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1 Preliminaries from C
∗-algebra theory

1.1 Constructions with C∗-algebras

Direct Sum.

Tensor Product.

1. Form the algebraic tensor product A⊗alg B,

2. put a C∗-norm on A⊗alg B that obeys ‖a⊗ b‖ = ‖a‖.‖b‖ for a ∈ A, b ∈ B. One can put

several C∗-norms in general; there is a maximal and minimal one.

3. complete A⊗alg B with respect to that norm. several choices of norms on the algebraic

tensor product and hence several choices of A⊗B possible.

4. the spatial norm: this is one choice of a C∗-norm on A⊗algB. By GNS theorem, there exist

faithful representations πA : A → L(HA) and πB : B → L(HB). Define π : A ⊗alg B →

L(HA⊗HB) by π(a⊗b) = πA(a)⊗πB(b) and define ‖·‖ by ‖
∑
ai⊗bi‖ = ‖π(

∑
ai⊗bi)‖.

5. this norm is independent of the choice of the representations πA and πB as long as they

are faithful, and is called the spatial norm. This turns out to coincide with the minimal

norm on A⊗alg B.

6. For a large class of C∗-algebras A, one can put only one norm (C∗ cross norm) on A⊗algB

for any C∗-algebra B. Such C∗-algebras are called nuclear C∗-algebras. All abelian C∗-

algebras and type I C∗-algebras are nuclear.

1.2 Unitization

Let A be a C∗-algebra, and let

A† =

{
unitization of A if A is nonunital,

A⊕ C if A is unital.
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Exercise 1.1 Show that if A ⊆ B, B is unital but 1B 6∈ A, then A† ∼= A+ C1B .

Exercise 1.2 Let A be a C∗-algebra and let π : A† → C be the map (a, t) 7→ t and λ : C → A† be the map

λ(t) =


(0, t) if A is nonunital,

(t, t) if A is unital.

Show that the following sequence is split exact:

0 // A // A†
π //

C //
λ

oo 0

The map s := λ ◦ π : A† → A† is called the scalar map. Thus

s(a, t) =


(0, t) if A is nonunital,

(t, t) if A is unital.

Exercise 1.3 Let φ : A→ B be a morphism. Define a map φ† : A† → B† as follows:

φ†(a, t) =

8
<
:

(φ(a), t) if A, B both unital or both nonunital,

(φ(a) + t, t) if A nonunital and B unital,

(φ(a− t), t) if A unital and B nonunital.

Show that

1. φ† is the unique extension of φ to a unital morphism φ† from A† to B†.

2. φ† is injective if and only if φ is injective,

3. φ† is surjective if and only if φ is injective.

Exercise 1.4 Let φ : A→ B be a morphism and let sA and sB be the scalar maps for A† and B† respectively.

Show that for any a ∈ A†, one has sB(φ†(a)) = φ†(sA(a)).

Exercise 1.5 Let

0 −→ J
φ

−→ A
π

−→ A/J −→ 0,

be a short exact sequence. Then φ† : Mn(J†) →Mn(A†) is injective.

An element a ∈Mn(A†) is in φ†(Mn(J†)) if and only if π†(a) = s(π†(a)).

Inductive limits of C∗-algebras. Let (Ai, φjk) be an inductive system of C∗-algebras, i.e.

φjk : Ak → Aj are morphisms for k ≤ j, and φijφjk = φik, φii = id.

Define

B∞ = {(ai) : ai ∈ Ai for all i, there exists k such that aj = φkj(ak) for j ≥ k},

B = {(ai) : sup ‖ai‖ <∞},

J∞ = {(ai) ∈ B∞ : ai = 0 for all but finitely many i}

J = closure of J∞ in B,

π : canonical projection B → B/J,

A∞ = π(B∞),

A = closure of A∞ in B/J,
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Note that forming B/J is same as putting the seminorm ‖(ai)‖1 := lim sup ‖ai‖ on B and

quotienting by elements of length zero.

Define φj : Aj → A by

φj(a) = (0, . . . , 0︸ ︷︷ ︸
j−1

, a, φj+1,j(a), φj+2,j(a), . . .).

Then

1. the following diagram commutes:

Aj
φj //

φkj
��

A

Ak

φk

=={{{{{{{

2. A∞ = ∪jφj(Aj),

3. if D is a C∗-algebra such that for each i, there is a morphism ψi : Ai → D with

Aj
ψj //

φkj
��

D

Ak

ψk

==zzzzzzz

then there is a unique morphism ψ : A→ D such that

Aj
φj //

ψj ""DD
DD

DD
D

A

ψ
��
D

If the ψi’s are all one-one, then ψ is one-one.

4. if a ∈ A, then for any ε > 0, there is a k ∈ N and ak ∈ Ak such that

‖a− φk(ak)‖ < ε.

2 K-theory

2.1 Vector bundles

Let X be a compact hausdorff space and E be a complex vector bundle over X of rank n. Let

Γ(E) be the space of sections of E.

1. Γ(E) is a vector space with pointwise addition.
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2. It is a C(X)-module with pointwise multiplication.

3. If E = X × C
n, then Γ(E) = C(X,Cn) ∼= C(X) ⊗ C

n is the direct sum of n copies of

C(X).

4. Γ(E ⊕ F ) = Γ(E) ⊕ Γ(F ).

5. Theorem (Swan): If E is a locally trivial complex vector bundle over a compact Hausdorff

space X, then there is another locally trivial complex vector bundle F over X such that

E ⊕ F is trivial.

6. Thus γ(E)⊕Γ(F ) ∼= C(X)⊕. . .⊕C(X). Observe that L(C(X)⊕. . .⊕C(X)) = Mn(C(X)).

So γ(E) can be identified with the projection pE in Mn(C(X)) onto γ(E).

K0(A): Grothendieck group of the semigroup of projections in ∪nMn(A) modulo homotopy.

2.2 K0 group

2.2.1 Equivalence relations on projections

Murray-von Neumann equivalence. Let p, q ∈ Proj(A). Define p ∼MvN q if there is a

partial isometry v ∈ A such that p = vv∗ and q = v∗v.

Exercise 2.1 Show that ∼ is an equivalence relation on A.

Exercise 2.2 Show that p ∼MvN q if and only if there are elements x, y ∈ A such that p = xy and q = yx.

Unitary equivalence. Let p, q ∈ Proj(A). Define p ∼u q if there is a unitary u ∈ A† such

that q = upu∗.

Exercise 2.3 Show that ∼u is an equivalence relation on A.

Exercise 2.4 Show that p ∼u q if and only if there is an element z ∈ GL1(A
†) such that q = zpz−1.

Exercise 2.5 Let p, q ∈ Proj(A). Show that ‖p− q‖ ≤ 1.

Lemma 2.1 If ‖p− q‖ < 1 then p ∼u q.

Proof : Write x = qp + (1 − q)(1 − p). Then x − 1 = 2qp − q − p = (2q − 1)(p − q), so that

‖x − 1‖ < 1. Therefore x is invertible. It is easy to see now that xpx−1 = q. By the previous

exercise, the result follows. 2

Exercise 2.6 Let p(t) be a continuous path of projections in a unital C∗-algebra A. Then there is a continuous

path of unitaries u(t) with u(0) = I such that p(t) = u(t)p(0)u(t)∗ for all t.

(Use the proofs of the lemma above and exercise 2.4)
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Homotopy. Let p, q ∈ Proj(A). p and q are said to be homotopic if there is a norm continu-

ous path t 7→ P (t) in A such that P (t)∗ = P (t) = P (t)2 for all t and P (0) = p, P (1) = q. One

writes p ∼h q in such a case.

Exercise 2.7 Show that ∼h is an equivalence relation on A.

Exercise 2.8 Let p, q ∈ Proj(A). Suppose there is a homotopy of idempotents from p to q. Show that

p ∼h q.

Lemma 2.2 Let p, q ∈ Proj(A) and ‖p− q‖ < 1. Then show that p ∼h q.

Proof : Write P (t) = tp + (1 − t)q for 0 ≤ t ≤ 1. Let δ = 1
2‖p − q‖. Then ‖P (t) − p‖ =

(1 − t)‖p − q‖ ≤ δ for 1
2 ≤ t ≤ 1, and ‖P (t) − q‖ = t‖p − q‖ ≤ δ for 0 ≤ t ≤ 1

2 . Thus for all

t ∈ [0, 1], one has σ(P (t)) ⊆ [−δ, δ] ∪ [1 − δ, 1 + δ]. Let f : [−δ, δ] ∪ [1 − δ, 1 + δ] → R be the

function given by

f(x) =

{
0 if |x| ≤ δ,

1 otherwise.

Then f(P (t)) gives a required homotopy. 2

Proposition 2.3 Let p, q ∈ Proj(A). Then p ∼h q ⇒ p ∼u q ⇒ p ∼MvN q.

Proof : Let P : [0, 1] → A be a homotopy from p to q. Let 0 < t1 < . . . < tk < 1 be such that

‖P (ti) − P (ti+1)‖ < 1 for each i. Now use exercise 2.1 for each pair to conclude that p ∼u q.

