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PREFACE

The theory of structures on manifolds is a very interesting topic of modern
differential geometry and its applications.

There are many results concerning various differential geometric structures
on Riemannian manifolds.

The main aim of this book is to get a way of a union of such results in one
scheme. It seems that introduced by the author a notion of the canonical connection

 and the second fundamental tensor field h adjoint to a structure is very useful
for this purpose and, in many cases, it is more effective than the Riemannian
connection . Especially, we pay attention to use of h to obtain classifications of
structures and to the case of so-called quasi homogeneous structures.

Projections of structures on submanifolds are also considered in the book.
The introduced by the author class of Riemannian (locally) regular

manifolds is studied here too.
Further, the book is not a survey of what has been done in the theory of

structures on manifolds, it is concerning only to restricted subjects.
The list of references is not intended to be a collection of prestigious papers

and famous names. The references are simply limited to those closely connected
with the topic. Thus, some works quoted here are important and some others may
be not.

Now, let us sum up briefly the contents:
In Chapter 1, we have given a short survey of G-structures, associated

Riemannian metrics and have introduced the so-called canonical connection and
the second fundamental tensor field h  of a fixed pair (P(G), g), where  is
the Riemannian connection of a Riemannian metric g associated to a G-structure
P(G). The integrability of G-structures and the polar decomposition of an O-
deformable (1,1) tensor field are considered here too.

In Chapter 2, using  and h we  have  got  some  results  which  are
generalisations of those obtained by numerous authors for concrete structures. We
consider torsion and curvature of , so-called quasi homogeneous structures,
isometries, affine transformations and holonomy fibre bundles of .
Homogeneous structures and projections of structures on submanifolds and
foliations are also discussed.

In Chapter  3, we have obtained a classification T=T1 T2 T3 of G-
structures over Riemannian manifolds as a decomposition on invariant irreducible
subspaces of tensors of type h in *3 T  under the natural action of the orthogonal
group. Structures of types T1, T3 have been studied more explicitly. Some algebraic
construction has been considered for quasi homogeneous structures of type T3 .
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Naturally reductive homogeneous structures and nearly Kaehlerian manifolds are
examples of such structures.

In Chapter 4, we have introduced so-called Riemannian (locally) regular
manifolds which generalise on the one hand the spaces with reflections of

O. Loos and on the other hand the Riemannian regular s-manifolds and have
proved that every regular -manifold can be described as a fibre bundle over a
regular s-manifold. Conversely, such fibre bundles and regular s-manifolds of
order 2k give examples of regular manifolds.

We also consider the Lie algebra of infinitesimal automorphisms of
Riemannian regular manifolds, orbits under the action of the structural group G,
the structure of locally regular manifolds and submanifolds.

In Chapter 5, we have our methods illustrated for the following structures:
a.p.R.s., i.e., almost-product Riemannian structure (P, g), where P2 = I;
a.H.s., that is, almost Hermitian structure (J, g), where J 2 = I ;
f-s., i.e., a structure defined by an affinor F, F 3+ F = O, and an associated

metric g.
For each of them the canonical connection  and the second fundamental

tensor field h have been computed and applied to study of geometry of manifolds
with a.p.R.s., a.H.s., f-s. Integrability conditions, conformal changes of the
Riemannian metric g, the parallel translation of structures along curves etc. are
discussed here too.

We have the classification of A.Gray and L.M.Hervella rewritten in terms of
tensor field h, i.e., the canonical connection have been obtained for each from 16
classes. We can apply these connections for example to construct characteristic
classes.

A.p.R.s., a.H.s., f-s. can be appeared with help of an affinor S defined on a
Riemannian locally regular s (or ) manifold. Conversely, we consider some
conditions, when a.p.R.s., a.H.m., f-s. given on a Riemannian manifold M are
indused such a tensor field S ,  i.e.,  M  has  a  structure  of  a  Riemannian
regular s (or ) manifold.

In Chapter 6, using the classification of A.Gray and L.M.Hervella and
constructed the second fundamental tensor field h of almost contact metric
structure we have obtained in terms of h a classification of such structures. There
are 122  classes. A similar classification was got by D.Chinea and C.Gonzalez
(A.A.Alexiev and G.Ganchev) by a different method. Good relations have been
found between both the classifications and this allows to apply various tensor
characteristics of the canonical connection  to study of every class.

Examples of all the classes adduced in classification Table are given in
Chapter 7. In particular, -Sasakian and -Kenmotsu structures are identified and
it is shown that, when  = const, they are quasi homogeneous. Further, the
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conditions of integrability, normality and the fundamental tensor fields

)4()3()2()1( N,N,N,N  are considered. We identify some of the classes studied by
various authors with those obtained from classification Table. Riemannian locally
regular manifolds (R.l.r. m.) with one-dimensional foliations of mirrors are
discussed here too. We consider necessary and sufficient conditions for M to be a
R.l.r. m., and, also, the induced almost contact metric structures (a.c.m.s.). In
this case the canonical connection ~  of R.l.r. m. and that  of the induced
a.c.m.s. are the same. R.l.r. m. of order 3,4 are studied more explicitly.

Furher, we want to give the diagram of dependence of the Chapters

Chapter 1 Chapter 2 Chapter 3

Chapter 5 Chapter 6 Chapter 7

Chapter 4

We remark that all the theorems, propositions, formulas and definitions are
numbered for each chapter. For example, in each chapter, say, Chapter 5, Theorem
1.2 is in Chapter 1.

All the manifolds, maps, tensor fields etc. are supposed to be of class C .
We consider connected Riemannian manifolds if not otherwise stated.

The book assumes a basic knowledge of the modern differential geometry
(cf. Foundations of Differential Geometry by S.Kobayashi and K.Nomizu, Vol. I,
II).

The author wish to express here the gratitude to his brother G.A.Ermolitski
for support of this work.

Minsk, 1998 Alexander A. Ermolitski
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CHAPTER 1

SECOND FUNDAMENTAL TENSOR FIELD OF

G – STRUCTURE

In  this  chapter,  we  have  given  a  brief  survey  of G -  structures  and  close
notions. In §1, we give the basic definitions of fibre bundles, G - structures, tensor
G -  structures  defined  by O-deformable tensor fields and connections. In §2,
associated Riemannian metrics are discussed and we define introduced by the
author a notion of the second fundamental tensor field h of  a  Riemannian G -
structure. The integrability of G -  structures  and  the  polar  decomposition  of O -
deformable (1,1) tensor field are considered in §3.

We follow fairly closely [45], [46], [73].

§1. G - STRUCTURES AND CONNECTIONS

10 . Let M be a differentiable manifold and G be a Lie group.

DEFINITION 1.1. A principal fibre bundle over M with group G consists of
a manifold P and an action of G on P satisfying the following conditions:
(1) G acts freely on P on the right: PuRuaGP)a,u( a ;
(2) M is the quotient space of P by the equivalence relation induced by G, M

= P/G, and the canonical projection MP:  is differentiable;
(3) P is locally trivial, that is, every point x of M has a neighbourhood U

such that )U(1  is isomorphic with GU  in the sense that there is a
diffeomorphism GU)U(: 1  such that ))u(),u(()u( ,
where  is a mapping of )U(1  into G satisfying a))u(()ua(
for all )U(u 1  and Ga .

A principal fibre bundle will be denoted by ),G,M(P , )G(P  or simply P.
We call P the total space or the bundle space, M the base space, G  the structure
group and  the projection. For each point x of )x(,M 1  is a closed submanifold
of P, called the fibre over x. If u is  a  point  of )x(1 , then )x(1  is  the set  of
points ua, Ga , and is called the fibre through u. Every fibre is diffeomorphic to
G.
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From local triviality of P(M,G) we see that if W is a submanifold of M, then

)G,W)(W(1  is a principal fibre bundle. We call it the restriction of P to W and
denote it by W .

Given a principal fibre bundle P(G),  the  action  of G on P induces a
homomorphism  of  the  Lie  algebra g of G into the Lie algebra x(P) of vector
fields on P.  can be define as follows: for every u, let u  be the mapping

PuaGa . Then ue*u )A(A)( . For each A g )A(A*  is called the
fundamental vector field corresponding to A. Since the action of G sends each fibre
into itself, *

uA  is tangent to the fibre at each Pu . As G acts freely on P, *A never
vanishes on P if 0A .  The dimension of each fibre being equal to that of g, the
mapping u

* )A(A of g into )P(Tu  is a linear isomorphism of g onto the tangent
space at u of the fibre through u. We also see that for each Ga , *

*a A)R(  is the
fundamental vector field corresponding to A))a(ad( 1 g.

A homomorphism f of a principal fibre bundle P'(M',G') into another
principal fibre bundle P(M,G) consists of a mapping P'P:'f  and  a
homomorphism G'G:''f  such that f'(u'a') = f'(u') f''(a) for all 'P'u  and

'G'a .  For  the  sake  of  simplicity,  we  shall  denote f' and f'' by the same letter f.
Every homomorphism P'P:f  maps each fibre of P' into fibre of P and hence
induces a mapping of M' into M, which will be also denoted by f.  A
homomorphism )G,M(P)'G,'M('P:f  is called an imbedding or injection if
the induced mapping M'M:f  is an imbedding and if G'G:f  is  a
monomorphism. By identifying P' with f(P'), G' with f(G') and M' with f(M'), we
say that P'(M',G') is a subbundle of P(M,G). If, moreover, M' = M and the induced
mapping M'M:f  is the identity transformation of M,

)G,M(P)'G,'M('P:f  is called a reduction of the structure group G of
P(M,G) to G'. The subbundle P'(M,G') is called a reduced bundle. Given P(G) and
a Lie subgroup G' of G,  we  say  that G is reducible to G' if there is a reduced
bundle P'(G').

20. Let P(M,G) be a principal fibre bundle and  a manifold on which G
acts on the left: aG),a( . A construction of a fibre bundle
E(M, ,G,P) associated with P with standard fibre  is considered below. On the
product manifold P  the group G acts on the right as follows: Ga  maps

P),u(  into P)a,ua( 1 . The quotient space of P  by this group
action is denoted by GPE . The mapping MP  which maps (u, ) into

)u(  induces a mapping E , called the projection, of E onto M. For each
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)x(,Mx 1

E  is called the fibre of E over x. Every point x of M has  a
neighbourhood U such that U1  is  isomorphic  to U G. Identifying )U(1

with U G, one can see that the action of G on )U(1  on the right is given by
)b,ab,x(),a,x( 1  for GU),a,x(  and Gb .

The isomorphism GU)U(1 induces an isomorphism
U)U(1

E . Therefore a differentiable structure in E can be introduced by the
requirement that )U(1

E  is an open submanifold of E which is diffeomorphic with
U  under the isomorphism U)U(1

E . The projection E  is  then  a
differentiable mapping of E onto M. Thus E(M, ,G,P) or simply E is  called  the
fibre bundle over the base space M, with standard fibre  and structure group G,
which is associated with the principal fibre bundle P.

30 . We consider now G-structures. Let M be an n-dimensional manifold. A
linear frame u at a point x of M is an ordered basis X1 , . . . . , Xn of Tx(M). Let L(M)
be the set of all linear frames u at all points of M and let   be the mapping of L(M)
onto M which maps a linear frame u at x into x. The general linear group GL(n,R)
acts on L(M) on  the  right  as  follows.  Let )R,n(GL)a(a i

j  and
)X,....,X(u n1  be a linear frame at x. Then ua is the frame )Y,....,Y( n1  at x

defined by
j

j
i
ji XaY .  It  is  well  known  that L(M) (M, GL(n,R)) is a principal

fibre bundle. We call L(M) the bundle of linear frames over M. Let n1 e,....,e  be the
natural basis for )1,..,0,0(e),.....,0,..,0,1(e:R n1

n . A linear frame
)X,....,X(u n1  at x can be given as a linear mapping )M(TR:u n  such that

ii Xue  for i = 1,...,n.

DEFINITION 1.2. Let G be a Lie subgroup of GL(n,R). A reduction P(G) of
L(M) to G is called G - structure over a manifold M.

We say that G - structure P(G) is conjugate with G' – structure P'(G') if there
exists an element )R,n(GLa  that P'  =  Pa.  In  this  case  we  have G'  =  a-1Ga.
P'(G') will be denoted by )Gaa(P 1

a . Let for G - structure P(G) G be a Lie
subgroup of a Lie group G'. Then it is easy to build the unique G'- structure

)G(P)'G('P  which is called the extension of P(G) to G'.

40. If p is a point in M, we define )p(T r
s  as  the  set  of  all R-multilinear
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mappings of

)M(T...)M(T)M(T...)M(T pp
*
p

*
p

( )M(T*
p  - r times, )M(Tp  - s times)

into R. Otherwise )p(T r
s  is the tensor product

(1.1) )M(T)M(T)p(T *
p

s
p

rr
s .

If r
sTK  is a tensor field on M of type n1 e,.....,e),s,r(  is a basis of Tp(M),

n1 e,.....,e , is the dual basis of )M(T*
p , then we have

(1.2) s1
r1

r1

s1
e...ee...ekK ...

...p

If we consider )R(T nr
s ,  then one can define an equivariant with respect to

the group GL(n,R) map

)R(T)M(L: nr
s

by the formula

)u,...,u,uv,...,uv(K),...,,v,...,v)(n(K r*1*
s1

r1
s1

where u L(M).
The action of GL(n,R) on R induces that on )R(T nr

s .

DEFINITION 1.3. A tensor field K is said to be O-deformable if
K(L(M)) belongs to one single orbit in )R(T nr

s  with respect to GL(n,R). Let
O be  such  an  orbit  and K0 O. Then )M(L)K(K 0

1  is  a G-structure,
where G is the automorphism group of K0. Selecting K0. is the same as
selecting srn  components r1

s1

...

...k  for K.

For any frame u’ L(M)

)R(TOK)'u(K n
r

s
'
0
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and '

oK  is  in  the  same GL(n,R) orbit O as K0. So, there is a GL(n,R) such that
aKK '

00 , then 0K)a'u(K  and at any point x M there is at least one frame u’
belonging to )K(K 0

1 . For b G we have 00 KbKb)u(K)ub(K , because b
is an element of the automorphism group G . Let )R,n(GL)a( i

j  and n1 e,...,e  be

a basis of Tp(M). We define the group G by

(1.3) s1

s1

r1

s1

r

r

1

1

r1

s1

k...k
...

...
k...kjj

j...j
...

i
j aka...ak:)R,n(GL)a(G

The group G is an algebraic group therefore G is a closed Lie group.

DEFINITION 1.4. A G - structure P(G) with a structure group of type (1.3)
is called a tensor G - structure. The frames of P(G) are the same for which K
has the components r1

s1

j...j
...k  on M.

We remark that a O-deformable tensor field K on M defines the whole class
of conjugated each other G-structures. It is clear that for a GL(n,R) the tensor

aK0  still  belongs  to  the  orbit )R(TO nr
s  but the automorphism group can

change G’ instead of G, where Gaa'G 1 . So, the choice of structure from the
class depends on the choice of a point p M and a frame )e,...,e,e( n21  at p.

For instance, if F is an O-deformable (1,1) tensor field, then at each point
p M there exists a frame )e,...,e( n1  for which pF  has the Jordan normal form.

We can take a G-structure consisting of all such frames from L(M).  Later  on  we
shall denote by P(K) a G-structure defined by an O-deformable tensor field K if the
choise of frames is clear from context.

In 196O I.M.Singer put up a question if there exist locally nonhomogeneous
Riemannian manifolds for which the Riemannian metric g and the curvature tensor
field R are simultaneously O-deformable. Many papers have been published in this
direction; for a survey see [12].

Examples of various G-structures one can find in [6], [13], [45], [64].

50. We define a connection in a principal fibre bundle (see [46],[73]). For
each u P, let )P(Tu  be the tangent space of P at u and uG  the subspace of )P(Tu

consisting of vectors tangent to the fibre through u.



13
DEFINITION 1.5. A connection  in P is an assignment of a subspace uQ
of )P(Tu  to each u P such that
(a) uuu QG)P(T ;
(b) u*aua Q)R(Q  for every u P and a G ;
(c) uQ  depends differentiably on u.

Condition (b) means that the distribution uQu  is invariant by G. We call

uG  the vertical subspace and uQ  the horizontal subspace of )P(Tu . A vector
)P(TX u  is called vertical (respectively horizontal) if it lies in uG  (respectively

uQ ). By (a), any vector X of P at u can be uniquely written as

X = Y + Z, uu QZ,GY .

We call Y (respectively Z) the vertical (respectively horizontal) component
of X.

Given a connection  in P,  we define a 1-form  on P with values in the
Lie algebra g of G as follows. For each )P(TX u  we define )X(  to  be  the
unique A g such that (A*)u is equal to the vertical component of X, where A* is the
fundamental vector field corresponding to A. It is clear that (X) = O if and only if
X is horizontal. The form is called the connection form of the given connection

. The projection MP:  induces a linear mapping )M(T)P(T: xu  for
each u P, where )u(x . When a connection is given,  maps uQ
isomorphically onto )M(Tx . The horizontal lift or simply, lift of a vector field X
on M is a unique vector field X* on P which is horizontal and )u(

*
u X)X(  for

every u P. Given a connection in P and a vector field X on M, there is a unique
horizontal lift X* of X which is invariant by aR  for every a G. Conversely, every
horizontal vector field X* on P invariant by G is the lift of a vector field X on M.

60. Let L(M) be the bundle of linear frames over a manifold M. The
canonical form  of L(M) is the nR -valued 1-form on L(M) defined by

(1.4) ))X((u)X( 1   for )P(TX u

where u is considered as a linear mapping of nR  onto )M(T )u( .
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DEFINITION 1.6. A connection in L(M) over M is called a linear
connection of M.

Condition (b) of Definition 1.5 means that any connection in G-structure
P L(M) can be extended to linear connection of M.

We suppose that P(H) is a subbundle of P(G) and H is  a  reductive  Lie
subgroup of G, that is

(a) g= h m;

(b) HadG (m) = m.

If  is a g - valued form of a connection in P(G) then we have

(1.5) )X()X( h )X( m  for X T(P(G)).

It is easy to see that )X()X( h  is the h - valued form of a connection

in P(H) (see [46]).
Let  be the cross section of L(M) over the neighbourhood U which assigns

to each x U the linear frame ))X(,...,)X(( xnx1  and let
k

k
k XfY,X  be vector

fields on M. Then, according to [7], the form defines an affine connection   by

(1.6) xk
k

k
x

1
x*X )X)(x()Xf(Y)x()X()x(Y

x

where (x) is considered as a mapping of nR  onto )M(Tx .

§2. ASSOCIATED RIEMANNIAN METRICS AND SECOND
FUNDAMENTAL TENSOR FIELD OF G – STRUCTURE

10. Let M be a Riemannian manifold with a Riemannian metric g = < ,  >.
The Riemannian metric g defines the subbundle O(M) = P(O(n)) of L(M)
containing all the orthonormal frames over M.
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DEFINITION 1.7 [15]. Let P(G) be a G-structure over M. The Riemannian
metric g is called an associated one if there exists such an element

)a)n(Oa(P 0
1

0a0
 in the class

)R,n(GLa
1

a )a)n(Oa(P

that the structures P(G) and )a)n(Oa(P 0
1

0a0
 have a common subbundle of

the frames over M.

It is easy to verify that the given Definition 1.7 is equivalent to the following

DEFINITION 1.8. A Riemannian metric g is said to be associated to a G-
structure P(G) if there exists such an element )R,n(GLa  such that the
intersection of the Riemannian G-structure P(O(n)) with the subbundle
P(G)a is  non-empty.  In  this  case  the  intersection  is  a  principal  subbundle
P(H) , where Gaa)n(OH 1 .

We remark that if such a structure P(H) exists then any element of the class

)n(Oa
1

a )Haa(P  satisfies Definition 1.8.

The following theorems describe the existence of associated Riemannian
metrics.

THEOREM 1.1 [39]. Let G be  a  real  Lie  group  with  a  finite  number  of
connected components. Then for each G-structure P(G) over M there exists a
reduction of G to the maximal compact subgroup H of G.

In  the  class  of G-structures conjugated with P(G) there  exists  such  a
structure, let it be P(G) itself, that its maximal compact subgroup H is a subgroup
of O(n). We extend P(H) to the group O(n) and get the structure P(O(n)) = O(M)
over M, which defines the Riemannian metric g =  <  ,  >  on M. We see from
Definition 1.8 that the metric g is an associated one to P(G).

THEOREM 1.2. Let K be an O-deformable tensor field on M and let P(G)
be a corresponding G-structure. Then
a) there exists an associated metric g to P(G)
b) Riemmannian metric g is an associated one if and only if there exists such
an affine connection  on M that K = O and g = O.
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Proof. The first conclusion of the theorem follows from Theorem 1.1

because the Lie group G is an algebraic one, see (1.3), and therefore G has a finite
number of connected components.

We consider the second conclusion. It is well known, see [46], [73], that any
principal fibre bundle P(M,G) admits a connection, if M is paracompact. If is a
connection in P(H)=P(G) P(O(n)) with corresponding covariant derivative , see
(1.6), then the parallel translation  along  a  curve  segment in M transfers the
frames of P(H) onto the frames, [46]. As K and g have the constant components on
M in these frames we see that K and g are invariant with respect to , that is, K =
O, g=O.

Conversely, if K  =  O, g  =  O and is the corresponding to linear
connection, then we can construct the holonomy fibre bundle )u(P 0  of passing
through the fixed orthonormal frame )M(Ou0 ,  [46].  It  is  clear  that K has
constant on M components in the frames of )u(P 0 , hence )u(P 0  can be extended
to the tensor G-structure P(K). )u(P 0  is the common subbundle of P(K) and O(M)
and, using Definition 1.8, we obtain that the Riemannian metric g is an associated
one to the tensor structure P(G).

QED.

We remark that a searching for "the best associated metric" to the given G-
structure P(G) is one of the interesting subjects of modern differential geometry,
see [9], [1O].

20. Later  on  we  shall  consider  only  the  fixed  pair (P(G), g) or (P(H), g),
where H=G O(n).

To construct the second fundamental field h of the structure (P(H), g) we
consider the Lie algebras O, h of the Lie groups O(n), H.

We assume that O h

EXAMPLE. If ))R,n(GL(P)G(P , where

0adet:)R,n(GLa)R,n(GL , then O = h.

Let g~  be a biinvariant Killing form on O(n) and let m be the orthogonal
complement of h to O

m = h x~ O y~,0)y~,x~(g~: h .
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We have

(1.7) O= h m;.

and from the biinvariance of g~

(1.8) )H(ad m = m.

If is the O - valued form of the Riemannian connection in O(M), then
from (1.7), (1.8) we get that h defines some connection in P(H), see (1.5).

The connections ,  can be extended to linear connections with corresponding
covariant derivatives , .

DEFINITION 1.9 [17]. The tensor field h  is called the second
fundamental tensor field of the structure (P(G), g); the connection  is
called the canonical connection of the pair (P(G), g).

To be correct we must verify an independence of  from the choice of P(H)
from the class )n(Oa

1
a )Haa(P .

Let )Haa(P'P 1
a  and Haa'H 1 , then )a(ad 1 (h)=h’. From the

biinvariance of the Killing metric g~  it follows that )a(ad 1 (m)=m’, where m’ is
the orthogonal complement m’=h'  of h’ to O.  We  have

X)(a(ad 1
h )X)a(ad() 1

m  and X)(a(ad 1
m )X)a(ad() 1

m . Let '~  be

the h’ - valued form of the connection in P'(H'), then

)X)R(()X)R((' *a*a h )X()a(ad 1
 h )X()(a(ad 1

 h )

))X()(a(ad 1

The condition ))X()(a(ad)X)R(( u
1

*aua ,  see [46],  is  equivalent  to
the item (b) of Definition 1.5 hence the linear connections defined by

', coincide.

30. (P(G), g) is called the particular structure if h=0 and the nearly particular
one if 0h , where h  denotes the symmetric part of the tensor field h, i.e.,
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Y,X),XhYh(
2
1Yh YXX  x(M).

It is evident that (P(G), g) is the nearly particular structure if and only if the
connections ,  have the same geodesics. We constructed  as a connection in
P(H), where P(H) is a subbundle of O(M), hence we have got that

(1.9) g = O,

that is, the affine connection  is a metric connection.
Let be a cross section of L(M) over a neighbourhood U which assigns to

each x U the linear frame ))X(,...,)X(( xnx1  and X,  Y are vector fields on M.
From (1.6) it follows that

(1.10) )x()YY()Yh( xXXxX m x
1

x* Y)x()X( ,

where  (x) is considered as the mapping of nR  onto )M(Tx .
The following theorem shows that the pair (g, h) is defining for the structure

P(G).

THEOREM 1.3. Structures P(G) and )Gaa('P 1  are  conjugate  if  and
only if there exists their common associated Riemannian metric g and the
second fundamental tensor field h of P coincides with one of P'.

Proof. If P and P' are conjugate then from Definition 1.8 it follows that they
have a common associated Riemannian metric g and from the construction of h it
is evident that the tensor field h of P is equal to that h' of P', therefore h = h'.

Conversely, if g is the common associated Riemannian metric and h = h'
then ' . We consider the holonomy fibre bundles P(u) and P'(u') of the linear
connection  corresponding to  such that P(u) P(G) and )Gaa('P)'u('P 1 .
The structures P(u) and P'(u') are conjugate, see [46], therefore their extensions
P(G) and )Gaa('P 1  are also conjugate.

QED.

Thus, the pair (g, h) defines the class of G - structures, where g plays a role
of the "first fundamental tensor field".
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§3. INTEGRABILITY OF G - STRUCTURES AND POLAR

DECOMPOSITION OF O - DEFORMABLE (1,1) TENSOR
FIELDS

10. We follow [45], [64].

DEFINITION 1.1O. A G - structure P(G) is called an integrable one if for
each p M there exists a coordinate neighbourhood U with coordinates

)x,...,x( n1 such that for every point x U the frame )
x

,...,
x

;x(
n1

belongs to P(G).

We give some results about the integrability of tensor G - structures.

THEOREM 1.4 [55]. Let P(G) be  a  structure  defined  by O – deformable
(1,1) tensor field F and there exists a connection  in P(G) such that
corresponding linear connection is without torsion. Then P(G) is an
integrable structure.

The following tensor field N(F) on M is called the Nijenhuis tensor of F

(1.11) ,Y,XFFY,XFY,FXFFY,FX)Y,X)(F(N 2

X,Y x(M)

THEOREM 1.5 [44]. Let P(G) be  a  structure  defined  by O – deformable
(1,1) tensor field F and for every eigenvalue of F there  exists  one
(generalized) Jordan box or several one-dimensional (generalized) Jordan
boxes. Then P(G) is an integrable structure if and only if the Nijenhuis
tensor field N(F) vanishes on M.

THEOREM 1.6 [45]. P(O(n)) is an integrable structure if and only if the
corresponding Riemannian curvature tensor field vanishes on M.

Let O - deformable (1,1) tensor fields k1 F,...,F  define the structure P(G) ,
that is, the frames of P(G) are the same for which every iF has the constant
coordinates on M and let h be the second fundamental tensor field of the pair
(P(G),g). Then we have the following
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THEOREM 1.7. If (P(G),g) is the particular structure (h=0) , then every

iF  defines an integrable structure on M.

Proof. Since h=0 hence is a connection without torsion.  defines
a connection  in P(G) and the rest follows from Theorem 1.4.

QED.

20.  It  is  well  known,  see  [31],  a  polar  decomposition  of  matrix (F) in
Euclidian space: (F) = (S)(P) ,  where (S) is an unitary matrix and (P) is  a
symmetric positively semi-indefinite one. This decomposition is unique if (F) is a
nonsingular marix.

We consider the polar decomposition of an O-deformable (1,1)
tensor field F.

DEFINITION 1.11. Further, for simplicity, an O-deformable (1,1) tensor
field F will be called an affinor.

Let F be  an  affinor,  which  defines  such  a  structure P(G) that
P(G) O(M)=P(H), H  =  G O(n), where O(M) is  a  subbundle  of  all  the
orthonormal frames over M determined by an associated to P(G) Riemannian
metric g and G is the group of invariance of some fixed matrix (F) of F.

PROPOSITION 1.8. There exists an affinor F* on M such that
<F*X,Y>=<X,FY> for any X,Y x(M), the metric g is an associated one to
P(F*) and the second fundamental tensor fields of P(F) and P(F*) coincide.

Proof. If a H, then )F(a)F(aT  and TTT )F(a)F(a , therefore the
matrix T)F(  is invariant under H and P(H) can be extended to the group G* of
invariance of T)F( . For any b G* O(n) we have TTT )F(b)F(b , hence

)F(b)F(bT  and G* O(n)=H. Thus g is an associated one to P(G*) and from
construction of h, see Definition 1.9, it is evident that the second fundamental
tensor fields of P(G) and P(G*) coincide.

QED.
We consider now the matrix )F()F()P( T2 . Let the matrix (P) be  the

nonnegative square root of 2P , [29], 2G  be the group of invariance of 2P  and 1G
be that of (P).

LEMMA 1.9. We have 21 GG  and 2GH .
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Proof. If )P(a)P(a 1 , then )P(a)P(a 221 , where

,

0

0
0

0

0

00

)P(

2
k

2
k

2
1

2
1

2 0,

0

0
0

0

0

00

)P( j

k

k

1

1

The groups aGaG,aGaG 2
1

21
1

1  are the groups of invariance of
)P(),P( 2  respectively and it is evident that 21 GG , hence 21 GG . For a H

we have

)P()F()F()a)F(a)(a)F(a(a)P(a 2TTTT2T

and 2Ga .
QED.

THEOREM 1.1O. Let F be an affinor, let g be  an  associated  to P(F)
Riemannian metric and let  be  the  canonical  connection  of  the  pair
(P(F),g). Then we have
a) F  =  SP, where S and P are affinors, S is an unitary affinor and P is  a
symmetric positively semi-indefinite one with respect to g.
b) 0PSF .

Proof. It follows from Lemma 1.9 that P(H) can be extended to the group
1G  and )G(P 1  determines the affinor P. From the identity )P)(S()F(  for

matrixes we see that H preserves the matrix (S), hence an affinor S is defined by
extension of P(H). Since  is a connection in P(H), where P(H) P(G),
P(H) P( 1G ), P(H) P(S), it is clear that 0PSF . The rest is obvious.

QED.

REMARK. In general, the second fundamental tensor fields of (P(G),g),
(P( 1G ),g), (P(S),g) are  not  the  same.  For  example,  if <FX,FY>=<X,Y>,
where X,Y x(M), then F=S and P=I, therefore the structure (I,g) is  a
particular one, i.e. h=0 , but the structure (P(F),g) can be various.
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CHAPTER 2

RIEMANNIAN GEOMETRY OF G – STRUCRURES

In this chapter, we study a pair (P(G),g) where P(G) is a G-structure over M
and g is an associated with it Riemannian metric. There are many results about
different concrete structures on manifolds considered with Riemannian metrics.
Using the introduced notions of the second fundamentical tensor field h and of the
canonical connection  of  the  structure  we  want  to  unite  such  results  in  on
scheme to get a general theory. In §1 we consider torsion and curvature of , so-
called quasi homogeneous structures and dependent notions. §2 is  devoted to the
study of isometries, affine transformations and holonomy fibre bundles of .
Homogeneous structures are discussed in §3 and projections on submanifolds and
foliations in the last §4.

We follow especially closely [47], [67].

§1. TORSION AND CURVATURE, QUASI HOMOGENEOUS
STRUCTURES

10. We consider a fixed pair (P(G),g) or (P(H),g), where H=G O(n), and its
second fundamental tensor field h , where  is the Riemannian
connection,  is the canonical that of the structure. Tensor fields h,h  denote
the symmetric and skew-symmetric parts of h respectively:

(2.1) Y,X),XhYh(
2
1Yh),XhYh(

2
1Yh YXXYXX x(M).

LEMMA 2.1. Let Z,Yhh XXYZ  for any X,Y,Z x(M). Then we have

(2.2) XZYXYZ hh .

Proof. Since  is a metric connection, then

Z,YZ,YZ,YX XX

and it is analogously for  from  (1.9).  Subtracting  one  equality  from  the
other we have got the lemma.

QED.
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Let T  be the torsion tensor field for , such a tensor field is equal to zero

for the connection .

LEMMA 2.2. We have

(2.3) h2T .

Proof. Subtracting from the equality

Y,XXYYT YXX

the equality

Y,XXYO YX

we have obtained our lemma.
QED.

PROPOSITION 2.3. The pair (P(G),g) is a particular structure if and only

0h .

Proof obviously follows from (2.3) and from uniqueness of metric
connection without torsion.

QED.

The Riemannian curvature tensor field R of the connection  is defined by

(2.4) Y,X,,R Y,XYXXY x(M)

The curvature tensor field R  of the canonical connection  is defined
analogously by

(2.5) Y,X,,R Y,XYXXY x(M)

THEOREM 2.4. For any X,Y,Z x(M) we have

(2.6) ZhZh,h)Z,X)(h()Z,Y)(h(ZRZR YTYXYXXYXY X

Proof. Since h  we have
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.hh,h,hh,R

hh,h,R

Y,XYXYXYXXY

Y,XY,XYYXXY,XYXXY

As

YXXYYXYX X
h).,Y)(h(hhh,

and

)h).,X)(h((hh,h XYXYYXYX Y
,

therefore

YTYXYXXY

Y,XXYYXYXXYXY

X

YX

hh,h).,X)(h().,Y)(h(R

hhhh,h).,X)(h().,Y)(h(RR

QED.

20. DEFINITION 2.1. We call a pair (P(G),g) a quasi homogeneous
structure if 0h  on M.

From Theorem 2.4 it follows that for a quasi homogeneous structure

(2.7) ZhZh,hZRZR YTYXXYXY X
.

Examples of quasi homogeneous structures one can find in [41].
The following vector fields play an important role in our consideration.

DEFINITION 2.2. We call a vector field X a particular one, respectively a
nearly particular one, if 0hX  on M, respectively 0hX .

