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PREFACE

The theory of structures on manifolds is a very interesting topic of modern
differential geometry and its applications.

There are many results concerning various differential geometric structures
on Riemannian manifolds.

The main aim of this book is to get a way of a union of such results in one
scheme. It seems that introduced by the author a notion of the canonical connection
V and the second fundamental tensor field h adjoint to a structure is very useful
for this purpose and, in many cases, it is more effective than the Riemannian
connection V. Especially, we pay attention to use of h to obtain classifications of
structures and to the case of so-called quasi homogeneous structures.

Projections of structures on submanifolds are also considered in the book.

The introduced by the author class of Riemannian (locally) regular
o — manifolds is studied here too.

Further, the book is not a survey of what has been done in the theory of
structures on manifolds, it is concerning only to restricted subjects.

The list of references is not intended to be a collection of prestigious papers
and famous names. The references are simply limited to those closely connected
with the topic. Thus, some works quoted here are important and some others may
be not.

Now, let us sum up briefly the contents:

In Chapter 1, we have given a short survey of G-structures, associated
Riemannian metrics and have introduced the so-called canonical connection and
the second fundamental tensor field h=V — V of a fixed pair (P(G), g), where V is
the Riemannian connection of a Riemannian metric g associated to a G-structure
P(G). The integrability of G-structures and the polar decomposition of an O-
deformable (1,1) tensor field are considered here too.

In Chapter 2, using V and h we have got some results which are
generalisations of those obtained by numerous authors for concrete structures. We
consider torsion and curvature of V, so-called quasi homogeneous structures,
isometries, affine transformations and holonomy fibre bundles of V.
Homogeneous structures and projections of structures on submanifolds and
foliations are also discussed.

In Chapter 3, we have obtained a classification T=T,®T,®T3 of G-
structures over Riemannian manifolds as a decomposition on invariant irreducible
subspaces of tensors of type h in ®2 T~ under the natural action of the orthogonal
group. Structures of types Ty, T3 have been studied more explicitly. Some algebraic
construction has been considered for quasi homogeneous structures of type Ts.
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Naturally reductive homogeneous structures and nearly Kaehlerian manifolds are
examples of such structures.

In Chapter 4, we have introduced so-called Riemannian (locally) regular
o—manifolds which generalise on the one hand the spaces with reflections of
O. Loos and on the other hand the Riemannian regular s-manifolds and have
proved that every regular o-manifold can be described as a fibre bundle over a
regular s-manifold. Conversely, such fibre bundles and regular s-manifolds of
order 2k give examples of regular c—manifolds.

We also consider the Lie algebra of infinitesimal automorphisms of
Riemannian regular c—manifolds, orbits under the action of the structural group G,
the structure of locally regular c—manifolds and submanifolds.

In Chapter 5, we have our methods illustrated for the following structures:

a.p.R.s., i.e., almost-product Riemannian structure (P, g), where P?= [;

a.H.s., that is, almost Hermitian structure (J, g), where J2 = I ;

f-s., i.e., a structure defined by an affinor F, F3+ F = O, and an associated
metric g.

For each of them the canonical connection V and the second fundamental
tensor field h have been computed and applied to study of geometry of manifolds
with a.p.R.s., a.H.s., f-s. Integrability conditions, conformal changes of the
Riemannian metric g, the parallel translation of structures along curves etc. are
discussed here too.

We have the classification of A.Gray and L.M.Hervella rewritten in terms of
tensor field h, i.e., the canonical connection have been obtained for each from 16
classes. We can apply these connections for example to construct characteristic
classes.

A.p.R.s., a.H.s., f-s. can be appeared with help of an affinor S defined on a
Riemannian locally regular s (or o) —manifold. Conversely, we consider some
conditions, when a.p.R.s., a.H.m., f-s. given on a Riemannian manifold M are
indused such a tensor field S , i.e., M has a structure of a Riemannian
regular s (or o) —manifold.

In Chapter 6, using the classification of A.Gray and L.M.Hervella and
constructed the second fundamental tensor field h of almost contact metric
structure we have obtained in terms of h a classification of such structures. There

are 22 classes. A similar classification was got by D.Chinea and C.Gonzalez
(A.A.Alexiev and G.Ganchev) by a different method. Good relations have been
found between both the classifications and this allows to apply various tensor
characteristics of the canonical connection V to study of every class.

Examples of all the classes adduced in classification Table are given in
Chapter 7. In particular, a-Sasakian and a-Kenmotsu structures are identified and
it is shown that, when o =const, they are quasi homogeneous. Further, the
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conditions of integrability, normality and the fundamental tensor fields
N N NG N are considered. We identify some of the classes studied by
various authors with those obtained from classification Table. Riemannian locally
regular o—manifolds (R.L.r. o—m.) with one-dimensional foliations of mirrors are
discussed here too. We consider necessary and sufficient conditions for M to be a
R.l.r. o—m., and, also, the induced almost contact metric structures (a.c.m.s.). In
this case the canonical connection V of R.Lr. o—m. and that V of the induced
a.c.m.s. are the same. R.l.r. o—m. of order 3,4 are studied more explicitly.

Furher, we want to give the diagram of dependence of the Chapters

Chapter 1 — > Chapter 2—*> Chapter 3

l ) v v
r
Chapter 5 ——» Chapter 6 —— Chapter 7
A
A
,< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Chapter 4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

We remark that all the theorems, propositions, formulas and definitions are
numbered for each chapter. For example, in each chapter, say, Chapter 5, Theorem
1.2 is in Chapter 1.

All the manifolds, maps, tensor fields etc. are supposed to be of class C*.
We consider connected Riemannian manifolds if not otherwise stated.

The book assumes a basic knowledge of the modern differential geometry
(cf. Foundations of Differential Geometry by S.Kobayashi and K.Nomizu, Vol. I,
.

The author wish to express here the gratitude to his brother G.A.Ermolitski
for support of this work.

Minsk, 1998 Alexander A. Ermolitski
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CHAPTER 1
SECOND FUNDAMENTAL TENSOR FIELD OF
G - STRUCTURE

In this chapter, we have given a brief survey of G - structures and close
notions. In 8§81, we give the basic definitions of fibre bundles, G - structures, tensor
G - structures defined by O-deformable tensor fields and connections. In 82,
associated Riemannian metrics are discussed and we define introduced by the
author a notion of the second fundamental tensor field h of a Riemannian G -
structure. The integrability of G - structures and the polar decomposition of O -
deformable (1,1) tensor field are considered in 83.

We follow fairly closely [45], [46], [73].

81. G - STRUCTURES AND CONNECTIONS

1°. Let M be a differentiable manifold and G be a Lie group.

DEFINITION 1.1. A principal fibre bundle over M with group G consists of
a manifold P and an action of G on P satisfying the following conditions:

(1) G acts freely on P on the right: (u,a)e PxG——>ua=R,ueP;

(2) M is the quotient space of P by the equivalence relation induced by G, M
= P/G, and the canonical projection 7 : P — M s differentiable;

(3) P is locally trivial, that is, every point x of M has a neighbourhood U
such that 7~ 1(U ) is isomorphic with U xG in the sense that there is a
diffeomorphism ¥ : 773(U)—>U xG such that ¥(u)=(z(u),®(u)),
where @ is a mapping of 7z (U ) into G satisfying @(ua)=(®d(u))a
foralluez}(U) and aeG.

A principal fibre bundle will be denoted by P(M,G,z), P(G) or simply P.
We call P the total space or the bundle space, M the base space, G the structure
group and 7 the projection. For each point x of M,z 1(x) is a closed submanifold
of P, called the fibre over x. If u is a point of 7 7X(x), then 7 *(x) is the set of

points ua, a G, and is called the fibre through u. Every fibre is diffeomorphic to
G.
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From local triviality of P(M,G) we see that if W is a submanifold of M, then
n‘l(W )(W,G) is a principal fibre bundle. We call it the restriction of P to W and
denote it by R, .

Given a principal fibre bundle P(G), the action of G on P induces a
homomorphism o of the Lie algebra g of G into the Lie algebra x(P) of vector
fields on P. o can be define as follows: for every u, let o, be the mapping
aeG—uaeP. Then (o, x A, =(oA),. For each Aeg A" eo(A) is called the
fundamental vector field corresponding to A. Since the action of G sends each fibre
into itself, A, is tangent to the fibre at each u e P. As G acts freely on P, A" never
vanishes on P if A=0. The dimension of each fibre being equal to that of g, the
mapping A — (A" )y ofginto T,(P) is a linear isomorphism of g onto the tangent
space at u of the fibre through u. We also see that for each a€G, (R, ) A" is the
fundamental vector field corresponding to (ad(a™*))Aeg.

A homomorphism f of a principal fibre bundle P'(M',G') into another
principal fibre bundle P(M,G) consists of a mapping f':P —>P and a
homomorphism f':G'— G such that f'(u'a’) = f'(u’) f'(a) for all uve P and
a' e G'. For the sake of simplicity, we shall denote f' and " by the same letter f.
Every homomorphism f : P'— P maps each fibre of P' into fibre of P and hence
induces a mapping of M' into M, which will be also denoted by f. A
homomorphism f : P'(M',G' ) > P(M,G) is called an imbedding or injection if
the induced mapping f:M'—>M is an imbedding and if f:G'—>G is a
monomorphism. By identifying P' with f(P"), G' with f(G') and M' with f(M'), we
say that P'(M',G") is a subbundle of P(M,G). If, moreover, M' = M and the induced
mapping f:M'—>M is  the identity ~ transformation  of M,

f:PP(M",G')—>P(M,G) is called a reduction of the structure group G of
P(M,G) to G'. The subbundle P'(M,G") is called a reduced bundle. Given P(G) and
a Lie subgroup G' of G, we say that G is reducible to G' if there is a reduced
bundle P'(G").

2° Let P(M,G) be a principal fibre bundle and A a manifold on which G
acts on the left: (a,A)eGxA—>aileA. A construction of a fibre bundle

E(M,A,G,P) associated with P with standard fibre A is considered below. On the
product manifold Px A the group G acts on the right as follows: aeG maps
(u,1)e Px A into (ua,a1)eP x A. The quotient space of P x A by this group
action is denoted by E =P x5 A. The mapping P x A — M which maps (u,A) into
m(u) induces a mapping 7, called the projection, of E onto M. For each
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XxeM ,ngl(x) is called the fibre of E over x. Every point x of M has a
neighbourhood U such that 7 *(U) is isomorphic to UxG. Identifying 7~ *(U)
with UxG, one can see that the action of G on n‘l(U )x A on the right is given by
(x,a,2) — (x,ab,b*1) for (x,a,4)eU xGxA and beG.

The iIsomorphism 71U )= U xGinduces an iIsomorphism
ngl(U )=U x A. Therefore a differentiable structure in E can be introduced by the
requirement that ngl(U ) is an open submanifold of E which is diffeomorphic with
U x A under the isomorphism ngl(u )=U x A. The projection z¢ is then a

differentiable mapping of E onto M. Thus E(M,A,G,P) or simply E is called the
fibre bundle over the base space M, with standard fibre A and structure group G,
which is associated with the principal fibre bundle P.

3° . We consider now G-structures. Let M be an n-dimensional manifold. A
linear frame u at a point x of M is an ordered basis Xy, . ..., X,of T,(M). Let L(M)
be the set of all linear frames u at all points of M and let 7z be the mapping of L(M)
onto M which maps a linear frame u at x into x. The general linear group GL(n,R)
acts on L(M) on the right as follows. Let a:(aij )eGL(n,R) and

u=(Xy,..,X,) be a linear frame at x. Then ua is the frame (Y,,...Y,) at x
defined by Y, :Zaijxj . It is well known that L(M) (M, GL(n,R)) is a principal
j

fibre bundle. We call L(M) the bundle of linear frames over M. Let e,....,e, be the
natural basis for R":e; =(10,.0),....e,=(00,.1). A linear frame

u=(Xy,..,X,) at x can be given as a linear mapping u: R" —T(M) such that
ue; = X; fori=1,..,n.

DEFINITION 1.2. Let G be a Lie subgroup of GL(n,R). A reduction P(G) of
L(M) to G is called G - structure over a manifold M.

We say that G - structure P(G) is conjugate with G' — structure P'(G') if there
exists an element a e GL(n,R) that P' = Pa. In this case we have G' = a'Ga.

P'(G") will be denoted by Pa(a‘lGa). Let for G - structure P(G) G be a Lie

subgroup of a Lie group G'. Then it is easy to build the unique G'- structure
P'(G' ) > P(G) which is called the extension of P(G) to G'.

A° if p is a point in M, we define T (p) as the set of all R-multilinear
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mappings of

To(M)x.xTo(M)xT (M )x..xT,(M)

(To(M) - rtimes, T,(M ) - s times)
into R. Otherwise T, (p) is the tensor product
(L) TS (p)=@® T, (M)®° T, (M).

If KeT{ is atensor field on M of type (r,s), €;,.....,6, is a basis of T,(M),
e’,.....e", is the dual basis of T, (M ), then we have

(12) K, :kﬁljjﬁf e, ®..0¢, ®e" . Qe

If we consider T (R"), then one can define an equivariant with respect to
the group GL(n,R) map

K:L(M)>TS(R")

by the formula

1

K(n)(Vq,e Vg0 0" ) = K(UVg o uvg U 0. U 0")

where u eL(M).
The action of GL(n,R) on R induces that onT{ (R").

DEFINITION 1.3. A tensor field K is said to be O-deformable if

K(L(M)) belongs to one single orbit in T, (R") with respect to GL(n,R). Let
O be such an orbit and KoeO. Then K(K,)cL(M) is a G-structure,
where G is the automorphism group of K,. Selecting Ko. is the same as
selecting n"** components kﬁiffjfs for K.

For any frame u’eL(M)

K(U)=K,eOcTS(R,)
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and K;) is in the same GL(n,R) orbit O as Kq. So, there is aeGL(n,R) such that
Ko = Kg)a, then K(u'a)=K, and at any point xeM there is at least one frame u’
belonging to K (K, ). For beG we have K(ub)=K(u)b=K,b=K,, because b
Is an element of the automorphism group G . Let (aij )eGL(n,R) and e,,...,e,, be
a basis of T,(M). We define the group G by

(1.3) G={(a})eGL(nR):k}rlal . af =kirap- |

The group G is an algebraic group therefore G is a closed Lie group.

DEFINITION 1.4. A G - structure P(G) with a structure group of type (1.3)
Is called a tensor G - structure. The frames of P(G) are the same for which K
has the components kl‘;::"f on M.

1 /s

We remark that a O-deformable tensor field K on M defines the whole class
of conjugated each other G-structures. It is clear that for aeGL(n,R) the tensor
Koa still belongs to the orbit O T (R") but the automorphism group can

change G’ instead of G, where G'=a'Ga. So, the choice of structure from the
class depends on the choice of a point peM and a frame (e, ,e,,....e,) atp.

For instance, if F is an O-deformable (1,1) tensor field, then at each point
peM there exists a frame (e, ,...,e,) for which F, has the Jordan normal form.

We can take a G-structure consisting of all such frames from L(M). Later on we
shall denote by P(K) a G-structure defined by an O-deformable tensor field K if the
choise of frames is clear from context.

In 1960 I.M.Singer put up a question if there exist locally nonhomogeneous
Riemannian manifolds for which the Riemannian metric g and the curvature tensor
field R are simultaneously O-deformable. Many papers have been published in this
direction; for a survey see [12].

Examples of various G-structures one can find in [6], [13], [45], [64].

5°. We define a connection in a principal fibre bundle (see [46],[73]). For
each ueP, let T,(P) be the tangent space of P at u and G, the subspace of T,(P)

consisting of vectors tangent to the fibre through u.
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DEFINITION 1.5. A connection I in P is an assignment of a subspace Q,
of T,(P) to each ueP such that
(a) Tu(P):Gu ®Qy;
(b) Qs =(R, xQ, foreveryueP and aeG ;
(c) Q, depends differentiably on u.

Condition (b) means that the distribution u — Q, is invariant by G. We call
G, the vertical subspace and Q, the horizontal subspace of T,(P). A vector
X eT,(P) is called vertical (respectively horizontal) if it lies in G, (respectively
Qy)- By (a), any vector X of P at u can be uniquely written as

X=Y+Z YeG,ZeQ,.

We call Y (respectively Z) the vertical (respectively horizontal) component
of X.

Given a connection I" in P, we define a 1-form ® on P with values in the
Lie algebra g of G as follows. For each X €T,(P) we define (X ) to be the
unigue A eg such that (A*), is equal to the vertical component of X, where A* is the
fundamental vector field corresponding to A. It is clear that o(X) = O if and only if

X is horizontal. The form w is called the connection form of the given connection
I". The projection 7 : P — M induces a linear mapping = :T,(P)—>T,(M) for

each ueP, where x=x(u). When a connection is given, 7 maps Q,
isomorphically onto T, (M ). The horizontal lift or simply, lift of a vector field X

on M is a unique vector field X* on P which is horizontal and 7z( X )= X z(uy for

every ueP. Given a connection in P and a vector field X on M, there is a unique
horizontal lift X* of X which is invariant by R, for every aeG. Conversely, every

horizontal vector field X* on P invariant by G is the lift of a vector field X on M.

6°. Let L(M) be the bundle of linear frames over a manifold M. The
canonical form @ of L(M) is the R"-valued 1-form on L(M) defined by

(1.4) O(X)=u(xz(X)) for X eT,(P)

where u is considered as a linear mapping of R" onto Tr)(M).
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DEFINITION 1.6. A connection in L(M) over M is called a linear
connection of M.

Condition (b) of Definition 1.5 means that any connection in G-structure
PcL(M) can be extended to linear connection of M.

We suppose that P(H) is a subbundle of P(G) and H is a reductive Lie
subgroup of G, that is

@ g=h®&m;

(b) adgH (m)=m.
If wis ag - valued form of a connection in P(G) then we have

(1.5) a)(X):a)(X)‘h_+a)(X)‘mfor XeT(P(G)).

It is easy to see that w( X )=w( X ) h is the h - valued form of a connection

in P(H) (see [46]).
Let ¢ be the cross section of L(M) over the neighbourhood U which assigns

to each x €U the linear frame (( X ),...( X, )x) and let XY =) kak be vector
k

fields on M. Then, according to [7], the form o defines an affine connection V by

(16) Vy Y =<o(x)w(<o*xx><o(x>‘1vx+§(ka)(x)(xk>x

where ¢(x) is considered as a mapping of R" onto T,(M ).

82. ASSOCIATED RIEMANNIAN METRICS AND SECOND
FUNDAMENTAL TENSOR FIELD OF G — STRUCTURE

1% Let M be a Riemannian manifold with a Riemannian metric g=<,>.
The Riemannian metric g defines the subbundle O(M) = P(O(n)) of L(M)
containing all the orthonormal frames over M.
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DEFINITION 1.7 [15]. Let P(G) be a G-structure over M. The Riemannian
metric g is called an associated one if there exists such an element
P, (370(n)ay ) in the class

{ Pa(a™'O(n)a) YacoL(n.R)

that the structures P(G) and P, (a, '0(n)a, ) have a common subbundle of

the frames over M.
It is easy to verify that the given Definition 1.7 is equivalent to the following

DEFINITION 1.8. A Riemannian metric g is said to be associated to a G-
structure P(G) if there exists such an element a € GL(n,R) such that the
intersection of the Riemannian G-structure P(O(n)) with the subbundle
P(G)a is non-empty. In this case the intersection is a principal subbundle
P(H) , where H=0(n)na‘Ga.

We remark that if such a structure P(H) exists then any element of the class
{ Py(a™Ha) J, oy Satisfies Definition 1.8.

The following theorems describe the existence of associated Riemannian
metrics.

THEOREM 1.1 [39]. Let G be a real Lie group with a finite number of
connected components. Then for each G-structure P(G) over M there exists a
reduction of G to the maximal compact subgroup H of G.

In the class of G-structures conjugated with P(G) there exists such a
structure, let it be P(G) itself, that its maximal compact subgroup H is a subgroup
of O(n). We extend P(H) to the group O(n) and get the structure P(O(n)) = O(M)
over M, which defines the Riemannian metric g = <, > on M. We see from
Definition 1.8 that the metric g is an associated one to P(G).

THEOREM 1.2. Let K be an O-deformable tensor field on M and let P(G)
be a corresponding G-structure. Then

a) there exists an associated metric g to P(G)

b) Riemmannian metric g is an associated one if and only if there exists such
an affine connection Von M that VK =0 and Vg = O.
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Proof. The first conclusion of the theorem follows from Theorem 1.1
because the Lie group G is an algebraic one, see (1.3), and therefore G has a finite
number of connected components.

We consider the second conclusion. It is well known, see [46], [73], that any
principal fibre bundle P(M,G) admits a connection, if M is paracompact. If @ is a
connection in P(H)=P(G)~P(O(n)) with corresponding covariant derivative V, see
(1.6), then the parallel translation 7 along a curve segment y in M transfers the
frames of P(H) onto the frames, [46]. As K and g have the constant components on
M in these frames we see that K and g are invariant with respect to 7, that is, VK =
O, Vg=0.

Conversely, if VK = 0O, Vg = O and o is the corresponding to V linear
connection, then we can construct the holonomy fibre bundle P(u,) of  passing
through the fixed orthonormal frame u, €eO(M ), [46]. It is clear that K has
constant on M components in the frames of P(u, ), hence P(u,) can be extended
to the tensor G-structure P(K). P(u, ) is the common subbundle of P(K) and O(M)

and, using Definition 1.8, we obtain that the Riemannian metric g is an associated
one to the tensor structure P(G).
QED.

We remark that a searching for "the best associated metric" to the given G-
structure P(G) is one of the interesting subjects of modern differential geometry,
see [9], [1O].

2°. Later on we shall consider only the fixed pair (P(G), g) or (P(H), 9),
where H=GN0O(n).

To construct the second fundamental field h of the structure (P(H), g) we
consider the Lie algebras O, h of the Lie groups O(n), H.

We assume that O=h

EXAMPLE. If P(G)=P(GL*(n,R)), where
GL*(n,R)={aeGL(n,R):deta >0}, then O = h.

Let g be a biinvariant Killing form on O(n) and let m be the orthogonal
complement of hto O
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We have

(1.7) O=h ®m;.
and from the biinvariance of g
(1.8) ad(H)m =m.
If o is the O - valued form of the Riemannian connection in O(M), then

from (1.7), (1.8) we get that E:a)‘n defines some connection in P(H), see (1.5).

The connections @, @ can be extended to linear connections with corresponding
covariant derivatives V, V.

DEFINITION 1.9 [17]. The tensor field h=V -V s called the second
fundamental tensor field of the structure (P(G), g); the connection V is
called the canonical connection of the pair (P(G), g).

To be correct we must verify an independence of @ from the choice of P(H)

from the class {Pa(a‘lHa)}aeo(n).

Let P'=P,(a*Ha) and H'=a'Ha, then ad(a*)(h)=h’. From the
biinvariance of the Killing metric § it follows that ad(a™*)(m)=m’, where m’ is
the orthogonal complement m’=h'* of h’ to O. We have
ad(a™)(Xp)=(ad(a™)X ) wand ad(a™)(X m)=(ad(a™)X), u Let & be

the h’ - valued form of the connection in P'(H"), then
&' ((Ra > X)=[0((Ry } X)] v =[ad(a™)o( X )] w=ad(a™)(@(X), n)
—ad(a™ )(@(X))

The condition @ ,(( R, } X )=ad(a™ )@, (X)), see [46], is equivalent to

the item (b) of Definition 1.5 hence the linear connections defined by
@, @' coincide.

3° (P(G), g) is called the particular structure if h=0 and the nearly particular
one if h* =0, where h™ denotes the symmetric part of the tensor field h, i.e.,
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hiY :%(hXY hyX), X, Y e x(M).

It is evident that (P(G), g) is the nearly particular structure if and only if the
connections V,V have the same geodesics. We constructed V as a connection in
P(H), where P(H) is a subbundle of O(M), hence we have got that

(1.9) Vg=0,

that is, the affine connection V is a metric connection.
Let ¢ be a cross section of L(M) over a neighbourhood U which assigns to
each xeU the linear frame (( X;),,....(X,),) and X, Y are vector fields on M.

From (1.6) it follows that
(1.10) (hxY ) =(VxY = VY ) =p(X)o| m (¢« X Jo(X) Yy,

where ¢ (X) is considered as the mapping of R" onto T,(M ).

The following theorem shows that the pair (g, h) is defining for the structure
P(G).

THEOREM 1.3. Structures P(G) and P'(a‘Ga) are conjugate if and

only if there exists their common associated Riemannian metric g and the
second fundamental tensor field h of P coincides with one of P'.

Proof. If P and P' are conjugate then from Definition 1.8 it follows that they
have a common associated Riemannian metric g and from the construction of h it
Is evident that the tensor field h of P is equal to that h' of P', therefore h = h'.

Conversely, if g is the common associated Riemannian metric and h = h'
then V =V'. We consider the holonomy fibre bundles P(u) and P'(u") of the linear
connection @ corresponding toV such that P(u)cP(G) and P'(u' )< P'(a'Ga).
The structures P(u) and P'(u’) are conjugate, see [46], therefore their extensions
P(G) and P'(a'Ga) are also conjugate.

QED.

Thus, the pair (g, h) defines the class of G - structures, where g plays a role
of the "first fundamental tensor field".



83. INTEGRABILITY OF G - STRUCTURES AND POLAR
DECOMPOSITION OF O - DEFORMABLE (1,1) TENSOR
FIELDS

1°. We follow [45], [64].

DEFINITION 1.10. A G - structure P(G) is called an integrable one if for
each peM there exists a coordinate neighbourhood U with coordinates

(X1, Xy )SUch that for every point xeU the frame (x;i,..., g )
0X; 0X,

belongs to P(G).
We give some results about the integrability of tensor G - structures.

THEOREM 1.4 [55]. Let P(G) be a structure defined by O — deformable
(1,1) tensor field F and there exists a connection @ in P(G) such that
corresponding linear connection @ is without torsion. Then P(G) is an
integrable structure.

The following tensor field N(F) on M is called the Nijenhuis tensor of F
(1.12) N(F)(X.Y)=[FX FY]-F[FX Y]- F[X ,FY]+F?[X Y],
X,Y ex(M)

THEOREM 1.5 [44]. Let P(G) be a structure defined by O — deformable
(1,1) tensor field F and for every eigenvalue of F there exists one
(generalized) Jordan box or several one-dimensional (generalized) Jordan
boxes. Then P(G) is an integrable structure if and only if the Nijenhuis
tensor field N(F) vanishes on M.

THEOREM 1.6 [45]. P(O(n)) is an integrable structure if and only if the
corresponding Riemannian curvature tensor field vanishes on M.

Let O - deformable (1,1) tensor fields F,,...,F, define the structure P(G) ,
that is, the frames of P(G) are the same for which every F, has the constant

coordinates on M and let h be the second fundamental tensor field of the pair
(P(G),9). Then we have the following
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THEOREM 1.7. If (P(G),9) is the particular structure (h=0) , then every
F, defines an integrable structure on M.

Proof. Since h=0 hence V =V s a connection without torsion. V defines
a connection @ in P(G) and the rest follows from Theorem 1.4.
QED.

2° 1t is well known, see [31], a polar decomposition of matrix (F) in
Euclidian space: (F) = (S)(P) , where (S) is an unitary matrix and (P) is a
symmetric positively semi-indefinite one. This decomposition is unique if (F) is a
nonsingular marix.

We consider the polar decomposition of an O-deformable (1,1)
tensor field F.

DEFINITION 1.11. Further, for simplicity, an O-deformable (1,1) tensor
field F will be called an affinor.

Let F be an affinor, which defines such a structure P(G) that
P(G)NO(M)=P(H), H = G~»O(n), where O(M) is a subbundle of all the
orthonormal frames over M determined by an associated to P(G) Riemannian
metric g and G is the group of invariance of some fixed matrix (F) of F.

PROPOSITION 1.8. There exists an affinor F* on M such that
<F*X,Y>=<X,FY> for any XY ex(M), the metric g is an associated one to
P(F*) and the second fundamental tensor fields of P(F) and P(F*) coincide.

Proof. If aeH, then a"(F)a=(F) and a"(F) a=(F)", therefore the
matrix (F )" is invariant under H and P(H) can be extended to the group G* of
invariance of (F)". For any beG*~O(n) we have b'(F) b=(F)", hence
b (F)b=(F) and G*~O(n)=H. Thus g is an associated one to P(G*) and from

construction of h, see Definition 1.9, it is evident that the second fundamental
tensor fields of P(G) and P(G*) coincide.
QED.

We consider now the matrix (P?)=(F)"(F). Let the matrix (P) be the

nonnegative square root of P2, [29], G, be the group of invariance of P2 and G,

be that of (P).
LEMMA 1.9. We have G; =G, and H cG,.
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Proof. If a*(P)a=(P),then a*(P?)a=(P?), where

o

Ak .

0

A

The groups G, =a'G,a, G,=a 'G,a are the groups of invariance of
(P), (P?) respectively and it is evident that G, =G,, hence G, =G,. For acH

we have

a'(P?)a=(a'(F) a)a'(F)a)=(F)"(F)=(P?)

and aeG,.

QED.

THEOREM 1.10. Let F be an affinor, let g be an associated to P(F)
Riemannian metric and let V be the canonical connection of the pair

(P(F),g). Then we have

a) F = SP, where S and P are affinors, S is an unitary affinor and P is a

symmetric positively semi-indefinite one with respect to g.

b) VF =VS=VP=0.

Proof. It follows from Lemma 1.9 that P(H) can be extended to the group
G, and P(G;) determines the affinor P. From the identity (F)=(S)(P) for
matrixes we see that H preserves the matrix (S), hence an affinor S is defined by
extension of P(H). Since @ is a connection in P(H), where P(H)cP(G),
P(H)cP(G,), P(H)cP(S), it is clear that VF =VS =VP =0. The rest is obvious.

QED.

REMARK. In general, the second fundamental tensor fields of (P(G),9),
(P(G1),9), (P(S),9) are not the same. For example, if <FX,FY>=<X)Y>,

where X,Yex(M), then F=S and P=I, therefore the structure (l,g) is a

particular one, i.e. h=0, but the structure (P(F),g) can be various.



CHAPTER 2
RIEMANNIAN GEOMETRY OF G — STRUCRURES

In this chapter, we study a pair (P(G),g) where P(G) is a G-structure over M
and g is an associated with it Riemannian metric. There are many results about
different concrete structures on manifolds considered with Riemannian metrics.
Using the introduced notions of the second fundamentical tensor field h and of the
canonical connection V of the structure we want to unite such results in on
scheme to get a general theory. In 81 we consider torsion and curvature of V , so-
called quasi homogeneous structures and dependent notions. 82 is devoted to the
study of isometries, affine transformations and holonomy fibre bundles of V.
Homogeneous structures are discussed in 83 and projections on submanifolds and
foliations in the last 84.

We follow especially closely [47], [67].

81. TORSION AND CURVATURE, QUASI HOMOGENEOUS
STRUCTURES

1°. We consider a fixed pair (P(G),g) or (P(H),9), where H=G0O(n), and its
second fundamental tensor field h=V -V, where V is the Riemannian
connection, V is the canonical that of the structure. Tensor fields h*, h™ denote
the symmetric and skew-symmetric parts of h respectively:

2.1) h;Y:%(hXY+hYX), h;Y:%(hXY-hYX), XY eX(M).

LEMMA 2.1. Let hyy, =<hyY,Z > for any X,Y,ZeX(M). Then we have
(2.2) hyyz =—hyzy .

Proof. Since V is a metric connection, then
X<Y,Z>=<V\Y,Z>+<Y VyZ>

and it is analogously for V from (1.9). Subtracting one equality from the
other we have got the lemma.
QED.
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Let T be the torsion tensor field for V, such a tensor field is equal to zero
for the connection V.

LEMMA 2.2. We have

(23) T =-2h".

Proof. Subtracting from the equality
TyY = VY - Vy X —=[X Y]

the equality
O=V,Y-VyX-[X)Y]

we have obtained our lemma.
QED.

PROPOSITION 2.3. The pair (P(G),g) is a particular structure if and only
h™=0.

Proof obviously follows from (2.3) and from uniqueness of metric
connection without torsion.
QED.

The Riemannian curvature tensor field R of the connection V is defined by
(24) Ryy =[Vx Vy]-Vixy) XY eX(M)

The curvature tensor field R of the canonical connection V is defined
analogously by

(25) Ry =[Vx . Vy]-Vixy) X, YeXM)

THEOREM 2.4. For any X,Y,ZeX(M) we have

(2.6) RyyZ =RyyZ +(Vyxh)(Y,Z)=(Vyh)(X,Z)+[hy by |Z +hy Z

Proof. Since V=V +h we have
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Ry :[Vx ’VY]—V[X,Y]:WX +hy ,Vy +h\(]_v[x,\(]—h[x,\(]

=Ryy + [V by ]+ [ Wy [ Ty T=hry .
As
[V by J=Vxhy —b Vi =(Vh)(Y, ) +hg
and
[y . Vy |=hy Vy =Vyhy =—(Vyh)(X, . )+ he. x ).
therefore
Ryv =Rxy +(Vxh)(Y, )= (Vyh)(X,. ) +[hy by ]+ hg v —hg « —hix ]
= Ryy +(Vxh)(Y, )= (Vyh)(X,.)+[hy by ]+ br

QED.

2° DEFINITION 2.1. We call a pair (P(G),g) a quasi homogeneous
structure if Vh=0 on M.

From Theorem 2.4 it follows that for a quasi homogeneous structure
(27) RyyZ=RyyZ+[hy by [Z+h; ,Z.

Examples of quasi homogeneous structures one can find in [41].
The following vector fields play an important role in our consideration.

DEFINITION 2.2. We call a vector field X a particular one, respectively a
nearly particular one, if hy =0 on M, respectively hy =0.

If X4,..., X, are orthonormal vector fields on a neighbourhood of some point
of M, then (1,1) tensor fields r*,r? are defined on this neighbourhood by

n
(2.8) <r1X,Y>: <hy X, ,hy X >,
X Nk k
k=1
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n
(2.9) <r?X.Y >= > <hf X, ,hy X, >.

k=1
Let Y;,...Y, be another vector fields, then for every point from our
neighbourhood Y; =Y a X ; , where (aj)c0O(n), and
k

n n n
<rtX)Y >=3'< hyYjvYj>= > < a'j‘h>< Xk,a'j‘hx X >= Y <hy X, ,hy X, >.
j=1 jk=1 k=1

So, we have correctly defined on M tensor field r!, for r? it is analogously.
It is evident that for any X,YeX(M)

(2.10) <X )Y >=< X rlY> i=12.

PROPOSITION 2.5. A set of particular (nearly particular) vector fields on
M concides with Ker r! ( Ker r?).

n
Proof. If XeKerr?, then <r'X X >= ZHhXXkHZ =0, hence hy X, =0
k=1

for each X, , k=1,..,n, and from linear independence of X,,...,X,, it follows that

hyY =0 for any YeX(M). Conversely, if hyY =0, then r'X = O from (2.8) and
X eKer rt. The proof for r? is the same.
QED.