Next assume that u is a unitary such that p = uqu∗. Write v = uq. Then vv∗ = uqu∗ = p

and v∗v = qu∗uq = q. Thus p ∼MvN q. 2

Lemma 2.4 Let p, q ∈ Proj(A). If p ∼MvN q and 1 − p ∼MvN 1 − q, then p ∼u q.

Proof : Let v and w be partial isometries in A with v∗v = p, vv∗ = q, w∗w = 1−p, ww∗ = 1−q.

Then 1− v∗v = w∗w. Multiplying both sides from the left by w and from the right by w∗, one

gets wv∗vw∗ = 0, so that vw∗ = 0. A similar argument shows that v∗w = 0. It follows then

that u = v + w is unitary and upu∗ = q. 2

Corollary 2.5 Let p, q ∈ Proj(A). p ∼u q if and only if p ∼MvN q and 1 − p ∼MvN 1 − q.

Example 2.6 Example where p ∼MvN q but p 6∼u q: Take P ∈ L2(N) to be the projection onto

L2(N\{0}) and Q to be the identity operator.

Example 2.7 Example where p ∼u q but p 6∼h q: exists in M2(C(S3))!

Proposition 2.8 Let p, q ∈ Proj(A). If p ∼MvN q, then

(
p 0

0 0

)
∼u

(
q 0

0 0

)
in M2(A).
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Proof : Let v be a partial isometry with v∗v = p and vv∗ = q. Then u :=

(
v 1 − vv∗

v∗v − 1 v∗

)

is a unitary and u

(
p 0

0 0

)
u∗ =

(
q 0

0 0

)
. 2

Proposition 2.9 Let p, q ∈ Proj(A). If p ∼MvN q, then

(
p 0

0 0

)
∼h

(
q 0

0 0

)
in M2(A).

Proof : Let v and u be as in the previous proof. The path

t 7→

(
cos(π2 t)v 1 − (1 − sin(π2 t))vv

∗

(1 − sin(π2 t))v
∗v − 1 cos(π2 t)v

∗

)

connects u to

(
0 1

−1 0

)
. The path

t 7→

(
cos(π2 t) sin(π2 t)

− sin(π2 t) cos(π2 t)

)

connects

(
0 1

−1 0

)
to

(
1 0

0 1

)
. Let ut be a continuous path of unitaries that connect u to

(
1 0

0 1

)
. Then t 7→ ut

(
p 0

0 0

)
u∗t is a continuous path of projections that connect

(
p 0

0 0

)

with

(
q 0

0 0

)
. 2

Proposition 2.10 Let p, q ∈ Proj(A). If p ∼u q, then

(
p 0

0 0

)
∼h

(
q 0

0 0

)
in M2(A).

Proof : This is a corollary of the previous proposition. 2

2.2.2 K0 group for unital C∗-algebras

Exercise 2.9 Let p, p′ ∈ Proj(Mn(A)), q, q′ ∈ Proj(Mk(A)). Assume p ∼MvN p′ and q ∼MvN q′. Show

that „
p 0

0 q

«
∼MvN

„
p′ 0

0 q′

«
in Mn+k(A).

Exercise 2.10 Let p, q ∈ Proj(Mn(A)). Show that

„
p 0

0 q

«
∼u

„
q 0

0 p

«
.

Let P∞(A) denote Proj(∪nMn(A)) modulo the equivalence p ∼0

(
p 0

0 0

)
. On P∞(A), define

an equivalence relation ∼ by declaring [p]0 ∼ [q]0 if there is an n ∈ N, p′ ∈ [p]0, q
′ ∈ [q]0 with

p′, q′ ∈Mn(A) and p′ ∼MvN q′ in Mn(A). Let V (A) := P∞(A)/ ∼.
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Exercise 2.11 Define a relation ∼1 on tnProj(Mn(A)) as follows:

for p ∈Mn(A) and q ∈ Mk(A), p ∼1 q if there exists a partial isometry v ∈ Mn,k(A) such that p = vv∗, q = v∗v.

Show that this is an equivalence relation and tnProj(Mn(A))/ ∼1= V (A).

Define an operation on V (A) by

[p] + [q] :=

[(
p 0

0 q

)]
.

This is well-defined and turns it into an abelian semigroup. We will denote this semigroup by

V (A).

Exercise 2.12 Recall that if p, q ∈ Proj(A) obey ‖p − q‖ < 1, then p ∼u q. Use this to show that if A is

separable, then V (A) is countable.

Exercise 2.13 Let p, q ∈ Proj(A) with pq = 0 = qp. Show that

„
p+ q 0

0 0

«
∼h

„
p 0

0 q

«
.

Exercise 2.14 Let (S,+) be a cancellative abelian semigroup. Define a relation ∼ on S × S by declaring

(a, b) ∼MvN (a′, b′) if a+ b′ = a′ + b. Show that this is an equivalence relation.

Define an operation + on S × S by (a, b) + (a′, b′) = (a + a′, b + b′). Show that if (a, b) ∼MvN (a′, b′) and

(c, d) ∼MvN (c′, d′), then (a, b) + (c, d) ∼MvN (a′, b′) + (c′, d′). Thus the operation + lifts to a well-defined

operation on S × S/ ∼.

Show that (S × S/ ∼,+) is an abelian group with identity [(a, a)] and −[(a, b)] = [(b, a)].

If (S,+) is an abelian semigroup possibly without cancellation, the relation defined in the

above exercise need not be an equivalence relation. So in general, one needs to define the

relation on S × S slightly differently.

Exercise 2.15 Let (S,+) be an abelian semigroup. Define a relation ∼ on S × S by declaring (a, b) ∼MvN

(a′, b′) if there exists a c ∈ S such that a+ b′ + c = a′ + b+ c. Show that this is an equivalence relation.

Show that the natural addition on S × S lifts to an operation on S × S/ ∼, and (S × S/ ∼,+) is an abelian

group. (this is called the Grothendieck group of (S,+) and will be denoted by G(S).)

Exercise 2.16 Let (S,+) be a semigroup and let ∼ be as above. Show that [(x+ y, y)] is independent of y.

Choose and fix an y ∈ S. Show that ι : x 7→ [(x+ y, y)] gives a semigroup homomorphism from S into G(S).

ι is injective if and only if S is cancellative.

Exercise 2.17 Let S and S′ be two semigroups and let φ : S → S′ be a homomorphism. Then there is a

unique group homomorphism ψ : G(S) → G(S′) such that the following diagram commutes:

S
φ //

ι

��

S′

ι

��
G(S)

ψ // G(S′)
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Exercise 2.18 Let S be a semigroup, G be a group and let φ : S → G be a homomorphism. Then there is

a unique group homomorphism ψ : G(S) → G such that the following diagram commutes:

S
φ //

ι

##GG
GG

GG
GG

G

G(S)

ψ

OO

Exercise 2.19 Let S = N ∪ {∞}, with an operation + that gives the usual addition when restricted to N

and for n ∈ S, one has n+ ∞ = ∞ = ∞ + n.

Show that the Grothendieck group of (S,+) is the trivial group.

Definition 2.11 Let A be a unital C∗-algebra. The K0 group of A is defined to be the

Grothendieck group of V (A).

Exercise 2.20 Let A be a unital C∗-algebra. Let S be the set Proj(M∞(A)) modulo the equivalence relation

∼. Let eK0(A) be the abelian group with generators [p] ∈ S and satisfying the relation [p] + [q] = [p ⊕ q]. Show

that eK0(A) = K0(A).

Exercise 2.21 Show that two projections p and q in Mn(C) are equivalent if and only if Trace p = Trace q.

Use this to prove that V (C) = (N,+) and hence conclude that K0(C) = Z.

Exercise 2.22 Use exercise 2.21 to show that K0(Mn(C)) = Z.

Exercise 2.23 Let A and B be two unital C∗-algebras and let φ : A → B be a *-homomorphism. Denote

by the same symbol the induced homomorphism Mn(A) to Mn(B). Let p, q ∈Mn(A). Show that if p and q are

homotopic, then φ(p) and φ(q) are also homotopic.

Define K0(φ) : V (A) → V (B) by K0(φ)[p] = [φ(p)]. Show that this induces a homomorphism from K0(A)

to K0(B).

Show that K0(id) = id.

Exercise 2.24 Let A, B, C be unital C∗-algebras and let φ : A→ B and ψ : B → C be ∗-homomorphisms.

Show that K0(ψ ◦ φ) = K0(ψ) ◦K0(φ).

Let A, B be C∗-algebras. Two homomorphisms φ, ψ : A → B are said to be homotopic if

there exist a family of ∗-homomorphisms φt : A → B, t ∈ [0, 1] such that φ0 = φ, φ1 = ψ and

for each a ∈ A, the map t 7→ φt(a) is norm continuous.

Exercise 2.25 Show that if two homomorphisms φ, ψ : A→ B are homotopic, then K0(φ) = K0(ψ).

Two C∗-algebras A and B are said to be homotopy equivalent if there exist homomorphisms

φ : A→ B and ψ : B → A such that φ ◦ψ is homotopic to idB and ψ ◦ φ is homotopic to idA.