If n1 X,...,X are orthonormal vector fields on a neighbourhood of some point
of M , then (1,1) tensor fields 21 r,r  are defined on this neighbourhood by

(2.8)
n

1k
kYkX

1 Xh,XhY,Xr ,
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(2.9)
n

1k
kYkX

2 Xh,XhY,Xr .

Let n1 Y,...,Y  be another vector fields, then for every point from our
neighbourhood

k
j

k
jj XaY , where )n(O)a( i

j , and

.Xh,XhXha,XhaYh,YhY,Xr
n

1k
kYkX

n

1k,j
kX

k
jkX

k
j

n

1j
jYjX

1

So, we have correctly defined on M tensor field 1r , for 2r  it is analogously.
It is evident that for any X,Y x(M)

(2.1O) 2,1i,Yr,XY,Xr ii .

PROPOSITION 2.5. A set of particular (nearly particular) vector fields on
M concides with Ker 1r  ( Ker 2r ).

Proof. If X Ker 1r , then OXhX,Xr
n

1k

2
kX

1 , hence 0Xh kX

for each kX , k = 1,...,n, and from linear independence of n1 X,...,X  it follows that

0YhX  for any Y x(M). Conversely, if OYhX , then OXr1  from (2.8) and
X Ker 1r . The proof for 2r  is the same.

QED.

30. The following theorem describes a situation in a quasi homogeneous
case.

THEOREM 2.6. Let (P(G),g) be a quasi homogeneous structure i.e.
Oh . Then we have

I) Or,Or 21 ; II) there exist almost product structures
2211 rImrKer)M(T;rImrKer)M(T

(direct sums) on M and 2,1i,)rKer(rIm ii .

Proof. I) Let Z be a vector field and  a curve segment in M defined by Z or
more precisely by a local 1-parameter group of transformations induced by Z. We
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denote by X,Y, n1 X,...,X  the vector fields defined on some neighbourhood of
which are obtained by the parallel translation of )M(TX,...,X,Y,X pnpp1pp

along , p , in the connection . Obviously n1 X,...,X  are remained orthonormal
because the connection  is metric. So we have

O)X()Y()X( pkZpZpZ   for any k = 1,...,n and

p
i

Zp
i

Z )Xr()X)r(( .

n

1k
kYkXZp

1
p

1
Z Xh,Xh(Y,XrZY,Xr

O)Xh,Xh pkYZkX ,

O)XhYh(
2
1Y)h( YXZXZ   and Or 2

Z   too.

II) From I) it follows that 21 r,r  are affinors, hence irKer  define
differentiable distributions on M.

From (2.1O) we have that ii rIm)rKer( , therefore
2,1i,rImrKer)M(T ii , are almost product structures on M.

QED.

DEFINITION 2.3. A pair (P(G),g) is called a strict structure if OhX  for

each X x(M), X O.

It is evident that (P(G),g) is strict if and only if }O{rKer 1  for each point
of M.

40. The following notions can be useful for the study of the structure
(P(G),g) over the manifold M. We call

a) 1r  the induced Ricci mapping,
b) Y,Xr1 the induced Ricci tensor,
c) tr 1r  the induced scalar curvature,
d) 21 XX,Xr the inducud curvature in direction X of the structure

(P(G),g) over the manifold M.
The similar notions can be defined for the tensor field 2r .
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§2. ISOMETRY GROUPS AND HOLONOMY FIBRE

BUNDLES

10. We remind (see Definition 1.5) that a connection  in O(M) is an
assignment of a subspace uQ  of )M(OTu  to each u P such  that  (a)

uuu VQ))M(O(T , where uV  is  the  tangent  space  of  the  fibre,  (b)
uau*a QQ)R(  and (c) uQ  depends differentiably on u.

Then for every nR  and u L(M) there exists unique vector u))(B(  in

uQ  such that )(u)))(B(( u . B(  ) is called the standard horizontal vector
field corresponding to nR .

PROPOSITION 2.7 [46]. Let B(  ) be a standard horizontal vector field
and  the canonical form of L(M). Then we have:
(1) nR,))(B( ;
(2) n1

a R),R,n(GLa),a(B))(B(R ;
(3) O)(B  on M for O .

We can define the Riemannian connection  in O(M) by uQu  or by O-
valued form or by covarint derivative .

Let A* be the fundamental vector field corresponding to A O. The
Riemannian metric g  is defined on O(M) by

nR,,,))(B),(B(g ;

2121
*
2

*
1 A,A),AA(tr)A,A(g O;

A,R,O)A),(B(g n* O.

The action of the isometry group I(M) on M induces the action of I(M) as the
isometry group on )g),M(O(  (see [67]) by the formula:

(2.11) )X,...,X;p()X,...,X;p(u n*1*n1 ,

where )M(O)X,...,X;p(u n1  and )M(I .
For our structure (P(H),g), H=G O(n), we can consider the canonical

connection defined by uQu,,  and the standard horizontal vector fields
)(B  too. We introduce distributions V h, V m by
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V h },hA:A{ *   V m }mA:A{ *

It is obvious that V m V h  in V and h
uuu VV)H(PT  for each )H(Pu .

LEMMA 2.8. The horizontal distribution uQ  of the canonical connection of
the structure (P(H),g) is defined by the following formula

(2.11) )QV())H(P(TV))H(P(TQu u
m

uu
h

uuu ,

where u P(H).

Proof. As )Q( u m, therefore O)Q( u . Since u
h

uu QV))H(P(T ,
hence nQdim u  and KerQu .

QED.

20. Let  be the canonical connection in P(H), and )u(P 0  the holonomy
bundle through 0u , where )H(Pu0 ,  i.e., the set of all )H(Pu  which can be
joined to 0u  by a ( piece-wise differentiable) horizontal curve. Further, let )u( 0
denote the holonomy group with reference frame 0u . Then the famous Reduction
theorem, [46], sets that

(I) P( 0u ) is a differentiable subbundle of P(H) with the structure group
)u( 0 .
(II) The connection  is reducible to a connection in P( 0u ).

THEOREM 2.9. The linear canonical connection of the structure (P( 0u ),g)
coincides with the canonical connection  of the pair (P(H),g).

Proof. From Lemma 2.8 we see that the horizontal distribution of the
canonical connection in P( 0u ) is the orthogonal complement of h

uV  to ))u(P(T 0u ,

where h
uV  is the vertical subspace corresponding to the holonomy algebra h. Since

)u(PTQ 0uu  and hh
u VVQ , hence it is clear from Lemma 2.8 that above -

mentioned distribution coincides with uQ  for every )u(Pu 0  and,  therefore,  for
any u L(M) from the right invariance.

QED.
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The theorem shows that sometimes we can identify P(H) with the holonomy

fibre bundle )u(P 0  in our consideration.
Now we give a geometric characterization of Definition 2.3.

THEOREM 2.1O. The structure (P(H),g) is strict if and only if
OQQ uu  for each u O(M).

Proof. If  and u O(M), then, according to [7], we have

Yu)X(uYh 1
X

for X)X()),M(O(TX),M(TY,X *u)u( .
If uQX , then the condition OhX  is equivalent to one that

O)X()X(  and QX . Having taken all such uQX  we have got that
OQQ uu . The converse it is evident.

QED.

From the proof of Theorem 2.1O it  is  obvious  that  for  each u O(n)
)QQ( uu* conincides with )u(

1 )rKer( .

30. Let  be the canonical connection of (P(H),g) and  a transformation of
M. It is well known, [46], that the following conditions are equivalent :

1)  is an affine transformation of M with respect to ,
2) *
3) every standard horizontal vector field )(B  is invariant under ,

4) YY *XX* *
 for all X,Y x(M).

If is an isometry, then  is an affine transformation with respect to  but
we do not say the same about .

DEFINITION 2.4 [48]. The group of all the affine transformations of M
with respect to  preserving each holonomy bundle P(u) , u L(M), is
called the transvection group and it is denoted by Tr(M, ) or  simply  by
Tr( ).

It is evident that if preserves a fixed holonomy bundle )u(P 0 , then it also
preserves the holonomy bundle P(u) for each u L(M). More geometrically, an
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affine transformation  of (M, ) belongs to the group Tr( ) if  and  only  if  the
following holds : for every point p M there is a piece-wise differentiable curve
joining p to )p(  such that the tangent map )M(T)M(T: )p(pp* coincides
with the parallel translation along .

The following theorem describes the situation for canonical connection
of the structure (P(H),g).

THEOREM 2.11. If P(H) is invariant under an isometry  i.e.
(P(H)) P(H), then is  an  affine  transformation  with  respect  to .

Conversely if (P(H),g) is strict and for some frame
)u(P)u()H(P)u(Pu 00 , where an isometry  is  an  affine

transformation with respect to , then (P(H))  P(H) and
)M(I)(Tr .

Proof. Since is an isometry, then (O(M)) O(M). From (2.11) it follows
that V)V(* .  We  know,  [46],  that preserves fibres, canonical form is
invariant under and is an isometry for g  on O(M), therefore

QV)V()Q( ** .
))H(P(T))H(P(T( )u(u*  and * (V h)=  V h , V h V))H(P(Tu ,

hence * (V h ) = V h  From Lemma 2.8 we have got Q)Q(* . The form  of
the Riemannian connection is invariant under  and it is obvious that the form
is also invariant under . So,  is an affine transformation with respect to .

Conversely, if an isometry is an affine transformation, then Q)Q(*
and Q)Q(* . Using Theorem 2.9, let )u(P)H(P 0  at first.  preserves

Q  V h  V m, Q  V h V .

From Theorem 2.1O we have that QQ V h  and V h  is invariant under
. Let ~  be the following distribution

)M(Ou)),H~(P(T:~
uu ,

 where )H~(P  is one from the structures conjugate to P(H), )H~(Pu . ~  is

invariant under , therefore  transforms the fibres of the foliation ~  onto the
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fibres. Hence, if )u(P)u( 0  for some )u(Pu 0 , then )u(P))u(P( 00  and

)(Tr . If  preserves )u(P 0 , then  preserves an extension of )u(P 0 , that is,

P(H).
QED.

40. We follow [46], [73]. Let  be an affine connection on M. A vector
field X on M is called an infinitesimal affine transformation if, for each x M,  a
local 1-parameter group of local transformations t  of a neighbourhood U of x into
M preserves the connection .

A vector field X on M is called an infinitesimal isometry (or, a Killing vector
field) if the local 1-parameter group of local transformations generated by X in  a
neighbourhood of each point of M consists of local isometries. An infinitesimal
isometry is necessarily an infinitesimal affine transformation with respect to . X
is an infinitesimal isometry if and ohly if L OgX  (L X  is the Lie differentiation
with respect to X).

Let  be a complete affine connection on M. Then every infinitesimal
affine transformation X of M is complete, that is, X generates a global 1-parameter
group of transformations of M.

A vector field X is an infinitesimal affine transformation of M if and only if

(2.12) L YYX L Y,XX    for each Y x(M).

Let  be as usually the canonical connection of a structure (P(H),g).

THEOREM 2.12 [67]. A metric connection (in particular ) is complete
on the complete Riemannian manifold M.

So we have got that any infinitesimal affine transformation of M with
respect to  is complete if M is a complete Riemannian manifold.

THEOREM 2.13. A vector field X is an infinitesimal isometry and an affine
transformation with respect to  if and only if L OgX  and L OhX ,
where h .

Proof. For any Y,Z x(M) we obtain
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(L Z,XhZhZh,X)Z,Y)(h YY,XYX

)Y,XZZ,X( YY,XY

)Y,XZZ,X( YY,XY

( L YYX L Z)Y,XX

( L YYX  L .Z)Y,XX

From the above-mentioned results the theorem follows.
QED.

§3. HOMOGENEOUS STRUCTURES

10. The Riemannian manifold (M,g) is called a homogeneous one if the full
isometry group I(M) is a transitive Lie group of transformations of M. The
following theorem of W.Ambrose, I.M.Singer [3], [67], [48] plays an important
role in the study of such manifolds.

THEOREM (AS). A connected, complete, simply connected Riemannian
manifold (M,g) is a homogeneous one if and only if there exists a tensor
field h of type (1,2) on M such that for any X,Y,Z x(M)

(AS1) OZh,YZ,Yh XX ,

(AS2) ZYhYZhYZXYZX XX
RRR,h)R( ,

(AS3) YhYXYX X
hh,h)h( ,

where  and R denote the Riemannian connection and the Riemannian
curvature tensor field respectively.

Every such a tensor field h satisfying the conditions (AS) on M is  called  a
homogeneous Riemannian structure on M . We can define a canonical connection
on M by the formula
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h~

Then the conditions (AS1), (AS2), (AS3) are equivalent to the following

(2.13) OR~~,Oh~,Og~ ,

where R~  is the Riemannian curvature tensor field of ~ .
Let (M, ~ ) be a connected manifold with an affine connection ~ . Then the

following two conditions are equivalent :
(I) The transvection group Tr( ~ ) acts transitively on each holonomy bundle

P(u) L(M).
(II) M can be expressed as a reductive homogeneous space 0KK  with

respect to a decomposition k = k 0 m, where K is effective on M and ~  is the
canonical connection of ,KK 0 k, k0, are the Lie algebras of 0K,K  respectively.

If  (I)  is  satisfied,  then Tr( ~ ) is a connected Lie group and M can  be
expressed in the form (II) with K=Tr( ~ ). For every expression of M in  the  form
(II), Tr( ~ ) is a normal Lie subgroup of K and its Lie algebra is isomorphic to the
ideal m = [m, m] of k.

So, the space (M, ~ ) will be called an affine reductive space if the
transvection group Tr(M, ~ ) acts transitively on each holonomy bundle.

Using results in [67], we can give the following characterisation of the
homogeneous Riemannian structures :

Let (M,g) be a connected, complete and simply connected Riemannian
manifold, and  its Riemannian connection. A tensor field h of type (1,2) on (M,g)
is a homogeneous structure on (M,g) if and only if the new affine connection

h~  determines an affine reductive space (M, ~ ) and  g  is  parallel  with
respect to ~ . Each homogeneous Riemannian space (M, g) admits at least one
homogeneous structure ( but it can admit more than one).

Now, let h be as usually the second fundamental tensor field of the pair
(P(H),g) on M.

THEOREM 2.14. Let M be a simply connected, complete Riemannian
manifold and let  be the canonical connection of the structure (P(H),g)
and h=O, R=O. Then h is a homogeneous Riemannian structure and

0KKM  is the Riemannian homogeneous space, where K=Tr( ) and

0K  is the isotropy subgroup of a fixed point o M. The structure P(H) is
invariant under K.
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Proof. From Theorem 2.12 we see that  is complete on the complete

Riemannian manifold M and we have g=O, h=O, R=O. From (2.3) it
follows that OT  and from (2.7) R=O implies OR . So, there exists the
minimal group of affine transformations K=Tr( ),  which acts transitively on the
holonomy fibre bundle )H(P)u(P 0  (see [47]) . Since  preserves P(H) we
see that P(u) P(H) for each u P(H). As )u(P 0  is invariant under the action of K,
therefore P(H) is invariant too. Since P(H) O(M) it is evident that K I(M).

QED.

We describe now relations between canonical connections  and ~ .

THEOREM 2.15. Let ~  be the canonical connection of a Riemannian
homogeneous space 0KKM , where K=Tr( ~ ) , and let )u(P 0  be  the
holonomy fibre bundle of ~  containing )M(Ou0 . Then for canonical
connection  of G-structure )g),u(P( 0  on M we have ~ .

Proof. Since 0KKM , where K=Tr( ~ ) ,  then K acts transitively on
)u(P 0  and preserves )u(P 0 , [48] . We consider a mapping

)u(Pu),u(:)M(OK:J 0u .

Then )u(P)K(J 0u  and *uu )J(K k, where k is the Lie algebra of K. Let
h be the Lie algebra of the holonomy group with the fixed frame 0u .

Using [67], we have from Lemma 2.8 that the horizontal distribution of ~

u
h

u0u

u0u0uuuuu

QV))u(P(T

)V))u(P(T())u(P(T)VK(KQ~

From the right invariance it is evident that uu QQ~  for each u L(M), hence
the connections ~  and coincide.

QED.

REMARKS.
1) Let ~  be the canonical connection of a Riemannian homogeneous space

0KKM  , where K = Tr( ~ ) , P(H) be an invariant structure under the
action of K,  be the canonical connection of (P(H),g). In general, ~

and  are not the same. For example if P(H)=P(O(n))=O(M), then
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 but ~  if M is not a symmetric Riemannian space.

2) From Theorems 2.14, 2.15 we see that the notion of the second
fundamental tensor field h of G-structure generalises, in some sense, that
of the homogeneous Riemannian structure on M.

3) The holonomy fibre bundle )u(P 0  gives  a  trivial  example  of  a  quasi
homogeneous structure. More interetings examples one can find in [41].

PROBLEM. Let 0KKM  be a Riemannian homogeneous space with
canonical connection ~ , K=Tr( ~ ) and let P(H) be an invariant structure under the
action of K. It seems interesting to obtain conditions on M and P(H), when the
connections ~  and  necessarily coincide.

20. We continue our consideration.

THEOREM 2.16. Let P(G) be an invariant structure over the homogeneous
Riemannian space (M,g), where 0KKM .Then metric g is the associated
one for P(G).

Proof. For fixed point o M in  the  class  of G-structures conjugated with
P(G) there  exists  a  structure,  let  it  be P(G) itself,  such  that

oo )H(P))M(O)G(P( . Since P(G) and O(M) are invariant under the action
of K, therefore for any p M

))H(P())M(O)G(P()H(P ppp ,

where K,p)o( . It is evident that P(H) is a reduction of P(G) and H
is the maximal compact subgroup of G, H O(n).

QED.

Let M be a simply connected homogeneous Riemannian space with the
canonical connection ~ . Then 0KKM , where K=Tr( ~ ) and 0K  is the isotropy
subgroup of the fixed point o M, [47] . We remark that  and ~  are complete.
Let r21 M...MMM  be  the  de  Rham  decomposition  of M, then there
naturally exists an almost-product structure P(AP): r

p
1
pp T...T)M(T .

LEMMA 2.17.  The structure P(AP)  is invariant under the act ion of
K and ~ .
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Proof. Since )M(I)~(TrK 0 , where )M(I 0  is the maximal

connected isometry group, therefore )AP(P))AP(P(  for every K,  [46]  ,
and P(AP) is invariant under the action of K. We consider projectors r,...,1i,i

on O,,T jii
2
i

i  for i  j. Since each r,...,1i,i , is invariant under
the action of K it is parallel under ~ , [47], and P(AP) is invariant under ~ .

QED.

THEOREM 2.18. Let r1 M...MM  be the de Rham decomposition of
simply connected homogeneous Riemannian space 0KKM  and let P(G)
be invariant under the action of K on M. Then, in the class of G-structures
conjugated with P(G) there exists a structure, let it be P(G) itself, which has
a common subbundle with P(AP) i.e. P(G) induces the structure )G(P i on

r,...,1i,M i .

Proof. We can choose P(G) from the class of conjugated structures in such
a way that there exists a frame 00 ))AP(P)G(P(u . Since K=Tr( ~ ), then the

set K:)u()u(K 00  coincides with holonomy fibre bundle )u(P 0 . From
the invariance of P(G) and B(AP) under the action of K it follows that

)G(P)u(P 0  and )AP(P)u(P 0  that is )u(P 0  is a common subbundle of
P(G) and B(AP), hence P(G) is reduced to subgroup r1 G...GG~ . Therefore
we have obtained the structures )G(P i  on r,...,1i,M i , where iM  is identified
with corresponding manifold passing through the point o.

QED.

It is well known that an invariant almost Hermitian structure on a symmetric
Riemannian space M is a Kaehlerian one.

This result is generalised for G-structures.

THEOREM 2.19. Let 0KKM  be a symmetric Riemannian space,
where K = Tr( ) and let P(G) be invariant under the action of K on M .
Then the structure (P(G),g) is a particular structure.

Proof. For fixed frame )M(O)G(P)H(Pu0  we can consider a set
K:)u()u(K 00 , which coincides with holonomy fibre bundle )u(P 0 .

Since P(H) is  invariant  under  the  action  of K, then )H(P)u(P 0 . From
Theorem 2.15  is  the  canonical  connection  of  the  pair (P(u),g). For )u(Pu 0
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))H(P((T)u(P(TQ u0uu   and uu QQ  from (2.11). From the right invariance

uu QQ  for any u L(M), that is,  and (P(G),g) is a particular structure.
QED.

§4. SUBMANIFOLDS AND FOLIATIONS

10. Let M’ be  a k-dimensional manifold isometrically immersed in our n-
dimensional Riemannian manifold M. Since the discussion is local, we may
assume, if we want, that M’ is imbedded in M. The submanifold M’ is  also  a
Riemannian manifold with respect to the restriction of g on M’ and for any

)'M(T)'M(T)M(T'Mp ppp . For any X,Y x(M’) and )'M(TZ
we have, [47],[73], that

(2.14) ZDXAZ),Y,X(YY XZX
'
XX ,

where Y'
X  and XAZ  are the tangential components of YX  and ZX ,

respectively, (X,Y) and ZDX  are the normal components of YX  and ZX .
The first formula of (2.14) is called the Gauss formula and the second

formula is called the Weingarten formula, (X,Y) is called the second fundamental
form of M’ (or  of  the  immersion).  It  is  well  known  that '  is  the  Riemannian
connection of (M’,g), D is a metric connection in the normal bundle )M(T ,  is
symmetric, XAZ  is bilinear in Z and X and

Y,XAZ),Y,X( Z .

Let P(H), H = G O(n) be a structure over M with the canonical connection
. It is easy to see, for example [73], that the above-mentioned results are

independent on the torsion of , excluding the symmetry of , therefore we can
rewrite them for the metric connection

(2.15) ,ZDXAZ),Y,X(YY XZX
'
XX

Y,XAZ),Y,X( Z

We remark that equations of Gauss, Codazzi and Ricci can be also rewritten
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for the connection ' . So, '  is a metric connection on the submanifold M’ and
we can consider the holonomy fibre bundle )u('P 0 , of '  over M’, where

)'M(Ou0 .
We shall say that the structure )u('P 0  over M’ is induced by the structure

P(H) over M. Of course, relations between )u('P 0  and P(H) are  very  weak  or
vanish in general case and it is necessary to have addititional restrictions on M’ and
P(H) to obtain more close connection.

Let M’ be an autoparallel submanifold of M with respect to , [47], that is,
for any Y,X x(M) )'M(TYX . It is equivalent to the condition 0)Y,X( .

THEOREM 2.2O. Let M’ be an autoparallel submanifold of M and for
some frame }X,...,X,X,...,X;p{u)H(Pu n1kk1000 , where

,'Mp0 )'M(TX,...,X
Opk1  and )'M(TX,...,X

0pn1k . Then the

structure P(H) induces by the natural way structures P(H’) over M’ and
)'H(P  on the vector bundle )'M(T .

Proof. We consider the holonomy fibre bundle )u('P 0  of  over M’ in
O(M).  Projections  of  all  the  horizontal  curves  belong  to M’ for )u('P 0 . Then

'M'M00 )H(P)u(P)u('P . Since )'M(TYX  for any X,Y x(M’) it is

clear that }Y,...,Y,Y,...,Y;p{)u('P n1kk10 , where p M’ , )'M(TY,...,Y pk1

and )'M(TY,...,Y pn1k . We introduce }Y,...,Y;p{)u('P k1o  and

}Y,...,Y;p{)u('P n1k0 . It is evident that )u('P 0  is the holonomy fibre bundle
of '  over M’ with a structure group H’ and )u('P 0  is a principal fibre
bundle with a structure group 'H .

QED.

20. Let (P(G),g) be a quasi homogeneous structure, then from Theorem 2.6
0r1  and 11 rImrKer)M(T , where 1r  is  defined  by  (2.8).  We  denote

1rKer  and 1rIm  by 1T  and 2T  respectively.

LEMMA 2.21. The distribution 1T  is integrable and its maximal integral
manifolds are totally geodesic submanifolds with respect to .
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Proof. From Theorem 2.6 ,I) it follows that the almost product structure

21 TT)M(T  is invariant with respect to  and for any 1TY,X
1

XX TYY .
Therefore 1

YX TXY]Y,X[  and 1T  is autoparallel under , that
is, its maximal integral manifolds are totally geodesic.

QED.

We can choose P(G) from the class of conjugated structures in such a way
that there exists a frame

}X,...,X,X,...,X;p{u n1kk100 ,

where 1
k1 TX,...,X  and 2

n1k TX,...,X .

THEOREM 2.22. The structure P(G) induces a particular structure P(G1)
and a strict structure P(G2) on the vector bundle 1T  and 2T  respectively.

Proof. Since 21 TT  is invariant under , then the holonomy fibre bundle
of }Y,...,Y,Y,...,Y;p{)u(P n1kk10 , where p M, 1

k1 TY,...,Y  and
2

n1k TY,...,Y . We know that )u(P 0  is a subbundle of P(G). So, we can consider
the structures }Y,...,Y;p{)G(P k11  on 1T  and }Y,...,Y;p{)G(P n1k2  on 2T .
In the class of conjugated with )G(P 1  structures there exists a structure, let it be

)G(P 1  itself,  that )H(P))k(O(P)G(P 11 . As  on 1T , then  is  a
connection in )H(P 1  and the second fundamental tensor field of )H(P 1  vanishes.
It is obvious that )G(P 2  is  the  strict  structure  on 2T  because each particular
vector field belongs to 1T .

QED.

REMARK.  It  is  evident  from the proof of Theorem 2.22 that  if  we  have  a
general almost product structure 21 TT)M(T , which is invariant with respect
to , then P(G) induces structures )G(P),G(P 21  on 21 T,T  respectively.

30. Let ~  be a foliation on M defined by an integrable distribution 1T  and
let U be a foliated chart of ~ , [66]. We can consider the quotient manifold

~UU*  defined by a differentiable projection
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x
* Ux:UU: ,

where x  is the fibre passing through x U. If 12 TT , then it is evident
that *  is an isomorphism between 2

xT  and )U(T *
)x( . Let P(G) be  a  structure

defined by O-deformable tensor fields m1 K,...,K ,  that  is,  the  frames  of P(G) are
the same for which every m,...,1i,K i , has the constant components on M. It is
well known that the structure P(G) defines a structure (P(G)) over *U  by the
natural way if we have for each 1TX

(2.16) L ,...,0K1X L OKmX .

It  is  similarly  for  the  case  when  we  can  define  the  quotient  manifold
~MM * .
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CHAPTER 3

PROBLEMS OF CLASSIFICATION OF G -
STRUCTURES

In this chapter we give some results and theorems concerning a classification
of G-structures on Riemannian manifolds.

In §1 , we consider a classification of Riemannian G - structures with respect
to the orthogonal group O(n). The classification consists of eight classes .
Riemannian G -  sructures  of  class T1, are discussed in §2 and nearly particular
structures (class T3) in §3 . In §3, we also consider some algebraic constructions
connected with a nearly particular quasi homogeneous structure and the main
decomposition theorem for a manifold with such a structure.

We refer to [23] , [24] , [41] , [67] .

§1. CLASSIFICATION WITH RESPECT TO O(n)

10 . We continue the study of the fixed pair (P(H),g), where H=G O(n), and
its second fundamental tensor field h , where  is the Riemannian
connection,  is the canonical that of the structure. We follow [67].

We consider a point p M , T = Tp(M) and a vector subspace T(T) of *
3

T

T TZ,Y,X,hh:Th)T( XZYXYZ
*

3
.

If E1,...,En is  an arbitrary orthonormal basis  of T, then T(T) is an Euclidean
vector space under the inner product

(3.1)
k,j,i

EEEEEE kjikji
'hh'h,h .

The natural action of the orthogonal group O(T) on T induces the action on
T(T) by the formula

(3.2) ZYaXaaXYZ 111h)ah( ,

where X,Y,Z T  and a O(T).
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We define

T1 h)T( T *
XYZ T),Y(Y,X)Z(Y,Xh: ,

T2(T) = {h T(T): 0)h(c,0h 12XYZ },

T3(T)={h T(T): YXZXYZ hh },

where X,Y,Z T,
i

ZEE12 ii
hZ)h(c  and   denotes the cyclic sum over

X,Y,Z.

THEOREM 3.1 [67]. If dim  T  3 ,  then T(T) is  the  direct  sum  of  the
subspaces T1, T2, T3 and Ti each , i=1,2,3 is invariant and irreducible under
the action of O(T).

It  is  obvious  from  this  theorem  that  we  can  construct  8  classes  which  are
invariant with respect to O(T)

TABLE 3.1
Class Defining condition
particular class h = 0

T1
*

XYZ )T(),Y(Z,X)Z(Y,Xh

T2 0)h(c,0h 12XYZ

T3 YXZXYZ hh

T1 T2 0hXYZ

T1 T3
*

YXZXYZ T),X(Z,Y)Y(Y,X)Z(Y,X2hh

T2 T3 0)h(c12

T XZYXZY hh
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20 .  From  (2.2)  for  every p M the second fundamental tensor

pp )(h T(T) and this table is very useful for our study.

DEFINITION 3.1. We shall say that the structure (P(H),g) has a type T , or
belongs to the class T , on M if hp  T (TpM)) for each p M. Here T  is
one from the classes from the table 3.1.

THEOREM 3.2.  A pair (P(H),g) is a nearly particular structure if and only
if its second fundamental tensor field h belongs to T3.

Proof evidently follows from the formula

)hh(21h YXZXYZXYZ ,

where X,Y,Z x(M).
QED.

Thus, nearly particular structures give examples of the structures having the
type T3.

THEOREM 3.3. Let (P(H),g) be a quasi homogeneous structure having a
type T  for some point p M. Then this structure belongs to the class T  on
M.

Proof. We consider a curve (t), t [O;1], (O)= p, (1)= q and the parallel
translation t  of  along (t). We denote by X, Y, Z, Ei the vector fields defined on
some neighborhood of  which are parallel along (t). Then from the condition

0h  it follows that

pXYZZYXqXYZ )h(h)h(
qqq

Therefore

p12q
i

ZEEq12 )Z)h(c()h()Z)h(c(
ii

,

( ()h qXYZ pXYZ )h .
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If h T1 T2 ,  then q is  correctly defined form as the parallel  translation of

p along (t). The form q is independent on the choice of a curve because h and g
are parallel along (t) and unique in the point q.

Using defining conditions from the table 3.1 it is easily to see that all the
classes are invariant under the parallel translation.

QED.

REMARK. Let h be a homogeneous Riemannian structure on a
homogeneous Riemannian space M and let P(u0) be the holonomy fibre bundle of

h~  containing the frame u0 O(M), (see theorem (AS) in §3 of chapter 2) .
The  examples  homogeneous  Riemannian  structures  of  the  all  8  types  are
considered in [67]. From theorem 2.15 it follows that the second fundamental
tensor field of (P(u0),g) coincides with h. So, if h T , then the holonomy fibre
bundle of ~  gives an example of a G - structure of the corresponding class.

§2. RIEMANNIAN G-STRUCTURES HAVING TYPE T1 AND T2

10. We say that a structure (P(H),g) belongs to the class T1 on M if
hp T1(Tp(M)) for each p M, that is,

(3.3) hXYZ = <X,Y> (Z)  <X,Z> (Y),

where  is a nonzero 1-form on M and X,Y,Z x(M).
We can define the nonzero vector field  on M by the formula

< ,X>= (X)

and in this case from (3.3) it folows that

(3.4) hXY= <X,Y>  < ,Y>X.

It follows from (2.3) that the torsion T  of the canonical connection has the
following form

(3.5) XY,Y,XYX,X,YYhXhYh2YT XYXX

        =<  ,Y >X  <  , X >Y

Let L = [ ] be the one-dimensional distribution on M defined by the vector
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field  and let V = L  be the orthogonal complement of L. We have the almost-
product structure

(3.6) T(M) = L V.

PROPOSITION 3.4.  The  structure  (3.6)  is  invariant  with  respect  to  the
canonical connection .

Proof. We take p M, 1 , u = {p; p = E0,  E1,...,En-1} O(M) and
such uu1n1o )Ker(QE,...,E,E  that ii* E)E( , i = O, ..., n  1, where  is
the canonical projection and  is the O-valued form of the canonical connection
in P(H). According to [7] we have that

j
1

ijE Eu)E(uEh
i

,

where  and  is O - valued form of the Riemannian connection.
From (3.4) it follows that

0

0

0

000

)E(

i

i m O, i = 1,…, n-1; O)E( 0

Let m0 be the linear span of the )E(),...,E( 1n1  , that is,

m0 0B
B0

m O, h0=m A
0

0
000

0 O.

Since m0 m then h h0 and H is a Lie subgroup of the Lie group
K = 1 O(n-1), that is, H = 1 H’, where H’ O(n-1). The structure P(H) is
invariant under the parallel translation of the connection , hence its extension
P(K) is invariant too.

QED.
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PROPOSITION 3.5. The distribution pVp  is integrable on M.

Proof. We consider X,Y V, X Y. It folows from (4.4) that hXY V and
hYX V, proposition 3.4 implies that VYX  and VXY , therefore

VXhXX,VYhYY YYYXXX

and [X,Y] = XY Y X V .
QED.

20. We have obtained the foliation ~  on M defined by the integrable
distribution V. Let M’ be a fibre of this foliation containing a point p M and let
be the Riemannian connection on the submanifold M .

LEMMA 3.6. '  on M.

Proof. If X,Y x(M ) then, from (3,4), we have
,YhY,YYY XXXX

'
X

YY,XYY,XY XXX .
QED.

This lemma implies that the second fundamental from of submanifold M  is
defined by the formula

(3.7) (X,Y) = <X,Y>

for any vector fields X,Y tangent to M .

THEOREM 3.7. The structure P(H) induces the particular structure P(H )
over M .

Proof. From the proof of proposition 3.4 we see that H = 1 H  and we can
consider the structure P(H ) over M

P(H ) = {{p; E1,...,En-1}},

where p M  and {p; p=E0,E1,...,En-1} P(H).
Since P(H) is invariant under  over M, then P(H ) is invariant under
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''M . So, from the construction of the second fundamental tensor field h, it is

evident that ''  and 0'''h  on M .
QED.

For any vector fields X,Y,Z,W tangent to M  we  have  ,  [73]  ,  equation  of
Gauss

(3.8)
)Z,X(),W,Y()Z,Y(),W,X(W,ZRW,ZR '

XYXY ,

where R, R  are the curvature tensors of ,  respectively and, using (3.7), we have
obtained

(3.9) )Z,YW,XZ,XW,Y(W,ZRW,ZR 2'
XYXY .

30. Let M be a space of constant curvature k, [73] , then for any X,Y,Z x(M)
the curvature tensor of  is given by

(3.10) RXYZ = k(<Y,Z>X  <X,Z>Y)

TEOREM 3.8. Every fibre M  of the foliation ~  is a space of constant
curvature 2k  and  is constant on M (  = c).