3% The following theorem describes a situation in a quasi homogeneous
case.

THEOREM 2.6. Let (P(G),g) be a quasi homogeneous structure i.e.
Vh=0. Then we have

) Vit =0, Vr? =0; 1) there exist almost product structures
T(M)=Ker r' ®Imr;T(M )=Ker r* @ Imr?
(direct sums) on M and Imr' =(Ker r')*,i=12.

Proof. I) Let Z be a vector field and y a curve segment in M defined by Z or
more precisely by a local 1-parameter group of transformations induced by Z. We
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denote by XY, X;,...,X,, the vector fields defined on some neighbourhood of ¥
which are obtained by the parallel translation of XY, X;,,.... X, €To(M)
along 7, p ey, in the connection V . Obviously Xj,..., X, are remained orthonormal
because the connection V is metric. So we have

(VzX), =(VzY ), =(VzXy), =0 forany k=1,..,nand

(V2r')X), =(Vor'X),.

— n —
<VrtX Y > =Z<r'XY > =3 (<V,hy X, hy X, >
Z p p zlx Akolly Ak
k=1

+<hxxk,vzhyxk >)p:O,

1) From 1) it follows that rl,r? are affinors, hence Ker r' define
differentiable distributions on M.
From (2.10) we have that (Ker r' )* =Imr', therefore
T(M)=Kerr' ®@Imr',i=12, are almost product structures on M.
QED.

DEFINITION 2.3. A pair (P(G),9) is called a strict structure if hy = O for
each X € X(M), X=O.

It is evident that (P(G),qg) is strict if and only if Ker r! ={O} for each point
of M.

4° The following notions can be useful for the study of the structure
(P(G),g) over the manifold M. We call

a) r! the induced Ricci mapping,

b)  <rX,Y >the induced Ricci tensor,

C) tr r! the induced scalar curvature,

d  <rXx,X >HXH_2the inducud curvature in direction X of the structure
(P(G),g) over the manifold M.

The similar notions can be defined for the tensor field r?2.



§82. ISOMETRY GROUPS AND HOLONOMY FIBRE
BUNDLES

1°. We remind (see Definition 1.5) that a connection I" in O(M) is an
assignment of a subspace Q, of T,O(M) to each ueP such that (a)

T,(O(M))=Q, ®V,, where V, is the tangent space of the fibre, (b)
(R, XQ, =Q,, and (c) Q, depends differentiably on u.

Then for every & eR" and ueL(M) there exists unique vector (B(&)), in
Q, such that #((B(&)), )=u(&). B( &) is called the standard horizontal vector

field corresponding to & e R".

PROPOSITION 2.7 [46]. Let B( &) be a standard horizontal vector field
and O the canonical form of L(M). Then we have:

(1) O(B(&))=¢, £eR™;
(2) R.(B(&))=B(a™¢), aeGL(n,R), £ eR";
(3) B(&)=0O onMfor £ 0.

We can define the Riemannian connection I" in O(M) by u — Q, or by O-

valued form or by covarint derivative V.

Let A* be the fundamental vector field corresponding to Ae€QO. The
Riemannian metric gy is defined on O(M) by

gv(B(&),B(n)=<&En>, EneR™;
Oy (AR ) =—tr(AA,), ALA €Q;
gy(B(£),A")=0, &cR",AcO.

The action of the isometry group I(M) on M induces the action of 1(M) as the
isometry group on (O(M ),gy ) (see [67]) by the formula:

(211) QU =(P; X1 X ) = (@PiPx X geepe X ),

where u=(p;X4,...X,)eO(M ) and p € I(M).

For our structure (P(H),g), H=GN0O(n), we can consider the canonical
connection I" defined by V, @, u— Q, and the standard horizontal vector fields
B(&) too. We introduce distributions V2, vV 2 by
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VE={A" :Aech}, VE={A :Aecm}

It is obvious that V2 1 V2 inVand T,P(H)NV, :Vub foreachue P(H).

LEMMA 2.8. The horizontal distribution Q, of the canonical connection of
the structure (P(H),qg) is defined by the following formula

(2.11) U—>Q, =T, (P(H) VM =T,(P(H) N (V] ©Q,),

where ueP(H).

Proof. As w(Q, )cm, therefore @(Q, )=0. Since T,(P(H )=V ®Q,,
hence dim Q, =n and Q, = Ker @ .
QED.

2° Let @ be the canonical connection in P(H), and P(u,) the holonomy
bundle through u,, where uy € P(H ), i.e., the set of all ue P(H ) which can be
joined to u, by a ( piece-wise differentiable) horizontal curve. Further, let @(u, )
denote the holonomy group with reference frame u,. Then the famous Reduction

theorem, [46], sets that
(1) P(uy) is a differentiable subbundle of P(H) with the structure group

@(ug ).
(I1) The connection @ is reducible to a connection in P(uy ).

THEOREM 2.9. The linear canonical connection of the structure (P(u,),9)
coincides with the canonical connection @ of the pair (P(H),9).

Proof. From Lemma 2.8 we see that the horizontal distribution of the
canonical connection in P(u, ) is the orthogonal complement of VuE to T,(P(ug)),
where VuE is the vertical subspace corresponding to the holonomy algebra h. Since
Q, =T,P(uy) and Q,LV" SV, hence it is clear from Lemma 2.8 that above -
mentioned distribution coincides with Q, for every u e P(u, ) and, therefore, for

any ueL(M) from the right invariance.
QED.
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The theorem shows that sometimes we can identify P(H) with the holonomy
fibre bundle P(u, ) in our consideration.

Now we give a geometric characterization of Definition 2.3.

THEOREM 2.10. The structure (P(H),g) is strict if and only if
Q, N Q, =0 for each ueO(M).

Proof. If r=w —® and ueO(M), then, according to [7], we have
hyY =uz( X uly

for X,Y €T, (y(M), XeT,(O(M)), m(X)=X.
If X eQ,, then the condition hy #O is equivalent to one that
(X )=w(X)#0 and X ¢Q. Having taken all such X ¢Q, we have got that
Q, NQ, =@. The converse it is evident.
QED.

From the proof of Theorem 2.10 it is obvious that for each ueO(n)
7.(Q, NQ, ) conincides with (Ker rt), ).

3° Let I" be the canonical connection of (P(H),9) and ¢ a transformation of
M. It is well known, [46], that the following conditions are equivalent :

1) ¢ is an affine transformation of M with respect to V,

2) p* 0 =0

3) every standard horizontal vector field B(&) is invariant under o,

4) VY =V, xo.Y forall X,YeX(M).

If ¢ is an isometry, then ¢ is an affine transformation with respect to 7~ but
we do not say the same about I .

DEFINITION 2.4 [48]. The group of all the affine transformations of M
with respect to V preserving each holonomy bundle P(u) , ueL(M), is
called the transvection group and it is denoted by Tr(M, V) or simply by
Tr(V).

It is evident that if preserves a fixed holonomy bundle P(u,), then it also
preserves the holonomy bundle P(u) for each ueL(M). More geometrically, an
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affine transformation ¢ of (M, V) belongs to the group Tr(V ) if and only if the

following holds : for every point peM there is a piece-wise differentiable curve y
joining p to ¢( p) such that the tangent map ¢« : T,(M )—>T, (M )coincides

with the parallel translation along .

The following theorem describes the situation for canonical connection V
of the structure (P(H),9).

THEOREM 2.11. If P(H) is invariant under an isometry ¢ i.e.
o(P(H))cP(H), then ¢ is an affine transformation with respect to V.

Conversely if (P(H),g) is strict and for some frame
ueP(uy)cP(H) ¢(u)eP(uy), where an isometry ¢ is an affine

transformation with respect to V, then ¢@(P(H))c P(H) and
peTr(V)cI(M).

Proof. Since ¢ is an isometry, then ¢(O(M))cO(M). From (2.11) it follows
that ¢.(V )=V . We know, [46], that ¢ preserves fibres, canonical form @ is

invariant under ¢ and ¢ is an isometry for gy on O(M), therefore
e«(Q)=p(VT)=V+=Q.

ee(Ty(P(H))=Tyu)(P(H)) and @ (vVB= V2, V2 =T (P(H))NV,
hence ¢. (V2" = V2 From Lemma 2.8 we have got ¢.(Q )=Q . The form w of

the Riemannian connection is invariant under ¢ and it is obvious that the form @
is also invariant under ¢. So, ¢ is an affine transformation with respectto V .
Conversely, if an isometry ¢ is an affine transformation, then ¢.(Q )=0Q

and ¢.(Q)=Q. Using Theorem 2.9, let P(H )= P(u, ) at first. ¢ preserves
Qt=Vvieve Qt=viev.

From Theorem 2.10 we have that Q* N Q* =V and V! is invariant under
. Let A be the following distribution

A A, =T, (P(H)), ueO(M),

where P( H ) is one from the structures conjugate to P(H), u € P( H ). A is

invariant under ¢, therefore ¢ transforms the fibres of the foliation A onto the
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fibres. Hence, if ¢(u)e P(u,) for some u € P(u, ), then o(P(uy))=P(u,) and
@ eTr(V). If g preserves P(u, ), then ¢ preserves an extension of P(uj ), that is,

P(H).
QED.

4° We follow [46], [73]. Let V be an affine connection on M. A vector
field X on M is called an infinitesimal affine transformation if, for each xeM, a
local 1-parameter group of local transformations ¢, of a neighbourhood U of x into
M preserves the connection V .

A vector field X on M is called an infinitesimal isometry (or, a Killing vector
field) if the local 1-parameter group of local transformations generated by X in a
neighbourhood of each point of M consists of local isometries. An infinitesimal
iIsometry is necessarily an infinitesimal affine transformation with respect to V. X
is an infinitesimal isometry if and ohly if L g =0 (L  is the Lie differentiation
with respect to X).

Let V be a complete affine connection on M. Then every infinitesimal
affine transformation X of M is complete, that is, X generates a global 1-parameter
group of transformations of M.

A vector field X is an infinitesimal affine transformation of M if and only if

(212) L x-Vy —Vy-L y=V[xy] foreach YeX(M).

Let V be as usually the canonical connection of a structure (P(H),9).

THEOREM 2.12 [67]. A metric connection (in particular V) is complete
on the complete Riemannian manifold M.

So we have got that any infinitesimal affine transformation of M with
respect to V is complete if M is a complete Riemannian manifold.

THEOREM 2.13. A vector field X is an infinitesimal isometry and an affine
transformation with respect to V if and only if L y g=0 and L h=0,

where h=V -V .

Proof. For any Y,ZeX(M) we obtain
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(L xh)(Y.Z)=[XhyZ]-hx y1Z -1y [X,Z]

=([X.VyZ]-Vx yZ - Vy[X.Y])
~([X Yy Z])-Vix yiZ - Vy [X Y]
=(L x'Vy =Vy L x—V[xy])Z

—(L xVy=Vy L x—Vxy])Z.

From the above-mentioned results the theorem follows.
QED.

8§3. HOMOGENEOUS STRUCTURES

1°. The Riemannian manifold (M,g) is called a homogeneous one if the full
iIsometry group I(M) is a transitive Lie group of transformations of M. The
following theorem of W.Ambrose, I.M.Singer [3], [67], [48] plays an important
role in the study of such manifolds.

THEOREM (AS). A connected, complete, simply connected Riemannian
manifold (M,g) is a homogeneous one if and only if there exists a tensor

field h of type (1,2) on M such that for any X,Y,Z € X(M)
(AS1) <hyY,Z>+<Y,hyZ>=0,
(AS2) (VxR )z =[hx .Ryz]- Rh,vz = Rvh z

(AS3) (Vxh), =[hy.hy [-hy v,

where V and R denote the Riemannian connection and the Riemannian
curvature tensor field respectively.

Every such a tensor field h satisfying the conditions (AS) on M is called a
homogeneous Riemannian structure on M . We can define a canonical connection
on M by the formula
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V=V-h

Then the conditions (AS1), (AS2), (AS3) are equivalent to the following
(2.13) Vg=0, Vh=0, VR=0,

where R is the Riemannian curvature tensor field of V.

Let (M, %) be a connected manifold with an affine connection V. Then the
following two conditions are equivalent :

(I) The transvection group Tr(V) acts transitively on each holonomy bundle
P(u)cL(M).

(I1) M can be expressed as a reductive homogeneous space K/K, with
respect to a decomposition k = k,+m, where K is effective on M and V is the
canonical connection of K/K, , k, ko, are the Lie algebras of K, K, respectively.

If (1) is satisfied, then Tr(V) is a connected Lie group and M can be
expressed in the form (I1) with KzTr(%). For every expression of M in the form
(1), Tr(%) iIs a normal Lie subgroup of K and its Lie algebra is isomorphic to the
ideal m = [m, m] of k.

So, the space (Mﬁ) will be called an affine reductive space if the
transvection group Tr(M, %) acts transitively on each holonomy bundle.

Using results in [67], we can give the following characterisation of the
homogeneous Riemannian structures :

Let (M,g) be a connected, complete and simply connected Riemannian
manifold, and V its Riemannian connection. A tensor field h of type (1,2) on (M,g)
IS @ homogeneous structure on (M,g) if and only if the new affine connection
V=V —h determines an affine reductive space (M,V) and g is parallel with
respect to V. Each homogeneous Riemannian space (M, g) admits at least one
homogeneous structure ( but it can admit more than one).

Now, let h be as usually the second fundamental tensor field of the pair
(P(H),g) on M.

THEOREM 2.14. Let M be a simply connected, complete Riemannian
manifold and let V be the canonical connection of the structure (P(H),9)
and V h=0, VR=0. Then h is a homogeneous Riemannian structure and
M = K/K, is the Riemannian homogeneous space, where K=Tr(V) and
K, is the isotropy subgroup of a fixed point oeM. The structure P(H) is

invariant under K.
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Proof. From Theorem 2.12 we see that V is complete on the complete
Riemannian manifold M and we have V g=0, V h=0, VR=0. From (2.3) it
follows that VT =0 and from (2.7) V R=0 implies VR =0. So, there exists the
minimal group of affine transformations K=Tr(V ), which acts transitively on the
holonomy fibre bundle P(u,)c P(H) (see [47]) . Since V preserves P(H) we

see that P(u)cP(H) for each ueP(H). As P(u, ) is invariant under the action of K,

therefore P(H) is invariant too. Since P(H)cO(M) it is evident that KcI(M).
QED.

We describe now relations between canonical connections V and V.

THEOREM 2.15. Let V be the canonical connection of a Riemannian
homogeneous space M =K/K,, where K=Tr(V) , and let P(u,) be the

holonomy fibre bundle of % containing u, € O(M ). Then for canonical
connection V of G-structure (P(uy ),g) on M we have V=V.

Proof. Since M =zK/K,, where KzTr(%) , then K acts transitively on
P(uq ) and preserves P(u, ), [48] . We consider a mapping

J,:K>0O(M):p—>e(u), ueP(uy).

Then J,(K)=P(uy) and K, =(J, kK, where Kk is the Lie algebra of K. Let
h be the Lie algebra of the holonomy group with the fixed frame uj .

Using [67], we have from Lemma 2.8 that the horizontal distribution of %
6u =K, N ( Ky "V, )J_ :Tu( P(UO ))m(Tu( P(UO ))F\VU )J_
:Tu( P(UO ))m\/uDL :6u

From the right invariance it is evident that éu =Q, for each ueL(M), hence

the connections V and V coincide.
QED.

REMARKS.

1) Let V be the canonical connection of a Riemannian homogeneous space
M = K/K, , where K = Tr(V), P(H) be an invariant structure under the
action of K, V be the canonical connection of (P(H),g). In general, %
and V are not the same. For example if P(H)=P(O(n))=0(M), then
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V=Vhbut V=V ifMisnota symmetric Riemannian space.
2) From Theorems 2.14, 2.15 we see that the notion of the second
fundamental tensor field h of G-structure generalises, in some sense, that

of the homogeneous Riemannian structure on M.
3) The holonomy fibre bundle P(uy) gives a trivial example of a quasi

homogeneous structure. More interetings examples one can find in [41].

PROBLEM. Let M =K/K, be a Riemannian homogeneous space with

canonical connection V, KzTr(%) and let P(H) be an invariant structure under the
action of K. It seems interesting to obtain conditions on M and P(H), when the
connections V and V necessarily coincide.

0 . . .
2". We continue our consideration.

THEOREM 2.16. Let P(G) be an invariant structure over the homogeneous
Riemannian space (M,g), where M = K/K, .Then metric g is the associated

one for P(G).

Proof. For fixed point 0eM in the class of G-structures conjugated with

P(G) there exists a structure, let it be P(G) itself, such that
(P(G)NO(M)), =P(H),. Since P(G) and O(M) are invariant under the action

of K, therefore for any peM
P(H ), =(P(G)NO(M)), =¢(P(H),),

where @(0)=p, ¢ € K. It is evident that P(H) is a reduction of P(G) and H

Is the maximal compact subgroup of G, HeO(n).
QED.

Let M be a simply connected homogeneous Riemannian space with the
canonical connection V. Then M = K/K, , where K=Tr(V) and K is the isotropy

subgroup of the fixed point 0 eM, [47] . We remark that V and V are complete.
Let M =M;xM, x..xM, be the de Rham decomposition of M, then there

naturally exists an almost-product structure P(AP): T,(M ):TF} S ...@Tg.

LEMMA 2.17. The structure P(AP) is invariant under the action of
Kand V.
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Proof. Since K=Tr(V)c1°(M), where 1°(M) is the maximal
connected isometry group, therefore o(P(AP))=P(AP) for every peK, [46] ,

and P(AP) is invariant under the action of K. We consider projectors z;, i =1,...,r

on T', n2=n;, mimj =0 fori=]j. Since each =;, i =1,..,r, is invariant under

the action of K it is parallel under Vv, [47], and P(AP) is invariant under V.
QED.

THEOREM 2.18. Let M =M x...x M be the de Rham decomposition of
simply connected homogeneous Riemannian space M = K/K, and let P(G)

be invariant under the action of K on M. Then, in the class of G-structures

conjugated with P(G) there exists a structure, let it be P(G) itself, which has
a common subbundle with P(AP) i.e. P(G) induces the structure P(G;)on

Mi’ | :1,...,r.
Proof. We can choose P(G) from the class of conjugated structures in such
a way that there exists a frame uy € (P(G ) P( AP ))0. Since K=Tr(V), then the

set K(ug)={p(uy):¢eK} coincides with holonomy fibre bundle P(u,). From
the invariance of P(G) and B(AP) under the action of K it follows that
P(uy)cP(G) and P(uy)c P(AP) that is P(uy) is a common subbundle of
P(G) and B(AP), hence P(G) is reduced to subgroup G =G; x...xG, . Therefore
we have obtained the structures P(G;) on M;, i =1,..,r, where M; is identified
with corresponding manifold passing through the point o.

QED.

It is well known that an invariant almost Hermitian structure on a symmetric
Riemannian space M is a Kaehlerian one.
This result is generalised for G-structures.

THEOREM 2.19. Let M =K/K, be a symmetric Riemannian space,

where K = Tr(V) and let P(G) be invariant under the action of K on M .
Then the structure (P(G),g) is a particular structure.

Proof. For fixed frame uy e P(H)=P(G)nO(M ) we can consider a set
K(up)=1{p(uy):@ €K}, which coincides with holonomy fibre bundle P(u,).
Since P(H) is invariant under the action of K, then P(u,)c P(H). From
Theorem 2.15 V is the canonical connection of the pair (P(u),g). For ueP(u,)
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Q, cT,(P(uy)cT,((P(H)) and Q, =Q, from (2.11). From the right invariance
Q, =Q, for any ueL(M), thatis, V=V and (P(G),qg) is a particular structure.
QED.

84. SUBMANIFOLDS AND FOLIATIONS

1%, Let M’ be a k-dimensional manifold isometrically immersed in our n-
dimensional Riemannian manifold M. Since the discussion is local, we may
assume, if we want, that M’ is imbedded in M. The submanifold M’ is also a
Riemannian manifold with respect to the restriction of g on M’ and for any
peM" T,(M)=T,(M")®T,(M’ )y-. For any X,YeX(M’) and Z eT(M")*
we have, [47],[73], that

(2.14) VoY=V Y +a(X)Y), VyZ=-A,X+DyZ,

where V'y Y and — A, X are the tangential components of VY and V, Z,
respectively, a(X,Y) and Dy Z are the normal components of VY and V,Z.

The first formula of (2.14) is called the Gauss formula and the second
formula is called the Weingarten formula, «(X,Y) is called the second fundamental
form of M’ (or of the immersion). It is well known that V' is the Riemannian
connection of (M’,g), D is a metric connection in the normal bundle T(M )*, « is
symmetric, A, X is bilinear in Z and X and

<a(X,Y),Z>=<A XY >.

Let P(H), H = GNO(n) be a structure over M with the canonical connection
V. It is easy to see, for example [73], that the above-mentioned results are
independent on the torsion of V, excluding the symmetry of «, therefore we can
rewrite them for the metric connection V

(2.15) VY =VyY+a(X)Y), VyZ=-A,X+DyZ,

<a(X\Y)Z>=<A,XY>

We remark that equations of Gauss, Codazzi and Ricci can be also rewritten
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for the connection V'. So, V' is a metric connection on the submanifold M’ and
we can consider the holonomy fibre bundle P'(uy), of V' over M’, where
Up € O(M").
We shall say that the structure P'(u,) over M’ is induced by the structure
P(H) over M. Of course, relations between P'(u,) and P(H) are very weak or

vanish in general case and it is necessary to have addititional restrictions on M’ and
P(H) to obtain more close connection.
Let M’ be an autoparallel submanifold of M with respect to V , [47], that is,

forany XY eX(M) VY eT(M"). Itis equivalent to the condition ar( X,Y )=0.

THEOREM 2.20. Let M’ be an autoparallel submanifold of M and for
some frame uy,eP(H) uyg={py;Xi,t X Xyi1:Xy},  Where

PoeM, Xy,...Xy €Ty (M") and Xy,q,..X, €T, (M")". Then the

structure P(H) induces by the natural way structures P(H’) over M’ and
P(H'* ) on the vector bundle T(M" )*.

Proof. We consider the holonomy fibre bundle P'(u,) of V over M’ in
O(M). Projections of all the horizontal curves belong to M” for P'(uy). Then

P'(uo ) = P(Ug )y = P(H )y Since VyY eT(M") for any X,Y e X(M’) it is
clear that P'(ug)={p;Yy,Y:Yks1::Yn }, Where peM’ , Yy,..Y, €T (M)
and  Yiq1,Yy €Tp(M )*.  We introduce P'(uy)={p;Yy,..Y,} and
P (up)={P;Ye,1,.-Y, }. Itis evident that P (u, ) is the holonomy fibre bundle
of V'=V over M’ with a structure group H’ and ﬁ'i(uo) Is a principal fibre

bundle with a structure group H'*.
QED.

20 Let (P(G),g) be a quasi homogeneous structure, then from Theorem 2.6
Vrt=0 and T(M)=Kerr!®Imr!, where r! is defined by (2.8). We denote

Ker rt and Imr! by T! and T2 respectively.

LEMMA 2.21. The distribution T! is integrable and its maximal integral
manifolds are totally geodesic submanifolds with respectto V.
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Proof. From Theorem 2.6 ,1) it follows that the almost product structure
T(M)=T'®T? is invariant with respect to V and for any X,Y eT!

VY =V,YeTl
Therefore [X,Y]=V,Y -V, X eT! and T! is autoparallel under Vv, that

Is, its maximal integral manifolds are totally geodesic.
QED.

We can choose P(G) from the class of conjugated structures in such a way
that there exists a frame

uO :{ pO;Xl,...,Xk,Xk+1,---,Xn }’

where X,,...X, eTtand X, ;... X, T2

THEOREM 2.22. The structure P(G) induces a particular structure P(G,)
and a strict structure P(G,) on the vector bundle T* and T?2 respectively.

Proof. Since T* @ T2 is invariant under V , then the holonomy fibre bundle
of V P(up)={p;Y,Vy Yyi1:¥n}, where peM, V.Y, eT! and
Yi.1:-Y, € T2, We know that P(uj, ) is a subbundle of P(G). So, we can consider
the structures P(G;)={p;Y;,..Y, > on T* and P(G, ) ={p;Y,,1»Y,} ON T2
In the class of conjugated with P(G; ) structures there exists a structure, let it be
P(G,) itself, that P(G,)nP(O(k))=P(H;). As V=V on T!, then V is a
connection in P(H; ) and the second fundamental tensor field of P(H;) vanishes.
It is obvious that P(G, ) is the strict structure on T2 because each particular

vector field belongs to T2,
QED.

REMARK. It is evident from the proof of Theorem 2.22 that if we have a
general almost product structure T(M )=T* @®T?2, which is invariant with respect

to V, then P(G) induces structures P(G, ), P(G,) on T*, T2 respectively.

3° Let A be a foliation on M defined by an integrable distribution T* and
let U be a foliated chart of A, [66]. We can consider the quotient manifold
U™ =U/A defined by a differentiable projection
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7:U—>U x> UNA,,

where A, is the fibre passing through xeU. If T2 =T, then it is evident

that 7. is an isomorphism between T,? and T,(,,(U" ). Let P(G) be a structure
defined by O-deformable tensor fields K,,...,K,, that is, the frames of P(G) are
the same for which every K;, i=1,...m, has the constant components on M. It is

well known that the structure P(G) defines a structure 7z(P(G)) over U~ by the
natural way if we have for each X € T!

It is similarly for the case when we can define the quotient manifold
M =M/A.



CHAPTER 3

PROBLEMS OF CLASSIFICATION OF G -
STRUCTURES

In this chapter we give some results and theorems concerning a classification
of G-structures on Riemannian manifolds.

In 81, we consider a classification of Riemannian G - structures with respect
to the orthogonal group O(n). The classification consists of eight classes .
Riemannian G - sructures of class Ty, are discussed in 82 and nearly particular
structures (class T3) in 83 . In 83, we also consider some algebraic constructions
connected with a nearly particular quasi homogeneous structure and the main
decomposition theorem for a manifold with such a structure.

We refer to [23], [24] , [41] , [67] .

81. CLASSIFICATION WITH RESPECT TO O(n)

1° . We continue the study of the fixed pair (P(H),g), where H=G0(n), and
its second fundamental tensor field h=V —V, where V is the Riemannian
connection, V is the canonical that of the structure. We follow [67].

3 *
We consider a pointpeM , T = T,(M) and a vector subspace T(T) of ®T

3 *
T (T):{h€®T thyyz ==hyzy, XY ,Z GT}.

If Ey,...,E, is an arbitrary orthonormal basis of T, then T(T) is an Euclidean
vector space under the inner product

(31) <h,hl>: Z hEiEjEk 'hlEiEjEk .
i,j.k

The natural action of the orthogonal group O(T) on T induces the action on
T(T) by the formula

(3-2) (ah)xyz =Nysxayaiz

where X,Y,ZeT and aeO(T).
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We define

Ti(T)=fheT:hy, =<X.Y > B(Z)-< XY > B(Y), BeT"},

To(T) ={heT(T):0 hyy; =0, c,(h)=0},
T3(M={heT(T):hyyz =—hyz 1,

where X,Y,Z€eT, ¢;,(h)Z=>hgg; and o denotes the cyclic sum over
i

XY, Z.

THEOREM 3.1 [67]. If dim T >3 , then T(T) is the direct sum of the
subspaces T;, T,, Tz and T; each , i=1,2,3 is invariant and irreducible under
the action of O(T).

It is obvious from this theorem that we can construct 8 classes which are
invariant with respect to O(T)

TABLE 3.1
Class Defining condition
particular class h=0
Ty hyyz =< XY > B(Z)-<X,Z>B(Y), Be(T)
Tz O hyyz =0, ¢(h)=0
T3 hxvz = —hyxz
T.®T, G hyyy =0
T ®T; MyzHe=2<X.Y > BZ)-<X.Y > XY )}-<Y,Z> K X), BT
T,®T; Cio(h)=0
T hyzv =—hxzy
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2° . From (2.2) for every peM the second fundamental tensor
h, =(V-V), eT(T) and this table is very useful for our study.

DEFINITION 3.1. We shall say that the structure (P(H),g) has a type T , or
belongs to the class T ,, on M if hye T ,(T,M)) for each peM. Here T , is
one from the classes from the table 3.1.

THEOREM 3.2. A pair (P(H),g) is a nearly particular structure if and only
if its second fundamental tensor field h belongs to Ts,

Proof evidently follows from the formula
hyvz =1/2(hyyz +hyxz ),

where X,Y,Z € X(M).
QED.

Thus, nearly particular structures give examples of the structures having the
type Ts.

THEOREM 3.3. Let (P(H),g) be a quasi homogeneous structure having a
type T, for some point peM. Then this structure belongs to the class T, on
M.

Proof. We consider a curve ¢(t), te[O;1], AO)=p, ©{1)=q and the parallel
translation 7, of V along y(t). We denote by X, Y, Z, E; the vector fields defined on

some neighborhood of y which are parallel along #¢(t). Then from the condition
Vh=0 it follows that

(hxyz )q = hqu%quqz =(hyyz )p

Therefore

(c12(h)Z), :(ZhEiEiZ )q =(C2(h)Z),,

(O hyyz )g =( O hyyz )p-
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If heT:®T, , then By is correctly defined form as the parallel translation of
B, along (t). The form S is independent on the choice of a curve because h and g
are parallel along #(t) and unique in the point q.

Using defining conditions from the table 3.1 it is easily to see that all the

classes are invariant under the parallel translation.
QED.

REMARK. Let h be a homogeneous Riemannian structure on a
homogeneous Riemannian space M and let P(ug) be the holonomy fibre bundle of
V =V —h containing the frame u,eO(M), (see theorem (AS) in 83 of chapter 2) .
The examples homogeneous Riemannian structures of the all 8 types are
considered in [67]. From theorem 2.15 it follows that the second fundamental
tensor field of (P(up),g) coincides with h. So, if heT,, then the holonomy fibre
bundle of V=V gives an example of a G - structure of the corresponding class.

§2. RIEMANNIAN G-STRUCTURES HAVING TYPE T; AND T,

1° we say that a structure (P(H),g) belongs to the class T, on M if
hoeT1(Tp(M)) for each peM, that is,

(33) hxyz = <X,Y>ﬂ(Z) - <X,Z>ﬂ(Y),

where S is a nonzero 1-form on M and X,Y,Z eX(M).
We can define the nonzero vector field £ on M by the formula

<&X>= B(X)
and in this case from (3.3) it folows that
(3.4) hyY=<X,Y>& —-< £Y>X

It follows from (2.3) that the torsion T of the canonical connection has the
following form

(35) TyY=-2hyY =h X —hyY =<Y X>E-<EX>Y-<XY>E+<EY > X

=<£ )Y >X —<&, X >Y

Let L = [£] be the one-dimensional distribution on M defined by the vector
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field £ and let V = L" be the orthogonal complement of L. We have the almost-
product structure

(3.6) T(M) = L&V.

PROPOSITION 3.4. The structure (3.6) is invariant with respect to the
canonical connection V .

Proof. We take peM, 4:”5”‘15, u = {p; &= Eo, Ey,....En.1}eO(M) and
such E,,Ey,....E, ; €Q, =(Ker@), that 7.(E;)=E;,i=0,..,n -1, where ris
the canonical projection and @ is the O-valued form of the canonical connection
in P(H). According to [7] we have that

he E; =ur(E; uE;,
where 7=w—® and o is O - valued form of the Riemannian connection.
From (3.4) it follows that

o lo -- Hg” 0]
%f_/

0
: emcQ,i=1,.,n1; 7(E,)=[0]
[ 0

0

Let mo be the linear span of the z(E; ),...,/(E,,_; ) , that is,

0/0 - 0
0

0O |B
o:{ O}Cmcg, no:mé: : cO.

0

Since mpcm then hchy and H is a Lie subgroup of the Lie group
K = 1x0O(n-1), that is, H=1xH’, where H’cO(n-1). The structure P(H) is
invariant under the parallel translation of the connection V, hence its extension

P(K) is invariant too.
QED.
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PROPOSITION 3.5. The distribution p —V, is integrable on M.

Proof. We consider X,YeV, XLY. It folows from (4.4) that hyxY eV and
hyX €V, proposition 3.4 implies that V,Y eV and Vy X €V , therefore

and [X,Y] =VxY-Vy X e V.
QED.

2° We have obtained the foliation A on M defined by the integrable
distribution V. Let M’ be a fibre of this foliation containing a point peM and let V'
be the Riemannian connection on the submanifold M".

LEMMA 3.6. V'=V on M.

Proof. If X,YeX(M’) then, from (3,4), we have
VY =V, Y=<V Y (> =V, Y=—<hY (>C
=V Y=< XY >[EJ6 =ViY—< XY >E=V,Y.
QED.

This lemma implies that the second fundamental from of submanifold M” is
defined by the formula

(3.7) a(XY) = <X,Y>¢

for any vector fields X,Y tangent to M.

THEOREM 3.7. The structure P(H) induces the particular structure P(H")
over M”.

Proof. From the proof of proposition 3.4 we see that H = 1xH’”and we can
consider the structure P(H’) over M’

P(H) ={{p; Es.....Ena}},

where peM”and {p; {,=Eo,E;....,Er1}eP(H).
Since P(H) is invariant under V over M, then P(H" is invariant under
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V‘M. =V'. So, from the construction of the second fundamental tensor field h, it is

evident that @' = @' and h'=V'=V'=0 on M".
QED.

For any vector fields X,Y,Z,W tangent to M” we have , [73] , equation of
Gauss

(3.8)
<RyyZW >:<R'XYZ,W >—<a( XW),(Y,Z)>+<aY W), X,Z)>,

where R, R”are the curvature tensors of V,V' respectively and, using (3.7), we have
obtained

(3.9) <Ry ZW >=<RyyZW >+H§H2(<Y,W ><X,Z>—<XW><Y,Z>).

3 LetMbea space of constant curvature k, [73] , then for any X,Y,ZeX(M)
the curvature tensor of V is given by

(3.10) RyyZ = k(<Y,Z>X — <X,Z>Y)

TEOREM 3.8. Every fibre M’ of the foliation Adsa space of constant
curvature k +H§H2 and |&] is constant on M( [¢| = c).

Proof. It follows from (4.9) and (4.10) that

<RyyZW>=K(<Y,Z><XW>—<X,Z ><Y,W>)—“£j\2(<Y,W><X,Z >—<XW><Y,Z>)
= (k+[gf )<Y, Z>< X W >—< X, Z ><Y W >),

where X,Y,Z,WeX(M’). For each plane [XAY] in the tangent space Tp,(M?,
where X,Y is an orthonormal basis for [XAY] ,the sectional curvature

K([XAY])=< Ry, Y, X >=k +H§H2 and it depends only on the point peM”. From the
Schur’s theorem, [73], (k + || ) is constant on M’and [&]= ¢ on M".
QED.

REMARK. Perhaps [¢&| is not constant on M.
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1° Now, we shall generalise a theorem of F. Tricerri and L. Vanhecke from
[67] considered for h.R.s. on M on the case of quasi-homogeneous structures
having the type T;.
Let [¢| be constant on M , then we shall obtain that P(H) is a quasi

homogeneous structure.