Exercise 2.26 In such a case, one has K0(A) = K0(B) and K0(φ)−1 = K0(ψ).

Exercise 2.27 Let X be a contractible compact Hausdorff space. Show that K0(C(X)) = Z.

Exercise 2.28 Find V (L(H)) where H is infinite dimensional. Use this to show that K0(L(H)) = 0.

Exercise 2.29 Let A be a unital C∗-algebra, and let n ∈ N. Show that the map a 7→

„
a 0

0 0

«
induces an

isomorphism between K0(Mn(A)) and K0(A).
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2.2.3 K0 group for nonunital C∗-algebras

Suppose we have the short exact sequence

0 −→ A −→ A† π
−→ C −→ 0.

Then we have a group homomorphism K0(π) from K0(A
†) to K0(C) = Z. Define the K0 group

of A to be the kernel of this homomorphism.

Exercise 2.30 Let A and B be two C∗-algebras and let φ : A→ B be a ∗-homomorphism. Then φ extends

uniquely to a unital ∗-homomorphism φ† : A† → B† such that the following diagram commutes:

0 // A //

φ

��

A†
πA //

φ†

��

C

id

��

// 0

0 // B // B†
πB // C // 0

Show that

1. K0(φ
†) maps kerK0(πA) into kerK0(πB).

2. if A is unital, then kerK0(πB) ∼= K0(A).

3. if A and B are unital, then the restriction of K0(φ
†) to kerK0(πA) is same as the map K0(φ).

Let φt be a family of homomorphisms from A to B and let φ†
t be its unique extension to a homomorphism

from A† to B†. Show that if φt is a homotopy, then φ†
t is also a homotopy.

If A and/or B is nonunital, define K0(φ) to be the restriction of K0(φ
†) to kerK0(πA).

Exercise 2.31 Let A, B, C be C∗-algebras and let φ : A → B and ψ : B → C be ∗-homomorphisms. Show

that K0(idA) = id and K0(ψ ◦ φ) = K0(ψ) ◦K0(φ).

Exercise 2.32 Suppose two C∗-algebras A and B are homotopic, i.e. there are homomorphisms φ : A→ B

and ψ : B → C such that φ ◦ ψ is homotopic to idB and ψ ◦ φ is homotopic to idA. Then K0(A) = K0(B) and

K0(φ)−1 = K0(ψ).

Proposition 2.12 Let A be a nonunital C∗-algebra. Let s be the extension of the map (a, z) 7→

(0, z) (from A† to A†) to ∪nMn(A
†). Then

K0(A) = {[p] − [s(p)] : p ∈ Proj(∪nMn(A
†))}.

Proof : Let p ∈ Proj(Mn(A
†)). Look at the element [p] − [s(p)] in K0(A

†). Since

K0(π)([p] − [s(p)]) = [π(p)] − [π(s(p))] = [π(p)] − [π(p)] = 0,

we have [p] − [s(p)] ∈ K0(A).

Let us take an element [p]−[q] ∈ K0(A
†) such that [p]−[q] ∈ kerK0(π), p, q ∈ Proj(∪nMn(A

†)).

Let λ : C → A† be the map z 7→ (0, z). Then s = λ ◦ π. Therefore [p] − [q] ∈ kerK0(s). Let us

write

p̃ =

(
p 0

0 1 − q

)
, q̃ =

(
0 0

0 1

)
,
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Then observe that

[p] − [q] = [

(
p 0

0 0

)
] − [

(
0 0

0 q

)
] = [p̃] − [q̃].

Therefore K0(s)([p̃] − [q̃]) = 0. But clearly s([q̃]) = [q̃]. Therefore [s(p̃)] − [q̃] = 0. Thus there

exist r, r′ ∈ Proj(∪nMn(A
†)) such that [p]+ [q̃]+ [r] = [p̃]+ [q]+ [r] and [s(p̃)]+ [r ′] = [q̃]+ [r′].

Combining these, we get

[p] + [s(p̃)] + [r ⊕ r′] = [p̃] + [q] + [r ⊕ r′],

which means [p] − [q] = [p̃] − [s(p̃)]. 2

Lemma 2.13 If p ∈ Proj(Mk(A
†)) and π(p) ∼MvN 1n in Mk(C) (n ≤ k), then there is an

element q ∈ Proj(Mk(A
†)) such that p ∼u q and π(q) = 1n.

Proof : Since π(p) ∼MvN 1n in Mk(C), which is finite dimensional, we have 1k − π(p) ∼MvN

1k−1n and consequently π(p) ∼u 1n, i.e. there is a unitary u ∈Mk(C) such that uπ(p)u∗ = 1n.

Then q := upu∗ gives a required projection. 2

Exercise 2.33 Elements of K0(A) can be written in the form [p] − [1n] where p ∈ Mk(A
†), k ≥ n and

p− 1n ∈Mk(A).

Proof: First show that any element can be written as [p′] − [1n]. Next use the fact that this is in the kernel

of K0(π) to conclude that [π(p′)] − [1n] = 0. Since V (C) = N is cancellative, this implies [π(p′)] = [1n], i.e.

π(p′) ∼MvN 1n. Now use lemma 2.13 to get a projection p such that p ∼u p
′ and π(p) = 1n.

Exercise 2.34 Let p, q ∈ Proj(Mk(A
†)) and [p]− [q] = 0 in K0(A). Then there exist m,n ∈ N, m ≤ n such

that „
p 0

0 1m

«
∼h

„
q 0

0 1m

«
in Mk+n(A

†).

Proof: Since [p]− [q] = 0, there exists r ∈ Proj(Mm(A†)) for some m ∈ N such that [p]+[r] = [q]+[r]. Therefore

„
p 0

0 r

«
∼h

„
q 0

0 r

«
in Mk+n(A

†)

for some n ≥ m. The required homotopy now follows.

2.2.4 Properties

Theorem 2.14 K0 is half-exact, i.e. if we have a short exact sequence

0 −→ J
φ

−→ A
π

−→ A/J −→ 0,

then the sequence

K0(J)
K0(φ)
−→ K0(A)

K0(π)
−→ K0(A/J)

is exact in the middle.
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Proof : Since π ◦ φ = 0, it follows that the range of K0(φ) is contained in kerK0(π). Now take

an element x in kerK0(π). By exercise 2.33, x = [p] − [1n], p ∈ Mk(A
†). Since this is in the

kernel of K0(π), we have [π(p)]− [1n] = 0 in K0(A/J). Hence it follows from exercise 2.34 that,

(
π(p) 0

0 1m

)
∼u

(
1n 0

0 1m

)
in Mk+j((A/J)†).

Let u be a unitary in Mk+j((A/J)†) such that

u

(
π(p) 0

0 1m

)
u∗ =

(
1n 0

0 1m

)
.

Let w be a unitary in M2k+2j(A
†) such that π(w) =

(
u 0

0 u∗

)
and w ∼h 12k+2j . (Assume

that such a w would exist; this is a fact from C∗-algebras that we will prove later) Now let

q = w

(
p 0

0 1m

)
w∗. Then

π(q) =

(
u 0

0 u∗

)(
π(p) 0

0 1m

) (
u∗ 0

0 u

)
=

(
1k 0

0 1m

)
.

Therefore q ∈Mk(J
†). Since [q] = [

(
p 0

0 1m

)
], we have

[p] − [1n] = [

(
p 0

0 1m

)
] − [

(
1n 0

0 1m

)
] = [q] − [1n+m].

But the right hand side is clearly in the range of K0(φ). 2

Theorem 2.15 K0 takes split exact sequences to split exact sequences, i.e. if the short exact

sequence

0 −→ J
φ

−→ A
π

−→ A/J −→ 0,

splits with a splitting homomorphism λ : A/J → A, then the sequence

0 −→ K0(J)
K0(φ)
−→ K0(A)

K0(π)
−→ K0(A/J) −→ 0

is exact and splits with splitting map K0(λ).

Proof : Since π ◦ λ = idA/J , it follows that

K0(π) ◦K0(λ) = K0(idA/J ) = idK0(A/J).

So K0(π) is onto.

Take an element in K0(J). By exercise 2.33, it is of the form [p] − [1n] where p ∈

Proj(Mk(J
†)) for some k ∈ N, k ≥ n and p− 1n ∈Mk(J). If it is an element of kerK0(φ) then

12



it follows that [φ†k(p)] − [1n] = 0. From exercise 2.34, we conclude that there exist m, j ∈ N,

m ≤ j such that (
φ†k(p) 0

0 1m

)
∼h

(
1n 0

0 1m

)
in Mk+j(A

†),

i.e. there is a unitary u ∈Mk+j(A
†) such that

u

(
φ†k(p) 0

0 1m

)
u∗ =

(
1n 0

0 1m

)
.

Write

p′ =

(
p 0

0 1m

)
∈Mk+j(J

†).

Then [p] − [1n] = [p′] − [1n+m], uφ†k+j(p
′)u∗ = 1n+m and p′ − 1n+m ∈Mk+j(J).

Exercise 2.35 Now complete the proof.

2

Proposition 2.16 Let A be a C∗-algebra, and let n ∈Mn(A). Then K0(Mn(A)) = K0(A).