Proof. It follows from (4.9) and (4.1O) that

)Z,YW,XZ,XW,Y()W,YZ,XW,XZ,Y(kW,ZR 2'
XY

)W,YZ,XW,XZ,Y)(k( 2 ,

where X,Y,Z,W x(M ).  For  each  plane [X Y] in the tangent space Tp(M ),
where X,Y is an orthonormal basis for [X Y] ,the sectional curvature
k([X Y]) 2'

XY kX,YR  and it depends only on the point p M . From the
Schur`s theorem, [73] , (k + 2 ) is constant on M  and = c  on M .

QED.

REMARK. Perhaps  is not constant on M.
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40. Now, we shall generalise a theorem of F. Tricerri and L. Vanhecke from

[67] considered for h.R.s. on M on the case of quasi-homogeneous structures
having the type T1.

Let  be  constant  on M ,  then  we  shall  obtain  that P(H) is a quasi
homogeneous structure.

PROPOSITION 3.9. = c on M if and only if Oh .

Proof.  It  is  obvious  that = c  if  and  only  if 0c XX  for  any

X x(M). For an integral curve (t) of the vector field X we can consider vector
fields Y, Z which are parallel along (t), that is, 0ZY XX . So, we have got

YZ,Z,Y)YZ,Z,Y()Z,Y(h)Z,Y)(h( XXXXX

From this identity the proposition follows.
QED.

THEOREM 3.1O. Let (P(H),g) be a quasi homogeneous structure over M
belonging to the class T1. Then (M,g) is locally isometric to R M  with the
Riemannian metric 'gedtcds tc2222 2

, where g  is  the  induced
Riemannian metric on M  and dt(  )=1.

Proof of  this  theorem  is  the  same  to  one  considered  in  [67]  for  the  case
when h is a homogeneous Riemannian structure (h.R.s.) on M ( see chapter 2, §3).

REMARK. Proposition 3.9 and theorem 3.1O allow us to construct
examples of quasi homogeneous structures having the type T1.

50. Let h be  a  h.R.s.  on M , that is, 0R,0h , where R  is  the
curvature tensor field of . The following results were considered in [67] .

1) All the nontrivial h.R.s. on surfaces have the type T1.
2) If h is a nonzero h.R.s. on a surface M, then (M, g) has a constant negative

curvature.
3) Let M be a complete, simply connected surface, then M admits a

nontrivial h.R.s. if and only if (M, g) is isometric to the hyperbolic surface
H 2.

4) If a manifold M admits a h.R.s. of the class T1, then (M, g) has a constant



49
negative curvature.

5) Let M be a complete, simply connected Riemannian manifold ,then there
exists a nonzero h.R.s. h T1 if  and  only  if (M, g) is isometric to the
hyperbolic space nH .

6) For any fibre M  of the foliation ~  we have R’= O.

60. O.Kowalski and F.Tricerri in [49] otained the following classification
results:

I) Each connected, complete and simply connected Riemannian manifold
(M, g) of dimension n = 3 admitting a non-trivial homogeneous structure of class
T2 is isometric to one of the following homogeneous Riemannian spaces:

(a) The ordinary sphere S3(R) with the sectional curvature k = 1/R2.
(b) The group E(1,1) with a left invariant metric g such that dim I(M, g)= 3.

The admissible metrics form a one-parameter family.

(c) The universal covering group )R,2(SL  of SL(2;R) with a left-invariant
metric g such  that  dim I(M,g) = 3. The admissible metrics form a two-parameter
family.

(d) The group )R,2(SL  with  a  left-invariant  metric  g  such  that  dim
I(M,g)= 4. The admissible metrics form a two-parameter family.

(e) The group SU(2)  S 3 with a left-invariant metric g such that dim
I(M,g)=4. The admissible metrics form a two-parameter family.

(f) The Heisenberg group H3 with any left-invariant metric. These metrics
form a one-parameter family.

Moreover, the spaces sub(b) are 4-symmetric, but not naturally reductive; the
spaces sub(c) are also not naturally reductive. The spaces sub(d)-(f) are non-
symmetric naturally reductive spaces.

In dimension 3, a non-symmetric space admitting a non-trivial homogeneous
structure of class T3 also admits a non-trivial homogeneous structure of class T2.

II) Each connected, complete and simply connected Riemannian manifold
(M, g) of dimension n = 4 admitting a non-trivial homogeneous structure of type
T2 is isometric to one of the following Riemannian homogeneous spaces:

(a) (M, g) is the Cartesian space R4[x, y, z, t] provided with a Riemannian
metric of the form

22t)(22t22t2 dtdzedyedxeg

where ,0,0  are real parameter.
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(b) (M, g) is the Cartesian space R4[x, y, u, v] provided with a Riemannian

metric of the form

222222 dv}1yxx{du}1yxx{g

}dy)x1(dx)y1{()yx1(dvduy2 22221222

dydxxy2 ,

 where 0  is a real parameter.
(c) (M, g) is a Riemannian product (M3, g ) R ,  where (M3, g ) is one of the

spaces given in I).
The space (a) and (b) are always irreducible as Riemannian manifolds.
The space (a) can be described as the matrix group G whose elements are

t000
ze00
y0e0
x00e

t)(

t

t

equipped with a special left-invariant metric.
The space (b) is the homogeneous space G/H ,  where G is  the group of all

positive equiaffine transformations of the plane and H is  the  subgroup  of  all
rotations around the origin, equipped with a left-invariant metric from a special
one-parameter family. All spaces of type (b) are 3-symmetric Riemannian spaces.

Let h be a h.R.s.  of  the type T2 on M ,  where M is one from the manifolds
considered in I), II) and P(u0) the holonomy bundle of the canonical connection

h~ . According to Theorem 2.15, the second fundamental tensor field of
P(u0) coincides with h and P(u0) gives an example of a G-structure having the type
T2.

§3. NEARLY PARTICULAR STRUCTURES

10. It follows from Theorem 3.2 that the nearly particular strucures coincide
with those having a type T3. In this case we see that for any X,Y,Z x(M)

(3.11) ZXYXZYXYZ hhh
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If dim M = 2, then (3.11) implies that h = O , thus, every nearly particular

structure is a particular one.
Let M  K/Ko be a naturally reductive Riemannian homogeneous space with

K invariant Riemannian metric g = < , > and  with ad(K0) - invariant
decomposition

k = k m

such that for any X,Y,Z m

<[X,Y]m, Z> + <[X,Z]m, Y> = O

where )(TrK  and < ,  > is the inner product in m induced by g, (see [47]).
Then the canonical connection ~  satisfies (2.13) and defines such a h.R.s.

~h  on M that ]Y,X[
2
1YhX m. It is evident that hXY = hYX. Let P(u0) be

the holonomy fibre bundle of ~  containing a frame u0 O(M). Then from
Theorem 2.15 it follows that ~  and the second fundamenal tensor
field of P(u0) coincides with the homogeneous Riemannian structure h. Thus P(u0)
gives an example of a nearly particular structure on the space M.

If we consider a nearly particular structure on a complete, simply connected
manifold M for which 0h , 0R  then, from Theorem 2.4, (M, g) is  a
naturally reductive Riemannian homogeneous space with h.R.s. h.

It is well known that all the irredusible symmetric spaces are naturally
reductive. Every isotropy irreducible homogeneous space belongs to this class ,
[71]. Each nearly Kaehlerian 3-symmetric space is naturally reductive, [33] .

The case of compact Lie groups was discussed in [4].
See the survey about the recent research on naturally reductive Riemannian

homogeneous space in [5O].
Let M be a 3-dimensional manifold. Some results about this case one can

find in [67].
A) Let M be a connected, simply connected, complete manifold, dim M = 3,

and  there  exists  a  h.R.s. h on M having a type T3, h  0. Then M is
isometric to R3, S3, H3 or to one of the following Lie groups with a left-

invariant Riemannian metric: 1) SU(2) ,  2) )R,2(SL (universal covering
of the group SL(2,R)), 3) the Heisenberg group.

B) If there exists a h.R.s. h on M, dim M = 3, having a type T1 T3 then h
belongs to T1 or T3 separately.
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REMARK. As we shall see later on, a nearly particular structure generalizes

a notion of the nearly Kaehlerian structure [32], [34] .

20. We consider now a nearly particular quasi homogeneous structure P(H)
on a Riemannian manifold (M, g), that is, h = h  and 0h .

Let T be an Euclidian vector space under an inner product < , > and there is
defined a bilinear operation

VVV:

such that for any X,Y,Z T

 1) X  X = O, 2) <X Y, Z > = <X, Y  Z >.

Constructed algebra is called a QR algebra. The theory of QR algebras was
developed in [41] .

A QR algebra is called simple if it have no ideals except {O} and T,
semisimple if it have no Abelian ideals except {O}.

DEFINITION 3.2. We say that a QR algebra T is a direct product of ideals
r10 I,...,I,I  if r10 I...IIT , where I i is  orthogonal  to I j for every

i  j. In this case we denote r10 I...IIT .

THEOREM 3.11 [41]. Each QR - algebra T is a direct product of its Abelian
ideal I0 and non-Abelian simple ideals.
This decomposition is unique up to an order of factors.

Let T be  a QR - algedra and r10 I...IIT  is the direct product from
Theorem 3.11. Let dim T = n and E1,...,En be an arbitrary orthonormal basis of T.

DEFINITION 3.3. We shall call a linear mapping TT:A  a fundamental
operator, if it is defined by

(3.11)
n

1k
kk EY,EXY,AX

It is easily checked an independence of A from a choice of an orthonormal
basis (see(2.9)).
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THEOREM 3.12. Let T be  a QR -  algedra  and A be its fundamental
operator. Then we have

1) <AX,Y> = <X,AY>,  2) Ker A = I0,  3) A(Ii)=Ii  ,i=1,..,r.

Proof. 1) evidently follows from (3.11).
2). We have from (3.11) that

n

1k

2
kEXX,AX

and, if X Ker A, then X Ek = O, k = 1,...,n; therefore X Y = O for any Y T
and X I0. Conversely, if X I0, then X Ek = O, k = 1,...,n and it follows from
(3.11) that <AX,Y> = O for every Y T , that is X Ker A. Thus I0= Ker A.

3) Let r
S

r
1

1
S

1
1 r1

E,...,E,...,E,...,E  be  such  an  orthonormal  basis  of T that
i
S

i
1 i

E,...,E  is a basis of Ii. If X Ii and Y Ij, where i  j, then

0EY,EXY,AX
iS

1k

i
k

i
k ,

therefore AIi Ii. Since A is nonsingular on 0I , hence AIi = Ii, i = 1,...,r.
QED.

COROLLARY. There exists an orthonormal basis of T composed from
eigenvectors of the operator A that the matrix of A has following form in this basis

e

e

1

1

0

0
0

0

0

0
00

00
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where l,...,1j,0j .

Thus T is  a  direct  sum of the orthogonal  each other proper subspaces of A,
e10 ...IT

DEFINITION 3.4.  A QR - algebra T is called a QRA – algebra if l = r and
r,...,1i,I ii

EXAMPLE. If A has only one eigenvalue or  two (one of  which is  equal  to
zero), then a QR - algebra T is a QRA - algebra.

PROPOSITION 3.13. If T is a QRA - algebra , then

A(X Y) =AX Y = X AY,  X,Y T.

Proof. The operation  is bilinear and the operator A is linear, therefore it is
sufficienly to prove this formula for vectors of some basis of T. If T is  a
QRA algebra, then above-mentioned basis r

S
r
1

1
S

1
1 r1

E,...,E,...,E,...,E  consists of the

eigenvectors of the operator A. Thus we have

)EE()EE(AAEEEAE;ji,0EE i
k

i
ji

i
k

i
j

i
k

i
j

i
k

i
j

j
e

i
k .

QED.

30. We apply this algebraic construction to our situaion.

THEOREM 3.14. Let P(H) be a nearly particular quasi homogeneous
structure on a manifold M . There exists unique up to an isomorphism QR -
algebra T associated to P(H).

Proof. We consider p M , T = Tp(M) and define an operation  by
X Y = hXY ,  where X,Y T and hXY is the second fundamental tensor of structure
P(H) on T. It follows from (3.11) that (T, ) is  a QR - algebra. Let q be another
point of M and T  = Tq(M).  We  have  to  show  that  the QR - algebra (T , ) is
isomorphic to (T, ). Let  be a curve segment in M connecting p and q , and let
be the parallel translation along  in the connection .  is an isomorphism of the
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vector spaces Tp(M) and Tq(M). Since 0g  then Y,XY,X  for
X,Y Tp(M). From the identity 0h  it follows that )Y,X()Y()X( .

Thus, we have obtained that  is an isomorphism of QR - algebras (T, ) and
(T , ).

QED.

It follows from (2.6) that in our case for any X,Y,Z x(M)

(3.12) ZhZ]h,h[ZRZR YTYXXYXY X
.

We can define so-called induced Ricci tensor by the formula

(3.13)
n

1k
kXE E,Y)RR()Y,X(ri

k
,

where E1,...,En are orthonormal vector fields on some neighbourhood.

LEMMA 3.15.
n

1k
kYkX

1 Eh,EhY,Xr)Y,X(ri , where 1r  is

defined by (2.8) .

Proof. Using (2.3), (3.11), (3.12) we have

n

1k
YEEhYEXhYEhE

n

1k
kXE )h2hh(E,Y)RR()Y,X(ri

kkXkkEkXkk

n

1k

1
kYkX

n

1k
kYkXkXkY

n

1k
YhEEEhXEEhYE

Y,XrEh,Eh

)Eh,EhEh,Eh2(

)hhh2(
XkkkYkkXk

QED.

For every p M and any X,Y Tp(M) we  can  define X Y = hXY and obtain a
QR algebra (T, ). It follows from (3.11) that the fundamental operator A of  this
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algebra coincides with 1r  and 0r1  from Theorem 2.6. The proper subspaces
of 1rA  define the differentiable distributions ipp , i = 1,...,l, which are

orthogonal each other and 0
1 IrKer  is the differentiable ideal on M.  If  Y i ,

then YAYYA XiXX  and i , i = 1,...,l are invariant with respect to .
Every ideal Ij, j = 1,...,r is  a  direct  sum of  some proper  subspaces  from Theorem
3.12, 3), therefore it defines a differentiable distribution jpIp  on M and  we
have

(3.14) Tp(M) = I0p  I1p  ...  Irp

PROPOSITION 3.16. The distributions Ij, j = O,...,r are invariant with
respect to , in particular, they are integrable and the maximal integral
manifold of Ij is a totally geodesic submanifold of M.

Proof. For any Y Ij, j = O,...,r we  can  write YhYY XXX . Ij is
invariant with respect to , hence jX IY  and hXY = X Y Ij because I j is the
ideal. Thus IYX  and I j is invariant with respect to .

QED.

The structure (3.14) and P(H) are invariant with respect to , therefore, in
the  class  of G - structures conjugated with P(H) there exists a sructure )H(P ,
which has a common subbundle with (3.14) , that is )n(OH...HH r0  and

)H(P  induces the structure P(H j ) on I j. P(H 0) is invariant with respect to

on I 0, therefore it is particular. For P(H j ) , j = 1,...,r hX  0 for any X x(M),
X  O, hence P(H j ) is strict.

We can unite now all the above-mentioned facts in the main decomposition
theorem for a manifold with a nearly particular quasi homogeneous structure P(H).

THEOREM 3.17. Let M be a complete, simply connected manifold and
P(H) be a nearly particular quasi homogeneous structure over M.  Then  we
have
1) M is isometric to direct product r,...,0i,M...MM r10 , where

each M j is a totally geodesic submanifold of M (M j is the maximal
integral submanifold of I j, see Proposition 3.16, passing through a fixed
point of M);
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2) there exists a structure )H(P  conjugated with P(H) in O(M), which

induces a particular structure P(H0) over M0 and a strict, nearly particular,
quasi homogeneous one P(H j ), j = 1,...,r over M j ;

3) if associated to P(H) the QR - algebra (T, ) is  the QRA - algebra, then
Y,X)Y,X(ri j  on M j , where j  is  an  eigenvalue  of A (see

(3.13)).

40. Let P(H) be a nearly particular structure, maybe 0h  and R, R  denote
the curvature tensor fields of ,  respectively.

PROPOSITION 3.18. 2
XXY YhX,Y)RR( , X,Y x(M).

Proof. The condition hXX = O implies that XX XX  for any X x(M).
From (2.3) Yh2]Y,X[XY XYX  and hXYZ = hZXY from (3.11).

X,YX,YX,YX,Y)RR( ]Y,X[XYYXXY

2
XYX]Y,X[]Y,X[YX

2
X

YX]Y,X[
2

X

XYYXY

YX]Y,X[
2

XYXYX

YX]Y,X[YXYYXX

YX]Y,X[YXYX

XX

YX]Y,X[

YXXXYY

YXXXYY

]Y,X[XYYX

YhhhYh

hYh

Yh,XXh,Yh2]Y,X[X

hYhX,YhXh,Y

hX,YXhX,YhY

hX,YX,Y
]X,YX,YXX,YX,YX[Y

h
X,YX,YYX,YX,YX
X,YX,YYX,YX,YX

X,YX,YX,Y

QED.

This proposition can be useful when we study concrete structures on spaces
of constant curvature k.
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CHAPTER 4

RIEMANNIAN REGULAR -MANIFOLDS

Symmetric spaces and their generalizations play an important role in modern
differential geometry and its applications, [48],[58]. In this chapter we introduce
and study the so-called Riemannian regular -manifolds, which generalize on the
one hand the spaces with reflexions [56] and on the other hand the Riemannian
regular s-manifolds [48]. We want to point out that the term "subsymmetry" was
first used in [62] .

In §1, we give the axioms of Riemannian (locally) regular -manifold and
determine the canonical connection and the foliation of mirrors. The structure of
Riemannian regular -manifold is considered in §2. Every such a manifold can be
described as a fibre bundle over a regular s-manifold. §3 is  devoted  to  the  Lie
algebra of infinitesimal automorphisms of Riemannian regular -manifolds. In §4,
we consider orbits under the action of the structural group G and the main
examples of the Riemannian regular -manifolds. Riemannian locally regular -
manifolds are discussed in §5.

The works [26] , [27] , [48] , [56] , [57] are close to this chapter.

§1. BASIC NOTIONS

10. DEFINITION 4.1. We call a conneced Riemannian manifold (M, g) with
a family of local isometries {sx : x M} a Riemannian locally regular -
manifold (R.l.r. -m.), if
1) x)x(sx , 2) the tensor field x*xx )s(S:S  is smooth and invariant
under any subsymmetry xs ,  3)  there exists  a  connection ~  on M invariant
under any xs , such that

0g~S~ .

As x*xx )s(S , it is evident that

g(SX,SY) = g(X,Y) , X,Y x(M) .

Let M be a R.l.r. -m. and suppose all the subsymmetries xs  are determined



59
globally. Then, we call M a Riemannian regular -manifold (R.r. -m.).

Let the closure G = CL({sx }) of the group generated by the set {sx : x M} in
the full isometry group I(M) of  a  R.r. -m. M be  a  transitive  Lie  group  of
transformations. Then M is a Riemannian homogeneous space with the canonical
connection ~  (M is reductive, [47]).

S is G-invariant, S is invariant under every sx ,  and  it  follows  that
0g~S~ .

The  following  example  shows  that  the  axiom  3)  of Definition 1.1 is
significant.

EXAMPLE. Let RRM 2  be three - dimensional Euclidian space with
the standard flat Riemannian metric g. For every point x (x1,  x2, t) we define sx as
the rotation around the axis x1 = c1,  x2 = c2 on the angle t of  any  plane
R2 : t = const, hence sx (x) = x. It is clear that sx is an isometry for each x M and

x*xx )s(S  has the following matrix on Tx (M) = R3

100
0tcostsin
0tsintcos

The affinor S is smooth on M. One can verify with a help of compasses that

Mw,y,x),y(sw,ssss xxwyx

Differentiating this equality at the point y we obtain

yy*xy*yy*xy*yx S)s()s()s()ss( ,

y*xwy*xw )s(S)ss( ,

therefore S is invariant under any sx. It is clear that S is  not O-deformable
and a canonical connection ~  does not exist.

20. The condition ~ S = O on  a  R.l.r. -m. M implies that S has on M a
constant Jordan normal form. An almost product structure can be defined on
M: T(M)= T1 (M)  T2 (M), where T1 is a distribution corresponding to the
eigenvalue 1 , T 2 = T 1
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In the case when T 1 = {O}, M is a Riemannian locally regular s-manifold,

[48]. Further on, we assume T 1  {O}.

THEOREM 4.1 . Let M be  a  R.l.r. -m. Then the distribution T 1 is
integrable and its maximal integral manifolds are totally geodesic
submanifolds with respect to the Riemannian connection .

Proof. From the fact that connections ~,  are invariant it follows that the
tensor field ~h  is also invariant under every sx . Since h is invariant and

x*xx )s(S , it follows that

hSX SY = ShX Y, X,Y x(M)

Let X,Y T 1, then ShX Y = hSX SY = hX Y and 1
XXX TY~YYh . Since

0S~ , T 1 is invariant under ~  and we get

1
YX

1
XXX

1
X TXY]Y,X[,TYhY~Y,TY~ .

T 1 is autoparallel under  and it follows that its maximal integral
submanifolds are totally geodesic.

QED.

The distribution T 1 defines the foliation }Mx:{~
x . The fibres of ~

will be called the mirrors.
The canonical connection is unique for any Riemannian locally regular s-

manifold, [48]. For R.l.r. -m. we have

PROPOSITION 4.2. Let '~,~  be canonical connections from Definition
1.1 and X T 1 . Then '

XX
~~  on M.

Proof. S has no fixed vectors exept the null vector in T 2, hence (I - S) is an
isomorphism on T 2 and for X T 2, X  O, (I - S)X  O. Let X T 2 , Y x(M) and let

'~,~  be canonical connections from Definition 1.1, '~~E . Then for
1X)SI(X , Y = SY1 we have

0YSEYSESYESYESYEYE 1X1X1SX1X1X)SI(X 11111
,

therefore '
XX

~~  ( 1X1X SYEYSE
11

 because 0)S('~)S(~ ,
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1SX1X SYEYSE

11
 because E is invariant under every sx ).

QED.
It is desirable to get an explicit form of a canonical connection.

THEOREM 4.3. Let M be a R.l.r. -m.,  the Riemannian connection, and
'~  canonical connection, 21 ,  the projections on T 1, T 2 respectively. Then

some a new canonical connection

(4.1) Y,X),YS)(S(YY~ 1
X)SI(XX 2

1 x(M).

is determined on M.

Proof. As (I - S) is a nonsingular on T 2, it is obvious that ~  is a connection.
Let YS)S(Yh 1

X)SI(X 2
1 . Since  and S are invariant under every s x , it

follows from (4.1) that ~  is also invariant under every s x . So, both the tensor
fields ~h  and '~'h  are invariant under every s x , hence ShXY = hSX SY
and SYhYSh '

SX
'
X  for X,Y x(M). Using that S  1 =  1 we obtain

SYhY)S()SYhSYh(Y)S()YShSYh(Y)S(Y)S~( X)SI(XSXXXXXXX

)Y~SSY~(YSSYY)S(Y)S(Y)S( '
X

'
XXXXXX 111112

0SYhSYhYShSYh '
XS

'
X

'
X

'
X 1111

, X,Y x(M)

Further on, we have

YSShYSSh)YS)(S(Yh 1'
X)SI(

1'
X)SI(

1
X)SI(X 2

1
2

1
2

1

YhYhYhYh '
X

'
X)SI)(SI(

'
X)SI(S

'
X)SI( 22

1
2

1
2

1

For X T 1 hX Y=O and XX
~ , for X T 2 YhYh '

XX  and '
XX

~~ .
The identity 0g'~g  implies 0g~ .

QED.

REMARK. From Theorem 4.3 it follows that the connection ~ defined by
(4.1) is necessary canonical, i.e., it has to be realized
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(4.2) Y,X,SYhYSh,0S~
SXX x(M)

on R.l.r. -m.  Therefore,  if  the  conditions  (4.2)  are  not  fulfilled  on  a
Riemannian manifold (M, g) with an affinor S, then the affinor S is not defined by
some structure of a R.l.r. -m.

Definition 4.1. can be rewritten in the following form

DEFINITION 4.2. We call a connected Riemannian manifold (M, g) with a
family of local isometries {sx :  x M} a Riemannian locally regular -
manifold, if 1) sx (x)= x,  2) the tensor field x*xx )s(S:S is smooth, O-
deformable and invariant under any subsymmetry s x , 3) 0g~S~ ,
where ~  is the canonical connection defined by (4.1).

30. DEFINITION 4.3. We call a connected Riemannian manifold (M, g)
with a family of local isometries {sx :  x M} a Riemannian locally regular

-manifold of order k (R.l.r. -m.o.k), if 1) sx (x)= x, 2) the tensor field S
determined by the formula x*xx )s(S  is smooth, invariant under any sx and
satisfies the condition S k= I.

Let M be a R.l.r. -m.o.k and suppose all the symmetries are determined
globally. Then we call M a Riemannian regular -manifold of order k (R.r. -
m.o.k).

The following theorem shows that any R.l.r. -m.o.k is a R.l.r. -m.

THEOREM 4.4. Let M be a R.l.r. -m.o.k, S k = I, and  the Riemannian
connection of g. Then the connection

(4.3)
1k

0j

jk
X

jjk
1k

1j

j
XXX YSS

k
1YS)S(

k
1YY~ , X,Y x(M)

is determined on M, 0g~S~ , and ~  is invariant under every sx.

Proof. ~  is obviously a connection. Further, we have

0)SYSYS(
k
1)YSSYSS(

k
1Y)S~(

1k

0j
X

k1k
X

jk
X

1j1jk
X

j
X
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1k

0j

jk
X

jjk
X

j
XX ]Z)SS,Y(g)Z,YSS(g[

k
1)Z~,Y(g)Z,Y~(g

1k

0j

jk
X

jkjkjk
X )]ZS,YS(g)ZS,YS(g[

k
1

),Z,Y(Xg)ZS,YS(Xg
k
1 1k

0j

jkjk X,Y x(M)

that is, 0g~ . As  and S are invariant under every s x , it follows from
(4.3) that ~  is also invariant under every s x .

QED.

PROPOSITION 4.5. Let M be  a  R.l.r. -m.o.k. Then the canonical
connections defined by (4.1), (4.3) coincide.

Proof. For X T 2 the coincidence follows from Proposition 4.2. If X T 1

and ~  is defined by (4.1), then we see from (4.1) that XX
~  and

0S~S XX . Finally, from (4.3), Proposition 4.5 follows.
QED.

§2. RIEMANNIAN REGULAR  - MANIFOLDS

10. In this paragraph, we consider a R.r. -m. and its foliation of mirrors.

LEMMA 4.6 [46].  Let  and be isometries on (M, g), (x) = (x),
x*x*  for some x M. Then  = on M.

LEMMA 4.7. All the subsymmetries s x are affine transformations with
respect to ~ .

Proof obviously follows from Definition 4.1.

PROPOSITION 4.8. Let M be  a  R.r. -m. and s x a  subsymmetry  on M.
Then we have

xx
idsx  and if x1x , then

1xx ss  on M.
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Proof. Since s x and S commute, T 1 and ~  are invariant under s x and it

follows that xxx )(s . For the restriction
xxs  we have Is,x)x(s xxx .

According to Lemma 4.6, idsx on x . Let x1x , then ids
x1x  and

x)x(s)x(s xx1
. Consider v Tx (M) and a curve t connecting x and x1. Denote

the parallel translation with respect to the connection ~  by t
~ .  According  to

Lemma 4.7, all the subsymmetries commute with the parallel translation; the
parallel translation commutes with S, because 0S~ . Thus,

)Sv(~)v(~S))v(~()s())v()s((~
tttx*xx*xt 111

and we get S)s()s( x*xx*x1
. According to Lemma 4.6, xx ss

1
 on M.

QED.

THEOREM 4.9. Let M be  a  R.r. -m., }Mx:{N x ,

xx:NM: . Then N is a smooth manifold and is a differentiable
submersion.

Proof. According to [61], it is sufficient to show that the foliation is regular.
Let U(x) be a convex neighbourhood of x in which there exists a foliated chart of
the foliation ~ ,  [66]  ,  and  let x1 U(x). Suppose that

21 xx , are connected
components of )x(U

1x  which do not coincide (x 2 U(x)). Then there exists a
unique minimizing geodesic )t(  in U(x), where t [t1, t2], (t1)= x1, (t2)=x2. The
isometry sx transforms  into a geodesic ’ U(x) and ’ is a minimizing geodesic
too, [46]. Proposition 4.8 yields that

111 xxx )(s  and

22x11x x)x(s,x)x(s
11

. Since the minimizing geodesic which connects x1 and
x2 is unique we have ' . Thus )(s

1x  and )(S)()s(
111 xx*x , hence

1
xx 11

T . According to Theorem 4.1,
1x  is a totally geodesic submanifold of M,

so
1x . Because

21 xx ,  are arcwise connected in U(x),  they  coincide.  The
contradiction obtained proves the theorem.

QED.

20. We want to show that any R.r. -m. can be considered as a fibre bundle.
Let I(M) be the full isometry group of a R.r. -m. equipped with the compact open
topology and let G=CL({sx}) be the closure in I(M) of the group generated by the
set {sx : x M}. Then G is a Lie group of transformations.
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LEMMA 4.1O. The foliation ~  is invariant under all the transformations of
the group G, i.e., G transforms mirrors into mirrors.

Proof. Consider a sequance Ga}a{ n , where an G. As S is invariant
under subsymmetries, S is also invariant under each an.  But  then ** aSSa .
Since the tensor field S is invariant under the group G, T 1 is also invariant under G.
It follows that G transforms mirrors of the foliation ~  into mirrors.

QED.

LEMMA 4.11 [48].  If G I(M) is  a  closed subgroup then all G-orbits are
closed in M.

Let us define the action of the group G on the manifold N:
)xa()y,a(:NNG , where y= (x). From Lemma 4.1O we see that this

definition is correct. The action is obviously differentiable.

THEOREM 4.12. Let M be a R.r. -m. and N the corresponding manifold
of mirrors. Then the group G is a transitive Lie group of transformations of
the manifold N.

Proof. Let x0 M and U(x0) be a convex neighbourhood of x0 with respect to
, which is a foliated chart of the foliation ~ . Suppose that x is an arbitrary point

in U(x0),
0xx , r is a distance from x0 to  the G-orbit G(x) of  the  point x:

Ga
0 ))x(a,x(dinfr . Since G(x) is closed, one can find z G(x) such that r= d(x0, z).

Let us suppose that
0xz . Then there exists a geodesic segment of the length r

joining x0 and z. Let w be a point of this segment between x0 and z. Then 1
w T

because otherwise, according to Theorem 4.1, the whole segment would lie in w

and
0xwz . Thus, sw(z)  z, sw(z) G(x). Hence, all the points x0, z, w, sw(z)

lie in U(x). Using the triangle inequality we get

d(x0, sw(z)) < d(x0, w)+ d(w, sw(z))= d(x0, w)+ d(sw(w), sw(z))= d(x0, w)+ d(w,z)

= d(x0, z)= r.

The contradiction obtained shows that
0xz . Thus, for any mirror xy ,
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y  (U(x0 )), one can find an element of the group G transforming y into

0x0y ,

and for any y1, y2  (U(x0 )) there exists such a transformation a G that y2= a(y1).
Covering  a  segment  of  the  curve  between  two  arbitrary  points  of N by  a

finite number of neighbourhoods like  (U(x0 )) we conclude that the group G is a
transitive Lie group of transformations of N.

QED.

COROLLARY 4.13. All the fibres of the foliation ~  are diffeomorphic to
the standard fibre p , where p M is a fixed point.

It  is  well  known  that  the  component  of  identity  of  a  Lie  group  acting
transitively on a manifold N is  also transitive on N,  so,  later  on,  we shall  assume
the group G to be connected.

COROLLARY 4.14. Let p M and let H be the isotropy subgroup of p N.
The mapping )p(aaH:NHG  is a diffeomorphism of the manifold

G/H and N.

Let G(G/H, H) be  the  principal  fibre  bundle  with  the  base G/H and the
structure group H. Since H acts on the manifold = p to the left, it is possible to
consider HG , which is the fibre bundle over the base space G/H with the
standard fibre and the structure group H associated with the principal fibre
bundle.

Let a x be the equivalence class containing (a, x), where
(ab, x) ~ (a, bx), b H.

THEOREM 4.15. Let M be  a  R.r. -m. The mappings
)x(axa:MG: H and )p(aaH:NHG are

diffeomorphisms. The following diagram is commutative :

(4.4)
NHG

MG H

Proof. is obviously a correctly defined differentiable mapping, is
surjective because G is  transitive  on N. Let us check the injectivity of . Let
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a1(x1)=a2(x2), then

Hbaa 2
1

1  and 221
1

111 xaxbbaxa .

The mapping )x(a)x,a(:MG  is a submersion and the following
diagram is commutative :

Thus  is a diffeomorphism and diagram (4.4) is evidently commutative.
QED.

30. In this paragraph we consider a manifold of mirrors as a regular s-
manifold. Let p M be again a fixed point, yp = p N. According to Proposition 4.8
every subsymmetry sx defines a diffeomorphism sy of the manifold N, where
y=  (x). It is clear that sy(y)= y and Ss y*y , where the Jordan normal form S
coincides with the normal form of the tensor field S restricted to T 2.  It  is  also
evident that S  is invariant under the group G acting transitively on N.

LEMMA 4.16. Let a( p )= x, where x= a(p). Then sx= a  sp  a-1 on M,
a G.

Proof. sx (x)=x and (a  sp  a-1)(x)= x. Then xx*x S)s(  and

x*
1

p )asa( x
1
x*pp*

1
x*p*pp* SaSaa)s(a , because S is G-invariant.

According to Lemma 4.6, sx coincides with a  sp  a-1 on M.
QED.

PROPOSITION 4.17. Let M be a R.r. -m. and let N be a manifold of its
mirrors. Then )y(s)y,y(:NNM: 2y21 1

 is  a  real  analytic

mapping.

