and let τ be an action of \mathbb{Z} on A. Then there is a six-term exact sequence

The irrational rotation algebra. Let $\theta \in[0,1]$ be an irrational. The irrational rotation algebra A_{θ} is the universal C^{*}-algebra generated by two unitaries u and v satisfying the relation $u v=\exp (2 \pi i \theta) v u$. The C^{*}-algebra A_{θ} can be written as a crossed product as follows: let α be the automorphism of $C\left(S^{1}\right)$ induces by the map $z \mapsto \exp (2 \pi i \theta) z$ on S^{1}. Then $A_{\theta} \cong C\left(S^{1}\right) \rtimes_{\alpha} \mathbb{Z}$. Therefore we have the following Pimsner-Voiculescu exact sequence:

The automorphism α is homotopic to the identity. Therefore both $K_{0}(\alpha)$ and $K_{1}(\alpha)$ are identity. Thus we have two short exact sequences

It follows that $K_{0}\left(A_{\theta}\right)=\mathbb{Z} \oplus \mathbb{Z}=K_{1}\left(A_{\theta}\right)$.

3.2.3 Crossed products with \mathbb{R}

Theorem 3.11 (Connes) Let A be a C^{*}-algebra and let τ be an action of \mathbb{R} on A. Then one has

$$
K_{n}\left(A \rtimes_{\tau} \mathbb{R}\right) \cong K_{1-n}(A), \quad n=0,1 .
$$

Exercise 3.30 Deduce Bott periodicity from the above theorem.

Pimsner-Voiculescu sequence from Connes' theorem. Let A be a C^{*}-algebra and let α be an automorphism of A. Define the mapping torus M_{α} by

$$
M_{\alpha}=\{f \in C([0,1], A): f(1)=\alpha(f(0))\}
$$

Define $\pi: M_{\alpha} \rightarrow A$ by $\pi(f)=f(0)$. It is easy to see that one has the following short exact sequence:

$$
0 \longrightarrow S A \longrightarrow M_{\alpha} \longrightarrow A \longrightarrow 0
$$

This gives rise to the following six-term exact sequence:

Next one shows that the connecting maps are $1-K_{0}(\alpha)$ and $1-K_{1}(\alpha)$ and using Connes-Thom isomorphism one shows that

$$
K_{0}\left(M_{\alpha}\right) \cong K_{1}\left(A \rtimes_{\alpha} \mathbb{Z}\right), \quad K_{1}\left(M_{\alpha}\right) \cong K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}\right)
$$

3.3 K-groups of tensor products

$4 K$-groups of some C^{*}-algebras

C^{*}-algebra	K_{0}	K_{1}
$C[0,1]$	\mathbb{Z}	0
$C_{0}(0,1]$	0	0
$C\left(S^{2 n+1}\right)$	\mathbb{Z}	\mathbb{Z}
$C\left(S^{2 n}\right)$	\mathbb{Z}^{2}	0
$C_{0}\left(\mathbb{R}^{2 n}\right)$	\mathbb{Z}	0
$C_{0}\left(\mathbb{R}^{2 n+1}\right)$	0	\mathbb{Z}

C^{*}-algebra	K_{0}	K_{1}
\mathbb{C}	\mathbb{Z}	0
$M_{n}(\mathbb{C})$	\mathbb{Z}	0
$\mathcal{K}(\mathcal{H})$	\mathbb{Z}	0
$\mathcal{B}\left(\ell_{2}\right)$	0	0
$\mathcal{B}\left(\ell_{2}\right) / \mathcal{K}\left(\ell_{2}\right)$	0	\mathbb{Z}
$M(\mathcal{K} \otimes A)$	0	0

C^{*}-algebra	K_{0}	K_{1}
\mathscr{T}	\mathbb{Z}	0
A_{θ}	\mathbb{Z}^{2}	\mathbb{Z}^{2}
$C\left(S_{q}^{2 \ell+1}\right)$	\mathbb{Z}	\mathbb{Z}
$C\left(S_{q}^{2 \ell}\right)$	\mathbb{Z}^{2}	0
$C\left(S U_{q}(\ell+1)\right)$	$? ? ?$	$? ? ?$
\mathscr{O}_{n}	\mathbb{Z}_{n-1}	0

5 References

References

[1] Blackadar, B. :
[2] Higson/Roe
[3] Matthes/Szymanski
[4] Wegge-olsen