Proof : Let φ : A → Mn(A) be the map a 7→

(
a 0

0 0

)
and let ψ be the corresponding map

from C to Mn(C). Then the following diagram commutes and have split exact rows:

0 // A //

φ
��

A† //

φ†
��

C //

ψ
��

0

0 // Mn(A) // Mn(A
†) // Mn(C) // 0

It follows from the properties of K0 that the following diagram also commutes and have split

exact rows:

0 // K0(A) //

K0(φ)
��

K0(A
†) //

K0(φ†)
��

K0(C) = Z //

K0(ψ)
��

0

0 // K0(Mn(A)) // K0(Mn(A
†)) = K0(A

†) // K0(Mn(C)) = Z // 0

Exercise 2.36 Show that if K0(φ
†) and K0(ψ) are isomorphisms, then K0(φ) is also an isomorphism.

Therefore the proof follows from the result for the unital case. 2

Proposition 2.17 Let A and B be two C∗-algebras. Let ιA and ιB be the natural inclusions of

A and B into A⊕B. Then K0(ιA)⊕K0(ιB) : K0(A)⊕K0(B) → K0(A⊕B) is an isomorphism.
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Proof : Let π be the projection A⊕B → B. Then the following sequence is split exact:

0 // A
ιA // A⊕B

π //
B //

ιB
oo 0

By split exactness, we have the split exact sequence of abelian groups

0 // K0(A)
K0(ιA)// K0(A⊕B)

K0(π) // K0(B) //
K0(ιB)
oo 0

Therefore the result follows. 2

Proposition 2.18 Let (Ai, φjk) be an inductive system of C∗-algebras. Then K0(lim(Ai, φjk)) =

lim(K0(Ai),K0(φjk)).

Proof : Since

Aj
φj //

φkj
��

A

Ak

φk

=={{{{{{{

we have

K0(Aj)
K0(φj) //

K0(φkj)
��

K0(A)

K0(Ak)
K0(φk)

88rrrrrrrrr

By universality of lim(K0(Ai),K0(φjk)), there is a unique morphism ψ∗ : limK0(Ai) → K0(A)

such that

K0(Aj)
ξj //

K0(ψj ) ''OOOOOOOOO
limK0(Ai)

ψ∗
��

K0(A)

where ξj’s are the maps corresponding to the inductive system (K0(Ai),K0(φjk)).

We need to show that ψ∗ is one-one and onto.

Since limK0(Ai) = ∪jξj(K0(Aj)), for injectivity it is enough to show that ψ∗ is injective

on ξj(K0(Aj)). So take an element x ∈ K0(Aj) and assume ψ∗ξj(x) = 0. We have to show

that ξj(x) = 0. We will use the facts that ψ∗ξj = K0(ψj) and ξkK0(φkj) = ξj for k ≥ j.

Exercise 2.37 Complete the proof of injectivity of ψ∗.

Next, take [p] − [s(p)], p ∈ Proj(Mk(A
†)). In order to show that this is in the range of ψ∗,

complete the following steps:

Approximate p with φn(an) for some self adjoint element an ∈Mk(A
†
n); write am = φmn(an)

for m ≥ n.

Now show:

14



1. ‖am − a2
m‖ < 1/4 for large m,

2. there is a projection q ∈Mk(A
†
m) such that ‖am − q‖ < 1/2,

3. ‖φm(q) − p‖ < 1,

4. [p] − [s(p)] = [φm(q)] − [s(φm(q))] = K0(φm)([q] − [s(q)]).

2

Exercise 2.38 Show that K0(K ⊗A) = K0(A).

2.2.5 Computations of K0

A C∗-algebra is called properly infinite if there are projections p, q with pq = 0 and 1 ∼MvN

p ∼MvN q.

Exercise 2.39 If a C∗-algebra is properly infinite, then its quotients are also properly infinite.

Show that L(H) for infinite dimensional H and the Cuntz algebras On are properly infinite.

Let A be properly infinite, p and q being projections with pq = 0 and 1 ∼MvN p ∼MvN q.

Let v, w ∈ A such that v∗v = 1 = w∗w and p = vv∗, q = ww∗. Since pq = 0, it follows that

v∗w = 0. Let sk = vkw, k ∈ N. Then s∗ksj = δkj , i.e. sk’s are isometries with orthogonal range.

Let vn = (s1, . . . , sn). Then it is easy to see that bnpb
∗
n ∼ p in Proj(∪nMn(A)).

Exercise 2.40 Let p, q ∈ Proj(A). Write r = s1ps
∗
1 + s2(1 − q)s∗2 + s3(1 − s1s

∗
1 − s2s

∗
2)s

∗
3. Show that

1. r ∈ Proj(A),

2. r ∼

0
@
p

0

0

1
A +

0
@

0

1 − q

0

1
A +

0
@

0

0

1

1
A,

3. [r] = [

0
@
p

0

0

1
A] − [

0
@

0

q

0

1
A] = [p] − [q].

2.3 K1 group

2.3.1 Higher K-groups

Let A be a C∗-algebra. Then the C∗-algebra

{f ∈ C([0, 1], A) : f(0) = f(1)}

is called the suspension of A and is denoted by SA.

Exercise 2.41 Show that SA ∼= C0(R) ⊗A.

Exercise 2.42 (SA)† = {f ∈ C([0, 1], A†) : f(0) = f(1) = λ ∈ C, s(f(t)) = λ ∈ C for t ∈ [0, 1]}.
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Exercise 2.43 Let φ : [0, 1] × [0, 1] → A be a continuous map with φ(t, 1) = φ(t, 0) = 0 for all t ∈ [0, 1].

Then t 7→ φt where φt(s) = φ(t, s) gives a homotopy in SA.

Conversely, any homotopy in SA arises in this way.

Exercise 2.44 Let p0, p1 ∈ Proj(∪nMn(A†)). Then p0 ∼MvN p1 if and only if there are projections pt ∈

∪nMn((SA)†) such that for each s ∈ [0, 1], t 7→ pt(s) is a homotopy between p0 = p0(s) and p1 = p1(s).

Exercise 2.45 Let u0, u1 ∈ U (∪nUn(A
†)). Then u0 ∼ u1 if and only if there are unitaries ut ∈ ∪nMn((SA)†)

such that for each s ∈ [0, 1], t 7→ ut(s) is a homotopy between u0 = u0(s) and u1 = u1(s).

Definition 2.19 Let n ∈ N. Define the nth K-group of A by Kn(A) := K0(S
nA). In

particular K1(A) := K0(SA).

Exercise 2.46 Show that SMn(A) ∼= Mn(SA).

Exercise 2.47 Let A and B be two C∗-algebras and let φ : A → B be a ∗-homomorphism. Define a map

φ̃ : SA→ SB by

φ̃f(t) = φ(f(t)), t ∈ [0, 1].

Show that φ̃ is a ∗-homomorphism from SA to SB.

(we will normally denote this map φ̃ by S(φ) or φs)

Exercise 2.48 Let

0 −→ J
φ

−→ A
π

−→ A/J −→ 0

be a short exact sequence of C∗-algebras. Then the sequence

0 −→ SJ
S(φ)
−→ SA

S(π)
−→ S(A/J) −→ 0

is exact.

If the sequence

0 // J // A
π // A/J //
λ

oo 0

is split exact, then so is the sequence

0 // SJ // SA
πs // S(A/J) //
λs

oo 0.

Exercise 2.49 Let A and B be C∗-algebras. Show that S(A⊕B) = SA⊕ SB.

Exercise 2.50 Let B be a C∗-algebra. Show that S(K ⊗B) ∼= K ⊗ SB.

Proposition 2.20 Let A and B be two C∗-algebras. Then

1. K1(Mn(A)) = K1(A),

2. K1(A⊕B) = K1(A) ⊕K1(B),

3. K1(K ⊗A) = K1(A),

4. K1 is half exact and carries split exact sequences to split exact sequences.
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We have the following split exact sequences:

0 // A // A†
π //

C //
λ

oo 0

0 // SA // (SA)†
πs //

C //
λs

oo 0.

Recall that

(SA)† = {f ∈ C([0, 1], A†) : f(0) = f(1) = λ ∈ C, π(f(t)) = λ for all t},

Mn((SA)†) = {f ∈ C([0, 1],Mn(A
†)) : f(0) = f(1) = λ ∈Mn(C), π(f(t)) = λ for all t},

P roj(Mn((SA)†)) = {f ∈ C([0, 1],Mn(A
†)) : f(0) = f(1) = λ ∈Mn(C), π(f(t)) = λ for all t,

each f(t) is a projection},

K0((SA)†) = {[p] − [q] : p, q ∈ ∪nProj(Mn((SA)†))}

= ∪n{[p] − [q] : p, q ∈ Proj(Mn((SA)†))}.

If [p] − [q] ∈ kerK0(πs), then [πs(p)] − [πs(q)] = 0, i.e. [p(0)] − [q(0)] = 0. But this equality

takes place in the Grothendieck group of V (C) = N where cancellation holds. So p(0) ∼ q(0).