Proof. N  G/H has  a  structure  of  a  real  analytic  manifold  such  that  the
action of G on N and the projection HGG:p  are analytic, [46]. One can find
a neighbourhood W N of a point y0 for  which  there  exists  an  analytic  section

G M

HG
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GW:v  of the fibre bundle HGG:p . According to Lemma 4.16

1
y

1
pxy asa)asa()s(s

p
. Therefore, for any y W,

1
yy ))y((s)y(s

p
, where Gs

py  is analytic. Thus, the mapping

)y(s)y,y( 2y21 1
 is analytic on W N and, in fact, on N N.

QED.

DEFINITION 4.4 [48]. A regular s-manifold is a manifold N with  a
multiplication NNN:  such that the mappings NN:s y , y N
given by )z,y()z(sy  satisfy the following axioms:

1) sy(y)= y,
2) each sy is a diffeomorphism,
3) sy  sz= sw  sy, where w= sy(z),
4) for each y N, y*ys :Ty (N) Ty (N) has no fixed vectors exept the null

vector.

THEOREM 4.18. Let M be a R.r. -m. and N its manifold of mirrors. Then
N is a regular s-manifold.

Proof. According to Proposition 4.17  is differentiable, the axioms 1) and
2) are evident, 4) folllows from the fact that 2TS  has no fixed vectors except the

null one. We consider the axiom 3). Let x, u, v M,  (x)=y,  (u)= z,  (v)= w,
v= sx (u). Let us prove that sx  su= sv  sx. We have

(sx  su)(u)=(sv  sx)(u)=v,

(sx  su) u* = (sx) u*  (su) u* = (sx) u*  Su= Sv  (sx ) u* = (sv) v*  (sx) u* = (sv  sx) u* .

According to Lemma 4.6 we get sx  su=sv  sx. Projecting this equality onto N
we obtain that sy  sz= sw  sy, where w= sy(z).

QED.

THEOREM 4.19. Let  a  R.r. -m. M be compact. Then its manifold of
mirrors N is a Riemannian regular s-manifold.

Proof. Since the group I(M) of all the isometries of M is compact, the group



69
G is also compact. Assume < , >* is an arbitrary Riemannian metric on N,
X,Y Ty(N).  The  elements  of  the  group G are isometries with respect to the
following metric < , > on N:

Ga

*
** Ya,XaY,X

The rest follows from Theorem 4.18.
QED.

REMARK. If H is not compact then G/H can not be a Riemannian regular
s-manifold because according to [47], the isotropy subgroup of a homogeneous
Riemannian space must be compact.
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§3. LIE ALGEBRA OF INFINITESIMAL AUTOMORPHISMS

OF RIEMANNIAN REGULAR -MANIFOLDS

10. Let (M, ) be a manifolld with a multiplication (no other properties exept
the differentiability of the mapping  : M M M are required). Let x, y M,
X Tx (M), Y Ty (M). The point  (x, y) is denoted by x  y as usual. The products
x  Y and X  y in Tx y (M) are defined by the following formulas

(4.5) )y)t((dt/dyX)),t(x(dt/dYx 00 ,

where  (t),  (t) are parametrized curves in M such that dt/)0(dY ,
dt/)0(dX .

LEMMA 4.2O. Let ,  : (-l, l)  M be two parametrized curves in M , and
let  denote the curve given by ( )(t) =  (t)  (t)  t (-l, l). Then

d( )(o)/dt = d (o)/dt  (o)+ (o)  d  (o)/dt

Proof evidently follows from the "Leibniz formula", [46], p.1O.

DEFINITION 4.5. An automorphism of (M, ) is  defined  as  a
diffeomorphism  : M  M such that  (x  y)=  (x)  (y) for every x,y M.

We shall often denote the tangent mapping of by the same symbol .

LEMMA 4.21. Let   be an automorphism of (M, ) and x M, X T(M).
Then

(4.6)  (x X)=  (x) (X),  (X  x)=  (X) (x).

Proof is obvious.

We consider the elements of x(M) as the cross-sections M  T(M).

DEFINITION 4.6 [58], p.51. Let (M, ) be a manifold with
multipliplication. A derivation of (M, ) is a vector field X x(M) such that

X(p q)=X(p)  q + p X(q)    for all p, q M.



71
The set of all the derivations of (M, ) will be denoted by Der(M, ).

PROPOSITION 4.22 [48],  p.49.  a)  The  derivations  of (M, ) form  a  Lie
subalgebra of the Lie algebra x(M).
b) A one-parameter group of transformations of M is  a  group  of
automorphisms if and only if the corresponding vector field is a derivation.

20. Let (M, {sx}) be a R.r. -m. One can define a multiplication on M by the
formula

 : M  M M:(x,y) x  y=  (x,y)=sx (y).

LEMMA 4.23. Subsymmetries sx and 1
xs are automorphisms of (M, ).

Proof. From the regularity condition (see proof of Theorem 4.18) we obtain

sx (y  z)=sx (sy (z))= )z(s)y(s))z(s(s xxx)y(s x
,

)z(s)y(s'z'y))'z'y(s(s))'z(s)'y(s(s)zy(s 1
x

1
xx

1
xxx

1
x

1
x .

QED.

We shall write simply x-1  y instead of )y(s 1
x  for x, y M.

LEMMA 4.24. Let p M, X Tp (M), x,y M; then

(4.7) X = p X + X  p,

(4.8) X  (x  y) = (X  x)  (p  y) + (p  x)  (X  y).

The proof is analogous to that considered in [48], p.49.
It is well-known that a diffeomorphism  of M induces an automorphism ~

of the algebra T(M) of all the global tensor fields on M, [46], p.28.

LEMMA 4.25. If  is an isometry and automorphism of (M, ), then ~

preserves the tensor fields S,  S-1,  I  S, 2
1)SI( , where 21 ,  are

projections on distributions T 1, T 2.
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Proof. Let p M, X Tp (M). Then  (Sp X)= (p X)=  (p)  (X)=S (p)  (X),

i.e.,  Sp= S (p) on Tp(M) and ~  preserves the tensor field S, therefore S -1, I - S
are also invariant under ~ . Further,  ( 1 X)=  (Sp 1 X)=S (p) ( 1 X) and
( 1 X) T 1 i.e.  (T 1)=T 1. Since  is an isometry and T 2=T 1 , then  (T 2)=T 2 and

2 = 2 . The rest is obvious.
QED.

PROPOSITION 4.26. Let X be an arbitrary tangent vector from Tp(M) and
a mapping L(X):M T(M) is defined by the formula

(4.9) L(X)(x)=(Ip -Sp)-1
2 X  (p-1  x), x M.

Then L(X) is  a  derivation  of (M, ) and L(X)(p)= 2 X. The mapping
L:T(M)  Der(M, ) is linear and injective on each vector space )M(T 2

p .

Proof. We can see easily that L(X)(x) Tx (M) for each x, and thus,
L(X) x(M). Using formula (4.8) we get

L(X)(x  y)=(Ip - Sp)-1
2 X [p-1 (x  y)]=(Ip-Sp)-1

2 X [(p-1  x) (p-1  y)]
=[(Ip -Sp)-1

2 X (p-1  x)]  [p (p-1  y)]+
[p  (p-1  x)]  [(Ip -Sp)-1

2 X (p-1  y)]=L(X)(x)  y+ x  L(X)(y)

and the first statement follows. Further, using formula (4.7) we obtain

L(X)(p)= (Ip - Sp)-1
2 X  (p-1  p)= (Ip -Sp)-1

2 X  p
= (Ip - Sp)-1

2 X – p  (Ip - Sp)-1
2 X

= Ip (Ip - Sp)-1
2 X - Sp(I - Sp)-1

2 X= 2 X.

The rest is evident.
QED.

Let m = )}M(TX:)X(L{ 2
p . From Proposition 4.26 it follows that the

mapping )M(T:L 2
p m is an isomorphism of vector spaces.

PROPOSITION 4.27. For every isometric automorphism  of (M, ) we
have ** LL  on T(M), with the values in Der(M, ).

Proof. Let p,x M and X Tp(M). Using formula (4.6) and Lemma 4.2 we
get

L( * X)(x)=(I (p)- S (p))-1( * 2X) ([ (p)]-1  x)= * ((Ip- Sp)-1 2X)([ (p)]-1  x)
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= * ((Ip - Sp)-1

2 X) [p-1 -1(x)]= * (L(X)( -1(x)))=( * L(X))(x).

QED.

30. We consider now the canonical connection of a R.r. -m. M.

PROPOSITION 4.28. The formula

(4.1O)
)M(TX,Mp),p](Y),X(L[YY~

pXX 1
, Y x(M)

defines a connection ~  on M. Each isometric automorphism of (M, ) is an
affine transformation of (M, ~ ), and every infinitesimal isometry
Z Der(M, ) is an infinitesimal affine transformation of (M, ~ ).

Proof. It is clear that the introduced operation ~  is linear with respect to X
and Y. We have

~
X (f Y)= X1

(f Y)+[L(X), f Y](p)=( 1 X)(f )Y(p)+ f (p) X1
Y

+ (L(X)(p)(f )Y(p)+ f(p)[L(X),Y](p)
=f (p)( X1

Y+[L(X),Y](p))+( 1 X)(f )Y(p)+( 2 X)(f)Y(p)
= f(p) )p(Y)f(XY~

X .

We have got that ~  is a connection on M.
Further, if an isometry Aut(M, ), then using Proposition 4.27 we obtain

))p(](Y)),X((L[)Y()Y(~
***)X()X( *1*

)Y~())p(])(Y),X(L[(Y X**X* 1
.

Finally, if an infinitesimal isometry Z Der(M, ), then Z generates a local
group of local automorphisms of (M, ) (an easy modification of Proposition 4.22)
and  thus,  a  local  group  of  local  affine  transformations  of (M, ~ ). So, X is  an
infinitesimal affine transformation of (M, ~ ).

QED.

COROLLARY 4.29. The connection ~  is invariant under all sx , x M.
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Proof immediately follows from Lemma 4.23.
PROPOSITION 4.3O. ~ S=0.

Proof. 1) If X T 1, then 0SS~
XX  (see proof of Proposition 4.3).

2) For )M(TX 2
p and Y x(M) we have (Y~

X L )p(Y)X(L  and

Y~SSY~Y)S~( XXX [L L(X)SY  S(L L(X)Y](p)=[(L L(X) S)(Y)]  (p). On the
other hand, L(X) is an infinitesimal automorphism and, according to the proof of
Lemma 4.25, S is invariant with respect to the local automorphisms of (M, ).
Therefore, L L(X)S=0 and the Proposition follows.

QED.

PROPOSITION 4.31. The connections defined by the formulas
(4.10), (4.1) coincide, i.e., for X Tp(M) and Y x(M) we have

(4.11) )YS)(S(Y)p](Y),X(L[YY~ 1
X)SI(XXX 2

1
1

Proof. We denote  by ~  the  connection  (4.10)  and  by '~  the second one.
Both the connections are invariant under all sx and 0S'~S~ . Applying the
proof of Proposition 4.2 we see that '

XX
~~  for X T 2 (metric properties are not

used in the proof).
For X T 1

X
'
XX

~~  and the Proposition follows.
QED.

PROPOSITION 4.32. For every X Tp(M) the derivation L(X) is an
infinitesimal isometry.

Proof. Using (4.11) and the equality 0g~g  we have

Z,YZ,YZ~,YZ,Y~Z,YX XXXX 11

+<[L(X),Y](p),Z>+ <Y,[L(X),Z](p)>,    Y,Z x(M),

therefore

2 X<Y,Z>= <[L(X),Y](p),Z>+ <Y,[L(X),Z](p)>

and
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(L L(X)(p) g)(Y,Z)=(L X2

g)(Y,Z)= 2 X<Y,Z>  <[L(X),Y](p),Z>
 <Y,[L(X),Z](p)>= 0.

The rest follows from [46], p.237.
QED.

40. Let N be  a  manifold  of  mirrors  of  a  R.r -m. M.  It  was  shown  in
Theorem 4.18 that N is a regular s-manifold (maybe non-Riemannian). Using [48]
we shall consider some information about affine regular s-manifolds. Let q N,
then for X Tq(N) a mapping L(X):N  T(N) is defined by the formula

(4.12) L(X )(y)=(Iq Sq )-1 X  (q-1  y), y N,

L(X ) is a derivation of (N, ) and L(X )(q)=X .
The formula

(4.13) )N(T'X,Nq),q]('Y),'X(L['Y~
q

'
'X , Y x(N),

defines an affine connection '~  on N. Each automorphism of (N, ) is an
affine transformation of (N, '~ ) and  each  derivation  of (N, ) is an infinitesimal
affine transformation of (N, '~ ).

The connection '~  is invariant under all sy , y N and 0S'~ . For each
regular s-manifold (N, ) there exists a unique connection '~  which is invariant
with respect to all sy and such that 0S'~ . This connection coincides with one
given by (4.13) and

(4.14) )'YS)(S('Y'Y~ 1'
'X)SI(

'
'X

'
'X 1 , X ,Y x(N),

where '  is any sy-invariant connection on (N, ).
The canonical connection '~  is complete and has parallel curvature and

parallel torsion, i.e., 0'R~'~  and 0'T~'~  on N. (N, '~ ) is an affine reductive
space. Every derivation on (N, ) is complete and thus, it determines a one-
parameter group of automorphisms of (N, ). Consequently, Der(N, ) is  the  Lie
algebra of the group Aut(N, ) of all the automorphisms of (N, ).

The elementary transvections of a regular s-manifold (N,{sy}) are defined as
the automorphisms of the form 1

zy ss , y,z N. Let G be the closure in the full
isometry group I(N) of the group generated by all the elementary transvections. G
is called the group of transvections of (N,{sy}) and  is  denoted  by Tr(N,{sy}). The
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transvection group Tr(N,{sy}) coincides with the transvection group Tr(N) of  the
affine reductive space (N, '~ ). Further, Tr(N) is  a  normal  subgroup  of  the  group
Aut(N, ) and Tr(N) is transitive on N.

Let q N and m ={L(X ):X Tq(N)} , where L(X ) is defined by (4.12). Then
the group G = Tr(N) coincides with the group generated by the ideal

g = m+[m, m]

We have seen that the canonical projection  :M N is a homomorphism of
manifolds with multiplications (M, ), (N, ) and  is an isomorphism of vector
spaces )M(T 2

p  and Tq(N).

LEMMA 4.33. Let )M(TX 2
p  and )N(T)X('X q* . Then

* (L(X))=L(X ).

Proof is the same to that of Proposition 4.27, where we have to replace an
automorphism and the homomorphism .

We can identify the action of the group G  I(M) generated by the set
{sx: x M} with the action of G on N by means of , see 10, 20 §2.

So, the Lie algebra g of the closed Lie group G may  be  written  in  the
following form

(4.15) g = m+[m, m],

where m }Mp),M(TX:)X(L{ 2
p . Thus, if dim T 2= n2, then

dim g 2
22 nn .

§4. ORBITS ON RIEMANNIAN REGULAR -MANIFOLDS
AND SOME EXAMPLES

10. We want to consider orbits under the action of the group G on M. We
consider a point p M and its isotropy subgroup H(p) G. According to
Lemma 4.10 the fibre p is invariant with respect to H(p), hence H(p)  H. If M(p)
is  an orbit  of  a  point p under the action of a closed subgroup G  I(M), then the
homogeneous space M(p)  G/H(p) is a closed submanifold of the manifold M, see
Lemma 4.11.



77
Since H(p) is a compact subgroup, then there exists a positive definite inner

product B on the Lie algebra g of the isometry group G which is invariant under
the action of the group adG(H). Let m  be  the  orthogonal  complement  to h  in g
with respect to B, where h  is the Lie algebra of the group H(p). Then the
homogeneous space G/H(p) is the reductive space with respect to decomposition
g =h m , [47].

PROPOSITION 4.34. The orbit M(p) is a R.r. -m. itself for any p M.

Proof. Since sx G, then sx(M(p)) = M(p) for any x M and T(M(p)) is
invariant with respect to S. Hence the conditions 1),2) of Definition 4.1 are
realized. Let ~  be the canonical connection of the Riemannian homogeneous
space M(p)  G/H(p). Then 0g~ , 0S~  because S is invariant under the action
of G and ~  is also invariant with respect to G. So, the third axiom of Definition 4.1
is fulfilled and ~  is a canonical connection of the R.r. -m. M(p).

QED.

LEMMA 4.35. For each x M(p), ))p(M(T)M(T x
2
x .

Proof. Since G is a transitive Lie group on the manifold of mirrors N, then
 (M(p))= N and * (Tp(M(p)))=Tq(N), where q=  (p). Further, for each X Tq(N)

there exists such a vector X Tp(M(p)) that * (X)=X . Let X=X 1+X 2, where
2
p2

1
p1 TX,TX  then * (X)= * (X 2). Tp(M(p)) and 2

pT  are invariant with respect
to S, hence they are also invariant under I  S. So, we have

))p(M(TTX)SI(SXXXXX)SI( p
2
p22121 .

If we look over all the vectors X  from Tq(N), then we obtain all the vectors
2
p2 TX)SI( , i.e. 2

pT  itself, because (I  S) is nonsingular on 2
pT . Thus,

))p(M(TT p
2
p . From the invariance of T 2 and T(M(p)) under the action of  the

group G it follows that 2
pT (M) Tx (M(p)) for every x M(p).

QED.

LEMMA 4.36. The vector field L(X) can be restricted to the manifold M(p),
i.e., L(X)(x) Tx(M(p)) for any x M(p), X 2

pT .
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Proof. Using (4.9) we have

L(X)(x)=(Ip  Sp)-1X  (p-1  x)=X  y,

where )p(My,TX)SI('X 2
p

1
pp . Let (t) be such a parametrized

curve in M(p) that X  = d (o)/dt. Then (t)  y= s (t) (y) M(p) and
))p(M(T)y)t((dt/dy'X x0 .

QED.

PROPOSITION 4.37. The canonical connection ~  of the Riemannian
homogeneous space M(p)  G/H(p) coincides with the connection '~  given
by (4.11).

Proof. From the formula (4.10) it follows that for 2
pTX , Y x(M(p))

))p(M(T)p](Y),X(L[Y~
p

'
X . According to Proposition 4.34 ~  is  a

canonical connection of the R.r. -m. M(p), therefore for
)p](Y),X(L[Y~TX X

2
p  too, see Proposition 4.2, 4.31, and '

XX
~~ .

Let 'R~,R~  be corresponding qurvature tensors of '~,~ , and let X, Y be
linearly independent vectors in 2

pT . There exist such local coordinates

)x,...,x,x( n21  of p that
p2p1 x

Y,
x

X . Then for Z x(M(p)) we get

pXYYXp]Y,X[XYYXpXY )Z~~Z~~()Z~Z~~Z~~()ZR~(

p
'
XY

'
X

'
Y

'
Y

'
X )ZR~()Z~Z~~( .

From the invariance under G it is evident that

ZR~ZR~ '
XYXY  for X,Y T 2(M(p)), Z x(M(p)).

Furter,

dim G = dim g = dim([m, m]+ m)  dim Tp(M((p))= dim (G/H(p))

hence ))p(M(T))p(M(T 2
pp [m, m], where m )}M(TX:)X(L{ 2

p . Using

that for X)p)(X(LTX 2
p we obtain
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p)Y(L)X(L)X(L)Y(L)Y(L)X(Lp)]Y(L),X(L[ )R~~~~~()~(

p
'

)]Y(L),X(L[p
'

)Y(L)X(L
'

)X(L
'

)Y(L
'

)Y(L
'

)X(L )~()R~~~~~(

and '
XX

~~  for any X Tp(M(p)). From the invariance '~,~  under G the
Proposition follows.

QED.

COROLLARY 4.38 [47]. 1) The canonical connection ~  defined by (4.11)
is a complete connection on the Riemannian homogeneous space M(p);
2) 0R~~T~~h~S~g~  on M(p);
3) every vector field L(X), X Tp(M(p)) is complete on M(p), see [46], p.234.

REMARK. In general case a type of orbit M(p) depends on p and can be
different in various points of M.

20. DEFINITION 4.7. We call M a Riemannian regular -manifold of
maximal torsion if for some p M M(p)=M, i.e., M is a Riemannian
homogeneous space, and of minimal torsion if T 2 is an integrable
distribution on M.

We recall here a definition of covering space. Given a connected locally
arcwise connected topological space N, a connected space M is called a covering
space over N with projection  : M N  if  every  point x of N has a connected
open neighbourhood U such that each connected component of   -1(U) is  open in
M and is mapped homeomorphically onto U by .

PROPOSITION 4.39. Let M be a R.r. -m. of minimal torsion and N be a
manifold of its mirrors. Then M(p) is a covering space over N with canonical
projection  : M(p) N.

Proof. Since the distribution T 2 is integrable we can consider its maximal
integral manifold M 2(p) containing p.  At  first,  we  verify  that M 2(p) is invariant
under the multiplication (x,y)=sx (y), x,y M 2(p). Let  (t), t [0,1] be such a
parametrized curve in M 2(p) that  (0)= x,  (1)= y.  Since  for  any t [0,1]
 (t) M 2(p), then )M(T))p(M(T 2

)t(
2

)t(t . The distribution T 2 is invariant
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under sx , therefore

))p(M(T)M(T)()s()t(X 2
))t((s

2
))t((st)t(*x xx

where X(t) is a tangent vector at the point sx(  (t)) to  the  curve sx( (t)). So, the
curve sx( (t)) lies in M 2(p) and sx(y)= sx(  (1)) M 2(p). We have got that M 2(p) is
invariant under multiplication.

Further, for any x M
1xx ss ,  where  a  point x1 belongs to intersection of

the mirror x and M 2(p), see Proposition 4.8, hence M 2(p) is invariant under any
subsymmetry sx . As the group G is the closure in I(M) of the group generated by
the set {sx: x M}, then M 2(p) is also invariant with respect to the action of G. So,
the orbit M(p) M 2(p) but, according to Lemma 4.35, for any x M(p)

))P(M(T))p(M(T)M(T x
2

x
2

x , hence Tx(M(p))=Tx (M 2(p)) and M(p)=M 2(p)
because they are connected.

Since * is an isomorphism of 2
xT  and T  (x)(N) the rest is evident.

QED.

COROLLARY 4.40. If M is a R.r. -m. of minimal torsion, then the action
of H is discrete on and 2

xT)x)(X(L  for any x M.

Proof. The first statement is clear because M(p) intersects p in a discrete
set of points of M. The second one follows from Lemma 4.36.

QED.

PROPOSITION 4.41. Let M be a R.r. -m. of maximal torsion. Then the
Lie group H acts transitively on and  H/H(p) is a Riemannian
symmetric space with canonical connection .

Proof. For any x1 ,x2 p there exists an element a G that x2= a(x1 ). Since
the foliation ~  is invariant under the action of the group G, then a( )=  and
a H. The distribution T 1 is autoparallel with respect to ~ , therefore, according to
Proposition 4.37, ~  is the canonical connection of the Riemannian

homogeneous space H/H(p), i.e.,  is a Riemannian symmetric space.
QED.

PROPOSITION 4.42. Let M be  a  R.r. -m. and let its mirrors be
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one-dimensional. Then M is a R.r. -m. of minimal or maximal torsion.

Proof. In this case dim M = n2+1, where n2= dim T 2. According to
Lemma 4.35, for each point p M   dim M(p)  n2.

If for some point p0 M dim M(p0 )= n2+1, then )M(T))p(M(T
00 p0p

and M(p0 )=M, therefore M is a R.r. -m. of maximal torsion.
If dim M(p)= n2 for  every p M, then Tx(M(p))= 2

xT (M), x M(p) and the
distribution T 2 is integrable.

QED.

30. We consider the main example of a Riemannian regular -manifold of
order k. Let (N,g2) be a Riemannian regular homogeneous s-manifold of order k,
[48], then N  G/H, where GHG0 , G = {a G :  (a)= a}, 0G  is  the
component of the identity of G ,  is the automorphism of the group G ( k= id).
(Here G is a connected group of isometries which acts transitively on N). Let
G(G/H, H) be a principal fibre bundle with the base G/H and the structure group H.
Let ( , g1) be a Riemannian manifold and let H act on  to the left. We consider
the fibre bundle HG  which is associated with G(G/H, H) and again denote by
a x the equivalence class containing (a, x), where (ah, x) ~ (a, hx), h H.

Now we state the main theorem of this section.

THEOREM 4.43. M= G H is a R.r. -m.o.k.

Proof will be given step by step in the next paragraphs.

LEMMA 4.44 [58] . The formulas

aH  bH=a(a )-1b H, a =  (a), b = (b),   a,b G

define a regular multiplication on N.

LEMMA 4.45. The formula

(a u)  (b v)=a(a  )-1b v

defines a regular multiplication on M G H . The projection
H/GG: H  is a homomorphism of spaces with multiplications.
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Proof is analogous to that considered in [56] for the case  2= id.

We have a family of symmetries {sy : y N} on N, sy (z)=y  z,  and  a  tensor
field y*yy )s(S  which is invariant under all sy .  It  is  clear  that IS k . The
family of subsymmetries {sx : x M}, sx (z)= x  z, and the tensor field x*xx )s(S
are defined on M. S is invariant under all sx from the regularity condition. Since
is a homomorphism of spaces with multiplications, we have

(4.16) SS,ss *)x(x

LEMMA 4.46. Let x be the fibre which contains x M. Then sx = id on x

and if x1 x , then
1xx ss .

Proof. Let x = a u, z = b v x , a,b G, then a= bh, h H, because
 (x)=  (z) and we obtain

x  z=(a u)  (b v)=(b hu)  (b v)=b(b )-1b v=b v= z.

If x111 uax , then a1= ah because  (x)=  (x1) and

1111 huauax , h H, and for any Mz

zxvb)a(a)vb()hua(zx 1
1 .

QED.

The foliation }Mx:{~
x  defines the distribution T 1 on M. According

to Lemma 4.46 IS 1T  and ,  since S  has no fixed vectors exept the null vector,

the eigenspace of S corresponding to the eigenvalue 1 coincides with 1
xT . Let 2

xT
be the direct sum of all the eigenspaces of Sx except 1

xT . From (4.16) we get S k= I
and )N(TT: )x(

2
x*  is  an  isomorphism.  The  structure  of  the  almost  product

T(M)=T 1 T 2 is defined on M. The action of the group G on the homogeneous
space N  G/H induces the action of G on M G H  : (a, b u) ab u and we
have  (a  x)= a  (x), a,b G, x M.

LEMMA 4.47. The tensor field S is  invariant  under  all  the  elements  of
G on M.
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Proof. We  shall  show  that (b  sx )(z)=(sb(x)  b)(z), b G, x,z M. Indeed,

b  (x  z)=ba(a )-1c v, (ba u)  (bc v)=(ba)(b a )-1 b c v=ba(a )-1c v, where
x= a u, z= c v. Considering the tangent mappings we get b*  Sx= Sb(x) b x* .

QED.

According to Lemma 4.47 the distributions T 1, T 2are invariant under G,
hence the foliation ~  is also G - invariant.

We define the following Riemannian metric on the distribution T 2:

2
x**

2
)x(

2
x TY,X),Y,X(g)Y,X(g .

Then ))Y(a),X(a(g))Ya(),Xa((g)Ya,Xa(g ****
2

****
2

**
2

Ga,TY,X),Y,X(g)Y,X(g 22
**

2 .
Thus, the elements of the group G are isometries on T 2. Let p M be a fixed

point and p= . We define a Riemannian metric on the distribution T 1 as follows:

1
**

11
x TY,X,)x(a,Ga),Ya,Xa(g)Y,X(g .

The element a exists because G is a transitive Lie group of transformations
of N. Let b G, b(x) , then  is invariant under h=ab-1 and h H. Since H acts on

 as an isometry group, we get

1
**

1
****

1
**

1 TY,X),Ya,Xa(g))Yb(h),Xb(h(g)Yb,Xb(g .

It follows that the metric g1 is  well-defined  on T 1.  It  is  clear  that  the
elements of the group G are isometries on T 1.

We define a Riemannian metric on M as follows: 2
T

1
T gg,gg 21  and

T 1, T 2 are orthogonal in the metric g. From the above we see that G is an isometry
group with respect to g. A transformation sx is identified with an element of G and
sx is an isometry , too.

Hence Theorem 4.43 follows.
QED.

REMARK. If  the  action  of H on  is trivial, then M is simply a direct
Riemannian product of the Riemannian manifold and the Riemannian regular
homogeneous s-manifold of order k N , M G/H .
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40. We consider another example of a Riemannian regular -manifold.

DEFINITION 4.8 [57]. A manifold M with a differentiable multiplication is
called a reflexion space, if the following axioms are satisfied:
(i) x  x= x; (ii) x  (x  y)= y; (iii) x  (y  z)=(x  y)  (x  z);
where x,y,z M.

PROPOSITION 4.48. Let M be a reflexion space and let a mapping
yx)y(sy:MM:s xx  be  an  isometry  for  any x M. Then M is  a

Riemannian regular -manifold of order 2.

Proof. From Definition 4.8 we see that sx (x)=x  x, x)y(syx ssss
x

 and

the isometry x*xx )s(S  is smooth and invariant under every sx . From (ii) it
follows that y)y(s2

x , hence S 2= I on M.  All  the  axioms  of Definition 4.3 are
realized.

QED.

DEFINITION 4.9 [48]. A connected Riemannian manifold (M, g) with  a
familly of local isometries {sx : x M} is called a locally k-symmetric
Riemannian space (k-s.l.R.s.) if the following axioms are fullfilled:
a) sx (x)=x and x is the isolated fixed point of the local symmetry sx ;
b) the tensor field S : x*xx )s(S  is smooth and invariant under any local
isometry s;
c) S k =I  and k is the least of such positive integers.
If  all  the  symmetries  are  determined  globally,  then (M, g) is called
k-symmetric Riemannian space (k-s.R.s.).

Comparing with Definition 4.3 we conclude that every k-s.l.R.s. M is a R.l.r.
-m.o.k . If M is  a k-s.l.R.s., then the canonical connection ~  can be defined by

(4.14) or (4.3). ~  is unique and 0g~S~ , see [48].

50. Let M be a 2k-s.R.s. We define the family of isometries { x : x M},
where x =(sx )k, k

xx*xx S)(P ,  1=1/2(I+P),  2=1/2(I P), T 1=  1(T(M)),
T 2=  2(T(M)).
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THEOREM 4.49. Let M be a 2k-s.R.s. Then M is a reflexion space and the
natural multiplication is analytic.

Proof. The closure })s({GLG x  of the group generated by the set
{sx : x M} in  the  full  isometry  group I(M) is  a  transitive  Lie  group  of
transformations of M,  [48]  ,  and  there  exists  such  analytic  structures  on G  and

pH/GM , where Hp is the isotropy subgroup of p M,  that the action of G  on
M is analytic. There exists a neighbourhood U p and such an analytic section

GU:  of the fibre bundle  :G M that for x U 1
px ))x((s)x(s . It

is evident that 1
px ))x(()x( . Gp  is analytic, therefore the

mapping )y()y,x( x  is  also analytic  on U M and,  as  a  result,  on M M. So,
we have obtained an analytic mapping

)y(yx)y,x(:MMM: x .

Since x (x)= x and id2
x , then x  x= x and x  (x  y)= y. As S)S(s *x ,

then P)P(*x and it follows that y*xzy*x )(PP)( , where z= x (y). An
isometry is uniquely defined by its tangent mapping, therefore

)y(z, xxzyx , and this identity is equivalent to the last axiom (iii)
of a reflexion space.

QED.

Using Proposition 4.48 and Theorems 4.12 - 4.15 we have the following

THEOREM 4.50. Let (M,g) be a 2k-s.R.s. Then the distribution T 1 is
involutory and a set of its integral submanifolds N={ x : x M} is a smooth
manifold. If G=CL({ x }) is the closure in I(M) of a group generated by the set
{ x : x M} and H is the isotropy subgroup of the fixed mirror p N,  then  the
mappings

)p(aH aH:NH/G),x(axa:MG:

are isomorphisms and the following diagram is commutative:

NH/G

MG H

.
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The manifold N is a symmetric space, maybe non - Riemannian.

If the distribution T 2 is involutary and N is a simply connected manifold,
then, [57], M is isomorphic to N  as reflexion spaces.

It is evident that P=S k is invariant under })s({CLG x , therefore the
foliaion }Mx:{~

x  is also invariant under G , see Lemma 4.10.
It is defined the natural action of G  on N and this action is transitive

because GG . Let Hp be the isotropy subgroup of p M, then pH/GM  and it
is clear that HH p , where H  is a subgroup of G  consisting of such elements
that  is invariant with respect to them. It is evident that })s({CLH x , where
x  and H  is  a  transitive  group  of  transformations  of  the  submanifold = p.
Since S k = I on , then idsk

x  on , x , and all the usual axioms are satisfied,
therefore  with the family {sx : x } is  a k-symmetric space. So, we obtain the
following

THEOREM 4.51. Let (M, g) be a 2k-s.R.s. Then such a sequence of closed
Lie groups pHHG  is defined that pHGM ; HGN  is  a
symmetric space; pHH  is a k-symmetric space.

§5. RIEMANNIAN LOCALLY REGULAR -MANIFOLDS
10. We consider now a Riemannian locally regular -manifold M with the

canonical connection ~  defined by

(4.17) ),YS)(S(YY~ 1
X)SI(XX 2

1 X,Y x(M)

PROPOSITION 4.52. Let {sx : x M} be the family of local subsymmetries
of the manifold (M,g).  If  a  tensor  field P is invariant under any sx , then

0P~
X  for each X T 2. In particular 0R~~T~~h~

XXX  for  every
X T 2, where ~h  and T~ , R~  are  the  torsion  and  curvature  tensor
fields of ~ .

Proof. We consider the integral curve  (t) of a vector field X T 2,  (0)=x0,
and denote by X1, ..., Xl,  1, ...,  m vector  and  covector  fields  defined  on  some
neighbourhood of  (t) which  are  parallel  along  (t) with respect to ~ . As S is
parallel along  (t) under ~ , then SXi, S* j, i=1, ..., l; j=1, ..., m, are also parallel.
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Since P is invariant under any sx we have

)SX,...,SX,,...,(P)X,...,X,S,...,S(P l1
m1

l1
m*1* ,

)SX,...,SX,,...,)(P~()X,...,X,S,...,S(P~
l1

m1
SXl1

m*1*
X .