PROPOSITION 3.9. ||€|=con M if and only if Vh=0.

Proof. It is obvious that |£[=c if and only if Vy&=cVy¢ =0 for any

XeX(M). For an integral curve y(t) of the vector field X we can consider vector
fields Y, Z which are parallel along y(t), that is, VY =V Z =0. So, we have got

(Vi h)(Y,Z)=Vy (Y, Z)=V (<Y, Z>E-<EZ>Y)=<Y,Z>VyE+ <V EZ>Y

From this identity the proposition follows.
QED.

THEOREM 3.10. Let (P(H),g) be a quasi homogeneous structure over M
belonging to the class T;. Then (M,g) is locally isometric to RxM” with the

Riemannian metric ds? =c?dt? + e 2°tg', where g’ is the induced

Riemannian metric on M”and dt(& )=1.

Proof of this theorem is the same to one considered in [67] for the case
when h is a homogeneous Riemannian structure (h.R.s.) on M ( see chapter 2, 83).

REMARK. Proposition 3.9 and theorem 3.10 allow us to construct
examples of quasi homogeneous structures having the type T;.

5° Let h be a h.R.s. on M , that is, Vh=0, VR =0, where R is the
curvature tensor field of V . The following results were considered in [67] .

1) All the nontrivial h.R.s. on surfaces have the type T;.

2) Ifhis anonzero h.R.s. on a surface M, then (M, g) has a constant negative
curvature.

3) Let M be a complete, simply connected surface, then M admits a
nontrivial h.R.s. if and only if (M, g) is isometric to the hyperbolic surface
H2

4) If a manifold M admits a h.R.s. of the class Ty, then (M, g) has a constant
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negative curvature.

5) Let M be a complete, simply connected Riemannian manifold ,then there
exists a nonzero h.R.s. heT; if and only if (M, g) is isometric to the
hyperbolic space H".

6) For any fibre M’ of the foliation A we have R’= 0.

6°. O.Kowalski and F.Tricerri in [49] otained the following classification
results:

I) Each connected, complete and simply connected Riemannian manifold
(M, g) of dimension n = 3 admitting a non-trivial homogeneous structure of class
T, is isometric to one of the following homogeneous Riemannian spaces:

(a) The ordinary sphere S}(R) with the sectional curvature k = 1/R%

(b) The group E(1,1) with a left invariant metric g such that dim I(M, g)= 3.
The admissible metrics form a one-parameter family.

(c) The universal covering group SL(2,R) of SL(2;R) with a left-invariant

metric g such that dim 1(M,g) = 3. The admissible metrics form a two-parameter
family.

/\/ - - - -
(d) The group SL(2,R) with a left-invariant metric g such that dim

I(M,g)= 4. The admissible metrics form a two-parameter family.

(e) The group SU(2)= S with a left-invariant metric g such that dim
I(M,g)=4. The admissible metrics form a two-parameter family.

(f) The Heisenberg group Hs; with any left-invariant metric. These metrics
form a one-parameter family.

Moreover, the spaces sub(b) are 4-symmetric, but not naturally reductive; the
spaces sub(c) are also not naturally reductive. The spaces sub(d)-(f) are non-
symmetric naturally reductive spaces.

In dimension 3, a non-symmetric space admitting a non-trivial homogeneous
structure of class T3 also admits a non-trivial homogeneous structure of class To.

I1) Each connected, complete and simply connected Riemannian manifold
(M, g) of dimension n = 4 admitting a non-trivial homogeneous structure of type
T, is isometric to one of the following Riemannian homogeneous spaces:

(a) (M, g) is the Cartesian space R*[x, vV, z, t] provided with a Riemannian
metric of the form

g=e2%dx? + e 2Ptdy? 4 e2(@+Pgz2 4 dt?

where a 20, B #0, o #—f are real parameter.
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(b) (M, g) is the Cartesian space R*[x,y, u, v] provided with a Riemannian
metric of the form

g={-X+X° + Y% +1}du® +{x+ /x> + y? +1}dv?
—2ydudv+A2(1+ X% + y2 ) H(1+ y?)dx® + (1+ x? )dy? }
—2xy dx dy,

where A >0 is a real parameter.

(c) (M, g) is a Riemannian product (Ms, g)xR , where (M3, g”) is one of the
spaces given in 1).

The space (a) and (b) are always irreducible as Riemannian manifolds.

The space (a) can be described as the matrix group G whose elements are

et 0 0 X
0 eft 0 y
0 o0 elarhlt 4
0 0 0 t

equipped with a special left-invariant metric.

The space (b) is the homogeneous space G/H , where G is the group of all
positive equiaffine transformations of the plane and H is the subgroup of all
rotations around the origin, equipped with a left-invariant metric from a special
one-parameter family. All spaces of type (b) are 3-symmetric Riemannian spaces.

Let h be a h.R.s. of the type T, on M, where M is one from the manifolds
considered in 1), 11) and P(uo) the holonomy bundle of the canonical connection
V=V-h. According to Theorem 2.15, the second fundamental tensor field of
P(up) coincides with h and P(ug) gives an example of a G-structure having the type
T,.

83. NEARLY PARTICULAR STRUCTURES

1°. It follows from Theorem 3.2 that the nearly particular strucures coincide
with those having a type Ts. In this case we see that for any X,Y,Z eX(M)

(3.11) hyyz =—hxzy =hzxy
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If dim M = 2, then (3.11) implies that h = O, thus, every nearly particular
structure is a particular one.
Let M = K/K, be a naturally reductive Riemannian homogeneous space with
K—invariant Riemannian metric g=<,> and with ad(K,) - invariant
decomposition

k=k®&m
such that for any X,Y,Zem
<[XY]n, Z> + <[X,Z]n, Y>=0

where K =Tr(V ) and <, > is the inner product in m induced by g, (see [47]).
Then the canonical connection V satisfies (2.13) and defines such a h.R.s.

h=V -V on M that hyY :%[ XY ] Itis evident that hxyY = —hyX. Let P(uo) be

the holonomy fibre bundle of % containing a frame u,eO(M). Then from
Theorem 2.15 it follows that V-V =V —V and the second fundamenal tensor
field of P(uo) coincides with the homogeneous Riemannian structure h. Thus P(uo)
gives an example of a nearly particular structure on the space M.

If we consider a nearly particular structure on a complete, simply connected
manifold M for which Vh=0, VR=0 then, from Theorem 2.4, (M, Q) is a
naturally reductive Riemannian homogeneous space with h.R.s. h.

It is well known that all the irredusible symmetric spaces are naturally
reductive. Every isotropy irreducible homogeneous space belongs to this class ,
[71]. Each nearly Kaehlerian 3-symmetric space is naturally reductive, [33] .

The case of compact Lie groups was discussed in [4].

See the survey about the recent research on naturally reductive Riemannian
homogeneous space in [50].

Let M be a 3-dimensional manifold. Some results about this case one can
find in [67].

A) Let M be a connected, simply connected, complete manifold, dim M = 3,

and there exists a h.R.s. h on M having a type T3, h=0. Then M is

isometric to R®, $°, H® or to one of the following Lie groups with a left-
o~

invariant Riemannian metric: 1) SU(2) , 2) SL(2,R)(universal covering
of the group SL(2,R)), 3) the Heisenberg group.

B) If there exists a h.R.s. h on M, dim M = 3, having a type T:®T; then h
belongs to T, or T3 separately.
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REMARK. As we shall see later on, a nearly particular structure generalizes
a notion of the nearly Kaehlerian structure [32], [34] .

2° We consider now a nearly particular quasi homogeneous structure P(H)
on a Riemannian manifold (M, g), that is, h =h~and Vh=0.

Let T be an Euclidian vector space under an inner product <, > and there is
defined a bilinear operation

*:V xV 5>V
such that for any X,Y,ZeT
1) X#*X=0, 2) <X#*Y,Z>=<X,Y *Z >,

Constructed algebra is called a QR—algebra. The theory of QR-algebras was
developed in [41] .

A QR-algebra is called simple if it have no ideals except {O} and T,
semisimple if it have no Abelian ideals except {O}.

DEFINITION 3.2. We say that a QR—-algebra T is a direct product of ideals
o dy,nl, ifT=1@1;,®...® 1., where |; is orthogonal to I for every

I #]. In this case we denote T =1y x 1y x..x1 .

THEOREM 3.11 [41]. Each QR - algebra T is a direct product of its Abelian
ideal Ip and non-Abelian simple ideals.
This decomposition is unique up to an order of factors.

Let T be a QR - algedra and T =1l,xI;x..xI, is the direct product from
Theorem 3.11. Letdim T = nand E;,...,E, be an arbitrary orthonormal basis of T.

DEFINITION 3.3. We shall call a linear mapping A: T — T a fundamental
operator, if it is defined by

n
(3.11) <AX )Y >=Y <X *EY *E, >
k=1

It is easily checked an independence of A from a choice of an orthonormal
basis (see(2.9)).
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THEOREM 3.12. Let T be a QR - algedra and A be its fundamental
operator. Then we have

1) <AX,Y> = <X,AY>, 2) Ker A= lo, 3) A(l)=l; ,i=L1,..r.

Proof. 1) evidently follows from (3.11).
2). We have from (3.11) that

<AX X 5= SIX *EJ
k=1

and, if XeKer A, then X#E, = O, k =1,...,n; therefore X+Y = O for any YeT
and Xelg. Conversely, if Xelg, then X#E, =0, k=1,...,n and it follows from
(3.11) that <AX,Y> = O for every YeT , that is X eKer A. Thus ly= Ker A.

3) Let Ej,..E5 ..Ef,..E§ be such an orthonormal basis of T that
Ei....Eg isabasis of Ii. If Xel; and Yel;, where i =], then
Si . .
<AX)Y >=Y <X *E. Y *E >=0,
k=1
therefore Al;  I;. Since A is nonsingular on Iy, hence Ali=1;, i=1,...I.
QED.

COROLLARY. There exists an orthonormal basis of T composed from
eigenvectors of the operator A that the matrix of A has following form in this basis
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where lj >0, j=1,..l.

Thus T is a direct sum of the orthogonal each other proper subspaces of A,
T=1,04,8..®A,

DEFINITION 3.4. A QR - algebra T is called a QRA — algebra if | =r and
Ai == Ii’ | :1,...,r

EXAMPLE. If A has only one eigenvalue or two (one of which is equal to
zero), then a QR - algebra T is a QRA - algebra.

PROPOSITION 3.13. If T is a QRA - algebra , then
A(X#Y) =AX*Y = X#AY, XY €T.

Proof. The operation = is bilinear and the operator A is linear, therefore it is
sufficienly to prove this formula for vectors of some basis of T. If T is a
QRA —algebra, then above-mentioned basis Ell,...,Esl1 v E1 Eg consists of the

eigenvectors of the operator A. Thus we have
Ex *EJ =0, i# j; AE| *Ey =E} » AEy = A(E} *Ey )= 4(E} *Ey ).
QED.

3°. We apply this algebraic construction to our situaion.

THEOREM 3.14. Let P(H) be a nearly particular quasi homogeneous
structure on a manifold M . There exists unique up to an isomorphism QR -
algebra T associated to P(H).

Proof. We consider peM , T=T,(M) and define an operation * by
X =Y =hxY , where X,YeT and hyY is the second fundamental tensor of structure
P(H) on T. It follows from (3.11) that (T,*) is a QR - algebra. Let q be another
point of M and T’=Ty(M). We have to show that the QR - algebra (T’*) is
isomorphic to (T,*). Let y be a curve segment in M connecting p and g, and let 7
be the parallel translation along y in the connection V. 7 is an isomorphism of the
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vector spaces To(M) and Ty(M). Since Vg=0 then <7 X, 7Y >=<X,Y > for
X,YeT,(M). From the identity Vh =0 it follows that (7 X )* (7Y )=7(X.Y).
Thus, we have obtained that 7 is an isomorphism of QR - algebras (T, *) and
(T *).
QED.
It follows from (2.6) that in our case for any X,Y,ZeX(M)

We can define so-called induced Ricci tensor by the formula

(3.13) ri (X,Y)= zn;<(§—R)XEkY,Ek >,
k=1

where E;,...,E, are orthonormal vector fields on some neighbourhood.

n
LEMMA 3.15. ri(X,)Y)=<r'XY >= > <hy Ey ,hyE, >, where rt s
k=1

defined by (2.8) .

Proof. Using (2.3), (3.11), (3.12) we have

n n
ri(X,Y)=2<(R-R)g Y.Ec>=2.(hgnve, —hxn, ve, +2Mn e ve, )
k=1 k=1

n
= kzl(Zh\(EthEk - hXEkhYEk - hEkEthY )

I
M=

(2<hyEy ,hy E >—<hyE, ,hyE, >)
1

=~
Il

<hy E, .0 E, >=<rX Y >
1

M=

=~
Il

QED.

For every peM and any X,YeT,(M) we can define X*Y = hxY and obtain a
QR-algebra (T, *). It follows from (3.11) that the fundamental operator A of this
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algebra coincides with r! and Vr! =0 from Theorem 2.6. The proper subspaces
of A=r! define the differentiable distributions p—Ap, i=1,.,1 which are
orthogonal each other and Ker r' =1, is the differentiable ideal on M. If Ye A,
then AV, Y =V, AY =4V,Y and 4;, i =1,..,l are invariant with respect to V .
Every ideal I;, j=1,...,r is a direct sum of some proper subspaces from Theorem
3.12, 3), therefore it defines a differentiable distribution p—1;, on M and we

have

(3.14) Ty((M) = lgp ® 13p® ... @ I

PROPOSITION 3.16. The distributions 1;, j = O,...,r are invariant with
respect to V, in particular, they are integrable and the maximal integral
manifold of I; is a totally geodesic submanifold of M.

Proof. For any Yel;, j = O,...,r we can writt V4 Y =V, Y +h,Y. | is
invariant with respect to V, hence VY e1; and hxY = X*Y el; because | ; is the
ideal. Thus VY el and I is invariant with respectto V.

QED.

The structure (3.14) and P(H) are invariant with respect to V , therefore, in
the class of G - structures conjugated with P(H) there exists a sructure P(H ),
which has a common subbundle with (3.14) , thatis H =H, x...x H, <O(n) and
P(H) induces the structure P(H;) on I;. P(H ) is invariant with respectto V=V

on Iy, therefore it is particular. For P(H;) , j=1,..,r hx=0 for any XeX(M),
X0, hence P(Hj) is strict.

We can unite now all the above-mentioned facts in the main decomposition
theorem for a manifold with a nearly particular quasi homogeneous structure P(H).

THEOREM 3.17. Let M be a complete, simply connected manifold and

P(H) be a nearly particular quasi homogeneous structure over M. Then we

have

1) M is isometric to direct product MyxM; x..xM_, i=0,..,r, where
each M; is a totally geodesic submanifold of M (M; is the maximal
integral submanifold of |;, see Proposition 3.16, passing through a fixed
point of M);
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2) there exists a structure P(H) conjugated with P(H) in O(M), which

induces a particular structure P(Ho) over Mg and a strict, nearly particular,
quasi homogeneous one P(H;), j = 1,...,r over Mj;

3) if associated to P(H) the QR - algebra (T, *) is the QRA - algebra, then
ri(X,Y)=4;<X,Y> on Mj, where 1; is an eigenvalue of A (see

(3.13)).

A° Let P(H) be a nearly particular structure, maybe Vh=0 and R, R denote
the curvature tensor fields of V,V respectively.

PROPOSITION 3.18. <(R—R)yy Y, X >=|hyY|?, X,YeX(M).

Proof. The condition hyX = O implies that VX =V X for any XeX(M).
From (2.3) VY —=Vy X = [ X,Y ]=-2h,Y and hyyz = hzyy from (3.11).

<(R—ﬁ)ny,X >:<vayY,X >—<Vyva,X >_<V[X,Y]Y’X >

—<VyVyY X >+ <Vy Vi Y X >+ <VyyqY, X >
=X <VyY X>=<VyY Vi X>-Y <V Y X>+<V Y, Vy X >
X <VyY X >+<VyY Vi X >4Y <V Y X >-<VyY,Vy X >
—Npx yyvx
=Y[X <Y, X>=-<Y,VyX>-X<Y,X>+<Y,Vy X >]
+< VY, Vy X > =<V, Y, Vy X > -hry ypvx
=<Vy X +[X,Y]-2hyY,hy X >+ <V, X,hY >
2
=Y ™ =y v gvx
2 2
=[0Y[” + Bvxpry =M =[x Y|

QED.

This proposition can be useful when we study concrete structures on spaces
of constant curvature k.



CHAPTER 4
RIEMANNIAN REGULAR o-MANIFOLDS

Symmetric spaces and their generalizations play an important role in modern
differential geometry and its applications, [48],[58]. In this chapter we introduce

and study the so-called Riemannian regular G-manifolds, which generalize on the
one hand the spaces with reflexions [56] and on the other hand the Riemannian
regular s-manifolds [48]. We want to point out that the term "subsymmetry" was
first used in [62] .

In 81, we give the axioms of Riemannian (locally) regular o-manifold and
determine the canonical connection and the foliation of mirrors. The structure of

Riemannian regular o-manifold is considered in 82. Every such a manifold can be
described as a fibre bundle over a regular s-manifold. 83 is devoted to the Lie

algebra of infinitesimal automorphisms of Riemannian regular G-manifolds. In 84,
we consider orbits under the action of the structural group G and the main

examples of the Riemannian regular -manifolds. Riemannian locally regular G-
manifolds are discussed in 85.
The works [26] , [27] , [48] , [56] , [57] are close to this chapter.

81. BASIC NOTIONS

1°. DEFINITION 4.1. We call a conneced Riemannian manifold (M, g) with

a family of local isometries {ss: xeM} a Riemannian locally regular G-

manifold (R.l.r. o-m.), if
1) s, (x)=Xx, 2) the tensor field S:S, =(s, )., IS smooth and invariant

under any subsymmetry s, , 3) there exists a connection V on M invariant
under any s, , such that

VS =Vg =0.
As S, =(s, ), It is evident that
g(SX,SY) = g(X,Y) , X,YeX(M).

Let M be a R.l.r. -m. and suppose all the subsymmetries s, are determined
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globally. Then, we call M a Riemannian regular -manifold (R.r. c-m.).

Let the closure G = CL({s«}) of the group generated by the set {s,: xeM} in
the full isometry group I(M) of a R.r. o-m. M be a transitive Lie group of
transformations. Then M is a Riemannian homogeneous space with the canonical
connection V (M is reductive, [47]).

S is G-invariant, S is invariant under every sy, and it follows that
VS =Vg =0.

The following example shows that the axiom 3) of Definition 1.1 is
significant.

EXAMPLE. Let M =R? xR be three - dimensional Euclidian space with
the standard flat Riemannian metric g. For every point x (X1, X2, t) we define sy as
the rotation around the axis X; =c¢;, X=C, on the angle t of any plane

R?: t = const, hence s (x) = x. It is clear that s, is an isometry for each xeM and
S, =(s, )., has the following matrix on T, (M) = R®

cost —sint 0O
sint cost O
0 0 1

The affinor S is smooth on M. One can verify with a help of compasses that

Sy Sy =Sy Sx, W=5,(Y), X,yweM

Differentiating this equality at the point y we obtain

(Sx "Sy )ky = (S )ky '(Sy )ky =( Sy )ky 'Sy’

(SW'Sx)ky:SW'(Sx)ky’

therefore S is invariant under any s,. It is clear that S is not O-deformable
and a canonical connection V does not exist.

2° The condition VS=0 on a R.Lr. 6-m. M implies that S has on M a
constant Jordan normal form. An almost product structure can be defined on
M: T(M)=T*(M)@ T?(M), where T' is a distribution corresponding to the
eigenvalue 1, T2=TH
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In the case when T'= {0}, M is a Riemannian locally regular s-manifold,
[48]. Further on, we assume T* = {O}.

THEOREM 4.1 . Let M be a R.L.r. o-m. Then the distribution T' is
integrable and its maximal integral manifolds are totally geodesic
submanifolds with respect to the Riemannian connection V.

Proof. From the fact that connections Vﬁ are invariant it follows that the

tensor field h=V —V is also invariant under every s,. Since h is invariant and
S, =(Sy )y, it follows that

hsx SY = th Y, X,YEX(M)

Let X,YeT?, then ShxY = hsxSY = hxY and hyY =V, Y —V,Y eT?. Since
VS =0, T'is invariant under V and we get

VoYeTl, VY=V, Y +h,YeT! [XY]=V,Y -V, XeT

T' is autoparallel under V and it follows that its maximal integral
submanifolds are totally geodesic.
QED.

The distribution T* defines the foliation A ={A, : xeM }. The fibres of A

will be called the mirrors.
The canonical connection is unique for any Riemannian locally regular s-
manifold, [48]. For R.Lr. -m. we have

PROPOSITION 4.2. Let 6,%‘ be canonical connections from Definition
1.1and XeT!. Then V, =V'y on M.

Proof. S has no fixed vectors exept the null vector in T2, hence (I - S) is an
isomorphism on T2 and for XeT? X =0, (I - S)X = O. Let XeT?, YeX(M) and let
6,6‘ be canonical connections from Definition 1.1, E —V-_V'. Then for
X =(1-S)X;,Y=SY; we have

ExY =E(1_s)x,SY1 =Ex SY; — Egx SY; —SEx Y; —SEx Y, =0,
therefore ~ V, =V  (SEx Y;=Ex SY;  because  V(S)=V'(S)=0,
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SEx Y; =Egx SY; because E is invariant under every sy ).

QED.
It is desirable to get an explicit form of a canonical connection.

THEOREM 4.3. Let M be a R.l.r. o-m., V the Riemannian connection, and
V' canonical connection, 7,7, the projections on T*, T2 respectively. Then

some a new canonical connection

4.1)VyY =VY —(V S)S7LY), XY eX(M).

(1-8)*z,X
Is determined on M.

Proof. As (I - S) is a nonsingular on T?2, it is obvious that V is a connection.

Let hyY :(V(I Sy S)S‘lY Since V and S are invariant under every sy, it

follows from (4.1) that V is also invariant under every s,. So, both the tensor
fields h=V —V and h'=V — V' are invariant under every sy, hence ShyY = hgx SY

and Shy Y =hey SY for X,YeX(M). Using that S-z; = 7; we obtain

=(VxS)Y —(V, xS)Y =(V, xS)Y =V, xSY—=SV, yY ~(V, xSY-SV, xY)
=h, xSY =Sh, xY =h; ySY —hg, «SY =0, XY e X(M)

Further on, we have

hyY =(V (S)(SY)=h «S-S7'Y —sh S‘lY

(1-S)'r, (1-S)'z (1-S)'x

- h(|—3)*1n2xY - hS( | —S)’IEZXY - h(I—S)(I—S)’lnzxY - hzrzxY
For XeT! hyY=Oand Vy =V,, for X eT? h,Y =h,Y and V, =V .
The identity Vg =V g =0 implies 69 =0.
QED.

REMARK. From Theorem 4.3 it follows that the connection V defined by
(4.1) is necessary canonical, i.e., it has to be realized
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(4.2) VS=0, ShyY =hg SY, X.Y € X(M)

on R.Lr. o-m. Therefore, if the conditions (4.2) are not fulfilled on a
Riemannian manifold (M, g) with an affinor S, then the affinor S is not defined by
some structure of a R.L.r. -m.

Definition 4.1. can be rewritten in the following form

DEFINITION 4.2. We call a connected Riemannian manifold (M, g) with a

family of local isometries {s,: xeM} a Riemannian locally regular o-
manifold, if 1) s,(xX)=x, 2) the tensor field S:S, =(s, )., IS smooth, O-

deformable and invariant under any subsymmetry s,, 3) 68:69:0,
where V is the canonical connection defined by (4.1).

3°. DEFINITION 4.3. We call a connected Riemannian manifold (M, g)
with a family of local isometries {sy: xeM} a Riemannian locally regular

o-manifold of order k (R.l.r. 6-m.0.k), if 1) s, (X)=x, 2) the tensor field S
determined by the formula S, =(s, )., IS smooth, invariant under any s, and

satisfies the condition S*=1.

Let M be a R.L.r. 6-m.o.k and suppose all the symmetries are determined
globally. Then we call M a Riemannian regular c-manifold of order k (R.r. &-
m.o.K).

The following theorem shows that any R.L.r. -m.o.k is a R.l.r. 6-m.

THEOREM 4.4. Let M be a R.Lr. 5-m.o.k, S¥ =1, and V the Riemannian
connection of g. Then the connection

- k-1 .
(4.3)vxvzvxv—%zvx(sl jsk-iy =L zslv SK-iy | XY e X(M)
=1

is determined on M, VS = §g =0, and V is invariant under every sy.

Proof. V is obviously a connection. Further, we have

k—1 . . .
(V4 S)Y = i S(Slvyskity —sitly, skly ):%(vxskﬂv ~-5%V,SY)=0

j=0
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9(VxY.Z)+ g(Y,VxZ>=%Z[g(Svask“Y,Z>+ g(Y,8'vys 1)z]
j=0

1k k—jy ok-] k-] k-]
:EZ[Q(VXS Y, S*Z)+g(S* Y Vi S*IZ)]
j=0

k-1 . .
:% > Xg(S*IY,8¥71Z)=Xg(Y,Z), X,YeX(M)
j=0

that is, 69 =0. As V and S are invariant under every sy, it follows from

(4.3) that V is also invariant under every Sy.
QED.

PROPOSITION 4.5. Let M be a R.l.r. o-m.o.k. Then the canonical
connections defined by (4.1), (4.3) coincide.

Proof. For XeT? the coincidence follows from Proposition 4.2. If XeT*!
and V is defined by (4.1), then we see from (4.1) that Vy =V, and

VyS= §x S =0. Finally, from (4.3), Proposition 4.5 follows.
QED.

§82. RIEMANNIAN REGULAR o - MANIFOLDS

1°. In this paragraph, we consider a R.r. 6-m. and its foliation of mirrors.

LEMMA 4.6 [46]. Let ¢ and w be isometries on (M, g), @(X)= w(X),
Pux =W,y fOrsome xeM. Then ¢ = yon M.

LEMMA 4.7. All the subsymmetries sy are affine transformations with
respectto V.

Proof obviously follows from Definition 4.1.

PROPOSITION 4.8. Let M be a R.r. -m. and s, a subsymmetry on M.
Thenwe have s, , =id, andif x; € A,, then s, =s, on M.
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Proof. Since s, and S commute, T* and A are invariant under s, and it
follows that s,( A, )=A,. For the restriction Sy, W€ have s,(X)=X, Sy, =1.

According to Lemma 4.6, s,=idon A,. Let x;eA,, then s, =id and
le(X) =S,(X)=x. Consider veT, (M) and a curve r,connecting x and x;. Denote

the parallel translation with respect to the connection V by 7. According to

Lemma 4.7, all the subsymmetries commute with the parallel translation; the
parallel translation commutes with S, because VS =0. Thus,

T ((Sx, Jex(V))=(5x, Lx, (7e(Vv)) =57 (V) = 7 (SV)

and we get (s, ).x =(Sy kx =S. According to Lemma 4.6, s, =s, on M.
QED.

THEOREM 4.9. Let M be a Rr. o-m, N={A :xeM},
7:M — N:x— A,. Then N is a smooth manifold and = is a differentiable

submersion.

Proof. According to [61], it is sufficient to show that the foliation is regular.
Let U(x) be a convex neighbourhood of x in which there exists a foliated chart of
the foliation A, [66] , and let x,eU(x). Suppose that A, , A, are connected

components of A, NU(x) which do not coincide (x ,eU(x)). Then there exists a
unique minimizing geodesic y(t) in U(x), where te[ty, t2], At)= X1, ft2)=X,. The

iIsometry s, transforms y into a geodesic y’cU(x) and y is a minimizing geodesic
too, [46]. Proposition 4.8  yields  that Sy, (Ay, )=4y, and

Sy, (X1)=Xg, Sy (Xz)=X,. Since the minimizing geodesic which connects x, and
X2 Is unique we have y'=y . Thus s, (¥)=y and (s, )x (7)=Sy (7)=7, hence
Vx, eTxl1 . According to Theorem 4.1, A, is a totally geodesic submanifold of M,
so y < A, . Because /TX1 ’/sz are arcwise connected in U(Xx), they coincide. The

contradiction obtained proves the theorem.
QED.

2° We want to show that any R.r. -m. can be considered as a fibre bundle.
Let I(M) be the full isometry group of a R.r. -m. equipped with the compact open
topology and let G=CL({s,}) be the closure in I(M) of the group generated by the
set {sx : xeM}. Then G is a Lie group of transformations.
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LEMMA 4.10. The foliation A is invariant under all the transformations of
the group G, i.e., G transforms mirrors into mirrors.

Proof. Consider a sequance {a,}—aeG, where a,€G. As S is invariant
under subsymmetries, S is also invariant under each a,. But then a.-S=S-a..

Since the tensor field S is invariant under the group G, T ! is also invariant under G.
It follows that G transforms mirrors of the foliation A into mirrors.
QED.

LEMMA 4.11 [48]. If G < I(M) is a closed subgroup then all G-orbits are
closed in M.

Let us define the action of the group G on the manifold N:
GxN—>N:(a,y)—x(a-x), where y=n(x). From Lemma 4.10 we see that this

definition is correct. The action is obviously differentiable.

THEOREM 4.12. Let M be a R.r. -m. and N the corresponding manifold
of mirrors. Then the group G is a transitive Lie group of transformations of
the manifold N.

Proof. Let XoeM and U(xo) be a convex neighbourhood of x, with respect to

V, which is a foliated chart of the foliation A4 . Suppose that x is an arbitrary point
in U(xp), XA T Is a distance from Xxo to the G-orbit G(x) of the point x:

r =inf d(xq,a(x)). Since G(x) is closed, one can find zeG(x) such that r= d(xo, z).
aeG

Let us suppose that z ¢ A, . Then there exists a geodesic segment of the length r

joining Xo and z. Let w be a point of this segment between X, and z. Then y,, gT!?
because otherwise, according to Theorem 4.1, the whole segment would lie in A,
and ze A, = A, . Thus, sw(z)=z, su(z)G(x). Hence, all the points xo, z, w, Su(z)

lie in U(x). Using the triangle inequality we get

d(Xo, Sw(z)) < d(xo, W)+ d(W, $w(2))= d(xo, W)+ d(sw(W), sw(2))= d(Xo, W)+ d(w,2)

=d(xo, 2)=r.

The contradiction obtained shows that z € A, . Thus, for any mirror y = A,,
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yer (U(Xo)), one can find an element of the group G transforming y into y, = Ay s

and for any y1, yoe 7 (U(Xo)) there exists such a transformation aeG that y,= a(y,).
Covering a segment of the curve between two arbitrary points of N by a
finite number of neighbourhoods like 7 (U(X)) we conclude that the group G is a
transitive Lie group of transformations of N.
QED.

COROLLARY 4.13. All the fibres of the foliation A are diffeomorphic to
the standard fibre A=A, where peM is a fixed point.

It is well known that the component of identity of a Lie group acting
transitively on a manifold N is also transitive on N, so, later on, we shall assume
the group G to be connected.

COROLLARY 4.14. Let peM and let H be the isotropy subgroup of A,eN.
The mapping G/H - N :aH > A y is a diffeomorphism of the manifold

G/H and N.

a(p

Let G(G/H, H) be the principal fibre bundle with the base G/H and the

structure group H. Since H acts on the manifold A=A, to the left, it is possible to
consider G x,; A, which is the fibre bundle over the base space G/H with the

standard fibre A and the structure group H associated with the principal fibre
bundle.

Let a®x be the -equivalence class containing (a, x), where
(ab, x) ~ (a, bx), beH.

THEOREM 4.15. Let M Dbe a R.o.o-m. The mappings
D:Gxy A—>M:a®x— a(x) and G/H—->N:aH— A are

diffeomorphisms. The following diagram is commutative :

a(p)

GxyA > M
(4.4) J \!
G/H — N

Proof. @ is obviously a correctly defined differentiable mapping, @ is
surjective because G is transitive on N. Let us check the injectivity of @&. Let
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al(Xl):az(Xz), then

a;'a,=beH and a, ® x, =a,b @b x, =a, ® x,.

The mapping Gx A —> M :(a,x)— a(x) is a submersion and the following
diagram is commutative :

GxA —— M
N

Gxy A

Thus @ is a diffeomorphism and diagram (4.4) is evidently commutative.
QED.

3° In this paragraph we consider a manifold of mirrors as a regular s-
manifold. Let peM be again a fixed point, y, =A,eN. According to Proposition 4.8
every subsymmetry s, defines a diffeomorphism s, of the manifold N, where
y=r (x). It is clear that s,(y)=y and s, =S, where the Jordan normal form S

coincides with the normal form of the tensor field S restricted to T2 It is also
evident that S is invariant under the group G acting transitively on N.

LEMMA 4.16. Let a(A,)=A,, where x=a(p). Then s,=a-s,-a™ on M,
aeG.

Proof. s,(X)=x and (a-s,-a’)(x)=x. Then (s,),=S, and
(a-sp a2 )y =28, (Sphp-ayx=a, Sy ay=S,, because S is G-invariant.

According to Lemma 4.6, s, coincides with a-s,-a™ on M.
QED.

PROPOSITION 4.17. Let M be a R.r. -m. and let N be a manifold of its
mirrors. Then p:MxN—N:(y;,y,)—>s, (y,) is a real analytic

mapping.

Proof. N= G/H has a structure of a real analytic manifold such that the
action of G on N and the projection p:G — G/H are analytic, [46]. One can find

a neighbourhood W < N of a point y, for which there exists an analytic section
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v:W —>G of the fibre bundle p:G—>G/H. According to Lemma 4.16

-1 -1
sy =7n(sy)=n(a-s,-a ):a-syp -a .

Therefore, for any yeW,
sy =v( y)-syp A(v(y))}, where Sy, eG is analytic. Thus, the mapping
(Y1,¥2 ) sy (Y, ) isanalytic on W x N and, in fact, on N x N.

QED.

DEFINITION 4.4 [48]. A regular s-manifold is a manifold N with a
multiplication x:NxN — N such that the mappings s, :N — N, yeN

given by s, (z)=u(y,z) satisfy the following axioms:

1) s,(y)=,

2) each s, is a diffeomorphism,

3) Sy- S;= Sw- Sy, Where w= s,(z),

4) for each yeN, s, :Ty(N) »T,(N) has no fixed vectors exept the null

vector.

THEOREM 4.18. Let M be a R.r. o-m. and N its manifold of mirrors. Then
N is a regular s-manifold.

Proof. According to Proposition 4.17 u is differentiable, the axioms 1) and
2) are evident, 4) folllows from the fact that S‘Tz has no fixed vectors except the

null one. We consider the axiom 3). Let x,u,ve M, z(X)=y, z(W=12, 7 (V)=Ww,
v= S, (U). Let us prove that sy- s,= S,- Sx. We have

(Sx- Su)(U)=(sy- Sx)(u)=v,

(Sx* Su) st = (S wu * (Su) ey = (8%) s - Su= Sv (Sx ) sy = (Sv) ey * (5x) ey = (Sv* Sx) ey -

According to Lemma 4.6 we get sy- S,=Sy- Sx. Projecting this equality onto N
we obtain that sy- S,= Sy- Sy, where w= sy(z).
QED.