So there is a unitary u ∈M2n(C) such that

u

(
p(0) 0

0 0

)
u∗ =

(
q(0) 0

0 0

)
.

Define

p′(t) =

(
p(t) 0

0 0

)
, q′(t) =

(
q(t) 0

0 0

)
, u(t) = u.

Then p′, q′ ∈ Proj(M2n((SA)†)), u is unitary in M2n((SA)†). So p ∼ p′ ∼ up′u∗ and q ∼ q′.

Therefore [p] − [q] = [up′u∗] − [q′] and

up′u∗(0) = u

(
p(0) 0

0 0

)
u∗ = q′(0).

Thus

K0(SA) ⊆ ∪n{[p] − [q] : p, q ∈ Proj(Mn((SA)†)), p(0) = q(0)}.

The opposite inclusion is clear. So we have

K0(SA) = ∪n{[p] − [q] : p, q ∈ Proj(Mn((SA)†)), p(0) = q(0)}.

2.3.2 Homotopies of unitaries and invertibles

Define

GL†
n(A) = {a ∈ GLn(A

†) : π(a) = 1n}, U †
n(A) = {a ∈ Un(A

†) : π(a) = 1n}
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Exercise 2.51 Show that

1. if A is unital, then GL†
n(A) = {a⊕ 1n : a ∈ GLn(A)},

2. z ∈ GLn(A†) implies zπ(z−1) ∈ GL†
n(A),

3. u ∈ Un(A†) implies uπ(u∗) ∈ U†
n(A).

Exercise 2.52 Let A be unital and let x ∈ GLn(A), y ∈Mn(A) satisfy

‖x− y‖ <
1

‖x−1‖
.

Then the path t 7→ tx+ (1 − t)y, t ∈ [0, 1] lies in GLn(A).

Show that every path component of GLn(A) is open, so that every connected component coincides with a

path component.

Exercise 2.53 Let A be a unital C∗-algebra and u be a unitary in A with σ(u) 6= S1. Then there a

continuous path of unitaries in A connecting u to the identity. (Hint: Get a self-adjoint element a ∈ A such that

u = exp(ia))

Exercise 2.54 Show that any unitary in Mn(C) can be connected to the identity through a continuous path

of unitaries.

Lemma 2.21 Let z ∈ GL1(A). Then u = z|z|−1 ∈ U (A) and u ∼h z.

Proof : Let zt = u exp(t log |z|). This gives a homotopy between u and z. 2

Lemma 2.22 Let u, v ∈ U (A) with ‖u− v‖ < 2. Then u ∼h v.

Proof : Since ‖u − v‖ < 2, we have ‖uv∗ − 1‖ < 2, so that σ(uv∗) ⊆ S1 − {−1}. Therefore

uv∗ ∼h 1, which implies that u ∼h v. 2

Proposition 2.23 Let A be a unital C∗-algebra and let u ∈ A be a unitary. Then

1.

(
u 0

0 1

)
∼h

(
1 0

0 u

)
,

2.

(
u 0

0 v

)
∼h

(
uv 0

0 1

)
∼h

(
vu 0

0 1

)
,

3.

(
u 0

0 u∗

)
∼h

(
1 0

0 1

)
.

Proof : Define

V (t) =

(
cos(π2 t) sin(π2 t)

− sin(π2 t) cos(π2 t)

)
, t ∈ [0, 1].

Then ut : t 7→ V (t)

(
u 0

0 1

)
V (t)∗ gives a homotopy from

(
u 0

0 1

)
to

(
1 0

0 u

)
.

The other two parts are immediate corollaries of part 1. 2
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Remark 2.24 If u and v are in A† with s(u) = 1 = s(v) in the above proposition, then the

homotopies ut etc constructed are such that ut ∈M2(A
†) and s(ut) = 1 for all t.

Proposition 2.25 GL†
n(A)/GL†

n(A)0 ∼= U †
n(A)/U †

n(A)0.

Proof : Let π1 and π2 be the quotient maps from GL†
n(A) to GL†

n(A)/GL†
n(A)0 and from U †

n(A)

to U †
n(A)/U †

n(A)0 respectively. Define φ : GL†
n(A) → U †

n(A)/U †
n(A)0 by

φ(z) = π2(z|z|
−1).

Clearly φ is surjective.

Exercise 2.55 If xt is a homotopy between z and w, then t 7→ xt|xt|
−1 gives a homotopy between z|z|−1

and w|w|−1.

Thus φ lifts to a map φ̃ from GL†
n(A)/GL†

n(A)0 to U †
n(A)/U †

n(A)0.

Exercise 2.56 Show that φ̃ is injective and is a group homomorphism.

This completes the proof! 2

Proposition 2.26 GLn(A
†)/GLn(A

†)0 ∼= GL†
n(A)/GL†

n(A)0.

Proof : Use the map z 7→ zπ(z−1) (π is the projection GLn(A
†) → GLn(C). 2

Proposition 2.27 Un(A
†)/Un(A

†)0 ∼= U †
n(A)/U †

n(A)0.

Proof : Use the map u 7→ uπ(u∗) from Un(A
†) to U †

n(A) (π is the projection Un(A
†) → Un(C)).

2

Let us now define the group K̃1(A). Take the disjoint union tnU
†
n(A). Suppose u ∈ U †

n(A)

and v ∈ U †
k(A). Declare them to be equivalent (u ∼ v) if there are integers r, s ∈ N such that

n+ r = k + s and (
u 0

0 1r

)
∼h

(
v 0

0 1s

)

in U †
n+r(A). On the quotient tnU

†
n(A)/ ∼, define

[u] + [v] := [

(
u 0

0 v

)
].

This turns it into an abelian group which we denote by K̃1(A).

Proposition 2.28 K̃1(A) = limU †
n(A)/U †

n(A)0 = limGL†
n(A)/GL†

n(A)0 = limUn(A
†)/Un(A

†)0 =

limGLn(A
†)/GLn(A

†)0.
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2.3.3 Equivalence of the two pictures

Theorem 2.29 Let A be a C∗-algebra. Then K̃1(A) ∼= K0(SA).

Proof : Let us first define a map φ : K̃1(A) → K0(S(A)).

Take v ∈ U (Mn(A
†)) with s(v) = 1n. Let u(t) be a path of unitaries such that

u(0) =

(
v 0

0 v∗

)
, u(1) =

(
1 0

0 1

)
, s(u(t)) = 12n, t ∈ [0, 1].

Next let

p(t) = u(t)

(
1 0

0 0

)
u(t)∗, q(t) =

(
1 0

0 0

)
.

Exercise 2.57 Show that [p] − [q] gives an element of K0(SA).

( s(p(t)) = 1n, i.e. p(t) − 1n ∈ M2n(A) for all t. This means t 7→ pij(t) ∈ (SA)†, which in turn implies that

p ∈M2n((SA)†). Thus [p]− [q] ∈ K0((SA)†). Since p(t)− 1n ∈ M2n(A) for all t and p(0)− 1n = 0 = p(1) − 1n,

it follows that p− q ∈ SM2n(A) = M2n(SA). Thus π(p) = π(q) so that [p] − [q] ∈ K0(SA).)

Exercise 2.58 If v′ is a unitary homotopic to v, u′ is a homotopy of unitaries connecting

„
v′ 0

0 v′∗

«
and

„
1 0

0 1

«
and p′ = u′(t)

„
1 0

0 0

«
u′(t)∗, then show that [p] − [q] = [p′] − [q].

(Let t 7→ wt be a homotopy from v to v′. Define

z(t) = u(t)

„
v∗wt 0

0 vw∗
t

«
u′(t)∗.

Now show that z ∈ U
†
2n(SA) and zp′z∗ = p. )

Exercise 2.59 Let v′ =

„
v 0

0 1m

«
, u′ is a homotopy of unitaries connecting

„
v′ 0

0 v′∗

«
and 12m+2n and

p′ = u′(t)

„
1 0

0 0

«
u′(t)∗. Show that [p] − [q] = [p′] − [q].

Define φ([v]) = [p] − [q]. We will show that it is an isomorphism.

COMPLETE THE PROOF. 2

Remark 2.30 The inverse map ψ : K0(S(A)) → K̃1(A) is given as follows.

Take a p ∈ Proj(Mn(S(A)†)). Then p can be viewed as a projection valued map on [0, 1]

such that p(0) = p(1) ∈ Mn(C). Assume that p(0) = p(1) =

(
1m 0

0 0

)
. Now there is a path

of unitaries u(t) with u(1) = 1 such that p(t) = u(t)p(1)u(t)∗. Since p(0) = p(1) =

(
1m 0

0 0

)
,

it follows that u(0) is of the form

(
v 0

0 w

)
. Define ψ([p]) = [v].

Exercise 2.60 Show the following:

1. K1(C) = 0, 2. K1(L(L2(N))) = 0, 3. K1(Q(L2(N))) = Z, 4. K0(C(S1)) = Z.

Exercise 2.61 Let (Ai, φjk) be an inductive system of C∗-algebras. Show that

K1(lim(Ai, φjk)) = lim(K1(Ai), K1(φjk)).
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3 Computational tools

3.1 Six term exact sequence

3.1.1 Lifting of homotopies

Proposition 3.1 Suppose we have a short exact sequence

0 // J // A
π // A/J // 0

If ut is a path of unitaries in A/J and v0 is a unitary in A such that π(v0) = u0, then there is

a continuous path of unitaries vt in A such that π(vt) = ut for t ∈ [0, 1].