Taking the covariant derivative of the first equality in direction of SX at the
point x0 we obtain

)SX,...,SX,,...,)(P~()X,...,X,S,...,S(P~
l1

m1
SXl1

m*1*
SX

and subtracting two last identities we get

0)X,...,X,S,...,S)(P~( l1
m*1*

X)SI( .

Since (I  S) is a nonsingular on T 2 this equality implies 0P~
X  for any

X T 2.
As any sx is a locally affine transformation of ~ , then T~ , R~  are invariant

under sx , hence 0R~~T~~
XX  for X T 2, 0h~

X  because ~  and  are  also
invariant with respect to sx .

QED.

COROLLARY 4.53. R~)R~(S,T~)T~(S  on M.

Proof is evident because x*xx )s(S .

An arrangement of a local subsymmetry sx , x M is described below.

PROPOSITION 4.54. Let M be a R.l.r. -m., x M and let Bx be such an
open geodesic ball with a center x that sx and 1

xpx~e  are defined on Bx . Then

(4.18) 1
xxxx px~eSpx~es ,

where px~e  is the exponential mapping of ~  at the point x.

Proof. Let y be a point in Bx , vpx~ey x . Since sx is a local isometry and
affine transformation with respect to ~ , then it transforms the geodesic

)tv(px~e x of ~  onto the geodesic )tSv(px~e x  preserving the length of a segment of
a curve. As x*xx )s(S , then
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)v)(Spx~(e)v)(px~es( xxxx

and the proposition follows.
QED.

By similar arguments we obtain

(4.19) 1
xxxx expSexps ,

where exp is the exponential mapping of  at the point x, sx (Bx )=Bx , where
sx and 1

xexp  are defined on an open geodesic ball Bx .

20. Let (M,{sx }) and (M ,{sy }) be  two  R.l.r. -m. with the canonical
connections '~,~  defined by (4.17). A local isometry of M into M  is called a
local isomorphism if 'S)S(*  in a domain of definition of .

LEMMA 4.55. A local isomorphism is necessarily a local affine mapping
of )~,M(  into )'~,'M( .

Proof. Since   is a local isometry, then it is an affine mapping with respect
to . From the invariance of S under   and (4.17) our lemma follows.

QED.

A vector field X x(M) is called an infinitesimal automorphism of R.l.r.
-m. M if, for each x M, a local 1-parameter group of local transformations  t of

a neighbourhood U of x into M generated by X consists of local automorphisms
of (M,{sx }).

THEOREM 4.56. (1) A vector field X x(M) is an infinitesimal
automorphism of a R.l.r. -m. if and only if L X g=0, L X S=0.
(2)  The  set  of  all  the  infinitesimal  automorphisms  of  a  R.l.r. -m. M is  a
subalgebra (M) in the algebra i(M) of all the infinitesimal isometries of M.
(3) An infinitesimal automorphism X on M is an infinitesimal affine
transformation of )~,M( .
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Proof. (1)  Let t be the local 1-parameter group of local transformations
generated by X. A tensor field P is invariant under t for every t if  and  only  if
L X P=0, [46].

(2) For X,Y (M) we have

L X g=L X S =L Y g=L Y S=0,

therefore

L [X,Y] g= L X  L Y g L Y L X g=0,

L [X,Y] S=L X  L Y S L X L X S=0.

So, (M) is a subalgebra in i(M).
(3) For every t t is a local isometry and S)S(*t , hence 11

*t S)S( .
If X T 1, then SX = X and )X()SX()X(S *t*t*t , therefore 1

*t T)X(
and T 1 is invariant under t . For Y T 2 we have

0Y,'X)Y(),'X()Y(,X *t*t*t ,

because 11
*t T)X('X . So, 2

*t T)Y(  and 21 ,  are invariant under t . If

X,Y x(M), then from (4.17) we obtain
)YSSYY()Y~( 1

X)SI(X)SI(X*tX*t 2
1

2
1

)Y()Y( *t)X)SI((*t)X( 2
1

*t*t

)Y(~)Y(SS *t)X(*t
1

)X)SI(( *t2
1

*t

QED.

Since the torsion and curvature tensor fields T~  and R~  are invariant with
respect to  t , then

(4.20) L XT~ = L X 0R~ ,

where X is any infinitesimal automorphism of R.l.r. -m. M.

30. LEMMA 4.57 [48],[58]. Let (M, ~ ) be a manifold with a connection ~

and  :T(M) M the  canonical  projection.  Then  there  exists  such  a
neighbourhood U0 of the null section OM in T(M) that the mapping
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)vpx~e),v((v:px~e )v(

is a diffeomorphism of U0 onto a neighbourhood U of the diagonal in M M.

It is evident that for every point p we can choose such an open geodesic ball
Bp (a closed ball pB )  with  the  center p under the Riemannian connection  that

)UBB(UBB pppp .

LEMMA 4.58. Let M be a R.l.r. -m. and p M. Then there exists such an
open ball Bp and a differentiable mapping

p
1

xxxxpp By,x),y)(px~eSpx~(e)y(s)y;x(:MBB:

that every local subsymmetry sx , x Bp , is an isometry of Bp on sx (Bp).

Proof. Let '
0U  be a neighbourhood of the null section , given in Lemma

4.57. We see that a set }Uv:S{US '
0

1
)v(

'
0

1  is also a neighbourhood of the

null section. Let '
0

1'
00 USUU  and let U be a corresponding neighbourhood of

the diagonal in M M. We can take such an open geodesic ball Bp (a closed ball
pB ) that )UBB(UBB pppp . Then )y)(px~eSpx~(e)y:x( 1

xxx  is
defined on Bp Bp. The rest follows from Proposition 4.54.

QED.

It is evident that a set (M) of all the local automorphisms of a R.l.r. -m.
(M,{sx }) is a pseudogroup of transformations on M, [46], p.1.

Let )R(Bp  be a closed ball of the radius R, x  be the connected component
of x )R(Bp  containing x Bp(R) and Bp (R, )= )}R(Bx:{ px .

THEOREM 4.59. If M is a R.l.r. -m., then for every p M there exists

such a geodesic ball Bp (R) that (M) acts locally transitive on Bp (R, ).

Proof. For every point p M we can choose such a closed ball )R2(Bp  of
the radius 2R that U)R2(B)R2(B pp , where U was considered in
Lemma 4.57, 4.58, therefore sx (y)=  (x, y) is defined for any )R2(By,x p . If

),x(d x0  is a distance between x0 = p and x  then, since x  is  closed,  there
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exists such a point x0y  that )y,x(d),x(d 00x0 . Let 0(t) t [0; t0] be  the
unique geodesic segment with respect to  in )R(Bp  that 00000 y)t(,x)0(
and )2/t(x 01  the midpoint of 0 . If )x(sy 0x1 1

, then

)y,x(d))x(s),x(s(d)y,x(d)x,x(d)y,x(dR 011x0x011000 11

)y,y(d)y,x(d)x,y(d 100111

and )R2(By p1 .
Let )t(1 , t [0; t1] be the geodesic segment joining y1 with y0 and x2 its

midpoint. If )y(sy 1x2 2
, then

)x,y(d))y(s),x(s(d)y,x(d)x,y(d)y,y(dR 201x2x122010 22

)y,y(d)y,x(d)x,y(d 202220

Containing this process we get two sequences {yn}, {xn} in )R2(Bp  that

...)y,y(d...)y,y(d)y,y(d n02010

and

...)x,y(d...)x,y(d)x,y(d 1n03020

because 1ix  is the midpoint of segment i  joining y0 and yi .
Let y,x  be the limit points of {xn }, {yn } correspondingly. Since

)y,x()y(sy 1nn1nxn n
 and  is continuous in Bp (2R) then, taking the

passage to the limit, we obtain )y(sy x , where x  is the midpoint of segment
connecting y0 and y . As x)x(sx  the uniqueness of the geodesic segment
joining two points in )R2(Bp  implies that 11x )(s , where 1  is  a  part  of

between x  and y , )(S)()s( xx*x  and 1T . From Theorem 4.1 it
follows that

0y and
0yy .

If we denote
1n xxn s...s , then every n  is a local automorphism of

(M,{sx }) defined on some neighbourhood of x0 = p and the sequence { n } has  a
limit point . It is clear that  is also a local automorphism of (M,{sx}) i.e.

(M).
Similarly, for any other ),R(Bpz  there exists a local automorphism
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of (M,{sx}) that z0 )x( .  In  this  case 1 (M) is an automorphism
locally transforming x  in z .

QED.

PROBLEM. To  construct  an  example  of  a  R.l.r. -m. which has such a

foliation of mirrors that (M) does not act locally transitive on the set
N={ x : x M}.

40. DEFINITION 4.10. Let (M,{sx}) be a R.l.r. -m. A submanifold M M
is said to be invariant if the following holds:
for every two points p,q M  and every local automorphism  of M such that

q)p(  we have 'M))M('M( 1 .

THEOREM 4.60. Let M M be an invariant submanifold of (M,{sx}). Then
})s{,'M( 'Mx  is naturally a R.l.r. -m.

Proof. From Definition 4.10 it follows that for every x M , 'Mxs  is a local

isometry of (M ,g). If we consider an integral curve (t) in M  of a vector
X Tx (M ), x=  (t), then sx (  (t)) M  and Sx (X)= x*x )s( (X) Tx (M ).

So, Tx (M) is invariant with resect to S and  the  conditions  1),  2)  of
Definition 4.1 are fulfilled.

Let  be  the  projection  to Tx (M ) of Tx (M)=Tx (M ) Tx (M ) . It is well-
known that Y,X,YY X

'
X x(M), is the Riemannian connection of (M ,g)

and it is clear that Y~Y~
X

'
X  is also a metric connection, i.e., 0g'~  on M .

As Tx (M ) is invariant under S, then  S = S . Using (4.1) for X,Y x(M ) we
have

0Y)S~(Y~SSY~Y~SSY~Y~SSY~Y)S~( XXXXX
'
X

'
X

'
X

.

So, '~  is a canonical connection of (M ,{sx }) and  the  axiom  3)  of
Definition 4.1 is realised.

QED.

If M is a R.l.r.s-m., then every invariant submanifold M  of M is autoparallel
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with respect to the canonical connection ~  of (M,{sx }),  see [48]. It is not so for a
R.l.r. -m.

EXAMPLE. Let M be  a  R.l.r.s-m. and '  be  a  submanifold  of  a
Riemannian manifold  and also is not an autoparallel submanifold with respect
to the Riemannian connection . By a natural way M is a R.l.r. -m., where

v,u,My,x),v),y(s()v,y(s x)u,x( .

It is clear that M is an invariant submanifold of M which is not
autoparallel with respect to the canonical connection ~  defined by (4.1) because

)',x(
~ .
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CHAPTER 5

CLASSICAL STRUCTURES

In this chapter, we have our methods illustrated for concrete structures
which are called classical.

§1 is devoted to the study of canonical connection  and the second
fundamental tensor field h of a Riemannian almost product structure (P,g) and their
relations with geometry of a manifold M.  A  behaviour  of P along geodesics and
ties with another structures as, for example, a structure of reflection space are
discussed here too.

In §2, we conduct the same policy for almost Hermitian manifolds. Also, the
classification of A.Gray and L.M.Hervella has been rewritten in terms of the field
h, that is, the canonical connection  for every from 16 classes is constructed.

Some examples of almost Hermitian manifolds are discussed in §3. We
consider a projection of the classes on submanifolds, conformal changes of a
metric g, a quasi homogeneous structure (J, g) of  the  class U4,  a  behaviour  of J
along a curve, almost Hermitian structures on Riemannian locally regular s-
manifolds.

In the last §4, a structure defined by an affinor F satisfying F 3+F= 0 and an
associated to F Riemannian metric g is considered. For (F, g) we have obtained the
canonical connection  and the tensor field h.  Some  relations  with  an  affinor

xxx )s(S  of a locally 4 - symmetric Riemannian space are also looked through.
We refer to [19] , [22] , [26] , [34] , [35] , [37].

§1. ALMOST PRODUCT MANIFOLDS

10. A tensor field P of type (1,1) such that P 2=I  is called an almost product
structure on a manifold M. We put

 1=1/2(I+P),  2=1/2(I P).

Then

(5.1) 2112212
2
21

2
121 P;0,,,I

2
.

For any Riemannian metric g~  on M a new Riemannian metric g is defined
by the formula
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g(X,Y)= g~ (X,Y)+ g~  (PX,PY),

where X,Y x(M). Every such a metric g= < , > satisfies the formula

(5.2) <PX, PY> = <X, Y>

Let  be the Riemannian connection of such a fixed metric g=< , > on M.
We define a connection  on M by

(5.3) YYPY)P(
2
1YY 2X21X1XXX ,

where X,Y x(M).
Then

)PYPY(
2
1Y XXX

and

0YPYPYPPY)YPPY(2Y)P(2 XXXXXXX

Using (5.2) we obtain

PZP,YZ,PYPZ,YZ,Y)Z,YZ,Y(2 XXXXXX
PZ,PYPZ,PYZ,YX XX

Z,YX2PZ,PYXZ,YX

for X,Y,Z x(M), i.e., 0g .
According to Theorem 1.2 a tensor field P, P2 = I, is always 0-deformable,

that is, P is an affinor, and every Riemmannian metric g satisfying (5.2) is an
associated one to the corresponding G-structure.

The space of all such associated metrics is infinite dimensional. Later on, we
shall consider only associated metrics satisfying (5.2).

We have 021 , therefore  1 and  2 define two complementary
distributions T 1=  1 (T(M)) and T 2=  2 (T(M)), where T 1 is a distribution
corresponding to the eigenvalue 1 of P and T 2 is a distribution corresponding to the
eigenvalue -1 of P, hence

T(M)= T 1(M) T 2(M)
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We can consider a set P(G) of linear frames over M such that for every

u P(G) the affinor P has the following matrix

2

1

n

n

E0
0E

)P(

where n1 and n2 are dimensions of T 1 and T 2 respectively. The set P(G) is  a
G-structure with the structure group G consisting of matrixes of the following form

2

1

A0
0A

,

where A k GL(n k ,R), k =1,2.
From Theorem 1.2 it follows that there exists a reduction of G to its maximal

compact subgroup H consisting of matrixes of the form above, where A k O(n k ),
k =1,2. A structure P(H) defines a Riemannian metric g = < , > on M, which is
evidently an associated metric to P(G) and P(H)=P(G) O(M). Every such defined
a metric g satisfies (5.2) and a pair (P, g) is called an almost-product Riemannian
structure (a.p.R.s.).

Further. we consider the canonical connection  and the second
fundamental tensor field of the structure (P(H), g).

THEOREM 5.1. The canonical connection  of the G-structure (P(H),g)
corresponding to an a.p.R.s. (P,g) is defined by (5.3). The second
fundamental tensor field h of (P(H),g) is determined by

(5.4) PY)P(
2
1YYYh X1X22X1X ,

where X,Y x(M) and  is the Riemannian connection of the associated
Riemannian metric g.

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

h x~:
B0
0B

x~{
2

1 o } .

It is evident that o = h m, where
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m x~:
0C

C0
x~{

2

1 o }

and

0)
T

0C
C0

B0
0B

(tr
2

1

2

1 ,

therefore m = h  with respect to Killing form . For each o we can define the
natural decomposition  = h + m  by the formula

)pppp()pppp( 22112211 ,

where

2

1

n
2

n
1 E0

00
p,

00
0E

p

Let   be a cross section of P(H) over some neighbourhood U which assigns
to each x U the linear frame ((X 1 )x , ..., (X n )x ) and

k
k

k XfY,X  be vector

fields on M. Then from (1.6) and Definition 1.9 it follows that

k
xk

k
x

1
x*X )X)(x)(Xf(Y)x()X()x(Y

x

k
xk

k
x

1
2x*21x*1 )X)(x)(Xf(Y)x(]p)X(pp)X(p)[x(

where  (x) is considered as a mapping of R n onto Tx(M). It is obvious that

(x)  p1=  1 (x), (x)  p2=  2 (x)

and

xk2
k

xk1
k

xk
k

21 )X)(x)(Xf()X)(x)(Xf(])X)(x)(Xf)[((

We obtain that
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])X)(x)(Xf(Y)x()X()x([

])X)(x)(Xf(Y)x()X()x([Y

k
xk2

k
x2

1
x*2

k
xk1

k
x1

1
x*1X x

YY 2X21X1 xx

YYPY)P(
2
1)PYPY(

2
1Yh

PY)P(
2
1Y)PYPY(

2
1

)PYPPVYPYPYPPYYPY(
4
1

Y)PI()PI(
4
1Y)PI()PI(

4
1Y

1X22X1XXXX

XXXX

XXXXXXXX

XXX

QED.

Later on, we shall call  and h the canonical connection and the second
fundamental tensor field of an a.p.R.s. (P, g) respectively.

20. We consider now the torsion tensor field T  of the canonical connection
 of an a.p.R.s. (P, g). It follows from (2.3) and from Proposition 2.3 that

h2T  and 0T  if and only if the pair (P, g) is a particular structure, that is,
P = 0. We have, see [46], [73], that the condition P = 0 implies a manifold M

to be a locally decomposable Riemannian manifold or, if M is a complete, simply
connected Riemannian manifold, to be a globally decomposable Riemannian
manifold M= M1 M2, where M1, M2 are the maximal integral manifolds of the
distributions T 1, T 2 passing through a fixed point of M.

Thus, a particular structure (P, g) is a structure of local Riemannian product.
From Theorem 1.5 it follows that an almost product structure is integrable if

and only if the Nijenhuis tensor field

N(P)(X,Y) = [PX, PY]  P[X, PY]  P[PX, Y] + [X, Y]

vanishes on M, where X,Y x(M).

PROPOSITION 5.2. For X,Y x(M)

N(P)(X,Y) = 2( )YTPYT( XPX .
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Proof. We remark that from (5.3)

.])Y,X[PXPPYP(21

])Y,X[PXPPYP]Y,X[XY(
2
1]Y,X[XYYT

YX

YXYXYXX

It follows from this identity that

]YTPYT[2

])Y,X[PXPPYP(])PY,PX[XPYP(

]Y,X[]PY,PX[XPPYPPXPYP

]Y,X[]PY,PX[]PY,X[P]Y,PX[P)Y,X)(P(N

XPX

YXPYPX

PYXYPX

QED.

Thus, an almost product structure P is integrable if and only if

YTPYT XPX .

PROPOSITION 5.3. The distribution T 1(T 2) is  integrable  if  and  only  if
0YTX  for any X,Y T 1(T 2).

Proof. Using (5.3) we obtain

].Y,X[]Y,X[])Y,X[

XY(]Y,X[XYYT

11211211

1Y1X1111Y11X11X 11111

The rest follows from the Frobenius theorem, [64].
QED.

Let R  and R be the curvature tensor fields of the connection  and
respectively, then for X,Y,Z x(M) we have

ZhhZhhPZPR
2
1ZR

2
1ZR YXXYXYXYXY .

Really, it is easily to check that
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,PZPZPPPZPZZhh4
PZPZPPPZPZZhh4

YXYXYXYXYX

XYXYXYXYXY

and

)ZZZ(4ZR4 ]Y,X[XYYXXY

)PZPZPPPZPZ( YXYXYXYX

)PZPZ(2)PZPZPPPZPZ( ]Y,X[]Y,X[XYXYXYXY

Zhh4Zhh4PZPR2ZR2 YXXYXYXY .

30. Let T1 be  integrable  and M1 be the maximal integral manifold of T 1

passing through some point of M. The manifold M1 is  a n1 - dimensional
submanifold of M. For any X,Y x(M1) we know that

YY 1
XX YhYYY)Y,X( XXX2X1 ,

where 1 is the Riemannian connection and (X,Y) is the second fundamental form
of M1 . Equating the tangential and normal components of this equality we have got
that

YY X
1
X ,  (X,Y)=hXY.

Thus, the notion of the second fundamental tensor field h of  an  almost
product Riemannian structure (Riemannian H-structure) is a generalization of that
of the second fundamental form of a submanifold and it is the same for the notion
of the canonical connection .

Since h2T , then 0h  on M1 and YhYh XX  on M1 .  It  is  well
known, [47], that the following conditions are equivalent

1) M1 is an autoparallel submanifold with respect to ,
2) M1 is totally geodesic with respect to ,
3) (X,Y)= hXY= 0 on M1.
Now it is evident the following

PROPOSITION 5.4. The distribution T 1(T 2) is integrable and defines the
foliation of totally geodesic with respect to  maximal integral submanifolds
if and only if hX Y= 0 for any X,Y T 1(T 2).
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The following proposition describes the similar situation for both the

distributions.

PROPOSITION 5.5. The distributions T 1 and T 2 are integrable and define
the foliations of totally geodesic with respect to  maximal integral
submanifolds if and only if h= 0 on M, that is, (P, g) is the local Riemannian
product structure .

Proof. It follows from Proposition 5.4 that hXY=0, when X,Y T 1 or
X,Y T 2. Let a vector field X be from T 1 and a vector field Y  be  from T 2. Then

XZYX1XYZ hZ,Yh  from (2.2). Thus, if Z T 2 then <  1 XY, Z>=0, if
Z T 1 then hXZ=0 because X,Z T 1 ,  and  we  have  obtained  that hXYZ=0 for any
Z x(M). The case when X T 2, Y T 1 is the same.

The converse is evident.
QED.

Let (P, g) be a nearly particular structure, that is, hXY = hYX for any
X,Y x(M).  For  an  a.p.R.s.  this  condition  is  equivalent  to  one  that X (P)X= 0.
Really, we have

2hX X= X X P X PX=P(P X X X PX)= P X (P)X.

Since P is a nonsingular affinor hence hX X=0 if and only if X(P)X=0.

THEOREM 5.6. An a.p.R.s. (P, g) is a nearly particular structure if and
only if it is a particular structure (a local Riemannian product structure).

Proof. 1) If X T 1 and Y T 2, then from (5.4) we have

hXY=  1 X Y=  hY X =  2 Y X=0

because hXY T 1 T 2={0}.
2) If X,Y T 2, then we obtain

hX Y+hY X=  1( X Y+ Y X)=0,  1( X Y Y X)=  1([X,Y]).

From these equalities it follows that

hXY=1/2  1 ([X,Y]).
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and

hXYZ = <hXY,Z>=1/2<  1([X,Y]),Z>=  hXZY =  <hX Z,Y>.

If Z T 1, then from 1) it follows that hX Z=0 because X T 2.
If Z T 2, then <  1([X,Y]),Z>=0.
Thus, we see that hXY=0 in this case.
3) If X,Y T 1, then hXY=1/2  2([X,Y]) and the rest is similar to 2).
The converse is evident.

QED.

It is obvious that g =e2  g is an associated to P Riemannian metric satisfying
(5.2) too.

PROPOSITION 5.7. The tensor field h of a structure (P, g) is invariant
under conformal changes of the metric g.

Proof. If g =e2  g, then

(5.5) gradY,XX)(YY)(XYY X
'
X ,

where <grad  ,X>= X . Really, we have

]Y,X[XYXY YX
'
Y

'
X ,

'Z,YX]Z,Ye[X]Z,Y)(X2Z,YX[e

)](YZ,XY,X)(ZY,Z)(X)(ZY,X
Z,X)(YZ,Y)(XZ,YZ,Y[e'Z,Y'Z,Y

22

XX
2'

X
'
X

From (5.4), (5.5) it follows that

YhYYYh X1
'
X22

'
X1

'
X , where X,Y,Z x(M).

QED.

40.  We  consider  now  a  behavior  of  an  almost  product  structure P along
geodesics.

LEMMA 5.8. Let (t) be a geodesic with respect to )(  and X= (t).
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Then YY XXXX  if and only if 0)Y,X)(h( X
( 0)Y,X)(h( X ), where a vector field Y is  defined  on  some
neighbourhood of (t).

Proof. We have 0XX )0X( X  and

YhYhYh)Y,X)(h( XXXXXX X

YYYYYY XXXXXXXXXXXX

.

It is the same for .
QED.

If (P, g) is a quasi homogeneous structure, then 0h  and from Lemma 5.8
it follows that

(5.6) YY XXXX .

Let M and P be analytic, (t) be such a curve on M that YY XXXX ,
where )t('X and Y is any vector field on some neighbourhood of (t). We

denote )P()t(P k
X...X

)k( .

LEMMA 5.9. YY XXXX  if and only if YhYh XXXX  or
YhYh XXXX .

Proof. We can compare the identities YYYh 2
XXXXXX  and

YYYh 2
XXXXXX . The proof of the second equivalence is the same.

QED.

PROPOSITION 5.10. If YY XXXX , then we have

(5.7) P X (P)Y+ X (P)PY=0,

(5.8) Y)P(Y)P(P 2
X

2
XX ,

(5.9) P X(P)kY=( 1)k
X(P)kPY,
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(5.10) X ( X (P) 2)=0.

Proof. (5.7). Differentiating the equality P 2=I  we obtain
X (P)P+P X (P)=0 and it follows from (5.4) that X (P)Y=2hX PY= 2PhXY.

(5.8)
]YPhPYh[P2]YPhPYh[P2Y)P(P XXXXXXXX

2
XX

Y)P(Y)P(Ph2 2
XXX .

(5.9). Using the method of mathematical induction we get that for k =1,
P X (P)Y= X (P)PY, i.e., (5.7).

Let (5.9) be true for k 1, then

PY)P()1(Y)P(P)P()1(Y)P(P k
X

k
X

1k
X

1kk
X .

(5.10) )P()P(P)P()P(P))P((P 2
XXXX

2
XX

2
XX

)P(P)P()P()P( 2
XXXX

2
X

.0)P()P( 3
X

3
X

QED.

(5.7) - (5.10) can be rewrritten in the following form

(5.11) P P +P P = 0,

(5.12) P = P(P )2= (P )2P,

(5.13) P (P )k=( 1)k (P )k  P,

(5.14) [(P  ) 2] =0.

We describe now the k-th derivative of P.

PROPOSITION 5.11. If YY XXXX , then we have

(5.15) P(2m)=( 1)mP(P )2m,

(5.16) P(2m+1) = ( 1)m(P )2m+1.

Proof. Using the method of mathematical induction from (5.12), (5.14) we
obtain (5.15). Really, if m=1, then P =P(P )2. Let (5.15) be true for m, then
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P(2m+2) =[P(2m)] =( 1)m{P[(P )2]m} =( 1)mP  (P )2m=( 1)m+1P(P )2m+2.

To get (5.16) we use (5.15) and obtain

P(2m+1)=[P(2m)] =( 1)m{P[(P )2]m} =( 1)m(P )2m+1.

QED.

We can define cos P and sin P by the formulas

0m

1m2m

0m

m2m )!1m2/(P)1(Psin,)!m2/(P)1(Pcos .

Let t  be the parallel translation from (0) to (t) along a curve (t) with
respect to .

PROPOSITION 5.12. Let P(t) be an almost product structure in (t) and
YY XXXX  along (t). Then

1
tt ))]o('tPsin()o(P))o('tP[cos()t(P .

Proof. Using (5.15), (5.16) we expand t
1

t )t(P  in a power series in the
case, when t=o.

)).o(tPsin()o(P))o('tPcos(

])o('P)!1m2/(t)1()o(P)o('P)!m2/(t)1[(

)]o(P)!1m2/(t)o(P)!m2/(t[)o(P!k/t)t(P

0m

1m21m2mm2m2m

0m

)1m2(1m2)m2(m2

0k

)k(k
t

1
t

QED.

THEOREM 5.13. Let a)  2, b)  2 (  o) be an eigenvalue of P (o) 2 and
let X(o) be a corresponding eigenvector, X(t)=  t (X(o)). Then

a) P(t)X(t)=cosh( t)  t (P(o)X(o))+1/  sinh( t)  t (P (o)X(o)),
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b) P(t)X(t) = cos ( t)  t (P(o)X(o))+1/  sin ( t)  t (P (o)X(o)).

Proof. Using Proposition 5.12 we obtain

a) )o(X))t(P())t(X)t(P( t
1

t
1

t

0m

m2m
1m2

mm2m
m2

m

0m

1m2
1m2

mm2
m2

m

)]o(X)o('P)1(
)!1m2(

t)1()o(X)o(P)1(
)!m2(

t)1[(

)]o(X)o('P
)!1m2(

t)1()o(X)o('P)o(P
)!m2(

t)1[(

).o(X)o('P)tsinh(1)o(X)o(P)tcosh(

)]o(X)o('P
)!1m2(

)t(1)o(X)o(P
)!m2(

)t([
0m

1m2m2

b)
0m

1m2
m

m2
m1

t )]o(X)o('P
)!1m2(

)t()1(1)o(X)o(P
)!m2(

)t()1[())t(X)t(P(

)o(X)o('P)tsin(1)o(X)o(P)tcos( .

QED.

COROLLARY. Let (t) be a periodic geodesic and (t) be a proper space
corresponding to an eigenvalue 2 (  o) of P (t)2.  Then  the  restriction  of
P(t) on (t) is parallel to the restriction of P(t+2  k/ ) on (t+2  k/ ), k Z.

Proof. Let X(t) and X(t+2  k/ ) be parallel each other eigenvectors of P  2.
From Theorem 5.13 b)  it  follows  that P(t+2  k/ ) X(t+2  k/ ) is parallel to
P(t)X(t).

QED.

Similar results were considered in [34] for an almost complex structures of
nearly Kaehlerian manifolds.
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50. A classification of almost product Riemannian manifolds was obtained

in [59]. Using tensor fields h of such structures, (5.4), an analogous classification
can be got. In the next section we discuss a similar construction for almost
Hermitian manifolds.

Let  be a pseudo-Riemannian metric on M defined by a G-structure P(G).
It follows from Theorem 1.1 that  there  exists  a  reduction  of G to the maximal
compact subgroup H=O(n,  n1), which defines an associated Riemannian metric
g= < , >. The space of all such associated metrics is infinite dimensional. For a
fixed g= < , > one can consider the a.p.R.s. P defined by condition

(5.17) (X, Y) = <PX, Y>

It  is  evident  that P(H) is the same for both the structures ( , g) and (P, g),
hence to construct the canonical connection  (tensor field h)  of  the  pair ( , g)
we can take the canonical connection (see (5.3)) of the pair (P, g), where P, ,  g
are connected by (5.17).

60. As we have seen in Chapter 4 the Riemannian almost product structure
(P, g):T(M)=T 1(M) T 2(M) is  defined  on  a  R.l.r. -m. M, where T 1 denotes the
distribution  of  mirrors.  Of  course,  on  an  arbitrary  R.l.r. -m. the connection ~

defined by (4.1) and defined by (5.3) are not the same.
If M is a R.l.r. -m.o.2 (reflexion space), see Definitions 4.3, 4.8, then S 2=I

on M and S=P.
Using (4.3) we obtain

)PYPY(
2
1)SYSYS(

2
1Y~

XXX
2

XX

YPY)P(
2
1Y XXX , X,Y x(M).

So, the canonical connection of a Riemannian reflection space coincides
with that of the Riemannian almost product strructure defined by (5.3). It follows
from Proposition 4.5, 4.52 and Corollary 4.53 that

R)R(P,T)T(P;TX,0RTh;TX,0h 2
XXX

1
X

on a R.l.r. -m.o.2.
Thus, this conditions are necessary for a Riemannian almost product

structure (P, g) on a manifold M to  be  the  structure  defined  by  that  of  a
Riemannian reflection space.
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§2. ALMOST HERMITIAN MANIFOLDS

10. A tensor field J of type (1,1) such that J 2=  I is  called  an  almost
complex structure on a manifold M. A manifold M with a fixed almost complex
structure J is called an almost complex manifold.

Every  almost  complex  manifold  is  of  even  dimensional.We  refer  to  [73],
[47], [34] for detailed information.

For any Riemannian metric g~  on M a new Riemannian metric g is defined
by the formula

)JY,JX(g~)Y,X(g~)Y,X(g ,

where X,Y x(M). For every such a metric g=< , > we have

<JX, JY>= <X,Y>,

for any vector fields X and Y on M.
Let  be the Riemannian connection of such a fixed metric g=< , >, then

one can define a connection  on M by

(5.18) JY)J(
2
1Y)JYJY(

2
1Y XXXXX

where X,Y x(M).
Further, we obtain

0JYYJYJJY)YJJY(2Y)J(2 XXXXXXX

and

Z,YX2JZ,JYXZ,YX

JZ,JYJZ,JYZ,YXJZJ,Y

Z,JYJZ,YZ,Y)Z,YZ,Y(2

XXX

XXXXX

for any X,Y,Z x(M), i.e., 0g .

According to Theorem 1.2, the tensor field J is O-deformable and the
Riemannian metric g is an associated one to the corresponding G-structure. Later
on, we shall consider only associated metrics of this form.

For a fixed affinor J a set of all the associated metrics is infinite
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dimensional.

A fixed pair (J, g) is called an almost Hermitian structure (a.H.s.) and M is
called an almost Hermitian manifold.

We can consider a set P(H) of all the orthonormal frames over M such that
for every u P(H) the tensor field J has the following matrix

0E
E0

)J(
n

n ,

where dim M= 2n. The set P(H) is a G-structure with the structure group

)n(OB,A:
AB
BA

)n(UH

We consider now the canonical connection  and the second fundamental
tensor field h of the structure (P(H),g).

THEOREM 5.14. The canonical connection  of the G-structure (P(H),g)
corresponding to an a.H.s. (J, g) is defined by (5.18). For X,Y x(M) we
have

(5.19) )JYJY(
2
1JY)J(

2
1Yh XXXX

where  is the Riemannian connection of the Riemannian metric g.

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

h x~:
AB
BA

x~{ o }.

It is evident that o= h m, where

m x~:
CD

DC
x~{ o },

and
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0)
CD

DC
AB
BA

(tr
T

that is m = h ,with respect to the Killing form . For any o we can obtain the
natural decomposition  = h + m by the formula

=1/2( j  j)+1/2( +j  j),

where

0E
E0

j
n

n

Let be a cross section of P(H) over some neighbourhood U which assigns
to each x U the linear frame ((X1)x, ..., (X2n)x) and

k
k

k XfY,X  be vectors

fields on M. Then from (1.6) and Definition 1.9 it follows that

,JY)J(
2
1Y)JYJY(

2
1

)X(J)x)(Xf(J
2
1JY)x()X()x(J

2
1Y

2
1

)X()x)(Xf(Y)x(]j)X(j)X()[x(
2
1

)X()x)(Xf(Y)x()X()x(Y

xxxx

x

x

XXXX

xk
k

k1
*X

xk
k

k1
x*x*

xk
k

k
x

1
x*X

where (x) is considered as the mapping of R n onto Tx (M). It is obvious
that (x)  j =J (x).