THEOREM 4.19. Let a R.r. 6-m. M be compact. Then its manifold of
mirrors N is a Riemannian regular s-manifold.

Proof. Since the group I(M) of all the isometries of M is compact, the group
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G is also compact. Assume < , >* is an arbitrary Riemannian metric on N,
X,YeTy(N). The elements of the group G are isometries with respect to the
following metric <, > on N:

<XY>= [<aX,ay>

aeG

The rest follows from Theorem 4.18.
QED.

REMARK. If H is not compact then G/H can not be a Riemannian regular
s-manifold because according to [47], the isotropy subgroup of a homogeneous
Riemannian space must be compact.
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83. LIE ALGEBRA OF INFINITESIMAL AUTOMORPHISMS

OF RIEMANNIAN REGULAR o-MANIFOLDS

1°, Let (M, 1) be a manifolld with a multiplication (no other properties exept

the differentiability of the mapping u: M x M — M are required). Let X,y € M,
XeTx(M), YeT, (M). The point (X, y) is denoted by x-y as usual. The products
X-Y and X-y in Tyy (M) are defined by the following formulas

(4.5) x-Y :d/dt‘o(x-a(t)), X -y:d/dt‘o(ﬁ(t)-y),

where « (t), B (t) are parametrized curves in M such that Y =de(0)/ dt,

X =dB(0)/ dt.

Then

LEMMA 4.20. Let a, B: (-I, I) - M be two parametrized curves in M , and
let o - B denote the curve given by (o - B)(t) = a (t) - B () t (-1, I). Then

d(a - B)(0)/dt = da(0)/dt-B (0)+ax(0)- d3 (0)/dt

Proof evidently follows from the "Leibniz formula"”, [46], p.10.

DEFINITION 4.5. An automorphism of (M, ) is defined as a
diffeomorphism ¢ : M — M such that ¢ (x- y)=¢ (X)- ¢ (y) for every x,ye M.

We shall often denote the tangent mapping of ¢ by the same symbol ¢.

LEMMA 4.21. Let ¢ be an automorphism of (M, p) and xeM, XeT(M).

(4.6) @ (XX)= @ (X)-0(X), @ X-X)=¢ (X)-o(X).

Proof is obvious.

We consider the elements of X(M) as the cross-sections M — T(M).

DEFINITION 4.6 [58], p.51. Let (M, u) be a manifold with
multipliplication. A derivation of (M, ) is a vector field XeX(M) such that

X(p-q)=X(p) -q+p-X(q) forall p,geM.
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The set of all the derivations of (M, w) will be denoted by Der(M, p).

PROPOSITION 4.22 [48], p.49. a) The derivations of (M, x) form a Lie

subalgebra of the Lie algebra X(M).

b) A one-parameter group of transformations of M is a group of
automorphisms if and only if the corresponding vector field is a derivation.

2° Let (M, {s,}) be a R.r. -m. One can define a multiplication on M by the
formula

p ' Mx M — Mi(Xy) = X-y=p (X,y)=Sx (¥).

LEMMA 4.23. Subsymmetries s, and s;lare automorphisms of (M, w).

Proof. From the regularity condition (see proof of Theorem 4.18) we obtain

Sx (Y- 2)=sx (sy (Z)):Ssx(y)(sx(z ) =5x(y)-sx(2),

S (Y 2) =50 (5 (Y ) s (Z ) =5 (s (V-2 )=y -2 =5."(y) s (2).
QED.

We shall write simply x™-y instead of s;l( y) for x, yeM.

LEMMA 4.24. Let peM, XeT, (M), X,yeM; then

(4.7) X=pX+X-p,

(4.8) X- (x-y) = (X-x)- (p-y) + (p-X)- (X-y).

The proof is analogous to that considered in [48], p.49.

It is well-known that a diffeomorphism ¢ of M induces an automorphism ¢
of the algebra T(M) of all the global tensor fields on M, [46], p.28.

LEMMA 4.25. If ¢ is an isometry and automorphism of (M, u), then ¢
preserves the tensor fields S, S, 1 =S, (1 -S) " ox,, where 7,7, are
projections on distributions T*, T2.
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Proof. Let peM, XeT, (M). Then ¢ (Sp X)=¢(p-X)=¢ (p)-¢ (X)=Suxm-@ (X),
i.e., ¢ -Sp=Syp@on T(M) and ¢ preserves the tensor field S, therefore S ™, 1 - S
are also invariant under ¢. Further, ¢ (m X)= ¢ (Spm X)=S,p) @(m X) and ¢
(mX)eT ie. @ (TH=T Since ¢ is an isometry and T?=T ™, then ¢ (T?=T?and
@ -m=m-@. The rest is obvious.
QED.

PROPOSITION 4.26. Let X be an arbitrary tangent vector from T,(M) and
a mapping L(X):M — T(M) is defined by the formula

(4.9) LO)X)=(l,-Sp) " mX- (p™*-x), xeM.

Then L(X) is a derivation of (M,u) and L(X)(p)=m X. The mapping
L:T(M) — Der(M, ) is linear and injective on each vector space sz( M).

Proof. We can see easily that L(X)(x)eTx(M) for each x, and thus,
L(X)eX(M). Using formula (4.8) we get
LOOX-Y)=(lp- Sp) m XLp™ (¢ WI=(1p-Sp) m XL (™ %) -(p ™ V)]
=[(1p-Sp) m X-(p ™ X)]- [p-(p ™ )]+
[p- (P )1+ [(1p-Sp) "7 X-(p ™ =LA () - y+ x- LX)(Y)
and the first statement follows. Further, using formula (4.7) we obtain
LOO®)= (Ip- Sp) X (0 p)= (Ip-Sp) "' X- p
= (lp- Sp)_lﬂzx —p-(lp- Sp)_lﬂz X
=1, (Ip- Sp) " m X - Sp(l - Sp) " X=m, X.
The rest is evident.
QED.

Let m={L(X): X eTpZ(M )}. From Proposition 4.26 it follows that the

mapping L :T2(M )—m is an isomorphism of vector spaces.
p

PROPOSITION 4.27. For every isometric automorphism ¢ of (M,u) we
have ¢. - L =L-¢@. on T(M), with the values in Der(M, w).

Proof. Let p,xeM and XeT,(M). Using formula (4.6) and Lemma 4.2 we
get

L. X0=(4- S0) (@ 2X)- (2O X= . (o S5 =X) [ o) X)
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=0, ((Ih- $) "2 X)-0[p™ ¢ ()]1=¢. (LO) (¢ ())=(¢. LEN)X).

QED.
30. We consider now the canonical connection of a R.r. c-m. M.

PROPOSITION 4.28. The formula

(4.10)
VY =V, Y +[L(X)Y1(p)., peM, XeT,(M), YeX(M)

defines a connection V on M. Each isometric automorphism of (M, ) is an
affine transformation of (M,V), and every infinitesimal isometry
ZeDer(M, ) is an infinitesimal affine transformation of (M, V).

Proof. It is clear that the introduced operation V is linear with respect to X
and Y. We have

Vx(EN=V . x EV)+HILEX), fYIE)=(m X)E)Y R+ F )V, x Y

+ (LOOP)(F)Y(p)+ f(P)[L(X),Y1(p)
=TV, x YHILOO)YIP))+(m X)(E)Y () + (7 X) () Y(P)
=f(P) VY + X(T)Y(p).

We have got that V is a connection on M.
Further, if an isometry peAut(M,u), then using Proposition 4.27 we obtain

Vo )Y )=V )@ (Y )+ [L(2- (X )Y 1(9( P))
=0V, xY + (@ [L(X)Y D(@( )=+ (VY ).

Finally, if an infinitesimal isometry ZeDer(M, ), then Z generates a local
group of local automorphisms of (M, ) (an easy modification of Proposition 4.22)
and thus, a local group of local affine transformations of (M,V). So, X is an
infinitesimal affine transformation of (M, %).

QED.

COROLLARY 4.29. The connection V is invariant under all Sy, XeM.
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Proof immediately foIIovl/s from Lemma 4.23.
PROPOSITION 4.30. VS=0.

Proof. 1) If XeT?, then §XS =V S =0 (see proof of Proposition 4.3).

2) For X eTpZ(M Yand YeX(M) we have §XY =(L y(x)Y(p) and
(VXS)Y =VxSY =SV, Y =[LixSY — S(LLgYI(P)=[(L 1y S)(Y)]- (p). On the
other hand, L(X) is an infinitesimal automorphism and, according to the proof of
Lemma 4.25, S is invariant with respect to the local automorphisms of (M, w).

Therefore, L (xS=0 and the Proposition follows.
QED.

PROPOSITION 4.31. The -connections defined by the formulas
(4.10), (4.1) coincide, i.e., for XeT,(M) and Y eX(M) we have

(A1) V)Y =V, Y +[L(X)Y1(p)=VY ~(Vi_sy1zxS)STY)

Proof. We denote by V the connection (4.10) and by V' the second one.
Both the connections are invariant under all s, and VS=V'S =0. Applying the
proof of Proposition 4.2 we see that V y = V'X for XeT? (metric properties are not

used in the proof).
For XeT! V, =V =V and the Proposition follows.

QED.

PROPOSITION 4.32. For every XeT,(M) the derivation L(X) is an
infinitesimal isometry.

Proof. Using (4.11) and the equality Vg :69 =0 we have

X<Y,Z >:<§XY,Z >+<Y,§XZ >:<VﬂlXY,Z >+<Y,Vﬂ1XZ >
+<[L(X),Y](p),Z>+ <Y,[L(X),Z](p)>, Y,ZeX(M),

therefore
m X<Y,Z>= <[L(X),Y](p),Z>+ <Y,[L(X),Z](p)>

and
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(L Lo NY.D)=(L 4, x O(Y,2)=m X<Y,Z>—<[L(X),Y](p).Z>

- <Y,[L(X).Z](p)>= 0.

The rest follows from [46], p.237.
QED.

4° Let N be a manifold of mirrors of a R.r o-m. M. It was shown in
Theorem 4.18 that N is a regular s-manifold (maybe non-Riemannian). Using [48]
we shall consider some information about affine regular s-manifolds. Let qeN,
then for X"eT4(N) a mapping L(X):N — T(N) is defined by the formula

(4.12) LX) )=l -Sq) " X"~ (@™*-y), yeN,

L(X") is a derivation of (N, ) and L(X)(g)=X".
The formula

(4.13) Vi Y'=[L(X" )Y 1(9), geN, X'eT,(N), YeX(N),

defines an affine connection V' on N. Each automorphism of (N,z) is an
affine transformation of (Nﬁ') and each derivation of (N,x) is an infinitesimal
affine transformation of (N, % ).

The connection V' is invariant under all s,, yeN and V'S =0. For each
regular s-manifold (N,z) there exists a unique connection V' which is invariant
with respect to all s, and such that V'S =0. This connection coincides with one
given by (4.13) and

(1-5) xS )(STIY'), XLY’eX(N),

(4.14) Vi Y' =V . Y'«(V

where V' is any sy-invariant connection on (N, ).

The canonical connection V' is complete and has parallel curvature and
parallel torsion, i.e., VR'=0 and V'T'=0 on N. (N,V) is an affine reductive
space. Every derivation on (N,u) is complete and thus, it determines a one-
parameter group of automorphisms of (N,u). Consequently, Der(N,u) is the Lie
algebra of the group Aut(N, ) of all the automorphisms of (N, 1).

The elementary transvections of a regular s-manifold (N,{s,}) are defined as
the automorphisms of the form s, o sz‘l, y,2eN. Let G be the closure in the full

isometry group I(N) of the group generated by all the elementary transvections. G
is called the group of transvections of (N,{s,}) and is denoted by Tr(N,{s,}). The
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transvection group Tr(N,{s,}) coincides with the transvection group Tr(N) of the
affine reductive space (Nﬁ'). Further, Tr(N) is a normal subgroup of the group
Aut(N,x) and Tr(N) is transitive on N.
Let geN and m ={L(X"):X"eT4(N)} , where L(X") is defined by (4.12). Then
the group G = Tr(N) coincides with the group generated by the ideal

g =m+[m, m]

We have seen that the canonical projection 7 :M — N is a homomorphism of
manifolds with multiplications (M,x), (N,) and 7 is an isomorphism of vector
spaces T7 (M ) and Tq(N).

LEMMA 4.33. Let XeTAM) and X'=m(X)eT,(N). Then
7 (L(X))=L(X).

Proof is the same to that of Proposition 4.27, where we have to replace an
automorphism ¢ and the homomorphism 7.

We can identify the action of the group G < I(M) generated by the set
{sx: xeM} with the action of G on N by means of =, see 1°,2°82.

So, the Lie algebra g of the closed Lie group G may be written in the
following form

(4.15) d = m+[m, m],

where m:{L(X):XeTpZ(M),peM}. Thus, if dimT2?=n, then

- 2
dimg<n, +n;.

84. ORBITS ON RIEMANNIAN REGULAR oMANIFOLDS
AND SOME EXAMPLES

1°. We want to consider orbits under the action of the group G on M. We
consider a point peM and its isotropy subgroup H(p) < G. According to
Lemma 4.10 the fibre A, is invariant with respect to H(p), hence H(p) = H. If M(p)
Is an orbit of a point p under the action of a closed subgroup G — I(M), then the
homogeneous space M(p) = G/H(p) is a closed submanifold of the manifold M, see
Lemma 4.11.
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Since H(p) is a compact subgroup, then there exists a positive definite inner
product B on the Lie algebra g of the isometry group G which is invariant under
the action of the group ads(H). Let m be the orthogonal complement to h in g

with respect to B, where E is the Lie algebra of the group H(p). Then the

homogeneous space G/H(p) is the reductive space with respect to decomposition
g=hom, [47].

PROPOSITION 4.34. The orbit M(p) is a R.r. o-m. itself for any peM.

Proof. Since s, €G, then s,(M(p)) = M(p) for any xeM and T(M(p)) is
invariant with respect to S. Hence the conditions 1),2) of Definition 4.1 are
realized. Let V be the canonical connection of the Riemannian homogeneous
space M(p)= G/H(p). Then Vg =0, VS =0 because S is invariant under the action

of G and V is also invariant with respect to G. So, the third axiom of Definition 4.1

is fulfilled and V is a canonical connection of the R.r. 5-m. M(p).
QED.

LEMMA 4.35. For each xeM(p), TXZ(M )T, (M(p)).

Proof. Since G is a transitive Lie group on the manifold of mirrors N, then
7 (M(p))= N and =, (T,(M(p)))=T4(N), where q== (p). Further, for each X’eT,(N)

there exists such a vector XeT,(M(p)) that =, (X)=X". Let X=X;+X,, where
X, €Ty, X, €Tg then z, (X)=x, (X2). To(M(p)) and T7 are invariant with respect
to S, hence they are also invariant under I —S. So, we have

(1=8)X =X1+ X5 =X =X, =(1=S)X, €T NT,(M(p)).

If we look over all the vectors X’ from T4(N), then we obtain all the vectors
(1-S)X, Ty, ie. T/ itself, because (I —S) is nonsingular on T7. Thus,
sz cTp,(M(p)). From the invariance of T2 and T(M(p)) under the action of the
group G it follows that sz(M)cTX (M(p)) for every xeM(p).

QED.

LEMMA 4.36. The vector field L(X) can be restricted to the manifold M(p),
i.e., L(X)(x) eT«(M(p)) for any xeM(p), Xe T
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Proof. Using (4.9) we have

L) X)=(lp — Sp) X- (p™ X)=X"y,

where X'=(1,-S,) "X eTJ, yeM(p). Let A(t) be such a parametrized

curve in M(p) that X’=dp(o)/dt. Then p(t)-y=ssn(y)eM(p) and
Xty=d/dt((t)-y)eT (M(p)).
QED.

PROPOSITION 4.37. The canonical connection V of the Riemannian
homogeneous space M(p) = G/H(p) coincides with the connection V' given
by (4.11).

Proof. From the formula (4.10) it follows that for X eT?Z, YeX(M(p))
§'XY =[L(X)Y](p)eTy,(M(p)). According to Proposition 4.34 V is a

canonical  connection of the R.a. o-m.  M(p), therefore for
X eTZ VxY=[L(X)YI1(p) too, see Proposition 4.2, 4.31, and Vy =Vy .

~ o~

Let R,R"' be corresponding qurvature tensors of V,V', and let X, Y be
linearly independent vectors in sz. There exist such local coordinates

(X1,X5,...,X, ) of p that X -2 , Y =

9 . Then for ZeX(M(p)) we get
0 X1 0 Xy,

p

(RxyZ)p =(VXVyZ =VyVyxZ =Vx v1Z)p =(Vx VY Z = Vy Vi Z),

=(VxWZ =VyVxZ)=(RyyZ),.
From the invariance under G it is evident that
RyyZ =Ryy Z for X,YeT2(M(p)), ZeX(M(p)).
Furter,
dim G =dim g = dim([m, m]+ m) > dim T,(M((p))= dim (G/H(p))

hence T,(M(p))=T;(M(p))+[m, m], wherem ={L(X): X eTZ(M )}. Using
that for X eT; L(X )(p)= X we obtain
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(Vicooen e =V Vi) = Vi) Vi) = Ruoowe) e

=(ViooVie) =V Vi) =Ruoowry o = (Vo dp

and §x =€x for any XeTy(M(p)). From the invariance V, V' under G the

Proposition follows.
QED.

COROLLARY 4.38 [47]. 1) The canonical connection V defined by (4.11)
Is a complete connection on the Riemannian homogeneous space M(p);

2) 69 =VS=Vh=VT =VR =0 on M(p);

3) every vector field L(X), XeT,(M(p)) is complete on M(p), see [46], p.234.

REMARK. In general case a type of orbit M(p) depends on pe A and can be
different in various points of M.

2° DEFINITION 4.7. We call M a Riemannian regular c-manifold of
maximal torsion if for some peM M(p)=M, i.e., M is a Riemannian
homogeneous space, and of minimal torsion if T2 is an integrable
distribution on M.

We recall here a definition of covering space. Given a connected locally
arcwise connected topological space N, a connected space M is called a covering
space over N with projection 7: M — N if every point x of N has a connected
open neighbourhood U such that each connected component of 7 *(U) is open in
M and is mapped homeomorphically onto U by 7.

PROPOSITION 4.39. Let M be a R.r. 6-m. of minimal torsion and N be a
manifold of its mirrors. Then M(p) is a covering space over N with canonical
projection 7 : M(p) — N.

Proof. Since the distribution T2 is integrable we can consider its maximal
integral manifold M?(p) containing p. At first, we verify that M%(p) is invariant
under the multiplication w(x,y)=s,(y), x,yeM?(p). Let 7 (), te[0,1] be such a
parametrized curve in M?(p) that y(0)=x, y (1)=y. Since for any te[0,1]
y ())eM?(p), then 7, €T,1,(M?(p))=Tj)(M ). The distribution T? is invariant
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under s, , therefore

X(1)= (S hyt)(F ) €T (e (M) =T (M Z(p))

where X(t) is a tangent vector at the point s,(y (t)) to the curve s,(y@(t)). So, the
curve sy(/(t)) lies in M?(p) and sy(y)= s«(y (1)) eM*(p). We have got that M ?(p) is
invariant under multiplication.

Further, for any xeM s, =s, , where a point x; belongs to intersection of

the mirror A, and M?(p), see Proposition 4.8, hence M ?(p) is invariant under any
subsymmetry s, . As the group G is the closure in I(M) of the group generated by
the set {s,: xeM}, then M?(p) is also invariant with respect to the action of G. So,
the orbit M(p)cM?(p) but, according to Lemma 4.35, for any xeM(p)
TH(M)=T,(M?(p))=T,(M(P)), hence T(M(p))=T,(M*p)) and M(p)=M *(p)
because they are connected.
Since 7 is an isomorphism of T2 and T, (N) the rest is evident.
QED.

COROLLARY 4.40. If M is a R.r. o-m. of minimal torsion, then the action
of H is discrete on A and L( X )(x)eTX2 for any xeM.

Proof. The first statement is clear because M(p) intersects A, in a discrete
set of points of M. The second one follows from Lemma 4.36.
QED.

PROPOSITION 4.41. Let M be a R.r. 6-m. of maximal torsion. Then the
Lie group H acts transitively on A and A= H/H(p) is a Riemannian
symmetric space with canonical connection V.

Proof. For any x; ,Xo€A, there exists an element acG that x,= a(x; ). Since
the foliation A is invariant under the action of the group G, then a(A)=A and
aeH. The distribution T' is autoparallel with respect to Vv, therefore, according to
Proposition 4.37, 5‘/1 =V is the canonical connection of the Riemannian

homogeneous space A = H/H(p), i.e., A is a Riemannian symmetric space.
QED.

PROPOSITION 4.42. Let M be a R.r. o-m. and let its mirrors be
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one-dimensional. Then M is a R.r. o-m. of minimal or maximal torsion.

Proof. In this case dim M =n,+1, where n,=dim T2 According to
Lemma 4.35, for each pointpeM dim M(p)>n,.

If for some point ppeM  dim M(po )= n,+1, then To, (M(pg))=T, (M)
and M(po )=M, therefore M is a R.r. -m. of maximal torsion.

If dim M(p)=n, for every peM, then TX(I\/I(p)):TX2 (M), xeM(p) and the

distribution T2 is integrable.
QED.

3°. We consider the main example of a Riemannian regular c-manifold of
order k. Let (N,g%) be a Riemannian regular homogeneous s-manifold of order k,
[48], then N = G/H, where Gf cH cG?, G°={aeG:o(a)=a}, Gy Iis the
component of the identity of G°, o is the automorphism of the group G (o= id).
(Here G is a connected group of isometries which acts transitively on N). Let
G(G/H, H) be a principal fibre bundle with the base G/H and the structure group H.

Let (A, g') be a Riemannian manifold and let H act on A to the left. We consider
the fibre bundle G x; A which is associated with G(G/H, H) and again denote by

a ® x the equivalence class containing (a, x), where (ah, x) ~ (a, hx), heH.
Now we state the main theorem of this section.

THEOREM 4.43. M= Gx A is a R.r. -m.o.k.
Proof will be given step by step in the next paragraphs.
LEMMA 4.44 [58] . The formulas
aH-bH=a(@°)'b°H, a°=c (a), b°=o(b), a,beG
define a regular multiplication on N.
LEMMA 4.45. The formula

(a®u)- (b®v)=a(a’)*h°® v

defines a regular multiplication on M=z=GxyA. The projection
w:Gxy A—>G/H isahomomorphism of spaces with multiplications.
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Proof is analogous to that considered in [56] for the case o= id.

We have a family of symmetries {s,: yeN} on N, s, (z)=y-z, and a tensor
field S_y =(Sy ky Which is invariant under all s, . It is clear that SK=1. The

family of subsymmetries {sx: xeM}, sx(z)= x-z, and the tensor field S, =(s, ).,

are defined on M. S is invariant under all s, from the regularity condition. Since =
Is a homomorphism of spaces with multiplications, we have

(416) ﬂ-'SX:Sﬂ(X)’ x-S =S

LEMMA 4.46. Let A, be the fibre which contains xeM. Then s, = id on Ay
and if x;e Ay, then s, =s, .

Proof. Let x=a®u, z=b®veAy, a,beG, then a=bh, heH, because
7 (X)=rx (z) and we obtain

x- z=(a®u)- (b®v)=(b®hu)- (b&Vv)=b(b’) b’ dv=bRV= z.
If x;=a,®u;eA,, then &a=ah because 7z(X)=7(x;) and
X; =8, ®u; =a®huy, heH, and forany ze M
x-Z=(a®hu,)-(b ®V)=a(a’ )b ®v=x-7.

QED.

The foliation A ={ A, :xeM } defines the distribution T* on M. According
to Lemma 4.46 S\Tl =1 and , since S has no fixed vectors exept the null vector,

the eigenspace of S corresponding to the eigenvalue 1 coincides with T,'. Let T2
be the direct sum of all the eigenspaces of S, except T,!. From (4.16) we get S*= |
and 7« :TX2 —T,(x)(N) is an isomorphism. The structure of the almost product

T(M)=T*®T? is defined on M. The action of the group G on the homogeneous
space N = G/H induces the action of G on M = GxuA : (a, b®u) — ab®u and we
have 7 (a-x)=a-7 (X), a,beG, xeM.

LEMMA 4.47. The tensor field S is invariant under all the elements of
G on M.
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Proof. We shall show that (b-sx)(z)=(Swx-b)(2), beG, x,zeM. Indeed,
b- (x- 2)=ba(@®)*c’®v, (ba®u)- (hc®v)=(ba)(ba°) "' b’ ®v=ba(a’)*c’®v, where
X= a®u, z= c®v. Considering the tangent mappings we get b« - S,= Sy b, .
QED.

According to Lemma 4.47 the distributions T*, TZare invariant under G,
hence the foliation A is also G - invariant.
We define the following Riemannian metric on the distribution T 2;

92 (X.Y)=0700(m X mY ), XYeT?.

Then g?(aX,aY )=g2%(m(a X ),z (aY ) = g% (ae (7 X ),ac (7Y ))
=9%(m X mY)=g3(X,Y),XYeT? acG.
Thus, the elements of the group G are isometries on T2 Let peM be a fixed
point and A,=A. We define a Riemannian metric on the distribution T* as follows:

gr(X,Y)=g'(aX,aY), acG, a(x)eA, X,YeT?,

The element a exists because G is a transitive Lie group of transformations
of N. Let beG, b(x)eA, then A is invariant under h=ab™ and heH. Since H acts on
A as an isometry group, we get

gi(bX ,b.Y )= g (h(b. X )h(bY ) =g (aX,aY), XYeTl

It follows that the metric g' is well-defined on T It is clear that the
elements of the group G are isometries on T ™.
We define a Riemannian metric on M as follows: g‘Tl =g’ g‘Tz =g° and

T! T2 are orthogonal in the metric g. From the above we see that G is an isometry
group with respect to g. A transformation sy is identified with an element of G and
Sx IS an isometry , too.
Hence Theorem 4.43 follows.
QED.

REMARK. If the action of H on A is trivial, then M is simply a direct
Riemannian product of the Riemannian manifold A and the Riemannian regular
homogeneous s-manifold of order k N, M = G/HxA.



84
4° \We consider another example of a Riemannian regular o-manifold.

DEFINITION 4.8 [57]. A manifold M with a differentiable multiplication is
called a reflexion space, if the following axioms are satisfied:

() x-x=x; (i) x- (x-y)=y; (iii) x- (y- 2)=(x- y)- (x- 2);

where X,y,zeM.

PROPOSITION 4.48. Let M be a reflexion space and let a mapping
S, M >M:y>s,(y)=x-y be an isometry for any xeM. Then M is a

Riemannian regular -manifold of order 2.

Proof. From Definition 4.8 we see that s, (X)=X-X, s, -S, =Sg (S, and
the isometry S, =(s, )., IS smooth and invariant under every s,. From (ii) it
follows that sﬁ(y): y, hence S?=1 on M. All the axioms of Definition 4.3 are

realized.
QED.

DEFINITION 4.9 [48]. A connected Riemannian manifold (M, g) with a
familly of local isometries {s,: xeM} is called a locally k-symmetric
Riemannian space (k-s.l.R.s.) if the following axioms are fullfilled:

a) Sx(X)=x and x is the isolated fixed point of the local symmetry s, ;

b) the tensor field S :S, =(s, )., IS smooth and invariant under any local
iIsometry s;

c) S*=I and k is the least of such positive integers.

If all the symmetries are determined globally, then (M, g) is called
k-symmetric Riemannian space (k-s.R.s.).

Comparing with Definition 4.3 we conclude that every k-s.I.R.s. M is a R.L.r.

o-m.o.k . If M is a k-s.L.R.s., then the canonical connection V can be defined by
(4.14) or (4.3). V is unique and VS =Vg =0, see [48].

5° Let M be a 2k-s.R.s. We define the family of isometries {oy: xeM},
where 6,=(5x)%, P, =(0, Ly =Sy, m=12(1+P), 7,=1/2(1-P), T'=xz(T(M)),
T?=7,(T(M)).
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THEOREM 4.49. Let M be a 2k-s.R.s. Then M is a reflexion space and the
natural multiplication is analytic.

Proof. The closure G =GL({s,}) of the group generated by the set
{sx: xeM} in the full isometry group I(M) is a transitive Lie group of

transformations of M, [48] , and there exists such analytic structures on G and
M=G/H o Where Hy is the isotropy subgroup of peM, that the action of G on

M is analytic. There exists a neighbourhood Usp and such an analytic section
v:U —>G of the fibre bundle 7:G — M that for xeU s, =v(x)-s,-(¥(x))". It
is evident that o, =v(X)-o, A(v(x)) . o eG is analytic, therefore the
mapping (x,y)— o,(y) is also analytic on UxM and, as a result, on MxM. So,
we have obtained an analytic mapping

L:MxM >M:i(xy)>x-y=0,(Yy).

Since o (X)= x and of =id, then x-x=x and x- (x-y)=y. As s,,(S)=S,
then o,.(P)=Pand it follows that (o, )., -P=P, (o, ).y, Where z=cx(y). An

isometry is uniquely defined by its tangent mapping, therefore
Oy Oy =0,-0x, Z=0y(Y), and this identity is equivalent to the last axiom (iii)

of a reflexion space.
QED.

Using Proposition 4.48 and Theorems 4.12 - 4.15 we have the following

THEOREM 4.50. Let (M,g) be a 2k-s.R.s. Then the distribution T* is
involutory and a set of its integral submanifolds N={Ay: xeM} is a smooth
manifold. If G=CL({ox}) is the closure in I(M) of a group generated by the set
{ox: xeM} and H is the isotropy subgroup of the fixed mirror Ay,eN, then the
mappings

D:Gxy A>M:a®x—a(x), G/H—>N:aH - Ay

are isomorphisms and the following diagram is commutative:

GxyA > M
\! 1.
G/H — N
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The manifold N is a symmetric space, maybe non - Riemannian.

If the distribution T2 is involutary and N is a simply connected manifold,
then, [57], M is isomorphic to NxA as reflexion spaces.

It is evident that P=S* is invariant under G =CL({s }), therefore the
foliaion A ={A, :xeM } is also invariant under G, see Lemma 4.10.

It is defined the natural action of G on N and this action_is transitive
because G — G . Let H, be the isotropy subgroup of peM, then M =G / H p and it

is clear that H ;  H , where H is a subgroup of G consisting of such elements

that A is invariant with respect to them. It is evident that H =CL({s, }), where
xeA and H is a transitive group of transformations of the submanifold A=A,.
Since S*=10n A, then s¥ =id on A, xeA, and all the usual axioms are satisfied,

therefore A with the family {s,: xeA} is a k-symmetric space. So, we obtain the
following

THEOREM 4.51. Let (M, g) be a 2k-s.R.s. Then such a sequence of closed
Lie groups GoHoH, is defined that M=G/H,; N=G/H is a

symmetric space; A= ﬁ/ H, is a k-symmetric space.

85. RIEMANNIAN LOCALLY REGULAR o-MANIFOLDS
1°. We consider now a Riemannian locally regular o-manifold M with the

canonical connection V defined by

(4.17) VY =V, Y —(V S)(S7YY), X, YeX(M)

(1-8)"7z,X
PROPOSITION 4.52. Let {s«: xeM} be the family of local subsymmetries
of the manifold (M,g). If a tensor field P is invariant under any sy, then

x P =0 for each XeT? In partlcular V h= V T = V =0 for every

~

XeTz, where h=vV -V and T . R are the torsion and curvature tensor
fields of V.

Proof. We consider the integral curve y (t) of a vector field XeT?, y (0)=xo,
and denote by Xy, ..., X, @, ..., »" vector and covector fields defined on some
neighbourhood of (t) WhICh are parallel along y (t) with respect to V. As S is
parallel along y (t) under Vv, then SX;, S*w’, i=1, ..., . I;J=1, ..., m, are also parallel.
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Since P is invariant under any s, we have

P(S"0w',...5 ®™,X,... X; )= P(@'...0",SX,....5%, ),
VyP(S 0,8 0" X1, X )=(Vey P @h,....0™,SX 1 ,....8X, ).

Taking the covariant derivative of the first equality in direction of SX at the
point X, we obtain

Ve P(S 0.8 0™ X .0 X )= (Ve P )@ .ci0™,SX 1 ,....5X, )
and subtracting two last identities we get
(%“—S)X P)( S*a)l,...,S*a)m ,Xl,...,X| ):0 .

Since (1 —S) is a nonsingular on T? this equality implies §x P=0 for any
XeT?,
As any s, is a Iocally affine transformation of V, then T, R are invariant

-~

under s, hence V T = R 0 for XeT?, V h=0 because V and V are also

invariant with respect to sy .
QED.

COROLLARY 4.53. S(T)=T, S(R)=R onM.
Proof is evident because S, =(S ).y-
An arrangement of a local subsymmetry s, , xeM is described below.

PROPOSITION 4.54. Let M be a R.L.r. o-m., xeM and let By be such an
open geodesic ball with a center x that s, and eip;l are defined on By . Then

(4.18) s, =€Xp,- S, -eXp,*,
where eXxp is the exponential mapping of V at the point X.

Proof. Let y be a point in By, y=eXp, V. Since s, is a local isometry and
affine transformation with respect to V, then it transforms the geodesic
exp, (tv)of V onto the geodesic exp, (tSv) preserving the length of a segment of
acurve. As S, =(s, ).« then
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(Sx 'e‘)sz )(V):(e‘ipx' Sx )(V)

and the proposition follows.
QED.

By similar arguments we obtain
(4.19) S, =exp,- S, -exp,”,

where exp is the exponential mapping of V at the point X, sy (Bx)=By, where
sy and exp;1 are defined on an open geodesic ball By.

2° Let (M,{sx}) and (M’{s,}) be two R.L.r. o-m. with the canonical
connections V, V' defined by (4.17). A local isometry ¢ of M into M’ is called a
local isomorphism if ¢.(S)=S" in a domain of definition of ¢.

LEMMA 4.55. A local isomorphism ¢ is necessarily a local affine mapping
of (M,V) into (M',V'").

Proof. Since ¢ is a local isometry, then it is an affine mapping with respect
to V. From the invariance of S under ¢ and (4.17) our lemma follows.
QED.

A vector field XeX(M) is called an infinitesimal automorphism of R.L.r.
o-m. M if, for each xeM, a local 1-parameter group of local transformations ¢ of
a neighbourhood U of x into M generated by X consists of local automorphisms

of (M,{s«}).

THEOREM 4.56. (1) A vector field XeX(M) is an infinitesimal
automorphism of a R.l.r. -m. if and only if L xg=0, L x S=0.

(2) The set of all the infinitesimal automorphisms of a R.L.r. -m. M is a
subalgebra o(M) in the algebra i(M) of all the infinitesimal isometries of M.