Proof : For each t ∈ [0, 1], there is an open interval N(t) around t such that ‖us − us′‖ < 2 for

all s, s′ ∈ N(t). By compactness of [0, 1], there are t1, . . . , tk such that [0, 1] ⊆ ∪N(ti). It is now

enough to prove that a lifting exists on each N(ti). In other words, without loss in generality

we can assume that ‖ut − us‖ < 2 for all t, s.

Since ‖u∗0ut − 1‖ < 2, the spectrum σ(u∗0ut) does not contain the point −1 for all t. So

there is a continuous path of self adjoint elements xt such that exp(ixt) = u∗0ut.

Exercise 3.1 Show that xt admits a lift to a continuous path yt of self adjoint elements in A.

Define vt = v0 exp(iyt). Then vt gives a required lifting. 2

Exercise 3.2 If pt is a path of projections in A/J and q0 is a projection in A such that π(q0) = q0, then

there is a continuous path of unitaries qt in A such that π(qt) = pt for t ∈ [0, 1].

3.1.2 Fredholm operators

Let π denote the projection map from L(H) onto Q(H) = L(H)/K(H). An operator T ∈ L(H)

is called Fredholm if ker T and coker T are finite dimensional. If T is a Fredholm operator,

then the range of T is closed.

1. Theorem (Atkinson): T is Fredholm if and only if π(T ) is invertible in Q(H).

2. Define index (T ) := dim ker T −dim ker T ∗. If S and T are both Fredholm, then ST and

T ∗ are also Fredholm and one has index (ST ) = index (S) + index (T ) and index (T ∗) =

−index (T ).

3. If T is Fredholm andK is compact, then T+K is Fredholm and index (T+K) = index (T ).

4. If T is Fredholm and index (T ) = 0, then there is a finite rank operator F such that T +F

is invertible.

5. The map T 7→ index (T ) is continuous.

21



6. index (T ) = index (S) if and only if S and T are homotopic.

Exercise 3.3 Use the fact that L(H) and Q(H) are properly infinite C∗-algebras to show that K1(Q(H)) =

{[T ] : T Fredholm}, where [T ] stands for the homotopy class for T .

Use the above facts to show that index : K1(Q(H)) → Z is a group isomorphism.

We will next see that the above map (T 7→ index (T )) can be looked upon as a map from

K1(Q(H)) to K0(K(H)).

Take an operator T ∈ L(H), T Fredholm. Then z := π(T ) is invertible in Q(H). Let

T = V |T | and π(T ) = u|z| be the polar decompositions of T and z respectively. Then π(V ) = u,

i.e. V is a lift of u in L(H). Now

range V = range T = (ker T ∗)⊥, ker V = (range |T |)⊥ = ker |T | = ker T.

Therefore 1 − V V ∗ is the projection onto kerT ∗ and 1 − V ∗V is the projection onto ker T .

For p ∈ Proj(K(H)), p 7→ dim p gives the natural inclusion of V (K(H)) in K0(K(H)) = Z.

Thus the number dim ker T − dim kerT ∗ corresponds to the element [1− V ∗V ]− [1− V V ∗] in

K0(K(H)).

3.1.3 The index map

Suppose we have a short exact sequence

0 −→ J
φ

−→ A
π

−→ A/J −→ 0.

We have already seen that in such a case one has the following two exact sequences:

K0(J)
K0(φ) // K0(A)

K0(π)// K0(A/J)

K1(A/J) K1(A)
K1(π)
oo K1(J)

K1(φ)
oo

We will now define a map ∂ : K1(A/J) → K0(J) such that the following sequence is exact:

K0(J)
K0(φ) // K0(A)

K0(π)// K0(A/J)

K1(A/J)

∂

OO

K1(A)
K1(π)
oo K1(J)

K1(φ)
oo

(3.1)

For a C∗-algebra A, define the cone over A to be the C∗-algebra Cone (A) := {f ∈

C([0, 1], A) : f(0) = 0}.

Exercise 3.4 Show that Cone (A) is contractive and hence K0(Cone (A)) = 0.
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The mapping cone Cone (A,A/J) of π is the C∗-algebra

{(a, f) : a ∈ A, f ∈ C([0, 1], A/J), f(1) = 0, f(0) = π(a)}.

Theorem 3.2 Let φ : J → Cone (A,A/J) be given by φ(a) = (a, 0). Then K0(φ) gives an

isomorphism between K0(J) and K0(Cone (A,A/J)).

Proof : Let φ : J → Cone (A,A/J) be given by φ(a) = (a, 0). Then we have a short exact

sequence

0 −→ J
φ

−→ Cone (A,A/J) −→ Cone (A/J) −→ 0.

Therefore

K0(J)
K0(φ)
−→ K0(Cone (A,A/J)) −→ K0(Cone (A/J))

is exact in the middle. But Cone (A/J) is contractible, so that K0(Cone (A/J)) = 0. So K0(φ)

is onto.

Next, let B = {f ∈ C([0, 1], A) : f(1) ∈ J}.

Exercise 3.5 Let θ1 : J → B be given by θ1(a) = the map t 7→ a and θ2 : B → J be given by θ2(f) = f(1).

Show that these give homotopy equivalence between J and B.

Exercise 3.6 Show that there is a short exact sequence

0 −→ C0((0, 1], J) −→ B
ψ

−→ Cone (A,A/J) −→ 0.

Since K0(C0((0, 1], J)) = 0, by half exactness, K0(ψ) is injective. Since the diagram

B
ψ // Cone (A,A/J)

A
φ

77ooooooooooo

θ1

OO

commutes, we have K0(φ) = K0(ψ) ◦ K0(θ1). But K0(θ1) is an isomorphism. So K0(φ) is

injective. 2

Exercise 3.7 Show that the map (a, f) 7→ a gives rise to a short exact sequence

0 −→ S(A/J) −→ Cone (A,A/J) −→ A −→ 0.

By half-exactness of K0, the sequence

K0(S(A/J)) −→ K0(Cone (A,A/J)) −→ K0(A)

is exact in the middle. View the map on the left as a map ∂ from K1(A/J) to K0(J). This is

called the index map for the short exact sequence

0 −→ J −→ A
π

−→ A/J −→ 0.
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Exercise 3.8 Show that the map (a, f) 7→ a gives rise to a short exact sequence

0 −→ SA −→ Cone (Cone (A,A/J), A) −→ Cone (A,A/J) −→ 0.

Again by half exactness,

K0(SA) −→ K0(Cone (Cone (A,A/J), A)) −→ K0(Cone (A,A/J))

is exact in the middle. But K0(Cone (A,A/J)) = K0(J) and K0(Cone (Cone (A,A/J), A)) =

K0(S(A/J)) = K1(A/J). Thus we have a sequence

K0(SA) −→ K1(A/J) −→ K0(J)

that is exact at K1(A/J).

Exercise 3.9 Verify that the map on the left is K1(π) and the one on the right is ∂.

Thus the sequence

K0(J)
K0(φ) // K0(A)

K0(π)// K0(A/J)

K1(A/J)

∂

OO

K1(A)
K1(π)
oo K1(J)

K1(φ)
oo

is exact and repeating the procedure we get the following long exact sequence

// Kn+1(J) // Kn+1(A) // Kn+1(A/J)
∂n+1 // Kn(J) // Kn(A) // Kn(A/J) //

where ∂n+1 is the index map for the exact sequence

0 −→ SnJ
φ

−→ SnA
π

−→ SnA/SnJ −→ 0.

3.1.4 Computation of the index map

Assume that A is unital. We will derive a computable formula for the index map now.

Let p ∈ Proj(Mn((S(A/J))†)). Then p(0) ∈ ProjMn(C) so that it admits a lift to a

projection P in ProjMn(A
†). Since π(P ) = p(0) ∈Mn(C), we have s◦π(P ) = π(P ). Therefore

one has P ∈ ProjMn(J
†) ⊆ ProjMn(A

†). By lifiting property of homotopy of projections,

there is a path P (t) of projections in Mn(A
†) with P (0) = P .

Lemma 3.3 Suppose P (t) and P ′(t) are two such liftings, so that P (0) = P ′(0) = P . Then

P (1) and P ′(1) are unitarily equivalent in Mn(J
†).

Proof : Exercise!

Exercise 3.10 Show that [P (1)] − [P (0)] ∈ K0(J).
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Proposition 3.4 Let p, q ∈ ProjMn((S(A/J))†) with p(0) = q(0), let P ∈ ProjMn(A
†) be a

lifting of p(0) and let P (t) and Q(t) be the liftings of p and q respectively with P (0) = Q(0) = P .

Then

∂([p] − [q]) = ([P (1)] − [P (0)]) − ([Q(1)] − [Q(0)]). (3.2)

Proof :

Exercise 3.11 Assuming A is unital, show that

Cone (A,A/J)† = {(a, f) : a ∈ A, f ∈ C([0, 1], A/J), f(0) = π(a), f(1) ∈ C}.