QED.

20. If T  is the torsion tensor field of , then for X,Y x(M) we obtain

])Y,X[JYJJXJ(
2
1

])Y,X[JXJJYJ]Y,X[XY(
2
1]Y,X[XYYT

XY

YXYXYXX

From Theorem 1.5 it follows that an almost complex structure is integrable
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if and only if the Nijenhuis tensor field

N(J)(X,Y)=[JX, JY]  J[X,JY]  J[JX,Y]  [X, Y]

vanishes on M, where X,Y x(M).
We have

)YTJYT(2

])Y,X[JYJJXJ(])JY,JX[XJYJ(

]Y,X[]JY,JX[JXJYJXJJYJ)Y,X)(J(N

XJX

XYJYJX

YJXJYX

Using (2.3) we have obtained that for X,Y x(M)

)YhJYh(4)Y,X)(J(N XJX .

Let R  and R be the curvature tensor fields of the connections ,

resectively, then for X,Y,Z x(M) we have

ZhhZhhJZJR
2
1ZR

2
1ZR YXXYXYXYXY

Really, it is easily to verify that

JZJJZJJJZJZZhh4

,JZJJZJJJZJZZhh4

Y
2

XYXYXYXYX

X
2

YXYXYXYXY

and

.Zhh4Zhh4JZJR2ZR2

)JZJZ(2
)JZJJZJJJZJZ(

)JZJJZJJJZJZ(ZR4

YXXYXYXY

]Y,X[]Y,X[

X
2

YXYXYXY

Y
2

XYXYXYXXY

30. DEFINITION 5.1. [73]. An almost Hermitian manifold M with almost
complex structure J is called a Kaehlerian manifold if J=0 and a nearly
Kaehlerian manifold if ( X J)X= 0, where  is the Riemannian
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connection of g,   X x(M).

PROPOSITION 5.15. Let (J,g) be an almost Hermitian structure on a
manifold M. (J,g) is a Kaehlerian (nearly Kaehlerian) structure if and only if
it is a particular (nearly particular) one.

Proof. From (5.19) we have that

X(J)Y=2hX JY, X,Y x(M),

hence J=0  if and only if h=0.

hX X = 1/2( X X + J X JX)

and

J( X (J)X)=J X JX+ X X=2hX X,

therefore ( X J)X=0  if and only if hX X=0 for any X x(M).
QED.

This proposition implies that the notion of a nearly particular (particular)
structure is a generalization of that of a nearly Kaehlerian (Kaehlerian) structure.

PROPOSITION 5.16. If (J,g) is a nearly Kachlerian structure then
YY XXXX  for any X,Y x(M).

Proof. We can find the following identity in [34]

Z)J(,Y)J(JX,X)J(JZ,Y)J( XX
2

YZ
2
XX ,

X,Y,Z x(M)

This equality implies that

.JZ,Y)J(JJZ,Y)J(J)J(

JZ,Y)J(h2JZ,JYhh4JZh,JYh4JZ,Y)J(
2
XXX

XXXXXX
2
XX

We obtain that
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Y)J(JY)J( 2

X
2
XX

and

,YJYJYJJY

)YJYJ()YJJY(Y)J(
2
XXXXXX

2
XX

XXXXXXX
2
XX

.YJYJJYJYJJ

)YJJYJJYJJYJ(JY)J(J

XX
2
XX

2
XXXX

XXX
2

X
2
XXXX

2
X

Hence

JYJJYJ XXXX ,

or

J X J X Y= X J X JY.

Thus

YJJYY2,JYJYY2 XXXXXXXXXXXX

and we have got that YY XXXX .
QED.

One can find a more detailed information about the nearly Kaehlerian
manifolds in [73], [32] , [34]. There are many results about Kaehlerian manifolds.
A bibliography about such structures can be found in [73], [45], [47].

40.  Using  the  results  in  [35]  we  consider  now  a  classification  of  almost
Hermitian structures with respect to the tensor field h.

LEMMA 5.17. If h is the second fundamental tensor field of an almost
Hermitian structure (J,g) then for any X,Y,Z x(M) we have

(5.20) hXYZ =  hXZY =  hXJYJZ .
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Proof. The first equality follows from (2.2). To prove the second one we

use (5.19)

2hXJYJZ = < X JY  J X Y,JZ >=  <J X (J)Y,Z >

Differentiating the identity J 2= I  we obtain

X (J)JY+J X (J)Y=0

and

 <J X (J)Y,Z > = < X (J)JY,Z >= 2hXYZ .

QED.

LEMMA 5.18. If (X,Y)=<JX,Y>  for any X,Y x(M), then

(5.21) ( X )(Y,Z)=2hXYJZ .

Proof. Since  is a metric connection, then

X<Y,Z>=< X Y,Z>+<Y, X Z>

and

.h2h2Z,Y)J(
Z,YJZ,JYZ,JYZ,YJZ,JYX)Z,Y)((

XYJZXJYZX

XXXXX

from (5.19) and (5.2O) .
QED.

We can also consider a notion of the codifferential T of a tensor field T
(see [73]). For example, let T be a tensor field of type (0,3).  Then T is the tensor
field of type (0,2) defined by

jik
j

jikt
tj TTgT ,

where we have put j=gt j
t and Tjik are  local  components  of T. If {Ei , JEi},

i=1,...,n is a local orthonormal basis, defined on an open neighbourhood, then
codifferential of  is computed by the formula
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(5.22)
n

1i
iJEiE )]X,JE)(()X,E)([()X(

ii
, X x(M).

Also, for h  let =c12(h) be defined by

(5.23)
n

1i
XJEJEXEE12 ]hh[X)h(c)X(

iiii
, X x(M).

From (5.21), (5.22), (5.23) it follows that

(5.24) )JX(2]hh[2)X(
n

1i
JXJEJEJXEE iiii

,

(JX)=2 (X).

Let p be a fixed point and T=Tp (M). We consider a vector subspace )T(

of *
3

T

(5.24) }TZ,Y,X,hhh:Th{)T( XJYJZXZYXYZ
*

3

and define four subspaces of )T(  as follows:

(5.25) }TZ,X,0h:h{ XXZ1 ,

:h{2 hXYZ=0,  X,Y,Z T},

}TZ,Y,X,0)Z(hh:h{ JXJYJZXYZ3 ,

}.TZ,Y,X),JY(JZ,X)JZ(JY,X

)]Y(Z,X)Z(Y,X[
)1n(2

1h:h{ XYZ4

We consider now a decomposition of the space )T(  on irreducible
components under the action of U(n), where the action is defined by (3.2) and the
inner product by (3.1)

THEOREM 5.19 [35]. We have 4321 . This direct sum is
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orthogonal, and it is preserved under the induced representation of U(n) on

. The induced representation of U(n) on  is irreducible.
For n=1, }0{ ; for n=2, }0{31  and 42 . For n=2, 2

and 4  are nontrivial, and for n  3 all of the i  are nontrivial.

REMARK. If dim T=2n, then dim = dim Hom(R2n, m)=2n(n2  n) and
dim 1=1/3n(n 1)(n 2), dim 2 =2/3n(n 1)(n+1), dim 3 =n(n+1)(n 2)
(for n  2), and dim n24 .

Let  denote a direct sum of all the classes i  such that i {1,2,3,4}.
We can form 2 4=16  invariant subspaces of  (including {0} and ).

DEFINITION 5.2. We call that the structure (J,g) has a type or (M, J, g)
belongs to the class , if hp (Tp(M)), for every p M, where h is  the
second fundamental tensor field of (J,g) on M.

REMARK. One can replace  and U , h and ,   and   in (5.24),
(5.25), Theorem 5.19, Definition 5.2 and have got a classification of A.Gray
and L.M.Hervella, [35], given by

Table 5.1

Class Defining condition

K =0

U1=NK X( )(X,Y)=0 (or 3  = d )

U2=AK d =0

U3=SK H =N(J)=0 (or X ( )(Y,Z) JX ( )(JY,Z)= =0 )

U4

)}JY(JZ,X)JZ(JY,X

)Y(Z,X)Z(Y,X{
)1n(2

1)Z,Y)((X

U1 U2=QK 0)Z,JY)(()Z,Y)(( JXX
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U3 U4=H N(J)=0  (or X( )(Y,Z) JX ( )(JY,Z)=0 )

U1 U3 X ( )(X,Y) JX ( )(JX,Y)= =0

U2 U4 d  =   (or 0)}JZ()Y,X(
1n

1)Z,Y)(({ X )

U1 U4

)}JX(Z,JX

)X(Y,X)Y(X{
)1n(2

1)Y,X)(( 2
X

U2 U3 0)}Z,JY)(()Z,Y)(({ JXX

U1 U2 U2=SK =0

U1 U2 U4

)}JY(JZ,X)JZ(JY,X)Y(Z,X

)Z(Y,X{
1h

1)Z,JY)(()Z,Y)(( JXX

U1 U2 U4=G1 X ( )(X,Y) JX ( )(JX,Y)=0 (or <N(J)(X,Y),X>= 0 )

U2 U3 U4=G2  { X( )(Y,Z) JX( )(JY,Z)}=0

(or  <N(J)(X,Y),JZ>=0)

U No condition

50.  Our  next  aim is  to  show that  the  both  classifications  are  the  same.  We
can define a mapping C:U (: )p hp.

If follows from (5.21) that

(5.26) ( X )(Y,Z)=2hXYJZ  and hXYZ= 1/2( X )(Y,JZ),

therefore C is  a  one to-one correspondence. From (5.26) we see that
C( 1+ 2)=C( 1)  +  C( 2), C( )= C( ), hence C is an
isomorphism.
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THEOREM 5.2O. We have C(Ui )= i , where i=1,2,3,4.

Proof. 1) C(U1 )= 1  because X ( )(X,Y)=2hXJXY =2hXXJY.
2) For U2 U1 U2 it  follows,  [35],  that )Z,JY)(()Z,Y)(( JXX

or JXYZJXJYJZXYJZ h2h2h2 , hence hXYJZ =hXJYZ =hJXYZ .

U2 : d  = O, or ( X )(Y,Z)+( Y )(Z,X)+( Z )(X,Z)

       =2(hXYJZ +hYZJX +hZXJY )=2 hXYJZ=0

Thus hXYZ=0 and C(U2) 2 . But U2 and 2  are equal dimensional,
therefore C(U2) 2 .

3) We have ( X )(Y,Z)  ( JX )(JY,Z)=2(hXYJZ  hJXJYZ) and
(Z)= 2 (JZ), hence C(U3) 3 .

4) Using the defining conditions for U4 and 4  we obtain

XYJZ

X

h2)]Y(JZ,X)Z(JY,X
)JY(Z,X)JZ(Y,X)[1n(2/2)]JY(JZ,X

)JZ(JY,X)Y(Z,X)Z(Y,X)[1n(2/1)Z,Y)((

and C(U4)= 4 .
QED.

Thus, the classifications coincide and the classification in Table 5.1 from
[35] can be rewritten in terms of the tensor field h. Let dim M  6, then we have
got

Table 5.2

Class Defining condition

K h= 0

1 U1=NK hX X=0

2 U2=AK  hXYZ= 0
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3 U3=SK H hXYZ  hJXJYZ = (Z)=0

4 U4

)]JY(JZ,X)JZ(JY,X
)Y(Z,X)Z(Y,X)[1n(2/1hXYZ

U1 U2=QK hXYJZ = hJXYZ

U3 U4=H N(J)=0  or hXYJZ =  hJXYZ

U1 U3 hXXY  hJXJXY = (Z)=0

U2 U4  [ hXYJZ 1/(n 1)<JX,Y> (Z)]=0

U1 U4 )]JX(JY,X)Y(X)X(Y,X)[1n(2/1h 2
XXY

U2 U3  [ hXYJZ+hJXYZ ]= (Z)=0

U1 U2 U2=SK =0

U1 U2 U4

)]Y(JZ,X)Z(JY,X
)JY(Z,X)JZ(Y,X)[1n/(1hh JXYZXYJZ

U1 U3 U4 hXJXY + hJXXY = 0

U2 U3 U4  [hXYJZ +hJXYZ ]=0

U No condition

REMARK. In  fact,  for  every  class  of  the  classification  of  A.Gray  and
L.M. Hervella the canonical connection h  has  been  constructed  and  to
study these classes of almost Hermitian manifolds the torsion tensor field T ,the
curvature tensor field R  and other usual characteristics of  can be applied.

§3. SOME EXAMPLES OF ALMOST HERMITIAN
MANIFOLDS

10. Let M’  be a submanifold of an almost Hermitian manifold (M,J,g) which



120
is invariant with respect to J, that is, for every X T(M ), JX T(M ) too.

We call M  strongly invariant if hX Y T(M ) for any X,Y x(M ). It is easy to
see from (2.14),(2.15) that M  is strongly invariant if and only if

)Y,X()Y,X( , where X,Y x(M ).

PROPOSITION 5.21. )Y,X()Y,X(  if and only if J (X,Y)= (X,JY)

for X,Y x(M ).

Proof. If p M  then Tp(M)=Tp(M ) Tp(M )  and Tp(M )  is invariant under
J too.

Let  be the projection on Tp(M ) , then we have

YY)Y,X(YY,YY)Y,X(YY X
'
X

'
XXX

'
X

'
XX ,

hence

))JY,X(J)Y,X((2/1)JYJY(2/1Yh)Y,X()Y,X( XXX .

QED.

PROPOSITION 5.22. 1) Every totally geodesic with respect to  invariant
submanifold M  of (M,J,g) is strongly invariant. 2) Each autoparallel with
respect to  strongly invariant submanifold M  is totally geodesic with
respect to .

Proof. 1) M  is  an  autoparallel  submanifold  of M, that is, XY T(M ) for
X,Y x(M ),  [47],  and JY T(M ). It follows from (5.19) that
hXY=1/2( XY J XJY) T(M ).

2) It is evident from the formula YhYY XXX .
QED.

THEOREM 5.23. Let (M,J,g) belong to a class U  from the table 5.1,
where =1,2,4,(1,2),(3,4)(2,4),(1,4),(1,2,4), (1,3,4), (2,3,4)  and M
be a strongly invariant submanifold of M.  Then (M ,J,g) belongs
to a subclass of U .

Proof. Let p M , T=Tp(M), T =Tp(M ) and let
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'Thh:)'T()T(:f

be the linear mapping of restriction. It is correct because hX Y T  for X,Y T .
1) For =1,2,(1,2),(3,4),(1,3,4),(2,3,4) a proof follows from the table 5.1.
2) =4. We take an orthonormal basis

E1,...,Ek , Ek+1,...En , JE1,...,JEk , JEk+1,...,JEn

of T in such a vay that E1 ,...,Ek , JE1,...,JEk

is a basis of T . If )T(h 4 , then

n,...,1l,i,
il),E()1n(2/1

il,0
hh

l
EEEEJEJE liilii

.

It is the same for
lii JEEEh . From (5.23) we have

)E()1n(2/)1k(2)hh()E(' l

k

1i
EJEJEEEEl liilii

k,...,1l),JE()1n/()1k()JE(' ll

and (X)=(n 1)/(k 1) (X)  for X T , therefore

)],JY('JZ,X)JZ('JY,X)Y('Y,X)Z('Y,X)[1k(2/1
)]JY(JZ,X)JZ(JY,X)Y(Z,X)Z(Y,X)[1n(2/1hXYZ

where X,Y,Z T .
3) =(2,4),(1,4),(1,2,4). It is clear that

)'T()'T())T((f))T((f))T()T((f jijiji

QED.

REMARK. If we have such a basis as in 2) of Theorem 5.23, then

)X()X(')hh()hh()X( '
n

1ki
XJEJEXEE

k

1i
XJEJEXEE iiiiiiii

,

where  X T  and the situation is not evident for =3,(1,3),(2,3),(1,2,3).
Really, if =0 on T it does not imply that =0 on T.

20. Let (J,g) and (J,g ) be locally conformally related, that is, g =e2 g, then it
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follows from (5.5) that

gradY,XX)(YY)(XYY X
'
X

and we have from (5.19) that

),gradJJY,XX))(JY(JJY)(JX
)gradY,XX)(YY)(X(2/1Yh)JYJY(2/1Yh X

'
X

'
X

'
X

(5.27)
))].)(JZ(JY,X

Z,JX))(JY()(ZY,XY,X)(Y(2/1h[eh XYZ
2'

XYZ

If (J,g ) is a Kaehlerian structure and =(n 1)d , then

(5.28) hXYZ=1/2(n 1)[<X,Y> (Z)  <X,Z> (Y)  <X,JY> (JZ)+<X,JZ> (JY)],

therefore 4h .

30. Using [35] we illustrate the structures of the different classes.
1) The class of nearly Kachlerian manifolds U1=NK, see [73], [32], [34].

The  most  well-known  example  in  this  class  is  the  sphere S6, [33]. S6

belongs to the class U1 but not to the K.
2) The class of almost Kaehlerian manifolds U2=AK. The tangent bundle

T(M) of a Riemannian manifold always has a naturally defined complex
structure and a metric such that T(M) U2. If M is not flat, then T(M) K.
An example of a compact 4-dimensional manifold in U2 was  given  in
[65], which has no Kaehlerian metric.

3) The class of Hermitian semi-Kaehlerian manifolds U3=H SK. Any
complex parallelizable manifold is in U3.

4) As we have got above U4 is a class which contains locally conformal
Kaehlerian manifolds.

One can find more detaited information about the following classes in
literature.

U1 U2=QK is the class of quasi-Kaehlerian manifolds.
U3 U4=H is the class of Hermitian manifolds.
U2 U4 is a class which contains locally conformal almost Kaehlerian

manifolds.
U1 U2 U3=SK is the class of semi-Kaehlerian manifolds.
U1 U3 U4 and U2 U3 U4 are classes studied in [37].



123

40. Let (J,g) be a quasi homogeneous structure, i. e., 0h .

THEOREM 5.24. Let (J,g) be a quasi homogeneous structure having a
type  for some point p M. Then this structure belongs to the class  on M.

Proof is similar to that of Theorem 3.3.
We consider now a quasi homogeneous structure (J,g) having the type

4 U4. Let  be such a vector field on M that (X)= < ,X> for any X x(M) and
let L=[ J ] be the 2-dimensional distribution defined by , J . We take V=L
and obtain that T(M)=L V, (J )=0, (Y)=0 for each Y V.

PROPOSITION 5.25. 0h  if and only if 0W  for any W x(M).

Proof. For an integral curve (t) of the vector field W we can consider
vector fields X,Y,Z which are parallel along (t), i.e., 0ZYX WWW .

Then it follows that

Y,Z,XZ,Y,X)[1n(2/1h)Z,Y,X)(h( WWXYZWW

0]JY,JZ,XJZ,JY,X WW  if 0W

Conversely, let 0h . 0ZJJZ WW  and [Z  JZ], [Z  JZ]  are
invariant with respect to , therefore if p]JZZ[X  for p= (o), then

)t(t ]JZZ[)X( , where t  is  the  parallel  translation  with  respect  to
along (t). Thus,

0Z,X)1n(2/1h)Z,X,X)(h( W
2

XXZWW  for every Z,

hence 0W  and 0JJ WW  too.
QED.

If , where 1 , then 0))(W(WW , therefore

0W  for any W x(M) and c on M.
The formula (5.28) can be rewritten in the following form

(5.29) hXYZ=1/2(n 1)[<X,Y><  ,Z> <X,Z><  ,Y>  <X,JY><JZ,  >

+ <X,JZ><JY,  >].



124
Using (5.29) it is easily to check that for any X,Y,Z V

(5.30) h Z =h J Z =h J =hJ =hJ J =h J J =h YZ =hJ YZ =hXYZ =0,

 hXY =c2/2(n 1)<X,Y>,  hXYJ =c2/2(n 1)<X,JY>.

From Proposition 5.25 it follows that L is invariant with respect to , hence
V is invariant under too.

PROPOSITION 5.26. The distributions L and V are integrable, [ , J ]=0.
Every maximal integral manifold of L or V is a Kaehlerian one.

Proof. For any X,Y V we have

< [X,Y], >=< XY YX, >=hXY  hYX =0,

< [ ,J ],Z>=< J J ,Z>=h J Z  hJ Z =0,

hence V and L are integrable,

<[ , J ],  >=h J  hJ =0,

<[ , J ], J >=h  J  J hJ  J =0,

therefore [ ,J ]=0.
Since hXYZ =0, then from (5.19) it is clear that every maximal integral

manifold of V is Kaehlerian. For L this follows from (5.30).
QED.

THEOREM 5.27. For a quasi homogeneous structure (J,g) having the type
4  the metric g can be locally conformally changed into a Kaehlerian one.

Proof. The affinor J is integrable because 434  and for every
p M there exists such a coordinate neighbourhood U(x1,...,x2n 2,t,v) of p that

2n2
1n

n
1

1n
1n

1
1 x

JX,...,
x

JX,
x

X,...,
x

X

belong to V and
t

, L
v

J . Thus, we obtain dt( )=1,

dt(J )=dt(Xi )=dt(JXi )=0, where i=1,...,n 1. If =c2/n 1  t on U, then
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(Z)=<  ,Z>=(n 1) d (Z).

Let g =e2 g on U, then from (5.27), (5.28) it follows that 0h'
XYZ  for any

vector fields on U and g  is a Kaehlerian metric on U.
QED.

REMARK. Using these propositions examples of quasi homogeneous
structures having the type 4  can be constructed.

50. DEFINITION 5.3. [35]. Let (M,J,g) be an almost Hermitian
manifold.Then  is the tensor field of type (2.1) defined by

(5.31)
)Y(Z,X)Z(Y,X)[1n(2/1)Z,Y)((Z),Y,X( X

)]JY(JZ,X)JZ(JY,X ,

for X,Y,Z x(M).

The tensor field  measures the failure of an almost Hermitian manifold to
be conformally Kaehlerian.

THEOREM.5.28. [35]. Let (M,J,g) and (M,J,g ) be locally conformally
related almost Hermitian manifolds. Then the corresponding tensor field  and
satisfy = and for any class U  given in table 5.1 we have 4

' UUU . Thus
'UU  if and only if 4 UU . Using table 5.1 the defining relation for each of

the conformally invariant classes can be rewritten in terms of and we have
M U4 if and only if =0,
M U1 U4  if and only if (X,X)=0   for all X x(M),

M U2 U4 if and only if  < (X,Y),Z>=0 for all X,Y,Z x(M),
M U3 U4 if and only if (X,Y) (JX,JY)=0 for all X,Y x(M),

M U1 U2 U4 if and only if (X,Y)+ (JX,JY)=0 for all X,Y x(M),

M U1 U3 U4 if and only if (X,X) (JX,JX)=0 for all X x(M),

M  U2 U3 U4 if and only if < (X,Y) (JX,JY),Z>=0
 for all X,Y,Z x(M).

Let M and J be analytic, (t) be such a curve on M that
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(5.32) YY XXXX

where X= (t) and Y is any vector field defined on some neighbourhood of
(t).

If (J,g) is a quasi homogeneous structure and (t) is a geodesic with respect
to , then (5.32) is fulfilled from Lemma 5.8.

Proposition 5.16 implies (5.32) for nearly Kaehlerian structures. We can
define cos J, sin J by the formulas

0m

m2m )!m2/(J)1(Jcos ,
0m

1m2m )!1m2/(J)1(Jsin

THEOREM 5.29. If is the parallel translation from (o) to (t) with respect
to  along such a curve (t) that (5.32) is fulfilled and J(t) is the almost
Hermitian structure in (t), then

1
tt ))]o('tJsin()o(J))o('tJ[cos()t(J ,

where J = X J.
Let a) 2, b) 2 ( 0) be an eigenvalue of (J (o))2 and let X(o) be  a
corresponding eigenvector, X(t)= t (X(o)). Then

a) J(t)X(t)=cosh( t) t (J(o)X(o))+1/  sinh( t) t (J (o)X(o)),

b) J(t)X(t)=cos( t) t (J(o)X(o)) + 1/  sin( t) t (J (o)X(o)).

Proofs are similar to ones considered in Propositions 5.8  5.13.

Let (M, ) be an almost symplectic manifold, that is, a manifold with a
2-form  which has maximal rank. It is well-known, see [64], that  is defined by
a G-structure P(G), G=Sp(n,R), dim M=2n. We see from Theorem 1.1 that there
exists a reduction of G to the maximal compact subgroup H=U(n), which defines
an associated metric g=< , >. The space of all such associated metrics is infinite
dimensional and for a fixed metric g=< , > the almost Hermitian structure J is
determined by

(5.33) (X,Y)=<JX,Y>.

It is clear that P(H) is the same for both the structures )g,(  and (J,g),
therefore the canonical connection  of  the  pair )g,(  coincides  with  that  of
(J,g), where J, , g are related by (5.33).
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60. If M is a 3-s.l.R.s., see Definition 4.9, then S3=I and S has only two

eigenvalues i
2
3

2
1 . Since I S 3=(I S)(S 2+S+I) and (I S) is nonsingular on M,

then we obtain S 2+S+I=0. An almost-complex structure J on M is defined by the
formula

(5.34) J
2
3I

2
1S),IS2(

3
1J

We have J 2=1/3(4S 2+4S+4I 3I )= I and for X,Y x(M)

<JX,JY>=1/3(4<SX,SY>+2<SX,Y>+2<X,SY>+<X,Y>)

=1/3(3<X,Y>+2<X,S 2Y>+2<X,SY>+2<X,Y>)=<X,Y>.

So, (J,g) is an almost Hermitian structure on M.
We know, [48], that for a R.l.r.s-m. (M,{sx }) there exists the unique

connection ~  which is invariant under every sx, x M, and such that 0g~S~ .
~  is defined by (4.1), where I2 , or (4.3).

THEOREM 5.30 [48]. Let (M,{sx}) be a R.l.r.s-m. and ~  its canonical
connection. Then

(5.35) g)g(S,h)h(S,R~)R~(S,0S~h~R~~g~ ,

where ~h  and R~  is the curvature tensor field of ~ . Conversely, if ~

is a metric connection on a Riemannian manifold (M,g,S), where S and (I S)
are nonsingular affinors on M , and (5.35) are fulfilled for ~ , g, h, R, S, then
there exists a Riemannian locally regular structure {sx} on M, that is the
canonical connection of (M,{sx}) and x*xx )S(S .

Returning to our 3-s.l.R.s. we can consider the canonical connection of
the a.H.s. (J,g).  It  is  well-  known  that 0g  and from (5.34) it is clear that

0S .  From the invariance of  under any sx and from (5.18), (5.34) it follows
that  is also invariant under sx. So, the uniqueness of the canonical connection of
(M,{sx}) implies that ~  on M. Thus, for  we get

(5.36) R)R(S,h)h(S,0Rh .

Using Theorem 5.30 we obtain
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PROPOSITION 5.31. Let (M,J,g) be an a.H.m. with canonical connection

h, . If J
2
3I

2
1S  and (5.36) are fulfilled, then there exists

such a Riemannian locally regular s-structure {sx} on M, that (M,{sx}) is  a
3-s.l.R.s. and x*xx )s(S .

One can find detailed information about 3-s.R.s. in [33].
We consider now more general case.
Let (M,{sx}) be  a  R.l.r.s-m.  and x*xx )s(S  has only complex eigenvalues

iba,...,iba rr11 . We define distributions

Di , i=1,...,r  by Di=ker (S 2 2ai S+I)

It is clear that every X x(M) has the unique decomposition X=X1+...+Xr ,
where Xi Di , i=1,...,r.

An almost complex structure J on M is defined by

(5.37)
r

1i
iii X)IaS(b/1JX

Really, if i  is the projection on Di , then i
2
iji ,ji,0  and

,I

)IbISa2S(b/1)IaSa2S(b/1))IaS(b/1(J

r

1i
i

r

1i
i

2
ii

22
i

r

1i

2
i

2
ii

22
i

2
ii

r

1i
i

2

It is clear that Di and Dj are orthogonal each other for i  j. Further, using
that S 2=2ai S I on Di we obtain

.Y,X)Y,XaY,X(b/1

)Y,XaY,SXaYS,SXaY,X(b/1

Y)IaS(,X)IaS(b/1JY,JX

r

1i
ii

2
iii

2
i

r

1i
ii

2
iiiii

2
iiii

2
i

r

1i
jii

2
i

Thus, the almost Hermitian structure (J,g) is  defined  on M. Let  be  its
canonical connection, see (5.18). Since S=ai I+bi J on Di and 0J , then
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r,...,1i,XSSX iYiY  and 0gS  on M. It is obvious that Di and J are

invariant under any sx , hence it follows from (5.18) that  is also invariant under
sx . The uniqueness of the canonical connection ~  of (M,{sx}) implies that ~

on M and (5.36) are fulfilled. So, h  defines a locally homogeneous
Riemannian structure, see §3, Chapter 2.

REMARK. If (M,J,g) is  an  a.H.m.  and 0Rh , where  is  the
canonical connection of (J,g), then a searching for a suitable affinor S is  a
sufficiently difficult problem. We must require 0S , S(h)=h, R)R(S ,
S(g)=g and S, (I S) have to be nonsingular. After that Theorem 5.30 can be
applied.

§4. STRUCTURE DEFINED BY AFFINOR F

SATISFYING F3+F=0

10. A structure on an n-dimensional manifold M given by a non-null (1,1)
tensor F field satisfying

F 3+F=0

in called an f-structure, [72]. Later on, we shall see that such a tensor field F
is always O-deformable. From Theorem 1.2 it  follows  that  there  exists  an
associated metric g for P(F)=P(G) defined by a structure P(H), where H=G O(n).
The group H can be chosen, [72], as

H=O(n 2n2) U(n2),

where 2n2 is  the  rank  of F. If M is orientiable and n 2n2=1, then an f-structure
gives an almost contact structure. We put

1=F 2+I , 2= F 2

and consider L= 1 (T(M)), V= 2 (T(M)). It is easy to verify that

FFF,0FF,,,I 22112
2
21

2
121 ,

hence L and V are complementary distributions on M, T(M)= L V, where
dim V=2n2 , dim L=n1 =n 2n2 , and F determines the almost complex structure on



130
the distribution V.

PROPOSITION 5.32. For every f-structure F on a manifold M a periodic
affinor S, S 4=I, can be constructed. Conversely, any affinor S, S 4=I defines
the f-structure .

Proof. If  we  put VV FS  and LL IS  (or LL IS ), then it is evident

that S 4=I. Conversely, if S 4=I, then we can take P=S 2 and

 2=1/2(I+P),  2=1/2(I P), L=  1(T(M)), V=  2(T(M)).

The f-structure is defined by the conditions F=0 on L and F=S on V .  It  is
clear that F 3+F=0.

QED.

If g=< , > is a Riemannian associated metric determined by a structure
P(H), then V=L  and <FX,FY>= <X,Y> for any X,Y V.

For any Riemannian metric g~  on M an associated metric g can be defined
by the formula

g(X,Y)= g~ (X,Y)+ g~ (SX,SY)+ g~ (S 2X,S 2Y)+ g~ (S 3X,S 3Y), X,Y x(M),

where VV FS  and LL IS  (or LL IS ), S 4=I. Since g(SX,SY)=g(X,Y)

and g(PX,PY)=g(X,Y), where P=S 2, for any X,Y x(M),  it  is  obvious  that g is
associated . The space of all such associated metrics is infinite dimensional.

20. We consider now a fixed pair (F,g) (or (S,g)) and calculate its canonical
connection  and the second fundamental tensor field h.

THEOREM 5.33. For a Riemannian f-structure (F,g) we have

(5.38) )YFFY(
2
1YY 2X2X21X1X ,

(5.39) )YFFY(
2
1YYYh 2X2X21X22X1X ,

(5.40) )SYSYSSYSSY(
4
1Y X

32
X

23
XXX ,
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where X,Y,Z x(M).

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

h x~:
AB
BA

0

0'A
x~{ o },

and o = h m,  where

m x~:
DK

KD
C

C0
x~{

T

o }.

We see that m = h  with respect to Killing form. For every o  the
natural decomposition mh  can be defined by the formulas

h p1 p1+1/2(p2 p2 jp2  p2j), hm .

where

0E
E0

0

00
j,

E0
00

p,
00
0E

p
2

2

2

1

n

n
n2

2
n

1 .

Let  be a cross section of P(H) over some neighbourhood U, which assigns
to each x U the linear frame (X1 )x ,...,(Xn )x and X,

k
k

k XfY  be vector fields on

M. Then from (1.6) it follows that

,)X)(x)(Xf(Y)x()]jp)X(jp

)p)X(p(2/1p)X(p)[x(

)X)(x()Xf(Y)x()X()x(Y

k
xk

k
x

1
2x*2

2x*21x*1

xk
k

k
x

1
x*X x

where (x) is considered as the mapping of R n onto Tx (M).  It  is  clear  that
)x(Fj)x(),x(p)x(),x(p)x( 2211 , hence we obtain
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).YFFY(2/1Y

])X(F)x)(Xf(FFY)x()X()x(F[2/1

])X)(x)(Xf(Y)x()X()x([2/1

])X)(x)(Xf(Y)x()X()x([Y

2X22X21X1

k
xk2

k
x2

1
x*2

k
xk2

k
x2

1
x*2

k
xk1

k
x1

1
x*1X

xxx

x

Using the fact that XY=(  1+  2) X (  1+  2)Y and obtained formula of
we get (5.39).

Since VV FS  and  1=1/2(I+S 2),  2=1/2(I  S 2) we have

YSYYSSYSYSY(8/1

YSS
2
1Y

2
1YSS2/1Y2/1Y

X
2

X
2

X
22

XX
2

X

2X22X21X11X1X

).SYSYSSYSSY(4/1

)YSSSYSYSSSYSYSS

SYSSYYSSS(8/1)YSSYS

X
32

X
23

XX

3
X

3
X

33
XX

3
X

3
X

3
X

3
X

2
X

22
X

QED.
REMARK. It is easy to verify that the formula (5.38) can be rewritten in the

following form

(5.41) YFF2/3YFYFFYF2/1YY 2
X

2
X

22
XXXX .

For  a f-structure F, F 3+F=0 and for every connection  on M (5.41)
determines the connection and one can simply check that 0F , that is, the
tensor field F is O-deformable and always defines a G-structure , 0S  too.

LEMMA 5.34. For X x(M) and Y,Z V we have

(5.42) hXYZ = hXFYFZ.