(3) An infinitesimal automorphism X on M is an infinitesimal affine
transformation of (M ,V).
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Proof. (1) Let ¢ be the local 1-parameter group of local transformations
generated by X. A tensor field P is invariant under ¢ for every t if and only if
L xP=0, [46].

(2) For X,Y e o(M) we have

L xg=L xS =L yg=LyS=0,
therefore
Lix9=Lx -Lyg-Ly -L x9g=0,
L o S=L x - LyS—L x -L xS=0.
So, o(M) is a subalgebra in i(M).
(3) For every t ¢ is a local isometry and ¢, (S)=S, hence ¢, (S')=5".

If XeT*, then SX =X and SO (X )=0.,(SX )=, (X), therefore ¢ (X )eT?
and T!is invariant under @. For YeT2we have

<X (Y ) > =<0 (X ) (Y ) > =< X".Y >=0,

because X'=¢ (X )eT!. So, ¢, (Y)eT? and 7, 7, are invariant under . If
X,YeX(M), then from (4.17) we obtain

(VXY ) =0 (VXY =V sy xY +SV (1 _syinx

=V, 002 (Y) =V (1osyrmx )P (Y)

SV (1-8) X S o (Y )=V, (x)0(Y)

S7Y)

QED.

Since the torsion and curvature tensor fields T and R are invariant with
respect to ¢, then

(4.20) LyT=LxR=0,

where X is any infinitesimal automorphism of R.L.r. -m. M.

3°. LEMMA 457 [48],[58]. Let (Mﬁ) be a manifold with a connection V
and 7:T(M) > M the canonical projection. Then there exists such a
neighbourhood U, of the null section Oy in T(M) that the mapping
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X eXp iV (7(V),eXPryyV)

Is a diffeomorphism of Uy onto a neighbourhood U of the diagonal in MxM.

It is evident that for every point p we can choose such an open geodesic ball
B, (a closed ball Ep) with the center p under the Riemannian connection V that

B,xB,cU (gpxgch).

LEMMA 4.58. Let M be a R.l.r. -m. and peM. Then there exists such an
open ball B, and a differentiable mapping

1By xBy > M u(x;y)-s,(y)=(eXp,- Sy -eXps')(y), x,yeB,

that every local subsymmetry sy, xeB,, is an isometry of B, on s, (By).

Proof. Let U, be a neighbourhood of the null section , given in Lemma
4.57. We see that a set S™Uq ={S;(,y :veUy} is also a neighbourhood of the

null section. Let U, =U, NS U, and let U be a corresponding neighbourhood of

the diagonal in MxM. We can take such an open geodesic ball B, (a closed ball
B,) that B, xB, cU (B, xB, cU). Then u(x:y)=(eXp,-Sy -eXpt)(y) is

defined on ByxB,. The rest follows from Proposition 4.54.
QED.

It is evident that a set G(M) of all the local automorphisms of a R.L.r. -m.

(M,{sx}) is a pseudogroup of transformations on M, [46], p.1.
Let §p( R) be aclosed ball of the radius R, 4, be the connected component

of AxnB,(R) containing xeBy(R) and B, (R,A)={ A, : xe B,(R)}.

THEOREM 4.59. If M is a R.l.r. 6-m., then for every peM there exists
such a geodesic ball B, (R) that G(M) acts locally transitive on By, (R,A).

Proof. For every point peM we can choose such a closed ball §p(2R) of
the radius 2R that B, (2R)xB,(2R)cU, where U was considered in
Lemma 4.57, 4.58, therefore s, (y)= u (X, y) is defined for any x,yeB,(2R). If
d(x,,A, ) is a distance between xo=p and A, then, since A, is closed, there
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exists such a point y, € A, that d(X,,A,)=d(Xy,Ys). Let yn(t) te[O; to] be the
unique geodesic segment with respect to V in §p( R) that ¥4(0) =Xy, 70(ty )= Yo
and x, =yo(t/2) the midpoint of . If y; =s, (X,), then

R>d(X,Yo )=d(Xo, Xy )+ d(Xg,Yo )=d(Sy (X ).Sx, (X1))+d(X1,Yo)

=d(y1,X)+d(X, Y )2d(Yg.Y1)

and y; € B,(2R).
Let y,(t), t €[0; t;] be the geodesic segment joining y; with y, and x; its
midpoint. If y, =s, (y,), then

R>d(Yo,y1)=0d(Yo. Xz ) +d(Xz,y1)=d(sy, (X2 ).8, (V1)) +d(Yo.X2)

=d( Yo, X2 ) +d(Xz,Y2)2d(Yg.Y2)

Containing this process we get two sequences {y,}, {x,} in §p( 2R)) that

d(Yo.,y1)2d(Yo.y2)=..2d(Yg.Yn )2 ..
and
d(yo.X2 )2 d(Yo.X3) 2. 2d( Yo, Xpy1) 2 o

because ;. is the midpoint of segment y; joining yo and y; .

Let X,y be the limit points of {x,}, {yn} correspondingly. Since
Yn =Sx (Yn-1)=#(X,,Yq-1) and u is continuous in By(2R) then, taking the
passage to the limit, we obtain y=s,(Yy), where X is the midpoint of segment y
connecting yo and y. As s;(X)=X the uniqueness of the geodesic segment
joining two points in §p(2R) implies that s, (y,)=¥;, where 7, is a part of y
between X and ¥, (S, ky(7)=S(7)=7 and 7 eT!. From Theorem 4.1 it
follows that 7 e A, and Y e A, .

If we denote ¢, =s, -..-s, , then every ¢, is a local automorphism of
(M,{sx}) defined on some neighbourhood of xo = p and the sequence {¢,} has a
limit point ¢@. It is clear that ¢ is also a local automorphism of (M,{s,}) i.e.
peG(M).

Similarly, for any other A, € B,(R,A) there exists a local automorphism y
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of (M{s,}) that w(x,)eA,. In this case l//-go‘leG(M) IS an automorphism

locally transforming A, in A, .
QED.

PROBLEM. To construct an example of a R.L.r. &-m. which has such a

foliation of mirrors that G(M) does not act locally transitive on the set
N={A, : xeM}.

4° DEFINITION 4.10. Let (M{s,}) be a R.l.r. -m. A submanifold M'cM
Is said to be invariant if the following holds:
for every two points p,qeM”and every local automorphism ¢ of M such that
o(p)=0q we have o(M'np (M ))cM'.

THEOREM 4.60. Let M'cM be an invariant submanifold of (M,{s,}). Then
(M'"{ Sym: }) is naturally a R.Lr. G-m.

Proof. From Definition 4.10 it follows that for every xeM’, s, . is a local

isometry of (M’,g). If we consider an integral curve y(t) in M’ of a vector
XeTx (M), x=y (1), then sx (7 (t))cM"and S; (X)=(s, ), (X)eTx(M").

So, Tx(M) is invariant with resect to S and the conditions 1), 2) of
Definition 4.1 are fulfilled.

Let 7 be the projection to Ty (M* of T,(M)=T, (M) ®T,(M)". It is well-

known that V'XY =aVyY, X.,Y eX(M), is the Riemannian connection of (M’,g)
and it is clear that §'XY :7ﬁXY is also a metric connection, i.e., V'g=0 on M’,

As T, (M) is invariant under S, then 7-S=S - 7. Using (4.1) for X,YeX(M’) we
have

(VS =V SY—SV,Y =2V, SY =SV, Y =2V SY a8V, Y =z(VS)Y =0

-~

So, V' is a canonical connection of (M’ {sx}) and the axiom 3) of
Definition 4.1 is realised.
QED.

If M is a R.L.r.s-m., then every invariant submanifold M’ of M is autoparallel
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with respect to the canonical connectionV of (M,{s«}), see [48]. It is not so for a
R.L.r. o-m.

EXAMPLE. Let M be a R.lL.r.s-m. and A'c A be a submanifold of a
Riemannian manifold A and also A”is not an autoparallel submanifold with respect
to the Riemannian connection V. By a natural way MxA is a R.L.r. -m., where

Sixu)(YV)=(sx(Y)V), X,yeM, uyveA.

It is clear that MxA’ is an invariant submanifold of MxA which is not
autoparallel with respect to the canonical connection V defined by (4.1) because
V‘(X,A' ) == V .
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CHAPTER 5
CLASSICAL STRUCTURES

In this chapter, we have our methods illustrated for concrete structures
which are called classical.

81 is devoted to the study of canonical connection V and the second
fundamental tensor field h of a Riemannian almost product structure (P,g) and their
relations with geometry of a manifold M. A behaviour of P along geodesics and
ties with another structures as, for example, a structure of reflection space are
discussed here too.

In 82, we conduct the same policy for almost Hermitian manifolds. Also, the
classification of A.Gray and L.M.Hervella has been rewritten in terms of the field
h, that is, the canonical connection V for every from 16 classes is constructed.

Some examples of almost Hermitian manifolds are discussed in 83. We
consider a projection of the classes on submanifolds, conformal changes of a
metric g, a quasi homogeneous structure (J, g) of the class Uy, a behaviour of J
along a curve, almost Hermitian structures on Riemannian locally regular s-
manifolds.

In the last 84, a structure defined by an affinor F satisfying F3+F= 0 and an
associated to F Riemannian metric g is considered. For (F, g) we have obtained the
canonical connection V and the tensor field h. Some relations with an affinor
S, =(sy )., of alocally 4 - symmetric Riemannian space are also looked through.

We refer to [19], [22] , [26] , [34], [35], [37].

81. ALMOST PRODUCT MANIFOLDS

1°. A tensor field P of type (1,1) such that P2=1 is called an almost product
structure on a manifold M. We put

71=12(1+P), 7,=1/2(1-P).
Then
(5.1) m, +m =1, TP =7y, Wb =my, mu, =Ty =0; P=m, —1,.

For any Riemannian metric g on M a new Riemannian metric g is defined
by the formula
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g(X,Y)= g (X,Y)+ g (PX,PY),

where X,YeX(M). Every such a metric g= <, > satisfies the formula
(5.2) <PX, PY>=<X,Y>

Let V be the Riemannian connection of such a fixed metric g=<, > on M.
We define a connection V on M by

where X,YeX(M).
Then

and

Using (5.2) we obtain

2A<VyY,Z>+<Y VyZ>)=<VyY,Z>+<Y,VZ>+<PV\PY,Z>+<Y,PV,PZ>
=X<Y,Z>+<VyPY,PZ>+<PY V PZ>

=X<Y,Z>+X<PY PZ>=2X<Y,Z>

for X,Y,ZeX(M), i.e., Vg=0.

According to Theorem 1.2 a tensor field P, P?= 1, is always 0-deformable,
that is, P is an affinor, and every Riemmannian metric g satisfying (5.2) is an
associated one to the corresponding G-structure.

The space of all such associated metrics is infinite dimensional. Later on, we
shall consider only associated metrics satisfying (5.2).

We have Vr, =Vr, =0, therefore 7, and 7, define two complementary
distributions T'=z,(T(M)) and T?=x,(T(M)), where T* is a distribution
corresponding to the eigenvalue 1 of P and T?is a distribution corresponding to the
eigenvalue -1 of P, hence

T(M)= TY{(M)®T (M)
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We can consider a set P(G) of linear frames over M such that for every
ueP(G) the affinor P has the following matrix

E, O
(P):{ol —E }

where n; and n, are dimensions of T' and T? respectively. The set P(G) is a
G-structure with the structure group G consisting of matrixes of the following form

A, O
{ 0 Az]
where AyeGL(n¢,R), k =1,2.

From Theorem 1.2 it follows that there exists a reduction of G to its maximal
compact subgroup H consisting of matrixes of the form above, where Ay €O(ny),
k =1,2. A structure P(H) defines a Riemannian metric g =<, > on M, which is
evidently an associated metric to P(G) and P(H)=P(G)~O(M). Every such defined
a metric g satisfies (5.2) and a pair (P, g) is called an almost-product Riemannian
structure (a.p.R.s.).

Further. we consider the canonical connection V and the second
fundamental tensor field of the structure (P(H), g).

THEOREM 5.1. The canonical connection V of the G-structure (P(H),9)
corresponding to an a.p.R.s. (P,g) is defined by (5.3). The second
fundamental tensor field h of (P(H),g) is determined by

where X,YeX(M) and V is the Riemannian connection of the associated
Riemannian metric g.

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

By O
h={x=| = _ |
0 B,

It is evident that 0 = h ®m, where

X1

€0}.
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and
B, O 0 Cy|T
tr(| : 1)=0,
0 B,[|C, O

therefore m = h* with respect to Killing form . For each @ € 0 we can define the
natural decomposition @ =0 *o |y, by the formula

@=(pwP;+ P,wpPy)+(w—pwp; — Pwp,),

_ Enl 0 _0 0
pl_ 0 0 ) p2_0 En2

Let ¢ be a cross section of P(H) over some neighbourhood U which assigns
to each xeU the linear frame ((X1)x, ..., (Xn)x) and XY :kaxk be vector
k

where

fields on M. Then from (1.6) and Definition 1.9 it follows that

Vi Y =p(x)a(p X Jp(x) 1Y, +§(ka )(X)( Xy )

=p(X)[pr 9 X )y + pzw(qo*xx)pzlqo(x)‘lvx@o«k )O)(Xi
where ¢ (x) is considered as a mapping of R" onto Ty(M). It is obvious that
() p1=71-9(X),  P(X)- P2=72-¢(X)
and
(71 + 72 JIOXE)OO(K 4 N 1= (XE YOOy Xy e+ (X)) (7, X )y

We obtain that
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Vi Y =[mp(X)o( e X Jp(X) mpY, + D (XE ) (X )y ]
k

+1@¢mm@xumm*@n+§O«Hux@xuu

:7[1VXX7Z'1Y +7Z'2VXX7Z'2Y

VY =%(| +P)Vy (I +P)Y+%(I —P)Vy(1-P)Y

:%(VXY +PV,Y +V,PY +PV,PY+V,Y -PV,Y -V, PV+PV,PY)

1

QED.

Later on, we shall call V and h the canonical connection and the second
fundamental tensor field of an a.p.R.s. (P, g) respectively.

2° We consider now the torsion tensor field T of the canonical connection
V of an a.p.R.s. (P, g). It follows from (2.3) and from Proposition 2.3 that
T =—2h~ and T =0 if and only if the pair (P, g) is a particular structure, that is,
VP = 0. We have, see [46], [73], that the condition VP = 0 implies a manifold M
to be a locally decomposable Riemannian manifold or, if M is a complete, simply
connected Riemannian manifold, to be a globally decomposable Riemannian
manifold M= M; x M,, where M;, M, are the maximal integral manifolds of the
distributions T*, T2 passing through a fixed point of M.

Thus, a particular structure (P, g) is a structure of local Riemannian product.

From Theorem 1.5 it follows that an almost product structure is integrable if
and only if the Nijenhuis tensor field

N(P)(X,Y) = [PX, PY] — P[X, PY] —P[PX, Y] + [X, Y]

vanishes on M, where XY eX(M).

PROPOSITION 5.2. For X,YeX(M)

N(P)(X,Y) = =2((Tpy PY + Ty Y).
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Proof. We remark that from (5.3)

=1/2(PV4PY-PV,PX-[X,Y]).
It follows from this identity that

“N(P)(X,Y)=P[PX,Y]+P[X,PY]-[PX,PY]-[X.Y]
=PVpyY — PV, PX + PV, PY — PV, X —[PX,PY]-[X Y]
=(PVpyY —PVp X —[PX,PY])+(PV,PY - PV, PX [ X.Y])
=2[Tpy PY + T4 Y]

QED.
Thus, an almost product structure P is integrable if and only if

PROPOSITION 5.3. The distribution T*(T?) is integrable if and only if
T,Y =0 forany X,YeT }(T?).

Proof. Using (5.3) we obtain

T xmY =V, xmY — oV ymX = [m X 7Y ] =7 (V, x71Y =V, ym X

— [7T1X ,7T1Y ])—77:2 [7T1X ,77:1Y] =Ty [7T1X ,7T1Y ]

The rest follows from the Frobenius theorem, [64].
QED.

Let R and R be the curvature tensor fields of the connection V and V
respectively, then for X,Y,ZeX(M) we have

Really, it is easily to check that
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4hyhxz :vaXZ _VY PVX PZ - PVY PVXZ + PVYVX PZ
4hthz :vayz —VX PVY PZ - PVX PVYZ + PVXVY PZ,

and
4§XYZ =4(VXVYZ —vyvxz _V[X,Y]Z)

—(WVZ+VyPVPZ+PVyPVyZ +PV,VyPZ)— ZV[X,Y]Z +PVix vy PZ)

3° Let T be integrable and M, be the maximal integral manifold of T
passing through some point of M. The manifold M; is a n;-dimensional

submanifold of M. For any X,YeX(M;) we know that

where V' is the Riemannian connection and «(X,Y) is the second fundamental form
of M; . Equating the tangential and normal components of this equality we have got
that

VY =V, Y, a(XY)=hyY.

Thus, the notion of the second fundamental tensor field h of an almost
product Riemannian structure (Riemannian H-structure) is a generalization of that
of the second fundamental form of a submanifold and it is the same for the notion
of the canonical connection V .

Since T =-2h", then h™=0 on M; and hyY =hgY on M;. It is well
known, [47], that the following conditions are equivalent

1) My is an autoparallel submanifold with respect to V,

2) My is totally geodesic with respect to V,

3) a (X,Y): th: Oon M;.

Now it is evident the following

PROPOSITION 5.4. The distribution T*(T?) is integrable and defines the
foliation of totally geodesic with respect to V maximal integral submanifolds
if and only if hy Y= 0 for any X,YeT }(T?).
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The following proposition describes the similar situation for both the
distributions.

PROPOSITION 5.5. The distributions T* and T? are integrable and define
the foliations of totally geodesic with respect to V maximal integral
submanifolds if and only if h=0 on M, that is, (P, g) is the local Riemannian
product structure .

Proof. It follows from Proposition 5.4 that hxY=0, when X,YeT' or
X,YeT? Let a vector field X be from T* and a vector field Y be from T2 Then
hyyy =<1,V «Y,Z >=—hy,, from (2.2). Thus, if ZeT? then <z, VxY, Z>=0, if

ZeT?! then hyZ=0 because X,ZeT' , and we have obtained that hyxy;=0 for any

ZeX(M). The case when XeT?, YeT!is the same.

The converse is evident.
QED.

Let (P, g) be a nearly particular structure, that is, hxY = -hyX for any

X,YeX(M). For an a.p.R.s. this condition is equivalent to one that Vy (P)X=0.
Really, we have

2hx X:Vx X—PVX PX:P(PVX X—Vx PX):—PVX (P)X

Since P is a nonsingular affinor hence hy X=0 if and only if Vx(P)X=0.

THEOREM 5.6. An a.p.R.s. (P, g) is a nearly particular structure if and
only if it is a particular structure (a local Riemannian product structure).

Proof. 1) If XeT!and YeT? then from (5.4) we have
th:ﬂ'le Y= - hYX - —7T2VY X=0

because hyYeT*~T ?={0}.
2) If X,YeT?, then we obtain

th+hYx:ﬂ1(VxY+VYX):O, ﬂl(VxY—Vyx): 7T1([X,Y])
From these equalities it follows that

hyY=1/27, ([X,Y]).
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and

hxyz - <th,Z>:1/2<7T1([X,Y]),Z>: - hxzy Sk <hx Z,Y>.

If ZeT?, then from 1) it follows that hy Z=0 because XeT?.

If ZeT?, then <7z 4([X,Y]),Z>=0.

Thus, we see that hxY=0 in this case.

3) If X,YeT", then hyY=1/27,([X,Y]) and the rest is similar to 2).

The converse is evident.
QED.

It is obvious that g’=e? g is an associated to P Riemannian metric satisfying
(5.2) too.

PROPOSITION 5.7. The tensor field h of a structure (P, g) is invariant
under conformal changes of the metric g.

Proof. If g’=e* g, then
(55) VY =V, Y +X(p)Y +Y(p)X—< XY >grad p,
where <grad p ,X>= Xp. Really, we have

VY —VyX=V,Y-V,X=[X)Y],

<V Y,Z3+<Y V23 =e? [<V Y, Z>+<Y,Vy Z>+X(p)<Y,Z>+Y(p)< X,Z>
—<XY>Z(p)+X(p)<ZY>+Z(p)< XY >—<X,Z>Y(p)]
=e?[X <Y,Z>+2X(p)<Y,Z>] =X[e¥ <Y, Z>]=X<Y,Z>

From (5.4), (5.5) it follows that
hyY =2,V ym,Y + 1,V ym,Y =h, Y, where X,Y,ZeX(M).

QED.

4°. We consider now a behavior of an almost product structure P along
geodesics.

LEMMA 5.8. Let y(t) be a geodesic with respect to V (V) and X=y t).
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Then V,V,Y=V,Vy,Y if and only if (Vh)(X,Y)=0
((Vyxh)(X,Y)=0), where a vector field Y is defined on some
neighbourhood of y(t).

Proof. We have V, X =0 (VX =0) and

It is the same for V.
QED.

If (P, g) is a quasi homogeneous structure, then Vh=0 and from Lemma 5.8
it follows that

Let M and P be analytic, 1(t) be such a curve on M that V, VY =V, VY,
where X =y'(t)and Y is any vector field on some neighbourhood of »{t). We

denote P (t)=(V,*, P).

Proof. We can compare the identities VyhyY =V,V,Y -V &Y and
hy VY =V VY = V.5 Y . The proof of the second equivalence is the same.
QED.

PROPOSITION 5.10. If V, VY =V, VY, then we have
(5.7) PVx(P)Y+Vx(P)PY=0,
(5.8) —PVi(P)Y =Vy(P)?Y,

(5.9) PVy(P)'Y=(=1)* Vx(P)PY,
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(5.10) Vx (Vx (P) 9)=0.

Proof. (5.7). Differentiating the equality P?=I we obtain
Vx (P)P+PVy (P)=0 and it follows from (5.4) that Vyx (P)Y=2hyx PY=-2PhyY.

(5.8)

= —2Ph, V (P)Y = V,(P)?Y.

(5.9). Using the method of mathematical induction we get that for k =1,
PVyx (P)Y= —V4% (P)PY, i.e., (5.7).
Let (5.9) be true for k-1, then

PV, (P)Y =(-1)* 1V, (P)* L. PV (P)Y =(-1)*V, (P)*PY .

(5.10) PVx(Vx(P)?)=PVyx(P)Vx(P)+PVx(P)Vyx (P)
==V (PYVy(P)=Vy(P)PV i (P)
=-Vy(P)* +V4(P)’=0.

QED.

(5.7) - (5.10) can be rewrritten in the following form

(5.11) PP+P’"P =0,

(5.12) P"’= —P(P)*=—(P)°P,

(5.13) P-(P")'=(-1) (P")" P,

(5.14) [(P’)?]"=o0.

We describe now the k-th derivative of P.

PROPOSITION 5.11. If V, VY =V, VY, then we have

(5.15) P®M=(-1)"P(P»*",

(5.16) P@™Y = (—1)"(P)?™**,

Proof. Using the method of mathematical induction from (5.12), (5.14) we
obtain (5.15). Really, if m=1, then P”=P(P)°. Let (5.15) be true for m, then
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P(2m+2) :[P(Zm)] rr— (—1)m{P[(P /)2] m} ,,:(_1)mp ’”. (P /)2m:(_1)m+1P(P /)2m+2.

To get (5.16) we use (5.15) and obtain
PEMD=[PEM] =(-1)"{PL(P 1"} =(-1)"(P )"
QED.

We can define cos P and sin P by the formulas

cosP = 3 (~1)"P2™ j(2m)!, sinP= 3 (~1)"PZ™ /(2m+ 1)1,

m=0 m=0

Let 7, be the parallel translation from #(0) to y(t) along a curve y@(t) with
respect to V.

PROPOSITION 5.12. Let P(t) be an almost product structure in »(t) and
V«VyY =V, VY along y1t). Then

P(t)=1, - [cos(tP'(0))P(0)+ sin(tP'(0))] - rt‘l.

Proof. Using (5.15), (5.16) we expand rt‘l -P(t)- 7, ina power series in the
case, when t=o.

ZLP(t) 7 = S K/ KPCO(0) =3 2™ /(2m)1PE™(0) 2™ /(2m+ 1)1PE™D) o)1
k=0 m=0

. i [(<1)™t2™/(2m)!P (0)*™P(0)+(-1)"t*™ /(2m+1)!P (0)*™]
m=0

=cos(tP (0))P(0)+sin(tA(0)).

QED.

THEOREM 5.13. Let a) -1 b) 12(A =0) be an eigenvalue of P/0)? and
let X(0) be a corresponding eigenvector, X(t)=7(X(0)). Then

a) P()X(t)=cosh(it) 7¢ (P(0)X(0))+1/4 sinh(1t) 7¢ (P (0)X(0)),
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b) POX(t) = cos (A) 7¢ (P(0)X(0))+L/4 sin (1) z¢ (P (0)X(0)).

Proof. Using Proposition 5.12 we obtain

a) 7 (P(OX(1)=(z* - P(t)- 7 )X(0)

th om 2m+1 ol
—Z[(—l) (m ),P(O)P (0)™"X(0)+(-1)" (2m 1) ———P(0)7""X(0)]
_ < th m 12m t2m+1 m 12m
—mgo[(—1 (m )( ~1)" 1" P(0)X(0)+(-1)" (om+ )( —1)"#7P (0)X(0)]
(M)Zm (u)2m+1
—mZO[(2 ] P(0)X(0)+ 1ﬁ P'(0)X(0)]

= cosh( it)P(o)X(o)+%sinh( At)P'(0)X(0).

B R (A 1 m ()™
b) 7, (P(t)X(t))—rg,)[( 1) (2m)! P(0)X(0)+ ( -1) (2m+1) P(0)X(0)]
:cos(/lt)P(o)X(o)+%sin(/1t)P'(o)X(o).
QED.

COROLLARY. Let y(t) be a periodic geodesic and A(t) be a proper space
corresponding to an eigenvalue A% (1=0) of P{t)%. Then the restriction of
P(t) on A(t) is parallel to the restriction of P(t+2 7 k/A) on A(t+27k/A), keZ.

Proof. Let X(t) and X(t+27 k/) be parallel each other eigenvectors of P’2.

From Theorem 5.13 b) it follows that P(t+2zk/1) X(t+2xk/A) is parallel to
P(t)X(t).

QED.

Similar results were considered in [34] for an almost complex structures of
nearly Kaehlerian manifolds.
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5°. A classification of almost product Riemannian manifolds was obtained
in [59]. Using tensor fields h of such structures, (5.4), an analogous classification
can be got. In the next section we discuss a similar construction for almost
Hermitian manifolds.

Let @ be a pseudo-Riemannian metric on M defined by a G-structure P(G).
It follows from Theorem 1.1 that there exists a reduction of G to the maximal
compact subgroup H=O(n, n;), which defines an associated Riemannian metric
g= <, >. The space of all such associated metrics is infinite dimensional. For a
fixed g= <, > one can consider the a.p.R.s. P defined by condition

(5.17) @(X, Y) = <PX, Y>

It is evident that P(H) is the same for both the structures (@, g) and (P, g),
hence to construct the canonical connection V (tensor field h) of the pair (@, g)
we can take the canonical connection (see (5.3)) of the pair (P, g), where P, @, g
are connected by (5.17).

6°. As we have seen in Chapter 4 the Riemannian almost product structure
(P, 9):T(M)=T{(M)®T (M) is defined on a R.L.r. c-m. M, where T* denotes the
distribution of mirrors. Of course, on an arbitrary R.L.r. 6-m. the connection %
defined by (4.1) and V defined by (5.3) are not the same.

If M is a R.L.r. 5-m.0.2 (reflexion space), see Definitions 4.3, 4.8, then S%=I

on M and S=P.
Using (4.3) we obtain

VY :%(VXSZY +svxsv)=%(vxv + PV, PY)

So, the canonical connection of a Riemannian reflection space coincides
with that of the Riemannian almost product strructure defined by (5.3). It follows
from Proposition 4.5, 4.52 and Corollary 4.53 that

hy =0, X eT!; V,h=V,T=V,R=0, XeT?; P(T)=T, P(R)=R
X X X X

onaR.Lr. 5-m.0.2.

Thus, this conditions are necessary for a Riemannian almost product
structure (P, g) on a manifold M to be the structure defined by that of a
Riemannian reflection space.
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§2. ALMOST HERMITIAN MANIFOLDS

1%, A tensor field J of type (1,1) such that J?= —1 is called an almost
complex structure on a manifold M. A manifold M with a fixed almost complex
structure J is called an almost complex manifold.

Every almost complex manifold is of even dimensional.We refer to [73],

[47], [34] for detailed information.
For any Riemannian metric g on M a new Riemannian metric g is defined

by the formula
g(X,Y)=g(Xx,Y)+g(IX,Jy),

where X,YeX(M). For every such a metric g=<, > we have
<JX, JY>= <X,Y>,

for any vector fields X and Y on M.
Let V be the Riemannian connection of such a fixed metric g=<, >, then
one can define a connection V on M by

where X,YeX(M).
Further, we obtain

and

A<V Y, Z>+<Y VyZ>)=<V\Y,Z>+<Y VyZ>-<IVyIY,Z>
—<Y,IVyIZ>=X<Y,Z>+<VyJIY,JZ>+<IY,VIZ>
=X<Y,Z>+X<JY,JZ>=2X<Y,Z>

for any X,Y,ZeX(M), i.e., Vg =0.
According to Theorem 1.2, the tensor field J is O-deformable and the
Riemannian metric g is an associated one to the corresponding G-structure. Later

on, we shall consider only associated metrics of this form.
For a fixed affinor J a set of all the associated metrics is infinite
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dimensional.
A fixed pair (J, g) is called an almost Hermitian structure (a.H.s.) and M is
called an almost Hermitian manifold.
We can consider a set P(H) of all the orthonormal frames over M such that
for every ueP(H) the tensor field J has the following matrix

0 E
(J):LE on]

where dim M= 2n. The set P(H) is a G-structure with the structure group

H=U(n)= A B:A,BeO(n)
-B A

We consider now the canonical connection V and the second fundamental
tensor field h of the structure (P(H),g).

THEOREM 5.14. The canonical connection V of the G-structure (P(H),9)

corresponding to an a.H.s. (J, g) is defined by (5.18). For X,YeX(M) we
have

(5.19) Y =— 1V, (3)IY =2(V, Y + IV, I¥)
X 2 X 2 X X

where V is the Riemannian connection of the Riemannian metric g.

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

- A B _
n:{x:{_B A:|.X€g}.

It is evident that o= h ® m, where

- |C D[
m_{x_{D _C:|.X€g},

and
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A Bl[e P,
%2 Ao -

that is m = h *,with respect to the Killing form . For any @ € 0 we can obtain the
natural decomposition o = @ ht O by the formula

o=12(w—jw j)+1/12(w+jw ),

. | 0 E,
1= ~E, O
Let ¢ be a cross section of P(H) over some neighbourhood U which assigns
to each xeU the linear frame ((Xi)x, ..., (Xan)x) and XY => f ka be vectors
k

where

fields on M. Then from (1.6) and Definition 1.9 it follows that
Vi, Y =00)@( @ X, Jo(x) Yy + S X)X )y
k

= o009 X)) = Jolp X, ) i)Y = ZOE 0K

=5 VY = 0000 X )Y = SO 0K )

:%(VXXY _‘JVXXJY ):vXXY +%VXX(\] )JY,

where ¢(x) is considered as the mapping of R" onto T,(M). It is obvious
that @(x)-j =J- p(x).
QED.
2° 1f T is the torsion tensor field of V , then for X,YeX(M) we obtain

:%(JVYJX—JVXJY—[X,Y])

From Theorem 1.5 it follows that an almost complex structure is integrable
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if and only if the Nijenhuis tensor field

N@Q)(X,Y)=[IX, IY]- I[X,IY]- I[IX,Y]- [X, Y]
vanishes on M, where XY eX(M).
We have
“N(INXY)=IV Y = IV X + IV 5 Y —IVyIX —[IX,IYT+[X.Y]
=(IV Y —IVy X —=[IX,IY D)= (IVyIX —IV,LIY —[X .Y ])
=2(Ty JY =Ty Y)

Using (2.3) we have obtained that for X,YeX(M)

N(J)(X.Y)=4(h3 Y —hgY).

Let R and R be the curvature tensor fields of the connections V, V

resectively, then for X,Y,ZeX(M) we have

Really, it is easily to verify that

4hyhyZ =V VZ +Vy IV IZ+ IV IV Z+IV, 1%V, JZ,
4hyhyZ =V VyZ +VyIVyIZ + IV IVyZ + IV 1%V, JZ

and

ARy Z =(VyVyZ -V IVyIZ - IV IVyZ +IV4 IV, JZ)
—(VyVyZ-VyIVyJIZ-IV,IVZ+IV,I?V,JZ)
~2Vixy1Z-IVixy19Z)
=2RyyZ —2JRyy JZ +4h hy Z —4hyh, Z.

3°. DEFINITION 5.1. [73]. An almost Hermitian manifold M with almost
complex structure J is called a Kaehlerian manifold if VJ=0 and a nearly
Kaehlerian manifold if (VxJ)X= 0, where V is the Riemannian
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connection of g, XeX(M).

PROPOSITION 5.15. Let (J,g) be an almost Hermitian structure on a
manifold M. (J,9) is a Kaehlerian (nearly Kaehlerian) structure if and only if
it is a particular (nearly particular) one.

Proof. From (5.19) we have that
Vx(d)Y=2hy JY, X,YeX(M),
hence VJ=0 if and only if h=0.
hy X = 1/2(Vx X + JVy IX)
and
J(Vx (Q)X)=IVx IX+Vy X=2hy X,

therefore (Vx J)X=0 if and only if hy X=0 for any XeX(M).
QED.

This proposition implies that the notion of a nearly particular (particular)
structure is a generalization of that of a nearly Kaehlerian (Kaehlerian) structure.

PROPOSITION 5.16. If (J,g) is a nearly Kachlerian structure then
Vy VY =V, VY forany X,YeX(M).
Proof. We can find the following identity in [34]

<V (IW,IZ>=< V.5 (I)X,IX >=—<Vy (I, Vy(I)Z>,
X,Y,ZeX(M)

This equality implies that

<V§X(J W, JZ>=-4<hyJY hyIJZ>=4<hyhyJY,JZ>=2<hy V4 (J)Y,IJZ>
—— <V (J)IVy (I ,IZ>=<IV5 (I, IZ>.

We obtain that
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Vi (3)Y =IV5 ()Y

and
V(I =V (VY —IV Y )= (VyIVyY =V, VYY)
=V 5 Y =V IV,Y =V, IV, Y +IVEY,
IVE3(IW =J(VyIVyIY =IVEIY =V, I?V, Y +IV,IV,Y)
= IV IV Y + VL IY +IVE Y -V, IV, Y.
Hence
or

JVX JVX Y:Vx JVX JY.
Thus

and we have got that V, VY =V, V,Y.
QED.