Recall that we have an exact sequence

0 −→ S(A/J)
φ

−→ Cone (A,A/J) −→ A −→ 0,

and the index map ∂ is the map K0(φ). Therefore

∂([p] − [q]) = K0(φ)([p] − [q]) = [(P (0), p)] − [(Q(0), q)].

On the other hand, we have the inclusion ψ : J → Cone (A,A/J) given by ψ(a) = (a, 0). K0(ψ)

gives an isomorphism from K0(J) to K0(Cone (A,A/J)) and we have to check that the image

under K0(ψ) of the right hand side coincides with the above.

Exercise 3.12 Show that the unique extension ψ† : J† → Cone (A,A/J)† of ψ is given by

ψ†(a) = (a, s(a)),

where s(a) is the constant loop t 7→ s(a).

Now,

K0(ψ)(([P (1)] − [P (0)]) − ([Q(1)] − [Q(0)])) = [(P (1), p(1))] − [(Q(1), q(1))].

Therefore it is enough to show that

(P (0), p) ∼h (P (1), p(1)) in Cone (A,A/J)†.

For this, take the homotopy P̃ (t) = (P (1 − t), pt), where pt(s) = p(1 − t(1 − s)). 2

Exercise 3.13 Let u be a unitary element of Mn((A/J)†). Show that there is an a ∈ Mn(A
†) such that

‖a‖ = 1 and π(a) = u.

Exercise 3.14 Show that w :=

„
a −(1 − aa∗)

1

2

(1 − a∗a)
1

2 a∗

«
is unitary and π(w) =

„
u 0

0 u∗

«
.
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Let a(t) = ta+ 1 − t, t ∈ [0, 1]. Then

w(t) :=

(
a(t) −(1 − a(t)a(t)∗)

1
2

(1 − a(t)∗a(t))
1
2 a(t)∗

)

is a path of unitaries that connect w to 12n. Write v(t) = π(w(t)). Define p(t) = v(t)1nv(t)
∗

and q(t) = 1n. Then p, q ∈M2n((S(A/J))†) and p(0) = q(0) = 1n. Therefore [p]− [q] gives the

element of K0(S(A/J)) corresponding to the element [u] in K1(A/J).

Since w(t)1nw(t)∗ is a lifting of p with w(0)1nw(0)∗ = 1n and the constant loop t 7→ 1n is

a lifting of q, by the previous proposition, we have

∂([u]) = ∂([p] − [q]) = [w(1)1nw(1)∗] − [1n] = [

(
aa∗ a(1 − a∗a)

1
2

(1 − a∗a)
1
2 a∗ 1 − a∗a

)
] − [1n]. (3.3)

If a happens to be a partial isometry so that a(1 − a∗a)
1
2 = 0, then

∂([u]) = [

(
aa∗ 0

0 1 − a∗a

)
] − [1n] = [1 − a∗a] − [1 − aa∗]. (3.4)

3.1.5 Bott periodicity

Toeplitz algebra. Let S be the unilateral shift en 7→ en+1 in L2(N). The C∗-subalgebra T

of L(L2(N)) generated by the operator S is called the Toeplitz algebra.

Exercise 3.15 Show that

1. K ⊆ T ,

2. if π is the projection of T onto T /K, then the element π(S) is a unitary in T /K and has spectrum S1,

so that there is a short exact sequence

0 // K // T
π // C(S1) // 0.

3. if φ : T → C is the morphism given by φ = ev1 ◦ π (ev1 is evaluation at 1)so that φ(S) = 1, then

T0 := kerφ is the C∗-subalgebra of T generated by the operator 1 − S, and one has the following split

exact sequence

0 // T0
// T

π0 //
C //

j

oo 0,

where j is the map t 7→ t.1.

4. there is a short exact sequence

0 // K // T0
π // C0(R) // 0.

Theorem 3.5 Let T be the Toeplitz algebra. Then there exists a canonical surjection π0 :

T → C such that K0(π0) gives an isomorphism between K0(T ) and K0(C) = Z.

Proof : From split exactnes of the sequence

0 // T0
// T

π0 //
C //

j
oo 0.
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we conclude that the sequence

0 // K0(T0) // K0(T )
K0(π0)//

Z //
K0(j)
oo 0

is split exact, so that K0(π0) ◦K0(j) = id. We will now show that K0(j) ◦K0(π0) = idK0(T ).

Exercise 3.16 Let σ : T → K⊗T be the embedding a 7→ (I−SS∗)⊗a. Show that K0(σ) is an isomorphism.

since K0(σ) is an isomorphism, it is enough to show that

K0(σ) ◦K0(j) ◦K0(π0) = K0(σ).

Let T ′ be the C∗-subalgebra of T ⊗ T generated by K ⊗ T and T ⊗ 1.

Exercise 3.17 Show that K ⊗ T is an ideal in T
′ and T

′/(K ⊗ T ) ∼= C(S1).

Denote by π′ the projection of T ′ onto C(S1). Let T̃ be the join of T ′ and T along C(S1),

i.e.

T̃ = {a⊕ b ∈ T
′ ⊕ T : π′(a) = π(b)}.

Define maps i : K ⊗ T → T̃ , π̃ : T̃ → T and γ : T → T̃ by

i(a) = a⊕ 0, π̃(a⊕ b) = b, γ(b) = (b⊗ 1) ⊕ b.

Then one has the split exact sequence

0 // K ⊗ T
i //

T̃

π̃ //
T //

γ
oo 0.

Since K0 is split exact, it follows that K0(i) is injective. Therefore it is now enough to show

that

K0(i) ◦K0(σ) ◦K0(j) ◦K0(π0) = K0(i) ◦K0(σ).

We have i ◦ σ(S) = (1 − SS∗) ⊗ S ⊕ 0 and i ◦ σ ◦ j ◦ π0(S) = (1 − SS∗) ⊗ 1 ⊕ 0.

Exercise 3.18 Write

P = 1 − SS∗, V = S ⊗ 1, Q = P ⊗ 1, W = P ⊗ S, R = P ⊗ P.

Let

u0 = V (1 −Q)V ∗ +WV ∗ + VW ∗ +R, u1 = V (1 −Q)V ∗ +QV ∗ + V Q.

Show that u0 and u1 are self-adjoint unitaries.

It follows that there is a homotopy of unitaries ut connecting u0 and u1. Define φt : T → T ′

by φt(S) = ut(S ⊗ 1). This gives a homotopy of morphisms. Next, define ψt(S) = φt(S) ⊕ S.

Exercise 3.19 Show that ψt is a homotopy of morphisms from T to T̃ .
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Exercise 3.20 Define ψ(S) = (S2S∗ ⊗ 1) ⊕ S. Show that ψ extends to a morphism from T to T̃ .

Show that

ψ0 − ψ = i ◦ σ, ψ1 − ψ = i ◦ σ ◦ j ◦ π0.

Show that K0(ψ0) = K0(ψ) +K0(i ◦ σ) and K0(ψ1) = K0(ψ) +K0(i ◦ σ ◦ j ◦ π0).

The required equality follows. 2

Theorem 3.6 For any C∗-algebra A, one has a natural isomorphism between K0(A) and

K0(S
2A).

Proof : [Cuntz]

From the short exact sequence

0 −→ K −→ T0 −→ C0(R) −→ 0.

we get, by tensoring with A,

0 −→ K⊗A −→ T0 ⊗A −→ SA −→ 0.

Therefore we now have the long exact sequence

// K1(K ⊗A) // K1(T0 ⊗A) // K1(SA) // K0(K ⊗A) // K0(T0 ⊗A) // K0(SA) //

Since K0(K ⊗ A) = K0(A) and K1(SA) = K0(S
2A), if we can now prove that K1(T0 ⊗ A) =

0 = K0(T0 ⊗A), then we are through. Since K1(T0 ⊗A) = K0(T0 ⊗SA), it is enough to show

that for any C∗-algebra B, we have K0(T0 ⊗B) = 0.

Exercise 3.21 Show that one has the following split exact sequence:

0 −→ T0 ⊗B −→ T ⊗B −→ B −→ 0.

Prove that K0(T0 ⊗B) = 0.

The proof is thus complete. 2

The Bott map. Assume A is unital. Denote by z the map w 7→ w from S1 to C. Let

p ∈Mn(A) be a projection. Then pz+1− p : w 7→ pw+1− p is an element in U (Mn((SA)†)).

Exercise 3.22 If p ∈ Proj(Mn(A)) and q ∈ Proj(Mk(A)) are homotopic, then pz + 1 − p and qz + 1 − q

can be connected by a homotopy of unitaries.

The map β : [p] 7→ [pz + 1 − p] from K0(A) to K1(SA) ∼= K0(S
2A) is called the Bott map.
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3.1.6 Computation of K-groups

Stable multiplier algebra.

Lemma 3.7 For any C∗-algebra A, one has K0(M(K ⊗A)) = 0.

Proof : Let p ∈ ProjM(K ⊗ A). Choose isometries v1, v2, . . . in L(H) with v∗i vj = 0 for i 6= j.