Proof. It follows from (5.39) that

hXYZ =<hX Y,Z >=<  2 hXY,Z>=1/2< XY+F XFY,Z>,

and
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hXFYFZ = <hXFY,FZ>=<  2hXFY,FZ>=1/2< XFY F XY,FZ>= 1/2<F XFY+ XY,Z>.

QED.
30. Let (M,{sx }) be a 4-s.l.R.s. (or R.l.r. -m.o.4), see Definitions 4.9, 4.3,

then for affinor x*xx )s(S:S we have S 4=I.
It follows from Theorem 4.4, Proposition 4.5 and ((5.4O) that the canonical

connection ~  of (M,{sx }) (formula (4.3)) coincides with  defined by (5.4O).
Therefore, if (M,{sx }) is a 4-s.l.R.s., then the corresponding structure (F,g) is
determined on M and for its  and h  (see (5.38),(5.39)) conditions (5.35)
have to be fulfilled.

Conversely, using Theorem 5.30 we obtain

PROPOSITION 5.35. Let (F,g) be a Riemannian f-structure on a manifold
M with the canonical connection , h . If S is the affinor
constructed in Proposition 5.32 (S 4=I, LL IS ) and

R)R(S,h)h(S,0Rh ,

then there exists such a Riemannian locally regular s-structure {sx } on M
that (M,{sx }) is a 4-s.l.R.s. and x*xx )s(S .

PROPOSITION 5.36. Let (M,{sx }) be a 4-s.l.R.s. and h

P=S 2,  1 =1/2(I+P),  2 =1/2(I P), L=  1 (T(M)), V=  2 (T(M)),

Then we have

1) hXY=0 for X,Y L;

2) hXY=  1 XY  for X,Y V;

3) hXY=  2 XY  for X V and Y L;

4) hXY=1/2( XY+S XSY) V  for X L and Y V.

Proof. 1) It follows from (5.35) that hSXSY=ShXY for X,Y x(M), so that for
X,Y L YhSYShYh X

22
XSX 2 and hXY L, hence XY L. From another side,

from (5.38) we obtain that YYY XX1X  and 0YYYh XXX .
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2) YhSYShYh X

22
XSX 2 , that is, hXY L for X,Y V. Using (5.38) we

get hXY=  1 XY.
3) hXY= XY  1 XY=  2 XY, for X V and Y L.
4) For X L and Y V, we have YhYhSYSh XX

22
XS 2 , so that hXY V.

Since VYX , then VYX .
QED.

From this proposition it follows that L is integrable and its maximal integral
manifolds are totally geodesic submanifolds with respect to the Riemannian
connection .

PROPOSITION 5.37. Let (M,{sx }) be a 4-s.l.R.s. and h  Then
h T2 T3 (see Table 3.1).

Proof. We can choose orthonormal vector fields by the folllowing way
E1,...,Ek ,SE1,...,SEk V; Ek+1,...,En L and using Proposition 5.36, Table 3.1 we
obtain

0Eh)SSSI(2/1Eh)SI(

)ShShEh()SEhEh()h(c

k

1i
iE

32
k

1i
iE1

k

1i
EEiE

k

1i
iSEiE12

ii

iiiii

because I S  0 on V.
QED.

REMARK. If (M,{sx }) is a R.l.r. -m.o.4 , then ShXY=hSXSY, where
X,Y x(M) (see Corollary 4.53), so that Propositions 5.36, 5.37 are also true
in this case.

Let (M,{sx}) be a R.l.r.s-m. and x*xx )s(S . We denote by L=[ 1] a   distribution of
eigenvector fields corresponding to the eigenvalue 1 and V=L . For Y L we have

Y~SY~Y~S XXX , hence LY~
X  andL,V are invariant under ~ .

Let a iba,...,iba rr11  be complex eigenvalues and Di =Ker (S 2 2aiS+I),

i=1,...,r. It is clear that
r

1i
iDV  and every X x(M) has an unique decomposition
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X=X0+X1+...+Xr , where X0 L, Xi Di . An affinor F on M is defined by

(5.43) FX0 =0,
r

1i
iii0 X)IaS(b/1)XX(F .

By similar arguments as in 60, §3 we get that (F,g) is a Riemannian f-
structure on M, i.e., F 3+F=0.

Let  be the canonical connection of (F,g) (see (5.38)) . Since S=ai I+bi F
on Di , then 0gS  and  is invariant under any sx . The uniqueness of the
canonical connection  of (M,{sx }) implies that ~  on M and  (5.36)  are
realized.

In particular, 0Rh  and h  defines a locally homogeneous
Riemannian structure.
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CHAPTER 6

A CLASSIFICATION OF ALMOST CONTACT METRIC
STRUCTURES

In this chapter, using our interpretation of the classification of A.Gray,
L.M.Hervella and the second fundamental tensor field h of an almost contact
metric structure, we get a classification of such structures in terms of h. There are
2 12 classes of almost contact metric structures. A similar classification was
considered by D.Chinea and C.Gonzalez (A.A.Alexiev and G.Ganchev) by a
different method. Good relations have been found between both the classifications
and this allows to describe the canonical connection for every class.

§1 is devoted to the obtaining of a new classification with help of the tensor
field h.

In §2, we prove a theorem which states that both the classifications are the
same up to an isomorphism. We follow especially closely to [14].

§1. ABOUT A CLASSIFICATION OF ALMOST CONTACT
METRIC STRUCTURES

10. Let M be  a (2n+1)-dimensional manifold. An almost contact metric
structure (a.c.m.s.) on M is called H - structure P(H), where H=U(n) 1. The
extension of P(H) to O(2n+1) defines the Riemannian metric g on M. P(H) also
determines the vector field )1( ; the almost product structure T(M)=V L,
where L=[ ] (dim L=1), V=L ; the tensor field F of type (1.1), F 3+F=0, F( )=0,
F 2= I  on V, <FX,FY>=<X,Y> for X,Y V; the 1-form , where (X)=<X, > for
X x(M). We denote the projections to L and V by  1 and  2 correspondingly.
(  1+  2=I, 2,1i,i

2
i ).

THEOREM 6.1. For a.c.m.s. on M and X,Y x(M) we have

(6.1) )YFFY(
2
1YY 2X2X21X1X ,

(6.2) )YFFY(
2
1YYYh 2X2X21X22X1X .
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Proof is the same to that of Theorem 5.33.
If hXYZ=<hXY,Z>, X,Y,Z x(M), then from (2.2) we have

(6.3)  hXYZ=  hXZY.

It follows from Lemma 5.34 that for X x(M) and Y,Z V

(6.4) hXYZ= hXFYFZ.

Since  is the canonical connection of a.c.m.s. P(H), then for X,Y x(M)
0gF ;

0X1X  because 1;
0  because ;0,0g

2,1i,0i , because  1=I+F 2,  2= F 2.

20. Let p M, T=Tp(M), Vp=V, Lp=L. T is an Euclidian vector space over R
with respect to the inner product < , > induced by g. We consider the subspace

)T(  formed by all the tensors of the type (0.3) which satisfy the identities (6.3),
(6.4), i.e.,

(6.5)

}VZ,Y,TX,hh;TZ,Y,X,hh:Th{)T( XFYFZXYZXZYXYZ
*

3

)T(  is an Euclidian vector space under the inner product defined by (3.1).
The action of the group H=U(n) 1 is defined by (3.2). Later on, we shall choose
an orthonormal basis of T in the following way

(6.6) E1,...,En, FE1 ,..., FEn V; E2n+1= L.

The action of H on V coincides with the ordinary action of U(n). We
consider now the induced action on V * V * defined by

(6.7) YXaaXY 11h)ah( ,

where a U(n), X,Y V, h V * V *.
The inner product is also determined on V * V by

(6.8)
k,i

2
EE

1
EE

21
kiki

hhh,h ,
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where h1, h2 V * V * and E1 ,...,E2n form  an  orthonormal  basis  of V. Using the
basis of type (6.6) we define

n

1i
EFEFEE

n

1i
FEFEEE )hh()h(tr,)hh()h(tr

iiiiiiii
.

LEMMA 6.2. If n 2, then i

6

1i
** VVV , where iV  are  invariant  and

irreducible under the action of U(n). One can find the spaces 6,...,1i,Vi

in Table 6.1.

Proof. It is well known that V * V * has the following decomposition to
irreducible components with respect to the action of O(2n).

V
2
0

2** AVSVVV ,

where 2V is the subspace of antisymmetric tensors, VS 2
0  is the subspace of

symmetric tensors of a zero trace. If we consider the elements of V * V * to be the
bilinear forms  : V V R,   then AV if and only if (X,Y)=1/2n<X,Y>tr .
All the components are invariant under the action of U(n). Having fixed a basis of
type (6.6) in V we can identify V * V * with the space of matrices. Thus, we have

321
2 VVVV ,

where

)1nV(dim}0trB,BB,AA:
AB

BA
{V 2

100
T
0

T

0

0
1 ,

)nnV(dim}DD,CC:
CD

DC
{V 2

2
TT

2 ,

)1V(dim}E)trB(BB:trB
0E
E0

{V 303 .

The subspace of symmetric tensors of a zero trace is decomposed as

54
2
0 VVVS ,
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where

),1nV(dim}0Atr,BB,AA:
AB
BA

{V 2
40

TT
0

0

0
4

)nnV(dim}DD,CC:
CD

DC
{V 2

5
TT

5 .

We denote

)1V(dimVA 66V .

Using (6.8) it is easy to verify that all iV  are mutually orthogonal.
Considering the matrix realization of U(n)

)}n2(O
AB
BA

{)n(U

we can check that all iV  are invariant and irreducible under the action of U(n).
QED.

Let X,Y be arbitrary vectors in V. We have

Table 6.1

Class Dimension Defining condition

1V n 2 1 0)h(tr,hh,hh XYFXFYYXXY

2V n 2 n XYFXFYYXXY hh,hh

3V 1 )h(trFY,X
n2

1hXY

4V n 2 1 0)h(tr,hh,hh XYFXFYYXXY

5V n 2+n XYFXFYYXXY hh,hh

6V 1 )h(trY,Xn2/1hXY
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30.  We  consider  now  the  main  theorem  of  the  section  about  the
decomposition of the space )T(  to invariant and irreducible components with
respect to the action of the group H=U(n) 1.

THEOREM 6.3. If n 3, then there exists the orthogonal decomposition

i

12

1i
)T( , where i  are invariant and irreducible under the action of H.

The spaces i , i=1,...,12 are adduced in Table 6.2.

Proof. We have

T* T* T*=T* (V* L*) (V* L*)=T* (V* V* V* L* L* V* L* L*)

From (6.3) we obtain

)VLT()LVT( ******

and as O)LLT(0h ***
X .

Using the invariance of  and  of  the  components  under  the  action  of  the
group H we get

)VVLLVLLVVVVV(

)LVTVVT()T(
************

*******
3

We denote )LVV(,)VVV( ***2***1 ,
)VVL(,)LVL( ***

12
***

11 .
The group H preserves the sum T=V L invariant and the action of H on V

coincides with that of U(n), on L it is trivial. Thus H preserves the decomposition

1211
21

invariant. From (3.1) we can notice that the components of this decomposition are
orthogonal . We define *T,  by

(6.9)
n

1i
UFEFEUEE )hh()U(

iiii
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TU,)hh()U(
n

1i
UEFEUFEE iiii

.

From (5.25) we have obtained the following decomposition of the space 1

to orthogonal irreducible components under the action of U(n)

i

4

1i
1 ,

where },VZ,Y,X,hh:h{ YXZXYZ
1

1

:h{ 1
2 }VZ,Y,X,0hXYZ ,

},VZ,Y,X,0)Z(hh:h{ FXFXZXYZ
1

3

},VZ,Y,X)],FY(FZ,X)FZ(FY,X
)Y(Z,X)Z(Y,X)[1n(2/1h:h{ XYZ

1
4

The action of the group H on L is trivial. Using Lemma 2.1 (Table 6.1) we
can get the following decomposition of 2  to orthogonal irreducible components
under the action of H

i

10

5i
2 , where *

4ii LV  and i=5,...,10.

Since the action of U(n) on V is irreducible, therefore

***
11 LVL  is irreducible.

It follows from (6.3) , (6.4) that
2

*
12 VL  is irreducible.

Thus, we have got i

12

1i
 and

dim =(2n+1)n(n+1)=dim Hom (T, m),

where m is the subspace of o(2n+1) defined in the proof of Theorem 5.33.
QED.

Let X,Y,Z be arbitrary vectors in V. Then, we have



142
Table 6.2

Class Dimension Defining condition

0 0 h=0

1 1/3n(n 1)(n 2)
.0hhh

,hh

XYXXY

YXZXYZ

2 2/3n(n 1)(n+1) hXYZ =0,  hXY =h X =h XY =0.

3 n(n+1)(n 2)
.0hhh

,0)Z(hh

XYXXY

FXFYZXYZ

4 2n

.0hhh
)),FY(FZ,X)FZ(FY,X

)Y(Z,X)Z(Y,X)(1n(2/1h

XYXXY

XYZ

5 n2 1
.0hhh

,0)(,hh,hh

XYXXYZ

XYFXFYYXXY

6 n2 n
.0hhh

,hh,hh

XYXXYZ

XYFXFYYXXY

7 1 .0hhh),(FY,X
n2
1h XYXXYZXY

8 n2 1
.0hhh

,0)(,hh,hh

XYXXYZ

XYFXFYYXXY

9 n2+n
.0hhh

,hh,hh

XYXXYZ

XYFXFYYXXY

10 1
.0hhh

)(Y,Xn2/1h

XYXXYZ

XY

11 2n .0hhh XYXYXYZ
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12 n2 n
.0hhh

,hhh

XXYXYZ

FXFYYXXY

(2n+1)n(n+1) ------------

This classification was announced in [25] and given in [28]. In fact, for
every class from Table 6.2 the canonical connection h  have been
constructed and to study these classes the torsion tensor field T  and various
curvature characteristics of  can be applied.

It is directly follows from the analysis of Table 6.2 that

111097

when n=1, and

i

12

5i
42

when n=2.
We denote the set of all the kinds of combinations of {1,...,12} by A12. It is

evident that every combination },...,{ l1  determines the invariant subspace

l1
...  of .

DEFINITION 6.1. We say that a.c.m.s. is of the class 12, , or has a
type  on M if Mx)),M(T(h xx , and it is strictly of the class

if hX 0, X x(M), X  0.

If )M(  denotes the vector bundle over M with the typical fibre )M( ,
then )M( , 12  are the vector subbundles in )M(  and a.c.m.s. is strictly
of the class  if x hx is a nonzero cross - section of the corresponding
subbundle. Since the power of 12  is  equel  to 212, then there are 4096 classes of
a.c.m.s. on M.

THEOREM 6.4. Let a.c.m.s. be a quasi homogeneous structure having a
type  for some point p M. Then this structure is of the class  on M.

Proof is similar to that of Theorem 3.3.
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§2. ABOUT A CLASSIFICATION OF D.CHINEA AND

C.GONZALEZ

10. Let (F,  , , g) be an almost contact metric structure (a.c.m.s.) on M,
dim M=2n+1 and let

(X,Y) = <X,FY>, X,Y x(M).

Using a tensor field A.A.Alexiev, G.Ganchev in [1] and D.Chinea,
G.Gonzalez in [14] obtained a classification of a.c.m.s. on M by a different
method.

The main point of this section is to identify our classification of §1 with
that in [14].

The following equalities one can find in [14].

(6.10) ( X )(Y,Z)=<Y, X (F)Z>,

(6.11) ( X )(Y,Z)+ ( X )(FY,FZ)= (Z)( X  )FY (Y)( X  )FZ,

(6.12) ( X  )Y=<Y, X  >=( X )(  ,FY),

(6.13) 2d (X,Y)=( X )Y ( Y  )X,

(6.14) 3d (X,Y,Z)=  ( X )(Y,Z)

where d , d  are the exterior derivatives of  and , X,Y,Z x(M).
(6.15)

n

1i
iFEiE )X,)(()]X,FE)(()X,E)([()X(

ii
,

(6.16)
n

1i
iFEiE ]FE)(E)[(

ii
,

where  and  are the coderivatives of  and , {Ei ,FEi , }, i=1,...,n,  is  a  a
local orthonormal basis of the type (6.6) defined on an open subset of M.

Let p be a fixed point of M and T=Tp(M), X,Y,Z T. We consider a vector

subspace C(T) in *
3

T

(6.17) C(T) )FZ,FY,X()Y,Z,X()Z,Y,X(:T{ *
3

)},Y,X()Z()Z,,X()Y(
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THEOREM 6.5 [14]. ( )p C(T) and there exists an orthogonal

decomposition C(T)=
12

1i
Ci , where Ci are invariant and irreducible under the

action of the group H=U(n) 1. The spaces Ci , i=1,...,12 are adduced in
Table 6.3.
Let X,Y,Z be arbitrary vectors in T. Then we have

Table 6.3

Class Dimension Defining condition

C1 1/3n(n 1)(n 2) 0,0)Y,X)(( X

C2 2/3n(n 1)(n+1) 0d

C3 n(n+1)(n 2) 0,0)Z,FY)(()Z,Y)(( FXX

C4 2n

0)()],FY()Z,X(
)FZ()Y,X()Y(FZ,FX

)Z(FY,FX)[1n(2/1)Z,Y)(( X

C5 1 )]Z()Y,X()Y()Z,X([n2/1)Z,Y)(( X

C6 1 )()]Z(Y,X)Y(Z,X[n2/1)Z,Y)(( X

C7 n2 1
0

,Z))(Y(FX))(Z()Z,Y)(( FXYX

C8 n2 1
0

,Z))(Y(FX))(Z()Z,Y)(( FXYX

C9 n(n+1) Z))(Y(FX))(Z()Z,Y)(( FXYX

C10 n(n 1) Z))(Y(FX))(Z()Z,Y)(( FXYX

C11 n(n 1) )FZ,FY)()(X()Z,Y)(( X

C12 2n FZ))(Y()X(FY))(Z()X()Z,Y)(( X

20. We consider now relations between h and the other tensor fields.
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LEMMA 6.6. For a.c.m.s. we have the following identities

(6.18) hXYZ= 1/2< X (F)FY,Z>, X x(M), Y,Z V;

(6.18) X (F)Y=hX FY FhX Y,  X,Y x(M).

Proof. It follows from (6.2) that for Y,Z V

hXYZ =1/2< X Y+F X FY,Z>= 1/2< X (F)FY,Z>.

To obtain (6.19) we subtract the identity 0YFFY XX  from the
identity YFFYY)F( XXX .

QED.

PROPOSITION 6.7. We have the following identity

(6.20) ,Y,Z2Z,,Yh2)FZ,Y)(( XXXYZX

where X,Y,Z x(M).

Proof. We consider the following cases
1) If Y,Z V then, using (6.3), (6.10), (6.18), we get

XYZXZYXX h2h2FZ)F(,Y)FZ,Y)(( ;

2) If Y V and Z = , then we obtain

0)F,Y)(()FZ,Y)(( XX ,

,Y,2,Y2,YY2h2 XXXXXYZ ;

3) For Y=  and Z V from (6.10), (6.19), (6.3) we have

,hhFZFhZFh,

FZ)F(,)FZ,)(()FZ,Y)((

ZXXZX
2

X

XXX

.hhh2Z,h2Z,,h2 ZXZXZXXXZXXZX

4) For Z=Y=  we get 0h2)F,Y)(( XX .
QED.
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Using (6.12) we obtain

(6.21) )FZ,Y)((
2
1Y))(Z(Z))(Y(

2
1h XXXXYZ

)FY,)()(Z()FZ,)()(Y(
2
1

XX

Z,Y,X),FZ,Y)((
2
1

X x(M)

From (6.10) and (6.19) it follows

(6.22) Y,ZFhFZhZ)F(,Y)Z,Y)(( XXXX , X,Y,Z x(M)

Thus, for a fixed point p of M we can consider a mapping

:B C(T) :)T( pp h)(

THEOREM 6.8. The mapping B is a linear isomorphism between the vector
spaces C(T) and )T( .

Proof. From the second part of (6.21) it is evident that

)(B)()(B 2121

and B is a linear mapping. From (6.21) and (6.22) it follows that B is a one-to-one
correspondence.

QED.

From (6.12) we have that ,YY)( XX , 0,)( XX

and

(6.23) YXXXX hY,Y)( .

Using (6.16), (6.23), (6.9) we obtain

(6.24)
n

1i

n

1i
FEFEEEiFEiE ]hh[]FE)(E)[(

iiiiii

n

1i
FEFEEE )(]hh[

iiii
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It follows from (6.15), (6.20), (6.10), (6.19), (6.9) that for X V

n

1i
iFEiE )FX,)(()]FX,FE)(()FX,E)([()FX(

ii

.h)X(2

FX,]hh[2)F(,

],FE,X2X,,FEh2

,E,X2X,,Eh2[

FX

n

1i
XFEFEXEE

FEiFEiXFEFE

n

1i
EiEiXEE

iiii

iiii

iiii

From (6.10), (6.15), (6.19), (6.9) we obtain

n

1i
EFEFEE

n

1i

n

1i
EEFEEFEiEi

n

1i
FEiEi

).(]hh[

]hh[]Fh,FEFh,E[

)F(,])F(,FE)F(,E[)(

iiii

iiiiii

ii

We have got

(6.25) VX,h)FX(2)X( X ;

30. We are ready now to identify classes in both the classifications.

LEMMA 6.9. B(C1 ) = 1

Proof. For X,Y V we have from (6.20), (6.23) that

0hY)(,0hY)(,0h2)Y,X)(( YXYXXXFYX

and from (6.12) that 0,YY)( XX , therefore

0h2)hh(2)hh(2)Y,)(()Y,X)(( XFYXFYXFYFYXXFYX .

We have got hXXY=0,  hXY =h Y =h XY=0, hence B(C1 ) 1 . Since
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dim C1= 1dim)2n)(1n(n
3
1 , then B(C1 ) = 1

QED.

LEMMA 6.10. B(C2 ) = 2

Proof. It follows from (6.12), (6.20), (6.23) that for X,Y,Z V

,h2)Z,Y)((,0hh XYFZXXXY

)Z,Y,X(d3 .0)hhh(2)Z,Y)(( ZXFYYZFXXYFZX

By analogy with 2) of Theorem 5.20 we get hXYFZ=hXFYZ=hFXYZ, hence

 hXYZ=0,  3d ( ,Y,Z)= 2h YFZ=0

and we have obtained that B(C2 ) 2 .

Since dim C2= 2dim)1n)(1n(n
3
2 , then B(C2 ) = 2

QED.

LEMMA 6.11. B(C3 ) = 3

Proof. Using (6.20) for Y,Z V we get

( X )(Y,Z) ( FX )(FY,Z)= 2(hXYFZ hFXFYFZ)=0,

hence h XY=0; hXYZ=hFXFYZ, X V, and

0hhh2FY,h2)Y,)(( XFYXFYXFYXFYXX

therefore 0h;0h XYY , for X V. It follows from (6.25) that

0)FZ(2h)FZ(2)Z( Z .

Thus, we have obtained that B(C3 ) 3 .
Since dim C3 =n(n+1)(n 2)=dim 3 , then B(C3 ) = 3

QED.

LEMMA 6.12. B(C4 ) = 4
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Proof. One can write from Table 6.3 that for any X,Y,Z x(M)

(6.26) )Y(FZ,FX)Z(FY,FX[
)1n(2

1)Z,Y)(( X

.0)()],FY(FZ,X)FZ(FY,x

For X,Y V it follows from (6.21), (6.26) that

;0)FY,)((h,0)FY,X)((
2
1h,0)FY,)((h YXYXXY

from (6.25) )FX(2)X( . Using (6.21) and (6.26) for X,Y,Z V we have

)]Y(Z,X)FZ(FY,X

)FY(Z,FX)Z(Y,X[
)1n(2

1)FZ,Y)((
2
1h XXYZ

and B(C4 ) 4 . Since dim C4=2n=dim 4 ,  then B(C4 ) = 4 .
QED.

LEMMA 6.13. B(C5 ) = 10

Proof. From Table 6.3 and (6.24) it follows that

).(],ZFY,X,YFZ,X[
n2

1

)]Z()Y,X()Y()Y,X([
n2

1)Z,Y)(( X

From this identity and from (6.21) for X,Y,Z V we have

,0)FZ,Y)((
2
1h,0)FZ,Y)((

2
1h YZXXYZ

0)FY,)((h Y  and

).(Y,X
n2

1)(Y,F,X
n2

1)FY,)((h 2
XXY
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Thus, B(C5 ) 10  and since dim C5 = 1 = dim 10 ,  then B(C5 ) = 10 .

QED.

LEMMA 6.14. B(C6 ) = 7

Proof. From Table 6.3 and (6.25) it follows that

)(],ZY,X,YZ,X[
n2

1)Z,Y)(( X

and from (6.21) for X,Y,Z V we obtain

,0)FZ,Y)((
2
1h,0)FZ,Y)((

2
1h YZXXYZ

).(FY,X
n2

1)FY,)((h,0)FY,)((h XXYY

Thus, B(C6 ) 7  and since dim C6 = 1 = dim 7 , then B(C6 ) = 7 .
QED.

LEMMA 6.15. B(C7 ) = 5

Proof. From Table 6.3, (6.23) it follows that

ZFXFXYFXYX h,Yh,ZZ))(Y(FX))(Z()Z,Y)(( ,

therefore for X,Y,Z V we get from (6.21) that

FXFYFYFXXXYY

YZXXYZ

hh)FY,)((h,0)FY,)((h

,0)FZ,Y)((
2
1h,0)FZ,Y)((

2
1h

and from (6.25) 0)()( . Using (6.10), (6.19) one can verify that

.hhh,Y
FhFh,FY)F(,FY),FY)((

XYYXX

XXXX

On the other hand we see from Table 6.3 that

YXFYFXFXFYX hhh,),FY)((
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and for X,Y V YXXY hh .

Since dim C7 = n2 1=dim 5  and B(C7 ) 5 , hence B(C7 ) = 5 .
QED.

LEMMA 6.16. B(C8 ) = 8 .

Proof. From Table 6.3 and (6.23) it follows that

,h,Yh,ZZ))(Y(FX))(Z()Z,Y)(( ZFXFXYFXYX

therefore for X,Y,Z V from (6.21) we obtain

,0)FZ,Y)((
2
1h,0)FZ,Y)((

2
1h YZXXYZ

FXFYFYFXXXYY hh)FY,)((h,0)FY,)((h

and from (6.24) we have 0)( .
Using (6.1O),(6.19) one can check that

.hhFhFh,FY)F(,FY),FY)(( XYYXXXXX

On the other hand we have seen from Table 6.3 that

YXFYFXFXFYX hhh,),FY)(( ,

hence for X,Y V YXXY hh .
Since dim C8 =n2  1=dim 8  and B(C8 ) 8 , therefore B(C8 ) = 8

QED.

LEMMA 6.17. B(C9 ) = 9 .

Proof. One can write from Table 6.3 and (6.23) that

,h,Yh,ZZ))(Y(FX))(Z()Z,Y)(( ZFXFXYFXYX

therefore from (6.21) for X,Y,Z V we obtain
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YXFYFXFXFYX

FXFYXXYY

YZXXYZ

hhh,),FY)((
,h)FY,)((h,0)FY,)((h

,0)FZ,Y)((
2
1h,0)FZ,Y)((

2
1h

and from (6.10), (6.19)

.hFhFh,FY)F(,FY),FY)(( XYXXXX

Thus, B(C9 ) 9  and, since dim C9 = n(n+1)= dim 9 , then B(C9 ) = 9

QED.

LEMMA 6.18. B(C10 ) = 6 .

Proof. It follows from Table 6.3 and (6.23) that

ZFXFXYFXYX h,Yh,ZZ))(Y(FX))(Z()Z,Y)((

The rest is similar to ones in Lemma 6.15  6.17.
QED.

LEMMA 6.19. B(C11 ) = 12

Proof. One can write from Table 6.3 that

)FZ,FY)((,X)Z,Y)(( X

and from (6.21) for X,Y,Z V we have

.0)FY,)((h

,0)FY,)((h,0)FZ,Y)((
2
1h

Y

XXYXXYZ

It follows from (6.5) that FXFYYXXY hhh  and B(C11 ) 12 . Since
dim C11 =n(n 1)=dim 12 , then B(C11 ) = 12 .

QED.

LEMMA 6.20. B(C12 ) = 11



154
Proof. It follows from Table 6.3 and (6.23) that

FZFYX h,Y,Xh,Z,X)Z,Y)((

and from (6.21) for X,Y,Z V we obtain

,0)FY,)((h,0)FZ,Y)((
2
1h XXYXXYZ

0)FZ,Y)((
2
1h YZ  and B(C12 ) 11 .

Since dim C12 = 2n = dim 11 , then B(C12 ) = 11 .
QED.

So, we have got the final

THEOREM 6.21. The classifications given by Tables 6.2, 6.3 are the same
up to an isomorphism and the correspondence between the classes is described by

.TC,TC,TC,TC,TC
,TC,TC,TC,TC,TC,TC,TC

111212116109988

577610544332211
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CHAPTER 7

REMARKS ON GEOMETRY OF ALMOST CONTACT
METRIC MANIFOLDS

In this chapter, we consider some of the almost contact metric structures.
In §1, examples of all the classes adduced in Table 6.2 are  given.  In

particular, -Sasakian and -Kenmotsu structures are identified and it is shown
that, when  = const, they are quasi homogeneous.

§2 is devoted to the conditions of integrability, normality and to the
fundamental tensor fields N(1), N(2), N(3), N(4) of a.c.m.s. We identify some of the
classes studied by various authors with those obtained from Tables 6.3,6.4.

Riemannian locally regular -manifolds with one-dimensional foliations of
mirrors are discussed in §3. We consider necessary and sufficient conditions for M
to  be  a  R.l.r. -m. and the induced a.c.m.s. on M. In this case, the canonical
connection ~  of R.l.r. -m. and that  of induced a.c.m.s. are the same. R.l.r. -
m. of order 3,4 are studied more explicitly.

We refer to [1], [2], [11], [14], [43], [48], [73].

§1. ABOUT BASIC CLASSES OF CLASSIFICATION

We give examples of structures of basic classes given in Table 6.2.
10. LEMMA 7.1. Let T(M) = L V be an almost product structure determined

by an a.c.m.s. (F, , , g) and h be the second fundamental tensor field of the
G-structure corresponding to a.c.m.s. Then, L V is invariant with respect to

 if and only if

hZY = 0  for Z x(M), X V;

L V is integrable if and only if

hXY = hYX   for X,Y V.

Proof. It is evident from the following identities

X,,Xh ZZZX ,
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YXXYYX hh,X,Y],Y,X[

QED.

PROPOSITION 7.2. A manifold M has an a.c.m.s. of class , where

4 , if and only if M is a local Riemannian product M~M1 , where
dim M1 =1 and M~  is an almost Hermitian manifold of the corresponding
class.

Proof. If 4,h , then according to Lemma 7.1 we have from
Table 6.2 that the almost product structure L V is invariant under , hence the
manifold M is the local Riemannian product of M1 and M~ , where M1 , M~  are the
maximal integral manifolds of the distributions L, V passing through a fixed point
of M. The pair V)g,F(  determines an almost Hermitian structure on M~  and from

comparison of Tables 5.1, 6.2 it follows that )g,F,M~( M~M~  belongs to the

corresponding class  as an almost Hermitian manifold. For example, if 1h ,
then )g,F,M~( M~M~  is a nearly Kaehlerian manifold, etc.

Conversely, if M is the local Riemannian product of M1 and M~ , where
dim M1 =1 and )g,J,M~(  is an almost Hermitian manifold belonging to a class U ,
then one can define the natural a.c.m.s. on M, where  is a tangent vector field to
M1 , JF,][V,0F,1 V . Using Tables 5.1, 6.2 and Lemma 7.1 it is

easy to check that the constructed natural a.c.m.s. has a type .
QED.

This proposition makes possible to construct examples of a.c.m.s. of types
, where 4

DEFINITION 7.1 [42] . A.c.m.s. is called nearly - K - cosymplectic if

0X)F(Y)F( YX  and 0X  for X,Y x(M).

PROPOSITION 7.3. A.c.m.s. is nearly - K - cosymplectic if and only if it
is of the class 1 .

Proof. If a.c.m.s. is nearly - K - cosymplectic, then from (6.18) we have
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FZ,X)F(
2
1FZ,Y)F(

2
1Z,FY)F(

2
1h YXXXYZ

where X x(M), Y,Z V, therefore hXYZ = hYXZ  for X,Y,Z V and h YZ = 0.

If X,Y x(M), then

0hhY,Y, XYYXXXX

So, h X =hXY =0 for X,Y V and 1h .
The converse is easily verified.

QED.

20. We consider now structures of the class )(),( 76105 TCTC . Using the
results in [43] one can state the folllowing

DEFINITION 7.2. A.c.m.s. (F, , , g) is called :

1) Sasakian  if ( XF)Y= {<X,Y> (Y)X},

2) Kenmotsu if ( XF)Y= {<FX,Y> (Y)FX},

where   is a differentiable function on M and X,Y x(M).

PROPOSITION 7.4. A.c.m.s. is Sasakian if and only if it is a structure
of the class )( 76 TC .

Proof. If }X)Y(Y,X{Y)F( X , then from (6.10) we obtain

}Y,X)Z()Y(Z,X{Z)F(,Y)Z,Y)(( XX .

Using (6.15) we have

n2),)(()},FE)((),E)({()(
n

1i
iFEiE ii

.

One can see from Table 6.3 that the structure is of the class C6 .

Conversely, if a.c.m.s. is of the class C6 and )(
n2

1 , then for

any Z x(M)
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}Z,X)Y(Z,Y,X{Z,Y)F( X ,

therefore }X)Y(Y,X{Y)F( X  and the structure is Sasakian.
QED.

PROPOSITION 7.5. A.c.m.s. is Kenmotsu if and only if it is a structure
of the class )( 105 TC .

Proof. If }FX)Y(Y,FX{Y)F( X , then it follows from
(6.10) that

)}.Z()Y,X()Y()Z,X({
}Y,FX)Z()Y(Z,FX{Z)F(,Y)Z,Y)(( XX

Using (6.16) , (6.12) we obtain

n2)}E,)(()FE,)({(}FE)(E){(
n

1i

n

1i
iFEiEiFEiE iiii

Thus, =1/2n and it follows from Table 6.3 that the structure has the
type C5 .