One can find a more detailed information about the nearly Kaehlerian
manifolds in [73], [32] , [34]. There are many results about Kaehlerian manifolds.
A bibliography about such structures can be found in [73], [45], [47].

1° Using the results in [35] we consider now a classification of almost
Hermitian structures with respect to the tensor field h.

LEMMA 5.17. If h is the second fundamental tensor field of an almost
Hermitian structure (J,g) then for any X,Y,ZeX(M) we have

(5.20) hxyz = —hxzy = —hxavaz .
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Proof. The first equality follows from (2.2). To prove the second one we
use (5.19)

2hysviz = <V JY —IVx Y,JZ >= - <) Vx (J)Y,Z >
Differentiating the identity J?=—1 we obtain
Vyx (3)IY+IVy (J)Y=0
and
—<JVx(J)Y,Z > = <Vx (J)IY,Z >= 2hyyz.

QED.

LEMMA 5.18. If @(X,Y)=<JX,Y> for any X,YeX(M), then
(5.21) (Vx @)(Y,Z2)=2hxvsz .
Proof. Since V is a metric connection, then
X<Y,Z>=<Vy Y,Z>+<Y,Vy Z>
and

(Vx@)(Y,Z)=X<IY,Z>—-<IVyY,Z>—<IY VyZ>=<VyIY,Z>-<IV\Y,Z>

from (5.19) and (5.20) .
QED.

We can also consider a notion of the codifferential 6T of a tensor field T
(see [73]). For example, let T be a tensor field of type (0,3). Then T is the tensor
field of type (0,2) defined by

T =—gV, Ty =V Ty,

where we have put V'=g''v; and Tjik are local components of T. If {E;, JEi},
iI=1,...,n is a local orthonormal basis, defined on an open neighbourhood, then
codifferential of @ is computed by the formula
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(5:22) 50(X )=~ [(Ve @)(E, X )+ (Vg ®)(IE; X )], XeX(W).
i=1

Also, for h let f=cq,(h) be defined by

(5.23) B(X)=cpp(h)X = Zn:[hEiEiX +hye gg x 1, XeX(M).
i=1

From (5.21), (5.22), (5.23) it follows that

(5.24) 6@(X )= —Zi[hEiEin +hye 5e, x 1=—-28(IX),
i-1

dD(IX)=2B(X).
Let p be a fixed point and T=T, (M). We consider a vector subspace T(T)
3
of ®T"
J— 3 *
and define four subspaces of T(T ) as follows:

]_-'2 ={ he T . thyz:O, X,Y,ZET},
T;={heT :hyy; —hygyz =B(Z)=0, XY,ZeT},
1

2(n-1)
—< XY > BIZ)+< X,IZ>BIY), XY, ZeT})

T,={heT :hy; = [<X.Y>B(Z)-<X,Z>pB(Y)]

We consider now a decomposition of the space T(T) on irreducible

components under the action of U(n), where the action is defined by (3.2) and the
inner product by (3.1)

THEOREM 5.19 [35]. We have T =T, ®T, ® T, ® T, . This direct sum is
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orthogonal, and it is preserved under the induced representation of U(n) on
T . The induced representation of U(n) on T is irreducible.

For n=1, T ={0}; for n=2, T, =T, ={0} and T =T, ®T,. For n=2, T,
and T, are nontrivial, and for n>3 all of the 7; are nontrivial.

REMARK. If dim T=2n, then dim T = dim Hom(R*", m)=2n(n’*~n) and
dim 7;=1/3n(n-1)(n-2), dim T,=2/3n(n-1)(n+1), dim T;=n(n+1)(n-2)
(for n>2), and dimT, = 2n.

Let T, denote a direct sum of all the classes 7; such that iea <{1,2,3,4}.

We can form 2°=16 invariant subspaces of T (including {0} and T).

DEFINITION 5.2. We call that the structure (J,g) has a type T, or (M, J, g)
belongs to the class T, if hye T, (T,(M)), for every peM, where h is the
second fundamental tensor field of (J,g) on M.

REMARK. One can replace T, and U, hand V@, B and 5@ in (5.24),

(5.25), Theorem 5.19, Definition 5.2 and have got a classification of A.Gray
and L.M.Hervella, [35], given by

Table 5.1
Class Defining condition
K V=0
U;=NK Vx(®@)(X,Y)=0 (or 3VP = dd)
U,=AK do=0
Us=SKnH SD=N(J)=0 (or Vx (®)(Y,Z2)-Vix (®)(JIY,Z)=60=0)
Us vx(¢)(v,2)=2(;fl){<x,v S OB(Z )-< X.,Z > 50(Y )

—< X, JY >0D(IZ)+< X,JZ >0D(JY )}

U, ®U,=QK

Vi (@)Y, Z)+V y (@)(IY.2)=0
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Us ®U,=H N@)=0 (or Vx(®)(Y,Z)-Vx (@)(IY,2)=0)
U, ®Us Vi (D)(X,Y) -V ix (D) (IX,Y)=50=0
U2 ®U, dd= D AO (of O {vx(qS)(Y,Z)—ni_lqs(x,Y )oB(JZ )}=0)
1©U, -1
Ui ou Vo (P)(X.Y)= Z(n_l){\\x\\25¢(Y =< XY >6B(X)
—<JIX,Z>0d(IX )}
U, ®Us

OV (®)Y.Z)~Vyx (D)(IV.Z)}=d&=0

U1(‘BU2(‘BU2:SK

o0P=0

U, ®U, ®U,

VX(®)(Y,Z)+VJX(q§)(JY,Z):h_—_11{<X,Y >0D(Z)

—<X,Z>0B(Y )-< X, IY >3B(IZ }+ < X,IZ > 6D(IY )}

U1 (‘BUQ (‘BU4:G1

Vy (D) (X,Y)~Vx (D)(IX,Y)=0 (or <N(I)(X,Y),X>=0)

U2 @Ug (‘BU4:G2

O {W(D)(Y.2)-Vix(P)(IY,2)}=0

(or O <N@J)(X,Y),JZ>=0)

U

No condition

50. Our next aim is to show that the both classifications are the same. We
can define a mapping C:U —T :(V @),— h,.
If follows from (5.21) that

(526) (Vx @)(Y,Z)ZZhXYJZ and hxyz:—1/2(Vx (p)(Y,JZ),

therefore C is a one —to-one correspondence. From (5.26) we see that
C(VD+Va,)=C(Va,) + C(Va,), C(aVD)=aC(V®D), hence C is an

isomorphism.
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THEOREM 5.20. We have C(U;)=T;, where i=1,2,3,4.

Proof. 1) C(Ul):]_wl because Vi (@)(X,Y)ZthJXY =2hyx3y.
2) For U, cU; ®Us it follows, [35], that (V@ )(Y,Z)=—~(V ;@ )(JIY,Z)

U,: d@ =0, or (Vx D)(Y,2)+(Vy D)(Z,X)+(V; D)(X,2)

=2(hxvaz +hyzax +hzxay )=2 O hxy;z=0

Thus O hyy,=0 and C(U,)cT,. But U, and T, are equal dimensional,
therefore C(Uy)=T,.

3) We have (V_x D)(Y,2)— (Vix @)Y, 2)=2(hxyiz — hixayz) and
0D(Z2)=-2pJZ), hence C(U3)=T;.

4) Using the defining conditions for U, and T, we obtain

(Vx@)(Y,Z)=-1/2(n-1)[< XY >0NZ )< X,Z>0NY )< X,IY >0P(IZ)
+< X, JZ>0D(IY)]=2/2(n-2)[< XY > B(IZ)-< X,Z> B(IY)
+< X JY>B(Z)-<X,IZ> (Y )] =2hyy;;

and C(Ug)=T,.
QED.

Thus, the classifications coincide and the classification in Table 5.1 from
[35] can be rewritten in terms of the tensor field h. Let dim M > 6, then we have
got

Table 5.2
Class Defining condition
K h=0
T, =U;=NK hy X=0
T, =U,=AK
2 ? O hyxyz=0
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T, =Us=SKnH | hxyz — hyxyyz =(2)=0
T,=U, hyyz =1/2(n=1)[< XY > B(Z)-< X, Z> B(Y)
—< X, JY > B(IZ)+< X,IZ> B(IY)]
U ®U,=QK hxvsz = Naxvz
Us ®U,=H N()=0 or hxyz= —hxvz
U; ®U3 hxxy —haxaxy =B(Z2)=0
Uz ®U, O [ hyysz ~L(n—1)<JX,Y>B(Z)] =0
U, ®U, oy =1/ 2(n=1)[< XY > BCX) = X2 B(Y )< X, Y > A(IX)]
U, ®Us3

O [ hxvaz+hyxvz ]=6(Z2)=0

U1(‘BU2(‘BU2:SK

p=0

U; @U, ®U, hyyiz —Nixyz =1/(N=1)[< XY > B(IZ)-< X, Z > B(IY)
+< X, Y > B(Z)-<X,IZ> B(Y)]

U, ®U; dU, hxaxy + hyxxy = 0

U2 @US ®U4 G[hXYJZ +hJXYZ]:O

U No condition

REMARK. In fact, for every class of the classification of A.Gray and
L.M. Hervella the canonical connection V=V —h has been constructed and to
study these classes of almost Hermitian manifolds the torsion tensor field T ,the
curvature tensor field R and other usual characteristics of V' can be applied.

83. SOME EXAMPLES OF ALMOST HERMITIAN

MANIFOLDS

1°. Let M be a submanifold of an almost Hermitian manifold (M,J,9) which
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Is invariant with respect to J, that is, for every XeT(M’), JXeT(M”) too.
We call M”strongly invariant if hy YeT(M") for any X,YeX(M’). It is easy to
see from (2.14),(2.15) that M’ is strongly invariant if and only if
a( X,Y)=a(X,Y), where X,YeX(M).

PROPOSITION 5.21. o X,Y )=a( XY ) if and only if Ja(X,Y)=-a(X,JY)
for X,YeX(M").

Proof. If peM’then T,(M)=T,(M) ®T,(M%* and T,(M")" is invariant under
J too.
Let 7 be the projection on T,(M?)”, then we have

VY =V Y +a( XY )=V, Y +a2Vy Y, VoY =V Y +a( XY )=V, Y +7Vy Y,

hence

a( X Y)=a(X.Y)=ahY =1/ 2aV, Y + IV, IY )=1/ 2(a( X.Y )+ Ja( X, IY)).
QED.

PROPOSITION 5.22. 1) Every totally geodesic with respect to V invariant
submanifold M’ of (M,J,g) is strongly invariant. 2) Each autoparallel with
respect to V strongly invariant submanifold M” is totally geodesic with
respectto V.

Proof. 1) M”is an autoparallel submanifold of M, that is, VxYeT(M’) for
X,YeX(M), [47], and JYeT(M’). It follows from (5.19) that
hxY=1/2(VxY-JIVxJY)eT(M).

2) It is evident from the formula VY =VyY +hy Y.

QED.

THEOREM 5.23. Let (M,J,g) belong to a class U, from the table 5.1,
where «=1,2,4,(1,2),(3,4)(2,4),(1,4),(1,2,4),(1,3,4),(2,3,4) and M~
be a strongly invariant submanifold of M. Then (M’,J,g) belongs
to a subclass of U,.

Proof. Let peM’, T=Ty(M), T’=Tp,(M’) and let
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f:T(T)>T(T') thi>hy.

be the linear mapping of restriction. It is correct because hy YeT for X,YeT".
1) For «=1,2,(1,2),(3,4),(1,3,4),(2,3,4) a proof follows from the table 5.1.
2) a=4. We take an orthonormal basis

Ei,....Ex, Exs1,...En, JEs,... . Bk, JEk41,...,.JE,

of T in such a vay that E; ,...,Ex, JEg,...,JE
is a basis of T”. If he T,(T), then

0 , =i
h :h = ’ -,|:1,..., '
JE,JEE, E,EE {1/2(n_1)ﬁ(E| ), | =i ! "

It is the same for hg g ;¢ . From (5.23) we have
k
B (E)=2("eee +Nesee )=2k-1)/2(n-1)5(E,)
i=1
B (JE )=(k-1)/(n-1)p(JE,), I=1,.kK
and B(X)=(n-1)/(k-1)B(X) for XeT’, therefore

hyyz=112(N-1)[< XY >H(Z )< X,Z> (Y <X, IY> H(IZ < X,IZ> f(IY)]
=1/ 2AKk-D[<XY>L(Z)<XY>L(Y)<XIY¥>F(IZH<X,IZ>L(IY)].

where X,Y,ZeT".
3) a=(2,4),(1,4),(1,2,4). Itis clear that

F(LM)ST(T)c FH(T(T)® F(T(T))<T(T)ST{(T)
QED.

REMARK. If we have such a basis as in 2) of Theorem 5.23, then
K n ,
B(X)=D(heex +hiesex )+ 2lheex +hesex )=B(X)+B(X),

i=1 i=k+1
where XeT’ and the situation is not evident for «=3,(1,3),(2,3),(1,2,3).
Really, if =0 on T it does not imply that 5=0on T.

2° Let (J,9) and (J,g") be locally conformally related, that is, g’=e*g, then it
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follows from (5.5) that

VY =V, Y +X(p)Y +Y(p)X—< XY > grad p
and we have from (5.19) that

hyY =1/ 2(Vy Y + IV JY )=hy Y +1/2(X(p)Y +Y(p)X—-< XY >grad p)
+IX(p)IY +I(IY)(p)X=< X,IY > J grad p),

hyyz =€ [hyyz +1/ 20Y(p) < XY >—=< XY > Z(p)+(JIY)(p) < IX,Z >

(5.27)
+<X,JY >(I2) ()]

If (J,9) is a Kaehlerian structure and f=(n—1)dp, then
(5.28) hyyz=12(n-D)[<XY>L)—<XZ>BY)—<XJIY>FI2)+<XIZ>LIY)],

therefore he 7).

3° Using [35] we illustrate the structures of the different classes.

1) The class of nearly Kachlerian manifolds U;=NK, see [73], [32], [34].
The most well-known example in this class is the sphere S°, [33]. S°
belongs to the class U; but not to the K.

2) The class of almost Kaehlerian manifolds U,=AK. The tangent bundle
T(M) of a Riemannian manifold always has a naturally defined complex
structure and a metric such that T(M)eU,. If M is not flat, then T(M) K.
An example of a compact 4-dimensional manifold in U, was given in
[65], which has no Kaehlerian metric.

3) The class of Hermitian semi-Kaehlerian manifolds U;=HNSK. Any
complex parallelizable manifold is in Us.

4) As we have got above U, is a class which contains locally conformal
Kaehlerian manifolds.

One can find more detaited information about the following classes in

literature.

U; ®U,=QK is the class of quasi-Kaehlerian manifolds.

U; ®U,4=H is the class of Hermitian manifolds.

U,®U, is a class which contains locally conformal almost Kaehlerian

manifolds.
U, ®U, ®U3=SK is the class of semi-Kaehlerian manifolds.
U, ®U;®U, and U, ®U3; ®U, are classes studied in [37].
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4°, Let (J,9) be a quasi homogeneous structure, i. ., Vh=0.

THEOREM 5.24. Let (J,g) be a quasi homogeneous structure having a
type T, for some point peM. Then this structure belongs to the class 7, on M.

Proof is similar to that of Theorem 3.3.
We consider now a quasi homogeneous structure (J,g) having the type

T, =U,. Let & be such a vector field on M that B(X)= <&X> for any XeX(M) and

let L=[EAJE] be the 2-dimensional distribution defined by &, J&. We take V=L"
and obtain that T(M)=L&®V, B(J&£)=0, B(Y)=0 for each YeV.

PROPOSITION 5.25. Vh=0 ifand only if V,;,¢ =0 for any WeX(M).

Proof. For an integral curve y(t) of the vector field W we can consider
vector fields X,Y,Z which are parallel along y(t), i.e., Viy X =V, Y =V, Z =0.
Then it follows that

(V) (XY, 2)=Viyhyyz =1/ 2(n=1)[< XY ><V &, Z > =< X,Z >< V&Y >
—< XY ><V &,JZ >+ < X,JZ ><V, &,JY >] =0 if V,¢=0
Conversely, let Vh=0. V,,JZ=JV,,Z=0 and [Z A JZ], [Z A JZ]" are
invariant with respect to V, therefore if X e[Z AJZ ]é for p=y(0), then

(X)e[Z /\JZ]yL(t), where 7, is the parallel translation with respect to V
along y(t). Thus,

(Vwh)(X,X,Z) =V hyys =1/ 2(n = 1)|X|* <V, &,Z >=0 for every Z,
hence V,,¢=0 and V,, J¢ = JV,,¢ =0 too.

QED.

If &=|¢|¢, where |¢]=1, then Vi ¢& =&V ¢ +(W([¢]))¢ =0, therefore
V¢ =0 for any WeX(M) and |¢| =con M.
The formula (5.28) can be rewritten in the following form
(5.29) hyyz=12(n-)[<X)Y><E [ Z>-<X,Z><& Y>— <X JIY><JZ &>
+ <X,JZ><JY, ¢ >].
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Using (5.29) it is easily to check that for any X,Y,ZeV

(5.30) hez =hgz =hege=hieee =hses: =N gz: =hevz =gz =hxyz =0,
hxye=C12(N-1)<X,Y>, hyyse=c*2(n-1)<X,JY>.

From Proposition 5.25 it follows that L is invariant with respect to V , hence
V is invariant under too.

PROPOSITION 5.26. The distributions L and V are integrable, [£, J&]=0.
Every maximal integral manifold of L or V is a Kaehlerian one.

Proof. For any X,YeV we have

< [X,Y],E>=< WYV X, E>=hyye — hyxe=0,
<[£,JE1,2>=<V:IE-V): & Z>=hgyz —hyez =0,
hence V and L are integrable,
<[£,3&].&>=hze —hyze: =0,

<[&.J&], I&>=Ne yz9c 0 =0,

therefore [£,J£]=0.
Since hyyz =0, then from (5.19) it is clear that every maximal integral
manifold of V is Kaehlerian. For L this follows from (5.30).
QED.

THEOREM 5.27. For a quasi homogeneous structure (J,g) having the type
T, the metric g can be locally conformally changed into a Kaehlerian one.

Proof. The affinor J is integrable because T, c H =T, ® T, and for every
peM there exists such a coordinate neighbourhood U(Xj,...,X2n2,t,v) Of p that

Xlzi,...,xn_lzi, Jxlzi,,an_lz a
OXy OX_1 OX,, OXon_2
0 0

belong to V and 5:5, JQZZEEL' Thus, we obtain dt(&)=1,
dt(J&)=dt(X;)=dt(IX;)=0, where i=1,..,n-1. |If p=C2/n—1-t on U, then
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p(2)=<¢ . Z>=(n-1) dp(2). |
Let g’=e*g on U, then from (5.27), (5.28) it follows that hyyz =0 for any

vector fields on U and g’is a Kaehlerian metric on U.
QED.

REMARK. Using these propositions examples of quasi homogeneous
structures having the type T, can be constructed.

5°. DEFINITION 5.3. [35]. Let (M,J,g) be an almost Hermitian
manifold.Then w is the tensor field of type (2.1) defined by

(5.31)
< XY ),Z>=Vy(D)Y,Z)+1/2(n-1)[< XY >0D(Z)-< X,Z>INY)
—< X, Y >0D(JZ)+< X,JZ>oD(JIY)],
for X,Y,ZeX(M).

The tensor field ¢ measures the failure of an almost Hermitian manifold to
be conformally Kaehlerian.

THEOREM.5.28. [35]. Let (M,J,g) and (M,J,g") be locally conformally
related almost Hermitian manifolds. Then the corresponding tensor field ¢ and u’
satisfy u’=u and for any class U,, given in table 5.1 we have U, cU, ®U,,. Thus

U, = U;Z if and only if U, c U, . Using table 5.1 the defining relation for each of

the conformally invariant classes can be rewritten in terms of 1 and we have
MeU, if and only if 4=0,

MeU; ®U, if and only if u(X,X)=0 for all XeX(M),

MeU, ®U, if and only if O <u(X,Y),Z>=0 for all X,Y,ZeX(M),
MeU; ®U, if and only if u(X,Y)—u(IX,JY)=0 for all X,YeX(M),
MeU; ®U, ®U, if and only if x(X,Y)+u(IX,JY)=0 for all X,YeX(M),
MeU; ®U;z; ®U, if and only if u(X,X)—u(IX,IX)=0 for all XeX(M),

Me U, ®U; ®U, if and only if O<u(X,Y)—u(IX,JY),Z>=0
for all X,Y,ZeX(M).

Let M and J be analytic, y(t) be such a curve on M that
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where X=y1t) and Y is any vector field defined on some neighbourhood of
At).

If (J,9) is a quasi homogeneous structure and y(t) is a geodesic with respect
to V, then (5.32) is fulfilled from Lemma 5.8.

Proposition 5.16 implies (5.32) for nearly Kaehlerian structures. We can
define cos J, sin J by the formulas

cosd = 3 (~1)"32M j(2m)!, sind = 3 (~1)" 32 j(2m 4 1)1

m=0 m=0

THEOREM 5.29. If is the parallel translation from y(0) to y(t) with respect
to V along such a curve y(t) that (5.32) is fulfilled and J(t) is the almost
Hermitian structure in y(t), then

J(t)=1, o [cos(td'(0))I(0)+sin(td'(0))] o 7; 1,

where J'=V4 J.
Let a) —1%, b) 2% (A1=0) be an eigenvalue of (J7(0))? and let X(0) be a
corresponding eigenvector, X(t)=z (X(0)). Then

a) J()X(t)=cosh(At) % (J(0)X(0))+1/A sinh(At) % (3 (0)X(0)),
b) J(t)X(t)=cos(At) % (J(0)X(0)) + 1/4 sin(At) 7 (J (0)X(0)).

Proofs are similar to ones considered in Propositions 5.8 —5.13.

Let (M,®) be an almost symplectic manifold, that is, a manifold with a
2-form @ which has maximal rank. It is well-known, see [64], that @ is defined by
a G-structure P(G), G=Sp(n,R), dim M=2n. We see from Theorem 1.1 that there
exists a reduction of G to the maximal compact subgroup H=U(n), which defines
an associated metric g=<, >. The space of all such associated metrics is infinite
dimensional and for a fixed metric g=<, > the almost Hermitian structure J is
determined by

(5.33) D(X,Y)=<JX,Y>.

It is clear that P(H) is the same for both the structures (&,g) and (J,9),
therefore the canonical connection V of the pair (®,g) coincides with that of
(J,9), where J, @, g are related by (5.33).
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6°. If M is a 3-s.l.R.s., see Definition 4.9, then S°=1 and S has only two

e

eigenvalues —%i7i . Since 1-83=(1-8)(S *+S+1) and (1-S) is nonsingular on M,

then we obtain S%+S+1=0. An almost-complex structure J on M is defined by the
formula

i(28+ 1), S:—%I +§J

V3

We have J?=1/3(4S *+45+41-31 )=— and for X,YeX(M)

(5.34) J=

<IX,JY>=1/3(4<SX,SY>+2<SX,Y>+2<X SY>+<X,Y>)
=1/3(3<X,Y>+2<X,S 2Y>+2<X,SY>+2<X,Y>)=<X,Y>.

So, (J,9) is an almost Hermitian structure on M.
We know, [48], that for a R.L.r.s-m. (M,{sx}) there exists the unlque
connectlon V which is invariant under every sy, xeM, and such that VS = Vg 0.

V is defined by (4.1), where =, =1, or (4.3).

THEOREM 5.30 [48]. Let (M,{s,}) be a R.l.r.s-m. and V its canonical
connection. Then

(5.35) Vg=VR =Vh=VS=0, S(R)=R, S(h)=h, S(g)=g,

where h=V -V and R is the curvature tensor field of V. Conversely, if V
IS @ metric connection on a Riemannian manifold (M,g,S), where S and (1-S)
are nonsingular affinors on M, and (5.35) are fulfilled for Vv, g, h, R, S, then

there exists a Riemannian locally regular structure {s,} on M, that is the
canonical connection of (M,{s«}) and S, =(S, ).«-

Returning to our 3-s.l.R.s. we can consider the canonical connection V of
the a.H.s. (J,0). It is well- known that Vg =0 and from (5.34) it is clear that

VS =0. From the invariance of V under any s, and from (5.18), (5.34) it follows
that V is also invariant urlder Sx. S0, the uniqueness of the canonical connection of
(M,{s,}) implies that V =V on M. Thus, for V we get

(5.36) Vh=VR =0, S(h)=h, S(R)=R.

Using Theorem 5.30 we obtain
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PROPOSITION 5.31. Let (M,J,g) be an a.H.m. with canonical connection

1, 3

V,h=V-V.IfS =3 I +7 J and (5.36) are fulfilled, then there exists

such a Riemannian locally regular s-structure {s,} on M, that (M,{s,}) is a
3-s..R.s.and S, =(s, ).,-

One can find detailed information about 3-s.R.s. in [33].
We consider now more general case.
Let (M,{s«}) be a R.l.r.s-m. and S, =(s, )., has only complex eigenvalues

a; £ byi,...,a, £b.i.We define distributions
Di, i=1,...,r by Di=ker (5%-2a;S+l)

It is clear that every XeX(M) has the unique decomposition X=X;+...+X;,
where X; eD;, i=1,... r.
An almost complex structure J on M is defined by

i=1

Really, if z; is the projection on D;, then m;z; =0, i# j, x? =m; and
r r r
2 =(XA/b(S—ai)m ) =Y 1/ 07 (S ~2aS +& | ) = YA/ 07(S* ~ 28 +1 =B 1)
i=1 i=1 i=1
r
:—Zﬂ'l :—I’
i=1

It is clear that D; and D; are orthogonal each other for i =j. Further, using
that S >=2a; S—I on D; we obtain

r
<IX,JY >=Y1/07 <(S-al )X, (S—al)Y;>
i=1

r
M 1/bA(< X;.Y; >—a; <SX;,S°Y, > —a; <SX,.Y; >+af < X;.Y; >)
i=1

1=
r
1/b2(< X Y, >—a2 < X: Y >)=<X Y >.
| | | | | |
i=1

Thus, the almost Hermitian structure (J,9) is defined on M. Let V be its
canonical connection, see (5.18). Since S=a;jl+b;J on D; and VJ =0, then
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VySX; =SVy X;, i=1,...r and VS=Vg=0 on M. It is obvious that D; and J are
invariant under any s, , hence it follows from (5.18) that V is also invariant under
Sx. The uniqueness of the canonical connection V of (M,{sx}) implies that V=V
on M and (5.36) are fulfilled. So, h=V -V defines a locally homogeneous
Riemannian structure, see 83, Chapter 2.

REMARK. If (MJ,g) is an a.H.m. and Vh=VR =0, where V is the
canonical connection of (J,9), then a searching for a suitable affinor S is a
sufficiently difficult problem. We must require VS =0, S(h)=h, S(R)=R,

S(@)=g and S, (I-S) have to be nonsingular. After that Theorem 5.30 can be
applied.

84. STRUCTURE DEFINED BY AFFINOR F
SATISFYING F3+F=0

1°. A structure on an n-dimensional manifold M given by a non-null (1,1)
tensor F field satisfying
F3+F=0

in called an f-structure, [72]. Later on, we shall see that such a tensor field F
Is always O-deformable. From Theorem 1.2 it follows that there exists an
associated metric g for P(F)=P(G) defined by a structure P(H), where H=G~O(n).
The group H can be chosen, [72], as

H=0(n-2n,)xU(n,),

where 2n, is the rank of F. If M is orientiable and n-2n,=1, then an f-structure
gives an almost contact structure. We put

m=F*+|, m=-F?
and consider L= (T(M)), V=m (T(M)). It is easy to verify that
| =7my +7,, 7r12 =1, n% =ny, Fny =mF =0, n,F =Fr, =F,

hence L and V are complementary distributions on M, T(M)= L ®V, where
dim V=2n,, dim L=n; =n-2n,, and F determines the almost complex structure on
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the distribution V.

PROPOSITION 5.32. For every f-structure F on a manifold M a periodic
affinor S, S“=1, can be constructed. Conversely, any affinor S, S*=I defines
the f-structure .

Proof. If we put S\, =Fy and §, =1 (or S =~1I), then it is evident
that S“=I. Conversely, if S *=I, then we can take P=S? and
7,=112(1+P), 7,=112(1-P), L=71(T(M)), V=7,(T(M)).

The f-structure is defined by the conditions F=0 on L and F=Son V . It is
clear that F 3+F=0.
QED.

If g=<, > is a Riemannian associated metric determined by a structure
P(H), then V=L" and <FX,FY>= <X,Y> for any X,YeV.
For any Riemannian metric g on M an associated metric g can be defined

by the formula
g(X,Y)=g (X,Y)+ g (SX,SY)+ G (S2X,S2Y)+ g (S °X,S%Y), X,YeX(M),

where Sy, =Fy and S, =1 (or § =-1,), S*=I. Since g(SX,SY)=g(X,Y)

and g(PX,PY)=g(X,Y), where P=S? for any X,YeX(M), it is obvious that g is
associated . The space of all such associated metrics is infinite dimensional.

2° We consider now a fixed pair (F,g) (or (S,g)) and calculate its canonical
connection V and the second fundamental tensor field h.

THEOREM 5.33. For a Riemannian f-structure (F,g) we have

(5.40) VY :%(VXY +SV S + 8%V, S%Y + 53V, SY),
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where X,Y,ZeX(M).

Proof. It is clear that the Lie algebra h of the structure group H of P(H) has
the following form

We see that m =h* with respect to Killing form. For every weo the
natural decomposition o =y, + w,, can be defined by the formulas

@, =PLoPr+1/2(p20 PP Pal), @ =@ — @),

where

= 1 = = n,
P1 0 ol P2=|, Egn, | J 0‘

Let ¢ be a cross section of P(H) over some neighbourhood U, which assigns
to each xeU the linear frame (X1 )x,...,(Xn )xand X, Y =) f ka be vector fields on
k

M. Then from (1.6) it follows that
Vi Y =o(X)a(p. X Jp( X) ™Yy A (X
=p(X)[ Pro( o X )Py +1/2( pro( o, Xy ) P2 )

= P2 2. X, )P2 )1 p(X) Y, + (XE OO (X )y
k

where ¢(x) is considered as the mapping of R" onto T, (M). It is clear that
@(X)- Py =my - 9(X), p(X)- Pp =75 - (X), ¢(x)- J=F -¢(x), hence we obtain
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V.Y =[x ) p X Jp(X) " 7yY, +§(><f VX)X )y ]

# 11 2Lmp(x ) 9 X, o X) Yo + T XXX )]
— 1/ 2[ Frop( X )o@ X Jp( X) 75 FY,, +ZK:F(Xf “VOF (22X )]
=mVyx mY + 1/ 27,V mY —Fa,Vy FryY ).

Using the fact that ViY=(71+7,) Vx (71+72)Y and obtained formula of V
we get (5.39).

Since S, = Fy and 7:=1/2(1+S %), 1,=1/2(1- 5 %) we have

- 1 1

VXY :1/ 27[1VX7Z'1Y +1/ ZSﬂle S7l'1Y +E7T2VX7T2Y _Esn'zvx S7T2Y
=1/8(VyY +S2VyY +VS?Y +52V, S%Y + VY —S2V Y
— VS +S%V, S )+1/8(SVyS3YSV, SY + S3V, SY
+5°V, %Y -5V, SY + 5V, S% +5%V, SY —S3v, S3)
—1/4(VyY + SV S% + 52V, S?Y + 53V SY).

QED.
REMARK. It is easy to verify that the formula (5.38) can be rewritten in the
following form

(5.41) VY =V,Y —1/2FV,FY +V,F%f + F?V,Y +3/2F?V,F? .

For a f-structure F, F3*+F=0 and for every connection V on M (5.41)
determines the connection and one can simply check that VF =0, that is, the
tensor field F is O-deformable and always defines a G-structure , VS =0 too.

LEMMA 5.34. For XeX(M) and Y,ZeV we have

(5.42) hyyz =—Nxryrz.
Proof. It follows from (5.39) that

hxyz :<hx Y,Z >=<7, th,Z>:1/2<VxY+ FVxFY,Z>,

and
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hx|:Y|q - <hx FY, F/>=< (%) hx FY, Fz>=1/, 2<Vx FY+V. xY, Fz>=-1/ 2<FVX FY+V)(Y,Z>.

QED.

30 Let (M,{sx}) be a 4-s.l.R.s. (or R.l.r. 6-m.0.4), see Definitions 4.9, 4.3,
then for affinor S : S, =(s, )., We have S*=I.

It follows from Theorem 4.4, Proposition 4.5 and ((5.40) that the canonical
connection V of (M,{s¢}) (formula (4.3)) coincides with V defined by (5.40).
Therefore, if (M,{sx}) is a 4-s.l.R.s., then the corresponding structure (F,g) is
determined on M and for its V and h=V -V (see (5.38),(5.39)) conditions (5.35)
have to be fulfilled.

Conversely, using Theorem 5.30 we obtain

PROPOSITION 5.35. Let (F,g) be a Riemannian f-structure on a manifold
M with the canonical connection V, h=V-V. If S is the affinor
constructed in Proposition 5.32 (S *=I, S‘L = —I‘L) and

Vh=VR =0, S(h)=h, S(R)=R,

then there exists such a Riemannian locally regular s-structure {s, } on M
that (M,{sx}) isa4-s..R.s.and S, =(s, ).,-

PROPOSITION 5.36. Let (M{sx}) be a4-s..R.s.and h=V -V
P=S? 71 =1/2(14P), 7, =1/2(1-P), L=71 (T(M)), V=7, (T(M)),
Then we have

1) hyY=0 for X,Yel;

2) hxyY=m,VxY for X,YeV,

3) hxyY=m,VxY for XeV and YelL;

4) hyY=1/2(VxY+SVxSY)eV for XeL and YeV.

Proof. 1) It follows from (5.35) that hsxSY=ShyY for X,YeX(M), so that for
X,YeL hyY =hg., SY =S?hyY and hxYelL, hence VxYeL. From another side,
from (5.38) we obtain that VY =7,V Y =V,Y and h,Y =V,Y - V,Y =0.
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2) hyY =hg., S?Y =S°hyY, that is, hxYeL for X,YeV. Using (5.38) we
get hyY=m,VxY.
3) hxY=VxY—7m,VxY=7,VY, for XeV and YeL.
4) For XeL and YeV, we have hg., S%Y =S?hyY =—hyY, so that hyYeV.
Since VyY eV ,then VY eV.
QED.

From this proposition it follows that L is integrable and its maximal integral
manifolds are totally geodesic submanifolds with respect to the Riemannian
connection V.

PROPOSITION 5.37. Let (M,{sy}) be a 4-s.l.R.s. and h=V -V Then
heT,®T; (see Table 3.1).

Proof. We can choose orthonormal vector fields by the folllowing way
E,,....Ex,SEs,...,SExeV; Ei+1,....Enel and using Proposition 5.36, Table 3.1 we
obtain

K K
Cip(h)=2.(hg, Ej + hsg SE;j)= > (hg Ej + Shg She )
i=1 i=1

k k
=(1+S)m Y he E;=1/2(1+S+S?+5°)Y he E; =0
i=1 i=1

because -S=0 on V.
QED.