Define

q =
∑

(vi ⊗ 1)p(v∗i ⊗ 1), a =
∑

vi+1v
∗
i ⊗ 1.

Exercise 3.23 Show that both the above series converge in the strict topology in M(K ⊗A).

Now define

w =

(
0 0

v1 ⊗ 1
∑
vi+1v

∗
i ⊗ 1

) (
p 0

0 q

)
=

(
0 0

(v1 ⊗ 1)p (vi+1 ⊗ 1)p(v∗i ⊗ 1)

)
.

Then

w∗w =

(
p 0

0 q

)
, ww∗ =

(
0 0

0 q

)
.

Thus [p] + [q] = [q]. Since M(K ⊗ A) is properly infinite, so that K0(M(K ⊗ A)) = {[p] : p ∈

ProjM(K ⊗A)}, it follows that K0(M(K ⊗A)) = 0. 2

Exercise 3.24 Show that for any unital C∗-algebra B, K0(M(K ⊗ A) ⊗ B) = 0. Use this to prove that

K1(M(K ⊗A) = 0 for any C∗-algebra A.

Proposition 3.8 Ki(Q(K ⊗A)) = K1−i(A), i = 0, 1.

Proof : From the short exact sequence

0 −→ K ⊗A −→M(K ⊗A) −→ Q(K ⊗A) −→ 0,

we have the following six-term exact sequence:

K0(K ⊗A) // K0(M(K ⊗A)) // K0(Q(K ⊗A))

��
K1(Q(K ⊗A))

OO

oo K1(M(K ⊗A)) oo K1(K ⊗A)

Since Ki(M(K ⊗A)) = 0, the result follows. 2
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Toeplitz algebra.

0 −→ K −→ T −→ C(S1) −→ 0.

K0(K) = Z // K0(T )
K0(σ) // K0(C(S1)) = Z

��
K1(C(S1)) = Z

∂

OO

oo
K1(σ)

K1(T ) oo K1(K) = 0

Quantum SU(2). The C∗-algebra A associated with the quantum SU(2) group is defined

to be the universal C∗-algebra generated by two elements α and β satisfying the following

relations:

α∗α+ β∗β = 1, αα∗ + q2ββ∗ = 1,

αβ − qβα = 0, αβ∗ − qβ∗α = 0,

β∗β = ββ∗.

The C∗-algebra A has two families of irreducible representations:

H = L2(N)

α 7→ S∗
√

1 − q2N

β 7→ zqN .




z ∈ S1,

H = C

α 7→ z,

β 7→ 0.




z ∈ S1.

The following representation gives a faithful representation of A:

π :





H = L2(N) ⊗ L2(Z),

α 7→ S∗
√

1 − q2N ⊗ 1,

β 7→ q2N ⊗ `.

One can thus identify A with the C∗-subalgebra of L(H) generated by π(α) and π(β).

Exercise 3.25 Show that the map given by α 7→ 1 and β 7→ 0 gives rise to the following short exact sequence:

0 −→ K⊗ C(S1) −→ C(SUq(2))
σ

−→ C(S1) −→ 0.

K0(K ⊗C(S1)) = Z // K0(C(SUq(2)))
K0(σ) // K0(C(S1)) = Z

��
K1(C(S1)) = Z

∂

OO

oo K1(C(SUq(2))) oo K1(K ⊗ C(S1)) = Z

Exercise 3.26 Show that

1. ∂ is one-one and onto.

2. K0(σ) is onto.

3. K0(C(SUq(2))) = Z = K1(C(SUq(2))).
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Podles spheres S2
qc, c > 0. This is the universal C*-algebra, denoted by C(S2

qc), generated

by two elements A and B subject to the following relations:

A∗ = A, B∗B = A−A2 + cI,

BA = q2AB, BB∗ = q2A− q4 + cI.

Here the deformation parameters q and c satisfy |q| < 1, c > 0. Let H+ = l2(N),H− = H+.

Define π±(A), π±(B) : H± → H± by

π±(A)(en) = λ±q
2nen where λ± =

1

2
± (c+

1

4
)
1/2

,

π±(B)(en) = c±(n)1/2en−1 where c±(n) = λ±q
2n − (λ±q

2n)
2
+ c.

Exercise 3.27 π± are irreducible and the direct sum π+ ⊕ π− is faithful.

Since π = π+ ⊕ π− is a faithful representation, an immediate corollary follows.

Proposition 3.9 (Sheu) (i) C(S2
qc)

∼= T ⊕σ T := {(x, y) : x, y ∈ T , σ(x) = σ(y)} where T

is the Toeplitz algebra and σ : T → C(S1) is the symbol homomorphism.

(ii) We have a short exact sequence

0 −→ K
i

−→ C(S2
qc)

α
−→ T −→ 0 (3.5)

Proof : (i) An explicit isomorphism is given by x 7→ (π+(x), π−(x)).

(ii) Define α((x, y)) = x. Then kerα = K. 2

Exercise 3.28 Show that the sequence (3.5) above is split exact. Conclude that K0(C(S2
qc)) = Z ⊕ Z and

K1(C(S2
qc)) = 0.

Another way to compute the K-groups for the Podles̀ sphere is to prove that one has the

following short exact sequence:

0 −→ K ⊕K −→ C(S2
qc)

σ
−→ C(S1) −→ 0.

so that one has the six term sequence:

K0(K ⊕K) = Z ⊕ Z // K0(C(S2
qc))

K0(σ) // K0(C(S1)) = Z

��
K1(C(S1)) = Z

∂

OO

oo
K1(σ)

K1(C(S2
qc)) oo K1(K ⊕K) = 0

Exercise 3.29 Show that

1. ∂ is one-one.

2. K0(σ) is onto.

3. K0(C(S2
qc)) = Z ⊕ Z, K1(C(S2

qc)) = 0.
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3.2 K-groups of crossed products

3.2.1 Crossed products

3.2.2 Crossed products with Z

Theorem 3.10 Let A be a C∗-algebra and let τ be an action of Z on A. Then there is a

six-term exact sequence

K0(A)
1−K0(τ) // K0(A)

K0(ι) // K0(Aoτ Z)

��
K1(Aoτ Z)

OO

K1(A)
K1(ι)
oo K1(A)

1−K1(τ)
oo

The irrational rotation algebra. Let θ ∈ [0, 1] be an irrational. The irrational rotation

algebra Aθ is the universal C∗-algebra generated by two unitaries u and v satisfying the relation

uv = exp(2πiθ)vu. The C∗-algebra Aθ can be written as a crossed product as follows: let α be

the automorphism of C(S1) induces by the map z 7→ exp(2πiθ)z on S1. Then Aθ ∼= C(S1)oαZ.

Therefore we have the following Pimsner-Voiculescu exact sequence:

K0(C(S1)) = Z // K0(Aθ) // K1(C(S1)) = Z

1−K1(α)

��
K0(C(S1)) = Z

1−K0(α)

OO

oo K1(Aθ) oo K1(C(S1)) = Z

The automorphism α is homotopic to the identity. Therefore both K0(α) and K1(α) are

identity. Thus we have two short exact sequences

0 // Z // K0(Aθ) // Z // 0

0 // Z // K1(Aθ) // Z // 0

It follows that K0(Aθ) = Z ⊕ Z = K1(Aθ).

3.2.3 Crossed products with R

Theorem 3.11 (Connes) Let A be a C∗-algebra and let τ be an action of R on A. Then one

has

Kn(Aoτ R) ∼= K1−n(A), n = 0, 1.

Exercise 3.30 Deduce Bott periodicity from the above theorem.
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Pimsner-Voiculescu sequence from Connes’ theorem. Let A be a C ∗-algebra and let

α be an automorphism of A. Define the mapping torus Mα by

Mα = {f ∈ C([0, 1], A) : f(1) = α(f(0))}.

Define π : Mα → A by π(f) = f(0). It is easy to see that one has the following short exact

sequence:

0 // SA // Mα
// A // 0

This gives rise to the following six-term exact sequence:

K0(SA) // K0(Mα) // K0(A)

��
K1(A)

OO

oo K1(Mα) oo K1(SA)

Next one shows that the connecting maps are 1−K0(α) and 1−K1(α) and using Connes-Thom

isomorphism one shows that

K0(Mα) ∼= K1(Aoα Z), K1(Mα) ∼= K0(Aoα Z).

3.3 K-groups of tensor products

4 K-groups of some C∗-algebras

C∗-algebra K0 K1

C[0, 1] Z 0

C0(0, 1] 0 0

C(S2n+1) Z Z

C(S2n) Z
2 0

C0(R
2n) Z 0

C0(R
2n+1) 0 Z

C∗-algebra K0 K1

C Z 0

Mn(C) Z 0

K(H) Z 0

B(`2) 0 0

B(`2)/K(`2) 0 Z

M(K ⊗A) 0 0

C∗-algebra K0 K1

T Z 0

Aθ Z
2

Z
2

C(S2`+1
q ) Z Z

C(S2`
q ) Z

2 0

C(SUq(`+ 1)) ??? ???

On Zn−1 0
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