Conversely, if a.c.m.s. is of the class C5  and = 1/2n   then  for  any
Z x(M)

}Z,FX)Y(Z,Y,FX{Z,Y)F( X ,

therefore }FX)Y(Y,FX{Y)F( X  and the structure is Kenmotsu.
QED.

PROPOSITION 7.6. Let a.c.m.s. be Sasakian or Kenmotsu and  be
a constant. Then the corresponding pair (P(U(n) 1), g)  is  a  quasi
homogeneous structure.

Proof. From Table 6.2, (6.24) , (6.25) we have

VY,X,0hhh XYXXYZ ;

)(FY,X
n2

1)(FY,X
n2

1hXY  for 76 TC  and
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Y,X
n2

1)(Y,X
n2

1hXY  for 105 TC

From the proofs of Propositions 7.4, 7.5 we obtain that

FY,XhXY  for C6 and Y,XhXY  for C7 .

As g and F are invariant under  and  is constant, therefore it is obvious
that 0h  in these cases.

QED.

30. The following examples one can find in [14].
1) Let H(p,1), p 1, be the generalized Heisenberg group, i.e., the group of

matrices of real numbers of the form

100
BE0
cA1

a T
p

where Ep denotes the identity p p matrix, A=(a1 ,...,ap ), B=(b1 ,...,bp ) pR , c R.
H(p,1) is a connected simply connected nilpotent Lie group of dimension 2p+1
which is called a generalized Heisenberg group.

A global system of coordinates (xi ,  xp+i , z), pi1 , on H(p,1) is defined
by

xi (a)=ai ,  xp+i (a)=bi ,  z(a)=c.

A basis for the left invariant 1 forms on H(p,1) is given by

p

1j
jpjipipii dxxdz,dx,dx ,

and its dual basis of left invariant vector fields on H(p,1) is obtained by

p,...,1i,
z

Z,
x

X,
x

X
ip

ip
i

i

A left invariant metric on H(p,1) is defined by
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p2

1k
kkg

and the basis {Xk , Z}, k=1,...,2p, is orthonormal with respect to g.
Let (F, , , g) be an a.c.m.s. on H(p,1) and m

nF  the components of F with
respect to basis {Xk , Z}. Using the Riemannian connection of g it is obtained:

If m
nF,Z  are constant and pj,i1,FF,FF i

j
ip
jp

i
jp

ip
j , then

(F, , , g) is stricly of the class C6 C7 . Moreover, it is of )( 57 TC  if and only if
p

1i

ip
i 0F ,  and  it  is  of )( 76 TC  if and only if FF jp

j
ip

i , where is  a

nonzero constant, and the other components of F are zero.

2) The generalized Heisenberg group H(1,r), r >1,  is  the  Lie  group  of  real
matrices of the form

100
B10
cAE

a T

T
r

where Er denotes the identity r r matrix, A=(a1 ,...,ar ), B=(b1 ,...,br ) Rr and c R.
H(1,r) is a connected simply connected nilpotent Lie group of dimension 2r+1 and
the dimension of its center is r >1.

A global system of coordinates (xi , xr+i , z), 1  i  r, on H(1,r) is defined by

c)a(z,b)a(x,a)a(x iirii

A basis for the left invariant 1 forms of H(1,r) is given by

dz,dx,dx iririi

and its dual basis by

r

1j jr
j

ir
ir

i
i x

x
z

Z,
x

X,
x

X

This basis is orthonormal with respect to the left invariant metric defined by
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r2

1k
kkg .

Let (F, , , g) be an a.c.m.s. on H(1,r) and m
nF  the components of F with

respect to basis {Xk ,Z}, k=1,...,2r. Using the Riemannian connection of the metric
g it is obtained :

if m
nF,Z  are constant and i

j
ir
jr

i
jr

ir
j FF,0FF , then

(F, , , g) is of the class )( 88 TC ;
if m

nF,Z  are  constant  and 0FF,FF i
j

ir
jr

i
jr

ir
j , then

(F, , , g) is of the class )( 99 TC .

3) Let G be the Lie group of real matrices of the form

100
ye0
x0e

a z

z

with the left invariant metric

0,dzdyedxeg 222z22z2 .

(G,g) is a 4 symmetric space, which is isomorphic to the semi-direct product of R
and R 2, both with the additive group structure, and where the action of R and R 3 is
given by the matrix

z

z

e0
0e

i.e., the group E(1,1) of rigid motions of the Minkowski 2 space. With respect to
the metric g, the basis of invariant vector fields {X1 , X2 , X3 } given by

z
1X,

y
eX,

x
eX 3

z
2

z
1

is orthonormal.
It is verified that an a.c.m.s. (F, , , g) on G is of the class )( 1112 TC  if

=X1 or =X2 ; and it is of the class )( 99 TC  if =X3 .



162

4) Let G be the complex matrix group G of the form

100
we0
z0e

a it

it

Here z, w denote complex variables and t a real variable. This Lie group is
diffeomorphic to C 2 (z,w) R(t). A left invariant metric on G is defined by

2dtwddwzddzg

The vector fields }W,Z,Z,Z,Z{ 2211  given by

t
W,

w
eZ,

z
eZ it

2
it

1

are invariant under the action of G and they form an orthonormal basis of the Lie
algebra of G. Put

).ZZRe(2X),ZZIm(2X

),ZZIm(2X),ZZRe(2X

214123

212211

Identifying C 2 R with R5 with invariant Riemannian metric obtained from g,
it follows that {X1 , X2 , X3 , X4 , W} is an orthonormal basis on this space.

Let (F, , , g) be an a.c.m.s. on G and i
jF  the components of F with respect

to {X1 , X2 , X3 , X4 , W}. It is obtained
a) If i

jF,W  are constant and 3
4

1
2

4
1

3
2 FF,FF , then (F, , , g) is

cosymplectic.
b) If i

jF,W  are constant and 3
4

1
2

4
1

3
2 FF,FF , then (F, , , g) is of

the class )( 1211 TC .
An example of a.c.m.s. satisfying the last condition, and so of the class C11 ,

is the following:

.dt,W,ZiZF
ZiZF,iZFZ,iZFZ

12

211211
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§2. ON SOME CLASSES OF ALMOST CONTACT METRIC

MANIFOLDS

We identify some classes given in Tables 6.2, 6.3 with  those  studied  in
literature.

10. Let N(F) be the Nijenhuis tensor field of F. From [42] and (6.19) it
follows that for X,Y x(M)

(7.1) X)F(FX)F(Y)F(FY)F()Y,X)(F(N YFYXFX

)FYhXhYhFXh(F)XhYh(FFXhFYh XFYFXYYX
2

FYFX

From Theorem 1.5 we see that F is integrable if and only if N(F)=0 on M.

THEOREM 7.7. An a.c.m.s. is integrable if and only if

.h 1110843In

Proof. If F is integrable, then the structure of almost product is also
integrable and hXY =hYX , X,Y V, according to Lemma 7.1. Let M~  be some
maximal integral manifold of the distribution V, then the restriction of F on M~

determines the almost complex structure M~FF~  which is integrable too

)0)F(N( V , hence )F~,g,M~(  is Hermitian. In this case, one can see from Table

5.1 that

(7.2) }VZ,Y,X,hh:h{h FXFYZXYZ43 .

Further, )hFXh(F)Xhh(F),X)(F(N FXX
2 ,

.VY,X,0h2hh
hhhhY),,X)(F(N

XYFXFYXY

FYFXFXFYXYYX

By analogy, we have 0h2hh XYFYFXYX . Adding these equalities and
taking into consideration that YXXY hh  we obtain FXFYXY hh  and 0h XY .
Thus Inh .

Conversely, if Inh , then we have to check that N(F)=0. From (7.1),(7.2)
it follows that
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0hh),Y,X)(F(N FYFXFXFY

0)hhhh(2h

hhhhhhhZ),Y,X)(F(N

XYZFXFYZZFYFXYXZXFYFZ

FYXFZFXYFZYFXFZYXZXYZFYFXZFXFYZ

Finally, 0),,X)(F(N ,

0h2hhY),,X)(F(N XYFXFYXY .

QED.
So, there exist 32 classes of integrable a.c.m.s.

20. The following tensor fields play an important role in geometry of
a.c.m..s., see [8],[73].

N(1)(X,Y)=N(F)(X,Y)+2d (X,Y),  N(2)(X,Y)=(L FX )Y (L FY )X,

N(3)(X)=(L F)X,    N(4)(X)=(L )X,    X,Y x(M)

LEMMA 7.8. N(1)(X,Y)=N(F)(X,Y)+(hYX  hXY ),  X,Y x(M).

Proof. Using (6.13) and (6.23) we have

XYYXXYYXYX hhhhX)(Y)()Y,X(d2 .

QED.

LEMMA 7.9. FYXXFYFXYYFX
)2( hhhh)Y,X(N , X,Y x(M)

Proof.

(L FX )Y =FX<Y,  >  <[FX,Y],  >= < FXY  [FX,Y],  > + <Y, FX  >

.hhhh
,Y,FXFX

FXYYFXYFXYFX

FXFXYY

QED.
LEMMA 7.10. X),XFhFXh(2)X(N )3( x(M).
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Proof. Using (6.19) we obtain

(L F)(X)= )X(FFX]X,[F]FX,[ XFX

.XFh2FXh2

FhhXFhFXhFhhX)F(

)(F)(XFFX

XFXXFX

XXFXFX

QED.
LEMMA 7.11. X,h)X(N X

)4( x(M).

Proof.
(L )(X) ,X],X,[,X],X,[,X

XXX hh,X, .

QED.

THEOREM 7.12. Let a.c.m.s. be a quasi homogeneous structure, i.e.,
0h . Then 0)F(NNNNN )4()3()2()1( .

Proof. Let Z be a vector fied and a curve segment in M defined by Z or
more precisely by a local 1 parameter group of transformations induced by Z. We
denote by X, Y the vector fields defined on some neighbourhood of  which  are
obtained  by  the  parallel  translation  of Xp ,Yp Tp(M) along , p , in the
connection . So, we have 0)Y()X( pZpZ . In this case

p)]Y,X(N[)]Y,X)(N[( )i(
Zp

)i(
Z  and 0]Yh[)]Y,X)(h[( pXZpZ .

We know that 0gF . From Lemmas 7.8 - 7.11 and (7.1) it
follows that 0)]Y,X(N[ p

)i(
Z , where N (i ) denotes one of the tensor fields

above.
QED.

DEFINITION 7.3 [8],[73] . A.c.m.s. is called normal if 0N )1(  on M.
THEOREM 7.13. A.c.m.s. is normal if and only if

10785Nh .
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Proof. A.c.m.s. is normal if and only if

(7.3) VY,X,h),X)(F(N,)hh()Y,X)(F(N XYXXY .

Using (7.1) and (7.3) we obtain

(7.4) )hh(FXhFYh YXXYFYFX ,

(7.5) 0)FYhXhYhFXh(F)XhYh(F XFYFXYYX
2 ,

(7.6) 0h)hFXh(F)Xhh(F),X)(F(N XFXX
2 .

It follows from (7.4) that

(7.7) YXXYFYFXFXFY hhhh  or XYFXFY hh ,

(7.8) 0hh FYFXZFXFYZ  or YXZXYZ hh , X,Y,Z V.

The condition (7.8) is equivalent to the folowing one

hXYZ =hYXZ = hYZX = hZYX =hZXY =hXZY = hXYZ  or

(7.9)  hXYZ=0.

We remark that (7.9) implies (7.5) and h X =0 from (7.6). It also follows
from (7.6) that

0h2hhhhhh XYFXFYXYFYFXFXFYXYYX

By analogy 0h2hh YXFYFXYX

Adding the last two equalities we have

YXXYFYFXFXFY hhhh

and adding obtained one with (7.7) we get

(7.10) XYFXFY hh  and 0h XY .

Thus, Nh .

Conversely, if Nh , then (7.10), (7.9) are fulfilled and 0h X  therefore
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(7.4), (7.5), (7.6) are realized and (7.3) follows.

QED.

30. Let X,Y,Z x(M), then a.c.m.s. (F, , , g) is said to be:

Almost cosymplectic if d =0 and d =0.

Quasi Sasakian if d =0 and a.c.m.s. is normal.

Nearly-K-cosymplectic if 0X)F(Y)F( YX  and 0X .

Quasi-K-cosymplectic if )Y(FY)F(Y)F( FXFXX

Semi cosymplectic if =0 and =0.

Trans-Sasakian if )())Y(Z,X)Z(Y,X{(
n2
1)Z,Y)(( X

}))Y(FZ,X)Z(FY,X( .

Nearly-trans-Sasakian if

a) })X(Y,FX)X(Y,X)Y(X,X{
n2
1)Y,X)(( X ,

b) )}(Y,FXFY,FX{
n2

1Y)( X .

Almost-K-contact if 0F .

In [14], it is explained how these classes above studied by various authors
coincide with those introduced in Tables 6.2, 6.3.

9292 TTCC  = the class of almost cosymplectic manifolds.

10765 TTCC  = the class of trans-Sasakian manifolds.

7576 TTCC  = the class of quasi-Sasakian manifolds.

853873 TTTCCC  = the class of semi-cosymplectic and normal
manifolds.

1071651 TTTCCC  = the class of nearly-trans-Sasakian
manifolds.
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962110921 TTTTCCCC  =  the  class  of  quasi-K-

cosymplectic manifolds.

iiii
TC

12,1112,11
 = the class of almost-K-contact manifolds.

iiii
TC

10,7,46,5,4
 = the class of semi-cosymplectic manifolds.

DEFINITION 7.4. The structure affinor F is said to be:

a) of V-invariant type if for all X,Y V, VY)F( X ;

b) of V-antiinvariant type if for all X,Y V, VY)F( X ;

c) of -antiinvariant type if for every X V, VX)F( ;

d) V-parallel if for all X,Y V, 0Y)F( X .

PROPOSITION 7.14 [2]  .  Let M be an almost contact metric manifold.
Then

a) F is of V-invariant type if and only if 12114321h ;

b) F is of V-antiinvariant type if and only if i4,3,2,1i
h

c) F is of -antiinvariant type if and only if i
12i

h ;

d) F is V-parallel if and only if 1211h .

PROPOSITION 7.15 [2] . Let M be an almost contact metric manifold.
Then

a) 11h  if and only if F is of -antiinvariant type and F is V-parallel.
b) 121098765h  if and only if F is of

V-antiinvariant type and the integral
curves of  are geodesics of .

c) 4321h  if and only if F is of V-invariant  type,  F  is  of
-antiinvariant type and the integral curves

of  are geodesics.
The class 4  is the analog of the class of conformally Kaehlerian manifolds
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(see Chapter 5, §3, 20).

PROPOSITION 7.16 [2]. The class 4  is characterized by the conditions:

a) F is of V-invariant type;

b) F is of -invariant type;

c) the integral curves of  are geodesics;

d) Y)F( X  is in span {X, FX, Y, FY} whenever X,Y V and X Y,FY.

In problems concerning the conformal change of the metric g, the class
111074  plays the same role as the class of conformally Kaehlerian

manifolds in the case of almost Hermitian manifolds.

REMARK. The text above shows that we can develop geometry of a.c.m.s.
using the classification given in Table 6.2. It is isomorphic to one considered
in Table 6.3. Our classification has a preference because it is given in terms
of the tensor field h , i. e., the canonical connection h  has
been constructed for every class. To study these classes of almost contact
metric manifolds the various curvature tensor fields related to  can  be
applied, see Chapter 2, §1.  For  example,  with  help  of  one can obtain
characteristic classes.

§3. ALMOST CONTACT METRIC STRUCTURES ON
RIEMANNIAN REGULAR MANIFOLDS

10. Let (M,{sx }) be a R.l.r. -m. with one-dimensional disribution of mirrors
][)M(T 1 , where x(M), )M(T)M(T,1 12  and 2,1ii , are

projections of T(M) on T i(M).
For every point p M we can choose such an open ball Bp(R) of the radius R

that Bp(R) Bp(R) U, where U was considered in Lemmas 4.57, 4.58, therefore
sx (y)= (x,y) is defined for any x,y Bp(R).  Taking  a  ball Bp(R/2) we  see  that
sx ( (y,z))=x (y z) is defined for any x,y,z Bp(R/2). So, for some concrete k there
exists such an open ball )2/R(B k0

p  of p that all the theory developed in Chapter
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4, §3, 10,  20,  30 is true in 0

pB  and we obtain a localizaion of these results. Using
localizations of Propositions 4.26 4.32 we get a local infinitesimal automorphism
L(X) on 0

pB , where X Tp(M), which is defined by

(7.11) Y,Bx),xp(X)SI()x)(X(L 0
p

1
2

1
pp x )B( 0

p ,

and L L(X) S =L L(X) g= 0 on 0
pB  for every such a vector X. Moreover, the

canonical connection ~  of R.l.r. m. (M,{sx }) is given by

(7.12) )YS)(S(Y)p](Y),X(L[YY~ 1
X)SI(XXX 2

1
1

,

X Tp(M),   Y x )B( 0
p .

PROPOSITION 7.17. L L(X)  =0 on 0
pB  for every p M and L S=0 on M.

Proof. Using that L L(X) S=0 on 0
pB  we obtain

L L(X)S  =[L(X), S ]=[L(X), S ] S[L(X), ]+S[L(X),
]=(L L(X) S) +S(L L(X) )

=S( L L(X)  )=[L(X), ] = L L(X)

So, S(L L(X)  )= L L(X) and L L(X) T1 or L L(X)  = .  Further,

(L L(X) g) ]),X(L[,],),X(L[,)X(L),(

02,2 .

Thus, L L(X)  =[L(X), ]= L L(X)=0 on 0
pB . It follows from

Proposition 4.27 that SL(X)=L(SX) on 0
pB . Further, we have

((L S)L(X))(p)= ([  , SL(X)] S[  ,L(X)])(p) = ([ ,SL(X)])(p)

= ([  ,L(SX)])(p) =0.

Since L(X)(p)=  2 X, where X Tp(M), then (L S)X=0  for any )M(TX 2
p .
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((L  S)  )(p) = ([  , S ]  S[ , ])(p)=0.

So, (L  S)(p)=0 for every point p of M.
QED.

20.  It  is  easy  to  see  that  the  distribution T2 is integrable if and only if the
Nijenhuis tensor field N(  2) vanishes on M. In general case it is clear that
M0={x M:(N(  2))(x)=0} is a close subset of M and M ={x M:(N(  2))(x) 0} has
the induced structure of an open submanifold of M with dim M =dim M. For M
Definition 4.10 holds, therefore M  is  an  invariant  submanifold  of (M,{sx }) and
(M’,{sx }) is also a R.l.r. m. according to Theorem 4.60, maybe non-connected.

PROPOSITION 7.18. We have 0R~~h~g~  on M’ ,  where ~  is
defined by (7.12), ~h  and R~  is the curvature tensor field of ~ , i.e.,
for every point p M a connected component M (p) in M containing p is  a
Riemannian locally homogeneous manifold.

Proof. For every point p M  there  exists  such  an  open  ball 'MB0
p ,

which has been considered in 10. Let )'M(TY,X 2
p  be such vectors that

N(  2 )(X,Y)  0, then  1 [L(X),L(Y)]  0 on some open ball 0
p

'
p BB , where L(X),

L(Y) are  defined  on 0
pB  by (7.11). It is clear because L(Z)(p)=  2Z  for  any

Z Tp(M ).
It follows from Proposition 4.52 that 0R~~T~~h~

WWW  for  every
W T 2. Let K denote T~,h  or R~ . The vector fields L(X), L(Y) are local
infinitesimal affine transformations of )~,M( , see Theorem 4.56, therefore from
(4.20) L L(X) K=0 and L L(Y) K=0. As we can see in [46]

[)p)(K~( )]Y(L),X(L[ L L(X) )Y(L)Y(L
~)K~( ( L L(X) K)](p)=0

and (  1 [L(X), L(Y)])(p)  0. So, 0R~~h~g~  for any point p M .
Using  (2.13)  and  covering  a  segment  of  a  curve  between  two  arbitrary  points  of
M (p) by a finite number of balls like '

pB  we get the rest.
QED.

Let M =  M, then we have obtained from Corollary 4.53 and Proposition
7.18
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a) ;0R~~T~~h~S~g~

(7.13)

b) g)g(S,R~)R~(S,T~)T~(S,h)h(S .

DEFINITION 7.5. Let (M,{sx }) be  a  R.l.r. m. with one-dimensional
distribution of mirrors T1(M). We call M a R.l.r. m. of maximal torsion if
N(  2 )  0 on M, i.e., M’=M, and of minimal torsion if T 2 is an integrable
distribution on M, i.e., N(  2 )= 0 on M and M0=M.

THEOREM 7.19. Let (M,g) be a Riemannian manifold with an affinor S,
S(g)=g. If ~  is  such  a  connection  on M that (7.13) are realized, where

R~,T~,~h  are  the  tensor  fields  of  torsion  and  curvature  of ~

respectively, then there exists such a structure {sx } of R.l.r. m. on (M, g)
that x*xx )s(S  and ~  is a canonical connection of (M,{sx }), see Definition
4.1.

Proof is similar to that considered in [48] for the case of locally regular
s-manifolds.

In this theorem and in the following one the distribution T 1 is not required to
be one-dimensional.

THEOREM 7.20. Let (M, g) be a Riemannian manifold with an
O-deformable affinor S, S(g)= g, and let T 2 be an integrable distribution,
where T 2=T 1  and T 1={X x(M):SX=X}. If ~  is  such  a  connection  on M
that the following conditions hold

a) 0S~g~ ;

(7.14) b) R~)R~(S,h)h(S ;

c) 0R~~h~
XX  for any X T 2;

where R~,T~,~h  are the tensor fields of  torsion and curvature of ~

respectively, then there exists such a structure {sx } of R.l.r. m. on (M, g)
that x*xx )s(S  and ~  is a canonical connection of (M,{sx }).
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Proof will be given step by step in the next paragraphs.
1) A proof of Theorem 4.1 is true in our case because 0S~g~  and

S(h)=h, hence the distribution T 1 defines  a  foliation  of  mirrors.  So,  the  almost
product structure T(M)=T 1(M) T 2(M) is also integrable.

2) It follows from (2.1),(2.3) that if S(h)=h and 2
X TX,0h~ , then

T~)T~(S  and 0T~~
X  too.

3) Lemma 4.57 and proof of Lemma 4.58 imply that for any point p M there
exists such an open ball Bp that )y)(px~eSpx~(e)y,x( 1

xx  is  defined  on
Bp Bp . If we consider 1

xxx px~eSpx~es , then sx is a local affine transformation
of ~  because xxx R~)R~(S  and xxx T~)T~(S , see [46], S, T 1, T 2 are also invariant
with respect to every sx , therefore the corresponding foliations are invariant too.

4) The affinor I S has an inverse one on T 2 and  conditions  (7.13)  are
fulfilled on any of the maximal integral manifolds of the distribution T 2, hence
every such a manifold is a locally regular s-manifold, see [48].

5) For each point p M sp  is identical on the connected component p Bp

of the mirror containing p and sp transforms mirrors onto mirrors.
6) The rest is easy the modification of the case of locally regular s-manifolds

considered in [48].
QED.

30. Let (M,{sx }) be  a  R.l.r. m. with one-dimensional distribuion of
mirrors T 1(M)=[  ], where x(M), 1. We denote T 1,  T 2 by L,  V
respectively. Further, let x*xx )s(S  have only complex eigenvalues

iba,...,iba rr11  on V and r,...,1i),ISa2Sker(D i
2

i . It is clear that

i

r

1i
DV  and for every X V, r1 X...XX , where r,...,1i,DX ii .

An affinor F on M is defined by

(7.15)
r

1i
ii

i
X)IaS(

b
1FX , for X V; F  = 0.

 By similar argumentts as in Chapter 5, §3, 60 we obtain that for X,Y V

<FX, FY> = <X, Y> and F 2X= X.

So, (F, , , g) is  an  a.c.m.s.  on M. Let  be its canonical connection
defined by (5.1). Since S  =  ,   S=ai I + bi F on Di and 0F , then
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r,...,1i,XSSX iYiY , and 0gS  on M. It is clear that Di and F are

invariant under any sx , therefore we get from (5.1) that  is also invariant under
sx . If ~  is the canonical connection of R.l.r. m. defined by (4.1), then it follows
from Proposition 4.2 that XX

~  for X V.
From (4.1) it is obvious that 0)S~()S( , hence 0F  too and

our a.c.m.s. is almost-K-contact, see 30.
Using (5.1) and formulas of 21 ,  we have that ~ .  So,  we

have got the following

THEOREM 7.21. Let (F, , , g) be  an  a.c.m.s.  on (M,{sx }) induced by a
structure of the R.l.r. m. as it have been shown above. If  is the
canonical connection of a.c.m.s. defined by (5.1) and ~  is  that  of (M,{sx })
given by (4.1), then both the connections coincide,

~ on M.

If M is a manifold of maximal torsion, then (7.13) are realized.
If M is one of minimal torsion, then (7.14) are fulfilled.

REMARK. The converse situations are described in Theorems 7.19, 7.20
but we want to note that for given an a.c.m.s. a searching for a suitable
affinor S,  which  have  to  define  a  structure  of  R.l.r. m., is a sufficiently
difficult problem.

40. We consider now a R.l.r. m.o.3 (M,{sx }), see Definition 4.3. So, S 3=I

and S has only three eigenvalues i
2
3

2
1,1 . Let L=T 1=[ ], x(M), 1,

be one-dimensional distribution of mirrors corresponding to the eigenvalue 1 and
LTV 2 . An affinor F on M is defined by the formula

(7.16) X)IS2(
3

1FX,0F  for X V.

By similar arguments as in Chapter 5, §3, 60 we easily obtain that

F 2X= X  and <FX, FY> = <X, Y>  for X,Y V.

So, (F, , , g) is  an  a.c.m.s.  on M induced by affinor x*x )s(S Theorem
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7.21 holds in our case and it follows from (4.3) that

)SYSYSSY(
3
1Y X

22
XXX , X,Y x(M).

Conversely, let we have an a.c.m.s. (F, , , g) on M and  is its canonical
connection. An affinor S can be defined on M by

(7.17) X)F
2
3I

2
1(SX,S  for X V.

The conditions for (M, g, S, ) to  be  a  R.l.r. m.o.3 of maximal or
minimal torsion are described in Theorems 7.19, 7.20.

REMARK. With help of Theorem 4.43, where  is one-dimensional
Riemannian manifold, using results from [33] we can construct various
examples of R.l.r. m.o.3 and, therefore, those of induced a.c.m.s.

50. Let (M,{sx }) be a R.l.r. m.o.4 . Thus, S 4=I  and eigenvalues of S are
1, i. We consider a case when L=T 1=[  ], x(M), 1, L is  one-

dimensional distribution corresponding to the eigenvalue 1 or -1 and S 2= I  on
V=L .

An affinor F on M is defined by the formula

(7.18) F  =0, F = S on V.

So, (F, , , g) is an a.c.m.s. on M, and Theorem 7.21 holds, where

)SYSYSSYSSY(
4
1Y X

32
X

23
XXX , X,Y x(M).

PROPOSITION 7.22. Let (F, , , g) be an a.c.m.s. on M induced by S as
it was shown above and h
1) If S  = , then 96h  and if (M,{sx }) is of minimal torsion, then

9h
2) If S = , then 10875h  and if (M,{sx }) is of minimal

torsion, then 108h .

Proof. It was shown that the a.c.m.s is almost-K-contact, see 30, hence
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0FS  and i12,11i

h . Proposition 5.36 is also true in this case,

therefore

a) 0Z,Yh X1XYZ  for X,Y,Z V;

b) 0h X  because VXh ;

c) 0Y,XX
2
1Y,SXSX

2
1h XY .

Since SYhYSh SXX , hence

S,Yh,YSh,SYhh 3
XXSXFXFY .

If S  = ,  then XYFXFY hh  and 96h .

If S  = ,  then XYFXFY hh  and 10875h .

The rest follows from Lemma 7.1.
QED.

Conversely, let we have an a.c.m.s. (F, , , g) on M and  is its canonical
connection. An affinor S can be defined on M by

(7.19) S = F  on V, S  = - or S  = .
The conditions for ),S,g,M(  to  be  a  R.l.r. m.o.4 of maximal or

minimal torsion are considered in Theorems 7.19, 7.20.

REMARK. Using Theorem 4.43, where  is an one-dimensional
Riemannian manifold, we can construct interesing examples of R.l.r.

m.o.4 with induced a.c.m.s. of various classes. A base manifold can be
taken, for instance, from classification in [40].
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SUBJECT INDEX

A

Affinor, 20
Almost

complex manifold, 108
complex structure, 108
contact metric structure (a.c.m.s.), 136
cosymplectic a.c.m.s., 167
Hermitian manifold (a.H.m.), 109
Hermitian structure, 109
K-contact a.c.m.s., 167, 168
Kaehlerian manifold, 116,122
product structure, 94
symplectic manifold, 126

Associated Riemannian metric, 15
Autoparallel submanifold, 120

Kenmotsu a.c.m.s., 157
Sasakian a.c.m.s., 157

C

Canonical connection of
almost contact metric structure (a.c.m.s.), 136
almost Hermitian structure, 108
almost product Riemannian structure, 95
f structure, 130
regular s-manifold, 75
Riemannian G-structure, 17
Riemannian homogeneous space, 32
Riemannian locally regular manifold, 58, 61
Riemannian locally regular manifold of order k, 62

Classification of
 almost contact metric structures, 142
 almost Hermitian structures, 118
 D.Chinea and C.Gonzalez, 145
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G-structures, 42

 A.Gray and L.M.Hervella, 116
Codifferential of tensor field, 114
Conformal changes of Riemannian metric, 102
Conformally related almost Hermitian manifolds, 121
Covering space, 79

D

Derivation of (M, ), 70

E

Elementary transvections of regular s-manifolds, 75

F

f structure, 129
Fibre bundle associated with principal fibre bundle, 9, 10
Fundamental operator of QR-algebra, 52

G

G-structure, 10
Generalized Heisenberg group, 159, 160
Group of transvections of a regular s-manifold, 75

H

Hermitian manifold, 116
Hermitian semi-Kaehlerian manifold, 116, 122
Holonomy fibre bundle, 28
Homogeneous Riemannian structure (h.R.s.), 32
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I

Infinitesimal
affine transformation, 31
automorhism of Riemannian locally regular manifold, 88
isometry, 31

Integrable
almost contact metric structures, 163
G-structure, 19

Invariant submanifold of
almost Hermitian manifold, 119
Riemannian locally regular manifold, 92

K

Kaehlerian manifold, 111

L

Local infinitesimal automorphism of Riemannian
locally regular manifold, 170

Locally
conformal Kaehlerian manifold, 122
k-symmetric Riemannian space, 84

M

Mirror, 60

N

Nearly
Kaehlerian manifold, 111
K-cosymplectic a.c.m.s., 156
particular structure, 17
particular vector field, 24
trans-Sasakian a.c.m.s., 167

Nijenhuis tensor, 19
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Normal a.c.m.s., 165

O

O-deformable tensor field, 11

P

Particular structure, 17
Particular vector field, 24
Polar decomposition of

O deformable (1,1) tensor field, 21
Pseudo-Riemannian metric, 107

Q

QR algebra, 52
Quasi

homogeneous structure, 24
K-cosymplectic a.c.m.s., 167, 168
Sasakian a.c.m.s., 167

R

Reflexion space, 84
Regular s-manifold, 68
Riemannian

curvature tensor field, 23
G-structure of type T1, 44
G-structure of type T2, 49
G-structure of type T3, 50
locally regular -manifold (R.l.r. -m.), 58
locally regular -manifold of

order k (R.l.r. -m. o.k), 62
regular -manifold (R.r. -m.), 59
regular -manifold of order k (R.r. -m.o.k), 62
regular -manifold of maximal (minimal) torsion, 79
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S

Second fundamental tensor field of
a.c.m.s., 136
almost Hermitian structure, 109
almost product structure, 96
Riemannian f-structure, 130
Riemannian G-structure, 17
submanifold, 100

Semi
cosymplectic a.c.m.s., 167
Kaehlerian manifold, 122

Space of constant curvature k, 47
Strict Riemannian G-structure, 26
Strongly invariant submanifold of
almost Hermitian manifold, 119
Structure affinor F of a.c.m.s. of

V - antiinvariant type, 168
V - invariant type, 168
V - parallel, 168
 - antiinvariant type, 168

Subsymmetry, 58

T

Tensor G-structure, 12
Trans - Sasakian a.c.m.s., 167
Transvection group, 29
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LIST OF STANDARD DENOTATIONS AND

ABBREVATIONS

M M a  differentiable manifold of  dimension n and of  class
C ("smooth manifold")

Tp(M), Mp the tangent space of M at the point p M
*
p

*
p M),M(T the cotangent space of M at p

p** , the tangent mapping of a smooth mapping
(on a manifold, at a point)

T(M) the tangent bundle of M
L(M) the principal frame bundle of M
x(M) the Lie algebra of all smooth vector fields on M

P(G) a G-structure over M
a connection in P(G)
the connection form of the given connection

o, g, h, k Lie algebras of the Lie groups O(n), G, H, K
m a vector subspace of a Lie algebra
[ , ] the Lie bracket
L x the Lie derivative with respect to X x(M)

, X Riemannian connection on M,
covariant derivative with respect to X x(M)
the canonical connection of the structure (P(G),g)

~ the canonical connection of a homogeneous Riemannian
space or Riemannian (locally) regular (or s)-manifold

F, J, P, S O-deformable (1,1) tensor fields (affinors)
N(F) Nijenhuis tensor of an affinor F

R,R curvature tensor fields of the connections ,
T~,T torsion tensor fields of the connections ~,

)u(P 0 the holonomy subbundle (of a connection) containing the
frame )M(Lu0

)(Tr transvection group
a.c.m.s. an almost contact metric structure
a.H.s. an almost Hermitian structure
a.p.R.s. an almost product Riemannian structure
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f-s. An f-structure
h.R.s. an homogeneous Riemannian structure
k-s.R.s. a k-symmetric Riemannian space
k-s.l.R.s. a locally k-symmetric Riemannian space
R.r. -m. an Riemannian regular -manifold
R.l.r. -m. an Riemannian locally regular -manifold
R.r. -m.o.k an Riemannian regular -manifold of order k
R.l.r. -m.o.k an Riemannian locally regular -manifold of order k