REMARK. If (M{sx}) is a R.lL.r. -m.0.4 , then ShyxY=hsxSY, where

X,YeX(M) (see Corollary 4.53), so that Propositions 5.36, 5.37 are also true
in this case.

Let M{sx}) be a RIrsm. and S, =(s, ).,. We denote by L=[-1] a distribution of

elgenvector fields correspondlng o the eigenvalue -1 and V=L'. For YeL we have
SV Y = V SY_—V Y, henceV Y e L andLVareinvariant under V.

Leta a, +h,i,...,a, +b.i be complex eigenvalues and D; =Ker (S* -2a;S+),

i
i=1,...,r. Itis clear that V = > D; and every XeX(M) has an unique decomposition
i=1
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X=Xo+X+...+X;, where XqoeL, X; €D;. An affinor F on M is defined by

(5.43) FXo=0, F(X —Xg)= il/bi(s —a;1)X; .
i=1

By similar arguments as in 60, 83 we get that (F,g) is a Riemannian f-
structure on M, i.e., F3+F=0.

Let V be the canonical connection of (F,g) (see (5.38)) . Since S=a; I+b; F
on D;, then VS =Vg =0 and V is invariant under any s,. The uniqueness of the
canonical connection V of (M{s.}) implies that V=V on M and (5.36) are
realized.

In particular, Vh=VR=0 and h=V -V defines a locally homogeneous
Riemannian structure.
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CHAPTER 6

A CLASSIFICATION OF ALMOST CONTACT METRIC
STRUCTURES

In this chapter, using our interpretation of the classification of A.Gray,
L.M.Hervella and the second fundamental tensor field h of an almost contact
metric structure, we get a classification of such structures in terms of h. There are
212 classes of almost contact metric structures. A similar classification was
considered by D.Chinea and C.Gonzalez (A.A.Alexiev and G.Ganchev) by a
different method. Good relations have been found between both the classifications
and this allows to describe the canonical connection V for every class.

81 is devoted to the obtaining of a new classification with help of the tensor
field h.

In 82, we prove a theorem which states that both the classifications are the
same up to an isomorphism. We follow especially closely to [14].

81. ABOUT A CLASSIFICATION OF ALMOST CONTACT
METRIC STRUCTURES

1% Let M be a (2n+1)-dimensional manifold. An almost contact metric
structure (a.c.m.s.) on M is called H - structure P(H), where H=U(n)x1. The
extension of P(H) to O(2n+1) defines the Riemannian metric g on M. P(H) also
determines the vector field &(||€|=1); the almost product structure T(M)=V L,

where L=[&] (dim L=1), V=L"; the tensor field F of type (1.1), F*+F=0, F(&)=0,
F?=—1 onV, <FX,FY>=<X,Y> for X,YeV; the 1-form 5, where n(X)=<X,&> for

XeX(M). We denote the projections to L and V by 7z, and 7, correspondingly.

(m+mo=l, 7l =m;, 1=1,2).
THEOREM 6.1. For a.c.m.s. on M and X,YeX(M) we have

6.1) VY =m,V 7Z'Y+17Z' (Vyr,Y —=FVyFx,Y),
X 1Y X*1 22 X2 X 2
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Proof is the same to that of Theorem 5.33.

If hyyz=<hyY,Z>, X,Y,ZeX(M), then from (2.2) we have
(6.3) hxyz=—hxazy.
It follows from Lemma 5.34 that for XeX(M) and Y,ZeV

(6.4) hxyz= —hxevez.

Since V is the canonical connection of a.c.m.s. P(H), then for X,YeX(M)
VF =Vg=0;

V& =mVy&=0 because [¢]=1;

Vi=0 because Vg =0, V¢=0;

Vm; =0, i=12, because 7,=1+F?, 7,=—F2,

2°. Let peM, T=T,(M), V,=V, L,=L. T is an Euclidian vector space over R
with respect to the inner product <, > induced by g. We consider the subspace
T(T) formed by all the tensors of the type (0.3) which satisfy the identities (6.3),

(6.4), i.e.,
(6.5)
_ 3
T(T):{h e®T : hXYZ :_hXZY; X;Y,Z ET, hXYZ:_hXFYFZ’ X ET, Y,Z EV}

T(T) is an Euclidian vector space under the inner product defined by (3.1).

The action of the group H=U(n)x1 is defined by (3.2). Later on, we shall choose
an orthonormal basis of T in the following way

(6.6) Ei,....En, FE1,..., FEn€V; Epnui=¢ el

The action of H on V coincides with the ordinary action of U(n). We
consider now the induced action on V" ®V "~ defined by

(67) (ah )XY = ha’IXale )

where acU(n), X,YeV, heV ®V .
The inner product is also determined on V™ ®V by

(6.8) <h'h? >:Zh,§iEk héiEk ,
ik
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where h', h*eV " ®V" and Ej,...,E;, form an orthonormal basis of V. Using the
basis of type (6.6) we define

tr(h)= __il(hEiEi +heg e ), ()= __il(hEiFEi e

6 _ _
LEMMA 6.2. If n>2, thenV ®V :_@1Vi, where V; are invariant and
1=

irreducible under the action of U(n). One can find the spaces V;, i=1,...,6
in Table 6.1.

Proof. It is well known that V" ®V " has the following decomposition to
irreducible components with respect to the action of O(2n).

VOV =AWV @SV DA,

where A%V is the subspace of antisymmetric tensors, S§V Is the subspace of

symmetric tensors of a zero trace. If we consider the elements of V" ®V " to be the
bilinear forms u: VxV —R, then ueAy if and only if n(X)Y)=1/2n<X,Y>trpu.
All the components are invariant under the action of U(n). Having fixed a basis of
type (6.6) in V we can identify V" ®V~ with the space of matrices. Thus, we have

AN =V, BV, ®V;,

where

V. = A B AT =_A B! =B,, trB, =0} (dimV, =n? —1
1—{_B Al =—A,By =Bg, trBy =0} (dimV, =n” —1),
0

_ J[c D
D -C

}:cT =—C, D' =-D} (dimV,=n%-n),

_ E _
Vs ={ OE O}trB B=B, +(trB)E} (dimV, =1).

The subspace of symmetric tensors of a zero trace is decomposed as

SV =V, ®V;,
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where

_ A Bl -« — _ _ _

V, ={ o _}:AOT:A, B" =—B, trA,=0} (dimV, =n? -1),
-B A

_ [C D] oy = —1 — _

Ve={| _ _|:C"=C,D"=D} (dimV5 =n®+n).
D -C

We denote

A =Vg (dim; =1).

Using (6.8) it is easy to verify that all V; are mutually orthogonal.
Considering the matrix realization of U(n)

um=1] %y <o)

we can check that all V; are invariant and irreducible under the action of U(n).
QED.

Let X,Y be arbitrary vectors in V. We have

Table 6.1
Class Dimension Defining condition
i n’-1 hyy ==Mvx: Nexey =hxy, tr(h)=0
V, n%-n hyy ==hyx . hexpy =—hyy
Vs L ey = < XY >tr(h)
2n
V, n’-1 hyy =hyx s hexey =hyy s tr(h)=0
Ve n%+n hyy =bPyx s Pexpy =—hyy
Vs 1 hyy =1/2n< XY >tr(h)
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3°. We consider now the main theorem of the section about the
decomposition of the space T(T) to invariant and irreducible components with

respect to the action of the group H=U(n)x1.

THEOREM 6.3. If n> 3, then there exists the orthogonal decomposition

_ 12 _ _
T(T)=@®T;, where T; are invariant and irreducible under the action of H.
i=1

The spaces T;, i=1,...,12 are adduced in Table 6.2.

Proof. We have

TRT QT =T VAL YRV EL)=T &V QV &V &L @L &V &L ®L)

From (6.3) we obtain

(T"OV L )YNT =(T ®L &V )nT
and as hy.: =0 (T'®L ®L )nT=0.

Using the invariance of T and of the components under the action of the
group H we get

— 3 * — * * * * * * —

T=(®T )InT=(T ®Y ®V &T ®V &L )nT

=(V oV eV eV oV ®L &L ®V ®L ®L ®V ®V )NT
Wedenote T'=(V ®V ®V )nT, T?=(V ®V ®L )nT,
T, =(L®V LU )T, Tp,=(L ®V ®V )NT.

The group H preserves the sum T=V @L invariant and the action of H on V

coincides with that of U(n), on L it is trivial. Thus H preserves the decomposition

— =1 =92 — —
T:T @T ®T11®T12

invariant. From (3.1) we can notice that the components of this decomposition are
orthogonal . We define 8,8 T by

(6.9) B(U)= é(hEiEiu +PeeFey )
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B(U ):__Zn:l(hEiFEiu —Pee ey ) UeT.

From (5.25) we have obtained the following decomposition of the space T'*
to orthogonal irreducible components under the action of U(n)

T!=

o=
N

1
T,={heT':0 hy,, =0, X ,Y,ZeV},

Ty={heT :hy; —hepxpe =B(Z)=0, XY ,ZeV}

T,={heT :hy, =1/2(n=1)[< XY > B(Z)-<X,Z>B(Y)
—<X,FY > B(FZ < X,FZ>B(FY)], X.Y,ZeV},

The action of the group H on L is trivial. Using Lemma 2.1 (Table 6.1) we
can get the following decomposition of 72 to orthogonal irreducible components
under the action of H

10 L .
T? = T, where T, =V;_4 ® L and i=5,...,10.
1=

Since the action of U(n) on V is irreducible, therefore
T, =L ®V ®L isirreducible.

It follows from (6.3) , (6.4) that
T,, =L ®V, isirreducible.

_ 12 _
Thus, we have got T = _@1Ti and
1=

dim 7 =(2n+1)n(n+1)=dim Hom (T, m),

where m is the subspace of o(2n+1) defined in the proof of Theorem 5.33.
QED.

Let X,Y,Z be arbitrary vectors in V. Then, we have
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Table 6.2
Class Dimension Defining condition
T, 0 h=0
T, 1/3n(n-1)(n-2) | hxyz =—hyxz,

I 2/3n(n-1)(n+1) O hyyz =0, hxve=hgs=hexy =0.
T, n(n+1)(n-2) hxvz = hexeyz = B(Z)=0,
T, 2n hyyy =1/2(n=1)(< XY > B(Z)-< X,Z> p(Y)
—<X,FY > B(FZ +< X,FZ > p(FY)),
hXYf = h@(§ = h@(Y :0
T, n’-1 hyve = =P Nexeve = e B(E)=0,
T, n’-n hyve = —hvxes hexpve =—hxve,
hXYZ = thi = h@(y :0
T, 1 1 2
! hXYf :%<X,FY>ﬂ(é), hXYZ:h@(f:h@(Y :O
T, n*-1 Nxve =Pvxe s Pexeve =hxve, A(E)=0,
hXYZ = thf = thY :0
T, n%4n hyve =Mvxe s Nexpye = —Nxve s
hXYZ = hixi = h@(y :0
Ty 1 hyye =1/2n< XY > B(&)
hXYZ = thi = thY :0
T 2n hxvz =MNxye =hay =0.
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7_"12 n’-n hng = _héYX = _héFXFY ’
hyvz =hxye =hexe =0.

(2n+1)n(n+1) | ------------

This classification was announced in [25] and given in [28]. In fact, for
every class from Table 6.2 the canonical connection V=V —h have been
constructed and to study these classes the torsion tensor field T and various
curvature characteristics of V can be applied.

It is directly follows from the analysis of Table 6.2 that

N

T:T? @Tg @7_10@7_11
when n=1, and
- 12
T:TZ@T4<—BSI‘I
1=

when n=2.

We denote the set of all the kinds of combinations of {1,...,12} by Agp. Itis
evident that every combination o ={ay,...,o, } determines the invariant subspace

T,=T, ®.®T, of T.

DEFINITION 6.1. We say that a.c.m.s. is of the class T, a € 4;,, or has a
type T, on M if h, e T (T, (M)), VYxeM, and it is strictly of the class T,

if =0, VX eX(M), X 0.

If T(M ) denotes the vector bundle over M with the typical fibre T(M ),
then T, (M), a € Ay, are the vector subbundles in 7(M ) and a.c.m.s. is strictly
of the class T, if x—h, is a nonzero cross - section of the corresponding
subbundle. Since the power of A, is equel to 2'?, then there are 4096 classes of

a.c.m.s. on M.

THEOREM 6.4. Let a.c.m.s. be a quasi homogeneous structure having a
type T, for some point peM. Then this structure is of the class 7, on M.

Proof is similar to that of Theorem 3.3.



82. ABOUT A CLASSIFICATION OF D.CHINEA AND
C.GONZALEZ

1°. Let (F,&,n, g) be an almost contact metric structure (a.c.m.s.) on M,
dim M=2n+1 and let

DX,Y) = <X,FY>, X,YeX(M).

Using a tensor field V@ A.A.Alexiev, G.Ganchev in [1] and D.Chinea,
G.Gonzalez in [14] obtained a classification of a.c.m.s. on M by a different
method.

The main point of this section is to identify our classification of 81 with
that in [14].

The following equalities one can find in [14].

(6.10) (Vx®)(Y,Z)=<Y,Vx (F)Z>,
(6.11) (VxD)(Y,.2)+ (VxD)(FY,FZ)=n(Z)(Vx n )FY-n(Y)(Vxn )FZ,
(6.12) (Vx n)Y=<Y,Vyx & >=(VxD)(& ,FY),

(6.13) 2dn(X,Y)=(Vxn)Y~(Vyn )X,
(6.14) 3dD(X,Y,2)=0O (VxD)(Y,Z)

where dn, d@ are the exterior derivatives of nand @, X,Y,ZeX(M).
(6.15)

SB(X )=—__i1[(inq>>(Ei X+ (Veg, @)(FE; X )] ~(Ve@)(£X),

n
(6.16) on=->[(Ve n)Ei +(Veg n)FE1,
i=1
where 6@ and o6n are the coderivatives of @ and n, {E;,FE;,&}, i=1,..,n, is a a
local orthonormal basis of the type (6.6) defined on an open subset of M.

Let p be a fixed point of M and T=T,(M), X,Y,ZeT. We consider a vector
3
subspace C(T) in ®T
3
(6.17) C(M={ae®T a(XY,Z)=—a(X,Z)Y )=—a( X,FY,FZ)

+n(Y )o( X.&,2)+n(Z )a( XY $)}
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THEOREM 6.5 [14]. (V®),C(T) and there exists an orthogonal
12

decomposition C(T):_@lci , Where C; are invariant and irreducible under the
1=

action of the group H=U(n)x1. The spaces C;, i=1,...,12 are adduced in
Table 6.3.
Let X,Y,Z be arbitrary vectors in T. Then we have

Table 6.3
Class Dimension Defining condition
C: | 13n(n-1)(n-2) | (Vx@)NXY)=0, Vy=0
C, | 2/3n(n-1)(n+1) | d&=Vn=0
Cs n(n+1)(n-2) | (Vx@)Y,Z)= (V@) FY,Z)=0, 6&=0
o 2n (Vi@)(Y,Z2)=-1/2(n-1)[< FX,FY >o®(Z)
—<FX,FZ> (Y )-d( XY Yo&(FZ)
+D( X, Z)YD(FY)], 0d(&)=0
Cs 1 (Vx@)(Y,Z)=1/2n[D(X,Z (Y )P X,Y )(Z)]on
Cs 1 (Vi @)Y, Z2)=U2n[< X, Z>n(Y < XY > Z)]o](&)
Cs n*-1 (Vx @)Y, Z)=n(Z)(Vyn)FX +n(Y )(Vexn1)Z,
o® =0
Cs n*-1 (Vx@)(Y.Z)=—n(Z)(Vyn)FEX +n(Y )(Vexn)Z,
on=0
Co n(n+1) (Vx@)(Y.Z)=n(Z)(Vyn)EX =n(Y )(Vexn)Z
Cio n(n-1) (Vx@)(Y.Z)==n(Z)(Vyn)FX =n(Y )(Vex#1)Z
Cu n(n-1) (Vx®)Y.,Z)=—n(X)(V:P)(FY,FZ)
Ci 2n (Vx®@)(Y.Z)=r( XA Z)(Ven)EY = X (Y )(Ven)FZ

20. We consider now relations between h and the other tensor fields.
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LEMMA 6.6. For a.c.m.s. we have the following identities

(6.18) hxyz=—1/2<Vx (F)FY,Z>, XeX(M), Y,ZeV;

(6.18) Vyx (F)Y=hx FY-FhyY, X,YeX(M).
Proof. It follows from (6.2) that for Y,ZeV
hxyz :1/2<Vx Y+ FVX FY,Z>:—1/2<VX (F) FY,Z>.

To obtain (6.19) we subtract the identity V, FY —FVyY =0 from the
identity Vi (F)Y =V FY —FV,Y.
QED.

PROPOSITION 6.7. We have the following identity
(6.20) (V@)Y ,FZ)=2hyy; —<Y ,E><V&EZ>+2<Z,E><Y V&>

where X,Y,ZeX(M).

Proof. We consider the following cases
1) If Y,ZeV then, using (6.3), (6.10), (6.18), we get

(V@)Y ,FZ)=<Y (VF)FZ >=-2hy,y =2hyy;;
2) If YeVand Z =&, then we obtain
(Vi@ )Y ,FZ)=(V @)Y, ,F¢)=0,
20yy; =2<V Y =V Y E>=2<V Y E>=-2<EE><Y Vi E>;

3) For Y=¢£and ZeV from (6.10), (6.19), (6.3) we have
(VX®)(Y 1FZ ):(VXQ)(C?,FZ ):<51(VX F )FZ >

2hxé:z—<é:,é: ><fo,z >:2hX§Z—<fo—vxf,z >:2thZ —hxgz :hxgz

4) For Z=Y=&we get (V@) (Y ,FE)=2hy:- =0.
QED.
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Using (6.12) we obtain
(6.21) vz =210V X2 = (2 )V 0 + (V@)Y FZ)

:%n(v )(Vx@)(EFZ)=n(Z)(VxB)(EFY)

+%(VX®)(Y,FZ), XY .Z eX(M)

From (6.10) and (6.19) it follows

(6.22) (V4 ®)(Y,Z)=<Y (V4 F)Z>=<hy,FZ —FhyZ Y >, X,Y,ZeX(M)
Thus, for a fixed point p of M we can consider a mapping
B:C(T)—>T(T):(V®), —h,

THEOREM 6.8. The mapping B is a linear isomorphism between the vector
spaces C(T) and T(T).
Proof. From the second part of (6.21) it is evident that

B(uV®D, +vW&, )=uB(VD; )+ vB(VD,)

and B is a linear mapping. From (6.21) and (6.22) it follows that B is a one-to-one

correspondence.
QED.

From (6.12) we have that (V7)Y =<Y V&>, (Vi) =< Vy¢>=0
and

(623) (Vxﬂ)Y :<ng—vxg,Y >= thY .

Using (6.16), (6.23), (6.9) we obtain

(6.24) 5ﬂ=—é[(VEiﬂ)Ei +(Veg n)FE; ] =—é[hEi&i +Neg are, |

:é[hEiEg +hee e e 1= A(E)
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It follows from (6.15), (6.20), (6.10), (6.19), (6.9) that for XeV

OP(FX ):_Zn:[(in¢)(Ei FX)+(Veg, @)(FE; , FX )] - (V:2)({FX)
i=1

=—_Zn:[2hEiEix—<Ei &><Ve & X >42<X ><Ej Vg {>
+2Ih=,:1EiFEiX—< FE{ ¢ ><Vge &, X >+42< X, ><FE; Vg £>]
—<¢{(V:F)X >:—2_Zn‘1[hEiEiX +Npg e x 1= <& VFX >

i
=—2B(X )Ny -

From (6.10), (6.15), (6.19), (6.9) we obtain

5@(5):—Zn:[< Ei (Vg F)>+<FE (Vg F)>]-<S(VF)E>
i=1

=—> [-<E;,Fhg ¢ >—<FE;,Fheg ¢>1==Y [he e, — N . ]
=1 i-1
:__Z‘i[hEiFEif _hFEiEif] :;E(Qz)

We have got

(6.25) 6D( X )=2B(FX )+hey, X eV

3% We are ready now to identify classes in both the classifications.

LEMMA 6.9. B(C,) =T,

Proof. For X,YeV we have from (6.20), (6.23) that

(Vx®@)(X.Y)==2hyxey =0, (Vxn)Y =—hyy: =0, (Ven)Y =—hgye =0
and from (6.12) that (V7)Y =<Y,Vy & >=0, therefore

(V)XY )+(VxP)EY ) =2 exry +hygry ) =—2A hxpy — hxpy ) =—2Nxey =0.

We have got hyw=0, hyye=hs:=hsy=0, hence B(C,;)cT,. Since
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dimClzén(n—l)(n—Z):dimTl, then B(C,) =T,

QED.

LEMMA 6.10. B(C,) =T,

Proof. It follows from (6.12), (6.20), (6.23) that for X,Y,ZeV
hyye =hexs =0, (Vx@)(Y,Z)=-2hyyrz,
3dD( XY, Z)=0C(VxP)Y,Z)=—2(hyxyrz +MNyzrx +Nzxry )=0.
By analogy with 2) of Theorem 5.20 we get hyxyrz=hxryz=hexvz, hence
O hxyz=0, 3d®(&Y,2)=-2hzez=0

and we have obtained that B(C,) c T,.
Since dim szgn( n-1)(n+1)=dimT,, then B(C,) =T,

QED.

LEMMA 6.11. B(C3) =T,

Proof. Using (6.20) for Y,ZeV we get
(VxD)(Y,2)(Vex D)(FY,Z)==2(NxvrzNexrvrz) =0,
hence hexy=0; hxyz=hexevz, XV, and
(Vx @)Y )==2hygy +<Vx & FY >=2hypye —Nxpye =hypye =0
therefore h.: =0; hyy- =0, for XeV. It follows from (6.25) that
0D(Z)=2B(FZ)~hz:=2p(FZ)=0.

Thus, we have obtained that B(C3) c T;.
Since dim Cs =n(n+1)(n-2)=dim T, then B(C3) =T;
QED.

LEMMA 6.12. B(C4) =T,
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Proof. One can write from Table 6.3 that for any X,Y,ZeX(M)

1
2(n-1)

—<X,FY >0®D(FZ )+ < X ,FZ >0D(FY )], 0®(&)=0.

(6.26) (Vy®)(Y,Z)=— [< FX,FY >0®(Z )< FX,FZ > 5d(Y)

For X,YeV it follows from (6.21), (6.26) that
1
hyve =A(Vx@)(E,FY)=0, hyy =E(v5gb)(x,|:v):o, e =(V0)(EFY)=0;

from (6.25) 0&( X )=2p(FX ). Using (6.21) and (6.26) for X,Y,ZeV we have

1
2(n-1)
+<X,FY > B(FZ )+ < X,Z > p(Y)]

hXYZ:%(VXqﬁ)(Y,FZ):— [—<XY>AZ)<EX.Z>B(FY)

and B(C4) <T,. Since dim C,=2n=dim T, then B(C,) =T,.
QED.
LEMMA 6.13. B(Cs) =Ty,

Proof. From Table 6.3 and (6.24) it follows that
1
(Vx@)(Y,Z2) =L @(X Y )Y ) = (XY Jn(Z )] on
:zi[< X FZ><Y ,E>—< X, FY ><Z,E>]5(8).
n
From this identity and from (6.21) for X,Y,Z€V we have
1 1

hoye =—(V :@)(&,FY )=0 and

Move = (VX @)ERY )=—D < XF2Y > () =0 < XY > B(&).
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Thus, B(Cs) =Ty, and since dim Cs=1 =dim T;,, then B(Cs) =T .

QED.

LEMMA 6.14. B(Ce) =T,

Proof. From Table 6.3 and (6.25) it follows that

(Vy@)Y,Z )=2i[< X, Z><Y ,E>—< XY ><Z,E5]1B(8)
n

and from (6.21) for X,Y,ZeV we obtain
1 1

e =~(VePIERY) =0, hyye =—(Vx@)(EFY ) =D < X FY > 5(¢),

Thus, B(C¢) T, and since dim Cg= 1 =dim 75, then B(C;) =T, .
QED.

LEMMA 6.15.  B(C7) =T

Proof. From Table 6.3, (6.23) it follows that
(Vx@)(Y.Z)=m(Z)(Vyn)FX +n(Y )(Vex1)Z =<Z,& > ygx + <Y . > Neyr

therefore for X,Y,ZeV we get from (6.21) that

1 1
hyyz ZE(ngp)(Y,FZ):O, hevz =E(Vg¢)(Y,FZ)=0,
hye = (V@ )EFY )=0, hyy: =(Vx D)<, FY ) =—hexpy =Nexpye
and from (6.25) (&) =0®(&)=0. Using (6.10), (6.19) one can verify that

(Vy®)(FY &) =<FY (V«F)é>=<FY ,hy F& — Fhy & >

On the other hand we see from Table 6.3 that

(Vx®@)(FY &) =<&.&>hpyearx =—Neyexe =—hyxe
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and fOI‘ X,YEV hXYf = _hYXf .

Since dim C; = n~1=dim T and B(C; )T, hence B(C;) =T;.
QED.

LEMMA 6.16.  B(Cg) =T;.

Proof. From Table 6.3 and (6.23) it follows that
(Vx@)(Y.Z2)==r(Z)(Vyn)FX+1(Y )(Vexnn)Z =—<Z,E>hyx +<Y &> Neyz

therefore for X,Y,ZeV from (6.21) we obtain
1 1

heye =~(V@)(SFY ) =0, Nyye =—(Vx @) FY ) =—hexery = hexeye

and from (6.24) we have oy = f(¢)=0.
Using (6.10),(6.19) one can check that

(Vx®)( FY ,6):< FY ,(VX F )6 >=< FY ’hX Fé‘/ - thf >= _hXé:Y = hXYé:.
On the other hand we have seen from Table 6.3 that
(Vx@)(FY £)=-<<.¢ > Meypx = Neypxe = Myxe

hence fOF X,YEV hXYf = hYXf .
Since dim Cg =n? —1=dim T, and B(Cg)c Ty, therefore B(Cg) =T,
QED.

LEMMA 6.17.  B(Co) =Tp.

Proof. One can write from Table 6.3 and (6.23) that
(Vx@)(Y.Z)=n(Z)(Vyn)FX =n(Y )(Vexn)Z =<Z,& > Nax —<Y . $ > Neyz

therefore from (6.21) for X,Y,ZeV we obtain
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1 1
hXYZ:E(ngD)(Y’FZ):O’ thZ:E(vfgp)(Y’FZ):O’

thf =—(V5®)(5,FY ):0’ hXYf =—(VX@)(5,FY ):_hpxpyg,
(Vx@)(FY.$)=<&¢>hevarx = —Neyrxe = hyxe

and from (6.10), (6.19)
(ngp)( FY ,é):< FY ,(VX F )é >=< FY,hX Fé— thé >= hXY&f'

Thus, B(Ce )Ty and, since dim Co= n(n+1)= dim T, then B(Cy) =T,
QED.

LEMMA 6.18.  B(Cy) =T;.
Proof. It follows from Table 6.3 and (6.23) that
(Vx@)(Y,Z)==1(Z)(Vyn)FX=3(Y ) (Vexn)Z =—<Z & >hygx —<Y £ > hpyz

The rest is similar to ones in Lemma 6.15 - 6.17.
QED.

LEMMA 6.19. B(Cy) =Ty,

Proof. One can write from Table 6.3 that

(Vx@)Y,Z)=—<X(>(V:D)FY,FZ)
and from (6.21) for X,Y,ZeV we have
1
hxvz ZE(VX@)(Y,FZ)ZO, hxve =V x®)(¢,FY )=0,
heye =—=(V @ )(&,FY )=0.

It follows from (6.5) that hsy =—hayx =—hzgxey and B(Ciu ) Ty,. Since
dim Cy; =n(n-1)=dim T}, , then B(Cy;) =T, .
QED.

LEMMA 6.20. B(Cr) =Ty,
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Proof. It follows from Table 6.3 and (6.23) that

(V@)Y ,Z)=<X,{><Z/(> h@zFY —< X, E><Y &> héza:z
and from (6.21) for X,Y,ZeV we obtain

1
hyyz :E(Vxé)(Y,FZ)ZO’ hyye =(Vx®)(S,FY)=0,

1 _

Since dim Cy,=2n =dim Ty;, then B(Cy2) =Ty;.
QED.

So, we have got the final

THEOREM 6.21. The classifications given by Tables 6.2, 6.3 are the same
up to an isomorphism and the correspondence between the classes is described by

C; =T, Cy=T,, C3=T;, Cy =Ty, C5=Ty, Co=T;, C;2Ts,
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CHAPTER 7

REMARKS ON GEOMETRY OF ALMOST CONTACT
METRIC MANIFOLDS

In this chapter, we consider some of the almost contact metric structures.

In 81, examples of all the classes adduced in Table 6.2 are given. In
particular, a-Sasakian and o-Kenmotsu structures are identified and it is shown
that, when « = const, they are quasi homogeneous.

82 is devoted to the conditions of integrability, normality and to the
fundamental tensor fields N®, N® N® N® of a.c.m.s. We identify some of the
classes studied by various authors with those obtained from Tables 6.3,6.4.

Riemannian locally regular c-manifolds with one-dimensional foliations of
mirrors are discussed in 83. We consider necessary and sufficient conditions for M
to be a R.L.r. o-m. and the induced a.c.m.s. on M. In this case, the canonical
connection V of R.l.r. o-m. and that V of induced a.c.m.s. are the same. R.L.r. -
m. of order 3,4 are studied more explicitly.

We refer to [1], [2], [11], [14], [43], [48], [73].

81. ABOUT BASIC CLASSES OF CLASSIFICATION

We give examples of structures of basic classes given in Table 6.2.

1% LEMMA 7.1. Let T(M) = L®V be an almost product structure determined
by an a.c.m.s. (F, & n, g) and h be the second fundamental tensor field of the
G-structure corresponding to a.c.m.s. Then, L®V is invariant with respect to
Vifand only if

hzygz 0 for ZEX(M), XeV;
L@V is integrable if and only if
hxygz hyxg for X,YeV.

Proof. It is evident from the following identities

hZXf :<sz,6>:—<VZf,x >,
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<[X,Y],6>:<VxY,6>—<VYx ,6>: hXYf _hYXf

QED.

PROPOSITION 7.2. A manifold M has an a.c.m.s. of class T,, where
ae Ay, if and only if M is a local Riemannian product M, x M , where

dimM;=1 and M is an almost Hermitian manifold of the corresponding
class.

Proof. If heT,, aeA,, then according to Lemma 7.1 we have from

Table 6.2 that the almost product structure L @V is invariant under V, hence the
manifold M is the local Riemannian product of M; and M , where My, M are the
maximal integral manifolds of the distributions L, V passing through a fixed point
of M. The pair (F,g )\v determines an almost Hermitian structure on M and from

comparison of Tables 5.1, 6.2 it follows that (M,FM .07 ) belongs to the

corresponding class 7, as an almost Hermitian manifold. For example, if he Ty,

then (M P »9; ) is a nearly Kaehlerian manifold, etc.

Conversely, if M is the local Riemannian product of M; and M , where
dim M;=1and (M,J,g) is an almost Hermitian manifold belonging to a class U,,

then one can define the natural a.c.m.s. on M, where £ is a tangent vector field to
My, [¢]=1, F¢=0,V =[£]*,Fy, =J. Using Tables 5.1, 6.2 and Lemma 7.1 it is

easy to check that the constructed natural a.c.m.s. has a type T, .
QED.

This proposition makes possible to construct examples of a.c.m.s. of types
T,,where ae A,

DEFINITION 7.1 [42] . A.c.m.s. is called nearly - K - cosymplectic if

(VxF) +(VyF)X =0 and V¢ =0 for X,YeX(M).

PROPOSITION 7.3. A.c.m.s. is nearly - K - cosymplectic if and only if it
is of the class T;.

Proof. If a.c.m.s. is nearly - K - cosymplectic, then from (6.18) we have
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1 1 1
hxvz :—E<(VXF)FY,Z >=—E<(VXF)Y,FZ >=E<(VYF)X,FZ >

where XeX(M), Y,ZeV, therefore hyxyz=-hyxz for X)Y,ZeV and hgz=0.
If X,YeX(M), then

<Vxé:,Y >:<ng—vxf,Y >= thY :_hXYf :0

S0, hexe=hyye=0 for X,YeVand heT;.
The converse is easily verified.
QED.

2°. We consider now structures of the class Cs(Ty ), Cs(T, ). Using the
results in [43] one can state the folllowing

DEFINITION 7.2. A.c.m.s. (F, & n, g) is called :
1) o—Sasakian if (VxF)Y=o{<X,Y>&-n(Y)X},
2) o—Kenmotsu if (VxF)Y=cf<FX,Y>&-n(Y)FX},

where « is a differentiable function on M and X,Y eX(M).

PROPOSITION 7.4. A.c.m.s. is a—Sasakian if and only if it is a structure
of the class Cq(T ).

Proof. If (Vi F)Y =a{< XY >& —#(Y )X }, then from (6.10) we obtain
(V@)Y ,Z)=<Y(VyF)Z>=a{<X,Z>n(Y)-n(Z)< XY >}.

Using (6.15) we have
5¢(f)=—__il{(in¢)(Ei £)+ (Ve PIFE )} (V.B)(EE) =200

One can see from Table 6.3 that the structure is of the class Cg.

Conversely, if a.c.m.s. is of the class Cs and azz—lnéqﬁ(f), then for

any ZeX(M)
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<(ViFE)Y ., Z>=a{< XY ><&,Z>-n(Y )< X,Z>},

therefore (VF )Y =a{< XY >& —#(Y )X } and the structure is a—Sasakian.
QED.

PROPOSITION 7.5. A.c.m.s. is a—Kenmotsu if and only if it is a structure
of the class C<(Tyq ).

Proof. If (V F)Y =of{<FX)Y>&-5(Y)FX}, then it follows from
(6.10) that

(Vx@)(Y,2)=<Y(VyF)Z>=a{<FX,Z>n(Y)—n(Z)<EX)Y >}
=—a{ D( X, Z (Y )—P( XY )n(Z)}.

Using (6.16) , (6.12) we obtain
1=-3(Ve, 1)Es +(Veg 1)FE Y= (Ve B)(E FE ) ~(Veg #)(& E, }=-2m
i=1 i=1

Thus, —a=1/2n6n and it follows from Table 6.3 that the structure has the
type Cs.

Conversely, if a.c.m.s. is of the class Cs and «=-1/2nén then for any
ZeX(M)

<(VF)Y ., Z>=a{<FX)Y ><¢&,Z>-n(Y)<FX,Z>},

therefore (VF )Y =a{<FX)Y >& —#(Y )FX } and the structure is a—Kenmotsu.
QED.

PROPOSITION 7.6. Let a.c.m.s. be a—Sasakian or a—Kenmotsu and « be

a constant. Then the corresponding pair (P(U(n)x1), g) s a quasi
homogeneous structure.

Proof. From Table 6.2, (6.24) , (6.25) we have
hXYZ :h@(f:hfo :0, X,Y EV,

hyye :2—1n< X ,FY >,[7(§):2—1n< X,FY >38@d(¢) for Cs =T, and
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Nyve :2_1n<X’Y >/>)(f)=2—1n< XY >on for Cg =Ty,

From the proofs of Propositions 7.4, 7.5 we obtain that

hXY§:a<X,FY> fOI‘CGand hXY§:—a<X,Y > fOI‘C7

As g and F are invariant under V and « is constant, therefore it is obvious
that Vh=0 in these cases.
QED.

3° The following examples one can find in [14].
1) Let H(p,1), p > 1, be the generalized Heisenberg group, i.e., the group of
matrices of real numbers of the form

1 A ¢
_ T
a E, B
0 0 1

where E, denotes the identity pxp matrix, A=(ay ,...,a,), B=(bs1,....bp)e R", ceR.
H(p,1) is a connected simply connected nilpotent Lie group of dimension 2p+1

which is called a generalized Heisenberg group.
A global system of coordinates (X, Xp+i, z), 1<i<p, on H(p,1) is defined

by
Xi (@)=ai, Xp+i(a)=bi, z(a)=c.

A Dbasis for the left invariant 1—forms on H(p,1) is given by
P
Qi :dXi, OCp+i :pr+i’ y:dz— ZdeXp+j ,
j=1

and its dual basis of left invariant vector fields on H(p,1) is obtained by

Xi:i’ Xp+i: a ’ Z:g’
OXp+i 0z

i=1,..,p

A left invariant metric on H(p,1) is defined by
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2p
9= 0 Qa +y®y
k=1

and the basis {Xy, Z}, k=1,...,2p, is orthonormal with respect to g.

Let (F, & n, g) be an a.c.m.s. on H(p,1) and F." the components of F with
respect to basis {Xx, Z}. Using the Riemannian connection of g it is obtained:

If Z=¢,F" are constant and FP™ =—F .., FP' =F;, 1<i,j<p, then
(F, & n, ) is stricly of the class C¢ ®C;. Moreover, it is of C,(T; ) if and only if

p : _ . .

Y FP™ =0, and it is of C4(T;) if and only if F§™' =F ") =7, where 1 is a
i=1

nonzero constant, and the other components of F are zero.

2) The generalized Heisenberg group H(1,r), r >1, is the Lie group of real
matrices of the form

E, AT ¢
a=|0 1 BT
o 0 1

where E, denotes the identity rxr matrix, A=(as,...,a, ), B=(b1,...,b,)eR" and ceR.
H(1,r) is a connected simply connected nilpotent Lie group of dimension 2r+1 and
the dimension of its center is r >1.

A global system of coordinates (X;, X+i, z), 1L<i<r, on H(1,r) is defined by

xi(a)=2a;, x (a)=b, z(a)=c
A Dbasis for the left invariant 1-forms of H(1,r) is given by
a; =dX;, o, =0X,;, y=dz
and its dual basis by

0 0 0 r 0
X.=% X..=—%  7-9 .y
! 1 ox oz E‘l I ox

r+i r+j

This basis is orthonormal with respect to the left invariant metric defined by
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2r

9= ®oy +y®7y.
k=1

Let (F, & n, g) be an a.c.m.s. on H(1,r) and F." the components of F with
respect to basis {Xx,Z}, k=1,...,2r. Using the Riemannian connection of the metric
g it is obtained :

if Z=¢, F" are constant and F{"'=-F' ;=0 F.j=Fj, then
(F, & n, g)is of the class Cq(Tg);

if z=¢ F" are constant and F{"'=-F/;, Fj=F;=0, then
(F, & n, g) is of the class Cy(Ty ).

3) Let G be the Lie group of real matrices of the form

e’ 0 X
a=| 0 e’ vy
0O 0 1

with the left invariant metric
g =e?2dx? + e 22dy? + A2dz?, 1>0.

(G,0) is a 4—symmetric space, which is isomorphic to the semi-direct product of R
and R?, both with the additive group structure, and where the action of R and R* is

given by the matrix
e? 0
0 e’

I.e., the group E(1,1) of rigid motions of the Minkowski 2—space. With respect to
the metric g, the basis of invariant vector fields {X;, X,, X3} given by
; O 10

_Za, X2=e ) X3

X, =e¢— ==Z
OX oy ) oz

is orthonormal.
It is verified that an a.c.m.s. (F, & n, g) on G is of the class C,(T;;) if

E=Xy or £&=X,; and it is of the class Cq(Ty) if £&=Xs.



162

4) Let G be the complex matrix group G of the form

e 0 2
a=|0 e w
0 0 1

Here z, w denote complex variables and t a real variable. This Lie group is
diffeomorphic to C 2 (z,w)xR(t). A left invariant metric on G is defined by

g =dz-dz + dw- dw + dt?
The vector fields {Z,,2Z,,Z,,Z,,W } given by

et 0 O

oW ot

122

are invariant under the action of G and they form an orthonormal basis of the Lie
algebra of G. Put

X,=+2Re(Zy+Z,), X,=+2Im(Z,+Z,),
Xs=~2IM(Z,-Z,), X4=+2Re(Z;-2Z,).

Identifying C ?xR with R® with invariant Riemannian metric obtained from g,
it follows that {X;, Xz, X3, X4, W} is an orthonormal basis on this space.
Let (F, & n, g) beana.c.m.s. on G and Fj' the components of F with respect

to {X1, Xz, X3, X4, W}. It is obtained

a) If ¢=W, Fj are constant and F; =F, F, =F/}, then (F, & n, g) is
cosymplectic.

b) If ¢=W, Fj are constant and F; = F{', F; = F}, then (F, & n, g) is of
the class C14(Ty, ).

An example of a.c.m.s. satisfying the last condition, and so of the class C;,
is the following:

FZZ :—izl, é::W, ﬂ:dt



§2. ON SOME CLASSES OF ALMOST CONTACT METRIC
MANIFOLDS

We identify some classes given in Tables 6.2, 6.3 with those studied in
literature.

1%, Let N(F) be the Nijenhuis tensor field of F. From [42] and (6.19) it
follows that for X,YeX(M)

(7.1) N(F)XX.Y)=(Ve F)Y —E(V4F) (Vg F)X + F(V,F)X
=hey FY—hey EX+ F2(hY —h, X )+ F(h FX—he, Y +hey X —hy FY)

From Theorem 1.5 we see that F is integrable if and only if N(F)=0 on M.

THEOREM 7.7. An a.c.m.s. is integrable if and only if
heT), =T, 0T, ®T; ©T,, O Ty;.

Proof. If F is integrable, then the structure of almost product is also
integrable and hxve=hvxs, X,YeV, according to Lemma 7.1. Let M Dbe some

~

maximal integral manifold of the distribution V, then the restriction of F on M
determines the almost complex structure F =F= which is integrable too

(N(F), =0), hence (M,g,F) is Hermitian. In this case, one can see from Table
5.1 that

Further, N(F )(X,&)=F2(hy& —h:X )+ F(h:FX = hey &),

<N(F)(XE)Y >=—Nyey +haxy =Ny + Nexery
:hxyg _hFXFYf-i_thXY :0, X,Y eV.

By analogy, we have hyy: —heyexe +2hsy =0. Adding these equalities and
taking into consideration that hyy: =hyy: we obtain hyy: =hgxey: and hey =0.
Thus heT,.

Conversely, if heT,,, then we have to check that N(F)=0. From (7.1),(7.2)
it follows that
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<N(F)(X.Y ),& >=heypye — hpyexe =0

<N(F)(X,Y),Z >=hexeyz —hevexz —Nxvz + vz —exez +Pexvez —Devxez

+hyevez = 2(Mvyz —Nevexz +Dexpvz —hxyz ) =0
Finally,< N(F )( X ,¢),£>=0,

< N( F )( X ,6),Y >= hXYf - hFXFYf + 2h§XY :0 .

QED.
So, there exist 32 classes of integrable a.c.m.s.

2° The following tensor fields play an important role in geometry of

S., see [8],[73].

NOX,Y)=N(F)(X,Y)+2dn(X,Y), NOX,Y)=(L exn)Y~(L )X,
NOX)=(L F)X, NOX)=(L X, XYeX(M)

LEMMA 7.8. N(X,Y)=N(F)(X,Y)+(hyx: — hxye), X,YeX(M).

Proof. Using (6.13) and (6.23) we have
2dn( XY )=(Vxn)Y =(Vyn)X =hysy —hys =hyxs —hyye.

QED.
LEMMA 7.9. N)(X,Y )= hyexe — hexye = Nxeve + Neyxe s XY eX(M)

Proof.

(Lex )Y =FX<Y, > —<[FX,Y], £>= <ViY —[FX,Y], £> + <Y,Vix £>
:<VY FX —vy FX ’§>+<Y’VFX§_6FX6>

= hyexe + Nexey = hvexe = Pexye -
QED.

LEMMA 7.10. N®(X)=2(h;FX —Fhz; X ), X eX(M).
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Proof. Using (6.19) we obtain

(L:F)X)=[E,FX]-F[&XT=VFXE =V & —F(VeX =V <)
=V:FX —FVeX = (Vg & = Vg ) + F(V i &= Vi &)
=(V:F )X —hex & + Fhy & =h.FX — Fh.X —hgy & + Fhy &
=2h; FX —2Fh; X.

QED.
LEMMA 7.11. N(X )=-hy:, X eX(M).
Proof.
(Len)(X)=¢ <X, E>=<[&{X]E>=< VX E>-<[{X].E>+< X VL >

:<ng,§>+< X ,Véé—vé:é >= hffx :—héxé:

QED.

THEOREM 7.12. Let a.c.m.s. be a quasi homogeneous structure, i.e.,
Vh=0.Then VN =VN) =YNB) = YN =VN(F)=0.

Proof. Let Z be a vector fied and ¥ a curve segment in M defined by Z or

more precisely by a local 1—-parameter group of transformations induced by Z. We
denote by X, Y the vector fields defined on some neighbourhood of y which are
obtained by the parallel translation of X;,Y,eTy,(M) along y pey in the
connection V. So, we have (VzX ), =(VzY ), =0. In this case

[(VZND)XY)], =[VZND(X,Y)]p and [(V,h)(X.Y)], =[VzhyY1, =O0.

We know that Vé=VF =Vg=0. From Lemmas 7.8 - 7.11 and (7.1) it

follows that [V,N)(X Y )], =0, where N®) denotes one of the tensor fields

QED.

DEFINITION 7.3 [8],[73] . A.c.m.s. is called normal if N(*) =0 on M.
THEOREM 7.13. A.c.m.s. is normal if and only if

heTy-T. ®T, T, O T,y
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Proof. A.c.m.s. is normal if and only if

(7.3) N(F)(X,Y )=(hyy: —hyxz )¢, N(F)(X,)=-hx<, XY eV.
Using (7.1) and (7.3) we obtain

(7.4) hex FY —hey FX = (hyye —hyye )

(7.5) F2(hyY —h, X )+ F(hyFX —hey Y + hey X —hy FY ) =0,

(7.6) N(F)(X,&)=F?(hy¢& - h:X )+ F(h:FX —hgyx&)=—hy: =0.
It follows from (7.4) that

(7.7) hexeye — Nevexe = Nxve — hyxe OF Nexeye = hyye,

(7.8) hexpvz —hevixz =0 or hyyz =hyyz . XY,ZeV.

The condition (7.8) is equivalent to the folowing one

hxyz =hvxz =—hvzx =—hzvx =hzxy =hxzy =—hxyz or
(79) hxyzzo.

We remark that (7.9) implies (7.5) and hz:=0 from (7.6). It also follows
from (7.6) that

—hyey + Ny —Naxey + hexery =Nxve = Nexeve + 2hexy =0
By analogy hyys — heypxe +2hsyx =0
Adding the last two equalities we have
hFXFYf + hFYFXf = hXYf + hvxg
and adding obtained one with (7.7) we get
(7.10) hexpye =hyys and hey =0.

Thus, heTy .

Conversely, if heT), then (7.10), (7.9) are fulfilled and hae =0 therefore
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(7.4), (7.5), (7.6) are realized and (7.3) follows.
QED.

3% Let X,Y,ZeX(M), then a.c.m.s. (F, & n, g) is said to be:

Almost cosymplectic if d@=0 and dn=0.

Quasi Sasakian if d@=0 and a.c.m.s. is normal.
Nearly-K-cosymplectic if (Vi F )Y +(VyF)X =0 and V4¢=0.
Quasi-K-cosymplectic if (VF )Y +(Vex F)FY =5(Y )V &

Semi cosymplectic if 6&=0 and 6n=0.

Trans-Sasakian if (Vy®)(Y,Z ):—2—1n{(< XY>n(Z)-<X,Z>n(Y ))od(¢)
+ (<X, FY >5(Z)-< X, FZ>n(Y ))on}.

Nearly-trans-Sasakian if

a) (VX@)(X,Y):—Z—ln{< XX >0NY )< XY >0 X H+<FX)Y >n( X)on},
b) (Vyn)Y :—2—1n{< FX,FY >on+ < FX )Y >0®(¢&)}.

Almost-K-contact if VQZF =0.

In [14], it is explained how these classes above studied by various authors
coincide with those introduced in Tables 6.2, 6.3.

C,®Cq=T, ®T, = the class of alImost cosymplectic manifolds.
C; ®Cq =T, @ T, = the class of trans-Sasakian manifolds.
Cq ®@C, =T ®T, = the class of quasi-Sasakian manifolds.

Co®C, ®Cy =T, ®T: ® Ty = the class of semi-cosymplectic and normal
manifolds.

C,®C;®Ce =T, ®T, ®T;, = the class of nearly-trans-Sasakian
manifolds.
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C,®C,®Cy@®C (=T, ®@T,®T; ®T, = the class of quasi-K-
cosymplectic manifolds.

® C;= @ T, =theclass of almost-K-contact manifolds.
i=1112 i=1112

® C;= @ T, =theclass of semi-cosymplectic manifolds.
i#=456 i=4710

DEFINITION 7.4. The structure affinor F is said to be:

a) of V-invariant type if for all X,YeV, (VyF)Y eV ;
b) of V-antiinvariant type if for all X,YeV, (VF )YLV;
¢) of &-antiinvariant type if for every XeV, (V-F )XL1V;

d) V-parallel if for all X,YeV, (V F)Y =0.

PROPOSITION 7.14 [2] . Let M be an almost contact metric manifold.

a) Fis of V-invariant type ifand only if he T, ®T, ®T, ®T, ® T, ®T),;

b) F is of V-antiinvariant type if and only if he 165)3 T,
i#1234

c) Fis of &antiinvariant type if and only if he _(JBlZTi;
1#

d) Fis V-parallel ifand only if he T;; ® T},.

PROPOSITION 7.15 [2] . Let M be an almost contact metric manifold.

a) he Ty, ifand only if F is of &-antiinvariant type and F is V-parallel.

b) heT, ®T, @, ®T; ®T,®T,, ®T, if and only if F is of
V-antiinvariant type and the integral
curves of £ are geodesics of V.

C) hel; ®T, T, ®T, if and only if F is of V-invariant type, F is of
E-antiinvariant type and the integral curves

B of £ are geodesics.
The class 7, is the analog of the class of conformally Kaehlerian manifolds
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(see Chapter 5, §3, 2°).

PROPOSITION 7.16 [2]. The class T, is characterized by the conditions:
a) F is of V-invariant type;

b) F is of &invariant type;

c) the integral curves of & are geodesics;

d) (VF)Y isinspan {X, FX, Y, FY} whenever X,YeV and XLY,FY.

In problems concerning the conformal change of the metric g, the class
T,®T, ®T,, ®T,, plays the same role as the class of conformally Kaehlerian

manifolds in the case of almost Hermitian manifolds.

REMARK. The text above shows that we can develop geometry of a.c.m.s.
using the classification given in Table 6.2. It is isomorphic to one considered
in Table 6.3. Our classification has a preference because it is given in terms
of the tensor field h=V -V, i. e., the canonical connection V=V —h has
been constructed for every class. To study these classes of almost contact
metric manifolds the various curvature tensor fields related to V can be
applied, see Chapter 2, §1. For example, with help of V one can obtain
characteristic classes.

83. ALMOST CONTACT METRIC STRUCTURES ON
RIEMANNIAN REGULAR o-MANIFOLDS

1°. Let (M,{sx}) be a R.Lr. -m. with one-dimensional disribution of mirrors
THM)=[&], where EeX(M), [¢[=1, T2 (M)=TY(M )" and =, i=12, are
projections of T(M) on T'(M).

For every point peM we can choose such an open ball By(R) of the radius R
that By(R)xBp(R)cU, where U was considered in Lemmas 4.57, 4.58, therefore
Sy (Y)=u(x,y) is defined for any x,yeB,(R). Taking a ball By(R/2) we see that
Sk (u(y.z))=x-(yz) is defined for any x,y,zeB,(R/2). So, for some concrete k there
exists such an open ball Bg( R/2%) of p that all the theory developed in Chapter
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4,83, 1°% 2°, 3%is true in By and we obtain a localizaion of these results. Using

localizations of Propositions 4.26—4.32 we get a local infinitesimal automorphism
L(X) on BY, where XeT,(M), which is defined by

(7.11) L(X )(x)=(1, =S, ) 'z, X -(p~*-x), xeBy, Y eX(B)),

and Ly xyS=L_x9=0 on Bg for every such a vector X. Moreover, the
canonical connection V of R.L.r. o—m. (M,{s,}) is given by

(7.12) VY =V, x Y +[L(X)Y1(p)=VY ~(Vii_sy1axS)STY),

XeTp(M), YeX(B)).
PROPOSITION 7.17. L (xy £=0on Bg for every peM and L :S=0 on M.

Proof. Using that L xy S=0on Bg we obtain

L 1 SE =[L(X), SEI=[L(X), SE-S[L(X), EJ+S[L(X),
E1=(L L S)E+S(L L é)

=S( LS )=IL(X).E1 = L
S0, S(L Ly &)=L (& and L xé €T or L x&E=aé. Further,
(LL(X)g)(&j’&j): L(X )<§1§>_<[L(x )15]1§>_<§1[L(X )’&j] >
=2<o0é,E>=-20=0.

Thus, Lo &=[L(X).8]=—L:L(X)=0on Bp. It follows from
Proposition 4.27 that SL(X)=L(SX) on Bg. Further, we have

(L S)LX))(P)= ([, SLA)T-SLE LX) (P) = ([&SL)D(p)
= ([£,.L(SX)]D(p) =0.

Since L(X)(p)=72 X, where XeTy(M), then (L :S)X=0 for any X esz( M).
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(L £5)8)(P) = ([, S&]-S[5.¢ D)(P)=0.

So, (L = S)(p)=0 for every point p of M.
QED.

2° 1tis easy to see that the distribution T2 is integrable if and only if the
Nijenhuis tensor field N(z;) vanishes on M. In general case it is clear that
M°={x eM:(N(2))(x)=0} is a close subset of M and M"={x eM:(N(7>))(x)=0} has
the induced structure of an open submanifold of M with dim M’=dim M. For M’
Definition 4.10 holds, therefore M” is an invariant submanifold of (M,{s«}) and
(M’ {sx}) is also a R.l.r. c—m. according to Theorem 4.60, maybe non-connected.

PROPOSITION 7.18. We have §g:§h:§§:0 on M’ , where V is

defined by (7.12), h=V -V and R is the curvature tensor field of V, i.e.,
for every point peM a connected component M‘(p) in M containing p is a
Riemannian locally homogeneous manifold.

Proof. For every point peM’ there exists such an open ball Bg cM',
which has been considered in 1°. Let XY eTpZ(M') be such vectors that
N(7r2)(X,Y)=0, then 71 [L(X),L(Y)]0 on some open ball B}, = B}, where L(X),
L(Y) are defined on Bg by (7.11). It is clear because L(Z)(p)=x,Z for any
ZeT,(M). N o

It follows from Proposition 4.52 that V,,h=V,T =V, R=0 for every
WeT? Let K denote h, T or R. The vector fields L(X), L(Y) are local
infinitesimal affine transformations of (M ﬁ), see Theorem 4.56, therefore from
(4.20) L (xyK=0and L yK=0. As we can see in [46]

(Voo K)(P) =1 Ly (Vi )K) = Vi) (Lo K)1(p)=0

and (71 [L(X), L(Y)]D(p)=0. So, §g:§h:§§:0 for any point peM”.
Using (2.13) and covering a segment of a curve between two arbitrary points of
M1(p) by a finite number of balls like B'IO we get the rest.

QED.

Let M= M, then we have obtained from Corollary 4.53 and Proposition
7.18
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a) Vg=VS=Vh=VT =VR =0;

(7.13)
b) S(h)=h, S(T)=T, S(R)=R, S(g)=g.

DEFINITION 7.5. Let (M,{sx}) be a R.L.r. c—m. with one-dimensional
distribution of mirrors T*(M). We call M a R.Lr. c—m. of maximal torsion if
N(7;)=0 on M, i.e., M’=M, and of minimal torsion if T2 is an integrable
distribution on M, i.e., N(z,)= 0 on M and M°=M.

THEOREM 7.19. Let (M,g) be a Riemannian manifold with an affinor S,
S(@)=g. If V is such a connection on M that (7.13) are realized, where

-~

h=V-V, T, R are the tensor fields of torsion and curvature of V

respectively, then there exists such a structure {sy} of R.l.r. c—m. on (M, g)
that S, =(s, )., and V is a canonical connection of (M,{sx}), see Definition

4.1.

Proof is similar to that considered in [48] for the case of locally regular
s-manifolds.

In this theorem and in the following one the distribution T* is not required to
be one-dimensional.

THEOREM 7.20. Let (M, g) be a Riemannian manifold with an
O-deformable affinor S, S(g)=g, and let T be an integrable distribution,

where T?=T™ and T'={XeX(M):SX=X}. If V is such a connection on M
that the following conditions hold

a) Vg =VS =0;
(7.14)  b) S(h)=h, S(R)=R;
)V, h=V,R=0 forany XeT?

where h=V -V, T, R are the tensor fields of torsion and curvature of V

respectively, then there exists such a structure {sy} of R.l.r. c—m. on (M, g)
that S, =(s, )., and V is a canonical connection of (M,{s«}).
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Proof will be given step by step in the next paragraphs.

1) A proof of Theorem 4.1 is true in our case because 69 =VS =0 and
S(h)=h, hence the distribution T* defines a foliation of mirrors. So, the almost
product structure T(M)=T }(M)®T (M) is also integrable.

2) It follows from (2.1),(2.3) that if S(h)=h and §Xh:0, X eT?, then
S(f):f and §Xf:0 too.

3) Lemma 4.57 and proof of Lemma 4.58 imply that for any point peM there
exists such an open ball B, that u(x,y):(eipx-s-eipgl)(y) is defined on
B,xB, . If we consider s, =eXp,-S -eXp,", then s, is a local affine transformation
of V because S,(R,)=R, and S (T, )=T,, see [46], S, T*, T2 are also invariant
with respect to every sy, therefore the corresponding foliations are invariant too.

4) The affinor 1-S has an inverse one on T2 and conditions (7.13) are
fulfilled on any of the maximal integral manifolds of the distribution T2, hence
every such a manifold is a locally regular s-manifold, see [48].

5) For each point peM s, is identical on the connected component A, "B,
of the mirror containing p and s, transforms mirrors onto mirrors.

6) The rest is easy the modification of the case of locally regular s-manifolds
considered in [48].

QED.

3% Let (M{sx}) be a R.L.r. o—m. with one-dimensional distribuion of
mirrors T*(M)=[£], where &eX(M), [¢[=1. We denote T*, T? by L, V
respectively. Further, let S, =(s,)., have only complex eigenvalues
a, +byi,..,a, £b.i on Vand D, =ker(S*-2aS+1), i=1,.,r. It is clear that

r
V = @ D; and for every XeV, X =X, +...+ X, where X; eD;, i=1,.,r.
i=1

An affinor F on M is defined by

i
(7.15) FX =zbi(s —a;1)X;, for XeV; FE=0.
i=1Vj

By similar argumentts as in Chapter 5, §3, 6° we obtain that for X,YeV
<FX, FY> = <X, Y>and F?X=-X.

So, (F, & n, g) is an a.c.m.s. on M. Let V be its canonical connection
defined by (5.1). Since S&é=¢&, S=ajl+biF on D; and VF =0, then
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VySX; =SV X;, i=1,.,r,and VS=Vg=0 on M. It is clear that D; and F are
invariant under any s,, therefore we get from (5.1) that V is also invariant under
s.. If V is the canonical connection of R.L.r. 5—m. defined by (4.1), then it follows
from Proposition 4.2 that V :§X for XeV.

From (4.1) it is obvious that (V:S)=(V,S)=0, hence V.F =0 too and

our a.c.m.s. is almost-K-contact, see 3°.
Using (5.1) and formulas of z;, =, we have that Vg =V:=V.. So, we

have got the following

THEOREM 7.21. Let (F, & n, g) be an a.c.m.s. on (M,{s«}) induced by a
structure of the R.L.r. c—m. as it have been shown above. If V is the
canonical connection of a.c.m.s. defined by (5.1) and V is that of (M,{sx})
given by (4.1), then both the connections coincide,

V =VonM.

If M is a manifold of maximal torsion, then (7.13) are realized.
If M is one of minimal torsion, then (7.14) are fulfilled.

REMARK. The converse situations are described in Theorems 7.19, 7.20
but we want to note that for given an a.c.m.s. a searching for a suitable
affinor S, which have to define a structure of R.L.r. c—m., is a sufficiently
difficult problem.

4° We consider now a R.L.r. 5-m.0.3 (M,{sx}), see Definition 4.3. So, $°=I
J3

and S has only three eigenvalues 1, —%i7'. Let L=T'=[£], £ eX(M), ||¢]=1,

be one-dimensional distribution of mirrors corresponding to the eigenvalue 1 and
V =T2 =L, Anaffinor F on M is defined by the formula

1
7.16) F& =0, FX =—(2S +1)X for XeV.
(7.16) ﬁ( )
By similar arguments as in Chapter 5, §3, 6° we easily obtain that

F2X=-X and <FX, FY>= <X, Y> for X,YeV.

So, (F, & n, g) is an a.c.m.s. on M induced by affinor S =(s, )., Theorem
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7.21 holds in our case and it follows from (4.3) that

VY :%(VXY +SV 4 S2Y +52V, SY ), X,YeX(M).

Conversely, let we have an a.c.m.s. (F, & n, g) on M and V is its canonical
connection. An affinor S can be defined on M by

(7.17) SE=¢, SX :(—%I +§F)X for XeV.

The conditions for (M, g,S, V) to be a R.L.r. 6—-m.0.3 of maximal or
minimal torsion are described in Theorems 7.19, 7.20.

REMARK. With help of Theorem 4.43, where A is one-dimensional
Riemannian manifold, using results from [33] we can construct various
examples of R.l.r. 6—-m.0.3 and, therefore, those of induced a.c.m.s.

5°. Let (M{s,}) be a R.L.r. 5-m.0.4 . Thus, S*=I and eigenvalues of S are
+1, +i. We consider a case when L=T'=[£], &eX(M), & =1, L is one-
dimensional distribution corresponding to the eigenvalue 1 or -1 and S?=-1 on
v=L"

An affinor F on M is defined by the formula

(7.18) FE=0, F=S onV.

So, (F, & n,g)isana.c.m.s. on M, and Theorem 7.21 holds, where
VY :%(VXY +SV S3Y + 5%V, S%Y + 53V, SY ), X,YeX(M).

PROPOSITION 7.22. Let (F, & n, g) be an a.c.m.s. on M induced by S as

it was shown above and h=V -V

1) If SéE= ~& then heT, ®T, and if (M,{s«}) is of minimal torsion, then
heT,

2) If S&=¢, then h=T, ®T, ®T, ®T, and if (M,{s¢}) is of minimal
torsion, then he T; ® Ty .

Proof. It was shown that the a.c.m.s is almost-K-contact, see 30, hence
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V:S=V.F=0 and he @ T,. Proposition 5.36 is also true in this case,
d d i21112 '
therefore

b) ha =0 because h:X eV ;

C) Ny :%<V5X +SV:SX,Y >:%<V5X — VXY >=0.
Since ShyY =hgy SY , hence

Nexpye =< hgy SY & >=< Shy Y & >=<hyY S3¢>,

If S&E=—¢, then heypy: =—hyy: and heT; © Ty,

If SE=¢, then hgypys =hyy: and heT; O, @ T3 ® Ty

The rest follows from Lemma 7.1.
QED.

Conversely, let we have an a.c.m.s. (F, & 1, g) on M and V is its canonical
connection. An affinor S can be defined on M by

(7.19)S=F onV, S&=-& or S&E=E

The conditions for (M,g,S,V) to be a R.Lr. c-m.o.4 of maximal or
minimal torsion are considered in Theorems 7.19, 7.20.

REMARK. Using Theorem 4.43, where A is an one-dimensional
Riemannian manifold, we can construct interesing examples of R.Lr.
6-m.o0.4 with induced a.c.m.s. of various classes. A base manifold can be
taken, for instance, from classification in [40].
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A

Affinor, 20
Almost
complex manifold, 108
complex structure, 108
contact metric structure (a.c.m.s.), 136
cosymplectic a.c.m.s., 167
Hermitian manifold (a.H.m.), 109
Hermitian structure, 109
K-contact a.c.m.s., 167, 168
Kaehlerian manifold, 116,122
product structure, 94
symplectic manifold, 126
Associated Riemannian metric, 15
Autoparallel submanifold, 120
a—Kenmotsu a.c.m.s., 157
a—Sasakian a.c.m.s., 157

C

Canonical connection of
almost contact metric structure (a.c.m.s.), 136
almost Hermitian structure, 108
almost product Riemannian structure, 95
f—structure, 130
regular s-manifold, 75
Riemannian G-structure, 17
Riemannian homogeneous space, 32
Riemannian locally regular c—manifold, 58, 61
Riemannian locally regular c—manifold of order k, 62
Classification of
almost contact metric structures, 142
almost Hermitian structures, 118
D.Chinea and C.Gonzalez, 145
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G-structures, 42

A.Gray and L.M.Hervella, 116
Codifferential of tensor field, 114
Conformal changes of Riemannian metric, 102
Conformally related almost Hermitian manifolds, 121
Covering space, 79

D

Derivation of (M, ), 70

Elementary transvections of regular s-manifolds, 75

F

f—structure, 129
Fibre bundle associated with principal fibre bundle, 9, 10
Fundamental operator of QR-algebra, 52

G

G-structure, 10
Generalized Heisenberg group, 159, 160
Group of transvections of a regular s-manifold, 75

H

Hermitian manifold, 116

Hermitian semi-Kaehlerian manifold, 116, 122
Holonomy fibre bundle, 28

Homogeneous Riemannian structure (h.R.s.), 32
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Infinitesimal
affine transformation, 31
automorhism of Riemannian locally regular c—manifold, 88
iIsometry, 31
Integrable
almost contact metric structures, 163
G-structure, 19
Invariant submanifold of
almost Hermitian manifold, 119
Riemannian locally regular c—manifold, 92

K

Kaehlerian manifold, 111

L

Local infinitesimal automorphism of Riemannian
locally regular c—manifold, 170

Locally
conformal Kaehlerian manifold, 122
k-symmetric Riemannian space, 84

M

Mirror, 60

N

Nearly
Kaehlerian manifold, 111
K-cosymplectic a.c.m.s., 156
particular structure, 17
particular vector field, 24
trans-Sasakian a.c.m.s., 167
Nijenhuis tensor, 19
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Normal a.c.m.s., 165

O

O-deformable tensor field, 11

P

Particular structure, 17

Particular vector field, 24

Polar decomposition of
O—deformable (1,1) tensor field, 21

Pseudo-Riemannian metric, 107

Q

QR-algebra, 52

Quasi
homogeneous structure, 24
K-cosymplectic a.c.m.s., 167, 168
Sasakian a.c.m.s., 167

R

Reflexion space, 84
Regular s-manifold, 68
Riemannian
curvature tensor field, 23
G-structure of type Ty, 44
G-structure of type T, 49
G-structure of type T3, 50
locally regular o-manifold (R.l.r. -m.), 58
locally regular o-manifold of
order k (R.L.r. o=m. 0.k), 62
regular o-manifold (R.r. o-m.), 59
regular o-manifold of order k (R.r. 6-m.0.k), 62
regular o-manifold of maximal (minimal) torsion, 79
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Second fundamental tensor field of
a.c.m.s., 136
almost Hermitian structure, 109
almost product structure, 96
Riemannian f-structure, 130
Riemannian G-structure, 17
submanifold, 100
Semi
cosymplectic a.c.m.s., 167
Kaehlerian manifold, 122
Space of constant curvature k, 47
Strict Riemannian G-structure, 26
Strongly invariant submanifold of
almost Hermitian manifold, 119
Structure affinor F of a.c.m.s. of
V - antiinvariant type, 168
V - invariant type, 168
V - parallel, 168
& - antiinvariant type, 168
Subsymmetry, 58

T

Tensor G-structure, 12
Trans - Sasakian a.c.m.s., 167
Transvection group, 29



LIST OF STANDARD DENOTATIONS AND

To(M), My
To(M), M7,
(0* ’ (0* p

T(M)
L(M)
X(M)
P(G)

S 1 & ~
o
=y
1=

< -
< el
>

< <«

F J, P, S
N(F)
R,R
T,T
P(up)

Tr(V)
a.c.m.s.

a.H.s.
a.p.R.s.

ABBREVATIONS

M a differentiable manifold of dimension n and of class
C” ("smooth manifold")

the tangent space of M at the point peM

the cotangent space of M at p

the tangent mapping of a smooth mapping

(on a manifold, at a point)

the tangent bundle of M

the principal frame bundle of M

the Lie algebra of all smooth vector fields on M

a G-structure over M

a connection in P(G)

the connection form of the given connection I’
Lie algebras of the Lie groups O(n), G, H, K

a vector subspace of a Lie algebra

the Lie bracket

the Lie derivative with respect to XeX(M)
Riemannian connection on M,

covariant derivative with respect to XeX(M)

the canonical connection of the structure (P(G),9)
the canonical connection of a homogeneous Riemannian
space or Riemannian (locally) regular c(or s)-manifold

O-deformable (1,1) tensor fields (affinors)
Nijenhuis tensor of an affinor F

curvature tensor fields of the connections V,V
torsion tensor fields of the connections Vﬁ

the holonomy subbundle (of a connection) containing the
frame uy e L(M )

transvection group

an almost contact metric structure

an almost Hermitian structure

an almost product Riemannian structure



f-s.

h.R.s.

k-s.R.s.
k-s.l.R.s.

R.r. c-m.
R.Lr. o-m.
R.r. o-m.o.k
R.Lr. o-m.o.k
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An f-structure
an homogeneous Riemannian structure
a k-symmetric Riemannian space
a locally k-symmetric Riemannian space
an Riemannian regular o-manifold
an Riemannian locally regular o-manifold
an Riemannian regular o-manifold of order k
an Riemannian locally regular o-manifold of order k



